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Resumo

A podocitopatia é uma condicao caracterizada por lesoes nos poddcitos, células essenciais
dos glomérulos renais responsaveis pela filtragem do sangue. Essas lesdes comprometem
a funcao renal e podem evoluir para glomerulosclerose, proteintiria e nefropatia diabética.
A identificacdo de lesoes podocitarias em imagens histologicas é desafiadora, devido a
dificuldade de distingao celular e ao carater laborioso do diagnodstico. Este estudo propds
estratégias para aprimorar algoritmos de classificagdo bindria e segmentacdo seméantica
de lesoes podocitarias em cenarios de dados limitados, desbalanceados e multicoloridos.
Foram desenvolvidos um classificador de podocitopatia e uma nova abordagem de segmen-
tacao baseada na fusao dos espagos de cor RGB e HED, além da criagdo de um conjunto
de dados multicorante, anotado em quatro classes de lesdes podocitarias. Os experimentos
indicaram que as solugdes propostas elevaram o desempenho dos modelos de classificagao,
com aumento do F1-score de 87,8% para 90,9%. Também foi observado impacto posi-
tivo na préatica médica, com o indice de concordancia entre patologistas (Fleiss’ Kappa)
aumentando de 0,59 para 0,83. Na segmentacao, os métodos propostos proporcionaram
ganhos médios de até 9,1% no FI1-score e 8,5% no IoU. Os resultados evidenciam o po-
tencial das técnicas desenvolvidas para apoiar o diagndstico na nefropatologia e fortalecer

a aplicacao da inteligéncia artificial na patologia computacional.

Palavras-chave: Patologia computacional, Aprendizagem profunda, Imagens histologi-

cas, Classificacao, Segmentacao, Glomérulos, Podocitopatia.
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Abstract

Podocytopathy is a pathological condition characterized by injuries to podocytes, key cells
in the renal glomeruli responsible for blood filtration. These injuries affect renal function
and can lead to glomerulosclerosis, proteinuria, and diabetic nephropathy. Identifying
podocyte lesions on histological images is challenging due to the difficulty of cellular dif-
ferentiation and the labor intensive diagnostic process. This study proposed strategies
to enhance binary classification and semantic segmentation algorithms for podocyte le-
sion detection under conditions of limited, imbalanced, and multi-stained datasets. A
podocytopathy classifier and a novel segmentation approach based on the fusion of RGB
and HED color spaces were developed, along with the creation of a multistained dataset
annotated into four podocyte lesion classes. The experimental results showed that the
proposed solutions improved the classification performance, increasing the F1-score from
87.8% t0 90.9%. A positive impact on medical practice was also observed, with the inter-
pathologist agreement (Fleiss’ Kappa) rising from 0.59 to 0.83. In segmentation tasks,
the proposed methods produced average gains of up to 9.1% in F1-score and 8.5% in IoU.
These findings highlight the potential of the techniques developed to support diagnostic
practices in nephropathology and to advance the integration of artificial intelligence into

computational pathology.

Keywords: Computational pathology, Deep learning, Histological images, Classification,

Segmentation, Glomeruli, Podocytopathy.
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Capitulo 1

Introducao

1.1 Contextualizacao

A evolugao dos métodos e técnicas computacionais, observada nas ultimas décadas, tem
contribuido significativamente para a otimizacdo de tarefas em diversas areas do conhe-
cimento [1]. Na medicina, a colaboragdo com a computagao tem promovido melhorias no
diagnostico e prognostico de doencas, além de auxiliar na andalise de estruturas biologi-
cas [2].

Entre as areas da medicina com mais exemplos de aplicagbes computacionais, a pato-
logia se destaca [3, 4]. Este ramo da medicina e biologia destina-se a investigar a causa de
doencgas por meio da observagao visual de células, érgaos, fluidos corporais e tecidos bio-
l6gicos [5], tendo como principal objeto de estudo as imagens histoldgicas, que sdao obtidas
principalmente por meio de exames de bi6psia e cAmeras acopladas a microscépios [6].

A difusao dos métodos computacionais na patologia levou ao surgimento de um novo
campo de estudo, conhecido como patologia computacional [7]. Segundo a Associagdo
de Patologia Digital (Digital Pathology Association - DPA), a patologia computacional
envolve a analise de doengas por meio de uma variedade de métodos computacionais,
como redes neurais e algoritmos classicos de processamento de imagens [4, 8].

Segundo Barisoni et al. [9], os trabalhos em patologia computacional se organizam em
trés grupos: telepatologia, patologia digital e analise computacional de imagens. A tele-
patologia refere-se a transmissao de imagens microscépicas para patologistas localizados
em diferentes localidades. A patologia digital refere-se a criacdo de ambientes digitais
que possibilitam a andlise de laminas inteiras de tecido (Whole Slide Imaging - WSI).
Por fim, a analise computacional de imagens esta associada ao uso de algoritmos de visao
computacional, que é um campo de estudo destinado a construir modelos computacionais

baseados em dados visuais (imagens e videos) [10]. Esses métodos sao utilizados na analise



computacional de imagens para extracao de caracteristicas, classificagao ou segmentacao
de estruturas biolégicas lesionadas ou doentes.

Entre os trabalhos de analise computacional de imagens, é possivel encontrar estu-
dos genéricos, destinados a imagens histologicas em geral, independentemente do Or-
gao [11, 12]. No entanto, de forma mais comum, hé trabalhos especializados em diferentes
estruturas biolégicas, tecidos ou 6rgaos do corpo humano [13, 14, 15].

Na patologia renal, especificamente, observa-se um ntimero crescente de estudos volta-
dos a andlise computacional de imagens [16]. Muitos desses estudos caracterizam-se pelo
uso de métodos automatizados para auxiliar na andlise de transplantes [17], segmentagao
de estruturas [12] ou andlise de glomérulos [18, 19, 20], que sdo as principais estruturas
do rim responsaveis pela filtragem do sangue [21].

Ao analisar os trabalhos na area renal, focados na andlise de glomérulos, observa-se
que, apesar do crescente interesse dos pesquisadores, refletido no aumento do nimero
de publicacoes, ainda ha lacunas significativas, tanto metodoldgicas quanto em relacao a
doengas pouco exploradas. [22, 23].

Em relagao as lacunas metodologicas, destaca-se a necessidade de uma grande massa
de dados, com distribuicao balanceada de amostras por classe, adquiridos de diferentes
laboratérios, utilizando variados corantes e devidamente anotados por especialistas hu-
manos (patologistas) [23]. Esses desafios surgem principalmente porque a maioria dos
métodos propostos se baseia em aprendizagem profunda (deep learning), que é um sub-
campo do aprendizado de maquina (machine learning) que se concentra no uso de redes
neurais artificiais com multiplas camadas para modelar e aprender representacoes de dados
complexos [24]. Portanto, estudos que oferecam novas estratégias de aprendizado para
enfrentar essas dificuldades podem promover avancos na elaboracao de técnicas, tanto
para imagens de glomérulos renais quanto para outros tipos de imagens histologicas.

Em relagdo as doencas pouco exploradas, é possivel destacar o desafio de segmenta-
¢ao de lesdes e estruturas glomerulares [25], a predicao e o apoio ao estudo de doencas
cronicas [22, 26]. Entre essas lacunas, encontra-se o desafio de segmentar os diferentes
tipos de lesdes em poddcitos, células do tecido epitelial visceral do glomérulo [27]. O es-
tudo dessas lesdes podocitarias é fundamental, pois os patologistas enfrentam dificuldades
para diferenciar podécitos das demais células intra-glomerulares em imagens de microsco-
pia de luz. Além disso, os poddcitos sao biomarcadores importantes para doencas como
glomerulosclerose progressiva, diabetes e proteintria [28, 29, 30, 31, 32].

Até o momento, foram identificados apenas seis estudos com o objetivo de detectar
podocitopatia em imagens de glomérulos renais, e ainda menos propostas de segmentacao
de poddécitos com base no tipo de lesao. Entre os trabalhos encontrados, nenhum dos

métodos propostos realiza a tarefa de informar ao usuario quando um glomérulo possui



ou nao podocitopatia, concentrando-se principalmente na deteccdo e quantificacdo de
poddcitos, associando-os a outras doengas [28, 33, 34, 31].

Considerando o contexto deste estudo e as lacunas apresentadas, pode-se concluir que
o presente trabalho se situa em uma area de intersecao entre a patologia computacional
e a visao computacional. As contribui¢oes pretendidas visam atacar ambas as lacunas:
computacional e de aplicacao, fornecendo, assim, (1) novas ferramentas para a patologia
e (2) novos métodos e abordagens computacionais para anélise automatica de imagens

histologicas de glomérulos renais em relacao a presenca de podocitopatia.

1.2 Motivacao e justificativa

Este trabalho possui duas motivagoes principais: A primeira esta relacionada a impor-
tancia de desenvolver novas metodologias e abordagens para a analise de imagens de
glomérulos renais, visando superar os desafios ja identificados nos estudos recentes de
imagens histologicas. A segunda motivacao refere-se as possiveis aplicagoes na patologia,

com énfase na relevancia do estudo da podocitopatia.

e Motivagdo Computacional. Considerando que os algoritmos comumente utili-
zados se baseiam em técnicas de aprendizagem profunda [35, 36, 17], é necessério
adquirir conjuntos de dados compostos por uma ampla diversidade de imagens his-
tolégicas de glomérulos renais com lesdes podocitarias. Isso se deve ao fato de que
as imagens histologicas dos glomérulos sao obtidas utilizando diferentes corantes,
equipamentos de aquisigdo (como cdmeras e escdneres) e protocolos [37]. Portanto,
para que os modelos sejam adequadamente treinados e validados, esses aspectos

devem ser devidamente considerados.

A construcao de conjuntos de dados que satisfacam esses critérios representa um
desafio significativo. A podocitopatia, por exemplo, é uma doenca que ainda nao
possui um conjunto de dados publicado, muito menos um que contenha uma varie-
dade de amostras que satisfaca os requisitos mencionados. Dessa forma, a criagao
de novos conjuntos de dados pode impulsionar pesquisas no campo da patologia

computacional.

No entanto, mesmo com a elaboracao de conjuntos de dados que garantam a di-
versidade de amostras, em casos de algumas doengas, como a podocitopatia, nao é
possivel assegurar uma distribuigdo proporcional entre as diferentes classes presen-
tes no conjunto de dados, tampouco garantir a mesma distribuicao em relagao aos

corantes utilizados. Assim, é necessario avaliar os métodos tradicionais de aprendi-



zado e desenvolver alternativas que melhorem o desempenho desses métodos diante

da complexidade dos dados.

« Motivagao Aplicacional para Patologia. Em relacao a importancia do estudo
da doenca, é relevante considerar que as lesdes nos poddécitos sao biomarcadores
de diversas outras doencas, como glomerulosclerose progressiva, tumor de Wilm’s
e diabetes nefrética [29, 28, 30, 31]. Portanto, métodos e técnicas de andlise auto-
matica da podocitopatia em imagens de glomérulos podem se tornar ferramentas

extremamente tteis para os nefropatologistas.

Esses métodos tém o potencial de reduzir a subjetividade das andlises, acelerar o
processo de diagndstico e aprimorar a precisao das decisoes médicas. Além disso,
podem ser utilizados como ferramentas de apoio na formagao e no treinamento de

novos patologistas [38].

Como resultado deste trabalho, espera-se que os dados gerados, baseados em glo-
mérulos com podocitopatia, fortalecam grupos de pesquisa e possibilitem melhorias nas
técnicas de analise de imagens histologicas, tanto por meio de abordagens tradicionais de
aprendizagem profunda quanto por meio de novas estratégias analiticas, além de gerar

conjuntos de dados relevantes para pesquisadores nas areas de patologia e computacao.

1.3 Hipodteses de pesquisa
As seguintes perguntas norteiam este trabalho e sintetizam o problema de pesquisa:

1. Em um contexto de dados desbalanceados e multicoloracao, qual é o desempenho
alcancado pelos métodos baseados em aprendizagem profunda, recorrentemente uti-
lizados em trabalhos similares, nas tarefas de classificacao de glomérulos quanto
a presenca de podocitopatia e segmentacao de lesoes podocitarias em imagens de

glomérulos renais?

2. Neste mesmo contexto de dados, é possivel elaborar novas abordagens a partir dos
modelos ja existentes que, no entanto, superem os resultados obtidos por esses mé-

todos convencionais?

1.4 Objetivos

O objetivo geral deste trabalho é propor novas solu¢ées para o problema da anéalise auto-
matizada de podocitopatia em imagens de glomérulos renais, superando os resultados ob-

tidos por métodos computacionais baseados em aprendizagem profunda, tradicionalmente
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utilizados na literatura especializada, no contexto de conjuntos de dados desbalanceados
e multicoloracao.

Os objetivos especificos deste trabalho sao:

1. Fornecer novos conjuntos de dados sobre lesoes podocitarias, que simulem cenarios
de multicoloracao e desbalanceamento, contribuindo para o avango dos estudos na

comunidade de pesquisadores de patologia computacional.

2. Aperfeicoar o desempenho de modelos de classificacao binaria, de identificacao da
presenca ou auséncia de podocitpatia, a partir desses dados por meio de solugoes

metodolégicas inovadoras.

3. Estudar o impacto do uso de classificadores automatizados na pratica dos patolo-

gistas.

4. Propor modificagoes de topologia e arquitetura para aprimorar o desempenho de

modelos de segmentacao semantica, considerando o conjunto de dados desenvolvido.

1.5 Organizacao do documento

Este documento esta organizado da seguinte forma: No Capitulo 2, sdo apresentadas as
defini¢oes relacionadas a imagens histologicas, podocitopatia e as técnicas computacionais
frequentemente utilizadas para sua analise automatica. No Capitulo 3, sdo descritos os
trabalhos correlatos, organizados em se¢oes que gradativamente se aproximam do pro-
blema da podocitopatia. No Capitulo 4, é detalhada a metodologia e as contribui¢oes
propostas. No capitulos 5, sdo apresentados os resultados obtidos. No Capitulo 6, sdo

apresentadas as conclusoes e os trabalhos futuros.



Capitulo 2
Fundamentacao Tedrica

Neste capitulo, sao apresentadas as defini¢bes fundamentais relacionadas ao escopo deste
trabalho. Inicialmente, introduzem-se conceitos fundamentais sobre o processo de aquisi-
¢ao de imagens histologicas, seguidos de uma breve explicagdo sobre a estrutura interna
dos glomérulos e informagoes acerca da podocitopatia. Em seguida, discutem-se as defi-
nigoes associadas as técnicas e métodos computacionais utilizados na analise automatica
de imagens histolégicas, com énfase em abordagens baseadas em aprendizagem profunda

(deep learning).

2.1 A estrutura do glomérulo e a podocitopatia

Os rins, 6rgaos do sistema urinario, sao responsaveis pela formacao da urina e possuem
dimensoes de aproximadamente 10 a 13 cm de comprimento, peso entre 120 e 180 g, e estao
localizados na regiao lombar, acima da cintura, um de cada lado da coluna vertebral [39].

A Sociedade Brasileira de Nefrologia (SBN) esclarece que os rins desempenham quatro
fun¢oes principais no organismo: eliminacao de toxinas do sangue por meio de um sistema
de filtragao; regulacao da formacao do sangue e dos ossos; controle da pressao arterial; e
manutengao do balango quimico e hidrico do corpo [40].

Ainda segundo a SBN, as doencas renais tém um impacto significativo na populagao,
gerando um gasto de 2,2 bilhdes de reais por ano apenas com hemodiélise [41], pois o
mau funcionamento dos rins frequentemente leva a necessidade de dialise. Na maioria dos
casos, o tratamento deve ser mantido por toda a vida, a menos que o paciente possa ser
submetido a um transplante renal [40]. Um dado alarmante é que, anualmente, cerca de

21 mil brasileiros precisam iniciar tratamento por hemodiélise' [42] [43].

IProcesso artificial que substitui a funcdo dos rins quando estes ndo conseguem mais filtrar as impu-
rezas e excesso de liquidos do sangue [40].



Anatomicamente, os rins possuem duas zonas principais: cértex e medula renal. E
no cértex que se encontram os néfrons, unidades funcionais dos rins, responsaveis pela
formacao da urina. Estima-se que um rim humano contenha entre 800 mil e 1 milhao de
néfrons, cada um composto por numerosos glomérulos que desempenham um papel ativo
na filtracdo sanguinea [39, 44].

Os néfrons sao estruturas que nao se regeneram [44]. Dessa forma, lesdes renais, do-
encas ou o proprio processo de envelhecimento levam a redugdo progressiva do nimero
de néfrons. Cada néfron é composto por um grupo de capilares glomerulares denominado
glomérulo, responséavel por filtrar grandes quantidades de liquido do sangue, e por dois
longos tubulos, onde o liquido filtrado é convertido em urina [45]. O glomérulo é consti-
tuido por uma rede de capilares glomerulares envolvidos por células epiteliais e circundado

pela capsula de Bowman [45], apresentado na Figura 2.1.
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Figura 2.1: Glomérulo renal: (a) imagem observada em microscépio, (b) ilustracao com
a localizagao das estruturas internas. (Fonte: [46]).

Os glomérulos possuem, em sua estrutura interna, diferentes tipos de células: mesangi-
ais, endoteliais, epiteliais parietais e epiteliais viscerais (também conhecidas como podéci-

tos) [39]. A principal fun¢ao dos poddcitos é restringir a passagem de proteinas do sangue
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para a urina [27]. Assim, lesdes podocitarias podem comprometer a capacidade filtrante
do glomérulo devido aos danos causados a estrutura glomerular [21]. Adicionalmente, le-
soes em podocitos sao biomarcadores de uma série de doencas, como: glomeruloesclerose
progressiva, tumor de Wilm’s, diabetes e proteinuria [28, 29, 30, 31, 32].

De acordo com Fuad et al. [47], lesoes podocitarias também estao associadas ao fator
de crescimento endotelial vascular. Além disso, a redugdo do nimero e/ou densidade de
poddcitos, como resultado de apoptose ou descolamento, espessamento da membrana ba-
sal com composicao de matriz alterada e diminuicao da proteina nefrina. Essa condicao
manifesta-se clinicamente como albuminiria e proteindria. A proteinuria, por sua vez,
pode induzir um programa genético nas células tubulares que leva a inflamacao tubuloin-
tersticial, fibrose e atrofia tubular.

Em um estudo conduzido por Trimarchi e Coppo [48], destaca-se que a identificagdo
de podocitopatias também estd relacionada & nefropatia por imunoglobulina A (IgAN),
definida como uma doencga mesangiopatica. Os autores indicam que a progressao da
IgAN deve-se, principalmente, ao desenvolvimento de proteinuria persistente e a fungao
e anatomia dos poddcitos desempenham um papel importante nesse processo. Na [gAN,
as alteracoes podocitopaticas sao consequéncia de danos iniciais na regiao mesangial.
Os podocitos sao afetados por interagoes de sinais originados do mesangio e, apds os
danos, destacam-se da membrana basal glomerular. Essa podocitopatia favorece nao
apenas o desenvolvimento de esclerose glomerular focal e segmentar, mas também a perda
progressiva da func¢ao renal.

A podocitopatia também estd associada a doenga de Lupus [49] e & nefropatia diabética
(ND) [50]. A ND ¢ caracterizada pela perda da funcao podocitaria do glomérulo renal.
Nos Estados Unidos, os gastos com ND entre 2015 e 2021 avancaram de 748 mil délares
para mais de 2 bilhdes e meio de ddlares por ano [51].

Por fim, os poddcitos contribuem para a integridade da barreira de filtragao glomerular,
e evidéncias recentes sugerem que essas células podem ser alvos diretos de hormonios,
lipidios e adipocinas circulantes afetados no diabetes [50, 49].

Ao analisar lesdes podocitarias [21], pode-se observar 3 tipos béasicos de lesoes. Este
trabalho concentra-se nestes trés tipos: degeneracao, hiperplasia e hipertrofia. A Fi-
gura 2.2 apresenta 2 exemplos de imagens de glomérulos renais, destacando poddcitos

com lesdao degenerativa (a) e poddcitos saudéveis (b).

2.2 Definicoes sobre imagens histolégicas

As imagens histologicas sao representacoes visuais de tecidos biologicos, obtidas a partir

de técnicas especificas de preparo e coloragao [35]. Segundo Caputo et al. [37], o processo



Figura 2.2: Glomérulo com (a) e sem (b) lesdo podocitaria (degeneragao) (Fonte: [52]).

para obtencao de amostras de tecido biolégico envolve as seguintes etapas bésicas: co-
leta, fixacao, clivagem, processamento, inclusao, microtomia (corte) e coloragdo. Apds a
preparacao das laminas de tecido, a captura das imagens digitais é realizada utilizando
uma camera acoplada ao microscopio. A Figura 2.3 ilustra cada etapa do processo de

aquisicao destas.
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Figura 2.3: Etapas bésicas de aquisi¢do de imagens histolégicas (Fonte: [53]).

Silvano et al. [37], descreve as etapas de aquisigdo de imagens histolégicas: Coleta
(Etapa 1), consiste em remover amostras de tecido de um organismo por meio de bidpsia,
que é o procedimento de remoc¢ao de uma pequena porg¢ao de tecido para analise microsco-
pica. Fizagao (Etapa 2) é realizada para interromper o processo de degradagao do tecido
(metabolismo celular) e preservar seus elementos estruturais. Durante a clivagem (Etapa

3), o objetivo é reduzir as dimensoes dos fragmentos de tecido para tamanhos entre 3



mm e 5 mm. O processamento (Etapa 4) promove a difusdo de reagentes no interior dos
tecidos e a remocao de liquidos teciduais.

A etapa de inclusao (Etapa 5) consiste em inserir os tecidos processados em parafina,
utilizando uma pinga aquecida. Na microtomia (Etapa 6), os tecidos sdo cortados em
fatias extremamente finas, com espessura entre 4 pm e 6 pm, permitindo sua andlise
em microscopia de luz. Por fim, na etapa de coloracao (Etapa 7), compostos orgdnicos
sdo aplicados as laminas de tecido para atribuir cores especificas as diferentes estruturas.
Essa etapa é essencial, pois tanto as células quanto o material extracelular sao geralmente
transparentes. A diferenciagdo por cores auxilia patologistas na andlise das laminas [37].

