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Resumo

Nesse trabalho, deduzimos uma fórmula geral para a ação “on-shell” da supergravidade
de Romans Euclideana seis-dimensional usando localização equivariante. Começamos re-
visando a teoria matemática necessária da Cohomologia Equivariante e da Geometria
Tórica, então proseguimos introduzindo a supergravidade de Romans Euclidena. Apli-
camos a fórmula de localização BV-AB para calcular a ação “on-shell”. Nosso resultado
é uma fórmula geral que não necessita do conhecimento explícito de uma solução das
equações de movimento, se apoiando quase inteiramente na topologia da solução. A fór-
mula obtida é aplicada a uma variedade de exemplos que elucidam diferents aspectos.
Recuperamos resultados da literatura, incluindo resultados da supergravidade e cálcu-
los da teoria de campos dual holográfica, e obtemos novos estabelescendo previsões para
soluções desconhecidas.

Palavras-chave: Ação “on-shell”; Supergravidade de Romans; Holografia; Correspondên-
cia AdS/CFT; Geomtria Tórica; Localisação Equivariante.
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Abstract

In this work, we derive a general formula for the on-shell action of six-dimensional Eu-
clidean Romans supergravity using equivariant localization. We begin by reviewing the
necessary mathematical framework of Equivariant Cohomology and Toric Geometry, then
we proceed to introduce the Euclidean Romans supergravity. We then apply the BV-AB
localization formula to calculate the on-shell action. Our result is a general formula that
does not require an explicit knowledge of a solution of the equations of motion, relying
almost entirely on the topology of the solution. The obtained formula is applied to a va-
riety of examples that display different features. We recover previous results found on the
literature, including supergravity results and holographical dual field theory calculations,
and obtain new ones establishing predictions to unknown solutions.

Keywords: On-shell action; Romans Supergravity; Holography; AdS/CFT Correspon-
dence; Toric Geometry; Equivariant Localization.
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Chapter 1

Introduction

The AdS/CFT correspondence, also known as “Holography", is a conjecture of a duality
between gravity and gauge theories defined on the boundary of the manifold where the
gravity theory sits. The original proposal of Maldacena [1] was a duality between a
supergravity theory that has AdS5 × S5 geometry and N = 4 Super Yang-Mills living
on four-dimensional Minkowski spacetime, but numerous other examples were proposed
for different dimensions. While a proof of the conjecture remains an open problem, the
computation and matching of observables on both sides of the duality gives us hints that
the conjecture is true and provides insights on how to understand the duality.

Among the interesting observables, there is the on-shell action of the gravity theory
which is identified with the free-energy of the dual field theory. The computation of the
free-energy on the field theory side has for long been using localization techniques, but
the use of such techniques on the gravity side is novel and a general framework is still
under development.

The mathematical theory that supports these localization techniques is known as
Equivariant Cohomology. This theory studies differential forms on manifolds that are
acted by a Lie group and main result of the theory is BV-AB localization formula [2, 3].
If the action of a Lie group on the manifold is not free, there will be fixed points. The
BV-AB formula tells us how we can write the integral of a differential form that satis-
fies certain conditions as a finite sum of contributions over the fixed points of the group
action. These conditions are equivalent to a set of differential equations that relate the
components of the integrated form to components of forms from lower degree. In this
sense, we say that the integral localizes to the fixed points.

In the six-dimensional gauge supergravity known as Romans Supergravity [4], there is
a natural U(1) action whose generator is the Killing vector built from the Killing spinor
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of the theory.1 The existence of the Killing spinor is implied by supersymmetry and from
it we can construct a set of bilinear differential forms that are related to the fields of
the theory through a set of differential equations. We can then construct a differential
form which integrates to the on-shell action such that the conditions to apply the BV-AB
formula are equivalent to the equations of motion and to the supersymmetry conditions
of the theory. Finally, we obtain a formula for the action, which is automatically on-shell
and supersymmetric. The formula reads as

I =
{ ∑

dim 0

χ(σ(1)ϵ1 + σ(2)ϵ2 + σ(3)ϵ3)3

ϵ1ϵ2ϵ3

−
∑

dim 2

χ(σ(1)ϵ1 + σ(2)ϵ2)2

ϵ1ϵ2

∫
F2

3c1(F ) + (σ(1)ϵ1 + σ(2)ϵ2)
(
c1(L1)
ϵ1

+ c1(L2)
ϵ2

)

+
∑

dim 4
χσ(1)

∫
F4

3c1(F ) ∧ c1(F ) + 3σ(1)c1(F ) ∧ c1(L1) + c1(L1) ∧ c1(L1)
}
FS5

27 .

Here FS5 is the free-energy of the dual theory on S5, the ϵi’s are the weights of the
toric action generated by the Killing vector, χ is the chirality of the Killing spinor on
the fixed-point set, the σ(i)’s are signs associated to projection conditions that the Killing
spinor satisfies on the fixed-point set, c1(F ) is the first Chern class of the gauge field and
c1(Li) is the first Chern class of a line bundle that composes the normal bundle that is
normal to fixed-point set.

The construction described does not relies on any explicit solution of Romans Su-
pergravity, and hence we obtain a general formula that asks only for the topological
information of a given solution. It is then immediate to apply the obtained formula to
different classes of examples to obtain expressions for the on-shell action that can be
readily compared to the free-energy of five-dimensional field theories that have the same
supersymmetry. We consider three classes of examples with topologies given by R6, R4

fibered over a two-surface F2, and R2 fibered over a four-manifold B4. In general, there
will be a U(1) action only on the R2k part, which corresponds to the rotation of the R2

plane, considering a decomposition R2k = R2 ⊕ ...⊕R2. Hence the fixed-point is precisely
located at the origin of the planes. In some examples, there will also be a U(1) action
on the compact part of the manifold. As a rule, the euclidean conformal boundary of the
R2k part of the manifold is the sphere S2k−1. Thus, the holographical theories will sit on
manifolds with topologies S5, S3 fibered over F2, and S1 fibered over B4.

This work is organized as follows. We begin by introducing Equivariant Cohomology,
1This fact is not exclusive of the Romans Supergravity. In fact, there has been similar constructions

on four dimensions. [5]
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presenting its most important structures and the BV-AB fixed point formula, which we
first give the result for a general compact Lie group and then the U(1) case. We illustrate
the theorem with some examples, finishing with the important application to sympletic
toric geometry, where we recover the Duistermaat-Heckman formula. In the next chapter,
we expand on the topic of toric geometry, giving the general ideas and doing computations
which shall be used later on the localization of Romans Supergravity.

Romans Supergravity is then introduced, we make explicit the action, equations of
motion, supersymmetry equations and the special truncation that we will consider in the
rest of the work. The bilinears are constructed from the spinor giving rise to a SU(2)
structure and some differential forms, in special, a one-form dual to the U(1) Killing
vector. Then we proceed to localize the theory. We begin by constructing interesting
differential forms and analyzing how they behave at the fixed points of the U(1) action.
Then we apply the BV-AB formula to obtain an expression to the on-shell action and
finish the chapter discussing important additional points. With the expression for the
action at hand, we apply it in the next chapter to many examples recovering known
supergravity results and obtaining new ones. We finish by comparing some of our results
with holographical computations from the literature.

3



Chapter 2

Equivariant Cohomology

Let M be a differentiable manifold and G a matrix Lie group that acts on M . Let also f
be a map on M , f : M −→ M . We say that f is G-equivariant if

f(g · x) = g · f(x), ∀x ∈ M e g ∈ G, (2.1)

where g ·x is the action of g on x ∈ M . We want to extend the concept of G-equivariance
to differential forms.

First of all, observe that there is a induced action of G on the space of differential
forms. It is given by the pull-back where the maps are the elements of G. That is, given
a g ∈ G, we can consider it as map from M on M . For every point x ∈ M , g induces
a pull-back: g∗T ∗

g·xM −→ T ∗
xM , where T ∗

xM is the cotangent space on x. This action
naturally extends to the whole exterior algebra ΛM .

Besides being viewed as linear functionals of the vector fields, the differential forms
can be regarded as independent objects. We aim to define G-equivariance on the forms
in such a manner that we do not break its aspect of differential form by contracting it
with some set of vectors. To this end, we shall consider the algebra given by the tensor
product of the exterior algebra with the the dual Lie algebra of G.

The Lie algebra of G, g, is specially important because it can be associated with vector
fields on M . Let ϕ ∈ C∞(M). The action of G on ϕ is given by

(g · ϕ)(x) = ϕ(g−1 · x). (2.2)

Now let X ∈ g. We have that exp (tX) is an element of G. Using this exponential
map, we can associate the elements of g with vector fields on M by the formula:

(X̃ · ϕ)(x) = d
dt
[
ϕ(e−tX · x)

]
t=0

. (2.3)
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The map X 7→ X̃ is a Lie algebra homomorphims, thus, from now on, we will regard
X̃ and X as being the same object.

Let C [g] be the complex-valued polynomial algebra over g1. The product C [g] ⊗ ΛM
is the structure that we are after. Note that an element of this space can be seen as a
map from the g to ΛM . Let α ∈ C [g] ⊗ ΛM , the action of G on C [g] ⊗ ΛM is defined as

(g · α)(X) = g · (α(Ad(g−1)X)) = g · α(gXg−1), (2.4)

where we used that G is a matrix group to write Ad(g)X = g−1Xg.
Define the set ΛGM ≡ (C [g] ⊗ ΛM)G as being the G-invariant subalgebra, id est,

(g · α)(X) = α(X). But this condition is equivalent to α(g ·X) = g · α(X) (the action of
G on g is the adjoint action), thus ΛGM is really the algebra of G-equivariant forms.

2.1 Derivation and Integration

We can ascribe to the algebra C [g] ⊗ ΛM a Z-grading. The total degree of a form of
C [g] ⊗ ΛM is two times the degree of the polynomial from C [g] plus the degree of the
form from ΛkM .

Now let X ∈ g and α ∈ C [g] ⊗ ΛM , we define the equivariant exterior derivative by

(dgα)(X) := d(α(X)) −X α(X), (2.5)

where X is the interior product/contraction with the vector field X. The usual exterior
derivative increases the degree of the form by one, on the other hand, the interior product
decreases by one, but, since we identified the vector fields on M with g, it will increase
by one the degree of the polynomial part of α, thus increasing by two the total degree.
That means that the net effect of the interior product on the degree of α is to increase
it by one. Henceforth, dg increases by one the total degree of α, like the usual exterior
derivative.

Unlike the de Rham operator, d, dg is not nilpotent, actually we have that:

d2
gα(X) = X d(α(X)) − d(X α(X)) = −LXα(X), (2.6)

where LX is the Lie derivative along X. But the equivariant forms are the G-invariant
elements of ΛGM , thus dg is nilpotent in ΛGM and we can write dg : Λk

GM → Λk+1
G M .

This allows us to define the equivariant cohomology analogously to the usual de Rham
cohomology. Indeed, we call the forms of ΛGM that satisfy dgα = 0 equivariantly closed

1That is, polynomials that take an element of g to a complex number.
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and the ones with dgβ = α, equivariantly exact. So, the kth equivariant cohomology
is the quotient space of equivariantly closed forms by the equivariantly exacts, both with
degree k.

Recall that we are considering the full exterior algebra, so that each element is a formal
sum of various forms of different degrees, hence we may write:

α(X) =
n∑
i=0

α(X)i, α(X)i ∈ ΛiM. (2.7)

For equivariantly closed forms, we have a tower of differential equations that imposes
relations on the components of the form. These equations are given by

X α(X)i = dα(X)i−2. (2.8)

2.1.1 Integration

Let M be a compact oriented manifold, we define the integration of α ∈ ΛGM over M
using the integral of α(X):

(∫
M
α
)

(X) :=
∫
M
α(X), (2.9)

where, in the right hand side, we are integrating the top component of α(X) which is the
one with degree given by the dimension of M . By this definition, the integral is a map
from ΛGM to CG, the algebra of G-invariant polynomials.

2.2 Fiber Bundles and Characteristic Classes

We will need to consider G-equivariant characteristic classes. Those are defined for G-
equivariant fiber bundles, which we introduce now. The requirement is that the projection
of the total space in the base space needs to be G-equivariant. Let π : E −→ M be a
fiber bundle and G a Lie group that acts on both E and M , we say that the bundle is
G-equivariant if:

g · π(x) = π(g · x), ∀x ∈ E, ∀g ∈ G. (2.10)

Let now E be an equivariant vector bundle, we can define equivariant forms with
values on the vector bundle in the same way we defined the ordinary equivariant forms.
Indeed, the space of differential forms with values in E is defined by

Λk(M,E) := ΛkM ⊗ E. (2.11)

6



Thus, the space of equivariant forms with values on E is the G-invariant subspace of
C [g] ⊗ Λ(M,E), which we denote by ΛG(M,E) ≡ (C [g] ⊗ Λ(M,E))G. This space has
the same Z-grading as the ordinary space of equivariant forms.

To define the equivariant covariant derivative, we require that the action of G on
Λ(M,E) commute with the ordinary covariant derivative, for which the covariant deriva-
tive is called G-invariant, namely:

[∇,LX ] = 0, ∀X ∈ g, (2.12)

where LX is understood as the extension of the Lie derivative to general sections of the
bundle.

Given a G-invariant covariant derivative, we define the G-equivariant covariant deriva-
tive by

(∇gα)(X) = (∇ −X )α(X). (2.13)

This definition satisfies the Leibniz rule and preserves ΛG(M,E) since ∇ is taken to
be G-invariant.

We can also define the equivariant curvature:

Fg(X) = ∇2
g(X) − d2

g(X), (2.14)
= ∇2

g(X) + LX , (2.15)
= F − ∇X + LX (2.16)

The equivariant curvature is an element of the G-invariant space of differential on M

with values on the endomorphisms over E, ΛG(M,End(E)). The equivariant curvature
also satisfies the equivariant Bianchi identity:

[Fg(X),∇g(X)] = 0. (2.17)

2.2.1 Characteristic Classes

Having the equivariant covariant derivative and the equivariant curvature, we can define
the characteristic classes. They are defined using G-invariant polynomial maps from
ΛG(M,End(E)) to ΛG(M). In the equivariant case, the condition on the polynomials is
given in terms of the equivariant derivatives, let P : ΛG(M,End(E)) → ΛG(M) be an
invariant polynomial of degree r, it satisfies:

7



dgP (α) = rP (∇gα). (2.18)

If we take Fg for α, dgP (Fg) = 0, so that P (Fg) defines an equivariant cohomology.
We are mainly interested in the Chern character and in the Euler form which are defined
using the trace and the determinant. Both of these polynomial functions are G-invariant
and satisfy equation (2.18).

The equivariant Chern character is defined by

ch(Fg) = tre−Fg , (2.19)

and, when we have also a G-invariant metric, the equivariant Euler form is given by

eg(Fg) := Pf(−Fg) =
√

det(−Fg). (2.20)

2.3 BV-AB localization formula

One of the main results of the equivariant cohomology theory is the Berline-Vergne/Atiyah-
Bott formula which relates the integral of the top-component of an equivariantly closed
form with the integrals of the lower components of the form over the fixed-point surfaces
of the action of the compact group G.

The fixed-point set, called F , of the action of G is a submanifold of M . It is given by
the set of points x ∈ M such that g · x = x. Regardless from being called “fixed-point”,
it may be constituted by different components with several dimensions. Recalling that
exp (tX) is an element of G, we may think intuitively that the fixed-point set is the set
where X = 0, but it is better to take |X|2 = 0 as the definition of the fixed-point set
because it is invariant under change of coordinates.

The assumption that G is compact allows us to construct a G-invariant Riemann
metric on M . The Riemann metric is used to define the dual form to the vector field which
generates the action of G. This form is equivariantly closed and invertible outside the
fixed point set. Possessing these properties, it can be used to show that any equivariantly
closed form is equivariantly exact outside the fixed point set. This is one of the main facts
used in the proof of the localization formula that can be found in [6].

We begin by stating the 0-dimensional version of the localization formula. In this case,
there are only isolated fixed points.

If we think the Lie Derivative, with respect to the generators of G, as a linear trans-
formation on the tangent space at each point, it can be shown that this transformation
is invertible and anti-symmetric. Let Lp be this transformation at the point p.
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If α is an equivariantly closed form on the manifold M of dimension 2n, and X is a
generator of a compact Lie group acting on M , we have that:

∫
M
α(X) = (2π)n

∑
p∈F

α0(X)(p)
det1/2Lp

, (2.21)

where F is the fixed point set of G. Note that α0(X)(p) is just a function evaluated
at p. The determinant in the denominator can also be thought as the jacobian of the
transformation x 7→ X(x). This shows that the right hand side is related to the integral
of α0(X) times δ(X(x)).

In the general case, we turn our eyes to the normal bundle N to the fixed point set
F . It can be shown that N is an orientable even dimensional manifold.

Now we state the general result. Let G be a compact Lie group with Lie algebra g.
Let α(X), X ∈ g, be an equivariantly closed form on the 2n-dimensional manifold M ,
where G acts. And finally let F be the fixed point set of the action of G. Then we have
that:

∫
M
α(X) =

∫
F

(−2π)dim(N )/2 α(X)
det1/2 (R(N ) + LX |N )

, (2.22)

where R is the curvature two-form. In the normal bundle, the equivariant curvature will
simplify to the ordinary curvature plus the lie derivative. Thus (2.22) may also be written
using the equivariant Euler form.

2.4 BV-AB for G=U(1)

Our main interest is when G = U(1). At first look, this may seem as an almost trivial case,
since U(1) is just a one-dimensional Lie Groups. Indeed, there will be some simplifications,
many due to the fact that the Lie algebra has only one dimension, and so G have only one
generator. On the other hand, the U(1) action is not so restrictive and arises naturally
as a symmetry in many geometries, like in the sphere, for example.

We consider the case where the normal bundle can be written as a Whitney sum of
complex line bundles: N = L1 ⊕ ...⊕ Lk.

Our generator of the U(1) action is given by

ξ =
k∑
i=1

ϵi∂φi
, (2.23)

here each ∂φi
rotates Li.
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Like before, the Lie derivative Lξ restricted to the normal bundle is a linear trans-
formation which is invertible and skew-symmetric. This implies that the Pfaffian will be
just the products of the ϵi’s. We also write the curvature as the first Chern class. Using
that the normal bundle is a Whitney sum, we get the formula:

det1/2 (R(N ) + LX |N )
(−2π)k =

k∏
i=1

(
c1(Li) + ϵi

2π

)
, (2.24)

where we note that 2k = dim(N ).
By means of a geometric series trick we can invert both sides of this relation and plug

in (2.22). Since we have only one generator, we can omit the argument (ξ) of α(ξ). For
α(ξ) ≡ Φ we finally obtain [7]

∫
M

Φ =
∑

dim 0

(2π)n
ϵ1...ϵn

Φ0 +
∑

dim 2

(2π)n−1

ϵ1...ϵn−1

∫ [
Φ2 − Φ0

n−1∑
i=1

2π
ϵi
c1(Li)

]

+
∑

dim 4

(2π)n−2

ϵ1...ϵn−2

∫ [
Φ4 − Φ2 ∧

n−2∑
i=1

2π
ϵi
c1(Li)

+Φ0

n−2∑
1≤i≤j

(2π)2

ϵiϵj
c1(Li) ∧ c1(Lj)

+ ....

(2.25)

2.4.1 Example 1: S2

Consider the two dimensional sphere S2. It is naturally described by the usual spherical
coordinates θ and φ, with θ ∈ [0, π] and φ ∈ [0, 2π]. The metric is given by

ds2 = dθ2 + sin θ2dφ2. (2.26)

The generator of the U(1) action is simply ξ = ϵ∂φ. Picturing a rotating sphere, we
can see that the fixed points are the poles. Indeed, this is true because the fixed point
set equation, |ξ|2 = 0, gives sin θ2 = 0, thus θ = 0 and θ = π are the fixed points.

Let Φ = ψ(θ, φ)dθ ∧ dφ + ϕ(θ, φ) be a general polyform which has a 2-form and a
0-form components. Impose that it is equivariantly closed. Applying our main result
(2.25) directly gives

∫
S2

Φ = 2π
ϵ

(ϕ(0) − ϕ(π)), (2.27)

where the minus sign arises from the ϵ in the denominator which has different signs at
each pole because of the orientation of the sphere. This sign difference really comes from
the orientation of the normal bundle which must be consistent with the orientation of the
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sphere. For the sphere, we can actually visualize the normals at the poles and “see” the
sign difference, which is carried with ϵ when we evaluated the Lie derivative at the fixed
point and got formula (2.24). So saying that ϵ changes sign is not rigorous and this is the
reason why the ϵ “inside” the polyform (see below) keeps its sign. This will be a recurrent
property in the examples to come and in the application to Romans SUGRA it will be
further developed.

