D
University of Brasilia

Computer Science Department

FFACT: A Fix-based Domain-Specific Language
based on a Functional Algebra for Continuous Time
Modeling

Eduardo L. Rocha

Dissertation submitted in partial fullfilment of

the requirements to the Master’s Degree in Informatics

Advisor
Prof. Eduardo Peixoto

Co-advisor

Prof. José Edil Guimaraes

Brasilia
2025

D
University of Brasilia

Computer Science Department

FFACT: A Fix-based Domain-Specific Language
based on a Functional Algebra for Continuous Time
Modeling

Eduardo L. Rocha

Dissertation submitted in partial fullfilment of

the requirements to the Master’s Degree in Informatics

Prof. Eduardo Peixoto (Advisor)
CIC/UnB

Prof. Rodrigo Bonifacio de Almeida Prof. Denis Loubach
CIC/UnB ITA

Prof. Rodrigo Bonifacio de Almeida

Coordinator of Graduate Program in Informatics

Brasilia, April 28, 2025

“If you don’t know, the thing to do is not to get scared, but to learn.”

— Ayn Rand, Atlas Shrugged

Dedicated to

First, I dedicate this milestone to my family. To my sister Alexya Lemos, for the mem-
orable moments of joy and fun — it is always fun to discuss and brainstorm with you
insights about whatever we happen to be watching together.

To my father Rodolfo Rocha, for sharing with me his wise and insightful perceptions
about life. Your distinct perspectives bring me awareness about any subject that we end
up discussing. Not everyone can have the luxury of having civil and calm conversations
with whom they may fundamentally disagree. My dad gave me my first opportunities of
this kind and I'm truly grateful to him for that.

And foremost, to my mother Dania Lemos. Since my infancy, my mom has been a
fundamental pillar in my life; from my first pronounced word, to my reading and writing,
and later in the first years of school; she has most if not all of the merit in regards to
those accomplishments. The transition from school to university required way more effort
from me and my mom came along for the ride: she became my golden guardian. My
countless unhealthy decisions in the pursuit of doing the best in my academic journey
were counter-balanced by her always-present joyful smiles and help in whatever she could
offer me. Further, she kept celebrating any of my achievements, regardless of how minor
or major, to make me believe in a self-esteem based on merit and high effort. Later
on, after I started getting into the software industry as a Software Developer, all my
complements about my english I redirected to my mom — and that is because she deserves
all the attention and merit about this skill that today is a must-have in my life. Without
her there to keep me pushing further on learning a foreign language, I would not be where
I am today, far from it. Dania is the inspirational example that every person needs:
an unstoppable warrior for us to follow; one based on kindness, effort, goodness, and
ambition. Let your Will be charged by hers; let your Heart by melted by hers; your
paramount goal should be to learn from her and consider what she has to share with you.

Second, I dedicate this work to my close friends — Edil Medeiros, Marcos Magueta,
Mario Junior, Neil Mayhew, Elisama Honesko, Gabriela Lul and others. Thank you for

all the great conversations, insights, and fun memories.

iv

Acknowledgements

First, I must acknowledge my main advisor, Edil Medeiros. Since graduation, and now in
my masters, he trusted that my effort could go on and beyond, surpassing my own expec-
tations and limits, getting out of my comfort zone. All the endless meetings, including
on the weekends, filled with thoughtful advice and helpful comments, will be the most
remarkable memory of the best mentor I have encountered to this day — a title that Edil
got back when I was doing graduation, and he continues to be worthy.

I'm thankful to my Computer Science study group, Dr.Nekoma, for the continued
joyful programming practices leveraging functional programming principles, something
that is still the core foundation of the present work, even though this paradigm remains
uncommon both in the industry of software development industry and in academia.

I'm grateful for the company I'm currently working in, Tontine Trust, where I'm a
member of a great team delivering a challenging product to the market. Some of these
challenges are being solved in Haskell; a programming language I grew fond of it since my
final graduation project was written in it. This work is a continuation of that.

Finally, a special thanks to everybody who took any amount of time to read any draft

I had of this dissertation, providing honest feedback.

Abstract

Physical phenomena are difficult to properly model due to their continuous nature. Its
paralellism and nuances were a challenge before the transistor, and even after the digital
computer it still is an unsolved issue. In the past, some formalism were brought with the
General Purpose Analog Computer proposed by Shannon in the 1940s. Unfortunately,
this formal foundation was lost in time, with ad-hoc practices becoming mainstream to
simulate continuous time. In this work, we propose a domain-specific language (DSL) —
FACT and its evolution FFACT — written in Haskell that resembles GPAC’s concepts.
The main goal is to take advantage of high level abtractions, both from the areas of
programming and mathematics, to execute systems of differential equations, which de-
scribe physical problems mathematically. We evaluate performance and domain problems
and address them accordingly. Future improvements for the DSL are also explored and
detailed.

Keywords: differential equations, continuous systems, GPAC, integrator, fixed-point,

fixed-point combinator, monadic recursion

vi

Resumo

Titulo: FFACT: Uma linguagem de Dominio Especifico utilizando ponto fixo baseada

em uma Algebra Funcional para Modelagem de Tempo Continuo.

Fenomenos fisicos sao dificeis de modelar propriamente devido a sua natureza con-
tinua. O paralelismo e nuances envolvidos eram um desafio antes do transistor, e mesmo
depois do computador digital esse problema continua insoltvel. No passado, algum for-
malismo foi trazido pelo computador analégico de propoésito geral (GPAC) por Shannon
nos anos 1940. Infelizmente, essa base formal foi perdida com o tempo, e praticas ad-hoc
tornaram-se comuns para simular o tempo continuo. Neste trabalho, propomos uma lin-
guagem de dominio especifico (DSL) — FACT e sua evolugao FFACT - escrita em Haskell
que assemelha-se aos conceitos do GPAC. O principal objetivo é aproveitar de abstragoes
de mais alto nivel, tanto da area da programacao quanto da matematica, para execu-
tar sistemas de equagoes diferenciais, que descrevem sistemas fisicos matematicamente.
Noés avaliamos performance and problemas de dominio e os enderecamos propriamente.

Melhorias futuras para a DSL também sao exploradas e datalhadas.

Palavras-chave: equacoes diferenciais, sistemas continuos, GPAC, integrador, ponto

fixo, recursao mondadica

vii

Contents

Introduction

1.1 Contribution
1.1.1 Executable Simulation,
1.1.2 GPAC: inspiration for a Formal Model
1.1.3 Expressiveness and Conciseness

1.2 Outline e

Design Philosophy

2.1 Shannon’s Foundation: GPAC
2.2 The Shape of Information 0oL
2.3 Modeling Reality
2.4 Making Mathematics Cyber

Effectful Integrals

3.1 Uplifting the CT Type
32 GPACBIind I: CT
3.3 Exploiting Impurityo
3.4 GPAC Bind II: Integrator
3.5 Using Recursion to solve Math,

Execution Walkthrough

4.1 From Models to Modelso
4.2 Driving the Modelo
4.3 An attractive example
4.4 Lorenz’s Butterfly

Travelling across Domains
5.1 Time Domains

5.2 Tweak I: Interpolation

viil

6 Caching the Speed Pill
6.1 Performance
6.2 The Saving Strategy
6.3 Tweak II: Memoization
6.4 A change in Perspective
6.5 Tweak III: Model and Driver
6.6 Results with Caching

Fixing Recursion

7.1 Integrator’s Noise
7.2 The Fixed-Point Combinator
7.3 Value Recursion with Fixed-Points
7.4 Tweak IV: Fixing FACT

7.5 Examples and Comparisons

Conclusion

8.1 Future Work
8.1.1 Formalism
8.1.2 Extensions
8.1.3 Refactoring

Appendix

9.1 Literate Programming
9.2 FFACT’s Manual
9.2.1 Models
9.2.2 Solver
9.2.3 Simulationo
9.2.4 Interpolation
9.2.5 Cachingo
926 Exampleo

References

iX

50
20
52
23
29
60
62

65
65
67
69
71
5

78
79
79
79
80

81
81
82
82
82
83
83
83
84

85

1.1

1.2

2.1

2.2

2.3

24

2.5

2.6

2.7

2.8

2.9

List of Figures

The translation between the world of software and the mathematical de-
scription of differential equations are more concise and explicit in FFACT.
Comparison between the original proposed DSL [1] and the first version
of FACT [2, 3] using the same sine model, alongside its mathematical and
GPAC descriptions.

The combination of these four basic units compose any GPAC circuit (taken
from [1] with permission).
Polynomial circuits resembles combinational circuits, in which the circuit
respond instantly to changes on its inputs (taken from [1] with permission).

Types are not just labels; they enhance the manipulated data with new

information. Their difference in shape can work as the interface for the data.

Functions’ signatures are contracts; they purespecify which shape the input
information has as well as which shape the output information will have.
Sum types can be understood in terms of sets, in which the members of the
set are available candidates for the outer shell type. Parity and possible
values in digital states are examples. oL L
Product types are a combination of different sets, where you pick a repre-
sentative from each one. Digital clocks’” time and objects’ coordinates in
space are common use cases. In Haskell, a product type can be defined
using a record alongside with the constructor, where the labels for each
member inside it are explicit.o

Depending on the application, different representations of the same struc-

ture need to used due to the domain of interest and/or memory constraints.

The minimum requirement for the Ord typeclass is the <= operator, mean-
ing that the functions <, <=, >, >=, max and min are now unlocked for
the type ClockTime after the implementation. Typeclasses can be viewed
as a third dimension in a type. L.
Replacements for the validation function within a pipeline like the above

are COIMINOIL. o o v v v v v e e e e e e e e e e e e e e e e e e e

10

11

11

11

12

13

13

2.10

2.11

2.12

2.13

2.14

3.1

3.2

3.3

3.4

3.5

3.6
3.7

4.1

4.2

The initial value is used as a starting point for the procedure. The algorithm
continues until the time of interest is reached in the unknown function. Due
to its large time step, the final answer is really far-off from the expected
result. . . .o
In Haskell, the type keyword works for alias. The first draft of the CT
type is a function, in which providing a floating point value as time returns
another value as outcome. Lo
The Parameters type represents a given moment in time, carrying over all
the necessary information to execute a solver step until the time limit is
reached. Some useful typeclasses are being derived to these types, given
that Haskell is capable of inferring the implementation of typeclasses in
simple cases.
The CT type is a function of from time related information to an arbitrary
potentially effectful outcome value.
The CT type can leverage monad transformers in Haskell via Reader in

combination with I0.

Given a parametric record ps and a dynamic value da, the fmap functor
of the CT type applies the former to the latter. Because the final result is
wrapped inside the I0 shell, a second fmap is necessary.
With the Applicative typeclass, it is possible to cope with functions inside
the CT type. Again, the fmap from I0 is being used in the implementation.
The >>= operator used in the implementation is the bind from the IO
shell. This indicates that when dealing with monads within monads, it is
frequent to use the implementation of the internal members.
The typeclass MonadI0 transforms a given value wrapped in I0 into a dif-
ferent monad. In this case, the parameter m of the function is the output
of the CT type.
The ability of lifting numerical values to the CT type resembles three FF-
GPAC analog circuits: Constant, Adder and Multiplier.
Example of a State Machineo oo
The integrator functions attend the rules of composition of FF-GPAC,
whilst the CT and Integrator types match the four basic units.

The integrator functions are essential to create and interconnect combina-
tional and feedback-dependent circuits. L.
The developed DSL translates a system described by differential equations
to an executable model that resembles FF-GPAC’s description.

X1

21

33

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

5.1

5.2
5.3

5.4

6.1

Because the list implements the Traversable typeclass, it allows this type
to use the traverse and sequence functions, in which both are related to
changing the internal behaviour of the nested structures.
A state vector comprises multiple state variables and requires the use of
the sequence function to sync time across all variables.
Execution pipeline of a model. L.
Using only FF-GPAC’s basic units and their composition rules, it’s possible
to model the Lorenz Attractor example.
After createlnteg, this record is the final image of the integrator. The
function initialize gives us protecting against wrong records of the type
Parameters, assuring it begins from the first iteration, i.e., tg.
After readInteg, the final floating point values is obtained by reading from
memory a computation and passing to it the received parameters record.
The result of this application, v, is the returned value.
The updatelnteg function only does side effects, meaning that only affects
memory. The internal variable c is a pointer to the computation itself, i.e.,
the computation being created references this exact procedure.
After setting up the environment, this is the final depiction of an indepen-
dent variable. The reader z reads the values computed by the procedure
stored in memory, a second-order Runge-Kutta method in this case.
The Lorenz’s Attractor example has a very famous butterfly shape from
certain angles and constant values in the graph generated by the solution

of the differential equations..

During simulation, functions change the time domain to the one that better
fits certain entities, such as the Solver and the driver. The image is heavily
inspired by a figure in [4]. oo oL
Updated auxiliary types for the Parameters type.

Linear interpolation is being used to transition us back to the continuous

The new updatelnteg function add linear interpolation to the pipeline when

receiving a parametric record.o

With just a few iterations, the exponential behaviour of the implementation

is already noticeable. Lo

xii

41

6.2

6.3

6.4

6.5

6.6

7.1
7.2
7.3
7.4
7.5

7.6

7.7

7.8

The new createlnteg function relies on interpolation composed with mem-
oization. Also, this combination produces results from the computation
located in a different memory region, the one pointed by the computation
pointer in the integrator. o Lo
The function reads information from the caching pointer, rather than the
pointer where the solvers compute the results.
The new updatelnteg function gives to the solver functions access to the
region with the cached data.
Caching changes the direction of walking through the iteration axis. It also
removes an entire pass through the previous iterations.
By using a logarithmic scale, we can see that the final implementation is

performant with more than 100 million iterations in the simulation.

Execution pipeline of amodel.o
Resettable counter in hardware, inspired by Levent’s works [5, 6].
Diagram of createInteg primitive for intuition.
Results of FFACT are similar to the final version of FACT..
Comparison of the Lorenz Attractor Model between FFACT and a Simulink
implementation [7].
Comparison of the Lorenz Attractor Model between FFACT and a Matlab
implementation.
Comparison of the Lorenz Attractor Model between FFACT and a Math-
ematica implementation.
Comparison of the Lorenz Attractor Model between FFACT and a Yampa

implementation.

xiil

6.1

6.2

6.3

6.4

List of Tables

Small increases in the number of the iterations within the simulation provoke
exponential penalties in performance.
Because the previous solver steps are not saved, the total number of steps per
iteration starts to accumullate following the numerical sequence of triangular
numbers when using the Euler method.
These values were obtained using the same hardware. It shows that the
caching strategy drastically improves FACT’s performance. Again, the con-
crete memory values obtained from GHC should be considered as just an
indicative of improvement due to the garbage collector interference.
These values were obtained using the same hardware. More complicated

simulations can be done with FACT after adding memoization.

Xiv

Chapter 1
Introduction

Continuous behaviours are deeply embedded into the real world. However, even our
most advanced computers are not capable of completely modeling such phenomena due
to its discrete nature; thus continuing to be a challenge. Cyber-physical systems (CPS)
— the integration of computers and physical processes [8, 9] — tackles this problem by
attempting to include into the semantics of computing the physical notion of time [9, 10,
11,12, 13, 14], i.e., treating time as a measurement of correctness, not performance [8] nor
just an accident of implementation [9]. Additionally, many systems perform in parallel,
which requires precise and sensitive management of time; a non-achievable goal by using
traditional computing abstractions, e.g., threads [9].

