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Resumo

Estudo numérico de interfaces líquidas complexas: de gotas recobertas por
surfactantes iônicos a fenômenos eletro-hidrodinâmicos
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Orientador: Taygoara Felamingo de Oliveira, Prof. Dr., UnB

Coorientador: Rodrigo Bento Rebouças, Prof. Dr., UnB

Mestrado em Ciências Mecânicas

Brasília, 2025

A estabilidade e o controle de escoamento de emulsões são fundamentais para o
design de produtos em diversas indústrias, como engenharia ambiental, recuperação de
petróleo, indústria alimentícia e farmacêutica. A estabilidade de emulsões depende de
fenômenos interfaciais, nos quais surfactantes iônicos—moléculas anfifílicas com grupos
eletricamente carregados—desempenham um papel crucial ao se adsorverem nas inter-
faces de gotas, reduzindo a tensão superficial e proporcionando repulsão eletrostática o
que pode evitar a coalescência. Esses surfactantes se redistribuem na interface das gotas
sob escoamento, acoplando o balanço de forças na interface com mecanismos de transporte
de carga. Este estudo investiga dois aspectos interconectados da eletrohidrodinâmica de
gotas: (1) o efeito da carga e do campo elétrico dos surfactantes iônicos na dinâmica de
gotas sob ação de escoamentos de cisalhamento simples, e (2) a resposta eletrohidrod-
inâmica de gotas sob campos elétricos aplicados, com foco na advecção de carga e no
regime de eletrorotação.

Na primeira parte, exploramos por meio de simulações numéricas gotas cobertas
por surfactantes em cisalhamento simples, empregando uma metodologia unificada que
integra efeitos elétricos e hidrodinâmicos. Uma metodologia numérica acoplada combina
o método de projeção para resolver as equações de Navier-Stokes, a técnica de Level-
Set para capturar a interface e o método do Closest Point para resolver a equação de
transporte de surfactante. Essa abordagem captura a competição entre advecção induzida
pelo cisalhamento, difusão de surfactante e eletro-migração de íons na interface da gota.
Demonstramos que a deformação da gota é ditada pelo número de Mason (razão entre
forças viscosas e elétricas), pela razão de mobilidade (eficiência do transporte de carga),
pelo número de capilaridade (razão entre forças viscosas e capilares), pelo número de
Peclet (razão entre transporte advectivo e difusivo), pela cobertura de surfactante e pelo
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parâmetro de elasticidade da interface. A densidade de carga superficial, linearmente
dependente da concentração de surfactante, leva ao acúmulo de carga em regiões de alta
curvatura via advecção do escoamento, enquanto a difusão redistribui as cargas e a eletro-
migração desloca as concentrações máximas para longe das extremidades da gota.

A segunda parte examina a eletrohidrodinâmica de gotas, sem surfactantes ou im-
posição de escoamento externo, apenas sob campos elétricos uniformes. Aqui, a convecção
de carga superficial e a rotação de Quincke—uma rotação espontânea devido ao torque
induzido pela distribuição de carga em relação à direção do campo elétrico aplicado—são
analisadas. A estrutura numérica é estendida com o método de Ghost Fluid para lidar com
descontinuidades interfaciais (por exemplo, permissividade, condutividade) e um modelo
de interface difusiva que suaviza as transições na interface. Ao comparar os tratamentos
de interface do tipo "sharp" (via Ghos fluid) e difusiva, identificamos regimes em que
a convecção de carga domina a deformação e desencadeia a rotação de Quincke. O ân-
gulo de inclinação durante a rotação alinha-se com a teoria para esferas rígidas em baixos
números de capilaridade elétrica, mas apresenta uma leve divergência sob campos elétricos
fortes, destacando o papel da mobilidade interfacial da gota. Comparações quantitativas
com dados experimentais e modelos teóricos validam nossa metodologia, reforçando sua
capacidade de unir paradigmas de interface "sharp" e difusiva.

Os resultados destte estudo avançam a compreensão da dinâmica de gotas em
ambientes multifísicos, oferecendo insights para otimizar a estabilidade de emulsões e a
manipulação eletrohidrodinâmica em aplicações industriais.

Palavras-chaves: emulsões, surfactantes iônicos, eletrohidrodinâmica, Level set,
Ghost fluid.
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The stability and control of emulsion flows are key aspects in designing prod-
ucts across industries such as environmental engineering, oil recovery, food processing,
and pharmaceuticals. Emulsion stability hinges on interfacial phenomena, where ionic
surfactants—amphiphilic molecules with charged head and tail groups—play a critical
role by adsorbing at droplet interfaces, reducing surface tension, and imparting electro-
static repulsion to hinder coalescence. Surfactants redistribute over the droplet surface
under imposed flow, coupling interfacial mechanics with charge transport mechanisms.
This study investigates two interconnected aspects of droplet electrohydrodynamics: (1)
the interplay among the effect of surfactant charge, induced electric field, and bulk flow
stresses on the interfacial force balance and droplet dynamics, and (2) the electrohydro-
dynamic response of droplets under applied electric fields, focusing on charge convection
and Quincke rotation.

In the first part, we numerically study surfactant-laden droplets in shear flow,
employing a unified framework that integrates electric, interfacial and hydrodynamic ef-
fects. A coupled numerical methodology combines the projection method to solve the
Navier-Stokes equations, the level-set technique to capture the interface, and the closest-
point method to resolve surfactant transport. This approach captures the balance among
shear-driven advection, surfactant diffusion, and electromigration of ionic charges on the
droplet on droplet interface. We demonstrate that droplet deformation is governed by the
Mason number (ratio of viscous to electric forces), the mobility ratio (charge transport
efficiency), the capillary number (ratio of viscous and capillary forces), the Peclet number
(ratio of convective and diffusive transport of surfactant), the surface surfactant coverage,
and surfactant elasticity. Surface charge density depend linearly on surfactant concentra-
tion, the flow field advects charges to high-curvature regions, while diffusion redistributes
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charges along the interface and electromigration shifts peak concentrations away from
droplet tips.

The second part examines electrohydrodynamics of clean droplets (without surfac-
tants or imposed shear flow) under uniform electric fields. Surface charge convection and
Quincke rotation—a spontaneous rotation due to charge-induced torque—are analyzed.
The numerical framework is extended with the ghost fluid method to handle interfa-
cial discontinuities (e.g., permittivity, conductivity) and a diffusive interface model that
smoothens transitions across the interface. By comparing sharp (ghost fluid) and dif-
fuse interface treatments, we identify regimes where charge convection dominates droplet
deformation and triggers Quincke rotation. The tilt angle during rotation agrees with
rigid sphere theory at low electric capillary numbers but shows a slight mismatch under
strong electric fields, highlighting the role of droplet deformation and interfacial mobil-
ity. Quantitative comparisons with experimental data and theoretical models validate our
methodology, underscoring its capability to bridge the gap between sharp and diffuse
interface paradigms.

This work advances the current understanding of droplet dynamics in multifield
environments, offering insights for optimizing emulsion stability and electrohydrodynamic
manipulation in industrial and biophysical applications.

Keywords: emulsions, ionic surfactants, electrohydrodynamics, Level set, Ghost fluid.
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ũ Extrapolated in time velocity field vector

𝑣 Velocity component in the 𝑦–direction

𝑣* Trial velocity component in the 𝑦–direction

𝑥 Position in the 𝑥–direction

xvi



x Position vector

xΓ Droplet’s interface position

𝑋 Surfactant coverage factor

𝑦 Position in the 𝑦–direction

𝑧1 Ionic surfactant valence

𝑧𝑖 𝑖th element of a generic sequence

𝑛𝑥 𝑥–component of the normal vector

𝑛𝑦 𝑦–component of the normal vector

n̂ Surface normal vector

t̂ Surface tangential vector

P Dipole moment of the droplet in EHD

Greek Symbols

𝛼 Tilt angle of the droplet in EHD

𝛽 Tilt angle of a rigid sphere in EHD

𝜒 Auxiliary pressure field; Generic material property

𝛿(𝑥) Dirac delta function

𝛿𝜀(𝜑) Smoothed Dirac delta function

𝜖 Dielectric permittivity

𝜀 Half of interface thickness

𝜖 Effective dielectric permittivity

𝛾 Interfacial tension

𝛾0 Clean droplet interfacial tension

𝛾̇ Shear rate

Γ Droplet surface

𝜅 Surface curvature

𝜆 Viscosity ratio

xvii



𝜆𝑚 Function of virtual time for re–initialization of the level–set function

𝜆𝜀 Smoothed viscosity ratio fuction

𝜇 Dynamic viscosity

𝜑 Level–Set function

Φ𝑔 Gravitational scalar potential

𝜓 Electric potential field

𝜌 Density

𝜏 Virtual time

𝜏𝑒 Charge relaxation time scale

𝜏𝑓 Flow time scale

𝜃 Droplet inclination; Subcell resolution

𝜃𝑁𝐼 Droplet inclination (Non–Ionic surfactant case)

Ω+ Domain outside the droplet

Ω− Domain inside the droplet

Dimensionless Groups

Ca Capillary number

CaE Electric capillary number

CaMW Maxwell–Wagner capillary number

Mn Mason number

Pe Peclet number

Re Reynolds number

ReE Electric Reynolds number

R Electric permittivity ratio

Rℳ Mobility ratio

S Dielectric permittivity ratio

xviii



Mathematical Operators

𝒟 Differential operator

𝐷
𝐷𝑡

Material derivative

𝛿0 Mean operator

ℐ Identity operator

∇ Gradient operator

∇𝑠 Surface gradient operator

∇+ Forward difference operator

∇− Backward difference operator

∇0 Central difference operator

𝜉 Shift operator

∞ Infinity symbol

xix



Summary

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 On Ionic Surfactant-Covered Droplets . . . . . . . . . . . . . . . . . . 1
1.2 On the Electrohydrodynamics of Droplet Flow . . . . . . . . . . . . . 5
1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.1 For Ionic Surfactant-laden Droplets . . . . . . . . . . . . . . . . . . . . . 9
1.3.2 For the Electrohydrodynamics of Droplets Flow . . . . . . . . . . . . . . . 9
1.4 Scope of the work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 FORMULATION FOR IONIC SURFACTANT-COVERED DROPLETS 11
2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Hydrodynamics equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Interfacial force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Electrostatics equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.4 Ionic surfactant model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.5 Surfactant transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Nondimensionalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Dimensional Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 FORMULATION FOR ELECTROHYDRODYNAMICS OF DROPLETS 21
3.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.1 Hydrodynamics equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.2 Electrostatic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.3 Leaky Dielectric Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.4 Nondimensionalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 NUMERICAL METHODOLOGY . . . . . . . . . . . . . . . . . 25
4.1 Finite Difference method . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.1 Finite difference operators . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.2 Differential operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.3 Staggered grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Level Set method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.1 Re-initialization of the level set function . . . . . . . . . . . . . . . . . . . 29

xx



4.2.2 Local Level Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.3 Time integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Closest Point method . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4 Interface models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4.1 Sharp interface model (Ghost Fluid method) . . . . . . . . . . . . . . . . . 33
4.4.2 Smoothed interface model (Continuum surface force) . . . . . . . . . . . . 38
4.5 Spatial discretization of the electric potential field equation . . . . . 39
4.6 Projection method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.6.1 Spatial discretization of the momentum equation . . . . . . . . . . . . . . 41
4.6.2 Spatial discretization of the pressure equation . . . . . . . . . . . . . . . . 44
4.6.3 Boundary and initial conditions . . . . . . . . . . . . . . . . . . . . . . . . 45
4.7 Discretization of the surfactant transport equation . . . . . . . . . . 48
4.8 Discretization of charge conservation equation . . . . . . . . . . . . . 50
4.9 Numerical methodology for droplet deformation computation . . . . 50

5 RESULTS FOR IONIC SURFACTANT-COVERED DROPLETS 53
5.1 Convergence rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Comparison of the electric potential . . . . . . . . . . . . . . . . . . . 54
5.3 Ionic and non-ionic surfactant-covered droplet deformation . . . . . 55
5.3.1 Comparison with small deformation theory . . . . . . . . . . . . . . . . . . 55
5.3.2 More detailed analysis of Mason number and Mobility ratio . . . . . . . . . 57
5.4 Scalar field contours . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.5 Ionic and non-ionic surfactant concentration . . . . . . . . . . . . . . 62
5.6 Pairwise droplet interaction . . . . . . . . . . . . . . . . . . . . . . . . 67

6 RESULTS FOR ELECTROHYDRODYNAMICS OF DROPLETS 71
6.1 Validation of the method using Smoothed and Sharp interface models 71
6.2 Influence of surface charge convection on steady-deformation . . . . 75
6.3 Transient behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.4 Quincke Regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.4.1 Single Quincke droplet rotation . . . . . . . . . . . . . . . . . . . . . . . . 81
6.4.2 Tilt angle compared to rigid sphere . . . . . . . . . . . . . . . . . . . . . 83

7 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

APPENDIX 99

APPENDIX A – FIRST DERIVATIVE USING CENTRAL FINITE
DIFFERENCE . . . . . . . . . . . . . . . . . . . . 100

xxi



APPENDIX B – SECOND DERIVATIVE USING CENTRAL FI-
NITE DIFFERENCE . . . . . . . . . . . . . . . . . 101

APPENDIX C – DERIVATION OF SURFACTANT TRANSPORT
EQUATION . . . . . . . . . . . . . . . . . . . . . 102

APPENDIX D – DROPLET ELONGATION PREDICTION . . . . . 103

APPENDIX E – DERIVATION OF SURFACE CHARGE TRANS-
PORT EQUATION . . . . . . . . . . . . . . . . . 105

APPENDIX F – DERIVATION OF FRUMKIN-DAVIES ISOTHERM
MODEL FOR INTERFACIAL TENSION . . . . . 107

xxii



1 Introduction

1.1 On Ionic Surfactant-Covered Droplets

Multiphase immiscible fluid systems—such as emulsions, foams, and vesicle sus-
pensions—are present in industries ranging from pharmaceuticals and food processing to
petroleum and biotechnology (Solans et al., 2005; McClements, 2015; Salager, 2002; Binks,
2004). The functional properties of these dispersed phase systems—mechanical strength,
thermal stability, and sensory characteristics—are dictated by the dynamic morphology of
their dispersed phase, including droplet size, shape, and interfacial interactions (Bibette;
Calderon; Poulin, 1999; Mason et al., 1996). Emulsions are two-phase mixtures of im-
miscible fluids where one fluid is dispersed in another continuous phase. The presence of
surfactants at the droplet interface can change the macroscopic response of the emulsion.
Surfactants are typically macromolecules composed of a hydrophilic head and a hydropho-
bic tail that can adsorb to fluid interfaces, altering local physico-chemical properties such
as surface tension and stabilizing droplets against coalescence (Rosen, 2004; Israelachvili,
2011). Insoluble surfactants, which remain confined to the interface and do not dissolve
into the bulk phase, play a particularly important role in interfacial dynamics due to
their strong localization and ability to induce significant surface tension gradients. Ionic
surfactants introduce an additional layer of complexity: the generation of electric fields at
droplet interfaces, which can significantly alter interfacial dynamics, droplet deformation,
and bulk rheology (Qazi et al., 2020; Tcholakova et al., 2008).

The theoretical foundation of surfactant behavior dates back to early studies on
surface tension and interfacial phenomena by Laplace (1749–1827) and Young (1773–1829),
which provided a fundamental understanding of capillary effects (Young, 1805; Gennes;
Brochard-Wyart; Quéré, 2004). This groundwork was further expanded by Bancroft (1913),
who pioneered research on emulsification, elucidating how surfactants stabilize multi-
phase systems. Subsequent advancements by Langmuir (1925) introduced molecular-level
insights, particularly on the orientation and distribution of surfactant molecules at in-
terfaces, while Frumkin (1925) established critical equations of state linking interfacial
tension to adsorption kinetics. In parallel, Bouasse (1924) contributed to the study of
capillary phenomena and surface interactions, reinforcing the role of surfactants in inter-
facial stability.

In the mid-20th century, Ward and Tordai (1944) made contributions by develop-
ing models to describe surfactant adsorption kinetics at interfaces. Their work introduced
the concept of diffusion-controlled and adsorption-limited processes, which remain cen-
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tral to understanding surfactant dynamics. Davies (1951) expanded this framework by
investigating charged surfactant films, introducing equations of state that accounted for
ionic distributions and surface catalysis, further bridging colloidal chemistry with interfa-
cial phenomena. Davies and Rideal (1963) later formalized electrostatic corrections to the
Langmuir isotherm for ionic surfactants, while Dukhin, Miller and Kretzschmar (1983,
1991) introduced the quasi-equilibrium approach using Gouy-Chapman theory to model
adsorption kinetics including the effects of the ion’s finite size.

Shinoda et al. (1963) emphasized the industrial and biological significance of sur-
factants, particularly in detergency, the textile industry, and biochemical research. Gao
and Rosen (1995) synthesized key concepts in surfactant behavior, with a particular focus
on dynamic surface tension and the relationship between surfactant structure and its in-
terfacial properties. They emphasized the role of the critical micelle concentration (CMC)
and how the structure of surfactants influences their surface-active behavior.

Dynamic surface tension and adsorption kinetics emerged as critical research ar-
eas in the 1980s–1990s. Borwankar and Wasan (1986,1988) investigated equilibrium and
dynamics of surfactant adsorption, highlighting the interplay between diffusion and in-
terfacial rearrangement. MacLeod and Radke (1994) later compared quasi-equilibrium
and full transient models for ionic surfactants, concluding that discrepancies were neg-
ligible within experimental timescales. Stone (1990) derived a time-dependent convec-
tive–diffusion equation for surfactant transport along deformable interfaces, providing a
theoretical foundation for understanding how spatial variations in surfactant concentra-
tion create interfacial tension gradients that drive Marangoni stresses and influence the
deformation and stability of fluid interface. Lin, McKeigue and Maldarelli (1990) employed
pendant drop digitization to study diffusion-controlled adsorption, revealing induction pe-
riods and kinetic-diffusive regimes. Lin, McKeigue and Maldarelli (1994) further explored
cohesive energy effects on surfactant exchange processes, while Fainerman et al. (1998,
2002) developed generalized adsorption models for ionic and mixed surfactants.

The 1990s and early 2000s also saw a surge in studies on complex surfactant sys-
tems, including proteins, polymers, and polyelectrolytes. Miller et al. (2004) and Fainer-
man, Lucassen-Reynders and Miller (2003) developed models to describe the adsorption
kinetics of proteins and polymers, which exhibit more complex behavior due to molecu-
lar reorientation and denaturation. Langevin and Argillier (2016) reviewed the interfacial
properties of asphaltenes, drawing parallels between their behavior and that of proteins,
further expanding the scope of surfactant research. During this period, Miller, Joos and
Fainerman (1994) and Eastoe and Dalton (2000) further differentiated between diffusion-
limited and kinetically controlled processes, particularly for ionic and nonionic surfactants.
The role of surfactant exchange kinetics at interfaces was quantified by Pan, Green and
Maldarelli (1998), integrating theoretical models with experimental validations. Addition-
ally, Li and Pozrikidis (1997) investigated the effect of surfactants on drop deformation
and the rheology of dilute emulsions in Stokes flow, providing insights into the complex

2



interplay between surfactant distribution and interfacial dynamics. Building upon this,
Vlahovska and Loewenberg (2005) developed a small-deformation theory for insoluble
surfactant-covered drops in linear flows, offering analytical solutions that further elucidate
the influence of surfactants on drop behavior. These studies, focused on insoluble surfac-
tants, which remain confined to the interface and significantly alter interfacial tension and
flow dynamics. This class of problems highlights the critical role of insoluble surfactants
in governing droplet deformation, stability, and rheological properties in emulsions.

Casandra et al. (2016) and Phan (2016) extended these frameworks to partially
dissociated ionic surfactants, demonstrating the challenges in distinguishing dissociation
effects from equilibrium and dynamic surface tension data. Casandra et al. (2018) fur-
ther advanced this understanding by theoretically examining the effect of the degree of
dissociation (𝛼) on adsorption kinetics, showing that improper assumptions about 𝛼 can
lead to significant deviations in surfactant diffusivity and model parameters, even when
equilibrium and dynamic surface tension data appear well-fitted.

The advent of microfluidics has revolutionized the study of surfactant dynamics.
Alvarez et al. (2010, 2012) developed microtensiometers to measure dynamic interfacial
tension, enabling the study of surfactant adsorption at shorter time scales and smaller
length scales. Riechers et al. (2016) utilized microfluidic devices to study surfactant ad-
sorption kinetics in droplets, providing insights into the transition between diffusion-
controlled and adsorption-limited regimes. Deng, Schroën and de Ruiter (2022) and Liang
et al. (2022) further advanced microfluidic techniques, allowing for precise measurements
of dynamic interfacial tension and adsorption kinetics in complex systems.

In parallel, studies such as that by Qazi et al. (2020) have deepened our under-
standing of ionic surfactants by investigating the dynamic surface tension of CTAB and
related species under high salt concentrations, highlighting the crucial role of counteri-
ons— ions of opposite charge that associate with the surfactant headgroups— and ionic
strength.

Complementing these experimental and theoretical works, numerous numerical
methods have been developed to simulate surfactant-laden two-phase flows with high ac-
curacy—each with its own strengths and limitations. Early numerical studies by Li and
Pozrikidis (1997) and Vlahovska and Loewenberg (2005) provided critical insights into
drop deformation and the rheology of dilute emulsions by coupling boundary-integral
formulations with convection–diffusion solvers to account for nonuniform surfactant dis-
tributions and the resulting Marangoni stresses. Finite Element Methods (FEM) have
been widely used for solving partial differential equations (PDEs) on evolving surfaces.
Dziuk and Elliott (2007, 2012, 2013) pioneered the use of FEM for surface PDEs, develop-
ing methods that approximate both the surface and the solution on finite element spaces,
with rigorous error analysis and optimal convergence rates for elliptic PDEs. Barrett,
Garcke and Nürnberg(2015a, 2015b) extended these approaches to two-phase flows with
insoluble surfactants, ensuring stability and conservation of surfactant mass.
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Front-Tracking Methods have also been employed to handle the intricate dynam-
ics of surfactant-laden interfaces. Muradoglu and Tryggvason (2014) developed a front-
tracking method for simulating soluble surfactants in 3D multiphase flows, using an ex-
plicit finite volume approach for the surfactant convection-diffusion equation. Jesus et
al. (2015) applied implicit finite volume methods developed by Lenz, Nemadjieu and
Rumpf (2011) to simulate 3D two-phase flows with insoluble surfactants, demonstrating
the conservation of surfactant mass. Sorgentone and Tornberg (2017) combined spherical
harmonics expansions with boundary integral methods to study surfactant-laden drop
dynamics in 3D, achieving high accuracy in capturing interfacial deformations.

Level-Set Methods have gained popularity for their ability to handle topological
changes of the dispersed phase. Xu and Zhao (2003) proposed an Eulerian formulation
for solving PDEs on moving interfaces, which was later extended to simulate interfacial
flows with insoluble and soluble surfactants (Xu; Yang; Lowengrub, 2012a; Xu; Shi; Lai,
2017). Ruuth and Merriman (2008) introduced the closest point method, which embeds
surface PDEs into a narrowband around the interface, allowing for efficient and accurate
solutions. Xu et al. (2006) further developed a level-set continuum surface force (CSF)
method for two-phase flows with insoluble surfactants, demonstrating its capability to
handle a wide range of viscosity and density ratios by incorporating surface tension forces
directly into the Navier–Stokes equations. Building upon these methodologies, Pimenta
and Oliveira (2021) employed a combination of the level set and closest point methods to
study the rheology of dilute emulsions composed of surfactant-covered droplets.

Grid-Based Particle Methods (GBPM) offer an alternative approach for tracking
evolving interfaces without the need for re-meshing. Leung and Zhao (2009) introduced
GBPM, which represents the interface using meshless Lagrangian markers and computes
geometric quantities through local polynomial approximations. Petras and Ruuth (2016)
coupled GBPM with the closest point method to solve convection-diffusion equations
on moving surfaces, achieving high accuracy even for complex geometries. Chu and Tsai
(2018) proposed the implicit boundary integral method (IBIM), which extends surface
PDEs into a volumetric domain, ensuring stability and reducing computational costs.

Immersed Interface Methods (IIM) and Ghost Fluid Methods (GFM) have also
been applied to surfactant-laden flows. Li and Ito (2006) developed the IIM, which di-
rectly enforces jump conditions for velocity and pressure at the interface, providing accu-
rate solutions for Stokes flows with surfactants. Kang, Fedkiw and Liu (2000) introduced
the GFM, which captures normal jumps, whereas it smears out tangential jumps in the
solution, simplifying the implementation of interfacial conditions.

Volume-of-Fluid (VOF) Methods and Diffuse Interface Methods have been used to
simulate surfactant effects in multiphase flows. James and Lowengrub (2004) developed
a VOF method that conserves surfactant mass, enabling simulations of interfacial flows
with insoluble surfactants [14]. Adami, Hu and Adams (2010) proposed a conservative
smoothed particle hydrodynamics (SPH) method for surfactant dynamics, which handles
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complex interfacial deformations and surfactant transport.

Despite significant advancements in understanding surfactant adsorption kinet-
ics, and dynamic interfacial phenomena, a gap remains in the study of insoluble ionic
surfactant-covered droplets under imposed flow and electrostatic effects induced by sur-
face charge density. Existing literature has yet to integrate the interplay of electromi-
gration flux along droplet surfaces with classical fluid dynamics and surface phenomena.
No framework currently addresses how the electric field generated by ionic surfactant
molecules themselves—via surface charge accumulation or dipole interactions—modulates
droplet behavior, or interfacial stability.

Current models of surfactant transport predominantly focus on diffusion- or ad-
sorption-limited regimes, neglecting contributions from electrokinetic phenomena such as
electromigration or electrophoretic redistribution of charged surfactants. Furthermore,
the coupling between surfactant-generated electric fields and hydrodynamic stresses at
deformable interfaces remains unexplored. This omission limits predictive capabilities in
applications where electric fields inherently govern surfactant-laden systems, such as elec-
trowetting, electrospray technologies, or biofluidic interfaces with inherent ionic gradients.

To bridge this gap, our work systematically investigates the role of insoluble ionic
surfactants in shaping both electric fields and hydrodynamic responses at droplet inter-
faces. We propose a unified model that incorporates electromigration flux and electric
stress contributions to interfacial momentum balance, offering new insights into the cou-
pled effect of surfactant electrostatics and fluid dynamics.

1.2 On the Electrohydrodynamics of Droplet Flow

Electrohydrodynamics (EHD) is the study of fluid behavior under the influence
of electric fields, encompassing phenomena such as electroosmosis, dielectrophoresis, and
electrorotation. When applied to droplets, EHD examines how electric fields induce defor-
mations, instabilities, and dynamic behaviors in liquid droplets. EHD has found widespread
applications in areas ranging from industrial processing to biomedical technologies. For
example, controlled droplet deformation and breakup play a critical role in inkjet printing
technologies, where precise drop formation is essential (Basaran, 2002). In mass spectrom-
etry, electrospray ionization techniques exploit EHD to generate highly charged droplets
for improved ionization efficiency (Mora, 2000). Moreover, dielectrophoretic manipulation
has enabled the development of lab-on-a-chip devices for sensitive biochemical analyses
(Pohl, 1978). These diverse applications underscore the practical importance of EHD in
designing and optimizing modern fluidic systems.

The theoretical foundation on electrohydrodynamics of droplets dates back to
Allan and Mason (1962), who investigated the deformation and breakup of fluid drops
under shear flow and electric fields, highlighting the fundamental role of electrical forces in
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destabilizing drops. Taylor (1964) expanded Allan and Mason’s (1962) work by analyzing
the disintegration of water drops, providing one of the earliest quantitative descriptions
of electric field-induced drop breakup. In subsequent work, Taylor (1966) introduced the
leaky dielectric model, predicting steady deformation and internal circulation within drops
subjected to electric fields. The leaky dielectric model was further reviewed by Melcher
and Taylor (1969), who provided a comprehensive examination of interfacial shear stresses
and their role in EHD phenomena.

Brazier-Smith, Jennings and Latham (1971) explored the interactions between in-
dividual drops and drop pairs in strong electric fields, contributing to the understanding
of drop coalescence and stability. Similarly, Torza, Cox and Mason (1971) studied the
conditions leading to drop deformation and eventual bursting under electric stress. Sav-
ille (1971) expanded this scope by investigating charge relaxation effects in liquid jets,
shedding light on the role of interfacial charge dynamics.

Further developments in EHD theory and experimentation continued through the
late 20th century. Ajayi (1978) provided clarifications on Taylor’s electrohydrodynamic
model, reinforcing its predictive capabilities by calculating drop deformations to second
order in the capillary number. Jones and Kallio (1979) and Jones (1979) studied dielec-
trophoretic levitation and force calculations in nonuniform fields, broadening the practical
applications of EHD principles.

The 1980s and 1990s saw advancements in experimental and computational stud-
ies. Arp, Foister and Mason (1980) extended the exploration of EHD effects in complex
dispersions. Brooks et al. (1984) examined electrostatic and electrokinetic potentials in
polymer-aqueous systems, bridging EHD with colloidal science. Haywood, Renksizbulut
and Raithby (1991) investigated transient deformation in electrostatic fields, introduc-
ing time-dependent analyses into EHD research. Vizika and Saville (1992) explored both
steady and oscillatory fields, extending Taylor’s model to dynamic conditions.

Tsukada et al. (1993) provided dual perspectives on internal and external circula-
tion around deformed drops, enriching the understanding of EHD-induced flow patterns.
Feng and Scott (1996) advanced computational modeling of leaky dielectric drops, val-
idating previous theoretical predictions. Baygents, Rivette and Stone (1998) examined
interactions among drop pairs, offering insights into collective behaviors under electric
fields.