The example of the 2d sphere is almost trivial, meaning that we can recover this result
easily. The condition that it is equivariantly closed gives

ϵψdθ + dϕ = 0, (2.28)
=⇒ ϕ = ϕ(θ), and ψ = −1

ϵ
∂θϕ. (2.29)

Recall that the integration of Φ over S2 is just the integration of the top form com-
ponent, hence we have:

∫
S2
ψdθdφ = − 2π

ϵ

∫ π

0
∂θϕdθ, (2.30)

=2π
ϵ

(ϕ(0) − ϕ(π)). (2.31)

For example, let ψ be sin θ, so that the integration of Φ gives the volume (the superficial
area) of the sphere. It is easy to verify that ϕ = ϵ cos θ, which, plugging at (2.31), gives
the correct result.

2.4.2 Example 2: S2 × S2 × S2

This next example can also be verified directly, but it illustrates an interesting feature:
even if our manifold has a U(1)n action, we can consider only U(1)d, with n > d, to apply
the BV-AB formula if we like.

To the metric on S2 ×S2 ×S2, we can write just the sum of the metrics on each sphere.
Let (θi, φi) be coordinates of the sphere S2

i , then we have:

ds2 = dθ2
1 + sin θ1

2dφ2
1 + dθ2

2 + sin θ2
2dφ2

2 + dθ2
3 + sin θ3

2dφ2
3. (2.32)

Our Killing vector is ξ = ϵ1∂φ1 + ϵ2∂φ2 + ϵ3∂φ3 which gives the poles of the spheres as
fixed points, θi = {0, π}. For the polyform, we use a generalization of the form used in
the previous example:

11



Φ = ψ′
1ψ

′
2ψ

′
3dθ1 ∧ dφ1 ∧ dθ2 ∧ dφ2dθ3 ∧ dφ3

+ ϵ1ψ1ψ
′
2ψ

′
3dθ2 ∧ dφ2 ∧ dθ3 ∧ dφ3

+ ϵ2ψ2ψ
′
1ψ

′
3dθ1 ∧ dφ1 ∧ dθ3 ∧ dφ3 + ϵ3ψ3ψ

′
1ψ

′
2dθ1 ∧ dφ1 ∧ dθ2 ∧ dφ2

+ ϵ2ϵ3ψ2ψ3ψ
′
1dθ1 ∧ dφ1 + ϵ1ϵ3ψ1ψ3ψ

′
2dθ2 ∧ dφ2 + ϵ1ϵ2ψ1ψ2ψ

′
3dθ3 ∧ dφ3

− ϵ1ϵ2ϵ3ψ1ψ2ψ3,

(2.33)

where ψi = ψi(θi) is a smooth function on each sphere and ψ′
i is its derivative with respect

to θ.
As mentioned before, now there are 23 = 8 fixed points corresponding to the poles of

the spheres. Applying (2.25) then gives

∫
Φ = −8π3 (ψ1(0) − ψ1(π)) (ψ2(0) − ψ2(π)) (ψ3(0) − ψ3(π)) . (2.34)

Now we consider that S2
3 is fixed, thus our generator is ξ12 = ϵ1∂φ1 + ϵ2∂φ2 . We can

get a equivariantly closed polyform by sending ϵ3 to zero at (2.33)

Φ12 = ψ′
1ψ

′
2ψ

′
3dθ1 ∧ dφ1 ∧ dθ2 ∧ dφ2dθ3 ∧ dφ3

− (ϵ1ψ1ψ
′
2ψ

′
3dθ2 ∧ dφ2 ∧ dθ3 ∧ dφ3 + ϵ2ψ2ψ

′
1ψ

′
3dθ1 ∧ dφ1 ∧ dθ3 ∧ dφ3)

+ ϵ1ϵ2ψ1ψ2ψ
′
3dθ3 ∧ dφ3

+ 0,

(2.35)

note that the zero form vanishes, this is not an obstacle to applying the theorem because
now the fixed point is 4 copies of S2

3 , each sitting at each pole of the other spheres.
Upon applying (2.25)

∫
Φ12 = 4π2 (ψ1(0) − ψ1(π)) (ψ2(0) − ψ2(π))

∫
S2
ψ′

3dθ3dφ3, (2.36)

= −8π3 (ψ1(0) − ψ1(π)) (ψ2(0) − ψ2(π)) (ψ3(0) − ψ3(π)) . (2.37)

We can go even further and set two spheres to be not rotated. This amounts to sending
ϵ2 and ϵ3 to zero, which leads to the equivariantly closed polyform:

Φ1 = ψ′
1ψ

′
2ψ

′
3dθ1 ∧ dφ1 ∧ dθ2 ∧ dφ2dθ3 ∧ dφ3

− ϵ1ψ1ψ
′
2ψ

′
3dθ2 ∧ dφ2 ∧ dθ3 ∧ dφ3

+ 0
+ 0.

(2.38)
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As expected, the 2-form also vanishes. The fixed point set is now two copies of S2 ×S2

at each pole of the remaining sphere. Applying (2.25)
∫

Φ1 = −2π (ψ1(0) − ψ1(π))
∫
S2×S2

ψ′
2ψ

′
3dθ2dφ2dθ3dφ3,

= −8π3 (ψ1(0) − ψ1(π)) (ψ2(0) − ψ2(π)) (ψ3(0) − ψ3(π)) .
(2.39)

We recovered the same result in the three different cases. Of course, in general, we
want to reduce the integrations as much as possible, specially if we can reduce to a sum
over fixed points, but this procedure of sending the rotation parameters to zero is a good
way of checking the calculations and will be used latter on. Finally, we note that setting
ψi = − cos(θi) makes Φ6 the volume form of S2 × S2 × S2 and the BV-AB formula gives
the correct result of (4π)3.

2.4.3 Example 3: S4

We present now an example which can also be verified by direct integration, but it has a
less trivial equivariantly closed polyform.

The 4-sphere can be embedded in R5 through the map:

(α, θ, φ1, φ2) 7→ (cosα, sinα sin θ sinφ1, sinα sin θ cosφ1, sinα cos θ sinφ2, sinα cos θ cosφ2),

with the angular variables ranging as α ∈ [0, π], θ ∈ [0, π/2] and φi ∈ [0, 2π]. This is not
the usual spherical coordinates but rather a mix of spherical and cylindrical coordinate
systems. In the chosen coordinates the U(1) action is manifest and at each extreme value
of θ there is a 2-sphere, both of these facts can be seen from the line element:

ds2 = dα2 + sin2 α
(
dθ2 + cos2 θdφ2

2 + dφ2
1 sin2 θ

)
. (2.40)

The generator of the U(1) action is ξ = ϵ1∂φ1 + ϵ2∂φ2 and the fixed points are given
by the equation |ξ|2 = sin2 α (ϵ2

1 sin2 θ + ϵ2
2 cos2 θ) = 0 which, for generic values of the ϵi’s,

has α = {0, π} as solutions. Thus the fixed points are precisely the poles of S4.
The polyform is given by

Φ = sin3 dα sin θ cos θdα ∧ dθ ∧ dφ1 ∧ dφ2

−1
2 sin3 dα

(
ϵ2dφ1 sin2 θ + ϵ1dφ2 cos2 θ

)
∧ dα

− 1
24ϵ1ϵ2(cos(3α) − 9 cos dα).

(2.41)

Applying BV-AB (2.25) gives the correct result for the volume of S4:
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∫
S4

Φ = (2π)2

ϵ1ϵ2
(Φ0(α = 0) − Φ0(α = π)) = 8π2

3 . (2.42)

Where the minus sign comes from the orientation of the normal bundle in the same
spirit as was discussed in the S2 example.

2.4.4 Symplectic Toric Geometry, Duistermaat-Heckman for-
mula and Gaussian Integration

Let M be a symplectic manifold of dimension 2n. That is, there is a closed non-degenerate
2-form defined on it, this form is called symplectic form and can be written locally as

ω =
n∑
i=1

dxi ∧ dyi. (2.43)

Supposed that there is defined a U(1)d action on the manifold. Call V i the d generators
of U(1)d represented at the tangent bundle of M . The action of U(1)d will be said
hamiltonian if there exists a moment map µ defined trough:

µ : M → u∗(1)d ≃ Rd, (2.44)
dµi = V i ω. (2.45)

The existence of the moment map also implies that the action is symplectic in the
sense that it preserves the symplectic structure:

LV iω = d(V i ω) = d2µi = 0, (2.46)

where we made use of equation (2.6) and the fact that ω is closed.
From now on, we consider that d = n. Our generator of the U(1) action will be

ξ = ϵiV
i = ϵi∂φi

as usual. Thus the polyform Φ = ω + ϵiµ
i will be equivariantly closed.

Now we define the exponential of Φ by

eΦ = eϵiµ
i
n∑
k=0

ωk

k! , (2.47)

where ω2 = ω ∧ ω and so forth, keep in mind that ωm = 0 if m > n.
It can be verified directly that the exponential of Φ is an equivariantly closed form

provided that Φ is equivariantly closed , thus we may apply the BV-AB formula (2.25) to
it. The Duistermaat-Heckman formula is the special case when the set of fixed points is
discrete:
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∫
M
eΦ = 1

n!

∫
M
eϵiµ

i

ωn =
∑

dim 0

(2π)n
ϵ1...ϵn

eϵiµ
i

∣∣∣∣∣
fixed points

. (2.48)

As an example, consider M = R2n. The symplectic form can be written in polar
coordinates as ω = ridri ∧ dφi. The interior product with ξ is simply ξ ω = −ϵiridri.
Then the moment map is minus the Hamiltonian of the harmonic oscillator:

µ = −ϵir
2
i

2 + µ0, (2.49)

which can be brought to a more familiar form by setting qi =
√

2
ki

√
mi
ri cosφi and pi =

√
2miri sinφi.

The fixed point of the U(1) action is just the origin of R2n, i.e. ri = 0, thus we can
readily apply (2.48)

∫
R2n

e− ϵi
2 (x2

i +y2
i )+µ0dnxdny = n! (2π)n

ϵ1...ϵn
eµ0 . (2.50)

Physically, this is the calculation of the partition function of a system of n classical
harmonic oscillators. Indeed, the ideas presented in this section have been expanded and
generalized to be applied to calculate vacuum-to-vacuum amplitudes in QFT.
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Chapter 3

Toric Geometry

Throughout this work, it will be used the mathematical formalism of Toric Geometry.
Generally speaking, it studies the situation where a manifold is acted by a torus. It is a
very broad subject, but here we will talk about the “Symplectic Toric Geometry” and we
shall not worry about the technical and rigorous details of the theory, but rather give a
general introduction focused on actual calculations and aimed towards the applications
in this work.

We begin by giving a general explanation of the framework and introducing the prin-
cipal concepts and ideas, then we proceed to explicit examples. First, we deal with the
simple S2 × R2 which displays the most important features we want to show. In the
next examples, we shall deal with the fibered case and 6d manifolds. In principle, there
is nothing in our construction that complicates in the fibered case, one just needs to be
mindful about the fibration. Additionally, we will not be worried about discussing the
moment map in the same way we did here. Our goal will be to calculate the relevant toric
data.

3.1 General Theory

Consider the situation described in the end of the last chapter. We had a 2n-dimensional
sympletic manifold with a U(1)n hamiltonian action defined on it. The group U(1)n

is identified with the real torus Tn = Rn/(2πZn). Wrapping these concepts, we define
a symplectic toric manifold as a symplectic manifold of dimension 2n with a Tn

hamiltonian action.
The symplectic toric manifolds are associated with convex polytopes given by the

image of the moment map acting on the symplectic manifold. This polytope is a subset
of Rn which can be characterized as
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P = {x ∈ Rn : la(x) ≡ xiv
a
i − λa ≥ 0, ∀a = 1, ..., d} , (3.1)

where va ∈ Zn and d is the number of facets of the polytope, where by facet we mean a
submanifold of P of codimension 1.

The symplectic manifold is then understood as the total space of the fibration of Tn

over P . This construction is suitable for our work because it naturally encodes the fixed-
point sets of the torus action, they are at the boundary of P . In an interior point of the
polytope, there is the whole trous fibered over it, but over a facet, there is only Tn−1. In
general, over a face of codimension m, m 1-torus collapses leaving only Tn−m, thus the
fixed points of the total torus action are the vertices of P . It should be mentioned that
here we make the assumption that exactly n facets meet at each vertex, that is, if p is a
vertex point, then la(p) = 0, for n values of a.

The vectors va ∈ Zn are called toric data as they encode all the information that we
are interested. These vectors are orthogonal to the facets la(x) = 0 which means that the
moment map µ is constant in the direction of va when restricted to µ−1(la = 0) and thus
specify the torus group that collapses in the facet. We can express this more explicitly,
let ∂φi

be vector fields that generate the torus action on M , then introduce

∂ϕa =
n∑
i=1

vai∂φi
. (3.2)

The vectors ∂ϕa are precisely the vectors that fix the facet la(x) = 0.
Finally, on the vertices we have n vectors va which, we assume, constitute a basis for

Rn. Note that the va’s are better seen as elements of (Rn)∗, id est, the dual space. Thus
it is convenient to introduce a set of vectors u(I)

a ∈ Zn which is a dual basis to the va’s
that are orthogonal to the facets that meet at the vertex I and a = 1, ..., n. Hence, if ξ is
a toric vector on M represented as

ξ =
n∑
i=1

ϵi∂φi
, (3.3)

then the weights on each vertex I are given by b(I)
a = u(I)

a · ξ. Geometrically, the u’s may
be interpreted as edge vectors that point outwards the vertex I.

3.2 Example 1: S2 × R2

We apply the ideas described above to the simple example of S2 ×R2. We take the usual
spherical coordinates (θ, φ) to parametrize S2 and (r, ψ) to be the polar coordinates of
R2. We can take the symplectic form to be
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ω = sin θdθ ∧ dφ− d
(
r2/2

)
∧ dψ, (3.4)

where the minus sign is just for convenience.
Given the generators of the toric action ∂φ and ∂ψ, the moment map is given by

µ : S2 × R2 → P , (3.5)
(θ, φ) × (r, ψ) 7→ (cos θ, r2/2). (3.6)

Thus the image of µ is the polytope P = [−1, 1] × (0,∞). The inverse image of µ of
the edge points of P may take to R2 sitting at the poles of S2 or to S2 sitting at the origin
of R2, depending if we look at µ−1(±1, r2/2), with r ̸= 0, or µ−1(cos θ, 0), with θ ̸= 0, π,
respectively. In the first case, we end up with only ∂ψ, in the latter one, we get only ∂φ.
In particular, the vertices of P are the points (±1, 0) which correspond to the poles of the
sphere at the origin of the plane, those are exactly the fixed points of the torus action.

This polytope has three facets, thus we have three orthogonal vectors va, a = 1, 2, 3.
We take them to be

v0 = (0,−1); (3.7)
v1 = (1, 0); (3.8)
v2 = (−1, 0); (3.9)

The dual u’s are at vertex 1, u1
1 = (1, 0) and u2

1 = (0,−1); at vertex 2, u1
2 = (−1, 0)

and u2
2 = (0,−1). Thus, if ξ = ϵ1∂φ + ϵ2∂ψ. Then the weights at vertex 1 are given by

(ϵ1,−ϵ2) and at vertex 2 by (−ϵ1,−ϵ2).
The important information for us is the weights of ξ at each vertex, considering relative

signs. The absolute sign is not important because it is just a matter of convention. For
example, we could have taken the polytope facing downward which would be equivalent to
take v0 = (0, 1) and then the weights at each vertex would be (ϵ1, ϵ2) and (−ϵ1, ϵ2). This
does not encode any different information from what we had previously done because
it came simply from a simple choice. Of course, if we are already working with some
specific convention, then we should do our calculations mindful of it so that everything is
consistent.
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3.3 Toric data for O(−p) fibered over S2

First consider a round two-sphere S2 embedded in R3 and introduce the two patches UN,S
that cover the sphere:

UN = {(x, y, z) ∈ R3
∣∣∣|x|2 = 1, z > −|ϵ|} ,

US = {(x, y, z) ∈ R3
∣∣∣|x|2 = 1, z < |ϵ|} ,

(3.10)

with ϵ an infinitesimal parameter. The patches intersect at the equator z = 0. Let (θ, φ),
with θ ∈ [0, π] and φ ∼ φ + 2π, be the standard spherical coordinates of S2. On each
patch UI , I = N,S, introduce the coordinates ρI and φI . They relate to (θ, φ) as ρN = θ,
φN = φ and ρS = π − θ, φS = −φ. The coordinates (ρI , φI) are the polar coordinates of
R2
I and the relations we gave between them and (θ, φ) gives the correct volume form on

R2
I from the volume form on S2, namely ρIdρI ∧ dφI from sin θdθ∧ dφ which in turn fixes

the orientation. Finally, at the equator, we must have:

φN = −φS = φ. (3.11)

Now we define the bundle O(−p) → S2. The patches of the total space are taken to
be UI × C with coordinates (ρI , φI) × zI , where it is convenient to write zI = rIeiψI . The
transition function is tNS = e−ipφ where p must be an integer1. Thus, at the equator, the
coordinates of the fiber are related by

ψN = ψS − pφ. (3.12)

We now proceed to specify the action of T2 on the bundle. Introduce (ϕ1, ϕ2) as the
torus coordinates so that the torus action is generated by both ∂ϕi

. Without loss of
generality, we pick (ϕ1, ϕ2) = (φN , ψN). Which gives

∂φN
= ∂ϕ1 , ∂ψN

= ∂ϕ2 . (3.13)

At the south pole, we must have (ϕ1, ϕ2) = (−φS, ψS+pφS) so everything is consistent
with the construction of the bundle. Therefore we have:

∂ψS
= ∂ϕ2 , ∂φS

= −∂ϕ1 + p∂ϕ2 . (3.14)

1In the section 5.4, the number −p will be introduced as the first Chern number of O(−p), that is,
−p =

∫
S2 c1(F ). It turns out that both definitions are consistent because we can take the curvature to

be F = −p sin θdθ ∧ dφ [8, 9].
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We take the toric data to be minus the vectors ∂φI
and ∂ψI

written in the ∂ϕi
basis.

The minus sign is just a convention to agree with the diagram 3.1.

v1 = (−1, 0)

v0 = (0,−1) v′
0 = (0,−1)

v 2
=

(1,
−p

)

Figure 3.1: The toric diagram for O(−p) → S2 with p > 0.

Note that for p < 0 the diagram looks differently. Moreover for p = 0 the toric diagram
is simply the open cup, which is the diagram for the first example. The vectors v0 and
v′

0 are equal, thus we can disregard v′
0 and effectively connect the dashed part of 3.1.

Therefore, the toric data is given by

v1 ≡ (−1, 0);
v0 ≡ (0,−1);
v3 ≡ (1,−p).

(3.15)

On the vertex 1 (north pole), the orthogonal vectors are v1 and v0. On the vertex 2
(south pole), they are v3 and v0. Thus, the dual basis at vertex 1 is given by u

(1)
1 = v1

and u
(1)
0 = v0. At the vertex 2, we have: u(2)

1 = (1, 0) and u
(2)
0 = (−p,−1). Therefore,

given a generic toric vector ξ = (ϵ1, ϵ2), at each vertex the weights will be

ξ1 = (−ϵ1,−ϵ2);
ξ2 = (ϵ1,−pϵ1 − ϵ2).

(3.16)

3.4 Toric data for O(−p1,−p2) fibered over S2
1 × S2

2

The first example of a 6-dimensional manifold is a complex line bundle fibred over the
product of spheres. The arguments of the previous example generalize directly. Consider
the patches described in the last section, the patches of O(−p1,−p2) → S2

1 × S2
2 are

UIJ = U1,I × U2,J × C where I, J = N,S.
There are three relevant intersections of patches. The coordinates of the sphere relate

as usual in the equators, φi,N = −φi,S. And the transition functions are given by
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tNN,NS = e−ip2φ2,N ,

tNN,SN = e−ip1φ1,N ,

tNN,SS = e−i(p1φ1,N +p2φ2N) .

(3.17)

Analogously to what we did before, we pick the coordinates of T3 to be (ϕ1, ϕ2, ϕ3) =
(φ1,N , φ2,N , ψNN). Thus around the north-north pole, the toric data is

∂φ1,N
= ∂ϕ1 ,

∂φ2,N
= ∂ϕ2 ,

∂φNN
= ∂ϕ3 .

(3.18)

Around the south-south pole, we use (ϕ1, ϕ2, ϕ3) = (φ1,S, φ2,S, ψSS), which gives

∂φ1,S
= −∂ϕ1 + p1∂ϕ3 ,

∂φ2,S
= −∂ϕ2 + p2∂ϕ3 ,

∂φSS
= ∂ϕ3 .

(3.19)

In principle, we would need to analyze the other poles, but it will not yeld any new
information. The associated polytope has five facets and four vertices, thus we need only
five orthogonal vectors to completely determine the toric data. The relevant data can
then be summarized as

v0 ≡ ∂ψNN
= (0, 0, 1),

v1 ≡ ∂φ1,N
= (1, 0, 0),

v2 ≡ ∂φ2,N
= (0, 1, 0),

v3 ≡ ∂φ1,S
= (−1, 0, p1),

v4 ≡ ∂φ2,S
= (0,−1, p2).