Examples of these concepts are older than the digital computers; analog computers
were used to model battleships’ fire systems and core functionalities of fly-by-wire air-
craft [15]. The mechanical metrics involved in these problems change continuously, such
as space, speed and area, e.g., the firing’s range and velocity are crucial in fire systems,
and surfaces of control are indispensable to model aircraft’s flaps. The main goal of such
models was, and still is, to abstract away the continuous facet of the scenario to the
computer. In this manner, the human in the loop aspect only matters when interfacing
with the computer, with all the heavy-lifting being done by formalized use of shafts and
gears in analog machines [16, 17, 15], and by software after the digital era.

Within software, the aforementioned issues — the lack of time semantics and the
wrong tools for implementing concurrency — are only a glimpse of serious concerns or-
biting around CPS. The main villain is that today’s computer science and engineering
primarily focus on matching software demands, not expressing essential aspects of physi-
cal systems [9, 18]. Further, its sidekick is the weak formalism surrounding the semantics
of model-based design tools; modeling languages whose semantics are defined by the tools
rather than by the language itself [18], encouraging ad-hoc design practices, thus adding

inertia into a dangerous legacy we want to avoid [19]. With this in mind, Lee advocated

that leveraging better formal abstractions is the paramount goal to advance continuous
time modeling [9, 18]. More importantly, these new ideas need to embrace the physical
world, taking into account predictability, reliability and interoperability.

The development of a model of computation (MoC) to define and express models is the
major hero towards this better set of abstractions, given that it provides clear, formal and
well-defined semantics [8] on how engineering artifacts should behave [10]. These MoCs
determine how concurrency works in the model, choose which communication protocols
will be used, define whether different components share the notion of time, as well as
whether and how they share state [8, 18]. Also, Sangiovanni and Lee [20] proposed
a formalized denotational framework to allow understanding and comparison between
mixtures of MoCs, thus solving the heterogeneity issue that raises naturally in many
situations during design [8, 18]. Moreover, their framework also describes how to compose
different MoCs, along with addressing the absence of time in models, via what is defined
as tagged systems [21, 22, 23] — a relationship between a tag, generally used to order
events, and an output value.

Ingo et al. went even further [24] by presenting a framework based on the idea of tagged
systems, known as ForSyDe. The tool’s main goal is to push system design to a higher
level of abstraction, by combining MoCs with the functional programming paradigm. The
technique separates the design into two phases, specification and synthesis. The former
stage, specification, focus on creating a high-level abstraction model, in which mathemat-
ical formalism is taken into account. The latter part, synthesis, is responsible for applying
design transformations — the model is adapted to ForSyDe’s semantics — and mapping
this result onto a chosen architecture to be implemented later in a target programming
language or hardware platform [24]. Afterward, Seyed-Hosein and Ingo [13] created a co-
simulation architecture for multiple models based on ForSyDe’s methodology, addressing
heterogeneity across languages and tools with different semantics. One example of such
tools treated in the reference is Simulink !, the de facto model-based design tool [13].
Simulink being the standard tool for modeling means that, despite all the effort into

utilizing a formal approach to model-based design, there is still room for improvement.

1.1 Contribution

The aforementioned works — the formal notion of MoCs, the ForSyDe framework and its
interaction with modeling-related tools like Simulink — comprise the domain of model-
based design or model-based engineering. Furthermore, the main goal of this work is to

contribute to this sub-area of CPS by creating a domain-specific language tool (DSL) for

1Simulink documentation.

http://www.mathworks.com/products/simulink/

simulating continuous-time systems that addresses inspired by a mathematical model of
computation. Thus, this tool will serve as the foundation to deal with the incompatibility
of the mentioned sets of abstractions [9] — the discreteness of digital computers with the
continuous nature of physical phenomena.

The proposed DSL has three special properties of interest:

1. it needs to have well-defined operational semantics, as well as being a piece of

executable software;

2. it needs to be related or inspired by a formal model, moving past ad-hoc implemen-

tations;

3. it should be concise; its lack of noise will bring familiarity to the system’s designer
— the pilot of the DSL which strives to execute a given specification or golden

model.

1.1.1 Executable Simulation

By making an executable software capable of running continuous time simulations, veri-
fication via simulation will be available — a type of verification that is useful when deal-
ing with non-preserving semantic transformations, i.e., modifications and tweaks in the
model that do not assure that properties are being preserved. Such phenomena are com-
mon within the engineering domain, given that a lot of refinement goes into the modeling
process in which previous proof-proved properties are not guaranteed to be maintained
after iterations with the model. A work-around solution for this problem would be to
prove again that the features are in fact present in the new model; an impractical activity
when models start to scale in size and complexity. Thus, by using an executable tool as a
virtual workbench, models that suffered from those transformations could be extensively
tested and verified.

Furthermore, this implementation is based on Aivika ? — an open source multi-
method library for simulating a variety of paradigms, including partial support for physical
dynamics, written in Haskell. Our version is modified for our needs, such as demonstrat-
ing similarities between the implementation and GPAC, shrinking some functionality in
favor of focusing on continuous time modeling, and re-thinking the overall organization
of the project for better understanding, alongside code refactoring using other Haskell’s
abstractions. So, this reduced and refactored version of Aivika, so-called FACT 3, will be
a Haskell Embedded Domain-Specific Language (HEDSL) within the model-based engi-

neering domain. The built DSL will explore Haskell’s specific features and details, such as

2pivika source code.
3FACT source code.

https://github.com/dsorokin/aivika
https://github.com/FP-Modeling/fact/releases/tag/4.0

the type system and typeclasses, to solve differential equations. Figure 1.1 shows a side-
by-side comparison between the original implementation of Lorenz Attractor in FACT,
presented in [2], and its final form, so-called FFACT, for the same physical system.

-— FACT

lorenzModel = do
integX <- createlnteg 1.0

integY <- createlnteg 1.0 -- FFACT

integZ <- createlnteg 1.0 lorenzModel =

let x = readInteg integX mdo x <- integ (sigma * (y - x)) 1.0
y = readInteg integyY y <- integ (x * (rho - z) - y) 1.0
z = readInteg integZ z <- integ (x * y - beta * z) 1.0
sigma = 10.0 let sigma = 10.0
rho = 28.0 rho = 28.0
beta = 8.0 / 3.0 beta = 8.0 / 3.0

updateInteg integX (sigma * (y - x)) return $ sequence [x, y, z]

updateInteg integY (x * (rho - z) - y)
updateInteg integZ (x * y - beta * z)
return $ sequence [x, y, z]

Figure 1.1: The translation between the world of software and the mathematical description of differential
equations are more concise and explicit in FFACT.

1.1.2 GPAC: inspiration for a Formal Model

This work and its artifact (a functional DSL to execute simulations) is a direct continua-
tion of the work made by Edil Medeiros et al. [1]. Their work tackled CPS-modeling via a
DSL, which used the general-purpose analog computer (GPAC), proposed by Shannon [16]
in 1941, as a guideline for a solid and formal foundation.

Hence, the tool we propose is also inspired by GPAC. This concept was developed to
model a Differential Analyzer — an analog computer composed by a set of interconnected
gears and shafts intended to solve numerical problems [25]. The mechanical parts repre-
sents physical quantities and their interaction results in solving differential equations, a
common activity in engineering, physics and other branches of science [16]. The model
was based on a set of black boxes, so-called circuits or analog units, and a set of proved
theorems that guarantees that the composition of these units are the minimum necessary
to model the system, given some conditions. For instance, if a system is composed by
a set of differentially algebraic equations with prescribed initial conditions [15], then a
GPAC circuit can be built to model it. Later on, some extensions of the original GPAC
were developed, going from solving unaddressed problems contained in the original scope
of the model [15] all the way to make GPAC capable of expressing generable functions,
Turing universality and hypertranscendental functions [25, 26]. Furthermore, although

the analog computer has been forgotten in favor of its digital counterpart [15], recent

studies in the development of hybrid systems [1] brought GPAC back to the spotlight in
the CPS domain.

During the design of the DSL, parallels will establish some resemblance between
GPAC’s constructs and the implementation. With this strategy, all the mathematical
formalism leveraged for analog computers will drive the implementation in the digital
computer. However, it is worth noting that we do not formally prove this mapping holds
using dedicated tools, such as proof assistants or dependently-typed prograamming lan-
guages. GPAC serves as an initial specification in which the generated artifact (executable
models for simulation) attempts to follow. Although outside of the scope of this work,
this pursue for a formal foundation can be developed in the future.

With that in mind, the HEDSL will strive to translate GPAC’s original set of black
boxes to some executable software leveraging mathematical constructs to simplify its
usability. The programming language of choice was Haskell — a well known language in
the functional paradigm (FP). The recognition that such paradigm provides better well-
defined, mathematical and rigourous abstractions has been proposed by Backus [27] in his
Turing Award lecture; where he argued that FP is the path to liberate computing from the
limitations of the von Neumann style when thinking about systems. Thus, continuous time
being specified in mathematical terms, we believe that the use of functional programming
for modeling continuous time is not a coincidence; properties that are established as
fundamental to leverage better abstractions for CPS simulation seem to be within or
better described in FP. Lee describes a lot of properties [8] that matches this programming

paradigm almost perfectly:

1. Prevent misconnected MoCs by using great interfaces in between = Such interfaces

can be built using Haskell’s strong type system

2. Enable composition of MoCs = Composition is a first-class feature in functional

programming languages

3. It should be possible to conjoin a functional model with an implementation model =
Functions programming languages makes a clear the separation between the deno-

tational aspect of the program, i.e., its meaning, from the operational functionality

4. All too often the semantics emerge accidentally from the software implementation
rather than being built-in from the start = A denotative approach with no regard

for implementation details is common in the functional paradigm

5. The challenge is to define MoCs that are sufficiently expressive and have strong for-
mal properties that enable systematic validation of designs and correct-by-construction

synthesis of implementations = Functional languages are commonly used for formal

mathematical applications, such as proof of theorems and properties, as well as also

being known for "correct-by-construction" approaches

In terms of the DSL being embedded in Haskell, this approach of making specialized
programming languages, or vocabularies, within consistent and well-defined host program-
ming languages, has already proven to be valuable, as noted by Landin [28]. Further, this
strategy is already being used in the CPS domain in some degree, as showed by the
ForSyDe framework [24, 13].

1.1.3 Expressiveness and Conciseness

This dissertation being a step in a broader story, started in 2018 by Medeiros et al. [1],
one of the goals is to improve on the identified limitations in the first proposed DSL,
such as the lack or high difficulty on expressing systems via explicit signal manipulation
for arbitrary closed feedback loops. Later publications addressed this issue [2, 3] whilst
introducing or keeping known problems, such as noisy and overloaded notation when using
the DSL (Figure 1.2)— a consequence of an abstraction leaking — and not being able to
model hybrid systems; systems with changes in continuous behavior based on discrete

events.

sineModel = intCT rk4 0 O pil

where
pl = (constCT (-1) *#* idCT) >>> multCT >>> integ y(t) = 2(1)
integ = intCT rk4 O 1 loopBreaker Z(t ::——y(t)
loopBreaker = (idCT #*** constCT 0) >>> adderCT
sineModel =
do integY <- createlnteg 1
integZ <- createlnteg O . X
let y = readInteg integY 4 \f y \f
z = readInteg integZ X
1= t— t—
updatelnteg integY z z(ty) =1 y(to) = 0

updatelInteg integZ (-y)
return $ sequence [y, z]

Figure 1.2: Comparison between the original proposed DSL [1] and the first version of FACT [2, 3] using
the same sine model, alongside its mathematical and GPAC descriptions.

So, to address the aforementioned abstraction leaking and improve the DSL’s concise-
ness, this work uses the fized-point combinator; a mathematical construct. The goal is to
make the DSL’s machinery hide implementation details noise from the user’s perspective,
keeping on the surface only the constructs that matter from the designer’s point of view.
Once the leak is solved, it is expected that the target audience — system’s designers with

less programming experience but familiar with the system’s mathematical description —

Y

will be able to leverage the DSL either when improving the system’s description, using
the DSL as a refinement tool, or as a way to execute an already specified system. Given
that the present work, FFACT, being a direct continuation of FACT [2], it is important
to highlight that this final property is the main differentiating factor between the two
pieces.

When comparing models in FFACT to other implementations in other ecosystems and
programming languages, FFACT’s conciseness brings more familiarity, i.e., one using the
HEDSL needs less knowledge about the host programming language, Haskell in our case,
and one can more easily bridge the gap between a mathematical description of the problem
and its analogous written in FFACT, due to less syntatical burden and noise from a user’s
perpective. Examples and comparisons will be depicted in Chapter 7, Fixing Recursion,
Section 7.5.

1.2 Outline

Chapter 2, Design Philosophy, presents the foundation of this work, started in 2018 [1].
Although the artifacts presented in the original work and this work are far apart, the
mathematical base is the same. Chapters 3 to 6 describe future improvements made in
2022 [2] and 2023 [3]. These chapters go in detail about the DSL’s implementation de-
tails, such as the used abstractions, going through executable examples, pointing out and
addressing problems in its usability and design. Issues like performance, and continuous
time implementation are explained and then addressed. Whilst the implementation of
Chapters 2 to 6 were vastly improved during the making of this dissertation, alongside
improvements on the writing of their respective chapters, the latest inclusion to this re-
search is concentrated in Chapter 7, Fizing Recursion, which dedicates itself to improving
an abstraction leak in the most recent published version of the DSL [3]. Those improve-
ments leverage the fized point combinator to eliminate abstraction leaks, thus making the
DSL more concise and familiar to a system’s designer. These enhacements were submitted
and are waiting approval in a related journal *. Finally, limitations, future improvements

and final thoughts are drawn in Chapter 8, Conclusion.

4Journal of Functional Programming,.

https://www.cambridge.org/core/journals/journal-of-functional-programming

Chapter 2
Design Philosophy

In the previous Chapter, the importance of making a bridge between two different sets
of abstractions — computers and the physical domain — was established. This Chapter
will explain the core philosophy behind the implementation of this link, starting with an
introduction to GPAC, followed by the type and typeclass systems used in Haskell, as
well as understanding how to model the main entities of the problem. At the end, the
presented modeling strategy will justify the data types used in the solution, paving the
way for the next Chapter Effectful Integrals.

2.1 Shannon’s Foundation: GPAC

The General Purpose Computer or GPAC is a model for the Differential Analyzer — a
mechanical machine controlled by a human operator [26]. This machine is composed by a
set of shafts interconnected in such a manner that a given differential equation is expressed
by a shaft and other mechanical units transmit their values across the entire machine [16,
25]. For instance, shafts that represent independent variables directly interact with shafts
that depicts dependent variables. The machine is primarily composed by four types of
units: gear boxes, adders, integrators and input tables [16]. These units provide useful
operations to the machine, such as multiplication, addition, integration and saving the
computed values. The main goal of this machine is to solve ordinary differential equations
via numerical solutions.

In order to add a formal basis to the machine, Shannon built the GPAC model, a
mathematical model sustained by proofs and axioms [16]. The end result was a set of
rules for which types of equations can be modeled as well as which units are the minimum
necessary for modeling them and how they can be combined. All algebraic functions (e.g.
quotients of polynomials and irrational algebraic functions) and algebraic-trascendental

functions (e.g. exponentials, logarithms, trigonometric, Bessel, elliptic and probability

functions) can be modeled using a GPAC circuit [1, 16]. Moreover, the four preceding
mechanical units were renamed and together created the minimum set of circuits for a
given GPAC [1]. Figure 2.1 portrays these basic units, followed by descriptions of their

behaviour, inputs and outputs.

u(t) —= t
t—= k —k o(t) —= f —>w, + f u(t) do(t)
f— o
Constant Unit Integrator Unit
u(t) —= u(t) —=
() — + =W+ o)) o) — X = uo(t)
f—> t —>
Adder Unit Multiplier Unit

Figure 2.1: The combination of these four basic units compose any GPAC circuit (taken from [1] with
permission).

o Constant Function: This unit generates a real constant output for any time t.

o Adder: It generates the sum of two given inputs with both varying in time, i.e., it

produces w = u + v for all variations of u and v.

o Multiplier: The product of two given inputs is generated for all moments in time,

i.e., w = ww is the output.