A Figura 2.4 apresenta imagens histologicas de glomérulos renais coradas com diferentes

tipos de corantes, cada um destacando estruturas especificas do tecido.

Figura 2.4: Exemplos de corantes utilizados em imagens de glomérulos renais: HE (a),
PAM (b), PAS (c) e Tricomio (d) (Fonte: [52]).

Além do uso de diferentes corantes, a escolha de variados espagos de cores pode melho-
rar significativamente a capacidade de redes neurais profundas para extrair caracteristicas
relevantes de imagens histolégicas [54, 55]. O espago de cores HED (Hematoxilina, Eosina
e Diaminobenzidina) [56], especifico para imagens histolégicas, foi projetado para separar
os principais componentes histoldgicos: nticleo (corado pela Hematoxilina), citoplasma
(corado pela FEosina) e regides coradas por técnicas de imunohistoquimica (Diaminoben-
zidina) [57].

A transformacao de uma imagem do espago de cores RGB para o espago HED é
realizada através da operagao color deconvolution [56]. A conversdao pode ser expressa
matematicamente da seguinte forma [56, 58].

Os vetores de corantes representam as cores caracteristicas de cada corante usado na

coloracao histolégica. Para o espaco de cor HED, os vetores tipicos sao:

« Hematoxilina (H): (0, 65;0,70;0,29)

« Eosina (E): (0,07;0,99;0,11)
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« DAB (D): (0,27;0,57;0,78)
A matriz de transformacgao T' é construida empilhando esses vetores como colunas:

0,65 0,07 0,27
T = 10,70 0,99 0,57 (2.1)
0,29 0,11 0,78

Para cada pixel na imagem RGB, representado como um vetor Irep = (R, G, B)?,
a conversao para o espaco HED ¢é realizada multiplicando o vetor Irgp pela matriz de

transformacao 7"

]HED :T'IRGB (2'2)

sendo Igpp = (H, E, D).
Apo6s a conversao, cada canal H, E' e D no vetor Iy gp representa a intensidade relativa

dos corantes Hematoxilina, Eosina e DAB, respectivamente, na imagem original.

2.3 Redes Neurais Convolucionais

As Redes Neurais Convolucionais (Convolucional Neural Networks - CNNs) surgiram a
partir de estudos sobre a percepcao visual em organismos bioldgicos, com experimen-
tos conduzidos por dois pesquisadores: Hubel e Wiesel, na década de 1960 [59]. Eles
demonstraram como neuronios no cortex visual de gatos respondem seletivamente a pa-
droes especificos, como bordas e orientagoes. A partir desse conceito, foi desenvolvido o
Neocognitron, proposto por Fukushima [60], que se tratava de uma arquitetura baseada
em camadas hierarquicas para reconhecer padroes visuais. No entanto, apenas no final da
década de 80, que Lecun et al. [61] aplicaram o algoritmo de retropropagagao para treinar
redes convolucionais de forma eficiente, resultando no LeNet-5, um modelo pioneiro para
reconhecimento de digitos manuscritos.

Com o avanco do poder computacional e a disponibilidade de grandes conjuntos de
dados, as CNNs se tornaram fundamentais para aplicagoes em visao computacional, o
que culminou no sucesso do modelo AlexNet em 2012 [62], revolucionando o campo da
inteligéncia artificial ao vencer a competigao ImageNet [63] com um desempenho superior
as abordagens tradicionais.

Em seu funcionamento, as redes neurais convolucionais sao caracterizadas por serem
um tipo especifico de rede neural voltada para o processamento de dados com topologia

em grade [24, 59]. As imagens sdo um exemplo desses dados. A principal caracteristica
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desse tipo de rede é a utilizagdo da operagao de convolugao em pelo menos uma de suas
camadas [24].

Uma camada de convolugao realiza, essencialmente, o produto escalar entre duas ma-
trizes: a janela de convolugao (Kernel) e o campo receptivo, que corresponde a uma por¢ao
da entrada (como uma regiao de uma imagem). Para imagens compostas por trés canais
(RGB, por exemplo), a altura e a largura do Kernel sdo tipicamente pequenas, mas sua
profundidade deve corresponder ao niimero de canais da entrada [24, 64]. O computo da
operacao de convolugao em uma regiao da imagem ¢ ilustrada na Figura 2.5, e o resultado

desse processamento (OQutput) é denominado mapa de ativagao.

Input
Kernel
w T
y z
—>
aw + br + bw + e + cw + dr +
ey + [z fy + gz gy + hz

ew + fx + fw + g + gw + hr +

Figura 2.5: Exemplo da operacao de convolucao 2D, demonstrando como um Kernel
desliza sobre uma matriz de entrada (Input). Cada elemento da matriz resultante é
obtido pela multiplicacdo ponto a ponto dos valores correspondentes entre o Kernel e
uma submatriz da entrada, seguida da soma desses produtos. Esta operagao é repetida
ao longo da matriz de entrada, resultando em uma nova matriz (Output) de dimensao
reduzida, que destaca caracteristicas especificas da imagem original. (Fonte: [24]).

Apos a aplicacdo da convolugao, os mapas de ativacdo passam por uma funcao de
ativagdo nao linear, como a ReLU (Rectified Linear Unit) [65], que introduz nao linea-
ridades ao modelo, permitindo a rede aprender representacoes mais complexas e ajudar
a evitar o problema de desaparecimento de gradiente (vanishing gradient). Além disso,
operagoes como subamostragem (ou pooling) [66] sdao frequentemente empregadas para

reduzir as dimensoes espaciais dos mapas de ativagao, o que diminui a quantidade de pa-
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rametros e o custo computacional, ao mesmo tempo em que preserva as informagoes mais
relevantes. Essas camadas sao empilhadas em profundidade, criando uma hierarquia de
caracteristicas, desde padroes simples, como bordas e texturas, nas camadas iniciais, até
representagoes mais abstratas, como objetos completos, nas camadas mais profundas [24].
Esse processo de extragao e hierarquizacao de caracteristicas é fundamental para o bom
desempenho das redes convolucionais em tarefas como classificagdo de imagens, deteccao

de objetos e segmentacao seméantica [24, 64].

2.3.1 Hiperparametros e Componentes das Redes Neurais Con-

volucionais

H&4 uma série de hiperparametros e componentes necessarios no contexto de uma rede
neural convolucional. Essas defini¢bes sao variaveis ou fungoes escolhidas antes do treina-
mento do modelo e influenciam diretamente seu desempenho, capacidade de generalizacao
e eficiéneia computacional [67).

Alguns desses hiperparametros sdo as func¢oes de otimizacao, perda e ativagao, tama-
nho do lote (batch size) e taxa de aprendizado (learning rate):

Os otimizadores sdo métodos utilizados para atualizar os pesos e a taxa de aprendizado
durante o treinamento, com o objetivo de reduzir a Funcao de perda (Loss function) do
modelo. O otimizador mais simples utilizado em redes neurais é o Gradiente Descendente
Estocastico (Stochastic Gradient Descent - SGD) [68]. Este é um algoritmo de primeira
ordem, pois calcula a derivada de primeira ordem da fun¢ao de perda. Através do processo
de retropropagacao (backpropagation), a perda é propagada de camada para camada, e 0s
pesos sao ajustados [24]. Outros métodos de otimizagao incluem, por exemplo, Adaptive
Gradient Algorithm (Adagrad) [69], Root Mean Square Propagation (RMSprop) [70] e
(Adadelta) [71].

O Adagrad é uma modificagao do algoritmo SGD, que ajusta a taxa de aprendizado
para cada pardmetro do modelo, ao invés de usar uma tunica taxa de aprendizado, fixa,
para todo o modelo [69]. Essa abordagem pode melhorar a convergéncia, especialmente
quando os dados sdo esparsos [69, 24]. O RMSprop, por sua vez, adapta a taxa de
aprendizado de cada peso dividindo a taxa de aprendizado por uma média das magnitudes
dos gradientes recentes para aquele peso [70].

As funcoes de perda (loss functions) [24] sdo utilizadas em conjunto com os otimi-
zadores com a finalidade de calcular repetidamente a perda de um dado modelo a cada
atualizagdo dos pesos da rede. Ha func¢oes adequadas para os diferentes problemas de

aprendizado. Em problemas de classificacdo geralmente utiliza-se as seguintes funcoes:
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Binary cross-entropy [72] (para problemas binarios), Hinge [73] e Cross-entropy (para
classificagdo em problemas multiclasse) [24].

Diferentes fungdes de ativagao podem ser usadas em redes convolucionais, como Sigmoide
[74], Tangente hiperbdlica (T'anh) [75] e ReLU (Rectified Linear Unit) [76]. Essas fun-
goes sao aplicadas diretamente apés a camada convolucional [77]. Elas se diferenciam em
relacao as suas féormulas e ao intervalo dos valores de saida. Por exemplo, a ReLU re-
torna valores no intervalo [0, 00), enquanto a tangente hiperbélica tem saida no intervalo
(—1,1).

O batch size [67] é o nimero de amostras processadas antes que os pesos do modelo
sejam atualizados. O conjunto total de amostras é dividido em lotes de treinamento, os
quais tém o seu tamanho definido através deste hiperparametro [24]. Esta escolha é bem
importante no processo de treinamento de uma rede neural. Uma escolha de valor alto
para o batch size pode possibilitar aceleragoes computacionais do paralelismo das GPUs.
Adicionalmente, usar um batch size igual a todo o conjunto de treinamento pode garantir
a convergéncia para o 6timo global da fungao [67]. Por outro lado, o uso de tamanhos
menores tende a gerar uma convergéncia mais rapida, que se explica intuitivamente pelo
fato de valores de batch size menores permitirem que um dado modelo inicie o aprendizado
antes de processar todos os dados [78].

A taxa de aprendizado (learning rate) é um valor associado a fungao de otimizagao
e implica em dizer o quao rapido ou lento um dado modelo aprende uma tarefa, ou
em outras palavras, o tamanho dos passos que a funcao de otimizacao da até atingir
os valores minimos de perda do modelo [24]. A Equacado 2.3 descreve a atualizacdo de
pesos da rede e também mostra o papel da taxa de aprendizado (representada como 7)
no calculo dos novos pesos. Os demais elementos da Equacao 2.3 representam: o novo

valor de peso (W,,), o valor antigo do peso (W,), o valor retornado pela fungao de perda

) . ~ 3
(L) e a derivada parcial de L em relagao ao W, (8750),
oL
W, —w, g 2L 2.3
P (2.3)

Entre os componentes fundamentais para o treinamento de um modelo de CNN, tam-
bém estao as operacoes de pooling e de regularizagao.

A operacao de pooling, por exemplo, reduz o tamanho espacial da representacao do re-
sultado da convolugao, diminuindo a quantidade necessaria de computacao e pesos. Entre
as operagoes de pooling, o max pooling ¢ uma estratégia comum em diversas arquiteturas
de rede [79, 80, 81]. Nesse caso, a redugao da dimensao é feita selecionando os maiores
valores na aplicacao do kernel, o que, teoricamente, filtra os atributos de maior importan-

cia [64]. No que diz respeito as fungoes de ativagao, elas padronizam os valores de entrada
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e tém como objetivo inserir nao-linearidade na rede. Como a convoluc¢ao é uma operacao
linear, a nao-linearidade torna possivel que a rede resolva problemas nao triviais.

As operagoes de regularizacao visam reduzir o risco de sobreajuste (overfitting), que
ocorre quando uma rede neural continua melhorando o desempenho nos dados de treina-
mento, mas apresenta um desempenho inferior nos dados de teste [82]. Uma das técnicas
mais comuns de regularizagao em redes neurais é o Dropout [83], que desativa uma porcen-
tagem dos neuronios durante o treinamento, impedindo que seus pesos sejam atualizados
em todas as épocas.

Alguns exemplos de arquiteturas conhecidas de redes neurais convolucionais sdo as
ResNets [84], DenseNets [85], Inception [80], VGG [79], Inception-ResNet [81], Xcep-
tion [86] e as EfficientNets [87]. Cada uma dessas arquiteturas adota diferentes estraté-
gias e mecanismos de aprendizado, inserindo novas operacoes e aprimoramentos nas redes
convolucionais tradicionais, o que resulta em desempenhos ainda mais precisos em tarefas

de classificacao, regressao e segmentacao de imagens.

Ajuste de hiperparametros

Para alcancar bons resultados e garantir uma generalizacao satisfatoria nas CNNs, é
fundamental escolher adequadamente seus hiperparametros. A escolha inadequada de
um hiperparametro, como a taxa de aprendizado, por exemplo, pode impedir que um
modelo encontre os valores minimos da funcao de perda. Um modelo é composto nao
apenas por sua arquitetura de rede e pelos pesos obtidos no treinamento, mas também
por uma combinacao especifica de hiperpardmetros [82].

As estratégias para a escolha de hiperparametros podem variar desde abordagens ma-
nuais baseadas em um processo intuitivo até métodos automatizados, como a otimizacdo
bayesiana [88] e algoritmos genéticos [89]. A seguir, apresentamos uma descri¢ao intuitiva
de algumas dessas estratégias: Grid search [90], Random search [91] e Hyperband [88].

O método Grid search (busca em grade) é uma estratégia de busca exaustiva. O
ajuste dos hiperparametros ocorre da seguinte maneira: inicialmente, define-se um espaco
de busca com intervalos fixos para cada hiperparametro. Em seguida, o espaco de busca
de cada hiperparametro ¢ discretizado, assim como o espaco de busca geral, que se torna
o produto cartesiano dos espacos de cada hiperpardmetro. No final, o algoritmo treina
um modelo para cada configuracao de hiperparametros e, ao final, seleciona a melhor
configuragao. Este método requer grande poder computacional, pois é necessario trei-
nar varios modelos (um para cada configuracdo), além de ser suscetivel a maldicio da
dimensionalidade (nimero exponencial de configuragdes a serem testadas) [90].

O método Random search (busca randomica) é uma variagdo do método anterior e

também pode ser classificado como uma busca exaustiva. A diferenca fundamental é
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que, em vez de discretizar o espago de busca com uma grade cartesiana, o algoritmo
realiza uma escolha aleatéria dentro desse espago. A busca é finalizada apds um tempo
previamente definido. Embora também sofra com a maldi¢do da dimensionalidade, este
método costuma apresentar melhores resultados do que a busca em grade [91].

Por fim, o método de ajuste Hyperband, se baseia na abordagem de otimizacao de hiper-
pardmetros proposta em [92]. Sua intui¢do assemelha-se a uma competicao em busca da
melhor combinagao de hiperparametros. Inicialmente, define-se o niimero (i) de iteragoes
nas quais as combinacoes de hiperparametros serao avaliadas. Em seguida, o algoritmo
calcula aleatoriamente uma amostra de 64 conjuntos de hiperparametros a partir do es-
paco de busca. A partir desse momento, a perda no conjunto de validacao associada a
essas combinagoes é avaliada consecutivamente apos i/2 iteragdes. Apds a avaliagdo, me-
tade das combinag¢des com menor desempenho sao descartadas. As combinagoes restantes
sdo avaliadas novamente por mais ¢/2 iteragoes. Esse processo de descarte é repetido até

que o modelo gerado pela melhor combinacao seja o tnico restante [88].

2.4 Classificacao e Segmentacao de Imagens

A tarefa de classifica¢io de imagens é um problema na drea de visdo computacional [93,
10], que consiste em associar um rétulo (ou classe) a imagens de um conjunto de teste,
sendo que o modelo nao avaliou esses rétulos previamente. Nas tltimas décadas, muitos
dos métodos mais eficazes para a classificacao de imagens em diferentes dominios tém
sido baseados em redes neurais convolucionais (CNNs) [94, 95]. No campo da Patologia
Computacional, essa técnica tornou-se o estado da arte tanto para classificacio quanto
para detecgio e segmentacio de imagens histologicas [96, 97].

A segmentagdo de imagens é uma tarefa do processamento digital de imagens e visao
computacional que consiste em dividir uma imagem em regioes ou partes homogéneas, com
base em caracteristicas como cor, textura ou intensidade, por exemplo, com o objetivo de
facilitar a anélise e interpretagao [98, 10]. Dentro deste contexto, a segmentagao semantica
refere-se a classificacdo de cada pixel da imagem em uma categoria especifica, atribuindo a
cada regiao ou objeto um rétulo correspondente ao seu significado [99]. Diferentemente da
segmentacao convencional, que apenas separa a imagem em areas distintas, a segmentacao
semantica busca entender o conteido semantico de cada parte da imagem, tornando-a
mais util para tarefas como reconhecimento de objetos, navegacao autonoma e diagnostico
médico [100].

A utilizacao das CNNs na tarefa de segmentacao é viabilizada por arquiteturas espe-
cificas para este fim. Ao pesquisar os algoritmos de segmentacao semantica baseados em

redes neurais convolucionais, comumente utilizados em imagens histolégicas, destacam-se

16



duas principais arquiteturas: a U-Net [101] e a DeepLabv3 [42]. Essas arquiteturas de
rede também aparecem na literatura com versdes modificadas, que alteram o ntimero de
camadas, os encoders (redes de classificagdo utilizadas) e a inser¢do de mecanismos de
atencao [102].

Compreender a U-Net [103] ajuda a entender intuitivamente como a maioria das arqui-
teturas de redes para segmentacao semantica se organizam. A U-Net é composta por dois
blocos principais: o Codificador (Encoder) e o Decodificador (Decoder). A Figura 2.6 ilus-
tra a arquitetura padrao da U-Net. O bloco a esquerda refere-se ao Codificador, enquanto

os blocos a direita correspondem ao Decodificador.

Imagem ||, &> 9|5 Mapade
de entrada -| | . atributos

|
M 2 512 25
,H’H’D 3 QTH’D =»conv 3x3, RelLU

copy and crop

I 3 -l § max pool 2x2
7 " ¥ o 4 up-conv 2x2
=» conv 1x1

Figura 2.6: Arquitetura padrao da rede U-Net. Cada caixa azul representa um mapa de
atributos multicanal. As caixas brancas indicam mapas de recursos copiados. As setas
representam as diferentes operagoes realizadas. (Fonte: [101]).

O Codificador é responsavel por capturar o contexto da imagem e segue uma arqui-
tetura tipica de rede neural convolucional. Esta etapa envolve a aplicagao repetida de
convolucoes 3 x 3, seguidas da funcao ReLU e de uma operagao de max pooling, reali-
zando uma redugao de dimensionalidade (Downsampling) da imagem. Ja o Decodificador
tem como objetivo calcular a localizacao precisa dos objetos, utilizando convolugoes trans-
postas [103]. Neste estdgio, ocorre a recostrugao dimensional ( Upsampling) dos mapas de
atributos, seguido por uma convolucao, que reduz pela metade o ntimero de canais de atri-
butos. Além disso, ha uma concatenac¢do com os respectivos mapas de atributos gerados
pelo Codificador. Esse processo de concatenacao é necessario devido a perda de informa-

¢oes nas bordas durante as operagoes de convolu¢ao. Na camada final, uma convolugao
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1 x 1 é aplicada para mapear cada vetor de atributos de 64 componentes para o niimero
desejado de classes [103, 104]. No total, a rede possui 23 camadas convolucionais, e, com
esses dois blocos principais, a arquitetura da U-Net pode ser classificada como uma rede
totalmente convolucional (FCN), por nao conter camadas densas [101].

A rede DeepLabv3 ? [42] é especializada em segmentacio semantica e tem sido ampla-
mente adotada em trabalhos com imagens histologicas e apresenta aprimoramentos em
relagdo as versoes anteriores, DeepLabvl e DeepLabv2 [105].

De maneira semelhante & U-Net, a DeepLabv3 [106] ¢ DeepLabv3+ [107] (apresentada
na Figura 2.7) sd@o compostas por duas etapas principais: codifica¢ao e decodificagao. Na
fase de codificagao, o objetivo é extrair informagdes essenciais da imagem utilizando uma
rede neural convolucional pré-treinada. Na fase de decodificagao, as informagoes extraidas
na codificagao sao utilizadas para reconstruir a saida com as dimensoes apropriadas. Para
isso, a rede emprega a técnica de Poolizagdo de Pirdmide Espacial (Spatial Pyramid Poo-
ling) [108], um tipo de operacao de pooling que melhora o desempenho da rede em objetos
deformados. Essa técnica resolve uma limitacdo das redes que utilizam pooling tradicio-
nal, onde a entrada de imagens de tamanho fixo reduz a precisao no reconhecimento de
objetos ou sub-imagens de tamanho ou escala arbitraria [42].

Existem varias arquiteturas de redes para segmentagao semantica, entre as mais po-
pulares estdo: DeepLabv3 [105], DeepLabv3+ [106], U-Net [103], U-Net++ [104], LinkNet
[109], PSPNet [110], FPN [111], MAnet [112] e PAN [113]. Cada uma dessas arquiteturas
possui diferentes estratégias de aprendizado e predi¢ao, sendo mais adequadas a diferen-
tes problemas de segmentacao, dependendo da complexidade das imagens e dos recursos

computacionais disponiveis.

2.5 Redes de Fusao de Caracteristicas Profundas

As redes de fusdo de caracteristicas profundas (Deep Feature Fusion Networks - DFFNs)
representam uma classe de redes neurais projetadas para combinar informagoes proveni-
entes de diferentes fontes ou camadas de caracteristicas [114, 115]. Esse processo visa
aprimorar o desempenho em diversas tarefas, como classificacao de imagens, deteccao de
objetos, segmentagdo semdntica, entre outras [116, 25, 117].

