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ABSTRACT

STRUCTURAL HEALTH MONITORING OF WIND TURBINES
COMPONENTS USING MACHINE LEARNING

M.Sc. Jefferson da Silva Coelho

Keywords: Unsupervised-supervised machine learning, Damage index, Damage detection, Un-
certainty quantification.

Wind turbines are complex electromechanical systems that require continuous monitoring
to ensure operational efficiency, minimise costs, and prevent critical failures. ML has shown
great promise in SHM by automating defect detection through data-driven methods. Vibration-
based ML techniques are particularly effective for monitoring turbine components such as blades,
towers, and gearboxes. However, challenges persist in adapting SHM methods to complex en-
vironmental conditions and ensuring reliable monitoring and failure detection. The objective of
this work is to propose a data-driven SHM-ML methodology designed for pattern recognition,
damage detection, and quantification in wind turbine components. Three case studies were pro-
posed to validate the SHM-ML approach, comprising supervised regression and classification
models, feature extraction techniques and data augmentation to improve the robustness and
reliability of the models. The first study monitored and evaluated three failure events during the
operation of a real wind turbine using the acceleration time spectrum as raw monitoring data.
The second case focused on the detection and classification of torque loosening in bolted joints
based on frequency domain spectral signals from experimental tests, combining supervised and
unsupervised techniques with a damage index derived from the dynamic response. The third
case integrates regression algorithms with data augmentation techniques to enhance an accu-
rate estimate of torque loosening using raw vibration spectra in bolted structures. The results
demonstrated high accuracy in the estimation and classification of damage, validating the effec-
tiveness of the SHM-ML methodology developed. These findings contribute to the advancement
of data-driven approaches to wind turbine SHM, increasing reliability and operational safety.
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RESUMO

MONITORAMENTO DA INTEGRIDADE ESTRUTURAL DE
COMPONENTES DE TURBINAS EÓLICAS UTILIZANDO APRENDIZADO

DE MÁQUINA

M.Sc. Jefferson da Silva Coelho

Palavras-chave: Aprendizado de máquina supervisionado e não supervisionado, índice de
danos, detecção de danos, quantificação de incertezas.

As turbinas eólicas são sistemas eletromecânicos complexos que exigem monitoramento
contínuo para garantir a eficiência operacional, minimizar os custos e evitar falhas críticas. O
ML tem se mostrado muito promissor no SHM, automatizando a detecção de defeitos por meio
de métodos orientados por dados. As técnicas de ML baseadas em vibração são particularmente
eficazes para monitorar componentes de turbinas, como lâminas, torres e caixas de engrenagens.
No entanto, ainda há desafios para adaptar os métodos SHM a condições ambientais complexas
e garantir o monitoramento confiável e a detecção de falhas. O objetivo deste trabalho é propor
uma metodologia de algoritmo de ML orientada por dados projetada para reconhecimento de
padrões, detecção e quantificação de danos em componentes de turbinas eólicas. Três estudos de
caso foram propostos para validar a abordagem SHM-ML. A abordagem proposta aproveitou
os modelos de regressão e classificação supervisionados, as técnicas de extração de recursos e o
aumento de dados para melhorar a robustez e a confiabilidade dos modelos. O primeiro estudo
monitorou e avaliou três eventos de falha durante a operação de turbina eólica usando o espectro
de tempo de aceleração como dados brutos de monitoramento. O segundo caso concentrou-
se na detecção e classificação do afrouxamento de torque em juntas aparafusadas com base
em sinais espectrais de domínio de frequência de testes experimentais, combinando técnicas
supervisionadas e não supervisionadas com um índice de danos derivado da resposta dinâmica. O
terceiro caso integra algoritmos de regressão com técnicas de aumento de dados para melhorar a
estimativa precisa do afrouxamento do torque usando espectros de vibração brutos em estruturas
aparafusadas. Os resultados demonstraram alta precisão na estimativa e classificação de danos,
validando a eficácia da metodologia SHM-ML desenvolvida. Essas descobertas contribuem para
o avanço das abordagens orientadas por dados para o SHM de turbinas eólicas, aumentando a
confiabilidade e a segurança operacional.
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STRESZCZENIE

MONITOROWANIE STANU TECHNICZNEGO TURBIN WIATROWYCH Z
WYKORZYSTANIEM UCZENIA MASZYNOWEGO

M.Sc. Jefferson da Silva Coelho

Słowa kluczowe: Uczenie maszynowe nadzorowane i nienadzorowane, wskaźnik uszkodzenia,
wykrywanie uszkodzeń, ocena niepewności.

Turbiny wiatrowe to złożone systemy konstrukcyjno - budowlane, które wymagają ciągłego
monitorowania w celu zapewnienia efektywności użytkowej, minimalizacji kosztów oraz zapobie-
gania awariom. Są to konstrukcje wieżowe o znacznej wysokości i smukłości, znajdujące się pod
działaniem złożonych obciążeń aerodynamicznych, wynikających z działania wiatru. Obciążenia
działające na tego typu konstrukcje dodatkowo zmieniają się w sytuacjach oblodzenia i zmian
temperatury. Uczenie maszynowe (z ang. Machine Learning - ML) wykazuje duży potencjał w
monitorowaniu stanu technicznego konstrukcji (z ang. Structural Health Monitoring – SHM), w
szczególności wieżowych, poprzez wykrywanie uszkodzeń przy pomocy metod wykorzystujących
dane pomiarowe. Techniki ML oparte na analizie drgań są szczególnie skuteczne w monitoro-
waniu elementów turbin wiatrowych, takich jak łopaty, wieża i przekładnia. Nieustanny rozwój
technologii turbin wiatrowych, zmienne warunki środowiskowe, w których turbiny się znajdują
sprawiają, iż nadal istnieje potrzeba rozwijania metod związanych z monitorowaniem konstruk-
cji w celu niezawodnej i bezawaryjnej pracy turbin. Celem niniejszej pracy jest opracowanie
metodyki uczenia maszynowego opartego na pomierzonych parametrach pracy i odpowiedzi
turbin wiatrowych na działające obciążenia. W proponowanych rozwiązaniach algorytmicznych
stosowane są rozpoznawanie wzorców, rozpoznawanie uszkodzeń oraz ocena uszkodzeń elemen-
tów turbin wiatrowych. Zastosowano modele nadzorowanej regresji i klasyfikacji, w których
przewidywano wartości liczbowe na podstawie oznaczonych danych wyjściowych, a także wyko-
rzystano metody przekształcania surowych danych w zestaw istotnych informacji wykorzysty-
wanych w algorytmie uczenia maszynowego. W celu poprawy wydajności i niezawodności mo-
delu zastosowano metodę rozszerzania danych (data augmentation). W pracy analizowano trzy
przypadki związane z zastosowaniem algorytmów monitorowania stanu technicznego konstrukcji
turbin wiatrowych. W pierwszej analizie przeprowadzono klasyfikację uszkodzeń turbiny wiatro-
wej podczas jej pracy. Analiza obejmowała monitorowanie i ocenę trzech zdarzeń awaryjnych
podczas pracy turbiny wiatrowej Aventa, wykorzystując jako surowe dane monitorujące widmo
czasowe. W drugim przypadku zastosowany algorytm pozwalał na wykrywanie zmian momentu
dokręcenia połączenia śrubowego. Połączenia śrubowe są bardzo istotne w konstrukcji turbin
wiatrowych, gdyż segmenty stalowej wieży turbiny wiatrowej łączone są przy pomocy kołnierzo-
wego połączenia śrubowego. W celu określenia zmian momentu dokręcenia zastosowano sygnały
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spektralne w dziedzinie częstotliwości. Dane pochodziły z badań laboratoryjnych. W tym przy-
padku łączono techniki nadzorowane i nienadzorowane. Na podstawie odpowiedzi dynamicznej
określono wskaźniki uszkodzenia. Trzeci przypadek obejmuje ocenę zmiany momentu dokręce-
nia łączników. Zastosowano algorytm regresyjny w połączeniu z metodą augmentacji danych w
celu dokładniejszego oszacowania luzowania momentu dokręcenia na podstawie widma drgań.
Uzyskane wyniki wykazały wysoką dokładność w ocenie i klasyfikacji uszkodzeń, potwierdzając
skuteczność opracowanej metodyki monitorowania konstrukcji z zastosowaniem uczenia maszy-
nowego. Uzyskane rezultaty przyczyniają się do rozwoju metod opartych na analizie danych
pomiarowych do monitorowania stanu technicznego turbin wiatrowych, zwiększając ich nieza-
wodność i bezpieczeństwo użytkowania. Proponowane metody są szczególnie efektywne w ocenie
stanu technicznego konstrukcji i w przyszłości staną się podstawowym narzędziem eksperckim
w identyfikacji zmian konstrukcji budowlanych.
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1 Introduction

Modern engineering structures and systems face growing challenges due to climate change,
ageing infrastructure, and evolving monitoring demands. These factors drive traditional methods
to their limits, highlighting the need for more resilient and adaptive solutions. Hence, engineering
systems must integrate advanced materials, real-time monitoring, and intelligent design strate-
gies to address these demands. The rapid advancement of digital technologies is transforming
structural health monitoring (SHM). Innovations like the Internet of Things, virtual sensors, and
digital twin technology enable real-time assessment of structural conditions, creating on-demand
tools to model physical assets and predict potential failures. This digital evolution is particu-
larly critical for renewable energy systems, which are expanding and operating under constant
environmental exposure. Ensuring their reliability and efficiency requires high-performance ma-
terials, rapid diagnostic methods, and advanced data processing tools. As a result, the demand
for smarter, more predictive SHM solutions continues to evolve and transform the future of
engineering infrastructure.

Wind energy has attracted notable attention over the past decade due to its potential
as a clean, renewable energy source and global support for its development, especially in the
intensified use of renewable energy [1]. The sector’s latest projections evidence the growing
importance of wind energy. According to Global Wind Report 2024, [2], published by the Global
Wind Energy Council (GWEC), global installed wind power capacity will exceed 791 GW by
the end of 2028 (see Figure 1.1), with an average of 158 GW of new installations annually until
then. This rapid expansion is concentrated in the key markets of China, the EU, the US, India,
and Brazil [3].

Figure 1.1: Global installed wind capacity [2].

Due to the importance of obtaining energy from wind in the entire area of renewable energy
sources, proper planning of wind farms is essential. In the world and individual countries, the
principles of design, location, construction, and use of wind turbines are regulated in detail. For
example, in Poland, the key legal act concerning the construction and operation of wind turbines
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is a document on investments in wind farms [4]. This document introduces the principle of the
minimum distance of wind farms from residential buildings and forms of nature conservation.
Work on regulations to liberalise the principles of the location of wind turbines is currently
underway to amend this document. The proposed changes include, among others, reducing
the minimum distance from buildings to 500 meters. The construction law [5] also defines the
principles of mounting wind turbines directly on a building, and it is planned to introduce
further simplifying solutions. The location of wind turbines must be consistent with the local
spatial development plan [6]. In the absence of such a plan, it is necessary to obtain a decision
on development conditions. The construction of a wind turbine on a separate foundation is
treated as a separate construction object, which requires obtaining appropriate building and use
permits.

Wind turbines are energy sources that convert the kinetic energy of the wind (wind energy)
into electrical energy from a renewable source [7]. They are generally categorised by their axis
orientation, horizontal or vertical, and by their installation location onshore, turbines on land or
offshore, and turbines at sea. Turbines are composed of mechanical and electrical components
interlinked [8]. Their main subsystems comprising various components are the nacelle, rotor,
tower, blades, and foundation, as shown in Figure 1.2. They are tower structures of considerable
height and slenderness, subject to complex aerodynamic loads resulting from the action of the
wind. The loads acting on such structures also change in icing and temperature changes. Those
turbines are complex structural and building systems that require continuous monitoring to
ensure operational efficiency, minimise costs, and prevent failures.

Blade

NacelleRotor

Tower

Foundation

Figure 1.2: Wind turbine mains sub-parts (Source: own study).
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With the rapid advance of the wind energy sector, production has increased yearly. This
progress drives the construction of ever larger, more powerful, and technologically advanced
wind turbines [9]. However, as these turbines evolve in scale and complexity, they face significant
challenges. On the one hand, an increase in turbine size and capacity allows for greater efficiency
in energy generation. On the other hand, these advances also bring structural and operational
implications [10]. Turbines are subject to huge mechanical loads and extreme environmental
conditions during operation, which has increased the frequency of failures and maintenance costs
[11]. These failures can reduce the reliability of wind turbines and increase unexpected shutdowns
and maintenance requirements [9]. Studies indicate that the operating and maintenance costs
for onshore and offshore wind turbines represent 10-15% and 20-35% of total lifetime costs
in wind turbine systems [12]. As a result, the wind energy industries face a high demand for
improvements in the reliability, safety, availability, and productivity of wind turbine systems
[13].

(a) Netherlands (b) Brazil

(c) Germany (d) USA

Figure 1.3: Wind turbine accidents [14, 15, 16, 17].

16



Like any other electromechanical system, wind turbines are subject to several unforeseen
and serious failures that can result in fatal disasters [18]. With the rapid expansion of wind
energy worldwide, there has been a significant increase in the frequency of accidents at wind
farms, with several reported cases. In recent years, the wind energy sector has experienced some
catastrophic failures, such as the one in the Netherlands in 2013, where a turbine fired up during
maintenance, causing a loss of employee life (Figure 1.3a). In 2021, a set of nacelles and blades
fell 100m from a Delta 1 wind farm turbine tower in Piaui, Brazil (Figure 1.3b). An accident
occurred in Germany in December 2022 when a wind turbine caught fire (Figure 1.3c). The same
year, with strong winds, a tornado in Texas, USA, resulted in blade failure in at least three wind
turbines (Figure 1.3d).

Table 1.1: Typical failures in wind turbines components and causes [12, 19, 20, 21].

Category Components Causes

Mechanical

Blades and rotors Corrosion of blades and hub; crack; reduced stiff-
ness; increased surface roughness; deformation of the
blades; errors of pitch angle; and imbalance of rotors,
etc.

Gearbox Imbalance and misalignment of shaft; damage of
shaft, bearing and gear; broken shaft; high oil tem-
perature; leaking oil; and poor lubrication, etc.

Bearings Overheating; and premature wear caused by unpre-
dictable stress, etc.

Main shaft Misalignment; crack; corrosion; and coupling failure,
etc.

Hydraulic Faults Sliding valve blockage; oil leakage, etc.
Mechanical braking
system

Hydraulic failures; and wind speed exceeding the
limit, etc.

Connections system Flexible coupling; fixed connection (bolts).
Tower Poor quality control during the manufacturing pro-

cess; improper installation and loading; harsh envi-
ronment, etc.

Electrical
Generator Excessive vibrations of generator; overheating of gen-

erator and bearing; abnormal noises; insulation dam-
age.

Electrical
systems/devices

Broken buried metal lines; corrosion or crack of
traces; board delamination; component misalign-
ment; electrical leaks; cold-solder joints, etc.

Sensors Malfunction or physical failure of a sensor; malfunc-
tion of hardware or the communication link; and er-
ror of data processing or communication software.

Environmental

Lightning strikes Cause damage to turbine components, e.g. rotor
blades and electrical systems.

Temperatures variations Low/high temperatures can cause materials and
components to expand or contract, accelerating fa-
tigue.

Humidity Accelerate corrosion-fatigue; mold; condensation;
freezing; and electrical failures.

Corrosion Due to the harsh and highly corrosive environmen-
tal conditions in which they operate, especially in
coastal or offshore installations.

Failure mechanisms in wind turbines can be classified into three main categories [19]: me-
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chanical, electrical and environmental causes. Mechanical failures generally affect components
such as the rotor blades, connections, gearbox, bearings and main shaft, risking the turbine’s
performance [22]. In the electrical system, which includes generators, converters and control sys-
tems, failures can result from insulation degradation, thermal voltages and electrical transients,
impacting the efficiency and safety of the operation [23]. Environmental factors such as extreme
temperatures, atmospheric discharges, humidity and corrosion pose significant challenges to tur-
bine reliability and service life [24]. Typical failures of wind turbine components and their causes
are described in Table 1.1.

(a) (b) (c)

Fractured section of the tower
Fracture of bolts 

connected to the flange

Fractured bolts

(d)

Figure 1.4: Wind turbine mechanical failure events: (a) failure of the pitch drive system; (b) aerodynamic
imbalance due to roughness effects; (c) Icing on the blade [25]; (d) Flange and bolts of a tower failing
on-site [26] (© Creative Commons Attribution 4.0 International).

Common mechanical failures in wind turbines are related to icing, aerodynamic imbalance,
flexure coupling drive failure, and connections associated with bolts, as illustrated in Figure 1.4.
Mechanical failure in the pitch drive system, related to flexible coupling responsible for adjusting
the blade angles, is shown in Fig. 1.4a. This failure type results in a loss of pitch control.
Figure 1.4b shows the aerodynamic imbalance fault, which imposes changes in the blade surface,
modifies the airflow and reduces the turbine’s aerodynamic efficiency. In the example case, the
imbalance is simulated by applying roughness tape to the blade. Icing is a common event due
to environmental conditions directly affecting the turbine’s mechanical components, such as
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the blades. Figure 1.4c shows ice formation on the blade, which compromises aerodynamic
performance and causes an operational imbalance, especially in cold weather conditions.

Wind turbines are made of several components, and it is common to use bolted joints to
connect those components. Large bolts are used at critical points, such as the tower flange, the
blade root, and certain nacelle connections. However, bolts can become loose during normal
operation due to prolonged operation and exposure to vibration [27, 28]. Excessive wear of the
joints can result in serious failures, including tower collapse, blade separation or even detachment
of the rotor from the nacelle [29]. Failures of wind turbine blade root bolts were reported at a
wind farm in Inner Mongolia, China. After three years of performance, the turbine blade root
bolts suddenly broke, and the blade fell [30]. Another case is a fracture of the screws connecting
the blade to the hub of the wind turbine rotor [31]. This failure occurred soon after the start of
the wind turbine. The disaster was preceded by strong winds for a few days, which caused the
tower’s collapse. In 2008, a typhoon hit Taiwan and toppled a wind turbine tower off the coast
of the port of Taichung. A study by Chou and Tu [26] identified that strong winds, insufficient
strength of bolts and poor-quality control of bolts during construction were the likely causes of
the tower’s collapse (Figure 1.4d).

Monitoring systems, as wind turbines, have become more complex. It must guarantee greater
reliability, efficiency and the ability to identify faults. However, detecting these problems is
challenging as turbines operate in extreme and variable environments. Sensors can’t always
cope well with these challenges, which makes it essential to use more advanced and adaptable
methods to analyse large volumes of often abnormal data [32]. In this framework, structural
health monitoring of the systems must identify specific faults that could risk the performance
and structural integrity of turbines, as this is a developing technology that combines sensors and
intelligent computer algorithms capable of carrying out structural monitoring in real-time or in
defined time intervals [33]. Since the integrity and safety of the structures depend on monitoring
the occurrence, formation, and propagation of structural damage, the need to use the SHM
technique to detect early damage in wind turbines is of great importance.

Fault detection methods can be categorised into two approaches [34, 35], the model-based
methods and the data-based methods. Among these, data-based methods have gained promi-
nence because they do not require precise physical models or advanced knowledge of signal pro-
cessing [36, 37, 38]. These methods use statistical and signal processing techniques to identify
patterns and create turbine fault indicators [39]. With advances in artificial intelligence, espe-
cially machine learning, it has become possible to improve these techniques further, enabling
the automatic extraction of relevant information from large volumes of data. The data-based
approach is used in this research, and advances in state-of-the-art technology are proposed.

The manipulation of the data acquired from the monitoring systems has advanced and
become possible with artificial intelligence tools. Machine learning algorithms have made sig-
nificant advances in structural monitoring, achieving higher levels of precision than traditional
methods. These approaches facilitate uncertainty modelling and statistical pattern recognition
analysis, supporting decision-making and handling a wider data fusion. However, developing
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models capable of accurately capturing the various non-linearities and variabilities of the sys-
tem still represents an area of research with great potential to be explored. Current research
into fault detection in turbine components employing machine learning (ML) techniques has ad-
vanced over the decade, but it is still ongoing research. Thus, a significant gap exists in applying
ML-based condition assessment methods incorporating data augmentation, uncertainty quantifi-
cation, and raw vibration spectra acquired from structures. An issue in the data-driven approach
SHM is the reduced value of data, missing data, and data sensitivity towards the damage. Re-
searchers have addressed this issue by mixing experimental data with simulated or synthetic
data. However, these sets often do not accurately represent real-world conditions. Another way
to expand the data set is the use of combined features obtained from the signal. Therefore, it
typically will repeat the information among the feature extractor techniques employed in the
process.

Aside from the reduced dataset, which can be a factor and potential problem for the ma-
chine learning algorithms to perform fault detection accurately, the data size, processing and
computational effort can be a limited factor. Applied signal differentiation education, or feature
extraction, has been used. Feature extraction is one of the critical steps in the SHM process that
will influence the whole monitoring process. Various methods have been used in this process and
must be carefully selected depending on the type of signal and information acquired from the
structure. Indeed, during the monitoring process, the knowledge of the monitoring systems and
our structures associated with the information under search is the main goal previously defined
before using any SHM technique.

1.1 Motivation

Mechanical and structural failures in systems, ranging from aerodynamic imbalance and
icing to bolted joint failures, can severely impact performance, safety, and operational costs.
Traditional monitoring techniques have encountered issues in detecting early-stage faults due to
the complexity of turbine dynamics and the harsh environmental conditions in which they oper-
ate. Therefore, the demand for advanced, data-driven monitoring solutions has intensified. In this
context, SHM integrated with ML offers a transformative approach, enabling real-time fault de-
tection, predictive maintenance, inspection and structure evaluation, and enhanced operational
efficiency. However, current data-driven SHM methods face challenges such as limited datasets,
high computational costs, and difficulty accurately capturing nonlinear system behaviours. Ad-
dressing these limitations requires innovative methodologies that employ machine learning, data
augmentation, and advanced signal processing techniques to improve fault detection accuracy
and robustness. The study motivation is to bridge these gaps by advancing state-of-the-art in
SHM with ML techniques and enhancing the resilience and efficiency of systems and structures.
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1.2 Objectives

This research objective1 is to develop a methodology for monitoring systems and structures
from their dynamic response using SHM and ML techniques. The proposed methodology can
detect statistical pattern recognition and quantify damage associated with the uncertainties
related to the process. Henceforth, the specific objectives are:

• Implement an architecture to pre-process the signal, feature extraction and selection using
spectral and statistic methods;

• Develop a virtual sensor integrated into the SHM-ML for data augmentation;
• Design a monitoring route involving a machine learning algorithm for pattern recognition

and detection of damage;
• Design a monitoring route involving a machine learning algorithm for damage quantifica-

tion associated with the uncertainty in the process;
• Evaluate the performance of the data-driven SHM-ML methodology with experimental

data tested in laboratory systems and in-situ operational wind turbine.

The proposed methodology’s efficacy and specific objectives are evaluated through three
case studies on mechanical faults in wind turbine components. In the first case, the SHM-ML
framework is applied to detect, classify, and recognise patterns of torque loosening in bolted
joint structures. To address the challenges posed by the variability of these connections, the
proposed approach integrates both supervised and unsupervised machine learning algorithms.
The methodology relies on experimental data collected under different test conditions, using raw
frequency spectral signals to estimate a damage index (DI) that serves as a feature extractor.
This DI is then processed by machine learning algorithms, enabling the approach to handle
measurement variability and uncertainties without requiring prior modal analyses.

The second case study builds upon the same experimental setup but enhances the quantifi-
cation of bolt torque loss by incorporating data augmentation into the SHM-ML methodology.
Here, frequency spectra are also utilised. While many studies rely on simulated or synthetic
data, these datasets often fail to capture real-world conditions accurately. Therefore, a key ob-
jective of this research is to develop an improved condition assessment model based on machine
learning to estimate bolt torque loss directly from raw vibration signal spectra. The proposed
approach employs data augmentation and fusion strategies to enrich the dataset, eliminating
the need for numerical models and relying exclusively on experimental data.

The third application involves monitoring a real wind turbine. This case study employs
an unsupervised clustering algorithm to classify operational states and identify structural pat-
terns without requiring predefined labels. A new feature extraction technique was introduced
to enhance classification accuracy, incorporating a relative damage index variation metric. The
SHM-ML methodology has demonstrated effectiveness across various monitoring scenarios, from

1This research aligns with the 7th Sustainable Development Goal established by the World Health Organiza-
tion, which focuses on ensuring access to affordable, reliable, sustainable, and modern energy for all.
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simple to complex systems, emerging as a viable technical solution for integration into real wind
turbines. With the increasing demand for remote structural monitoring solutions, particularly
for fault detection in critical components, the proposed SHM-ML framework facilitates proactive
maintenance, minimises downtime, and enhances operational efficiency. By advancing structural
health monitoring and vibration control strategies for wind turbines, this study contributes to
improving the efficiency and reliability of renewable energy systems, thereby supporting the
transition to cleaner and more sustainable energy sources.

1.3 Organisation of the dissertation

The thesis is organised by presenting an introduction to address the scope first, followed by a
literature review. Then, the subsequent chapters describe the methodology and results obtained
in case studies with the application of ML techniques for SHM in wind turbine components and
the conclusions. More specifically, this thesis is structured as follows:

• Chapter 1 presents a general introduction describing the motivation, objectives, and
organisation. The importance of SHM and the role of ML in this context are discussed.

• Chapter 2 presents a literature review covering the fundamentals of SHM, methods, and
the application of ML in damage detection. In addition, the chapter discusses different ML
approaches and their relevance to SHM in wind turbine components.

• Chapter 3 describes the methodology used in this research, including data processing,
feature extraction, ML strategies and uncertainty quantification. The chapter also details
frequency and time domain analysis with data augmentation techniques to increase the
robustness of feature extraction.

• Chapter 4 demonstrates case studies in experimental applications of ML for SHM. It
includes the classification of faults in wind turbine components, detecting loosening torque
in bolted structures, and quantifying damage using ML-based virtual sensors. The results
and discussions highlight the effectiveness of the proposed methods.

• Chapter 5 concludes the dissertation by summarising the main findings, discussing the
study’s contributions, and suggesting future research directions.
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2 Literature Review

This research proposes monitoring wind turbines and their components using the proposed
damage assessment with a machine learning process. The present chapter gathers a literature
review of past research and development related to this doctoral dissertation. It starts with
an overview of machine learning techniques for structural health monitoring, SHM in turbine
component monitoring and bolted structures. The chapter ends with a general analysis and the
contribution of this research to the state-of-art.

2.1 Structural health monitoring

Structural health monitoring provides significant advantages across various sectors, provid-
ing tools for scheduling maintenance and promoting the safety and reliability of structures and
systems. Hence, continuously assessing structural conditions enables early detection of potential
damage or anomalies, allowing for timely maintenance and repairs [40]. Furthermore, SHM is
a proactive action that minimises the risk of catastrophic failures and extends the lifespan of
these structures [41]. Additionally, SHM enhances maintenance efficiency by identifying specific
areas that require attention, ultimately reducing operational and maintenance costs.

SHM techniques are commonly defined as a strategy for detecting structural damage through
continuous or periodic monitoring [42]. This process involves data acquisition from sensors em-
bedded in the structure or contactless, extracting damage-related features, and analysing them
to assess potential failures. This approach can help us estimate the monitored system’s remaining
lifespan [43]. Enabling the transition from offline damage identification to near real-time online
assessment significantly improves the efficiency and speed of damage evaluation. The tasks of
SHM technology are categorised into five levels, as defined by [44]:

• Level 1- Detection: provide information on the presence of damage.

• Level 2- Localisation: provide information on the location of the damage.

• Level 3- Classification: provide information on the type of damage.

• Level 4- Assessment: provide information on the extent of the damage.

• Level 5- Prognosis: provide information on the residual life and safety of the structure.

Advancing to the next level in the hierarchy depends on the successful completion of the
previous ones. It is well known that higher levels of detail are increasingly challenging to achieve.
For instance, prognosis is particularly complex because it requires a deep understanding of
the physics of damage [45]. Therefore, determining the necessary level of identification is a
critical decision when developing an SHM strategy. The damage in the monitoring process is
defined as any modification or deterioration in a structure’s integrity, performance, or behaviour
that compromises its safety, functionality, or longevity. This encompasses a range of issues,
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including cracks, corrosion, deformations, fatigue, and material degradation, all of which can
weaken structural capacity or threaten stability. Early detection and monitoring of such damage
enable engineers to evaluate its severity and implement preventive measures to avoid catastrophic
failures.