« Integrator: Given two inputs — wu(t) and v(t) — and an initial condition wy at time
to, the unit generates the output w(t) = wo + f;, u(t) dv(t), where u is the integrand

and v is the variable of integration.

Composition rules that restrict how these units can be connected to one another.
Shannon established that a valid GPAC is the one in which two inputs and two outputs
are not, interconnected and the inputs are only driven by either the independent variable
t (usually time) or by a single unit output [1, 15, 16]. Daniel’'s GPAC extension, FF-
GPAC [15], added new constraints related to no-feedback GPAC configurations while still
using the same four basic units. These structures, so-called polynomial circuits [1, 25], are
being displayed in Figure 2.2 and they are made by only using constant function units,
adders and multipliers. Also, such circuits are combinational, meaning that they compute
values in a point-wise manner between the given inputs. Thus, FF-GPAC’s composition

rules are the following:

Y1—

yk%. Al yl

t — f 9]/1
P —

Y1—> .

yk%. AZ y2

t —> f %yZ
P —

Y1—> .

yk%. Ak yk

t —= f — Vg
F—

Figure 2.2: Polynomial circuits resembles combinational circuits, in which the circuit respond instantly
to changes on its inputs (taken from [1] with permission).

e An input of a polynomial circuit should be the input ¢ or the output of an integrator.
Feedback can only be done from the output of integrators to inputs of polynomial

circuits.
o Each polynomial circuit admit multiple inputs.

o Each integrand input of an integrator should be generated by the output of a poly-

nomial unit.

o Each variable of integration of an integrator is the input .

2.2 The Shape of Information

Types in programming languages represent the format of information. Figure 2.3 illus-
trates types with an imaginary representation of their shape and Figure 2.4 shows how
types can be used to restrain which data can be plumbered into and from a function. In
the latter image, function lessThan10 has the type signature Int -> Bool, meaning that
it accepts Int data as input and produces Bool data as the output. These types are used
to make constratins and add a safety layer in compile time, given that using data with
different types as input, e.g, Char or Double, is regarded as a type error.

Primitive types, e.g., Int, Double and Char, can be composed to create more powerful
data types, capable of modeling complicated data structures. In this context, composition

means binding or gluing existent types together to create more sophisticated abstractions,

10

Int Char

[lessThanl0 |
[[
[[
Bool Double ! Int —>(Bool)
[[
[[
Figure 2.3: Types are not just labels; they en- Figure 2.4: Functions’ signatures are contracts;
hance the manipulated data with new informa- they purespecify which shape the input infor-
tion. Their difference in shape can work as the mation has as well as which shape the output
interface for the data. information will have.

such as recursive structures and records of information. Two algebraic data types are the
type composition mechanism provided by Haskell to bind existent types together.

The sum type, also known as tagged union in type theory, is an algebraic data type that
introduces choice across multiple options using a single label. For instance, a type named
Parity can represent the parity of a natural number. It has two options or representatives:
Even or 0dd, where these are mutually exclusive. When using this type either of them
will be of type Parity. A given sum type can have any number of representatives, but
only one of them can be used at a given moment. Figure 2.5 depicts examples of sum
types with their syntax in the language, in which a given entry of the type can only
assume one of the available possibilities. Another use case depicted in the image is the
type DigitalStates, which describes the possible states in digital circuits as one of three

options: High, Low and Z.

Even
data Parity = Even | 0dd
data DigitalStates = High | Low | Z Odd
Parity DigitalStates

Figure 2.5: Sum types can be understood in terms of sets, in which the members of the set are available
candidates for the outer shell type. Parity and possible values in digital states are examples.

The second type composition mechanism available is the product type, which combines
using a type constructor. While the sum type adds choice in the language, this data
type requires multiple types to assemble a new one in a mutually inclusive manner. For
example, a digital clock composed by two numbers, hours and minutes, can be portrayed

by the type ClockTime, which is a combination of two separate numbers combined by

11

the wrapper Time. In order to have any possible time, it is necessary to provide both
parts. Effectively, the product type executes a cartesian product with its parts. Figure
2.6 illustrates the syntax used in Haskell to create product types as well as another
example of combined data, the type SpacePosition. It represents spatial position in

three dimensional space, combining spatial coordinates in a single place.

data ClockTime = Time Int Int

Double | Double

data SpacePosition = Point Double Double Double

data SpacePosition = Point { x :: Double,
y :: Double,
z :: Double } ClockTime SpacePosition

Figure 2.6: Product types are a combination of different sets, where you pick a representative from each
one. Digital clocks’ time and objects’ coordinates in space are common use cases. In Haskell, a product
type can be defined using a record alongside with the constructor, where the labels for each member
inside it are explicit.

Within algebraic data types, it is possible to abstract the structure out, meaning
that the outer shell of the type can be understood as a common pattern changing only
the internal content. For instance, if a given application can take advantage of integer
values but want to use the same configuration as the one presented in the SpacePosition
data type, it’s possible to add this customization. This feature is known as parametric
polymorphism, a powerful tool available in Haskell’s type system. An example is presented
in Figure 2.7 using the SpacePosition type structure, where its internal types are being
parametrized, thus allowing the use of other types internally, such as Float, Int and
Double.

In some situations, changing the type of the structure is not the desired property of
interest. There are applications where some sort of behaviour is a necessity, e.g., the ability
of comparing two instances of a custom type. This nature of polymorphism is known as
ad hoc polymorphism, which is implemented in Haskell via what is similar to java-like
interfaces, so-called typeclasses [29]. However, establishing a contract with a typeclass
differs from an interface in a fundamental aspect: rather than inheritance being given to
the type, it has a lawful implementation, meaning that mathematical formalism is assured
for it, although the implementer is not obligated to prove its laws on a language level.
As an example, the implementation of the typeclass Eq gives to the type all comparable
operations (== and ! =). Figure 2.8 shows the implementation of Ord typeclass for the
presented ClockTime, giving it capabilities for sorting instances of such type.

Algebraic data types, when combined with polymorphism, are a powerful tool in pro-
gramming, being a useful way to model the domain of interest. However, both sum and

product types cannot portray by themselves the intuition of a procedure. A data trans-

12

data SpacePosition a = Point a a a SpacePosition SpacePosition
data SpacePosition a = Point { x :: a,
y :: a,
z :: a}
Double
(o>
SpacePosition SpacePosition

Figure 2.7: Depending on the application, different representations of the same structure need to used
due to the domain of interest and/or memory constraints.

ClockTime

:

data ClockTime = Time Int Int Int E

i

instance Ord ClockTime where
(Time a b) <= (Time c d)
= (a <= c¢) & (b <= 4d)

Ord

|

Figure 2.8: The minimum requirement for the Ord typeclass is the <= operator, meaning that the
functions <, <=, >, >=, max and min are now unlocked for the type ClockTime after the implementation.
Typeclasses can be viewed as a third dimension in a type.

formation process, as showed in Figure 2.4, can be utilized in a variety of different ways.
Imagine, for instance, a system where validation can vary according to the current situ-
ation. Any validation algorithm would be using the same data, such as a record called
SystemData, and returning a boolean as the result of the validation, but the internals of
these functions would be totally different. This is represented in Figure 2.9. In Haskell,
this motivates the use of functions as first class citizens, meaning that they are values
and can be treated equally in comparison with data types that carries information, such

as being used as arguments to another functions, so-called high order functions.

13

—_— e _ - =
I

________,

Get Data Validate Data Consume Data

Figure 2.9: Replacements for the validation function within a pipeline like the above are common.

2.3 Modeling Reality

The continuous time problem explained in the introduction was initially addressed by
mathematics, which represents physical quantities by differential equations. This set of
equations establishes a relationship between functions and their respective derivatives;
the function express the variable of interest and its derivative describe how it changes
over time. It is common in the engineering and in the physics domain to know the rate
of change of a given variable, but the function itself is still unknown. These variables
describe the state of the system, e.g, velocity, water flow, electrical current, etc. When
those variables are allowed to vary continuously — in arbitrarily small increments —
differential equations arise as the standard tool to describe them.

While some differential equations have more than one independent variable per func-
tion, being classified as a partial differential equation, some phenomena can be modeled
with only one independent variable per function in a given set, being described as a set of
ordinary differential equations. However, because the majority of such equations does not
have an analytical solution, i.e., cannot be described as a combination of other analytical
formulas, numerical procedures are used to solve the system. These mechanisms quantize
the physical time duration into an interval of numbers, each spaced by a time step from
the other, and the sequence starts from an initial value. Afterward, the derivative is used
to calculate the slope or the direction in which the tangent of the function is moving in
time in order to predict the value of the next step, i.e., determine which point better
represents the function in the next time step. The order of the method varies its precision
during the prediction of the steps, e.g, the Runge-Kutta method of 4th order is more
precise than the Euler method or the Runge-Kutta of 2nd order.

These numerical methods are used to solve problems specified by the following math-

ematical relations:

y(t) = Ft,y(1) y(to) = yo (2.1)

As showed, both the derivative and the function — the mathematical formulation

of the system — varies according to time. Both acts as functions in which for a given

14

time value, it produces a numerical outcome. Moreover, this equality assumes that the
next step following the derivative’s direction will not be that different from the actual
value of the function y if the time step is small enough. Further, it is assumed that in
case of a small enough time step, the difference between time samples is h, i.e., the time
step. In order to model this mathematical relationship between the functions and its
respective derivative, these methods use iteration-based approximations. For instance,
the following equation represents one step of the first-order Euler method, the simplest

numerical method:

Ynt+l = Yn + h,f(tn, yn) (2'2)

So, the next step or iteration of the function y,,1 can be computed by the sum of the
previous step y, with the predicted value obtained by the derivative f(t,,y,) multiplied
by the time step h. Figure 2.10 provides an example of a step-by-step solution of one
differential equation using the Euler method. In this case, the unknown function is a
modified exponential function, and the time of interest is ¢t = 5.

y=y+t y(0)=1
1
Yn+1 :yn+hf<tmyn) h=1 typ=t,+h f(t,y) =y+t
yi=y+1xf(0,) >y =1+1%(1+0) =y =2
o=y +1lxf(Ly) 2 3=2+1%2+1) 5 yp=5
ys=yo+ 1% f(2,92) 2 ys=5+1%x(5+2) - y3 =12
Yo =ys+ 1% f(3,93) = ya =12+ 1% (124 3) — ys = 27

Figure 2.10: The initial value is used as a starting point for the procedure. The algorithm continues until
the time of interest is reached in the unknown function. Due to its large time step, the final answer is
really far-off from the expected result.

2.4 Making Mathematics Cyber

Our primary goal is to combine the knowledge levered in Section 2.2 — modeling capa-
bilities of Haskell’s algebraic type system — with the core notion of differential equations
presented in Section 2.3. The type system will model equation 2.2, detailed in the previous

Section.

15

Any representation of a physical system that can be modeled by a set of differential
equations has an outcome value at any given moment in time. The type CT (stands for
continuous machine) in Figure 2.11 is a first draft of representing the continuous physical

dynamics [8] — the evolution of a system state in time:

type Time = Double
type Outcome = Double Double —_— Double

data CT =
CT (Time -> Outcome)

Time Outcome

Figure 2.11: In Haskell, the type keyword works for alias. The first draft of the CT type is a function, in
which providing a floating point value as time returns another value as outcome.

This type seems to capture the concept, whilst being compatible with the definition
of a tagged system presented by Lee and Sangiovanni [20]. However, because numerical
methods assume that the time variable is discrete, i.e., it is in the form of iterations that
they solve differential equations. Thus, some tweaks to this type are needed, such as the
number of the current iteration, which method is being used, in which stage the method
is and when the final time of the simulation will be reached. With this in mind, new types
are introduced. Figure 2.12 shows the auxiliary types to build a new version of the CT
type.

The above auxiliary types serve a common purpose: to provide at any given moment
in time, all the information to execute a solver method until the end of the simulation.
The type Interval determines when the simulation should start and when it should end.
The Method sum type is used inside the Solver type to set solver sensible information,
such as the size of the time step, which method will be used and in which stage the method
is in at the current moment (more about the stage field on a later Chapter). Finally, the
Parameters type combines everything together, alongside with the current time value as
well as its discrete counterpart, iteration.

Further, the new CT type can also be parametrically polymorphic, removing the lim-
itation of only using Double values as the outcome. Figure 2.14 depicts the final type
for the physical dynamics. The I0 wrapper is needed to cope with memory management
and side effects, all of which will be explained in the next Chapter. Below, we have the

definition for the CT type used in previous work [2]:

16

data Interval = Interval { startTime :: Double,
stopTime :: Double
} deriving (Eq, Ord, Show)

data Method = Euler Euler
| RungeKutta2 Double | Double RungeKutta2
| RungeKuttad

RungeKutta4d

deriving (Eq, Ord, Show)

data Solver = Solver { dt :: Double, Interval Method
method :: Method,
stage :: Int

} deriving (Eq, Ord, Show) Double 4&
v

data Parameters = Parameters { interval :: Interval,
solver :: Solver,
time :: Double, Solver Paremeters
iteration :: Int

} deriving (Eq, Show)

Figure 2.12: The Parameters type represents a given moment in time, carrying over all the necessary
information to execute a solver step until the time limit is reached. Some useful typeclasses are being
derived to these types, given that Haskell is capable of inferring the implementation of typeclasses in
simple cases.

Solver |Interval

data CT a = CT (Parameters -> I0 a)
Double Int

I0

Paremeters (10 a)

Figure 2.13: The CT type is a function of from time related information to an arbitrary potentially effectful
outcome value.

In Haskell, however, function types — types that are carrying a function inside — are
well-known and identified as an instance of a reader pattern. The argument in the function
type, in our case Parameters, is called a shared environment for the computation of the
Reader !. Moreover, because the output of our function type is wrapped inside I0, we
can leverage another common abstraction in Haskell: monad transformers. More about
Monads will be explained in later chapters, but for now, it suffices to show that our type
CT is just a type alias for a combination of the reader transformer — a combination of the

monads Reader with an underlying I0 monad within:

'Reader Hackage reference.

17

1

type CT a = ReaderT Parameters I0 a

Figure 2.14: The CT type can leverage monad transformers in Haskell via Reader in combination with
I0.

This summarizes the main pilars in the design: FF-GPAC, the mathematical definition
of the problem and how we are modeling this domain in Haskell. The next Chapter,
Effectful Integrals, will start from this foundation, by adding typeclasses to the CT type,
and will later describe the last core type before explaining the solver execution: the
Integrator type. These improvements for the CT type and the new Integrator type
will later be mapped to their FF-GPAC counterparts, explaining that they resemble the

basic units mentioned in Section 2.1.

18

Chapter 3

Effectful Integrals

This Chapter details the next steps to simulate continuous-time behaviours using more

! It starts by enhancing the previously de-

advanced Haskell concepts, like typeclasses
fined CT type by implementing some specific typeclasses. Next, the second core type of
the simulation, the Integrator type, will be introduced alongside its functions. These
improvements will then be compared to FF-GPAC’s basic units, our source of formalism
within the project. At the end of the Chapter, an implicit recursion will be blended with
a lot of effectful operations, making the Integrator type hard to digest. This will be
addressed by a guided Lorenz Attractor example in the next Chapter, Ezecution Walk-

through.

