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Resumo

A podocitopatia é uma condição caracterizada por lesões nos podócitos, células essenciais
dos glomérulos renais responsáveis pela filtragem do sangue. Essas lesões comprometem
a função renal e podem evoluir para glomerulosclerose, proteinúria e nefropatia diabética.
A identificação de lesões podocitárias em imagens histológicas é desafiadora, devido à
dificuldade de distinção celular e ao caráter laborioso do diagnóstico. Este estudo propôs
estratégias para aprimorar algoritmos de classificação binária e segmentação semântica
de lesões podocitárias em cenários de dados limitados, desbalanceados e multicoloridos.
Foram desenvolvidos um classificador de podocitopatia e uma nova abordagem de segmen-
tação baseada na fusão dos espaços de cor RGB e HED, além da criação de um conjunto
de dados multicorante, anotado em quatro classes de lesões podocitárias. Os experimentos
indicaram que as soluções propostas elevaram o desempenho dos modelos de classificação,
com aumento do F1-score de 87,8% para 90,9%. Também foi observado impacto posi-
tivo na prática médica, com o índice de concordância entre patologistas (Fleiss’ Kappa)
aumentando de 0,59 para 0,83. Na segmentação, os métodos propostos proporcionaram
ganhos médios de até 9,1% no F1-score e 8,5% no IoU. Os resultados evidenciam o po-
tencial das técnicas desenvolvidas para apoiar o diagnóstico na nefropatologia e fortalecer
a aplicação da inteligência artificial na patologia computacional.

Palavras-chave: Patologia computacional, Aprendizagem profunda, Imagens histológi-
cas, Classificação, Segmentação, Glomérulos, Podocitopatia.
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Abstract

Podocytopathy is a pathological condition characterized by injuries to podocytes, key cells
in the renal glomeruli responsible for blood filtration. These injuries affect renal function
and can lead to glomerulosclerosis, proteinuria, and diabetic nephropathy. Identifying
podocyte lesions on histological images is challenging due to the difficulty of cellular dif-
ferentiation and the labor intensive diagnostic process. This study proposed strategies
to enhance binary classification and semantic segmentation algorithms for podocyte le-
sion detection under conditions of limited, imbalanced, and multi-stained datasets. A
podocytopathy classifier and a novel segmentation approach based on the fusion of RGB
and HED color spaces were developed, along with the creation of a multistained dataset
annotated into four podocyte lesion classes. The experimental results showed that the
proposed solutions improved the classification performance, increasing the F1-score from
87.8% to 90.9%. A positive impact on medical practice was also observed, with the inter-
pathologist agreement (Fleiss’ Kappa) rising from 0.59 to 0.83. In segmentation tasks,
the proposed methods produced average gains of up to 9.1% in F1-score and 8.5% in IoU.
These findings highlight the potential of the techniques developed to support diagnostic
practices in nephropathology and to advance the integration of artificial intelligence into
computational pathology.

Keywords: Computational pathology, Deep learning, Histological images, Classification,
Segmentation, Glomeruli, Podocytopathy.
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Capítulo 1

Introdução

1.1 Contextualização
A evolução dos métodos e técnicas computacionais, observada nas últimas décadas, tem
contribuído significativamente para a otimização de tarefas em diversas áreas do conhe-
cimento [1]. Na medicina, a colaboração com a computação tem promovido melhorias no
diagnóstico e prognóstico de doenças, além de auxiliar na análise de estruturas biológi-
cas [2].

Entre as áreas da medicina com mais exemplos de aplicações computacionais, a pato-
logia se destaca [3, 4]. Este ramo da medicina e biologia destina-se a investigar a causa de
doenças por meio da observação visual de células, órgãos, fluidos corporais e tecidos bio-
lógicos [5], tendo como principal objeto de estudo as imagens histológicas, que são obtidas
principalmente por meio de exames de biópsia e câmeras acopladas a microscópios [6].

A difusão dos métodos computacionais na patologia levou ao surgimento de um novo
campo de estudo, conhecido como patologia computacional [7]. Segundo a Associação
de Patologia Digital (Digital Pathology Association - DPA), a patologia computacional
envolve a análise de doenças por meio de uma variedade de métodos computacionais,
como redes neurais e algoritmos clássicos de processamento de imagens [4, 8].

Segundo Barisoni et al. [9], os trabalhos em patologia computacional se organizam em
três grupos: telepatologia, patologia digital e análise computacional de imagens. A tele-
patologia refere-se à transmissão de imagens microscópicas para patologistas localizados
em diferentes localidades. A patologia digital refere-se à criação de ambientes digitais
que possibilitam a análise de lâminas inteiras de tecido (Whole Slide Imaging - WSI).
Por fim, a análise computacional de imagens está associada ao uso de algoritmos de visão
computacional, que é um campo de estudo destinado a construir modelos computacionais
baseados em dados visuais (imagens e vídeos) [10]. Esses métodos são utilizados na análise
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computacional de imagens para extração de características, classificação ou segmentação
de estruturas biológicas lesionadas ou doentes.

Entre os trabalhos de análise computacional de imagens, é possível encontrar estu-
dos genéricos, destinados a imagens histológicas em geral, independentemente do ór-
gão [11, 12]. No entanto, de forma mais comum, há trabalhos especializados em diferentes
estruturas biológicas, tecidos ou órgãos do corpo humano [13, 14, 15].

Na patologia renal, especificamente, observa-se um número crescente de estudos volta-
dos à análise computacional de imagens [16]. Muitos desses estudos caracterizam-se pelo
uso de métodos automatizados para auxiliar na análise de transplantes [17], segmentação
de estruturas [12] ou análise de glomérulos [18, 19, 20], que são as principais estruturas
do rim responsáveis pela filtragem do sangue [21].

Ao analisar os trabalhos na área renal, focados na análise de glomérulos, observa-se
que, apesar do crescente interesse dos pesquisadores, refletido no aumento do número
de publicações, ainda há lacunas significativas, tanto metodológicas quanto em relação a
doenças pouco exploradas. [22, 23].

Em relação às lacunas metodológicas, destaca-se a necessidade de uma grande massa
de dados, com distribuição balanceada de amostras por classe, adquiridos de diferentes
laboratórios, utilizando variados corantes e devidamente anotados por especialistas hu-
manos (patologistas) [23]. Esses desafios surgem principalmente porque a maioria dos
métodos propostos se baseia em aprendizagem profunda (deep learning), que é um sub-
campo do aprendizado de máquina (machine learning) que se concentra no uso de redes
neurais artificiais com múltiplas camadas para modelar e aprender representações de dados
complexos [24]. Portanto, estudos que ofereçam novas estratégias de aprendizado para
enfrentar essas dificuldades podem promover avanços na elaboração de técnicas, tanto
para imagens de glomérulos renais quanto para outros tipos de imagens histológicas.

Em relação às doenças pouco exploradas, é possível destacar o desafio de segmenta-
ção de lesões e estruturas glomerulares [25], a predição e o apoio ao estudo de doenças
crônicas [22, 26]. Entre essas lacunas, encontra-se o desafio de segmentar os diferentes
tipos de lesões em podócitos, células do tecido epitelial visceral do glomérulo [27]. O es-
tudo dessas lesões podocitárias é fundamental, pois os patologistas enfrentam dificuldades
para diferenciar podócitos das demais células intra-glomerulares em imagens de microsco-
pia de luz. Além disso, os podócitos são biomarcadores importantes para doenças como
glomerulosclerose progressiva, diabetes e proteinúria [28, 29, 30, 31, 32].

Até o momento, foram identificados apenas seis estudos com o objetivo de detectar
podocitopatia em imagens de glomérulos renais, e ainda menos propostas de segmentação
de podócitos com base no tipo de lesão. Entre os trabalhos encontrados, nenhum dos
métodos propostos realiza a tarefa de informar ao usuário quando um glomérulo possui
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ou não podocitopatia, concentrando-se principalmente na detecção e quantificação de
podócitos, associando-os a outras doenças [28, 33, 34, 31].

Considerando o contexto deste estudo e as lacunas apresentadas, pode-se concluir que
o presente trabalho se situa em uma área de interseção entre a patologia computacional
e a visão computacional. As contribuições pretendidas visam atacar ambas as lacunas:
computacional e de aplicação, fornecendo, assim, (1) novas ferramentas para a patologia
e (2) novos métodos e abordagens computacionais para análise automática de imagens
histológicas de glomérulos renais em relação à presença de podocitopatia.

1.2 Motivação e justificativa
Este trabalho possui duas motivações principais: A primeira está relacionada à impor-
tância de desenvolver novas metodologias e abordagens para a análise de imagens de
glomérulos renais, visando superar os desafios já identificados nos estudos recentes de
imagens histológicas. A segunda motivação refere-se às possíveis aplicações na patologia,
com ênfase na relevância do estudo da podocitopatia.

• Motivação Computacional. Considerando que os algoritmos comumente utili-
zados se baseiam em técnicas de aprendizagem profunda [35, 36, 17], é necessário
adquirir conjuntos de dados compostos por uma ampla diversidade de imagens his-
tológicas de glomérulos renais com lesões podocitárias. Isso se deve ao fato de que
as imagens histológicas dos glomérulos são obtidas utilizando diferentes corantes,
equipamentos de aquisição (como câmeras e escâneres) e protocolos [37]. Portanto,
para que os modelos sejam adequadamente treinados e validados, esses aspectos
devem ser devidamente considerados.

A construção de conjuntos de dados que satisfaçam esses critérios representa um
desafio significativo. A podocitopatia, por exemplo, é uma doença que ainda não
possui um conjunto de dados publicado, muito menos um que contenha uma varie-
dade de amostras que satisfaça os requisitos mencionados. Dessa forma, a criação
de novos conjuntos de dados pode impulsionar pesquisas no campo da patologia
computacional.

No entanto, mesmo com a elaboração de conjuntos de dados que garantam a di-
versidade de amostras, em casos de algumas doenças, como a podocitopatia, não é
possível assegurar uma distribuição proporcional entre as diferentes classes presen-
tes no conjunto de dados, tampouco garantir a mesma distribuição em relação aos
corantes utilizados. Assim, é necessário avaliar os métodos tradicionais de aprendi-
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zado e desenvolver alternativas que melhorem o desempenho desses métodos diante
da complexidade dos dados.

• Motivação Aplicacional para Patologia. Em relação à importância do estudo
da doença, é relevante considerar que as lesões nos podócitos são biomarcadores
de diversas outras doenças, como glomerulosclerose progressiva, tumor de Wilm’s
e diabetes nefrótica [29, 28, 30, 31]. Portanto, métodos e técnicas de análise auto-
mática da podocitopatia em imagens de glomérulos podem se tornar ferramentas
extremamente úteis para os nefropatologistas.

Esses métodos têm o potencial de reduzir a subjetividade das análises, acelerar o
processo de diagnóstico e aprimorar a precisão das decisões médicas. Além disso,
podem ser utilizados como ferramentas de apoio na formação e no treinamento de
novos patologistas [38].

Como resultado deste trabalho, espera-se que os dados gerados, baseados em glo-
mérulos com podocitopatia, fortaleçam grupos de pesquisa e possibilitem melhorias nas
técnicas de análise de imagens histológicas, tanto por meio de abordagens tradicionais de
aprendizagem profunda quanto por meio de novas estratégias analíticas, além de gerar
conjuntos de dados relevantes para pesquisadores nas áreas de patologia e computação.

1.3 Hipóteses de pesquisa
As seguintes perguntas norteiam este trabalho e sintetizam o problema de pesquisa:

1. Em um contexto de dados desbalanceados e multicoloração, qual é o desempenho
alcançado pelos métodos baseados em aprendizagem profunda, recorrentemente uti-
lizados em trabalhos similares, nas tarefas de classificação de glomérulos quanto
à presença de podocitopatia e segmentação de lesões podocitárias em imagens de
glomérulos renais?

2. Neste mesmo contexto de dados, é possível elaborar novas abordagens a partir dos
modelos já existentes que, no entanto, superem os resultados obtidos por esses mé-
todos convencionais?

1.4 Objetivos
O objetivo geral deste trabalho é propor novas soluções para o problema da análise auto-
matizada de podocitopatia em imagens de glomérulos renais, superando os resultados ob-
tidos por métodos computacionais baseados em aprendizagem profunda, tradicionalmente
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utilizados na literatura especializada, no contexto de conjuntos de dados desbalanceados
e multicoloração.

Os objetivos específicos deste trabalho são:

1. Fornecer novos conjuntos de dados sobre lesões podocitárias, que simulem cenários
de multicoloração e desbalanceamento, contribuindo para o avanço dos estudos na
comunidade de pesquisadores de patologia computacional.

2. Aperfeiçoar o desempenho de modelos de classificação binária, de identificação da
presença ou ausência de podocitpátia, a partir desses dados por meio de soluções
metodológicas inovadoras.

3. Estudar o impacto do uso de classificadores automatizados na prática dos patolo-
gistas.

4. Propor modificações de topologia e arquitetura para aprimorar o desempenho de
modelos de segmentação semântica, considerando o conjunto de dados desenvolvido.

1.5 Organização do documento
Este documento está organizado da seguinte forma: No Capítulo 2, são apresentadas as
definições relacionadas a imagens histológicas, podocitopatia e às técnicas computacionais
frequentemente utilizadas para sua análise automática. No Capítulo 3, são descritos os
trabalhos correlatos, organizados em seções que gradativamente se aproximam do pro-
blema da podocitopatia. No Capítulo 4, é detalhada a metodologia e as contribuições
propostas. No capítulos 5, são apresentados os resultados obtidos. No Capítulo 6, são
apresentadas as conclusões e os trabalhos futuros.
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Capítulo 2

Fundamentação Teórica

Neste capítulo, são apresentadas as definições fundamentais relacionadas ao escopo deste
trabalho. Inicialmente, introduzem-se conceitos fundamentais sobre o processo de aquisi-
ção de imagens histológicas, seguidos de uma breve explicação sobre a estrutura interna
dos glomérulos e informações acerca da podocitopatia. Em seguida, discutem-se as defi-
nições associadas às técnicas e métodos computacionais utilizados na análise automática
de imagens histológicas, com ênfase em abordagens baseadas em aprendizagem profunda
(deep learning).

2.1 A estrutura do glomérulo e a podocitopatia
Os rins, órgãos do sistema urinário, são responsáveis pela formação da urina e possuem
dimensões de aproximadamente 10 a 13 cm de comprimento, peso entre 120 e 180 g, e estão
localizados na região lombar, acima da cintura, um de cada lado da coluna vertebral [39].

A Sociedade Brasileira de Nefrologia (SBN) esclarece que os rins desempenham quatro
funções principais no organismo: eliminação de toxinas do sangue por meio de um sistema
de filtração; regulação da formação do sangue e dos ossos; controle da pressão arterial; e
manutenção do balanço químico e hídrico do corpo [40].

Ainda segundo a SBN, as doenças renais têm um impacto significativo na população,
gerando um gasto de 2,2 bilhões de reais por ano apenas com hemodiálise [41], pois o
mau funcionamento dos rins frequentemente leva à necessidade de diálise. Na maioria dos
casos, o tratamento deve ser mantido por toda a vida, a menos que o paciente possa ser
submetido a um transplante renal [40]. Um dado alarmante é que, anualmente, cerca de
21 mil brasileiros precisam iniciar tratamento por hemodiálise1 [42] [43].

1Processo artificial que substitui a função dos rins quando estes não conseguem mais filtrar as impu-
rezas e excesso de líquidos do sangue [40].
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Anatomicamente, os rins possuem duas zonas principais: córtex e medula renal. É
no córtex que se encontram os néfrons, unidades funcionais dos rins, responsáveis pela
formação da urina. Estima-se que um rim humano contenha entre 800 mil e 1 milhão de
néfrons, cada um composto por numerosos glomérulos que desempenham um papel ativo
na filtração sanguínea [39, 44].

Os néfrons são estruturas que não se regeneram [44]. Dessa forma, lesões renais, do-
enças ou o próprio processo de envelhecimento levam à redução progressiva do número
de néfrons. Cada néfron é composto por um grupo de capilares glomerulares denominado
glomérulo, responsável por filtrar grandes quantidades de líquido do sangue, e por dois
longos túbulos, onde o líquido filtrado é convertido em urina [45]. O glomérulo é consti-
tuído por uma rede de capilares glomerulares envolvidos por células epiteliais e circundado
pela cápsula de Bowman [45], apresentado na Figura 2.1.

Figura 2.1: Glomérulo renal: (a) imagem observada em microscópio, (b) ilustração com
a localização das estruturas internas. (Fonte: [46]).

Os glomérulos possuem, em sua estrutura interna, diferentes tipos de células: mesangi-
ais, endoteliais, epiteliais parietais e epiteliais viscerais (também conhecidas como podóci-
tos) [39]. A principal função dos podócitos é restringir a passagem de proteínas do sangue
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para a urina [27]. Assim, lesões podocitárias podem comprometer a capacidade filtrante
do glomérulo devido aos danos causados à estrutura glomerular [21]. Adicionalmente, le-
sões em podócitos são biomarcadores de uma série de doenças, como: glomeruloesclerose
progressiva, tumor de Wilm’s, diabetes e proteinúria [28, 29, 30, 31, 32].

De acordo com Fuad et al. [47], lesões podocitárias também estão associadas ao fator
de crescimento endotelial vascular. Além disso, a redução do número e/ou densidade de
podócitos, como resultado de apoptose ou descolamento, espessamento da membrana ba-
sal com composição de matriz alterada e diminuição da proteína nefrina. Essa condição
manifesta-se clinicamente como albuminúria e proteinúria. A proteinúria, por sua vez,
pode induzir um programa genético nas células tubulares que leva à inflamação tubuloin-
tersticial, fibrose e atrofia tubular.

Em um estudo conduzido por Trimarchi e Coppo [48], destaca-se que a identificação
de podocitopatias também está relacionada à nefropatia por imunoglobulina A (IgAN),
definida como uma doença mesangiopática. Os autores indicam que a progressão da
IgAN deve-se, principalmente, ao desenvolvimento de proteinúria persistente e a função
e anatomia dos podócitos desempenham um papel importante nesse processo. Na IgAN,
as alterações podocitopáticas são consequência de danos iniciais na região mesangial.
Os podócitos são afetados por interações de sinais originados do mesângio e, após os
danos, destacam-se da membrana basal glomerular. Essa podocitopatia favorece não
apenas o desenvolvimento de esclerose glomerular focal e segmentar, mas também a perda
progressiva da função renal.

A podocitopatia também está associada à doença de Lupus [49] e à nefropatia diabética
(ND) [50]. A ND é caracterizada pela perda da função podocitária do glomérulo renal.
Nos Estados Unidos, os gastos com ND entre 2015 e 2021 avançaram de 748 mil dólares
para mais de 2 bilhões e meio de dólares por ano [51].

Por fim, os podócitos contribuem para a integridade da barreira de filtração glomerular,
e evidências recentes sugerem que essas células podem ser alvos diretos de hormônios,
lipídios e adipocinas circulantes afetados no diabetes [50, 49].

Ao analisar lesões podocitárias [21], pode-se observar 3 tipos básicos de lesões. Este
trabalho concentra-se nestes três tipos: degeneração, hiperplasia e hipertrofia. A Fi-
gura 2.2 apresenta 2 exemplos de imagens de glomérulos renais, destacando podócitos
com lesão degenerativa (a) e podócitos saudáveis (b).

2.2 Definições sobre imagens histológicas
As imagens histológicas são representações visuais de tecidos biológicos, obtidas a partir
de técnicas específicas de preparo e coloração [35]. Segundo Caputo et al. [37], o processo
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Figura 2.2: Glomérulo com (a) e sem (b) lesão podocitária (degeneração) (Fonte: [52]).

para obtenção de amostras de tecido biológico envolve as seguintes etapas básicas: co-
leta, fixação, clivagem, processamento, inclusão, microtomia (corte) e coloração. Após a
preparação das lâminas de tecido, a captura das imagens digitais é realizada utilizando
uma câmera acoplada ao microscópio. A Figura 2.3 ilustra cada etapa do processo de
aquisição destas.

Figura 2.3: Etapas básicas de aquisição de imagens histológicas (Fonte: [53]).

