
Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

Estudo sobre Redes Neurais de Grafos Bipartidos
com Palavra-Chave e Atenção para Classificação

Transdutiva de Texto

Vitor V. Oliveira

Dissertação apresentada como requisito parcial para
conclusão do Mestrado em Informática

Orientador
Prof. Dr. Thiago de Paulo Faleiros

Brasília
2025

Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

Study on Bipartite Graph Neural Networks with
Keyphrase and Attention for Transductive Text

Classification

Vitor V. Oliveira

Dissertação apresentada como requisito parcial para
conclusão do Mestrado em Informática

Orientador
Prof. Dr. Thiago de Paulo Faleiros

Brasília
2025

Ficha catalográfica elaborada automaticamente,
com os dados fornecidos pelo(a) autor(a)

VO48s
Vasconcelos de Oliveira, Vitor
 Study on Bipartite Graph Neural Networks with Keyphrase
and Attention for Transductive Text Classification / Vitor
Vasconcelos de Oliveira; orientador Thiago de Paulo
Faleiros. -- Brasília, 2025.
 94 p.

 Dissertação(Mestrado em Informática) -- Universidade de
Brasília, 2025.

 1. Redes de Grafos Bipartidos. 2. Redes Neurais de
Grafos. 3. Aprendizado Transdutivo. 4. Processamento de
Linguagem Natural. 5. Graph Attention Networks. I. de Paulo
Faleiros, Thiago, orient. II. Título.

Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

Estudo sobre Redes Neurais de Grafos Bipartidos
com Palavra-Chave e Atenção para Classificação

Transdutiva de Texto

Vitor V. Oliveira

Dissertação apresentada como requisito parcial para
conclusão do Mestrado em Informática

Prof. Dr. Thiago de Paulo Faleiros (Orientador)
CIC/UnB

Prof. Dr. Antonio Fernando Lavareda Jacob Júnior Prof. Dr. Díbio Leandro Borges
CCT/UEMA CIC/UnB

Prof. Dr. Rodrigo Bonifácio Almeida
Coordenador do Programa de Pós-graduação em Informática

Brasília, 20 de fevereiro de 2025

Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

Study on Bipartite Graph Neural Networks with
Keyphrase and Attention for Transductive Text

Classification

Vitor V. Oliveira

Dissertação apresentada como requisito parcial para
conclusão do Mestrado em Informática

Prof. Dr. Thiago de Paulo Faleiros (Orientador)
CIC/UnB

Prof. Dr. Antonio Fernando Lavareda Jacob Júnior Prof. Dr. Díbio Leandro Borges
CCT/UEMA CIC/UnB

Prof. Dr. Rodrigo Bonifácio Almeida
Coordenador do Programa de Pós-graduação em Informática

Brasília, 20 de fevereiro de 2025

Dedication

I dedicate this work to all my family, friends, and my girlfriend, who supported me at all
times.

iv

Acknowledgements

I thank the faculty of the Departments of Computer Science and Mathematics at the
University of Brasília for all the teachings and contributions to my education. I am grate-
ful to the Fundação de Apoio à Pesquisa do Distrito Federal (FAPDF) for the financial
incentives that allowed me to participate in numerous educational and research projects
throughout my undergraduate studies. I would like to thank my academic supervisor
Thiago de Paulo Faleiros and my academic co-supervisor Ricardo Marcondes Marcacini,
for all their understanding, welcome and support; and to all the collaborators who took
part in this work for their disposition and teachings.

This work was carried out with the support of the Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior - Brasil (CAPES), through the Access to the Periodicals
Portal.

v

Resumo

Na atualidade, o Processamento de Linguagem Natural (NLP) evoluiu rapidamente em
uma ampla gama de tarefas, especialmente graças aos avanços do Aprendizado de Máquina
(ML) e do Aprendizado Profundo (DL) ao longo dos anos. No entanto, devido à alta com-
plexidade e aos diversos pré-requisitos dessas tecnologias, as metodologias convencionais
de classificação de texto de NLP geralmente exigem uma grande quantidade documen-
tos rotulados e alto poder computacional. Este trabalho investiga três técnicas para
abordar e solucionar esses desafios. Primeiramente e mais significativamente, está o uso
de abordagens baseadas em grafos transdutivos para a tarefa de classificação de texto,
visando reduzir a quantidade necessária de dados rotulados. Para este processo inicial,
emprega-se o já renomado modelo de Graph Convolutional Networks (GCN) e o modelo
mais contemporâneo de Graph Attention Networks (GAT), ambos utilizando uma nova
estrutura de grafos bipartidos de documento-conceito que usam Keyphrases (conceitos)
para aquisição de conhecimento de tópicos e enriquecimento de informações dos mode-
los. A segunda técnica utilizada, constitui na aplicação de coarsening para promover a
redução dos grafos, reduzindo assim os custos computacionais. Por fim, emprega-se Large
Language Models (LLM) como rotuladores de baixo custo, removendo ou reduzindo a
necessidade de rotuladores humanos. Os resultados mostram que o modelo GAT teve o
melhor desempenho para tarefas de classificação de texto transdutivo usando a abordagem
de grafos bipartidos de documento-conceito, sendo este um desempenho comparável aos
de modelos indutivos tradicionais mesmo usando apenas de 1 a 30 documentos rotulados
por classe. Referente a aplicação de coarsening, ocorreu uma redução de 40%-50% no
tamanho dos grafos preservando em média 82% do desempenho dos modelos, variando de
68% a 95% em vários conjuntos de dados. LLMs foram capazes de treinar vários modelos
eficientes, mas quando comparados a modelos treinados usando dados rotulados por hu-
manos apresentaram resultados inferiores, demonstrando que o aprendizado transdutivo
favorece pequenas quantidades de dados muito precisos em alternativa de uma quantidade
abundante de dados moderadamente precisos.

Palavras-chave: Redes de Grafos Bipartidos, Inteligência Artificial, Processamento de

vi

Linguagem Natural, Aprendizado Transdutivo, Aprendizado Profundo, Aprendizado de
Máquina, Grande Modelos de Linguagem, Redes Neurais de Grafos, Redes de Atenção de
Grafos, Redes Convolucionais de Grafos, Documentos, Conceitos

vii

Resumo Expandido

0.1 Introdução
O crescimento exponencial de dados textuais e a necessidade de organização automatizada
de informações impulsionaram o desenvolvimento de técnicas de Processamento de Lin-
guagem Natural (NLP). A classificação de textos surge como uma das tarefas fundamen-
tais nesse campo, sendo crucial para aplicações como filtragem de e-mails, recomendação
de conteúdo e análise de sentimentos. Contudo, abordagens baseadas em aprendizado
supervisionado demandam grande quantidade de dados rotulados, o que nem sempre é
viável economicamente ou logisticamente.

Neste cenário, abordagens semi-supervisionadas, especialmente aquelas com foco em
aprendizado transdutivo, mostram-se promissoras. Elas são capazes de aproveitar a estru-
tura dos dados não rotulados para propagar informação a partir de um pequeno número
de exemplos anotados. As Redes Neurais de Grafos (GNNs) têm ganhado destaque nesse
contexto por permitirem operações em grafos que modelam relações entre documentos ou
entidades semânticas.

Essa dissertação propõe uma arquitetura baseada em grafos bipartidos documento-
conceito, onde os documentos são conectados a frases-chave extraídas automaticamente.
Essa representação permite capturar relações semânticas de forma mais rica do que simples
conexões entre documentos. A proposta também investiga o uso de mecanismos de atenção
(GATs), técnicas de coarsening para redução de complexidade, e o uso de modelos de
linguagem (LLMs) como rotuladores automáticos.

O objetivo central é demonstrar que é possível obter resultados comparáveis aos méto-
dos tradicionais mesmo em contextos com poucos dados rotulados, por meio de técnicas
que exploram a estrutura semântica dos textos e a propagação de informações com grafos.
A hipótese é que modelos transdutivos usando grafos bipartidos enriquecidos com frases-
chave e mecanismos de atenção podem superar limitações de métodos convencionais.

vi

0.2 Fundamentação Teórica

0.2.1 Aprendizado Transdutivo Semi-Supervisionado

O aprendizado transdutivo diferencia-se do tradicional aprendizado indutivo por seu foco
em inferir rótulos apenas sobre um conjunto conhecido de instâncias, em vez de con-
struir um modelo generalizável para dados futuros. Essa característica o torna ideal para
situações onde há abundância de dados não rotulados e escassez de dados anotados. O
modelo transdutivo utiliza a totalidade dos dados disponíveis (rotulados e não rotulados)
no processo de treinamento, permitindo uma melhor adaptação ao conjunto de dados
específico.

Além disso, o aprendizado semi-supervisionado transdutivo permite a propagação da
informação entre as amostras por meio de estruturas relacionais, como grafos. Isso é
particularmente eficaz quando há uma forte estrutura de similaridade entre os dados, como
ocorre em coleções de documentos inter-relacionados tematicamente. A combinação de
poucos exemplos anotados com muitos exemplos não anotados, organizados em um grafo,
fornece uma base rica para inferência.

0.2.2 Grafos Bipartidos Documento-Conceito

Um grafo bipartido é uma estrutura que liga dois conjuntos distintos de nós, onde conexões
só ocorrem entre elementos de conjuntos diferentes. Na abordagem proposta, os dois
conjuntos representam documentos e conceitos (frases-chave) extraídos automaticamente.
O uso de frases-chave como representações conceituais permite capturar melhor o con-
teúdo semântico de cada documento, ao contrário de modelos baseados exclusivamente
em palavras.

Essas frases-chave são extraídas por meio da ferramenta KeyBERT, que utiliza em-
beddings do modelo BERT para identificar expressões semanticamente relevantes. A
modelagem em grafos bipartidos possibilita a criação de redes mais densas e informativas,
que refletem as relações latentes entre documentos e seus conceitos compartilhados. Isso
fortalece a capacidade dos modelos de capturar similaridades e diferenças semânticas de
maneira eficaz.

0.2.3 Redes Neurais de Grafos: GCN e GAT

Redes Neurais de Grafos (GNNs) são modelos de aprendizado profundo que operam dire-
tamente sobre estruturas de grafos, aprendendo representações dos nós com base em suas
conexões e vizinhanças. As Redes Convolucionais de Grafos (GCN) são um tipo de GNN

vii

que realizam agregações simples de vizinhança, considerando todos os nós vizinhos com
pesos iguais e agregando suas informações.

Essa abordagem, embora eficiente, pode não capturar adequadamente a importância
relativa dos vizinhos. Em contraste, as Graph Attention Networks (GAT) incorporam
mecanismos de atenção que atribuem pesos distintos para cada vizinho, permitindo que
o modelo aprenda quais conexões são mais relevantes para a tarefa.

O uso de GATs em grafos bipartidos documento-conceito permite, por exemplo, que a
rede aprenda que um conceito como “aprendizado profundo” é mais representativo para
a classificação de um documento técnico do que um termo genérico como “dados”. Essa
capacidade de diferenciação é essencial em contextos com grande variação semântica.

0.2.4 Redução de Grafos (Coarsening)

Com o aumento do número de documentos e conceitos, os grafos podem se tornar densos
e computacionalmente dispendiosos. Para contornar esse problema, utiliza-se a técnica
de coarsening, que agrupa nós semelhantes em supernós. O algoritmo CLPb, empregado
neste estudo, aplica propagação de rótulos semi-síncrona para identificar e colapsar grupos
semanticamente similares.

A aplicação do coarsening não apenas reduz o tamanho do grafo como também preserva
de maneira eficaz as propriedades estruturais necessárias para a inferência. Assim são
reduzidos custos computacionais e de processamento, mas mantendo a performance dos
modelos de grafos semlhantes.

0.2.5 Modelos de Linguagem como Rotuladores

Os Modelos de Linguagem de Grande Escala (LLMs), como o LLaMA 3 (8B), têm sido
comumente empregados como reguladores automáticos na literatura. Eles são capazes de
gerar rótulos com base em poucos exemplos ou até mesmo em configurações de zero-shot
learning. Nessa dissertação, utiliza-se diferentes configurações de prompts para avaliar o
desempenho desses modelos na rotulagem inicial de documentos.

Apesar de apresentarem desempenho inferior ao de rótulos humanos em média, os
LLMs mostraram-se úteis para gerar conjuntos de dados iniciais, especialmente em tarefas
repetitivas e contextos onde não há disponibilidade de especialistas. A estratégia de usar
LLMs como primeiro estágio de rotulagem pode ser combinada com validação humana
posterior para melhores resultados.

viii

0.3 Metodologia
O trabalho segue uma metodologia composta por etapas encadeadas que contemplam
desde a coleta dos dados até a avaliação dos modelos, e composta por sete etapas princi-
pais:

1. Seleção dos conjuntos de dados

2. Extração de frases-chave com KeyBERT

3. Construção dos grafos bipartidos documento-conceito

4. Modelagem com GCNs e GATs

5. Aplicação do algoritmo CLPb para coarsening

6. Rotulagem automática com LLMs

7. Avaliação com base em métricas padrão como F1-score, precisão e revocação

Inicialmente, foram selecionados conjuntos de dados de diferentes tamanhos e domínios,
visando garantir a diversidade e a validade dos experimentos. A extração de frases-chave
foi realizada utilizando a ferramenta KeyBERT, que gera representações semânticas dos
documentos com base em embeddings BERT.

Com as frases-chave extraídas, os grafos bipartidos são construídos conectando cada
documento às suas frases-chave correspondentes. Essa representação em grafo permite
explorar conexões indiretas entre documentos por meio dos conceitos compartilhados.
A etapa seguinte consiste na aplicação de Redes Neurais de Grafos. Dois modelos são
utilizados: GCN (Graph Convolutional Network) e GAT (Graph Attention Network).
Ambos processam os dados transdutivamente, utilizando rótulos limitados para propagar
informações no grafo.

Paralelamente, é aplicado o algoritmo CLPb para realização de coarsening nos grafos.
Essa técnica agrupa nós semelhantes, gerando grafos mais compactos com menor custo
computacional. A eficiência dessa técnica é avaliada em termos de desempenho e economia
de recursos.

Outra etapa relevante é a utilização de modelos de linguagem como rotuladores.
O modelo LLaMA 3 foi empregado para gerar rótulos automaticamente com base em
prompts definidos para as tarefas. Os modelos GNN foram treinados utilizando rótulos
humanos e rótulos gerados por LLMs, permitindo comparação direta de desempenho.

Por fim, a avaliação dos modelos foi feita utilizando métricas padrão principalmente
o F1-score. Os experimentos foram repetidos com diferentes quantidades de documentos
rotulados por classe (1, 5, 10, 20, 30), buscando entender a influência da quantidade de
supervisão sobre o desempenho.

ix

0.4 Resultados e Discussão
Os resultados evidenciaram que os modelos baseados em GATs superaram os GCNs em
praticamente todos os cenários. A capacidade dos GATs de ponderar a importância de
diferentes vizinhos demonstrou-se crucial para o sucesso em tarefas com poucos rótulos.
Em particular, a diferença de desempenho foi acentuada quando o número de documentos
rotulados era reduzido.

A aplicação da técnica de coarsening também se mostrou eficiente, reduzindo em
até 50% a quantidade de nós e arestas sem impacto significativo no desempenho. A
média de preservação de desempenho observada foi de 82%, o que representa um excelente
compromisso entre eficiência e acurácia. A técnica mostrou-se particularmente útil em
cenários com grandes volumes de dados não rotulados. Em alguns casos, os modelos
coarsenados apresentaram desempenho praticamente equivalente aos modelos completos,
com vantagens claras em termos de eficiência computacional.

Nos experimentos com LLMs como rotuladores, observou-se que embora o desempenho
seja inferior à anotação humana, os resultados foram aceitáveis. Em várias configurações,
os rótulos gerados por LLMs possibilitaram o treinamento de modelos GNN com desem-
penho competitivo, especialmente quando os dados apresentavam classes distintas e bem
definidas, além de documentos relativamente padronizados.

0.5 Conclusão
Essa dissertação apresenta uma proposta inovadora e eficaz para a classificação de textos
com poucos dados rotulados, combinando grafos bipartidos, GNNs com atenção, coarsen-
ing e rotulagem via LLMs. A abordagem mostra-se especialmente adequada para cenários
com limitações de anotação manual, com aplicações em contextos reais e escaláveis.

A combinação de frases-chave como intermediários semânticos, atenção contextual
e simplificação estrutural oferece uma alternativa robusta aos modelos indutivos tradi-
cionais. A integração de LLMs como rotuladores de baixo custo e a utilização de coarsen-
ing também representam um diferencial importante em termos de acessibilidade e disponi-
bilidade.

O estudo abre portas para pesquisas futuras que explorem técnicas semelhantes em
outras tarefas de NLP, bem como a adaptação da metodologia para outros idiomas,
domínios e difenretes arquiteturas de grafos heterogêneos.

x

Abstract

In contemporary times, Natural Language Processing (NLP) has swiftly evolved in a
wide range of tasks, especially thanks to Machine Learning (ML), and Deep Learning
(DL) great advancements over the years. However, due to these technologies’ complexity
and data prerequisites, current conventional NLP text classification methodologies often
require large numbers of labeled documents and large computational power. This work
mainly investigates three techniques to address such challenges. Firstly and most signifi-
cantly, the use of transductive graph-based approaches for the text classification task aims
to reduce the amount of required labeled data. For this initial process, we employ the
classic and well-established Graph Convolutional Networks (GCN) and the more contem-
porary Graph Attention Networks (GAT), on a novel document-concept bipartite graph
framework that uses Keyphrase(concepts) for topic knowledge acquisition and model in-
formation enrichment. The second technique is applying coarsening for graph reduction,
hence reducing computational costs. Lastly, we aim to employ Large Language Models
(LLM) as low-cost labelers effectively removing or reducing the need for human labelers.
Results show GAT as the best performing model for transductive text classification tasks
using the document-concept bipartite graph approach, GAT showed that it can perform
on equal levels to traditional inductive models despite using only 1 to 30 labeled doc-
uments per class. The coarsening application presented 40%-50% graph size reduction
while maintaining 82% of the model performance at average, ranging from 68% to 95%
on various datasets. LLMs were able to train several efficient models, but compared to
models trained on human-labeled data revealed inferior results, demonstrating that trans-
ductive learning favors small amounts of highly accurate data rather than a large quantity
of moderately accurate data.

Keywords: Bipartite Graph networks, Artificial Intelligence, Natural Language Process-
ing, Transductive Learning, Deep Learning, Machine Learning, Large Language Mod-
els, Graph Neural Networks, Graph Attention Networks, Graph Convolutional Networks,
Transformers, Self-Attention, Documents, Concepts

viii

Contents

1 Introduction 1
1.1 Hypotheses . 3
1.2 Objectives . 4
1.3 Section Summary . 5

2 Background 6
2.1 Semi-supervised Transductive Learning . 6
2.2 Document-concept Bipartite Graphs and

Keyphrase Extraction . 8
2.2.1 Document-concept Bipartite Graphs 8
2.2.2 Concepts and Keyphrases . 9
2.2.3 Keyphrases Extraction . 9

2.3 Graph Neural Networks (GNNs) . 11
2.3.1 Graph Convolutional Network (GCN) 12
2.3.2 Graph Attention Networks (GATs) 15

2.4 Coarsening . 17
2.5 Large Language Models (LLM) . 21

3 Related Work 25
3.1 Concept/Keyphrase Extraction . 25
3.2 Graph Neural networks . 26
3.3 Coarsening . 28
3.4 Large Language Models . 29

4 Research Methodology 31
4.1 Datasets . 33
4.2 Document-Concept Bipartite Graph Creation 34
4.3 Document-Concept Graph Neural Networks 36

4.3.1 Document-Concept Graph Convolution Networks 36
4.3.2 Document-Concept Graph Attention Networks 37

ix

4.4 Training GAT and GCN Models . 39
4.5 Coarsening . 41
4.6 Large Language Models Labeling . 42
4.7 Evaluation . 48

5 Experimental Results 50
5.1 Document-Concept GAT and GCN . 50
5.2 Coarsening . 58
5.3 Large Language Models . 65
5.4 All models analysis . 79

6 Conclusion 82

References 84

x

List of Figures

1.1 Representation of Natural Language Processing in the academic realm of
artificial intelligence and linguistics. 2

1.2 Bipartite document-concept graph example. 4

2.1 Transductive learning and inductive learning comparison. 8
2.2 GNN aggregation/message passing example. Credits to [Khemani et al.,

2024] . 12
2.3 Traditional CNN and GNN convolutions. 13
2.4 Visual representation of coarsening algorithms results. Image credits to

[Eduardo Althoff et al., 2023]. 18
2.5 Visual example of the five CLPb steps. a shows that the cross-propagation

process is being performed from the top layer N1 (propagator nodes), to
the bottom layer N2 (receiver nodes). b shows that equal propagator N1

labels are merged. c shows the labels’ normalization step. d select B as
it present the larger β value. Lastly e tests restrictions 4 and 5, if they
are satisfied the selected label is propagated to the receiver layer, if not
the algorithm returns to step d. This algorithm can be repeated t times
until convergence. Upon cross-propagation convergence, receiver N2 nodes
with the same labels are aggregated into super-nodes. Image credits to
[Eduardo Althoff et al., 2023]. 21

4.1 Methodology Flowchart. 32
4.2 Overview of the proposal that explores Graph Attention Networks applied

to the document-concept bipartite graph. 37
4.3 GAT and GCN trained models count. 40
4.4 Overview of the F1-socre, precision and recall metrics formulas, image

based on [Seol et al., 2023]. 49

5.1 All GAT and GCN models F1-scores results, over the increase of labeled
node numbers. 54

xi

5.2 Traditional GAT and GCN critical difference plots. 55
5.3 GAT and GCN models F1-scores results over the increase of labeled node

numbers but also considering 20%, 40%, 60%, and 80% labeled instances. . 56
5.4 All coarsened GAT and GCN models F1-scores results, over the increase

of labeled node numbers. 61
5.5 Comparative evolutionary graph between all coarsened GAT and GCN

models and traditional GAT and GCN, previously presented in sub-section
5.1, F1-scores. 62

5.6 Coarsening critical difference plots. 63
5.7 Critical difference diagram of traditional GAT, traditional GCN, coarsened

GAT, and coarsened GCN models. 64
5.8 All GAT and GCN models trained with 10 LLM labeled instances (LLMnlabeled =

10) F1-scores results, over the evolution of labeled node numbers. 71
5.9 All GAT and GCN models trained with 50 LLM labeled instances (LLMnlabeled =

50) F1-scores results, over the evolution of labeled node numbers. 72
5.10 All GAT and GCN models trained with 100 LLM labeled instances (LLMnlabeled =

100) F1-scores results, over the evolution of labeled node numbers. 73
5.11 Comparative evolutionary graph between all GAT and GCN models trained

with 10 LLM labeled instances (LLMnlabeled = 10) and traditionally la-
beled GAT and GCN models F1-scores results. 74

5.12 Comparative evolutionary graph between all GAT and GCN models trained
with 50 LLM labeled instances (LLMnlabeled = 50) and traditionally la-
beled GAT and GCN models F1-scores results. 75

5.13 Comparative evolutionary graph between all GAT and GCN models trained
with 100 LLM labeled instances (LLMnlabeled = 100) and traditionally
labeled GAT and GCN models F1-scores results. 76

5.14 LLM 10 critical difference plots. 77
5.15 LLM 50 critical difference plots. 78
5.16 LLM 100 critical difference plots. 79

xii

List of Tables

4.1 Characteristics of the textual document collections. 33
4.2 Few-shot and Zero-shot prompt evaluation. The selected best-performing

prompts are colored in blue and green. 44

5.1 All GAT and GCN macro F1-Socre results. The numbers represent the
average and standard deviation of all ten iterations for each dataset, sepa-
rated by the number of labeled data, keyphrases, model, and dataset. . . . 53

5.2 All GAT and GCN macro F1-Socre results using 20%, 40%, 60%, and 80%
of labeled data. The numbers represent the average and standard deviation
of all ten iterations for each dataset, separated by the number of labeled
data, keyphrases, model, and dataset. 57

5.3 Listing of the best macro F1-score observed from the inductive models
benchmarked at [Rossi et al., 2013] and the trained GAT and GCN models,
aggregating models from 1 to 30 labeled data and 20% to 80% labeled data. 58

5.4 All coarsened GAT and GCN macro F1-Socre results. The numbers rep-
resent the average and standard deviation of all ten iterations for each
dataset, separated by the number of labeled data, keyphrases, model, and
dataset. 60

5.5 Comparison of average F1-score metric across datasets between coarsened
and non-coarsened graph models, and coarsening F1-score performance
preservation. 64

5.6 Graph reductions in number and percentage across all datasets and keyphrases,
by nodes and edges. 65

5.7 All LLM-10 (LLMnlabeled = 10) GAT and GCN macro F1-Socre results.
The numbers represent the mean and standard deviation of all ten itera-
tions for each dataset, the number of labeled data, and keyphrases. 68

5.8 All LLM-50 (LLMnlabeled = 50) GAT and GCN macro F1-Socre results.
The numbers represent the mean and standard deviation of all ten itera-
tions for each dataset, the number of labeled data, and keyphrases. 69

xiii

5.9 All LLM-100 (LLMnlabeled = 100) GAT and GCN macro F1-Socre results.
The numbers represent the mean and standard deviation of all ten itera-
tions for each dataset, the number of labeled data, and keyphrases. 70

5.10 Ranking tables, counting the number of occurrences each keyphrase, GNN
Model, and technique were superior and trained the best models based on
Table 5.11. 80

5.11 Table shows the best models trained across all datasets and number of hu-
man labeled data, considering all the models trained with all the previously
presented techniques: Traditional GNN modeling, Coarsening, LLM-10,
LLM-50, LLM-100, keyphrase numbers: [2], [2, 3], [3], and GNN models:
GAT and GCN. 81

xiv

Acronyms

AI Artificial Intelligence.

BERT Bidirectional Transformers.

BILSTM Bidirectional Long Short-Term Memory.

CD Critical Difference.

CLPb Coarsening via semi-synchronous Label Propagation for bipartite networks.

CLPk Coarsening via semi-synchronous Label Propagation for K-partite networks.

CNN Convolutional Neural Networks.

DL Deep Learning.

GAT Graph Attention Networks.

GCN Graph Convolutional Networks.

GNN Graph Neural Networks.

GPT Open AI’s Generative Pre-Training Transformer model.

GQA Grouped-Query Attention.

KNN K-nearest neighbors.

LLM Large Language Models.

ML Machine Learning.

MMR Maximal Margin Relevance.

NLP Natural Language Processing.

xv

PDE Partial Differential Equations.

RoPE Rotary Posi-ional Embeddings.

xvi

Chapter 1

Introduction

In contemporary times, Artificial Intelligence (AI) systems often rely on Machine Learning
(ML) algorithms. Artificial Intelligence characterizes the capability of these systems to
engage in advanced problem-solving, similar to human capacities. Machine Learning, on
the other hand, describes the computer’s ability to learn from specific training data and
effectively solve distinct problems and tasks. Within the field of ML, Deep Learning (DL)
emerges as a subset, representing the progression of artificial neural networks towards
increasingly intricate architectures with enhanced learning capabilities [Janiesch et al.,
2021].

Natural Language Processing (NLP) stands as a vast branch of computer science, em-
bracing artificial intelligence and linguistics, dedicated to exploring the capabilities and
constraints of computers in comprehending human language. The evolution of NLP has
been swift in recent years, leveraging multiple approaches from Artificial Intelligence,
Machine Learning, and Deep Learning to process, analyze, and represent human natural
language texts. Its main objectives focus on solving tasks such as segmentation, infor-
mation extraction, summarization, translation, and text or speech classification, among
others [Otter et al., 2019]. Figure 1.1 represents how NLP is part of AI and linguistics.

Within the NLP domain, text classification is pivotal in effectively handling, retrieving,
and extracting knowledge from extensive repositories of textual documents. Conventional
methodologies for text classification often rely on inductive learning algorithms [Weiss
et al., 2012, Sebastiani, 2002]. These algorithms include classification models capable of
categorizing new or unseen texts based on prior observations and examples.

However, these conventional methodologies frequently demand many labeled docu-
ments to train accurate classification models. This process can generate considerable
costs due to using traditional labeling methods. Labeling, in the context of Machine
Learning and Natural Language Processing, involves assigning labels to raw data to pro-
vide context or meaning. For instance, in classification tasks, labeling entails establishing

1

Figure 1.1: Representation of Natural Language Processing in the academic realm of
artificial intelligence and linguistics.

classes for data instances [Li et al., 2022].
Typically, human labeling is the prevalent method in state-of-the-art datasets for

NLP tasks, relying on human effort to manually annotate and categorize texts. This
approach places the responsibility on labelers to create a robust dataset for training Deep
Learning models, involving the labor-intensive process of reading, searching, identifying,
circumscribing, and reviewing texts. While human labeling tends to yield more reliable
and accurate datasets, its high costs attributed to human effort in repetitive tasks, time
consumption, capital expenses, and the need for additional reviews to mitigate human
errors are a significant impediment to creating training datasets [Zhang et al., 2021].

To overcome this cost limitation, there is a growing interest in employing methods that
leverage the abundance of unlabeled texts to facilitate and enhance text classification,
especially in semi-supervised methods such as the transductive learning methodology. In
addition, with the growth of Deep Learning and Large Language Models (LLM), NLP-
specific algorithms that use transformer models and massive datasets, the exploration of
utilizing such large models as economical labelers is also becoming increasingly relevant.

Furthermore, graph-based approaches position themselves as a viable solution to
handle the intricate relationships between words and documents and effectively explore
contextual-aware word relations in text classification [Yao et al., 2018, Veličković et al.,
2017, Zhang and Zhang, 2020]. Graphs offer a natural way to represent the connections
and dependencies between elements in a document collection, enabling a higher under-
standing of relationships and propagating information across the graph structure, a valu-
able characteristic for transductive learning. Here, techniques related to graph reduction,
such as coarsening, can be employed to improve computational efficiency.

2

Graphs have stood out as a robust data structure in various domains, especially ma-
chine learning and data mining. Their robust mathematical properties and ability to
capture complex relationships between entities make them a natural choice for semi-
supervised problems. One of the main advantages of using graphs is their ability to
model relationships between different data elements intuitively and effectively, which is
essential in scenarios where data may be partially labeled, like semi-supervised problems,
or where the underlying structure of the data is complex and non-linear.

There are several approaches to converting textual data into graph structures to
represent text in graphs. These approaches include representations based on word co-
occurrence, topic models, and semantic networks [Wang et al., 2021, Li et al., 2023]. A
natural and intuitive way to represent texts as graphs is through bipartite graphs, which
usually establish relationships between documents and words or document features.

1.1 Hypotheses
Our main hypothesis is that this representation of bipartite graphs, especially in our own
developed document-concept graphs applied by graph-based machine learning models, is
suitable for transductive learning, a semi-supervised approach, and can effectively capture
semantic relationships. The document-concept representation is a bipartite graph that
creates edges between documents and their concepts, the main topics extracted from that
document. In our experiments, these concepts are also named keyphrases, specific phrases
that represent the main ideas of the document. Figure 1.2 represents a simple example
of a bipartite document-concept graph.

3

Figure 1.2: Bipartite document-concept graph example.

We believe these document-concept bipartite graphs can be effectively used for cases
with high computational or data-labeling costs and further supported by other techniques.
Given limited computational resources, graph coarsening techniques can be helpful since
reducing graph size can drastically reduce memory usage, GPU usage, and training time.
Semi-supervised learning can significantly improve the quality of predictions for scenarios
with few available labels, still, Large Language Models can enrich data representation and
aid in classification, removing the need for human labeling and reducing annotation costs
by using LLM-labeling.

1.2 Objectives
Our research’s main objective derives from our hypothesis on document-concept bipartite
graphs. We aim to investigate the uses of our designed document-concept representation
for semi-supervised learning, focusing on improving model performance regarding memory
consumption and accuracy. To achieve this, we further delve into specific objectives such
as:

• Propose a novel approach that combines concept-based representation with Graph
Attention Networks (GATs) for semi-supervised text classification on bipartite graphs.
This approach allows the model to automatically learn the importance of concepts in
the document classification process. Also, employ the document-concept approach

4

on traditional Graph Convolutional Networks (GCN) used as a well-known baseline
model for transductive graph learning.

• Apply and evaluate the coarsening method on the generated graphs to reduce com-
putational costs and verify the coarsening impact on model performance.

• Investigate Large Language Models as additional information sources or low-cost
labelers, replacing or supporting human annotations and promoting model efficiency
improvements.

• Extensively evaluate all the proposed methods on multiple benchmark datasets,
considering different cardinalities of concepts extracted from the documents (various
keyphrase word sizes) and different semi-supervised scenarios. Demonstrate the
effectiveness of our approach and compare it against other state-of-the-art methods.

1.3 Section Summary
Further on in this text, we delve into the development12 of our Reseach. The chapters of
this dissertation can be summarized by the topics below:

• Introduction: Motivation for our research and hypotheses for investigating bipartite
semi-supervised document-concept graphs, coarsening, and LLMs in Graph Neural
Networks.

• Background: Base contextualization on terms, concepts, fundamental ideas, and the
main methodologies used during our research.

• Related Work: Presents a brief literature review, highlighting relevant related work,
that originated some of our approaches, and used as inspiration.

• Methodology: Formalization of the procedures adopted in the application of each
proposed approach

• Experimental Results: Our study’s experiments and results, used to evaluate the
proposed approaches’ performance and usability.

• Conclusion: Concludes our study by recapitulating the main objectives, achieved
results, limitations, and future work.

1All code used for this is study is available on the Github repository: https://github.com/VitorVVO/
Study_on_Trandutivs_Bipartite_Graph_Neural_Networks.git.

2All datasets used for this study are available on the Github repository: https://github.com/
rmarcacini/text-collections/tree/master/complete_texts_csvs.

5

https://github.com/VitorVVO/Study_on_Trandutivs_Bipartite_Graph_Neural_Networks.git
https://github.com/VitorVVO/Study_on_Trandutivs_Bipartite_Graph_Neural_Networks.git
https://github.com/rmarcacini/text-collections/tree/master/complete_texts_csvs
https://github.com/rmarcacini/text-collections/tree/master/complete_texts_csvs

Chapter 2

Background

2.1 Semi-supervised Transductive Learning
Semi-supervised learning occupies a position between supervised learning, which relies
on labeled data for model training, and unsupervised learning, which constructs models
without using labeled data. By incorporating information from both labeled and unla-
beled data, semi-supervised methods are highly effective at utilizing significant volumes
of unlabeled texts to augment the classification process [Kong et al., 2013, Faleiros et al.,
2017]. For instance, In the context of semi-supervised text classification, the objective is
to make optimal use of available labeled data to supply essential context and generate
accurate predictions for each input sample. Simultaneously, using unlabeled data aids the
model in assessing the data’s inherent structure, enabling more efficient generalization to
new input samples.

Transductive classification, a subtype of semi-supervised learning, focuses on directly
predicting labels for unlabeled instances without constructing a generalization model
specifically for classifying new texts [de Paulo Faleiros et al., 2017]. Unlike inductive learn-
ing, where the model generalizes from labeled examples to make predictions on unseen
data, transductive learning involves observing all data beforehand. Its primary objective
is to predict labels for the unlabeled instances (testing dataset) based on the labeled in-
stances (training dataset) and all additional information present in the combined data
during the learning process (testing+training dataset) [Gammerman et al., 2013]. In
essence, inductive learning aims to derive a general function for solving a specific prob-
lem. In contrast, transductive learning seeks to develop a specific function tailored to
the problem at hand [Tripodi and Pelillo, 2017]. This transductive approach is especially
beneficial when labeled training data is limited.

For instance, consider a dataset X = Xl ∪Xu, which is composed by Xl = x1, x2, ..., xn

that represents labeled instances and Xu = xu+1, xui+2, ..., xk that represents labeled in-

6

stances. Our objective is to find an output Yu = y1, y2, ..., yk for each unlabeled instance
of our dataset. In a classic inductive approach, we use Xl to learn a function f : X → Y

that minimizes a loss function L which measures the discrepancy between the predicted
and real labels. Formalizing, inductive learning training uses the labeled dataset (Xl) as
input to f and predicts Yp:

Yp = f(Xl) (2.1)

the loss function L compares predicted data (Yp ≡ f(Xl)) and real data(Yl) to provide
model training directions:

minL(Yp, Yl) ≡ minL(f(Xl), Yl) (2.2)

By the end of the training, function f can effectively predict unknown/unlabeled data.
This is the testing, used to evaluate f performance on its predictions:

f(Xu) = Yu (2.3)

Transductive learning works similarly, as it also aims to minimize the L loss of function,
using it as the training guide, but to achieve this, it considers both Xl and Xu, essentially
training and testing simultaneously [de Paulo Faleiros et al., 2017]:

Yp = f(Xl, Xu) (2.4)

minL(YpYu, YlYu) ≡ minL(f(Xl, Xu), YlYu) (2.5)

A great benefit of leveraging unlabeled xu and labeled Xl data for training is that
it enables transductive learning to use very small portions of labeled data compared to
inductive learning. But there are disadvantages as well, in the case of unknown data
X2

u, that is not Xu, we must retrain our function f , while an inductive model would not
need retraining only applying f(X2

u) to retrieve predictions. Figure 2.1 illustrates this
transductive and inductive learning training comparison.

7

Figure 2.1: Transductive learning and inductive learning comparison.

2.2 Document-concept Bipartite Graphs and
Keyphrase Extraction

2.2.1 Document-concept Bipartite Graphs

A bipartite graph is a type of graph whose nodes can be divided into two disjoint sets
such that no two nodes within the same set are adjacent. Formalizing, consider a graph
represented as G = (N, E), where N is the set of nodes (i.e., vertices) and E ⊆ N × N is
the set of edges. G is considered a bipartite graph only if:

• N can be partitioned into two disjoint sets N1 and N2, such that N1 ∩ N2 = ∅ and
N1 ∪ N2 = N ;

• No edge e = (a, b) ∈ E between node a and b exists where both a ∧ b ∈ N1 or
a ∧ b ∈ N2.

A common NLP approach using bipartite graphs is the document-word bipartite graph
[Saifuddin et al., 2021], where one node layer represents the document texts, and the other
layer represents the words present in each document. The edges represent which document
contains which word.

A document-concept bipartite graph, our selected approach, is another type of bi-
partite graph less commonly used in natural language processing where one set of nodes
represents documents, and the other set represents concepts, also named keyphrases or

8

keywords. The edges between the two sets represent the relationship between the doc-
uments and the concepts they contain [Zhang et al., 2011, RK Rao and Devi, 2017].
Adapting the bipartite graph formalization previously established to a document-concept
bipartite graph, N1 = D would represent documents nodes and N2 = C concepts nodes
in a form that N = D ∪ C.

2.2.2 Concepts and Keyphrases

Concepts are abstract representations encapsulating a document’s core ideas or topics,
providing a high-level understanding of its content. In document analysis and information
retrieval, concepts can be equated to keyphrases, representing the most meaningful and
descriptive multi-word terms extracted from a text.

