
Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

Adaptive Patch Grid Strategy for Parallel Protein
Folding using Atomic Burials with NAMD

Emerson de Araujo Macedo

Brasília
2025

Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

Adaptive Patch Grid Strategy for Parallel Protein
Folding using Atomic Burials with NAMD

Emerson de Araujo Macedo

Thesis submitted as a partial requirement
for completion of the Ph.D. in Informatics

Advisor
Prof.ª Dr.ª Alba Cristina M. A. de Melo

Brasília
2025

Universidade de Brasília — UnB
Instituto de Ciências Exatas
Departamento de Ciência da Computação
Doutorado em Informática

Coordenador: Prof. Dr. Rodrigo Bonifácio Almeida

Banca examinadora composta por:

Prof.ª Dr.ª Alba Cristina M. A. de Melo (Orientadora) — CIC/UnB
Prof. Dr. Márcio Dorn — INF/UFRGS
Prof. Dr. Mário Antônio Ribeiro Dantas — ICE/UFJF
Prof. Dr. Ricardo Pezzuol Jacobi — CIC/UnB

CIP — Catalogação Internacional na Publicação

de Araujo Macedo, Emerson.

Adaptive Patch Grid Strategy for Parallel Protein Folding using
Atomic Burials with NAMD / Emerson de Araujo Macedo. Brasília
: UnB, 2025.
167 p. : il. ; 29,5 cm.

Tese (Doutorado) — Universidade de Brasília, Brasília, 2025.

1. Protein Folding, 2. ab initio Molecular Dynamics, 3. Parallel
Strategies, 4. High-Performance Computing, 5. Adaptive Patch
Grid, 6. Atomic Burial, 7. NAMD, 8. Simulation Acceleration

CDU 004.4

Endereço: Universidade de Brasília
Campus Universitário Darcy Ribeiro — Asa Norte
CEP 70910-900
Brasília–DF — Brasil

Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

Adaptive Patch Grid Strategy for Parallel Protein
Folding using Atomic Burials with NAMD

Emerson de Araujo Macedo

Tese apresentada como requisito parcial
para a conclusão do Doutorado em Informática

Prof.ª Dr.ª Alba Cristina M. A. de Melo (Orientadora)
CIC/UnB

Prof. Dr. Márcio Dorn Prof. Dr. Mário Antônio Ribeiro Dantas
INF/UFRGS ICE/UFJF

Prof. Dr. Ricardo Pezzuol Jacobi
CIC/UnB

Prof. Dr. Rodrigo Bonifácio Almeida
Coordenador do Programa em Pós-Graduação em Informática

Brasília, 11 de março de 2025

Dedication

I dedicate this work to my beautiful wife, Little Princess Bunny, and our two
wonderful children, Malu and Pepê. Your unwavering love, joy, and patience have
been my greatest sources of strength throughout this journey. This project demanded
immense energy and focus, and I could not have completed it without knowing
I could always count on your support. You inspire me every day, and I love you
deeply.

Acknowledgments

I would like to express my heartfelt gratitude to my parents, who taught me
the values of faith, hard work, and dedication, instilling in me a love for God and
a deep appreciation for a fulfilling life. Their unwavering support and love have
been a great source of strength.

To my advisor, Professor Dr. Alba Cristina Magalhães Alves de Melo from the
Graduate Program in Informatics at the Department of Computer Science at the
University of Brasília (CIC-UnB), I owe a profound debt of gratitude. Her insights,
patience, and leadership have guided me through each phase of my research, push-
ing me to grow as a researcher and an individual.

I am also thankful to Associate Professor Gerson Henrique Pfitscher from the
Department of Electrical Engineering (ENE). His collaboration in the initial stages
of my research provided a valuable foundation, and his friendship has been a
source of encouragement and intellectual exchange ever since.

I extend my appreciation to Professor Dr. Antônio Francisco Pereira de Araújo
of the Laboratory of Theoretical and Computational Biology (LBTC) at the Uni-
versity of Brasília (UnB), Dr. Marx Gomes van der Linden, and Dr. Diogo César
Ferreira. Their research on Atomic Burial has provided foundational insights that
were invaluable to this study.

I am grateful to the Barcelona Supercomputing Center (BSC) for providing ac-
cess to the Marenostrum 4 supercomputer and the Nord HPC cluster, which were
essential for the simulations in this research.

To the Department of Computer Science at the University of Brasília (CIC-
UnB), I am deeply grateful. Its resources, facilities, and academic environment
have supported my growth as a scholar in every way.

Finally, my thanks to the University of Brasília (UnB) for providing a fertile
ground for learning and discovery, and to all others who supported me on this
journey. Your encouragement has made this achievement possible.

Abstract

Protein folding is a crucial process in molecular biology for understanding the
structural and functional dynamics of proteins. Molecular dynamics simulations
are important for providing atomic-level insights into the folding process, enabling
the investigation of structural changes over time. However, these simulations face
many challenges, such as high computational costs, inefficient load balancing, dif-
ficulties in scaling simulations for large systems, and limited accuracy in repre-
senting complex interactions like hydrogen bonding and solvation effects. This
PhD Thesis aims to address these challenges by investigating parallel strategies to
accelerate ab initio molecular dynamics simulations of protein folding while main-
taining accuracy. To overcome load imbalance caused by static spatial decompo-
sition methods, which becomes critical as the folding progresses, this work intro-
duces a dynamic approach. Specifically, this work proposes an Adaptive Patch
Grid (APG) strategy that dynamically adjusts spatial decomposition throughout
the folding process to improve load balancing and efficiency in molecular dynamics
simulations. As an ab initio approach, these simulations derive atomic interac-
tions from first principles, demanding high computational resources and advanced
parallelization strategies. Additionally, this PhD Thesis proposes the N2HB algo-
rithm, which addresses the inadequacy of force fields in capturing key structural
forces during folding by introducing atomic burial and hydrogen bonding potentials
to enhance model realism. Both proposals (APG and N2HB) were implemented us-
ing the NAMD platform, a parallel molecular dynamics software. New components
such as ComputeBurialForce and ComputeHBonds were added to enable paral-
lel computation of burial and hydrogen bonding forces. Annealing weights were
applied to optimize the energy minimization process during folding. The solutions
were evaluated through extensive testing on various High-Performance Computing
(HPC) systems, showing reduced execution times while maintaining good simula-
tion accuracy. This PhD Thesis contributes to the field by providing paralleliza-
tion strategies that enhance the performance of molecular dynamics simulations
for protein folding, addressing computational limitations and offering methods to
scale these simulations for more complex biological systems. This PhD Thesis ad-
vances the field by introducing scalable and biologically relevant enhancements to
molecular dynamics simulations, supporting the accurate and efficient modeling of
protein folding in complex systems.

Keywords: Protein Folding, ab initio Molecular Dynamics, Parallel Strategies,
High-Performance Computing, Adaptive Patch Grid, Atomic Burial, NAMD, Simu-
lation Acceleration

Resumo

O dobramento de proteínas é um processo crucial na biologia molecular para a
compreensão da dinâmica estrutural e funcional das proteínas. As simulações de
dinâmica molecular são importantes para fornecer insights em nível atômico sobre
o processo de dobramento, permitindo a investigação das mudanças estruturais ao
longo do tempo. No entanto, essas simulações enfrentam muitos desafios, como o
alto custo computacional, desbalanceamento de carga durante a execução paralela,
dificuldades de escalonamento para grandes sistemas e limitações na representa-
ção precisa de interações moleculares complexas, como as ligações de hidrogênio e
os efeitos de solvatação. Esta Tese de Doutorado tem como objetivo abordar esses
desafios por meio da investigação de estratégias paralelas para acelerar simula-
ções de dinâmica molecular ab initio aplicadas ao dobramento de proteínas, sem
comprometer a precisão dos resultados. Para enfrentar o problema do desbalan-
ceamento de carga causado pela decomposição espacial estática, especialmente em
simulações com estruturas em constante mudança, esta Tese apresenta uma abor-
dagem dinâmica para reorganização espacial ao longo do tempo. Especificamente,
este trabalho propõe uma estratégia Adaptive Patch Grid (APG) que ajusta di-
namicamente a decomposição espacial ao longo do processo de dobramento para
melhorar o balanceamento de carga e a eficiência nas simulações de dinâmica mo-
lecular. Como uma abordagem ab initio, essas simulações derivam as interações
atômicas a partir de princípios físicos fundamentais, exigindo alto poder compu-
tacional e estratégias avançadas de paralelização. Além disso, esta Tese propõe
o algoritmo N2HB, que visa melhorar a precisão estrutural das simulações ao in-
corporar potenciais de enterramento atômico e - forças essenciais que não são bem
representadas por modelos de campo de força tradicionais. Ambas as propostas
(APG e N2HB) foram implementadas usando a plataforma NAMD, um software
paralelo de dinâmica molecular. Novos componentes, como ComputeBurialForce
e ComputeHBonds, foram adicionados para permitir o cálculo paralelo das forças
de enterramento e Pesos de anelamento foram aplicados para otimizar o processo
de minimização de energia durante o dobramento. As soluções foram avaliadas
por meio de extensivos testes em vários sistemas HPC, demonstrando redução nos
tempos de execução enquanto mantinham boa precisão na simulação. Esta Tese
contribui com soluções escaláveis e biologicamente relevantes para simulações de
dinâmica molecular, ampliando a capacidade de modelar com precisão o dobra-
mento de proteínas em sistemas complexos.
Palavras-chave: Protein Folding, ab initio Molecular Dynamics, Parallel Strate-
gies, High-Performance Computing, Adaptive Patch Grid, Atomic Burial, NAMD,
Simulation Acceleration

Estratégia Adaptativa de Grade em Blocos para
Enovelamento Paralelo de Proteínas Utilizando

Enterramentos Atômicos com o NAMD

Resumo Expandido

Introdução
As proteínas são componentes vitais dos sistemas biológicos, desempenhando

funções essenciais como a catálise de reações metabólicas, o suporte estrutural
celular e a comunicação entre células. A compreensão dos processos biológicos e
das doenças depende, em grande parte, da elucidação de como as proteínas adqui-
rem suas estruturas tridimensionais funcionais. Entretanto, o processo de enovela-
mento proteico é extremamente complexo, influenciado por interações intrincadas
entre os aminoácidos e o ambiente molecular.

As simulações de dinâmica molecular (MD) surgem como uma abordagem pro-
missora para investigar o enovelamento de proteínas, oferecendo detalhes em nível
atômico sobre o comportamento conformacional ao longo do tempo. Essas simu-
lações resolvem as equações de movimento de Newton para prever as mudanças
estruturais, mas enfrentam desafios significativos, como o elevado custo computa-
cional e as dificuldades de escalabilidade em sistemas de grande porte.

Modelos com solvente explícito aumentam a complexidade computacional, en-
quanto modelos implícitos oferecem alternativas mais leves, ainda que com alguma
perda de precisão. Além disso, o nível de representação molecular impacta dire-
tamente o custo e a fidelidade da simulação: modelos Coarse-Grained permitem
simulações mais longas e amplas, ao passo que modelos totalmente atomísticos são
essenciais para a captura de interações moleculares detalhadas, como ligações de
hidrogênio e efeitos de solvatação.

Para enfrentar essas limitações, estratégias de decomposição espacial e técnicas
de paralelização têm sido investigadas no contexto de computação de alto desem-
penho (HPC), buscando melhorar a distribuição da carga computacional ao longo
da execução da simulação. A necessidade de adaptação dinâmica da decomposição
espacial torna-se ainda mais crítica em processos como o enovelamento proteico,
onde a distribuição atômica varia significativamente ao longo do tempo.

viii

Contribuições
Nesta Tese, propõe-se duas contribuições principais para otimizar simulações

de enovelamento de proteínas: a estratégia de decomposição espacial adaptativa
chamada Adaptive Patch Grid (APG) e o algoritmo N2HB para a execução paralela
da técnica de enterramento atômico (Atomic Burials). Ambas as soluções foram
integradas ao simulador de dinâmica molecular NAMD, com o objetivo de reduzir
o tempo de execução, melhorar a escalabilidade e preservar a precisão estrutural
das simulações.

As duas contribuições da Tese atuam de forma complementar para aprimorar
simulações de enovelamento de proteínas utilizando o simulador NAMD: a estra-
tégia adaptativa de grade em blocos (APG) e a integração de novas forças de enter-
ramento atômico e ligação de hidrogênio baseadas no algoritmo MDBury.

O NAMD foi escolhido como plataforma de implementação por permitir acesso
ao seu código-fonte, apresentar escalabilidade para sistemas com mais de mil áto-
mos e dispor de uma arquitetura modular compatível com a adição de novos compo-
nentes. O mecanismo de execução do NAMD foi estendido para incluir algoritmos
relacionados à força de enterramento atômico e à força de ligação de hidrogênio
definidas no algoritmo MDBury.

A primeira contribuição da Tese, chamada APG, consiste em uma estratégia
que adapta dinamicamente a grade em blocos do NAMD ao formato da proteína ao
longo da simulação. Essa adaptação visa produzir uma decomposição geométrica
mais balanceada entre os núcleos de processamento, promovendo melhor aprovei-
tamento da execução paralela. A abordagem foi implementada de forma a não
exigir mudanças na configuração do sistema molecular ou nos parâmetros físicos
definidos, utilizando critérios baseados na densidade de átomos simulados para
reconfigurar a grade espacial.

O código da APG foi integrado ao fluxo de execução da ferramenta NAMD, res-
peitando os mecanismos de comunicação entre processos paralelos. Assim, tornou-
se possível a adaptação dinâmica da grade em blocos gerada durante a execução,
sem comprometer a continuidade da simulação, o que representa uma novidade em
relação às estratégias tradicionais que utilizam decomposição fixa.

A segunda contribuição trata da inclusão de novas forças no NAMD, inspiradas
no algoritmo MDBury, utilizado para simular o enovelamento de proteínas através
de dinâmica molecular com base em energias potenciais de enterramento atômico.
Foram incorporados três componentes distintos ao simulador NAMD: um para cal-
cular a força de enterramento atômico, outro para calcular a força de ligação de
hidrogênio associada aos átomos enterrados e outro para calcular os pesos de ane-
lamento utilizados na técnica de enterramento atômico.

Esses componentes foram implementados como módulos compatíveis com a exe-
cução paralela e respeitando o modelo de distribuição de dados do NAMD. A prin-
cipal dificuldade enfrentada foi garantir acesso eficiente aos dados dos átomos dis-
tribuídos na grade em blocos e necessários para o cálculo local das contribuições de
energia e força.

Resultados
As simulações foram realizadas no supercomputador MareNostrum 4, usando

entre 48 e 288 núcleos de processamento, e no supercomputador Nord III, utili-
zando entre 16 e 128 núcleos de processamento. Foram avaliadas quatro proteí-
nas globulares obtidas da base de dados de proteínas PDB: 1ENH (947 átomos),
1IFR (1.746 átomos), 1OZ9 (2.346 átomos) e 4LNZ (5.714 átomos). Essas proteínas
apresentam diferentes números de átomos, característica utilizada para avaliar o
desempenho e o comportamento das estratégias propostas em contextos variados
de simulação.

Os experimentos foram ajustados por meio de arquivos de configuração, que in-
cluíam os parâmetros estruturais da simulação, o uso de solvente implícito e as
opções de reinício. Foram conduzidos testes com a grade em blocos padrão, com
número ampliado de blocos e com reinício manual. Os resultados mostraram que
o aumento manual do número de blocos nem sempre levou à melhoria de desem-
penho, devido à criação de blocos vazios ou à má distribuição entre os núcleos.
O reinício manual revelou que a decomposição podia ser melhorada entre fases,
abrindo caminho para a adaptação dinâmica proposta pela APG.

A avaliação considerou tanto o impacto no tempo total de execução quanto a
eficiência na distribuição da carga computacional. A Tese apresenta resultados
que mostram a viabilidade da abordagem, evidenciando que a integração da grade
em blocos adaptativa e da técnica de enterramento atômico ao NAMD pode ser
feita sem prejuízo à execução da simulação, apresentando melhor escalabilidade
em relação ao MDBury.

Os experimentos realizados nesta Tese permitiram avaliar o desempenho e a
escalabilidade das estratégias propostas para simulações de enovelamento de pro-
teínas no NAMD. Foram conduzidos testes com a grade em blocos padrão, ampli-
ada, com reinício manual e com adaptação dinâmica via APG, além da integração
das forças de enterramento atômico e ligações de hidrogênio.

Inicialmente, testes com a grade em blocos padrão foram realizados com as pro-
teínas 1ENH, 1IFR e 1OZ9, obtidas da base PDB. As grades geradas pelo NAMD
(por exemplo, configurações em 7x3x1 e 19x3x1 blocos) possuíam menos blocos que
núcleos, resultando em ociosidade e baixo aproveitamento na execução paralela. Os
tempos de execução não mostraram correlação evidente com o número de núcleos,
e os tempos de execução foram inconsistentes.

Na sequência, foram realizados testes com grade em blocos ampliada, utilizando
os parâmetros twoAwayX, twoAwayY e twoAwayZ no arquivo de configuração. Em-
bora essa abordagem aumentasse o número de blocos, observou-se a criação de
blocos "vazios" (sem átomos associados), por exemplo, 154 blocos vazios no teste
com a proteína 1OZ9, mostrando uma distribuição espacial ineficiente. Com isso,
algumas simulações não foram concluídas dentro das 48 horas reservadas para
execução de cada simulação nos supercomputadores.

Os testes com reinício manual da simulação foram realizados com a proteína
4LNZ no supercomputador Nord III. A cada fase, a simulação era interrompida e
reiniciada, gerando novas grades em blocos (por exemplo, de 20x7x1 blocos para
7x4x5 blocos). Isso mostrou que alterações na conformação da proteína ao longo

do tempo afetavam a decomposição espacial e que recalcular a grade após essas
mudanças melhorava a eficiência.

Com base nessas observações, foi proposta a estratégia adaptativa de grade
em blocos (APG). Em simulações com a proteína 4LNZ (20 milhões de iterações),
executadas em quatro fases, a APG reconfigurou dinamicamente a grade de 47x3x1
para configurações mais compactas como 6x4x3 e 5x4x4. No supercomputador Nord
III com 128 núcleos (8 nós computacionais), o tempo de execução foi reduzido de
34 horas e 18 minutos (1 nó) para 11 horas e 22 minutos com APG (8 nós). Em
relação à grade padrão, houve redução de 16 horas e 57 minutos para 11 horas e
22 minutos, confirmando a redução significativa no tempo de execução.

Além disso, a integração do algoritmo N2HB ao NAMD com a APG gerou ga-
nhos adicionais. Com 15 milhões de iterações no supercomputador Nord III, a
versão NAMD+APG+AB reduziu o tempo de execução em 2 horas e atingiu até 34
ns/dia, superando os 24 ns/dia da versão padrão com enterramento, mantendo a
estabilidade numérica e estrutural da simulação.

Adicionalmente, foram realizados testes com o NAMD+APG+AB utilizando 1,7
bilhão de iterações para simular o enovelamento completo da proteína 4LNZ, cor-
respondendo a 1.7µs simulados. A simulação foi dividida em 17 fases de 100 mi-
lhões de iterações, cada uma com 20 subfases de 5 milhões, respeitando o limite de
48 h por execução no supercomputador Nord III.

Durante o experimento, a grade em blocos evoluiu de uma configuração inicial
47x3x1 (141 blocos), condizente com o formato alongado da proteína, para grades
mais compactas como 6x4x3, 5x4x4 e 5x8x3 (120 blocos), refletindo as mudanças
estruturais do enovelamento ao longo da simulação.

Foram registrados 68.000 quadros com posições atômicas, visualizados com o
VMD. A comparação entre o modelo final e a estrutura nativa indicou redução do
RMSD de 306.5Å para 25.0Å. O TM-score obtido foi de 0,1765 e o GDT-TS, de 9,07,
refletindo a aproximação da proteína simulada a uma conformação realista. Esses
resultados evidenciam que a estratégia NAMD+APG+AB é capaz de conduzir o
enovelamento de forma biofisicamente plausível em larga escala.

Conclusões
Esta Tese apresentou duas contribuições para a melhoria do desempenho e

da precisão de simulações de enovelamento de proteínas utilizando o simulador
NAMD: a estratégia adaptativa de grade em blocos (APG) e o algoritmo N2HB,
responsável pela execução paralela de forças de enterramento atômico e ligação de
hidrogênio.

A estratégia APG mostrou comportamento escalável aprimorado ao permitir a
adaptação dinâmica da grade em blocos ao longo da simulação, conforme as altera-
ções conformacionais da proteína. Essa adaptação resultou em distribuições mais
equilibradas entre os núcleos de processamento e reduções no tempo de execução.
Os testes mostraram que a reorganização dinâmica da grade foi fundamental para
melhorar a eficiência em simulações longas e com formatos moleculares variáveis.

A contribuição N2HB viabilizou a incorporação paralela das forças de enterra-
mento atômico e ligações de hidrogênio ao NAMD. A implementação foi feita por

meio de novos módulos e componentes integrados ao mecanismo de execução do si-
mulador, respeitando sua distribuição de dados. Os resultados confirmaram que a
combinação entre APG e N2HB reduziu o tempo total de execução e permitiu a si-
mulação de conformações mais compactas, com fidelidade estrutural biofisicamente
realista.

As estratégias desenvolvidas possibilitam avanços significativos no estudo do
enovelamento proteico em larga escala e podem ser aplicadas a pesquisas em biolo-
gia estrutural, desenvolvimento de fármacos e simulações de sistemas complexos.
A metodologia proposta também é compatível com futuras extensões, incluindo si-
mulações multiescalares, modelos híbridos e integração com técnicas de aprendi-
zado de máquina.

Contents

1 Introduction 1
1.1 Problem: Limitations of Molecular Dynamics 2
1.2 Motivation . 3
1.3 Objectives . 4
1.4 Contributions . 4
1.5 Document Organization . 5

I Background / Contextualization 7

2 Proteins: An Overview 8
2.1 Amino Acids . 8
2.2 Protein Structures . 11

2.2.1 Primary Structure . 11
2.2.2 Secondary Structure . 12
2.2.3 Tertiary Structure . 12
2.2.4 Quaternary Structure . 14

2.3 Types of Proteins . 15

3 Protein Folding 17
3.1 Overview . 17
3.2 Experimental methods for determining protein structures 19

3.2.1 X-Ray Crystallography . 19
3.2.2 Nuclear Magnetic Resonance 20

3.3 Computational methods for predicting protein structures 21
3.3.1 Theory and Coarse-Grained Simulations 22
3.3.2 Structural Bioinformatics (SBI) 24
3.3.3 Molecular Dynamics and Protein folding 29

4 Molecular Dynamics Simulation: A Detailed View 31
4.1 Methodology . 32

4.1.1 General Molecular Dynamics Simulation Algorithm 33
4.1.2 Solvation model: Explicit and Implicit 35

4.2 Limitations and Challenges . 37
4.3 NAMD . 38

4.3.1 Overview . 38
4.3.2 Methodology . 39

4.4 Atomic Burials . 42
4.4.1 Overview . 42
4.4.2 MDBury Algorithm . 43

5 Parallel Techniques for MD Simulations using HPC Architectures 46
5.1 High-Performance Computing (HPC) 46

5.1.1 Top500 List . 46
5.1.2 HPC Architectures . 48
5.1.3 Massively Parallel Processing 49
5.1.4 Cluster Computing . 50

5.2 Parallel HPC for MD Simulations . 54
5.2.1 Parallel MD Simulations on Summit using NAMD 54
5.2.2 GROMACS Parallel MD Simulations on TianHe-2 56
5.2.3 Accelerating MD with LAMMPS on Sunway TaihuLight . . . 58
5.2.4 High-Throughput MD on BlueGene/Q with LAMMPS 59
5.2.5 GENESIS for Parallel MD on Fugaku Supercomputer 61
5.2.6 Anton’s Custom Hardware for Large-Scale MD Simulations . 63
5.2.7 Integrating Machine Learning with OpenMM for MD 65
5.2.8 GaMD-Accelerated Simulations on Gordon 66
5.2.9 Real-Time MD Analysis on Cori using NAMD 67
5.2.10 Adaptive-Resolution PPM for MD 69
5.2.11 Parallel Non-Bonded Force Computations with mdcore 70
5.2.12 Coarse-Grained MD with UNRES on Tryton Cluster 72

5.3 Comparative Analysis . 74

II Contributions 78

6 Adaptive Patch Grid (APG) 79
6.1 Challenge: HPC MD Simulation of PF using Static Decomposition . 79
6.2 Adaptive Domain Decomposition Computation 80
6.3 Design of the APG strategy . 82
6.4 Experimental Results . 83

6.4.1 Description of the Computing Environment 83
6.4.2 Description of Proteins . 84
6.4.3 NAMD Configuration File . 85
6.4.4 Evaluation Tests of NAMD’s Default Patch Grid 86
6.4.5 Evaluation Test with Scaled Patch Grid 90
6.4.6 Evaluation Test with Manual Restart 91
6.4.7 NAMD Test with Adaptive Patch Grid 92

6.5 Contribution Review . 94

7 NAMD with Atomic Burials 96
7.1 Challenge: Parallel execution of MDBury 96
7.2 Overview of the Solution . 97
7.3 N2HB Algorithm . 100

7.3.1 Description . 100

7.4 NAMD Components Modified . 102
7.5 Computing Atomic Burial Forces . 105
7.6 Computing Hydrogen Bond Forces . 106
7.7 Computing Annealing Weights . 107
7.8 Experimental Results . 108

7.8.1 NAMD Configuration with Atomic Burials 108
7.8.2 Tests in Nord: APG and Atomic Burial 109

7.9 Contribution Review . 114

III Conclusions 115

8 Conclusions and Future Work 116
8.1 Conclusions . 116
8.2 Future work . 119

References 121

A Article Derived from This Thesis 139

B NAMD Configuration file 141

C NAMD: Components and Files 144

D NAMD Acknowledgment 145

List of Figures

2.1 Basic structure of a amino acid . 9
2.2 Peptide bond between amino acids . 10
2.3 Hierarchy of protein structures . 11
2.4 Primary structure of human beta globin protein 12
2.5 Secondary structures: α helix and β sheet 12
2.6 Tertiary structure with α helices and β sheets 13
2.7 Forces that stabilize the tertiary structure of proteins 14
2.8 Quaternary structure of hemoglobin 15
2.9 Protein types: globular, fibrous and membrane 15

3.1 PF: Hierarchical classification of methods used in protein structure
analysis . 18

3.2 The X-ray diffraction photographs of two enzymes 20
3.3 2D NMR data for determining 3D structure 21
3.4 Coarse-Grained Models . 23
3.5 Database Model - Comparative Modeling 25
3.6 Database Model - Fold Recognition . 26
3.7 Database Model - Fragment-based First-Principle methods 27
3.8 AlphaFold folding process . 28

4.1 MD: Potentials for interactions with chemical bonds 34
4.2 MD: Potentials for interactions without chemical bonds 35
4.3 MD: Explicit and implicit solvent models 36
4.4 MD: Time scales . 37
4.5 MD: NAMD’s parallel decomposition 39
4.6 MD: NAMD main components - object oriented model 40
4.7 MD: NAMD components - Objects and Threads 41
4.8 MD: Protein structure prediction with atomic burial 43
4.9 MD: MDBury Algorithm . 44

5.1 HPC: Top500 - Generic Architecture 48
5.2 HPC: Top500 - MPP Architecture . 49
5.3 HPC: Top500 - Frontier Node Diagram 50
5.4 HPC: Top500 - Frontier Dragonfly topology 50
5.5 HPC: Top500 - Generic Cluster Computing 51
5.6 HPC: Top500 - Leonardo System Architecture 52
5.7 HPC: Top500 - Leonardo Dedicated Interconnection 53
5.8 HPC: Top500 - MareNostrum 4 . 54

5.9 HPC MD: Summit Architecture - Computing node 55
5.10 HPC MD: Summit Architecture - NAMD simulations 56
5.11 HPC MD: TianHe-2A Cluster Architecture 57
5.12 HPC MD: GROMACS on TianHe-2 - Three steps 57
5.13 HPC MD: Sunway Basic Node Layout 58
5.14 HPC MD: LAMMPS on Sunway TaihuLight - Vectorization 59
5.15 HPC MD: Blue Gene/Q Compute (BQC) chip 60
5.16 HPC MD: LAMMPS on Cori-Mira-Theta - Decomposition Map 61
5.17 HPC MD: Fugaku System Configuration 61
5.18 HPC MD: Fugaku’s node CPU . 62
5.19 HPC MD: Genesis on Fugaku - Domain Decomposition 63
5.20 HPC MD: Anton3 architecture . 64
5.21 HPC MD: DeepDriveMD workflow for coupling MD 65
5.22 HPC MD: DeepDriveMD deploy on Summit 66
5.23 HPC MD: Gordon system architecture 67
5.24 HPC MD: Cori system architecture . 68
5.25 HPC MD: Dataspaces Workflow scheme 68
5.26 HPC MD: DataSpaces workflow on Cori 69
5.27 HPC MD: Adaptive-Resolution list . 70
5.28 HPC MD: Pairwise Verlet-List . 71
5.29 HPC MD: Pseudo Verlet-List . 72
5.30 HPC MD: UNRES parallelization scheme 73

6.1 APG: NAMD fixed Patch Grid . 80
6.2 APG: NAMD with Adaptive Patch Grid Strategy 81
6.3 APG: Default NAMD and NAMD+APG execution flows 82
6.4 APG: Execution times of NAMD (Default) vs NAMD+APG 93

7.1 N2HB: NAMD default execution flow 98
7.2 N2HB: NAMD+APG+AB execution flow 99
7.3 N2HB: NAMD+AB - Main and worker nodes 100
7.4 N2HB: NAMD components used for adding ComputeBurialForce . . 105
7.5 N2HB: NAMD components used for adding ComputeHBonds 106
7.6 N2HB: NAMD components used for adding Annealing weights 107
7.7 N2HB: Execution times of NAMD+AB vs NAMD+APG+AB 110
7.8 N2HB: Execution times and performance using up to 8 nodes 110
7.9 N2HB: Speedup and parallel efficiency using up to 4 nodes 111
7.10 N2HB: Realistic simulation - beginning 112
7.11 N2HB: Realistic simulation - middle 112
7.12 N2HB: 4LNZ 3D configurations: Realistic vs Native 113
7.13 N2HB: RMSD vs Frame . 114

List of Tables

2.1 Amino acids: Abbreviations and properties 9

5.1 HPC: Systems for MD - Top500 Highlights 47
5.2 HPC MD: Cori, Theta and Mira with LAMMPS 59
5.3 HPC MD: Fugaku System Characteristics 62
5.4 Review: Comparative Table . 75

6.1 Structural data for the test proteins 84
6.2 NAMD evaluation test on MN4 (Protein: 1ENH) 87
6.3 NAMD evaluation test on MN4 (Protein: 1IFR) 88
6.4 NAMD evaluation test on MN4 (Protein: 1OZ9) 88
6.5 NAMD evaluation test on Nord (Protein: 1OZ9) 89
6.6 NAMD evaluation test with scaled patch grid (twoAway) 90
6.7 NAMD: evaluation in Nord (Proteína: 4LNZ) 91
6.8 Results: NAMD exec. times with APG 92
6.9 Results: NAMD exec times with with APG 93

7.1 N2HB: Description of NAMD elements modified 103
7.2 N2HB: NAMD execution times with APG+AB 109
7.3 N2HB: Simulation of 1.7 us for 4LNZ protein (Nord) 111

C.1 NAMD 2: List of Components and Files 144

List of Acronyms

AB Atomic Burial. 42, 76, 96–100, 108, 109, 116

AI Artificial Intelligence. 28

AOS Array of Structures. 55

APG Adaptive Patch Grid. vi, vii, ix, 79, 84, 92, 94, 98, 116

API Application Programming Interface. 48

AR Adaptive-Resolution. 69, 70

ARM Advanced RISC Machine. 61, 62

ASIC Application-Specific Integrated Circuit. 74, 75

AW Annealing Weights. 43, 97, 99

BC Bond Calculator. 64

BLAS Basic Linear Algebra Subprograms. 48

CABS C-Alpha, Beta and Side Chain. 23, 24

CASP14 14th Critical Assessment of Structure Prediction. 28

CG Coarce-Grained. 21–24, 72–74, 76

CMP Computational Molecular Physics. 19, 29

CPE Computing Processing Element. 58

CUDA Compute Unified Device Architecture. 48, 51

CVAE Convolutional Variational Encoder. 65

DDR3 Double Data Rate type 3. 58, 66

DTL Data Transport Layer. 68

FFT Fast Fourier Transformation. 63

FG Fine-Grained. 73, 74

FPGA Field Programmable Gate Array. 48

GaMD Gaussian accelerated Molecular Dynamics. 66, 67

GB Generalized Born. 36

GBIS Generalized Born Implicit Solvent. 36

GBSA Generalized Born Surface Area. 73

GC Geometry Core. 64

GP-DC General Purpose/Data Centric Module. 52

GPFS General Parallel File System. 53

GPGPU General Purpose Graphics Processing Unit. 48

GPU Graphics Processing Unit. 4, 38, 47, 50, 52–56, 61, 65, 74

GROMACS GROningen MAchine for Chemical Simulations. 56, 57, 74

HB Hydrogen Bonds. 10, 13, 14, 30, 42, 96–99, 116

HDD Hard Disk Drive. 52

HPC High-Performance Computing. vi, vii, 1–6, 46, 48–54, 56, 58–65, 67, 68, 71,
74–76, 80, 83, 84, 91, 108

HPE Hewlett Packard Enterprise. 47, 50

IDP Intrinsically Disordered Protein. 16

LAMMPS Large-scale Atomic/Molecular Massively Parallel Simulator. 58–60, 74–
76

LAN Local Area Network. 51

LAPACK Linear Algebra PACKage. 48

MC Memory Controller. 58

MD Molecular Dynamics. 19, 21, 29, 31–33, 35, 36, 38, 39, 45, 47, 54–77, 91, 92,
103, 113

MELD Modeling Employing Limited Data. 19

MIC Many Integrated Core. 56–58

ML Machine Learning. 19, 65, 66

MPE Management Processing Element. 58

MPI Message Passsing Interface. 38, 48, 49, 51, 60, 62, 73, 74, 83

MPP Massively Parallel Processors. 47–49, 51, 58, 59, 63, 67

NAMD NAnoscale Molecular Dynamics. 6, 36, 38–41, 54, 55, 66–68, 74–76, 79,
81–94, 96–100, 102–111, 114, 116–119

NCAB NAMD Configuration File with AB/HB. 108

NCF NAMD Configuration File. 85, 86, 89–92

NMR Nuclear Magnetic Resonance. 19–21

NoC Network on Chip. 58

NVMe NonVolatile Memory express. 52

OpenCL Open Computing Language. 48

OpenMP OpenMP Open Multi-Processing. 51, 73, 74

ORNL Oak Ridge National Laboratory. 49, 54

PAMI Parallel Active Message Interface. 55

PDB Protein Data Bank. 11, 19, 26, 28, 84, 112, 113

PF Protein Folding. 12, 13, 17, 74, 75

PFLOPS Peta Floating-point Operations Per Second. 47, 59

PPIM Pairwise Point Interaction Modules. 64

PPM Parallel Particle Mesh. 69, 76

RDMA Remote Direct Memory Access. 48, 49, 67, 68, 76

Rmax Maximal LINPACK performance achieved. 47

RMSD Root Mean Square Deviation. 45, 112–114, 118

SBI Structural Bioinformatics. 18, 21, 24

SDRAM Synchronous Dynamic Random-Access Memory. 58

SERDES Serializer/Deserializer functional block. 63, 64

SI System Interface. 58

SIMD Single Instruction Multiple Data. 49, 55, 58, 59, 70

SLURM Simple Linux Utility for Resource Management. 83

SOA Structure of Arrays. 55

SRAM Synchronous Random-Access Memory. 64

SSD Solid State Drive. 52

UNRES UNited RESidue. 23, 72, 73, 76

VAE Variational AutoEncoder. 65

Chapter 1

Introduction

Proteins are vital molecular components of biological systems, responsible for
several cellular functions, from catalyzing metabolic reactions to providing struc-
tural support and enabling communication among cells. Understanding biological
processes and diseases depends heavily on deciphering how proteins fold into their
functional three-dimensional structures [1]. However, protein folding is a complex
process influenced by intricate interactions among amino acids and their environ-
ment, which presents significant challenges for both experimental and computa-
tional methods [2].

An ab initio method is one that derives its predictions directly from basic phys-
ical principles, without relying on empirical parameters. Molecular dynamics sim-
ulations, as ab initio approaches, are widely used to study protein folding, offering
atomic-level detail on molecular behavior over time [3]. These simulations solve
Newton’s equations of motion for atoms and molecules to track time-dependent con-
formational changes. While molecular dynamics provides critical insights, it faces
challenges such as computational cost and scaling issues, requiring optimization
strategies that balance accuracy and computational efficiency to enable large-scale
simulations [4–6].

To address these challenges, HPC strategies have been developed to run molec-
ular dynamics simulations efficiently. Explicit solvent models, which account for
individual solvent molecules, increase the simulation complexity and benefit from
advanced HPC methods, such as those used in studies [7–15]. These approaches
include techniques like parallel molecular dynamics simulations on various super-
computers (e.g., Summit, TianHe-2, BlueGene/Q) to speed up simulations without
compromising accuracy. On the other hand, implicit solvent models, which approx-
imate the solvent environment rather than simulating it atom by atom, offer a
computationally cheaper alternative. These models are typically employed in com-
bination with HPC techniques, as discussed in [16–19], optimizing performance by
reducing the number of particles simulated while still capturing key effects.

In addition to the choice of solvent models, the level of molecular representation
plays a crucial role in molecular dynamics simulations of protein folding. Coarse-
grained models reduce system complexity by grouping atoms into larger pseudo-
particles, enabling simulations to access larger spatial and temporal scales with
significantly lower computational cost. This abstraction is useful for investigating

1

global folding patterns and long-timescale events, though it comes at the expense
of atomic-level precision [5, 19]. Full-atom models, on the other hand, describe
each atom individually, capturing detailed molecular interactions such as hydro-
gen bonding, electrostatics, and steric effects with high accuracy. These models are
particularly valuable for analyzing fine-grained conformational transitions and as-
sessing solvation effects [20, 21]. Despite their higher computational demands,
full-atom representations remain the preferred approach when detailed structural
insight is required, especially in contexts involving ligand interactions or folding
intermediates.

This work addresses the gap between execution time and accuracy in molecu-
lar dynamics simulations by focusing on strategies for domain decomposition dur-
ing protein folding simulations, which adjusts spatial decomposition throughout
the folding process, aiming for a more efficient distribution of computational loads
across HPC resources. The following sections are structured as follows: Section 1.1
discusses the limitations of molecular dynamics, including the challenges of force
field accuracy and computational cost. Section 1.2 presents the motivation behind
this Thesis, emphasizing the need for improved parallelization in molecular dy-
namics simulations. Section 1.3 outlines our objectives and Section 1.4 details the
key contributions of this Thesis, respectively. Finally, Section 1.5 summarizes the
organization of the rest of the document.

1.1 Problem: Limitations of Molecular Dynamics
Molecular dynamics simulations, while a useful tool for studying molecular sys-

tems, have several well-known limitations. One primary issue is the accuracy of
some force field models. Such models are, many times, oversimplified approxi-
mations of atomic interactions, which makes them computationally manageable
but leads to reduced accuracy in representing complex interactions like hydrogen
bonding and solvent effects. This can result in low accuracy, particularly when
simulating large or structurally changing systems like proteins [4, 6, 22–24]

Another limitation is the challenge of processing the large amount of data gen-
erated by molecular dynamics simulations. The data is high-dimensional and often
contains noise, making it difficult to extract useful information about the system’s
behavior. This is especially problematic for large biomolecular systems where sig-
nificant conformational changes occur over time, requiring sophisticated computa-
tional tools for analysis [6, 24].

The computational cost is another major drawback. Simulating even short time
periods, such as nanoseconds or microseconds, demands significant computational
power. As the size of the system increases or the duration of the simulation extends,
the resource requirements grow considerably. In many cases, specialized hardware,
like Anton supercomputer or HPC clusters, are required to handle the workloads,
but they still fall short when simulating biological processes like protein folding,
which occur on much longer timescales [22–25].

Finally, scalability remains a challenge in molecular dynamics simulations of
protein folding. While advancements in HPC and parallel computing have im-

2

proved performance, efficient load balancing remains difficult due to the dynamic
and unpredictable nature of molecular systems like proteins. This makes it chal-
lenging to fully utilize computational resources, limiting the scalability of these
simulations as system size and complexity increase [23, 24, 26, 27].

1.2 Motivation
The complexity and scale of molecular dynamics simulations, particularly those

involving protein folding, pose significant computational challenges. One major
challenge is executing standard molecular dynamics algorithms in parallel, which
is difficult due to the high time-dependency and data-dependency of molecular sim-
ulations [3, 28]. This generates the need for highly scalable parallel techniques
to fully leverage HPC architectures, which are essential for tackling large-scale
molecular simulations [3, 23, 24, 28].

Executing standard molecular dynamics algorithms in parallel is particularly
challenging because of the inherent dependencies between data and over time. As
the simulation evolves, atomic interactions are be recalculated, and these interde-
pendent calculations make it challenging to achieve scalable parallelization with-
out sacrificing performance or accuracy [23, 24, 26, 27].

Moreover, simulating dynamic biological processes like protein folding involves
non-static atomic distributions, making traditional spatial decomposition methods
inadequate for large-scale systems. The spatial configuration of atoms changes
over time, and static decomposition methods struggle to adapt to this dynamics.
Addressing these limitations requires innovative approaches that can dynamically
adjust the distribution of computational tasks and improve load balancing, en-
suring simulations remain efficient and scalable across different HPC platforms
[7–19].

In this context, an important area of investigation is exploring techniques that
dynamically adapt spatial decompositions to optimize load distribution across pro-
cessors. These techniques must not only improve computational efficiency but also
enable simulations to handle large and complex biological systems without sacri-
ficing accuracy. Another aspect to investigate is the application of implicit solvent
models, which reduces the computational cost by approximating solvent environ-
ments, allowing for simulations over biologically meaningful timescales without
the overhead of explicit solvation [22, 22, 23, 25, 29].