Matematicamente, a operagao de fusdo de caracteristicas em uma DFFN pode ser
descrita como segue:

Dado um conjunto de caracteristicas F = {F}, Fy, ..., F,}, onde cada F; representa
as caracteristicas extraidas de uma camada ou fonte especifica, a operacao de fusao é

definida pela Equacao 2.4:

’https://github.com/tensorflow/models/tree/master/research/deeplab

18


https://github.com/tensorflow/models/tree/master/research/deeplab

Codificador

(" [1x1Conv] —=

Imagem 3x3 Conv
oo | FEE)

Atrous Conv

\

3x3 Conv
rate12 | ™
3x3 Conv l
rate 18 | —*
EAR e
\. |_Pooling J

A NSENEENGENSRN

Low-Level [ Upsample |
W-
Features JLJ

1x1 Conv| —» @—— ConcatJ—-

Predigao

——[3::3 Conv] Uplsjzn;pie ]

S\

Decodificador

Figura 2.7: Arquitetura padrao da DeepLav v3+. O modulo codificador captura infor-
macoes contextuais em miltiplas escalas por meio da convolucao atrous em diferentes
niveis, enquanto o decodificador eficiente refina a segmentagao ao longo dos contornos dos
objetos (Fonte: [107]).

Ffusion:(I,(FlyF27"-aFn)7 (24)

Frusion denota as caracteristicas resultantes do processo de fusdo, e ® representa uma
funcdo que combina as caracteristicas segundo uma estratégia especifica. Exemplos co-
muns de estratégias de fusao incluem: concatenacao, soma ponderada, concatenacao se-

guida de convolugao, entre outras [118].

2.6 Meétricas de Avaliacao

Para avaliar corretamente os modelos em problemas de classificacdo, as métricas mais co-
mumente utilizadas sdo: acurdcia, precisao, revocagiao e F1-score [119]. J4 em problemas
de segmentagio de objetos, é comum o uso da Intersegao sobre Unido (Intersection over
Union - 1oU) (ou Jaccard index) [120].

Considerando os resultados de classificacao de um determinado modelo, estes podem

ser apresentados por meio de uma matriz de confusio (veja a Figura 2.8) [119]:
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o TP (True Positives): refere-se as amostras positivas classificadas corretamente como

positivas;

o TN (True Negatives): sdo as amostras negativas classificadas corretamente como

negativas;

o FP (Fualse Positives): sao as amostras negativas classificadas erroneamente como

positivas;

o FN (False Negatives): sao as amostras positivas classificadas erroneamente como

negativas.

Predicao

Figura 2.8: Exemplo de matriz de confusdo para um problema de classificagdo bina-
ria (Fonte: [121]).

James et al. [122] definem as métricas que sdo amplamente utilizadas em problemas
de classificagao, sobretudo em contextos médicos. A acurdcia (Equacao 2.5) é definida
como o percentual geral de acertos em relacao ao total de amostras classificadas, sendo
dada pela razao entre o niimero de amostras corretas e o total de amostras [122]. A
precisao (Equacao 2.6) é uma métrica que indica a qualidade das previsoes positivas,
calculando a taxa de acerto em relacao aos dados positivos. Essa métrica é util para
avaliar a quantidade de falsos positivos.

A revocagao (recall), também conhecida como sensibilidade (Equagao 2.7), é a taxa de
verdadeiros positivos, ou seja, a proporc¢ao dos dados que realmente deveriam ser classifica-
dos como positivos e que foram corretamente identificados pelo modelo. A especificidade
(Equagao 2.8), é usada para medir a capacidade do modelo de identificar corretamente
os exemplos negativos. Por fim, o F1-score (Equagao 2.9) é uma métrica que combina a
precisao e a revocagao, sendo particularmente 1til para avaliar o desempenho de modelos

em conjuntos de dados desbalanceados [24, 119].

(TN +TP)

Acurécia =
A = TN T FP+ TP+ FN)

(2.5)
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TP

Precisao = m (26)
TP
ReUOCCL(}aO = m (27)
TN
ESpeC?:f?:Cidade = m (28)

Ploscore — 9 x (Precisao X Revocagao)

(2.9)

(Precisao + Revocagao)

Por fim, entre as métricas utilizadas para problemas de classificacao de imagens,
destaca-se a curva ROC (Receiver Operating Characteristic) [123], que é uma representa-
¢ao grafica que expressa a relagdo entre a taxa de verdadeiros positivos e a taxa de falsos
positivos de um modelo de classificacao, considerando diferentes valores de limiar de deci-
sdo. A curva resultante permite visualizar a capacidade do modelo de distinguir entre as
classes positivas e negativas. Modelos ideais aproximam-se do canto superior esquerdo do
grafico, indicando alta taxa de verdadeiros positivos e baixa taxa de falsos positivos. A
AUC (Area sob a Curva) corresponde ao valor numérico da édrea sob a curva ROC. Este

valor varia de 0 a 1 e resume, em um unico nimero, o desempenho do classificador:

« AUC = 1: Classificacao perfeita, separacao total entre as classes.
« AUC = 0,5: Classificacao aleatoria, equivalente a uma escolha sem critério.

« AUC < 0,5: Indica desempenho inferior ao aleatorio, sugerindo que as predicoes

podem estar invertendo as classes.

Assim, quanto maior o valor da AUC, melhor o modelo é em distinguir corretamente
entre as classes.

Para problemas de segmentagdo, a métricas mais comum ¢é a Intersecao sobre Unido
(Intersection over Union - IoU, também conhecido como Jaccard Index) [124].

Seja P a mascara predita por um modelo de deteccao ou segmentacao de objetos,
e G a mascara verdadeira do objeto, o loU mede a sobreposicao entre as areas das
duas mascaras. O objetivo é avaliar o quanto a méscara predita se sobrepoe a mascara
verdadeira. O valor do IoU varia entre 0 e 1, sendo que valores mais proximos de 1
indicam melhor desempenho. A Figura 2.9 ilustra o calculo do IoU, que é dado pela razao
entre a area de sobreposicdo e a drea da unido das méscaras [125].

Por fim, entre estudos da patologia computacional e medicina em geral, recorrente-

mente, é necessario mensurar a concordancia entre observadores [119]. Para tal, utiliza-se
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Figura 2.9: Exemplo de mensuragao do IoU. (Fonte: [126]).

o Cohen’s Kappa (k), que é uma métrica que considera a concordancia observada e a

concordancia esperada pelo acaso. A férmula do Cohen’s Kappa é dada por [127]:

- Po - Pe
TR

Onde, P, ¢é a proporg¢ao de concordancia observada e P, é a proporcao de concordancia
esperada pelo acaso. Este indice ¢ 1til em situacoes binarias ou multicategoriais, sendo
aplicado quando ha apenas dois avaliadores.

De forma complementar, a métrica Fleiss’ Kappa (k) é uma extensao do Kappa de
Cohen, sendo utilizado para medir a concordancia entre mais de dois avaliadores. Esta
métrica generaliza o calculo da concordancia observada e esperada, levando em conside-
racao multiplos avaliadores e multiplas categorias.

Neste capitulo, foram apresentadas algumas defini¢oes sobre imagens histologicas, in-
cluindo como esse tipo de imagem médica é obtido, informacoes gerais sobre a estrutura de
um glomérulo e a célula interna do glomérulo, que é o foco deste trabalho: os podécitos. A
observacao dos podocitos em imagens histoldgicas de glomérulos revela o quao desafiador
é diferencia-los das demais células intra-glomerulares. Além disso, foram apresentadas de-
fini¢Oes sobre as técnicas computacionais comumente utilizadas para a analise automatica
de imagens histologicas, especialmente no contexto de aprendizagem profunda.

No préximo capitulo, serao discutidos os trabalhos relacionados. Inicialmente, sera

fornecido um panorama geral de estudos envolvendo imagens histologicas de glomérulos
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renais, em seguida, serdo apresentados trabalhos que abordam imagens histologicas de

glomérulos renais com énfase nos poddcitos.
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Capitulo 3

Trabalhos Relacionados

Neste capitulo, sao apresentados os trabalhos relacionados ao problema da analise au-
tomatizada de glomérulos renais por meio de algoritmos de aprendizagem profunda. A
revisao da literatura estd dividida em duas se¢bes. A primeira oferece um panorama
geral sobre estudos que utilizam imagens histolégicas de glomérulos renais para diversas
finalidades. A segunda, apresenta um levantamento bibliografico focado na analise de
trabalhos que abordam a tarefa de analisar imagens de glomérulos renais, com énfase na
analise dos poddcitos.

Os trabalhos encontrados durante o processo de revisao de literatura descrito a seguir,
em sua maioria, se encaixaram em dois dos grupos de trabalhos citados em Barisoni et
al. [9], que sdo: patologia computacional e anélise computacional de imagens.

As fontes de pesquisa utilizadas na revisao de literatura foram: o portal de peridédicos
da CAPES e o Google Académico. Além disso, foram realizadas buscas por trabalhos
em diretérios especificos, com vasto niimero de trabalhos associados a area de patologia
computacional, como: Springer, PLoS, EMBS IEEE Library, IEEE Library, Biblioteca
Digital SPIE e Elsevier. O critério de selecao dos artigos considerou o ano de publicacao
(altimos sete anos) e principalmente, a similaridade do problema de pesquisa enfrentado
com o problema estudado neste trabalho.

Para realizar as buscas, utilizou-se uma abordagem baseada em expressoes regulares
(reqular expressions, regex) para garantir a recuperagao eficiente dos artigos mais relevan-
tes. Foram aplicadas buscas insensiveis a maitsculas e mintsculas ((?71i)) e delimitadas
por bordas de palavras () para evitar correspondéncias parciais indesejadas.

Os termos foram combinados utilizando operagoes logicas para refinar os resultados:

« E (AND): retorna artigos que contém todos os termos especificados.

« OU (OR): retorna artigos que contém pelo menos um dos termos.
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o XOR: retorna artigos que contém apenas um dos termos, mas nao ambos simulta-

neamente.

A seguir, apresenta-se a estrutura hierarquica dos termos e expressoes regulares utili-

zados na pesquisa por trabalhos correlatos:

1. Inteligéncia artificial aplicada a patologia

o Artificial intelligence (71) (artificial intelligencel|AI)_
o Computational pathology (71) (computational pathology)_
o Deep learning (?71) (deep learning)

o Convolutional neural networks (?1) (convolutional neural networks|CNN)_
2. Estruturas renais

o Glomeruli (?1) (glomeruli|glomerulus)_

o Podocytopathy (?1) (podocytopathy)_

3. Lesoes e segmentacao de poddcitos

Podocyte detection (71) (podocyte detection)_

o Podocyte segmentation (?1i) (podocyte segmentation)_

Podocyte lesions (71) (podocyte lesions?)_

o Podocyte injury (?7i) (podocyte injury)_
4. Técnicas de processamento de imagens

« Semantic segmentation (?i) (semantic segmentation)_

o Glomeruli classification (?71) (glomeruli classification)_

3.1 Trabalhos com foco em glomérulos renais

Entre os estudos, foram identificadas propostas dedicadas a analise de laminas inteiras de
tecido (Whole Slide Images - WSI), com pipelines completos que englobam a detecgao,
segmentacao e classificacao de glomérulos [128, 129, 130, 131, 132, 133, 134].

Paralelamente, também foram encontrados estudos focados na andlise de imagens
especificas de glomérulos ([135, 136, 19, 18, 137]. Essas abordagens investigam uma ampla
gama de lesoes e biomarcadores associados a doengas renais, frequentemente buscando
classificar os glomérulos de acordo com lesoes especificas, como glomeruloesclerose [137],
esclerose ([135]), hipercelularidade [19, 18] e fibrose [136].
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No estudo de Uchino et al. [135], sdo utilizadas 15.888 imagens de glomérulos renais,
distribuidas entre sete classes de lesoes histologicas: esclerose global, esclerose segmentar,
proliferacao endocapilar, acimulo de matriz mesangial, proliferacao de células mesangiais,
crescentes e alteragdes estruturais na membrana basal. O trabalho utilizou 14 modelos
de redes neurais profundas, treinados a partir da Inception v3, para cada tipo de lesdo.
Participaram 25 patologistas que classificaram as amostras com e sem o auxilio dos mo-
delos treinados. O objetivo do estudo é avaliar se os modelos de inteligéncia artificial
poderiam melhorar o desempenho dos especialistas. Os resultados mostram que, com o
uso dos modelos, ha uma melhoria nas métricas de sensibilidade em 10 dos 14 modelos e
de especificidade em 8 dos 14.

J& em Kannan et al. [128] é proposto um modelo para processar laminas inteiras de
tecido renal (WSI) coradas em tricromico, segmentar os glomérulos e classificd-los em
quatro categorias: (i) ndo glomérulo, (ii) normal, (iii) parcialmente esclerosado e (iv)
globalmente esclerosado (GS). O modelo de CNN alcangou acurdcia de 92,67% =+ 2,02%
e coeficiente Kappa de 0,8681 + 0,0392 na discriminacao entre imagens glomerulares e
nao glomerulares. Para a segmentacao, o classificador multilabel baseado na Inception
v3 obteve resultados precisos na identificacao de glomérulos GS nos dados de teste, com
coeficiente de correlagao de Matthews (MCC) de 0,628.

Em Gallego et al. [129], os autores também realizam a tarefa de segmentagao de glo-
mérulos em laminas WSI, classificando-os como normais ou esclerosados. A segmentagao
e a classificagdo dos glomérulos sdo realizadas por um modelo baseado na arquitetura
U-Net. Posteriormente, as classificacoes glomerulares sao refinadas com base na histo-
morfometria glomerular (andlise morfoldgica com critérios pré-definidos). O conjunto de
dados utilizado é composto por 51 laminas de tecido, coradas em PAS (37 laminas) e HE
(14 laminas). Nos WSIs corados com PAS, os glomérulos normais e esclerosados foram
classificados, respectivamente, com F'1 score de 0,97 e 0,68. Nos WSIs corados com HE;,
as pontuagoes FI1 foram de 90,8% e 78,1%. Considerando ambos os corantes, o desem-
penho de classificagao foi de FI1 de 94,5% e 76,8%. Um dos diferenciais deste trabalho é
que os pesquisadores realizaram o treinamento com imagens de um corante e testaram o
desempenho em imagens coradas com outro corante.

No trabalho de Mathur et al. [136], o objetivo é analisar a presenga de fibrose em
laminas de tecido renal. O estudo estd dividido em duas tarefas: (i) classificar os glomé-
rulos como normais ou anormais e (ii) classificar regides de tecido sem glomérulos entre
trés classes de fibrose: suave, moderada ou severa. Os conjuntos de dados sao compos-
tos por patches de imagens extraidas das laminas de tecido, totalizando 935 imagens de
glomérulos normais ou anormais (619 anormais e 316 normais) no conjunto de dados 1,

e 923 imagens de regioes sem glomérulos no conjunto de dados 2. O trabalho avalia 3
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abordagens para classificar as imagens: (a) transferéncia de aprendizado em CNNs fim a
fim, (b) extragao de atributos com CNN e classificacdo com algoritmo supervisionado, e
(¢) um novo modelo proposto, a Multi-Gaze Attention Network (MGANet), que utiliza o
mecanismo de self-attention com diferentes saidas e conexoes residuais paralelas em uma
arquitetura CNN. O melhor desempenho foi obtido com o modelo proposto, alcangando
87,25% de precisao na classificacao de glomérulos e 81,47% na classificacao de fibrose.

Em mais um trabalho de segmentagao de glomérulos, Ginley et al. [130] analisam ima-
gens de glomérulos em relacao a nefropatia diabética. O conjunto de dados utilizado con-
siste em 25 ldminas de tecido renal de camundongo e 54 laminas de tecido renal humano.
Os métodos empregados no estudo incluem a rede DeepLab v2 (ResNet no backbone) para
a deteccao dos glomérulos, além de algoritmos tradicionais de processamento de imagens
para a identificacdo das bordas dos glomérulos. Adicionalmente, os pesquisadores utili-
zam uma rede neural recorrente (RNN) para quantificar a estrutura intra-glomerular em
trés componentes: nucleos, lumina capilar e espacos de Bowman. Os resultados obtidos
sao de 93% de acuricia na detec¢do dos glomérulos, 94% de sensibilidade [122] e 94% de
especificidade [122] para os nticleos, e 95% de sensibilidade e 99% de especificidade para
as estruturas internas dos glomérulos.

Entre os trabalhos de classificacao de imagens de glomérulos sem a realizacao prévia
de segmentagao ou detecgdo em laminas inteiras WSI, Barros et al. [18] destaca-se como
um dos ultimos a utilizar métodos tradicionais de aprendizado de maquina. Na metodo-
logia adotada, as imagens sdo pré-processadas com técnicas classicas de processamento de
imagens, como conversao de espagos de cor, limiarizagdao por Otsu e operagdes morfologi-
cas [10]. A extragdo de atributos é realizada com engenharia de atributos e a classificagdo
é realizada com o algoritmo kNN [10]. O resultado obtido foi uma acuracia de 88,3% na
classificagdo. O conjunto de dados utilizado conta com 811 imagens coradas em PAS e
HE.

No trabalho de Chagas et al. [19], os autores realizam a mesma tarefa que Barros et
al. [18], utilizando o mesmo conjunto de dados, mas empregaram redes neurais convolu-
cionais como extratores de atributos e o algoritmo SVM para a classificacao. Além da
classificacao binaria, os autores realizam a classificagao das sublesoes de hipercelularidade:
mesangial, endocapilares e ambas. Os resultados obtidos sdo de 82% de acuracia média
na classificagdo dos tipos de lesdo e 100% de acurécia na classificagdo bindria. Tanto na
tarefa binaria quanto na multiclassificacdo, o método proposto superam o desempenho
das redes Xception, ResNet50 e InceptionV'5.

No trabalho de Shubham et al. [131], é realizada a segmentacao de glomérulos uti-

lizando o conjunto de dados ptblico HuBMAP!. As imagens do conjunto de dados sao

thttps://hubmapconsortium.org/
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laminas WSI, coradas em PAS. O método utilizado para segmentacao é a rede U-Net, e
o resultado obtido foi de 99,68% de acuracia e 0,90 de coeficiente Dice.

Em Jiang et al. [133], é utilizada a rede Mask R-CNN para segmentar e classificar
glomérulos em laminas (WSI) de tecido. O modelo é treinado com snapshots, que sao
porgdes menores das laminas contendo um ou mais glomérulos. Os glomérulos no conjunto
de dados sao rotulados em 3 classes: normal, com esclerose ou com outras lesoes. O
conjunto de treino é formado por 296 laminas (1.018 snapshots), e o conjunto de teste,
por 52 laminas (105 snapshots). Os resultados obtidos na classificagdo dos glomérulos
alcancam os seguintes F'I scores: 0,914 para glomérulos normais, 0,896 para glomérulos
com esclerose, 0,681 para esclerose global e 0,756 para outras lesoes.

Em uma abordagem ligeiramente diferente, Yang et al. [134] realizam também a seg-
mentacao e classificacdo de glomérulos. A rede Mask R-CNN [138] (com a ResNet 101 [84]
pré-treinada com ImageNet [139] como backbone) é utilizada para segmentar os gloméru-
los, e uma abordagem combinando uma CNN (DenseNet) com uma LSTM foi empregada,
para classificar as doencas entre 5 diferentes classes de lesoes. O conjunto de dados
utilizado é composto por 1379 laminas (WSI) de tecido, coradas em PAS, PAM, HE e
Tricromico. Os resultados obtidos foram um F1 score de 0,94 para deteccao dos gloméru-
los e uma acuracia de até 0,94 para a classificagdo de diferentes lesdes em imagens coradas
em HE.

No trabalho de Ginley et al. [137], é realizada a segmentagao de glomeruloesclerose e
fibrose intersticial com atrofia tubular em laminas inteiras de tecido. A rede utilizada é a
DeepLab v2 [105]. Adicionalmente, os autores correlacionam os resultados da rede com os
diagnésticos de quatro patologistas, que utilizaram ferramentas estatisticas classicas. O
conjunto de dados é composto por 79 laminas para treinamento e 20 laminas para teste.

Além dos estudos ja citados, que aplicam técnicas de aprendizado profundo em laminas
de tecido, a literatura também apresenta propostas focadas no problema de obtencgao
de dados anotados e devidamente validados por especialistas humanos. Exemplos disso
incluem os trabalhos de DeHaan et al. [132], Aron et al. [140], Minamiguchi et al. [141] e
Lutnick et al. [20].

No trabalho de Aron et al. [140], os autores definem nove classes de padroes morfo-
légicos glomerulares e treinam doze modelos de redes neurais convolucionais (CNNs). O
treinamento ¢é realizado em duas etapas: o primeiro conjunto de dados foi definido por
um nefropatologista especialista (12253 imagens) e o segundo, por um consenso de trés
especialistas na area (11142 imagens). A validagao é feita utilizando um terceiro conjunto
de dados composto por 180 imagens, comparando os resultados com o consenso entre os
patologistas (valores kappa entre 0,838 e 0,938). Adicionalmente, os autores destacam as

areas da imagem decisivas para a tomada de decisdo baseada na CNN, utilizando mapas
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de ativagao para cada classe. Uma das vantagens do método proposto é a capacidade
de identificar a presenca de diferentes padroes de doenga glomerular que podem coexistir
em um unico glomérulo (por exemplo, necrose combinada com hipercelularidade mesan-
gial e endocapilar), contrastando com abordagens anteriores que, geralmente, reconhecem
apenas um padrao especifico. Os autores concluem sugerindo que os resultados fornecem
estimulos para projetos em andamento que integram outros tipos de dados, como imu-
nohistoquimica, microscopia eletronica e informagoes clinicas, visando o desenvolvimento
de ferramentas aplicaveis a nefropatologia diagnéstica de rotina.

DeHaan et al. [132] propoem um modelo de rede adversaria generativa (GAN), baseado
no modelo CycleGAN [142], para realizar transferéncia de estilo (style transfer) de laminas
de tecido renal (contendo glomérulos renais) coradas em HE para PAS e Tricromico. Os
resultados sao avaliados por quatro patologistas, que consideraram as imagens geradas
como semelhantes as reais. A vantagem desse trabalho reside no uso de data augmentation,
que pode ampliar o conjunto de dados de um dataset, além de operagoes tradicionais como
rotacao, inversao e outras.

