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Resumo

Devido à popularidade da plataforma Android, aliada à relativa facilidade em aplicar
técnicas de reengenharia em aplicativos Android (apps), programadores maliciosos têm
se dedicado a explorar formas de ataques que visam monetizar a partir de aplicativos
legítimos e violar aspectos de privacidade dos usuários. Esse cenário tem atraído a atenção
de pesquisadores para o desenvolvimento de técnicas que possibilitam mitigar algumas
falhas de segurança ou estratégias de ataque para aplicativos Android.

Uma iniciativa recente, proposta por Jamrozik et al., introduziu o conceito de sandbox
mining, uma abordagem em duas fases para melhorar a segurança de aplicativos Android.
Na fase de mining (mineração), ferramentas de geração de testes exploram o compor-
tamento do aplicativo monitorando chamadas a APIs sensíveis. A subsequente fase de
sandbox restringe qualquer desvio do comportamento observado durante a mineração.
Esse método detecta e bloqueia chamadas não autorizadas a APIs sensíveis, melhorando
assim a segurança do usuário. Posteriormente, Bao et al. estendeu o trabalho de Jamrozik
et al., avaliando a eficácia da abordagem na identificação de comportamentos maliciosos e
comparando as capacidades exploratórias de diferentes ferramentas de teste para sandbox
mining. Entretanto, seu estudo apresentava limitações: não examinou completamente as
contribuições das análises estática e dinâmica para o sandbox mining, além de suas con-
clusões basearam-se em um conjunto de dados limitado, com representação insuficiente
de famílias de malware.

Nesta tese, nosso objetivo principal foi avaliar a abordagem de mineração em sand-
box através da investigação do papel das análises estática e dinâmica na proposta. Após
documentar as contribuições de ambos os métodos, realizamos um segundo estudo para
verificar se a solução mantinha desempenho comparável na detecção de malware, quando
aplicada a um conjunto de dados mais amplo e diversificado do que os utilizados em estu-
dos anteriores. Os resultados revelaram uma queda significativa na precisão da detecção,
com o F1-score diminuindo de 0,90 (em trabalhos anteriores) para 0,54 no conjunto de
dados expandidos. Análises posteriores indicaram que essa degradação de desempenho
foi causada principalmente por amostras de famílias específicas de malware, evidenciando
uma limitação crítica da abordagem. Essa descoberta nos levou a investigar uma solução
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complementar para abordar a vulnerabilidade identificada.
Por fim, em nosso estudo final, propusemos uma abordagem de análise de fluxo de

rede aprimorada com aprendizado de máquina. Esse método demonstrou um desempenho
superior na classificação de malwares em comparação com a mineração em sandbox, al-
cançando um F1-score de 0,85 no conjunto de dados diversificado. Notavelmente, os
resultados mostraram que famílias de malware com baixas taxas de detecção na miner-
ação em sandbox foram mais efetivamente identificadas por meio da análise de fluxo de
rede, uma vez que os modelos de aprendizado de máquina, conseguiram detectar padrões
característicos de atividades maliciosas.

Palavras-chave: Detecção de Malware para Android, Mineração em Sandboxes para
Plataforma Android, Plataforma Android, Análise estática, Análise dinâmica e Análise
de Fluxo de Rede
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Abstract

Due to the widespread popularity of Android and the relative ease of reverse-engineering
Android apps, malicious actors frequently exploit vulnerabilities to monetize legitimate
applications and compromise user privacy. This growing threat has driven researchers
to develop new techniques for mitigating security flaws and countering attack strategies
targeting Android applications.

A recent initiative by Jamrozik et al. introduced sandbox mining, a two-phase ap-
proach to enhance Android application security. In the mining phase, test generation
tools explore app behavior by monitoring calls to sensitive APIs. The subsequent sandbox
phase restricts any deviations from the behavior observed during mining. This method de-
tects and blocks unauthorized sensitive API calls, thereby improving user security. Later,
Bao et al. extended Jamrozik et al.’s work by evaluating the approach’s effectiveness
in identifying malicious behavior and comparing the exploratory capabilities of different
testing tools for sandbox mining. However, their study had limitations: it did not fully ex-
amine the contributions of static and dynamic analysis to sandbox mining, and its findings
relied on a limited dataset with insufficient representation of malware families.

In this thesis, our primary objective was to evaluate the sandbox mining approach by
analyzing the roles of static and dynamic analysis within its framework. After document-
ing the contributions of both methods, we conducted a second study to assess whether
the solution maintained comparable malware detection performance when applied to a
larger and more diverse dataset than those used in prior studies. The results revealed a
significant drop in detection accuracy, with the F1-score decreasing from 0.90 (in previous
work) to 0.54 on the expanded dataset. Further analysis indicated that this performance
degradation was primarily caused by samples from specific malware families, highlighting
a critical limitation of the approach. This finding prompted us to investigate a comple-
mentary solution to address the identified weakness.

Finally, in our final study, we proposed a machine learning (ML)-enhanced network
flow analysis approach. This method demonstrated better malware classification perfor-
mance compared to sandbox mining, achieving a F1-score of 0.85 in the diversified dataset.
Notably, the results showed that malware families with low detection rates under sand-
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box mining were more effectively identified through network flow analysis, as ML models
successfully detected characteristic malicious activity patterns.

Keywords: Android Malware Detection, Mining Android Sandboxes, Android Platform,
Static Analysis, Dynamic Analysis and Network Traffic Analysis
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Chapter 1

Introduction

Nowadays, the Android Operating System has dominated the market of electronic devices
(including tablets and smartphones), corresponding to almost two-thirds of mobile users
around the world [5, 6]. This popularity has increased the number of incidents related
to malicious Android applications (malware) 1 [7, 8]. Since many tools make it easy
for developers to reverse-engineer Android bytecode, decompiling and injecting malicious
code into legitimate apps is straightforward. As a result, attackers can modify these apps
by inserting malicious code, repackage them with harmful payloads, and redistribute them
on app stores [3, 9], including official platforms like the Google Play Store [10].

Due to the malware problem and other security issues, Android security has become an
important research topic, and several techniques have emerged to identify vulnerabilities
in Android apps [11]. These techniques use either dynamic or static analysis to identify
malicious behaviors and protect users from attacks. Dynamic analysis involves execut-
ing the program to abstract some relevant property, focusing on the actions performed
dynamically [12, 13].

In contrast to dynamic analysis, static analysis aims to estimate the program behavior
after scanning the source or binary code without the need to execute the program [5]. It
involves the exploration of the app bytecode, for instance, mining function calls and
instructions that can lead to unwanted behavior, like the leak of sensitive information, or
be used to reveal the misuse of cryptographic primitives [14, 15].

Some security techniques leverage both static and dynamic analysis, though—including
the Mining Android Sandbox approach (hereafter referred to as the MAS approach), which
was initially designed to construct sandboxes based on calls to sensitive APIs [13]. The
MAS approach works in two distinct phases. In the first phase, the MAS approach instru-
ments an Android app to log any calls to sensitive Android methods and then executes

1In this thesis, we will use the terms Android Applications, Android Apps, and Apps interchangeably
to represent Android software applications
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Chapter 1 – Introduction

the apps by leveraging test case generation tools. The idea is to explore the app’s run-
time behavior and collect any calls to sensitive APIs. The set of sensitive calls builds a
sandbox, which is used in the second phase to block calls to sensitive APIs not observed
during the initial exploratory phase. This two-step process enhances security by restrict-
ing unauthorized or unexpected access to sensitive functionalities. The MAS approach
was tailored and evaluated to assess its effectiveness in detecting malicious Android apps,
operating in two distinct phases [3].

1.1 Problem Statement

One effective initiative to address security issues in Android apps is isolating apps in
sandboxes [13], which restricts access to sensitive data and resources. In the Android
platform, for instance, developers must specify which features a particular app needs to
access. For example, an app requiring access to the user’s location, contact list, or camera
resources must obtain explicit user authorization. If the user denies access to a specific
feature, an exception will be reported if the app attempts to use that resource.

As described, the MAS approach has emerged to build fine-grained sandboxes by ab-
stracting app behaviors based on calls to sensitive APIs. The MAS approach leverages
test case generation tools to build a sandbox by monitoring the calls to sensitive Android
APIs that are observed during the app execution, establishing safety rules for the sand-
box [13]. The MAS approach has also been claimed as effective in detecting a popular
class of Android malware based on repackaging benign apps [3], and previous studies have
investigated the impact of test case generation tools on such effectiveness. For instance,
Bao et al. [3] presented the results of an empirical study that compares five test case gen-
eration tools, including DroidMate [16], an automatic test generator specifically designed
for use in mining sandboxes. This previous research also explored other automatic test
generation tools for mining sandboxes, such as Monkey [17], GUIRipper [18], Puma [19],
and Droidbot [20]. Le et al. [21] also proposed an approach to create more effective sand-
boxes by considering not only calls to sensitive APIs but also the actual arguments passed
to the calls to sensitive APIs.

Problem 1: Jamrozik et al. argue that dynamic analysis outperforms static analysis
in the context of mining sandboxes [13], although they do not provide empirical
evidence to support this claim. Additionally, the MAS approach implementation
by Bao et al. [3] leverages DroidFax, a static analysis tool used to instrument the
Android apps in their study. However, DroidFax was originally designed for security
purposes and is capable of identifying calls to sensitive APIs on its own. The specific
contributions of static and dynamic analysis in the Bao et al.’s study remain unclear,
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and there is a gap in the literature regarding the potential benefits of combining
static and dynamic analysis in the context of MAS approach for malware detection.

Problem 2: Previous empirical studies [3, 9] suggest that the MAS approach classifies
up to 70% of samples as malware in a repository containing 102 pairs of Android
apps (benign and malicious). However, a dataset of only 102 app pairs may be
too limited to draw sound conclusions—compromising the external validity of these
findings, as it likely does not encompass a diverse enough range of malware families.

Therefore, the primary motivation for this thesis was to address the limitations in the
existing literature by investigating the benefits of combining the MAS approach with static
analysis, using a well-defined benchmark for comparison and a more representative dataset
than those used in previous studies. Unfortunately, after experimenting with the MAS
approach on a large dataset, we found that it fails to correctly classify popular families
of Android malware (e.g., Gappusin), which severely compromises its performance.

Problem 3: The MAS approach approach fails to correctly classify malware from cer-
tain families, resulting in poor performance on the comprehensive dataset of 4,076
samples used in our research. In particular, the MAS approach approach achieves
a F1-score of 0.89 on the dataset used in previous studies, whereas on our larger
dataset, it achieves a F1-score of only 0.54.

We then explored a new approach, DroidXPFlow, which collects network traffic data
by executing Android apps using test case generation tools. From this collected data,
we experimented with various machine learning algorithms to classify the samples in our
larger dataset as either benign or malicious. Using DroidXPFlow, we achieved a F1-score
of 0.85.

1.2 Thesis Proposal

This thesis aims to conduct a comprehensive evaluation of the effectiveness of the MAS
approach for malware classification. It examines the respective roles of static and dynamic
analysis in this process, and proposes an enhanced methodology to address its existing
limitations. To achieve these objectives, we present three supporting studies, as outlined
in Figure 1.1.

In the first, we combined static and dynamic analysis algorithms to understand their
benefits and limitations within the MAS approach, using the same dataset as in previ-
ous studies [3, 13]. Our findings show that integrating both techniques can effectively
complement each other, leading to improved performance in the MAS approach. In the
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second study, we investigated if the MAS approach scales its performance with a larger,
more diverse dataset that includes additional malware families. Our results reveal that
the MAS approach demonstrates lower accuracy than previously suggested, as it fails to
classify certain recurring malware families. To address this issue, in the third study, we
explored an alternative approach based on dynamic analysis (named DroidXPflow) that
benefits from network traffic and Machine Learning (ML) algorithms. We aimed to in-
vestigate if DroidXPflow outperforms the accuracy of the MAS approach, particularly in
malware families where the original approach had shown limited effectiveness. We address
the following issues in the three studies:

In the first study, we explore the question (RQ1): What are the impact of combining
static analysis (e.g., FlowDroid [22] or DroidFax [23]) and dynamic analysis (e.g.,
MAS approach) for Malware Classification ?

In the second study, we explore the question (RQ2): To what extent does the use of a
larger and more diverse dataset impact the performance of the MAS approach?

In the third study, we explore the question (RQ3): How effective is DroidXPflow,
which leverages Machine Learning algorithms on data collected from network traffic,
in correctly classifying Android malware ?

Study 1
Chapter 4

Study 2
Chapter 5

Study 3
Chapter 6
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of static analysis at MAS
approach.St
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oti
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integrate the dynamic
analysis tools with static
analysis algorithms, we
improves the performance
of the MAS Approach for
malware detection.

A study to investigate the
possibility of network traffic
analysis overcome the
deficiencies of MAS approach at
malware detection task.

Improve the malicous apps
detection, addressing malware
families where MAS has low
accuracy, using network traffic
analysis, at a more
representative dataset.

RQ1

Investigate the relationship
between some malware
characteristics and MAS
approach accuracy.

Better understand the
limitation of MAS approach
against some repackaged
malware families.

RQ2 RQ3

Figure 1.1: Thesis overview
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1.3 Thesis Contributions

We highlight the main outcomes of this thesis, in terms of the results of the studies
conducted and generated artifacts.

1.3.1 DroidXP and DroidXPflow

DroidXP is a benchmark for running experiments and comparing the performance of test
case generation tools for the MAS approach. We developed DroidXP [24]—currently avail-
able in an open-source repository2. DroidXP is an extensible tool that allows researchers
and practitioners to easily integrate new test generation tools and conduct dynamic anal-
ysis on Android apps. Its primary purpose is to explore sensitive API calls within the apps
under analysis. DroidXP uses DroidFax [23] to instrument each APK file and collects data
about each app’s execution while a test tool (e.g., Monkey or Droidbot) is running. The
development of this tool was highly valuable for our research, as we used it to reproduce
previous studies on the MAS approach and to evaluate subsequent studies.

DroidXPflow represents a DroidXP extension, incorporating advanced dynamic anal-
ysis techniques to enhance malware detection capabilities. While DroidXP primarily
focuses on sensitive API call analysis, DroidXPflow introduces an additional dynamic
analysis component. It captures network traffic during test case execution, thereby en-
riching the analytical dataset with behavioral information. This enriched dataset is then
processed using ML algorithms to classify apps as malware or non-malware, leveraging a
pre-trained knowledge base. This integrated approach significantly strengthens the mal-
ware detection capabilities of the MAS approach by combining structural and behavioral
analysis methodologies.

Figure 1.2 shows the architectural overview illustrating the integration between DroidXP
and DroidXPflow. More details of both artifacts will be presented in Chapter 3 and Chap-
ter 6.

1.3.2 On the complementarity of static and dynamic analysis

Our findings indicate that the effectiveness of DroidXP ’s implementation of the MAS ap-
proach in classifying malicious applications largely stems from its integration of dynamic
analysis—enabled by test generation tools—with static analysis produced through instru-
mentation using the DroidFax framework. Moreover, the results suggest that adopting
an integrated analysis environment—combining the MAS approach with static tools such
as FlowDroid and DroidFax—may yield additional benefits.

2https://github.com/droidxp/benchmark
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Feature Extractor
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DroidXPFlow - Classifier Reporter

DroidXPFlow (Extension)

Test Gnerator Tool

Figure 1.2: Architectural overview of the DroidXP-DroidXPflow integration

1.3.3 On the scalability of the MAS approach at a large and
more diverse dataset

Our research reveals that the MAS approach performs substantially worse on a more
diverse dataset compared to those used in prior work [25, 26]. Specifically, its F1-score
score drops from 0.89 to 0.54. For instance, the MAS approach fails to correctly identify
89.37% of samples from the gappusin family and 44.44% of samples from the revmob fam-
ily as malware. These results highlight the main reason behind the MAS approach’s low
recall on diverse datasets. Consequently, our findings underscore the need for supplemen-
tary techniques to enhance the MAS approach approach and improve malware detection
accuracy (Section 5.3.2).

1.3.4 On the effectiveness of DroidXPflow to classify malware
when compared with MAS approach

Our research shows that DroidXPflow, which integrates machine learning (ML) techniques
to analyze network flow data, outperforms the MAS approach by achieving a F1-score
score of 0.85 on our more diverse dataset. This result underscores its effectiveness as a
promising approach for malware classification, particularly for families such as gappusin
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and revmob, which exhibit frequent malicious network behavior. Notably, these are the
same families for which the MAS approach demonstrated poor recall in prior studies.

1.4 Research Papers

The work associated with this thesis has resulted in the following research papers, which
have already been published or are currently under review.

1. Francisco Handrick da Costa et al., “DroidXP: A Benchmark for Supporting the
Research on Mining Android Sandboxes,” 2020 IEEE 20th International Working
Conference on Source Code Analysis and Manipulation (SCAM), 2020, pp. 143-148,
doi: 10.1109/SCAM51674.2020.00021.

2. Francisco Handrick da Costa, “On the Interplay Between Static and Dynamic Anal-
ysis for Mining Sandboxes,” 2021 IEEE/ACM 43rd International Conference on
Software Engineering: Companion Proceedings (ICSE-Companion), Madrid, ES,
2021, pp. 315-319, doi: 10.1109/ICSE-Companion52605.2021.00135.

3. Francisco Handrick da Costa, Ismael Medeiros, Thales Menezes, Joao Victor da
Silva, Ingrid Lorraine, Rodrigo Bonifacio, Krishna Narasimhan, Marcio Ribeiro.
“Exploring the use of static and dynamic analysis to improve the performance of
the mining sandbox approach for android malware identification,” Paper published
at The Journal of Systems & Software 183 (2022) 111092.

4. Francisco Handrick Costa, Ismael Medeiros, Leandro Oliveira, Rodrigo Bonifacio,
Krishna Narasimhan, Mira Mezini, Marcio Ribeiro “Scaling Up: Revisiting Min-
ing Android Sandboxes at Scale for Malware Classification”. Paper published at
ECOOP 2025. Article No. 40; pp. 40:1–40:26

5. Francisco Handrick Costa, Roberto Luis Valera, Rodrigo Bonifacio, Eduardo Mon-
teiro de Gomes, Joao Jose Gondim. “Improving Mining Android Sandbox with
Network Flow Data and Machine Learning.” Chapter not submitted for publication
while writing this Thesis.

1.5 Thesis Organization

The remainder of this thesis is structured as follows:

• Chapter 2 presents background materials on Android, sandboxes, Android mining
sandboxes, taint analysis, and symbolic execution.
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• Chapter 3 describes our benchmark tool, which helped us integrate test case gener-
ation tools and compare their performance in the MAS approach.

• Chapter 4 explores the rule of static and dynamic analysis at MAS approach.

• Chapter 5 discusses a replication and extension study of MAS approach for Malware
Detection.

• Chapter 6 presents how network traffic analysis and machine learning (ML) can be
combined to improve malware detection.

• Chapter 7 concludes the thesis, presenting implications and future work.
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Chapter 2

Background and Related Work

In this background Chapter, we present some concepts definitions, techniques, and ap-
proaches that are important to understand the remainder of this thesis document. As
a first step, we introduce the Android framework, its architecture, and Android security
issues at Section 2.1 and Section 2.2. Section 2.3 we introduce Mine Sandbox technique,
and how this approach can deal with malware detection at Android apps. Since mod-
ern malware detection tools make use of static and dynamic code analysis approaches
to detect unwanted behaviors, we introduce these techniques in Section 2.4 . The last
sections, we list 2 code analysis techniques that we refer to in the remainder of this thesis
document, taint analysis and symbolic execution (Section 2.5 and Section 2.6).

2.1 Android

Android is an open source software framework for mobile communication devices, with
an advanced RISC Machine (ARM) architecture [27][28]. It incorporates an Operating
System (OS), an app development toolkit assisting developers and an app framework.
The Android OS is Linux-based kernel, and was developed for several devices including
tablets, smartphones and others electronic devices. His open source and unrestricted app
market, have made it a popular platform for third-party apps, and its primary market
source for Android apps, Google Play Store, has included more apps than the app Apple
Store [29] since 2011. The next subsections discuss about its architecture and security
issues.

2.1.1 Android Architecture

Figure 2.1 presents the Android app stack or Android architecture. It consists of several
layers like Linux kernel, native libraries, and Application Framework, for instance [1].
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Figure 2.1: Android architecture. [1]

At Android runtime, there is the Dalvik VM, that is a optimised version of java
virtual machine (JVM). For security reasons, each app runs in separate processes in
its own Dalvik VM instance [30]. Running separately, apps can communicate with the
Android framework or with other apps just using Android inter-process communication
(IPC) mechanism [30]. Therefore, apps are isolated from each other and can not access
data from another app. However, there are other ways for apps to communicate with each
other. For instance, the communication via messaging objects called Intents, that allow
communication between services, activities and broadcast, via messages sent between
components. To understand an app behavior and issues related to app security, it is
crucial to analyse this Intent-based communication.

The application framework layer includes Activity Manager, that manages the life-
cycle and interaction of the activities running on the system. It also includes Window
Manager that forwards UI (User Interface) input to the app, and allows applications to
draw on the screen.

On top of the Android architecture, there are Android Applications (or apps), such
as games, browsers and contacts. Apps are written using programming languages that
compile for the Java Virtual Machine (JVM) bytecode, such as Java or Kotlin. The
JVM bytecode is compiled to a Dalvik Executable (DEX) bytecode format, and is then
packaged along with other application resources to form an Android Application Pack
(APK) file, which can be distributed for end-users. The app building process can be seen
at Figure 2.2.
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Figure 2.2: Android build process, from source code to APK file. [2]

2.1.2 Android Permission System

In order to access information beyond the application sandbox 1, apps must acquire per-
missions and then access the resources through specific system Application Programming
Interfaces (APIs). Android has two main types of permissions [31]: install-time permis-
sions, and runtime permissions. Install-time permissions are less sensitive permissions
and must be requested upon installation of the APK on the system, such as internet
access. Runtime permissions are highly sensitive permissions and are generally related to
users’ private data, such as camera or microphone access. Runtime permissions must be
acquired right before the actual use of the resource, and are only available on Android
6.0 (API 23) or higher [32].

Google Play Store is the primary market source for Android apps and has a flexible
policy regarding the process of publishing apps. Therefore, every month many Android
apps are cleared from it because of issues related to spyware and other types of malware
[33]. For security reasons, Google Play lists each app with the requested permission,
and those permissions have been presented to the user during the installation process.
This process can be canceled, if the user does not feel comfortable with the requested
permission.

1More details about sandbox at Section 2.3
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This security procedure can ensure control over user sensitive data access, and reduce
vulnerabilities problem in Android apps. However, it can be inefficient if app developer
requests more permissions than they really need. This overprivileged problem often occurs
because of developer error, which many times feels confused about the permission system.
This uncertainty can lead to overprivileged apps, in a development effort to make the apps
work accurately [29].

Common overprivilege problem can occurs when the developer request permissions
that sound correlated to their apps purpose [29]. For example, assuming that an app
need access status of all networks. There are two permissions that have similar sounding
names: ACCESS NETWORK STATE and ACCESS WIFI STATE. The developer
can uncertainly request them in pairs, even when just one is demanded, in our example:
ACCESS NETWORK STATE, leading to unnecessary access to WIFI permissions.

Although developers may ask for unnecessary permissions due to confusion or forget-
fulness, it is possible that this problem can be intentional, since malicious developers could
also create overprivileged apps (malware) in order to stealthily access users’ sensitive re-
sources [34]. According to Zhou et al [35], malicious apps tend to requests surely more
permissions than benign ones. In their studies, they notice that on average, malicious
app request 11 permissions, while normally benign apps request just 4.

Beyond the unnecessary permissions issues, Android permission system are not secu-
rity indicators that guarantee fulfill its purpose, since it does not help users make good
security decisions. Some studies point out that Android users are careless, and do not
pay enough attention to or understand permission warning [36], considering that they just
want the end product. However, the same studies also show that there are Android users
that demonstrate awareness and understanding of permissions, proving that permissions
can help some users to avoid privacy-invasive apps. Furthermore, these experts users
could protect other Android users since they can write negative reviews when they find
unneeded permission requests. Among study participants, 24% pointed out that they had
relied on reviews to get better permission information.

2.2 Android Malware

Android developers have developed apps every day that cover a growing range of function-
alities [5]. Unfortunately, the increasing of Android apps also comes with rapid growth of
security threats and a variety of attacks. [7], bringing a critical need to effectively miti-
gate them. Because of the variety of attacks, a good understanding of mobile malware is
needed to develop an effective solution.
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Zhou et al. [35], presented a systematic characterization of existing Android malware.
They categorized existing strategies Android malware used to install onto users’ phones,
and generalized them into three main techniques no mutually exclusive: repackaging,
update attack and drive-by download.