3.1 Uplifting the CT Type

The CT type needs algebraic operations to be better manipulated, i.e., useful operations
that can be applied to the type preserving its external structure. These procedures are
algebraic laws or properties that enhance the capabilities of the proposed function type
wrapped by a CT shell. Towards this goal, a few typeclasses need to be implemented.

Across the spectrum of available typeclasses in Haskell, we are interested in the ones
that allow data manipulation with a single or multiple CT and provide mathematical oper-
ations. To address the former group of operations, the typeclasses Functor, Applicative,
Monad and MonadIO will be implemented. The later group of properties is dedicated to
provide mathematical operations, such as + and x, and it can be acquired by implement-
ing the typeclasses Num, Fractional, and Floating.

The typeclasses Functor, Applicative and Monad are all [ifting operations, meaning
that they allow functions to be lifted or involved by the chosen type. While they differ

which functions will be lifted, i.e., each one of them lift a function with a different type

lclasses in Haskell: reference.

19

https://www.haskell.org/tutorial/classes.html

signature, they share the intuition that these functions will be interacting with the CT
type. This perspective is crucial for a practical understanding of these patterns. A
function with a certain shape and details will be lifted using one of those typeclasses and
their respective operators.

Given that the CT type is just a type alias with ReaderT as the under the hood type,
all of these lift operations are already provided in Haskell’s libraries. However, it is still
valuable to present their implementation to completely understand how the final look for
the DSL will look like. Hence, the following implementations will assume we aren’t using
CT as the type alias and instead we will be showing the implementations as if we are

using the definition used previously [2] for the CT type:

data CT a = CT (Parameters -> I0 a)

With this in mind, the Functor typeclass, when considering this version of the CT
type, let the lifting of functions to be enclosed by the CT type. Thus, as depicted in
Figure 3.1, the function a -> b that comes as a parameter has its values surrounded
by the same values wrapped with the CT type, i.e., the outcome is a function with the
signature CT a -> CT b. The code below shows the implementation of the fmap function
— the minimum requirement to the Functor typeclass. It is worth noting that, because
this type uses an I0 inside, a second fmap, this time related to I0, needs to be used in
the implementation.

instance Functor CT where
fmap £ (CT da) = CT $ \ps -> fmap f (da ps)

e Functor — @ e — @
I0 I0

Figure 3.1: Given a parametric record ps and a dynamic value da, the fmap functor of the CT type
applies the former to the latter. Because the final result is wrapped inside the 10 shell, a second fmap is
necessary.

The next typeclass, Applicative, deals with functions that are inside the CT type.
When implemented (again, referring to the non-type-alias version), this algebraic oper-
ation lifts this internal function, wrapped by the type of choice, applying the ezxternal
type to its internal members, thus generating again a function with the signature CT a
-> CT b. The minimum requirements for this typeclass is the function pure, a function
responsible for wrapping any value with the CT wrapper, and the <*> operator, which

does the aforementioned interaction between the internal values with the outer shell. The

20

implementation of this typeclass has the dependency df has the signature CT (a -> b)
and its internal function a -> b is being lifted to the CT type. Figure 3.2 illustrates the
described lifting with Applicative.

instance Applicative CT where
pure a = CT $ const (return a) pure ~ @
(<x>) = appComposition 10

appComposition :: CT (a -> b) -> CT a -> CT b
appComposition (CT df) (CT da)
= CT $ \ps -> df ps >>= \f -> fmap f (da ps)

CT CT CT
- Applicative (@) — ~(®
10 I0 I0

Figure 3.2: With the Applicative typeclass, it is possible to cope with functions inside the CT type.
Again, the fmap from I0 is being used in the implementation.

The third and final lifting is the Monad typeclass. In this case, the function being lifted
generates structure as the outcome, although its dependency is a pure value. As Figure
3.3 portrays, a function with the signature a -> CT b can be lifted to the signature
CT a -> CT b by using the Monad typeclass. This new operation for lifting, so-called
bind, is written below, alongside the return function, which is the same pure function
from the Applicative typeclass. Together, these two functions represent the minimum
requirements of the Monad typeclass. Figure 3.3 illustrates the aforementioned scenario.

Aside from lifting operations, the final typeclass related to data manipulation is the
MonadIO typeclass. It comprises only one function, [ift/O, and its purpose is to change
the structure that is wrapping the value, going from an IO outer shell to the monad
of interest, CT in this case. The usefulness of this typeclass will be more clear in the
next topic, Section 3.3. The implementation follows, alongside its visual representation
in Figure 3.4. Once again, consider the explicit definition for the CT type instead of the
type alias.

Finally, there are the typeclasses related to mathematical operations. The typeclasses
Num, Fractional and Floating provide unary and binary numerical operations, such
as arithmetic operations and trigonometric functions. However, because we want to use
them with the CT type, their implementation involve lifting. Further, the Functor and
Applicative typeclasses allow us to execute this lifting, since they are designed for this

purpose. The following code depicts the implementation for unary and binary operations,

21

instance Monad CT where
- ure
return a = pure a P _> @
m >>= k = bind k m 0

bind :: (a > CT b) ->CT a ->CTb
bind k (CT m)
=CT $ \ps —>mps >=\a > (\(CTm') >mn' ps) $ k a

O--@ O-@--@

Figure 3.3: The >>= operator used in the implementation is the bind from the I0 shell. This indicates
that when dealing with monads within monads, it is frequent to use the implementation of the internal
members.

CT
instance MonadIO CT where 1iftIO0
1iftI0 m = CT $ const m I0a —— —

Figure 3.4: The typeclass MonadIO transforms a given value wrapped in I0 into a different monad. In
this case, the parameter m of the function is the output of the CT type.

which are used in the requirements for those typeclasses. As a side note, to make these
implementations possible for the type-aliased version of the CT type, it is required to use
a compiler extension FlexibleInstances. Further, the same operations can be used as

internal helpers for both versions of the type:

unary0OP :: (a -> b) -> CT a -> CT b
unary0OP = fmap

binaryOP :: (a -> b -> ¢) -> CT a -> CT b -> CT ¢
binaryOP func da db = (fmap func da) <*> db

3.2 GPAC Bind I: CT

After these improvements in the CT type, it is possible to map some of them to FF-
GPAC’s concepts. As we will see shortly, the implemented numerical typeclasses, when
combined with the lifting typeclasses (Functor, Applicative, Monad), express 3 out of 4
FF-GPAC’s basic circuits presented in Figure 2.1 in the previous Chapter.

22

First and foremost, all FF-GPAC units receive time as an available input to compute.
The CT type represents continuous physical dynamics [8], which means that it portrays
a function from time to physical output. Hence, it already has time embedded into its
definition; a record with type Parameters is received as a dependency to obtain the final
result at that moment. Furthermore, it remains to model the FF-GPAC’s black boxes
and the composition rules that bind them together.

The simplest unit of all, Constant Unit, can be achieved via the implementation
of the Applicative and Num typeclasses. First, this unit needs to receive the time of
simulation at that point, which is granted by the CT type. Next, it needs to return a
constant value k for all moments in time. The Num given the CT type the option of using
number representations, such as the types Int, Integer, Float and Double. Further,
the Applicative typeclass can lift those number-related functions to the desired type by
using the pure function.

Arithmetic basic units, such as the Adder Unit and the Multiplier Unit, are being
modeled by the Functor, Applicative and Num typeclasses. Those two units use binary
operations with physical signals. As demonstrated in the previous Section, the combi-
nation of numerical and lifting typeclasses let us to model such operations. Figure 3.5
shows FF-GPAC’s analog circuits alongside their FACT counterparts. The forth unit and
the composition rules will be mapped after describing the second main type of FACT: the

Integrator type.

GPAC Domain FACT Domain

f— k —>k

Constant Unit

o 2
o) —= + = (u + v)(t) Z

t —
Adder Unit Num
u(t) —= Functor
v(t)— X = uo(t)
b —> Applicative

Multiplier Unit

Figure 3.5: The ability of lifting numerical values to the CT type resembles three FF-GPAC analog circuits:
Constant, Adder and Multiplier.

23

3.3 Exploiting Impurity

The CT type directly interacts with a second type that intensively explores side effects.
The notion of a side effect correlates to changing a state, i.e., if you see a computer
program as a state machine, an operation that goes beyond returning a value — it has
an observable interference somewhere else — is called a side effect operation or an impure
functionality. Examples of common use cases goes from modifying memory regions to
performing input-output procedures via system-calls. The nature of purity comes from the
mathematical domain, in which a function is a procedure that is deterministic, meaning
that the output value is always the same if the same input is provided — a false assumption
when programming with side effects. An example of an imaginary state machine can be

viewed in Figure 3.6.

Green Figure 3.6: State Machines are a
B common abstraction in computer
utton Got Input science due to its easy mapping

between function calls and states.

Red Button Memory regions and peripherals

are embedded with the idea of

/\ a state, not only pure functions.
Execute Further, side effects can even act

as the trigger to move from one
state to another, meaning that ex-
ecuting a simple function can do

New Search

(

Loading
Cannot find

J

_/ more than return a value. Its in-
U Close App ternal guts can significantly mod-
New Search ify the state machine.
Nothing or
Time Out

In low-level and imperative languages, such as C, Fortran, Zig, Rust, impurity is
present across the program and can be easily and naturally added via pointers — addresses
to memory regions where values, or even other pointers, can be stored. In contrast,
functional programming languages advocate to a more explicit use of such aspect, given
that it prioritizes pure and mathematical functions instead of allowing the developer to
mix these two facets. So, the feature is still available but the developer has to take extra
effort to add an effectful function into the program, clearly separating these two different
styles of programming.

The second core type of the present work, the Integrator, is based on this idea of side
effect operations, manipulating data directly in memory, always consulting and modifying

data in the impure world. Foremost, it represents a differential equation, as explained in

24

Chapter 2, Design Philosophy Section 2.3, meaning that the Integrator type models the
calculation of an integral. It accomplishes this task by driving the numerical algorithms
of a given solver method, implying that this is where the operational semantics of our
DSL reside.

With this in mind, the Integrator type is responsible for executing a given solver
method to calculate a given integral. This type comprises the initial value of the system,
i.e., the value of a given function at time t;, and a pointer to a memory region for
future use, called computation. In Haskell, something similar to a pointer and memory
allocation can be made by using the I0ORef type. This memory region is being allocated
to be used with the type CT Double. Also, the initial value is also represented by CT
Double, and the initial condition can be lifted to this type because the typeclass Num
is implemented (Section 3.1). It is worth noticing that these pointers are pointing to

functions or computations and not to double precision values.

data Integrator = Integrator { initial :: CT Double,
computation :: IORef (CT Double)
3

There are three functions that involve the Integrator and the CT types together: the
function createlnteg, responsible for allocating the memory that the pointer will point to,
readInteg, letting us to read from the pointer, and updatelnteg, a function that alters the
content of the region being pointed. In summary, these functions allow us to create, read
and update data from that region, if we have the pointer on-hand. All functions related to
the integrator use what’s known as do-notation, a syntax sugar of the Monad typeclass for
the bind operator. The following code is the implementation of the createlnteg function,

which creates an integrator:

createInteg :: CT Double -> CT Integrator
createInteg i = do
comp <- 1liftI0 . newIORef $ initialize i
let integ = Integrator { initial = i,
computation = comp }

return integ

The first step to create an integrator is to manage the initial value, which is a function
with the type Parameters -> I0 Double wrapped in CT via the ReaderT. After acquiring
a given initial value i, the integrator needs to assure that any given parameter record is
the beginning of the computation process, i.e., it starts from t,. The initialize function
(line 3) fulfills this role, doing a reset in time, iteration and stage in a given parameter

record. This is necessary because all the implemented solvers presumes sequential steps,

25

10

11

starting from the initial condition. So, in order to not allow this error-prone behaviour, the
integrator makes sure that the initial state of the system is configured correctly. The next
step is to allocate memory to this computation — a procedure that will get you the initial
value, while modifying the parameter record dependency of the function accordingly.
The following stage is to do a type conversion, given that in order to create the
Integrator record, it is necessary to have the type I0Ref (CT Double). At first glance,
this seems to be an issue because the result of the newlORef function is wrapped with
the I0 monad 2. This conversion is the reason why the I0 monad is being used in the
implementation, and hence forced us to implement the typeclass MonadI0. The function
1iftI0 (liine 3) is capable of removing the I0 wrapper and adding an arbitrary monad
in its place, CT in this case. So, after line 3 the comp value has the desired CT type. The
remaining step of this creation process is to construct the integrator itself by building up
the record with the correct fields, e.g., the CT version of the initial value and the pointer

to the constructed computation written in memory (lines 4 and 5).

readInteg :: Integrator -> CT Double
readInteg = join . 1iftI0 . readIORef . computation

To read the content of this region, it is necessary to provide the integrator to the
readInteg function. Its implementation is straightforward: build a new CT that applies
the given record of Parameters to what’s being stored in the region. This is accomplished
by using the function join with the read]IORef function 2.

Finally, the function updatelnteq is a side-effect-only function that changes which com-
putation will be used by the integrator. It is worth noticing that after the creation of the
integrator, the computation pointer is addressing a simple and, initially, useless compu-
tation: given an arbitrary record of Parameters, it will fix it to assure it is starting at ¢,
and it will return the initial value in form of a CT Double. To update this behaviour, the

updatelnteg change the content being pointed by the integrator’s pointer:

updateInteg :: Integrator -> CT Double -> CT ()
updatelnteg integ diff = do
let i = initial integ
z = do
ps <- ask
whatToDo <- 1iftI0 $ readIORef (computation integ)
case method (solver ps) of
Euler -> integEuler diff i whatToDo
RungeKutta2 -> integRK2 diff i whatToDo
RungeKuttad4 -> integRK4 diff i whatToDo
1iftI0 $ writeIORef (computation integ) z

2 I0Ref hackage documentation.

26

https://hackage.haskell.org/package/base-4.16.1.0/docs/Data-IORef.html

In the beginning of the function (line 3), we extract the initial value from the in-
tegrator, so-called i. Next (line 4 onward), we create a new computation, so-called z
— a function wrapped in the CT type that receives a Parameters record and computes
the result based on the solving method. Because this computation needs to do lookups
on some configuration values, we use the function ask (line 5) from ReaderT to get our
environment values; in this case a value of type Parameters. Later on, the follow-up
step is to build a copy of the same process being pointed by the computation pointer
(line 6). Finally, after checking the chosen solver (line 7), it is executed one iteration
of the process by calling integFuler, or integRK2 or integRK4. After line 10, this entire
process z is being pointed by the computation pointer, being done by the writel O Re f
function 2. It may seem confusing that inside z we are reading what is being pointed and
later, on the last line of updatelnteg, this is being used on the final line to update that
same pointer. This is necessary, as it will be explained in the next Chapter Ezecution
Walkthrough, to allow the use of an implicit recursion to assure the sequential aspect
needed by the solvers. For now, the core idea is this: the wupdatelnteg function alters
the future computations; it rewrites which procedure will be pointed by the computation
pointer. This new procedure, which we called z, creates an intermediate computation,
whatToDo (line 6), that reads what this pointer is addressing, which is z itself.

Initially, this strange behaviour may cause the idea that this computation will never
halt. However, Haskell’s laziness assures that a given computation will not be computed
unless it is necessary to continue execution and this is not the case in the current stage,
given that we are just setting the environment in the memory to further calculate the

solution of the system.

3.4 GPAC Bind II: Integrator

The Integrator type introduced in the previous Section corresponds to FF-GPAC’s
forth and final basic unit, the integrator. The analog version of the integrator used
in FF-GPAC had the goal of using physical systems (shafts and gears) that obeys the
same mathematical relations that control other physical or technical phenomenon under
investigation [25]. In contrast, the integrator modeled in FACT uses pointers in a digital
computer that point to iteration-based algorithms that can approximate the solution of
the problem at a requested moment ¢ in time.