No trabalho de Kumar et al. [143], é realizada uma investigagdo sobre modelos de
aprendizado profundo para a detecgdo e classificagdo de cancer ovariano e doencas glo-
merulares renais utilizando imagens histopatologicas. Os autores analisam o impacto de
diferentes métodos de otimizacao em um conjunto de redes convolucionais de referéncia.
Ao final, os modelos propostos demonstraram alta precisao na deteccao e classificacao
dessas condicoes, alcancando acurdcias superiores a 99%.

Preocupados com o gargalo no processo de anotagao de imagens histologicas, em Lut-
nick et al. [144], os autores propoem um sistema de anotacao de imagens que inclui um
pré-anotador, que facilita o trabalho dos patologistas. O sistema segmenta automatica-
mente os glomérulos e entrega as anotagdes para refinamento pelos patologistas. O pré-
anotador ¢ baseado em um modelo semi-supervisionado denominado DatasetGAN [145].
Os resultados mostram que o tempo de anotacdo com o uso desse sistema torna-se signi-
ficativamente menor em comparagdo com o processo de anotagao tradicional.

Em Minamiguchi et al. [141], é apresentado um método nao supervisionado para cor-
relacionar imagens de tecido com nefropatia, coradas em HE. No trabalho de Lutnick et
al. [20], os autores propoem uma ferramenta de anotacao de imagens executada na nuvem,
com alta escalabilidade e colaboracao entre patologistas.

Por fim, no trabalho de Ginley et al. [146], é realizada a segmentacao de diversas
estruturas do tecido renal, incluindo os glomérulos. Os métodos utilizados sao redes de
segmentacao panopticas, uma classe mais recente de algoritmos de segmentacao de ima-
gem, que distinguem objetos do tipo instancia (contaveis, como ttibulos renais) de objetos

do tipo grupo (incontéveis, como o intersticio renal). O conjunto de dados utilizado
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consiste em 126 imagens de laminas coradas em PAS, de nefropatia diabética nativa, ne-
frite lupica e bidpsias renais de vigilancia de transplante, com anotagoes contemplando
intersticio, glomérulos, glomérulos escleréticos globalmente, tibulos e drvore arterial (ar-
térias/arteriolas). Os resultados mostram que as redes panépticas apresentaram alto
desempenho, comparaveis ao dos patologistas renais, para todas as classes anotadas em

um conjunto de teste de bidpsias renais de transplante.

3.2 Trabalhos com foco em podécitos

Entre os trabalhos de imagens histolégicas com foco especifico em podocitos, foi encon-
trado um conjunto pequeno de propostas, entre os quais é possivel destacar: Zeng et
al. [33], Maraszek et al. [30], Govind et al. [28], Zimmerman et al. [31], Santo et al. [34] e
Farhat et al. [147].

O trabalho de Zeng et al. [33] tem como objetivo localizar glomérulos, identificar lesdes
glomerulares (esclerose glomerular global e segmentar, crescente e nenhuma das anteri-
ores), e identificar e quantificar diferentes células glomerulares intrinsecas. As imagens
utilizadas estao coradas em PAS. Para a tarefa de localizacao dos glomérulos, sao usadas
360 laminas para treinamento e 40 para teste. O método utilizado é a rede Attention
U-Net [148]. Na tarefa de classificagdo dos glomérulos, sao utilizadas 1438 imagens de
glomérulos, com aproximadamente 300 imagens por classe. O método adotado para a
classificagdo é a combinagao das redes DenseNet-121 [85] ¢ LSTM-SENet [149]. Para a
segmentacao das células internas (incluindo os poddcitos), sao utilizadas 460 imagens de
glomérulos, com aproximadamente 70 mil células anotadas. A rede utilizada é uma mo-
dificacao da U-net, batizada de 2D V-Net. Os resultados obtidos sao: 93,1% de precisao
média e 94,9% de recall médio para localizacao de glomérulos; 95% de precisao para a
classificacao das lesdes glomerulares; e 88,2% de precisao média e 87,9% de recall médio
para deteccao das células internas dos glomérulos.

Em Govind et al. [28], a tarefa é a detecgdo e quantificacdo de poddcitos para re-
conhecimento de tumor de Wilms’. O conjunto de dados utilizado é composto por 240
patches (imagens de glomérulos) coradas em PAS, originadas de camundongos. O método
proposto segue os seguintes passos: inicialmente, as imagens do conjunto de dados sao
adquiridas em imunofluorescéncia, e depois os mesmos glomérulos sao corados em PAS.
As imagens desses dois conjuntos sao utilizadas para o treinamento de uma GAN [150],
que converte imagens PAS para imunofluorescéncia. Apds o treinamento, o método re-
cebe uma imagem em PAS, converte-a para sua versao artificial em imunofluorescéncia, e

entao a imagem é processada e os pododcitos sdo segmentados através da mascara criada.
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O resultado obtido é de 0,87 de sensibilidade e 0,93 de especificidade para a deteccao dos
podocitos.

Em Maraszek et al. [30], o objetivo também é detectar e quantificar podécitos renais,
porém com o objetivo de associd-los a presenca de diabetes Mellitus. Assim como no
trabalho de [28], o método proposto utiliza imagens de imunofluorescéncia e as mesmas
imagens em PAS. A imagem em imunofluorescéncia é processada com métodos cldssicos
de processamento digital de imagens e finalizada como uma mascara para segmentagao
na imagem correspondente em PAS. O conjunto de dados é formado por 883 imagens de
glomérulos de ratos. No final do trabalho, os autores calculam os danos nos glomérulos
através de analise morfolégica dos poddcitos e sua distribuicao intra-glomerular. Os re-
sultados obtidos sao de sensibilidade de 0,727, especificidade de 0,999 e acuracia de 0,959
na localizag¢ao dos poddcitos.

No trabalho de Santo et al. [34], os autores propdem o PodoCount, uma ferramenta
computacional para quantificagdo automatizada de pododcitos em tecidos marcados de
forma imuno-histoquimica. O conjunto de dados utilizado conta com 35 laminas de tecido
com diabetes nefrética. Nos experimentos relatados, a partir de glomérulos segmentados
de se¢oes de tecido (WSI), os nicleos podocitédrios sao segmentados, sendo a partir deste
momento aplicada uma analise de imagens para calcular medidas de deplecao e morfome-
tria nuclear. Os resultados obtidos indicam uma segmentacao dos nicleos podocitarios
com sensibilidade de 0,85 e especificidade de 0,99.

Na proposta de Zimmerman et al. [31], os autores utilizam um conjunto de dados
bastante robusto, com 1095 imagens de imunofluorescéncia, contendo um total de 27.696
poddécitos anotados. O objetivo do trabalho também é detectar poddcitos, mas com o
intuito de associa-los a doenga glomerulonefrite associada a anticorpos anti-neutrofilos ci-
toplasmaticos (ANCA-GN). A rede utilizada para segmentar os glomérulos e os podécitos
¢ a U-net. O coeficiente Dice obtido nas tarefas de segmentagao tanto dos glomérulos
quanto dos podocitos é de 0,92.

Finalmente, em Farhat et al. [147], propoe-se o uso de redes neurais convolucionais
para automatizar a segmentacao de células e capilares glomerulares em bidpsias de trans-
plante renal, avaliando a correlagdo dessas estruturas com a funcao do enxerto. O estudo
inclui 215 pacientes, divididos em trés grupos: o grupo de treinamento, composto por
37 pacientes cujas células e capilares foram anotados manualmente para treinar as redes;
o grupo de teste, com 24 pacientes, utilizado para comparar as anotagoes manuais as
previsoes automatizadas; e o grupo de aplicagdo, com 154 bidpsias, utilizado para exa-
minar fatores preditivos em relagao a fungao renal e ao prognostico. No resultado geral,
considerando a segmentacao de todas as estruturas, a rede neural alcanca métricas de

precisao, revocagao, F'1-score e IoU superiores a 0,92, 0,85, 0,89 e 0,74, respectivamente.
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O resultado especifico para a segmentacao de poddcitos apresenta 0,75 de IoU, obtida em

um teste com 633 poddcitos anotados por especialistas humanos.

A Tabela 3.1 resume os trabalhos com imagens histolégicas que se concentram especi-

ficamente na analise automatizada de poddcitos em glomérulos renais. Esses estudos sao

os principais trabalhos correlatos quando se considera o escopo do presente estudo.

Tabela 3.1: Resumo dos trabalhos correlat

S mais relevantes.

Autores Tarefa Conjunto de | Métodos Resultados
Dados
Zeng et | Deteccao de gloméru- | 60 imagens de | 2D V-Net e U- | Precisdao média
al. [33] los em laminas WSI, | glomérulos, con- | Net de 88,2% e recall
classificacdo dos glo- | tendo aproxima- médio de 87,9%
mérulos e segmenta- | damente 70 mil na deteccao das
cao de células intra- | células anotadas células internas
glomerulares dos glomérulos
Maraszek | Deteccao e quantifica- | 883 imagens de | Métodos tradici- | Sensibilidade
et al. [30] | ¢do de podécitos re- | glomérulos  de | onais de proces- | de 72,7%, es-
nais para associa-los a | rato em imuno- | samento de ima- | pecificidade de
presenca de diabetes | fluorescéncia gens 99,9% e acuracia
mellitus de 959% na
localizacao  dos
poddcitos
Govind et | Detecgao e quantifica- | 40 imagens de | Conversao  de | Sensibilidade de
al. [28] ¢ao de poddcitos para | glomérulos cora- | estilo com GAN | 87% e especifi-
reconhecimento de tu- | das em PAS, ori- | e operacoes | cidade de 93%
mor de Wilm’s ginadas de ca- | tradicionais de | para  deteccao
mundongo processamento dos podocitos
de imagens
Zimmerman| Detecgao de podécitos | 1095  imagens | U-Net Coeficiente Dice
et al. [31] | para associd-los a do- | de imunofluores- de 92% para seg-
enca ANCA-GN céncia  (27.696 mentagao de po-
poddécitos  ano- docitos
tados)

Santo et

Segmentacao, quanti-

35 laminas co-

Métodos tradici-

Sensibilidade de

al. [34] ficacdo de podocitos e | radas em PAS, | onais de proces- | 85% e especifici-
analise de deple¢ao com imagens de | samento de ima- | dade de 99%
tecido de rato gens
Farhat et | Segmentacao de célu- | 1170 podédcitos | Mask ~ R-CNN | IoU de 75% para
al. [147] las intra-glomerulares | anotados com Inception | segmentacao de
e correlagoes para ResNet V2 poddcitos

transplante
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3.3 Lacunas e desafios identificados

A andlise dos trabalhos correlatos evidencia que nenhum estudo se concentra especifica-
mente na podocitopatia, embora muitos utilizem a segmentagao de poddcitos para asso-
ciar perda celular ou alteragoes morfologicas a condigoes como diabetes nefrotica. Além
disso, os conjuntos de dados analisados nao estao disponiveis para outros pesquisadores
e carecem de diversidade, como imagens de poddcitos com diferentes tipos de lesoes (hi-
perplasia, hipertrofia e degeneragao), variagdo de coloragdo e desbalanceamento entre as
classes.

Os estudos focados na andlise de células glomerulares internas, particularmente podo-
citos, tém como objetivo principal a localizacao e quantificagdo para o estudo de diversas
patologias. Em comum, muitas dessas pesquisas utilizam imagens de imunofluorescén-
cia com marcadores especificos para facilitar a segmentacdo dos poddécitos. Entretanto,
a aplicacao desses métodos é frequentemente limitada, pois nem todos os conjuntos de
dados disponiveis possuem imagens de imunofluorescéncia ou outros tipos de coloragao,
como PAS, indispensaveis para replicar essas abordagens.

As metodologias empregadas nesses trabalhos incluem redes neurais profundas e téc-
nicas classicas de processamento de imagens. Os conjuntos de dados utilizados sao tipica-
mente obtidos sob condigoes controladas, utilizando o mesmo corante, a mesma resolucao
e provenientes de um tnico laboratério. Embora essa padronizagao facilite a segmentacao,
a dependéncia de imagens obtidas em ambientes tao controlados limita a generalizacao
dos métodos para conjuntos de dados mais variados.

Por fim, enquanto a utilizacdo de imagens imunofluorescentes com pré-marcagao dos
podocitos facilita a segmentacao, sua aplicagdo pratica pode ser restrita pela falta de
imagens de diferentes tipos de coloracao e pela indisponibilidade de dados em alguns

casos clinicos, o que prejudica a replicabilidade das abordagens.
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Capitulo 4
Metodologia

A metodologia adotada neste trabalho esta diretamente relacionada aos objetivos especi-
ficos da tese, apresentados na Secao 1.4. Desse modo, os experimentos foram organizados

em quatro etapas principais:

1. Elaboracao dos conjuntos de dados.
2. Identificacao de podocitopatia em imagens de glomérulos.

3. Estudo sobre o impacto do uso de classificadores automatizados na pratica dos

patologistas.

4. Segmentacao de lesoes podocitarias em imagens de glomérulos.

Na etapa de elaboracao dos conjuntos de dados, inicialmente um grupo de patologistas
voluntarios analisou imagens histologicas de glomérulos renais, atribuindo a cada imagem
um roétulo bindrio indicando a presenga ("com lesao") ou auséncia ("sem lesao") de po-
docitopatia. Em seguida, uma nova tarefa foi proposta, na qual os mesmos patologistas
indicaram, por meio de segmentacgdo, as regides especificas nas imagens que continham
diferentes tipos de lesoes podocitarias.

A etapa de identificacao de podocitopatia em imagens de glomérulos teve como ob-
jetivo desenvolver modelos de classificacdo binaria capazes de inferir automaticamente
a presenca ou auséncia de podocitopatia nas imagens analisadas. Nesta fase, diferentes
métodos de referéncia da literatura foram treinados e comparados com uma nova solucao
proposta para classificacdo automatizada das imagens.

O estudo sobre o impacto da utilizacao de classificadores automatizados visou avaliar,
por meio de experimentos controlados, as variacoes de desempenho dos patologistas ao
analisar imagens com e sem o suporte desses modelos. O objetivo foi investigar se a

utilizagao dessas ferramentas melhora ou acelera o diagnostico clinico dos especialistas.
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Por fim, a etapa de segmentacao de lesoes podocitarias compreendeu uma comparagao
rigorosa entre modelos j& existentes na literatura e uma nova abordagem proposta neste
trabalho, especificamente desenvolvida para a tarefa de segmentacao das lesdes em um
cenario de dados limitados, com muiltiplas coloragoes e distribuicdo desbalanceada das

classes. A Figura 4.1 ilustra esquematicamente cada uma dessas etapas.

Etapa 1. Elaboragdo do conjunto de dados Etapa 2. |dentificagdo de podocitopatia
N .
B QC/Q\
N Wj
# p O A X
n (y ———> Conjunto de Dados 1 L :;'_S)/;f;‘. -—)
& (Classificagio) o
A Conjunto de Dados 2 Modelos de referéncia Solugdo proposta
(Segmentacdo)
Etapa 3. Impacto do uso de classificadores automatizados Etapa 4. Segmentacdo de lesbes podocitarias

Modelos de referéncia

i

Encoder ———— Decoder

Fase 1. Cassﬁcam
o8
A &h —— 8

Fase 2. Patologistas ' - X
Com ou Sem

podocitopatia. solucio proposta
Fase 3. Patologistas + Classificador CNN
Conversdo de cor

Encoder ———+ Decoder

Figura 4.1: Resumo iulustrativo das fases e experimentos realizados no trabalho.

Cada uma dessas etapas metodologicas estd intimamente relacionada. A elaboragao
cuidadosa dos conjuntos de dados, realizada na primeira etapa, é um requisito fundamen-
tal para o sucesso das etapas subsequentes, uma vez que esses dados servirdao como base
tanto para os experimentos de classificacdo quanto para a segmentacao das lesdes podo-
citarias. A identificacdo automatica de podocitopatia, por sua vez, é um passo necessario
para avaliar o impacto clinico da automacao no desempenho dos patologistas, permitindo
verificar como as ferramentas computacionais afetam a pratica diagnéstica real. Por fim,
a etapa de segmentacao visa aprofundar ainda mais o detalhamento das leses, ampliando

o potencial de aplicacao pratica das solu¢oes propostas ao fornecer informagoes mais es-
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pecificas sobre as regides afetadas, contribuindo diretamente para a precisao diagnostica

e decisao clinica final.
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Capitulo 5
Elaboracao dos Conjuntos de Dados

A elaboragao dos conjuntos de dados deste trabalho iniciou-se a partir de um acervo de 30
mil imagens nao rotuladas de glomérulos renais, cedido pelo Centro de Pesquisas Gongalo
Muniz, Fiocruz. Essas imagens foram analisadas visualmente por dois patologistas de
forma independente, sem validagao cruzada entre os especialistas, resultando na selecao
de 835 imagens classificadas binariamente como “com” ou “sem” lesdes podocitarias. Este
primeiro conjunto de dados foi denominado D1wvl. Posteriormente, uma segunda rodada
de andlise permitiu a identificacao de novas imagens, ampliando o conjunto para 1043
imagens, o que originou a versao D1v2.

A partir do conjunto expandido, foi desenvolvido o D2, com o objetivo de validar o
desempenho diagnostico dos patologistas na tarefa de classificacao binéria, incorporando,
além da inspecao visual, a confirmacao clinica baseada em niveis de proteintria. Dessa
forma, os conjuntos de dados D1v1, D1v2 e D2 foram construidos com o propdsito comum
de apoiar a tarefa de classificagao binaria, visando identificar a presenca ou auséncia
de podocitopatia nas imagens de glomérulos renais.

Complementarmente, elaborou-se o conjunto de dados D3, destinado especificamente
a tarefa de segmentacdo seméantica multiclasse. Nesse conjunto, os patologistas ano-
taram manualmente as regioes das imagens correspondentes a diferentes tipos de lesoes
podocitarias (hiperplasia, hipertrofia e degeneragdo), bem como areas de poddcitos sem
lesao.

Os conjuntos de dados D1v1, D1v2, D2 e D3 representam uma evolugao sequencial de
um mesmo acervo de imagens, sendo que cada nova versao aperfeicoou o nivel de anotagao
e contribuiu diretamente para a melhoria da analise automatizada a ser realizada nos
modelos treinados nas fases posteriores deste trabalho.

Cabe destacar, como limitagdo metodologica, que, devido a restricao de tempo e ao

numero reduzido de patologistas voluntarios, em nenhuma das rodadas houve reavaliacao
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cruzada das anotagoes. Essa limitacao pode ter resultado em inconsisténcias pontuais nas
imagens rotuladas, aspecto considerado nas analises subsequentes.

Adicionalmente, todos os conjuntos de dados gerados estao disponiveis para uso acadé-
mico e podem ser solicitados mediante o preenchimento de formulario especifico, acessivel
na pagina oficial do grupo de pesquisa Pathospotter (https://pathospotter.bahia.
fiocruz.br/). A Figura 5.1 resume todo o processo de anotagio e a evolucao dos con-

juntos até a obtencao do conjunto D3.

v 28 B
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Anotacdo: D1 v.1 (Classificagao) D1 v.2 (Classificagdo)
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AR

P N
Anotacgdo: regido D3 (Segmentacdo)
com “hiperplasia”,
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“hipertrofia”, Mascaras de
“degeneracao”, segmentagao
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Figura 5.1: Etapas de anotagao para obtencao dos conjuntos de dados.

5.0.1 Conjunto de dados dpara classificagao: D1v.1

Este conjunto de dados é comporto por 835 imagens de glomérulos renais, das quais
374 apresentam lesdo podocitaria e 461 nao apresentam lesdao. As anotagOes sobre a
presenca ou auséncia de lesao podocitaria foram realizadas por dois patologistas, ambos

nefropatologistas !.

LA aquisi¢do das imagens foi conduzida de acordo com a Resolugdo n® 466,/12 do Conselho Nacional de
Satde. Todos os procedimentos foram aprovados pelo Comité de Etica em Pesquisa com Seres Humanos
do Imstituto Gongalo Moniz da Fundacdao Oswaldo Cruz (CPqGM/FIOCRUZ), sob os Protocolos n®
188/09 e n° 1.817.574.
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As imagens foram obtidas utilizando diferentes cAmeras, microscopios e scanners, apre-
sentando variados formatos (.jpg, .png e .tif) e resolucdes, que variam de 238x201 a
1920x 1440 pizels. Os corantes empregados nas amostras sao: Tricromico (173 imagens),
Periodic Acid-Schiff (PAS) (409 imagens), Periodic Acid Methenamine Silver (PAMS)
(169 imagens) e Hematozylin and Fosin (HE) (84 imagens).

As imagens rotuladas como "com podocitopatia' incluem amostras com diferentes
tipos de lesbes podocitarias: hipertrofia, hiperplasia e degeneragao. Exemplos de imagens
representativas do conjunto de dados podem ser visualizados na Figura 5.2. Vale destacar
que, tanto no grupo de imagens com lesao podocitaria quanto no grupo sem lesao, também
estao presentes outros tipos de alteragoes glomerulares, como hipercelularidade, esclerose

e alteragoes membranosas.

Figura 5.2: Exemplos de imagens que compdem o conjunto de dados. Com lesao (a-d) e
sem lesao (e-h).

5.0.2 Conjunto de dados para classificagao: D1v2 e D2

Os conjuntos de dados D1v2 e D2 foram utilizados especificamente na etapa de estudo
sobre o impacto do uso de classificadores automatizados na pratica médica. O conjunto
de dados D1v2 foi utilizado para treinar e validar o classificador automatizado, enquanto
o conjunto de dados D2 foi empregado para avaliagdo de desempenho tanto do melhor
modelo de classificador quanto dos patologistas. Ambos os conjuntos incluem imagens de

glomérulos renais com diversos tipos de lesdes podocitarias, como degeneragao, hiperplasia
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Tabela 5.1: Distribuicao dos corantes entre as imagens do conjunto de dados D1v2.

Roétulo HE PAS Tricromico PAMS Total
Com lesao 44 275 104 90 513 (49%)
Sem lesao 64 254 94 118 530 (51%)

Total 108 (10,8%) | 529 (50,8%) | 198 (18,9%) | 208 (19,9%) | 1043 (100%)

Tabela 5.2: Distribuicdo dos corantes entre as imagens do conjunto de dados D2.

