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Resumo

As redes definidas por software (do inglês, Software Defined Networking - SDN) são ar-
quiteturas de redes que enfatizam a separação entre o plano de controle e o plano de dados,
proporcionando uma série de benefícios, como o gerenciamento centralizado, a flexibili-
dade e a programabilidade da infraestrutura de rede. Apesar dos benefícios oferecidos
pela arquitetura SDN, do ponto de vista da segurança, essa arquitetura introduziu novas
vulnerabilidades devido à comunicação necessária entre esses planos, em virtude da sepa-
ração deles. Os ataques distribuídos de negação de serviço (do inglês, Distributed Denial of
Service - DDoS), especialmente os do tipo volumétrico, representam um desafio significa-
tivo para esse tipo de rede, já que, nesta arquitetura, o controlador atua como um ponto
central de controle e decisão, sendo responsável por gerenciar o tráfego e a configuração
da rede. Assim, ele se torna um alvo estratégico para os ataques DDoS volumétricos,
já que sua paralisação, em função do volume massivo de tráfego malicioso proveniente
desses ataques, resultará na exaustão da capacidade de processamento, levando à sua
indisponibilidade e comprometendo a operação de toda a rede. As soluções presentes no
estado da arte apresentaram diversas estratégias para reduzir os impactos dos ataques
DDoS volumétricos. Porém, ainda permanecem algumas lacunas, como a centralização
das ações de detecção e mitigação no plano de controle, causando atrasos no processo para
confirmar qualquer mudança no comportamento do tráfego associada a esses ataques e o
aumento do volume de mensagens de controle encaminhadas ao controlador para realizar
a identificação e a contenção desses ataques a rede. Além disso, muitas das estratégias
desenvolvidas pelas soluções acabam penalizando uma parte significativa do tráfego legí-
timo, provocando bloqueios de forma indiscriminada. Este trabalho propõe um mecanismo
de detecção e mitigação denominado DataControl-ML, que visa suprir essas lacunas. O
mecanismo está organizado em dois procedimentos: (i) detecção e mitigação no plano de
dados; e (ii) compartilhamento de informações globais por meio do plano de controle.
O primeiro procedimento concentra-se em uma abordagem de detecção no plano de da-
dos, responsável por classificar o fluxo de tráfego malicioso por meio de um modelo de
classificação com base no algoritmo de aprendizagem de máquina Random Forest, que ex-
trai as características dos pacotes de rede e as utiliza para identificar padrões associados
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a comportamentos maliciosos. Essa abordagem é seguida por uma estratégia de miti-
gação que gerencia diferentes listas nos dispositivos de encaminhamento, utilizando níveis
de confiabilidade, para priorizar os fluxos confiáveis (legítimos) e bloquear aqueles com
baixo valor de confiança (maliciosos). O segundo procedimento visa o compartilhamento
de informações globais no plano de controle, organizadas em ações de controle que in-
cluem o bloqueio, a permissão sem prioridade associada ou a priorização dos clientes,
determinadas com base no estabelecimento de uma confiança global calculada a partir
de um sistema fuzzy no controlador, para o envio aos dispositivos de encaminhamento,
promovendo uma colaboração eficiente entre o plano de dados e de controle, e maior rapi-
dez nos processos de detecção e mitigação em diferentes pontos da rede. Os resultados
experimentais obtidos mostraram que o DataControl-ML reduz cerca de 52,18% o tempo
necessário para a confirmação (detecção) de uma fonte maliciosa, responsável por gerar os
ataques DDoS volumétricos, quando comparado a outro mecanismo do estado da arte (o
Bungee-ML). Além disso, o mecanismo proposto preserva os recursos (CPU e memória)
do controlador e switch, diminuindo o volume de mensagens de controle enviadas ao con-
trolador, o tempo de convergência para que os dispositivos de encaminhamento tenham
informações sincronizadas e alcança uma eficácia de detecção e mitigação superior a 98%,
reduzindo os impactos causados por esses ataques.

Palavras-chave: Redes Definidas por Software (SDN), Ataques de Negação de Serviço
Distribuídos (DDoS), Detecção e Mitigação de Ataques, Mecanismo de Segurança Baseado
em Confiança, Plano de Dados Programável.
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Abstract

Development of an integrated mechanism for detect-
ing and mitigating DDoS attacks in software-defined
networks

Software-defined networking (SDN) is a network architecture that emphasizes the sepa-
ration of the control plane from the data plane, providing a number of benefits such as
centralized management, flexibility, and programmability of the network infrastructure.
Despite the benefits offered by SDN from a security perspective, this architecture has in-
troduced new vulnerabilities due to the communication required between these planes due
to their separation. Distributed denial-of-service (DDoS) attacks, especially volumetric
ones, represent a significant challenge for this type of network, since in this architecture
the controller acts as a central point of control and decision, being responsible for manag-
ing network traffic and configuration. Thus, it becomes a strategic target for volumetric
DDoS attacks, as the massive influx of malicious traffic can overwhelm its processing
capacity, causing service disruption and compromising the operation of the entire net-
work. State-of-the-art solutions have presented several strategies to reduce the impacts
of volumetric DDoS attacks. However, some gaps still remain, such as the centralization
of detection and mitigation actions in the control plane, causing delays in the process of
confirming any change in traffic behavior associated with these attacks and the increase
in the volume of control messages forwarded to the controller to identify and contain
these network attacks. In addition, many of the mitigation strategies employed by these
solutions inadvertently penalize legitimate traffic, resulting in indiscriminate blocking.
This work proposes a detection and mitigation mechanism called DataControl-ML, which
aims to fill these gaps. The proposed mechanism is organized into two procedures: (i)
detection and mitigation in the data plane; and (ii) sharing of global information through
the control plane. The first procedure adopts a detection approach in the data plane,
where a machine learning-based classification model—specifically, the Random Forest al-
gorithm—analyzes network packet features to identify patterns indicative of malicious
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traffic. This approach is followed by a mitigation strategy that manages different lists
in the forwarding devices, using trust levels, to prioritize the trustworthy (legitimate)
flows and block those with low trust value (malicious). The second procedure focuses on
sharing global information through the control plane. It defines control actions—such as
blocking, allowing, or prioritizing clients—based on a global trust score calculated by a
fuzzy logic system in the controller. These actions are sent to forwarding devices, enabling
efficient collaboration between the data and control planes and speeding up detection and
mitigation across the network. The experimental results obtained show that DataControl-
ML reduces approximately 52,18% the time required for the confirmation (detection) of a
malicious source, responsible for generating volumetric DDoS attacks, when compared to
another state-of-the-art mechanism (Bungee-ML). In addition, the proposed mechanism
helps preserve CPU and memory resources on both the controller and the switches. It
reduces the number of control messages sent to the controller, shortens the convergence
time for forwarding devices to synchronize information, and achieves over 98% efficiency
in detecting and mitigating attacks—significantly reducing their impact.

Keywords: Software-Defined Networking (SDN), Distributed Denial-of-Service (DDoS)
Attacks, Attack Detection and Mitigation, Trust-based Security Mechanism, Programmable
Data Plane.
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Capítulo 1

Introdução

As redes definidas por software (do inglês, Software Defined Networking - SDN) surgiram
em resposta aos desafios enfrentados pelas redes tradicionais, como arquitetura complexa
e rígida, que dificultavam a adição, remoção ou modificação dos recursos da rede de forma
eficiente [2]. Os dispositivos presentes em uma rede tradicional, como switches e roteado-
res, são projetados com funções de controle e encaminhamento de maneira unificada, ou
seja, em um único plano de trabalho, impondo dificuldades no gerenciamento desta rede
devido à diversidade de dispositivos na infraestrutura, à variedade de protocolos a serem
configurados em cada dispositivo físico e às especificidades de cada fabricante [3]. Além
disso, a escalabilidade ainda pode representar um desafio, pois, embora os fabricantes
geralmente disponibilizem MIB’s (Management Information Base) que permitem a inte-
roperabilidade ao estabelecer padrões para a comunicação entre diferentes dispositivos de
rede, cada um possui configurações e características específicas [4, 5]. Dessa forma, a adi-
ção de novos dispositivos ou serviços pode demandar configurações manuais e complexas,
especialmente quando não há um gerenciamento centralizado.

Diante dos desafios das redes tradicionais, as redes SDN buscaram separar as funções
de controle e encaminhamento em diferentes planos de trabalho, chamados de controle e
dados, para tornar a rede mais flexível, gerenciável e centralizada [6]. Assim, o plano de
controle é formado pelos controladores, implementados por meio de softwares, responsáveis
por criar e coordenar de maneira centralizada os recursos e as políticas da rede, como
o encaminhamento e roteamento dos pacotes de rede. Enquanto, o plano de dados é
formado pelos dispositivos de rede, como switches e roteadores, responsáveis pelas ações de
encaminhamento e roteamento de dados conforme a política definida pelo controlador [3].

Além do plano de controle e de dados, arquitetura SDN também define um plano
de aplicação que executa aplicações de rede como balanceador de carga e firewall, para
auxiliar o controlador no gerenciamento da rede. Essa organização permite que a rede
seja programada e gerenciada de forma mais dinâmica, flexível e escalável, possibilitando
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a rápida implementação e modificação de serviços, como o desenvolvimento de funções de
segurança e o gerenciamento de fluxos, facilitando a detecção e o diagnóstico de proble-
mas [7].

Apesar dos benefícios oferecidos pela arquitetura SDN, a segurança ainda é motivo de
preocupação, especialmente devido à separação entre o plano de controle e de dados, o que
amplia a superfície de ataques [8]. Entre as ameaças mais relevantes nesse contexto estão
os ataques distribuídos de negação de serviço (do inglês, Distributed Denial of Service -
DDoS), em especial os do tipo volumétrico, que buscam sobrecarregar os recursos de rede
por meio de um tráfego malicioso massivo em um espaço curto de tempo, explorando
vulnerabilidades em aplicativos, serviços ou protocolos executados na rede alvo [9]. Na
arquitetura SDN, o controlador torna-se um alvo estratégico, pois sua indisponibilidade
pode comprometer a operação de toda a rede. Com isso, os ataques DDoS volumétricos
buscam sobrecarregar o controlador para limitar a sua capacidade de lidar com o tráfego
legítimo, gerando interrupções generalizadas nos serviços disponibilizadas na rede.

1.1 Motivação

Diante do cenário no qual os ataques DDoS volumétricos exploram vulnerabilidades ine-
rentes à arquitetura SDN, especialmente em virtude da separação entre os planos (con-
trole e dados), para sobrecarregar o controlador e comprometer a disponibilidade da rede,
torna-se essencial investigar, propor e aprimorar soluções de segurança, de forma a reduzir
os impactos causados por esses ataques e, ao mesmo tempo, preservar a continuidade do
tráfego legítimo.

Nesse contexto, muitas soluções de segurança presentes no estado da arte têm concen-
trado seus esforços na elaboração de abordagens que atuam exclusivamente na camada de
controle, devido à possibilidade de criar políticas de controle de tráfego de forma centra-
lizada, permitindo um maior domínio de toda a infraestrutura de rede [10]. Todavia, esse
tipo de abordagem torna o controlador ponto único de falha, e as interações frequentes
entre o plano de dados e o plano de controle provocam atrasos e o aumento do volume
de mensagens de controle encaminhadas ao controlador para reduzir os impactos causa-
dos pelos ataques DDoS volumétricos, aumentando o seu consumo de recursos [11]. Por
exemplo, tempos mais longos para detectar e confirmar qualquer mudança no comporta-
mento do tráfego, o que retarda o acionamento dos mecanismos de deteçcão e mitigação.
Além disso, há um aumento no consumo de recursos por parte do controlador, que precisa
processar continuamente um elevado volume de mensagens de controle para a tomada de
decisões.

2



Para reduzir os atrasos e o volume de mensagens de controle direcionadas ao con-
trolador, as soluções desenvolvidas por Shin et al. [12], Moreno et al. [13] e Lapoli et
al. [14], propuseram o desenvolvimento de mecanismos que atuam diretamente no plano
de dados, diminuindo o volume de mensagens de controle e proporcionando uma ação de
detecção mais rápida por parte das soluções [15]. Porém, elas ficaram restritas devido
às dificuldades de desenvolver métodos de detecção mais sofisticados e, ao mesmo tempo,
garantir o processamento de pacotes em alta velocidade no plano de dados [15]. Por causa
disso, soluções como Oracle [16], Cooperative-DDoS [17] e Bungee-ML [18] adotaram uma
abordagem híbrida, no qual realizam parte das ações de detecção no plano de dados e
a outra parte no plano de controle. Essas abordagens acabam aumentando o volume
de mensagens de controle e o tempo de confirmação de um ataque, já que o dispositivo
central será responsável por confirmar cada suspeita produzida no plano de dados [10].

No que tange às abordagens desenvolvidas pelas soluções para reduzir os impactos
dos ataques DDoS volumétricos, elas podem ser categorizadas, segundo Imran et al. [19]
em três tipos: (i) bloqueio, que busca interromper por completo o tráfego das possíveis
fontes do ataque; (ii) controle, que atrasa de forma proposital o tráfego suspeito; e (iii)
gerenciamento de recursos, que faz uso de recursos adicionais presentes na infraestrutura
de rede. Grande parte das soluções opta pela ação de bloqueio, pois ela proporciona
um alívio instantâneo aos recursos de rede e possui uma complexidade mais baixa para
o seu desenvolvimento, como as soluções desenvolvidas por Tuan et al. [20], Kumar et
al. [21] e Salem et al. [22]. Embora, esta ação vise restringir todo o tráfego suspeito, ela
acaba penalizando os clientes legítimos vinculados a uma determinada porta do switch
ou endereço IP (Internet Protocol) que está gerando esse tipo de tráfego, provocando um
bloqueio indiscriminado.

Para evitar o bloqueio indiscriminado do tráfego, os autores em [22] e [23] buscaram
adotar novos métodos, como a atribuição de confiabilidade e créditos aos clientes da rede
com base em seu comportamento, para estabelecer níveis de confiança entre eles e, assim,
realizar um bloqueio de maneira seletiva, restringindo apenas os clientes que estão abaixo
do nível de confiabilidade. Porém, as soluções desenvolvidas atuam apenas no plano
de controle, o que resulta em atrasos no processo de confirmação de qualquer atividade
suspeita associada aos ataques DDoS volumétricos e ao aumento do volume de mensagens
de controle para gerenciar os níveis de confiabilidade dos clientes e as demais ações de
controle do tráfego de rede [15, 10].

Diante da análise das soluções presentes no estado da arte, observou-se uma varie-
dade de abordagens para tornar essa arquitetura de rede mais segura e, assim, aproveitar
os benefícios oferecidos por ela, como flexibilidade, escalabilidade e o gerenciamento de
aplicações e serviços [19]. No entanto, ainda existem lacunas que podem deixar essa ar-
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quitetura vulnerável, como a centralização das ações de detecção e mitigação no plano de
controle, provocando atrasos adicionais para confirmar qualquer mudança no comporta-
mento do tráfego associada aos ataques DDoS volumétricos e o aumento do volume de
mensagens de controle encaminhadas ao controlador para realizar a identificação e a con-
tenção desses ataques a rede [15]. Além disso, muitas das estratégias desenvolvidas pelas
soluções para reduzir os impactos desses ataques, que, embora visem restringir o tráfego
malicioso, acabam penalizando uma parte significativa do tráfego legítimo, provocando
bloqueios de forma indiscriminada [20, 21, 24, 22, 25].

Considerando as lacunas observadas, identifica-se a necessidade de uma abordagem
mais eficiente, que não apenas reduza os atrasos na resposta aos ataques DDoS volumé-
tricos e diminua a dependência do controlador, mas que também avalie continuamente o
comportamento dos clientes e atribua níveis de confiança com base nesse comportamento
observado e utilize essas informações para, priorizar o tráfego legítimo em detrimento do
tráfego malicioso, de forma seletiva e inteligente, restringindo apenas o tráfego identificado
como malicioso.

1.2 Objetivo Geral

Este trabalho visa propor um mecanismo de detecção e mitigação de ataques DDoS vo-
lumétricos para redes SDN, que possibilite ações mais rápidas para conter o fluxo de
tráfego de rede de clientes maliciosos, por meio de técnicas de mitigação que avaliem con-
tinuamente o comportamento dos clientes para a priorizar o tráfego legítimo e restringir
o tráfego malicioso, para evitar os bloqueios indiscriminados. Para atingir esse objetivo
geral, são estabelecidos os seguintes objetivos específicos:

• Adoção de uma abordagem de detecção no plano de dados que possibilite a classi-
ficação do fluxo de tráfego de rede de clientes maliciosos de forma eficiente, rápida
e precisa, por meio de um modelo de classificação com base no algoritmo de apren-
dizagem de máquina Random Forest, e, assim, reduzir os atrasos no processo de
confirmação de qualquer atividade suspeita associada aos ataques DDoS volumétri-
cos e o volume de mensagens de controle encaminhadas ao controlador para realizar
as ações de detecção e mitigação.

• Aplicação de uma estratégia de mitigação no plano de dados que gerencia diferentes
listas nos dispositivos de encaminhamento, utilizando níveis de confiabilidade com
base no comportamento dos clientes, para priorizar os fluxos de tráfego de rede
de clientes confiáveis (legítimos) e bloquear o tráfego daqueles com baixo valor de
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confiança (maliciosos), a fim de evitar o bloqueio indiscriminado e aprimorar a
assertividade da estratégia de mitigação a ser proposta.

• Proposição de um modelo de compartilhamento de informações globais no plano
de controle, organizadas em ações de controle que incluem o bloqueio, a permissão
sem prioridade associada ou a priorização dos clientes, determinadas a partir do
estabelecimento de uma confiança global mediante um sistema fuzzy no controlador,
para o envio aos dispositivos de encaminhamento, criando uma visão única da rede
e uma mitigação mais abrangente, permitindo a tomada de decisões locais com base
em uma visão ampliada da rede.

1.3 Metodologia

A metodologia aplicada neste trabalho consiste, inicialmente, em uma revisão do estado
da arte no que tange às redes SDN, aos principais ataques DDoS (volumétricos e não
volumétricos), aos métodos de detecção/mitigação e às soluções relacionadas à segurança
em redes SDN, com foco na redução dos impactos causados pelos ataques DDoS volumé-
tricos. As soluções mais recentes e relevantes ao problema serão discutidas, considerando
os contextos de aplicação, os planos de atuação, as estratégias de detecção e mitigação
utilizadas e as principais limitações apontadas. Com base nessas analises, será definida a
proposta de um mecanismo para suprir as lacunas identificadas. O mecanismo proposto
será avaliado em um ambiente virtual de simulação para redes SDN. Para tal, será um
utilizado simulador conhecido e amplamente aceito pela comunidade científica, de forma
a permitir a comparação e validação com propostas semelhantes na literatura. Os resul-
tados obtidos serão comparados com uma solução representativa do estado arte, com base
em métricas de desempenho, como a acurácia da detecção, tempo de detecção, tempo de
convergência, volume de mensagens de controle e eficácia da mitigação.

1.4 Contribuições

Em particular, as principais contribuições deste trabalho são as seguintes:

• Abordagem para a detecção de ataques DDoS volumétricos no plano de dados,
que reduz o tempo de resposta para a confirmação de qualquer atividade suspeita
associada a esses ataques e minimiza os atrasos causados pela comunicação frequente
com o controlador;

• Estratégia de mitigação de ataques DDoS volumétricos no plano de dados com base
no gerenciamento de listas, que prioriza o fluxo de tráfego de rede de clientes com
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níveis de confiabilidade aceitáveis (legítimos) e bloqueia (descarta) o fluxo daqueles
com baixo valor de confiança (maliciosos), obtidos por meio da análise de seus
padrões de comportamento, para minimizar os efeitos causados por esses ataques;

• Modelo de compartilhamento de informações globais no plano de controle, orga-
nizadas em ações de controle que incluem o bloqueio, a permissão sem prioridade
associada ou a priorização dos clientes, determinadas a partir do estabelecimento
de uma confiança global, por meio do controlador para o envio aos dispositivos de
encaminhamento presentes no plano de dados, aprimorando a avaliação da confiança
e permitindo uma resposta mais eficiente, abrangente e adaptativa no combate aos
ataques DDoS volumétricos;

• Uma abordagem que integra o plano de controle e o plano de dados para a detecção
e mitigação de ataques DDoS volumétricos em toda a rede;

• Experimentos que demonstram a aplicabilidade e a eficácia do mecanismo proposto.

1.5 Publicações relacionadas a Tese

• Artigo desenvolvido em parceria e publicado no periódico International Journal of
Network Management (IJNM) - 2021, intitulado “A systematic review on distributed
denial of service attack defense mechanisms in programmable networks” [26] - Qualis-
CC A3.

• Artigo publicado e apresentado no 35th Advanced Information Networking and Ap-
plications (AINA) - 2021, intitulado “DoSSec: A Reputation-Based DoS Mitigation
Mechanism on SDN” [27] - Qualis-CC A2.

• Artigo publicado e apresentado no 9th International Symposium on Computing and
Networking Workshops (CANDARW) - 2021, intitulado “Detecting DDoS Attacks
on SDN Data Plane with Machine Learning” [28] - Qualis-CC B2.

• Artigo publicado no periódico Concurrency and Computation: Practice and Experi-
ence (CCPE) - 2022, intitulado “DataPlane-ML: an integrated attack detection and
mitigation solution for software defined networks” [29] - Qualis-CC A3.
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1.6 Demais publicações

• Artigo publicado e apresentado no 21st Workshop on Advances in Parallel and Dis-
tributed Computational Models (APDCM)-2019, intitulado “Entropy-based DoS at-
tack identification in SDN” [30] - Qualis-CC B4.

• Artigo publicado na revista Advances in Science, Technology and Engineering Sys-
tems Journal (ASTESJ)-2020, intitulado “Enhancing an SDN architecture with DoS
attack detection mechanisms” [31] - Qualis-CC C.

• Artigo publicado e apresentado no 34th Advanced Information Networking and Ap-
plications (AINA)-2020, intitulado “New programmable data plane architecture ba-
sed on P4 OpenFlow Agent” [32] - Qualis-CC A2.

1.7 Estrutura do Documento

Este documento está organizado da seguinte forma:

• Capítulo 2: apresenta uma fundamentação teórica acerca dos conceitos relaciona-
dos ao desenvolvimento do presente trabalho, tais como redes SDN e suas definições
básicas, os tipos de ataques distribuídos de negação de serviço (volumétricos e não
volumétricos), métodos de detecção e mitigação desses ataques;

• Capítulo 3: apresenta uma revisão do estado da arte acerca dos trabalhos relaci-
onados à segurança em redes SDN, com foco na redução dos impactos de ataques
DDoS volumétricos;

• Capítulo 4: apresenta a proposta de desenvolvimento do trabalho, detalhando o
funcionamento de cada módulo presente no mecanismo desenvolvido, com a descri-
ção das suas funcionalidades, objetivos e integrações;

• Capítulo 5: apresenta os resultados obtidos da pesquisa, descrevendo o ambiente
experimental utilizado, os métodos de avaliação aplicados, as métricas consideradas,
os resultados observados nos experimentos e a análise dos dados obtidos, destacando
as contribuições do mecanismo proposto para o estado da arte;

• Capítulo 6: apresenta a conclusão do trabalho, sintetizando os principais resulta-
dos alcançados, as contribuições para a área de estudo e indica os possíveis trabalhos
a serem desenvolvidos no futuro.
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Capítulo 2

Fundamentação Teórica

Este capítulo aborda os conceitos sobre redes SDN, os principais controladores, o plano
de dados programável e as plataformas para a realização de simulações de ambientes
SDN. Também são abordados os principais ataques distribuídos de negação serviço que
podem comprometer a disponibilidade dos serviços oferecidos por essa arquitetura de
rede, bem como as técnicas para identificá-los e combatê-los. A Seção 2.1 apresenta os
conceitos relacionados às redes SDN, a Seção 2.2 expõe os principais ataques distribuídos
de negação de serviço, a Seção 2.3 mostra os métodos para identificar esses ataques e a
Seção 2.4, os métodos para reduzir os impactos causados por esses ataques.

2.1 Redes Definidas por Software

As redes definidas por software surgiram como uma resposta aos desafios impostos pela
arquitetura de rede tradicional, caracterizada por sua complexidade e rigidez [3]. Essa
nova arquitetura de rede busca oferecer maior flexibilidade, programabilidade e a centra-
lização do controle da rede por meio da separação entre o plano de controle e o plano de
dados.

Nesse contexto, o plano de controle é responsável por criar e coordenar as funcionali-
dades dos dispositivos de rede, como switches e roteadores, promovendo uma gestão cen-
tralizada [6]. Enquanto, o plano de dados possui a responsabilidade de encaminhamento
e roteamento de pacotes conforme as regras definidas pelo plano de controle, proporcio-
nando maior flexibilidade na gestão do tráfego da rede [8]. Esse novo paradigma de rede
ganhou força com a criação do protocolo OpenFlow [2], concedendo acesso e controle de
forma padronizada a tabela de consulta utilizada pelo switch para estabelecer o próximo
movimento (ação) de cada pacote recebido, por exemplo, encaminhamento ou descarte [3].

Diferentemente do modelo presente nas redes tradicionais, onde as decisões de en-
caminhamento são baseadas no endereço IP (Internet Protocol) de destino, as redes
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SDN utilizam um modelo mais flexível, baseado nos critérios de correspondência e ação
(match+action) [2, 2]. Nesse modelo, os pacotes podem ser analisados e processados com
base em múltiplos campos de cabeçalho, como endereço MAC (Media Access Control) de
origem/destino, endereço IP de origem/destino, porta de origem/destino e tipo de pro-
tocolo [33]. Assim, quando um pacote apresenta valores que correspondem a uma regra
definida nos critérios de correspondência (match), uma ação (action) correspondente é
aplicada. Essa ação pode incluir o encaminhamento do pacote para uma porta específica,
a modificação do seu cabeçalho ou até mesmo o seu descarte. Esse modelo proporciona um
controle mais granular e dinâmico sobre o tráfego de rede, permitindo a implementação
de políticas de controle de tráfego mais avançadas e flexíveis para as redes SDN.

A arquitetura SDN oferece uma organização em camadas, que permite um gerencia-
mento flexível, eficiente e automatizado para lidar com a complexidade na configuração
e no controle da rede. As políticas de rede são administradas e implementadas nos con-
troladores e depois encaminhadas para os switches. Uma rede SDN é organizada em três
camadas (planos) [6], a Figura 2.1 apresenta a arquitetura SDN.

Aplicação 2Aplicação 1 Aplicação N...

API Northbound

API Southbound

Controlador SDN


Plano de Aplicação

Plano de Dados

Plano de Controle

Figura 2.1: Arquitetura SDN.

O plano de dados compreende os dispositivos de rede responsáveis por ações de enca-
minhamento e roteamento (por exemplo, switches e roteadores), além de monitorar infor-
mações locais e coletar estatísticas [3]. Esses dispositivos são configurados por meio de um
conjunto de regras de fluxo, usadas para redirecionar os pacotes de entrada pertencentes
a um fluxo. A comunicação com o plano de controle é realizada pela API (Application
Programming Interface) southbound, por exemplo, OpenFlow [2] e ForCES [34]. A im-
plementação mais conhecida dessa API é o protocolo OpenFlow, que busca padronizar o
modo como o controlador se comunica com os dispositivos de encaminhamento da rede
por meio de mensagens de controle. Esse protocolo estabelece um canal de comunicação,
que conecta o dispositivo de encaminhamento ao controlador, e por meio dessa interface,
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o controlador configura e gerencia o dispositivo por meio do envio de comandos (men-
sagens) de controle para a tabela de fluxo desse dispositivo. A tabela de fluxo, indica
quais fluxos o dispositivo de encaminhamento deve processar, sendo que para cada en-
trada dessa tabela é específicado um conjunto de ações que devem ser aplicadas a cada
fluxo. Assim, é possível definir um conjunto de ações para estabelecer a conduta a ser
tomada para o fluxo, como o encaminhamento ou o descarte dos pacotes. Essas ações
podem ser dinamicamente modificadas, adicionadas ou removidas, sem a necessidade de
reconfigurar fisicamente os dispositivos de encaminhamento da rede.

O plano de controle é formado pelos controladores, que gerenciam toda a rede, res-
ponsáveis por criar e coordenar as funcionalidades dos dispositivos de rede (switches e
roteadores) [35]. Eles se comunicam com o plano de dados por meio de uma interface
southbound usando protocolos, como OpenFlow [2] e ForCES [34]. Adicionalmente, o
plano de controle conta com APIs horizontais à esquerda e à direita, denominadas west-
bound e eastbound, para o gerenciamento de múltiplos controladores na rede [3]. Essas
APIs são um caso especial de interfaces requeridas por controladores distribuídos. As
funções dessas interfaces incluem a importação e exportação de dados entre controlado-
res, algoritmos para modelos de consistência de dados, e recursos de monitoramento e
notificação, como verificar se um controlador está ativo ou notificar uma substituição em
um conjunto de dispositivos de encaminhamento.

O plano de aplicação compreende um conjunto de aplicações de rede, como balan-
ceadores de carga, serviços de QoS (Quality of Service), firewall e controle de acesso,
que auxiliam o controlador no gerenciamento da rede [36]. Elas se comunicam com o
controlador através da API northbound, que permite às aplicações realizar o controle e o
monitoramento de funções da rede, como armazenamento e largura de banda, utilizando
os serviços de rede fornecidos pelo controlador [37]. A API converte as solicitações das
aplicações em instruções de baixo nível para que os controladores possam transmitir as es-
tatísticas e/ou realizar as ações solicitadas pela aplicação em questão. Essa API pode ser
implementada usando a arquitetura REST (Representational State Transfer), que utiliza
requisições HTTP para extrair, inserir e deletar dados na rede [38].

2.1.1 Controladores SDN

O controlador é o componente principal de uma rede SDN, ele é responsável por coordenar
e gerenciar os recursos de toda a rede, oferecendo uma visão unificada e centralizada [35].
Por meio dele, é possível implementar a política de encaminhamento de pacotes na rede,
identificar possíveis problemas e reconfigurar a rede em tempo real para garantir o de-
sempenho e a disponibilidade.
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Existem diferentes tipos de controladores SDN, programados por meio de uma API,
definindo o que será feito em cada um dos planos. Assim, cada controlador utiliza uma lin-
guagem de programação, como C, C++, Java e Python para implementar comandos para
auxiliar no controle da infraestrutura da rede. A seguir, são apresentados os principais
controladores amplamente utilizados em trabalhos e pesquisas.

• NOX: o controlador NOX [39] foi desenvolvido em linguagem C++ e em seguida
implementado em Python. Ele atua sobre o conceito de fluxo de dados, em que
verifica o primeiro pacote de cada fluxo e procura uma entrada correspondente na
tabela de fluxo para aplicar uma determinada ação. Ele possui um conjunto de
bibliotecas, que fornecem implementações de funções comuns ao gerenciamento de
rede, como módulo de roteamento e classificação rápida de pacotes.

• POX: o controlador POX [40] foi desenvolvido em Python, com sua arquitetura
fundamentada no controlador NOX, porém com desempenho aprimorado. Por meio
dele, é possível executar diferentes aplicativos, como hub, switch, balanceador de
carga e firewall.

• FLOODLIGHT: o controlador FloodLight [41] foi desenvolvido em Java e possui
uma arquitetura modular. Essa arquitetura permite um gerenciamento flexível dos
componentes para a administração dos dispositivos. Dentre os componentes, temos
o rastreamento MAC, IP, escolha de melhor caminho e acesso ao gerenciamento via
interface web. Esse controlador incorpora um modelo de threading, que permite o
compartilhamento de threads com outros módulos.

• OPENDAYLIGHT: o controlador OpenDaylight [42] é desenvolvido em Java e
possui como características-chaves a modularidade e a flexibilidade, que permitem
aos desenvolvedores selecionar os recursos mais importantes para eles e criar contro-
ladores que atendam às suas necessidades específicas. Ele possui uma arquitetura
baseada em micro-serviços, o que permite aos usuários o controle por meio de apli-
cações e protocolos.

• RYU: o controlador RYU [43] é desenvolvido em Python e oferece uma arquite-
tura modular, permitindo que os desenvolvedores o adaptem às suas necessidades
específicas. Além disso, ele também oferece uma API RESTful, que possibilita aos
desenvolvedores criar aplicativos de rede baseados em chamadas HTTP, facilitando
a comunicação com outros sistemas. Dentre as principais características desse con-
trolador, podemos destacar: (i) suporte a múltiplos protocolos de comunicação,
incluindo OpenFlow [2] e NetConf [44], permitindo a comunicação com diferentes
tipos de dispositivos de rede; (ii) escalabilidade, permitindo lidar com grandes redes
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de forma eficiente; (iii) modularidade, permitindo que os desenvolvedores adicionem
novas funcionalidades ao controlador; e (iv) documentação abrangente, facilitando
o aprendizado e uso da plataforma.

• ONOS: o controlador ONOS (Open Network Operating System) [45] é desenvolvido
em Java e possui como característica a capacidade de operar em redes de grande
escala com foco em desempenho, escalabilidade, resiliência e segurança. Esse con-
trolador possui uma arquitetura modular e distribuída, permitindo que múltiplas
instâncias do controlador trabalhem em conjunto para fornecer alta disponibilidade
e tolerância a falhas. Ele oferece suporte a diversos protocolos de comunicação,
como Openflow [2], NetConf [44] e P4Runtime [46], para gerenciar e configurar di-
ferentes dispositivos de rede. Este último é um protocolo de controle do plano de
dados que possibilita a comunicação entre controladores SDN e dispositivos de redes
programáveis que utilizam a linguagem de programação P4 (descrita na próxima se-
ção). Além disso, o ONOS facilita a criação de aplicações de rede ao oferecer APIs
bem definidas, que permitem o desenvolvimento de soluções personalizadas para
diferentes cenários de rede.