According to Zhou et al., repackaging is the most common strategy malware develop-
ers use to piggyback malicious code into original apps. They found 86% of malware are
repacked apps, demonstrating the popularity and gravity of repackaging strategy. Basi-
cally, malware authors download an original and popular app from the official Android
market, disassemble the app, enclose malicious code at original, re-assemble and submit
the “malicious" apps to alternative Android markets, or/and to official market [37]. Since
the application code is compiled to a DEX bytecode, some characteristics about the orig-
inal code such as class names, method names, and types are retained, which makes them
more susceptible for reverse engineering if compared to native code [38]. Android app
users could be vulnerable when installing these modified apps. More details in the next
subsection.

Update attack is a strategy very similar to repackaging, but more difficult for detec-
tion [39]. As the first strategy, it also repackages a benign app, however this time, instead
of enclosing the malicious code as a whole, it only includes an update component. When
the malicious app runs, the user will be prompt that a new version is available. If the
user update the app, an “updated" version with malicious code will be installed, enclosing
the “update" version inside the original. As the malware extracts malicious payload from
the external environment, it is more furtive, and static code analysis techniques may fail
to detect them [35].

This last strategy is a traditional drive-by download attack. Android users are moti-
vated to download interesting and apparently useful apps, but in fact they are “wolf in
sheep’s clothing". Apps that promise to improve battery efficiency, or claims to better
protect online banking operations are examples of this strategy. However, these “use-
ful" apps can be very harmful to your users, causing serious problems, like leak sensitive
banking information or sending of SMS message to a premium-rate number.

2.2.1 Repackaged Android Apps

There are many tools available that help developers reverse engineer Android byte-
code [40]. For this reason, software developers can easily decompile trustworthy apps,
modify their contents by inserting malicious code, repackage them with malicious pay-
loads, and re-publish them in app stores, including official ones like the Google Play Store.
It is well-known that repackaged Android apps can leverage the popularity of real apps to
increase their propagation and spread malware [10]. As an example, in 2016 a repackaged
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version of the famous Pokémon Go app was discovered less than 72 hours after the game
was officially released in the United States, Australia, and New Zealand [10]. The repack-
aged version, originated from an unofficial app store, gained full control over the victim’s
phone, obtaining access to main functions such as the phonebook, audio recorder, and
camera.

Repackaging has been raised as a noteworthy security concern in Android ecosystem
by stakeholders in the app development industry and researchers [41]. Indeed, there
are reports claiming that about 25% of Google Play Store app content correspond to
repackaged apps [42]. Nevertheless, all the workload to detect and remove malware from
markets by the stores (official and non-official ones), have not been accurate enough to
address the problem. As a result, repackaged Android apps threaten security and privacy
of unsuspicious Android app users, beyond compromising the copyright of the original
developers [43]. Aiming at mitigating the threat of malicious code injection in repackaged
apps, several techniques based on both static and dynamic analysis of Android apps have
been proposed, including the MAS approach for malware classification [13, 3].

2.2.2 Android Malware Detection Systems

Malware has always been a constant concern surrounding Android apps. New malware
is being developed every day, so staying up to date is pretty hard, since most antivirus
solutions work with known virus signatures. Many Android devices have been dealing
with malware over the years, since many apps are deployed to Play Store from a wide
range of different sources, making it harder for security researchers to cover most of the
apps. Since the Android policy for apps is flexible, there is need for a solution that quickly
analyzes and isolates new software that might be flagged as malicious.

As far as malware detection goes, many actions were taken to minimize the risk of
malware infection in Android apps. Many open source platforms share known malware
samples with researchers [44]. Those samples help antivirus softwares get rid of most of
common malware, since they need to know the malware behavior to successfully block
them.

The field of malware detection for the Android platform is fertile, with a significant
number of secondary studies already published [45, 46, 47, 48]. In general, malware de-
tection techniques are divided into static detection, dynamic detection, and hybrid detec-
tion [49, 50]. Several studies have also conducted surveys on malware detection techniques
and presented a review of them [51, 52, 53]. For instance, M. Odusami et al. [53] discuss
various static analyses approaches that have been used in the literature to identify ma-
licious behavior in Android apps. The authors present some works with permission and
signature-based malware detection systems. They highlight that both approaches have
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a low false positive rate; however, they are very ineffective in detecting new malware.
Although they could reveal possible malicious behaviors, the authors discuss several lim-
itations of these approaches, as they are limited regarding code obfuscation and dynamic
code loading.

Some existing malware detection techniques in Android systems are surveyed and com-
pared using metrics such as base of detection, analysis technique, accuracy, evaluation
metric, operation level, classifier/tool, output of system and scope of improvement[50].
These are some example of malware detection systems that are described at [50]: DREBIN [54],
AndroDialysis [55], ICCDetector [56], APK Auditor [57], DroidNative [58], DMDAM [59]
and API based system [60].

The literature also presents surveys based on dynamic analysis, exposing risks that
are not detected by static analysis. As a malicious app “is alive”, dynamic analysis
adds another degree of analysis since it observes how Android apps interacts with the
environment. However, if applied inappropriately, it may provide limited code coverage,
which repeated executions can improve. Therefore, dynamic analysis’s time cost and
computation resources are higher when compared with static analysis. K. Tam et al. [52]
presented several dynamic analysis studies based on Android architectural layers. The
survey also exposed that dynamic analysis can be performed in emulator environments,
real devices, or both. The authors discuss that the choice of environments is an important
issue for analysis, as there are malware families that can detect emulated environments
and do not exhibit malicious behaviors [61]. Finally, K. Tam et al. also exposed some
works based on hybrid malware detectors and claim that these methods can increase code
coverage and robustness, taking advantage of the best of each technique to find malicious
behaviors.

Several studies have also explored Android malware detection approaches based on
machine learning (ML) techniques, employing both static and dynamic analyses to extract
features and train ML models [51]. Most of these approaches have demonstrated high
accuracy (above 90%), effectively detecting previously unseen malware families with low
false positives rate [62]. However, some studies have identified limitations of machine
learning approaches for Android malware classification. In their work, K. Liu et al. [51]
highlighted challenges related to machine learning techniques, identifying several factors
that could lead to biased results, such as the quality of the sample set. The authors
argue that samples of poor quality, with a non-representative size or outdated samples,
may yield promising results in experimental settings but might not perform similarly in
a real environment [51]. Another critical aspect is the quality of the extracted feature
dataset. The efficacy of machine learning approaches heavily relies on the selection of
correct features and their extraction methods, particularly dynamic features. Moreover,
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in addition to the computational costs involved, other studies [63, 64] have indicated that
machine learning approaches exhibit weaknesses when dealing with malicious apps that
alter their behavior to mislead learning algorithms, which may restricts their applicability
in real-world scenarios.

2.2.3 Android Security Concerns

Overall security has always been a concern on Android devices and it is widely known
by researchers that Android has always been an easy way to spread malware around the
world. Since mobile is one of the most used vehicles of communication and concerning
security, it is poorly used by its end-users. To put it into perspective, at December 2011
Google Play exceeded 400000 apps, doubling in quantity in just 8 months [39], and it is
known by any security researcher that the weakest point of interaction on any software
is the user. The challenge on most papers resides in enhancing Android security and
ensuring that its users have your sensitive resources protected [65].

Taking it to the next level of security is an approach that many scientists and re-
searchers are doing by experimenting with sandboxes to test Android apps [13]. This
improves overall security, although it is known that there’s much more progress to be
made to catch up with malware creators.

2.3 Sandbox

A sandbox is an isolated environment on an electronic device within which apps cannot
affect other programs outside its boundaries, like the file system, the network, or other
device data [66]. It enables testing and execution of unsafe or untested code, possible mal-
ware, without worrying about the integrity of the electronic device that runs the app [67].
This need may arise in a variety of situations, such as when running software input by
untrusted users, in malware analysis, or even as a security mechanism in case a trusted
system gets compromised [66]. A sandbox environment should be able to shield the host
machine or operating system from any damages caused by third party software. Thus,
sandbox environment should have the minimum requirements to run programs (make sure
the program will not impact resources outside the sandbox), and make sure it will never
assign the program greater privileges than it should have, working with the principle of
the least privilege, giving permissions to users according to their needs, i.e., giving them
no more power than needed to successfully perform their task. This principle prevents
escalating privileges and unauthorized access to resources, thereby improving the system’s
overall health.
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Figure 2.3: Mining Sandbox [3]

2.3.1 Sandbox and Android Security

As Android OS is based on Linux, every app is initialized as a separate process and
executed in the same manner. With this architecture, the principle of least privilege is
realized through sandboxing process, where apps never access the data of other apps,
and an app just accesses user resources, like contacts and location, through specific APIs
(Application Programming Interface), which are in-turn guarded by permissions.

Nowadays, malware becomes more stealthy and hackers learn how to avoid anti-virus
signature checks, by obfuscating the native code [68] , calling java libraries, or even by
creating root exploits, since the native code is allowed to directly make syscalls. Another
approach to rooting is making a side attack aimed at a benign app to make a syscall,
exploiting its native code to get root access. Those are kinds of attacks that are usually
tackled with by Android Mining Sandbox [13].

2.3.2 Mining Android Sandbox

The Android Mining Sandbox concept is a sandboxing technique that consists of mining
rules from an Android app, and use these rules to ensure system security. The technique
was first proposed by Jamrozik et al. [13] and comprises of two steps. First, rules are
mined and will compose the sandbox, through test generator tools, that identify sensitive
Android API, called during their execution. These tools investigate program behavior
through resource accesses realized by these APIs. The second stage ensures that resources
not accessed, or accessed differently from the first-stage, are not accessible by the apps.
So, if a malicious app requires access to resources, different from what was previously
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mined, the sandbox will prohibit this access. The Figure 2.3 (taken from the paper [3]),
shows the core ideal of this technique.

Automatically mining software resources or components, to infer behavior is not new
and has been discussed before. For instance, Whaley et al. [69] combine dynamic and static
analysis for API mining and so extract interface from software components. Ammons
et al [70] propose a machine learning approach, called specification mining, to discover
temporal and data-dependence relationships that a program follows when interacting with
an API or abstract data type.

The main purpose of test generation tool is to find bugs. However, it also can be used
to explore program behavior, and thus assist in the task of building Sandboxes. Regarding
test generating tools used for mining Sandboxes, Jamrozik et al [16] proposed DroidMate,
a test generation tool that implements a pseudo-random GUI exploration strategy, and
was the first approach to leverage test generation to extract sandbox rules from apps.
Li e tal. [20] proposed DroidBot, a test generator tool that explores sensitive resources
access by apps, following a model-based exploration strategy. In their work, the authors
present a comparison between DroidBot and Monkey [17] regarding malware analysis, and
showed that Droidbot can trigger a number of sensitive behaviors, like data leaks and file
accesses, higher than Monkey. From the same authors, another test generator tool for
Android, described as Humanoid [71], is a Droidbot evolution and presents a proposal
that can generate humans like tests inputs, using deep learning.

2.3.3 Mining Android Sandbox for Malware Classification

Besides being used to generate Android sandboxes, the MAS approach can also be used
to detect if a repackaged version of an Android app contains an unexpected (perhaps
malicious) behavior [3]. In this scenario, the effectiveness of the approach is estimated in
terms of the accuracy in which malicious behavior is correctly identified in the repackaged
version of the apps.

The MAS approach for malware classification typically works as follows. In a first step
(instrumentation phase), a tool instruments the code of the apps (both original and
repackaged versions) to collect relevant information during the apps execution in later
stages. Then, in a second step (exploration phase), the MAS approach collects a set
S1 with all calls to sensitive APIs the original version of an app executes while running
a test case generator tool (like DroidBot). In the third step (exploitation phase), the
MAS approach (a) collects a set S2 with all calls to sensitive APIs the repackaged version
of an app executes while running a test case generator tool, and then (b) computes the
set S = S2 \ S1 and checks whether S is empty or not. The MAS approach classifies the
repackaged version as a malware whenever |S| > 0.
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Previous research works reported the results of empirical studies that aim to investigate
the effectiveness of the MAS approach for malware classification [3, 24]. For instance, Bao
et al. found that, in general, the sandboxes constructed using test generation tools classify
at least 66% of repackaged apps as malware in a dataset comprising 102 pairs of apps
(original/repackaged versions) [3]. Actually, the mentioned work performed two studies:
one pilot study involving a dataset of 10 pairs of apps (SmallE), in which the authors
executed each test case generation tools for one hour; and a larger experiment (LargeE)
involving 102 pairs of apps in which the authors executed the test case generation tools
for one minute [3].

The authors also presented that, among five test generation tools used, DroidBot [20]
leads to the most effective sandbox. Le et al. extend the MAS approach for malware
classification with additional verification, such as the values of the actual parameters used
in the calls to sensitive APIs [21], while Costa et al.[26] investigated the impact of static
analysis to complement the accuracy of the MAS approach for malware classification.
Their study reports that DroidFax [23], the static analysis infrastructure used in [3],
classifies as malware almost half of the repackaged apps.

2.4 Static and Dynamic Code Analysis and Detect
Attacks

Static code analyzing is straightforward, it pretty much extracts most of the software
patterns to analyze it without executing it. Due to the app is not required to be executed,
the static approach is resource and time-efficient. Provide information about permissions,
API calls, .dex files for opcodes, and metadata are some examples of what is gathered
with this type of analysis for further investigation [5]. Decompilers are often used too
since they try to rebuild the code by the execution flow based on assembly instructions.
There are frameworks to help researchers dealing with such activities.

As far as Dynamic code analysis is concerned, it monitors the execution flow of any
app in search of any malicious behaviour while the app is running. Dynamic analysis can
monitor, for instance, network traffic, CPU utilization, battery usage, and API assess [5],
in a controlled environment. Some known techniques are applied to enhance detection,
like try to detect misuse of PII (Personal Identifiable Information) of users. Another
approach that researchers use is monitoring system calls, which some of them can be
very critical in some cases. Along with syscalls monitoring, Java method invocations, for
instance, are usually monitored, since it’s easier to invoke dangerous functions that can
do anything with the infected device.

19



Chapter 2 – Background and Related Work

Many of these techniques were initially developed for malware-targeting desktop sys-
tems, but they have since been adapted and extended to address threats in other envi-
ronments, such as mobile platforms. For the sake of brevity, on this section we focus on
the most closely related work, particularly advancements in network flow analysis and
machine learning (ML) algorithms for malware classification. At the end, we also present
an overview of some of these approaches, described at secondary studies [72, 51] (Table
2.1).

2.4.1 Dynamic and Static Analysis Approaches

Dynamic approaches, like TaintDroid [73], DroidRanger [74], and DroidScope [75], mon-
itor app behavior in real-time, offering high accuracy but significant performance over-
head, limiting their practical use on mobile devices. In contrast, static methods such
as Kirin [76], Stowaway [29], and RiskRanker [77] are efficient and scalable but heavily
rely on manually defined patterns, hindering their effectiveness against novel malware.
In addition, these methods often lack transparency, making it difficult to understand
their decision-making processes. The lack of understanding about the combination of
both techniques is also evident in Costa et al. [78], which presents an empirical study
showing that this combination enhances detection capabilities by leveraging both types
of information to identify and analyze malware more effectively.

2.4.2 Network Traffic Analysis

Recently, increasing attention has been directed toward malicious network traffic gen-
erated by suspicious apps. As a result, researchers have begun to analyze and identify
malicious applications based on their network traffic. For example, Wang et al. [79]
have proposed an Android malware detection method based on HTTP flow analysis, us-
ing Natural Language Processing (NLP) techniques. Researchers have also explored the
automatic generation of network signatures [80, 81, 82], often focusing on worm identi-
fication. For instance, Perdisci et al. [83] propose an approach that generates network
signatures for mobile malware by analyzing similarities in HTTP traffic and clustering
malicious patterns. Although effective against known threats, signature-based methods
struggle to detect novel attacks due to their reliance on predefined patterns.

Some studies utilize text analysis based on Packet/Flow textual features for malware
detection. For instance, Nan et al. [84] introduced UIPicker, a framework that uses NLP,
ML, and program analysis to identify personal user information on a large scale. Recon
et al. [85] recently proposed a method to detect and prevent personal information leaks
in mobile network traffic by analyzing key-value pairs. Some authors have also used
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Packet/Flow features statistically. Arora et al. [86] compared malware traffic with benign
network traffic, identifying deviations in network behavior using statistical features like
average packet size, flow duration, and byte ratios. AppScanner [87] is a framework
that uses encrypted network traffic statistical features to automatically fingerprint and
identify malicious apps. Conti et al. [88] analyzed encrypted Android traffic to identify
user actions based on statistical features.

2.4.3 Machine Learning Approaches

ML approaches have been used in network traffic-based malware detection methods [89,
90]. Depending on the type of ML model used, these methods can be divided into two
categories: (1) shallow learning techniques and (2) deep learning techniques [91].

Shallow techniques are traditionally used in malware detection as a classification prob-
lem. Previous research [90] developed a detection system that monitors network data and
other key features, such as battery consumption and temperature, to detect malware with
an accuracy of over 85.6%, using statistical and ML methods. Martín et al. [92] intro-
duced CANDYMAN, a malware classification tool that uses Markov Chains to model
normal network traffic patterns and identify anomalies that may be associated with ma-
licious activities. The study employed deep learning techniques and the Random Forest
algorithm, reporting a detection accuracy of 77% and 81.8%, respectively. The authors
used a dataset of 4,442 samples from 24 different malware families.

Lashkari et al. [93] analyzed network traffic features to distinguish malicious traffic
from normal traffic and classify apps as malware or non-malware, using common classifiers
such as logistic regression, decision trees, random forests, and KN. Feizollah et al. [94]
also analyzed network traffic using a similar set of ML classifiers, including KNN, SVM,
decision trees, Naïve Bayes (NB), and multi-layer perceptron (MLP). The authors con-
firmed that KNN delivered the best performance among these classifiers. Garg et al. [95]
proposed a network-based detection model for Android malicious apps. This method col-
lects network activity features from 18 different malware families and 14 legitimate apps
and uses them to detect Android malware using traditional ML techniques. The authors
reported an accuracy between 95% and 99%. Dash et al. [96] introduced DroidScribe, a
framework that employs a dynamic analysis approach to classify malware by monitoring
network transactions generated by apps. Similarly, another study [97] introduces Dyna-
Log, a dynamic analysis method for malware classification that relies on API calls and
service executions. We summarize this related work on Table 2.1.

Although we attempted to replicate some of the results of these related studies, it
was not feasible because they do not provide replication packages. Moreover, most of
the studies are based on limited datasets, in terms of both size and the lack of recurrent
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malware families—preventing a proper evaluation of their results. For instance, references
[92, 95, 96, 89] have a large number of samples, but they cover only 24, 18, 23 and 5
malware families, respectively (see Table 2.1). Considering these two limitations, that
is, the lack of a replication package and the use of questionable datasets, we decided
to design a new approach (Chapter 6) and conduct a comprehensive study that differs
from the related work in several key aspects. First, due to the challenges associated with
manually generating input test cases, we employ an automated test case generation tool
to simulate user interactions with apps within a short time frame [25]. While some studies
have also utilized test case generation tools for input generation [92, 96], they primarily
rely on Monkeyrunner tool—a native tool provided by the Android SDK for stress testing,
which operates on a random strategy. In our study, we use the Droidbot [20] tool, a more
advanced, open-source test generation tool for Android apps. Several studies [3, 20]
highlight that DroidBot outperforms other test generation tools that rely on random
strategies, demonstrating a greater capability in uncovering a larger number of potential
malicious behaviors. Second, we considered a more representative set of 2,886 malware
from 116 families. Also, unlike previous research, we allow full reproduction of our work,
publishing Python scripts and datasets used as replication packages2.

Table 2.1: Studies based on network data analysis.

Reference Technique Algorithms Samples Replication package F1-score

[90] ML RF, SVM, LMT 200 NO 85.6%
[92] ML, DL, Markov chains SVM, RF, CNN, LSTM, RNN 4,442 NO 81.8%
[93] ML RF, KNN, DT, RT, RL 400 NO 91.41%
[94] ML SVM, MLP, DT, KNN, NB 100 NO 99%
[86] ML DT 27 NO 93.75%
[95] ML DT, LR, KNN, BN 1,260 NO 99%
[96] ML SVM 4,533 NO 94%
[89] ML BN, LR, RF, SVM 3,526 NO 99%

2.5 Taint Analysis

Android apps contain within themselves the risk that sensitive data, such as credit card
details, device ID, contacts can be leaked into public sinks like the internet [98].

Taint analysis is a special type of static or dynamic analysis that purpose is to track
sensitive data within programs [99]. It identifies sensitive information leakage detecting
taint flow between source and sink. In Android apps context, a data leak occurs when
sensitive data, such as contact, or device ID, flows from a private source to public sinks, like
the internet. Taint analysis can present possible malicious data flow to malware detection

2https://github.com/droidxp/ML
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tools or even for a human check, that can decide if the “source-sink" relationship is or
is not an unwanted behavior. Thereby, taint analysis monitor sensitive source “tainted"
through the app by starting at a pre-defined point.

In Android context, sources are the APIs in which apps access sensitive information,
called sensitive APIs. The analysis follows the data flow until it reaches a sink, like
a method that sends SMS. Finally, it brings exact information about which data will
be leaked and where [11]. The Android SDK provides APIs that allow apps to send
private data to other apps on the same device, or remote devices. As these APIs may
lead to sensitive data leakage, they are security-critical and require special attention and
control [73]. (Listing 2.1) presents a simple data leakage example. In this example, the
device information is captured at line 4 (source) and then leaked at line 9 (sink), by SMS
transmission.

Listing 2.1: Simple Data Leakage

1 > localObject2 = ( TelephonyManager ) getSystemService (" phone ");
2 > if ( localObject2 != null )
3 > {
4 > this .imei = (( TelephonyManager ) localObject2 ). getDeviceId (); // source
5 > }
6 > if ("". equals ( this . destMobile )) {
7 > getDestMobile ();
8 > }
9 > sendSMS ( this . destMobile , "imei:" + this .imei)// sink

Wei et al. [100] propose a scalable taint analysis for Android apps that applies tra-
ditional taint analysis techniques with targeted optimizations specific to Android OS.
Flowdroid [11] improves on precision of traditional approaches by including context and
flow sensitivity. A significant issue with taint analysis is the cost of the tool itself hamper-
ing the performance. FastDroid [101] mitigates this issue by introducing an intermediate
light-weight abstraction to perform the analysis.

2.6 Symbolic Execution

Symbolic execution is an elegant software analysis solution introduced over 40 years. It
arises from the need of check if certain properties can be violated by a piece of soft-
ware [102][103], like array index out of range exception, division by zero, or any security
violation.

The main idea is to explore many possible execution paths at the same time without
requiring concrete inputs. Instead of taking on specific input values, symbolic execution
abstractly represents them as symbols and simultaneously explores multiple paths, that a
program could take under different inputs. It has proved to be useful in many settings like
mission-critical and software security, leading to breakthroughs at software reliability [4].
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To exemplify the use of symbolic execution, consider a simple method show in (List-
ing 2.2). It was written at java language and return a double value, through 2 integer
inputs. Our idea is to determine which inputs make the method twoIntToDouble fail at
line 8, caused by divide-by-zero error.

Listing 2.2: Method that return a float through 2 integers. Adapted from [4]

1 > double twoIntToDouble (int a, int b) {
2 > int x = 2, y = 0;
3 > if (a != 0) {
4 > y = 4 + x;
5 > if (b == 0)
6 > x = 2 * (a + b)
7 > }
8 > return x/(x-y);
9 > }

Considering that each input parameter can take 232 distinct integer values (4 bytes),
a concrete execution would be very expensive, since that runs concretely the method
twoIntToDouble on randomly generated input, will spend much time. Symbolic execution
can solve this problem by evaluating the code using symbols, and reason on classes of
inputs, instead of concrete input values.

Figure 2.4 shows a “execution tree" that represent the execution paths followed during
the symbolic execution of the method twoIntToDouble. At the beginning, input arguments
(a and b) are associated with symbolic values (αa and αb), and path constraints are true (π
= true). Then, at node 2, the local variables x and y are initialized, updated with concrete
value (x → 2, y → 0), and symbolic stored at “α". At method twoIntToDouble, line 3,
there is the first conditional statement execution, and the node 2 has two arcs leaving,
which are labeled “αa ̸= 0" and “αa = 0" for the true (then) and false (else), respectively.
Depending on the branch taken, new assumptions are associated to symbol π (π = αa ̸= 0
or π = αa = 0) at node 3 and 4 respectively. At node 5, there is a second conditional
statement execution, and the two arcs leaving, are labeled with “αb = 0" and “αb ̸= 0" for
the true (then) and false (else). Variable y is also updated with 4 + x, becoming y → 6,
since x → 2 at node 3. At node 8, variable x is updated with x = 2 ∗ (a + b) from note 6,
becoming x → 2 ∗ (αa + αb).