Lastly, there are the composition rules in FF-GPAC — constraints that describe how
the units can be interconnected. The following are the same composition rules presented

in Chapter 2, Design Philosophy, Section 2.1:

27

1. An input of a polynomial circuit should be the input ¢ or the output of an integrator.
Feedback can only be done from the output of integrators to inputs of polynomial

circuits.
2. Each polynomial circuit admit multiple inputs

3. Each integrand input of an integrator should be generated by the output of a poly-

nomial unit.

4. Each variable of integration of an integrator is the input ¢.

The preceding rules include defining connections with polynomial circuits — an acyclic
circuit composed only by constant functions, adders and multipliers. These special cir-
cuits are already being modeled in FACT by the CT type with a set of typeclasses, as
explained in the previous Section about GPAC. The integrator functions, e.g., readInteg
and updatelnteg, represent the composition rules.

Going back to the type signature of the updatelnteg, Integrator -> CT Double ->
CT (), we can interpret this function as a wiring operation. This function connects as an
input of the integrator, represented by the Integrator type, the output of a polynomial
circuit, represented by the value with CT Double type. Because the operation is just
setting up the connections between the two, the functions ends with the type CT ().

A polynomial circuit can have the time ¢ or an output of another integrator as inputs,
with restricted feedback (rule 1). This rule is being matched by the following: the CT
type makes time available to the circuits, and the readInteg function allows us to read
the output of another integrators. The second rule, related to multiple inputs in the
combinational circuit, is being followed because we can link inputs using arithmetic op-
erations, feature provided by the Num typeclass. Moreover, because the sole purpose of
FACT is to solve differential equations, we are only interested in circuits that calculates
integrals, meaning that it is guaranteed that the integrand of the integrator will always
be the output of a polynomial unit (rule 3), as we saw with the type signature of the
updatelnteg function. The fourth rule is also being attended it, given that the solver
methods inside the updatelnteg function always calculate the integral in respect to the
time variable. Figure 3.7 summarizes these last mappings between the implementation,

and FF-GPAC’s integrator and rules of composition.

28

GPAC Domain FACT Domain

Integrator
initial computation
u(t) — ;
o(t) —> f —w, + f u(t) do(t) Get initial
b —> fo value of Address
Integrator Unit the system

Integrator Functions

readInteg

Y1—>

: y
p—> A ! updatelnteg
t—> f —> Y1
t —>
Y1—> . +
: Y2
y—> A cT
t—> f —> Y2
t—
o
4
Y1i—> .
]/k—:> Ax Y N
um
t—> f —> Yk
t—= Functor

Applicative

Figure 3.7: The integrator functions attend the rules of composition of FF-GPAC, whilst the CT and
Integrator types match the four basic units.

3.5 Using Recursion to solve Math

The remaining topic of this Chapter is to describe in detail how the solver methods are

being implemented. There are three solvers currently implemented:
o Euler Method or First-order Runge-Kutta Method
o Second-order Runge-Kutta Method
o Fourth-order Runge-Kutta Method

To explain how the solvers work and their nuances, it is useful to go into the imple-
mentation of the simplest one — the Euler method. However, the implementation of the
solvers use a slightly different function for the next step or iteration in comparison to the
one explained in Chapter 2. Hence, it is worthwhile to remember how this method origi-
nally iterates in terms of its mathematical description and compare it to the new function.
From equation 2.2, we can obtain a different function to next step, by subtracting the

index from both sides of the equation:

29

10

11

12

13

14

15

16

17

18

Yn+1 = Yn + hf(tm yn) — Yn = Yn-1+ hf(tn—la yn—l) (31)

The value of the current iteration, y,, can be described in terms of the sum of the
previous value and the product between the time step h with the differential equation from
the previous iteration and time. With this difference taken into account, the following
code is the implementation of the Euler method. In terms of main functionality, the

family of Runge-Kutta methods is analogous:

integEuler :: CT Double
-> CT Double
-> CT Double
-> CT Double
integEuler diff init compute = do
ps <- ask

case iteration ps of

0 -> init
n -> do
let iv = interval ps
sl = solver ps
ty = iterToTime iv sl (n - 1) O
psy =

ps { time = ty, iteration = n - 1, solver = sl { stage = 0} }
a <- local (const psy) compute
b <- local (const psy) diff
let !v = a + dt (solver ps) * b

return v

On line 5, it is possible to see which functions are available in order to execute a
step in the solver. The dependency diff is the representation of the differential equation
itself. The initial value, y((), can be obtained by applying any Parameters record to the
init dependency function. The next dependency, compute, execute everything previously
defined in updatelnteg; thus effectively executing a new step using the same solver. The
result of compute depends on which parametric record will be applied, meaning that we
call a new and different solver step in the current one, potentially building a chain of
solver step calls. This mechanism — of executing again a solver step, inside the solver
itself — is the aforementioned implicit recursion, described in the earlier Section. By
changing the ps record, originally obtained via the ReaderT with the ask function, to the
previous moment and iteration with the solver starting from initial stage, it is guaranteed
that for any step the previous one can be computed, a requirement when using numerical
methods.

30

With this in mind, the solver function treats the initial value case as the base case
of the recursion, whilst it treats normally the remaining ones (line 9). In the base case
(lines 7 and 8), the outcome is obtained by just returning the continuous machine with
the initial value. Otherwise, it is necessary to know the result from the previous iteration
in order to generate the current one. To address this requirement, the solver builds
another parametric record (lines 10 to 13) and call another solver step (line 14). Also, it
calculates the value from applying this record to diff (line 15), the differential equation.
These machines, based on compute and diff, need to be modified with a value of type
Parameters containing the previous iteration (so-called psy in the code). Hence, the
function local is used to alterate the existing parameters value in those readers. Finally,
we compute the result for the current iteration (line 16). It is worth noting that the use
of let! is mandatory, given that it forces evaluation of the expression instead of lazily
postponing the computation, making it execute everything in order to get the value v
(line 17).

This finishes this Chapter, where we incremented the capabilities of the CT type and
used it in combination with a brand-new type, the Integrator. Together these types
represent the mathematical integral operation. The solver methods are involved within
this implementation, and they use an implicit recursion to maintain their sequential be-
haviour. Also, those abstractions were mapped to FF-GPAC’s ideas in order to bring
some formalism to the project. However, the used mechanisms, such as implicit recursion
and memory manipulation, make it hard to visualize how to execute the project given a
description of a physical system. The next Chapter, Fxecution Walkthrough, will intro-
duce the driver of the simulation and present a step-by-step concrete example. Later on,
we will improve the DSL to completely remove all the noise introduced in its use because

of such implicit recursion.

31

Chapter 4

Execution Walkthrough

Previously, we presented in detail the latter core type of the implementation, the integra-
tor, as well as why it can model an integral when used with the CT type. This Chapter is
a follow-up, and its objectives are threefold: to describe how to map a set of differential
equations to an executable model, to reveal which functions execute a given example and
to present a guided-example as a proof-of-concept. For a simplified guide on how to use
the DSL, check the Appendix 9.2.

4.1 From Models to Models

Systems of differential equations reside in the mathematical domain. In order to execute
using the FACT DSL, this model needs to be converted into an executable model following
the DSL’s guidelines. Further, we saw that these requirements resemble FF-GPAC’s
description of its basic units and rules of composition. Thus, the mappings between these
worlds need to be established. Chapters 2 and 3 explained the mapping between FACT and
FF-GPAC. It remains to map the semantics of the mathematical world to the operational

world of FACT. This mapping goes as the following:

o The relationship between the derivatives and their respective functions will be mod-

eled by feedback loops with Integrator type.
e The initial condition will be modeled by the initial pointer within an integrator.

o Combinational aspects, such as addition and multiplication of constants and the

time ¢, will be represented by typeclasses and the CT type.

With that in mind, Figure 4.1 illustrates an example of a model in FACT, alongside its
mathematical counterpart. Further, Figure 4.2 shows which FF-GPAC circuit each line

32

®w N O s W

t :: CT Double
t = CT $ \ps -> return (time ps)
exampleModel :: CT Double
exampleModel = y=y+t y(0) =1
do integ <- createlnteg 1
let y = readInteg integ
updateInteg integ (y + t)
y

Figure 4.1: The integrator functions are essential to create and interconnect combinational and feedback-
dependent circuits.

Example Model FF-GPAC Model

Line 5 f

ylto) =
Line 6 f —Y

yto) = 1
Line T / y
ine £ — +

y(ty) = 1

Figure 4.2: The developed DSL translates a system described by differential equations to an executable
model that resembles FF-GPAC’s description.

is modeling. This pipeline effectively makes FACT a bridge between a physical system,
modeled by differential equations, and the FF-GPAC model proposed by Graga [15].

In line 5, a record with type Integrator is created, with 1 being the initial condition
of the system. Line 6 creates a state variable, a label that gives us access to the output of
an integrator, integ in this case. Afterward, in line 7, the updatelnteg function connects
the inputs to a given integrator by creating a combinational circuit, (y + t). Polynomial
circuits and integrators’ outputs can be used as available inputs, as well as the time of
the simulation. Finally, line 8 returns the state variable as the output for the driver, the

main topic of the next Section.

33

There is, however, an useful improvement to be made into the definition of a model
within the DSL. The presented example used only a single state variable, although it
is common to have multiple state variables, i.e., multiple integrators interacting with
each other, modeling different aspects of a given scenario. Moreover, when dealing with
multiple state variables, it is important to maintain synchronization between them, i.e.,
the same Parameters is being applied to all state variables at the same time.

To address both of these requirements, we will use the sequence function, available in
Haskell’s standard library. This function manipulates nested structures and change their
internal structure. The only requirement is that the outer type have to implement the
Traversable typeclass. For instance, applying this function to a list of values of type
Maybe would generate a single Maybe value in which its content is a list of the previous
content individually wrapped by the Maybe type. This is only possible because the external
or "bundler" type, list in this case, has implemented the Traversable typeclass. Figure
4.3 depicts the example before and after applying the function.

Sequence
[(Just 1), (Just 2), (Just 3), (Just 4)] —— Just ([1, 2, 3, 4])

Figure 4.3: Because the list implements the Traversable typeclass, it allows this type to use the traverse
and sequence functions, in which both are related to changing the internal behaviour of the nested
structures.

Similarly to the preceding example, the list structure will be used to involve all the
state variables with type CT Double. This tweak is effectively creating a wvector of state
variables whilst sharing the same notion of time across all of them. So, the final type
signature of a model is CT [Double] or, by using a type aliases for [Double] as Vector,
CT Vector. A second alias can be created to make it more descriptive, as exemplified in
Figure 4.4:

Finally, when creating a model, the same steps have to be done in the same order,
always starting with the integrator functions and finishing with the sequence function
being applied to a state vector. So, Figure 4.5 depicts the general pipeline used to create

any model in both the semantics and operational perspectives:

34

© 0w N O s W

10
11

10

11

12

type Vector = [Double]
type Model a = CT a

exampleModel :: Model Vector
exampleModel =
do integX <- createlnteg 1
integY <- createlnteg 1
let x = readInteg integX
y = readInteg integY
updateInteg integX (x * y)
updateInteg integY (y + t)
sequence [x, y]

T=Y*T
y=y+t

z(0
y(0

S—
I
—

Figure 4.4: A state vector comprises multiple state variables and requires the use of the sequence function

to sync time across all variables.

Wire up
s i Create Set . Create
emantics — inputs —
Integrators State Variables P State Vector
and outputs
Set read Change Apply
Operational Allocate Memory | —) i -
Pointer computation Sequence

Figure 4.5: When building a model for simulation, the above pipeline is always used, from both points of
view. The operations with meaning, i.e., the ones in the Semantics pipeline, are mapped to executable

operations in the Operational pipeline, and vice-versa.

4.2 Driving the Model

Given a physical model translated to an executable one, it remains to understand which

functions drive the simulation, i.e., which functions take the simulations details into con-

sideration and generate the output. The function runCT fulfills this role:

Model a -> Double -> Solver -> I0 [a]
runCT m t sl =

runCT ::

let iv = Interval O t
(nl, nu) = iterationBnds iv (dt sl)
parameterize n =
let time = iterToTime iv sl n O
solver = sl {stage = 0}
in Parameters { interval = iv,
time = time,
iteration = n,
solver = solver }

in sequence $ map (runReaderT m .

35

parameterize) [nl

. nu]

On line 3, we convert the final time value for the simulation into an interval value for
the simulation (iv) — the simulation always starts at 0 and goes all the way up to the

requested time. Next up, on line 4, we convert the interval to an iteration interval in the

0 stopTime—startTime
) timeStep

format of a tuple, i.e., the continuous interval becomes the tuple (), in
which the second value of the tuple is rounded. From line 5 to line 11, we are defining an
auxiliary function parameterize. This function picks a natural number, which represents
the iteration index, and creates a new record with the type Parameters. Additionally,
it uses the auxiliary function iterToTime (line 7), which converts the iteration number
from the domain of discrete steps to the domain of discrete time, i.e., the time the solver
methods can operate with (Chapter 5 will explore more of this concept). This conversion
is based on the time step being used, as well as which method and in which stage it is
for that specific iteration. Finally, line 13 produces the outcome of the runCT function.
The final result is the output from a function called map piped it as an argument for the
sequence function.

The map operation is provided by the Functor of the list monad, and it applies an
arbitrary function to the internal members of a list in a sequential manner. In this case,
the parameterise function, composed with the continuous machine m, is the one being
mapped. Thus, a custom value of the type Parameters is taking place of each natural
natural number in the list, and this is being applied to the received CT value. It produces
a list of answers in order, each one wrapped in the I0 monad. To abstract out the I0, thus
getting I0 [a] rather than [I0 a], the sequence function finishes the implementation.
Additionally, there is an analogous implementation of this function, so-called runCTFinal,
that return only the final result of the simulation instead of the outputs at the time step

samples. The next section will provide an example of this in a step-by-step manner.

4.3 An attractive example

For the example walkthrough, the same example introduced in the Chapter Introduction
will be used in this Section. So, we will be solving a simpler system for demonstration pur-
poses, composed by a set of chaotic solutions, called the Lorenz Attractor. In these types
of systems, the ordinary differential equations are used to model chaotic systems, provid-
ing solutions based on parameter values and initial conditions. The original differential

equations are presented bellow:

o =10.0

p=28.0

36

11

12

13

14

15

16

17

18

19

7730
W oly(t) — (1)
W~ (0)(p— 2(0)
L attr) — B=(0)

It is straight-forward to map it to the described domain-specific language (DSL).
The remaining details are simulation-related, e.g., which solver method will be used, the
interval of the simulation, as well as the size of the time step. Taking into account that

the constants o, p and 5 need to be set, the code below summarizes it, and Figure 4.6
shows its FF-GPAC circuit:

lorenzSolver = Solver { dt = 0.01,
method = RungeKutta2,

stage = 0
}
sigma = 10.0
rho = 28.0
beta = 8.0 / 3.0
lorenzModel :: Model Vector

lorenzModel =
do integX <- createlnteg 1.0
integY <- createInteg 1.0
integZ <- createInteg 1.0
let x = readInteg integX
y

z

readInteg integY

readInteg integZ

updateInteg integX (sigma * (y - x))
updateInteg integY (x * (rho - z) - y)
updateInteg integZ (x * y - beta * z)

return $ sequence [x, y, z]

lorenzSystem = runCT lorenzModel 100 lorenzSolver

37

Ylto) = 1

g X + f y

y(ty) = 1

-1 —> P
X + X
X
>

P X g X + f z

Y(to) = 1

Figure 4.6: Using only FF-GPAC’s basic units and their composition rules, it’s possible to model the
Lorenz Attractor example.