Por meio dos controladores SDN, os desenvolvedores e administradores de rede têm
acesso a um ambiente que possibilita programar e configurar toda a rede, ampliando a
gama de soluções a serem implementadas. Contudo, a programação da rede não se limita
apenas ao plano de controle, ela pode ser expandida ao plano de dados. A seção a seguir
aborda como isso pode ser realizado.

2.1.2 Plano de Dados Programável

As redes SDN trouxeram recursos adicionais que alteram a maneira como os dados são
encaminhados, proporcionando flexibilidade e programabilidade à rede. Diversos proto-
colos foram apresentados, sendo o mais disseminado o OpenFlow [2], que padroniza a
comunicação entre o controlador e os dispositivos de redes, como switches e roteadores.

O protocolo OpenFlow utiliza switches de função fixa do tipo ASICs (Application
Specific Integrated Circuits), que admitem um conjunto pré-estabelecido de campos de
cabeçalho e processam os pacotes usando um conjunto de ações pré-estabelecidas, tor-
nando a adição de novas funcionalidades um processo complexo e dependente de novas
atualizações do protocolo e dos fornecedores de hardware [1, 47].

Diante de tal limitação, surgiu a necessidade de mudanças na maneira como os pacotes
são processados, a fim de proporcionar flexibilidade à rede. A programação da rede é,
então, estendida aos dispositivos que compõem o plano de dados. Nesse cenário, surgiu
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a linguagem de processamento de pacotes denominada P4 (Programming Protocol Inde-
pendent Packet Processors), que especifica como os dispositivos do plano de dados, como
switches e roteadores, processam os pacotes de redes [1].

A linguagem P4 é baseada na arquitetura PISA (Protocol-Idenpendent Switch Archi-
tecture) [1], no qual os switches não precisam estar vinculados a nenhum protocolo de
rede específico, como o OpenFlow [2]. Essa arquitetura possui duas operações básicas:
configurar e preencher. A primeira determina quais protocolos serão suportados e como
os switches podem processar os pacotes. A segunda adiciona ou remove entradas na ta-
bela de correspondência dos switches, estabelecendo as políticas aplicadas aos pacotes. A
Figura 2.2 mostra o modelo de encaminhamento dos switches programáveis.

MATCH
ACTION

MATCH
ACTIONEN

TR
A
D
A

A
N
A
LI
SA

D
O
R

FI
LA

S 

SA
ÍD
A

ENTRADA SAÍDA

Figura 2.2: Modelo de encaminhamento dos switches programáveis, adaptada de [1].

Os pacotes que ingressam no switch são tratados pelo analisador, que, então, extrai os
cabeçalhos e, assim, define os protocolos que o dispositivo suporta, além do tratamento a
ser dado a eles. Os campos extraídos são encaminhados para as tabelas de correspondência
do tipo (match+action), divididas em tabela de ingresso (entrada) e tabela de egresso
(saída). As tabelas de ingresso determinam as ações a serem tomadas, por exemplo,
encaminhamento, replicação, rejeição, etc. Já as tabelas de saídas realizam modificações
no cabeçalho, se necessário, por exemplo, atribuir a uma fila, alterar a porta de saída, etc.
Entre as tabelas, temos o enfileiramento, que processa as especificações de saída, gera as
instâncias necessárias do pacote e as envia ao pipeline de saída do dispositivo. Após a
conclusão de todo o processamento pelo pipeline de saída, o pacote é transmitido.

A linguagem P4 permite o uso de estruturas para manter informações sobre deter-
minado pacote, como registradores e contadores. Além disso, possibilita que os pacotes
carreguem informações adicionais entre os estágios do pipeline, por meio de metadados.
Estes, por sua vez, contêm informações essenciais sobre o pacote de entrada, tais como
porta de entrada, porta de saída, timestamp, prioridade atribuída, fila de transmissão ou
outros dados importantes para o processamento do pacote.

Os principais componentes da linguagem P4 são:

• Cabeçalhos: descrevem a sequência e estrutura de uma série de campos de bits
definidos pelo desenvolvedor. Eles incluem especificações de largura, restrições de
tipos e valores.
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• Analisador: especifica como reconhecer os cabeçalhos ou sequência de cabeçalhos
válidos no pacote. Para isso, assume-se que o dispositivo de destino consegue im-
plementar uma máquina de estado capaz de analisar o cabeçalho de cada pacote do
início ao fim, extraindo seus diversos campos um por um.

• Tabelas: as tabelas são do tipo match+action, que definem os mecanismos para
o processamento dos pacotes, associando ações (actions) aos pacotes conforme a
correspondência (match) realizada pelo analisador.

• Ações: definem um bloco de ações primitivas usadas para realizar funções espe-
cíficas, como copiar um campo para outro, definir um campo específico em um
cabeçalho para um valor, entre outras.

• Controle: estabelece o controle de fluxo das tabelas, sendo responsável por espe-
cificar o caminho que o pacote deve seguir entre uma tabela e outra.

Os componentes citados acima definem um programa escrito na linguagem P4. Assim,
o analisador identifica os cabeçalhos presentes em cada pacote que ingressa no dispositivo
de encaminhamento. Cada tabela de match+action realiza uma busca em um subconjunto
de campos de cabeçalho e aplica as ações correspondentes à primeira correspondência
encontrada na tabela.

2.1.3 Ferramentas de emulação e simulação

Os mecanismos de emulação e simulação de ambientes SDN permitem testar soluções de
rede, que posteriormente podem ser aplicadas no mundo real. Diversos fatores, como
a relação custo-benefício, complexidade de gerenciamento e tempo, contribuem para a
utilização desses mecanismos. Os principais mecanismos para o desenvolvimento de uma
rede SDN são:

• NS-3: o NS-3 é um simulador de redes escrito em C++, desenvolvido para for-
necer uma plataforma de simulação voltada principalmente para pesquisa e uso
educacional [48]. Ele fornece modelos de funcionamento de redes e pacotes, além
de disponibilizar um mecanismo de simulação para que os usuários conduzam ex-
perimentos. As principais características do simulador incluem a possibilidade de
integração com bibliotecas externas e suporte a diferentes sistemas operacionais,
como Linux e Windows.

• EstiNet: o EstiNet é um simulador e emulador de redes SDN que utiliza uma me-
todologia de simulação denominada kernel re-entering, permitindo o uso de contro-
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ladores reais [49]. A ferramenta combina as vantagens das abordagens de simulação
e emulação.

• Mininet: o Mininet é um emulador de rede desenvolvido por pesquisadores da
Universidade de Stanford [50], que permite criar uma rede virtual incluindo dife-
rentes topologias lógicas, como estrela, barramento, anel, etc. A rede é composta
por hosts, switches, roteadores, controladores e enlaces, todos executados em uma
única máquina através do kernel do Linux. Dessa forma, um host no Mininet se
comporta exatamente como uma máquina real, oferecendo uma interface de linha
de comando simples e intuitiva para criar e gerenciar a rede virtual de maneira fácil
e eficiente. Uma das principais vantagens do Mininet é a capacidade de criar e tes-
tar redes complexas em um ambiente de laboratório controlado, permitindo que os
usuários testem novos projetos de rede sem a necessidade de investir em hardware
físico. A ferramenta é amplamente utilizada em ambientes acadêmicos e de pes-
quisa, permitindo a utilização de diferentes controladores de rede, como POX [40],
OpenDayLight [42], RYU [50] e ONOS [45].

A utilização dessas ferramentas permite simular ambientes de redes complexos, inte-
ragir e personalizar protótipos de redes SDN, além de implementar soluções de monitora-
mento, segurança e gerenciamento de tráfego, para integrá-las com a rede física existente.

2.2 Ataques Distribuídos de Negação de Serviço -
DDoS

Uma das principais ameaças de segurança em redes SDN são os ataques distribuídos de
negação de serviço, que exploram a separação entre os planos (dados e controle) dessa ar-
quitetura de rede para comprometer a disponibilidade dos serviços oferecidos por ela [36].

Os ataques DDoS consistem em tentativas coordenadas para sobrecarregar um alvo e
causar a sua indisponibilidade por meio de múltiplos dispositivos comprometidos, conhe-
cidos como bots ou zumbis, que podem ser utilizados, por exemplo, para gerar um volume
massivo de tráfego malicioso para exaurir os recursos dos dispositivos de uma rede SDN,
como o controlador e o switch [51, 52]. Pois, nessa arquitetura de rede, o encaminha-
mento de pacotes é baseado na correspondência com as entradas da tabela de fluxo do
dispositivo de encaminhamento, presente no plano de dados [3]. Caso não haja corres-
pondência na tabela de fluxo, o switch encapsula as informações do cabeçalho do pacote
e as envia para o controlador (plano de controle), que devolve essa informação solicitando
que seja adicionada uma nova entrada correspondente no switch, para que o pacote seja
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transmitido até o destino. Assim, os atacantes exploram esse modo de operação dos dis-
positivos SDN para sobrecarregá-los com um grande volume de pacotes maliciosos, o que
resulta na criação de inúmeras novas entradas na tabela de fluxo do switch, o que leva
à sobrecarga de memória do dispositivo de encaminhamento e à exaustão da capacidade
de processamento do controlador, causando efeitos na infraestrutura SDN e nos sistemas
finais direcionados, tornando-os inacessíveis para usuários legítimos.

Os ataques DDoS são comumente associados as tentativas de sobrecarregar os recursos
da vítima por meio de um alto volume de tráfego malicioso em um curto intervalo de
tempo [53]. No entanto, também existem ataques que exploram vulnerabilidades em
aplicações e protocolos para esgotar os recursos da vítima sem necessariamente gerar um
grande volume de dados [54]. Em função disso, a literatura costuma classificar os ataques
DDoS em dois grandes grupos, de acordo com sua forma de atuação: ataques volumétricos
e ataques não volumétricos (de baixo volume e baixa taxa) [55].

2.2.1 Ataques Volumétricos

Os ataques volumétricos são caracterizados pelo envio de um grande volume de tráfego,
visando sobrecarregar algum recurso da vítima, geralmente a banda disponível ou sua
capacidade de processamento, impedindo que solicitações legítimas sejam atendidas [56].
Os ataques mais comuns dessa categoria incluem SYN-Flood [57], UDP-Flood [58], DNS-
Flood [59] e ICMP-Flood [58].

O ataque SYN-Flood aproveita o “three-way handshake”, que é a base para o estabele-
cimento de conexões usando o protocolo TCP (Transmission Control Protocol), a fim de
esgotar os recursos da vítima [57]. Em um cenário normal, o three-way handshake funci-
ona da seguinte maneira: o cliente solicita uma conexão enviando uma mensagem do tipo
SYN (Synchronize) ao servidor, que reconhece esta solicitação enviando uma mensagem
SYN-ACK (Synchronize-Acknowledgment) de volta ao cliente. O cliente, por sua vez,
responde com um ACK (Acknowledgment), e a conexão é estabelecida. O ataque consiste
no envio de inúmeras solicitações de conexões TCP, com endereços de origem espúrios na
forma de segmentos SYN para o servidor. Consequentemente, o servidor aloca e inicializa
variáveis de conexão e buffers, respondendo com um SYN-ACK para um endereço falso
e aguarda a resposta ACK para estabelecer a conexão. Como o ACK não é recebido, a
conexão permanece em estado semi-aberto (SYN-RECV) no servidor, ou seja, mantém-se
na fila de conexão TCP do servidor. Com várias dessas conexões semi-abertas, o atacante
pode sobrecarregar todas as filas de conexão TCP disponíveis em uma máquina servidora
de destino, sobrecarregando o servidor, o que eventualmente o impede de responder a
solicitações de clientes TCP legítimos.
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O ataque UDP-Flood utiliza o protocolo UDP (User Datagram Protocol) para sobre-
carregar uma rede ou servidor de destino com um grande volume de pacotes UDP[58].
Esse protocolo não requer o estabelecimento de uma conexão, ao contrário do TCP [60].
O atacante inunda o alvo com inúmeros pacotes UDP, especificando portas aleatórias na
máquina de destino (vítima). Isso faz com que a vítima, ao receber esses pacotes, veri-
fique repetidamente os serviços escutando em cada porta especificada. Quando nenhum
serviço é encontrado, a vítima responde com um pacote ICMP (Internet Control Message
Protocol), utilizado para comunicar problemas na transmissão de dados, notificando o en-
dereço de origem (atacante) de que a porta de destino é inacessível (ICMP - Destination
Unreachable). Com o volume de pacotes UDP enviados para diferentes portas do alvo,
isso resulta no esgotamento de recursos por parte da vítima, que precisa responder todas
as solicitações recebidas.

O ataque DNS-Flood utiliza o protocolo DNS (Domain Name System), que fornece
serviço de resolução de endereço para os usuários da Internet, ou seja, mapeia nomes de
domínio (como “www.exemplo.com”) para os endereços IP associados, permitindo que
os dispositivos se comuniquem com os servidores da rede [59, 61]. O objetivo do ataque
é sobrecarregar o servidor DNS-alvo com um volume excessivo de requisições (consultas
DNS), de modo que ele fique incapaz de atender às requisições de usuários legítimos. Os
atacantes também podem utilizar técnicas como “reflexão/amplificação”, nas quais uma
consulta pequena feita pelo atacante resulta em uma resposta muito maior do servidor
DNS, aumentando assim o volume de tráfego de forma exponencial [62]. Além disso,
o atacante pode falsificar endereços IP de origem, fazendo com que as respostas sejam
enviadas a outros servidores ou dispositivos, dificultando a identificação do atacante.

Por último, temos o ataque ICMP-Flood, que utiliza o protocolo ICMP, responsá-
vel pelo envio de mensagens e informações de controle entre dispositivos em uma rede,
como mensagens de erro (Destination Unreachable e Time Exceeded for a Datagram) e
mensagens de controle (Echo Request e Echo Reply) [63]. O atacante explora o fato
de que protocolo ICMP é unidirecional e não exige autenticação para o envio remoto
de inúmeros pacotes de solicitação do tipo Echo Request (ping) para a vítima, que, por
sua vez, responde com um pacote Echo Reply para cada endereço IP solicitante. Como
a vítima tentará responder a todas as solicitações, isso consome sua largura de banda,
impossibilitando-a de atender aos pedidos de usuários legítimos.

2.2.2 Ataques Não Volumétricos

Os ataques não volumétricos exploram os recursos típicos dos protocolos de comunicação
utilizados pela aplicação, provocando a exaustão de alguns recursos da vítima por meio
de um baixo volume de tráfego. O ataque Slow Read, por exemplo, explora o protocolo
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TCP [54], enquanto os ataques Slowloris e Slow Body exploram as características do
protocolo HTTP (HyperText Transfer Protocol) [54]. Esse último protocolo é utilizado
para a comunicação em redes de computadores, onde dois tipos de entidades, conhecidos
como cliente e servidor, interagem para realizar tarefas e trocar informações, fornecendo
uma maneira eficiente de enviar e receber dados de servidores usando operações como
GET, POST e PUT [64].

O ataque Slow Read utiliza o protocolo TCP. Nesse tipo de ataque, o atacante realiza
uma conexão TCP completa. Porém, quando o servidor responde à solicitação, o atacante
informa uma janela TCP menor para aceitar os dados da resposta e, assim, controlar os
fluxos. Isso faz com que o servidor envie os dados lentamente para o atacante, mantendo
a conexão aberta. O atacante, por sua vez, tende a diminuir o tamanho da janela TCP,
chegando próximo a zero, fazendo com que o servidor continue consumindo recursos para
manter a conexão ativa, tornando o serviço indisponível para os demais usuários [54].

O Slowloris é um ataque que atua na camada de aplicação do modelo OSI (Open
Systems Interconnection) para sobrecarregar um servidor web, tornando-o inacessível para
usuários legítimos [65]. Em vez de inundar o servidor com um grande volume de tráfego,
como ocorre em ataques DDoS volumétricos, o Slowloris usa recursos de servidor com
solicitações HTTP que parecem mais lentas que o normal, mas que são legítimas [65]. O
atacante inicia várias conexões com o servidor alvo e, em cada conexão, o atacante envia
de tempos em tempos uma solicitação HTTP parcial através do método GET, mantendo
as conexões abertas sem concluir as solicitações. A vítima (servidor) pressupõe que o
cliente está em uma conexão lenta e, assim, mantém a conexão aberta, aguardando que
cada solicitação seja concluída. À medida que mais conexões são abertas e mantidas, o
servidor fica sobrecarregado com conexões pendentes, esgotando seus recursos até atingir
o limite máximo em termos de conexões simultâneas. Como resultado, o servidor se torna
incapaz de atender novas solicitações legítimas e fica inacessível para usuários legítimos.

Por fim, temos o ataque Slow Body caracterizado pelo envio de dados em campos de
formulários através do método POST do protocolo HTTP, no qual inclui um cabeçalho
maior do que o seu tamanho real e envia lentamente para manter o servidor ocupado [54].
O atacante envia o corpo da mensagem em pequenos pedaços (bytes). O servidor recebe
cada fragmento e mantém a conexão aberta enquanto aguarda o restante do corpo. À
medida que mais conexões são abertas e mantidas com o mesmo padrão de envio de corpo
em pequenas partes, o servidor fica sobrecarregado com conexões pendentes.
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2.3 Métodos de detecção de ataques DDoS

Os métodos utilizados para detectar os ataques DDoS (volumétricos e não volumétricos),
possibilitam uma ação mais ágil na identificação de atividades maliciosas que podem
comprometer a disponibilidade dos serviços oferecidos pela rede.

A literatura dispõe de diferentes maneiras de classificar os métodos de detecção de ata-
ques DDoS. Segundo Lee et al. [66], a classificação pode ser baseada no volume de tráfego,
no qual é analisada a estrutura do tráfego para tentar encontrar anomalias conforme os
níveis de desvio do volume de tráfego normal. Enquanto, Kaur et al. [10] categoriza os mé-
todos de detecção com base na técnica utilizada pelas soluções de segurança para analisar
o comportamento do tráfego, classificando-os em três grupos: estatística, intermediação
e aprendizagem de máquina.

A classificação proposta por Kaur et al. [10] nos permite entender de forma mais clara
como as diferentes técnicas (métodos) podem ser aplicadas para detectar os mais diversos
tipos de ataques DDoS em uma rede. Dessa forma, as técnicas de detecção de ataques
DDoS apresentadas a seguir estão organizadas conforme essa classificação.

As técnicas estatísticas realizam a análise de diversas propriedades do tráfego entre a
fase normal e a fase de ataque e, em seguida, essas propriedades são utilizadas para criar
um modelo de referência do tráfego normal para identificar possíveis desvios comporta-
mentais que caracterizem um ataque DDoS na rede [10]. Técnicas como Qui-quadrado,
Entropia e ϕ-Entropia são comumente utilizadas para detectar anomalias de tráfego de
redes [67]:

• Qui-quadrado: o qui-quadrado [56] ou χ2, constitui uma medida que retrata a
diferença entre duas distribuições consecutivas. O princípio básico deste método é
comparar proporções, ou seja, as possíveis divergências entre as frequências obser-
vadas e esperadas para um certo evento. A equação é definida como:

χ2 =
n∑

i=1
[ (oi − ei)2

ei

], (2.1)

onde n é o número total de observações, oi é a frequência observada para cada classe
e ei é a frequência esperada para aquela classe. Quando as frequências observadas
são muito próximas das esperadas, o valor do qui-quadrado é pequeno, ou seja, existe
uma alta correlação entre os conjuntos observados. Mas, quando as divergências são
grandes, o valor do qui-quadrado assume valores altos, isso significa que não há um
relacionamento entre o conjunto de dados observado.
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• Entropia: a entropia de Shannon [68] mede a probabilidade de um evento acontecer
com relação ao número total de eventos, por meio dela é possível descrever o grau
de dispersão ou concentração de uma distribuição. A equação é definida como:

H = −
n∑

i=1
pi log2 pi, (2.2)

onde n é o número de diferentes ocorrências no espaço amostral sob análise e pi

a probabilidade associada a cada ocorrência i, ou seja, a frequência de ocorrência
de cada item único dividido pelo número total de itens. O resultado deste cálculo
varia entre 0 e log2 N . O valor mínimo indica concentração máxima na distribuição
medida, ou seja, um único valor i ocorreu durante todo o intervalo de observação.
O valor máximo indica dispersão total na distribuição medida, ou seja, uma distri-
buição uniforme para todas as ocorrências dentro do intervalo de observação [68].
Em suma, quanto maior a aleatoriedade, maior a entropia e vice-versa. Apesar de
retornar um valor negativo, esse valor é comumente transformado em valor positivo
para retratar o grau de dispersão ou concentração da informação.

• ϕ-Entropia: a ϕ-Entropia [69] é uma medida com base na entropia de Shannon [68],
que permite ajustar a sensibilidade da medição da frequência de eventos e a taxa de
convergência por parte da entropia. A equação é definida como:

Hϕ(X) = − 1
sinh(ϕ)(

n∑
i=1

pi sinh(ϕ log2 pi)), (2.3)

onde pi representa a probabilidade de ocorrência do evento X; o parâmetro ϕ é
usado para ajustar a sensibilidade da medição da frequência de eventos, ϕ > 0,
que satisfaz algumas propriedades como: simetria, normalidade e monotonicidade
(variação ou comportamento consistente de uma função em relação à mudança de
seus parâmetros). Este último, sustenta que quando ϕ > 0, Hϕ(X) é monotonica-
mente crescente em relação ao parâmetro ϕ, mas estritamente falando, o aumento
e diminuição de ϕ está relacionado a pi.

As técnicas de intermediação envolvem a introdução de métodos e mecanismos que
operam como intermediários na rede, proporcionando uma camada adicional de segurança
entre a origem e o destino para monitorar o tráfego, inspecionar, filtrar pacotes e tomar
medidas mais restritivas. Mecanismos como sistema de detecção de intrusão (do inglês,
Intrusion Detection System - IDS) e proxies são comumente utilizados [70].

• IDS: o IDS é um mecanismo de segurança utilizado para detectar atividades mali-
ciosas, mediante a análise de pacotes de redes, arquivos de registros (logs) e outras
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fontes [71]. Dessa forma, ele busca identificar padrões e assinaturas de ameaças co-
nhecidas, bem como comportamentos anormais que possam indicar um novo ataque.
Ao detectar uma atividade maliciosa, ele gera alerta para que os administradores de
rede possam tomar medidas adequadas para mitigar a ameaça. Os IDS podem ser
classificados em dois tipos: IDS baseados em redes (do inglês, Network Intrusion
Detection System - NIDS) que monitoram o tráfego de rede, e IDS baseados em
hosts (do inglês, Host Intrusion Detection System - HIDS) que analisam atividades
em hosts ou sistemas individuais [72].

• Proxy: o proxy é um mecanismo que atua como um intermediário entre um cli-
ente (host) e um servidor, por exemplo, servidor web, permitindo que o cliente faça
solicitações ao servidor indiretamente [73]. Desta forma, o cliente conecta-se ao
servidor, solicitando algum serviço, página ou outro recurso disponível através do
serviço de proxy. O mecanismo, por sua vez, recebe essa solicitação e examina para
determinar qual ação deve ser tomada, como o encaminhamento ao destino ou blo-
queio da requisição. O proxy possui diversas formas de implementação e operação,
sendo elas: web proxy (cache), proxy reverso e proxy transparente [74]. O primeiro
realiza o armazenamento de páginas ou arquivos de fontes externas, por exemplo, a
Internet, possibilitando com que usuários internos tenham um acesso mais rápido e
confiável aos conteúdos por eles requisitados, através do armazenamento em cache
dos recursos (páginas ou arquivos). O segundo intercepta as requisições dos usuários
internos com destino a uma fonte externa, promovendo benefícios como segurança
e balanceamento de carga. Por último, o proxy transparente é aquele no qual não
é necessário fazer configurações adicionais nos usuários para o seu funcionamento.
Desta forma, ele intercepta de maneira automática as solicitações do usuário, sem
que o mesmo esteja ciente disso [74].

Por último, temos as técnicas de aprendizagem de máquina que permitem detectar os
ataques DDoS em uma rede por meio de algoritmos capazes de compreender o comporta-
mento do tráfego de rede com base em dados históricos em larga escala. Esses algoritmos
podem ser categorizados em aprendizagem supervisionado, não-supervisionado e por re-
forço [75, 76]. Restringimos nossa atenção às técnicas de aprendizagem supervisionado
devido à sua ampla utilização e facilidade, nas quais os algoritmos são treinados com dados
de entrada rotulados para uma saída específica, por exemplo, legítimo ou malicioso [76].
Assim, eles realizam o processo de treinamento até que possam detectar os padrões e
relacionamentos próximos entre os dados de entrada e os rótulos de saída, permitindo
que eles produzam resultados precisos quando apresentados a dados nunca vistos. Dentre
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os algoritmos pertencentes a esta classe, temos o KNN (do inglês, K-Nearest Neighbors),
SVM (do inglês, Support Vector Machine) e RF (do inglês, Random Forest):

• KNN: o KNN é um algoritmo de classificação que se baseia na proximidade dos
seus vizinhos [77]. A ideia deste algoritmo é encontrar os k-vizinhos mais próximos,
com base na distância entre os pontos presentes no espaço dimensional. Para de-
terminar a classe de um elemento que não pertença ao conjunto de treinamento, o
KNN procura k elementos do conjunto de treinamento que estejam mais próximos
deste elemento desconhecido, ou seja, aquele que tenha a menor distância. Estes
k elementos são chamados de k-vizinhos e a classe mais frequente será atribuída à
classe do elemento desconhecido. A medida de distância para encontrar os vizinhos
mais próximos são definidas em termos da distância Euclidiana, dada pela seguinte
equação:

d (x, u) =
√√√√ n∑

i=1
(xi − ui)2, (2.4)

onde d é a distância entre as instâncias x (x1, x2, ..., xn) e u (u1, u2, ..., un) são os pon-
tos, para um espaço n-dimensional. O objetivo é encontrar k amostras no conjunto
de treinamento cuja variável x é relacionada a novas amostras em u, considerando
a distância entre os dois pontos.

A complexidade computacional do método de pesquisa pelos vizinhos mais próximo
é proporcional ao tamanho do conjunto de dados de treinamento para cada amostra
de teste, onde temos O(nd), em que n é um número de amostras e d é um número
de dimensões. Soluções mais elaboradas, como as árvores-KD permitem calcular em
tempo O(dn log n) [78].

• SVM: o SVM é um algoritmo que busca encontrar um hiperplano que melhor separe
os dados de cada classe e cuja margem de separação seja máxima [79, 80]. O SVM
funciona plotando as observações como pontos em um espaço N -dimensional (onde
N é o número de recursos) e gerando um hiperplano que maximiza a margem entre as
classes. Este limite é então usado para categorizar novas observações. Ele desenvolve
um modelo que prevê se uma nova amostra se enquadra em uma categoria ou não.
Considere o seguinte conjunto de dados de treinamento S = {(xi, yi), ..., (xn, yn)},
para gerar um classificador particular f(x), onde xi representa o vetor de entrada e
yi a classe padrão de xi. A partir das entradas, o SVM desenha um hiperplano que
melhor separa os dados em classes diferentes. O hiperplano é definido como:

f(x) = (w · x) + b = 0, (2.5)
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onde w · x é o produto escalar entre os vetores w e x e b é o termo independente.
Com isso, o hiperplano divide o espaço em duas regiões: +1 se w ·x+b > 0 ou −1 se
w · x + b < 0, permitindo a separação entre as classes. Para se obter a maximização
da margem, deve-se minimizar a norma de w através da seguinte equação:

Minimizar1
2 ||w||2. (2.6)

O SVM pode ser usado em problemas de classificação ou regressão [81]. Para en-
contrar o hiperplano que melhor separa os dados, este algoritmo possui uma com-
plexidade em tempo O(n3), onde n é o número de amostras [82].

• Random Forest: o Random Forest é um algoritmo que consiste em uma coleção
de classificadores estruturados em árvore de decisão {h(X, vk), k, 1...}, onde vk são
vetores aleatórios, distribuídos igualmente em todas as árvores da floresta [83]. O
processo de classificação consiste em avaliar um conjunto de entradas de dados
contendo N elementos e indicar à qual classe a entrada está associada. Esse processo
é realizado percorrendo os nós da árvore até que uma folha seja encontrada. A classe
à qual a folha escolhida está associada é indicada como saída da previsão desta
árvore. Tal processo é executado em todas as árvores da floresta, e o procedimento
de escolha é definido por maioria de votos, ou seja, a classe que for indicada pela
maioria das árvores será escolhida como resultado indicado pelo classificador.

Para construir as árvores aleatórias, este algoritmo possui uma complexidade em
tempo de O(mkn log n), onde m é o número de árvores aleatórias, n é o número
de amostras e k ≪ m é o número de variáveis sorteadas aleatoriamente em cada
nó [84].

Os métodos de detecção apresentados ajudam a identificar diferentes tipos de ataques
DDoS em uma rede SDN e, assim, fornecem uma visão crítica do que está acontecendo.
No entanto, é importante destacar que a detecção não impede que os ataques ocorram.
Logo, é necessário conhecer e implementar as estratégias para mitigar os impactos desses
ataques na rede.

2.4 Métodos de mitigação de ataques DDoS

Os métodos de mitigação de ataques compreendem um conjunto de estratégias para redu-
zir os impactos causados pelos ataques DDoS (volumétricos e não volumétricos) na rede,
garantindo a disponibilidade dos serviços oferecidos pela rede.
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Existem diversas estratégias na literatura para categorizar os métodos de mitigação
empregados pelas soluções de segurança. Bawany et al. [85], classificam os métodos de
mitigação em quatro tipos com base na forma de atuação dos sistemas de prevenção de
intrusão desenvolvidos (do inglês, Intrusion Prevention System - IPS), cujo objetivo é
identificar e bloquear o tráfego de rede malicioso: (i) descarte de pacotes maliciosos; (ii)
bloqueio de portas e/ou endereço IP; (iii) redirecionamento de tráfego; e (iv) controle
de largura de banda. Já Imran et al. [19], apresentam uma classificação similar, porém
agrupam a ação de descarte e o bloqueio de pacotes em uma única categoria denominada
(i) bloqueio; englobam as ações de redirecionamento de tráfego e controle de largura de
banda na categoria (ii) controle (atraso); e adicionam uma nova categoria chamada de
(iii) gerenciamento de recursos.

A classificação proposta por Imran et al. [19] apresenta uma abordagem mais integrada,
simplificando o número de categorias e enfatizando a eficácia na combinação de ações
para reduzir os impactos causados pelos ataques DDoS. Assim, as técnicas de mitigação
descritas a seguir estão organizadas conforme essa classificação:

• Bloqueio: a técnica de bloqueio consiste em bloquear os endereços IP e/ou portas
utilizadas pelos atacantes e permitir apenas endereços IP legítimos. Desta maneira,
é realizada uma análise das regras definidas pelo mecanismo de prevenção, por
exemplo, IPS, em que o tráfego de rede em conformidade (legítimo) é encaminhado
e o tráfego considerado malicioso é descartado de forma imediata. Essa técnica
proporciona um alívio instantâneo aos recursos de rede e requer um alto grau de
certeza na classificação das fontes de ataque, já que uma classificação incorreta
pode resultar em interrupções no serviço para endereços legítimos, impactando a
continuidade dos serviços e comprometendo a sua qualidade e a confiabilidade da
rede.

• Controle (atraso): a técnica de controle (atraso) baseia-se na ação de redirecionar
o tráfego malicioso para um dispositivo especial na rede projetado para inspeção ou
atrasar esse tráfego de forma intencional, atribuindo-lhe uma baixa prioridade ou
valor de confiança. Ao redirecionar esse tráfego para o dispositivo de inspeção,
possibilita-se que o tráfego seja analisado em um ambiente controlado, o que não
causa impacto na rede, ajudando a identificar novas ameaças e a formular novas
estratégias de mitigação. Ao atrasar de forma proposital o tráfego malicioso, busca-
se limitar a taxa de transmissão de pacotes do atacante, a fim de conter o impacto
que o ataque DDoS pode causar à rede, priorizando os pacotes de endereços que
possuem um alto valor de confiança ou prioridade (legítimos). Essa técnica oferece
a vantagem de não bloquear diretamente o tráfego, o que pode ser útil em cenários
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onde é difícil distinguir entre tráfego legítimo e malicioso devido à complexidade do
ataque.

• Gerenciamento de Recursos: a técnica de gerenciamento de recursos envolve o
uso de recursos adicionais presentes na infraestrutura de rede, como analisadores de
tráfego, mecanismos de detecção e prevenção para combater o tráfego malicioso. No
qual são combinados, configurados e otimizados para garantir a eficácia do controle
e da segurança da rede. Isso inclui a integração de dispositivos, como firewalls,
IPS, IDS e outras abordagens de segurança para promover uma ação de mitigação
mais eficaz por parte do mecanismo de segurança desenvolvido. Essa técnica requer
uma análise cuidadosa para garantir a eficiência da alocação de recursos, pois ela
pode apresentar uma complexidade e custo adicionais associados à integração e a
manutenção de múltiplos dispositivos de segurança. Além disso, a integração de
inúmeros dispositivos pode aumentar o risco de falhas de comunicação entre eles,
criando pontos de vulnerabilidade na rede.

Os métodos de mitigação apresentados podem promover um ambiente SDN mais se-
guro, pois possibilitam uma resposta ativa no combate aos ataques DDoS, minimizando
o impacto desses ataques nessa arquitetura de rede.