Once all branches reaches the line 8 of twoIntToDouble method (return x/(x-y)), the
technique follow analysing which input values for parameter a and b can violate software
integrity because of divide-by-zero error. Analyzing nodes 4, 7 and 8, we can deduce
that only node 8 can reach values in which (x − y) = 0. In general, if there is any input
value, that make the final sentence true, these input will make twoIntToDouble method
break. Thus, at node 8 the final follow sentence has a input value that makes it true. For
instance a = 3 and b = 0.
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2 ∗ (αa + αb) − 6 = 0 ∧ αa ̸= 0 ∧ αa = 0 ⇐⇒ (αa = 3 ∧ αb = 0)

Thus, symbolic execution has proved to be an accurate technique for code analysis.
However, it is also known to suffer from severe challenges when dealing with real codes,
with more complex objects than presented in our example, like arrays and pointers, for
instance. It also can be problematic when requires modeling their interactions with sur-
rounding environment, like third-party libraries and operating systems. [104] [105]

Figure 2.4: Symbolic Execution tree. Adapted from [4]
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Chapter 3

DroidXP

A Benchmark for Supporting the Research on
Mining Android Sandboxes

This chapter corresponds to our paper published in the 20th International Working
Conference on Source Code Analysis and Manipulation (SCAM), Adelaide, SA,

Australia, 2020, pp. 143-148.
doi: 10.1109/SCAM51674.2020.00021.

(F. H. da Costa et al.)

3.1 Introduction

The Android operating system is the most widely used mobile platform, dominating the
marketplace of smartphones, tablets, and others electronic devices. Due to this popularity,
the number of incidents related to Android malicious software (malware) has significantly
increased [7, 8]. In this context, security issues in Android apps have become a relevant
research topic, and many techniques have been developed to identify malicious software
and vulnerabilities in Android apps [8]. For instance, researchers have explored the use
of dynamic analysis tools and test case generators to mine sandboxes, whose goal is to
protect Android users from malicious behaviors [13].

The main idea of mining sandboxes is to explore the set of calls to sensitive API
methods, using test case generation tools. These tools, explore apps behaviors based on
their sensitive APIs. A sandbox builds upon the calls to these sensitive Android APIs,
during the execution of test cases (exploratory phase). The sandbox could then block
future calls to other sensitive resources, which diverge from those found in the exploratory
phase. Using this approach, the more efficient the test generating tool is (for instance, in
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terms of code coverage), the more accurate should be the sandbox (in terms of malware
identification).

Previous research studies have investigated the effectiveness of mining sandboxes, us-
ing automated testing tools, to compare the performance of test generation tools to mine
sandboxes. For instance, Bao et al. [3] present the results of an empirical study compar-
ing 5 automated testing tools (DroidMate, Monkey, GUIRipper, Puma, and Droidbot)
for mining sandboxes. The results show that DroidBot was more efficient to detect mal-
ware in a dataset comprising 102 pairs of benign and malign apps. Nonetheless, the field
of automatic test generation of mobile apps is everything but listless—many promising
automatic test generation tools have been recently proposed [106, 107], which might out-
perform previous tools that have been used to mine sandboxes. For instance, Humanoid
generates human like test inputs using deep learning techniques, and empirical studies
suggest that it leads to a best code coverage than all the other aforementioned tools [71].

That is, along with the research advancements in the area of test case generation, new
solutions are constantly emerging, and researchers and practitioners (including ourselves)
have come up against technical difficulties in to reproduce the previous studies that com-
pare test case generation tools to mine sandboxes. We argue that this problem is mostly
due to the lack of a benchmark support, that can assist researchers and practitioners in
this timely task.

As an approach to mitigate this problem, here we introduce DroidXP, a benchmark
to help researchers and practitioners to integrate test case generation tools and compare
their performance on mining sandboxes to the Android platform.

3.2 DroidXP Principles: A Benchmarking Metaphor

Benchmarking is the activity of measuring and evaluating the relative performance of an
asset (e.g., an algorithm or tool) against the performance of another asset—considering
well-defined conditions [108]. Therefore, the objective is to make comparisons between
different solutions that share a similar purpose, or between different versions of the same
System Under Test (SUT). To make the comparisons, some measurement instruments
are necessary; to collect a set of metrics that are relevant for a given domain. DroidXP
has been designed to compare the performance of test generation tools to mine Android
sandboxes.

According to Bouckaert et al. [108], one can collect primary and secondary metrics
while benchmarking computational assets. Primary metrics are those collected directly
from the SUT, and secondary metrics are those concerning the environment in which
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the SUT is operating. In our benchmark, we are mostly interested in two primary: test
coverage and number of detected malwares.

In every benchmarking process, a well-defined setup is a fundamental concern that
must be considered before assessing the SUTs. For instance, in the context of DroidXP,
our setup corresponds to (a) the corpus of Android apps (pairs of benign/malicious apps
we use in the analysis), (b) the maximum execution time of each test case generation tool
(the systems under test), and (c) the number of repetitions in the experiments. These
elements are sufficient to evaluate several scenarios, which can support the research on
mining sandbox. The response variables are the means we use to compare the SUTs. As
mentioned, we consider two response variables: test coverage and number of malwares
each tool detects.

Benchmarks also take into account another important aspect, which brings more ac-
curacy for the research activity: comparability. Since test generation tools rely on non-
determinism, the different executions of a tool (repetitions) in the same settings might
produce different outcomes (in terms of code coverage and malware detection). Since we
have to produce a close result for comparisons, we use the average of the response variable
collected on a number of n repetitions.

3.3 DroidXP Benchmark

Figure 3.1: Benchmark architecture

To mitigate those problems, we first conducted a domain engineering to identify the
main requirements for using the test case generation tool. The results of this domain
engineering, together with the principles that we discussed in the previous section, guided
the DroidXP implementation decisions.

For instance, DroidXP relies on a simple Command Line Interface (CLI) that favors
the execution and configuration of the benchmark. DroidXP also relies on DroidFax [23],
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a tools that instruments Android apps and collects relevant information about their ex-
ecution (using the test case generation tools). DroidFax already collects code coverage
information and the set of sensitive APIs a given app calls during a test execution.

We implemented DroidXP using the Python programming language (version 3). The
reasons for using Python include: (a) a rich set of libraries for writing CLIs, for simplifying
the process of system calls, and for implementing data analysis; (b) support for object-
oriented constructs and reflection (mechanisms we used to create the DroidXP extension
points); and (c) the familiarity the researchers had with the language

The DroidXP CLI provides two commands: a command that lists all test case gener-
ation tools (executing the project with the option “list-tools”) that had been integrated
into the benchmark; and a command that performs the execution of the benchmark, which
can be configured using the following parameters:

• -tools: Specifies the test tools used in the experiment

• -t: Specifies the threshold (in seconds) for the execution time in the experiment

• -r: Specifies the number of repetitions used in the experiment

• -output-format: Specifies the output format

• –debug: Specifies to run in DEBUG mode (default: false)

The DroidXP architecture relies on the pipes-and-filters architectural style [109] (Fig-
ure 3.1), and includes three main components; where each component is responsible for a
specific phase of the benchmark (instrumentation, execution, and result analysis).

3.3.1 Phase 1: Instrumentation

In the first phase, a researcher must define the corpus of APK files DroidXP should
consider during a benchmark execution. After that, DroidXP starts the DroidFax service
that instruments each APK file, so that DroidXP would be able to collect data about each
execution. To improve the performance of the benchmark, the instrumentation phase runs
only once for each APK. In this phase, the DroidFax tool also runs some static analysis
procedures, to collect the number of methods and classes of each app, which is a necessary
information to estimate code coverage.

3.3.2 Phase 2: Execution

In this phase, DroidXP installs an (already instrumented) APK file into an Android
emulator, and then executes a test case generation tool during a period of time. This
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process repeats for every test case generation tool and APK files. To provide repeatability
of the experiment, DroidXP removes all data stored in the emulator before starting a new
execution. That is, every execution uses a fresh emulator, without any information that
might have been kept during previous executions.

We designed the benchmark so that it is relatively easy to add new test case generation
tools. To achieve this goal, we leverage the Strategy Design pattern [110], which sets a
contract between a family of classes that, in our case, abstracts the specificities for running
each tool we want to integrate into DroidXP. Listing 3.1 shows the contract a developer
must override to integrate a new tool. According to this contract, one have to: (a)
implement a class that inherits from ToolSpec, define constructors that calls the super
constructor, passing the name, the description, and the process id as arguments, and (c)
implement the execute method, which receives as argument the path of an APK file and
a timeout.

Listing 3.1: ToolSpec Sample

class ToolSpec ( AbstractTool ):

def __init__ (self ):

super (ToolSpec , self ). __init__ (

"Test Generator Name",

"Test Generator Description ",

" process_id "

)

def execute (self , path , timeout ):

# Execute test generator ...

DroidXP uses the last parameter to kill the execution process on the emulator after
a timeout event throws. This step is necessary to provide a fresh environment for the
next test execution. The actual logic for executing a specific tool resides in the execute
method, so it is the responsibility of a developer to set up all configuration necessary to
run a specific test case generation tool. We have already integrated the following tools
into DroidXP.

(a) Monkey is a Google testing utility that generates pseudo-random streams of user
events.

(b) DroidBot is a test input generator for Android, which sends random or scripted
input events [20].

(c) DroidMate is an automated execution generator / dynamic analysis engine for An-
droid apps [16].
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(d) Sapienz is a multi-objective approach to automated input test generation for An-
droid [111].

(e) Humanoid is a tool that uses deep learning techniques to explore Android apps,
mimicking the human behavior [71];

3.3.3 Phase 3: Result Analysis

During the execution, all the data that is required to compute the results are provided
by Logcat [112], one of the Android SDK’s native tools and is a command-line tool that
dumps a log from the Android emulator. Thus, the only part of the log that is analyzed
in this phase is the messages sent by the methods inside the Android app that were
instrumented on the first phase using the DroidFax tool.

Droidfax computes the coverage each test achieved and which sensitive API was ac-
cessed during the execution of that test. That last information is required to compute the
test generator performance in identifying malicious apps by spotting differences between
the sensitive API accessed by each version of an app. This information is vital to the
measurement of the test generator performance and qualification. After this phase, the
benchmark outputs the results of the experiment, which is informing the performance of
one or more testing generator tools in mining sandboxes.

3.4 Empirical Study

3.4.1 Study Settings

This empirical study aims to reproduce a previous research work on mining sandboxes [3]
and to experiment with the DroidXP usage. Similarly to the previous study, here we
also leverage two metrics to compare the performance of test case generation tools: code
coverage and the number of detected malware. For code coverage, we actually use the
percentage of application methods each tool traversed—during the execution phase. We
also use the same pairs of apps of the previous study—a corpus that contains a sample of
102 pairs (benign/malign) of apps from Androzoo [113].

We investigated the following questions in our study:

(RQ1) What is the performance of each tool in terms of the number of detected malware?

(RQ2) What is the strength of the correlation between code coverage and the number of
detected malware?
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(RQ3) What is the relationship between the coverage rate and the accuracy of each tool
in detecting malicious apps?

Similarly to the work of Bao et al. [3], we conducted two experiments. In the first, we
executed the benchmark considering all 102 apps in our corpus, and an execution timeout
of one minute. We used the first experiment to answer the first research question (RQ1).
In the second, we considered a subset of the apps in our corpus, comprising only 10 apps;
and executed the benchmark in three different configurations of timeout: 1 minute, 5
minutes, and 10 minutes. We used this second experiment to answer the questions RQ2
and RQ3.

3.4.2 Study Results

Figure 3.2 summarizes our findings with respect to the first research question. All tools
were able to correctly identify at least 40% of the malwares. Interesting, in our study, two
recent tools were introduced, and its efficiency was presented compared to other existing
tools: Sapienz (42%) and Humanoid (56%). These tools have not been considered in the
previous work. Nonetheless, we realized a different performance of the tools DroidMate,
DroidBot, and Monkey; in comparison with the results of the previous study [3]. As a
future work, we will investigate the possible reasons for this difference.
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Figure 3.2: Summary of the percentage of malware correctly detected.

Figure 3.3 summarizes our findings addressing the second research question (RQ2). We
realized two interesting findings: first, Monkey and Humanoid outperform the remaining
tools in terms of code coverage, when executing in the first two configuration: Config-(a)
(1 minute) and Config-(b) (5 minutes). Surprisingly, Humanoid led to a smaller code
coverage for Config-(c) (10 minutes) than for Config-(b). Moreover, we did not realize
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any benefit of increasing the timeout from five minutes to 10 minutes, when considering
the code coverage criteria.
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Figure 3.3: Summary of method coverage over the tools.

Finally, we answered our last research question (RQ3) using the Spearman correla-
tion test. In this way, we estimated the strength of the correlation between method
coverage and number of detected malwares. The results reveal a moderate (p-value =
0.68), negative correlation (ρ = −0.31) between these measurements. That is, improving
the performance of code coverage might not directly contribute to the performance of
detecting malware.

3.4.3 Discussion and Limitations

Our empirical study allowed us to experiment with DroidXP. We successfully integrated
five different tools and reproduced a previous research work [3]. Nonetheless, some of our
results differ from the work by Bao et al. [3]. This might have occurred because either
we could not reproduce the same settings of the previous work or DroidXP somehow
impacted the performance of the tools. We will investigate this issue as a future work.
Another limitation of our study is that DroidXP did not collect the code coverage metric
for the Sapienz tool. It is not clear to us the reason for this problem. However, we were
not able to collect Sapienz coverage even when executing it apart from DroidXP.

3.5 Related Work

To the best of our knowledge, this is the first work that proposed a Benchmark tool
for test case generation. However, many works present a comparative study of the
main existing test input generation tools for Android [25][3]. Furthermore, other pa-
pers [20][107][114][16][111] providing a set of automated input generators that could be
measured and analyzed by our proposed tool. Li et al. proposed in [20], DroidBot,
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a UI-guided test input generator for Android apps, that support model-based test in-
put generation. In this paper, the authors show the comparison between DroidBot and
Monkey[17] in a proof of concept example of using DroidBot in malware analysis, which
could have been easily accomplished in our benchmark tool. From the same authors,
other GUI test input generator for Android, described as Humanoid [71], is a Droidbot
evolution and presents a proposal that is able to generate humans like tests inputs, using
deep learning. This work presents comparisons between state of the art testing tools,
and presents higher tests coverage results. [114] Propose Stoat, another model-based test
input generation. The paper presents comparisons between 3 other tools, exposing cover-
age line, bugs and crashes statistics, but does not focus on malware detection capabilities.
[111] Proposed Sapienz, a test input generator tool that performs static and dynamic
analysis and conducts a benchmark study, between 2 other tools, presenting crashes de-
tected and coverage rate. All these studies are possible to be reproduced at DroidXP,
which has an easier integration with other tools that emerge.

3.6 Final Remarks

The DroidXP tool is a first attempt to create a benchmark tool to assist researchers
and practitioners in developing new test generating tool solutions, for mining Android
sandboxes, by providing metrics and graphics that bring performance comparison against
other. A case study over five test generator tools, including two new tools, proved that
DroidXP is a good solution, to compare test generation tools. In our solution was proposed
tree extensions, where it is possible integrate new tools for analysis simply, is possible
change the Apps set to be analyzed, and it is possible choose report type for wished
format. As future work, we plan extend the project for new issue analysis and extend the
benchmark, not just focused on test generation tools for mining Android sandboxes, but
test generation tools in general. We also plan extend the benchmark to test the efficiency
of the combination of two or more test case generation tools. The source code of DroidXP
can found at GitHub [115].
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Dissecting the MAS approach

Exploring the Use of Static and Dynamic Analysis to Improve
the Performance of the Mining Sandbox Approach for

Android Malware Identification

This chapter corresponds to our paper published in the Journal of Systems and
Software, Volume 183, 2022, 111092, ISSN 0164-1212.

doi: https://doi.org/10.1016/j.jss.2021.111092.
(F. H. da Costa et al.)

4.1 Introduction

Almost two-thirds of the world use mobile technologies [116], and the Android Operating
System has dominated the market of smartphones, tablets, and others electronic devices
[117]. Due to this growing popularity, the number of incidents related to Android malicious
software (malware) has significantly increased. In only three years, researchers reported
a substantial increase in the population of Android malware: from just three families and
a hundred samples in 2010 to more than a hundred families with thousands of samples
in 2013 [7, 8]. Security issues in Android software applications 1 have become a relevant
research topic, and many techniques have been developed to identify vulnerabilities in
Android apps [11], including the use of static analysis algorithms either to identify privacy
leaks or to reveal the misuse of cryptographic primitives [14, 15], for instance.

Another alternative for protecting users from Android malicious behavior consists in
the use of dynamic analysis to mine Android sandboxes [13]. The mine sandbox approach

1In this chapter, we will use the terms Android Applications, Android Apps and Apps interchangeably,
to represent Android software applications

35



Chapter 4 – Dissecting the MAS approach

starts with an exploratory phase, in which a practitioner takes advantage of automatic
test case generator tools that explores an Android application while recording the set of
sensitive APIs the app calls. . This set of senstivie calls comprises a sandbox infrastruc-
ture. After the exploratory phase, the sandbox might then monitor any call to sensitive
APIs while a user is running the app, blocking the calls that have not been identified dur-
ing the exploratory phase—thereby protecting Android users from additional malicious
behavior [13]. Jamrozik et al. argue in favor of dynamic analysis for mining sandboxes, in-
stead of using static analysis—mostly because of the overapproximation problem: “static
analysis often assume that more behaviors are possible than actually would be” [13]. In
addition, code that uses dynamic features (such as reflection) poses additional challenges
to static analysis algorithms—even though dynamic features of programming languages
are often used to introduce malicious behavior. Even though these claims are reasonable,
previous research results do not present empirical assessments about the limitations of
static analysis to mine sandboxes. Consequently, it is not clear whether and how both
approaches (dynamic and static analysis) could complement each other in the process of
mining Android sandboxes.

The lack of understanding about static and dynamic analysis complementing each
other also appears in the work of Bao et al. [3] (hereafter BLL-Study), which presents
an empirical study that explores the performance of dynamic analysis for identifying
malicious behavior using the mining sandbox approach.

Their study leverages DroidFax [23] to instrument 102 pairs of Android apps (each
pair comprising a benign and a malicious version of an App) and to collect the information
needed to mine sandboxes (that is, the calls to sensitive APIs). Although the authors
report a precision of at most 70% of dynamic analysis tools to differentiate the benign
and malicious versions of the apps, the authors ignore the fact that DroidFax statically
analyzes the Android apps and also records calls to sensitive APIs (besides instrumenting
the apps). As we discuss in this chapter, this DroidFax static analysis component leads to
an overestimation of the performance of the dynamic analysis tools for mining sandboxes
and might have introduced a possible threat to the conclusions of that work. In the
security domain, overestimating the performance of a technique for malware identification
brings serious risks, and we show here that DroidFax inflated significantly the performance
of the dynamic analysis tools for mining sandboxes, as reported in the BLL-Study.

The goal of this chapter is two fold. First we present the results of an external, non-
exact replication [118] of the BLL-Study. To this end, we take advantage of DroidXP,
a tool suite that helps researchers (including ourselves) to integrate test case generation
tools and compare their performance on mining Android sandboxes. We discussed the
design and implementation of DroidXP in a conference paper [24], which also includes
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an initial evaluation of DroidXP. As a matter of fact, the results of the first DroidXP
evaluation revealed a possible overestimation in the performance of dynamic analysis
tools as reported in the BLL-Study—which in the end motivated us to conduct the non-
exact replication of that study. Here we extend our previous work with a couple of
customizations of DroidXP, which allowed us to reproduce the BLL-Study by means of
a serie of new experiments that reveal the actual performance of the dynamic analysis
tools. Section 4.2.1 revisit the DroidXP design, while Section 4.2.2 discuss the setup of
our replication study.

Second, in this chapter we also explore how a static analysis approach (based on
taint analysis) compares and complements the mining sandbox technique for identifying
malicious behavior that infects benign applications. The idea here is to compare the
dataflows from source to sink statements computed using two executions of the FlowDroid
infrastructure [22]: one execution that analyses a benign version of an Android app and
one execution that analyses a malicious version. We consider that the taint analysis
approach is able to identify a malware whenever we find a dataflow from a source to a
sink in the second execution that does not appear in the first one. We detail the settings
of this taint analysis study in Section 4.2.3

Altogether, this chapter brings the following contributions:

• A replication of the BLL-Study that better clarifies the performance of dynamic
analysis tools for mining Android sandboxes. The results of our replication (Sec-
tion 4.3.1) give evidence that the previous work overestimated the performance of
the dynamic analysis tools—that is, without DroidFax (an independent component
used for running the BLL-Study experiment), the performance of the tools drop
between 16.44% to 58%.

• A broad comprehension about the role of static analysis tools for mining sandboxes,
showing that we can benefit from using both static and dynamic analysis for de-
tecting malicious Android apps. In addition, we give evidence that a well known
static analysis approach, based on taint analysis, leads to a performance similar to
the dynamic analysis approach for diferenciating benign and malicious versions of
the same app (Section 4.3.2).

• A reproduction package of our study that is available online, including scripts for
statistic analysis 2 and tooling for reproducing and extending our study. The repos-
itory for DroidXP is available at GitHub3.

2https://github.com/droidxp/paper-replication-package
3https://github.com/droidxp/benchmark
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4.2 Study Settings

Our research work aims to better understand the use of static analysis to mine Android
sandboxes and explore the benefits of combining taint analysis with the mine sandbox
approach for identifying malicious behavior. On the one hand, Jamrozik et al. suggest
that a static analysis approach for mining sandboxes might be ineffective—due to over-
approximation problem [13]. However, to the best of our knowledge, there is no empirical
study comparing static and dynamic analysis for mining sandboxes. On the other hand,
the BLL-Study explored the mining sandbox approach by comparing the performance of
five dynamic analysis tools (DroidMate, DroidBot, PUMA, GUIRipper, and Monkey)
for identifying malicious behavior. Nonetheless, their research also involved an external
static analysis component (DroidFax) whose impact on the results was not measured—
in terms of malware identification. This lack of understanding about the implications
of static analysis for mining sandboxes motivates our research, which investigates the
following research questions.

(RQ1) What is the impact of the DroidFax static analysis algorithms on the results of the
BLL-Study? We estimate the impact in terms of the number of detected malwares.

(RQ2) What is the effective performance of each sandbox, in terms of the number of de-
tected malware, when we discard the contributions of the DroidFax static analysis
algorithms?

(RQ3) What are the benefits of using taint analysis algorithms to complement the dy-
namic analysis approach for mining sandboxes, in terms of additional malwares
identified?

Answering the research questions RQ1 and RQ2 allows us to better understand the
relevance of combining static and dynamic analysis for mining Android sandboxes. More-
over, exploring RQ1 and RQ2 can reveal a possible overestimation of the performance of
the dynamic analysis tools in the BLL-Study. Answering research question RQ3 allows us
to open up the possibility of finding new strategies for malware detection, complementing
the performance of dynamic analysis through the use of static analysis algorithms. We
conducted two empirical studies to answer the research questions above. We address the
research questions RQ1 and RQ2 in the first empirical study, whose goal is to conduct
a non-exact replication of the BLL-Study. We conduct the first empirical study using
DroidXP [24] (Section 4.2.1), a tool that simplifies the execution of experiments that
compare the performance of dynamic analysis tools in the task of identifying malwares,
using a mining sandbox approach. We present the study settings of the first empirical
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study in Section 4.2.2. In the second empirical study we use FlowDroid [11] to investigate
the suitability of taint analysis algorithms to complement the mining sandbox approach
for identifying malwares, and thus it targets our third research question (RQ3). We
present the settings of the second empirical study in Section 4.2.3.

4.2.1 The DroidXP benchmark

We designed and implemented DroidXP to systematically assess and compare the perfor-
mance of test generation tools for mining android sandboxes. It allows the integration and
comparison of test case generation tools for mining sandboxes, and simplifies the repro-
duction of the studies. DroidXP relies on a simple Command Line Interface (CLI) that
simplifies the integration of different test generation tools and favors the setup and exe-
cution of the experiments. DroidXP also relies on DroidFax, which instruments Android
apps and collects relevant information about their execution, including the set of sensitive
APIs a given app calls during a test execution. DroidFax also collects inter-component
communication (ICC) using static program analysis.

The DroidXP CLI provides commands for listing all test case generation tools (exe-
cuting the project with the option “list-tools”) that had been integrated into the tool and
commands for executing the experiments. An experiment run can be configured according
to several parameters, including:

• -tools: Specifies the test tools used in the experiment

• -t: Specifies the threshold (in seconds) for the execution time in the experiment

• -r: Specifies the number of repetitions used in the experiment

• -output-format: Specifies the output format

• –debug: Specifies to run in DEBUG mode (default: false)

• –disable-static-analysis: Disable DroidFax static analysis phase (default: false)

Figure 4.1 shows the DroidXP architecture, based on the pipes-and-filters architectural
style [109]. The architecture includes three main components; where each component is
responsible for a specific phase of the experiments execution (instrumentation, execution,
and result analysis).

