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Resumo

Linhas de Produtos de Software (SPLs) possibilitam o desenvolvimento sistematico de
sistemas configuraveis ao organizar produtos como familias que compartilham funcionali-
dades comuns e diferem em recursos selecionados. No entanto, a andlise estatica em SPLs
enfrenta desafios de escalabilidade devido & variabilidade no espago (entre configuragoes)
e no tempo (entre revisoes de software). Esta dissertacao propoe um framework baseado
em interpretadores que combina lifting variacional e memoizacao para suportar analises
estaticas escalaveis e reutilizaveis em SPLs em evolugao. As analises sdo implementadas
como programas PCF+ e executadas sobre representacoes variacionais dos programas,
anotadas com condicoes de presenca. A memoizagao permite reutilizar resultados compu-
tados anteriormente entre diferentes versoes do programa, reduzindo calculos redundantes
e contribuindo para a melhoria do desempenho. O framework foi avaliado com programas
que simulam cenarios realistas de evolucao de software. Os resultados demonstram que
o uso combinado de lifting variacional e memoizacao reduz efetivamente o tempo de exe-
cugao, evidenciando as vantagens de abordar ambas as dimensoes da variabilidade. Este
trabalho contribui com uma infraestrutura reutilizavel para analises baseadas em fluxo de

controle em SPLs, além de fornecer evidéncias empiricas da sua eficiéncia.

Palavras-chave: Linhas de Produtos de Software, Analise Estatica de Linhas de Produ-

tos de Software, Execugdo Variacional, Memoizacao, Programacao Funcional
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Abstract

Software Product Lines (SPLs) enable the systematic development of configurable soft-
ware systems by organizing products as families that share commonalities and differ in
selected features. However, static analysis in SPLs poses scalability challenges due to vari-
ability in space (across configurations) and variability in time (across software revisions).
This dissertation presents an interpreter-based framework that combines variational lift-
ing and memoization to support scalable and reusable static analysis of evolving SPLs.
Analyses are implemented as PCF+ programs and executed over variational representa-
tions of programs, annotated with presence conditions. Memoization mechanisms allow
the reuse of previously computed results across program evolutions, reducing redundant
computations and contributing to performance improvements. The framework is eval-
uated using benchmarks simulating realistic software evolution scenarios. Results show
that the combined use of variational lifting and memoization effectively reduces execution
time, demonstrating the advantages of addressing both dimensions of variability. This
work contributes a reusable infrastructure for control-flow-based analyses in SPLs and

provides empirical evidence supporting its efficiency.

Keywords: Software Product Lines, Software Product Line Static Analysis, Variability-

Aware Execution, Memoization, Functional Programming
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Chapter 1
Introduction

Software Product Line (SPL) have become a prominent approach to the development
of highly configurable systems. An SPL is a set of related software systems that share
a common set of core assets but differ in certain features to meet specific requirements
of different customers or contexts [1]. Well-known examples include the Linuz Kernel,
which supports a wide range of hardware platforms and configurations, and other real-
world systems listed in the Feature-Aware Modeling and Evolution (FAME) repository [2],
such as automotive software, mobile platforms, and web applications.

SPL promote systematic reuse and enable the automated generation of tailored prod-
ucts, increasing productivity and reducing time-to-market [1]. However, a key challenge
in SPL development is managing variability— the differences and commonalities among
products in the product line [3].

This variability occurs in two main dimensions: variability in space, which refers to
the set of alternative features across configurations, and variability in time, which arises
due to software evolution and updates. Effectively handling both spatial and temporal
variability is essential for the scalability and maintainability of SPL-based development
3].

Static analysis is an automated technique used to derive insights about program be-
havior without executing the code. It plays a crucial role in identifying potential issues
such as the unintended exposure of sensitive information or runtime errors like arithmetic
overflows [4]. However, traditional static analysis techniques often struggle to address
the challenges posed by the variability inherent in Software Product Lines (SPLs) [5].

Common forms of static analysis include Data Flow Analysis (DFA) (which tracks
how data flows through a program), Control Flow Analysis (which determines the pos-
sible execution paths), and Type Checking (which verifies that operations are applied to
compatible data types) [6].



A major limitation of conventional static analysis approaches is their reliance on per-
configuration analysis, where each product variant is analyzed separately. This ap-
proach becomes computationally expensive due to the exponential number of possible
configurations in an SPL [7]. Moreover, it repeatedly analyzes common parts across con-
figurations, leading to duplicated effort and poor scalability.

Similarly, when software evolves over time, reanalyzing each new version from scratch
introduces significant redundancy, as only a small portion of the code typically changes
between versions, and much of the analysis result could remain valid [3, §].

To address these challenges, two independent techniques have emerged: variational
lifting, which enables family-based analysis of multiple configurations simultaneously
9, 10, 11, 12], and memoization, which supports reuse of previously computed results
to avoid redundant calculations across software versions [8, 13, 14].

While previous work has explored each technique in isolation, few studies have in-
vestigated how to effectively combine both wvariability in space and wvariability in time,
especially in the context of more complex static analyses such as control-flow-based data-
flow analysis [12, 7]. Moreover, current lifting frameworks struggle to handle polymorphic
structures such as lists and pairs [12]. To overcome these limitations, we developed a new
framework that combines both dimensions of variability, making static analyses more
scalable and reusable.

This dissertation proposes an interpreter-based framework to efficiently analyze evolv-
ing SPLs, combining variability-aware execution and memoization. Static analyses are
implemented as programs in the functional language PCF+ [15] and executed over a vari-
ational representation of the SPL, in which values are annotated with presence conditions.
Memoization enables reuse of previous analysis results across software revisions, reducing
redundant computations and supporting complex analyses such as Data Flow Analysis.

To evaluate the proposed approach, we conducted an empirical study comparing the
performance of the interpreter with baseline interpreters (without any technique, only
variational-aware and only memoized) in terms of execution time and reuse efficiency.
Benchmarks included a set of variational programs with synthetic evolutions to simulate
real-world SPL updates. We measured runtime differences and cache reuse metrics such
as cache hits and cache misses. The results show that combining variational lifting with
memoization achieves better performance in many scenarios, particularly when analyzing
program evolutions where only part of the structure changes. This suggests the relevance
of combining both variability dimensions to improve static analysis in SPLs.

In summary, the contributions of the present work are the following;:



1. Implementation (in PCF+) of Data Flow Analyses for a simple imperative lan-

guage';

. The development of an interpreter-based execution model framework that lifts anal-

yses written in PCF+ into semantically equivalent variability-aware and memoized

analyses?;

An experiment® comparing the proposed method to its non-variational and non-
memoized counterparts, using a benchmark of simulated SPLs to assess performance

and memoization stats.

The remainder of this dissertation is structured as follows:

Chapter 2 presents background concepts on Variability Representation, Data Flow
Analyses, the Adapted While Language, and PCF+;

Chapter 3 discusses related work and defines the problem addressed in this disser-

tation;

Chapter 4 describes the proposed approach, including the interpreter-based frame-

work and core implementation techniques;
Chapter 5 presents the empirical evaluation and results;

Chapter 6 concludes this dissertation, highlighting the contributions, limitations,

and directions for future work.

"https://github.com/fischertayna/lifting-framework/tree/main/src/Language/Analysis/

DFA

’https://github.com/fischertayna/lifting-framework
Shttps://github.com/fischertayna/lifting-framework/tree/main/benchmarks
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Chapter 2
Background

This section presents key concepts directly related to our research. Section 2.1 discusses
how variability is represented in our study. Sections 2.2 and 2.3 introduce the two lan-
guages used in our framework: the former describes the language of the programs to be
analyzed, while the latter describes the language in which the analyses are implemented.

Finally, Section 2.4 presents essential concepts related to Data Flow Analyses.

2.1 Variability Representation

To efficiently represent variability in data during program analysis, we rely on variational
values, denoted as V[A]. A variational value represents a value that can take different forms
depending on the configuration. Each alternative is annotated with a presence condition,
specifying under which configurations that alternative is valid. This concept follows the
principles introduced by Walkingshaw et al. [10], where V[A] is used to express variation
compactly and maintain the choice-as-partition invariant—ensuring that alternatives are
associated with mutually exclusive presence conditions.

Building on this foundation, we represent lists with variability using the structure
List[V[A]]. In this representation, the variational list is just an ordinary list of varia-
tional elements. This allows for shared elements across variants and provides fine-grained
control over variability at the element level. For example, the variation between the lists
[1,5,10] and [1,2,10] can be compactly represented as [1, <5,2>, 10], where <5,2>
is a variational value that encodes the difference in the second position. Section 4.2.1
presents our implementation of the variational data structure.

This representation was chosen based on the principles of variational lifting, as pro-
posed by Shahin and Chechik [12]. Their work demonstrates how static analyses can be
automatically lifted to operate directly over variational data structures, allowing analysis

across all configurations simultaneously in a scalable manner. Furthermore, this repre-



sentation builds on prior work already implemented by another member of our research

group, which facilitated its integration and reuse in our framework.

Advantages

o« Compact Sharing: Common elements among variants can be represented only
once, significantly reducing redundancy in scenarios where list variants differ in

only a few elements.

o Simple Integration: Since the underlying list structure remains unchanged, tra-
ditional list operations (e.g., mapping, folding) can be reused with minimal adap-

tation.

« Efficiency for Uniform-Length Variants: When variants share the same length,

List [V[A]] allows compact and efficient traversal and manipulation.

Disadvantages

o Inflexibility in Length Variation: A key limitation of List [V[A]] is its inability
to represent variants of different list lengths. All variants must have the same

number of elements, with variability restricted to the values, not to the structure.

o Limited Expressiveness: Certain kinds of structural variation (e.g., optional
elements, variable length configurations) cannot be modeled directly and require
workarounds such as padding with dummy elements or extending to more expressive
encodings like OList [A] [10].

o Complexity in Semantics: Reasoning about the meaning of a variational list
requires tracking and propagating presence conditions for each individual element,

which can increase cognitive and implementation complexity.

Despite its limitations, List [V[A]] represents a pragmatic trade-off between expres-
siveness and simplicity. It is particularly well-suited in contexts where the primary vari-

ation lies in values rather than structural changes in the data.

2.2 Adapted WHILE Language

WHILE is a simple imperative language introduced in the book Principles of Program
Analysis [6]. A program written in WHILE consists of statements, which can be either

individual commands or sequences of commands executed in order.



An example of a WHILE program that computes the Fibonacci sequence of the number

stored in ‘x‘, leaving the result in ‘r‘, is:

[a:=0]"; [b:=1]% [i :=0]% [r :=0]*; while[i < 2]°do ([r := a]%; [a:=b]"; [b:=r+b]%; [i :=i+1]%;)

For convenience, data flow information is addressed as a label and is associated with
the assignment statement, the tests that appear within conditionals or loops and the skip
statement. These labeled elements are known as elementary blocks.

The language has the following syntactic categories:

a € AExp arithmetic expressions

b € BExp boolean expressions

c € Stmt statements

e z,y € Var variables

e n € Num numerals

e [ € Lab labels

e op, € Op, arithmetic operators
e op, € Opp, boolean operators

e op. € Op. relational operators

The syntax of the language is defined as follows:

a:=x|n|aop,as
b ::= true | false | not b | by opy bs | a1 op; az

S =[x := a]' | [skip]" | S*; S?|if [b) then S; else S, | while [b)' do S

2.2.1 Introducing Variability in WHILE

To support variability in the WHILE language, we extend its syntax with choice con-
structs, inspired by the principles of the choice calculus [16]. In this model, variation
is represented as explicit choices between alternatives, each associated with a presence

condition that determines under which configurations the alternative is selected.