Structural damage detection associated with SHM techniques is broadly categorised into
global and local methods. Vibration-based methods [46] are typically global, while local meth-
ods focus on small-scale damage without relying on vibration response. Most non-destructive
testing and evaluation techniques, such as ultrasonic testing, acoustic emissions, and infrared
thermography, fall under local methods, such as inspecting structural components in specific
areas. Electro-mechanical impedance-based approaches, for instance, use piezoelectric patches
to detect local damage in small structures. While local methods aid damage identification, they
are insufficient for large-scale monitoring. A comprehensive SHM system should integrate local
and global techniques for a complete structural assessment [46].

Vibration-based methods have been extensively researched for decades, assuming time, fre-
quency, and modal analyses to identify, locate, and evaluate damage in engineering structures.
Numerous algorithms have been developed across civil, mechanical, and aerospace fields. Global
damage detection methods analyse structural vibration responses using strategically placed ac-
celerometers, with collected data processed to detect damage. While qualitative techniques date
back to the 1800s, quantitative methods became viable in the 1980s due to advancements in
computing and sensing technologies [46]. Compared to local approaches, the vibration-based
method requires fewer sensors, does not rely on predefined damage locations, and employs
portable equipment. These methods are broadly categorised into nonparametric and parametric
approaches, which are further examined in the following sections. Hence, the fundamental idea
behind vibration-based damage identification is that damage-induced changes in physical prop-
erties such as mass, damping and stiffness can cause detectable changes in modal properties such
as natural frequencies, modal damping and mode shapes [47]. Thus, as an indicator of stiffness
reduction, shifts in natural frequencies and variations in modal parameters are commonly used
in vibration-based structural health monitoring systems to assess structural integrity.

The advancements in reliable and low-cost sensors capable of measuring various structural
responses (e.g., accelerations, displacements, strains, temperatures, and loads) have driven sig-
nificant scientific and practical progress in SHM application over the past four decades, enabling
the processing of raw measurement data into meaningful structural health indicators. However,
despite these advancements, SHM remains largely confined to research and has not yet achieved
widespread real-world implementation. Addressing this gap requires fast, on-demand monitoring
solutions that leverage machine learning techniques to enhance real-time data processing, auto-
mate damage detection, and improve the scalability and efficiency of the monitoring methods
in practical applications. Hence, with the integration of artificial intelligence in the price, we
can increase the value of information in vibration-based SHM. The value of information further
highlights the advantage gained from utilising vibration data for early damage detection, risk
mitigation, cost optimisation, informed decision-making, and improved uncertainty quantifica-
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tion, thereby enhancing overall structural safety and maintenance efficiency [48, 49].

2.2 Machine learning for structural health monitoring

Traditionally, SHM relied on physics-based approaches, which were limited by their appli-
cability to simple structures and controlled environments. The advent of machine learning has
leveraged the SHM approach by providing advanced tools for data analysis and damage de-
tection, enabling more robust and comprehensive monitoring systems [50]. Conventional SHM
methods faced difficulties such as incomplete monitoring data, uncertainties in structural con-
ditions, and complex environmental factors affecting the parameters of the feature, e.g. modal
properties and temporal responses. These limitations required the development of novel method-
ologies that could exploit the vast amounts of data generated by modern monitoring systems
[50, 51]. Integrating the Internet of Things (IoT) and big data analytics has recently significantly
enhanced SHM systems. These technologies facilitate collecting and processing large datasets,
enabling near real-time damage assessment and decision-making [52, 53]. Hence, the evolution
of the application of ML in SHM assessed early challenges and progress in integrating IoT and
Big Data.

Indeed, machine learning techniques significantly enhanced the efficiency and accuracy of
SHM systems by automating data analysis and improving damage detection [54, 52, 55]. These
algorithms process large volumes of vibration data, identifying patterns and anomalies that may
indicate structural deterioration. Unlike traditional methods that rely on manual interpretation,
machine learning enables real-time monitoring and early issue detection by learning from his-
torical and newly acquired data. Beyond vibration analysis, ML can integrate data from various
sources, such as temperature and moisture sensors, and visual inputs from cameras or drones.
This multidimensional approach improves anomaly detection and enhances predictive capabili-
ties. Additionally, ML algorithms continuously refine their performance, adapting to new data
and increasing the accuracy and efficiency of SHM systems over time. These advancements
contribute to early intervention, reducing the risk of structural failures.

ML techniques, particularly data-driven methods, have become essential in SHM for
analysing complex structures where physical modelling is challenging. These methods include
clustering, regression, and classification algorithms that can efficiently detect and predict dam-
age in structures such as bridges, buildings, wind turbines, machinery, and aeroplanes, among
others [52, 54]. Further, Deep learning (DL) has emerged as a powerful tool in SHM, offering ad-
vanced capabilities for vibration-based and vision-based monitoring. DL methods, such as deep
neural networks and transfer learning, have been successfully applied to enhance the accuracy
and reliability of SHM systems [56, 57].

Along with progress in the field of SHM integrated to ML, one still faces significant chal-
lenges in applying ML and DL to SHM, such as the lack of comprehensive sensor data for differ-
ent damage scenarios, affecting ML models’ robustness and generalizability. Physics-informed
learning, which integrates domain knowledge into the ML process, is proposed as a solution to
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improve model performance [51]. The solution of sensor fusion and data augmentation [58] has
shown promising solutions, but ongoing research remains. Overall, the integration of ML into
SHM represents a significant advancement in the field, addressing many of the limitations of
traditional methods. As technology continues to evolve, the combination of ML with IoT, big
data, and emerging technologies will likely lead to even more sophisticated and effective SHM
systems, ensuring the safety and improving the lifespan of the structures and systems.

2.2.1 Statistical pattern recognition

Structural health monitoring with machine learning and statistical pattern recognition
(SPR) are closely related, as SHM integrated with ML relies on SPR principles for damage
detection, classification, and prognosis [59]. The SPR encompasses various definitions and ap-
proaches. It includes all stages of an investigation, from problem formulation and data collection
to analysis, classification, evaluation, and interpretation [60], and is further defined as the au-
tomatic discovery of regularities in data through algorithms that classify data into different
categories [59]. In a general context, SPR is a methodology for identifying patterns in data us-
ing statistical techniques involving feature extraction, modelling relationships between features,
and probabilistic decision-making.

Figure 2.1 is a scheme of the SPR process [43], which starts with a data acquisition system
(e.g., sensors, cameras, etc.) responsible for capturing physical information and translating it
into a measured signal. A pre-processing process eliminates noise or distortions, followed by a
feature extractor (or attribute). Feature is the information collected from the signals that can
represent the information acquired from the monitored system in a reduced or compact format.
It is commonly applied to reduce data to attributes, properties, or characteristics. The next step
is classifying and clustering these features to achieve the pattern recognition objective.

Figure 2.1: Statistic pattern recognition process (Source: own study).

In summary, SPR aims to classify objects into different categories or classes by analysing
the characteristics presented by the features. In the context of damage identification, it seeks
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to detect structural changes by comparing the damaged state to the undamaged state. This
process begins with collecting data from the monitored structure and ends with identifying
damage to assess the structure’s current condition [61]. Data extraction is generally categorised
into two main approaches, the physics-based approach and the data-driven approach [55, 62]. The
physics-based approach assesses structural integrity by updating a model grounded in physical
principles, such as the finite element model (FEM), aiming to minimise discrepancies between
model predictions and measured data. This method can provide an accurate and calibrated
model for damage prediction. However, simplifications and omissions in the model may introduce
errors, affecting parameter estimation, damage detection, and forecasts of structural behaviour.
Data-driven approaches leverage pattern recognition to detect damage, determine its location,
and assess its severity based only on structural response data [63]. An advantage of this approach
is that it eliminates the need for complex numerical model development and validation while
adapting to uncertainties caused by measurement variability. However, a significant challenge in
data-driven SHM is obtaining sufficient accurately labelled training data to develop a reliable
and generalizable statistical model [64]. In particular, damage detection in data-driven SHM is
a supervised learning problem, where potential damage locations serve as target class labels for
a machine learning classifier. This learning process requires training data from both undamaged
and damaged conditions.

In the context of pattern recognition, Figueiredo and Brownjohn [61] recently published a
review of the evolution of the SPR paradigm applied in bridge monitoring covering the past
three decades. Their study highlighted key developments in detection technology, data analysis,
and emerging trends to foster more coordinated and interdisciplinary research. The authors also
addressed challenges in transitioning SHM from research to practical application, particularly
in obtaining reliable global damage assessments and advancing damage identification levels,
including diagnosis (location, type, and severity) and prognosis. Similarly, Sen and Nagarajaiah
[65] reviewed statistical learning techniques for SHM and damage detection, discussing the role
of supervised and unsupervised learning algorithms. They concluded that statistical learning
algorithms enhance the robustness and efficiency of SHM systems and reduce computational
effort compared to model-based approaches, which often require high-fidelity simulations. This
paves the way for developing real-time, online SHM systems capable of autonomous damage
detection with minimal human intervention.

Autoregressive models have been employed to solve the SPR paradigm. Zhang et al. [66]
reviewed linear and nonlinear structural identification methods that apply support vector re-
gression (SVR) for pattern recognition. They presented three SVR-based approaches utilising
ARMA time series, high-order AR models, and substructuring strategies to identify linear struc-
tural parameters from vibration data. The study also discussed SVR coefficient selection and
incremental training algorithms. Numerical evaluations confirmed the accuracy of SVR-based
methods in identifying structural parameters, highlighting their potential for SHM applications.
Later, Gui et al.[67] investigated statistical pattern recognition methods for SHM through exper-
iments on a supported steel beam and a complex steel grid structure. Their approach combined
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time series modelling, specifically autoregressive (AR) models, with outlier detection algorithms
based on Mahalanobis distance to identify structural changes. Similarly, Entezami et al.[68]
proposed an approach to efficiently handle big data in structural integrity monitoring using the
SPR. Feature extraction was performed through autoregressive moving average (ARMA) mod-
elling, and a novel partition-based Kullback-Leibler divergence nearest neighbour (PKLD-NN)
method was introduced for damage detection. The proposed method was validated using high-
dimensional experimental data from the Tianjin Yonghe Bridge, demonstrating its effectiveness
in SHM applications.

Herrera-Iriarte et al. [69] explored a methodology for SHM based on recognising deformation
field patterns using sensors capable of measuring deformations at discrete points and machine
learning techniques to detect structural damage. In this study, deformation data from fibre
optic sensors (FOS), specifically fibre Bragg gratings (FBG), acquired through two experiments
were used: an aluminium beam with 32 FBGs and a CFRP beam with 20 FBGs, which serves
as the main wing of the structure of an unmanned aerial vehicle (UAV). In the experiments
presented, the beams were equipped with different numbers of sensors, which were removed one
by one to analyse the sensitivity of the PCA-based damage detection methodology to changes
in the number of sensors. The results show that only a few sensors contribute significantly to
the methodology’s performance, and these sensors are validated as those located close to the
analysed damage condition.

Machine learning algorithms have been employed in SPR techniques for structural damage
detection. Trendafilova and Heylen [70] explored using artificial intelligence techniques for dam-
age detection and localisation in structures. The structure was divided into substructures in their
approach, and pattern recognition techniques were applied to identify the damaged substruc-
ture. Frequency response functions (FRFs) were used for a defined number of degrees of freedom
and frequencies, serving as the foundation for the detection process. A mapping was established
between the feature space extracted from the FRFs and the space defined by the dynamic re-
sponse of the structure in the frequency domain. Based on this mapping, standard vectors and
samples representing different damage classes were obtained. Finally, a computer code (classi-
fier) was developed to utilise the pattern recognition information for damage localisation within
the structure.

Qiao et al. [71] employed a signal-based SPR procedure for structural damage detection with
a limited number of input/output signals. The method involves extracting and selecting sensi-
tive features from the structure’s response, creating a unique pattern for each specific damage
scenario, and comparing the unknown damage pattern with a known database to identify the
damage’s location and severity. In the study, two transformation algorithms, Continuous Wavelet
Transform (CWT) and Wavelet Packet Transform (WPT), were separately implemented for fea-
ture extraction, while three pattern matching algorithms—correlation, least squares distance,
and Cosh spectral distance—were used for pattern recognition. Experimental studies conducted
on a simple three-storey steel structure showed that the signal characteristics for different dam-
age scenarios could be uniquely identified, with the correlation algorithm providing the best
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performance in recognising the unknown damage pattern. This method is not only effective for
damage location identification but also has the potential to detect damage type, making it suit-
able for online structural health monitoring applications. Later, in an experimental study, Shan
et al. [72] proposed a method for detecting structural damage in a continuous girder railway
bridge by combining a step-by-step damage detection approach with statistical pattern recog-
nition, the identification process covered early warning of damage, localisation of the damage,
and determining its extent. The Support Vector Machine (SVM) multiclass classification algo-
rithm was used for damage location identification, while the Support Vector Regression (SVR)
algorithm was employed to assess the severity of the damage. The results demonstrated that the
proposed method successfully and accurately identified the damage’s location and extent with
high accuracy.

Deep learning algorithms have also been employed in the SPR process. Goswami and Bhat-
tacharya [73] proposed an SPR-based damage detection scheme for aerospace vehicle struc-
tures. This method involves collecting mechanical vibration signals from plate-like structures
using displacement sensors, followed by noise removal and feature extraction through Wavelet
Transform-based signal processing techniques. A set of neural networks is then trained to clas-
sify and identify the damage present in the structure. While the case studies showed promising
results for classifying individual damages, identifying multiple damages in the same structure
revealed a decline in success rates. To enhance these results, the authors developed a sensor
positioning strategy that significantly improved the accuracy of detecting multiple damages.

Perafán-López and Sierra-Pérez [40] presented a pattern recognition methodology for clus-
tering operating conditions in a structural sample using the Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) algorithm in the context of SHM. This methodology was
validated using data from an experiment with 32 fibre optic Bragg sensors attached to an alu-
minium cantilever beam subjected to cyclic bending loads at 13 different operating conditions
(inclination angles). Additionally, the computational cost and accuracy of the machine learning
pipeline, FA+GA-DBSCAN (which combines factor analysis for dimensionality reduction and
a genetic algorithm for automatic DBSCAN parameter selection), were evaluated. The results
demonstrated good performance, detecting 12 out of the 13 operating conditions with an overall
accuracy exceeding 90%. Li et al. [74] proposed a new Generalised Automatic Encoder (NGAE)
integrated with a statistical pattern recognition approach, utilising cepstral power coefficients
of structural acceleration responses as damage-sensitive features (DSFs) for structural damage
assessment. The method was validated through numerical simulations and experimental data,
demonstrating superior performance to traditional Auto-Encoder (TAE) and Principal Compo-
nent Analysis (PCA) methods.

In recent years, the application of SHM and ML has experienced vast growth in methods
and applications aimed at improving the reliability and maintenance of these systems. In this
study, we focus our SHM-ML technique developments and tests on detecting and diagnosing
faults in wind turbine components, such as blades and rotors, and coupling mechanisms, such
as flexible coupling components and fixed bolted joints.
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2.3 Application of SHM integrated with ML in wind turbine components

The wind energy industry faces the challenge of ensuring the efficient and safe operation
of wind turbines subjected to extreme mechanical loads and harsh environmental conditions
during operation. In this regard, damage detection methodologies play a key role, as they make
it possible to identify structural problems before they become critical, guaranteeing the integrity
and longevity of these structures. To reduce costs and improve operational efficiency, it is vital to
use a reliable SHM methodology capable of detecting structural defects. Thus, the use of SHM
associated with ML has been successful in several applications in monitoring wind turbines
[28, 75, 76, 77], allowing precise and automated procedures to be developed. Among the various
techniques available, systems based on vibration analysis show great potential for structural
monitoring and fault diagnosis [28, 75, 76, 77].

The wind turbine is a sophisticated mechanical-electrical system. A turbine’s main mechan-
ical components and structures that have been monitored include the blades, main bearing,
main shaft, gearbox, nacelle, tower, foundation, yaw system and bolted systems. The common
failure types and cases of the main components have been introduced in Table 1.1. SHM meth-
ods applied to wind turbines were investigated and summarised. Thus, wind turbine component
fault detection using the proposed SHM-ML process is the main focus of this study, specifically
in damage conditions associated with the blade, rotor and flexible and fixed coupling.

2.3.1 Blade monitoring

SHM integrated with ML applied to wind turbine blades have been extensively studied
by several researchers. In one of the earlier studies, [78] explored machine learning techniques
for monitoring turbine blades using vibration data, particularly Frequency Response Function
(FRF) measurements. The research emphasised low-level fault estimation to determine the pres-
ence or absence of damage using a Multilayer Perceptron (MLP) and a novel approach to self-
association using Radial Basis Function (RBF) networks. Building on this, [79] investigated
new turbine blade fault detection using experimental vibration analysis and machine learning
techniques. The study explored Nonlinear Neural Networks, including Auto-Associative Neu-
ral Networks (AANNs) and Radial Basis Function (RBF) network models. In [80], the authors
examined machine learning algorithms based on Auto-Associative Artificial Neural Networks
(AANNs), proposing a standard ANN-based AANN and a novel approach for auto-association
using RBF networks, and in [81], it is discussed advancements in SHM and condition monitor-
ing of wind turbines, focusing on damage detection through data-driven vibration analysis. The
study presented existing technologies for turbine blades, employing a pattern recognition and
machine learning approach, such as ANNs and Gaussian processes, alongside SCADA data.

In [82], the authors presented an algorithmic classification of vibration signals for assessing
the condition of wind turbine blades considering five faults (blade crack, erosion, loose hub-
blade connection, pitch angle twist and blade bend) for the diagnosis of wind turbine blade
faults. ML techniques were used for feature extraction, selection, and classification based on a
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decision tree algorithm. The functional trees algorithm is suggested for diagnosing wind turbine
blade faults. In the work by [83], a three-layer structural integrity monitoring framework is em-
ployed on experimental data from a 34 m rotor blade for damage and icing detection. Modal
parameters identifying the system and other damage characteristics, also called condition pa-
rameters, are presented and compared with each other. The focus of the study was to investigate
the effect of varying environmental and operating conditions (EOCs) on structural dynamics
and to explore the contribution of unsupervised ML by data clustering to increasing detection
performance. It is shown that detection performance in the case of data clustering according
to the equivalent damage load applied is higher than without data clustering. Subsequently,
[84] used twelve rule-based feature classifiers using WEKA for wind turbine blade fault diagno-
sis, considering the following methods: Conjunctive Rule (CR), Decision Table, Decision Table
and Naive Bayes hybrid classifier (DTNB), JAVA implemented repeated incremental pruning to
produce error reduction (JRip), Non-Nested generalised exemplars (NNge), One Rule (OneR),
Projective Adaptive Resonance Theory (PART), Ripple down rule learner (Ridor), Zero Rule
(ZeroR), Fuzzy Unordered Rule Induction Algorithm (FURIA), modified learnable evolution
model (MODLEM) and classifier Ordinal Learning Method (OLM).

Chandrasekhar et al. [85] proposed a diagnostic methodology for operational wind turbine
blades using Gaussian Processes (GPs) for predictive purposes, and the residuals between the
actual signals and the predicted signals can be used as an informative indicator of damage. The
proposed SHMmethodology can identify when blades begin to behave differently from each other
over time. More recently, [86] contributed to this field by focusing on detecting structural faults
in turbine blades by analysing tower vibrations. The study developed a Convolutional Neural
Network (CNN) classifier to differentiate between tower vibrations collected under healthy and
faulty blade conditions. In [87], the authors present the structure of signal collection, feature
extraction and classification techniques for predicting blade failures. Classifier models such as
Naive Bayes (NB), multilayer perceptron (MLP), linear support vector machine (linear SVM),
single depth convolutional neural network (1DCNN), bagging, random forest (RF), XGBoosts,
and decision tree (DT) were used, and the results were compared according to their parameters
to propose a better fault diagnosis model.

2.3.2 Foundation and tower monitoring

Wind turbines rely on various support structures, including foundations and towers, which
are also susceptible to damage [3]. SHM applied to these components provides crucial insights
into their condition, facilitates maintenance, and helps prevent catastrophic failures. Vidal et
al. [88] propose a methodology for diagnosing structural damage in jacket-type foundations,
specifically investigating crack damage at four locations. Their approach employs a damage
detection and localisation method, where the latter is treated as a classification problem, using
k-NN and SVM on vibration response data from accelerometers. Similarly, Jersson et al. [89]
develop an SHM methodology that integrates data pre-processing, principal component analysis
(PCA) for dimensionality reduction and feature extraction, and XGBoost-based classification
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for damage detection in offshore wind turbine support structures. Their method was validated
on a small-scale model with five structural states: an intact structure and a 5mm crack at
four locations. Additionally, Liying [90] explores tower failures, introducing a K-means fault
clustering classification model optimised through a dynamic weight algorithm.

Throughout their operational life, wind turbines are continuously exposed to multiple haz-
ards from various load types, including torsional vibration and tower side-to-side and fore-aft
bending. These factors can significantly impact their long-term structural health and perfor-
mance [3]. Hoxha et al. [91] propose an SHM strategy that relies solely on vibration response,
employing machine learning methods for damage diagnosis. Their study utilises KNN, quadratic
SVM, and Gaussian SVM for classification. Similarly, Nguyen et al. [92] investigate wind tur-
bine tower damage assessment through vibration-based artificial neural networks (ANNs). Their
approach uses modal parameters, such as mode shapes and frequencies, as inputs, with element
stiffness indices as outputs. A FE of a real wind turbine tower serves as the test structure, and
the trained ANNs are then applied to detect damaged elements and assess severity levels.

2.3.3 Gearbox and rotor monitoring

The nacelle of a wind turbine accommodates the drivetrain system, which includes the gear-
box, rotor, main bearing, main shaft, yaw system, hub, and generator. Drivetrain component
failures are among the most critical challenges throughout a wind turbine’s operational lifespan.
These failures vary in nature and are often exacerbated by prolonged exposure to harsh condi-
tions, such as heavy loads, wind gusts, and dust-induced corrosion. Common issues, including
rotor imbalance, rotor icing, misalignment, structural damage, bearing and gear failures, and
generator breakdowns, are typically associated with excessive vibration, oil leakage, elevated
oil temperatures, inadequate lubrication, and impact forces[3]. Analysing wind turbine gearbox
vibrations for SHM is explored in [93], where a neuromorphic machine learning model is de-
veloped to analyse time-series accelerometer data for fault detection. A neuromorphic neural
network was trained on the back to classify accelerometer data from both healthy and dam-
aged gearboxes. Similarly, Praveen et al. [94] propose a simplified signal segmentation technique
that aligns non-stationary vibration signals with specific speed stages and gearbox components.
This technique is validated using machine learning algorithms, including Decision Tree, Support
Vector Machine, and Deep Neural Network.

Elforjani et al. [95] investigate fault classification and detection in wind turbine gearboxes
using ANNs, Decision Trees (DTs), Gaussian Processes (GPs), Mixture Discriminant Analysis
(MDA), and Support Vector Machines (SVMs). Their study first extracts twelve statistical
features from the vibration dataset, followed by Principal Component Analysis (PCA) to enhance
data visualisation and reduce dimensionality, improving classification accuracy. Gao et al. [96]
propose a linear discriminant diagnostic method based on convolutional neural networks (CNNs)
for detecting and diagnosing coexisting mechanical faults in operational wind turbine bearings
and gearboxes using vibration signals.
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Vives et al. [97] apply KNN and SVM techniques for diagnosing and preventing faults in
wind turbine bearings through vibration analysis, achieving high predictive accuracy. In a related
study, Vives et al. [98] implement SVM and deep learning for fault monitoring and diagnosis.
Abdelrahman et al. [99] introduce a combined vibration analysis and CNN-based approach
(Cyclostationary-based CNN and Kurtogram-based CNN) for detecting and classifying faults in
wind turbine gearboxes. Lastly, Angela et al. [100] integrate autonomous data-driven learning
of fault signatures with integrity state classification using CNNs and isolation forests.

2.3.4 Flexible and fixed assembly coupling

Flexible coupling failure in wind turbines is a critical issue affecting the reliability and
efficiency of wind energy systems. This topic encompasses the study of dynamic interactions
between various components of wind turbines, particularly focusing on the flexible couplings
that connect the gearbox and generator. These couplings are essential for accommodating mis-
alignments and reducing stress on the turbine components. Flexible couplings in wind turbines
often fail due to misalignment and the resulting reaction loads. Joint kinematics, metal disk pack
deformations, and axial and angular shaft misalignments influence these loads. Such misalign-
ments can lead to early, unplanned bearing failures in the gearbox and generator high-speed
shafts, significantly reducing their lifespan [101].

The dynamics of rigid-flexible coupling in wind turbines are complex and involve interactions
between various structural components. Studies have shown that the dynamic response of wind
turbine components, such as blades and towers, is significantly affected by external forces like
wind loads and gravity, leading to deformation and vibration. These dynamics are crucial for
understanding the stability and reliability of wind turbines [102]. Understanding and addressing
flexible coupling failures are vital for improving the reliability and efficiency of wind turbines.
By accurately modelling the dynamic responses and optimising the design of flexible couplings,
the operational lifespan of wind turbine components can be extended, reducing downtime and
maintenance costs [101, 103, 104]. These insights are crucial for developing and deploying wind
energy technologies.

Another important coupling mechanism used in wind turbines is bolts. It is crucial in wind
turbine towers, connecting all tower sections and blade root connections. However, bolt looseness
is a common deficiency and is prone to occur due to long-term vibrations, fatigue, corrosion,
bolt relaxation and incorrect bolt pre-tensioning procedures. These failures can lead to the
collapse of wind turbine towers in severe cases, which makes bolt looseness a major concern.
Damage detection methods applied to bolted joints have been studied, focusing mainly on two
components/structures, the tower flange [105, 106, 107, 108, 109, 110, 111, 28, 112, 113] and blade
root connections [114, 115, 116, 117, 118, 119]. Machine learning techniques were investigated for
detecting bolt loosening in wind turbines based on vibration analysis in [120]. They developed a
FEM of the bolted connection, tower flange, to study the bolt loosening process under transverse
vibration conditions. A prediction model for bolt loosening based on machine learning Gaussian
process regression (GPR) was developed to obtain confidence intervals for the preload variation
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in a probabilistic sense with vibration cycles in different working conditions. The result shows
that, under the action of transverse vibration loading, the magnitude of the vibration load is
the main factor affecting loosening, and the greater the magnitude of the load, the greater the
probability of loosening occurring.

2.3.5 Bolted structures monitoring

Machines and structures are assembled and fixed together from individual parts, which can
be joined through mechanical, chemical, or physical means [121]. There are various fastening
techniques, some of which are permanent, while others allow joints to be repeatedly assembled
and disassembled [122]. Mechanical joining involves connecting two or more engineering com-
ponents (or elements) to form a functional unit. This process is achieved using devices called
fasteners, which result in mechanical fixing [123]. Various types of fasteners, such as screws,
nails, bolts, rivets, and others, are used to secure the parts of an assembly. The joint is typically
formed by an ordered matrix of fixing points or lines, creating a discontinuity in the structure.
There are many types of joints, some designed for specific applications and others, like overlap
joints, being more common. Mechanical joints are crucial and often critical to any assembly or
engineering structure, as they rigidly connect substructures and enhance the dynamics of the
assembled system [124].

Figure 2.2: Schematic representation of bolted joints considering the principal elements: structure, bolt,
nut, and torque force (Source: own study).

Bolted joints are widely used in engineering structures, such as civil and mechanical struc-
tures, due to their simplicity of design, ease of assembly and disassembly, reliability, high load
capacity and relatively low cost. They consist of a bolt, a nut, two contact parts and sometimes
washers, as illustrated in Figure 2.2. The tightening force, provided by the tension in the bolt,
connects the components and applies a preload or pre-tension, placing them in compression to
increase resistance to static or cyclic loads. Tightening is important to ensure the proper func-
tioning of the joint and the force required to hold it together. The tightening process guarantees
the quality and integrity of bolted joints. However, maintaining tightening accuracy is a chal-
lenge, as there is a degree of uncertainty in the preload on each joint [125]. In addition, it is
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difficult to tighten several bolts simultaneously due to the limited number of devices available,
and tightening is done alternately in many passes to approximate the design load [126]. It is
important to ensure an adequate tightening force for the bolt; in many cases, inadequate force
can cause damage to the structure due to looseness, while excessive force can also impose stresses
on the bolt, which reduces its efficiency. Therefore, it is crucial to accurately measure the bolt
tension and detect and quantify the degree of tightness of the joint.