(3.20)

The dual basis at each vertex is taken to be

NN : u
(1)
1 = v1, u

(1)
2 = v2, u

(1)
0 = (0, 0, 1); (3.21)

SN : u
(2)
1 = −v1, u

(2)
2 = v2, u

(2)
0 = (p1, 0, 1); (3.22)

SS: u
(3)
1 = −v1, u

(3)
2 = −v2, u

(3)
0 = (p1, p2, 1); (3.23)

NS: u
(4)
1 = v1, u

(4)
2 = −v2, u

(4)
0 = (0, p2, 1). (3.24)
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From this one can calculate the weights of a generic toric vector ξ = (ϵ1, ϵ2, ϵ3) at each
vertex by the formula ξI = (ξ · u1

I , ξ · u2
I , ξ · u0

I).

3.5 Toric data for O(−p1) ⊕ O(−p2) fibered over S2

Our next computation is for R4 fibered over S2, where we decompose R4 into two complex
line bundles. Just like before, we use the two patches of S2 UN and US defined in section
3.3. On each patch, we introduce the coordinates (ρI , φI)× (z1I , z2I), where I = N,S and
ziI = riIeiψiI .

On the overlap of UN and US, the angular coordinates are related as

φN = −φS, (3.25)
ψiN = ψiS − piφN . (3.26)

Now we pick the a basis for the T3 action:

∂ϕ1 ≡ ∂φN
, (3.27)

∂ϕ2 ≡ ∂ψ1N
, (3.28)

∂ϕ3 ≡ ∂ψ2N
. (3.29)

This choice is consistent to setting the coordinates of T3 on the south pole to be
(ϕ1, ϕ2, ϕ3) = (−φS, ψ1S + p1φS, ψ2S + p2φS). Hence, we obtain:

∂φS
= −∂ϕ1 + p1∂ϕ2 + p2∂ϕ3 , (3.30)
∂ψ1S

= ∂ϕ2 , ∂ψ2S
= ∂ϕ3 . (3.31)

The polytope associated to O(−p1) ⊕ O(−p2) → S2 has four faces and two vertices
corresponding to the two fixed points. This means that the relevant toric data is given
by four vectors which is expected from the computations as ∂ψ1S

and ∂ψ2S
are the same

as their north pole counterparts. Thus, the relevant toric data is given by

v1 ≡ (1, 0, 0);
v2 ≡ (0, 1, 0);
v0 ≡ (0, 0, 1);
v3 ≡ (−1, p1, p2).

(3.32)
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The dual basis at each vertex is then:

N : u(1)
1 = v1, u

(1)
2 = v2, u

(1)
0 = v0; (3.33)

S: u(2)
1 = −v1, u

(2)
2 = (p1, 1, 0), u

(2)
0 = (p2, 0, 1); (3.34)

Similarly, one calculates the weights of ξ = (ϵ1, ϵ2, ϵ3) at both vertexes by the formula
ξI = (ξ · u1

I , ξ · u2
I , ξ · u0

I).

3.6 Toric data for O(−p) fibered over CP 2

The computation of the toric data of CP 2 follows the same ideas as the previous ones.
Consider (z0, z1, z3) ∈ C3, then CP 2 has three charts defined by Uµ = {zµ ̸= 0}. The
coordinates on the chart Uµ chart are taken to be ξνµ ≡ zν/zµ, it is useful to write them
as ξνµ = rνµeiφν

µ . On the overlap of two charts Uµ and Uν , we relate the coordinates by

ξλµ = zν
zµ
ξλν . (3.35)

Within this construction, we may write the local coordinates of O(−p) → CP 2 in
the patch Uµ as ξνµ × wµ which we write as

(
rνµeiφν

µ

)
×
(
sµeiψµ

)
. In terms of the angular

coordinates, the coordinates of different patches Uµ and Uν relate as

φλµ =φνµ + φλν , (3.36)
ψµ =ψν − pφνµ. (3.37)

Now define the coordinates of the toric action on U0 to be ϕ1 ≡ φ1
0, ϕ2 ≡ φ2

0 and
ϕ3 = ψ0. Thus the basis of the T3 on this patch is simply:

∂

∂φ1
0

= ∂1,
∂

∂φ2
0

= ∂2
∂

∂ψ0
= ∂3, (3.38)

where ∂i = ∂/∂ϕi.
So that everything is consistent, on U1, we must have the coordinate change (φ0

1, φ
2
1, ψ1) 7→

(ϕ1, ϕ2, ϕ3) = (−φ0
1, φ

2
1 − φ0

1, ψ1 + pφ0
1). This leads to the following basis

∂

∂φ0
1

= −∂1 − ∂2 + p∂3,
∂

∂φ2
1

= ∂2
∂

∂ψ1
= ∂3, (3.39)

By the same reason, on the patch U2, we must have (φ0
2, φ

1
2, ψ2) 7→ (ϕ1, ϕ2, ϕ3) =

(φ1
2 − φ0

2,−φ0
2, ψ2 + pφ0

2). This will not lead to any new vector, thus we shall omit the
result for the basis.
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Collecting the results, the relevant toric data for O(−p) → CP 2 is given by

v1 ≡ (1, 0, 0);
v2 ≡ (0, 1, 0);
v3 ≡ (−1,−1, p);
v4 ≡ (0, 0, 1).

(3.40)

The toric data for only CP 2 is given by the above v1, v2 and v3 with p = 0, thus the
toric diagram for CP 2 is a triangle.

The dual basis at each vertex is given by

Vertex 1: u(1)
1 = (1, 0, 0), u

(1)
2 = (0, 1, 0), u

(1)
0 = (0, 0, 1); (3.41)

Vertex 2: u(2)
1 = (1,−1, 0), u

(2)
2 = (0,−1, 0), u

(2)
0 = (0, p, 1); (3.42)

Vertex 3: u(3)
3 = (−1, 1, 0), u

(3)
2 = (−1, 0, 0), u

(3)
0 = (p, 0, 1). (3.43)

3.7 Weights at the vertices from the toric data

In the Toric Geometry framework, the manifold is mapped to a polytope which in our
case is a subset of R3 because we work in six dimensions. This polytope is composed of
vertices, edges and faces. The vertices are the fixed points of the T3 action. On each
face, the torus action collapses and this collapse is specified by the toric data, which are
the normal vectors to the faces. In our case, each face is associated to a four-dimensional
manifold fixed by a T1 action. The vertices are intersections of three faces and correspond
to the fixed points of the total toric action on the manifold.

This framework can be used to directly calculate the weights of the generator of the
toric action at the fixed points. Recall the S2 example, where the generator of rotations is
ξ = ϵ∂φ and so the weights at the different vertices have opposite signs. This information
about the relative signs is what we are looking for. In more complicated geometries,
and specially on the fibered cases, it is not easy to obtain this data. Toric geometry
then provides a systematic way to do so. In general terms, let there be an isolated fixed
point which correspond to a vertex called A on the polytope. Let u(A)

i be the vectors on
this vertex such that u(A)

i · vj = δij, where vj is normal to the face labeled by j, where
i, j = 1, 2, 3. Of course, there can be more than 3 faces on the polytope, but we consider
that the ones that intersect on the vertex A are the faces 1,2,3. Let ξ be the generator of
the U(1) action, as usual. Then the weights at this vertex are given by

ξ(A) = (ξ · u(A)
1 , ξ · u(A)

2 , ξ · u(A)
3 ). (3.44)
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The vectors u(A)
i ’s form a dual basis to the vi’s corresponding to the faces that intersect

at the vertex A. They are interpreted geometrically as outward pointing vectors coming
out of the vertex, but to compute them is an additional step that can be skipped by
employing an equivalent method. Let ξ be the R-symmetry vector. We can compute the
values of the weights in the direction normal to the face i at the vertex A by the formula:

ξ(A)i = det(ξ, vj, vk)
det(v1, v2, v3)

=
1
2ε
ijkεlmnv

m
j v

n
k ξ

l

det(v1, v2, v3)
, (3.45)

where vi = vji ej and the indices j, k should be arranged in the correct order, which is given
by the orientation of the normal vectors of the polytope inherited from the orientation of
the manifold. We will illustrate this with the R2 ×S2 ×S2 example, whose toric diagram
is given in figure 6.2.

Let ei be the dual one-form to the vector vi. If we ascribe the orientation e0 ∧ e1 ∧ e2

to vertex one, we will need vertex 2 to have orientation e0 ∧ (−e1) ∧ e2 = e0 ∧ e4 ∧ e2,
vertex 3 to have orientation e0 ∧ (−e1)∧ (−e2) = e0 ∧e4 ∧e3 and vertex 4 to be oriented as
e0 ∧ e1 ∧ e3. These flips of sign are a consistency condition that arise from the orientation
of the spheres.

Keeping in mind this fixed orientation, if we wish to calculate the weight on the
direction of v0 at each vertex, we can use the formulas

ξ · u(1)
0 = det(ξ, v1, v2)

det(v0, v1, v2)
, ξ · u(2)

0 = det(ξ, v4, v2)
det(v0, v4, v2)

, (3.46)

ξ · u(3)
0 = det(ξ, v4, v3)

det(v0, v4, v3)
, ξ · u(4)

0 = det(ξ, v1, v3)
det(v0, v1, v3)

. (3.47)

v4

v3

v2

v0

v1

u
(1)
2

u
(1)
1

u
(1)
0u

(4)
3

u
(4)
1

u
(4)
0

u
(2)
4

u
(2)
2

u
(2)
0

u
(3)
4

u
(3)
3

u
(3)
0

Figure 3.2: Toric diagram for R2 × S2 × S2.
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To see that this method of calculating the weights by using the determinants yields
the same results as the one with the dual vectors is a standard linear algebra calculation.
We will omit the superscript (A) on the u(A)

i ’s for the moment. Write the vectors ui as
ui = ujiej. The equation ui · vj = δij can be seen as a matrix equation where a matrix
with entries uji is the inverse of the matrix with entries vji , that is, uki vkj = δij. We can
calculate the inverse of vji by the general formula from the adjugate matrix, the result for
uji is

uji =
1
2ε
imnεjklv

k
mv

l
n

det(v1, v2, v3)
. (3.48)

Thus the value of the weight in the direction i is

ξ(A)i = ξ · ui =
1
2ε
imnεjklv

k
mv

l
nξ

j

det(v1, v2, v3)
. (3.49)

This is the same as (3.45).
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Chapter 4

Euclidean Romans Supergravity

Romans supergravity is a six-dimensional gauged supergravity theory introduced by Ro-
mans in the eighties [4]. Latter on, it was recovered as a truncation of type IIA ten-
dimensional supergravity on S4 [10]. Here we work with the euclidean version of the
theory [11] which is more suited for holographic purposes.

The bosonic field content of the theory consists of five fields: the metric gµν , the
dilaton ϕ, a one-form potential A, a two-form potential B and the R-symmetry su(2)
gauge field Ai, i = 1, 2, 3. The fields strengths are given as H = dB, F = dA + 2

3gB and
F i = dAi − 1

2gεijkA
j ∧Ak, where g is the coupling constant. We also introduce the scalar

field X = exp
(
−ϕ/2

√
2
)
.

Exploiting the gauge freedom of the theory, it is possible to annihilate the potential
A [11] such that the B field becomes massive through its relation with F , in fact, we can
just forget the F field and work only with B. Additionally, we can rescale the fields in
such way that the coupling constant enters the action as an overall factor and hence can
be set to unity. Finally, all the fields are set to be real, with exception of B, which is
taken to be purely imaginary.

The bulk action with the mentioned conventions is then [11,12]

Ibulk = − 1
16πGN

∫
M6

[
R ∗ 1 − 4X−2dX ∧ ∗dX −

(
2
9X

−6 − 8
3X

−2 − 2X2
)

∗ 1

− 1
2X

−2
(

4
9B ∧ ∗B + F i ∧ ∗F i

)
− 1

2X
4H ∧ ∗H

− iB ∧
(

2
27B ∧B + 1

2F
i ∧ F i

)]
, (4.1)

where GN is the Newton constant and ∗ denotes Hodge duality and we adopt conventions
such that ∗1 is the volume form on M6. The i factor in the Chern-Simons term is a
characteristic of the Eucliden signature.
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The SO(3) covariant derivative is given by Dωi ≡ dωi − εijkA
j ∧ ωk. From the given

action, we can derive the equations of motion:

d
(
X−1 ∗ dX

)
= −

(
1
6X

−6 − 2
3X

−2 + 1
2X

2
)

∗ 1

− 1
8X

−2
(

4
9B ∧ ∗B + F i ∧ ∗F i

)
+ 1

4X
4H ∧ ∗H ,

d
(
X4 ∗H

)
= 2 i

9 B ∧B + i
2F

i ∧ F i + 4
9X

−2 ∗B ,

D(X−2 ∗ F i) = − iF i ∧H . (4.2)

And the Einstein equation:

Rµν = 4X−2∂µX∂νX +
(

1
18X

−6 − 2
3X

−2 − 1
2X

2
)
gµν + 1

4X
4
(
H2
µν − 1

6H
2gµν

)
+ 2

9X
−2
(
B2
µν − 1

8B
2gµν

)
+ 1

2X
−2
(
(F i)2

µν − 1
8(F i)2gµν

)
, (4.3)

where B2
µν ≡ BµρBν

ρ and H2
µν ≡ HµρσH

ρσ
ν .

A solution to the equations of motion is supersymmetric provided there exists a non-
trivial SU(2)R doublet of Dirac spinors ϵI , I = 1, 2, satisfying the Killing spinor and
dilatino equations. First, introduce the γµ, µ = 1, ..., 6, as Hermitian matrices that
generate the Clifford algebra Cliff(6, 0) in an orthonormal frame as we are working in
Euclidean signature. From them, define the chirality operator γ7 ≡ iγ123456, which satisfies
γ2

7 = 1. The SO(3) covariant derivative acting on the spinor is DµϵI ≡ (∂µ+ 1
4ω

νρ
µ γνρ)ϵI+

i
2A

i
µ(σi)IJϵJ , where σi are the Pauli matrices and ω νρ

µ is the Levi-Civita spin connection.
The Killing spinor equation and the dilatino equation are then respectively given by

DµϵI = i
4
√

2(X + 1
3X

−3)γµγ7ϵI − i
24

√
2X

−1Bνρ(γµνρ − 6δµνγρ)ϵI
− 1

48X
2Hνρσγ

νρσγµγ7ϵI + 1
16

√
2X

−1F i
νρ(γµνρ − 6δµνγρ)γ7(σi)IJϵJ , (4.4)

0 = − iX−1∂µXγ
µϵI + 1

2
√

2

(
X −X−3

)
γ7ϵI + i

24X
2Hµνργ

µνργ7ϵI

− 1
12

√
2X

−1Bµνγ
µνϵI − i

8
√

2X
−1F i

µνγ
µνγ7(σi)IJϵJ . (4.5)

From now on, we will work on a Abelian truncation of the theory where A1 ≡ A2 ≡ 0,
A3 ≡ A and F 3 ≡ F = dA. We also impose the symplectic majorana condition: ε J

I ϵJ =
Cϵ∗

I ≡ ϵcI , where εIJ is the two-dimensional Levi-Civita symbol and C denotes the charge
conjugation matrix, satisfying γT

µ = C−1γµC. Under these assumptions, the Killing spinor
and dilatino equations of ϵ2 are then the charge conjugated equations for ϵ1, thus the
SU(2)R doublet becomes (ϵ1, ϵ2) = (ϵ, ϵc) and the existence of only ϵ1 is enough for a
solution to have supersymmetry.
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4.0.1 AdS6 vacuum

Setting all the fields, besides the metric, to zero (specially ϕ = 0 sets X = 1) makes all
the equations of motion to identically vanish and the Einstein equation becomes:

Rµν = −10
9 gµν . (4.6)

Recall that a AdSn space with radius l satisfies:

Rµν = −1
l2

(n− 1)gµν . (4.7)

Comparing the equations, we conclude that we have an AdS6 vacuum with AdS radius
l = 3√

2 .
To analyze the supersymmetry of the vacuum, we need to look for solutions of the

Dilatino and Killing Spinor equations with the values of the fields plugged in. The Dilatino
equation is trivially satisfied and the KSE is given simply by

∇µϵ = i
3
√

2
γµγ7ϵ. (4.8)

The solution of this equation has 8 integration constants which corresponds to N = 4
supersymmetry [4, 13]

4.1 Bilinears and SU(2) structure

Pick a representation of the γ-matrices such that they are all anti-symmetric and purely
imaginary and so the charge-conjugation matrix is given by C = −iγ7. Using the Killing
spinor we may then construct a set of real bilinear differential forms

S ≡ ϵ̄ϵ , P ≡ ϵ̄γ7ϵ , ξ♭ ≡ ϵ̄γ(1)ϵ , K̃ ≡ iϵ̄γ(1)γ7ϵ ,

Y ≡ iϵ̄γ(2)ϵ , Ỹ ≡ iϵ̄γ(2)γ7ϵ , V ≡ iϵ̄γ(3)ϵ , Ṽ ≡ ϵ̄γ(3)γ7ϵ , (4.9)

where we have defined γ(r) ≡ 1
r!γµ1···µrdxµ1 ∧ · · · ∧ dxµr , and ϵ̄ = ϵ† is the Hermitian

conjugate of ϵ.
The one-form ξ♭ is dual to the Killing vector ξµ = ϵ̄γµϵ, furthermore, it was shown

in [14] that all the bosonic fields and all the bilinears defined above are annihilated by
the Lie derivative in the direction of ξ.

The Killing spinor ϵ defines a SU(2)-structure since it is globally defined and SU(2)
is its stabilizer. We make a explicit construction of the SU(2)-invariant tensors. First
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decompose ϵ accordingly to its chirality:

ϵ± ≡ 1
2(1 ± γ7)ϵ , (4.10)

and then write

ϵ+ =
√
S sinϑ η∗

2 , ϵ− =
√
S cosϑ η1 . (4.11)

Here ϑ is a function, while η1, η2 are two orthogonal unit norm chiral spinors, so that
η̄1η1 = η̄2η2 = 1 and η̄2η1 = 0. To see that SU(2) is the stabilizer of ϵ first note that the
stabilizer of each ηi is a different copy of SU(3), to determine the G-structure of the pair
(η1, η2), we look at the maximal common subgroup of the copies of SU(3) embedded in
SO(6), the answer is a SU(2)-structure [15]. In other words, the stabilizer of each ϵ± is
SU(3), but the stabilizer of the whole ϵ = ϵ+ + ϵ− is SU(2).

The SU(2)-invariant set of tensors consist of two real one-forms and three real two-
forms given by

K1 − iK2 ≡ −1
2ε
αβ ηT

αγ(1)ηβ , Ji ≡ − i
2σ

αβ
i η̄αγ(2)ηβ . (4.12)

The Riemannian volume form on M6 is then vol6 = K1 ∧K2 ∧ 1
2Ji∧Ji, where here there

is no sum on i and this holds for any i = 1, 2, 3. We then further distinguish J ≡ J3. The
SU(2)-structure can also be represented by the Ki’s, J and a complex form Ω = J2 + iJ1

which are related to the SU(3)-structures by [15]

J± = J ±K1 ∧K2,Ω± = Ω ∧ (K1 ± iK2), (4.13)

where the superscripts corresponds to each SU(3) associated with ϵ+ or ϵ−.One can then
verify [14] that the bilinear forms (4.9) may be expressed in terms of this canonically
normalized SU(2) structure as

P = −S cos 2ϑ , ξ♭ = S sin 2ϑK1 , K̃ = −S sin 2ϑK2 ,

Y = S (cos 2ϑK1 ∧K2 − J) , Ỹ = S (−K1 ∧K2 + cos 2ϑJ) ,
V = −S sin 2ϑK1 ∧ J , Ṽ = −S sin 2ϑK2 ∧ J . (4.14)
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Finally, we record the following differential constraints [14] on the bilinear forms (4.9),
which follow from imposing the Supersymmetry conditions (4.4), (4.5)

d(XS) =
√

2
3 (X−2K̃ − iξ B) , (4.15)

d(XP ) = − 1√
2ξ F , (4.16)

d(X2ξ♭) = − 2
√

2
3 X−1Ỹ − iX4ξ ∗H −

√
2X(PF − 2

3 iSB) , (4.17)
d(X−2K̃) = − iξ H , (4.18)
d(X−1Y ) = −

√
2Ṽ + i(XP )H + 1√

2X
−2(ξ ∗F + F ∧ K̃) , (4.19)

d(X−1Ỹ ) = i(XS)H + i
√

2
3 X

−2(ξ ∗B +B ∧ K̃) , (4.20)
dV =

√
2(X + 1

3X
−3) ∗ Y + i

√
2

3 X
−1(P ∗B +B ∧ Y )

− 1√
2X

−1(S ∗ F + F ∧ Ỹ ) , (4.21)

where also dṼ = 0.
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Chapter 5

Localizing Romans Supergravity:
General Framework

5.1 Equivariantly closed forms

In order to use the fixed point formula (2.25), we need to construct equivariantly closed
forms whose top components we want to integrate. It will be presented here 5 of such
forms, they will be formed from the fields and bilinears of the theory and equivariantly
closedness will then be equivalent to the equations of motion and the supersymmetry
conditions.