Keyphrases serve as concise, targeted summaries of a document’s subject, facilitating
efficient information retrieval, topic modeling, and visualization in knowledge graphs.
Keyphrases are distinguished from keywords in that they consist of multi-word lexemes
(e.g., “artificial intelligence” or “data mining”) rather than single words (e.g., “artificial”
or “data”). While keywords offer a simplified representation, they often lack the specificity
and semantic depth needed to convey nuanced ideas [Siddiqi and Sharan, 2015, Beliga,
2014].

By focusing on concepts as keyphrases, we can reduce the complexity of document
representations, effectively minimizing the number of concept nodes in a graph while
preserving semantic richness. This approach contrasts with word-based representations,
which can be overly granular and less meaningful in capturing the thematic essence of a
document.

2.2.3 Keyphrases Extraction

A broad range of text mining techniques are available regarding keyphrase extraction
[Papagiannopoulou and Tsoumakas, 2019]:

• Unsupervised Methods:

– Statistics-based: Uses statistical metrics like TF-IDF, phrase frequency, or co-
occurrence statistics to rank phrases.

– Graph-based: Builds a graph where nodes represent candidate terms and edges
indicate relationships (e.g., co-occurrence).

– Embedding-based: Leverages word or phrase embeddings (e.g., Word2Vec,
GloVe, BERT) to compute semantic similarity between phrases and the docu-
ment.

9

– Language Model-based: Applies N-gram or neural language models to evaluate
the likelihood of phrases being keyphrases based on their context.

• Supervised Methods:

– Traditional Supervised: Frames keyphrase extraction as a binary classification
task. Uses features like term frequency, position, and linguistic patterns (e.g.,
part-of-speech).

– Deep Learning-based: Utilizes advanced neural networks, such as encoder-
decoder frameworks (e.g., CopyRNN) or sequence labeling models (e.g., Bi-
LSTM-CRF).

While traditional methods for concept extraction often rely on statistical measures
such as term frequency-inverse document frequency (TF-IDF) [Salton and Yang, 1973]
or graph-based algorithms like TextRank [Mihalcea and Tarau, 2004], our approach is
based on language models such as BERT (Bidirectional Encoder Representations from
Transformers). These models have demonstrated remarkable capabilities in understanding
the semantics of text. Using contextual information and word relationships, BERT-based
models can be leveraged to extract representative concepts from documents.

Our work mainly focuses on the methodology proposed by Grootendorst et al. [Groo-
tendorst, 2020], the KeyBERT framework. Two works heavily inspired KeyBERT. Sharma
et al. [Sharma and Li, 2019] proposed an approach that incorporates contextual and se-
mantic features, using Bidirectional Transformers (BERT) for feature extraction, cosine
similarity for candidate keyword extraction, and a Bidirectional Long Short-Term Memory
(BILSTM) model, trained based on BERT embeddings similarity, for keyphrase classifi-
cation.

The second guiding work was Smires et al.’s EmbedRank [Bennani-Smires et al., 2018],
an unsupervised keyphrase extracting approach that also leverages sentence embeddings
but embeds both the document and candidate phrases into the same vector space to con-
duct semantic similarity measurements. Keyphrases are ranked using the Maximal Margin
Relevance (MMR) algorithm using cosine similarity. MMR balances relevance (similarity
to the document) and diversity (dissimilarity among candidates) by selecting phrases that
maximize a trade-off parameter, ensuring the extracted keyphrases are informative and
non-redundant.

The KeyBERT framework [Grootendorst, 2020] was modeled after [Bennani-Smires
et al., 2018] EmbedRank, mainly the MMR algorithm. KeyBERT functions by first
extracting document embeddings with BERT to get a numerical document-level repre-
sentation, the document embeddings similar to [Sharma and Li, 2019]. Subsequently,
BERT is also used to extract word embeddings, resulting in N-gram phrases based on all

10

word combinations comprising N words. Finally, simple cosine similarity or the MMR
algorithm is used to find the phrases most similar/relevant to the document embedding.
The most similar words could then be identified as the words that best describe the entire
document.

2.3 Graph Neural Networks (GNNs)
Graph Neural Networks have gained considerable attention in machine learning for their
effectiveness in handling structured data, including text data. First introduced by Gori
et al. in 2005 [Gori et al., 2005], GNNs are a deep learning model designed to learn
and reason about data represented in graph structures. Graphs consist of nodes and
edges, and GNNs excel at capturing complex relationships within such data. Using their
message-passing mechanism to aggregate information from neighboring nodes, GNNs can
learn meaningful representations that capture the underlying structure and dependencies
in the data [Khemani et al., 2024].

In a traditional GNN, nodes are defined by their features and connected nodes [Scarselli
et al., 2008]. Given a graph, as mentioned previously, G = (N, E) where N and E are
the nodes and edges sets, respectively, the graph network aims to learn a hidden state
embedding hn ∈ Rs that encapsulates each node’s features and neighborhood data in the
form of a vector.

The first use of this vector hn is aggregating information of neighbors and updating
itself based on such information by using GNN’s message passing mechanism, illustrated
in figure 2.2. The kind of “information” this message passes consists of two main parts:
structural information about the graph (i.e., degree of nodes, etc.) and the other is
feature-based (i.e., nodes features or characteristics).

This hn update process occurs interactively. At each iteration, each node strictly
circles the neighborhood and collects information. After the first iteration (k = 1), each
node embedding expressly retains information from its one-hop neighborhood. After the
second iteration (k = 2), each node retains data from not only its neighbors but also its
neighbors’ neighbors who passed through their vector updated previously. To summarize,
the messages coming from neighbors are based on information aggregated from their
respective neighborhoods. Figure 2.2 represents the message-passing mechanism.

Another, and the most relevant, application of this hn embedding is in predicting the
expected node label. The state embedding hn, represented as an s-dimensional vector
associated with a node n ∈ N , can generate an output YOn, effectively determining the
node’s envisioned label. This anticipated distribution of the node label, denoted as YOn, is

11

Figure 2.2: GNN aggregation/message passing example. Credits to [Khemani et al., 2024]

constructed based on the information encoded in the state embedding hn and also based
on state embeddings of neighboring nodes hnb1, hnb2...hnbn.

One of the key strengths of GNNs lies in their versatility across various learning strate-
gies [Waikhom and Patgiri, 2021]. GNNs can have many variants of graphs (e.g., Directed
Graph, Bipartite Graph, Heterogeneous Graph, Dynamic Graph), levels of classification
tasks (e.g., node, edge, and graph level tasks), and graph-based learning techniques (e.g.,
supervised, unsupervised, and semi-supervised each with many sub-techniques within
itself). In our research, we employ a bipartite heterogeneous semi-supervised node classi-
fication approach. This method involves two distinct types of nodes, our objective being
to classify one of these node types using transductive learning techniques.

Regarding transductive learning, Graph Neural Networks can capitalize significantly
on their advantages, especially due to their inherent ability to facilitate the flow and
dissemination of information across a graph through relationships among patterns [Ciano
et al., 2022]. The message-passing mechanism, Figure 2.2, inherent in GNNs, proves
valuable in supplying the transductive algorithm with the necessary general understanding
of the network to address the problem at hand effectively.

2.3.1 Graph Convolutional Network (GCN)

One traditional and popular variant in the GNN family is the Graph Convolutional Net-
work [Kipf and Welling, 2016a], which is based on the well-known Convolutional Neural
Networks (CNN), first introduced by Lecun et al. [Lecun et al., 1998]. The main idea of
a CNN is to use filters to extract important features from the input data and reduce its
dimensionality.

A CNN consists of one or more convolutional layers, followed by pooling layers and
fully-connected layers. The convolutional layers apply sliding weights called filters or
kernels to the input data and produce feature maps that capture the presence of specific
features in specific data regions or groups. The pooling layers reduce the size of the

12

feature maps and retain the most important information. Lastly, the fully connected
layers perform classification based on the extracted features.

CNNs and GCNs ’convolution’ processes are, in essence, the same [Kipf and Welling,
2016a]. The input neurons are multiplied by filters. The filters act as a sliding window
across the data, allowing the network to learn information from nearby cells. Weight
sharing applies the same filter within the same layer throughout the data. For instance,
when CNN is used to identify photos of dogs, the same filters are employed in the same
layer to detect the dog’s nose, ears, and tail across the entire image [Kipf and Welling,
2016a].

Both, CNNs and GCNs, learn features by analyzing their data, the key difference is
in data structure, GCN data is represented through graph nodes and neighboring nodes.
CNNs are tailored to process data with a regular (Euclidean) order. At the same time,
GCNs represent a generalized form of CNNs suitable for handling data with varying
numbers of node connections and unordered nodes, designed explicitly for irregular or
non-Euclidean structured data. Figure 2.3 illustrates convolution on CNNs and GCNs.

Figure 2.3: Traditional CNN and GNN convolutions.

The working of a graph convolutional neural network can be organized by the topics
below:

1. Conversion to vectors: Associating of each node in the graph with a feature vector
x. These vectors can represent various attributes or characteristics depending on
the GCN application, and together compose the input set X = {x1, x2, ..., xn}.

2. Convolution: The core of the GCN. It aims to aggregate information from neighbor-
ing nodes by performing a weighted sum of the feature vectors of neighboring nodes.
The resulting aggregated information is a new feature vector for each node. The
graph’s adjacency matrix (similar to CNN’s filter) provides weights for the aggrega-
tion process. Lastly, the aggregated features are passed through a RELU activation
function to introduce non-linearity.

13

In a graph G = (N, E), the node feature vectors can be represented by H =
{h1, h2, ..., hn}. In the case of the first GCN layer, the inputs are the feature vectors
x previously extracted on the first step (H(0) = X = {x1, x2, ..., xn}). Each layer
l produces a new set of node features H(l) = {h

(l)
1 , h

(l)
2 , ..., h(l)

n } as its output. This
step can be represented in the form of the equation of GCN:

H(l+1) = σ
(
ÂH(l)W(l)

)
(2.6)

H(l+1) represents layer l’s output while H(l) is its input. Â is the normalized ad-
jacency matrix, W(l) is the trainable weight matrix for the l-th layer (i.e, that will
learn across train iterations), and σ(·) is an activation function such as ReLU.

The normalized adjacency matrix Â effectively refines a node’s feature vector based
on the feature vectors of its close graph neighbors. This matrix captures the graph
structure. Â is normalized to make each neighboring node’s contribution propor-
tional to the network’s connectivity. It is also important to highlight that we com-
monly have many convolution layers in sequence on a GCN architecture, meaning
H(l+1) can serve as another GNC layer input for further feature extraction.

3. Task-Specific Output: The last step is adapting the GCN output to solve the desired
task. Its output presents valuable insights that can be used, with the help of a fully-
connected layer or a softmax classifier, to solve many graph-based tasks such as node
classification, graph classification, or link prediction.

GCN challenges

Although GCN has been successfully used for various semi-supervised classification prob-
lems, limitations and drawbacks still need to be addressed. In particular, traditional
GCN approaches adopt a homogeneous treatment of nodes, considering documents and
concepts as homogeneous entities and disregarding their inherent differences. Moreover,
GCNs employ a simple aggregation scheme that fails to fully capitalize on the rich seman-
tic connections between documents and concepts. In practice, these limitations can be
summarized as a lack of attention mechanism, as GCNs do not incorporate mechanisms
to weigh the importance of different nodes and edges dynamically. Consequently, the
model may assign equal importance to all concepts, overlooking the potential relevance
of specific concepts to documents and their respective classes.

14

2.3.2 Graph Attention Networks (GATs)

The limitations of GCNs in handling bipartite graphs and differentiating the importance
of each concept within the graph have motivated exploring alternative models. In this con-
text, Graph Attention Networks have gained attention. GATs, introduced by [Veličković
et al., 2017], incorporate masked attention mechanisms that allow nodes to selectively
attend to their neighbors during the information aggregation step (i.e., message passing)
and improve graph modeling. This attention mechanism enables GATs to capture the
importance of different nodes and their relationships, leading to improved performance
and enhanced interpretability.

Attention

The Attention Mechanism, first introduced by Bahdanau et al. [Bahdanau et al., 2016]
in the context of neural machine translation, revolutionized sequence-to-sequence mod-
eling. Traditionally, neural machine translation systems relied on fixed-length vector
representations to encode source sentences, posing limitations on their ability to capture
long or complex relationships between words. Bahdanau et al. [Bahdanau et al., 2016]
proposed an innovative extension by integrating an attention mechanism with Recurrent
Neural Networks or convolutions, enabling models to dynamically weigh the importance
of different parts of the source sentence during translation. This allowed the model to soft-
search relevant information without the constraint of fixed-length vectors and enhanced
performance.

Building upon this foundation, Vaswani et al. [Vaswani et al., 2017a] further refined
the attention mechanism and introduced the transformer architecture, which relies solely
on attention mechanisms without recurrent or convolutional layers. The transformer
model demonstrated superior performance in various sequence transduction tasks, includ-
ing machine translation. Unlike traditional models, the transformer achieved remarkable
results while being more parallelizable and requiring significantly less training time. This
exemplifies how the attention mechanism, as central to the transformer architecture, not
only improves performance but also streamlines the training process, making it more
efficient and scalable across different tasks.

The core process behind the attention mechanism is self-attention, also known as
intra-attention, and can be defined as attention applied to a single context, or sequence
(e.g., a sentence or a document), instead of across multiple contexts [Ramachandran
et al., 2019]. It allows a model to weigh different input elements, usually tokens in a
single sequence, based on their relevance to each other to compute a representation of the
sequence [Vaswani et al., 2017a, Lin et al., 2017].

15

The self-attention workflow is as follows:

1. Given an input sequence, each token is represented as an embedding vector.

2. For each token, self-attention computes a weighted sum of all tokens in the sequence,
considering their importance relative to each other.

3. The relevance (i.e., attention score) between two tokens is calculated using a simi-
larity function.

4. The attention scores are normalized using a softmax function to ensure they sum
up to 1.

5. The weighted sum of all tokens, using attention scores, produces the context vector
for each token in the sequence.

Working of GAT

Graph Attention Networks leverage masked self-attention to address the shortcomings
of prior methods that rely on graph convolutions. By using these attention mechanisms,
nodes can attend to their neighborhoods’ features, specifying different weights to different
nodes in a neighborhood without requiring complex matrix operations or prior knowledge
of the graph structure and making the model suitable for both inductive and transductive
problems [Veličković et al., 2017].

The working of a graph convolutional neural network can be organized by the topics
below:

1. Conversion to vectors: Initialization process, similar to GCNs, associating each
graph node with a feature vector x and creating the input set X = {x1, x2...xn}.

2. Self-Attention Mechanism: GAT implements a self-attention mechanism on the
nodes and computes attention coefficients, also named attention scores or context
vectors, for each node, indicating the importance of one node to another. These at-
tention coefficients are based on the features of the central node and its neighbors.
The attention coefficients are calculated using a weighted sum of the features of the
central node and its neighbors.

Considering the same graph G = (N, E), the node feature vectors can be represented
by H = {h1, h2, ..., hn} ∈ RF , F being the number of features in each node of N .
The layer l produces a new set of node features H(l) = {h

(l)
1 , h

(l)
2 , ..., h(l)

n } ∈ RF (l) as
its output. The attention coefficients update process is:

(a) The attention coefficients are calculated with the application of the self-attention
similarity function, the following equation, where W ∈ RF ′×F is the weight

16

matrix of each node {i, j, k, ..., n} and a : RF ′ × RF → R represents the self-
attention mechanism:

eij = a(WH(l)
i , WH(l)

j) (2.7)

(b) To make coefficients easily comparable across different nodes, we normalize
them across all choices of j using the softmax function

αij = softmaxj(eij), (2.8)

3. Node feature vector update: After the calculation of the attention coefficients, we
proceed to update each feature vector by employing a weighted sum of the features
of the neighboring nodes:

h(l+1)
i = σ(

∑
j∈Nbhd(h)

αij · W(l) · h(l)
j) (2.9)

h(l+1)
i represents layer l’s output while h(l)

j is its input, which corresponds to all
feature vectors on its one-hop neighborhood j ∈ Nbhd(n). W(l) is the trainable
weight matrix for the l-th layer, αij are our normalized attention head coefficients,
and σ(·) denotes the non-linearity ReLU function.

4. Task-Specific Output: Adapting GAT output to solve the desired graph-based tasks
using techniques such as a fully-connected layer or a softmax classifier.

2.4 Coarsening
Graph coarsening, or graph reduction, is a dimensionality reduction technique for ap-
proaching large-scale graphs in machine learning problems [Kumar et al., 2022, Cai et al.,
2021]. It aims to create a smaller tractable graph, often more computationally efficient,
while still preserving the original graph’s main properties and general structure [Kumar
et al., 2022].

In general, the coarsening algorithm traditionally has two main steps to ensure the
graph reduction occurs correctly:

• Node aggregation: Nodes of the original graph are grouped into clusters based on a
certain criterion, reducing the overall number of nodes in the graph.

• Edge Contraction: The edges between nodes are rearranged, merged, or removed
according to the new node structure.

Figure 2.4 represents the coarsening of a graph.

17

Figure 2.4: Visual representation of coarsening algorithms results. Image credits to [Ed-
uardo Althoff et al., 2023].

In scientific computing, graph coarsening techniques can be traced back to the devel-
opment of multigrid methods in numerical analysis, particularly in solving partial differen-
tial equations (PDEs) and optimization problems [Chen et al., 2021]. Graph coarsening
emerged as a key component of multigrid methods as a way to accelerate the conver-
gence of iterative solvers for large-scale linear systems arising from PDEs, especially on
irregular networks, where traditional multigrid approaches could not be directly applied
[Bakhvalov, 1966, Brandt, 1977].

Over time, graph coarsening techniques have been further developed and adapted
to various applications in computer science, particularly in graph algorithms, machine
learning, and network analysis. In semi-supervised learning, where graphs are built using
labeled and unlabeled data, training a model, storage and computational costs can become
prohibitive obstacles as the data grows. This can make using it impractical in specific
applications [Walshaw, 2004]. Therefore, graph coarsening offers a valuable alternative to
address these challenges [Liu et al., 2018].

Coarsening via semi-synchronous Label Propagation for K-partite networks
(CLPk)

In our research, we will use the CLPk algorithm [Eduardo Althoff et al., 2023]1, an
innovative coarsening method applicable to k-partite networks and capable of significantly
maintaining classification performance. Most coarsening algorithms analyze networks
with only one type of nodes and edges, known as uni-partite networks. However, real-
world information networks are often heterogeneous, consisting of various types of node
and edges, thus the distinctions between node types are overlooked and do not efficiently
represent the graph’s separate structure and treatment of its nodes.

Althoff et al. [Eduardo Althoff et al., 2023] propose the CLPk algorithm that can effi-
ciently represent heterogeneous graphs with multiple types of nodes and edges, each with

1Code for the CLPk algorithm available on https://github.com/pealthoff/CoarseKlass.

18

https://github.com/pealthoff/CoarseKlass

its entities, attributes, or relationships. The proposed method uses a label propagation
technique that orders partitions, the k-groups of nodes on the graph, and selects paths in
the graph’s schema to improve coarsening performance. Subsequently, the coarsening via
semi-synchronous label propagation for bipartite networks (CLPb) algorithm, introduced
by Valejo et al. [Valejo et al., 2021a], is applied to partition pairs performing the reduction
process.

Considering a heterogeneous graph G = (N, E), the algorithm first identifies the graph
partitions, mutually exclusive groups (e.g, bipartite, tripartite, etc.) of the set of nodes N ,
and utilizes labeled nodes from the target N-partition Nt to guide the reduction process.
The k-partite network is first decomposed into a series of bipartite networks, with pairs of
partitions selected from the original network. The matching approach for each partition
and thus the order in which CLPb will be applied follows a breadth-first search starting
on the target partition Nt and following the shortest path between the partitions and Nt

since shorter paths are more likely to indicate stronger relationships between nodes.
Next, the CLPb coarsening algorithm is adapted to the selected partition pairs, with

the closer partition to Nt acting as the propagator partition and the other as the receptor
partition. The coarsening process is executed semi-synchronously, grouping nodes with
the same labels into super-nodes, and is applied to all non-target partitions following the
breadth-first search tree.

In the case of bipartite graphs and not k-partite heterogeneous graphs, in our case
study, the CLPb is applied to the entirety of the graph on both target and non-target
partitions without the decomposition and breadth-first ordering.

Coarsening via semi-synchronous Label Propagation for bipartite networks
(CLPb)

In this section, we explain the coarsening strategy using semi-synchronous label propaga-
tion for bipartite networks, as introduced in Valejo et al.’s research [Valejo et al., 2021a],
initially designed for the unsupervised scenario. The CLPb employs the concept of cross-
propagation to diffuse labels across layers. Upon convergence, nodes within the same
layer sharing the same label merge into a single super-node.

A label is defined as a tuple Ln(l, β), where l represents the current label and β ∈
[0, 1] ⊂ R+ its associated score. At first, each node n ∈ N is initialized with a starting
label Ln = (n, 1.0/

√
κ(n)), where Ln is identified by its “id” and has a maximum score

of β = 1.0.
In each step, a new label is propagated to a receiving node n by selecting the label

with the highest β from the collective labels of its k neighboring nodes, k ∈ Nbhd(n). This
propagation process operates according to the subsequent filtering rules:

19

1. Equal labels Leq ⊆ Ln are merged and the new β′ is composed by the sum of its
belonging scores:

β′ =
∑

(l,β)∈Leq

β, (3)

2. The belonging scores of the remaining labels are normalized, where γ is the number
of remaining labels.:

Ln =
{(

l1,
β1

βsum

)
,

(
l2,

β2

βsum

)
, . . . ,

(
lγ,

βγ

βsum

)}
(4)

βsum =
γ∑

i=1
βi (5)

3. The label with the largest β is selected:

L′
n = arg max

(l,β)∈Ln

Ln. (6)

4. The size of the coarsest network is controlled by the user, thus the minimum number
of labels for each layer is a user-defined parameter η. This means a node n ∈ Ni,
where i represents the graph partitioning layer, is only allowed to update its label
if, and only if, the number of labels in the layer ∥Li∥ remains equal to or greater
than ηi:

∥Li∥ ≤ ηi (7)

5. Lastly, a classical issue in the multilevel context is that super-nodes tend to be
highly unbalanced at each level [Valejo et al., 2020]. Therefore, it is common to
constrain the size of the super-nodes using an upper-bound µ ∈ [0, 1] ⊂ R+, which
limits the maximum size of a group of labels in each layer:

Si = 1.0 + (µ ∗ (ηi − 1)) ∗ ∥Vi∥
ηi

(8)

where µ = 1.0 and µ = 0 imply highly imbalanced and balanced groups of nodes,
respectively. Therefore, a node n with weight σ(n) can update its current label l to
a new label l′ if, and only if:

20

σ(n) + σ (l′) ≤ Si and σ (l′) =
∑
k∈l′

σ(k) (9)

If restrictions 4 or 5 are not attained, the algorithm returns to step 3; the label with
the maximum β is removed, and a new ordered label is selected. The process is repeated
until a label that satisfies the restrictions 4 and 5 is obtained. Figure 2.5 represents the
complete application process of the abovementioned rules.

After the cross-propagation convergence, the algorithm collapses each group of matched
nodes (i.e., nodes with the same label) into a single super-node. Links that are incident
to matched nodes are collapsed into the so-called super-links. It is important to note that
the CLPb process does not guarantee that the desired minimum number of labels η will
be reached at the current level, and thus, the algorithm can stop with a greater number
of labels than the desired one.

Figure 2.5: Visual example of the five CLPb steps. a shows that the cross-propagation
process is being performed from the top layer N1 (propagator nodes), to the bottom layer
N2 (receiver nodes). b shows that equal propagator N1 labels are merged. c shows the
labels’ normalization step. d select B as it present the larger β value. Lastly e tests
restrictions 4 and 5, if they are satisfied the selected label is propagated to the receiver
layer, if not the algorithm returns to step d. This algorithm can be repeated t times
until convergence. Upon cross-propagation convergence, receiver N2 nodes with the same
labels are aggregated into super-nodes. Image credits to [Eduardo Althoff et al., 2023].

2.5 Large Language Models (LLM)
Large Language Models are artificial intelligence models that exhibit remarkable capa-
bilities in natural language tasks and beyond, such as answering questions, translating
languages, and generating complex texts with human-like proficiency [Naveed et al., 2023].
As by their name, these models are trained on a large amount of text data like books,
articles, and web pages, adjusting the immense quantity of parameters and weights com-
posing their architecture and learning the underlying patterns and structures of human
language.

21

LLMs are becoming highly sought-after worldwide due to their capacity as general-
purpose task solvers and, thanks to fine-tuning, even highly accurate solvers for specific
tasks [Fan et al., 2023]. These models also present emergent abilities such as improved
zero-shot learning and few-shot learning [Rahman et al., 2018]. This means they are
capable of solving the task at hand with none or few contextualization prompts, showing
adaptation and reasoning capacity to learn thought inputs and outputs actively. Prompts
are a core concept of an LLM and can be defined as a piece of text used to guide the
production of a Large Language Model [Cain, 2023]. It can be understood as a starting
point that provides context and constraints for the model to generate text relevant to the
desired tasks with the desired format and level of complexity.

Training a billion-scale model is difficult as compared to a smaller model. LLMs are
prone to various instabilities during training, such as hardware failure [Zhao et al., 2023].
In general, the training of an LLM can be divided into two main steps: pre-training and
fine-tuning. Pre-training refers to the phase where the LLM is trained on a large and
diverse corpus of text data, mainly using unsupervised learning techniques to enable the
LLM to learn general language skills, such as grammar, syntax, semantics, and common-
sense knowledge. Fine-tuning is the phase where the LLM is re-trained on a smaller
and more specific dataset, usually related to a particular task, using supervised or semi-
supervised learning techniques. The complexity of designing and training such models
leads to various strategies and architectures tailored for specific NLP tasks or based on
remarkable academic findings.

A famous example of LLMs is GPT-4 [OpenAI et al., 2024], a descendant of the GPT
and chat-GPT family, with the architecture composed of unidirectional transformers that
focuses on autoregressive text generation, making it adept at tasks like creative writing,
dialogue systems, and summarization. BERT [Devlin et al., 2019], in contrast, employs a
bidirectional transformer architecture, allowing it to process text in both directions simul-
taneously. This bidirectionality makes it highly effective for question answering, sentiment
analysis, and named entity recognition tasks. T5 (Text-to-Text Transfer Transformer)
[Raffel et al., 2023] adopts an encoder-decoder architecture, framing all NLP problems as
text-to-text tasks, enabling seamless multitask learning for applications like translation,
summarization, and text classification. These models exemplify LLMs’ various architec-
tures, training strategies, and practical applications in numerous tasks.

Considering the variety of LLM models, we propose using Llama 3 8B [Dubey et al.,
2024], with 8 billion parameters, as our low-cost labeler, replacing the high cost of human
effort. In this strategy, the costs would lay on the model itself, considering the model
needs payment for its use in the development, prompt engineering, labeling process, and
computational costs. As Llama 3 is open-source, the monetary costs for its use are zero,

22

with only development and computational expenses remaining.

Llama 3

Llama 3 (i.e., Large Language Model Meta AI 3) [Touvron et al., 2023a] is a LLM foun-
dation model developed by Meta AI, designed as a general-purpose language model that
supports many AI tasks. The model extends the Llama series’ and focuses on efficiency
and accessibility, aiming to achieve the best possible performance at various inference
budgets, showing advanced capabilities while using publicly available datasets. The re-
sulting models range from 8B, 70B to 405B parameters with competitive performance
compared to the best existing LLMs.

The architecture of Llama 3 builds on the transformer design [Vaswani et al., 2017a],
integrating several innovations to enhance efficiency and performance. Similarly to Llama
1 [Touvron et al., 2023a], it employs pre-normalization using RMSNorm [Zhang and Sen-
nrich, 2019] for normalizing inputs rather than outputs within transformer layers, also
adopts the SwiGLU activation function [Shazeer, 2020], which improves non-linear trans-
formations and enhances model expressiveness, and incorporates Rotary Positional Em-
beddings (RoPE) [Su et al., 2023], which replace traditional positional encodings, allowing
the model to manage long input sequences better.

From Llama 2 [Touvron et al., 2023b] it mainly inherits grouped-query attention GQA
[Ainslie et al., 2023] that improves inference scalability for larger models, by grouping
tokens together into a shared query vector which attend all key-value heads, maintaining
model’s ability to capture long-range components while reducing the number of query
computations.

Llama 3 main improvements from other Llama models are in data quality, diversity,
and increased training scale. Key architectural updates include adopting GQA with
eight key-value heads for faster inference and reduced memory requirements, an updated
attention mask to handle long sequences effectively, and a larger 128K-token vocabulary
that improves tokenization for both English and non-English texts. The RoPE base
frequency parameter is also increased to support longer context lengths up to 32,768
tokens.

The training process of Llama 3 has two main stages: language model pre-training and
language model post-training [Vaswani et al., 2017a]. During the pre-training phase, the
model was trained on a vast corpus of 15.6 trillion tokens, covering multilingual, general
knowledge, reasoning, and coding domains. This phase focuses on next-token prediction,
enabling the model to acquire a foundational understanding of language and extensive
world knowledge. A significant aspect of this stage was data curation, employing rigorous

23

deduplication, quality filtering, and domain-specific enhancements, such as including high-
quality coding and reasoning datasets.

Also, scaling laws and annealing (i.e., slowly decreasing learning rates) strategies were
crucial in optimizing model size and training efficiency while improving downstream per-
formance. Overall, the pre-training recipe consists of the initial pre-training using AdamW
with a 0.00008 learning rate and context windows of 8K tokens, next step uses long con-
text pre-training to gradually expand the context window to 128K tokens for increased
model context range, and lastly, a linear annealing step is applied to decrease the learning
rate to 0 to refine model performance on key data.

The post-training phase refined the pre-trained Llama 3 model to better align with
human expectations and enhance specific capabilities, such as instruction following and
multilingual understanding. This was achieved through supervised fine-tuning (SFT),
rejection sampling, and Direct Preference Optimization (DPO). The process involved
leveraging human-annotated preference data and synthetic examples, focusing on fine-
tuning the model’s performance on tasks requiring precise instruction-following, tool use,
and coding. Additionally, safety measures were integrated during this phase to mitigate
potential harm, ensuring a balance between helpfulness and harmlessness.

Llama 3 demonstrated competitive performance across a broad range of benchmarks
[Vaswani et al., 2017a]. It was evaluated on tasks encompassing general knowledge
(e.g., MMLU), reasoning (e.g., ARC Challenge), coding (e.g., HumanEval), mathemat-
ical problem-solving (e.g., GSM8K), tool use (e.g., BFCL), Long context (e.g., Zero-
SCROLLS), and multilingual(e.g., MGSM) achieving state-of-the-art results on several
benchmarks within its size classes and outperforming alternative models with similar
numbers of parameters. Overall, Llama 3 delivers notable safety and alignment met-
rics improvements compared to its predecessors, showing versatility and potential as a
foundational AI model across diverse applications.

24

Chapter 3

Related Work

3.1 Concept/Keyphrase Extraction
In the context of generating bipartite graphs using documents and concepts, it is im-
portant to highlight the works on keyword and keyphrase extraction. Surveys like [Be-
liga, 2014], [Siddiqi and Sharan, 2015], and [Papagiannopoulou and Tsoumakas, 2019]
present us with an excellent overview of how the field has significantly evolved over the
past few decades, and its modern perspectives. Mainly, Papagiannopoulou et al. [Papa-
giannopoulou and Tsoumakas, 2019] describes a systematization of state-of-the-art meth-
ods focused on keyphrase extraction, classifying them based on their characteristics and
similarities, as shown in subsection 2.2, and addresses the main works on these methods.

Nomoto et al. [Nomoto, 2022] does a similar job but focuses mainly on the methods
themselves and their history. According to Nomoto, early techniques, such as the term
frequency-inverse document frequency (TF-IDF), emerged in the 1970s to determine the
importance of terms within a document by balancing their frequency against their rarity
across a corpus [Salton and Yang, 1973]. In 1990, most attempts to tackle the issue
were primarily based on text statistics, and the field of information retrieval was led
by DARPA’s Topic Detection and Tracking (TDT) [Allan, 2002]. While effective, these
statistical methods primarily relied on shallow text representations, limiting their ability
to capture semantic and contextual nuances.

In the 2000s, advances in graph-based methods like TextRank [Mihalcea and Tarau,
2004], inspired by Google’s famous PageRank algorithm, began leveraging the structural
relationships between words and phrases. Such methods treated documents as networks
and graphs, where the importance of terms was determined based on their connectivity
within these networks. Around the same period, topic modeling approaches, particularly
Latent Dirichlet Allocation (LDA) [Blei et al., 2003a], introduced probabilistic models

25

to identify topics and their associated terms, adding depth to keyword extraction by
revealing latent structures in the text.

State-of-the-art techniques now predominantly rely on deep learning paradigms. Gen-
erative models, such as sequence-to-sequence architectures with attention mechanisms,
have enabled systems to generate keywords that may not explicitly appear in the source
text, addressing limitations of previous extractive methods [Meng et al., 2017]. Moreover,
hybrid approaches combining supervised classification frameworks with neural embeddings
further enhance the precision of keyword detection [Zhang et al., 2016]. These modern
methods improve extraction accuracy and enable applications across diverse domains,
making them robust tools in contemporary natural language processing.

Sharma et al. [Sharma and Li, 2019] methodology based on BERT and BILSTM
keyphrase classification, and Smires et al. [Bennani-Smires et al., 2018] MMR algorithm
are the main referential points on the developing of the minimal and easy-to-use keyword
extraction framework KeyBERT, all previously discussed in subsection 2.2. Grootendorst
et al.’s KeyBERT [Grootendorst, 2020] can accurately capture a document’s main concepts
by leveraging BERT embeddings and cosine similarity in an N-gram strategy. In our work,
in particular, we investigated and employed the use of KeyBERT for concept extraction
to support the construction of our bipartite graphs.

Recent studies for text classification show improvement in classification performance
when incorporating information from concepts [Gôlo and Marcacini, 2023] or keywords
[de Souza et al., 2024] during learning, which shows that representation through concepts
and keywords enhances semi-supervised classification [Neogi et al., 2020], especially for
data modeled using graphs [de Souza et al., 2024]. Finally, [Xie et al., 2021] improved
classification performance when exploring topic modeling in bipartite graphs for text
classification, showing the importance of exploring graph neural networks in bipartite
graphs.

3.2 Graph Neural networks
The primary techniques employed in this article revolve around two fundamental mod-
els: Graph Convolutional Network and Graph Attention Network. The survey [Khemani
et al., 2024] by Khemani et al. does an incredible study about GNNs in general, address-
ing in depth the functioning of GCN and GAT. The work of [Gori et al., 2005] pioneered
the concept of GNN, drawing inspiration from the recurrent neural network architecture.
Subsequently, the work of [Veličković et al., 2017] introduced GAT, which utilized masked
attention to enhance graph modeling. Building upon this, [Ding et al., 2018] further im-
proved GAT’s classification performance by utilizing Generative Adversarial Nets (GANs).

26

Below, we provide a literature review highlighting the increasing interest in graphs and
deep learning, the evolution of GCNs to GATs, and the use of concepts and key-topic
information on GNNs.

Most corpus-level graphs typically consist of word and document nodes with word-
document edges. However, certain studies have stood out by incorporating word-word
edges. In the TextGCN approach [Yao et al., 2018], the authors construct a corpus-
level graph comprising training document nodes, test document nodes, and word nodes.
Before graph construction, a standard preprocessing method involves removing words that
appear fewer than five times or are listed in NLTK [Bird et al., 2009] stopwords. The
edge value between document and word nodes is determined using TF-IDF, while the
edge value between word nodes is based on PMI.

To enhance the efficiency of Graph Convolutional Networks, the SGC (Simplified
Graph Convolutional Network) method [Wu et al., 2019] removes the nonlinear acti-
vation function in GCN layers. Additionally, the S2GC approach [Zhu and Koniusz, 2021]
addresses over-smoothing issues in GCNs by incorporating self-loops using the Markov
Diffusion Kernel. In contrast to S2GC, the NMGC method [Sun et al., 2022] utilizes
the sum of each GCN layer. Furthermore, NMGC (Multihop Neighbor Information Fu-
sion Graph Convolutional Network) applies the Multi-hop Neighbour Information Fusion
(MIF) operator, employing min pooling to mitigate over-smoothing problems.

Considering GCN’s limitations in handling heterogeneous graphs and node importance
differentiation, in the TG-Transformer approach [Zhang and Zhang, 2020], TextGCN
is modified to introduce heterogeneity into the graph by treating document and word
nodes as distinct types of nodes during propagation. To handle large corpus graphs,
subgraphs are sampled from the TextGCN graph using the PageRank algorithm [Page
et al., 1998]. The input embedding is computed as the sum of three types of embeddings:
pre-trained GloVe embedding, node-type embedding, and Weisfeiler-Lehman structural
encoding [Niepert et al., 2016]. Self-attention [Vaswani et al., 2017b] with graph residual
[Zhang and Meng, 2019] is applied during propagation.

Incorporating topic/concept information from each document in corpus-level graph
neural networks can provide additional insights. Several models extend the graph by in-
cluding topic nodes. In the HGAT (Heterogeneous Graph Attention Network) approach
[Linmei et al., 2019], HGAT utilizes LDA (Latent Dirichlet Allocation) [Blei et al., 2003b]
to extract topic information for each document. The top K topics with the highest prob-
abilities are selected and connected to the document. Instead of directly using words,
HGAT leverages external knowledge by employing the entity linking tool TAGME [Pic-
cinno and Ferragina, 2014] to identify entities within the document and establish connec-
tions. The connectedness between entity nodes is defined based on semantic similarity

27

using pre-trained Word2Vec with a threshold. As the graph is heterogeneous, a HIN
(heterogeneous information network) model is implemented to propagate solely on each
sub-graph based on the node type. HGAT incorporates a dual attention mechanism,
where type-level attention learns the weights of different types of neighboring nodes. In
contrast, node-level attention captures the importance of neighboring nodes while ignoring
the type.

Other works like [Brody et al., 2021] look to further enhance the GAT attention
mechanism. Brody et al. state that traditional GAT computes a limited kind of attention,
named static attention, that calculates attention scores unconditioned on the query nodes.
GATv2 is proposed to remove this limitation via a simple fix by modifying the order of
the operations and introducing a strictly more expressive dynamic attention. GATv2
indeed outperforms GAT across 11 OGB and other benchmarks, but its use is mainly
recommended upon complex and larger datasets, in the case of simpler and “easy-to-
overfit” data traditional GAT is sufficient and can consistently outperform GATv2.

3.3 Coarsening
Using coarsening for computational cost reduction is a promising but complex idea, as
most existing methods primarily reduce uni-partite networks with a single type of vertex
and edge. Our main inspiration for coarsening and the technique chosen for our imple-
mentations, previously mentioned in subsection 2.4, is Eduardo et al.’s [Eduardo Althoff
et al., 2023] CLPk algorithm. CLPk introduces a new coarsening method applicable to
k-partite networks that can maintain classification performance while solving large net-
works’ storage and processing problems. Results indicate that the proposed coarsening
algorithm significantly improved storage efficiency and classification runtime, leading to
over one-third savings in storage and twice as fast classifications with metrics exhibiting
low variation. Additionally, [Valejo et al., 2021a] introduces the CLPb algorithm, further
detailed in subsection 2.4, which is heavily referenced and serves as the base for the CLPk
algorithm.