Failure of bolted joints

Although bolted joints offer advantages, it is important to note that they can fail during
operation. In some situations, failures in bolted joints have serious consequences and are safety-
critical. Fatigue, stress concentration, cracking, corrosion, high temperatures and mechanical
failure during assembly are the main causes of bolt failure. Too tight bolts can contribute to
bolted joint failure, but the event is uncommon. Excessive loads can stimulate stress corrosion
cracks, crushing or damaging surfaces [125]. Bolt loosening is a form of damage or failure in
structures and is the most common and relevant problem in bolted joints [126]. Loosening can
be defined as a gradual loss of preload after the tightening process has been completed, which
over time is inevitable, making the fastening unstable due to external dynamic loads such as
impact, vibration and thermal loads [127]. Early detection is, therefore, essential to ensure the
safety of the connection.

Vibration is widely recognised as the primary cause of bolt loosening [128]. When a joint
is subjected to unintended movement, the preload can diminish or be entirely lost, leading to
mechanical failure [129]. Additionally, insufficient preload can result in fatigue fracture of the
bolt under vibrational stress. Research into vibration-induced loosening has been conducted for
decades. A recent review study by Gong et al. [130] examines the factors that initiate rotational
loosening, including axial, transverse, torsional, and bending vibration loads. The authors sug-
gest that their work will significantly advance the understanding of the subject and serve as
a valuable resource for engineers. Bickford and Oliver [131] also explore vibration loosening in
their book.

Experimental studies presented in [132] used a specialised test machine to demonstrate
that transverse vibrations have more detrimental effects on bolt loosening than axial vibrations.
Similarly, Pai and Hess [133, 134] conducted experimental studies on screw loosening under
dynamic loads. Their findings revealed that fasteners can loosen at lower loads than anticipated
due to localised sliding on the contact surfaces. Later, the authors [134] developed a three-
dimensional FEM to simulate loosening. This model accurately represented the characteristics
observed in the experimental data, including the key factors contributing to loosening. Chen,
Gao, and Guan [135] proposed a FEM using a hexahedral mesh, integrating both the tightening
and loosening processes to analyse the effects of different fastening media.
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Machine learning applied in bolted joints monitoring

Over the years, significant advancements have been made in detecting loosening in bolted
structures [136, 126]. These techniques are in situ inspection, computational vision, and sensor-
based techniques. In-situ inspection techniques, such as using a torque wrench and hammer,
can be visual or mechanical [127, 129, 137]. Digital cameras or images are used in computer
vision-based techniques, while the vibration-based method, wave propagation [138, 139, 140],
acoustoelastic effect-based method, piezoelectric sensor-based methods, and impedance-based
method are used in sensor-based techniques [129].

ML algorithms have recently been utilised to detect and monitor bolt torque loosening.
Machine learning is a set of methods that can automatically detect patterns in known problem
data, which can then be used to develop predictive models and carry out decision-making in
uncertain conditions [141]. The ML technique learns from the available data and obtains a model
that can make accurate predictions [142]. These algorithms are categorised into supervised and
unsupervised classification learning techniques and regression algorithms. The supervised learn-
ing technique creates a model from a set of labelled training data using previously known input
and output values, and it is subdivided into classification and regression problems. Using mul-
ticlass supervised machine learning algorithms, Sousa et al. [143] accurately assess the damage
of a beam reinforced by masses from its spectral response. The authors used ML to classify
the beam’s damage, where the methodology involves experimental measuring and numerical
calculation of the dynamic features, such as natural frequency and frequency response function,
to construct two DIs. In contrast, the unsupervised learning approach does not require target
class labels in the training data[141]. The regression algorithms help in defining the relationship
between labels and data points. An overview of the literature related to the work is presented
here to explain the application of the ML technique in detecting looseness in bolted joints.

In situ inspection techniques to monitor torque loosening have been explored by Zhou et al.
[144], where the authors describe a study that used percussive methods and machine learning to
detect loosening in bolts. The experiment was conducted on a four-bolt steel beam-column joint,
where laser Doppler vibrometry was used to capture the vibration information of the test bolt,
while microphones collected acoustic sounds generated by an automatic hammer. The authors
then transformed the reconstructed sound database into spectrograms and trained a 2D-CNN
to identify bolts’ loosening conditions. Wang and Song [145] presented a novel one-dimensional
training interference capsule neural network (1D-TICapsNet) to process and classify percussion-
induced sound signals to detect bolt early looseness in two steel pieces tightened using four bolts.
They also employed in [146] the multifractal analysis and joint mutual information maximisation
method to extract feature sets and detect bolt loosening using the gradient boosting decision
tree (GBDT) algorithm. Tran et al. [147] investigated the application of a deep convolutional
neural network (DCNN) algorithm to detect and estimate looseness in bolted joints using a
laser ultrasound technique. Zang et al. [148] presented a method of detecting screw loosening
in iron plates based on audio classification using SVM. Kong et al. [149] proposed a new ap-
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proach to identifying bolt clearance levels in a twelve-bolt subsea flange using an ML model
with the decision tree method, similar to the percussive diagnostic techniques used in clinical
examinations.

Computer vision-based machine learning techniques to torque loosening were proposed by
Gong [130]. In [150], the authors use a combination of deep learning algorithms and geometric
image theory for detecting loosened bolts in a steel pedestal through vision-based bolt loosening.
The method uses a faster regional convolutional neural network (Faster-RCNN) and a waterfall
pyramid network (CPN) algorithm. Zhang has conducted similar research [151] and Yu [152]
using the Faster R-CNN and single-shot multibox detector (SSD) algorithm, respectively, for
detecting bolt loosening angles. Pham et al. [153] used synthetic images of bolts generated from
a graphical model to train a deep learning model based on the Region-based Convolutional
Neural Network (R-CNN) algorithm for detecting loose bolts. Ramana et al. [154] used machine
learning techniques, including the Viola-Jones algorithm and SVM, to detect loosened bolts on
a steel I-section. Similarly, Chan et al. [155] used the Hough transform and SVM to build a
classifier for detecting loosened bolts.

Several investigations have employed various techniques and methods to detect anomalies
and identify bolt loosening in engineering structures. For instance, Razi et al.[156] have utilised
sensor-based techniques, ML based on wave propagation, and modal methods. In the study
by Ziaja et al.[157], elastic wave propagation was employed to detect anomalies in the pre-
stressed connections of engineering structures, utilising a combination of Artificial Neural Net-
works (ANN). Eraliev et al.[127] detected and identified loosening bolts in a multi-bolt structure
using seven ML algorithms, namely Random Forest, Bagged Trees, Decision Tree, k-neighbour,
Linear Discriminant Analysis, SVM, and XGBoost. The author utilised the Short-Time Fourier
Transform (STFT) method for feature extraction from acquired vibration data. Miguel et al.[158]
observed the loss of tightening torque in bolted joints by employing modal parameters. Teloli
et al. [159] utilised two probabilistic ML methods, namely the Gaussian mixture model (GMM)
for damage detection and Gaussian process regression (GPR) for quantifying loosening torque
in lap-joint structures. Chen et al. [135] proposed a diagnostic method for detecting looseness
in fan foundation bolts based on the mixed domain characteristics of excitation response and
multiple learning. The study employed the K-weight nearest neighbour classifier (WKNNC) to
identify slacks. Zhuang et al. [160] employed the acoustoelastic effect-based method along with
several ML algorithms, such as the recurrent neural network LSTM, one-dimensional WideRes-
net40, one-dimensional Densenet121, XGBOOST tree classification model, LightGBM, and the
SAX-VSM algorithm. Wang et al.[161, 162] proposed the Siamese Double-path CapsNet (SD-
CapsNet) and the Genetic Algorithm-based Least Square Support Vector Machine (GA-based
LSSVM) for bolt loosening detection, using piezoelectric sensor-based methods. Zhou et al. [163]
applied an impedance-based method using the Graph convolutional networks (GCN) model in
another approach. Hence, these studies have utilised various ML algorithms to tackle complex
real-world problems in diverse applications. Most proposed techniques or processes combining
SHM with ML are based on hybridising multiple interacting numerical procedures [164]. This
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complexity poses challenges when implementing an effective solution.

2.4 Chapter final remarks

Based on the discussions presented in this chapter, it is evident that the field of Structural
Health Monitoring still holds significant potential for further exploration, particularly in de-
tecting wind turbine component faults and, specifically, bolt loosening. This work uses machine
learning and SHM techniques, focusing on vibration signature analysis, to identify bolt torque
loosening and wind turbine operation faults under various damage scenarios, such as blade aero-
dynamic imbalance, rotor icing, and flexible coupling failure. These advanced techniques offer
several advantages, including early damage detection and operation fault, precise identification
of damage patterns, enhanced inspection accuracy, service life prediction, and improved main-
tenance efficiency. Collectively, these contributions can significantly enhance the reliability and
durability of wind turbines. Given the limited number of studies conducted in this area rel-
ative to its importance, there is a pressing need to develop and utilise accurate and reliable
tools. This research seeks to advance the understanding and application of SHM in wind turbine
maintenance by addressing this gap, ultimately supporting safer and more efficient wind energy
systems.
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3 Methodology and Methods

The methodology process for wind turbine components’ condition assessment, including
detection and quantification of damage using ML model. The methodology strategy includes
processing the existing data acquired from vibration tests, feature extraction, data augmentation
strategies through the virtual sensor, feature selection, classification damage, and performing the
detection and regression algorithms to quantify the damage with its uncertainty quantification.

The SHM-ML process proposed in this work turns to an Open-code tool design in Python
language and named “Machine learning for Damage Assessment” [165], patented under number
INPI-BR10202401528 [166] and computed code registration number BR512024001008-4. The
proposed SHM-ML process encompasses eight steps in total, comprising receiving the normalised
acquired data (Step 1), supervised data processing (Step 2), feature selection (Step 3), data
augmentation (Step 4), and unsupervised pattern recognition, labelling, and clustering (Step
5). These steps form the data-driven processing and SPR. Subsequently, the data splitting is
performed in Step 6. In the supervised stage, classification ML algorithms (Steps C7 and C8)
are used for damage detection, and regression (Steps R7 and R8) is applied for damage and
uncertainty quantification. The algorithm supplies information regarding the damage condition
based on the classification and regression algorithm outcomes.

Figure 3.1 shows the SHM-ML methodology for damage detection and estimation, listing
each process step. The two main routes described are related to damage detection and classifi-
cation and quantifying damage severity and uncertainty propagation. For the classification, the
algorithms k-nearest neighbour (k-NN), Decision Tree (DT), Random Forest (RF), Support Vec-
tor Machine (SVM), Naive Bayes (NB) and XGBoost are employed. The regression algorithms
implemented are the Linear. For damage quantification, we employ nine regression algorithms:
linear regression, Lasso, KNR, DTR, GBR, SVR-linear, SVR-RBF, SVR-Poly, and MLP.

Figure 3.1: Schematic representation of the Structural Health Monitoring methodology using machine
learning, outlining each step of the damage detection and quantification methodology[165].

In brief, the SHM-ML architecture is designed for the detection, quantification and prog-
nosis of structural integrity based on the measured dynamic response of the structure [165].
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It integrates the ML algorithms into the SHM process. This approach exclusively relies on
driven data from the monitored system, eliminating the need for numerical models. The pro-
posed method significantly improves torque estimation accuracy, enhances model performance
in damage-level predictions, and supports decision-making. This section details each step of the
SHM-ML method and the methods and techniques used to model.

3.1 Algorithms descriptions

Structures and systems vary, and the approach used in this work focuses on individual
monitoring. Therefore, each system must be evaluated independently, taking the following con-
siderations into account beforehand:

• Identify the specific damage and faults under consideration.
• Determine the information available from the system, e.g., temporal responses, frequency

spectrum, or modal properties.
• Assess whether both normal and failure conditions are provided.
• Gather information about the damage or fault, including its natural causes, probable

components affected, and possible locations.
• Recognize that while the existence and location of damage can be identified using unsuper-

vised learning, determining the type and severity of damage generally requires supervised
learning (Axiom III) [167].

• Acknowledge that sensors do not directly measure damage; feature extraction through sig-
nal processing and statistical classification is necessary to convert sensor data into mean-
ingful damage information (Axiom IVa) [167].

• Ensure appropriate feature extraction, as improper methods can lead to high sensitivity to
operational and environmental variations rather than actual damage (Axiom IVb) [167].

• Consider whether data scarcity will pose challenges for monitoring.
After mapping and planning the monitoring strategy for the system under evaluation, the

proposed SHM-ML method is recommended. This study investigates four applications that uti-
lize dynamic input information: one based on modal properties, specifically natural frequencies,
as detailed in [143], two relying on frequency spectrum analysis, and one using temporal re-
sponse data. Beyond damage classification and quantification, the challenge of data scarcity is
addressed by integrating a virtual sensor into the model for data augmentation. The SHM-ML
subroutine to process temporal responses for fault detection and classification in Algorithm 3
(Alg3), utilize frequency response data for damage detection and quantification in Algorithm 1
(Alg1), and enhance damage quantification with data augmentation in Algorithm 2 (Alg2).
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Algorithm 1 SHM-ML for damage classification (Alg1)
1: Data Acquisition: Receive structural modal parameters data as the natural frequency or frequency
response [H(ω)].
2: Data Processing: Correcting inconsistencies, handling missing values, and implementing signal
processing techniques to convert raw data into structured and reliable.
3: Feature Extraction: Employing damage index, e.g. FRAC-DI as:

FRACij =

∥∥∥Hdam
ij (ω)

(
Hund

ij (ω)
)∗∥∥∥2[

Hund
ij (ω)

(
Hund

ij (ω)
)∗] [

Hdam
ij (ω)

(
Hdam

ij (ω)
)∗]

5: Pattern Recognition and Clustering: Use the K-means unsupervised algorithm to cluster the
data.

J =

n∑
i=1

mink

(
∥xi − xk∥2

)
6: Data Splitting: Split the dataset into training and testing, e.g.80-20%, respectively.
C7: Classification ML algorithms: Applied ML algorithms for detection (SVM, K-NN, RF, NB,
DT and XGBoost).
C8: Model Evaluation: Calculate the Performance Measure for the ML classifiers (Cross-validation,
Accuracy, Precision, Recall, and F1-score).
9: Final decision: Information about damage state based on classification and regression algorithm
outcomes.

Algorithm 2 SHM-ML for damage quantification and data augmentation (Alg2)
1: Data Acquisition: Receive structural modal parameters data as the natural frequency or frequency
response [H(ω)].
2: Data Processing: Repairing raw data, checking for missing values, applying signal processing
techniques to obtain a structured and usable format, and truncating the signal among the mode shape
more influenced by the torque loosening;
3: Feature Extraction: Employing damage indices metrics based on the transmissibility response
using FRAC, FAAC, AIGSC, AIGAC, M-DI, R-DI method discussed in section 3.2.2, and normalise
the data and defining a threshold to identify outliers;
4: Feature augmentation and fusion: Employing statistic method, Tabular GAN, Forest Diffusion,
and multiple DIs to increase the volume of data in the dataset, aiming to improve the performance of
the regression algorithms on damage quantification. The proposed data augmentation architecture is
detailed in section 3.2.4
5: Clustering: Use the K-means unsupervised algorithm to cluster the data, see subsection .

J =

n∑
i=1

mink

(
∥xi − xk∥2

)
6: Data Splitting: Split the dataset into training and testing, e.g.80-20%, respectively.
R7: Regression ML algorithms: Applied ML algorithms for quantification (Linear regression, Lasso,
KNR, SVR-kernels, DTR, Gradient Boosting Regressor, see section 3.3.4).
R8: Model Evaluation: Calculates evaluation metrics for regression models, including the coefficient
of determination (R²), MAE, MSE, and RMSE.
9: Final decision: Information about damage state based on classification and regression algorithm
outcomes.

41



Algorithm 3 SHM-ML for damage assessment - Time series data (Al3)
1: Data Acquisition: Receive structural from the time-domain responses.
2: Data Processing: Involves correcting raw data by checking for missing values and applying signal
processing techniques.
3: Feature extraction and normalisation: Fourteen techniques are applied to extract features from
the time-domain signal, see section 3.2.3
5: Pattern Recognition and Clustering: Use the K-means unsupervised algorithm to cluster the
data.

J =

n∑
i=1

mink

(
∥xi − xk∥2

)
6: Data Splitting: Split the dataset into training and testing, e.g.80-20%, respectively.
C7: Classification ML algorithms: Applied ML algorithms for detection (SVM, K-NN, RF, NB,
DT and XGBoost, see section 3.3.3).
C8: Model Evaluation: Calculate the Performance Measure for the ML classifiers (Cross-validation,
Accuracy, Precision, Recall, and F1-score).
9: Final decision: Information about damage state based on classification and regression algorithm
outcomes.

The overview of the algorithm’s steps is detailed in the following:

2 Data processing: This stage involves repairing raw data, checking for missing values
and applying signal processing techniques to transform data into structured and reliable
information. In addition, inconsistencies are corrected, and missing values are dealt with to
ensure data integrity. Duplicated and unbalanced data is also performed in the supervised
step. (Applied to Alg1, Alg2, and Alg3)

3 Feature extraction: Using a data-driven approach involves understanding and examining
its inherent features before integrating it into the machine learning model for accurate
classification and estimation. Specifically, when the data involves employing the spectrum
response of the structure, as normalisation is indicated, this step, or feature extraction,
involves transforming the original data variables to create a new dataset, as described in
[59]. This data-processing step converts raw experimental data into a normalised value
using the DIs [168, 143, 38]. The DIs are split into two feature attributes DI1 and DI2,
serving as input data to the ML algorithms. (Applied to Alg1, Alg2, and Alg3)

4 Feature augmentation and fusion by virtual sensor: Employing statistic method,
Tabular GAN, Forest Diffusion, and multiple DIs to increase the volume of data in the
dataset, aiming to improve the performance of the regression algorithms on damage quan-
tification. Section 3.2.4 details the proposed data augmentation architecture. Data fusion
is the process of combining information from multiple sensors to enhance the fidelity of the
damage detection process [55]. In our model, data fusion is performed using experimental
and augmented data from the virtual sensor.(Alg2)

5 Pattern recognition and clustering: In the generated dataset, there is prior knowl-
edge regarding the number of clusters to be chosen (e.g. k = 5). However, the Python
code of the elbow method can also be applied to determine the most appropriate number
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of clusters for K-means. Thus, in the clustering step, the elbow method was applied to
the dataset to validate the result and closely aligned with our assumed value of k = 5,
reinforcing the empirical choice. The K-means algorithm receives DI1 and DI2 attributes
and returns clusters with samples grouped between healthy and damaged. As a result
of this step, one generates a clustered dataset saved by the algorithm into an Excel file
named “dataset.to_excel”, which is employed in the next steps. (Applied to Alg1, Alg2,
and Alg3)

6 Data splitting: The new dataset generated by K-means (two or more attributes and a
group cluster) is divided into training and testing sets for model construction and evalua-
tion following a ratio, e.g. 80-20%, respectively. (Applied to Alg1, Alg2, and Alg3)

Damage detection:

7C Classification: Six ML-supervised classification algorithms are applied to the training
data using the sci-kit-learn library. This process allows the model to learn patterns and
relationships within the dataset. (Applied to Alg1 and Alg3)

8C Classification model evaluation metrics: This step assesses the model’s performance
by testing it on the previously separated test dataset (as per step 6). During this stage,
model hyperparameters can be fine-tuned to improve metrics such as Accuracy, Precision,
Recall, and F1-score. Additionally, the confusion matrix is examined for insights. Cross-
validation is employed to prevent overfitting and promote model generalisation on the
training set, with 5-fold cross-validation being utilised in the current study. The confusion
matrix graphic is generated and saved in a high-resolution PDF figure by the function
“fig.saving”. (Applied to Alg1 and Alg3)

Damage and uncertainty quantification:

7R Regression: The supervised regression ML algorithm is implemented using the Scikit-
learn library. The nine supervised regression machine learning algorithms are applied to
this software version. The same dataset previously clustered by the K-means model (two
attributes and a group cluster) is used as input in this process, addressing the regression
problem, which returns the damage level values. (Applied to Alg1 and Alg2)

8R Regression evaluation metrics: Predicting future data trends using the trained model
based on machine learning algorithms. Performance metrics are fundamental for supervised
machine learning models, as they allow us to assess the quality of predictions. The aim is to
evaluate the model’s performance when dealing with new data, ensuring its effectiveness.
In the case of regression models, performance is assessed using the evaluation metrics R2,
MAE, MSE, and RMSE (see Section 3.3.4. (Applied to Alg1 and Alg2)

9 Final decision and interpretation: The last step of the proposed algorithm offers in-
formation into the damage state through the classification algorithm and provides damage
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quantification via the regression algorithm. It also includes uncertainty quantification in
damage estimation. These outcomes play a pivotal role in the interpretation and decision-
making processes related to detecting damage in the structure analysed. (Applied to Alg1,
Alg2, and Alg3)

3.2 Feature extraction and augmentation

Feature extraction involves transforming and reducing data dimensions through a multi-step
fusion process to eliminate noise and highlight structural signatures from the original data. This
process is often seen as essential in ensuring the reliability of SHM systems, as it significantly
impacts the accuracy and effectiveness of detecting damage [61]. Obtaining enough experimental
data for predictive applications and implementing data-driven monitoring remains a challenge
in many fields[169]. Consequently, the scarcity of data can pose problems for ML algorithms
performing on experimental system’s effectiveness, overfitting, and limited exploitation of the
feature space during model training [170]. Data augmentation methods can minimise such issues
and provide larger datasets by generating artificial data to improve accuracy and robustness.

3.2.1 Data analysis and processing

The first step of any damage detection system is collecting and efficiently analysing and
processing the sensor’s data, which serves as input to identify changes in the monitored system.
The system’s effectiveness depends directly on the accuracy and reliability of the information
provided by the sensors, emphasising the importance of the quality and relevance of the data
collected [171]. Data can be classified into different types, depending on its organisation and
structure [172]:

• Structured: Data with a well-defined structure follows a standardised order. Examples
include names, dates, and addresses, among others.

• Unstructured: Data that does not have a predefined format or organisation. Examples
include sensor data, emails, text documents, PDF files, audio, videos, images, and other
similar types.

• Semi-structured: Data combining structured and unstructured elements, displaying certain
organisational properties without a rigid schema. Examples include HTML files, XML,
JSON documents and NoSQL databases.

• Metadata: Data that describes other data, providing information about characteristics
such as authorship, file type, size, date and time of creation, or last modification. Examples
include attributes such as author, file format, and document size.

This categorisation is useful for understanding the data’s characteristics and determining ap-
propriate collection, processing, and analysis approaches.
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Algorithms are the core of data processing in damage detection models. They transform
raw data into useful information for identifying and characterising damage [173]. The choice of
algorithm depends on factors such as the type of data available (e.g. vibration, temperature,
acoustics), the complexity of the system being monitored, operating conditions, and the require-
ments for accuracy and speed of detection. In addition, effective algorithm implementation must
consider computational limitations and the conditions of the system’s environment. Therefore,
choosing and implementing algorithms to process the data and carry out identification is the
central element of a damage detection system. Before selecting the interpretation algorithm,
choosing between model-based or data-driven approaches is essential. This work will focus on
data-driven models.

Data-driven modelling, driven by machine learning [174], has become essential for structural
dynamics and SHM [175, 176]. These models are generally built based on collected input and
output data [177]. A general process for a data-driven SHM is described below and illustrated
in Figure 3.2.

Figure 3.2: A general process for a data-driven SHM (Source: own study).

Firstly, the relevant data is collected from various sensors installed on the monitored struc-
ture. These sensors can include accelerometers, strain gauges, microphones, cameras, or other
specialised devices. The aim is to collect information that can reflect the state of the struc-
ture, such as vibrations, stresses, temperatures or images. The data must vary during the phe-
nomenon, show some causal relationships, and correlate with each other. To apply the techniques
successfully, the variables monitored during the phenomenon that influence the prediction must
be recorded and used as inputs in the model [178]. After collection, the data undergoes pre-
processing (removal of noise, inconsistent data, invalid features, normalisation to standardise
different measurement scales, feature dimension reduction, etc) to improve its quality and pre-
pare it for analysis. Data pre-processing results in a cleaner experimental set with more relevant
features and reduced feature space, facilitating the application of data-driven methods. The
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aim is to ensure that the data is consistent and usable for the following stages, increasing the
accuracy and efficiency of the system.

Feature extraction involves identifying and isolating important characteristics in the raw
data indicative of the structure’s state [179]. This process can be improved with appropriate pre-
processing, statistical techniques (mean, standard deviation), analyses in the time and frequency
domains (Fourier transform, wavelets) and identifying specific characteristics such as amplitudes,
natural frequencies and vibrational modes. This process makes the data more representative,
facilitating the model learning and improving its efficacy. The features must be specific, sensitive
to structural integrity changes, and defined with a cause-effect relationship, allowing damage to
be detected accurately [178]. The features are then categorised to identify patterns or anomalies
that may indicate the presence of damage. In the final stage, conventional ML or DL models
make predictions and diagnoses [180].

3.2.2 Frequency-domain features

Vibration-based damage detection techniques investigate the problem of locating and quan-
tifying damage in a structure from changes in its dynamic characteristics [168]. Structure vibra-
tion signature has been used as a sensitive indicator of structural integrity and can be employed
to monitor the procreation and propagation of damage. In some SHM methods, damage de-
tection is performed by comparing the vibration signature in two states of the structure, one
considered undamaged and the other damaged [143]. The identification of damage by vibration-
based methods is based on the fact that the damage causes changes in the physical properties
of a structure, such as mass, damping and stiffness, and can induce changes in the dynamic
response, like the natural frequency, mode shape, and resonant frequency. Therefore, changes in
dynamic characteristics can be used as damage indicators compared with the original response.

The damage index (DI) is formulated by comparing a reference signal, usually derived from
the system considered undamaged, to the one provided by the system under the presence of
discontinuing or damage [181]. Various DI approaches have been developed to extract signal
features in different domains, aiming at identifying structural damage using an indicator that
describes the damage. The DIs are associated with the estimation techniques for damage quan-
tification and reveal important information about the structural health condition. Therefore, the
DI is normally presented in values between zero and unity, where the unit accuses no damage.
A lower value up to zero indicates the presence of a crack and its severity within the analysis
scenario. This work uses the DI as structure information for the training and testing data in the
multiclass ML algorithms. The DIs can be used to classify the damaged and undamaged state
from the loosening torque conditions of a bolted joint. Resonant frequencies vary according to
the torque levels, enabling the DI to identify and quantify the torque loss. This work uses DIs
to build an ML dataset from the experimental bolted beams-driven data.

The literature describes a range of DI developed over time. In this work, we used the Fre-
quency Response Assurance Criteria (FRAC), Frequency Amplitude Assurance Criteria (FAAC),
Global Shape Criteria (GSC), Global Amplitude Criteria (GAC), Average Integration GSC/-
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GAC (AIGSC, AIGAC), and Monnier’s Damage Index (DI). The FRAC is a damage index
representing the correlation between tested frequency responses. It references FRF signals [182],
where a unity indicates a strong correlation in case no damage is found. In contrast, the lowest
correlation reaches zero, depending on the damage severity. The FRAC is defined by

FRACij =

∥∥∥Hdam
ij (ω)
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where (*) defines the complex conjugate operator, (Hdam
ij (ω)) is the FRF vector on (j) for the

damaged excited on (i) and (Hund
ij (ω)) is the FRF vector for the undamaged, on the same

aforementioned coordinates. Another damage indicator that uses the correlation function in the
frequency domain is the frequency amplitude assurance criterion [183, 184], which measures
differences in response amplitude. FAAC follows the same idea as FRAC and is denoted as
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Global Shape Criterion (GSC) and Global Amplitude Criterion (GAC) proposed by Zang
[183, 185, 186] were used as a damage index. The GSC and GAC must return values between
zero and one for all frequencies similar to the FRAC and FAAC. The GSC and GAC DI are
defined, respectively, by

GSC(ω) =
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In addition to GAC and GSC, Zang [186] calculates a single damage index value defined as
the Mean Integration of the GAC and GSC functions, defined as

AIGSC(ω) =
1

N

N∑
i=1

GSC(ωi) (3.5)

and

AIGAC(ω) =
1

N

N∑
i=1

GAC(ωi) (3.6)

where N is the frequency band number. The AIGSC and AIGAC indicators are real constants
between zero and unity, indicating total damage or undamaged structure. The Monnier Damage
Index[187] and its modified version proposed by Banerjee [188, 189] are the normalised difference
in module between two FRFs in different structural states. The Monnier DI return a single real
value between zero and unity for a given frequency band of interest. However, values closer to
zero represent minor damage (no damage or healthy indication), while values closer to unity
represent greater damage.