Following this approach, we introduce conditional compilation directives into WHILE
using constructs similar to preprocessor languages. Specifically, we add the directives
#IFDEF, #ELSE, and #ENDIF, which allow parts of a program to be included or excluded
based on a presence condition (e.g., a feature flag).

The extended syntax for statements in WHILE now includes variability constructs as

follows:

S = ... |#IFDEF pc S; #ELSE S, #ENDIF

Here, pc represents a presence condition. The semantics is straightforward: if pc holds
in the current configuration, the program executes statement Si; otherwise, it executes
Sy. Note that both branches are always required — each variability point must specify an
alternative path, maintaining alignment with the choice-as-partition principle from the
choice calculus, where each alternative is exclusive and exhaustive.

This design enables a clean and modular way to represent feature-dependent program
variants in WHILE and also ensures that the structure aligns with existing theories of

variation programming and variational analysis.

Example: Feature-Dependent Fibonacci Calculation

In Listing 2.1, we present an adapted version of the Fibonacci program that includes an
optimization enabled only if the feature FAST__FIB is defined:

[a = 0]"; [b:=1]%; [i := 0]% [r := 0]%;
while [i < x]°do (

#IFDEF FAST FIB

[r:=10)%;

#ELSE

[r:=a]"; [a:=0]%;

#ENDIF

[b:=7r+0; [i =i+ 1]"

Listing 2.1: Fibonacci With Optimization in WHILE
This version allows the program to switch between two implementations depending on

whether FAST FIB is enabled.



Abstract Syntax Tree (AST) for the Adapted WHILE Language

The following Haskell data type (Listing 2.2) represents the adapted syntax, extending
WHILE’s standard statements with a Variant constructor to handle conditional compi-

lation:

Listing 2.2: Abstract Syntax Tree for Adapted WHILE Language in Haskell

type Program = Stmt

data Stmt = Assignment Id AExp Label
| Skip Label
| Seq Stmt Stmt
| IfThenElse (BExp, Label) Stmt Stmt
| While (BExp, Label) Stmt
|

Variant PresenceCondition Stmt Stmt

The Fibonacci example can be represented as a program using the abstract syntax
of the While language encoded in Haskell. Listing 2.3 shows the corresponding Haskell
representation using the Program data type. Each statement is annotated with a label
for identification, and the presence condition FAST FIB is modeled using the Variant
constructor to represent compile-time variability. The While loop iteratively computes
Fibonacci values, with different behaviors depending on whether the FAST FIB feature

is enabled.

Listing 2.3: Example of a program in While (Hakell)

exampleProgram :: Program
exampleProgram =
Seq (Assignment (Const 0) 1)
$ Seq (Assignment (Const 1) 2)
$ Seq (Assignment (Const 0) 3)
$ Seq (Assignment (Const 0) 4)
$ While (LTExp (Variable ) (Variable ), 5)
(Seq
(Variant
(Assignment (Variable ) 6)
(Seq (Assignment (Variable ) 7)
(Assignment (Variable ) 8))
)



(Seq (Assignment (Add (Variable ) (Variable
— ")) 9)
(Assignment (Add (Variable ) (Const 1))
— 10)

2.3 PCF+

PCF+ is an extension of the Programming Computable Functions (PCF), a typed func-
tional language introduced in 1977 by Gordon Plotkin [15].

The design of PCF+ supports, at a primary level, expressing analyses such as DFA,
which are central to static analysis and abstract interpretation techniques. The language

includes:

o Primitive data types such as integers, booleans, strings, and lists;
o Pair types and pattern matching constructs;
o Conditional expressions and recursive function definitions;

o First-class support for higher-order functions.

In our implementation, PCF+ serves as the core analysis language interpreted over
both non-variational and variational input. Programs written in PCF+ define analysis
logic that is applied to a model of the program under analysis, encoded as input data.
The example below (Listing 2.4) illustrates a simple PCF+ function that computes the
length of a list of integers.

Listing 2.4: Example of PCF+ program

length :: [int] -> int
length (1st) {
if ((isNil (1st)))
then O
else 1 + length (tail (1lst))

Because of its simplicity and formal grounding, PCF+ enables a clear separation
between the analysis logic and the mechanics of variability and memoization handling in
our framework. This makes it a fitting choice for implementing reusable and interpretable

analysis pipelines.



2.4 Data Flow Analysis

Data flow analysis (DFA) is a technique used in static program analysis to track how data
values propagate through a program [6]. It helps in program optimization and correctness
verification by analyzing properties of variables and expressions across different program
points.

A key structure underlying DFA is the Control-Flow Graph (CFG). A CFG is a di-
rected graph that represents the flow of execution in a program. Each node in the graph
corresponds to a basic block, which is a sequence of consecutive statements with a single
entry and a single exit. The edges represent control flow transitions between these blocks.
CFGs are foundational for many static analysis techniques, and they serve as the basis
over which data flow equations are formulated and solved [6].

In Data Flow Analysis, each analysis defines transfer functions and equations that
describe how information propagates across the nodes and edges of the CFG, and solutions
are computed using techniques such as worklist algorithms or fixed-point iteration [6)].

There are several fundamental data flow analyses, including:

Reaching Definitions

Live Variables Analysis

Available Expressions Analysis

Very Busy Expressions Analysis

Each of these analyses is typically formulated as a set of equations that must be
solved iteratively over the CFG using techniques such as worklist algorithms or fized-point

iteration.

2.4.1 Reaching Definitions

Reaching definitions analysis determines which variable definitions may reach a given
point in the program. A definition of a variable x at a program point p reaches a point ¢
if there exists a path from p to ¢ that does not redefine x.

Mathematically, the analysis computes sets of reaching definitions at each program

point:
o gengp(BY): The set of definitions generated by the block I.

o killrp(B*): The set of definitions overwritten by the block .
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The result of the analysis is a pair of RDpy(¢) and RD..;(¢). They are defined as:

(x,7) | x € FV(S,) if ¢ = init(S,)

RDentry(E) -
URDe,it(C') | (¢, 0) € flow(S,) otherwise

RD.2it() = (RDepiry(0) \ killgp(BY)) U genpp(B)

This analysis is forward, meaning information flows from entry to exit of the CFG [6].

2.4.2 Live Variables Analysis

Live variable analysis determines which variables are live at each program point. A

variable z is live at a point p if its value may be used on some path from p without being

overwritten.
The equations for live variable analysis are:

o genpy(BY): The set of definitions generated by the block .
o killpy (B*): The set of variables used in the block [ before being defined.

The result of the analysis is a pair of LV, (¢) and LV, (¢). They are defined as:

0 if ¢ € final(S,)

L‘/emt(g) =
U LVentry(€) | (¢,€) € flow™(S,) otherwise

LVentry(£) = (LVipit(€) \ Killpy (B*)) U genpy (BY)

This is a backward analysis since information flows from exit to entry of the CFG [6].

2.4.3 Available Expressions Analysis

Available expressions analysis determines which expressions have already been computed
and are available for reuse at each program point. An expression e is available at point p
if every path from the entry to p evaluates e without redefining any of its operands.

The equations for this analysis are:

o genap(B*): Expressions generated at block /.
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o kill45(B%): Expressions invalidated by the block .

The result of the analysis is a pair of AE. ., () and AE.,;(¢). They are defined as:

0 if ¢ € init(S,)

AEentry(g) =
NAE.i:(¢") | (¢, 0) € flow(S,) otherwise

AE2it(0) = (AEepiry(€) \ kill ap(B%)) U genap(B")

This is a forward analysis used for optimizations like common subexpression elimina-
tion [6].
2.4.4 Very Busy Expressions Analysis

Very busy expressions analysis identifies expressions that must be evaluated along every
path from a program point to the exit without being invalidated.

The equations are:

o genyp(BY): Expressions computed at block [ that are not invalidated before their

next use.
o killyp(B*): Expressions invalidated at block .

The result of the analysis is a pair of V Bepyy(€) and V B, (€). They are defined as:

0 if ¢ € final(S,)

VBexit(é) =
mVBentry(e/) | (6/,6) € flowR(S*) otherwise

V Bentry(£) = (V Begir(€) \ killy 5(BY)) U geny p(B*)

This is a backward analysis, useful in code motion optimizations such as loop-invariant

code motion [6].
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Chapter 3

Related Work and Problem

Statement

Understanding the challenges of variability-aware static analysis requires examining how
variability in space and time impacts program analysis. This chapter begins with Sections
3.1 and 3.2, which discuss related works that apply various techniques to address vari-
ability in space and time. Section 3.3 presents the initial attempts at writing data-flow
analyses using a combined approach. Finally, Section 3.4 illustrates the challenges of inte-
grating both spatial and temporal variability, highlighting the specific problem addressed

in this work.

3.1 Variability in Space

Variability in space refers to the coexistence of multiple product variants within a Software
Product Line (SPL), each defined by a unique combination of features. The primary
challenge of analyzing this dimension lies in the exponential growth of possible product
configurations, as every combination of features results in a distinct variant. Performing
static analysis on each individual variant is computationally exhaustive due to the vast
number of combinations [7].

To address this challenge, several approaches have been proposed in the literature
aiming to perform family-based analysis [17], where all variants are analyzed simulta-
neously rather than individually.

One approach involves the use of efficient data structures that explicitly represent
variability within computations. Walkingshaw et al. [10] proposed variational data
structures, such as variational lists and trees, which allow a compact representation of
all possible values and behaviors across variants. These data structures are designed to be

aware of presence conditions, enabling operations to be performed once while accounting
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for all configurations that a value belongs to. This strategy reduces redundancy and
improves performance compared to analyzing variants separately.

Another important line of work is the automatic lifting of variability-aware functional
programs. Shahin et al. [12] introduced a technique that automates the transformation of
conventional (non-variability-aware) programs into their variability-aware counterparts.
Their approach leverages variational programming principles to systematically lift
standard operations so that they can operate over variational data types. This allows
analysts to reuse existing code and analyses without manually rewriting them for each
product configuration, making variability-aware analysis more practical and scalable.

In addition, there is a rich body of work focused on lifting traditional Data Flow
Analyses to handle variability at scale. For instance, Brabrand et al. [18] proposed an
Intraprocedural Data Flow Analysis framework tailored for SPLs, while Bodden et al. [9]
introduced SPLMFT an approach capable of scaling static analysis to large product lines
efficiently by lifting existing analyses. Other notable works include scalable analyses using
variability-aware control flow graphs [19] and systematic derivations of correct variability-
aware analyses [20].

These contributions illustrate the diversity of approaches—ranging from novel data
structures to systematic lifting frameworks—that aim to address the challenge of scalable
analysis in the presence of variability. Acknowledging these works provides context for the
growing interest in techniques that improve the performance and practicality of program

analyses in SPLs.

3.2 Variability in Time

Variability in time, on the other hand, refers to the evolution of software through succes-
sive revisions and updates. Each new version of the software may introduce changes that
impact its behavior, leading to the need for reanalysis. It is important to note that vari-
ability in time does not necessarily imply the presence of a Software Product Line (SPL);
any evolving system is subject to such temporal changes. However, this problem becomes
even more critical in the context of SPLs, where both temporal and spatial variability
must be managed concurrently [3].

A static analysis that fails to consider variability in time will often redundantly rean-
alyze portions of the software that have not changed, leading to inefficient computations
[3]. Empirical works on SPL evolution, such as the study by [8], provide detailed insights
into the frequency and intensity of variability changes within SPLs. Their analysis of
the Linux Kernel and other SPLs, including coreboot, BusyBox, and axTLS, revealed

that changes to variability information (such as feature models, build configurations, and
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code artifacts) occur infrequently and typically affect only small parts of the system.
This contradicts the assumption that variability information would undergo substantial
modifications over time. Instead, their findings suggest that the majority of changes are
localized and minimal, implying that SPLs evolve in a more controlled and incremental

manner than previously thought.