2.5 Considerações Finais

Neste capítulo, foram abordados os principais conceitos relacionados a redes SDN, bem
como os principais ataques DDoS que podem comprometer a disponibilidade dos serviços
oferecidos por essa arquitetura de rede, como os ataques volumétricos e não volumétri-
cos. Também foram explorados os métodos de detecção, como os métodos estatísticos
e os baseados em aprendizagem de máquina, que permitem analisar o comportamento
do tráfego e identificar padrões suspeitos associados a ataques, assim como, os métodos
de mitigação que incluem ações de bloqueio e de controle, que possibilitam reduzir os
impactos causados por esses ataques. A seção a seguir apresenta uma revisão do estado
da arte, com trabalhos relacionados à segurança em redes SDN.
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Capítulo 3

Revisão do Estado da Arte

Este capítulo apresenta uma revisão do estado da arte acerca de trabalhos relacionados
à segurança em redes SDN, com ênfase aos ataques DDoS volumétricos, que possuem
a capacidade de afetar pontos críticos dessa arquitetura de rede em curto intervalo de
tempo. Na seção 3.1 são apresentadas as soluções de segurança organizadas conforme a
sua técnica de detecção para identificar esses ataques DDoS. A seção 3.2 apresenta uma
discussão sobre as soluções estudadas.

3.1 Classificação das soluções de segurança em redes
SDN

A seleção das soluções apresentadas a seguir concentrou-se na busca por artigos que
abordaram diferentes mecanismos de defesa (detecção e mitigação) contra os ataques
DDoS volumétricos, publicados nas principais conferências de redes de computadores,
disponíveis na IEEE (Institute of Electrical and Electronics Engineers) Xplore [86] e ACM
(Association for Computing Machinery) Digital Library [87] nos últimos 10 anos.

As soluções foram classificadas segundo a proposta elaborada por Kaur et al. [10], que
categoriza as soluções com base na técnica utilizada para analisar o comportamento do
tráfego e, assim, detectar qualquer comportamento suspeito. Essa classificação é organi-
zada em três grupos: (i) estatística; (ii) intermediação; e (iii) aprendizagem de máquina.
A detecção baseada na técnica estatística baseia-se na premissa de que o tráfego normal
segue padrões estatísticos previsíveis, e qualquer desvio significativo desses padrões pode
indicar um ataque em andamento. A intermediação envolve a introdução e a configuração
de dispositivos intermediários na rede, como sistemas de detecção de intrusões (IDS) ou
proxies, que atuam como uma camada adicional de segurança, para monitorar o tráfego
de rede, inspecionar e filtrar pacotes maliciosos. Por fim, a aprendizagem de máquina
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envolve o treinamento de algoritmos capazes entender o comportamento do tráfego de
rede, aprendido a partir de dados históricos, para identificar padrões e comportamentos
que se correlacionam com ataques DDoS.

A escolha da classificação proposta por Kaur et al. [10] para o presente trabalho,
nos permite observar a maneira como as soluções de segurança presentes na literatura
analisam o comportamento do tráfego para identificar padrões associados aos ataques
DDoS volumétricos e realizar as medidas necessárias para reduzir os impactos causados
por esses ataques. As subseções a seguir apresentam as soluções estudadas, categorizadas
segundo essa abordagem.

3.1.1 Estatísticas

As soluções que empregam as técnicas estatísticas, partem do princípio de que o tráfego
normal segue padrões estatísticos previsíveis e que qualquer desvio considerável desses
padrões pode indicar a ocorrência de um ataque à rede [10]. Essa abordagem pode ser
eficaz para identificar mudanças abruptas no tráfego, como as que ocorrem durante um
ataque DDoS volumétrico, com base em uma comparação com o comportamento normal
esperado.

Kumar et al. [21] propuseram uma solução que atua no plano de controle denominada
Safety para detectar e mitigar o ataque DDoS SYN-Flood, por meio da entropia para
determinar a aleatoriedade dos dados de fluxos. A análise é baseada no endereço IP de
destino dos pacotes para detectar anomalias e identificar a origem do ataque. A mitigação
envolve descobrir a fonte maliciosa mediante análise do volume de pacotes suspeitos e
bloqueá-la na porta de origem do switch. Embora a solução apresente bons resultados,
realizar o bloqueio de portas do switch pode penalizar todos os fluxos legítimos vinculados
a essa porta, dependendo da infraestrutura de rede utilizada.

Os autores em [88] propuseram uma solução que atua no plano de dados para a detec-
ção de ataques DDoS, mediante aplicação da entropia. A solução calcula as entropias dos
endereços IPs de origem e destino dos pacotes que chegam ao switch. Esses pacotes são
agrupados em fluxos de entrada, denominadas janelas de observação. Ao completar cada
janela, a solução define os valores de entropia para os endereços IPs (origem e destino),
visando produzir um modelo de tráfego legítimo. Em seguida, são calculados os limiares
de detecção com base no modelo produzido, emitindo um alarme de ataque quando as
últimas estimativas de entropia excedem os limiares de detecção. Dadas as restrições do
conjunto primitivo de operações fornecidos pela linguagem P4 para o desenvolvimento da
solução, como a dificuldade de implementar multiplicação e divisão [1], os autores tive-
ram que empregar esboços de contagem personalizados para aproximar as frequências de
diferentes endereços IP para definir os valores de entropia, tornando difícil a adaptação às
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características dinâmicas de um ambiente real. Por fim, a solução não realiza o processo
de mitigação, emitindo apenas um alarme quando um ataque DDoS é iniciado na rede.

Kuerban et al. [24] propuseram uma solução chamada FlowSec, que atua no plano de
controle e gerencia a largura de banda para reduzir (limitar) o número de pacotes enviados
ao controlador durante um ataque DDoS. A solução coleta as estatísticas de fluxos dos
dispositivos presentes no plano de dados e calcula dinamicamente a largura de banda para
com o controlador, definindo um limiar. Quando esse limiar é excedido, o controlador
instrui o switch a reduzir o número de fluxos enviados por porta para o plano de controle.
Em seus experimentos, os autores conseguiram reduzir o volume de pacotes maliciosos
encaminhados para o controlador em cerca de 75%. Isso reduz o impacto dos ataques
DDoS na rede, mas também pode afetar o tráfego normal, já que clientes vinculados
a uma porta suspeita que teve a largura de banda reduzida serão prejudicados, pois a
solução não distingue com precisão o tipo de fluxo a ser atrasado.

Similar a solução desenvolvida por Kumar et al. [21], os autores em [89] propuseram
uma abordagem estatística que analisa um conjunto de dados para a detecção e mitigação
de diferentes ataques DDoS no plano de controle. A solução utiliza a entropia para
detectar desvios no padrão do tráfego de rede e, assim, identificar o tráfego malicioso. O
cálculo da entropia é realizado com base na análise do endereço IP de origem, flags TCP,
número de pacotes e solicitações por segundo. Se o valor da entropia para cada janela
de observação for menor que o limiar predefinido para três janelas consecutivas, a janela
em questão será considerada suspeita. A estratégia de mitigação, consiste em realizar o
bloqueio do endereço IP de forma permanente que está abaixo do limiar de detecção, para
que ele não possa enviar solicitações adicionais ao alvo do ataque. Isso reduz o impacto
dos ataques DDoS, no entanto, também pode afetar os clientes legítimos, tendo em vista
que a estratégia de detecção de ataques pode gerar inúmeros alarmes falsos, provocando
um bloqueio de forma generalizada.

Li et al. [90] propuseram uma solução que atua no plano de controle para a detecção
de ataques DDoS utilizando a ϕ-Entropia, que permite ajustar os parâmetros conforme as
condições da rede para facilitar o processo de descoberta do tráfego malicioso. A solução
por meio do controlador extrai o endereço IP de destino de cada pacote e contabiliza o
número de ocorrências de cada endereço na janela de observação, na qual a ϕ-Entropia é
calculada para todos os pacotes presentes na janela. Se o valor calculado da ϕ-Entropia
para a janela for menor que o limiar predefinido para cinco janelas consecutivas, isso indica
a presença de um ataque DDoS. Embora a solução apresente bons resultados quando
comparada ao uso da entropia de Shannon [68], a atuação exclusiva no plano de controle,
pode ocasionar um aumento considerável nas interações frequentes com o plano de dados
para coletar, processar e definir os valores de ϕ-Entropia, provocando tempos mais longos
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para detectar um ataque DDoS. Além disso, a solução não realiza o processo de mitigação.
Procurando integrar os dois planos de trabalho de uma rede SDN (dados e controle),

Yu et al. [17] propuseram uma solução colaborativa para a detecção de ataques DDoS, os
autores projetaram um mecanismo de detecção preliminar no plano de dados, baseado no
método estatístico entropia, para monitorar o tráfego de rede e reportar ao controlador
caso alguma anormalidade seja encontrada. Desta maneira, o controlador recebe um alerta
com base na detecção preliminar dos dispositivos de encaminhamento e, em seguida, inicia
o seu segundo mecanismo de detecção para distinguir a anomalia com mais precisão através
da coleta de fluxos, extração de recursos dos fluxos (número de pacotes, número da porta,
IP de origem, etc.) e a aplicação do algoritmo de aprendizagem de máquina Random
Forest. No entanto, a solução pode sobrecarregar o canal de comunicação entre os planos
(dados e controle) com o envio de inúmeros fluxos para uma análise mais refinada por
parte do dispositivo central, provocando um aumento no tempo de detecção para que o
controlador possa confirmar cada suspeita produzida no plano de dados. Além disso, a
solução não realiza o processo de mitigação.

Buscando estabelecer uma relação de confiabilidade conforme o comportamento dos
clientes na rede, visando realizar um bloqueio de maneira seletiva no combate aos ataques
DDoS, os autores em [23], propuseram uma abordagem no plano de controle baseada
na confiança para detectar e isolar os ataques DDoS. A solução primeiro estabelece um
limiar de confiança com base na média de pacotes transmitidos na rede em direção ao
controlador em um ambiente normal, ou seja, aquele em que não há presença de fluxos
maliciosos. O valor de confiança de cada cliente é calculado a partir do número de pacotes
trafegados por ele durante um determinado período. Aquele que estiver abaixo do limiar
de confiança é declarado como malicioso, ou seja, o seu número de pacotes transmitidos
está acima do padrão definido como normal pela solução, consumindo mais recursos do
que o habitual. Desta forma, o controlador inicia o processo de isolamento deste cliente,
alertando os switches via mensagens de controle. Ao tomarem conhecimento, eles iniciam
o processo de interromper imediatamente a comunicação com o cliente declarado como
malicioso, proporcionando um alívio rápido aos recursos de rede. A solução adota uma
linha promissora, no entanto, atua de forma exclusiva no plano de controle, o que pode
ocasionar um aumento considerável nas interações frequentes com o plano de dados para
coletar, processar e definir os valores de confiança, provocando tempos mais longos para
detectar qualquer mudança no comportamento do tráfego.

Os autores em [91] propuseram uma solução chamada AEGIS, que atua no plano
de controle para detectar e mitigar o ataque DDoS SYN-Flood. A solução, por meio
de métricas como contagem de mensagens do tipo Packet-In não atendidas, o consumo
de CPU, memória disponível e a diferença entre SYN e SYN-ACK, realiza a medição
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do desempenho do controlador. Assim, se ele estiver com um desempenho muito baixo,
há indícios de um possível ataque SYN-Flood. A mitigação é realizada por meio de um
processo de análise das estatísticas de cada regra de fluxo, criando uma tabela de mitigação
para a contagem do endereço MAC e IP. O controlador define regras para o descarte para
o endereço MAC que possui uma contagem de IP maior que o estabelecido na tabela de
mitigação. No entanto, a solução não informa a taxa de atualização para a tabela de
mitigação para a inclusão e retirada de endereços suspeitos, desta forma se um endereço
legítimo for classificado como ataque, permanecerá bloqueado de forma definitiva.

Similar as soluções desenvolvidas por Kumar et al. [21] e Sumantra et al. [89], os
autores em [92] fizeram uso da entropia para detectar os ataques DDoS no plano de
controle. A solução utiliza a entropia para detectar qualquer desvio no padrão do tráfego,
mediante análise de três diferentes limiares adaptativos de detecção: taxa de fluxo de
pacotes, valor de entropia e contador. Primeiramente, a taxa de fluxos de pacotes é
comparada com o seu respectivo limiar no plano de dados. Após exceder esse limiar, o
controlador coleta as estatísticas da tabela de fluxo dos switches para calcular a entropia
dos endereços IP de origem e destino. Se o valor da entropia for menor que o seu limiar
em questão, há um forte indício de ataque, desta forma um contador é inicializado e
incrementado. Caso, exceda o limiar do contador, uma mensagem de alerta de ataque
é gerada. A etapa de mitigação consiste em coletar as informações relacionadas a porta
dos switches e o endereço IP de origem. Assim, a solução consegue rastrear o respectivo
endereço e bloquear a porta em questão que está acima dos limiares, na qual a solução
descarta todas as solicitações subsequentes daquele endereço IP e também remove todas
as regras de fluxos da tabela do switch. Embora a solução apresente uma estratégia com
limiares adaptativos em três níveis, realizar o bloqueio de portas do switch pode penalizar
todos os fluxos legítimos vinculados a essa porta, dependendo da infraestrutura da rede.

Semelhante ao trabalho desenvolvido por Saini et al. [23], os autores em [22] propuse-
ram uma solução no plano de controle para determinar um limiar que diferencie requisições
legítimas e maliciosas, visando realizar um bloqueio de maneira seletiva no combate aos
ataques DDoS. Os autores desenvolveram um algoritmo estatístico que atribui um valor
de confiança e um limiar adaptativo aos clientes da rede, segundo o comportamento de
cada cliente. A solução primeiro realiza a extração de alguns campos de cabeçalhos dos
pacotes, como tamanho, IP de origem e destino e porta. Esses campos são comparados
com limiares predefinidos (estabelecidos em um ambiente sem a presença do tráfego mali-
cioso) para cada campo, que resultarão em acréscimo ou desconto para os seus respectivos
contadores. As informações obtidas dos campos de cabeçalhos são utilizadas para calcu-
lar o valor de confiança e o limiar do cliente. Assim, em caso de ataque, os contadores
dos campos de cabeçalho tendem a aumentar, provocando um impacto negativo no valor
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de confiança do cliente, até que ultrapasse o limiar estabelecido pelo controlador, sendo
caracterizado como malicioso. Para reduzir os impactos dos ataques, a solução então
adiciona o endereço IP do cliente em uma lista de suspensão, para que os pacotes subse-
quentes deste endereço sejam descartados de forma imediata. Contudo, a centralização
de todo o processo (detecção e mitigação) no plano de controle para gerenciar os níveis
de confiabilidades dos clientes e seus respectivos limiares podem provocar um aumento
no volume de mensagens de controle encaminhadas ao controlador, aumentando o tempo
para a detecção e tomada de ações por parte da estratégia de mitigação.

Dawod et al. [93] propuseram uma solução que atua no plano de controle para redu-
zir os impactos do ataque DDoS SYN-Flood. A solução utiliza a ferramenta de análise
estatística chamada Paessler Router Traffic Grapher (PRTG) Enterprise Monitor, que
monitora o protocolo SNMP (Simple Network Management Protocol), oferecendo infor-
mações detalhadas sobre o fluxo de dados, a largura de banda, a latência e outros aspectos
relacionados ao desempenho da rede. Desta forma, a detecção é realizada com base no
comportamento anormal do tráfego malicioso (sobrecarga repentina da largura de banda),
que após ser detectado são gerados alarmes para o controlador, que realiza o processo de
extração do endereço IP do invasor e o bloqueio do respectivo tráfego por meio de regras
de descarte de pacotes enviadas aos switches, para reduzir os impactos do ataque. A uti-
lização de uma ferramenta adicional provoca ainda mais atrasos para detectar qualquer
mudança no comportamento do tráfego, tendo em vista a atuação da solução no plano
de controle. Além disso, ela não aplica nenhum método para diferenciar os endereços
recorrentes e legítimos de outros endereços, assim ela pode acabar penalizando endereços
legítimos.

Os autores em [94] propuseram uma solução que atua no plano de controle para reduzir
os impactos causados pelo ataque DDoS SYN-Flood. A solução proposta utiliza o qui-
quadrado para identificar discrepâncias no tráfego de rede que possam indicar a presença
de tráfego malicioso, por meio da análise dos seguintes recursos: endereço MAC e as
flags TCP (SYN, SYN-ACK e ACK). Esses recursos são utilizados pelo controlador para
construir uma lista com o número de conexões semiabertas por cada host na rede em um
determinado período. Com base nesses dados, o valor do qui-quadrado é calculado para
o host, permitindo detectar padrões associados à atividade maliciosa, ou seja, quando o
valor do qui-quadrado está abaixo do limiar estabelecido. Para mitigar os impactos do
ataque, a solução realiza o bloqueio do endereço MAC do atacante identificado e realiza o
descarte dos pacotes subsequentes relacionados a esse endereço. Contudo, a centralização
de todo o processo (detecção e mitigação) no plano de controle pode provocar um aumento
no volume de mensagens de controle encaminhadas ao controlador, aumentando o tempo
para a detecção e a execução das ações de mitigação da solução proposta.
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Por fim, González et al. [18] propuseram um mecanismo chamado Bungee-ML para
combater os ataques DDoS que combina o processamento rápido do plano de dados e a
alta capacidade e inteligência do plano de controle, semelhante ao trabalho desenvolvido
por Yu et al. [17]. A solução executa, no plano de dados, um mecanismo de detecção
preliminar mediante o método estatístico entropia, o qual analisa os pacotes recebidos pelo
switch. Ao identificar fontes suspeitas no plano de dados, elas são encaminhadas ao plano
de controle, juntamente com os pacotes subsequentes relacionados a essas fontes, onde o
controlador extrai mais informações para classificar os endereços de origem mediante um
algoritmo de aprendizagem de máquina (Random Forest), realizando uma análise mais
profunda para decidir se as fontes suspeitas são de fatos invasores (maliciosos). Após a
confirmação, o controlador notifica o plano de dados para incluir essas fontes (endereços
IP) em uma lista de suspeitos confirmados, e assim os pacotes recebidos de fontes incluídas
nessa lista são automaticamente descartados, visando reduzir os impactos causados por
esses ataques. Todavia, a solução pode acabar aumentando o volume de mensagens de
controle encaminhadas ao controlador, tendo em vista o volume de pacotes (fontes) a
serem confirmados como suspeitos, além disso, ela pode levar mais tempo para confirmar
(detectar) uma fonte maliciosa na rede como um ataque DDoS de fato.

3.1.2 Intermediação

As soluções que realizam a intermediação das conexões procuram adicionar uma camada
adicional de segurança entre os usuários (origem) e os servidores (destino), a fim de filtrar
os pacotes e tomar medidas mais restritivas [10]. Esse tipo de detecção é uma abordagem
proativa que visa bloquear o tráfego malicioso antes que ele atinja os recursos da rede.

Shin et al. [12] propuseram uma solução que atua no plano de dados, chamada Avant-
Guard, para combater o ataque DDoS SYN-Flood. Essa solução transforma o switch em
um proxy. Dessa forma, ela intercepta todas as conexões TCP em uma sessão e encaminha
apenas as solicitações completas para o controlador, ou seja, as solicitações TCP que
executaram o three-way handshake de maneira completa. Caso contrário, a conexão é
imediatamente descartada pela solução. Como efeito colateral, a solução aumenta o atraso
no estabelecimento de conexões legítimas devido ao método aplicado (proxy). Além disso,
é vulnerável ao cenário em que um atacante utilize um IP já validado pelo mecanismo
para realizar um novo ataque.

Visando aprimorar a solução proposta por Shin et al. [12], os autores em [13] propuse-
ram uma solução chamada Lineswitch, que também atua no plano de dados para lidar com
o ataque DDoS SYN-Flood. A solução utiliza a concepção de intermediação probabilís-
tica, na qual realiza a intermediação das primeiras conexões de um determinado endereço
IP via proxy no switch, enquanto as demais solicitações subsequentes do mesmo endereço
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IP são intermediadas de acordo com uma probabilidade, reduzindo, assim, a carga de
trabalho do switch. Os endereços IPs que não conseguem realizar o TCP handshake de
maneira completa são adicionados a uma lista de bloqueio e, em seguida, descartados
pela solução, para preservar a memória dos dispositivos de encaminhamentos. Contudo,
a utilização de um proxy, provoca um aumento no tempo para estabelecer as conexões
legítimas e deixa a solução vulnerável ao tipo de ataque em que o atacante utilize um
endereço IP já validado pelo mecanismo, para causar uma saturação ao controlador.

Dridi et al. [95] propuseram uma solução que atua no plano de controle chamada
SDN-Guard para reduzir os impactos causados pelo ataque DDoS SYN-Flood. A solução
utiliza um IDS, que é responsável por analisar os pacotes e gerar um alerta sobre a
probabilidade de ameaça de um ataque SYN-Flood na rede. A probabilidade é obtida
com base nas estatísticas de fluxos coletadas pelo IDS, dessa maneira a solução pode
tomar uma decisão sobre a ação a ser realizada para cada um dos fluxos analisados. Se o
fluxo for considerado malicioso, ou seja, se a probabilidade de ameaça desse fluxo estiver
acima do limiar predefinido, o IDS emite um alerta para a solução que realiza a ação de
bloqueio e descarte dos fluxos para evitar que eles possam sobrecarregar a rede. Nota-se
que a solução requer uma comunicação contínua com um agente externo (IDS) para obter
as estatísticas da rede, o que pode provocar um aumento no tempo para detectar qualquer
mudança na rede que caracterize um ataque DDoS.

A solução desenvolvida por Kim et al. [96] atua no plano de controle e se baseia
na utilização dos mecanismos TCP Time Out e Round Trip Time (RTT) para detectar
o ataque DDoS SYN-Flood. Ela descarta o primeiro pacote SYN de qualquer host e
estima o tempo de espera com base no tempo entre o primeiro e o segundo pacote SYN,
removendo as sessões TCP semi-abertas após o tempo de espera. Se o RTT do ACK for
menor que o RTT indicado, o pacote ACK é encaminhado ao servidor. Caso contrário,
é descartado e o endereço IP é bloqueado pela solução. Embora o mecanismo apresente
resultados promissores, o descarte do primeiro pacote pode causar atrasos nas solicitações
dos hosts. Além disso, ter um RTT muito curto pode penalizar hosts legítimos que
enfrentam dificuldades para completar uma conexão, por exemplo, em redes lentas.

Por último, Fan et al. [97] propuseram uma solução que atua no plano de controle
que faz uso de contêiner para combater os ataques DDoS. O contêiner empregado é o
Kubernetes, uma plataforma para automatizar, implantar, dimensionar e gerenciar apli-
cativos em contêineres [98]. A plataforma é utilizada para recriar o ambiente, caso seja
interrompido de forma anormal, por exemplo, em razão de um ataque DDoS. Para isso, a
solução adiciona o componente chamado SDN Controller Manager (SCM) a estrutura do
Kubernetes. Esse método fornece redundância, evitando o ponto único de falha do contro-
lador. Para permitir as conexões legítimas, a solução realiza a intermediação das conexões
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TCP entre origem e destino, mediante um sistema de intermediação de conexões (proxy)
que valida as conexões, evitando que o controlador aloque recursos para o atacante. As
conexões completas são encaminhadas ao destino, enquanto as conexões incompletas são
descartadas imediatamente. Como efeito adverso, a solução aumenta o atraso causado no
estabelecimento de conexões legítimas devido ao método aplicado (proxy) e é vulnerável
ao cenário em que um atacante utilize um IP já validado pelo mecanismo para realizar
um novo ataque.

3.1.3 Aprendizagem de Máquina

As soluções que utilizam técnicas de aprendizagem de máquina fazem uso de algoritmos
capazes de compreender o comportamento do tráfego de rede usando dados históricos
para identificar padrões e comportamentos correlacionados aos ataques DDoS [10]. Essas
soluções desenvolvem modelos que podem distinguir entre o tráfego normal e o malici-
oso. Esses modelos são alimentados com recursos extraídos dos dados de tráfego, como
características de pacotes, informações de fluxo, estatísticas de protocolo, etc [20]. Uma
vez treinados, esses modelos podem ser utilizados para detectar automaticamente ataques
DDoS em tempo real com base na análise contínua do tráfego de rede.

Tuan et al. [20] propuseram a utilização do algoritmo de aprendizagem de máquina
KNN para reduzir os impactos dos ataques DDoS. O algoritmo é integrado ao controlador
para detectar e descartar o tráfego de ataque. Assim, a solução extraí os seguintes recursos
do tráfego para classificá-lo em malicioso ou legítimo: IP de origem, IP de destino, porta
de origem e porta de destino. Na etapa de mitigação, para o fluxo considerado malicioso, o
controlador impõe uma regra de bloqueio no switch para realizar o processo de descarte do
tráfego de ataque conforme o seu endereço IP de origem. No entanto, a estratégia aumenta
o volume de mensagens de controle encaminhadas ao controlador para a coleta dos dados e
posterior classificação. Além disso, realizar o bloqueio de forma definitiva do endereço IP
de um host suspeito, pode penalizar fluxos legítimos vinculados a este endereço IP, tendo
em vista a capacidade dos ataques DDoS em simular o comportamento de um tráfego
legítimo.

Semelhante ao trabalho desenvolvido por Yu et al. [17] e González et al. [18], Macías
et al. [16] propuseram uma solução chamada ORACLE, que promove a coordenação do
plano de controle e de dados para detectar ataques DDoS à rede. A solução realiza a
coleta de informações dos fluxos, como a duração, desvio padrão do tempo entre che-
gadas, tamanho médio do pacote e desvio padrão do comprimento do pacote no plano
de dados. Em seguida, realiza o pré-processamento dessas informações e as agrupa em
janelas de observação por tempo para encaminhar ao plano de controle em intervalos re-
gulares. O controlador é então responsável por extrair as informações de cabeçalho dos
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fluxos recebidos, analisar a sua estrutura para calcular e classificar os fluxos em legítimos
ou maliciosos, via algoritmo de aprendizagem de máquina (KNN ou Random Forest).
Note que a estratégia adotada pela solução busca reduzir a sobrecarga de funções para o
controlador, uma vez que as informações de fluxos já foram processadas quando chegam
ao plano de controle. No entanto, isso pode acarretar um tempo mais longo para detec-
tar qualquer atividade maliciosa, já que essa função é exclusiva do controlador. Por fim,
a solução não realiza o processo de mitigação, emitindo apenas um alarme quando um
ataque DDoS é iniciado na rede.

Nurwarsito et al. [25] propuseram uma solução para combater os ataques DDoS que
atua no plano de controle chamada RYU Framework, na qual os autores desenvolveram
um módulo de segurança que utiliza o controlador RYU para classificar o tráfego legítimo
e malicioso mediante algoritmo de aprendizagem de máquina Random Forest. A solução
realiza a extração de alguns atributos em intervalos de tempos regulares para o envio ao
controlador, como número médio de pacotes por fluxo, média de bytes por fluxo, taxa
de crescimento das portas de destino do fluxo e o número de endereços IPs de origem
em um determinado intervalo de tempo, para o desenvolvimento do seu classificador de
tráfego. Após a classificação do tráfego malicioso, é adicionada uma regra de bloqueio nos
switches, que descarta os pacotes subsequentes deste tráfego assim que eles retornam à
rede. Esta ação reduz o impacto dos ataques DDoS na rede, porém pode afetar o tráfego
legítimo, tendo em vista a capacidade dos ataques DDoS em simular o comportamento
de um tráfego legítimo.

Para concluir, Das et al. [99] propuseram uma solução que atua no plano de controle
que age de forma similar ao trabalho desenvolvido por Nurwarsito et al. [25], que utiliza
algoritmos de aprendizagem de máquina (SVM ou Random Forest) nas estatísticas de
porta dos switches, geradas pelo protocolo OpenFlow para diferenciar o tráfego normal do
tráfego de SYN-Flood (malicioso). A solução coleta as estatísticas através das mensagens
do tipo OFPPortStatsRequest (requisição) e OFPPortStatsReply (resposta) que inclui
informações como número de pacotes recebidos, transmitidos, taxa de transferência e
bytes de uma porta específica, enviadas ao controlador para a aplicação do processo de
treinamento do algoritmo de aprendizagem de máquina. Assim, se uma porta específica
estiver acima de um limiar predefinido tendo como base as estatísticas coletadas e o
processo de treinamento do classificador, isso indica um ataque em potencial. Para reduzir
o impacto do ataque, os autores propuseram um identificador de ameaça que analisa as
portas dos switches e identifica aquela com mais volume de tráfego. Em seguida, ele
identifica a origem do tráfego de ataque e realiza a ação de bloqueio. Embora, a solução
tenha apresentado resultados promissores, a estratégia de detecção no plano de controle
aumenta o volume de mensagens de controle encaminhadas ao controlador e provoca
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tempos mais longos para detectar qualquer mudança no comportamento do tráfego. Por
fim, o bloqueio de portas pode acabar penalizando hosts legítimos ligados a elas.

3.2 Discussão

As soluções apresentadas na seção anterior retratam o estado da arte no que diz respeito
às principais soluções de segurança, que procuraram detectar e minimizar os impactos
causados pelos ataques DDoS volumétricos. Cada solução escolhida foi analisada sob vá-
rias perspectivas, o que levou a identificar as principais características que as distinguem.
Essas características foram organizadas em grupos, que serão discutidos a seguir, para
guiar nossa discussão acerca das soluções propostas:

• Camada SDN: refere-se à camada para a qual a solução foi projetada, considerando
a arquitetura SDN, que compreende três camadas de funcionamento (aplicação,
controle e dados).

• Técnica de detecção: está relacionada ao conjunto de técnicas utilizadas para
identificar as atividades maliciosas na rede, como análise estatística, intermediação
e aprendizagem de máquina.

• Técnica de mitigação: trata-se do conjunto de ações para minimizar os impactos
causados pelos ataques DDoS, que incluem ações envolvendo o bloqueio de paco-
tes (descarte), o uso de equipamentos adicionais e o controle (atraso) do tráfego
malicioso.

• Volume de mensagens de controle encaminhadas ao controlador: está as-
sociado ao aumento do volume de mensagens de controle enviadas ao controlador
para lidar com as ações de detecção e mitigação pelo mecanismo de segurança de-
senvolvido no combate aos ataques DDoS. Foi levado em consideração, durante a
análise com base na revisão do estado da arte, que as soluções apresentadas na seção
anterior podem ter aumentos variados, de alto, médio ou baixo, dependendo do seu
local de atuação na arquitetura SDN. Soluções que operam inteiramente no plano
de dados para realizar as ações de controle reduzem a dependência do controlador,
assim possuem um volume de mensagens mais baixo. Já as soluções que distribuem
essas ações entre o plano de dados e o plano de controle, possuem um volume de
mensagens médio. Por outro lado, soluções que realizam toda a ação exclusivamente
no controlador possuem um volume alto de mensagens de controle.

• Tempo para a detecção de uma fonte de ataque: refere-se ao tempo exigido
pela solução para a detecção (confirmação) de um ataque DDoS na rede. Foi levado
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em consideração, durante a anáilse com base na revisão do estado da arte, que as
soluções apresentadas na seção anterior podem apresentar tempos variáveis, classi-
ficados como alto ou baixo, dependendo da localização do mecanismo de detecção
para a confirmação de um ataque em curso. Soluções que realizam a confirmação
de uma fonte suspeita diretamente no plano de dados, apresentam um tempo mais
baixo. Por outro lado, soluções que realizam a confirmação de uma fonte suspeita
no plano de controle, apresentam um tempo mais alto.

• Priorização de tráfego: aborda a aplicação de mecanismos que permitem a alo-
cação de recursos para garantir que certos tipos de tráfegos tenham prioridade sobre
outros.

• Atribuição de confiabilidade: descreve a atribuição de confiabilidade aos clientes
de uma rede para a priorização de recursos, com base em seus comportamentos ou
nas interações com os demais clientes.

• Abordagem híbrida: envolve a integração de mais de um plano da arquitetura
SDN, possibilitando aproveitar as vantagens de cada plano para otimizar o processo
de detecção e/ou mitigação.

A Tabela 3.1 mostra a visão geral das soluções analisadas. Para assegurar a proteção
da rede contra os ataques DDoS volumétricos, elas propuseram diferentes abordagens com
a aplicação de diversas técnicas, com a possibilidade de combinar diferentes planos de ação
e estratégias.

Observa-se que grande parte das soluções concentra suas ações no plano de controle,
oferecendo, assim, um gerenciamento centralizado, o que possibilita o desenvolvimento
de políticas de controle de tráfego de forma mais centralizada, facilitando o controle
e a coordenação de toda a infraestrutura de rede [10]. No entanto, essa abordagem
torna o controlador um alvo atraente (ponto único de falha) para os ataques DDoS e
requer uma comunicação frequente com o plano de dados para coletar informações e
gerenciar os dispositivos de encaminhamento. Essa ação provoca um aumento do volume
de mensagens de controle encaminhadas ao controlador para realizar as ações de detecção e
mitigação, além de causar tempos mais longos (atrasos) para detectar e confirmar qualquer
mudança no comportamento do tráfego associada aos ataques DDoS, para então acionar
os mecanismos de mitigação para combater esses ataques.