The first form has the gauge filed strength as top form:

ΦF ≡ F −
√

2 (XP ) , (5.1)

this form is equivariantly closed because of dF = 0 and equation (4.16). Similarly, noting
that dH = 0 and using equation (4.18), we conclude that the following form, which has
H as top form and is odd degree, is equivariantly closed :

ΦH ≡ H + iX−2K̃ . (5.2)

Now, looking at the equations of motion for F and B, we see that:

d
(
X−2 ∗B + i

2B ∧B
)

=0, (5.3)

d
(
X−2 ∗ F + iF ∧B

)
=0, (5.4)

which allows us to construct the following equivariantly closed forms:
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Φ∗B ≡
[
X−2 ∗B + i

2B ∧B
]

− 3√
2 [iX−1Ỹ + (XS)B] − 9

4 i(XS)2 , (5.5)

Φ∗F ≡ [X−2 ∗ F + iF ∧B] + [
√

2X−1Y −
√

2i(XP )B − 3√
2(XS)F + 2C]

+ 3(XS)(XP ) , (5.6)

here we have introduced the two-form C via Ṽ = dξC, whose (local) existence follows
from the equations dṼ = 0 = ξ Ṽ . The equivariant closedness of both of these forms
can be checked from the differential constraints on the bilinears.

Finally, we have the equivariantly closed form which calculates the on-shell action. It
was presented in [16], but here we adjust the signs as to match our conventions. The
mentioned form is given by

ΦIbulk ≡ ΦIbulk
6 + ΦIbulk

4 + ΦIbulk
2 + ΦIbulk

0 , (5.7)

where

ΦIbulk
6 ≡ 4

9(2 + 3X4)X−2 vol6 + 1
3X

−2F ∧ ∗F + i
3B ∧ F ∧ F ,

ΦIbulk
4 ≡ −

√
2

3 (XP )X−2 ∗ F + 2
√

2
3 X ∗ Ỹ +

√
2

3 F ∧X−1Y

− 1√
2(XS)F ∧ F − 2

√
2i

3 (XP )B ∧ F ,

ΦIbulk
2 ≡ − 2

3PY + 2i
3 (XP )2B + 2(XS)(XP )F ,

ΦIbulk
0 ≡ −

√
2(XS)(XP )2 . (5.8)

The top component term ΦIbulk
6 is the action (4.1) evaluated on a solution to the

equations of motion and it is identically closed because the manifold is 6-dimensional. The
action, including the boundary Gibbons–Hawking–York and holographic counterterms, is

I = π2

2GN

1
(2π)3

∫
M6

ΦIbulk + boundary terms . (5.9)

5.2 Fixed Point analysis

The U(1) action generated by ξ will have a fixed point set given by the set of points such
that |ξ|2 = 0. Denote this fixed point set by F . In principle, F may have numerous
disconnected components, but the dimensions of the components must be 0, 2 or 4. We
call Fk the subset of F of dimension k.
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It can be argued that, since ϵ is a solution of the first order Killing spinor equation, if
it vanishes at a point, then it is identically zero in a neighbourhood of that point. This
implies that if ϵ is a non-trivial solution of the KSE, then it is nowhere-zero.

In the way that we constructed the SU(2)-structure and the bilinears, the norm of the
Killing vector may be written as |ξ| = S| sin 2ϑ|. But since S = ϵ̄ϵ is everywhere non-zero,
this gives the fixed points as being the points where ϑ = π

2 ,
3π
2 or ϑ = 0, π. From (4.11),

this shows that ϵ = ϵ± on a connected component of the fixed point set. We also get that
S = ±P , K̃ = 0 and Y = ±Ỹ , when restricted to the fixed point set, from (4.14). Thus
we make the partition F = F + ∪ F −, where F ± is the set where ϵ = ϵ±.

5.2.1 Action of ξ on the normal bundle and formula for XS

The normal bundle of F6−2k splits as Whitney sum of complex line bundles: NF6−2k =
L1 ⊕ ... ⊕ Lk. Let the complex coordinate of Li be zi = |zi|eiφi , then the Killing vector
may be written as

ξ =
k∑
i=1

ϵi∂φi
. (5.10)

This means that ξ rotates each Li with the weight ϵi. In general, the weights will not
be constants and notice that F6−2k has only k weights associated to it.

Now we look at XS and XP . First notice that the equations (4.16) and (4.15) imply
that XP and XS are constant in the fixed point set, in fact, we can obtain a formula for
these functions. To get it, we begin by fixing the gauge of A to be the supersymmetric
gauge, which we define to be ξ A =

√
2XP 1. By equation (4.16), in this gauge, the Lie

derivative of A in the direction of ξ vanishes: LξA = ξ dA+ d(ξ A) = 0.
In appendix C it is shown that in this gauge the Killing spinor has charge zero under

the R-symmetry vector: Lξϵ = 0. Here the Lie derivative acting on a spinor is

Lξϵ =ξµ∇µϵ+ 1
8dξ♭µνγµνϵ , (5.11)

=ξµDµϵ− i
2ξ

µAµϵ+ 1
8dξ♭µνγµνϵ . (5.12)

To evaluate this expression at the fixed point set, we assume that A is the only
diverging field at the fixed points and dA to be non-singular. Thus, upon using the
Killing spinor equation (4.4), which allows us to replace the derivative over ϵ by a linear
operator acting on the spinor, the first term is zero at the fixed point set. On the other
hand, from (5.10), we get an expression for dξ in a local orthonormal frame:

1This choice does not fix the gauge completely, but this fact will not be relevant to the rest of the
argument.
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dξ♭ |NF6−2k
= 2

k⊕
i=1

 0 ϵi

−ϵi 0

 . (5.13)

Hence we obtain:

k∑
i=1

ϵiγ
(2i−1)2iϵ = i

√
2(XP )ϵ

∣∣∣∣∣
F6−2k

. (5.14)

We can simplify this by noting that the above equation implies that ϵ must be an
eigenspinor of each γ(2i−1)2i. This fact can be checked by picking a representation of the
γ-matrices and doing the direct calculation. Now note that

[
−iγ(2i−1)2i

]2
= 1, thus its

eigenvalues are 1 or −1. Hence we conclude that, at a fixed point, we have the projections:

−iγ(2i−1)2iϵ = σ(i)ϵ , (5.15)

where σ(i) ∈ {±1}. Plugging this at (5.14), we get the formula for XS and XP at a fixed
point of codimension 2k:

(XS)|F ±
6−2k

= ±(XP )|F ±
6−2k

= χ

∑k
i=1 σ

(i)ϵi√
2

, (5.16)

where χ = ± is the chirality of ϵ.
The σ(i)’s are deeply related to the chirality of the spinor and to the orientation of

the manifold. Recall that γ7 = iγ123456 = (−iγ12)(−iγ34)(−iγ56) and that the spinor is
necessarily chiral on the fixed point set, that is, γ7ϵ = χϵ. If the fixed point locus is zero or
two dimensional we have that χ = σ(1)σ(2)σ(3). In the first case, equation (5.14) holds for
k = 3 which implies that we have all three projections (5.15). In the second case, we have
two projections (5.15) from equation (5.14) and the other from the fact that the spinor
is chiral on the fixed 2-surface. If the fixed point set is a 4-surface, then we have only
one projection condition. Suppose without loss of generality that the projection holds
for i = 1, then we have that −γ3456ϵ = ηϵ, with η ∈ {±1}. Hence we may only write
χ = σ(i)η, where the normal plane lies in the e2i−1 − e2i direction. In some particular
cases, we may decompose the tangent plane to F4 in two two-planes, in this cases we may
write η as simply the product of the remaining σ’s.

The σ(i)’s also play an important role in ensuring that the overall orientation of the
manifold is consistent, given a solution. If there are different connected components of
the fixed point set, then the σ(i)’s specify the relative signs between the normal planes of
the different components. This specification is enough to configure different solutions as
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will be illustrated on the examples.

5.2.2 Form Relations on the Fixed Point Set

The next goal of our analysis is to study how the bilinears and differential forms of the
the theory relate at the fixed points, we are specially interested at the form components
of the equivariantly closed forms constructed in section 5.1.

First we note that given an equivariantly closed form Φ such that the components Φi

are non-singular on F , then each component is closed on F . This follows from setting
ξ to zero on the equations dΦi = ξ Φi+2. This property applies to all the equivariantly
closed forms that we have constructed as, like we did in the previous section, we assume
all the fields besides A to be non-singular on F .

The zero-form components of all our equivariantly closed forms are composed from
XS and XP , thus the analysis of the previous sections fixes the zero-order components.
From now on, keep in mind what we have derived before: S = ±P , K̃ = 0 and Y = ±Ỹ ,
when restricted to F . We begin looking to the second-order components. Setting ξ = 0
at equation (4.17) gives

[
X−1Ỹ − i(XS)B + 3

2(XP )F
]∣∣∣

F
= exact , (5.17)

where the exact form is proportional to d(X2ξ♭).
Using this relation, we can simplify the 2-form components:

ΦF
2

∣∣∣
F

= F , Φ∗B
2

∣∣∣
F

= 9
2
√

2 i(XP )F + exact ,

Φ∗F
2

∣∣∣
F

= − 3
√

2(XS)F + 2C + exact , ΦIbulk
2

∣∣∣
F

= 3(XS)(XP )F + exact , (5.18)

where the exact part of ΦIbulk
2 is proportional to d(XSX2ξ♭) and thus vanishes inside an

integral over F upon using Stoke’s Theorem.
The four-form components are more complicated to work with, hence we will focus on

the action form ΦIbulk and we will derive a weaker expression, in the sense that it is valid
only “inside" an integral on F , but this is how we want to use these identities when we
apply the fixed point formula (2.25). First note that, on F we have that:

Y ∧ Y |F = Ỹ ∧ Ỹ
∣∣∣
F

= −2S ∗ Ỹ
∣∣∣
F
. (5.19)
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Now using the identities (4.21) and (5.17) inside a closed integral on F , we get a
relation between ΦIbulk

4 , Φ∗B
4 and F ∧ F in such conditions:

ΦIbulk
4

∣∣∣
F

= − i2
√

2
9 (XS)Φ∗B

4 − 5
2
√

2
(XS)F ∧ F . (5.20)

On the other hand, using the second of the equations of motion in (4.2), one sees that
Φ∗B

4 differs from F ∧ F by an exact form. Thus the final expression for ΦIbulk
4 on a closed

integral on the fixed point set is

ΦIbulk
4

∣∣∣
F

= − 3√
2

(XS)F ∧ F . (5.21)

5.3 Localization of the action

We are going to apply the BV-AB localization formula to calculate the on-shell action
through the equivariantly closed form ΦIbulk . But before that, we need to address some
points.

The first one is about the boundary of the manifold. M6 has a UV boundary such
that the complete expression of the action will be given by the BV-AB formula plus some
boundary terms. However, as argued in [16], assuming that the fixed point set lies in
the interior of M6, these boundary terms will cancel with the boundary terms of the
holographical renormalized action. Thus, the formula we get from BV-AB is already the
renormalized on-shell action.

Secondly, we use a particular convention for the AdS radius which carries on to a
particular normalization of the Newton constant. To make our results more universal,
we write everything in terms of the on-shell action of Euclidean AdS6 which in turn is
identified with the free energy of the dual theory on S5. The expression is taken from [11]
and reads as

FS5 ≡ IAdS6 = −27π2

4GN

. (5.22)

Finally, our gauge field is a SU(2) gauge field. The first Chern class of the curvature
of such field is well-known to vanish [8]. But, as we are working in the abelian truncation
introduced in 4.1, the first Chern class will not be zero. In fact, it will be proportional to
F and so we write:

c1(F ) ≡ F

2π . (5.23)
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Consider a solution to Euclidean Romans Supergravity as outlined in section 4.1 which
has a manifold M6. Then applying the BV-AB localization formula (2.25) with the equiv-
ariantly closed form ΦIbulk to calculate the on-shell action gives

I =
{ ∑

dim 0

χ(σ(1)ϵ1 + σ(2)ϵ2 + σ(3)ϵ3)3

ϵ1ϵ2ϵ3
(5.24)

−
∑

dim 2

χ(σ(1)ϵ1 + σ(2)ϵ2)2

ϵ1ϵ2

∫
F2

3c1(F ) + (σ(1)ϵ1 + σ(2)ϵ2)
(
c1(L1)
ϵ1

+ c1(L2)
ϵ2

)

+
∑

dim 4
χσ(1)

∫
F4

3c1(F ) ∧ c1(F ) + 3σ(1)c1(F ) ∧ c1(L1) + c1(L1) ∧ c1(L1)
}
FS5

27 .

5.4 Gauge Field Flux

In the localized formula for the action (5.24), there appears integrals over c1(F ) and over
c1(Li). The first kind is physically interpreted as the magnetic fluxes over fixed-point
surfaces for the R-symmetry gauge field. It turns out that we can study these integrals
to obtain an expression for F2 and a constraint for F4.

The Killing spinor is not simple a section of the spin bundle over M6 because it is
charged under the R-symmetry gauge field making it a section of the bundle SM6 ⊗ L1/2.
This can be seen in the local expression of the covariant derivative of the spinor: Dµ =
∇µ + i

2Aµ, where A is a connection on the complex line bundle L. The idea then is to
use the fact that the Killing spinor is a nowhere-zero section of the bundle SM6 ⊗ L1/2

and decompose this bundle in fixed-point components and normal bundle components.
Having a nowhere-zero section, the top Chern class must vanish. Then we can employ the
properties of the Chern class on the decomposed bundle to obtain interesting formulas.

Consider F2 to be a compact and oriented surface, thus we can take it to be a Riemann
surface Σg where g ∈ Z≥0 is the genus. Complex line bundles over a Riemann surface
are classified by the first Chern number of the bundle which establishes a one-to-one
correspondence with H2(Σg,Z) ∼= Z. Let L be a line bundle over Σg such that

∫
Σg
c1(L) =

n, then we may call L as O(n). In this notation the line bundles that form the normal
bundle over Σg are written as Li = O(pi), with pi =

∫
Σg
c1(Li) for i = 1, 2. Similarly, the

tangent bundle of F2 ∼= Σg is TΣg = O(2 − 2g), where 2 − 2g is the Euler number of Σg

and we get this result because the Euler class agrees with the top Chern class.
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From this it follows that the tangent bundle splits as TM6|Σg
∼= O(2 − 2g) ⊕ O(p1) ⊕

O(p2). The chiral spinor bundles S± ≡ S±M6|Σg restricted to Σg are then

S+ ∼= O(1
2p1 + 1

2p2 + (1 − g)) ⊕ O(−1
2p1 − 1

2p2 + (1 − g))
⊕ O(−1

2p1 + 1
2p2 − (1 − g)) ⊕ O(1

2p1 − 1
2p2 − (1 − g)) ,

S− ∼= O(−1
2p1 + 1

2p2 + (1 − g)) ⊕ O(1
2p1 − 1

2p2 + (1 − g))
⊕ O(1

2p1 − 1
2p2 + (1 − g)) ⊕ O(−1

2p1 − 1
2p2 − (1 − g)) . (5.25)

We will not prove this formulas here, but rather give a general explanation. Given
a Riemann surface and the tangent bundle over it, the spinor bundle is the square-root
bundle of the tangent bundle, i.e., L ⊗ L = TM [17]. But it follows from (A.45) that
c1(L ⊗ L) = 2c1(L), thus writing TΣg = O(2 − 2g) gives that the chiral spinor bundles
will be O(±(1 − g)) with the sign corresponding to each chirality.

For general dimension manifolds, this construction is not so simple but generalizes
in a straight forward manner. If the tangent bundle is decomposable in a direct sum of
vector bundles components, then the spinor bundle of a given chirality is a direct sum
over the combinations of tensor products of the spinor bundle of each component that
give the corresponding chirality. This is precisely what is written in (5.25). Keep in
mind that (A.45) implies that c1(L1 ⊗ L2 ⊗ L3) = c1(L1) + c1(L2) + c1(L3). Then the
first term of (5.25) is really O(1 − g) ⊗ O(1

2p1) ⊗ O(1
2p2), but the first Chern number of

this line bundle is
(

1
2p1 + 1

2p2 + (1 − g)
)

and so we write it as O
(

1
2p1 + 1

2p2 + (1 − g)
)
.

Then each factor on the sums of (5.25) is the square-root/spinor bundle of each factor
of TM6|Σg

∼= O(2 − 2g) ⊕ O(p1) ⊕ O(p2). Finally, we need to sum over the different
combinations that give the positive or negative chiralities as we are constructing chiral
spinors on M6.

The spinor bundle then is decomposed into eight line bundles that correspond to
the eight components of a spinor in six dimensions. There are four of each chirality
χ = σ(1)σ(2)σ(3) where the sign in each factor can be identified with one of the σ(i)’s.
In special, we claimed in section 5.2.1 that σ(3) is effectively the chirality of the spinor
along F2 ∼= Σg (the two chiral spin bundles on Σg being O(±(1 − g)) = O(σ(3)(1 − g))).
Therefore, we may write:

O(1
2σ

(1)p1 + 1
2σ

(2)p2 + σ(3)(1 − g)) , (5.26)

for all possible choices of σ(i) ∈ {±1}.
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The full Killing spinor ϵ is then a section of SM6 ⊗ L1/2. Defining the magnetic flux
as

m ≡
∫

Σg

c1(F ) , (5.27)

this means that the 8 components of ϵ take the form

ϵ : O(1
2σ

(1)p1 + 1
2σ

(2)p2 + σ(3)(1 − g) + 1
2m) . (5.28)

On the other hand, the projection conditions (5.15) imply that the spinor has definite
σ(i)’s associated to it, thus it is in precisely one of these 8 components. Finally, recall that
ϵ is everywhere nonzero, and if a complex line bundle (5.28) has a nowhere-zero section
it must be a trivial line bundle. That is,

O(1
2σ

(1)p1 + 1
2σ

(2)p2 + σ(3)(1 − g) + 1
2m) ∼= O(0) , (5.29)

which leads to the formula
∫

Σg

c1(F ) = m = −σ(1)p1 − σ(2)p2 − σ(3)(2 − 2g) . (5.30)

For a four-dimensional fixed point set, F4, we can derive a constraint on the integrals
of c1(F ) and c1(L) by a similar argument but cannot fix their expressions. Consider that
we have only one connected four-dimensional fixed point set and call it as F4 = B4. Now,
we have

S+M6|B4
∼=
(
S+
B4 ⊗ L

1/2
1

)
⊕
(
S−
B4 ⊗ L

−1/2
1

)
,

S−M6|B4
∼=
(
S+
B4 ⊗ L

−1/2
1

)
⊕
(
S−
B4 ⊗ L

1/2
1

)
. (5.31)

Here S±
B4 are the rank two chiral spin bundles of B4 (which recall we distinguished by

η ∈ {±1}), while the sign of L±1/2 is fixed by σ(1) ∈ {±1}. Again, the analysis at the
section 5.2.1 show that ϵ has a fixed σ(1) and η due to the projection conditions. Thus,
the Killing spinor is a section of precisely one of the Sη

B4 ⊗L
σ(1)/2
1 ⊗ L1/2, note that this a

rank two bundle. Being also nowhere-zero, we have that the second Chern class vanishes:

c2

(
Sη
B4 ⊗ L

σ(1)/2
1 ⊗ L1/2

)
= 0. (5.32)
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The constraint will follow from working out this equation. First note that c1(Sη
B4) = 0

because Sη
B4 is a SU(2) bundle. Then, using (A.45), we deduce that:

c2

(
Sη
B4 ⊗ L

σ(1)/2
1 ⊗ L1/2

)
= c2

(
Sη
B4

)
+ 1

4
(
σ(1)c1 (L1) + c1 (F )

)2
= 0, (5.33)

where we also used that c1
(
Lσ/2

)
= σ

2 c1 (L) and c1(L) = c1(F ) as F is the curvature of
L. To evaluate c2

(
Sη
B4

)
, we make use of the splitting principle and consider Sη

B4 to be a
sum of line bundles. We write this sum as

Sη
B4 =

(
M

σ11/2
1 ⊗M

σ21/2
2

)
⊕
(
M

σ12/2
1 ⊗M

σ22/2
2

)
, where (5.34)

c
(
BC

4

)
= (1 + c1(M1))(1 + c1(M2)), (5.35)

and the σ’s satisfy: σ1iσ2i = η and σi1 = −σi2. In the second term, we are consid-
ering the Chern class of the complexified tangent bundle of B4, we have written the
decomposition of Sη

B4 to be connected explicitly to TB4. Now we have that c2
(
Sη
B4

)
=

c1
(
M

σ11/2
1 ⊗M

σ21/2
2

)
c1
(
M

σ12/2
1 ⊗M

σ22/2
2

)
, but, just like we did before, c1

(
M

σ1i/2
1 ⊗M

σ2i/2
2

)
=

1
2 (σ1ic1(M1) + σ2ic1(M2)). Then, after simplifying the σ’s, we get

c2
(
Sη
B4

)
= −1

4
(
2ηc1(M1)c1(M2) + c1(M1)2 + c1(M2)2

)
, (5.36)

= −1
4 (2ηe(B4) + p1(B4)) , (5.37)

where e(B4) and p1(B4) are respectively the Euler and first Pontrjagin classes.
Finally, upon integrating equation (5.33) over B4, we obtain the analogous formula to

(5.30)

2ηχ(B4) + 3τ(B4) =
∫
B4

(σ(1)c1(L1) + c1(F ))2 (5.38)

=
∫
B4
c1(F ) ∧ c1(F ) + 2σ(1)c1(F ) ∧ c1(L1) + c1(L1) ∧ c1(L1) ,

where χ(B4), τ(B4) ∈ Z are the Euler number and signature of the oriented four-manifold
B4.