The early 21st century continued this trajectory. Feng (1999) introduced finite elec-
tric Reynolds number effects, accounting for nonlinearities beyond low-Reynolds-number
assumptions. Feng (2002) proposed a two-dimensional electrorotation model for fluid
drops, further refining EHD simulation techniques. Tomar et al. (2007) utilized a volume-
of-fluid approach to simulate complex two-phase flows, capturing interfacial dynamics
that were previously difficult to quantify.

Hua, Lim and Wang (2008) conducted numerical simulations emphasizing the in-
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fluence of viscosity on drop deformation in electric fields. Lin, Skjetne and Carlson (2012)
introduced phase-field modeling, allowing for more sophisticated simulations of multi-
phase EHD interactions. Lanauze, Walker and Khair (2013) studied the effects of inertia
and charge relaxation, revealing competing mechanisms in EHD deformation. Lanauze,
Walker and Khair (2015) examined nonlinear drop deformation, highlighting deviations
from classical models.

Building on these theoretical advancements, Das and Saintillan (2016) developed a
nonlinear small-deformation theory for transient droplet electrohydrodynamics, address-
ing previously neglected transient charge relaxation and nonlinear charge convection.
Their work extended the leaky dielectric model to second order in the electric capillary
number, providing a refined framework for analyzing prolate or oblate steady shapes and
interfacial toroidal flows. Subsequently, Das and Saintillan (2017) implemented a three-
dimensional boundary element method to simulate viscous drops under strong electric
fields, incorporating charge convection to study symmetry-breaking bifurcations leading
to Quincke rotation. Their simulations closely matched experimental data of Salipante
and Vlahovska (2010) and small-deformation theories, bridging gaps between theory and
numerical experimentation.

Dong and Sau (2018) expanded the study of collective behaviors by investigating
electrohydrodynamic interactions, deformation, and coalescence of suspended drop pairs
at varied angles of incidence. Their simulations revealed how hydrodynamic forces and
permittivity ratios govern alignment, coalescence, or divergence of drop pairs, comple-
menting earlier work by Baygents, Rivette and Stone (1998) on drop interactions.

Further advances in Quincke rotation dynamics emerged with Dong and Sau
(2023), who analyzed unsteady electrorotation of viscous drops in uniform fields. Their
study uncovered transient phenomena such as evolving equatorial charge jets and identi-
fied three distinct rotation patterns governed by viscosity ratios and electric field strength.
By linking rotation behavior to the competition between charge convection and conduc-
tion, they demonstrated how the electric Reynolds number (ReE) dictates transitions
between steady, periodic, or irregular rotation regimes.

Sengupta, Walker and Khair (2017) demonstrated the importance of surface charge
convection in electrohydrodynamic breakup. More recently, Peng et al. (2024) revealed
that surface charge convection in leaky-dielectric systems can lead to singular behaviors,
such as the antisymmetric blowup of surface-charge density near the equator for weakly
conducting oblate droplets, and the formation of stagnant, perfectly conducting surface-
charge caps at the poles for prolate droplets. Mori and Young (2018) reframed the classical
leaky dielectric theory as a weak electrolyte limit of an electrodiffusion model, bridging
past and modern theoretical frameworks. Behera, Mandal and Chakraborty (2019) ex-
tended drop settling analyses beyond the Stokes regime, while Vlahovska (2019) provided
a comprehensive review of EHD advances in drop and vesicle research. Abbasi et al.
(2020) investigated the role of EHD forces in emulsion droplets, emphasizing applica-
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tions in material science. Sorgentone and Vlahovska (2021) expanded numerical studies
to three-dimensional interactions, improving the accuracy of computational models.

The most recent developments have introduced novel concepts such as Quincke
rotation-driven propulsion. Dong et al. (2024) demonstrated this mechanism in microflu-
idic contexts, while Xie et al. (2024) proposed a self-propulsion strategy for Quincke
droplets on superhydrophobic walls under low Reynolds number ReE ≤ 1. Their work
highlighted the interplay between wall effects and electrohydrodynamic forces, offering
new avenues for droplet manipulation in confined geometries. Firouznia, Bryngelson and
Saintillan (2023) validated theoretical and numerical models against experimental data,
further refining our understanding of EHD phenomena.

Numerical modeling of electrohydrodynamic (EHD) phenomena has seen signifi-
cant advancements, particularly in the study of droplet deformation and dynamics under
electric fields. However, a critical limitation in many numerical works is the reliance on
the leaky dielectric model without evolving the charge conservation equation in time.
This simplification restricts the ability to capture transient phenomena, such as charge
convection and electrorotation, which are essential for understanding the full dynamics of
EHD systems. Most studies assume a static charge distribution at the interface, neglect-
ing the temporal evolution of surface charges and their convective transport, which can
significantly influence droplet behavior.

Some authors have addressed this limitation by incorporating the evolution of
the charge conservation equation into their numerical frameworks. For instance, Das and
Saintillan (2017) developed a nonlinear small-deformation theory using the boundary
element method, which accounts for surface charge convection and captures transient
effects such as Quincke rotation. Similarly, Sengupta, Walker and Khair (2017) employed
the boundary integral method to study the role of surface charge convection in the breakup
of prolate drops. While these works provide valuable insights into the effects of charge
convection and electrorotation, they are limited to the study of single droplets and do not
extend to more complex multiphase systems.

Recent work by Dong et al. (2024) represents a step forward by using the Vol-
ume of Fluid (VOF) method to evolve the charge conservation equation and investigate
self-propulsion of a pair of droplets, a phenomenon resulting from simultaneous Quincke
rotation. However, their approach solves for electric charge in the bulk fluid rather than
focusing solely on the interface, which may not fully resolve the sharp interfacial dynamics
critical to EHD phenomena. In contrast, methods like the level set method and ghost fluid
method (GFM) offer advantages in modeling sharp interfaces and handling discontinuities
across phases. For example, Paknemat, Pishevar and Pournaderi (2012) used the level set
method and GFM to study droplet deformation and breakup under electric fields, but
their work did not evolve the charge conservation equation, limiting its ability to capture
transient charge dynamics.
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The work of Alidoost and Pishevar (2018) addresses this gap by employing the
level set method and GFM to model a sharp interface while also evolving the charge
conservation equation at the interface. Their study demonstrates how charge migration
affects droplet deformation, particularly in oblate and prolate modes. However, their work
does not explore the effects of charge convection or Quincke rotation, leaving room for
further investigation into these phenomena.

The proposed framework aims to bridge the gap between existing numerical meth-
ods by focusing on the nonlinear effects of charge convection and electrorotation, which
are often neglected in traditional leaky dielectric models.

1.3 Objectives

1.3.1 For Ionic Surfactant-laden Droplets

This dissertation aims to investigate the influence of electric charge density and
interfacial dynamics on the behavior of ionic-surfactant-covered droplets in shear flow.
The specific objectives are:

• Develop a theoretical framework to incorporate electric charge effects into surfactant
dynamics;

• Introduce an electromigration flux term into the surfactant mass balance equation
to model charge-driven transport at the droplet interface;

• Identify and characterize the dimensionless groups governing electric interactions,
such as the electric Mason number and Mobility ratio;

• Analyze the impact of electric stresses on droplet deformation and inclination, quan-
tifying the interplay between electrostatic and hydrodynamic forces;

• Explore the effect of electromigration flux on droplet deformation, inclination, and
shape;

• Investigate the spatial distribution of surfactant along the droplet interface.

1.3.2 For the Electrohydrodynamics of Droplets Flow

This dissertation aims to develop and validate a numerical framework that in-
tegrates multiple computational techniques to investigate the influence of surface charge
convection on droplet dynamics, with particular emphasis on the Quincke rotation regime.
The specific objectives are:
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• Develop a diffusive interface model to accurately solve the surface charge conserva-
tion equation on deformable interfaces;

• Integrate level-set, ghost fluid, and closest point methods into a unified framework
to model sharp interface problems;

• Explore the effects of surface charge convection on droplet deformation and stability;

• Characterize the onset and dynamics of Quincke rotation of droplets in EHD regime;

• Conduct an initial investigation into the self-propulsion of droplets induced by
Quincke rotation.

1.4 Scope of the work

This dissertation is structured as follows: Chapter 2 introduces the governing equa-
tions and theoretical framework for systems involving ionic surfactants. The chapter
establishes the coupling between surfactant concentration, surface charge density, and
electrostatic effects. Chapter 3 formulates the electrohydrodynamic problem, focusing on
the interplay between electric fields, charge conservation, and electric stresses. Chapter
4 outlines the numerical methodology employed throughout the study, including: the fi-
nite difference method for approximating derivatives, projection method for solving the
Navier-Stokes equations, the level-set technique for interface capturing, the closest-point
method for surfactant transport, and the ghost fluid method for handling interfacial dis-
continuities. Additionally, Chapter 4 introduces the diffusive interface model as an alter-
native to the sharp interface approach, providing a comparative framework for resolving
electrohydrodynamic phenomena. Chapter 5 presents and discusses the results for ionic
surfactant-covered droplets subjected to shear flow. The chapter explores the effects of
surfactant redistribution, electromigration, and charge intensity on droplet deformation,
highlighting the roles of the Mason number and mobility ratio. Chapter 6 covers the re-
sults of the electrohydrodynamics of clean droplets under applied electric field, focusing
on surface charge convection and the onset of Quincke rotation. The chapter compares
predictions from sharp and diffuse interface models on droplet’s deformation, analyzes the
tilt angle during rotation, and validates results against rigid sphere theory and experimen-
tal data. Chapter 7 concludes the dissertation by summarizing key findings, highlighting
the interplay between ionic surfactants, shear flow, and electrostatic effects in droplet
dynamics. Potential directions for future research are proposed, including extensions to
numerous multiphase systems and more complex electric field configurations.
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2 Formulation for Ionic
Surfactant-Covered Droplets

2.1 Problem Statement

A two-dimensional problem is assumed, consisting of a neutrally buoyant droplet
covered with ionic insoluble surfactant of concentration denoted by 𝑐 suspended in another
liquid. The droplet initial radius is 𝑎. Both fluids are immiscible Newtonian fluids with
constant physical properties, and the system is subjected to incompressible flow. The
density, dielectric permittivity, and dynamic viscosity of the fluids are denoted as 𝜌, 𝜖 and
𝜇, respectively, and the subscripts "𝑖" and "𝑜" are used to differentiate between inside and
outside the droplet as illustrated in Fig. 3. No-slip boundary condition is applied at the
stationaries upper and lower walls. For the electric potential, 𝜓, homogeneous Neumann
boundary condition 𝜕𝜓

𝜕𝑦
= 0 is applied at the lower wall and upper walls. The domain is

considered to be periodic along the 𝑥-direction.

𝜌, 𝜇𝑜
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Figure 1 – Schematic diagram of the problem of a surfactant-covered droplet suspended
in another fluid. Note that the illustration is not to scale.
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2.2 Governing Equations

2.2.1 Hydrodynamics equations

The hydrodynamics is governed by the mass conservation and linear momentum
equations as follows:

∇ · u = 0, (2.1)

and
𝜌
𝐷u
𝐷𝑡

= ∇ · 𝜎H + 𝜌g, (2.2)

where 𝜌 is the density, u is the velocity field, g is the gravitational acceleration field, and
𝐷
𝐷𝑡

is the material derivative. The stress tensor of Newtonian fluid is given by

𝜎H = −𝑝I + 𝜇(∇u + ∇u⊤), (2.3)

where 𝑝 is the pressure field and 𝜇 is the dynamic viscosity coefficient.

The normal stress jump is given by the Young-Laplace law:

[[𝜎H · n̂]] · n̂ = 𝛾∇ · n̂, (2.4)

where [[ ]] represents the outer-inner jump across the interface, 𝛾 is the surface tension
coefficient, and n̂ is the outward pointing unit vector. The term ∇ · n̂ computes the local
mean curvature of the surface. If the surface tension coefficient varies along the interface
(as a consequence of non-uniform surfactant concentration, for instance), then there is
also a jump in shear stress given by

[[𝜎H · n̂]] · t̂ = ∇𝑠𝛾, (2.5)

where t̂ is the tangential unit vector, and ∇𝑠 = (I − n̂n̂) · ∇ is the surface gradient
operator.

The velocity field must satisfy the continuity condition, ensuring that

[[u]] = 0. (2.6)

Let 𝐹 (x, 𝑡) be a shape function that implicitly defines the interface as 𝐹 (x, 𝑡) = 0.
The kinematic boundary condition states that the interface moves with the flow, expressed
as:

𝐷𝐹

𝐷𝑡
= 0. (2.7)

Expanding the material derivative:
𝜕𝐹

𝜕𝑡
+ u · ∇𝐹 = 0. (2.8)

The unit normal vector n̂ to the interface is expressed in terms of 𝐹 as:

n̂ = ∇𝐹
|∇𝐹 |

, (2.9)

12



where |∇𝐹 | is the magnitude of ∇𝐹 . Substituting ∇𝐹 = n̂|∇𝐹 | into Eq. (2.8), we obtain:

𝜕𝐹

𝜕𝑡
+ u · n̂|∇𝐹 | = 0. (2.10)

Dividing through by |∇𝐹 | (assuming |∇𝐹 | ≠ 0), the kinematic condition can be rewritten
as:

1
|∇𝐹 |

𝜕𝐹

𝜕𝑡
+ u · n̂ = 0. (2.11)

If the interface does not change with time (i.e., it is in a steady state), then 𝜕𝐹
𝜕𝑡

= 0, and
the kinematic condition simplifies to:

u · n̂ = 0, (2.12)

indicating that the velocity field has no component normal to the interface.

A natural approach to solving interfacial flow problems involves directly solving
Eqs. (2.1) and (2.2) for both fluid phases, enforcing the coupling through the jump con-
ditions given in Eqs. (2.4), (2.5), and (2.6). However, this direct formulation presents
significant numerical challenges due to the discontinuities at the interface.

An alternative approach is to incorporate interfacial effects, such as surface tension
and electrostatic stresses, as body forces in the momentum equation. By adopting this
formulation, Eq. (2.2) is rewritten as

𝜌
𝐷u
𝐷𝑡

= −∇𝑝+ ∇ · [𝜇(x)(∇u + ∇u⊤)] + F𝛾 + FE, (2.13)

where F𝛾 and FE represent body force terms per unit volume that account for inter-
facial tension and electrostatic effects, respectively. The body force associated with the
gravitational field is expressed as the gradient of a scalar potential (g = −∇Φ𝑔) and is
incorporated into the modified pressure, 𝑝. For simplicity, the overbar notation will be
omitted in subsequent sections.

2.2.2 Interfacial force

In the presence of an interface, there exists a pressure discontinuity that counter-
acts the influence of surface tension. This effect can be computed by balancing forces on
a finite surface element 𝑑𝑆, as visualized in Fig. 2:∫︁

𝑆
Δf𝑑𝑆 =

∮︁
𝐶
𝛾b̂𝑑Γ, (2.14)

in which the left-side term is associated to the pressure jump, the right-side accounts for
the surface tension (energy per unit area). The unit binormal vector, b̂, is perpendicular
to tangential t̂ and normal n̂ unit vectors, obeying the relation b̂ = t̂ × n̂, and 𝑑Γ is the
differential arc length along 𝐶. Using a variation of Stokes theorem on the right-side of
Eq. (2.14), it can be rewritten as (Aris, 1989):∫︁

𝑆
Δf𝑑𝑆 =

∫︁
𝑆
[∇ · (𝛾n̂)n̂ − ∇(𝛾n̂) · n̂]𝑑𝑆. (2.15)
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Figure 2 – Surface element used to derive equations at surface. b̂ is the unit binormal
vector, t̂ is the unit tangential vector and n̂ is the unit normal vector. 𝑑Γ
represents the contour and 𝑑𝑆 is the finite surface element

Using a Dirac delta distribution to locate these contributions only around the
interface, this leads to

F𝛾 = (∇𝑠𝛾 − 𝛾𝜅n̂)𝛿(‖x − xΓ‖), (2.16)

where 𝛾 is the surface tension coefficient, 𝜅 = ∇ · n̂ is the local mean curvature, 𝛿 is the
Dirac delta function, xΓ is the position of the droplet interface, ∇𝑠 is the surface gradient
operator, and I is the unity tensor.

This approach that uses the Dirac delta function to localize the surface tension
force at the interface, is a key feature of the Continuous Surface Force (CSF) model.
The CSF model, originally proposed by Brackbill, Kothe and Zemach (1992), allows sur-
face tension forces to be expressed as a volume force in the Navier-Stokes equations,
making it easier to implement numerically. In this model, the Dirac delta function is ap-
proximated numerically using a smoothed function that spreads the force over a small
region around the interface. This method is widely used in numerical simulations of mul-
tiphase flows, such as those involving the Volume of Fluid (VOF) or Level Set methods.

2.2.3 Electrostatics equations

The presence of ionic molecules on the interface increases the electric charge on
the droplet surface, creating an electric field. The relation between the free electric charge
and the electric field is governed by Gauss’s Law:

∇ · (𝜖E) = 𝑞𝑣, (2.17)

where 𝜖, E, and 𝑞𝑣 denote the electric permittivity, the electric field, and the free volu-
metric charge density, respectively.

In the absence of a magnetic field, the Maxwell-Faraday equation yields an irro-
tational electric field (∇ × E = 0) and it can be written in terms of the electric potential
(𝜓) as E = −∇𝜓 (Masliyah; Bhattacharjee, 2006). Thus, Eq. (2.17) becomes

∇ · (𝜖∇𝜓) = −𝑞𝑣. (2.18)
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The electric force in Eq. (2.13) can be written as follows

FE = ∇ · ME, (2.19)

where ME is the electric Maxwell stress tensor, given by

ME = 𝜖
[︂
EE − 1

2(E · E)I
]︂
. (2.20)

Operating the divergence in Eq. (2.19), yields

FE = 𝑞𝑣E − 1
2E · E∇𝜖, (2.21)

where the first and the second terms on the right-side are called Coulomb force and
dielectric force, respectively. In the absence of free electric charge, the electric force only
arises from permittivity gradients, a phenomenon tipically found in perfect dielectric
mediums.

2.2.4 Ionic surfactant model

This section focuses in presenting the considerations made to unite the electrostatic
theory with the interfacial problem.

The presence of ionic surfactant along the droplet interface changes the surface
tension that can be modeled by the Langmuir isotherm equation of state (Langmuir,
1932),

𝛾(𝑐) = 𝛾0 + RT𝑐∞

[︃
ln
(︂

1 − 𝑐

𝑐∞

)︂
− 𝐾

2

(︂
𝑐

𝑐∞

)︂2
]︃
, (2.22)

where 𝛾0 is the surface tension of a clean interface (no surfactant), R is the universal
gas constant, 𝑇 is the absolute temperature, 𝑐∞ is the maximum packing concentration
of surfactant, 𝐾 is a model parameter that takes into account the molecular interaction
among the surfactant molecules, 𝑧1 is the ionic surfactant valence, and F = 96485 C/mol
is the Faraday’s constant (that represents the total electric charge carried by one mole of
electrons).

Since all the free charge is concentrated at the droplet surface, 𝑞𝑣 and 𝑞𝑠 are related
by 𝑞𝑣 = 𝑞𝑠𝛿(‖x − xΓ‖), where the Dirac delta has per length units. Hence, the Gauss’s
Law for the diffusive interface model reduces to

∇ · (𝜖∇𝜓) = −𝑞𝑠𝛿(‖x − xΓ‖). (2.23)

The surface charge density due to the presence of ionic surfactant is (Datwani;
Stebe, 1999):

𝑞𝑠 = 𝑧1F𝑐, (2.24)

where 𝑧1F𝑐 is the increase in surface charge due to ionic surfactant concentration.
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Using the relation in Eq. (2.24) in Eq. (2.23) and assuming a constant dielectric
permittivity, the Poisson equation for the electric potential is recast as:

∇2𝜓 = −𝑧1F𝑐
𝜖
𝛿(‖x − xΓ‖). (2.25)

The electric force given by Eq. (2.21) becomes

FE = 𝑧1F𝑐 𝛿(‖x − xΓ‖)E. (2.26)

The polarization force is not considered in Eq. (2.26) due to the assumption of con-
stant dielectric permittivity. This approach assumes that electric effects arise solely from
charges carried by the ionic surfactant, without accounting for significant contributions
from permittivity gradients.

2.2.5 Surfactant transport

For a surfactant-covered droplet, an additional equation is required to account for
the concentration of an insoluble surfactant on the droplet surface. It can be obtained by
considering a mass balance through a finite surface element 𝑑𝑆, which lies on a curved
surface. From the mass conservation law, an evolution equation for the surfactant con-
centration 𝑐 can be written as follows

𝐷

𝐷𝑡

∫︁
𝑆
𝑐 𝑑𝑆 = −

∮︁
𝐶

b̂ · j𝑠 𝑑Γ, (2.27)

where j𝑠 is the tangential flux vector, determined by Nernst-Planck equation, which gener-
alizes Fick’s law of diffusion to account for electrostatic forces acting on diffusing particles
(Masliyah; Bhattacharjee, 2006). Since 𝑐 is only defined along the surface, Nernst-Planck
equation can be written as

j𝑠 = −𝐷𝑠∇𝑠𝑐+ 𝐷𝑠𝑧1𝑒

𝑘𝐵𝑇
𝑐E𝑠, (2.28)

where 𝐷𝑠 is the surface diffusion coefficient of the surfactant, 𝑧1 is the valence of the ionic
surfactant species, 𝑒 is the elementary charge, 𝑘𝐵 = 1.380649 × 10−23 J/K is the Boltz-
mann constant, and 𝑇 is the absolute temperature. The surfactant transport equation
accounting the Nernst-Planck flux is given by (see complete derivation in Appendix C):

𝜕𝑐

𝜕𝑡
+ ∇𝑠 · (𝑐u) = ∇𝑠 ·

(︂
𝐷𝑠∇𝑠𝑐− 𝐷𝑠𝑧𝑒

𝑘𝐵𝑇
𝑐E𝑠

)︂
. (2.29)

The Einstein relation between the diffusion coefficient 𝐷𝑠 and the ion mobility ℳ
can be written as:

𝐷𝑠 = 𝑘𝐵𝑇

𝑧1𝑒
ℳ, (2.30)

where 𝑘𝐵 is the Boltzmann constant, 𝑇 is the absolute temperature, 𝑧1 is the charge
number of the ion, and 𝑒 is the elementary charge. This relation is a fundamental result in
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statistical mechanics and transport theory, connecting the diffusion coefficient 𝐷𝑠 and the
mobility ℳ of particles in a fluid (Einstein, 1905). It reflects the balance between random
thermal motion (diffusion) and directed motion due to an external force (mobility), both
driven by thermal energy 𝑘𝐵𝑇 .

Using the Einstein relation, 𝐷𝑠 in Eq. (2.29) can be replaced, leading to

𝜕𝑐

𝜕𝑡
+ ∇𝑠 · (𝑐u) = ∇𝑠 · (𝐷𝑠∇𝑠𝑐− ℳ𝑐E𝑠) . (2.31)

An important aspect of Eq. (2.31) is the ion mobility ℳ in the electromigration
term. This quantity represents the ion’s ability to move with a drift velocity 𝑈𝑑 under the
influence of an applied electric field 𝐸0, and can be defined as ℳ = 𝑈𝑑

𝐸0
. The ion mobility

expresses how efficiently an ion responds to the electric field. The electromigration term
can also be interpreted as an advective flux driven by an effective velocity field u𝑒 = ℳE𝑠,
allowing Eq. (2.29) to be rewritten in the form:

𝜕𝑐

𝜕𝑡
+ ∇𝑠 · (𝑐u + 𝑐u𝑒) = ∇𝑠 · (𝐷𝑠∇𝑠𝑐) . (2.32)

2.3 Nondimensionalization

The governing equations were normalized using the droplet radius 𝑎 as the char-
acteristic length, 1/𝛾̇ as the characteristic time, 𝛾̇𝑎 as the characteristic velocity, 𝜇𝑜 as
the characteristic viscosity, 𝜇𝑜𝛾̇ as the characteristic pressure, 𝛾0 as the free surfactant
characteristic surface tension, 𝑐0 as the characteristic surfactant coverage, and 𝑧1F𝑎𝑐0/𝜖

as the characteristic electric potential. The resulting dimensionless variables are:

𝑡* = 𝛾̇𝑡, x* = x/𝑎, u* = u/(𝛾̇𝑎), 𝑝* = 𝑝/(𝜇𝑜𝛾̇), 𝜅* = 𝑎𝜅, 𝜆 = 𝜇/𝜇𝑜, ∇* = 𝑎∇,

𝛿* = 𝑎𝛿, 𝜓* = 𝜖𝜓/(𝑧1F𝑎𝑐0), E* = 𝜖E/(𝑧1F𝑐0), 𝛾* = 𝛾/𝛾0, and 𝑐* = 𝑐/𝑐0. (2.33)

Equations (2.1), (2.13), (2.18) and (2.29) in dimensionless form are:

∇* · u* = 0, (2.34)

Re𝐷u*

𝐷𝑡*
= −∇*𝑝* + ∇* · [𝜆(x)(∇*u* + ∇*u*⊤)] + 1

Ca(∇*
𝑠𝛾

* − 𝜅*𝛾*n)𝛿(‖x* − x*
Γ‖)

+ 1
Mn𝑐

*E*𝛿(‖x* − x*
Γ‖), (2.35)

𝛾*(𝑐*) = 1 + 𝐸
[︂
ln (1 −𝑋𝑐*) − 𝐾

2 𝑋
2𝑐*2

]︂
, (2.36)

∇*2𝜓* = −𝑐*𝛿(‖x* − x*
Γ‖), (2.37)

𝜕𝑐*

𝜕𝑡*
+ ∇*

𝑠 · (𝑐*u*) = 1
Pe∇*2

𝑠 𝑐
* − Rℳ∇*

𝑠 · (𝑐*E*
𝑠) , (2.38)
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In Eq. (2.35) the dimensionless groups are:

Re = 𝜌𝛾̇𝑎2

𝜇𝑜
, Ca = 𝜇𝑜𝛾̇𝑎

𝛾0
, and Mn = 𝜖𝜇𝑜𝛾̇

𝑧2
1𝐹

2𝑐2
0
, (2.39)

where the Reynolds number (Re) measures the relative importance of inertia and viscous
forces; the capillary number (Ca) measures the relative importance of viscous and capillary
forces, and the Mason number relates viscous and electric forces due to the presence of
ionic surfactant.

In Eq. (2.36), the dimensionless groups are:

𝐸 = RT𝑐∞

𝛾0
and 𝑋 = 𝑐0

𝑐∞
, (2.40)

in which the surfactant elasticity (𝐸) represents the sensitivity of surface tension to
changes in surfactant concentration, and the surfactant coverage factor (𝑋) quantifies
the fraction of the surface area covered by surfactant molecules.

In Eq. (2.38), two dimensionless groups emerge as:

Pe = 𝛾̇𝑎2

𝐷𝑠

, and Rℳ = ℳ
ℳ𝑓

= 𝑧2
1F2𝐷𝑠𝑐0

𝛾̇𝑎RT𝜖 . (2.41)

The Péclet number (Pe) represents the relative importance of advection to diffusion for
the transport of surfactant on the droplet surface. The mobility ratio (Rℳ) compares
the ion’s mobility in response to the overall electric field created by the ion’s own charge
with its mobility due to the external fluid flow, indicating the relative influence of electric
forces versus hydrodynamic forces on ion transport.

Note that a flow-driven mobility, denoted as ℳ𝑓 = 𝛾̇𝑎𝜖

𝑧1F𝑐0
, is defined similarly to

the electric ion mobility ℳ. The key difference is that ℳ𝑓 uses the characteristic flow

velocity 𝛾̇𝑎 instead of the drift velocity 𝑈𝑑 = 𝑧2
1F2𝐷𝑠𝑐0

RT𝜖 , providing a measure of the ion’s
mobility in relation to the external flow.

2.4 Dimensional Analysis

This section provides some realistic values for the physical parameters relevant to
the problem, offering a sense of their magnitude. These values are not intended to restrict
the scope of the study but rather serve as a guide to the typical order of magnitude for
the parameters in question. Table 1 summarizes these values for key parameters such
as droplet radius, fluid properties, surfactant properties, and environmental conditions,
which are commonly encountered in such problems, vegetable oil systems, for example.

The combination of these parameters leads to the dimensionless groups presented
in Table 2. The Reynolds number, that is quite small (Re = 0.008), indicates a creeping
flow regime, where inertial forces are negligible compared to viscous forces, typical for
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Table 1 – Typical values of physical parameters in the problem.

Parameter Symbol Typical Value

Droplet radius 𝑎 10𝜇m
Density of oil 𝜌 800 kg/m3

Viscosity of oil 𝜇𝑜 0.1 Pa · s
Shear rate 𝛾̇ 104 s−1

Surface tension (W/O) 𝛾0 0.03 N/m
Dielectric permittivity of oil 𝜖 3 · 8.85 × 10−12 F/m
Surfactant coverage 𝑋 0.1
Surfactant concentration 𝑐∞ 1 × 10−8 mol/m2

Temperature (Room temperature) 𝑇 298 K
Ionic surfactant valence 𝑧1 +1
Diffusion coefficient 𝐷𝑠 10−8 m2/s
Gas constant 𝑅 8.314 J/(mol K)
Faraday constant 𝐹 96485 C/mol
Ion mobility (Na+) ℳ 5 × 10−8 m2/V · s

microfluidic and small-scale systems as the one study in this work. The Capillary number,
with a value of Ca = 3.33 × 10−1, suggests that the droplet is relatively deformable,
meaning that viscous forces are sufficiently large to cause noticeable droplet deformation
while surface tension still plays a significant role in maintaining droplet shape.