Over the years, many techniques were developed that used HPC for simulat-
ing molecular dynamics, focusing on the parallelization strategies and computa-
tional efficiencies required to model complex protein folding processes. With im-
plicit solvent models, these HPC-based simulations require less computing power
than the explicit solvent models as they bypass the intensive computational de-
mands of modeling each solvent molecule explicitly, relying instead on approxima-
tions that reduce processing costs while still maintaining the key solvent-protein
interactions. It must be noted that the computing power for realistic protein fold-
ing simulations with implicit solvent models is still very high [16–19]. In an HPC
environment, the ability to handle large-scale simulations is supported by tools like

3

NAMD, GROMACS, and LAMMPS, each optimized for massive parallelism across
supercomputer architectures such as Summit, Tianhe, and Sunway [7–9]. These
platforms leverage high core counts and advanced Graphics Processing Unit (GPU)
architectures to partition the computational space and apply adaptive resolution
or domain decomposition techniques, which allow efficient calculation of interac-
tions within defined areas, thus optimizing memory usage and computational time
[22, 22, 23, 25, 29].

Although recently proposed tools like AlphaFold [30] have made remarkable
advances in protein structure prediction, their capabilities are limited to obtaining
the final 3D conformation and do not generate the atom’s trajectories over time
that led to the final conformation. Unlike molecular dynamics simulations, which
can depict the conformational changes of proteins through sequential frames, Al-
phaFold’s predictions focus solely on finding a stable folded structure, not address-
ing the detailed dynamics of folding events [30]. Consequently, while AlphaFold
provides valuable insights into protein structures, it does not offer the trajectory
data required to observe real-time protein dynamics. This gap is filled by molec-
ular dynamics in HPC environments, where extensive processing power supports
the time-intensive calculations necessary for accurate dynamic and over time sim-
ulation of the folding process [12, 19, 30].

The main motivation of this PhD Thesis is to address the computational chal-
lenges faced by molecular dynamics simulations, particularly in protein folding.
By investigating strategies that reduce execution time, enhance computational ef-
ficiency, and improve load balancing in HPC environments, we aim to advance the
current state of protein folding simulations. These efforts will focus on achieving
scalable performance while maintaining accuracy, enabling larger and more com-
plex protein systems to be simulated within practical time frames.

1.3 Objectives
The main objective of this PhD Thesis is to investigate parallel strategies to

reduce the execution time of molecular dynamics simulations of protein folding,
while maintaining good accuracy.

Another objective of this work is to explore a flexible strategy for incorporating
additional force calculations into parallel protein folding simulations. This includes
the integration of complex interaction terms that impact molecular behavior dur-
ing protein folding, such as presented in [31, 32]. By incorporating additional force
computations and ensuring they can be efficiently parallelized, the proposed strat-
egy enhances the scalability of simulations, enabling the study of larger systems
while maintaining the desired accuracy.

1.4 Contributions
In order to achieve the objectives of this PhD Thesis, two strategies were devel-

oped and are listed below:

4

• A dynamic spatial decomposition strategy to handle non-static distribution of
atoms and calculations among processors during the execution of a simulation
routine using parallel protein folding simulation applications. In our strategy,
the simulation box dynamically adapts to molecular structural changes dur-
ing the simulation. In order to do so, a solution was created that modifies
the workflow of a parallel protein folding simulation by incorporating three
new steps: (i) saving partial trajectory data during the folding process, (ii)
updating structural configuration data for executing new spatial decomposi-
tions during the simulation, and (iii) merging all partial results into a final
trajectory output.

A parallel execution framework for protein folding simulations of biomole-
cular systems, incorporating new interaction terms related to molecular sta-
bility and energy optimization. A new algorithm was devised to integrate
calculations for various interaction potentials into an HPC molecular dynam-
ics software. The NAMD parallel molecular dynamics software platform was
chosen as the HPC tool for implementation because it is designed for large bio-
molecular systems using HPC parallel simulation, allows code modifications
for research purposes, and has been recognized for its outstanding achieve-
ment in HPC. We opted to include atomic burial forces [31–33] into the sim-
ulation since very good results were obtained for globular proteins. Various
functionalities were extended to include the necessary computing capabilities
by (i) creating new compute objects for specific interactions and (ii) modifying
key components to integrate these objects into the simulation engine. For en-
ergy optimization, modifications were primarily made to objects responsible
for managing the global execution flow in the simulation platform.

1.5 Document Organization
This PhD Thesis is divided in three parts. The first part, Background/ Contex-

tualization, provides first a foundation for understanding proteins, their structure,
and the significance of protein folding. Then, we discuss parallel strategies for
running molecular dynamics simulations, in particular protein folding, in HPC en-
vironments.

Chapter 2 explains the basics of proteins, covering the amino acids that form
them and their structural hierarchy - primary, secondary, tertiary, and quaternary
structures. The chapter concludes with a discussion of different types of proteins.

Chapter 3 presents an overview of the protein folding process and how it is
viewed as an interdisciplinary problem, next it outlines two well-known experi-
mental methods used for determining protein structures, and then it details com-
putational methods for obtaining protein structures, how they are currently grouped
by their main roles, ending with an overview of molecular dynamics in its role as
an ab initio method for simulating the protein folding process.

In Chapter 4, we have a more detailed view about molecular dynamics sim-
ulation, starting by explaining its methodology and general algorithm, next pre-
senting an overview about two typical models used for representing the simulated

5

system, called solvation models. Then, we present three well-known challenges
that emerge when using molecular dynamics and, finally, we explain NAnoscale
Molecular Dynamics (NAMD) [34] and Atomic Burial [31–33, 35], two different
solutions used to deal with these challenges.

In Chapter 5, we present a review about parallel techniques for running molec-
ular dynamics simulations on supercomputers, using different approaches to com-
bine HPC architectures and specialized software for handling the high computa-
tional power requirements of molecular simulations. We start with an overview
about HPC and a list of the fastest supercomputers in the world, followed by an ex-
planation about HPC architectures and concluding with the most common HPC ar-
chitectures currently, Massively Parallel Processing and Cluster Computing. Next,
we discuss nine different techniques for running molecular simulations in HPC ar-
chitectures and, then, we present a comparative analysis of these techniques and
also, including, our own proposal strategy.

The second part of the PhD Thesis (Contributions) presents the two contribu-
tions developed throughout this work. Chapter 6 tackles the challenge of HPC
molecular dynamics simulations with static domain decomposition and presents
our Adaptive Patch Grid strategy. It describes the domain decomposition compu-
tation process, followed by an extensive report of experimental results, including
tests with different patch grids (default, scaled, manual, automatic). The chapter
concludes with a review of the contribution.

Chapter 7 focuses on the parallel execution of the atomic burial algorithm (MD-
Bury) and its integration with NAMD, called N2HB. Our N2HB algorithm is ex-
plained, along with how atomic burial forces and hydrogen bond forces are com-
puted. The chapter ends with experimental results showing the performance of
NAMD with atomic burials and a contribution review.

In third and final part, Conclusion, Chapter 8 summarizes the findings of this
research and discusses possible future work, outlining potential directions for fur-
ther improving molecular simulations of protein folding. At the end of the doc-
ument there are four Appendices: the Appendix A holds the first page of our
published paper, Appendix B contains the basic NAMD configuration file used
in our simulations, Appendix C contains the list of NAMD Components and files
which were used in building the NAMD solution with MDBury and, finally, the
Appendix D brings the Acknowledgment required by the group NAMD maintainer.

6

Part I

Background / Contextualization

7

Chapter 2

Proteins: An Overview

Proteins are at the center of action of biological processes, being responsible for
almost all tasks of cellular life [1]. Among the many roles that proteins play are:
protecting the body (antibodies), catalyzing chemical reactions and assisting in
the formation of new molecules (enzymes), and transmitting signals to coordinate
actions between different cells (hormones).

Much of the research in Biochemistry and Molecular Biology currently involves
the definition of structures of individual proteins, given that there is a direct re-
lationship between the specific function of the protein in the organism and the 3D
structure that it adopts within the cellular environment [36].

In this chapter, some concepts used in the definition of protein structures are
briefly reviewed. Section 2.1 covers the basic unit of a protein, the amino acid, and
the chemical bonds commonly found in proteins. Section 2.2 discusses the different
geometric configurations of protein structures and Section 2.3 presents the existing
types of proteins.

2.1 Amino Acids
Amino acids serve as the building blocks of proteins, and they share a common

structural framework. At the center of each amino acid is an α-carbon atom, which
is covalently bonded to four distinct groups: a hydrogen atom, an amine group
(−NH2), a carboxyl group (−COOH), and a variable side chain denoted as R. In
aqueous environments, the carboxyl group tends to donate a proton to the amine
group, resulting in the molecular structure illustrated in Figure 2.1 [37, 38].

There are 20 different amino acids commonly found in proteins. Each amino
acid possesses distinct properties - such as electric charge, polarity, and hydropathy
index - outlined in Table 2.1.

Peptide bonds are formed through a condensation reaction between the amino
group of one amino acid and the carboxyl group of another, with the release of one
water molecule. This reaction links amino acids in a linear sequence, producing
polypeptides. Figure 2.2 [42] illustrates this process, showing the formation of a
peptide bond that joins two amino acids together into a dipeptide.

In this context, some physical-chemical interactions between molecules are com-
monly mentioned regarding the structure and function of proteins, namely: cova-

8

Figure 2.1: Basic structure of an amino acid. Image from [39].

Amino acid Abbreviations Properties
(aa) 1 letter 3 letters Hydropathy Polarity Charge

Alanine A Ala hydrophobic nonpolar neutral
Cysteine C Cis, Cys hydrophobic nonpolar neutral

Phenylalanine F Fen, Phe hydrophobic nonpolar neutral
Glycine G Gli, Gly neutral nonpolar neutral

Isoleucine I Ile hydrophobic nonpolar neutral
Leucine L Leu hydrophobic nonpolar neutral

Methionine M Met hydrophobic nonpolar neutral
Proline P Pro neutral nonpolar neutral

Tryptophan W Tri, Trp hydrophobic nonpolar neutral
Valine V Val hydrophobic nonpolar neutral

Asparagine N Asn hydrophilic polar neutral
Glutamine Q Gln hydrophilic polar neutral

Serine S Set neutral polar neutral
Threonine T The, Thr neutral polar neutral
Tyrosine Y Tir, Tyr neutral polar neutral

Aspartate D Asp hydrophilic polar acid negative
Glutamate E Glu hydrophilic polar acid negative

Arginine R Arg hydrophilic polar basic positive
Histidine H His neutral polar basic positive (10%)

neutral (90%)
Lysine K Lis, Lys hydrophilic polar basic positive

Table 2.1: The 20 amino acids found in Nature [40, 41].

9

Figure 2.2: Formation of a peptide bond between two amino acids. Image from [42].

lent bonds, hydrogen bonds, van der Waals forces and the hydrophobic effect (or
hydrophobic interactions [43]).

The most common interactions between proteins are covalent bonds. This is
a type of chemical bond that is strong and difficult to break, as it occurs between
atoms that are very close and that share electrons with each other or between other
covalent bonds [5].

Hydrogen Bonds (HB) are also strong intermolecular interactions. In the con-
text of protein structure, these bonds usually happen when the hydrogen of one
molecule (positive pole) bonds with an oxygen or nitrogen atom of another molecule
(highly negative pole). As there is no sharing of electrons, despite being a strong
bond, HB are weaker than covalent bonds [1, 37].

Also known as London forces, van der Waals forces intermolecular interac-
tions that can be easily broken, because they are weaker than HB. The van der
Waals forces correspond to the result of all forces (attraction or repulsion) between
molecules and atoms, when nearby particles are polarized [1, 37].

The hydrophobic effect is related to one of the properties of amino acid molecules,
the hydropathy index [40], or hydrophobicity, i.e. the degree of affinity or interac-
tion of the amino acid with water. The hydropathy index reveals whether an amino
acid’s interaction level is neutral, hydrophilic (high affinity) or hydrophobic (low
affinity), as shown in Table 2.1. Considering that the cellular environment is ba-
sically aqueous, the hydrophobic effect plays an important role in the structural
formation of proteins [43]. For example, a hydrophobic nonpolar solution when
added to water will not dissolve, as it happens in the mixture of water and oil. This
happens because of the hydrophobic effect as a hydrophobic non-polar amino acid
molecule (H) tends to, predominantly, aggregate and concentrate when in contact
with water.

Thus, examining the functional structure of a protein, hydrophobic amino acids
(H) tend to concentrate in the inner part of the protein (core), while polar amino

10

acids (P) accumulate on the surface of the structure, establishing greater contact
with the cell’s aqueous environment.

2.2 Protein Structures
Every protein in an organism begins its existence in a ribosome, which synthe-

sizes it, connecting the corresponding amino acids in an initial structure forming
a polypeptide chain [44]. As soon as the synthesis ends, the protein undergoes a
series of transformations in its structure until it finds a stable configuration that
will determine its biological function [1, 37].

Considering the complexity of these transformations, proteins are organized
and studied in terms of their structures [1], traditionally in a four-level hierarchy
[1, 37], called: primary, secondary, tertiary and quaternary structures (Figure 2.3).
The sections that follow present each of these levels.

Figure 2.3: Hierarchy of protein structures in four levels: (a) primary structure;
(b) secondary structure; (c) tertiary structure; and (d) quaternary structure. Image
adapted from [44, 45].

2.2.1 Primary Structure
The first level of protein composition is called the primary structure, which has

a 1D geometric configuration in the form of an amino acid sequence [37, 44, 46], as
illustrated in Figure 2.3a.

The primary structure is determined by the gene that encodes the protein and
its linear sequence of amino acids is unique [44].

Figure 2.4 shows an extract of the primary structure of the human protein beta
globin from the Protein Data Bank (Protein Data Bank (PDB)), named NP_000539
[47]. In this figure, it can be seen that the chain of amino acids is stored in the
protein data format as an ordered string of characters that corresponds to known
amino acid abbreviations, as per Table 2.1.

11

Figure 2.4: Primary structure of a human beta globin protein (NP_000539) [47].

2.2.2 Secondary Structure
The secondary structure of a protein is identified by the patterns found in the

arrangements adopted by the chain of amino acids that compose it. The most com-
mon ones are known as α helix and β sheets, as shown in Figure 2.5.

(a) α helix structure
(b) β sheet structure

Figure 2.5: Illustrations of secondary structures: (a) α helix structure on the left;
(b) β sheet structure on the right. Images from [48].

The α helices are spiraling strands or ribbons that can be composed of stretches
of four to forty amino acid residues (for example, myoglobin) [47]. The side-chain
(R) elements of amino acids extend to the outside of the structure. Sheets β usu-
ally contain adjacent β strands of five to fifteen residues generally, and their ori-
entations can be parallel (chains in the same direction) or antiparallel (chains in
opposite directions) [47].

2.2.3 Tertiary Structure
The tertiary structure of a protein refers to its 3D geometric configuration,

shown on Figure 2.6. The tertiary structure is directly related to the biological
function that the protein performs in an organism [44].

The process by which a protein undergoes a series of structural transformations,
moving from its 1D primary structure to a stable 3D tertiary structure in order to
perform its biological function, is called Protein Folding (PF).

During this process, each possible 3D arrangement that the protein adopts, un-
til it reaches its 3D tertiary structure, is also called a conformation [1]; and the
final stable conformation is also called native structure.

12

Figure 2.6: Tertiary structure with α helices and β sheets. Structure based on the
protein 2FO3, adapted from the RCSB PDB [49].

At this point, a distinction must be made between the formats of secondary and
tertiary structures. While secondary structure refers to the spatial arrangement
of amino acid residues that are adjacent in a polypeptide segment, such as the α
helices and β sheets, tertiary structure refers to the overall 3D configuration of all
atoms in a protein [44]. This includes both elements that are close and distant
in the amino acid sequence, or even located in different types of secondary struc-
tures, but that interact with each other, when the protein assumes its native 3D
conformation [44].

Proteins are capable of interacting with their cellular environment in a variety
of ways, assuming a different native conformation for each function they perform.
Anfinsen [36] established that all the information necessary for a protein to find
its native 3D structure is contained in its primary 1D structure, that is, its amino
acid sequence [2].

Under physiological conditions, from a thermodynamic point of view, the ter-
tiary native structure has a fragile stability [1], and, during the process of Protein
Folding (PF), the free energy required to sustain this formation is influenced by
several physical-chemical interactions between the amino acids that make up the
protein [50], for example: (a) forces resulting from HB contribute to the the for-
mation of α helices and β sheets of minor structures [2]; (b) the van der Waals
forces that are present in interactions between atoms close to each other while the
structure assumes a compact configuration, typical of globular proteins [2]; (c) the
preferred angles that orient bonds between neighboring atoms in the backbone of
the protein, usually in α helices and β sheets [2]; (d) the electrostatic interactions of
attraction or repulsion that occur due to negative or positive charges of the amino
acids involved (see charges in Table 2.1); (e) the disulfate bonds, which prevent the
3D structure from breaking down outside the cellular environment, are commonly
found in proteins secreted by cells (e.g. immunoglobins) [50]; (f) the chain entropy,
which drastically decreases as the chain of amino acids of the primary structure
folds and coils quickly, and finds an energetically stable 3D configuration, with-
out going through all possible conformations [2]; and, finally, (g) the hydrophobic
interactions and their hydrophobic effect (Section 2.1), which make the non-polar

13

components minimize their contact with the aqueous environment, assuming con-
figurations such as the hydrophobic nuclei of globular proteins [2, 37].

Figure 2.7 shows a schematic example of some physicochemical factors that
contribute to the stability of the 3D configuration of the tertiary structure, such as
those resulting from hydrophobic interactions, electrostatic attractions, side chain
HB and elements of secondary structures (α helices and β sheets) [37].

Figure 2.7: Examples of forces that stabilize the tertiary structure of proteins.
Image adapted from [37].

2.2.4 Quaternary Structure
The last level of the hierarchy of protein structures is the quaternary structure.

At this level all proteins are composed of two or more chains of amino acids that
assemble into a unique 3D configuration [37, 44].

In a quaternary structure, each chain of amino acids is called a subunit. Sub-
units may be different or identical, and may vary in number from one protein to
another. [37].

The connection of the subunits in the quaternary structure is maintained via
non-covalent interactions (Section 2.1), such as HB, electrostatic attractions and
hydrophobic interactions [37, 50].

Hemoglobin is an example of a protein with a quaternary structure (Figure 2.8),
composed of two α globin chains, two β globin chains and four non-protein groups
(heme groups) attached. In its stable configuration, each subunit of hemoglobin
works cooperatively, so that during oxygen transport, each subunit attached to an
oxygen increases the affinity of another subunit for oxygen. [50].

14

Figure 2.8: Quaternary structure of hemoglobin. Image adapted from [37].

2.3 Types of Proteins
Proteins can be grouped into three major classes by observing the 3D geometric

configuration of their native structures, namely: globular, fibrous (or structural)
and membrane [1, 37]. Figure 2.9 contains an illustration with an example of each
of these types of proteins.

Globular proteins are formed by polypeptide chains that fold back on themselves
and assume a spherical shape. This characteristic 3D shape is generally attributed
to their interaction with the aqueous environment, as these proteins are water-
soluble [1]. Globular proteins do not lie dormant in the body and generally play
a role in dynamic biological functions, such as hormone and transport proteins,
antibodies and most enzymes [37].

An example of globular protein structure can be seen in Figure 2.9a, which
shows a representation of myoglobin. It is an oxygen transporting and storing
protein commonly found in abundance in marine animals such as seals and whales.

(a) Globular
(Myoglobin)

(b) Fibrous
(Collagen)

(c) Membrane
(Bacteriorhodopsin)

Figure 2.9: Illustration of the types of proteins: (a) globular, (b) fibrous, and (c)
membrane. Image adapted from [37].

Fibrous proteins are formed by parallel polypeptide chains arranged in long
fibers or sheets. These proteins are resistant and insoluble in water [1], due to
their high composition of hydrophobic amino acids (Section 2.1). Fibrous proteins
generally act in the structural maintenance of the organism, being able to confer

15

both elasticity and resistance. They are composed of units that are repeated and
associated to allow the formation of large structures.

Examples of fibrous proteins are: collagen, which acts on bones and tendons
(Figure 2.9b); keratin, present in skin, nails and hair; and elastin, an element of
elastic connective tissue.

Membrane proteins are so named because performing their functions in an or-
ganism involves interacting with cell membranes, influencing communication be-
tween the inside of the cell and the outside environment. These proteins are im-
portant because they act as catalysts and regulators in many vital processes, such
as photosynthesis and cell-to-cell communication.

Figure 2.9c shows an example of a membrane protein, called bacteriorhodopsin,
usually found in membranes of halobacteria [37]. This protein acts as a proton
pump, capturing light energy and using it to move protons across the cell mem-
brane [1].

In addition to these well-known classes, a fourth type of protein has gained in-
creasing attention in recent decades: the Intrinsically Disordered Protein (IDP),
or proteins that contain Intrinsically Disordered Regions (IDRs). Unlike struc-
tured proteins that adopt a stable 3D conformation, IDPs do not fold into a single
well-defined structure under physiological conditions [51]. Instead, they exist as
dynamic ensembles of conformations, often shifting in response to environmental
changes or binding partners.

Despite their lack of a stable fold, IDPs play crucial roles in cellular processes
such as transcriptional regulation, signal transduction, and molecular recogni-
tion [52]. Their functional versatility is associated with structural plasticity, which
allows them to interact with multiple targets through conformational adaptation.
IDPs are typically rich in polar and charged amino acids and depleted in hydropho-
bic residues, contributing to their solubility and extended conformations. This
makes them resistant to the hydrophobic collapse that drives folding in most glob-
ular proteins. Although this intrinsic disorder complicates structural characteriza-
tion by traditional experimental methods, computational tools - especially disorder
predictors and molecular dynamics simulations - have become essential in their
study [53].

Furthermore, IDPs are increasingly recognized for their involvement in human
diseases. Their flexible structures and multifunctionality make them key players
in neurodegenerative disorders such as Alzheimer’s and Parkinson’s, as well as in
cancer-related pathways [54]. Recent reviews reinforce the growing importance of
IDPs in modern molecular biology, highlighting their expanding roles in signaling
networks, molecular recognition, and disease mechanisms [55, 56]. Including IDPs
in the classification of protein types provides a more complete view of the diversity
of structural behavior observed in nature.

Although there are different classes of proteins, each with distinct structural
and functional characteristics, this work will focus exclusively on globular proteins.
This choice is justified by their fundamental role in various dynamic biological
functions, given their fundamental role in dynamic biological functions and the
relevance of their 3D structure to the computational challenges addressed in this
Thesis.

16

Chapter 3

Protein Folding

3.1 Overview
As presented in Section 2.2.3, the function of a protein in an organism is directly

related to its 3D shape, called tertiary structure or native structure.
Protein Folding (PF) is the spontaneous process by which the protein abandons

its primary 1D structure and performs a series of geometric transformations until
it assumes its stable 3D structure [2].

The study of protein folding as an interdisciplinary problem began, according
to [2], with the publication of the results presented in [57]. Using the globular
protein myoglobin, the first protein structure obtained experimentally was deter-
mined and, different from what was expected, it had a complex, asymmetrical and
irregular 3D arrangement [57]. This result drew the attention of the scientific
community to understand and explain protein folding.

In the last decades, the protein folding problem has encompassed three main
issues [2]: (a) what is the physical code for folding? (b) what is the folding mecha-
nism? (c) is it possible to develop a computational algorithm to predict the native
structure of a protein from its primary structure?

The first question basically aims to understand and determine the native 3D
structure from the physicochemical properties encoded in the primary structure.
The second intends to understand the folding process and determine how a protein
is capable of folding itself and finding its most stable 3D geometric configuration in
such a short time. Considering that the chain of amino acids has, at each folding
step, a large number of possible geometric configurations to adopt in the 3D space,
the researchers try to understand how the protein "chooses" which one is the next
conformation.

Figure 3.1 shows that there are methods for protein folding determination with
the use of experimental techniques, however due to their high cost and time needed
to perform them, the third question refers to the construction of computational
methods capable of aiding the experimental methods by predicting the native struc-
ture of a protein using the information contained in its primary structure. The
context of this Thesis is inserted in the third question, due to its focus on compu-
tational methods for protein folding.

17

Figure 3.1: Hierarchical classification of methods used in protein structure analy-
sis. At the top level, methods are divided into experimental techniques and com-
putational approaches. Experimental methods include X-ray crystallography and
Nuclear Magnetic Resonance (NMR) [37], which directly determine atomic coordi-
nates from physical samples. Computational methods are further subdivided into
three categories [3, 58]: (i) Theoretical models and Coarse-Grained simulations,
which use simplified representations or statistical physics; (ii) Structural Bioinfor-
matics, which includes techniques such as comparative modeling, fold recognition,
and first-principles approaches with information from databases; and (iii) Molecu-
lar Dynamics simulations, which model atomic interactions over time using force
fields.

In the classification presented in [5, 59], the computational methods used for
predicting protein structures, also known as protein structure prediction, were or-
ganized into four groups: comparative modeling, fold recognition, first-principle
methods using database information, and first-principle methods without such in-
formation. Although structure prediction is distinct from simulating the physical
folding process, theory and computation have evolved together. As discussed in
[3, 58], some of these methods also contribute to the investigation of how folding
occurs - by revealing possible intermediate states and energy landscapes. This en-
ables researchers to study the "stories" behind protein folding and gain insights
into the underlying mechanisms.

1. Theory and Coarse-Grained simulations: the methods in this group focus on
telling the protein folding macro-story; it uses statistical mechanics and poly-
mer theories to answer general questions and principles through identifying
differences and common features amidst proteins [58];

2. Structural Bioinformatics (SBI) [3]: also called Database Models by [58], this
group of methods focuses on inferring the protein folding story by taking snap-
shots of potential native structures and guessing the process through the us-
age of large databases with information about known protein structures (e.g.

18

PDB), and inference approaches, that consider, for example, sequence homolo-
gies in order to predict unknown structures. One successful example of this
approach is the AlphaFold deep learning algorithm [30, 60], which leverages
extensive protein sequence and structure databases throughout its training
and prediction processes, enabling it to predict a protein’s static 3D structure
and provide a likely model of its folded form; however, AlphaFold does not
generate protein trajectories or simulate protein dynamics [30].

3. Molecular Dynamics (MD) simulations: is a technique of Computational Molec-
ular Physics (CMP) applied to protein folding [3, 28] aiming to unveil micro-
stories about the folding process that satisfy principles of chemistry and ther-
modynamics. Molecular dynamics simulations capture the movement of atoms
in a protein under physical forces, simulating how proteins change shape
over time in response to thermal motion, solvent interactions, and other fac-
tors. For that, it typically uses force fields of atomic interactions and a stan-
dard algorithm to sample the conformational space [22, 23, 27, 61]. Cur-
rent advances to compensate MD’s well known demand for high computing
power and improve its accuracy include new techniques that apply experi-
mental data in molecular dynamics execution flow while still guaranteeing its
proper physics calculations, like ML×MELD×MD [28], a molecular dynamics
method that integrates residue contacts predicted by Machine Learning (ML)
servers into the Modeling Employing Limited Data (MELD) tool, a Bayesian
MD-accelerator designed to maintain detailed-balance statistics [3].

Although the techniques that emerged from these three roles provided differ-
ent methodologies for aiding experimental methods in solving the protein folding
problem, a physical-based analysis is still considered preferable for investigating
the protein folding process [3]; therefore, this PhD Thesis focuses on the third role,
more specifically, in the molecular dynamics simulation method.

The following sections bring two well-known experimental methods and their
limitations, as well as the computational methods most commonly used in these
cases.

3.2 Experimental methods for determining
protein structures

Once the primary amino acid sequence of a protein is obtained, one can begin
the difficult task of determining its unique native 3D structure. Figure 3.1 shows
two well-known experimental techniques for determining tertiary protein struc-
tures: X-ray Crystallography and Nuclear Magnetic Resonance (NMR).

3.2.1 X-Ray Crystallography
In X-ray crystallography, pure crystals are used to diffract X-ray beams which

produces scattered patterns on a specific plate or counter as shown in Figure 3.2.
The 3D structure is, then, determined by measuring the angles and intensities.

19

Crystals are grown under controlled conditions containing, in each crystal, protein
molecules with the same orientation and the same 3D configuration [37]. Such
crystals can only be formed if the proteins are of high purity and, furthermore, a
structure is obtained only if the protein can be crystallized [37].

(a) X-ray diffraction. (b) 3D structure.

Figure 3.2: (a) X-ray diffraction photograph of the enzyme glutathione synthetase,
reproduced from [37]; (b) 3D structure of the enzyme anhydrase, determined by
X-ray crystallography, adapted from [1].

Using this technique, the pattern is created when the electrons in each atom
of the molecule scatter X-rays. The number of electrons in the atom determines
the amount of X-ray scattering: heavier atoms scatter more effectively than lighter
ones.

X-rays scattered from individual atoms can reinforce or cancel each other out,
giving rise to the characteristic pattern for each type of molecule. A series of diffrac-
tion patterns from different angles contains the information needed to determine
the tertiary structure.

Information is extracted from the diffraction patterns through a mathemati-
cal analysis by Fourier series [62]. Thousands of these calculations are needed
to determine the structure of a protein, and even when performed on a powerful
computer, the process is quite time consuming [1, 37].

3.2.2 Nuclear Magnetic Resonance
Another experimental technique used to determine protein structures is the

Nuclear Magnetic Resonance (NMR) [1, 37]. Among the NMR methods, the most
widely used is NMR spectroscopy, also known as 2D NMR [37]. This technique
complements X-ray diffraction results through computational analysis of large col-
lections of data points, as shown in Figure 3.3a.

Similar to the X-ray diffraction technique, 2D NMR requires small amounts of
protein (milligrams), uses Fourier series to analyze the results, and is a very time
consuming and computationally powerful process [37].

One difference between 2D NMR and X-ray diffraction is in the sample: 2D
NMR uses protein samples in aqueous solution instead of crystals. The environ-
ment used is one of the main advantages of the 2D NMR method, as it is the closer
to proteins in cells [37].

20

(a) NMR data. (b) 3D structure.

Figure 3.3: 2D NMR data for determining the 3D structure of α-lactalbumin. Im-
ages adapted from [37].

Ultimately, 2D NMR relies on distances between hydrogen atoms and the data
it generates are independent of and commonly complement those obtained by X-ray
crystallography [37].

In general, these are considered the best-known experimental methods used for
determining 3D protein structures. Nevertheless, they are not enough and there is
still a great number of protein structures that can not be determined by only these
experimental methods alone [63], mainly due to their high cost in time and human
resources, combined with the need of specific materials and equipments.

As more protein sequences are being obtained in the last decades at a close to
exponential rate, there is a need to accelerate the prediction of protein structures
using the help of computational methods [2]. This topic will be discussed in Sec-
tion 3.3.

3.3 Computational methods for predicting
protein structures

In order answer the third question of protein folding problem, the development
of computational algorithms to predict tertiary structures of proteins has been one
of the great challenges of Computational Biology in the last 50 years [2]. Currently,
the knowledge acquired from polymer theory and computation advances in the last
decades shows three main roles emerging in this scope (Figure 3.1): Theory and
Coarce-Grained (CG) simulations, Structural Bioinformatics (SBI) and Molecular
Dynamics (MD) simulations.

The following sections will briefly review each of the roles.

21

3.3.1 Theory and Coarse-Grained Simulations
Figure 3.1 shows that this type of simulation comprises of techniques that

take advantage of Statistical Mechanics and Polymer Theory in conjunction with
Coarce-Grained (CG) simulations aiming to address general questions, mainly con-
cerning the differences and similar traits among proteins, based on global princi-
ples, for obtaining a macro comprehension of the whole folding process [58].

Polymer theory provides concepts and tools for describing the macro states of
the folding process based on sets of different conformational ensembles of large
numbers of microscopic states. CG models are applicable for studying large scale
biological systems focusing on their mesoscopic or macroscopic properties [64, 65].

According to [58], the methods using this approach present four key points, as
follows:

1. they define specific ensemble averages that can be used as descriptors for the
sizes of conformational ensembles;

2. they use polymer theory to explain the role of the solvent in the geometric
conformations present in obtained ensembles; for instance: proteins generally
unfold in "good" solvents or denaturant agents such as heavy metal salts and
alcohol, and potentially fold in "poor" solvents, like water; however, for some
folding processes, water can behave both as poor or good solvent during the
unfolded stages of the protein folding producing "unexpected" conformations;

3. they apply the acquired knowledge about the role of solvents to understand
features of conformational ensembles, such as the impact of hydrophobicity
and charge in the compactness of specific protein structures, for example:
globular protein conformational ensembles;

4. since different experiments might give different weightings to the compo-
nents of the ensembles, these may seem occasionally inconstant; thus, in this
case, theory can be applied for calculating these different features and re-
solving apparent contrasts among distinct experiments, for example the tool
presented in [66] created for scattering analysis of hydrophobic protein en-
sembles.

CG models are a reduced representation of all-atom models, however maintain-
ing the essential molecular aspects for the original system. This representation of
atoms allows simulating large-scale biological systems, with faster sampling due
to reduced degrees of freedom and achieving longer time scales [64].

In general, a CG simulation model comprehends: (a) pseudoatoms sites which
are defined for representing collections of atoms; (b) an energy function deter-
mined for simulating the interaction between pseudoatoms, typically reproducing
the thermodynamic properties of the system; and (c) defining dynamical equations
for describing and studying the evolution of the CG system over time.

These dynamical equations allow CG models not only to describe conforma-
tional ensembles, but also to be employed in time-resolved simulations. Although
CG models are commonly associated with structural or thermodynamic studies,

22

they are also widely used in the context of molecular dynamics simulations, form-
ing the basis of Coarse-Grained Molecular Dynamics (CGMD). This approach com-
bines the reduced resolution of CG representations with the time-resolved nature
of MD, enabling simulations of large-scale systems and longer time scales with
reduced computational cost. Notably, CGMD approaches such as those based on
MARTINI models are widely adopted for simulating membrane proteins and com-
plex biological assemblies [64]. Recent studies have also demonstrated the suc-
cessful application of CGMD to simulate the behavior of antibodies and their in-
teractions in solution [65]. A comprehensive overview of CG models and their in-
tegration into molecular dynamics frameworks is provided in [67]. To reflect this
conceptual overlap, Figure 3.1 includes a connecting link between the CG simula-
tion branch and the molecular dynamics category.

This connection is also supported by the practical relevance and diversity of CG
models used in such simulations. Figure 3.4 illustrates three widely adopted CG
models: MARTINI, UNRES, and CABS [64].

(a) MARTINI (b) MARTINI (closer)

(c) UNRES (d) CABS

Figure 3.4: Illustrations of CG models: (a) and (b) MARTINI force field, with gran-
ularity of 5 (five) beads per group; (c) UNRES model with CG beads for peptides;
and (d) CABS model with its beads upon the C-Alpha, Beta and Side chain. Image
adapted from [64].

The MARTINI model was initially proposed for studying lipids and then ex-
tended for protein systems. Nowadays, is typically used as the CG model for study-
ing membrane proteins [64]. It follows a mapping of one-to-four heavy atoms and a
hydrogen associated to which corresponds to the one interaction site, as illustrated
in Figure 3.4a and Figure 3.4b. The UNited RESidue (UNRES) is a physics-based
CG model with a moderate resolution and a highly reduced depiction of a protein
since each residue is represented by two sites of interactions: one for the united
peptide group and one for the united side chain (Figure 3.4c). Finally, the C-Alpha,

23

Beta and Side Chain (CABS) CG model is an average resolution knowledge-based
with reduced representation model for proteins. The amino acid residue is repre-
sented by four united groups, namely, the C-Alpha, the Beta, the center of mass of
the Side chain and the center of the peptide bond [64] (Figure 3.4d).

For more details about CG models and their applications refer to [64, 67].

3.3.2 Structural Bioinformatics (SBI)
The techniques involved in the role of SBI take advantage of the increasing

growth of databases with protein structures information in order to predict un-
known structures using sequence homologies to known structures. Figure 3.1
shows three common groups that depend on these Database models in their tech-
niques: Comparative Modeling, Fold Recognition and Threading, and First-principle
methods with database information.

Comparative Modeling

Comparative modeling, or homology modeling, exploits the fact that evolution-
arily related proteins with similar sequences have similar structures [68, 69]. Such
similarity is measured by the percentage of identical residues at each position
based on optimal structural overlap.

Structure similarity is very high in the so-called core regions, which are typi-
cally made up of a set of secondary structure elements, such as α helix and β leaves.
As seen in Section 2.2.2, these elements are connected through loops that tend to
vary even in pairs of homologous structures having a high degree of similarity be-
tween the sequences.

Figure 3.5 shows a generic representation of a Comparative Modeling workflow.
The process of building a comparative model typically proceeds as follows [68,

69]:

1. A sequence alignment is performed between the amino acid sequence of the
primary structure to be modeled (target sequence) and the amino acid se-
quence of a protein whose structure is determined by experimental methods
(parent sequence);

2. From this alignment, an initial model, called a template, is constructed by
copying the coordinates of the side and main chains of the structure of the
parent sequence based on similar residues of the alignment;

3. The side chain is constructed for both the residues of the target sequences
that do not match an alignment identity for residues where the 3D configura-
tion of the side chain of the target sequence is expected to be different from
the configuration in the parent structure;

4. Finally, the main chain is built for cases of insertions and regions close to
deletions and other areas that present potential variations of the main chain.

24

Figure 3.5: Comparative Modeling: representation of the generic workflow. Image
from [5].

Comparative modeling typically uses primary sequence pairwise comparison
methods to identify local alignments, as similarities between amino acid sequences
usually occur between segments of the two sequences [68]. Another technique used
is sequence profiling comparison, which considers the trends of each of the 20 types
of amino acids for each position in a multiple sequence alignment [69].

Fold Recognition

Fold Recognition methods, or Threading methods, use a database of known 3D
structures to identify amino acid sequences that do not yet have their folded struc-
tures defined [70–73]. The general goal is to fit a protein sequence correctly against
a structural model, a template [5].

This is achieved with the aid of a scoring function, usually derived from a
database of known structures, which evaluates whether a sequence, placed in a
structural position of 3D template, corresponds to a given fold.

This way, these methods compare a target sequence against a library of struc-
tural templates, producing a list of scores. These scores are then ranked and the
best-scoring fold is assumed to be the one adopted by the target sequence.

Figure 3.6 shows the generic workflow of these methods for predicting 3D struc-
tures:

25

Figure 3.6: Fold Recognition: representation of the generic workflow. Image from
[5].

The typical fold recognition approach for predicting 3D structures involves [5]:

1. A library of potential 3D templates is constructed using known native protein
structures from the PDB, reducing their 3D coordinates to abstract represen-
tations;

2. A scoring system is used to evaluate the placement of any candidate sequence
into the fold. In general, the scoring functions used are a list of statistical ref-
erences of each amino acid residue to each structural or fold environment.
Additionally, it calculates the potential energy of the structures and the mod-
els are scored, the structures are ranked and validated;

3. A strategy (algorithm) is used to search over the space of possible replace-
ments to identify the optimal sequence-structure substitute; i.e, find the global
best score and the optimal fitting/threading: two examples of approaches to
this sequence-structure replacement are: (1) 3-D profile methods and (2) con-
tact potentials [5].

To test a sequence against a library of folds, the chosen methods usually take
advantage of sophisticated sequence alignment algorithms, such as hidden Markov
models (Hidden Markov Models), to computationally elaborate techniques, such
as dynamic double programming, dynamic programming with the so-called frozen
approximation and Gibbs sampling using the threading cores [70–73].

First-principle methods with database information

These methods compare fragments of a target protein (i.e, amino acid subse-
quences) with fragments of other known structures available in databases (PDB).

26

Then, a structure is assembled from the identified fragments, using optimization
algorithms and [59] scoring functions. These methods are called first-principle due
to the similarity that exists between how their algorithms and functions are used
and how free energy optimization algorithms and energy functions are used in first
principle methods based exclusively on physical forces [59] (see Section 3.3.3).

Figure 3.7 shows a generic representation of this technique.

Figure 3.7: Fragment-based First-Principle methods: representation of the generic
workflow. Image from [5].

According to [5], these methods are composed of five basic steps:

1. The target sequence is divided into fragments;

2. A search is performed for similar sequences from each fragment in a database
of known structures;

3. The fragments are classified using a scoring system;

4. Using a combination method, a 3D configuration is constructed using the frag-
ment template applying a combination technique;

5. The obtained 3D configuration is refined.

Fragment assembly methods are generally based on the idea that local inter-
actions influence and direct, but do not uniquely define the local structure of the
protein [59]. In other words, if there are fragments of proteins that fold into sim-
ilar local structures, this information can be used to build 3D models of protein
structures [5].

These assembly methods approximate this trend in structural formation by av-
eraging between observed fragment geometries in known protein structures. Only
when an appropriate set of observed fragments is identified, compact structures
can be assembled by randomly combining fragments using a combination method,
such as simulated annealing [74, 75].

27

The classification and suitability of a conformation is evaluated using a scoring
function derived from statistical data of known protein structures [59].

These methods have some advantages, such as the ability to predict new folds,
which is not the case with the comparative modeling methods [5], and the reduction
of the conformational search space when compared to methods with no database
information (Section 3.3.3).

However, the main limitations of these methods are the challenges of reducing
the potential energy in regions where fragments are identified and dealing with
the large conformational search spaces created by different combinations of these
fragments [5].

In this case, the usage of Artificial Intelligence (AI) as another auxiliary method
has also advanced in recent years, such as the agent-based parallel deep learning
framework used to accelerate protein folding simulations presented in [13] and,
most recently, the AlphaFold deep learning algorithm presented in [30, 60]. This
method comprises of a deep-learning strategy for folding prediction divided in four
stages as shown in Figure 3.8:

1. Homology-based features are derived from the protein’s primary structure
(from the PDB) and from Multiple Sequence Alignment (MSA);

2. A Neural network is trained on known structures from PDB in order to pre-
dict the distances between β-Carbon atoms of pairs of residues and create
a set of distance distribution predictions based on probability distribution of
pair of atoms in regions of 64 x 64 atoms;

3. A Potential function constructed using torsion, distance distributions and van
der Waals terms;

4. A Gradient descent is used to find the specific sets of torsion angles that can
be used to minimize the potential function throughout the process [30, 60].

Figure 3.8: AlphaFold structure prediction stages: Sequence and MSA features,
Deep neural network, Distance and torsion distribution predictions; and Gradient
descent on protein-specific potential. Image from [60].

In the 14th Critical Assessment of Structure Prediction (CASP14), AlphaFold
predicted the 3D structures of a group of proteins with a high accuracy compared
only to models derived from experimental data. No longer after that, it was able to
predict the structures of almost every protein in the human proteome [76]. How-
ever, AlphaFold has its limitations, as presented in [77]: (a) low accuracy predic-
tions of intrinsically disordered proteins/regions and loops; (b) it predicts only a
single conformer, failing to identify apo and holo forms; (c) it is not able to predict
defects in the protein folding, caused by point mutations; and (d) it cannot predict
new structures because its algorithm requires data of known structures.

28

3.3.3 Molecular Dynamics and Protein folding
Molecular dynamics simulation applied to protein folding is a set of methods

based on Computational Molecular Physics (CMP) that use force fields of atom-
atom interactions and explore the 3D geometric space in order to develop biological
micro-stories that satisfy principles of chemistry and thermodynamics.