As previously mentioned, this expression may be used to substitute for
∫
B4
c1(F )∧c1(F )

into the last line of (5.24), but in general still leaves the term with c1(F ) ∧ c1(L1), it is
better understood as a topological constraint on F . However, it is a useful tool to some
special cases of B4 and will be used in the examples.
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5.5 Charge Conjugated Spinor

In the end of the chapter 4.1, we discussed that a solution of Romans SUGRA is super-
symmetric if there exists a double of Killing spinors, (ϵ1, ϵ2), satisfying the Killing spinor
equations (4.4), but we made some assumptions which allows us to write the double as
(ϵ, ϵc). In the rest of the paper, we used the spinor ϵ, but we could have used ϵc to obtain
the same results as we are going to show now.

Gauge Field Flux First consider the KSE of ϵ and ϵc written schematically as

∇ϵ+ i
2Aϵ = Mϵ+ FN ϵ, (5.39)

∇ϵc − i
2Aϵ = Mϵc − FN ϵc. (5.40)

We arrive at these equations by applying the sympletic majorana condition, ϵc1 = ϵ2

and ϵc2 = −ϵ1, and the abelian truncation of the gauge field, A1 ≡ A2 ≡ 0 and A3 ≡ A, to
(4.4).

Both equations are the same if we set Ac ≡ −A in the equation for ϵc. This means
that ϵc is a section of SM6 ⊗ L−1/2 and the consequence is that the flux of F c has an
opposite sign as the flux of F . In the notation introduced in section 5.4, mc = −m.

Bilinears and invariance of the action Now we study how the bilinears (4.9) are
different if we construct the using ϵc. Without loss of generality, we work on the basis
were the γµ are anti-symetric and purely imaginary. Thus the charge conjugation matrix
is given by C = −iγ7 and the conjugate spinor is ϵc = −iγ7ϵ

∗. Additionally, we also have
that ϵ̄c = iϵTγ7 and γ∗

µ1...µn
= (−1)nγµ1...µn .

Consider a general n-form bilinear:

B = ϵ̄γ(n)ϵ. (5.41)

The components of the conjugate bilinear are given by

Bc
µ1...µn

= ϵ̄cγµ1...µnϵ
c, (5.42)

= iϵTγ7γµ1...µn(−i)γ7ϵ
∗, (5.43)

= (−1)n
(
ϵ̄γ∗
µ1...µn

ϵ
)∗
, (5.44)

= B∗
µ1...µn

. (5.45)
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Employing similar arguments, one can show that for V = ϵ̄γ(n)γ7ϵ, we have that
Vc = −V∗.

Since the bilinears (4.9) are real, in particular, the above calculations imply that
Sc = S, P c = −P , ξ♭c = ξ♭, Y c = −Y and Ỹ c = Ỹ . This shows that the polyform
(5.7) is the same wether we construct it with (ϵ, A) or (ϵc, Ac) and thus the formula for
the on-shell action will also be the same. Nevertheless, equation (5.24) can be directly
checked by noting that −iγ(2i−1)2iϵc = −σ(i)ϵc and γ7ϵ

c = −χϵc.
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Chapter 6

Localizing Romans Supergravity:
Examples

Now we are ready to apply the ideas developed so far to different examples. We consider
examples where the fixed point set has only one dimension (0, 2 or 4-dimensional). The
examples are organized in three groups that have the same R2 power: R6, R4 → F2 and
R2 → F4. We have one of each that has been previously computed in the literature by
other methods and thus provide a checking of our formula. In particular, we highlight the
hyperbolic black hole discussed in [13], where we have an analytic solution for the fields
and for the Killing spinor.

In some examples, we use the formalism of Toric Geometry explained in section 3.7.
In this formalism, the manifold is mapped to a polytope which in our case is a subset
of R3 because we work in six dimensions. This polytope is composed of vertices, edges
and faces. The vertices are the fixed points of the T3 action. As explained in section
3.7, on each face, the torus action collapses. In our case, each face is associated to a
four-dimensional manifold fixed by a T action. Thus, on each face, we have one of the
projection conditions (5.15). Additionally, we have that at each vertex, there intersects
exactly 3 faces. Recall also that, on each face, there is a normal vector, the v’s, which
specify the collapse of the toric action on the face and, on each vertex, there is a dual
basis to the subset of v’s, corresponding to the faces that intersect at the given vertex,
that we denoted as the u’s.

These framework can be used to calculate the action. For example, let there be an
isolated fixed point which correspond to a vertex called A on the polytope. Let u(A)

i be
the vectors on the vertex such that u(A)

i · vj = δij, where vj is normal to the face labeled
by j and thus the projection condition that holds on this face has the sign σj, where
i, j = 1, 2, 3. Of course, there can be more than 3 faces on the polytope, but we consider
that the ones that intersect on the vertex A are the faces 1,2,3. Let ξ be the generator of
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the U(1) action, as usual. Then the contribution of this vertex to the action is

σ1σ2σ3

(
σ1(ξ · u(A)

1 ) + σ2(ξ · u(A)
2 ) + σ3(ξ · u(A)

3 )
)3

(ξ · u(A)
1 )(ξ · u(A)

2 )(ξ · u(A)
3 )

, (6.1)

where we omitted the FS5/27 constant.
The main advantage of using the toric theory is (besides being computationally simple)

that we reduce the number of σ’s that one would naively expect and we automatically get
the relative behavior of the weights at different fixed points. These points will be clear in
the relevant examples.

6.1 Hyperbolic Black Hole: R6 topology

Our first example is the Hyperbolic Black Hole from [13]. This solution is constructed
explicitly, we have expressions for the fields and even for the Killing spinor which allows
one to check many calculations. Here, we differ from the original paper by the change of
variables: τ → nα and ϕ → −ϕ.

• Field Content

Its metric is given by

ds2 = H(r)1/2

f(r) dr2 + 9f(r)
2H(r)3/2n

2dα2 + r2H(r)1/2ds2
H4 (6.2)

where
H(r) = 1 + Q

r3 , f(r) = −1 − γ

r3 + 2
9r

2H(r)2 (6.3)

with Q the charge of the black hole. The scalar field and one-form potential are

X(r) = H(r)−1/4, A3 = 3
√

1 − γ

Q

H(r) − 1
H(r) ndα + µndα . (6.4)

where H4 is a four-dimensional hyperbolic space with metric

ds2
H4 = 1

1 + q2 dq2 + q2(dθ2 + cos2 θdψ2 + sin2 θdϕ2) (6.5)

where the hyperbolic space is realized in a spherical slicing, q ∈ [0,∞] and ψ, ϕ, θ

are coordinates on S3.

• Killing Spinor
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Supersymmetry require us to set γ to zero in (6.3), it also gives us a Killing spinor
which satisfies the dilatino and Killing spinor equations. The Killing spinor have
been calculated in the original paper [13], but here we have included a phase e

i
2µnα

to account for the nµdα factor in the gauge field.

ϵ =
√√

q2 + 1 + 1



f1(r)
(
κ1e

−iϕ + κ2e
iψ
)
e− 1

2 i(θ+(µ+1)nα+ψ−ϕ)

if1(r)
(
κ1e

−iϕ − κ2e
iψ
)
e− 1

2 i(−θ+(µ+1)nα+ψ−ϕ)

f2(r)
(
κ4 + κ3e

i(ψ−ϕ)
)
e− 1

2 i(−θ+(µ+1)nα+ψ−ϕ)

if2(r)
(
−κ4 + κ3e

i(ψ−ϕ)
)
e− 1

2 i(θ+(µ+1)nα+ψ−ϕ)

−if2(r)
(
κ1e

−iϕ + κ2e
iψ
)
e− 1

2 i(θ+(µ+1)nα+ψ−ϕ)

f2(r)
(
κ1e

−iϕ − κ2e
iψ
)
e− 1

2 i(−θ+(µ+1)nα+ψ−ϕ)

−if1(r)
(
κ4 + κ3e

i(ψ−ϕ)
)
e− 1

2 i(−θ+(µ+1)nα+ψ−ϕ)

f1(r)
(
−κ4 + κ3e

i(ψ−ϕ)
)
e− 1

2 i(θ+(µ+1)nα+ψ−ϕ)



+ q√√
q2 + 1 + 1



if1(r)
(
κ4 + κ3e

i(ψ−ϕ)
)
e− 1

2 i(−θ+(µ+1)nα+ψ−ϕ)

f1(r)
(
κ4 − κ3e

i(ψ−ϕ)
)
e− 1

2 i(θ+(µ+1)nα+ψ−ϕ)

−if2(r)
(
κ1e

−iϕ + κ2e
iψ
)
e− 1

2 i(θ+(µ+1)nα+ψ−ϕ)

f2(r)
(
κ1e

−iϕ − κ2e
iψ
)
e− 1

2 i(−θ+(µ+1)nα+ψ−ϕ)

f2(r)
(
κ4 + κ3e

i(ψ−ϕ)
)
e− 1

2 i(−θ+(µ+1)nα+ψ−ϕ)

if2(r)
(
−κ4 + κ3e

i(ψ−ϕ)
)
e− 1

2 i(θ+(µ+1)nα+ψ−ϕ)

−f1(r)
(
κ1e

−iϕ + κ2e
iψ
) (
e− 1

2 i(θ+(µ+1)nα+ψ−ϕ)
)

if1(r)
(
κ2e

iψ − κ1e
−iϕ
)
e− 1

2 i(−θ+(µ+1)nα+ψ−ϕ)



,

(6.6)

where

f1(r) =
8
√
r
√

2Q+ 2r3 + 3
√

2r2

(Q+ r3)3/8 ; (6.7)

f2(r) =
8
√
r
√

2Q+ 2r3 − 3
√

2r2

(Q+ r3)3/8 . (6.8)

The 4 κa’s are integration constants, they show that we have four Killing spinors,
which implies that this solution preserve half of the maximal eight supercharges.
We studied the four cases where we substitute one of the κ’s by the normalization
factor 1/4 and set the three others to zero. The spinors with κ1 or κ2 different from
zero have negative chirality, while for κ3 or κ4 non-zero, the spinors have positive
chirality.

There are three Killing vectors that can be immediately read off from the metric
which we will label by k(1) := ∂α, k(2) := ∂ψ and k(3) := ∂ϕ. The R-symmetry Killing

46



vector is then given as a bilinear in the Killing spinor:

ξ = ϵ†Γµϵ ∂µ. (6.9)

Note that the R-symmetry Killing vector then depends on the choice of integration
constant. The expression for all four mentioned κ substitutions is

ξ =ϵ1 k(1) + ϵ2 k(2) + ϵ3 k(3)

=(−1)sin(2π(κ3+κ4))

n
k(1) + (−1)sin(2π(κ2+κ4))k(2) + (−1)sin(2π(κ2+κ3))k(3). (6.10)

Note that the coefficients of the R-Symmetry Killing vector precisely correspond to
the weights ϵi, which we will come back to later. As an example, setting κ1 to 1/4
and all the others to zero yields

ξ = 1
n
k(1) + k(2) + k(3), (6.11)

which is equation (2.21) of [13] with ϕ replaced by −ϕ.

• Fixed Point: Horizon of the Black Hole

Calculating the norm of the Killing vector

∥ξ∥2 = r2H(r)1/2q2 + 9f(r)
2H(r)3/2 (6.12)

and requiring this to be zero to find the fixed point sets suggests that these may
only occur for q = 0 and r which satisfy f(r) = 0, i.e. for rh the largest root of f ,
the location of the horizon. This justifies replacing r by a coordinate R depending
on the difference r − rh and rewriting the hyperbolic metric for small q

ds2
H4 ≈ dq2 + q2(dθ2 + cos2 θdψ2 + sin2 θdϕ2) (6.13)

and we introduce r1 = q cos θ, r2 = q sin θ and obtain a flat metric around q = 0

ds2
H4 ≈ dr2

2 + r2
2dψ2 + dr2

1 + r2
1dϕ2 . (6.14)

We want to write the entire metric in the limit where q is small and r close to rh and
bring the α and r part in a polar coordinates shape. This is achieved by introducing
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the new radial coordinate

R = 23/831/4 r
1/4
h

(
√

2rh − 2)1/2
(r − rh)1/2 (6.15)

and one obtains equation (2.23) in [13]. Requiring that α smoothly closes off at the
horizon, i.e. requiring f(rh) = 0, it must have period β with β = 2π

n(
√

2rh−2) and as
the periodicity of α needed to also be 2π, one can rewrite rh as rh = 1+2n√

2n . Note
also that the smoothness condition results in a relation between Q and rh which has
been used when rewriting the metric. We can then rewrite the metric (2.23) in [13]
of the six-dimensional space as

ds2 ≈ dR2 +R2dα2 +H(rh)1/2r2
hds2

H4 (6.16)

(compare (2.23) in [13] using (2.25) and β = 2πn and τ = nα).

We also need the gauge field (6.4) to be non-singular at the horizon. Evaluating at
r = rh leads to an expression which fixes the value of µ to be

µ = 1 − n

n
. (6.17)

• Charges of Rotations

In order to find an expression for (XS) at the fixed point, the values for σ(i) from
the projection conditions (5.15) are required. The direct way to find them is to
calculate the projection conditions explicitly by (5.15). Note here that the labeling
of the σ(i) in (5.15) refers to a particular choice of coordinate basis near the origin.
The natural choice of frame for the given metric is the one invariant under the Lie
derivative, i.e. Lξe

j = 0. In this frame the coordinates q and θ are mixed in such a
way that they define radial coordinates for the Ci planes as laid out in the near-fixed
point analysis above. In particular, the ordering of the coordinates does not coincide
with the one suggested by the projection conditions (5.15). In our natural frame,
the projection conditions do not take the exact form as in (5.15). We can find their
form and extract the σ(i) by making use of the Lie derivative in the direction of the
Killing vectors of our solution evaluated at their fixed point sets.

The R-Symmetry Killing vector ξ is composed of three individual vectors, each of
which is a Killing vector of the solution on its own. Those vectors are k(1) := ∂α,
k(2) := ∂ψ and k(3) := ∂ϕ. It is straightforward to verify that each of these has a
four-dimensional fixed point set, defined by taking the limits r → rh, θ → π/2 and
θ → 0 respectively. Note that ∂ψ and ∂ϕ also have two-dimensional fixed point sets
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defined by q → 0. The fixed point set of ξ is then determined by the intersection of
the three four-dimensional sets, by taking the simultaneous limit r → rh and q → 0
which is the origin of the Hyperbolic Black Hole.

Pick one of the k(i)’s defined above and consider its 4-dimensional fixed point set.
From the discussion in section 5.2.1, we have that one of the projection conditions
(5.15) hold, namely the condition i. On the other hand, by equation (5.31) and the
discussion there, the spinor restricted to the 4d fixed point set can be seen as the
tensor product between a spinor on the four-dimensional space and a spinor on the
normal two-dimensional space which close to the origin is a flat R2. The k(i) rotates
this R2. As is well known, a spinor on flat R2 can only have charge under rotation
±1

2 and it is precisely the sign of this charge that corresponds to the σ(i) from the
projection condition associated to k(i). In other words, we have that

Lk(i)ϵ
∣∣∣
k(i)=0

= 1
8d(k♭(i))µνγµνϵ = i

2σ
(i)ϵ. (6.18)

Having this equation at hand, we can compute the σ(i)’s by evaluating the Lie
derivative of ϵ. But, since we are working in the invariant frame, the Lie derivative
acts just as a partial derivative which greatly simplifies the calculations. One can
then check that the σ(i)’s computed in this manner satisfy the above equation even
if the frame that we represent the γµν is not a frame in which the six-dimensional
space splits as three two-planes.

The values for σ(i) for different choices of Killing spinor are given in the following
table:

κ1 = 1/4 κ2 = 1/4 κ3 = 1/4 κ4 = 1/4
σ(1) -1 -1 -1 -1
σ(2) -1 1 1 -1
σ(3) -1 1 -1 1
χ -1 -1 1 1

Comparing this with the weights we found earlier, it can be observed that the signs
of the projection conditions and the signs of the weights for each choice of Killing
spinor are directly related by ϵi

|ϵi| = χσ(i). It is this observation which in the end will
allow us to conclude that the action for this solution is independent of the choice of
Killing spinor. Having the σ(i), we can calculate the XS function at the fixed point
using (5.16)
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XS|r=rh, q=0 =χσ
(1)ϵ1 + χσ(2)ϵ2 + χσ(3)ϵ3√

2

= |ϵ1| + |ϵ2| + |ϵ3|√
2

=1 + 2n
n

√
2
, (6.19)

where in the second to last line we have used the relation between the sign of the
weights and the σi. Note that the expression forXS at the fixed point is independent
of the choice of Killing spinor.

• Applying the fixed point formula

In this example, there is only one isolated fixed point. The weights are the com-
ponents of (6.10). Note that, for each κ substitution, the product ϵ1ϵ2ϵ3 will be 1

n
.

In particular, it is always positive as a consequence of the product of the σ(i) being
equal to the chirality χ. Finally, collecting our results at the formula (5.24), gives

I = χ(σ(1)ϵ1 + σ(2)ϵ2 + σ(3)ϵ3)3

ϵ1ϵ2ϵ3

FS5

27 = (2n+ 1)3

27n2 FS5 . (6.20)

This result agrees with the free energy given by equation (2.37) of [13].

6.1.1 Wilson Loop

Introduce the polyform

ΦWL = X−2K1 ∧K2 + iB − 3√
2XS. (6.21)

This polyform is not equivariantly closed because the top-component is not closed.
Nevertheless, when restricted to a 2-dimensional surface, it is closed.

We want to apply BV-AB to integrate it over a surface Σ that is a submanifold of M6.
Consider the case where M6 has topology R6. The fixed point is just the origin of R6.
Construct the surface Σi as having the R2

i plane as the tangent plane and being located at
the origin of the remaining R4. The Killing vector restricted to Σi reduces to ξ|Σi

= ϵi∂φi

(no sum). To apply BV-AB, we need to consider the normal bundle to the fixed point
inside only Σi, not the entire M6, thus the normal plane is just R2

i , not R6. Applying
(2.22), we get
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∫
Σi

(
X−2K1 ∧K2 + iB

)
= −2π

ϵi
.

3√
2
χ
σ(1)ϵ1 + σ(2)ϵ2 + σ(3)ϵ3√

2

= −3πχ(σ(1)ϵ1 + σ(2)ϵ2 + σ(3)ϵ3)
ϵi

,

(6.22)

where we used (5.16) because Σi was constructed to be in the origin R2
j ⊕ R2

k, j, k ̸= i.
This agrees with formula (3.19) of [14].

Now we check for the Hyperbolic Black Hole discussed in the text. Plugging for XS
given by (6.19) gives

∫
Σi

(
X−2K1 ∧K2 + iB

)
= −3π(1 + 2n)

nϵi
. (6.23)

The labelling of the the planes is analogous to that in section 4.1.1. So, for the first
surface, the one which wraps the r and α directions, we have:

∫
Σ1

(
X−2K1 ∧K2 + iB

)
= (−1)1+sin(2π(κ1+κ2))3π(1 + 2n), (6.24)

which agrees with equation (2.39) of [13]. For the others, the calculation does not seems
to make sense. The point is that the conformal boundary is at r → ∞, but the surfaces we
used are defined at r = rh, so we are not calculating the WL of the dual theory. Also, the
auxiliary radial coordinates of the Hyperbolic BH does not go to the conformal boundary.
Perhaps, it is a matter of introducing a frame to the solution which decomposes the space
in three 2-planes and such that we can get to the conformal boundary by taking any radial
coordinate of any of the 2-planes to infinity.