DI =
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where n is the captured frequency band of the spectrum and T indicates the transposition of
the FRF vector

3.2.3 Time-domain features

The signals collected by sensors in monitoring and fault diagnosis systems are usually ac-
quired in the time domain. However, due to their oscillation nature, it is difficult to identify
changes caused by damages directly. However, time domain analysis methods are widely used
to extract features from signals, as it is the first information measured from the structures,
allowing differentiation between damaged and undamaged states[190, 191]. In the feature ex-
traction stage, it is possible to identify damage-sensitive features using statistical analyses [192].
In addition, statistical features are easier to estimate directly from the data.

Vibration-based damage detection and structure localisation using time indicators are also
used for SHM [193, 192]. This approach allows a temporal signal to be characterised representing
it by a single value [194]. In other words, the raw signal data is compressed into a shorter version
using features that describe it. In addition, different features in the time domain have different
information in the vibration signal [195], providing information on the statistical and physical
properties of the signal, such as variability, peaks, and energy. These aspects are essential for
detecting faults and identifying irregular patterns. In this study, fourteen techniques are applied
to extract features from the time-domain signal, x(t), as shown in Table 3.1, including [196]:
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Table 3.1: Time domain feature extraction methods.

Description Formula

01. Maximum value of x(t) max[x(t)]

02. Minimum value of x(t) min[x(t)]

03. Amplitude range max[x(t)]−min[x(t)]

04. Median value of x(t) Median =

x
(
n+1
2

)
, if n is odd

x(n
2 )+x(n

2 +1)
2 , if n is even

05. Mean value of x(t) x = 1
n

∑n
i=1 xi

06. Variance of x(t) ν = 1
n

∑n
i=1(xi − x)2

07. Energy of the signal Es(x) =
∑n

i=1 x
2
i

08. Energy of the centred

signal
Ec =

∑n
i=1(xi − x)2

9. Skewness of x(t) Skew = [E((x− x)3)]/ν3/2

10. Kurtosis of x(t) Kurt = [E((x− x)4)]/ν2

11. Moment order (mi) mi = [E((x− x)i)]/νi/2, (i = 5 : 10)

12. Shannon Entropy HS(x) = −
∑n

i=1 x
2
i log2(x

2
i )

13. Signal rate (τ) τ = [max(x1:n)−min(x1:n)]/x

14. Root mean square

of x(t)
RMS =

√
1
n

∑n
i=1 x

2
i

where xi in Table 3.1 represents vibration signals, n is the total amount of sampling points
and E() represents the expected values. The amplitude variation among the features can be
an issue due to different amplitude levels and small differences between operations thresholds.
Such issues pose great challenges for the ML algorithm in finding a pattern and performing the
classification further. To cope with this issue, we proposed a relative change damage index (RCf )
in the feature condition extraction and incorporated a normalisation in the feature expressed as

∆f = [max[feature]− feature] (3.9a)

RCf =
∆f

max[∆f ]
(3.9b)

where ∆f represents the difference between each element in the feature vector and its maximum
values, and RCf is the feature’s relative change, calculated by dividing ∆f by this maximum
value. This normalisation method ensures that the features are scaled between zero and one,
preserving their essential characteristics while enabling consistent feature comparison.

3.2.4 Data argumentation

Data augmentation artificially expands datasets by introducing variations or using deep
learning to generate new data points while preserving the core characteristics of the original
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data [197]. Virtual sensors are software-based tools that indirectly estimate process variables or
unknown conditions by exploiting data from physical sensors combined with data fusion tech-
niques [198]. In this work, the proposed virtual sensor performs data augmentation and fusion
of the new synthetic data with the real one. Hence, our virtual sensor augments damage indices
obtained from the raw measurements to increase dataset volume. Furthermore, the generated
synthetic data is combined with the real data, and the sensor output is the augmented DI. In
practice, the virtual sensor increases the volume of data guided by physical sensor input derived
from the experimental vibration signals of the bolted being in different health conditions.
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Figure 3.3: Virtual sensor flowchart for data fusion and augmentation (Source: own study).

This section details the virtual sensor algorithm for data augmentation. The architecture
includes four methods based on statistical moments (Section 3.2.4), Tabular Generative Adver-
sarial Networks (TGAN) [199] (Section 3.2.4), Forest Diffusion [197] (Section 3.2.4), and the
combination of the multiples DIs presented in Section 3.2.4.

Figure 3.3 presents the virtual sensor flowchart proposed in this paper. The process begins
with calculating DIs from experimental transmissibilities and then selecting a method that in-
volves either a statistical, deep learning-based approach for data augmentation or both. Each
pathway has distinct variations, which are detailed in the subsequent subsections. The aug-
mented data is then combined with the original dataset for further reproduction or as input
to the next step of the condition assessment for torque loosening. Hence, the virtual sensor is
designed to streamline the data augmentation process, enhancing both the performance and ac-
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curacy of machine learning algorithms, particularly in scenarios with limited data. The overall
virtual sensor algorithmic workflow data fusion and augments are as follows

1. Start of the process: The process starts with the original data input provided by the
user. In our case, the Damage indexes.

2. Method: The user can choose between ‘Statistical Methods’ or ‘Machine Learning’.

3. Statistical Methods: In the statistical route, the algorithm calculates the mean, standard
deviation and variance of the original(input) data. The next step is to determine or select
a probabilistic distribution. The log-normal distribution is used by default, but the user
can choose a different distribution, which may be more suitable depending on the nature
of the data. Both ways end in generation N-samples, as defined by the user.

a) Log-Normal: Using the log-normal distribution, new data samples are generated
using Monte Carlo simulation (N-samples).

b) Distribution: Based on the estimated or given probability density function, new
samples are generated using Monte Carlo simulation.

4. Machine Learning: The machine Learning route is chosen, and the user can select among
the deep learning TGAN, CTGAN (Conditional TGAN) or Forest Diffusion. Independent
of the choice, those methods are based on the generative adversative techniques that
reproduce the original data in an unsupervised approach.

a) TGAN: is a method for modelling the distribution of tabular data and sampling
lines from the distribution.

b) CTGAN: is specific to dealing with non-Gaussian and multimodal distributions,
mode-specific normalisation and conditional training to handle unbalanced discrete
columns.

c) Forest Diffusion: This model combines diffusion methods, such as Corresponding
Flow Matching (CFM), with XGBoost, an augmented gradient tree method, to pro-
duce and attribute tabular data, both continuous and categorical.

5. Data augmentation: Regardless of the previous choice, the augmented data is combined
with the original data to enhance the dataset that will be input in the ML algorithms.

6. Reproducing data: The user can decide whether to round another round of the argument
process to increase the dataset further or to proceed to the end. In the case of another
round, the augmented data is considered as ’original data’, and the process starts again.

7. End of the process: The end of the process returns the new dataset, which combines
the original and new synthetic data.
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Statistical Data Generation

In this subsection, we want to generate synthetic data from an original dataset using a
lognormal distribution. The lognormal distribution is a probability distribution where the loga-
rithm of the variable follows a normal distribution. A key feature of the lognormal distribution
is that it only allows positive values, making it particularly suitable for modelling phenomena
restricted to non-negative outcomes [200]. For a lognormal random variable, the mean (µ) and
standard deviation (σ) are determined by of the associated distribution as

fX(x) =
1

xσ
√
2π

exp

(
−(lnx− µ)2

2σ2

)
,

µ = ln

(
x2√
v + x2

)
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√
ln
(
1 +

v

x2

) (3.10)

where x > 0 is the value of the random variable, µ is the average of the variable’s natural
logarithm, and σ is the standard deviation of the natural logarithm of the variable. Based on
this statistical information, sample generation is carried out according to the sample size defined
by the user. The samples are summed to the original dataset depending on the data generation.
For other distributions, the users can easily use it to declare the selected distribution.

Tabular generative adversarial networks

Generative adversarial networks (GANs) are a generative modelling technique based on
neural networks, first introduced by Goodfellow et al. in 2014 [201]. GANs can generate new
data that closely resembles the original data by learning the underlying probability distribution
from the training set. In a GAN, the discriminator (D) attempts to distinguish between real
data and synthetic data, while the generator (G) creates realistic synthetic data to deceive
the discriminator [202]. A synthetic data generator based on GANs for tabular data, known
as TGAN, addresses the scarcity of experimental data. The basic architecture of TGAN is
illustrated in Fig. 3.4.
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Figure 3.4: The structure of the TGAN model for generating tabular data (Source: own study).

The TGAN proposed by Xu and Veeramachaneni [199] increased the ability of the GAN-
based model to generate tabular data that includes continuous, discrete, and categorical vari-
ables. TGAN employs a Long Short-Term Memory (LSTM) network to generate synthetic data
column by column, with each column in the original dataset having its own dedicated LSTM
cell. The role of each LSTM cell is to produce data for its respective column, and the process
is sequential. After one column’s data is generated, its LSTM cell’s output is used as input for
the next column’s LSTM cell, and so on. This ensures that the dependencies between columns
are preserved. A Multi-Layer Perceptron (MLP) is the discriminator, distinguishing between
real and artificial data. The generator is optimised using the ADAM optimiser, which trains
the network to generate artificial data that can fool the discriminator. During the optimisation
process, the Kullback-Leibler (KL) divergence and the cluster vector are incorporated into the
loss function, enhancing both the efficiency of the training process and the stability of the model.
The loss functions for the generator and discriminator are defined as follows

LossG = −Ez∼N (0,1) logD(G(z)) +

nc∑
i=1

KL(u′i, ui) +
nd∑
i=1

KL(d′i, di), (3.11)

LossD = −Ev1:nc ,u1:nc ,d1:nd
∼P(T ) logD(v1:nc , u1:nc , d1:nd

)

+ Ez∼N (0,1) logD(G(z)) (3.12)

where u′i and d′i are generated artificial data, ui and di are original data, nc and nd are the con-
tinuous and discrete variables, respectively. The performance of the generator and discriminator
is improved through iterative training, where both work to minimise their respective loss func-
tions. This process continues until the discriminator can no longer distinguish between synthetic
and real data.
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Generating tabular data via Diffusion and XGBoost

Diffusion models are a recent generative method that estimates a scoring function and uses
stochastic differential equations (SDEs) to generate samples. This process involves transforming
real data into Gaussian noise through a direct stochastic process and learning to reverse the
noise back into data using SDEs [197]. In contrast, Conditional Flow Matching (CFM) is a newer
approach that estimates a vector field and employs ordinary differential equations to generate
data. CFM works similarly to diffusion models, but deterministically, converting data to noise
and noise to data [197]. Both methods have been successful in data generation tasks and typically
use deep neural networks to estimate the scoring function or vector field, as neural networks are
considered universal function approximations. In this study, we employ an approach to generate
artificial tabular data using diffusion and Independent-Conditional Flow Matching [203] with
XGBoost [204], as proposed by [197]. The method employs a Gradient-Boosted Tree (GBT)
model instead of neural networks to estimate the vector field or scoring function. This technique
generates realistic tabular data, which can be trained on complete or incomplete data, covering
continuous and categorical variables. The stages of the Forest Diffusion method are described
below and illustrated in Figure 3.5, following the steps:

1. The first stage duplicates the original dataset, represented as x by n-times.

2. The second stage adds a different noise to each duplicated dataset. Each duplicate data
receives a different Z noise vector, creating several noisy versions of the original data.

3. The third step calculates the linear interpolation between the duplicate dataset x and its
corresponding noise Z for different times t. The interpolation is given by:

x(t) = tx+ (1− t)Z, t ∈
{
0,

1

3
,
2

3
, 1

}
(3.13)

4. The final step involves regressing a Gradient-Boosted Tree (GBT) model for each noise level
against the vector field. During this phase, the models are trained to map the interpolated
data x(t) to the corresponding vector field, minimising the difference between the model
output and the expected data. The optimisation is performed to minimise the following
loss function:

minf∥f(x(t))− (x− Z)∥22 (3.14)

Figure 3.5: Steps of Forest-Flow method (Adapted from [197]).
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Damage Index combined

The combination of the damage indices, detailed in Section 3.2.2, increases the volume of
features from the original data. The advantage of this approach is that it is based only on the
system’s physical properties, thereby improving the robustness and accuracy of monitoring. As
the machine learning algorithms input are often represented as vectors or matrices [205], our
data features are organised in tabular and defined as a matrix of vectors, where each row of the
table represents an instance or data point, the DI value, and each column represents a resource
associated with a particular DIs attribute (DI1 and DI2). For a particular damage index, e.g.
FRAC DI, the tubular matrix yields

DI =


DI1,11 DI2,21

DI1,21 DI2,22
...

...
DI1,k1 DI2,2k

 (3.15)

where k represents the table’s number of rows containing the damage index values. The combined
DIs in the tabular matrix consider more columns of damage indices derived from other theories,
represented by

DImulti =


DIFRAC

1 DIFAAC
1 · · · DIn

1

DIFRAC
2 DIFAAC

2 · · · DIn
2

...
...

...
DIFRAC

k DIFAAC
k · · · DIn

k

 (3.16)

where FAAC expresses the damage indices methods used considering in the feature extraction.
There is no limitation of the feature added. , but in this case, for a good performance of the
K-means, the columns must added in pairs of attributes (DI1 and DI2).

3.3 Machine learning algorithms

Machine learning is a technique within the field of artificial intelligence. It is defined as a
process that automatically extracts patterns from data [141], then uses the discovered patterns
to make predictions about future data or to carry out other types of decision-making under
uncertainty. This technique aims to determine a model that examines data to identify patterns
or make predictions [206]. The model results from the training process, which involves a set of
data and an algorithm that can be used to analyse and learn from that data. During training,
the model adjusts its parameters to find the most relevant patterns in the data and becomes
an accurate prediction based on new data. Machine learning has become increasingly popular
in recent years due to its ability to analyse large amounts of data, identify patterns and make
predictions or decisions based on that data [207]. With the rapid increase in data availability
and the constant advancement of computing capabilities and programming methods, ML tools
are increasingly used in various engineering areas [208].
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The ML algorithms provide the tools needed to expand the capabilities of SHM systems
[51]. It offers efficient solutions for building models or representations to map input patterns in
measured sensor data to output targets for a damage assessment at different levels [209]. ML is
part of this feature selection paradigm and statistical modelling for feature discrimination de-
scribed in [55, 210]. In the literature, there are different types of machine learning methods [211].
The most commonly used approaches are Methods based on the amount of human supervision in
the learning process (Supervised learning, Unsupervised learning, Semi-supervised learning and
Reinforcement learning), Methods based on the ability to learn from incremental data samples
(Batch learning or offline learning and online learning) and Methods based on their approach
to generalising from data samples (Instance-based learning and Model-based learning).

The most commonly used categories of machine learning are supervised and unsupervised
learning [212]. The main difference between the two categories lies in how the rules for classifying
patterns are modelled. For example, when information on a structure’s damaged and undamaged
state is available, pattern recognition can be based on the supervised learning approach. When
information on the damaged state is not available, unsupervised learning is applied. Supervised
learning best suits scenarios in which damaged and undamaged structure data is available for
engineering structures [43].

3.3.1 Unsupervised learning

In unsupervised learning, the pattern is determined by an unknown class ‘boundary’, i.e.
there is no prior information about the class to which the patterns belong, as there is no class
associated with the pattern. All data is unlabelled [64]. This usually involves finding hidden
structures in the data based solely on their characteristics and similar patterns. In this case, as
there is no prior information about the desired result, i.e. the training data is missing, it can only
be used to detect and possibly localise the damage [55]. Unsupervised learning is widely used to
detect outliers due to the unavailability of the training data set [213]. Outliers, or anomalies, are
patterns in data that do not follow a typical, well-defined behaviour [214, 215]. They can arise
due to mechanical failures, changes in system behaviour, fraudulent behaviour, human errors,
instrumental errors or simply natural deviations in populations [216].

There are many different types of unsupervised learning, including K-means Clustering,
Hierarchical Clustering [217], GMM [158], Hidden Markov model [218] and PCA in the context
of dimensionality reduction [219]. The K-Means clustering algorithm used in this work is an
unsupervised ML in which data objects are distributed into a specified number of k clusters
[220]. The k is a hyperparameter that specifies the number of clusters that should be created. It
is a useful approach for clustering (labelling) or partitioning the data before feeding the labelled
data as the output of a supervised ML algorithm. The aim is to find centroids that measure
the cluster’s centre point, such that the sum of the squared distances of each data sample to its
nearest cluster centre is minimal. The nearest here is concerning the Euclidean norm (L2 norm).

56



Thus, the objective function is

J =
n∑

i=1

mink

(
∥xi − xk∥2

)
(3.17)

where xi represents the ith instance in cluster k, and xk denotes the mean of the samples or
“centroid” of cluster k.

The K-Means algorithm is widely used due to its simplicity of implementation and low
computational complexity. Still, one of the biggest problems of K-Means clustering algorithms
is the initial definition of the number of clusters that must be used. When dealing with highly
complex problems where the cluster count is hard to define, the “elbow” method can provide
insights into the potential number of required clusters. Another disadvantage of K-means is that
it is very sensitive to outlier points, which can distort the centroids and the clusters [221]. This
work employs K-means for feature selection, clustering, and pattern recognition.

3.3.2 Supervised learning

In supervised learning, the input pattern is identified based on available information, i.e.,
the class is defined from a knowledge base of known patterns. This way, it assigns a class to
this unknown object through a similarity measure with previously classified known objects. The
known information forms a set of ‘labelled’ patterns. There is a very high demand for data in
this case, as all possible damage situations must be available. The supervised learning approach
is divided into a Regression problem and a classification problem [219].

Regression is a predictive learning problem that maps a data item to a real-value predictor
variable. In other words, it has to predict a numerical characteristic of the data [222]. Regres-
sion predicts likely future or desirable outcomes from a set of labelled data. Regression models
are widely used in various fields, including financial forecasting [223], price estimation [224],
production [225], thermoelectric performance estimation [226], concrete compressive strength
prediction [227] and many more. Classification is also a predictive learning problem. In this
case, a label has a previous classification for a given example, and we want to predict which
class an unclassified piece of data belongs to, i.e. it is the division of data into several known
categories. Two types of classifiers are available considering their output characteristics, binary
and multiclass classification [228, 229].

• Binary Classification: This refers to classifying data with two class labels or groups/cat-
egories, for example, ‘true and false’ or ‘positive and negative’. In binary classification
problems, one class can be the undamaged state, while the other class can be the damaged
state.

• Multi-class classification: This refers to classifying data with more than two class labels or
groups/categories. In multiclass classification problems, objects are assigned to a category
within a specified range without the distinction of normal or abnormal results, as found
in binary classification.
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Many classification algorithms are proposed in the machine learning literature, such as those
described in [217, 230]. Herein, we highlight the ones we have used in our method.

3.3.3 ML algorithm used in damage detection and classification

The classifier algorithms employed to classify the damage are the supervised Naive Bayes,
Decision Tree (DT), Random Forest (RF), K-Nearest Neighbours (KNN), Support Vector Ma-
chine (SVM), and extreme Gradient Boosting (XGBoost). To cluster the data and perform the
SPR, the unsupervised K-means.

K-Nearest-Neighbour classifier

K-nearest neighbour is one of the simplest supervised learner methods [221, 53] and widely
used for pattern recognition[231]. KNN can be used for classification and regression, where data
with discrete labels usually uses classification and data with continuous labels regression. The
classification is calculated from a simple majority vote of the nearest neighbours of each point:
a query point is assigned the data class with more representatives within the nearest neighbours
of the point. A metric between the points is used spaces[221].

The KNN algorithm, in its simplest version, only considers exactly one nearest neighbour,
which is the closest training data point to the point we want to predict. The prediction is then
simply the known output for this training point. Depending on the value of ‘kn’, each sample
is compared to find similarity or closeness with ‘kn’ surrounding samples. For example, when
kn = 5, the individual samples compare with the nearest five samples; hence, the unknown
sample is classified accordingly [221]. The optimal choice of ‘kn’ value is highly data-dependent.
In general, a larger suppresses the effects of noise but makes the classification boundaries less
distinct.

Decision Tree and Random Forest

Decision tree supervised algorithm can target categorical variables such as the classification
of a damaged or undamaged statement and continuous variables as regression to compare the
signal with the healthy state of the system [53]. Learning a decision tree means learning the
sequence of if/else questions that gets us to the true answer most quickly. A tree contains a root
node representing the input feature(s) and the internal nodes with significant data information.
Each node (a leaf or terminal node) represents a question containing the answer. The interactive
process is repeated until the last node (leaf node) is reached such that the node becomes impure
[221]. The data get into the form of binary features in our application, and a classification
procedure is performed.

The random forest ML algorithm is an ensemble classifier that consists of many decision
trees, and the class output is the node composed of individual trees. The RF has high prediction
accuracy, robust stability, and good tolerance for noisy data. The law of large numbers does not
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overfit and has been used for structural damage detection. It has shown a better performance
[232].

Support Vector Machine

Support Vector Machines are supervised machine learning techniques developed from the
statistical learning theory that can be used for classifying and regressing clustered data. In the
case of linear classification, with two classes, let {(xi, yi), ..., (xn, yn)}, a training dataset with
n observations, where xi represents the set of input vectors and yi(+1,−1) is the class label of
xi, the hyperplane is a straight line that separates the two classes with a marginal distance (as
seen in Fig. 3.6). The purpose of an SVM is to construct a hyperplane using a margin, defined
as the distance between the hyperplane and the nearest points that lie along the marginal line
termed as support vectors [233].

𝑤𝑥 + 𝑏 = 0

𝑤𝑥 + 𝑏 = 1

𝑤𝑥 + 𝑏 = −1

𝑀𝑎𝑟𝑔𝑖𝑛
𝑆𝑢𝑝𝑝𝑜𝑟𝑡 𝑣𝑒𝑐𝑡𝑜𝑟𝑠

𝑥1

𝑥2

𝐻𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑛𝑒

𝜖

𝜉𝑖
𝜉𝑖
∗

Figure 3.6: SVM algorithm operation (Source: own study).

One can define the hyperplane by Eq. (3.18), where we have the dot product between x and
w added to the term b:

D(x) = wT .x+ b = c for − 1 < c < 1 (3.18)

where x represents the points within the hyperplane, w is the weights that determine the ori-
entation of the hyperplane, and b is the bias or displacement of the hyperplane. When c = 0,
the separating hyperplane is in the middle of the two hyperplanes with c = 1 and −1. An SVM
aims to maximise the data separation margin by minimising ||w||. This optimisation problem
can be obtained as the quadratic programming problem given by

min
||w||2

2
s.t yi(w

T .xi + b) ≥ 1 for i = 1, 2, ..., n (3.19)

where ||w|| is the Euclidean norm. The SVM algorithm encompasses linear and nonlinear clas-
sification and linear and nonlinear regression. The main idea of the algorithm consists of fitting
as many instances as possible a “tube” while limiting margin violations. Therefore, SVR wants
to find a hyperplane that minimises the distance from all data to this hyperplane. The width of
the “tube” is controlled by a hyperparameter, which has an error “insensitive” area, defined by
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ϵ, as illustrated by Figure 3.6. The larger the ϵ, the larger the diameter of this tube, and the less
sensitive the model is in predicting points within it. In contrast, the smaller ϵ, the smaller the
diameter of the tube, the greater the chances of points being on the edges of the tube, making
the model more robust. The samples that fall into the ϵ-margin do not incur any loss. Points
outside the tube are examined and considered concerning the ϵ-insensitive region. Compared to
a previously defined error called slack variables (ξ). This approach is similar to the “soft margin”
concept in SVM classification because the slack variables allow regression errors to exist up to
the value of ξ and ξ∗i , yet still satisfy the required conditions. Including slack variables leads to
the objective function given by Eq. (3.27).

Minimize :
1

2
∥w∥2 + C

n∑
i=1

(ξi + ξ∗i )

Constraints : yi − wT .xi − b ≤ ϵ+ ξi

wT .xi + b− yi ≤ ϵ+ ξ∗i

ξi, ξ
∗
i ≥ 0, i = 1, ..., n

(3.20)

Naïve Bayes

Naïve Bayes classification is a probabilistic classification method based on Bayes theorem
with the assumption of independence between features, considered a simple technique for con-
structing classifiers with models that assign class labels to problem instances, represented as
vectors of feature values, where the class labels are drawn from some finite set. There are three
classes in sk-learn, the Gaussian-NB, Multinomial-NB, and Bernoulli-NB. The first assumes a
Gaussian distribution, the second is for discrete occurrence counters, and the third is for discrete
boolean attributes [234]. Naive Bayes classifiers are highly scalable, requiring several linear pa-
rameters in the number of variables in a learning problem. Maximum-likelihood training can be
done by evaluating a closed-form expression. In other words, one can work with the naive Bayes
model without accepting Bayesian probability or using any Bayesian methods. An advantage of
naive Bayes is to train a model with few samples [235].

Extreme Gradient Boosting (XGBoost)

XGBoost (short for Extreme Gradient Boosting) is an efficient implementation of Gradient
Boosting Machines (GBM), developed by Tianqi Chen [204], widely recognised for its superior
performance in supervised learning. This versatile algorithm is also considered an ensemble tree
technique that can be used for regression and classification tasks. XGBoost follows the concept
of weak-learner, where each predictor could be improved by sequentially training new trees to
the model [236]. In other words, the XGBoost makes predictions by creating numerous smaller
decision trees, also known as subtrees. Each subtree makes predictions for the data, combining
their predictions to form the final prediction for the given input. This ensemble approach helps
improve the accuracy and generalisation ability of the predictive model. The process involves
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iteratively training these subtrees to correct the errors made by the previous subtrees, gradually
refining the overall prediction as more trees are added.

Another feature related to XGBoost is that it uses L1 and L2 regularisation, which helps
with model generalisation and reduction of overfitting. It uses an optimisation strategy that
produces better weights as it calculates the weights of the component models. It also uses
slightly less tiny component models.

Evaluation metrics for classification models

The performance of the classification models was evaluated using key metrics such as Ac-
curacy in Eq. 3.21, Precision in Eq. 3.22, Recall in Eq. 3.23, and F1-score in Eq. 3.24, which are
based on True Positive (TP), True Negative (TN), False sitive (FP) and False Negative (FN)
samples [237, 238]. These metrics are crucial at various stages of the modelling process, such as
model type selection, final evaluation and ongoing performance monitoring [239].

Accuracy(y, ŷ) = TP+ TN
TP+ FP+ TN+ FN (3.21)

Precision(y, ŷ) = TP
TP+ FP (3.22)

Recall(y, ŷ) = TP
TP+ FN (3.23)

F1 = 2× Precision× Recall
Precision+ Recall (3.24)

where yi and ŷ represent the true and predicted label, respectively.
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Figure 3.7: Confusion Matrix (Source: own study).

The confusion matrix [240] is also vastly employed to verify the data classification, which
provides the correct configurations of the classified data. It compares actual values with predicted
values, categorizing them into two labels: “Positive” and “Negative” [241]. The matrix’s main
diagonal values show how many correct model predictions are for each class. To illustrate,
consider a 2×2 confusion matrix in Figure 3.7, where:

• True Positive (TP): The number of instances where the ML model correctly classifies a
sample as belonging to the “Positive” class.
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• False Negative (FN): The number of instances where the ML model incorrectly classifies
a sample as belonging to the “Negative” class when it belongs to the “Positive” class.

• False Positive (FP): The number of instances where the ML model incorrectly classifies a
sample as belonging to the “Positive” class when it belongs to the “Negative” class.