Phase 1: Instrumentation

In the first phase, a researcher must define the corpus of APK files DroidXP should
consider during an experiment execution. After that, DroidXP starts the DroidFax service
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Figure 4.1: DroidXP architecture

that instruments each APK file, so that DroidXP would be able to collect data (e.g., calls
to sensitive APIs) about each execution. To improve the performance of DroidXP, the
instrumentation phase runs only once for each APK. In this phase, the DroidFax tool
also runs some static analysis procedures—when the option –disable-static-analysis
is not set.

Phase 2: Execution

In this phase, DroidXP installs an (already instrumented) APK file into an Android
emulator, and then executes a test case generation tool during a period of time. This
process repeats for every test case generation tool and APK files. To provide repeatability
of the experiment, DroidXP removes all data stored in the emulator before starting a new
execution. That is, every execution uses a fresh emulator, without any information that
might have been kept during previous executions. It is relatively easy to add new test
case generation tools into DroidXP. Indeed, every new tool must override two methods of
a Tool abstract class (according to the Strategy Design pattern [110].

Phase 3: Result Analysis

During the execution of the instrumented apps, all data that is relevant to our research
is collected by Logcat [112], one of the Android SDK’s native tools. Logcat dumps a log
from the Android emulator while the already instrumented app is in execution. The part
of the log we analyze in this phase comprises the data sent by the methods within the
Android app that were instrumented on the first phase using the DroidFax tool.

This data includes method coverage from the execution of each test generator tool and
the set of sensitive APIs the app calls during its execution. This set of calls to sensitive
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APIs is necessary to estimate the test generator performance in identifying malicious
apps—by spotting differences between the sensitive API accessed by each version of an
app (benign or malign). In the end, DroidXP outputs the results of the experiment, which
gives the performance of one or more testing generator tools in mining sandboxes.

We used the DroidXP infrastructure to conduct our first empirical study, whose set-
tings we present in the following section.

4.2.2 First Study: A replication of the BLL-Study

The BLL-Study reports the results of an empirical study that compares the performance
of test generation tools to mine Android sandboxes [3]. Since the BLL-Study does not
compute the possible impact of DroidFax into the performance of the test generation tools,
here we replicate their work to understand the impact of the DroidFax static analysis
algorithms into the BLL-Study results.

Our replication differs from the original work in a few decisions. First, here we isolate
the effect of the DroidFax static analysis algorithms, in the task to identify malicious apps.
In addition, although we use the same dataset of 102 pairs of Android apps used in the
BLL-Study, here we discarded 6 pairs for which we were not able to instrument—out of the
102 pairs used in the original work, originally shared in the AndroZoo repository [113].
We also introduced a recent test generator tool (Humanoid [71]), which has not been
considered in the previous work. Finally, we extended the execution time of each test
generation tool, executing each app from the test generation tool for three minutes (instead
of one minute in the original work), and built the sandboxes after executing each test
generation tool three times—the original work executed each test generation tool only
once. It is important to note that our goal here is not to conduct an exact replication of
the BLL-Study, but instead understand the role of the DroidFax static analysis algorithms
in the performance of test case generation tools for mining sandboxes.

Besides Humanoid, our study considers three test generation tools used in the BLL-
Study: DroidBot [20], DroidMate [16], and Monkey [17]. We selected DroidBot and
DroiMate because they achieved the best performance on detecting malicious behavior—
when considering the 102 pairs of Android apps (B/M) in the BLL-Study. It is important
to note that here we used a new version of DroidMate (DroidMate-2), since it presents sev-
eral enhancements in comparison to the previous version. We also considered the Google’s
Monkey open source tool, mostly because it is the most widely used test generation tool
for Android [119]. Monkey is part of the Android SDK and does not require any additional
installation effort. We included Humanoid in our study because it is a recent tool that
emulates realistic users, creating human-like test inputs using deep learning techniques.
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Data Collection

Similarly to the BLL-Study, besides method coverage information, our experiments record
every call to sensitive methods of the Android platforms, while a given test case generation
tool is running. We consider the same set of 97 sensitive methods from the AppGuard
privacy-control framework uses [120].

We executed DroidXP using two configurations. In the first (named WOS), we ex-
ecuted DroidXP using the dataset of 96 pairs of Android apps—each pair including a
benign and a malign version, the four test case generation tools (DroidBot, DroidMate,
Monkey, and Humanoid), and the –disable-static-analysis option of DroidFax, which
disables the execution of the DroidFax static analysis component from the experiment.
The WOS configuration runs the test case generation tools for three times, using a time
limit of three minutes. In the second configuration (named WS), we executed DroidXP
using the same dataset of 96 pairs of Android apps, though also executing a fake test case
generator tool (named Joker) without the –disable-static-analysis option. Joker
simulates a test tool that does not run the Android apps during an experiment execution,
and its usage allow us to estimate the actual performance of the DroidFax static analysis
component.

Using the WS configuration, the Execution Phase of DroidXP does not collect any
call to sensitive APIs, and thus we can estimate the performance of the static analysis
component of DroidFax (answering RQ1). Differently, the WOS configuration disables
the static analysis component of DroidFax and we could better estimate the true perfor-
mance of the test case generation tools for mining android sandboxes (answering RQ2).
For comparison purpose, we also executed the four test case generation tools using the
DroidFax static analysis component.

Data Analysis

DroidXP produces a dataset with the sensitive APIs that the benign / malign versions
of an app call, during the execution of each test case generation tool. We estimate the
performance of a test case generation tool by considering the percentage of malwares in
our dataset its resulting sandbox is able to identify .

Recall that we build a sandbox during the exploratory phase of the mining sandbox
approach. This exploratory phase records the set of sensitive APIs a benign version of
an app calls—during the execution of a test case generation tool. Similarly to the BLL-
Study, we consider that a sandbox of an app identifies a malware whenever the malicious
version makes a call to a sensitive API that has not been recorded during the exploratory
phase (see Figure 4.2).
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Figure 4.2: Overview of our approach for malware identification in the first study.

To sum up, in order to analyse the performance of the test case generation tools
(including Joker), we just have to compare the calls to sensitive APIs made by the benign
and malign versions of the apps, during the execution of the tools. In the end, we generate
a set of observations, where each observation contains the tool name, the number of the
repetition (in the range [1..3]), a boolean value reporting the use of the DroidFax static
analysis component, and a boolean value indicating whether or not the malware has been
identified. We use descriptive statistics and plots to compare the performance of the
tools and answer RQ1 and RQ2. We also use Logistic Regression [121, Chapter 4] to
understand the statistical relevance and the contribution of each feature (tool, repetition,
DroidFax static analysis component) to malware identification. Our hypothesis here is
that the DroidFax static analysis component has a positive effect on the performance of
the sandboxes to identify malwares.

4.2.3 Second Study: Use of Taint Analysis for Malware Identi-
fication

In the second empirical study we investigate whether or not a taint-based static analysis
approach is also promising for identifying malwares, given a version of an app that we
can assume to be secure (goal of research question RQ3). To this end, we leverage the
FlowDroid taint analysis algorithms for Android apps (version 2.8), in order to identify
dataflows that might lead to the leakage of sensitive information. Our goal here is to
investigate if it is possible to detect malicious behavior by means of the divergent source-
sink paths that FlowDroid reveals after analysing a benign and a malign versions of an
Android app.
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Figure 4.3: Overview of our approach in the second study.

Data Collection

FlowDroid takes as input an Android Application Package (APK file) and a set of API
methods marked either as source or sink (or both). Source methods are those that access
sensitive information (e.g., a method that access the user location), while sink methods
are those that might share information with external peers (e.g., a method that sends
messages to a recipient). We rely on the source-sink definitions of the FlowDroid imple-
mentation [22, 122], which involves a curate list of source and sink methods (including
callbacks and other Android API methods of interest). FlowDroid then uses a context,
flow, and field sensitive analysis to identify dataflow paths from sources to sinks [22].

Our data collection approach involves three steps (see Figure 4.3). In the first, we
execute FlowDroid to mine the source-sink paths from a benign version of an app, and
then enumerate a set (S1) with the possible dataflows between sources and sinks. All paths
in S1 are considered secure in our analysis. In the second step we repeat the FlowDroid
execution, though considering the malicious APK version of the app. This leads to a
second set (S2) of source-sink paths.

It is important to note that not all source-sink paths are malign, and then we follow a
specific methodology to identify malwares using taint analysis. That is, we only report a
malware when FlowDroid finds an additional source-sink path in the malicious version of
an app, which has not been identified when analysing the benign version. Therefore, in the
third step we compute the difference (S3) between the sets S2 and S1 (i.e., S3 = S2\S1).
If the set S3 is not empty, we assume that FlowDroid has identified the malware.

In this second study we use the same dataset of 96 pairs of Android apps (B/M) used
in the first empirical study.
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Data analysis

We use two metrics in this second study: the total number of malicious apps FlowDroid
is able to find and the execution time for running the taint analysis algorithm for each
app. Similarly to the first empirical study, we use descriptive statistics and plots to
compare the performance of the taint analysis and mining sandbox approaches. We also
use Logistic Regression [121, Chapter 4] to better understand the statistical significance of
the benefits of using FlowDroid (in comparison to the DroidFax static analysis component
only). Our hypothesis here is that FlowDroid outperforms, in terms of the number of
detected malware, the sandbox generated by the DroidFax static analysis component.

4.3 Results and discussion

In this section we detail the findings of our study. We present the results of the first
and second studies in Section 4.3.1 and Section 4.3.2, respectively. In Section 4.4 we
summarize the implications of our study.

4.3.1 Result of the first study: A BLL-Study replication

Our first study is a replication of the BLL-Study. As discussed in the previous section, we
first executed the analysis using the DroidXP benchmark with its default configuration.
Then we repeated the process, however this time we isolate the effect of the static analysis
component of DroidFax. In this way, we could better estimate the performance of the
dynamic analysis tools for mining Android sandboxes. Table 4.1 summarizes the results
of the executions. The columns Exec. (WS) and Exec. (WOS) show the number of
malwares identified when executing each tool with the support of the DroidFax static
analysis algorithms (WS) and without the support of DroidFax static analysis algorithms
(WOS). The Impact column shows (in percentage) to what extent the DroidFax static
analysis algorithms influences the performance of the sandboxes created after executing
the test generation tools. We calculate the impact using Eq. (1).

Impact = (Exec. (WS) − Exec. (WOS)) × 100
Exec. (WS) (4.1)

Table 4.1 shows that the impact of DroidFax in the results is significant, ranging from
16.44% (DroidBot) to 51.79% (Humanoid). Note that, in the BLL-Study, the authors
do not present a discussion about the influence of DroidFax in the performance of the
test generation tools, even though this influence is not negligible. Considering the Joker
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tool, our fake test generation tool that does not execute the apps during the benchmark
execution, DroidFax improves the performance in 100%. This result is expected, since
the Joker tool does not execute any dynamic analysis. Next we discuss the result of each
individual test generation tool.

Table 4.1: Summary of the results of the first study.

Tool Exec. (WS) Exec. (WOS) Impact (%)

DroidBot 73 61 16.44
Monkey 71 56 21.13
DroidMate 68 52 23.53
Humanoid 56 27 51.79
Joker 42 0 100.00

DroidBot in the first execution (Exec. WS) led to a sandbox that detected a total of 73
malware among 96 pairs present in our dataset (76.04%), detecting more apps with
malicious behavior than any other tool. Similar to the BLL-Study, DroidBot is the
test case generation tool whose resulting sandbox detected the largest number of
malicious apps. Moreover, in our second execution (Exec. (WOS)), removing the
DroidFax static analysis support reduced the DroidBot performance in 16.44%, the
smaller impact we observed among the tools.

Monkey in the first execution (Exec. (WS)) produced a sandbox that detected 71 out
of the 96 pairs of Android apps. Contrasting, in the original study, the Monkey’s
sandbox detected 48 malwares within the 102 pairs (47.05%). This difference might
be due to the fact that Monkey uses a random strategy for test case generation and
here we considered the outcomes of three executions—while in the BLL-Study, the
authors consider the outcomes of one execution. Considering our second execution
(Exec. (WOS)), there is a reduction of 21.13% in the Monkey’s performance, leading
to a sandbox that was able to detect 56 malwares.

DroidMate in the first execution (Exec. (WS)) led to a sandbox that detected 68
apps with malicious behavior (70.83%). In the BLL-Study study, DroidMate also
detected 68 malwares, though considering the 102 pairs of apps used in the original
study. In the second execution (Exec. (WOS)), without the DroidFax static analysis
algorithms, the resulting sandbox’s performance drops by 23.53%, being able to
detect 52 out of the 96 pairs of Android apps.

Humanoid showed the worst performance, even though a previous work [71] presented
that it leads to the highest number of lines coverage in comparison to Monkey,
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DroidBot, and DroidMate. This might suggest that, since Humanoid learn how
humans interact with apps, and use the learned model to guide test generation, at
simulate environment, this method to generate test inputs are less effective to build
Android sandbox, in comparison with techniques that rely on random testing (such
as Monkey). In the first execution (Exec. (WS)), the resulting Humanoid sandbox
identified 56 malwares in our dataset (58.33%). Humanoid was the most affected in
the second execution (Exec. (WOS)), whose resulting sandbox presents a reduction
of 51.79% in the number of detected malwares. Since the BLL-Study did not explore
Humanoid, we do not have a baseline for comparison with the previous work.

Joker is our fake test case generation tool that help us understand the performance
of the DroidFax static analysis algorithm for mining sandboxes. We integrated
Joker into the DroidXP benchmark as an additional test case generation tool that
does not run the Android apps. As a result, the analysis using Joker reveals the
performance of DroidFax static analysis algorithms alone. For the first execution,
with the DroidFax static algorithms enabled, even though Joker does not execute
the Android apps, its resulting sandbox detected 43.75% of the malwares. For
the second execution, that is, disabling the DroidFax static analysis algorithm, the
resulting Joker sandbox was not able to detect any malware. Therefore, our results
show that DroidFax alone is able to detect more than 40% of the malicious version
of the apps.

Finding 1 Integrating the dynamic analysis tools with the DroidFax static analysis
algorithms improves substantially the performance of the resulting Android sandboxes
for detecting malicious behavior.

The Venn-diagram of Figure 4.4 summarizes how the tools can complement each other.
Note in the diagram that 53 malwares have been detected by all sandboxes generated in
the first execution (with the DroidFax static analysis algorithms), out of the 78 malwares
identified by at least one sandbox. In addition, the DroidMate sandbox did not detect any
malware that had not been detected by the other tools. Differently, the Monkey sandbox
detected three malwares that had not been detected by any other sandbox, the DroidBot
sandbox detected two malwares that had not been detected by any other sandbox, and
the Humanoid sandbox detected one malware that had not been detected by any other
sandbox. Contrasting with the BLL-Study, our results suggest that using DroidMate
in combination with Monkey, DroidBot, and Humanoid does not improve the general
performance of an integrated environment for mining Android sandboxes.
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Finding 2 Our results suggest that one might benefit from using an integrated envi-
ronment that combines Monkey, DroidMate, and Humanoid to mine Android sand-
boxes. Contrasting with the BLL-Study, introducing the DroidMate tool does not
improve the overall performance for detecting malwares using a mining sandbox ap-
proach.

Monkey

Humanoid DroidMate

DroidBot

3
(3.8%)

1
(1.3%)

0
(0.0%)

2
(2.6%)
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0
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53
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Figure 4.4: Venn Diagram highlighting how the sandboxes from the tools can complement
each other.

Altogether, ignoring Joker, our study reveals that from 58.33% (Humanoid) to 76.04%
(DroidBot) of the malicious apps investigated in our study can be detected using the
sandboxes generated after running the test case tools with the support of the DroidFax
static analysis algorithms. We also investigate if the use of the DroidFax static analysis
component leads to a statistically significant benefit on malware identification. To this
end, we build a logistic regression model in the form Malware ∼ Tool+StaticAnalysis+
Repetition. Table 4.2 shows the results of the logistic regression analysis, highlighting that
(a) Humanoid has a negative, though significant impact on malware identification; and
(b) the use of DroidFax static analysis has a positive and significant impact on malware
identification.

Besides that, in the first execution (WS), none of the resulting sandboxes could detect
18 malwares in our dataset (18.75%). According to the Euphony tool [123], 12 of these 18
malwares are adwares, 3 are trojans, 2 are PUPs (Potentially Unwanted Program), and
one is an exploit. At this point, an additional question arises: what are the characteristics
of the malwares that have (not) been identified using the mining sandbox approach?
To explore this question, we take advantage of the dex2jar tool to reverse-engineer all
96 malwares considered in our analysis and computed the diffs of the benign/malicious
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Table 4.2: Results of the Logistic Regression (first study)

Estimate p-value C.I.

Tool [DroidBot] 0.1034 0.4718 (-0.133,0.340)
Tool [DroidMate] -0.0561 0.6955 (-0.292,0.180)
Tool [Humanoid] -0.8910 0.0000 ∗∗∗ (-1.131,-0.651)
Tool [Monkey] -0.0110 0.9390 (-0.247,0.225)
DroidFax static analysis 0.8867 0.0000 ∗∗∗ (0.743,1.031)
Repetition -0.0171 0.7487 (-0.105,0.071)

AIC 3001.07
Num. obs. 2304
∗∗∗ p-value < 0.001

versions of the APPs. The results of this activity are available in our replication package.4

In what follows we dissect a few examples of malwares that at least one of the resulting
was able to identify. After that, we present the characteristics of a malware that none of
the sandboxes was able to detect. Our goal here is to provide a lower-level intuition about
the classes of malware the mining sandbox approach is not able to detect. A reader that
is not interested in these details could skip to Section 4.3.2.

To start with, consider the malicious version of the app com.andoop.flyracing—
which both DroidBot and Humanoid sandboxes could detect in our analysis. In this par-
ticular case, the malicious version changes the Android Manifest file, adding permissions
to receive and send SMS messages (Listing 4.1). Adding these permissions, a malicious
app may get money fraudulently by sending messages without user confirmation, for in-
stance. The pair L:M indicates a code segment that appears in line L of the malicious (M)
version of an app.

After decompiling this malware, we also observed that the malicious version of the
MainService class introduces a behavior that collects sensitive information (the Interna-
tional Mobile Equipment Identity, IMEI) and sends it using an SMS message (Listing 4.2).

Listing 4.1: Diffs in the com.gau.screenguru.finger AndroidManifest file of the mali-
cious version

67:M > <uses - permission android :name=" android . permission . RECEIVE_SMS "/>
68:M > <uses - permission android :name=" android . permission . SEND_SMS "/>

Listing 4.2: Diffs in the malicious version of the class com.android.main.MainService
(app com.gau.screenguru.finger)

492:M > localObject2 = ( TelephonyManager ) getSystemService (" phone ");
493:M > if ( localObject2 != null )
494:M > {

4https://github.com/droidxp/paper-replication-package/blob/master/diff/
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495:M > this .imei = (( TelephonyManager ) localObject2 ). getDeviceId ();
496:M > this .imsi = (( TelephonyManager ) localObject2 ). getSubscriberId ();
497:M > this . iccid = (( TelephonyManager ) localObject2 ). getSimSerialNumber ();
498:M > }
// [...]
519:M > if ("". equals ( this . destMobile )) {
520:M > getDestMobile ();
521:M > }
522:M > sendSMS ( this . destMobile , "imei:" + this .imei)

The malicious version of the app com.happymaau.MathRef also changes the Manifest
file to require additional permissions as well as change the behavior of the app (with ma-
licious code). All sandboxes were able to detect this malware. In this case, the malicious
version of the app changes the Android Manifest file, requiring permissions to access the
network and WiFi states (Listing 4.3). These changes allow an app to view the status of
all networks and make changes to configured WiFi networks.

Listing 4.3: Diffs in the com.happymaau.MathRef AndroidManifest file of the malicious
version.

165 :M > <uses - permission android:name =" android . permission . ACCESS_NETWORK_STATE "/>
166 :M > <uses - permission android:name =" android . permission . ACCESS_WIFI_STATE "/>

The malicious version also introduces a method a, that actually collects network and
WiFi information, like Mac address and the network state (see Listing 4.4). This infor-
mation is then shared using an HTTP request.

Listing 4.4: Diffs in the malicious version of the class com.mn.vymq.b.d (app
com.happymaau.MathRef)

105:M > private String a( Context paramContext )
106:M > {
107:M > String str = (( TelephonyManager ) paramContext . getSystemService (" phone ")). getDeviceId ();
108:M > StringBuilder localStringBuilder = new StringBuilder ();
109:M > localStringBuilder . append (str );
110:M > paramContext = ( WifiManager ) paramContext . getSystemService ("wifi");
111:M > if ( paramContext == null ) {}
112:M > for ( paramContext = null ;; paramContext = paramContext . getConnectionInfo ())
113:M > {
114:M > if ( paramContext != null )
115:M > {
116:M > paramContext = paramContext . getMacAddress ();
117:M > if ( paramContext != null ) {
118:M > localStringBuilder . append ( paramContext );
119:M > }
120:M > }
121:M > return a( localStringBuilder . toString ());
122:M > }
123:M > }

All resulting sandboxes also detected the malicious version of the app ru.qixi.android.smartrabbits.
This particular malware also changes the Android Manifest file, requesting permission to
access the location service (Listing 4.5). This permission allows access to location features,
such as the Global Positioning System (GPS) on the phone, if it is enabled. Malicious
applications can use these features to determine where the phone owner is, which is a
classic and well-documented privacy threat.
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Listing 4.5: Diffs in the com.happymaau.MathRef AndroidManifest file of the malicious
version.

8:M > <uses - permission android:name =" android . permission . ACCESS_COARSE_LOCATION "/>
9:M > <uses - permission android:name =" android . permission . ACCESS_FINE_LOCATION "/>

In addition, the malicious app clandestinely monitors the geographic location of the
user and sink this information to a web server. Listing 4.6 shows how the method c, from
the class named q, collects this sensitive information.

Listing 4.6: Diffs in the malicious version of the class net.crazymedia.iad.d.q (app
ru.qixi.android.smartrabbits)

65:M > private Location c( Context paramContext )
66:M > {
67:M > try
68:M > {
69:M > if ( Arrays . asList ( paramContext . getPackageManager (). getPackageInfo

( paramContext . getPackageName () ,4096). requestedPermissions ). contains
(" android . permission . ACCESS_FINE_LOCATION "))

70:M > {
71:M > paramContext = ( LocationManager ) paramContext . getSystemService (" location ");
72:M > Criteria localCriteria = new Criteria ();
73:M > localCriteria . setAccuracy (1);
74:M > localCriteria . setAltitudeRequired ( false );
75:M > localCriteria . setBearingRequired ( false );
76:M > localCriteria . setCostAllowed ( true );
77:M > localCriteria . setPowerRequirement (1);
78:M > paramContext = paramContext . getLastKnownLocation

( paramContext . getBestProvider ( localCriteria , true ));

79:M > return paramContext ;
80:M > }
81:M > }
82:M > catch ( PackageManager . NameNotFoundException paramContext )
83:M > {
84:M > paramContext . printStackTrace ();
85:M > return null ;
86:M > }
87:M > catch ( Exception paramContext )
88:M > {
89:M > paramContext . printStackTrace ();
90:M > }
91:M > return null ;
92:M > }

This pattern of changing the Android Manifest file and including new method calls
characterizes the classes of malwares for which the mining sandbox approach excels. In
a different vein, the malicious version of the app com.andoop.flyracing is among the
apps that none of the sandboxes could detect. Indeed, the malicious version only changes
the Android Manifest file, modifying the meta-data ADMOB_PUBLISHER_ID. The AdMob
is a monetizing service provided by Google, and changing the AdMob publisher identifier
account redirects the advertisement’s revenue to another destination. Based on this ob-
servation, we envision integrating a different approach that reasons about modifications
to the Android Manifest file and that might complement the mining sandbox approach
into the task for detecting malwares; since the mining sandbox approach is not able to
detect malicious packages that do not introduce new method calls for sensitive APIs.
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Listing 4.7: Diff in the file com.andoop.flyracing AndroidManifest file of the malicious
version. B stands for the benign version, while M stands for the malicious version.

1:B < <meta -data android:name =" ADMOB_ \ PUBLISHER_ \ID"
android:value =" a14cf7346295891 "/>

---
1:M > <meta -data android:name =" ADMOB_ \ PUBLISHER_ \ID"

android:value =" a14f099bfbf3c61 "/>

4.3.2 Results of the second study: Use of Taint Analysis for
Malware Identification

In this second study we used a taint analysis approach to mine differences between the
benign and malicious versions of the 96 Android apps in our dataset. To this end we
leverage the FlowDroid tool, which tracks how sensitive information flows through the
apps using taint analysis algorithms. Regarding accuracy, the taint analysis approach
detected 58 out of the 96 pairs in our dataset (60, 42%). That is, using the taint analysis
implementation of FlowDroid alone outperforms the Monkey, DroidMate, and Humanoid
sandboxes computed in the second execution (without the DroidFax static analysis algo-
rithms). This result shows that static analysis algorithms are promising to complement
the mining sandbox approach.