3.3 Combining the Variability Dimensions for Data-
Flow Analysis

Analyzing programs with variability in both space and time simultaneously introduces
unique challenges. Without variability-awareness, static analysis must be performed in-
dependently for each possible variant, leading to redundancy and scalability issues due
to the combinatorial explosion of configurations. Conversely, without memoization, re-
analyzing evolving programs forces recomputation of unchanged parts, which undermines
the benefits of incremental analysis.

To address both dimensions simultaneously, our initial approach combined the memo-
ization strategy with the automatic lifting technique proposed by Shahin et al. [12]. This
strategy, originally suggested by another member of our research group in his master’s dis-
sertation, aimed to reuse existing analyses by lifting them to operate over variational data
structures while memoizing intermediate results to avoid repeated computations across
program evolutions.

As a first experiment, we expressed a simple data-flow analysis using the lifted func-
tional programming style. For example, we wrote an analysis that returned a list of
variable-assignment counts using foldl. However, we encountered practical limitations
when using common data structures such as lists and pairs in the deeply lifted setting.
Functions like fold1l’ and map’ triggered unexpected type errors during compilation due
to incompatibilities in how polymorphic types were handled by the lifting framework.

These issues stem from a well-documented limitation of the deep lifting mechanism [12]:
while the framework assumes that a type T is lifted to T, it does not properly account for
the distinction between [T] (a list of lifted elements) and [T']" (a lifted list). In practice,
deep lifting a list yields [T], which clashes with the framework’s expectations in con-
texts that require [T]". This discrepancy becomes particularly problematic when using
higher-order functions like foldl, whose types are polymorphic over the structure being
lifted.

Listing 3.1 shows a basic analysis that uses foldl to accumulate results. In the deep-

lifted version (Listing 3.2), foldl is replaced with foldl’ to handle variational input.
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However, the compiler produces a type mismatch error, expecting Var b but finding [a],

as it incorrectly assumes the type should be [T]" rather than [T].

Listing 3.1: Analysis that returns number of Assignments of a Program

analyze :: CFG -> [(String, Integer)]
analyze cfg =
let _ns = _nodes cfg
_fns = filter isFnRoot _mns
totalAssignments = foldl (\acc fnRoot -> acc ++
< assignmentsPerVar cfg fnRoot) [] _fns

in totalAssignments

Listing 3.2: Deep lifted Analysis

analyze :: (Var CFG) -> [((Var String), (Var Integer))]
analyze cfg = let _ns = _nodes’ cfg
_fns = filter’ isFnRoot _ns

totalAssignments = foldl’ (\acc fnRoot ->
— acc ~++ assignmentsPerVar cfg fnRoot
— ) [J _fns

in totalAssignments

This type mismatch reflects a broader limitation of the lifting framework: support
for deeply lifting polymorphic structures like lists and pairs remains incomplete. Key
components—such as the caseSplitter function and the VClass instances for lists and
pairs—were either commented out or lacked implementation, requiring manual adjust-
ments (e.g., replacing CFG with a lifted variant in generated code).

Ultimately, these limitations revealed fundamental gaps in existing tool support for
expressive and reusable analyses. As a result, we were motivated to design our own
interpreter-based framework that integrates variability-awareness and memoization more
seamlessly. Our goal was to enable efficient and scalable static analysis of evolving Soft-
ware Product Lines (SPLs), without relying solely on fragile automatic lifting mechanisms.

These challenges are not merely theoretical. In practice, evolving Software Product
Lines (SPLs) frequently combine variability in both space and time—introducing changes
to feature-controlled behavior across versions. To better illustrate these difficulties, we
now present a motivating example written in the Adapted WHILE Language. This exam-
ple highlights how both forms of variability can affect static analysis, particularly in the

context of security-relevant computations. It also sets the stage for understanding why
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combining variability-awareness with memoization is essential for supporting efficient,

incremental analysis of evolving SPLs.

3.4 Problem Statement

To illustrate the challenges of analysing an evolving SPL, we consider a simple program
written in the Adapted WHILE Language that models user input handling. This program
captures a security-relevant scenario: the propagation of potentially unsanitized user

input.

Base SPL (with variability) Variant SANITIZE

[pwd = input]"; [pwd = input]';
#IFDEF SANITIZE [pwd := sanitized_input]?;
[pwd := sanitized_input)? [result := pwd)]*
#ELSE
(ship]? Variant —SANITIZE
skip
4ENDIF
[result := pwd]* [pwd := input]*;
[skip]?;

[result := pwd)]*

Listing 3.3: Base Program representing a SPL with variability and its concrete variants.
The program in Listing 3.3 introduces a feature flag named SANITIZE that controls

whether user input is passed through a sanitization step. When this feature is not enabled,
the password is propagated without sanitization, representing a typical scenario in which
variability may introduce a potential vulnerability. Here, the construct sanitized_input
is a stub that represents a complex sanitization function applied to the input.

This example highlights the challenge of analyzing variability in space — different
configurations may lead to different behaviors with security implications. For instance,
while the sanitized variant ensures safer propagation, the alternative one exposes the
system to unsafe input usage.

A traditional analysis without variability-awareness would require analyzing
each variant separately, resulting in duplicated effort. Conversely, a variability-aware

analysis evaluates the entire variational program in a single pass, sharing computation
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across common parts and producing a variational result that encodes outcomes for all
configurations.

However, another key dimension arises in practice: the evolution of the program over
time, or variability in time. Even small changes between versions may impact the
analysis results and, under traditional approaches, necessitate full recomputation for every
configuration.

Consider the evolution of the non-sanitizing variant to an obfuscation-based transfor-

mation:

Evolved SPL Variant SANITIZE

pwd = input]*; pwd = input]*;
[

#IFDEF SANITIZE [pwd := sanitized_input]?;

2

[pwd := sanitized__input] [result := pwd)*

#ELSE
Variant —SANITIZE

[pwd := pwd * pwd)®

#ENDIF

[result := pwd]* [pwd := input]*;
[pwd := pwd * pwd)?;
[result := pwd)*

Listing 3.4: Evolved Program representing a SPL after its evolution

This seemingly minor evolution changes the behavior of the non-sanitizing variant.
Rather than skipping the sanitization step, it now transforms the password using a re-
versible obfuscation (e.g., squaring), which may give the illusion of protection but does
not provide true sanitization. This change affects the program’s security properties while
retaining most of the original structure.

In a traditional setting, even this small change would trigger a full re-analysis of all
variants. However, memoization offers an opportunity to reuse previously computed
analysis results for unchanged parts — such as the sanitizing branch or the final assign-
ment — significantly reducing computational overhead.

Importantly, memoization and variability-awareness address orthogonal con-
cerns. Variability-aware analysis improves scalability across feature combinations, while
memoization enhances efficiency across program versions. When combined, they enable

more effective and scalable analysis of evolving SPLs.
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While prior work has demonstrated the benefits of analyzing variability in isolation,
Data Flow Analysis in evolving SPLs remains a largely unexplored area, especially

when aiming to leverage reuse across both product configurations and program versions.

Problem Statement

There is a gap in current approaches to Data Flow Analysis for Software Product
Lines: existing techniques do not adequately support simultaneous reuse across

product configurations and evolving program versions.
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Chapter 4

Method

This chapter presents the proposed approach for performing variability-aware and mem-
oized static analysis using an interpreter-based method. In this approach, the analysis is
represented as a program written in PCF+, which is evaluated by an interpreter designed
to support variability-aware inputs. The outcome of this evaluation corresponds to the
result of the static analysis. The interpreter integrates mechanisms for both variability
handling and memoization, enabling efficient and optimized execution of the analysis.
The framework is available in our source code repository!.

Section 4.1 provides an overview of the method, Section 4.2 describes Core Data
Structures, Section 4.3 explains the encoding of the Adapted WHILE Language, Section
4.4 gives more details about the interpreter framework, and, finally, Section 4.5 describes

the implementation of static analyzes as executable programs.

4.1 Method Overview

This section provides a high-level overview of the proposed method. The approach in-
tegrates variability-aware static analysis with memoization techniques to improve the
efficiency of evaluating variational programs. Figure 4.1 illustrates the full pipeline of the
method.

The method takes as inputs:

e A program to be analyzed, written in the Adapted WHILE Language, which may
contain variability through #IFDEF, #ELSE, and #ENDIF directives.

o A static analysis written in PCF+, such as Reaching Definitions, Live Variables,

Available Expressions, or Very Busy Expressions. Alongside the analysis program,

'https://github.com/fischertayna/lifting-framework
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Figure 4.1: Overview of the Variability-Aware Static analysis pipeline

a list of function names is provided to indicate which analysis functions should

benefit from memoization during interpretation.

» Previous analysis results (referred to as Initial Memory) that can be reused in the

current analysis to improve performance through memoization.
The pipeline is composed of the following steps:

1. Program: A variational program written in the Adapted WHILE Language is
provided. It can represent different versions (e.g., V1, V2) of an SPL.

2. Translation: The input program is passed through a Translator component, which
encodes the program into a variational data representation (VarValor). This rep-
resentation captures configuration-specific behaviors and structures in a uniform

format suitable for variational evaluation.

3. Evaluation: The analysis, written in PCF+, is evaluated by the Variational and
Memoized Interpreter using the variational representation of the program as input.

This interpreter integrates two key techniques:

e Variational Lift: to ensure the analysis accounts for all configuration variants.

e Memoization: to avoid recomputation by leveraging previously stored interme-

diate results from past analyses.

4. Memory: During evaluation, for certain predefined functions, the interpreter con-
sults the Memory, which may contain results from previous analyses. If the required
value has already been computed, it is reused; otherwise, the interpreter computes
the result and stores it in memory. This mechanism enables efficient reuse of analysis

results across future executions or revised versions of the SPL.
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5. Output: The result of the analysis is a lifted value in variational form (e.g., a list
of live variables or definitions per configuration), which we refer to as the Analysis
Result.

4.2 Core Data Structures

4.2.1 VarValor: Variational Representation of Values

The VarValor data type lies at the heart of the variational evaluation model. As intro-
duced in Chapter 2.1, this structure builds directly on the concept of variational values
(V[A]), where each alternative value is annotated with a presence condition indicating the
configurations under which it is valid [10]. VarValor generalizes this concept by extending
traditional value types to their variational counterparts, allowing the interpreter to simul-
taneously represent and evaluate multiple configurations in a compact and systematic
manner.

For example, while a standard Valor might represent an integer simply as Integer,
in VarValor, it is represented as Var Integer—a variational value consisting of multiple
annotated alternatives. Each alternative corresponds to an integer value paired with
a presence condition, precisely following the structure of V[A] discussed earlier. This
distinction is crucial: Var Integer is not a single value but a set of possible values, each
tied to specific feature combinations.

Similarly, for lists, the type VarValor adopts the structure VarList [VarValor], in
alignment with the List [V[A]] representation described in Chapter 2.1. This represen-
tation allows for fine-grained variability at the element level, enabling compact sharing
and efficient manipulation of value-level variation across configurations.

Formally, the structure is defined as:

Listing 4.1: Var definition

type Val a = (a, PresenceCondition)

newtype Var t = Var [Val t]

For example, a variational integer might look like:

Listing 4.2: Var example

Var [(5, A), (10, ~A)]

This means:

e The value 5 is the result if the feature A is enabled.
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e The value 10 is the result if the feature A is disabled.