Silvano et al. [37], descreve as etapas de aquisição de imagens histológicas: Coleta
(Etapa 1), consiste em remover amostras de tecido de um organismo por meio de biópsia,
que é o procedimento de remoção de uma pequena porção de tecido para análise microscó-
pica. Fixação (Etapa 2) é realizada para interromper o processo de degradação do tecido
(metabolismo celular) e preservar seus elementos estruturais. Durante a clivagem (Etapa
3), o objetivo é reduzir as dimensões dos fragmentos de tecido para tamanhos entre 3
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mm e 5 mm. O processamento (Etapa 4) promove a difusão de reagentes no interior dos
tecidos e a remoção de líquidos teciduais.

A etapa de inclusão (Etapa 5) consiste em inserir os tecidos processados em parafina,
utilizando uma pinça aquecida. Na microtomia (Etapa 6), os tecidos são cortados em
fatias extremamente finas, com espessura entre 4 µm e 6 µm, permitindo sua análise
em microscopia de luz. Por fim, na etapa de coloração (Etapa 7), compostos orgânicos
são aplicados às lâminas de tecido para atribuir cores específicas às diferentes estruturas.
Essa etapa é essencial, pois tanto as células quanto o material extracelular são geralmente
transparentes. A diferenciação por cores auxilia patologistas na análise das lâminas [37].
A Figura 2.4 apresenta imagens histológicas de glomérulos renais coradas com diferentes
tipos de corantes, cada um destacando estruturas específicas do tecido.

Figura 2.4: Exemplos de corantes utilizados em imagens de glomérulos renais: HE (a),
PAM (b), PAS (c) e Tricômio (d) (Fonte: [52]).

Além do uso de diferentes corantes, a escolha de variados espaços de cores pode melho-
rar significativamente a capacidade de redes neurais profundas para extrair características
relevantes de imagens histológicas [54, 55]. O espaço de cores HED (Hematoxilina, Eosina
e Diaminobenzidina) [56], específico para imagens histológicas, foi projetado para separar
os principais componentes histológicos: núcleo (corado pela Hematoxilina), citoplasma
(corado pela Eosina) e regiões coradas por técnicas de imunohistoquímica (Diaminoben-
zidina) [57].

A transformação de uma imagem do espaço de cores RGB para o espaço HED é
realizada através da operação color deconvolution [56]. A conversão pode ser expressa
matematicamente da seguinte forma [56, 58].

Os vetores de corantes representam as cores características de cada corante usado na
coloração histológica. Para o espaço de cor HED, os vetores típicos são:

• Hematoxilina (H): (0, 65; 0, 70; 0, 29)

• Eosina (E): (0, 07; 0, 99; 0, 11)
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• DAB (D): (0, 27; 0, 57; 0, 78)

A matriz de transformação T é construída empilhando esses vetores como colunas:

T =


0, 65 0, 07 0, 27
0, 70 0, 99 0, 57
0, 29 0, 11 0, 78

 (2.1)

Para cada pixel na imagem RGB, representado como um vetor IRGB = (R, G, B)T ,
a conversão para o espaço HED é realizada multiplicando o vetor IRGB pela matriz de
transformação T :

IHED = T · IRGB (2.2)

sendo IHED = (H, E, D)T .
Após a conversão, cada canal H, E e D no vetor IHED representa a intensidade relativa

dos corantes Hematoxilina, Eosina e DAB, respectivamente, na imagem original.

2.3 Redes Neurais Convolucionais
As Redes Neurais Convolucionais (Convolucional Neural Networks - CNNs) surgiram a
partir de estudos sobre a percepção visual em organismos biológicos, com experimen-
tos conduzidos por dois pesquisadores: Hubel e Wiesel, na década de 1960 [59]. Eles
demonstraram como neurônios no córtex visual de gatos respondem seletivamente a pa-
drões específicos, como bordas e orientações. A partir desse conceito, foi desenvolvido o
Neocognitron, proposto por Fukushima [60], que se tratava de uma arquitetura baseada
em camadas hierárquicas para reconhecer padrões visuais. No entanto, apenas no final da
década de 80, que Lecun et al. [61] aplicaram o algoritmo de retropropagação para treinar
redes convolucionais de forma eficiente, resultando no LeNet-5, um modelo pioneiro para
reconhecimento de dígitos manuscritos.

Com o avanço do poder computacional e a disponibilidade de grandes conjuntos de
dados, as CNNs se tornaram fundamentais para aplicações em visão computacional, o
que culminou no sucesso do modelo AlexNet em 2012 [62], revolucionando o campo da
inteligência artificial ao vencer a competição ImageNet [63] com um desempenho superior
às abordagens tradicionais.

Em seu funcionamento, as redes neurais convolucionais são caracterizadas por serem
um tipo específico de rede neural voltada para o processamento de dados com topologia
em grade [24, 59]. As imagens são um exemplo desses dados. A principal característica
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desse tipo de rede é a utilização da operação de convolução em pelo menos uma de suas
camadas [24].

Uma camada de convolução realiza, essencialmente, o produto escalar entre duas ma-
trizes: a janela de convolução (Kernel) e o campo receptivo, que corresponde a uma porção
da entrada (como uma região de uma imagem). Para imagens compostas por três canais
(RGB, por exemplo), a altura e a largura do Kernel são tipicamente pequenas, mas sua
profundidade deve corresponder ao número de canais da entrada [24, 64]. O computo da
operação de convolução em uma região da imagem é ilustrada na Figura 2.5, e o resultado
desse processamento (Output) é denominado mapa de ativação.

Figura 2.5: Exemplo da operação de convolução 2D, demonstrando como um Kernel
desliza sobre uma matriz de entrada (Input). Cada elemento da matriz resultante é
obtido pela multiplicação ponto a ponto dos valores correspondentes entre o Kernel e
uma submatriz da entrada, seguida da soma desses produtos. Esta operação é repetida
ao longo da matriz de entrada, resultando em uma nova matriz (Output) de dimensão
reduzida, que destaca características específicas da imagem original. (Fonte: [24]).

Após a aplicação da convolução, os mapas de ativação passam por uma função de
ativação não linear, como a ReLU (Rectified Linear Unit) [65], que introduz não linea-
ridades ao modelo, permitindo a rede aprender representações mais complexas e ajudar
a evitar o problema de desaparecimento de gradiente (vanishing gradient). Além disso,
operações como subamostragem (ou pooling) [66] são frequentemente empregadas para
reduzir as dimensões espaciais dos mapas de ativação, o que diminui a quantidade de pa-
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râmetros e o custo computacional, ao mesmo tempo em que preserva as informações mais
relevantes. Essas camadas são empilhadas em profundidade, criando uma hierarquia de
características, desde padrões simples, como bordas e texturas, nas camadas iniciais, até
representações mais abstratas, como objetos completos, nas camadas mais profundas [24].
Esse processo de extração e hierarquização de características é fundamental para o bom
desempenho das redes convolucionais em tarefas como classificação de imagens, detecção
de objetos e segmentação semântica [24, 64].

2.3.1 Hiperparâmetros e Componentes das Redes Neurais Con-
volucionais

Há uma série de hiperparâmetros e componentes necessários no contexto de uma rede
neural convolucional. Essas definições são variáveis ou funções escolhidas antes do treina-
mento do modelo e influenciam diretamente seu desempenho, capacidade de generalização
e eficiência computacional [67].

Alguns desses hiperparâmetros são as funções de otimização, perda e ativação, tama-
nho do lote (batch size) e taxa de aprendizado (learning rate):

Os otimizadores são métodos utilizados para atualizar os pesos e a taxa de aprendizado
durante o treinamento, com o objetivo de reduzir a Função de perda (Loss function) do
modelo. O otimizador mais simples utilizado em redes neurais é o Gradiente Descendente
Estocástico (Stochastic Gradient Descent - SGD) [68]. Este é um algoritmo de primeira
ordem, pois calcula a derivada de primeira ordem da função de perda. Através do processo
de retropropagação (backpropagation), a perda é propagada de camada para camada, e os
pesos são ajustados [24]. Outros métodos de otimização incluem, por exemplo, Adaptive
Gradient Algorithm (Adagrad) [69], Root Mean Square Propagation (RMSprop) [70] e
(Adadelta) [71].

O Adagrad é uma modificação do algoritmo SGD, que ajusta a taxa de aprendizado
para cada parâmetro do modelo, ao invés de usar uma única taxa de aprendizado, fixa,
para todo o modelo [69]. Essa abordagem pode melhorar a convergência, especialmente
quando os dados são esparsos [69, 24]. O RMSprop, por sua vez, adapta a taxa de
aprendizado de cada peso dividindo a taxa de aprendizado por uma média das magnitudes
dos gradientes recentes para aquele peso [70].

As funções de perda (loss functions) [24] são utilizadas em conjunto com os otimi-
zadores com a finalidade de calcular repetidamente a perda de um dado modelo a cada
atualização dos pesos da rede. Há funções adequadas para os diferentes problemas de
aprendizado. Em problemas de classificação geralmente utiliza-se as seguintes funções:

13



Binary cross-entropy [72] (para problemas binários), Hinge [73] e Cross-entropy (para
classificação em problemas multiclasse) [24].

Diferentes funções de ativação podem ser usadas em redes convolucionais, como Sigmoide

[74], Tangente hiperbólica (Tanh) [75] e ReLU (Rectified Linear Unit) [76]. Essas fun-
ções são aplicadas diretamente após a camada convolucional [77]. Elas se diferenciam em
relação às suas fórmulas e ao intervalo dos valores de saída. Por exemplo, a ReLU re-
torna valores no intervalo [0, ∞), enquanto a tangente hiperbólica tem saída no intervalo
(−1, 1).

O batch size [67] é o número de amostras processadas antes que os pesos do modelo
sejam atualizados. O conjunto total de amostras é dividido em lotes de treinamento, os
quais têm o seu tamanho definido através deste hiperparâmetro [24]. Esta escolha é bem
importante no processo de treinamento de uma rede neural. Uma escolha de valor alto
para o batch size pode possibilitar acelerações computacionais do paralelismo das GPUs.
Adicionalmente, usar um batch size igual a todo o conjunto de treinamento pode garantir
a convergência para o ótimo global da função [67]. Por outro lado, o uso de tamanhos
menores tende a gerar uma convergência mais rápida, que se explica intuitivamente pelo
fato de valores de batch size menores permitirem que um dado modelo inicie o aprendizado
antes de processar todos os dados [78].

A taxa de aprendizado (learning rate) é um valor associado à função de otimização
e implica em dizer o quão rápido ou lento um dado modelo aprende uma tarefa, ou
em outras palavras, o tamanho dos passos que a função de otimização dá até atingir
os valores mínimos de perda do modelo [24]. A Equação 2.3 descreve a atualização de
pesos da rede e também mostra o papel da taxa de aprendizado (representada como η)
no cálculo dos novos pesos. Os demais elementos da Equação 2.3 representam: o novo
valor de peso (Wn), o valor antigo do peso (Wo), o valor retornado pela função de perda
(L) e a derivada parcial de L em relação ao Wo ( ∂L

∂Wo
),

Wn = Wo − η
∂L

∂Wo

. (2.3)

Entre os componentes fundamentais para o treinamento de um modelo de CNN, tam-
bém estão as operações de pooling e de regularização.

A operação de pooling, por exemplo, reduz o tamanho espacial da representação do re-
sultado da convolução, diminuindo a quantidade necessária de computação e pesos. Entre
as operações de pooling, o max pooling é uma estratégia comum em diversas arquiteturas
de rede [79, 80, 81]. Nesse caso, a redução da dimensão é feita selecionando os maiores
valores na aplicação do kernel, o que, teoricamente, filtra os atributos de maior importân-
cia [64]. No que diz respeito às funções de ativação, elas padronizam os valores de entrada
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e têm como objetivo inserir não-linearidade na rede. Como a convolução é uma operação
linear, a não-linearidade torna possível que a rede resolva problemas não triviais.

As operações de regularização visam reduzir o risco de sobreajuste (overfitting), que
ocorre quando uma rede neural continua melhorando o desempenho nos dados de treina-
mento, mas apresenta um desempenho inferior nos dados de teste [82]. Uma das técnicas
mais comuns de regularização em redes neurais é o Dropout [83], que desativa uma porcen-
tagem dos neurônios durante o treinamento, impedindo que seus pesos sejam atualizados
em todas as épocas.

Alguns exemplos de arquiteturas conhecidas de redes neurais convolucionais são as
ResNets [84], DenseNets [85], Inception [80], VGG [79], Inception-ResNet [81], Xcep-
tion [86] e as EfficientNets [87]. Cada uma dessas arquiteturas adota diferentes estraté-
gias e mecanismos de aprendizado, inserindo novas operações e aprimoramentos nas redes
convolucionais tradicionais, o que resulta em desempenhos ainda mais precisos em tarefas
de classificação, regressão e segmentação de imagens.

Ajuste de hiperparâmetros

Para alcançar bons resultados e garantir uma generalização satisfatória nas CNNs, é
fundamental escolher adequadamente seus hiperparâmetros. A escolha inadequada de
um hiperparâmetro, como a taxa de aprendizado, por exemplo, pode impedir que um
modelo encontre os valores mínimos da função de perda. Um modelo é composto não
apenas por sua arquitetura de rede e pelos pesos obtidos no treinamento, mas também
por uma combinação específica de hiperparâmetros [82].

As estratégias para a escolha de hiperparâmetros podem variar desde abordagens ma-
nuais baseadas em um processo intuitivo até métodos automatizados, como a otimização
bayesiana [88] e algoritmos genéticos [89]. A seguir, apresentamos uma descrição intuitiva
de algumas dessas estratégias: Grid search [90], Random search [91] e Hyperband [88].

O método Grid search (busca em grade) é uma estratégia de busca exaustiva. O
ajuste dos hiperparâmetros ocorre da seguinte maneira: inicialmente, define-se um espaço
de busca com intervalos fixos para cada hiperparâmetro. Em seguida, o espaço de busca
de cada hiperparâmetro é discretizado, assim como o espaço de busca geral, que se torna
o produto cartesiano dos espaços de cada hiperparâmetro. No final, o algoritmo treina
um modelo para cada configuração de hiperparâmetros e, ao final, seleciona a melhor
configuração. Este método requer grande poder computacional, pois é necessário trei-
nar vários modelos (um para cada configuração), além de ser suscetível à maldição da
dimensionalidade (número exponencial de configurações a serem testadas) [90].

O método Random search (busca randômica) é uma variação do método anterior e
também pode ser classificado como uma busca exaustiva. A diferença fundamental é
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que, em vez de discretizar o espaço de busca com uma grade cartesiana, o algoritmo
realiza uma escolha aleatória dentro desse espaço. A busca é finalizada após um tempo
previamente definido. Embora também sofra com a maldição da dimensionalidade, este
método costuma apresentar melhores resultados do que a busca em grade [91].

Por fim, o método de ajuste Hyperband, se baseia na abordagem de otimização de hiper-
parâmetros proposta em [92]. Sua intuição assemelha-se a uma competição em busca da
melhor combinação de hiperparâmetros. Inicialmente, define-se o número (i) de iterações
nas quais as combinações de hiperparâmetros serão avaliadas. Em seguida, o algoritmo
calcula aleatoriamente uma amostra de 64 conjuntos de hiperparâmetros a partir do es-
paço de busca. A partir desse momento, a perda no conjunto de validação associada a
essas combinações é avaliada consecutivamente após i/2 iterações. Após a avaliação, me-
tade das combinações com menor desempenho são descartadas. As combinações restantes
são avaliadas novamente por mais i/2 iterações. Esse processo de descarte é repetido até
que o modelo gerado pela melhor combinação seja o único restante [88].

2.4 Classificação e Segmentação de Imagens
A tarefa de classificação de imagens é um problema na área de visão computacional [93,
10], que consiste em associar um rótulo (ou classe) a imagens de um conjunto de teste,
sendo que o modelo não avaliou esses rótulos previamente. Nas últimas décadas, muitos
dos métodos mais eficazes para a classificação de imagens em diferentes domínios têm
sido baseados em redes neurais convolucionais (CNNs) [94, 95]. No campo da Patologia
Computacional, essa técnica tornou-se o estado da arte tanto para classificação quanto
para detecção e segmentação de imagens histológicas [96, 97].

A segmentação de imagens é uma tarefa do processamento digital de imagens e visão
computacional que consiste em dividir uma imagem em regiões ou partes homogêneas, com
base em características como cor, textura ou intensidade, por exemplo, com o objetivo de
facilitar a análise e interpretação [98, 10]. Dentro deste contexto, a segmentação semântica
refere-se à classificação de cada pixel da imagem em uma categoria específica, atribuindo a
cada região ou objeto um rótulo correspondente ao seu significado [99]. Diferentemente da
segmentação convencional, que apenas separa a imagem em áreas distintas, a segmentação
semântica busca entender o conteúdo semântico de cada parte da imagem, tornando-a
mais útil para tarefas como reconhecimento de objetos, navegação autônoma e diagnóstico
médico [100].

A utilização das CNNs na tarefa de segmentação é viabilizada por arquiteturas espe-
cíficas para este fim. Ao pesquisar os algoritmos de segmentação semântica baseados em
redes neurais convolucionais, comumente utilizados em imagens histológicas, destacam-se
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duas principais arquiteturas: a U-Net [101] e a DeepLabv3 [42]. Essas arquiteturas de
rede também aparecem na literatura com versões modificadas, que alteram o número de
camadas, os encoders (redes de classificação utilizadas) e a inserção de mecanismos de
atenção [102].

Compreender a U-Net [103] ajuda a entender intuitivamente como a maioria das arqui-
teturas de redes para segmentação semântica se organizam. A U-Net é composta por dois
blocos principais: o Codificador (Encoder) e o Decodificador (Decoder). A Figura 2.6 ilus-
tra a arquitetura padrão da U-Net. O bloco à esquerda refere-se ao Codificador, enquanto
os blocos à direita correspondem ao Decodificador.

Figura 2.6: Arquitetura padrão da rede U-Net. Cada caixa azul representa um mapa de
atributos multicanal. As caixas brancas indicam mapas de recursos copiados. As setas
representam as diferentes operações realizadas. (Fonte: [101]).

O Codificador é responsável por capturar o contexto da imagem e segue uma arqui-
tetura típica de rede neural convolucional. Esta etapa envolve a aplicação repetida de
convoluções 3 × 3, seguidas da função ReLU e de uma operação de max pooling, reali-
zando uma redução de dimensionalidade (Downsampling) da imagem. Já o Decodificador
tem como objetivo calcular a localização precisa dos objetos, utilizando convoluções trans-
postas [103]. Neste estágio, ocorre a recostrução dimensional (Upsampling) dos mapas de
atributos, seguido por uma convolução, que reduz pela metade o número de canais de atri-
butos. Além disso, há uma concatenação com os respectivos mapas de atributos gerados
pelo Codificador. Esse processo de concatenação é necessário devido à perda de informa-
ções nas bordas durante as operações de convolução. Na camada final, uma convolução

17



1 × 1 é aplicada para mapear cada vetor de atributos de 64 componentes para o número
desejado de classes [103, 104]. No total, a rede possui 23 camadas convolucionais, e, com
esses dois blocos principais, a arquitetura da U-Net pode ser classificada como uma rede
totalmente convolucional (FCN), por não conter camadas densas [101].

A rede DeepLabv3 2 [42] é especializada em segmentação semântica e tem sido ampla-
mente adotada em trabalhos com imagens histológicas e apresenta aprimoramentos em
relação às versões anteriores, DeepLabv1 e DeepLabv2 [105].

De maneira semelhante à U-Net, a DeepLabv3 [106] e DeepLabv3+ [107] (apresentada
na Figura 2.7) são compostas por duas etapas principais: codificação e decodificação. Na
fase de codificação, o objetivo é extrair informações essenciais da imagem utilizando uma
rede neural convolucional pré-treinada. Na fase de decodificação, as informações extraídas
na codificação são utilizadas para reconstruir a saída com as dimensões apropriadas. Para
isso, a rede emprega a técnica de Poolização de Pirâmide Espacial (Spatial Pyramid Poo-
ling) [108], um tipo de operação de pooling que melhora o desempenho da rede em objetos
deformados. Essa técnica resolve uma limitação das redes que utilizam pooling tradicio-
nal, onde a entrada de imagens de tamanho fixo reduz a precisão no reconhecimento de
objetos ou sub-imagens de tamanho ou escala arbitrária [42].

Existem várias arquiteturas de redes para segmentação semântica, entre as mais po-
pulares estão: DeepLabv3 [105], DeepLabv3+ [106], U-Net [103], U-Net++ [104], LinkNet
[109], PSPNet [110], FPN [111], MAnet [112] e PAN [113]. Cada uma dessas arquiteturas
possui diferentes estratégias de aprendizado e predição, sendo mais adequadas a diferen-
tes problemas de segmentação, dependendo da complexidade das imagens e dos recursos
computacionais disponíveis.