Para minimizar o volume de mensagens de controle encaminhadas ao controlador e
os atrasos durante a detecção e a mitigação dos ataques DDoS, soluções como Avant-
Guard [12], Lineswitch [13] e o trabalho desenvolvido por Lapoli et al. [14], propuseram
atuar diretamente no plano de dados, proporcionando uma ação mais célere para detectar
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Tabela 3.1: Visão geral das soluções discutidas.
Solução Ano Camada

SDN
Técnica

Detecção
Técnica

Mitigação
Volume

Mensagens
Tempo

Detecção
Priorização

Tráfego
Atribuição

Confiabilidade
Abordagem

Híbrida
Shin et al. [12] 2013 dados intermediação bloqueio baixo baixo não não não

Dridi et al. [95] 2017 controle intermediação gerenciamento
de recursos alto alto não não não

Ambrosin et al. [13] 2017 dados intermediação bloqueio baixo baixo não não não
Kumar et al. [21] 2018 controle estatística bloqueio alto alto não não não
Lapoli et al. [14] 2019 dados estatística nenhuma baixo baixo não não não
Kim et al. [96] 2019 controle intermediação bloqueio alto alto não não não

Tuan et al. [20] 2019 controle aprendizagem
de máquina bloqueio alto alto não não não

Kuerban et al. [24] 2019 controle estatística controle alto alto não não não

Macías et al. [16] 2020 dados e
controle

aprendizagem
de máquina nenhuma médio alto não não sim

Sumantra et al. [89] 2020 controle estatística bloqueio alto alto não não não
Li et al. [90] 2020 controle estatística nenhuma alto alto não não não

Yu et al. [17] 2021 dados e
controle

estatística e
aprendizagem
de máquina

nenhuma médio alto não não sim

Nurwarsito et al. [25] 2021 controle aprendizagem
de máquina bloqueio alto alto não não não

Saini et al. [23] 2021 controle estatística controle alto alto não sim não
Ravi et al. [91] 2021 controle estatística bloqueio alto alto não não não

Mishra et al. [92] 2021 controle estatística bloqueio alto alto não não não

Das et al. [99] 2022 controle aprendizagem
de máquina bloqueio alto alto não não não

Salem et al. [22] 2022 controle estatística bloqueio alto alto não sim não

Dawod et al. [93] 2022 controle estatística gerenciamento
de recursos alto alto não não não

Shalini et al. [94] 2023 controle estatística bloqueio alto alto não não não

Fan et al. [97] 2023 controle intermediação gerenciamento
de recursos alto alto não não não

González et al. [18] 2023 dados e
controle

estatística e
aprendizagem
de máquina

bloqueio médio alto não não sim

Este trabalho 2025 dados e
controle

aprendizagem
de máquina

bloqueio e
controle médio baixo sim sim sim

e reduzir os impactos desses ataques [15]. Todavia, elas ficaram limitadas devido às di-
ficuldades de desenvolver mecanismos de detecção mais sofisticados e, ao mesmo tempo,
garantir o processamento de pacotes em alta velocidade no plano de dados [15]. Em função
disso, soluções como Oracle [16], Cooperative-DDoS [17] e Bungee-ML [18], procuraram
então realizar uma abordagem híbrida, em que realizam parte das ações de detecção no
plano de dados e a outra parte no plano de controle. Essas soluções, em sua maioria, aca-
bam aumentando o volume de mensagens de controle enviadas ao controlador para a ação
de detecção e mitigação e o tempo de confirmação para um ataque, já que o dispositivo
central é responsável por confirmar cada suspeita produzida no plano de dados [10].

No que se refere às abordagens desenvolvidas pelas soluções para a detecção e a redução
dos impactos dos ataques DDoS volumétricos. A detecção baseada no método estatístico
entropia e a técnica de mitigação envolvendo a ação de bloqueio são as mais empregadas,
tendo em vista a baixa complexidade ao aplicar o método estatístico e o alívio instantâneo
aos recursos de rede proporcionado pela ação de bloqueio. Embora, essas ações visem
detectar o tráfego suspeito e bloqueá-lo de maneira rápida, elas têm apresentado algumas
adversidades, como baixa taxa de assertividade por parte dos mecanismos de detecção
e a penalização do tráfego legítimo vinculado a uma determinada porta do switch ou
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endereço IP que está gerando esse tipo de tráfego por parte dos mecanismos de mitigação,
provocando um bloqueio indiscriminado [20, 21, 24, 22].

Para reduzir o bloqueio indiscriminado e aumentar a taxa de assertividade por parte
dos mecanismos de mitigação e detecção, as soluções desenvolvidas por Salem et al. [22]
e Saini et al. [23], buscaram adotar novos métodos. Por exemplo, a atribuição de con-
fiabilidade para os clientes da rede com base em seu histórico de comportamento e suas
interações com os demais clientes e, assim, realizar um bloqueio seletivo, restringindo
apenas os clientes que estão abaixo do grau de confiabilidade. Porém, essas soluções
atuam apenas no plano de controle e não aplicam nenhum mecanismo de priorização que
possibilite a alocação de recursos para garantir que o tráfego legítimo tenha prioridade
sobre o tráfego malicioso, provocando uma disputa desleal por recursos, tendo em vista
o volume do tráfego de ataque. Além disso, gera atrasos no processo de confirmação de
qualquer atividade suspeita associada aos ataques DDoS volumétricos e um aumento do
volume de mensagens de controle para gerenciar o grau de confiabilidade dos clientes e as
demais ações de controle do tráfego de rede [15, 10].

Observa-se a necessidade de um mecanismo de detecção e mitigação que possibilite
ações mais rápidas para conter o fluxo de tráfego de rede malicioso, que evite penalizar os
clientes legítimos da rede e, ao mesmo tempo, reduza o volume de mensagens de controle
encaminhadas ao controlador e os atrasos na execução das ações de detecção e mitigação.
Dessa forma, este trabalho busca superar as limitações apresentadas anteriormente, rea-
lizando a detecção (por exemplo, com o uso de algoritmos de aprendizagem de máquina)
e a mitigação (por exemplo, a priorização do tráfego dos clientes com níveis de confiabi-
lidade aceitáveis - legítimos, e o bloqueio (descarte) do tráfego daqueles com baixo valor
de confiança - maliciosos) no plano de dados, visando reduzir os atrasos para detectar e
confirmar qualquer mudança no comportamento do tráfego, o volume de mensagens de
controle, e o bloqueio indiscriminado dos clientes.

Além das abordagens presentes no mecanismo proposto para reduzir os impactos dos
ataques DDoS volumétricos no plano de dados, busca-se promover a integração entre os
planos da arquitetura SDN (dados e controle) por meio de um modelo de compartilha-
mento de informações globais no plano de controle, organizadas em ações de controle que
incluem o bloqueio, a permissão sem prioridade associada ou a priorização dos clientes,
determinadas com base no estabelecimento de uma confiança global calculada a partir
de um sistema fuzzy no controaldor, para o envio aos dispositivos de encaminhamento
presentes no plano de dados, permitindo uma abordagem híbrida que viabilize a tomada
de decisões locais com base em informações globais compartilhadas para uma resposta
mais eficiente e adaptativa no combate aos ataques DDoS volumétricos.
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3.3 Considerações Finais

Este capítulo apresentou uma revisão do arte sobre as soluções de segurança em redes SDN
que visam reduzir os impactos causados pelos ataques DDoS volumétricos. Foi realizada
uma análise comparativa dos trabalhos existentes, levando em consideração aspectos como
a camada SDN de atuação, as diferentes técnicas de detecção e mitigação utilizadas, o
volume de mensagens de controle encaminhadas ao controlador, o tempo de detecção
(confirmação) de um ataque, a priorização de tráfego, a atribuição de confiabilidade e
a adoção de uma abordagem híbrida. A análise revelou algumas lacunas significativas
nas soluções atuais, como a centralização das ações de detecção e mitigação no plano
de controle, que podem causar atrasos no tempo de resposta para combater os ataques
DDoS volumétricos e o aumento do volume de mensagens de controle encaminhadas ao
controlador para realizar as ações de identificação e contenção dos impactos causados
por esses ataques. Além disso, muitas das estratégias desenvolvidas pelas soluções para
reduzir os impactos desses ataques, que, embora visem restringir o tráfego malicioso,
acabam penalizando uma parte significativa do tráfego legítimo, provocando bloqueios de
forma indiscriminada ao tráfego dos clientes legítimos.
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Capítulo 4

Mecanismo de detecção e mitigação
de ataques DDoS volumétricos em
redes SDN

As redes SDN têm proporcionado uma série de benefícios, como gerenciamento centrali-
zado, maior flexibilidade e controle da infraestrutura de rede [100]. Isso possibilita adicio-
nar novas funcionalidades conforme as necessidades dos usuários, incluindo, por exemplo,
o desenvolvimento de funções de segurança, o gerenciamento de fluxos e o provisionamento
de serviços [7]. Apesar dos benefícios oferecidos por essa arquitetura de rede, a segurança
ainda é motivo de preocupação, pois a separação entre o plano de dados e de controle
aumenta a superfícies de possíveis ataques [8]. Nesse contexto, destacam-se os ataques
DDoS de natureza volumétrica, que podem sobrecarregar os recursos críticos da rede por
meio do envio massivo de tráfego malicioso e/ou da exploração de falhas em protocolos e
serviços que estão sendo executados na infraestrutura-alvo [9].

Na arquitetura SDN, o controlador assume o papel central da rede, sendo responsável
por coordenar o funcionamento de toda a rede [101]. Essa centralização, embora traga
benefícios operacionais, também o torna um ponto único de falha e, portanto, um alvo
estratégico para ataques. Neste cenário, os ataques DDoS volumétricos se destacam por
sua capacidade de comprometer a disponibilidade do controlador ao enviar grandes volu-
mes de tráfego malicioso, limitando a capacidade do controlador de lidar com o tráfego
legítimo da rede, levando à sua indisponibilidade e, consequentemente, afetando os demais
serviços oferecidos na rede [19].

Conforme abordado no Capítulo 3, as soluções apresentaram diversas estratégias para
reduzir os impactos dos ataques DDoS volumétricos e proteger o controlador. Apesar, do
número de soluções desenvolvidas para combater esses ataques em uma rede SDN, ainda
permanecem algumas lacunas que podem deixar essa rede exposta, como a centralização
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das ações de detecção e mitigação no plano de controle. Essa centralização provoca tempos
mais longos (atrasos) para detectar e confirmar qualquer mudança no comportamento
do tráfego de rede associado a esses ataques, e o aumento do volume de mensagens de
controle encaminhadas ao controlador para realizar as ações de identificação e contenção
desses ataques na rede, aumentando o seu consumo de recursos. Além disso, muitas
dessas soluções adotam o bloqueio do tráfego de forma indiscriminada, o que, embora vise
restringir o acesso do tráfego malicioso ou suspeito e proporcionar um alívio instantâneo
aos recursos de rede, acaba penalizando uma parte significativa do tráfego legítimo para
minimizar os impactos desses ataques.

Portanto, o objetivo deste trabalho é propor um mecanismo de detecção e mitigação
que possibilite respostas mais rápidas para conter o fluxo de tráfego de rede de clientes
maliciosos, por meio de técnicas de priorização de tráfego que evitem penalizar os clientes
legítimos e reduza o número de pacotes encaminhados ao controlador, preservando os seus
recursos, evitando a sobrecarga e garantindo sua disponibilidade mesmo durante situações
de ataque. Para isso, propõe-se, primeiramente uma abordagem de detecção no plano de
dados mediante um modelo de classificação com base no algoritmo de aprendizagem de
máquina Random Forest para classificar o fluxo de tráfego de rede malicioso próximo aos
pontos de ingresso na rede de forma eficiente, rápida e precisa, e, assim, reduzir o atraso
para identificar e confirmar esse tipo de tráfego na rede, e o volume de mensagens de
controle encaminhadas ao controlador. Seguido por um método de mitigação também
presente no plano de dados, por meio do gerenciamento de diferentes listas nos dispositi-
vos de encaminhamento, utilizando níveis de confiabilidade com base no comportamento
dos clientes, para priorizar o fluxo de tráfego dos clientes com níveis de confiabilidade acei-
táveis (legítimos) e bloquear (descartar) o tráfego daqueles com baixo valor de confiança
(maliciosos), mediante a análise de perfis de tráfego e dados de cabeçalhos de pacotes,
para evitar o bloqueio indiscriminado dos clientes.

Além das abordagens presentes no mecanismo proposto para reduzir os impactos dos
ataques DDoS volumétricos no plano de dados, este trabalho também propõe um modelo
de compartilhamento de informações globais no plano de controle, organizadas em ações
de controle que incluem o bloqueio, a permissão sem prioridade associada ou a priori-
zação dos clientes, determinadas com base no estabelecimento de uma confiança global
calculada a partir de um sistema fuzzy no controlador, para o envio aos dispositivos de
encaminhamento presentes no plano de dados, promovendo uma colaboração eficiente en-
tre o plano de dados e de controle, e maior rapidez nos processos de detecção e mitigação
em diferentes pontos da rede.

As seções a seguir apresentarão uma visão geral do mecanismo proposto e os pro-
cedimentos para o seu desenvolvimento, detalhando as ações para atenuar as lacunas
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observadas no Estado da Arte.

4.1 Visão geral do mecanismo proposto

O mecanismo proposto visa realizar ações para identificar e conter o fluxo de tráfego
de rede de clientes maliciosos. Para isso, ele foi organizado em dois procedimentos: (i)
Procedimento 1: detecção e mitigação no plano de dados; e (ii) Procedimento 2: compar-
tilhamento de informações globais por meio do plano de controle.

O procedimento 1 concentra-se na implementação de ações no plano de dados para
detectar e conter o fluxo de tráfego de rede de clientes maliciosos próximo aos pontos de
ingresso na rede e priorizar o tráfego daqueles com níveis de confiabilidade aceitáveis (le-
gítimos), bem como encaminhar ao plano de controle os dados necessários para a definição
da confiança global desses clientes. Esse procedimento é composto por 5 módulos: Coleta
de Dados; Classificação; Agregação do Valor de Confiança; Gerenciamento das Listas; e
Gerenciador de Envio.

O procedimento 2 foca no desenvolvimento de ações de coordenação no plano de con-
trole para o compartilhamento de informações globais, organizadas em ações de controle
que incluem o bloqueio, a permissão sem prioridade associada ou a priorização dos cli-
entes, determinadas a partir do estabelecimento de uma confiança global, por meio do
controlador para o envio aos switches, para promover uma abordagem híbrida entre os
planos da arquitetura SDN (plano de dados e de controle) por parte do mecanismo pro-
posto. Esse procedimento é composto por 3 módulos: Extração dos Dados; Calcular a
Confiança Global; e Disseminação dos Dados.

A Figura 4.1 apresenta a integração entre os módulos presentes nos procedimentos do
mecanismo proposto.

No instante em que os pacotes de rede chegam ao switch, o módulo de coleta de dados
é responsável por coletar os dados desses pacotes, agrupá-los em fluxos que correspondem
a uma sequência de pacotes que compartilham características comuns e são transmitidos
de uma origem para um destino específico [20], armazenar as estatísticas desses fluxos e
enviá-las ao módulo de classificação, mediante janelas de observação, que correspondem
a intervalos de tempo ou a um número fixo de fluxos, nos quais determinados eventos,
dados ou métricas são analisados, organizados e encaminhados [16]. As janelas são usadas
nesse módulo para observar o comportamento do tráfego, extrair suas características e
reportá-las ao módulo seguinte. O módulo de classificação é responsável por classificar
os fluxos de tráfego dos clientes em legítimos ou maliciosos por meio do algoritmo de
aprendizagem de máquina do tipo supervisionado Random Forest e produzir um valor de
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Figura 4.1: Módulos presentes nos procedimentos do mecanismo proposto.

confiança para cada classificação de fluxo desses clientes na rede, ou seja, com base no
comportamento de cada um.

Os valores de confiança produzidos para cada cliente são agregados à medida que seus
fluxos são classificados na rede para formar um valor de confiança local ao longo do tempo,
por meio do módulo de agregação do valor de confiança. O módulo de gerenciamento das
listas é responsável por atribuir o fluxo de tráfego de rede dos clientes para as listas locais
do switch conforme o comportamento de cada cliente a partir do seu valor de confiança,
para dar preferência (priorização) ao tráfego dos clientes legítimos e bloquear (descartar)
o tráfego malicioso, mantendo o serviço para aqueles que atendem a um determinado nível
de confiança. Por fim, o módulo (gerenciador de envio) é responsável por enviar ao plano
de controle o valor mais recente de confiança local dos clientes presentes nas listas locais
do switch, por meio de pacotes de relatórios organizados em janelas de observação. Esses
pacotes consistem em pacotes normais que são clonados e tem a sua cópia modificada para
incluir os dados de controle que são os valores de confiança local dos clientes anexados
em um cabeçalho customizado.

No momento em que os pacotes de relatórios chegam ao plano de controle, o módulo
de extração dos dados é responsável por extrair os cabeçalhos desses pacotes para obter
os valores de confiança local de cada cliente computados pelos switches e organizá-los em
uma estrutura de dados. Os dados presentes nessa estrutura são organizados e encaminha-
dos em intervalos predefinidos ao módulo (calcular a confiança global), responsável por
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determinar a confiança global de cada cliente e sua respectiva classificação (não confiável,
parcialmente confiável ou confiável) por meio de um sistema fuzzy [102]. Esse módulo
integra os diferentes valores de confiança local gerados pelos clientes da rede, proporcio-
nando uma avaliação unificada que reflete a confiabilidade geral de cada cliente presente
na rede.

O módulo de disseminação dos dados é responsável por enviar aos switches as ações de
controle referentes à classificação da confiança global de cada cliente, por meio de pacotes
de disseminação organizados em janelas de observação. As ações de controle correspondem
as medidas a serem tomadas pelo mecanismo proposto para aplicar a política de restrição
ou priorização do fluxo de tráfego de rede dos clientes de maneira global que podem
incluir o bloqueio, a permissão sem prioridade associada ou a priorização dos clientes,
determinada a partir do valor de confiança global do cliente estabelecido pelo sistema
fuzzy. Esse processo cria uma visão unificada da rede, permitindo que os switches tomem
decisões localmente, com base nas informações globais compartilhadas, garantindo uma
operação mais eficiente, abrangente e coordenada por parte do mecanismo proposto.

Para o detalhamento do funcionamento de cada módulo presente nos procedimentos
mencionados, é apresentada as definições adotadas relacionadas aos elementos fundamen-
tais envolvidos para o desenvolvimento do trabalho, elaborada com base na arquitetura
SDN e nos seus elementos fundamentais, tais como os dispositivos presentes nessa infra-
estrutura: switches, enlaces, controlador e clientes.

A rede SDN é representada por um grafo não direcionado G = (S, E). Essa modela-
gem segue a representação tradicional de redes de computadores como grafos, amplamente
adotada na literatura, em que dispositivos (como roteadores e switches) e conexões físicas
ou lógicas são abstraídos como nós e arestas, respectivamente [103]. Neste trabalho, essa
representação convencional é estendida para incluir, além dos dispositivos de encaminha-
mento, o controlador SDN, de forma a contemplar a interação entre o plano de dados e o
plano de controle:

• S = {s1, s2, . . . , sp} denota o conjunto de switches da rede, com p ∈ N∗ represen-
tando a quantidade total de nós de comutação;

• E ⊆ S × S representa o conjunto de enlaces físicos ou lógicos estabelecidos entre os
switches.

Cada enlace e = (si, sj) ∈ E indica uma conexão direta entre os switches si e sj,
1 ≤ i < j ≤ |S|. Considera-se que os enlaces são não direcionados, de modo que a
presença de (si, sj) ∈ E implica automaticamente (sj, si) ∈ E.
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A infraestrutura é gerenciada por um controlador central Cr, responsável por manter
uma visão global do grafo G e por implementar as políticas de encaminhamento, conforme
o paradigma SDN, que dissocia o plano de controle do plano de dados.

Os clientes da rede são representados pelo conjunto:

N = {n1, n2, . . . , nk},

em que k ∈ N∗ corresponde ao número total de clientes ativos. Cada cliente nj ∈ N pode
estar conectado simultaneamente a um ou mais switches si ∈ S. Para formalizar essa
associação, define-se a relação de conexão:

R ⊆ S × N,

de forma que (si, nj) ∈ R indica a existência de uma conexão entre o switch si e o cliente
nj.

Adicionalmente, para cada par (si, nj) ∈ R, é atribuído um valor de confiança local
τ(si, nj)t ∈ [0, 1], o qual representa a confiança estimada que o switch si possui em relação
ao cliente nj, no instante de tempo t. Esse valor é inferido com base nas interações
observadas entre o cliente e o switch ao longo de uma janela temporal definida, refletindo
comportamentos como tráfego anômalo, frequência de comunicação ou conformidade com
políticas estabelecidas.

A Figura 4.2 apresenta uma ilustração esquemática da rede SDN, destacando os swit-
ches, os enlaces entre eles, a conexão dos clientes aos respectivos nós de comutação, bem
como a presença do controlador central.

Figura 4.2: Representação esquemática da rede SDN como um grafo não direcionado.

46



4.2 Procedimento 1: detecção e mitigação no plano
de dados

Esta seção detalha os módulos presentes no procedimento 1 do mecanismo proposto.
Esse procedimento busca estabelecer meios para detectar e mitigar os ataques DDoS vo-
lumétricos diretamente no plano de dados. Para o desenvolvimento dos módulos desse
procedimento, os switches são programados por meio da linguagem P4, que permite pro-
cessar os pacotes de rede trafegados na rede em tempo de execução [1]. Assim, o switch
habilitado para essa linguagem consegue extrair os dados de um pacote e realizar as ações
de detecção e mitigação definidas pelo mecanismo proposto.

4.2.1 Coleta de Dados

O módulo de coleta de dados consiste em coletar os dados dos pacotes de rede, agrupá-
los em fluxos, calcular suas estatísticas e encaminhá-las ao módulo de classificação, que
classificará o tráfego de rede em legítimo ou malicioso e estabelecerá um valor de confiança
para cada classificação de fluxo realizada.

Os dados coletados pelo módulo de coleta de dados podem ser agrupados em blocos
wv, v > 0, que chamamos de “janela de observação”. As janelas podem ser definidas com
um número fixo de fluxos, definidas como janelas baseadas em fluxo, ou em vários fluxos
em um determinado período, caracterizando janelas baseadas em tempo. No primeiro
caso, as janelas observadas possuem o mesmo número de fluxos (ou seja, |wv| = |wh|,
0 < v < h). Nas janelas por tempo, é possível que |wv| ≠ |wh|, 0 < v < h, pois o número
de fluxos pode variar ao longo do tempo. A ideia por trás das janelas de observação é
agrupar os pacotes observados em fluxos com base em seus atributos, de modo a otimizar
o processo de coleta e envio dos dados. Então, é realizado o processo de mapeamento de
pacotes para fluxos no switch P4, como pode ser observado na Figura 4.3. A definição
do tamanho e o tipo da janela de observação (baseada em tempo ou por fluxo) para o
módulo em questão será apresentada no Capítulo 5.

Para determinar os pacotes relacionados a um fluxo, utiliza-se uma 5-tupla composta
por seus endereços IP de origem/destino, porta de origem/destino e protocolo. O analisa-
dor (primeiro bloco incluído na arquitetura do switch P4) recebe os pacotes de entrada e
os valida, extraindo as informações do cabeçalho do pacote, como protocolo, flags, tama-
nho, endereço de origem e destino, etc. A partir dessas informações, são utilizadas tabelas
do tipo match+action que determinam as ações a serem tomadas conforme a entrada de
dados [104].
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Figura 4.3: Processo de mapeamento de pacotes para fluxos.

As tabelas do tipo match+action serão responsáveis por processar os fluxos de rede,
aplicando regras de encaminhamento ou controle com base nas características relacio-
nadas a cada fluxo. Para isso, são criados registradores para definir uma estrutura de
dados para armazenar as estatísticas de cada fluxo, que podem incluir, por exemplo, a
sua duração, o seu tamanho em bytes, o total de pacotes encaminhados, o número de
pacotes e bytes de fluxo por segundo, etc. Um registrador P4 é um array de tamanho
fixo que usa um índice para apontar para os elementos armazenados [104]. Utilizou-se
um conjunto desses registradores para construir uma estrutura similar a uma matriz de
registros, onde cada linha armazena valores das mesmas estatísticas pertencentes a fluxos
diferentes, e cada coluna armazena estatísticas diferentes do mesmo fluxo. Dessa forma,
é criada a função calc_indice para calcular um índice único (fluxo_id) permitindo que
as estatísticas relacionadas a cada fluxo tenham suas informações armazenadas em seus
respectivos índices de registro e possam ser recuperadas futuramente para a atualização
de informações.

Por fim, a ação atualiza_fluxos é executada para atualizar as estatísticas de fluxo nos
registradores correspondentes conforme os novos pacotes são recebidos. Assim, os dados
armazenados de cada fluxo são organizados e encaminhados ao módulo de classificação
mediante janelas de observação. A definição das estatísticas a serem coletadas para cada
fluxo será apresentada no Capítulo 5.

4.2.2 Classificação

O módulo de classificação busca classificar os fluxos de tráfego de rede dos clientes em
legítimos ou maliciosos e atribuir um valor de confiança a cada classificação realizada,
com base no comportamento observado nos fluxos de tráfego de cada cliente presente na
rede.
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Para a realização das tarefas do módulo de classificação, considera-se o uso de técnicas
de aprendizagem de máquina, devido ao bom desempenho apresentado por essas técnicas
para a classificação de ataques DDoS, conforme observado na revisão do estado da arte. É
explorado o fato de os switches P4 poderem ser implementados em switches caixa branca
(white-box switches), permitindo a programabilidade do dispositivo sem a necessidade de
estar vinculado a um fabricante de hardware específico, o que dá mais flexibilidade para
o que necessito. Sendo assim, é utilizado um componente auxiliar acoplado ao switch P4,
que pode acessar e interagir rapidamente com o dispositivo de encaminhamento sem afetar
a velocidade de processamento exigida, através do framework Apache Thrift [105] para os
módulos presentes no plano de dados. Esse framework possibilita a comunicação de baixo
custo entre diferentes processos via Remote Procedure Call (RPC) [106]. A Figura 4.4
ilustra o funcionamento do módulo de classificação presente nos switches.

Tráfego de
entrada

sim

não

Modelo
treinado?

Conversão
Dados

Normalização
Dados

Dados
Treinamento

Dados
Teste

Algoritmo de
previsão

Resultado:
tráfego legítimo

ou malicioso

Pré-processamento Dados

Conjunto de Dados

Figura 4.4: Classificação de um ataque DDoS.

Os dados de tráfego de entrada analisados pelo módulo de classificação contêm as ca-
racterísticas de tráfego brutas que são a base para o cálculo das características que melhor
representam o ataque, coletadas pelo módulo de coleta de dados. Ao receber esses dados,
que são uma coleção de fluxos e suas respectivas estatísticas agrupadas e organizadas
em janelas de observação, eles são encaminhados para a etapa de pré-processamento dos
dados. Nesta etapa, um processo de remoção de valores nulos é iniciado, em conjunto
com o processo de conversão de dados, para converter dados categóricos em números, por
exemplo, tipo de protocolo (TCP, UDP e ICMP), cujo objetivo é torná-los compatíveis
com o algoritmo de aprendizagem de máquina a ser empregado. Tal conversão possibilita
executar o processo de normalização dos dados, que consiste em ajustá-los para uma escala
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ou intervalo comum, geralmente entre 0 e 1 ou −1 e 1, de modo que todos os atributos
tenham impacto semelhante no modelo.

Após o pré-processamento, é verificado se existe um modelo de classificação previa-
mente treinado e carregado nos switches. Se o modelo estiver disponível, é realizada a
previsão (classificação) no switch com base em um algoritmo de aprendizagem de máquina
supervisionado apresentado na Seção 2.3, por exemplo, KNN [77], SVM [79] ou Random
Forest [83], para determinar o tipo de tráfego (legítimo ou malicioso). Caso contrário,
os dados coletados pelos switches são encaminhados para a etapa de treinamento central
localizada no plano de controle que realizará o treinamento de um novo modelo a ser
disponibilizado para os switches. Os dados são utilizados para treinar um novo modelo,
dividindo o conjunto de dados em porções de treinamento e teste (geralmente na pro-
porção de 70:30, ou seja, 70% para treinamento e 30% para teste). Para atualizar um
modelo de classificação treinado nos switches, o modelo anterior é removido para forçar
um novo treinamento e carregamento do modelo. A definição do tipo de algoritmo de
aprendizagem de máquina para o módulo de classificação será apresentado no Capítulo 5.

Vale ressaltar que a etapa de treinamento é realizada no controlador, quando não
houver um modelo treinado disponível nos switches ou quando haver necessidade de atua-
lização do modelo. É utilizado um algoritmo de aprendizagem de máquina do tipo super-
visionado, dessa maneira, os rótulos correspondentes para o tráfego malicioso e legítimo
do conjunto de dados são fornecidos durante a etapa de treinamento do modelo. Os resul-
tados do treinamento serão usados para avaliar o comportamento do modelo (teste) nos
switches. Para a etapa de teste, os rótulos são retirados para analisar o comportamento
do modelo em dados que não foram utilizados durante o treinamento. Após a definição
do algoritmo de aprendizagem de máquina, na etapa de treinamento um procedimento de
otimização de hiperparâmetros é executado através da função RandomizedSearchCV [107],
que seleciona aleatoriamente um conjunto de combinações de hiperparâmetros do algo-
ritmo definido, avaliando o desempenho do modelo para cada combinação produzida por
meio de uma validação cruzada (cross-validation) para encontrar o modelo com a combi-
nação ideal desses valores e, assim, maximizar o desempenho de classificação do modelo,
cujo objetivo é evitar o overfitting do modelo, ou seja, quando o modelo se ajusta ex-
cessivamente aos dados de treinamento, prejudicando o resultado do classificador para
dados não vistos [76]. Dessa forma, por meio da função RandomizedSearchCV busca-se
aumentar a confiabilidade e a precisão do classificador desenvolvido.

A segunda ação do módulo de classificação consiste em atribuir um valor de confiança
a cada previsão realizada com base na análise do comportamento do cliente nj conectado
ao switch si, por meio do método Platt Scaling [108, 109]. A escolha desse método é em
função da sua capacidade de ajustar as saídas das previsões dos modelos de classificação
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por meio de uma regressão logística, transformando as saídas desses modelos em valores
probabilísticos entre 0 e 1 que refletem o grau de confiança associado a cada previsão de
modo a auxiliar na tomada de decisão. O método é definido pela seguinte equação:

C(y = 1|f)nj
= 1

1 + exp(Af + B) , (4.1)

onde y representa a classe da amostra (y = 1: legítimo) e f é a saída não ajustada
do classificador utilizado, por exemplo, KNN, SVM ou Random Forest. Essa saída é
obtida pela combinação de recursos, por meio das variáveis independentes, que são as
características dos fluxos disponíveis no conjunto de dados para cada cliente, como a sua
duração, o seu tamanho em bytes, o total de pacotes encaminhados, etc., que o classificador
utiliza para realizar a previsão em malicioso ou legítimo [110]. As variáveis A e B são
os parâmetros ajustados para a regressão logística. Eles são determinados através do
ajuste do modelo de regressão via máxima verossimilhança, que busca encontrar os valores
adequados dos parâmetros, tornando os dados observados prováveis de terem ocorrido com
base no modelo treinado [109]. Isso significa, ajustar os parâmetros (A e B) para que as
probabilidades previstas pelo modelo sejam as mais próximas possíveis dos rótulos reais da
classe da amostra y. Dessa maneira, esses valores são ajustados na fase de treinamento do
classificador, de modo que as saídas se aproximem das probabilidades reais observadas nos
dados de treino. Assim, quando aplicados na fase de teste, eles possibilitam transformar
os resultados (saídas) do modelo de classificação em uma distribuição de probabilidade
bem ajustada (valores de confiança) para a classe da amostra em questão, conforme o
comportamento do cliente. Portanto, quanto mais próximo de 1 (valor de confiança),
maior a indicação de que o fluxo de um cliente pertence à classe da amostra y (legítimo).
Por outro lado, valores mais próximos de 0 indicam maior probabilidade de pertencimento
à classe oposta (malicioso), caracterizando comportamento potencialmente malicioso.

4.2.3 Agregação do Valor de Confiança

O módulo de agregação do valor de confiança visa agregar os valores de confiança atri-
buídos aos fluxos de cada cliente durante a execução do módulo de classificação. Essa
agregação permite formar um valor de confiança local para cada cliente ao longo do tempo,
refletindo seu comportamento local na rede. Além disso, o módulo incorpora um fator de
esquecimento, que reduz o valor de confiança local de um cliente caso ele não receba um
novo valor de confiança em um determinado intervalo de tempo. Esse fator assegura que
clientes inativos ou com comportamentos inconsistentes ao longo do tempo tenham sua
confiança ajustada, mantendo o sistema mais dinâmico e atualizado, priorizando aqueles
que são mais ativos e com bons comportamentos na rede.
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O valor de confiança atribuído para cada fluxo de um cliente presente na rede é agre-
gado pelo módulo de agregação do valor de confiança, resultando no valor de confiança
local desse cliente, por meio da seguinte equação:

τ(si, nj)t = β · Cnj
+ (1 − β) · τ(si, nj)t−1, (4.2)

onde Cnj
é o valor de confiança calculado pelo método Platt Scaling [108] (Equação (4.1))

para o cliente nj, τ(si, nj)t−1 é o valor de confiança local até o tempo t−1 (anterior) que o
switch si possui em relação ao cliente nj, e β é o coeficiente de suavização que pode assumir
valores no intervalo (0 < β ≤ 1). Um valor de β próximo a 1 dá mais peso aos valores de
confiança mais recentes, tornando o modelo mais sensível às mudanças recentes no sistema.
Por outro lado, um valor β próximo a 0 dá mais peso aos valores mais antigos, conferindo
mais estabilidade ao modelo. Assim, o coeficiente de suavização controla o equilíbrio entre
a sensibilidade a mudanças recentes e a estabilidade ao considerar o histórico, permitindo
ajustar o modelo de forma eficiente para refletir as dinâmicas do sistema analisado.