Thus, Var Integer encapsulates a list of pairs (i, pc), where 7 is an integer and pc is
the presence condition under which ¢ is valid. This general structure applies similarly to
booleans, strings, and other types, enabling fine-grained tracking of variability throughout
the evaluation process.

The VarValor type supports the following variational data constructors:

Varlnteger: A variational integer, represented as Var Integer.

VarBool: A variational boolean, represented as Var Bool.

VarString: A variational string, represented as Var String.

VarList: A variational list, i.e., a list of VarValor elements.

VarPair: A variational pair, consisting of two VarValor elements.

Formally, the definition of VarValor is given by:

Listing 4.3: VarValor definition

data VarValor

= VarInteger { int :: Var Integer }

| VarBool { bool :: Var Bool }

| VarString { str :: Var String 1}

| VarList { list :: [VarValor] }

| VarPair { pair :: (VarValor, VarValor) }

deriving (Show, Eq, Read)

Each VarValor instance contains not just a value, but a collection of alternative val-
ues, each annotated with its corresponding presence condition. These presence conditions
are internally represented as Binary Decision Diagrams (BDDs), ensuring efficient manip-
ulation and combination of configuration constraints.

Operations on VarValor maintain the associated presence conditions by leveraging
logical combinators such as andBDD, orBDD, and notBDD, thus preserving correctness in
variational evaluation.

Additionally, VarValor is immutable and implements the Hashable type class. This
immutability and hashability are essential to support optimizations such as memoization,
which rely on identifying repeated computations based on input values and their presence

conditions.
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4.2.2 Presence Conditions (Prop)

The variability in VarValor is controlled using presence conditions, represented through
the Prop type. A presence condition indicates under which configuration(s) a given value
or operation is active in a (SPL). Technically, these conditions are encoded as a Binary
Decision Diagram (BDD), a canonical and compact representation of Boolean expressions,
allowing for efficient logical manipulation and reasoning.

Listing 4.4 shows the definition of the Prop type, which internally stores a BDD
node (b) and a human-readable name (pname) for identification purposes. The name also
facilitates the serialization and deserialization processes via the Show and Read instances,

enabling more readable representations and easier reconstruction of presence conditions.

Listing 4.4: Prop definition

data Prop = Prop
{ b :: DDNode
, pname :: String

3

Presence conditions are created using utility functions such as newBDD and mkBDDVar
(Listing 4.5). These functions encapsulate Binary Decision Diagram (BDD) creation and
feature-variable lookup using a shared BDD manager.

The function mkBDDVar is used to create a presence condition associated with a specific
feature (e.g., "A" or "DEBUG"). It ensures that every feature name corresponds to a unique
BDD variable index within the global manager. This is accomplished using the auxiliary
function lookupVar, which maps each feature name to a unique integer index. If the
feature has already been seen, its index is reused; otherwise, a new index is allocated and
stored in an internal hash table.

This mechanism guarantees that presence conditions remain consistent and compara-
ble across different parts of the program, even when created in different contexts. The
symbolic name is preserved in the Prop structure for debugging and display purposes,

while the BDD node ensures efficient logical reasoning.

Listing 4.5: Presence Condition (Prop) creation

-—- Associates a BDD node with a human-readable feature name
newBDD :: DDNode -> String -> Prop

newBDD node name = Prop node name
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-- Creates a new presence condition (Prop) for a given

— feature
mkBDDVar :: String -> Prop
mkBDDVar name =

let i = lookupVar name -- Ensures uniqueness of

— variable index
r = ithVar manager i -- Gets the
— corresponding BDD node

in newBDD r name -- Constructs the Prop

For example, Listing 4.6 shows the creation of a presence condition named UNSAFE DIV,
which represents a particular variant of the SPL where an unsafe division (e.g., division

by zero) may occur.

Listing 4.6: Prop UNSAFE DIV
propUnsafeDiv :: Prop

propUnsafeDiv = mkBDDVar

This presence condition is then used in the base program (Listing 3.3) to guard specific
assignments—such as setting pwd := sanitized_ input under SANITIZE and skip under
its negation—enabling the encoding of mutually exclusive variants within a single unified
representation.

Key operations on Prop:

» Logical Conjunction (andBDD): Combines two presence conditions.

» Logical Disjunction (orBDD): Merges two presence conditions.

« Negation (notBDD): Computes the complement of a presence condition.
 Satisfiability (sat): Checks if a presence condition is satisfiable.

» Unsatisfiability (unsat): Determines if a presence condition is always false.

4.2.3 Key Functions

e union :: Var t -> Var t -> Var t: Merges two Var instances, preserving all

possible values and their presence conditions.

e compact :: Var t -> Var t: Groups values with the same presence conditions

to minimize redundancy.
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e apply :: Var (a -> b) -> Var a -> Var b: Applies a function over varia-

tional values, preserving presence conditions.

e (+++): VarValor -> VarValor -> VarValor: Performs a union-like operation

for variational values, ensuring consistency in presence conditions.

4.3 'Translator: Encoding Variability in the WHILE
Language

The Adapted WHILE Language introduces variability through conditional compilation
directives (#IFDEF, #ELSE, #ENDIF). These directives enable the representation of multiple
program variants within a single codebase, allowing different configurations to be analyzed
efficiently.

The translator phase encodes the Adapted WHILE programs into an intermediate
data represented by a VarValor structure that preserves presence conditions and enables
simultaneous evaluation of multiple configurations.

Statements are translated into a hierarchical structure composed of nested pairs and
strings (VarPair and VarString). This section illustrates the encoding process using the

problem introduced in Section 3.4.

4.3.1 Translating Programs

In the WHILE Language, a program consists of a single statement, which can be a
composition of multiple sub-statements (e.g., sequences, conditionals, loops). To en-
able variability-aware analysis, we need to translate this program into a representation
that explicitly encodes presence conditions. This translation is performed by the function
encodeStmt, which produces a VarValor representation of the program, enriched with

variability information.

Listing 4.7: encodeStm

encodeStmt :: Stmt -> VarValor
encodeStmt stmt = encodeStmtPC’ (stmtToStmtPC ttPC stmt)

Here, ttPC denotes the presence condition that is always true—i.e., the program is
initially assumed to be fully present under all configurations. The stmtToStmtPC function
is responsible for converting the original Stmt into an intermediate form, StmtPC, in
which each statement is annotated with a presence condition that reflects under which

configurations it is active.
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Listing 4.8: stmtToStmtPC
stmtToStmtPC :: PresenceCondition -> Stmt -> StmtPC

This transformation is particularly important for handling variability constructs such
as Variant, which are used to represent #IFDEF directives. When a Variantpcsls2 is
encountered, stmtToStmtPC eliminates it by recursively translating both alternatives: the
first with the presence condition pc and the second with its negation not BD Dpc. In other
words, the Variant is removed, and its presence condition is propagated into the respective
branches. This propagation ensures that each part of the program retains precise presence
information, enabling accurate analysis per configuration.

For example, the structure:

Listing 4.9: Variant

Variant pc sl s2

is translated into:

Listing 4.10: Variant Translation

SeqPC (stmtToStmtPC (andBDD pcO pc) si1)
(stmtToStmtPC (andBDD pcO (notBDD pc)) s2)

where pc0 is the outer (inherited) presence condition. When a statement is inactive un-
der a certain condition, it is replaced by a Skip statement with a negated label, preserving
structure but indicating that the statement is not executed in that configuration.

The full StmtPC datatype is defined as:

Listing 4.11: StmtPC

data StmtPC
= AssignmentPC Id AExp Label PresenceCondition
| SkipPC Label PresenceCondition
| SeqPC StmtPC StmtPC
| IfThenElsePC TestExp StmtPC StmtPC PresenceCondition
| WhilePC TestExp StmtPC PresenceCondition
deriving (Eq, Ord, Show)

Each constructor explicitly carries a PresenceCondition, capturing the variability of
the program structure.

Once a statement is converted into StmtPC, it is further encoded into VarValor through
encodeStmtPC’ :: StmtPC -> VarValor.
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Translating #IFDEF directives (Variants)

Consider the following code fragment from Listing 3.3, which introduces a variability point
controlled by the presence condition SANITIZE:

#IFDEF SANITIZE

[pwd := sanitized__input]?
LELSE

[skip]®
HENDIF

Listing 4.12: Sanitization variant example

As with other #IFDEF directives, this construct is translated by removing the explicit
Variant node and encoding each alternative with its corresponding presence condition.
The sanitizing assignment is guarded by the condition SANITIZE, and the fallback skip
instruction is guarded by the negation mSANITIZE. The inactive branch under each con-
figuration is replaced with a no-op (SKIP) labeled with a negative identifier, such as -2
or -3, to distinguish it from semantically meaningful statements.

The result of encoding this fragment into VarValor is shown in Listing 4.13:

Listing 4.13: VarValor encoding of the SANITIZE variability

1 variantUnsafeDiv = VarPair (

2 VarString (Var [( , ttPC)]1),

3 VarPair (

1 VarPair (

5 VarString (Var [( , propSanitize),( , notBdd
— propSanitize)]),

6 VarPair (

7 VarString (Var [( , propSanitize), ( , notBdd
< propSanitize)l]),

8 VarPair (

9 VarString (Var [( , propSanitize)]),

VarPair (
VarString (Var [(
VarString (Var [(
— 1)
)))),

VarPair (
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1

2

3

VarString (Var [( , notBdd propSanitize),( ,
< propSanitize)]),
VarPair (
VarString (Var [( , notBdd propSanitize),( ,
— propSanitize)l]),
VarString (Var [("", notBdd propSanitize)]))))

In this encoding:

"ASGN" denotes the assignment present in the sanitizing variant.

e "SKIP" is used to maintain structural consistency in the non-sanitizing branch.

e The label "2" corresponds to the original line of the sanitizing assignment; "-2"

marks the placeholder instruction in the alternate branch.
e propSanitize encodes the presence condition SANITIZE.

e notBDD propSanitize expresses the condition where SANITIZE is absent.

This translation preserves both behavioral branches within the variational represen-
tation and enables the analysis engine to reason about their effects jointly. The use of
labeled SKIP nodes ensures that control-flow and labeling information remain consistent
across configurations, even when certain branches are inactive.

Each branch of the Variant contributes to the final VarValor, making the variability

explicit and analyzable.

Translating Sequences

Sequences are translated by recursively encoding each body of the sequence Si; Ss:

This structure is transformed into the following VarValor representation:

Listing 4.14: encodeStmtPC’

encodeStmtPC’ (SeqPC sl s2) =
VarPair (VarString (Var (presencePairsStmt ttPC)),
VarPair (encodeStmtPC’ sl1, encodeStmtPC’ s2))

Each s; and s, are recursively encoded while preserving its presence conditions.
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Translating assignments

Assignments in the variability-aware representation are expressed using the constructor
AssignmentPC, which extends a standard assignment with a presence condition. The
translation into VarValor is performed by the following clause of the encodeStmtPC’

function:

Listing 4.15: encodeStmtPC’ for Assignment

1 encodeStmtPC’ (AssignmentPC v e 1 pc) =
2 VarPair (VarString (Var (presencePairsStmt pc)),
; VarPair (VarString (Var (presencePairsLabel (
< show 1) pc)),
‘ VarPair (VarString (Var [(v, pc)]),
— encodeAExpToVarValor e pc))))

The function presencePairsStmt is used to enrich the "ASGN" tag with the presence
condition pc, and additionally includes a "SKIP" tag for the negated condition — pc (i.e.,
notBDD pc). This allows the representation to explicitly indicate that the assignment does
not occur in configurations where the presence condition does not hold. Similarly, the
presencePairsLabel function appends a negated label (e.g., "=3") for the skip branch,
clearly signaling that this line is inactive in that configuration. In Listing 4.13 we can see

how the statements were translated.