2.5 Redes de Fusão de Características Profundas
As redes de fusão de características profundas (Deep Feature Fusion Networks - DFFNs)
representam uma classe de redes neurais projetadas para combinar informações proveni-
entes de diferentes fontes ou camadas de características [114, 115]. Esse processo visa
aprimorar o desempenho em diversas tarefas, como classificação de imagens, detecção de
objetos, segmentação semântica, entre outras [116, 25, 117].

Matematicamente, a operação de fusão de características em uma DFFN pode ser
descrita como segue:

Dado um conjunto de características F = {F1, F2, . . . , Fn}, onde cada Fi representa
as características extraídas de uma camada ou fonte específica, a operação de fusão é
definida pela Equação 2.4:

2https://github.com/tensorflow/models/tree/master/research/deeplab
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Figura 2.7: Arquitetura padrão da DeepLav v3+. O módulo codificador captura infor-
mações contextuais em múltiplas escalas por meio da convolução atrous em diferentes
níveis, enquanto o decodificador eficiente refina a segmentação ao longo dos contornos dos
objetos (Fonte: [107]).

Ffusion = Φ(F1, F2, . . . , Fn), (2.4)

Ffusion denota as características resultantes do processo de fusão, e Φ representa uma
função que combina as características segundo uma estratégia específica. Exemplos co-
muns de estratégias de fusão incluem: concatenação, soma ponderada, concatenação se-
guida de convolução, entre outras [118].

2.6 Métricas de Avaliação
Para avaliar corretamente os modelos em problemas de classificação, as métricas mais co-
mumente utilizadas são: acurácia, precisão, revocação e F1-score [119]. Já em problemas
de segmentação de objetos, é comum o uso da Interseção sobre União (Intersection over
Union - IoU) (ou Jaccard index) [120].

Considerando os resultados de classificação de um determinado modelo, estes podem
ser apresentados por meio de uma matriz de confusão (veja a Figura 2.8) [119]:
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• TP (True Positives): refere-se às amostras positivas classificadas corretamente como
positivas;

• TN (True Negatives): são as amostras negativas classificadas corretamente como
negativas;

• FP (False Positives): são as amostras negativas classificadas erroneamente como
positivas;

• FN (False Negatives): são as amostras positivas classificadas erroneamente como
negativas.

Figura 2.8: Exemplo de matriz de confusão para um problema de classificação biná-
ria (Fonte: [121]).

James et al. [122] definem as métricas que são amplamente utilizadas em problemas
de classificação, sobretudo em contextos médicos. A acurácia (Equação 2.5) é definida
como o percentual geral de acertos em relação ao total de amostras classificadas, sendo
dada pela razão entre o número de amostras corretas e o total de amostras [122]. A
precisão (Equação 2.6) é uma métrica que indica a qualidade das previsões positivas,
calculando a taxa de acerto em relação aos dados positivos. Essa métrica é útil para
avaliar a quantidade de falsos positivos.

A revocação (recall), também conhecida como sensibilidade (Equação 2.7), é a taxa de
verdadeiros positivos, ou seja, a proporção dos dados que realmente deveriam ser classifica-
dos como positivos e que foram corretamente identificados pelo modelo. A especificidade
(Equação 2.8), é usada para medir a capacidade do modelo de identificar corretamente
os exemplos negativos. Por fim, o F1-score (Equação 2.9) é uma métrica que combina a
precisão e a revocação, sendo particularmente útil para avaliar o desempenho de modelos
em conjuntos de dados desbalanceados [24, 119].

Acurácia = (TN + TP )
(TN + FP + TP + FN) (2.5)
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Precisão = TP

(FP + TP ) (2.6)

Revocação = TP

(TP + FN) (2.7)

Especificidade = TN

(TN + FP ) (2.8)

F1-score = 2 × (Precisão × Revocação)
(Precisão + Revocação) (2.9)

Por fim, entre as métricas utilizadas para problemas de classificação de imagens,
destaca-se a curva ROC (Receiver Operating Characteristic) [123], que é uma representa-
ção gráfica que expressa a relação entre a taxa de verdadeiros positivos e a taxa de falsos
positivos de um modelo de classificação, considerando diferentes valores de limiar de deci-
são. A curva resultante permite visualizar a capacidade do modelo de distinguir entre as
classes positivas e negativas. Modelos ideais aproximam-se do canto superior esquerdo do
gráfico, indicando alta taxa de verdadeiros positivos e baixa taxa de falsos positivos. A
AUC (Área sob a Curva) corresponde ao valor numérico da área sob a curva ROC. Este
valor varia de 0 a 1 e resume, em um único número, o desempenho do classificador:

• AUC = 1: Classificação perfeita, separação total entre as classes.

• AUC = 0,5: Classificação aleatória, equivalente a uma escolha sem critério.

• AUC < 0,5: Indica desempenho inferior ao aleatório, sugerindo que as predições
podem estar invertendo as classes.

Assim, quanto maior o valor da AUC, melhor o modelo é em distinguir corretamente
entre as classes.

Para problemas de segmentação, a métricas mais comum é a Interseção sobre União
(Intersection over Union - IoU, também conhecido como Jaccard Index) [124].

Seja P a máscara predita por um modelo de detecção ou segmentação de objetos,
e G a máscara verdadeira do objeto, o IoU mede a sobreposição entre as áreas das
duas máscaras. O objetivo é avaliar o quanto a máscara predita se sobrepõe à máscara
verdadeira. O valor do IoU varia entre 0 e 1, sendo que valores mais próximos de 1
indicam melhor desempenho. A Figura 2.9 ilustra o cálculo do IoU, que é dado pela razão
entre a área de sobreposição e a área da união das máscaras [125].

Por fim, entre estudos da patologia computacional e medicina em geral, recorrente-
mente, é necessário mensurar a concordância entre observadores [119]. Para tal, utiliza-se
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Figura 2.9: Exemplo de mensuração do IoU. (Fonte: [126]).

o Cohen’s Kappa (κ), que é uma métrica que considera a concordância observada e a
concordância esperada pelo acaso. A fórmula do Cohen’s Kappa é dada por [127]:

κ = Po − Pe

1 − Pe

Onde, Po é a proporção de concordância observada e Pe é a proporção de concordância
esperada pelo acaso. Este índice é útil em situações binárias ou multicategoriais, sendo
aplicado quando há apenas dois avaliadores.

De forma complementar, a métrica Fleiss’ Kappa (κ) é uma extensão do Kappa de
Cohen, sendo utilizado para medir a concordância entre mais de dois avaliadores. Esta
métrica generaliza o cálculo da concordância observada e esperada, levando em conside-
ração múltiplos avaliadores e múltiplas categorias.

Neste capítulo, foram apresentadas algumas definições sobre imagens histológicas, in-
cluindo como esse tipo de imagem médica é obtido, informações gerais sobre a estrutura de
um glomérulo e a célula interna do glomérulo, que é o foco deste trabalho: os podócitos. A
observação dos podócitos em imagens histológicas de glomérulos revela o quão desafiador
é diferenciá-los das demais células intra-glomerulares. Além disso, foram apresentadas de-
finições sobre as técnicas computacionais comumente utilizadas para a análise automática
de imagens histológicas, especialmente no contexto de aprendizagem profunda.

No próximo capítulo, serão discutidos os trabalhos relacionados. Inicialmente, será
fornecido um panorama geral de estudos envolvendo imagens histológicas de glomérulos
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renais, em seguida, serão apresentados trabalhos que abordam imagens histológicas de
glomérulos renais com ênfase nos podócitos.
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Capítulo 3

Trabalhos Relacionados

Neste capítulo, são apresentados os trabalhos relacionados ao problema da análise au-
tomatizada de glomérulos renais por meio de algoritmos de aprendizagem profunda. A
revisão da literatura está dividida em duas seções. A primeira oferece um panorama
geral sobre estudos que utilizam imagens histológicas de glomérulos renais para diversas
finalidades. A segunda, apresenta um levantamento bibliográfico focado na análise de
trabalhos que abordam a tarefa de analisar imagens de glomérulos renais, com ênfase na
análise dos podócitos.

Os trabalhos encontrados durante o processo de revisão de literatura descrito a seguir,
em sua maioria, se encaixaram em dois dos grupos de trabalhos citados em Barisoni et
al. [9], que são: patologia computacional e análise computacional de imagens.

As fontes de pesquisa utilizadas na revisão de literatura foram: o portal de periódicos
da CAPES e o Google Acadêmico. Além disso, foram realizadas buscas por trabalhos
em diretórios específicos, com vasto número de trabalhos associados a área de patologia
computacional, como: Springer, PLoS, EMBS IEEE Library, IEEE Library, Biblioteca
Digital SPIE e Elsevier. O critério de seleção dos artigos considerou o ano de publicação
(últimos sete anos) e principalmente, a similaridade do problema de pesquisa enfrentado
com o problema estudado neste trabalho.

Para realizar as buscas, utilizou-se uma abordagem baseada em expressões regulares
(regular expressions, regex) para garantir a recuperação eficiente dos artigos mais relevan-
tes. Foram aplicadas buscas insensíveis a maiúsculas e minúsculas ((?i)) e delimitadas
por bordas de palavras (̄) para evitar correspondências parciais indesejadas.

Os termos foram combinados utilizando operações lógicas para refinar os resultados:

• E (AND): retorna artigos que contêm todos os termos especificados.

• OU (OR): retorna artigos que contêm pelo menos um dos termos.
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• XOR: retorna artigos que contêm apenas um dos termos, mas não ambos simulta-
neamente.

A seguir, apresenta-se a estrutura hierárquica dos termos e expressões regulares utili-
zados na pesquisa por trabalhos correlatos:

1. Inteligência artificial aplicada à patologia

• Artificial intelligence (?i)(
¯
artificial intelligence|AI)

¯
• Computational pathology (?i)(

¯
computational pathology)

¯
• Deep learning (?i)(

¯
deep learning)

¯
• Convolutional neural networks (?i)(

¯
convolutional neural networks|CNN)

¯

2. Estruturas renais

• Glomeruli (?i)(
¯
glomeruli|glomerulus)

¯
• Podocytopathy (?i)(

¯
podocytopathy)

¯

3. Lesões e segmentação de podócitos

• Podocyte detection (?i)(
¯
podocyte detection)

¯
• Podocyte segmentation (?i)(

¯
podocyte segmentation)

¯
• Podocyte lesions (?i)(

¯
podocyte lesions?)

¯
• Podocyte injury (?i)(

¯
podocyte injury)

¯

4. Técnicas de processamento de imagens

• Semantic segmentation (?i)(
¯
semantic segmentation)

¯
• Glomeruli classification (?i)(

¯
glomeruli classification)

¯

3.1 Trabalhos com foco em glomérulos renais
Entre os estudos, foram identificadas propostas dedicadas à análise de lâminas inteiras de
tecido (Whole Slide Images - WSI ), com pipelines completos que englobam a detecção,
segmentação e classificação de glomérulos [128, 129, 130, 131, 132, 133, 134].

Paralelamente, também foram encontrados estudos focados na análise de imagens
específicas de glomérulos ([135, 136, 19, 18, 137]. Essas abordagens investigam uma ampla
gama de lesões e biomarcadores associados a doenças renais, frequentemente buscando
classificar os glomérulos de acordo com lesões específicas, como glomeruloesclerose [137],
esclerose ([135]), hipercelularidade [19, 18] e fibrose [136].
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No estudo de Uchino et al. [135], são utilizadas 15.888 imagens de glomérulos renais,
distribuídas entre sete classes de lesões histológicas: esclerose global, esclerose segmentar,
proliferação endocapilar, acúmulo de matriz mesangial, proliferação de células mesangiais,
crescentes e alterações estruturais na membrana basal. O trabalho utilizou 14 modelos
de redes neurais profundas, treinados a partir da Inception v3, para cada tipo de lesão.
Participaram 25 patologistas que classificaram as amostras com e sem o auxílio dos mo-
delos treinados. O objetivo do estudo é avaliar se os modelos de inteligência artificial
poderiam melhorar o desempenho dos especialistas. Os resultados mostram que, com o
uso dos modelos, há uma melhoria nas métricas de sensibilidade em 10 dos 14 modelos e
de especificidade em 8 dos 14.

Já em Kannan et al. [128] é proposto um modelo para processar lâminas inteiras de
tecido renal (WSI) coradas em tricrômico, segmentar os glomérulos e classificá-los em
quatro categorias: (i) não glomérulo, (ii) normal, (iii) parcialmente esclerosado e (iv)
globalmente esclerosado (GS). O modelo de CNN alcançou acurácia de 92,67% ± 2,02%
e coeficiente Kappa de 0,8681 ± 0,0392 na discriminação entre imagens glomerulares e
não glomerulares. Para a segmentação, o classificador multilabel baseado na Inception
v3 obteve resultados precisos na identificação de glomérulos GS nos dados de teste, com
coeficiente de correlação de Matthews (MCC) de 0,628.

Em Gallego et al. [129], os autores também realizam a tarefa de segmentação de glo-
mérulos em lâminas WSI, classificando-os como normais ou esclerosados. A segmentação
e a classificação dos glomérulos são realizadas por um modelo baseado na arquitetura
U-Net. Posteriormente, as classificações glomerulares são refinadas com base na histo-
morfometria glomerular (análise morfológica com critérios pré-definidos). O conjunto de
dados utilizado é composto por 51 lâminas de tecido, coradas em PAS (37 lâminas) e HE
(14 lâminas). Nos WSIs corados com PAS, os glomérulos normais e esclerosados foram
classificados, respectivamente, com F1 score de 0,97 e 0,68. Nos WSIs corados com HE,
as pontuações F1 foram de 90,8% e 78,1%. Considerando ambos os corantes, o desem-
penho de classificação foi de F1 de 94,5% e 76,8%. Um dos diferenciais deste trabalho é
que os pesquisadores realizaram o treinamento com imagens de um corante e testaram o
desempenho em imagens coradas com outro corante.

No trabalho de Mathur et al. [136], o objetivo é analisar a presença de fibrose em
lâminas de tecido renal. O estudo está dividido em duas tarefas: (i) classificar os glomé-
rulos como normais ou anormais e (ii) classificar regiões de tecido sem glomérulos entre
três classes de fibrose: suave, moderada ou severa. Os conjuntos de dados são compos-
tos por patches de imagens extraídas das lâminas de tecido, totalizando 935 imagens de
glomérulos normais ou anormais (619 anormais e 316 normais) no conjunto de dados 1,
e 923 imagens de regiões sem glomérulos no conjunto de dados 2. O trabalho avalia 3
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abordagens para classificar as imagens: (a) transferência de aprendizado em CNNs fim a
fim, (b) extração de atributos com CNN e classificação com algoritmo supervisionado, e
(c) um novo modelo proposto, a Multi-Gaze Attention Network (MGANet), que utiliza o
mecanismo de self-attention com diferentes saídas e conexões residuais paralelas em uma
arquitetura CNN. O melhor desempenho foi obtido com o modelo proposto, alcançando
87,25% de precisão na classificação de glomérulos e 81,47% na classificação de fibrose.

Em mais um trabalho de segmentação de glomérulos, Ginley et al. [130] analisam ima-
gens de glomérulos em relação à nefropatia diabética. O conjunto de dados utilizado con-
siste em 25 lâminas de tecido renal de camundongo e 54 lâminas de tecido renal humano.
Os métodos empregados no estudo incluem a rede DeepLab v2 (ResNet no backbone) para
a detecção dos glomérulos, além de algoritmos tradicionais de processamento de imagens
para a identificação das bordas dos glomérulos. Adicionalmente, os pesquisadores utili-
zam uma rede neural recorrente (RNN) para quantificar a estrutura intra-glomerular em
três componentes: núcleos, lumina capilar e espaços de Bowman. Os resultados obtidos
são de 93% de acurácia na detecção dos glomérulos, 94% de sensibilidade [122] e 94% de
especificidade [122] para os núcleos, e 95% de sensibilidade e 99% de especificidade para
as estruturas internas dos glomérulos.

Entre os trabalhos de classificação de imagens de glomérulos sem a realização prévia
de segmentação ou detecção em lâminas inteiras WSI, Barros et al. [18] destaca-se como
um dos últimos a utilizar métodos tradicionais de aprendizado de máquina. Na metodo-
logia adotada, as imagens são pré-processadas com técnicas clássicas de processamento de
imagens, como conversão de espaços de cor, limiarização por Otsu e operações morfológi-
cas [10]. A extração de atributos é realizada com engenharia de atributos e a classificação
é realizada com o algoritmo kNN [10]. O resultado obtido foi uma acurácia de 88,3% na
classificação. O conjunto de dados utilizado conta com 811 imagens coradas em PAS e
HE.

No trabalho de Chagas et al. [19], os autores realizam a mesma tarefa que Barros et
al. [18], utilizando o mesmo conjunto de dados, mas empregaram redes neurais convolu-
cionais como extratores de atributos e o algoritmo SVM para a classificação. Além da
classificação binária, os autores realizam a classificação das sublesões de hipercelularidade:
mesangial, endocapilares e ambas. Os resultados obtidos são de 82% de acurácia média
na classificação dos tipos de lesão e 100% de acurácia na classificação binária. Tanto na
tarefa binária quanto na multiclassificação, o método proposto superam o desempenho
das redes Xception, ResNet50 e InceptionV3.

No trabalho de Shubham et al. [131], é realizada a segmentação de glomérulos uti-
lizando o conjunto de dados público HuBMAP1. As imagens do conjunto de dados são

1https://hubmapconsortium.org/
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lâminas WSI, coradas em PAS. O método utilizado para segmentação é a rede U-Net, e
o resultado obtido foi de 99,68% de acurácia e 0,90 de coeficiente Dice.

Em Jiang et al. [133], é utilizada a rede Mask R-CNN para segmentar e classificar
glomérulos em lâminas (WSI) de tecido. O modelo é treinado com snapshots, que são
porções menores das lâminas contendo um ou mais glomérulos. Os glomérulos no conjunto
de dados são rotulados em 3 classes: normal, com esclerose ou com outras lesões. O
conjunto de treino é formado por 296 lâminas (1.018 snapshots), e o conjunto de teste,
por 52 lâminas (105 snapshots). Os resultados obtidos na classificação dos glomérulos
alcançam os seguintes F1 scores: 0,914 para glomérulos normais, 0,896 para glomérulos
com esclerose, 0,681 para esclerose global e 0,756 para outras lesões.

Em uma abordagem ligeiramente diferente, Yang et al. [134] realizam também a seg-
mentação e classificação de glomérulos. A rede Mask R-CNN [138] (com a ResNet 101 [84]
pré-treinada com ImageNet [139] como backbone) é utilizada para segmentar os gloméru-
los, e uma abordagem combinando uma CNN (DenseNet) com uma LSTM foi empregada
para classificar as doenças entre 5 diferentes classes de lesões. O conjunto de dados
utilizado é composto por 1379 lâminas (WSI) de tecido, coradas em PAS, PAM, HE e
Tricrômico. Os resultados obtidos foram um F1 score de 0,94 para detecção dos gloméru-
los e uma acurácia de até 0,94 para a classificação de diferentes lesões em imagens coradas
em HE.

No trabalho de Ginley et al. [137], é realizada a segmentação de glomeruloesclerose e
fibrose intersticial com atrofia tubular em lâminas inteiras de tecido. A rede utilizada é a
DeepLab v2 [105]. Adicionalmente, os autores correlacionam os resultados da rede com os
diagnósticos de quatro patologistas, que utilizaram ferramentas estatísticas clássicas. O
conjunto de dados é composto por 79 lâminas para treinamento e 20 lâminas para teste.

Além dos estudos já citados, que aplicam técnicas de aprendizado profundo em lâminas
de tecido, a literatura também apresenta propostas focadas no problema de obtenção
de dados anotados e devidamente validados por especialistas humanos. Exemplos disso
incluem os trabalhos de DeHaan et al. [132], Aron et al. [140], Minamiguchi et al. [141] e
Lutnick et al. [20].