Unlike the techniques presented in Sections 3.3.1 and 3.3.2, Molecular Dynam-
ics (MD) simulation in essence is a first-principle method without database infor-
mation, also called ab initio, and, typically, do not use any data about structures
of previously resolved proteins. Traditionally, these methods have a high computa-
tional cost and were limited to study only simple actions of small proteins.

However, recent advances [3, 6] were made on more accurate force fields and
solvent models for capturing the molecular interactions, and on new faster meth-
ods for conformational searching and sampling [21, 78]. With this, MD is now
able to model, with good accuracy, protein actions on time scales longer than mi-
croseconds, and sometimes milliseconds, with a great impact on protein folding [3].
Additionally, new methods that make use of (external) experimental data of deter-
mined structures are now used in order to accelerate the process, while preserving
proper physics calculations [3, 6, 28].

Concerning the protein folding problem and its third question (Section 3.1), the
biggest challenge regarding the usage of MD techniques for predicting 3D native
structures can be organized into two steps:

1. Building a scoring function that can distinguish correct (or similar) native
structures from incorrect (non-native) structures;

2. Choosing a search method for exploring the 3D geometric space looking for
possible configurations.

In MD methods, components 1 and 2 are coupled in a way that the search
method guides, and is guided by, the scoring function to find similar native struc-
tures. Typically, a potential energy function is chosen as a scoring function. Cur-
rently, there is no generic and reliable scoring function that can guide a search to
always find a native structure. And, likewise, there is no search method that can
traverse the space of conformations in order to guarantee a significant fraction of
3D configurations close to the native structure [6].

In this context, according to [5, 79, 80], a MD method usually consists of three
elements: a geometric representation of the protein structure, a potential energy
function and a surface energy search technique.

The first element of the MD method, the geometric representation, corresponds
to the way the 3D structure of the protein will be represented computationally.
The most detailed representations include all the atoms of the protein chain and
the solvent molecules that surround the protein, such as water molecules (H2O).
These detailed atomic representations have a high computational cost [5].

The second element, the potential energy functions, is used in molecular me-
chanics simulations, protein design and prediction of protein structures [5]. These
functions can be either knowledge-based or based on physical parameters, both of

29

which representing the forces that determine the macromolecular 3D conformation
[5]

A potential energy function is typically made up of two types of terms: bonded
and non-bonded. Bonded terms correspond to those potentials that emerge due to
the forces among atoms that share a chemical bond (electrons) between them, for
example: covalent bonds, valence angles and torsion angles [5, 81]. Non-bonded
terms refer to those potentials that emerge due to the forces among atoms that
present an attraction between them, although not sharing a chemical bond. These
include ionic bonds, hydrophobic interactions, Hydrogen Bonds (HB), van der Waals
forces, and dipole-dipole bonds (Section 2.1).

Chapter 4 presents a detailed view of this technique, its general algorithm,
limitations, challenges and an example tool which implements a parallel version of
its algorithm.

30

Chapter 4

Molecular Dynamics Simulation: A
Detailed View

In order to carry out its biological function, a protein goes through structural
transitions in its 3D configuration, as presented in Chapter 3. This causes changes
both in the geometry of the protein and in the arrangement of molecules around
the protein, e.g. the solvent. The energetic and thermodynamic parameters of
these molecular systems are derived from realistic simulations which are devised,
typically, for finding a 3D configuration with a minimum potential energy and ex-
ploring the energy space of the molecular system [61].

In this context, a well-known molecular technique is the Molecular Dynamics
(MD) simulation used to study time-dependent behavior of molecular systems. It
involves numerically solving Newton’s equations of motion to track the positions
and velocities of the atoms over time, considering their initial coordinates and ve-
locities and a potential energy function of the system [27, 61].

These MD simulations use physical forces to provide a detailed picture of the
atomic interactions in molecular systems and, when applied to protein folding, they
depict their relation to the structure and function of proteins [82]. Nowadays, they
are routinely employed to obtain insights of the atomic behavior of molecular sys-
tems [6].

MD simulation methods can be organized into two main groups according to the
approach of the model chosen to represent the physical system [26], namely:

• Classical approach: starting with [83, 84], it refers to all techniques that
deal with molecules using the Ball-and-stick model shown in Figure 2.1 (Sec-
tion 2.1), where the atoms are represented as spheres (balls), the bonds or
interactions between them are represented as lines connecting them (sticks)
and the laws of classical mechanics are applied to define the system dynamics;

• Quantum approach: since the work in [85], it refers to methods that calculate
the atomic interactions of the system considering the quantum nature of its
chemical bonds, that is, quantum equations are applied to calculate a density
function of electrons in order to estimate the valence electrons that deter-
mines atomic interactions, while still using the classical mechanics equations
to calculate the dynamics of ions.

31

Although the quantum approach represents an advance in relation to the clas-
sical approach [26], its practical use in MD simulation continues to be limited by
its very high computational cost.

In this context, classical MD simulation method has evolved since the publica-
tion of the first protein simulated with it [86]. It has become an established tool in
the study of biomolecular systems, complementary to the experimental process, as
it offers a way to follow processes that are difficult to understand with experimen-
tal techniques [87, 88].

According to [5], the computational methods for simulating the protein folding
process can be classified into four groups. This Thesis focuses on one specific group,
called ab initio. As shown in Section 3.3.3, in general, these methods do not use any
data on previously resolved protein structure predictions and are based strictly on
the principles of physics, seeking to predict the stable 3D configuration considering
only the protein’s 1D sequence.

MD simulation is an ab initio technique used to study the time-dependent be-
havior of molecular systems. It involves numerically solving Newton’s equations
of motion to track the positions and velocities of the atoms over time, consider-
ing their initial coordinates and velocities, and a potential energy function of the
system. For modeling protein structures, canonical MD is the method of choice.

In general, the MD simulation technique consists of (i) a geometric representa-
tion of the 1D structure, (ii) a potential energy function, and (iii) an energy surface
searching technique, as explained in [5, 80].

One known limitation of this method is that finding the optimal sequence of
geometric transformations which leads to the stable 3D configuration is an NP-
Complete problem [89]. Thus, the energy surface searching technique applies en-
ergy functions to explore the protein conformational space, describing its energy
and atomic forces [5, 79, 80].

This PhD Thesis focuses on the classical MD simulation technique and, from
this point on, will refer to it only as MD simulation. Section 4.1 introduces the
methodology behind the MD simulation general approach and Section 4.2 addresses
other known limitations of this technique.

4.1 Methodology
The MD simulation uses a methodology based on both Classical Mechanics

equations of motion and Statistical Mechanics principles [90, 91].
Newton’s equations of motion are used to describe the microscopic properties of

a molecular system from information on the behavior of each atom of the system
over time, i.e. positions and motion of the atoms, in order to generate a sequence
of system arrangements as a function of time. From these microscopic properties,
Statistical Mechanics is used to calculate observable macroscopic properties, such
as number of atoms (N), pressure (P), temperature (T), volume (V) and total poten-
tial energy (E) of the system [90–94].

A software that implements a MD simulation, typically follows a sequence of
steps that (a) calculates both microscopic and macroscopic properties of the atomic

32

system; and (b) records these data for subsequent analysis of their properties. Sec-
tion 4.1.1 presents how this sequence of steps is described through a general algo-
rithm typically used in MD simulation systems.

4.1.1 General Molecular Dynamics Simulation Algorithm
In an overview, the general method used in the MD simulation comprises of

four steps [4, 23, 25, 95], namely: (1) inputs the geometric configuration and other
initial conditions of the atomic system; (2) calculates the forces acting on the sys-
tem; (3) updates the geometric configuration; (4) writes to the output all system
data collected for intended analysis, such as variations in geometric configuration,
temperature, pressure, etc; (5) goes back to step 2, until enough data has been
collected.

These steps can be further detailed and structured as shown in Algorithm 1.

Algorithm 1: General MD Simulation Algorithm
1 *** Initial state of the atomic system ***

Input :
a) {a1, ..., aN}: initial coordinates (x,y,z) for atoms 1 to N;
b) {v1, ..., vN}: initial velocities for atoms 1 to N;
c) Force field: model parameters;
d) Solvation: model data (implicit or explicit);
f) time_step: size of each time interval to be calculated;
g) num_steps: # of iterations for the numerical integration loop.

2 *** Numerical Integration Loop ***
3 for ns← 1 to num_steps do
4 Ubonded ← ComputeBondedForces(a1, ..., aN);
5 Unon−bonded ← ComputeNonBondedForces(a1, ..., aN);

6 Utotal ← ComputePotentialEnergy(Ubonded, Unon−bonded);

7 *** move atoms and update coordinates and velocities ***
8 {a′1, ..., a′N}, {v′1, ..., v′N} : ← MoveAtoms(a1, ..., aN);
9 {a1, ..., aN}: ← {a′1, ..., a′N};

10 {v1, ..., vN}: ← {v′1, ..., v′N};

11 *** Writes output data to log files ***
12 *** at every predefined interval of iterations ***

Output:
a) {a′1, ..., a′N}: updated coordinates of each atom;
b) {v′1, ..., v′N}: updated velocities of each atom;
c) Potential energy (Utotal), Temperature (T), Pressure (P), etc.

13 end

The initial state of the molecular system is defined in line 1. The initial coordi-
nates of each atom (x, y, z) are provided in vector a for a total of N atoms (Input a).
The initial velocities of those atoms (Input b) are normally set according to the de-
sired temperature. The force field model is provided in two files: parameters and
topology (Input c). The solvation model (Input d) is provided by the user before

33

starting the simulation and defines how the atoms of the solvent will be treated
during the simulation. Section 4.1.2 will present more details about this input
data. The time step (Input e) provides the order of magnitude of time, which is
normally in femtoseconds (10−15) and the number of steps (Input f) is normally set
to tens of millions or billions of iterations.

Using the selected force field model (Input c), the force that is exerted on each
atom at the position ai is calculated from the total potential energy of the system,
U (Equation 4.1) [96].

Fi = −
∂U

∂ai
, (4.1)

The empirical approach treats U as the sum of the potential energy related
to chemical bonded interactions and the potential energy related to non-bonded
interactions (Equation 4.2).

Utotal = Ubonded + Unon−bonded (4.2)

The potential energy for bonded interactions is typically calculated taking into
account three components, as depicted by the Ubonded term in Equation 4.3: (i) har-
monic and elastic forces for each covalent bond between two adjacent atoms (ai, aj),
where each bond vector ai − aj is separated by distance dij = l = |ai − aj|, with
equilibrium distance deq (Figure 4.1a); (ii) three consecutive atoms (ai, aj, ak) and
the bending angle θ between each bond vector formed among them, such as ai − aj
and aj − ak (Figure 4.1b); and (iii) four consecutive atoms (ai, aj, ak, al) connected by
three bond vectors with a torsion angle ϕ (dihedral angle at Figure 4.1c), due to
rotations around the central bond vector.

U(aN) = Ubonds + Uangles + Udihedrals︸ ︷︷ ︸
Ubonded

+ UvdW + UCoulomb︸ ︷︷ ︸
Unon−bonded

(4.3)

(a) Bond length
(distance) (b) Bond angle

(c) Bond torsion
angle

Figure 4.1: Schematic representation of bonded interactions in a molecular sys-
tem. These include bonds, angles, and torsions, which are explicitly defined by the
topology of the molecule. Image adapted from [4].

The potential energy term for non-bonded interactions is commonly estimated
by considering van der Waals and electrostatics interactions, depicted in Figures
4.2a and 4.2b.

Typically, the potential of van der Waals interactions is calculated using the
6-12 Lennard-Jones potential and the potential of the electrostatic interactions is

34

calculated using the Coulomb law, represented by the terms UvdW and UCoulomb in
Equation 4.3, respectively [4].

(a) van der Waals forces
(Lennard-Jones 6-12 Potential)

(b) Electrostatic forces
(Coulomb)

Figure 4.2: Illustration of non-bonded interactions in a molecular system, including
van der Waals forces and electrostatic interactions, which are computed based on
atomic distances and charges: (a) van der Waals forces and (b) Electrostatics forces
for a pair of atoms with a distance rij between them. Image adapted from [4].

Utotal =
∑
bonds

kd(d− deq)
2 +

∑
angles

kθ(θ − θeq)
2 +

∑
dihedrals

kϕ(1 + cos(nϕ− γi))︸ ︷︷ ︸
Ubonded

+
∑
i

∑
j>i

4εij

[(
σij

rij

)12

−
(
σij

rij

)6
]
+

∑
i

∑
j>i

qiqj
4πε0rij︸ ︷︷ ︸

Unon−bonded

(4.4)

Inside the main loop (Algorithm 1, lines 3 to 13), two functions are responsible
for computing the bonded and non-bonded forces (lines 4 and 5), respectively, and
their results are used to compute the total energy of the system in line 6 (Equa-
tion 4.4). The function MoveAtoms (line 8) is responsible for calculating each atom
new position (a′) and velocity (v′) (lines 9 and 10).

As output (line 11), two files are written at predefined time steps: one with all
atom coordinates (Output a) and one with all the velocities (Output b). These files
are used to keep track of the trajectory of the molecular system. A third file is
also written with properties such as potential energy, temperature and pressure
(Output c).

4.1.2 Solvation model: Explicit and Implicit
Another characteristic of the simulated system usually defined before starting

a MD simulation is the solvation model (Input d in Algorithm 1). In a solvation
model, the solvent represents the environment where the molecular system is im-
mersed (usually, water). Thus, the chosen model will influence how the MD sim-
ulation will treat the atoms of the solvent during the simulation. The two typical
solvent models used in MD simulations are the explicit solvent and implicit solvent
models, shown in Figure 4.3.

35

(a) Explicit solvent model. (b) Implicit solvent model.

Figure 4.3: Illustration of explicit and implicit solvent models. Image adapted from
[22].

Explicit models (Figure 4.3a) generally describe the system as a container filled
with atoms that belong to both the solvent and the molecular system. The shapes
of the container can also be defined in the initial model and the commonly used
shapes are cubes, parallelepipeds, octahedrals and spheres [23, 25, 27, 90, 95].

Explicit modeling aims to increase the accuracy by including a higher level of
detail, which means including in the model all the solvent atoms individually, an-
alyzing them during the simulation and computing their interactions with both
atoms of the molecular system and with those of the solvent itself. A well-known
consequence of this rich detail approach is that the MD simulations using this sol-
vent model demand an extremely high computing power. [22, 23, 25].

On the other hand, implicit modeling (Figure 4.3b) treats the solvent as a po-
larized continuous structure and uses a less detailed model, which ignores some
characteristics of the solvent’s molecular and atomic nature, in order to reduce the
computational cost, when compared with the explicit modeling approach. At the
core of the implicit modeling there is a potential energy function describing the
changes in energy of the system during transformations in the protein 3D struc-
ture [27].

In MD simulations of proteins, a commonly used class of techniques for mod-
eling implicit solvent is called Generalized Born (GB) [29] and one example is the
Generalized Born Implicit Solvent (GBIS) approach, which is well known in MD
simulation of relatively small biomolecular systems. The NAMD software (Sec-
tion 4.3) implements a version of the GBIS approach, which allows the parallel
execution of MD simulations of protein folding using an implicit solvent model, as
presented in [97].

For more details about solvent models, please refer to [22, 29].

36

4.2 Limitations and Challenges
According to [6, 24], molecular dynamics simulations have three well-known

major limitations: achieving reliable accuracy in force field models, analyzing and
interpreting the resulting trajectories to provide a meaningful description of the
system’s behavior, and the high computational power required to explore the pos-
sible 3D configuration space that constitutes the system’s trajectory.

The challenge of achieving reliable accuracy in force field models is mainly re-
lated to the intrinsic limitations of the mathematical approximations used to rep-
resent the complexity of molecular interactions, which contribute to the emergence
of systematic errors, for instance [4, 6].

The challenge of analyzing and interpreting the trajectories obtained from a
molecular dynamics simulation is related to the noise and high dimensionality of
the resulting trajectories, which complicates the production of a meaningful de-
scription of molecular behavior [6, 21, 24].

The third and big challenge is the time constraint due to the high computa-
tional cost of space exploration for possible 3D configurations [6, 24]. The relevant
timescales in important biological processes span many orders of magnitude, as
shown in the Figure 4.4 [26].

In this figure, molecular dynamics simulations with atomic-level detail typically
use time steps on the order of femtoseconds. However, the scales of other events
of interest, such as α helix However, the timescales of other events of interest,
such as α-helix formation in secondary protein structures (Section 2.2.2) and the
overall folding process, are significantly larger. As a result, molecular dynamics
simulations must be executed over billions (109) of iterations in order to capture
the full trajectory of these events, which occur at time values t on the order of
microseconds to milliseconds, respectively [98].

Figure 4.4: Molecular dynamics relevant time scales for protein folding. Image
adapted from [98].

As an example of this timescale difference, consider the simulation of the pro-
cess of oxygenation of the hemoglobin. This process may require tens of microsec-

37

onds (10−3) [26]. Now, observe that in order to simulate the structural changes in
this protein, each simulated time step must consider first the fastest atomic mo-
tions that can be calculated, and these motions occur in smaller time scales, such
as 1 to 5 femtoseconds (10−15). Thus, for simulating the structural changes in the
hemoglobin oxygenation process, the numerical integration loop would have to iter-
ate for tens of billions of steps for calculating, at each step, the forces and potentials
of the molecular system [26].

To overcome this timescale limitation, computational techniques involving hard-
ware and software are developed and applied to accelerate calculations performed
in a molecular dynamics simulation. In this context, it can be mentioned:

• Building specialized hardware for molecular dynamics simulation, such as
the Anton supercomputer [12] developed by the research group D.E. Shaw Re-
search, capable of performance of the order of magnitude of microseconds per
day of simulated time and therefore achieves longer simulated times (above
milliseconds), capturing the complete folding of proteins on this time scale
[4, 12, 99]; and,

• Using GPU and parallel programming techniques with a message passing
protocol, such as Message Passsing Interface (MPI) [100] to adapt and run the
molecular dynamics simulation code in different CPU and GPU cores [4, 101–
104].

4.3 NAMD

4.3.1 Overview
NAnoscale Molecular Dynamics (NAMD) is a software that implements Algo-

rithm 1 using parallel techniques for high-performance simulations. Figure 4.5
shows NAMD’s strategy for a hybrid spatial and force decomposition which allows
the parallel execution of the numerical integration loop present in Algorithm 1 (line
3) [7, 104–107].

The main elements of NAMD’s parallel execution are Home Patch, Proxy Patch,
Compute, Sequencer, and Controller objects, multiple threads and message ex-
changes [108, 109]. NAMD uses these elements to build its strategy aiming for
reducing the execution time of MD simulations of huge molecular systems, in the
order of billion of atoms [109].

For MD simulation, NAMD uses the first-principle methods with all atoms us-
ing empirical force fields and usually a resolution of time steps in the order of
femtoseconds [104]. And for high-performance methods, the focus of NAMD’s de-
velopment is on strong scalability, because the biological systems of interest gener-
ally have fixed sizes and, therefore, require a fine-grained parallelization strategy
for the MD simulation to be successfully completed in a reasonable time [110].

The next Section 4.3.2 presents an overview of the methodology used in NAMD,
starting with its basic objects and followed by a description of its execution flow
using these objects.

38

Figure 4.5: Illustration of NAMD’s parallel decomposition. Spatial and force calcu-
lations represented with patches (cubes) and computes abstractions, respectively.
Image adapted from [7, 104].

4.3.2 Methodology
NAMD’s method comprises of a set of parallel techniques to perform the decom-

position of the 3D space and the calculation of forces, aiming mainly to increase the
scalability and reduce the execution time of simulations [109]. These techniques
are built using Charm++, a framework for parallel programming based on object
orientation and supported by a runtime system [109, 111, 112].

Basic Objects: Patch, Compute and Sequencer

As presented in [109], NAMD has three basic types of objects in its class hi-
erarchy, called Patch, Compute and Sequencer and these objects are essential to
NAMD’s parallel execution flow of the Algorithm 1.

Patch objects are used to model the spatial decomposition process, as follows: a)
the simulation space, i.e. the 3D geometric space containing the molecular system
(and the solvent, if a explicit solvent model is chosen) is divided into cells, smaller
blocks of that space, all of them with the same volume (usually cubes or paral-
lelepipeds); b) each of these blocks is represented by a patch object; c) each patch
is responsible for the atoms that are inside the block, storing both the coordinates
of these atoms and the forces exerted on them; d) each patch related to a block in
the simulation space is also named a Home Patch as a way of referring to a spe-
cific patch that contains only local atoms, which means these atoms are within the
same block and, consequently, in the same computational node.

Figure 4.6 shows two Home Patches named Patch A and Patch B. In NAMD,
the collection of all Home Patches created for mapping the MD simulation’s 3D
geometric space is called Patch Grid.

39

Figure 4.6: NAMD objects created inside a CPU, called PROCESSOR 1. The ar-
rows represent the exchange of messages. There are two patch objects (cubes Patch
A and Patch B), two Proxy Patch objects (dotted cubes called Proxy C and Proxy D),
and four Compute objects (circles). Image originally from [109].

Compute objects model the decomposition of forces, as each Compute object is
responsible for calculating a different type of force, bonded or non-bonded (see Sec-
tion 4.1.1), acting on atoms belonging to one or more Home Patches. For example,
Figure 4.6 shows four Compute objects, called Non-bonded Pair Compute Objects
and Non-bonded Self Compute Objects.

There is another particular type of Patch object, called Proxy Patch (represented
by Proxies C and D in Figure 4.6). This object has the specific function of pre-
venting that unnecessary messages are exchanged between local Compute objects
(within the same compute node) and a remote Home Patch object (inside another
compute node), working as follows: if more than one local Compute object needs
atom positions that are located in a Home Patch of another computational node,
NAMD creates a local Proxy Patch object, which (a) receives the positions of the
atoms that are in the remote Home Patch; and (b) sends back the resultant forces
computed with them. In this scenario, each Compute object gets remote atomic
positions of a Proxy Patch, calculates the corresponding forces, then puts them into
the Proxy Patch, which is responsible for sending these resulting forces to remote
Home Patch [109].

In Figure 4.6, four Compute objects were created to calculate non-bonded forces:
the two objects Self Compute are responsible for calculating the forces between the
atoms located only inside the Home Patches A and B (locals); and two other Pair
Compute objects are responsible for calculating the forces between atoms residing
within the local Home Patches and atoms that belong to remote Home Patches, but
have had their coordinates sent to local Proxy Patches; so there is communication
between the Compute and Proxy Patches objects C and D (represented by the ar-
rows between the objects), in order to obtain the coordinates of atoms belonging to
remote Home Patches.

Finally, a Sequencer object is created with a main function of managing the exe-
cution of a version of the Algorithm 1 in each computing node, using the forces cal-

40

culated by the Compute objects. And, as presented in [108], another function of the
Sequencer object is to allow the NAMD user to adapt and extend the Algorithm 1
according to the needs of the experiment, through the necessary modifications of
specific methods inside the Sequencer object. The behavior of the Sequencer object
will be detailed below, within the context of the NAMD execution flow.

Execution Flow

In its basic operation, NAMD decomposes calculations into objects that inter-
act by sending asynchronous, one-way messages to other objects on local or remote
processors. Utilizing the Charm++ message-driven model, a method on an object
is only activated when a message is received, designed specifically to minimize re-
source consumption associated with waiting for data [106, 111]. Figure 4.7 demon-
strates how these objects are used to construct the basic flow of NAMD’s operation
through shared memory and message passing.

Figure 4.7: NAMD components: basic objects (computes and patches), multiple
threads (controller and sequencers) and message exchanges. Image adapted from
[108].

At the start of parallel execution, using Charm++’s runtime system, a NAMD
process is created on each defined compute node. Then, inside the main node,
the main thread: a) performs the domain decomposition, that is, calculates the
Patch Grid and the number of Patches; and b) evenly distributes Patches among
computational nodes.

Then, on all nodes, the main thread: a) creates a new Charm++ thread for
each Home Patch defined at that node; the only method executed by this thread
is defined in the Sequencer object (represented by the scrambled left white box of
Figure 4.7); b) creates Proxy Patch objects to receive the atoms that are in remote
Home Patches and to return the calculated forces; c) creates registered Compute
objects that depend on atoms contained in both Home Patches and Proxy Patches
[113].

Next, inside the main node, the main thread creates a new Charm++ thread to
execute the methods defined in an unique type of object, called Controller. This

41

object has similar responsibilities to those present in the Sequencer, but with ad-
ditional ones that must be carry out only inside the main node, which are: a) co-
ordinating the overall execution and integrity of the numerical integration loop,
by exchanging messages with local and remote Sequencer objects; and b) collect-
ing all calculated system energies, computing global results and recording them
throughout the whole simulation execution.

In the next step, in all computing nodes, each Sequencer thread runs the nu-
merical integration loop of the Algorithm 1 only for atoms contained in the Home
Patch associated with it. For each iteration, the Sequencer: a) sends the positions of
atoms of each Home Patch to local Compute objects for calculating the correspond-
ing forces; b) sends the positions of Home Patch atoms to the remote Proxy Patch
objects for their corresponding Compute objects calculate the forces; c) suspends
its thread execution, waiting for resulting forces; d) when the last message arrives
containing the forces calculated by the last Compute object (local or remote), the
thread is woken up; and e) using the values of these forces, the Sequencer calculates
the corresponding potential energy; then f) updates the positions and velocities of
the atoms, which corresponds to the action performed by the MoveAtoms method of
the Algorithm 1 and, if necessary, migrates these atoms to new Home Patches due
to their new coordinates.

Finally, the Controller thread gathers and writes (to log files) the updated co-
ordinates and velocities, as well as temperature, pressure, potential energy and
other predefined macroscopic characteristics (see Section 4.1).

For more details, see [106, 108, 109, 113, 114].

4.4 Atomic Burials

4.4.1 Overview
For an atomic system composed of a globular protein completely folded in its

native structure (Figure 2.3a, Section 2.3), the distance between an atom and the
center of the 3D geometric configuration of this system is called Atomic Burial (AB)
[31]. The work presented in [31–33, 35, 115] shows that atomic burial has suffi-
cient information to be used for predicting the stable 3D configuration of globular
proteins, starting from the data contained in the protein original 1D chain of amino
acids. Figure 4.8 shows the basic method for predicting protein structures using
atomic burial and developed for the work presented in [32].

In order to apply the atomic burial concept to the protein folding problem ex-
plained in Section 3.1, two new energy terms were developed [32, 33] and added
to Utotal, the total potential energy in Equation 4.4, namely: Uab in Equation 4.5 is
the contribution of atomic burial and Uhb in Equation 4.6 is the contribution of the
Hydrogen Bonds (HB).

Uab =
∑
atoms

B(ri) (4.5)

Uhb =
∑

Ei(Λi, ai) (4.6)

42

Figure 4.8: Prediction of protein structures with atomic burial. Image adapted
from [32].

4.4.2 MDBury Algorithm
The potentials described by Equations 4.5 and 4.6 were applied in molecular

dynamics simulations of the folding process of globular proteins. These simula-
tions were carry out using a modified version of the Algorithm 1, called MDBury.
Figure 4.9 shows the molecular dynamics simulation algorithm used in MDBury
for the work presented in [32, 116].

Similar to the Algorithm 1, Figure 4.9 shows that the MDBury algorithm starts
with three initialization steps. First, it reads topology data with the initial configu-
ration of the molecular system. Second, it initializes the positions and velocities of
the atoms in the system. And third, it initializes the Annealing Weights (AW) for
each hydrogen bond using predefined hydrogen bond annealing factors. It is impor-
tant to mention that, although it is not stated in [116], according to the available
implementation of the MDBury, at this point: (i) the algorithm also initializes an-
nealing weights for the atomic burial, using initial atomic burial annealing factors,
and (ii) it reads estimated center distances used for atomic burial calculations.

Once the initialization is concluded, the MDBury algorithm proceeds to the nu-
merical integration loop to perform typical molecular dynamics tasks, similar to
Algorithm 1. The number of iterations in this loop is defined in a configuration file
constructed and provided in the initialization process.

For the tasks inside the integration loop, it is important to note that MDBury
applies a thermostatic control method for maintaining constant the average tem-
perature of the system so that the simulation results are as compatible as possible
with those of a biological system. The algorithm for this method is called Berend-
sen Thermostat [117], and it is applied to calculate a scaling factor used for up-
dating the velocities of the atoms and preserve the desired temperature during the
simulation.

So, the first task of the loop is the main computation performed at each step:
the calculation of the potential energy of each atom in the system, as well as the
corresponding forces acting on them, including those related to atomic burial and
hydrogen bond. Using Newton’s second law, the resulting force is used to update

43

Start

Read the topology of
the initial conformation

Initialize positions
and velocities

Initialize hydrogen bond
annealing weight

Calculate the potential energy and forces acting on the system

Obtain the kinetic energy of the system

Calculate the velocities acting on each atom

Adjust the velocities according to temperature

Update the positions of all atoms according to their velocities

Increase the weight of hydrogen bond annealing

End of Simulation?

For each step, calculate data
that depends on external programs

End

No

Yes

Figure 4.9: Molecular simulation algorithm adopted by MDBury. Image adapted
from [116].

the speed of each atom, multiplied by a scaling factor, obtained through the ther-
mostatic algorithm.

MDBury computes the atomic burial force for each atom a at a position i (ai)
using the expected burials (r∗i), all interval tolerance (δi) and applying the atomic
burial annealing factor (Aab). The energy contribution of each atomic burial force

44

is calculated with B(ri) (Equation 4.7) [32],

B(ri) =



− air
2 + b1, for r ≤ δq

− a2r
2 + b2, for δq < r ≤ r∗i − δi − δq

a3(r − b3)
2, for r∗i − δi − δq ≤ r < r∗i − δi

0, for r∗i − δi ≤ r < r∗i + δi

a4(r − b4)
2, for r∗i + δi < r ≤ r∗i + δi + δq

a5r − b5, for r > δq

(4.7)

For computing hydrogen bond force, MDBury considers five atoms and put them
into a 5-tuple, containing the atom numbers in the following order: (a) one donor
nitrogen atom (a1) and its two adjacent atoms (a2, a3), simply called in this Thesis
as "3-donor atoms"; and (b) one acceptor oxygen atom (a4) and its adjacent carbon
atom (a5), also referenced here as "2-acceptor atoms" [32]. The resulting hydrogen
bond formed between the donor a1 and the acceptor a4, and their adjacent atoms is
described by the Equation 4.8:

λa1,a4(h, η, θ) = F (h)F (η)F (θ) (4.8)

where the function F (α) is defined as F (α) = 1/(1+exp(βα(α−µα))) and applied for
the values of h (h = |v⃗1|), η (angle between vectors v⃗1 and v⃗2) and θ (angle between
vectors v⃗1 and v⃗3). For more details about their definition and usage, refer to [32].

Next, for each donor ai or acceptor aj, the energy contribution is given by the
Equation 4.9

Ei(λi, ai) =
1

2
ϵhbf(ai,Λ) (4.9)

where Λi =
∑

λai,aj accounts for all possible hydrogen bond formed by a donor ai or
an acceptor aj, f(ai,Λ) is defined as equal to F (ai)(1−Λ) for values of Λ ≤ 0.95, and
to 0 for values of Λ > 1.05. Finally, the potential energy term due to all hydrogen
bond tuples is calculated by the sum of all energetic contributions,

∑
Ei(Λi, ai) [32].

In the second and third tasks, the MDBury obtains the instantaneous kinetic
energy of the system and it calculates the instantaneous velocities acting on each
atom, respectively. And, in the the fourth task, it adjusts the velocities of the atoms
according to the desired temperature.

In the fifth task, the positions of the atoms are updated based on the new cal-
culated atomic speed values, ending the Berendsen’s algorithm. In the last task of
the loop, MDBury increases the value of the hydrogen bond annealing weight, as
part of the atomic burial solution.

Finally, for each step of the simulation, the molecular dynamics algorithm cal-
culates and writes two output data, using external programs as follows: (i) it regis-
ters the Root Mean Square Deviation (RMSD) for each 3D configuration related to
native structure; and, then, (ii) it registers the residue ratio of regular secondary
structures, α helix and β leaves (Section 2.2.2), for each 3D configuration.

In the next Chapter, we will present parallel techniques used for executing MD
simulations in high-performance computing environments.

45

Chapter 5

Parallel Techniques for MD
Simulations using HPC
Architectures

5.1 High-Performance Computing (HPC)
High-Performance Computing (HPC) refers to the use of both supercomputers

and parallel processing techniques to solve complex computational problems. It
focuses on the development of algorithms and processing systems, incorporating
administration and parallel computing techniques. The terms High-Performance
Computing and supercomputing are sometimes used interchangeably [118].

Using computational resources concurrently, HPC systems have the ability to
provide continued performance, a characteristic that makes them suitable for solv-
ing advanced problems through tools such as computational modeling, simulations
and analysis. Thus, HPC is used in several areas of knowledge, such as oil and gas
modeling, automation of electronic design, climate modeling, media and entertain-
ment and molecular biology [118, 119].

5.1.1 Top500 List
Since 1993, the Top500 project publishes twice a year a list of the 500 fastest

computers in the world, called the Top500 list [120]. This list is compiled with
data provided by HPC experts, computer scientists, manufacturers, and the Inter-
net community at large [118]. So far, this is the only public document specifying
the purpose, configuration and processing power of supercomputers on a world-
wide scale and it is considered the most authoritative source of information on the
capabilities of supercomputers [118].

The Top500 list ranks supercomputers based on their speed when solving a
collection of subroutines for calculating systems of linear equations in Fortran.
This package of subroutines is called LINPACK benchmark [121, 122] and was
created specifically to measure the best performance of a target computer system
while solving this system of equations, as it is possible to choose test combinations

46

between the size of the problem and the type of application in order to obtain the
best performance of the target computer system [120].

The main metric used to list supercomputers is the Maximal LINPACK perfor-
mance achieved (Rmax), given in PFLOPS in the LINPACK report [122] and which
represents the best score obtained by the machine in the execution of the biggest
problem of the LINPACK package [121].

Table 5.1 presents a reduced example of the Top500 list. The Rank column
contains the positions in the Top500 list. The name of the supercomputer and
the model of the system it is based on are represented in the Name and System
columns, respectively. The column #Cores contains the total number of CPU and
GPU cores, in each supercomputer and, finally, the column Rmax contains the
result obtained after resolving the LINPACK problems, represented in PFLOPS
[120]. Note that all supercomputers listed in Table 5.1 are HPC systems that run
high-performance molecular dynamics simulations [7, 11, 123–132].

Table 5.1: Selected entries from the November 2024 Top500 list of the world’s
fastest supercomputers. All systems listed have been used in molecular dynamics
simulations. Additionally, MareNostrum 5 ACC (ranked 11th) and MareNostrum
4 (ranked 174th) are both hosted at the Barcelona Supercomputing Center (BSC).
[120]

Rank Name System Model #Cores Rmax MD
(CPU/GPU) (PFLOPS)

2 Frontier HPE Cray EX235a 9,066,176 1,353.00 Yes [123]
6 Fugaku Supercomputer Fugaku 7,630,848 442.01 Yes [11, 124]
8 LUMI HPE Cray EX235a 2,752,704 379.70 Yes [125]
9 Leonardo BullSequana XH2000 1,824,768 238.70 Yes [126]

11 MareNostrum 5 ACC BullSequana XH3000 663,040 175.30 Yes [133]
14 Sierra IBM Power System AC922 1,572,480 94.64 Yes [127]
15 Sunway TaihuLight Sunway MPP 10,649,600 93.01 Yes [128]
19 Perlmutter HPE Cray EX 235n 761,856 70.87 Yes [129]
23 Selene Nvidia DGX A100 555,520 63.46 Yes [130]
24 TianHe-2A TH-IVB-FEP Cluster 4,981,760 61.44 Yes [131]
174 MareNostrum ThinkSystem SD530 153.216 6.47 Yes [132]

In addition to the Top500 list, which ranks supercomputers based on performance
measured by the LINPACK benchmark, there are other classifications such as the
HPCG (High Performance Conjugate Gradients) and Green500 lists. The HPCG
benchmark evaluates systems using computational patterns more representative
of certain applications, while the Green500 ranks supercomputers by energy ef-
ficiency, measuring performance per watt consumed. However, since this Thesis
focuses on parallel molecular dynamics simulations, which align more closely with
the performance metrics of the Top500 list, we have opted not to incorporate the
HPCG and Green500 rankings into our analysis.

For the purpose of this document, from now on, the term Top500 List will be
referring to the November 2024 edition, unless it is specified otherwise.

47

5.1.2 HPC Architectures
A survey published in 2022 brought to light a generic platform for running HPC

application workloads [134] and it is showed in Figure 5.1. Note that typical HPC
applications are usually iterative and tightly coupled, usually based on mathemat-
ical models, where is essential the usage of hardware acceleration (GPGPU/FPGA),
API acceleration (CUDA/OpenCL) and numerical libraries (BLAS/LAPACK).

Since HPC workloads are sensitive to compute and interconnect types, data
is generally shared by message exchanges over high-speed interconnects (Infini-
Band/High Performance Ethernet) between computing nodes with high bandwidth
and low latency. The widely used communication libraries are MPI and Remote Di-
rect Memory Access (RDMA) [134] and are specifically designed to improve perfor-
mance by taking advantage of user space communication paths that bypass kernel
space, avoiding context switches, using a zero-copy buffer and leveraging high-
speed, interconnected HPC infrastructure to reduce overall costs.

On top of that, typical HPC workloads are batch jobs with large datasets on
large Clusters of distributed computers. In this case, the storage is dedicated to
the HPC with distributed parallel file systems that allow simultaneous access to
data and provide high speeds and bandwidths.

Figure 5.1: Illustration shows a generic HPC architecture in 2022. Image adapted
from the original survey presented in [134].

HPC application workloads were executed primarily on specialized and highly
expensive supercomputing platforms, such as the Massively Parallel Processors
(MPP), which represented 69.2% of the Top500 "Architecture Share" statistics avail-
able in the November 2000 edition.

Since then, in the search for alternative HPC infrastructures, Cluster comput-
ing gained traction and has been moving away from traditional specialized super-
computing platforms towards general-purpose Clusters with high-speed intercon-

48

nections and analogous solutions stacks. Now, twenty three years later, the Top500
List showed that Cluster is the main architecture for HPC, with by 88.9% of the
architecture share, followed by 11.1% of MPP [120].

5.1.3 Massively Parallel Processing
The term MPP, in its original usage, referred to a class of architectures char-

acterized by a large number of small processors that typically were custom-built
and had a Single Instruction Multiple Data (SIMD) architecture, called massively
parallel processors, like the Connection Machines CM-2 [135].

Over time, according to the trend pointed out in [135, 136], the term MPP has
been used less accurately to refer to all large-scale multiprocessors, noting that
most commercially available multiprocessors with massively parallel processing
architecture is really an MPP, in its original sense.

However, this MPP nomenclature for HPC architectures has evolved [135], em-
phasizing its adoption in the construction of supercomputers that require intensive
usage of computation and data [137]. Figure 5.2 shows a simplified example of an
MPP architecture with two compute nodes. Each node has its own CPU, mem-
ory and network interfaces, and the interconnection between nodes is performed
by a specialized network and the communication between different computational
nodes is made possible by some message exchange protocol, namely MPI or RDMA
(Figure 5.1).

Figure 5.2: Simplified illustration of a generic MPP architecture. Image adapted
from [138].

In this context, one of the features that typically distinguish a supercomputer
with MPP architecture is the network that connects its processors and allows the
machine to operate as one large coherent computational entity. For example, this
is the case for several top-ranked systems in Table 5.1, such as the Frontier super-
computer [139, 140].

Frontier Supercomputer

The #2 place in the Top500 List is held by the Frontier supercomputer, located
at Oak Ridge National Laboratory (ORNL) in the United States. It is a MPP ar-

49

chitecture based on the HPE Cray EX235a system and the Slingshot interconnect.
It contains a total of 9,408 nodes organized in 74 cabinets: 73 cabinets with 128
nodes and one partially full cabinet with 64 nodes [139].

Figure 5.3 illustrates a Frontier compute node, where each node is equipped
with: (a) one AMD EPYC 64C 2GHz processor; (b) four purpose built AMD In-
stinct MI250X GPUs; and (c) a CPU-GPU interconnect based on AMD Infinity
fabric and coherent memory across the node, resulting in a total of 8,730,112 CPU
cores, interconnected with a HPE Slingshot system focused in low latency and high
throughput for HPC workloads [140].

Figure 5.3: Illustration of a Frontier computer node. Image adapted from [139].

Frontier’s Slingshot interconnect is configured with a three-hop dragonfly topol-
ogy, depicted in Figure 5.4, however it supports other topologies such as flattened
butterflies and fat trees [139, 141].

Figure 5.4: Illustration of a Frontier Dragonfly interconnect topology. Image
adapted from [139].

5.1.4 Cluster Computing
In the Cluster Computing platform, the nodes are connected through dedicated

standard network systems and protocols, usually operating with the same type of

50

operating system [134, 137]. Thus, the nodes are standalone computers intercon-
nected to run together as a single computer. Nodes share resources with other
nodes, such as computational modules and directories, typically having an imple-
mentation of a message exchange protocol (MPI).

A typical Cluster platform has at least two computing nodes in the same cabinet
or separately connected to each other through from a dedicated local network [134,
137]. From the point of view of applications and users, this computational solution
is seem as a single HPC platform. The main components of a Cluster are: network,
computer nodes, middleware and the application workload [134, 137].

The general architecture of a Cluster computing platform is shown in Figure 5.5.
The connection network provides the physical interconnection between nodes, ei-
ther in the same cabinet or through a dedicated standard LAN

Figure 5.5: Simplified illustration of a generic Cluster computing architecture. Im-
age adapted from [137, 138].

Cluster computing platforms are generally fault-tolerant in order to allow ac-
tive continuous operation across compute nodes. The hardware of the network
interface, connecting the nodes, acts as a dedicated communication processor that
transmits and receives packets of data between nodes. This interconnection net-
work is usually faster than traditional LAN and its communication protocols are
configured for reducing the communication costs [134, 137].

Compute nodes operate as independent computers, however they are connected
in way that allows them to handle an application workload collaboratively. The
middleware interacts between nodes and applications, sequential or parallel, thus
the users have the impression that they are working on a single computer.

As for programming environment for HPC systems, both MPP and Clusters
platforms generally enlist variations of a set of tools composed of message exchange
libraries and shared memory, including MPI, OpenMP and CUDA, debuggers and
profilers for the development of both software and middleware HPC applications
[134, 137]. Note that this configuration is primarily based on Linux and Unix op-
erating system families, which together account for 100% of the systems listed in
the Top500 [120].