Translating While Loops

Loops statements (W hile) are translated in a similar manner, maintaining the presence

conditions:

while [cond]" do s

This structure is transformed into the following VarValor representation:

Listing 4.16: encodeStmtPC’ for While loops
. encodeStmtPC’ (WhilePC (cond, 1) body pc) =

2 VarPair (VarString (Var (presencePairsStmt pc)),

VarPair (VarString (Var (presencePairsLabel (
< show 1) pc)),
1 VarPair (encodeBExpToVarValor cond pc,
< encodeStmtPC’ body)))
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Conditionals are translated in the same way as loops.

4.4 The PCF+ Interpreter

The PCF+ interpreter serves as the execution engine for analysis written in the PCF+
language. It is designed to support both variability-aware computation and efficient mem-
oization. This dual capability attempts to enable analyses that are both configuration-
sensitive and performance-efficient, which is essential in the context of Software Product
Lines (SPLs).

4.4.1 Overview

The interpreter evaluates expressions (Exp) in the context of a runtime environment
(RContext) and an evolving memory (Mem) that stores intermediate and memoized re-
sults. The interpreter supports a variety of language constructs, such as integers, booleans,
strings, lists, pairs, conditionals, and user-defined functions.

The entry point for program execution is defined by the evalP function:

Listing 4.17: entry point of execution

evalP :: Program -> [String] -> (VarValor -> Mem -> (VarValor
— , Mem))
evalP (Prog fs) memoizedFunctionNames =

\input mem ->

let memoizedIdents = map Ident memoizedFunctionNames
initialFContext = updatecF ([(Ident , input)], [J,
<~ memoizedIdents) fs
context = initialFContext
in eval context (Call (Ident ) [EVar (Ident )1)
— mem

This function takes as input a program (composed of a set of function definitions) and
a list of function names to be memoized. It produces a function that receives an initial
input value and memory state and returns the result of evaluating the program starting
from the main function.

The list memoizedFunctionNames plays a key role in controlling which function calls
will benefit from memoization during execution. Each function identifier in this list is
included in the interpreter context, so that the evaluation engine can distinguish memoized
from regular function calls. This enables selective memoization: only functions explicitly

listed will have their results cached and reused, while others are evaluated normally.
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The memoization mechanism is discussed in more detail in the Section 4.4.3.

The core evaluation function is defined by the eval function:

Listing 4.18: eval function

eval :: RContext -> Exp -> Mem -> (VarValor, Mem)

This function takes a runtime context, an expression to be evaluated, and the current
memory state. It returns a pair with the evaluated value (as a VarValor) and an updated

memory.

4.4.2 Variational Execution

The interpreter models variability using the VarValor type, which wraps values together
with associated presence conditions. These presence conditions represent under which
feature configurations a value is valid. Variational values are propagated and combined
throughout the evaluation, according to the lifted PCF+ semantics proposed by Shahin
and Chechik [12].

For instance, conditional branching is implemented with presence condition partition-
ing:

Listing 4.19: EIf

EIf eCond eThen eElse

The condition expression is evaluated, and its result is used to partition the execution
context. The branches are then evaluated under the corresponding presence conditions

and recombined accordingly.

4.4.3 Memoized Execution

To improve performance and avoid redundant computations, the interpreter supports
function-level memoization. Function calls whose identifiers appear in a predefined mem-
oization list are stored and reused using a key-based caching mechanism.

The core logic of memoization is implemented in the memoizedCall function (List-
ing 4.20), which ensures that repeated calls to the same function with the same input are

not recomputed.

Listing 4.20: memoizedCall

memoizedCall :: RContext -> Ident -> [VarValor] -> Mem -> (
— VarValor, Mem)

memoizedCall context fId paramValues mem =
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let (Fun _ _ decls fExp) = fromJust $ lookup fcontext fId
name = getldentString fId
paramBindings = zip decls paramValues
funcKey = createFuncKey name paramValues
in runState (do
retrieveOrRun name funcKey (\() -> do
let (evalResult, mem’) = eval (paramBindings,
— fcontext, memoizedFunctionNames) fExp mem
return evalResult)

) mem

Internally, memoizedCall generates a cache key using the function name and a hash

of the arguments. This is done by the helper createFuncKey function:

Listing 4.21: Creating the memoization key

data FuncKey = FuncKey
{ funcName :: String
, funcArgsHash :: Int
} deriving (Eq, Show, Read)

createFuncKey :: String -> [VarValor] -> FuncKey
createFuncKey name args = FuncKey

{ funcName = name

, funcArgsHash = hash args

i

This hash-based key ensures that each distinct function call is uniquely identified. The

evaluation is then delegated to the memoization engine via retrieveOrRun:

Listing 4.22: retrieveOrRun operator

retrieveOrRun :: (KeyMemory k v m, Show v, Show k)
=> String -> k -> (() -> State m v) -> State m
— Vv
retrieveOrRun name x t = do
mlookup x >>= \case
Just v -> return v
Nothing -> do
v <- t ()

mupdate x v
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9 return v

If a match is found in memory, the stored result is returned; otherwise, the function

is evaluated and its result stored for future reuse.

Memoization Strategy and Cache Validity

A key advantage of our memoization strategy is that explicit cache invalidation is un-
necessary. This is because the interpreter operates under a pure functional programming
model, where a function’s result depends solely on its input and has no side effects.

Whenever the analyzed program changes, it naturally alters the input to affected
function calls. Since the cache key is based on a hash of the input arguments, any change
in structure, content, or variability of the input automatically produces a different key.
As a result, the interpreter will not find a matching entry in the cache and will recompute
the result as needed.

This property ensures that:
o Cached results are reused only when inputs are exactly the same.
« Modifications in the program’s structure or content naturally lead to recomputation.
e The cache remains correct and consistent without requiring manual invalidation
logic.
Memoization System

The caching mechanism is implemented via the KeyMemory type class, which abstracts

key-value stores in a stateful monad:

Listing 4.23: Memoization type class

1 class KeyMemory k v m where
mlookup :: k -> State m (Maybe v)
mupdate :: k -> v -> State m ()

N

A simple instance is provided using an associative list of entries, where each value

includes a reuse counter:

Listing 4.24: Key-value memory with reuse counters

. type KeyValueArray k v = [(k, (v, Int))]

; instance (Eq k, Show k, Show v) => KeyMemory k v (
— KeyValueArray k v) where
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mlookup a = State (\s ->
case lookup a s of
Just (v, count) ->
let updated = map (\(k’, (v’, c)) -> if k’ == a then
— (k’, (v’, ¢ + 1)) else (k’, (v’, ¢c))) s
in (Just v, updated)
Nothing -> (Nothing, s))
mupdate a v = State (\s ->
let newS = case lookup a s of
Just (_, count) -> (a, (v, count)) : filter (\(k’,
— _) =>k’ /= a) s
Nothing -> (a, (v, 0)) : s
in ((), newS))

Tracking Memoization Efficiency The memory system also includes instrumentation

utilities to monitor reuse statistics:

e resetCounters :: State m () — resets all lookup counters.
o showCounters :: State m [(k, Int)] — returns keys with reuse counts.
o sumCounters :: State m Int — returns total number of reuses.

These functions are useful for assessing the benefits of memoization during performance

benchmarks, as discussed in Section 5.

4.4.4 Built-in Functions and List Processing

The interpreter includes support for several built-in functions for list manipulation and

other utility operations. These include:
e head, tail, isNil, length
e sortlList, isMember, union, intersection, difference
e isEqual, 1t, isPair, fst, snd

Each of these functions is handled as a pattern in the Call case of the ewval function
and delegates execution to a helper such as applyUnion, applyLength, applylsMember,
or applySortList. These helper functions deal with variability, combining satisfiables

presence conditions.

35



4.5 Static Analysis as Programs

In this work, static analysis is not implemented as a separate compiler pass or a dedi-
cated algorithm, but rather as a program itself, written in PCF+ and executed by the
interpreter. This design offers several advantages: it promotes modularity, reusability,
and extensibility, allowing analyses to be easily modified, composed, and applied to vari-
ational inputs without requiring changes to the interpreter. Furthermore, this approach
greatly facilitates experimentation and preliminary evaluation, as different analyses or
analysis strategies can be quickly prototyped, tested, and compared simply by changing
the analysis program, rather than modifying the underlying execution engine.

Each analysis receives a representation of the program, encoded as variational data
structures using VarValor, and computes results such as sets of definitions, expressions,

or variables.

4.5.1 Data Flow Analyses

The following Data Flow Analyses (DFA) were implemented and expressed as standalone
PCF+ programs, leveraging the modular and reusable nature of the interpreter-based
approach described earlier. These analyses were already introduced and formally defined

in Section 2.4, and are briefly revisited here for completeness:
e Reaching Definitions: Determines which variable definitions may reach a given

program point.

o Live Variables: Identifies variables that are needed in the future before being
redefined.

o Available Expressions: Tracks expressions that have been computed and not

subsequently invalidated.

e Very Busy Expressions: Determines which expressions are guaranteed to be used

before any possible redefinition.

These analyses follow the classic fixed-point approach based on chaotic iteration
over CFG nodes. All are evaluated using the PCF+ interpreter, which supports both

variability-aware and memoized execution.

4.5.2 Analysis Infrastructure and Key Functions

All analyses share a common structure built upon core higher-order components imple-
mented in PCF+, following the foundational design presented in the book Principles of
Program Analysis [6].
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chaoticIterations: This is the central fixed-point iterator used to evaluate the anal-
ysis over the control flow graph. The program to be analyzed (as VarValor) and returns
a pair of entry and exit (mappings of label and facts generated by each analysis).

It applies transfer functions to each node in the CFG until convergence is reached
(i.e., no changes in the mapping of facts). Internally, it re-evaluates the mapping on each

iteration and uses union or comparison operators to detect stabilization.

updateMappings: The updateMappings function is responsible for updating the current
mapping with new abstract facts generated by the transfer function at each CFG node.
This function applies the changes calculated at a node to the overall mapping. In
some analyses (e.g., Reaching Definitions), it performs a union of the new facts with the
existing ones. In others (e.g., Available Expressions, Very Busy Expressions), it may use

intersection or complete replacement based on analysis semantics.

flow: The flow relation determines the successor or predecessor nodes for each node in

the CFG, depending on the direction of analysis:

» Forward analyses (e.g., Reaching Definitions, Available Expressions) use successors.

« Backward analyses (e.g., Live Variables, Very Busy Expressions) use predecessors.

Other auxiliary functions are commonly used across all analyses to manipulate and
extract structural information from the control flow graph and its encoding. For instance,
the function init returns the label of the initial node in the CFG, while final identifies
the set of final (exit) nodes. The function filterFlow filters the flow relation to relevant
edges for a given node, and labels retrieves all node labels present in the graph.

In addition, several helper functions are used to interpret the program’s encoding and

extract semantic information, such as:
o labelFromAsgn — retrieves the label associated with an assignment statement.
o varFromAsgn — extracts the variable defined in an assignment.

o checkType — identifies the type of a node (e.g., assignment, conditional, expres-

sion).
o getCondFromIf — extracts the condition expression from a conditional statement.

These functions provide an abstraction layer over the low-level encoding of the control
flow graph in PCF+, allowing analyses to focus on the logical structure and transfer

semantics rather than syntactic details.
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4.5.3 Reaching Definitions Analysis

Reaching Definitions is a forward Data Flow Analysis whose objective is to determine,
for each program point, which variable assignments (definitions) may reach that point
without being subsequently redefined along any execution path. This analysis is crucial
in identifying the provenance of variable values and enabling optimizations such as dead
code elimination and constant propagation.