6.2 O(−p1) ⊕ O(−p2) fibered over Σg

Our first example of fibration is R4 → Σg. This example follows closely the discussion of
section 5.4 and we refer to it for more details. The fixed point set is the Riemann surface
Σg and the normal bundle is decomposed in a sum of two complex line bundles O(−p1)
and O(−p2). In this case, we have precisely an exact formula for the flux of F trough Σg

given by equation (5.30) which pluggin at (5.24) gives the on-shell action:

I = FS5σ(3)χR4(ϵ1 + χR4ϵ2)2

27ϵ2
1ϵ

2
2

[
6σ(3)(1 − g)ϵ1ϵ2

+p1σ
(1)ϵ2(χR4ϵ2 − 2ϵ1) + p2σ

(1)ϵ1(ϵ1 − 2χR4ϵ2)
]
,

(6.25)
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where χR4 = σ(1)σ(2).
For the case of a trivial fibration, we can calculate the on-shell action by simply setting

p1 = p2 = 0 in the above formula. The result is

I = 2
9(1 − g)FS5χR4

(ϵ1 + χR4ϵ2)2

ϵ1ϵ2
. (6.26)

This formula is then very reminiscent of the known one in four dimensions which
should be expected. In particular, if σ(1) = σ(2) and ϵ1 = ϵ2, then:

I = −8
9(1 − g)FS5σ(3)χ, (6.27)

which should be compared with equation (4.31) from [18].

6.2.1 O(−p1) ⊕ O(−p2) fibered over S2

We consider now the case O(−p1) ⊕ O(−p2) → S2. Besides the U(1) action on the line
bundles, we have a natural U(1) action on the sphere corresponding to a rotation around
its axis. The R-symmetry vector field is taken to be

ξ = ϵ∂φ + ϵ1∂φ1 + ϵ2∂φ2 , (6.28)

where the φi rotate the R2
i plane and φ rotates S2. The fixed point set consists of two

isolated points located at the intersection of the planes and the two poles of the sphere.

v2v1

v3

v0

Figure 6.1: Toric diagram for O(−1) ⊕ O(−2) → S2.
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We calculate the weights of the Killing vector ξ at each pole using the toric data of
section 3.5 and the simple method mentioned in the very end of that section. The results
are

ξN = (ϵ, ϵ1, ϵ2), ξS = (−ϵ, ϵ1 + p1ϵ, ϵ2 + p2ϵ). (6.29)

Having the weights at hand, we can naively write down the on-shell action:

I = FS5

27

χN(σ(1)
N ϵ+ σ

(2)
N ϵ1 + σ

(3)
N ϵ2)3

ϵϵ1ϵ2
− χS(−σ(1)

S ϵ+ σ
(2)
S (ϵ1 + p1ϵ) + σ

(3)
S (ϵ2 + p2ϵ))3

ϵ(ϵ1 + p1ϵ)(ϵ2 + p2ϵ)

 .

(6.30)
It turns out that the σ’s are not all different. As explained in the beginning of this

chapter, we have only four different ones in this case, because the toric polytope has only
four facets. The σ’s that are identified are the ones that give the projections on the planes.
Thus, σ(2)

N = σ
(2)
S ≡ σ(2) and σ

(3)
N = σ

(3)
S ≡ σ(3). The action then becomes

I = FS5

27ϵ σ
(2)σ(3)

σ(1)
N (ϵ1σ

(2) + ϵ2σ
(3) + σ

(1)
N ϵ)3

ϵ1ϵ2

−σ
(1)
S (ϵ1σ

(2) + σ(3)(ϵ2 + p2ϵ) + p1σ
(2)ϵ− σ

(1)
S ϵ)3

(ϵ1 + p1ϵ)(ϵ2 + p2ϵ)

 .
(6.31)

On the remaining σ, σ(1), there are two possibilities, σ(1)
N = ±σ(1)

S . In the positive one,
the chirality of the spinor is the same on the whole sphere while in the other it is reversed
at the poles. We want to take the limit ϵ → 0 to compare with (6.25), but this limit is
only well-defined if σ(1)

N = σ
(1)
S . This fact is in accordance with the result that the Killing

spinor has definite chirality at the connected components of the fixed point set.
Then setting σ(1)

N = σ
(1)
S and taking ϵ → 0, we get

I = FS5σ
(1)
N χR4(+ϵ1 + χR4ϵ2)2

27ϵ2
1ϵ

2
2

[
6σ(1)

N ϵ1ϵ2

+ϵ2p1σ
(2)
N (−2ϵ1 + χR4ϵ2) + p2σ

(2)
N ϵ1(ϵ1 − 2χR4ϵ2)

]
.

(6.32)

This result matches with (6.25) upon setting g = 0 there and identifying σ(1)
N ≡ σ(3),

σ
(2)
N ≡ σ(1) and σ

(3)
N ≡ σ(2).
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We can also compute the magnetic charge threading through the two-sphere using the
polyform in (5.1). We find

m = 1
2π

∫
S2

ΦF

= −σ
(1)
N ϵ+ σ

(2)
N ϵ1 + σ

(3)
N ϵ2

ϵ
+ −σ(1)

S ϵ+ σ
(2)
S (ϵ1 + p1ϵ) + σ

(3)
S (ϵ2 + p2ϵ)

ϵ

= −χ(S2)σ(1) + p1σ
(2) + p2σ

(3),

(6.33)

where in last line we already considered the condition that the chirality of the sphere is
fixed in order to compare with the formula for the flux (5.30), where there is a precise
agreement.

The results for the trivial fibration case are obtained by setting p1 = p2 = 0, but here
we will give only the one where the chirality of the spinor is the same along the sphere,
that is, σ(1)

N = σ
(1)
S . The result is

I = 2FS5χR4

27ϵ1ϵ2

(
3(ϵ1 + χR4ϵ2)2 + ϵ2

)
. (6.34)

6.3 R2 fibered over B4

Unlike in the case of a fixed 2-dimensional surface, we do not have a closed formula for
the integrals of c1(F ), just the constraint (5.38). It is not worthy to use this constraint
to eliminate the integral of c1(F )2 because it still leaves the integral of c1(F ) ∧ c1(L1)
and does not give any interesting insight, unless we are in the special case of a trivial
fibration. If the fibration is trivial, we have that c1(L1) = 0. Thus the identity (5.38)
becomes a completely topological formula for the integral of c1(F )2 which upon plugging
in the action gives

I = 1
9FS

5χσ(1)(2ηχ(B4) + 3τ(B4)). (6.35)

6.3.1 O(−p1,−p2) fibered over Σg1 × Σg2

The next example is O(−p1,−p2) → Σg1 × Σg2 , that is a line bundle fibred over B4 =
Σg1 ×Σg2 where −pi is the integral of c1(L) over Σgi

.1 We take the R2 part of the manifold
to be in the directions e1 − e2 and Σg1 and Σg2 to lie in the directions e3 − e4 and e5 − e6

respectively.
1Note that this definition of the pi’s is different from the one in the section 5.4. There we had one

Riemann surface and two line bundles over it, here it is two Riemann surfaces and one line bundle.
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In the section 5.4, it was derived an expression for the flux of F over Σg considering
that the fixed point set was Σg. In the present case, the fixed point set is a 4-manifold
and thus we do not have an exact formula for the fluxes over the Riemann surfaces, but
we have a constraint over them that comes from the topological identity (5.38). Let mi

be the magnetic charge over Σgi
, then the constraint is given by

σ(2)σ(3)χ1χ2 = m1m2 − σ(1)(m1p2 +m2p1) + p1p2, (6.36)

where we used that τ(B4) = 0, χ(Σg1 × Σg2) = χ(Σg1)χ(Σg2) ≡ χ1χ2 and η = σ(2)σ(3)

because it is possible to decompose the tangent planes accordingly with the Riemann
surfaces.

Inspired by (5.30) we redefine the magnetic charges to be

m1 =σ(1)p1 − σ(2)χ1l1 ,

m2 =σ(1)p2 − σ(3)χ2l2 ,
(6.37)

which upon inputting into the constraint equation (6.36), gives the simple condition:

1 − l1l2 = 0 . (6.38)

Clearly a solution is l1 = l2 = 1. One would now like to solve this subject to the con-
straint that the magnetic charges are integer. This is equivalent to solving the constraint
subject to yi ≡ χili ∈ Z. In terms of yi the constraint is

χ1χ2 = y1y2 , (6.39)

and should be solved for integer yi. An obvious solution, valid for all choices of Riemann
surfaces is yi = χi ⇔ li = 1, however this is not the only choice one can take.

Since the chirality on the fixed 4-surface is written as η = σ(2)σ(3), the chirality of the
spinor will be given by χ = σ(1)σ(2)σ(3). We can now insert the solutions for the magnetic
charges (subject to the constraint) into the localization formula (5.24) which gives

I = FS5

27

[
6χ(Σg1)χ(Σg2)l1l2

− 3σ(1)σ(3)χ(Σg1)l1p2 − 3σ(1)σ(2)χ(Σg2)l2p1 + 2σ(2)σ(3)p1p2

] (6.40)

For the universal solution li = 1 we find

I = 2FS5

27

[
12(1−g1)(1−g2)−3σ(1)σ(3)(1−g1)p2−3σ(1)σ(2)(1−g2)p1+σ(2)σ(3)p1p2

]
(6.41)
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If we are interested in the trivial fibration case, we can just take p1 = p2 = 0. This
solution is the euclidean Suh Black-Hole. The result is

I = 8
9(1 − g1)(1 − g2)FS5 . (6.42)

This result agrees with minus the black hole entropy I = −SBH, computed in Suh
[19, 20]. This could also have been calculated from equation (6.35) by using τ(B4) = 0
and χ(B4) = χ(Σg1)χ(Σg2) = 4(1 − g1)(1 − g2).

6.3.2 O(−p1,−p2) fibered over S2
ϵ1

× Σg

Consider now the case where one of the Riemann surfaces is a sphere with an equivariant
parameter of rotations turned on. While in general there is no toric action on the Riemann
surface, we can use the toric geometry of O(−p1) → S2

ϵ1 , detailed at the section 3.3,
to study this case and obtain a formula for the on-shell action. Just like in the other
examples, we will use the toric data to calculate the weights of the Killing spinor at each
fixed point, but now “glued” to each fixed point there is a Riemann surface. That is, the
fixed surfaces are two copies of the Riemann surface sitting at the two poles of the sphere
and at the origin of the plane. The action is readily written as

I = −FS5

27

χN(σNϵ(1)
N + σ(R2)ϵN)2

(
3mN − p2(σN ϵ

(1)
N +σ(R2)ϵN )
ϵN

)
ϵ

(1)
N ϵN

+
χS(σSϵ(1)

S + σ(R2)ϵS)2
(

3mS − p2(σSϵ
(1)
S +σ(R2)ϵS)
ϵS

)
ϵ

(1)
S ϵS

 ,
(6.43)

where we identified σ
(R2)
N = σ

(R2)
S ≡ σ(R2), as justified by the toric diagram.

The conventions we used for this particular calculation are slightly different from the
ones adopted at the section 3.3. Our toric data reads

v0 = (1, 0), v1 = (0, 1), v2 = (p1,−1). (6.44)

Take φ to be the angular coordinate on the line bundle and φ1 to rotate S2
ϵ1 around

its axis, then the Killing vector on M6 is

ξ = ϵ∂φ + ϵ1∂φ1 . (6.45)
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The weights at each vertex are calculated to be
(ϵN , ϵ(1)

N ) = (ϵ,−ϵ1), North pole;

(ϵS, ϵ(1)
S ) = (ϵ+ p1ϵ1, ϵ1), South pole.

(6.46)

Using these expressions, we obtain for the on-shell action

I = − FS5

27ϵ1

(
3mSχS(ϵ1(p1σ

(R2) + σS) + σ(R2)ϵ)2

p1ϵ1 + ϵ

− 3mNχN(σNϵ1 − σ(R2)ϵ)2

ϵ

+ p2χN(σ(R2)ϵ− σNϵ1)3

ϵ2

−p2χS(ϵ1(p1σ
(R2) + σS) + σ(R2)ϵ)3

(p1ϵ1 + ϵ)2

)
.

(6.47)

The formula for the trivial fibration case is obtained by setting p1 = p2 = 0. In this
case, the fluxes mN and mS are given by mN = −σ(Σg)

N (2 − 2g) and mS = −σ(Σg)
S (2 − 2g)

by formula (5.30). The action then simplifies to

I = − FS5

9ϵϵ1
(2 − 2g)

(
σ

(Σg)
N χN(σNϵ1 − σ(R2)ϵ)2 − σ

(Σg)
S χS(σ(R2)ϵ+ σSϵ1)2

)
. (6.48)

Setting the chiralities to match at both poles, we recover equation (6.42) with one of
the g’s being equal to zero. This is expected because, to take the limit where the sphere
is also fixed, there can only be one chirality on the fixed surface.

Another interesting case is anti-twist where σN = −σS. The general formula for the
magnetic charge threading on the sphere is m = −σN −σS, so that the twist corresponds
to a magnetically charged black hole, while the anti-twist doesn’t have magnetic charge.
For the anti-twist we get

I = −4FS5(1 − g)σNσ(R2)(σNϵ1 + σ(R2)ϵ)2

9ϵϵ1
. (6.49)

6.3.3 O(−p1,−p2) fibered over S2
ϵ1

× S2
ϵ2

In this example we will proceed similarly to what we did in section 6.2.1. Now the Torus
action is the rotation of the normal plane and the rotations of the spheres. There are four
isolated fixed points corresponding to the intersection of the origin of the plane and the
two poles of the two spheres. The Killing vector is
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ξ = ϵ1∂φ1 + ϵ2∂φ2 + ϵ∂φ, (6.50)

where ∂φi
rotates the sphere S2

ϵi
and ∂φ rotates the plane of the normal bundle. Using the

toric data described at section 3.4, we can calculate the weights at the four fixed points:

ξ(IJ) =



(ϵ, ϵ1, ϵ2) NN ;

(ϵ+ p1ϵ1 + p2ϵ2,−ϵ1,−ϵ2) SS;

(ϵ+ p1ϵ2,−ϵ1, ϵ2) SN ;

(ϵ+ p2ϵ2, ϵ1,−ϵ2, ) NS;

(6.51)

where I, J = N,S.

v2

v1
v4

v0

v3

Figure 6.2: Toric diagram for O(−1,−2) → S2 × S2.

From here we can compute the on-shell action, finding

I =FS5σ(R2)

27ϵ1ϵ2

[
σ

(1)
N σ

(2)
N (ϵ1σ

(1)
N + ϵ2σ

(2)
N + ϵσ(R2))3

ϵ

− σ
(1)
S σ

(2)
N (−ϵ1σ

(1)
S + ϵ2σ

(2)
N + (ϵ+ p1ϵ1)σ(R2))3

ϵ+ p1ϵ1
− σ

(1)
N σ

(2)
S (ϵ1σ

(1)
N − ϵ2σ

(2)
S + (ϵ+ p2ϵ2)σ(R2))3

ϵ+ p2ϵ2

+ σ
(1)
S σ

(2)
S (−ϵ1σ

(1)
S − ϵ2σ

(2)
S + (ϵ+ p1ϵ1 + p2ϵ2)σ(R2))3

ϵ+ p1ϵ1 + p2ϵ2

]
.

(6.52)

In this expression, we already identified the relevant σ’s. The toric polytope has five
facets now, thus there are only five relevant σ’s. In particular, note that σ(R2) here is
associated with the R2 direction.

Like we discussed on the example R4 → S2, we are interested in taking the limit
where the spheres stop rotating. This limt is only well-defined if the Killing spinor has a
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definite chirality on each sphere, that is, we must require that σ(1)
N = σ

(1)
S and σ(2)

N = σ
(2)
S .

Applying this constriant and taking ϵ1 → 0 and ϵ2 → 0, gives

I = 2FS5

27

(
12 − 3σ(2)

N σ(R2)p2 + −3σ(R2)σ
(1)
N p1 + σ

(1)
N σ

(2)
N p1p2

)
(6.53)

which precisely matches with the result of O(−p1,−p2) → Σg1 × Σg2 for g1 = g2 = 0,
equation (6.41) when identifying the projection values there as σ(1) = σ(R2), σ(2) = σ

(1)
N

and σ(3) = σ
(2)
N .

We can also compute the magnetic charge over the spheres. The interesting two-cycle
is one of the spheres sitting at the origin of the plane and on one of the poles of the other
sphere. The result is the same for both poles, considering the case when σ

(1)
N = σ

(1)
S and

σ
(2)
N = σ

(2)
S , they are given by

m1 = −σ(1)
N − σ

(1)
S + p1σ

(R2) , m2 = −σ(2)
N − σ

(2)
S + p2σ

(R2) . (6.54)

This is in agreement with formula (5.30).

6.3.4 Complex Projective Plane

The topological constraint (5.38) is enough to give us an expression to the flux of c1(F )
if the second cohomology of B4 is one dimensional. We illustrate this with the O(−p) →
CP 2 example. It is known that H2(CP 2,Z) = Z [21], let this cohomology class be
generated by the 2-form H which satisfies

∫
CP 2 H ∧ H = 1 and it is usually called the

Hyperplane Class. Then we may write c1(F ) = mH and c1(O(−p)) = −pH.
On the other hand, the total Chern class of CP 2 is given by c(CP 2) = (1 + H)3 [9].

This gives us the Euler and first Pontrjagin classes to be e(CP 2) = p1(CP 2) = 3H2.
Hence we get that χ(CP 2) = 3 and τ(CP 2) = 1. Then the identity (5.38) leads to

6η + 3 = m2 − 2σ(1)mp+ p2, (6.55)
=⇒ m = pσ(1) ±

√
6η + 3. (6.56)

This solution for m is only real when η = 1, hence the flux is given by m = pσ(1) ± 3.
We can plug this expression for m on (5.24) to obtain the on-shell action:

I = FS5

27
(
27 + p2 ± 9pσ(1)

)
. (6.57)
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6.3.5 Complex Projective Plane with rotation

We can consider CP 2 to be “rotating” as well, that is, we consider a T2 action on CP 2

additionally to the action on the fiber. Now there are three fixed points. From now on,
we refer to the toric data computed at the section 3.6. At each vertex, meets three faces

v1

v2

v3

v4

Figure 6.3: Toric diagram for O(−2) → CP 2.

which have the same label as the normal vectors. At vertex 1, intersects faces 1, 2, 4; at
vertex 2, faces 1, 3, 4; and at vertex 3, faces 2, 3, 4. Thus, using the toric data computed
on 3.6 and the formulas of section (3.7) for the weights, we obtain at each vertex:

(ϵ1, ϵ2, ϵ3) =


(ϵ1, ϵ2, ϵ3), at vertex 1;

(ϵ1 − ϵ2,−ϵ2, ϵ3 − pb2), at vertex 2;

(ϵ2 − ϵ1,−ϵ1, ϵ3 − pb1), at vertex 3.

(6.58)

The action then is readily written as

I = σ(R2)FS5

27

σ1σ2(ϵ1σ1 + ϵ2σ2 + ϵ3σ
(R2))3

ϵ1ϵ2ϵ3

− σ1σ3(σ1(ϵ1 − ϵ2) + σ(R2)(ϵ3 + ϵ2p) − ϵ2σ3)3

ϵ2(ϵ1 − ϵ2)(ϵ3 + ϵ2p)

− σ2σ3(σ2(ϵ2 − ϵ1) + σ(R2)(ϵ3 + ϵ1p) − ϵ1σ3)3

ϵ1(ϵ2 − ϵ1)(ϵ3 + ϵ1p)

,
(6.59)
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where we identified the same σ’s at different vertices. That is, in principle, we could have
distinguished between σ1 at vertex 1 and σ1 at vertex 2, but this factors come from the
projection conditions (5.15) holding at the same face (which correspond to a 4-dimensional
fixed-point set) and thus they must be equal.

To compare with the calculation where the whole CP 2 is fixed, we must have only
one definite chirality on it. Thus we need that σ1σ2 = σ1σ3 = σ2σ3, which amounts to
σ1 = σ2 = σ3. Additionally, the Killing vector must rotate only the R2 part and so we
must send ϵ1 and ϵ2 to zero. One can check that, applying these conditions on the above
formula for the action, gives the expression (6.57) upon identifying σ(R2) here with σ(1)

there.