Finding 3 The performance of FlowDroid to identify malicious behavior is equivalent
to the performance of the mining sandbox approach supported by dynamic analysis
only—i.e., without the DroidFax static analysis algorithms.

Additionally, we investigate if we could benefit from combining the static analysis
strategies from FlowDroid and DroidFax. Figure 4.5 shows a Venn-diagram summarizing
the results. So, when combining the results from FlowDroid and DroidFax, we were able to
detect 67 of the malicious apps (69.79%), a result compatible to the performance we found
as response to the first execution of the test case generation tools—which also considers
the DroidFax static analysis algorithms. More interesting, from those 67 malicious apps
identified, 33 malwares had been found by both FlowDroid and DroidFax, even though
they follow a completely different static analysis approach. Furthermore, FlowDroid shows
to be more effective than DroidFax alone, detecting 25 malicious apps that had not
been detected by DroidFax (while DroidFax detected 9 malicious apps that had not been
detected by FlowDroid). The results of a logistic regression analysis, considering the
model Malware ∼ Tool, where Malware is a response variable indicating if the malware
has been detected or not and Tool is either FlowDroid or the sandbox DroidFax static
analysis component generates, reveals the existence of a significant difference between the
performance of both tools (see Table 4.3).
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Table 4.3: Results of the Logistic Regression (second study)

Estimate p-value C.I.

Tool [FlowDroid] 0.4229 0.0428 ∗∗ (0.080,0.766)
Tool [DroidFax static analysis component] -1.2730 0.0000 ∗∗∗ (-1.560,-0.986)

AIC 334.61
Num. obs. 288
∗∗∗ p-value < 0.001; ∗∗∗ p-value < 0.05

FlowDroid DroidFax

25

(37.3%)

9

(13.4%)

33

(49.3%)

Figure 4.5: Venn Diagram highlighting the possible benefits of integrating FlowDroid and
DroidFax.

Finding 4 Integrating the results of static analysis tools (such as FlowDroid and
DroidFax) seems promising, leading to a performance similar to that achieved when
combining test case generation tools with the DroidFax static analysis algorithms.

The execution of FlowDroid is also feasible: the analysis takes only 32.08 seconds per
app on average, totaling a processing time of 52 minutes to analyze all 96 pairs of Android
apps. Even though the time to execute the FlowDroid analysis depends on the size of
the app, the longest run took only 437 seconds. Figure 4.6 summarizes the FlowDroid
execution time—which most often concludes the execution in less than 50 seconds (32.11
seconds on average, with a standard deviation of 70.04).

Finally, we highlight that FlowDroid was able to detect 4 malwares among the 18
malicious Android apps that had not been detected by the sandboxes constructed in the
first study. Among these four malwares, 2 are trojans, 1 is an exploit, and 1 is an adware.

Finding 5 Although FlowDroid presents a performance similar to that of using the
dynamic analysis approach for mining sandboxes, it was able to detect four additional
malwares (out of the 18) that had not been detected in the first study.
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Figure 4.6: Histogram summarizing the time to execute FlowDroid

4.4 Implications

The results discussed so far bring evidence that the BLL-Study study overestimated the
performance of the dynamic analysis tools in malware identification using the mining
sandboxes. This finding has implications for both researchers and practitioners. First,
we revisit the literature showing that DroidFax alone is also effective for mining sand-
boxes, being able to identify 43.75% of the malwares in our dataset. Moreover, DroidFax
identifies malwares that none of the generated sandboxes were able to find, increasing the
performance of the sandbox in at most 51.79% (in the case of Humanoid).

Table 4.1 in the previous section summarizes this finding: when executing the MAS
approach without the support of DroidFax static analysis, Humanoid’s sandbox could
identify only 27 malwares (28.12% of the malwares in our dataset). Conversely, the
DroidBot sandbox achieved the best performance in terms of the number of detected
malware without the DroidFax support for static analysis, being able to identify 63.54%
of the malwares. The message here is that researchers and practitioners should explore
the use of DroidFax (or a similar tool) in conjunction with dynamic analysis techniques
for mining sandboxes— reviewing the findings of the BLL-Study [3] and enriching the
discussion about the limitations of static analysis for mining sandboxes [13].

In the second study we used FlowDroid to explore a novel approach for malware
identification, which aims to compare the source-sink paths of two versions of an app (one
known to be secure and another that might have been repackage or that might have an
injected malicious behavior). Contrasting with the static analysis limitations discussed
in [13], our findings indicate that this approach is also effective for malware identification.
Indeed, our taint analysis approach using FlowDroid detects several malwares that none
of the sandboxes generated with the dynamic analysis tools (plus the DroidFax static
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analysis component) could identify (see Table 4.4). These result has also implications
for both academia and industry. First, this it reinforces the benefits of integrating both
static and dynamic analysis for malware identification. Second, this finding suggests that
practitioners can benefit from using an integrated approach that combines the mining
sandbox approach with taint analysis for malware identification.

Test Generation FlowDroid Total %
Tool Increase
DroidBot 6 79 82.29
Monkey 7 78 81.25
DroidMate 7 75 78.12
Humanoid 16 72 75.00
Joker 25 67 69.79

Table 4.4: Malwares detected in 96 pair (B/M) increased by the taint analysis approach

4.5 Threats to Validity

As any empirical work, this work also has limitations and threats to its validity. We
organize this section using the taxonomy of Wohlin et al. [124, Chapter 8].

Conclusion Validity is concerned with the issues that might compromise the cor-
rect conclusion about the causal relation between the treatment and the outputs of an
experiment. The use of inadequate statistical methods and low statistical significance are
examples of threats to the conclusion validity. Besides using descriptive statistics and
plots, we also leverage binomial logistic regression to support our conclusions in our two
empirical studies. Indeed, the results of our logistic regression analysis give evidence about
the existence of a true pattern in the data, indicating that the DroidFax static analysis
component increases the performance of the sandboxes we built from the execution of the
dynamic analysis tools (first study) and that FlowDroid outperforms the DroidFax static
analysis component in the task of identifying malwares (second study).

Internal Validity relates to external factors that might impact the independent
variables without the researchers’ knowledge. Our two empirical studies are technology-
oriented [124, 125], which are not subject to learning effect threats. Nonetheless, due to
the random behavior of the test case generation tools, we should not validate the results
of this experiment without considering the presence of random events in the execution.
To mitigate this threat, we have used a configuration of DroidXP that runs multiple times
each tool and computes the average result from those executions. So, we could adequately
compare the results of our experiment with the results of the BLL-Study. Beyond that, we

55



Chapter 4 – Dissecting the MAS approach

tested only 96 of the original 102 pairs of apps in this experiment because the we could
not execute those six pairs of apps due to crashes in the Android emulator. However,
our goal here is not to conduct an exact replication of the previous work, but actually
to better understand how static analysis supports and complements the mining sandbox
approach for malware identification.

Construct Validity concerns possible issues that might prevent a researcher to draw
a conclusion from the experimental results. The design of our first study involves one
treatment (a two-level factor indicating the use or not of the DroidFax static analysis
component) and three independent variables: app id (96 level factor), the test case gen-
eration tool (4-level factor, including DroidBot, DroidMate, Monkey, and Humanoid),
and the 3-level factor repetition (we executed every tool three times for all apps, with
and without the DroidFax static analysis component). The dependent variable indicates
if a malware has been identified by the sandbox of a given test case generation tool built
with (or without) the DroidFax static analysis component (in a particular repetition).
This design leads to a total of 2304 observations, which is in conformance with the rec-
ommendations of Arcuri and Briand [126] for this kind of experiment. Our second study
presents a more straightforward design, comprising a two factor treatment (FlowDroid x
the DroidFax static analysis) and the same set of 96 apps of the first study. The depen-
dent variable indicates if a malware has been identified by FlowDroid or by the sandbox
the DroidFax static analysis component generates. This design leads to a smaller number
of runs, but we still believe that it is sufficient to draw our conclusions (as the results of
the logistic regression indicate).

External Validity concerns whether or not the researchers can generalize the results
for different scenarios. Our study shares some of the threats the BLL-Study had presented.
In particular, here we used the same set of pairs of apps from a piggy-backed dataset
released by Li et al. [127]. That is, using this dataset, we could not cover all categories of
Android malware. Besides that, we only used a small number of four test case generation
tools in this study. To mitigate these threats and enrich the generalization of our research,
we make available DroidXP, which does allow future experiments to evaluate other test
case generation tools in different malware datasets.

4.6 Conclusions

In this chapter we reported the results of two empirical studies that explore techniques for
Android malware identification. The first study is a non-exact replication of a previous
research work [3], which investigates the Android mining sandbox approach for malware
identification. There, Bao et al. report that more than 70% of the malwares in their
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dataset can be detected by the sandboxes built from the execution of five test case gen-
eration tools (such as Monkey and DroidMate). Our replication study revealed that this
performance is only achieved if we enable a static analysis component from DroidFax
that was supposed to only instrument the Android apk files, though that independently
contributes to building the sandboxes statically. As such, the use of DroidFax leads to an
overestimation of the performance of the mining sandbox approach supported by dynamic
analysis. Indeed, the execution of DroidFax alone enabled us to generate a sandbox that
can identify 43.75% of the malwares from their dataset.

In the second study we investigated a new approach based on taint analysis for mal-
ware identification, which leads to promising results. First, the taint based static analysis
approach detected 60.42% of the malwares in the dataset. When combining taint analysis
with the mining sandbox approach, we were able to identify 82.29% of the malwares in
the dataset. These results have implications for both researchers and practitioners. First,
we review the literature showing, for the first time, empirical evidence that the mining
sandbox approach benefits from using both dynamic and static analysis. Second, prac-
titioners can improve malware identification using a combination of the mining sandbox
approach with taint analysis. Nonetheless, both the mining sandbox approach and taint
analysis present limitations. In particular, we are not able to identify a malware that
uses the same set of calls to sensitive APIs of the benign version of an app, using the
mining sandbox approach. Similarly, we are not able to identify a malware that presents
the same paths from sources to sinks of the corresponding benign version of an app, using
the taint analysis approach. To mitigate these limitations, we envision the use of other
approaches—such as machine learning algorithms to classify changes in non-code assets
(e.g., Android manifest files) and symbolic execution to differentiate malicious calls or
source-sink paths.
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Chapter 5

Assessing the MAS approach at
Scale

Revisiting the Mining Android Sandbox Approach at Scale for
Malware Classification

This chapter corresponds to our paper published in ECOOP 2025,
article No. 40; pp. 40:1–40:26.

doi: https://doi.org/10.4230/LIPIcs.ECOOP.2025.40.
(F. H. da Costa et al.)

5.1 Introduction

Mobile technologies, such as smartphones and tablets, have become fundamental to how
we function as a society. Almost two-thirds of the world population uses mobile tech-
nologies [116, 128], with the Android Platform dominating this market and accounting
for more than 70% of the mobile market share, with almost 2.5 million Android applica-
tions 1 (apps) available on the Google Play Store, in June 2023 [129]. As popularity rises,
so does the risk of potential attacks, prompting collaborative efforts from both academia
and industry to design and develop new techniques for identifying malicious behavior or
vulnerable code in Android apps [130]. One popular class of Android malware is based
on repackaging [3, 21], where a benign version of an app is infected with malicious code,
e.g., to broadcast sensitive information to a private server [10], and subsequently shared
with users using even official app stores.

1In this chapter, we will use the terms Android Applications, Android Apps, and Apps interchangeably,
to refer to Android software applications

58



Chapter 5 – Assessing the MAS approach at Scale

The Mining Android Sandbox approach (MAS approach) was initially designed to con-
struct sandboxes based on exploratory calls to sensitive APIs [13]. The MAS approach
operates in two distinct phases. In the first phase (exploratory phase), automated test
case generation tools are utilized to abstract the behavior of an app, focusing on record-
ing calls to sensitive APIs (Application Programming Interfaces). Subsequently, during
normal app execution (exploitation phase), the generated sandbox blocks any calls to
sensitive APIs that were not observed during the exploratory phase. Prior studies [3, 26]
have investigated the effectiveness of the MAS approach in detecting potential malicious
behavior in repackaged apps. These studies have also conducted comparisons of the
approach’s performance by employing different test case generation tools during the ex-
ploratory phase, including Monkey [17], DroidBot [20], and Droidmate [131]—bringing
evidence that DroidBot outperforms other test generation tools, uncovering many poten-
tial malicious behaviors.

Nonetheless, these previous studies have two main limitations. First, they use a small
dataset of malware comprising only 102 pairs of original/repackaged versions of an app—
which might compromise external validity. Second, their assessments do not investigate
the impact of relevant features of the repackaged apps on the accuracy of the MAS
approach for malware classification, including (a) whether or not the repackaged version
is a malware, (b) the similarity between the original and the repackaged versions of an app,
and (c) the malware family 2 when the repackaged version of an app is a malware. These
limitations compromise a broader understanding of the MAS approach performance. We
present more details about the MAS approach and related work in Chapter 2.

To better understand the impact of these issues on previously published results, this
chapter presents a replication of the study conducted by Bao et al. [3]. We aim to verify
the original study’s findings by executing the test case generation tool DroidBot [20] in
the same settings as the original research. Unlike the original study, here we use a curated
dataset of app pairs (original/repackaged versions) significantly larger than the dataset
used in Bao et al.’s study. Our new dataset contains 4,076 pairs of original and repackaged
apps. We present more details about the datasets, data collection, and analysis procedures
in Section 5.2.

Negative result. Our study reveals a significantly lower accuracy (F1-score of 0.54)
of the MAS approach in comparison to what the MAS approach approach performs in the
small dataset (F1-score of 0.90). Since an accuracy of 0.54 is unsatisfactory for a trust-
worthy malware classification technique, we conduct a set of experiments to understand
the reasons for the lower accuracy in our dataset. Our further assessments reveal that

2Malware families (such as gappusin, kuguo, dowgin, etc.) are often used to classify malware in groups
that share similar codebases, attack methods, and objectives [54].
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the MAS approach fails to correctly classify most samples from a specific set of malware
families, particularly those from the gappusin family (a particular adware class frequently
appearing in repackaged apps). Out of the total of 1,337 samples within this family in
our large dataset, the MAS approach failed to classify 1,170 samples as malware correctly.
Accordingly, these families are responsible for substantially reducing the recall of the MAS
approach. We detail the results of our experiments in Section 6.4. We also discuss the
implications and possible threats to the validity of our study in Section 6.5 and present
some final remarks in Section 5.5. The main artifacts we produced during this research
are available in the repository.

https://github.com/droidxp/paper-ecoop-results

5.2 Experimental Setup

This research aims to develop a deeper understanding of the performance of the MAS
approach for detecting malware. To this end, in this chapter, we replicate the study by
Bao et al. [3], which advocates for using the MAS approach for malware classification.
However, in contrast to the original study [3], we use a dataset of repackaged apps that is
an order of magnitude larger. Accordingly, we investigate the following research questions:

(RQ1) What is the impact of considering a larger and diverse dataset on the accuracy of
the MAS approach for malware classification ?Answering this question may help
shed light on potential generalization issues in previous studies that empirically
assess the MAS approach approach to malware classification.

(RQ2) What is the influence of the similarity between the original and repackaged ver-
sions of the apps on the performance of the MAS approach for malware classifica-
tion?Answering this research question helps clarify whether the similarity between
an original app and its repackaged version affects the MAS approach approach’s
performance in malware classification.

(RQ3) What is the influence of the malware family (e.g., gappusin, kuguo, dowgin) on
the performance of the MAS approach for malware classification ?Answering this
research question may help identify potential blind spots in the MAS approach ap-
proach to malware classification, revealing possible extensions that could improve
the detection of specific malware families.

In this section, we describe our study settings. First, we present our procedures to
create our datasets (Section 5.2.1). Then, we describe the data collection and data analysis
procedures (Sections 5.2.2 and 5.2.3).
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5.2.1 Malware Dataset

To address our research questions, we contribute a dataset designed to meet two primary
requirements. First, it should provide a comprehensive and up-to-date selection of An-
droid repackaged apps. By “comprehensive”, we mean at least an order of magnitude
larger than the dataset used in the original study [3]. Given its comprehensiveness, we
expect it to include a diverse range of malware families to ensure representativeness. Sec-
ond, our dataset should be properly labeled, ensuring each sample includes key attributes
such as similarity and malware family. This is particularly necessary to answer research
questions RQ2 and RQ3.

Procedures for Building the Dataset

We curate our dataset in three main phases. In the first phase, we use two repositories of
repackaged Android apps (RePack [10] and AndroMalPack [132]) to build the dataset we
use in our research. RePack was curated using automatic procedures that extract repack-
aged apps from the Androzoo repository [113]. It comprises 18,073 apps, from which
2,776 are original versions of an app and the remaining ones are repackaged. RePack
contains 15,297 pairs of original and repackaged Android apps, many repackaged versions
of the same original app may coexist within the RePack dataset—note that all repack-
aged variants of a given app are derived from the same original version, as confirmed by
their matching hash identifier. RePack is the leading dataset used in Android repackaged
research [41], even though it only contains packages built until 2018. For this reason,
we decided to include samples from the AndroMalPack dataset collected after 2018 in
our research. Unlike RePack, AndroMalPack lacks information about the original apps,
leading us to follow an existing heuristic [10] to identify the original versions of its repack-
aged apps, leading to a sample from the AndroMalPack dataset that contains 1,190 pairs
(original/repackaged) of apps, all pairs satisfying our constraint of being collected after
2018. Altogether, our initial dataset contains a total of 16,487 pairs of apps.

In the second phase, we discarded some samples from our initial dataset because,
during the execution of our experiments, we encountered recurrent issues related to the
instrumentation of the apps using DroidFax [23]. Other problems occurred after the
execution of the apps in the Android emulator, while analyzing the apps or their execution
logs. More precisely, we encountered failures while instrumenting 919 original apps from
our initial dataset, including both RePack and AndroMalPack. After removing these
original apps from our dataset, we were left with 5,875 pairs (original/repackaged) of apps.
Among these pairs, 430 repackaged apps could not be instrumented. Failures also occurred
while analyzing either the original or repackaged version of 586 apps, resulting in a dataset
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containing 4,742 pairs. Failures at this phase were expected, as some malware samples
employ evasion tactics, such as deliberately crashing test apps in simulated environments,
to avoid detection [133]. Finally, we could not install five apps in the version of the
Android emulator (API level 28) we used in our research. Compared to our experience
building our dataset, a more significant percentage of failures has been reported in previous
research [3]. Note that we did not apply any filters to increase the representation of certain
malware families in our dataset.

Third, we queried the VirusTotal repository to identify original versions of apps
labeled as malware. Samples with such labels were excluded from our dataset, as the
MAS approach assumes that the original version of an app is not malware (otherwise,
the repackaged versions might also exhibit malicious behavior). VirusTotal is a widely
recognized tool that scans software assets, including Android apps, using over 60 antivirus
engines [41]. Thus, we excluded 661 samples from our dataset that do not satisfy this
constraint.

In the end, we are left with our final dataset (hereafter LargeDS) of 4,076 apps which
we use in our study. To bring evidence that we were able to reproduce the results of
previous research, we also consider in our research a small dataset (SmallDS) used in the
original study [3]. This is the same dataset referenced in Section 2.3.3 as (LargeE).

Features of the Datasets

We queried the VirusTotal repository to find out which repackaged apps in our dataset
have indeed been labeled as a malware. According to VirusTotal, in the SmallDS (102
pairs), 69 of the repackaged apps (67.64%) were identified as malware by at least two
security engines. Here, we consider a repackaged version of an app to be malware only if
VirusTotal reports that at least two security engines identify malicious behavior within
the asset. Although this decision aligns with previous research [134, 41], we assess its
potential impact on our findings in Section 6.5. Considering the LargeDS, at least two
security engines identified 2,895 out of the 4,076 repackaged apps as malware (71.02%).
Again, in Section 6.5, we show that our results remain consistent across three additional
scenarios: classifying a repackaged version of an app as malware if at least one, five, or
ten VirusTotal engines flag it as malicious.

Classifying malware into different categories is a common practice. For instance, An-
droid malware can be classified into categories like riskware, trojan, adware, etc. Each
category might be further specialized in several malware families, depending on its char-
acteristics and attack strategy—e.g., steal network info (IP, DNS, WiFi), collect phone
info, collect user contacts, send/receive SMS, and so on [135]. According to the avclass2
tool [136], the malware samples in the SmallDS come from 17 different families—most
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of them from the Kuguo (49.27%) and Dowgin (17.39%) families. Our LargeDS, besides
comprising a large sample of repackaged apps (4,076 in total), contains 116 malware
families—most of them from the Gappusin (46.18%) family. Despite being flagged as
malicious by at least two security engines, unfortunately avclass2 tool cannot correctly
identify the family of 253 samples in our LargeDS.

We also characterize our dataset according to the similarity between the original and
repackaged versions of the apps, using the SimiDroid tool [137]. SimiDroid quantifies the
similarity based on (a) the methods that are either identical or similar in both versions
of the apps (original and repackaged versions), (b) methods that only appear in the
repackaged version of the apps (new methods), and (c) methods that only appear in the
original version of the apps (deleted methods). Our LargeDS has an average similarity
score of 90.39%, with the following distribution: 87 app pairs have a similarity score below
25%, 49 pairs fall between 25% and 50%, 353 apps between 50% and 75%, and 3,587 apps
exceed 75%. The SmallDS has an average similarity score of 89.41%.

After executing our experiments, we identified the most frequently abused sensitive
APIs called by the repackaged version of our samples. We observed that upon execution
of all samples from our dataset (SmallDS and LargeDS), malicious app versions injected
133 distinct methods from sensitive APIs (according to the AppGuard [120] security
framework). Malicious code often exploits these APIs to compromise system security and
access sensitive data. Table 5.1 lists the 10 most frequently called methods from sensitive
APIs that appear only in the repackaged versions of the apps.

We must highlight that the LargeDS samples come from different Android app stores.
Most of our repackaged apps come from a non-official Android app store, Anzhi [138].
However, some repackaged apps also come from the official Android app store, Google
Play.

5.2.2 Data Collection Procedures

We take advantage of the DroidXP infrastructure [24] for data collection. DroidXP allows
researchers to compare test case generation tools for malicious app behavior identification,
using the MAS approach. Although the comparison of test case generation tools is not
the goal of this chapter, DroidXP was still useful for automating the following steps of
our study.

(Step1) Instrumentation: In the first step, we configure DroidXP to instrument all
pairs of apps in our datasets (SmallDS and LargeDS). Here, we instrument both
versions of the apps (as APK files) to collect relevant information during their
execution. Under the hood, DroidXP leverages DroidFax to instrument the apps
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and collect static information about them. To improve the performance across
multiple executions, this phase executes only once for each version of the apps in
our dataset.

(Step2) Execution: In this step, DroidXP first installs the (instrumented) version of the
APK files in the Android emulator we use in our experiment (API 28) and then
starts a test case generation tool for executing both app versions (original and
repackaged). We execute the apps via DroidBot [20], mainly because the original
research we replicate here reports that DroidBot leads to the best accuracy of
the MAS approach for malware identification. Since previous studies suggest
that DroidBot’s coverage nearly reaches its maximum within one minute [3], we
run each app for three minutes. To mitigate the randomness inherent in test
case generation tools, we repeat this process three times. To also ensure that
each execution gets the benefit of running on a fresh Android instance without
biases that could stem out of history, DroidXP wipes out all data stored on the
emulator that has been collected from previous executions.

(Step3) Data Collection: After the execution of the instrumented apps, once again,
DroidXP leverages DroidFax, this time to collect all relevant information (such
as calls to sensitive APIs, test coverage metrics, and so on). We use this infor-
mation to analyze the performance of the MAS approach for detecting malicious
behavior.

5.2.3 Data Analysis Procedures

We consider that the MAS approach builds a sandbox that labels a repackaged version
of an app as malware if there is at least one call to a sensitive API that (a) was observed
while executing the repackaged version of the app and that (b) was not observed while
executing the original version of the same app. If the set of sensitive methods that only
the repackaged version of an app calls is empty, we conclude that the sandbox does not
label the repackaged version of an app as malware. The set of sensitive APIs we use was
defined in the AppGuard framework [120], which was based on the mapping from sensitive
APIs to permissions proposed by Song et al. [29]. We triangulate the results of the MAS
approach classification with the outputs of VirusTotal, which might lead to one of the
following situations:

• True Positive (TP). The MAS approach labels a repackaged version as malware
and, according to VirusTotal, at least two security engines label the asset as a
malware.
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• True Negative (TN). The MAS approach does not label a repackaged version as
malware and, according to VirusTotal, at most one security engine labels the asset
as a malware.