The first records, Solver, sets the environment (lines 1 to 4). It configures the solver
with 0.01 seconds as the time step, whilst executing the second-order Runge-Kutta method
from the initial stage (lines 3 to 6). The lorenzModel, presented after setting the constants
(lines 6 to 8), executes the aforementioned pipeline to create the model: allocate memory
(lines 12 to 14), create read-only pointers (lines 15 to 17), change the computation (lines
18 to 20) and dispatch it (line 21). Finally, the function lorenzSystem groups everything
together calling the runCT driver (line 22).

After this overview, let’s follow the execution path used by the compiler. Haskell’s
compiler works in a lazily manner, meaning that it calls for execution only the necessary
parts. So, the first step calling lorenzSystem is to call the runCT function with a model,
final time for the simulation and solver configurations. Following its path of execution, the
map function (inside the driver) forces the application of a parametric record generated
by the parameterize function to the provided model, lorenzModel in this case. Thus, it
needs to be executed in order to return from the runCT function.

To understand the model, we need to follow the execution sequence of the output:
sequence [x, y, z], which requires executing all the lines before this line to obtain
all the state variables. For the sake of simplicity, we will follow the execution of the
operations related to the x variable, given that the remaining variables have an analogous
execution walkthrough. First and foremost, memory is allocated for the integrator to
work with (line 12). Figure 4.7 depicts this idea, as well as being a reminder of what the

createlnteg and initialize functions do, described in the Chapter Effectful Integrals. In

38

this image, the integrator integX comprises two fields, initial and computation. The
former is a simple value of the type CT Double that, regardless of the parameters record
it receives, returns the initial condition of the system. The latter is a pointer or address
that references a specific CT Double computation in memory: in the case of receiving a
parametric record ps, it fixes potential problems with it via the initialize block, and
it applies this fixed value in order to get i, i.e., the initial value 1, the same being saved
in the other field of the record, initial.

integX Memory
initial computation
Get initial s
I —> |initialize| —
value of Address
the system

Pointing to...

Figure 4.7: After createlnteg, this record is the final image of the integrator. The function initialize gives
us protecting against wrong records of the type Parameters, assuring it begins from the first iteration,
i.e., to.

The next step is the creation of the independent state variable x via readInteg function
(line 15). This variable will read the computations that are executing under the hood by
the integrator. The core idea is to read from the computation pointer inside the integrator
and create a new CT Double value. Figure 4.8 portrays this mental image. When reading
a value from an integrator, the computation pointer is being used to access the memory
region previously allocated. Also, what’s being stored in memory is a CT Double value.
The state variable, z in this case, combines its received Parameters value, so-called ps,
and applies it to the stored continuous machine. The result v is then returned.

The final step is to change the computation inside the memory region (line 18). Until
this moment, the stored computation is always returning the value of the system at t,
whilst changing the obtained parameters record to be correct via the initialize function.
Our goal is to modify this behaviour to the actual solution of the differential equations via
using numerical methods, i.e., using the solver of the simulation. The function updateln-
teg fulfills this role and its functionality is illustrated in Figure 4.9. With the integrator
integX and the differential equation o(y — x) on hand, this function picks the provided
parametric record ps and it returns the result of a step of the solver RK2, second-order
Runge-Kutta method in this case. Additionally, the solver method receives as a depen-
dency what is being pointed by the computation pointer, represented by c in the image,

alongside the differential equation and initial value, pictured by d and i respectively.

39

X Memory
— % — @ T » initialize »@

T Reading from... ‘

Figure 4.8: After readlnteg, the final floating point values is obtained by reading from memory a compu-
tation and passing to it the received parameters record. The result of this application, v, is the returned
value.

integX o(y - x)
¢ ¢ Memory

() —

o(y - x)

i = readInitial integX

Q.
I

O
I

readComputation integX

Figure 4.9: The updatelnteg function only does side effects, meaning that only affects memory. The
internal variable c is a pointer to the computation itself, i.e., the computation being created references
this exact procedure.

Figure 4.10 shows the final image for state variable x after until this point in the
execution. Lastly, the state variable is wrapped inside a list and it is applied to the
sequence function, as explained in the previous Section. This means that the list of
variable(s) in the model, with the signature [CT Double], is transformed into a value
with the type CT [Double]. The transformation can be visually understood when looking
at Figure 4.10. Instead of picking one ps of type Parameters and returning a value v,
the same parametric record returns a list of values, with the same parametric dependency
being applied to all state variables inside [z, y, z].

However, this only addresses how the driver triggers the entire execution, but does not

40

C e
> T > N
d=0(y - %)

i = readInitial integX
c = readComputation integX

Reading from...

Figure 4.10: After setting up the environment, this is the final depiction of an independent variable. The
reader = reads the values computed by the procedure stored in memory, a second-order Runge-Kutta
method in this case.

explain how the differential equations are actually being calculated with the RK2 numerical
method. This is done by the solver functions (integFuler, integRK2 and integRK/) and
those are all based on equation 3.1 regardless of the chosen method. The equation goes

as the following:

Ynt1 = Yn + hf<tn7 yn) — Yn = Yn—1+ hf(tnfla ynfl)

The equation above makes the dependencies in the RK2 example in Figure 4.10 clear:

o d = Differential Equation that will be used to obtain the value of the previous
iteration (f(tp_1,Yn_1))-

e ps = Parametric record with solver information, such as the size of the time step
(h).

e i and ¢ = The initial value of the system, as well as a solver step function, will be

used to calculate the previous iteration result (y,_1).

It is worth mentioning that the dependency c is a call of a solver step, meaning that it is
capable of calculating the previous step y,_1. This is accomplished in a recursive manner,
since for every iteration the previous one is necessary. When the base case is achieved,
by calculating the value at the first iteration using the i dependency, the recursion stops
and the process folds, getting the final result for the iteration that has started the chain.
This is the same pattern across all the implemented solvers (Euler, RungeKutta2 and

RungeKuttad).

41

4.4 Lorenz’s Butterfly

After all the explained theory behind the project, it remains to be seen if this can be
converted into practical results. As depicted in Figure 4.11, the obtained graph from
the Lorenz’s Attractor model matches what was expected for a Lorenz’s system. It is
worth noting that changing the values of o, p and § can produce completely different
answers, destroying the resembled "butterfly' shape of the graph. Although correct, the
presented solution has a few drawbacks. The next three chapters will explain and address

the identified problems with the current implementation.

Figure 4.11: The Lorenz’s Attractor example has a very famous butterfly shape from certain angles and
constant values in the graph generated by the solution of the differential equations..

42

Chapter 5
Travelling across Domains

The previous Chapter ended anouncing that drawbacks are present in the current im-
plementation. This Chapter will introduce the first concern: numerical methods do not
reside in the continuous domain, the one we are actually interested in. After this Chapter,
this domain issue will be addressed via interpolation, with a few tweaks in the integrator

and driver.

5.1 Time Domains

When dealing with continuous time, FACT changes the domain in which #ime is being

modeled. Figure 5.1 shows the domains that the implementation interact with during

execution:
Physical World
} t Continuous Time
t t,
integEuler
integRK2
integRK4
Solver
ty + At
} } t } —— Discrete Time
to to + 2At t
runCT ' .
iterToTime
runCTFinal
Driver
} } } } } } Iterations
0 1 2 3 4 5

Figure 5.1: During simulation, functions change the time domain to the one that better fits certain
entities, such as the Solver and the driver. The image is heavily inspired by a figure in [4].

43

10

11

12

13

14

The problems starts in the physical domain. The goal is to obtain a value of an
unknown function y(¢) at time t,. However, because the solution is based on numerical
methods a sampling process occurs and the continuous time domain is transformed into
a discrete time domain, where the solver methods reside — those are represented by the
functions integEuler, integRK2 and integRK/. A solver depends on the chosen time step
to execute a numerical algorithm. Thus, time is modeled by the sum of ty with nA, where
n is a natural number. Hence, from the solver perspective, time is always dependent on
the time step, i.e., only values that can be described as ty+nA can be properly visualized
by the solver. Finally, there’s the iteration domain, used by the driver functions, runCT
and runCTFinal. When executing the driver, one of its first steps is to call the function
iterationsBnds, which converts the simulation time interval to a tuple of numbers that
represent the amount of iterations based on the time step of the solver. This function is

presented bellow:

iterationBnds :: Interval -> Double -> (Int, Int)

iterationBnds interv dt = (0, ceiling ((stopTime interv - startTime interv) / dt))

To achieve the total number of iterations, the function iterationBnds does a ceiling
operation on the sampled result of iterations, based on the time interval (startTime and
stopTime) and the time step (dt). The second member of the tuple is always the answer,
given that it is assumed that the first member of the tuple is always zero.

The function that allows us to go back to the discrete time domain being in the
iteration axis is the iterToTime function. It uses the solver information, the current

iteration and the interval to transition back to time, as depicted by the following code:

iterToTime :: Interval -> Solver -> Int -> Int -> Double
iterToTime interv solver n st =
if st < O then
error "Incorrect solver stage in iterToTime"
else

(startTime interv) + n' * (dt solver) + delta (method solver) st

where n' = fromInteger (toInteger n)
delta Euler 0=20
delta RungeKutta2 0 = O
delta RungeKutta2 = dt solver
delta RungeKutta4 0 = O

= dt solver / 2
= dt solver / 2

delta RungeKuttad
delta RungeKuttad
delta RungeKuttad

w N, O ~» O

= dt solver

A transformation from iteration to time depends on the chosen solver method due

to their next step functions. For instance, the second and fourth order Runge-Kutta

44

methods have more stages, and it uses fractions of the time step for more granular use
of the derivative function. This is why lines 11 and 12 are using half of the time step.
Moreover, all discrete time calculations assume that the value starts from the beginning
of the simulation (startTime). The result is obtained by the sum of the initial value, the
solver-dependent delta function and the iteration times the solver time step (line 6).
There is, however, a missing transition: from the discrete time domain to the domain
of interest in CPS — the continuous time axis. This means that if the time value ¢,
is not present from the solver point of view, it is not possible to obtain y(t,). The
proposed solution is to add an interpolation function into the pipeline, which addresses this
transition. Thus, values in between solver steps will be transfered back to the continuous

domain.

5.2 'Tweak I: Interpolation

This tweak in the current implementation is divided into three parts: the types, the driver
and the integrator. These entities will communicate with each other to properly adapt
the outcome. As mentioned previously, we will add an interpolation function to change
from the discrete domain to the continuous one. However, this interpolation procedure
needs to occur only in special situations: when it is not possible to model that specific
point in time in the discrete time domain. Otherwise, the execution should continue as it
is.

Hence, there is a need to introduce a mechanism to identify these different situations.

As the solution, we will add the new type depicted in Figure 5.2.

Euler

Double | Double RungeKutta2

RungeKuttad

data Stage = SolverStage Int Interval Method
| Interpolate
deriving (Eq, Ord, Show)

Double

Solver Paremeters

Figure 5.2: Updated auxiliary types for the Parameters type.

The type Stage allows values to be either the normal flow of execution, marked by

the use of SolverStage, or the indication that an extra step for interpolation needs

45

10

11

12

13

14

16

17

18

19

20

21

22

23

24

25

to be done, marked by the Interpolate tag. Moreover, previous types and functions
described in previous chapters, such as Design Philosophy, and Effectful Integrals need to
be adapted to use this new type instead of the original Int previously proposed (in Chapter
2, Design Philosophy). Types like Parameters and functions like integEuler, iterTo Time,
and runC'T need to be updated accordingly. In all of those instances, processing will just
continue normally; SolverStage will be used.

Next, the driver needs to be updated. So, the proposed mechanism is the following:
the driver will identify these corner cases and communicate to the integrator — via the
new Stage field in the Solver data type — that the interpolation needs to be added into
the pipeline of execution. When this flag is not on, i.e., the Stage informs to continue
execution normally, the implementation goes as the previous chapters detailed. This
behaviour is altered only in particular scenarios, which the driver will be responsible for
identifying.

It remains to re-implement the driver functions. The driver will notify the integrator

that an interpolation needs to take place. The following code shows these changes:

iterationBnds :: Interval -> Double -> (Int, Int)
iterationBnds interv dt = (0, ceiling ((stopTime interv -
startTime interv) / dt))

epslon = 0.00001

runCT :: Model a -> Double -> Solver -> IO [al
runCT m t sl =
do let iv = Interval O t
(nl, nu) = iterationBnds iv (dt sl)
parameterize n =
let time = iterToTime iv sl n (SolverStage 0)
solver = sl {stage = SolverStage 0}
in Parameters { interval = iv,
time = time,
iteration = n,
solver = solver }
disct = iterToTime iv sl nu (SolverStage 0)
values = map (runReaderT m . parameterize) [nl .. nu]
sequence $
if disct - t < epslon
then values
else let ps = Parameters { interval = iv,
time = t,
iteration = nu,
solver = sl {stage = Interpolate} }

in init values ++ [runReaderT m ps]

46

10

11

12

13

14

15

16

17

18

19

20

21

22

The implementation of iterationBnds uses ceiling function because this rounding is
used to go to the iteration domain. However, given that the interpolation requires both
solver steps — the one that came before t, and the one immediately afterwards — the
number of iterations needs always to surpass the requested time. For instance, the time
5.3 seconds will demand the fifth and sixth iterations with a time step of 1 second. When
using ceiling, it is assured that the value of interest will be in the interval of computed
values. So, when dealing with 5.3, the integrator will calculate all values up to 6 seconds.

Lines 5 to 15 (from the previous code snippet) are equal to the previous implementation
of the runCT function. On line 16, the discrete version of t, disct, will be used for
detecting if an interpolation will be needed. All the simulation values are being prepared
on line 17 — Haskell being a lazy language the label values will not necessarily be
evaluated strictly. Line 19 establishes a condition, checking if the difference between the
time of interest t and disct is greater or not than a value epslon, to identify if the normal
flow of execution can proceed. If it can’t, on line 22 a new record of type Parameters
is created (ps), especifically to these special cases of mismatch between discrete and
continuous time. The main difference within this special record is relevant: the stage field
of the solver is being set to Interpolate. Finally, on line 25 the last element from the
list of outputs values is removed and it is appended the simulation using the created ps

with interpolation configured.

interpolate :: CT Double -> CT Double
interpolate m = do
ps <- ask
case stage $ solver ps of
SolverStage _ -> m
Interpolate ->

let iv = interval ps

sl = solver ps

t = time ps

st = dt sl

x = (t - startTime iv) / st

nl = max (floor x) (iterationLoBnd iv st)
n2 = min (ceiling x) (iterationHiBnd iv st)
tl = iterToTime iv sl nl (SolverStage 0)

t2 = iterToTime iv sl n2 (SolverStage 0)

psl = ps { time = t1,

iteration = ni,

solver = sl { stage = SolverStage 0 }}
ps2 = ps { time = t2,

iteration = n2,

solver = sl { stage = SolverStage O }}

z1l = local (const psl) m

47

23

24

10

11

z2 = local (const ps2) m
in z1 + (22 - z1) * pure ((t - t1) / (£2 - t1))

Lines 1 to 5 (from the previuos code snippet) continues the simulation with the normal
workflow. If a corner case comes in, the reminaing code applies linear interpolation to
it. It accomplishes this by first comparing the next and previous discrete times (lines 16
and 19) relative to x (line 11) — the discrete counterpart of the time of interest t (line
9). These time points are calculated by their correspondent iterations (lines 12 and 13).
Then, the integrator calculates the outcomes at these two points, i.e., do applications of
the previous and next modeled times points with their respective parametric records (lines
22 and 23). Finally, line 24 executes the linear interpolation with the obtained values that
surround the non-discrete time point. This particular interpolation was chosen for the
sake of simplicity, but it can be replaced by higher order methods. Figure 5.3 illustrates

the effect of the interpolate function when converting domains.

updateInteg :: Integrator -> CT Double -> CT ()
updatelnteg integ diff = do

let i = initial integ

z = do

ps <- ask

whatToDo <- 1iftI0 $ readIORef (computation integ)

case method (solver ps) of
Euler -> integEuler diff i whatToDo
RungeKutta2 -> integRK2 diff i whatToDo
RungeKutta4 -> integRK4 diff i whatToDo

1iftI0 $ writeIORef (computation integ) (interpolate z)

} f Continuous Time

f } i } Discrete Time

Figure 5.3: Linear interpolation is being used to transition us back to the continuous domain..