In the implementation developed for this work, the Reaching Definitions analysis is
expressed in PCF+ using both general-purpose and analysis-specific functions. The key

functions used to implement this analysis are described below:

Listing 4.25: rdEntry
rdEntry :: String -> Any -> [(String, [(String, String)l)] ->
— [(String, String)]

rdEntry (1, prog, exit) {
if (isEqual (1, init(prog)))
then makeSet0fFV(fv(prog))
else findWithUnion(filterFlow(l, flow(prog)), exit)

The rdEntry function determines the set of definitions that reach the entry of a given
Block with label [. If [ corresponds to the initial label of the program, the analysis
computes the free variables of the program. Otherwise, it combines the results of pre-
decessors in the control flow graph by filtering the relevant flow entries and applying a

union operation.

Listing 4.26: rdExit
rdExit :: String -> Any -> [(String, [(String, String)l)] ->
— [(String, String)]

rdExit (1, prog, entry) {
rdExitWithBlock (1, prog, entry, head(findBlock(l, prog)))

The rdExit function computes the set of definitions that reach the exit of a Block
with label [, by invoking rdExitWithBlock, which applies the transfer function associated

with the corresponding program block.

Listing 4.27: killRD
killRD :: Any -> [(String, String)] -> [(String, String)]
killRD (block, assignments) {
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if (checkType(block, ))
then union([((varFromAsgn(getStmt(block))), )],
filterRD(varFromAsgn (getStmt (block)),
< labelFromAsgn(getStmt (block)),
<> assignments))
else []

The killRD function identifies the definitions that are invalidated (killed) by a given
block. In the case of assignment statements ("ASGN"), it filters out all previous definitions

of the assigned variable and replaces them with a placeholder indicating redefinition.

Listing 4.28: genRD

genRD :: Any -> [(String, String)]
genRD (prog) A
if (checkType (prog, ))
then [(varFromAsgn(getStmt(prog)), labelFromAsgn(
— getStmt (prog)))]
else []

The genRD function extracts the new definitions generated by a program block. For
assignment statements, it returns a pair consisting of the assigned variable and the label
of the assignment.

Together, these functions implement the classic Data Flow Analysis pattern: the entry
set is computed by collecting and propagating definitions from predecessors, and the exit
set is calculated by applying the kill and gen sets to the entry set. This modular approach
allows the analysis to be applied compositionally over variational programs and reused

across different interpreters.

Example. Consider the Variant SANITIZE from the 3.3, previously presented in Sec-

tion 3:

[pwd := input]*;

[pwd := sanitized__input]?;

[result := pwd]*

Listing 4.29: Variant SANITIZE
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The results of the Reaching Definitions analysis for this SPL program—considering pres-

ence conditions—are shown in Table 4.1.

Table 4.1: Reaching Definitions for Variant SANITIZE

14 RDentry (‘e) RDem’t (‘e)

) {(input,?), (pwd,?), {(input,?), (pwd, 1),
(result,?), (sanitized_input,?)} | (result,?), (sanitized input,?)}
(result,?), (sanitized__input,?)} | (result,?), (sanitized_input,?)}

A {(input,?), (pwd,?2), {(input,?), (pwd,?2),
(result,?), (sanitized__input,?)} | (result,4), (sanitized_input,?)}

Now, consider the alternative variant =SANITIZE, in which there is no sanitization:

[pwd := input]*;
[skip]®;
[result := pwd)*
Listing 4.30: Variant — SANITIZE

Table 4.2: Reaching Definitions for Variant — SANITIZE

g RDentry (6) RDem’t (£>

) {(input,?), (pwd,?), | {(input,?), (pwd,1),
(result,?)} (result,?)}

3 {(input,?), (pwd,1), | {(input,?), (pwd,1),
(result,?)} (result,?)}

1 {(input,?), (pwd, 1), | {(input,?), (pwd, 1),
(result,?)} (result,4)}

As shown in Table 4.2, the variable sanitized_input does not appear in the results, as
it is only present in the SANITIZE variant and is absent from this particular configuration.
When the Reaching Definitions analysis is applied to the entire program with vari-

ability as input, the resulting analysis output is also variational. That is, the analysis
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result encodes the presence conditions under which each definition is valid. When pro-
jecting this variational result onto specific configurations (using the associated presence
conditions), we recover the same results as in Tables 4.1 and 4.2.

For instance, the value of RD.,;(4) in the variational analysis is represented as follows:

Listing 4.31: RDExit(4)

analyze :: CFG -> [(String, Integer)]
VarList [
VarPair (VarString (Var [( , ttPC)]), VarString (Var
—  [( , ttPC)1)),
VarPair (VarString (Var [( , notBDD propSanitize)]),
— VarString (Var [( , notBDD propSanitize)])),
VarPair (VarString (Var [( , propSanitize)]),
< VarString (Var [( , propSanitize)])),
VarPair (VarString (Var [( , ttPC)]), VarString (
— Var [( , ttPC)I1)),
VarPair (VarString (Var [( , propSanitize)
<~ 1), VarString (Var [( , propSanitize)])) ]

This representation demonstrates how each definition is annotated with a presence con-

dition, preserving both variants within a single unified analysis result.

4.5.4 Other Analyses and Key Differences

The remaining analyses follow the same architectural pattern but differ in their transfer

functions, directions, and semantic interpretations:

Live Variables (Backward Analysis)

o Goal: Identify variables that will be used later before being redefined.
o Transfer function propagates used variables backward.
« Kill set: Variables redefined at the node.

o Gen set: Variables used in the expression.

Available Expressions (Forward Analysis)

o Goal: Identify expressions that have been computed and not invalidated.

o Kill set: Expressions involving redefined variables.
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o Gen set: Expressions computed at the node.

o Merge operation: Intersection instead of union (expressions must be available along
all paths).

Very Busy Expressions (Backward Analysis)

o Goal: Expressions guaranteed to be used on all paths before any redefinition.
o Gen set: Expressions used at the node.
o Kill set: Expressions invalidated by assignments.

o Merge operation: Intersection (similar to available expressions but in reverse direc-

tion).

4.5.5 Correctness and Testing Strategy

Unlike previous work [14], this work does not include a formal verification of the cor-
rectness of the proposed memoization strategy, nor of its interaction with the variational
lifting mechanism. The absence of formal guarantees means that, at this stage, it is not
possible to rigorously assert that the memoization technique is correct or that it always
behaves properly when combined with lifted analyses.

Nevertheless, a comprehensive suite of tests was developed to build practical confidence

in the implementation. These tests include:

o Step-by-step validation of the intermediate and final results produced by each data-
flow analysis (e.g., sets such as init, final, kill, gen, etc.), ensuring they match

the expected outcomes for each example.

o Unit tests of auxiliary functions used by the interpreter, including presence propa-
gation (apply, union, substitute), Boolean operations on BDDs, and the repre-

sentation of variational values.

o Cross-validation between interpreter configurations: results produced by memoized

and non-memoized versions were systematically compared to ensure consistency.

In addition, the memory system is built on a purely functional programming model,
where function outputs depend solely on their inputs and produce no side effects. The
memoization key is computed as a hash of the function’s name and its arguments. Con-

sequently, when any part of the analyzed program changes, the input to the affected
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function changes as well, yielding a different hash. As a result, the interpreter naturally
bypasses outdated cached results without requiring explicit cache invalidation.

While this empirical testing provides a strong basis for confidence in the technique, a
formal treatment of correctness—especially to ensure sound reuse of memoized results in

variational contexts—is left as future work.
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Chapter 5
Empirical Evaluation

This chapter presents an empirical evaluation of the proposed method, reporting the
observed results and discussions. Section 5.1 defines the scope of the evaluation, while
Section 5.2 details the experiment setup. The results are presented in Section 5.3, followed
by an analysis and discussion in Section 5.4. Finally, potential threats to validity are

discussed in Section 5.5.

5.1 Definition

To define the scope of the evaluation, we use the Goal-Question-Metric (GQM) method-
ology [21]. The primary goal is to assess the impact of variability-aware execution and
memoization in static analysis.

Table 5.1 summarized the evaluation goal.

Table 5.1: GQM Goal

Purpose Assess
Issue Performance
Object Memoized and Variability-aware control-flow-based static analysis

Viewpoint Quality Assurance
Context Evolving SPL

The following methods and questions are presented to help us achieve the goal.

e Q1: How does the use of memoization and variability-aware techniques in the in-

terpreter affect runtime?
— M1.1: Execution time per analysis.

o Q2: How effective is memoization in reusing previously computed results?
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— M2.1: Number of entries stored in memory.

— M2.2: Number of reused computations.

5.2 Experiment Setup

To conduct this evaluation, we compare the use of the Variational and Memoized In-
terpreter against the Base Interpreter. Additionally, by including the use of the only
Variational Interpreter and the only Memoized Interpreter, we aim to provide a clearer
understanding of the overall results.

The empirical evaluation is conducted using a set of benchmark programs analyzed

under four interpreters:
1. Base Interpreter: Standard execution without variability or memoization.
2. Variational Interpreter: Handles variability using presence conditions.
3. Memoized Interpreter: Implements caching to avoid redundant computations.

4. Variational and Memoized Interpreter: Combines variability handling with

memoization.

If the chosen interpreter is one that does not handle variability (Base or Memoized),
the Interpreter step is executed multiple times—once per variation of the SPL.

The final analysis result is produced:

o A VarValor result if a Variability-aware interpreter is used (Variational or Varia-
tional + Memoized).

o A list of Valor results if a non-variability-aware interpreter is used (Base or Mem-

oized). Valor is a Data Structure similar to VarValor, without PresenceConditions.

5.2.1 Subject System Selection

Due to the limitations of the Adapted WHILE Language as the target language for pro-
grams, it was not feasible to employ real-world Software Product Lines (SPLs) directly.
Instead, we designed a controlled set of benchmark programs that aim to reflect a va-
riety of computational patterns and types of variability, inspired by common variability
scenarios studied in SPL evolution literature.

This set of programs was developed with the intention of illustrating different forms of
variability and to allow a controlled evaluation of the analysis techniques under different

conditions. While not based on a specific established benchmark suite, the design of the
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subject systems focus on variability aspects observed in real-world SPLs, as discussed by
Kroher et al. (2023) [8] and further explored in the analysis of LPS evolution by Hubner
[22].

For each benchmark program, an evolved version (denoted as _v2) was also developed.
Each _ v2 version introduces a different type of change—either structural or functional—to
simulate SPL evolution scenarios. These changes vary across programs and aim to emulate
some patterns of software evolution, rather than applying a uniform transformation across
all benchmarks.

The programs used in our evaluation are described below.

« Deep Loop Computation (deep_loop)
Computes a complex arithmetic function iteratively, simulating real-world deep con-
trol flow. The loop runs for a large number of iterations, and the presence condition
alters the loop depth, affecting execution time. The evolution includes an extra

computation.

» Nested Loop with Variability (nested_variability)
Implements two nested loops with presence conditions that alter the number of
iterations. This program has a computational complexity of O(n?) and tests how
variability impacts nested control flow structures. The evolution increases inner

loop bound.

« Interprocedural Simulation (interprocedural_sim)
Simulates function calls using While Language semantics. It processes values using
an accumulator variable, with variability affecting function logic and computational

paths. The evolution adds new conditional branch.