• True Negative (TN): The number of instances where the ML model correctly classifies a
sample as belonging to the “Negative” class.

Cross Validation

When developing a machine learning model, it is essential to check that the model is well-
adjusted. A simple approach is to split the data into two sets: training and test [242]. The model
is trained with the training set to fit the model and is evaluated in terms of accuracy using the
test set [243]. The data split usually follows proportions, such as 80% for training and 20% for
testing, and can be adjusted according to the problem. However, when evaluating the model
only once, the question of whether the good performance observed was due to random factors
may arise. To obtain greater confidence in the quality of the model, it is necessary to evaluate
it several times using methods such as cross-validation, which allows for a more consistent and
robust analysis of the model’s performance.

Cross-validation is a widely used statistical method for evaluating performance, comparing
machine learning algorithm models on unseen data samples and preventing overfitting [244, 38,
245]. This approach provides a more accurate estimate of the generalisation error, especially in
small datasets. By evaluating the model on multiple validation subsets, cross-validation offers a
more realistic view of its performance, helping to identify and mitigate overfitting, which occurs
when the model provides accurate predictions for the training data but not for the new data
in the test set [246]. It also provides a reliable estimate of the model’s expected performance
on new and unseen data. The method splits the data into two segments: one for training the
model and the other for validation (testing) [247]. The most common cross-validation approach
is k-fold cross-validation [248].

In k-fold cross-validation, the dataset is randomly divided into kf subsets called folds (where
kf is defined in advance), with an approximately equal sample in each subset. The model is
trained and evaluated kf times, using a different fold as a test set in each iteration. In the
first iteration, the first fold serves as the test set, while the remaining kf − 1 folds are used for
training. The process is then repeated with the second fold as the test set, and so on, until each
fold has been used once for validation, ensuring a comprehensive evaluation of the model. Each
iteration generates an evaluation metric, such as accuracy, to monitor the performance of each
learning algorithm. These metrics assess the model’s ability to generalise to new and unseen data.
Cross-validation is a fundamental tool in machine learning for evaluating model performance,
preventing overfitting and selecting the most suitable model. Systematically dividing the data
into training and validation sets and repeating this process several times provides a more robust
and reliable estimate of the model’s generalisation ability.
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3.3.4 ML algorithms used to damage quantification

For damage quantification, we employ nine regression algorithms: linear regression, Lasso,
KNR, DTR, GBR, SVR-linear, SVR-RBF, SVR-Poly, and MLP. This approach exclusively relies
on experimental data from the monitored system, eliminating the need for numerical models.
The proposed method significantly improves damage level quantification accuracy, enhances
model performance in fault-level predictions, and supports decision-making.

Linear Regression

Linear Regression fits a linear model to the dataset by adjusting a set of parameters to
minimise the sum of squared residuals of the model. It is considered a straightforward and
commonly used statistical regression method for predictive analysis in machine learning [249].
The Equation 3.25 for linear regression is as follows

y = θx+ α (3.25)

where θ is the slope of the line, α is the intercept, x is the independent variable (input feature),
and y is the dependent variable (output feature).

LASSO Regression

Lasso regression (Least Absolute Shrinkage and Selection Operator) [250] is a regression
technique that combines linear regression with L1 regularisation. The main aim of Lasso is
to improve the generalisation capacity of the model by performing both regularisation and
variable selection. L1 regularisation adds a penalty to the sum of the absolute values of the
parameter coefficients, which reduces the coefficients of less significant characteristics to zero.
This allows Lasso to automatically select the most important features, eliminating irrelevant
ones and reducing the dimensionality of the model. Lasso’s objective is to minimise the loss
function:

β̂L1,λ = argmin
β


n∑

i=1

yi − β0 −
p∑

j=1

βjYi,j

2

+ λ

p∑
j=1

|βj |

 (3.26)

where y and Yij are the response and predictor variables, respectively; β0 and βj are the coef-
ficients to be estimated; λ is the regularization parameter that controls the strength of the L1

penalty; p is the number of predictors (features); n is the number of observations. This technique
is particularly effective for dealing with high-dimensional data [251], where many variables may
be insignificant. Lasso helps solve multicollinearity problems by better distributing the coeffi-
cients [252]. Lasso regression is ideal for predictive problems due to its ability to automatically
select variables, simplify models and increase the accuracy of predictions.

Multilayer Perceptron (MLP)

Multilayer Perceptron (MLP) is a supervised learning algorithm that learns a function
by training on a dataset. The MLP Regressor class implements a multilayer that trains using
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backpropagation without an activation function in the output layer, which can also be seen as
using the identity function as the activation function. Therefore, it uses the mean squared error
as the loss function, and the output is a set of continuous values. MLP Regressor also supports
multi-output Regression, where a sample can have more than one target [249].

Support Vector Regression (SVR)

Support Vector Regression (SVR) is a supervised learning algorithm used for the regression
of linear and nonlinear tasks. SVR can be applied to nonlinear problems using kernel functions
such as Polynomial and Gaussian radial basis function (RBF) [253], which project the sample
space into a higher-dimensional space where the data become linearly separable. It works by
finding a hyperplane that minimises the distance from all data to this hyperplane. The width
of the “tube” is controlled by a hyperparameter, which has an error “insensitive” area, defined
by ϵ. The samples that fall into the epsilon margin do not incur any loss. Points outside the
tube are examined and considered concerning the ϵ-insensitive region. Compared to a previously
defined error called slack variables (ξ). Including slack variables leads to the objective function
given by

Minimize :
1

2
∥w∥2 + C

n∑
i=1

(ξi + ξ∗i )

Constraints : yi − wT .xi − b ≤ ϵ+ ξi

wT .xi + b− yi ≤ ϵ+ ξ∗i

ξi, ξ
∗
i ≥ 0, i = 1, ..., n

(3.27)

where, w is the weight vector, b is the bias term, C is the regularisation parameter, ϵ is the
epsilon-insensitive loss parameter, xi are the input features, yi are the target values, and ξi and
ξ∗i are slack variables that allow for errors.

Decision Tree Regressor (DTR)

Introduced by Breiman et al. [254], the Decision Tree algorithm transforms data into a
tree structure where each internal node represents an attribute, and each leaf represents a class
label. Used for both classification and regression, these trees categorise discrete and continuous
data or predict numerical values. The common loss function is the squared error, which needs
to be differentiable for regression problems [255, 256]. Inspired by real trees, they consist of
a root node representing the input feature(s) connected to internal nodes that end in leaves,
making them effective for segmenting complex data. The interactive process is repeated until
the final leaf node is reached, and then the node becomes impure. The average response value
of the observations in each leaf is used as the final prediction [257]. However, as the size of the
data increases, the branches proliferate, increasing the processing time. Modifications to the
algorithms help reduce the leaf count to mitigate this difficulty.
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Gradiente Boosting Regressor (GBR)

Gradient Boosting (GB) is a popular ensemble method in the machine learning community,
proposed by Friedman [258]. This technique combines multiple decision trees to create robust
and effective models for classification and regression tasks [259]. GB repeatedly adds decision
trees so that each new tree corrects the errors of the previous tree. Unlike other methods, GB
does not adjust the weights of the training examples. Instead, each predictor is trained using
the residual errors of the previous model as labels. The decision trees used in GB are generally
shallow, with depths ranging from one to five, which makes the model lighter and the predictions
faster. These shallow trees, called weak learners, improve the model’s performance as more trees
are added [256]. GB effectively categorises data into discrete classes and predicts numerical
values in regression tasks. It uses a stepwise additive model, where only one new weak student is
added at a time, while the previous ones remain unchanged. This is similar to gradient descent,
where the model is fitted by minimising the gradient of the loss function. Equation 3.28 presents
the Gradient Boosting function for regression problems, where the gradient of the loss function
is minimized.

F (x) =

n∑
i=0

δih(x; γ) (3.28)

where h(x; γ) is a parameterised function of the input variables x, characterised by the param-
eters γ, and δi is the expansion coefficient.

K-Neighbors Regressor (KNR)

The K-Nearest Neighbours algorithm is a simple, non-parametric method used for classifi-
cation and regression [260]. In the context of regression, KNN makes predictions by identifying
the kn data points closest to a given input and calculating the average of their target values for
numerical regression. For classification, it selects the majority class among the nearest neigh-
bours. The choice of parameter kn is crucial: smaller values of kn result in more flexible and less
biased models, while larger values produce smoother and more robust models. KNN is called
a ‘Lazy Learner’ because it does not go through a traditional model learning phase, memoris-
ing the entire training dataset [261]. Although effective at capturing local patterns, KNN faces
high-dimensional difficulties and depends heavily on the distance metric chosen (Euclidean or
Manhattan) [262]. The choice of kn and the distance metric must consider the data’s character-
istics and the problem in question.

Evaluation metrics for regression models

The Assessment of regression models is measured using common metrics like the Coefficient
of Determination (R2), Mean Absolute Error (MAE), Mean Square Error (MSE), and Root Mean
Square Error (RMSE). These metrics are widely used to compare predicted values to actual
ones and show how well the model performs [263]. The R2, or the coefficient of determination
(Eq. 4.22a), measure the variation in the actual values relative to the model’s prediction. It ranges
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from 0 to 1 (or from 0% to 100%) and indicates how well the model explains the variability of
the response variable [239, 264].

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳi)2
(3.29)

where yi is target value, ŷi is model’s prediction, and ȳi is the average of all the target values.
The Mean Absolute Error (MAE) is the mean of the absolute differences between the actual

and predicted values, calculated by Eq. 4.22b [264].

MAE =
1

n

n∑
i=1

∥yi − ŷi∥ (3.30)

The Mean Squared Error (MSE) is the average of the squared differences between the
predicted values, as calculated by Eq. 4.22c [264].

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (3.31)

The Root Mean Squared Error (RMSE) (Eq. 4.22d) is the square root of the MSE. The
MAE, MSE, and RMSE values range from 0 to ∞, with lower values indicating better perfor-
mance of the regression model [264].

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (3.32)

3.3.5 Uncertainty quantification

Despite advances in machine learning, which have increased the accuracy of predictions
in various fields, especially engineering, the relationship between the inputs (x) and the target
variable (y) is still subject to uncertainty [265]. This uncertainty represents a lack of confidence
in the model’s predictions [266]. It can stem from the limitations of the models themselves and
the natural unpredictability of the phenomena analysed, even with abundant data and available
resources [267].

Machine learning models must provide more than a result to ensure safer and more informed
decision-making. They need to show, as accurately as possible, the confidence level around their
predictions before they are used in practice. This means presenting the results with clear in-
formation about the associated uncertainty and whether it is low enough to make the result
reliable. If the uncertainty is high, the algorithm can request additional data or human inter-
vention to assist in decision-making. The uncertainty that affects machine learning models can
be categorised into two main types [268, 269, 270]: Aleatoric uncertainty (data uncertainty) and
Epistemic uncertainty (parameter/model uncertainty).

• Epistemic uncertainty (parameter/model uncertainty): This uncertainty arises
from incomplete or inadequate knowledge about the system [266]. A lack of training data
can cause this, poor quality information or simplifications and assumptions made during
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the modelling process [271]. This uncertainty is reducible, i.e. it can be minimised by in-
creasing the dataset and gaining a more detailed understanding of the model’s structure
and constraints [265]. However, this approach does not affect random uncertainty [267].
In the context of ML, epistemic uncertainty is particularly relevant and can be classified
into two categories [272]:

1. Model shape uncertainty: This arises from simplifications or architectural choices,
such as activation functions in neural networks or kernel function shapes in GPR
models.

2. Parameter uncertainty: Related to the calibration and training processes, caused
by insufficient training data, bias in the data or difficulties in the optimal adjustment
of the parameters by the algorithms.

Epistemic uncertainty is higher in regions with little training data and lower in areas
with higher data density, highlighting the importance of enriching datasets and improving
training quality to reduce the impact of these limitations [265].

• Aleatoric uncertainty (data uncertainty): This type of uncertainty is associated with
the inherent noise or stochastic variability of the process that generates the data [271].
Unlike epistemic uncertainty, it is not related to the model but rather to the nature of the
data itself and is therefore irreducible, even with the addition of more data for training
[266, 265].

This uncertainty stems from the natural variability of physical systems, such as noise
in sensor measurements, variability between samples or the dispersion of responses in
replicated experiments. In machine learning problems, it reflects the stochastic nature of
inputs, outputs or the dependencies between them and is often modelled in the likelihood
function of probabilistic models [272]. Therefore, in the context of ML, random uncertainty
arises from the intrinsic variability of the data, where the same vector of characteristics
x can be related to different labels y [267]. Examples include variability in classes in
classification problems and in outputs in regression problems. As an intrinsic property of
data, this uncertainty represents a limit on the accuracy that ML models can achieve [272].

Uncertainty quantification (UQ) is crucial in machine learning, especially in critical scenarios
where incorrect decisions can have severe consequences. UQ ensures more reliable results by
providing confidence intervals for predictions, recognising the probabilistic nature of the results
rather than just seeking greater accuracy [267]. One advantage of UQ is that it helps users
set confidence limits on model predictions, which can sometimes become dangerous. In this
sense, UQ extends classical statistical analysis to include the uncertainty generated by noise,
incompleteness and scarcity of data, offering robust support for risk management [272].

In fault diagnosis, UQ is of paramount importance as it provides a measure of the confidence
associated with the results, which is essential for making informed decisions in critical systems.
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It allows engineers and operators to interpret diagnoses and understand the degree of reliability
of this information. Quantifying the uncertainty associated with the process is relevant when
machine learning techniques are evaluated by metrics such as accuracy, precision, recall, F1-
score, and the confusion matrix, which consider false positives and false negatives and can have
significant consequences. These include unnecessary maintenance actions or failure to identify
critical problems [273].

Employing UQ in the final SHM process increases the reliability and robustness of ML
models. UQ is interested in providing model security and transforming ML solutions into critical
decision problems that bring greater gains and less exposure to the risks arising from algorithm
failures or limitations. Although there is no way of achieving absolute certainty, it is essential to
understand, quantify, and, whenever possible, reduce this uncertainty so that the chances of error
or deviations from the model’s projections can be accurately estimated. In this study, uncertainty
in projections is investigated using the Mean (Eq. 3.33), Standard Deviation (Eq. 3.34) and the
application of the Probability Density Function (PDF) (Eq. 3.35).

Mean (x) =

∑n
i=1 xi
n

(3.33)

where x represents the values of the variable,
∑

indicates “the sum of,” and n denotes the total
number of observations.

Standard deviation =

√∑n
i=1(xi − x)2

n− 1
(3.34)

The PDF is a function defined in the sample space S, where S ⊆ R, of a continuous random
variable X. It can be used to determine the probability of the variable X taking on values within
a certain interval. The PDF of a continuous variable X is a function f(x) such that [274]:

P [s ≤ X ≤ t] =

∫ t

s
f(x) dx (3.35)

where P (s ≤ X ≤ t) represents the probability of the variable X taking on values in the interval
[s, t], and f(x) is the PDF. Here, s and t are real numbers. The PDF must fulfil the following
conditions:

1. For all values x in the sample space, f(x) is a nonnegative function,

f(x) ≥ 0 for all x ∈ R,

2. The integral of f(x) over the entire sample space is equal to 1. This guarantees that the
sum of the probabilities is unitary: ∫ ∞

−∞
f(x) dx = 1.
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3.3.6 Chapter final remarks

This chapter details the methodological framework employed in this study, which includes
data processing, feature extraction, machine learning strategies, and uncertainty quantification.
The proposed approach integrates frequency- and time-domain analyses with data augmentation
techniques to enhance the robustness of feature extraction. These steps ensure the input data is
well-structured and representative of real-world SHM conditions.

The selection of machine learning algorithms, including supervised and unsupervised learn-
ing techniques, was motivated by their ability to detect, classify, and quantify structural dam-
age based on vibration spectral data. Using both traditional and advanced regression models
for damage quantification reinforces the reliability of the proposed methodology. Furthermore,
uncertainty quantification techniques were incorporated to address variability in real-world con-
ditions and improve the interpretability of results. While this methodology provides the basis
for the study, challenges such as data imbalance, model interpretability, and computational
costs were carefully considered. The subsequent chapter presents the results of applying these
methods, offering insights into their effectiveness and limitations in real-case scenarios.
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4 Data-driven machine learning structural health monitoring:
Experimental case studies

A wind turbine system comprises subsystems connected mainly by bolts or weddings. This
section presents case studies applying the SHM-ML process proposed in this work. The first study
(Section 4.1) aims to monitor and evaluate three component faults during the real operation of
the Aventa wind turbine. In this case, the raw data employed in the monitoring is the accelerance
temporal spectrum, and the Al 3 is used. Bolted connections, presented in many parts of the
turbine, are evaluated using a laboratory experimental setup. The second case(Section 4.2) aims
to identify and classify torque loosening in structure bolted joints using raw spectral signals in the
frequency domain from experimental tests. The approach combined supervised and unsupervised
techniques and employed the Al 1, using a damage index calculated from the frequency response
of the joint system as input data. The third case (Section 4.3) integrates regression algorithms
with data augmentation techniques to more accurately estimate torque loosening using raw
vibration spectra in a bolted structure. These studies demonstrate the efficiency of the developed
SHM-ML process, which contributes to fault detection and improves the reliability of complex
mechanical structures and systems.

4.1 Case I: Failure classification in wind turbine components during operation

Despite recent advances, challenges persist in adapting SHM techniques to complex oper-
ational and environmental conditions and improving detection accuracy and reliability. While
many studies employ supervised and unsupervised learning techniques to enhance anomaly de-
tection or optimise classifiers for specific turbine components, integrating these techniques into a
unique SHM framework remains a significant research challenge. In this case study, we used the
unsupervised clustering technique k-means to classify and group data into homogeneous clusters,
enabling pattern identification without predefined labels. Algorithm 3, described in Section 3.1,
is used to classify the four real operational conditions of the Aventa wind turbine. The proposed
model consists of receiving the data, processing, feature extraction, feature selection and nor-
malisation, unsupervised classification and clustering, data splitting, supervised classification,
and model evaluation.

4.1.1 Wind turbine experimental benchmark

The wind turbine dataset utilised in this study is from the Aventa AV-7 model, manufac-
tured by Aventa AG and commissioned by the ETH Zurich Department of Structural Health
Monitoring. It is located in Taggenberg, Switzerland, at coordinates 47°31’12.2”N 8°40’55.7”E
[25]. This 6.7 kW-rated power turbine operates via a belt-driven generator and a frequency con-
verter with a variable-speed drive. It initiates power generation at wind speeds of 2 m/s, with
a cut-off speed of 14 m/s. The turbine features a 12.8-meter rotor diameter comprising three
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blades and is mounted at an 18-meter hub height. The maximum rotational speed reaches 63
rpm. Structurally, the tower is composed of tubular steel reinforced with concrete, supported by
a concrete foundation, while the blades are constructed from fibreglass with a tubular steel main
spar. Turbine control is achieved through a variable-speed, variable-pitch mechanism. The in-
strumentation on the tower and nacelle included 11 accelerometers strategically positioned along
the tower length, the nacelle main frame, the main bearing, and the generator. Additionally,
two full-bridge strain gauges are mounted at the tower base to measure fore-aft and side-to-side
strain, which can be converted into bending moments. All acceleration and strain data are sam-
pled at 200 Hz. Environmental data, including temperature and humidity, are recorded at the
tower base with a sampling rate of 1 Hz. Furthermore, operational performance data (SCADA),
which encompasses wind speed, nacelle yaw orientation, rotor RPM, power output, and turbine
status, is collected and sampled at 10 Hz. The model’s data preprocessing steps consist of select-
ing the sensors to be included in the monitoring process by analysing their sensibility to failure
events, extracting features from the temporal signal, normalising the features, and preparing the
dataset.

4.1.2 Signal analysis and sensor selection

The data preprocessing starts with analysing and selecting the sensor for operational and
failure identification. The pre-established failures are the rotor icing event (RI), the flexible
coupling of the linear drive of the collective pitch system (FC), and the aerodynamic imbalance
on one blade (AI). From our previous experience using vibration-based damage detection, we
found that the sensors most sensitive to failure are the ones allocated close to the anomaly spot.
Considering the number of sensors and data to process that influence time and computational
cost, our choice is to work only with the sensors installed in the nacelle because they are the
most likely to capture changes in the signal due to the failures considered in this study (RI, FC
and AI) and not be masked by other system components, e.g., tower our boundary condition.

The selected accelerometers GEN_ACC (orange mark), NMF_ACC (blue mark), and
MSB_ACC (yellow mark) capture signals for each event, including normal operation, as shown
in Fig. 4.1. The Aventa dataset provides three-axis acceleration signals, with the X-axis (side-
to-side turbine motion) and Y-axis (fore-aft turbine motion). Figure 4.1 includes a schematic
representation of the sensor locations in the nacelle. In the acceleration graphs, black lines rep-
resent normal turbine operation, while coloured lines indicate different failure conditions. To
ensure consistency, signals for both operational states were selected on the same day, minimis-
ing the impact of varying environmental conditions. The top row of graphs shows the x-axis
response of the accelerometer installed on the generator (GEN). From left to right, it compares
normal operation (NO) with FC, RI, and AI failures, respectively. The middle row presents the
X-axis response of the accelerometer on the main shaft bearing (MSB), again comparing NO
with FC, RI, and AI failures from left to right. Finally, the bottom row displays the X-axis
response of the sensor on the nacelle main frame (NMF), with comparisons between NO and
FC, RI, and AI failures. The sensors’ X- and Y-axis signals were analysed. The curves followed
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Figure 4.1: Schematic representation of the turbine and sensors position in the nacelle. Temporal section
comparison of the turbine’s normal operation and operation with failures: (TOP) sensor GEN NO-FC,
NO-RI, and NO-AI placed from left to right, respectively. (Middle) sensor MSB NO-FC, NO-RI, and
NO-AI; and (Bottom) sensor NMF NO-FC, NO-RI, and NO-AI.

a consistent pattern, with the FC failure causing a significant drop in amplitude compared to
normal operation. In contrast, the other failure modes showed only minor differences in signal
amplitude. These signal variations can fluctuate daily due to changing weather conditions.

From this initial analysis, changes in the turbine’s dynamic behaviour appear to correlate
with specific events. For subsequent procedures, only the generator sensor will be used, as the
generator is responsible for converting the mechanical energy from the rotor blades into electrical
energy. The generator’s performance is critical to the wind turbine’s energy production and
reliability. Monitoring the generator’s vibration response can provide early signs of potential
turbine malfunctions.

4.1.3 Feature extraction and normalisation

The spectral data comprise four distinct classes: NO, FC, RI, and AI, where features are
derived from the time-domain responses of the generator accelerometer’s raw signal, shown in
Figure 4.1(TOP), along the x- and y-axis. Since the signal sensitivity displays a close pattern,
both directions are considered and analysed. Fourteen techniques, including spectral and statistic
information, are used as features from the time-domain signal, x(t) (see subsection 3.2.3).

The turbine data acquisition consists of nine days of normal operation in a total of 446
measurements, nine days of operation with FC failure in a total of 1298 measurements, ten days
of operation with RI failure in a total of 539 spectra, and seven days of operation with AI failure
summing 896 measurements. The total features comprised 3179 measurements and summaries of
operation state classification schemas. The features are grouped in a dataset containing the four
operational states and illustrated in Fig 4.2. Some methods for feature extraction are insensitive
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to failure, such as the energy, kurtosis, moment order, and Shannon entropy, which are discarded
in the following normalisation and analysis. Aside from this issue, the amplitude variation among
the features is small, as shown in 4.1.

Table 4.1: Features relative change obtained with the normal operation and failure condition threshold
with and without normalisation.

∆f
Features

Max Min Amplitude Median Variance Energy Signal
rate RMS

Non normalised 0.0056 0.0031 0.0043 0.0014 0.0000 0.003978 0.0026 0.0014
Normalised 0.0305 0.0154 0.0235 0.2126 0.0405 0.0407 0.0235 0.2137

(a)

(b)

Figure 4.2: Eight feature extractors techniques applied in the raw temporal signals. (a) Non-normalised
’raw’ features and (b) normalised features. NO is represented by blue dots, FC by orange dots, RI by
yellow dots, and AI by purple dots. The black dashed-dot line is the threshold of the NO mean value,
and the red dashed-dot line is the reference of the mean value of the failure condition.
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Table 4.1 imposes a great challenge for the ML algorithm to find a pattern and further
perform the classification. To cope with this issue, the proposed damage index for the feature
condition extraction incorporates normalisation as the feature relative change expressed as in
Eq 3.9. This normalisation method ensures that the features are scaled between zero and one,
preserving their essential characteristics while enabling consistent feature comparison. Table 4.1
quantifies the distance between normal operation and failure thresholds applied to the ’raw’
features computed with the previous techniques, where, in all cases, the ∆f returns minimum
values towards zero. Using the normalised damage index related to the relative change proposed
in Eq. 3.9, we could scale the ∆f values without losing the intrinsic dynamic behaviour over the
observation time and impose the features’ normalisation between unity and zero. Where close
to unity, it is considered NO and toward zero failure operation.

The selected features for evaluation include the max and min values, amplitude range, skew-
ness, RMS, variance, energy centre and signal rate. These features best capture the variations
in signals across different operational states. The eight normalised features are then used to
generate the global dataset, the input data for the unsupervised k-means algorithm. Figure 4.3
demonstrates the dataset’s tabular and visual organisation, which involves binary and multiclass
classifications of the turbine’s operational conditions. The RMS and median features are placed
on top, and the others are grouped at the bottom. For binary classification, three datasets con-
taining the eight features are prepared, each containing information for pairs of states: NO and
FC (Fig 4.3a), NO and RI (Fig. 4.3b), and NO and AI (Fig. 4.3c). For multiclass classification,
the dataset includes information for all four operational states: NO, FC, RI, and AI (Fig. 4.3d).
The black dashed-dot line represents the threshold of the NO condition, while the red dashed-
dot line serves as the failure condition reference threshold. The NO condition threshold is the
reference to determine the normal and failure data points.
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(a) (b)

(c) (d)

Figure 4.3: Representation of the binary dataset composed of NO-FC condition (a), NO-RI (b), NO-AI
(c), and Multiclass dataset, including the four turbine operation condition (d). The black dashed-dot
line is the threshold of the NO condition, and the red dashed-dot line is the mean value of the failure
condition reference.

After data reorganisation and analysis, we treated our dataset as containing unknown con-
ditions. We applied the unsupervised K-means model to evaluate each binary and multiclass
case, classifying and clustering the samples. The clusters obtained from the K-means algorithm
were then used as inputs to assess evaluation metrics, including the confusion matrix, accuracy,
precision, recall, and F-score. These metrics were calculated using SVM, KNN, NB, RF, DT,
and XGB algorithms. The dataset was split into 75% for training and validation and 25% for
testing. The training set was further divided, with 25% of it allocated for validation, resulting
in 56.25% of the total data used for training, 18.75% for validation, and 25% for testing. A
stratified sampling approach ensured consistent fault distribution across all subsets, minimising
sample bias.

The explicit description of the datasets used for training, testing and validation is described
in Table 4.2. For the binary classification tasks, data splits were applied uniformly: NO-FC
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included 981 samples for training, 436 for testing, and 327 for validation; NO-RI had 726 for
training, 323 for testing, and 243 for validation; and NO-AI comprised 545 for training, 243 for
testing, and 182 for validation. The multiclass scenario covered all turbine operational states
(NO, FC, RI, and AI). The dataset consisted of 1,751 training samples, 779 testing samples, and
584 validation samples. This data-splitting strategy ensures that each fault type is adequately
represented, providing a robust and accurate evaluation of the model’s performance.

Table 4.2: Explicit description of the datasets used for training, testing and validation.

Classification Cases Training Test Validation

Binary
NO and FC 981 436 327
NO and RI 726 323 243
NO and AI 545 243 182

Multiclass NO, FC, RI and AI 1751 779 584

4.1.4 Results and discussion

Using the K-means algorithm, the dataset was grouped into classes and visualised in scatter
plots to illustrate pattern recognition and cluster identification. This representation enabled us
to observe correlations and recognise data patterns from normal and fault operations. The
distinct patterns emerging in each category indicate how different faults impact the turbine’s
dynamic response, highlighting the most informative variables for each condition. Variables with
minimal overlap between normal and fault conditions are particularly favourable for machine
learning algorithms, which can influence these distinct patterns to classify and differentiate
the operational states. These feature clusters indicate that these variables exhibit consistent
grouping and dispersion patterns, making it easier to identify each operational condition.