51

Leonardo Supercomputer

The 9th place in Table 5.1 is the high-performance Cluster-based system known
as the Leonardo supercomputer. Figures 5.6 and 5.7 show its overall system
architecture and dedicated interconnect topology.

Figure 5.6: Illustration representing the Leonardo system architecture. Image
adapted from [126].

Leonardo’s Cluster architecture is composed of two main modules, a Booster
Module and a General Purpose/Data Centric Module (GP-DC) [126]. The Booster
module is built to handle maximum computational capacity. It has 3,456 comput-
ing nodes, equipped with four Nvidia Ampere based GPUs and with two 32-cores
Intel Ice Lake CPUs. The GP-DC module is built for attend a wider range of HPC
applications. It has 1,536 computing nodes equipped with two 56-core Intel Sap-
phire Rapids CPUs per node.

The whole Cluster infrastructure is assemble by connecting these two modules,
using three other elements: (i) a Front-end and Service, (ii) a Storage area with
two tiers, Fast and Capacity; and (iii) a standard high speed interconnect. The
Front-end is comprised of 16 login nodes with 2 Ice Lake CPUs (32 cores each), 512
GB RAM and 6 TB disks in RAID-1 configuration; additionally, it has 16 additional
nodes equipped with 6.4 TB NVMe disks and two Nvidia Quadro RTX8000 48GB
to be used as visualization nodes. The Fast Storage area has net capacity of 105
PB with NVMe and HDD.

The Storage area architecture acts in conjunction with the booster module de-
sign by taking advantage of its GPUDirect capability for improving I/O bandwidth
and reduce I/O latency towards the GPUs. The Fast storage tier is "full flash" based
only in NVMe and SSD technologies for providing high performance especially for
AI workloads; and it has net capacity of 5.4 PB with 1,400 GB/s aggregated band-
width. The Capacity tier provides the parallel filesystem which is based on the
Lustre HPC file system [126, 142]; based on NVMe and HDD technologies, it has
net capacity of 106 PB and aggregated read/write performance of 744 GB/s and 620
GB/s, respectively.

52

Figure 5.7: Illustration representing the Leonardo dedicated network. Image
adapted from [126].

The high speed interconnect is an InfiniBand-based network designed around
the Dragonfly+ and "Fat Tree" topologies, as depicted in Figure 5.7 [126, 143]. It
aims to allow interconnection of a very large number of nodes with a moderate
number of switches, while also keeping the network diameter very small. It fea-
tures a fat-tree intra-group interconnection, with 2 layers of switches L1 and L2,
and an all-to-all inter-group interconnection with a third layer of switches L3.

Marenostrum

The system used for running HPC molecular dynamics simulations in this The-
sis - MareNostrum (ranked 174th in the November 2024 Top500 list) - is hosted
at the Barcelona Supercomputing Center (BSC). In the same list, a more recent
system from the same center, MareNostrum 5 ACC, reached the 11th position,
highlighting the continuous evolution of HPC infrastructure in Spain.

Launched in 2004, the MareNostrum 4 cluster comprises 48 racks housing 3,456
compute nodes (Figure 5.8). Each node contains two Intel Xeon Platinum proces-
sors (Skylake generation) with 48 cores, totaling 165,888 CPU cores and 96 GB of
main memory per node [144].

As illustrated in Figure 5.8, this facility has: (a) two transverse rows with 48
racks hosting the 3,456 Computing nodes; (b) one rack for Computing nodes with
IBM POWER9 and ARMv8 64bit CPUs and Nvidia Volta and AMD Radeon Instinct
MI50 GPUs; (c) three racks for Storage nodes with General Parallel File System
(GPFS) and 14 PB capacity; (d) three Interconnection racks that accommodate the
fiber optic system for glsopa and Ethernet networks; (e) one rack with Management
nodes for handling the computing environment and equipped with Linux operating
system.

53

Figure 5.8: Cluster computing architecture of the MareNostrum 4 supercomputer.

5.2 Parallel HPC for MD Simulations
This section introduces parallel HPC techniques applied to molecular dynamics

simulations, emphasizing the potential of HPC systems. It outlines various paral-
lelization methods and tools used in molecular dynamics simulations. Specifically,
Sections 5.2.1 to 5.2.9 detail simulations utilizing the explicit solvent model, dis-
cussing techniques and computational optimizations for handling the large-scale
interactions between solvent molecules and proteins. In contrast, Sections 5.2.10
to 5.2.12 present simulations using the implicit solvent model, which simplifies the
computational burden by approximating solvent effects without explicitly modeling
individual solvent molecules. The shift between these approaches demonstrates
the varied computational strategies needed for different types of molecular dynam-
ics simulations. Hence, for the purpose of this document, we will refer to this type
of molecular simulation as HPC MD simulation or just HPC MD, interchangeably.
Similarly, we will reference the software used for executing this type of simulation
as a HPC MD tool, package or software, interchangeably.

5.2.1 Parallel MD Simulations on Summit using NAMD
Summit was an IBM-built cluster system located at Oak Ridge National Labo-

ratory (ORNL). Although not present in the Top500 List, Summit was previously
one of the world’s fastest supercomputers and played a prominent role in large-
scale molecular dynamics simulations. Summit was decommissioned on November
15, 2024. Summit contains 4,608 computing nodes, where, each node houses: (a)
two CPUs (POWER9) with 22 cores per CPU; and (b) six GPUs (Nvidia Tesla V100)
with 5,120 cores per GPU. The nodes are interconnected with a high-speed stan-
dard InfiniBand network (Mellanox dual-rail EDR interconnect). Figure 5.9 shows
Summit’s computing node.

The Summit supports the execution of HPC MD simulations through its plat-
form and diverse MD tools stack available, one of them being the NAMD MD pack-
age. HPC MD simulations using NAMD in this architecture were conducted for

54

Figure 5.9: Illustration of Summit computing node architecture. Image adapted
from [145].

the work presented in Acun et al. [7]. The overall configuration is shown in Fig-
ure 5.10.

In this case, Acun et al. introduced a set of algorithmic modifications and per-
formance improvements with the intention of allowing NAMD to make complete
use of the Summit architecture, while performing large-scale MD simulations. The
modifications targeted the CPU and GPU architectures present on the platform.

Among the optimizations of [7], the main one was made to the data layout in or-
der to boost GPU acceleration and CPU vectoring. This was applied to the expected
layout of NAMD C++ objects, or in other words, instead of the expected Array of
Structures (AOS) it used a Structure of Arrays (SOA) that is also found in the
POWER9 SIMD architecture. A direct consequence of this approach is that critical
data structures used during MD simulations were stored in consecutive memory
locations, which can be exploited by vectorization loops and GPU accelerators [7].

Other modifications introduced by Acun et al. include (a) increased efficiency of
calculations made only in GPU (offload); (b) addition of support for the IBM Par-
allel Active Message Interface (PAMI) interface, in order to increase performance
with native code for low-level communication within the Summit platform; (c) opti-
mization of long-distance electrostatic force calculations; (d) changes in the bonded
forces calculation routine (bonded) to improve load balancing; (e) enabling CPU
vectoring for new routines included in NAMD; and (f) the proposal of an alterna-
tive method for the Langevin thermostatic calculation used in NAMD, through the
implementation of a different thermostatic algorithm, known as stochastic velocity
rescaling [7].

The largest simulated atomic system had 224 million atoms, using an explicit
solvent model in a MD simulation box with dimensions 7 x 6 x 5 and a time step of
2 fs. The parallel execution demanded 1,025 compute nodes with a total of 45,056

55

Figure 5.10: Illustration of Summit architecture in which HPC molecular dynamics
simulations were performed. Image adapted from [7].

CPU cores and 31,457,280 GPU cores, achieving a routine of 32 ns of simulated
time per day of uninterrupted parallel execution.

5.2.2 GROMACS Parallel MD Simulations on TianHe-2
Peng et al. [8] presented a parallel framework based on a HPC MD simula-

tion software, called GROningen MAchine for Chemical Simulations (GROMACS)
[23], for running MD simulation on TianHe-2 supercomputer (10th place in Table
5.1). Figure 5.11 depicts the TianHe-2A cluster architecture: (a) shows the logical
structure of the computational node; and (b) brings the dedicated network topology,
respectively [131, 146].

TianHe-2 first iteration had 16,000 computing nodes, each of them built with
two Intel CPUs + three Intel Xeon Phi KNC, using a interconnection with 10 Gbps,
1.6 PB of main memory and 12.4 PB of storage at 512 GB/s. For the second it-
eration, called TianHe-2A, it has 17,702 compute nodes, with each node with two
12-core Intel Ivy Bridge CPUs and two 128-core Matrix-2000 accelerator, using a
14 Gbps interconnection, 3.4 PB of main memory and 19 PB of storage as 1 TB/s.
This combination results in a compute system with 35,584 Ivy Bridge CPUs, 35,584
Matrix-2000 accelerators, and a total of 4,981,760 compute cores [131].

GROMACS implements a parallel execution strategy of the generic MD Algo-
rithm 1, showed in Section 4.1.1. Thus, the framework of [8] explores the archi-
tecture of the CPU chips available on each computational nodes of the TianHe-
2A. This solution aims the CPU cores and the accelerator cores with the Many
Integrated Core (MIC) architecture, in order to reduce the execution time of MD
simulations in large-scale runs on this HPC platform. Figure 5.12 shows the rela-
tionship among the operational steps needed to execute the strategy of [8].

Paper [8] presented a HPC MD technique that included a three-mode operation
in order to accelerate the GROMACS MD execution, while taking advantage of

56

Figure 5.11: Simplified illustration of TianHe-2A Cluster architecture: (a) architec-
ture of one heterogenous computing node, and (b) organization of the TH Express-2
network architecture and topology. Image adapted from [131, 146].

Figure 5.12: Illustration shows the three steps of the CPU/Many Integrated Core
(MIC) collaborated parallel framework for accelerating GROMACS MD execution
on TianHe-2 computational node. Image adapted from [8].

Tianhe-2A computational node architecture: (1) one mode called offload, running
only on the MIC Intel Phi cores, responsible for calculating the non-bonded forces,
and thus decreasing the CPU load; (2) one CPU/MIC collaboration mode, which
uses a new data stream to avoid the overhead during the synchronization between
CPU and MIC; and (3) one method with multiple nodes, called multi-node, which

57

connects both methods used in (1) and (2) to achieve better scalability.
Using the offload mode and CPU/MIC collaboration mode methods, the largest

simulated atomic system was composed of 300,000 atoms, running on a compute
node with 24 CPU cores and 513 MIC cores. And, using the multi-node method,
the largest atomic system simulated was composed of 100,000 atoms, running on 4
compute nodes with a total of 96 CPU cores and 2,052 MIC cores.

5.2.3 Accelerating MD with LAMMPS on Sunway TaihuLight
Sunway TaihuLight holds the 7th place in Table 5.1 as a MPP system based on

the SW26010 processor chip. Each processor is comprised of 4 Management Pro-
cessing Element (MPE), 4 Computing Processing Element (CPE) (a total of 260
cores), 4 Memory Controller (MC), and a Network on Chip (NoC) connected to
the System Interface (SI). Each MPE, CPE, and MC have access to 8GB of DDR3
SDRAM. The total system has 40,960 nodes for a total of 10,649,600 cores and 1.31
PB of memory [147]. Figure 5.13 shows the basic configuration of a compute node.

Figure 5.13: Illustration shows the basic compute node layout of the Sunway Tai-
huLight. Image adapted from [147].

Duan et al. [9] presented a set of optimization techniques to reduce the exe-
cution time of MD simulations in the Sunway TaihuLight supercomputer. These
techniques deal with memory constraints identified in the many-core architecture
of the SW26010 processor, for instance, low memory bandwidth, lack of a memory
hierarchy and lack of SIMD instructions in the CPEs available [9].

Using HPC MD software, specifically Large-scale Atomic/Molecular Massively
Parallel Simulator (LAMMPS) [148], and leveraging its methods for incorporating
Lennard-Jones (L-J) and Tersoff potentials in short-range interaction calculations,
[9] introduced a set of optimizations for performing n-body computations via a non-
regular memory access method.

This way, Duan et al. introduced in his work: (1) a strategy for dealing with
memory updates while computing three-body interactions; (2) a method for im-
proving memory bandwidth usage by applying a software cache; (3) a custom set of
math functions implemented to avoid the need for searches in lookup tables; and
(4) a vectoring method to take advantage of the 256-bit SIMD vector registers and
use them to improve the calculation of forces in pairs by calculating, in one pass,
the forces between an atom and four of its interacting atoms (Figure 5.14).

58

Figure 5.14: Illustration shows vectorization for the inter j-atom: using SIMD in-
structions, four operations can be executed at once, while running LAMMPS MD
simulations on Sunway TaihuLight supercomputer architecture. Image adapted
from [9].

During the experiments, these heuristics were applied in MD simulations of
large atomic systems: (i) the largest system used was composed of approximately
275 billion atoms; (ii) the calculations were distributed among 16,384 computa-
tional nodes and reached a total of 4,194,304 CPU cores, which culminated in the
Sunway achieving a peak performance of 2.43 PFLOPS.

5.2.4 High-Throughput MD on BlueGene/Q with LAMMPS
Malakar et al. exploited the high throughput of three supercomputers to re-

duce the overall running time of the simultaneous MD simulation and analysis
workflow for large-scale atomic systems [10]. HPC MD simulations were config-
ured for running with a time step of 4.0 fs and were conducted with simultaneous
parallel execution and data analysis on three HPC MPP-platform supercomput-
ers: Mira Blue Gene/Q, Theta and Cori (Table 5.2). Both Cori and Theta use an
Aries interconnect, while Mira uses a 5D torus interconnect. Cori and Theta have
622,336 and 280,320 CPU cores, respectively, based on the Cray MPP architec-
ture (Cray XC40) using the Intel Xeon Phi processor family; both with 14,01 and
6,92 PFLOPS Mira is a IBM-based MPP system with a total of 786,432 CPU cores,
where each compute node is based on the Blue Gene/Q system Power BQC 16C
processor chip depicted on Figure 5.15. By the time of [10] publication, Cori, Theta
and Mira held the 12th, 24th and 21th places in the Top500 list, respectively.

Table 5.2: Supercomputers used for HPC MD: Cori, Theta and Mira [10].

Name System Model # Cores Rmax Architecture
(CPU) (PFLOPS)

Cori Cray XC40 622,336 14,01 MPP
Theta Cray XC40 280,320 6,92 MPP
Mira Blue Gene/Q 786,432 8,58 MPP

59

For the experiments performed in [10], it is worth noting that each HPC MD
simulation and MD data analysis were performed in the same application, which
are submitted in the same job, taking the name of spaced-share co-analysis. How-
ever, simulation and MD analysis are performed in 2 (two) different parallel MPI
processes, called partitions, with data being transferred from the MD simulation
partition to the MD analysis. Malakar et al. [10] chose the LAMMPS software
[148] for the experiments with simultaneous parallel simulation and analysis.

Figure 5.15: Illustration of the Blue Gene/Q Compute (BQC) chip die, used in the
Mira Supercomputer. It shows a large Level-2 (L2) cache in the center of the chip,
surrounded by 18 CPU units based on the PowerPC A2 CPU core. Memory con-
trollers are integrated on the left and right sides, and, at the bottom, the Chip-to-
Chip communication (network) logic Image adapted from [149].

First, the LAMMPS source code was modified for allowing different execution
flows and improve the synchronization process between the MD simulation and
analysis partitions. Second, considering the growing presence of the multicore ar-
chitecture in computational nodes of its contemporary supercomputers, it was pro-
posed to separate/reserve some CPU cores in each computational node in order to
run the analysis in parallel and leaving the rest of the CPU cores available in each
node for the intensive computation of the HPC MD simulation (Section 4.2).

Using an empirically determined ratio to choose the number of cores reserved
for both analysis and MD simulation partitions, Malakar et al. [10] presented four
process mapping heuristics for targeting different embedded interconnections and
NUMA domains within a HPC computational node [10]. Third, a method called
Mixed Integer Linear Program (MILP) was introduced for obtaining an "optimal"
decomposition of processes for mapping both MD simulation and data analysis pro-
cesses onto the interconnects available within the CPUs, depicted on Figure 5.16.

For the tests performed on the Mira Blue Gene/Q and Cori supercomputers, the
largest simulated atomic system had 51 million atoms with calculations distributed
among 128 computational nodes, which means that 2048 CPU cores were used in
Mira and 4,096 cores in Cori. And, for the simulations carried out on the Theta

60

Figure 5.16: Illustration shows the process decomposition map for a 4 x 4 x 3 grid
on 4 nodes with 12 CPU cores each. Image adapted from [10].

system, the largest atomic system was composed of 220 million atoms and the MD
parallel execution was performed on 512 computational nodes, that is, 33,768 CPU
cores.

5.2.5 GENESIS for Parallel MD on Fugaku Supercomputer
Fugaku supercomputer is the 2nd place in the Top500 list. It was designed

and built by Fujitsu and RIKEN, following the legacy of its predecessor, the K
Computer. The system is installed at the RIKEN Center for Computational Science
(R-CCS) in Kobe, Japan, and it has a total of 158,976 nodes. Figure 5.17 shows
Fugaku’s system configuration and Table 5.3 presents a breakdown of Fugaku’s
system characteristics.

Figure 5.17: Illustration of Fugaku system configuration. Image adapted from
[150].

Each computational node is equipped with 1 A64FX CPU (Figure 5.18), which
is a many-core Advanced RISC Machine (ARM) CPU with 48 compute cores and
2 or 4 assistant cores used by the operating system. It uses a core design with
the ARM V8, 64-bit ARM ecosystem, a Tofu-D interconnect and PCIe Gen3 x16
external connections. Instead of a GPU accelerator, it has the SVE 512-bit x 2
vector extensions. The on-package main memory is a 2nd generation High Band-
width Memory (HBM2) with 31 GiB, capable of streaming memory, strided, and
gather-scatter accesses.

The work present by Jung et al. in [11] and [124] showed the results for exe-
cuting HPC MD simulations on the Fugaku supercomputer using a MD software
called GENESIS. In [11], a molecular system with 1.6 billion atoms was simulated

61

Table 5.3: Fugaku System Characteristics [150].

Unit # of Nodes Description

CMU 2 CPU Memory Unit: 2x CPU
BoB 16 Bunch of Blades: 8x CMU
Shelf 48 3x BoB

Full Rack 384 8x Shelf
Half Rack 192 4x Shelf

System 158,976 As a Fugaku system

through a performance of 8.30 ns/day, using 16,384 nodes of Fugaku. Further-
more, [124] extended this work by performing a 57.72 ns/day MD simulation of a
1.5 million-atom molecular system. In both cases, the simulations were executed
on 16,384 computing nodes of Fugaku.

Figure 5.18: Illustration of Fugaku’s node CPU: A64FX. Image adapted from [150].

GENESIS was designed for extreme-scale MD simulations on HPC platforms
using parallelization and enhanced sampling methods aiming molecular system
with million to a billion atoms. The source code is written in Fortran and the
software is released to the community under the LGPLv3 license. For the paral-
lelization method, GENESIS includes (i) an algorithm for calculating real-space
non-bonded interactions, optimized to maximize performance on ARM CPU ar-
chitecture; (ii) non-bonded interactions in reciprocal space optimized to minimize
communication overhead (iii) evaluations of temperature and pressure which al-
lows MD simulations with larger time steps; (iv) parallel file inputs/outputs (I/O)
for MD simulations of extremely huge systems. It also applies a domain decompo-
sition of the simulation space by dividing it into subdomains, and each subdomain
into cells. Interactions between particles in different subdomains are computed
based on a technique named midpoint cell. Each MPI process (P) has the data of
the corresponding subdomain Dp and its margin Bp. Figure 5.19 depicts a 2D ex-
ample using 16 MPI processes for calculating the long-range atomic interactions in

62

the MD simulation through running a parallel Fast Fourier Transformation (FFT)
algorithm method considering its real and reciprocal spaces.

Figure 5.19: Illustration of Genesis domain decomposition method, using a 2D grid
for 16 processes. First left grid refers to the real-space and the second left refers to
reciprocal-space. Image adapted from [11].

For the real space, process P = 7 has the data of 4 (four) cells in subdomain D7

(inner square colored in red) and its adjacent cells, B7 (square from C9 to C16 colored
in blue). The charge grid data in D̃7 is obtained from the charge data of atoms in D7

and B7. MPI_alltoall communications among four subdomains are done to obtain
the global data for FFT direction. For the reciprocal-space interaction, the FFT cal-
culations are perform using two methods: one for calculating the FFT in a forward
and backward fashion using five 1D MPI_alltoall routines; and another that uses
two 1D MPI_alltoall and one 2D MPI_alltoall routines, which offers less frequent
MPI_alltoall calls, however it could involve a much larger number of processes.

For more details about algorithms and techniques implemented on GENESIS
for executing MD simulations on HPC system Fugaku, refer to [11, 124].

5.2.6 Anton’s Custom Hardware for Large-Scale MD Simula-
tions

Anton is a special-purpose supercomputer built for increasing speed and scale of
HPC MD simulations related to basic scientific research, protein folding and drug
design. Anton basic platform uses a MPP architecture around specialized chips
with an integrated 3D torus network (Figure 5.20a), aligned with a co-designed
methodology for hardware, software and algorithms [12].

Figure 5.20b illustrates Anton’s chip layout, designed to optimize computation
and communication routines. The chip features Core Tiles and Edge Tiles. In the
center, there is an array of 24 columns and 12 rows of Core Tiles, dedicated to
perform MD computations using specialized pipelines and general-purpose CPUs.
On the left and right sides of this array, there is a column of Edge Tiles arranged
for handling communication between the Core Tiles and the inter-chip 3D torus
network through a off-chip high-speed serial links. The chip has 96 off-chip serial
lanes (SERDES transmit/receive pairs), each operating at 29 Gbps in both direc-
tions, providing a total bandwidth of 5.6 Tbps [12].

The components of the Core Tile are illustrated in Figure 5.20c. The Core
Router facilitates networking by connecting the computing blocks within the tile
to a network-on-chip. Two specialized buses traverse the tile, transporting atom

63

Figure 5.20: Illustration representing Anton 3 system elements: (a) Inter-Chip 3D
torus network; (b) Tiled Chip layout with Core Tiles in purple and Edge Tiles in
yellow; (c) Core Tile block diagram; and (d) Edge Tile block diagram.
Image adapted from [12].

positions and forces to and from the Pairwise Point Interaction Modules (PPIM),
one for positions and another for forces. Each PPIM is equipped with dedicated
pipelines for computing non-bonded interactions, while a specialized Bond Calcu-
lator (BC) manages the calculation of bonded forces. Additionally, two Geometry
Core (GC) units and 128 KiB of Flex SRAM memory handle all time-step process-
ing tasks not performed by the Bond Calculator (BC) or PPIM. The Geometry Core
(GC)’s micro-architecture is optimized for 3D geometry and MD computations [12].

Figure 5.20d illustrates the Edge Tiles, which house the logic for off-chip links,
called Channels. For each Channel connects to one of the chip’s six neighboring
nodes in the 3D torus via a set of SERDES. Each Channel is also connected to an
Edge Router, which, along with other Edge Tiles on the same side of the die, forms
an Edge Network that allows traffic to transition across dimensions in the inter-
chip 3D torus network. Additionally, the Edge Router is linked to the Core Tile’s
2D mesh network for traffic injection and ejection. Finally, the Interaction Control
Blocks (ICBs) connect the Edge Router to the Force and Position Buses, which run
throughout the Core Tile array [12]

In the Anton system, each chip is connected to a low-power host processor that
provides node control, management, and two external interfaces for data I/O. An-
ton holds 128 nodes organized as four backplanes with 32 node boards each. Mul-
tiple backplane designs allow different torus configurations, starting with 8 nodes
with a 2×2×2 configuration reaching to 512 nodes if using a 8×8×8 configuration
[12].

For the HPC MD simulation, Anton’s parallel execution of the Algorithm 1 oper-
ates as follows: (a) the molecular system’s 3D space is partitioned into contiguous
boxes, with each box allocated to a node such that neighboring boxes are assigned
to adjacent nodes in the system’s torus topology (Figure 5.20a); (b) each computing
node calculates the forces between atoms within its designated box, known as the
Home Box; (c) atom coordinates are transmitted to other nodes that require them
to compute forces between atoms residing in different boxes; (d) finally, the result-
ing force data is returned to the original node, where it integrates the forces and
updates the atom coordinates before initiating the next simulation time step.

Among the results presented in [12], Anton 3 successfully simulated the folding
process of a small benchmark protein, DHFR, consisting of 24,000 atoms, using 64

64

compute nodes and achieving a simulation rate of 212µs/day. For a larger system,
Anton 3 required approximately 5 hours to simulate a ribosome composed of 2.2
million atoms, using 512 compute nodes and achieving a simulation performance
of 20µs of simulated time per day.

5.2.7 Integrating Machine Learning with OpenMM for MD
on Summit

In [13], Lee et al. introduced DeepDriveMD, an agent-based, parallel deep
learning framework designed to accelerate protein folding MD simulations. Deep-
DriveMD leverages a Convolutional Variational Encoder (CVAE) to learn features
in an unsupervised manner while enabling the simultaneous execution of numer-
ous simulations within its framework.

In this approach, Lee et al. incorporated a computational motif into the gen-
eralized workflow of enhanced sampling MD simulations for protein folding. This
workflow can be structured into four steps, as outlined in Figure 5.21.

Figure 5.21: Illustration representing a DeepDriveMD’s computational workflow in
order to couple HPC MD simulations with its Machine Learning approach. Image
adapted from [13].

In the first step (1), multiple MD simulations are run in parallel to generate a
large set of MD data, which is then used as input for the second step (2). Here,
a Machine Learning (ML) algorithm is responsible for the training phase of the
CVAE model. In the third step (3), the CVAE performs an inference process to
identify new starting points (i.e., conformations) for MD simulations. Finally, in
the last step (4), new MD simulations are launched using the identified starting
points to expand the initial simulations.

To deploy this workflow on the Summit supercomputer, Lee et al. used a modern
HPC tool to manage the heterogeneous computational tasks (both MD and ML)
in the DeepDriveMD framework. According to Lee et al., both MD simulations
and ML tasks were accelerated using GPUs: the former using a HPC molecular
dynamics toolkit called OpenMM [103], and the latter with a VAE framework based
on Keras/TensorFlow. Figure 5.22 shows the heterogeneous tasks in green boxes.
Items 1 and 2 handle the processes that manage task execution, while items 3, 4,

65

and 5 are responsible for creating and deploying the computational tasks (MD or
ML).

Figure 5.22: Illustration representing the deployment of the DeepDriveMD work-
flow on Summit supercomputer. Image adapted from [13].

The largest simulation was performed on the fast-folding variant of the villin
headpiece protein (VHP), consisting of 35 amino acids, using an explicit solvent
model. The simulation spanned 0.9 µs, but within this time frame, the native
3D structure did not form. The simulation used up to 140 nodes of the Summit
supercomputer

5.2.8 GaMD-Accelerated Simulations on Gordon
The Gordon supercomputer uses a cluster architecture and has a theoretical

peak of 341 TFlop/s. It is hosted at the San Diego Supercomputer Center (SDSC)
in the United States. Figure 5.23 illustrates its overall architecture.

It comprises of 1024 compute nodes and 64 I/O nodes. Each compute node con-
tains two Intel EM64T Xeon E5 (Sandy Bridge) CPUs with 8 cores, 2.6 GHz and
64 GB of memory (DDR3). Each I/O node consists of two CPUs Intel X5650 (West-
mere) with 6 cores, 2.67 GHz, 48 GB memory (DDR3) and sixteen Intel 710 SSDs
with 300 GB per unit (4.4 TB total) [151]. The system is interconnected via network
topology of 4x4x4 dual 3D torus (Figure 5.23a), with adjacent switches connected
by three 4x QDR InfiniBand links with 120 Gb/s. Each switch conects 16 compute
nodes (Figure 5.23b) with one I/O node throught a 4x QDR with 40 Gb/s [151].

Pang et al. [14] integrated a method called Gaussian accelerated Molecular
Dynamics (GaMD), described in [152], into NAMD with the goal of reducing the
execution time of protein folding simulations. GaMD applies a harmonic boost po-
tential to smooth the potential energy surface, thereby accelerating conformational
transitions and ligand binding.

66

Figure 5.23: Illustration representing Gordon Custer architecture. (a) 3D torus
topology of switches; (b) network architecture with I/O nodes, Lustre Filesystem
and subracks (Rail 0 and Rail 1) for the I/O compute nodes. Image adapted from
[151].

The NAMD code was modified to incorporate three new modes of operation
when using GaMD: (a) in mode one, only the dihedral potential term from Equa-
tion 4.3 is boosted; (b) in mode two, only the total potential energy term is boosted;
(c) in mode three, both the dihedral and total potential energy terms are boosted.

Using the dual-boost mode (mode three), Pang et al. [14] successfully simulated
the folding of the chignolin mini-protein, consisting of 1,912 atoms, along with 630
solvent (water) molecules. A 2 fs time step was employed, and the simulations ran
on the Gordon supercomputer using up to 640 CPU cores, achieving a simulation
rate of 61 ns/day.

5.2.9 Real-Time MD Analysis on Cori using NAMD
As mentioned in Section 5.2.4, Cori is a supercomputer built with MPP archi-

tecture (Cray XC40). Figure 5.24 illustrates Cori’s overall architecture, network
and storage. It contains 9,688 Intel Xeon Phi and 2,388 Intel Haswell processors,
amounting to 622,336 cores in the computing nodes interconected with a Aries
High-Speed network, achieving a peak computational performance of 27 Pflop/s.
For the storage it consists of a Lustre file system comprised of almost 10,000 disks
organized as 248 Lustre Object Storage Targets (OST). Each OST is configured
with GridRAID and has a corresponding Object Storage Server (OSS) for handling
I/O requests. The total size of the file system is close to 30 PB with a peak I/O
bandwidth of 744 GB/s.

Using this HPC platform, Taufer et al. [15] proposed a strategy to tackle protein
folding with simultaneous MD simulation and analysis by evaluating the impact
of dropping frames (snapshots of 3D configurations) in the accuracy of the result.
As long as the frames are generated by the simulation task, they are sent to the
analysis task using a Remote Direct Memory Access (RDMA) framework.

67

Figure 5.24: Illustration representing Cori system architecture. Image adapted
from [153].

Figure 5.25 shows the workflow introduced in [15] based on a producer-consumer
pattern with the producer being the Data Generator and the consumer responsible
for the Data Analytics. It works as follows: for the data generation, MD simula-
tions are executed by a HPC MD tool which produces fames at regular intervals,
called strides. [15] chose NAMD as the software to perform the MD simulations.
Then, a tool called Plumed was used to read each frame from the MD simulation
and transfer to a shared memory area, called DataSpaces, through a software mod-
ule called Ingestor. Here, DataSpaces works like a RDMA serving as a memory-
to-memory framework for a Data Transport Layer (DTL). For the data analytics,
a retriver module passes each frame from the DataSpaces to the modules respon-
sible for the actual analysis, using collective variables (CVs) and A4MD analytics
algorithms. For more details, see [15].

Figure 5.25: Illustration representing the workflow scheme for integrating a HPC
MD simulation with a MD analytics with DataSpaces. Image adapted from [15].

For evaluating metrics of interest, such as lost frames and idle times of the
analysis, or time spent while waiting for a I/O response, Taufer et al. devised two
workflows for execution and data collection, called In Situ and In transit work-
flows, shown on Figures 5.26a and 5.26b, respectively. For the In Situ workflow (a),

68

both execution and analysis are perform in the same computing node of the Cori
supercomputer, which DataSpaces server works as a manager of a shared region
of the main memory. For the In transit workflow, the MD simulation is executed
on a separate computing node from the one responsible for managing DataSpaces
server and the Analytics module.

Figure 5.26: Illustration representing the integrated analytic workflows on Cori
supercomputer nodes using DataSpaces, that is: (a) in situ workflow with MD sim-
ulaton and analytics performed in a single node; and (b) in transit workflow with
MD simulation and analytics performed in different nodes. Image adapted from
[15].

The authors also proposed a model to predict which frames are lost in a given
MD trajectory and with it tried to reduce the I/O waiting time by dropping specific
frames that were predicted to have low impact on the accuracy of the folding states.
For the MD simulations, 32-core nodes of Cori were used and the protein studied
was 1BDD, with 478 atoms.

5.2.10 Adaptive-Resolution Parallel Particle Mesh for MD
In [16], Awile et al. ran HPC molecular dynamics simulations using a custom

Fortran 90 implementation of Adaptive-Resolution (AR) neighbor lists, integrated
into the Parallel Particle Mesh (PPM) library. The benchmarks were performed
on a 2.8 GHz Intel Xeon E5462 CPU using the Intel Fortran compiler version 12.0
with the -O3 optimization flag. This hardware configuration was used to evaluate
the efficiency of AR cell lists against conventional cell lists, specifically in handling
varying cutoff radii in particle simulations.

Awile et al. core contribution is an AR cell list algorithm, which is based on the
domain decomposition depicted in Figure 5.27. The AR cell list algorithm handles
particle interactions in simulations with varying interaction cutoff radii. Instead of
using uniform cells, the domain is subdivided into smaller or larger cells consider-
ing the particle local cutoff radii. This is done using a hierarchical tree structure,
where particles with smaller cutoff radii are placed in finer cells and those with
larger radii are placed in coarser cells. By adjusting the cell sizes to the particle
interaction ranges, the algorithm reduces the number of unnecessary particle-pair
checks, improving computational efficiency.

69

Figure 5.27: Illustration representing domain decomposition used in the AR cell
list algorithm. Blue area representing halo layers with ghost particles. Image
adapted from [16].

For the computational domain, it is decomposed into cuboidal subdomains, with
each subdomain extended by halo layers (blue area) containing ghost particles. In
Domain D, black dots represent real particles from the adjacent subdomains. This
setup enables transparent implementation of boundary conditions and parallelism.
The algorithm allows access to interaction partners even when the interaction cut-
off radius varies spatially. This use of AR cell lists enables the construction of
Verlet lists and more efficient particle interaction computations.

The results presented in [16] show AR cell list algorithm with better perfor-
mance than conventional cell lists, especially as the number of atoms increases.
The study benchmarks the algorithm over a range of particle distributions and
resolution spans, with AR cell lists results showing increasingly efficient as the
ratio between the largest and smallest interaction cutoffs grows. For large-scale
simulations, where particle cutoff radii span several orders of magnitude, the AR
cell list method handled up to 1,000,000 particles with varying cutoff radii, deliv-
ering a runtime improvements of nearly three orders of magnitude compared to
conventional approaches.

5.2.11 Parallel Non-Bonded Force Computations with mdcore

In [17], Gonnet introduced a different variation of the Verlet list algorithm for
speeding up the computation of non-bonded force interactions between atoms in
molecular dynamics simulations: Pairwise Verlet list and Pseudo Verlet list. Basi-
cally, a Verlet list is a list of interacting atoms for a given domain (space).

MD simulations performed [17] and [18] used the mdcore library, which sup-
ports shared-memory parallel MD. The simulations were conducted on a 4x quad-
core 2.5 GHz AMD Opteron 8380 node from the ETH Zürich Brutus Cluster. Single
precision was used for particle positions, velocities, and forces to enhance memory
efficiency and optimize SIMD parallelization.

The parallel implementation of the Pairwise Verlet lists, as depicted in Fig-
ure 5.28, works by dividing the computational domain into cells and creating pair-
wise Verlet lists for each pair of neighboring cells. In a shared-memory parallel sys-
tem, multiple threads operate on these cell pairs independently, with each thread

70

selecting a pair of cells to compute particle interactions. To avoid concurrency is-
sues, when one thread is processing a pair of cells, those cells are marked as "in
use" preventing other threads from accessing them until the interaction computa-
tion is complete.

Figure 5.28: Illustration representing parallel execution of the pairwise Verlet list
with two threads, using HPC MD mdcore tool. Image adapted from [17].

For thread0 in Figure 5.28, processing the cell pair (1, 2), both cells are marked
as being in use (dark shading). Consequently, any other thread, such as thread1,
is prevented from selecting any cell pairs that involve either of these cells (light
shading). For example, thread1 would then choose a different pair, such as (3, 6), to
avoid conflicts

This approach simplifies parallelization by focusing on cell pairs rather than
individual particles, reducing the need for fine-grained data locking. Threads con-
tinuously check for available cell pairs that are not in use, process them, and then
mark the cells as available again. This design ensures efficient load balancing
and minimizes memory access conflicts, improving both cache locality and overall
parallel efficiency.

The study tested the pairwise Verlet lists method on simulations of bulk water
and liquid argon with implicit solvent, varying particle densities and interaction
cutoff radii. The results showed that for high-density systems, such as bulk wa-
ter, the pairwise Verlet lists achieved up to 27% faster performance on a single
core compared to traditional Verlet lists, and maintained parallel efficiency as the
number of processor cores increased.

The work present in [18], introduced pseudo-Verlet lists, a more compact and
memory-efficient alternative to traditional and pairwise Verlet lists. As shown in
Figure 5.29 particles within neighboring cells are sorted along the axis joining the
cell centers. The left and right cells are sorted in descending and ascending order,
respectively, which optimizes interaction calculations by limiting the search space
for particle interactions to particles within the cutoff distance along this axis. This
significantly reduces memory use and improves cache performance, especially on
multi-core systems.

71

Figure 5.29: Illustration representing the algorithm for computing interactions be-
tween particles in two neighboring cells. Particles in the left cell are sorted in de-
scending order, while particles in the right cell are sorted in ascending order along
the axis connecting the cell centers. The algorithm efficiently computes interac-
tions between particles in the left cell and those in the right cell that fall within
the defined cutoff distance along this axis. Image adapted from [17].

The parallel algorithm divides the simulation space into cells, with each cell
containing particles. Interactions are computed between neighboring cell pairs,
with each pair assigned to a single thread at a time to avoid conflicts. Particles in
each pair of cells are sorted along the axis between the cell centers to reduce un-
necessary calculations by only considering particles within the interaction range.
Self-interactions within a cell are handled directly with a simple double loop, elim-
inating the need for a Verlet list in these cases.

Tasks are dynamically distributed across available processors, with each thread
selecting a cell pair that is not in use. After computing the interactions for that
pair, the cells are marked as available for other threads. This dynamic task allo-
cation ensures efficient load balancing and minimizes idle time, allowing the algo-
rithm to scale well across multiple processors.

The results in [18] demonstrate that pseudo-Verlet lists reduce memory usage
relative to traditional Verlet lists, with the effectiveness dependent on system den-
sity. The compact structure of the pseudo-Verlet lists enables simulations to scale
efficiently with an increasing number of cores. For instance, the largest system
simulated with pseudo-Verlet lists comprised 92,224 atoms, utilizing 384 domain-
decomposed cells in an 8x8x6 grid configuration and a 2.5 fs time step.

5.2.12 Coarse-Grained MD with UNRES on Tryton Cluster
In [19], Sieradzan et al. presented the optimization of the UNited RESidue (UN-

RES) package for CG MD simulations, designed to treat large proteins. The perfor-
mance tests were conducted on the Tryton Linux Cluster, containing Intel Xeon E5

72

processors (Haswell architecture) with 12 cores and 128/256 GB RAM per server.
Parallelization was achieved through a hybrid MPI and OpenMP Open Multi-
Processing (OpenMP) model, leveraging both distributed memory and shared mem-
ory to optimize scalability. The software was compiled with Intel Parallel Studio
XE, and profiling tools such as Intel VTune were used to eliminate bottlenecks in
the code.

Interaction lists were used to optimize computational efficiency in CG MD simu-
lations by limiting the number of interactions that need to be calculated. It reduces
the number of computations needed by only evaluating interactions between par-
ticles (e.g., amino-acid residues) that are within a predefined cut-off distance. This
list is constructed using a combination of the Verlet neighbor list and cell index
methods, allowing efficient management of particle pairs that must be evaluated
during simulations.

The implicit solvent model used for simulations was the Generalized Born Sur-
face Area (GBSA) model. This model was applied during the calculations with the
AMBER package, using a 25 Å cut-off for all long-range interactions, including elec-
trostatics. This setup was employed to simulate large protein systems efficiently
while accounting for solvent effects implicitly, thus avoiding the explicit modeling
of water molecules.

The construction and management of these interaction lists are highly paral-
lelized. The parallelization is performed using both MPI (Message Passing Inter-
face) and OpenMP in a two-grain parallelization scheme as depicted in Figure 5.30.

Figure 5.30: Illustration representing UNRES parallelization scheme. Part (A)
illustrates the overall structure, highlighting MPI-level parallelization with CG
tasks spanning Fine-Grained (FG) tasks, where CG tasks handle MD trajectory
or energy evaluations. The master CG process coordinates tasks, and each FG
task involves energy and energy-gradient evaluation. Part (B) shows how particle
interactions are grouped and assigned to FG tasks to maintain load balance, with
further divisions into threads. Image adapted from [19].

This approach divides tasks into CG and FG levels, where CG tasks handle
independent MD trajectories, and FG tasks are responsible for computing energy
and forces within each trajectory. At the CG level, MPI is used for handling mul-
tiple tasks in a multi-trajectory run, where each CG task corresponds to an inde-

73

pendent MD trajectory. Each CG task is assigned a dedicated MPI process, and
synchronization occurs only at specific intervals during replica-exchange or after
completing a full run. The FG level involves further division of these CG tasks
into smaller FG tasks, which also use MPI to manage communication between
processes responsible for evaluating energy and forces in the simulations. This
two-level structure improves scalability, allowing multiple MD trajectories to be
processed simultaneously across distributed computing environments.

Additionally, the implementation utilizes OpenMP threads for shared-memory
parallelism within each FG task intended to minimize communication overhead in
the energy and force evaluation steps, as well as when calculating energy-gradient
components, for being memory intensive. OpenMP threads operate on a shared
memory architecture, with each thread handling its own local copy of the relevant
data to avoid synchronization penalties.

The best result using a implicit solvent model was achieved using the 5Y6P
protein, which contains 153,243 residues and 2,283,236 atoms. The simulation
was performed with a time step of 5.0 fs for folding simulations.

5.3 Comparative Analysis
This section presents a recapitulation of the results obtained by the HPC MD

techniques described in the previous section, as they are organized and displayed
on Table 5.4. The data from this table are arranged in columns as follows: (a) a
column named Paper casting the referenced paper of the original publication; (b)
Contribution column with a short description of the paper main contribution; (c)
atoms column with the number of atoms of the simulated molecular system; (d)
cores, representing the number of CPU, GPU or Application-Specific Integrated
Circuit (ASIC) cores used in the referred simulation; (e) Solvent, casting the sol-
vation model used in the paper; (f) NAMD indicating whether the corresponding
technique used the NAMD software as the main MD tool for performing its simula-
tions; (g) PF indicating whether the referenced technique were applied for protein
folding simulation; and (h) AG showing whether the method used some adaptive
grid strategy for performing is MD simulation.