Considering the use of coarsening algorithms focused mainly on bipartite graphs,
[Valejo et al., 2021b] presents a comparative analysis of many state-of-the-art coarsening
algorithms. It presents a formal and illustrative description of such algorithms, illustrates
their usage on a set of emblematic problems, and evaluates their accuracy using qual-
ity and runtime measures, highlighting strengths and shortcomings. Additionally in the
realm of bipartite graphs, [Valejo et al., 2021a] introduces the CLPb algorithm, further
detailed in subsection 2.4, which is heavily referenced and serves as the base for the CLPk
algorithm previously mentioned.

28

Another more specific example of coarsening applied on bipartite graphs is [dos Santos
et al., 2024], which, similarly to our study, is also based on Eduardo et al. [Eduardo Althoff
et al., 2023] CLPk algorithm. Here, CLPk is used as a hierarchical coarsening technique to
reduce the graph, and then a target algorithm is applied to the coarsened graph projecting
the output back to the original graph. The graph is gradually coarsened and imputed
to a GNN text classification model, the GraphSAGE algorithm, having its multilevel
optimization evaluated on performance, training time, and memory consumption. It is
emphasized that the experiments are conducted on text classification, but the proposed
method is not bound to a specific task and, thus, can be generalized to different problems.
Results show that on graphs with a 25% coarsening reduction, memory consumption
reduced considerably achieving 1/7 of its original values (i.e., 85% reduction), training
time reduced by 40% at average, but the F1-score and accuracy performance metrics also
reduced by approximately 40%.

Lastly, using a different coarsening algorithm, neither CLPk nor CLPb, [Huang et al.,
2021] introduces a generic and computationally efficient framework that employs graph
coarsening to reduce the size of the input graph. This method enables sublinear memory
and time costs during GNN’s training while maintaining competitive performance. The
paper also demonstrates that coarsening supports scalability and acts as a form of regular-
ization, potentially improving model generalization. Results from empirical evaluations
of real-world datasets show that coarsening can reduce the number of nodes by up to
tenfold with minimal impact on classification accuracy, highlighting graph coarsening as
a simple yet powerful tool for scaling GNNs.

3.4 Large Language Models
In the context of LLMs as data labelers, [Lee et al., 2023] stands out as an overview of
data creation using Large Language Models. It presents a formal framework for data
creation using LLMs. It proposes a single-shot formatting example-based data creation
pipeline that leverages an instruction following LLM and applies to a broad range of
tasks. Experimentation shows that instruction-following LLMs are highly cost-effective
data creators and that models trained with these data perform better than those trained
with human-labeled data by up to 17.5%.

In contrast, [Liu, 2023] presents concerns about the widespread use of LLM as data
labelers, supporting the ongoing relevance of human-labeled data in the post-LLM era.
It discusses the standards for using machines in labeling tasks, comparing the well-
established safety protocols for human-labeled data to the LLM-generated data, con-
sidering potential risks and bias towards high trust in machine outputs, and emphasizing

29

the need for transparent auditing processes to ensure accountability. The challenges of
aligning LLMs to generate helpful, harmless, and truthful outputs are acknowledged,
and alternatives that focus on reinforcement learning from human feedback to fine-tune
pre-trained LLM models are suggested.

Considering the integration of LLMs and GNNs [Ren et al., 2024] is a survey that
explores the use of LLMs to enhance graph learning capabilities. It comprehensively
reviews the latest state-of-the-art LLMs applied in graph learning. It introduces a novel
taxonomy to categorize existing integration methods based on their framework design,
highlighting the strengths and limitations of each approach, as well as architectural and
pipeline innovations. The taxonomy delineates four primary architectural designs: GNNs
as Prefix, where graph neural networks (GNNs) process graph data into structure-aware
tokens for subsequent inference by LLMs; LLMs as Prefix, where LLMs handle graph-
related textual data to produce embeddings or labels that enhance GNN training; LLMs-
Graphs Integration, which focuses on more profound fusion techniques like joint training
or creating LLM-driven agents for graph interaction; and LLMs-Only, which reformulates
graph data into sequences for direct inference by LLMs, often incorporating multi-modal
features.

Also, on applying LLMs to Graph Neural Networks, [Chen et al., 2023b] proposes an
LLM-GNN approach that combines the strengths of both GNNs and LLMs while miti-
gating their limitations. Specifically, LLMs are leveraged to annotate a small portion of
nodes, and GNNs are trained on LLMs’ annotations to make predictions for the remaining
large portion of nodes. Also, it presents a unique challenge in optimally selecting nodes for
LLMs-annotation, ensuring high quality, representativeness, and diversity, and enabling
the enhancement of GNN training. Results show that although LLMs are noisy labels,
LLM-GNN can achieve high accuracy on many benchmark datasets and outperform other
label-free classification methods.

Regarding the use of GATs combined with LLM models [Chen et al., 2023a] intro-
duces GATGPT. This framework merges a graph attention mechanism with LLMs, fo-
cusing specifically on spatiotemporal imputation and applying several time series tasks
like forecasting, classification, and anomaly detection. Unlike conventional methods that
rely on specialized but computationally intensive architectures, GATGPT leverages the
pre-trained knowledge of LLMs to model temporal dependencies. At the same time, the
GAT module captures spatial relationships within the data. This hybrid approach enables
efficient fine-tuning of upper layers for specific tasks while preserving the generalization
power of the LLM pre-trained model. Results show that GATGPT achieves performance
comparable to state-of-the-art benchmarks, highlighting its potential as a versatile and
scalable solution.

30

Chapter 4

Research Methodology

Our research methodology was designed to explore and unite all the technologies explored
in our background section 2, especially the document-concept bipartite graph architecture
using keyphrases, Graph Neural Networks focusing on GAT and GCN implementations,
graph coarsening, and Large Language Models using Llama 3 as labeler. We also delve
into the datasets, and evaluation metrics utilized for our experiments.

Considering such factors, below we present a brief description of the methodologies
employed on each topic previously mentioned, all of which will be further detailed across
this section. Additionally, Figure 4.1 displays the general methodology flux employed in
our works.

• Datasets: Present and examine the 12 textual document collections from different
domains used as datasets for our experiments.

• Document-Concept Bipartite Graph Creation: Focuses on keyphrase extraction us-
ing KeyBERT and the bipartite graph generation and arrangement such as using
K-nearest neighbors to ensure graph structure and connectivity.

• Document-Concept Graph Neural Networks: Focuses on the application of GNNs
introduced in the background subsection 2.3, especially considering their functioning
in the proposal of document-concept graphs.

– Document-Concept Graph Convolution Networks: Define a GCN architecture
adapted to fit into the document-concept bipartite graph methodology.

– Document-Concept Graph Attention Networks: Define a GAT architecture
adapted to fit into the document-concept bipartite graph methodology.

• Training GAT and GCN Models: Delves into how the GAT and GCN models devel-
oped will be trained and applied to produce the expected results for our evaluation.

31

Coarsening and LLM applications will also generate graphs that will be fitted to
GAT and GCN training process.

• Coarsening: Applying the CLPk algorithm on our bipartite graphs, generating
coarsened graphs that will be supplied for GATs and GCNs training and evalu-
ation.

• Large Language Models Labeling: Using Llama 3 as a low-cost labeler, investigation
zero-shot and few-shot prompts to ultimately label diverse volumes of data (i.e, 10,
50, and 100 documents per class), generating graphs with LLM-labeled data that
also will be supplied for GATs and GCNs training and evaluation.

• Evaluation: The overall approach to assessing the results observed in each trained
model, focusing mainly on the f1-Score metric.

Figure 4.1: Methodology Flowchart.

32

4.1 Datasets
We used 12 textual document collections from different domains such as Sentiment Anal-
ysis (SA), Scientific Documents (SD), News Articles (NA), and Web Pages (WP) [Rossi
et al., 2013]. Table 4.1 presents the text collections and the characteristics of these collec-
tions: the number of documents (∥D∥), the number of terms (∥T ∥), the average number
of terms per document (∥T ∥), the number of classes (∥C∥), the standard deviation consid-
ering the class percentages in each collection (σ(C)), and the percentage of the majority
class (max(C)). More details about the collections are presented in [Rossi et al., 2013],
which delves further into the datasets’ characteristics and benchmarks them for various
classification models.

All twelve collections contain English texts with various lengths and class distribu-
tions. All collections are also explicitly adapted for the classification task. Each text can
represent multiple things, such as an article title, text summary, web pages, reviews, and
commentaries. For all collections, all of its composing texts make part of a determined
class that better represents its contents considering the whole.

Simply put, our classification process consists of identifying the document’s class based
on the document’s text.

Table 4.1: Characteristics of the textual document collections.

Collection ∥D∥ ∥T ∥ ∥T ∥ ∥C∥ σ(C) max(C)
Classic4 (SD) 7095 7749 35.28 4 1.94 45.16
CSTR (SD) 299 1726 54.27 4 18.89 42.81
Dmoz-Computers (WP) 9500 5011 10.83 19 0.00 5.26
Dmoz-Health (WP) 6500 4217 12.40 13 0.00 7.69
Dmoz-Science (WP) 6000 4821 11.52 12 0.00 9.63
Dmoz-Sports (WP) 13500 5682 11.87 27 0.00 3.70
Industry-Sector (PW) 8817 21490 88.49 12 7.37 11.24
NSF (CD) 10524 3888 6.65 16 3.82 13.39
Re8 (NA) 7674 8901 35.31 8 18.24 51.12
Review Polarity (SA) 2000 15698 205.06 2 0.00 50.00
SyskillWebert (WP) 334 4340 93.16 4 10.75 41.02
WebKB (WP) 8282 22892 89.78 7 15.19 45.45

Below is a simple description of each collection:

• Classic4: The Classic4 collection is composed of 4 distinct collections: CACM (ti-
tles and abstracts from the journal Communications of the ACM), CISI (informa-
tion retrieval papers), CRANFIELD (aeronautical system papers), and MEDLINE
(medical journals).

• CSTR: The CSTR (Computer Science Technical Reports) collection is composed of
abstracts and technical reports published in the Department of Computer Science

33

at the University of Rochester from 1991 to 2007. The documents belong to 4 areas:
Natural Language Processing, Robotics/Vision, Systems, and Theory.

• Dmoz-Computers: Dmoz-Computers is composed of web pages of the computers
category extracted from DMOZ - Open Directory Project. The document classes
are the subcategories of the computers category.

• Dmoz-Health: Dmoz-Health is composed of web pages of the health category ex-
tracted from DMOZ - Open Directory Project. The document classes are the sub-
categories of the health category

• Dmoz-Science: Dmoz-Science is composed of web pages of the science category
extracted from DMOZ - Open Directory Project. The document classes are the
subcategories of the science category

• Dmoz-Sports: Dmoz-Sports is composed of web pages of the sports category ex-
tracted from DMOZ - Open Directory Project. The document classes are the sub-
categories of the sports category.

• Industry-Sector: Industry-Sector collection is composed of web pages of companies
from various economic sectors.

• NSF: NSF (National Science Foundation) collection is composed of abstracts of
grants awarded by the National Science Foundation8 between 1999 and August
2003.

• Re8: Re8 collection is composed of articles from Reuters-21578 collection.

• Review Polarity: The review-polarity collection is composed of 1000 positive reviews
and 1000 negative reviews about movies.

• SyskillWebert: The SyskillWebert collection is composed of web pages about bands,
sheep, goats, and biomedicals.

• WebKB: WebKB collection is composed of web pages collected from computer sci-
ence departments of various universities in January 1997 by the World Wide Knowl-
edge Base15 (WebKb) project of the CMU Text Learning Group.

4.2 Document-Concept Bipartite Graph Creation
To create our bipartite graph structure, our proposed method explores using concepts
to represent relevant parts of a document. We argue that this representation offers ad-
vantages in both classification efficiency and interpretability. From an interpretability

34

perspective, concepts provide a higher-level representation of the document content, al-
lowing us to understand the key ideas and topics. Additionally, using concepts can en-
hance classification efficiency by reducing the dimensionality of the feature space. Instead
of considering every word in the document, we focus on a compact set of concepts more
informative and representative of the classes.

We start our approach utilizing KeyBERT [Grootendorst, 2020], which can extract
a range of concepts from documents considering their contextual information and word
relationships, as detailed in subsection 2.2. The extraction of concepts involves using
BERT to calculate sentence embeddings from the documents’ texts. A set of keyphrases
is then extracted using a sliding window approach (N-gram). Still, only those with high
cosine similarity to the sentences are selected as concepts, since they better describe the
document. KeyBERT enables us to map keyphrases by specifying the number of words
that determine the size of the keyphrase. We opted for the keyphrases size: 2, 3, and
2 or 3 words to evaluate how varying sizes would affect the GNNs models’ performance.
Also, We request KeyBERT to select at least 3 and at maximum 5 keyphrases for each
document.

Next, each of the extracted concepts and their source documents are converted into
embeddings. We use BERT to numerically represent their textual information, transform-
ing them into the numerical format, ideal for input GNN models. These embeddings are
what fundamentally compose our graph, being our feature vector, and each embedding
represents one document node or concept node, depending on its origin.

In possession of the extracted concepts (i.e., keyphrases), and their wrapping in embed-
ding format, we begin the construction of the bipartite graphs. Similarly to the definition
in subsection 2.2.1, we create the bipartite graph, G = (N, E) where N = D ∪ C repre-
sents the set of nodes and E represents the set of edges. We denote the set of documents
as D and the set of concepts as C. A naturally created edge (d, c) ∈ E indicates that the
concept c was extracted from the document d.

Besides natural edges, our method utilizes an incremental concept extraction approach
to introduce artificial edges until there is a path in the graph connecting any pair of
documents, ensuring no disconnected components exist. This incremental strategy is
simple and intuitive, creating edges between documents and concepts based on their K-
nearest neighbors (KNN) [Cunningham and Delany, 2021].

for the creation of artificial edges, we first tokenize documents into sentences to increase
the possible similarities between concepts and documents, meaning each specific sentence
or part of a document can be similar to other concepts. Next, for each tokenized document
sentence ds, an edge is added to connect it with its k most similar neighbor concepts c

until there are no more disconnected components in the graph. We selected k = 15 for all

35

datasets since it promoted full connectivity of our graph without causing over-connection
and increasing graph complexity. Lastly, the case of duplicated edges originated by KNN
incrementation is unified.

4.3 Document-Concept Graph Neural Networks
With the graph architecture defined, we return to our main goal, which is to address the
problem of semi-supervised text classification, where only a small portion of documents
per class are initially labeled. We propose using Graph Attention Networks for bipartite
document-concept networks to achieve this. GATs leverage the graph’s topology and
labeled documents to automatically learn the importance of concepts for document clas-
sification. Also, we implement Graph Convolutional Networks as a comparative baseline
model. Due to GCN’s limitations, we must adopt a homogeneous treatment of document
and concept nodes for this approach.

We further elaborate on GAT and GCN graph neural network models’ overall def-
initions, functioning, and specific characteristics in the background subsection 2.3. In
this sub-section, we focus specifically on GAT and GCN applications in the context of
document-concept bipartite graphs, concentrating on the implementation performed as
well as the necessary adaptations.

Consider this time, for both GNNs below (GCN and GAT), our bipartite graph, men-
tioned earlier in subsection 4.2, represented as G = (D ∪ C, E), where D is the set of
document nodes and C is the set of concept nodes. The edges E connect documents to
concepts. Each node in the graph is associated with a feature vector. Let X ∈ R∥D∪C∥×F

be the feature matrix, where F is the number of input features per node. The feature
matrix X is the input to the GNNs, our documented and concept embeddings.

4.3.1 Document-Concept Graph Convolution Networks

Graph Convolutional Networks are among the pioneering strategies in semi-supervised
classification and are still considered state-of-the-art [Wu et al., 2023]. The goal of the
GCN is to learn node representations that capture the graph structure and semantic
information. The GCN layer computes new representations for each node by aggregating
information from its neighbors [Kipf and Welling, 2016b]. Yet, GCN aggregation adopts a
homogeneous treatment of nodes and thus fails to interpret the differences and importance
between documents and concept nodes.

Let H(l) ∈ R∥D∪C∥×Dims be the node representations at the l-th layer of the GCN, where
Dims is the number of dimensions in the representation. The initial node representations
H(0) are set to the input features vector X, our embeddings. The propagation rule in the

36

GCN, which composes the graph convolutional layers, also known as equation of GCN
shown in subsection 2.3.1, can be defined as:

H(l+1) = σ
(
ÂH(l)W(l)

)
where Â is the normalized adjacency matrix, W(l) is the trainable weight matrix for the
l-th layer, and σ(·) is an activation function such as ReLU.

This rule is responsible for the node aggregation processes and for updating node
feature vectors through iterations: H(l) → H(l+1). We emphasize that this equation is
unable to grasp node importance, meaning every node will equally impact H(l+1) in a
homogeneous treatment.

After the graph convolutional layers, responsible for applying the equation of GCN
and updating nodes feature vectors, we add a traditional softmax classifier to perform
semi-supervised classification and effectively predict our text classifications.

4.3.2 Document-Concept Graph Attention Networks

We employ Graph Attention Networks, designed explicitly for document and concept
nodes in bipartite document-concept graphs to capture the importance of concepts for
document classification. The GATs in our models employ a self-attention mechanism to
calculate attention weights that determine the importance of neighboring nodes during
information propagation. The architecture of our method is illustrated in Figure 4.2.
In this figure, H(0)

D = XD and H(0)
C = XC represent the initial feature matrices of the

documents and concepts in the bipartite graph, respectively. These feature matrices are
composed of our BERT embeddings as pointed out in subsection 4.2.

Documents

Concepts

Attention Layer
(Documents)

Attention Layer
(Concepts)

Concatenation

D
en

se

O
ut

pu
t

La
ye

r

Figure 4.2: Overview of the proposal that explores Graph Attention Networks applied to
the document-concept bipartite graph.

In the proposed bipartite graph, GATs utilize a self-attention mechanism to capture
the relationships between documents and concepts during the information propagation

37

process. The self-attention mechanism in GAT involves calculating attention weights
that determine the importance of neighboring nodes for each node in the graph. Specif-
ically, for document nodes, the attention weights are computed based on the features of
the neighboring concept nodes. Similarly, for concept nodes, the attention weights are
computed based on the features of the neighboring document nodes. Consider a document
node di and its neighboring concept nodes cj in the bipartite graph. The self-attention
mechanism in GAT calculates the attention weights aij for each neighboring concept node
cj as follows:

aij = softmax(eij), (4.1)

where eij is a trainable parameter representing the compatibility between the document
node di and the concept node cj, as shown in subsection 2.3.2. The softmax function
is applied to ensure that the attention weights sum up to 1. The attention weights are
the big differential between GAT and GCN since they express different importance for
different neighboring nodes.

We use the attention weights aij to compute the weighted sum of the features of the
neighboring concept nodes:

h′

i = σ(
∑

j∈Nbhd(n)
αij · W(l) · hj) (4.2)

where h′
i (GAT layer) represents the updated feature vector for the document node di, hj

is the iterating feature vector of di’s neighboring concept nodes cj, and W is a trainable
weight matrix.

This process is repeated for all document nodes, allowing each document node to
aggregate information from its neighboring concept nodes based on their respective at-
tention weights. Similarly, for concept nodes, the self-attention mechanism calculates the
attention weights based on the features of neighboring document nodes and computes the
weighted sum of their features. Thus, at the end of the process, HD represents the feature
matrix for all documents, and HC represents the feature matrix for all concepts.

Formally, for a bipartite document-concept graph, let H(0)
D = XD and H(0)

C = XC

be the initial feature matrices for document and concept nodes, respectively. The GAT
propagation is performed iteratively as follows:

H(l+1)
D = GAT(l+1)

doc (H(l)
D , ÂDC), (4.3)

H(l+1)
C = GAT(l+1)

con (H(l)
C , ÂCD), (4.4)

38

where H(l+1)
D and H(l+1)

C represent the feature matrices for document and concept nodes
at iteration l +1, respectively. GAT(l+1)

doc and GAT(l+1)
con denote the GAT layers at iteration

l + 1 specifically designed for document and concept nodes, respectively. The adjacency
matrices ÂDC and ÂCD capture the relationships between documents and concepts in the
bipartite graph. It is important to point out that each GAT layer GATdoc and GAT(l+1)

con

will present its own attention weights αij, meaning nodes are treated differently between
documents and concepts, therefore a node that has high relevance for documents nodes
updates do not necessarily have the same importance for concept nodes

After L iterations of GAT propagation, we obtain the final feature matrices H(L)
D and

H(L)
C for document and concept nodes, respectively. These feature matrices encode the

learned representations incorporating the relationships between documents and concepts
in the bipartite graph.

Finally, the graph representation H = [H(L)
D , H(L)

C] is fed into a classification layer to
predict the labels for all documents. The model is trained using a semi-supervised learning
approach, where the labeled documents are used to compute the classification loss, and the
unlabeled documents contribute to the overall learning process by leveraging the learned
concept-document relationships. The parameters of the GAT and classification layers are
optimized jointly to minimize the classification loss and improve the model’s predictive
performance.

4.4 Training GAT and GCN Models
We utilized the transductive training setup to evaluate the effectiveness of our proposed
document-concept bipartite Graph Attention model for text classification. We compared
it with the Graph Convolutional Network model also built on document-concept bipartite
graphs. We trained both models on the bipartite graphs created at subsection 4.2, consid-
ering different keyphrases, numbers of labeled instances per class, and repeated multiple
iterations.

For concept extraction, as mentioned in subsection 4.2, we used the KeyBERT li-
brary to extract keyphrases and map concepts of different word numbers: two words
(keyphrase=2), three words (keyphrase=3), and two or three words (keyphrase=(2,3)).
These separate keyphrases created separate graphs, each representing the relationships
and patterns associated with different concepts per document (i.e., concept sizes, num-
bers, and semantic nature itself). Each selected keyphrase graph passes through the same
training process.

After generating the graphs and defining the models’ architecture, as per subsection
4.3, we conducted transductive training for each case. We trained five cases for each

39

generated graph and model, varying the number of labeled instances (nlabeled) in each
class. The nlabeled cases included 1, 5, 10, 20, and 30 labeled instances randomly selected.
The only exception was for the CSTR dataset, which, due to data unbalancing, one class
had only 27 documents, therefore not allowing the realization of the nlabeled = 30 test
case.

During training, the models learned to classify the unlabeled instances based on the
information from the labeled instances and the graph structure. To ensure the robustness
of the results, we repeated the training process for each keyphrase and nlabeled combination
for a total of ten consecutive iterations and recorded the resulting classification reports.

In total, considering all the number of keyphrases (2,3 and 2-3), labeled instances (1,
5, 10, 20, and 30), and repeated iterations (10), we trained a total of 150 models for GAT
and GCN on each text collection. Considering we used 12 collections, and CSTR did not
include the nlabeled = 30, we trained 1770 models for GAT e GCN, as presented in figure
4.3.

Figure 4.3: GAT and GCN trained models count.

The classification reports provided various metrics such as accuracy, f1-score, precision,
recall, and support, allowing us to evaluate the models’ performance. We also calculated
the average and standard deviation across all ten training runs to assess the consistency
and stability of the model’s performance.

This comprehensive analysis gave us insights into the overall performance of the
document-concept bipartite GAT and GCN models and their consistency across multiple
iterations and concept sizes.

Moreover, after completing the application of coarsening, subsection 4.5, and Large
Language Models, subsection 4.6, methodologies addressed below, their resulting graphs
(i.e., coarsened graphs and LLM-labeled graphs) were submitted to the same training
processes documented above. Yet, to delve further into the nuances of each employed

40

technique, small variations of this training regiment were employed, such as, increasing
the number of labeled instances (nlabeled) and training only using LLM-labeled data. All
this variation will be introduced in the experimental results section 5 opportunely.

4.5 Coarsening
After defining our document-concept bipartite graph and evaluating our GAT and GCN
architectures, we advance on applying graph coarsening. As previously mentioned, our
graph reduction process involves the application of the CLPk algorithm [Eduardo Althoff
et al., 2023] on bipartite graphs contextualized in subsection 2.4.

Considering the coarsened graph will also be used for semi-supervised training on
GAT and GCN, we must first decide which nodes, labeled, not labeled, or both, will go
through the coarsening process. We opt to apply coarsening only to the not-labeled nodes.
This means we remove labeled instances (nlabeled = [1, 5, 10, 20, and 30]) mentioned
in subsection 4.4, apply the CLPk graph coarsening, and re-add the removed labeled
instances. We argue that by reducing and grouping only not-labeled nodes, we better
preserve information from labeled nodes and do not contaminate this information with
uncertain data from not-labeled nodes.

Further elaborating, upon CLPk application, the nodes of the document and concept
layers are grouped into super nodes by the label propagation technique. A single super-
node can represent one or more original nodes. For instance, suppose that we use labeled
and not-labeled data for coarsening. The algorithm could group labeled and unlabeled
nodes into the same super-node, essentially indirectly labeling the unlabeled nodes. We
rebuke this behavior since GNNs are our main classification algorithms evaluated in this
research, and they are responsible for efficiently interpreting documents-concept informa-
tion and relations to perform classification.

The CLPk creates super-nodes based only on graph structural information, node, and
edge organization and does not consider documents or concepts, textual data, or embed-
dings. Therefore, we must add a step for creating super-node embeddings after graph
reduction. for this step, we first perform a concatenation of textual information of the
nodes that compose a single super-node. Secondly, we apply BERT on the concatenated
result to generate the super-node feature embedding.

After consolidating the coarsened graphs and their textual data, we reintegrate the
previously removed labeled instances. Lastly, we perform the training and scoring process
for GAT and GCN models as per subsection 4.4.

Summarizing the creation of the coarsened graphs.

1. Labeled nodes are withdrawn from the bipartite graph.

41

2. CLPk algorithm is applied only on unlabeled nodes, creating unlabeled super-nodes
based on graph structure.

3. Super-node textual information is concatenated, and BERT is applied, generating
embeddings.

4. Labeled nodes are reintegrated into the graph.

5. GATs and GCNs are retrained and evaluated on coarsened graph data.

It is relevant to highlight that we demanded CLPk to reduce graphs by 50% of their
original size, however, not in all cases the algorithm can meet this exact reduction size.
Also, we performed only one CLPk iteration since we did not observe significant increases
in graph reduction or GNNs classification when using more iterations of the coarsening
algorithm.

4.6 Large Language Models Labeling
Regarding using LLMs as low-cost data labelers, we mainly aim to observe how GAT and
GCN models perform by adding artificially labeled data. As our labeler LLM model, we
selected Llama 3.1 foundation model [Dubey et al., 2024], further detailed in subsection
2.5, and made use of the Ollama framework1 to easily include Llama in our processes.
For the LLM application, we have three steps:

1. Study and select the best prompt for labeling each collection.

2. Generate datasets of LLM artificially labeled data with 10, 50, and 100 instances of
each class (LLMnlabeled = [10, 50, 100]) for each keyphrase (2,3 and 2 or 3), number
of human-labeled instances (nlabeled = [1, 5, 10, 20, 30]), iteration (10), and collection.

3. Retraining GAT and GCN models, including only the LLM-labeled datasets and
combinations with the Human-labeled datasets.

In the first step, we analyze how to optimally use LLMs to label data by investigating
two approaches:

1. Zero-shot labeling: employing the LLM to label data without previous examples
or particular training cases. Here, we ask the model to provide the classification
predictions given a set of possible classes and a document text. A prompt example
of this approach is:

1https://ollama.com

42

https://ollama.com

‘Classify the text below according to its main subject using only one label from
the list: [Artificial, Education, Robotics, Software]’

2. Few-shot labeling: In this approach, we will provide the LLM with randomly
selected classification examples of different classes before asking for its labeling pre-
dictions. These examples are derived from human-labeled instances available on
each dataset. A prompt example of this approach is:

‘Given the text classification examples below:
- Text: ‘LibML A machine learning library. New implementations of various
machine learning algorithms.’ Class: Artificial
- Text: ‘HexWorks A site about Hamlet, a hexapod autonomous robot.’ Class:
Robotics
Classify the text below according to its main subject using only one label from
the list: [Artificial, Education, Robotics, Software]’

One can presume that few-shot labeling is typically more accurate because it provides
additional information for Llama’s improved functioning. Yet, that is not always the
case. LLM foundation models such as Llama are excellent generalist agents and flexibly
learn by their prompt data. Still, this flexibility also makes them prone to mistakes
and hallucinations, especially in the case of longer or complex prompts due to lengthy
example texts. To avoid such occurrences we adjust hyperparameters, setting the model
temperature to 0.3 to ensure lower model hallucination without negatively impacting the
model interpretability of texts.

Considering the model output, we requested Llama to return only one class name
for each document, respecting this scenario, Llama’s output would not exceed 2 or 3
tokens. However, models can have hallucinations. Lower levels of hallucinations can still
give correct predictions, but in the form of small sentences that don’t completely align
with the requested output. Therefore, we increased the output limit size to 25 tokens
and designed a mechanism to select the first class occurrence on the output text as the
predicted class. This way, low hallucinations are also viable outputs.

Yet there are cases of high hallucination, where no class is detected on the output,
these cases are considered null-predictions. If this happens, Llama is given one more
labeling chance at the end of the labeling process, presuming the previous hallucination
was a natural lapse. If classification fails again, these cases are then labeled at random.
Below, some possible outputs are presented (predicted classes are underlined):

43

- Correct requested output: Class: Artificial
- Low hallucination output: I predict this document class to be Artificial
- High hallucination output: The text talks about many important ques-
tions at the helm of artificial intelligence, education, and robotics. I believe...
(No class prediction due to high hallucination exceeding output size)

By following this output logic and the previously shown zero-shot and few-shot labeling
prompts, we perform the first step, evaluating how both prompts perform on each text
collection. Both prompts are tested on the smaller class case, LLMnlabeled = 10 instances
of each class, repeating 10 iterations to ensure robustness on generated label predictions.
Based on the mean accuracy of the predictions, we select the best prompt type for each
text collection. Table 4.2 presents this analysis searching the most accurate prompts.

Table 4.2 focuses on selecting each prompt, maximizing accuracy by investigating
prompts with a higher hit rate and minimizing the number of null-predictions by escaping
cases where the prompts could not make class predictions due to high hallucination.
Oriented by the results of Table 4.2, we selected the best-performing prompts for each
collection, represented by the colors blue and green.

Below, we list all selected prompts and demonstrate their structure. Each prompt is
composed of a brief description of the dataset, the task requested, and lists of labeling
classes. Only in the case of few-shot learning, we also include annotation examples ran-
domly selected from the human-labeled instances (nlabeled), because of this random nature
these examples are not explicitly shown in the prompt samples below.

zero-shot - accuracy zero-shot - null predictions few-shot:- accuracy few-shot - null predictions Best Prompt
CSTR 0.797500 1.1 0.765000 0.0 zero-shot

Dmoz_Computers 0.484211 0.0 0.467368 0.0 zero-shot
Dmoz_Health 0.605385 0.0 0.753846 0.0 few-shot
Dmoz_Science 0.672500 0.0 0.692500 0.1 few-shot
Dmoz_Sports 0.846667 2.3 0.855556 2.4 few-shot

Industry_Sector 0.439167 4.9 0.295833 12.8 zero-shot
NSF 0.630625 1.5 0.673125 0.2 few-shot

SyskillWebert 0.682500 1.7 0.620000 5.4 zero-shot
classic4 0.630000 0.0 0.817500 0.2 few-shot

re8 0.666250 0.0 0.718750 0.0 few-shot
review_polarity 0.935000 0.1 0.605000 5.0 zero-shot
webkb_parsed 0.644286 1.0 0.600000 4.3 zero-shot

Table 4.2: Few-shot and Zero-shot prompt evaluation. The selected best-performing
prompts are colored in blue and green.

• Zero-shot CSTR:

44

You are a text classification AI. Your job is to classify documents from the CSTR
(Computer Science Technical Reports) collection, composed of abstracts and
technical reports published in the Department of Computer Science at University
of Rochester from 1991 to 2007. The documents belong to 4 areas: Natural
Language Processing, Robotics/Vision, Systems, and Theory.
The collection classes are the following:
[‘ArtificiallIntelligence’, ‘Robotics’, ‘Systems’, ‘Theory’]
You must not talk to the user. Limit your response to only the predicted class.

• Zero-shot Dmoz_Computers:

You are a text classification AI. Your job is to classify documents from the Dmoz-
Computers-500 collection, composed of web pages of the computers category
extracted from DMOZ - Open Directory Project. The document classes are the
subcategories of the computers category.
The collection classes are the following:
[‘Artificial_Intelligence’, ‘CAD_and_CAM’, ‘Companies’, ‘Computer_Science’
‘Consultants’, ‘Data_Formats’, ‘Data_Communications’, ‘Education’, ‘Graph-
ics’ ’Hardware’, ‘Internet’, ‘Mobile_Computing’, ‘Multimedia’, ‘Open_Source’
’Programming’, ‘Robotics’, ‘Security’, ‘Software’, ‘Systems’]
You must not talk to the user. Limit your response to only the predicted class.

• Few-shot Dmoz_Health:

You are a text classification AI. Your job is to classify documents from the Dmoz-
Health-500 collection, composed of web pages of the health category extracted
from DMOZ - Open Directory Project. The document classes are the subcate-
gories of the health category.
The collection classes are the following:
[’Addictions’, ‘Alternative’, ‘Animal’, ‘Conditions_and_Diseases’, ‘Medicine’
’Mental_Health’, ‘Nursing’, ‘Nutrition’, ‘Pharmacy’, ‘Professions’ ’Pub-
lic_Health_and_Safety’, ‘Reproductive_Health’, ‘Senior_Health’]
You must not talk to the user. Limit your response to only the predicted class.
Below are examples of your task:

• Few-shot Dmoz_Science:

45

You are a text classification AI. Your job is to classify documents from the Dmoz-
Science-500 collection, composed of web pages of the science category extracted
from DMOZ - Open Directory Project. The document classes are the subcate-
gories of the science category.
The collection classes are the following:
[’Agriculture’, ‘Astronomy’, ‘Biology’, ‘Chemistry’, ‘Earth_Sciences’ ’Environ-
ment’, ‘Instruments_and_Supplies’, ‘Math’, ‘Physics’ ’Sciencez_in_Society’,
‘Social_Sciences’, ‘Technology’]
You must not talk to the user. Limit your response to only the predicted class.
Below are examples of your task:

• Few-shot Dmoz_Sports:

You are a text classification AI. Your job is to classify documents from the Dmoz-
Sports-500 collection, composed of web pages of the sports category extracted
from DMOZ - Open Directory Project. The document classes are the subcate-
gories of the sports category.
The collection classes are the following:
[’Baseball’, ‘Basketball’, ‘Bowling’, ‘Cricket’, ‘Cycling’, ‘Equestrian’ ’Fenc-
ing’, ‘Flying_Discs’, ‘Football’, ‘Golf’, ‘Gymnastics’, ‘Hockey’ ’Lacrosse’, ‘Mar-
tial_Arts’, ‘Motorsports’, ‘Paintball’, ‘Running’, ‘Skating’ ’Soccer’, ‘Softball’,
‘Strength_Sports’, ‘Tennis’, ‘Track_and_Field’ ’Volleyball’, ‘Water_Sports’,
‘Winter_Sports’, ‘Wrestling’]
You must not talk to the user. Limit your response to only the predicted class.
Below are examples of your task:

• Zero-shot Industry_Sector:

You are a text classification AI. Your job is to classify documents from the
Industry-Sector collection, composed of web pages of companies from various
economic sectors.
The collection classes are the following:
[’basic_materials’, ‘capital_goods’, ‘conglomerates_industry’ ’con-
sumer_cyclical’, ‘consumer_non-cyclical’, ‘energy’, ‘financial’ ’healthcare’,
‘services’, ‘technology’, ‘transportation’, ‘utilities’]
You must not talk to the user. Limit your response to only the predicted class

• Few-shot NSF:

46

You are a text classification AI. Your job is to classify documents from the
NSF (National Science Foundation) collection, composed of abstracts of grants
awarded by the National Science Foundation8 between 1999 and August 2003.
The collection classes are the following:
[’data_management’, ‘ecology’, ‘economic’, ‘geophysics’, ‘gravitional_theory’
’hydro’, ‘math’, ‘metals’, ‘networking’, ‘neuroscience’, ‘oceanography’ ’politic’,
‘sociology’, ‘software_engineering’, ‘statistics’ ’theory_computing’]
You must not talk to the user. Limit your response to only the predicted class.
Below are examples of your task:

• Zero-shot SyskillWebert:

You are a text classification AI. Your job is to classify documents from the
SyskillWebert collection, composed of web pages about bands, sheeps, goats,
and biomedical.
The collection classes are the following:
[’Bands’, ‘BioMedical’, ‘Goats’, ‘Sheep’]
You must not talk to the user. Limit your response to only the predicted class.

• Few-shot classic4:

You are a text classification AI. Your job is to classify documents from the Clas-
sic4 collection, composed of 4 distinct collections: CACM (titles and abstracts
from the journal Communications of the ACM), CISI (information retrieval pa-
pers), CRANFIELD (aeronautical system papers), and MEDLINE (medical jour-
nals).
The collection classes are the following:
[’cacm’, ‘cisi’, ‘cran’, ‘med’]
You must not talk to the user. Limit your response to only the predicted class.
Below are examples of your task:

• Few-shot re8:

You are a text classification AI. Your job is to classify documents from the Re8
collection, composed of articles from Reuters-21578 collection.
The collection classes are the following:
[’acq’, ‘crude’, ‘earn’, ‘grain’, ‘interest’, ‘money’, ‘ship’, ‘trade’]
You must not talk to the user. Limit your response to only the predicted class.
Below are examples of your task:

47

• Zero-shot review_polarity:

You are a text classification AI. Your job is to classify documents from the
Review-Polarity collection, composed of 1000 positive reviews and 1000 negative
reviews about movies.
The collection classes are the following:
[’neg’, ‘pos’]
You must not talk to the user. Limit your response to only the predicted class.

• Zero-shot webkb_parsed:

You are a text classification AI. Your job is to classify documents from the
WebKB collection, composed of web pages collected from computer science de-
partments of various universities in January 1997 by the World Wide Knowledge
Base (WebKb) project of the CMU Text Learning Group.
The collection classes are the following:
[’course’, ‘department’, ‘faculty’, ‘other’, ‘project’, ‘staff’, ‘student’]
You must not talk to the user. Limit your response to only the predicted class.

Having defined the best usable prompts, we used them as the labeling prompts to label
LLMnlabeled = 50 and LLMnlabeled = 100 instances for each class, considering the first
case, with LLMnlabeled = 10 instances, was already covered while evaluating prompts. In
specific cases where the class overall count presents less than 50 or 100 occurrences in the
entire text collection, we limit the Llama to label to only half of this specific class count.

Finally, after labeling all these instances, we retrain GAT and GCN models using
the LLM-labeled data of 10, 50, and 100 instances by themselves and combined with
human-labeled data of 1,5,10,20, and 30 instances as per subsection 4.4.