Rétulo HE PAS Tricromico | PAMS Total
Com lesao 18 3 2 17 50 (50%)
Sem lesao 12 24 6 8 50 (50%)

Total | 30 (30%) | 37 (37%) | 8 (8%) | 25 (25%) | 100 (100%)

e hipertrofia. Essa diversidade proporciona uma representacao realista dos casos encon-
trados na pratica clinica, permitindo que os modelos computacionais treinados reflitam a
complexidade dos cenarios do mundo real.

O conjunto de dados D1v2 é composto por 1.043 imagens, das quais 513 sao rotuladas
como “com lesao podocitaria” e 530 como “sem lesao podocitaria”. As imagens apresentam
quatro tipos de coloragao: Periodic Acid-Schiff (PAS), Hematozylin and Eosin (HE), Pe-
riodic Acid Methenamine Silver (PAMS) e Tricromico, conforme a distribui¢do mostrada
na Tabela 5.1. Essas imagens foram obtidas em diferentes instituicoes, utilizando came-
ras, microscopios e scanners variados, com resolugoes espaciais que variam de 238x201
a 1920x1440 pizels. Em ambas as classes de imagens (com e sem lesdo podocitaria),
podem ser observadas outras alteracoes glomerulares associadas, como hipercelularidade,
esclerose e alteracoes membranosas.

O conjunto de dados D2 foi criado seguindo um protocolo distinto. Ele é composto
por 100 imagens de glomérulos renais (50 com e 50 sem lesdao podocitaria), coradas com
PAS, HE, PAMS e Tricromico. Diferentemente do conjunto D1v2, que foi rotulado ex-
clusivamente com base na inspec¢ao visual dos patologistas, cada imagem do conjunto D2
foi validada tanto pela analise visual quanto por dados clinicos referentes a taxa de pro-
teintria. Além disso, cada imagem de D2 foi obtida de um paciente distinto (totalizando
100 pacientes), de modo a favorecer a generalizacao dos resultados obtidos pelos modelos
computacionais. Essa abordagem também aumentou a diversidade de casos utilizados
para avaliar o desempenho dos classificadores. A distribuigdo dos corantes no conjunto

de dados D2 esta apresentada na Tabela 5.2.

5.0.3 Conjunto de dados para segmentacao: D3

O conjunto de dados D3 é o mais abrangente deste estudo, reunindo imagens provenientes

dos conjuntos D1v2, D2 e de novas adi¢oes, totalizando 1.401 imagens. Este conjunto foi
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elaborado para suprir a caréncia de bases publicas que contemplem anotacoes especificas
para diferentes tipos de lesdes podocitarias e miltiplas técnicas de coloragao histologica.
A iniciativa resultou em uma colecao de imagens de glomérulos renais estruturada para
representar o problema de segmentacao de lesoes podocitarias em casos variados, de-
safiando, assim, os modelos de redes neurais convolucionais (CNNs) com cendrios mais
préximos da pratica clinica real.

O processo de anotagdo das segmentagoes, que se estendeu por aproximadamente
18 meses, envolveu trés patologistas, cada um com mais de cinco anos de experiéncia
em nefropatologia. A colaboracao entre os especialistas foi fundamental para assegurar
anotagoes precisas e consistentes em todo o conjunto de dados.

O conjunto final inclui 204 imagens coradas com Hematoxylin and Eosin (HE), 828
imagens com Periodic Acid-Schiff (PAS), 124 imagens com tricrémico de Masson, 39
imagens com tricromico de Gomori e 206 imagens com Periodic Acid Methenamine Silver
(PAMS). A Figura 5.3 ilustra exemplos representativos das amostras do conjunto de dados,
juntamente com exemplos das anotagoes realizadas pelos patologistas (verdade de campo)

em uma das amostras. A tabela 5.3 resume a percentual de imagens por corante.

Tabela 5.3: Distribuicdo do niimero de imagens por técnica de colora¢do no conjunto de
dados D3.

Técnica de coloragao Numero de imagens
Hematozxylin and Fosin (HE) 204
Periodic Acid-Schiff (PAS) 828
Tricromico de Masson 124
Tricromico de Gomori 39
Periodic Acid Methenamine Silver (PAMS) 206
Total 1401

Durante o processo de anotacdo, os patologistas utilizaram o software Labelme [151]
para marcar as regides das imagens contendo poddcitos sem lesdes, bem como aquelas
apresentando lesoes especificas: degeneracao, hipertrofia e hiperplasia. Esse procedimento
resultou no registro de quatro classes distintas nas imagens. Ao final, foram anotados
um total de 54.760 objetos, sendo 48.471 poddcitos sem lesoes (controle normal), 2.782
instancias de degeneracgao, 1.872 de hiperplasia e 1.635 de hipertrofia.

O conjunto de dados D3 representa uma contribuicao estratégica para o avango das
pesquisas em segmentagao semantica multiclasse de lesdes podocitarias. Sua diversidade
de técnicas de coloracao, variedade de tipos de lesoes e quantidade significativa de ano-
tacoes proporcionam uma base robusta para o treinamento, validacao e teste de modelos

computacionais em um cendrio realista e desafiador. Dessa forma, D3 nao apenas supre a

41



Figura 5.3: Exemplos de amostras do conjunto de dados. As condigoes observadas incluem
hiperplasia (a), hipertrofia (b), degeneragao (c) e auséncia de lesdes evidentes (d)..

escassez de conjuntos de dados publicos voltados a podocitopatia, mas também viabiliza

o desenvolvimento de abordagens mais generalizaveis e aplicaveis na préatica médica.
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Capitulo 6

Identificacao de Podocitopatia:
PodNet

Nesta etapa do trabalho, o objetivo foi identificar a presenca ou auséncia de podocitopatia
em imagens de glomérulos renais, ou seja, realizar uma classificacdo binaria dessas ima-
gens. O conjunto de dados utilizado foi o D1v1l. Esta etapa foi conduzida em duas fases:
avaliagdo de modelos de referéncia (baselines) e desenvolvimento de uma nova proposta

de solucao capaz de superar o desempenho dos modelos de referéncia.

6.0.1 Avaliacdo dos modelos de referéncia (baselines)

Na avaliacao dos modelos de referéncia, foram analisadas seis arquiteturas de redes con-
volucionais (Secdo 2.3): ResNet101 v2 [84], VGG19 [79], DenseNet201 [85], Inception
ResNet v2 [81], Inception v3 [80] e Xception [86]. Cada modelo foi treinado em dois
cenarios distintos: (i) com transferéncia de aprendizado, utilizando redes pré-treinadas no
conjunto de dados ImageNet [139], e (ii) com treinamento a partir do zero, empregando
inicializacao aleatoria dos pesos.

Além disso, os modelos foram avaliados em duas versoes do conjunto de dados: imagens
em RGB e imagens convertidas para escala de cinza. FEssa abordagem visou investigar
possiveis vantagens ou desvantagens da utilizagao da informacao de cor no processo de
aprendizado das redes.

As métricas utilizadas para avaliacao dos modelos de classificagdo foram: precisao
(precision), revocagao (recall), fl-score e area sob a curva ROC (AUC) [119] (Segao 2.6).
O ranqueamento dos melhores modelos foi baseado no fI-score, métrica que equilibra
precisao e revocacao, sendo especialmente adequada para cenarios com conjuntos de dados

desbalanceados.
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Antes do treinamento dos modelos, realizou-se um ajuste de hiperparametros utili-
zando uma divisao aleatoria em conjuntos de treino e teste. A estratégia adotada foi o
Hyperband [88], implementado por meio da biblioteca Keras Tuner [152]. Os hiperpara-
metros ajustados e seus respectivos espagos de busca foram: tamanho do batch (16, 32 e
64), nimero de neurénios nas ultimas camadas densas (2048, 1024, 512 e 256), taxa de
aprendizado (de 0,1 a 1077), fungdes de ativagdo das ultimas camadas densas (ReLU e
tanh), otimizadores (Adam, SGD e Adamaz), momentum [24] (0,3, 0,6 e 0,9) e fungoes
de perda (binary cross-entropy e hinge).

Apos o ajuste de hiperparametros, uma nova divisao do conjunto de dados foi realizada
em dois subconjuntos: (i) conjunto de generalizagao (70%) e (ii) conjunto de validagao
final (30%). A divisdo preservou a proporcao de classes em ambos os conjuntos. Os
modelos de referéncia foram treinados e validados no conjunto de generalizacao utilizando
validagao cruzada com 5 folds. Adicionalmente, antes do treinamento, aplicou-se aumento
de dados (data augmentation) nos conjuntos de treino da validagdo cruzada.

As operagoes de aumento de dados consistiram em transformacoes classicas que pre-
servaram as caracteristicas relevantes das imagens de glomérulos. Entre as operacoes
aplicadas, destacam-se: inversao vertical e horizontal (flip), rotacoes de 30°, 90° e 270°,
ajuste de brilho (variagdo de 0,1 a 0,3) e zoom aleatoério (entre 0,1 e 0,3 vezes). Tais opera-
¢Oes visaram aumentar a capacidade de generalizagao das redes, ampliando a diversidade
de exemplos disponiveis no treinamento.

O treinamento dos modelos foi realizado com um limite maximo de 200 épocas. En-
tretanto, nenhum dos modelos treinados ultrapassou 130 épocas, nem permaneceu abaixo
de 50 épocas, em fungao do critério de parada antecipada (early stopping) estabelecido:
interrupc¢ao do treinamento apds 5 épocas consecutivas sem melhoria na funcao de perda
(loss) de validacao. Essa estratégia foi adotada para evitar o sobreajuste (overfitting). Os
pesos finais de cada modelo foram definidos a partir da época em que a loss de validagao
atingiu seu menor valor.

A validagao cruzada com 5 folds gerou cinco modelos distintos, os quais foram avaliados
no conjunto de validagao final. O modelo que apresentou o melhor desempenho nesse

conjunto foi selecionado como o melhor modelo de referéncia.

6.0.2 Solucao proposta: Modelo PodNet

Apos a avaliagdo dos modelos baselines nas configuragoes apresentadas, foi proposto um
método para a classificacao de imagens de glomérulos renais quanto a presenga ou auséncia
de podocitopatia.

A solugao desenvolvida fundamentou-se em duas hipdteses: (i) a conversdo de ima-

gens de glomérulos para espacos de cor que isolam informacoes dos corantes em canais
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distintos pode permitir que redes convolucionais extraiam caracteristicas complementares,
conforme observado nos estudos de Barros et al. [18] e Bukowy et al. [153]; e (ii) a extracao
de caracteristicas por redes convolucionais pré-treinadas pode gerar resultados superiores
aos obtidos com o treinamento de redes fim a fim, como demonstrado nos trabalhos de
Chagas et al. [19], Minamiguchi et al. [141] e Mathur et al. [136].

O modelo proposto, denominado PodNet [52], é um sistema de reconhecimento de
podocitopatia em imagens de glomérulos renais, organizado em trés etapas principais:
pré-processamento, extragao de caracteristicas e classificacao. A Figura 6.1 apresenta a

topologia geral da rede e suas respectivas etapas.
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Figura 6.1: Etapas bésicas da proposta de solugao (PodNet).

Na primeira etapa, de pré-processamento, as imagens sao convertidas de RGB para
os espagos de cor HED e HDX e, em seguida, normalizadas para valores entre 0 e 1. O
espago de cor HED, utilizado por [18] e [153], gera imagens cujos canais representam as
contribui¢oes dos corantes Hematoxilina, Eosina e DAB. Por sua vez, o espaco de cor
HDX produz imagens com canais correspondentes aos corantes Hematoxilina e PAS.

A segunda etapa corresponde a extragdo de caracteristicas. Nessa fase, as imagens
convertidas para os espacos de cor HED e HDX, juntamente com a imagem original em
RGB, sao processadas pela arquitetura VGG19, previamente treinada no conjunto de
dados ImageNet [139]. A arquitetura foi adaptada para que sua saida correspondesse ao
resultado da operagdo de mazx pooling [66] da dltima camada convolucional. Em seguida,
aplica-se uma operagao de flattening, convertendo a matriz tridimensional em um vetor
unidimensional [24], gerando um vetor de caracteristicas para cada imagem. Esses vetores
sdo posteriormente redimensionados utilizando o algoritmo PCA (Principal Component
Analysis) [154], com o objetivo de reduzir a dimensionalidade, acelerar o treinamento

e eliminar caracteristicas redundantes ou menos relevantes. Por fim, os trés vetores de
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caracteristicas (RGB, HED e HDX) sdo concatenados, resultando em um tunico vetor
integrado.

Na terceira etapa, de classificacdo, utiliza-se uma rede neural densa composta por
quatro camadas ocultas, contendo 256, 128, 64 e 64 neurdnios, respectivamente. A regu-
larizacao entre as camadas ocultas é realizada com a técnica de dropout, adotando uma
taxa de 0,1. Os hiperparametros dessa rede densa, incluindo o niimero de neurénios por
camada, foram ajustados por meio do método grid search [155], o qual avalia sistemati-
camente diferentes combinagdes de parametros. A camada de saida é composta por um

unico neurdnio, ativado pela fungao sigmoid.
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Capitulo 7

Implicacoes do Uso de
Classificadores Automatizados na

Pratica Médica

Nesta etapa do trabalho, o objetivo foi estudar o impacto do uso de classificadores au-
tomatizados na tomada de decisao dos patologistas quanto a presenca ou auséncia de
podocitopatia em imagens de glomérulos. O protocolo experimental adotado foi estru-
turado em trés fases e baseou-se no trabalho de Ligabue et al. [156], que comparou o
desempenho de um modelo de rede neural convolucional (CNN) com o de um grupo de
trés patologistas.

Na primeira fase, objetivou-se obter um classificador automatizado capaz de reconhecer
glomérulos com lesao podocitaria visivel por microscopia Optica. Diferentes modelos de
CNN foram ajustados, treinados e validados utilizando o conjunto de dados denominado
D1v2. O modelo de melhor desempenho foi selecionado com base nos resultados obtidos
na classificagdo de imagens de um segundo conjunto de dados, D2.

Na segunda fase, avaliou-se o desempenho de um grupo de trés patologistas na classi-
ficacao das imagens do conjunto D2, sem qualquer suporte computacional, permitindo a
comparagao direta de seu desempenho com o do modelo automatizado.

Na terceira fase, apdés um intervalo de 30 dias — adotado para minimizar o viés
de memoria —, os mesmos patologistas reavaliaram as imagens de D2, desta vez com
acesso as classificagoes fornecidas pelo classificador automatizado. O objetivo foi verificar
se a disponibilizagdo dessa informacao influenciaria (isto é, melhoraria) a acurdcia dos
especialistas.

A Figura 7.1 apresenta uma visao geral do protocolo experimental. Na Etapa 1, foram
avaliados diferentes modelos de CNN no conjunto D1v2 e reavaliados no conjunto D2.

Na Etapa 2, foi analisado o desempenho dos trés patologistas na classificagao das imagens
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de D2 sem suporte. Na Etapa 3, avaliou-se o desempenho dos mesmos patologistas na

classificacao das imagens de D2 com o suporte do classificador automatizado.
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Figura 7.1: Visao geral do protocolo experimental.

7.0.1 Treinamento e validacao dos modelos de classificagao

Trés arquiteturas cldssicas de redes neurais convolucionais (CNNs) [157] foram selecio-
nadas para a classificagdo automatizada de imagens: Inception ResNet-v2 [158], Dense-
Net201 [159] e EfficientNet B3 [160].

A escolha dessas arquiteturas foi motivada por dois fatores principais: i) a confiabili-
dade demonstrada em tarefas semelhantes [161, 162, 163]; e ii) suas diferencas estruturais,
tanto em profundidade (ntmero fixo de camadas em DenseNet201 e Inception ResNet-
v2, e variavel em EfficientNet B3) quanto em estratégias de aprendizado (e.g., blocos
residuais no Inception ResNet-v2 e conexdes densas no DenseNet201).

Cada arquitetura foi treinada em dois cenérios distintos:

« Treinamento do zero (from scratch — FS): inicializacao aleatéria dos pesos;
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o Aprendizado por transferéncia (transfer learning — TL): utilizando pesos pré-

treinados no conjunto I'mageNet [63].

Essa abordagem resultou em seis modelos distintos, considerando as combinacoes entre
arquitetura e estratégia de treinamento.

Os hiperparametros de cada modelo foram ajustados utilizando o algoritmo Hyper-
band [164, 165], que emprega uma estratégia de otimizagao bayesiana associada a alocagao
adaptativa de recursos e interrupg¢ao antecipada para acelerar o processo de busca.

Para o ajuste dos hiperparametros, o conjunto de dados D1v2 foi dividido aleatoria-
mente em dois grupos: 70% para treinamento e 30% para teste, mantendo a proporcao
entre as classes (com e sem degeneracao podocitaria). Essa divisao foi utilizada exclusi-
vamente para o ajuste dos hiperpardmetros, visando mitigar problemas de subajuste (un-
derfitting) e sobreajuste (overfitting).

O algoritmo Hyperband ajustou hiperparametros criticos, tais como: taxa de aprendi-
zado (learning rate), otimizador, tamanho do batch, funcao de perda (loss function) e o
numero de neurdnios nas camadas densas. A Tabela 7.1 apresenta os valores considerados
para cada hiperparametro, enquanto a Tabela 7.2 mostra os melhores valores obtidos para

cada modelo.

Tabela 7.1: Intervalo de valores considerados durante o ajuste de hiperparametros.

Hiperparametro Valores avaliados
Tamanho do batch 32,16, 8, 4, 2
Funcao de perda Binary Cross-entropy, Hinge
Otimizador SGD, Adam, Adagrad, RMSprop
Taxa de aprendizado 0,1; 0,001; 0,0001; 0,00001
Numero de neuronios nas camadas densas 2048, 1024, 512, 256

Tabela 7.2: Melhores valores de hiperparametros para cada modelo avaliado. LR: Learning
rate

Modelo Batch size | Perda | Otimizador | Camadas | LR
Inception ResNet-v2 TL 8 BCE RMSprop 1024, 512 | 0,0001
DenseNet201 TL 8 BCE Adam 512, 512 | 0,001
EfficientNet B3 TL 4 Hinge RMSprop 512, 512 | 0,0001
DenseNet201 FS 4 BCE SGD 2048, 1024 | 0,001
Inception ResNet-v2 FS 8 BCE Adam 1024, 512 | 0,0001
EfficientNet B3 FS 8 BCE Adam 512, 512 | 0,0001

Apébs a definicdo da melhor combinacao de hiperparametros para cada modelo, con-
forme ilustrado na Figura 7.1, foi realizada uma nova divisao do conjunto de dados, e

os modelos candidatos foram treinados por meio de validacdo cruzada estratificada em
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10 subconjuntos [122]. Em cada iteracao, um subconjunto foi utilizado para validagao,
enquanto os demais serviram para treinamento. Esse processo gerou 10 modelos distintos
para cada uma das seis combinacoes avaliadas.

Durante o treinamento na validacao cruzada, foi aplicada uma estratégia de aumento
de dados (data augmentation) com o objetivo de aumentar a diversidade do conjunto de
treinamento e mitigar problemas de sobreajuste [24]. As seguintes transformagoes foram

empregadas:

Rotagdes em angulos variando de 30° a 310° (com intervalos de 30°);

Espelhamento vertical e horizontal;

Ajustes aleatorios de brilho;

Variacoes de contraste.

Essas transformacoes foram cuidadosamente selecionadas para preservar a morfologia das
estruturas histolégicas dos glomérulos, evitando a introducao de artefatos que pudessem
prejudicar o treinamento dos modelos.

Gragas a aplicagao da técnica de aumento de dados, o nimero de imagens nos conjun-
tos de treinamento foi ampliado de 1.043 para 12.516, com cada imagem original gerando
12 novas variagoes. Essa expansao contribuiu significativamente para a melhoria da ca-
pacidade de generalizacao dos classificadores.

Adicionalmente, foi empregada a estratégia de parada antecipada (early stopping) [24],
interrompendo o treinamento sempre que, em uma sequéncia de 10 épocas, nao fosse
observada reducao na fungao de perda (loss). Essa pratica é amplamente utilizada para
evitar o sobreajuste e o treinamento excessivo dos modelos.

O melhor modelo foi selecionado com base no maior valor médio de F'1-score obtido nas
validacoes cruzadas. Em seguida, os modelos 6timos de cada combinacao de arquitetura
e estratégia de treinamento foram comparados entre si.

Por fim, apds a selecao final, o melhor modelo avaliado no conjunto D1v2 foi também
testado no conjunto D2, permitindo validar seu desempenho em um conjunto de dados

independente.

7.0.2 Classificacao dos patologistas

Para estabelecer as bases de comparacao do desempenho entre os modelos de CNN, trés
patologistas classificaram as imagens do conjunto D2 como "com'ou "sem'degeneragao
podocitaria. Essa tarefa foi realizada exclusivamente por meio da inspecdo visual das

imagens, sem qualquer informagao adicional.
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E importante destacar que os patologistas envolvidos na classificacio do conjunto D2
nao participaram da preparacao ou anotacao dos conjuntos de dados utilizados neste
estudo (D1v2 e D2). Cada especialista estava vinculado a uma instituicao distinta de
nefropatologia, o que garantiu maior diversidade e independéncia nas avaliagdes.

Para mitigar possiveis vieses de classificagdo decorrentes da reanalise imediata, foi
implementado um intervalo de 30 dias entre as duas sessoes de avaliacdo. Apds esse
periodo, os mesmos patologistas reclassificaram as imagens de D2, desta vez com acesso
as predigoes fornecidas pelo classificador automatizado. Em outras palavras, antes de
tomar uma decisao sobre cada imagem, os especialistas puderam consultar a recomendagao
gerada pelo modelo computacional.

Essa abordagem permitiu avaliar o desempenho dos patologistas tanto em condigoes
de andlise independente quanto sob o suporte do classificador, minimizando o risco de
dependéncia excessiva em relagao as sugestoes automatizadas.