The last step in this tweak is to add this function into the integrator function updateln-

teg. The code is almost identical to the one presented in Chapter 3, Effectful Integrals.

48

The main difference is in line 11, where the interpolation function is being applied to
z. Figure 5.4 shows the same visual representation for the updatelnteg function used in

Chapter 4, but with the aforementioned modifications.

integX o(y - x)

\1/ ‘l’ Memory

interpolate ——

d=o0(y - %)
1 = readInitial integX
¢ = readComputation integX

Figure 5.4: The new updatelnteg function add linear interpolation to the pipeline when receiving a
parametric record.

This concludes the first tweak in FACT. Now, the mismatches between the stop time of
the simulation and the time step are being treated differently, going back to the continuous
domain thanks to the added interpolation. The next Chapter, Caching the Speed Pill, goes

deep into the program’s performance and how this can be fixed with a caching strategy.

49

Chapter 6

Caching the Speed Pill

Chapter 5, Travelling across Domains, leveraged a major concern with the proposed
software: the solvers don’t work in the domain of interest, continuous time. This Chapter,
Caching the Speed Pill, addresses a second problem: the performance in FACT. At the end
of it, the simulation will be orders of magnitude faster by using a common modern caching

strategy to speed up computing processes: memoization.

6.1 Performance

The simulations executed in FACT take too long to run. For instance, to execute the
Lorenz’s Attractor example using the second-order Runge-Kutta method with an unre-
alistic time step size for real simulations (time step of 1 second), the simulator can take
around 10 seconds to compute 0 to 5 seconds of the physical system with a testbench using
a Ryzen 7 5700X AMD processor and 128GB of RAM. Increasing this interval shows an
exponential growth in execution time, as depicted by Table 6.1 and by Figure 6.1 (values
obtained after the interpolation tweak). Although the memory use is also problematic,
it is hard to reason about those numbers due to Haskell’s garbage collector ', a memory
manager that deals with Haskell’s immutability. Thus, the memory values serve just to
solidify the notion that FACT is inneficient, showing an exponential growth in resource use,
which makes it impractical to execute longer simulations and diminishes the usability of

the proposed software.

!Garbage Collector wiki page.

20

https://wiki.haskell.org/GHC/Memory_Management

Total of Iterations Execution Time (milliseconds) Consumed Memory (KB)

1 0.01 6.1

2 0.03 77.1

3 0.42 540.7

4 2.67 7040.0

5 20.33 92061.4

6 372.51 1205061.8

7 4625.33 15774437.2
8 44164.82 206490062.5
9 629253.31 2702990062.9
10 7369477.84 35382599438.3

Table 6.1: Small increases in the number of the iterations within the simulation provoke exponential
penalties in performance.

Time VS lterations

18k
16Kk
14k
12k
10k

8k

Time (Seconds)

6k

4k

2k

4 5 6 7 8 9 10

Total Number of Iterations

Figure 6.1: With just a few iterations, the exponential behaviour of the implementation is already
noticeable.

o1

10

11

12

13

14

15

16

17

6.2 The Saving Strategy

Before explaining the solution, it is worth describing why and where this problem arises.
First, we need to take a look back onto the solvers’ functions, such as the integEuler

function, introduced in Chapter 3, Effectful Integrals:

integEuler :: CT Double

-> CT Double

-> CT Double

-> CT Double

integEuler diff i y = do
ps <- ask

case iteration ps of

0 ->1i
n -> do
let iv = interval ps
sl = solver ps
ty = iterToTime iv sl (n - 1) (SolverStage 0)
psy = ps { time = ty, iteration = n - 1, solver = sl { stage = SolverStage
— 0} }

a <- local (const psy) y
b <- local (const psy) diff
let !v = a + dt (solver ps) * b

return v

From Chapter 3, we know that lines 10 to 13 serve the purpose of creating a new
parametric record to execute a new solver step for the previous iteration, in order to
calculate the current one. From Chapter 4, this code section turned out to be where the
implicit recursion came in, because the current iteration needs to calculate the previous
one. Effectively, this means that for all iterations, all previous steps from each one needs
to be calculated. The problem is now clear: unnecessary computations are being made
for all iterations, because the same solvers steps are not being saved for future steps,
although these values do not change. In other words, to calculate step 3 of the solver,
steps 1 and 2 are the same to calculate step 4 as well, but these values are being lost
during the simulation.

To estimate how this lack of optimization affects performance, we can calculate how
many solver steps will be executed to simulate theLorenz’s Attractor example used in
Chapter 4, Ezxecution Walkthrough. Table 6.2 shows the total number of solver steps
needed per iteration simulating the Lorenz example with the Euler method. In addition,
the amount of steps also increase depending on which solver method is being used, given
that in the higher order Runge-Kutta methods, multiple stages count as a new step as

well.

92

Iteration Total Solver Steps
1 1

3

6

10

15

21

DO =W | N

Table 6.2: Because the previous solver steps are not saved, the total number of steps per iteration starts
to accumullate following the numerical sequence of triangular numbers when using the Euler method.

This is the cause of the imense hit in performance. However, it also clarifies the
solution: if the previous solver steps are saved, the next iterations don’t need to re-
compute them in order to continue. In the computer domain, the act of saving previous
steps that do not change is called memoization and it is one form to execute caching.
This optimization technique stores the values in a register or memory region and, instead
of the process starts calculating the result again, it consults this region to quickly obtain

the answer.

6.3 Tweak II: Memoization

The first tweak, Memoization, alters the Integrator type. The integrator will now have
a pointer to the memory region that stores the previous computed values, meaning that
before executing a new computation, it will consult this region first. Because the process
is executed in a sequential manner, it is guaranteed that the previous result will be used.
Thus, the accumulation of the solver steps will be addressed, and the amount of steps will
be equal to the amount of iterations times how many stages the solver method uses.
The memo function creates this memory region for storing values, as well as providing
read access to it. This is the only function in FACT that uses a constraint, i.e., it restricts
the parametric types to the ones that have implemented the requirement. In our case,
this function requires that the internal type CT dependency has implemented the UMemo
typeclass. Because this typeclass is too complicated to be in the scope of this project, we
will settle with the following explanation: it is required that the parametric values are
capable of being contained inside a mutable array, which is the case for our Double values.
As dependencies, the memo function receives the computation as well as the interpolation
function that is assumed to be used, in order to attenuate the domain problem described
in the previous Chapter. This means that at the end, the final result will be piped to the

interpolation function.

33

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

memo :: UMemo e => (CT e -> CT e) -> CT e —> CT (CT e)
memo interpolate m = do
ps <- ask
let sl = solver ps
iv = interval ps
(SolverStage stl, SolverStage stu) = stageBnds sl
(nl, nu) = iterationBnds iv (dt sl)
arr <- liftI0 $ newMemoUArray_ ((stl, nl), (stu, nu))
nref <- 1iftI0 $ newIORef O
stref <- 1iftI0 $ newIORef O

let r = do
ps <- ask
let s1 = solver ps
iv = interval ps
n = iteration ps
st = getSolverStage $ stage sl
stu = getSolverStage $ stageHiBnd sl

loop n' stage' =
if (o' > n) || ((n' == n) & (stage' > st))
then
readArray arr (st, n)

else

let ps' = ps { time = iterToTime iv sl n' (SolverStage stage'),

iteration = n',
solver = sl { stage = SolverStage stage' }}
in do a <- runReaderT m ps'
a “seq’ writeArray arr (stage', n') a
if stage' >= stu
then do writeIORef stref O
writeIORef nref (n' + 1)
loop (' + 1) O
else do writeIORef stref (stage' + 1)
loop n' (stage' + 1)
n' <- 1liftI0 $ readIORef nref
st' <- 1iftI0 $ readIORef stref
1iftI0 $ loop n' st'

pure . interpolate $ r

The function starts by getting how many iterations will occur in the simulation, as
well as how many stages the chosen method uses (lines 5 to 7). This is used to pre-allocate
the minimum amount of memory required for the execution (line 8). This mutable array
is two-dimensional and can be viewed as a table in which the number of iterations and
stages determine the number of rows and columns. Pointers to iterate accross the table are

declared as nref and stref (lines 9 and 10), to read iteration and stage values respectively.

o4

The code block from line 11 to line 36 delimit a procedure or computation that will only
be used when needed, and it is being called at the end of the memo function (line 37).

The next step is to follow the exection of this internal function. From line 13 to line 17,
auxiliar "variables", i.e., labels to read information, are created to facilitate manipulation
of the solver (sl), interval (iv), current iteration (n), current stage (st) and the final
stage used in a solver step (stu). The definition of loop, which starts at line 18 and closes
at line 33, uses all the previously created labels. The conditional block (line 19 to 33)
will store in the pre-allocated memory region the computed values and, because they are
stored in a sequential way, the stop condition of the loop is one of the following: the
iteration counter of the loop (n’) surpassed the current iteration or the iteration counter
matches the current iteration and the stage counter (st’) reached the ceiling of stages of
used solver method (line 19). When the loop stops, it reads from the allocated array the
value of interest (line 21), given that it is guaranteed that it is already in memory. If this
condition is not true, it means that further iterations in the loop need to occur in one of
the two axis, iteration or stage.

The first step towards that goal is to save the value of the current iteration and stage
into memory. The continuous machine m, received as a dependency in line 3, is used
to compute a new result with the current counters for iteration and stage (lines 23 to
26). Then, this new value is written into the array (line 27). The condition in line 28
checks if the current stage already achieved its maximum possible value. In that case, the
counters for stage and iteration counters will be reset to the first stage (line 29) of the
next iteration (line 30) respectively, and the loop should continue (line 31). Otherwise,
we need to advance to the next stage within the same iteration and an updated stage
(line 32). The loop should continue with the same iteration counter but with the stage
counter incremented (lines 32 and 33).

Lines 34 to 36 are the trigger to the beginning of the loop, with nref and stref being
read. These values set the initial values for the counters used in the loop function, and
both of their values start at zero (lines 10 and 11). All computations related to the loop
function will only be called when the r function is called. Further, all of these impure
computations (lines 12 to 36) compose the definition of r (line 12), which is being returned
in line 37 combined with the interpolation function ¢r and being wrapped with an extra
CT shell via the pure function (provided by the Applicative typeclass).

With this function on-hand, it remains to couple it to the Integrator type, meaning
that all integrator functions need to be aware of this new caching strategy. First and

foremost, a pointer to this memory region needs to be added to the integrator type itself:

95

data Integrator = Integrator { initial :: CT Double,
cache :: IORef (CT Double),
computation :: IORef (CT Double)
X

Next, two other functions need to be adapted: createlnteg and readInteg. In the former
function, the new pointer will be used, and it points to the region where the mutable array
will be allocated. In the latter, instead of reading from the computation itself, the read-
only pointer will be looking at the cached version. These differences will be illustrated
by using the same integrator and state variables used in the Lorenz’s Attractor example,
detailed in Chapter 4, Ezecution Walkthrough.

The main difference in the updated version of the createlnteg function is the inclusion of
the new pointer that reads the cached memory (lines 4 to 7). The pointer computation,
which will be changed by updatelnteg in a model to the differential equation, is being
read in lines 8 to 11 and piped with interpolation and memoization in line 12. This
approach maintains the interpolation, justified in the previous Chapter, and adds the
aforementioned caching strategy. Finally, the final result is written in the memory region
pointed by the caching pointer (line 13).

Figure 6.2 shows that the updated version of the createlnteg function is similar to the
previous implementation. The new field, cached, is a pointer that refers to readComp —
the result of memoization (memo), interpolation (interpolate) and the value obtained by
the region pointed by the computation pointer. Given a parametric record ps, readComp
gives this record to the value stored in the region pointed by computation. This result is
then interpolated via the interpolate block and it is used as a dependency for the memo
block.

The modifications in the readInteg function are being portrayed in Figure 6.3. As
described earlier, the change is minor: instead of reading from the region pointed by the
computation pointer, this function will read the value contained in the region pointed by
the cache pointer. This means that the same readComp, described in the new createlnteqg
function, will receive a given ps. It is worth noticing that, just like with the createlnteqg
function, this cache pointer indirectly interacts with the same memory location pointed

by the computation pointer in the integrator (Figure 6.3).

56

-

createInteg :: CT Double -> CT Integrator
createlnteg i = do
rl <- 1iftI0 . newIORef $ initialize i
r2 <- 1iftI0 . newIORef $ initialize i
let integ = Integrator { initial = i,
cache = ri,
computation = r2 }

© W N O s W N

e e T
= W N = O

z = do

ps <- ask
v <- 1iftI0 $ readIORef (computation integ)

local (
y <- memo int

const ps) v
erpolate z

1iftI0 $ writeIORef (cache integ) y

return integ

integX Memory
initial cache computation
Get initial R,
+ initialize »@
value of Address Address
the system
Pointing to... Pointing to...
Memory
interpCached Same
Memory
readComp | — interpolate — memo Region
T readComp Memory
—_— % —_— @ + initialize »@
T Reading from...

Figure 6.2: The new createlnteg function relies on interpolation composed with memoization. Also, this
combination produces results from the computation located in a different memory region, the one pointed
by the computation pointer in the integrator.

o7

1 readInteg :: Integrator -> CT Double
2 readInteg = join . 1iftI0 . readIORef . cache

C
>T>@

Reading from...

Memory
interpCached
readComp | — interpolate — memo
T readComp Memory

—_— % — @ oo 9 initialize »@

Reading from...

Figure 6.3: The function reads information from the caching pointer, rather than the pointer where the
solvers compute the results.

Lastly, Figure 6.4 depicts the new version of the updatelnteg function. Further, the
tweaks in this function are minor, just as with the readInteg function. Previously, the
whatToDo label, used as a dependency in the solver methods, was being made by reading
the content in the region pointed by the computation pointer. Now, this dependency

reads the region related to the caching methodology via reading the cache pointer.

58

© 0w N O U R W N

[
w N R O

updateInteg :: Integrator -> CT Double -> CT ()
updatelnteg integ diff = do
let i = initial integ
z = do
ps <- ask
let f =
case (method $ solver ps) of
Euler -> integEuler
RungeKutta2 -> integRK2
RungeKutta4 -> integRK4
y <- 1liftI0 $ readIORef (cache integ)
f diff iy
1iftI0 $ writeIORef (computation integ) z

integX o(y - x)
¢ ¢ Memory

() —

d =0y - x)

readInitial integX

-
I

O
I

readCache integX

Figure 6.4: The new wupdatelnteg function gives to the solver functions access to the region with the
cached data.

The solver functions, integFuler, integRK2 and integRK/4, always need to calculate
the value of the previous iteration. By giving them access to the cached region of the
simulation, instead of starting a recursive chain of stack calls, the previous computation
will be handled immediately. This is the key to cut orders of magnitude in execution time

during simulation.