Table 2 – Typical dimensionless groups.

Parameter Symbol Typical Value

Reynolds number Re 0.008
Capillary number Ca 0.33
Mason number Mn 2.85
Elasticity parameter 𝐸 8.26 × 10−4

Surfactant coverage ratio 𝑋 0.1
Peclet number Pe 100
Mobility ratio Rℳ 1.82

The Mason number (Mn = 2.85) is moderate, indicating that the viscous effects
dominate over the electric effects. This means that the ionic surfactant concentration
is not very high, so electric charges do not create a strong electric field. The elasticity
parameter (𝐸 = 8.26 × 10−4) is small, indicating that the surface tension is not highly
sensitive to variations in surfactant concentration. As a result, even if there is a non-
uniform distribution of surfactant on the interface, the resulting surface tension gradients
would be small. Consequently, Marangoni currents, which are driven by surface tension
gradients, would not play a significant role in the observed phenomena.

The surfactant coverage ratio (𝑋 = 0.1) indicates a low level of surfactant at the
interface. This value suggests that the interface is far from the saturation condition (max-
imum packing factor), meaning there is ample space for additional surfactant molecules
to be added. The coverage ratio is controllable, as it depends primarily on the amount
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of surfactant introduced during droplet preparation. The Péclet number (Pe = 100) sug-
gests that convective transport of surfactant along the droplet interface is much more
significant than diffusive transport. Consequently, the surfactant molecules face difficulty
in spreading and homogenizing on the droplet surface due to the flow advection. The
Mobility ratio (Rℳ = 1.82) indicates that electromigration of ions is more pronounced
than ion convection driven by the flow.
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3 Formulation for
Electrohydrodynamics of

Droplets

3.1 Problem Statement

We consider a two-dimensional problem, consisting of a neutrally buoyant droplet
with initial radius 𝑎 suspended in another liquid medium subjected to a uniform electric
field, E0.Both fluids are immiscible Newtonian fluids with constant physical properties,
and the system is subjected to incompressible flow. The density, electric conductivity,
dielectric permittivity, and dynamic viscosity of the fluids are denoted as 𝜌, 𝜎, 𝜖, and
𝜇, respectively, and the subscripts "𝑖" and "𝑜" are used to differentiate between inside
and outside the droplet, as illustrated in Fig. 3. No-slip boundary condition is applied
at the stationaries upper and lower walls. For the electric potential, Neumann boundary
condition 𝜕𝜓

𝜕𝑦
= −E0 is applied at the lower and upper walls. The domain is considered to

be periodic along the 𝑥-direction.

Figure 3 – Schematic diagram of the problem of a droplet suspended in another fluid
and subjected to an applied uniform electric field with accumulation of surface
charge at the interface; the outer fluid is more conducting than the inner one.
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3.2 Governing Equations

3.2.1 Hydrodynamics equations

The Electrohydrodynamic (EHD) problem is governed by the same mass con-
servation and linear momentum equations as presented in Chapter 2. However, since no
tensioactive molecules are present at the interface, there is no tangential stress component
due to interfacial tension. The electric stress is accounted for through the full Maxwell
stress tensor, since gradients of dielectric permittivity are allowed. The governing equa-
tions reduce to:

∇ · u = 0, (3.1)

and
𝜌
𝐷u
𝐷𝑡

= −∇𝑝+ ∇ · [𝜇(x)(∇u + ∇u⊤)] − 𝛾𝜅𝛿(‖x − xΓ‖)n̂ + FE. (3.2)

The electric force term in Eq. (3.2) will be further discussed in the following section.

3.2.2 Electrostatic equations

In the case of a droplet subjected to an applied electric field, Gauss’s Law couples
the volumetric charge density with the electric field in the bulk fields,

∇ · (𝜖∇𝜓) = −𝑞𝑣. (3.3)

Another important equation that needs to be considered is the charge conservation
law,

𝜕𝑞𝑣
𝜕𝑡

+ ∇ · J = 0, (3.4)

where 𝜕𝑞𝑣
𝜕𝑡

represents charge relaxation, J is the current density vector given by

J = 𝜎E + 𝑞𝑣u, (3.5)

where 𝜎 is the electric conductivity. The first term at the right-side is the Ohmic charge
conduction and the second term corresponds to the electrohydrodynamic flow-induced
charge convection (Dong; Sau, 2023). Taking the divergence of Eq. (3.5) and substituing
in Eq. (3.4) yields

𝜕𝑞𝑣
𝜕𝑡

+ ∇ · (𝑞𝑣u) = −∇ · (𝜎E). (3.6)

3.2.3 Leaky Dielectric Model

In the leaky dielectric model, first introduced by Melcher and Taylor (1969),
charges accumulate at the interface almost instantaneously since electrical relaxation time
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scale in the bulk fluid is much smaller than the characteristic time of fluid motion. Hence,
Eq. (3.6) reduces to

∇ · (𝜎∇𝜓) = 0, (3.7)

where the coupling boundary condition at the interface is given by the continuity of the
electric current as follows:

[[𝜎∇𝜓]]Γ · n̂ = 0, (3.8)

where [[ ]] represents the jump (outer minus inner) across the interface, and n̂ is the
outward pointing unit vector.

In order to explore phenomena like transient deformation, surface charge con-
vection, and electrorotation, one can focus on charge conservation specifically along the
interface by integrating Eq. (3.4) across the interface, leading to the following surface
charge transport equation (Saville, 1997):

𝜕𝑞𝑠
𝜕𝑡

+ ∇𝑠 · (𝑞𝑠u) = −[[𝜎E]] · n̂, (3.9)

where 𝑞𝑠 is the surface charge density.

EHD motion arises from the interaction between the electric field and the effective
electric charge at the interface. The coupling between hydrodynamics and electrostatics
occurs through the stress jump condition at the interface, where the discontinuity in the
Maxwell stress gives rise to both normal and tangential force components, governing the
interfacial dynamics. These force balances are expressed as follows:

[[ME · n̂]] · n̂ = 1
2[[𝜖(E · n̂)2 − 𝜖(E · t̂)2]], (3.10)

and
[[ME · n̂]] · t̂ = 𝑞𝑠E · t̂. (3.11)

Since most leaky dielectric systems have piecewise constant permittivity and con-
ductivity, the electric force is only nonzero in the vicinity of the interface. Therefore, Eq.
(2.21) is not appropriate for computing the electric force due to the discontinuity in the
electric field and permittivity. To circumvent discontinuity aspects in the formulation, one
can consider an interfacial electric force that arises from the jump of the Maxwell stress
tensor in the normal direction as:

FE = [[ME · n̂]]𝛿(‖x − xΓ‖) = 𝛿(‖x − xΓ‖)(ME,o − ME,i) · n̂, (3.12)

where ME,o and ME,i represent the Maxwell stress tensor computed as x approaches
xΓ, from outside and inside the droplet, respectively, and 𝛿(‖x − xΓ‖) is the Dirac delta
distribution.

As there is no free charge in the bulk in leaky dielectric model, Eq. (3.3) solely
becomes

∇ · (𝜖∇𝜓) = 0, (3.13)
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and the surface charge distribution appears in the form of a jump in displacement field
condition across the interface expressed by

[[𝜖∇𝜓]]Γ · n̂ = −𝑞𝑠. (3.14)

According to Eq. (3.14), the derivatives of the electric potential are discontinuous.
However, the electric potential itself remains continuous across the interface, and enforced
by [[𝜓]]Γ = 0.

In this model, two important parameters are defined to quantify the contrast in
electric properties between the droplet and its surrounding medium:

S = 𝜖𝑖
𝜖𝑜

and R = 𝜎𝑖
𝜎𝑜
, (3.15)

where S and R denote the ratios of dielectric permittivity and electric conductivity, re-
spectively.

3.2.4 Nondimensionalization

The governing equations were normalized using the droplet radius 𝑎 as the char-
acteristic length, 𝜇𝑜 as the characteristic viscosity, E0 as the characteristic electric field
strength, 𝜖𝑜 as the characteristic dielectric permittivity, 𝜎𝑜 as the characteristic electric
conductivity, 𝑈EHD = 𝜖𝑜𝑎E0/𝜇𝑜 as the characteristic velocity, and 𝜖𝑜E2

0 as the characteristic
pressure. The resulting dimensionless variables are:

𝑡* = 𝜖𝑜E0
2𝑡/𝜇𝑜, x* = x/𝑎, u* = u/𝑈EHD, 𝑝* = 𝑝/(𝜖0E0

2), 𝜅* = 𝑎𝜅, 𝜆 = 𝜇/𝜇𝑜,

∇* = 𝑎∇, 𝛿* = 𝑎𝛿, E* = E/E0, 𝜖* = 𝜖/𝜖𝑜, 𝜎* = 𝜎/𝜎𝑜 and 𝑞*
𝑠 = 𝑞𝑠/(𝜖𝑜E0)

(3.16)

Equations (3.1), (3.2), (3.13) and (3.9) in dimensionless form are:

∇* · u* = 0, (3.17)

Re𝐷u*

𝐷𝑡*
= −∇*𝑝* +∇* · [𝜆(x)(∇*u* +∇*u*⊤)]− 1

CaE
𝜅*𝛿*(𝜑)n+(M*

E,o −M*
E,i) · n̂, (3.18)

∇* · (𝜖*∇*𝜓*) = 0, [[𝜖*∇*𝜓*]]Γ · n̂ = −𝑞*
𝑠 · (3.19)

𝜕𝑞*
𝑠

𝜕𝑡*
+ ∇*

𝑠 · (𝑞*
𝑠u*) = 1

ReE
(RE*

𝑠,𝑖 − E*
𝑠,𝑜) · n̂. (3.20)

In Eqs. (3.18) and (3.20), the dimensionless groups are:

Re = 𝜌𝑈EHD𝑎

𝜇𝑜
, CaE = 𝜖𝑜𝑎E2

0
𝛾

and ReE = 𝜖𝑜𝑈EHD

𝜎𝑜𝑎
, (3.21)

where the Reynolds number (Re) measures the relative importance of inertia and viscous
forces, and the electric capillary number (CaE) relates electric and capillary forces. The
electric Reynolds number (ReE) represents the ratio of charge relaxation 𝜏𝑒,𝑜 = 𝜖𝑜/𝜎𝑜 to
flow 𝜏𝑓 = 𝑎/𝑈EHD times scale (Lanauze; Walker; Khair, 2015).
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4 Numerical Methodology

The numerical methodology employed in this work integrates various computa-
tional techniques to accurately model both problems: ionic surfactant-covered droplets
and electrohydrodynamics of droplets. This chapter starts with a presentation of the finite
difference method to approximate spatial derivatives and definition of the computational
meshgrid. The level-set method is presented to implicitly capture the evolving droplet
interface, with a careful discussion on numerical stability and error minimization. Time
integration schemes are discussed, along with the closest point method, which enables the
computation of spatial variations and divergences of variables along the interface. Two ap-
proaches are presented to model the interface: a sharp-interface approach using the ghost
fluid method and a diffuse-interface representation that leverages the level-set framework.
The projection method is introduced to solve the governing hydrodynamic equations, with
a brief discussion on the numerical treatment of individual force components. Finally, we
describe the implementation of surfactant transport and charge conservation equations.

4.1 Finite Difference method

The finite difference method is a numerical technique employed to approximate
derivatives by expressing them as differences between finite values and it is largely used
to solve differential equations numerically. Various approaches exist for deriving finite
difference approximations, including Taylor’s series expansion and the derivation of La-
grange interpolating polynomials. However, this section focuses on obtaining derivatives
approximations in a more systematic manner using finite difference operators.

4.1.1 Finite difference operators

A finite difference operator is a function F : RZ → RZ that maps a sequence
{𝑧𝑖}∞

−∞ ∈ RZ into another sequence {𝑧*
𝑖 }∞

−∞ = F ({𝑧𝑖}∞
−∞) ∈ RZ. The most important

operators are defined below:

a) Shift operator: 𝜉𝑧𝑖 = 𝑧𝑖+1;

b) Forward difference operator: Δ+𝑧𝑖 = 𝑧𝑖+1 − 𝑧𝑖;

c) Backward difference operator: Δ−𝑧𝑖 = 𝑧𝑖 − 𝑧𝑖−1;

d) Central difference operator: Δ0𝑧𝑖 = 𝑧𝑖+1/2 − 𝑧𝑖−1/2;
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e) Mean operator: 𝛿0𝑧𝑖 = 𝑧𝑖+1/2 + 𝑧𝑖−1/2

2 .

An essential property of these operators is linearity, enabling compositions between
them and facilitating algebraic operations such as addition, multiplication, and exponen-
tiation. This feature allows for the rewriting of operators in terms of the Shift operator
as follows:

Δ+ = 𝜉 − ℐ,

Δ− = ℐ − 𝜉−1,

Δ0 = 𝜉1/2 − 𝜉−1/2,

𝛿0 = 𝜉1/2 + 𝜉−1/2

2 .

(4.1)

Here, ℐ represents the identity operator, which preserves the sequence unchanged.

4.1.2 Differential operator

Consider a sequence of values 𝑧𝑖 of a function 𝑓 : R → R, defined only at equidis-
tant points 𝑥𝑖 separated by Δ𝑥, as depicted in Fig. 4, such that

{𝑧𝑖}∞
−∞ = {𝑓(𝑥𝑖)}∞

−∞. (4.2)

... ...
𝑓(𝑥𝑖) 𝑓(𝑥𝑖+1)

Δ𝑥

𝑖 𝑖+ 1 𝑖+ 2𝑖− 1

𝑓(𝑥𝑖−1) 𝑓(𝑥𝑖+2)

Figure 4 – Schematic representation of a equidistant separated points sequence.

Hence, a differential operator 𝒟 can be defined as

𝒟𝑧𝑖 = 𝑓 ′(𝑥𝑖), (4.3)

where higher order derivatives are defined as

𝒟𝑛𝑧𝑖 = 𝑓 (𝑛)(𝑥𝑖). (4.4)

The differential operator can also be rewritten in terms of the shift operator (Pal,
2007):

𝒟 = 1
Δ𝑥 ln 𝜉. (4.5)

For example, to obtain a forward finite difference for the first derivative of 𝑓(𝑥𝑖), one uses
the forward operator expressed in Eq. (4.1) and writes Eq. (4.5) as

𝒟 = 1
Δ𝑥 ln (ℐ + Δ+). (4.6)
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Using a Taylor’s series expansion of the natural logarithm with ℐ + Δ𝑥 as argument:

𝒟 = 1
Δ𝑥

∞∑︁
𝑛=1

(−1)𝑛+1 Δ+

𝑛
= 1

Δ𝑥

[︃
Δ+ −

Δ2
+

2 + Δ3
+

3 − 𝒪(Δ4
+)
]︃
. (4.7)

In Numerical Analysis, it can be proved that every finite difference operators have
order Δ𝑥, then 𝒪(Δ4

+) ∼ Δ𝑥4 (Gupta, 2005). Applying the operator in Eq. (4.7) to 𝑧𝑖,
and considering first order approximation 𝒪(Δ𝑥), yields

𝑓 ′(𝑥𝑖) = 𝒟𝑧𝑖 = Δ+𝑧𝑖
Δ𝑥 + 𝒪(Δ2

+)
Δ𝑥 = 𝑧𝑖+1 − 𝑧𝑖

Δ𝑥 + 𝒪(Δ𝑥). (4.8)

Note that Eq. (4.8) is the classic forward finite difference aproximation for the first
derivative of a discrete function 𝑓(𝑥𝑖).

The backward and central finite difference approximations for the first derivative
can be obtained by employing the same formalism using the appropriated finite difference
operators, respectively, as (See in Appendix A for detailed derivation).

𝑓 ′(𝑥𝑖) = 𝑧𝑖 − 𝑧𝑖−1

Δ𝑥 + 𝒪(Δ𝑥), (4.9)

and
𝑓 ′(𝑥𝑖) = 𝑧𝑖+1 − 𝑧𝑖−1

2Δ𝑥 + 𝒪(Δ𝑥2). (4.10)

The forward and backward finite differences are only first order approximations,
while the central finite difference has second order accuracy. For the second derivative, a
central finite difference (derivation in Appendix B) is given by

𝑓 ′′(𝑥𝑖) = 𝑧𝑖+1 − 2𝑧𝑖 + 𝑧𝑖−1

Δ𝑥2 + 𝒪(Δ𝑥2), (4.11)

that is second order accuracy.

4.1.3 Staggered grid

All the governing equations were discretized for two-dimensional uniform meshgrid,
consisting in three overlaped staggered grids, as illustrated in Fig. 5. The vector fields
𝑥 and 𝑦 components are evaluated at the right (squares) and upper (triangles) faces of
the cells, respectively. The scalar quantities and scalar field are evaluated at the center
(circles) of the cells. The position of the cells in the 𝑥 and 𝑦 directions are determined,
respectively, by 𝑖 and 𝑗. The grid is composed of 𝑁𝑥 cells in the 𝑥-direction and 𝑁𝑦 cells
in the 𝑦-direction. Therefore, there are 𝑁𝑥 × 𝑁𝑦 points for scalar fields (central points),
(𝑁𝑥 + 1) ×𝑁𝑦 points for vector components in the 𝑥-direction, and 𝑁𝑥 × (𝑁𝑦 + 1) points
for vector components in the 𝑦-direction.
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(𝑖,𝑗) (𝑖+ 1,𝑗)(𝑖− 1,𝑗)

(𝑖,𝑗 + 1) (𝑖+ 1,𝑗 + 1)(𝑖− 1,𝑗 + 1)

(𝑖− 1,𝑗 − 1) (𝑖,𝑗 − 1) (𝑖+ 1,𝑗 − 1)

Δ𝑥

Δ𝑦
𝑥−component

𝑦−component

scalar variable

Figure 5 – Staggered grid proposed by Kim and Moin (1985).

4.2 Level Set method

The Level Set method is used to capture and evolve the interface in time. A signed
function 𝜑 = 𝜑(x, 𝑡) is defined to store the distance between each position x in the domain
and its closest point to the interface xΓ, such that:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜑(x, 𝑡) > 0, x ∈ Ω+,

𝜑(x, 𝑡) = 0, x ∈ Γ,

𝜑(x, 𝑡) < 0, x ∈ Ω−,

(4.12)

as illustrated in Fig. 6.

Γ Ω+

Ω− |𝜑(x)|
·xΓ x

Figure 6 – Representation of the level set function.

The interface is defined by the equation 𝜑(x, 𝑡) = 0, while the level set is assumed
to represent a conservative material property, satisfying 𝐷𝜑

𝐷𝑡
= 0. As a result, the interface

is transported by the flow described by the following advection equation:

𝜕𝜑

𝜕𝑡
+ u · ∇𝜑 = 0. (4.13)
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The level set function can also be used to smooth properties and prevent abrupt
transitions across the interface, effectively defining a diffusive interface. This approach
involves considering a narrow layer of thickness 2𝜀 surrounding the interface, within which
properties can smoothly transition across the interface as follows

𝜒𝜀(𝜑) = 𝜒𝑖 + (𝜒𝑜 − 𝜒𝑖)𝐻𝜖(𝜑), (4.14)

where 𝜒 is an arbitrary material property such as electric conductivity, dielectric permit-
tivity or dynamic viscosity, and 𝐻𝜀 is a smoothed Heaviside function given by

𝐻𝜀(𝜑) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, if 𝜑 < −𝜀,
1
2

[︃
1 + 𝜑

𝜀
+ 1
𝜋

sin
(︃
𝜋𝜑

𝜀

)︃]︃
, if − 𝜀 ≤ 𝜑 ≤ 𝜀,

1, if 𝜑 > 𝜀.

(4.15)

The Dirac delta distribution can be obtained by its definition as the directional
derivative of the Heaviside function:

𝛿(‖x−xΓ‖) = ∇𝐻(𝜑)·n = ∇𝐻(𝜑)· ∇𝜑
|∇𝜑|

= 𝜕𝐻

𝜕𝜑
∇𝜑· ∇𝜑

|∇𝜑|
= 𝜕𝐻

𝜕𝜑
|∇𝜑| = 𝛿(𝜑)|∇𝜑|. (4.16)

Here, the outward unit normal vector to the droplet interface can be computed as

n̂ = ∇𝜑
|∇𝜑|

, (4.17)

and the smoothed Dirac delta function is

𝛿𝜀(𝜑) = 𝜕𝐻𝜀(𝜑)
𝜕𝜑

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, if 𝜑 < −𝜀,
1
2𝜀

[︃
1 + cos

(︃
𝜋𝜑

𝜀

)︃]︃
, if − 𝜀 ≤ 𝜑 ≤ 𝜀,

0, if 𝜑 > 𝜀.

(4.18)

4.2.1 Re-initialization of the level set function

The solution of Eq. (4.13) describes the time evolution of the surface Γ(𝑡), repre-
senting the propagation of the fluid interface. Although the zero level set of the function
𝜑 still denotes the surface, this evolution does not ensure that 𝜑 remains the signed dis-
tance function of the interface across the entire domain. Sussman, Smereka and Osher
(1994) proposed a technique to reinitialize the level set function, ensuring that it remains
a signed distance function of Γ(𝑡). This involves reinitializing the level set function 𝜑 to
become a distance function, such that |∇𝜑| ≈ 1, by solving the following Hamilton–Jacobi
equation until reaching a steady state:

𝜕𝜑

𝜕𝜏
+ 𝑆(𝜑)(|∇𝜑| − 1) = 0, (4.19)

where 𝜏 is the pseudo-time and 𝑆(𝜑) is the sign function of 𝜑.
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When solving Eq. (4.19), the zero level set needs to be redefined each time. Al-
though this equation alone does not alter the position of the interface, numerical compu-
tations introduce accumulated errors each time the interface is re-initialized. To address
this issue, Sussman and Fatemi (1999) introduced a constraint to enhance the accuracy of
the solution of Eq. (4.19). Given that the interface should remain stationary, the volume
should also remain constant. Therefore, Eq. (4.19) is modified as follows:

𝜕𝜑

𝜕𝜏
= 𝜑𝜏 = 𝑆(𝜑)(1 − |∇𝜑|) + 𝜆𝑚𝛿𝜀(𝜑)|∇𝜑|, (4.20)

where 𝜆𝑚 is a function of 𝜏 obtained by imposing

𝜕

𝜕𝜏

∫︁
Ω
𝐻(𝜑)𝑑Ω′ =

∫︁
Ω
𝛿(𝜑)𝜕𝜑

𝜕𝜏
𝑑Ω′

=
∫︁

Ω

[︁
𝛿𝜀(𝜑)𝑆(𝜑)(1 − |∇𝜑|) + 𝜆𝑚𝛿

2
𝜀(𝜑)|∇𝜑|

]︁
𝑑Ω′ = 0. (4.21)

Hence,
𝜆𝑚 = −

∫︀
Ω 𝛿𝜀(𝜑)𝑆(𝜑)(1 − |∇𝜑|)𝑑Ω′∫︀

Ω 𝛿
2
𝜀(𝜑)|∇𝜑|𝑑Ω′ . (4.22)

4.2.2 Local Level Set

The level set function is updated using the local level set method (Peng et al.,
1999), which involves delimiting a region within the domain where the equations will be
solved. Utilizing this approach significantly reduces the computational efforts associated
with solving the advection and re-initialization equations of the level set function, while
also mitigating numerical issues near the boundaries. Firstly, tubes are created embedding
the interface such that

𝑇𝑖 = {x : |𝜑(x)| < 𝜀𝑖} for 𝑖 = 1, 2 and 3. (4.23)

A cut-off function 𝑐(𝜑) is defined as

𝑐(𝜑) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, if |𝜑| ≤ 𝜀2,

(|𝜑| − 𝜀3)2(2|𝜑| + 𝜀3 − 3𝜀2)/(𝜀3 − 𝜀2)3, if 𝜀2 < |𝜑| ≤ 𝜀3,

0, if |𝜑| > 𝜀3,

(4.24)

to limit computations to the region withi the tubes, where (𝜀1, 𝜀2, 𝜀3) = (3, 6, 9) max(Δ𝑥,Δ𝑦).
Hence, the advection equation for the level set function becomes

𝜕𝜑

𝜕𝑡
+ 𝑐(𝜑)u · ∇𝜑 = 0. (4.25)

4.2.3 Time integration

The evolution of the level set function over time is achieved using a third-order
Total Variation Diminishing (TVD) Runge-Kutta (RK) method, following the approach
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outlined by Shu and Osher (1988). This method ensures that the overall order of the
solution remains unaffected and offers excellent stability by minimizing error accumulation
across iterations. The RK method involves three sequential steps:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜑𝑛+1
𝑖,𝑗 = 𝜑𝑛𝑖𝑗 − Δ𝑡 𝑐(𝜑𝑛𝑖𝑗) u𝑛𝑖𝑗 · ∇𝜑𝑛𝑖𝑗,

𝜑
𝑛+1/2
𝑖,𝑗 = 3

4𝜑
𝑛
𝑖𝑗 + 1

4𝜑
𝑛+1
𝑖,𝑗 − 1

4Δ𝑡 𝑐(𝜑𝑛+1
𝑖,𝑗 ) u𝑛+1

𝑖𝑗 · ∇𝜑𝑛+1
𝑖,𝑗 ,

𝜑𝑛+1
𝑖,𝑗 = 1

3𝜑
𝑛
𝑖𝑗 + 2

3𝜑
𝑛+1/2
𝑖,𝑗 − 2

3Δ𝑡 𝑐(𝜑𝑛+1/2
𝑖,𝑗 ) u𝑛+1/2

𝑖𝑗 · ∇𝜑𝑛+1/2
𝑖,𝑗 .

(4.26)

Here, the superscript 𝑛 + 1 denotes the current time step, while 𝑛 refers to the previous
time step, and 𝑛 + 1/2 represents the mean time between 𝑛 and 𝑛 + 1. To ensure ac-
curate approximation of spatial derivatives, the convective term u𝑖𝑗 · ∇𝜑𝑖𝑗 is computed
using a fifth-order Weighted Essentially Non-Oscillatory (WENO) method, combined with
Godunov and upwind schemes (Osher; Fedkiw, 2004).

The re-initialization of the level set function follows similar steps to the advection
numerical scheme. The time parameter 𝑡 is replaced by 𝜏 , and the initial level set function
𝜑

(0)
𝑖𝑗 = 𝜑𝑛+1

𝑖𝑗 is computed according to Eq. (4.26). Therefore, the re-initialization follows
the three steps below:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜑
(1)
𝑖,𝑗 = 𝜑

(0)
𝑖𝑗 − Δ𝜏 𝑆𝜀(𝜑(0)

𝑖,𝑗 )(1 − |∇𝜑(0)
𝑖,𝑗 |),

𝜑
(2)
𝑖,𝑗 = 3

4𝜑
(0)
𝑖𝑗 + 1

4𝜑
(1)
𝑖,𝑗 − 1

4Δ𝜏 𝑆𝜀(𝜑(1)
𝑖,𝑗 )(1 − |∇𝜑(1)

𝑖,𝑗 |),

𝜑
(3)
𝑖,𝑗 = 1

3𝜑
(2)
𝑖𝑗 + 2

3𝜑
(2)
𝑖,𝑗 − 2

3Δ𝜏 𝑆𝜀(𝜑(2)
𝑖,𝑗 )(1 − |∇𝜑(2)

𝑖,𝑗 |).

(4.27)

The complete re-initialization of the level set function concludes with:

𝜑𝑛+1
𝑖,𝑗 = 𝜑

(3)
𝑖,𝑗 + Δ𝜏𝜆𝑚𝛿𝜀(𝜑(0)

𝑖,𝑗 ). (4.28)

In this process, a time step of 𝜏 = 1
2Δ𝑥 was chosen, with a total of three re-

initialization steps. This implies that the total re-initialization time is 3Δ𝜏 , which is
sufficient to reach the steady-state, i.e., when |∇𝜑| ≈ 1.

4.3 Closest Point method

The closest point method falls under the category of embedding methods, where
a lower-dimensional object is extended to a higher-dimensional space for computational
purposes. In the context of this work, the droplet surface is embedded within its surround-
ing space, simplifying the solution of surface partial differential equations (SPDEs). By
treating the surface as part of the surrounding space, standard PDE solution techniques
can be applied. This approach allows for the direct application of familiar finite difference
methods for discretization and numerical solution (Ruuth; Merriman, 2008).

Consider a function 𝑓(xΓ) only defined on the surface, where xΓ represents the
Euclidean positions on the surface. An extension operator 𝐸 is defined such that:

𝐸[𝑓(xΓ)] = 𝑓 *(x), (4.29)
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where 𝑓 *(x) is the extended function of 𝑓(xΓ) defined across the entire domain. To ef-
fectively utilize the embedding method, the extended function yields gradients along tan-
gential directions only, while remaining constant in normal directions to the surface. This
requirement ensures that 𝐸[𝑓(xΓ)] remains constant along the normal direction to the
surface, and it can be achieved through the closest point representation.

For any point x within the domain Ω, the representation cp(x) denotes the closest
point to x on the surface as visualized in Fig. 7. It can be observed that the closest point to
x1 on the interface, labeled as cp(x1), lines up with the position in the normal direction of
x1 where 𝜑 = 0. Also, the distance between x1 and cp(x1) is simply the shortest distance
between x1 and the interface, which is basically the value of the level set function 𝜑(x1).

x1

n̂1

cp(x1) 𝜑(x1)

𝜑(x2)

x2

−n̂2

cp(x2)

Γ

Figure 7 – Geometric representation of the closest point method. The black dots represent
points in the grid, while the blue squares indicate their corresponding closest
points on the surface.