« Recursion Simulation (Factorial) (factorial_rec_sim)
Simulates recursion using loops instead of function calls, computing the factorial of
a number. Variability determines whether additional computations, such as power
calculations, are performed. The evolution extends iteration with power computa-

tion.

o Arithmetic-Heavy Computation (arithmetic_heavy)
A program with intensive arithmetic operations, including multiplication, division,
addition, and subtraction. Presence conditions influence whether additional com-
putations are executed, affecting execution time. The evolution adds another arith-

metic operation.
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« Variational Initialization (init_variability)
A simple program with three presence conditions affecting initial variable assign-
ments. It evaluates how combinations of initial configurations impact the program
behavior. The evolution adds a new computation based on previous initialization

results.

o Loop with Multiple Variants (loop_multi_variant)
A loop whose body is gradually modified by a cascade of presence conditions. This
example tests how variability can impact loop behavior incrementally. The evolution

includes a post-loop computation based on the accumulated result.

» Deeply Nested Variants (deep_nested_variants)
A synthetic example built to stress-test nested Variant structures with five presence
conditions. It shows how complex variability expressions can control assignment
paths. The evolution introduces an additional computation derived from the final

assigned value.

5.2.2 Experiment Design and Analysis Procedures

For each program and its revised version, the following Data Flow Analyses (DFAs)
were employed in the empirical evaluation. In each case, a set of relevant functions was

memoized to explore reuse opportunities during program evolution:

 Reaching Definitions: labels, flow, fv, assignments, init, final, findBlock, make-
SetOfFV, killRD, genRD, filterFlow.

o Live Variables: getVarFromAexp, getVarFromBexp, labels, flowR, flow, fv, init,
final, findBlock, killLV, genLV, filterFlow.

o Available Expressions: nonTrivialExpression, labels, flow, fv, init, final, find-
Block, killAE, genAE, filterFlow.

e Very Busy Expressions: labels, flow, flowR, fv, init, final, findBlock, killVB,
genVB, filterFlow.

The selection of functions for memoization was guided by their computational speci-
ficity and likelihood of being reused across program versions. These functions typically
operate over program structure (e.g., control flow graph traversal or syntactic analysis),
produce intermediate data reused in multiple steps of the analysis pipeline, and are agnos-
tic to the overall program context. For example, functions like flow, findBlock, and fv

are invoked repeatedly in the fixpoint computations of multiple DFAs and exhibit stable
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input-output behavior when unaffected parts of the program remain unchanged. Memo-
izing these components offers high reuse potential with minimal risk of stale data, as any
structural or semantic change in their inputs will automatically produce a different hash
and bypass the cache. Additionally, memoized functions are often small in number but
dominate execution time due to their repeated invocation, making them ideal targets for
memoization from a cost-benefit perspective.

Each analysis was executed using all four interpreter configurations: Base, Variational,
Memoized, and Variational and Memoized. The benchmark programs were used as inputs,
and each program was evaluated in both its original and evolved version (v1 and v2).

For interpreters supporting memoization, a serialized memory state was produced
after analyzing v1. This memory file was subsequently used to initialize the analysis
of the corresponding v2 program, allowing reuse of prior computations and simulating
incremental analysis in practice.

We used the Haskell library criterion' to benchmark the time spent computing analy-
ses with each interpreter configuration. Criterion performs statistically robust benchmark-
ing by executing each benchmark multiple times (often dozens or hundreds of iterations),
discarding warm-up phases, and applying techniques such as bootstrapping and linear re-
gression modeling to estimate mean runtime, standard deviation, and confidence intervals.
It also detects and classifies outliers to improve result accuracy.

All benchmarks were automatically analyzed using these statistical methods, with
runtime data exported in JSON format and post-processed to derive aggregated metrics.
This procedure ensures reliable and reproducible measurements while minimizing variance
introduced by system-level fluctuations such as CPU scheduling or background processes.

This benchmarking process was specifically designed to collect high-confidence runtime
metrics for addressing our first research question: Q1 — Compared to the baseline, how
much faster are memoized lifted analyses?

From these benchmarks, we extracted the average execution time and standard devi-
ation per file. To compute aggregate metrics for an analysis, individual means of each
program were summed, and the overall standard deviation was calculated assuming inde-
pendent measurements (i.e., square root of the sum of variances).

The benchmark generates two output files:

e runtime metrics.csv: Contains the execution time statistics per program and

analysis, including mean time, standard deviation, and outlier variance.

e cache_metrics.csv: Contains cache-related statistics, including serialized memory

size (CacheSize), cache misses (CacheMiss), and cache hits (CacheHits). A cache

'https://hackage.haskell.org/package/criterion
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miss is recorded when a memory lookup fails to retrieve a cached result, requiring
recomputation. A cache hit occurs when a previously memoized function result is

reused.

These metrics provide a systematic basis for evaluating the efficiency of memoization

and its impact on both runtime performance and cache reuse during SPL evolution.

5.2.3 Instrumentation and Operation

The experiments were conducted on a 2017 MacBook Pro equipped with 8 GB of RAM,
a 3.1 GHz Intel Core i5 dual-core processor, and a 512 GB SSD. Correctness was verified
through manual comparison of the textual outputs produced by each analysis across all
interpreters. A reproducibility package containing all benchmark programs, input data,

and evaluation scripts is available in our source code repository?.

5.3 Results

Following the evaluation plan outlined in Section 5.2, the results for each analysis and
interpreter are presented below, covering runtime performance (Section 5.3.1) and mem-
oization efficiency (Section 5.3.2).

Table 5.2 presents the benchmark programs used in this work along with their corre-
sponding abbreviations (short labels). These labels are used throughout the figures and

graphs to improve readability and reduce visual clutter.

Program Label
Arithmetic Heavy AH
Deep Loop DL
Deep Nested Variants DNV
Interprocedural I
Loop with Multiple Variants LMV
Nested Loop NL
Recursion Sim RS
Variational Initialization VI

Table 5.2: Short labels for benchmark programs

5.3.1 Analysis Runtime

Figures 5.1-5.4 present the cumulative execution time (in milliseconds) for four data-flow

analyses — Reaching Definitions, Live Variables, Available Expressions and Very Busy

2https://github.com/fischertayna/lifting-framework/tree/main/benchmarks
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Expressions — across different interpreter variants: Base, Memoized, Variational and
VMemoized — Variational and Memoized. Each bar is divided into two stacked segments
representing program versions V1 and V2, which correspond to successive variants of the
same program and reflect the effects of software evolution. The height of each segment
indicates the aggregated mean runtime for that version, while the error margins corre-
spond to the combined standard deviation, assuming independent measurements. These
visualizations highlight how each interpreter handles changes across program versions and

how optimizations such as memoization and variability awareness impact performance.
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5.3.2 Memoization Efficiency

Tables 5.3-5.6 presents the cache metrics collected across all programs when using Varia-

tional and Memoized Interpreter. The metrics include:
o Cache Size: The storage size of the file outputed with the Memory State (Bytes).
o Cache Misses: The number of unique memory state entries not found in cache.

e Cache Hits: The number of reused function results found in cache.
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VMemoized Memoized
Program Version Cache Size (B) Miss Hits Cache Size (B) Miss Hits

AH vl 10463 33 367 12155 53 549
AH v2 12041 37 533 14280 60 790
DL vl 7468 25 299 6788 36 197
DL v2 8968 29 401 8639 42 319
DNV vl 11435 29 272 6645 43 469
DNV v2 12228 33 367 12806 68 1372
I vl 8567 29 229 8627 45 387
I v2 12163 41 471 13786 66 846
LMV vl 11023 37 533 16101 77 1363
LMV v2 12581 41 599 19585 88 2320
NL vl 9643 33 367 11150 93 506
NL v2 10695 37 533 12665 60 740
RS vl 9376 29 401 8790 43 282
RS v2 10929 33 467 10613 49 468
VI vl 9521 29 272 22506 111 593
VI v2 10617 33 367 29804 136 1024

Table 5.3: Memoization efficiency for Reaching Definitions analysis.
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VMemoized Memoized
Program Version Cache Size (B) Miss Hits Cache Size (B) Miss Hits

AH vl 7596 30 175 8359 42 308
AH v2 8738 34 201 9821 48 567
DL vl 5677 22 94 4934 28 92
DL v2 6892 26 254 6491 34 278
DNV vl 7637 26 4 4155 30 290
DNV v2 8782 30 93 8643 50 1006
I vl 6278 25 305 6353 34 236
I v2 9185 37 473 10193 52 848
LMV vl 8622 34 436 12504 64 1096
LMV v2 9883 38 492 15469 74 1851
NL vl 7520 30 257 8207 42 308
NL v2 8613 34 295 9654 48 444
RS vl 6883 26 149 6191 34 226
RS v2 8168 30 298 7795 40 315
VI vl 6583 26 324 14690 76 604
VI v2 7699 30 380 19793 94 826

Table 5.4: Memoization efficiency for Live Variables analysis.
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VMemoized Memoized
Program Version Cache Size (B) Miss Hits Cache Size (B) Miss Hits

AH vl 9592 30 216 10836 47 303
AH v2 11274 34 295 12695 54 438
DL vl 6982 22 36 5921 30 20
DL v2 8569 26 44 7770 37 67
DNV vl 7332 26 44 3931 30 290
DNV v2 10732 30 52 10038 25 649
I vl 7681 26 79 7675 40 76
I v2 10518 38 121 11719 61 127
LMV vl 10311 34 60 15677 76 388
LMV v2 12228 38 68 19682 89 471
NL vl 8389 30 92 9612 47 93
NL v2 9440 34 60 11126 54 110
RS vl 8568 26 44 7441 37 67
RS v2 10413 30 92 9485 44 84
VI vl 9187 26 79 19066 94 178
VI v2 11045 30 134 26357 119 433

Table 5.5: Memoization efficiency for Available Expressions analysis.
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VMemoized Memoized
Program Version Cache Size (B) Miss Hits Cache Size (B) Miss Hits

AH vl 9648 30 93 10873 47 163
AH v2 11291 34 389 12733 o4 479
DL vl 7473 22 65 6202 30 96
DL v2 9182 26 79 8158 37 125
DNV vl 7341 26 44 4046 30 290
DNV v2 10704 30 380 9730 50 1006
I vl 7678 25 107 7564 38 70
I v2 10481 37 167 11610 59 121
LMV vl 10793 34 436 14460 68 860
LMV v2 12856 38 492 18171 79 1041
NL vl 8878 30 92 9881 47 93
NL v2 9935 34 60 11392 54 110
RS vl 9098 26 114 7716 37 125
RS v2 11069 30 134 9872 44 189
VI vl 9209 26 219 16583 80 328
VI v2 11048 30 257 22265 99 453

Table 5.6: Memoization efficiency for Very Busy Expressions analysis.

5.4 Analysis and Discussion

This section discusses the results presented in Section 5.3, highlighting the trade-offs
between variability-awareness and memoization, as well as the impacts of software product

line (SPL) evolution on analysis performance.

5.4.1 Analysis Runtime

The runtime results across the four data-flow analyses — Reaching Definitions, Live Vari-
ables, Available Expressions, and Very Busy Fxpressions — reveal distinct performance
patterns depending on the type of analysis and the optimization strategy applied. In
general, both the Memoized and Variational interpreters demonstrate competitive and
stable performance, while the vIMemoized interpreter consistently achieves the best or
near-best results across all scenarios.

For the Reaching Definitions and Live Variables analyses, the impact of memoiza-

tion is notably greater than that of variability-aware execution alone. These analyses
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involve extensive traversal of control-flow paths — forward in the case of Reaching Defi-
nitions and backward for Live Variables — and frequently revisit similar program states
across evolving versions. In such cases, memoization enables the reuse of intermediate
computations, significantly reducing redundant processing and resulting in substantial
performance gains. The vMemoized interpreter, which combines memoization with
variability-awareness, outperforms other variants by leveraging both cross-version reuse
and the compact representation of configuration-specific behavior.