Unsupervised classification and clustering using K-means

In binary classification, the dataset is divided into two classes, normal and failure operation,
using the k-means algorithm. The three NO-AI, NO-RI, and NO-FC classifications compare
the normal state (NO) and a specific type of fault (AI, RI, or FC). The k-means algorithm
utilises the combined information from all provided features to cluster attributes according
to identified labels. Thus, increasing the number of features enhances the pattern recognition
among the features and classification accuracy. Each feature is presented separately for easy
visual identification and analysis. Therefore, the classification assumes the combinations of the
eight features.

Figures 4.4, 4.5, 4.6, 4.7, 4.8 and 4.9 show scatter plots that highlight the correlation between
features in the binary classification, where the model identifies only two types: normal operation
and failure. This statistical pattern recognition analysis helped us identify patterns and clusters
in the dataset. The blue dots indicate the normal operation, the orange dots FC failure, the
yellow dots RI failure, and the purple dots AI failure. The features representing the NO state
are concentrated in higher graphics values that tend to unity. This indicates that, under normal
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conditions, the system tends to cluster at high levels for eight features used in the analysis.
In contrast, lower values could indicate more irregular or unstable behaviour, typical of fault
conditions, as shown in Fig. 4.3.

Features are estimated using signals from the GEN sensor’s Ys- and Zs-axis directions.
Figures 4.4, 4.6 and 4.8 show the features’ correlation with the Y s direction. The data dispersion
concentrates more on a few features, demonstrating clearer groupings and defined correlations.
In the Zs direction, represented by Fig. 4.5, 4.7 and 4.9, there is greater dispersion in some
features, indicating less evident separability or correlation for these variables. These feature
clustering patterns provide valuable insights into the system’s behaviour and help distinguish
the turbine’s operational conditions. In this case, K-means clustering classification differentiates
effectively between normal (NO) and fault states in certain features. The feature data points
cluster around a normalised value range for each operational failure. This indicates that K-
means can accurately group the data and recognise patterns conducive to reliable classification
and robust machine learning model evaluation.

Figure 4.4: Correlation scatter plots between NO and FC failure obtained for the eight normalised
features, direction Ys.

Figure 4.5: Correlation scatter plots between NO and FC failure obtained for the eight normalised
features, direction Zs.
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Figure 4.6: Correlation scatter plots between NO and RI failure obtained for the eight normalised
features, direction Ys.

Figure 4.7: Correlation scatter plots between NO and RI failure obtained for the eight normalised
features, direction Zs.

Figure 4.8: Correlation scatter plots between NO and AI failure obtained for the eight normalised
features, direction Ys.
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Figure 4.9: Correlation scatter plots between NO and AI failure obtained for the eight normalised
features, direction Zs.

The K-means algorithm identifies four clusters corresponding to NO, FC, RI, and AI op-
erations in the multiclass classification and organises the dataset in the response cluster. These
clusters allow for further classification validation through evaluation metrics. Figures 4.10 and
4.11 present scatter plots of the features clustered by K-means, each class represented by a dis-
tinct colour, enabling prompt identification and evaluation of overlaps of the operational state. In
the Y s-direction (Fig. 4.11), the cases show less dispersion in some features. Certain variables in
the Zs-direction (Fig. 4.10) separate the normal state and the fault types with greater distribu-
tions. In both directions, there is an overlap between fault types, suggesting that these variables
alone may not fully distinguish specific failures. This individual feature analysis highlights pat-
terns, but when classification models are applied, features are combined with operational classes
with accuracy and quantification of classification metrics. Although some features help differen-
tiate the normal condition from specific fault classes, an effective separation between conditions
generally requires a combination of multiple characteristics.

Figure 4.10: Correlation scatter plots between NO, FC, RI, and AI failure for the eight normalised
features, direction Ys.
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Figure 4.11: Correlation scatter plots between NO, FC, RI, and AI failure for the eight normalised
features, direction Zs.

In summary, the results of the dispersion correlation diagrams are analysed considering two
distinct measurement directions associated with the turbine’s dynamic responses: the Ys-axis
direction, which represents the lateral vibration (side-to-side vibration) of the turbine, measured
by the sensor, and the Zs-axis direction, which corresponds to the vibration along the X-axis
of the turbine, characterising the longitudinal vibration (fore-aft vibration). These two direc-
tions allow a more detailed and segmented investigation of the turbine’s dynamic characteristics
under different operating conditions. In all cases, the normalization process helps identify the
operational conditions, as it was pre-established that unity represents normal operation and
values approaching zero indicate fault. The K-means algorithm organizes the clusters, providing
straightforward identification, validated by the feature dataset behaviour observed in Fig. 4.3.
The FC feature exhibits the greatest dispersion, followed by AI, RI, and NO, as clearly shown
in the dispersion diagrams and features observation (Fig. 4.3a- 4.3d).

Operational assessment

The clusters generated by the unsupervised K-means serve as input for various classifi-
cation machine learning algorithms, including kNN, SVM, DT, RF, Naive Bayes, and XGB.
These algorithms perform the final classification based on the initial unsupervised clustering,
providing outputs that include confusion matrices and performance metrics. The selection of hy-
perparameters is based on the investigations in [143, 38], which specified optimal configurations
for this assignment. For SVM, a linear kernel was used with a penalty parameter of C=100, a
one-versus-one multiclass strategy, and a 1e−3 tolerance. For kNN, the number of neighbours
was set to kn = 3, using the Euclidean metric, uniform weights, and leaf size 30. In both the
RF and DT algorithms, the number of trees was fixed at 100, with a maximum depth of 3 and
a Gini splitting criterion. The Naive Bayes algorithm employed a Gaussian-NB model, and for
XGB, the XGBClassifier model was applied. These configurations achieved high accuracy in fault
classification and demonstrated robustness across various experimental scenarios. Accordingly,
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this study adopts these hyperparameter configurations to optimise operation state accuracy and
enhance the performance analysis of the wind turbine.

Table 4.3 presents the performance of machine learning models applied to the Ys- and
Zs-axis directions in binary classification tasks (NO-FC, NO-RI, and NO-AI) evaluated through
cross-validation and metrics such as accuracy, precision, recall, and F1-score. Overall, the Y s

direction outperforms Zs in most cases, which indicates that the FORE-AFT vibration plane
might be more sensitive to the damages.

Among the ML methods used for operation classification, the SVM algorithm achieves ex-
cellent metrics, reaching a value of 1 across all evaluated measures (accuracy, precision, recall,
and F1-score) in the three binary classification scenarios. The performance of SVM is especially
remarkable in NO-RI, where it attains peak scores. Although KNN, NB, DT, RF, and XGB
also show strong metrics results in Y s, with less pronounced variations, SVM stands out, of-
fering greater interpretation and precision. This analysis highlights the critical importance of
considering the direction of the data when training classification models, as the orientation can
significantly influence performance. Confusion matrices are generated for all algorithms, but
based on the results, the SVM in the Y s direction is selected for a detailed analysis across the
three scenarios. This selection allows for a focused presentation, particularly on the educational
aspects of the findings, given the extensive number of graphical results obtained.

Table 4.3: Performance metrics of the ML algorithms SVM, KNN, NB, RF, DT, and XGB for binary
classification in directions Y s and Zs.

Performance Metrics Cases
SVM KNN NB RF DT XGB

Ys Zs Ys Zs Ys Zs Ys Zs Ys Zs Ys Zs

Cross-Validation
NO-FC 0.993 0.995 0.989 0.989 0.905 0.969 0.991 0.989 0.991 0.982 0.988 0.985
NO-RI 1.000 1.000 0.997 0.993 0.914 0.927 0.994 0.994 0.985 0.982 0.985 0.979
NO-AI 0.985 0.996 0.978 0.978 0.932 0.956 0.982 0.987 0.978 0.971 0.976 0.972

Accuracy
NO-FC 0.998 0.988 0.991 0.988 0.924 0.956 0.995 0.986 0.993 0.972 0.998 0.984
NO-RI 1.000 1.000 0.997 0.988 0.941 0.926 0.994 0.988 1.000 0.975 0.994 0.991
NO-AI 0.996 0.983 0.983 0.975 0.947 0.955 0.979 0.984 0.971 0.979 0.967 0.975

Precision
NO-FC 0.998 0.988 0.991 0.988 0.924 0.956 0.995 0.986 0.993 0.972 0.998 0.984
NO-RI 1.000 1.000 0.997 0.988 0.941 0.926 0.994 0.988 1.000 0.975 0.994 0.991
NO-AI 0.996 0.983 0.983 0.975 0.947 0.955 0.979 0.984 0.971 0.979 0.967 0.975

Recall
NO-FC 0.998 0.988 0.991 0.988 0.924 0.956 0.995 0.986 0.993 0.972 0.998 0.984
NO-RI 1.000 1.000 0.997 0.988 0.941 0.926 0.994 0.988 1.000 0.975 0.994 0.991
NO-AI 0.996 0.983 0.983 0.975 0.947 0.955 0.979 0.984 0.971 0.979 0.967 0.975

F1-Score
NO-FC 0.998 0.988 0.991 0.988 0.924 0.956 0.995 0.986 0.993 0.972 0.998 0.984
NO-RI 1.000 1.000 0.997 0.988 0.941 0.926 0.994 0.988 1.000 0.975 0.994 0.991
NO-AI 0.996 0.983 0.983 0.975 0.947 0.955 0.979 0.984 0.971 0.979 0.967 0.975

The confusion matrices presented in Figure 4.12 illustrate the binary classification executed
by the SVM algorithm. The model demonstrated excellent classification in the NO-FC case, with
268 correct classifications in the NO class (61.47%) and 167 in the FC class (38.30%), recording
only a minimal error. In the NO-RI scenario, the performance was also satisfactory, with 192
correct classifications in the NO class (59.44%) and 131 in the RI class (40.56%), without any
false positives. Finally, in the NO-AI case, the model achieved 159 correct classifications in the
AI class (65.43%) and 83 in the NO class (34.16%), indicating a slight drop in performance
compared to the other scenarios, possibly due to the higher complexity or differences in the
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distribution of the data for these classes.

Figure 4.12: Confusion matrix of binary operational classification for NO-FC, NO-RI, and NO-AI cases
using the Y s-axis direction data.

The performance metrics of the SVM, KNN, NB, RF, DT, and XGB algorithms for a multi-
class classification task are summarised in Table 4.4. The evaluation is based on cross-validation,
accuracy, precision, recall, and F1-score, comprehensively assessing each algorithm’s effectiveness
in the Y s and Zs directions. SVM shows the best-performing model overall, achieving superior
results in the Zs direction. KNN, NB, and RF also showed consistent performance, with the
Zs direction generally outperforming Y s. In contrast, the DT and XGB models demonstrated
a slight advantage in the Zs direction, highlighting the importance of considering data orien-
tation to optimise algorithm performance. Based on SVM’s exceptional results, it will be used
for further analysis, including the evaluation of confusion matrices in the Zs direction, where it
achieved the highest performance.

Table 4.4: Performance metrics of machine learning algorithms (SVM, KNN, NB, RF, DT, XGB) for
multiclass classification in directions Y s and Zs.

Performance Metrics
SVM KNN NB RF DT XGB

Ys Zs Ys Zs Ys Zs Ys Zs Ys Zs Ys Zs
Cross-validation 0.986 0.990 0.967 0.975 0.865 0.909 0.972 0.975 0.951 0.964 0.954 0.956

Accuracy 0.987 0.995 0.961 0.961 0.879 0.928 0.979 0.977 0.963 0.955 0.982 0.976
Precision 0.987 0.995 0.961 0.961 0.879 0.928 0.979 0.977 0.963 0.955 0.982 0.976

Recall 0.987 0.995 0.961 0.961 0.879 0.928 0.979 0.977 0.963 0.955 0.982 0.976
F1-Score 0.987 0.995 0.961 0.961 0.879 0.928 0.979 0.977 0.963 0.955 0.982 0.976

Figure 4.13: Confusion matrix of multiclass SVM operational classification based on Zs-axis direction
data.
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Figure 4.13 presents the confusion matrix that demonstrates the performance of the SVM
model in classifying the AI, FC, NO, and RI classes. The AI class had 199 examples correctly
classified as AI (25.55%), with no false positives, indicating that the model accurately identified
most of the examples from this class. In the FC class, 136 examples were correctly classified as
FC (17.46%), with a small error of 2 FC examples classified as NO (0.26%), suggesting a slight
difficulty distinguishing between FC and NO. For the NO class, 237 examples were correctly
classified as NO (30.42%), with only one misclassification of NO as RI (0.13%), showing good
accuracy. In the RI class, 203 examples were correctly classified as RI (26.06%), with one error
of RI being classified as NO (0.13%). The matrix suggests that the SVM performs well overall,
with minimal errors and high accuracy. However, the model showed minor errors between the
NO and FC classes and between NO and RI.

Final remarks

The SHM-ML subroutine presented by Al 3 was applied to monitor and assess four oper-
ating conditions of the Aventa wind turbine through a structured process involving eight steps,
including data acquisition, processing, feature selection, normalisation, data splitting, unsuper-
vised clustering, and subsequent machine learning classification and model evaluation. Eight of
fourteen feature extraction methods were sensitive to the different operational failures that the
future are input in the unsupervised K-mean for clustering and dataset built for classification
and metric evaluation.

In binary classification, SVM emerged as the most robust method, achieving perfect metrics
with values equal to 1.0. This reflects its exceptional ability to distinguish between normal con-
ditions and faults across different data orientations, particularly emphasising the Ys direction.
Analysis of the confusion matrices further validated the reliability of the SVM model, minimizing
classification errors and false positives while providing high precision in structural monitoring.
While other algorithms, such as kNN, Naive Bayes, and XGB, also demonstrated commendable
performance, SVM stood out for its consistency and stability in results. In multiclass classifica-
tion, which involved identifying multiple operational states and damage levels, SVM delivered
the best performance, excelling in accuracy and its capacity to discriminate between classes.
The Zs direction proved to be the most suitable for this task, exhibiting the highest precision
and the best capability to differentiate between the various damage levels. Overall, SVM proved
to be the best-performing model for binary and multiclass fault detection, demonstrating ro-
bustness and effectiveness in monitoring and diagnosing operational conditions of wind turbine
components.

4.2 Case II: Detection of loosening torque in bolted structure

This case study builds upon existing work in bolted joints used for assembly structure
analysis, particularly in recognising and detecting loosening torque from a structure’s dynamic
response. The ML classifiers have been designed to withstand variabilities in raw data, in ad-
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dition to noise variations, considering the influence of assembling and disassembling the bolted
structure during experimental tests, as documented in [159]. To validate the method’s applicabil-
ity, this case presents an implementation of Algorithm 1 from Section 3.1. The present approach
simplifies the analysis by eliminating the need to evaluate the most sensitive extraction features,
introducing the FRAC concept in obtaining the damage index, which plays a crucial role in our
algorithm’s methodology. As a result, the main contribution of the ML algorithm architecture
for pattern recognition and detection of loosening torque in bolted joints lies in its utilisation
of spectral raw signals from experimental tests. The test results show that the algorithms can
classify satisfactorily in all three frequency band conditions. These results were published in [38].

4.2.1 Experimental benchmark

Bolt loosening detection from vibration data is challenging due to variability and nonlinear
effects from the contact interface in bolted joints. Therefore, this study proposes a data-driven
strategy to detect loosening bolts from experimental vibration signals. In the experimental set
available in Teloli et al. [275], the authors consider a physical system consisting of two bolted
beams (dimension 370 × 30 × 2 mm) in a cantilever and joint lap configuration connected by
three bolts with controlled tightening, as shown in Fig. 4.14. The experimental apparatus consists
of a load cell (PCB288D01), an electromagnetic Modal Shop shaker (Model K2004E01), a 3D
scanning laser, and NI9234 hardware for data acquisition. The excitation spectrum considered
was a white noise Gaussian input with the amplitude levels of 1m/s2, 4m/s2, 8m/s2, and 12m/s2

RMS values induced by the shaker at the clamped end. The tightening torques applied on the
beam’s bolts were 10 cNm, 20 cNm, 30 cNm, and 80 cNm.

The tightening torques were measured with a Lindstorm MA500-1 torque wrench, and the
force acquired with a Futek LTH300 donut-load cell was performed after each experimental
run. The experimental data-driven consists of the frequency response obtained by dividing the
velocity measured at the beam’s free edge by the acceleration measured at the clamp. Three-
hundred-sixty response samples were acquired considering all different excitation spectrum am-
plitude levels and variability in assembling the jointed structure.

Figure 4.14 (c) displays four experimental FRFs samples for each torque and base accelera-
tion level measured over a frequency range from 0 to 1900 Hz, in a total of 20 curves printed in
the figure. A different colour line represents the FRF of each torque. The continuous line repre-
sents a base acceleration level of 1 m/s2, the dashed-dot line represents an acceleration level of
4 m/s², the dashed line represents an acceleration level of 8 m/s², and the dotted line represents
an acceleration level of 12 m/s². The torque loosening induces clearer changes in higher mode
shapes, for instance, on the fifth and sixth modal shapes, which can be more evident as the
excitation amplitude levels increase. Both noise and variability are present in the spectral signal
across the entire frequency range. When considering the whole FRF signal in the damage index
calculation, the estimation of torque loosening can induce a false positive in the prediction and
diagnostic because one considered all signal power densities, including the signal in low frequen-
cies, less influenced by the damage. Therefore, the truncated signal ranging from 1200 to 1900
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Figure 4.14: Physical and schematic drawing of the experimental bolted beams presented in [275, 38].

Hz was assumed in the DIs estimation (Fig. 4.14 d). This frequency band was the most affected
by the torque loosening.

The structure’s vibration signature has been used to detect, locate and quantify damage
and anomalies in a structure from changes in its dynamic characteristics [168]. Among the
methods that employ the dynamic response, the DI is a metric that correlates a system signal in
different states. The reference signal, usually derived from the system considered an undamaged
state, correlated to the one provided by the system under the presence of discontinuity or
damage [181]. Various DI approaches have been developed to extract signal features in different
domains, aiming at identifying structural damage using an indicator that describes the damage
as explored in [276, 277, 278, 279]. The DIs are associated with the estimation techniques for
damage quantification and reveal important information about the structural health condition.
The literature describes a range of DI developed over time. The Frequency Response Assurance
Criterion (FRAC) is a damage index representing the correlation between tested frequency
responses.
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4.2.2 Feature selection and pattern recognition

The ML algorithm is expected to classify the damage state correctly. In this case, DIs close
to unity are considered healthy states of the structure for torques of 80 and 60 cNm. In contrast,
torque losses are associated with torques of 30, 20, and 10 cNm, indicating structural damage.
The classification identifies the structure condition and quantifies it as Healthy (80), Healthy
(60), Damage (30), Damage (20), and Damage (10). The DIs are calculated by considering the
whole signal spectrum, the signal truncated comprising 5th and 6th mode shapes, and the signal
covering only the fifth and sixth modes separately.

From data processing and estimating DIs, two attribute datasets (DI1 and DI2), each
consisting of 180 samples, were generated based on the selected FRAC DI observations. Having
the dataset pre-processed, DI clustering was carried out using the K-means algorithm with a
value of K = 5 (for K representing the number of classes) to identify clusters within unlabeled
data. Consequently, an object target dataset was created, comprising 180 samples belonging
to one of the 5 labelled classes. Further, the samples were randomly divided, with 70% of the
data allocated for training and 30% for testing, as defined in Table 4.5. Each classifier was
assessed using a 5-fold cross-validation procedure to enhance training accuracy, accomplished
by randomly partitioning the training dataset into five distinct subsets.

The dataset grouped in classes by the K-means is shown using a scatter plot to charac-
terise the clustered points, enabling us to observe the correlation in two-dimensional space and
recognise a pattern of the torque loosening. Figures 4.15a show the correlation between the two
attributes of features (DI1 and DI2). The cloud points show an unclear classification of torque
loosening, as the points cluster in the range of DIs considered a healthy state of bolted beams.
Bolt loosening most affects the dynamic response in higher frequency modes; therefore, by using
the whole response signal spectrum, the influence of modes in low frequency intends to domi-
nate the signal power spectrum because they have higher amplitudes. In this case, the torque
loosening identification through the DI is compromised. Therefore, whether the ML algorithm
can correctly classify the damage is unclear. All datasets have a considerable correlation, which
can induce misleading classification and false diagnosis identification.

For torques of 80 and 60 cNm, the FRAC DI varies between 1 and 0.9, considered a healthy
structure state. In contrast, torque losses are associated with torques of 30, 20, and 10 cNm,
with the DIs estimated from 0.8 to 0, indicating torque loosening. Therefore, by following the
DI values, the multiclass dataset can be used to identify the structure state and quantify the
severity of the damage from a pattern in the DI values.

Assuming only part of the signal is truncated in the frequency range of the modes’ shapes
most affected by the torque loosening, the identification turns more consistent. The data corre-
lation is stronger for the sixth mode than the fifth mode shape because of the small change in
the frequency response due to the torques from 80 to 30 cNm. Figure 4.15b shows the data set
pattern classification for the signal containing information of the fifth and sixth mode shapes
and the correlation between the features attributes. In this case, the classification in healthy
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Figure 4.15: Correlation scatter plots of between features DI1 and DI2 dataset obtained from five
different classes of torques in the frequency ranges of (a) 10 to 1940 Hz, (b) 1250 to 1940 Hz (5th∼6th
mode), (c) 1250 to 1550 Hz (5th mode), and (d) 1740 to 1940 Hz (6th mode).

and damaged states becomes more evident as the torque loosens. The multiclass dataset can
recognise the pattern of the toque loosening through the calculated FRAC DIs. Figures 4.15c
and 4.15d include information on the mode fifth and sixth, respectively. For each torque level,
the DI data points cluster correctly around the range corresponding to the normalised value of
DI, indicating that the dataset follows a torque loosening pattern, which can lead to a good
classification of the ML algorithm.

Table 4.5: Torque values, labelled classification, train, and test data splitting associated with samples
number identified healthy or damaged.

Classification/Regression
Torque
(cNm)

Frequency
range (Hz)

Train dataset Test dataset
Healthy Damaged Total Healthy Damaged Total

80,60,30,
20,10

1250∼1550
(5th∼6th modes) 60 66

126
26 28

541740∼1940
(5th mode) 69 57 30 24

1740∼1940
(6th mode) 59 67 25 29

Multiclass label classification (torque): Healthy(80), Healthy(60), Damaged(30), Damaged(20), Damaged(10)
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The approach for assessing torque loosening based on spectrum signal can effectively cap-
ture the intricate dynamics and torque loss processes within bolted joints across varying torque
levels. As torque drops, DI consistently decreases in most scenarios. Nevertheless, the FRAC
method consistently outperforms others, indicating a clear trend of decreasing values with re-
duced torque. Therefore, adopting DI as a normalisation factor in the vibration dataset becomes
the input for unsupervised and supervised machine learning algorithms. Consequently, due to
DI’s normalisation effect on the data, the range of based motion acceleration excitation is dis-
sociated from the subsequent analysis and estimation. In our context, using normalised data is
one of the advantages of our algorithm, which lies in the DI procedure. However, a limitation of
our proposed algorithm in this paper is that it assumes raw data instead of DI. We are currently
exploring ideas to address this issue, but they are beyond the scope of this paper.

4.2.3 Machine-Learning techniques for bolt-loosening detection

Bolts have the function of connecting and maintaining stability between two pieces that
need to be joined. However, this fixation might only be guaranteed in parts of the structure’s
lifespan, a problem engineering systems face. It is common for the ends joined by the bolts
to loosen over time due to external vibrations, dynamic loading, or thermal variations. Bolted
joint loosening is damage-like and modifies the connectivity between the components of the
structure. Predicting torque losses is essential and helps engineers create control strategies for
torque tightening. Based on actual torque data, it is possible to train a classifier model that
predicts whether torque loss occurs for a bolted joint and subsequently identifies whether there
is damage to the structure.

Machine learning algorithms can be employed in system monitoring using the dataset re-
lated to the loss of torque problem. Machine Learning is an automated process that extracts
information from data based on a pattern learned through different algorithms. It utilises the
learned patterns to predict future data or perform other types of decision-making. This work pre-
dicts the state of the bolted connection with unsupervised-supervised learning from the bolted
beams’ vibration response data-driven. The ML algorithm quantifies the torque loosening us-
ing a regression algorithm under different torque conditions as input. The learning approach is
divided into an unsupervised-supervised classification and regression problem, as the data has
defined attributes. The ML data input is the DIs, and the target variable will be the information
on bolt loosening and indicate the influence of the independent variable. Thus, we intended to
obtain a previous classification, determine which unclassified category the data belongs to, and
then quantify the torque loosening.

The classifiers algorithm used are the unsupervised K-means to cluster the data and super-
vised Naive Bayes, Decision Tree (DT), Random Forest (RF), K-Nearest Neighbours (KNN),
Support Vector Machine (SVM), and extreme Gradient Boosting (XGBoost) to detect the torque
loosening. General theoretical details on the machine learning techniques used here are presented
in section 3.3.3. Each algorithm has hyperparameters that must be configured and tested for
optimal performance in application cases. In the case of SVM, a linear kernel function was used,
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and a grid search was conducted to determine the penalty parameter, assumed as C = 10. For
KNN, the number of neighbours is set to k = 3, and the metric is defined as the Euclidean
distance. The function weights are uniform, meaning that all points in each neighbourhood are
equally weighted, and the leaf size, which affects query construction and speed, is set to 30. For
RF and DT, the number of trees in the forest is 100, and the maximum depth is restricted to
3. The minimum sample split is 2, indicating the minimum number of samples required to split
an internal node. The minimum sample leaf represents the training samples on each of the right
branches, and the minimum sample leaf values are set to 1. The Max features value is set to
’auto’, representing the number of features considered when searching for the best split, and the
criterion used is the Gini index. In the case of XGBoost, the objective is assumed as softmax
for multiclass classification using the softmax objective. The learning rate is set to 0.3, which
means that each weight in all trees will be multiplied by this value, and the maximum depth
is set to 6. In the Naive Bayes classifier, the Gaussian-NB case was selected. Table 4.6 shows
the hyperparameters selected for each ML algorithm implemented in this paper. All algorithms
were applied using the open-source Scikit-learn library in Python.

Table 4.6: Hyperparameters assumed for each ML algorithms.

Classification Algorithm Hyperparameters

K-Means
Number of clusters = 5; Initialisation = k-means++;
Number of times the algorithm is run with different centroid
seeds = 20.

SVM Kernel: Linear; C = 10.
K-NN Metric: Euclidean distance; Number of neighbours: 3.
Naive Bayes Gaussian

Ramdon Forest
Number of forest trees = 100; Max_depth = 3;
Minimum division = 2; Minimum value of sample sheet = 1;
Criterion = Gini Index.

Decision Tree Criterion = Gini Index; Splitter = ’best’; max_depth = 3.

XGBoost Objective =’multi:softmax’; max_depth = 6;
learning rate = 0.3.

After the machine learning algorithm completes its estimation, it becomes crucial to assess
the stability and accuracy of the model. This validation process involves confirming the quan-
tified relationships between variables, which can be accomplished by examining metrics such as
accuracy, score, precision, and recall [241, 240]. However, it’s important to note that these met-
rics primarily reflect the ML model’s performance on the data it was trained on. Therefore, the
ML model’s cross-validation using a separate dataset is necessary to ensure that it successfully
captures the underlying patterns in the data, and a reliable validation set indicates a model
with low bias or variance. In the damage assessment, the validation and the cross-validation
of the ML algorithms are explored. The evaluation metrics of the ML algorithm are addressed
to compare the damage detection capability through their accuracy and the confusion matrix.
Accuracy close to 100% is considered a good performance. In all cases presented in this paper,
the ML model exhibits excellent performance, as evidenced by a standard deviation of 5% in
the cross-validations obtained through five different cluster data.
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Initially, an unsupervised clustering algorithm, K-means, was applied to cluster the data,
which was divided into five classes. From the samples obtained through the selection of at-
tributes, the algorithms were evaluated by comparing metrics for the classification algorithm
in the training and test sets. The idea was to compare the classification metrics, considering
the damage index calculated from the FRFs and torques as a characteristic. Therefore, the
studies on the dataset investigate the feasibility and accuracy of the six supervising machine
learning on the performed classification. The dataset includes five torque identification classes
(see Table 4.5), with two record attributes as input variables or predictors. Loosening torque
identification, considered as damage, is performed with 180 samples separated into three differ-
ent assemblies and divided into training and testing data. The classification method employed
here is ”one versus one” [280], where one multiclass classification problem turns into ten binary
class classification problems. The metrics for multiclass classification are shown in Table 4.7 for
the torque estimation using the 5th∼6th mode shapes, Table 4.8 only with the 5th mode, and
Table 4.9 with the 6th mode shape. The estimation using the whole frequency band is discarded
because of the low accuracy in the DI grouping.