• False Positive (FP). The MAS approach labels a repackaged version as malware
and, according to VirusTotal, at most one security engine labels the asset as a
malware.

• False Negative (FN). The MAS approach does not label a repackaged version as
malware, and according to VirusTotal, at least two security engines label the asset
as a malware.

In Section 6.4 we compute Precision, Recall, and F-measure (F1) from the number
of true-positives, false-positives, and false-negatives (using standard formulae). We use
basic statistics (average, median, standard deviation) to identify the accuracy of the MAS
approach for malware classification, using both datasets—i.e., the SmallDS with 102 pairs
of apps and LargeDS with 4,076 pairs. We use the Spearman Correlation [139] method
and Logistic Regression [121] to understand the strengths of the associations between the
similarity index between the original and the repackaged versions of a malware with the
MAS approach accuracy—that is, if the approach was able to classify an asset as malware
correctly. We also use existing tools to reverse engineer a sample of repackaged apps in
order to better understand the (lack of) accuracy of the MAS approach.

Table 5.2 highlights the differences between the original study [3] and our replication
study. In the best-case scenario, where no re-executions are required, our experiment
would take at least 611 hours. In contrast, under the best conditions, the original exper-
iment’s execution would last 60 hours. This difference is one of the reasons we focus our
research on DroidBot, the test case generation tool that demonstrated the best perfor-
mance in the original study.

Study Feature Original Study Replication Study

Dataset 102 pairs of samples 4,076 pairs of samples
Execution time One minute Three minutes
Number of executions Single execution Three executions
Metrics Malware prevalence Precision, Recall, and F1-score
Test case generation tool Six different tools

(DroidBot with best
performance)

DroidBot only

Table 5.2: Characterization of this replication study
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5.3 Results

In this section, we detail the findings of our study. We remind the reader that this
replication study’s primary goal is to better understand the strengths and limitations of
the MAS approach for malware detection by replicating the work of Bao et al., using
DroidBot as the test case generation tool. We explore the results of our research using
two datasets: the SmallDS (102 app pairs), and LargeDS (4,076 pairs).

5.3.1 Exploratory Data Analysis of Accuracy

SmallDS. Considering the SmallDS (102 apps), the MAS approach for malware detection
classifies a total of 69 repackaged versions as malware (67.64%). This result is close
to what Bao et al. reported [3]. That is, in their original paper, the MAS approach
using DroidBot classifies 66.66% of the repackaged version of the apps as malware [3].
This result confirms that we could reproduce the findings of the original study using our
implementation settings of the MAS approach.

�
Finding 1. We were able to reproduce the results of existing research using
our implementation of the MAS approach, achieving a malware classification
in the SmallDS close to what has been reported in previous studies.

In the original study [3], the authors assume that all repackaged versions are malware
and contain a malicious code. For this reason, the authors do not explore accuracy metrics
(such as Precision, Recall, and F-measure (F1))—all repackaged apps labeled as malware
are considered true positives in the original study. As we mentioned, in this chapter
we take advantage of VirusTotal to label our dataset and build a ground truth: In
our datasets, we classify a repackaged version of an app as malware if, according to our
VirusTotal query results, at least two security engines identify malicious behavior in the
asset. This decision aligns with existing recommendations [134, 41]). The first row of
Table 5.3 shows that the MAS approach achieves an accuracy of 0.90 when considering
the SmallDS. Nonetheless, the MAS approach fails to classify seven assets as malware
on the SmallDS correctly (FN column, first row of Table 5.3), and wrongly labeled the
repackaged version of six apps as malware (FP column).

Table 5.3: Accuracy of the MAS approach in both datasets.

Dataset TP FP FN Precision Recall F1
SmallDS (102) 63 6 7 0.91 0.90 0.90
LargeDS (4,076) 1,175 220 1,720 0.84 0.40 0.54
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LargeDS. Surprisingly, considering our complete dataset (4,076 apps), the MAS ap-
proach labels a total of 1,395 repackaged apps as malware (34.22% of the total number
of repackaged apps)—for which the repackaged version calls at least one additional sen-
sitive API. Our analysis also reveals a negative result related to the accuracy of the
approach: here, the accuracy is much lower in comparison to what we reported for the
SmallDS (see the second row of Table 5.3): F1 dropping from 0.90 to 0.54. This result
indicates that, when considering a large dataset, the accuracy of the MAS approach using
DroidBot drops significantly.

�
Finding 2. The MAS approach for malware detection leads to a sub-
stantially lower performance on the LargeDS (4,076 pairs of apps), dropping
F1-score from 0.90 to 0.54 in comparison to what we observed in the SmallDS.

Therefore, the resulting sandbox we generate using DroidBot suffers from a signifi-
cantly low accuracy rate when considering a large dataset. This is shown in the second
row of Table 5.3. The negative performance of the MAS approach in the LargeDS encour-
aged us to endorse efforts to identify potential reasons for this phenomenon and motivated
us to explore the research questions RQ2 and RQ3.

5.3.2 Assessment Based on Similarity Score

Figure 5.1 shows the Similarity Score distribution over the LargeDS we use in our research.
Recall that the Similarity Score measures how similar an app’s original and repackaged
versions are. The complete dataset averages a Similarity Score of 0.90 (with a median of
0.98 and standard deviation of 0.18).

In this section we investigate how the Similarity Score influences the accuracy of the
MAS approach—which might help us understand if it might explain the low small perfor-
mance of the MAS approach in the LargeDS. To this end, we leverage Logistic Regression
to quantify the relationship between Similarity Score and F1-score. This analysis excludes
instances of true negatives (i.e., cases where the repackaged version is benign according
to VirusTotal and the MAS approach correctly labels it as benign). As such, we test the
following null hypothesis:

H0 Similarity Score does not influence the accuracy of the MAS approach for mal-
ware detection.

The logistic regression results suggest that we should reject our null hypothesis (p-
value = 2.22 · 10−16). This finding indicates that the accuracy of the MAS approach on
LargeDS is influenced by the similarity between the original and repackaged versions of
an app.
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Figure 5.1: Similarity Score of the malware samples in the LargeDS. The boxplots in the
figure do not show outliers.

�
Finding 3. There is an association between the Similarity Score and the
MAS approach performance, which means that the similarity between the
original and repackaged versions of an app can explain the performance of
the MAS approach for malware classification.

To clarify the association between Similarity Score and accuracy, we use the K-Means
algorithm to split the LargeDS into ten clusters—according to the Similarity Score. We
then estimate the percentage of correct classifications for each cluster, as shown in Ta-
ble 5.4. Note that the MAS approach achieves the highest percentage of correct classifica-
tion (77.35%) for the second cluster (cId = 2), which presents an average Similarity Score
of (0.56). Nonetheless, the cluster cId = 10, with a larger number of samples (1,302) and
Similarity Score (0.99), presents a percentage of correct classifications of 26.5%. We can
observe that as the average similarity rate decreases, there is a tendency toward greater
accuracy in the MAS approach. Hence, the average similarity score could explain the
poor performance of the MAS approach on the LargeDS, especially considering that most
samples exhibit a high average similarity of 0.99.
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Table 5.4: Characteristics of the clusters. Note there is a specific pattern associating the
percentage of correct answers with the Similarity Score. For this analysis, we removed
the true negatives in our dataset.

cId Similarity Score Samples Correct Answers %
1 0.42 42 30 71.42
2 0.56 181 140 77.35
3 0.68 131 98 74.81
4 0.80 170 104 61.18
5 0.88 263 83 31.56
6 0.91 236 129 54.66
7 0.95 167 51 30.54
8 0.97 150 67 44.67
9 0.98 421 112 26.60

10 0.99 1302 345 26.50

5.3.3 Assessment Based on Malware Family

As we discussed in the previous section, the similarity assessment partially explains the low
performance of the MAS approach on the LargeDS. Since the LargeDS covers a wide range
of malware families, we investigate the hypothesis that the diversity of malware families
in the LargeDS also contributes to the poor performance of the MAS approach on the
LargeDS. Indeed, in the LargeDS, we identified a total of 116 malware families, though
the most frequent ones are gappusin (1,337 samples), revmob (207 samples), dowgin (183
samples) and airpush (120 samples). Together, they account for 63.79% of the repackaged
apps in our LargeDS labeled as malware according to VirusTotal.

This family distribution in the LargeDS is different from the family distribution in the
SmallDS (used in the original study)—where the families kuguo (34 samples), dowgin (12
samples), and youmi (5 samples) account for 73.91% of the families considering the 69
repackaged apps in the SmallDS for which VirusTotal labels as malware. Most important,
in the SmallDS, there is just one sample from the gappusin family and no sample from
revmob family, two of the most frequent families in our LargeDS. This observation leads
us to the question: how does the MAS approach perform when considering only samples
from the gappusin and revmob families?

The confusion matrix of Table 5.5 summarizes the accuracy assessment of the MAS
approach considering only the gappusin and revmob samples in the LargeDS. To make
clear, VirusTotal classifies as malware all repackaged versions in the gappusin and revmob
family. It is worth noting that the MAS approach failed to classify correctly 1,170 (87.5%)
samples of gappusin as malware. Similarly, 92 samples (44.44%) from revmob were not
classified as malware. Furthermore, if we exclude the gappusin and revmob samples from
the LargeDS, the recall of the MAS approach increases to 0.72, which, although improved,
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remains relatively low compared to the original studies.

Table 5.5: Confusion matrix of the MAS approach when considering only the samples
from the gappusin and revmob family in the LargeDS.

Actual Condition Predicted Condition
Benign Malware

Benign (0) TN (0) FP (0)
Gappusin (1,337) FN (1,170) TP (167)

Revmob (207) FN (92) TP (115)

�
Finding 4. The MAS approach fails to correctly identify 87.50% of the
samples from the gappusin family and 44.44% of the samples from the revmob
as malware. Just like the Similarity Score, the presence of some malware
families with a high false negative rate also influences the low recall of the
MAS approach in the LargeDS

We further analyze the samples from the gappusin and revmob malware families in
our dataset, given their relevance to the negative results presented in the chapter. First,
we examined the Similarity Score of the samples. Figure 5.2 shows a histogram of the
Similarity Score for both families. Most repackaged versions are similar to the original
ones, with an average Similarity Score of 0.94, a median of 0.99, and a standard deviation
(SD) of 0.16 for the gappusin family. For the revmob family, the average Similarity Score
is 0.81, the median is 0.91, and the SD is 0.26.

We also reverse-engineered samples from both families. Due to the significant effort
required for reverse engineering, we limited our analysis to a sample of 30 gappusin and
30 revmob malware samples, using the SimiDroid3, apktool 4, and smali2java 5 tools.
Considering this sample, the median Similarity Score is 0.99 and 0.90 for the gappusin
and revmob families, respectively. Table 5.6 and Table 5.7 summarize the outputs of
SimiDroid for these samples.

Regarding the gappusin malware, the similarity assessment of this sample of 30 apps
reveals a few modification patterns when comparing the original and the repackaged ver-
sions. First, no instance in this gappusin sample dataset modifies the Android Manifest file
to require additional permissions. In most cases, the repackaged version just changes the
Manifest file to modify either the package name or the main activity name. Moreover, 29
out of the 30 samples in this dataset modifies the method void onReceive(Context,

3https://github.com/lilicoding/SimiDroid
4https://ibotpeaches.github.io/Apktool/
5https://github.com/AlexeySoshin/smali2java
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Intent) of the class com.games.AdReciver. Although the results of the decompila-
tion process are difficult to understand in full (due to code obfuscation), the goal of
this modification is to change the behavior of the benign version, so that it can down-
load a different version of the data.apk asset. Figure 5.3 shows the code pattern of the
onReceive method present in the samples. This modification typically uses a new method
(public void a(Context)) in the repackaged versions, often introduced into the same
class (AdReceiver). Since there are no additional calls to sensitive APIs, the MAS ap-
proach fails to correctly label the gappusin samples. This limitation holds regardless of
our experimental choices, such as using the DroidBot tool (instead of more recent test
case generation tools) or running the samples for three minutes.

(a) Similarity Score for the samples in the gappusin family.

(b) Similarity Score for the samples in the revmob family.

Figure 5.2: Histogram of the Similarity Score for the samples in the gappusin and revmob
families.
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p u b l i c vo id onRece i ve ( Context contex t , I n t e n t i n t e n t ) {
S h a r e d P r e f e r e n c e s sp = c o n t e x t . g e t S h a r e d P r e f e r e n c e s ( S t r i n g . va lueOf ( "com . ")+"game . "+" param " , 0 ) ;
i n t i = sp . g e t I n t ( " sn " , 0) + 1 ;
System . out . p r i n t l n ( " sn : " + i ) ;
i f ( i < 2) {

mo4a( c o n t e x t ) ;
S h a r e d P r e f e r e n c e s . E d i t o r e d i t = sp . e d i t ( ) ;
e d i t . p u t I n t ( " sn " , i ) ;
e d i t . commit ( ) ;

} e l s e i f ( ! new C0004b ( c o n t e x t ) . f7h . e q u a l s ( " " ) ) {
S t r i n g s t r 1 = c o n t e x t . g e t A p p l i c a t i o n I n f o ( ) . d a ta D i r ;
S t r i n g s t r 2 = S t r i n g . va lueOf ( s t r 1 ) + "/ f i " + " l e s /d" + " ata . a " + " pk " ;
S t r i n g s t r 3 = S t r i n g . va lueOf ( s t r 1 ) + "/ f i l e s " ;
S t r i n g s t r 4 = S t r i n g . va lueOf ( "com . " ) + " ccx . " + "xm . " + "SDKS" + " t a r t " ;
S t r i n g s t r 5 = S t r i n g . va lueOf ( " I n i t S " ) + " t a r t " ;
S t r i n g s t r 6 = " f f048a5de4cc5eabec4a209293513b6e " ;
C0003a . m3a( contex t , s t r 2 , s t r 3 , s t r 4 , s t r 5 , s t r 6 ) ;
S h a r e d P r e f e r e n c e s . E d i t o r e d i t 2 = sp . e d i t ( ) ;
e d i t 2 . p u t I n t ( " sn " , 0 ) ;
e d i t 2 . commit ( ) ;

}
}

Figure 5.3: Method introduced in 29 out of 30 gappusin malware we randomly selected
from the LargeDS.

Our assessment also reveals recurrent modification patterns that delete methods in
the repackaged version of the apps. For instance, 20 repackaged apps in our gappusin
sample of 30 malware remove the method void b(Context) from the class com.game.a.
This class extensively uses the Android reflection API. Although it is not clear the real
purpose of removing these methods, that decision simplifies the procedure of downloading
a data.apk asset that is different from the asset available in the original version of the
apps. Removing those methods might also be a strategy for antivirus evasion. For in-
stance, although some usages of the class DexClassLoader might be legitimate, it allows
specific types of attack based on dynamic code injection [140]. As such, antivirus might
flag specific patterns using the Android reflection API suspect. Unfortunately, the MAS
approach also fails to identify a malicious behavior with this type of change (i.e., changes
that remove methods), again, regardless of the decisions we follow in our experiment.
Listing 5.4 shows an example of code pattern frequently removed from the repackaged
versions from the gappusin family.

p u b l i c s t a t i c vo id m7a( A c t i v i t y a c t i v i t y , S t r i n g s t r , S t r i n g s t r 2 , . . . , S t r i n g s t r 5 ) {
t r y {

C l a s s l o a d C l a s s = new DexClas sLoader ( . . . , a c t i v i t y . g e t C l a s s L o a d e r ( ) ) . l o a d C l a s s ( s t r 3 ) ;
Object new Ins tance = l o a d C l a s s . g e t C o n s t r u c t o r (new C l a s s [ 0 ] ) . new In s tance (new Object [ 0 ] ) ;
Method method = l o a d C l a s s . getMethod ( s t r 4 , new C l a s s [ ] { A c t i v i t y . c l a s s , S t r i n g . c l a s s } ) ;
method . s e t A c c e s s i b l e ( t r ue ) ;
method . i n v o k e ( newInstance , new Object [ ] { a c t i v i t y , s t r 5 } ) ;

} catch ( Excep t i on e ) {
e . p r i n t S t a c k T r a c e ( ) ;

}
}

Figure 5.4: Example of method that is typically removed from the repackaged apps of the
gappusin family.
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In summary, our reverse engineering effort brings evidence that malware samples from
the gappusin family neither modify the Android Manifest files nor call additional sen-
sitive APIs. It acts as a downloader for further malicious app [54]—which reduces the
ability of the MAS approach to classify a sample as a malware correctly. Both versions
(original/repackaged) from the gappusin family have the same behavior for showing ad-
vertisements to the user, however, the repackaged version has additional call sites to the
advertisement API and the advertisement sources are different.

Similar to the approach used for gappusin samples, we also reverse-engineered a ran-
dom selection of 30 samples from the revmob family that were not detected by the MAS
approach. As with the gappusin family samples, no instance from the revmob family
modifies the Manifest file or inserts extra calls to sensitive APIs, making it harder for
the MAS approach to label the samples as malware correctly. However, our reverse en-
gineering reveals that all apps store a file with the extension “.so” (Shared Object files)
in their lib directory. These files are dynamic libraries containing native code written in
C or C++, and are often used by apps for performance reasons, when resource-intensive
tasks need to be performed [141].

Unfortunately, creating malicious repackaged apps using “.so” files is also possible, as
they can be replaced by a version containing harmful code [142]. The Shared Object files
also allow for attacks based on dynamic code injection [140], considering that Android apps
can use methods like System.loadLibrary() or System.load() to download malicious
“.so” files from a remote server. Once on the device, malicious apps can use these files to
interface with Java code in Android apps, via the Java Native Interface (JNI), performing
malicious operations on low-level code and bypassing security mechanisms, like the MAS
approach.

Our assessment confirms that all revmob samples contain Java code that loads a native
library. In particular, to load these libraries, the samples use the loadLibrary method of
the System class, which is called in the static constructor of the mainActivity class. The
loadLibrary method takes “game” as an argument, and the code automatically searches
the default lib directory for the .so file named (lib+argument). The “lib” directory
contains the libgame.so file in all samples. Figure 5.5 presents the code pattern of the
mainActivity class found in the samples from revmob family.

p u b l i c c l a s s PZPlayer extends C o c o s 2 d x A c t i v i t y {

// ...
System . l o a d L i b r a r y ( "game" ) ;

// ...
}

Figure 5.5: Thie code links this java file into libgame shared library
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The libgame.so file contains compiled code written in C or C++, which is loaded
into memory and linked to the apps at runtime. Although machine code is difficult
to analyze, all the files include the JNI OnLoad function, which the JNI implementation
automatically uses to link Java methods and native functions. When we analyzed the “.so”
file, we found that they all differ in size and content between the original and repackaged
apps. It is possible that changes of interest occurred in the native libgame.so file and
have gone unnoticed by the MAS approach. Again, since the MAS approach only considers
differences in calls to sensitive APIs, it is unlikely to correctly classify these samples using
other test case generation tools or by extending the execution time during its exploratory
phase.

5.4 Discussion

In this section, we answer our research questions, summarize the implications of our
results, and discuss possible limitations of our study that might threaten the validity of
the results presented so far.

5.4.1 Answers to the Research Questions

The results we presented in the previous sections allow us to answer our three research
questions, as we summarize in the following.

• Performance of the MAS approach (RQ1). Our study indicates that the
accuracy of the MAS approach reported in previous studies [3, 26] does not generalize
to a larger dataset. That is, while in our reproduction study (using the SmallDS of
previous research) the MAS approach leads to an accuracy of 0.90, we observed a
drop of precision and recall that leads to an accuracy of 0.54 in the presence of our
LargeDS (4,076 pairs of original and repackaged versions of Android apps).

• Similarity Analysis (RQ2). Our results bring evidence about the association
between the similarity of the original and repackaged versions of an app and the
ability of the MAS approach to correctly classify a repackaged version of an app
as a malware. Therefore, the similarity assessment is relevant for explaining the
performance of the MAS approach to classify certain repackaged versions of an app
as malware.

• Malware Family Analysis (RQ3). The results indicate that some families are
responsible for the largest number of false negatives in the complete dataset. We
specifically further investigate the gappusin and revmob families—a particular type
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of Adware, designed to display advertisements while an app is running automati-
cally. After reverse engineering a sample of 60 malware apps from gappusin and
revmob family, we confirmed that the MAS approach cannot identify the patterns
of changes introduced in the repackaged versions of the apps. The prevalence of
the gappusin and revmob families in the Android malware landscape accounts for
the poor performance of the MAS approach in malware classification on the large
dataset.

5.4.2 Implications

Contrasting to previous research works [3, 21, 26], our results lead to a more systematic
understanding of the strengths and limitations of using the MAS approach for malware
classification. In particular, this is the first study that empirically evaluates the MAS
approach considering as ground truth the outcomes of VirusTotal—a common practice
in the malware identification research. This decision allowed us to explore the MAS
approach performance using well-known accuracy metrics (i.e., precision, recall, and F1

score). Contrasting with previous studies that assume that all repackaged versions of the
apps were malware. Our triangulation with VirusTotal reveals this is not true. Although
the MAS approach presents a good accuracy for the SmallDS (F1 = 0.90), in the presence
of a large dataset the MAS approach accuracy drops significantly (F1 = 0.54).

We also reveal that some families in the LargeDS are responsible for a large number
of false negatives, compromising the accuracy of the MAS approach. Altogether, the
takeaways of this research are twofold:

• Negative result: the MAS approach for malware detection exhibits a much higher
false negative rate than previous research reported.

• Future directions: Researchers should advance the MAS approach for malware de-
tection by exploring more sophisticated techniques to differentiate between benign
and malicious apps. In particular, since our reverse engineering results suggest that
gappusin and revmob—two recurrent malware families—use the network to down-
load new assets, new approaches might benefit from monitoring not only calls to
sensitive APIs but also network traffic, as well as mining sensitive calls to native
APIs embedded in so files. The versatility of the Java Native Interface (JNI) has
introduced challenges. Malware authors increasingly use the native layer to hide ma-
licious code, making both static and dynamic analysis more difficult. The current
state of the art in sandbox mining overlooks native calls.
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5.4.3 Threats to Validity

There are some threats to the validity of our results. Regarding external validity, one
concern relates to the representativeness of our malware datasets and how generic our find-
ings are. Indeed, mitigating this threat was one of the motivations for our research, since,
in the existing literature on the MAS approach for malware classification, researchers
had explored just one dataset of 102 pairs of original/repackaged apps. Curiously, for
this small dataset, the performance of the MAS approach is substantially superior to its
performance on our LargeDS (4,076 pairs of apps).

We contacted the authors of the Bao et al. original research paper [3], asking them if
they had used any additional criteria for selecting the pairs of apps in their dataset. Their
answers suggest the contrary: they have not used any particular app selection process that
could explain the superior performance of the MAS approach for the SmallDS. We believe
our results in the LargeDS generalize better than previous research work, since we have a
more comprehensive collection of malware with different families and degrees of similarity.
Nonetheless, our research focuses only on Android repackaged malware. Thus, we cannot
generalize our findings to malware that targets other platforms or uses different approaches
to instantiate a malicious asset. Besides that, repackaging is a recurrent approach for
implementing Android malware.

Regarding conclusion validity, during the exploratory phase of the MAS approach,
we collected the set of calls to sensitive APIs the original version of an app executes,
while running a test case generation tool (DroidBot). In the exploratory phase, the MAS
approach assumes the existence of a benign original version of a given app. We also query
VirusTotal to confirm this assumption, and found that the original version of seven (out
102) apps in the SmallDS contains malicious code. We believe the authors of previous
studies carefully check that assumption, and this difference had occurred because the
outputs of VirusTotal change over time [134], and a dataset that is consistent on a given
date may not remain consistent in the future. Therefore, while reproducing this research,
it is necessary to query VirusTotal to get the most up-to-date classification of the assets,
which might lead to results that might slightly diverge from what we have reported here.
Besides that, in the LargeDS we only consider pairs of original/repackaged apps for which
VirusTotal classifies the original version as benign.

Regarding construct validity, we address the main threats to our study by using
simple and well-defined metrics that are in use for this type of research: number of malware
samples the MAS approach correctly/wrongly classify in a dataset (true positives/false
negatives). We computed the accuracy results using precision and recall based on these
metrics. In a preliminary study, we investigated whether or not the MAS approach would
classify an original version of an app as malware, computing the results of the test case
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generation tools in multiple runs. After combining three executions in an original version
to build a sandbox, we did not find any other execution that could wrongly label an
original app as malware. Also, we label a repackaged version of an app as malware only if
VirusTotal reports that at least two engines detect suspicious behavior in that asset. This
decision might be viewed as either a weak or strong constraint and could raise concerns
about construct validity. However, when we relax this constraint and label an asset as
malware whenever at least one engine detects suspicious behavior, precision improves to
0.85, but recall drops to 0.39. Overall, the accuracy of the MAS approach remains almost
unchanged (F1 = 0.53)—still significantly lower than the precision of the MAS approach
for SmallDS. We also evaluated accuracy by considering an asset as malware when at least
five or ten VirusTotal security engines flagged it. As shown in Table 5.8, the results did
not diverge significantly from what we have reported in this chapter.