4.7 Evaluation
We present and discuss the experimental results, focusing primarily on the average F1-
Score of the models trained for each dataset. F1-Score is a metric widely used to evaluate
the performance of classification models, mainly when dealing with imbalanced datasets.
It quantifies the balance between precision and recall [Sasaki, 2007]. Precision represents
the accuracy of positive predictions made by the model, identifying how many positive
predictions the model was correct. Recall measures the model’s ability to identify all
positive instances in the dataset, effectively how many positive predictions the model
captured. The F1-score is calculated as the harmonic mean of precision and recall, pro-

48

viding a single numerical value that reflects both metrics and penalizes extreme values of
precision or recall.

One reason the F1-score is favored as an evaluation metric is its effectiveness in han-
dling class imbalance [Goutte and Gaussier, 2005]. In datasets where one class significantly
outnumbers the other, accuracy alone can be misleading, as a classifier might predict the
majority class most of the time. However, the F1-score considers false positives and false
negatives equally, making it robust in scenarios where both types of errors are critical,
thus providing a more comprehensive assessment of model performance.

Considering we have a multi-class classification problem, we used the macro average
F1-score that calculates the F1-score independently for each class and later averages
the resulting scores. The macro average treats all classes equally, regardless of size.
This makes it particularly useful when evaluating models on datasets with imbalanced
classes, where minority classes are of interest. This approach ensures that performance in
smaller classes is not overshadowed by the dominance of larger classes, offering a balanced
evaluation metric for datasets with uneven distributions.

Figure 4.4: Overview of the F1-socre, precision and recall metrics formulas, image based
on [Seol et al., 2023].

We also analyzed the F1-score and the critical difference (CD) diagram using Fried-
man’s test with Nemenyi’s posttest with a 95% confidence level. The CD is a metric
established at [Demšar, 2006] and determines if one or more values in a specific domain
are statistically different. Simply put, it represents the real statistical difference between
two or more values.

The CD value is calculated considering each algorithm’s results and their relative dif-
ference. This value represents a critical difference threshold that, if surpassed by the
relative difference between algorithms, makes it possible to affirm their statistical differ-
ence. Suppose the distance between the two values, in our case, the models’ resulting
F1-score, is superior to the CD’s value. In that case, that one can be considered statisti-
cally superior or inferior.

49

Chapter 5

Experimental Results

This section presents our study’s results based on the methodology previously established
in subsection 4.4. We evaluate the performance of the Graph Convolutional Network and
Graph Attention Network models in a bipartite graph-based document classification task
using transductive learning and various iterations and combinations of labeled document
numbers, concept sizes (i.e., keyphrases), and text collections.

The methodology of subsection 4.4 is firstly examined simply by evaluating GCN
and GAT results on the proposed document-concept graphs. Secondly, it explores the
combination of GCN and GAT transductive capacities with graph coarsening to reduce
computational costs. Lastly, it combines GCN and GAT with Large Language Model
labeling to reduce annotation costs.

5.1 Document-Concept GAT and GCN
First, we assess how the proposed GAT and the classic GCN perform on our designed
approach of bipartite document-concept graphs, especially their abilities to interpret con-
cepts (i.e., keyphrases) and document relationships.

Table 5.1 shows the macro F1-score metric of both models for each dataset, keyphrase,
and number of labeled documents. We can observe that Graph Attention Network models
achieved, in the great majority of cases, better results, shown in bold on the table, when
compared to the traditional Graph Convolutional Network that obtained the highest F1-
score only once, in the CSTR collection with nlabeled = 1.

Figure 5.1 represents this same comparison, but in the form of an evolutionary graph
that follows the progression of the labeled document numbers, showing how GAT and
GCN perform by adding more labeled instances (nlabeled = [1, 5, 10, 20, 30]) at each dataset.
Here it is easier to grasp GAT gains in reason of GCN at each dataset, and also possible
to observe that F1-score values sharply spike with the addition of only a few labeled data.

50

Figure 5.2 shows a statistical analysis using the critical difference CD diagram com-
puted in all twelve datasets. In the charts of Figure 5.2, our CD values are represented by
a measuring line in the top left of each chart, and the models that do not have a critical
difference higher than this value are grouped by a highlighted bold line. Thus, any models
out of this grouping of bold lines are statistically different.

Observing Figure 5.2, GAT models present higher F1-score values and consequently
are represented in the right section of the charts as a group. In contrast, GCNs, with
lower performance values, are represented on the left. Yet there were two cases where
the best performing GCN models had no statistical difference from the worst performing
GAT models, nlabeled = 1 and nlabeled = 30.

Considering keyphrase numbers, we observed that keyphrase = 3 achieved the best
scores in both GAT and GCN models, followed by keyphrase = (2,3) in most cases, and
lastly, keyphrase = 2. Therefore, it is arguable that lengthier keyphrases can bring more
information to the concept-based graph models and increase performance.

Regarding datasets, they presented similar behaviors, considering the evolution of
labeled instances (nlabeled = [1, 5, 10, 20, 30]). The main outliers were Industry_Sector and
webkb_parsed where GAT presented a more significant performance increase with greater
labeled instances numbers, and review_polarity, our binary dataset, that presented a
very variable behavior. The higher F1-score occurred on classic4, averaging 0.8711 across
the dataset models, and the lower F1-score was 0.2887 on the webkb_parsed dataset.
This variation of F1-scores may not occur necessarily based on dataset characteristics
(size, class percentages) but simply because the classification task on this dataset is more
challenging.

As an additional observation, we simulated how GAT and GCN would perform with
more labeled documents. For this, we tested F1-Score considering nlabeled = [20%, 40%,
60%, 80%] of labeled data to each dataset, being 80% a standard training size for inductive
learning algorithms. Figure 5.3 details this experiment, we can observe that, in most cases,
the further the increase in the number of labeled instances the lower the actual gain
on model performance is, showing that transductive models gain significant performance
even with smaller training data and adding much training data might not be substantially
beneficial. Detailed results of the percentage GAT and GCN models are in table 5.2.

Lastly, we compared the best-performing GAT and GCN transductive models to the
best-performing inductive models benchmarked by Rossi et al. [Rossi et al., 2013]. Rossi
et al. models were Naïve Bayes [Vikramkumar et al., 2014], Multinomial Naïve Bayes
algorithm [Xu et al., 2017], J48, which is an implementation of the C.45 classification tree
algorithm [Quinlan, 2014], Sequential Minimal Optimization (SMO), that optimizes the
process of the Support Vector Machines (SVM) [Platt, 1998] and, IBk, an implementation

51

of the k-Nearest Neighbors algorithm [Cunningham and Delany, 2021].
Table 5.3 presented this visualization, in bold are the best of each group of models.

Transductive models performed similarly to the inductive ones, achieving comparable
results despite having considerably less labeled data for training. By adding more data,
transductive models could surpass, as shown by the nlabeled = [20%, 40%, 60%, 80%] GAT
and GCN models, the best-performing inductive ones.

In summary, our proposed GAT method consistently achieved higher F1-Score values
than GCN models. This demonstrates that GAT effectively captures the importance of
concepts for document classification, leading to improved results. This superiority is par-
ticularly evident when the number of labeled data equals 5 and 20 instances per class.
Regarding the comparison of the GNN transductive and traditional inductive models, the
GNNs presented results that were on par and even superior to the more well-known tra-
ditional models. This represents that the proposed approach achieves great classification
results while using a smaller and more practical amount of labeled data for real-world
applications, where labeling is often expensive or dependent on domain experts.

52

Dataset Keyphrases GNN Model
Number of Labeled Data Average

Performance1 5 10 20 30
CSTR [2,3] GAT 0.5803 ± 0.132 0.812 ± 0.047 0.8361 ± 0.049 0.8114 ± 0.025 - 0.76 ± 0.063
CSTR [2,3] GCN 0.595 ± 0.214 0.795 ± 0.049 0.8193 ± 0.054 0.8015 ± 0.047 - 0.7527 ± 0.091
CSTR [2] GAT 0.5358 ± 0.12 0.8243 ± 0.031 0.8474 ± 0.02 0.816 ± 0.031 - 0.7559 ± 0.051
CSTR [2] GCN 0.5852 ± 0.189 0.7964 ± 0.052 0.8068 ± 0.055 0.8031 ± 0.04 - 0.7479 ± 0.084
CSTR [3] GAT 0.5431 ± 0.112 0.828 ± 0.046 0.8331 ± 0.045 0.8114 ± 0.037 - 0.7539 ± 0.06
CSTR [3] GCN 0.5729 ± 0.135 0.8225 ± 0.046 0.8114 ± 0.043 0.7906 ± 0.064 - 0.7494 ± 0.072

Dmoz_Computers [2,3] GAT 0.2604 ± 0.031 0.4991 ± 0.013 0.5571 ± 0.011 0.5937 ± 0.009 0.6145 ± 0.008 0.505 ± 0.014
Dmoz_Computers [2,3] GCN 0.2034 ± 0.044 0.4563 ± 0.023 0.5311 ± 0.015 0.5708 ± 0.01 0.5861 ± 0.01 0.4695 ± 0.021
Dmoz_Computers [2] GAT 0.2617 ± 0.035 0.4898 ± 0.014 0.5506 ± 0.014 0.5922 ± 0.01 0.6106 ± 0.009 0.501 ± 0.016
Dmoz_Computers [2] GCN 0.2122 ± 0.046 0.4519 ± 0.019 0.5191 ± 0.015 0.5625 ± 0.01 0.5791 ± 0.011 0.465 ± 0.02
Dmoz_Computers [3] GAT 0.2752 ± 0.034 0.502 ± 0.011 0.5614 ± 0.013 0.5996 ± 0.008 0.6193 ± 0.007 0.5115 ± 0.015
Dmoz_Computers [3] GCN 0.2231 ± 0.039 0.4642 ± 0.018 0.5345 ± 0.013 0.5779 ± 0.011 0.6005 ± 0.007 0.4801 ± 0.018

Dmoz_Health [2,3] GAT 0.4599 ± 0.067 0.7133 ± 0.016 0.7716 ± 0.011 0.7996 ± 0.01 0.8114 ± 0.006 0.7112 ± 0.022
Dmoz_Health [2,3] GCN 0.3588 ± 0.073 0.6139 ± 0.037 0.7187 ± 0.016 0.7671 ± 0.015 0.7878 ± 0.007 0.6493 ± 0.03
Dmoz_Health [2] GAT 0.4689 ± 0.058 0.7131 ± 0.022 0.7714 ± 0.011 0.7972 ± 0.008 0.8063 ± 0.004 0.7114 ± 0.021
Dmoz_Health [2] GCN 0.3854 ± 0.083 0.6532 ± 0.035 0.7156 ± 0.013 0.7635 ± 0.014 0.7782 ± 0.008 0.6592 ± 0.031
Dmoz_Health [3] GAT 0.4741 ± 0.062 0.7141 ± 0.018 0.7739 ± 0.013 0.7985 ± 0.008 0.8114 ± 0.006 0.7144 ± 0.021
Dmoz_Health [3] GCN 0.3704 ± 0.056 0.6489 ± 0.025 0.7244 ± 0.023 0.7697 ± 0.011 0.7949 ± 0.009 0.6617 ± 0.025
Dmoz_Science [2,3] GAT 0.3539 ± 0.027 0.5965 ± 0.026 0.6564 ± 0.017 0.6966 ± 0.011 0.7167 ± 0.01 0.604 ± 0.018
Dmoz_Science [2,3] GCN 0.2954 ± 0.032 0.539 ± 0.03 0.6211 ± 0.019 0.6833 ± 0.013 0.7022 ± 0.01 0.5682 ± 0.021
Dmoz_Science [2] GAT 0.3566 ± 0.043 0.6053 ± 0.022 0.6546 ± 0.017 0.6986 ± 0.011 0.7155 ± 0.011 0.6061 ± 0.021
Dmoz_Science [2] GCN 0.3018 ± 0.058 0.5461 ± 0.038 0.6217 ± 0.014 0.6469 ± 0.111 0.7008 ± 0.013 0.5635 ± 0.047
Dmoz_Science [3] GAT 0.3596 ± 0.031 0.6029 ± 0.03 0.6564 ± 0.014 0.7016 ± 0.01 0.7211 ± 0.008 0.6083 ± 0.019
Dmoz_Science [3] GCN 0.3162 ± 0.041 0.5481 ± 0.038 0.6326 ± 0.021 0.6883 ± 0.013 0.6862 ± 0.079 0.5743 ± 0.038
Dmoz_Sports [2,3] GAT 0.4402 ± 0.038 0.734 ± 0.009 0.7751 ± 0.01 0.8043 ± 0.004 0.8212 ± 0.004 0.715 ± 0.013
Dmoz_Sports [2,3] GCN 0.3202 ± 0.039 0.6542 ± 0.019 0.7112 ± 0.009 0.7554 ± 0.008 0.7735 ± 0.004 0.6429 ± 0.016
Dmoz_Sports [2] GAT 0.4569 ± 0.03 0.7356 ± 0.009 0.7763 ± 0.009 0.806 ± 0.005 0.8231 ± 0.004 0.7196 ± 0.011
Dmoz_Sports [2] GCN 0.3384 ± 0.061 0.6567 ± 0.015 0.7104 ± 0.013 0.7446 ± 0.005 0.7598 ± 0.005 0.642 ± 0.02
Dmoz_Sports [3] GAT 0.4464 ± 0.036 0.7385 ± 0.008 0.7779 ± 0.011 0.8158 ± 0.006 0.8275 ± 0.004 0.7212 ± 0.013
Dmoz_Sports [3] GCN 0.3252 ± 0.032 0.6607 ± 0.024 0.725 ± 0.01 0.7639 ± 0.006 0.7838 ± 0.006 0.6517 ± 0.016

Industry_Sector [2,3] GAT 0.123 ± 0.03 0.31 ± 0.035 0.3901 ± 0.022 0.4528 ± 0.012 0.4813 ± 0.015 0.3514 ± 0.023
Industry_Sector [2,3] GCN 0.1 ± 0.022 0.2261 ± 0.025 0.2996 ± 0.028 0.3104 ± 0.072 0.3452 ± 0.064 0.2563 ± 0.042
Industry_Sector [2] GAT 0.1344 ± 0.032 0.2964 ± 0.039 0.3845 ± 0.022 0.4497 ± 0.009 0.4772 ± 0.017 0.3485 ± 0.024
Industry_Sector [2] GCN 0.1035 ± 0.026 0.2052 ± 0.022 0.2865 ± 0.022 0.2451 ± 0.097 0.2436 ± 0.11 0.2168 ± 0.056
Industry_Sector [3] GAT 0.1253 ± 0.028 0.3102 ± 0.034 0.3896 ± 0.02 0.4536 ± 0.015 0.4827 ± 0.013 0.3523 ± 0.022
Industry_Sector [3] GCN 0.107 ± 0.022 0.2189 ± 0.033 0.2788 ± 0.051 0.24 ± 0.119 0.3123 ± 0.098 0.2314 ± 0.065

NSF [2,3] GAT 0.5372 ± 0.055 0.7409 ± 0.02 0.782 ± 0.008 0.7869 ± 0.014 0.8055 ± 0.007 0.7305 ± 0.021
NSF [2,3] GCN 0.4999 ± 0.056 0.6955 ± 0.028 0.7558 ± 0.019 0.7589 ± 0.017 0.7783 ± 0.012 0.6977 ± 0.026
NSF [2] GAT 0.532 ± 0.051 0.7367 ± 0.017 0.7717 ± 0.012 0.7813 ± 0.012 0.7997 ± 0.008 0.7243 ± 0.02
NSF [2] GCN 0.4804 ± 0.043 0.6925 ± 0.041 0.7454 ± 0.012 0.7561 ± 0.013 0.7666 ± 0.017 0.6882 ± 0.025
NSF [3] GAT 0.5573 ± 0.047 0.7434 ± 0.016 0.783 ± 0.009 0.7876 ± 0.012 0.8072 ± 0.006 0.7357 ± 0.018
NSF [3] GCN 0.4929 ± 0.068 0.6969 ± 0.033 0.7557 ± 0.013 0.7628 ± 0.014 0.7794 ± 0.014 0.6975 ± 0.028

SyskillWebert [2,3] GAT 0.6357 ± 0.08 0.8469 ± 0.045 0.8779 ± 0.021 0.9067 ± 0.013 0.9016 ± 0.02 0.8338 ± 0.036
SyskillWebert [2,3] GCN 0.5628 ± 0.122 0.7528 ± 0.032 0.8231 ± 0.025 0.8497 ± 0.045 0.8574 ± 0.028 0.7692 ± 0.05
SyskillWebert [2] GAT 0.6547 ± 0.08 0.8557 ± 0.033 0.8845 ± 0.023 0.9126 ± 0.019 0.9044 ± 0.022 0.8424 ± 0.035
SyskillWebert [2] GCN 0.5795 ± 0.134 0.7352 ± 0.057 0.8391 ± 0.04 0.8635 ± 0.034 0.8499 ± 0.039 0.7734 ± 0.061
SyskillWebert [3] GAT 0.5815 ± 0.085 0.8433 ± 0.044 0.8894 ± 0.014 0.901 ± 0.018 0.9026 ± 0.02 0.8236 ± 0.036
SyskillWebert [3] GCN 0.5535 ± 0.099 0.7421 ± 0.06 0.8208 ± 0.027 0.8294 ± 0.045 0.8637 ± 0.023 0.7619 ± 0.051

classic4 [2,3] GAT 0.7612 ± 0.085 0.8866 ± 0.045 0.9249 ± 0.013 0.9343 ± 0.02 0.94 ± 0.016 0.8894 ± 0.036
classic4 [2,3] GCN 0.6576 ± 0.133 0.7978 ± 0.074 0.8774 ± 0.031 0.9193 ± 0.023 0.9188 ± 0.022 0.8342 ± 0.057
classic4 [2] GAT 0.7708 ± 0.081 0.896 ± 0.044 0.9263 ± 0.012 0.9394 ± 0.013 0.9394 ± 0.017 0.8944 ± 0.033
classic4 [2] GCN 0.7269 ± 0.121 0.8422 ± 0.08 0.9118 ± 0.026 0.8916 ± 0.093 0.9285 ± 0.02 0.8602 ± 0.068
classic4 [3] GAT 0.7956 ± 0.059 0.8914 ± 0.046 0.923 ± 0.017 0.9405 ± 0.014 0.9419 ± 0.013 0.8985 ± 0.03
classic4 [3] GCN 0.6863 ± 0.121 0.8114 ± 0.053 0.9084 ± 0.023 0.9209 ± 0.022 0.9243 ± 0.028 0.8503 ± 0.049

re8 [2,3] GAT 0.5199 ± 0.101 0.7503 ± 0.035 0.811 ± 0.034 0.8257 ± 0.025 0.8208 ± 0.025 0.7455 ± 0.044
re8 [2,3] GCN 0.4231 ± 0.064 0.6915 ± 0.078 0.7499 ± 0.042 0.763 ± 0.051 0.7487 ± 0.048 0.6752 ± 0.056
re8 [2] GAT 0.5124 ± 0.073 0.7339 ± 0.023 0.7958 ± 0.034 0.8166 ± 0.026 0.8129 ± 0.026 0.7343 ± 0.036
re8 [2] GCN 0.436 ± 0.087 0.637 ± 0.061 0.7014 ± 0.061 0.7022 ± 0.047 0.707 ± 0.043 0.6367 ± 0.06
re8 [3] GAT 0.5358 ± 0.078 0.7561 ± 0.034 0.8112 ± 0.03 0.8304 ± 0.03 0.8185 ± 0.03 0.7504 ± 0.04
re8 [3] GCN 0.475 ± 0.102 0.6734 ± 0.087 0.7397 ± 0.05 0.7116 ± 0.103 0.7205 ± 0.043 0.664 ± 0.077

review_polarity [2,3] GAT 0.4716 ± 0.042 0.4816 ± 0.09 0.4923 ± 0.086 0.5503 ± 0.025 0.5666 ± 0.027 0.5125 ± 0.054
review_polarity [2,3] GCN 0.4437 ± 0.067 0.4393 ± 0.093 0.4731 ± 0.108 0.4404 ± 0.112 0.4507 ± 0.137 0.4494 ± 0.103
review_polarity [2] GAT 0.4783 ± 0.051 0.4792 ± 0.079 0.5226 ± 0.025 0.5112 ± 0.096 0.5656 ± 0.029 0.5114 ± 0.056
review_polarity [2] GCN 0.4433 ± 0.09 0.4375 ± 0.111 0.4291 ± 0.097 0.4728 ± 0.127 0.4094 ± 0.118 0.4384 ± 0.109
review_polarity [3] GAT 0.4134 ± 0.053 0.4763 ± 0.083 0.5092 ± 0.065 0.5324 ± 0.075 0.5689 ± 0.025 0.5001 ± 0.06
review_polarity [3] GCN 0.4047 ± 0.06 0.3982 ± 0.095 0.4254 ± 0.109 0.4463 ± 0.129 0.3933 ± 0.127 0.4136 ± 0.104

webkb_parsed [2,3] GAT 0.1601 ± 0.052 0.3243 ± 0.023 0.3704 ± 0.035 0.4144 ± 0.011 0.4454 ± 0.015 0.3429 ± 0.027
webkb_parsed [2,3] GCN 0.1156 ± 0.035 0.2535 ± 0.026 0.2699 ± 0.081 0.2222 ± 0.08 0.3181 ± 0.093 0.2358 ± 0.063
webkb_parsed [2] GAT 0.1694 ± 0.052 0.3142 ± 0.021 0.374 ± 0.02 0.4136 ± 0.012 0.4406 ± 0.018 0.3424 ± 0.024
webkb_parsed [2] GCN 0.1344 ± 0.057 0.2625 ± 0.041 0.2427 ± 0.075 0.2738 ± 0.096 0.2213 ± 0.091 0.2269 ± 0.072
webkb_parsed [3] GAT 0.1596 ± 0.052 0.3287 ± 0.03 0.3722 ± 0.026 0.416 ± 0.012 0.446 ± 0.017 0.3445 ± 0.027
webkb_parsed [3] GCN 0.1485 ± 0.039 0.2512 ± 0.042 0.2691 ± 0.077 0.2937 ± 0.069 0.2368 ± 0.105 0.2398 ± 0.067

Table 5.1: All GAT and GCN macro F1-Socre results. The numbers represent the average
and standard deviation of all ten iterations for each dataset, separated by the number of
labeled data, keyphrases, model, and dataset.

53

1 5 10 20
Number of rotulated data

0.6

0.7

0.8

F1
-S

co
re

CSTR

1 5 10 20 30
Number of rotulated data

0.2

0.3

0.4

0.5

0.6

F1
-S

co
re

Dmoz_Computers

1 5 10 20 30
Number of rotulated data

0.4
0.5
0.6
0.7
0.8

F1
-S

co
re

Dmoz_Health

1 5 10 20 30
Number of rotulated data

0.3

0.4

0.5

0.6

0.7

F1
-S

co
re

Dmoz_Science

1 5 10 20 30
Number of rotulated data

0.4

0.6

0.8

F1
-S

co
re

Dmoz_Sports

1 5 10 20 30
Number of rotulated data

0.1

0.2

0.3

0.4

0.5
F1

-S
co

re

Industry_Sector

1 5 10 20 30
Number of rotulated data

0.5

0.6

0.7

0.8

F1
-S

co
re

NSF

1 5 10 20 30
Number of rotulated data

0.6

0.7

0.8

0.9

F1
-S

co
re

SyskillWebert

1 5 10 20 30
Number of rotulated data

0.7

0.8

0.9

F1
-S

co
re

classic4

1 5 10 20 30
Number of rotulated data

0.5

0.6

0.7

0.8

F1
-S

co
re

re8

1 5 10 20 30
Number of rotulated data

0.40

0.45

0.50

0.55

F1
-S

co
re

review_polarity

1 5 10 20 30
Number of rotulated data

0.1

0.2

0.3

0.4

F1
-S

co
re

webkb_parsed

keyphrase23_GAT
keyphrase23_GCN

keyphrase2_GAT
keyphrase2_GCN

keyphrase3_GAT
keyphrase3_GCN

Figure 5.1: All GAT and GCN models F1-scores results, over the increase of labeled node
numbers.

54

123456

('1', 'keyphrase23', 'GCN')
('1', 'keyphrase3', 'GCN')
('1', 'keyphrase2', 'GCN') ('1', 'keyphrase23', 'GAT')

('1', 'keyphrase3', 'GAT')
('1', 'keyphrase2', 'GAT')

CD

123456

('5', 'keyphrase2', 'GCN')
('5', 'keyphrase23', 'GCN')

('5', 'keyphrase3', 'GCN') ('5', 'keyphrase23', 'GAT')
('5', 'keyphrase2', 'GAT')
('5', 'keyphrase3', 'GAT')

CD

123456

('10', 'keyphrase2', 'GCN')
('10', 'keyphrase3', 'GCN')

('10', 'keyphrase23', 'GCN') ('10', 'keyphrase23', 'GAT')
('10', 'keyphrase2', 'GAT')
('10', 'keyphrase3', 'GAT')

CD

123456

('20', 'keyphrase2', 'GCN')
('20', 'keyphrase23', 'GCN')

('20', 'keyphrase3', 'GCN') ('20', 'keyphrase2', 'GAT')
('20', 'keyphrase23', 'GAT')
('20', 'keyphrase3', 'GAT')

CD

123456

('30', 'keyphrase2', 'GCN')
('30', 'keyphrase3', 'GCN')

('30', 'keyphrase23', 'GCN') ('30', 'keyphrase2', 'GAT')
('30', 'keyphrase23', 'GAT')
('30', 'keyphrase3', 'GAT')

CD

123456

('average', 'keyphrase2', 'GCN')
('average', 'keyphrase3', 'GCN')

('average', 'keyphrase23', 'GCN') ('average', 'keyphrase2', 'GAT')
('average', 'keyphrase23', 'GAT')
('average', 'keyphrase3', 'GAT')

CD

Figure 5.2: Traditional GAT and GCN critical difference plots.

55

1 5 10 20 20% 40% 60% 80%
Number of rotulated data

0.6

0.7

0.8

0.9

F1
-S

co
re

CSTR

1 5 10 20 30 20% 40% 60% 80%
Number of rotulated data

0.2

0.4

0.6

F1
-S

co
re

Dmoz_Computers

1 5 10 20 30 20% 40% 60% 80%
Number of rotulated data

0.4

0.6

0.8

F1
-S

co
re

Dmoz_Health

1 5 10 20 30 20% 40% 60% 80%
Number of rotulated data

0.4

0.6

0.8

F1
-S

co
re

Dmoz_Science

1 5 10 20 30 20% 40% 60% 80%
Number of rotulated data

0.4

0.6

0.8

F1
-S

co
re

Dmoz_Sports

1 5 10 20 30 20% 40% 60% 80%
Number of rotulated data

0.2

0.4

0.6

0.8
F1

-S
co

re
Industry_Sector

1 5 10 20 30 20% 40% 60% 80%
Number of rotulated data

0.5

0.6

0.7

0.8

F1
-S

co
re

NSF

1 5 10 20 30 20% 40% 60% 80%
Number of rotulated data

0.6

0.7

0.8

0.9

F1
-S

co
re

SyskillWebert

1 5 10 20 30 20% 40% 60% 80%
Number of rotulated data

0.7

0.8

0.9

F1
-S

co
re

classic4

1 5 10 20 30 20% 40% 60% 80%
Number of rotulated data

0.4

0.6

0.8

F1
-S

co
re

re8

1 5 10 20 30 20% 40% 60% 80%
Number of rotulated data

0.4

0.5

F1
-S

co
re

review_polarity

1 5 10 20 30 20% 40% 60% 80%
Number of rotulated data

0.2

0.4

0.6

F1
-S

co
re

webkb_parsed

keyphrase23_GAT
keyphrase23_GCN

keyphrase2_GAT
keyphrase2_GCN

keyphrase3_GAT
keyphrase3_GCN

Figure 5.3: GAT and GCN models F1-scores results over the increase of labeled node
numbers but also considering 20%, 40%, 60%, and 80% labeled instances.

56

Dataset Keyphrases GNN Model
Number of Labeled Data Average

Performance20% 40% 60% 80%
CSTR [2,3] GAT 0.8818 ± 0.016 0.882 ± 0.006 0.8917 ± 0.006 0.8601 ± 0.014 0.8789 ± 0.011
CSTR [2,3] GCN 0.8525 ± 0.027 0.8672 ± 0.016 0.8874 ± 0.011 0.8637 ± 0.023 0.8677 ± 0.019
CSTR [2] GAT 0.876 ± 0.013 0.8766 ± 0.011 0.8838 ± 0.009 0.8632 ± 0.015 0.8749 ± 0.012
CSTR [2] GCN 0.8328 ± 0.033 0.8596 ± 0.029 0.8732 ± 0.022 0.8281 ± 0.055 0.8484 ± 0.035
CSTR [3] GAT 0.862 ± 0.03 0.8788 ± 0.007 0.8901 ± 0.006 0.8695 ± 0.018 0.8751 ± 0.015
CSTR [3] GCN 0.869 ± 0.025 0.87 ± 0.01 0.8824 ± 0.013 0.8319 ± 0.034 0.8633 ± 0.02

Dmoz_Computers [2,3] GAT 0.6627 ± 0.004 0.6815 ± 0.004 0.6991 ± 0.004 0.721 ± 0.003 0.6911 ± 0.004
Dmoz_Computers [2,3] GCN 0.6398 ± 0.005 0.6664 ± 0.005 0.6869 ± 0.004 0.7059 ± 0.004 0.6748 ± 0.004
Dmoz_Computers [2] GAT 0.6621 ± 0.003 0.6773 ± 0.004 0.7017 ± 0.006 0.7204 ± 0.004 0.6904 ± 0.004
Dmoz_Computers [2] GCN 0.6266 ± 0.006 0.6563 ± 0.007 0.6795 ± 0.007 0.6961 ± 0.008 0.6646 ± 0.007
Dmoz_Computers [3] GAT 0.6644 ± 0.002 0.6828 ± 0.002 0.7029 ± 0.005 0.7247 ± 0.006 0.6937 ± 0.004
Dmoz_Computers [3] GCN 0.6485 ± 0.004 0.6733 ± 0.006 0.6939 ± 0.002 0.7164 ± 0.007 0.683 ± 0.005

Dmoz_Health [2,3] GAT 0.8505 ± 0.003 0.8606 ± 0.003 0.8651 ± 0.003 0.861 ± 0.003 0.8593 ± 0.003
Dmoz_Health [2,3] GCN 0.8184 ± 0.012 0.8383 ± 0.005 0.8352 ± 0.015 0.8384 ± 0.006 0.8326 ± 0.009
Dmoz_Health [2] GAT 0.8494 ± 0.003 0.856 ± 0.003 0.861 ± 0.002 0.8613 ± 0.004 0.8569 ± 0.003
Dmoz_Health [2] GCN 0.8193 ± 0.004 0.8273 ± 0.003 0.8229 ± 0.011 0.8209 ± 0.013 0.8226 ± 0.008
Dmoz_Health [3] GAT 0.8523 ± 0.002 0.8631 ± 0.002 0.8659 ± 0.002 0.8591 ± 0.005 0.8601 ± 0.003
Dmoz_Health [3] GCN 0.8338 ± 0.004 0.8391 ± 0.005 0.8374 ± 0.007 0.8157 ± 0.064 0.8315 ± 0.02
Dmoz_Science [2,3] GAT 0.7754 ± 0.003 0.7949 ± 0.003 0.8027 ± 0.003 0.8158 ± 0.003 0.7972 ± 0.003
Dmoz_Science [2,3] GCN 0.7533 ± 0.004 0.7699 ± 0.007 0.7807 ± 0.006 0.768 ± 0.112 0.768 ± 0.032
Dmoz_Science [2] GAT 0.7764 ± 0.005 0.7919 ± 0.003 0.7978 ± 0.003 0.8166 ± 0.004 0.7957 ± 0.004
Dmoz_Science [2] GCN 0.7504 ± 0.004 0.7315 ± 0.117 0.7742 ± 0.003 0.796 ± 0.007 0.763 ± 0.033
Dmoz_Science [3] GAT 0.7739 ± 0.003 0.7976 ± 0.002 0.7998 ± 0.004 0.8205 ± 0.003 0.798 ± 0.003
Dmoz_Science [3] GCN 0.7604 ± 0.004 0.777 ± 0.005 0.785 ± 0.004 0.7979 ± 0.005 0.7801 ± 0.004
Dmoz_Sports [2,3] GAT 0.86 ± 0.002 0.8697 ± 0.001 0.8733 ± 0.001 0.88 ± 0.002 0.8708 ± 0.002
Dmoz_Sports [2,3] GCN 0.8224 ± 0.004 0.8291 ± 0.005 0.8305 ± 0.006 0.8361 ± 0.007 0.8295 ± 0.005
Dmoz_Sports [2] GAT 0.8636 ± 0.001 0.8746 ± 0.002 0.8752 ± 0.001 0.8804 ± 0.002 0.8735 ± 0.002
Dmoz_Sports [2] GCN 0.8073 ± 0.004 0.816 ± 0.006 0.7663 ± 0.146 0.8208 ± 0.008 0.8026 ± 0.041
Dmoz_Sports [3] GAT 0.8658 ± 0.001 0.8736 ± 0.001 0.8798 ± 0.001 0.8836 ± 0.002 0.8757 ± 0.001
Dmoz_Sports [3] GCN 0.8295 ± 0.003 0.8356 ± 0.005 0.8371 ± 0.004 0.8375 ± 0.008 0.8349 ± 0.005

Industry_Sector [2,3] GAT 0.6433 ± 0.005 0.7001 ± 0.006 0.7486 ± 0.02 0.7789 ± 0.005 0.7177 ± 0.009
Industry_Sector [2,3] GCN 0.397 ± 0.108 0.2893 ± 0.141 0.2964 ± 0.128 0.3894 ± 0.11 0.343 ± 0.122
Industry_Sector [2] GAT 0.6383 ± 0.007 0.6971 ± 0.007 0.7373 ± 0.007 0.7684 ± 0.011 0.7103 ± 0.008
Industry_Sector [2] GCN 0.2556 ± 0.132 0.1981 ± 0.146 0.2262 ± 0.106 0.1647 ± 0.112 0.2112 ± 0.124
Industry_Sector [3] GAT 0.6353 ± 0.005 0.7029 ± 0.009 0.75 ± 0.011 0.7621 ± 0.011 0.7126 ± 0.009
Industry_Sector [3] GCN 0.3817 ± 0.136 0.3933 ± 0.08 0.3469 ± 0.129 0.368 ± 0.132 0.3725 ± 0.119

NSF [2,3] GAT 0.8509 ± 0.002 0.859 ± 0.002 0.8571 ± 0.001 0.8617 ± 0.004 0.8572 ± 0.002
NSF [2,3] GCN 0.8325 ± 0.002 0.8466 ± 0.001 0.8525 ± 0.003 0.8534 ± 0.008 0.8462 ± 0.003
NSF [2] GAT 0.8473 ± 0.002 0.8527 ± 0.003 0.853 ± 0.002 0.8545 ± 0.004 0.8519 ± 0.003
NSF [2] GCN 0.8223 ± 0.003 0.8332 ± 0.004 0.8339 ± 0.008 0.8409 ± 0.004 0.8326 ± 0.004
NSF [3] GAT 0.8497 ± 0.002 0.8598 ± 0.002 0.8601 ± 0.002 0.8571 ± 0.004 0.8567 ± 0.002
NSF [3] GCN 0.8371 ± 0.003 0.8491 ± 0.003 0.8549 ± 0.005 0.8535 ± 0.008 0.8486 ± 0.005

SyskillWebert [2,3] GAT 0.8849 ± 0.014 0.9071 ± 0.012 0.9402 ± 0.009 0.9388 ± 0.009 0.9177 ± 0.011
SyskillWebert [2,3] GCN 0.8456 ± 0.013 0.8707 ± 0.02 0.874 ± 0.046 0.9157 ± 0.034 0.8765 ± 0.028
SyskillWebert [2] GAT 0.9048 ± 0.011 0.9355 ± 0.011 0.9483 ± 0.008 0.9388 ± 0.015 0.9318 ± 0.011
SyskillWebert [2] GCN 0.8468 ± 0.034 0.8539 ± 0.045 0.9043 ± 0.026 0.9245 ± 0.014 0.8824 ± 0.029
SyskillWebert [3] GAT 0.8974 ± 0.012 0.9134 ± 0.007 0.9385 ± 0.006 0.9293 ± 0.017 0.9196 ± 0.01
SyskillWebert [3] GCN 0.832 ± 0.021 0.8465 ± 0.038 0.8741 ± 0.026 0.9015 ± 0.038 0.8635 ± 0.031

classic4 [2,3] GAT 0.9614 ± 0.002 0.9605 ± 0.001 0.9619 ± 0.002 0.9662 ± 0.001 0.9625 ± 0.002
classic4 [2,3] GCN 0.9517 ± 0.004 0.9601 ± 0.004 0.9601 ± 0.003 0.9608 ± 0.007 0.9582 ± 0.004
classic4 [2] GAT 0.9622 ± 0.002 0.9588 ± 0.002 0.9608 ± 0.002 0.9631 ± 0.004 0.9612 ± 0.002
classic4 [2] GCN 0.9464 ± 0.006 0.9599 ± 0.003 0.961 ± 0.004 0.9616 ± 0.003 0.9572 ± 0.004
classic4 [3] GAT 0.9614 ± 0.002 0.96 ± 0.003 0.9611 ± 0.001 0.9652 ± 0.002 0.9619 ± 0.002
classic4 [3] GCN 0.9547 ± 0.002 0.9582 ± 0.003 0.9601 ± 0.003 0.9621 ± 0.005 0.9588 ± 0.003

re8 [2,3] GAT 0.865 ± 0.018 0.8795 ± 0.011 0.8867 ± 0.008 0.8712 ± 0.014 0.8756 ± 0.013
re8 [2,3] GCN 0.8529 ± 0.02 0.8869 ± 0.013 0.8945 ± 0.009 0.8983 ± 0.018 0.8831 ± 0.015
re8 [2] GAT 0.8605 ± 0.009 0.8605 ± 0.03 0.883 ± 0.014 0.8832 ± 0.016 0.8718 ± 0.017
re8 [2] GCN 0.8296 ± 0.017 0.8663 ± 0.007 0.8753 ± 0.009 0.884 ± 0.017 0.8638 ± 0.013
re8 [3] GAT 0.8644 ± 0.016 0.8683 ± 0.037 0.8813 ± 0.008 0.8678 ± 0.018 0.8704 ± 0.02
re8 [3] GCN 0.8509 ± 0.016 0.8804 ± 0.02 0.8887 ± 0.011 0.9032 ± 0.013 0.8808 ± 0.015

review_polarity [2,3] GAT 0.5087 ± 0.159 0.4598 ± 0.168 0.3779 ± 0.117 0.3967 ± 0.127 0.4358 ± 0.143
review_polarity [2,3] GCN 0.4321 ± 0.159 0.4601 ± 0.161 0.3834 ± 0.098 0.4188 ± 0.139 0.4236 ± 0.139
review_polarity [2] GAT 0.5809 ± 0.146 0.5178 ± 0.168 0.3753 ± 0.099 0.3723 ± 0.105 0.4616 ± 0.129
review_polarity [2] GCN 0.3793 ± 0.089 0.4356 ± 0.144 0.3751 ± 0.112 0.4793 ± 0.154 0.4173 ± 0.125
review_polarity [3] GAT 0.5023 ± 0.156 0.472 ± 0.176 0.3729 ± 0.124 0.4153 ± 0.133 0.4406 ± 0.147
review_polarity [3] GCN 0.4066 ± 0.126 0.3409 ± 0.016 0.3706 ± 0.111 0.4123 ± 0.119 0.3826 ± 0.093

webkb_parsed [2,3] GAT 0.5712 ± 0.014 0.5891 ± 0.011 0.5946 ± 0.008 0.6021 ± 0.009 0.5892 ± 0.01
webkb_parsed [2,3] GCN 0.2345 ± 0.064 0.2292 ± 0.049 0.2202 ± 0.061 0.1624 ± 0.056 0.2116 ± 0.058
webkb_parsed [2] GAT 0.5756 ± 0.008 0.5933 ± 0.005 0.5895 ± 0.011 0.603 ± 0.013 0.5904 ± 0.009
webkb_parsed [2] GCN 0.2369 ± 0.098 0.2156 ± 0.077 0.2186 ± 0.052 0.1629 ± 0.08 0.2085 ± 0.077
webkb_parsed [3] GAT 0.569 ± 0.015 0.5893 ± 0.011 0.5977 ± 0.008 0.6098 ± 0.011 0.5914 ± 0.011
webkb_parsed [3] GCN 0.2415 ± 0.074 0.2054 ± 0.061 0.2161 ± 0.058 0.2485 ± 0.043 0.2279 ± 0.059

Table 5.2: All GAT and GCN macro F1-Socre results using 20%, 40%, 60%, and 80%
of labeled data. The numbers represent the average and standard deviation of all ten
iterations for each dataset, separated by the number of labeled data, keyphrases, model,
and dataset.