6.3.6 Holography and Field Theory Comparison

Many results obtained in this section have been calculated previously in the relevant
holographically dual field theory. As a general rule, the Rn part of the gravity side will be
compared to Sn−1 on the field theory side. In our context, this means that the solutions
R6 topology will be compared to field theories on S5, R4 ×F2 to S3 ×F2, and R2 ×B4 to
S1×B4. The result for the Hyperbolic Black-Hole was calculated in the original paper [13].
To compare what we got for the examples of the kind R4 × F2, we need to relate our
weights of the Killing vector (5.10) with the squashing parameter, b, of the squashed 3-
sphere, S3

b . As can be seen explicitly at [22] (cf. (2.17), (5.3) and (5.19) there), they are
related by

b =
√
ϵ1

ϵ2
. (6.60)

It is useful to also write the expression for the squared Q that appears in the formulas
of the field theory partition function:

Q = 1
2(b+ b−1), (6.61)

Q2 = (ϵ1 + ϵ2)2

4ϵ1ϵ2
. (6.62)

The results we obtained for R4 × Σg match with equation (3.2) of [23] which reads as

F univ
S3

b
×Σg

= −8
9(g − 1)Q2FS5 . (6.63)

The superscript “univ” here stands for universal twist. Upon using expression (6.62),
we recover the result (6.26) with χR4 = 1. Equation (6.27) is simply the case of the round
S3
b where Q = 1.
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The result for R4 × S2, where there is a U(1) action on S2, equation (6.34), can be
compared to equation (3.23) of [24]

FS3
b

×S2
ϵ
(∆i, ti, ϵ|b) = 8

27
Q2

ϵ

[
FS5

(
∆i + ϵ

2 ti
)

− FS5

(
∆i − ϵ

2 ti
)]
, (6.64)

FS5(∆i) = FS5 (∆1∆2)
3
2 , (6.65)

where the ∆i’s are the chemical potentials and the ti’s are the fluxes for the flavor sym-
metry. In our work, we are considering a theory without matter, thus we need to set
∆1 = ∆2 and ti = 1. Additionally, the parameter ϵ there relates to the weight ϵ3 here by

ϵthere = 2ϵ3

ϵ1 + ϵ2
. (6.66)

One then matches the results by plugging these values for the parameters and using
(6.62).

The result for R2 × S2
b2 × Σg in the anti-twist case can also be compared to a result

in [24]. Equation (5.101) there can be compared to our (6.49). Their formulas reads as

logZ(S2
ϵ ×S1)×Σg

= − π

2ϵ

[
FS3×Σg

(
∆i + ϵ

2 ti, si
)

+ FS3×Σg

(
∆i − ϵ

2 ti, si
)]
, (5.101)

FS3×Σg
(∆i, si) = 8

27π2FS5

2∑
i=1

si
∂(∆1∆2)

3
2

∂∆i

,

where s1 + s2 = 2 − 2g, ∆1 + ∆2 = 2π + ϵ and t1 + t2 = 0. Like before, setting
∆1 = ∆2 = π + 1

2ϵ and t1 = t2 = 0, we obtain

logZ(S2
ϵ ×S1)×Σg

= 2FS5(g − 1)(ϵ+ 2π)2

9πϵ (6.67)

This result also matches with our result (6.49) upon taking ϵ or ϵ1 to be 2π and setting
σNσ(R2) = 1.

Finally, the result obtained for the Black-Hole with horizon Σg1 ×Σg2 , equation (6.42),
matches with the calculation of [25], equation (3.107).

62



Chapter 7

Conclusion

In this work, we studied how the localization formula from Equivariant Cohomology can
be applied to calculate the on-shell action of six-dimensional Romans Supergravity. We
showed how to construct an equivariantly closed form using the fields of the theory and
bilinears constructed from the Killing spinor, which is equivariantly closed by means of
the equations of motion and supersymmetry equations. The integral of this form gives
the on-shell action and was localized to the fixed points of the toric action generated by
the Killing vector constructed as a bilinear of the Killing spinor. The result is a formula
that relies heavily on the topological information of a solution to Romans supergravity,
but can be used without the explicit knowledge of the solution.

The developed formula was applied to many examples that display different features.
Besides the Hyperbolic Black-Hole, the examples were considered without the knowledge
of the metric or the other fields of the theory. The identification of the fixed-point locus
was immediate because we considered examples that split in a part that admits a toric
action and a part that does not, generally taken as R2k fibered over F6−2k. This was
anticipated in our construction as the separation of the manifold between the fixed-point
locus and its normal bundle was present in our analysis since the beginning. We also
considered examples in which F6−2k admits a toric action. In this cases, the fixed-point
locus was just a collection of isolated points and we obtained formulas for them using the
Toric Geometry formalism. But, imposing the condition that the spinor has a definite
chirality on connected components of the fixed-point set, we took the limit were the toric
action on F6−2k vanished and we recovered the result for the case where F6−2k does not
have a toric action. This provides a consistent check on our results.

Many of the results obtained for the product space examples (geometries of the kind
R2k×F6−2k) were compared to the results for the free-energy on the relevant holographical
theory, which is a theory that has the same kind of supersymmetry living on a S2k−1 ×
F6−2k manifold. Many of these results had been obtained previously on the gravity side
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by different calculation methods, but some of them are a new matching. The expressions
obtained for the fibration cases and for some product space cases that does not have a
holographical calculation make interesting new predictions. In particular, we note the
expression for R2 × B4 (6.35), which is neat for being expressed in terms of topological
invariants of B4, and the expression for R2 × CP 2, which is just the free energy on S5.
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Appendix A

General Geometry

A.1 Fibre Bundles

A fiber bundle is a structure that locally looks like a direct product of two spaces. Here
we focus on the case of differentiable fiber bundles and only of some kinds of bundle that
are relevant to us.

A fiber bundle is a quintuple (E, π,M, F,G), where E,M and F are manifolds
respectively called total space, base space and fiber; π : E → M is a surjective
map called projection which satisfies π−1(x) = F , for all x ∈ M ; and G is a Lie
group called structure group. It is also imposed that E is locally trivial through the
condition that there exists a covering of M with charts Ui and a set of diffeomorphisms
ϕi : Ui × F → π−1(Ui), called local trivializations, such that π(ϕ(x, f)) = x, where
f ∈ F . Finally, we also require that, when two charts Ui and Uj overlap, the transition
function tijUi ∩ Uj → G that relates the two charts be an element of G for each point
x ∈ Ui ∩ Uj, where tij is defined trough:

ϕi ◦ ϕ−1
j : (Ui × Uj) × F → (Ui × Uj) × F (A.1)
(ϕi ◦ ϕ−1

j )(x, f) = (x, tij(x)f). (A.2)

On a fiber bundle, there is the important notion of a section. A section is a smooth
map s : E → M such that π ◦ s = 1. The sections generalize the vector fields over
a manifold. Note that a section may be defined only on an open chart U of M . The
collection of all sections defined on U is Γ(U, F ).

68



A.1.1 Vector Bundles

When the fiber of the fiber bundle is a vector space it is called a vector bundle. The
vector bundles may be either real or complex, whether the fiber is Rk or Ck. The structure
group will be GL(k,R) or GL(k,C) for each case.

If the vector space is one-dimensional (wether it be over R or over C), the bundle is
called a line bundle. In particular, we have the result that if a line bundle admits a
nowhere zero section, then it is a trivial bundle.

Special cases of vector bundles are the (co)tangent bundle TM(T ∗M), whose typical
fiber is the (co)tangent space at each point of M . Thus, Γ(M,TM) is the space of
vector fields on M and Γ(M,T ∗M) is the space of one-forms. It is also possible to take
tensor products of vector bundles, those are associated with different representations of
GL(n,R) [6, 8], but essentially they are vector bundles whose typical fiber is a tensor
product. On these bundles, we define tensor fields as the sections. For example, we have
the exterior algebra bundle ΛM whose sections are the differential forms.1

The normal bundle is also an example of vector bundle. Consider a manifold M

with a Riemannian metric g and S a submanifold. For y ∈ S, the normal space NyS is
the set of all vectors v from TyM , such that g(v, w) = 0 for all w ∈ TyS. The normal
bundle is then the collection of normal spaces over S. Note that the base space is S.

Another important vector bundle is the conjugate bundle. Let E be a complex
vector bundle, the conjugate bundle Ē is the bundle E but with the multiplication by a
scalar defined taking the conjugate of the scalar. Let v be an element of the vector space
that is a typical fiber of E and z ∈ C, then, on Ē, z · v = z̄v.

Consider two vector bundles over the same base space: π1 : E1 → M , π2 : E2 → M .
We can construct the Whitney sum bundle E1⊕E2 which has projection π12(u1, u2) = p.
Thus the fiber of the Whitney sum bundle is the direct sum of the fibers: π−1

12 (p) =
π−1

1 (p) ⊕ π−1
2 (p).

A.1.2 Principal and Associated Bundles

A fiber bundle whose fiber is the structure group is called a principal bundle. It is
usually denoted P (M,G). The action of G is defined on the right such that π(fg) = π(f),
for f ∈ π−1(Ui) and g ∈ G. The action of G is free and transitive.

Given a principal bundle P (M,G) and a G-invariant vector space V , we can construct
a vector bundle over M with fiber V called the associated bundle. This bundle is
constructed by taking the direct product P × V and identifying the point (p · g, v) with
(p, ρ(g)v), where ρ(g) is the representation of g on V . The associated bundle is denoted

1We abuse the notation and also call ΛM the space of differential forms.
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by E = P ×G V and the identification is done so that the identified points have the same
fiber and thus the projection πE(p, v) = π(p) is well defined.

Consider a vector bundle E with fiber Rk(Ck). This vector bundle is an associated
bundle to the principal bundle with structure group GL(k,R)(GL(k,C)), that is, the
principal bundle P (M,GL(k,R))(P (M,GL(k,C)). This principal bundle is called the
frame bundle of E because specifying a frame is the same as specifying a linear invertible
map from the canonical base of Rk(Ck) to the frame. The frame bundle of M is the
frame bundle of the tangent bundle which may have fiber Rn or Cn, where n is the
dimension of M .

Let G be a Lie subgroup of GL(n,R). A G-structure on M is a subbundle of the
frame bundle such that it is a principal bundle over M with structure group G. In many
cases, defining a G-structure is equivalent to establishing one or more globally defined
G-invariant tensors. For example, let G = O(n), then the O(n)-structure is the principal
bundle P (M,O(n)) which corresponds to picking only the orthogonal frames. Since we
can always define a metric on Rn, we can always reduce GL(n,R) to O(n), that is, to give
an O(n)-structure is the same as to define a Riemannian metric, which is a O(n) invariant
tensor [9]. In general, given G, it is not always possible to establish the G-structure on
M . For example, a SL(n)-structure is the same as to orient the manifold but this is only
possible if M is orientable and in this case the invariant tensor is the volume form.

A.2 Differential Forms and de Rham Cohomology

Consider the exterior bundle over M . The sections of this bundle are the differential
forms, they form a graded algebra under the wedge product. An element of this space is
often denoted in the text as a “polyform” because it is a sum of forms of different degrees,
but here we use simply “form” or “differential form”.

Denote the space of forms as ΛM . The grading is given by the tensor rank (keep
in mind that ΛM is a tensor product bundle), for example, a function is a 0-form, a
differential, i.e. a dual vector, is a 1-form and so on. In general, the space of k-forms is
denoted ΛkM . The highest grading is given by the dimension of the manifold.

In the exterior algebra, there is a natural operation called the wedge product. Let
gr(α) be the grade of a gr(α)-form, the wedge product is characterized by the following
property:

α ∧ β = (−1)gr(α)gr(β)β ∧ α, (A.3)

along with the usual properties of the product of an algebra (bilinearity and associativity).
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In the space of differential forms, there exists a unique anti-derivation called exterior
derivative [26]. It can be defined by the following properties:

• let f ∈ C∞(M), then df [X] = X [f ], for all vector fields X;

• d2 = 0;

• d : ΛkM → Λk+1M ;

• let α be a gr(α)-form, while β may be ungraded, then we have the Leibniz’s rule:

d(α ∧ β) = (dα) ∧ β + (−1)gr(α)α ∧ (dβ). (A.4)

Another important operator used in this work is the interior multiplication, also
called contraction. We denote it here by “X ”, but is often found in the literature as i(X)
or iX . Given a vector field, it is a unique operator defined by

• X α = α[X], for α a 1-form;

• X : ΛkM → Λk−1M ;

• X (α ∧ β) = (X α) ∧ β + (−1)gr(α)α ∧ (X β).

If a k-form α is such that dα = 0, we say that it is closed; if it can be written
as α = dβ, then it is called exact. It follows that every exact form is closed because
d2 = 0. There is an important result called Poincare’s Lemma that says that if M is
simply connected and path connected, then every closed form is exact, which implies that
locally the result holds [8, 9, 26].

From the Poincare’s Lemma, for example, we see that the relationship between closed
and exact forms over a manifold is closely related to its topology. The object that encodes
the topological information from the differential forms is the de Rham Cohomology.
Let α and β be closed k-forms, we say that they are equivalent with they differ by an
exact form: α − β = dθ. The k-cohomology is then quotient of closed k-forms by exact
k-forms.

We want to define an integration of forms over a manifold, but to do this we need to
address the concept of orientation. We say that a n-dimensional manifold is orientable
if there is a nowhere vanishing n-form defined on it, this is equivalent to saying that the
bundle ΛnM − {0} has exactly two components, where ω′ = fω, f everywhere positive,
and ω have been identified. Picking an orientation then means picking one of the two
components of ΛnM − {0}, the positive component or the negative component. It can
be shown that this construction is equivalent to requiring that the jacobian of coordinate
transformations is positive.
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Assume that M is paracompact, which means that it can be covered by a finite col-
lection of sets Ui. Define the partition of unity {εi} by the conditions

0 ≤ εi(x) ≥ 1; (A.5)
x /∈ Ui =⇒ εi(x) = 0; (A.6)∑

i

εi(x) = 1. (A.7)

Then we can finally define integration over a manifold M as

∫
M
ω ≡

∑
i

∫
Ui

εiω =
∑
i

∫
Rn

(ϕ−1
i )∗εiω, (A.8)

where ϕi : Ui → Rn is a coordinate map.
To close this section, we will present the Stokes Theorem.
Consider the half-space Hn = {(x1, ..., xn) ∈ Rn|xn ≥ 0}. The boundary of a manifold,

denoted ∂M , is the set of points of M such that the neighborhoods that cover them are
diffeomorphic to Hn. The boundary ∂M is a submanifold of dimension n− 1 which does
not have a boundary, ∂∂M = ∅. The boundary of M inherits the orientation of M . Note
that not all manifolds have boundaries. Now we can write the Stokes’ Theorem [9,26]

∫
M

dω =
∫
∂M

ω. (A.9)

A.3 Connections

Let f be a smooth function on M , then π∗f = f ◦ π is a smooth function on the fiber.
Then a vector which has X(π∗f) = 0, for any f , will be tangent to the fiber, such a vector
is called a vertical vector. We denote by V E the bundle of vertical vectors.

A connection one-form A is a one-form which takes values on V E and obey X A =
X if X ∈ V E. The horizontal bundle is defined as the kernel of A.

In the case of a principal bundle P (M,G), V E is identified with the Lie algebra of G,
g [6]. Hence A becomes a Lie algebra-valued one-form. It is further imposed that A be
G-invariant

LXA+ [X,A] = 0, (A.10)

where this equation is equivalent to saying that the right action of G on A is given by the
adjoint action (of the inverse element).

Let E be a vector bundle over M . We define the covariant derivative ∇ as an
operator specified by
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1) Domain and image:
∇ : Γ(M,E) → Γ(M,T ∗ ⊗ E); (A.11)

2) Leibniz rule, let f ∈ C∞(M) and s ∈ Γ(M,E), then:

∇(fs) = df ⊗ s+ f∇s; (A.12)

3) The difference of covariant derivatives is an one-form which takes value on the
endomorphisms of E, End(E).2

On a trivial vector bundle, the exterior derivative is an example of covariant derivative.
It follows then that any covariant derivative can be represented locally as

∇s = ds+ A · s, (A.13)

where A is an one-form which takes value in End(E).
Note that we have used A as a connection on a principal bundle and now discussing

the covariant derivative on a vector bundle. Indeed the two concepts are closely related
as one can always construct a covariant derivative on the associated bundle of a principal
bundle from the connection on the principal bundle. In particular, there is a one-to-
one correspondence between covariant derivatives on E and connections on the frame
bundle GL(E) [6]. Doing actual calculations, we use equation (A.13) with A being the
appropriate representation of the connection on the associated bundle.

Finally, we introduce the curvature F considering that the covariant derivative comes
from a connection on a principal bundle. The curvature is a g-valued two-form defined
by

F = ∇2 (A.14)
= dA+ 1

2 [A,A] . (A.15)

Let ∇X ≡ X ∇ be the covariant derivative w.r.t. the vector field X, then it can be
shown that the above definition for F is equivalent to

F (X, Y ) = [∇X ,∇Y ] + ∇[X,Y ]. (A.16)
2An endomorphism of E is a map from E to E. For example, operators are endomorphisms of a vector

space.
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The curvature also satisfies the Bianchi identity:

∇F = 0. (A.17)

A.3.1 Compatibility conditions

Recall that for a principal bundle the structure group is identified with the fibers. Consider
Ai(j), a one-form connection defined locally on the chart Ui(j), with Ui∩Uj ̸= ∅. We want
to know how Ai and Aj are related. Since Ai is g-valued and tij ∈ G, we expect Ai to
be acted with the adjoint action of tij. On the other hand, it is also a one-form and thus
transforms by means of a pull-back. The final answer is a mixture of both [8]

Ai = t−1
ij Ajtij + t−1

ij dtij, (A.18)

which yields for the curvature:
Fi = t−1

ij Fjtij. (A.19)

These are the familiar gauge transformations from physics.

A.4 Riemannian Geometry

Like we mentioned previously, a O(n)-structure on M is equivalent to endowing M with
a riemannian metric g(·, ·) which satisfies: (i) g(X, Y ) = g(X, Y ); (ii)g(X,X) ≥ 0 with
the equalty holding only if u = 0. Consider additionally that M is orientable. Thus
the tangent bundle of M is an associated bundle to SO(M), the bundle of oriented
orthonormal frames on M .

TM ≃ SO(M) ×SO(M) Rn. (A.20)

The covariant derivative on TM will be formed from the connection on SO(n) which
is so(n)-valued in the Rn representation. We look at the Levi-Civita connection which
preserves the metric and is torsion-free, meaning

d(g(X, Y )) = g(∇X, Y ) + g(X,∇Y ), (A.21)
∇XY − ∇YX − [X, Y ] = 0. (A.22)

The curvature is called Riemannian Curvature, it is a so(n)-valued 2-form which
we denote by R. We use the conventional notation R(X, Y )Z, where R(X, Y ) is a
representation of so(n) which acts on Rn. The explicit expression of R is

74



R(X, Y )Z = ∇X∇YZ − ∇Y ∇XZ − ∇[X,Y ]Z. (A.23)

The Riemannian curvature satisfies some properties:

R(X, Y ) + R(Y,X) = 0; (A.24)
g(R(W,X)Y, Z) + g(Y,R(W,X)Z) = 0; (A.25)
R(X, Y )Z + R(Y, Z)X + R(Z,X)Y = 0; (A.26)
g(R(W,X)Y, Z) = g(R(Y, Z)W,X); (A.27)

(∇XR)(Y, Z)W + (∇ZR)(X, Y )W + (∇Y R)(Z,X)W = 0, (A.28)

where (A.26) and (A.27) hold only for torsion-free connections and the last one is the
Bianchi identity.

A.4.1 Local Expressions

Let {eα} be an orthonormal frame of the tangent bundle at some chart, that is, they
satisfy:

g(eα, eβ) = δαβ. (A.29)

Let {eα} be the dual frame and ω = ω β
α = (ωγ) β

α eγ be the one-form connection,
note that α and β in the connection are indices of a so(n) matrix, so ω β

α = −ω α
β . The

covariant derivative is then

∇βX =
(
∂βX

α + (ωβ) α
γ Xγ

)
eα. (A.30)

We can also get local expressions for the curvature which we use to define the Ricci
curvature and the scalar curvature

Rα
βγλ = eα [R(eγ, eλ)eβ] ; (A.31)

Rαβγλ = g(R(eγ, eλ)eβ, eα); (A.32)
Ricαβ =

∑
γ

Rαγβγ; (A.33)

R =
∑
α,β

Rαβαβ. (A.34)

Note that in the first expression the “α” and “β” indices are matrix indices like on
the connection one-form, thus we can construct the two-form Rα

β = 1
2Rα

βγλe
γ ∧ eλ. It

is worth mentioning that we then have Cartan’s structure equations which are essentially
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the covariant derivative of the dual frame and a local expression of the curvature, the first
one is zero because of the torsion-free condition [8]

deα + ω α
β ∧ eβ = 0; (A.35)

dω β
α + ω γ

α ∧ ω β
γ = Rα

β. (A.36)

A.4.2 Arbitrary Frame

Let {∂µ} be a non-orthonormal frame, we can transition from the orthonormal one by
a GL(R, n) matrix: eα = e µ

α ∂µ; and using the inverse matrix for the dual frame:eα =
eαµdxµ, where by inverse we mean that e µ

α eβµ = δβα and e µ
α eαν = δµν . The local compo-

nents of the metric on this other frame are then given by

gµν = eαµe
β
νδαβ. (A.37)

For the connection, the transformation is not so simply. We calculate it by plugging
eα = e µ

α ∂µ at ∇γeα = (ωγ) β
α eβ. The result is

(ωγ) β
α = eβνe

µ
γ

(
∂µe

ν
α + Γνµλe λ

α

)
. (A.38)

This is essentially equation (A.18), but with the form index explicit.
The frame {eα} defines a volume form on M . It is simply e1 ∧ ... ∧ en, which in a

arbitrary frame is det(eαµ)dx1 ∧ ... ∧ dxn = √
gdx1 ∧ ... ∧ dxn, where g = det(gµν).