Therefore, for any function defined on the surface at xΓ, its constant extension to
x is simply denoted by

𝐸[𝑓(xΓ)](x) = 𝑓(cp(x)). (4.30)

This approach enables the replacement of surface gradients with standard gradients, fa-
cilitating the computation of solutions within the tubes defined by Eq. (4.23) surrounding
the surface. For instance,

∇𝑠𝑓(x𝑖,𝑗) = ∇𝑓(cp(x𝑖,𝑗)) (4.31)

and, for vector or tensor functions, surface divergence becomes

∇𝑠 · F(x𝑖,𝑗) = ∇ · F(cp(x𝑖,𝑗)). (4.32)

The closest point for each grid point x is simply computed by geometric analysis
as

cp(x𝑖,𝑗) = x𝑖,𝑗 − 𝜑(x𝑖,𝑗)n̂, (4.33)
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which can be decomposed in 𝑥 and 𝑦 components for a cartesian grid:

𝑥(cp(x𝑖,𝑗)) = 𝑥𝑖,𝑗 − 𝜑(x𝑖,𝑗)𝑛𝑥, (4.34)

and
𝑦(cp(x𝑖,𝑗)) = 𝑦𝑖,𝑗 − 𝜑(x𝑖,𝑗)𝑛𝑦. (4.35)

Since all variable fields are stored at the faces or centers of each cell, they rarely
coincide with surface points directly. Therefore, an interpolation step is necessary to ob-
tain the variable values at the required surface points. The choice of interpolation order
becomes crucial to minimize interpolation errors, ensuring that the solution is not dom-
inated by these errors as stated by Ruuth and Merriman (2008). In this work, Lagrange
two-dimensional interpolation of various orders was utilized. Following the interpolation
of variable values on the surface, they were extended to the embedding point grids within
the tube region surrounding the interface using the closest point method.

For simplicity, the closest point nomenclature for any grid point cp(x𝑖,𝑗) will be
referred to as cp𝑖,𝑗 in future sections.

4.4 Interface models

In this work, we combine two different models for interface representation, which
reflects in how capillary, viscous and electric effects are computed. The diffusive interface
model incorporates a finite interfacial region where all quantities are continuous and
smoothed, while the Sharp interface model involves abrupt quantity jumps across the
inteface. Both models are depicted in Fig. 8. The Sharp interface model is specifically
employed to compute the electric field using a boundary jump condition, connecting
the inner and outer interface domains. Subsequently, we propose a diffusive interface
formulation for the electric potential and surface charge density, aiming for a simpler
approach to address electrohydrodynamics problems.

4.4.1 Sharp interface model (Ghost Fluid method)

The Ghost Fluid method is a numerical approach used to capture jump conditions
in the presence of a sharp interface. In this work, the method developed by Liu, Fedkiw
and Kang (2000) was implemented to capture the surface charge jump condition expressed
in Eq. (3.14) for solving the electric potential using Eq. (3.13). Employing the standard
second order discretization for the variable coefficient Poisson equation in Eq. (3.13), it
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Diffusive interface

(a) (b)

Figure 8 – Schematic representation of interface models used: (a) Diffusive interface: blue
dots represent inner region grid points, red dots represent outer region grid
points, and black dots represent diffusive interface grid points (2𝜀 thickness).
(b) Sharp interface: similar colors to diffusive interface, with light blue and
light red dots representing grid points with at least one neighboring grid point
on the opposite side of the interface. The blue and red squares represent ghost
grid points.

gives

1
Δ𝑥

[︃
𝜖𝑖+ 1

2 ,𝑗

(︃
𝜓𝑖+1,𝑗 − 𝜓𝑖,𝑗

Δ𝑥

)︃
− 𝜖𝑖− 1

2 ,𝑗

(︃
𝜓𝑖,𝑗 − 𝜓𝑖−1,𝑗

Δ𝑥

)︃]︃

+ 1
Δ𝑦

[︃
𝜖𝑖,𝑗+ 1

2

(︃
𝜓𝑖,𝑗+1 − 𝜓𝑖,𝑗

Δ𝑦

)︃
− 𝜖𝑖,𝑗− 1

2

(︃
𝜓𝑖,𝑗 − 𝜓𝑖,𝑗−1

Δ𝑦

)︃]︃
= 0. (4.36)

A geometric interpretation of the discretization scheme described by Eq. (4.36) is
visualized through the five-point stencil discretization depicted by the blue and red dashed
lines in Fig. 8, where 𝜓𝑖,𝑗 computation relies on the values of the electric potential at the
closest four neighboring grid points. Grid points are categorized as regular or irregular
(interface) points. Regular points, indicated by blue and red dots in Fig. 8b, imply that
the standard five-point stencil discretization does not intersect the interface, allowing
direct application. On the other hand, at irregular points, the stencil cuts through the
interface, so it involves grid points both inside and outside the interface, as depicted by
the light blue and light red dots in Fig. 8b. Given that the electric potential derivatives
are not continuous or smoothed at the interface, the numerical derivative approximation
such as (𝜓𝑖+1,𝑗 −𝜓𝑖,𝑗)/Δ𝑥 for a irregular grid point is not well-defined and requires special
attention.

To provide a reasonable approximation of the derivative near the interface, consider
that the interface lies between the nodes (𝑖, 𝑗) and (𝑖 + 1, 𝑗). A subcell resolution 𝜃, as
visualized in Fig. 9, can be obtained using the level set function as

𝜃 = |𝜑𝑖+1,𝑗|
|𝜑𝑖,𝑗| + |𝜑𝑖+1,𝑗|

. (4.37)
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𝑖+ 1, 𝑗𝑖, 𝑗𝑖− 1, 𝑗

𝜃1 − 𝜃

Ω+Ω−

Figure 9 – Subcell resolution.

The use of the subcell resolution allows to calculate a more accurate derivative
since the interface location is precisely given by the level set function. The jump condition
expressed by Eq. (3.14) can be decompose into two components:

[[𝜖𝜓𝑥]] = [[𝜖𝜓𝑛]]𝑛𝑥 = −𝑞Γ𝑛𝑥, (4.38)

and
[[𝜖𝜓𝑦]] = [[𝜖𝜓𝑛]]𝑛𝑦 = −𝑞Γ𝑛𝑦, (4.39)

in which 𝜓𝑥, 𝜓𝑦 and 𝜓𝑛 denotes the derivative of the electric field in 𝑥, 𝑦 and normal
directions, respectively. Although Eqs. (4.38) and (4.39) are not always true, they still
correctly capture the jump in the normal direction (Liu; Fedkiw; Kang, 2000). Discretizing
Eq. (4.38) according to Fig. 9, it gives

𝜖+
(︃
𝜓𝑖+1,𝑗 − 𝜓𝐼

𝜃Δ𝑥

)︃
− 𝜖−

(︃
𝜓𝐼 − 𝜓𝑖,𝑗

(1 − 𝜃)Δ𝑥

)︃
= −𝑞Γ𝑛𝑥, (4.40)

where 𝜓𝐼 is electric potential at the interface, while 𝜖+ and 𝜖− are the dielectric permit-
tivity in the regions Ω+ and Ω−, respectively. Performing algebraic manipulations, Eq.
(4.40) leads to two derivatives:

𝜕𝜓

𝜕𝑥

⃒⃒⃒⃒
⃒
Ω+

≈ 𝜓𝑖+1,𝑗 − 𝜓𝐼
𝜃Δ𝑥 = 𝜖

𝜖+

(︃
𝜓𝑖+1,𝑗 − 𝜓𝑖,𝑗

Δ𝑥

)︃
− 𝜖𝑞Γ𝑛𝑥(1 − 𝜃)

𝜖+𝜖− , (4.41)

and
𝜕𝜓

𝜕𝑥

⃒⃒⃒⃒
⃒
Ω−

≈ 𝜓𝐼 − 𝜓𝑖,𝑗
(1 − 𝜃)Δ𝑥 = 𝜖

𝜖−

(︃
𝜓𝑖+1,𝑗 − 𝜓𝑖,𝑗

Δ𝑥

)︃
+ 𝜖𝑞Γ𝑛𝑥𝜃

𝜖+𝜖− , (4.42)

where
𝜖 = 𝜖+𝜖−

𝜖+(1 − 𝜃) + 𝜖−𝜃
. (4.43)

Note that Eqs. (4.41) and (4.42) are well-defined derivatives that account for the
jump across the interface. Therefore, the derivative in Ω− can be used to replace the not
well-defined derivative

(︁
𝜓𝑖+1,𝑗−𝜓𝑖,𝑗

Δ𝑥

)︁
in Eq. (4.36) for irregular points giving that:

1
Δ𝑥

[︃
𝜖

(︃
𝜓𝑖+1,𝑗 − 𝜓𝑖,𝑗

Δ𝑥

)︃
+ 𝜖𝑞Γ𝑛𝑥𝜃

𝜖+ − 𝜖𝑖− 1
2 ,𝑗

(︃
𝜓𝑖,𝑗 − 𝜓𝑖−1,𝑗

Δ𝑥

)︃]︃

+ 1
Δ𝑦

[︃
𝜖𝑖,𝑗+ 1

2

(︃
𝜓𝑖,𝑗+1 − 𝜓𝑖,𝑗

Δ𝑦

)︃
− 𝜖𝑖,𝑗− 1

2

(︃
𝜓𝑖,𝑗 − 𝜓𝑖,𝑗−1

Δ𝑦

)︃]︃
= 0. (4.44)
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In Eq. (4.44), the second term in the first bracket doesn’t depend on the solution,
so it can be considered a source term. Then

1
Δ𝑥

[︃
𝜖

(︃
𝜓𝑖+1,𝑗 − 𝜓𝑖,𝑗

Δ𝑥

)︃
− 𝜖𝑖− 1

2 ,𝑗

(︃
𝜓𝑖,𝑗 − 𝜓𝑖−1,𝑗

Δ𝑥

)︃]︃

+ 1
Δ𝑦

[︃
𝜖𝑖,𝑗+ 1

2

(︃
𝜓𝑖,𝑗+1 − 𝜓𝑖,𝑗

Δ𝑦

)︃
− 𝜖𝑖,𝑗− 1

2

(︃
𝜓𝑖,𝑗 − 𝜓𝑖,𝑗−1

Δ𝑦

)︃]︃
= −𝜖𝑞Γ𝑛𝑥𝜃

𝜖+Δ𝑥 . (4.45)

Since this source term arises from the jump condition between nodes (𝑖, 𝑗) and
(𝑖+ 1, 𝑗), it can be labeled as a source term originating from the right arm of the stencil
given by

𝐹𝑅 = −𝜖𝑞Γ𝑛𝑥𝜃

𝜖+Δ𝑥 . (4.46)

The derivative correction also leads to a replacement in the dielectric permittivity 𝜖𝑖+ 1
2 ,𝑗

,
in Eq. (4.45), by the effective dielectric permittivity 𝜖, as defined by Eq. (4.43).

It’s important to note that 𝑞Γ is available only at the interface, but it can be
interpolated using grid point values of 𝑞𝑠𝑖,𝑗

as

𝑞Γ =
𝑞𝑠𝑖,𝑗

𝑛𝑥𝑖,𝑗
|𝜑𝑖+1,𝑗| + 𝑞𝑠𝑖+1,𝑗

𝑛𝑥𝑖+1,𝑗
|𝜑𝑖,𝑗|

|𝜑𝑖+1,𝑗| + |𝜑𝑖,𝑗|
. (4.47)

Equation (4.46) arises from the right-arm of the five-point stencil when 𝜑𝑖,𝑗 ≤ 0
and 𝜑𝑖+1,𝑗 > 0. If 𝜑𝑖,𝑗 > 0 and 𝜑𝑖+1,𝑗 ≤ 0, it would be

𝐹𝑅 = 𝜖𝑞Γ𝑛𝑥𝜃

𝜖−Δ𝑥 . (4.48)

It could also be 𝐹𝑅 = 0 if both 𝜑𝑖,𝑗 ≤ 0 and 𝜑𝑖+1,𝑗 ≤ 0 or if both 𝜑𝑖,𝑗 > 0 and 𝜑𝑖+1,𝑗 > 0.

The same analysis applies to the left, top and bottom arms of the five-points stencil
discretization, which provide derivative corrections for all directions. Substituting all the
new derivatives in Eq. (4.36) yields to the most general discretization for variable Poisson
equation:

1
Δ𝑥

[︃
𝜖𝑖+ 1

2 ,𝑗

(︃
𝜓𝑖+1,𝑗 − 𝜓𝑖,𝑗

Δ𝑥

)︃
− 𝜖𝑖− 1

2 ,𝑗

(︃
𝜓𝑖,𝑗 − 𝜓𝑖−1,𝑗

Δ𝑥

)︃]︃

+ 1
Δ𝑦

[︃
𝜖𝑖,𝑗+ 1

2

(︃
𝜓𝑖,𝑗+1 − 𝜓𝑖,𝑗

Δ𝑦

)︃
− 𝜖𝑖,𝑗− 1

2

(︃
𝜓𝑖,𝑗 − 𝜓𝑖,𝑗−1

Δ𝑦

)︃]︃
= 𝐹𝐿 + 𝐹𝑅 + 𝐹𝐵 + 𝐹𝑇 . (4.49)

Here, 𝐹𝐿, 𝐹𝑅, 𝐹𝐵, and 𝐹𝑇 are source terms containing the necessary jump conditions
to correct the derivatives. For instance, in Fig 8b, the blue dashed line representing the
five-point stencil discretization has two nodes lying on the opposite side of the interface.
Consequently, corrections are applied only to the right 𝐹𝑅 and top 𝐹𝑇 source terms, while
the red dashed line stencil shows a need for only the left 𝐹𝐿 source term. For those nodes
that dont’t require correction, the source term remains zero.

A practical algorithm can be implemented to efficiently compute these additional
source terms:
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• Left-arm of the stencil:

1. If both 𝜑𝑖,𝑗 ≤ 0 and 𝜑𝑖−1,𝑗 ≤ 0 or if both 𝜑𝑖,𝑗 > 0 and 𝜑𝑖−1,𝑗 > 0, then 𝐹𝐿 = 0.
Otherwise, define

𝜃 = |𝜑𝑖−1,𝑗|
|𝜑𝑖,𝑗| + |𝜑𝑖−1,𝑗|

, (4.50)

𝜖 = 𝜖𝑖−1,𝑗𝜖𝑖,𝑗 (|𝜑𝑖−1,𝑗| + |𝜑𝑖,𝑗|)
𝜖𝑖,𝑗|𝜑𝑖−1,𝑗| + 𝜖𝑖−1,𝑗|𝜑𝑖,𝑗|

, (4.51)

and
𝑞Γ =

𝑞𝑠𝑖,𝑗
𝑛𝑥𝑖,𝑗

|𝜑𝑖−1,𝑗| + 𝑞𝑠𝑖−1,𝑗
𝑛𝑥𝑖−1,𝑗

|𝜑𝑖,𝑗|
|𝜑𝑖,𝑗| + |𝜑𝑖−1,𝑗|

. (4.52)

2. If 𝜑𝑖,𝑗 ≤ 0 and 𝜑𝑖−1,𝑗 > 0, then

𝐹𝐿 = 𝜖𝑞Γ𝑛𝑥𝜃

𝜖+Δ𝑥 ; (4.53)

otherwise, if 𝜑𝑖,𝑗 > 0 and 𝜑𝑖−1,𝑗 ≤ 0, then

𝐹𝐿 = −𝜖𝑞Γ𝑛𝑥𝜃

𝜖−Δ𝑥 . (4.54)

• Top-arm of the stencil:

1. If both 𝜑𝑖,𝑗 ≤ 0 and 𝜑𝑖,𝑗+1 ≤ 0 or if both 𝜑𝑖,𝑗 > 0 and 𝜑𝑖,𝑗+1 > 0, then 𝐹𝑇 = 0.
Otherwise, define

𝜃 = |𝜑𝑖,𝑗+1|
|𝜑𝑖,𝑗| + |𝜑𝑖,𝑗+1|

, (4.55)

𝜖 = 𝜖𝑖,𝑗+1𝜖𝑖,𝑗 (|𝜑𝑖,𝑗+1| + |𝜑𝑖,𝑗|)
𝜖𝑖,𝑗|𝜑𝑖,𝑗+1| + 𝜖𝑖,𝑗+1|𝜑𝑖,𝑗|

, (4.56)

and
𝑞Γ =

𝑞𝑠𝑖,𝑗
𝑛𝑦𝑖,𝑗

|𝜑𝑖,𝑗+1| + 𝑞𝑠𝑖,𝑗+1𝑛𝑦𝑖,𝑗+1|𝜑𝑖,𝑗|
|𝜑𝑖,𝑗| + |𝜑𝑖,𝑗+1|

. (4.57)

2. If 𝜑𝑖,𝑗 ≤ 0 and 𝜑𝑖,𝑗+1 > 0, then

𝐹𝑇 = −𝜖𝑞Γ𝑛𝑦𝜃

𝜖+Δ𝑦 ; (4.58)

otherwise, if 𝜑𝑖,𝑗 > 0 and 𝜑𝑖,𝑗+1 ≤ 0, then

𝐹𝑇 = 𝜖𝑞Γ𝑛𝑦𝜃

𝜖−Δ𝑦 . (4.59)

• Bottom-arm of the stencil:

1. If both 𝜑𝑖,𝑗 ≤ 0 and 𝜑𝑖,𝑗−1 ≤ 0 or if both 𝜑𝑖,𝑗 > 0 and 𝜑𝑖,𝑗−1 > 0, then 𝐹𝐵 = 0.
Otherwise, define

𝜃 = |𝜑𝑖,𝑗−1|
|𝜑𝑖,𝑗| + |𝜑𝑖,𝑗−1|

, (4.60)
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𝜖 = 𝜖𝑖,𝑗−1𝜖𝑖,𝑗 (|𝜑𝑖,𝑗−1| + |𝜑𝑖,𝑗|)
𝜖𝑖,𝑗|𝜑𝑖,𝑗−1| + 𝜖𝑖,𝑗−1|𝜑𝑖,𝑗|

, (4.61)

and
𝑞Γ =

𝑞𝑠𝑖,𝑗
𝑛𝑦𝑖,𝑗

|𝜑𝑖,𝑗−1| + 𝑞𝑠𝑖,𝑗−1𝑛𝑦𝑖,𝑗−1|𝜑𝑖,𝑗|
|𝜑𝑖,𝑗| + |𝜑𝑖,𝑗−1|

. (4.62)

2. If 𝜑𝑖,𝑗 ≤ 0 and 𝜑𝑖,𝑗−1 > 0, then

𝐹𝐵 = 𝜖𝑞Γ𝑛𝑦𝜃

𝜖+Δ𝑦 ; (4.63)

otherwise, if 𝜑𝑖,𝑗 > 0 and 𝜑𝑖,𝑗−1 ≤ 0, then

𝐹𝐵 = −𝜖𝑞Γ𝑛𝑦𝜃

𝜖−Δ𝑦 . (4.64)

The electric field near the interface can also be computed using Eqs. (4.41) and
(4.42). In this scenario, where the interface lies between (𝑖, 𝑗) and (𝑖+ 1, 𝑗), the derivative
provided by these approximations can be stored at the midpoint (𝑖+ 1

2 , 𝑗). This midpoint
corresponds to the node (𝑖, 𝑗) for the 𝑥−component of the electric field due to the staggered
grid arrangement between scalar and vector component quantities. For the 𝑦−component,
a similar analysis can be conducted.

4.4.2 Smoothed interface model (Continuum surface force)

In contrast to the sharp interface, with the diffusive interface approach the capillary
force, which causes a jump in the pressure across the interface, can be continuous and
smoothly computed in Eq. (2.35) within the narrow interface. Additionally, the viscous
term in Eq. (2.35) also introduces a jump condition due to the discontinuous viscosity
coefficient. While various formulations have been proposed to take in account the effects
of viscosity, such as the one by Kang, Fedkiw and Liu (2000), implementing them present
significant challenges. To address these complexities, the diffusive interface model offers an
appealing framework that simplifies implementation by considering a continuum surface
force. This same approach can be extended to the electric force FE in Eq. (2.35) and the
ohmic conduction in Eq. (3.20).

In this formulation, the volumetric charge density can be distributed within the
diffusive interface using the Dirac delta distribution. Consequently, it can be expressed in
terms of the surface charge density as:

𝑞𝑣 = 𝑞𝑠𝛿(‖x − xΓ‖) = 𝑞𝑠𝛿(𝜑)|∇𝜑|. (4.65)

This allows us to rewrite Eq. (2.17) as:

∇ · (𝜖∇𝜓) = −𝑞𝑠𝛿(𝜑)|∇𝜑|. (4.66)

Here, the electric field E = −∇𝜓 is continuous across the interface. Then, Eq. (4.66) can
be discretized using ordinary Finite Difference schemes.
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From Eq. (3.6), the ohmic conduction term on the right-side can be manipulated
using the Level Set properties in order to obtain a modified surface charge transport
equation (See Appendix E for detailed derivation):

𝜕𝑞*
𝑠

𝜕𝑡*
+ ∇*

𝑠 · (𝑞*
𝑠u*) = 1

ReE

{︃
𝜎*
𝑠

𝜖*
𝑠

[(1 − S)E*
𝑠 · n̂ − 𝑞*

𝑠 ] + (R − 1)E*
𝑠 · n̂

}︃
, (4.67)

where 𝜎*
𝑠 , 𝜖*

𝑠 and E*
𝑠 are the electric conductivity, dielectric permittivity, and electric field

in dimensionless form computed at the droplet surface, i.e., at 𝜑 = 0.

An advantage of using Eq. (4.67) over Eq. (3.20) is its lack of discontinuities in
any variable or property, which simplifies direct implementation. However, a disadvantage
arises from the finite thickness of the interface (𝜀), where 𝜀 ∼ 𝒪(Δ𝑥), resulting in only a
few grid points available to compute local properties within the diffusive interface. This
limitation can lead to inaccuracies, particularly when the ratio between inner and outer
properties is too large or small, resulting in steep gradients that may be miscalculated.

4.5 Spatial discretization of the electric potential field equation

The complete discretization and rearrangement of Eq. (4.49) leads to a linear
system of equations given by

𝑎𝜓𝑖,𝑗
𝜓𝑖−1,𝑗 + 𝑏𝜓𝑖,𝑗

𝜓𝑖,𝑗−1 + 𝑐𝜓𝑖,𝑗
𝜓𝑖,𝑗 + 𝑑𝜓𝑖,𝑗

𝜓𝑖+1,𝑗 + 𝑒𝜓𝑖,𝑗
𝜓𝑖,𝑗+1 = 𝑓𝜓𝑖,𝑗

, (4.68)

in which the coefficients are

𝑎𝜓𝑖,𝑗
=
𝜖𝑖− 1

2 ,𝑗

Δ𝑥2 , 𝑏𝜓𝑖,𝑗
=
𝜖𝑖,𝑗− 1

2

Δ𝑦2 , 𝑑𝜓𝑖,𝑗
=
𝜖𝑖+ 1

2 ,𝑗

Δ𝑥2 , 𝑒𝜓𝑖,𝑗
=
𝜖𝑖,𝑗+ 1

2

Δ𝑦2 , (4.69)

𝑐𝜓𝑖,𝑗
= −

𝜖𝑖− 1
2 ,𝑗

+ 𝜖𝑖+ 1
2 ,𝑗

Δ𝑥2 −
𝜖𝑖,𝑗− 1

2
+ 𝜖𝑖,𝑗+ 1

2

Δ𝑦2 and 𝑓𝜓𝑖,𝑗
= 𝐹𝐿𝑖,𝑗

+ 𝐹𝑅𝑖,𝑗
+ 𝐹𝐵𝑖,𝑗

+ 𝐹𝑇𝑖,𝑗
.

As in the sharp interface model the dielectric permittivity 𝜖 is piecewise constant,
it can only assume values 1 or 𝑆 depending on which side of the interface the nodes
(𝑖 − 1

2 , 𝑗), (𝑖 + 1
2 , 𝑗), (𝑖, 𝑗 − 1

2) and (𝑖, 𝑗 + 1
2) lie on. For the smoothed interface model,

the dielectric permittivity is a continuous function of the level set function, i.e, 𝜖 = 𝜖𝜀(𝜑),
then, for the same intermediary nodes, it can be computed by taking an harmonic average
of neighboring points to avoid instabilities. In addition, the right-side inhomogeneity in
Eq. (4.68) takes into account the presence of diffusive charge density as seen in Eq. (4.66)
and becomes

𝑓𝜓𝑖,𝑗
= −𝑞𝑠𝑖,𝑗

𝛿(𝜑𝑖,𝑗)|∇𝜑𝑖,𝑗|. (4.70)

The boundary conditions for the electric potential problem are heterogeneous Neu-
mann conditions, defined by the prescribed normal derivative at each boundary as visu-
alized in Fig. 3. At the top and bottom boundaries, 𝜕𝜓

𝜕𝑦

⃒⃒⃒
= −𝐸0𝑦 which can be simply

discretized using finite difference scheme, leading to:
𝜓1:𝑁𝑥,𝑁𝑦+1 − 𝜓1:𝑁𝑥,𝑁𝑦

Δ𝑦 = −E0𝑦 (4.71)
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and
𝜓1:𝑁𝑥,1 − 𝜓1:𝑁𝑥,0

Δ𝑦 = −E0𝑦, (4.72)

where (1 : 𝑁𝑥, 𝑁𝑦+1) and (1 : 𝑁𝑥, 0) are ghost points placed outside the domain as shown
in Fig. 10.

𝜓𝑖,𝑁𝑦+1

𝜓𝑖,0

𝜓𝑖,1

𝜓𝑖,𝑁𝑦

𝑛̂

𝑛̂

Top boundary Bottom boundary

Figure 10 – Top and bottom boundaries representation. The red dots represent points
outside the domain (ghost points), while the black dots represent points inside
the domain.

Applying Eqs. (4.71) and (4.72) in Eq. (4.68), the coefficients of the linear system
change accordingly with ⎧⎨⎩𝑐𝜓1:𝑁𝑥,𝑁𝑦

= 𝑐𝜓1:𝑁𝑥,𝑁𝑦
+ 𝑒𝜓1:𝑁𝑥,𝑁𝑦

,

𝜓1:𝑁𝑥,𝑁𝑦+1 = −Δ𝑦E0𝑦
(4.73)

and ⎧⎨⎩𝑐𝜓1:𝑁𝑥,1 = 𝑐𝜓1:𝑁𝑥,1 + 𝑏𝜓1:𝑁𝑥,1 ,

𝜓1:𝑁𝑥,0 = Δ𝑦E0𝑦.
(4.74)

For the right and left boundaries, the same process can be employed applying the
electric field component 𝐸0𝑥.

4.6 Projection method

A significant challenge in solving transient incompressible flow problems arises
from the strong interdependency between pressure and velocity fields, coupled with the
absence of a direct equation for pressure. In contrast, compressible flows involve variations
in thermodynamic properties such as temperature and density, demanding the solution
of the energy equation to fully close the problem, while a pressure-velocity coupling is
enforced by the continuity equation in incompressible flows. To address this difficulty, one
alternative is to employ projection methods, which enable the decoupling of pressure and
velocity calculations in distinct steps.

In this presented projection method, the computation of velocity and pressure fields
occurs in two distinct stages. Initially, a trial velocity field is computed, not considering
the influence of pressure and the incompressibility condition, resulting in an intermediate
velocity field, u*. In the second stage, the trial velocity field is projected in the space

40



of the vector fields with zero divergences to calculate the trial pressure. From there,
the correction of the pressure and velocity fields is made satisfying the incompressibility
condition, obtaining 𝑝 and u.

A semi-explicit strategy is employed to address the variable ratio of viscosity, which
works well for diffusion-dominated equations (Badalassi; Ceniceros; Banerjee, 2003). It
consists in adding 𝜆̄

2 Re∇2u* and subtracting 𝜆̄
2 Re∇2ũ𝑛+1 in the right-side of Eq. (2.35),

where u* is treated implicitly and ũ𝑛+1 explicitly by extrapolation. Also, 𝜆̄ is constant
in space given by 𝜆̄ = max{1, 𝜆𝜀(𝜑)}. This approach results in a stable scheme under the
standard CFL condition (Xu; Yang; Lowengrub, 2012a).

Using the strategy described above with a semi-explicit Crank-Nicolson scheme
for time discretization, Eq. (2.35) can be split into two equations following:
u* − u𝑛

Δ𝑡 = − [(u · ∇)u]𝑛+ 1
2 + 1

Re∇ ·
[︁
𝜆𝜖(𝜑)(∇u + ∇u⊤)

]︁𝑛+ 1
2 + 𝜆̄

2Re∇2u* − 𝜆̄

2Re∇2ũ𝑛+1

− 1
CaRe[𝜅∇𝜑𝛿𝜖(𝜑)]𝑛+ 1

2 + 1
Re [(ME,o − ME,i) · n̂]𝑛+ 1

2 , (4.75)

and
u𝑛+1 − u*

Δ𝑡 = −∇𝜒𝑛+1, (4.76)

in which Δ𝑡 is the time step, 𝜒 is the auxiliary pressure field. The right-side terms available
at 𝑛+ 1

2 in Eq. (4.75) are extrapolated using Adams-Bashforth formula given by

f𝑛+ 1
2 = 3

2 f
𝑛 − 1

2 f
𝑛−1. (4.77)

For example, the convective term becomes [(u · ∇)u]𝑛+ 1
2 = 3

2 [(u · ∇)u]𝑛 − 1
2 [(u · ∇)u]𝑛−1.