No trabalho de Aron et al. [140], os autores definem nove classes de padrões morfo-
lógicos glomerulares e treinam doze modelos de redes neurais convolucionais (CNNs). O
treinamento é realizado em duas etapas: o primeiro conjunto de dados foi definido por
um nefropatologista especialista (12253 imagens) e o segundo, por um consenso de três
especialistas na área (11142 imagens). A validação é feita utilizando um terceiro conjunto
de dados composto por 180 imagens, comparando os resultados com o consenso entre os
patologistas (valores kappa entre 0,838 e 0,938). Adicionalmente, os autores destacam as
áreas da imagem decisivas para a tomada de decisão baseada na CNN, utilizando mapas
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de ativação para cada classe. Uma das vantagens do método proposto é a capacidade
de identificar a presença de diferentes padrões de doença glomerular que podem coexistir
em um único glomérulo (por exemplo, necrose combinada com hipercelularidade mesan-
gial e endocapilar), contrastando com abordagens anteriores que, geralmente, reconhecem
apenas um padrão específico. Os autores concluem sugerindo que os resultados fornecem
estímulos para projetos em andamento que integram outros tipos de dados, como imu-
nohistoquímica, microscopia eletrônica e informações clínicas, visando o desenvolvimento
de ferramentas aplicáveis à nefropatologia diagnóstica de rotina.

DeHaan et al. [132] propõem um modelo de rede adversária generativa (GAN), baseado
no modelo CycleGAN [142], para realizar transferência de estilo (style transfer) de lâminas
de tecido renal (contendo glomérulos renais) coradas em HE para PAS e Tricrômico. Os
resultados são avaliados por quatro patologistas, que consideraram as imagens geradas
como semelhantes às reais. A vantagem desse trabalho reside no uso de data augmentation,
que pode ampliar o conjunto de dados de um dataset, além de operações tradicionais como
rotação, inversão e outras.

No trabalho de Kumar et al. [143], é realizada uma investigação sobre modelos de
aprendizado profundo para a detecção e classificação de câncer ovariano e doenças glo-
merulares renais utilizando imagens histopatológicas. Os autores analisam o impacto de
diferentes métodos de otimização em um conjunto de redes convolucionais de referência.
Ao final, os modelos propostos demonstraram alta precisão na detecção e classificação
dessas condições, alcançando acurácias superiores a 99%.

Preocupados com o gargalo no processo de anotação de imagens histológicas, em Lut-
nick et al. [144], os autores propõem um sistema de anotação de imagens que inclui um
pré-anotador, que facilita o trabalho dos patologistas. O sistema segmenta automatica-
mente os glomérulos e entrega as anotações para refinamento pelos patologistas. O pré-
anotador é baseado em um modelo semi-supervisionado denominado DatasetGAN [145].
Os resultados mostram que o tempo de anotação com o uso desse sistema torna-se signi-
ficativamente menor em comparação com o processo de anotação tradicional.

Em Minamiguchi et al. [141], é apresentado um método não supervisionado para cor-
relacionar imagens de tecido com nefropatia, coradas em HE. No trabalho de Lutnick et
al. [20], os autores propõem uma ferramenta de anotação de imagens executada na nuvem,
com alta escalabilidade e colaboração entre patologistas.

Por fim, no trabalho de Ginley et al. [146], é realizada a segmentação de diversas
estruturas do tecido renal, incluindo os glomérulos. Os métodos utilizados são redes de
segmentação panópticas, uma classe mais recente de algoritmos de segmentação de ima-
gem, que distinguem objetos do tipo instância (contáveis, como túbulos renais) de objetos
do tipo grupo (incontáveis, como o interstício renal). O conjunto de dados utilizado
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consiste em 126 imagens de lâminas coradas em PAS, de nefropatia diabética nativa, ne-
frite lúpica e biópsias renais de vigilância de transplante, com anotações contemplando
interstício, glomérulos, glomérulos escleróticos globalmente, túbulos e árvore arterial (ar-
térias/arteríolas). Os resultados mostram que as redes panópticas apresentaram alto
desempenho, comparáveis ao dos patologistas renais, para todas as classes anotadas em
um conjunto de teste de biópsias renais de transplante.

3.2 Trabalhos com foco em podócitos
Entre os trabalhos de imagens histológicas com foco específico em podócitos, foi encon-
trado um conjunto pequeno de propostas, entre os quais é possível destacar: Zeng et
al. [33], Maraszek et al. [30], Govind et al. [28], Zimmerman et al. [31], Santo et al. [34] e
Farhat et al. [147].

O trabalho de Zeng et al. [33] tem como objetivo localizar glomérulos, identificar lesões
glomerulares (esclerose glomerular global e segmentar, crescente e nenhuma das anteri-
ores), e identificar e quantificar diferentes células glomerulares intrínsecas. As imagens
utilizadas estão coradas em PAS. Para a tarefa de localização dos glomérulos, são usadas
360 lâminas para treinamento e 40 para teste. O método utilizado é a rede Attention
U-Net [148]. Na tarefa de classificação dos glomérulos, são utilizadas 1438 imagens de
glomérulos, com aproximadamente 300 imagens por classe. O método adotado para a
classificação é a combinação das redes DenseNet-121 [85] e LSTM-SENet [149]. Para a
segmentação das células internas (incluindo os podócitos), são utilizadas 460 imagens de
glomérulos, com aproximadamente 70 mil células anotadas. A rede utilizada é uma mo-
dificação da U-net, batizada de 2D V-Net. Os resultados obtidos são: 93,1% de precisão
média e 94,9% de recall médio para localização de glomérulos; 95% de precisão para a
classificação das lesões glomerulares; e 88,2% de precisão média e 87,9% de recall médio
para detecção das células internas dos glomérulos.

Em Govind et al. [28], a tarefa é a detecção e quantificação de podócitos para re-
conhecimento de tumor de Wilms’. O conjunto de dados utilizado é composto por 240
patches (imagens de glomérulos) coradas em PAS, originadas de camundongos. O método
proposto segue os seguintes passos: inicialmente, as imagens do conjunto de dados são
adquiridas em imunofluorescência, e depois os mesmos glomérulos são corados em PAS.
As imagens desses dois conjuntos são utilizadas para o treinamento de uma GAN [150],
que converte imagens PAS para imunofluorescência. Após o treinamento, o método re-
cebe uma imagem em PAS, converte-a para sua versão artificial em imunofluorescência, e
então a imagem é processada e os podócitos são segmentados através da máscara criada.
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O resultado obtido é de 0,87 de sensibilidade e 0,93 de especificidade para a detecção dos
podócitos.

Em Maraszek et al. [30], o objetivo também é detectar e quantificar podócitos renais,
porém com o objetivo de associá-los à presença de diabetes Mellitus. Assim como no
trabalho de [28], o método proposto utiliza imagens de imunofluorescência e as mesmas
imagens em PAS. A imagem em imunofluorescência é processada com métodos clássicos
de processamento digital de imagens e finalizada como uma máscara para segmentação
na imagem correspondente em PAS. O conjunto de dados é formado por 883 imagens de
glomérulos de ratos. No final do trabalho, os autores calculam os danos nos glomérulos
através de análise morfológica dos podócitos e sua distribuição intra-glomerular. Os re-
sultados obtidos são de sensibilidade de 0,727, especificidade de 0,999 e acurácia de 0,959
na localização dos podócitos.

No trabalho de Santo et al. [34], os autores propõem o PodoCount, uma ferramenta
computacional para quantificação automatizada de podócitos em tecidos marcados de
forma imuno-histoquímica. O conjunto de dados utilizado conta com 35 lâminas de tecido
com diabetes nefrótica. Nos experimentos relatados, a partir de glomérulos segmentados
de seções de tecido (WSI), os núcleos podocitários são segmentados, sendo a partir deste
momento aplicada uma análise de imagens para calcular medidas de depleção e morfome-
tria nuclear. Os resultados obtidos indicam uma segmentação dos núcleos podocitários
com sensibilidade de 0,85 e especificidade de 0,99.

Na proposta de Zimmerman et al. [31], os autores utilizam um conjunto de dados
bastante robusto, com 1095 imagens de imunofluorescência, contendo um total de 27.696
podócitos anotados. O objetivo do trabalho também é detectar podócitos, mas com o
intuito de associá-los à doença glomerulonefrite associada a anticorpos anti-neutrófilos ci-
toplasmáticos (ANCA-GN). A rede utilizada para segmentar os glomérulos e os podócitos
é a U-net. O coeficiente Dice obtido nas tarefas de segmentação tanto dos glomérulos
quanto dos podócitos é de 0,92.

Finalmente, em Farhat et al. [147], propõe-se o uso de redes neurais convolucionais
para automatizar a segmentação de células e capilares glomerulares em biópsias de trans-
plante renal, avaliando a correlação dessas estruturas com a função do enxerto. O estudo
inclui 215 pacientes, divididos em três grupos: o grupo de treinamento, composto por
37 pacientes cujas células e capilares foram anotados manualmente para treinar as redes;
o grupo de teste, com 24 pacientes, utilizado para comparar as anotações manuais às
previsões automatizadas; e o grupo de aplicação, com 154 biópsias, utilizado para exa-
minar fatores preditivos em relação à função renal e ao prognóstico. No resultado geral,
considerando a segmentação de todas as estruturas, a rede neural alcança métricas de
precisão, revocação, F1-score e IoU superiores a 0,92, 0,85, 0,89 e 0,74, respectivamente.
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O resultado específico para a segmentação de podócitos apresenta 0,75 de IoU, obtida em
um teste com 633 podócitos anotados por especialistas humanos.

A Tabela 3.1 resume os trabalhos com imagens histológicas que se concentram especi-
ficamente na análise automatizada de podócitos em glomérulos renais. Esses estudos são
os principais trabalhos correlatos quando se considera o escopo do presente estudo.

Tabela 3.1: Resumo dos trabalhos correlatos mais relevantes.
Autores Tarefa Conjunto de

Dados
Métodos Resultados

Zeng et
al. [33]

Detecção de gloméru-
los em lâminas WSI,
classificação dos glo-
mérulos e segmenta-
ção de células intra-
glomerulares

60 imagens de
glomérulos, con-
tendo aproxima-
damente 70 mil
células anotadas

2D V-Net e U-
Net

Precisão média
de 88,2% e recall
médio de 87,9%
na detecção das
células internas
dos glomérulos

Maraszek
et al. [30]

Detecção e quantifica-
ção de podócitos re-
nais para associá-los à
presença de diabetes
mellitus

883 imagens de
glomérulos de
rato em imuno-
fluorescência

Métodos tradici-
onais de proces-
samento de ima-
gens

Sensibilidade
de 72,7%, es-
pecificidade de
99,9% e acurácia
de 95,9% na
localização dos
podócitos

Govind et
al. [28]

Detecção e quantifica-
ção de podócitos para
reconhecimento de tu-
mor de Wilm’s

40 imagens de
glomérulos cora-
das em PAS, ori-
ginadas de ca-
mundongo

Conversão de
estilo com GAN
e operações
tradicionais de
processamento
de imagens

Sensibilidade de
87% e especifi-
cidade de 93%
para detecção
dos podócitos

Zimmerman
et al. [31]

Detecção de podócitos
para associá-los à do-
ença ANCA-GN

1095 imagens
de imunofluores-
cência (27.696
podócitos ano-
tados)

U-Net Coeficiente Dice
de 92% para seg-
mentação de po-
dócitos

Santo et
al. [34]

Segmentação, quanti-
ficação de podócitos e
análise de depleção

35 lâminas co-
radas em PAS,
com imagens de
tecido de rato

Métodos tradici-
onais de proces-
samento de ima-
gens

Sensibilidade de
85% e especifici-
dade de 99%

Farhat et
al. [147]

Segmentação de célu-
las intra-glomerulares
e correlações para
transplante

1170 podócitos
anotados

Mask R-CNN
com Inception
ResNet V2

IoU de 75% para
segmentação de
podócitos
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3.3 Lacunas e desafios identificados
A análise dos trabalhos correlatos evidencia que nenhum estudo se concentra especifica-
mente na podocitopatia, embora muitos utilizem a segmentação de podócitos para asso-
ciar perda celular ou alterações morfológicas a condições como diabetes nefrótica. Além
disso, os conjuntos de dados analisados não estão disponíveis para outros pesquisadores
e carecem de diversidade, como imagens de podócitos com diferentes tipos de lesões (hi-
perplasia, hipertrofia e degeneração), variação de coloração e desbalanceamento entre as
classes.

Os estudos focados na análise de células glomerulares internas, particularmente podó-
citos, têm como objetivo principal a localização e quantificação para o estudo de diversas
patologias. Em comum, muitas dessas pesquisas utilizam imagens de imunofluorescên-
cia com marcadores específicos para facilitar a segmentação dos podócitos. Entretanto,
a aplicação desses métodos é frequentemente limitada, pois nem todos os conjuntos de
dados disponíveis possuem imagens de imunofluorescência ou outros tipos de coloração,
como PAS, indispensáveis para replicar essas abordagens.

As metodologias empregadas nesses trabalhos incluem redes neurais profundas e téc-
nicas clássicas de processamento de imagens. Os conjuntos de dados utilizados são tipica-
mente obtidos sob condições controladas, utilizando o mesmo corante, a mesma resolução
e provenientes de um único laboratório. Embora essa padronização facilite a segmentação,
a dependência de imagens obtidas em ambientes tão controlados limita a generalização
dos métodos para conjuntos de dados mais variados.

Por fim, enquanto a utilização de imagens imunofluorescentes com pré-marcação dos
podócitos facilita a segmentação, sua aplicação prática pode ser restrita pela falta de
imagens de diferentes tipos de coloração e pela indisponibilidade de dados em alguns
casos clínicos, o que prejudica a replicabilidade das abordagens.
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Capítulo 4

Metodologia

A metodologia adotada neste trabalho está diretamente relacionada aos objetivos especí-
ficos da tese, apresentados na Seção 1.4. Desse modo, os experimentos foram organizados
em quatro etapas principais:

1. Elaboração dos conjuntos de dados.

2. Identificação de podocitopatia em imagens de glomérulos.

3. Estudo sobre o impacto do uso de classificadores automatizados na prática dos
patologistas.

4. Segmentação de lesões podocitárias em imagens de glomérulos.

Na etapa de elaboração dos conjuntos de dados, inicialmente um grupo de patologistas
voluntários analisou imagens histológicas de glomérulos renais, atribuindo a cada imagem
um rótulo binário indicando a presença ("com lesão") ou ausência ("sem lesão") de po-
docitopatia. Em seguida, uma nova tarefa foi proposta, na qual os mesmos patologistas
indicaram, por meio de segmentação, as regiões específicas nas imagens que continham
diferentes tipos de lesões podocitárias.

A etapa de identificação de podocitopatia em imagens de glomérulos teve como ob-
jetivo desenvolver modelos de classificação binária capazes de inferir automaticamente
a presença ou ausência de podocitopatia nas imagens analisadas. Nesta fase, diferentes
métodos de referência da literatura foram treinados e comparados com uma nova solução
proposta para classificação automatizada das imagens.

O estudo sobre o impacto da utilização de classificadores automatizados visou avaliar,
por meio de experimentos controlados, as variações de desempenho dos patologistas ao
analisar imagens com e sem o suporte desses modelos. O objetivo foi investigar se a
utilização dessas ferramentas melhora ou acelera o diagnóstico clínico dos especialistas.
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Por fim, a etapa de segmentação de lesões podocitárias compreendeu uma comparação
rigorosa entre modelos já existentes na literatura e uma nova abordagem proposta neste
trabalho, especificamente desenvolvida para a tarefa de segmentação das lesões em um
cenário de dados limitados, com múltiplas colorações e distribuição desbalanceada das
classes. A Figura 4.1 ilustra esquematicamente cada uma dessas etapas.

Figura 4.1: Resumo iulustrativo das fases e experimentos realizados no trabalho.

Cada uma dessas etapas metodológicas está intimamente relacionada. A elaboração
cuidadosa dos conjuntos de dados, realizada na primeira etapa, é um requisito fundamen-
tal para o sucesso das etapas subsequentes, uma vez que esses dados servirão como base
tanto para os experimentos de classificação quanto para a segmentação das lesões podo-
citárias. A identificação automática de podocitopatia, por sua vez, é um passo necessário
para avaliar o impacto clínico da automação no desempenho dos patologistas, permitindo
verificar como as ferramentas computacionais afetam a prática diagnóstica real. Por fim,
a etapa de segmentação visa aprofundar ainda mais o detalhamento das lesões, ampliando
o potencial de aplicação prática das soluções propostas ao fornecer informações mais es-
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pecíficas sobre as regiões afetadas, contribuindo diretamente para a precisão diagnóstica
e decisão clínica final.
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Capítulo 5

Elaboração dos Conjuntos de Dados

A elaboração dos conjuntos de dados deste trabalho iniciou-se a partir de um acervo de 30
mil imagens não rotuladas de glomérulos renais, cedido pelo Centro de Pesquisas Gonçalo
Muniz, Fiocruz. Essas imagens foram analisadas visualmente por dois patologistas de
forma independente, sem validação cruzada entre os especialistas, resultando na seleção
de 835 imagens classificadas binariamente como “com” ou “sem” lesões podocitárias. Este
primeiro conjunto de dados foi denominado D1v1. Posteriormente, uma segunda rodada
de análise permitiu a identificação de novas imagens, ampliando o conjunto para 1043
imagens, o que originou a versão D1v2.

A partir do conjunto expandido, foi desenvolvido o D2, com o objetivo de validar o
desempenho diagnóstico dos patologistas na tarefa de classificação binária, incorporando,
além da inspeção visual, a confirmação clínica baseada em níveis de proteinúria. Dessa
forma, os conjuntos de dados D1v1, D1v2 e D2 foram construídos com o propósito comum
de apoiar a tarefa de classificação binária, visando identificar a presença ou ausência
de podocitopatia nas imagens de glomérulos renais.

Complementarmente, elaborou-se o conjunto de dados D3, destinado especificamente
à tarefa de segmentação semântica multiclasse. Nesse conjunto, os patologistas ano-
taram manualmente as regiões das imagens correspondentes a diferentes tipos de lesões
podocitárias (hiperplasia, hipertrofia e degeneração), bem como áreas de podócitos sem
lesão.

Os conjuntos de dados D1v1, D1v2, D2 e D3 representam uma evolução sequencial de
um mesmo acervo de imagens, sendo que cada nova versão aperfeiçoou o nível de anotação
e contribuiu diretamente para a melhoria da análise automatizada a ser realizada nos
modelos treinados nas fases posteriores deste trabalho.

Cabe destacar, como limitação metodológica, que, devido à restrição de tempo e ao
número reduzido de patologistas voluntários, em nenhuma das rodadas houve reavaliação
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cruzada das anotações. Essa limitação pode ter resultado em inconsistências pontuais nas
imagens rotuladas, aspecto considerado nas análises subsequentes.

Adicionalmente, todos os conjuntos de dados gerados estão disponíveis para uso acadê-
mico e podem ser solicitados mediante o preenchimento de formulário específico, acessível
na página oficial do grupo de pesquisa Pathospotter (https://pathospotter.bahia.
fiocruz.br/). A Figura 5.1 resume todo o processo de anotação e a evolução dos con-
juntos até a obtenção do conjunto D3.

Figura 5.1: Etapas de anotação para obtenção dos conjuntos de dados.

5.0.1 Conjunto de dados dpara classificação: D1v.1

Este conjunto de dados é comporto por 835 imagens de glomérulos renais, das quais
374 apresentam lesão podocitária e 461 não apresentam lesão. As anotações sobre a
presença ou ausência de lesão podocitária foram realizadas por dois patologistas, ambos
nefropatologistas 1.

1A aquisição das imagens foi conduzida de acordo com a Resolução nº 466/12 do Conselho Nacional de
Saúde. Todos os procedimentos foram aprovados pelo Comitê de Ética em Pesquisa com Seres Humanos
do Instituto Gonçalo Moniz da Fundação Oswaldo Cruz (CPqGM/FIOCRUZ), sob os Protocolos nº
188/09 e nº 1.817.574.
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As imagens foram obtidas utilizando diferentes câmeras, microscópios e scanners, apre-
sentando variados formatos (.jpg, .png e .tif ) e resoluções, que variam de 238×201 a
1920×1440 pixels. Os corantes empregados nas amostras são: Tricrômico (173 imagens),
Periodic Acid-Schiff (PAS) (409 imagens), Periodic Acid Methenamine Silver (PAMS)
(169 imagens) e Hematoxylin and Eosin (HE) (84 imagens).

As imagens rotuladas como "com podocitopatia" incluem amostras com diferentes
tipos de lesões podocitárias: hipertrofia, hiperplasia e degeneração. Exemplos de imagens
representativas do conjunto de dados podem ser visualizados na Figura 5.2. Vale destacar
que, tanto no grupo de imagens com lesão podocitária quanto no grupo sem lesão, também
estão presentes outros tipos de alterações glomerulares, como hipercelularidade, esclerose
e alterações membranosas.