Starting with Paper [7], the main contribution refers to a new data layout for
boosting GPU acceleration and CPU vectoring in HPC MD simulation. The largest
molecular system simulated was composed of 224,000,000 atoms and executing
this simulation took 31,043,008 cores while using NAMD. However, in this case,
the target simulation was not a protein folding process.

In [8], the main contribution was a three-mode operation, including a CPU+
IntelPhi mode for accelerating the GROMACS execution of MD simulations in the
Tianhe-2A supercomputer, simulating a 300,000 molecular system behavior and
also achieving a total usage of 2,148 cores.

For Paper [9], its contribution is a software cache method for improving mem-
ory bandwidth usage while computing three-body interactions. In this case, the
HPC MD method were able to simulate a 275,000,000,000 atom molecular system
(the largest in the table) using the MD tool LAMMPS for parallel execution using

74

Paper Contribution #atoms #cores Solvent NAMD PF AG

[7] Data layout 224,000,000 31,043,008 Explicit Yes No No
[8] CPU+IntelPhi mode 300,000 2,148 Explicit No No No
[9] Software cache 275,000,000,000 4,194,304 Explicit No No No

[10] Task mapping 220,000,000 33,768 Explicit No No No
[11] Real/Reciprocal-space decomposition 1,600,000,000 16,384 nodes Explicit No No No
[12] Custom hardware 151,924 33,792 Explicit No Yes No
[13] Deep learning 359 140 nodes Explicit No Yes No
[14] Gaussian acceleration on NAMD 1,912 640 Explicit Yes Yes No
[15] I/O with RDMA 478 NP Explicit Yes Yes No
[16] AR cell list 1,000,000 NP Implicit No No No
[17] Pairwise Verlet lists NP 16 Implicit No No No
[18] Pseudo-Verlet lists 92,224 16 Implicit No No No
[19] UNRES interac. lists 2,283,236 48 Implicit No Yes No
Our Adaptive Grid & 5,714 256 Implicit Yes Yes Yes

Work NAMD with Atomic Burials

Table 5.4: Comparative table with state-of-the-art contributions in HPC MD. AG
means "Adaptive Grid" and NP means "Not Provided".

4,194,304 cores. For this experiment, the simulated process did not carried out
protein folding neither involved an adaptive grid solution.

Next, [10] showed as contribution a task mapping heuristic for executing MD
simulations on HPC systems, running different experiments on three supercom-
puters using the LAMMPS MD tool. Again, no protein folding process was simu-
lated nor adaptive grid method was mentioned in this paper. The largest simulated
system has 220,000,000 atoms and 33,768 CPU cores were used.

Paper [11] proposed a HPC technique based on a MD Real/Reciprocal-space de-
composition for large scale molecular systems, such as the testing system used with
1,600,000,000 atom (the second largest system in the table) that demanded a total
of 16,384 computing nodes for executing its MD simulation using the GENESIS
MD tool.

The next four papers [12–15] deal with MD simulation of protein folding, al-
though none of them indicated any adaptive grid heuristic in the solutions. Thus,
starting with [12], it brought the new version of a well-known custom hardware,
special-purpose supercomputer, called Anton, built with a specif purpose of run-
ning mainly MD simulations of protein folding. In this paper, Anton’s third iter-
ation was able to simulate the folding process of a protein system with 151,924
atoms, using 33,792 ASIC cores.

For the next two papers [13, 14], the main focus was the HPC MD simulation
general workflow, which means not only focusing on parallel execution of the MD
simulation, but improving the analysis of the obtained partial results. For the pa-
per [13], a Deep learning technique was presented for the analysis of intermediary
conformations and using them for orient the protein folding simulation. The main
experiment used a 359-atom protein and the MD simulation workflow took 140
nodes of the Summit supercomputer.

In [14] the main contribution was the introduction of a Gaussian acceleration
method into the NAMD tool with the intention of reduce the overall execution time
of MD simulations of protein folding. For testing this heuristic, a protein with 1,912

75

atoms and a total of 640 CPU cores were used in the Gordon supercomputer.
Next, the paper [15] built a strategy for performing simultaneous MD simula-

tions and analysis in a HPC environment, proposing analysis of bottlenecks and
contentions of using an I/O with a RDMA solution. The largest system used in this
scenario was a 478-atom protein and the MD simulations were executed using the
NAMD tool. The amount of cores used for executing the MD simulation were not
provided in the paper.

These previous approaches primarily focus on MD simulations with explicit sol-
vents, utilizing parallel techniques to reduce execution time and leveraging domain
decomposition algorithms (e.g., Large-scale Atomic/Molecular Massively Parallel
Simulator (LAMMPS) [9, 34]). Some methods even incorporate hybrid combina-
tions, such as force-domain decomposition in NAMD [7, 104]. In case of simula-
tions with implicit solvents, alternative techniques have been developed [16–19],
which also begin with domain decomposition, despite the resulting domains often
being non-uniformly populated with atoms [19, 34]. These methods implement
additional algorithms to optimize the calculation of interatomic forces to further
reduce computational costs.

Paper [16] proposes an Adaptive-Resolution (AR) cell-list algorithm for an ef-
ficient way to access potential neighbor particles for computing particle-particle
force interactions. This method was implemented using a library called PPM [154],
which allowed performing simulations using shared-memory techniques, with the
largest simulated system consisting of 1,000,000 particles.

Papers [17] and [18] introduce different variations of the Verlet list algorithm
for speeding up the computation of non-bonded force interactions between atoms
in MD simulations: Pairwise Verlet list and Pseudo Verlet list. Basically, a Verlet
list is a list of interacting atoms for a given domain (space) [18]. Both Pairwise and
Pseudo-Verlet lists were implemented using a shared-memory library for parallel
MD simulations, called mdcore. The MD simulations were executed on one node
with 4 quad-core AMD Opteron 8380. The largest simulated system using Pseudo
Verlet list consisted of 92,224 atoms, using 384 domain-decomposed cells in a grid
configuration of 8x8x6 and time-step of 2.5 fs.

Using CG protein models the time and scale of the MD simulation can be ex-
tended considerably [67, 155]. In this context, paper [19] proposes algorithmic
improvements for a package called UNRES which performs physics-based CG MD
simulations of proteins. Improvements added in [19] to optimize the computations
were the use of interaction lists and a selected cut-off distance to a achieve bet-
ter trade-off between computing cost and accuracy, typical for CG MD simulations
with implicit solvents. The largest simulated system with implicit solvent con-
sisted of 153,243 amino-acid residues (2,283,236 atoms in all-atom representation
with implicit solvent), for folding 5Y6P using a 5.0 fs time-step. Simulations were
conducted in a Intel Xeon Gold-6148 (2.4 GHz) processor with 4 MPI processes, 12
threads each.

Lastly, we included our work which introduces an adaptive grid technique using
Atomic Burial (AB) as contribution (see Part II of this Thesis) for performing HPC
MD simulations of protein folding, with the largest system simulated consisting of
a protein with 5,714 atoms and the usage of 256 CPU cores.

76

From Table 5.4, it can be seen that each work tackles a different aspect of the
MD simulation (column 2), aiming to accelerate it. It must be noted that, for pro-
tein folding simulations (column 7), the number of atoms is much smaller than the
classic MD simulations. The exception is [12], which uses custom hardware and
seeks the quaternary structure. Among the works that deal with protein folding,
our work deals with more atoms than the other three [13–15].

Considering the context brought to light in these previous Sections, to our knowl-
edge, there is no solution with a parallel execution of molecular dynamics simula-
tion which presents an adaptive parallel strategy and that incorporates the calcu-
lations of atomic burial, hydrogen bonds and annealing (see Section 4.4).

77

Part II

Contributions

78

Chapter 6

Adaptive Patch Grid (APG)

The first contribution of this Thesis is a strategy that allows NAMD simula-
tions to adapt the patch grid created (see Section 4.3.2) to the shape of the pro-
tein throughout the execution, producing a more balanced geometric decomposition
among the processing elements, which is more appropriate for parallel execution.

In Section 6.1, we explain the challenge that motivates the APG strategy. Sec-
tion 6.2 then describes how NAMD’s workflow for molecular dynamics simula-
tions was adapted to incorporate APG, followed by Section 6.3, which provides
an overview of the strategy.

Section 6.4 presents the results obtained in molecular dynamics simulations of
protein folding using NAMD with the APG strategy. Finally, Section 6.5 concludes
with a review of the main points in the chapter.

To our knowledge, there is no solution in the literature for varying dynamically
the shape of the simulation box in parallel protein folding simulations. All results
of this section were published in [156].

6.1 Challenge: HPC MD Simulation of PF
using Static Domain Decomposition

In order to reduce the execution time of a simulation with typical workflow,
we chose the molecular dynamics simulation software called NAMD (Section 4.3),
which implements a parallel version of the general molecular dynamics simulation
algorithm (Algorithm 1). NAMD implements a hybrid parallel execution strategy
that combines the force decomposition and domain decomposition methods,

For this strategy, domain refers to the 3D geometric space surrounding simula-
tion system, both solvent and solute, e.g. water and the target protein, respectively.
Initially, the dimensions of the domain are calculated based on the distribution of
all the atoms in system. Then, the domain decomposition method is executed to
divide the simulation space into cells containing the system’s atoms, and these
cells will be assigned to processors, maintaining this allocation until the end of the
simulation.

Figure 6.1 shows a scenario identified in this Thesis. Initially, the globular pro-
tein structure has an extended shape, 1D geometric configuration. The simulation

79

space is defined for this 1D configuration, followed by the domain decomposition
calculation, which generates the necessary cells containing the atoms that were
distributed. Then, these cells are assigned to the processors available to execute
the job on the HPC system (Figure 6.1a). Note that, during the molecular dynam-
ics simulation, the 3D configuration of the protein will change, moving from the
extended 1D shape to a more compact, in our case, a globular shape, as shown in
Figures 6.1b and 6.1c.

This means that the atoms of the 1D structure migrate from their original po-
sition (and the cells they were originally in) to a 3D configuration concentrated
around a geometric center, leaving the processors that were allocated to those cells
with a smaller number of atoms and, also, communicating with other processors
during the molecular dynamics simulation.

Figure 6.1: Illustration of a domain decomposition performed for a molecular dy-
namics simulation of a globular protein fold: (a) the simulation domain is divided
into blocks, called cells, containing protein atoms; (b) the protein begins to fold and
the atoms are migrating from their original positions - some cells are already empty
and their processors are idle; (c) the globular protein folds into a stable configura-
tion and the atoms are concentrated in "central" cells, leaving more "peripheral"
processors in an idle state.

Thus, considering the previous scenario, a challenge identified in this Thesis
was how to act on this distribution of cells, generated by domain decomposition,
among the processors available for the job responsible for executing the simulation
of protein folding on a supercomputer. Section 6.2 presents an overview of our
adaptive domain decomposition approach to solve this challenge and Section 6.3
explains the design of our adaptive patch grid strategy.

6.2 Adaptive Domain Decomposition Computation
The method proposed to address the challenge presented in Section 6.1 was the

adaptive parallel strategy shown in Figure 6.3b. In this technique, we added: (a)
a new loop starting at the action Patch Grid Generation; and (b) at the end of this
loop, a new step for writing the Partial Folding Trajectory File and a new action,
named Update Simulation Configuration File.

For the Patch Grid Generation action, the modification added was reinserting
the partial 3D configuration of the protein after a predefined number of simulation

80

steps. The simulation space will be updated as the geometric configuration of the
protein has changed. From this updated partial 3D configuration, the subsequent
domain decomposition will also recalculate the number of cells (patched) needed
and distribute them among the processors, as shown in Figures 6.2a, 6.2b and
6.2c.

For the step at the bottom of the new loop, a Partial Folding Trajectory File, con-
taining the changes in geometric configuration that have occurred up to that point,
is used as an updated Structure File and is provided as re-input for the Patch Grid
Generation action. Additionally, the Simulation Configuration File is also updated:
(i) with a new number of steps to be executed in the next iteration of the simulation
workflow loop; and (ii) with an indicator for the updated 3D configuration that is
used by the Simulation Domain Calculation action, as described previously.

The number of steps required to complete this loop of the adaptive workflow
is determined empirically for the first complete simulation run of protein folding.
However, once defined, the same number of steps can be used in future simulations
of folding for proteins from the same family.

After the end of the added loop, a new action was included to perform the Merge
of the Partial Trajectory Files, generated during the execution of the adaptive patch
grid strategy, into a single file containing the complete trajectory that will be pre-
sented in the output, as expected in a typical molecular dynamics simulation.

Figure 6.2: Illustration of our adaptive patch grid strategy for a NAMD simulation
of protein folding using implicit solvent.

In our strategy, the dimensions of the patch grid do not change during the ex-
ecution of the loop of numerical integration, however, they are updated whenever
NAMD execution is stopped and restarted [157, 158]. Therefore, it is possible to
divide the number of iterations of this loop into different phases by stopping the
current simulation in a defined iteration and restarting the next phase in the sub-
sequent loop iteration. For instance, if the original simulation has 100,000 itera-
tions and 4 domain generation phases, a new patch grid will be generated for every
25,000 iterations and each one of them will be referenced in the corresponding
phase of the molecular dynamics simulation execution. Thus, taking advantage
of the patch grid construction process performed by NAMD, it is possible to redis-
tribute the simulation domains (patches) between the available processors through
the inclusion of our adaptive loop in the original workflow.

It is important to note that while the patch grid dynamically adapts during
execution, the overall size of the simulation box enclosing the protein remains fixed

81

throughout the simulation. This design ensures consistency in spatial resolution
and avoids introducing variability unrelated to the domain decomposition strategy.

It is important to note that while the patch grid dynamically adapts during ex-
ecution, the overall size of the simulation box enclosing the protein remains fixed
throughout the simulation. This design ensures consistency in spatial resolution
and avoids introducing variability unrelated to the domain decomposition strat-
egy.

6.3 Design of the APG strategy
Figure 6.3 shows the steps followed in a simulation workflow of protein folding,

where (a) is a typical simulation workflow and, (b) our main contribution, an adap-
tive simulation workflow. The typical workflow of a simulation follows Algorithm 1.

In a typical simulation workflow (Figure 6.3a), NAMD receives three files as
input (Configuration, Structure and Force Field). The simulation domain is gen-
erated using these files and the patch grid is created. Then, for the number of
time steps configured, the simulation loop is executed, where the traditional forces
are computed for each atom or set of atoms, which will cause a modification in the
atoms’ positions, generating an updated structure that is written in the trajectory
file. With the new atoms’ positions, the traditional forces are computed and so on,
until the number of time steps is attained.

Figure 6.3: NAMD and NAMD+APG execution flows.

In our APG strategy (Figure 6.3b), at the beginning, the same three files are
read and used to generate the simulation domain and the initial patch grid. Using
NAMD’s restart facility, we divide the number of NAMD iterations into different
phases, stop the execution of a phase in a specified iteration and automatically

82

restart the next phase in the next iteration of the loop. This technique is able to
use NAMD to redistribute the simulation domains (patches) among the available
processors, creating patch grids and adapting to the structural protein changes
that occurred during simulation. In this case, the simulation is divided into a set
of domain generation phases, where each phase corresponds to a part of the whole
original simulation. This corresponds to the included loop in Figure 6.3b.

Periodic boundary conditions (PBCs) were not applied in the simulations, as
they are not required in the context of implicit solvation. Without explicit solvent
molecules, the simulation box functions as a closed system, and the focus remains
solely on the internal conformational dynamics of the protein. This modeling choice
reduces complexity and aligns with the goals of the APG strategy.

Section 6.4 describes the experiments we performed using NAMD with and
without our APG strategy and present the results we obtained.

6.4 Experimental Results

6.4.1 Description of the Computing Environment
Our tests were ran in one supercomputer - MareNostrum 4 (MN4) - and one

HPC cluster - Nord III (Nord) - both installed at the Barcelona Supercomputing
Center (BSC) [144, 159]. MN4 supercomputer was the 174th fastest supercomputer
in the world according to the November 2024 Top500 list and was described in
Section 5.1.4. MN4 is a Cluster consisting of 48 racks housing a total of 3,456
compute nodes. Each node is equipped with two Intel Xeon Platinum processors,
providing 48 cores per node. This setup delivers a combined total of 165,888 CPU
cores and 96 GB of main memory per node [144].

Nord [159] is one rack of the Marenostrum 3 supercomputer. It is CPU-based,
where each node is composed of two CPUs Intel E5-2670 (16 cores). There are
84 nodes (1,344 cores) interconnected through InfiniBand Mellanox, with storage
capacity of 15 PB and 2.6 TB of RAM.

The submission of jobs in MN4 was performed through the scheduling software
called SLURM [144]. At Nord, this job submission is handled by the LSF [159]
software. Among the different execution queues available via SLURM and LSF, the
following were assigned for the tests of this Thesis: (a) bsc_sc (in SLURM): with a
maximum number of 50 nodes, 2400 cores and execution time limit of 48 hours for
each job; and (b) bsc_cs (in LSF), but with a maximum of 16 nodes available, that
is, 256 cores and an execution time limit of 48 hours per job.

NAMD (version 2.11) was compiled with support for C and C++ languages, MPI-
3.1 standard, using the Intel compiler, available to users of computational envi-
ronments through the intel/2017.4 modules, impi/2017.4 in MN4 and the impi
module in Nord.

These two computing systems were selected due to their suitability for parallel
experiments in protein folding simulations and their availability through research
collaboration with the Barcelona Supercomputing Center (BSC). MareNostrum 4,
with its large number of cores and high-speed interconnect, enabled large-scale

83

executions and strong scalability studies. In contrast, Nord provided a more con-
strained and complementary environment, ideal for developing and validating the
proposed strategies under limited-resource conditions. This combination allowed
for a thorough evaluation of performance and adaptability across different HPC
scenarios.

6.4.2 Description of Proteins
The proteins used during the evaluation of the simulation test environment

with NAMD are listed in Table 6.1: 1ENH, 1IFR, 1OZ9 and 4LNZ. These are glob-
ular proteins with functions related to the immunological, motor and DNA associ-
ation, with data available in the Protein Data Bank (PDB) [160–163].

Protein # Atoms (PDB) # Atoms (Hydrogenated) Ligands Disordered Regions
1ENH 466 947 None 1-4, 52-54
1IFR 878 1,746 SO4 103-105
1OZ9 1,151 2,346 CA, GOL 45-49
4LNZ 2,840 5,714 ZN, DTT 187-192

Table 6.1: Test proteins used during the evaluation of the molecular dynamics
simulation environment with NAMD. For each protein, the table shows: (i) the
number of atoms from the original PDB file [160–163]; (ii) the number of atoms
after adding hydrogens during preprocessing; (iii) ligands identified in the original
structure; (iv) and disordered regions, i.e., unresolved residues often linked to flex-
ible loops or terminal segments.

The number of atoms of each protein in Table 6.1 was obtained as follows: a)
column "Original PDB" presents the total number of atoms represented in the orig-
inal PDB file, obtained directly from the PDB website [160–163]; b) the column
"Updated PDB: with hydrogens" shows the total number of atoms represented in
the PDB file generated while processing the force field input files (see Section 6.3).

For this Thesis, the force field model chosen was the CHARMM [164], according
to the basic configuration suggested in [25]. Two CHARMM files are handled be-
fore running NAMD: a topology file and a force field parameter file. The topology
file contains, among other data, the hydrogen atoms empirically defined for the
CHARMM model, which are added to the generated structure file (PSF extension,
Protein Structure File) and to the "updated PDB" file, both handled by NAMD when
running the molecular dynamics simulation. As for the force field parameter file
name, it is provided inside the molecular dynamics simulation configuration file,
which is described in the following Section.

All proteins tested in this work were modeled without explicit ions or ligands.
Disulfide bridges were also not enforced. These modeling decisions are consistent
with the use of implicit solvation and allow for an isolated evaluation of folding
behavior under the influence of the APG strategy alone, following the rationale
discussed in Section 4.1.2.

84

Although all simulations were carried out with proteins modeled without ex-
plicit ions or ligands, additional structural details about the original PDB entries
are included in Table 6.1. Specifically, the table reports which ligands were iden-
tified in the crystallographic structures and which residues were unresolved due
to structural disorder. These characteristics, although not used in the simulations,
are relevant for contextualizing each protein’s experimental structure and under-
standing potential influences on their folding behavior in vivo or under different
modeling conditions [51, 53].

6.4.3 NAMD Configuration File
Section 4.3 showed that NAMD implements a parallel version of general molec-

ular dynamics algorithm (Algorithm 1) and that, it is capable of running molecular
dynamics simulations of atomic systems containing millions of atoms [7, 114]. And,
as stated in [25], it is through a configuration file that NAMD obtains all the data
that defines the behavior of the molecular dynamics simulation, with the exception
only of those related to parallel execution, as they are platform dependent.

In this context, the objective of this section is to present a basic configuration
of NAMD that allows the execution of molecular dynamics simulations of the fold-
ing process for proteins with a number of atoms bigger than 5,000 atoms. Fur-
thermore, in order to define the platform-dependent data required for the parallel
execution of these molecular dynamics simulations, Section 6.4.4 will cover a evalu-
ation of NAMD’s behavior when running molecular dynamics simulations on MN4
and Nord supercomputers using this basic configuration as an input for each simu-
lation, both with a default configuration or with our APG strategy. Thus, from this
point on, we will refer as NCF to the basic NAMD Configuration File containing
either the configuration parameters for running NAMD without any contribution
of this Thesis (NAMD default) or containing additional parameters for running
NAMD with our APG strategy (NAMD+APG).

NAMD provides an extensive list of parameters to create the molecular dynam-
ics simulation that will be performed, which are detailed in the official NAMD’s
tutorial [25]. For experimental tests of this Thesis, the NCF adopted was obtained
by changing parameter values available in NAMD. Appendix B presents an exam-
ple of configuration with a typical parameters setup used in our experiments. The
input parameters for NAMD to execute the general molecular dynamics simulation
algorithm, akin to those in line 1 of Algorithm 1, are specified in an NCF as fol-
lows: a) molecular system name: this parameter serves as an identifier referenced
throughout the simulation, such as when naming and writing to output files. In
our case, the chosen protein’s name was used as the identifier for this parameter in
each simulation; b) coordinates and structure parameters indicating the names of
input files containing data related to positions of the atoms and geometric config-
urations (structure) of the system, respectively; c) the name of the parameter file
containing data for the chosen force field is entered in the parameters field; d) for
the solvation model, it was adopted an implicit environment provided by NAMD’s
implementation of GBIS (see Section 4.1.2); this choice was defined by setting the
the parameter gbis with the value "yes" in the NCF; e) the time interval which will

85

be simulated in each step of the numerical integration loop of the Algorithm 1 was
defined in the timestep field with the value 1 fs; and, f) the run parameter was used
to define the number of iterations used in numerical integration loop.

Finally, our NAMD basic configuration file (NCF) was also used to establish the
values of parameters related to each restarting process of the molecular dynam-
ics simulation which were used in tests with our adaptive strategy, namely: a) to
restart a NAMD simulation, parameters bincoordinates, binvelocities and extend-
edSystem fields correspond to the names of the files that contain data related to the
last recording point of the atomic system state and which allows that the molec-
ular dynamics simulation execution starts from that point; b) the firsttimestep in-
forms NAMD of the initial iteration from which the numerical integration loop
must restart; and c) the numsteps parameter informs NAMD the number of iter-
ations that must be executed by the numerical integration loop from that point
forward.

6.4.4 Evaluation Tests of NAMD’s Default Patch Grid
This section shows the tests that were carried out in order to evaluate a NAMD

configuration that is suitable for running molecular dynamics simulations on Mare-
nostrum 4 (MN4) and Nord supercomputers. These tests were called evaluation
tests and are comprised of (i) parallel executions of NAMD, using a prepared NCF
for each molecular dynamics simulation (Section 6.4.3) and (ii) analysis of NAMD’s
output, considering the domain decomposition and the execution times recorded
during each simulation.

For each parallel execution of NAMD on MN4 and Nord, it was necessary to
create and submit a job file to an execution queue on both supercomputers. Each
job file contained, mainly, the number of cores to be allocated for that specific sim-
ulation, the chosen parallelization method (message exchange using MPI) and the
name of NCF to be read by NAMD on each execution.

Tests on Marenostrum 4: Protein 1ENH

For this evaluation test, the atomic system chosen was the 1ENH protein (947
atoms, Section 6.4.3), initially extended (1D). We ran a default NAMD configura-
tion with a fixed patch grid and a 20,000,000 iteration loop with a time step of 1
fs, which means simulating about 20 ns of the folding process. The results of these
simulations are shown in Table 6.2. Six jobs of molecular dynamics simulations
were executed. In the first job, 48 cores of CPU were allocated, corresponding to
one MN4 computational node. Then, for each following job, the addition of a com-
putational node was made, corresponding to the numbers of cores 96, 144, 192, 240
and 288 in the "#Cores" column.

Note that the domain decomposition performed at the beginning of the NAMD
execution defined the same domain configuration (patch grid), consequently, same
number of cells (patches): 7 x 3 x 1 and 21 patches, respectively, from start to finish
of each simulation.

86

#Cores #Nodes
Default NAMD - 1ENH

#Iterations Runtime Domain Decomposition
(million) (seconds) (d:h:m:s) Patch Grid #Patches

48 1 20M 130,834 1d 12h 20m 34s 7 x 3 x 1 21
96 2 20M 159,788 1d 20h 23m 08s 7 x 3 x 1 21
144 3 20M 158,835 1d 20h 07m 15s 7 x 3 x 1 21
192 4 20M 127,883 1d 11h 31m 23s 7 x 3 x 1 21
240 5 20M 99,756 1d 03h 42m 36s 7 x 3 x 1 21
288 6 20M 164,580 1d 21h 43m 00s 7 x 3 x 1 21

Table 6.2: Evaluation test: Molecular dynamics simulation on MN4 using NAMD
with default patch grid parameters and protein 1ENH (947 atoms).

This is a fixed assignment of patches to the available cores, as this assign-
ment is also carried out at the beginning of the simulation and remains unchanged
throughout the execution of job. One consequence is that the number of patches
generated is lower than the number of allocated processors, suggesting that there
are potentially idle processors during execution. For example, in the first job with
48 cores, a patch was assigned to each processor, 27 cores will be idle during the
simulation.

Finally, it is important to highlight the execution time values recorded in each
job, which are not related to the number of nodes/cores (Table 6.2). This means
that augmenting the number of nodes/cores does not reduce the execution time,
making parallelism ineffective. For example, there was an increase in the exe-
cution time of the first job, with 48 cores for the second job. However, from the
second to the third job the execution time remained almost the same. Then, the
time decreased from the third to the fourth and the fifth job to, again on the same
scale, increase in the sixth job. As a conclusion, we can say that, if the number
of cores between jobs increased, there was no (significant) reduction in execution
time, and in some jobs there was an increase in execution time. Interestingly, the
job executed with 240 cores resulted in the lowest recorded execution time (99,756
seconds). Since the number of patches (21) remained unchanged, the amount of
parallelism did not increase. This result likely reflects a more favorable allocation
of system resources during that specific run - such as lower network contention or
more efficient node scheduling - rather than a direct consequence of utilizing more
cores. Therefore, this improvement should be interpreted as an effect of system-
level variability rather than increased computational efficiency.

Tests on Marenostrum 4: Protein 1IFR

Given the previous results, the next step was to carry out a new evaluation test
using a protein with more atoms, observing the decomposition of NAMD domains
and execution times. The chosen protein was 1IFR with 1,746 atoms. The test
results of this assessment are shown in Table 6.3.

87

#Cores #Nodes
Default NAMD - 1IFR

#Iterations Runtime Domain Decomposition
(million) (seconds) (d:h:m:s) Patch Grid #Patches

48 1 20M 152.668 1d 18h 24m 28s 7 x 6 x 1 42
96 2 20M 141.290 1d 15h 14m 50s 7 x 6 x 1 42

144 3 20M 150.781 1d 17h 53m 01s 7 x 6 x 1 42
192 4 20M 147.389 1h 16h 56m 29s 7 x 6 x 1 42
240 5 20M 122.832 1d 10h 07m 12s 7 x 6 x 1 42
288 6 20M 168.994 1d 22h 56m 34s 7 x 6 x 1 42

Table 6.3: Evaluation test: Molecular dynamics simulation on MN4 using NAMD
with default patch grid parameters and protein 1IFR (1,746 atoms).

Similarly, for these tests, the number of cores defined was different for each sim-
ulation, ranging from 48 to 288 cores. In each job, the patch grid and the number
of patches generated by NAMD were the same, 7 x 6 x 1 and 42, respectively.

It can be noted, again, that there is no relation between the execution time and
the number of cores/jobs used in the experiments. In domain decomposition, these
results draw attention once again to the fixed allocation of the patch grid and the
number of patches generated (42), which is lower than the number of processors
allocated in each job. For example, in the first job, NAMD allocates a patch to each
core, thus 6 cores are potentially idle during the simulation run.

Tests on Marenostrum 4: Protein 1OZ9

A new evaluation of NAMD was carried out using a system with more atoms:
protein 1OZ9 with 2,346 atoms. Table 6.4 shows the results obtained.

#Cores #Nodes
Default NAMD - 1OZ9

#Iterations
Runtime Domain Decomposition

(million) (seconds) (d:h:m:s) Patch Grid #Patches
48 1 20M 145,812 1d 16h 30m 12s 19 x 3 x 1 57
96 2 20M 114,051 1d 07h 40m 51s 19 x 3 x 1 57
144 3 20M 83,213 23h 06m 53s 19 x 3 x 1 57
192 4 20M 98,462 1d 03h 21m 02s 19 x 3 x 1 57
240 5 20M 103,016 1d 04h 36m 56s 19 x 3 x 1 57
288 6 20M 170,608 1d 23h 23m 28s 19 x 3 x 1 57

Table 6.4: Evaluation test: Molecular dynamics simulation on MN4 using NAMD
with default patch grid parameters and protein 1OZ9 (2,346 atoms).

For the jobs of this test, the patch grid generated was 19 x 3 x 1 with 57 patches
to be distributed among the cores allocated. Note that, dividing the 2,346 atoms be-
tween the 57 patches generated, it obtains 48 patches with 41 atoms and 9 patches
with 42 atoms each. In the first job, the number of patches is enough to distribute

88

among the 48 cores. However, from the second job onwards, the number of cores
allocated (96) is greater than the number of patches generated by NAMD, poten-
tially leaving processing cores in idle state. Table 6.4 also shows that the execution
times obtained are still not related to the number of nodes/cores.

Tests on Nord: Protein 1OZ9

The next step was to evaluate the behavior of NAMD’s simulation using the
same 1OZ9 protein, a system with the largest number of atoms so far, the same
NCF with the predefined domain decomposition (Default), however reducing the
number of cores allocated to each job. For this, the tests were carried out on the
Nord cluster [159], where each computational node has 16 cores, instead of the 48
available in the MN4. Table 6.5 shows the results obtained in this evaluation test.

#Cores #Nodes
Default NAMD - 1OZ9

#Iterations
Runtime Domain Decomposition

(million) (seconds) (d:h:m:s) Patch Grid #Patches
16 1 20M 127,221 1d 11h 20m 21s 19 x 3 x 1 57
32 2 20M 128,099 1d 11h 34m 59s 19 x 3 x 1 57
48 3 20M 784.23 21h 47m 03s 19 x 3 x 1 57
64 4 20M 93,744 1d 02h 02m 24s 19 x 3 x 1 57
80 5 20M 103,653 1d 04h 47m 33s 19 x 3 x 1 57
96 6 20M 65,850 17h 17m 30s 19 x 3 x 1 57
112 7 20M 169,987 1d 23h 13m 07s 19 x 3 x 1 57
128 8 20M 60,980 16h 56m 20s 19 x 3 x 1 57

Table 6.5: Evaluation test: Molecular dynamics simulation on Nord using NAMD
with default patch grid parameters and protein 1OZ9 (2,346 atoms).

Eight jobs were executed with parallel execution using 16, 32, 48, 64, 80, 96, 112
and 128 CPU cores. Again, the patch grid and the number of patches generated by
NAMD, for the input protein 1OZ9, were equal to 19 x 3 x 1 and 57, respectively.
Note that the execution times obtained did not decrease with the increase in the
number of cores. For example, the execution times obtained with 64 cores was
greater (93,744 seconds) than that obtained with 48 cores. The same was identified
for 96 and 112 cores. Additionally, note that the execution times with 96 and 128
cores were the lowest among the jobs, however, this was not expected considering
that the number of patches is fixed and smaller than the number of cores (57),
that is, the lowest execution times were obtained with jobs with idle cores (without
patches) associated.

Thus, in this test, even reducing the number of cores per computational node
and obtaining lower execution times than in previous evaluations (jobs 3, 6 and
8), it was not possible to identify a coherent behavior of NAMD regarding domain
decomposition, the number of patches and execution times.

89

6.4.5 Evaluation Test with Scaled Patch Grid
At this point, in order to better understand the relation between the number

of cores and the execution time, we increased the number of patches generated
by NAMD and evaluated the execution behavior with more patches to distribute
among the cores. This was done by activating the twoAwayX, twoAwayY and two-
AwayZ parameters in the NCF. In accordance with the recommendation contained
in [157, 158, 165], attributing the value "yes" to these parameters will cause NAMD
to approximately double the number of patches generated in each of the dimensions
of the patch grid.

Three NAMD simulations were performed to evaluate this configuration, one
for each of the 1ENH, 1IFR, and 1OZ9 proteins. For each simulation, 48 cores
were allocated. None of the three simulations finished within the time slot of 48
hours reserved for each job, that is, the job was terminated, without the simula-
tion having been completed. To investigate this, the domain decomposition was
analyzed in each case. Table 6.6 shows the values obtained with the standard do-
main decomposition and the one generated by NAMD after activating the twoAway
parameters.

Domain Decomposition
Protein Default twoAway*

Name #Atoms #Patches #Patches(#Atoms
Patch) #Patches #Patches(#Atoms

Patch)

1ENH 947 21 19(45) + 2(47) 600 253(1) + 347(2)
1IFR 1,746 42 18(41) + 24(42) 1,092 438(1) + 654(2)
1OZ9 2,346 57 32(57) + 9(58) 2,500 2,346(1) + 154(0)

Table 6.6: Evaluation test: NAMD’s generated patches on MN4 using twoAway*
parameter. The twoAway* column shows the results obtained by activating the
parameters twoAwayX, twoAwayY and twoAwayZ. The Default column shows the
results of running without these parameters (they are disabled by default).

For the three proteins in Table 6.6, notice that: a) the data in the Default column
shows the number of patches generated with NAMD’s default domain decomposi-
tion and adopted in the first three evaluations so far, as well as an illustration of
the distribution of atoms for each patch; b) the data in the twoAway column shows
the number of patches after activating the parameters twoAwayX, twoAwayY and
twoAwayZ; also illustrating a distribution of atoms for each patch.

In this case, based on the data in the twoAway column, two potential scenarios
were identified involving the distribution of atoms and the cost of communication.
In the first, even though NAMD generated a greater number of patches (600, 1,092
and 2,500) than in the first three evaluations, the number of atoms of each protein
is very close to the number of patches generated for each simulation, which creates
an inefficient distribution of atoms, as shown in the column #Patches(#Atoms

Patch), where
the maximum number of atoms assigned to each core is equal to 2. It is evident
that running NAMD with this configuration has low utilization of MN4 resources,
that is, high number of idle cores. And, in this context, for the second scenario, it

90

was observed that there is also the possibility that CPU cores do not have atoms
allocated, as is the case with the 1OZ9 protein (last column and last line of the
Table 6.6); with 154 patches generated and all of them are empty, with no atoms
allocated.

Again, it was identified in the same scale that, even activating the twoAway
parameters in the NCF, the execution presents similar behavior to previous eval-
uations: runtime unpredictability and idle cores during simulation.

6.4.6 Evaluation Test with Manual Restart
For this evaluation, we decided to proceed using Nord as HPC platform, since

it has less CPU cores per node and the results of Section 6.4.4 showed the lowest
execution times. However, we increased the number of atoms by introducing the
larger, named 4LNZ with 5,714 atoms (Table 6.1).

Initially, most of the executions with 20,000,000 iterations took more than 2
days in Nord and, since the maximum execution time allowed by the job scheduler
was 48 hours, some simulations were interrupted. Thus, we decided to set NAMD’s
restart parameter as "true", and manually restart the simulation from the last
point in time. The results of the corresponding tests are shown in Table 6.7.

#C #N

NAMD
Phase 1 Phase 2 (Restart) Exec. Time

#Iter.
Time

Patch Grid #Iter.
Time

Patch Grid
Total (MD)

(d:h:m:s) (d:h:m:s) (d:h:m:s)
16 1 16,160,000 1d 23h 39m 53s 20 x 7 x 1 3,840,000 12h 08m 53s 7 x 4 x 5 2d 11h 48m 46s
32 2 15,520,000 1d 23h 43m 00s 20 x 7 x 1 4,480,000 11h 43m 16s 7 x 4 x 5 2d 11h 26m 16s
48 3 20,000,000 1d 23h 13m 34s 20 x 7 x 1 N.A. 1d 23h 13m 34s
64 4 17,760,000 1d 23h 57m 31s 20 x 7 x 1 2,240,000 02h 55m 32s 7 x 4 x 5 2d 02h 53m 04s
80 5 16,960,000 1d 23h 32m 54s 20 x 7 x 1 3,040,000 07h 55m 06s 10 x 2 x 7 2d 07h 28m 00s
96 6 17,920,000 1d 23h 36m 36s 20 x 7 x 1 2,080,000 5h 20m 58s 7 x 4 x 5 2d 04h 57m 34s

112 7 20,000,000 1d 23h 03m 05s 20 x 7 x 1 N.A. 1d 23h 03m 05s
128 8 16,800,000 1d 23h 40m 00s 20 x 7 x 1 3,200,000 10h 06m 18s 7 x 4 x 5 2d 09h 46m 18s

Table 6.7: Evaluation test: the simulation ran in two phases. In Phase 1, NAMD
runs up to the maximum execution time set by the scheduler. If the simulation com-
pletes during Phase 1, Phase 2 is unnecessary, marked as N.A. (Not Applicable). If
the simulation does not finish in Phase 1, then Phase 2 resumes NAMD from the
last saved timestep to complete the remaining simulation steps. The atomic system
used in the simulation contains 5,714 atoms, corresponding to the Extended 4LNZ
protein.

In this evaluation, NAMD generated the patch grid configuration 20 x 7 x 1, a
total of 140 patches to distribute the 5,714 atoms of the system. In Table 6.7, only
two jobs (3 and 7), had their molecular dynamics simulations completed within the
reserved runtime for each job (48 hours); for the remaining six jobs (1, 2, 4, 5, 6
and 8), the molecular dynamics simulation was interrupted, when the execution
of job has reached the maximum execution time set by the SLURM scheduler. In
the column #Iter., the number of iterations that were performed by the numerical

91

integration loop of the molecular dynamics simulation, recorded in the log file. The
results obtained up to that point of termination of jobs were annotated under the
column named Phase 1. Due to the interruption of the molecular dynamics sim-
ulation, six jobs were restarted to continue the simulations that were incomplete,
starting the numerical integration loop from the next iteration to the last recorded
in the #Iter. column of Phase 1 (for example, 16,160,000 iterations of job 1). The
results obtained with the restart tests were recorded under the column Phase 2
(Restart) call. In the #Iter. and Time columns for Phase 2, the total iterations com-
pleted by the numerical integration loop and the execution times for the molecular
dynamics simulations are shown. Since the simulations for jobs 3 and 7 concluded
in Phase 1, no data was recorded for these jobs in Phase 2, and they are labeled as
"N.A.", indicating "Not Applicable".

Note that in the Patch Grid column of Phase 2, the values obtained were dif-
ferent from those of Phase 1, identifying a new scenario in the execution flow of
NAMD: during a simulation starting from a initial extended 1D configuration,
when NAMD is restarted, a new domain decomposition is performed, generating a
new patch grid configuration relative to the current geometric configuration of the
protein. This means that by stopping and restarting a molecular dynamics simu-
lation of NAMD, it is possible to change the generated fixed patch grid, in order to
obtain a new patch grid with different dimensions and, potentially, obtain a new
set of allocated cores, both adapted to the current 3D configuration of the atomic
system.

Realizing that these changes in the patch grid, with each restart of the molec-
ular dynamics simulation, was the key point in developing our adaptive solution.
This allowed the domain decomposition of the parallel algorithm implemented by
NAMD to be used flexibly throughout the molecular dynamics simulation, adapt-
ing to expected geometric transformations in the process of protein folding. This
change in the simulation execution workflow has been activated in the NCF, via
the reset parameters preset in NAMD (Section 6.4.3).

6.4.7 NAMD Test with Adaptive Patch Grid
This section presents the results of NAMD with our Adaptive Patch Grid (APG)

strategy in the Nord cluster. We used the largest protein (4LNZ, 5,714 atoms) in
Table 6.1 and split the total number of iterations (20 million) into 4 phases of 5
million iterations. The results are shown in Table 6.8.

#C #N #It.

NAMD with APG - 4LNZ
Phase 1 Phase 2 (Restart) Phase 3 (Restart) Phase 4 (Restart) Run Time

Time Patch Time Patch Time Patch Time Patch Total (MD)
(sec.) Grid (sec.) Grid (sec.) Grid (sec.) Grid (d:h:m:s)

16 1 5M 41,688 20 x 7 x 1 52,224 10 x 2 x 7 52,654 10 x 2 x 7 55,022 7 x 2 x 10 2d 07h 59m 02s
32 2 5M 24,858 20 x 7 x 1 30,434 10 x 2 x 7 34,867 7 x 4 x 5 48,314 5 x 2 x 14 1d 14h 27m 53s
64 4 5M 16,787 20 x 7 x 1 26,306 14 x 5 x 2 43,755 7 x 4 x 5 34,095 7 x 4 x 5 1d 09h 35m 43s

128 8 5M 18,556 20 x 7 x 1 39,083 10 x 2 x 7 33,427 7 x 5 x 4 28,545 7 x 5 x 4 1d 09h 13m 31s
256 16 5M 23,856 20 x 7 x 1 25,123 14 x 2 x 5 32,312 7 x 4 x 5 50,824 7 x 5 x 4 1d 12h 41m 55s

Table 6.8: NAMD execution with APG. The total number of iterations per row is
20M.

92

NAMD+APG simulations were ran for 1, 2, 4, 8 and 16 nodes (16, 32, 64, 128
and 256 cores respectively). Please notice that, in Table 6.8, when the phase
changes from 1 to 2, 2 to 3 and 3 to 4, the patch grid is adapted to the current
shape of the protein in the simulation box. In addition, the runtime is now related
to the number of cores, which decreased from 2 days and almost 8 hours (16 cores)
to 1 day and about 9 hours (128 cores).