Table 4.7: Comparison between metrics of experimental test ML algorithms for FRF data (5th∼6th
mode).

Performance Metrics SVM KNN NB RF DT XGB
Cross-validation 97,8 97.2 94.4 98.9 98.9 98.9

Accuracy 98.1 98.1 85.1 100 100 90.7
Precision 98.1 98.1 85.1 100 100 90.7
Recall 98.1 98.1 85.1 100 100 90.7

F1-Score 98.1 98.1 85.1 100 100 90.7

Table 4.8: Comparison between metrics of experimental test ML algorithms for FRF data (5th mode).

Performance Metrics SVM KNN NB RF DT XGB
Cross-validation 98.3 98.9 98.3 99.4 100 99.4

Accuracy 98.1 98.1 100 100 100 100
Precision 98.1 98.1 100 100 100 100
Recall 98.1 98.1 100 100 100 100

F1-Score 98.1 98.1 100 100 100 100

Table 4.9: Comparison between metrics of experimental test ML algorithms for FRF data (6th mode).

Performance Metrics SVM KNN NB RF DT XGB
Cross-validation 96.7 97.2 97.8 97.8 94.4 95

Accuracy 98.1 98.1 92.6 98.1 94.4 88.9
Precision 98.1 98.1 92.6 98.1 94.4 88.9
Recall 98.1 98.1 92.6 98.1 94.4 88.9

F1-Score 98.1 98.1 92.6 98.1 94.4 88.9

All torque classification performed with the three signals present cross-validation ranging
from 94.4% to 100%, and the accuracy, precision, recall and F1-score range from 88.9% to
100%. Torque estimation using the signal from the 5th mode shape presents the higher metrics,
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showing the efficiency of the algorithms in detecting the most specific conditions for the health
and damage state of the bolted beam. The results consistently demonstrate similar performance,
yielding accurate predictions on previously overlooked datasets. The XGBoost performed K-
folds (Kf = 5) estimation, where 88%, 95.6%, 94.4%, 97% and 100% were achieved. The cross-
validation of 95% given by the XGBoost is estimated by the mean value of the five validation
preview tests. It indicates a high level of consistency in the model’s performance across different
cross-validation iterations, with minimal fluctuations in its learning behaviour. Cross-validation
is a valuable tool for evaluating the algorithm’s effectiveness by assessing its performance on
various data splits. It provides a robust understanding of how the model behaves regarding
overfitting. Additionally, the other metrics support the model’s strong classification performance.

The confusion matrix [240] is also vastly employed to verify the data classification, which
provides the correct configurations of the classified data. It minimises the error in the damage,
and the model’s successes offer a comparison between actual and predicted values, where the
labels are considered ”Positive” and ”Negative” [241]. In the case of the torque loss problem, the
matrix elements are characterised as true positives (TP), true negatives (TN), false positives
(FP), and false negatives (FN). The matrix’s main diagonal values show how many correct
model predictions there are for each class. In this application, the confusion matrix details
the ML classifiers’ performance in correctly labelling the data and predicting the severity of
the loosening torque, which is divided into five classes: damaged or healthy. Therefore, the
confusion matrix represents five rows indicating true classes and nine columns representing the
models’ predictions. Figures 4.16-4.18 show the confusion matrices of the multiclass classification
for torque losses for the truncated signal between the 5th and 6th mode shape. The results
indicate that a smaller number of samples were misclassified. Most algorithms had only a sample
misclassified, representing 1.85% of the total samples used, in this case, the confusion matrix
shows the correct and incorrect predictions on each class. For example, by looking at all the
values in row four (Figure 4.16a), it can be inferred that, out of four samples, the model predicts
that three samples belong to class 20-damage (correct prediction) and one sample belongs to class
30-damage. Overall, the result for a multiclass classification using ML algorithms is satisfactory
for this specific task using the dataset for bolt loosening identification. For each class, it is
possible to evaluate the model’s performance by looking at the confusion matrix in detail.
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Figure 4.16: Confusion matrix of Multiclass classification of six ML techniques in the 5th∼6th mode.
The values in blue blocks indicate correctly classified points, whereas those in pale blue blocks indicate
misclassified points.
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Figure 4.17: Multiclass classification confusion matrix of six ML techniques for the 5th mode.
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Figure 4.18: Multiclass classification confusion matrix of six ML techniques in the 6th mode.

Final remarks

The study demonstrated the effectiveness of SHM-ML techniques for detecting bolt loos-
ening torque in bolted joints using vibration-based methods. Supervised classification models
achieved high accuracy in identifying damage states. The next section focuses on expanding the
dataset, regression techniques, and integrating virtual sensor data augmentation into the SHM-
ML to enhance the reliability and applicability of the proposed methodology for continuous
structural health monitoring of structure bolted joints.

4.3 Case III: Quantification of loosening torque in bolted structures with virtual
sensor integration

Current research on bolt torque loss detection using ML and DL techniques is relatively
advanced. However, a significant gap remains in applying ML-based condition assessment meth-
ods incorporating data augmentation, uncertainty quantification, and raw vibration spectra
acquired from bolted structures for torque loosening monitoring. The uncertainty associated
with the assembly system affects the dynamic response and propagates through the monitoring
process. Addressing this issue demands a robust technique for torque loosening assessment that
also accounts for this epistemic uncertainty propagation, minimizing false indications and re-
ducing false-positive and false-negative detections while incorporating variability errors into the
operational evaluation process. This case study proposes a data-driven ML-based condition as-
sessment model to estimate bolt torque loosening. Data augmentation uses a virtual sensor that
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fuses physical and synthesized data, enhancing dataset quality and improving ML efficiency. To
validate the applicability of the method, this case presents an implementation of Algorithm 2
from Section 3.1. The experimental dataset provided in [159] is a physical system consisting
of two beams bolted in a cantilever and joint lap configuration, connected by three bolts with
controlled tightening torque. The system complexity characterises the experimental data due to
variability, nonlinear effects, and uncertainties associated with sub-component [140, 281, 279].
The main contributions of this study are: i) Developing a novel data-driven ML architecture for
torque loosening estimation in bolted systems, addressing intrinsic system uncertainties; and ii)
Proposing a virtual sensor that provides indirect feature measurements and expands the dataset
volume. The ML architecture integrates regression algorithms with dedicated data augmentation
techniques. The condition assessment of torque loosening detection and quantification ML model
is based on seven steps outlined in Figure 4.19. The methodology strategy includes processing
the existing data provided from vibration tests, feature extraction, data augmentation strate-
gies through the virtual sensor, feature selection, and regression algorithms for torque loosening
and uncertainty quantification. This approach aims to enhance the accuracy and reliability of
monitoring and promote proactive maintenance on bolted systems.

Figure 4.19: Flowchart of a semi-supervised ML model for bolt torque loosening estimation and moni-
toring (Source: own study).

4.3.1 Feature extraction using damage indices

Feature extraction transforms measured signals into features, also known as attributes,
which serve as inputs to a learning algorithm. This process involves changing the original data
variables to obtain new forms of normalised data variables [282, 59]. Typically, the reference
signal is derived from the system in an assumed health state, compared to the signal provided by
the system in the presence of discontinuities or damage [181]. The experimental data consists of
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the transmissibility responses under different tightening torque values, and the DIs are employed
as feature extractors.Figure 4.20 presents the results of the six damage indices calculated and
normalised from the vibration signals for different torque levels and frequency bands. The DIs
are computed from the entire signal and truncated in a frequency range to reach the 5th to
6th mode shape. The FRAC, FAAC, AIGSC, AIGAC, MDI, and RDI indices show a slightly
decreasing trend with decreasing torque for both signal ranges.
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Figure 4.20: Comparison of different damage indexes methods. Results of all damage indexes at different
torque levels obtained in the frequency bands: (a) 10∼2000 Hz (All signal spectrum), (b) 600∼2000 Hz
(4th∼6th mode), (c) 1250∼2000 Hz (5th∼6th mode).

Figure 4.20a considers the entire transmissibility signal (0∼2000 Hz) used in the DIs es-
timation. Except for MDI, all methods maintain a value between 0.95 and 1 for torque levels
below 50 cN/m, after which there is a slight decrease, reaching a DI of 0.7. The narrow range of
DI variation across torque levels suggests the low sensitivity of these methods to torque, as lower
mode shapes are unaffected by loosening, as shown in Fig. 4.14(d). Figure 4.20b presents DIs
calculated over a truncated frequency range in the 4th∼6th modes, from 600 to 2000 Hz. The
AIGSC and AIGAC indicators exhibit low sensitivity, maintaining constant DI values without
significant reduction as torque decreases, indicating their ineffectiveness in damage detection
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for this analysis. The RDI method shows a DI close to 1 up to 50 cN/m, followed by a grad-
ual decrease with torque, though less sharply than other methods, indicating low sensitivity.
In contrast, FRAC, FAAC, and MDI demonstrate greater sensitivity, gradually reducing DI as
torque values decrease. Figure 4.20c shows results for the frequency range between the 5th and
6th modes, from 1250 to 2000 Hz. Similar to earlier observations, the AIGSC, AIGAC, and
RDI indicators are insensitive to torque levels, while FRAC, FAAC, and MDI gradually reduce
as torque decreases. The higher mode shapes in this range are more sensitive to torque loos-
ening, making these indicators more effective for detecting changes at lower torque levels. The
correlation between torque loss and the FRAC, FAAC, and MDI DIs enhances early damage
detection, particularly at lower torque values. Notably, in Figures 4.20b and 4.20c, FRAC shows
the highest sensitivity to torque variation, with significant drops in the DI. The difference is
more pronounced, with the drop occurring earlier in these graphs. Thus, FRAC is assumed to be
this application’s main feature extraction technique and is employed for torque loosening detec-
tion. In the case of multiple DIs, the FRAC, FAAC, and MDI are used in the data augmentation
procedure.

The experimental data is limited to 128 raw samples. Employing the entire transmissibility
signal in the DIs calculation may induce a false positive in the prediction and diagnosis. There-
fore, the truncated signal ranging from 1250 to 2000 Hz (Figure 4.20c) was assumed in the DIs
estimation. After data processing and feature extraction, two attributes were defined, DI1 and
DI2, each consisting of 64 FRAC DI samples. The next steps in the toque loosening estimation
are data augmentation and clustering. The DI clustering is performed using the unsupervised
algorithm K-means with a value of k = 8 (where k represents the number of classes) to identify
clusters within unlabeled data. Figure 4.21a shows the clustered DI dataset returned by the
K-means, comprising 64 samples belonging to one of the 8-labelled classes defining the torque
levels.

The limited number of experimental data is a common issue researchers face in various fields
[169]. A small amount of data, or data scarcity, is a significant challenge for applying machine
learning tools involving experimental data due to its investigative nature [170]. When insufficient
statistical analysis or modelling data is available, a common approach is to generate simulated
data to fill the gap. In this work, we have adopted four methods to reproduce experimental
data, allowing us to generate augment datasets following the system’s physical characteristics
and enrich the original dataset. Using statistical moments (Section 3.2.4), four additional syn-
thetic datasets were generated with sizes corresponding to 50%, 100%, 200%, and 1000% of
the original dataset. Additionally, other datasets were generated using TGAN (Section 3.2.4),
Forest Diffusion (Section 3.2.4), and a dataset combining the DIs methods (Section 3.2.4). The
idea behind using combined DI techniques is that the accuracy of the models depends directly
on the number of features available [283] based on the original data.
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Table 4.10: Description of the original dataset and augmented data.

Dataset Augmentation method No. of samples
Original Experimental 2 x 64 = 128
Orignal + 50% Statistical (Lognormal) 2 x 96 = 192
Orignal + 100% Statistical (Lognormal) 2 x 128 = 256
Orignal + 200% Statistical (Lognormal) 2 x 192 = 384
Orignal + 1000% Statistical (Lognormal) 2 x 384 = 768
Orignal + TGAN Tabular GAN 2 x 194 = 388
Orignal + Forest Diffusion Diffusion and XGBoost 2 x 155 = 310
DI Combined Increased features 3 x 64 = 192

Comprehensive details regarding the data fused into the original and augmented datasets
are provided in Table 4.10. The table lists the number of samples in each dataset after applying
various augmentation methods, specifying the number of columns, the data quantity per column,
and the total number of data points. These artificial datasets, excluding the Combined DI, were
added to the experimental data and grouped into classes using K-means clustering. The scatter
plots in Figures 4.21(a-g) illustrate the distribution of the grouped points for the generated and
experimental data, showing their correlation in two-dimensional space. The datasets were then
randomly split, with 70% allocated for training and 30% for testing.

Figure 4.21a shows the original dataset, estimated using K-means clustering, with 128 sam-
ples divided into DI1 and DI2 attributes, where the attributes diagonal shows a perfect correla-
tion between them. Data dispersion becomes evident for torque levels between 30 and 60 cNm.
This clustering serves as an indicator of the performance and accuracy of regression algorithms.
Figures 4.21b and 4.21e display the fused dataset, which includes the original data augmented
with 50%, 100%, 200%, and 1000% additional random samples generated via the statistical ap-
proach. As the number of samples increases, the data clustering becomes better pronounced, and
the correlation between DI and torque levels is clearly defined. Figure 4.21f is the clustering of
the original data plus TGAN, and Fig. 4.21g plus Forest Diffusion. In both cases, the algorithms
associate the original data with the reproduced one following the identified pattern, where the
reproduced data are close to the original, maintaining the pattern of the data. Combining the
DI approach assumed different feature extraction to compose the dataset, relying only on the
original data. Figure 4.21h shows the Combined DI cluster dataset comprising the combination
of FRAC, FAAC, and MDI damage indices feature extractors.
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Figure 4.21: Clustered DI dataset returned by the K-means obtained from a) Orignal experimental data
and fused data augmented as: b) Experimental data + 50%, c) Experimental data + 100%, d) Experi-
mental data + 200%, e) Experimental data + 1000%, f) Experimental data + TGAN, g) Experimental
data + Forest Diffusion, h) Combined DI (”⃝ ” FRAC, ”

a
” FAAC, ”□” M_DI).

4.3.2 Regression machine learning for loosening torque estimation

The last step involves torque loosening and uncertainty quantification. Nine machine-
learning regression algorithms are employed to estimate torque values. Among them, six are
linear as Linear Regression, Lasso Regression, K-Neighbors Regressor (KNR), Decision Tree
Regressor (DTR), Gradient Boosting Regressor (GBR), and Support Vector Regression with
a linear kernel (SVR-linear). The remaining three are nonlinear techniques such as Support
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Vector Regression with a Radial Basis Function kernel (SVR-RBF), Support Vector Regression
with a Polynomial kernel (SVR-Poly), and Multi-Layer Perceptron Regressor (MLP Regressor).
Table 4.11 lists the hyperparameters chosen for each algorithm. All models were implemented
using the open-source Scikit-learn library in Python, with simulations performed in Google Co-
lab. The evaluation metrics for these algorithms include the coefficient of determination (R2),
MAE, MSE, and RMSE.

Table 4.11: Hyperparameters assumed for each ML algorithm.

Regression Algorithm Hyperparameters
Linear Regression fit intercept = True.
Lasso Regression alpha = 1.0.
KNR n_neighbors = 2.
SVR-Linear kernel = ’linear’; gamma = ’auto’; C = 10.

SVR-RBF kernel = ’rbf’; gamma = ’auto’; C = 10;
epsilon = 0.1.

SVR-Poly kernel = ’poly’; gamma = ’auto’; C = 10;
epsilon = 0.1; degree = 3.

MLP Regressor hidden layer sizes = 50; alpha = 0.001;
solver = ’lbfgs’; learning rate = ’adaptive’.

DTR criterion = ’squared_error’; max_depth = none.

GBR
loss = ’squared_error’; learning_rate = 0.1;
n_estimators = 100; criterion = ’friedman_mse’;
max_depth = 3.

The evaluation metrics for the regression algorithms are presented in Table 4.12 and
Fig. 4.22. The input datasets used for regression include the pure original dataset, the orig-
inal dataset combined with 50%, 100%, 200%, and 1000% artificial data generated through
statistical methods, the original dataset combined with TGAN-generated artificial data, the
original plus artificial data from Forest Diffusion, and the multiples DIs. We focus on FRAC,
FAAC, and MDI, given their superior performance over the other damage indices methods. The
comparison of the metrics of the original dataset with those from various data augmentation
scenarios provides a detailed analysis of the improvements achieved through these techniques.

The analysis of metrics presented in Table 4.12 and the plot in Fig 4.22a show that all
models performed well, as indicated by the coefficient of determination (R2). For the original
data, the algorithms achieve R2 values ranging from 0.91 to 0.98, suggesting that the models
explain the data variance effectively. As the dataset is augmented through statistical moments
(50%-1000%), an improvement is seen in R2, ranging from 0.94 to 1.00, reflecting enhanced
model performance and a stronger ability to handle data variance, particularly for the MLP
Regressor, GBR, KNR, and DTR. The data augmentation techniques like TGAN and Forest
Diffusion also result in significant improvements, with R2 values ranging from 0.94 to 1.00, and
some models (MLP Regressor, GBR, KNR, DTR) achieving R2 values close to or equal to 1. The
Combined DI method consistently maintains R2 values between 0.95 and 1.00, demonstrating
high performance, with GBR and KNR achieving R2 values near or equal to 1.
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Table 4.12: Comparison of evaluation metrics for regression models.
Scenario Regression Algorithm R2 MAE MSE RMSE Scenario Regression Algorithm R2 MAE MSE RMSE

Original

Linear Regression 0,93 4,98 36,96 6,08

Original
+ 1000%

Linear Regression 0,97 3,39 17,35 4,16
SVR-Linear 0,93 4,85 38,97 6,24 SVR-Linear 0,98 3,20 16,76 4,09
SVR-RBF 0,96 3,56 23,80 4,88 SVR-RBF 0,98 2,38 11,43 3,38
SVR-Poly 0,94 4,24 31,26 5,59 SVR-Poly 0,98 2,74 13,15 3,63
MLP Regressor 0,96 3,45 22,75 4,77 MLP Regressor 0,97 3,36 17,31 4,16
Lasso Regression 0,91 5,87 46,17 6,79 Lasso Regression 0,97 3,80 23,24 4,82
GBR 0,96 2,95 21,44 4,63 GBR 0,99 1,59 8,08 2,84
KNR 0,98 2,00 10,00 3,16 KNR 1,00 0,26 1,29 1,14
DTR 0,93 4,00 40,00 6,32 DTR 0,99 0,78 9,48 3,08

Original
+ 50%

Linear Regression 0,96 4,53 29,97 5,47

Original
+ TGAN

Linear Regression 0,96 4,19 25,99 5,10
SVR-Linear 0,96 4,01 25,99 5,10 SVR-Linear 0,96 3,83 28,82 5,37
SVR-RBF 0,98 2,59 13,57 3,68 SVR-RBF 0,98 2,08 10,58 3,25
SVR-Poly 0,98 3,06 16,80 4,10 SVR-Poly 0,96 4,19 26,00 5,10
MLP Regressor 0,99 2,57 10,05 3,17 MLP Regressor 0,99 2,09 6,60 2,57
Lasso Regression 0,94 5,46 44,02 6,63 Lasso Regression 0,94 5,04 39,19 6,26
GBR 0,98 1,62 12,20 3,49 GBR 1,00 0,41 3,31 1,82
KNR 0,98 1,21 11,21 3,35 KNR 1,00 0,00 0,00 0,00
DTR 0,98 1,72 17,24 4,15 DTR 1,00 0,34 3,39 1,84

Original
+100%

Linear Regression 0,98 2,79 13,64 3,69

Original
+ Forest

Diffusion (FD)

Linear Regression 0,95 4,77 32,84 5,73
SVR-Linear 0,98 3,05 16,76 4,09 SVR-Linear 0,95 4,41 32,55 5,71
SVR-RBF 0,99 2,09 7,72 2,78 SVR-RBF 0,98 2,64 15,37 3,92
SVR-Poly 0,98 2,79 13,83 3,72 SVR-Poly 0,97 2,93 18,24 4,27
MLP Regressor 0,99 1,96 6,58 2,56 MLP Regressor 0,98 2,59 11,85 3,44
Lasso Regression 0,97 4,02 24,44 4,94 Lasso Regression 0,95 4,19 32,18 5,67
GBR 0,99 0,99 5,10 2,26 GBR 0,99 0,52 6,11 2,47
KNR 1,00 0,38 1,92 1,39 KNR 1,00 0,21 2,13 1,46
DTR 0,99 0,77 7,69 2,77 DTR 0,99 0,43 8,51 2,92

Original
+200%

Linear Regression 0,98 3,40 17,93 4,23

Combined DI
(cDI)

Linear Regression 0,97 3,09 15,13 3,89
SVR-Linear 0,97 3,50 20,16 4,49 SVR-Linear 0,97 3,03 15,72 3,96
SVR-RBF 0,98 2,72 12,60 3,55 SVR-RBF 0,96 3,67 20,36 4,51
SVR-Poly 0,97 3,31 18,08 4,25 SVR-Poly 0,97 3,27 18,74 4,33
MLP Regressor 0,99 2,40 10,77 3,28 MLP Regressor 0,98 2,48 10,40 3,22
Lasso Regression 0,96 4,56 30,44 5,52 Lasso Regression 0,95 4,35 27,80 5,27
GBR 0,99 1,52 8,81 2,97 GBR 0,99 1,10 5,84 2,42
KNR 1,00 0,43 3,02 1,74 KNR 1,00 0,38 1,92 1,39
DTR 0,99 0,52 5,17 2,27 DTR 0,97 1,54 15,38 3,92

For the original dataset, the algorithms achieve the MAE between 2.00 and 5.87, with KNR
standing out for having the lowest MAE among all models, as plotted in Fig. 4.22b. As the data
is augmented using statistical moments, the MAE decreases to a range of 0.26 to 5.46, indicating
improved model accuracy and reduced error, with GBR, KNR, and DTR showing the lowest
MAE values. Augmentation methods like TGAN and Forest Diffusion further reduce the MAE,
achieving values between 0.00 and 4.77, with GBR, KNR, and DTR yielding the most accurate
predictions. The Combined DI method significantly improved over the original dataset, with
MAE values ranging from 0.38 to 4.35, again highlighting KNR as the best performer.

The MSE shown in Fig 4.22c penalises larger errors more severely. For the original dataset,
the MSE values range between 10.00 and 46.17, with KNR exhibiting the lowest value among
the algorithms. When the data is augmented using the statistical method, the MSE improves,
ranging from 1.29 to 44.02, with KNR again achieving the lowest values. Augmentation meth-
ods such as TGAN and Forest Diffusion lead to even greater accuracy, yielding MSE values
between 0.00 and 32.84, with KNR using TGAN providing the best result. The Combined DI
method also significantly improves, with MSE values ranging from 1.92 to 27.8. In particular,
GBR and KNR stand out for having the lowest MSE values, demonstrating the effectiveness
of these combined techniques. In Fig. 4.22d, the RMSE provides the magnitude of the error,
with lower values indicating better model performance. The algorithms achieve RMSE values
between 3.16 and 6.79 for the original dataset, reflecting a good fit. When the dataset is aug-
mented using statistical moments, the RMSE significantly decreases, ranging from 1.14 to 6.63,
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showing improved performance compared to the original data. The MLP Regressor, GBR, KNR,
and DTR algorithms have the lowest RMSE values. Augmentation techniques like TGAN and
Forest Diffusion also result in better performance, with RMSE values ranging from 0.00 to 6.26,
with KNR showing a perfect fit when using TGAN. The Combined DI method demonstrates
RMSE values between 1.39 and 5.27, further improving over the original data. KNR and GBR
achieve the lowest RMSE values, reinforcing the enhanced performance provided by combining
techniques.

(a) (b)

(c) (d)

Figure 4.22: Comparison of the performance of the algorithm and the augmented data technique through
the metrics a) R2, b) MAE, c) MSE, and d) RMSE.
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(a) Linear Regression
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(b) Lasso Regression

0 10 20 30 40 50 60 70 80 90
Actual Torque [cNm]

0

10

20

30

40

50

60

70

80

90

Es
tim

at
ed

 To
rq

ue
 [c

Nm
]

Mean of estimated torque
Estimated torque

(c) KNR
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(d) SVR-Linear
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(e) SVR-RBF
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(f) SVR-Poly
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(g) MLP Regressor
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(h) DTR
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(i) GBR

Figure 4.23: Loosening torque estimation versus actual torque predicted from the original experimental
dataset.
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Figure 4.24: Probability density function of the estimated torque predicted with clustering data from
the regression algorithms based on the original experimental dataset.

Table 4.13: Means and standard deviation values of the regression models performed from the original
data.

Scenario Torque Linear Regr. SVR-Linear SVR-RBF SVR-Poly MLP Regr. Lasso Regr. GBR KNR DTR
Mean STD Medias STD Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD

Experimental

10 15.81 1.34 16.70 1.30 16.68 1.13 16.07 1.36 11.15 1.92 19.46 1.17 15.00 5.00 12.50 2.50 15.00 5.00
20 26.18 1.32 23.59 0.72 23.06 0.73 23.26 0.76 23.31 1.60 28.86 1.19 25.00 5.00 22.50 2.50 25.00 5.00
30 30.31 3.40 28.40 1.28 28.16 1.36 28.38 1.35 28.92 3.66 32.52 3.13 28.86 5.57 27.50 2.50 30.00 7.07
40 41.96 0.00 39.08 0.00 40.48 0.00 39.77 0.00 44.51 0.00 42.96 0.00 42.75 0.00 40.00 0.00 50.00 0.00
50 40.72 3.59 44.74 2.51 47.65 2.97 45.67 2.63 41.78 6.96 41.56 3.23 48.47 1.48 51.67 4.71 40.00 0.00
60 51.61 3.48 48.54 3.77 51.74 4.51 49.75 3.92 61.25 4.25 51.58 3.06 57.63 4.17 61.67 2.36 60.00 0.00
70 68.51 0.00 61.70 0.00 65.66 0.00 63.38 0.00 68.09 0.00 66.83 0.00 66.14 0.00 70.00 0.00 70.00 0.00
80 80.81 3.07 78.24 2.36 78.42 1.20 78.55 2.05 78.59 1.53 77.63 2.76 80.00 0.00 80.00 0.00 80.00 0.00

In Figure 4.23(a-i), the plots compare the actual torque with the corresponding estimated
values from the nine regression algorithms. The input is the K-means DI clustering extracted
from the original dataset. The diagonal dashed-black line represents the perfect correlation
between the actual and predicted torques for all similar graphics. At the same time, the red ’X’
symbols denote the estimated mean values for each torque condition, and the blue dots show the
individual torque estimates provided by the algorithms. The graphs in Figure 4.24(a-i) illustrate
the mean values and probability density functions (PDFs) of the estimated torques at various
levels: 10cNm, 20cNm, 30cNm, 40cNm, 50cNm, 60cNm, 70cNm, and 80cNm. The corresponding
mean values and STDs are listed in Table 4.13. Overall, the nine methods demonstrated good
torque estimation accuracy, with KNR outperforming the others by producing mean torque
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estimates closely aligned with the correlation line and actual values. However, methods such as
KNR, DTR, and GBR made it difficult to capture the PDFs for some torque levels, as their
estimates were tightly clustered around the mean value.
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(a) Linear Regression
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(c) KNR
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Figure 4.25: Loosening torque estimation versus actual torque predicted from the augmented dataset:
Original plus 50% of random samples given by the statistic method.
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Figure 4.26: Probability density function of the estimated torque predicted with clustering data from the
regression algorithms based on the original plus 50% of random samples given by the statistic method.

Table 4.14: Means and standard deviation values of the regression models performed from the original
plus 50% of random samples given by the statistic method.