57

Dataset Naive
Bayes

Multinomial
Naive Bayes

J48:
Descision Tree

SMO: Support
Vector Machine

IBk: k-Nearest
Neighbors

GAT:
(1-30)

GCN:
(1-30)

GAT:
(20%-80%)

GCN:
(20%-80%)

CSTR 0.810 0.870 0.649 0.778 0.834 0.847 0.823 0.892 0.887
Dmoz_Computers 0.606 0.701 0.545 0.664 0.638 0.619 0.601 0.725 0.716

Dmoz_Health 0.732 0.821 0.736 0.807 0.779 0.811 0.795 0.866 0.839
Dmoz_Science 0.625 0.740 0.574 0.677 0.645 0.721 0.702 0.821 0.798
Dmoz_Sports 0.764 0.840 0.840 0.858 0.804 0.827 0.784 0.884 0.837

Industry_Sector 0.471 0.750 0.547 0.707 0.871 0.483 0.345 0.779 0.397
NSF 0.715 0.835 0.697 0.821 0.784 0.807 0.779 0.862 0.855

SyskillWebert 0.689 0.892 0.960 0.760 0.954 0.913 0.864 0.948 0.924
classic4 0.900 0.962 0.899 0.949 0.943 0.942 0.928 0.966 0.962

re8 0.679 0.901 0.819 0.824 0.888 0.830 0.763 0.887 0.903
review_polarity 0.669 0.801 0.683 0.837 0.705 0.569 0.473 0.581 0.479
webkb_parsed 0.386 0.557 0.557 0.523 0.600 0.446 0.318 0.61 0.249

Table 5.3: Listing of the best macro F1-score observed from the inductive models bench-
marked at [Rossi et al., 2013] and the trained GAT and GCN models, aggregating models
from 1 to 30 labeled data and 20% to 80% labeled data.

5.2 Coarsening
Considering the experiments conducted with coarsening, we performed a similar eval-
uation to subsection 5.1 but with an extra comparison analysis focused on coarsening
characteristics. Table 5.4 represents the overall macro F1-Score evaluation of all models,
Figure 5.4 shows the gradual evolution charts considering the progressive number of la-
beled instances (nlabeled = [1, 5, 10, 20, 30]), and Figure 5.6 represents the critical difference
diagram for the coarsened graphs.

Here GAT also mostly achieved a higher F1-Score than GCN models, but the statistical
difference between GAT and GCN decreased, as can be seen on the CD diagrams of Figure
5.6 and the CD groupings. Considering keyphrase sizes, keyphrase = (2,3) achieved
constant better results with coarsened graphs, showing that flexible-sized keyphrases may
facilitate coarsening node grouping.

Additionally, Figure 5.5 compares models trained on coarsened and non-coarsened
graphs over the evolution of labeled instance numbers (i.e.,nlabeled). The green colors
represent coarsened GAT keyphrases models, blue colors non-coarsened GAT keyphrases,
yellow colors coarsened GCN keyphrases, and red colors represent non-coarsened GCN
keyphrases. Here, we can more easily observe how coarsened graphs impact GAT and
GCN compared to non-coarsened graphs. In most datasets, this impact is a minor decrease
and, in some cases, a more significant one.

The results of Figure 5.5 help visualize how coarsening impacted GAT and GCN
models’ performance. But to further investigate this impact, Table 5.5 shows the combined
average F1-score of coarsened and traditional models for each dataset and model. Also,
we calculate the percentage difference between model scores: (Coarsened_F 1

T raditional_F 1 × 100), that

58

can also be perceived as the preservation score of how much performance a coarsened
model maintained when compared to its traditional counterpart.

We can observe that coarsening reduced graph performance, but this reduction impact
varies from dataset to dataset, especially considering graph sizes and node distribution.
Table 5.5 shows that the total average F1-Score percentage difference, or preservation
score, was 82.85% for GAT and 84.3% for GCN, meaning that on average, coarsened
GAT and GCN graphs performed 82.85% and 84.3% the capacity of a traditional graph.
NSF presented the highest preservation score of 96.0% and 97.31% while SyskillWebert
the lowest of 53.46% and 50.96% for GAT and GCN respectively. In no case do coarsened
models outperform traditional models.

Figure 5.7 shows the critical difference diagram on all twelve datasets, averaging
keyphrases performances and performing a statistical comparison between traditional
and coarsened GAT and GCN models. The only model we can statistically affirm is
more performative than the others is the traditional GAT. This analysis also shows no
statistical difference between coarsening GAT and traditional GCN, meaning a coarsened
GAT model can outperform non-coarsened GCN, as seen in cases of NSF (F1-score of
0.7010 for coarsened GAT and 0.6945 for traditional GCN) or Industry_Sector (F1-score
of 0.2770 for coarsened GAT and 0.2348 for traditional GCN) on Table 5.5.

Lastly, Table 5.6 represents an overall graph size reduction analysis on the twelve
datasets, showing the numbers of nodes and edges of coarsened and non-coarsened graphs
and their reduction percentages. Table 5.6 last line shows the average reduction between
all datasets, achieving a 50% average reduction on node numbers and a 44% on edge
numbers. This means a possible halving of computational costs such as disk space or
processing power.

Overall, considering the 50% and 44% average node and edge reduction of Table
5.6, the coarsening performance reduction presented in Table 5.5 can still be a viable
alternative and a good trade-off for reduced computational costs. This is especially true
when using larger and well-balanced datasets (with lower deviation on class percentages),
such are the cases of the best performing coarsened models like the Dmoz_Collections,
Classic4, NSF, and CSTR as these characteristics can be seen in Table 4.1.

59

Dataset Keyphrases GNN Model
Number of Labeled Data Average

Performance1 5 10 20 30
CSTR [2,3] GAT 0.4493 ± 0.11 0.6589 ± 0.112 0.6922 ± 0.1 0.6419 ± 0.098 - 0.6106 ± 0.105
CSTR [2,3] GCN 0.4511 ± 0.153 0.6657 ± 0.107 0.6477 ± 0.116 0.6301 ± 0.095 - 0.5986 ± 0.118
CSTR [2] GAT 0.4137 ± 0.099 0.7058 ± 0.062 0.6556 ± 0.106 0.6808 ± 0.064 - 0.614 ± 0.083
CSTR [2] GCN 0.4208 ± 0.1 0.6463 ± 0.058 0.6582 ± 0.089 0.6141 ± 0.089 - 0.5849 ± 0.084
CSTR [3] GAT 0.4894 ± 0.114 0.6722 ± 0.083 0.604 ± 0.068 0.6274 ± 0.094 - 0.5982 ± 0.09
CSTR [3] GCN 0.4168 ± 0.151 0.6341 ± 0.101 0.611 ± 0.04 0.6018 ± 0.077 - 0.5659 ± 0.092

Dmoz_Computers [2,3] GAT 0.2341 ± 0.029 0.4633 ± 0.009 0.5156 ± 0.011 0.5458 ± 0.007 0.5658 ± 0.008 0.4649 ± 0.013
Dmoz_Computers [2,3] GCN 0.1974 ± 0.031 0.43 ± 0.026 0.5018 ± 0.012 0.5311 ± 0.01 0.5446 ± 0.01 0.441 ± 0.018
Dmoz_Computers [2] GAT 0.2218 ± 0.025 0.4368 ± 0.01 0.4825 ± 0.012 0.5169 ± 0.01 0.5346 ± 0.008 0.4385 ± 0.013
Dmoz_Computers [2] GCN 0.1792 ± 0.024 0.4031 ± 0.013 0.4599 ± 0.014 0.4958 ± 0.011 0.5139 ± 0.007 0.4104 ± 0.014
Dmoz_Computers [3] GAT 0.2447 ± 0.035 0.4619 ± 0.01 0.5163 ± 0.015 0.5464 ± 0.009 0.5702 ± 0.009 0.4679 ± 0.016
Dmoz_Computers [3] GCN 0.2005 ± 0.037 0.4427 ± 0.015 0.5085 ± 0.014 0.5374 ± 0.01 0.5542 ± 0.009 0.4487 ± 0.017

Dmoz_Health [2,3] GAT 0.4039 ± 0.048 0.6438 ± 0.02 0.7066 ± 0.017 0.726 ± 0.009 0.7412 ± 0.011 0.6443 ± 0.021
Dmoz_Health [2,3] GCN 0.3299 ± 0.068 0.599 ± 0.033 0.6734 ± 0.011 0.7063 ± 0.011 0.7187 ± 0.017 0.6055 ± 0.028
Dmoz_Health [2] GAT 0.3887 ± 0.045 0.6083 ± 0.014 0.6627 ± 0.017 0.6842 ± 0.015 0.6966 ± 0.009 0.6081 ± 0.02
Dmoz_Health [2] GCN 0.3247 ± 0.076 0.5635 ± 0.027 0.6368 ± 0.014 0.6675 ± 0.018 0.688 ± 0.006 0.5761 ± 0.028
Dmoz_Health [3] GAT 0.435 ± 0.051 0.6476 ± 0.027 0.7006 ± 0.014 0.728 ± 0.012 0.7396 ± 0.009 0.6502 ± 0.023
Dmoz_Health [3] GCN 0.3345 ± 0.084 0.6005 ± 0.027 0.6683 ± 0.017 0.7149 ± 0.016 0.7269 ± 0.007 0.609 ± 0.03
Dmoz_Science [2,3] GAT 0.3264 ± 0.032 0.5606 ± 0.025 0.6061 ± 0.014 0.6496 ± 0.012 0.6706 ± 0.01 0.5627 ± 0.019
Dmoz_Science [2,3] GCN 0.2404 ± 0.03 0.5168 ± 0.022 0.5769 ± 0.02 0.6383 ± 0.012 0.6573 ± 0.009 0.526 ± 0.018
Dmoz_Science [2] GAT 0.3285 ± 0.036 0.5487 ± 0.021 0.5859 ± 0.023 0.6314 ± 0.014 0.651 ± 0.012 0.5491 ± 0.021
Dmoz_Science [2] GCN 0.239 ± 0.041 0.5066 ± 0.018 0.5626 ± 0.011 0.6176 ± 0.014 0.6357 ± 0.009 0.5123 ± 0.019
Dmoz_Science [3] GAT 0.3133 ± 0.035 0.5579 ± 0.02 0.6097 ± 0.018 0.6511 ± 0.015 0.6726 ± 0.008 0.5609 ± 0.019
Dmoz_Science [3] GCN 0.2825 ± 0.053 0.5226 ± 0.04 0.5875 ± 0.021 0.6356 ± 0.015 0.6573 ± 0.008 0.5371 ± 0.027
Dmoz_Sports [2,3] GAT 0.3771 ± 0.033 0.6572 ± 0.011 0.6943 ± 0.006 0.7224 ± 0.003 0.7391 ± 0.005 0.638 ± 0.012
Dmoz_Sports [2,3] GCN 0.3143 ± 0.021 0.5995 ± 0.011 0.6636 ± 0.01 0.6929 ± 0.005 0.712 ± 0.004 0.5965 ± 0.011
Dmoz_Sports [2] GAT 0.3245 ± 0.022 0.5789 ± 0.01 0.6101 ± 0.014 0.6328 ± 0.009 0.6506 ± 0.004 0.5594 ± 0.012
Dmoz_Sports [2] GCN 0.2863 ± 0.038 0.5197 ± 0.022 0.5676 ± 0.013 0.5548 ± 0.13 0.6185 ± 0.011 0.5094 ± 0.043
Dmoz_Sports [3] GAT 0.384 ± 0.033 0.6504 ± 0.01 0.6864 ± 0.01 0.7141 ± 0.007 0.7312 ± 0.005 0.6332 ± 0.013
Dmoz_Sports [3] GCN 0.3325 ± 0.035 0.5954 ± 0.011 0.6483 ± 0.009 0.6862 ± 0.007 0.7036 ± 0.007 0.5932 ± 0.014

Industry_Sector [2,3] GAT 0.0735 ± 0.026 0.219 ± 0.029 0.3102 ± 0.028 0.396 ± 0.012 0.4236 ± 0.013 0.2845 ± 0.022
Industry_Sector [2,3] GCN 0.0589 ± 0.028 0.1501 ± 0.013 0.1953 ± 0.069 0.1803 ± 0.112 0.163 ± 0.121 0.1495 ± 0.069
Industry_Sector [2] GAT 0.0729 ± 0.012 0.1982 ± 0.036 0.2865 ± 0.025 0.3697 ± 0.035 0.3844 ± 0.045 0.2624 ± 0.031
Industry_Sector [2] GCN 0.0568 ± 0.01 0.1491 ± 0.03 0.2268 ± 0.032 0.1239 ± 0.082 0.1634 ± 0.114 0.144 ± 0.054
Industry_Sector [3] GAT 0.0805 ± 0.026 0.2155 ± 0.03 0.3087 ± 0.02 0.3972 ± 0.017 0.4195 ± 0.018 0.2843 ± 0.022
Industry_Sector [3] GCN 0.0637 ± 0.018 0.1605 ± 0.027 0.2036 ± 0.06 0.1654 ± 0.099 0.2259 ± 0.116 0.1638 ± 0.064

NSF [2,3] GAT 0.5356 ± 0.047 0.7289 ± 0.018 0.7657 ± 0.008 0.7694 ± 0.013 0.7858 ± 0.008 0.7171 ± 0.019
NSF [2,3] GCN 0.5164 ± 0.027 0.6977 ± 0.029 0.7486 ± 0.008 0.7487 ± 0.013 0.7667 ± 0.011 0.6956 ± 0.018
NSF [2] GAT 0.493 ± 0.056 0.6909 ± 0.016 0.7198 ± 0.011 0.7302 ± 0.009 0.7453 ± 0.012 0.6758 ± 0.021
NSF [2] GCN 0.4562 ± 0.047 0.657 ± 0.026 0.6935 ± 0.01 0.7078 ± 0.012 0.7221 ± 0.017 0.6473 ± 0.022
NSF [3] GAT 0.5365 ± 0.067 0.7207 ± 0.018 0.7504 ± 0.014 0.7643 ± 0.012 0.7788 ± 0.008 0.7102 ± 0.024
NSF [3] GCN 0.4796 ± 0.066 0.7015 ± 0.014 0.7348 ± 0.014 0.7448 ± 0.015 0.7616 ± 0.014 0.6844 ± 0.025

SyskillWebert [2,3] GAT 0.4249 ± 0.042 0.4921 ± 0.027 0.4916 ± 0.03 0.4734 ± 0.076 0.3643 ± 0.105 0.4493 ± 0.056
SyskillWebert [2,3] GCN 0.3838 ± 0.06 0.4835 ± 0.05 0.4556 ± 0.029 0.3853 ± 0.077 0.269 ± 0.024 0.3954 ± 0.048
SyskillWebert [2] GAT 0.4024 ± 0.057 0.507 ± 0.027 0.4936 ± 0.021 0.4386 ± 0.033 0.3673 ± 0.08 0.4418 ± 0.044
SyskillWebert [2] GCN 0.372 ± 0.046 0.4565 ± 0.023 0.4535 ± 0.027 0.386 ± 0.019 0.2772 ± 0.071 0.389 ± 0.037
SyskillWebert [3] GAT 0.3953 ± 0.052 0.4952 ± 0.046 0.5156 ± 0.052 0.4843 ± 0.086 0.3358 ± 0.038 0.4453 ± 0.055
SyskillWebert [3] GCN 0.4009 ± 0.058 0.464 ± 0.029 0.4526 ± 0.017 0.3674 ± 0.036 0.2651 ± 0.017 0.39 ± 0.031

classic4 [2,3] GAT 0.742 ± 0.105 0.8126 ± 0.075 0.8732 ± 0.04 0.8541 ± 0.073 0.8678 ± 0.062 0.8299 ± 0.071
classic4 [2,3] GCN 0.5689 ± 0.111 0.7552 ± 0.117 0.8646 ± 0.031 0.8785 ± 0.026 0.8733 ± 0.028 0.7881 ± 0.063
classic4 [2] GAT 0.6417 ± 0.061 0.7239 ± 0.097 0.7607 ± 0.063 0.8078 ± 0.048 0.776 ± 0.091 0.742 ± 0.072
classic4 [2] GCN 0.4968 ± 0.168 0.708 ± 0.078 0.8223 ± 0.057 0.8312 ± 0.062 0.7929 ± 0.069 0.7302 ± 0.087
classic4 [3] GAT 0.7046 ± 0.087 0.8421 ± 0.055 0.8441 ± 0.061 0.8616 ± 0.055 0.8389 ± 0.058 0.8183 ± 0.063
classic4 [3] GCN 0.5687 ± 0.168 0.7868 ± 0.076 0.8564 ± 0.038 0.879 ± 0.033 0.8667 ± 0.02 0.7915 ± 0.067

re8 [2,3] GAT 0.5406 ± 0.087 0.748 ± 0.038 0.7894 ± 0.032 0.8105 ± 0.023 0.7922 ± 0.049 0.7361 ± 0.046
re8 [2,3] GCN 0.4177 ± 0.086 0.6813 ± 0.039 0.7055 ± 0.05 0.7514 ± 0.064 0.7261 ± 0.053 0.6564 ± 0.058
re8 [2] GAT 0.4802 ± 0.084 0.6619 ± 0.037 0.7145 ± 0.047 0.7561 ± 0.026 0.722 ± 0.028 0.667 ± 0.044
re8 [2] GCN 0.3321 ± 0.083 0.5651 ± 0.072 0.6213 ± 0.05 0.6401 ± 0.058 0.6756 ± 0.057 0.5668 ± 0.064
re8 [3] GAT 0.5422 ± 0.077 0.7419 ± 0.029 0.7929 ± 0.032 0.8035 ± 0.023 0.7937 ± 0.037 0.7348 ± 0.04
re8 [3] GCN 0.4558 ± 0.087 0.6544 ± 0.056 0.7087 ± 0.051 0.734 ± 0.074 0.7266 ± 0.062 0.6559 ± 0.066

review_polarity [2,3] GAT 0.3476 ± 0.024 0.3525 ± 0.057 0.3332 ± 0.003 0.3556 ± 0.05 0.3805 ± 0.057 0.3539 ± 0.038
review_polarity [2,3] GCN 0.3484 ± 0.029 0.3933 ± 0.069 0.3699 ± 0.054 0.3603 ± 0.041 0.4188 ± 0.089 0.3781 ± 0.056
review_polarity [2] GAT 0.3615 ± 0.06 0.3453 ± 0.022 0.3352 ± 0.005 0.3321 ± 0.004 0.3503 ± 0.022 0.3449 ± 0.022
review_polarity [2] GCN 0.3733 ± 0.059 0.3757 ± 0.052 0.3748 ± 0.071 0.3679 ± 0.048 0.3867 ± 0.074 0.3757 ± 0.061
review_polarity [3] GAT 0.3331 ± 0.0 0.34 ± 0.012 0.334 ± 0.004 0.3333 ± 0.005 0.3706 ± 0.05 0.3422 ± 0.014
review_polarity [3] GCN 0.3331 ± 0.0 0.3596 ± 0.034 0.3504 ± 0.021 0.3787 ± 0.063 0.3778 ± 0.059 0.3599 ± 0.035

webkb_parsed [2,3] GAT 0.107 ± 0.038 0.2338 ± 0.034 0.2466 ± 0.027 0.2889 ± 0.032 0.3008 ± 0.028 0.2354 ± 0.032
webkb_parsed [2,3] GCN 0.0924 ± 0.041 0.1867 ± 0.039 0.2055 ± 0.045 0.2015 ± 0.06 0.2153 ± 0.055 0.1803 ± 0.048
webkb_parsed [2] GAT 0.1047 ± 0.035 0.2317 ± 0.026 0.2588 ± 0.032 0.2836 ± 0.028 0.2912 ± 0.012 0.234 ± 0.027
webkb_parsed [2] GCN 0.0829 ± 0.026 0.1859 ± 0.037 0.2301 ± 0.025 0.1687 ± 0.074 0.2613 ± 0.052 0.1858 ± 0.043
webkb_parsed [3] GAT 0.1063 ± 0.039 0.2358 ± 0.036 0.2496 ± 0.032 0.2828 ± 0.03 0.2974 ± 0.03 0.2344 ± 0.034
webkb_parsed [3] GCN 0.0778 ± 0.039 0.1959 ± 0.039 0.1823 ± 0.043 0.2166 ± 0.073 0.1904 ± 0.071 0.1726 ± 0.053

Table 5.4: All coarsened GAT and GCN macro F1-Socre results. The numbers represent
the average and standard deviation of all ten iterations for each dataset, separated by the
number of labeled data, keyphrases, model, and dataset.

60

1 5 10 20
Number of rotulated data

0.4

0.5

0.6

0.7

F1
-S

co
re

CSTR

1 5 10 20 30
Number of rotulated data

0.2

0.3

0.4

0.5

F1
-S

co
re

Dmoz_Computers

1 5 10 20 30
Number of rotulated data

0.4

0.5

0.6

0.7

F1
-S

co
re

Dmoz_Health

1 5 10 20 30
Number of rotulated data

0.3

0.4

0.5

0.6

F1
-S

co
re

Dmoz_Science

1 5 10 20 30
Number of rotulated data

0.3
0.4
0.5
0.6
0.7

F1
-S

co
re

Dmoz_Sports

1 5 10 20 30
Number of rotulated data

0.1

0.2

0.3

0.4
F1

-S
co

re
Industry_Sector

1 5 10 20 30
Number of rotulated data

0.5

0.6

0.7

0.8

F1
-S

co
re

NSF

1 5 10 20 30
Number of rotulated data

0.3

0.4

0.5

F1
-S

co
re

SyskillWebert

1 5 10 20 30
Number of rotulated data

0.5

0.6

0.7

0.8

F1
-S

co
re

classic4

1 5 10 20 30
Number of rotulated data

0.4

0.6

0.8

F1
-S

co
re

re8

1 5 10 20 30
Number of rotulated data

0.34

0.36

0.38

0.40

0.42

F1
-S

co
re

review_polarity

1 5 10 20 30
Number of rotulated data

0.10
0.15
0.20
0.25
0.30

F1
-S

co
re

webkb_parsed

keyphrase23_GAT
keyphrase23_GCN

keyphrase2_GAT
keyphrase2_GCN

keyphrase3_GAT
keyphrase3_GCN

Figure 5.4: All coarsened GAT and GCN models F1-scores results, over the increase of
labeled node numbers.

61

1 5 10 20
Number of rotulated data

0.4

0.5

0.6

0.7

0.8

F1
-S

co
re

CSTR

1 5 10 20 30
Number of rotulated data

0.2

0.3

0.4

0.5

0.6

F1
-S

co
re

Dmoz_Computers

1 5 10 20 30
Number of rotulated data

0.4

0.6

0.8

F1
-S

co
re

Dmoz_Health

1 5 10 20 30
Number of rotulated data

0.4

0.6

F1
-S

co
re

Dmoz_Science

1 5 10 20 30
Number of rotulated data

0.4

0.6

0.8

F1
-S

co
re

Dmoz_Sports

1 5 10 20 30
Number of rotulated data

0.1

0.2

0.3

0.4

0.5
F1

-S
co

re
Industry_Sector

1 5 10 20 30
Number of rotulated data

0.5

0.6

0.7

0.8

F1
-S

co
re

NSF

1 5 10 20 30
Number of rotulated data

0.4

0.6

0.8

F1
-S

co
re

SyskillWebert

1 5 10 20 30
Number of rotulated data

0.5

0.6

0.7

0.8

0.9

F1
-S

co
re

classic4

1 5 10 20 30
Number of rotulated data

0.4

0.6

0.8

F1
-S

co
re

re8

1 5 10 20 30
Number of rotulated data

0.4

0.5

F1
-S

co
re

review_polarity

1 5 10 20 30
Number of rotulated data

0.1

0.2

0.3

0.4

F1
-S

co
re

webkb_parsed

Coarsened_GAT Coarsened_GCN Traditional_GAT Traditional_GCN

Figure 5.5: Comparative evolutionary graph between all coarsened GAT and GCN models
and traditional GAT and GCN, previously presented in sub-section 5.1, F1-scores.

62

123456

('1', 'keyphrase2', 'GCN')
('1', 'keyphrase3', 'GCN')

('1', 'keyphrase23', 'GCN') ('1', 'keyphrase2', 'GAT')
('1', 'keyphrase23', 'GAT')
('1', 'keyphrase3', 'GAT')

CD

123456

('5', 'keyphrase2', 'GCN')
('5', 'keyphrase3', 'GCN')

('5', 'keyphrase23', 'GCN') ('5', 'keyphrase2', 'GAT')
('5', 'keyphrase3', 'GAT')
('5', 'keyphrase23', 'GAT')

CD

123456

('10', 'keyphrase2', 'GCN')
('10', 'keyphrase3', 'GCN')
('10', 'keyphrase2', 'GAT') ('10', 'keyphrase23', 'GCN')

('10', 'keyphrase3', 'GAT')
('10', 'keyphrase23', 'GAT')

CD

123456

('20', 'keyphrase2', 'GCN')
('20', 'keyphrase2', 'GAT')
('20', 'keyphrase3', 'GCN') ('20', 'keyphrase23', 'GCN')

('20', 'keyphrase3', 'GAT')
('20', 'keyphrase23', 'GAT')

CD

123456

('30', 'keyphrase2', 'GCN')
('30', 'keyphrase2', 'GAT')
('30', 'keyphrase3', 'GCN') ('30', 'keyphrase23', 'GCN')

('30', 'keyphrase3', 'GAT')
('30', 'keyphrase23', 'GAT')

CD

123456

('average', 'keyphrase2', 'GCN')
('average', 'keyphrase3', 'GCN')

('average', 'keyphrase23', 'GCN') ('average', 'keyphrase2', 'GAT')
('average', 'keyphrase3', 'GAT')
('average', 'keyphrase23', 'GAT')

CD

Figure 5.6: Coarsening critical difference plots.

63

Dataset GAT
Traditional

GCN
Traditional

GAT
Coarsening

GCN
Coarsening

GAT F1-score
preservation

GCN F1-score
preservation

CSTR 0.7566 0.7500 0.6076 0.5831 80.31% 77.75%
Dmoz_Computers 0.5058 0.4715 0.4571 0.4333 90.37% 91.9%

Dmoz_Health 0.7123 0.6567 0.6342 0.5969 89.04% 90.89%
Dmoz_Science 0.6062 0.5686 0.5576 0.5251 91.98% 92.35%
Dmoz_Sports 0.7186 0.6455 0.6102 0.5664 84.92% 87.75%

Industry_Sector 0.3507 0.2348 0.2770 0.1524 78.98% 64.91%
NSF 0.7302 0.6945 0.7010 0.6758 96.0% 97.31%

SyskillWebert 0.8332 0.7682 0.4454 0.3915 53.46% 50.96%
classic4 0.8941 0.8482 0.7967 0.7699 89.11% 90.77%

re8 0.7434 0.6587 0.7126 0.6264 95.86% 95.1%
review_polarity 0.5080 0.4338 0.3470 0.3712 68.31% 85.57%
webkb_parsed 0.3433 0.2342 0.2346 0.1796 68.34% 76.69%
Total Average 0.6419 0.5804 0.5318 0.4893 82.85% 84.3%

Table 5.5: Comparison of average F1-score metric across datasets between coarsened and
non-coarsened graph models, and coarsening F1-score performance preservation.

Figure 5.7: Critical difference diagram of traditional GAT, traditional GCN, coarsened
GAT, and coarsened GCN models.

64

Dataset Keyphrases Total Nodes Coarsened Nodes Node Reduction Total Edges Coarsened Edges Edge Reduction
classic4 [2] 32138 16068 49% 373512 123585 33%
classic4 [3] 36591 18295 49% 373447 153769 41%
classic4 [2,3] 37305 18652 49% 372682 159707 42%
CSTR [2] 1613 806 49% 16517 4395 26%
CSTR [3] 1721 860 49% 16666 4393 26%
CSTR [2,3] 1691 845 49% 16529 4318 26%

Dmoz_Computers [2] 48455 25130 51% 217578 149053 68%
Dmoz_Computers [3] 54804 28766 52% 211293 144506 68%
Dmoz_Computers [2,3] 54778 28629 52% 206577 136289 65%

Dmoz_Health [2] 31612 16135 51% 160990 99999 62%
Dmoz_Health [3] 36311 18762 51% 157460 100421 63%
Dmoz_Health [2,3] 36149 18629 51% 154562 96546 62%
Dmoz_Science [2] 32494 16896 52% 126931 84363 66%
Dmoz_Science [3] 34537 17842 51% 123185 80207 65%
Dmoz_Science [2,3] 34975 18055 51% 121028 76613 63%
Dmoz_Sports [2] 57318 29476 51% 328103 213502 65%
Dmoz_Sports [3] 71502 37921 53% 320034 226139 70%
Dmoz_Sports [2,3] 71052 37552 52% 311959 212856 68%

Industry_Sector [2] 40149 20074 49% 1079927 420075 38%
Industry_Sector [3] 44801 22400 49% 1085381 599032 55%
Industry_Sector [2,3] 44570 22284 49% 1075787 598776 55%

NSF [2] 45145 23141 51% 173949 99104 56%
NSF [3] 48894 24663 50% 164245 89000 54%
NSF [2,3] 55310 28503 51% 161953 87904 54%

re8 [2] 27690 13937 50% 131113 51894 39%
re8 [3] 33430 17515 52% 128337 58811 45%
re8 [2,3] 33400 17340 51% 126986 56619 44%

review_polarity [2] 10923 5461 49% 752196 171136 22%
review_polarity [3] 11828 5914 50% 755651 173314 22%
review_polarity [2,3] 11655 5827 49% 750585 172653 23%

SyskillWebert [2] 1836 917 49% 32408 4705 14%
SyskillWebert [3] 1889 944 49% 32699 4738 14%
SyskillWebert [2,3] 1892 945 49% 32650 4854 14%

webkb_parsed [2] 38651 19325 49% 1463927 230282 15%
webkb_parsed [3] 45029 22514 49% 1495506 233328 15%
webkb_parsed [2,3] 44441 22220 49% 1486632 240005 16%

Average 33793 17312 50% 403861 149080 44%

Table 5.6: Graph reductions in number and percentage across all datasets and keyphrases,
by nodes and edges.

5.3 Large Language Models
Concluding the first step on LLM application heavily discussed on 4.6, which evaluates
zero-shot and few-shot labeling prompts, by analyzing the results on Table 4.2 and ulti-
mately selecting the list of the most accurate prompts for each text collection, we proceed
to the process of labeling all proposed volumes of LLM data.

We employ Llamma to annotate three different volumes of LLM-labeled instances
(LLMnlabeled): 10, 50, and 100, as discussed in section 4.6. Each of these volumes was
used to train GAT and GCN models. Also, we combined each volume with 1, 5, 10, 20,
and 30 human-labeled instances (nlabeled), creating LLM+human datasets that were also
submitted for training. Similarly to the previous sections 5.1 and 5.2, we evaluated how

65

LLM-only data and the combination of LLM+human data, would affect models as the
number of human-labeled instances increased.

Table 5.7 presents the overall macro F1-score, and Figure 5.8 presents the gradual evo-
lution charts, iterating over the number of labeled documents (LLM_only,1,5,10,20,30)
for LLMnlabeled = 10. Table 5.8 and Figure 5.9 present the same results for LLMnlabeled =
50, and Table 5.9 and Figure 5.10 for LLMnlabeled = 100. Figures 5.14, 5.15, and 5.16
represent the critical difference (CD) diagrams for all 10, 50, and 100 LLM-labeled mod-
els. Again, GAT models consistently achieved a higher F1-Score than GCN models, this
time with a significant statistical difference (i.e., CD). Similarly to traditional models
and opposing coarsening models, keyphrase = 3 achieved the best scores across keyphrase
sizes.

Figure 5.11, Figure 5.12, and Figure 5.13 display the comparison between models
trained on with LLM-labeled data and the traditional models trained only on human-
labeled data. Each figure represents a comparison using LLMnlabeled = [10, 50, 100], re-
spectively, and grows by adding human-labeled instances to the models. By analyzing the
LLMnlabeled combinations, we observed a higher impact on the first iteration cases with
only LLM-labeled data and combining LLM-labeled data to nlabeled = 1 human-labeled
document. In these cases, LLM labeling consistently improved F1-Score metrics across all
datasets by adding more training data. This was especially true with LLMnlabeled = 50
and LLMnlabeled = 100 whose results reached the top F1-scores.

However, when we add a few more instances of human-labeled documents, we no-
tice LLM-labeling improvements decreasing. With nlabeled = 5 human-labeled documents
for each class, LLM-labeled + human-labeled models were already outperformed by only
human-labeled models, with only the datasets Dmoz_Sports, Dmoz_Science and Indus-
try_Sector maintaining consistent performance gains. With nlabeled = 10 or more human-
labeled documents, this situation aggravated, and traditional human-labeled models pre-
sented themselves as a better match for transductive graph learning on most datasets.

Regarding datasets, the main outliers were Dmoz_sports where LLM-only and LLM
+ human labeling achieved results remarkably close to only human-labeled data. This
occurs due to the simplicity of the classification task on this dataset, Sports are clear and
well-defined classes that facilitate the labeling of the Llama model as can be observed by
its accuracy of 0.85 in Table 4.2. SyskillWebert achieved an inferior performance, possibly
because of the dataset’s lower size. Review_polarity, our only binary class dataset, also
presented its standard, irregular behavior, but LMM+human GATs managed to regularly
outperform traditional models besides the dataset’s irregular behaviors.

In short, LLM-labeling impacts diminished as more human-labeled data was added.
Also, LLM-labeled data was somewhat detrimental compared to traditionally human-

66

labeled data on the transductive classification task. These facts indicate that LLMs are
not an excellent fit for transductive learning, where few very accurate data are more
beneficial than a high quantity of moderate precision data. the use of generalists LLMs
for transductive learning would be recommended only for semantically simpler classifi-
cation tasks, like Dmoz_Sports, and in the cases of advanced, harder-to-interpret, or
non-common textual structures such as websites, it would be recommended a fine-tuned
LLM model or investing in accurate human labeling.