The execution time increases when 256 cores are used. This happens because
there is not enough parallelism to surpass the amount of communication at the end
of each iteration. Therefore, in Nord, using 4LNZ in simulation with 20 million
iterations, the best choice would be 8 nodes (128 cores).

For comparing the execution times between simulations without APG, which
means using a fixed patch grid (default), and with our APG, the number of iter-
ations was reduced to 15 million. This was necessary because some simulations
without APG did not end in less than 48 hours when 20 million iterations were
applied, and the job was killed. Table 6.9 and Figure 6.4 show the execution times
without and with APG for protein 4LNZ. It should be noted that, for all test cases,
the execution time was reduced in at least 1 hour when APG was used. Also, the
best execution times were obtained for 16 nodes (256 cores).

#C #N #It.

NAMD with and without APG - 4LNZ
Default Strategy APG Strategy

Execution time Patch Execution time Patch Grid
seconds (h:m:s) Grid seconds (h:m:s) Phase:1 Phase:2 Phase:3

16 1 15M 123,515 34h 18m 35s 47x3x1 119,169 33h 06m 09s 47x3x1 28x5x1 20x7x1
32 2 15M 81,148 22h 32m 28s 47x3x1 60,865 16h 54m 25s 47x3x1 28x5x1 28x5x1
64 4 15M 53,836 14h 57m 16s 47x3x1 42,918 11h 55m 18s 47x3x1 28x5x1 20x7x1
128 8 15M 61,063 16h 57m 43s 47x3x1 40,963 11h 22m 43s 47x3x1 28x5x1 20x7x1
256 16 15M 45,363 12h 36m 03s 47x3x1 40,098 11h 08m 18s 47x3x1 28x5x1 20x7x1

Table 6.9: NAMD (Default) vs APG for 4LNZ (5,714 atoms).

1(16) 2(32) 4(64) 8(128) 16(256)

20,000

40,000

60,000

80,000

100,000

120,000

140,000

#Nodes (#CPU cores)

E
xe

cu
ti

on
ti

m
e

(s
ec

)

NAMD Default

NAMD+APG

Figure 6.4: Execution times: NAMD (Default) vs NAMD with APG.

93

While the APG implementation is specific to the patch-based parallelism in
NAMD, other MD engines such as GROMACS adopt different parallel models.
GROMACS typically uses spatial domain decomposition combined with dynamic
load balancing and SIMD-accelerated kernels for nonbonded interactions [23].
These strategies are tailored to its architecture and differ from NAMD’s patch/
thread-based design, emphasizing the uniqueness of the APG strategy in this con-
text.

6.5 Contribution Review
In this chapter, we proposed and evaluated the Adaptive Patch Grid (APG)

strategy which allows NAMD simulations to change its patch grid during the sim-
ulations execution flow and adapt to the protein geometric configuration. We pre-
sented the challenge of using the default static domain decomposition for molecular
dynamics simulations of protein folding and our domain decomposition strategy to
address the challenge and the design of our APG strategy proposal.

We then provide an initial description of the chosen computing environment for
the simulation, followed by a description of test proteins and a basic configuration
file for each simulation execution with NAMD.

Next, we showed our obtained results while evaluating NAMD simulation with
the default patch grid using three different proteins in MN4 and Nord, with no
evidence of scalability, i.e. reduction of execution time when the number of nodes/-
cores is increased. Similarly, we introduced our evaluation with a scaled patch
grid, which did not improve the running time or the allocation of cores.

We then presented a manual version of the adaptive patch grid with first results
obtained after restating some partially executed molecular dynamics simulations
with NAMD. These results were the evidence needed for us to pursue the execution
of molecular dynamics simulation using NAMD with our strategy.

Finally, in Section 6.4.7, we show that, using the Nord cluster and the 4LNZ
protein, our APG strategy is able to provide scalability up to 8 nodes (128 cores),
reducing the simulation time from 34 hours and 18 minutes (1 node with 16 cores)
to 11 hours and 22 minutes (8 nodes using APG). If we compare the 128-core exe-
cution without and with APG, the execution time decreases from 16 hours and 57
minutes to 11 hours and 22 minutes, which is a considerable reduction in execu-
tion time. Recall that in NAMD simulations, communication occurs at the end of
each iteration, and our simulations had a total of 15 million iteration steps. So, the
reduction of more than 5 hours in the 128-core simulation is remarkable.

Although not part of the APG strategy itself, the atomic burial potential plays
an important role in encouraging compact configurations during the protein folding
(Section 4.4). By favoring buried atomic arrangements, this potential contributes to
realistic structural packing [31–33], complementing the spatial optimization pro-
vided by the APG mechanism. The integration of atomic burial into the parallel
simulation process is addressed in detail in the next chapter.

It should also be emphasized that the current implementation of APG was de-
veloped specifically for simulations using implicit solvent models. The absence of

94

solvent particles simplifies the computational setup and enables the grid to be ad-
justed based solely on protein atom positions. While the underlying concept may be
adapted for explicit solvent scenarios, such an extension would require additional
considerations related to solvent density, diffusion, and interaction balancing, as-
pects that are beyond the scope of this Thesis.

The proposal and results presented in this chapter were published in [156].

95

Chapter 7

NAMD with Atomic Burials

The second contribution of this Thesis is the addition of two new forces and
corresponding potentials to the classical protein folding simulation executed by
NAMD: Atomic Burial (AB) and Hydrogen Bonds (HB) forces. These additional
forces are appropriate for globular proteins and produce adequate results, as shown
in [31–33, 35].

Section 4.4 showed how the MDBury algorithm applied atomic burial and hy-
drogen bond forces in molecular dynamics simulations of protein folding to deter-
mine the stable 3D configuration of globular proteins with less than 1000 atoms.
These simulations were sequentially executed and demanded extremely high exe-
cution times. Thus, in order increase the size of the protein simulated with atomic
burial forces, we present an additional proposal that consists of inserting the MD-
Bury algorithm in the NAMD tool, which (a) allows the parallel execution of the
generic molecular dynamics algorithm, used by MDBury; and (b) allows increasing
the number of atoms of the simulated system above the aforementioned limit. To
our knowledge, there is no proposal in the literature for using AB+HB in parallel
protein folding simulations. All results of this section were published in [156].

Section 7.1 presents the challenge of adding the MDBury computation to NAMD.
Section 7.2 presents an overview of this contribution. Section 7.3 describes the al-
gorithm developed for the integration of atomic burials into NAMD. Section 7.4
presents in detail the NAMD components created or modified to achieve this in-
tegration. Sections 7.5, 7.6, 7.7 show how we use NAMD’s components for adding
atomic burial, hydrogen bond and annealing weights computations. Section 7.8
presents our experiments and discusses results obtained with NAMD+AB. Finally,
Section 7.9 concludes the chapter with a review of the key takeaways from the
chapter.

7.1 Challenge: Parallel execution of MDBury
In order to build this solution, NAMD (Section 4.3) was the parallel molecular

dynamics simulation software of choice, because: (a) it provides its source code
making possible changes into it; (b) it is capable of handling atomic systems with
more than 1,000 atoms; (c) it performs the calculation of traditional molecular
dynamics forces similar to those existing in the MDBury algorithm (Section 4.4.2);

96

and (d) it allows adding new components to calculate MDBury forces, in this case,
one related to the atomic burial force, and another to the hydrogen bond force.

Additionally, NAMD provides support to address the following identified chal-
lenges:

1. How to include the calculation of the atomic burial force in a parallel exe-
cution of the molecular dynamics numerical integration, for computing each
atomic burial energy contribution and using Equation 4.7?

2. How to include the hydrogen bond force calculation, as described in the MD-
Bury Algorithm (Section 4.4.2)?

3. How to include the calculation and update of the annealing weights for atomic
burial and hydrogen bond potentials, as described in MDBury?

Next, Section 7.2 presents an overview of the proposed solution. Sections 7.3,
7.4, 7.5, 7.6 and 7.7 describe in detail the strategies used to insert the MDBury
algorithm calculations into the NAMD’s execution flow and resolve challenges 1, 2
and 3.

7.2 Overview of the Solution
As stated in Section 4.4, the MDBury algorithm is sequential. It computes

Atomic Burial (AB) and Hydrogen Bonds (HB) forces and potentials, and Annealing
Weights (AW). It is important to note that the main obstacle identified for creating
the parallel version of MDBury was to respect the data dependencies and, at the
same time, achieve reasonable parallelism. More specifically, we needed to address
these integration obstacles: (i) defining a method to compute atomic burial forces,
which involves the geometric center of the current structure and requires global
information, (ii) devising a strategy for parallel computation of hydrogen bonds,
accounting for cases where one or more atoms necessary for the force computation
are located on different nodes, and (iii) incorporating the calculation, update, and
distribution of global annealing weight values, which are used in the atomic burial
and hydrogen bond potential energy computations carried out on each node.

Figure 7.1 illustrates the default execution flow of NAMD’s simulation engine.
The process begins with the input of the configuration file, structure file, and force
field parameters, which define the initial system setup and physical interactions.
Following this, starts the patch grid generation, a domain decomposition step for
partitioning simulation space into smaller, parallelizable regions, for large-scale
computations (Section 6.2). Within the numerical integration loop, the algorithm
computes, in parallel, traditional molecular forces, updates atomic coordinates and
velocities, and writes the updated structure to the trajectory file. This iterative loop
ensures the accurate simulation of molecular dynamics, according to the standard
Algorithm 1, culminating in the generation of a complete trajectory file as the final
output.

97

Figure 7.1: Illustration of NAMD’s default execution flow.

To enable the parallel execution of MDBury potentials, we developed a strategy
to integrate these calculations and their dependencies into NAMD’s engine, as il-
lustrated in black in Figure 7.2. This integration also ensures compatibility with
our Adaptive Patch Grid (APG) strategy. As part of this effort, we introduced two
new routines in NAMD, named ComputeBurialForce and ComputeHBonds, result-
ing in a modified version of the NAMD code.

Figure 7.2 showcases the updated execution flow of NAMD, enhanced with the
parallelized MDBury algorithm for the computation of Atomic Burial (AB) and
Hydrogen Bonds (HB) forces. Similar to the default workflow, the process begins
with system initialization and domain decomposition. Within the numerical inte-
gration loop, the newly implemented routines — ComputeBurialForce and Com-
puteHBonds — are incorporated into the framework to compute atomic burial and
hydrogen bond potentials at each timestep. These additions, highlighted in black,
efficiently manage global data dependencies (such as annealing weights and geo-
metric centers) while preserving parallel scalability.

98

Figure 7.2: Illustration of NAMD+APG+AB execution flow.

Figure 7.3 illustrates the main components integrated into our strategy to ex-
tend NAMD with the Atomic Burial (AB) and Hydrogen Bonds (HB) computations.
In dark gray, the two new compute objects, ComputeBurialForce and Compute-
HBonds, handle the calculation of atomic burial and hydrogen bond forces, respec-
tively. These objects operate within the worker nodes, where each compute object
runs inside a dedicated Sequencer thread. The Sequencer thread coordinates the
computations required for the assigned patches, ensuring that the atomic burial
and hydrogen bond potentials are calculated during each simulation step.

In parallel, the Annealing Weights (AW), which influence the burial and hydro-
gen bond potentials, are dynamically updated throughout the simulation. These
weights are computed centrally on the main node within the Controller thread
(Figure 4.7), ensuring consistency across all worker nodes. The updated anneal-
ing weights are then distributed to the worker nodes, maintaining synchronization
across the system. This efficient division of labor between the main and worker
nodes allows the simulation to scale while preserving the integrity of the data de-
pendencies required for accurate potential calculations.

99

Figure 7.3: NAMD with Atomic Burial (AB).

Next, Section 7.3 introduces the N2HB algorithm, which integrates the com-
putation of atomic burial and hydrogen bond forces into NAMD, addressing the
aspects outlined in integration obstacles (i) and (ii). Section 7.4 focuses on the ab-
straction and modification of NAMD components required to enable parallel com-
putation of atomic burial forces, hydrogen bond forces, and annealing weights,
addressing integration obstacles (i), (ii), and (iii). Sections 7.5, 7.6 and 7.7 de-
tail the development of two NAMD components for computing atomic burial forces
(ComputeBurialForce) and hydrogen bond forces (ComputeHBonds), as well as the
modifications to support annealing weights computations, effectively providing so-
lutions to integration obstacles (i), (ii), and (iii), respectively.

7.3 N2HB Algorithm

7.3.1 Description
Considering the MDBury algorithm presented in Section 4.4, we developed the

N2HB algorithm to integrate the necessary modifications for performing MDBury
calculations within the general molecular dynamics algorithm. This integration
allows MDBury to execute in parallel within the NAMD environment (Section 4.3),
applying the potentials described by Equation 4.5 and Equation 4.6.

Similar to Algorithm 1, the N2HB algorithm (Algorithm 2) starts by loading
the initial coordinates (ai) and velocities (vi) for each the atom i, from 1 to N atoms
(line 3, inputs "a" and "b"); inherited from NAMD, it provides support for third-
party force fields and access to configure explicit or implicit solvent models (in-
puts "c" and "d"). For the next inputs "e" and "f", Algorithm 2 reads the time step
and num_step values applied in the numerical integration.

100

Algorithm 2: N2HB Algorithm
1 *** The lines in black correspond to the general MD algorithm ***
2 *** The lines in blue were added to computing the atomic burial method ***

3 *** Initial state of the atomic system ***
Input :

a) {a1, ..., aN}: initial coordinates (x,y,z) for atoms 1 to N;
b) {v1, ..., vN}: initial velocities for atoms 1 to N;
c) ForceF ield model: parameters and topology;
d) Solvation model: implicit or explicitly;
e) time_step: size of each chunk of time to be calculated;
f) num_steps: # of iterations for the numerical integration loop.

*** Atomic Burial (AB) + Hydrogen Bond (HB) ***
g) {baf1, baf2, baf3}: AB annealing factors;
h) {r∗1 , ..., r∗N}: AB expected values;
i) {δ1, ..., δN}: AB tolerance interval for the energy function;
j) {k1, ..., kN}: AB slope values for the energy function;
k) {haf1, haf2, haf3}: HB annealing factors;
l) {µh, µη , µθ, µr, βh, βη , βθ, βr, ϵmax

hb }: parameters for F (α);
m) {hb1, ..., hbM}: HB list of 5-tuples;

4 *** Initializing Annealing Factors ***
5 {Aab, Sab} : ← {baf1, baf2, baf3};
6 {Ahb, Shb, ϵhb} : ← {haf1, haf2, haf3, ϵmax

hb };

7 *** Numerical Integration Loop ***
8 for ns← 1 to num_steps do
9 Ubonded ← ComputeBondedForces(a1, ..., aN);

10 Unon−bonded ← ComputeNonBondedForces(a1, ..., aN);

11 Uab ← ComputeBurialForce(a1, ..., aN , r∗1 , ..., r
∗
N , δ1, ..., δN , k1, ..., kN , Aab);

12 Uhb ← ComputeHBonds(a1, ..., aN , hb1, ..., hbM , Ahb);

13 Utotal ← ComputePotentialEnergy(Ubonded, Unon−bonded, Uab, Uhb);

14 *** Moving atoms: updating their positions and velocities ***
15 {a′1, ..., a′N}, {v

′
1, ..., v

′
N} :← MoveAtoms(a1, ..., aN);

16 {a1, ..., aN} :← {a′1, ..., a′N};
17 {v1, ..., vN} :← {v′1, ..., v′N};

18 *** Updating Annealing weights ***
19 {Aab} :← {Aab, Sab};
20 {Ahb, ϵhb} :← {Ahb, Shb, ϵ

max
hb };

21 *** Writing output to log files at predefined iterations***
Output:

a) {a′1, ..., a′N}: updates the coordinates of each atom;
b) {v′1, ..., v′N}: updates the velocities of each atom;
c) Potential Energy (Utotal), Temperature (T), Pressure (P), etc.

22 end

The data of inputs "g", "h", "i" and "j" are used by atomic burial potential calcu-
lations. Input "g" contains atomic burial annealing factors (baf1,2,3), input "h" deals
with atomic burial expected central distances (r∗i), input "i" holds the tolerance
intervals (δi) and input "j" the atomic burial slope values for all atomic burials. In-
puts "g", "h", "i" and "j" are read from a file, which must contain one line for baf1,2,3,
N lines with r∗i and δi data for each atom i.

The next inputs "k", "l" and "m" are used to calculate the hydrogen bond poten-
tial. Input "k" takes the hydrogen bond annealing factors (haf1,2,3), input "l" holds
the parameters for function F (α) [32] and input "m" holds the hydrogen bond 5-
tuples, where each 5-tuple is composed of the three donor atoms and two acceptor
atoms. Inputs "k", "l" and "m" are read from a file containing at least M + 2 lines:

101

one for the annealing factors, one for the F (α) parameters and M lines for all hy-
drogen bond 5-tuples [32]. All atomic burial and hydrogen bond input parameters
must be previously calculated by the applications HmmPred and MDTools. For
details about these applications and their use, refer to [32].

Both atomic burial and hydrogen bond potential calculations include an anneal-
ing technique, which applies a factor (Aab) to the atomic burial potential term and
a penalty (ϵhb) to the hydrogen bond potential term, respectively. These factors are
initialized at lines 5 and 6, applied to their respective potentials at lines 11 and 12
and updated throughout the simulation at lines 19 and 20. For more details about
this annealing technique, refer to [31–33].

At the numerical integration loop, the function ComputeBurialForce (line 11)
computes the atomic burial force (Fab) for all atom positions ai, using all expected
burials (r∗i) (Inputs "g" to "j"), all interval tolerances (δi) and applying the annealing
factor (Aab). The energy contribution of each atomic burial force is calculated as
defined in Equation 4.7.

The function ComputeHBonds (line 12) calculates the resulting force due to hy-
drogen bond formations, using Inputs "k" to "m". Each hydrogen bond represents
an attractive force between one oxygen atom and one nitrogen atom, both belonging
to the protein backbone, as explained in Section 4.4.2.

For each 5-tuple hbi in input "m", the hydrogen bond is evaluated using the coor-
dinates of the 3-donor and 2-acceptor atoms with three defined vectors: v⃗1 = a⃗1−a⃗4,
v⃗2 = a⃗2 + a⃗3 − 2a⃗1, and v⃗3 = a⃗4 − a⃗5. The resulting hydrogen bond formed be-
tween the donor a1 and the acceptor a4, and their adjacent atoms, for any tuple hbi
of input "m", is described by Equation 4.8 in Section 4.4.2.

The parameters used for calculating each function F (h), F (η) and F (θ) of Equa-
tion 4.8 are listed in the input "i" of the N2HB algorithm.

The values for the F (ai) function are also entered at input "l" of the N2HB
algorithm and were defined for [32]. Finally, the potential energy term due to all
hydrogen bond tuples of input "m", Uhb, as defined by Equation 4.6, is calculated by
the sum of all energetic contributions,

∑
Ei(Λi, ai) [32].

7.4 NAMD Components Modified
For NAMD to recognize and execute the atomic burial and hydrogen bond po-

tential calculations proposed in the N2HB algorithm, it is essential to include
these calculations, and their dependencies, into specific NAMD components. We
first identified these components and listed them according to their functionality
within the NAMD execution flow. This abstraction was then used as a reference in
the sequence of changes necessary to include the calculations of atomic burial and
hydrogen bond potentials and to construct the solution to the challenges listed in
Section 7.1.

The list of components and a outline of their functionalities used by our strategy
is shown in Table 7.1.

102

#N FunctionalityComponents
(Resource*)

1 DataTypeRepository* Repository for data types used in NAMD.

2 Molecule Stores and manages structural data.

3 Parameters Stores and communicates simulation parameters to
atoms and different bonds.

4 SimParameters Stores global simulation parameters, read from the
NAMD configuration file (NCF).

5 ComputeMgr Maps and manages Compute objects, used to create,
record, execute and transfer data between them.

6 WorkDistrib
Calculates and defines the layout of Patches, manages the

mapping and distribution of Compute objects and its association
with the created Patches objects.

7 LdbCoordinator Defines, executes and monitors NAMD’s load balancing
strategies.

8 ReductionMgr Provides management functionality for reduction operations,
such as the sum of all energy terms.

9 Broadcasts Provides interface for exchanging broadcast messages.

10 Sequencer
Runs the numerical integration loop on each node.

It receives messages from the Controller and
responds with the calculated results.

11 Controller

Controls the progress of the overall MD algorithm on all nodes.
It runs in the starting node broadcasting data and commands to

Sequencers in all nodes, receiving the results and writing the
output log files.

Table 7.1: Description of eleven NAMD elements modified in this PhD Thesis.

In Table 7.1, one resource and ten components are enumerated and named in
the first and second columns, respectively. The third column contains a synopsis of
each functionality used in our strategy. For a list with the names of the components
and corresponding modified files, responsible for implementing each functionality,
see the Table C.1 in Appendix C.

The first item in the list (N=1 in Table 7.1) contains the term DataTypeRepos-
itory*. This is the only exception in the Table, because it does not represent a
component, per se. This term was created exclusively for this work, just to facil-
itate understanding and organization of the solution. It is used to name a set of
NAMD elements that provide the functionality of a repository for declaring basic
data types used throughout the project. And, due to its comprehensive use by all
the objects of this work, it was included in the list.

The second item in the list is the first component: Molecule. This component
has the methods to store and communicate the structural data of the system, for
example, the names of the atoms, the coordinates and the geometric configuration
of the molecule. At the beginning of NAMD execution, data from this component is

103

sent to all compute nodes so that all created Compute objects have access to it.
The third item is the Parameters component. This component is responsible

for storing the parameters associated with atoms and their interactions, bonded
and non-bonded, within the molecular system. The parameters registered in this
component are also sent to all nodes to be used by the Compute objects during the
parallel execution of the simulation.

The fourth item is the SimParameters component. This is the component re-
sponsible for reading and processing the the global parameters of the simulation
obtained from INPUT files (Figure 7.2) and are applied throughout the NAMD ex-
ecution.

The fifth item is the ComputeMgr component. This component needs to be
changed for the purpose of making NAMD recognize and execute the Compute ob-
jects created for our strategy. All Compute objects must be declared in the Com-
puteMgr, which allows them to be created, registered (for later mapping) and exe-
cuted in NAMD’s engine. In this component, there are methods for mapping and
managing the behavior of Compute objects. Furthermore, it allows data to be trans-
ferred and updated.

The sixth item is the WorkDistrib component, which contains the methods to
create the layouts of Home Patches, and will manage the mapping and distribution
of calculations in parallel in NAMD, that is, associate the Compute objects with
the corresponding Patches and include these objects in the execution queue of each
computational node, as illustrated in Figure 4.6.

The seventh item is the LdbCoordinator component, responsible for running
and monitoring the load balancing strategies that are executed by NAMD in each
simulation. The two strategies available in NAMD are hierarchical and centralized
balancing, the latter being default.

The eighth item is the ReductionMgr component, which is responsible for the
reduction operations used by NAMD. These operations bring together the results
of energy contribution calculations into a data structure, called reduction structure.
For the reduction calculation mechanism to work, it needs at least: (a) to register,
in ReductionMgr, an identifier for energy contribution; and (b) in the Compute ob-
ject, to use the energy identifier responsible for inserting into the reduction struc-
ture the result of the energy contribution calculation.

The ninth item is the Broadcasts component. Its main functionality is to pro-
vide a message exchange interface for communication between Controller and Se-
quencer objects.

The last two items refer to the components Sequencer and Controller, mentioned
in Section 4.3.2. The functionalities of these components that we identified as
relevant to our strategy are:

(a) the Sequencer object is responsible for executing the molecular dynamics
simulation algorithm within the computational node, it receives global data from
the Controller to be used by the calculations of the Compute objects created in that
node and then sends the results of these calculations to the Controller .

(b) the Controller runs on the main node and coordinates the global evolution
of the molecular dynamics simulation algorithm (using message exchange between
local and remote objects), it receives the calculated values from the Sequencer and

104

writes in log files the data related to both the microscopic characteristics of the
system, such as the positions and velocities of the atoms, as well as macroscopic
ones, such as the temperature, pressure and energy of the system throughout the
simulation.

7.5 Computing Atomic Burial Forces
The atomic burial force is calculated in the ComputeBurialForce object and it is

responsible for computing (a) the atomic burial force values for each atom i within
the existing home patches in the worker node; and (b) the atomic burial energy
contribution to the total potential energy, using function B(ri) (Equation 4.7). For
NAMD to recognize this object and execute its methods, it was necessary to include
the ComputeBurialForce object into NAMD’s parallel execution flow. In order to do
so, it was necessary to map the object’s data dependencies and register them into
NAMD’s engine components.

Figure 7.4 shows NAMD’s components that were modified in order to include
the ComputeBurialForce object. First, we adapted the DataTypeRepository re-
source, which contains objects that host data dependencies. The BurialInfo type
was mapped into this resource for handling the values of r∗i , δi, ki , as well as
r1, . . . , r5, m1, . . . ,m5, n1, n2, n5 (Equation 4.7), in order to calculate the energy
contribution B(ri) (Equation 4.7) within ComputeBurialForce.

Figure 7.4: NAMD components used for adding ComputeBurialForce. Modified
from NAMD’s Class Hierarchy [166].

Then, we modified the component Molecule to load r∗i , δi, ki, calculate
r1, . . . , r5, m1, . . . ,m5, n1, n2, n5, and fill the BurialInfo element. Since the atomic
burial force depends on the distance from the atom to a central position, this com-
putation does not depend on atom interaction. For this reason, we added a method
that creates a Position object with the geometric center (central position), and in-
cluded it in ComputeBurialForce, to compute distances to the geometric center. We
also included BurialInfo in the method that handles the messages sent by the main
node and contains the structural data that are handled by the ComputeBurialForce
object.

In addition, the components SimParameters and ComputeMgr were created and
the option to perform the atomic burial calculation was added. Moreover, the ob-
ject ComputeBurialForce was created and inserted into NAMD’s Compute objects
queue. We also modified the component WorkDistrib by adding an entry to the

105

method mapComputes, thus creating a binding between ComputeBurialForce and
its corresponding Patch, which contains the atom data necessary for parallel com-
putations.

In ReductionMgr, the identifier REDUCTION_BURIAL_ENERGY was registered,
referring to atomic burial energy contribution. This identifier is also used by Com-
puteBurialForce, for adding the atomic burial contribution to the parallel reduction
computation, calculated for the i atoms which belong to the associated Home Patch.
Finally, we inserted global operations into the Controller for atomic burial forces
calculations, in order to: (a) recover the sum of the atomic burial energy contri-
butions calculated by all ComputeBurialForce objects (U total

ab); (b) apply annealing
weights to U total

ab (Section 7.7); and (c) add the value of U total
ab to the global potential

energy.

7.6 Computing Hydrogen Bond Forces
NAMD computes non-bonded interactions, like hydrogen bond, through (a) Self-

Compute objects, for atoms in the same home patch; and (b) PairCompute, for atoms
in different ones. To perform computations in parallel, NAMD ensures that data
from the atoms are available to Compute objects, including the patches.

Figure 7.5 presents the NAMD components that were adapted for adding hy-
drogen bond forces. In the first step (DataTypeRepository), the HBondsInfo type
was included to handle the values of "k" and "l" (Algorithm 2) and haf1, haf2, haf3,
µh, µη, µθ, µr, βh, βη, βθ, βr and ϵmax

hb . In addition, the type HBond was inserted to
hold the values of the 5-tuples stated in input "m" of Algorithm 2, i.e. hb1, ..., hbM .
Finally, the types HBondsAcc and HBondsDon were added to contain data from
acceptors and donors, respectively.

Figure 7.5: NAMD components used for adding ComputeHBonds. Modified from
NAMD’s Class Hierarchy [166]

The Parameters component was also modified to register the data structure that
holds the HBondValue objects. With this, HBondValue can be sent by the main
node to all workers, for parallel execution.

We then included the methods for reading input data and initial processing in
the Molecule component. More specifically, object types were created for force and
potential calculations. In this component, the HBondsInfo objects are filled, and a

106

mapping is created for all acceptor and donor atoms necessary for hydrogen bond
interactions, using the HBondsAcc and HBondsDon components. Finally, these el-
ements are also registered in the interface of the Molecule component for commu-
nication so that they are sent by the parent node to child nodes and are available
to objects ComputeHBonds and ComputeSelfHBonds during parallel execution.

The objects ComputeHBonds and ComputeSelfHBonds were then registered in
in components ComputeMgr and WorkDistrib. In ComputeMgr, those objects were
mapped to the Compute object queue. Additionally, in WorkDistrib, instructions
were included to map ComputeHBonds objects to home patches and proxy patches,
and ComputeSelfHBonds objects were mapped to their home patches.

The new Compute objects were also included in NAMD’s load balancing and
registered in NAMD’s reduction operations. For inclusion in load balancing, Com-
puteHBonds and ComputeSelfHBonds were registered in the LdbCoordinator com-
ponent, which maps the Compute objects to patches [108].

After that, we handled global operations. The components involved were the
Sequencer and the Controller. In the Sequencer, we added the functionality of
receiving, from the Controller, the value of the annealing weight (Section 7.7) and
updating it for the Compute objects in its worker node. In the Controller, a feature
was added for receiving energy contributions (Uhb) from the Sequencer and adding
them to the total potential energy calculation.

7.7 Computing Annealing Weights
For including calculations associated with the annealing weights applied in in

Algorithm 2, we modified the NAMD components shown in Figure 7.6, in order to
guarantee the correct values while performing a parallel execution.

Figure 7.6: NAMD components used for adding Annealing weights computation.
Modified from NAMD’s Class Hierarchy.

Considering the problem listed in Challenge (1), the elements Aab, Sab, Ahb, Shb,
ϵhb are global variables in MDBury’s sequential version. However, for the parallel
execution, the usage of these elements represent potential points for race condi-
tions. Our strategy for solving this challenge consists of five steps so that reading
and updating of the annealing weights are performed correctly in parallel.

The first step was to add the data dependencies needed for computing the An-
nealing contribution (Algorithm 2), i.e.: the weights (Aab, Ahb and ϵhb), the incre-
ment step (Sab and Shb) and the factors (baf1, baf2, baf3, haf1, haf2 e haf3). Simi-
larly to atomic burial and hydrogen bond, we modified BurialInfo and HBondsInfo,
adding the annealing fields.

107

The second step was the modification of the Molecule component and comprised:
(a) reading the input factors baf1, baf2, baf3, haf1, haf2 e haf3, used in the calcula-
tions of annealing weights in atomic burial and hydrogen bond forces; (b) initializa-
tion of weights and increments for computing annealing in the atomic burial and
hydrogen bond forces computations.

In the parallel execution, the values of weights, increments, and factors should
be available to compute objects ComputeBurialForce and ComputeHBonds which
will use them. As explained in Section 7.5, NAMD makes the Molecule compo-
nent data available in all compute nodes. Therefore, we registered these values in
the data type BurialInfo and HBondsInfo (see Sections 7.5 and 7.6) to make them
available to Compute objects.

The last three steps are responsible for updating and using annealing weights.
We used two objects SimpleBroadcastObject, one for each annealing weight (Aab

and ϵhb), which are updated globally and sent to objects ComputeBurialForce and
ComputeHBonds. The SimpleBroadcastObject is used in the communication be-
tween the Controller and Sequencer objects, ensuring the correct update of values
on nodes. In the Controller, we added the UpdateAnnealing method for getting
the values of Aab and ϵhb, calculating their new global values according to Algo-
rithm 2, and sending them to Sequencer objects. Similarly, in the Sequencer object,
the method UpdateAnnealing is used to receive the values of Aab and ϵhb, update
their values inside the worker node, which will be accessed by the parallel threads
of the ComputeBurialForce and ComputeHBonds objects.

7.8 Experimental Results
In this section, we conducted tests using the proteins and execution environ-

ments detailed in Sections 6.4.1 and 6.4.2, respectively. The largest protein, 4LNZ,
was selected for these tests, and the HPC environment utilized was Nord.

7.8.1 NAMD Configuration with Atomic Burials
Similar to was presented in Section 6.4.3 the objective of this Section is to

present a basic configuration of NAMD that allows running a parallel molecu-
lar dynamics simulation of the folding process of proteins using the atomic burial
method.

We will refer as NCAB to this basic NAMD configuration file containing either
additional parameters for running NAMD with our Atomic Burial (AB) contribu-
tion (NAMD+AB) or containing additional parameters for running NAMD with
our both contributions, the APG strategy and the Atomic Burial (AB) method
(NAMD+APG+AB). An example of the contents of all parameters used in this work
is available in Appendix B.

In order to maintain compatibility with the atomic burial technique, two pa-
rameters from Algorithm 2 were added to NCAB and their manipulation was in-
serted into NAMD’s source code. The first parameter is called burials and defines
the name of the file containing the input values used in atomic burial calculations,

108

such as annealing factors and estimated center distances, which are used in the ini-
tialization process (items "e" e "f" of line 3 in Algorithm 2). The second parameter is
called hbondsAF and defines the name of the file containing the input values used
in hydrogen bond potential energy calculations, such as hydrogen bond annealing
factors, hydrogen bond parameters for the calculation of the function F (α) and the
list of 5-tuple atoms used in hydrogen bond calculation. (items "i", "j" e "k" from
the Algorithm 2).

Finally, the atomic burial and hydrogen bond calculations that were included
in NAMD for executing our experimental tests with parallel molecular dynamics
simulations using atomic burial will only work if both burials and hbondsAF pa-
rameters are defined in the NACB. Otherwise, NAMD will run without atomic
burial and hydrogen bond calculations.

7.8.2 Tests in Nord: APG and Atomic Burial
Execution Times

Here we present the execution times, simulation performance, speedup and ef-
ficiency obtained with executions that used both APG and Atomic Burial (AB). In
this experiment, we also used up to 256 cores and the largest protein (4LNZ) in its
extended form (1D). The results are shown in Table 7.2.

#C #N #It.

NAMD with AB
Default Strategy APG Strategy

Execution time Patch Execution time Patch Grid
seconds (h:m:s) Grid seconds (h:m:s) Phase:1 Phase:2 Phase:3

16 1 15M 126,511 35h 08m 31s 47x3x1 125,904 34h 58m 24s 47x3x1 28x5x1 20x7x1
32 2 15M 88,454 24h 34m 14s 47x3x1 65,338 18h 08m 58s 47x3x1 28x5x1 20x7x1
64 4 15M 45,595 12h 39m 55s 47x3x1 39,812 11h 03m 32s 47x3x1 28x5x1 20x7x1

128 8 15M 40,172 11h 09m 32s 47x3x1 37,494 10h 24m 54s 47x3x1 28x5x1 20x7x1
256 16 15M 44,420 12h 20m 20s 47x3x1 37,318 10h 21m 58s 47x3x1 35x4x1 20x7x1

Table 7.2: NAMD+AB executions times: not using APG strategy (Default) vs using
APG strategy. Protein used: 4LNZ with 5,714 atoms.

In Table 7.2, it is worth noticing that, also with Atomic Burial (AB), the ex-
ecution times are reduced when APG is used. Figure 7.7 shows the comparison
of execution times from Tables 6.9 and 7.2. In all executions, the runtime with
atomic burial was lower than the runtime without it. This happens because, with
Atomic Burial (AB), we added forces (atomic burial and hydrogen bonds) and this
can potentially change the way the protein folds over the simulation.

109

1(16) 2(32) 4(64) 8(128) 16(256)

20,000

40,000

60,000

80,000

100,000

120,000

140,000

#Nodes (#CPU cores)

E
xe

cu
ti

on
ti

m
e

(s
ec

)

Default + AB

APG + AB

Figure 7.7: Execution times: default NAMD + AB vs APG + AB.

Figure 7.8a shows the execution times (in seconds) and Figure 7.8b the per-
formance (in nanoseconds per day), both for running molecular dynamics simu-
lations of the folding process for protein 4LNZ. These simulations were executed
with three strategies: default NAMD, NAMD+APG and NAMD+APG+AB. All sim-
ulations were performed in Nord cluster, using in 1, 2, 4 and 8 nodes - 16, 32,
64 and 128 CPU cores, respectively. Note that, in Figures 7.7 and 7.8a, we were
able to reduce the execution time with APG and APG+AB, and the best results
were obtained running NAMD+APG+AB. This is also shown in Figure 7.8b where
NAMD+APG+AB was able to achieve up to 34 ns/day whereas default NAMD
achieved up to 24 ns/day. We only plotted the speedup and parallel efficiency for
up to 4 nodes (64 cores) since it can be seen in Figure 7.8 that the gain in execution
time with 8 and 16 nodes is marginal.

1(1
6)

2(3
2)

4(6
4)

8(1
28

)

20,000

40,000

60,000

80,000

100,000

120,000

140,000

#Nodes(#Cores)

E
xe

cu
ti

on
ti

m
es

(s
ec

)

NAMD+APG+AB

NAMD+APG

NAMD

(a) Execution times × number of nodes

1(1
6)

2(3
2)

4(6
4)

8(1
28

)0

5

10

15

20

25

30

35

#Nodes(#Cores)

Pe
rf

or
m

an
ce

(n
s/

da
y)

NAMD+APG+AB

NAMD+APG

NAMD

(b) Performance (ns/day) × number of
nodes

Figure 7.8: Execution times and performance (ns/day) using up to 8 nodes.

Figure 7.9a shows the speedup and Figure 7.9b the parallel efficiency for these

110

simulations. In Figure 7.9a, the best speedup (3.162) was obtained with NAMD+
APG+AB on 4 nodes (64 cores) and this corresponds to an 80% efficiency (Fig-
ure 7.9b). We can also see in Figure 7.9 that both NAMD+APG and NAMD+APG+
AB are able to improve considerably the speedup of NAMD for protein 4LNZ. It is
worth noticing that NAMD simulations have considerable message exchange and,
in this scenario, an efficiency of 80% is very good.

1(16) 2(32) 4(64)
1

1.5

2

2.5

3

3.5

4

#Nodes(#Cores)

Sp
ee

du
p

Linear

APG+AB

APG

NAMD

(a) Speedup × number of nodes

1(16) 2(32) 4(64)
0

0.2

0.4

0.6

0.8

1

#Nodes(#Cores)

E
ffi

ci
en

cy

NAMD+APG+AB

NAMD+APG

NAMD

(b) Efficiency × number of nodes

Figure 7.9: N2HB: Speedup and parallel efficiency using up to 4 nodes.

Realistic Protein Folding with NAMD+APG+AB

In this section, we discuss the results obtained with NAMD+APG+AB in a real-
istic simulation using the 4LNZ protein. This simulation was prepared using the
same basic configuration described in Section 7.8.2, with time step set to 1 fs and
the number of iterations was set to 1.7 billion, which corresponds to a folding time
of 1.7 µs.

The first objective of this 1.7 µs simulation was to observe the behavior of
NAMD+APG+AB in a realistic simulation. The execution was divided into 17
phases with 100 million iterations each, with 20 subphases of 5 million iterations.
This was done to respect the 48 hour per job restriction in the Nord cluster. Overall,
this simulation took more than 2 months.

NAMD with APG+AB

Phase Subphases #Iter.
Runtime Patch Grid

(seconds) (d:h:m:s) Config. #Patches
1 1-20 100M 559,927 6d 11h 32m 07s 47 x 3 x 1 141
4 61-80 100M 628,306 7d 06h 31m 46s 6 x 4 x 3 72
8 141-140 100M 444,717 5d 03h 31m 57s 5 x 4 x 4 80

12 221-240 100M 354,569 4d 02h 29m 29s 8 x 5 x 3 120
16 301-320 100M 332,177 3d 20h 16m 17s 6 x 7 x 3 126
17 321-340 100M 371,293 4d 07h 08m 13s 5 x 8 x 3 120

Table 7.3: Runtime and patch grid values for the realistic simulation. Protein used:
4LNZ with 5,714 atoms

111

Table 7.3 presents the values of patch grids for some phases/subphases in this
experiment. It is interesting to notice that, at the beginning, the simulation box
had an elongated shape (patch grid 47 x 3 x 1). Then, the shape evolved to a more
compact one in phases 4 and 8. After that, in phases 12, 16 and 17, the simulation
box assumes an intermediary shape, showing that the simulation is evolving to a
more stable configuration.

In order to visualize the folding of protein 4LNZ, its geometric configurations
were generated using the VMD software [167]. For that, we provided to VMD the
trajectories file, that contains, for this particular simulation, a sequence of 68,000
frames recorded during the execution. Each frame represents a snapshot of the
protein’s 3D configuration at that moment (atomic positions). Using our trajec-
tory file, VMD generated a 3D graph consisting of 1,000 frames uniformly sampled
along the trajectory, providing a detailed visualization of the folding process.

Additionally, VMD was used to generate a frame of the native 3D structure of
the 4LNZ protein, obtained from PDB [163] using the atomic coordinates provided
in the original PDB file. This frame served exclusively as a reference for visual
comparison.

Figure 7.10 shows the starting point of the simulation, i.e., the 1D structure of
4LNZ.

Figure 7.10: Geometric configuration of the 4LNZ protein at the beginning of the
simulation.

Figure 7.11 illustrates the progress of the simulation and presents frame 35,
generated from record 2,380 of atomic coordinates. At this point in the simulation,
it can be seen that, at this moment of the simulation, the protein has started to
fold.

Figure 7.11: Geometric configuration of 4LNZ during the simulation (frame 35).

To quantitatively assess how close the simulated structure is to the native con-
formation, the Root Mean Square Deviation (RMSD) is used [168]. RMSD, ex-
pressed in Angstroms (Å), measures the average distance between atoms of super-
imposed protein structures. In this study, RMSD values were computed using VMD

112

by comparing the frames generated from our simulation to the native 3D structure
of the 4LNZ protein, obtained from the original PDB file. This metric allows us to
evaluate how the protein evolves toward its folded state during the simulation.

Figure 7.12 presents: (a) the frame corresponding to the last 3D configuration
written to the trajectory file at the end of the NAMD+APG+AB simulation; (b) the
native 3D structure of protein 4LNZ obtained from the original PDB file; and (c)
the superposition of both structures for RMSD calculation. Although the simulated
structure is close to the native conformation, some differences remain. This sug-
gests that a simulation time longer than 1.7 µs may be required to complete the
folding process.

(a) 4LNZ - last frame
(b) 4LNZ - native structure

(PDB)
(c) Last frame

superimposed on native

Figure 7.12: 3D configurations of 4LNZ. (a) On the left, the last frame obtained
after running NAMD+APG+AB for 1.7 billion iterations.(b) In the center, the na-
tive structure generated from the original PDB file. (c) On the right, last frame
superimposed onto the native structure for RMSD calculation.

The results of the RMSD calculation are presented in Figure 7.13. We report
RMSD values only for this realistic simulation, since those shown in Section 7.8.2
corresponded to shorter runs (up to 20 million steps) that began from the protein’s
primary structure (unfolded state).