In contrast, the Awailable Expressions and Very Busy Erpressions analyses exhibit
a slightly different pattern. Here, variability-aware execution often leads to better
performance compared to pure memoization. These analyses benefit from evaluating ex-
pressions in a shared context across variants, especially when common expressions appear
in multiple configurations. By lifting the analysis over the entire configuration space, the
Variational and vMemoized interpreters can avoid duplicated evaluation of shared sub-
expressions. Consequently, the Variational interpreter alone already performs competi-
tively, and when memoization is added, vIMemoized achieves the lowest overall runtimes,
particularly in programs with reusable or persistent computations across configurations
and versions.

These trends reflect the nature of the memoized functions implemented in each
analysis. Analyses based on propagating sets (e.g., reaching definitions or live vari-
ables) tend to produce similar results across versions and thus benefit more from caching.
Conversely, analyses involving the tracking of expressions and their availability across
paths and configurations gain more from the sharing mechanisms enabled by variability-
awareness. Ultimately, the results suggest that the effectiveness of each optimization
technique is analysis-dependent, reinforcing the value of combining both strategies in a

unified interpreter.

Memoization and Variability-aware Techniques Performance Impact

The combined use of memoization and variability-aware techniques reduced exe-
cution time significantly, especially in evolving scenarios, by avoiding redundant

computations across configurations and software versions.

5.4.2 Memoization Efficiency

The cache metrics provide additional evidence of the effectiveness of memoization in
reducing redundant computations during static analysis. Overall, the results highlight

that memoization supports both temporal reuse (across program versions) and spatial

o7



reuse (within the same execution), especially in analyses over programs with repetitive
structures and control flow complexity.

A notable pattern is that the Variational and Memoized (vMemoized) interpreter
consistently exhibits lower cache size and fewer cache misses than the Memoized
interpreter, despite performing the same analyses. This indicates that the integration of
variability-aware execution with memoization leads to more compact and efficient caching.
By analyzing all variants simultaneously, the interpreter avoids redundant evaluations
across configurations, leading to more opportunities to reuse cached results.

Interestingly, a cache miss count in Version 2 that is close to the count from Version 1
does not necessarily suggest a lack of reuse. On the contrary, it often reflects that the
interpreter was able to continue using existing entries from the earlier version, and that
relatively few new computations were required. This behavior is particularly evident in
programs that evolve structurally while retaining a high degree of similarity with earlier
versions.

Programs such as Deep Nested Variants and Loop with Multiple Variants, which
feature a higher number of presence conditions and branching points, show particularly
high cache reuse. These programs benefit from both the structural regularity and the in-
creased opportunities for reusing previously memoized sub-computations, as many parts
of the analysis logic remain unchanged across configurations and versions.

Cache hits are another critical metric. High cache hit rates indicate that the interpreter
efficiently avoided re-computation by retrieving results stored in earlier steps of the chaotic
iteration. This reuse occurred both within a single program execution (e.g., recursive or
repetitive constructs) and across successive versions of the same program. The correlation
between high cache hit counts and reduced execution time confirms that memoization not
only improves performance but also ensures scalability in the presence of evolving and

configurable software.

How effective is memoization in reusing previously computed results

Memoization was highly effective, with high cache hit rates, reduced memory us-
age, and fewer cache misses in the variational setting, enabling extensive reuse of

previously computed results and minimizing redundant evaluations.

5.4.3 Summary of Findings

The Variational and Memoized Interpreter (vMemoized) consistently achieves the
best trade-off between variability-awareness and execution performance. By combining

memoization and variational execution, it enables extensive reuse of previously computed
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results while preserving precision across multiple configurations. This dual optimization
proves especially effective in the analysis of Software Product Lines (SPLs) with complex
control flows and structural similarity across program versions.

Across the four data-flow analyses, Reaching Definitions and Live Variables ex-
hibited the most significant gains from memoization. These analyses involve extensive
traversal of the control-flow graph and generate recurring intermediate results, which are
highly amenable to caching. In contrast, Available Expressions and Very Busy Ex-
pressions benefitted more from variability-aware execution, due to their reliance on
configuration-sensitive expression reuse. This reflects a complementary relationship be-
tween the two techniques: while memoization excels in reducing recomputation over time,
variability-awareness improves performance across configuration space.

Additionally, cache metrics revealed that the vIMlemoized interpreter achieved lower
cache sizes and fewer misses than the Memoized interpreter alone, indicating more efficient
caching when presence conditions are integrated into execution. High cache hit rates
confirmed effective reuse not only across program versions (temporal reuse), but also
within the same analysis execution (spatial reuse). Programs with deeper nesting and
a greater number of presence conditions, such as those with multiple variability points,
demonstrated particularly strong reuse behavior.

These findings reinforce the value of addressing both spatial and temporal vari-
ability in static analysis for SPLs. Leveraging both dimensions enables scalable, reusable,

and efficient analyses—even as software evolves or expands its configuration space.

5.5 Threats to Validity

This section discusses potential threats to the validity of our empirical evaluation, struc-
tured across four categories: internal validity, external validity, construct validity, and

conclusion validity.

5.5.1 Internal Validity

Internal validity refers to whether the observed results can be attributed to the factors

under study rather than other confounding variables.

o Implementation Optimizations: Differences in implementation optimizations
across interpreters may unintentionally favor one approach over another. Despite
efforts to implement all interpreters consistently, low-level optimizations may have

influenced performance outcomes.
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« System-level Factors: Variability in system resources, such as CPU scheduling,
memory management, or background processes, may impact performance measure-

ments, potentially introducing noise in the collected data.

5.5.2 External Validity

External validity concerns the generalizability of the results beyond the experimental

context.

o Limited Benchmark Set: The set of benchmark programs used in this evaluation
may not be representative of all possible variational programs. As a result, the

findings may not generalize to other domains or more complex real-world scenarios.

e Program Complexity: Many of the evaluated programs are relatively simple and
may not expose the full potential benefits of variational execution and memoization.

In more complex settings, different performance trade-offs may emerge.

5.5.3 Construct Validity

Construct validity reflects how well the evaluation metrics capture what they are intended

to measure.

e Selection of Memoized Functions: The choice of which functions are subject
to memoization affects the measured storage overhead and memory load times.
Different choices could yield different results and affect the conclusions regarding

the efficiency of memoization.

5.5.4 Conclusion Validity

Conclusion validity relates to the reliability of the conclusions drawn from the empirical
data.

o Measurement Variability: Although multiple runs were conducted to minimize
measurement bias, inherent variability in execution time or memory usage may still

affect the statistical significance of observed performance differences.

o Use of Criterion Benchmarking Framework: To improve the reliability of run-
time measurements and mitigate measurement variability, we employed the Criterion
benchmarking library, a widely adopted framework in the Haskell ecosystem. Cri-

terion automatically performs a large number of iterations (typically thousands),
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discards initial warm-up runs to avoid cold-start effects, and applies statistical tech-
niques such as bootstrapping and standard deviation analysis to produce robust
estimates. It also calculates confidence intervals for each measurement, helping to
identify outliers and reduce the impact of transient system noise. These features
make Criterion particularly well-suited for precise benchmarking, contributing to

the statistical soundness of the results reported in this evaluation.
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Chapter 6
Conclusion

This dissertation presented a framework that combines variational lifting and memoiza-
tion to support scalable and reusable static analysis in the context of evolving Software
Product Lines (SPLs). By adopting an interpreter-based architecture, the proposed ap-
proach enables the execution of static analyses—implemented as PCF+ programs—over
variational representations of SPL code, where each value is annotated with a presence
condition.

The main contributions of this work are:

e The implementation of control-flow-based static analyses for an adapted While lan-

guage;

e The development of a variational and memoized interpreter capable of handling

both spatial and temporal variability;

o An empirical evaluation demonstrating the performance benefits of combining vari-

ational execution and memoization.

The empirical evaluation confirmed the performance benefits of combining variational
lifting and memoization. Variability-aware execution reduced runtime by avoiding re-
dundant computations across configurations, while memoization significantly improved
reuse across program evolutions. Together, they achieved lower execution time and re-
duced analysis effort, demonstrating the practical scalability of the proposed framework

for evolving Software Product Lines.

6.1 Limitations

While the proposed framework demonstrates promising results, several limitations were

identified throughout the development and evaluation process:
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Restricted Expressiveness of the Interpreter Language: The current inter-
preter is based on an extended version of PCF+-, which, while sufficient for modeling
core data-flow analyses, imposes limitations on the expressiveness of programs and
analyses that can be encoded. More complex language constructs, such as alge-
braic data types, type classes, or lazy evaluation (as in Haskell), are not currently
supported. This restricts the applicability of the framework to more advanced or

real-world analysis scenarios involving higher-level language features.

Memoization Granularity: The memoization strategy is currently applied at the
level of whole function calls. Finer-grained caching mechanisms (e.g., per statement

or per basic block) could offer better reuse in certain scenarios.

Absence of Real-world Case Studies: Although the benchmarks were designed
to simulate realistic evolution scenarios, the evaluation did not include analyses
over large, real-world SPLs, which may exhibit different patterns of variability and

evolution.

Lack of Formal Verification: This work does not provide a formal proof of
correctness for the memoization strategy or its interaction with variational lifting.
While extensive empirical testing was conducted to validate the implementation,

formal guarantees regarding soundness and safety of reuse remain future work.

Tooling and Integration: The current framework is implemented as a standalone
tool. Integration with broader analysis ecosystems or development environments

would require additional effort.
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Chapter 7

Future Work

Several opportunities exist to expand and improve upon this research:

« Extend the Interpreter Language: As a natural evolution of this work, the
interpreter could be extended to support more complex languages such as Haskell.
This would enable the application of the framework to more expressive analyses
and real-world functional programs, promoting reuse and extensibility in advanced

static analysis scenarios.

e Fine-grained Memoization: Exploring more granular memoization strategies
could lead to better reuse and performance, especially in large analyses. One possi-

bility is caching at the level of individual control flow blocks or variable definitions.

« Analysis of Real-world SPLs: Applying the framework to real SPLs (e.g., sub-
systems from the Linux Kernel or coreboot) would allow for a more comprehensive

validation of its scalability and practical relevance.

« Extending Analysis Capabilities: New forms of static analysis, such as taint
analysis, pointer analysis, or type inference, could be implemented within the same
interpreter-based infrastructure, benefiting from the variational and memoized exe-

cution model.

o Formal Verification of Correctness: A promising direction is the formal verifi-
cation of the correctness of the memoization strategy and its interaction with varia-
tional lifting. This would involve defining formal semantics for both mechanisms and
proving that memoized results are semantically equivalent to non-memoized com-
putations. Such a foundation would strengthen the reliability of the framework and
its applicability in safety-critical domains. The formalization of variational lifting

could build upon the existing formal semantics proposed by Shahin and Chechik [12]
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or leverage the formal and mechanized semantics developed by Castro et al. [23],

providing a solid basis for further theoretical guarantees.

o Tool Integration and Visualization: Integrating the framework into existing
IDEs or analysis platforms, and developing visualizations for variational analysis

results, could increase usability and adoption.

Overall, this dissertation lays the foundation for future research on integrated ap-
proaches to handle both dimensions of variability—space and time—in static program
analysis. The proposed framework contributes toward building more modular, reusable,

and efficient analysis tools for highly configurable and evolving systems.
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