67

Dataset Keyphrases GNN Model
Number of Labeled Data Average

PerformanceLLM Only 1 5 10 20 30
CSTR [2,3] GAT 0.7575 ± 0.07 0.7585 ± 0.091 0.7986 ± 0.03 0.7696 ± 0.035 0.7477 ± 0.041 - 0.7664 ± 0.053
CSTR [2,3] GCN 0.7428 ± 0.062 0.7485 ± 0.068 0.8073 ± 0.035 0.7347 ± 0.04 0.7212 ± 0.062 - 0.7509 ± 0.053
CSTR [2] GAT 0.7625 ± 0.052 0.7711 ± 0.054 0.7874 ± 0.043 0.7856 ± 0.03 0.7446 ± 0.049 - 0.7702 ± 0.046
CSTR [2] GCN 0.7429 ± 0.067 0.7446 ± 0.066 0.7742 ± 0.036 0.7595 ± 0.048 0.7099 ± 0.065 - 0.7462 ± 0.056
CSTR [3] GAT 0.7545 ± 0.063 0.7675 ± 0.056 0.8075 ± 0.035 0.7726 ± 0.035 0.7478 ± 0.043 - 0.77 ± 0.047
CSTR [3] GCN 0.7469 ± 0.09 0.7256 ± 0.063 0.7914 ± 0.044 0.7509 ± 0.061 0.7359 ± 0.062 - 0.7501 ± 0.064

Dmoz_Computers [2,3] GAT 0.4087 ± 0.015 0.4237 ± 0.019 0.4615 ± 0.008 0.5147 ± 0.022 0.5577 ± 0.013 0.5791 ± 0.012 0.4909 ± 0.015
Dmoz_Computers [2,3] GCN 0.3896 ± 0.015 0.4022 ± 0.018 0.4493 ± 0.012 0.4953 ± 0.023 0.537 ± 0.015 0.5548 ± 0.012 0.4714 ± 0.016
Dmoz_Computers [2] GAT 0.4068 ± 0.01 0.4174 ± 0.017 0.464 ± 0.01 0.5069 ± 0.018 0.5551 ± 0.011 0.5786 ± 0.012 0.4881 ± 0.013
Dmoz_Computers [2] GCN 0.3771 ± 0.017 0.3959 ± 0.014 0.4445 ± 0.013 0.4822 ± 0.019 0.5245 ± 0.014 0.5463 ± 0.01 0.4617 ± 0.014
Dmoz_Computers [3] GAT 0.4149 ± 0.014 0.4271 ± 0.018 0.4697 ± 0.01 0.5176 ± 0.024 0.5637 ± 0.01 0.5869 ± 0.015 0.4966 ± 0.015
Dmoz_Computers [3] GCN 0.3989 ± 0.019 0.4106 ± 0.01 0.4562 ± 0.008 0.5018 ± 0.026 0.5426 ± 0.014 0.5623 ± 0.014 0.4787 ± 0.015

Dmoz_Health [2,3] GAT 0.6744 ± 0.024 0.6791 ± 0.02 0.7154 ± 0.023 0.7402 ± 0.015 0.7768 ± 0.014 0.7933 ± 0.008 0.7299 ± 0.017
Dmoz_Health [2,3] GCN 0.6482 ± 0.028 0.6522 ± 0.026 0.6875 ± 0.021 0.7215 ± 0.018 0.7553 ± 0.014 0.7756 ± 0.009 0.7067 ± 0.019
Dmoz_Health [2] GAT 0.6742 ± 0.024 0.6827 ± 0.024 0.7153 ± 0.019 0.7445 ± 0.019 0.7766 ± 0.013 0.7882 ± 0.007 0.7303 ± 0.018
Dmoz_Health [2] GCN 0.6378 ± 0.022 0.6546 ± 0.03 0.679 ± 0.021 0.7121 ± 0.012 0.7454 ± 0.017 0.7614 ± 0.008 0.6984 ± 0.018
Dmoz_Health [3] GAT 0.6774 ± 0.023 0.6824 ± 0.023 0.719 ± 0.024 0.7465 ± 0.017 0.7788 ± 0.014 0.7927 ± 0.009 0.7328 ± 0.018
Dmoz_Health [3] GCN 0.6503 ± 0.028 0.6297 ± 0.104 0.6871 ± 0.022 0.733 ± 0.017 0.7547 ± 0.012 0.7739 ± 0.011 0.7048 ± 0.032
Dmoz_Science [2,3] GAT 0.5819 ± 0.033 0.5938 ± 0.024 0.6139 ± 0.034 0.6579 ± 0.015 0.6841 ± 0.01 0.7038 ± 0.004 0.6392 ± 0.02
Dmoz_Science [2,3] GCN 0.5684 ± 0.033 0.5738 ± 0.028 0.5996 ± 0.028 0.6451 ± 0.018 0.6712 ± 0.015 0.6956 ± 0.007 0.6256 ± 0.021
Dmoz_Science [2] GAT 0.5851 ± 0.031 0.6 ± 0.027 0.6153 ± 0.025 0.6606 ± 0.015 0.6839 ± 0.011 0.7085 ± 0.005 0.6422 ± 0.019
Dmoz_Science [2] GCN 0.5556 ± 0.032 0.5763 ± 0.028 0.6006 ± 0.025 0.6462 ± 0.014 0.6708 ± 0.009 0.6869 ± 0.01 0.6227 ± 0.02
Dmoz_Science [3] GAT 0.5893 ± 0.034 0.6051 ± 0.024 0.6157 ± 0.026 0.6614 ± 0.017 0.6871 ± 0.01 0.7102 ± 0.005 0.6448 ± 0.019
Dmoz_Science [3] GCN 0.5616 ± 0.037 0.5672 ± 0.024 0.6069 ± 0.028 0.6506 ± 0.017 0.6746 ± 0.008 0.7035 ± 0.008 0.6274 ± 0.02
Dmoz_Sports [2,3] GAT 0.73 ± 0.019 0.7383 ± 0.019 0.7558 ± 0.008 0.7781 ± 0.007 0.7985 ± 0.007 0.815 ± 0.006 0.7693 ± 0.011
Dmoz_Sports [2,3] GCN 0.6751 ± 0.013 0.6902 ± 0.011 0.7144 ± 0.007 0.7324 ± 0.007 0.7551 ± 0.006 0.769 ± 0.006 0.7227 ± 0.008
Dmoz_Sports [2] GAT 0.733 ± 0.02 0.74 ± 0.019 0.7623 ± 0.01 0.7827 ± 0.01 0.8021 ± 0.006 0.8168 ± 0.005 0.7728 ± 0.012
Dmoz_Sports [2] GCN 0.6636 ± 0.015 0.6749 ± 0.014 0.6944 ± 0.009 0.7118 ± 0.005 0.741 ± 0.003 0.7546 ± 0.008 0.7067 ± 0.009
Dmoz_Sports [3] GAT 0.7325 ± 0.019 0.7416 ± 0.017 0.7655 ± 0.007 0.7846 ± 0.011 0.8066 ± 0.007 0.8207 ± 0.005 0.7753 ± 0.011
Dmoz_Sports [3] GCN 0.6864 ± 0.015 0.6894 ± 0.014 0.7162 ± 0.008 0.7366 ± 0.011 0.7663 ± 0.008 0.7768 ± 0.006 0.7286 ± 0.01

Industry_Sector [2,3] GAT 0.2723 ± 0.021 0.292 ± 0.02 0.3405 ± 0.012 0.3761 ± 0.017 0.4296 ± 0.017 0.4511 ± 0.013 0.3603 ± 0.017
Industry_Sector [2,3] GCN 0.2162 ± 0.012 0.2335 ± 0.018 0.2658 ± 0.019 0.2768 ± 0.044 0.2641 ± 0.078 0.2614 ± 0.109 0.253 ± 0.047
Industry_Sector [2] GAT 0.2692 ± 0.019 0.2883 ± 0.015 0.3359 ± 0.011 0.3768 ± 0.014 0.4254 ± 0.015 0.4481 ± 0.013 0.3573 ± 0.014
Industry_Sector [2] GCN 0.2075 ± 0.024 0.1951 ± 0.057 0.2434 ± 0.041 0.22 ± 0.094 0.2542 ± 0.088 0.2431 ± 0.11 0.2272 ± 0.069
Industry_Sector [3] GAT 0.276 ± 0.018 0.2943 ± 0.018 0.3449 ± 0.011 0.38 ± 0.015 0.4335 ± 0.012 0.4481 ± 0.016 0.3628 ± 0.015
Industry_Sector [3] GCN 0.2219 ± 0.02 0.2383 ± 0.021 0.2335 ± 0.079 0.2822 ± 0.021 0.2282 ± 0.122 0.2685 ± 0.097 0.2454 ± 0.06

NSF [2,3] GAT 0.5848 ± 0.037 0.6043 ± 0.035 0.6529 ± 0.035 0.6986 ± 0.021 0.7364 ± 0.015 0.77 ± 0.011 0.6745 ± 0.026
NSF [2,3] GCN 0.5868 ± 0.042 0.6022 ± 0.037 0.6417 ± 0.033 0.6763 ± 0.025 0.7048 ± 0.013 0.7448 ± 0.013 0.6594 ± 0.027
NSF [2] GAT 0.5851 ± 0.036 0.6035 ± 0.038 0.654 ± 0.039 0.6986 ± 0.024 0.7344 ± 0.017 0.7692 ± 0.011 0.6741 ± 0.027
NSF [2] GCN 0.5789 ± 0.031 0.5914 ± 0.032 0.6298 ± 0.029 0.6808 ± 0.024 0.7086 ± 0.016 0.7429 ± 0.011 0.6554 ± 0.024
NSF [3] GAT 0.5877 ± 0.039 0.6079 ± 0.028 0.6508 ± 0.034 0.7001 ± 0.022 0.7382 ± 0.016 0.7733 ± 0.01 0.6763 ± 0.025
NSF [3] GCN 0.5888 ± 0.038 0.6119 ± 0.022 0.6424 ± 0.031 0.6851 ± 0.02 0.7091 ± 0.012 0.751 ± 0.01 0.6647 ± 0.022

SyskillWebert [2,3] GAT 0.6212 ± 0.031 0.6348 ± 0.029 0.6336 ± 0.016 0.6646 ± 0.051 0.7085 ± 0.075 0.6866 ± 0.057 0.6582 ± 0.043
SyskillWebert [2,3] GCN 0.5785 ± 0.045 0.6182 ± 0.035 0.6142 ± 0.045 0.6508 ± 0.079 0.7137 ± 0.063 0.6682 ± 0.08 0.6406 ± 0.058
SyskillWebert [2] GAT 0.6219 ± 0.031 0.6245 ± 0.024 0.6185 ± 0.02 0.671 ± 0.054 0.7086 ± 0.076 0.6834 ± 0.061 0.6546 ± 0.044
SyskillWebert [2] GCN 0.6213 ± 0.056 0.6151 ± 0.044 0.6127 ± 0.03 0.6461 ± 0.055 0.7055 ± 0.096 0.693 ± 0.07 0.6489 ± 0.058
SyskillWebert [3] GAT 0.6156 ± 0.028 0.626 ± 0.03 0.6182 ± 0.022 0.669 ± 0.054 0.7074 ± 0.061 0.6916 ± 0.06 0.6546 ± 0.042
SyskillWebert [3] GCN 0.5968 ± 0.035 0.6031 ± 0.041 0.6332 ± 0.043 0.6747 ± 0.07 0.7038 ± 0.057 0.6922 ± 0.072 0.6506 ± 0.053

classic4 [2,3] GAT 0.7633 ± 0.107 0.7772 ± 0.099 0.8064 ± 0.056 0.8788 ± 0.062 0.9209 ± 0.014 0.9166 ± 0.026 0.8439 ± 0.061
classic4 [2,3] GCN 0.7529 ± 0.101 0.7428 ± 0.057 0.7794 ± 0.053 0.8351 ± 0.067 0.8809 ± 0.025 0.8894 ± 0.018 0.8134 ± 0.054
classic4 [2] GAT 0.7565 ± 0.107 0.7776 ± 0.105 0.8002 ± 0.063 0.8761 ± 0.068 0.9194 ± 0.015 0.9191 ± 0.021 0.8415 ± 0.063
classic4 [2] GCN 0.7469 ± 0.081 0.7531 ± 0.11 0.7615 ± 0.06 0.8344 ± 0.059 0.8791 ± 0.029 0.8752 ± 0.047 0.8084 ± 0.064
classic4 [3] GAT 0.7599 ± 0.099 0.7799 ± 0.107 0.7978 ± 0.054 0.874 ± 0.077 0.9223 ± 0.013 0.9166 ± 0.023 0.8417 ± 0.062
classic4 [3] GCN 0.7501 ± 0.07 0.7588 ± 0.085 0.7751 ± 0.057 0.8435 ± 0.077 0.8854 ± 0.026 0.8809 ± 0.047 0.8156 ± 0.06

re8 [2,3] GAT 0.6358 ± 0.065 0.6574 ± 0.065 0.695 ± 0.036 0.719 ± 0.052 0.7619 ± 0.041 0.7948 ± 0.018 0.7107 ± 0.046
re8 [2,3] GCN 0.6009 ± 0.058 0.6222 ± 0.064 0.6501 ± 0.065 0.662 ± 0.06 0.6963 ± 0.052 0.7512 ± 0.02 0.6638 ± 0.053
re8 [2] GAT 0.6305 ± 0.071 0.6379 ± 0.057 0.6884 ± 0.048 0.7117 ± 0.046 0.7507 ± 0.049 0.7856 ± 0.015 0.7008 ± 0.048
re8 [2] GCN 0.5683 ± 0.05 0.5797 ± 0.058 0.6075 ± 0.115 0.6591 ± 0.078 0.6645 ± 0.043 0.7162 ± 0.027 0.6325 ± 0.062
re8 [3] GAT 0.6292 ± 0.073 0.6587 ± 0.067 0.7006 ± 0.046 0.7264 ± 0.052 0.7593 ± 0.044 0.7977 ± 0.021 0.712 ± 0.051
re8 [3] GCN 0.6129 ± 0.064 0.6345 ± 0.054 0.6391 ± 0.047 0.6673 ± 0.063 0.7078 ± 0.052 0.7381 ± 0.034 0.6666 ± 0.053

review_polarity [2,3] GAT 0.5242 ± 0.063 0.5454 ± 0.022 0.5385 ± 0.031 0.5091 ± 0.092 0.5426 ± 0.076 0.5786 ± 0.021 0.5397 ± 0.051
review_polarity [2,3] GCN 0.3912 ± 0.098 0.4636 ± 0.114 0.4077 ± 0.104 0.4139 ± 0.104 0.4653 ± 0.133 0.4818 ± 0.142 0.4372 ± 0.116
review_polarity [2] GAT 0.5204 ± 0.072 0.5486 ± 0.026 0.5393 ± 0.033 0.5459 ± 0.03 0.5652 ± 0.019 0.5296 ± 0.105 0.5415 ± 0.047
review_polarity [2] GCN 0.4755 ± 0.108 0.4423 ± 0.116 0.4717 ± 0.103 0.4574 ± 0.133 0.3842 ± 0.087 0.3881 ± 0.116 0.4365 ± 0.11
review_polarity [3] GAT 0.4745 ± 0.099 0.5299 ± 0.071 0.5411 ± 0.034 0.5452 ± 0.033 0.5427 ± 0.076 0.556 ± 0.079 0.5316 ± 0.065
review_polarity [3] GCN 0.411 ± 0.106 0.4907 ± 0.118 0.4306 ± 0.123 0.4103 ± 0.11 0.3973 ± 0.134 0.4246 ± 0.148 0.4274 ± 0.123

webkb_parsed [2,3] GAT 0.2555 ± 0.016 0.2678 ± 0.022 0.306 ± 0.015 0.3444 ± 0.021 0.3836 ± 0.015 0.4199 ± 0.015 0.3295 ± 0.017
webkb_parsed [2,3] GCN 0.2129 ± 0.054 0.219 ± 0.05 0.245 ± 0.052 0.2328 ± 0.079 0.2253 ± 0.098 0.2584 ± 0.104 0.2322 ± 0.073
webkb_parsed [2] GAT 0.2558 ± 0.02 0.2611 ± 0.02 0.3064 ± 0.016 0.343 ± 0.023 0.3859 ± 0.015 0.4124 ± 0.013 0.3274 ± 0.018
webkb_parsed [2] GCN 0.2199 ± 0.027 0.2097 ± 0.044 0.2223 ± 0.054 0.2283 ± 0.085 0.2231 ± 0.101 0.2043 ± 0.111 0.2179 ± 0.07
webkb_parsed [3] GAT 0.2558 ± 0.024 0.2629 ± 0.019 0.3069 ± 0.011 0.3454 ± 0.024 0.3805 ± 0.016 0.4189 ± 0.01 0.3284 ± 0.017
webkb_parsed [3] GCN 0.2099 ± 0.056 0.215 ± 0.055 0.2477 ± 0.055 0.2248 ± 0.085 0.2783 ± 0.085 0.2017 ± 0.112 0.2296 ± 0.074

Table 5.7: All LLM-10 (LLMnlabeled = 10) GAT and GCN macro F1-Socre results. The
numbers represent the mean and standard deviation of all ten iterations for each dataset,
the number of labeled data, and keyphrases.

68

Dataset Keyphrases GNN Model
Number of Labeled Data Average

PerformanceLLM Only 1 5 10 20 30
CSTR [2,3] GAT 0.7584 ± 0.008 0.7584 ± 0.019 0.7561 ± 0.035 0.7433 ± 0.027 0.6904 ± 0.032 - 0.7413 ± 0.024
CSTR [2,3] GCN 0.7692 ± 0.027 0.7552 ± 0.039 0.7693 ± 0.056 0.769 ± 0.061 0.7103 ± 0.06 - 0.7546 ± 0.049
CSTR [2] GAT 0.7571 ± 0.015 0.7597 ± 0.017 0.7525 ± 0.024 0.7447 ± 0.027 0.6913 ± 0.031 - 0.7411 ± 0.023
CSTR [2] GCN 0.7674 ± 0.025 0.7596 ± 0.028 0.7489 ± 0.043 0.747 ± 0.049 0.7353 ± 0.056 - 0.7516 ± 0.04
CSTR [3] GAT 0.7596 ± 0.016 0.7562 ± 0.02 0.7513 ± 0.021 0.7384 ± 0.035 0.6925 ± 0.026 - 0.7396 ± 0.024
CSTR [3] GCN 0.7495 ± 0.043 0.7574 ± 0.032 0.7684 ± 0.041 0.7564 ± 0.038 0.7563 ± 0.077 - 0.7576 ± 0.046

Dmoz_Computers [2,3] GAT 0.4558 ± 0.006 0.4561 ± 0.01 0.4668 ± 0.007 0.4679 ± 0.01 0.4938 ± 0.014 0.5009 ± 0.018 0.4736 ± 0.011
Dmoz_Computers [2,3] GCN 0.4356 ± 0.008 0.4351 ± 0.007 0.447 ± 0.01 0.4507 ± 0.013 0.4721 ± 0.014 0.4823 ± 0.018 0.4538 ± 0.012
Dmoz_Computers [2] GAT 0.4528 ± 0.009 0.4554 ± 0.009 0.4649 ± 0.006 0.4652 ± 0.01 0.4906 ± 0.015 0.4992 ± 0.02 0.4713 ± 0.012
Dmoz_Computers [2] GCN 0.428 ± 0.008 0.4292 ± 0.007 0.4398 ± 0.007 0.4441 ± 0.013 0.4654 ± 0.012 0.4745 ± 0.014 0.4468 ± 0.01
Dmoz_Computers [3] GAT 0.4577 ± 0.009 0.4599 ± 0.007 0.4705 ± 0.009 0.4712 ± 0.01 0.4946 ± 0.014 0.5054 ± 0.02 0.4765 ± 0.011
Dmoz_Computers [3] GCN 0.4391 ± 0.007 0.4408 ± 0.006 0.454 ± 0.009 0.4584 ± 0.012 0.4774 ± 0.012 0.4871 ± 0.017 0.4594 ± 0.01

Dmoz_Health [2,3] GAT 0.7174 ± 0.02 0.7215 ± 0.018 0.7201 ± 0.014 0.731 ± 0.014 0.7463 ± 0.015 0.7566 ± 0.014 0.7321 ± 0.016
Dmoz_Health [2,3] GCN 0.7036 ± 0.018 0.7059 ± 0.014 0.7041 ± 0.013 0.7129 ± 0.015 0.7269 ± 0.017 0.7442 ± 0.018 0.7163 ± 0.016
Dmoz_Health [2] GAT 0.7158 ± 0.019 0.7206 ± 0.018 0.7177 ± 0.013 0.7283 ± 0.012 0.7442 ± 0.018 0.7522 ± 0.013 0.7298 ± 0.016
Dmoz_Health [2] GCN 0.7003 ± 0.018 0.7022 ± 0.017 0.6989 ± 0.017 0.7076 ± 0.011 0.7233 ± 0.016 0.7342 ± 0.015 0.7111 ± 0.016
Dmoz_Health [3] GAT 0.7201 ± 0.019 0.7197 ± 0.017 0.7225 ± 0.012 0.7328 ± 0.013 0.7471 ± 0.016 0.7555 ± 0.014 0.7329 ± 0.015
Dmoz_Health [3] GCN 0.7086 ± 0.021 0.7081 ± 0.017 0.7073 ± 0.017 0.7155 ± 0.01 0.7279 ± 0.018 0.7419 ± 0.014 0.7182 ± 0.016
Dmoz_Science [2,3] GAT 0.6516 ± 0.016 0.6509 ± 0.013 0.6455 ± 0.027 0.6453 ± 0.02 0.6595 ± 0.015 0.6832 ± 0.013 0.656 ± 0.017
Dmoz_Science [2,3] GCN 0.6424 ± 0.013 0.6385 ± 0.012 0.6395 ± 0.027 0.6366 ± 0.017 0.6476 ± 0.017 0.6671 ± 0.015 0.6453 ± 0.017
Dmoz_Science [2] GAT 0.6479 ± 0.014 0.6497 ± 0.013 0.6464 ± 0.026 0.6463 ± 0.019 0.6631 ± 0.013 0.6812 ± 0.013 0.6558 ± 0.017
Dmoz_Science [2] GCN 0.6385 ± 0.014 0.6366 ± 0.016 0.6343 ± 0.023 0.6325 ± 0.014 0.6446 ± 0.017 0.6672 ± 0.013 0.6423 ± 0.016
Dmoz_Science [3] GAT 0.6532 ± 0.013 0.6533 ± 0.013 0.6468 ± 0.028 0.6478 ± 0.018 0.6613 ± 0.014 0.6826 ± 0.016 0.6575 ± 0.017
Dmoz_Science [3] GCN 0.6428 ± 0.014 0.6447 ± 0.011 0.6055 ± 0.103 0.6386 ± 0.016 0.6543 ± 0.017 0.6723 ± 0.013 0.643 ± 0.029
Dmoz_Sports [2,3] GAT 0.7787 ± 0.005 0.7798 ± 0.005 0.7857 ± 0.004 0.7892 ± 0.003 0.7956 ± 0.006 0.8047 ± 0.006 0.789 ± 0.005
Dmoz_Sports [2,3] GCN 0.742 ± 0.006 0.7444 ± 0.004 0.7517 ± 0.006 0.7553 ± 0.003 0.7618 ± 0.006 0.7699 ± 0.006 0.7542 ± 0.005
Dmoz_Sports [2] GAT 0.7811 ± 0.003 0.7819 ± 0.004 0.7884 ± 0.005 0.7919 ± 0.004 0.7968 ± 0.005 0.8065 ± 0.006 0.7911 ± 0.005
Dmoz_Sports [2] GCN 0.7326 ± 0.004 0.7336 ± 0.005 0.7421 ± 0.006 0.745 ± 0.005 0.7495 ± 0.005 0.7572 ± 0.007 0.7433 ± 0.005
Dmoz_Sports [3] GAT 0.7841 ± 0.005 0.7844 ± 0.004 0.7903 ± 0.006 0.7958 ± 0.003 0.7996 ± 0.006 0.8074 ± 0.006 0.7936 ± 0.005
Dmoz_Sports [3] GCN 0.7503 ± 0.006 0.7472 ± 0.005 0.7522 ± 0.006 0.7582 ± 0.005 0.7679 ± 0.006 0.7742 ± 0.005 0.7583 ± 0.005

Industry_Sector [2,3] GAT 0.3471 ± 0.011 0.3477 ± 0.014 0.3564 ± 0.013 0.3727 ± 0.012 0.3863 ± 0.013 0.407 ± 0.016 0.3695 ± 0.013
Industry_Sector [2,3] GCN 0.2361 ± 0.047 0.2082 ± 0.086 0.1913 ± 0.08 0.1743 ± 0.099 0.2125 ± 0.101 0.2345 ± 0.08 0.2095 ± 0.082
Industry_Sector [2] GAT 0.344 ± 0.01 0.3465 ± 0.012 0.3467 ± 0.013 0.3662 ± 0.009 0.3814 ± 0.013 0.4032 ± 0.014 0.3647 ± 0.012
Industry_Sector [2] GCN 0.1878 ± 0.082 0.2181 ± 0.096 0.2067 ± 0.068 0.2016 ± 0.077 0.155 ± 0.081 0.1567 ± 0.083 0.1876 ± 0.081
Industry_Sector [3] GAT 0.347 ± 0.012 0.3478 ± 0.01 0.3572 ± 0.01 0.3703 ± 0.007 0.3844 ± 0.015 0.4037 ± 0.016 0.3684 ± 0.012
Industry_Sector [3] GCN 0.2072 ± 0.074 0.248 ± 0.066 0.1874 ± 0.071 0.2279 ± 0.094 0.1913 ± 0.105 0.2518 ± 0.085 0.2189 ± 0.082

NSF [2,3] GAT 0.605 ± 0.025 0.6043 ± 0.025 0.6361 ± 0.03 0.634 ± 0.024 0.6682 ± 0.039 0.6813 ± 0.038 0.6381 ± 0.03
NSF [2,3] GCN 0.5916 ± 0.023 0.5955 ± 0.023 0.6257 ± 0.032 0.6174 ± 0.023 0.6485 ± 0.033 0.6651 ± 0.033 0.624 ± 0.028
NSF [2] GAT 0.6031 ± 0.023 0.6068 ± 0.026 0.6388 ± 0.028 0.6296 ± 0.023 0.6703 ± 0.035 0.6803 ± 0.042 0.6381 ± 0.03
NSF [2] GCN 0.5922 ± 0.021 0.5928 ± 0.024 0.6076 ± 0.066 0.6184 ± 0.024 0.6492 ± 0.03 0.6579 ± 0.035 0.6197 ± 0.033
NSF [3] GAT 0.6015 ± 0.027 0.6074 ± 0.025 0.6388 ± 0.031 0.6378 ± 0.025 0.6713 ± 0.037 0.6832 ± 0.04 0.64 ± 0.031
NSF [3] GCN 0.5901 ± 0.026 0.6032 ± 0.017 0.6278 ± 0.026 0.6207 ± 0.021 0.6515 ± 0.033 0.6643 ± 0.037 0.6263 ± 0.027

SyskillWebert [2,3] GAT 0.6136 ± 0.014 0.6118 ± 0.013 0.6123 ± 0.016 0.6062 ± 0.018 0.6327 ± 0.028 0.6212 ± 0.047 0.6163 ± 0.023
SyskillWebert [2,3] GCN 0.6126 ± 0.02 0.6133 ± 0.019 0.6141 ± 0.022 0.6091 ± 0.021 0.6433 ± 0.05 0.6216 ± 0.098 0.619 ± 0.038
SyskillWebert [2] GAT 0.6103 ± 0.015 0.6159 ± 0.014 0.6127 ± 0.016 0.6112 ± 0.015 0.627 ± 0.037 0.6168 ± 0.039 0.6156 ± 0.023
SyskillWebert [2] GCN 0.6283 ± 0.019 0.595 ± 0.056 0.597 ± 0.08 0.6127 ± 0.02 0.6382 ± 0.024 0.6374 ± 0.089 0.6181 ± 0.048
SyskillWebert [3] GAT 0.6113 ± 0.013 0.6116 ± 0.015 0.618 ± 0.019 0.6051 ± 0.017 0.6207 ± 0.037 0.6278 ± 0.041 0.6157 ± 0.024
SyskillWebert [3] GCN 0.6103 ± 0.017 0.6094 ± 0.03 0.6203 ± 0.032 0.6158 ± 0.028 0.6565 ± 0.056 0.6195 ± 0.029 0.622 ± 0.032

classic4 [2,3] GAT 0.7954 ± 0.074 0.8058 ± 0.075 0.8287 ± 0.053 0.8084 ± 0.076 0.8346 ± 0.053 0.8759 ± 0.044 0.8248 ± 0.062
classic4 [2,3] GCN 0.7913 ± 0.066 0.7851 ± 0.069 0.7921 ± 0.049 0.7879 ± 0.075 0.8224 ± 0.059 0.853 ± 0.043 0.8053 ± 0.06
classic4 [2] GAT 0.7958 ± 0.075 0.8036 ± 0.073 0.8256 ± 0.062 0.8124 ± 0.075 0.8348 ± 0.061 0.8694 ± 0.046 0.8236 ± 0.065
classic4 [2] GCN 0.7877 ± 0.068 0.7724 ± 0.071 0.7909 ± 0.056 0.7878 ± 0.071 0.8182 ± 0.059 0.8453 ± 0.034 0.8004 ± 0.06
classic4 [3] GAT 0.7999 ± 0.077 0.8041 ± 0.076 0.8249 ± 0.058 0.8141 ± 0.073 0.8388 ± 0.054 0.8711 ± 0.043 0.8255 ± 0.064
classic4 [3] GCN 0.792 ± 0.063 0.7778 ± 0.066 0.7852 ± 0.054 0.7915 ± 0.076 0.8094 ± 0.047 0.8428 ± 0.049 0.7998 ± 0.059

re8 [2,3] GAT 0.6887 ± 0.061 0.6899 ± 0.062 0.7094 ± 0.081 0.7226 ± 0.039 0.7312 ± 0.04 0.7568 ± 0.037 0.7164 ± 0.053
re8 [2,3] GCN 0.6615 ± 0.06 0.6555 ± 0.052 0.6738 ± 0.078 0.689 ± 0.034 0.6971 ± 0.034 0.7045 ± 0.038 0.6802 ± 0.049
re8 [2] GAT 0.6827 ± 0.065 0.6859 ± 0.066 0.7112 ± 0.083 0.7187 ± 0.04 0.7283 ± 0.042 0.752 ± 0.04 0.7132 ± 0.056
re8 [2] GCN 0.6479 ± 0.057 0.6398 ± 0.055 0.6545 ± 0.068 0.6726 ± 0.049 0.6593 ± 0.046 0.6854 ± 0.048 0.6599 ± 0.054
re8 [3] GAT 0.6902 ± 0.064 0.6928 ± 0.06 0.7165 ± 0.083 0.7273 ± 0.039 0.7318 ± 0.042 0.7595 ± 0.039 0.7197 ± 0.055
re8 [3] GCN 0.6615 ± 0.061 0.6575 ± 0.044 0.6732 ± 0.074 0.6824 ± 0.051 0.6852 ± 0.049 0.7024 ± 0.047 0.677 ± 0.054

review_polarity [2,3] GAT 0.5844 ± 0.008 0.5583 ± 0.081 0.5682 ± 0.106 0.4964 ± 0.127 0.5466 ± 0.125 0.5705 ± 0.085 0.5541 ± 0.089
review_polarity [2,3] GCN 0.4864 ± 0.14 0.3634 ± 0.088 0.3961 ± 0.129 0.4058 ± 0.144 0.3724 ± 0.075 0.4552 ± 0.161 0.4132 ± 0.123
review_polarity [2] GAT 0.5794 ± 0.037 0.5661 ± 0.083 0.556 ± 0.119 0.5368 ± 0.109 0.5656 ± 0.121 0.5672 ± 0.125 0.5618 ± 0.099
review_polarity [2] GCN 0.3788 ± 0.089 0.3434 ± 0.026 0.3968 ± 0.117 0.4488 ± 0.135 0.3892 ± 0.118 0.5355 ± 0.116 0.4154 ± 0.1
review_polarity [3] GAT 0.5621 ± 0.082 0.5465 ± 0.095 0.6176 ± 0.017 0.5217 ± 0.13 0.5631 ± 0.118 0.5366 ± 0.114 0.5579 ± 0.093
review_polarity [3] GCN 0.4007 ± 0.128 0.4001 ± 0.138 0.3676 ± 0.075 0.4144 ± 0.118 0.4576 ± 0.142 0.3891 ± 0.122 0.4049 ± 0.121

webkb_parsed [2,3] GAT 0.3168 ± 0.01 0.3164 ± 0.009 0.3281 ± 0.011 0.3407 ± 0.014 0.356 ± 0.01 0.3801 ± 0.014 0.3397 ± 0.011
webkb_parsed [2,3] GCN 0.1965 ± 0.092 0.2176 ± 0.078 0.2097 ± 0.088 0.1979 ± 0.053 0.2367 ± 0.066 0.1928 ± 0.09 0.2085 ± 0.078
webkb_parsed [2] GAT 0.3148 ± 0.01 0.3177 ± 0.013 0.3285 ± 0.012 0.3409 ± 0.013 0.3564 ± 0.008 0.378 ± 0.016 0.3394 ± 0.012
webkb_parsed [2] GCN 0.2172 ± 0.08 0.1787 ± 0.068 0.2293 ± 0.078 0.2048 ± 0.074 0.1869 ± 0.087 0.154 ± 0.038 0.1951 ± 0.071
webkb_parsed [3] GAT 0.3174 ± 0.011 0.3184 ± 0.01 0.3289 ± 0.011 0.3385 ± 0.014 0.3594 ± 0.011 0.379 ± 0.018 0.3403 ± 0.012
webkb_parsed [3] GCN 0.1848 ± 0.061 0.2256 ± 0.064 0.2037 ± 0.08 0.2196 ± 0.095 0.1931 ± 0.064 0.1914 ± 0.094 0.203 ± 0.076

Table 5.8: All LLM-50 (LLMnlabeled = 50) GAT and GCN macro F1-Socre results. The
numbers represent the mean and standard deviation of all ten iterations for each dataset,
the number of labeled data, and keyphrases.

69

Dataset Keyphrases GNN Model
Number of Labeled Data Average

PerformanceLLM Only 1 5 10 20 30
CSTR [2,3] GAT 0.7671 ± 0.016 0.7677 ± 0.018 0.7578 ± 0.017 0.7395 ± 0.013 0.6884 ± 0.036 - 0.7441 ± 0.02
CSTR [2,3] GCN 0.7977 ± 0.044 0.7915 ± 0.014 0.7906 ± 0.035 0.7672 ± 0.027 0.7261 ± 0.038 - 0.7746 ± 0.032
CSTR [2] GAT 0.7651 ± 0.018 0.7626 ± 0.016 0.7586 ± 0.011 0.7419 ± 0.015 0.6914 ± 0.036 - 0.7439 ± 0.019
CSTR [2] GCN 0.7916 ± 0.014 0.7531 ± 0.059 0.7365 ± 0.101 0.763 ± 0.026 0.7067 ± 0.046 - 0.7502 ± 0.049
CSTR [3] GAT 0.7699 ± 0.015 0.7716 ± 0.015 0.7589 ± 0.017 0.7372 ± 0.015 0.6909 ± 0.02 - 0.7457 ± 0.016
CSTR [3] GCN 0.7991 ± 0.03 0.7907 ± 0.02 0.7783 ± 0.041 0.7644 ± 0.029 0.7492 ± 0.065 - 0.7763 ± 0.037

Dmoz_Computers [2,3] GAT 0.4561 ± 0.006 0.4557 ± 0.007 0.4631 ± 0.007 0.4638 ± 0.006 0.4687 ± 0.007 0.4761 ± 0.017 0.4639 ± 0.008
Dmoz_Computers [2,3] GCN 0.4385 ± 0.006 0.4392 ± 0.006 0.447 ± 0.008 0.4463 ± 0.006 0.4524 ± 0.011 0.4643 ± 0.018 0.448 ± 0.009
Dmoz_Computers [2] GAT 0.453 ± 0.007 0.452 ± 0.005 0.4608 ± 0.007 0.4605 ± 0.007 0.4667 ± 0.01 0.4741 ± 0.016 0.4612 ± 0.009
Dmoz_Computers [2] GCN 0.4333 ± 0.008 0.4348 ± 0.008 0.4442 ± 0.007 0.4435 ± 0.007 0.4521 ± 0.011 0.4629 ± 0.018 0.4451 ± 0.01
Dmoz_Computers [3] GAT 0.4577 ± 0.007 0.457 ± 0.008 0.4656 ± 0.006 0.4642 ± 0.008 0.4699 ± 0.007 0.4776 ± 0.018 0.4653 ± 0.009
Dmoz_Computers [3] GCN 0.4472 ± 0.005 0.4443 ± 0.005 0.4517 ± 0.009 0.4525 ± 0.011 0.456 ± 0.008 0.4688 ± 0.017 0.4534 ± 0.009

Dmoz_Health [2,3] GAT 0.717 ± 0.019 0.7183 ± 0.019 0.7247 ± 0.017 0.7352 ± 0.014 0.7397 ± 0.014 0.7461 ± 0.006 0.7302 ± 0.015
Dmoz_Health [2,3] GCN 0.7056 ± 0.024 0.7085 ± 0.021 0.7135 ± 0.016 0.7234 ± 0.012 0.7279 ± 0.017 0.7358 ± 0.008 0.7191 ± 0.016
Dmoz_Health [2] GAT 0.7167 ± 0.019 0.7164 ± 0.02 0.7233 ± 0.017 0.7351 ± 0.015 0.7378 ± 0.013 0.746 ± 0.006 0.7292 ± 0.015
Dmoz_Health [2] GCN 0.7019 ± 0.017 0.7016 ± 0.021 0.7086 ± 0.022 0.7203 ± 0.012 0.7232 ± 0.014 0.7302 ± 0.006 0.7143 ± 0.015
Dmoz_Health [3] GAT 0.7188 ± 0.018 0.7188 ± 0.017 0.7251 ± 0.015 0.7368 ± 0.015 0.7394 ± 0.015 0.7479 ± 0.006 0.7311 ± 0.014
Dmoz_Health [3] GCN 0.7081 ± 0.021 0.7056 ± 0.016 0.7131 ± 0.014 0.7241 ± 0.013 0.7292 ± 0.012 0.7388 ± 0.011 0.7198 ± 0.014
Dmoz_Science [2,3] GAT 0.6432 ± 0.029 0.6434 ± 0.03 0.6507 ± 0.018 0.6638 ± 0.019 0.6707 ± 0.018 0.6709 ± 0.016 0.6571 ± 0.022
Dmoz_Science [2,3] GCN 0.6025 ± 0.082 0.6294 ± 0.028 0.6366 ± 0.019 0.6518 ± 0.018 0.6559 ± 0.016 0.6555 ± 0.017 0.6386 ± 0.03
Dmoz_Science [2] GAT 0.6407 ± 0.029 0.6423 ± 0.028 0.6509 ± 0.016 0.6642 ± 0.019 0.6687 ± 0.016 0.6697 ± 0.016 0.6561 ± 0.021
Dmoz_Science [2] GCN 0.6272 ± 0.027 0.628 ± 0.027 0.6354 ± 0.016 0.6489 ± 0.019 0.6496 ± 0.018 0.6516 ± 0.017 0.6401 ± 0.021
Dmoz_Science [3] GAT 0.644 ± 0.028 0.6456 ± 0.028 0.6508 ± 0.018 0.6662 ± 0.02 0.6708 ± 0.016 0.6728 ± 0.016 0.6584 ± 0.021
Dmoz_Science [3] GCN 0.6144 ± 0.067 0.634 ± 0.028 0.6391 ± 0.017 0.6551 ± 0.02 0.6614 ± 0.017 0.6597 ± 0.018 0.6439 ± 0.028
Dmoz_Sports [2,3] GAT 0.7983 ± 0.004 0.7987 ± 0.004 0.7979 ± 0.005 0.8001 ± 0.006 0.8041 ± 0.004 0.8076 ± 0.008 0.8011 ± 0.005
Dmoz_Sports [2,3] GCN 0.7653 ± 0.005 0.7685 ± 0.006 0.7654 ± 0.006 0.7654 ± 0.008 0.7702 ± 0.008 0.7718 ± 0.009 0.7678 ± 0.007
Dmoz_Sports [2] GAT 0.7999 ± 0.005 0.8009 ± 0.005 0.8003 ± 0.004 0.8019 ± 0.006 0.8054 ± 0.004 0.8093 ± 0.008 0.803 ± 0.005
Dmoz_Sports [2] GCN 0.7558 ± 0.004 0.7551 ± 0.006 0.7551 ± 0.004 0.7561 ± 0.006 0.7548 ± 0.004 0.7615 ± 0.006 0.7564 ± 0.005
Dmoz_Sports [3] GAT 0.8011 ± 0.005 0.8013 ± 0.005 0.8026 ± 0.005 0.8028 ± 0.007 0.8076 ± 0.006 0.8111 ± 0.008 0.8044 ± 0.006
Dmoz_Sports [3] GCN 0.773 ± 0.005 0.7711 ± 0.004 0.7721 ± 0.005 0.7714 ± 0.008 0.7771 ± 0.005 0.7805 ± 0.007 0.7742 ± 0.006

Industry_Sector [2,3] GAT 0.3606 ± 0.009 0.3624 ± 0.008 0.3686 ± 0.01 0.3645 ± 0.006 0.3756 ± 0.013 0.3933 ± 0.012 0.3708 ± 0.01
Industry_Sector [2,3] GCN 0.2482 ± 0.056 0.2402 ± 0.079 0.2318 ± 0.084 0.1428 ± 0.065 0.2134 ± 0.061 0.169 ± 0.089 0.2076 ± 0.072
Industry_Sector [2] GAT 0.3578 ± 0.007 0.3601 ± 0.008 0.3667 ± 0.01 0.362 ± 0.009 0.374 ± 0.013 0.3899 ± 0.011 0.3684 ± 0.01
Industry_Sector [2] GCN 0.1835 ± 0.083 0.2091 ± 0.088 0.1655 ± 0.101 0.1493 ± 0.069 0.1979 ± 0.092 0.1571 ± 0.086 0.1771 ± 0.086
Industry_Sector [3] GAT 0.3606 ± 0.008 0.3599 ± 0.007 0.3681 ± 0.012 0.3661 ± 0.009 0.3765 ± 0.012 0.3919 ± 0.012 0.3705 ± 0.01
Industry_Sector [3] GCN 0.2098 ± 0.074 0.2286 ± 0.071 0.1819 ± 0.087 0.2009 ± 0.08 0.2068 ± 0.082 0.2602 ± 0.062 0.2147 ± 0.076