This is visually represented in Figure 7.13, which illustrates through the RMSD
values, the evolution of the protein’s transformations along its folding. The X axis
shows the sample space composed of 1000 frames. Position x = 0 represents frame
0, i. e., the first frame generated from the 1D configuration of 4LNZ (Figure 7.10).
The Y axis shows the RMSD values, where the value of y is equal to the RMSD
calculated between the frame of the native structure and frame x. In this graph,
the lower the RMSD, the better. At the beginning of the simulation, for the first
frame, the calculated RMSD value is equal to 306.5 Å, confirming the great differ-
ence between the structures at the beginning of the simulation (Figure 7.10). For
frame 35 (Figure 7.11), the value of RMSD is 52.1 Å. This reduction in RMSD in-
dicates an increased similarity between the geometric configurations. For the last
frame represented in Figure 7.12, the calculated RMSD value is 25.0 Å. Therefore,
we can notice that, at the beginning, there is a great reduction in RMSD. How-
ever, after the first folding operations, the RMSD decreases slowly but constantly.
We also calculated the TM-score (0.1765) and the GDT-TS-score (9.07) using the
Yang Zhang’s webserver at https://zhanggroup.org/TM-score/, and those values are
consistent with the 25.0 Å RMSD. This shows how hard MD-based protein folding
simulation is and suggests that, for this protein, we would need more than two
months of execution in Nord to obtain the native structure. The 4LNZ protein was

113

0 100 200 300 400 500 600 700 800 900 1,000
0

50

100

150

200

250

300

Frame

R
M

SD

RMSD vs Frame
(Protein 4LNZ)

Figure 7.13: RMSD between the structure obtained by APG+AB and the native
structure along the execution.

chosen for this realistic simulation because it has a greater number of atoms than
previous proteins (Table 6.1).

7.9 Contribution Review
In this chapter, we proposed and evaluated our strategy for parallel execution

of MDBury’s algorithm using NAMD. In conjunction with NAMD and APG (Sec-
tion 7.8), the atomic burials force was able to reduce the simulation running time,
allowing it to work on proteins with a number of atoms bigger than 5,000 atoms,
including with our APG strategy. As far as we know, this is the first time atomic
burials are integrated to a parallel simulation framework such as NAMD.

We first showed how the atomic burial, hydrogen bond and annealing weights
computation were added to NAMD’s engine, by modifying its source code.

Next, we presented our results while running NAMD with both our strategies
(APG+AB) for simulating the folding of the protein 4LNZ, showing the obtained
execution time, performance, speedup and efficiency results for this experiment.

Then, we presented the result of a realistic simulation with 1.7 billion itera-
tion for a total of 1.7 µs of simulated time. We showed the runtimes obtained in
each phase of our APG strategy execution, then the RMSD calculated between the
native structure and our simulated protein.

The proposal and results presented in this chapter were published in [156].

114

Part III

Conclusions

115

Chapter 8

Conclusions and Future Work

8.1 Conclusions
Ab initio Molecular Dynamics simulations of Protein Folding demand high com-

puting power on account of mainly two factors: (i) the complex calculations for sim-
ulating molecular behavior are time-dependent and (ii) they often use an explicit
solvation model for representing all the atoms in the target system (solvent and
solute).

In this PhD Thesis we investigated two parallel strategies to accelerate ab initio
molecular dynamics protein folding simulations, while maintaining good accuracy.
Our first contribution is a strategy called Adaptive Patch Grid (APG), performed
in the simulation workflow of the NAMD parallel tool for molecular dynamics sim-
ulations. Here, we added a new loop to the execution workflow of the molecular
dynamics simulation performed with NAMD, starting at the beginning of NAMD’s
domain decomposition at a point that we identified as Patch Grid Generation. Next,
we added new actions for writing a Partial Folding Trajectory File, Update the Sim-
ulation Configuration File and Merge the Partial Trajectories.

In the Patch Grid Generation loop, after a predefined number of molecular dy-
namics simulation steps, we reinsert the partial 3D geometric configuration of the
protein as input to NAMD’s domain decomposition method, which generates a new
patch grid and the corresponding set of patches are reassigned to CPU cores. Next,
for the Partial Folding Trajectory File, we write the changes in 3D geometric con-
figuration that are used as input to generate the new patch grid. For the Configu-
ration File Update, we added intermediary simulation data to be used in the next
execution, such as the first loop step and the number of steps to be performed in
the next iteration. Finally, we Merge All The Partial Trajectory Files into a single
file containing the complete trajectory that is presented in the output, as expected
in a typical molecular dynamics simulation.

Our second contribution is a parallel execution strategy for a method called
Atomic Burial (AB) applied in ab initio protein folding simulations, as defined in
[31, 32]. We incorporated the corresponding Atomic Burial (AB) and Hydrogen
Bonds (HB) forces and potentials, as well as the annealing weights, into NAMD’s
classical force computation engine, which allowed the parallel execution of atomic
burial and hydrogen bond calculations in a molecular dynamics simulation of pro-

116

tein folding, potentially increasing the sizes of the simulated globular proteins and
reducing the execution time of these simulations. We constructed an algorithm,
called N2HB, and incorporated it to NAMD. We used NAMD’s component abstrac-
tion to add the necessary calculations of AB+HB forces and potentials into NAMD’s
engine for parallel execution. We analyzed and modified 11 components in NAMD
and added 2 new objects to compute the corresponding AB+HB forces and poten-
tials, along with the annealing weights. To the best of our knowledge, there was no
existing solution that integrates atomic burials into a molecular dynamics simula-
tion framework such as NAMD.

In order to evaluate our proposals, our experiments were conducted in two high-
performance computing environments: the Marenostrum 4 supercomputer [144]
and the Nord III cluster [159]. The proteins selected for our experiments were
globular and of different sizes to compose the target molecular systems. We pre-
sented evaluation results showing that there was no evidence of scalability or re-
duction of execution time while running simulations using the default NAMD tool
for simulating protein folding in a implicit solvent model in Marenostrum 4 and in
Nord.

We performed tests on our first contribution, the APG strategy, in the Nord
Cluster, using with 1, 2, 4, 8 and 16 computing nodes, with 16 CPU cores on each
node. Each test consisted of molecular dynamics simulations of the folding process
of protein 4LNZ with 5,714 atoms, running NAMD using our APG strategy. We did
not use Atomic Burials in these tests. In the molecular dynamics numerical inte-
gration loop, we executed a total of 20 million iterations. With parallel execution,
these iterations were divided into 4 phases of 5 million iterations each. For each
test with different number of computing nodes, we recorded simulation data con-
sisting of (i) the execution time of each phase, (ii) the simulation box configuration,
called patch grid, generated by NAMD’s domain decomposition method for each
phase, and (iii) the running time of the complete 20 million iteration molecular
dynamics simulation. Next, we conducted another set of tests using a numeri-
cal integration loop with 15 million iterations to compare the parallel execution of
molecular dynamics simulations performed with a fixed patch grid against those
using our adaptive patch grid. Each test was executed twice: (a) once with default
NAMD without APG, and (b) once with NAMD and our APG strategy. We compared
all these results and noted that the parallel execution using NAMD and our APG
strategy for 4LZN protein reduced the execution time in at least 1 hour compared
to default NAMD simulation, considering that the best results were obtained while
using 16 nodes (256 cores).

To evaluate our second contribution, running NAMD with the Atomic Burial
method and APG (NAMD+APG+AB), we performed molecular dynamics simula-
tions in the Nord cluster, using 1, 2, 4, 8 and 16 nodes, each node with 16 CPU
cores. For each simulation test, we utilized the 4LNZ protein, consisting of 5,714
atoms, and ran a numerical integration loop for 15 million iterations. Each test
was executed twice: (i) once using default NAMD with AB+HB forces, however
without our APG strategy (we called default NAMD+AB); (ii) once using NAMD
with AB+HB applying our APG strategy with 3 phases of 5 million iterations each;
we named this strategy APG+AB.

117

We compared the results in both cases and observed a reduction of 2 hours in the
execution times when using the NAMD+APG+AB strategy with 256 CPU cores. In
all cases, the runtime with atomic burial was consistently shorter than without it,
indicating that incorporating the two forces and potentials from the atomic burial
method can potentially influence the protein’s folding during the simulation. We
also compared the performance in nanoseconds per day across three strategies: de-
fault NAMD, NAMD+APG, and NAMD+APG+AB. The NAMD+APG+AB strategy
achieved up to 34 ns/day, while the default NAMD reached up to 24 ns/day. Ad-
ditionally, we evaluated the speedup and parallel efficiency on up to 4 nodes (64
cores). Once again, our proposed strategies, NAMD+APG and NAMD+APG+AB
improved the speedup of NAMD for simulating the folding process of the globular
protein 4LNZ: the best speedups obtained were 2.77x with NAMD+APG and 3.16x
with NAMD+APG+AB, both running on 4 nodes using a total of 64 cores.

Lastly, we performed a realistic protein folding simulation with 1.7 billion itera-
tions, simulating a 1.7 µs folding process of the 4LNZ protein. Using NAMD+APG+
AB, this simulation was executed in 17 phases, each consisting of 100 million it-
erations, further subdivided into 20 subphases of 5 million iterations each. The
total execution spanned over two months. We recorded the runtime and the patch
grid generated for each phase. Using these data, we observed the evolution of the
simulation box configuration over time. Unlike the fixed domain decomposition
approach of default NAMD, our APG strategy allowed the simulation box config-
uration to adapt to the protein’s structural changes throughout the simulation,
evolving from an elongated shape around the protein in its 1D primary structure,
with a patch grid of 47x3x1 (total of 141 patches), to more compact 3D configura-
tions such as 5x4x4 and 6x4x3 (80 and 72 patches, respectively).

We recorded 68,000 atomic positions, referred to as frames, to visualize the real-
istic folding process. Using the VMD software, we: (i) generated a 3D graphic with
1,000 frames along the protein trajectory; and (ii) calculated the Root Mean Square
Deviation (RMSD) for each frame compared to the native 3D structure. The RMSD
data revealed a consistent reduction in the structural difference between the initial
1D 4LNZ structure and the final 3D structure over the course of the simulation,
decreasing from an expected 306.5 Å to 25.0 Å. We confirmed these results through
additional measures, calculating a TM-score of 0.1765 and a GDT-TS score of 9.07,
both of which align with the 25.0 Å RMSD.

To summarize, we conclude that our contributions advance the state-of-the-art
in parallel protein folding simulations. We successfully achieved the proposed ob-
jectives of this PhD Thesis, which were: (i) to investigate parallel strategies that
reduce the execution time of molecular dynamics simulations of protein folding
while maintaining good accuracy, and (ii) to explore a flexible approach to incorpo-
rate additional force computations into such simulations, especially those related
to molecular stability. These objectives were met through the development of two
complementary strategies: the Adaptive Patch Grid (APG) and the Parallel Exe-
cution Strategy for Atomic Burial computation (N2HB algorithm), both of which
demonstrated significant improvements in simulation performance and scalability.
These contributions, along with the obtained results, were published in [156].

118

8.2 Future work
In recent years, artificial intelligence techniques have been successfully applied

to the protein folding problem [30], although they rely on prior information that is
not available in ab initio simulations. With this in mind, we plan to incorporate
new modules that leverage artificial intelligence strategies to improve ab initio
molecular dynamics simulations using both of our contributions.

For our APG strategy, it was observed during the experiments that finding the
appropriate relationship between the number of processing units (nodes or cores)
and the generated patch grids requires numerous executions of the domain decom-
position algorithm and subsequent numerical integration loops. This can lead to
the decision to discard a simulation if the generated patch grid does not produce a
usable ensemble. To avoid this scenario, we consider as future work the addition
of a module assisted by a supervised learning algorithm that could be trained on
previously obtained ensembles for a family of globular proteins of interest. With
this, we hope that a model can suggest better patch grids for new simulations and
improve further the molecular dynamics simulation workflow when using our APG
strategy.

In our experiments, we noticed that the geometric positions of the atoms re-
main quite the same in most iterations, and the geometric positions change quite
rapidly in other specific iterations. Thus, we consider using artificial intelligence to
accelerate the parts of the simulation where the geometric positions remain almost
the same. We also intend to use artificial intelligence to detect when the geometric
positions are changing quickly and, in such cases, switch to the traditional molec-
ular dynamics, where we will run molecular dynamics simulations using both our
strategies.

Given the large dataset generated with the Partial Folding Trajectory Files
when using our APG strategy, we plan to incorporate a module that leverages ar-
tificial intelligence models. These models will be trained to predict intermediate
folding states based on our partial trajectory data, allowing us to bypass unneces-
sary intermediate steps or prioritize the exploration of specific folding trajectories.
This approach aims to reduce the computational cost of simulating the entire fold-
ing process.

The largest globular protein analyzed in our experiments (4LNZ) consists of
5,714 atoms. In future work, we aim to extend our simulations to larger proteins,
which will benefit from utilizing more computational nodes and cores. To facilitate
this, we will implement a new module designed to evaluate and allocate the optimal
number of nodes or cores for each simulation, improving the usage of available
resources.

Building on the above improvements, we believe that our simulations can be
enhanced by adding a new module to the N2HB algorithm. This module would
harness the various implicit solvent models supported by NAMD, as well as other
resources available in NAMD, such as the Collective Variables. These features
could also be used by an artificial intelligence module to guide the sampling of
specific conformations relevant to simulating the protein folding process.

119

Finally, although RMSD was adopted as the primary structural descriptor in
this work due to its robustness and wide usage in molecular dynamics studies, it
is important to acknowledge that other parameters can provide valuable comple-
mentary insights into the folding process. Solvent Accessible Surface Area (SASA),
radius of gyration (Rg), the number of intramolecular hydrogen bonds, and side-
chain contact formation are examples of structural features that reflect additional
aspects of protein compaction, packing, and stability [20, 21]. These descriptors are
particularly relevant for identifying folding intermediates and evaluating native-
like structural patterns. Their inclusion, however, would have required a broader
analytical pipeline and additional post-processing that were beyond the scope of
this work. Therefore, their omission reflects a methodological decision aligned with
the core objectives of this study, which focused on evaluating folding dynamics un-
der atomic burial forces using parallel simulation strategies. Future work may
benefit from integrating these additional metrics to deepen the structural inter-
pretation of folding trajectories.

120

References

[1] Donald Voet and Judith G. Voet. Biochemistry. John Wiley & Sons, Inc., 4
edition, 2021. ISBN 9781119770640. International Adaptation; Last access:
2025-03-01. 1, 8, 10, 11, 12, 13, 15, 16, 20

[2] K. A. Dill and J. L. MacCallum. The protein-folding problem, 50 years on.
Science, 338:1042–1046, 2012. doi: 10.1126/science.1219021. Last access:
2025-03-01. 1, 13, 14, 17, 21

[3] Emiliano Brini, Carlos Simmerling, and Ken A. Dill. Protein storytelling
through physics. Science, 370, Nov 2020. doi: 10.1126/science.aaz3041. Last
access: 2025-03-01. 1, 3, 18, 19, 29

[4] Jacob D. Durrant and J. Andrew McCammon. Molecular dynamics simu-
lations and drug discovery. BMC Biology, 9(71):992–1023, oct 2011. doi:
10.1186/1741-7007-9-71. Last access: 2025-03-01. 1, 2, 33, 34, 35, 37, 38

[5] Márcio Dorn, Mariel Barbachan e Silva, Luciana S. Buriol, and Luís C.
Lamb. Three-dimensional protein structure prediction: Methods and com-
putational strategies. Computational Biology and Chemistry, 53:251–276,
2014. doi: 10.1016/j.compbiolchem.2014.10.001. Last access: 2025-03-01. 1,
2, 10, 18, 25, 26, 27, 28, 29, 30, 32

[6] Jérôme Hénin, Tony Lelièvre, Michael R Shirts, Omar Valsson, and Lucie
Delemotte. Enhanced sampling methods for molecular dynamics simula-
tions. arXiv.org, 2022. doi: 10.1016/j.bbagen.2014.10.019. Last access: 2025-
03-01. 1, 2, 29, 31, 37

[7] B. Acun, D. J. Hardy, L. V. Kale, K. Li, J. C. Phillips, and J. E. Stone. Scalable
Molecular Dynamics with NAMD on the Summit System. IBM Journal of
Research and Development, 62(6):4:1–4:9, Dez 2018. doi: 10.1147/JRD.2018.
2888986. Last access: 2025-03-01. 1, 3, 4, 38, 39, 47, 55, 56, 74, 75, 76, 85

[8] S. Peng, Y. Cui, S. Yang, W. Su, X. Zhang, T. Zhang, W. Liu, and X. Zhao.
A CPU/MIC Collaborated Parallel Framework for GROMACS on Tianhe-2
Supercomputer. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 16(2):425–433, March 2019. ISSN 1545-5963. doi: 10.1109/
TCBB.2017.2713362. Last access: 2025-03-01. 1, 3, 4, 56, 57, 74, 75

121

[9] X. Duan, P. Gao, T. Zhang, M. Zhang, W. Liu, W. Zhang, W. Xue, H. Fu,
L. Gan, D. Chen, X. Meng, and G. Yang. Redesigning LAMMPS for Peta-
Scale and Hundred-Billion-Atom Simulation on Sunway TaihuLight. In
SC18: International Conference for High Performance Computing, Network-
ing, Storage and Analysis, pages 148–159. IEEE, Nov 2018. doi: 10.1109/SC.
2018.00015. Last access: 2025-03-01. 1, 3, 4, 58, 59, 74, 75, 76

[10] P. Malakar, T. Munson, C. Knight, V. Vishwanath, and M. E. Papka.
Topology-Aware Space-Shared Co-Analysis of Large-Scale Molecular Dy-
namics Simulations. In SC18: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, pages 305–319. IEEE,
Nov 2018. doi: 10.1109/SC.2018.00027. Last access: 2025-03-01. 1, 3, 59, 60,
61, 75

[11] Jaewoon Jung, Chigusa Kobayashi, Kento Kasahara, Cheng Tan, Akiyoshi
Kuroda, Kazuo Minami, Shigeru Ishiduki, Tatsuo Nishiki, Hikaru Inoue,
Yutaka Ishikawa, Michael Feig, and Yuji Sugita. New parallel computing
algorithm of molecular dynamics for extremely huge scale biological systems.
Journal of Computational Chemistry, 42(4):231–241, 2021. doi: 10.1002/jcc.
26450. Last access: 2025-03-01. 1, 3, 47, 61, 63, 75

[12] David E. Shaw, Peter J. Adams, Asaph Azaria, and et al. Anton 3: Twenty
Microseconds of Molecular Dynamics Simulation before Lunch. In Proceed-
ings of the International Conference for High Performance Computing, Net-
working, Storage and Analysis, SC ’21, New York, NY, USA, 2021. Associa-
tion for Computing Machinery. ISBN 9781450384421. doi: 10.1145/3458817.
3487397. Last access: 2025-03-01. 1, 3, 4, 38, 63, 64, 75, 77

[13] Hyungro Lee, Heng Ma, Matteo Turilli, Debsindhu Bhowmik, Shantenu Jha,
and Arvind Ramanathan. DeepDriveMD: Deep-Learning Driven Adaptive
Molecular Simulations for Protein Folding. 2019 IEEE/ACM Third Work-
shop on Deep Learning on Supercomputers (DLS), pages 12–19, 2019. doi:
10.1109/DLS49591.2019.00007. Last access: 2025-03-01. 1, 3, 28, 65, 66, 75,
77

[14] Yui Tik Pang, Yinglong Miao, and Yi Wang et al. Gaussian Accelerated
Molecular Dynamics in NAMD. Journal of Chemistry Theory and Computa-
tion, 13:9–19, 2017. doi: 10.1021/acs.jctc.6b00931. Last access: 2025-03-01.
1, 3, 66, 67, 75, 77

[15] Michela Taufer, Stephen Thomas, and Michael Wyatt et al. Characteriz-
ing In Situ and In Transit Analytics of Molecular Dynamics Simulations for
Next-Generation Supercomputers. In 2019 15th International Conference on
eScience, pages 188–198, 09 2019. doi: 10.1109/eScience.2019.00027. Last
access: 2025-03-01. 1, 3, 67, 68, 69, 75, 76, 77

[16] Omar Awile, Ferit Büyükkeçeci, Sylvain Reboux, and Ivo F. Sbalzarini. Fast
neighbor lists for adaptive-resolution particle simulations. Computer Physics

122

Communications, 183(5):1073–1081, 2012. doi: 10.1016/j.cpc.2012.01.003.
Last access: 2025-03-01. 1, 3, 69, 70, 75, 76

[17] Pedro Gonnet. Pairwise verlet lists: Combining cell lists and verlet lists to
improve memory locality and parallelism. J. Comput. Chem., 33(1):76–81,
2012. doi: 10.1002/jcc.21945. Last access: 2025-03-01. 1, 3, 70, 71, 72, 75, 76

[18] Pedro Gonnet. Pseudo-Verlet lists: a new, compact neighbour list represen-
tation. Molecular Simulation, 39(9):721–727, 2013. doi: 10.1080/08927022.
2012.762097. Last access: 2025-03-01. 1, 3, 70, 71, 72, 75, 76

[19] Adam K. Sieradzan, Jordi Sans-Duñó, and et al. Emilia A. Lubecka. Opti-
mization of parallel implementation of UNRES package for coarse-grained
simulations to treat large proteins. Journal of Computational Chemistry, 44
(4):602–625, 2023. doi: 10.1002/jcc.27026. Last access: 2025-03-01. 1, 2, 3,
4, 72, 73, 75, 76

[20] Pedro R. Arantes, Lucas T. Costa, Guilherme M. A. Ferreira, Rodrigo A. C. A.
Lima, Renata B. Araujo, Wendel A. Santos, Rafael R. C. Pereira, and Ro-
drigo Ligabue-Braun. Development of GROMOS-compatible parameter set
for simulations of chalcones and flavonoids. The Journal of Physical Chem-
istry B, 123(5):994–1008, 2019. doi: 10.1021/acs.jpcb.8b10503. Last access:
2025-03-01. 2, 120

[21] Marcelo Depólo Polêto, Bruno Iochins Grisci, Márcio Dorn, and Hugo Verli.
ConfID: an analytical method for conformational characterization of small
molecules using molecular dynamics trajectories. Bioinformatics, 36(11):
3576–3577, 2020. doi: 10.1093/bioinformatics/btaa130. Last access: 2025-
03-01. 2, 29, 37, 120

[22] Gantulga Norjmaa, Gregori Ujaque, and Agustí Lledós. Beyond Continuum
Solvent Models in Computational Homogeneous Catalysis. Topics in catal-
ysis, 65(1-4):118–140, 2022. doi: 10.1007/s11244-021-01520-2. Last access:
2025-03-01. 2, 3, 4, 19, 36

[23] Mark Abraham, Andrey Alekseenko, Cathrine Bergh, and et al. GROMACS
2023.1 Manual, apr 2023. Last access: 2025-03-01. 2, 3, 4, 19, 33, 36, 56, 94

[24] Eva Prašnikar, Martin Ljubič, Andrej Perdih, and Jure Borišek. Machine
learning heralding a new development phase in molecular dynamics simula-
tions. Artificial intelligence review, 57(4, 102), 2024. ISSN 1573-7462. doi:
10.1007/s10462-024-10731-4. Last access: 2025-03-01. 2, 3, 37

[25] Tim Isgro, James Phillips, Marcos Sotomayor, and et al. NAMD TUTORIAL.
Unix/MacOSX Version. Tutorial, Beckman Institute, University of Illinois at
Urbana-Champaign, February 2012. Computational Biophysics Workshop;
Last access: 2025-03-01. 2, 3, 4, 33, 36, 84, 85

123

[26] Jaroslaw Meller. Molecular Dynamics. In Encyclopedia of Life Sciences. John
Wiley & Sons, Inc., 2001. doi: 10.1038/npg.els.0003048. Last access: 2025-
03-01. 3, 31, 32, 37, 38

[27] Harold A. Scheraga, Mey Khalili, and Adam Liwo. Protein-Folding Dynam-
ics: Overview of Molecular Simulation Techniques. Annual Review of Phys-
ical Chemistry, 58:57–83, 2007. doi: 10.1146/annurev.physchem.58.032806.
104614. Last access: 2025-03-01. 3, 19, 31, 36

[28] Roy Nassar, Emiliano Brini, Sridip Parui, Cong Liu, Gregory L. Dignon,
and Ken A. Dill. Accelerating Protein Folding Molecular Dynamics Using
Inter-Residue Distances from Machine Learning Servers. Journal of Chem-
ical Theory and Computation, 18(3):1929–1935, 2022. doi: 10.1021/acs.jctc.
1c00916. Last access: 2025-03-01. 3, 19, 29

[29] Alexey V. Onufriev and David A. Case. Generalized Born Implicit Solvent
Models for Biomolecules. Annual Review of Biophysics, 48(1):275–296, 2019.
doi: 10.1146/annurev-biophys-052118-115325. Last access: 2025-03-01. 3,
4, 36

[30] John Jumper, Richard Evans, and et al Alexander Pritzel. Highly accurate
protein structure prediction with AlphaFold. Nature (London), 596(7873):
583–589, 2021. doi: 10.1038/s41586-021-03819-2. Last access: 2025-03-01.
4, 19, 28, 119

[31] A. F. P. Araújo, A. L. C. Gomes, A. A. Bursztyn, and E. I. Shakhnovich. Native
atomic burials supplemented by physically motivated hydrogen bond con-
straints, contain sufficient information to determine the tertiary structure of
small globular proteins. Proteins: Structure, Function, and Bioinformatics,
70(3):971–983, 2008. doi: 10.1002/prot.21571. Last access: 2025-03-01. 4, 5,
6, 42, 94, 96, 102, 116

[32] M. G. van der Linden, D. C. Ferreira, and L. C. de Oliveira et al. Ab initio
protein folding simulations using atomic burials as informational interme-
diates between sequence and structure. Proteins: Structure, Function, and
Bioinformatics, 82(7):1186–1199, 2014. doi: 10.1002/prot.24483. Last access:
2025-03-01. 4, 5, 6, 42, 43, 45, 94, 96, 101, 102, 116

[33] A. F. P. de Araújo and J. N. Onuchic. A sequence-compatible amount of na-
tive burial information is sufficient for determining the structure of small
globular proteins. Proceedings of the National Academy of Sciences, 106(45):
19001, 2009. doi: 10.1073/pnas.0910851106. Last access: 2025-03-01. 5, 6,
42, 94, 96, 102

[34] Aidan P. Thompson, H. Metin Aktulga, Richard Berger, and et al. LAMMPS
- a flexible simulation tool for particle-based materials modeling at the
atomic, meso, and continuum scales. Computer Physics Communications,
271:108171, 2022. doi: 10.1016/j.cpc.2021.108171. Last access: 2025-03-01.
6, 76

124

[35] Marx G. van der Linden, Diogo C. Ferreira, and Antônio F. Pereira de Araújo.
Constrained Layer Assignment for the Protein Burial Folding Code Account-
ing for Chain Connectivity. The journal of physical chemistry. B, 126(33):
6159–6170, 2022. doi: 10.1021/acs.jpcb.2c03931. Last access: 2025-03-01. 6,
42, 96

[36] C. B. Anfinsen. Principles that Govern the Folding of Protein Chains. Sci-
ence, 181:223–230, 1973. doi: 10.1126/science.181.4096.223. Last access:
2025-03-01. 8, 13

[37] Mary. K. Campbell, Shawn O. Farrell, and Owen McDougal. Biochemistry.
Cengage Learning, 7 edition, 2016. ISBN 9781118918401. Last access: 2025-
03-01. 8, 10, 11, 14, 15, 16, 18, 20, 21

[38] F. Bettelheim, W. Brown, and M. Campbell et al. Introduction to General,
Organic and Biochemistry. Cengage Learning, 2015. ISBN 9789354243820.
Bookmarks at pages: 498, 499; Last access: 2025-03-01. 8

[39] Boundless Learning. Proteins - Amino Acids. https://bio.libretexts.
org/@go/page/12699, 2025. Figure 3.8.1. Licensed under CC BY-SA 4.0.
Last access: 2025-03-01. 9

[40] J. Kyte and R. F. Doolittle. A simple method for displaying the hydropathic
character of a protein. Journal of Molecular Biology, 157(1):105–132, 1982.
doi: 10.1016/0022-2836(82)90515-0. Last access: 2025-03-01. 9, 10

[41] S. Kamtekar, J. M. Schiffer, and H. Xiong et al. Protein Design by Binary
Patterning of Polar and Nonpolar Amino Acids. In Protein Engineering Pro-
tocols, volume 352 of Methods in Molecular Biology, pages 155–166. Humana
Press, 1993. doi: 10.1126/science.8259512. Last access: 2025-03-01. 9

[42] Allison Soult and CK-12 Foundation. 13.2: Peptides. https://chem.
libretexts.org/@go/page/58853, 2025. Figure 13.2.1. Licensed under
the CK-12 Curriculum Materials License. Last access: 2025-03-01. 8, 10

[43] Ken A. Dill. Dominant forces in protein folding. Biochemistry, 29(31):7133–
7155, 1990. doi: 10.1021/bi00483a001. Last access: 2025-03-01. 10

[44] David L. Nelson and Michael M. Cox. Lehninger Principles of Biochem-
istry, volume 1. W. H. Freeman and Company, 7 edition, 2017. ISBN
9781319114671. Last access: 2025-03-01. 11, 12, 13, 14

[45] Mercy Akinwale, Jerry Emmanuel, Itunuoluwa Isewon, and Jelili Oyelade.
Application of Deep learning Algorithms On Protein Function Prediction: A
Systematic Review. In 2024 International Conference on Science, Engineer-
ing and Business for Driving Sustainable Development Goals (SEB4SDG),
pages 1–9, 2024. doi: 10.1109/SEB4SDG60871.2024.10629655. Last access:
2025-03-01. 11

125

https://bio.libretexts.org/@go/page/12699
https://bio.libretexts.org/@go/page/12699
https://chem.libretexts.org/@go/page/58853
https://chem.libretexts.org/@go/page/58853

[46] F. Sanger and H. Tuppy. The amino-acid sequence in the phenylalanyl chain
of insulin. I. The identification of lower peptides from partial hydrolysates.
The Biochemical journal, 49(4):463–481, sep 1951. doi: 10.1042/bj0490463.
Last access: 2025-03-01. 11

[47] Jonathan Pevsner. Bioinformatics and functional genomics (3rd. ed.). John
Wiley & Sons Inc, 3 edition, 2015. ISBN 1118581784. Last access: 2025-03-
01. 11, 12

[48] Allison Soult and CK-12 Foundation. 13.3: Protein Structure. https:
//chem.libretexts.org/@go/page/58854, 2025. Figures 13.3.1 and
13.3.2. Licensed under the CK-12 Curriculum Materials License. Last ac-
cess: 2025-03-01. 12

[49] RCSB Protein Data Bank. Structure of Human Carbonic Anhydrase II
(2FO3). https://www.rcsb.org/structure/2FO3, 2025. Adapted visu-
alization from RCSB PDB. Last access: 2025-03-01. 13

[50] Richard Harvey and Denise Ferrier. Biochemistry (5th. ed.). Lippincott
Williams & Wilkins, 2011. ISBN 160831412X. Last access: 2025-03-01. 13,
14

[51] H. Jane Dyson and Peter E. Wright. Intrinsically unstructured proteins and
their functions. Nature Reviews Molecular Cell Biology, 6(3):197–208, 2005.
doi: 10.1038/nrm1589. Last access: 2025-03-01. 16, 85

[52] Peter E. Wright and H. Jane Dyson. Intrinsically unstructured proteins:
re-assessing the protein structure-function paradigm. Journal of Molecular
Biology, 293(2):321–331, 1999. doi: 10.1006/jmbi.1999.3110. Last access:
2025-03-01. 16

[53] Vladimir N. Uversky. Introduction to intrinsically disordered proteins
(IDPs). Chemical Reviews, 114(13):6557–6560, 2014. doi: 10.1021/
cr500391x. Last access: 2025-03-01. 16, 85

[54] M. Madan Babu, R. van der Lee, N. S. de Groot, and J. Gsponer. Intrinsically
disordered proteins: regulation and disease. Current Opinion in Structural
Biology, 21(3):432–440, 2011. doi: 10.1016/j.sbi.2011.03.006. Last access:
2025-03-01. 16

[55] Rakesh Trivedi and Hampapathalu Adimurthy Nagarajaram. Intrinsically
Disordered Proteins: An Overview. International Journal of Molecular Sci-
ences, 23(22):14050, 2022. doi: 10.3390/ijms232214050. Last access: 2025-
03-01. 16

[56] Sarah E. Bondos, A. Keith Dunker, and Vladimir N. Uversky. Intrinsically
Disordered Proteins Play Diverse Roles in Cell Signaling. Cell Communica-
tion and Signaling, 20(1):20, 2022. doi: 10.1186/s12964-022-00821-7. Last
access: 2025-03-01. 16

126

https://chem.libretexts.org/@go/page/58854
https://chem.libretexts.org/@go/page/58854
https://www.rcsb.org/structure/2FO3

[57] J. C. Kendrew, G. Bodo, and et al H. M. Dintzis. A three-dimensional model
of the myoglobin molecule obtained by x-ray analysis. Nature, 181:662–666,
1958. doi: 10.1038/181662a0. Last access: 2025-03-01. 17

[58] Roy Nassar, Gregory L Dignon, Rostam M Razban, and Ken A Dill. The
Protein Folding Problem: The Role of Theory. Journal of Molecular Biology,
433(20):167126, 2021. doi: 10.1016/j.jmb.2021.167126. Last access: 2025-03-
01. 18, 22

[59] C. A. Floudas, H. K. Fung, and S. R. McAllister et al. Advances in protein
structure prediction and De Novo protein design: A review. Chemical En-
gineering Science, 61:966–988, 2006. doi: 10.1016/j.ces.2005.04.009. Last
access: 2025-03-01. 18, 27, 28

[60] Andrew W. Senior, Richard Evans, John M. Jumper, and et al. Improved
protein structure prediction using potentials from deep learning. Nature,
577:706 – 710, 2020. doi: 10.1038/s41586-019-1923-7. Last access: 2025-03-
01. 19, 28

[61] Jan K. Labanowski. Molecular Modeling. Web site, December 1996. URL
http://www.ccl.net/cca/documents/molecular-modeling/node9.
html. Last access: 2025-03-01. 19, 31

[62] James W. Cooley and John W. Tukey. An algorithm for the machine cal-
culation of complex Fourier series. Math. Comput., 19:297–301, 1965. doi:
10.2307/2003354. Last access: 2025-03-01. 20

[63] Xiao-Chen Bai, Tamir Gonen, Angela Gronenborn, Anastassis Perrakis, An-
drea Thorn, and Jianyi Yang. Challenges and opportunities in macromolec-
ular structure determination. Nature Reviews Molecular Cell Biology, 25, 10
2023. doi: 10.1038/s41580-023-00659-y. Last access: 2025-03-01. 21

[64] Nidhi Singh and Wenjin Li. Recent Advances in Coarse-Grained Models
for Biomolecules and Their Applications. International Journal of Molec-
ular Sciences, 20(15):3774, Aug 2019. ISSN 1422-0067. doi: 10.3390/
ijms20153774. Last access: 2025-03-01. 22, 23, 24

[65] Amjad Chowdhury, Jonathan A. Bollinger, Barton J. Dear, Jason K. Che-
ung, Keith P. Johnston, and Thomas M. Truskett. Coarse-Grained Molec-
ular Dynamics Simulations for Understanding the Impact of Short-Range
Anisotropic Attractions on Structure and Viscosity of Concentrated Mono-
clonal Antibody Solutions. Molecular Pharmaceutics, 17(5):1748–1756, 2020.
doi: 10.1021/acs.molpharmaceut.9b00960. Last access: 2025-03-01. 22, 23

[66] Joshua A. Riback, Micayla A. Bowman, Adam M. Zmyslowski, Catherine R.
Knoverek, John M. Jumper, James R. Hinshaw, Emily B. Kaye, Karl F. Freed,
Patricia L. Clark, and Tobin R. Sosnick. Innovative scattering analysis shows
that hydrophobic disordered proteins are expanded in water. Science, 358
(6360):238–241, 2017. doi: 10.1126/science.aan5774. Last access: 2025-03-
01. 22

127

http://www.ccl.net/cca/documents/molecular-modeling/node9.html
http://www.ccl.net/cca/documents/molecular-modeling/node9.html

[67] Sebastian Kmiecik, Dominik Gront, Michal Kolinski, and et al. Coarse-
Grained Protein Models and Their Applications. Chemical Reviews, 116(14):
7898–7936, 2016. doi: 10.1021/acs.chemrev.6b00163. Last access: 2025-03-
01. 23, 24, 76

[68] R. Sánchez and A. Sali. Advances in comparative protein-structure mod-
elling. Current Opinion in Structural Biology, 7(2):206–214, 1997. doi:
10.1016/s0959-440x(97)80027-9. Last access: 2025-03-01. 24, 25

[69] M. A. Marti-Renom, M. S. Madhusudhan, and A. Sali. Alignment of protein
sequences by their profiles. Protein Science, 13(4):1071–1087, 2004. ISSN
1469-896X. doi: 10.1110/ps.03379804. Last access: 2025-03-01. 24, 25

[70] J. U. Bowie, R. Lüthy, and D. Eisenberg. A Method to Identify Protein
Sequences That Fold into a Known Three-Dimensional Structure. Sci-
ence (New York, N.Y.), 253(5016):164–170, jul 1991. ISSN 0036-8075. doi:
10.1126/science.1853201. Last access: 2025-03-01. 25, 26

[71] D. T. Jones, W. R. Taylor, and J. M. Thornton. A new approach to protein
fold recognition. Nature, 358(6381):86–89, jul 1992. ISSN 0028-0836. doi:
10.1038/358086a0. Last access: 2025-03-01. 25, 26

[72] S. H. Bryant and S. F. Altschul. Statistics of sequence-structure threading.
Current Opinion in Structural Biology, 5(2):236–244, 1995. ISSN 0959-440.
doi: 10.1016/0959-440x(95)80082-4. Last access: 2025-03-01. 25, 26

[73] M. Turcotte, S. Muggleton, and M. J. E. Sternberg. Application of Induc-
tive Logic Programming to Discover Rules Governing the Three-Dimensional
Topology of Protein Structure. In Proceedings of the 8th International Work-
shop on Inductive Logic Programming, ILP 1998, pages 53–64, London, UK,
UK, 1998. Springer-Verlag. doi: 10.1007/BFb0027310. First Online: 2025-
01-01; Last access: 2025-03-01. 25, 26

[74] K. T. Simons, C. Kooperberg, E. H., and D. Baker. Assembly of protein ter-
tiary structures from fragments with similar local sequences using simulated
annealing and Bayesian scoring functions. Journal of molecular biology, 268
(1):209–225, 1997. doi: 10.1006/jmbi.1997.0959. Last access: 2025-03-01. 27

[75] C. A. Rohl, C. E. M. Strauss, D. Chivian, and D. Baker. Modeling structurally
variable regions in homologous proteins with rosetta. Proteins Structure
Function and Bioinformatics, 55(3):656–677, 2004. doi: 10.1002/prot.10629.
Last access: 2025-03-01. 27

[76] Evan T. Powers and Lila M. Gierasch. The Proteome Folding Problem and
Cellular Proteostasis. Journal of molecular biology, 433(20):167197–167197,
2021. doi: 10.1016/j.jmb.2021.167197. Last access: 2025-03-01. 28

[77] Letícia M. F. Bertoline, Angélica N. Lima, Jose E. Krieger, and Samantha K.
Teixeira. Before and after AlphaFold2: An overview of protein structure

128

prediction. Frontiers in Bioinformatics, 3, 2023. ISSN 2673-7647. doi: 10.
3389/fbinf.2023.1120370. Last access: 2025-03-01. 28

[78] Sebastián Aliaga-Rojas, Manuel Villalobos-Cid, Márcio Dorn, and Mario
Inostroza-Ponta. A multi-objective approach for the protein structure pre-
diction problem. In 40th International Conference of the Chilean Computer
Science Society, SCCC 2021, La Serena, Chile, November 15-19, 2021, pages
1–8. IEEE, 2021. doi: 10.1109/SCCC54552.2021.9650383. Last access: 2025-
03-01. 29

[79] D. Chyvian, T. Robertson, R. Bonneua, and D. Baker. Ab initio methods.
Structural Bioinformatics, 44:547, 2003. doi: 10.1002/0471721204.ch27.
Last access: 2025-03-01. 29, 32

[80] D. Osguthorpe. Ab initio protein folding. Current Opinion in Structutal
Biology, 10(2):146–152, 2000. doi: 10.1016/S0959-440X(00)00067-1. Last
access: 2025-03-01. 29, 32

[81] Bernard Monasse and Frédéric Boussinot. Determination of Forces from
a Potential in Molecular Dynamics. Technical report, Mines Paris -
PSL - HAL, Jan 2014. URL https://minesparis-psl.hal.science/
hal-00924263. 11 pages, Last access: 2025-03-01. 30

[82] D.C. Rapaport. The Art of Molecular Dynamics Simulation. Cam-
bridge University Press, cambridge, 2nd edition, 2004. doi: 10.1017/
CBO9780511816581. Last access: 2025-03-01. 31

[83] B. J. Alder and T. E. Wainwright. Phase Transition for a Hard Sphere
System. The Journal of Chemical Physics, 27(5):1208–1209, 1957. URL
http://aip.scitation.org/doi/abs/10.1063/1.1743957. Last ac-
cess: 2025-03-01. 31

[84] B. J. Alder and T. E. Wainwright. Studies in Molecular Dynamics. I. General
Method. The Journal of Chemical Physics, 31(2):459–466, 1959. doi: 10.
1063/1.1730376. Last access: 2025-03-01. 31

[85] Roberto Car and Michele Parrinello. Unified Approach for Molecular Dynam-
ics and Density-Functional Theory. Physical Review Letters, 55:2471–2474,
Nov 1985. doi: 10.1103/PhysRevLett.55.2471. Last access: 2025-03-01. 31

[86] J. Andrew McCammon, Bruce R. Gelin, and Martin Karplus. Dynamics
of folded proteins. Nature, 267(5612):585–590, jun 1977. doi: 10.1038/
267585a0. Last access: 2025-03-01. 32

[87] Tomas Hansson, Chris Oostenbrink, and Wilfred F. van Gunsteren. Molec-
ular dynamics simulations. Current Opinion in Structural Biology, 12:190–
196, 2002. doi: 10.1016/s0959-440x(02)00308-1. Last access: 2025-03-01.
32

129

https://minesparis-psl.hal.science/hal-00924263
https://minesparis-psl.hal.science/hal-00924263
http://aip.scitation.org/doi/abs/10.1063/1.1743957