Figura 5.2: Exemplos de imagens que compõem o conjunto de dados. Com lesão (a-d) e
sem lesão (e-h).

5.0.2 Conjunto de dados para classificação: D1v2 e D2

Os conjuntos de dados D1v2 e D2 foram utilizados especificamente na etapa de estudo
sobre o impacto do uso de classificadores automatizados na prática médica. O conjunto
de dados D1v2 foi utilizado para treinar e validar o classificador automatizado, enquanto
o conjunto de dados D2 foi empregado para avaliação de desempenho tanto do melhor
modelo de classificador quanto dos patologistas. Ambos os conjuntos incluem imagens de
glomérulos renais com diversos tipos de lesões podocitárias, como degeneração, hiperplasia
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Tabela 5.1: Distribuição dos corantes entre as imagens do conjunto de dados D1v2.
Rótulo HE PAS Tricrômico PAMS Total

Com lesão 44 275 104 90 513 (49%)
Sem lesão 64 254 94 118 530 (51%)

Total 108 (10,8%) 529 (50,8%) 198 (18,9%) 208 (19,9%) 1043 (100%)

Tabela 5.2: Distribuição dos corantes entre as imagens do conjunto de dados D2.
Rótulo HE PAS Tricrômico PAMS Total

Com lesão 18 3 2 17 50 (50%)
Sem lesão 12 24 6 8 50 (50%)

Total 30 (30%) 37 (37%) 8 (8%) 25 (25%) 100 (100%)

e hipertrofia. Essa diversidade proporciona uma representação realista dos casos encon-
trados na prática clínica, permitindo que os modelos computacionais treinados reflitam a
complexidade dos cenários do mundo real.

O conjunto de dados D1v2 é composto por 1.043 imagens, das quais 513 são rotuladas
como “com lesão podocitária” e 530 como “sem lesão podocitária”. As imagens apresentam
quatro tipos de coloração: Periodic Acid-Schiff (PAS), Hematoxylin and Eosin (HE), Pe-
riodic Acid Methenamine Silver (PAMS) e Tricrômico, conforme a distribuição mostrada
na Tabela 5.1. Essas imagens foram obtidas em diferentes instituições, utilizando câme-
ras, microscópios e scanners variados, com resoluções espaciais que variam de 238×201
a 1920×1440 pixels. Em ambas as classes de imagens (com e sem lesão podocitária),
podem ser observadas outras alterações glomerulares associadas, como hipercelularidade,
esclerose e alterações membranosas.

O conjunto de dados D2 foi criado seguindo um protocolo distinto. Ele é composto
por 100 imagens de glomérulos renais (50 com e 50 sem lesão podocitária), coradas com
PAS, HE, PAMS e Tricrômico. Diferentemente do conjunto D1v2, que foi rotulado ex-
clusivamente com base na inspeção visual dos patologistas, cada imagem do conjunto D2
foi validada tanto pela análise visual quanto por dados clínicos referentes à taxa de pro-
teinúria. Além disso, cada imagem de D2 foi obtida de um paciente distinto (totalizando
100 pacientes), de modo a favorecer a generalização dos resultados obtidos pelos modelos
computacionais. Essa abordagem também aumentou a diversidade de casos utilizados
para avaliar o desempenho dos classificadores. A distribuição dos corantes no conjunto
de dados D2 está apresentada na Tabela 5.2.

5.0.3 Conjunto de dados para segmentação: D3

O conjunto de dados D3 é o mais abrangente deste estudo, reunindo imagens provenientes
dos conjuntos D1v2, D2 e de novas adições, totalizando 1.401 imagens. Este conjunto foi
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elaborado para suprir a carência de bases públicas que contemplem anotações específicas
para diferentes tipos de lesões podocitárias e múltiplas técnicas de coloração histológica.
A iniciativa resultou em uma coleção de imagens de glomérulos renais estruturada para
representar o problema de segmentação de lesões podocitárias em casos variados, de-
safiando, assim, os modelos de redes neurais convolucionais (CNNs) com cenários mais
próximos da prática clínica real.

O processo de anotação das segmentações, que se estendeu por aproximadamente
18 meses, envolveu três patologistas, cada um com mais de cinco anos de experiência
em nefropatologia. A colaboração entre os especialistas foi fundamental para assegurar
anotações precisas e consistentes em todo o conjunto de dados.

O conjunto final inclui 204 imagens coradas com Hematoxylin and Eosin (HE), 828
imagens com Periodic Acid-Schiff (PAS), 124 imagens com tricrômico de Masson, 39
imagens com tricrômico de Gomori e 206 imagens com Periodic Acid Methenamine Silver
(PAMS). A Figura 5.3 ilustra exemplos representativos das amostras do conjunto de dados,
juntamente com exemplos das anotações realizadas pelos patologistas (verdade de campo)
em uma das amostras. A tabela 5.3 resume a percentual de imagens por corante.

Tabela 5.3: Distribuição do número de imagens por técnica de coloração no conjunto de
dados D3.

Técnica de coloração Número de imagens
Hematoxylin and Eosin (HE) 204
Periodic Acid-Schiff (PAS) 828

Tricrômico de Masson 124
Tricrômico de Gomori 39

Periodic Acid Methenamine Silver (PAMS) 206
Total 1401

Durante o processo de anotação, os patologistas utilizaram o software Labelme [151]
para marcar as regiões das imagens contendo podócitos sem lesões, bem como aquelas
apresentando lesões específicas: degeneração, hipertrofia e hiperplasia. Esse procedimento
resultou no registro de quatro classes distintas nas imagens. Ao final, foram anotados
um total de 54.760 objetos, sendo 48.471 podócitos sem lesões (controle normal), 2.782
instâncias de degeneração, 1.872 de hiperplasia e 1.635 de hipertrofia.

O conjunto de dados D3 representa uma contribuição estratégica para o avanço das
pesquisas em segmentação semântica multiclasse de lesões podocitárias. Sua diversidade
de técnicas de coloração, variedade de tipos de lesões e quantidade significativa de ano-
tações proporcionam uma base robusta para o treinamento, validação e teste de modelos
computacionais em um cenário realista e desafiador. Dessa forma, D3 não apenas supre a
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Figura 5.3: Exemplos de amostras do conjunto de dados. As condições observadas incluem
hiperplasia (a), hipertrofia (b), degeneração (c) e ausência de lesões evidentes (d)..

escassez de conjuntos de dados públicos voltados à podocitopatia, mas também viabiliza
o desenvolvimento de abordagens mais generalizáveis e aplicáveis na prática médica.
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Capítulo 6

Identificação de Podocitopatia:
PodNet

Nesta etapa do trabalho, o objetivo foi identificar a presença ou ausência de podocitopatia
em imagens de glomérulos renais, ou seja, realizar uma classificação binária dessas ima-
gens. O conjunto de dados utilizado foi o D1v1. Esta etapa foi conduzida em duas fases:
avaliação de modelos de referência (baselines) e desenvolvimento de uma nova proposta
de solução capaz de superar o desempenho dos modelos de referência.

6.0.1 Avaliação dos modelos de referência (baselines)

Na avaliação dos modelos de referência, foram analisadas seis arquiteturas de redes con-
volucionais (Seção 2.3): ResNet101 v2 [84], VGG19 [79], DenseNet201 [85], Inception
ResNet v2 [81], Inception v3 [80] e Xception [86]. Cada modelo foi treinado em dois
cenários distintos: (i) com transferência de aprendizado, utilizando redes pré-treinadas no
conjunto de dados ImageNet [139], e (ii) com treinamento a partir do zero, empregando
inicialização aleatória dos pesos.

Além disso, os modelos foram avaliados em duas versões do conjunto de dados: imagens
em RGB e imagens convertidas para escala de cinza. Essa abordagem visou investigar
possíveis vantagens ou desvantagens da utilização da informação de cor no processo de
aprendizado das redes.

As métricas utilizadas para avaliação dos modelos de classificação foram: precisão
(precision), revocação (recall), f1-score e área sob a curva ROC (AUC) [119] (Seção 2.6).
O ranqueamento dos melhores modelos foi baseado no f1-score, métrica que equilibra
precisão e revocação, sendo especialmente adequada para cenários com conjuntos de dados
desbalanceados.
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Antes do treinamento dos modelos, realizou-se um ajuste de hiperparâmetros utili-
zando uma divisão aleatória em conjuntos de treino e teste. A estratégia adotada foi o
Hyperband [88], implementado por meio da biblioteca Keras Tuner [152]. Os hiperparâ-
metros ajustados e seus respectivos espaços de busca foram: tamanho do batch (16, 32 e
64), número de neurônios nas últimas camadas densas (2048, 1024, 512 e 256), taxa de
aprendizado (de 0,1 a 10−7), funções de ativação das últimas camadas densas (ReLU e
tanh), otimizadores (Adam, SGD e Adamax), momentum [24] (0,3, 0,6 e 0,9) e funções
de perda (binary cross-entropy e hinge).

Após o ajuste de hiperparâmetros, uma nova divisão do conjunto de dados foi realizada
em dois subconjuntos: (i) conjunto de generalização (70%) e (ii) conjunto de validação
final (30%). A divisão preservou a proporção de classes em ambos os conjuntos. Os
modelos de referência foram treinados e validados no conjunto de generalização utilizando
validação cruzada com 5 folds. Adicionalmente, antes do treinamento, aplicou-se aumento
de dados (data augmentation) nos conjuntos de treino da validação cruzada.

As operações de aumento de dados consistiram em transformações clássicas que pre-
servaram as características relevantes das imagens de glomérulos. Entre as operações
aplicadas, destacam-se: inversão vertical e horizontal (flip), rotações de 30°, 90° e 270°,
ajuste de brilho (variação de 0,1 a 0,3) e zoom aleatório (entre 0,1 e 0,3 vezes). Tais opera-
ções visaram aumentar a capacidade de generalização das redes, ampliando a diversidade
de exemplos disponíveis no treinamento.

O treinamento dos modelos foi realizado com um limite máximo de 200 épocas. En-
tretanto, nenhum dos modelos treinados ultrapassou 130 épocas, nem permaneceu abaixo
de 50 épocas, em função do critério de parada antecipada (early stopping) estabelecido:
interrupção do treinamento após 5 épocas consecutivas sem melhoria na função de perda
(loss) de validação. Essa estratégia foi adotada para evitar o sobreajuste (overfitting). Os
pesos finais de cada modelo foram definidos a partir da época em que a loss de validação
atingiu seu menor valor.

A validação cruzada com 5 folds gerou cinco modelos distintos, os quais foram avaliados
no conjunto de validação final. O modelo que apresentou o melhor desempenho nesse
conjunto foi selecionado como o melhor modelo de referência.

6.0.2 Solução proposta: Modelo PodNet

Após a avaliação dos modelos baselines nas configurações apresentadas, foi proposto um
método para a classificação de imagens de glomérulos renais quanto à presença ou ausência
de podocitopatia.

A solução desenvolvida fundamentou-se em duas hipóteses: (i) a conversão de ima-
gens de glomérulos para espaços de cor que isolam informações dos corantes em canais
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distintos pode permitir que redes convolucionais extraiam características complementares,
conforme observado nos estudos de Barros et al. [18] e Bukowy et al. [153]; e (ii) a extração
de características por redes convolucionais pré-treinadas pode gerar resultados superiores
aos obtidos com o treinamento de redes fim a fim, como demonstrado nos trabalhos de
Chagas et al. [19], Minamiguchi et al. [141] e Mathur et al. [136].

O modelo proposto, denominado PodNet [52], é um sistema de reconhecimento de
podocitopatia em imagens de glomérulos renais, organizado em três etapas principais:
pré-processamento, extração de características e classificação. A Figura 6.1 apresenta a
topologia geral da rede e suas respectivas etapas.

Figura 6.1: Etapas básicas da proposta de solução (PodNet).

Na primeira etapa, de pré-processamento, as imagens são convertidas de RGB para
os espaços de cor HED e HDX e, em seguida, normalizadas para valores entre 0 e 1. O
espaço de cor HED, utilizado por [18] e [153], gera imagens cujos canais representam as
contribuições dos corantes Hematoxilina, Eosina e DAB. Por sua vez, o espaço de cor
HDX produz imagens com canais correspondentes aos corantes Hematoxilina e PAS.

A segunda etapa corresponde à extração de características. Nessa fase, as imagens
convertidas para os espaços de cor HED e HDX, juntamente com a imagem original em
RGB, são processadas pela arquitetura VGG19, previamente treinada no conjunto de
dados ImageNet [139]. A arquitetura foi adaptada para que sua saída correspondesse ao
resultado da operação de max pooling [66] da última camada convolucional. Em seguida,
aplica-se uma operação de flattening, convertendo a matriz tridimensional em um vetor
unidimensional [24], gerando um vetor de características para cada imagem. Esses vetores
são posteriormente redimensionados utilizando o algoritmo PCA (Principal Component
Analysis) [154], com o objetivo de reduzir a dimensionalidade, acelerar o treinamento
e eliminar características redundantes ou menos relevantes. Por fim, os três vetores de
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características (RGB, HED e HDX) são concatenados, resultando em um único vetor
integrado.

Na terceira etapa, de classificação, utiliza-se uma rede neural densa composta por
quatro camadas ocultas, contendo 256, 128, 64 e 64 neurônios, respectivamente. A regu-
larização entre as camadas ocultas é realizada com a técnica de dropout, adotando uma
taxa de 0,1. Os hiperparâmetros dessa rede densa, incluindo o número de neurônios por
camada, foram ajustados por meio do método grid search [155], o qual avalia sistemati-
camente diferentes combinações de parâmetros. A camada de saída é composta por um
único neurônio, ativado pela função sigmoid.
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Capítulo 7

Implicações do Uso de
Classificadores Automatizados na
Prática Médica

Nesta etapa do trabalho, o objetivo foi estudar o impacto do uso de classificadores au-
tomatizados na tomada de decisão dos patologistas quanto à presença ou ausência de
podocitopatia em imagens de glomérulos. O protocolo experimental adotado foi estru-
turado em três fases e baseou-se no trabalho de Ligabue et al. [156], que comparou o
desempenho de um modelo de rede neural convolucional (CNN) com o de um grupo de
três patologistas.

Na primeira fase, objetivou-se obter um classificador automatizado capaz de reconhecer
glomérulos com lesão podocitária visível por microscopia óptica. Diferentes modelos de
CNN foram ajustados, treinados e validados utilizando o conjunto de dados denominado
D1v2. O modelo de melhor desempenho foi selecionado com base nos resultados obtidos
na classificação de imagens de um segundo conjunto de dados, D2.

Na segunda fase, avaliou-se o desempenho de um grupo de três patologistas na classi-
ficação das imagens do conjunto D2, sem qualquer suporte computacional, permitindo a
comparação direta de seu desempenho com o do modelo automatizado.

Na terceira fase, após um intervalo de 30 dias — adotado para minimizar o viés
de memória —, os mesmos patologistas reavaliaram as imagens de D2, desta vez com
acesso às classificações fornecidas pelo classificador automatizado. O objetivo foi verificar
se a disponibilização dessa informação influenciaria (isto é, melhoraria) a acurácia dos
especialistas.

A Figura 7.1 apresenta uma visão geral do protocolo experimental. Na Etapa 1, foram
avaliados diferentes modelos de CNN no conjunto D1v2 e reavaliados no conjunto D2.
Na Etapa 2, foi analisado o desempenho dos três patologistas na classificação das imagens
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de D2 sem suporte. Na Etapa 3, avaliou-se o desempenho dos mesmos patologistas na
classificação das imagens de D2 com o suporte do classificador automatizado.

Figura 7.1: Visão geral do protocolo experimental.

7.0.1 Treinamento e validação dos modelos de classificação

Três arquiteturas clássicas de redes neurais convolucionais (CNNs) [157] foram selecio-
nadas para a classificação automatizada de imagens: Inception ResNet-v2 [158], Dense-
Net201 [159] e EfficientNet B3 [160].

A escolha dessas arquiteturas foi motivada por dois fatores principais: i) a confiabili-
dade demonstrada em tarefas semelhantes [161, 162, 163]; e ii) suas diferenças estruturais,
tanto em profundidade (número fixo de camadas em DenseNet201 e Inception ResNet-
v2, e variável em EfficientNet B3 ) quanto em estratégias de aprendizado (e.g., blocos
residuais no Inception ResNet-v2 e conexões densas no DenseNet201 ).

Cada arquitetura foi treinada em dois cenários distintos:

• Treinamento do zero (from scratch — FS): inicialização aleatória dos pesos;
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• Aprendizado por transferência (transfer learning — TL): utilizando pesos pré-
treinados no conjunto ImageNet [63].

Essa abordagem resultou em seis modelos distintos, considerando as combinações entre
arquitetura e estratégia de treinamento.

Os hiperparâmetros de cada modelo foram ajustados utilizando o algoritmo Hyper-
band [164, 165], que emprega uma estratégia de otimização bayesiana associada à alocação
adaptativa de recursos e interrupção antecipada para acelerar o processo de busca.

Para o ajuste dos hiperparâmetros, o conjunto de dados D1v2 foi dividido aleatoria-
mente em dois grupos: 70% para treinamento e 30% para teste, mantendo a proporção
entre as classes (com e sem degeneração podocitária). Essa divisão foi utilizada exclusi-
vamente para o ajuste dos hiperparâmetros, visando mitigar problemas de subajuste (un-
derfitting) e sobreajuste (overfitting).

O algoritmo Hyperband ajustou hiperparâmetros críticos, tais como: taxa de aprendi-
zado (learning rate), otimizador, tamanho do batch, função de perda (loss function) e o
número de neurônios nas camadas densas. A Tabela 7.1 apresenta os valores considerados
para cada hiperparâmetro, enquanto a Tabela 7.2 mostra os melhores valores obtidos para
cada modelo.

Tabela 7.1: Intervalo de valores considerados durante o ajuste de hiperparâmetros.
Hiperparâmetro Valores avaliados
Tamanho do batch 32, 16, 8, 4, 2
Função de perda Binary Cross-entropy, Hinge

Otimizador SGD, Adam, Adagrad, RMSprop
Taxa de aprendizado 0,1; 0,001; 0,0001; 0,00001

Número de neurônios nas camadas densas 2048, 1024, 512, 256

Tabela 7.2: Melhores valores de hiperparâmetros para cada modelo avaliado. LR: Learning
rate

Modelo Batch size Perda Otimizador Camadas LR
Inception ResNet-v2 TL 8 BCE RMSprop 1024, 512 0,0001

DenseNet201 TL 8 BCE Adam 512, 512 0,001
EfficientNet B3 TL 4 Hinge RMSprop 512, 512 0,0001

DenseNet201 FS 4 BCE SGD 2048, 1024 0,001
Inception ResNet-v2 FS 8 BCE Adam 1024, 512 0,0001

EfficientNet B3 FS 8 BCE Adam 512, 512 0,0001

Após a definição da melhor combinação de hiperparâmetros para cada modelo, con-
forme ilustrado na Figura 7.1, foi realizada uma nova divisão do conjunto de dados, e
os modelos candidatos foram treinados por meio de validação cruzada estratificada em
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10 subconjuntos [122]. Em cada iteração, um subconjunto foi utilizado para validação,
enquanto os demais serviram para treinamento. Esse processo gerou 10 modelos distintos
para cada uma das seis combinações avaliadas.

Durante o treinamento na validação cruzada, foi aplicada uma estratégia de aumento
de dados (data augmentation) com o objetivo de aumentar a diversidade do conjunto de
treinamento e mitigar problemas de sobreajuste [24]. As seguintes transformações foram
empregadas:

• Rotações em ângulos variando de 30º a 310º (com intervalos de 30º);

• Espelhamento vertical e horizontal;

• Ajustes aleatórios de brilho;

• Variações de contraste.

Essas transformações foram cuidadosamente selecionadas para preservar a morfologia das
estruturas histológicas dos glomérulos, evitando a introdução de artefatos que pudessem
prejudicar o treinamento dos modelos.

Graças à aplicação da técnica de aumento de dados, o número de imagens nos conjun-
tos de treinamento foi ampliado de 1.043 para 12.516, com cada imagem original gerando
12 novas variações. Essa expansão contribuiu significativamente para a melhoria da ca-
pacidade de generalização dos classificadores.

Adicionalmente, foi empregada a estratégia de parada antecipada (early stopping) [24],
interrompendo o treinamento sempre que, em uma sequência de 10 épocas, não fosse
observada redução na função de perda (loss). Essa prática é amplamente utilizada para
evitar o sobreajuste e o treinamento excessivo dos modelos.