Para cada uma das duas sessoes de classificagao realizadas, foi calculado o coefici-
ente de concordancia entre os nefropatologistas. Essa métrica foi fundamental para ava-
liar eventuais alteragoes na consisténcia diagnéstica decorrentes da utilizacao do suporte

computacional.
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Capitulo 8
Segmentacao de Lesoes Podocitarias

Neste capitulo, sao apresentados os procedimentos adotados para a avaliacao dos modelos
de referéncia (baselines) e o desenvolvimento da solugdo proposta para a segmentagao se-
mantica multiclasse de lesdes podocitarias em imagens de glomérulos renais. Inicialmente,
sao descritas as estratégias de tratamento do desequilibrio entre classes e colora¢des no
conjunto de dados, bem como a estruturagao dos subconjuntos de treinamento, validacao
e teste. Em seguida, detalha-se a sele¢ao e treinamento de multiplas arquiteturas classicas
de segmentacao combinadas a diferentes codificadores, formando o conjunto de modelos
de referéncia. Posteriormente, é apresentada a abordagem inovadora desenvolvida neste
trabalho, baseada na fusao de caracteristicas extraidas de espagos de cores distintos (RGB
e HED). Essa solucdo visa aprimorar a capacidade dos modelos em lidar com a hetero-
geneidade cromatica e o desequilibrio de classes, aspectos criticos para a segmentacao

precisa de estruturas histologicas lesionadas.

8.0.1 Avaliacdo dos modelos de referéncia (baselines)

Antes do treinamento e validagao dos modelos de referéncia, foi crucial abordar o desequi-
librio inerente entre classes e coloracoes no conjunto de dados D3, a fim de garantir um
treinamento efetivo dos modelos. Para isso, foram implementadas estratégias especificas.
Uma delas consistiu na reducao direcionada de imagens contendo apenas podocitos sem
lesoes, todas coradas com PAS, diminuindo seu niimero de 828 para 528. Essa reducao foi
essencial devido a incidéncia significativamente maior de poddécitos sem lesoes, servindo
como medida para mitigar o desequilibrio entre as classes.

Além disso, foi aplicada uma ampliagdo de dados as imagens com casos de lesoes,
conforme detalhado na proxima secao. O conjunto de dados foi entao dividido em trés
subconjuntos — treinamento, validacao e teste — garantindo que a proporcao de ima-

gens com lesoes e diferentes coloragoes fosse mantida de forma consistente em todos os
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subconjuntos. A Tabela 8.1 descreve a distribuicdo das imagens por corante em cada

subconjunto.

Tabela 8.1: Proporcao de coloragoes presentes em cada subconjunto.

Subconjuntos PAS HE Gomori | Mason PAMS
Treinamento 368 125 26 85 143
Validagao 53 18 4 13 21
Teste 107 36 9 26 42
Total 528 (49%) | 179 (17%) | 39 (4%) | 124 (11%) | 206 (19%)

Para combater os efeitos do desequilibrio entre as classes no processo de treinamento,
foi empregada uma estratégia de aumento de dados (data augmentation). Foram aplicadas
aleatoriamente combinagoes de rotagoes, espelhamentos, suavizagoes, ajustes de contraste
e transformagdes de iluminagao nas imagens do conjunto de treinamento. Essa abordagem
aumentou artificialmente o tamanho do conjunto de dados, contribuindo para mitigar o
desequilibrio entre imagens com e sem lesdes. Como resultado, o nimero de imagens com
lesoes foi ampliado em um fator de 30, enquanto o niimero de imagens sem lesdes cresceu
em um fator de 5. Dessa forma, o conjunto de treinamento expandiu-se de 747 para
14.111 imagens, criando uma base mais generalizada e diversificada para o treinamento
dos modelos.

O treinamento dos modelos de referéncia serviu como ponto de partida para o desen-
volvimento da abordagem proposta para a segmentacao das classes de lesdes podocitarias.
Como os trabalhos relacionados ndao abordam diretamente a segmentagao dos diferentes
tipos dessas lesoes, foi necessario explorar um conjunto mais amplo e diversificado de ar-
quiteturas de rede e encoders, adotando diferentes estratégias de aprendizado para superar
essa lacuna.

Os modelos de referéncia foram construidos a partir de nove arquiteturas classicas de
segmentacao: DeepLabv3, DeepLabv3+ [106], Unet [103], Unet++ [104], Linknet [109],
PSPnet [110], FPN [111], MAnet [112] e PAN [113]. Essas arquiteturas sio bem esta-
belecidas na literatura [166], e algumas delas, como Unet e Unet++, sdo amplamente
utilizadas na segmentagao de imagens histolégicas [167].

Os modelos avaliados foram gerados pela combinagao dessas nove arquiteturas com
trinta e cinco (35) encoders — todos disponiveis na biblioteca Segmentation Models Py-
torch! — resultando em trezentos e quinze (315) combinagdes (35 x 9). Cada modelo
foi treinado em duas condigoes de inicializacdo de pesos: inicializacao aleatéria e pesos
pré-treinados no ImageNet [139]. Além disso, as imagens foram representadas em dois
espagos de cor distintos (RGB e HED), totalizando 1260 modelos avaliados (315 x 4).

"https://github.com/qubvel/segmentation_models.pytorch
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Cada um desses 1260 modelos foi treinado tanto no espaco de cor RGB quanto no
espago HED, gerando, ao final, um total de 2520 (1260 x 2) modelos de referéncia anali-
sados.

Durante o treinamento, os hiperparametros foram padronizados para todos os mode-
los: a taxa de aprendizado foi inicializada em 0,0001, com um tamanho de batch de 16.
Utilizou-se a fungao de ativagao Softmazr 2d e a fungao de perda Dice loss [168]. Foram
atribuidos pesos especificos para cada classe (0,0040, 0,0840, 0,4408, 0,3498 e 0,1214),
como uma estratégia de aprendizado sensivel ao custo, considerando a proporc¢ao de cada
classe no conjunto de dados [169, 170]. As métricas de avaliagdo utilizadas foram o F-score
e o coeficiente de Jaccard [171], tanto em nivel global quanto por classe.

O nimero méaximo de épocas foi fixado em 500, com adoc¢ao da estratégia de parada
antecipada: o treinamento era interrompido se nao houvesse melhora na funcao de perda
apds 15 épocas consecutivas, medida empregada para evitar sobreajuste. A versdao do
modelo com a menor perda de validacao foi salva como o melhor resultado.

Ap6s o treinamento e validacdo de todos os modelos de referéncia, foram seleciona-
dos trinta modelos com base em seu F'I-score para analise comparativa da nova solucao
proposta (Se¢ao 8.0.2). Esse conjunto foi composto pelos 10 modelos com melhor de-
sempenho, pelos 10 modelos com pior desempenho e por 10 modelos selecionados alea-
toriamente (sem sobreposi¢do com os dois primeiros grupos). Todos os modelos foram
retreinados utilizando o novo método proposto, mantendo inalterados os hiperparametros
e critérios de parada, de modo que a comparacao focasse exclusivamente no impacto da
nova estratégia de aprendizado.

A partir dos resultados obtidos com os modelos de referéncia, identificou-se a ne-
cessidade de desenvolver uma abordagem mais robusta e sensivel as particularidades do
conjunto de dados estudado. Nesse contexto, a proxima secao apresenta a solugao pro-
posta, baseada na fusao de caracteristicas extraidas de multiplos espagos de cores, com o

objetivo de aprimorar a segmentacao semantica das lesoes podocitarias.

8.0.2 Solucao proposta

Optou-se pelo desenvolvimento de uma nova abordagem de fusdo de caracteristicas, que
combina informacgoes dos espagos de cores RGB e HED para treinar modelos de segmen-
tacao semantica. O foco principal ¢ enfrentar os desafios impostos por conjuntos de dados
desequilibrados e multicoloridos na segmentacao de lesoes podocitarias. Seja 8 um modelo
de segmentacao semantica com arquitetura baseada em codificadores e decodificadores,

conforme definido nas Equacoes 8.1 e 8.2.

Q:xl XSCQ%G, (81)
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(M1, Ms) = 0(x1, 22), (8.2)

Onde:

4 . ’ . . /
« (G é o conjunto dos possiveis mapas de atributos, sendo G C R"*%*¢  onde ¢

representa o nimero de classes e h X w a resolucao das imagens;

e 1 e Xy sdo as entradas correspondentes as imagens nos espagos de cor RGB e HED,

respectivamente;

e M e M, sao os mapas de caracteristicas resultantes dos blocos decodificadores nos

espacos RGB e HED, respectivamente.

Apos a extracdo dos mapas de caracteristicas M; e My por meio de seus respectivos
codificadores e decodificadores, é realizada uma operagao de fusao (@), resultando no

mapa combinado N (Equagao 8.3).

N = M, ® M. (8.3)

Finalmente, o mapa resultante N é submetido ao bloco de segmentacao original da

rede (5), gerando a méscara de saida Y (Equagao 8.4):
Y = S(N). (8.4)

Desenvolvimento e validacao do método proposto

O método desenvolvido modifica o fluxo convencional de treinamento de redes de segmen-
tagdo seméantica multiclasse, criando uma arquitetura multicanal. A Figura 8.1 ilustra a

proposta, que segue as etapas descritas a seguir:

1. Conversao das imagens do espago de cores RGB para HED;

2. Duplicacao do fluxo de dados, com codificadores e decodificadores especificos para

cada espaco de cor;
3. Fusao dos mapas de caracteristicas gerados antes do bloco de segmentacao;

4. Aplicacao do bloco de segmentacao original da arquitetura.

A inspiracao para o desenvolvimento dessa abordagem, bem como a ideia inicial de
utilizar imagens em diferentes espagos de cores, surgiu de estudos que investigam o im-

pacto do uso de multiplos espacgos de cor no treinamento de CNNs para problemas de
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Figura 8.1: Visdo geral da abordagem proposta: (1) conversdo do espago de cores, (2)
extragao de caracteristicas usando blocos encoder-decoder, (3) fusdo das saidas dos deco-
ders e (4) bloco de segmentacao.

classificagdo de imagens histolégicas [54, 55], e na melhoria do desempenho por meio de
diferentes representagoes cromaéticas [172, 173].

Considerando que o espaco HED oferece uma representacao especializada para imagens
histolégicas [56], esta abordagem propde combinar o HED com o espago RGB, de modo
a explorar informagdes complementares.

Para extrair caracteristicas de cada representacao de forma independente, foi em-
pregada a duplicagdo dos blocos de codificadores e decodificadores, formando um novo
modelo multicanal. Essa estratégia foi inspirada em abordagens que propoem arquiteturas
multicanal ou multi-stream [174, 175, 176, 177, 178, 179].

A fusdo dos mapas de caracteristicas extraidos dos decodificadores foi baseada em
estudo que avalia diferentes estratégias de fusdo para redes multicanal [118]. As operagoes
de fusdo consideradas estao descritas na Tabela 8.2, visando investigar os efeitos especificos
de cada estratégia no desempenho da segmentacao.

As hipéteses consideradas para cada operagao de fusao foram:
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Tabela 8.2: Operagoes de fusao avaliadas no método proposto.

Operacgao de fusao Definicao
Soma das matrizes de entrada N M, + MQ (8.5)
Diferenca absoluta = |M; — ] (8.6)
Méaximo elemento a elemento | N = maX(MM M, ;) (8.7)
Minimo elemento a elemento | N = min(My, ;, My, ;) (8.8)
Média elemento a elemento N = w (8.9)

« Soma (Equagao 8.5): permite a integracao das informagdes complementares dos

mapas, mas pode amplificar ruidos caso ambos contenham informacoes imprecisas.

» Diferenga absoluta (Equacao 8.6): destaca regides de alta discrepancia entre os

mapas, mas pode negligenciar informagoes contextuais em areas de baixo contraste.

« Miaximo elemento a elemento (Equagdo 8.7): enfatiza as caracteristicas mais
proeminentes, mas pode levar a perda de detalhes sutis quando ignora valores infe-

riores relevantes.

« Minimo elemento a elemento (Equagao 8.8): reforga regides de consenso entre os
mapas, reduzindo o impacto de ruido, embora possa eliminar informacoes relevantes

associadas a valores mais altos.

o Média elemento a elemento (Equagao 8.9): promove uma combinagao equili-

brada dos mapas, mas pode suavizar excessivamente caracteristicas importantes.

Na etapa final, o mapa de caracteristicas fundido N é encaminhado para o bloco de
segmentacao original da arquitetura, sem modificagoes adicionais.

A abordagem desenvolvida neste trabalho propde uma estratégia inovadora de fusao
de caracteristicas, combinando informagoes extraidas dos espagos de cor RGB e HED
para o aprimoramento da segmentacao semantica de lesdes podocitarias. Ao duplicar
o fluxo de codificadores e decodificadores e integrar os mapas de atributos por meio de
diferentes operagoes de fusao, a proposta visa explorar representacoes complementares das
imagens histolégicas, mitigar os efeitos do desequilibrio de classes e melhorar a robustez
dos modelos frente a variabilidade de coloragao. Dessa forma, a solugao apresentada
contribui de maneira significativa para a literatura de patologia computacional, oferecendo
uma alternativa promissora para a segmentacao multiclasse em cenérios desafiadores,

caracterizados por heterogeneidade cromaética e escassez de dados anotados.
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Capitulo 9

Resultados

Este capitulo apresenta os resultados obtidos pelos modelos de referéncia (baselines) e
pelas solugoes propostas nas etapas de identificacdo de podocitopatia, estudo sobre o
impacto do uso de classificadores na pratica médica e segmentacao de lesoes podocitarias,

conforme descrito no Capitulo 4.

9.1 Identificacao de podocitopatia: PodNet

A Tabela 9.1 apresenta os resultados obtidos para todos os modelos de classificacao ava-
liados. Os resultados no conjunto de generalizagdo correspondem as médias obtidas na
validagao cruzada, acompanhadas de seus respectivos desvios padrao. Ja os resultados
da validacao final foram calculados com base no conjunto de teste separado no inicio dos
experimentos.

A PodNet (modelo proposto) alcangou os melhores resultados de F'1-score no conjunto
de validacao final. Nos conjuntos de generalizagdo, a média de FI-score obtida foi equi-
valente a do modelo ResNet101 v2 (treinado em RGB com transferéncia de aprendizado),
que atingiu 90,2+3,54, enquanto a PodNet obteve 90,1+1,70. Considerando a diferenca
infima entre os modelos e o menor desvio padrao apresentado pela PodNet, também é
possivel considera-la superior nos conjuntos de generalizacao.

As Figuras 9.1, 9.2 e 9.3 apresentam as curvas ROC dos modelos de referéncia em cada
contexto de treinamento. Entre os modelos treinados com inicializacao aleatoéria de pesos
e utilizando imagens em escala de cinza, o melhor desempenho foi obtido pela Inception
v3 (Figura 9.2). No mesmo cendrio de inicializagdo aleatéria, porém utilizando imagens
em RGB, o modelo de melhor desempenho foi a Inception ResNet v2 (Figura 9.1). J& no
contexto de treinamento com transferéncia de aprendizado e imagens em RGB, o destaque
foi para a DenseNet201 (Figura 9.3).
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A Figura 9.4 apresenta a curva ROC dos quatro melhores modelos classificados pelo
F1-score: PodNet, DenseNet201 TL (RGB), Inception v3 TL (RGB) e ResNet101 v2 TL
(RGB).

Tabela 9.1: Resultados obtidos nos modelos de classificagao. TL: transfer learning. FS:
from scratch.

Classificacao Conjunto de generalizagao (média) Conjunto de validagao
Modelos Prec(%) | Rec(%) | Fi1(%) | Prec(%)| Rec(%) ]| F1(%)| AUC
PodNet (solugdo proposta) | 90,6+3,07 89,6+£1,36 | 90,1+1,70 88,9 93,2 90,9 | 0.959
Densenet201 TL (RGB) 90,04+3,66 | 90,0+5,31 | 88,04+3,89 85,0 91,0 87,8 0.935
Inception v3 TL (RGB) 87,0 £ 1,03 | 88,0 8,93 | 87,4 + 4,76 81,0 90,0 85,2 0.928
Resnet101 v2 TL (RGB) 94,0+2,65 | 86,0+7,44 90,2+3,54 83,00 86,0 84,4 0.927
VGG19 TL (RGB) 93,0+2,56 86,0+6,03 89,34+4,11 87,0 81,0 83,8 0.919
Xception TL (RGB) 89,0£2,66 90,0+8,26 88,4+4,69 82,0 84,0 82,9 0.893
Inception Resnet v2 FS (RGB) | 86,0 + 5,9 | 75,0 + 12,02 | 80,4 + 8,02 79,0 87,0 82,8 0.921
Inception Resnet v2 TL (RGB) | 92,0+3,76 90,0+5,75 87,4+3,22 79,0 86,0 82,3 0.896
Densenet201 FS (RGB) 82+ 79 83 £9,02 | 82,0+ 8,52 75,0 88,0 80,9 0.895
Inception v3 FS (GL) 80,0 £ 6,94 | 67,0 £ 6,02 | 78,2 £ 8,02 77,0 84,0 80,3 0.915
Resnet101 v2 FS (GL) 80,0 £ 6,7 | 82,0 £ 1,79 | 76,7 £ 9,23 72,00 92,0 80,3 0.801
Inception Resnet v2 FS (GL) | 79,0 &+ 7,67 | 88,0 + 9,60 | 83,2 + 7,44 83,0 77,0 79,8 0.888
Densenet201 FS (GL) 72,0+ 78 | 84,0+ 1,36 | 88,0+ 7,1 69,0 91,0 78,4 0.865
VGG19 FS (GL) 86,0+1,41 61,0+14,4 71,3+£8,44 78,0 79,0 78,4 0.883
Xception FS (GL) 82,0 £ 5,02 | 69,0 £ 5,82 | 75,3 £ 5,28 70,0 80,0 74,6 0.835
Inception v3 FS (RGB) 83,0 £4,02 | 78,0 £ 10,0 | 80,4 £ 7,42 71,0 78,0 74,3 0.816
Resnet101 v2 FS (RGB) 72,0 £ 10,1 | 65,0 £ 14,0 | 69,6 £ 11,0 71,00 74,0 72,4 0.784
VGG19 FS (RGB) 89,0+4,80 80,04+9,80 84,3+5,80 87,0 61,0 71,8 0.833
Xception FS (RGB) 76,0 £ 5,92 | 69,0 £ 12,0 | 69,4 £ 8,80 71,0 69,0 69,9 0.781

9.2 Impacto do uso de classificadores automatizados

na pratica dos patologistas

As métricas utilizadas para avaliar o desempenho do classificador automatizado e dos
patologistas foram: acuracia, precisao, revocagao, F'1-score e drea sob a curva (Area Under
the Curve - AUC) [123, 122]. Além dessas métricas, também foi calculada a confiabilidade
do acordo entre os trés patologistas utilizando o indice Fleiss’ Kappa [127], com o objetivo
de determinar se a inclusao dos resultados do classificador automatizado alterou o nivel
de concordancia entre os observadores.

A Tabela 9.2 apresenta os valores médios alcancados pelos modelos de CNN. O modelo
que obteve o maior FI-score na validagao cruzada com 10 subconjuntos foi o Inception
ResNet101 v2 com transferéncia de aprendizado, apresentando média de 94,7% de acura-
cia, 95,5% de precisao, 92,3% de revocacao e 93,7% de F1-score.

As curvas ROC [123] foram utilizadas para ilustrar o desempenho dos classificadores
em funcao da variacao do limiar de decisao. Um desempenho ideal seria caracterizado

por uma taxa de verdadeiros positivos igual a 1 e uma taxa de falsos positivos igual a 0.
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Figura 9.1: Curvas ROC: Modelos treinados do zero em RGB.
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Figura 9.3: Curvas ROC: Modelos treinados com transfer learning em RGB.
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Tabela 9.2: Resultados da validagao cruzada k-fold para os modelos de CNN. Modelos
com a sigla TL (Transfer Learning) foram pré-treinados; modelos com a sigla F'S (From

Scratch) foram treinados com inicializagao aleatéria de pesos.

Modelo Acc.(%) | Prec.(%) | Rev.(%) | F1(%)
Inception ResNet101 v2 TL | 94,7+2,6 | 95,5+3,6 | 92,3+4,3 | 93,7+2.,6
DenseNet201 TL 91,3+3,5 | 92,54+3,8 | 90,24+7,1 | 91,1£3,9
EfficientNet B3 TL 91,1+£2,4 | 92,843,4 | 89,0+7,1 | 90,6+2,8
DenseNet201 FS 88,4+2,9 | 90,6+£5,9 | 86,0£5,8 | 88,0+3,1
Inception ResNet101 v2 FS | 86,6+3,9 | 89,3+6,0 | 82,2+9,7 | 85,1+4.9
EfficientNet B3 FS 83,3+3,1 | 84,1452 | 822471 | 82,8434

A Figura 9.5 apresenta as curvas ROC geradas por cada modelo ao classificar as imagens
do conjunto D2. A comparacao entre modelos treinados from scratch e com aprendizado
por transferéncia evidencia que os modelos pré-treinados apresentaram maior AUC em
todos os casos. Entre eles, o Inception ResNet v2 destacou-se, alcancando uma AUC de
0,95 (linha pontilhada verde).

O modelo Inception ResNet101 v2 pré-treinado apresentou a melhor capacidade dis-
criminativa no conjunto de dados D2, com uma &rea sob a curva (AUC) de 0,95, em com-
paracao com 0,90 obtido pela DenseNet201 pré-treinada. Todos os modelos pré-treinados
superaram suas respectivas versoes treinadas from scratch, evidenciando a vantagem do
aprendizado por transferéncia para esta tarefa.

O desempenho dos patologistas também melhorou significativamente ao utilizar os re-
sultados do classificador automatizado como suporte. A Tabela 9.3 mostra que a acuracia
média dos patologistas aumentou de 88,3410,7% para 95,04:2,6% com o auxilio da CNN.

Tabela 9.3: Desempenho de trés patologistas com e sem o auxilio de um classificador
automatizado na classificacao de imagens do conjunto D2.