Scenario Torque Linear Regr. SVR-Linear SVR-RBF SVR-Poly MLP Regr. Lasso Regr. GBR KNR DTR
Mean STD Medias STD Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD

Original
+50%

10 17.24 3.53 16.95 2.00 14.72 1.89 14.08 2.31 11.88 2.20 21.48 2.71 10.13 0.18 10.00 0.00 10.00 0.00
20 24.33 2.69 24.67 1.97 22.70 2.20 23.11 2.30 22.49 2.59 27.49 2.15 23.32 3.80 23.75 4.15 22.50 4.33
30 32.14 3.60 30.21 1.68 29.19 2.07 29.68 2.04 28.60 1.74 34.78 3.08 29.29 0.97 30.00 0.00 27.50 4.33
40 38.00 7.51 37.41 4.00 38.15 5.06 37.89 4.68 39.92 5.59 39.55 4.91 45.41 5.51 35.00 5.00 45.00 5.00
50 45.57 0.00 48.39 0.00 51.68 0.00 49.34 0.00 52.30 0.00 45.33 0.00 49.32 0.00 50.00 0.00 50.00 0.00
60 51.82 5.22 50.58 4.07 54.48 4.92 52.44 4.39 57.92 3.99 51.68 3.74 56.89 2.57 56.67 4.71 56.67 4.71
70 66.65 2.96 66.06 1.58 70.34 1.40 67.47 1.61 68.11 1.67 64.38 1.93 70.00 0.00 70.00 0.00 70.00 0.00
80 82.65 3.20 80.98 2.70 79.18 1.11 79.80 2.10 79.29 2.21 78.50 2.72 78.99 3.00 80.00 0.00 79.00 3.00

Figure 4.25(a-i) shows the correlation of the actual versus the predicted torque using nine
regression algorithms. The input dataset provided by K-means consists of the original dataset
augmented by 50% of its size, with random samples generated based on the original data’s first
and second statistical moments and a Lognormal distribution. The PDFs in Figs.4.26(a-i) illus-
trate the estimated torque mean values and their distribution densities, with the corresponding
means and standard deviations displayed in Table4.14. Most regression methods accurately es-
timated the torque levels, except for the Linear and Lasso regressors, which miscalculated some
torque mean. The other techniques accurately predicted the torque values close to the actual
values. KNR, however, toiled to capture the PDFs at some torque levels, as its estimates were
tightly clustered around the mean value.
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Figure 4.27(a-i) shows graphs correlating the actual to estimated torque values with the
regression algorithms. The input dataset consists of the original data, augmented by 100% of
the original dataset, with random samples calculated using the original data’s first and second
statistical moments and a Lognormal distribution. The PDFs in Figs. 4.28(a-i) illustrate the
mean estimated torque values and their distribution. The corresponding mean values and STD
are provided in Table 4.15. Most regression methods accurately estimated the torque levels,
except the Linear, Lasso, and SVR Linear regressors, which miscalculated a few of the torque’s
mean. The remaining methods accurately predicted the torque values, closely aligning with the
actual values. The GBR captured a few PDFs only as its estimates were tightly clustered around
the mean.
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Figure 4.27: Loosening torque estimation versus actual torque predicted from the augmented dataset:
Original plus 100% of random samples given by the statistic method.
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Figure 4.28: Probability density function of the estimated torque predicted with clustering data from the
regression algorithms based on the original plus 100% of random samples given by the statistic method.

Table 4.15: Means and standard deviation values of the regression models performed from the original
plus 100% of random samples given by the statistic method.

Scenario Torque Linear Regr. SVR-Linear SVR-RBF SVR-Poly MLP Regr. Lasso Regr. GBR KNR DTR
Mean STD Medias STD Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD

Experimental
+100%

10 9.14 3.18 9.59 2.56 9.83 1.85 9.63 2.43 9.99 0.03 13.70 2.61 10.90 1.84 10.00 0.00 10.00 0.00
20 20.70 2.54 20.54 2.19 19.38 2.24 20.33 2.21 17.22 2.34 23.91 2.19 20.30 1.34 19.44 1.57 20.00 0.00
30 33.68 4.53 33.83 2.21 34.57 2.47 33.93 22.31 33.34 0.93 34.69 3.38 35.18 5.10 32.50 2.50 35.00 5.00
40 41.27 4.34 41.21 3.23 43.55 4.00 41.58 3.35 41.68 4.05 41.25 2.50 40.09 0.12 40.00 0.00 40.00 0.00
50 47.43 2.79 45.66 1.86 48.87 2.26 46.35 1.94 50.28 2.96 47.62 1.75 49.98 0.01 50.00 0.00 50.00 0.00
60 54.66 1.68 54.46 0.38 59.12 0.58 55.29 0.42 60.06 2.15 52.68 1.55 61.16 0.98 62.50 2.50 65.00 5.00
70 64.37 3.90 62.24 3.41 67.16 3.09 63.27 3.34 70.04 1.83 62.20 2.86 71.67 1.28 70.00 0.00 72.50 4.33
80 81.25 2.71 78.26 2.46 78.87 1.29 78.62 2.25 79.17 1.41 77.07 2.31 79.49 1.71 80.00 0.00 80.00 0.00
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(a) Linear Regression
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(g) MLP Regressor
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Figure 4.29: Loosening torque estimation versus actual torque predicted from the augmented dataset:
Original plus 200% of random samples given by the statistic method.
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Figure 4.30: Probability density function of the estimated torque predicted with clustering data from the
regression algorithms based on the original plus 200% of random samples given by the statistic method.

Table 4.16: Means and standard deviation values of the regression models performed from the original
plus 200% of random samples given by the statistic method.

Scenario Torque Linear Regr. SVR-Linear SVR-RBF SVR-Poly MLP Regr. Lasso Regr. GBR KNR DTR
Mean STD Medias STD Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD

Experimental
+200%

10 10.65 2.97 11.24 2.70 12.01 1.94 11.17 2.57 11.41 2.31 15.25 2.45 11.37 2.58 10.63 1.65 11.25 3.31
20 21.92 3.47 22.10 3.28 21.33 3.11 21.82 3.29 20.75 2.79 25.14 2.95 19.72 3.10 19.62 1.33 19.23 2.66
30 30.23 3.16 29.80 2.84 29.51 3.12 29.66 2.92 28.83 2.83 32.30 2.52 26.12 3.86 29.00 2.00 30.00 0.00
40 40.05 4.03 40.03 3.25 41.10 3.97 40.30 3.36 37.84 4.11 41.25 3.10 38.05 3.91 40.00 0.00 38.33 3.73
50 50.55 6.65 49.04 4.83 51.94 5.53 49.58 4.96 50.86 7.13 49.98 4.59 50.12 0.11 50.00 0.00 50.00 0.00
60 50.72 0.00 50.20 0.00 53.18 0.00 50.87 0.00 52.04 0.00 50.57 0.00 59.27 0.00 50.00 0.00 60.00 0.00
70 63.72 3.49 62.19 3.09 66.13 2.95 62.94 3.04 69.96 2.60 61.75 2.84 69.20 2.26 70.00 0.00 70.00 0.00
80 81.29 2.17 79.30 2.03 79.07 1.09 78.99 1.80 79.82 0.78 77.24 1.84 79.79 0.66 80.00 0.00 80.00 0.00

Figure 4.29(a-i) shows the graphs correlating the actual and predicted torque value esti-
mates from nine regression algorithms. The input dataset, provided by K-means, consists of the
original data augmented by 200%, using random samples generated based on the original data’s
first and second statistical moments and a Lognormal distribution. The PDFs in Figs.4.30(a-i)
illustrate the estimated mean torque values and their distribution densities, with the corre-
sponding means and standard deviations shown in Table4.16. KNR and DTR provided torque
values that closely matched the correlation line. In contrast, the other regression methods also
delivered accurate torque values estimation, therefore with slight deviations, particularly around
60cNm and 70cNm. However, DTR and KNR could not define the PDF, as their predictions
were tightly clustered around the mean value.
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Figure 4.31(a-i) presents the graphs correlating the actual and estimated torque values
by the nine regression algorithms, Figs.4.32(a-i) shows the mean estimated torque values and
their distribution densities, and Table4.17 provides the corresponding mean values and standard
deviations. The input dataset consists of the original data augmented by 1000%, using random
samples calculated based on the first and second statistical moments of the original data and a
Lognormal distribution. Most regression methods accurately estimated the torque levels, with
KNR and DTR showing tight clustering around the mean value. Overall, all algorithms predicted
the torque values with high accuracy.
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(e) SVR-RBF
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(f) SVR-Poly
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(g) MLP Regressor

0 10 20 30 40 50 60 70 80 90
Actual Torque [cNm]

0

10

20

30

40

50

60

70

80

90

Es
tim

at
ed

 To
rq

ue
 [c

Nm
]

Mean of estimated torque
Estimated torque

(h) DTR
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Figure 4.31: Loosening torque estimation versus actual torque predicted from the augmented dataset:
Original plus 1000% of random samples given by the statistic method.
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Figure 4.32: Probability density function of the estimated torque predicted with clustering data from the
regression algorithms based on the original plus 1000% of random samples given by the statistic method.

Table 4.17: Means and standard deviation values of the regression models performed from the original
plus 1000% of random samples given by the statistic method.

Scenario Torque Linear Regr. SVR-Linear SVR-RBF SVR-Poly MLP Regr. Lasso Regr. GBR KNR DTR
Mean STD Medias STD Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD

Experimental
+1000%

10 10.33 1.30 10.61 1.22 10.48 0.91 9.50 1.30 10.59 0.75 14.61 1.06 9.58 1.01 10.00 0.00 10.00 0.00
20 22.48 2.35 22.54 2.25 21.48 2.34 22.56 2.51 22.37 2.30 25.26 2.07 20.26 2.25 20.23 1.04 18.64 3.43
30 30.82 3.49 30.70 3.26 30.63 3.87 31.71 3.65 30.72 3.34 32.64 2.96 29.61 4.04 30.45 1.44 29.09 5.14
40 42.24 3.42 41.91 3.22 44.19 3.93 44.11 3.51 42.19 3.29 42.61 2.91 42.03 3.00 39.62 1.33 40.00 0.00
50 43.74 3.72 43.28 3.31 45.93 4.03 45.86 3.68 43.66 3.40 44.62 3.13 48.33 4.60 50.00 0.00 46.67 7.45
60 52.69 3.21 52.17 2.93 56.20 3.31 54.91 3.02 52.67 3.01 51.75 2.72 59.94 5.77 60.63 1.65 60.00 0.00
70 67.91 4.53 67.03 4.21 70.79 3.39 69.25 3.68 67.92 4.31 65.55 3.80 69.76 2.14 70.00 2.24 69.00 3.00
80 82.67 2.00 81.50 1.93 79.56 0.74 80.25 1.24 82.73 1.97 78.55 1.73 79.93 0.31 80.00 0.00 80.00 0.00
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(g) MLP Regressor
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Figure 4.33: Loosening torque estimation versus actual torque predicted based on an original plus
augmented samples from TGAN.
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Figure 4.34: Probability density function of the estimated torque predicted with clustering data from
the regression algorithms based on the original plus augmented sample from TGAN.

Table 4.18: Means and standard deviation values of the regression models performed from the original
plus augmented sample from TGAN.

Scenario Torque Linear Regr. SVR-Linear SVR-RBF SVR-Poly MLP Regr. Lasso Regr. GBR KNR DTR
Mean STD Medias STD Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD

Experimental
+TGAN

10 14.55 2.69 15.07 2.84 11.76 2.67 9.78 3.52 14.57 2.68 19.69 2.30 10.05 0.05 10.00 0.00 10.00 0.00
20 22.73 3.74 23.20 2.01 20.58 2.74 20.46 3.16 22.73 3.74 26.70 3.16 20.44 1.14 20.00 0.00 20.00 0.00
30 31.99 1.30 31.16 1.28 30.81 1.51 31.18 1.42 31.99 1.30 34.60 1.10 30.02 0.03 30.00 0.00 30.00 0.00
40 39.78 2.70 38.11 2.19 40.29 3.07 40.24 2.91 39.78 2.70 41.26 2.30 35.17 5.60 40.00 0.00 35.00 5.77
50 45.98 1.09 47.16 0.99 51.24 1.26 49.42 1.13 45.98 1.09 46.63 0.93 50.11 0.06 50.00 0.00 50.00 0.00
60 49.10 1.61 45.34 1.48 50.44 1.95 49.91 1.79 49.10 1.61 49.20 1.38 59.92 0.10 60.00 0.00 60.00 0.00
70 66.33 3.68 63.91 3.65 70.31 3.12 67.93 3.14 66.33 3.68 63.98 3.15 70.01 0.00 70.00 0.00 70.00 0.00
80 84.53 2.33 80.84 2.28 79.74 0.65 80.09 1.19 84.53 2.33 79.55 1.99 79.98 0.00 80.00 0.00 80.00 0.00

The graphs of Figure 4.33(a-i) correlate the actual torque values with the nine regression
algorithms’ predictions, while Figs.4.34(a-h) shows the mean estimated torque values and their
distribution densities. Table4.18 provides the corresponding torque mean values and standard
deviations. The input dataset consists of the original data augmented with samples from the
TGAN approach. Most regression methods accurately estimated the torque levels, showing tight
clustering around the mean value. The KNR presents the perfect correlation for all torque values,
followed by DTR and GBR, misleading only 40cNm torque.

Another generative network employed to augment data is the Forest Diffusion. Fig-
ure 4.35(a-i) shows the correlation of the actual torque values with the estimated by the regres-
sion algorithms, Figs.4.36(a-i) exhibits the mean estimated torque values and their distribution
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densities, and Table 4.19 provides the corresponding torque’s mean and STD values. The input
dataset consists of the original data augmented with samples provided by the Forest Diffusion
approach. Most regression methods accurately estimated the torque levels showing tight clus-
tering around the mean value. The KNR, DTR, and GBR precisely predicted the mean torque
values with a tight data cluster. The other method estimated the mean torque with a certain
dispersion, indicating the variability in the prediction.
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Figure 4.35: Loosening torque estimation versus actual torque predicted based on an original plus
augmented samples from Forest Diffusion.
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Figure 4.36: Probability density function of the estimated torque predicted with clustering data from
the regression algorithms based on the original plus augmented sample from Forest Diffusion.

Table 4.19: Means and standard deviation values of the regression models performed from the original
plus augmented sample from Forest Diffusion.

Scenario Torque Linear Regr. SVR-Linear SVR-RBF SVR-Poly MLP Regr. Lasso Regr. GBR KNR DTR
Mean STD Medias STD Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD

Experimental
+ Forest Diffusion

10 12.46 3.60 13.22 3.21 9.99 3.37 9.85 4.04 10.78 2.26 17.04 3.11 12.66 6.48 11.67 4.08 13.33 8.16
20 27.21 5.45 25.88 3.75 25.08 5.42 26.10 5.21 20.70 3.51 29.69 4.50 19.99 0.00 20.00 0.00 20.00 0.00
30 25.91 2.77 27.04 2.45 25.49 3.19 26.57 3.08 24.27 2.94 29.01 2.39 29.98 0.03 30.00 0.00 30.00 0.00
40 38.24 2.00 37.37 1.41 39.74 2.09 39.63 1.87 38.71 3.76 39.54 1.65 40.21 0.32 40.00 0.00 40.00 0.00
50 45.61 0.62 48.23 0.02 51.95 0.34 50.11 0.30 53.25 0.49 46.72 0.44 50.00 0.04 50.00 0.00 50.00 0.00
60 49.24 4.34 46.49 4.48 52.20 5.43 50.70 4.78 60.17 2.54 48.91 3.87 59.95 0.09 60.00 0.00 60.00 0.00
70 65.30 4.97 62.66 3.76 69.32 3.44 66.71 3.87 69.36 2.32 63.14 4.12 70.60 1.47 70.00 0.00 70.00 0.00
80 84.43 3.42 82.07 3.13 79.82 1.02 80.24 1.95 79.97 1.59 80.12 2.97 79.99 0.00 80.00 0.00 80.00 0.00
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(a) Linear Regression
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(g) MLP Regressor
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(h) DTR
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Figure 4.37: Loosening torque estimation versus actual torque predicted based on an original plus
augmented samples from Combined DI.
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Figure 4.38: Probability density function of the estimated torque predicted with clustering data from
the regression algorithms based on the original plus augmented sample from Combined DI.

Table 4.20: Means and standard deviation values of the regression models performed from the original
plus augmented sample from Combined DI.

Scenario Torque Linear Regr. SVR-Linear SVR-RBF SVR-Poly MLP Regr. Lasso Regr. GBR KNR DTR
Mean STD Medias STD Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD

Experimental
+ Combined DI

10 15.55 1.62 18.62 1.27 20.40 0.79 19.44 0.90 13.53 4.99 21.28 1.58 10.05 0.15 11.25 2.50 10.00 0.00
20 20.06 0.00 21.40 0.00 21.65 0.00 20.55 0.00 19.10 0.00 26.96 0.00 20.00 0.00 20.00 0.00 20.00 0.00
30 26.25 3.50 27.79 2.98 28.25 2.70 27.78 2.76 30.38 3.17 29.11 2.73 31.88 2.84 30.56 1.67 31.11 3.33
40 38.81 4.77 38.02 4.01 7.92 4.27 38.12 4.90 39.27 3.44 38.74 3.08 40.73 1.87 40.00 0.00 43.33 5.77
50 52.61 2.92 51.26 3.24 50.73 3.37 50.98 3.41 50.63 2.34 50.29 2.30 50.07 0.02 50.00 0.00 50.00 0.00
60 57.20 2.18 57.29 1.23 57.15 1.05 55.87 2.01 56.03 0.83 55.05 1.48 57.05 2.69 59.00 2.24 54.00 5.48
70 71.73 2.37 72.51 2.65 71.71 2.31 71.83 2.76 71.20 3.43 68.72 2.42 70.00 0.00 70.00 0.00 70.00 0.00
80 78.22 1.78 78.91 1.61 76.64 1.10 78.93 1.91 79.17 1.87 75.13 1.68 79.29 2.23 80.00 0.00 79.00 3.16

The graphs of Figure 4.33(a-i) correlate the actual torque values with the estimated ones
by the nine regression algorithms, Figs.4.34(a-h) show the mean estimated torque values and
their distribution densities, and Table4.18 provides the corresponding mean values and standard
deviations. The input dataset consists of the original data augmented with samples provided by
the Combined DI approach. In the other approaches, the dataset has its tabular rows increased
by the new artificial data generated by the other augmentation techniques. In the case of the
Combined DI, the tabular dataset increases in columns, and more information based strictly on
the experimental data is employed. Most regression methods accurately estimated the torque
levels, showing tight clustering around the mean value with a small standard deviation. The
KNR presents the perfect correlation for all torque values.
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In general, the algorithms’ performance improved with data augmentation. The GBR, KNR,
MLP regressor and DTR machine learning algorithms consistently outperformed others across
all metrics, demonstrating the best results for torque loosening estimation. This was evident
through their lower dispersion, while other methods could estimate torque but with a higher
dispersion, as indicated by the PDFs and calculated STDs of the torque values. The four data
augmentation strategies, Statistical, TGAN, Forest Diffusion, and Combined DI, effectively in-
creased the dataset’s size and quality, ultimately enhancing the performance of the regression
algorithms. This suggests that employing diverse data augmentation techniques can signifi-
cantly maximise the efficiency of regression models. Among these, the statistical approach was
the fastest and most intrusive in increasing the data size. However, minimal sampling is required
to ensure effective uncertainty quantification and information of the original dataset.

TGAN and Forest Diffusion offer advantages over the statistical approach in data augmen-
tation by preserving the data patterns, as they generate data that aligns closely with the original
characteristics. These methods operate autonomously based on GANs, leaving little user con-
trol over the process since the neural networks handle reproduction. The combined DI method,
which relies solely on data-driven techniques, also proved highly effective in improving ML re-
gression estimations. Our findings indicate that the proposed regression algorithms, enriched
with data augmentation techniques, can accurately estimate torque levels using raw vibration
spectra as input. Additionally, the models provided valuable uncertainty information, allowing
us to quantify the variability in the torque estimations.

Final remarks

The study proposed a data-driven regression machine learning framework for estimating
bolt torque loosening using raw vibration spectra from experimental tests, enhanced with data
augmentation techniques. The approach effectively captured torque variations while addressing
aleatory uncertainty from assembly variability by employing nine supervised regression models
and leveraging damage indices such as FRAC, FAAC, and MDI for feature extraction within
selected frequency bands. Integrating a virtual sensor for data augmentation improved the ro-
bustness of torque estimation, mitigating challenges related to limited datasets in structural
health monitoring. Results demonstrated high accuracy, with MLP Regressor, KNR, GBR, and
DTR outperforming other models. The findings highlight the effectiveness of combining data
augmentation with ML regression techniques, offering a reliable, experimentally driven method-
ology for bolt integrity assessment without requiring numerical models.

4.4 Chapter final remarks

This chapter presented the methodology and machine learning-based framework developed
for detecting bolt loosening, estimating torque in bolted joints, and monitoring the operational
conditions of the Aventa wind turbine. The proposed approach leveraged supervised regression
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and classification models, feature extraction techniques, and data augmentation to enhance
model robustness and reliability in structural health monitoring.

For torque estimation, supervised regression models—particularly MLP Regressor, KNR,
GBR, and DTR, achieved high accuracy, benefiting from data augmentation techniques that
improved dataset quality and addressed the challenges of limited experimental data. Feature
extraction based on damage indices such as FRAC, FAAC, and MDI proved effective in track-
ing torque variations. Additionally, unsupervised learning was applied to explore inherent data
patterns, supporting the classification and regression models.

In wind turbine monitoring, the SHM-ML subroutine effectively identified fault conditions,
with SVM emerging as the most robust classification algorithm. It achieved perfect binary
classification performance and distinguished multiple operational states, particularly along the
Zs direction. These findings reinforce the potential of machine learning for real-time structural
health monitoring, providing a data-driven approach to diagnosing faults without relying on
numerical models.

Despite the promising results, challenges remain, particularly in handling nonlinearities and
discontinuities in regression modelling. Future work will expand the dataset, explore nonlinear
regression techniques, and integrate physics-informed learning algorithms to enhance model
interpretability and generalization. The proposed framework lays a strong foundation for intel-
ligent monitoring systems in bolted structures and wind turbine components, contributing to
advancements in predictive maintenance and structural integrity assessment.
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5 Conclusion

The studies proposed in this thesis were to develop a methodology for monitoring systems
and structures based on their dynamic response using SHM and ML techniques. This final
chapter aims to recapitulate the main findings presented throughout this research, bringing
together the information discussed in the previous chapters, and consolidating the conclusions
reached. In addition, possible directions for future research are suggested.

In this thesis, a methodology for monitoring structures based on their dynamic response was
developed using SHM and ML techniques. The focus was on recognizing and detecting damage in
bolted structures, taking into account the influence of assembly and disassembly of the structure
during experimental tests. To deal with variability in raw spectral data and noise, ML classifiers
were designed to give robustness to the methodology. In addition, an approach was proposed
to simplify the analysis by eliminating the need to evaluate the most sensitive features for
extraction, thus introducing the concept of FRAC in obtaining the damage index, which plays a
crucial role in the methodology of our algorithm. Despite the limitation of the data set, which can
impact the results, the proposed methodology has shown potential for applications in structure
monitoring. The limitation was subsequently incorporated into the algorithm developed.

Two approaches have been proposed for quantifying damage to structures. The first was
the development of a virtual sensor in SHM-ML for data augmentation through the fusion of
physical and synthetic data in order to increase the reliability and applicability of the proposed
methodology. The second consists of developing a methodology involving ML algorithms for
quantifying damage associated with process uncertainty. The methodology was applied to a
bolted joint to estimate the loosening of the bolt torque using raw vibration spectra and the
uncertainty associated with the assembly in the experimental tests. The integration of a virtual
sensor for data augmentation improved the robustness of torque estimation, mitigating the chal-
lenges related to limited data sets in SHM. The approach effectively captured torque variations
by addressing the random uncertainty of assembly variability, employing nine supervised regres-
sion models, and using damage indices for feature extraction within selected frequency bands.
The findings highlight the effectiveness of combining data augmentation with ML regression
techniques, offering a reliable, experimentally driven methodology for assessing bolt integrity
without requiring numerical models.

A performance evaluation of the data-driven SHM-ML methodology was proposed with
experimental data tested on an operational in-situ wind turbine. The methodology used the
unsupervised k-means clustering technique to classify and group data into homogeneous clusters,
allowing the identification of patterns without predefined labels. Two types of classification were
applied for fault detection: binary and multiclass. The results of binary classification achieved
perfect metrics, reflecting its ability to distinguish between normal conditions and faults in
different data orientations. In multiclass classification, the approach was able to identify multiple
operating states and different levels of damage with high precision, excelling in discriminating
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between classes. The results indicate that the proposed methodology has great potential to
improve the structural monitoring of wind turbines in operation.

The obtained results contribute to the development of methods based on the analysis of
measurement data for monitoring the technical condition of wind turbines, increasing their
reliability and safety of use. The proposed methods are particularly effective in assessing the
technical condition of structures and in the future will become a basic expert tool in identifying
changes in construction objects such as wind turbines.

5.1 Products derived from this research

1. Scientific product - Journal

• Coelho, J.S.; Machado, M.R.; Sousa, A.A.S.R. PyMLDA: A
Python open-source code for Machine Learning Damage Assessment, Software Im-
pacts, Volume 19, 2024, ISSN 2665-9638.
https://doi.org/10.1016/j.simpa.2024.100628.

• Coelho, J.S.; Machado, M.R.; Dutkiewicz, M.; Teloli, R.O. Data-driven machine learn-
ing for pattern recognition and detection of loosening torque in bolted joints. J. Braz.
Soc. Mech. Sci. Eng. 46, 75 (2024). https://doi.org/10.1007/s40430-023-04628-6.

• Sousa A.A.S.R.; Coelho, J.S.; Machado M.R.; Dutkiewicz M. Multiclass Super-
vised Machine Learning Algorithms Applied to Damage and Assessment Us-
ing Beam Dynamic Response. J. Vib. Eng. Technol. 11, 2709–2731 (2023).
https://doi.org/10.1007/s42
417-023-01072-7.

• Coelho, J. S.; Machado M. R.; Dutkiewicz M. Integrating Virtual Sensor Data Aug-
mentation into Machine Learning for Damage Quantification of Bolted Structures
under Assembly Uncertainty,2025, Under review.

2. Technological product - Patent request, Registration of Computer Programs and Open
code.

• Machado, M.R.; Coelho, J.S.; de Sousa, A.A.S.R. Structural Integrity Monitoring
Based on Machine Learning Techniques. 2024, Brasil. Patente: Privilégio de Inovação.
Número do registro:
BR1020240152867, título: ”Método para o Monitoramento de Integridade Estrutural
Baseado em Técnicas de Aprendizado de Máquina”, Instituição de registro: INPI -
Instituto Nacional da Propriedade Industrial. Depósito: 25/07/2024.

• Machado, M.R.; Coelho, J.S.; Sousa, A.A.S.R. PyMLDA - Machine Learning for
Damage Assessment. 2024. Patente: Programa de Computador. Número do registro:
BR512024001008-4, data de registro: 17/01/2024, título: ”PyMLDA - Machine Learn-
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ing for Damage Assessment”, Instituição de registro: INPI - Instituto Nacional da
Propriedade Industrial.

• M.R. Machado , J.S. Coelho , A.A. S. R. Sousa (2024). PyMLDA - Machine Learning
for Damage Assessment. Open code:
https://github.com/mromarcela/PyMLDA.

5.2 Suggestions for further work

The study carried out in this thesis opens up new questions to be explored, and possible
improvements can be implemented. The following are some aspects that could be addressed in
future research.

• In the study, only ML models were used for classification, in order to distinguish be-
tween normal operation and turbine failure. As a suggestion, we propose the application
of regression-based ML models, an approach that shows promise for improving the analysis
and monitoring of turbine performance.

• Include in the methodology the optimization of resource selection and the exploration of
clustering techniques to increase the accuracy of the models.

• Integrating multiphysics data and Machine Learning for monitoring wind turbines. In this
context, the integration of multiphysics data with ML techniques appears as a promising
solution to improve the understanding and performance of these complex systems.

• Incorporate DL techniques into the methodology, such as neural networks and Variational
Autoencoders, to improve data modeling and model accuracy.
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