5.5 Conclusions

To better understand the strengths and limitations of the MAS approach for repackaged
malware detection, this chapter reported the results of an empirical study that replicates
previous research works [3, 26]. The study utilizes a more diverse dataset compared to
those used in previous research, with the aim of providing a more comprehensive evalu-
ation of the approach. To our surprise, compared to published results, the performance
of the MAS approach drops significantly for our comprehensive dataset (F1 score reduces
from 0.90 in previous papers to 0.54 here). This result is partially explained by the high
prevalence of specific malware families (named gappusin and revmob), whose samples are
incorrectly classified by the MAS approach. We also report the results of a reverse en-
gineering effort, whose goal was to understand the characteristics of the gappusin and
revmob family that reduce the performance of the MAS approach for malware classifica-
tion. Our reverse engineering effort revealed common changing patterns in the gappusin
repackaged versions of original apps, which mostly use reflection to download an external
apk asset for handling advertisements without introducing additional calls to sensitive
APIs. Similarly, the revmob family does not include any additional calls to sensitive re-
sources; however, it often uses JNI to interact with native code, which can be used to
perform malicious operations at a low level, compromising the effectiveness of the MAS
approach for malware identification. These negative results highlight the current limita-
tions of the MAS approach for malware classification and suggest the need for further
research to integrate the MAS approach with other techniques for more effective malware
identification.
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Table 5.6: Summary of the outputs of the SimiDroid tool for the sample of 30 gappusin
malware. (IM) Identical Methods, (SM) Similar Methods, (NM) New Methods, and (DM)
Deleted Methods.

Hash Similarity Score IM SM NM DM
33896E 0.9994 3205 2 0 0
0C962D 0.9994 3413 1 1 10
BCDF91 0.9992 2645 2 0 0
01ECE4 0.9991 5697 4 1 10
A306DA 0.9989 1886 1 1 6
4010CA 0.9987 3721 1 4 6
5B5F2D 0.9983 1164 2 3 0
010C07 0.9982 2248 4 3 0
F9FC04 0.9982 1121 1 1 6
E29F53 0.9976 842 1 1 6
FE76EB 0.9976 839 1 1 6
842BD5 0.9973 2249 3 3 3
295B66 0.9972 1081 2 1 10
92209D 0.9971 698 2 3 0
0977B0 0.9969 1613 4 1 10
347FCF 0.9967 613 1 1 6
00405B 0.9965 864 2 1 10
67310E 0.9957 1164 2 3 3
CCD29E 0.9954 436 2 0 0
610113 0.9941 836 4 1 10
A871E0 0.9941 836 4 1 10
ECEA10 0.9913 229 1 1 6
E53FAA 0.9889 267 2 1 10
723C23 0.9870 228 2 1 10
D95B6E 0.9870 833 10 1 10
17722D 0.9743 265 6 1 10
537492 0.9504 134 6 1 10
078E0A 0.9504 134 6 1 10
D83F1C 0.9494 150 2 6 6
E5D716 0.8840 2035 68 199 199
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Table 5.7: Summary of the outputs of the SimiDroid tool for the sample of 30 revmob
malware. (IM) Identical Methods, (SM) Similar Methods, (NM) New Methods, and (DM)
Deleted Methods.

Hash Similarity Score IM SM NM DM
14BBE2 0.9940 3348 6 532 14
BFEF74 0.9940 3348 6 532 14
A3FACA 0.7918 2667 80 112 1 621
10F22D 0.9940 3348 6 532 14
50193A 0.9940 3348 6 532 14
5A7536 0.9940 3348 6 532 14
BCC0DB 0.7918 2667 80 112 1 621
E866CB 0.9940 3348 6 532 14
CDD316 0.9940 3348 6 532 14
DF39F6 0.7918 2667 80 112 1 621
3FFAFF 0.9121 3072 184 628 112
C8C63D 0.9940 3348 6 532 14
48C562 0.9121 3072 184 628 112
D27F26 0.7918 2667 80 112 1 621
F4BBEC 0.9121 3072 184 628 112
BCF14C 0.9127 3074 182 628 112
7FBF11 0.7918 2667 80 112 1 621
9D35D4 0.7918 2667 80 112 1 621
D1B27E 0.9940 3348 6 532 14
94DD4B 0.9940 3348 6 532 14
2D217E 0.7918 2667 80 1121 621
66F167 0.7918 2667 80 1121 621
155D4A 0.9940 3348 6 532 14
8CB780 0.9127 3074 82 628 112
C251FA 0.9940 3348 6 532 14
40487B 0.7918 2667 80 1121 621
F29692 0.9940 3348 6 532 14
0E3679 0.9127 3074 182 628 112
7A4F31 0.9121 3072 184 628 112
BB3EDE 0.7105 2393 256 1217 719

Table 5.8: Accuracy of the MAS approach at LargeDS (4,076 pairs) based on engines.

Engine(s) TP FP FN Precision Recall F1
At least 01 1,222 220 1,900 0.85 0.39 0.53
At least 02 1,175 220 1,720 0.84 0.40 0.54
At least 05 1,087 220 1,578 0.83 0.40 0.54
At least 10 1,002 220 1,469 0.81 0.40 0.54
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Chapter 6

DroidXPFlow

Network Flow Analysis for Android Malware Detection:
Addressing Blind-spots of the MAS approach

At the time of writing this thesis, the results presented in this chapter have not been
published in any venue.

(F. H. d. Costa et al)

6.1 Introduction

Android is a robust Linux-based operating system widely used in mobile technology. It
has more than 2.5 million Android applications 1 (apps) available in the official Google
Play Store until June 2023 [129]. As its popularity rises, so does the risk of potential
attacks, making Android-based devices prime targets for malicious apps (malware). In
general, the main aim of malware is to gain unauthorized access to and exploit sensitive
resources on a device [143, 144]. This can lead to various risks, including disrupted device
functionality, battery drain, information leakage, and other threats [143, 35].

A prevalent form of Android malware involves repackaging legitimate apps [3, 9].
These malicious variants can insert or modify the original apps with harmful code and
release them on (un)official third-party markets [37]. Researchers [37, 35, 145] show
that 86% of Android malicious apps are repackaged, highlighting the prevalence of this
approach to inject malicious behavior. To counter this, several Android malware detection
techniques have been developed. For example, the Mining Android Sandbox (hereafter
MAS approach) for malware detection, adapted from [13], relies on calls to sensitive APIs

1In this chapter, the terms Android Applications, Android Apps, and Apps will be used interchange-
ably to refer to software applications for the Android platform.
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to check whether a repackaged version of an app is malicious or not [3, 78]. The original
MAS approach leverages static and dynamic analysis on Android apps to protect sensitive
resources at a fine-grained level by limiting access to sensitive APIs.

Focused on app behavior abstraction, the MAS approach has proven effective in de-
tecting repackaged malware, as demonstrated in previous work [3], which classified as
malware 77 out of 102 app pairs (original and repackaged versions of an app) 2. However,
the Bao et al. study [3] evaluated the technique using a dataset comprising only 102 app
pairs, with a limited number of malware families. Using the same dataset from Bao et
al., Costa et al. [78] presented an in-depth analysis of the MAS approach that highlights
the contributions of the static and dynamic analysis components to malware detection,
bringing evidence that both techniques complement each other.

Francisco et al. [146] (FR-Study), presented an empirical evaluation of the MAS ap-
proach using a larger dataset (hereafter referred to as LargeDS), which contains 4,076 pairs
of apps and 116 malware families. There, the author evidence that, when applied to the
LargeDS, the accuracy of the MAS approach drops significantly, with an F1-score of 0.54.
This suggests that the effectiveness of the MAS approach in detecting and preventing
malicious behaviors may not be generalizable to larger datasets.

Motivated by the negative results reported in FR-Study, in this chapter, we propose
and evaluate DroidXPflow, a new technique for Android malware identification that (a)
leverages DroidXP infrastructure [24] to collect the network traffic of the apps (while they
execute using a test generation tool like DroidBot [20]) and (b) benefits from machine
learning (ML) algorithms to classify the repackaged version of the apps as malware /
non-malware using network traffic data. We propose DroidXPflow because we do not
find published tools or replication packages that explore Android malware identification
using network flow data, even after contacting the authors of papers [90, 93, 94, 86, 95].
The results of the DroidXPflow evaluation show that dynamic network traffic analysis,
supported by ML techniques, achieves an accuracy (F1-score) of 0.85. This surpasses
the accuracy of MAS approach when applied to a larger dataset. This improvement is
particularly significant for malware families that previously exhibited high false negative
rates in FR-Study. Altogether, the main contributions of this chapter are:

• DroidXPflow: a novel dynamic analysis approach for Android malware detection
that relies on network traffic data collected using DroidXP and ML algorithms.

• An empirical study: that brings evidence that DroidXPflow outpeforms the MAS
approach. In particular, DroidXPflow can correctly identify malware from families
(such as gappusin) as the original version of the MAS approach approach can not.

2Hereafter, when we use the term app pair(s), we refer to original and repackaged versions of an
Android application
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As an implication of this research, we argue that robust malware detection sandboxes
should monitor not only calls to sensitive APIs but also network traffic to detect potential
malicious behavior in Android apps.

6.2 DroidXPflow

In this section, we detail some design decisions related to DroidXPflow, which uses
DroidXP [24] to collect network traffic of Android apps while using a test case gener-
ation tool and leverages ML algorithms to classify the apps as malware or non-malware.
Since DroidXPflow relies on ML algorithms, we organize this section according to typ-
ical ML stages: traffic collection, feature extraction, and model training/classifier (see
Figure 6.1).

Figure 6.1: Architecture of the DroidXPflow designed for malware detection

6.2.1 Traffic Collection

The DroidXP [24] tool was initially designed to compare test case generation tools in terms
of identifying malicious app behaviors using the MAS approach. This makes it a relevant
tool for automating data collection using dynamic analysis. For our study, we extended the
original version of DroidXP by adding new features to its execution phase. This extension
(DroidXPflow) now uses the TcpDump tool to collect both inbound and outbound network
traffic. The DroidXPflow extension allows us to capture data for network traffic in the
PCAP format [147]. A PCAP file contains copies of network packets, enabling dynamic
analysis of both payloads and packet headers [147]. Since storing and processing PCAP
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files is a resource-intensive process, DroidXPflow only performs an analysis of network
flow segments, rather than analyzing all data available in the PCAP files. As such, we
pre-process the PCAP files to extract the most relevant features for our study, using the
CICflowMeter tool [148].

CICFlowMeter extracts feature sets in CSV format from the corresponding PCAP
files, combining them into a single file that contains a total of 86 features, including
flow duration, destination port, number of transmitted bytes, and so on. DroidXPflow
considers all features except for eight of them: Flow ID, Source IP, Destination IP, Source
Port, Source MAC, Destination MAC, Protocol, and Timestamp. This results in a total
of 78 features being analyzed.

During traffic collection, we discard observations where the “Destination Port” does
not correspond to the traffic from the HTTP (and its variants) and DNS protocols. The
destination port numbers help categorize the protocols utilized in network traffic. The
ports corresponding to these services are usually open in firewalls and other security
mechanisms to make services accessible to clients. Hence, malware also uses them to
get to target services and abuse them. Furthermore, previous studies have demonstrated
the relevance of these destination ports in classifying malicious behavior [149, 150], as
they are often exploited for purposes such as communication with Command & Control
(C&C) servers, carrying out exploits, or blending in with normal traffic [150]. Commonly
targeted ports include 80 (HTTP), 443 (HTTPS), and 53 (DNS). In our study, these ports
account for 71.80% of the total network traffic captured in our experiment (see Table 6.1).
Considering the significance of the Destination Port feature, we opted to filter out network
traffic data with just these three destination ports identified in our analysis.

Table 6.1: The three most relevant destination ports in our study.

Port Description Occurrences
443 Hypertext Transfer Protocol Secure 1,275,293
53 Domain Name System 641,965
80 Hypertext Transfer Protocol 38,830

6.2.2 Feature Extraction

Selecting relevant features (i.e., feature extraction) is crucial for achieving strong predic-
tive performance in machine learning (ML) models [151, 152].

In this regard, DroidXPflow computes seven additional statistical features (count,
minimum, maximum, average, median, variance, and skewness) for each of the 76 original
numeric features generated by CICFlowMeter from the PCAP files. These additional
statistical features are then fed into the model. At the end of this stage, our ML models
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consider a total of 1,598 features (76 numeric features from CICFlowMeter × 3 protocols
(destination ports) × 7 statistics), plus the hash ID of the Android apps and the label
(i.e., malware or non-malware).

6.2.3 Model Training and Classifier

To compare the performance of the ML algorithms, we train the models based on all 1,598
features extracted from our samples, and later used for malware classification. In our
learning-based classification procedure, we split the dataset into a training set consisting
of 70% of the samples and a testing set consisting of 30%, randomly selected from the
initial dataset. The same set of samples, selected for both training and testing, were used
for all the ML algorithms explored. The testing set was used to evaluate the performance
of the models, in terms of Recall, F1-score, and Area Under the Curve (AUC) metrics.
In our study, we selected six classic ML algorithms commonly used for malware detection
(binary classification). There by, we compared the performance of the following ML
algorithms:

• Linear Discriminant Analysis (LDA),

• Quadratic Discriminant Analysis (QDA),

• Logistic Regression (LR),

• Random Forest (RF),

• Multi-layer Perceptron (MLP) and

• Support Vector Machines (SVM)

6.3 Empirical Assessment

In this section, we present an empirical assessment of DroidXPflow, which we use to
classify repackaged apps as malware or non-malware, using network flow data and ML
algorithms. We first characterize the study using the Goal, Questions, and Metrics ap-
proach (Section 6.3.1); and then present the dataset used in our study (Section 6.3.2).

6.3.1 Goal, Questions, and Metrics

The goal of this empirical study is to understand how effective is DroidXPflow in malware
detection. To achieve this goal, we investigate the following research questions:
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(RQ1) What is the performance of ML algorithms for malware detecting using the DroidXPflow
approach, in terms of F1-score?

(RQ2) How much gain we obtain on the malware detecting accuracy when we combine
the MAS approach and DroidXPflow?

(RQ3) How effective is DroidXPflow at detecting malware from specific families where
the MAS approach demonstrated poor performance?

(RQ4) How effective is DroidXPflow at correctly detecting malware from samples where
avclass2 tool cannot identify specific families?

To address these research questions, we first conduct an exploratory study to answer
(RQ1) by comparing the performance of the machine learning (ML) algorithms described
in Section 6.2.3. We utilize all 1, 640 features from our dataset and employ optimized
hyper-parameters for each algorithm. The hyper-parameters were optimized by systemat-
ically varying them through cross-validation [153] on the training data. Cross-validation
evaluates the model’s performance for different combinations of hyper-parameters, en-
suring that the model’s performance is generalizable and not dependent on a specific
train-test split [154]. After applying cross-validation, the optimal set of parameters rec-
ommended for each algorithm is presented in Table 6.2. This procedure ensures fair
and consistent testing across all algorithms, providing a more reliable basis for answering
(RQ1). Finally, to address the remaining research questions-RQ2, RQ3, and RQ4—we
utilize the best-performing ML algorithm identified during the exploration of RQ1.

We also address these questions using standard metrics to estimate model perfor-
mance. We use the same procedures we follow in our previous study in Chapter 5. That
is, we label the repackaged versions of the apps in our dataset based on the outcomes from
VirusTotal—a widely used platform that relies on a collection of malware engines to track
malicious programs. Using VirusTotal, we compute true positives, false positives, and
false negatives as follows:

• True Positive (TP). DroidXPflow classifies a repackaged version as malware and,
according to VirusTotal, at least two security engines label the asset as malware.
This decision aligns with existing recommendations [155, 41]

• False Positive (FP). DroidXPflow classifies a repackaged version as malware and,
according to VirusTotal, at most one security engine labels the asset as malware.

• False Negative (FN). DroidXPflow do not classifies a repackaged version as a
malware, and according to VirusTotal, at least two security engines label the asset
as a malware.

86



Chapter 6 – DroidXPFlow

6.3.2 Dataset

Our empirical assessment uses the same dataset (LargeDS) described in Chapter 5. This
dataset contains 5,844 real-world apps from two repositories of repackaged Android apps:
(RePack [10] and AndroMalPack [132]). Of these, 1,777 are original versions, and 4,067 are
repackaged versions. Multiple repackaged versions of the same original app might appear
within the LargeDS dataset. According to VirusTotal, at least two security engines
classified 2,886 out of the 4,067 repackaged apps as malware. Accordingly, we labeled
2,886 of the repackaged apps as malware (70.96%) and 1,181 as non-malware (29.04%).
The LargeDS dataset contains several features related to the apps, including information
about malware families and a similarity score between the original and repackaged versions
of each app. Further details about the LargeDS dataset and how they were obtained can
be found in Chapter 5.

Since we aim to classify repackaged versions of apps as malware and non-malware,
we only collect the network traffic data generated exclusively by the repackaged samples
from the LargeDS dataset. To capture the network traffic, we execute the repackaged
apps in our dataset using the same DroidXP configuration employed in the BLL-Study.
Specifically, we use DroidBot [20] as the test case generation tool and collect the network
traffic for three minutes.

The outcomes of these executions resulted in multiple PCAP files (4,067), one for each
repackaged app from LargeDS, as mentioned in Section 6.2.1. A PCAP file contains copies
of network packets, enabling the analysis of both payloads and packet headers [147]. Fol-
lowing this, we applied the feature extraction procedure described in Section 6.2.2 to build
the flow dataset (FlowDS) used in our experiment. The dataset contains a total of 1,640
features, which are derived from a combination of 78 features extracted by CICFlowMe-
ter, three protocol-related features (destination ports), and seven statistical features. The
dataset also includes the hash ID of the Android apps and the corresponding malware
label (i.e., malware or non-malware).

6.4 Results

In this section, we present the results of our research. First, in Section 6.4.1, we present
a comparison of the performance of different ML algorithms in classifying the repackaged
versions of apps in FlowDS as either malware or non-malware using DroidXPflow. In
Section 6.4.2, we present the results of combining the MAS approach with DroidXPflow,
while, in Section 6.4.3, we discuss how effectively our approach classifies malware families
for which the MAS approach exhibits poor performance.
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Table 6.2: Parameters suggested for each algorithm by cross-validation technique
.

Algorithm Parameter Grid Space Value

LDA Tolerance for singular value decomposition [1e-5:10] 0.0001
Solver method [svd, lsqr, eigen] eigen
Shrinkage [None, auto, 0:1] 0.5540245860

QDA Store Covariance [True, False] True
Regularized Covariance [0:1] 0.9997110797

LR Inverse of regularization strength [1e-7:10] 0.0001071493
Solver algorithm [newton-cg, lbfgs, liblinear, sag, saga] liblinear
Maximum number of iterations for optimization [50:500] 100
Regularization type [l1, l2, elasticnet, none] l1

RF Number of trees in the forest [10:500] 210
The min. num. of samples requir. to split an internal node [2:20] 10
The min. num. of samples requir. to be at a leaf node [1:10] 3
The num. of features to consider for the best split [auto, sqrt, log2, 0.5, 0.8, 1.0] log2(features)
The maximum depth of the tree [None, 5, 10, 20, 30, 50, 100] 5

MLP Activation function [relu, tanh, logistic] relu
Optization algoritm [adam, lbfgs, sgd] adam
The maximum number of iterations [200, 500, 1000] 1000

SVM Regularization parameter [0.01:100] 5.0
Kernel type [linear, poly, rbf, sigmoid] rbf
Kernel coefficient [scale, auto,0.001:1.0)) scale
Degree of the polynomial kernel [2:6] 3

6.4.1 Comparison of Machine Learning Algorithms

As discussed in Section 6.2, DroidXPflow extends DroidXP to collect network flow infor-
mation from apps during test case generation campaigns. To answer our first research
question, we conduct an exploratory data analysis that compares the performance of ML
algorithms using our FlowDS dataset.

For this first study, we execute the algorithms using their optimal hyper-parameter
configurations, which we obtained using cross-validation. Cross-validation is an approach
that divides the dataset into k equal parts, known as folds. For each possible combination
of hyper-parameters (e.g., for a Random Forest algorithm, this could include the number
of trees, maximum depth of the tree, etc.), the following steps are repeated:

(s1) Train the model using the (k-1) folds

(s2) Use the remaining fold to evaluate the performance in terms of F1-score.

(s3) Repeat this process k times, each time using different (k-1) folds to train and the
remaining fold to validate.

(s4) After training and validating the model k times, calculate the average performance
among all folds for a specific combination of hyper-parameters.

(s5) Repeat steps s1 to s4 for all possible combinations of hyper-parameters.
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Finally, the best combination of hyper-parameters that yields the highest average
performance is selected. The final values for each parameter, relative to all explored
algorithms, are presented in Table 6.2.

After identifying the best hyper-parameters, we train the algorithms using the set
of 2,847 samples (70%) from the FlowDS dataset and test it on 1,220 samples (30%)—
using the identified optimal hyper-parameters. Ultimately, the Random Forest algorithm
outperformed the others when considering metrics Recall, F1-score, and Area Under the
Curve (AUC). Table 6.3 presents the results.

Table 6.3: Performance of the ML algorithms to classify the app as malware or non-
malware using network flow data from the FlowDS.

Algorithm Precision Recall F1-score AUC
LDA 0.73 0.97 0.83 0.72
QDA 0.74 0.96 0.83 0.86
LR 0.75 0.92 0.83 0.81
RF 0.75 0.98 0.85 0.88
MLP 0.78 0.85 0.82 0.82
SVM 0.76 0.96 0.84 0.84

Since the RF algorithm outperformed the others, in the following sections, when we
present the performance of DroidXPflow, we will describe its usage with the Random
Forest algorithm.

Finding 6 The RF algorithm outperforms the other algorithms, achieving higher
values among the F1-score and Area Under the Curve metrics when exploring all
features and using the algorithms with optimal hyper-parameters configurations.

6.4.2 A comparison between DroidXPflow and the MAS ap-
proach

Here, we compare the performance of DroidXPflow and the MAS approach on malware
classification. This comparison also relies on standard metrics (recall, precision, and F1-
score), and we present the results using the same 30% of samples (1,220) from the FlowDS
dataset that we used for the tests in Section 6.4.1. Our results show that the vanilla MAS
approach for malware identification achieves significantly lower F1-score compared to the
DroidXPflow framework. That is, the MAS approach achieves an F1-score of 59%, while
the DroidXPflow achieves an F1-score of 85% when using the RF algorithm.

In more detail, considering the 1,220 apps in the testing sample (30% of the FlowDS),
the MAS approach classified a total of 452 repackaged apps as malware (37.04%) of
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Table 6.4: Performance of both strategy on FlowDS (1220 samples).

Approach TP FP FN Precision Recall F1
MAS approach 388 64 488 0.86 0.45 0.59
DroidXPflow 854 278 19 0.75 0.98 0.85
DroidXPflow and MAS approach 872 289 4 0.75 0.99 0.86

the total number of repackaged apps in the testing sample), where the repackaged app
version calls at least one additional sensitive API. Note that the MAS approach fails to
correctly classify 488 assets as malware (FN) (first row of Table 5.3) and wrongly labels
the repackaged version of 64 apps as malware (FP). This leads to poor performance in
terms of F1-score, indicating that, when considering the FlowDS, the F1-score of the MAS
approach using DroidBot as the test generation tool is 59%.

In contrast, DroidXPflow classified 1,132 apps as malware but failed to label 19 assets
as malware (FN) correctly. In addition, DroidXPflow wrongly labeled (FP) the repackaged
versions of 278 samples as malware (second row of Table 5.3). DroidXPflow led to a better
performance than the MAS approach, with an F1-score of 85%. Based on these results, we
can conclude that DroidXPflow outperforms the MAS approach when exploring FlowDS.

Finding 7 The experimental results show that DroidXPflow outperforms the MAS
approach, with F1-score of 0.85, compared to 0.59 for the MAS approach.

We further investigate the benefits of combining both approaches (MAS approach and
DroidXPflow). In this case, a true positive (TP) happens whenever at least one of the
approaches correctly identifies a malicious sample. In contrast, a false negative (FN)
occurs when both approaches incorrectly classify a malicious sample as benign, while a
false positive (FP) happens when at least one of the approaches incorrectly classifies a
benign sample as malicious. This strategy correctly classified 872 repackaged apps as
malware (TP) and reduced the number of false negatives (FN) to 4. However, it also
increased the number of false positives (FP) to 289. In summary, the results show that
combining both techniques slightly increases the recall and F1-score metrics (third row of
Table 5.3).