Classificador Acc.(%) | Prec.(%) | Rev.(%) | F1(%) | Fleiss’ Kappa
Patologista A 94.0 94.0 94,1 94,0
Patologista B 91,0 87,0 96,0 91,0 0,59
Patologista C 74,0 80,0 64,0 71,1
Média dos patologistas | 88,3+£10,7 | 87,0£7,0 | 84,64+17,9 | 91,4+12,5 -
CNN 91,0 86,0 95,0 90,9 -
Patologista A+CNN 96,0 100,0 92,5 96,1
Patologista B+CNN 97,0 94,0 100,0 96,9 0,83
Patologista C+CNN 92,0 86,0 97,7 914
Média Patologista+CNN | 95,0+2,6 | 93,3+£7,0 | 96,7+3,7 | 96,1+£2,9 _

A anadlise dos resultados gerais revelou que o uso do classificador automatizado impac-
tou positivamente tanto a precisao quanto a revocagao dos patologistas. Sem o suporte do
modelo, a precisao média dos especialistas foi de 87,0% e a revocacao de 84,6%, indicando

uma tendéncia de maior variabilidade na identificagdao correta das imagens positivas. Com
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Figura 9.5: Area sob a curva (AUC) dos modelos ao classificar imagens no conjunto de
dados D2.

a utilizacao do classificador, a precisao média aumentou para 93,3% e a revocacao para
96,7%, demonstrando um aprimoramento significativo na capacidade de deteccao das
imagens com lesoes podocitarias. Esses ganhos sugerem que o classificador automatizado
nao apenas auxiliou na redugao de erros falsos positivos e falsos negativos, mas também
conferiu maior estabilidade e consisténcia ao processo de decisdo diagnodstica, o que é
fundamental para elevar a qualidade da pratica médica e apoiar a formacgao de novos

especialistas.
Em termos de técnica de coloragao, os resultados de acuracia observaram-se da seguinte

forma:

o Para imagens coradas com PAS, a acuracia aumentou de 83,7+9% para 94,5+2%;
o Para imagens coradas com HE, a acurdcia aumentou de 80,0417% para 95,545%:;

o Para imagens coradas com tricrémico, a acuracia manteve-se estavel em 91,6£7%;
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o Para imagens coradas com PAMS, houve uma leve redugido, de 96,0+6% para

94,64+4%, ainda dentro do intervalo de variagdo esperado.

Além disso, o grau de concordancia (Fleiss” Kappa) entre os patologistas aumentou de
0,59 (concordancia moderada) para 0,83 (concordancia substancial) apés a introducao do
classificador automatizado, indicando uma melhoria de aproximadamente 40%.

Este resultado ¢ particularmente relevante, considerando que os patologistas partici-
pantes pertenciam a diferentes centros, o que historicamente tende a reduzir a concordan-
cia [180, 181, 182]. A utilizagao de patologistas de centros distintos confere maior rigor a
avaliagao da eficacia do classificador automatizado como ferramenta de apoio diagndstico.

A Figura 9.6 apresenta diagramas de Venn que ilustram a distribuicao dos erros co-
metidos pelos patologistas nas analises com e sem o auxilio do classificador. Observa-se
que, apés a introdugdo do suporte automatizado, houve uma clara redistribuicao dos
erros entre os especialistas, indicando uma mudanca na forma como as imagens foram

analisadas.

Patologistas sem o auxilio do classificador

Pathologist B

Pathologist A

Patologistas com o auxilio do classificador

Patholo

Pathologist A

Pathologist C

Pathologist C

Figura 9.6: Diagramas de Venn ilustrando a distribuicdo dos erros de classificagdo come-
tidos pelos patologistas com e sem auxilio do classificador automatizado..

Os resultados obtidos evidenciam que a introducao do classificador automatizado nao
apenas elevou a acuracia individual dos patologistas, mas também aumentou significati-
vamente a concordancia entre os especialistas de diferentes instituicoes. Esses achados

reforcam o potencial dos modelos de inteligéncia artificial como ferramentas de apoio
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a pratica diagnoéstica, proporcionando decisdes mais consistentes, seguras e precisas na

analise de imagens de glomérulos renais com suspeita de podocitopatia.

9.3 Segmentacao de lesoes podocitarias

Considerando todas as circunstancias desafiadoras de um conjunto de dados do mundo
real — caracterizado por alta diversidade morfologica, diferentes coloragoes e desbalancea-
mento entre classes —, mesmo com a adocgao de estratégias para mitigar essas dificuldades,
a expectativa para esta etapa do estudo era que os modelos apresentassem desempenho
inferior ao relatado em trabalhos relacionados baseados em conjuntos de dados bem con-
trolados [28, 29, 30, 31, 32].

Todos os modelos de referéncia treinados no espaco de cores RGB superaram seus
correspondentes treinados em HED. Portanto, considerando apenas os resultados dos
1260 modelos de referéncia (Secao 8.0.1) treinados em RGB, o melhor desempenho geral
foi alcancado pela arquitetura Unet++ com o codificador Inception v/, inicializada com
pesos pré-treinados no ImageNet. Este modelo obteve, no conjunto de teste, um F1-score
geral de 30,31%, com 39,53% na classe "lesao", 15,88% na classe "hiperplasia'e falhou em
segmentar as classes "hipertrofia" e "degeneracao". Esse comportamento de dificuldade
em identificar todas as classes foi semelhante ao observado na maioria dos modelos de
referéncia avaliados.

Mesmo entre modelos capazes de gerar predi¢oes para todas as classes, o desempenho
permaneceu baixo. Por exemplo, o DeepLab v3+ com codificador EfficientNet B0 pré-
treinado no ImageNet e treinado em RGB alcangou um FI-score geral de 29,97%, com
31,94% para "sem lesao", 5,70% para "hipertrofia", 3,62% para "degeneracao" e 14,39%
para "hiperplasia’.

De maneira geral, ficou evidente que as estratégias de aumento de dados (data aug-
mentation) e ponderagao de classes no calculo da fungao de perda (loss weighting) nao
foram suficientes para superar os desafios impostos por um conjunto de dados tao diverso.

Para uma avaliacao mais detalhada, foi realizada uma analise comparativa entre os 10%
melhores e 10% piores modelos (ver Figura 9.7). Entre os melhores modelos, observou-se
maior incidéncia das arquiteturas U-Net e U-Net++, presentes em 36% dos casos, indi-
cando a robustez dessas arquiteturas para imagens histolégicas. Entre os codificadores
mais frequentes nesse grupo destacaram-se o Timm RegNetX, Timm RegNetY, Efficient-
Net B0 e EfficientNet B2, aparecendo juntos em 66,66% dos modelos.

No grupo dos 10% piores modelos, apenas quatro arquiteturas se fizeram presentes:
LinkNet, FPN, PAN e PSPNet. Os codificadores com maior incidéncia nesse grupo foram
EfficientNet B0 e EfficientNet B1, responsaveis por 58,8% dos modelos. Esses codifica-
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Figura 9.7: Distribuicdo das arquiteturas de rede (A, B) e codificadores (C, D) entre os
10% melhores e piores modelos de referéncia..

dores possuem menor custo computacional, o que pode ter impactado negativamente o
desempenho.

Outro ponto relevante é que todos os melhores modelos de referéncia foram obtidos
via fine-tuning de pesos pré-treinados do ImageNet, enquanto, entre os piores baselines,

40% dos modelos foram treinados from scratch (com inicializagao aleatéria de pesos).

9.3.1 Impacto da Solucao Proposta

Para a avaliagdo da solucao proposta (Segao 8.0.2), foram retreinados 30 modelos de
referéncia: os 10 melhores, os 10 piores e 10 selecionados aleatoriamente. Apés o retreina-
mento, observou-se uma melhoria substancial: 29 dos 30 modelos apresentaram avancos
em termos de Intersection over Union (IoU) [120] e FI-score [119] geral em todas as
classes. Mesmo o modelo inicialmente de pior desempenho foi capaz de prever classes
anteriormente nao identificaveis.

A Figura 9.8 apresenta um boxplot comparativo das melhorias de F1-score obtidas

com a aplicacao das diferentes estratégias de fusdo propostas.
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Geral Sem lesdo Degeneragdo Hiperplasia Hipertrofia

Classes

Figura 9.8: Bozxplot das diferencas no F1-score entre os modelos de referéncia (Baselines)
e a solugao proposta utilizando diferentes estratégias de fusao.

O modelo com melhor desempenho apés o retreinamento foi o FPN com codificador
Timm-RegNetY 120, que, utilizando a operacao de fusdo média, elevou seu F1-score de
27,17% para 51,88%. Na classe "sem lesao", a acuracia passou de 40,21% para 67,03%; na
classe "hiperplasia', de 15,13% para 64,94%; enquanto nas classes "hipertrofia'e "degene-
racao'— onde antes nao havia predicoes — atingiu 36,84% e 26,98%, respectivamente.

Entre os 30 modelos reavaliados, observou-se variacdo nas operacoes de fusao que
proporcionaram os melhores resultados. Como ilustrado na Figura 9.8, a operacao de
diferenca absoluta obteve os melhores resultados gerais e nas classes "hipertrofia'e "de-
generacao'. Para a classe "hiperplasia', as operac¢oes de minimo e média se destacaram,
enquanto para "lesdo"a operacao de maximo apresentou melhor desempenho.

As Tabelas 9.4, 9.5 e 9.6 resumem os valores de loU e F1-score obtidos para os grupos
Top-10, Random-10 e Bottom-10.

De forma geral, ao comparar o desempenho dos modelos de referéncia com o desem-

penho apods a aplicagdo da solugao proposta, observou-se um aumento médio no IoU de
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18,25% para 34,20% e no F1-score de 21,60% para 39,00%. Esses resultados confirmam a
efetividade da abordagem multicanal baseada em fusao de caracteristicas no contexto de
segmentacao multiclasse de lesoes podocitarias.

A Figura 9.9 exemplifica os resultados visuais das predi¢oes realizadas pelo melhor
modelo de referéncia — Unet++ com Timm-RegNetX — retreinado utilizando a solugao
FFN proposta. Na amostra a, observa-se uma segmentacao parcial da classe hiperplasia,
com IoU de 0,56, além da auséncia de predigdes para as classes degeneracao e hipertrofia,
que estavam presentes na mascara de rétulos fornecida pelos patologistas. Na amostra
b, destaca-se um excelente desempenho na predigdo da classe hipertrofia (loU de 0,81) e
uma predigdo moderada de poddécitos sem lesao (loU de 0,41), sem predigao para a classe
de podécitos com hiperplasia. Por fim, a amostra ¢ apresenta um IoU de 0,60 na predicao

da classe poddcitos sem lesao.

Amostra Predicao

Figura 9.9: Predicoes do melhor modelo obtido com a adogao da solucao proposta
(Unet++ com Timm-RegNetX) em trés amostras do conjunto de teste..
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Tabela 9.4: ToU e F1-score do grupo Top-10 (%)

~ Geral Sem lesdo Hipertrofia Degeneracao Hiperplasia
Modelo Fusdo ToU F-sc. IoU F-sc. ToU F-sc. ToU F-sc. ToU F-sc.
Add 5,27 5,39 1,90 3,72 5,18 9,64 6,92 12,00 11,72 20,57
Mean 21,11 22,36 28,73 | 44,59 19,16 31,18 1,47 2,80 24,65 38,88
Unet++4 timm-regnetx320 Min 7,41 7,77 10,29 18,62 4,54 8,46 0,77 1,49 4,59 8,48
Max 14,38 15,03 19,62 32,72 14,67 24,36 1,30 2,52 7,30 13,24
AbsDif 22,85 24,36 24,34 38,96 21,87 | 34,74 4,42 7,79 25,97 | 39,42
Baseline | 23,62 | 27,06 26,00 39,45 0,00 0,00 0,00 0,00 0,00 0,00
Add 24,21 27,37 25,70 40,73 7,64 13,90 11,07 19,45 30,95 46,32
Mean 44,54 | 51,88 | 50,69 | 67,03 | 23,42 | 36,84 | 16,18 | 26,98 48,71 64,94
FPN timm-regnety120 Min 34,42 37,79 35,79 52,44 18,18 28,38 8,44 14,19 44,01 59,03
Max 43,75 51,34 49,19 65,65 23,12 36,52 14,33 23,88 49,84 | 66,06
AbsDif 34,70 41,65 37,50 54,42 22,48 35,84 16,27 27,35 41,00 57,563
Baseline 23,60 27,17 26,29 40,21 0,00 0,00 0,00 0,00 13,01 15,13
Add 6,76 6,89 3,68 7,10 5,24 9,68 2,65 5,07 15,73 26,42
Mean 9,30 9,70 12,13 21,59 5,02 9,30 3,84 7,25 7,28 13,14
Unet++4 densenet201 Min 17,30 17,70 22,99 37,21 11,46 18,98 4,28 8,02 9,49 16,42
Max 16,54 17,51 19,57 32,62 18,50 8,50 4,68 8,61 15,98 26,65
AbsDif 26,29 | 28,73 | 24,63 | 39,45 | 20,31 | 31,89 3,66 6,76 38,30 | 53,86
Baseline 23,31 27,93 16,12 26,34 3,66 5,23 3,00 3,62 9,00 12,00
Add 13,91 14,58 9,28 16,91 16,25 26,55 5,11 9,04 25,62 38,96
Mean 25,21 27,27 21,93 35,85 17,39 27,50 9,06 15,80 39,78 55,24
PAN timm-regnety120 Min 18,51 19,35 15,45 26,44 17,51 27,46 6,40 10,70 28,88 42,94
Max 32,31 | 36,13 | 33,91 | 50,43 | 18,40 | 29,66 9,79 16,97 | 41,26 | 56,65
AbsDif 8,33 8,71 6,72 12,51 9,12 15,98 3,46 6,31 12,93 22,53
Baseline 25,93 30,31 24,86 38,52 0,00 0,00 0,00 0,00 12,78 17,24
Add 5,01 5,08 6,36 11,91 4,42 8,31 1,10 2,15 3,72 7,10
Mean 28,49 | 30,92 | 36,31 | 52,91 10,71 18,74 4,04 7,47 24,65 | 38,88
Unet++ inceptionv4 Min 16,69 17,84 18,34 30,66 13,61 23,10 3,42 6,43 18,10 29,61
Max 3,11 3,17 1,77 3,47 13,39 22,41 2,18 4,41 2,96 5,70
AbsDif 9,05 9,40 5,53 10,47 14,18 | 23,47 4,60 7,50 16,31 27,04
Baseline 26,70 30,31 25,94 39,53 0,00 0,00 0,00 0,00 11,78 15,78
Add 41,21 48,11 45,96 62,77 21,13 | 32,88 11,01 18,92 48,84 64,77
Mean 42,86 49,71 47,48 64,21 20,98 32,73 12,49 21,14 51,45 | 67,16
FPN efficientnet-b2 Min 38,36 43,19 41,60 58,28 19,52 30,31 10,80 18,42 46,13 61,60
Max 44,30 | 52,40 50,68 67,02 20,35 32,09 13,09 22,11 49,96 64,50
AbsDif 43,84 52,15 51,94 | 68,16 19,64 31,22 13,99 | 23,93 46,37 62,40
Baseline 25,68 30,33 21,37 33,91 5,22 7,51 0,00 0,00 10,92 15,06
Add 10,56 11,00 10,88 19,55 16,97 | 27,68 3,73 7,04 10,27 18,39
Mean 8,50 8,83 6,54 12,25 5,13 9,61 2,52 4,86 16,08 27,27
Unet inception v4 Min 21,80 23,17 17,32 29,27 17,22 27,69 5,03 8,68 36,70 52,51
Max 11,25 11,56 11,42 20,30 15,39 25,54 3,40 5,70 11,40 20,33
AbsDif 23,80 25,84 18,78 31,52 21,39 | 34,05 9,73 16,77 | 38,98 | 55,08
Baseline | 24,36 | 27,97 | 29,56 | 43,95 0,00 0,00 0,00 0,00 0,00 0,00
Add 0,24 0,24 0,00 0,00 0,25 0,49 0,41 0,81 0,70 0,14
Mean 22,98 23,13 1,24 2,44 7,50 12,55 0,80 1,50 3,90 7,30
Unet++4 densenet169 Min 6,98 7,80 5,00 9,00 4,42 7,83 2,13 4,00 13,93 23,70
Max 24,01 25,79 23,11 37,20 16,11 26,70 5,73 10,20 34,19 49,67
AbsDif 33,10 | 33,73 | 37,32 | 53,99 | 19,83 | 31,90 7,20 12,63 | 36,86 | 51,69
Baseline 24,72 29,20 19,69 31,57 4,80 6,20 0,00 0,00 9,99 13,81
Add 6,15 6,24 4,73 8,95 3,10 5,89 0,32 0,64 12,34 21,21
Mean 20,67 21,90 22,19 36,17 15,33 25,96 0,50 0,98 25,96 40,39
Unet++ vggl9 Min 21,80 23,17 17,32 29,27 17,22 27,69 5,03 8,68 36,70 52,51
Max 11,25 11,56 11,42 20,30 15,39 25,54 3,40 5,70 11,40 20,33
AbsDif 23,80 25,84 18,78 31,52 21,39 | 34,05 9,73 16,77 | 38,98 | 55,08
Baseline | 24,36 | 27,97 | 29,56 | 43,95 0,00 0,00 0,00 0,00 0,00 0,00
Add 42,17 | 48,22 | 46,87 | 63,37 20,62 33,19 10,42 18,01 49,93 65,98
Mean 41,73 47,78 45,30 62,25 23,35 40,60 8,92 15,67 49,32 65,49
Manet mitb3 Min 32,25 37,78 33,57 49,95 24,83 38,77 12,96 22,35 38,34 54,91
Max 32,66 37,57 32,33 48,70 17,25 28,60 13,60 | 22,94 43,76 60,04
AbsDif 38,40 43,81 36,33 53,01 26,44 40,27 12,13 20,78 54,66 | 70,03
Baseline 24,83 28,95 22,39 35,41 0,00 0,00 0,00 0,00 10,00 13,67
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Tabela 9.5: IoU e F1-score do grupo Random-10 (%)

Geral Sem lesao Hipertrofia Degeneragao Hiperplasia

Modelo Fusao IoU F-sc. IoU F-sc. IoU F-sc. IoU F-sc. IoU F-sc.

Add | 26,80 | 29,76 | 32,11 | 48,45 | 9,03 | 14,85 | 5,54 | 9,62 | 27,38 | 40,87
Mean |30,36 |34,47 | 35,34 (51,93 | 12,50 | 20,25 | 8,55 | 14,47 | 31,86 | 46,03
Unet mitb3 Min 19,43 | 20,59 | 17,62 | 29,85 | 9,44 | 15,52 | 4,60 | 8,12 | 30,75 | 45,54
Max | 21,43 | 23,09 | 22,32 | 36,37 | 10,72 | 17,05 | 6,75 | 11,78 | 27,38 | 40,77
AbsDif | 19,71 | 21,82 | 21,30 | 35,01 | 11,98 | 19,81 | 6,29 | 11,30 | 23,95 | 36,54
Baseline | 20,33 | 23,49 | 14,85 | 24,62 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00

Add | 46,60 | 53,05 | 49,46 | 65,98 | 23,00 | 36,43 | 12,19 | 20,59 | 57,79 | 72,39
Mean | 44,13 | 50,49 | 47,61 | 64,16 | 25,99 | 40,25 | 11,33 | 19,33 | 53,09 | 62,39
Unet++ efficientnet b4 Min | 35,55 | 39,05 | 34,90 | 51,39 | 22,70 | 35,60 | 10,26 | 17,56 | 49,21 | 64,92
Max | 41,81 | 47,80 | 42,57 | 59,47 | 25,23 | 38,65 | 14,45 | 24,44 | 54,30 | 69,57
AbsDif | 47,34 | 55,12 | 52,43 | 68,63 | 26,66 | 40,80 | 14,11 | 23,90 | 55,03 | 70,00
Baseline | 24,20 | 27,84 | 29,21 | 43,53 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00

Add 0,21 | 0,21 | 0,70 | 0,15 | 0,10 | 0,30 | 0,17 | 0,34 | 0,56 | 1,10
Mean | 8,37 | 8,60 | 6,30 | 11,83 | 6,11 | 11,09 | 1,50 | 2,86 | 15,77 | 26,45
PSPnet timm-regnety 080 | Min 12,53 | 13,19 | 8,77 | 16,00 | 11,00 | 18,28 | 2,93 | 4,84 | 23,54 | 36,19
Max 1,81 | 1,91 | 1,80 | 3,53 | 3,72 | 7,00 | 0,43 | 0,84 | 2,15 | 4,17
AbsDif | 11,73 | 12,66 | 13,42 | 21,80 | 8,93 | 15,36 | 1,00 | 2,00 | 13,44 | 23,13
Baseline | 22,60 | 25,51 | 13,56 | 23,48 | 2,41 | 3,28 | 0,00 | 0,00 | 4,99 | 6,58

Add | 33,51 | 40,36 | 42,45 | 59,32 | 12,24 | 20,95 | 13,41 | 23,15 | 29,43 | 43,60
Mean | 31,31 | 37,28 | 39,39 | 56,13 | 138,39 | 22,29 | 12,26 | 21,13 | 25,94 | 39,39
MAnet vggl9 Min | 38,40 | 45,16 | 48,18 | 64,63 | 12,69 | 20,75 | 6,43 | 11,83 | 33,79 | 48,64
Max | 38,85 | 46,83 | 49,54 | 66,12 | 12,31 | 21,12 | 12,35 | 21,29 | 35,15 | 50,32
AbsDif | 40,88 | 50,41 | 51,88 | 67,31 | 10,36 | 17,98 | 11,23 | 19,63 | 38,05 | 52,72
Baseline | 20,15 | 22,43 | 10,22 | 17,15 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00