NSF [2,3] GAT 0.617 ± 0.039 0.6171 ± 0.038 0.627 ± 0.038 0.6288 ± 0.046 0.638 ± 0.024 0.6567 ± 0.024 0.6308 ± 0.035
NSF [2,3] GCN 0.6014 ± 0.033 0.6034 ± 0.034 0.6153 ± 0.035 0.6152 ± 0.037 0.6251 ± 0.022 0.6356 ± 0.023 0.616 ± 0.031
NSF [2] GAT 0.6147 ± 0.038 0.6164 ± 0.042 0.6265 ± 0.039 0.6253 ± 0.045 0.637 ± 0.022 0.6519 ± 0.024 0.6286 ± 0.035
NSF [2] GCN 0.6023 ± 0.037 0.6028 ± 0.038 0.618 ± 0.033 0.6145 ± 0.041 0.6288 ± 0.022 0.6342 ± 0.024 0.6168 ± 0.032
NSF [3] GAT 0.6176 ± 0.04 0.6198 ± 0.038 0.6299 ± 0.04 0.6305 ± 0.049 0.6409 ± 0.027 0.6573 ± 0.022 0.6327 ± 0.036
NSF [3] GCN 0.6092 ± 0.036 0.6065 ± 0.035 0.618 ± 0.032 0.6171 ± 0.039 0.632 ± 0.024 0.6391 ± 0.024 0.6203 ± 0.032

SyskillWebert [2,3] GAT 0.602 ± 0.015 0.6055 ± 0.015 0.6026 ± 0.016 0.6029 ± 0.014 0.6116 ± 0.03 0.626 ± 0.048 0.6084 ± 0.023
SyskillWebert [2,3] GCN 0.6059 ± 0.016 0.6152 ± 0.025 0.6082 ± 0.029 0.6179 ± 0.03 0.6285 ± 0.04 0.6424 ± 0.067 0.6197 ± 0.035
SyskillWebert [2] GAT 0.6011 ± 0.012 0.6011 ± 0.016 0.6011 ± 0.015 0.609 ± 0.014 0.6154 ± 0.022 0.6288 ± 0.058 0.6094 ± 0.023
SyskillWebert [2] GCN 0.6063 ± 0.026 0.6143 ± 0.03 0.6155 ± 0.027 0.6096 ± 0.014 0.6332 ± 0.03 0.6612 ± 0.08 0.6234 ± 0.035
SyskillWebert [3] GAT 0.6016 ± 0.013 0.5978 ± 0.014 0.6057 ± 0.014 0.6046 ± 0.018 0.6237 ± 0.027 0.621 ± 0.052 0.6091 ± 0.023
SyskillWebert [3] GCN 0.6065 ± 0.017 0.6019 ± 0.02 0.6126 ± 0.03 0.6162 ± 0.027 0.6123 ± 0.021 0.6548 ± 0.058 0.6174 ± 0.029

classic4 [2,3] GAT 0.7968 ± 0.08 0.7974 ± 0.082 0.794 ± 0.08 0.8188 ± 0.06 0.8438 ± 0.055 0.8338 ± 0.039 0.8141 ± 0.066
classic4 [2,3] GCN 0.7847 ± 0.087 0.7808 ± 0.077 0.7697 ± 0.07 0.7988 ± 0.057 0.828 ± 0.051 0.8089 ± 0.04 0.7951 ± 0.064
classic4 [2] GAT 0.7972 ± 0.082 0.8015 ± 0.078 0.7946 ± 0.078 0.8222 ± 0.059 0.8425 ± 0.057 0.833 ± 0.036 0.8152 ± 0.065
classic4 [2] GCN 0.7728 ± 0.076 0.7763 ± 0.068 0.7741 ± 0.071 0.8045 ± 0.044 0.8231 ± 0.048 0.8156 ± 0.033 0.7944 ± 0.057
classic4 [3] GAT 0.7988 ± 0.08 0.8021 ± 0.077 0.7928 ± 0.076 0.8241 ± 0.06 0.8418 ± 0.058 0.8259 ± 0.04 0.8143 ± 0.065
classic4 [3] GCN 0.7852 ± 0.083 0.7845 ± 0.077 0.765 ± 0.066 0.7925 ± 0.056 0.8281 ± 0.053 0.8181 ± 0.039 0.7956 ± 0.062

re8 [2,3] GAT 0.7474 ± 0.07 0.7481 ± 0.07 0.7386 ± 0.061 0.7574 ± 0.052 0.7349 ± 0.047 0.7058 ± 0.045 0.7387 ± 0.058
re8 [2,3] GCN 0.7094 ± 0.076 0.7189 ± 0.07 0.7086 ± 0.061 0.7158 ± 0.057 0.6948 ± 0.043 0.6586 ± 0.044 0.701 ± 0.059
re8 [2] GAT 0.7406 ± 0.07 0.7411 ± 0.071 0.727 ± 0.058 0.7526 ± 0.053 0.7319 ± 0.051 0.7006 ± 0.045 0.7323 ± 0.058
re8 [2] GCN 0.7049 ± 0.073 0.7036 ± 0.069 0.6906 ± 0.058 0.6985 ± 0.045 0.6883 ± 0.046 0.6132 ± 0.138 0.6832 ± 0.071
re8 [3] GAT 0.7464 ± 0.071 0.7459 ± 0.071 0.737 ± 0.064 0.7581 ± 0.052 0.7344 ± 0.049 0.709 ± 0.043 0.7385 ± 0.058
re8 [3] GCN 0.7141 ± 0.056 0.7273 ± 0.073 0.7042 ± 0.061 0.737 ± 0.048 0.6976 ± 0.045 0.6489 ± 0.044 0.7049 ± 0.054

review_polarity [2,3] GAT 0.5299 ± 0.149 0.5957 ± 0.125 0.5091 ± 0.15 0.5569 ± 0.151 0.5704 ± 0.127 0.6199 ± 0.103 0.5637 ± 0.134
review_polarity [2,3] GCN 0.4305 ± 0.131 0.4511 ± 0.14 0.3989 ± 0.139 0.3757 ± 0.082 0.3638 ± 0.065 0.3428 ± 0.021 0.3938 ± 0.096
review_polarity [2] GAT 0.5295 ± 0.149 0.6288 ± 0.104 0.4932 ± 0.156 0.4784 ± 0.156 0.5969 ± 0.119 0.5349 ± 0.138 0.5436 ± 0.137
review_polarity [2] GCN 0.3333 ± 0.0 0.4568 ± 0.137 0.3667 ± 0.103 0.4342 ± 0.162 0.4032 ± 0.147 0.392 ± 0.114 0.3977 ± 0.111
review_polarity [3] GAT 0.5129 ± 0.157 0.5388 ± 0.15 0.5705 ± 0.129 0.5879 ± 0.117 0.5606 ± 0.105 0.5693 ± 0.151 0.5567 ± 0.135
review_polarity [3] GCN 0.4185 ± 0.118 0.3868 ± 0.123 0.3638 ± 0.053 0.3981 ± 0.116 0.3873 ± 0.105 0.3748 ± 0.114 0.3882 ± 0.105

webkb_parsed [2,3] GAT 0.3357 ± 0.008 0.3373 ± 0.008 0.3429 ± 0.01 0.342 ± 0.006 0.3471 ± 0.009 0.3539 ± 0.011 0.3432 ± 0.009
webkb_parsed [2,3] GCN 0.2211 ± 0.087 0.2103 ± 0.062 0.1957 ± 0.085 0.1842 ± 0.064 0.1778 ± 0.089 0.1913 ± 0.075 0.1967 ± 0.077
webkb_parsed [2] GAT 0.3365 ± 0.007 0.3369 ± 0.008 0.3447 ± 0.012 0.3421 ± 0.01 0.3452 ± 0.007 0.3515 ± 0.014 0.3428 ± 0.009
webkb_parsed [2] GCN 0.1986 ± 0.093 0.154 ± 0.057 0.1713 ± 0.079 0.1778 ± 0.077 0.1388 ± 0.066 0.1465 ± 0.041 0.1645 ± 0.069
webkb_parsed [3] GAT 0.3375 ± 0.007 0.3378 ± 0.01 0.3434 ± 0.01 0.3422 ± 0.007 0.3464 ± 0.007 0.3519 ± 0.011 0.3432 ± 0.009
webkb_parsed [3] GCN 0.1977 ± 0.065 0.1658 ± 0.097 0.1956 ± 0.068 0.189 ± 0.071 0.2001 ± 0.08 0.1472 ± 0.058 0.1826 ± 0.073

Table 5.9: All LLM-100 (LLMnlabeled = 100) GAT and GCN macro F1-Socre results. The
numbers represent the mean and standard deviation of all ten iterations for each dataset,
the number of labeled data, and keyphrases.

70

LLM_only 1 5 10 20
Number of rotulated data

0.725

0.750

0.775

0.800

F1
-S

co
re

CSTR

LLM_only 1 5 10 20 30
Number of rotulated data

0.40

0.45

0.50

0.55

F1
-S

co
re

Dmoz_Computers

LLM_only 1 5 10 20 30
Number of rotulated data

0.65

0.70

0.75

0.80

F1
-S

co
re

Dmoz_Health

LLM_only 1 5 10 20 30
Number of rotulated data

0.55

0.60

0.65

0.70

F1
-S

co
re

Dmoz_Science

LLM_only 1 5 10 20 30
Number of rotulated data

0.70

0.75

0.80

F1
-S

co
re

Dmoz_Sports

LLM_only 1 5 10 20 30
Number of rotulated data

0.2

0.3

0.4
F1

-S
co

re

Industry_Sector

LLM_only 1 5 10 20 30
Number of rotulated data

0.60

0.65

0.70

0.75

F1
-S

co
re

NSF

LLM_only 1 5 10 20 30
Number of rotulated data

0.60

0.65

0.70

F1
-S

co
re

SyskillWebert

LLM_only 1 5 10 20 30
Number of rotulated data

0.75

0.80

0.85

0.90

F1
-S

co
re

classic4

LLM_only 1 5 10 20 30
Number of rotulated data

0.6

0.7

0.8

F1
-S

co
re

re8

LLM_only 1 5 10 20 30
Number of rotulated data

0.40

0.45

0.50

0.55

F1
-S

co
re

review_polarity

LLM_only 1 5 10 20 30
Number of rotulated data

0.20

0.25

0.30

0.35

0.40

F1
-S

co
re

webkb_parsed

keyphrase23_GAT
keyphrase23_GCN

keyphrase2_GAT
keyphrase2_GCN

keyphrase3_GAT
keyphrase3_GCN

Figure 5.8: All GAT and GCN models trained with 10 LLM labeled instances
(LLMnlabeled = 10) F1-scores results, over the evolution of labeled node numbers.

71

LLM_only 1 5 10 20
Number of rotulated data

0.70

0.72

0.74

0.76

F1
-S

co
re

CSTR

LLM_only 1 5 10 20 30
Number of rotulated data

0.44

0.46

0.48

0.50

F1
-S

co
re

Dmoz_Computers

LLM_only 1 5 10 20 30
Number of rotulated data

0.70

0.72

0.74

F1
-S

co
re

Dmoz_Health

LLM_only 1 5 10 20 30
Number of rotulated data

0.62

0.64

0.66

0.68

F1
-S

co
re

Dmoz_Science

LLM_only 1 5 10 20 30
Number of rotulated data

0.74

0.76

0.78

0.80

F1
-S

co
re

Dmoz_Sports

LLM_only 1 5 10 20 30
Number of rotulated data

0.2

0.3

0.4
F1

-S
co

re

Industry_Sector

LLM_only 1 5 10 20 30
Number of rotulated data

0.600

0.625

0.650

0.675

F1
-S

co
re

NSF

LLM_only 1 5 10 20 30
Number of rotulated data

0.60

0.62

0.64

F1
-S

co
re

SyskillWebert

LLM_only 1 5 10 20 30
Number of rotulated data

0.775

0.800

0.825

0.850

0.875

F1
-S

co
re

classic4

LLM_only 1 5 10 20 30
Number of rotulated data

0.65

0.70

0.75

F1
-S

co
re

re8

LLM_only 1 5 10 20 30
Number of rotulated data

0.4

0.5

0.6

F1
-S

co
re

review_polarity

LLM_only 1 5 10 20 30
Number of rotulated data

0.15
0.20
0.25
0.30
0.35

F1
-S

co
re

webkb_parsed

keyphrase23_GAT
keyphrase23_GCN

keyphrase2_GAT
keyphrase2_GCN

keyphrase3_GAT
keyphrase3_GCN

Figure 5.9: All GAT and GCN models trained with 50 LLM labeled instances
(LLMnlabeled = 50) F1-scores results, over the evolution of labeled node numbers.

72

LLM_only 1 5 10 20
Number of rotulated data

0.700
0.725
0.750
0.775
0.800

F1
-S

co
re

CSTR

LLM_only 1 5 10 20 30
Number of rotulated data

0.44
0.45
0.46
0.47

F1
-S

co
re

Dmoz_Computers

LLM_only 1 5 10 20 30
Number of rotulated data

0.70

0.72

0.74

F1
-S

co
re

Dmoz_Health

LLM_only 1 5 10 20 30
Number of rotulated data

0.60

0.62

0.64

0.66

F1
-S

co
re

Dmoz_Science

LLM_only 1 5 10 20 30
Number of rotulated data

0.76

0.78

0.80

F1
-S

co
re

Dmoz_Sports

LLM_only 1 5 10 20 30
Number of rotulated data

0.2

0.3

0.4
F1

-S
co

re

Industry_Sector

LLM_only 1 5 10 20 30
Number of rotulated data

0.60

0.62

0.64

0.66

F1
-S

co
re

NSF

LLM_only 1 5 10 20 30
Number of rotulated data

0.60

0.62

0.64

0.66

F1
-S

co
re

SyskillWebert

LLM_only 1 5 10 20 30
Number of rotulated data

0.78

0.80

0.82

0.84

F1
-S

co
re

classic4

LLM_only 1 5 10 20 30
Number of rotulated data

0.65

0.70

0.75

F1
-S

co
re

re8

LLM_only 1 5 10 20 30
Number of rotulated data

0.4

0.5

0.6

F1
-S

co
re

review_polarity

LLM_only 1 5 10 20 30
Number of rotulated data

0.15

0.20

0.25

0.30

0.35

F1
-S

co
re

webkb_parsed

keyphrase23_GAT
keyphrase23_GCN

keyphrase2_GAT
keyphrase2_GCN

keyphrase3_GAT
keyphrase3_GCN

Figure 5.10: All GAT and GCN models trained with 100 LLM labeled instances
(LLMnlabeled = 100) F1-scores results, over the evolution of labeled node numbers.

73

LLM_only 1 5 10 20
Number of rotulated data

0.6

0.7

0.8

F1
-S

co
re

CSTR

LLM_only 1 5 10 20 30
Number of rotulated data

0.2

0.3

0.4

0.5

0.6

F1
-S

co
re

Dmoz_Computers

LLM_only 1 5 10 20 30
Number of rotulated data

0.4
0.5
0.6
0.7
0.8

F1
-S

co
re

Dmoz_Health

LLM_only 1 5 10 20 30
Number of rotulated data

0.3

0.4

0.5

0.6

0.7

F1
-S

co
re

Dmoz_Science

LLM_only 1 5 10 20 30
Number of rotulated data

0.4

0.6

0.8

F1
-S

co
re

Dmoz_Sports

LLM_only 1 5 10 20 30
Number of rotulated data

0.1

0.2

0.3

0.4

0.5
F1

-S
co

re
Industry_Sector

LLM_only 1 5 10 20 30
Number of rotulated data

0.5

0.6

0.7

0.8

F1
-S

co
re

NSF

LLM_only 1 5 10 20 30
Number of rotulated data

0.6

0.7

0.8

0.9

F1
-S

co
re

SyskillWebert

LLM_only 1 5 10 20 30
Number of rotulated data

0.7

0.8

0.9

F1
-S

co
re

classic4

LLM_only 1 5 10 20 30
Number of rotulated data

0.5

0.6

0.7

0.8

F1
-S

co
re

re8

LLM_only 1 5 10 20 30
Number of rotulated data

0.40

0.45

0.50

0.55

F1
-S

co
re

review_polarity

LLM_only 1 5 10 20 30
Number of rotulated data

0.1

0.2

0.3

0.4

F1
-S

co
re

webkb_parsed

LLM_10_GAT LLM_10_GCN Traditional_GAT Traditional_GCN

Figure 5.11: Comparative evolutionary graph between all GAT and GCN models trained
with 10 LLM labeled instances (LLMnlabeled = 10) and traditionally labeled GAT and
GCN models F1-scores results.

74

LLM_only 1 5 10 20
Number of rotulated data

0.6

0.7

0.8

F1
-S

co
re

CSTR

LLM_only 1 5 10 20 30
Number of rotulated data

0.2

0.3

0.4

0.5

0.6

F1
-S

co
re

Dmoz_Computers

LLM_only 1 5 10 20 30
Number of rotulated data

0.4
0.5
0.6
0.7
0.8

F1
-S

co
re

Dmoz_Health

LLM_only 1 5 10 20 30
Number of rotulated data

0.3

0.4

0.5

0.6

0.7

F1
-S

co
re

Dmoz_Science

LLM_only 1 5 10 20 30
Number of rotulated data

0.4

0.6

0.8

F1
-S

co
re

Dmoz_Sports

LLM_only 1 5 10 20 30
Number of rotulated data

0.1

0.2

0.3

0.4

0.5
F1

-S
co

re
Industry_Sector

LLM_only 1 5 10 20 30
Number of rotulated data

0.5

0.6

0.7

0.8

F1
-S

co
re

NSF

LLM_only 1 5 10 20 30
Number of rotulated data

0.6

0.7

0.8

0.9

F1
-S

co
re

SyskillWebert

LLM_only 1 5 10 20 30
Number of rotulated data

0.7

0.8

0.9

F1
-S

co
re

classic4

LLM_only 1 5 10 20 30
Number of rotulated data

0.5

0.6

0.7

0.8

F1
-S

co
re

re8

LLM_only 1 5 10 20 30
Number of rotulated data

0.4

0.5

0.6

F1
-S

co
re

review_polarity

LLM_only 1 5 10 20 30
Number of rotulated data

0.1

0.2

0.3

0.4

F1
-S

co
re

webkb_parsed

LLM_50_GAT LLM_50_GCN Traditional_GAT Traditional_GCN

Figure 5.12: Comparative evolutionary graph between all GAT and GCN models trained
with 50 LLM labeled instances (LLMnlabeled = 50) and traditionally labeled GAT and
GCN models F1-scores results.

75

LLM_only 1 5 10 20
Number of rotulated data

0.6

0.7

0.8

F1
-S

co
re

CSTR

LLM_only 1 5 10 20 30
Number of rotulated data

0.2

0.3

0.4

0.5

0.6

F1
-S

co
re

Dmoz_Computers

LLM_only 1 5 10 20 30
Number of rotulated data

0.4
0.5
0.6
0.7
0.8

F1
-S

co
re

Dmoz_Health

LLM_only 1 5 10 20 30
Number of rotulated data

0.3

0.4

0.5

0.6

0.7

F1
-S

co
re

Dmoz_Science

LLM_only 1 5 10 20 30
Number of rotulated data

0.4

0.6

0.8

F1
-S

co
re

Dmoz_Sports

LLM_only 1 5 10 20 30
Number of rotulated data

0.1

0.2

0.3

0.4

0.5
F1

-S
co

re
Industry_Sector

LLM_only 1 5 10 20 30
Number of rotulated data

0.5

0.6

0.7

0.8

F1
-S

co
re

NSF

LLM_only 1 5 10 20 30
Number of rotulated data

0.6

0.7

0.8

0.9

F1
-S

co
re

SyskillWebert

LLM_only 1 5 10 20 30
Number of rotulated data

0.7

0.8

0.9

F1
-S

co
re

classic4

LLM_only 1 5 10 20 30
Number of rotulated data

0.5

0.6

0.7

0.8

F1
-S

co
re

re8

LLM_only 1 5 10 20 30
Number of rotulated data

0.4

0.5

0.6

F1
-S

co
re

review_polarity

LLM_only 1 5 10 20 30
Number of rotulated data

0.1

0.2

0.3

0.4

F1
-S

co
re

webkb_parsed

LLM_100_GAT LLM_100_GCN Traditional_GAT Traditional_GCN

Figure 5.13: Comparative evolutionary graph between all GAT and GCN models trained
with 100 LLM labeled instances (LLMnlabeled = 100) and traditionally labeled GAT and
GCN models F1-scores results.

76

123456

('LLM_only', 'keyphrase2', 'GCN')
('LLM_only', 'keyphrase23', 'GCN')

('LLM_only', 'keyphrase3', 'GCN') ('LLM_only', 'keyphrase23', 'GAT')
('LLM_only', 'keyphrase3', 'GAT')
('LLM_only', 'keyphrase2', 'GAT')

CD

123456

('1', 'keyphrase2', 'GCN')
('1', 'keyphrase23', 'GCN')

('1', 'keyphrase3', 'GCN') ('1', 'keyphrase2', 'GAT')
('1', 'keyphrase23', 'GAT')
('1', 'keyphrase3', 'GAT')

CD

123456

('5', 'keyphrase2', 'GCN')
('5', 'keyphrase23', 'GCN')

('5', 'keyphrase3', 'GCN') ('5', 'keyphrase2', 'GAT')
('5', 'keyphrase23', 'GAT')
('5', 'keyphrase3', 'GAT')

CD

123456

('10', 'keyphrase2', 'GCN')
('10', 'keyphrase23', 'GCN')

('10', 'keyphrase3', 'GCN') ('10', 'keyphrase23', 'GAT')
('10', 'keyphrase2', 'GAT')
('10', 'keyphrase3', 'GAT')

CD

123456

('20', 'keyphrase2', 'GCN')
('20', 'keyphrase3', 'GCN')

('20', 'keyphrase23', 'GCN') ('20', 'keyphrase2', 'GAT')
('20', 'keyphrase23', 'GAT')
('20', 'keyphrase3', 'GAT')

CD

123456

('30', 'keyphrase2', 'GCN')
('30', 'keyphrase23', 'GCN')

('30', 'keyphrase3', 'GCN') ('30', 'keyphrase2', 'GAT')
('30', 'keyphrase23', 'GAT')
('30', 'keyphrase3', 'GAT')

CD

123456

('average', 'keyphrase2', 'GCN')
('average', 'keyphrase23', 'GCN')

('average', 'keyphrase3', 'GCN') ('average', 'keyphrase2', 'GAT')
('average', 'keyphrase23', 'GAT')
('average', 'keyphrase3', 'GAT')

CD

Figure 5.14: LLM 10 critical difference plots.

77

123456

('LLM_only', 'keyphrase2', 'GCN')
('LLM_only', 'keyphrase3', 'GCN')

('LLM_only', 'keyphrase23', 'GCN') ('LLM_only', 'keyphrase2', 'GAT')
('LLM_only', 'keyphrase23', 'GAT')
('LLM_only', 'keyphrase3', 'GAT')

CD

123456

('1', 'keyphrase2', 'GCN')
('1', 'keyphrase23', 'GCN')

('1', 'keyphrase3', 'GCN') ('1', 'keyphrase23', 'GAT')
('1', 'keyphrase2', 'GAT')
('1', 'keyphrase3', 'GAT')

CD

123456

('5', 'keyphrase2', 'GCN')
('5', 'keyphrase3', 'GCN')

('5', 'keyphrase23', 'GCN') ('5', 'keyphrase2', 'GAT')
('5', 'keyphrase23', 'GAT')
('5', 'keyphrase3', 'GAT')

CD

123456

('10', 'keyphrase2', 'GCN')
('10', 'keyphrase23', 'GCN')

('10', 'keyphrase3', 'GCN') ('10', 'keyphrase23', 'GAT')
('10', 'keyphrase2', 'GAT')
('10', 'keyphrase3', 'GAT')

CD

123456

('20', 'keyphrase2', 'GCN')
('20', 'keyphrase23', 'GCN')

('20', 'keyphrase3', 'GCN') ('20', 'keyphrase23', 'GAT')
('20', 'keyphrase2', 'GAT')
('20', 'keyphrase3', 'GAT')

CD

123456

('30', 'keyphrase2', 'GCN')
('30', 'keyphrase3', 'GCN')

('30', 'keyphrase23', 'GCN') ('30', 'keyphrase2', 'GAT')
('30', 'keyphrase3', 'GAT')
('30', 'keyphrase23', 'GAT')

CD

123456

('average', 'keyphrase2', 'GCN')
('average', 'keyphrase23', 'GCN')

('average', 'keyphrase3', 'GCN') ('average', 'keyphrase2', 'GAT')
('average', 'keyphrase23', 'GAT')
('average', 'keyphrase3', 'GAT')

CD

Figure 5.15: LLM 50 critical difference plots.

78

123456

('LLM_only', 'keyphrase2', 'GCN')
('LLM_only', 'keyphrase23', 'GCN')

('LLM_only', 'keyphrase3', 'GCN') ('LLM_only', 'keyphrase2', 'GAT')
('LLM_only', 'keyphrase23', 'GAT')
('LLM_only', 'keyphrase3', 'GAT')

CD

123456

('1', 'keyphrase2', 'GCN')
('1', 'keyphrase3', 'GCN')

('1', 'keyphrase23', 'GCN') ('1', 'keyphrase2', 'GAT')
('1', 'keyphrase23', 'GAT')
('1', 'keyphrase3', 'GAT')

CD

123456

('5', 'keyphrase2', 'GCN')
('5', 'keyphrase3', 'GCN')

('5', 'keyphrase23', 'GCN') ('5', 'keyphrase2', 'GAT')
('5', 'keyphrase23', 'GAT')
('5', 'keyphrase3', 'GAT')

CD

123456

('10', 'keyphrase2', 'GCN')
('10', 'keyphrase23', 'GCN')

('10', 'keyphrase3', 'GCN') ('10', 'keyphrase23', 'GAT')
('10', 'keyphrase2', 'GAT')
('10', 'keyphrase3', 'GAT')

CD

123456

('20', 'keyphrase2', 'GCN')
('20', 'keyphrase23', 'GCN')

('20', 'keyphrase3', 'GCN') ('20', 'keyphrase2', 'GAT')
('20', 'keyphrase23', 'GAT')
('20', 'keyphrase3', 'GAT')

CD

123456

('30', 'keyphrase2', 'GCN')
('30', 'keyphrase23', 'GCN')

('30', 'keyphrase3', 'GCN') ('30', 'keyphrase2', 'GAT')
('30', 'keyphrase23', 'GAT')
('30', 'keyphrase3', 'GAT')

CD

123456

('average', 'keyphrase2', 'GCN')
('average', 'keyphrase23', 'GCN')

('average', 'keyphrase3', 'GCN') ('average', 'keyphrase2', 'GAT')
('average', 'keyphrase23', 'GAT')
('average', 'keyphrase3', 'GAT')

CD

Figure 5.16: LLM 100 critical difference plots.

5.4 All models analysis
As a final analysis, Table 5.11 presents a complete comparison of all the models previously
trained, aiming to find the best-performing models across all datasets and considering the
use of 1, 5, 10, 20, 30 human-labeled data. It compares keyphrase numbers: [2], [2, 3], [3],
GNN models: GAT and GCN, and also the techniques used on each model training: tra-
ditional modeling, coarsening, LLM-10, LLM-50 and LLM-100. Furthermore, Table 5.10
consolidates the results of this comparison, effectively counting the number of occurrences

79

each keyphrase, GNN Model, and technique were superior and trained the best models
based on Table 5.11.

Keyphrase Number of
best models

GNN
Model

Number of
best models

Technique Number of
best models

[3] 35 GAT 58 Traditional Model 37
[2] 14 GCN 1 LLM-100 17

[2,3] 10 LLM-50 5
LLM-10 0

Coarsening 0

Table 5.10: Ranking tables, counting the number of occurrences each keyphrase, GNN
Model, and technique were superior and trained the best models based on Table 5.11.

Considering keyphrase sizes, it is observable that keyphrase = [3] achieved superior
results in most cases, precisely 35 cases of Table 5.11, yet other keyphrase sizes also made
appearances, especially when using LLM-labeled data, with keyphrase = [2] achieving 14
best models, and keyphrase = [2, 3] achieving 10.

For GNN models, as pointed out by all previous critical difference diagrams on Figures
5.2, 5.6, 5.14, 5.15, and 5.16, GAT achieved superior results almost unanimously, being
the superior model on 58 cases, while GCN managed to surparss GAT only in 1 case, the
case of CSTR dataset using one labled-dada for training.

Finally, regarding training techniques, traditional modeling was superior as expected,
but LLM-labeling managed to support the initial training cases that had a lower amount
of human-labeled data. Traditional modeling trained a total of 37 best models across all
datasets and the number of labeled data. Although coarsening was able to preserve an
average 83% of the traditional model’s performance, no coarsening model was superior
to its traditional counterpart, as pointed out by 5.2 and Table 5.5, and therefore, the
coarsening technique trained no best model whatsoever. LLM-10 also were not capable
of training a best model, however, LLM-50 and LLM-100 trained 5 and 17 best models
respectively, with the vast majority being on the initial case with 1 and 5 human-labeled
data.

80

Dataset Number of Labeled Data
Best Performing Model

Keyphrases GNN Model Technique Score:
CSTR 1 [2,3] GCN LLM-100 0.7915 ± 0.014
CSTR 5 [3] GAT Traditional Model 0.828 ± 0.046
CSTR 10 [2] GAT Traditional Model 0.8474 ± 0.02
CSTR 20 [2] GAT Traditional Model 0.816 ± 0.031

Dmoz_Computers 1 [3] GAT LLM-50 0.4599 ± 0.007
Dmoz_Computers 5 [3] GAT Traditional Model 0.502 ± 0.011
Dmoz_Computers 10 [3] GAT Traditional Model 0.5614 ± 0.013
Dmoz_Computers 20 [3] GAT Traditional Model 0.5996 ± 0.008
Dmoz_Computers 30 [3] GAT Traditional Model 0.6193 ± 0.007

Dmoz_Health 1 [2,3] GAT LLM-50 0.7215 ± 0.018
Dmoz_Health 5 [3] GAT LLM-100 0.7251 ± 0.015
Dmoz_Health 10 [3] GAT Traditional Model 0.7739 ± 0.013
Dmoz_Health 20 [2,3] GAT Traditional Model 0.7996 ± 0.01
Dmoz_Health 30 [2,3] GAT Traditional Model 0.8114 ± 0.006
Dmoz_Science 1 [3] GAT LLM-50 0.6533 ± 0.013
Dmoz_Science 5 [2] GAT LLM-100 0.6509 ± 0.016
Dmoz_Science 10 [3] GAT LLM-100 0.6662 ± 0.02
Dmoz_Science 20 [3] GAT Traditional Model 0.7016 ± 0.01
Dmoz_Science 30 [3] GAT Traditional Model 0.7211 ± 0.008
Dmoz_Sports 1 [3] GAT LLM-100 0.8013 ± 0.005
Dmoz_Sports 5 [3] GAT LLM-100 0.8026 ± 0.005
Dmoz_Sports 10 [3] GAT LLM-100 0.8028 ± 0.007
Dmoz_Sports 20 [3] GAT Traditional Model 0.8158 ± 0.006
Dmoz_Sports 30 [3] GAT Traditional Model 0.8275 ± 0.004

Industry_Sector 1 [2,3] GAT LLM-100 0.3624 ± 0.008
Industry_Sector 5 [2,3] GAT LLM-100 0.3686 ± 0.01
Industry_Sector 10 [2,3] GAT Traditional Model 0.3901 ± 0.022
Industry_Sector 20 [3] GAT Traditional Model 0.4536 ± 0.015
Industry_Sector 30 [3] GAT Traditional Model 0.4827 ± 0.013

NSF 1 [3] GAT LLM-100 0.6198 ± 0.038
NSF 5 [3] GAT Traditional Model 0.7434 ± 0.016
NSF 10 [3] GAT Traditional Model 0.783 ± 0.009
NSF 20 [3] GAT Traditional Model 0.7876 ± 0.012
NSF 30 [3] GAT Traditional Model 0.8072 ± 0.006

SyskillWebert 1 [2] GAT Traditional Model 0.6547 ± 0.08
SyskillWebert 5 [2] GAT Traditional Model 0.8557 ± 0.033
SyskillWebert 10 [3] GAT Traditional Model 0.8894 ± 0.014
SyskillWebert 20 [2] GAT Traditional Model 0.9126 ± 0.019
SyskillWebert 30 [2] GAT Traditional Model 0.9044 ± 0.022

classic4 1 [2,3] GAT LLM-50 0.8058 ± 0.075
classic4 5 [2] GAT Traditional Model 0.896 ± 0.044
classic4 10 [2] GAT Traditional Model 0.9263 ± 0.012
classic4 20 [3] GAT Traditional Model 0.9405 ± 0.014
classic4 30 [3] GAT Traditional Model 0.9419 ± 0.013

re8 1 [2,3] GAT LLM-100 0.7481 ± 0.07
re8 5 [3] GAT Traditional Model 0.7561 ± 0.034
re8 10 [3] GAT Traditional Model 0.8112 ± 0.03
re8 20 [3] GAT Traditional Model 0.8304 ± 0.03
re8 30 [2] GAT Traditional Model 0.8208 ± 0.025

review_polarity 1 [2] GAT LLM-100 0.6288 ± 0.104
review_polarity 5 [3] GAT LLM-50 0.6176 ± 0.017
review_polarity 10 [3] GAT LLM-100 0.5879 ± 0.117
review_polarity 20 [2] GAT LLM-100 0.5969 ± 0.119
review_polarity 30 [2,3] GAT LLM-100 0.6199 ± 0.103
webkb_parsed 1 [3] GAT LLM-100 0.3378 ± 0.01
webkb_parsed 5 [2] GAT LLM-100 0.3447 ± 0.012
webkb_parsed 10 [2] GAT Traditional Model 0.374 ± 0.02
webkb_parsed 20 [3] GAT Traditional Model 0.416 ± 0.012
webkb_parsed 30 [3] GAT Traditional Model 0.446 ± 0.017

Table 5.11: Table shows the best models trained across all datasets and number of human
labeled data, considering all the models trained with all the previously presented tech-
niques: Traditional GNN modeling, Coarsening, LLM-10, LLM-50, LLM-100, keyphrase
numbers: [2], [2, 3], [3], and GNN models: GAT and GCN.

81

Chapter 6

Conclusion

Our study aimed to address the high labeling and computational costs often associated
with natural language processing tasks, specifically in the domain of text classification.
Hypothesizing that document-concept bipartite graph neural networks could be effectively
leveraged for semi-supervised transductive learning, we explored methods to reduce de-
pendency on human-labeled data and computational power. The research objectives were
to evaluate the performance of Graph Attention Networks and Graph Convolutional Net-
works in a document-concept framework, apply graph coarsening techniques to optimize
model efficiency, and assess the use of Large Language Models as an alternative for data
labeling.

Our findings indicate that Graph Attention Networks (GAT) generally outperform
Graph Convolutional Networks (GCN) across different datasets, as evidenced by higher
F1-scores and greater robustness to variations in the number of labeled nodes. This sup-
ports the hypothesis that combining document-concept bipartite graphs and the GAT
model’s self-attention mechanism is particularly advantageous in capturing and differ-
entiating meaningful relationships. Concepts (i.e., keyphrases) quantity also influenced
results, with models trained on keyphrases containing three words often showing improved
classification accuracy with richer semantic relationships, meaning that bigger keyphrases
can improve performance.

In applying coarsening, the experiments demonstrated that this method could achieve
a substantial reduction in graph size, averaging around 40-50% reduction in nodes and
edges, without drastically compromising model performance. The coarsened models dis-
played a moderate decline in F1 scores, maintaining, on average, 83% of the original graph
performance. The results suggest that coarsening is a viable approach for scaling graph-
based models without compromising model accuracy, particularly for larger and more
balanced datasets where minor performance reductions may be an acceptable trade-off
for significant gains in efficiency.

82

The integration of LLM-labeled data with human-labeled instances provided a nu-
anced picture of LLM’s effectiveness as a low-cost labeling method. Several efficient
models were trained using LLM-only-labeled data, but most were easily outperformed by
human-only models. Also, LLM data initially enhanced model performance when com-
bined with human annotations, particularly in small quantities of human-labeled data.
However, this benefit diminished as the quantity of human-labeled data increased, ulti-
mately turning detrimental. This suggests that while LLMs can supplement early-stage
labeling to improve performance, their utility decreases in the presence of more extensive
human-labeled data, this is especially true on transductive models that do not require
many labeled instances to perform, valuing a small quantity of very accurate data rel-
ative to many moderately accurate data. However, the accuracy of LLM-labeled data
varied across datasets, indicating that LLMs may require dataset-specific calibration and
can be very performative, closer to human labeling, on easier/well-defined classification
tasks.

As per limitations, our study mainly focuses on GAT which demonstrated strong per-
formance, it is computationally more intensive than GCN, and coarsening, our alternative
to reducing computational costs, was not capable of maintaining GAT performance as well
as when compared to GCN. Future research could explore optimizing GAT’s efficiency or
experimenting with GAT variants or other graph neural networks, such as GraphSage
(Graph Sample and Aggregation) [Hamilton et al., 2017], GATv2 [Brody et al., 2021]
or further exploring multi-head attention [Vaswani et al., 2017a] that could prove bene-
ficial by parallelizing several attention heads each node. Additionally, while coarsening
achieved efficiency gains to address its performance loss, refining coarsening techniques
or experimenting with other coarsening methods could improve this trade-off.

Lastly, LLM-based labeling restrictive behavior as more human-labeled data was added
demonstrates that current LLMs can complement human efforts, but they cannot fully
substitute human labeling, especially on complex textual structures. In our implementa-
tions, we employed similarly designed prompts across all twelve datasets assessed, how-
ever, future research could focus on further optimizing LLM prompts to improve labeling
accuracy across specific datasets. Most of all, we employ Llama 3.1 8B, a general-purpose
LLM, as our labeler, as LLMs become more advanced and accessible, a more potent model,
with a lager number of parameters (e.g., Llama 3.1 70B), and a fine-tuned text classifica-
tion LLM could significantly enhance results, especially on harder and more challenging
labeling tasks.