O melhor modelo foi selecionado com base no maior valor médio de F1-score obtido nas
validações cruzadas. Em seguida, os modelos ótimos de cada combinação de arquitetura
e estratégia de treinamento foram comparados entre si.

Por fim, após a seleção final, o melhor modelo avaliado no conjunto D1v2 foi também
testado no conjunto D2, permitindo validar seu desempenho em um conjunto de dados
independente.

7.0.2 Classificação dos patologistas

Para estabelecer as bases de comparação do desempenho entre os modelos de CNN, três
patologistas classificaram as imagens do conjunto D2 como "com"ou "sem"degeneração
podocitária. Essa tarefa foi realizada exclusivamente por meio da inspeção visual das
imagens, sem qualquer informação adicional.
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É importante destacar que os patologistas envolvidos na classificação do conjunto D2
não participaram da preparação ou anotação dos conjuntos de dados utilizados neste
estudo (D1v2 e D2). Cada especialista estava vinculado a uma instituição distinta de
nefropatologia, o que garantiu maior diversidade e independência nas avaliações.

Para mitigar possíveis vieses de classificação decorrentes da reanálise imediata, foi
implementado um intervalo de 30 dias entre as duas sessões de avaliação. Após esse
período, os mesmos patologistas reclassificaram as imagens de D2, desta vez com acesso
às predições fornecidas pelo classificador automatizado. Em outras palavras, antes de
tomar uma decisão sobre cada imagem, os especialistas puderam consultar a recomendação
gerada pelo modelo computacional.

Essa abordagem permitiu avaliar o desempenho dos patologistas tanto em condições
de análise independente quanto sob o suporte do classificador, minimizando o risco de
dependência excessiva em relação às sugestões automatizadas.

Para cada uma das duas sessões de classificação realizadas, foi calculado o coefici-
ente de concordância entre os nefropatologistas. Essa métrica foi fundamental para ava-
liar eventuais alterações na consistência diagnóstica decorrentes da utilização do suporte
computacional.
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Capítulo 8

Segmentação de Lesões Podocitárias

Neste capítulo, são apresentados os procedimentos adotados para a avaliação dos modelos
de referência (baselines) e o desenvolvimento da solução proposta para a segmentação se-
mântica multiclasse de lesões podocitárias em imagens de glomérulos renais. Inicialmente,
são descritas as estratégias de tratamento do desequilíbrio entre classes e colorações no
conjunto de dados, bem como a estruturação dos subconjuntos de treinamento, validação
e teste. Em seguida, detalha-se a seleção e treinamento de múltiplas arquiteturas clássicas
de segmentação combinadas a diferentes codificadores, formando o conjunto de modelos
de referência. Posteriormente, é apresentada a abordagem inovadora desenvolvida neste
trabalho, baseada na fusão de características extraídas de espaços de cores distintos (RGB
e HED). Essa solução visa aprimorar a capacidade dos modelos em lidar com a hetero-
geneidade cromática e o desequilíbrio de classes, aspectos críticos para a segmentação
precisa de estruturas histológicas lesionadas.

8.0.1 Avaliação dos modelos de referência (baselines)

Antes do treinamento e validação dos modelos de referência, foi crucial abordar o desequi-
líbrio inerente entre classes e colorações no conjunto de dados D3, a fim de garantir um
treinamento efetivo dos modelos. Para isso, foram implementadas estratégias específicas.
Uma delas consistiu na redução direcionada de imagens contendo apenas podócitos sem
lesões, todas coradas com PAS, diminuindo seu número de 828 para 528. Essa redução foi
essencial devido à incidência significativamente maior de podócitos sem lesões, servindo
como medida para mitigar o desequilíbrio entre as classes.

Além disso, foi aplicada uma ampliação de dados às imagens com casos de lesões,
conforme detalhado na próxima seção. O conjunto de dados foi então dividido em três
subconjuntos — treinamento, validação e teste — garantindo que a proporção de ima-
gens com lesões e diferentes colorações fosse mantida de forma consistente em todos os

52



subconjuntos. A Tabela 8.1 descreve a distribuição das imagens por corante em cada
subconjunto.

Tabela 8.1: Proporção de colorações presentes em cada subconjunto.
Subconjuntos PAS HE Gomori Mason PAMS

Treinamento 368 125 26 85 143
Validação 53 18 4 13 21

Teste 107 36 9 26 42
Total 528 (49%) 179 (17%) 39 (4%) 124 (11%) 206 (19%)

Para combater os efeitos do desequilíbrio entre as classes no processo de treinamento,
foi empregada uma estratégia de aumento de dados (data augmentation). Foram aplicadas
aleatoriamente combinações de rotações, espelhamentos, suavizações, ajustes de contraste
e transformações de iluminação nas imagens do conjunto de treinamento. Essa abordagem
aumentou artificialmente o tamanho do conjunto de dados, contribuindo para mitigar o
desequilíbrio entre imagens com e sem lesões. Como resultado, o número de imagens com
lesões foi ampliado em um fator de 30, enquanto o número de imagens sem lesões cresceu
em um fator de 5. Dessa forma, o conjunto de treinamento expandiu-se de 747 para
14.111 imagens, criando uma base mais generalizada e diversificada para o treinamento
dos modelos.

O treinamento dos modelos de referência serviu como ponto de partida para o desen-
volvimento da abordagem proposta para a segmentação das classes de lesões podocitárias.
Como os trabalhos relacionados não abordam diretamente a segmentação dos diferentes
tipos dessas lesões, foi necessário explorar um conjunto mais amplo e diversificado de ar-
quiteturas de rede e encoders, adotando diferentes estratégias de aprendizado para superar
essa lacuna.

Os modelos de referência foram construídos a partir de nove arquiteturas clássicas de
segmentação: DeepLabv3, DeepLabv3+ [106], Unet [103], Unet++ [104], Linknet [109],
PSPnet [110], FPN [111], MAnet [112] e PAN [113]. Essas arquiteturas são bem esta-
belecidas na literatura [166], e algumas delas, como Unet e Unet++, são amplamente
utilizadas na segmentação de imagens histológicas [167].

Os modelos avaliados foram gerados pela combinação dessas nove arquiteturas com
trinta e cinco (35) encoders — todos disponíveis na biblioteca Segmentation Models Py-
torch1 — resultando em trezentos e quinze (315) combinações (35 × 9). Cada modelo
foi treinado em duas condições de inicialização de pesos: inicialização aleatória e pesos
pré-treinados no ImageNet [139]. Além disso, as imagens foram representadas em dois
espaços de cor distintos (RGB e HED), totalizando 1260 modelos avaliados (315 × 4).

1https://github.com/qubvel/segmentation_models.pytorch
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Cada um desses 1260 modelos foi treinado tanto no espaço de cor RGB quanto no
espaço HED, gerando, ao final, um total de 2520 (1260 × 2) modelos de referência anali-
sados.

Durante o treinamento, os hiperparâmetros foram padronizados para todos os mode-
los: a taxa de aprendizado foi inicializada em 0,0001, com um tamanho de batch de 16.
Utilizou-se a função de ativação Softmax 2d e a função de perda Dice loss [168]. Foram
atribuídos pesos específicos para cada classe (0,0040, 0,0840, 0,4408, 0,3498 e 0,1214),
como uma estratégia de aprendizado sensível ao custo, considerando a proporção de cada
classe no conjunto de dados [169, 170]. As métricas de avaliação utilizadas foram o F-score
e o coeficiente de Jaccard [171], tanto em nível global quanto por classe.

O número máximo de épocas foi fixado em 500, com adoção da estratégia de parada
antecipada: o treinamento era interrompido se não houvesse melhora na função de perda
após 15 épocas consecutivas, medida empregada para evitar sobreajuste. A versão do
modelo com a menor perda de validação foi salva como o melhor resultado.

Após o treinamento e validação de todos os modelos de referência, foram seleciona-
dos trinta modelos com base em seu F1-score para análise comparativa da nova solução
proposta (Seção 8.0.2). Esse conjunto foi composto pelos 10 modelos com melhor de-
sempenho, pelos 10 modelos com pior desempenho e por 10 modelos selecionados alea-
toriamente (sem sobreposição com os dois primeiros grupos). Todos os modelos foram
retreinados utilizando o novo método proposto, mantendo inalterados os hiperparâmetros
e critérios de parada, de modo que a comparação focasse exclusivamente no impacto da
nova estratégia de aprendizado.

A partir dos resultados obtidos com os modelos de referência, identificou-se a ne-
cessidade de desenvolver uma abordagem mais robusta e sensível às particularidades do
conjunto de dados estudado. Nesse contexto, a próxima seção apresenta a solução pro-
posta, baseada na fusão de características extraídas de múltiplos espaços de cores, com o
objetivo de aprimorar a segmentação semântica das lesões podocitárias.

8.0.2 Solução proposta

Optou-se pelo desenvolvimento de uma nova abordagem de fusão de características, que
combina informações dos espaços de cores RGB e HED para treinar modelos de segmen-
tação semântica. O foco principal é enfrentar os desafios impostos por conjuntos de dados
desequilibrados e multicoloridos na segmentação de lesões podocitárias. Seja θ um modelo
de segmentação semântica com arquitetura baseada em codificadores e decodificadores,
conforme definido nas Equações 8.1 e 8.2.

θ : x1 × x2 → G, (8.1)
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(M1, M2) = θ(x1, x2), (8.2)

Onde:

• G é o conjunto dos possíveis mapas de atributos, sendo G ⊆ Rh×w×c′ , onde c′

representa o número de classes e h × w a resolução das imagens;

• x1 e x2 são as entradas correspondentes às imagens nos espaços de cor RGB e HED,
respectivamente;

• M1 e M2 são os mapas de características resultantes dos blocos decodificadores nos
espaços RGB e HED, respectivamente.

Após a extração dos mapas de características M1 e M2 por meio de seus respectivos
codificadores e decodificadores, é realizada uma operação de fusão (⊕), resultando no
mapa combinado N (Equação 8.3).

N = M1 ⊕ M2. (8.3)

Finalmente, o mapa resultante N é submetido ao bloco de segmentação original da
rede (S), gerando a máscara de saída Y (Equação 8.4):

Y = S(N). (8.4)

Desenvolvimento e validação do método proposto

O método desenvolvido modifica o fluxo convencional de treinamento de redes de segmen-
tação semântica multiclasse, criando uma arquitetura multicanal. A Figura 8.1 ilustra a
proposta, que segue as etapas descritas a seguir:

1. Conversão das imagens do espaço de cores RGB para HED;

2. Duplicação do fluxo de dados, com codificadores e decodificadores específicos para
cada espaço de cor;

3. Fusão dos mapas de características gerados antes do bloco de segmentação;

4. Aplicação do bloco de segmentação original da arquitetura.

A inspiração para o desenvolvimento dessa abordagem, bem como a ideia inicial de
utilizar imagens em diferentes espaços de cores, surgiu de estudos que investigam o im-
pacto do uso de múltiplos espaços de cor no treinamento de CNNs para problemas de
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Figura 8.1: Visão geral da abordagem proposta: (1) conversão do espaço de cores, (2)
extração de características usando blocos encoder-decoder, (3) fusão das saídas dos deco-
ders e (4) bloco de segmentação.

classificação de imagens histológicas [54, 55], e na melhoria do desempenho por meio de
diferentes representações cromáticas [172, 173].

Considerando que o espaço HED oferece uma representação especializada para imagens
histológicas [56], esta abordagem propõe combinar o HED com o espaço RGB, de modo
a explorar informações complementares.

Para extrair características de cada representação de forma independente, foi em-
pregada a duplicação dos blocos de codificadores e decodificadores, formando um novo
modelo multicanal. Essa estratégia foi inspirada em abordagens que propõem arquiteturas
multicanal ou multi-stream [174, 175, 176, 177, 178, 179].

A fusão dos mapas de características extraídos dos decodificadores foi baseada em
estudo que avalia diferentes estratégias de fusão para redes multicanal [118]. As operações
de fusão consideradas estão descritas na Tabela 8.2, visando investigar os efeitos específicos
de cada estratégia no desempenho da segmentação.

As hipóteses consideradas para cada operação de fusão foram:

56



Tabela 8.2: Operações de fusão avaliadas no método proposto.
Operação de fusão Definição

Soma das matrizes de entrada N = M1 + M2 (8.5)
Diferença absoluta N = |M1 − M2| (8.6)

Máximo elemento a elemento N = max(M1i,j
, M2i,j

) (8.7)
Mínimo elemento a elemento N = min(M1i,j

, M2i,j
) (8.8)

Média elemento a elemento N = M1i,j
+M2i,j

2 (8.9)

• Soma (Equação 8.5): permite a integração das informações complementares dos
mapas, mas pode amplificar ruídos caso ambos contenham informações imprecisas.

• Diferença absoluta (Equação 8.6): destaca regiões de alta discrepância entre os
mapas, mas pode negligenciar informações contextuais em áreas de baixo contraste.

• Máximo elemento a elemento (Equação 8.7): enfatiza as características mais
proeminentes, mas pode levar à perda de detalhes sutis quando ignora valores infe-
riores relevantes.

• Mínimo elemento a elemento (Equação 8.8): reforça regiões de consenso entre os
mapas, reduzindo o impacto de ruído, embora possa eliminar informações relevantes
associadas a valores mais altos.

• Média elemento a elemento (Equação 8.9): promove uma combinação equili-
brada dos mapas, mas pode suavizar excessivamente características importantes.

Na etapa final, o mapa de características fundido N é encaminhado para o bloco de
segmentação original da arquitetura, sem modificações adicionais.

A abordagem desenvolvida neste trabalho propõe uma estratégia inovadora de fusão
de características, combinando informações extraídas dos espaços de cor RGB e HED
para o aprimoramento da segmentação semântica de lesões podocitárias. Ao duplicar
o fluxo de codificadores e decodificadores e integrar os mapas de atributos por meio de
diferentes operações de fusão, a proposta visa explorar representações complementares das
imagens histológicas, mitigar os efeitos do desequilíbrio de classes e melhorar a robustez
dos modelos frente à variabilidade de coloração. Dessa forma, a solução apresentada
contribui de maneira significativa para a literatura de patologia computacional, oferecendo
uma alternativa promissora para a segmentação multiclasse em cenários desafiadores,
caracterizados por heterogeneidade cromática e escassez de dados anotados.
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Capítulo 9

Resultados

Este capítulo apresenta os resultados obtidos pelos modelos de referência (baselines) e
pelas soluções propostas nas etapas de identificação de podocitopatia, estudo sobre o
impacto do uso de classificadores na prática médica e segmentação de lesões podocitárias,
conforme descrito no Capítulo 4.

9.1 Identificação de podocitopatia: PodNet
A Tabela 9.1 apresenta os resultados obtidos para todos os modelos de classificação ava-
liados. Os resultados no conjunto de generalização correspondem às médias obtidas na
validação cruzada, acompanhadas de seus respectivos desvios padrão. Já os resultados
da validação final foram calculados com base no conjunto de teste separado no início dos
experimentos.

A PodNet (modelo proposto) alcançou os melhores resultados de F1-score no conjunto
de validação final. Nos conjuntos de generalização, a média de F1-score obtida foi equi-
valente à do modelo ResNet101 v2 (treinado em RGB com transferência de aprendizado),
que atingiu 90,2±3,54, enquanto a PodNet obteve 90,1±1,70. Considerando a diferença
ínfima entre os modelos e o menor desvio padrão apresentado pela PodNet, também é
possível considerá-la superior nos conjuntos de generalização.

As Figuras 9.1, 9.2 e 9.3 apresentam as curvas ROC dos modelos de referência em cada
contexto de treinamento. Entre os modelos treinados com inicialização aleatória de pesos
e utilizando imagens em escala de cinza, o melhor desempenho foi obtido pela Inception
v3 (Figura 9.2). No mesmo cenário de inicialização aleatória, porém utilizando imagens
em RGB, o modelo de melhor desempenho foi a Inception ResNet v2 (Figura 9.1). Já no
contexto de treinamento com transferência de aprendizado e imagens em RGB, o destaque
foi para a DenseNet201 (Figura 9.3).
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A Figura 9.4 apresenta a curva ROC dos quatro melhores modelos classificados pelo
F1-score: PodNet, DenseNet201 TL (RGB), Inception v3 TL (RGB) e ResNet101 v2 TL
(RGB).

Tabela 9.1: Resultados obtidos nos modelos de classificação. TL: transfer learning. FS:
from scratch.

Classificação Conjunto de generalização (média) Conjunto de validação
Modelos Prec(%) Rec(%) F1(%) Prec(%) Rec(%) F1(%) AUC

PodNet (solução proposta) 90,6±3,07 89,6±1,36 90,1±1,70 88,9 93,2 90,9 0.959
Densenet201 TL (RGB) 90,0±3,66 90,0±5,31 88,0±3,89 85,0 91,0 87,8 0.935
Inception v3 TL (RGB) 87,0 ± 1,03 88,0 ± 8,93 87,4 ± 4,76 81,0 90,0 85,2 0.928
Resnet101 v2 TL (RGB) 94,0±2,65 86,0±7,44 90,2±3,54 83,00 86,0 84,4 0.927

VGG19 TL (RGB) 93,0±2,56 86,0±6,03 89,3±4,11 87,0 81,0 83,8 0.919
Xception TL (RGB) 89,0±2,66 90,0±8,26 88,4±4,69 82,0 84,0 82,9 0.893

Inception Resnet v2 FS (RGB) 86,0 ± 5,9 75,0 ± 12,02 80,4 ± 8,02 79,0 87,0 82,8 0.921
Inception Resnet v2 TL (RGB) 92,0±3,76 90,0±5,75 87,4±3,22 79,0 86,0 82,3 0.896

Densenet201 FS (RGB) 82 ± 7,9 83 ± 9,02 82,0 ± 8,52 75,0 88,0 80,9 0.895
Inception v3 FS (GL) 80,0 ± 6,94 67,0 ± 6,02 78,2 ± 8,02 77,0 84,0 80,3 0.915
Resnet101 v2 FS (GL) 80,0 ± 6,7 82,0 ± 1,79 76,7 ± 9,23 72,00 92,0 80,3 0.801

Inception Resnet v2 FS (GL) 79,0 ± 7,67 88,0 ± 9,60 83,2 ± 7,44 83,0 77,0 79,8 0.888
Densenet201 FS (GL) 72,0 ± 7,8 84,0 ± 1,36 88,0 ± 7,1 69,0 91,0 78,4 0.865

VGG19 FS (GL) 86,0±1,41 61,0±14,4 71,3±8,44 78,0 79,0 78,4 0.883
Xception FS (GL) 82,0 ± 5,02 69,0 ± 5,82 75,3 ± 5,28 70,0 80,0 74,6 0.835

Inception v3 FS (RGB) 83,0 ± 4,02 78,0 ± 10,0 80,4 ± 7,42 71,0 78,0 74,3 0.816
Resnet101 v2 FS (RGB) 72,0 ± 10,1 65,0 ± 14,0 69,6 ± 11,0 71,00 74,0 72,4 0.784

VGG19 FS (RGB) 89,0±4,80 80,0±9,80 84,3±5,80 87,0 61,0 71,8 0.833
Xception FS (RGB) 76,0 ± 5,92 69,0 ± 12,0 69,4 ± 8,80 71,0 69,0 69,9 0.781

9.2 Impacto do uso de classificadores automatizados
na prática dos patologistas

As métricas utilizadas para avaliar o desempenho do classificador automatizado e dos
patologistas foram: acurácia, precisão, revocação, F1-score e área sob a curva (Area Under
the Curve - AUC) [123, 122]. Além dessas métricas, também foi calculada a confiabilidade
do acordo entre os três patologistas utilizando o índice Fleiss’ Kappa [127], com o objetivo
de determinar se a inclusão dos resultados do classificador automatizado alterou o nível
de concordância entre os observadores.

A Tabela 9.2 apresenta os valores médios alcançados pelos modelos de CNN. O modelo
que obteve o maior F1-score na validação cruzada com 10 subconjuntos foi o Inception
ResNet101 v2 com transferência de aprendizado, apresentando média de 94,7% de acurá-
cia, 95,5% de precisão, 92,3% de revocação e 93,7% de F1-score.

As curvas ROC [123] foram utilizadas para ilustrar o desempenho dos classificadores
em função da variação do limiar de decisão. Um desempenho ideal seria caracterizado
por uma taxa de verdadeiros positivos igual a 1 e uma taxa de falsos positivos igual a 0.
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Figura 9.1: Curvas ROC: Modelos treinados do zero em RGB.