Add 0,49 | 0,49 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00
Mean |41,27 |48,26 45,12 (61,89 (24,65 | 36,29 | 11,90 | 20,27 | 47,20 | 62,38
Manet mitb5 Min 9,74 | 10,00 | 7,58 | 14,00 | 11,27 | 19,62 | 4,27 | 8,08 | 15,20 | 25,80
Max | 30,35 | 33,90 | 27,76 | 43,24 | 24,41 | 37,85 | 14,87 | 25,16 | 41,99 | 58,60
AbsDif | 30,37 | 34,39 | 35,84 | 52,50 | 19,91 | 32,31 | 9,30 | 16,61 | 29,67 | 45,11
Baseline | 24,27 | 27,86 | 29,13 | 43,38 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00

Add | 42,76 | 48,87 | 46,23 | 62,94 | 23,51 | 36,11 | 12,73 | 21,79 | 52,36 | 67,76
Mean | 41,64 | 48,28 | 42,95 | 59,91 | 24,22 | 37,47 | 12,03 | 20,44 | 54,53 | 69,61
Manet mitb4 Min | 40,48 | 45,20 | 43,17 | 60,00 | 23,25 | 35,72 | 13,07 | 22,30 | 50,25 | 65,87
Max | 41,91 | 47,57 | 45,52 | 62,29 | 20,81 | 33,60 | 9,68 | 16,99 | 50,50 | 66,00
AbsDif | 37,05 | 42,02 | 36,67 | 53,19 | 20,65 | 33,27 | 12,97 | 21,90 | 50,38 | 66,06
Baseline | 24,59 | 28,69 | 21,74 | 34,36 | 0,00 | 0,00 | 0,00 | 0,00 | 9,71 | 13,57

Add | 34,39 | 38,34 | 32,22 | 48,21 | 24,12 | 37,34 | 10,00 | 17,13 | 49,41 | 65,24
Mean | 28,79 | 31,70 | 23,59 | 37,84 | 21,64 | 34,54 | 10,46 | 18,09 | 45,23 | 61,17
Linknet timm-regnety 120 | Min |43,58 | 50,04 | 44,52 | 61,53 | 26,60 | 40,28 | 14,32 | 23,17 | 55,46 | 70,75
Max | 31,59 | 35,93 | 38,25 | 55,09 | 15,38 | 25,88 | 8,07 | 14,35 | 27,77 | 42,41
AbsDif | 37,14 | 42,47 | 38,84 | 55,80 | 21,53 | 34,40 | 12,91 | 21,96 | 48,01 | 63,92
Baseline | 24,83 | 28,95 | 22,39 | 35,41 | 0,00 | 0,00 | 0,00 | 0,00 | 9,99 | 13,67

Add | 41,97 | 48,30 | 49,46 | 65,01 | 18,00 | 28,19 | 9,17 | 15,56 | 41,26 | 56,66
Mean | 31,69 | 34,59 | 36,59 | 53,42 | 18,11 | 28,49 | 7,13 | 12,03 | 31,49 | 45,54
Linknet efficientnet b1l Min | 39,39 | 45,07 | 46,73 | 63,53 | 20,55 | 32,82 | 9,32 | 15,90 | 38,62 | 53,82
Max | 34,67 | 38,12 | 38,65 | 55,61 | 21,83 | 34,25 | 6,94 | 11,94 | 38,71 | 53,44
AbsDif | 10,01 | 10,40 | 9,00 | 16,63 | 8,97 | 16,21 | 2,52 | 4,85 | 15,77 | 26,60
Baseline | 23,78 | 27,79 | 22,68 | 35,17 | 0,00 | 0,00 | 5,22 | 8,53 | 0,00 | 0,00

Add | 19,76 | 22,06 | 18,22 | 30,65 | 15,61 | 24,89 | 7,11 | 12,84 | 29,33 | 43,52
Mean | 29,74 | 32,83 | 32,37 | 48,67 | 15,38 | 23,92 | 6,18 | 10,45 | 36,46 | 51,46
Unet timmregnety 080 Min | 31,28 | 36,22 | 39,11 | 55,63 | 8,13 | 12,84 | 5,85 | 9,90 | 28,57 | 41,86
Max |835,27|39,87|46,38|63,22| 4,35 | 7,88 | 7,72 | 13,52 | 29,52 | 43,30
AbsDif | 25,92 | 28,56 | 27,33 | 42,77 | 14,21 | 22,93 | 7,92 | 13,83 | 34,54 | 49,22
Baseline | 19,23 | 22,13 | 8,83 | 15,75 | 0,00 | 0,00 | 0,00 | 0,00 | 1,87 | 2,85

Add 3.10 3.13 0.70 1.38 0.77 1.44 0.34 0.65 9.81 16.63
Mean 0.90 0.90 0.20 0.40 0.10 0.20 0.28 0.56 2.97 5.60
DeepLab v3 resnet50 Min 6.50 6.61 0.57 1.13 4.18 7.39 0.96 1.85 | 21.41 | 33.04

Max 1.57 1.57 0.24 0.48 1.34 2.57 1.38 2.59 4.75 8.77
AbsDif | 22.98 | 24.56 | 26.60 | 41.84 | 10.94 | 17.41 | 5.19 | 9.24 | 25.00 | 39.21
Baseline | 19.88 | 22.16 | 9.65 16.25 | 0.00 0.00 0.00 0.00 0.00 0.00
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Tabela 9.6: loU e F1-score do grupo Bottom-10 (%)

~ Geral Sem lesao Hipertrofia Degeneracao Hiperplasia

Modelo Fusao IoU F-sc. IoU F-sc. IoU F-sc. IoU F-sc. IoU F-sc.

Add 17,18 | 18,01 | 16,09 | 27,51 | 13,86 | 22,46 | 6,73 | 11,99 | 23,62 | 36,80
Mean |22,12|23,52|22,77 (36,93 (18,94 | 30,21 | 5,36 9,37 | 27,18 | 40,93

PAN timm-regnetx 120 Min 10,48 | 10,73 | 8,60 | 15,70 | 11,26 | 18,56 | 3,72 6,59 | 16,97 | 27,87
Max 7,55 7,70 7,86 | 14,53 | 5,28 9,31 0,80 1,56 | 10,25 | 17,88

AbsDif | 17,35 | 18,81 | 20,28 | 33,56 | 5,27 9,61 7,30 | 13,32 | 18,71 | 30,89

Baseline | 3,92 6,29 | 15,14 | 24,91 | 5,00 | 10,00 | 0,00 0,00 3,95 5,51

Add 28,68 | 32,06 | 37,71 | 54,56 | 13,09 | 21,18 | 8,00 | 13,96 | 20,28 | 31,25

Mean 28,10 | 31,76 | 35,97 | 52,75 | 9,35 | 15,60 | 6,74 | 11,85 | 24,37 | 37,92
FPN resnet50 Min 26,12 | 29,35 | 26,74 | 41,97 | 14,68 | 23,03 | 13,11 | 22,54 | 32,56 | 47,08
Max 30,04 | 33,69 | 39,24 | 56,12 | 10,50 | 17,67 | 7,00 | 12,26 | 22,75 | 35,32

AbsDif | 29,44 | 34,38 | 36,82 | 53,52 | 11,75 | 20,17 | 8,58 | 15,34 | 27,04 | 41,60

Baseline | 2,38 4,20 0,00 0,00 | 10,40 | 17,50 | 0,00 0,00 | 10,91 | 3,56

Add 11,80 | 13,47 | 11,38 | 20,09 | 4,50 7,94 5,68 | 10,34 | 15,98 | 26,09

Mean 15,35 | 17,37 | 19,74 | 32,45 | 4,93 8,43 1,76 3,29 | 13,76 | 20,58
PSPNet efficientnet b4 Min 35,43 | 42,63 | 44,83 | 61,28 | 16,18 | 25,34 | 7,66 | 13,39 | 32,17 | 46,16
Max 31,90 | 37,93 | 41,91 | 58,53 | 6,08 | 10,67 | 6,36 | 11,46 | 25,76 | 38,80

AbsDif | 27,58 | 33,52 | 37,15 | 53,60 | 9,87 | 16,20 | 7,45 | 13,30 | 18,74 | 29,24

Baseline | 2,36 4,10 0,00 0,00 9,88 | 16,95 | 0,00 0,00 1,91 3,56

Add 32,50 | 36,80 | 33,77 | 50,35 | 17,09 | 26,87 | 8,44 | 14,66 | 42,82 | 58,36
Mean | 34,46 | 38,89 | 36,55 (53,30 (17,67 27,92 | 8,34 | 14,17 | 44,74 | 59,86

PAN efficientnet b4 Min 26,10 | 28,15 | 29,07 | 44,61 | 13,69 | 21,46 | 4,73 7,99 | 29,62 | 43,00
Min 29,30 | 33,46 | 32,35 | 48,73 | 14,23 | 23,06 | 5,86 | 10,64 | 35,91 | 50,93

AbsDif | 27,48 | 31,69 | 31,47 | 47,66 | 14,26 | 22,28 | 7,63 | 13,36 | 30,73 | 45,05

Baseline | 1,76 3,20 6,48 | 11,67 | 0,00 0,00 2,40 4,50 2,10 3,80

Add 20,57 | 22,73 | 37,71 | 54,56 | 13,09 | 21,18 | 8,00 | 13,96 | 20,28 | 31,25

Mean 21,56 | 23,75 | 35,97 | 52,75 | 9,35 | 15,60 | 6,76 | 11,85 | 24,37 | 37,92
FPN timm-regnetx 080 Min 27,94 | 31,93 | 26,74 | 41,97 | 14,68 | 23,03 | 13,11 | 22,54 | 32,56 | 47,08
Max 22,08 | 24,63 | 39,24 | 56,12 | 10,50 | 17,67 | 7,00 | 12,26 | 22,75 | 35,32

AbsDif | 28,92 | 34,70 | 36,82 | 53,52 | 11,75 | 20,17 | 8,58 | 15,34 | 27,04 | 41,60

Baseline | 20,70 | 24,40 | 16,46 | 27,17 | 0,00 0,00 0,00 0,00 0,00 0,00

Add 31,13 | 35,86 | 38,53 | 55,25 | 14,08 | 22,34 | 6,07 | 10,93 | 29,34 | 43,84

Mean 19,50 | 21,38 | 22,70 | 36,83 | 8,32 | 14,09 | 3,72 6,68 | 22,06 | 33,97

PAN efficientnet b2 Min 34,16 | 40,41 | 43,04 | 59,93 | 13,21 | 21,40 | 10,00 | 17,38 | 29,76 | 44,17
Max 33,07 | 38,08 | 40,30 | 57,05 | 15,48 | 24,55 | 10,97 | 18,69 | 29,43 | 43,53

AbsDif | 39,87 (47,12 | 53,16 | 69,14 | 10,16 | 16,73 | 3,99 6,88 | 28,20 | 42,91

Baseline | 2,28 4,10 8,88 | 15,90 | 0,00 0,00 0,26 0,51 2,33 4,70

Add 21,33 | 23,40 | 27,74 | 43,31 | 7,98 | 13,73 | 3,63 6,46 | 16,60 | 26,85

Mean 18,83 | 20,45 | 21,74 | 35,57 | 6,14 | 10,70 | 3,66 6,49 | 21,53 | 34,12

FPN timm-regnetx 080 Min 13,22 | 13,89 | 14,56 | 25,35 | 3,87 6,99 1,40 2,84 | 17,27 | 27,82
Max 26,91 | 30,58 | 35,14 | 51,85 | 8,40 | 14,04 | 5,67 | 10,07 | 20,98 | 32,95

AbsDif | 21,76 | 26,46 | 25,40 | 40,43 | 6,30 | 11,43 | 3,23 6,00 | 25,38 | 39,32

Baseline | 1,86 3,35 4,30 8,00 0,00 0,00 1,32 2,37 3,69 6,27

Add 26,49 | 30,17 | 33,12 | 49,59 | 12,61 | 19,26 | 4,00 7,42 | 23,96 | 36,90

Mean 24,66 | 26,53 | 23,19 | 37,35 | 11,82 | 18,61 | 4,24 7,32 | 37,61 | 52,59
Linknet efficientnet b2 Min 43,71 | 51,36 | 52,93 | 68,78 | 18,29 | 28,94 | 13,60 | 23,09 | 46,24 | 61,29
Max 11,28 | 12,32 | 13,33 | 23,25 | 11,04 | 16,75 | 2,90 5,50 | 11,11 | 19,20

AbsDif | 25,35 | 28,64 | 27,30 | 42,79 | 15,32 | 24,20 | 8,88 | 15,44 | 32,31 | 46,23

Baseline | 17,67 | 22,15 | 8,20 | 14,67 | 2,40 3,77 1,24 1,92 5,57 7,82

Add 33,46 | 38,58 | 39,64 | 56,46 | 15,69 | 25,28 | 7,90 | 13,67 | 33,56 | 47,61

Mean 30,22 | 34,59 | 35,63 | 52,30 | 13,94 | 22,59 | 9,60 | 15,97 | 29,19 | 43,14

FPN efficientnet b5 Min 34,46 | 39,57 | 42,99 | 59,99 | 15,60 | 24,64 | 9,06 | 15,53 | 31,44 | 45,27
Max 35,15 | 40,94 | 42,30 | 58,93 | 16,45 | 26,25 | 9,33 | 16,02 | 34,11 | 48,68

AbsDif | 26,15 | 32,50 | 30,60 | 46,74 | 9,04 | 16,31 | 8,96 | 16,16 | 30,00 | 44,88

Baseline | 12,48 | 14,41 | 8,67 | 15,66 | 0,29 0,57 0,00 0,00 3,42 5,84

Add 27,68 | 30,49 | 33,76 | 50,31 | 14,17 | 23,74 | 2,40 4,44 | 27,77 | 41,98

Mean 34,06 | 38,42 | 40,50 | 57,45 | 14,05 | 22,86 | 7,14 | 12,53 | 35,91 | 51,78

Linknet efficientnet b5 Min 37,35 | 42,66 | 43,15 | 60,00 | 16,55 | 26,63 | 6,86 | 11,98 | 42,13 | 57,53
Max 36,46 | 42,43 | 41,24 | 58,12 | 16,40 | 26,47 | 8,89 | 15,45 | 43,12 | 58,83

AbsDif | 28,34 | 31,90 | 34,26 | 50,88 | 11,42 | 19,22 | 5,21 9,15 | 28,48 | 42,94

Baseline | 10,29 | 15,75 | 6,38 | 11,79 | 0,44 0,87 1,80 3,25 5,20 8,30
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Capitulo 10
Consideracoes Finais

Esta tese teve como objetivo ampliar a fronteira da Patologia Computacional por meio
do desenvolvimento de técnicas computacionais para auxiliar na analise de imagens de
glomérulos renais. Para isso, foram propostos métodos inovadores para a identificacao de
podocitopatia e segmentacao de lesdes podocitarias, bem como a andlise do impacto do
suporte computacional no desempenho de patologistas.

A seguir, detalhamos o atendimento a cada objetivo especifico proposto na Segao 1.4:

o Fornecer novos conjuntos de dados sobre les6es podocitarias, simulando
cenarios de multicoloracao e desbalanceamento. Este objetivo foi atingido
com a criacao e disponibilizacdo, para fins académicos, do conjunto de dados D3,
composto por 1.401 imagens de glomérulos renais, anotadas em quatro classes dis-
tintas: controle normal, hiperplasia, hipertrofia e degeneracao. A elaboracao desse
conjunto de dados, caracterizado por multicoloracao e desbalanceamento entre clas-
ses, preenche uma lacuna critica na area de patologia computacional, oferecendo
a comunidade cientifica um recurso inédito e mais representativo da variabilidade

observada em cendérios clinicos reais.

o Aperfeicoar o desempenho de modelos de classificacao binaria para iden-
tificacdo de podocitopatia. Para a tarefa de classificacao da presenca ou auséncia
de podocitopatia, foi desenvolvido o classificador PodNet. Este modelo alcangou os
melhores resultados de F'I-score no conjunto de validagao final, superando arqui-
teturas tradicionais como ResNet101v2. A solugao proposta demonstrou robustez

mesmo em cenarios com dados limitados e multicoloracao.

o Estudar o impacto do uso de classificadores automatizados na pratica
dos patologistas. A avaliacdo da interagdao entre patologistas e o classificador
automatizado mostrou que o uso do suporte computacional aumentou a acuracia

dos especialistas de 88,3% para 95,0%, e elevou o indice de concordancia (Fleiss’
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Kappa) de 0,59 para 0,83. Esses resultados indicam que o uso de inteligéncia artificial

pode reduzir variabilidade entre observadores e aprimorar a pratica diagnodstica.

e Propor modificagbes de topologia e arquitetura para aprimorar o de-
sempenho de modelos de segmentacao semantica. Foi proposta uma solugao
baseada em Feature Fusion Network (FFN), uma estratégia de fusao de caracteristi-
cas a partir dos espacos de cor RGB e HED. A nova abordagem gerou ganhos médios
de 9,13% em F1-score e de 8,56% em IoU em relacao aos modelos tradicionais de
segmentacao. A estratégia de fusao baseada na diferenca absoluta mostrou-se, em
geral, a mais eficaz, embora variagoes como média e minimo tenham se destacado

em classes especificas.

Outro ponto importante é que este trabalho abordou um problema ainda inexplorado
na literatura: a segmentacao multiclasse de lesdes podocitarias em glomérulos renais,
em um cenario realista de multicoloracao e desbalanceamento de classes. Assim, nao
foi possivel realizar comparacoes diretas com trabalhos anteriores, que lidam majorita-
riamente com conjuntos controlados ou restritos a outras patologias glomerulares. Esse
fator ressalta o carater pioneiro e desafiador deste estudo.

Além das contribuicoes especificas, esta pesquisa também promove avancos para a
compreensao da morfologia dos poddcitos e sua relagdo com doengas renais como a nefro-
patia diabética e glomerulopatias diversas. A identificagdo precisa dos poddcitos e suas

alteragdes é um passo essencial para o diagndstico precoce e o manejo clinico mais eficaz.

10.1 Perspectivas Futuras
Os resultados promissores desta tese abrem diversas frentes de continuidade:

o Explorar o uso de outros espacos de cor além do RGB e HED para enriquecer a

extracao de caracteristicas relevantes nas imagens histoldgicas.

o Investigar métodos de fusao adaptativos que escolham dinamicamente a melhor

operacao de fusdo de acordo com o conteido da imagem.

o Ampliar o conjunto de dados com novas amostras, incluindo outras coloragoes e

fontes diversas, visando aumentar a robustez dos modelos.

« Aplicar arquiteturas mais recentes, como modelos V-LLM ( Vision-Language Large
Models) [183] e Transformers [184], para explorar o potencial de estratégias multi-

modais na analise de laminas histologicas.
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Portanto, esta tese contribui de maneira sélida para o fortalecimento da Patologia
Computacional, demonstrando que a integracao entre métodos de inteligéncia artificial e

a pratica clinica pode oferecer suporte robusto e confiavel para o diagnodstico médico.

10.2 Limitacoes

Apesar dos avangos alcangados neste trabalho, algumas limitagoes devem ser reconhecidas
e podem orientar pesquisas futuras.

Em relagdo aos conjuntos de dados elaborados, as anotagdes foram realizadas por
trés patologistas experientes, mas sem um processo formal de reandlise cruzada entre os
especialistas. A auséncia de uma validacdo mais ampla pode ter introduzido variagoes
interobservadores nao detectadas, o que sugere a importancia de, em trabalhos futuros,
envolver um nimero maior de patologistas e adotar métodos sistematicos de consenso,
como votac¢oes majoritarias ou etapas de reconciliagao de divergéncias.

Outro ponto relevante refere-se ao método de segmentacao proposto, que se baseia
na fusdo de caracteristicas extraidas dos espagos de cores RGB e HED. Embora o es-
paco HED ofereca uma representagao especializada para imagens histologicas coradas
com Hematoxilina-Eosina e derivados, ele pode nao capturar de forma ideal as nuances
cromaticas de outras técnicas de coloracao presentes no conjunto de dados, como o tricro-
mico e o PAMS. Essa limitacdo pode impactar a extragao de caracteristicas em imagens
provenientes dessas técnicas, indicando a necessidade de estudos futuros que explorem a
conversao para espacos de cor adaptativos ou especificos para diferentes corantes.

Essas limitagoes nao invalidam as contribuicoes desta tese, mas reforcam a necessidade
de continuidade nos estudos para aprimorar a generalizacdo e a robustez das solugoes
propostas, visando sua aplicacao pratica em cenarios clinicos cada vez mais diversos e

realistas.

10.3 Publicacgoes

Cada uma das trés etapas definidas na metodologia resultou na producao de um artigo.
A Tabela 10.1 apresenta os titulos e os veiculos em que cada artigo foi publicado ou
submetido.

Os resultados relacionados a proposta de classificagao de podocitopatia em imagens
histolégicas de glomérulos renais foram publicados na conferéncia VISAPP 2022, clas-

sificada pela CAPES com conceito Qualis A3. O estudo sobre as implica¢oes do uso de

lhttps://www.scitepress.org/Link.aspx?doi=10.5220/0010828600003124
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um classificador automatizado em colaboragao com a préatica de patologistas foi publi-
cado no periddico IEEE Journal of Translational Engineering in Health and Medicine?,
classificado com conceito Qualis A4. Por fim, a proposta de melhoria do desempenho de
redes tradicionais para segmentar lesoes podocitarias foi submetida ao periddico Modern

Pathology (Elsevier)®, que possui conceito Qualis Al.

Tabela 10.1: Artigos produzidos no decorrer do doutoramento.

Titulo Veiculo submetido Status
Podnet: Ensemble-based | Proceedings of the 17th | Publicado
classification of podocyto- | International Joint Confe-
pathy on kidney glomerular | rence on Computer Vi-
images sion, Imaging and Compu-
ter Graphics Theory and
Applications (2022)
Enhancing podocyte dege- | IEEE Journal of Translati- | Publicado
nerative changes identifica- | onal Engineering in Health
tion with pathologist colla- | and Medicine (2024)
boration: Implications for
improved diagnosis in kid-
ney diseases
Segmentation of Lesion- | Modern Pathology (Else- | Submetido
Bearing Podocytes: A | vier) (2025)
Proposal for Multistain and
Imbalanced Data Contexts

’https://ieeexplore.ieee.org/document/10675352
Shttps://www.sciencedirect.com/journal/modern-pathology
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