O fator de esquecimento atua monitorando o valor de confiança local dos clientes
presentes nas listas locais do switch em intervalos de tempo regulares. Dessa forma, se
o cliente não obtiver um novo valor de confiança dentro do intervalo de tempo definido,
o mecanismo aplicará uma redução gradativa do valor de confiança local desse cliente
através da seguinte equação:

F (si, nj) = τ(si, nj)t · δ, (4.3)

onde τ(si, nj)t é o valor de confiança local no instante de tempo t que o switch si possui em
relação ao cliente nj e δ é o coeficiente de redução que pode assumir valores no intervalo
de (0 < δ ≤ 1). Um valor de δ próximo a 0 aplica uma redução mais severa no valor
de confiança quando não há atualizações recentes. Por outro lado, um valor δ próximo
de 1 resulta em uma redução mais suave, permitindo que o valor de confiança diminua
lentamente ao longo do tempo, garantindo mais estabilidade para os clientes. Assim, se o
cliente for inativo ou tiver comportamentos inconsistentes ao longo do tempo, o seu valor
de confiança local tende a cair com o tempo.

O Algoritmo 1 é executado em cada um dos switches si ∈ S e mostra o funcionamento
do gerenciamento da confiança local nos dispositivos de encaminhamento para os clientes
presentes na rede SDN. O cliente nj terá um valor de confiança Cnj

computado para
um fluxo de rede conforme a Equação (4.1) após a conclusão da janela de observação
wv, com base nas estatísticas coletadas pelo módulo (coleta de dados) para o respectivo
fluxo ao longo dessa janela. Assim, no passo 1, para cada novo valor de confiança Cnj

obtido pelo cliente nj, o switch si realizará a atualização do seu valor de confiança local
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τ(si, nj)t em relação ao cliente nj no instante de tempo t por meio da Equação (4.2) para
formar o valor de confiança local desse cliente ao longo do tempo, representando o seu
comportamento local na rede, permitindo acompanhar a evolução de conduta do cliente
em questão à medida que os seus novos fluxos são analisados e classificados pelo switch si.
O passo 2 está relacionado ao fator de esquecimento. Assim, durante o intervalo de tempo
de monitoramento Tm, onde Tm representa o período (intervalo) em que se verifica se
o cliente nj obteve ou não um novo valor de confiança Cnj

para um fluxo de rede. Em
caso de ausência de um novo valor de confiança Cnj

durante o período de monitoramento,
o switch si reduzirá o valor de confiança local τ(si, nj)t que possui em relação ao cliente
nj por meio da Equação (4.3). Essa ação reduzirá gradativamente ao longo do tempo o
valor de confiança local do cliente, promovendo uma avaliação dinâmica e permitindo que
o switch si ajuste de forma contínua a confiança local atribuída ao cliente conforme a sua
atividade na rede, refletindo com maior clareza o comportamento atual do cliente.

Algoritmo 1: Gerenciamento da Confiança Local do switch si ∈ S

Entrada: Valor de confiança Cnj
calculado para o fluxo de rede do cliente nj por

meio da Equação (4.1) após a conclusão da janela de observação wv, com base nas
estatísticas coletadas para o respectivo fluxo ao longo dessa janela.
Saída: Valor de confiança local τ(si, nj)t no instante de tempo t ajustado pelo
switch si para o cliente nj.
Passo 1 - Atualização: Para cada novo valor de confiança Cnj

calculado para o
cliente nj, atualize o seu valor de confiança local τ(si, nj)t por meio da Equação (4.2).
Passo 2 - Redução: Na ausência de um novo valor de confiança Cnj

pelo cliente nj

durante o intervalo de tempo de monitoramento Tm, reduza o seu valor de confiança
local τ(si, nj)t por meio da Equação (4.3).

Por fim, vale destacar que os parâmetros β, δ e Tm presentes no módulo de agregação
do valor de confiança são ajustáveis, o que permite uma maior flexibilidade para o me-
canismo proposto. O parâmetro β possibilita ajustar o coeficiente de suavização para a
agregação do valor de confiança local, enquanto δ permite ajustar a taxa de redução para
o fator de esquecimento e Tm o intervalo de tempo para monitorar se um cliente recebeu
ou não um novo valor de confiança. A definição dos valores para esses parâmetros será
apresentada no Capítulo 5.

4.2.4 Gerenciamento das Listas

O módulo de gerenciamento das listas é responsável por direcionar o fluxo de tráfego de
rede dos clientes às listas locais do switch, conforme os seus comportamentos (valor de
confiança) na rede, para dar preferência (priorização) ao tráfego dos clientes legítimos e
bloquear (descartar) o tráfego malicioso. Essa estratégia de mitigação garante maior dis-
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ponibilidade da rede para os clientes legítimos, bem como a redução do encaminhamento
de tráfego malicioso ao controlador, garantindo maior disponibilidade e qualidade de ser-
viço para os clientes legítimos. O fluxo de tráfego de rede dos clientes pode ser gerenciado
em três listas locais distintas presentes no switch P4, nas quais possuem diferentes ações
conforme o comportamento dos clientes, como mostra a Figura 4.5.

não priorizado confiança

bloqueio

Figura 4.5: Transição dos fluxos de rede entre as listas presentes nos switches.

O fluxo de tráfego de rede de um cliente ainda não classificado pelo módulo de classi-
ficação, assim como o fluxo de um cliente classificado como legítimo, mas que ainda não
atingiu um determinado nível de confiança, é categorizado como não priorizado. Os flu-
xos desses clientes são adicionados à lista denominada “não priorizado”, e encaminhados
aos seus destinos sem nenhuma prioridade associada quando gerenciado pelo switch P4.
À medida que os clientes se mantêm ativos na rede e com bons níveis de confiança, os
seus fluxos de tráfegos podem ser gerenciados pela lista de prioridade denominada “confi-
ança”, caso os valores de confiança dos clientes estejam acima do limiar de confiabilidade
estabelecido para a lista de prioridade. Esta lista proporciona tratamento preferencial
(priorização) ao fluxo de tráfego do cliente classificado como legítimo, proporcionando
maior velocidade no processamento de encaminhamento dos pacotes de rede.

Conforme o comportamento dos clientes altera ao longo do tempo, os seus fluxos po-
dem ser gerenciados novamente pela lista de não priorizado, se estiverem abaixo do limiar
de confiabilidade estabelecido, perdendo assim a prioridade associada anteriormente (ca-
racterística exclusiva dos clientes pertencentes a lista de confiança), ou serem bloqueados
quando apresentarem comportamentos maliciosos que resultam em uma classificação de
tráfego malicioso, sendo gerenciados agora pela lista denominada “bloqueio”.

A lista de bloqueio trata dos fluxos de tráfegos de clientes classificados como maliciosos.
Assim, os clientes gerenciados por essa lista, têm o seu tráfego descartado para prevenir
possíveis ataques ou comportamentos que comprometam a disponibilidade dos recursos da
rede. É adotado um bloqueio temporário para evitar a penalização indevida de clientes
legítimos, garantindo que o bloqueio seja mantido para aqueles que, de fato, exercem
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atividades maliciosas. Desta forma, ao ser adicionado à lista de bloqueio, o cliente tem
seu fluxo de tráfego de rede descartado temporariamente e, após o término do bloqueio,
pode ser realocado para a lista (não priorizado), onde seus novos fluxos serão atendidos
sem qualquer prioridade associada, permitindo uma reavaliação do seu comportamento
na rede.

Nota-se que a lista de prioridade (confiança) requer um limiar de confiabilidade para
que os fluxos de tráfego de rede dos clientes legítimos sejam priorizados em relação ao
tráfego dos demais clientes, definindo a sensibilidade do mecanismo proposto. Assim,
cada switch si ∈ S define inicialmente o seu valor de confiança médio com base nos
clientes legítimos que estão sob sua gerência. Os clientes legítimos são representados pelo
conjunto L = {n′

1, n′
2, · · · , n′

z}, onde z ≤ |N |, um subconjunto de N composto pelos
clientes considerados legítimos. A confiança média de clientes legítimos é definida como:

Cm = 1
|L|

|L|∑
j=1

τ(si, n′
j)t, (4.4)

onde Cm é o valor médio de confiança local dos clientes legítimos conectados ao switch
si, |L| o número de clientes legítimos do conjunto L e τ(si, n′

j)t o valor de confiança local
atribuído pelo switch si ao cliente legítimo n′

j no instante t. Em seguida, o switch si

estabelece o limiar da sua lista de confiança por meio da seguinte equação:

Th(si)t = α · Cm + (1 − α) · Th(si)t−1, (4.5)

onde Th(si)t é o limiar, Cm é a confiança média local calculada pela Equação (4.4)
e Th(si)t−1 é o limiar de confiança calculado anteriormente, e α é um coeficiente de
suavização. O coeficiente α assume valores no intervalo (0 < α ≤ 1). Um valor de α mais
alto implica um peso maior em valores recentes, em contraste com os valores calculados
anteriores em Th(si)t. No entanto, um valor de α mais baixo implica em um peso maior
nos valores anteriores de Th(si)t, em contraste com o valor médio atual de confiança.
Assim, o limiar pode ser ajustado conforme as características da rede.

O Algoritmo 2 é executado em cada um dos switches si ∈ S e mostra o funcionamento
do gerenciamento das listas locais nos dispositivos de encaminhamento para coordenar
os clientes conectados à rede SDN. Para alocar o cliente nj a uma das listas locais do
switch si, utiliza-se o valor de confiança local τ(si, nj)t atribuído a esse cliente no instante
t pelo switch si, computado por meio da Equação (4.2), tendo como base os valores
de confiança Cnj

obtidos durante a classificação dos seus fluxos de rede pelo módulo
(classificação). Primeiro, é calculado o limiar de confiança Th(si)t para a lista de confiança
do switch si por meio da Equação (4.5), considerando os valores de confiança locais dos
clientes classificados como legítimos pelo switch si. Assim, se o valor de confiança local
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τ(si, nj)t do cliente nj pertencente à lista de não priorizado estiver acima do limiar Th(si)t,
ele é promovido à lista de confiança para ter o seu tráfego priorizado em relação ao
tráfego dos clientes presentes na lista de não priorizado. Essa promoção indica que o
cliente demonstrou um comportamento confiável, atendendo aos critérios estabelecidos
para a priorização do seu tráfego na rede, como ser classificado como legítimo e manter
um histórico consistente de atividades sem indícios de comportamentos maliciosos. No
entanto, a permanência na lista de confiança não é definitiva, pois o valor de confiança
local τ(si, nj)t do cliente nj continua sendo atualizado a medida que os seus novos fluxos
são classificados na rede pelo módulo (classificação). Caso o cliente nj pertencente à
lista de confiança apresente mudanças em seu comportamento, como variações no padrão
de tráfego ou sinais de possíveis atividades suspeitas, seu valor de confiança Cnj

pode
diminuir afetando o seu valor de confiança local τ(si, nj)t, e ele pode ser movido para
à lista de não priorizado se o valor de confiança local τ(si, nj)t for igual ou inferior ao
limiar de confiança Th(si)t. Por fim, se o cliente nj for classificado como malicioso pelo
módulo (classificação), ou seja, o seu fluxo de tráfego de rede apresenta características
associadas a ataques, ele será adicionado à lista de bloqueio e permanecerá bloqueado
por um determinado período de tempo Ψ. Assim, o cliente nj relacionado à lista de
bloqueio tem o seu tráfego de rede descartado de forma imediata, mantendo assim o
serviço para aqueles que atendem ao nível de confiança estabelecido (clientes legítimos)
para o mecanismo proposto.

Por último, vale ressaltar que os parâmetros α e Ψ presentes no módulo de gerencia-
mento das listas são ajustáveis, permitindo uma configuração mais personalizada para o
mecanismo proposto. O parâmetro α permite ajustar o peso dado aos valores de confiança
locais para a definição do limiar de confiança da lista de confiança, enquanto Ψ é o tempo
de bloqueio que estará associado ao cliente adicionado a lista de bloqueio. A definição
dos valores para esses parâmetros será apresentada no Capítulo 5.

4.2.5 Gerenciador de Envio

O módulo (gerenciador de envio) é responsável por encaminhar ao plano de controle o
valor mais recente de confiança local dos clientes presentes nas listas locais do switch, por
meio de pacotes personalizados, chamado de pacote de relatório, organizados em janelas
de observação.

Os valores de confiança local dos clientes são calculados ao longo das suas participações
na rede por meio da Equação (4.2), para refletir o comportamento local de cada um na
rede. Esses valores são incluídos em um pacote de relatório, que consiste em um pacote
normal, cuja carga útil é removida e cujo cabeçalho padrão é personalizado, para reduzir o
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Algoritmo 2: Gerenciamento das listas locais do switch si ∈ S

Entrada: Valor de confiança local τ(si, nj)t, que o switch si possui em relação ao
cliente nj no instante de tempo t, calculado por meio da Equação (4.2), obtido com
base nos valores de confiança Cnj

associados aos fluxos de rede classificados desse
cliente.
Saída: Alocação do cliente nj a lista local do switch si conforme a sua classificação
e valor de confiança local τ(si, nj)t.
Passo 1 - Limiar de Confiança: Calcule o limiar de confiança local Th(si)t da
lista de confiança por meio da Equação (4.5).
Passo 2 - Lista de Não Priorizado: Para o cliente nj que pertença à lista de não
priorizado, compare o seu valor de confiança local τ(si, nj)t com o limiar de confiança
Th(si)t da lista de confiança.

• Passo 2.1: Se τ(si, nj)t > Th(si)t, então adicione o cliente nj a lista de
confiança e remova-o da lista de não priorizado.

Passo 3 - Lista de Confiança: Para o cliente nj que pertença à lista de confiança,
compare o seu valor de confiança local τ(si, nj)t com o limiar de confiança Th(si)t.

• Passo 3.1: Se τ(si, nj)t ≤ Th(si)t, então adicione o cliente nj a lista de não
priorizado e remova-o da lista de confiança.

Passo 4 - Lista de Bloqueio: Para o cliente nj classificado como malicioso
pelo switch si, adicione o cliente em questão à lista de bloqueio e defina o seu tempo
de bloqueio Ψ.

seu tamanho e garantir que o foco seja nas informações de controle a serem encaminhadas
ao controlador, como mostra a Figura 4.6.

cabeçalho padrao_h {
versão;
comprimento;
protocolo;
…
endereço ip de origem;
endereço ip de destino;

}

cabeçalho personalizado_h {
cliente_1 <valor_confianca>;
cliente_2 <valor_confianca>;
…
cliente_n <valor_confianca>;

}

Carga Útil

Figura 4.6: Transformação do cabeçalho de um pacote normal em um cabeçalho perso-
nalizado.

Para armazenar os valores de confiança local dos clientes presentes na rede, é realizada
a cópia de um pacote normal presente no switch, pois devido a limitações no dispositivo
de encaminhamento programável, a geração espontânea de pacotes não é possível. Para
resolver essa limitação, foi utilizada a função clone da linguagem P4, que permite fazer
uma cópia de um pacote no switch e, em seguida, encaminhá-lo com as alterações apli-
cadas [104]. Dessa maneira, o pacote original não é afetado pela clonagem, seguindo o
caminho inicial, enquanto a cópia é modificada para refletir as novas atualizações e ser
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enviada ao controlador. Após a cópia, o cabeçalho padrão desse novo pacote é personali-
zado, substituindo-o pelas novas informações, que agora incluem os valores de confiança
local computados pelos switches para os clientes. Esse novo cabeçalho é estruturado de
forma a incluir a identificação de cada cliente (endereço IP) e o valor de confiança local
de cada um (τ(si, nj)t), permitindo que as informações sejam processadas de maneira
eficiente pelo controlador.

Foram utilizadas janelas de observação para organizar e otimizar o fluxo de coleta e
envio do pacote de relatório com os valores de confiança local dos clientes, assegurando que
esse pacote seja enviado com a frequência necessária e priorizada, mas sem sobrecarregar o
sistema de comunicação entre o plano de dados e o plano de controle. O uso dessas janelas
possibilita que as informações sejam atualizadas e enviadas regularmente, mantendo o
plano de controle informado sobre o estado atual de cada dispositivo presente no plano
de dados.

O Algoritmo 3 é executado em cada um dos switches si ∈ S e mostra o funcionamento
do módulo (gerenciador de envio) para que os dispositivos de encaminhamento possam
encaminhar ao controlador o valor mais recente de confiança local dos clientes presentes
na rede SDN. O algoritmo recebe como entrada, o valor de confiança local τ(si, nj)t de
cada um dos clientes nj ∈ N geridos pelo switch si em suas listas locais ao longo da
janela de observação wv para o módulo (gerenciador de envio). O passo 1 consiste em
realizar a cópia de um pacote normal presente no switch si, onde o cabeçalho original
do pacote clonado é modificado para formar um novo cabeçalho personalizado, contendo
a identificação dos clientes (endereço IP) e o valor de confiança local τ(si, nj)t de cada
um deles gerido pelo switch si. Os dados referentes à confiança local dos clientes são
agregados em um único pacote de relatório r, respeitando os limites do MTU (Maximum
Transmission Unit) da rede, para evitar que ele seja fragmentado, minimizando atrasos,
melhorando a eficiência da rede e otimizando a transmissão das informações. Ao alcançar
esse limite, um novo pacote é clonado para continuar a inclusão dos dados restantes em um
novo pacote de relatório. Assim, em um pacote de relatório r temos um grupo de clientes e
seus respectivos valores de confiança local τ(si, nj)t a serem reportados. O passo 2 consiste
no envio do pacote de relatório r com as estatísticas dos clientes para o controlador Cr

ao final de cada janela wv (seja ela por tempo ou por pacote). Vale ressaltar que, no caso
de janelas baseadas em pacotes, ou seja, de tamanho fixo, os dados podem ser enviados
ao controlador quando a janela atingir o tempo limite predefinido para o preenchimento
dos dados, no qual os dados acumulados são enviados, mesmo que a janela não esteja
completamente cheia. Esse processo possibilita uma transmissão estruturada e eficiente
das informações relacionadas a confiança local dos clientes ao controlador para a definição
da confiança global e a classificação global, que serão apresentadas na próxima seção. Em
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cada janela de observação, o mecanismo deve ser capaz de continuar coletando os dados
e, ao mesmo tempo, enviar os dados coletados na janela de observação anterior para o
controlador.

Algoritmo 3: Gerenciador de Envio do switch si ∈ S

Entrada: Valor de confiança local τ(si, nj)t, para cada um dos clientes nj ∈ N
coletados das listas locais do switch si ∈ S ao longo da janela de observação wv.
Saída: Pacote de relatório r, encaminhado ao controlador Cr pelo switch si

contendo os valores de confiança local τ(si, nj)t atribuído aos seus clientes.
Passo 1 - Clone e Agregação:

• Passo 1.1: Clona um pacote normal do switch si e personaliza o seu
cabeçalho original e adiciona o valor de confiança local τ(si, nj)t dos clientes
geridos pelo switch si nesse cabeçalho personalizado.

• Passo 1.2: Agrega os dados dos clientes em um único pacote de relatório
r até o limite do MTU da rede.

Passo 2 - Envio: Envia o pacote de relatório r para o controlador Cr ao final da
janela de observação wv.

Por fim, vale salientar que o tipo de janela de observação wv (por exemplo, baseada
em tempo ou em pacotes) e o tempo limite, tempo este exclusivo para o preenchimento
das janelas baseadas em pacotes, são ajustáveis, permitindo uma flexibilidade na confi-
guração do mecanismo proposto. A definição do tipo de janela e o tempo limite para o
preenchimento dos dados será apresentada no Capítulo 5.

4.3 Procedimento 2: compartilhamento de informa-
ções globais por meio do plano de controle

Esta seção detalha os módulos presentes no procedimento 2 do mecanismo proposto. Os
objetivos desse procedimento consistem em definir, no plano de controle, a confiança glo-
bal dos clientes presentes nas listas locais dos switches e realizar o compartilhamento das
informações globais, organizadas em ações de controle que incluem o bloqueio, a permissão
sem prioridade associada ou a priorização desses clientes, determinadas a partir do esta-
belecimento dessa confiança global, por meio do controlador para o envio aos dispositivos
de encaminhamento presentes no plano de dados, permitindo a tomada de decisão local
com base nas informações globais compartilhadas, promovendo uma abordagem híbrida
e abrangente para o mecanismo.
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4.3.1 Extração dos Dados

O módulo de extração dos dados busca extrair os cabeçalhos dos pacotes de relatórios para
obter o valor mais recente de confiança local de cada cliente computados pelos switches e
organizá-los em uma estrutura de dados.

Para a realização das ações do módulo de extração dos dados, é importante compre-
ender como os valores de confiança local dos clientes são extraídos e organizados para
análise. A Figura 4.7 ilustra o funcionamento do módulo, destacando as etapas de extra-
ção, organização e envio dos dados, permitindo uma integração eficiente com os demais
módulos do procedimento 2.

Extração dos 
Cabeçalhos

Matriz de 
registros

Pacotes de 
relatórios

Estrutura de 
Dados

Envio dos 
Dados

Figura 4.7: Extração dos Dados.

Os pacotes de relatórios encaminhados pelo módulo gerenciador de envio contêm o
valor de confiança local mais recente de cada cliente computados pelos switches, que
servirão como base para o cálculo da confiança global de cada um na rede, etapa que
será descrita mais adiante na Subseção 4.3.2. Ao receber esses valores, o módulo extrai o
cabeçalho personalizado dos pacotes de relatórios para obter as informações dos clientes.
Essas informações são organizadas em uma estrutura de dados (matriz de registros), onde
cada linha corresponderá a um cliente e cada coluna, às suas estatísticas específicas, que
são os valores de confiança local coletados dos switches no qual o cliente obteve um novo
valor de confiança local. A estrutura utiliza índices únicos, para mapear cada cliente a um
índice específico na matriz, garantindo acesso rápido e eficiente aos valores de confiança
local coletados. Por fim, os dados armazenados são organizados e enviados ao módulo
(calcular a confiança global) em intervalos predefinidos.

A definição do intervalo de tempo para o envio dos dados referentes aos valores de
confiança dos clientes ao módulo calcular a confiança global será apresentada no Capítulo
5.
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4.3.2 Calcular a Confiança Global

O módulo (calcular a confiança global) é responsável por determinar a confiança global dos
clientes da rede, refletindo a confiabilidade geral de cada um e, assim, classificando-os em
“Não Confiável”, “Parcialmente Confiável” e “Confiável”, permitindo que os dispositivos
de encaminhamento, presentes no plano de dados, tomem decisões locais com base em
informações globais compartilhadas.

Combinar os diferentes valores de confiança local produzidos pelos clientes da rede
para representar uma confiança global apresenta alguns desafios, como a dinâmica da
rede, no qual o comportamento de um cliente pode variar ao longo do tempo, exigindo
uma abordagem adaptativa que leve em conta mudanças recentes sem desconsiderar o
histórico acumulado. Além disso, é necessário garantir que o processamento dos dados seja
rápido e com um baixo custo computacional, permitindo a tomada de decisões em tempo
real, sem sobrecarregar os recursos da rede. Isso requer estratégias eficientes capazes de
lidar com esses dados, mantendo a precisão e a eficácia na consolidação das informações,
sem introduzir latência significativa que prejudique o desempenho geral do mecanismo
proposto.

A estratégia adotada por esse trabalho para superar os desafios listados anteriormente
foi a utilização da lógica fuzzy, proposta por Lotfali Askar-Zadeh [102], que permite lidar
com a incerteza e a variabilidade de um conjunto de dados, modelando os resultados de
forma mais próxima à percepção humana. Essa abordagem possibilita definir a confiança
global dos clientes de maneira flexível, considerando as nuances e dinâmicas da rede.
Com isso, torna-se possível gerar uma classificação global mais precisa dos clientes e
tomar decisões com base na confiança global atribuída a cada um, aprimorando as ações
de mitigação e priorização na rede do mecanismo proposto.

A lógica fuzzy é um sistema de lógica que estende a lógica clássica ao lidar com
graus de verdade, em vez de valores binários [102]. Ao invés de classificar elementos
como pertencentes ou não a um conjunto (verdadeiro ou falso), ela permite que elementos
tenham um grau de pertencimento aos conjuntos fuzzy, representados por valores no
intervalo entre 0 e 1, com base nas funções de inferência usadas, em que 0 significa que
um elemento não pertence a determinado conjunto, 1 significa completa pertinência ao
conjunto, e valores entre 0 e 1 representam graus parciais de pertinências [111]. Assim, na
lógica fuzzy, um elemento pode pertencer a um conjunto com um certo grau de pertinência.
Essa abordagem permite modelar incertezas e situações que envolvem variabilidade ou
imprecisão, aproximando o raciocínio computacional ao raciocínio humano.

O sistema fuzzy desenvolvido para o mecanismo proposto possui as seguintes eta-
pas [111]:
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• Fuzzificação: os dados a serem analisados pelo mecanismo são transformados em
uma variável linguística, que é utilizada no sistema de inferência disponível;

• Sistema de Inferência: a variável linguística proveniente do processo de fuzzi-
ficação é aplicada a um conjunto de regras, produzindo uma variável linguística
relacionada à saída da inferência;

• Defuzzificação: utiliza a variável linguística proveniente do sistema de inferência
e a converte em um valor nítido (crisp), conforme a estratégia de defuzzificação que
está sendo utilizada.

Na etapa de fuzzificação, os valores de confiança local dos clientes, provenientes do
módulo de extração dos dados, são organizados em uma variável linguística denominada
“confiança local”. Uma variável linguística representa uma variável cujo valor não é numé-
rico, mas sim descrito por termos linguísticos [112]. Dessa forma, os valores de confiança
locais são organizados nos seguintes termos linguísticos: “alto”, “médio” e “baixo”, repre-
sentando o conjunto fuzzy de entrada denominado “Confiança Local”, tendo como base
os valores produzidos pelo módulo (agregação do valor de confiança) para cada cliente
presente na rede. Cada termo é associado a uma função de pertinência que define seu
grau de associação em um intervalo contínuo, entre 0 e 1.

A função de pertinência µ é responsável por definir o grau de associação de um valor
de entrada ao conjunto fuzzy [102, 113]. Essa função mapeia os valores de confiança local
de cada cliente para um intervalo contínuo de valores entre 0 e 1. O valor retornado pela
função indica o nível de pertencimento do elemento ao conjunto fuzzy, em que 0 significa
que não pertence, 1 pertence completamente e um valor entre 0 e 1 pertence parcialmente
com diferentes níveis de intensidade. Na literatura, há diferentes tipos de funções de
pertinência para a análise dos conjuntos fuzzy, como [114]:

• Triangular: a função triangular tem três parâmetros: a, b e m. Sendo a onde
a função começa, b onde ela termina e m o valor de x para o máximo grau de
pertinência, com valor µ(x) = 1. A função é dada pela seguinte equação:

µ(x) =



0 se x ≤ a

(x − a)/(m − a) se x ∈ [a, m]

(b − x)/(b − m) se x ∈ [m, b]

0 se x ≥ b.

(4.6)

• Trapezoidal: a função trapezoidal tem quatro parâmetros: a, b, m e g. Sendo a

o primeiro ponto da função, b o último ponto onde µ(x) é 0, e os parâmetros m e
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g representam o intervalo de pontos onde µ(x) tem valor 1, representando o grau
máximo de pertinência. A função é dada pela seguinte equação:

µ(x) =



0 se x ≤ a

(x − a)/(m − a) se x ∈ [a, m]

1 se x ∈ [m, g]

(b − x)/(b − m) se x ∈ [g, b]

0 se x ≥ b.

(4.7)

• Gaussiana: a função gaussiana tem dois parâmetros: c e σ. Sendo c o centro (valor
onde µ(x) é 1) e σ é o desvio padrão, responsável por controlar a largura da curva.
A função é dada pela seguinte equação:

µ(x) = e−
(x−c)2

2σ2 . (4.8)

A definição do tipo de função de pertinência e seus parâmetros para o conjunto fuzzy
de entrada para o sistema proposto exige uma análise cuidadosa dos valores de confiança
locais produzidos pelo módulo de agregação do valor de confiança, presente no plano
de dados, no qual devem ser levadas em consideração as características dos dados, o
comportamento do tráfego de rede observado e o custo computacional associado a cada
função. Assim, a função e seus parâmetros precisam ser definidos com base na análise de
dados históricos da rede coletados em um ambiente controlado, possibilitando definir o
tipo de função e os parâmetros que melhor representam as características do conjunto de
dados, representado pelos valores de confiança local dos clientes para o sistema proposto.
A escolha do tipo de função e de seus parâmetros será apresentada no Capítulo 5.

Após realizar o processo de fuzzificação, o conjunto de valores da variável linguística
(valores de confiança local de cada cliente) são aplicados a um conjunto de regras para
serem submetidos ao sistema de inferência. As regras em um sistema fuzzy desempenham
o papel de modelar a lógica por trás das decisões, baseando-se na forma como os valores de
entrada (valores de confiança locais) interagem entre si. Essas regras são estruturadas em
um formato do tipo SE-ENTÃO, em que uma ou mais condições de entrada, chamadas de
antecedentes, são avaliadas para produzir uma ação ou resultado correspondente, chamado
de consequente [115].

Assim, um conjunto de regras do tipo SE-ENTÃO é definido para o mecanismo pro-
posto, para que o sistema fuzzy analise o conjunto de valores de confiança local de cada
cliente e realize a associação com as regras definidas para o modelo de avaliação (sistema
de inferência). As regras para o sistema fuzzy desenvolvido, foram definidas com base em
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conhecimento especializado sobre o sistema proposto, considerando as características da
rede, como os padrões de comportamentos dos clientes, de modo a categorizar o valor de
confiança global do cliente em “Não Confiável”, “Parcialmente Confiável” e “Confiável”
para capturar nuances e variações no ambiente de rede, seguindo o modelo: SE valor de
confiança é Baixo, ENTÃO o cliente é Não Confiável; SE valor de confiança é Médio, EN-
TÃO o cliente é Parcialmente Confiável; SE valor de confiança é Alto, ENTÃO o cliente
é Confiável. Assume-se que o cliente pode assumir qualquer valor de confiança dentro
de um intervalo contínuo, entre 0 e 1, permitindo uma avaliação mais granular de seu
comportamento na rede.

Após definir o conjunto de regras, o sistema de inferência irá processar e ativar as
regras estabelecidas com um grau máximo e mínimo de pertinência para cada regra,
conforme o conjunto de valores de confiança local analisados para cada cliente, para que
o modelo transforme a variável linguística de entrada, ou seja, os valores de confiança
locais em uma variável linguística de saída que caracteriza o valor de confiança global do
cliente correspondente a uma função de pertinência de saída (por exemplo, triangular,
trapezoidal ou gaussiana) definida e parametrizada para o sistema proposto, com base
na análise de dados históricos do comportamento do tráfego de rede em um ambiente
controlado, para formar o conjunto fuzzy de saída denominado “Confiança Global” [116].
A variável linguística para o conjunto fuzzy de saída é organizada nos seguintes termos
linguísticos: “Não Confiável”, “Parcialmente Confiável” e “Confiável”, para refletir os
diferentes níveis de confiança global que podem ser associados a um cliente da rede para
o mecanismo proposto.

A etapa final do sistema fuzzy é o processo de defuzzificação, que consiste em traduzir
os valores da variável de saída inferida pelo conjunto de regras em um valor crisp, que
corresponde a um único valor que melhor represente os valores fuzzy inferidos da variável
linguística de saída, associada a um dos termos linguísticos propostos para o conjunto
fuzzy de saída (Confiança Global) [116]. Esse valor corresponde a confiança global do
cliente na rede. A literatura dispõe de diferentes tipos de métodos de defuzzificação,
como [114]:

• Centro de Gravidade: método que calcula o ponto de equilíbrio de um conjunto
fuzzy, ponderando os valores de saída com base na área sob a curva de pertinência.
Dessa forma, o valor crisp é obtido calculando a média ponderada de todos os pontos
da função de pertinência.

• Máxima Pertinência: método que consiste em determinar o valor crisp que cor-
responde ao ponto em que a função de pertinência atinge seu valor máximo.

64



• Média Ponderada dos Máximos: método que produz um valor considerando
a média ponderada dos valores centrais ativados, onde os pesos são os graus de
pertinência máximo de cada variável linguística de saída.

A definição do método para o processo de defuzzificação do sistema proposto requer
uma análise cuidadosa do custo computacional associado, considerando que estamos li-
dando com um controlador SDN, dispositivo que possui memória e capacidade de proces-
samento limitadas [117]. Dessa forma, é essencial que o método a ser escolhido seja capaz
de combinar precisão e rapidez com um custo computacional reduzido, garantindo a efi-
ciência no processamento dos valores de confiança locais sem comprometer o desempenho
do sistema ou a integridade dos resultados. A escolha do tipo de método de defuzzificação
para o mecanismo proposto será apresentada no Capítulo 5.

Por fim, com o valor de confiança global calculado para cada cliente, o mecanismo
proposto pode determinar a ação de controle a ser tomada que pode incluir o bloqueio,
a permissão sem prioridade associada ou a priorização do fluxo de tráfego de rede desse
cliente, com base na classificação do valor de confiança global obtido. Os detalhe dessas
ações de controle relacionadas ao valor de confiança global do cliente estão descritas na
subseção 4.3.3.

4.3.3 Disseminação dos Dados

O módulo de disseminação dos dados é responsável por enviar aos switches as ações de
controle referentes à confiabilidade global de cada cliente, por meio de pacotes personali-
zados, chamado de pacote de disseminação, organizados em janelas de observação.

As ações de controle referentes ao valor de confiança global de cada cliente definido
pelo sistema fuzzy, correspondem as medidas a serem tomadas pelo mecanismo proposto
para aplicar a política de restrição ou priorização do fluxo de tráfego de rede dos clientes
de maneira global. As ações incluem bloquear (descartar) o fluxo de tráfego de rede para
o cliente classificado como “Não Confiável”, permitir o fluxo de tráfego de rede daquele
classificado como “Parcialmente Confiável”, porém sem prioridade associada, ou priorizar
o fluxo de tráfego de rede para aquele classificado como “Confiável”. Essas ações são
incluídas em um pacote de disseminação, cuja estrutura de cabeçalho é personalizada
para atender às demandas do mecanismo proposto, como mostra a Figura 4.8.