83

References

[Ainslie et al., 2023] Ainslie, J., Lee-Thorp, J., de Jong, M., Zemlyanskiy, Y., Lebrón,
F., and Sanghai, S. (2023). Gqa: Training generalized multi-query transformer models
from multi-head checkpoints. 23

[Allan, 2002] Allan, J. (2002). Topic detection and tracking: event-based information
organization, volume 12. Springer Science & Business Media. 25

[Bahdanau et al., 2016] Bahdanau, D., Cho, K., and Bengio, Y. (2016). Neural machine
translation by jointly learning to align and translate. 15

[Bakhvalov, 1966] Bakhvalov, N. (1966). On the convergence of a relaxation method
with natural constraints on the elliptic operator. USSR Computational Mathematics
and Mathematical Physics, 6(5):101–135. 18

[Beliga, 2014] Beliga, S. (2014). Keyword extraction: a review of methods and ap-
proaches. University of Rijeka, Department of Informatics, Rijeka, 1(9):1–9. 9, 25

[Bennani-Smires et al., 2018] Bennani-Smires, K., Musat, C., Hossmann, A., Baeriswyl,
M., and Jaggi, M. (2018). Simple unsupervised keyphrase extraction using sentence
embeddings. 10, 26

[Bird et al., 2009] Bird, S., Klein, E., and Loper, E. (2009). Natural Language Processing
with Python: Analyzing Text with the Natural Language Toolkit. O’Reilly, Beijing. 27

[Blei et al., 2003a] Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003a). Latent dirichlet
allocation. Journal of machine Learning research, 3(Jan):993–1022. 25

[Blei et al., 2003b] Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003b). Latent dirichlet
allocation. J. Mach. Learn. Res., 3:993–1022. 27

[Brandt, 1977] Brandt, A. (1977). Multi-level adaptive solutions to boundary-value prob-
lems. Mathematics of computation, 31(138):333–390. 18

[Brody et al., 2021] Brody, S., Alon, U., and Yahav, E. (2021). How attentive are graph
attention networks? CoRR, abs/2105.14491. 28, 83

[Cai et al., 2021] Cai, C., Wang, D., and Wang, Y. (2021). Graph coarsening with neural
networks. 17

[Cain, 2023] Cain, W. (2023). Prompting change: Exploring prompt engineering in large
language model ai and its potential to transform education. TechTrends, 68. 22

84

[Chen et al., 2021] Chen, J., Saad, Y., and Zhang, Z. (2021). Graph coarsening: From
scientific computing to machine learning. 18

[Chen et al., 2023a] Chen, Y., Wang, X., and Xu, G. (2023a). Gatgpt: A pre-trained
large language model with graph attention network for spatiotemporal imputation. 30

[Chen et al., 2023b] Chen, Z., Mao, H., Wen, H., Han, H., Jin, W., Zhang, H., Liu, H.,
and Tang, J. (2023b). Label-free node classification on graphs with large language
models (llms). 30

[Ciano et al., 2022] Ciano, G., Rossi, A., Bianchini, M., and Scarselli, F. (2022). On
inductive–transductive learning with graph neural networks. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 44(2):758–769. 12

[Cunningham and Delany, 2021] Cunningham, P. and Delany, S. J. (2021). k-nearest
neighbour classifiers - a tutorial. ACM Computing Surveys, 54(6):1–25. 35, 52

[de Paulo Faleiros et al., 2017] de Paulo Faleiros, T., Geraldeli Rossi, R., and de Andrade
Lopes, A. (2017). Optimizing the class information divergence for transductive clas-
sification of texts using propagation in bipartite graphs. Pattern Recognition Letters,
87:127–138. Advances in Graph-based Pattern Recognition. 6, 7

[de Souza et al., 2024] de Souza, M. C., Gôlo, M. P. S., Jorge, A. M. G., de Amorim, E.
C. F., Campos, R. N. T., Marcacini, R. M., and Rezende, S. O. (2024). Keywords atten-
tion for fake news detection using few positive labels. Information Sciences, 663:120300.
26

[Demšar, 2006] Demšar, J. (2006). Statistical comparisons of classifiers over multiple data
sets. The Journal of Machine learning research, 7:1–30. 49

[Devlin et al., 2019] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). Bert:
Pre-training of deep bidirectional transformers for language understanding. 22

[Ding et al., 2018] Ding, M., Tang, J., and Zhang, J. (2018). Semi-supervised learning on
graphs with generative adversarial nets. In Proceedings of the 27th ACM International
Conference on Information and Knowledge Management, CIKM ’18, page 913–922.
ACM. 26

[dos Santos et al., 2024] dos Santos, N. R., Minatel, D., Valejo, A. D. B., and de A. Lopes,
A. (2024). Bipartite graph coarsening for text classification using graph neural networks.
In Vasconcelos, V., Domingues, I., and Paredes, S., editors, Progress in Pattern Recog-
nition, Image Analysis, Computer Vision, and Applications, pages 589–604, Cham.
Springer Nature Switzerland. 29

[Dubey et al., 2024] Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A., Let-
man, A., Mathur, A., Schelten, A., Yang, A., Fan, A., Goyal, A., Hartshorn, A., Yang,
A., Mitra, A., Sravankumar, A., Korenev, A., Hinsvark, A., Rao, A., Zhang, A., Ro-
driguez, A., Gregerson, A., Spataru, A., Roziere, B., Biron, B., Tang, B., Chern, B.,
Caucheteux, C., Nayak, C., Bi, C., Marra, C., McConnell, C., Keller, C., Touret, C.,
Wu, C., Wong, C., Ferrer, C. C., Nikolaidis, C., Allonsius, D., Song, D., Pintz, D.,

85

Livshits, D., Esiobu, D., Choudhary, D., Mahajan, D., Garcia-Olano, D., Perino, D.,
Hupkes, D., Lakomkin, E., AlBadawy, E., Lobanova, E., Dinan, E., Smith, E. M.,
Radenovic, F., Zhang, F., Synnaeve, G., Lee, G., Anderson, G. L., Nail, G., Mialon,
G., Pang, G., Cucurell, G., Nguyen, H., Korevaar, H., Xu, H., Touvron, H., Zarov,
I., Ibarra, I. A., Kloumann, I., Misra, I., Evtimov, I., Copet, J., Lee, J., Geffert, J.,
Vranes, J., Park, J., Mahadeokar, J., Shah, J., van der Linde, J., Billock, J., Hong,
J., Lee, J., Fu, J., Chi, J., Huang, J., Liu, J., Wang, J., Yu, J., Bitton, J., Spisak, J.,
Park, J., Rocca, J., Johnstun, J., Saxe, J., Jia, J., Alwala, K. V., Upasani, K., Plawiak,
K., Li, K., Heafield, K., Stone, K., El-Arini, K., Iyer, K., Malik, K., Chiu, K., Bhalla,
K., Rantala-Yeary, L., van der Maaten, L., Chen, L., Tan, L., Jenkins, L., Martin, L.,
Madaan, L., Malo, L., Blecher, L., Landzaat, L., de Oliveira, L., Muzzi, M., Pasupuleti,
M., Singh, M., Paluri, M., Kardas, M., Oldham, M., Rita, M., Pavlova, M., Kambadur,
M., Lewis, M., Si, M., Singh, M. K., Hassan, M., Goyal, N., Torabi, N., Bashlykov,
N., Bogoychev, N., Chatterji, N., Duchenne, O., Çelebi, O., Alrassy, P., Zhang, P., Li,
P., Vasic, P., Weng, P., Bhargava, P., Dubal, P., Krishnan, P., Koura, P. S., Xu, P.,
He, Q., Dong, Q., Srinivasan, R., Ganapathy, R., Calderer, R., Cabral, R. S., Stojnic,
R., Raileanu, R., Girdhar, R., Patel, R., Sauvestre, R., Polidoro, R., Sumbaly, R.,
Taylor, R., Silva, R., Hou, R., Wang, R., Hosseini, S., Chennabasappa, S., Singh, S.,
Bell, S., Kim, S. S., Edunov, S., Nie, S., Narang, S., Raparthy, S., Shen, S., Wan, S.,
Bhosale, S., Zhang, S., Vandenhende, S., Batra, S., Whitman, S., Sootla, S., Collot,
S., Gururangan, S., Borodinsky, S., Herman, T., Fowler, T., Sheasha, T., Georgiou, T.,
Scialom, T., Speckbacher, T., Mihaylov, T., Xiao, T., Karn, U., Goswami, V., Gupta,
V., Ramanathan, V., Kerkez, V., Gonguet, V., Do, V., Vogeti, V., Petrovic, V., Chu,
W., Xiong, W., Fu, W., Meers, W., Martinet, X., Wang, X., Tan, X. E., Xie, X., Jia, X.,
Wang, X., Goldschlag, Y., Gaur, Y., Babaei, Y., Wen, Y., Song, Y., Zhang, Y., Li, Y.,
Mao, Y., Coudert, Z. D., Yan, Z., Chen, Z., Papakipos, Z., Singh, A., Grattafiori, A.,
Jain, A., Kelsey, A., Shajnfeld, A., Gangidi, A., Victoria, A., Goldstand, A., Menon,
A., Sharma, A., Boesenberg, A., Vaughan, A., Baevski, A., Feinstein, A., Kallet, A.,
Sangani, A., Yunus, A., Lupu, A., Alvarado, A., Caples, A., Gu, A., Ho, A., Poul-
ton, A., Ryan, A., Ramchandani, A., Franco, A., Saraf, A., Chowdhury, A., Gabriel,
A., Bharambe, A., Eisenman, A., Yazdan, A., James, B., Maurer, B., Leonhardi, B.,
Huang, B., Loyd, B., Paola, B. D., Paranjape, B., Liu, B., Wu, B., Ni, B., Hancock,
B., Wasti, B., Spence, B., Stojkovic, B., Gamido, B., Montalvo, B., Parker, C., Burton,
C., Mejia, C., Wang, C., Kim, C., Zhou, C., Hu, C., Chu, C.-H., Cai, C., Tindal, C.,
Feichtenhofer, C., Civin, D., Beaty, D., Kreymer, D., Li, D., Wyatt, D., Adkins, D.,
Xu, D., Testuggine, D., David, D., Parikh, D., Liskovich, D., Foss, D., Wang, D., Le,
D., Holland, D., Dowling, E., Jamil, E., Montgomery, E., Presani, E., Hahn, E., Wood,
E., Brinkman, E., Arcaute, E., Dunbar, E., Smothers, E., Sun, F., Kreuk, F., Tian, F.,
Ozgenel, F., Caggioni, F., Guzmán, F., Kanayet, F., Seide, F., Florez, G. M., Schwarz,
G., Badeer, G., Swee, G., Halpern, G., Thattai, G., Herman, G., Sizov, G., Guangyi,
Zhang, Lakshminarayanan, G., Shojanazeri, H., Zou, H., Wang, H., Zha, H., Habeeb,
H., Rudolph, H., Suk, H., Aspegren, H., Goldman, H., Damlaj, I., Molybog, I., Tufanov,
I., Veliche, I.-E., Gat, I., Weissman, J., Geboski, J., Kohli, J., Asher, J., Gaya, J.-B.,
Marcus, J., Tang, J., Chan, J., Zhen, J., Reizenstein, J., Teboul, J., Zhong, J., Jin,
J., Yang, J., Cummings, J., Carvill, J., Shepard, J., McPhie, J., Torres, J., Ginsburg,
J., Wang, J., Wu, K., U, K. H., Saxena, K., Prasad, K., Khandelwal, K., Zand, K.,

86

Matosich, K., Veeraraghavan, K., Michelena, K., Li, K., Huang, K., Chawla, K., Lakho-
tia, K., Huang, K., Chen, L., Garg, L., A, L., Silva, L., Bell, L., Zhang, L., Guo, L., Yu,
L., Moshkovich, L., Wehrstedt, L., Khabsa, M., Avalani, M., Bhatt, M., Tsimpoukelli,
M., Mankus, M., Hasson, M., Lennie, M., Reso, M., Groshev, M., Naumov, M., Lathi,
M., Keneally, M., Seltzer, M. L., Valko, M., Restrepo, M., Patel, M., Vyatskov, M.,
Samvelyan, M., Clark, M., Macey, M., Wang, M., Hermoso, M. J., Metanat, M., Raste-
gari, M., Bansal, M., Santhanam, N., Parks, N., White, N., Bawa, N., Singhal, N.,
Egebo, N., Usunier, N., Laptev, N. P., Dong, N., Zhang, N., Cheng, N., Chernoguz, O.,
Hart, O., Salpekar, O., Kalinli, O., Kent, P., Parekh, P., Saab, P., Balaji, P., Rittner,
P., Bontrager, P., Roux, P., Dollar, P., Zvyagina, P., Ratanchandani, P., Yuvraj, P.,
Liang, Q., Alao, R., Rodriguez, R., Ayub, R., Murthy, R., Nayani, R., Mitra, R., Li, R.,
Hogan, R., Battey, R., Wang, R., Maheswari, R., Howes, R., Rinott, R., Bondu, S. J.,
Datta, S., Chugh, S., Hunt, S., Dhillon, S., Sidorov, S., Pan, S., Verma, S., Yamamoto,
S., Ramaswamy, S., Lindsay, S., Lindsay, S., Feng, S., Lin, S., Zha, S. C., Shankar, S.,
Zhang, S., Zhang, S., Wang, S., Agarwal, S., Sajuyigbe, S., Chintala, S., Max, S., Chen,
S., Kehoe, S., Satterfield, S., Govindaprasad, S., Gupta, S., Cho, S., Virk, S., Subra-
manian, S., Choudhury, S., Goldman, S., Remez, T., Glaser, T., Best, T., Kohler, T.,
Robinson, T., Li, T., Zhang, T., Matthews, T., Chou, T., Shaked, T., Vontimitta, V.,
Ajayi, V., Montanez, V., Mohan, V., Kumar, V. S., Mangla, V., Albiero, V., Ionescu,
V., Poenaru, V., Mihailescu, V. T., Ivanov, V., Li, W., Wang, W., Jiang, W., Bouaziz,
W., Constable, W., Tang, X., Wang, X., Wu, X., Wang, X., Xia, X., Wu, X., Gao, X.,
Chen, Y., Hu, Y., Jia, Y., Qi, Y., Li, Y., Zhang, Y., Zhang, Y., Adi, Y., Nam, Y., Yu,
Wang, Hao, Y., Qian, Y., He, Y., Rait, Z., DeVito, Z., Rosnbrick, Z., Wen, Z., Yang,
Z., and Zhao, Z. (2024). The llama 3 herd of models. 22, 42

[Eduardo Althoff et al., 2023] Eduardo Althoff, P., Demétrius Baria Valejo, A., and
de Paulo Faleiros, T. (2023). Coarsening effects on k-partite network classification.
Applied Network Science, 8(1):82. xi, 18, 21, 28, 29, 41

[Faleiros et al., 2017] Faleiros, T. d. P., Rossi, R. G., and Lopes, A. d. A. (2017). Op-
timizing the class information divergence for transductive classification of texts using
propagation in bipartite graphs. Pattern Recognit. Lett., 87:127–138. 6

[Fan et al., 2023] Fan, L., Li, L., Ma, Z., Lee, S., Yu, H., and Hemphill, L. (2023). A
bibliometric review of large language models research from 2017 to 2023. 22

[Gammerman et al., 2013] Gammerman, A., Vovk, V., and Vapnik, V. (2013). Learning
by transduction. 6

[Gori et al., 2005] Gori, M., Monfardini, G., and Scarselli, F. (2005). A new model for
learning in graph domains. Proceedings. 2005 IEEE International Joint Conference on
Neural Networks, 2005., 2:729–734 vol. 2. 11, 26

[Goutte and Gaussier, 2005] Goutte, C. and Gaussier, E. (2005). A probabilistic inter-
pretation of precision, recall and f-score, with implication for evaluation. volume 3408,
pages 345–359. 49

[Grootendorst, 2020] Grootendorst, M. (2020). Keybert: Minimal keyword extraction
with bert. 10, 26, 35

87

[Gôlo and Marcacini, 2023] Gôlo, M. and Marcacini, R. (2023). Text representation
through multimodal variational autoencoder for one-class learning. In Anais Esten-
didos do XXIX Simpósio Brasileiro de Sistemas Multimídia e Web, pages 19–22, Porto
Alegre, RS, Brasil. SBC. 26

[Hamilton et al., 2017] Hamilton, W. L., Ying, R., and Leskovec, J. (2017). Inductive
representation learning on large graphs. CoRR, abs/1706.02216. 83

[Huang et al., 2021] Huang, Z., Zhang, S., Xi, C., Liu, T., and Zhou, M. (2021). Scaling
up graph neural networks via graph coarsening. 29

[Janiesch et al., 2021] Janiesch, C., Zschech, P., and Heinrich, K. (2021). Machine learn-
ing and deep learning. Electronic Markets, 31(3):685–695. 1

[Khemani et al., 2024] Khemani, B., Patil, S., Kotecha, K., and Tanwar, S. (2024). A re-
view of graph neural networks: concepts, architectures, techniques, challenges, datasets,
applications, and future directions. Journal of Big Data, 11. xi, 11, 12, 26

[Kipf and Welling, 2016a] Kipf, T. N. and Welling, M. (2016a). Semi-supervised classifi-
cation with graph convolutional networks. CoRR, abs/1609.02907. 12, 13

[Kipf and Welling, 2016b] Kipf, T. N. and Welling, M. (2016b). Semi-supervised classi-
fication with graph convolutional networks. In International Conference on Learning
Representations. 36

[Kong et al., 2013] Kong, X., Ng, M. K., and Zhou, Z.-H. (2013). Transductive multil-
abel learning via label set propagation. IEEE Transactions on Knowledge and Data
Engineering, 25(3):704–719. 6

[Kumar et al., 2022] Kumar, M., Sharma, A., and Kumar, S. (2022). A unified framework
for optimization-based graph coarsening. 17

[Lecun et al., 1998] Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-
based learning applied to document recognition. Proceedings of the IEEE, 86:2278 –
2324. 12

[Lee et al., 2023] Lee, D.-H., Pujara, J., Sewak, M., White, R. W., and Jauhar, S. K.
(2023). Making large language models better data creators. 29

[Li et al., 2022] Li, Q., Peng, H., Li, J., Xia, C., Yang, R., Sun, L., Yu, P. S., and He,
L. (2022). A survey on text classification: From traditional to deep learning. ACM
Transactions on Intelligent Systems and Technology (TIST), 13(2):1–41. 2

[Li et al., 2023] Li, W., Xue, J., Zhang, X., Chen, H., Chen, Z., Huang, F., and Cai, Y.
(2023). Word-graph2vec: An efficient word embedding approach on word co-occurrence
graph using random walk technique. 3

[Lin et al., 2017] Lin, Z., Feng, M., dos Santos, C. N., Yu, M., Xiang, B., Zhou, B., and
Bengio, Y. (2017). A structured self-attentive sentence embedding. 15

88

[Linmei et al., 2019] Linmei, H., Yang, T., Shi, C., Ji, H., and Li, X. (2019). Heteroge-
neous graph attention networks for semi-supervised short text classification. In Pro-
ceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pages 4821–4830, Hong Kong, China. Association for Computational Lin-
guistics. 27

[Liu, 2023] Liu, Y. (2023). The importance of human-labeled data in the era of llms. 29

[Liu et al., 2018] Liu, Y., Safavi, T., Dighe, A., and Koutra, D. (2018). Graph sum-
marization methods and applications: A survey. ACM computing surveys (CSUR),
51(3):1–34. 18

[Meng et al., 2017] Meng, R., Zhao, S., Han, S., He, D., Brusilovsky, P., and Chi, Y.
(2017). Deep keyphrase generation. In Barzilay, R. and Kan, M.-Y., editors, Proceedings
of the 55th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pages 582–592, Vancouver, Canada. Association for Computational
Linguistics. 26

[Mihalcea and Tarau, 2004] Mihalcea, R. and Tarau, P. (2004). Textrank: Bringing or-
der into text. In Proceedings of the 2004 conference on empirical methods in natural
language processing, pages 404–411. 10, 25

[Naveed et al., 2023] Naveed, H., Khan, A. U., Qiu, S., Saqib, M., Anwar, S., Usman,
M., Akhtar, N., Barnes, N., and Mian, A. (2023). A comprehensive overview of large
language models. 21

[Neogi et al., 2020] Neogi, P. P. G., Das, A. K., Goswami, S., and Mustafi, J. (2020).
Topic modeling for text classification. In Emerging Technology in Modelling and Graph-
ics: Proceedings of IEM Graph 2018, pages 395–407, India. Springer. 26

[Niepert et al., 2016] Niepert, M., Ahmed, M., and Kutzkov, K. (2016). Learning convo-
lutional neural networks for graphs. 27

[Nomoto, 2022] Nomoto, T. (2022). Keyword extraction: A modern perspective. SN
Computer Science, 4. 25

[OpenAI et al., 2024] OpenAI, Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya,
I., Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S., Anadkat, S., Avila, R.,
Babuschkin, I., Balaji, S., Balcom, V., Baltescu, P., Bao, H., Bavarian, M., Belgum,
J., Bello, I., Berdine, J., Bernadett-Shapiro, G., Berner, C., Bogdonoff, L., Boiko, O.,
Boyd, M., Brakman, A.-L., Brockman, G., Brooks, T., Brundage, M., Button, K., Cai,
T., Campbell, R., Cann, A., Carey, B., Carlson, C., Carmichael, R., Chan, B., Chang,
C., Chantzis, F., Chen, D., Chen, S., Chen, R., Chen, J., Chen, M., Chess, B., Cho,
C., Chu, C., Chung, H. W., Cummings, D., Currier, J., Dai, Y., Decareaux, C., Degry,
T., Deutsch, N., Deville, D., Dhar, A., Dohan, D., Dowling, S., Dunning, S., Ecoffet,
A., Eleti, A., Eloundou, T., Farhi, D., Fedus, L., Felix, N., Fishman, S. P., Forte, J.,
Fulford, I., Gao, L., Georges, E., Gibson, C., Goel, V., Gogineni, T., Goh, G., Gontijo-
Lopes, R., Gordon, J., Grafstein, M., Gray, S., Greene, R., Gross, J., Gu, S. S., Guo,

89

Y., Hallacy, C., Han, J., Harris, J., He, Y., Heaton, M., Heidecke, J., Hesse, C., Hickey,
A., Hickey, W., Hoeschele, P., Houghton, B., Hsu, K., Hu, S., Hu, X., Huizinga, J.,
Jain, S., Jain, S., Jang, J., Jiang, A., Jiang, R., Jin, H., Jin, D., Jomoto, S., Jonn, B.,
Jun, H., Kaftan, T., Łukasz Kaiser, Kamali, A., Kanitscheider, I., Keskar, N. S., Khan,
T., Kilpatrick, L., Kim, J. W., Kim, C., Kim, Y., Kirchner, J. H., Kiros, J., Knight,
M., Kokotajlo, D., Łukasz Kondraciuk, Kondrich, A., Konstantinidis, A., Kosic, K.,
Krueger, G., Kuo, V., Lampe, M., Lan, I., Lee, T., Leike, J., Leung, J., Levy, D., Li,
C. M., Lim, R., Lin, M., Lin, S., Litwin, M., Lopez, T., Lowe, R., Lue, P., Makanju,
A., Malfacini, K., Manning, S., Markov, T., Markovski, Y., Martin, B., Mayer, K.,
Mayne, A., McGrew, B., McKinney, S. M., McLeavey, C., McMillan, P., McNeil, J.,
Medina, D., Mehta, A., Menick, J., Metz, L., Mishchenko, A., Mishkin, P., Monaco, V.,
Morikawa, E., Mossing, D., Mu, T., Murati, M., Murk, O., Mély, D., Nair, A., Nakano,
R., Nayak, R., Neelakantan, A., Ngo, R., Noh, H., Ouyang, L., O’Keefe, C., Pachocki,
J., Paino, A., Palermo, J., Pantuliano, A., Parascandolo, G., Parish, J., Parparita, E.,
Passos, A., Pavlov, M., Peng, A., Perelman, A., de Avila Belbute Peres, F., Petrov, M.,
de Oliveira Pinto, H. P., Michael, Pokorny, Pokrass, M., Pong, V. H., Powell, T., Power,
A., Power, B., Proehl, E., Puri, R., Radford, A., Rae, J., Ramesh, A., Raymond, C.,
Real, F., Rimbach, K., Ross, C., Rotsted, B., Roussez, H., Ryder, N., Saltarelli, M.,
Sanders, T., Santurkar, S., Sastry, G., Schmidt, H., Schnurr, D., Schulman, J., Selsam,
D., Sheppard, K., Sherbakov, T., Shieh, J., Shoker, S., Shyam, P., Sidor, S., Sigler, E.,
Simens, M., Sitkin, J., Slama, K., Sohl, I., Sokolowsky, B., Song, Y., Staudacher, N.,
Such, F. P., Summers, N., Sutskever, I., Tang, J., Tezak, N., Thompson, M. B., Tillet,
P., Tootoonchian, A., Tseng, E., Tuggle, P., Turley, N., Tworek, J., Uribe, J. F. C.,
Vallone, A., Vijayvergiya, A., Voss, C., Wainwright, C., Wang, J. J., Wang, A., Wang,
B., Ward, J., Wei, J., Weinmann, C., Welihinda, A., Welinder, P., Weng, J., Weng, L.,
Wiethoff, M., Willner, D., Winter, C., Wolrich, S., Wong, H., Workman, L., Wu, S.,
Wu, J., Wu, M., Xiao, K., Xu, T., Yoo, S., Yu, K., Yuan, Q., Zaremba, W., Zellers,
R., Zhang, C., Zhang, M., Zhao, S., Zheng, T., Zhuang, J., Zhuk, W., and Zoph, B.
(2024). Gpt-4 technical report. 22

[Otter et al., 2019] Otter, D. W., Medina, J. R., and Kalita, J. K. (2019). A survey of
the usages of deep learning in natural language processing. 1

[Page et al., 1998] Page, L., Brin, S., Motwani, R., and Winograd, T. (1998). The PageR-
ank Citation Ranking: Bringing Order to the Web. Technical report, Stanford Digital
Library Technologies Project. 27

[Papagiannopoulou and Tsoumakas, 2019] Papagiannopoulou, E. and Tsoumakas, G.
(2019). A review of keyphrase extraction. 9, 25

[Piccinno and Ferragina, 2014] Piccinno, F. and Ferragina, P. (2014). From tagme to wat:
A new entity annotator. In Proceedings of the First International Workshop on Entity
Recognition & Disambiguation, ERD ’14, page 55–62, New York, NY, USA. Association
for Computing Machinery. 27

[Platt, 1998] Platt, J. (1998). Sequential minimal optimization: A fast algorithm for
training support vector machines. Technical report, Microsoft Research Technical Re-
port. 51

90

[Quinlan, 2014] Quinlan, J. R. (2014). C4. 5: programs for machine learning. Elsevier.
51

[Raffel et al., 2023] Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M.,
Zhou, Y., Li, W., and Liu, P. J. (2023). Exploring the limits of transfer learning with
a unified text-to-text transformer. 22

[Rahman et al., 2018] Rahman, S., Khan, S., and Porikli, F. (2018). A unified approach
for conventional zero-shot, generalized zero-shot, and few-shot learning. IEEE Trans-
actions on Image Processing, 27(11):5652–5667. 22

[Ramachandran et al., 2019] Ramachandran, P., Parmar, N., Vaswani, A., Bello, I., Lev-
skaya, A., and Shlens, J. (2019). Stand-alone self-attention in vision models. 15

[Ren et al., 2024] Ren, X., Tang, J., Yin, D., Chawla, N., and Huang, C. (2024). A survey
of large language models for graphs. In Proceedings of the 30th ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining, KDD ’24, page 6616–6626. ACM.
30

[RK Rao and Devi, 2017] RK Rao, P. and Devi, S. L. (2017). Patent document summa-
rization using conceptual graphs. International Journal on Natural Language Comput-
ing (IJNLC) Vol, 6. 9

[Rossi et al., 2013] Rossi, R. G., Marcacini, R. M., and Rezende, S. O. (2013). Bench-
marking text collections for classification and clustering tasks. Technical Report 395,
Institute of Mathematics and Computer Sciences - University of Sao Paulo. xiii, 33,
51, 58

[Saifuddin et al., 2021] Saifuddin, K. M., Islam, M. I., and Akbas, E. (2021). Drug abuse
detection in twitter-sphere: Graph-based approach. pages 4136–4145. 8

[Salton and Yang, 1973] Salton, G. and Yang, C.-S. (1973). On the specification of term
values in automatic indexing. Journal of documentation, 29(4):351–372. 10, 25

[Sasaki, 2007] Sasaki, Y. (2007). The truth of the f-measure. Teach Tutor Mater. 48

[Scarselli et al., 2008] Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Mon-
fardini, G. (2008). The graph neural network model. IEEE transactions on neural
networks, 20(1):61–80. 11

[Sebastiani, 2002] Sebastiani, F. (2002). Machine learning in automated text categoriza-
tion. ACM Computing Surveys, 34(1):1–47. 1

[Seol et al., 2023] Seol, D., Choi, J., Kim, C., and Hong, S. (2023). Alleviating class-
imbalance data of semiconductor equipment anomaly detection study. Electronics,
12:585. xi, 49

[Sharma and Li, 2019] Sharma, P. and Li, Y. (2019). Self-supervised contextual keyword
and keyphrase retrieval with self-labelling. 10, 26

[Shazeer, 2020] Shazeer, N. (2020). Glu variants improve transformer. 23

91

[Siddiqi and Sharan, 2015] Siddiqi, S. and Sharan, A. (2015). Keyword and keyphrase
extraction techniques: A literature review. International Journal of Computer Appli-
cations, 109:18–23. 9, 25

[Su et al., 2023] Su, J., Lu, Y., Pan, S., Murtadha, A., Wen, B., and Liu, Y. (2023).
Roformer: Enhanced transformer with rotary position embedding. 23

[Sun et al., 2022] Sun, Y., Zhu, D., Du, H., and Tian, Z. (2022). Mhnf: Multi-hop het-
erogeneous neighborhood information fusion graph representation learning. 27

[Touvron et al., 2023a] Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-
A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E., Azhar, F., Rodriguez, A., Joulin,
A., Grave, E., and Lample, G. (2023a). Llama: Open and efficient foundation language
models. 23

[Touvron et al., 2023b] Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A.,
Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher,
L., Ferrer, C. C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W.,
Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R.,
Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura,
P. S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X.,
Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta,
R., Saladi, K., Schelten, A., Silva, R., Smith, E. M., Subramanian, R., Tan, X. E.,
Tang, B., Taylor, R., Williams, A., Kuan, J. X., Xu, P., Yan, Z., Zarov, I., Zhang,
Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., and
Scialom, T. (2023b). Llama 2: Open foundation and fine-tuned chat models. 23

[Tripodi and Pelillo, 2017] Tripodi, R. and Pelillo, M. (2017). 6 - transductive learning
games for word sense disambiguation. In Sharp, B., Sèdes, F., and Lubaszewski, W.,
editors, Cognitive Approach to Natural Language Processing, pages 109–128. Elsevier.
6

[Valejo et al., 2021a] Valejo, A., Althoff, P., Faleiros, T., Chuerubim, M., Yan, J., Liu,
W., and Zhao, L. (2021a). Coarsening algorithm via semi-synchronous label propaga-
tion for bipartite networks. In Anais da X Brazilian Conference on Intelligent Systems,
Porto Alegre, RS, Brasil. SBC. 19, 28

[Valejo et al., 2020] Valejo, A., Ferreira, V., Fabbri, R., Oliveira, M. C. F. d., and Lopes,
A. d. A. (2020). A critical survey of the multilevel method in complex networks. ACM
Comput. Surv., 53(2). 20

[Valejo et al., 2021b] Valejo, A. D. B., de Oliveira dos Santos, W., Naldi, M. C., and Zhao,
L. (2021b). A review and comparative analysis of coarsening algorithms on bipartite
networks. The European Physical Journal Special Topics, 230:2801–2811. 28

[Vaswani et al., 2017a] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A. N., Kaiser, L., and Polosukhin, I. (2017a). Attention is all you need. CoRR,
abs/1706.03762. 15, 23, 24, 83

92

[Vaswani et al., 2017b] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A. N., Kaiser, L. u., and Polosukhin, I. (2017b). Attention is all you need. In
Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and
Garnett, R., editors, Advances in Neural Information Processing Systems, volume 30.
Curran Associates, Inc. 27

[Veličković et al., 2017] Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P.,
and Bengio, Y. (2017). Graph attention networks. 6th International Conference on
Learning Representations. 2, 15, 16, 26

[Vikramkumar et al., 2014] Vikramkumar, B, V., and Trilochan (2014). Bayes and naive
bayes classifier. 51

[Waikhom and Patgiri, 2021] Waikhom, L. and Patgiri, R. (2021). Graph neural net-
works: Methods, applications, and opportunities. CoRR, abs/2108.10733. 12

[Walshaw, 2004] Walshaw, C. (2004). Multilevel refinement for combinatorial optimisa-
tion problems. Annals of Operations Research, 131:325–372. 18

[Wang et al., 2021] Wang, Y., Li, X., Zhou, X., and Ouyang, J. (2021). Extracting topics
with simultaneous word co-occurrence and semantic correlation graphs: Neural topic
modeling for short texts. In Moens, M.-F., Huang, X., Specia, L., and Yih, S. W.-t., ed-
itors, Findings of the Association for Computational Linguistics: EMNLP 2021, pages
18–27, Punta Cana, Dominican Republic. Association for Computational Linguistics.
3

[Weiss et al., 2012] Weiss, S. M., Indurkhya, N., and Zhang, T. (2012). Fundamentals of
Predictive Text Mining. Springer. 1

[Wu et al., 2019] Wu, F., Zhang, T., de Souza Jr. au2, A. H., Fifty, C., Yu, T., and
Weinberger, K. Q. (2019). Simplifying graph convolutional networks. 27

[Wu et al., 2023] Wu, L., Chen, Y., Shen, K., Guo, X., Gao, H., Li, S., Pei, J., Long,
B., et al. (2023). Graph neural networks for natural language processing: A survey.
Foundations and Trends® in Machine Learning, 16(2):119–328. 36

[Xie et al., 2021] Xie, Q., Huang, J., Du, P., Peng, M., and Nie, J.-Y. (2021). Induc-
tive topic variational graph auto-encoder for text classification. In proceedings of the
2021 conference of the North American chapter of the Association for Computational
Linguistics: human language technologies, pages 4218–4227, Online. ACL. 26

[Xu et al., 2017] Xu, S., Li, Y., and Zheng, W. (2017). Bayesian multinomial naïve bayes
classifier to text classification. pages 347–352. 51

[Yao et al., 2018] Yao, L., Mao, C., and Luo, Y. (2018). Graph convolutional networks
for text classification. 2, 27

[Zhang and Sennrich, 2019] Zhang, B. and Sennrich, R. (2019). Root mean square layer
normalization. 23

93

[Zhang and Zhang, 2020] Zhang, H. and Zhang, J. (2020). Text graph transformer for
document classification. In Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages 8322–8327, Online. Association for
Computational Linguistics. 2, 27

[Zhang and Meng, 2019] Zhang, J. and Meng, L. (2019). Gresnet: Graph residual network
for reviving deep gnns from suspended animation. 27

[Zhang et al., 2011] Zhang, L., Li, C., Liu, J., and Wang, H. (2011). Graph-based
text similarity measurement by exploiting wikipedia as background knowledge. World
Academy of Science, Engineering and Technology, 59:1548–1553. 9

[Zhang et al., 2016] Zhang, Q., Wang, Y., Gong, Y., and Huang, X.-J. (2016). Keyphrase
extraction using deep recurrent neural networks on twitter. In Proceedings of the 2016
conference on empirical methods in natural language processing, pages 836–845. 26

[Zhang et al., 2021] Zhang, S., Jafari, O., and Nagarkar, P. (2021). A survey on machine
learning techniques for auto labeling of video, audio, and text data. 2

[Zhao et al., 2023] Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., Min, Y.,
Zhang, B., Zhang, J., Dong, Z., Du, Y., Yang, C., Chen, Y., Chen, Z., Jiang, J., Ren,
R., Li, Y., Tang, X., Liu, Z., Liu, P., Nie, J.-Y., and Wen, J.-R. (2023). A survey of
large language models. 22

[Zhu and Koniusz, 2021] Zhu, H. and Koniusz, P. (2021). Simple spectral graph convolu-
tion. In International Conference on Learning Representations. 27

94

	36c3d7901fdc529e92a707b248016ba7b7b3efae9958c3c9750dc51eadeeed7b.pdf
	6fd3b6056f082c9c34be5d1412d09b0a053f9dca03baf694752d7efa2039999d.pdf
	19dea39d33338bb96cf8440e8fe087fc4318c3bde0e3796daf244108c1ca0c8a.pdf
	cd83c75f7543051567f7cf9d550c567509f51f0ad10e39e27992832dbe2a47d1.pdf
	Study on Bipartite Graph Neural Networks with Keyphrase and Attention for Transductive Text Classification
	Abstract
	Introduction
	Hypotheses
	Objectives
	Section Summary

	Background
	Semi-supervised Transductive Learning
	Document-concept Bipartite Graphs andKeyphrase Extraction
	Document-concept Bipartite Graphs
	Concepts and Keyphrases
	Keyphrases Extraction

	Graph Neural Networks (GNNs)
	Graph Convolutional Network (GCN)
	Graph Attention Networks (GATs)

	Coarsening
	Large Language Models (LLM)

	Related Work
	Concept/Keyphrase Extraction
	Graph Neural networks
	Coarsening
	Large Language Models

	Research Methodology
	Datasets
	Document-Concept Bipartite Graph Creation
	Document-Concept Graph Neural Networks
	Document-Concept Graph Convolution Networks
	Document-Concept Graph Attention Networks

	Training GAT and GCN Models
	Coarsening
	Large Language Models Labeling
	Evaluation

	Experimental Results
	Document-Concept GAT and GCN
	Coarsening
	Large Language Models
	All models analysis

	Conclusion
	References

	714dcdf73fcbc42346f063c9f51469f5f814cb6fc3d57237452467e369d7ee7c.pdf
	Resumo
	Introdução

	Resumo
	Fundamentação Teórica
	Aprendizado Transdutivo Semi-Supervisionado
	Grafos Bipartidos Documento-Conceito
	Redes Neurais de Grafos: GCN e GAT

	Resumo
	Fundamentação Teórica
	Redução de Grafos (Coarsening)
	Modelos de Linguagem como Rotuladores

	Resumo
	Metodologia

	Resumo
	Resultados e Discussão
	Conclusão

	19dea39d33338bb96cf8440e8fe087fc4318c3bde0e3796daf244108c1ca0c8a.pdf
	cd83c75f7543051567f7cf9d550c567509f51f0ad10e39e27992832dbe2a47d1.pdf
	Study on Bipartite Graph Neural Networks with Keyphrase and Attention for Transductive Text Classification
	Abstract
	Introduction
	Hypotheses
	Objectives
	Section Summary

	Background
	Semi-supervised Transductive Learning
	Document-concept Bipartite Graphs andKeyphrase Extraction
	Document-concept Bipartite Graphs
	Concepts and Keyphrases
	Keyphrases Extraction

	Graph Neural Networks (GNNs)
	Graph Convolutional Network (GCN)
	Graph Attention Networks (GATs)

	Coarsening
	Large Language Models (LLM)

	Related Work
	Concept/Keyphrase Extraction
	Graph Neural networks
	Coarsening
	Large Language Models

	Research Methodology
	Datasets
	Document-Concept Bipartite Graph Creation
	Document-Concept Graph Neural Networks
	Document-Concept Graph Convolution Networks
	Document-Concept Graph Attention Networks

	Training GAT and GCN Models
	Coarsening
	Large Language Models Labeling
	Evaluation

	Experimental Results
	Document-Concept GAT and GCN
	Coarsening
	Large Language Models
	All models analysis

	Conclusion
	References

	524d396e4db06a9d81975ddb95a811f8ffeab0ab42726f5902486309f16e2641.pdf
	6fd3b6056f082c9c34be5d1412d09b0a053f9dca03baf694752d7efa2039999d.pdf