[88] R. Salomon-Ferrer, D. A. Case, and R. C. Walker. An overview of the Amber
biomolecular simulation package. Wiley Interdisciplinary Reviews: Compu-
tational Molecular Science, 3(2):198–210, 2012. doi: doi.org/10.1002/wcms.
1121. Last access: 2025-03-01. 32

[89] Aviezri S. Fraenkel. Complexity of protein folding. Bulletin of Mathematical
Biology, 55(6):1199–1210, 1993. 32

[90] A. M. Namba, V. B. da Silva, and C. H. T. P. da Silva. Dinâmica: teoria e
aplicações em planejamento de fármacos. Eclética Química, 33:13–23, 12
2008. doi: 10.1590/S0100-46702008000400002. Last access: 2025-03-01. 32,
36

[91] Pramod C. Nair and John O. Miners. Molecular dynamics simulations: from
structure function relationships to drug discovery. In Silico Pharmacology, 2
(1):1–4, November 2014. doi: 10.1186/s40203-014-0004-8. Last access: 2025-
03-01. 32

[92] Mike P Allen and Dominic J Tildesley. Computer simulation of liquids. Ox-
ford university press, 1987. doi: 10.1093/oso/9780198803195.001.0001. Last
access: 2025-03-01. 32

[93] Wilfred F. van Gunsteren and Herman J. C. Berendsen. Computational Sim-
ulation of Molecular Dynamics: Methodology, Applications and Perspectives
in Chemistry. Angewandte Chemie International Edition in English, 29(09):
992–1023, sep 1990. doi: 10.1002/anie.199009921. Last access: 2025-03-01.
32

[94] Roland Stote, Annick Dejaegere, Dmitry Kuznetsov, and Laurent Falquet.
Theory of Molecular Dynamics. Website, October 1999. URL http://www.
ch.embnet.org/MD_tutorial/. ExPASy Bioinformatics Resource Portal.
Last access: 2025-03-01. 32

[95] B. D. Madej and R. Walker. An Introduction to Molecular Dynamics Sim-
ulations using AMBER. http://www.ambermd.org, 2014. URL https://
ambermd.org/tutorials/basic/tutorial0/index.php. Last access:
2023-04-20. 33, 36

[96] Michael P. Allen. Introduction to Molecular Dynamics Simulation. In Nobert
Attig, Kurt Bindeer, Helmut Grubmuller, and Kurt Kremer, editors, Compu-
tational Soft Matter: From Synthetic Polymers to Proteins, Lectures Notes,
volume 23 of NIC Series, pages 1–28. John von Neumann Institute for Com-
puting, Jülich, February 2004. ISBN 3-00-012641-4. Last access: 2025-03-01.
34

[97] Tanner, David E. and Chan, Kwok-Yan and Phillips, James C. and Schulten,
Klaus. Parallel Generalized Born Implicit Solvent Calculations with NAMD.
Journal of Chemical Theory and Computation, 7(11):3635–3642, 2011. doi:
10.1021/ct200563j. Last access: 2025-03-01. 36

130

http://www.ch.embnet.org/MD_tutorial/
http://www.ch.embnet.org/MD_tutorial/
https://ambermd.org/tutorials/basic/tutorial0/index.php
https://ambermd.org/tutorials/basic/tutorial0/index.php

[98] Vijay S. Pande, Eric J. Sorin, Christopher D. Snow, and Young Min Rhee.
Computer Simulations of Protein Folding. In Protein Folding, Misfold-
ing and Aggregation: Classical Themes and Novel Approaches. The Royal
Society of Chemistry, 06 2008. ISBN 978-0-85404-257-9. doi: 10.1039/
9781847558282-00161. Last access: 2025-03-01. 37

[99] David E. Shaw, Paul Maragakis, Kresten Lindorff-Larsen, Stefano Piana,
Ron O. Dror, Michael P. Eastwood, Joseph A. Bank, John M. Jumper, John K.
Salmon, Yibing Shan, and Willy Wriggers. Atomic-Level Characterization of
the Structural Dynamics of Proteins. Science, 330(6002):341–346, 2010. doi:
10.1126/science.1187409. Last access: 2025-03-01. 38

[100] Message Passing Interface Forum. MPI: A Message-Passing Interface Stan-
dard, Version 3.0. Technical report, MPI Forum, September 2012. Last ac-
cess: 2025-03-01. 38

[101] Juekuan Yang, Yujuan Wang, and Yunfei Chen. GPU accelerated molecular
dynamics simulation of thermal conductivities. Journal of Computational
Physics, 221(2):799–804, 2007. doi: 10.1016/j.jcp.2006.06.039. Last access:
2025-03-01. 38

[102] Weiguo Liu, Bertil Schmidt, Gerrit Voss, and Wolfgang Müller-Wittig. Ac-
celerating molecular dynamics simulations using Graphics Processing Units
with CUDA. Computer Physics Communications, 179(9):634–641, 2008. doi:
10.1016/j.cpc.2008.05.008. Last access: 2025-03-01. 38

[103] Peter Eastman, Jason Swails, and John D. Chodera et al. OpenMM 7:
Rapid development of high performance algorithms for molecular dynam-
ics. PLOS Computational Biology, 13(7):1–17, 07 2017. doi: 10.1371/journal.
pcbi.1005659. Last access: 2025-03-01. 38, 65

[104] James C. Phillips, David J. Hardy, and Julio D. C. Maia et al. Scalable molec-
ular dynamics on CPU and GPU architectures with NAMD. The Journal of
Chemical Physics, 153(4), 2020. doi: 10.1063/5.0014475. Last access: 2025-
03-01. 38, 39, 76

[105] Abhinav Bhatelé and Sameer Kumar and Chao Mei and James C. Phillips
and Gengbin Zheng and Laxmikant V. Kale. Overcoming Scaling Challenges
in Biomolecular Simulations across Multiple Platforms. In IEEE Interna-
tional Parallel & Distributed Processing Symposium (IPDPS), pages 1–12.
IEEE, 2008. doi: 10.1109/IPDPS.2008.4536317. Last access: 2025-03-01. 38

[106] James C. Phillips, Rosemary Braun, Wei Wang, James Gumbart, Emad
Tajkhorshid, Elizabeth Villa, Christophe Chipot, Robert D. Skeel, Laxmikant
Kalé, and Klaus Schulten. Scalable molecular dynamics with NAMD. Jour-
nal of Computational Chemistry, 26(16):1781–1802, 2005. doi: 10.1002/jcc.
20289. Last access: 2025-03-01. 38, 41, 42

131

[107] Mark Nelson, William Humphrey, Attila Gursoy, Andrew Dalke, Laxmikant
Kalé, Robert D. Skeel, and Klaus Schulten. NAMD: A parallel, object-
oriented molecular dynamics program. The International Journal of Su-
percomputer Applications and High Performance Computing, 10(4):251–268,
1996. doi: 10.1177/109434209601000401. Last access: 2025-03-01. 38

[108] James Phillips, Robert Brunner, Aritomo Shinozaki, Milind Bh, Neal
Krawetz, Robert Skeel, and Klaus Schulten. Avoiding Algorithmic Obfus-
cation in a Message-Driven Parallel MD Code. In Computational Molecular
Dynamics: Challenges, Methods, Ideas, pages 472–482, Berlin, Heidelberg,
1999. Springer Berlin Heidelberg. doi: 10.1007/978-3-642-58360-5_28. Last
access: 2025-03-01. 38, 41, 42, 107

[109] Laxmikant V Kale, Robert Skeel, Milind Bhandarkar, Robert Kraemer Brun-
ner, Attila Gursoy, Neal Krawetz, James Phillips, Aritomo Shinozaki, Kr-
ishnan Varadarajan, and Klaus J Schulten. NAMD2: Greater Scalability
for Parallel Molecular Dynamics. Journal of Computational Physics, 151(1):
283–312, 5 1999. ISSN 0021-9991. doi: 10.1006/jcph.1999.6201. Last access:
2025-03-01. 38, 39, 40, 42

[110] James C. Phillips. Attacking HIV with Petascale Molecular Dynamics Sim-
ulations on Titan and Blue Waters. http://on-demand.gputechconf.
com/gtc/2015/presentation/S5226-Ross-Walker.pdf, march 2015.
Last access: 2025-03-01. 38

[111] Laxmikant V. Kalé and Sanjeev Krishnan. Charm++: Parallel programming
with message-driven objects. Parallel Programming using C++, pages 175–
213, 1996. Last access: 2025-03-01. 39, 41

[112] Laxmikant V. Kale, Eric Bohm, Celso L. Mendes, Terry Wilmarth, and Geng-
bin Zheng. Programming Petascale Applications with Charm++ and AMPI.
In D. Bader, editor, Petascale Computing: Algorithms and Applications,
pages 421–441. Chapman & Hall / CRC Press, 2008. ISBN 9780367387891.
Last access: 2025-03-01. 39

[113] James C. Phillips, John E. Stone, and Klaus Schulten. Adapting a Message-
driven Parallel Application to GPU-accelerated Clusters. In Proceedings of
the 2008 ACM/IEEE Conference on Supercomputing, SC ’08, pages 8:1–8:9,
Piscataway, NJ, USA, 2008. IEEE Press. ISBN 978-1-4244-2835-9. doi: 10.
1109/SC.2008.5214716. Last access: 2025-03-01. 41, 42

[114] James C. Phillips, Yanhua Sun, Nikhil Jain, Eric J. Bohm, and Laximant V.
Kale. Mapping to Irregular Torus Topologies and Other Techniques for Petas-
cale Biomolecular Simulation. In Proceedings of ACM/IEEE SC 2014, pages
81–91, New Orleans, Louisiana, November 2014. doi: 10.1109/SC.2014.12.
Last access: 2025-03-01. 42, 85

[115] Diogo C. Ferreira, Marx G. van der Linden, Leandro C. de Oliveira, José N.
Onuchic, and Antônio F. Pereira de Araújo. Information and redundancy in

132

http://on-demand.gputechconf.com/gtc/2015/presentation/S5226-Ross-Walker.pdf
http://on-demand.gputechconf.com/gtc/2015/presentation/S5226-Ross-Walker.pdf

the burial folding code of globular proteins within a wide range of shapes
and sizes. Proteins: Structure, Function, and Bioinformatics, 84(4):515–531,
2016. doi: doi.org/10.1002/prot.24998. Last access: 2025-03-01. 42

[116] Marx Gomes van der Linden. Simulação do enovelamento de proteínas com
potenciais de enterramentos atômicos dependentes da sequência. Phd. thesis,
University of Brasília - UnB, Brasilia, Brazil, December 2013. Last access:
2025-03-01. 43, 44

[117] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and
J. R. Haak. Molecular dynamics with coupling to an external bath. The
Journal of Chemical Physics, 81(8):3684–3690, 10 1984. ISSN 0021-9606.
doi: 10.1063/1.448118. Last access: 2025-03-01. 43

[118] Daniele Archibugi and Andrea Filippetti. The Handbook of Global Science,
Technology, and Innovation. HGP - Handbooks of Global Policy. John Wiley
& Sons, jun 2015. ISBN 9781118738962. URL https://books.google.
com.br/books?id=fLIOCgAAQBAJ. Last access: 2025-03-01. 46

[119] Richard S. Segall, Jeffey S. Cook, and Qingyu Zhang. Research and Ap-
plications in Global Supercomputing. Advances in Systems Analysis, Soft-
ware Engineering, and High Performance Computing. IGI Global, jan 2015.
ISBN 9781466674622. URL httpsb//books.google.com.br/books?
id=5CvhBgAAQBAJ. Last access: 2025-03-01. 46

[120] Jack Dongarra and Top500 Team. TOP500 Supercomputer Sites - November
2024. https://top500.org/lists/top500/2024/11, 2024. Last access:
2025-03-01. 46, 47, 49, 51

[121] Jack Dongarra, Piotr Luszczek, and Antoine Petitet. The LINPACK Bench-
mark: past, present and future. Concurrency and Computation: Practice and
Experience, 15(9):803–820, 2003. doi: doi.org/10.1002/cpe.728. Last access:
2025-03-01. 46, 47

[122] Jack J. Dongarra. Performance of Various Computers Using Standard Linear
Equations Software. Computer Science Technical Report Number CS - 89 -
85, Oak Ridge National Laboratory, University of Tennessee, Knoxville TN,
37996, Jun 2014. Last access: 2025-03-01. 46, 47

[123] Ada Sedova, Russ Davidson, Mathieu Taillefumier, and Wael Elwasif. HPC
Molecular Simulation Tries Out a New GPU: Experiences on Early AMD
Test Systems for the Frontier Supercomputer. CUG2022 Conference, 2(1), 6
2022. URL https://www.osti.gov/biblio/1883870. Last access: 2025-
03-01. 47

[124] Jaewoon Jung, Chigusa Kobayashi, and Yuji Sugita. Acceleration of gener-
alized replica exchange with solute tempering simulations of large biologi-
cal systems on massively parallel supercomputer. Journal of Computational
Chemistry, 44(20):1740–1749, 2023. doi: 10.1002/jcc.27124. Last access:
2025-03-01. 47, 61, 62, 63

133

https://books.google.com.br/books?id=fLIOCgAAQBAJ
https://books.google.com.br/books?id=fLIOCgAAQBAJ
httpsb//books.google.com.br/books?id=5CvhBgAAQBAJ
httpsb//books.google.com.br/books?id=5CvhBgAAQBAJ
https://top500.org/lists/top500/2024/11
https://www.osti.gov/biblio/1883870

[125] Gianluca Palermo, Gianmarco Accordi, Davide Gadioli, and et al. Tunable
and Portable Extreme-Scale Drug Discovery Platform at Exascale:the LIG-
ATE Approach. 20th ACM International Conference on Computing Frontiers
- CF’23, abs/2304.09953, Apr 2023. doi: 10.48550/arXiv.2304.09953. Last
access: 2025-03-01. 47

[126] EuroHPC Joint Undertaking. The EuroHPC Ju Supercomputers Analy-
sis of the Petascale and Pre exascale systems. Technical report, EuroHPC
JU, Sep 2021. URL https://eurohpc-ju.europa.eu/system/files/
2023-07/EuroHPC%20Systems%20Report-Sep2021.pdf. Last access:
2025-03-01. 47, 52, 53

[127] Justin S. Smith, Benjamin Nebgen, Nithin Mathew, Jie Chen, and et al.
Automated discovery of a robust interatomic potential for aluminum. Nature
communications, 12(1):1257–1257, 2021. doi: 10.48550/arXiv.2003.04934.
Last access: 2025-03-01. 47

[128] Xiaohui Duan, Qi Shao, Junben Weng, Bertil Schmidt, Lin Gan, Guohui Li,
Haohuan Fu, Wei Xue, Weiguo Liu, and Guangwen Yang. Bio-ESMD: A
Data Centric Implementation for Large-Scale Biological System Simulation
on Sunway TaihuLight Supercomputer. IEEE transactions on parallel and
distributed systems, 34(3):881–893, 2023. doi: 10.1109/TPDS.2022.3220559.
Last access: 2025-03-01. 47

[129] Albert Musaelian, Anders Johansson, Simon Batzner, and Boris Kozin-
sky. Scaling the leading accuracy of deep equivariant models to biomole-
cular simulations of realistic size. preprint arXiv:2304.10061, 2023. doi:
10.1145/3581784.3627041. Last access: 2025-03-01. 47

[130] Olivier Adjoua, Louis Lagardère, Luc-Henri Jolly, Arnaud Durocher, Thibaut
Very, Isabelle Dupays, Zhi Wang, Théo Jaffrelot Inizan, Frédéric Célerse,
Pengyu Ren, Jay W. Ponder, and Jean-Philip Piquemal. Tinker-HP: Accel-
erating Molecular Dynamics Simulations of Large Complex Systems with
Advanced Point Dipole Polarizable Force Fields Using GPUs and Multi-GPU
Systems. Journal of Chemical Theory and Computation, 17(4):2034–2053,
2021. doi: 10.1021/acs.jctc.0c01164. PMID: 33755446, Last access: 2025-03-
01. 47

[131] Jack J. Dongarra. Report on the Tianhe-2A System. Tech Report No. ICL-UT-
17-04, Oak Ridge National Laboratory, University of Tennessee, Knoxville,
September 2017. Last access: 2025-03-01. 47, 56, 57

[132] Javier García-Marín, Diego Rodríguez-Puyol, and Juan J. Vaquero. In-
sight into the mechanism of molecular recognition between human Integrin-
Linked Kinase and Cpd22 and its implication at atomic level. Journal
of computer-aided molecular design, 36(8):575–589, 2022. doi: 10.1007/
s10822-022-00466-1. Last access: 2025-03-01. 47

134

https://eurohpc-ju.europa.eu/system/files/2023-07/EuroHPC%20Systems%20Report-Sep2021.pdf
https://eurohpc-ju.europa.eu/system/files/2023-07/EuroHPC%20Systems%20Report-Sep2021.pdf

[133] Chenle Yu, Sara Royuela, and Eduardo Qui nones. Enhancing Heteroge-
neous Computing Through OpenMP and GPU Graph. In Proceedings of
the 53rd International Conference on Parallel Processing, ICPP ’24, page
534–543, New York, NY, USA, 2024. Association for Computing Machinery.
ISBN 9798400717932. doi: 10.1145/3673038.3673050. Last access: 2025-03-
01. 47

[134] Fei Yin and Feng Shi. A Comparative Survey of Big Data Computing
and HPC: From a Parallel Programming Model to a Cluster Architecture.
International journal of parallel programming, 50(1):27–64, 2022. doi:
10.1007/s10766-021-00717-y. Last access: 2025-03-01. 48, 51

[135] John L. Hennessy and David A. Patterson. Computer Architecture, Sixth
Edition: A Quantitative Approach. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 6th edition, 2017. ISBN 0128119055. Last access: 2025-
03-01. 49

[136] Jack Dongarra, Thomas Sterling, Horst Simon, and Erich Strohmaier. High-
performance computing: clusters, constellations, MPPs, and future direc-
tions. Computing in Science and Engineering, 7(2):51–59, 2005. doi:
10.1109/MCSE.2005.34. Last access: 2025-03-01. 49

[137] Hassan A. Karimi. Big Data: Techniques and Technologies in Geoinformat-
ics. CRC Press, Taylor & Francis Group, feb 2014. ISBN 9781466586512.
URL httpse//books.google.com.br/books?id=BJGlAgAAQBAJ. Last
access: 2025-03-01. 49, 51

[138] Li Bo, Zhou Zhenliu, and Wang Xiangfeng. A Survey of HPC Development.
In 2012 International Conference on Computer Science and Electronics Engi-
neering, pages 103–106. IEEE, 2012. doi: 10.1109/ICCSEE.2012.130. Last
access: 2025-03-01. 49, 51

[139] Jack J. Dongarra and Al Geist. Report On The Oak Ridge National Labora-
tory’s Frontier System. Tech Report No. ICL-UT-22-05, Oak Ridge National
Laboratory, University of Tennessee, Knoxville, may 2022. Last access: 2025-
03-01. 49, 50

[140] Kawthar Shafie Khorassani, Chen-Chun Chen, Bharath Ramesh, Aamir
Shafi, Hari Subramoni, and Dhabaleswar K. Panda. High Performance MPI
over the Slingshot Interconnect. Journal of computer science and technology,
38(1):128–145, 2023. doi: 10.1145/3491418.3530773. Last access: 2025-03-
01. 49, 50

[141] Ping-Jing Lu, Ming-Che Lai, and Jun-Sheng Chang. A Survey of
High-Performance Interconnection Networks in High-Performance Com-
puter Systems. Electronics (Basel), 11(9):1369, 2022. doi: 10.3390/
electronics11091369. Last access: 2025-03-01. 50

135

httpse//books.google.com.br/books?id=BJGlAgAAQBAJ

[142] Cluster File Systems Inc. Lustre : A Scalable , High-Performance
File System Cluster. In Available at https://www.lustre.org, 2023.
URL https://cse.buffalo.edu/faculty/tkosar/cse710/papers/
lustre-whitepaper.pdf. Last access: 2025-03-01. 52

[143] John Kim, Wiliam J. Dally, Steve Scott, and Dennis Abts. Technology-Driven,
Highly-Scalable Dragonfly Topology. In Proceedings of the 35th Annual In-
ternational Symposium on Computer Architecture, ISCA ’08, page 77–88,
USA, 2008. IEEE Computer Society. doi: 10.1109/ISCA.2008.19. Last ac-
cess: 2025-03-01. 53

[144] Barcelona Supercomputing Center. Marenostrum4 User’s Guide. Tuto-
rial, Barcelona SuperComputing Center, Barcelona Supercomputing Center,
november 2020. Last access: 2025-03-01. 53, 83, 117

[145] D. E. Womble, M. Shankar, W. Joubert, J. T. Johnston, J. C. Wells, and J. A.
Nichols. Early experiences on Summit: Data analytics and AI applications.
IBM Journal of Research and Development, 63(6):2:1–2:9, 2019. doi: 10.1147/
JRD.2019.2944146. Last access: 2025-03-01. 55

[146] Xiangke Liao, Liquan Xiao, Canqun Yang, and Yutong Lu. MilkyWay-2 su-
percomputer: system and application. Frontiers of Computer Science, 8(3):
345–356, 2014. ISSN 2095-2228. doi: 10.1007/s11704-014-3501-3. Last ac-
cess: 2025-03-01. 56, 57

[147] Jack J. Dongarra and Al Geist. Report on the Sunway TaihuLight Sys-
tem. Tech Report UT-EECS-16-742, Oak Ridge National Laboratory, Univer-
sity of Tennessee, Knoxville, june 2016. URL https://www.netlib.org/
utk/people/JackDongarra/PAPERS/sunway-report-2016.pdf. Last
access: 2023-07-06. 58

[148] Steve Plimpton. Fast Parallel Algorithms for Short-Range Molecular Dynam-
ics. Journal of Computational Physics, 117(1):1–19, 1995. ISSN 0021-9991.
doi: 10.1006/jcph.1995.1039. Last access: 2025-03-01. 58, 60

[149] Ruud A. Haring, Martin Ohmacht, Thomas W. Fox, Michael K. Gschwind,
David L. Satterfield, Krishnan Sugavanam, Paul W. Coteus, Philip Heidel-
berger, Matthias A. Blumrich, Robert W. Wisniewski, Alan Gara, George
Liang-Tai Chiu, Peter A. Boyle, Norman H. Chist, and Changhoan Kim. The
IBM Blue Gene/Q Compute Chip. IEEE MICRO, 32(2):48–60, 2012. doi:
10.1109/MM.2011.108. Last access: 2025-03-01. 60

[150] Jack J. Dongarra. Report on the Fujitsu Fugaku System. Tech Report No.
ICL-UT-20-06 ICL-UT-20-06, Oak Ridge National Laboratory, University of
Tennessee, Knoxville, June 2020. Last access: 2025-03-01. 61, 62

[151] Dong Choi, Glenn Lockwood, Robert Sinkovits, and Mahidhar Tatineni. Per-
formance of Applications using Dual-Rail InfiniBand 3D Torus network on
the Gordon Supercomputer. In Proceedings of the 2014 Annual Conference

136

https://cse.buffalo.edu/faculty/tkosar/cse710/papers/lustre-whitepaper.pdf
https://cse.buffalo.edu/faculty/tkosar/cse710/papers/lustre-whitepaper.pdf
https://www.netlib.org/utk/people/JackDongarra/PAPERS/sunway-report-2016.pdf
https://www.netlib.org/utk/people/JackDongarra/PAPERS/sunway-report-2016.pdf

on extreme science and engineering discovery environment, pages 1–6. ACM,
2014. ISBN 9781450328937. 66, 67

[152] Y. Miao, V. A. Feher, and J. A. McCammon. Gaussian Accelerated Molecular
Dynamics: Unconstrained Enhanced Sampling and Free Energy Calcula-
tion. Journal of Chemical Theory and Computation, 11(8):3584–3595, 2015.
doi: 10.1021/acs.jctc.5b00436. Last access: 2025-03-01. 66

[153] Tirthak Patel, Suren Byna, Glenn K Lockwood, and et al. Uncovering access,
reuse, and sharing characteristics of {I/O-Intensive} files on {Large-Scale}
production {HPC} systems. In 18th USENIX Conference on File and Stor-
age Technologies (FAST 20), pages 91–101. USENIX Association, 2020. Last
access: 2025-03-01. 68

[154] I.F. Sbalzarini and J.H. Walther and M. Bergdorf and et al. PPM – A highly
efficient parallel particle–mesh library for the simulation of continuum sys-
tems. Journal of Computational Physics, 215(2):566–588, 2006. ISSN 0021-
9991. doi: 10.1016/j.jcp.2005.11.017. Last access: 2025-03-01. 76

[155] Adam Liwo, Cezary Czaplewski, Adam K. Sieradzan, and et al. Theory and
Practice of Coarse-Grained Molecular Dynamics of Biologically Important
Systems. Biomolecules, 11(9), 2021. doi: 10.3390/biom11091347. Last access:
2025-03-01. 76

[156] Emerson A. Macedo and Alba C.M.A. Melo. Adaptive patch grid strategy
for parallel protein folding using atomic burials with NAMD. Journal of
Parallel and Distributed Computing, 189:104868, 2024. ISSN 0743-7315.
doi: 10.1016/j.jpdc.2024.104868. Last access: 2025-03-01. 79, 95, 96, 114,
118

[157] M. Bhandarkar, A. Bhatele, and E. Bohm et al. NAMD User’s Guide (Version
2.11). Tutorial, University of Illinois and Beckman Institute, University of
Illinois at Urbana-Champaign, december 2015. Theoretical and Computa-
tional Biophysics Group; Last access: 2025-03-01. 81, 90

[158] A. Bhatele et al R. Bernardi, M. Bhandarkar. NAMD User’s Guide (Version
2.14). Tutorial, University of Illinois and Beckman Institute, University of
Illinois at Urbana-Champaign, august 2020. Theoretical and Computational
Biophysics Group; Last access: 2025-03-01. 81, 90

[159] Barcelona Supercomputing Center. Nord III User’s Guide. Tutorial,
Barcelona SuperComputing Center, Barcelona Supercomputing Center,
february 2021. Last access: 2025-03-01. 83, 89, 117

[160] RCSB Protein Data Bank. 1ENH: Engrailed Homeodomain. https://www.
rcsb.org/structure/1ENH, 1998. Last access: 2025-03-01. 84

[161] RCSB Protein Data Bank. 1IFR: Lamin A/C Globular Domain. https:
//www.rcsb.org/structure/1IFR, 1997. Last access: 2025-03-01. 84

137

https://www.rcsb.org/structure/1ENH
https://www.rcsb.org/structure/1ENH
https://www.rcsb.org/structure/1IFR
https://www.rcsb.org/structure/1IFR

[162] RCSB Protein Data Bank. 1OZ9: AQ_1354, a hypothetical protein from
Aquifex aeolicus. https://www.rcsb.org/structure/1OZ9, 2004. Last
access: 2025-03-01. 84

[163] RCSB Protein Data Bank. 4LNZ: Human Myosin 5b globular domain.
https://www.rcsb.org/structure/4LNZ, 2013. Last access: 2025-03-
01. 84, 112

[164] Jing Huang, Sarah Rauscher, Grzegorz Nawrocki, and et al. CHARMM36m:
an improved force field for folded and intrinsically disordered proteins. Na-
ture Methods, 14:71, Nov 2016. URL https://doi.org/10.1038/nmeth.
4067. Last access: 2025-03-01. 84

[165] NAMD Wiki: NamdPerformanceTuning. NAMD - Web site,
2015. URL https://www.ks.uiuc.edu/Research/namd/wiki/
?NamdPerformanceTuning. Last access: 2025-03-01. 90

[166] NAMD: Class Hierarchy. https://www.ks.uiuc. edu/Research/namd/doxy-
gen/hierarchy.html, 2020. Last access: 2025-03-01. 105, 106

[167] W. Humphrey, A. Dalke, and K. Schulten. VMD – Visual Molecular Dy-
namics. Journal of Molecular Graphics, 14:33–38, 1996. doi: 10.1016/
0263-7855(96)00018-5. Last access: 2025-03-01. 112

[168] I. Kufareva and R. Abagyan. Methods of protein structure comparison.
In Homology Modeling, pages 231–257. Springer, 2011. doi: 10.1007/
978-1-61779-588-6_10. Last access: 2025-03-01. 112

138

https://www.rcsb.org/structure/1OZ9
https://www.rcsb.org/structure/4LNZ
https://doi.org/10.1038/nmeth.4067
https://doi.org/10.1038/nmeth.4067
https://www.ks.uiuc.edu/Research/namd/wiki/?NamdPerformanceTuning
https://www.ks.uiuc.edu/Research/namd/wiki/?NamdPerformanceTuning

Appendix A

Article Derived from This Thesis

Emerson A. Macedo and Alba C.M.A. Melo. Adaptive patch grid strategy for
parallel protein folding using atomic burials with NAMD. Journal of Parallel and
Distributed Computing, 189:104868, 2024 (first page).

139

-RXUQDO RI 3DUDOOHO DQG 'LVWULEXWHG &RPSXWLQJ ��� ������ ������

$YDLODEOH RQOLQH � 0DUFK ����
����������� ���� (OVHYLHU ,QF� $OO ULJKWV UHVHUYHG�

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

journal homepage: www.elsevier.com/locate/jpdc

Adaptive patch grid strategy for parallel protein folding using atomic

burials with NAMD

Emerson A. Macedo ∗, Alba C.M.A. Melo

Department of Computer Science, Campus UnB, Predio CIC/EST, University of Brasilia (UnB), 70910-00, Brasilia, DF, Brazil

A R T I C L E I N F O A B S T R A C T

Keywords:
Protein folding
Parallel simulation
Atomic burials

The definition of protein structures is an important research topic in molecular biology currently, since there is
a direct relationship between the function of the protein in the organism and the 3D geometric configuration it
adopts. The transformations that occur in the protein structure from the 1D configuration to the 3D form are
called protein folding. Ab initio protein folding methods use physical forces to model the interactions among
the atoms that compose the protein. In order to accelerate those methods, parallel tools such as NAMD were
proposed. In this paper, we propose two contributions for parallel protein folding simulations: (a) adaptive patch
grid (APG) and (b) the addition of atomic burials (AB) to the traditional forces used in the simulation. With APG,
we are able to adapt the simulation box (patch grid) to the current shape of the protein during the folding process.
AB forces relate the 3D protein structure to its geometric center and are adequate for modeling globular proteins.
Thus, adding AB to the forces used in parallel protein folding potentially increases the quality of the result for
this class of proteins. APG and AB were implemented in NAMD and tested in supercomputer environments. Our
results show that, with APG, we are able to reduce the execution time of the folding simulation of protein 4LNZ
(5,714 atoms, 15 million time steps) from 12 hours and 36 minutes to 11 hours and 8 minutes, using 16 nodes
(256 CPU cores). We also show that our APG+AB strategy was successfully used in a realistic protein folding
simulation (1.7 billion time steps).

1. Introduction

Once the synthesis ends, protein folding begins: the 1D sequence
starts to fold on itself following a series of 3D transformations, chang-
ing its structure each time, until it finds a stable 3D configuration that
determines its function in the organism [10]. Despite the advancements
in experimental methods, there is a huge gap between the number of
known 3D structures and the number of 1D sequences determined rou-
tinely [13]. This issue is addressed by simulations that predict the 3D
structures.

The computational methods for protein folding can be classified into
four groups. This paper focuses on the ab initio group, which does not
use any data on previously resolved protein structures, i.e., predictions
are based strictly on the principles of physics, seeking to predict the
stable 3D configuration considering only the protein’s 1D sequence.
Molecular Dynamics (MD) simulation is a technique used to study the
time-dependent behavior of molecular systems. It involves numerically
solving Newton’s equations of motion to track the positions and veloc-

* Corresponding author.
E-mail addresses: 180061712@aluno.unb.br (E.A. Macedo), alves@unb.br (A.C.M.A. Melo).

ities of the atoms over time, considering their initial coordinates and
velocities and a potential energy function of the system. For modeling
protein structures, canonical MD is the method of choice. MD simula-
tions are ab initio methods which, in general, consist of (i) a geometric
representation of the 1D structure, (ii) a potential energy function, and
(iii) an energy surface search technique [14], with energy surface search
technique defined in [14]. One limitation of the ab initiomethods is that
finding the optimal sequence of geometric transformations which leads
to the stable 3D configuration is an NP-Complete problem [17]. In this
context, the energy surface search technique uses energy functions to
simulate the protein conformational space, describing its energy and
atomic interactions.

MD simulations are difficult to parallelize, thus the number of com-
puting elements in parallel must be very well scaled to obtain some
gain. NAMD (NAnoscale Molecular Dynamics program) [8,41] paral-
lelizes the MD simulations using a hybrid decomposition method which
has two components. The first component is responsible for spatial de-
composition, i.e., for decomposing the simulation geometric space into

https://doi.org/10.1016/j.jpdc.2024.104868
Received 12 January 2023; Received in revised form 17 February 2024; Accepted 25 February 2024

Appendix B

NAMD Configuration file

1 ###
2 ## DATE : 2025-02-11 07:11:04
3 ## UPDATED BY: EMERSON DE A. MACEDO
4 ###
5
6 ###
7 ## REFERENCES USED
8 # ref.1: www.ks.uiuc.edu/Training/Tutorials/namd/namd-tutorial-
9 # unix-html/node10.html

10 #
11 # ref.2: www.ks.uiuc.edu/Research/namd/wiki/?NamdPerformanceTuning
12 #
13 # ref.3: www.ks.uiuc.edu/Research/2.11/ug/node92.html
14 #
15 ###
16
17
18 ###
19 ## JOB DESCRIPTION
20 ###
21
22 # Minimization and Equilibration of
23 # Protein 4lnz (Extended) in Generalized Born implicit solvent
24
25 # MOLECULAR SYSTEM
26 set mol_sys_name 4lnz_extendedA
27
28
29 ###
30 ## ADJUSTABLE PARAMETERS
31 ###
32
33 structure ${mol_sys_name}.psf
34 coordinates ${mol_sys_name}.pdb
35
36 set temperature 310
37 #set outputname simulation
38
39 # restart: step 1
40 set previous simulation1
41 set current simulation2
42
43 # restart: step 2
44 set outputname ${current}
45
46 # restart: step 3
47 bincoordinates ${previous}.restart.coor
48 binvelocities ${previous}.restart.vel
49 extendedSystem ${previous}.restart.xsc
50

141

51 #coordinates ${mol_sys_name}.pdb ; # ignored & only "bincoordinates" is used
52 ; # for initializing the coordinates for the
53 ; # present configuration.
54
55 # restart: step 4
56 firsttimestep 5000000 ; # taken from the ${previous}.restart.xsc , which is the
57 # number of last saved restart configuration of the
58 # EARLIER SIMULATION
59
60 numsteps 10000000 ; # run stops when this step is reached
61
62
63 ###
64 ## BURIALS PARAMETERS
65 ###
66
67 # central distances file
68 burials rcntr_namd.dat
69
70
71 # hbons file (AF version)
72 hbondsAF hbonds_namd.dat
73
74
75 ###
76 ## SIMULATION PARAMETERS
77 ###
78
79 # Input
80 paraTypeCharmm on
81 parameters par_all27_prot_lipid.prm
82
83 # restart: step 5
84 #temperature ${temperature} ;# commented, because the option
85 ;# "binvelocities" is already specified
86
87 # Implicit Solvent [ref.1]
88 gbis yes
89 alphaCutoff 12.0
90 ionConcentration 0.3 ; # default: 0.2
91
92 # Force-Field Parameters
93 exclude scaled1-4
94 1-4scaling 1.0
95 cutoff 12.0
96 switching on
97 switchdist 10.0
98 pairlistdist 14.0
99

100
101 # Integrator Parameters
102 timestep 1.0 ; # 2fs/step = default
103 rigidBonds all ; # needed for 2fs steps
104 nonbondedFreq 1
105 fullElectFrequency 2 ; # irreleant if PME = no
106 stepspercycle 20 ; # default (ref.2)
107
108 # Constant Temperature Control
109 langevin on ; # do langevin dynamics
110 langevinDamping 1 ; # damping coefficient (gamma) of 1/ps
111 langevinTemp ${temperature}
112 langevinHydrogen off ; # don’t couple langevin bath to hydrogens
113
114 # Output
115 outputName $outputname
116 #binaryoutput no
117
118
119 restartfreq 2500000 ; # 10.000.000 / 2.500.000 = 4 restart points writen
120 dcdfreq 25000 ; # 10.000.000 / 25.000 = 400 frames

142

121 xstFreq 25000 ; # 10.000.000 / 25.000 = 400 frames
122 outputEnergies 50000 ; # 10.000.000 / 50.000 = 200 outputs -> every 2 frames, 1 output
123 outputPressure 50000 ; # 10.000.000 / 50.000 = 200 outputs -> every 2 frames, 1 output
124 outputTiming 50000 ; # 10.000.000 / 50.000 = 200 outputs -> every 2 frames, 1 output
125
126
127 # Improving Parallel Scaling # ref.3
128 # twoAwayX yes # "roughly doubles the number of patches"
129 # twoAwayY yes #
130 # twoAwayZ yes #
131
132
133
134 ###
135 ## EXECUTION SCRIPT
136 ###
137
138 ###
139 # restart: step 6: comment lines below
140 ###
141 # :RMK: We don’t want to run the ’minimization’ process again
142 # (unless the earlier simulation run did not do it!)
143 ###
144 # # Minimization
145 # minimize 100
146 # reinitvels ${temperature}
147 ###
148
149 run 5000000 ; # run = numsteps - firsttimestep
150 # nr. steps to run this time (it overrides ’numsteps’)

143

Appendix C

NAMD: Components and Files

#N Components Files
(Resource*)

1 DataTypeRepository* structures.h, common.h

2 Molecule Molecule.C, Molecule.h

3 Parameters Parameters.C, Parameters.h

4 SimParameters SimParameters.C, SimParameters.h

5 ComputeMgr ComputeMgr.C, ComputeMap.h

6 WorkDistrib WorkDistrib.C, WorkDistrib.h, WorkDistrib.ci

7 LdbCoordinator LdbCoordinator.C, LdbCoordinator.decl.h, LdbCoordinator.h

8 ReductionMgr ReductionMgr.h ReductionMgr.decl.h, ReductionMgr.C

09 Broadcasts Broadcasts.h, BroadcastObject.h

10 Sequencer Sequencer.C, Sequencer.h

9 Controller Controller.C, Controller.h

Table C.1: List of NAMD components and their files used in this Thesis. The
Components column contains the names of the components identified to build our
strategy. The only exception is in the first line, DataTypeRepository*. This name
was created exclusively for this work, just to represent a resource, rather than a
component.

144

Appendix D

NAMD Acknowledgment

"NAMD was developed by the Theoretical and Computational Biophysics Group
in the Beckman Institute for Advanced Science and Technology at the University
of Illinois at Urbana-Champaign."

145

	Dedicatória
	Agradecimentos
	Abstract
	Resumo
	1 Introduction
	1.1 Problem: Limitations of Molecular Dynamics
	1.2 Motivation
	1.3 Objectives
	1.4 Contributions
	1.5 Document Organization

	I Background / Contextualization
	2 Proteins: An Overview
	2.1 Amino Acids
	2.2 Protein Structures
	2.2.1 Primary Structure
	2.2.2 Secondary Structure
	2.2.3 Tertiary Structure
	2.2.4 Quaternary Structure

	2.3 Types of Proteins

	3 Protein Folding
	3.1 Overview
	3.2 Experimental methods for determining protein structures
	3.2.1 X-Ray Crystallography
	3.2.2 Nuclear Magnetic Resonance

	3.3 Computational methods for predicting protein structures
	3.3.1 Theory and Coarse-Grained Simulations
	3.3.2 Structural Bioinformatics (SBI)
	3.3.3 Molecular Dynamics and Protein folding

	4 Molecular Dynamics Simulation: A Detailed View
	4.1 Methodology
	4.1.1 General Molecular Dynamics Simulation Algorithm
	4.1.2 Solvation model: Explicit and Implicit

	4.2 Limitations and Challenges
	4.3 NAMD
	4.3.1 Overview
	4.3.2 Methodology

	4.4 Atomic Burials
	4.4.1 Overview
	4.4.2 MDBury Algorithm

	5 Parallel Techniques for MD Simulations using HPC Architectures
	5.1 High-Performance Computing (HPC)
	5.1.1 Top500 List
	5.1.2 HPC Architectures
	5.1.3 Massively Parallel Processing
	5.1.4 Cluster Computing

	5.2 Parallel HPC for MD Simulations
	5.2.1 Parallel MD Simulations on Summit using NAMD
	5.2.2 GROMACS Parallel MD Simulations on TianHe-2
	5.2.3 Accelerating MD with LAMMPS on Sunway TaihuLight
	5.2.4 High-Throughput MD on BlueGene/Q with LAMMPS
	5.2.5 GENESIS for Parallel MD on Fugaku Supercomputer
	5.2.6 Anton's Custom Hardware for Large-Scale MD Simulations
	5.2.7 Integrating Machine Learning with OpenMM for MD
	5.2.8 GaMD-Accelerated Simulations on Gordon
	5.2.9 Real-Time MD Analysis on Cori using NAMD
	5.2.10 Adaptive-Resolution PPM for MD
	5.2.11 Parallel Non-Bonded Force Computations with mdcore
	5.2.12 Coarse-Grained MD with UNRES on Tryton Cluster

	5.3 Comparative Analysis

	II Contributions
	6 Adaptive Patch Grid (APG)
	6.1 Challenge: HPC MD Simulation of PF using Static Decomposition
	6.2 Adaptive Domain Decomposition Computation
	6.3 Design of the APG strategy
	6.4 Experimental Results
	6.4.1 Description of the Computing Environment
	6.4.2 Description of Proteins
	6.4.3 NAMD Configuration File
	6.4.4 Evaluation Tests of NAMD's Default Patch Grid
	6.4.5 Evaluation Test with Scaled Patch Grid
	6.4.6 Evaluation Test with Manual Restart
	6.4.7 NAMD Test with Adaptive Patch Grid

	6.5 Contribution Review

	7 NAMD with Atomic Burials
	7.1 Challenge: Parallel execution of MDBury
	7.2 Overview of the Solution
	7.3 N2HB Algorithm
	7.3.1 Description

	7.4 NAMD Components Modified
	7.5 Computing Atomic Burial Forces
	7.6 Computing Hydrogen Bond Forces
	7.7 Computing Annealing Weights
	7.8 Experimental Results
	7.8.1 NAMD Configuration with Atomic Burials
	7.8.2 Tests in Nord: APG and Atomic Burial

	7.9 Contribution Review

	III Conclusions
	8 Conclusions and Future Work
	8.1 Conclusions
	8.2 Future work

	References
	A Article Derived from This Thesis
	B NAMD Configuration file
	C NAMD: Components and Files
	D NAMD Acknowledgment