Figura 9.2: Curvas ROC: Modelos treinados do zero em nível de cinza.
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Figura 9.3: Curvas ROC: Modelos treinados com transfer learning em RGB.

Figura 9.4: Curvas ROC: Top-4 melhores modelos.
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Tabela 9.2: Resultados da validação cruzada k-fold para os modelos de CNN. Modelos
com a sigla TL (Transfer Learning) foram pré-treinados; modelos com a sigla FS (From
Scratch) foram treinados com inicialização aleatória de pesos.

Modelo Acc.(%) Prec.(%) Rev.(%) F1(%)
Inception ResNet101 v2 TL 94,7±2,6 95,5±3,6 92,3±4,3 93,7±2,6

DenseNet201 TL 91,3±3,5 92,5±3,8 90,2±7,1 91,1±3,9
EfficientNet B3 TL 91,1±2,4 92,8±3,4 89,0±7,1 90,6±2,8
DenseNet201 FS 88,4±2,9 90,6±5,9 86,0±5,8 88,0±3,1

Inception ResNet101 v2 FS 86,6±3,9 89,3±6,0 82,2±9,7 85,1±4,9
EfficientNet B3 FS 83,3±3,1 84,1±5,2 82,2±7,1 82,8±3,4

A Figura 9.5 apresenta as curvas ROC geradas por cada modelo ao classificar as imagens
do conjunto D2. A comparação entre modelos treinados from scratch e com aprendizado
por transferência evidencia que os modelos pré-treinados apresentaram maior AUC em
todos os casos. Entre eles, o Inception ResNet v2 destacou-se, alcançando uma AUC de
0,95 (linha pontilhada verde).

O modelo Inception ResNet101 v2 pré-treinado apresentou a melhor capacidade dis-
criminativa no conjunto de dados D2, com uma área sob a curva (AUC) de 0,95, em com-
paração com 0,90 obtido pela DenseNet201 pré-treinada. Todos os modelos pré-treinados
superaram suas respectivas versões treinadas from scratch, evidenciando a vantagem do
aprendizado por transferência para esta tarefa.

O desempenho dos patologistas também melhorou significativamente ao utilizar os re-
sultados do classificador automatizado como suporte. A Tabela 9.3 mostra que a acurácia
média dos patologistas aumentou de 88,3±10,7% para 95,0±2,6% com o auxílio da CNN.

Tabela 9.3: Desempenho de três patologistas com e sem o auxílio de um classificador
automatizado na classificação de imagens do conjunto D2.

Classificador Acc.(%) Prec.(%) Rev.(%) F1(%) Fleiss’ Kappa
Patologista A 94,0 94,0 94,1 94,0
Patologista B 91,0 87,0 96,0 91,0 0,59
Patologista C 74,0 80,0 64,0 71,1

Média dos patologistas 88,3±10,7 87,0±7,0 84,6±17,9 91,4±12,5 -
CNN 91,0 86,0 95,0 90,9 -

Patologista A+CNN 96,0 100,0 92,5 96,1
Patologista B+CNN 97,0 94,0 100,0 96,9 0,83
Patologista C+CNN 92,0 86,0 97,7 91,4

Média Patologista+CNN 95,0±2,6 93,3±7,0 96,7±3,7 96,1±2,9 -

A análise dos resultados gerais revelou que o uso do classificador automatizado impac-
tou positivamente tanto a precisão quanto a revocação dos patologistas. Sem o suporte do
modelo, a precisão média dos especialistas foi de 87,0% e a revocação de 84,6%, indicando
uma tendência de maior variabilidade na identificação correta das imagens positivas. Com

62



Figura 9.5: Área sob a curva (AUC) dos modelos ao classificar imagens no conjunto de
dados D2.

a utilização do classificador, a precisão média aumentou para 93,3% e a revocação para
96,7%, demonstrando um aprimoramento significativo na capacidade de detecção das
imagens com lesões podocitárias. Esses ganhos sugerem que o classificador automatizado
não apenas auxiliou na redução de erros falsos positivos e falsos negativos, mas também
conferiu maior estabilidade e consistência ao processo de decisão diagnóstica, o que é
fundamental para elevar a qualidade da prática médica e apoiar a formação de novos
especialistas.

Em termos de técnica de coloração, os resultados de acurácia observaram-se da seguinte
forma:

• Para imagens coradas com PAS, a acurácia aumentou de 83,7±9% para 94,5±2%;

• Para imagens coradas com HE, a acurácia aumentou de 80,0±17% para 95,5±5%;

• Para imagens coradas com tricrômico, a acurácia manteve-se estável em 91,6±7%;
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• Para imagens coradas com PAMS, houve uma leve redução, de 96,0±6% para
94,6±4%, ainda dentro do intervalo de variação esperado.

Além disso, o grau de concordância (Fleiss’ Kappa) entre os patologistas aumentou de
0,59 (concordância moderada) para 0,83 (concordância substancial) após a introdução do
classificador automatizado, indicando uma melhoria de aproximadamente 40%.

Este resultado é particularmente relevante, considerando que os patologistas partici-
pantes pertenciam a diferentes centros, o que historicamente tende a reduzir a concordân-
cia [180, 181, 182]. A utilização de patologistas de centros distintos confere maior rigor à
avaliação da eficácia do classificador automatizado como ferramenta de apoio diagnóstico.

A Figura 9.6 apresenta diagramas de Venn que ilustram a distribuição dos erros co-
metidos pelos patologistas nas análises com e sem o auxílio do classificador. Observa-se
que, após a introdução do suporte automatizado, houve uma clara redistribuição dos
erros entre os especialistas, indicando uma mudança na forma como as imagens foram
analisadas.

Figura 9.6: Diagramas de Venn ilustrando a distribuição dos erros de classificação come-
tidos pelos patologistas com e sem auxílio do classificador automatizado..

Os resultados obtidos evidenciam que a introdução do classificador automatizado não
apenas elevou a acurácia individual dos patologistas, mas também aumentou significati-
vamente a concordância entre os especialistas de diferentes instituições. Esses achados
reforçam o potencial dos modelos de inteligência artificial como ferramentas de apoio
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à prática diagnóstica, proporcionando decisões mais consistentes, seguras e precisas na
análise de imagens de glomérulos renais com suspeita de podocitopatia.

9.3 Segmentação de lesões podocitárias
Considerando todas as circunstâncias desafiadoras de um conjunto de dados do mundo
real — caracterizado por alta diversidade morfológica, diferentes colorações e desbalancea-
mento entre classes —, mesmo com a adoção de estratégias para mitigar essas dificuldades,
a expectativa para esta etapa do estudo era que os modelos apresentassem desempenho
inferior ao relatado em trabalhos relacionados baseados em conjuntos de dados bem con-
trolados [28, 29, 30, 31, 32].

Todos os modelos de referência treinados no espaço de cores RGB superaram seus
correspondentes treinados em HED. Portanto, considerando apenas os resultados dos
1260 modelos de referência (Seção 8.0.1) treinados em RGB, o melhor desempenho geral
foi alcançado pela arquitetura Unet++ com o codificador Inception v4, inicializada com
pesos pré-treinados no ImageNet. Este modelo obteve, no conjunto de teste, um F1-score
geral de 30,31%, com 39,53% na classe "lesão", 15,88% na classe "hiperplasia"e falhou em
segmentar as classes "hipertrofia" e "degeneração". Esse comportamento de dificuldade
em identificar todas as classes foi semelhante ao observado na maioria dos modelos de
referência avaliados.

Mesmo entre modelos capazes de gerar predições para todas as classes, o desempenho
permaneceu baixo. Por exemplo, o DeepLab v3+ com codificador EfficientNet B0 pré-
treinado no ImageNet e treinado em RGB alcançou um F1-score geral de 29,97%, com
31,94% para "sem lesão", 5,70% para "hipertrofia", 3,62% para "degeneração" e 14,39%
para "hiperplasia".

De maneira geral, ficou evidente que as estratégias de aumento de dados (data aug-
mentation) e ponderação de classes no cálculo da função de perda (loss weighting) não
foram suficientes para superar os desafios impostos por um conjunto de dados tão diverso.

Para uma avaliação mais detalhada, foi realizada uma análise comparativa entre os 10%
melhores e 10% piores modelos (ver Figura 9.7). Entre os melhores modelos, observou-se
maior incidência das arquiteturas U-Net e U-Net++, presentes em 36% dos casos, indi-
cando a robustez dessas arquiteturas para imagens histológicas. Entre os codificadores
mais frequentes nesse grupo destacaram-se o Timm RegNetX, Timm RegNetY, Efficient-
Net B0 e EfficientNet B2, aparecendo juntos em 66,66% dos modelos.

No grupo dos 10% piores modelos, apenas quatro arquiteturas se fizeram presentes:
LinkNet, FPN, PAN e PSPNet. Os codificadores com maior incidência nesse grupo foram
EfficientNet B0 e EfficientNet B1, responsáveis por 58,8% dos modelos. Esses codifica-
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(A) (B)

(C) (D)

Figura 9.7: Distribuição das arquiteturas de rede (A, B) e codificadores (C, D) entre os
10% melhores e piores modelos de referência..

dores possuem menor custo computacional, o que pode ter impactado negativamente o
desempenho.

Outro ponto relevante é que todos os melhores modelos de referência foram obtidos
via fine-tuning de pesos pré-treinados do ImageNet, enquanto, entre os piores baselines,
40% dos modelos foram treinados from scratch (com inicialização aleatória de pesos).

9.3.1 Impacto da Solução Proposta

Para a avaliação da solução proposta (Seção 8.0.2), foram retreinados 30 modelos de
referência: os 10 melhores, os 10 piores e 10 selecionados aleatoriamente. Após o retreina-
mento, observou-se uma melhoria substancial: 29 dos 30 modelos apresentaram avanços
em termos de Intersection over Union (IoU) [120] e F1-score [119] geral em todas as
classes. Mesmo o modelo inicialmente de pior desempenho foi capaz de prever classes
anteriormente não identificáveis.

A Figura 9.8 apresenta um boxplot comparativo das melhorias de F1-score obtidas
com a aplicação das diferentes estratégias de fusão propostas.
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Figura 9.8: Boxplot das diferenças no F1-score entre os modelos de referência (Baselines)
e a solução proposta utilizando diferentes estratégias de fusão.

O modelo com melhor desempenho após o retreinamento foi o FPN com codificador
Timm-RegNetY 120, que, utilizando a operação de fusão média, elevou seu F1-score de
27,17% para 51,88%. Na classe "sem lesão", a acurácia passou de 40,21% para 67,03%; na
classe "hiperplasia", de 15,13% para 64,94%; enquanto nas classes "hipertrofia"e "degene-
ração"— onde antes não havia predições — atingiu 36,84% e 26,98%, respectivamente.

Entre os 30 modelos reavaliados, observou-se variação nas operações de fusão que
proporcionaram os melhores resultados. Como ilustrado na Figura 9.8, a operação de
diferença absoluta obteve os melhores resultados gerais e nas classes "hipertrofia"e "de-
generação". Para a classe "hiperplasia", as operações de mínimo e média se destacaram,
enquanto para "lesão"a operação de máximo apresentou melhor desempenho.

As Tabelas 9.4, 9.5 e 9.6 resumem os valores de IoU e F1-score obtidos para os grupos
Top-10, Random-10 e Bottom-10.

De forma geral, ao comparar o desempenho dos modelos de referência com o desem-
penho após a aplicação da solução proposta, observou-se um aumento médio no IoU de
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18,25% para 34,20% e no F1-score de 21,60% para 39,00%. Esses resultados confirmam a
efetividade da abordagem multicanal baseada em fusão de características no contexto de
segmentação multiclasse de lesões podocitárias.

A Figura 9.9 exemplifica os resultados visuais das predições realizadas pelo melhor
modelo de referência — Unet++ com Timm-RegNetX — retreinado utilizando a solução
FFN proposta. Na amostra a, observa-se uma segmentação parcial da classe hiperplasia,
com IoU de 0,56, além da ausência de predições para as classes degeneração e hipertrofia,
que estavam presentes na máscara de rótulos fornecida pelos patologistas. Na amostra
b, destaca-se um excelente desempenho na predição da classe hipertrofia (IoU de 0,81) e
uma predição moderada de podócitos sem lesão (IoU de 0,41), sem predição para a classe
de podócitos com hiperplasia. Por fim, a amostra c apresenta um IoU de 0,60 na predição
da classe podócitos sem lesão.

Figura 9.9: Predições do melhor modelo obtido com a adoção da solução proposta
(Unet++ com Timm-RegNetX) em três amostras do conjunto de teste..
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Tabela 9.4: IoU e F1-score do grupo Top-10 (%)
Modelo Fusão Geral Sem lesão Hipertrofia Degeneração Hiperplasia

IoU F-sc. IoU F-sc. IoU F-sc. IoU F-sc. IoU F-sc.
Add 5,27 5,39 1,90 3,72 5,18 9,64 6,92 12,00 11,72 20,57

Mean 21,11 22,36 28,73 44,59 19,16 31,18 1,47 2,80 24,65 38,88
Unet++ timm-regnetx320 Min 7,41 7,77 10,29 18,62 4,54 8,46 0,77 1,49 4,59 8,48

Max 14,38 15,03 19,62 32,72 14,67 24,36 1,30 2,52 7,30 13,24
AbsDif 22,85 24,36 24,34 38,96 21,87 34,74 4,42 7,79 25,97 39,42

Baseline 23,62 27,06 26,00 39,45 0,00 0,00 0,00 0,00 0,00 0,00
Add 24,21 27,37 25,70 40,73 7,64 13,90 11,07 19,45 30,95 46,32

Mean 44,54 51,88 50,69 67,03 23,42 36,84 16,18 26,98 48,71 64,94
FPN timm-regnety120 Min 34,42 37,79 35,79 52,44 18,18 28,38 8,44 14,19 44,01 59,03

Max 43,75 51,34 49,19 65,65 23,12 36,52 14,33 23,88 49,84 66,06
AbsDif 34,70 41,65 37,50 54,42 22,48 35,84 16,27 27,35 41,00 57,53

Baseline 23,60 27,17 26,29 40,21 0,00 0,00 0,00 0,00 13,01 15,13
Add 6,76 6,89 3,68 7,10 5,24 9,68 2,65 5,07 15,73 26,42

Mean 9,30 9,70 12,13 21,59 5,02 9,30 3,84 7,25 7,28 13,14
Unet++ densenet201 Min 17,30 17,70 22,99 37,21 11,46 18,98 4,28 8,02 9,49 16,42

Max 16,54 17,51 19,57 32,62 18,50 8,50 4,68 8,61 15,98 26,65
AbsDif 26,29 28,73 24,63 39,45 20,31 31,89 3,66 6,76 38,30 53,86

Baseline 23,31 27,93 16,12 26,34 3,66 5,23 3,00 3,62 9,00 12,00
Add 13,91 14,58 9,28 16,91 16,25 26,55 5,11 9,04 25,62 38,96

Mean 25,21 27,27 21,93 35,85 17,39 27,50 9,06 15,80 39,78 55,24
PAN timm-regnety120 Min 18,51 19,35 15,45 26,44 17,51 27,46 6,40 10,70 28,88 42,94

Max 32,31 36,13 33,91 50,43 18,40 29,66 9,79 16,97 41,26 56,65
AbsDif 8,33 8,71 6,72 12,51 9,12 15,98 3,46 6,31 12,93 22,53

Baseline 25,93 30,31 24,86 38,52 0,00 0,00 0,00 0,00 12,78 17,24
Add 5,01 5,08 6,36 11,91 4,42 8,31 1,10 2,15 3,72 7,10

Mean 28,49 30,92 36,31 52,91 10,71 18,74 4,04 7,47 24,65 38,88
Unet++ inceptionv4 Min 16,69 17,84 18,34 30,66 13,61 23,10 3,42 6,43 18,10 29,61

Max 3,11 3,17 1,77 3,47 13,39 22,41 2,18 4,41 2,96 5,70
AbsDif 9,05 9,40 5,53 10,47 14,18 23,47 4,60 7,50 16,31 27,04

Baseline 26,70 30,31 25,94 39,53 0,00 0,00 0,00 0,00 11,78 15,78
Add 41,21 48,11 45,96 62,77 21,13 32,88 11,01 18,92 48,84 64,77

Mean 42,86 49,71 47,48 64,21 20,98 32,73 12,49 21,14 51,45 67,16
FPN efficientnet-b2 Min 38,36 43,19 41,60 58,28 19,52 30,31 10,80 18,42 46,13 61,60

Max 44,30 52,40 50,68 67,02 20,35 32,09 13,09 22,11 49,96 64,50
AbsDif 43,84 52,15 51,94 68,16 19,64 31,22 13,99 23,93 46,37 62,40

Baseline 25,68 30,33 21,37 33,91 5,22 7,51 0,00 0,00 10,92 15,06
Add 10,56 11,00 10,88 19,55 16,97 27,68 3,73 7,04 10,27 18,39

Mean 8,50 8,83 6,54 12,25 5,13 9,61 2,52 4,86 16,08 27,27
Unet inception v4 Min 21,80 23,17 17,32 29,27 17,22 27,69 5,03 8,68 36,70 52,51

Max 11,25 11,56 11,42 20,30 15,39 25,54 3,40 5,70 11,40 20,33
AbsDif 23,80 25,84 18,78 31,52 21,39 34,05 9,73 16,77 38,98 55,08

Baseline 24,36 27,97 29,56 43,95 0,00 0,00 0,00 0,00 0,00 0,00
Add 0,24 0,24 0,00 0,00 0,25 0,49 0,41 0,81 0,70 0,14

Mean 22,98 23,13 1,24 2,44 7,50 12,55 0,80 1,50 3,90 7,30
Unet++ densenet169 Min 6,98 7,80 5,00 9,00 4,42 7,83 2,13 4,00 13,93 23,70

Max 24,01 25,79 23,11 37,20 16,11 26,70 5,73 10,20 34,19 49,67
AbsDif 33,10 33,73 37,32 53,99 19,83 31,90 7,20 12,63 36,86 51,69

Baseline 24,72 29,20 19,69 31,57 4,80 6,20 0,00 0,00 9,99 13,81
Add 6,15 6,24 4,73 8,95 3,10 5,89 0,32 0,64 12,34 21,21

Mean 20,67 21,90 22,19 36,17 15,33 25,96 0,50 0,98 25,96 40,39
Unet++ vgg19 Min 21,80 23,17 17,32 29,27 17,22 27,69 5,03 8,68 36,70 52,51

Max 11,25 11,56 11,42 20,30 15,39 25,54 3,40 5,70 11,40 20,33
AbsDif 23,80 25,84 18,78 31,52 21,39 34,05 9,73 16,77 38,98 55,08

Baseline 24,36 27,97 29,56 43,95 0,00 0,00 0,00 0,00 0,00 0,00
Add 42,17 48,22 46,87 63,37 20,62 33,19 10,42 18,01 49,93 65,98

Mean 41,73 47,78 45,30 62,25 23,35 40,60 8,92 15,67 49,32 65,49
Manet mitb3 Min 32,25 37,78 33,57 49,95 24,83 38,77 12,96 22,35 38,34 54,91

Max 32,66 37,57 32,33 48,70 17,25 28,60 13,60 22,94 43,76 60,04
AbsDif 38,40 43,81 36,33 53,01 26,44 40,27 12,13 20,78 54,66 70,03

Baseline 24,83 28,95 22,39 35,41 0,00 0,00 0,00 0,00 10,00 13,67
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Tabela 9.5: IoU e F1-score do grupo Random-10 (%)
Modelo Fusão Geral Sem lesão Hipertrofia Degeneração Hiperplasia

IoU F-sc. IoU F-sc. IoU F-sc. IoU F-sc. IoU F-sc.
Add 26,80 29,76 32,11 48,45 9,03 14,85 5,54 9,62 27,38 40,87

Mean 30,36 34,47 35,34 51,93 12,50 20,25 8,55 14,47 31,86 46,03
Unet mitb3 Min 19,43 20,59 17,62 29,85 9,44 15,52 4,60 8,12 30,75 45,54

Max 21,43 23,09 22,32 36,37 10,72 17,05 6,75 11,78 27,38 40,77
AbsDif 19,71 21,82 21,30 35,01 11,98 19,81 6,29 11,30 23,95 36,54

Baseline 20,33 23,49 14,85 24,62 0,00 0,00 0,00 0,00 0,00 0,00
Add 46,60 53,95 49,46 65,98 23,90 36,43 12,19 20,59 57,79 72,39