The explicit diffusive term in Eq. (4.75) is also extrapolated simply by
𝜆̄

2Re∇2ũ𝑛+1 = 𝜆̄

2Re[2∇2ũ𝑛 − ∇2ũ𝑛−1]. (4.78)

In order to obtain an equation for the auxilary pressure, one can proceed taking
the divergence of Eq. (4.76), and enforcing incompressibilty condition for u𝑛+1, resulting
in the Poisson equation:

∇2𝜒𝑛+1 = ∇ · u*

Δ𝑡 . (4.79)

After solving Eq. (4.75) to obtain u* and Eq. (4.79) to obtain 𝜒, the velocity at
the next step u𝑛+1 can be obtained using Eq. (4.76). The final step involves summing
Eqs. (4.75) and (4.76) to derive an explicit update equation for pressure:

𝑝𝑛+1 = 𝜒𝑛+1 − ∇ · u*

Re . (4.80)

4.6.1 Spatial discretization of the momentum equation

The governing equations are spatially discretized using finite difference method as
described in section 4.1. Hence, the first Eq. (4.75) of the projection method becomes

u*
𝑖,𝑗 − 𝜆̄Δ𝑡

2Re ∇2u*
𝑖,𝑗 = u𝑛𝑖,𝑗 + Δ𝑡

(︂
𝒢(u𝑛,u𝑛−1)𝑖,𝑗 + 1

CaReF𝑛+ 1
2

𝑠𝑖,𝑗 + 1
ReF𝑛+ 1

2
E𝑖,𝑗

)︂
, (4.81)
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in which

𝒢(u𝑛,u𝑛−1)𝑖,𝑗 = − [(u · ∇)u]𝑛+ 1
2 + 1

Re∇ ·
[︁
𝜆𝜖(𝜑)(∇u + ∇u⊤)

]︁𝑛+ 1
2 − 𝜆̄

2Re∇2ũ𝑛+1, (4.82)

F𝑛+ 1
2

𝑠𝑖,𝑗 = 𝜅
𝑛+ 1

2
𝑖,𝑗 ∇𝜑𝑛+ 1

2
𝑖,𝑗 𝛿𝜀(𝜑

𝑛+ 1
2

𝑖,𝑗 ) (4.83)

and
F𝑛+ 1

2
E𝑖,𝑗

= M𝑛+ 1
2

E,oi,j · n̂𝑛+ 1
2

𝑖,𝑗 − M𝑛+ 1
2

E,ii,j · n̂𝑛+ 1
2

𝑖,𝑗 . (4.84)

The complete discretization of Eq. (4.81) in the 𝑥-direction leads to a linear system
for the trial velocity, which takes the form of:

𝑎𝑢𝑖,𝑗
𝑢*
𝑖−1,𝑗 + 𝑏𝑢𝑖,𝑗

𝑢*
𝑖,𝑗−1 + 𝑐𝑢𝑖,𝑗

𝑢*
𝑖,𝑗 + 𝑑𝑢𝑖,𝑗

𝑢*
𝑖+1,𝑗 + 𝑒𝑢𝑖,𝑗

𝑢*
𝑖,𝑗+1 = 𝑓𝑢𝑖,𝑗

, (4.85)

where the coefficients are given as

𝑎𝑢𝑖,𝑗
= 𝑑𝑢𝑖,𝑗

= − 𝜆̄Δ𝑡
2ReΔ𝑥2 , 𝑏𝑢𝑖,𝑗

= 𝑒𝑢𝑖,𝑗
= − 𝜆̄Δ𝑡

2ReΔ𝑦2 ,

𝑐𝑢𝑖,𝑗
= 1 + 𝜆̄Δ𝑡

2ReΔ𝑥2 + 𝜆̄Δ𝑡
2ReΔ𝑦2 and

𝑓𝑢𝑖,𝑗
= 𝑢𝑛𝑖,𝑗 + Δ𝑡

(︃
𝒢(𝑢𝑛𝑖,𝑗, 𝑢𝑛−1

𝑖,𝑗 ) + 1
CaReF𝑛+ 1

2
𝑠𝑥𝑖,𝑗 + CaE

CaReF𝑛+ 1
2

E𝑥𝑖,𝑗

)︃
.

(4.86)

The inhomogeneous term 𝒢 is discretized as

𝒢
(︁
𝑢𝑛𝑖,𝑗, 𝑢

𝑛−1
𝑖,𝑗

)︁
= −3

2

[︃
𝑢𝑛𝑖,𝑗

(︃
𝜕𝑢𝑛

𝜕𝑥

)︃
+

(𝑣𝑛𝑖+1,𝑗 + 𝑣𝑛𝑖,𝑗 + 𝑣𝑛𝑖+1,𝑗−1 + 𝑣𝑛𝑖,𝑗−1)
4

(︃
𝜕𝑢𝑛

𝜕𝑦

)︃]︃

+ 1
2

[︃
𝑢𝑛−1
𝑖,𝑗

(︃
𝜕𝑢𝑛−1

𝜕𝑥

)︃
+

(𝑣𝑛−1
𝑖,𝑗 + 𝑣𝑛−1

𝑖+1,𝑗 + 𝑣𝑛−1
𝑖+1,𝑗−1 + 𝑣𝑛−1

𝑖,𝑗−1)
4

(︃
𝜕𝑢𝑛−1

𝜕𝑦

)︃]︃

+ 3
2Re

[︃2𝜆𝜖(𝜑𝑛𝑖+1/2,𝑗)(𝑢𝑛𝑖+1,𝑗 − 𝑢𝑛𝑖,𝑗) − 2𝜆𝜖(𝜑𝑛𝑖−1/2,𝑗)(𝑢𝑛𝑖,𝑗 − 𝑢𝑛𝑖−1,𝑗)
Δ𝑥2

]︃

+ 3
2Re

[︃
𝜆𝜖(𝜑𝑛𝑖,𝑗+1/2)(𝑢𝑛𝑖,𝑗+1 − 𝑢𝑛𝑖,𝑗) − 𝜆𝜖(𝜑𝑛𝑖,𝑗−1/2)(𝑢𝑛𝑖,𝑗 − 𝑢𝑛𝑖,𝑗−1)

Δ𝑦2

]︃

+ 3
2Re

⎡⎣𝜆𝜖(𝜑𝑛−1
𝑖,𝑗+1/2)(𝑣𝑛𝑖,𝑗+1 − 𝑣𝑛𝑖,𝑗) − 𝜆𝜖(𝜑𝑛−1

𝑖,𝑗−1/2)(𝑣𝑛𝑖,𝑗 − 𝑣𝑛𝑖,𝑗−1)
Δ𝑦Δ𝑥

⎤⎦
− 1

2Re

⎡⎣2𝜆𝜖(𝜑𝑛−1
𝑖+1/2,𝑗)(𝑢𝑛−1

𝑖+1,𝑗 − 𝑢𝑛−1
𝑖,𝑗 ) − 2𝜆𝜖(𝜑𝑛−1

𝑖−1/2,𝑗)(𝑢𝑛−1
𝑖,𝑗 − 𝑢𝑛−1

𝑖−1,𝑗)
Δ𝑥2

⎤⎦
− 1

2Re

⎡⎣𝜆𝜖(𝜑𝑛−1
𝑖,𝑗+1/2)(𝑢𝑛−1

𝑖,𝑗+1 − 𝑢𝑛−1
𝑖,𝑗 ) − 𝜆𝜖(𝜑𝑛−1

𝑖,𝑗−1/2)(𝑢𝑛−1
𝑖,𝑗 − 𝑢𝑛−1

𝑖,𝑗−1)
Δ𝑦2

⎤⎦
− 1

2Re

⎡⎣𝜆𝜖(𝜑𝑛−1
𝑖,𝑗+1/2)(𝑣𝑛−1

𝑖,𝑗+1 − 𝑣𝑛−1
𝑖,𝑗 ) − 𝜆𝜖(𝜑𝑛−1

𝑖,𝑗−1/2)(𝑣𝑛−1
𝑖,𝑗 − 𝑣𝑛−1

𝑖,𝑗−1)
Δ𝑦Δ𝑥

⎤⎦
− 𝜆̄

Re

[︃
𝑢𝑛𝑖+1,𝑗 + 𝑢𝑛𝑖,𝑗 − 2𝑢𝑛𝑖,𝑗

Δ𝑥2 +
𝑢𝑛𝑖,𝑗+1 + 𝑢𝑛𝑖,𝑗−1 − 2𝑢𝑛𝑖,𝑗

Δ𝑦2

]︃

+ 𝜆̄

2Re

(︃
𝑢𝑛−1
𝑖+1,𝑗 + 𝑢𝑛−1

𝑖,𝑗 − 2𝑢𝑛−1
𝑖,𝑗

Δ𝑥2 +
𝑢𝑛−1
𝑖,𝑗+1 + 𝑢𝑛−1

𝑖,𝑗−1 − 2𝑢𝑛−1
𝑖,𝑗

Δ𝑦2

)︃
,

(4.87)
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where the convective term requires upwinding techniques to avoid non-physical oscillations
and numerical instabilities. The derivatives 𝜕𝑢

𝜕𝑥
and 𝜕𝑢

𝜕𝑦
are computed by a second order

ENO, which inherently includes upwinding features through the adaptive stencil selection
in its construction (Osher; Fedkiw, 2004).

The capillary force per unit volume in Eq. (4.86) is computed as

F𝑛+ 1
2

𝑠𝑥𝑖,𝑗 = −

⎛⎜⎝𝜅𝑛+ 1
2

𝑖+1,𝑗 + 𝜅
𝑛+ 1

2
𝑖,𝑗

2

⎞⎟⎠
⎛⎜⎝𝜑𝑛+ 1

2
𝑖+1,𝑗 − 𝜑

𝑛+ 1
2

𝑖,𝑗

Δ𝑥

⎞⎟⎠ 𝛿𝜀
⎛⎜⎝𝜑𝑛+ 1

2
𝑖+1,𝑗 + 𝜑

𝑛+ 1
2

𝑖,𝑗

2

⎞⎟⎠ , (4.88)

where the local mean curvature is

𝜅𝑖,𝑗 =
𝑛𝑥𝑖+1,𝑗

− 𝑛𝑥𝑖−1,𝑗

2Δ𝑥 +
𝑛𝑦𝑖,𝑗+1 − 𝑛𝑦𝑖,𝑗−1

2Δ𝑦 , (4.89)

in which
𝑛𝑥𝑖,𝑗

= 𝜑𝑖+1,𝑗 − 𝜑𝑖−1,𝑗

2Δ𝑥|∇𝜑𝑖,𝑗|
(4.90)

and
𝑛𝑦𝑖,𝑗

= 𝜑𝑖,𝑗+1 − 𝜑𝑖,𝑗−1

2Δ𝑦|∇𝜑𝑖,𝑗|
, (4.91)

with

|∇𝜑𝑖,𝑗| =

⎯⎸⎸⎷(︃𝜑𝑖+1,𝑗 − 𝜑𝑖−1,𝑗

2Δ𝑥

)︃2

+
(︃
𝜑𝑖,𝑗+1 − 𝜑𝑖,𝑗−1

2Δ𝑦

)︃2

. (4.92)

Meanwhile, 𝑥−component of the electric force in Eq. (4.84) is

F𝑛+ 1
2

E𝑥𝑖,𝑗 =
(︂

M𝑛+ 1
2

E,oi,j · n̂𝑛+ 1
2

𝑖,𝑗

)︂
𝑥

−
(︂

M𝑛+ 1
2

E,ii,j · n̂𝑛+ 1
2

𝑖,𝑗

)︂
𝑥
, (4.93)

in which (︂
M𝑛+ 1

2
E,oi,j · n̂𝑛+ 1

2
𝑖,𝑗

)︂
𝑥

= 𝜖𝑖,𝑗

[︂
En,o(cp𝑖,𝑗)E𝑥(cp𝑖,𝑗) − 1

2 |Eo(cp𝑖,𝑗)|2𝑛𝑥𝑖,𝑗

]︂
(4.94)

is the outer Maxwell stress tensor projected onto the normal direction of the surface. For
the inner component, it is completely equivalent.

The normal derivative of the electric potential at the closest point approaching
from outside the interface gives the opposite normal electric field En,o(cp𝑖,𝑗), and it can
be calculated by the one-side extrapolation formula (Xu, 2012)

En,o(cp𝑖,𝑗) = −
−5𝜓(cp1𝑖,𝑗

) + 8𝜓(cp2𝑖,𝑗
) − 3𝜓(cp3𝑖,𝑗

)
2𝛿𝜓Δ𝑥 + 𝒪(𝛿2

𝜓Δ𝑥2), (4.95)

in which cp1𝑖,𝑗
, cp2𝑖,𝑗

and cp3𝑖,𝑗
are the closest points related to three auxiliary level

set curves outside of the interface as shown in Fig. 11. Also, the same procedure can be
applied using points inside the interface to compute the normal derivative approaching
from inside. The parameter 𝛿𝜓 is an arbitrary positive number used to calibrate the
distance between the auxiliary bands in order to avoid instabilities.
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Figure 11 – Normal derivative computed by one-side extrapolation using values of 𝜓 cal-
culated at cp1(𝑥𝑖,𝑗), cp2(𝑥𝑖,𝑗) and cp3(𝑥𝑖,𝑗).

The outer electric field at the closest point to the interface in Eq. (4.94) is calcu-
lated as

|Eo(cp𝑖,𝑗)|2 = En,o(cp𝑖,𝑗)2 + Et(cp𝑖,𝑗)2, (4.96)

where Et(cp𝑖,𝑗) is the tangential electric field intensity at the interface. This tangential
component does not need to be differentiated between outside and inside because it is
continuous across the interface and it can be calculated by taking the surface gradient of
the electric potential, i.e, Et(xΓ) = −∇𝑠𝜓(xΓ) · t̂. Hence, using the closest point property
to calculate surface gradient as shown in Eq. (4.31), and decomposing the tangential
electric field into 𝑥 and 𝑦 components to match the adopted Cartesian meshgrid, the
latter becomes

Et(cp𝑖,𝑗)t̂ = −
𝜓(cp𝑖+1,𝑗) − 𝜓(cp𝑖−1,𝑗)

2Δ𝑥 î +
𝜓(cp𝑖,𝑗+1) − 𝜓(cp𝑖,𝑗−1)

2Δ𝑦 ĵ. (4.97)

Finally, the velocity field is updated using Eq. (4.76), which leads to the discrete
equation:

𝑢𝑛+1
𝑖,𝑗 = 𝑢*

𝑖,𝑗 − Δ𝑡
(︃
𝜒𝑛+1
𝑖+1,𝑗 − 𝜒𝑛+1

𝑖,𝑗

Δ𝑥

)︃
(4.98)

4.6.2 Spatial discretization of the pressure equation

The complete discretization of Eq. (4.79) leads to a linear system for the auxiliary
pressure, which takes the form of:

𝑎𝜒𝑖,𝑗
𝜒𝑖−1,𝑗 + 𝑏𝜒𝑖,𝑗

𝜒𝑖,𝑗−1 + 𝑐𝜒𝑖,𝑗
𝜒𝑖,𝑗 + 𝑑𝜒𝑖,𝑗

𝜒𝑖+1,𝑗 + 𝑒𝜒𝑖,𝑗
𝜒𝑖,𝑗+1 = 𝑓𝜒𝑖,𝑗

, (4.99)
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where the coefficients are given as

𝑎𝜒𝑖,𝑗
= 𝑑𝜒𝑖,𝑗

= 1
Δ𝑥2 , 𝑏𝜒𝑖,𝑗

= 𝑒𝜒𝑖,𝑗
= 1

Δ𝑦2 ,

𝑐𝜒𝑖,𝑗
= − 2

Δ𝑥2 − 2
Δ𝑦2 and 𝑓𝜒𝑖,𝑗

= 1
Δ𝑡

(︃
𝑢*
𝑖,𝑗 − 𝑢*

𝑖−1,𝑗

Δ𝑥 +
𝑣*
𝑖,𝑗 − 𝑢*

𝑖,𝑗−1

Δ𝑦

)︃
.

(4.100)

Discretizing Eq. (4.80) leads to the resulting update equation for the pressure field:

𝑝
𝑛+ 1

2
𝑖,𝑗 = 𝜒𝑛+1

𝑖,𝑗 − 1
2Re

(︃
𝑢*
𝑖,𝑗 − 𝑢*

𝑖−1,𝑗

Δ𝑥 +
𝑣*
𝑖,𝑗 − 𝑣*

𝑖,𝑗−1

Δ𝑦

)︃
. (4.101)

4.6.3 Boundary and initial conditions

In the case of simple shear flow, periodic boundary conditions are applied to the
velocity and pressure fields at the lateral boundaries. At the top and bottom walls of
the domain, no-slip conditions are enforced, while the velocity field u is subject to non-
homogeneous Dirichlet boundary conditions. For the pressure field, homogeneous Neu-
mann boundary conditions are utilized.

Equations (4.85) and (4.99) indicate that for cells located on the domain bound-
aries (𝑖 = 1 or 𝑖 = 𝑁𝑥, 𝑗 = 1 or 𝑗 = 𝑁𝑦), at least one neighboring cell will fall outside the
computational domain [𝑁𝑥×𝑁𝑦]. Therefore, ghost nodes—points outside the domain—are
introduced, as depicted by the red symbols in Fig. 12. These ghost nodes are essential
for applying boundary conditions, a topic that will be elaborated upon in subsequent
sections.

𝑝𝑖,𝑁𝑦+1

𝑝𝑖,0

𝑝𝑖,1

𝑝𝑖,𝑁𝑦

𝑛̂

𝑛̂

Top boundary Bottom boundary

𝑣𝑖,𝑁𝑦

𝑣𝑖,1

𝑣𝑖,0

𝑢𝑖,𝑁𝑦+1 𝑢𝑖,1

𝑢𝑖,0𝑢𝑖,𝑁𝑦

Figure 12 – Top and bottom boundaries representation. The red symbols represent points
outside the domain (ghost points), while the black symbols represent points
inside the domain.

For the auxiliary and actual and pressure fields, the boundary conditions on the
lower and upper walls are defined as ∇𝜒 · n̂ = 0 and ∇𝑝 · n̂ = 0, respectively. The
discretization for the auxiliary pressure condition for the lower and upper walls can be
expressed in finite differences as:

𝜒1:𝑁𝑥,1 − 𝜒1:𝑁𝑥,0

Δ𝑦 = 0, (4.102)
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and
𝜒1:𝑁𝑥,𝑁𝑦+1 − 𝜒1:𝑁𝑥,𝑁𝑦

Δ𝑦 = 0. (4.103)

For the real pressure field 𝑝, it is completely equivalent. Those leads to the following ghost
point conditions: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜒1:𝑁𝑥,0 = 𝜒1:𝑁𝑥,1, lower;

𝑝1:𝑁𝑥,0 = 𝑝1:𝑁𝑥,1, lower;

𝜒1:𝑁𝑥,𝑁𝑦+1 = 𝜒1:𝑁𝑥,𝑁𝑦 , upper;

𝑝1:𝑁𝑥,𝑁𝑦+1 = 𝑝1:𝑁𝑥,𝑁𝑦 , upper.

(4.104)

For the velocity field component 𝑢, ghost nodes on the lower and upper boundaries
are determined based on the corresponding wall velocities. Figure 12 shows that the lower
wall lies between nodes (1 : 𝑁𝑥, 0) and (1 : 𝑁𝑥, 1), separated by a distance of Δ𝑦/2. A
similar situation exists on the upper wall, between nodes (1 : 𝑁𝑥, 𝑛𝑦) and (1 : 𝑁𝑥, 𝑛𝑦 + 1).
Consequently, the following conditions apply on the lower and upper walls:

𝑈south = 𝑢1:𝑁𝑥,0 + 𝑢1:𝑁𝑥,𝑁𝑦−1

2 (4.105)

and
𝑈north = 𝑢𝑖,𝑁𝑦 + 𝑢𝑖,𝑁𝑦+1

2 . (4.106)

Thus, the ghost nodes for 𝑢 and 𝑣 can be expressed as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑢1:𝑁𝑥,0 = 2𝑈south − 𝑢1:𝑁𝑥,1, lower;

𝑢1:𝑁𝑥,𝑁𝑦+1 = 2𝑈north − 𝑢1:𝑁𝑥,𝑁𝑦 , upper;

𝑣1:𝑁𝑥,0 = 0, lower;

𝑣1:𝑁𝑥,𝑁𝑦+1 = 0, upper.

(4.107)

For the trial velocity field u*, it is necessary to relate the boundary conditions of u
and u* using Eq. (4.76). This ensures that, on the normal direction relative to the walls:

u𝑛+1 · n̂ = u* · n̂ − Δ𝑡(∇𝜒 · n̂)𝑛+1. (4.108)

However, on the walls, we have ∇𝜒 · n̂ = 0. Consequently, the equation simplifies to
u𝑛+1 · n̂ = u* · n̂, indicating that the boundary conditions for u can be directly applied
to u* when the velocity component, 𝑢 or 𝑣, aligns with the normal direction to the wall.

Tangential to the wall, the condition is:

u𝑛+1 · t̂ = u* · t̂ − Δ𝑡(∇𝜒 · t̂)𝑛+1. (4.109)

Hence, based on Eqs. (4.105) and (4.106), the ghost nodes for u*, when the velocity
component is tangential to the wall, are defined as:⎧⎪⎨⎪⎩𝑢

*
1:𝑁𝑥,0 = 2𝑈*

south − 𝑢*
1:𝑁𝑥,1, lower;

𝑢*
1:𝑁𝑥,𝑁𝑦+1 = 2𝑈*

north − 𝑢*
1:𝑁𝑥,𝑁𝑦

, upper;
(4.110)

46



where 𝑈*
south and 𝑈*

north are simply reduced to 𝑈*
s,n and given by:

𝑈*
s,n = 𝑈s,n + Δ𝑡

(︃
𝜒𝑛+1
𝑖,𝑗+1 − 𝜒𝑛+1

𝑖,𝑗

Δ𝑥

)︃
(4.111)

and
𝜒𝑛+1
𝑖,𝑗 = 2𝜒𝑛𝑖,𝑗 − 𝜒𝑛−1

𝑖,𝑗 . (4.112)

The boundary conditions on the upper and lower walls modify the coefficients in
the governing equations of fluid motion, Eqs. (4.85) and (4.99). Specifically, for the upper
wall (1 : 𝑁𝑥, 𝑁𝑦):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑐𝑢𝑖,𝑗
= 𝑐𝑢𝑖,𝑗

− 𝑒𝑢𝑖,𝑗

𝑢*
𝑖,𝑗+1 = 2𝑈*

north,

𝑐𝜒𝑖,𝑗
= 𝑐𝜒𝑖,𝑗

+ 𝑒𝜒𝑖,𝑗
,

𝑒𝜒𝑖,𝑗
= 0,

(4.113)

and for the lower wall (1 : 𝑁𝑥, 1):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑐𝑢𝑖,𝑗
= 𝑐𝑢𝑖,𝑗

− 𝑏𝑢𝑖,𝑗
,

𝑢*
𝑖,𝑗−1 = 2𝑈*

south,

𝑐𝜒𝑖,𝑗
= 𝑐𝜒𝑖,𝑗

+ 𝑏𝜒𝑖,𝑗
,

𝑏𝜒𝑖,𝑗
= 0.

(4.114)

On the left and right sides of the domain, periodic boundary conditions are ap-
plied. This implies that the flow properties at any given boundary must match those
at the opposite boundary, ensuring that even the derivatives are consistent across both
boundaries. In the discretization approach adopted here, this consistency is achieved by
setting the ghost nodes to have the same values as the internal nodes located adjacent to
the opposing boundary, as illustrated in Figure 13.

𝑝𝑁𝑥,𝑗 𝑝1,𝑗

𝑛̂

Left
boundary

𝑣1,𝑗𝑣𝑁𝑥,𝑗

𝑢𝑁𝑥,𝑗

𝑢1,𝑗
𝑝𝑁𝑥,𝑗 𝑝1,𝑗

𝑛̂

𝑣1,𝑗𝑣𝑁𝑥,𝑗

𝑢𝑁𝑥,𝑗

Right
boundary

Figure 13 – Representation of left and right periodic boundaries. Ghost points (red sym-
bols) on the left match the domain points (black symbols) on the right, and
vice versa, to ensure periodic behavior.
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Thus, the ghost nodes for the domain sides can be expressed as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑢*
0,1:𝑁𝑦

= 𝑢*
𝑁𝑥,1:𝑁𝑦

, left;

𝑢*
𝑁𝑥+1,1:𝑁𝑦

= 𝑢*
1,1:𝑁𝑦

, right;

𝑣*
0,1:𝑁𝑦

= 𝑣*
𝑁𝑥,1:𝑁𝑦

, left;

𝑣*
𝑁𝑥+1,1:𝑁𝑦

= 𝑣*
1,1:𝑁𝑦

, right;

𝜒0,1:𝑁𝑦 = 𝜒𝑁𝑥,1:𝑁𝑦 , left;

𝜒𝑁𝑥+1,1:𝑁𝑦 = 𝜒1,1:𝑁𝑦 , right.

(4.115)

The conditions specified in Eq. (4.115) for 𝑢*, 𝑣*, and 𝜒 are equally applicable to
𝑢, 𝑣, and 𝑝 respectively.

4.7 Discretization of the surfactant transport equation

The surfactant concentration, Eq. (2.38) is evolved by a semi-implicit Crank-
Nicholson scheme, similar to that developed by Xu and Zhao (2003), as follows:

𝑐𝑛+1 − 𝑐𝑛

Δ𝑡 = [−∇𝑠 · (𝑐u𝑠) − 𝑐(∇𝑠 · n)(u · n)]𝑛+ 1
2 − Rℳ∇𝑠 · (𝑐E𝑠)1+ 1

2

+ 1
2Pe

(︁
∇2
𝑠𝑐
𝑛+1 + ∇2

𝑠𝑐
𝑛
)︁
,

(4.116)

The terms evaluated at 𝑛 + 1
2 are extrapolated using Adam’s Bashforth formula, as de-

scribed in Eq. (4.77). The diffusive term, although also evaluated at 𝑛+ 1
2 , is computed as

the average between its values at 𝑛+ 1 and 𝑛. The implicit nature of the equation arises
from the presence of the diffusive term at 𝑛+1. A distinctive feature of this discretization
is that Eq. (4.116) is modified using the closest point method, as proposed by Ruuth and
Merriman (2008), where the superficial gradients and divergences are calculated as:

∇𝑠 · (𝑐u𝑠) = ∇ ·
[︁
𝑐
(︁
cp𝑖,𝑗

)︁
u𝑠
(︁
cp𝑖,𝑗

)︁]︁
, (4.117)

𝑐(∇𝑠 · n)(u · n) = 𝑐
(︁
cp𝑖,𝑗

)︁ [︁
∇ · n

(︁
cp𝑖,𝑗

)︁]︁ [︁
u
(︁
cp𝑖,𝑗

)︁
· n
(︁
cp𝑖,𝑗

)︁]︁
, (4.118)

∇𝑠 · (𝑐E𝑠) = ∇ · [𝑐(cp𝑖,𝑗)E𝑠(cp𝑖,𝑗)], (4.119)

and
∇2
𝑠𝑐 = ∇2𝑐

(︁
cp𝑖,𝑗

)︁
. (4.120)

Discretizing the Eq. (4.116) by finite differences and using the closest point method,
gives a linear system for the surfactant transport equation:

𝑎𝑐𝑖,𝑗𝑐
(︁
cp𝑛+1

𝑖−1,𝑗

)︁
+ 𝑏𝑐𝑖,𝑗𝑐

(︁
cp𝑛+1

𝑖,𝑗−1

)︁
+ 𝑐𝑐𝑖,𝑗𝑐

(︁
cp𝑛+1

𝑖,𝑗

)︁
+ 𝑑𝑐𝑖,𝑗𝑐

(︁
cp𝑛+1

𝑖+1,𝑗

)︁
+ 𝑒𝑐𝑖,𝑗𝑐

(︁
cp𝑛+1

𝑖,𝑗+1

)︁
= 𝑓𝑐𝑖,𝑗,

(4.121)
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where the coefficients 𝑎𝑐𝑖,𝑗, 𝑏𝑐𝑖,𝑗, 𝑐𝑐𝑖,𝑗 and 𝑑𝑐𝑖,𝑗 are, respectively,

𝑎𝑐𝑖,𝑗 = 𝑑𝑐𝑖,𝑗 = − Δ𝑡
2PeΔ𝑥2 , (4.122)

𝑏𝑐𝑖,𝑗 = 𝑒𝑐𝑖,𝑗 = − Δ𝑡
2PeΔ𝑦2 , (4.123)

𝑐𝑐𝑖,𝑗 = 1 + Δ𝑡
PeΔ𝑥2 + Δ𝑡

PeΔ𝑦2 (4.124)

and

𝑓𝑐𝑖,𝑗 =3Δ𝑡
2

⎧⎨⎩− ∇ ·
[︁
𝑐
(︁
cp𝑛𝑖,𝑗

)︁
u𝑠
(︁
cp𝑛𝑖,𝑗

)︁]︁
− 𝑐

(︁
cp𝑛𝑖,𝑗

)︁ [︁
∇ · n

(︁
cp𝑛𝑖,𝑗

)︁]︁ [︁
u
(︁
cp𝑛𝑖,𝑗

)︁
· n
(︁
cp𝑛𝑖,𝑗

)︁]︁
− Rℳ∇ ·

[︁
𝑐
(︁
cp𝑛𝑖,𝑗

)︁
E𝑠

(︁
cp𝑛𝑖,𝑗

)︁]︁⎫⎬⎭
− Δ𝑡

2

⎧⎨⎩− ∇ ·
[︁
𝑐
(︁
cp𝑛−1

𝑖,𝑗

)︁
u𝑠
(︁
cp𝑛−1

𝑖,𝑗

)︁]︁
− 𝑐

(︁
cp𝑛−1

𝑖,𝑗

)︁ [︁
∇ · n

(︁
cp𝑛−1

𝑖,𝑗

)︁]︁ [︁
u
(︁
cp𝑛−1

𝑖,𝑗

)︁
· n
(︁
cp𝑛−1

𝑖,𝑗

)︁]︁
− Rℳ∇ ·

[︁
𝑐
(︁
cp𝑛−1

𝑖,𝑗

)︁
E𝑠

(︁
cp𝑛−1

𝑖,𝑗

)︁]︁⎫⎬⎭
+ Δ𝑡

2Pe∇2𝑐
(︁
cp𝑛𝑖,𝑗

)︁
+ 𝑐𝑛𝑖 .