Para armazenar as ações de controle referentes a cada cliente de rede analisado, é criado
um pacote a ser enviado pelo controlador para os dispositivos de encaminhamento, que
contém a identificação dos clientes (endereço IP) e as respectivas ações de controle para
cada um. Esse formato permite que as informações sejam processadas de maneira eficiente
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cabeçalho personalizado_h {
cliente_1 <acao>;
cliente_2 <acao>;
…
cliente_n <acao>;

}

Figura 4.8: Cabeçalho de um pacote de disseminação.

pelos dispositivos de encaminhamento, garantindo uma resposta ágil e coordenada às
condições dinâmicas da rede.

Foram utilizadas janelas de observação para a organização e envio dos pacotes de
disseminação. Ao realizar a disseminação das informações relacionadas a política de res-
trição ou priorização do fluxo de tráfego de rede dos clientes, procura-se fazer com que os
dispositivos de encaminhamento possam tomar decisões localmente com base nas ações in-
formações globais compartilhadas, promovendo uma abordagem coordenada, abrangente
e rápida para conter o ataque DDoS em toda a rede.

O Algoritmo 4 é executado no controlador Cr e mostra o funcionamento do módulo
(disseminação dos dados) para enviar aos switches as ações de controle dos clientes pre-
sentes na rede SDN. O algoritmo recebe como entrada a ação de controle de cada um dos
clientes nj ∈ N , definida com base no valor de confiança global de cada um, estabelecido
pelo sistema fuzzy presente no módulo (calcular a confiança global), com dados coletados
ao longo da execução da janela de observação wv para o módulo de disseminação dos
dados. O passo 1 consiste em criar o pacote de disseminação d por meio do controlador
Cr, cujo cabeçalho desse pacote é personalizado, contendo a identificação de cada cliente
(endereço IP) e as suas respectivas ações de controle definidas pelo sistema fuzzy. Os
dados referentes às ações de controle são agregados em um único pacote de disseminação
d, respeitando os limites do MTU da rede, a fim de evitar que ele seja fragmentado e cause
atrasos. Ao alcançar esse limite, um novo pacote de disseminação é criado para continuar
a inclusão dos dados restantes. Assim, em um pacote de disseminação d temos um grupo
de clientes e suas respectivas ações de controle, a serem enviadas. O passo 2 consiste no
envio do pacote de disseminação d para os switches ao final de cada janela wv (seja ela por
tempo ou por pacote). Para o caso de janelas baseadas em pacotes, ou seja, de tamanho
fixo, os dados podem ser enviados aos switches quando a janela atingir o tempo limite
predefinido para o preenchimento dos dados, no qual os dados acumulados são enviados,
mesmo que a janela não esteja completamente cheia para possibilitar uma transmissão
estruturada e eficiente das informações relacionadas as ações de controle dos clientes. Em
cada janela de observação, o mecanismo deve ser capaz de continuar organizando os dados
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e, ao mesmo tempo, enviar os dados organizados na janela de observação anterior para
os switches. Assim, esses dispositivos poderão aplicar as ações de controle recomendadas
contidas em cada pacote de disseminação, proporcionando uma operação mais eficiente e
coordenada por parte do mecanismo proposto.

Algoritmo 4: Disseminação dos Dados realizada pelo controlador Cr

Entrada: Ação de controle para cada um dos clientes nj ∈ N definida com base no
valor de confiança global estabelecido pelo sistema fuzzy, coletadas ao longo da janela
de observação wv.
Saída: Pacote de disseminação d, enviado aos switches pelo controlador Cr, contendo
as ações de controle de cada cliente.
Passo 1 - Criar e Agregar:

• Passo 1.1: Cria um pacote de disseminação d com cabeçalho personalizado
por meio do controlador Cr e adiciona as ações de controle para os clientes
ao cabeçalho personalizado.

• Passo 1.2: Agrega os dados dos clientes em um único pacote de
disseminação d até o limite do MTU da rede.

Passo 2 - Envio: Envia o pacote de disseminação d para os switches ao final da
janela de observação wv.

Por fim, cabe ressaltar que o tipo de janela de observação wv (por exemplo, baseada
em tempo ou em pacotes) e o tempo limite, tempo este exclusivo para o preenchimento
das janelas baseadas em pacotes, são ajustáveis, permitindo uma versatilidade na confi-
guração do mecanismo proposto. A definição do tipo de janela e o tempo limite para o
preenchimento dos dados será apresentada no Capítulo 5.

4.4 Considerações Finais

Neste capítulo, foi apresentado o mecanismo proposto para suprir as lacunas encontradas
na revisão do estado da arte. O mecanismo visa detectar e mitigar ataques DDoS volu-
métricos diretamente no plano de dados por meio de operações que possibilitem detectar
o fluxo do tráfego de rede de clientes maliciosos por meio de um modelo de classificação
com base no algoritmo aprendizagem de máquina Random Forest, e o uso de listas de
prioridade nos dispositivos de encaminhamento para priorizar o fluxo do tráfego daqueles
com níveis de confiabilidades aceitáveis (legítimos) e bloquear (descartar) o tráfego para
aqueles com baixo valor de confiança (maliciosos), para reduzir os atrasos no processo de
detecção e confirmação desses ataques, o volume de mensagens de controle encaminhadas
ao controlador para realizar as ações de detecção e mitigação, e evitar o bloqueio indis-
criminado dos clientes. O mecanismo também inclui um modelo de compartilhamento de
informações globais no plano de controle, organizadas em ações de controle que incluem o
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bloqueio, a permissão sem prioridade associada ou a priorização dos clientes, determina-
das a partir do estabelecimento de uma confiança global calculado por um sistema fuzzy,
por meio do controlador para o envio aos dispositivos de encaminhamento, promovendo
uma abordagem híbrida que integra o plano de dados e de controle de uma rede SDN de
modo a possibilitar a tomada de decisões locais baseadas em informações globais com-
partilhadas. No próximo capítulo, será detalhado o ambiente experimental utilizado para
validar a eficácia do mecanismo proposto, incluindo as métricas e os resultados observados
nos experimentos realizados.
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Capítulo 5

Resultados

Este capítulo apresenta as informações relacionadas à avaliação de desempenho do me-
canismo proposto descrito no Capítulo 4. Foi analisada a integração entre os módulos
presentes nos procedimentos do mecanismo e o seu desempenho quando comparado com
outro mecanismo presente no estado da arte, que também busca reduzir os impactos dos
ataques DDoS volumétricos. As seções a seguir apresentam o ambiente experimental, a
metodologia de avaliação, as métricas utilizadas em nossa análise e os resultados obser-
vados nos experimentos.

5.1 Configuração e metodologia de avaliação

Os experimentos foram realizados em um computador com sistema operacional Ubuntu
16.04 LTS, equipado com um processador Intel Core i7 de 3.0GHz e 16Gb de memó-
ria RAM. O ambiente SDN foi fornecido pelo emulador de rede Mininet na sua versão
2.3.0, que possibilita a criação de uma rede com hosts virtuais, switches, controladores e
enlaces [50].

O mecanismo proposto recebeu o nome de “DataControl-ML”1, que reflete a sua ca-
pacidade de combinar a rapidez de processamento do plano de dados em conjunto com a
visão global do plano de controle, proporcionando uma abordagem híbrida para o controle
e monitoramento eficaz do tráfego de rede no combate aos ataques DDoS volumétricos. O
DataControl-ML foi comparado com o mecanismo desenvolvido por González et al. [18],
denominado Bungee-ML, que também busca reduzir os impactos causados pelos ataques
DDoS volumétricos. Esse mecanismo foi escolhido para comparação por adotar uma abor-
dagem híbrida semelhante, utilizando a cooperação entre o plano de dados e de controle
para otimizar a resposta a esses possíveis ataques.

1Repositório de implementação do mecanismo proposto disponível em: https://github.com/
ranyelsoncarvalho/DataControl-ML
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O conjunto de dados CICDDoS-2019 [118], fornecido pelo Canadian Institute of Cy-
bersecurity - University of New Brunswick in Fredericton foi utilizado para a realização
dos experimentos. Embora seja uma base de dados com mais de cinco anos, sua es-
colha ainda se justifica por continuar sendo uma das principais referências em estudos
voltados à detecção e mitigação de ataques DDoS, devido à sua abgrangência, realismo
e qualidade na representação de diferentes tipos de tráfegos, tanto malicioso quanto le-
gítimo [119, 120, 121]. Sua utilização contribui para uma avaliação mais consistente do
mecanismo proposto, permitindo a comparação com trabalhos da literatura e a validação
dos resultados obtidos. Essa base de dados contém diferentes ataques DDoS volumétricos,
mas, para nossos experimentos, foram selecionados apenas os ataques DNS-Flood, UDP-
Flood e SYN-Flood, devido à sua predominância e impacto significativo em cenários reais
de ataques DDoS [122]. Esses tipos de ataques exploram vulnerabilidades na comunicação
entre dispositivos para sobrecarregar os recursos da rede, causando indisponibilidade de
serviços por meio de um grande volume de tráfego.

Os três ataques selecionados (DNS-Flood, UDP-Flood e SYN-Flood) do conjunto de
dados CICDDoS-2019 apresentam comportamentos que incluem a falsificação de endere-
ços IP de origem, o uso de endereços IP únicos, picos e rajadas de tráfego com intensidades
variáveis, gerando flutuações no volume total de dados transmitidos, tornando mais desa-
fiador para o mecanismo de segurança desenvolvido diferenciar o tráfego de rede legítimo
do malicioso. Para a validação do mecanismo proposto, o conjunto de dados foi dividido
em 70% para treinamento e 30% para teste. A Tabela 5.1, apresenta o volume de paco-
tes legítimos e maliciosos para os ataques selecionados do conjunto de dados utilizado,
permitindo que o mecanismo proposto seja avaliado sob fortes condições de ataque.

Tabela 5.1: Volume de pacotes legítimos e maliciosos.
Tipo de
Ataque

Pacotes
Maliciosos

Pacotes
Legítimos

Total de
Pacotes

DNS-Flood 1843224 395634 2238858
UDP-Flood 1362649 312334 1674983
SYN-Flood 1042131 204658 1246789

A seleção dos atributos mais representativos do conjunto de dados CICDDoS-2019
adotados nos experimentos deste trabalho, foi orientada por meio da análise da matriz
de correlação. Essa técnica estatística permite identificar o grau de associação (relaci-
onamento) entre duas variáveis e a intensidade dessa associação, auxiliando na escolha
daqueles atributos que possuem maior influência na representação dos padrões de tráfego,
especialmente no contexto da detecção de ataques DDoS [123]. Esse grau é obtido por meio
do coeficiente de correlação, que varia de −1 a 1, onde 1 indica uma correlação positiva
(as duas variáveis correlacionadas crescem simultaneamente), −1 indica uma correlação
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negativa (à medida que uma variável aumenta, a outra diminui) e 0 aponta ausência
de correlação (uma variável não tem efeito sobre a outra) [124]. Essa análise contribui
para reduzir a dimensionalidade do conjunto de dados, eliminar atributos redundantes e
melhorar o desempenho do modelo de classificação.

A Figura 5.1 mostra a correlação entre os principais atributos de cada fluxo, dispo-
níveis no conjunto de dados utilizado e passíveis de serem implementados em um switch
habilitado para a linguagem P4, no qual se pode observar que alguns atributos possuem
uma forte correlação positiva, ou seja, têm uma relação direta, como protocolo (Protocol)
e o tamanho médio dos pacotes (Packet Length Mean), duração do fluxo (Flow Duration)
e o tempo médio entre dois pacotes enviados no fluxo (Flow IAT Mean), total de pacotes
encaminhados na direção direta (Total Fwd Packets) e o total de pacotes encaminhados
na direção inversa (Total Backward Packets). Essas correlações fornecem informações im-
portantes para o entendimento da base de dados, permitindo a otimização do desempenho
dos mecanismos de detecção e aprimorando a precisão na classificação do tráfego de rede.
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Figura 5.1: Matriz de correlação dos atributos mais representativos do conjunto de dados
CICDDoS-2019.

Após a análise da matriz de correlação (Figura 5.1), optou-se por selecionar os atri-
butos com base no grau de associação identificado por meio da correlação positiva entre
eles, para compor os registradores do switch P4, conforme mostrado na Tabela 5.2. Foram
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utilizados 22 registradores para o armazenamento dos valores dos atributos extraídos dos
fluxos de rede dos clientes para o uso no processo de treinamento e classificação do modelo
de predição. Adicionalmente, são empregados 5 registradores específicos para armazenar
os campos da 5-tupla (IP de origem/destino, porta de origem/destino e protocolo), utili-
zados apenas para identificar um fluxo na rede de um cliente, não sendo considerados no
treinamento do modelo.

Tabela 5.2: Lista de atributos para compor os registradores do switch P4.
Num. Atributo Descrição

1 Source IP IP de origem
2 Source Port Porta de origem
3 Destination IP IP de destino
4 Destination Port Porta de destino
5 Protocol Protocolo
6 Flow Duration Duração do fluxo
7 Total Fwd Packets Total de pacotes encaminhados na direção direta
8 Total Bwd Packets Total de pacotes encaminhados na direção inversa
9 Total Length of Fwd Packets Tamanho total do pacote na direção direta
10 Total Length of Bwd Packets Tamanho total do pacote na direção inversa
11 Flow Bytes/s Número de bytes de fluxo por segundo
12 Flow Packets/s Número de pacotes de fluxo por segundo
13 Flow IAT Mean Tempo médio entre dois pacotes enviados no fluxo
14 Fwd IAT Total Tempo total entre dois pacotes enviados na direção direta
15 Fwd IAT Mean Tempo médio entre dois pacotes enviados na direção direta
16 Bwd IAT Total Tempo total entre dois pacotes enviados na direção inversa
17 Bwd IAT Mean Tempo médio entre dois pacotes enviados na direção inversa
18 Fwd Header Length Total de bytes usados para cabeçalhos na direção direta
19 Bwd Header Length Total de bytes usados para cabeçalhos na direção inversa
20 Fwd Packets/s Número de pacotes encaminhados por segundo
21 Bwd Packets/s Número de pacotes de retorno por segundo
22 Packet Length Mean Tamanho médio de um pacote
23 SYN Flag Count Número de pacotes com a flag SYN
24 RST Flag Count Número de pacotes com a flag RST
25 ACK Flag Count Número de pacotes com a flag ACK
26 URG Flag Count Número de pacotes com a flag URG
27 Idle Mean Tempo médio em que um fluxo ficou ocioso antes de se tornar ativo

Para os experimentos, os parâmetros do DataControl-ML foram configurados com base
em avaliações empíricas obtidas em experimentos anteriores [29]. A Tabela 5.3 apresenta
os parâmetros utilizados nos experimentos. Foram realizadas 5 simulações para cada
tipo de ataque DDoS volumétrico selecionado (DNS-Flood, UDP-Flood e SYN-Flood),
com o objetivo de avaliar a robustez do mecanismo proposto sob diferentes condições
de tráfego e variações nos padrões de comportamento dos clientes. A escolha por 5
repetições é uma prática comum em experimentos com variabilidade moderada, sendo
útil para fornecer estimativas estáveis, ao mesmo tempo que possibilita resultados mais
rápidos dos testes. Essa repetição permite uma avaliação mais confiável do desempenho
do mecanismo proposto, reduzindo a influência de valores atípicos ou oscilações pontuais,
garantindo maior confiabilidade na análise. Os resultados são apresentados com base na
média dos valores obtidos nessas simulações, acompanhada de um intervalo de confiança
de 95%. Cada simulação teve duração de 180 segundos, com o tráfego legítimo sendo
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gerado continuamente ao longo de todo o período de simulação. Enquanto, o tráfego
malicioso teve duração de 60 segundos (60s - 120s).

Tabela 5.3: Lista de Parâmetros do DataControl-ML.
Parâmetro Valor

Número de simulações 5
Tipos de Ataques DNS-Flood; UDP-Flood; SYN-Flood.

Tempo de cada simulação 180 segundos
Início do ataque 60 segundos
Fim do ataque 120 segundos

Janela de observação (w):
*Coleta de Dados 150 fluxos ou 100ms

Hiperparâmetros do algoritmo
de aprendizagem de máquina: Random Forest

n_estimators = 10
max_depth = 6

max_features = sqrt
min_samples_split = 6
min_samples_leaf = 4

Coeficiente de agregação do valor de
confiança local (β) 0,5

Intervalo de tempo:
Fator de Esquecimento (Tm) 15 segundos

Coeficiente de redução:
Fator de Esquecimento (δ) 0,9

Coeficiente de suavização:
Lista de Confiança (α) 0,5

Tempo de Bloqueio (Ψ) 60 segundos
Janelas de Observação (w):

*Gerenciador de Envio
*Calculo Confiança Global

*Disseminação

250 pacotes ou 150ms

Função de pertinência:
Conjunto Fuzzy (Confiança Local)

Baixo: trapezoidal (0; 0; 0,2; 0,5)
Médio: triangular (0,2; 0,5; 0,8)
Alto: trapezoidal (0,5; 0,8; 1; 1)

Função de pertinência:
Conjunto Fuzzy (Confiança Global)

Não Confiável: trapezoidal (0; 0; 0,2; 0,4)
Parcialmente Confiável: trapezoidal (0,2; 0,4; 0,6; 0,8)

Confiável: trapezoidal (0,6; 0,8; 1; 1)

Regra de Inferência
Se o valor de confiança é Baixo, então o cliente é Não Confiável.

Se o valor de confiança é Médio, então o cliente é Parcialmente Confiável.
Se o valor de confiança é Alto, então o cliente é Confiável.

Método de Defuzzificação Média Ponderada dos Máximos

A janela de observação w para o módulo de coleta de dados foi definida como janela
por fluxo com um tamanho de 150 cada ou até atingir o tempo limite de 100ms para o pre-
enchimento dos dados. A escolha desse tamanho e limite de tempo para a janela porque
eles oferecem um tempo de processamento mais eficiente, permitindo a coleta de dados de
maneira ágil sem comprometer o desempenho da rede e garantindo que os dados sejam ex-
traídos de forma contínua e consistente. A classificação do tráfego de rede é realizada pelo
algoritmo de aprendizagem de máquina do tipo supervisionado Random Forest, devido ao
seu alto grau de precisão e à redução do risco de overfitting [83], permitindo uma análise
eficaz e a identificação de padrões complexos no tráfego de rede. O algoritmo teve os hi-
perparâmetros otimizados por meio da função RandomizedSearchCV [107] para maximizar
o desempenho do mecanismo de detecção na tarefa de classificação. Esses hiperparâme-
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tros foram ajustados para os seguintes valores: n_estimators = 10, max_depth = 6,
max_features = sqrt, min_samples_split = 6, min_samples_leaf = 4.

O coeficiente de agregação do valor de confiança local foi ajustado para β = 0,5,
permitindo equilibrar as informações passadas e recentes do cliente, garantindo que tanto
os dados históricos quanto os mais recentes tenham peso semelhante no cálculo do valor
de confiança local, assegurando uma avaliação precisa e atualizada do comportamento
do cliente na rede. O intervalo de tempo para o fator de esquecimento é de Tm = 15
segundos e o coeficiente de redução é de δ = 0,9, de modo a priorizar os clientes mais
ativos e engajados na rede, permitindo que o mecanismo proposto ajuste dinamicamente
os valores de confiança com base no comportamento mais recente dos clientes.

O coeficiente de suavização para estabelecer o limiar da lista de prioridade (confiança) é
de α = 0,5, balanceando as informações atuais com as anteriores fornecidas pelos clientes.
O tempo de restrição para a lista de bloqueio é de Ψ = 60 segundos, a fim de permitir que
clientes com problemas de conectividade não sejam penalizados na rede, permitindo que
esses clientes reconectem sem enfrentar penalidades prolongadas. As janelas de observação
w para os módulos de gerenciador de envio, calcular a confiança global e disseminação
dos dados foram definidas para 250 pacotes ou até atingir o tempo limite de 150ms para o
preenchimento dos dados, pois proporcionam um processamento mais rápido e eficiente,
equilibrando a capacidade de capturar e organizar as informações dos clientes.

Para os conjuntos fuzzy, os tipos de funções de pertinência e seus respectivos parâme-
tros foram escolhidos com base em uma avaliação dos dados históricos coletados durante
o desenvolvimento do sistema fuzzy, de modo a atender às necessidades do mecanismo
em relação às demais disponíveis na literatura e reduzir o custo computacional. O sis-
tema fuzzy proposto utiliza o modelo Mamdani, ou seja, para todas as regras cujo grau
de relevância da função de pertinência é maior que zero, elas contribuirão para o cálculo
da saída correspondente do sistema de inferência [111]. As regras foram definidas com
base em conhecimento especializado sobre o sistema proposto, considerando as caracte-
rísticas da rede coletadas durante o desenvolvimento do sistema fuzzy, como os padrões
de comportamentos dos clientes, de modo a capturar nuances e variações no ambiente
de rede, possibilitando decisões mais precisas e adaptativas. O método de defuzzificação
escolhido foi a média ponderada dos máximos, que considera o valor médio ponderado
dos valores centrais ativados, onde os pesos são os graus de pertinência máximo de cada
variável linguística de saída [114]. Esse método foi escolhido porque é capaz de combinar
precisão e rapidez com um custo computacional reduzido, tornando-se adequado para a
proposta deste trabalho, que utiliza um controlador SDN com memória e capacidade de
processamento limitadas.

Os parâmetros de configuração do Bungee-ML (mecanismo presente no estado da
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arte) foram definidos conforme as recomendações dos autores [18]. A otimização dos
hiperparâmetros para o algoritmo de classificação do tráfego de rede do mecanismo seguiu
um processo semelhante ao adotado em nosso mecanismo proposto.

A Figura 5.2 apresenta a topologia de rede utilizada nos experimentos para a avaliação
do mecanismo proposto.

Controlador

Rede de 
origem do 

ataque 
DDoS

Rede de 
clientes 

legítimos

Internet

Alvo

S1

S2

S3

S4

S5

S6

S7

Sub-rede A
…

Sub-rede B
…

Sub-rede C
…

Sub-rede D
…

Sub-rede E
…

Figura 5.2: Topologia de rede utilizada nos experimentos.

A topologia de rede consistiu em: i) sete dispositivos de encaminhamento; ii) e um
controlador. Os dispositivos de encaminhamento S1, S7 e S5 são encarregados de execu-
tar os módulos do mecanismo de detecção/mitigação (Procedimento 1) no combate aos
ataques DDoS volumétricos, enquanto o dispositivo de borda S6 é responsável por realizar
o roteamento do tráfego de rede de entrada (composto por tráfego malicioso e legítimo
proveniente de fontes externas) com base na faixa de endereço IP de origem para os dis-
positivos que possuem o mecanismo de segurança, conforme apresentado na Tabela 5.4.
Cabe destacar que, neste estudo, considera-se exclusivamente o cenário de ataques exter-
nos, não sendo analisados ataques originados dentro da própria rede. Assim, o dispositivo
S6 opera roteando os pacotes, sem os enviar ao controlador para o preenchimento da
tabela de fluxo. Dessa forma, ele encaminha os pacotes conforme a rota correspondente
para os dispositivos que possuem o mecanismo de segurança. A sub-rede C é o alvo dos
ataques DDoS, ela é gerenciada pelo dispositivo S3. O controlador possui os módulos do
mecanismo (Procedimento 2) para definir o valor de confiança global dos clientes e realizar
o compartilhamento das ações de controle com base nesse valor para os dispositivos de
encaminhamento.

A ferramenta Tcpreplay [125] foi utilizada para replicar o tráfego de rede do conjunto
de dados CICDDoS-2019 no ambiente de teste. Essa ferramenta permite a reprodução
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Tabela 5.4: Tabela de roteamento do dispositivo S6.
Faixa de IP de origem Ação
0.0.0.0/8 até 85.0.0.0/8 Encaminhar para S1

86.0.0.0/8 até 170.0.0.0/8 Encaminhar para S7
171.0.0.0/8 até 255.0.0.0/8 Encaminhar para S5

de pacotes de redes a partir de arquivos no formato pcap (Packet Capture) [126], que
armazenam pacotes de dados capturados de uma rede de computadores, preservando as
características do tráfego capturado, como os endereços IP, protocolos utilizados e os dados
transportados. Com isso, foi possível recriar, de forma realista, os cenários de ataques
contidos na base de dados, possibilitando avaliar o desempenho e a eficácia do mecanismo
proposto em condições semelhantes às encontradas em situações reais de ataques DDoS, o
que contribui para validar a robustez do mecanismo frente a uma ampla gama de técnicas
de ataque utilizadas em cenários reais.

As seguintes métricas são utilizadas para avaliar o mecanismo proposto:

• Variabilidade do valor de confiança local dos clientes: indica a variabili-
dade do valor de confiança local dos clientes (legítimos e maliciosos) ao longo da
simulação.

• Número de pacotes encaminhados e descartados: descreve a quantidade de
pacotes encaminhados e descartados pelo mecanismo nas listas locais dos switches.

• Confiança global e classificação global: definição do valor de confiança global
e a classificação global do cliente mediante o sistema fuzzy desenvolvido.

• Desempenho da detecção: indica o percentual de fluxos legítimos e maliciosos
que o mecanismo classificou corretamente, obtido através da acurácia (número de
classificações corretas realizadas pelo modelo em relação ao número total de previ-
sões realizadas), precisão (representa a proporção de previsões corretas para uma
classe específica em relação ao número total de previsões realizadas para essa classe),
recall (simboliza a proporção de dados relevantes que o modelo consegue encontrar)
e F1-score (combina a precisão e recall em uma única medida para avaliar o de-
sempenho do modelo de classificação, proporcionando um equilíbrio entre ambas as
métricas).

• Tempo de detecção: tempo decorrido entre o início do ataque e a sua detecção
(confirmação do fluxo de rede como malicioso) por parte do mecanismo proposto.
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• Tempo de convergência: tempo decorrido desde o início do tempo de recebimento
de um pacote de disseminação até o momento em que todos os switches possuem as
mesmas informações de controle desse pacote.

• Volume de mensagens de controle: número de pacotes modificados encaminha-
dos (pacote de relatório e de disseminação) entre o switch e o controlador, tanto
do switch para o controlador quanto do controlador para o switch, para executar as
ações de detecção e/ou mitigação.

• Eficácia da mitigação: indica o percentual de Verdadeiros Positivos (VP): pro-
porção de pacotes provenientes de endereços IP maliciosos que foram realmente des-
cartados; e Falsos Positivos (FP): proporção de pacotes provenientes de endereços
IP legítimos que foram descartados indevidamente.

• Consumo de CPU e memória: indica a quantidade de processamento (CPU e
memória) que o mecanismo requer para executar as ações de detecção e mitigação
desenvolvidas.

5.2 Resultados

Nesta seção, são discutidos e analisados os resultados alcançados pelo mecanismo pro-
posto no combate aos ataques DDoS volumétricos. Inicialmente, analisou-se a integração
entre os módulos presentes nos procedimentos do mecanismo para a realização das ações
de detecção e mitigação. Em seguida, realizou-se uma comparação entre o mecanismo
proposto e uma abordagem presente no estado da arte.

5.2.1 Integração entre os módulos presentes nos procedimentos
do mecanismo proposto

Os resultados apresentados a seguir foram obtidos a partir do experimento realizado du-
rante o ataque SYN-Flood, presente no conjunto de dados analisado CICDDoS-2019. O
objetivo desse resultado é demonstrar a integração entre os módulos presentes nos pro-
cedimentos do mecanismo proposto para a realização das ações de detecção e mitigação,
apresentando a função de cada módulo no processo, desde a coleta e análise dos dados de
tráfego até a aplicação das medidas de contenção. Para isso, analisou-se o comportamento
de dois clientes com padrões de tráfego de rede distintos. O primeiro cliente (1) apre-
senta um padrão de comunicação estável e consistente ao longo do tempo, representando
o tráfego legítimo. Já o segundo cliente (2) é responsável pelo ataque DDoS em questão,
caracterizado por um grande volume de requisições em um curto intervalo de tempo.
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A análise dos resultados dessa subseção será guiada por métricas como o valor de
confiança local de cada cliente ao longo do tempo, o número de pacotes encaminhados e
descartados conforme as listas locais do switch às quais os clientes estão associados, além
do valor de confiança global e a classificação global atribuída a esses clientes. Dessa forma,
primeiro será explicado como os módulos presentes no mecanismo proposto contribuem
para a visualização dos dados relacionados às métricas citadas anteriormente. Em seguida,
é explicado os resultados obtidos por cada cliente durante a realização do experimento.

A Figura 5.3 mostra a variabilidade dos valores de confiança local dos clientes na rede
ao longo do tempo do experimento, que durou 180 segundos.

Figura 5.3: Variabilidade do valor de confiança local dos clientes.

Os valores de confiança atribuídos aos clientes, observados na Figura 5.3 pelo meca-
nismo proposto, são resultados da ação conjunta dos módulos de coleta de dados, classifi-
cação e agregação do valor de confiança, ambos presentes no plano de dados. O primeiro
módulo coleta os dados de pacotes de rede dos clientes, como o tamanho do pacote em
bytes, o número de pacotes encaminhados, as flags de controle, etc., agrupa-os em fluxos
específicos identificados pela 5-tupla (IP de origem/destino, porta de origem/destino e
protocolo), em seguida, encaminha essas informações para o segundo módulo (classifica-
ção).

O módulo de classificação analisa os dados recebidos, atribui uma classificação (legí-
timo ou malicioso) por meio do algoritmo de aprendizagem de máquina (Random Forest)
para cada fluxo de rede do cliente e, em seguida, o método Platt Scaling determina um
valor de confiança para a classificação realizada, tendo como base o comportamento do
fluxo desse cliente. Assim, quanto mais alto o valor de confiança (próximo a 1), maior a
indicação de que o cliente apresenta um comportamento consistente, regular e alinhado
às características de um cliente legítimo, sem evidências de ações maliciosas. Esse valor
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reflete a probabilidade de o cliente estar agindo de forma confiável, contribuindo para uma
análise mais precisa e eficaz no processo de tomada de decisão sobre a sua priorização ou
restrição na rede. Para valores próximos a 0, indica-se que o cliente possui comportamento
potencialmente malicioso. Por fim, a cada novo valor de confiança obtido pelos clientes
durante o período de simulação, o terceiro módulo (agregação do valor de confiança) se
encarrega de formar um valor de confiança local para esse cliente para representar, de
maneira mais consistente e estável, o comportamento local de cada cliente ao longo do
tempo. Esse valor reflete tanto as características recentes quanto o histórico do tráfego
de rede do cliente, permitindo uma análise equilibrada que reduz o impacto de flutuações
momentâneas.

Observa-se na Figura 5.3 que o cliente 1 apresentou um valor de confiança alto em
razão do seu comportamento consistente, caracterizado por padrões de tráfego regulares.
Entre esses padrões, destacam-se o envio e recebimento de pacotes dentro dos limites
esperados para uma comunicação normal, ausência de conexões suspeitas e outros sinais
que poderiam indicar comportamento malicioso capaz de comprometer a segurança da
rede. Nota-se que, no tempo 60s, ocorre o início do ataque, momento em que o tráfego
malicioso do cliente 2 é detectado na rede pelo mecanismo. Devido ao comportamento
potencialmente malicioso, caracterizado por um volume massivo de requisições do tipo
SYN em um curto intervalo de tempo para um destino específico (padrão típico de um
ataque DDoS volumétrico), o mecanismo atribui a esse cliente um valor de confiança
baixo em razão da sua classificação como malicioso e aciona o procedimento de mitigação,
bloqueando o cliente e descartando imediatamente o tráfego malicioso gerado por ele,
que poderá ser visto mais adiante. Esse resultado demonstra a capacidade do mecanismo
desenvolvido de observar o comportamento do fluxo de tráfego de rede dos clientes e
caracterizá-los em tempo real, de forma eficiente e precisa.

A Figura 5.4 apresenta o número de pacotes encaminhados e descartados a cada se-
gundo pelo mecanismo, de acordo com o dispositivo de encaminhamento e a lista à qual
o cliente está associado. A associação de cada cliente às listas é determinada com base
no valor de confiança local calculado, que reflete o comportamento observado e orienta as
ações de encaminhamento ou descarte a serem aplicadas pelo mecanismo.

A associação dos clientes às listas presentes nos dispositivos de encaminhamento (Fi-
gura 5.4) decorre da ação do módulo de gerenciamento das listas, presente no plano de
dados. Esse módulo atribui o fluxo de tráfego de rede dos clientes presentes na rede em
três listas locais: não priorizado, confiança e bloqueio, conforme a classificação e o valor de
confiança local obtido por cada cliente durante a análise dos seus fluxos de redes. A lista
de “não priorizado” engloba os pacotes encaminhados de clientes sem prioridade associ-
ada, como clientes legítimos que ainda não atingiram o limiar de confiança estabelecido
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(a) Cliente: 1

(b) Cliente: 2

Figura 5.4: Número de pacotes encaminhados e descartados de conforme a lista à qual o
cliente está associado.

para a lista de confiança ou aqueles que ainda não foram classificados pelo mecanismo.
A lista de “confiança” gerencia os pacotes provenientes de clientes com bons níveis de
confiança (legítimos), ou seja, que estão acima o limiar de confiabilidade estabelecido,
proporcionando tratamento preferencial (priorização) no encaminhamento de pacotes dos
clientes dessa lista. Por último, a lista de “bloqueio” gerencia os pacotes dos clientes clas-
sificados como maliciosos (baixo valor de confiança), na qual realiza a ação de descarte
dos pacotes maliciosos.