Finding 8 Combining the MAS approach with DroidXPflow leads to a marginal ben-
efit in terms of recall (from 0.98 to 0.99) and F1-score (from 0.85 to 0.86).

To understand the benefits of each method, we also analyze the contribution of both
methods in detecting malicious samples. We show Venn diagrams highlighting the sets of
True Positives (TP), False Positives (FP), and False Negatives (FN) for each technique
in Figure 6.2, which reveals that different approaches contribute differently to the final
detection result. For instance, in the first Venn diagram of Figure 6.2, we present the
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(a) True Positive raise (b) False Positive raise (c) False Negative raise

Figure 6.2: Contribution to the final detection result

set of True Positives (TP) for our samples. As one can see, 484 samples were identified
solely by DroidXPflow—most of them from the gappusin family (316 samples)—while
both approaches detected 373 malware, mainly from gappusin, airpush, and dowgin. The
MAS approach correctly detected 15 malware not detected by DroidXPflow, most without
family classification (four samples) and from the revmob family (three samples).

The second Venn diagram presents the sets of False Positives (FP). The diagram shows
that the MAS approach has a lower contribution to FPs compared to DroidXPflow, which
can explain its precision in Table 5.3. For 225 benign samples, the DroidXPflow approach
wrongly classified a normal network flow as malicious. However, its precision remains
high due to the increase in True Positives (TP). Finally, the third Venn diagram shows
the samples that both approaches failed to classify as malicious. In this case, the MAS
approach leads to a high amount of False Negatives (FN) (484 samples), most of them
from the gappusin family (316 samples), which can mainly be detected by DroidXPflow
due to their malicious network behavior. Among the four samples that were not detected
by either approach, they do not have a family classification. According to VirusTotal,
among the 60 antivirus engines available, at most four can detect them, characterizing
these samples as complex and difficult to classify as malware.

6.4.3 Detection Performance based on Malware Family

Categorizing malware into distinct types is a common practice. For example, Android
malware can be divided into adware, trojan, spyware, etc. These categories can be further
subdivided into specific malware families based on unique characteristics, attack methods,
and objectives [54].

Given that certain malware families, particularly those relying on command-and-
control communication, demonstrate substantial network activity, evaluating their de-
tection performance through network traffic analysis can offers valuable insights. This
approach complements existing detection methods by incorporating network behavioral
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signatures, which were not systematically explored in the FR-Study. In this section, we
present the results of our experiment, considering first the samples for which we could
identify the malware family (using the avclass2 tool [136]); and then considering the
samples for which we were not able to determine the family.

In the FR-Study, the authors showed that the MAS approach has a high false negative
rate for the gappusin and revmob families. Specifically, it failed to correctly identify
87.50% of the samples from the gappusin family and 44.44% of the samples from the
revmob family as malware. Among the 67 samples evaluated from the revmob family,
DroidXPflow identified 64 apps (95.52%) as malware, while for samples from the gappusin
family, it identified 371 samples (99.73%) as malware. Therefore, DroidXPflow effectively
detects samples with malicious network behaviors for which the MAS approach failed to
identify as malware correctly.

Considering the gappusin family, the reverse engineering discussed in the FR-Study
reveals that their samples automatically communicate with remote servers to download
and install other apps or adware without the user’s knowledge [156]. This network traffic
might explain the superior performance of DroidXPflow to classify samples of the gappusin
family as malware correctly.

Finding 9 DroidXPflow proved to be efficient in identifying samples from malware
families where the MAS approach demonstrated poor performance, as shown when
considering samples from gappusin and revmob families, popular malware families.

Additionally, it is worth noting that among all families examined, DroidXPflow cor-
rectly identified 100% of samples as malware in 65 of these families. This result shows the
effectiveness of our approach for other malware families investigated as well. For instance,
Table 6.5 presents the DroidXPflow detection performance for the families with at least
four samples in our dataset, as well as the classification of the samples into five malware
categories: ad fraud, adware, spyware, trojans, and SMS malware.

Table 6.5 also shows that most samples belong to the adware and ad fraud categories,
which aggressively display ads, generate fraudulent ad clicks, and track user behavior [157].
The other categories are equally harmful, though: SMS malware may cause financial
losses by sending unauthorized messages, spyware collects sensitive user data for malicious
purposes, and trojans provide remote access and control over infected devices.

Among the samples from our FlowDS, at least two security engines identified 80 as
malware, even though the avclass2 tool could not determine their families, perhaps
because they were recently discovered. Since new malware emerges daily, accurately
classifying recent malicious apps into their respective families is both challenging and
time-consuming [158, 159].
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Table 6.5: Detection Rate of the Families with at least four samples.

Category Family Samples Detected %
Ad Fraud gappusin 372 371 99,73

dowgin 69 67 97,10
kyvu 4 4 100,00

Adware revmob 67 64 95,52
airpush 44 43 97,72
youmi 28 28 100,00
kuguo 22 22 100,00
leadbolt 15 15 100,00
adwo 10 10 100,00
apptrack 10 10 100,00
domob 9 9 100,00
appsgeyser 6 6 100,00
admogo 6 6 100,00
pircob 5 5 100,00
cimsci 4 4 100,00
dnotua 3 3 100,00

Spyware igexin 7 7 100,00
cnzz 4 4 100,00

Trojan torjok 8 8 100,00
SMSmalware smsreg 29 28 96,55
None unknown 80 72 90,00

Although specific families were unknown at the time of this research, DroidXPflow
flagged 72 of these samples (90.00%) as malware. Based on these results, we conclude
that while DroidXPflow can identify these samples as malware, it has the lowest recall
rate for samples without family classification.

Finding 10 Even for malicious apps without family classification, DroidXPflow can
correctly identify them as malware based on their suspicious network activities. How-
ever, the false negative rate (FN) is higher for these samples compared to those with
family identification.

6.5 Discussion

The previous section demonstrated the efficacy of the DroidXPflow for detecting malware
in network traffic. In this section, we address the research questions posed in Section 6.3,
presenting the implications of our results, and discussing certain limitations that cannot
be ignored. These limitations also highlight areas for future research.
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6.5.1 Research Questions and Analysis

The assessment of our method in the previous section allows us to answer the research
questions as follows:

1. Machine Learning Algorithms Analysis (RQ1). Our experimental findings
provide evidence that, among all the ML algorithms investigated, the Random Forest
(RF) algorithm outperformed the other five algorithms explored, using the best
hyper-parameters suggested by the cross-validation technique.

2. Performance Gain in Android Malware Classification when we combine
the MAS approach and DroidXPflow (RQ2). Our study indicates that the
performance of DroidXPflow is superior when compared to MAS approach in mal-
ware identification. However, combining both approaches leads to only a marginal
gain in performance (in terms of F1-score).

3. Detection Performance on family where MAS approach demonstrated
low performance (RQ3). We confirm that DroidXPflow presents a better perfor-
mance for samples from families where the MAS approach has a poor performance.
For example, samples from the revmob and gappusin families achieved correct iden-
tification rates above 95% using DroidXPflow. These malware families are primarily
characterized by downloading adware without the user’s knowledge, automatically
connecting to and interacting with remote servers [156].

4. Detection Performance on samples without family identification (RQ4).
In malware samples where the avclass2 tool could not classify the family, DroidXPflow
achieved an acceptable accuracy (F1-score) of over 90%. However, we observed that
this rate is lower than the performance for identifying samples in which the family
was known. In other words, without identifying the unique traits or attack methods
that characterize a specific family, DroidXPflow can still detect malicious network
activity that deviates from normal behavior.

6.5.2 Implications

Previous studies [3, 21, 26] incorrectly identified the MAS approach as a solution with rea-
sonable performance, based on results from a limited dataset composed of fewer than 20
malware families. In contrast, FR-Study reported negative results for the MAS approach
when using a more representative dataset, which included a greater variety of malware
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families. These families were responsible for a higher false negative rate, ultimately com-
promising the performance of the MAS approach.

Our work on DroidXPflow addresses this problem, presenting an approach based on
network flow analysis with ML support. Our solution proved to be efficient in detecting
different malicious behaviors and reducing the number of false negatives. More impor-
tantly, DroidXPflow can identify more malware that use polymorphism or obfuscation to
evade detection [160], but exhibit high and suspicious interactions with the network.

Our study also reveals that for 15 samples, DroidXPflow fails to detect their malicious
behavior, while the MAS approach successfully identified them as malware. This result
suggests that Network Traffic Analysis is not a complete solution, highlighting the im-
portance of combining both approaches. Among all families explored, eight had samples
that DroidXPflow do not identify as malicious; however, they were identified as mali-
cious by MAS approach. Examples include the Dowgin family (2 samples out of 69) and
the Revmob family (3 samples out of 67), where only the MAS approach was able to
identify them correctly as malware. Furthermore, our previous results show that MAS
approach can correctly label as malware 100% samples from the Airpush family. In this
case, DroidXPflow also classifies all malware samples and confirms their maliciousness.
This demonstrates that the current state-of-the-art Mining Sandbox techniques remain
effective for certain malware families.

6.5.3 Limitations

The previous results of our empirical assessment show that DroidXPflow is a practical
approach for malware detection. However, as with any empirical study, some potential
threats are worth highlighting.

Training set. The FlowDS contains 2,886 malware samples, comprising 116 families.
However, since new malware appears daily, we believe there are still malware families that
cannot be detected by DroidXPflow. This is a typical limitation in the malware detec-
tion literature, although our dataset is competitive with previous studies (see Table 2.1).
To address this issue in future studies, we propose expanding the dataset continuously,
including experimenting with additional detection models. The malware detection ca-
pability improves as the size of the training samples increases, enabling the solution to
detect more types of malware.

Malicious behaviors triggered. During the execution phase of DroidXP, it restarts
the explored apps to activate the malicious behavior of a malware. However, it is possible
that not all malicious activities were fully triggered by our testing tool, as some behaviors
may require real user interaction to be activated. Bao et al. [3] provide evidence that
DroidBot outperforms other test generation tools by uncovering many potential malicious
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behaviors. However, since this research, different tools for test case generation have
emerged [161, 162], which tend to perform more effectively and could make the collected
traffic resemble real-world scenarios more closely. Furthermore, since we used an Android
emulation environment, it is possible that some malware could detect this situation and
avoid triggering their malicious behaviors, thus affecting the network traffic collection
process. Besides that, integrating DroidXPflow with Random Forest led to a recall of
98%.

In the future, we plan to explore more recent test generation tools, as presented in
Chapter 2, that could cover a broader range of app behaviors. Additionally, we intend
to incorporate real devices into the traffic collection to detect better malware that can
bypass emulators.

6.6 Conclusions

In this chapter, we introduced DroidXPflow, a framework for detecting Android mal-
ware using Network Traffic Analysis with the support of Machine Learning algorithms.
As a first step, we created a dataset of network traffic (FlowDS) from the execution of
4,067 repackaged apps, extracted from the dataset presented in FR-Study. We then
used DroidXPflow to investigate whether our solution could overcome the limitations of
the MAS approach, especially relating to the detection of malware families that heav-
ily interact with networks. Our evaluation demonstrates that DroidXPflow achieves a
good performance in detecting Android malware, with an F1-score of 0.85. Although
DroidXPflow builds upon the results of the state-of-the-art Mining Sandbox, we show
that it is not a complete solution. Our evaluation reveals that there are samples in
FlowDS that DroidXPflow fails to flag as malicious, whereas the MAS approach succeeds.
We also highlight the limitations posed by our malicious sample quantity and discuss the
importance of the number of samples used for training, as this can affect the accuracy of
ML algorithms and, consequently, the effectiveness of our approach. In future work, we
plan to collect, train, and analyze more malware samples to improve our malware detec-
tion solution by developing more sophisticated models. Additionally, we intend to explore
more recent test generation tools that can better simulate user input, thereby making the
collected traffic more closely resemble real-world scenarios.
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Conclusions

As presented in Section 2.3.2, the MAS approach is a popular technique used to isolate
Android apps in order to analyze their behavior and identify vulnerabilities. It has been
extensively studied in prior research, including the BLL-Study. The study reported that
more than 70% of the malware investigated in their dataset could be detected by sand-
boxes built through the synchronous execution of test case generation tools (i.e., dynamic
analysis). However, our first study presented in Chapter 4 revealed that this performance
is only achieved when we enable the static analysis components from DroidFax. This find-
ing demonstrates that the effectiveness of the MAS approach stems from the combined use
of both analyses (static and dynamic), with the latter being facilitated by test generation
tools. We review the literature and present, for the first time, empirical evidence that the
MAS approach benefits from the combination of both dynamic and static analysis.

In Chapter 5, we investigated the strengths and limitations of the MAS approach for
detecting repackaged malware using a more diverse dataset compared to the one used
in the BLL-Study. Our results reveal that the performance of the MAS approach drops
significantly when applied to our comprehensive dataset, highlighting the limitations of
the MAS approach, particularly when scaled. These findings pave the way for our third
study, presented in Chapter 6, in which we propose a method for detecting Android
malware by Network Traffic Analysis with ML support. In this study, we use the same
dataset from Study 2 to investigate whether our proposed method can overcome the
limitations of the MAS approach pointed out in Chapter 5. The study demonstrates that
the Network Traffic Analysis with the support of the Random Forest algorithm achieves
strong performance in detecting mobile malware, with an F1-score of 0.85. Although this
is an interesting achievement, we show that Network Traffic Analysis is not a complete
solution, as there are samples in the dataset that the proposal fails to classify as malware,
but which the MAS approach successfully identifies.
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As briefly outlined above, we have sought to contribute to the ongoing “cat-and-
mouse” game, hoping that our thesis empirically expands the current understanding of
MAS approach for malware detection. We examined its primary strengths and limitations
and proposed solutions to address the identified weaknesses. In the following sections, we
present the contributions of this thesis and lay the groundwork for future research on
Android malware and its detection.

7.1 Contributions and Findings

In this thesis, we investigate how the MAS approach can be utilized to detect malware and
prevent privacy leaks in Android apps, such as the unauthorized disclosure of personal
data, network MAC addresses, IMEI numbers, and similar sensitive data. We examine
the limitations of the MAS approach and propose alternative solutions to overcome these
challenges. As an initial step toward achieving these objectives, we develop and release
several artifacts to support academic research, which we briefly outline below.

DroidXP: [24] An extensible tool that allows researchers and practitioners to easily
add and evaluate test generation tools. With support from DroidFax, it instruments each
APK file and collects data during app execution while a test tool (e.g., Droidmate or
Droidbot) is running. DroidXP is currently available in an open source repository 1.

DroidXPflow: It extends the original DroidXP framework by integrating additional
dynamic analysis techniques, in particular network traffic capture during app execution,
to enhance malware detection. While DroidXP primarily focused on sensitive API calls,
DroidXPflow enriches the DroidXP outcomes with behavioral data, which is then analyzed
using machine learning (ML) models trained on a pre-existing knowledge base. This
extension enhances detection accuracy, increases resistance to evasion techniques (e.g.,
code obfuscation), and reduces both false positives (FPs) and false negatives (FNs). The
DroidXPflow scripts are publicly available in an open-source repository 2 for the academic
community to support future research.

These artifacts proved essential to our thesis, enabling us to both validate earlier work
and perform new explanatory studies on the MAS approach, as described below:

1github.com/droidxp/benchmark
2github.com/droidxp/ML
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7.1.1 Study 1: What is the impact of static analysis on the MAS
approach?

• This thesis presents the effectiveness of MAS approach in classifying malicious apps
with the combination of dynamic analysis, enabled by test generation tools, and
static analysis, achieved through instrumentation using the Droidfax algorithm.

• Our work also demonstrates that the performance of FlowDroid static analysis algo-
rithms in identifying malicious behavior is comparable to the performance of MAS
approach supported by dynamic analysis, i.e., without the support of DroidFax
static analysis algorithms.

• Incorporating static analysis tools like FlowDroid and DroidFax into the MAS ap-
proach enhances its effectiveness in classifying Android apps as malware correctly.

7.1.2 Study 2: Does the accuracy of the MAS approach scale at
a large and more diverse dataset than previous studies?

• We demonstrate that only a few sensitive APIs are responsible for the majority of
malicious code inserted in malware apps, with the most commonly inserted API
providing access to telephony services.

• We extend the state-of-the-art knowledge on the effectiveness of the MAS approach,
revealing that, on a more diverse dataset, the performance of the MAS approach is
substantially lower compared to what was previously observed.

• We present evidence of a correlation between the Similarity Score, which measures
the likeness between the original and repackaged versions of an app, and the per-
formance of the MAS approach. Our findings suggest that a higher Similarity Score
reduces the likelihood of successful malware classification by the MAS approach

• We bring evidence on the high influence of malware families on the accuracy of
the MAS approach. That is, we report that the MAS approach fails to correctly
identify most samples from the gappusin and revmob families as malware, revealing
a key reason for the low recall of the MAS approach in the diverse dataset. This
finding highlights the need for additional techniques to support the MAS approach
in malware identification.
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7.1.3 Study 3: Does DroidXPflow outperform the original MAS
approach, improving its malware detection capabilities?

• The study shows that Network Traffic Analysis, supported by ML algorithms, out-
performs the MAS approach, proving to be an effective strategy to enhance malware
classification.

• The study also provides evidence that the Random Forest algorithm is the best
option for analyzing network flow with ML, achieving a higher F1-score (0.85). Fur-
thermore, our assessments also highlight that DroidXPflow significantly enhances
malware detection performance for the families identified in Study 2, which pre-
sented the lowest recall rates but demonstrated high levels of malicious network
activity. DroidXPflow effectively leverages and improves these recall rates.

• Our thesis demonstrates that combining both techniques (i.e., DroidXPflow and the
MAS approach) yields a slight improvement in recall (increasing from 0.98 to 0.99)
and, consequently, a marginal increase in the F1-score (from 0.85 to 0.86).

• Last but not least, study 3 provides evidence that DroidXPflow is most effective in
classifying malware among samples with a known family. However, it still performs
well on samples without known family by identifying suspicious network activities
that deviate from patterns typically classified as normal.

7.2 Future Work

In Chapter 2, we introduce several test generation tools capable of generating test cases
for the MAS approach, and in Chapter 4, we show that Droidbot performs the best in
this regard. However, for future work, it would be valuable to explore more recent test
generation tools that could cover a broader range of app behaviors and potentially surpass
Droidbot’s performance. Additionally, incorporating real devices into the data collection
process could prove beneficial, as this approach might help identify malware samples that
are capable of detecting and bypassing emulated environments.

Furthermore, as discussed in Section 5.4.2, the versatility of the Java Native Interface
(JNI) has introduced new challenges. Malware authors are increasingly leveraging the
native layer to conceal malicious code. Our research indicates that the current state-of-
the-art in the MAS approach, often overlooks native calls to sensitive resources. As future
work, we believe it is important to conduct research on the use of native components
to identify multiple suspicious activities associated with JNI code. Section 5.4.2 also
highlights insecure coding practices for Android development, emphasizing the need for
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robust safeguards against common vulnerabilities such as improper JNI usage, insecure
native library loading, and download of apps at runtime. Future work should focus
on providing developers with actionable guidelines to prevent security vulnerabilities in
Android apps, as illustrated in listings 5.3 and 5.5, by extracting common vulnerability
patterns. These patterns would help developers avoid security pitfalls while establishing
best practices for building more secure Android apps.

Finally, as with all ML strategies, it is important to keep the training set continuously
updated. We envision further investigation with a larger number of malware samples that
could cover more malware families, as the malware detection capability improves with
the increase in the size of the training set. The processes of data collection, training,
and analysis must be ongoing to continuously improve malware classification. It is also
important to highlight that continuous updates to malware/non-malware classifications
and family categorizations are also essential, using standardized tools like VirusTotal,
since these threat classifications evolve over time.
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Appendix A

Feature Extraction: List of 76
features used in Study 3

Feature Name: Description

Flow duration: Duration of the flow in Microsecond

total Fwd Packet: Total packets in the forward direc.

total Bwd packets: Total packets in the backward direc.

total Length of Fwd Packet Total size of packet in forward direc.

total Length of Bwd Packet Total size of packet in backward direc.

Fwd Packet Length Min: Minimum size of packet in forward direc.

Fwd Packet Length Max: Maximum size of packet in forward direc.

Fwd Packet Length Mean: Mean size of packet in forward direc.

Fwd Packet Length Std: Standard deviation size of packet in forward direc.

Bwd Packet Length Min: Minimum size of packet in backward direc.

Bwd Packet Length Max: Maximum size of packet in backward direc.

Bwd Packet Length Mean: Mean size of packet in backward direc.

Bwd Packet Length Std: Standard deviation size of packet in backward direc.

Flow Bytes/s: Number of flow bytes per second

Flow Packets/s: Number of flow packets per second

Flow IAT Mean: Mean time between two packets sent in the flow

Flow IAT Std: Standard deviation time between two packets sent in the flow

Flow IAT Max: Maximum time between two packets sent in the flow

Flow IAT Min: Minimum time between two packets sent in the flow

Fwd IAT Min: Minimum time between two packets sent in the forward direc.

Fwd IAT Max: Maximum time between two packets sent in the forward direc.

Fwd IAT Mean: Mean time between two packets sent in the forward direc.

Fwd IAT Std: Standard deviation time between two packets sent in the fwd direc.
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Fwd IAT Total : Total time between two packets sent in the forward direc.

Bwd IAT Min: Minimum time between two packets sent in the backward direc.

Bwd IAT Max: Maximum time between two packets sent in the backward direc.

Bwd IAT Mean: Mean time between two packets sent in the backward direc.

Bwd IAT Std: Standard deviation time between two packets sent in the bwd direc.

Bwd IAT Total: Total time between two packets sent in the backward direc.

Fwd PSH flags: Times the PSH flag was set in pkt travelling in the fwd direc.(0 for UDP)

Bwd PSH Flags: Times the PSH flag was in pkt travelling in the bwd direc.(0 for UDP)

Fwd URG Flags: Times the URG flag was in pkts travelling in the fwd direc.(0 for UDP)

Bwd URG Flags: Times the URG flag was in pkts travelling in the bwd direc.(0 for UDP)

Fwd Header Length: Total bytes used for headers in the forward direc.

Bwd Header Length: Total bytes used for headers in the backward direc.

FWD Packets/s: Number of forward packets per second

Bwd Packets/s: Number of backward packets per second

Packet Length Min: Minimum length of a packet

Packet Length Max: Maximum length of a packet

Packet Length Mean: Mean length of a packet

Packet Length Std: Standard deviation length of a packet

Packet Length Variance Variance length of a packet

FIN Flag Count: Number of packets with FIN

SYN Flag Count: Number of packets with SYN

RST Flag Count: Number of packets with RST

PSH Flag Count: Number of packets with PUSH

ACK Flag Count: Number of packets with ACK

URG Flag Count: Number of packets with URG

CWR Flag Count: Number of packets with CWR

ECE Flag Count: Number of packets with ECE

down/Up Ratio: Download and upload ratio

Average Packet Size: Average size of packet

Fwd Segment Size Avg: Average size observed in the forward direc.

Bwd Segment Size Avg: Average size observed in the backward direc.

Fwd Bytes/Bulk Avg: Average number of bytes bulk rate in the forward direc.

Fwd Packet/Bulk Avg: Average number of packets bulk rate in the forward direc.

Fwd Bulk Rate Avg: Average number of bulk rate in the forward direc.

Bwd Bytes/Bulk Avg: Average number of bytes bulk rate in the backward direc.

Bwd Packet/Bulk Avg: Average number of packets bulk rate in the backward direc.

Bwd Bulk Rate Avg: Average number of bulk rate in the backward direc.

Subflow Fwd Packets: The average number of packets in a sub flow in the fwd direc.

Subflow Fwd Bytes: The average number of bytes in a sub flow in the fwd direc.

Subflow Bwd Packets: The average number of packets in a sub flow in the bck direc.
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Subflow Bwd Bytes: The average number of bytes in a sub flow in the backward direc.

Fwd Init Win bytes: The total number of bytes sent in initial window in the fwd direc.

Bwd Init Win bytes: The total number of bytes sent in initial window in the bck direc.

Fwd Act Data Pkts: Count of pkt with at least 1 byte of TCP data payload in the fwd direc.

Fwd Seg Size Min: Minimum segment size observed in the forward direc.

Active Min: Minimum time a flow was active before becoming idle

Active Mean: Mean time a flow was active before becoming idle

Active Max: Maximum time a flow was active before becoming idle

Active Std: Standard deviation time a flow was active before becoming idle

Idle Min: Minimum time a flow was idle before becoming active

Idle Mean: Mean time a flow was idle before becoming active

Idle Max: Maximum time a flow was idle before becoming active

Idle Std: Standard deviation time a flow was idle before becoming active
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