(4.125)

Equation (4.121) is solved by the biconjugate gradient stabilized method. The divergences
discretized, regardless of the time step, are given by

∇ ·
[︁
𝑐
(︁
cp𝑖,𝑗

)︁
u𝑠
(︁
cp𝑖,𝑗

)︁]︁
=
𝑐
(︁
cp𝑖+1,𝑗

)︁
𝑢𝑠
(︁
cp𝑖+1,𝑗

)︁
− 𝑐

(︁
cp𝑖−1,𝑗

)︁
𝑢𝑠
(︁
cp𝑖−1,𝑗

)︁
2Δ𝑥

+
𝑐
(︁
cp𝑖,𝑗+1

)︁
𝑣𝑠
(︁
cp𝑖,𝑗+1

)︁
− 𝑐

(︁
cp𝑖,𝑗−1

)︁
𝑣𝑠
(︁
cp𝑖,𝑗−1

)︁
2Δ𝑦 ,

(4.126)

∇ ·
[︁
𝑐
(︁
cp𝑖,𝑗

)︁
E𝑠

(︁
cp𝑖,𝑗

)︁]︁
=
𝑐
(︁
cp𝑖+1,𝑗

)︁
𝐸𝑠,𝑥

(︁
cp𝑖+1,𝑗

)︁
− 𝑐

(︁
cp𝑖−1,𝑗

)︁
𝐸𝑠,𝑥

(︁
cp𝑖−1,𝑗

)︁
2Δ𝑥

+
𝑐
(︁
cp𝑖,𝑗+1

)︁
𝐸𝑠,𝑦

(︁
cp𝑖,𝑗+1

)︁
− 𝑐

(︁
cp𝑖,𝑗−1

)︁
𝐸𝑠,𝑦

(︁
cp𝑖,𝑗−1

)︁
2Δ𝑦 ,

(4.127)

𝑐
(︁
cp𝑖,𝑗

)︁ [︁
∇ · n

(︁
cp𝑖,𝑗

)︁]︁ [︁
u
(︁
cp𝑖,𝑗

)︁
· n
(︁
cp𝑖,𝑗

)︁]︁
=

𝑐
(︁
cp𝑖,𝑗

)︁
𝜅
(︁
cp𝑖,𝑗

)︁ [︁
𝑢
(︁
cp𝑖,𝑗

)︁
𝑛𝑥
(︁
cp𝑖,𝑗

)︁
+ 𝑣

(︁
cp𝑖,𝑗

)︁
𝑛𝑦
(︁
cp𝑖,𝑗

)︁]︁
, (4.128)

and

∇2𝑐
(︁
cp𝑖,𝑗

)︁
=
⎛⎝𝑐

(︁
cp𝑖−1,𝑗

)︁
+ 𝑐

(︁
cp𝑖+1,𝑗

)︁
− 2𝑐

(︁
cp𝑖,𝑗

)︁
Δ𝑥2

⎞⎠+
⎛⎝𝑐

(︁
cp𝑖,𝑗−1

)︁
+ 𝑐

(︁
cp𝑖,𝑗+1

)︁
− 2𝑐

(︁
cp𝑖,𝑗

)︁
Δ𝑦2

⎞⎠ .
(4.129)
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4.8 Discretization of charge conservation equation

For the electrohydrodynamics problem, a second-order Runge-Kutta method is
used to discretize Eq. (3.20) in time, yielding the intermediate values

𝑘1 = Δ𝑡
[︂
−∇𝑠 · (𝑞𝑛𝑠u𝑛) + 1

ReE
(RE𝑛

s,i − E𝑛
s,o) · n̂

]︂
, (4.130)

and
𝑘2 = Δ𝑡

{︃
−∇𝑠 ·

[︃(︃
𝑞𝑛𝑠 + 𝑘1

2

)︃
u𝑛+ 1

2

]︃
+ 1

ReE
(RE𝑛+ 1

2
s,i − E𝑛+ 1

2s,o ) · n̂
}︃
. (4.131)

Then, the updated surface charge density is computed by

𝑞𝑛+1
𝑠 = 𝑞𝑛𝑠 + 𝑘2. (4.132)

The terms evaluated at 𝑛 + 1
2 are extrapolated using Adam’s Bashforth formula

described in Eq. (4.77).

4.9 Numerical methodology for droplet deformation computation

The deformation of a droplet is quantified using the Taylor (1934) deformation
parameter, defined as:

𝐷 = 𝐿−𝐵

𝐿+𝐵
, (4.133)

where 𝐿 represents the droplet’s maximum dimension (length) and 𝐵 its minimum di-
mension (height). A spherical droplet, where 𝐿 = 𝐵, exhibits a Taylor deformation of
zero. As the length significantly exceeds the height (𝐿 ≫ 𝐵), the deformation parameter
approaches unity.

To determine the droplet’s dimensions and orientation, a computational approach
is employed. The droplet’s surface points, denoted as xΓ, are computed in a sequential,
counter-clockwise manner. This process enables the determination of both the droplet’s
size and its surface length.

Initially, the droplet’s center, x𝑐, is calculated by

x𝑐 = 1
𝐴

𝑁∑︁
𝑖=1

x𝑖Δ𝐴𝑖, (4.134)

where x𝑖 is the position vector of each discretized surface element, Δ𝐴𝑖 is the correspond-
ing area element, and 𝐴 = ∑︀𝑁

𝑖=1 Δ𝐴𝑖 is the total droplet area. Subsequently, the droplet’s
contour is discretized into 𝑛𝜃 points, xΓ = (𝑥𝜃𝑖

, 𝑦𝜃𝑖
), each originating from the droplet’s

center. The position vector of each point forms an angle 𝜃𝑖, for 𝑖 = 1, . . . , 𝑛𝜃, with the
reference vector xΓ𝑛𝜃

= (0, 𝐿𝑥). These points are evenly spaced angularly, such that:

𝜃𝑖+1 = 𝜃𝑖 + Δ𝜃, where Δ𝜃 = 2𝜋/𝑛𝜃. (4.135)
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Figure 14 – Geometrical representation of the droplet measure. Each yellow dot on the
surface corresponds to an angle 𝜃𝑖 (Pimenta, 2023).

As illustrated in Figure 14, for each angle 𝜃𝑖, the corresponding surface point xΓ𝑖

is determined by solving: ⎧⎪⎨⎪⎩𝜑(xΓ𝑖
) = 0,

(xΓ𝑖
− x𝑐) × x𝜃𝑖

= 0,
(4.136)

where 𝜑(xΓ𝑖
) represents a function that defines the droplet’s surface, and x𝜃𝑖

is a reference
vector. The solution of this system ensures that the point xΓ𝑖

lies on the droplet’s surface
and that the vector connecting the droplet’s center x𝑐 to xΓ𝑖

is aligned with the direction
defined by 𝜃𝑖.

The angular distribution follows:

𝜃𝑖 = Δ𝜃, 𝜃𝑖+1 = 𝜃𝑖 + Δ𝜃, 𝜃𝑖+2 = 𝜃𝑖+1 + Δ𝜃, 𝜃𝑖+3 = 𝜃𝑖+2 + Δ𝜃, (4.137)

with angular increment Δ𝜃 = 2𝜋/𝑛𝜃.

The system of equations (4.136) is solved using the Newton-Raphson method through:⎧⎪⎨⎪⎩ 𝑓1 = 𝜑(𝑥Γ𝑖
, 𝑦Γ𝑖

) = 0,

𝑓2 = 𝑥Γ𝑖
𝑦𝜃𝑖

− 𝑦Γ𝑖
𝑥𝜃𝑖

− 𝑥𝑐𝑦𝜃𝑖
+ 𝑦𝑐𝑥𝜃𝑖

= 0,
(4.138)

where 𝑥𝜃𝑖
= cos 𝜃𝑖 and 𝑦𝜃𝑖

= sin 𝜃𝑖.

The discrete surface points are obtained through these steps:

1. Set tolerance tol = 10−10, initialize 𝑖 = 0, and 𝜃0 = 0;

2. Update angle 𝜃𝑖+1 = 𝜃𝑖 + Δ𝜃. Initialize 𝑘 = 0 with initial guess 𝑥𝑘Γ𝑖
= 𝑥Γ𝑖0 and

𝑦𝑘Γ𝑖
= 𝑦Γ𝑖0 ;
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3. Formulate Newton-Raphson system:⎛⎝𝜕𝑓1
𝜕𝑥

𝜕𝑓1
𝜕𝑦

𝜕𝑓2
𝜕𝑥

𝜕𝑓2
𝜕𝑦

⎞⎠⎛⎝𝛿𝑥Γ𝑖

𝛿𝑦Γ𝑖

⎞⎠ =
⎛⎝−𝑓1

−𝑓2

⎞⎠ , (4.139)

specifically: ⎛⎝𝜕𝜑
𝜕𝑥

(𝑥𝑘Γ𝑖
, 𝑦𝑘Γ𝑖

) 𝜕𝜑
𝜕𝑦

(𝑥𝑘Γ𝑖
, 𝑦𝑘Γ𝑖

)
𝑦𝜃𝑖

−𝑥𝜃𝑖

⎞⎠⎛⎝𝛿𝑥𝑘Γ𝑖

𝛿𝑦𝑘Γ𝑖

⎞⎠ =
⎛⎝−𝑓𝑘1

−𝑓𝑘2

⎞⎠ ; (4.140)

4. Solve via Cramer’s rule for 𝛿𝑥𝑘Γ𝑖
and 𝛿𝑦𝑘Γ𝑖

;

5. Update coordinates: ⎧⎪⎨⎪⎩𝑥
𝑘+1
Γ𝑖

= 𝑥𝑘Γ𝑖
+ 𝛿𝑥𝑘Γ𝑖

,

𝑦𝑘+1
Γ𝑖

= 𝑦𝑘Γ𝑖
+ 𝛿𝑦𝑘Γ𝑖

;
(4.141)

6. If |𝑓𝑘+1
1 | + |𝑓𝑘+1

2 | < tol, proceed; else increment 𝑘 and repeat;

7. If 𝑖 ̸= 𝑛𝜃, increment 𝑖 and repeat from step 2;

8. Finalize computation.

The arc-length is computed by summing distances between consecutive xΓ𝑖
points from

Eq. (4.136). The largest and smallest droplet dimensions correspond to the maximum and
minimum distances between xΓ𝑖

and the droplet center x𝑐.
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5 Results for Ionic
Surfactant-Covered Droplets

The results section begins with a convergence analysis of the numerical methods
employed using Richardson extrapolation and shows consistent results compared to Xu,
Yang and Lowengrub (2012b). Then, a primary verification of the electric formulation
for the electric potential is performed by comparing it with the analytical solution for
the electric potential of a simple circular droplet. Next, the deformation and shape of
ionic and non-ionic surfactant-laden droplets are analyzed and compared with the the-
oretical predictions of Li and Pozrikidis (1997) and numerical results of Xu, Yang and
Lowengrub (2012b). Finally, a more detailed investigation is conducted on the two key
parameters introduced in the electric formulation—the Mason number and the mobility
ratio—highlighting their roles in Taylor deformation and surfactant distribution.

5.1 Convergence rate
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(a) Surfactant concentration vs grid spacing.
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(b) Convergence rate vs grid spacing.

Figure 15 – Convergence analysis for simulations with Re = 0.01, Ca = 0.1, 𝜆 = 1,
Pe = 10, 𝑋 = 0.6, and 𝐸 = 0.2. Surfactant concentration 𝑐ℎ obtained at
𝑡 = 0.5.

The convergence behavior of the numerical method is analyzed in Fig. 15. The
surfactant concentration 𝑐ℎ at 𝑥 = 1 and 𝑦 = 0 as a function of the grid spacing ℎ =
Δ𝑥 = Δ𝑦 is visualized in Fig. 15a. The simulations were performed using space grids of
ℎ = 0.1, 0.05, 0.025, 0.0125, 0.00625, and 0.003125, with a time step of Δ𝑡 = ℎ/8 for
all cases until 𝑡 = 0.5. The nearly linear relationship observed in this plot suggests that
the method exhibits first-order convergence with respect to ℎ, i.e., the error decreases
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proportionally to ℎ. This is consistent with the expected behavior for methods employing
first-order discretization schemes.

The second figure shows the convergence rate 𝑟 computed using Richardson ex-
trapolation, plotted against ℎ. The convergence rate 𝑟 is calculated as:

𝑟 = log2

(︃
𝑐ℎ − 𝑐ℎ/2

𝑐ℎ/2 − 𝑐ℎ/4

)︃
+ 𝒪(ℎ), (5.1)

where 𝑐ℎ, 𝑐ℎ/2, and 𝑐ℎ/4 represent the surfactant concentrations computed on grids with
spacings ℎ, ℎ/2, and ℎ/4, respectively. As the mesh is refined (ℎ → 0), the value of 𝑟
approaches approximately 1.0, which aligns with the ideal value for a first-order method.
This result indicates that the numerical method achieves the expected theoretical con-
vergence rate. However, small deviations from the ideal value can still occur due to the
coupling of multiple numerical methods, such as the projection method for splitting the
Navier-Stokes equations and the closest point method, which involves extensive inter-
polations around the interface. The interaction between these methods, along with the
inherent approximations in their implementation, can introduce minor numerical errors
that slightly affect the convergence rate.

The convergence rate of 𝑟 ≈ 1.0 demonstrates that the numerical method is robust
and provides reliable results, even in the presence of complex coupled physics. This behav-
ior is consistent with findings in the literature, such as those of Xu, Yang and Lowengrub
(2012a), who reported similar convergence rates for surfactant transport using advanced
numerical techniques. Furthermore, the results align with conventional continuum surface
force methods, such as the Immersed Boundary method (see, e.g., Li and Ito (2006)),
which also exhibit first-order convergence in practice.

5.2 Comparison of the electric potential

To verify the validation of the electric formulation, the analytical solution of ∇2𝜓 =
0 with the boundary condition ∇𝜓·n̂

⃒⃒⃒
Γ

= −𝑞𝑠/𝜖 is used as a reference for a circular droplet.
At the initial instant of the simulation, while the droplet remains circular, the electric
potential is obtained along a line in the y-direction for different domain sizes. As expected,
as the domain increases, the numerical solution converges to the analytical solution, which
represents a limiting case for an infinite domain, as shown in Fig. 16.

It can be observed that for the [20 × 20] domain (blue line in Fig. 16), the electric
potential matches the analytical solution up to 𝑟 ≈ 2𝑎. Beyond this point, the presence
of the homogeneous Neumann boundary condition at the top and bottom walls (𝑦 = 10
and 𝑦 = −10) causes significant interference in the electric potential. For larger domains,
the perturbation due to the walls is significantly reduced. The electric potential could be
obtained from any radial direction with consistent results for larger domains. However,
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Figure 16 – Comparison between the numerical electric potential field in y-direction with
the analytical 1D solution for a circular geometry. The inset depicts a circular
droplet with concentric electric potential contours and radial electric field
vectors.

for smaller domains, the periodic boundary conditions in the x-direction introduce some
interference.

Future simulations in this work use smaller domains, such as 10×10. In these cases,
the electric potential decay will not follow a logarithmic behavior. The purpose of this
comparison with larger domains was to verify whether concentrating the electric charge at
the interface using a Dirac delta function, as expressed in Eq. (2.23), is equivalent to the
classical problem with a fixed Neumann boundary condition at the surface in a circular
geometry.

5.3 Ionic and non-ionic surfactant-covered droplet deformation

5.3.1 Comparison with small deformation theory

The electric problem introduces two new parameters, the Mason number and the
Mobility ratio, which influence the droplet’s deformation. A small deformation theory
by Li and Pozrikidis (1997), given by Eq. (5.2) for non-ionic surfactant-covered droplets
subjected to shear flow is used as a reference for the simulated cases in Fig. 17, considering
Re = 0.01, 𝜆 = 1, 𝐸 = 0.1, and 𝑋 = 0.6. For all simulations in this section, a square
domain of [10 × 10] was used, discretized by a regular 400 × 400 cell mesh.

𝐷 = 5
8

35 + 4𝜖
20 + 2𝜖Ca, 𝜖 = 𝐸𝑋𝛼

1 − 𝐸𝑋
. (5.2)
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Figure 17 – Taylor deformation as a function of the Capillary Number for Re = 0.01,
𝐸 = 0.1, 𝑋 = 0.6, and 𝛼 = Pe

Ca = 10.

In Fig. 17a, the present work agrees well with the analytical prediction up to
Ca ≈ 0.15, but deviations appear for larger Capillary numbers, as expected, since the
theory is valid only for small deformations. However, for ionic surfactant-covered droplets,
the numerical results match well across the entire range of analysis when the Mason
number is fixed at 2.0 and the Mobility ratio takes values of 0.1, 1.0, and 10.

It is observed that the Mobility ratio does not significantly influence the Taylor
deformation, as the magnitude of the deformation remains similar across small and large
values of Rℳ. On the other hand, when the Mobility ratio is fixed and the Mason number
is varied, the Taylor deformation shows greater sensitivity for smaller Mason numbers.
This behavior is evident in the red line (Mn = 0.1) in Fig. 17b, which begins to deviate
significantly from the Non-Ionic case at Ca ≈ 0.1.
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Figure 18 – Droplet shape comparison for 𝑅𝑒 = 0.01, 𝐸 = 0.1, 𝑋 = 0.6, 𝑃𝑒 = 2.5,
Ca = 0.25.

The droplet shapes for three points extracted from Fig. 17b at Ca = 0.25 are
shown in Fig. 18. For Mn ∼ 𝒪(1), the deviation in droplet shape from the Non-Ionic
droplet shape is very small, and for Mn ≫ 1, it becomes negligible, as expected from
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the deformation behavior in Fig. 17b. In contrast, for Mn ≪ 1, the droplet undergoes
significant deformation, adopting a peanut-like shape.

It can be said that the electromigration of surfactant along the droplet’s surface,
represented by Rℳ, does not play a big role in droplet deformation and shape. Instead,
the repulsive electric force, which becomes stronger for small Mn, is the primary agent
responsible for changing the droplet morphology.

5.3.2 More detailed analysis of Mason number and Mobility ratio

To analyze the isolated effects of the Mason number and Mobility ratio, Fig. 19
presents both Taylor deformation and inclination as functions of the Mason number for
different Mobility ratio values (0.1, 2, and 10) and Coverage (0.1 in the main plot and
0.6 in the inset plot). For these simulations, most parameters remain unchanged, except
for Ca = 0.1 and 𝐸 = 0.2. A non-square domain of [15 × 6] was used, discretized with a
400 × 160 regular cell mesh.

A horizontal dashed line represents the Non-Ionic case, which corresponds to the
limiting case Mn → ∞ and Rℳ → 0 of the Ionic case, as shown in the blue line of both
Figs. 19a and 19b. Both deformation and inclination are normalized by their respective
values from the Non-Ionic case, which are represented by the subscript NI.
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Figure 19 – Simulations for Re = 0.01, Ca = 0.1, Pe = 10, and 𝐸 = 0.2. The steady-state
Taylor deformation and inclination for the Non-Ionic case are 𝐷𝑁𝐼 = 0.12
and 𝜃𝑁𝐼 = 37.8∘ for 𝑋 = 0.1, and 𝐷𝑁𝐼 = 0.149 and 𝜃𝑁𝐼 = 35.8∘ for 𝑋 = 0.6.

For Mn < 1, the Taylor deformation reaches higher values and varies significantly
with changes in the Mason number (the derivative 𝑑𝐷/𝑑Mn diverges as Mn → 0). In
contrast, for larger Mason numbers (Mn > 6), the deformation remains nearly constant,
approaching the Non-Ionic deformation values of 0.12 for 𝑋 = 0.1 and 0.149 for 𝑋 = 0.6.
The inclination exhibits a similar trend, decreasing more noticeably for small Mason
numbers and stabilizing at a plateau near the Non-Ionic steady inclination of 37.8∘ for
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𝑋 = 0.1 and 35.8∘ for 𝑋 = 0.6. As the Mobility ratio increases, the deformation curve
shifts downward, while the inclination curve shifts upward.

Despite the described behavior in deformation and inclination, the magnitude of
the changes is not very large: up to 25% more deformed and 20% less inclined compared
to the Non-Ionic case for Mn = 0.2. Therefore, the same analysis were replicated using
Ca = 0.5, which allows the droplet to deform more. For this configuration, the Non-Ionic
deformation is 0.58 for 𝑋 = 0.1 and 0.66 for 𝑋 = 0.6, where the largest deviation is more
than 40%, occurring at Mn = 0.2 as visualized in Fig. 20a.
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Figure 20 – Simulations for Re = 0.01, Ca = 0.5, Pe = 10, and 𝐸 = 0.2. The steady-state
Taylor deformation and inclination for the Non-Ionic case are 𝐷𝑁𝐼 = 0.58
and 𝜃𝑁𝐼 = 15.5∘ for 𝑋 = 0.1, and 𝐷𝑁𝐼 = 0.66 and 𝜃𝑁𝐼 = 13.3∘ for 𝑋 = 0.6.

Figure 21 – Pressure contour and electric force vector field in steady-state for Re = 0.01,
Ca = 0.5, Pe = 10, 𝑋 = 0.1, 𝐸 = 0.2, Mn = 0.2 and Rℳ = 0.1.

The inclination decreases significantly for Ca = 0.5 compared to Ca = 0.1 for the
Non-Ionic case and reaches a value of 15.5∘ for 𝑋 = 0.1 and 13.3∘ for 𝑋 = 0.6. For the
Ionic case, the droplet inclination reduces up to more than 50% at Mn = 0.2 compared
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to the Non-Ionic case. It means that the imposed shear flow doesn’t have enough time to
rotate the droplet due to the intense repulsive electric force repelling the extremities of
the droplet as seen by the vector field in Fig. 21.

In Fig. 20a, both the deformation and inclination curves for𝑋 = 0.1 almost overlap
for all values of Rℳ, whereas for 𝑋 = 0.6, the deformation curve shifts upwards and the
inclination curve shifts downwards with the increase of the Mobility ratio. The simulations
for 𝑋 = 0.6 and Rℳ = 10 could not be performed due to numerical instabilities.

5.4 Scalar field contours

The droplet’s contour for the pressure field and streamlines are illustrated in
Fig. 22, comparing the extreme cases from Figs. 19 and 20, evaluated at Mn = 0.2 and
Rℳ = 0.1. At Ca = 0.1, the droplet maintains a relatively compact and rounded shape,
with minor elongation in the direction of shear flow. The pressure distribution in this
case is concentrated, with the highest pressure (orange and red regions) appearing in a
localized area near the droplet’s tips and core. The streamlines remain nearly symmetric,
with moderate perturbations around the droplet but no significant flow distortions. Ad-
ditionally, the recirculation zones are observed to be confined within the droplet as well
as outside the droplet, predominantly around the 𝑦 = 0 axis.

In contrast, at Ca = 0.5, the droplet experiences greater elongation compared to
the case at Ca = 0.1, as the viscous forces become more significant. The high-pressure
regions, which were previously concentrated in a single localized zone, now appear at two
distinct points near the ends of the stretched droplet. This shift in pressure distribution
suggests an increased internal stress as the droplet stretches along the flow direction. The
recirculation zones also become more elongated, extending along the droplet’s stretched
profile.

The same analysis can be applied to the surfactant distribution along the droplet’s
surface, as visualized in Fig. 23. At Ca = 0.1, the surfactant concentrates approximately
50% more at a small band near the tips compared to the initial condition, while the
rest of the surface maintains a concentration of around 80% of the initial condition. In
contrast, at Ca = 0.5, the surfactant concentration at the droplet’s tips becomes more
localized, showing only a 10% increase compared to the initial condition. Meanwhile,
the rest of the surface experiences a significant reduction, with surfactant concentration
dropping to as low as 70% less than the initial condition. This decrease in surfactant
concentration is attributed to the expansion of the surface area due to droplet elongation
and the additional area created by surfactant transport.

For the electric field intensity, visualized in Fig. 24, it is seen what was expected
from the surfactant concentration. As the surfactant concentrates at the tips of the
droplets in both cases for Ca = 0.1 and Ca = 0.5, the electric charges carried by the
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(a) Ca = 0.1.

(b) Ca = 0.5.

Figure 22 – Streamlines and pressure field for Re = 0.01, Pe = 10, 𝐸 = 0.2, Mn = 0.2,
and Rℳ = 0.1.

charged surfactants at these places create a intense electric field (red zone), and it dissi-
pates as it moves away from the tips, to outside the domain or to other less surfactant-
concentrated regions on the surface. The electric field contours far away from the droplet
are more vertically straight for Ca = 0.1, whereas the contours suffers more perturbation
for Ca = 0.5 due to the more stretched droplet and more concentrated charges at the tips.

A simplified analytical expression for droplet elongation was derived, assuming
that all charges are concentrated at two point charges at the tips, each with an inten-
sity of 𝑄/2, where 𝑄 = 𝑞𝑠𝐴𝑠. By balancing the capillary force, the Coulomb force, and
the pressure jump at the interface, it follows that 𝐿/𝐵 ∼ 1/Mn, where 𝐿 and 𝐵 are
the semi-major and semi-minor axes of the droplet, respectively (detailed derivation in
Appendix D). Figure 25 shows a linear behavior of the ratio 𝐿/𝐵 with 1/Mn. The simula-
tions were performed for large Mason numbers and a small capillary number (Ca = 0.1),
corresponding to small deformations and negligible viscous forces, which is a limiting case
of the explicitly obtained analytical expression. Despite this, a noticeable difference is
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(a) Ca = 0.1.

(b) Ca = 0.5.

Figure 23 – Streamlines and surfactant concentration for Re = 0.01, Pe = 10, 𝐸 = 0.2,
Mn = 0.2, and Rℳ = 0.1.

observed between the simulated data and the analytical results. This discrepancy arises
from the simplifications in the analytical model, which assumes point charges and a el-
lipsoidal droplet shape. These assumptions deviate significantly from the actual behavior
visualized in Fig. 23a, where charges are distributed across the entire droplet interface,
with more significant concentration peaks at the tips. Nevertheless, the slope of the fitted
line for the simulated data is 0.145, which is close to the value of 1/8 = 0.125 predicted
by the analytical expression.
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(a) Ca = 0.1.

(b) Ca = 0.5.

Figure 24 – Electric field magnitude for Re = 0.01, Pe = 10, 𝐸 = 0.2, Mn = 0.2, and
Rℳ = 0.1.

5.5 Ionic and non-ionic surfactant concentration

The surfactant concentration along the droplet’s surface governs its behavior, in-
cluding deformation, inclination, and morphology. For the ionic case, the surfactant con-
centration is directly proportional to the electric charge, meaning that mapping the sur-
factant distribution is equivalent to mapping the electric charge distribution, apart from
a scaling factor. Figure 26 shows the surfactant distribution, 𝑐/𝑐0, as a function of the
normalized arc length, 𝑠/𝐿, along the droplet’s surface. The parameter 𝑐0 corresponds
to the uniform and initial surfactant distribution, and 𝐿 corresponds to the droplet’s
perimeter. In Fig. 26a, the surfactant distribution is presented for a fixed Mason number
(Mn = 5) and different Mobility ratios, Rℳ = {0.1, 1, 10}. Conversely, Fig. 26b shows
the surfactant distribution for a fixed Mobility ratio (Rℳ = 1) and three Mason number
values, Mn = {0.5, 5, 50}.
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Figure 25 – Droplet elongation, represented by the aspect ratio 𝐿/𝐵, as a function of
1/Mn for Re = 0.01, Ca = 0.1, Pe = 10, 𝐸 = 0.2, and Rℳ = 0.1. The
parameter 𝐶0 in the analytical expression accounts for the pressure jump
across the interface.
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Figure 26 – Surfactant concentration as a function of the normalized arc length for Re =
10, Ca = 0.1, Pe = 10, 𝑋 = 0.6, and 𝐸 = 0.2, captured at 𝑡 = 9. The insets
show the surfactant concentration contours on the droplet surface, pointing
out regions with higher and lower surfactant concentrations.

The work of Xu, Yang and Lowengrub (2012a) on non-ionic surfactant-covered
droplets is represented by black dots and aligns closely with the present results, shown
as a red line. The parameters used are identical to those in Xu, Yang and Lowengrub
(2012a): Re = 10, Ca = 0.1, 𝜆 = 1, Pe = 10, 𝑋 = 0.6, and 𝐸 = 0.2. Notably, they
initialized the flow with a linear velocity profile across the entire [10 × 4] domain, rather
than relying solely on the movement of the top and bottom plates. This initialization was
replicated to ensure consistency with their results at the dimensionless time 𝑡 = 9.

It can be noticed that the increase of Rℳ reduces the point of maximum surfactant
concentration and raises the minimum surfactant concentration, also shifting these points
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to the left as seen in Fig. 26a. On the other hand, the increase of Mn (Fig. 26b) does not
affect the surfactant distribution much, with only a small, though not very significant,
change observed at the lower values of surfactant concentration for Mn = 50.
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Figure 27 – Peak-to-peak amplitude of the surfactant concentration as a function of the
Mobility ratio for Re = 10, Ca = 0.1, Pe = 10, 𝑋 = 0.6, 𝐸 = 0.2, and Mn = 5
for different instant times.