Constata-se que o cliente 1 (Figura 5.4(a)), classificado como legítimo pelo mecanismo
proposto, possui um número considerável de pacotes encaminhados, o que está direta-
mente relacionado ao seu comportamento estável e consistente ao longo do tempo, como
a realização de conexões TCP de maneira completa e a transmissão de dados dentro dos
padrões típicos de tráfego legítimo. Note que, inicialmente, os seus pacotes são gerencia-
dos pela lista de “não priorizado”, mas, à medida que o cliente acumula mais confirmações
de fluxos legítimos, o número de pacotes encaminhados aumenta, o que resulta em novos
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valores confiança progressivamente mais altos em razão da consistência do seu compor-
tamento na rede. Como resultado, o cliente acaba superando o limiar de confiabilidade
estabelecido para o ingresso na lista de prioridade, levando a sua promoção a lista de
“confiança”. Ao ser gerenciado por essa lista, os seus pacotes passam a receber uma maior
prioridade de recursos, o que resulta em uma maior quantidade de pacotes encaminhados,
promovendo uma melhor qualidade de serviço para esse cliente. Observe que, mesmo
durante o ataque (60s - 120s), o seu tráfego de rede não é prejudicado, demostrando a
resiliência do mecanismo desenvolvido e sua capacidade de priorizar o fluxo de tráfego
de rede de clientes com níveis de confiabilidade aceitáveis (legítimos), a fim de evitar o
bloqueio indiscriminado.

Para o cliente 2 (Figura 5.4(b)), nota-se que ele possui um grande volume de pacotes
descartados devido à ação do mecanismo proposto para lidar com clientes maliciosos, que
inclui o descarte imediato dos seus pacotes e a inclusão na lista de “bloqueio”. O cliente em
questão ingressa na rede no instante 60s, enviando uma quantidade significativa de pacotes
maliciosos desde o início, por meio de requisições do tipo SYN, para sobrecarregar os
recursos do seu alvo localizado na sub-rede C e o controlador. Esse volume de requisições
gerou um pico abrupto de tráfego em um curto intervalo de tempo direcionado a um
destino específico. Observe que, inicialmente, esses pacotes são encaminhados pela lista
de “não priorizado”, pois essa lista trata de pacotes de clientes ainda não classificados
pelo mecanismo ou aqueles já classificados, mas que ainda não atingiram o limiar de
confiança estabelecido para a priorização. O mecanismo, ao detectar rapidamente esse
tipo de padrão de tráfego do cliente 2 — menos de 1 segundo após o início do ataque, como
pode ser observado no detalhe da Figura 5.4(b) —, ajusta imediatamente o tratamento
dado ao cliente e o seu tráfego de rede. O ajuste envolve a classificação do cliente como
malicioso e o seu gerenciamento pela lista de “bloqueio”, na qual é aplicada a política de
restrição (bloqueio/descarte) para impedir que esses pacotes sobrecarreguem a rede. Isso
garante a proteção da rede contra o ataque DDoS, demonstrando a rapidez e eficácia do
mecanismo desenvolvido. Além disso, a ação de realizar o bloqueio de maneira seletiva
evita que o tráfego malicioso comprometa o desempenho e a estabilidade da rede, como
pode ser observado no volume de pacotes descartados para o cliente em questão na lista
de “bloqueio”.

A Figura 5.5 mostra o valor de confiança global e a classificação global dos clientes,
conforme a execução do sistema fuzzy desenvolvido. Essa classificação é baseada no grau
de pertinência do valor de confiança global obtido em relação às funções de pertinências
definidas para o conjunto fuzzy “Confiança Global”.

O valor de confiança global e a classificação global dos clientes observados na Figura 5.5
são frutos do trabalho em conjunto dos módulos de gerenciador de envio (presente no
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(a) Cliente: 1 (b) Cliente: 2

Figura 5.5: Confiança global e classificação global.

plano de dados), extração dos dados e calcular a confiança global (ambos presentes no
plano de controle). O primeiro módulo envia para o controlador o valor mais recente de
confiança local dos clientes presentes nas listas dos dispositivos de encaminhamento, por
meio de pacotes de relatórios organizados em janelas de observação. O segundo módulo
(extração dos dados) extrai dos pacotes de relatórios os valores de confiança local dos
clientes para organizá-los em uma estrutura de dados. Os dados presentes nessa estrutura
são encaminhados ao terceiro módulo (calcular a confiança global).

O módulo (calcular a confiança global) recebe os valores de confiança local dos clien-
tes computados pelos dispositivos de encaminhamento e os organiza em diferentes termos
linguísticos: “alto”, “médio” e “baixo”, com base nas funções de pertinências definidas, re-
presentando o conjunto fuzzy de entrada “Confiança Local”. Em seguida, são aplicadas as
regras do sistema de inferência, que processa e ativa as regras estabelecidas com graus de
pertinência para cada regra, conforme o conjunto de valores de confiança local analisados
de cada cliente. Esse processo transforma o conjunto de valores de confiança local de um
cliente em um valor de confiança global que melhor representa os valores fuzzy inferidos,
que será identificado no conjunto fuzzy de saída “Confiança Global”, que classifica o valor
de confiança global de cada cliente conforme o grau de pertinência obtido em “não con-
fiável”, “parcialmente confiável” e “confiável”. Isso permite que o controlador estabeleça
ações de controle que podem incluir o bloqueio (descarte) do tráfego para o cliente classi-
ficado como não confiável, a permissão do tráfego daquele classificado como parcialmente
confiável (sem prioridade associada) ou a priorização do tráfego para aquele classificado
como confiável. Tais ações são compartilhadas com os dispositivos de encaminhamento
para aplicar a política de restrição e/ou priorização de tráfego em diferentes pontos da
rede, por meio de pacotes de disseminação organizados em janelas de observação por meio
do módulo de disseminação dos dados, presente no plano de controle.
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Identifica-se que o cliente 1 (Figura 5.5(a)) teve a sua classificação global definida como
“confiável”, uma vez que seus valores de confiança local, extraídos dos pacotes de relatórios
enviados pelos dispositivos de encaminhamento ao controlador, ao serem processados pelo
sistema fuzzy, resultaram em um alto valor de confiança global que indicou um elevado
grau de pertinência ao nível confiável. Esse alto grau de pertinência reflete a consistência
e estabilidade do comportamento do cliente em questão ao longo do tempo, com fluxos de
comunicação que se mantiveram dentro dos padrões esperados para um comportamento
legítimo.

Para o cliente 2 (Figura 5.5(b)), nota-se que ele teve a sua classificação global definida
como “não confiável”, em razão de seus valores de confiança local indicarem um padrão
de comportamento anômalo característico de um ataque DDoS. Ao ser processado pelo
sistema fuzzy, esses valores resultaram em um baixo valor de confiança global que refletiu
o alto grau de pertinência o nível não confiável. Esse alto grau de pertinência revela
o comportamento malicioso apresentado pelo cliente em questão, que inclui o envio de
uma quantidade significativa de pacotes maliciosos por meio de requisições do tipo SYN.
Assim, o sistema foi capaz de atribuir aos clientes (1 e 2) classificações globais de confiança
condizentes com os padrões de comportamentos apresentados por eles durante a execução
do experimento.

Por fim, com a classificação global obtida para cada cliente, o controlador estabelece
a ação de controle destinada a cada um deles, como o descarte (bloqueio) do tráfego de
rede do cliente 2 classificado como não confiável e a priorização do tráfego para o cli-
ente 1 classificado como confiável. Essas ações são compartilhadas com os dispositivos
de encaminhamento presentes na rede (Figura 5.2), por meio de pacotes de disseminação
encaminhados em intervalos regulares, conforme o ajuste da janela de observação do mó-
dulo de disseminação dos dados. Assim, as informações compartilhadas sobre os clientes
permitem que os dispositivos de encaminhamento, mantenham a coerência nas decisões
de encaminhamento e bloqueio, garantindo que a política de restrição (bloqueio/descarte)
e priorização sejam aplicadas corretamente em toda a rede, proporcionando maior cele-
ridade nos procedimentos de detecção e mitigação do mecanismo proposto em diferentes
pontos da rede. Esse resultado demonstra a capacidade do mecanismo desenvolvido em
realizar o compartilhamento de informações globais, para que os dispositivos de encami-
nhamento possam tomar decisões locais com base nessas informações compartilhadas.

5.2.2 Comparação com o estado da arte

Os resultados apresentados a seguir foram obtidos a partir dos experimentos realizados
para avaliar o comportamento do mecanismo proposto em relação aos diferentes tipos
de ataques DDoS volumétricos selecionados (DNS-Flood, UDP-Flood e SYN-Flood), pre-
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sentes no conjunto de dados analisado CICDDoS-2019. O objetivo desses resultados é
demonstrar a eficácia e a qualidade do mecanismo proposto, examinando sua resposta
para diferentes tipos de ataques DDoS, quando comparado a outro mecanismo presente
no estado da arte (o Bungee-ML).

A análise dos resultados dessa subseção será guiada por métricas como o desempenho
da detecção do mecanismo, avaliado por meio da acurácia e do F1-score na classificação
do fluxo de tráfego de rede do cliente como legítimo ou malicioso, o tempo gasto para
classificar os fluxos de rede dos clientes, o tempo de convergência para a sincronização das
informações nos dispositivos de encaminhamento, além do volume de mensagens de con-
trole encaminhadas para executar as ações de controle dos clientes, a eficácia da mitigação
e o consumo de recursos (CPU e memória). Dessa forma, será explicado os resultados
obtidos pelo nosso mecanismo proposto, o DataControl-ML, e o mecanismo presente no
estado da arte, o Bungee-ML.

A Figura 5.6 mostra o desempenho do DataControl-ML e Bungee-ML para classificar o
fluxo de tráfego de rede dos clientes em legítimo ou malicioso. Nota-se que os mecanismos
demonstraram capacidade de identificar os ataques de maneira coerente, evidenciando
sua eficácia em separar o tráfego legítimo de padrões associados a atividades maliciosas
referentes aos ataques DDoS analisados.
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Figura 5.6: Desempenho da detecção.

Observa-se na Figura 5.6 que o DataControl-ML foi ≈ 1,05% mais preciso que o
Bungee-ML, demonstrando um número maior de classificações corretas (acurácia) e um
bom equilíbrio entre a capacidade de identificar corretamente o tráfego malicioso (recall)
e de minimizar o número de falsos positivos (precisão) por meio do F1-Score. Esse bom
desempenho está relacionado à classificação mediante a técnica de aprendizagem de má-
quina empregada diretamente no plano de dados, que foi capaz de identificar padrões
não lineares e relações mais complexas entre as características do tráfego no conjunto
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de dados analisado, como o tamanho dos pacotes, o número de bytes, o total de pacotes
encaminhados, o tempo médio entre dois pacotes enviados no fluxo, etc., o que permitiu
uma classificação mais precisa por parte do mecanismo para os diferentes tipos de ataque
DDoS analisados. Por outro lado, o Bungee-ML apresentou um desempenho inferior, em
razão da técnica estatística entropia empregada no plano de dados para filtrar os paco-
tes suspeitos, o que acabou apresentando uma filtragem mais imprecisa, o que limitou
a capacidade do mecanismo em capturar informações mais complexas e sutis dada as
características presentes no conjunto de dados utilizado, diminuindo a precisão geral do
mecanismo.

Os ataques DDoS precisam ser detectados de forma rápida para que as ações de mi-
tigação sejam acionadas e, assim, preservem os recursos da rede. A Figura 5.7 apresenta
o tempo gasto pelo DataControl-ML e Bungee-ML para classificar e confirmar um fluxo
como malicioso na rede. Os mecanismos demonstraram agilidade para identificar os di-
ferentes ataques DDoS volumétricos, garantindo uma resposta rápida às ameaças, com
tempos abaixo de 1 segundo.
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Figura 5.7: Tempo de detecção.

Nota-se na Figura 5.7 que o DataControl-ML é ≈ 52,18% mais rápido que o Bungee-
ML para confirmar que um fluxo é malicioso, demonstrando a capacidade do mecanismo
em identificar o fluxo de tráfego de rede dos clientes maliciosos próximos aos pontos de
ingresso na rede, reduzindo os atrasos no processo de confirmação de qualquer atividade
suspeita associada aos ataques DDoS. Essa rapidez está relacionada à ação de detecção
realizada no plano de dados por parte do mecanismo proposto, sem a necessidade de en-
viar dados adicionais ao controlador, além de agrupar os pacotes observados em fluxos
com base em seus atributos comuns e à organização das janelas de observação por fluxo,
proporcionando um gerenciamento mais eficiente e rápido dos dados coletados. Em con-
trapartida, o tempo mais elevado do Bungee-ML está associado à estratégia adotada pelo
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mecanismo, que consiste em duas etapas. A primeira etapa busca identificar as fontes
suspeitas no plano de dados e encaminhá-las juntamente com os pacotes provenientes
dessas fontes para o plano de controle. O controlador, ao receber essas fontes e os pacotes
subsequentes, aciona a segunda etapa, que busca extrair as características dos pacotes
dessas fontes, agrupando-os em fluxos com base em suas características comuns, para en-
tão classificá-las como maliciosas. Tais etapas acabam por aumentar o tempo de detecção
por parte do mecanismo presente no estado da rede, como pode ser observado.

A Figura 5.8 mostra o tempo necessário para que os dispositivos de encaminha-
mento possuam as mesmas informações presentes em um pacote modificado (criado)
pelo DataControl-ML e Bungee-ML. Observa-se que os mecanismos apresentaram tem-
pos abaixo de 10ms para garantir a sincronização das informações entre os dispositivos
para os diferentes tipos de ataques executados. Essa rapidez é crucial para assegurar que
as políticas de segurança sejam aplicadas de forma consistente em toda a rede, minimi-
zando riscos e garantindo a eficácia das medidas de detecção e mitigação adotadas pelos
mecanismos de segurança.
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Figura 5.8: Tempo de convergência.

Observa-se na Figura 5.8 que o DataControl-ML é ≈ 46,71% mais rápido que o Bungee-
ML, pois, ao enviar o pacote de disseminação de maneira paralela, ou seja, do controlador
para todos os dispositivos de encaminhamento por meio de um canal fora de banda (out-
of-band), reduz significativamente o tempo de comunicação e evita congestionamentos no
canal de comunicação principal (tráfego de dados). Esse método permite que os pacotes
de disseminação sejam entregues simultaneamente a todos os dispositivos de encaminha-
mento conectados diretamente ao controlador por meio de uma porta lógica, garantindo
que o tráfego de controle não interfira no tráfego de dados, otimizando a distribuição de
informações e minimizando a latência de comunicação [127]. Por outro lado, no Bungee-
ML observou-se um atraso maior na propagação de uma informação, devido à estratégia
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adotada pelo mecanismo, que consiste em enviar o pacote de alarme (confirmação de um
fluxo suspeito) do controlador para o dispositivo que originou a fonte do fluxo suspeito,
para que ele alerte seus dispositivos mais próximos (intermediários). Esse processo gera
um efeito em cascata, no qual a informação precisa ser propagada por meio de múltiplos
dispositivos intermediários antes de alcançar todos os outros dispositivos da rede. As-
sim, o tempo adicional necessário para a comunicação entre os dispositivos intermediários
aumenta a latência geral do mecanismo, como pode ser observado.

A Figura 5.9 mostra o número de pacotes modificados trocados entre os dispositivos
de encaminhamento e o controlador, incluindo tanto os pacotes enviados dos dispositivos
para o controlador quanto do controlador para os dispositivos, para que o DataControl-ML
e Bungee-ML executem as ações de detecção e/ou mitigação. Nota-se que os mecanismos
apresentaram variações no volume de pacotes trocados em função do número de pacotes
para os diferentes tipos de ataques analisados (Tabela 5.1) e as estratégias desenvolvidas
por cada mecanismo para reduzir os impactos causados pelos ataques observados.
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Figura 5.9: Volume de mensagens de controle.

Nota-se na Figura 5.9 que o DataControl-ML apresentou uma redução de ≈ 58,31%
quando comparado ao Bungee-ML, visto que é adotada uma política de agregação das
informações relacionadas aos valores de confiança local dos clientes em um único pacote
de relatório e às ações de controle também em um único pacote, agora de disseminação,
assim, para cada pacote temos um grupo de clientes reportados ao controlador e ações
de controle encaminhadas aos dispositivos de encaminhamento. Essa política reduz o
número de pacotes trafegados entre o controlador e o dispositivo de encaminhamento
para o estabelecimento da confiança global e o compartilhamento das ações de controle,
que podem incluir a priorização ou bloqueio dos clientes em diferentes pontos da rede.
Como resultado, a eficiência do mecanismo é significativamente melhorada, pois diminui
o volume de mensagens de controle trafegadas no canal de comunicação entre o plano de

87



dados e de controle, reduzindo a sobrecarga da rede e permitindo uma resposta mais rápida
às mudanças na rede. Em contrapartida, o Bungee-ML adota uma política de clonagem
individual de cada pacote considerado suspeito, nomeado de pacote de relatório, filtrado no
plano de dados para envio ao controlador. Assim, cada pacote clonado contém o endereço
IP de origem de uma fonte classificada como suspeita, permitindo que o controlador realize
uma análise mais refinada por meio da coleta dos pacotes subsequentes dessa fonte. Após
essa análise, o controlador envia uma resposta ao dispositivo de encaminhamento por meio
de um pacote de confirmação, nomeado de pacote de disseminação, indicando se a fonte
suspeita é maliciosa ou não. Tal abordagem gera um aumento significativo no número de
pacotes trafegados e, consequentemente, um aumento do volume de mensagens de controle
presentes no canal de comunicação entre os planos e no tempo necessário para realizar as
ações de detecção e mitigação, como pode ser observado.

A eficácia da mitigação do DataControl-ML e Bungee-ML no que tange ao método
de mitigação empregado pode ser analisada na Figura 5.10. Os mecanismos apresenta-
ram taxas plausíveis de eficácia para reduzir os impactos dos diferentes tipos de ataques
executados.
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Figura 5.10: Eficácia da mitigação.

Observa-se na Figura 5.10 que o DataControl-ML, ao priorizar o fluxo de tráfego de
rede dos clientes legítimos tendo como base o alto valor de confiança obtido por meio da
análise das informações de perfil de tráfego dos clientes e bloquear corretamente o tráfego
malicioso (baixo valor de confiança), devido aos altos índices de precisão (Figura 5.6) e
rapidez no processo de detecção (Figura 5.7), consegue evitar o bloqueio indiscriminado
do tráfego. Assim, reduz a taxa de falso positivo (a proporção de pacotes provenien-
tes de endereços IP legítimos que foram descartados indevidamente) em 61,94% quando
comparado ao Bungee-ML, ao mesmo tempo que aumenta a taxa de verdadeiro positivo
(a proporção de pacotes provenientes de endereços IP maliciosos que foram realmente
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descartados), promovendo um equilíbrio entre o bloqueio do tráfego malicioso e a conti-
nuidade do tráfego legítimo, permitindo o mecanismo alcançar uma taxa de verdadeiro
positivo superior a 98%. Por outro lado, a filtragem imprecisa dos pacotes suspeitos e
o atraso gerado no processo de confirmação das fontes suspeitas reduziram a eficácia de
mitigação do Bungee-ML. Essa redução ocorreu porque o mecanismo impede que uma
parcela do tráfego da fonte identificada inicialmente como suspeita siga seu caminho até o
seu destino, aumentando assim a taxa de falso positivo e reduzindo a taxa de verdadeiro
positivo. Como resultado, a eficácia de mitigação do mecanismo ficou abaixo de 98% para
a taxa de verdadeiro positivo e acima de 3% para a taxa de falso positivo.

A Figura 5.11 mostra o consumo de recursos (CPU e memória) exigidos pelos meca-
nismos DataControl-ML e Bungee-ML para a execução das ações de detecção e mitigação
aplicadas no combate aos ataques DDoS volumétricos analisados. Observa-se que os
mecanismos apresentaram um consumo abaixo de 30%, demonstrando boa eficiência na
utilização dos recursos computacionais diante dos cenários de ataque.
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(a) Consumo de recursos controlador.
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Figura 5.11: Consumo de recursos.
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Nota-se na Figura 5.11(a) que o DataControl-ML apresentou uma redução de ≈
24,89% no consumo de recursos do controlador quando comparado ao Bungee-ML. Esse
resultado está associado a uma série de otimizações estruturais do mecanismo proposto,
como: (i) a agregação das informações relacionadas aos valores de confiança local em um
único pacote de relatório, o que reduz significativamente o volume de pacotes encaminha-
dos ao plano de controle para a definição da confiança global e a ação de controle; (ii) a
atribuição de decisões diretamente no plano de dados, permitindo respostas rápidas aos
ataques sem a necessidade de encaminhamento imediato ao controlador; e (iii) o envio pe-
riódico das informações (valores de confiança locais) em janelas de observação, que evita o
disparo contínuo de eventos para o controlador, contribuindo para a diminuição da carga
de processamento e a preservação dos recursos computacionais no plano de controle. Por
outro lado, o consumo mais elevado do Bungee-ML está associado ao seu modelo de fun-
cionamento, no qual o controlador é responsável por confirmar cada suspeita produzida
no plano de dados, aumentando o volume de pacotes encaminhados ao dispositivo central,
elevando o seu consumo de recursos, como pode ser observado.

Observa-se na Figura 5.11(b) que o DataControl-ML apresentou uma redução no con-
sumo de recursos do switch de ≈ 13,21% em comparação com o Bungee-ML, visto que
a ação mais rápida de descarte dos pacotes maliciosos por parte do mecanismo proposto
em resposta aos ataques e a priorização dos clientes legítimos, reduz o tempo de perma-
nência do tráfego malicioso no dispositivo, otimizando os recursos do dispositivo. Além
disso, a adoção de janelas de observação permite o processamento mais eficiente para a
coleta de dados de maneira ágil sem comprometer o desempenho da rede. Enquanto,
o consumo mais elevado por parte do Bungee-ML está relacionado ao recebimento con-
tínuo de pacotes provenientes de fontes suspeitas, já que o bloqueio é realizado apenas
quando há a confirmação por parte do controlador, o que gera um acúmulo de tráfego no
switch fazendo com que o tráfego malicioso permaneça no dispositivo por mais tempo, e,
consequentemente, um aumento no uso de recursos computacionais para gerenciar esse
tráfego.
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Capítulo 6

Conclusão

As redes SDN, embora ofereçam uma série de vantagens, como o gerenciamento centrali-
zado, maior flexibilidade e o controle da infraestrutura, elas também apresentam diversos
desafios relacionados a segurança [8]. Um dos principais desafios está relacionado à como
reduzir os impactos causados por ataques DDoS [9]. Assim, torna-se essencial projetar
mecanismos que assegurem a escalabilidade e a resiliência da rede, contribuindo para
torná-la mais segura e estável no combate a esses ataques.

A literatura tem apresentado diversas estratégias para reduzir os impactos dos ataques
DDoS volumétricos em redes SDN [10]. No entanto, ainda persistem algumas lacunas que
podem deixar essas redes vulneráveis, como a centralização das ações de detecção e mi-
tigação no plano de controle, que pode provocar atrasos na detecção e confirmação de
mudanças no comportamento do tráfego de rede e o aumento do volume de mensagens de
controle encaminhadas ao controlador para realizar as medidas de identificação e conten-
ção desses ataques a rede, aumentando o seu consumo de recursos. Além disso, muitas
das abordagens desenvolvidas pelas soluções para mitigar os impactos desses ataques, que,
embora visem restringir o tráfego malicioso, acabam penalizando uma parte significativa
do tráfego legítimo, provocando bloqueios de maneira indiscriminada.

Este trabalho buscou suprir as lacunas presentes nas soluções de segurança analisadas,
como a centralização das ações de detecção e mitigação no plano de controle e o bloqueio
indiscriminado do tráfego de rede de clientes legítimos. Para isso, foi proposto um me-
canismo de detecção e mitigação no plano de dados, denominado DataControl-ML, para
permitir que à rede reaja rapidamente para conter o fluxo de tráfego de clientes maliciosos
e priorize o fluxo de tráfego de clientes legítimos, para evitar bloqueios indiscriminados
e reduzir o volume de mensagens de controle encaminhadas ao controlador, preservando
os seus recursos, evitando a sobrecarga e garantindo sua disponibilidade mesmo durante
situações de ataque. Além disso, o mecanismo busca integrar os planos da arquitetura
SDN (dados e controle) para reduzir o impacto desses ataques por meio de um modelo de
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compartilhamento de informações globais no plano de controle, organizadas em ações de
controle que incluem o bloqueio, a permissão sem prioridade associada ou a priorização
dos clientes, para promover uma colaboração eficiente entre os planos e maior rapidez nos
processos de detecção e mitigação em diferentes pontos da rede.

O DataControl-ML demonstrou capacidade de identificar e conter os fluxos de tráfego
maliciosos relacionados aos ataques DDoS volumétricos diretamente no plano de dados,
e assim reduzir os atrasos no processo de confirmação de qualquer atividade suspeita
associada a esses ataques e o volume de mensagens de controle encaminhadas ao con-
trolador, preservando os seus recursos, bem como a priorização de clientes com níveis de
confiabilidade aceitáveis (legítimos) para evitar o bloqueio indiscriminado. Para isso, o
mecanismo combina uma abordagem de detecção mediante um modelo de classificação
com base no algoritmo de aprendizagem de máquina Random Forest, capaz de realizar a
classificação do tráfego em tempo real, com alta precisão e baixo custo computacional.
Seguido, por um método de mitigação mediante o gerenciamento de diferentes listas nos
dispositivos de encaminhamento, utilizando níveis de confiabilidade, para a priorização
dos fluxos confiáveis (legítimos) e o bloqueio daqueles não confiáveis (maliciosos) e, assim,
evitar o bloqueio indiscriminado dos clientes.

Além das abordagens no plano de dados para a detecção e mitigação dos ataques
DDoS volumétricos, também foi proposto um modelo de compartilhamento de informações
globais no plano de controle, que busca integrar os planos da arquitetura SDN (dados e
controle) para que os dispositivos de encaminhamento presentes no plano de dados tomem
decisões locais, baseando-se em uma visão ampliada da rede, construída a partir de dados
compartilhados pelo controlador. Os dados compartilhados incluem ações de controle que
realizam medidas como o bloqueio, a permissão sem prioridade associada ou a priorização
dos clientes. Essas ações são determinadas a partir do estabelecimento de uma confiança
global, calculada por meio de um sistema fuzzy, possibilitando criar uma visão única da
rede e uma mitigação mais abrangente, coordenada e capaz de proteger a infraestrutura
em diferentes pontos.

A avaliação do DataControl-ML foi realizada por meio de simulações no emulador
de rede Mininet [50], considerando a aplicação de diferentes tipos de ataques DDoS vo-
lumétricos, como DNS-Flood, UDP-Flood e SYN-Flood presentes no conjunto de dados
CICDDoS-2019 [128], para avaliar o desempenho do mecanismo em condições adversas.
Os resultados obtidos foram comparados com uma solução representativa para o estado
da arte, o Bungee-ML [18]. O DataControl-ML apresentou uma redução de ≈ 52,18%
no tempo necessário para a confirmação (detecção) de uma fonte maliciosa, responsá-
vel por gerar os ataques DDoS volumétricos, quando comparado ao Bungee-ML. Além
disso, o mecanismo mostrou-se mais eficiente na sincronização das informações entre os
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dispositivos da rede e na preservação dos recursos (CPU e memória) do controlador e do
switch, diminuindo o tempo de convergência e reduzindo significativamente o volume de
mensagens de controle enviadas ao controlador. Outro destaque foi a eficácia da detecção
e mitigação alcançada, sendo superior a 98%, evidenciando a capacidade do mecanismo
em bloquear o tráfego malicioso, sem comprometer a continuidade do tráfego legítimo.
Tais resultados, evidenciam o potencial do DataControl-ML como uma solução eficaz e
avançada para a detecção e mitigação de ataques DDoS volumétricos em redes SDN.

6.1 Trabalhos Futuros

Como trabalhos futuros, propõe-se a ampliação do mecanismo para combater os ataques
DDoS não volumétricos, atribuindo essa responsabilidade ao controlador, enquanto os
dispositivos de encaminhamento permanecem responsáveis pelo tratamento dos ataques
DDoS volumétricos diretamente no plano de dados. Essa abordagem visa aprimorar a
eficácia na resposta a diferentes tipos de ameaças, distribuindo as responsabilidades de
forma estratégica entre os elementos da arquitetura SDN.

Outro aspecto a ser explorado é a utilização de novos modelos de treinamento para
atualização dinâmica dos classificadores de tráfego, considerando o uso de técnicas de
aprendizado profundo e aprendizado não supervisionado, visando lidar com padrões de
ataque mais complexos e em constante evolução. Nesse contexto, também se propõe o
estudo do uso de honeypots como fonte de dados reais, a fim de enriquecer o processo de
treinamento e refinar os critérios de detecção de tráfego malicioso.

Além disso, planeja-se a integração do mecanismo com múltiplos controladores, para
fornecer estratégias de cooperação entre domínios, promovendo a troca coordenada de
informações e a tomada de decisões distribuídas. Essa abordagem visa melhorar a escala-
bilidade da solução, garantir maior consistência no tratamento de ataques em ambientes
amplos, e fortalecer a resiliência da rede frente a ameaças coordenadas que afetam múlti-
plas regiões simultaneamente.

Por fim, para fortalecer a avaliação do mecanismo proposto, pretende-se ampliar os
cenários experimentais, incluindo o uso de diferentes conjuntos de dados e a realização
de testes em ambiente real, visando validar o desempenho e a viabilidade do mecanismo
em contextos físicos, explorando os desafios práticos de implementação. Assim, espera-se
aprimorar a segurança e a resiliência do mecanismo, proporcionando um desempenho mais
robusto e adaptável em ambientes cada vez mais complexos e dinâmicos.