Finally, note that everything was done for a Riemannian metric. If we wish to work at a
semi-Riemannian structure, there will need to be appropriate adaptations. For example,
for the Lorentzian case, we should consider a SO(n − 1, 1) structure such that δαβ is
replaced by the Minkowski metric at (A.29).

A.4.3 Hodge Duality

The k-th exterior bundle over a n-dimensional manifold M , ΛkM , has dimension n!
k!(n−k)! .

The (n − k)-th exterior bundle has the same dimension which hints us that both spaces
are isomorphic. In fact they are and the isomorphism is done by the Hodge star ∗ :
ΛkM → Λn−kM . Let ω ∈ ΛkM , then, locally:

∗ω =
√
g

r!(n− r)!ωµ1...µk
εµ1...µk

µk+1...µn
dxµk+1 ∧ ... ∧ dxµn , (A.39)

where g is the determinant of the metric on M .
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In principle, one can define the Hodge star without any respect to the metric, but here
we are not interested in this case. This convention for ∗ gives ∗1 = √

gdxµ1 ∧ ... ∧ dxµn

which is the volume element of M . Additionally, given η another k-form, we have the
important expression:

η ∧ ∗ω = 1
k!ηµ1...µk

ωµ1...µk ∗ 1. (A.40)

A.5 Characteristic Classes

Characteristic classes are essentially polynomials of the curvature. These polynomials are
closed differential forms and thus are interesting from the cohomological point-of-view.

Let f be a complex polynomial and ∇ the covariant derivative with curvature F . Then
we define:

f(F ) :=
∑
k

fk(0)
k! F k, (A.41)

this is a finite sum because F k is nilpotent. Since F is a g-valued form, we take the trace
of f(F ) to obtain an ordinary differential form: P (F ) = Trf(F ).

Before continuing, note that, locally, Tr(∇α) = Tr(dα) + Tr(ad(A)α) = dTr(α), for
α a g-valued k-form. Building on this, it can be shown that P (F ) is a closed differential
form. It can also be shown that if ∇1 and ∇2 are two different covariant derivatives on
the vector bundle, then P (F1)−P (F2) is exact. These properties tell us that P (F ) defines
a cohomology class. [6, 8]

A.5.1 Chern Classes

Our first characteristic class is the Chern class, defined as

c(F ) ≡ det
(

1 + i

2πF
)
, (A.42)

=
∑
k

ck(F ), (A.43)

where c0 = 1 and ck(F ) is a 2k-form and each ck is closed and thus defines a class of the
2k-cohomology H2k(M). It is also established that if the vector bundle E has rank n (as
a complex vector bundle), then cm>n(F ) = 0. In particular, we have that c1(F ) = i

2πTrF .
The Chern class satisfies some interesting properties [8, 9]

• If the bundle is trivial, then c(F ) = 1;

• The Chern class of the Whitney sum bundle is the product of classes: c(E1 ⊕E2) =
c(E1) ∧ c(E2);
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• If E has a non-vanishing section, then cn(F ) = 0.

• Splitting principle: If a polynomial identity holds for E being a Whitney sum of
line bundles, then it holds in general.

The Splitting Principle is a good tool to calculate Chern classes because it allows to
calculate considering that the vector bundle is a sum of complex line bundles and the
result will be correct even if the vector bundle can not be decomposed as the sum of line
bundles. Hence, using the splitting principle, we can write the Chern class of a vector
bundle as

c(E) =
n∏
i=1

(1 + c1(Li)), (A.44)

where Li are line bundles and the “wedge” product is implicit. Now we state some formulas
for the Chern class of a tensor product. Let E and H be vector bundles of rank n and m
respectively and Li and Mj be the line bundles used to calculate c(E) and c(H), then we
have [9]

c(E ⊗H) =
i=n,j=m∏
i,j=1

(1 + c1(Li) + c1(Mj), (A.45)

c(E ⊗ L) =
n∑
i=0

ci(E)(1 + c1(L))n−i, if L is a line bundle. (A.46)

A.5.2 Euler and Pontrjagin classes

The Euler and the Pontrjagin classes are closely related to the Chern class, but they are
defined for real vector bundles over orientable manifolds. In such cases, we can always
take the curvature to be skew-symmetric, because we can endow the vector bundle with
an orthogonal structure.

The Pontrjagin class is defined by

p(F ) ≡ det
(

1 + 1
2πF

)
, (A.47)

=
∑
k

pk(F ). (A.48)

This is very similar to the Chern class, actually, it can be shown that pi(F ) =
(−1)ic2i(FC), where FC is the curvature of the complexified vector bundle. It follows
then that the Pontrjagin class has many properties akin to the Chern class. In particular,
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it can be calculated trough the splitting principle by the formula:

p(E) =
n∏
i=1

(1 + c1(Li)2), (A.49)

where E here is a real oriented vector bundle of dimension 2n such that, to calculate
the characteristic, we can consider its complexification to split as a sum of line bundles:
E ⊗ C = L1 ⊕ L̄1 ⊕ ...⊕ Ln ⊕ L̄n.

An important characteristic of the Pontrjagin class is that each pi is an element of
H4i(M). This can be seen by noting that p(F ) is an even polynomial of F , since F is
antisymmetric. This fact hints that the Pontrjagin classes are related to the signature
of manifold. The signature of a manifold, τ(M), is defined only for manifolds with
dimension n = 4k, here we define it using the Hirzebruch Signature Theorem [6,8, 9, 21]

τ(M) =
∫
M
L(TM), (A.50)

where L(F ) is the L-genus given by

L(F ) =

√√√√det
(

F/2π
tanh (F/2π)

)
. (A.51)

The L-genus can be written using Pontrjagin classes [8, 21], the first terms are L =
1 + 1

3p1. Thus, for a four dimensional manifold B4, τ(B4) =
∫ 1

3p1(TB4). We also have
the Whitney sum formula for L: L(E ⊕H) = L(E) ∧ L(H). Using this, we can see that
if a 4-dim manifold is a direct product of two 2-manifolds, then L(M2 × M2) = 0 =⇒
τ(M2 ×M2) = 0.

Now we finally proceed to the Euler class. The Euler class is defined as the Pfaffian
of the curvature:

e(F ) ≡ Pf(F/2π) =
√

det(F/2π). (A.52)

The Euler class can also be calculated by employing the splitting principle and the
Chern class. Let E be as in the Pontrjagin class case (below equation (A.49)). Then we
can calculate its Euler class by

e(E) =
n∏
i=1

c1(Li). (A.53)

Note that, from this equation, it follows that the Euler class agrees with the top Chern
class.
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An important case of the Euler class is the Euler form which is the Euler class of
the tangent bundle, e(TM), also denoted e(M). We set e(M) = 0 if dim(M) is odd in
accordance with the fact that the Pfaffian vanishes in odd dimensions. The integral of
the Euler form over the manifold is the Euler number, this is a theorem that generalizes
the famous Gauss-Bonet theorem, mathematically, we have:

χ(M) =
∫
M
e(M). (A.54)

A.6 Spin Bundles

Now we proceed to introduce spinors as sections over a manifold. Like the tangent bundle
can be regarded as an associated bundle to the principal bundle SO(n), the spinor bundle
will be constructed in association to the SPIN(n) group. To study the SPIN(n) group
we first need the Clifford Algebra.

Let V be a n-dimensional vector space with a quadratic form Q. The Clifford Algebra
C(V ) is given by

vw + wv = −2Q(v, w). (A.55)

Here we are interested in representing the Clifford algebra with gamma matrices and
quadratic form given by a inner product. This means that we are interested in structures
like:

γµγν + γνγµ = 2δµν . (A.56)

We can connect the gamma representation with the first one by writing a vector as
v = γµvµ. Anyway, from now on we denote the elements of C(V ) of degree 1 by ci which
are associated with the element ei of a frame of V .

The Clifford algebra is closely related to the exterior algebra, note that both have
dimension 2n. Map the latter into the first by the quantization map c. It is reminiscent
of the quantization of fermionic fields where the classical fermion anti-commutes but the
quantized satisfies anti-commutation relations. Mathematically,

c : ΛV → C(V ), (A.57)
ei ∧ ... ∧ ek 7→ ci...ck. (A.58)
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Define a grading of C(V ) by Ck(V ) ≡ c(ΛkM). It can be shown that C2(V ) is a Lie
algebra isomorphic to so(V ) with the isomorphism defined by

τ : C2(V ) → so(V ), (A.59)
τ(a) := [a, v] , (A.60)

where v ∈ C1(V ).
To represent a so(V ) element, say Ai, as a Clifford algebra element we use the following

formula:

τ−1(Ai) = 1
2
∑
j<k

g(Aiej, ek)cjck, (A.61)

= 1
4 (ωi)jk cjck, (A.62)

where there is a sum in the last line and (ωi)jk ≡ g(Aiej, ek) is known as the spin
connection.

Finally, define the SPIN(V ) group as the exponential of C2(V ). So if g ∈ SPIN(V ),
then g = exp(tijcicj). An important property of the spin group is that it is a double cover
of SO(V ), if n > 1. Hence it carries the interesting properties of the action of SO(V ) on
V , namely, preserves the inner-product and the orientation.

A.6.1 Spinor bundle

To construct the spinor representation of SPIN(V ), we define the chirality operator. Let
ci be an oriented orthonormal basis of C1(V ), then define the chirality operator as

cn+1 = ipc1...cn, (A.63)

where p = n/2 if n is even and p = (n+ 1)/2 if n is odd. The chirality operator satisfies
some important properties: cn+1 ∈ C(V ) ⊗ C; c2

n+1 = 1; and it anti-commutes with all
the ci if n is even.

Consider the case where n is even. It is possible to construct a unique representation
of the spin group called the spinor module S such that the endomorphisms of S are
given by C(V ) ⊗ C and S is written as S = S+ ⊕ S−, where S± are the half-spinor
representations 3 given by

3Both S± are representations of the spin group.
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S± = {ϵ ∈ S|cn+1 · ϵ = ±ϵ} . (A.64)

Like we did with other G-structures, define the spin-structure on M as a SPIN(n)-
principal bundle over M denoted as SPIN(M). The question wether it is possible to
define a spin-structure on M have been investigated, but we will not discuss it here. On
the other hand, it is important to note that if M admits a spin-structure then it is a
Riemannian oriented manifold and SPIN(M) inherits the Levi-Civita connection from
SO(M).

Having at hands the spin-structure, we can define the spinor bundle S as the asso-
ciated bundle of SPIN(M) over S. Mathematically, this is written as

S = SPIN(M) ×SPIN(n) S. (A.65)

Lastly we give the local expression of the Levi-Civita covariant derivative on the spinor
bundle. Recall that a local expression of the covariant derivative is given by equation
(A.13) with the appropriate representation of the connection. In the spinor case, the
representation of so(n) is given in the Clifford algebra by (A.61). Thus, we have

∇i = ∂i + 1
4 (ωi)jk cjck, (A.66)

where we have a summation on the indices j and k.

A.7 Summary of Conventions of Differential Forms

Here we give the conventions for forms and the operators that was used throughout this
work. Let ω be a k-form:

ω = 1
k!ωµ1...µk

dxµ1 ∧ ... ∧ xµk ; (A.67)

dω = 1
k!

∂

∂xν
ωµ1...µk

dxν ∧ dxµ1 ∧ ... ∧ xµk ; (A.68)

X ω = 1
k!X

νωνµ1...µk−1dxµ1 ∧ ... ∧ xµk−1 ; (A.69)

∗ω =
√
g

r!(n− r)!ωµ1...µk
εµ1...µk

µk+1...µn
dxµk+1 ∧ ... ∧ dxµn ; (A.70)

η ∧ ∗ω = 1
k!ηµ1...µk

ωµ1...µk ∗ 1. (A.71)
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Appendix B

Lie derivative of a spinor and U(1)
charge on R2

It is not so immediate to define and calculate the Lie derivative of a spinor as it is
for tensors. While for vectors we have push-forwards and for differential forms we have
pull-backs, in general, there is no natural differential map for spinors. Nevertheless, a
construction can be found on [27], there it is derived a formula equivalent to the following

Lξϵ = ξµ∇µϵ+ 1
8
(
dξ♭

)
µν
γµνϵ. (B.1)

We now want to consider spinors with a definite charge under rotations near the fixed
point of the rotations. For simplicity, we look at spinors on R2. Mathematically that
means that we are interested in spinors that satisfy:

Lξϵ = iqϵ, (B.2)

the constant q is the charge. On R2, the generator of rotations is ξ = x∂y − y∂x. Thus
we have:

ξ♭ = gµνξ
νdxµ = −ydx+ xdy, (B.3)

=⇒ dξ♭ = 2dx ∧ dy. (B.4)

We take the first two Pauli matrices to be our gamma-matrices of R2. That is, γ1 = σ1,
γ2 = σ2. Hence, γ12 = −γ21 = iσ3. Contracting with dξ♭, we have

(
dξ♭

)
µν
γµν = 4iσ3.

To analyze near the fixed point, we assume that the spinor satisfies a differential
equation like ∇µϵ = (M · γ) ϵ1, where M is a combination of differential forms non-

1The Killing spinor equation that appeared in the main text is an example of such condition.
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singular at the fixed point set of ξ. With this assumption, we have that ξµ∇µϵ|F = 0,
where F is the fixed point set of ξ.

Collecting the above considerations, we get

Lξ|F = i
2σ

3ϵ = iqϵ, (B.5)

from which we deduce that |q| = 1
2 . The sign of q determines the chirality of ϵ because

σ3 = −iσ1σ2 can be taken to be the chirality operator on R2. This result is not surprising
because, naively speaking, the spinor rotates by “half the angle”. In fact, we could deduce
the same thing by looking at the rotation of a constant spinor around the origin of R2.
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Appendix C

Charge of the Killing spinor

We want to show that the Killing spinor has zero charge under the action of the Killing
vector built from it, ξµ = ϵ̄γµϵ, i.e. Lξϵ = 0 in the supersymmetric gauge, that is for the
choice of gauge field A such that ξ A =

√
2XP .

ϵ̄Lξϵ = ϵ̄(ξµ∇µϵ+ 1
8dξ♭µνγµνϵ) (C.1)

= ϵ̄(ξµ(Dµ − i
2Aµ)ϵ+ 1

8dξ♭µνγµνϵ).

One can use the right hand side of the Killing spinor equation (4.4) to substitute Dµϵ

and equation (4.17) of the differential conditions on the bilinears to obtain

= − i√
2(XP )S − 1

24
√

2X
−1Bνρ(ξ V )νρ + 3iX−1

8
√

2 (ξ F ) K̃ (C.2)

+ i
8X2

(
2
√

2
3 X−1Ỹ + iX4ξ ∗H +

√
2X(PF − 2

3 iSB)
)
µν
Y µνϵ

− 1
4X (dX ∧ ξ♭)µν ϵ̄γµνϵ

− X2ξµ

48 (3(∗H)µτσiϵ̄γτσϵ+ 3ϵ̄Hµ
ρσγρσγ7ϵ),

where we used that some terms of the KSE vanish immediately when we employ the
bilinears and the SU(2) structure. Namely, the first two vanish because ξµϵ̄γµγ7ϵ = 0, the
fourth vanishes as Bµνξ

µξν = 0 and the sixth vanishes because we end up with something
proportional to Fνρ

(
ξ K̃ ∧ J

)νρ
, which is zero.

Furthermore, the term with Hνρσγ
νρσγµγ7 was replaced by terms containing H and

∗H. To see this, first note that [γνρσ, γµ] = 2γνρσµ and {γνρσ, γµ} = 6δ [ν
µ γ ρσ], from which

follows that γνρσγµ = γνρσµ + 3δ [ν
µ γ ρσ]. Then writing γνρσµ = i

2ε
νρσ τ1τ2

µ γτ1τ2γ7 leads to
the desired result.
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Writing everything with the bilinears (4.9), we get

= − i√
2(XP )S − 1

24
√

2X
−1Bνρ(ξ V )νρ + 3iX−1

8
√

2 (ξ F ) K̃ + i
√

2
12X3 ỸµνY

µν (C.3)

− X2

8 (ξ ∗H)µνY µν +
√

2i
8X PFµνY

µν +
√

2
12XSBµνY

µν + i
4X (dX ∧ ξ♭)µνY µν

− X2

16 (ξ ∗H)τσYτσ + iX2

16 (ξ H)ρσỸρσ .

Writing equation (A.1) in Appendix A of [14] with A = 1 yields

√
2S

12XB
µνYµν = iS√

2(X −X−3)P − SX2

12 H
µνρṼµνρ − i

√
2S

8X F µν Ỹµν , (C.4)

using again equation (A.1), this time with A = γα and contracting the whole equation
with ξα gives a further relation

− 1
24

√
2XB

µν(ξ V )µν = − X2

16 (ξ ∗H)τσYτσ + i
8
√

2X (ξ F ) K̃

+ i
4X (ξ♭ ∧ dX)αµYαµ . (C.5)

We can insert both into the expression for ϵ̄Lξϵ to be left with

ϵ̄Lξϵ =
(
−X2

16 (ξ ∗H)τσYτσ − i
8
√

2X (ξ F ) K̃
)

(C.6)

+ 3iX−1

8
√

2 (ξ F ) K̃

+ i
√

2
12X3 ỸµνY

µν − X2

8 (ξ ∗H)µνY µν +
√

2i
8X PFµνY

µν

+
(
− iS√

2X
−3P − SX2

12 H
µνρṼµνρ − i

√
2

8X SF
µνỸµν

)
− X2

16 (ξ ∗H)τσYτσ + iX2

16 (ξ H)ρσỸρσ,

where the terms

−X2

16 (ξ ∗H)τσYτσ + −X2

8 (ξ ∗H)µνY µν − SX2

12 H
µνρṼµνρ − X2

16 (ξ ∗H)τσYτσ (C.7)

are canceling one another (using that H ∗V = −(∗H) V , Ṽ = ∗V and ξ♭ ∧ Y = SV )
and we are left with only

ϵ̄Lξϵ = i
2
√

2X (ξ F ) K̃ + i
4
√

2XPFµνY
µν − i

4
√

2XSF
µν Ỹµν (C.8)

+ i
√

2
12X3 ỸµνY

µν − iS√
2X

−3P

+ iX2

16 (ξ H)ρσỸρσ .

Each line of this equation cancel on its own. The cancellation of the first two lines
follows directly from the relations of the bilinears in terms of the SU(2)-structure (4.14).
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For the last term, we need to use again equation (A.1) from the appendix of [14] with the
choice A = γα and contracting ξα into it, this time using the lower choice of sign

(ξ dX)S = − 1√
22(X2 −X−2)ξ K̃ − iX3

4 (ξ H)νρỸνρ (C.9)

+ i
6
√

2(ξ B) ξ − 1
8
√

2F
µν(ξ Ṽ )µν

where all terms apart from the third line of (C.8) immediately vanish, and hence so does
this one. Finally, we are left with

ϵ̄Lξϵ = 0 . (C.10)
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Appendix D

Conventions for γ-matrices

Here we give an explicit representation of the γ-matrices that form Cliff(6, 0) and that
was used in the calculations of the Hyperbolic Black Hole, they all are 8 × 8 hermitian
matrices. We also give γ7 = iγ1...γ6, which satisfies (γ7)2 = 1 and is used to build the
chirality operator iγ7. In this basis, the matrices γ(2i−1)2i are all diagonal, which is useful
to verify (5.14).

γ1 =
 0 1

1 0

⊗

 I2 0
0 I2

 , γ2 =
 0 i

−i 0

⊗

 I2 0
0 −I2

 , (D.1)

γ3 =
 0 i

−i 0

⊗

 0 I2

I2 0

 , γ4 =
 0 i

−i 0

⊗

 0 iσ3

−iσ3 0

 , (D.2)

γ5 =
 0 i

−i 0

⊗

 0 iσ2

−iσ2 0

 , γ6 =
 0 i

−i 0

⊗

 0 iσ1

−iσ1 0

 , (D.3)

γ7 =
 −1 0

0 1

⊗

 I2 0
0 I2

 , γ12 =
 −i 0

0 i

⊗

 I2 0
0 −I2

 , (D.4)

γ34 =
 i 0

0 i

⊗

 −σ3 0
0 σ3

 , γ56 =
 i 0

0 i

⊗

 −σ3 0
0 −σ3

 . (D.5)
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