As the difference between the maximum peak and minimum peak of surfactant
concentration decreases with increasing Rℳ, Fig. 27 illustrates this trend across a wide
range of Mobility ratios. The results suggest that the peak-to-peak surfactant concentra-
tion stabilizes at approximately 80% of the peak-to-peak concentration of the Non-Ionic
case, denoted as (𝑐max − 𝑐min)NI, for high Rℳ values. Figure 27 also shows the variation
of the peak-to-peak amplitude at three distinct instants during the simulation: at the
beginning (𝑡 = 3), at an intermediate time (𝑡 = 9), and at steady-state (𝑡 = 15). The
behavior is non-monotonic, as the amplitude at 𝑡 = 3 is higher than at 𝑡 = 15, while the
amplitude at 𝑡 = 9 is lower than at both 𝑡 = 3 and 𝑡 = 15. This indicates that the system
undergoes fluctuations in amplitude before reaching a steady state, rather than following
a simple increasing or decreasing trend.

The surfactant distribution impacts all interfacial quantities such as interfacial
tension and interfacial forces. Figure 28 is an extension of the results presented in Fig.
26a, and presents these quantities along the arc length of the droplet’s interface. The
interfacial tension, in Fig. 28a, exibits a opposite behavior compared to the surfactant
concentration in Fig. 26a, in which the higher peaks in interfacial tension occur at the
lower peaks in the surfactant concentration, and viceversa. The increase in Rℳ also shifts
the interfacial tension’s curves to the left as expected by the behavior in surfactant concen-
tration. Increasing Rℳ reduces the amplitude of the high peaks and raises the amplitude
of the low peaks.

The capillary force (𝐹𝑐), which represents the normal component of the interfacial
tension effect (Fig. 28b), exhibits a behavior closely linked to the surfactant distribution:
higher surfactant concentration leads to a stronger capillary force. This force is always
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Figure 28 – Interfacial tension and forces for Re = 10, Ca = 0.1, Pe = 10, 𝑋 = 0.6,
𝐸 = 0.2, and Mn = 5.0 captured at 𝑡 = 9 .

negative, acting as a restoring mechanism that opposes deformation. While the role of
Rℳ is not particularly significant, its increase slightly amplifies the capillary force at the
peaks.

The Marangoni force (𝐹𝑚), the tangential component of the interfacial tension
effect, is strongest where surface tension gradients are most pronounced. A comparison
between Figs. 28a and 28c reveals that regions with steep surface tension gradients—such
as at 𝑠/𝐿 ≈ 0.2—experience higher Marangoni effects. Conversely, at surface tension
peaks, where the derivative is zero, the Marangoni force vanishes. Increasing Rℳ shifts
the force distribution slightly to the left while reducing its peak values.

The electric force (𝐹𝑒) at the interface (Fig. 28d) closely follows the surfactant
concentration curve, as expected from the relationship 𝐹𝑒 ∼ 𝑐. However, a key distinction
arises: while 𝐹𝑒 exhibits high peaks in regions of high surfactant concentration, it drops
significantly at lower concentration peaks despite the significant presence of surfactant.
This behavior is caused by the weaker electric field away from the droplet tips, evidencing
the dependence of 𝐹𝑒 on the local electric field strength (𝐹𝑒 ∼ 𝐸).

To maintain consistency with the results from the previous section, the Reynolds
number is set to 0.01, which is appropriate for creeping flow, and the fluid starts from rest
throughout the domain. The surfactant distribution for this configuration is presented
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in Fig. 29. A key difference from the previous analysis in Fig. 26a is that the highest
surfactant concentration for Rℳ = 10 (black curve) now lies above the curve for Rℳ = 1.
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Figure 29 – Surfactant concentration as a function of the normalized arc length for Re =
0.01, Ca = 0.1, Pe = 10, 𝑋 = 0.6, and 𝐸 = 0.2 at steady-state.

The peak-to-peak amplitude of the surfactant concentration, shown in Fig. 30,
reveals a non-monotonic behavior: it decreases for Rℳ < 1, reaches its minimum at
Rℳ = 1, and increases for Rℳ > 1, eventually stabilizing close to the peak-to-peak
amplitude of the non-ionic case for high Mobility ratios. The transient behavior is also
non-monotonic, with the surfactant concentration at the beginning (𝑡 = 0.75) being higher
than the non-ionic case for high Rℳ. As the simulation progresses, the peak-to-peak
amplitude decreases to a range of 90% to 100% of the non-ionic case.
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Figure 30 – Peak-to-peak amplitude of the surfactant concentration as a function of the
Mobility ratio for Re = 0.01, Ca = 0.1, Pe = 10, 𝑋 = 0.6, 𝐸 = 0.2, and
Mn = 5 for different instant times.
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Furthermore, the surfactant distribution curve continues to shift to the left, as
better visualized in Fig. 31. Here, the arc-length position of the first peak in surfactant
concentration, denoted by 𝑠*, is captured and normalized by the position of the first peak
in the non-ionic case, 𝑠*

NI. The value of 𝑠*
NI is approximately 0.12𝐿, as observed in Fig. 29

(red curve). It can be observed that for Rℳ < 7, the position of the first peak is highly
sensitive to increases in Rℳ, whereas for Rℳ > 10, it stabilizes. The transient behavior
reveals that the peak surfactant concentration initially starts around 60% of the non-ionic
peak position and shifts to approximately 70% for high Mobility ratios.
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Figure 31 – Position of the first peak in surfactant concentration as a function of the
Mobility ratio for Re = 0.01, Ca = 0.1, Pe = 10, 𝑋 = 0.6, 𝐸 = 0.2, and
Mn = 5 for different instant times.

5.6 Pairwise droplet interaction

Figure 32a illustrates the trajectories of two droplets initially positioned at (−3, 0.2)
and (3,−0.2) in a simple shear flow, with Δ𝑥 = −6 and Δ𝑦 = 0.4 representing their initial
horizontal and vertical separations as shown in Fig. 32b. The trajectories are computed
for varying Mason numbers (Mn = {1.0, 3.0, 5.0, 10.0}) under fixed parameters Re = 0.01,
Ca = 0.2, 𝜆 = 1, 𝑋 = 0.1, 𝐸 = 0.2, Pe = 10.0, and Rℳ = 2.0. The domain size and
mesh resolution (18 × 30 discretized into 480 × 800 cells) ensure numerical stability while
balancing computational cost.

At low Mn (e.g., Mn = 1.0, black curve), electric forces dominate over viscous
effects, inducing significant lateral migration. The droplets exhibit a pronounced rise in
Δ𝑦, reaching a peak value of ∼ 2.3 before equilibrating as shear flow advects them apart.
As Mn increases, viscous forces progressively suppress electric interactions, reducing the
peak Δ𝑦 for Δ𝑦 ∼ 2.0 at Mn = 3.0 (red curve) and Δ𝑦 ∼ 1.9 at Mn = 5.0 (red curve). For
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(a) Trajectories of droplet pairs in simple shear flow for vary-
ing Mason numbers. Δ𝑥 and Δ𝑦 denote the relative cen-
troid separations.

(b) 18 × 30 domain with two
droplets positioned at
(−3, 0.2) and (3, −0.2).

Figure 32 – Behavior of droplet pairs in simple shear flow for Re = 0.01, Ca = 0.2, 𝜆 = 1,
𝑋 = 0.1, 𝐸 = 0.2, Pe = 10.0, and Rℳ = 2.0.

Mn = 10.0 (green curve), the trajectory terminates abruptly due to coalescence, as the
uniform mesh cannot resolve lubrication forces in the thin interfacial gap. A finer adaptive
mesh would prevent coalescence but entails prohibitive computational cost. The final Δ𝑦
values correlate with migration rates, which can inform diffusion coefficient calculations
in emulsion models (suggests future works).

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
t

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

d m
in

Mn = 1.0, R = 2.0
Mn = 3.0, R = 2.0
Mn = 5.0, R = 2.0
Mn = 10.0, R = 2.0

Figure 33 – Minimum interface-to-interface distance (𝑑min) between droplets over time.
Coalescence occurs at Mn = 10.0 (green curve), where 𝑑min → 0.

Figure 33 complements the trajectory analysis by quantifying the closest ap-
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proach between droplets. At Mn = 1.0 (black curve), strong electric repulsion main-
tains 𝑑min > 0.35, followed by rapid separation. Intermediate Mn values (blue/red curves)
show prolonged interaction periods with smaller 𝑑min, reflecting weaker repulsion. For
Mn = 10.0 (green curve), viscous forces overwhelm repulsion, causing 𝑑min to collapse
to zero (coalescence) at 𝑡 ≈ 12.5. This behavior aligns with the truncated trajectory in
Fig. 32a, indicating that the simulation fails to accurately capture the thin gap between
droplets at high Mn due to insufficient mesh resolution and the overwhelming influence
of viscous forces.

(a) 𝑡 = 0.2 (b) 𝑡 = 2.0

(c) 𝑡 = 6.0 (d) 𝑡 = 10.0

(e) 𝑡 = 12.0 (f) 𝑡 = 15.0

Figure 34 – Pressure contour and evolution of droplet pairs in simple shear flow at differ-
ent timestamps Re = 0.01, Ca = 0.2, 𝜆 = 1, 𝑋 = 0.1, 𝐸 = 0.2, Pe = 10.0,
Mn = 5.0, and Rℳ = 2.0.
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Figure 34 illustrates the pressure contours and the evolution of a pair of droplets
for the case where Mn = 5.0.

At 𝑡 = 0.2, the droplets are nearly spherical and close to their initial positions at
(−3, 0.2) and (3,−0.2). The pressure contours are symmetric, reflecting the initial balance
of forces. The droplets have not yet experienced significant deformation or interaction.
Between 𝑡 = 2.0 and 𝑡 = 6.0, the droplets begin to deform and move closer together under
the influence of shear flow and the interplay of electric and viscous forces.

At 𝑡 = 10.0, the droplets continue to approach each other, and the pressure field in
the gap starts to intensify more significantly. The symmetry of the pressure distribution is
preserved, with the most intense pressure localized in the thin gap between the droplets.
By 𝑡 = 12.0, the droplets achieve their maximum approximation, corresponding to the
minimum gap distance (as seen Fig. 33 during 12 < 𝑡 < 13). The pressure contours
show a highly localized and intense pressure field in the gap, with the symmetry of the
pressure distribution still maintained. The droplets exhibit significant deformation, with
the interface near the gap developing a negative curvature due to the strong localized
electrostatic repulsion.

At 𝑡 = 15.0, the droplets begin to separate as the shear flow advects them apart.
The pressure field starts to relax, and the droplets gradually regain a more ellipsoidal
shape, reflecting the reduction in electrostatic and hydrodynamic interactions.

At Mn = 5.0, the balance between electric and viscous forces leads to moderate
droplet deformation and interaction, but the electrostatic repulsion is strong enough to
prevent coalescence. The pressure field plays a critical role in mediating the interaction
between the droplets. The intensification of pressure in the thin gap at 𝑡 = 10.0 and
𝑡 = 12.0 demonstrates the importance of hydrodynamic forces in determining droplet
behavior, while the symmetry of the pressure contours reflects the balanced nature of the
interaction.
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6 Results for
Electrohydrodynamics of

Droplets

This chapter begins with the validation of the two interface models described in the
methodology: the Sharp Interface Model and the Smoothed Interface Model. Validation is
conducted by comparing the Taylor steady deformation of the droplet with results of Cui,
Wang and Liu (2019), which use the leaky dielectric theory, and the small-deformation
theory developed by Feng (2002). Following the validation, the effect of surface charge
convection is examined by varying the electric Reynolds number. Finally, by further in-
creasing the effect of surface charge convection and the electric field intensity, the system
can reach the Quincke regime (electrorotation), which will also be investigated.

6.1 Validation of the method using Smoothed and Sharp interface
models

Figure 35 compares the Taylor deformation as a function of the electric Capillary
number for different conductivity ratios (R = {1.75, 3.25, 4.75}), with a fixed dielectric
constant ratio (S = 3.5), viscosity ratio (𝜆 = 1), and electric Reynolds number (ReE =
0.01). The results include both sharp and smoothed interface models and are compared
with the numerical findings of Cui, Wang and Liu (2019) and the theoretical predictions
by Feng (2002), where no charge convection is considered, i.e., ReE → 0.

When the droplet deformation (Eq. 4.133) is negative, it indicates that the droplet
deforms along the axis perpendicular to the direction of the applied electric field, resulting
in a oblate shape. Conversely, positive deformation values represent deformation along
the same direction as the applied electric field, leading to an prolate shape. The work of
Feng (2002) introduced a first-order small deformation model, given by:

D = 𝑓𝑑(R, S)
3(1 + R)2 , (6.1)

where 𝑓𝑑 = R2 + R + 1 − 3S is a discriminating function that determines whether the
droplet deforms into a prolate or oblate shape. Solving it for 𝑓𝑑 = 0, the deformation
regimes diagram for a single droplet under an applied electric field is mapped and visual-
ized in Fig. 36, where three distinct regions are defined:
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Figure 35 – Effects of CaE and R on droplet’s deformation at S = 3.5 and ReE = 0.01,
and comparison with previous numerical results of Cui, Wang and Liu (2019).

I. For S/R < 1, the droplet adopts a prolate shape with circulation directed from the
equator to the poles.

II. When S/R > 1, the droplet remains prolate, but the circulation reverses, flowing
from the poles toward the equator.

III. At sufficiently high S, the droplet deforms into an oblate shape while maintaining
circulation from the poles to the equator.
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Figure 36 – Deformation regime diagram for a single droplet subjected to an applied elec-
tric field. The contour red line representing 𝑓𝑑 = 0 delineates the transition
between the prolate and oblate droplet shapes, depending on the values of
S and R. The dashed blue line separates regions where the circulation flows
from the equator to the poles (Region I) from regions where the circulation
flows from the poles to the equator (Regions II and III).
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In the context of the results presented in Fig. 35, where S = 3.5, the transition
value of R is 2.62. This implies that the droplet shape is oblate for R < 2.62 and prolate for
R > 2.62, then only the results for R = 1.75 exhibit an oblate shape. Both the smoothed
and sharp interface models show close agreement with each other and with the results of
Cui, Wang and Liu (2019). For R = 3.25, close agreement is also observed, even at high
electric capillary number (CaE > 0.6), with the theoretical predictions of Feng (2002).
However, for R = 4.75, a slight mismatch occurs for CaE > 0.7. Specifically, Cui, Wang
and Liu (2019) reports a maximum deformation of 0.23, while the smoothed interface
model predicts 0.22 and the sharp interface model predicts 0.20.

To further compare both interface models, Fig. 37 shows the pressure field contours
for S = 3.5, R = 1.75, and CaE = 0.5. The pressure range is consistent across both models,
but a slight difference is observed in the width of the dark blue region (indicating low
pressure) at the top and bottom of the domain. Specifically, the sharp interface model
exhibits a broader low-pressure region compared to the smoothed interface model.

E0

(a) Sharp interface model.

E0

(b) Smoothed interface model.

Figure 37 – Pressure contours for electrohydrodynamic flow for S = 3.5, R = 1.75, and
CaE = 0.5. Results are shown for both sharp and smoothed interface models.

Contour maps of the electric charge density are shown in Fig. 38, along with the
streamlines of the induced electrohydrodynamic flow. For the sharp interface model, the
electric charge density 𝑞𝑠 is concentrated precisely at the interface and varies only in
the tangential direction. This is achieved using the closest point method, which ensures
that 𝑞𝑠 is strictly concentrated at the interface. In contrast, for the smoothed interface
model, the electric charge density 𝑞𝑠 is distributed around the interface and treated as a
bulk quantity, rather than being confined strictly to the interface. The physically relevant
quantity is the charge density at the interface, i.e., at 𝜑 = 0, which is the main focus of
both models.

The flow direction, from the poles to the equator, explains the oblate shape of the
droplet. This occurs because the electrohydrodynamic forces stretch the droplet along the
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𝑥-axis, which is perpendicular to the direction of the applied electric field.

E0

(a) Sharp interface model.

E0

(b) Smoothed interface model.

Figure 38 – Electric charge density contours and streamlines for electrohydrodynamic flow
for S = 3.5, R = 1.75, and CaE = 0.5. Results are shown for both sharp and
smoothed interface models.

The main visual difference between the interface models lies in the electric field
behavior. In the sharp interface model, the electric field exhibits a clear discontinuity
across the droplet interface, as visualized in Fig. 39a. In contrast, the smoothed interface
model shows a smooth transition between the electric field inside and outside the droplet
(Figure 39b). Apart from this distinction, the contour ranges are nearly identical, with
no other significant visual differences between the two models.

E0

(a) Sharp interface model.

E0

(b) Smoothed interface model.

Figure 39 – Electric field magnitude contours for electrohydrodynamic flow for S = 3.5,
R = 1.75, and CaE = 0.5. Results are shown for both sharp and smoothed
interface models.

Figure 40 presents a comparison of the Taylor deformation as a function of the
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electric conductivity ratio for both sharp and smoothed interface models with the results of
Dong and Sau (2018), and also theoretical predictions of Taylor (1966) and Feng (2002).
The parameters fixed in these simulations were S = 10, CaE = 0.18, ReE = 0.01 and
𝜆 = 1. For small values of R, the present results show a good agreement with both
numerical simulation of Dong and Sau (2018) and theoretical predictions of Taylor (1966)
and Feng (2002). Interestingly, while the present results begin to deviate from of Dong
and Sau’s results at higher R, the sharp interface model maintains a closer agreement
with Feng’s theoretical predictions. The smoothed interface model also shows a deviation
from the sharp interface model at both low and high values of R, but the droplet shapes
are virtually the same, as observed for R = 1.8 and R = 14.5 in Fig 40.
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Figure 40 – Taylor deformation as a function of the electric conductivity ratio for S = 10,
CaE = 0.18, ReE = 0.01 and 𝜆 = 1. The insets show droplet contour for both
interface models at R = 1.8 and R = 14.5.

6.2 Influence of surface charge convection on steady-deformation

The results in Section 6.1 were presented considering a simplified version of the
Leaky Dielectric Model, which accounts for charge accumulation at the interface due to
ohmic charge conduction. A more complex problem accounts for surface charge convection
caused by the induced flow, whose intensity can be controlled by the electric Reynolds
number. The effect of surface charge convection depends on the droplet shape. For oblate
droplets, surface charge convection tends to suppress deformation, as shown in Fig. 41,
where the droplet deformation (𝐷), normalized by the deformation without surface charge
convection (𝐷0), decreases with the increase of ReE for both interface models. These
results are compared with those of Luo et al. (2020). The analysis was conducted for
S = 3.5 and R = 1.75, which result in an oblate shape according to the phase diagram
shown in Fig. 36, and for fixed CaE = 0.5.
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Figure 41 – Normalized deformation as a function of the electric Reynolds number for
S = 3.5, R = 1.75, CaE = 0.5 and 𝜆 = 1. The deformations of the case
without surface charge convection are 𝐷0 = 0.093 and 𝐷0 = 0.096 for the
Sharp and Smoothed interface models, respectively. The inset presents the
shape contour of the droplet for both interface models at ReE = 5.

The Smoothed interface model shows good agreement with the results of Luo et
al. (2020), while the Sharp interface model shows greater deviation. At ReE = 5, surface
charge convection suppresses almost 50% of the deformation for the Smoothed interface
model, while for the Sharp Interface Model, the suppression is slightly more than 30%.
Despite this difference, the droplet shape remains nearly the same, as shown in the inset
of Fig. 41.

In the case of a prolate shape, surface charge convection plays the opposite role: it
enhances deformation. In Fig. 42, the normalized deformation increases with the increase
of ReE for S = 0.5, R = 2.0, CaE = 0.5, and 𝜆 = 1. Neither the Sharp interface model nor
the Smoothed interface model matched the results of Luo et al. (2020). The effect of surface
charge convection was smaller in the Sharp interface model compared to the Smoothed
interface model, but in both cases, surface charge convection increased deformation by less
than 1% compared to the case without surface charge convection. Although the results
do not match quantitatively, they qualitatively predict the linear increase in deformation
with the increase of ReE. One possible reason for the discrepancy is the lack of upwinding
in the numerical schemes used for surface charge convection. Upwinding is crucial for
accurately capturing convective effects, especially in systems with strong directional flows,
such as those induced by electric fields. Its absence in the current models may lead to an
underestimation of the surface charge convection effects. Implementing upwinding could
significantly improve the quantitative agreement with experimental or reference data, as
it would better resolve the charge distribution and its impact on droplet deformation.
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Figure 42 – Normalized deformation as a function of the electric Reynolds number for
S = 0.5, R = 2.0, CaE = 0.5 and 𝜆 = 1. The deformations of the case without
surface charge convection are 𝐷0 = 0.102 and 𝐷0 = 0.106 for the Sharp and
Smoothed interface models, respectively.

6.3 Transient behavior

An interesting aspect to analyze is the transient droplet deformation of both oblate
and prolate droplet shapes in the presence of surface charge convection. From this point
forward, all results presented in this work will focus exclusively on the sharp interface
model, as it provides robust capability to handle high variations in physico-chemical prop-
erty ratios. Figure 43 illustrates the transient deformation for the two systems analyzed
in the previous section at CaE = 0.5. For the oblate shape with S = 3.5 and R = 1.75, the
influence of surface charge convection is significant compared to the prolate shape with
S = 0.5 and R = 2.0.

For the oblate droplet at ReE = 0.01 (with weak surface charge convection), the
deformation exhibits a monotonic behavior and rapidly reaches a steady state. This in-
dicates that the electric charge relaxation time is much smaller than the flow convection
time (𝑡𝑒 ≪ 𝑡𝑓 ). However, for ReE = 1.0, the droplet initially exhibits a prolate defor-
mation for 𝑡 < 1.5. This behavior arises due to the delayed migration of electric charge
from the bulk to the droplet surface, resulting in a significantly larger charge relaxation
time compared to the case without surface charge convection (𝑡𝑒,ReE=1.0 ≫ 𝑡𝑒,ReE=0.01).
Beyond 𝑡 > 1.5, the oblate deformation increases gradually until it reaches a steady state
at approximately 𝑡 = 13. For ReE = 5.0, the initial prolate deformation is even more
pronounced, persisting until 𝑡 = 6.5. This extended duration is attributed to a further
increase in the electric charge relaxation time (𝑡𝑒,ReE=5). In contrast, for the prolate con-
figuration (blue lines in Fig. 43), the deformation increases monotonically, and the value
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of ReE has a small impact on the transient behavior.
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Figure 43 – Transient deformation for two configurations: oblate droplet (red) with S =
3.5, R = 1.75, and CaE = 0.5; prolate droplet (blue) with S = 0.5, R = 2.0,
and CaE = 0.5.

Another interesting transient behavior to analyze is the charge accumulation and
convection over time for oblate droplets. Figure 44 presents the surface charge density
𝑞𝑠 along the angular position 𝜃 along the droplet surface, as depicted in the inset, where
𝜃 = 0 and 𝜃 = 𝜋 correspond to the poles, while 𝜃 = 𝜋/2 represents the equatorial region.
Note that the figure only displays half of the droplet surface due to symmetry, as the
charge distribution is expected to be mirrored across the opposite hemisphere. Since the
droplet shape is oblate, the circulation flows from the poles to the equator.

At the earliest time shown in Fig. 44 (𝑡 = 3), the charge distribution is relatively
smooth, with a gradual transition across the interface. The surface charge remains weakly
negative for 𝜃 < 𝜋/2 and weakly positive for 𝜃 > 𝜋/2, indicating that at this stage, con-
vection and accumulation effects are not yet dominant. As time progresses (𝑡 = 9 and
𝑡 = 18), the charge distribution becomes more pronounced, with an increasing separation
between the negatively charged upper hemisphere and the positively charged lower hemi-
sphere. The transition at 𝜃 = 𝜋/2 becomes steeper, suggesting an enhanced transport of
charge along the interface.

At the latest time (𝑡 = 36), the charge separation reaches its most intense state,
with significant negative charge accumulation in the upper hemisphere and a strong posi-
tive charge in the lower hemisphere. The steep gradient observed near 𝜃 = 𝜋/2 indicates a
highly localized transition between charge regions. Additionally, small oscillations appear
in the distribution, particularly near the equator, suggesting the emergence of more com-
plex charge dynamics, potentially due to nonlinear interactions between charge transport
mechanisms. The distinct separation of charges at the equator is a signature of a boundary
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Figure 44 – Surface charge density as a function of the angular position 𝜃 for different time
instants. Results are shown for S = 3.5, R = 1.75, CaE = 0.5 and ReE = 5
for an oblate droplet. The inset defines 𝜃 around the droplet.

layer build up in this region due to the shock of unlike charges driven by the EHD flow.
Recent analytical supports this result showing a finite-time singularity in surface charge
density due to a shock of charges at the equator in the limit of strong surface charge
convection (Peng et al., 2024).

For prolate droplets, when the circulation flows from the equator to the pole, the
charge distribution exhibits distinct characteristics compared to the oblate droplet, as
shown in Fig. 45. While charge accumulation over time remains a general phenomenon
independent of the droplet shape, the surface charge convection in this case preferentially
transports charge from the equatorial region towards the poles. This effect leads to a
pronounced accumulation of positive charge in the upper hemisphere and negative charge
in the lower hemisphere, leading to the formation of polar caps in agreement with recent
analytical work (Peng et al., 2024). Additionally, the transition between hemispheres is
notably smoother compared to other oblate case, indicating a more gradual redistribution
of charge. The surface charge density evolves over time with charge progressively accu-
mulating at the poles while the equatorial region depletes. The charge gradient becomes
steeper as time advances, but it remains smooth rather than developing sharp transitions.
At early times (𝑡 = 0.3), the charge distribution is relatively uniform, but as the system
evolves, the convection-driven transport redistributes charge more efficiently towards the
poles. Notably, in this case, the droplet reaches a steady-state configuration more quickly
due to the weaker convective effects associated with ReE = 1. In contrast, as shown in Fig.
44, when ReE = 5, the stronger convection results in a longer accumulation time, delaying
the steady-state charge distribution as a boundary layer builds up near the equator.

79



0 /4 /2 3 /4

1.0

0.5

0.0

0.5

1.0

q s

t = 0.3
t = 1.5
t = 3
t = 9

Figure 45 – Surface charge density as a function of the angular position 𝜃 for different
time instants. Results are shown for S = 0.5, R = 2, CaE = 0.5 and ReE = 1.
The inset defines 𝜃 around the droplet.

6.4 Quincke Regime

Quincke rotation is a phenomenon in which a particle or droplet placed in an
electric field begins to spontaneously rotate due to the interaction between the induced
dipole moment and the applied field. This effect was first observed in rigid particles but
has since been studied in fluid droplets as well (Quincke, 1896).

For a binary system, the key condition for Quincke rotation to occur is that the
electric relaxation time of the inner phase (𝜏𝑒,𝑖) is greater than that of the outer phase
(𝜏𝑒,𝑜), which can be expressed as S > R. This means that the free charge in the outer fluid
reaches the interface more quickly, making the charge supply at the interface dependent
primarily on the bulk phase charge (Dong; Sau, 2023). For rotation to be sustained, the
applied electric field (E0) must exceed a critical threshold (E𝑐), which is the minimum
field strength required to induce continuous rotation. For 2D droplets, this threshold is
given by the expression derived by Feng (2002):

E𝑐 =

⎯⎸⎸⎷(1 + 1
S)(1 + R)𝜇𝑜

(1 − R
S )𝜏𝑒𝜖𝑜

, (6.2)

where 𝜏𝑒 is the electric relaxation time, expressed by 𝜖𝑜/𝜎𝑜 in this work.

As illustrated in Fig. 46, the induced dipole moment P initially aligns opposite
to the applied electric field E0. If a perturbation displaces P, a torque T = P × E0 is
generated, causing the droplet to rotate around an axis perpendicular to the electric field
direction—this marks the onset of Quincke rotation. When the applied field strength ex-
ceeds the critical threshold (E0 > E𝑐), the dipole no longer stabilizes in a fixed orientation.
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Instead, it undergoes continuous reorientation, sustaining the rotational motion.

(a) A weakly conducting droplet in an external
electric field, where charge polarization in-
duces a dipole moment P in the opposite di-
rection to E0.

(b) Formation of a misaligned dipole
moment P due to the dynamic na-
ture of interfacial charge redistribu-
tion.

Figure 46 – Illustration of a single droplet subjected to an applied electric field E0. The
misalignment of the induced dipole moment P generates a torque, leading
to the droplet’s electrohydrodynamic rotation. (Adapted from Dong and Sau
(2023)).

6.4.1 Single Quincke droplet rotation

The flow pattern around a droplet in the Quincke regime is investigated for a
system with S = 0.5 and R = 0.01, ensuring the necessary conditions for Quincke rotation.
The electric field intensity, maintained above the critical threshold, is controlled by CaE =
0.6 and ReE = 6.0. Figure 47 illustrates the transition from an initial quadrupolar flow
structure to a final circular flow, a hallmark of Quincke rotation. The flow, directed from
the poles to the equator—a configuration previewed by Region III in Fig. 36—significantly
deforms the droplet, transforming it into an oblate shape.

At the early stage (𝑡 = 50), the system exhibits a symmetric quadrupolar flow char-
acterized by counter-rotating vortices around the droplet. The droplet remains centered,
and the field-induced convection results in symmetric charge transport.

At 𝑡 = 100, the quadrupolar flow structure persists outside the droplet, but no-
ticeable changes occur: the symmetric vortex pairs are positioned opposite to each other
along the diagonal of the square domain, as if the symmetry axis had rotated by 45∘

relative to the initial stage. Inside the droplet, a break in symmetry becomes evident as
the internal vortices start merging into a single central vortex.