93



Referências

[1] Bosshart, P., D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesin-
ger, D. Talayco, A. Vahdat, G. Varghese e D. Walker: P4: Programming Protocol-
independent Packet Processors. SIGCOMM Comput. Commun. Rev., 44(3):87–95,
jul 2014, ISSN 0146-4833. http://doi.acm.org/10.1145/2656877.2656890. xii,
12, 13, 27, 47

[2] Alsaeedi, Mohammed, Mohd Murtadha Mohamad e Anas A. Al-Roubaiey: Toward
adaptive and scalable openflow-sdn flow control: A survey. IEEE Access, 7:107346–
107379, 2019. 1, 8, 9, 10, 11, 12, 13

[3] Cox, Jacob H., Joaquin Chung, Sean Donovan, Jared Ivey, Russell J. Clark, George
Riley e Henry L. Owen: Advancing software-defined networks: A survey. IEEE
Access, 5:25487–25526, 2017. 1, 8, 9, 10, 15

[4] Presuhn, Randy: Management information base (mib) for the simple network man-
agement protocol (snmp). Request for comments 3418, RFC Editor, dezembro 2002.
https://www.rfc-editor.org/rfc/rfc3418.html. 1

[5] Park, Chang Keen, Joon Myung Kang, Mi Jung Choi, James Won Ki Hong, Yong
hun Lim, Seongho Ju e Moon suk Choi: Definition of common plc mib and design of
mib mapper for multi-vendor plc network management. Em 2008 IEEE International
Symposium on Power Line Communications and Its Applications, páginas 152–157,
2008. 1

[6] Bhatia, Jitendra, Radha Govani e Madhuri Bhavsar: Software defined networking:
From theory to practice. Em 2018 Fifth International Conference on Parallel, Dis-
tributed and Grid Computing (PDGC), páginas 789–794, 2018. 1, 8, 9

[7] Mostafa, Naneese, Khaled Metwally e Khaled Badran: Survey on sdn-based intrusion
detection systems. Em 2024 14th International Conference on Electrical Engineering
(ICEENG), páginas 317–322, 2024. 2, 41

[8] Abdi, Abdinasir Hirsi, Lukman Audah, Adeb Salh, Mohammed A. Alhartomi, Ha-
roon Rasheed, Salman Ahmed e Ahmed Tahir: Security control and data planes
of sdn: A comprehensive review of traditional, ai, and mtd approaches to security
solutions. IEEE Access, 12:69941–69980, 2024. 2, 8, 41, 91

[9] Varghese, Josy Elsa e Balachandra Muniyal: Trend in sdn architecture for ddos
detection- a comparative study. Em 2021 IEEE International Conference on Dis-

94

http://doi.acm.org/10.1145/2656877.2656890
https://www.rfc-editor.org/rfc/rfc3418.html


tributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER), páginas
170–174, 2021. 2, 41, 91

[10] Kaur, Sukhveer, Krishan Kumar, Naveen Aggarwal e Gurdeep Singh: A comprehen-
sive survey of DDoS defense solutions in SDN: Taxonomy, research challenges, and
future directions. Computers & Security, 110:102423, 2021, ISSN 0167-4048. https:
//www.sciencedirect.com/science/article/pii/S0167404821002479. 2, 3, 19,
26, 27, 32, 34, 37, 38, 39, 91

[11] Wang, Danni e Sizhao Li: Automated ddos attack mitigation for software defined
network. Em 2022 IEEE 16th International Conference on Anti-counterfeiting, Se-
curity, and Identification (ASID), páginas 100–104, 2022. 2

[12] Shin, S., Y. Vinod, P. Phillip e G. Guofei: AVANT-GUARD: Scalable and Vigilant
Switch Flow Management in Software-defined Networks. Em Proceedings of the 2013
ACM SIGSAC Conference on Computer &#38; Communications Security, CCS
’13, páginas 413–424, New York, NY, USA, 2013. ACM, ISBN 978-1-4503-2477-9.
http://doi.acm.org/10.1145/2508859.2516684. 3, 32, 37, 38

[13] Ambrosin, M., M. Conti, F. De Gaspari e R. Poovendran: LineSwitch: Tackling Con-
trol Plane Saturation Attacks in Software-Defined Networking. IEEE/ACM Tran-
sactions on Networking, 25(2):1206–1219, abril 2017, ISSN 1063-6692. 3, 32, 37,
38

[14] Lapolli, Angelo Cardoso, Jonatas Adilson Marques e Luciano Paschoal Gaspary: Of-
floading Real-time DDoS Attack Detection to Programmable Data Planes. Em IFIP.
IFIP/IEEE Symposium on Integrated Network and Service Management (IM), 2019.
3, 37, 38

[15] Zhang, Xiaoquan, Lin Cui, Kaimin Wei, Fung Po Tso, Yangyang Ji e Weijia Jia:
A survey on stateful data plane in software defined networks. Computer Networks,
184:107597, 2021, ISSN 1389-1286. https://www.sciencedirect.com/science/
article/pii/S1389128620312305. 3, 4, 38, 39

[16] Macías, Sebastián Gómez, Luciano Paschoal Gaspary e Juan Felipe Botero: ORA-
CLE: An Architecture for Collaboration of Data and Control Planes to Detect DDoS
Attacks. Em 2021 IFIP/IEEE International Symposium on Integrated Network Ma-
nagement (IM), páginas 962–967, 2021. 3, 34, 38, 43

[17] Yu, Shanshan, Jicheng Zhang, Ju Liu, Xiaoqing Zhang, Yafeng Li e Tianfeng Xu: A
cooperative DDoS attack detection scheme based on entropy and ensemble learning
in SDN. EURASIP Journal on Wireless Communications and Networking, 2021(1),
abril 2021. https://doi.org/10.1186/s13638-021-01957-9. 3, 29, 32, 34, 38

[18] González, Libardo Andrey Quintero, Lucas Castanheira, Jonatas A. Marques,
Alberto E. Schaeffer-Filho e Luciano Paschoal Gaspary: Bungee-ML: A Cross-
Plane Approach for a Collaborative Defense Against DDoS Attacks. Journal of
Network and Systems Management, 31(4), agosto 2023. https://doi.org/10.
1007/s10922-023-09769-6. 3, 32, 34, 38, 69, 75, 92

95

https://www.sciencedirect.com/science/article/pii/S0167404821002479
https://www.sciencedirect.com/science/article/pii/S0167404821002479
http://doi.acm.org/10.1145/2508859.2516684
https://www.sciencedirect.com/science/article/pii/S1389128620312305
https://www.sciencedirect.com/science/article/pii/S1389128620312305
https://doi.org/10.1186/s13638-021-01957-9
https://doi.org/10.1007/s10922-023-09769-6
https://doi.org/10.1007/s10922-023-09769-6


[19] Imran, M., H. Durad, F. Khan e A. Derhab: Toward an optimal solution against De-
nial of Service attacks in Software Defined Networks. Future Generation Computer
Systems, 92, setembro 2018. 3, 24, 41

[20] Tuan, Nguyen Ngoc, Pham Huy Hung, Nguyen Danh Nghia, Nguyen Van Tho,
Trung V. Phan e Nguyen Huu Thanh: A Robust TCP-SYN Flood Mitigation Scheme
Using Machine Learning Based on SDN. Em 2019 International Conference on
Information and Communication Technology Convergence, páginas 363–368. Inter-
national Conference on Information and Communication Technology Convergence
(ICTC), 2019. 3, 4, 34, 38, 39, 43

[21] Kumar, P., M. Tripathi, A. Nehra, M. Conti e C. Lal: SAFETY: Early Detection
and Mitigation of TCP SYN Flood Utilizing Entropy in SDN. IEEE Transactions
on Network and Service Management, 15(4):1545–1559, 2018. 3, 4, 27, 28, 30, 38,
39

[22] Salem, Fatty M., Hoda Youssef, Ihab Ali e Ayman Haggag: A variable-trust
threshold-based approach for DDOS attack mitigation in software defined networks.
PLOS ONE, 17(8):1–19, agosto 2022. https://doi.org/10.1371/journal.pone.
0273681. 3, 4, 30, 38, 39

[23] Saini, Chiman e Sandeep Singh Kang: Trust based Mechanism for Detection and
Isolation of DDOS Attack in Software Defined Networks. Em 2021 3rd International
Conference on Advances in Computing, Communication Control and Networking
(ICAC3N), páginas 1254–1259, 2021. 3, 29, 30, 38, 39

[24] Kuerban, M., Y. Tian, Q. Yang, Y. Jia, B. Huebert e D. Poss: FlowSec: DOS Attack
Mitigation Strategy on SDN Controller. Em 2019 IEEE 9th Annual Computing and
Communication Workshop and Conference (CCWC), páginas 701–707, Aug 2019.
4, 28, 38, 39

[25] Nurwarsito, Heru e Muhammad Fahmy Nadhif: Ddos attack early detection and
mitigation system on sdn using random forest algorithm and ryu framework. Em
2021 8th International Conference on Computer and Communication Engineering
(ICCCE), páginas 178–183, 2021. 4, 35, 38

[26] Dalmazo, Bruno L., Jonatas A. Marques, Lucas R. Costa, Michel S. Bonfim, Ranyel-
son N. Carvalho, Anderson S. da Silva, Stenio Fernandes, Jacir L. Bordim, Eduardo
Alchieri, Alberto Schaeffer-Filho, Luciano Paschoal Gaspary e Weverton Cordeiro: A
systematic review on distributed denial of service attack defense mechanisms in pro-
grammable networks. International Journal of Network Management, 31(6):e2163,
2021. https://onlinelibrary.wiley.com/doi/abs/10.1002/nem.2163. 6

[27] Carvalho, Ranyelson N., Lucas R. Costa, Jacir L. Bordim e Eduardo Alchieri:
Dossec: A reputation-based dos mitigation mechanism on sdn. Em Barolli, Leonard,
Isaac Woungang e Tomoya Enokido (editores): Advanced Information Networking
and Applications, páginas 757–770, Cham, 2021. Springer International Publishing,
ISBN 978-3-030-75075-6. 6

96

https://doi.org/10.1371/journal.pone.0273681
https://doi.org/10.1371/journal.pone.0273681
https://onlinelibrary.wiley.com/doi/abs/10.1002/nem.2163


[28] Carvalho, Ranyelson N., Lucas R. Costa, Jacir L. Bordim e Eduardo A. P. Alchieri:
Detecting ddos attacks on sdn data plane with machine learning. Em 2021 Ninth
International Symposium on Computing and Networking Workshops (CANDARW),
páginas 138–144. 2021 Ninth International Symposium on Computing and Network-
ing Workshops (CANDARW), 2021. 6

[29] Carvalho, Ranyelson N., Lucas R. Costa, Jacir L. Bordim e Eduardo A. P. Alchieri:
Dataplane-ml: An integrated attack detection and mitigation solution for soft-
ware defined networks. Concurrency and Computation: Practice and Experience,
n/a(n/a):e7434, 2022. https://onlinelibrary.wiley.com/doi/abs/10.1002/
cpe.7434. 6, 72

[30] Carvalho, R., J. L. Bordim e E. A. P. Alchieri: Entropy-based dos attack identifica-
tion in sdn. 21st Workshop on Advances in Parallel and Distributed Computational
Models, 2019. 7

[31] Carvalho, R., L. R. Costa, J. L. Bordim e E. A. P. Alchieri: Enhancing an sdn
architecture with dos attack detection mechanisms. Advances in Science, Technology
and Engineering Systems Journal, 2020. 7

[32] Carvalho, R., L. R. Costa, J. L. Bordim e E. A. P. Alchieri: New programmable
data plane architecture based on p4 openflow agent. 34th Advanced Information
Networking and Applications, 2020. 7

[33] Foundation, Open Network: Openflow switch specification 1.1. fevereiro 2011. 9

[34] Chowdhury, D.: ForCES: An Elastic Routing Architecture for NextGen SDN.
Network Virtualization 101 Series, agosto 2016. 9, 10

[35] Prabha, Chander, Anjuli Goel e Jaspreet Singh: A survey on sdn controller evolu-
tion: A brief review. Em 2022 7th International Conference on Communication and
Electronics Systems (ICCES), páginas 569–575, 2022. 10

[36] Ravuri, Hemanth Kumar, Maria Torres Vega, Jeroen van der Hooft, Tim Wauters,
Bin Da e Filip De Turck: On routing scalability in flat sdn architectures. Em 2020
11th International Conference on Network of the Future (NoF), páginas 23–27, 2020.
10, 15

[37] Bannour, Fetia, Stefania Dumbrava e Damien Lu: A flexible graphql northbound
api for intent-based sdn applications. Em NOMS 2022-2022 IEEE/IFIP Network
Operations and Management Symposium, páginas 1–5, 2022. 10

[38] Oktian, Yustus Eko, SangGon Lee, HoonJae Lee e JunHuy Lam: Secure your North-
bound SDN API. Em 2015 Seventh International Conference on Ubiquitous and
Future Networks, páginas 919–920, 2015. 10

[39] Gude, N., T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown e S. Shen-
ker: NOX: Towards an operating system for networks. Computer Communication
Review, 38:105–110, janeiro 2008. 11

97

https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.7434
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.7434


[40] Murpyh, M.: NOX. https://github.com/noxrepo/pox. 11, 15

[41] Daha, Muhammad Yunis, Mohd Soperi M Zahid, Khaleel Husain e Firas Ousta:
Performance evaluation of software defined networks with single and multiple link
failure scenario under floodlight controller. Em 2021 International Conference on
Computing, Communication, and Intelligent Systems (ICCCIS), páginas 959–965,
2021. 11

[42] Projects, The Linux Foundation: Open Day Light - Platform Overview. https:
//www.opendaylight.org/what-we-do/odl-platform-overview. 11, 15

[43] RYU: RYU SDN Framework. https://osrg.github.io/ryu/. 11

[44] Stancu, A., A. Avram, M. Skorupski, A. Vulpe e S. Halunga: Enabling SDN appli-
cation development using a NETCONF mediator layer simulator. Em 2017 Ninth
International Conference on Ubiquitous and Future Networks (ICUFN), páginas
658–663, July 2017. 11, 12

[45] ONOS Project: ONOS. https://wiki.onosproject.org/display/ONOS/ONOS. 12,
15

[46] Martinez-Yelmo, I., J. Alvarez-Horcajo, M. Briso-Montiano, D. Lopez-Pajares e E.
Rojas: ARP-P4: Deep Analysis of a Hybrid SDN ARP-Path/P4Runtime Switch.
Telecommunication Systems, 72(4):555–565, 2019. 12

[47] Miano, S., F. Risso e H. Woesner: Partial offloading of OpenFlow rules on a traditi-
onal hardware switch ASIC. Em 2017 IEEE Conference on Network Softwarization
(NetSoft), páginas 1–9, July 2017. 12

[48] NSnam: Ns-3 - Network Simulator. https://www.nsnam.org/. 14

[49] Estinet: Estinet - The network simulator and emulator that supports
SDN/OpenFlow. http://www.estinet.com/ns/. 15

[50] Team, Mininet: Mininet - An Instant Virtual Network on your Laptop (or other
PC). http://mininet.org/. 15, 69, 92

[51] Rawat, Surabhi Gusain, Mohammad S. Obaidat, Sumit Pundir, Mohammad Wazid,
Ashok Kumar Das, Devesh Pratap Singh e Kuei Fang Hsiao: A survey of ddos
attacks detection schemes in sdn environment. Em 2023 International Conference
on Computer, Information and Telecommunication Systems (CITS), páginas 01–06,
2023. 15

[52] Al-Duwairi, Basheer, Eslam Al-Quraan e Yazeed AbdelQader: Isdsdn: Mitigating
syn flood attacks in software defined networks. Journal of Network and Systems
Management, 28(4):1366–1390, junho 2020, ISSN 1573-7705. http://dx.doi.org/
10.1007/s10922-020-09540-1. 15

[53] Kaur, Kulwinder e John Ayoade: Analysis of ddos attacks on iot architecture. Em
2023 10th International Conference on Electrical Engineering, Computer Science
and Informatics (EECSI), páginas 332–337, 2023. 16

98

https://github.com/noxrepo/pox
https://www.opendaylight.org/what-we-do/odl-platform-overview
https://www.opendaylight.org/what-we-do/odl-platform-overview
https://osrg.github.io/ryu/
https://wiki.onosproject.org/display/ONOS/ONOS
https://www.nsnam.org/
http://www.estinet.com/ns/
http://mininet.org/
http://dx.doi.org/10.1007/s10922-020-09540-1
http://dx.doi.org/10.1007/s10922-020-09540-1


[54] Yevsieieva, O. e S. M. Helalat: Analysis of the impact of the slow HTTP DOS and
DDOS attacks on the cloud environment. Em 2017 4th International Scientific-
Practical Conference Problems of Infocommunications. Science and Technology
(PIC S T), páginas 519–523, outubro 2017. 16, 18

[55] Gondim, João J.C., Robson de Oliveira Albuquerque e Ana Lucila Sandoval Orozco:
Mirror saturation in amplified reflection Distributed Denial of Service: A case of
study using SNMP, SSDP, NTP and DNS protocols. Future Generation Compu-
ter Systems, 2020, ISSN 0167-739X. http://www.sciencedirect.com/science/
article/pii/S0167739X19322745. 16

[56] Feinstein, L., D. Schnackenberg, R. Balupari e D. Kindred: Statistical approaches
to DDoS attack detection and response. Em Proceedings DARPA Information Sur-
vivability Conference and Exposition, volume 1, páginas 303–314 vol.1, abril 2003.
16, 19

[57] Hussain, Khalid, Syed Jawad Hussain, NZ Jhanjhi e Mamoona Humayun: Syn flood
attack detection based on bayes estimator (sfadbe) for manet. Em 2019 International
Conference on Computer and Information Sciences (ICCIS), páginas 1–4, 2019. 16

[58] Biagioni, Edoardo: Preventing udp flooding amplification attacks with weak authen-
tication. Em 2019 International Conference on Computing, Networking and Com-
munications (ICNC), páginas 78–82, 2019. 16, 17

[59] Mekala, Srinivas, Kishorebabu Dasari e Divya Katta: Dns ddos amplification attack
detection using multi-layer perceptron classification algorithm. Em 2024 IEEE 3rd
World Conference on Applied Intelligence and Computing (AIC), páginas 1355–
1360, 2024. 16, 17

[60] Postel, J.: User Datagram Protocol. RFC, 768:1–3, agosto 1980. http://dblp.
uni-trier.de/db/journals/rfc/rfc700-799.html. 17

[61] Mahjabin, Tasnuva, Yang Xiao, Tieshan Li e C. L. Philip Chen: Load distributed
and benign-bot mitigation methods for iot dns flood attacks. IEEE Internet of Things
Journal, 7(2):986–1000, 2020. 17

[62] Lyu, Minzhao, Hassan Habibi Gharakheili, Craig Russell e Vijay Sivaraman: Hier-
archical anomaly-based detection of distributed dns attacks on enterprise networks.
IEEE Transactions on Network and Service Management, 18(1):1031–1048, 2021.
17

[63] Internet Control Message Protocol. RFC 792, setembro 1981. https://
rfc-editor.org/rfc/rfc792.txt. 17

[64] Nielsen, Henrik, Jeffrey Mogul, Larry M Masinter, Roy T. Fielding, Jim Gettys,
Paul J. Leach e Tim Berners-Lee: Hypertext Transfer Protocol – HTTP/1.1. RFC
2616, junho 1999. https://www.rfc-editor.org/info/rfc2616. 18

[65] Sabri, Shima, Noraini Ismail e Amir Hazzim: Slowloris DoS Attack Based Simula-
tion. IOP Conference Series: Materials Science and Engineering, 1062(1):012029,
fevereiro 2021. https://doi.org/10.1088/1757-899x/1062/1/012029. 18

99

http://www.sciencedirect.com/science/article/pii/S0167739X19322745
http://www.sciencedirect.com/science/article/pii/S0167739X19322745
http://dblp.uni-trier.de/db/journals/rfc/rfc700-799.html
http://dblp.uni-trier.de/db/journals/rfc/rfc700-799.html
https://rfc-editor.org/rfc/rfc792.txt
https://rfc-editor.org/rfc/rfc792.txt
https://www.rfc-editor.org/info/rfc2616
https://doi.org/10.1088/1757-899x/1062/1/012029


[66] S. Lee, H. Kim, J. Na e J. Jang: Abnormal traffic detection and its implementation.
Em The 7th International Conference on Advanced Communication Technology,
2005, ICACT 2005., volume 1, páginas 246–250, fevereiro 2005. 19

[67] Carl, G., G. Kesidis, R. Brooks e R. Rai: Denial-of-Service Attack-Detection Te-
chniques. IEEE Internet Computing, 10(1):82–89, janeiro 2006, ISSN 1089-7801.
http://dx.doi.org/10.1109/MIC.2006.5. 19

[68] Shannon, C.E: A Mathematical Theory of Communication. 27:379–423, 1948. 20,
28

[69] Behal, Sunny e Krishan Kumar: Detection of DDoS attacks and flash events
using novel information theory metrics. Computer Networks, 116:96–110, 2017,
ISSN 1389-1286. 20

[70] Agoramoorthy, Moorthy, Ahamed Ali, D. Sujatha, Michael Raj. T F e G. Ramesh:
An analysis of signature-based components in hybrid intrusion detection systems.
Em 2023 Intelligent Computing and Control for Engineering and Business Systems
(ICCEBS), páginas 1–5, 2023. 20

[71] Montes-Gil, José Albeiro, Gustavo Isaza-Cadavid e Néstor Darío Duque-Méndez:
Efecto de la selección de atributos en el desempeño de un IDS basado en machine
learning para detección de intrusos en ataques DDoS. South Florida Journal of De-
velopment, 4(2):918–928, maio 2023. https://doi.org/10.46932/sfjdv4n2-023.
21

[72] Elejla, Omar E., Mohammed Anbar, Shady Hamouda, Bahari Belaton, Taief
Alaa Al-Amiedy e Iznan H. Hasbullah: Flow-Based IDS Features Enrichment for
ICMPv6-DDoS Attacks Detection. Symmetry, 14(12):2556–2556, 2022. 21

[73] Jiawei, Chen, Xie Wenwei e Wang Lipeng: Data proxy method and system, and
proxy server. 2021. 21

[74] You Chwen Yeu, Gabriel de Souza Fedel: Aceleração no acesso à Internet: estudo
sobre o servidor 12 proxy/cache Squid. evista Tecnológica da Fatec Americana,
2(1):12–34, mar 2016. 21

[75] Sahoo, Kshira Sagar, Bata Krishna Tripathy, Kshirasagar Naik, Somula Ramasub-
bareddy, Balamurugan Balusamy, Manju Khari e Daniel Burgos: An Evolutionary
SVM Model for DDOS Attack Detection in SDN. IEEE Access, 8:132502–132513,
2020. 21

[76] Müller, A.C. e S. Guido: Introduction to Machine Learning with Python: A Guide
for Data Scientists. O’Reilly Media, 2016, ISBN 9781449369897. 21, 50

[77] Aggarwal, Charu C.: Machine Learning for Text. Springer Publishing Company,
Incorporated, 1st edição, 2018, ISBN 3319735306. 22, 50

[78] Wu, Xindong e Shichao Zhang: Synthesizing high-frequency rules from different data
sources. IEEE Transactions on Knowledge and Data Engineering, 15(2):353–367,
2003. 22

100

http://dx.doi.org/10.1109/MIC.2006.5
https://doi.org/10.46932/sfjdv4n2-023


[79] Coretes, C. e V. Vapnik: Support-vector networks. Machine Learning, 28:273–297,
1995. 22, 50

[80] Smola, Alex e B. Schölkopf: A tutorial on support vector regression. Statistics and
Computing, 14:199–222, 2004. 22

[81] Bishop, Christopher M.: Pattern Recognition and Machine Learning (Infor-
mation Science and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006,
ISBN 0387310738. 23

[82] Ns, Abdiansah: Time complexity analysis of support vector machines (svm) in lib-
svm. Int. Journal of Comp. Apps., 128:975–8887, outubro 2015. 23

[83] Breiman, Leo: Random Forests. Machine Learning, 45, 2001, ISSN 0885-6125. 23,
50, 73

[84] Louppe, Gilles: Understanding Random Forests: Theory to Practice, 2015. 23

[85] Bawany, N.Z., Shamsi, J.A. e Salah K.: DDoS Attack Detection and Mitigation
Using SDN: Methods, Practices, and Solutions. Arab J Sci Eng, 42:425–441, feb
2017. 24

[86] IEEE Xplore. https://ieeexplore.ieee.org/. 26

[87] ACM Digital Libray. https://dl.acm.org/. 26

[88] Lapolli, A. C., J. A. Marques e L. P. Gaspary: Offloading Real-time DDoS Attack
Detection to Programmable Data Planes. Em IFIP/IEEE International Symposium
on Integrated Network Management (IM 2019), 2019. 27

[89] Sumantra, I. e S. Indira Gandhi: DDoS attack Detection and Mitigation in Software
Defined Networks. Em 2020 International Conference on System, Computation,
Automation and Networking (ICSCAN), páginas 1–5, 2020. 28, 30, 38

[90] Li, Runyu e Bin Wu: Early detection of ddos based on φ-entropy in sdn networks.
Em 2020 IEEE 4th Information Technology, Networking, Electronic and Automation
Control Conference (ITNEC), volume 1, páginas 731–735, 2020. 28, 38

[91] Ravi, Nagarathna, S. Mercy Shalinie, Chhagan Lal e Mauro Conti: AEGIS: Detec-
tion and Mitigation of TCP SYN Flood on SDN Controller. IEEE Transactions on
Network and Service Management, 18(1):745–759, 2021. 29, 38

[92] Mishra, Anupama, Neena Gupta e B. B. Gupta: Defense mechanisms against
DDoS attack based on entropy in SDN-cloud using POX controller. Telecom-
munication Systems, 77(1):47–62, janeiro 2021. https://doi.org/10.1007/
s11235-020-00747-w. 30, 38

[93] Dawod, Ammar, Huda S. Abdulkarem e Aymen M. Al-Kadhimi: Software-defined
Network with SNMP Monitoring Sensor Against SYN Flooding Attack. Em 2022 3rd
International Informatics and Software Engineering Conference (IISEC), páginas
1–5, 2022. 31, 38

101

https://ieeexplore.ieee.org/
https://dl.acm.org/
https://doi.org/10.1007/s11235-020-00747-w
https://doi.org/10.1007/s11235-020-00747-w


[94] Shalini, P. V., V. Radha e Sriram G. Sanjeevi: Early detection and mitigation of tcp
syn flood attacks in sdn using chi-square test. The Journal of Supercomputing, feve-
reiro 2023, ISSN 1573-0484. http://dx.doi.org/10.1007/s11227-023-05057-x.
31, 38

[95] Dridi, L. e M. F. Zhani: Sdn-guard: Dos attacks mitigation in sdn networks. Em
2017 5th IEEE International Conference on Cloud Networking (Cloudnet), páginas
212–217, outubro 2017. 33, 38

[96] Kim, DongHyuk, Phuc Trinh Dinh, Sichul Noh, Junmin Yi e Minho Park: An
Effective Defense Against SYN Flooding Attack in SDN. Em 2019 International
Conference on Information and Communication Technology Convergence (ICTC),
páginas 369–371. International Conference on Information and Communication Te-
chnology Convergence (ICTC), 2019. 33, 38

[97] Fan, Chun I, Jun Huei Wang, Cheng Han Shie e Yu Lung Tsai: Software-Defined
Networking Integrated with Cloud Native and Proxy Mechanism: Detection and Mi-
tigation System for TCP SYN Flooding Attack. Em 2023 17th International Con-
ference on Ubiquitous Information Management and Communication (IMCOM),
páginas 1–8, 2023. 33, 38

[98] https://kubernetes.io/pt-br/. 33

[99] Das, Tapadhir, Osama Abu Hamdan, Shamik Sengupta e Engin Arslan: Flood
control: Tcp-syn flood detection for software-defined networks using openflow port
statistics. Em 2022 IEEE International Conference on Cyber Security and Resilience
(CSR), páginas 1–8, 2022. 35, 38

[100] Ashodia, Namita e Kishan Makadiya: Detection and mitigation of ddos attack in
software defined networking: A survey. Em 2022 International Conference on Sus-
tainable Computing and Data Communication Systems (ICSCDS), páginas 1175–
1180, 2022. 41

[101] Dang, V. T., T. T. Huong, N. H. Thanh, P. N. Nam, N. N. Thanh, A. Marshall e
S. Furnell: SDN-Based SYN Proxy—A Solution to Enhance Performance of Attack
Mitigation Under TCP SYN Flood. The Computer Journal, 62(4):518–534, April
2019. 41

[102] Zadeh, L.A.: Fuzzy sets. Information and Control, 8(3):338–353, 1965,
ISSN 0019-9958. https://www.sciencedirect.com/science/article/pii/
S001999586590241X. 45, 61, 62

[103] Kurose, James F. e Keith W. Ross: Computer Networking: A Top-Down Approach.
Pearson, 8th edição, 2021. 45

[104] Consortium, The P4 Language: P4 - language specification. https://p4.org/. 47,
48, 57

[105] M. Slee, A. Agawal, M. Kwiatkowski: Thrift - scalabre cross-language services im-
plementation. https://thrift.apache.org/. 49

102

http://dx.doi.org/10.1007/s11227-023-05057-x
https://kubernetes.io/pt-br/
https://www.sciencedirect.com/science/article/pii/S001999586590241X
https://www.sciencedirect.com/science/article/pii/S001999586590241X
https://p4.org/
https://thrift.apache.org/


[106] Carvalho, Ranyelson, Lucas Costa, Jacir Bordim e Eduardo Alchieri: New pro-
grammable data plane architecture based on p4 openflow agent. Em AINA, páginas
1355–1367. Springer Int. Publishing, 2020, ISBN 978-3-030-44041-1. 49

[107] Learn, Scikt: Sklearn model selection: RandomizedSearchCV, 2022.
https://scikit-learn.org/stable/modules/generated/sklearn.model_
selection.RandomizedSearchCV.html. 50, 73

[108] Platt, John C.: Probabilistic outputs for support vector machines and comparisons
to regularized likelihood methods. Em Advances in Large Margin Classifiers, páginas
61–74. MIT Press, 1999. 50, 52

[109] Deo, Amit, Santanu Kumar Dash, Guillermo Suarez-Tangil, Volodya Vovk e Lorenzo
Cavallaro: Prescience: Probabilistic guidance on the retraining conundrum for mal-
ware detection. Em Proceedings of the 2016 ACM Workshop on Artificial Intelli-
gence and Security, AISec ’16, página 71–82, New York, NY, USA, 2016. Associa-
tion for Computing Machinery, ISBN 9781450345736. https://doi.org/10.1145/
2996758.2996769. 50, 51

[110] Ryszard S. Michalski, Jaime G. Carbonell e Tom M. Mitchell: Machine Learning:
An Artifcial Intelligence Approach, volume 1. Springer, 1983. 51

[111] Lopes Gomes, Rafael, Waldir Moreira Junior, Eduardo Cerqueira e Antônio Jorge
Abelém: Using fuzzy link cost and dynamic choice of link quality metrics to achieve
qos and qoe in wireless mesh networks. Journal of Network and Computer Applica-
tions, 34(2):506–516, 2011, ISSN 1084-8045. https://www.sciencedirect.com/
science/article/pii/S1084804510000615, Efficient and Robust Security and
Services of Wireless Mesh Networks. 61, 74

[112] Zadeh, L.A.: The concept of a linguistic variable and its application to approximate
reasoning—i. Information Sciences, 8(3):199–249, 1975, ISSN 0020-0255. https:
//www.sciencedirect.com/science/article/pii/0020025575900365. 62

[113] Malvezzi, W. R., A. M. Mourao e G. Bressan: Learning evaluation in classroom
mediated by technology model using fuzzy logic at the university of amazonas state.
Em Proceeding of 40th ASEE/IEEE Frontiers in Education Conference, páginas
S2C–1–S2C–6, Washington, DC, October 2010. 62

[114] Ross, Timothy J.: Fuzzy Logic with Engineering Applications. John Wiley &
Sons, 3rd edição, 2010. https://onlinelibrary.wiley.com/doi/book/10.1002/
9781119994374. 62, 64, 74

[115] Zimmermann, H. J.: Fuzzy Set Theory—and Its Applications. Kluwer Academic
Publishers, Boston, 4th edição, 2001. ISBN: 978-0792372041. 63

[116] Mamdani, E.H. e S. Assilian: An experiment in linguistic synthesis with a
fuzzy logic controller. International Journal of Man-Machine Studies, 7(1):1–
13, 1975, ISSN 0020-7373. https://www.sciencedirect.com/science/article/
pii/S0020737375800022. 64

103

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
https://doi.org/10.1145/2996758.2996769
https://doi.org/10.1145/2996758.2996769
https://www.sciencedirect.com/science/article/pii/S1084804510000615
https://www.sciencedirect.com/science/article/pii/S1084804510000615
https://www.sciencedirect.com/science/article/pii/0020025575900365
https://www.sciencedirect.com/science/article/pii/0020025575900365
https://onlinelibrary.wiley.com/doi/book/10.1002/9781119994374
https://onlinelibrary.wiley.com/doi/book/10.1002/9781119994374
https://www.sciencedirect.com/science/article/pii/S0020737375800022
https://www.sciencedirect.com/science/article/pii/S0020737375800022


[117] DeLany, Ryan, Andrew Smith, Yan Li e Liang Du: Sdn dynamic controller config-
uration to mitigate compromised controllers. Em 2023 IEEE Transportation Elec-
trification Conference e Expo (ITEC), páginas 1–5, 2023. 65

[118] Sharafaldin, Iman, Arash Habibi Lashkari, Saqib Hakak e Ali A. Ghorbani: Devel-
oping realistic distributed denial of service (ddos) attack dataset and taxonomy. Em
International Carnahan Conference on Security Technology (ICCST), páginas 1–8,
2019. 70

[119] Alashhab, Abdussalam Ahmed, Aisha Edrah, Mohd Soperi Mohd Zahid e Md. Sid-
dikur Rahman: Ensemble based detection model for ddos attacks in sdns using ad-
vanced feature selection. Em 2024 17th International Conference on Signal Process-
ing and Communication System (ICSPCS), páginas 1–5, 2024. 70

[120] Saranya, N, T Abbinavu, P Arun Kumar, R Gnanasekar, P Guru Prasanth e R
Subha: Rtids: A robust transformer-based approach for intrusion detection system.
Em 2024 10th International Conference on Advanced Computing and Communica-
tion Systems (ICACCS), volume 1, páginas 1461–1464, 2024. 70

[121] Dhirta, Tarun e Akashdeep Sharma: Unveiling the effectiveness of cnn-based mod-
els for multiclass ddos attack detection and classification: A comparative analysis.
Em 2023 International Conference on Data Science, Agents Artificial Intelligence
(ICDSAAI), páginas 1–8, 2023. 70

[122] Yoachimik, Omer e Jorge Pacheco: Ddos threat report for 2024 q2, 2024. https:
//blog.cloudflare.com/ddos-threat-report-for-2024-q2. 70

[123] Johnson, Richard A. e Dean W. Wichern: Applied Multivariate Statistical Analysis.
Pearson, 6a edição, 2007. 70

[124] Cohen, Jacob, Patricia Cohen, Stephen G. West e Leona S. Aiken: Applied Multiple
Regression/Correlation Analysis for the Behavioral Sciences. Routledge, 3a edição,
2002. 71

[125] Turner, Aaron: Tcpreplay - pcap editing and replaying utilities, 2013. https://
tcpreplay.appneta.com/. 75

[126] Harris, Guy: Pcap capture file format. https://www.ietf.org/archive/id/
draft-gharris-opsawg-pcap-01.html, October 2022. Internet-Draft, IETF. 76

[127] Sharma, Sachin, Dimitri Staessens, Didier Colle, Mario Pickavet e Piet Demeester:
In-band control, queuing, and failure recovery functionalities for openflow. IEEE
Network, 30(1):106–112, 2016. 86

[128] Cybersecurity, Canadian Institute for: Cicddos2019: A dataset for ddos attack de-
tection. https://www.unb.ca/cic/datasets/ddos-2019.html, 2019. 92

104

https://blog.cloudflare.com/ddos-threat-report-for-2024-q2
https://blog.cloudflare.com/ddos-threat-report-for-2024-q2
https://tcpreplay.appneta.com/
https://tcpreplay.appneta.com/
https://www.ietf.org/archive/id/draft-gharris-opsawg-pcap-01.html
https://www.ietf.org/archive/id/draft-gharris-opsawg-pcap-01.html
https://www.unb.ca/cic/datasets/ddos-2019.html

	Dedicatória
	Agradecimentos
	Resumo
	Abstract
	Introdução
	Motivação
	Objetivo Geral
	Metodologia
	Contribuições
	Publicações relacionadas a Tese
	Demais publicações
	Estrutura do Documento

	Fundamentação Teórica
	Redes Definidas por Software
	Controladores SDN
	Plano de Dados Programável
	Ferramentas de emulação e simulação

	Ataques Distribuídos de Negação de Serviço - DDoS
	Ataques Volumétricos
	Ataques Não Volumétricos

	Métodos de detecção de ataques DDoS
	Métodos de mitigação de ataques DDoS
	Considerações Finais

	Revisão do Estado da Arte
	Classificação das soluções de segurança em redes SDN
	Estatísticas
	Intermediação
	Aprendizagem de Máquina

	Discussão
	Considerações Finais

	Mecanismo de detecção e mitigação de ataques DDoS volumétricos em redes SDN
	Visão geral do mecanismo proposto
	Procedimento 1: detecção e mitigação no plano de dados
	Coleta de Dados
	Classificação
	Agregação do Valor de Confiança
	Gerenciamento das Listas
	Gerenciador de Envio

	Procedimento 2: compartilhamento de informações globais por meio do plano de controle
	Extração dos Dados
	Calcular a Confiança Global
	Disseminação dos Dados

	Considerações Finais

	Resultados
	Configuração e metodologia de avaliação
	Resultados
	Integração entre os módulos presentes nos procedimentos do mecanismo proposto
	Comparação com o estado da arte


	Conclusão
	Trabalhos Futuros

	Referências