Mean 44,13 50,49 47,61 64,16 25,99 40,25 11,33 19,33 53,09 62,39
Unet++ efficientnet b4 Min 35,55 39,05 34,90 51,39 22,70 35,60 10,26 17,56 49,21 64,92

Max 41,81 47,80 42,57 59,47 25,23 38,65 14,45 24,44 54,30 69,57
AbsDif 47,34 55,12 52,43 68,63 26,66 40,80 14,11 23,90 55,03 70,00

Baseline 24,20 27,84 29,21 43,53 0,00 0,00 0,00 0,00 0,00 0,00
Add 0,21 0,21 0,70 0,15 0,10 0,30 0,17 0,34 0,56 1,10

Mean 8,37 8,60 6,30 11,83 6,11 11,09 1,50 2,86 15,77 26,45
PSPnet timm-regnety 080 Min 12,53 13,19 8,77 16,00 11,00 18,28 2,93 4,84 23,54 36,19

Max 1,81 1,91 1,80 3,53 3,72 7,00 0,43 0,84 2,15 4,17
AbsDif 11,73 12,66 13,42 21,89 8,93 15,36 1,00 2,00 13,44 23,13

Baseline 22,60 25,51 13,56 23,48 2,41 3,28 0,00 0,00 4,99 6,58
Add 33,51 40,36 42,45 59,32 12,24 20,95 13,41 23,15 29,43 43,60

Mean 31,31 37,28 39,39 56,13 13,39 22,29 12,26 21,13 25,94 39,39
MAnet vgg19 Min 38,40 45,16 48,18 64,63 12,69 20,75 6,43 11,83 33,79 48,64

Max 38,85 46,83 49,54 66,12 12,31 21,12 12,35 21,29 35,15 50,32
AbsDif 40,88 50,41 51,88 67,31 10,36 17,98 11,23 19,63 38,05 52,72

Baseline 20,15 22,43 10,22 17,15 0,00 0,00 0,00 0,00 0,00 0,00
Add 0,49 0,49 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

Mean 41,27 48,26 45,12 61,89 24,65 36,29 11,90 20,27 47,20 62,38
Manet mitb5 Min 9,74 10,00 7,58 14,00 11,27 19,62 4,27 8,08 15,20 25,80

Max 30,35 33,90 27,76 43,24 24,41 37,85 14,87 25,16 41,99 58,60
AbsDif 30,37 34,39 35,84 52,50 19,91 32,31 9,30 16,61 29,67 45,11

Baseline 24,27 27,86 29,13 43,38 0,00 0,00 0,00 0,00 0,00 0,00
Add 42,76 48,87 46,23 62,94 23,51 36,11 12,73 21,79 52,36 67,76

Mean 41,64 48,28 42,95 59,91 24,22 37,47 12,03 20,44 54,53 69,61
Manet mitb4 Min 40,48 45,20 43,17 60,00 23,25 35,72 13,07 22,30 50,25 65,87

Max 41,91 47,57 45,52 62,29 20,81 33,60 9,68 16,99 50,50 66,00
AbsDif 37,05 42,02 36,67 53,19 20,65 33,27 12,97 21,90 50,38 66,06

Baseline 24,59 28,69 21,74 34,36 0,00 0,00 0,00 0,00 9,71 13,57
Add 34,39 38,34 32,22 48,21 24,12 37,34 10,00 17,13 49,41 65,24

Mean 28,79 31,70 23,59 37,84 21,64 34,54 10,46 18,09 45,23 61,17
Linknet timm-regnety 120 Min 43,58 50,04 44,52 61,53 26,60 40,28 14,32 23,17 55,46 70,75

Max 31,59 35,93 38,25 55,09 15,38 25,88 8,07 14,35 27,77 42,41
AbsDif 37,14 42,47 38,84 55,80 21,53 34,40 12,91 21,96 48,01 63,92

Baseline 24,83 28,95 22,39 35,41 0,00 0,00 0,00 0,00 9,99 13,67
Add 41,97 48,30 49,46 65,91 18,00 28,19 9,17 15,56 41,26 56,66

Mean 31,69 34,59 36,59 53,42 18,11 28,49 7,13 12,03 31,49 45,54
Linknet efficientnet b1 Min 39,39 45,07 46,73 63,53 20,55 32,82 9,32 15,90 38,62 53,82

Max 34,67 38,12 38,65 55,61 21,83 34,25 6,94 11,94 38,71 53,44
AbsDif 10,01 10,40 9,00 16,63 8,97 16,21 2,52 4,85 15,77 26,60

Baseline 23,78 27,79 22,68 35,17 0,00 0,00 5,22 8,53 0,00 0,00
Add 19,76 22,06 18,22 30,65 15,61 24,89 7,11 12,84 29,33 43,52

Mean 29,74 32,83 32,37 48,67 15,38 23,92 6,18 10,45 36,46 51,46
Unet timmregnety 080 Min 31,28 36,22 39,11 55,63 8,13 12,84 5,85 9,90 28,57 41,86

Max 35,27 39,87 46,38 63,22 4,35 7,88 7,72 13,52 29,52 43,30
AbsDif 25,92 28,56 27,33 42,77 14,21 22,93 7,92 13,83 34,54 49,22

Baseline 19,23 22,13 8,83 15,75 0,00 0,00 0,00 0,00 1,87 2,85
Add 3.10 3.13 0.70 1.38 0.77 1.44 0.34 0.65 9.81 16.63

Mean 0.90 0.90 0.20 0.40 0.10 0.20 0.28 0.56 2.97 5.60
DeepLab v3 resnet50 Min 6.50 6.61 0.57 1.13 4.18 7.39 0.96 1.85 21.41 33.04

Max 1.57 1.57 0.24 0.48 1.34 2.57 1.38 2.59 4.75 8.77
AbsDif 22.98 24.56 26.60 41.84 10.94 17.41 5.19 9.24 25.00 39.21

Baseline 19.88 22.16 9.65 16.25 0.00 0.00 0.00 0.00 0.00 0.00
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Tabela 9.6: IoU e F1-score do grupo Bottom-10 (%)
Modelo Fusão Geral Sem lesão Hipertrofia Degeneração Hiperplasia

IoU F-sc. IoU F-sc. IoU F-sc. IoU F-sc. IoU F-sc.
Add 17,18 18,01 16,09 27,51 13,86 22,46 6,73 11,99 23,62 36,80

Mean 22,12 23,52 22,77 36,93 18,94 30,21 5,36 9,37 27,18 40,93
PAN timm-regnetx 120 Min 10,48 10,73 8,60 15,70 11,26 18,56 3,72 6,59 16,97 27,87

Max 7,55 7,70 7,86 14,53 5,28 9,31 0,80 1,56 10,25 17,88
AbsDif 17,35 18,81 20,28 33,56 5,27 9,61 7,30 13,32 18,71 30,89

Baseline 3,92 6,29 15,14 24,91 5,00 10,00 0,00 0,00 3,95 5,51
Add 28,68 32,06 37,71 54,56 13,09 21,18 8,00 13,96 20,28 31,25

Mean 28,10 31,76 35,97 52,75 9,35 15,60 6,74 11,85 24,37 37,92
FPN resnet50 Min 26,12 29,35 26,74 41,97 14,68 23,03 13,11 22,54 32,56 47,08

Max 30,04 33,69 39,24 56,12 10,50 17,67 7,00 12,26 22,75 35,32
AbsDif 29,44 34,38 36,82 53,52 11,75 20,17 8,58 15,34 27,04 41,60

Baseline 2,38 4,20 0,00 0,00 10,40 17,50 0,00 0,00 10,91 3,56
Add 11,80 13,47 11,38 20,09 4,50 7,94 5,68 10,34 15,98 26,09

Mean 15,35 17,37 19,74 32,45 4,93 8,43 1,76 3,29 13,76 20,58
PSPNet efficientnet b4 Min 35,43 42,63 44,83 61,28 16,18 25,34 7,66 13,39 32,17 46,16

Max 31,90 37,93 41,91 58,53 6,08 10,67 6,36 11,46 25,76 38,80
AbsDif 27,58 33,52 37,15 53,60 9,87 16,20 7,45 13,30 18,74 29,24

Baseline 2,36 4,10 0,00 0,00 9,88 16,95 0,00 0,00 1,91 3,56
Add 32,50 36,80 33,77 50,35 17,09 26,87 8,44 14,66 42,82 58,36

Mean 34,46 38,89 36,55 53,30 17,67 27,92 8,34 14,17 44,74 59,86
PAN efficientnet b4 Min 26,10 28,15 29,07 44,61 13,69 21,46 4,73 7,99 29,62 43,00

Min 29,30 33,46 32,35 48,73 14,23 23,06 5,86 10,64 35,91 50,93
AbsDif 27,48 31,69 31,47 47,66 14,26 22,28 7,63 13,36 30,73 45,05

Baseline 1,76 3,20 6,48 11,67 0,00 0,00 2,40 4,50 2,10 3,80
Add 20,57 22,73 37,71 54,56 13,09 21,18 8,00 13,96 20,28 31,25

Mean 21,56 23,75 35,97 52,75 9,35 15,60 6,76 11,85 24,37 37,92
FPN timm-regnetx 080 Min 27,94 31,93 26,74 41,97 14,68 23,03 13,11 22,54 32,56 47,08

Max 22,08 24,63 39,24 56,12 10,50 17,67 7,00 12,26 22,75 35,32
AbsDif 28,92 34,70 36,82 53,52 11,75 20,17 8,58 15,34 27,04 41,60

Baseline 20,70 24,40 16,46 27,17 0,00 0,00 0,00 0,00 0,00 0,00
Add 31,13 35,86 38,53 55,25 14,08 22,34 6,07 10,93 29,34 43,84

Mean 19,50 21,38 22,70 36,83 8,32 14,09 3,72 6,68 22,06 33,97
PAN efficientnet b2 Min 34,16 40,41 43,04 59,93 13,21 21,40 10,00 17,38 29,76 44,17

Max 33,07 38,08 40,30 57,05 15,48 24,55 10,97 18,69 29,43 43,53
AbsDif 39,87 47,12 53,16 69,14 10,16 16,73 3,99 6,88 28,20 42,91

Baseline 2,28 4,10 8,88 15,90 0,00 0,00 0,26 0,51 2,33 4,70
Add 21,33 23,40 27,74 43,31 7,98 13,73 3,63 6,46 16,60 26,85

Mean 18,83 20,45 21,74 35,57 6,14 10,70 3,66 6,49 21,53 34,12
FPN timm-regnetx 080 Min 13,22 13,89 14,56 25,35 3,87 6,99 1,40 2,84 17,27 27,82

Max 26,91 30,58 35,14 51,85 8,40 14,04 5,67 10,07 20,98 32,95
AbsDif 21,76 26,46 25,40 40,43 6,30 11,43 3,23 6,00 25,38 39,32

Baseline 1,86 3,35 4,30 8,00 0,00 0,00 1,32 2,37 3,69 6,27
Add 26,49 30,17 33,12 49,59 12,61 19,26 4,00 7,42 23,96 36,90

Mean 24,66 26,53 23,19 37,35 11,82 18,61 4,24 7,32 37,61 52,59
Linknet efficientnet b2 Min 43,71 51,36 52,93 68,78 18,29 28,94 13,60 23,09 46,24 61,29

Max 11,28 12,32 13,33 23,25 11,04 16,75 2,90 5,50 11,11 19,20
AbsDif 25,35 28,64 27,30 42,79 15,32 24,20 8,88 15,44 32,31 46,23

Baseline 17,67 22,15 8,20 14,67 2,40 3,77 1,24 1,92 5,57 7,82
Add 33,46 38,58 39,64 56,46 15,69 25,28 7,90 13,67 33,56 47,61

Mean 30,22 34,59 35,63 52,30 13,94 22,59 9,60 15,97 29,19 43,14
FPN efficientnet b5 Min 34,46 39,57 42,99 59,99 15,60 24,64 9,06 15,53 31,44 45,27

Max 35,15 40,94 42,30 58,93 16,45 26,25 9,33 16,02 34,11 48,68
AbsDif 26,15 32,50 30,60 46,74 9,04 16,31 8,96 16,16 30,00 44,88

Baseline 12,48 14,41 8,67 15,66 0,29 0,57 0,00 0,00 3,42 5,84
Add 27,68 30,49 33,76 50,31 14,17 23,74 2,40 4,44 27,77 41,98

Mean 34,06 38,42 40,50 57,45 14,05 22,86 7,14 12,53 35,91 51,78
Linknet efficientnet b5 Min 37,35 42,66 43,15 60,00 16,55 26,63 6,86 11,98 42,13 57,53

Max 36,46 42,43 41,24 58,12 16,40 26,47 8,89 15,45 43,12 58,83
AbsDif 28,34 31,90 34,26 50,88 11,42 19,22 5,21 9,15 28,48 42,94

Baseline 10,29 15,75 6,38 11,79 0,44 0,87 1,80 3,25 5,20 8,30
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Capítulo 10

Considerações Finais

Esta tese teve como objetivo ampliar a fronteira da Patologia Computacional por meio
do desenvolvimento de técnicas computacionais para auxiliar na análise de imagens de
glomérulos renais. Para isso, foram propostos métodos inovadores para a identificação de
podocitopatia e segmentação de lesões podocitárias, bem como a análise do impacto do
suporte computacional no desempenho de patologistas.

A seguir, detalhamos o atendimento a cada objetivo específico proposto na Seção 1.4:

• Fornecer novos conjuntos de dados sobre lesões podocitárias, simulando
cenários de multicoloração e desbalanceamento. Este objetivo foi atingido
com a criação e disponibilização, para fins acadêmicos, do conjunto de dados D3,
composto por 1.401 imagens de glomérulos renais, anotadas em quatro classes dis-
tintas: controle normal, hiperplasia, hipertrofia e degeneração. A elaboração desse
conjunto de dados, caracterizado por multicoloração e desbalanceamento entre clas-
ses, preenche uma lacuna crítica na área de patologia computacional, oferecendo
à comunidade científica um recurso inédito e mais representativo da variabilidade
observada em cenários clínicos reais.

• Aperfeiçoar o desempenho de modelos de classificação binária para iden-
tificação de podocitopatia. Para a tarefa de classificação da presença ou ausência
de podocitopatia, foi desenvolvido o classificador PodNet. Este modelo alcançou os
melhores resultados de F1-score no conjunto de validação final, superando arqui-
teturas tradicionais como ResNet101v2. A solução proposta demonstrou robustez
mesmo em cenários com dados limitados e multicoloração.

• Estudar o impacto do uso de classificadores automatizados na prática
dos patologistas. A avaliação da interação entre patologistas e o classificador
automatizado mostrou que o uso do suporte computacional aumentou a acurácia
dos especialistas de 88,3% para 95,0%, e elevou o índice de concordância (Fleiss’
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Kappa) de 0,59 para 0,83. Esses resultados indicam que o uso de inteligência artificial
pode reduzir variabilidade entre observadores e aprimorar a prática diagnóstica.

• Propor modificações de topologia e arquitetura para aprimorar o de-
sempenho de modelos de segmentação semântica. Foi proposta uma solução
baseada em Feature Fusion Network (FFN), uma estratégia de fusão de característi-
cas a partir dos espaços de cor RGB e HED. A nova abordagem gerou ganhos médios
de 9,13% em F1-score e de 8,56% em IoU em relação aos modelos tradicionais de
segmentação. A estratégia de fusão baseada na diferença absoluta mostrou-se, em
geral, a mais eficaz, embora variações como média e mínimo tenham se destacado
em classes específicas.

Outro ponto importante é que este trabalho abordou um problema ainda inexplorado
na literatura: a segmentação multiclasse de lesões podocitárias em glomérulos renais,
em um cenário realista de multicoloração e desbalanceamento de classes. Assim, não
foi possível realizar comparações diretas com trabalhos anteriores, que lidam majorita-
riamente com conjuntos controlados ou restritos a outras patologias glomerulares. Esse
fator ressalta o caráter pioneiro e desafiador deste estudo.

Além das contribuições específicas, esta pesquisa também promove avanços para a
compreensão da morfologia dos podócitos e sua relação com doenças renais como a nefro-
patia diabética e glomerulopatias diversas. A identificação precisa dos podócitos e suas
alterações é um passo essencial para o diagnóstico precoce e o manejo clínico mais eficaz.

10.1 Perspectivas Futuras
Os resultados promissores desta tese abrem diversas frentes de continuidade:

• Explorar o uso de outros espaços de cor além do RGB e HED para enriquecer a
extração de características relevantes nas imagens histológicas.

• Investigar métodos de fusão adaptativos que escolham dinamicamente a melhor
operação de fusão de acordo com o conteúdo da imagem.

• Ampliar o conjunto de dados com novas amostras, incluindo outras colorações e
fontes diversas, visando aumentar a robustez dos modelos.

• Aplicar arquiteturas mais recentes, como modelos V-LLM (Vision-Language Large
Models) [183] e Transformers [184], para explorar o potencial de estratégias multi-
modais na análise de lâminas histológicas.
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Portanto, esta tese contribui de maneira sólida para o fortalecimento da Patologia
Computacional, demonstrando que a integração entre métodos de inteligência artificial e
a prática clínica pode oferecer suporte robusto e confiável para o diagnóstico médico.

10.2 Limitações
Apesar dos avanços alcançados neste trabalho, algumas limitações devem ser reconhecidas
e podem orientar pesquisas futuras.

Em relação aos conjuntos de dados elaborados, as anotações foram realizadas por
três patologistas experientes, mas sem um processo formal de reanálise cruzada entre os
especialistas. A ausência de uma validação mais ampla pode ter introduzido variações
interobservadores não detectadas, o que sugere a importância de, em trabalhos futuros,
envolver um número maior de patologistas e adotar métodos sistemáticos de consenso,
como votações majoritárias ou etapas de reconciliação de divergências.

Outro ponto relevante refere-se ao método de segmentação proposto, que se baseia
na fusão de características extraídas dos espaços de cores RGB e HED. Embora o es-
paço HED ofereça uma representação especializada para imagens histológicas coradas
com Hematoxilina-Eosina e derivados, ele pode não capturar de forma ideal as nuances
cromáticas de outras técnicas de coloração presentes no conjunto de dados, como o tricrô-
mico e o PAMS. Essa limitação pode impactar a extração de características em imagens
provenientes dessas técnicas, indicando a necessidade de estudos futuros que explorem a
conversão para espaços de cor adaptativos ou específicos para diferentes corantes.

Essas limitações não invalidam as contribuições desta tese, mas reforçam a necessidade
de continuidade nos estudos para aprimorar a generalização e a robustez das soluções
propostas, visando sua aplicação prática em cenários clínicos cada vez mais diversos e
realistas.

10.3 Publicações
Cada uma das três etapas definidas na metodologia resultou na produção de um artigo.
A Tabela 10.1 apresenta os títulos e os veículos em que cada artigo foi publicado ou
submetido.

Os resultados relacionados à proposta de classificação de podocitopatia em imagens
histológicas de glomérulos renais foram publicados na conferência VISAPP 20221, clas-
sificada pela CAPES com conceito Qualis A3. O estudo sobre as implicações do uso de

1https://www.scitepress.org/Link.aspx?doi=10.5220/0010828600003124
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um classificador automatizado em colaboração com a prática de patologistas foi publi-
cado no periódico IEEE Journal of Translational Engineering in Health and Medicine2,
classificado com conceito Qualis A4. Por fim, a proposta de melhoria do desempenho de
redes tradicionais para segmentar lesões podocitárias foi submetida ao periódico Modern
Pathology (Elsevier)3, que possui conceito Qualis A1.

Tabela 10.1: Artigos produzidos no decorrer do doutoramento.
Título Veículo submetido Status
Podnet: Ensemble-based
classification of podocyto-
pathy on kidney glomerular
images

Proceedings of the 17th
International Joint Confe-
rence on Computer Vi-
sion, Imaging and Compu-
ter Graphics Theory and
Applications (2022)

Publicado

Enhancing podocyte dege-
nerative changes identifica-
tion with pathologist colla-
boration: Implications for
improved diagnosis in kid-
ney diseases

IEEE Journal of Translati-
onal Engineering in Health
and Medicine (2024)

Publicado

Segmentation of Lesion-
Bearing Podocytes: A
Proposal for Multistain and
Imbalanced Data Contexts

Modern Pathology (Else-
vier) (2025)

Submetido

2https://ieeexplore.ieee.org/document/10675352
3https://www.sciencedirect.com/journal/modern-pathology
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