By 𝑡 = 115, a complete asymmetry emerges in the flow structure, marking the onset
of Quincke rotation. The initially symmetric quadrupolar pattern collapses to a circular
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(a) 𝑡 = 50. (b) 𝑡 = 100.

(c) 𝑡 = 115. (d) 𝑡 = 150.

Figure 47 – Flow pattern transition between quadrupolar flow to circular flow during
Quincke regime of a droplet for S = 0.5, R = 0.01, CaE = 0.6, ReE = 6.0 and
𝜆 = 20. The streamlines are plotted in black and droplet contour in blue.

deformed and elongated flow pattern. Assymetric irregular vortices are also visualized
crossing the periodic boundaries.

At the final stage, shown at 𝑡 = 150, the flow transitions into a circular pat-
tern, marking the fully developed Quincke rotation. The droplet rotates and restores its
initial circular shape almost completely, eliminating most of the previous deformation.
This occurs because the circular flow pattern no longer contains a stretching component,
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preventing further deformation.

The deformation transition during Quincke rotation is illustrated in Fig. 48. For
𝑡 < 100, the droplet remains in the Taylor regime, deforming into an oblate shape. During
the interval 100 < 𝑡 < 130, the deformation peaks at 𝐷 = −0.12, after which the induced
convection transports charges toward the equator, destabilizing the charge distribution
and initiating the Quincke regime (as seen in Figs. 47b and 47c). Between 130 < 𝑡 < 150,
the deformation decreases significantly due to intense electro-rotation and build up of a
circular flow. For 𝑡 > 150, the deformation oscillates around 𝐷 = −0.019, stabilizing at
this value by 𝑡 = 240.
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Figure 48 – Transient deformation during Quincke rotation of Fig. 47.

6.4.2 Tilt angle compared to rigid sphere

The dipole tilt angle, 𝛼, represents the angle between the induced dipole moment
of the droplet and the direction of the applied electric field. This angle plays a crucial role
in the dynamics of Quincke rotation, as it directly influences the induced torque and the
resulting rotational motion. In this section, we compare the tilt angle of a viscous droplet
to that of a rigid sphere.

For a high viscosity ratio (𝜆 ≫ 1), rotation is facilitated as the critical electric field
strength, E𝑐, decreases. In this regime, the threshold for Quincke rotation of a droplet ap-
proaches that of a rigid sphere, making it easier for the droplet to rotate under an applied
electric field. This behavior is consistent with Quincke rotation theory, which predicts
that for sufficiently high viscosity ratios, the critical field strength is well approximated
by E𝑐 ≈ EQ (Salipante; Vlahovska, 2010). To analyze this effect, we consider a system with
material properties corresponding to those used in the work of Salipante and Vlahovska
(2010), as detailed in Table 3.
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Another key parameter governing this behavior is the Maxwell–Wagner capillary
number, CaMW, which represents the ratio between the surface tension and charge relax-
ation timescales:

CaMW = 𝑡𝛾
𝑡𝑀𝑊

= 𝜎𝑜𝜇𝑜𝑎

𝜖𝑜𝛾

(𝑅 + 2)(𝜆+ 1)
𝑆 + 2 . (6.3)

This parameter reflects the balance between shape-restoring mechanisms and charge-
induced deformation. For a fixed set of material properties, varying CaMW is equivalent
to varying the drop size 𝑎. For small droplets, where CaMW is low, surface tension forces
dominate, maintaining the droplet’s approximately spherical shape and making its behav-
ior more comparable to that of a rigid sphere. Conversely, for larger droplets with higher
CaMW, deformation effects become more pronounced, potentially altering the dipole tilt
angle and the onset conditions for Quincke rotation.

Table 3 – Material properties corresponding to the system used in experiments of Sali-
pante and Vlahovska (2010) and other dimensional parameters.

Parameter Symbol Typical Value

Dielectric constant (inner phase) 𝜖𝑖/𝜖0 5.3
Dielectric constant (outer phase) 𝜖𝑜/𝜖0 3.0
Electric conductivity (inner phase) 𝜎𝑖 4.5 × 10−11 S m−1

Electric conductivity (outer phase) 𝜎𝑜 1.23 × 10−12 S m−1

Viscosity (inner phase) 𝜇𝑖 0.69 Pa s
Viscosity (outer phase) 𝜇𝑜 9.74 Pa s
Interfacial tension 𝛾 4.5 mN m−1

Droplet radius 𝑎 0.25, 0.90 mm
Electric field intensity 𝐸0 1.0–4.0 kV cm−1

Table 4 – Dimensionless parameters calculated using the material properties shown in
Table 3.

Parameter Symbol Typical Value

Electric conductivity ratio R 0.027
Dielectric permittivity S 0.57
Viscosity ratio 𝜆 14.1
Maxwell-Wagner Capillary number CaMW 0.44, 1.58
Electric Capillary number CaE 0.04–0.42
Electric Reynolds number ReE 1.07–11.34

In the following, the tilt angle as a function of the applied electric field normalized
by the critical threshold electric field, calculated using Eq. (6.2), is visualized in Fig. 49a.
The solid black line is the complementary of the angle between the steady dipole and
applied electric field in the case of a rigid sphere, which can be denoted by 𝛽 (Salipante;
Vlahovska, 2010):

𝛽 = 𝜋

2 − arctan
⎡⎣(︃E2

0
E2
𝑐

− 1
)︃− 1

2
⎤⎦ (6.4)
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Figure 49 – Both numerical and experimental results correspond to the system described
in Table 3. The experimental data from Salipante and Vlahovska (2010) were
obtained at CaMW = 1.58, whereas the present work and the simulations of
Das and Saintillan (2017) were conducted at CaMW = 0.44.

Except for the early onset of the Quincke regime at E0/E𝑐 ≈ 0.93 in the present
work, the numerical results from this study (red circles) and those of Das and Saintillan
(2017) (green triangles) closely match the experimental data of Salipante and Vlahovska
(2010) (blue dots) for E0/E𝑐 < 1.2. However, for E0/E𝑐 > 1.2, the experimental tilt angles
increase more steeply than the numerical predictions. This deviation can be attributed to
the higher capillary number (CaMW = 1.58) in the experiments, which enhances droplet
deformation and modifies the induced dipole dynamics.

The differences in computational approaches further contribute to the observed
discrepancies. While Das and Saintillan (2017) employed a 3D Boundary Element Method
(BEM), which inherently accounts for more complex interfacial dynamics, the present
study follows a 2D formulation. As a result, the 3D model exhibits slightly lower tilt
angles across the entire range of E0/E𝑐, whereas the 2D approach captures the overall
trends but lacks certain interfacial degrees of freedom, and possible curvature-induced
effects in the azimuthal direction.

The presence of deformation also plays a crucial role in distinguishing the behavior
of a droplet from that of a rigid sphere. Even at low CaMW values, the droplet’s shape
deviates from a perfect sphere, leading to systematically higher tilt angles compared to
the rigid case. The reference black line in Fig. 49a serves as a benchmark, showing that for
most cases, the droplet exhibits larger tilt angles than a rigid sphere due to its ability to
deform. This effect becomes even more pronounced at higher electric field strengths, where
deformation and charge redistribution further alter the droplet’s rotational response.

In terms of deformation (seen in Fig. 49b), the present work captures the transition
between the Taylor and Quincke regimes, demonstrating consistency with Das and Sain-
tillan (2017) results for E0/E𝑐 < 1.0. However, in the Quincke regime, the deformation
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behavior differs: the present work shows a stabilization at 𝐷 ≈ 0.024, whereas Das and
Saintillan’s BEM simulations indicate a gradual increase in deformation. This distinction
arises from the additional degrees of freedom in the 3D formulation, which allow for more
complex interfacial effects and local charge redistribution.
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7 Conclusion

This master’s thesis advances the understanding of droplet dynamics in multifield
environments by systematically investigating two critical aspects: (1) the interplay of
ionic surfactants, shear flow, and electrostatic effects on droplet dynamics, and (2) the
electrohydrodynamic response of clean droplets under applied electric fields, with a focus
on droplet deformation, charge convection, and Quincke rotation.

Through a robust numerical framework integrating level-set and closest-point meth-
ods, we demonstrate that insoluble ionic surfactants dynamically redistribute under shear
and self-generated electric fields, governing droplet deformation through competing mech-
anisms of advection, diffusion, and electromigration. The Mason number, that controls
the charge intensity of the ionic surfactant, plays a pivotal role: small Mason numbers lead
to significant droplet deformation due to strong electrostatic effects, while high Mason
numbers diminish these effects, resulting only in the deformation provided by the exten-
sional component of shear flow. The mobility ratio, which governs electromigration along
the droplet interface, shifts the peak surfactant concentration away from the droplet tips,
altering the charge distribution and influencing the overall shape evolution.

For the electrohydrodynamics of droplets, two interface representations were pro-
posed: a sharp interface model, integrating level-set, closest point, and ghost fluid meth-
ods; and a smoothed interface model, relying solely on the level-set method. Both models
excelled in predicting steady deformation in weak electric field regimes, and the influence
of surface charge convection with the electric Reynolds number. However, only the sharp
interface model could handle strong variations of property ratios, enabling a deeper anal-
ysis of the transition to Quincke rotation. The transition in flow pattern during Quincke
rotation was also investigated and the tilt angle was compared with numerical and experi-
mental results, showing good agreement while deviating slightly from rigid sphere theory,
underscoring the role of droplet deformation and interface mobility.

These findings provide foundational insights and open numerous opportunities for
future research, as outlined below:

Emulsion Stabilization and Droplet Interactions:

• Extend the current framework to study pairwise droplet interactions under electro-
static forces, focusing on how electrostatic effects and surfactant-mediated repulsion
influence coalescence and emulsion microstructure.

• Investigate diffusion dynamics in concentrated emulsions, incorporating long-range
electrostatic interactions to predict bulk rheological properties (e.g., effective vis-
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cosity and normal stress differences).

Electrohydrodynamics and Collective Phenomena:

• Explore collective propulsion via synchronized electrorotation of droplet arrays,
where hydrodynamic and electrostatic interactions generate coordinated motion.
Such systems could enable novel applications in targeted drug delivery, microfluidic
mixing, and wireless control of microscale devices.

• Integrate both studies by investigating the electrohydrodynamics of surfactant-
covered droplets to understand how surface-active molecules impact droplet defor-
mation, electrorotation, and interactions in both pairwise and multi-droplet systems.

This work is innovative in integrating surfactant transport dynamics with electro-
static effects mediated by charged ions, providing a comprehensive framework to study the
coupled interplay of interfacial mechanics and electrostatics. In addition, by proposing an
efficient and versatile numerical methodology, we have established the groundwork for in-
vestigating more complex phenomena in droplet electrohydrodynamics, such as collective
droplet interactions and field-induced Quincke rotation.
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A First derivative using central
finite difference

The central derivative can be obtained by using writing the shift operator in terms
of the central difference operator:

Δ0 = 𝜉1/2 − 𝜉−1/2 → 𝜉 =
⎛⎝1

2Δ0 +
√︃

ℐ + 1
4Δ2

0

⎞⎠2

. (A.1)

The differential operator, then, becomes

𝒟 = 1
Δ𝑥 ln

⎛⎝1
2Δ0 +

√︃
ℐ + 1

4Δ2
0

⎞⎠2

. (A.2)

Expanding the term
√︁

ℐ + 1
4Δ2

0 in its Taylor’s series at Δ0 → 0:√︃
ℐ + 1

4Δ2
0 = 1 + 1

8Δ2
0 + 𝒪(Δ4

0). (A.3)

Substituing Eq. (A.3) in Eq. (A.2), it gives

𝒟 = 2
Δ𝑥 ln

(︂1
2Δ0 + 1 + 1

8Δ2
0 + 𝒪(Δ4

0)
)︂
. (A.4)

Expanding the natural logarithm ln (1 +
[︁

1
2Δ0 + 1

8Δ2
0 + 𝒪(Δ4

0)
]︁
) at Δ0 → 0:

𝒟 = 2
Δ𝑥

⎡⎢⎣1
2Δ0 + 1

8Δ2
0 + 𝒪(Δ4

0) −

(︁
1
2Δ0 + 1

8Δ2
0 + 𝒪(Δ4

0)
)︁2

2 + 𝒪(Δ3
0)

⎤⎥⎦
= 2

Δ𝑥

[︂1
2Δ0 + 1

8Δ2
0 − 1

8Δ2
0 + 𝒪(Δ3

0)
]︂

= Δ0

Δ𝑥 + 𝒪(Δ𝑥2). (A.5)

Applying the operator in Eq. (A.5) in the sequence defined by 𝑓(𝑥𝑖), it gives

𝐷𝑓(𝑥𝑖) = 𝑓 ′(𝑥𝑖) = Δ0𝑧𝑖
Δ𝑥2 + 𝒪(Δ𝑥2) = 𝑧𝑖+1/2 − 𝑧𝑖−1/2

Δ𝑥 + 𝒪(Δ𝑥2) (A.6)

As 𝑓(𝑥𝑖) is not defined at 𝑥𝑖+1/2 or 𝑥𝑖−1/2, a central finite difference approximation
can be written as

𝑓 ′(𝑥𝑖) = 𝑧𝑖+1 − 𝑧𝑖−1

2Δ𝑥 + 𝒪(Δ𝑥2) (A.7)

without losing the order accuracy.
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B Second derivative using central
finite difference

Taking the square of Eq. (A.5), it gives a second derivative differential operator:

𝒟2 =
[︃

Δ0

Δ𝑥 + 𝒪(Δ𝑥2)
]︃2

= Δ2
0

Δ𝑥2 + 𝒪(Δ𝑥2). (B.1)

Applying the operator in Eq. (B.1) in the sequence defined by 𝑓(𝑥𝑖), it gives

𝒟2𝑓(𝑥𝑖) = 𝑓 ′′(𝑥𝑖) = Δ0

(︂
𝑧𝑖+1/2 − 𝑧𝑖−1/2

Δ𝑥2

)︂
+ 𝒪(Δ𝑥2)

= Δ0𝑧𝑖+1/2 − Δ0𝑧𝑖−1/2

Δ𝑥2 + 𝒪(Δ𝑥2)

= 𝑧𝑖+1 − 𝑧𝑖 − 𝑧𝑖 + 𝑧𝑖−1

Δ𝑥 + 𝒪(Δ𝑥2)

𝑓 ′′(𝑥𝑖) = 𝑧𝑖+1 − 2𝑧𝑖 + 𝑧𝑖−1

Δ𝑥 + 𝒪(Δ𝑥2). (B.2)
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C Derivation of surfactant
transport equation

The derivation of the surfactant transport equation can be continued from the
mass balance in Eq. (2.27). Developing the left-side of it:

∫︁
𝑆

[︃
𝜕𝑐

𝜕𝑡
+ ∇𝑠 · (𝑐u)

]︃
𝑑𝑆 = −

∮︁
𝐶

b̂ ·
[︂
−𝐷𝑠∇𝑠𝑐+ 𝐷𝑠𝑧𝑒

𝑘𝐵𝑇
𝑐E𝑠

]︂
𝑑Γ. (C.1)

Using the surface divergence theorem (Slattery; Sagis; Oh, 2007):∮︁
𝐶

F · b̂𝑑Γ =
∫︁
𝑆

∇𝑠 · F𝑑𝑆, (C.2)

where F =
[︁
−𝐷𝑠∇𝑠𝑐+ 𝐷𝑠𝑧𝑒

𝑘𝐵𝑇
𝑐E
]︁
. Then,

∫︁
𝑆

[︃
𝜕𝑐

𝜕𝑡
+ ∇𝑠 · (𝑐u)

]︃
𝑑𝑆 = −

∫︁
𝑆

∇𝑠 ·
[︂
−𝐷𝑠∇𝑠𝑐+ 𝐷𝑠𝑧𝑒

𝑘𝐵𝑇
𝑐E𝑠

]︂
𝑑𝑆 (C.3)

Applying the Localization Theorem,

𝜕𝑐

𝜕𝑡
+ ∇𝑠 · (𝑐u) = ∇𝑠 ·

(︂
𝐷𝑠∇𝑠𝑐− 𝐷𝑠𝑧𝑒

𝑘𝐵𝑇
𝑐E𝑠

)︂
. (C.4)
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D Droplet elongation prediction

To obtain a relation for droplet elongation, let assume that all charges are con-
centrated as two point charges at the tips, each with 𝑄/2, where 𝑄 is the total electric
charge as visualized in Fig. 50.

Figure 50 – Schematic representation of the droplet model under elongation, where the
total electric charge 𝑄 is assumed to be concentrated as two point charges at
the tips, each with 𝑄/2. The resulting electric force is modeled as a Coulombic
interaction between the charges.

The only force balance that arises from this simplified model is between the cap-
illary force and the electric (Coulomb) force, yielding the expression:

2𝜋𝛾0𝐵 = 𝑄2

64𝜖0𝐿2 . (D.1)

Since the balance involves capillary resistance competing with electrostatic effects,
it is natural to consider the role of the Capillary number (Ca) and the Mason number
(Mn). To explore this, we compute the ratio between them:

Ca
Mn = 𝜇𝑜𝛾̇𝑎

𝛾0
· 𝑧

2
1F2𝑐2

0
𝜖0𝜇𝑜𝛾̇

. (D.2)

Recognizing that the reference surface charge density is defined as

𝑞𝑠,0 = 𝑧2
1F2𝑐2

0, (D.3)

the expression simplifies to:
Ca
Mn =

𝑞2
𝑠,0𝑎

𝛾0𝜖0
. (D.4)

103



The total electric charge 𝑄 is related to 𝑞𝑠,0 by:

𝑞𝑠,0 = 𝑄

4𝜋𝑎2 . (D.5)

Substituting into the previous expression, we obtain:

Ca
Mn = 𝑄2

16𝜋2𝑎3𝛾0𝜖0
, (D.6)

which can be rearranged as:
𝑄2

𝛾0𝜖0
= 16𝜋2𝑎3 Ca

Mn . (D.7)

Next, we manipulate Eq. (D.1) algebraically:

𝐵𝐿2 = 𝑄2

128𝜋𝜖0𝛾0
. (D.8)

Substituting Eq. (D.7) into Eq. (D.8), we find:

𝐵𝐿2 = 1
128𝜋2 · 16𝜋2𝑎3 Ca

Mn
= 1

8𝑎
3 Ca
Mn .

(D.9)

Since the droplet volume is conserved, the volume of the deformed (ellipsoidal)
droplet must equal that of the original sphere. Assuming axisymmetry ellipsoid:

4
3𝜋𝑎

3 = 4
3𝜋𝐿𝐵

2 ⇒ 𝑎3 = 𝐿𝐵2. (D.10)

Substituting this into Eq. (D.9) gives:

𝐵𝐿2 = 1
8𝐿𝐵

2 Ca
Mn

𝐿 = 1
8𝐵

Ca
Mn .

(D.11)

Therefore, the droplet elongation ratio is:

𝐿

𝐵
= 1

8
Ca
Mn , (D.12)

indicating that the droplet elongates indefinitely as Mn decreases, due to the dominance
of electrostatic forces over surface tension.
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E Derivation of surface charge
transport equation

Starting from the volumetric charge transport equation, one can proceed to eval-
uate the right-hand side of Eq. (3.6):

∇ · (𝜎E) = 𝜎∇ · E + ∇𝜎 · E. (E.1)

The Gauss’s Law is invoked to obtain the divergence of the electric field as follows:

∇ · (𝜖E) = 𝑞𝑣

𝜖∇ · E + ∇𝜖 · E = 𝑞𝑣

∇ · E = 𝑞𝑣 − ∇𝜖 · E
𝜖

. (E.2)

Substituing Eq. (E.2) in Eq. (E.1), it gives

∇ · (𝜎E) = 𝜎
[︂
𝑞𝑣 − ∇𝜖 · E

𝜖

]︂
+ ∇𝜎 · E. (E.3)

The gradient of dielectric permittivity and electric conductivity can be obtained
by taking the gradient of the smoothed functions of material properties in Eq. (4.14) that
gives

∇𝜖 = (𝜖𝑜 − 𝜖𝑖)∇𝐻𝜀(𝜑)

∇𝜖 = (𝜖𝑜 − 𝜖𝑖)
𝑑𝐻𝜀(𝜑)
𝑑𝜑

∇𝜑. (E.4)

The derivative 𝑑𝐻𝜀(𝜑)
𝑑𝜑

is precisely the smoothed Dirac delta and ∇𝜑 = n|∇𝜑|, then

∇𝜖 = (𝜖𝑜 − 𝜖𝑖)𝛿𝜀(𝜑)|∇𝜑|n (E.5)

and
∇𝜎 = (𝜎𝑜 − 𝜎𝑖)𝛿𝜀(𝜑)|∇𝜑|n. (E.6)

Substituing Eqs. (E.5) and (E.6) in Eq. (E.3), the ohmic term can be written as:

∇ · (𝜎E) = 𝜎

𝜖
[𝑞𝑣 − (𝜖𝑜 − 𝜖𝑖)𝛿𝜀(𝜑)|∇𝜑|E · n] + (𝜎𝑜 − 𝜎𝑖)𝛿𝜀(𝜑)|∇𝜑|E · n. (E.7)

Substituting Eq. (E.7) into the right-hand side of Eq. (3.6), it gives:

𝜕𝑞𝑣
𝜕𝑡

+ ∇ · (𝑞𝑣u) = 𝜎

𝜖
[(𝜖𝑜 − 𝜖𝑖)𝛿𝜀(𝜑)|∇𝜑|E · n − 𝑞𝑣] + (𝜎𝑜 − 𝜎𝑖)𝛿𝜀(𝜑)|∇𝜑|E · n. (E.8)
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Using the definition of the Dirac delta distribution, 𝑞𝑣 is written in terms of 𝑞𝑠
using Eq. (4.65). Thus, Eq. (E.8) becomes

𝜕𝑞𝑠
𝜕𝑡
𝛿𝜀(𝜑)|∇𝜑|+∇·(𝑞𝑠u)𝛿𝜀(𝜑)|∇𝜑| = −

{︂
𝜎

𝜖
[𝑞𝑠 − (𝜖𝑜 − 𝜖𝑖)E · n] + (𝜎𝑜 − 𝜎𝑖)E · n

}︂
𝛿𝜀(𝜑)|∇𝜑|.

(E.9)

Dividing both sides by 𝛿𝜀(𝜑)|∇𝜑|, it gives

𝜕𝑞𝑠
𝜕𝑡

+ ∇ · (𝑞𝑠u) = −
{︂
𝜎

𝜖
[𝑞𝑠 − (𝜖𝑜 − 𝜖𝑖)E · n] + (𝜎𝑜 − 𝜎𝑖)E · n

}︂
. (E.10)

As 𝑞𝑠 is only defined on the interface, Eq. (E.10) should be solved only on the
interface, i.e., ∀ x ∈ Γ, then all quantities are evaluated at the interface. Hence,

𝜕𝑞𝑠
𝜕𝑡

+ ∇𝑠 · (𝑞𝑠u) = 𝜎𝑠
𝜖𝑠

[(𝜖𝑜 − 𝜖𝑖)E𝑠 · n − 𝑞𝑠] + (𝜎𝑖 − 𝜎𝑜)E𝑠 · n. (E.11)
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F Derivation of Frumkin-Davies
isotherm model for interfacial

tension

Consider the Gibbs adsorption equation in the form of

Γ = − 1
𝑛𝑅𝑇

𝜕𝛾

𝜕(ln𝐶) . (F.1)

This is a pseudo-PDE which can be solved separating it:

𝑑𝛾 = −𝑛𝑅𝑇Γ𝑑(ln𝐶). (F.2)

In equilibrium, the relation between the surfactant coverage Γ and the bulk sur-
factant concentration 𝐶 can be obtained by the Frumkin-Davies isotherm relation, which
is given by

Γ
Γ∞

= 𝑘𝐶

𝑘𝐶 + exp
(︃
𝐾Γ
Γ∞

)︃
exp

(︃
−𝑧1𝐹𝜓𝑠

𝑅𝑇

)︃ , (F.3)

where

Isolating the bulk surfactant concentration:

𝐶 =
exp

(︃
𝐾Γ
Γ∞

)︃
exp

(︃
−𝑧1𝐹𝜓𝑠

𝑅𝑇

)︃

𝑘

(︃
Γ∞

Γ − 1
)︃ (F.4)

Taking the natural logarithm on both sides:

ln𝐶 = ln

⎡⎢⎢⎢⎢⎣
exp

(︃
𝐾Γ
Γ∞

)︃
exp

(︃
−𝑧1𝐹𝜓𝑠

𝑅𝑇

)︃

𝑘

(︃
Γ∞

Γ − 1
)︃

⎤⎥⎥⎥⎥⎦
= ln

[︃
exp

(︃
𝐾Γ
Γ∞

)︃]︃
+ ln

[︃
exp

(︃
−𝑧1𝐹𝜓𝑠

𝑅𝑇

)︃]︃
− ln 𝑘 − ln

(︃
Γ∞

Γ − 1
)︃

= 𝐾Γ
Γ∞

− 𝑧1𝐹𝜓𝑠
𝑅𝑇

− ln 𝑘 − ln
(︃

Γ∞

Γ − 1
)︃

(F.5)
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Since differentiation is a linear operator, it is possible to take the differential of
ln𝐶 and apply the distributive property on the right-side :

𝑑(ln𝐶) = 𝑑

[︃
𝐾Γ
Γ∞

− 𝑧1𝐹𝜓𝑠
𝑅𝑇

− ln 𝑘 − ln
(︃

Γ∞

Γ − 1
)︃]︃

= 𝑑

(︃
𝐾Γ
Γ∞

)︃
− 𝑑

(︃
𝑧1𝐹𝜓𝑠
𝑅𝑇

)︃
− 𝑑(ln 𝑘) − 𝑑

[︃
ln
(︃

Γ∞

Γ − 1
)︃]︃

. (F.6)

Since 𝐾, Γ∞, 𝑧1, 𝐹 , 𝑅, 𝑇 , and 𝑘 are all constants, the expression simplifies to:

𝑑(ln𝐶) = 𝐾

Γ∞
𝑑Γ − 𝑧1𝐹

𝑅𝑇
𝑑𝜓𝑠 + Γ∞

Γ∞Γ − Γ2𝑑Γ

=
(︃
𝐾

Γ∞
+ Γ∞

Γ∞Γ − Γ2

)︃
𝑑Γ − 𝑧1𝐹

𝑅𝑇
𝑑𝜓𝑠. (F.7)

Substituing Eq. (F.7) in Eq. (F.2):

𝑑𝛾 = −𝑛𝑅𝑇Γ
[︃(︃

𝐾

Γ∞
+ Γ∞

Γ∞Γ − Γ2

)︃
𝑑Γ − 𝑧1𝐹

𝑅𝑇
𝑑𝜓𝑠

]︃

= −𝑛𝑅𝑇
[︃(︃

𝐾

Γ∞
Γ + Γ∞

Γ∞ − Γ

)︃
𝑑Γ − 𝑧1𝐹

𝑅𝑇
Γ𝑑𝜓𝑠

]︃
. (F.8)

Integrating both sides and manipulating it:

𝛾 = −𝑛𝑅𝑇
[︃
𝐾

Γ∞

∫︁
Γ𝑑Γ +

∫︁
Γ∞

Γ∞ − Γ𝑑Γ − 𝑧1𝐹

𝑅𝑇

∫︁
Γ𝑑𝜓𝑠

]︃
+ 𝐶1

= −𝑛𝑅𝑇
[︃
𝐾Γ2

2Γ∞
− Γ∞ ln (Γ∞ − Γ) − 𝑧1𝐹

𝑅𝑇

∫︁
Γ𝑑𝜓𝑠

]︃
+ 𝐶1

= −𝑛𝑅𝑇
{︃
𝐾Γ2

2Γ∞

Γ∞

Γ∞
− Γ∞ ln

[︃
Γ∞

Γ∞
(Γ∞ − Γ)

]︃}︃
− 𝑛𝑧1𝐹

∫︁
Γ𝑑𝜓𝑠 + 𝐶1

= −𝑛𝑅𝑇Γ∞

⎡⎣𝐾
2

(︃
Γ

Γ∞

)︃2

− ln Γ∞ + ln
(︃

1 − Γ
Γ∞

)︃⎤⎦− 𝑛𝑧1𝐹
∫︁

Γ𝑑𝜓𝑠 + 𝐶1

= −𝑛𝑅𝑇Γ∞

⎡⎣𝐾
2

(︃
Γ

Γ∞

)︃2

+ ln
(︃

1 − Γ
Γ∞

)︃⎤⎦− 𝑛𝑧1𝐹
∫︁

Γ𝑑𝜓𝑠 + 𝑛𝑅𝑇Γ∞ ln Γ∞ + 𝐶1⏟  ⏞  
𝐶2

(F.9)

Rearranging we obtain the Frumkin-Davies isotherm:

𝛾 = 𝐶2 + 𝑛𝑅𝑇Γ∞

⎡⎣ln
(︃

1 − Γ
Γ∞

)︃
− 𝐾

2

(︃
Γ

Γ∞

)︃2
⎤⎦− 𝑛𝑧1𝐹

∫︁
Γ𝑑𝜓𝑠 (F.10)

When Γ = 0 (no surfactant coverage), 𝛾 = 𝛾0:

𝛾0 = 𝐶2 + 𝑛𝑅𝑇Γ∞ ln 1 → 𝐶2 = 𝛾0. (F.11)
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On the other hand 𝑞𝑠 = 𝑧1𝐹Γ, leading to:

𝛾 = 𝛾0 + 𝑛𝑅𝑇Γ∞

⎡⎣ln
(︃

1 − Γ
Γ∞

)︃
− 𝐾

2

(︃
Γ

Γ∞

)︃2
⎤⎦− 𝑛

∫︁
𝑞𝑠𝑑𝜓𝑠 (F.12)
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