6.4 A change in Perspective

Before the implementation of the described caching strategy, all the solver methods rely

on implicit recursion to get the previous iteration value. Thus, performance was degraded

29

due to this potentially long stack call. After caching, this mechanism is not only faster,
but it completely changes how the solvers will get these past values.

For instance, when using the function runCTFinal as the driver, the simulation will
start by the last iteration. Without caching, the solver would go from the current iteration
to the previous ones, until it reaches the base case with the initial condition and starts
backtracking the recursive calls to compute the result of the final iteration. On the other
hand, with the caching strategy, the memo function goes in the opposite direction: it
starts from the beginning, with the counters at zero, and then incrementally proceeds
until it reaches the desired iteration.

Figure 6.5 depicts this stark difference in approach when using memoization in FACT.
Instead of iterating through all iterations two times, one backtracking until the base case
and another one to accumulate all computed values, the new version starts from the base
case, i.e., at iteration 0, and stops when achieves the desired iteration, saving all the
values along the way.

M Previous Iteration

Before Caching After Caching

B Next Iteration
t t t t Iterations t t t t Iterations

0 SO 1 f
Figure 6.5: Caching changes the direction of walking through the iteration axis. It also removes an entire
pass through the previous iterations.

6.5 Tweak III: Model and Driver

The memoization added to FACT needs a second tweak, related to the executable models
established in Chapter 4. The following code is the same example model used in that
Chapter:

exampleModel :: Model Vector
exampleModel =
do integX <- createlnteg 1
integY <- createlnteg 1
let x = readInteg integX
y = readInteg integY
updateInteg integX (x * y)
updateInteg integY (y + t)

sequence [x, y]

60

10

The caching strategy assumes that the created mutable array will be available for the
entire simulation. However, the proposed models will always discard the table created
by the createlnteg function due to the garbage collector 2, after the sequence function.
Even worse, the table will be created again each time the model is being called and a
parametric record is being provided, which happens when using the driver. Thus, the
proposed solution to address this problem is to update the Model alias to a function of
the model. This can be achieved by wrapping the state vector with a the CT type, i.e.,
wrapping the model using the function pure or return. In this manner, the computation
will be "placed" as a side effect of the I0 monad and Haskell’s memory management system
will not remove the table used for caching in the first computation. So, the following code

is the new type alias, alongside the previous example model using the return function:

type Model a = CT (CT a)

exampleModel :: Model Vector

exampleModel
do integX <- createlnteg 1
integY <- createlnteg 1
let x = readInteg integX
y = readInteg integY
updateInteg integX (x * y)
updateInteg integY (y + t)

return $ sequence [x, y]

Due to the new type signature, this change implies changing the driver, i.e., modify-
ing the function runCT (the changes are analogus to the runCTFinal function variant).
Further, a new auxiliary function was created, subRunC'T, to separate the environment
into two functions. The runCT will execute the mapping with the function parameterize

and the auxiliary function will address the need for interpolation.

runCT :: Model a -> Double -> Solver -> IO [a]
runCT m t sl = do
d <- runReaderT m $ Parameters { interval = Interval O t,
time = O,
iteration = O,
solver = sl { stage = SolverStage 0}}
sequence $ subRunCT d t sl

subRunCT :: CT a -> Double -> Solver -> [ID al
subRunCT m t sl = do
let iv = Interval O t

2Garbage Collector wiki page.

61

https://wiki.haskell.org/GHC/Memory_Management

11

12

13

14

15

16

17

18

24

25

26

27

(nl, nu) = iterationBnds iv (dt sl)
parameterize n =
let time = iterToTime iv sl n (SolverStage 0)
solver = sl {stage = SolverStage 0}
in Parameters { interval = iv,
time = time,
iteration = n,

solver = solver }

disct = iterToTime iv sl nu (SolverStage 0)
values = map (runReaderT m . parameterize) [nl .. nu]
if disct - t < epslon
then values
else let ps = Parameters { interval = iv,
time = t,
iteration = nu,
solver = sl {stage = Interpolate} }

in init values ++ [runReaderT m ps]

The main change is the division of the driver into two: one dedicated to "initiate"
the simulation environment providing an initial record of the type Parameters (lines 3 to
6), and an auxiliary function is doing the remaining functionality. Thus, this is the final

implementation of the driver in FACT.

6.6 Results with Caching

The following table (Table 6.3) shows the same Lorenz’s Attractor example used in the
first Section, but with the preceding tweaks in the Integrator type and the integrator
functions. It is worth noting that there is an overhead due to the memoization strategy
when running fewer iterations (such as 1 in the table), in which most time is spent
preparing the caching setup — the in-memory data structure, and etc.These modifications
allows better and more complicated models to be simulated. For instance, the Lorenz
example with a variety of total number of iterations can be checked in Table 6.4 and in
Figure 6.6.

62

Total Previous

of Execution Execution Consumed
Iterations Time (milliseconds) Time (milliseconds) Memory (KB)
1 0.01 0.05 70.73
2 0.03 0.02 64.84
3 0.42 0.03 91.79
4 2.67 0.03 122.72
D 20.33 0.03 145.68
6 372.51 0.04 172.62
7 4625.33 0.04 199.56
8 44164.82 0.05 226.51
9 629253.31 0.06 253.45
10 7369477.84 0.06 280.40

Table 6.3: These values were obtained using the same hardware. It shows that the caching strategy
drastically improves FACT’s performance. Again, the concrete memory values obtained from GHC should
be considered as just an indicative of improvement due to the garbage collector interference.

Total of Iterations Execution Time (milliseconds) Consumed Memory (MB)

100 1.57 2.73

1K 5.80 26.95
10K 50.55 269.61
100K 519.92 2696.05
1M 5099.89 26960.65
10M 51957.02 269606.50
100M 520663.60 2696065.05

Table 6.4: These values were obtained using the same hardware. More complicated simulations can be
done with FACT after adding memoization.

The project is currently capable of executing interpolation as well as applying memo-
ization to speed up results. These two drawback solutions, detailed in Chapter 5 and 6,
adds practicality to FACT as well as makes it more competitive. But we can, however, go
even further and adds more familiarity to the DSL. The next Chapter, Fixing Recursion,

will address this concern.

63

Time VS lterations

1M

100k

10k

1000

Time (Milliseconds)

100

10

100 1000 10k 100k M 10M 100M

Total Number of lterations

Figure 6.6: By using a logarithmic scale, we can see that the final implementation is performant with
more than 100 million iterations in the simulation.

64

Chapter 7

Fixing Recursion

flz) =

The last improvement for FACT is in terms of familiarity. When someone is using the
DSL, so-called designer of the system, the main goal should be that the least amount
of friction when using the simulation software, the better. Hence, the requirement of
knowing implementation details or programming language details is something we would
like to avoid, given that it leaks noise into the designer’s mind. The designer’s concern
should be to pay attention to the system’s description and FACT having an extra step of
translation or noisy setups just adds an extra burden with no real gains on the engineering
of simulating continuous time. This Chapter will present FFACT, an evolution of FACT

which aims to reduce the noise even further.

7.1 Integrator’s Noise

Chapter 4, Ezecution Walkthrough, described the semantics and usability on an example of
a system in mathematical specification and its mapping to a simulation-ready description
provided by FACT. We have this example modeled using FACT (same code as provided

in Section 1.1):

sigma = 10.0
rho = 28.0
beta = 8.0 / 3.0

lorenzModel :: Model Vector
lorenzModel =
do integX <- createlnteg 1.0
integY <- createInteg 1.0
integZ <- createlnteg 1.0
let x = readInteg integX

65

10

11

12

13

14

15

y = readInteg integy

z

readInteg integZ

updateInteg integX (sigma * (y - x))
updateInteg integY (x * (rho - z) - y)
updateInteg integZ (x * y - beta * z)

return $ sequence [x, y, z]

It is noticeable, however, that FACT imposes a significant amount of overhead from
the user’s perspective due to the explicit use of integrators for most memory-required
simulations. When creating stateful circuits, an user of FACT is obligated to use the inte-
grator’s API, i.e., use the functions createInteg (lines 6 to 8), readInteg (lines 9 to 11),
and updateInteg (lines 12 to 14). Although these functions remove the management of
the aforementioned implicit mutual recursion mentioned in Chapter 3, Effectful Integrals,
from the user, it is still required to follow a specific sequence of steps to complete a model

for any simulation:

1. Create Integrators for future use setting initial conditions (via the use of createlnteg);
2. Retrieve access to state variables by reading integrators (via the use of readlnteg);

3. Update integrators with the actual ODEs of interest (via the use of updatelnteg).

Visually, this step-by-step list for FACT’s models follow the pattern detailed in Fig-
ure 4.5 in Chapter 4, Ezrecution Walkthrough:

Wire up
s £ Create Set Create
emantics — — inputs —
Integrators State Variables P State Vector
and outputs
i Set read Change Apply
Operational Allocate Memory | —> . — i —
Pointer computation Sequence

Figure 7.1: Pipeline of execution when creating a model in FACT.

More importantly, all those steps are visible and transparent from an usability’s point
of view. Hence, a system’s designer must be aware of this entire sequence of mandatory
steps, even if his interest probably only relates to lines 12 to 14. Although one’s goal is
being able to specify a system and start a simulation, there is no escape — one has to bear
the noise created due to the implementation details of the DSL. In fact, this abtraction
leak of exposing operational semantics is a major obstacle that keeps FACT away from
one of its goals: to provide a direct map between the mathematical description of the

system and its software counterpart.

66

To address this, FACT was upgraded to FFACT: a fized-point based version of FACT.
FFACT leverages the fized-point combinator from the realm of mathematics to signifi-
cantly reduce the surface noise when using the DSL. This, combined with Haskell’s lazi-
ness, is the required piece to get rid of the Integrator type, thus also removing its

noise.

7.2 The Fixed-Point Combinator

It is worth noting that the term fized-point has different meanings in the domains of
engineering and mathematics. When referencing the fractional representations within a
computer, one may use the fized-point method. Thus, to avoid confusion, the following is
the definition of such concept in this dissertation, alongside a set of examples of its use
case as a mathematical combinator that can be used to implement recursion.

On the surface, the fixed-point combinator is a simple mapping that fulfills the follow-
ing property: a point p is a fixed-point of a function f if f(p) lies on the identity function,
i.e., f(p) = p. Not all functions have fixed-points, and some functions may have more
than one [30]. Further, we seek to establish theorems and algorithms in which one can
guarantee fixed-points and their uniqueness, such as the Banach fixed-point theorem [31].
In programming terms, by following specific requirements one could find the fixed-point of
a function via an iterative process that involves going back and forth between it and the
identity function until the difference in outcomes is less than or equal to an arbitrary e.

Of particular interest is to find the least fized-point, a mathematical construct use-
ful when describing the denotational semantics of recursive definitions [32, 30]. Within
mathematics, you can find fixed-points in domains such as lattices [32], metric spaces [31],
lambda calculus, among others areas that study convergence and stability of processes.

In the Haskell programming language, the fixed-point combinator is under the Data.Function !
package with the following implementation:
fix :: (a -> a) -> a

fix £ = let x = f x in x
This function allows the definition of recursive functions without the use of self-reference,
such as:

factorial :: Int -> Int
factorial = fix (\f n -> if n == 1 then 1 elsen * f (n - 1))

For readers unfamiliar with the use of this combinator, equational reasoning [30] can

help understanding its meaning.

!Data.Function hackage documentation.

67

https://hackage.haskell.org/package/base-4.21.0.0/docs/Data-Function.html

factorial 5
= {definition of factorial , alpha equivalence to remove clashes on f}
fix (\g n — if n =1 then 1 else n x g (n — 1)) 5
= {definition of fix}
(\f > f (f (f (...)))) (\g n— if n =1 then 1 else n x g (n— 1)) 5
= {function application, f = (\g n — if n =1 then 1 else n * g (n — 1))}
(\g n = if n=1 then 1 else n g (n— 1)) (f (f (...))) 5
= {function application, g = (f (f (...)))}
(\n — if n =1 then 1 else n = f (f (...)) (n— 1)) 5
= {function application, n = 5}
if 5= 1 then 1 else 5 x f (f (...)) 4
= {replace f with its binding}
if 5 =1 then 1
else 5 « ((\g n — if n =1 then 1 else n x g (n— 1)) (f (...))) 4
= {function application, g = (f (...))}
if 5 =1 then 1
else 5 x ((\n — if n =1 then 1 else n x f (...)) (n— 1)) 4
= {function application, n = 4}
if 5 =1 then 1
else 5 % (if 4 =1 then 1 else 4 = f (...) 3)

The result of this process will yield the factorial of 5, i.e., 120. When using fix to
define recursive processes, the function being applied to it must be the one defining the
convergence criteria for the iterative process of looking for the fixed-point. In our factorial
case, this is done via the conditional check at the beginning of body of the lambda. The
fixed point combinator’s responsibility is to keep the repetition process going — something
that may diverge and run out of computer resources.

Furthermore, this process can be used in conjunction with monadic operations as
identified by Levent [33]:

countDown :: Int -> IO ()

countDown = fix (\f n -> if n ==
then print "Done!"
else do print n
f (- 1))

This combination, however, cannot address all cases when using side-effects. Executing
the side-effect in countDown do not contribute to its own definition. There is no construct
or variable that requires the side-effect to be executed in order to determine its meaning.
This ability — being able to set values based on the result of running side-effects whilst
keep the fixed-point running — is something of interest because, as we are about to see,

this allows the use of cyclic definitions.

68

7.3 Value Recursion with Fixed-Points

Consider the following block diagram as the representation of a resettable circuit in hard-

ware:

reset

Zero
out
[::EE::J

next

DELAY O

L

inc

¢

Figure 7.2: Resettable counter in hardware, inspired by Levent’s works [5, 6].

When attempting to model the circuit in Figure 7.2 in programming languages other
than specific hardware description languages (e.g. Verilog or VHDL), a very natural first

draft of the implementation may look like:

69

counter :: Signal Bool -> Circuit (Signal Int)
counter reset = do next <- delay O inc

inc <- 1iftl (+1) out

out <- mux reset zero next

zero <- 1ift0 O

This example, although idiomatic with the visual representation, does not work in its
current state. This is due to the presence of cyclic definitions within the do-block, which
are not allowed by Haskell’s desugaring rules. This implementation detail forbid us from
describing the implementation of feedback-loops in this natural way, even though it better
represents the problem on-hand.

Effectively, we wish to have the flexibility of letrec [33, 34], in which bindings can be
defined with variables out of scope when reading sequentially. By allowing this behavior,
mutually recursive bindings are made possible and thus more natural implementations
are available. Haskell’s vanilla 1let already acts like a letrec, and it would be useful to
replicate this property to monadic bindings as well.

In the case of the counter example, the execution of a side-effect is mandatory to
evaluate the values of the bindings, such as next, inc, out, and zero (lines 2 to 5).
In contrast, the example countDown in Section 7.2 has none of its bindings locked by
side-effects, e.g, the bindings £ and n have nothing to do with the effect of printing a
message on stdout. When dealing with the latter of these cases, the usual fixed-point
combinator is enough to model its recursion. The former case, however, needs a special
kind of recursion, so-called value recursion [33].

As we are about to understand on Section 7.4, the use of value recursion to have
monadic’s bindings with the same convenience of letrec will be the key to our improve-
ment on FFACT over FACT. Fundamentally, it will tie the recursion knot done in FACT
via the complicated implicit recursion mentioned in Section 3.3. In terms of implemen-
tation, this is being achieved by the use of the mfix construct [5], which is accompanied
by a recursive do syntax sugar [6], with the caveat of not being able to do shadowing —
much like the let and where clauses in Haskell. In order for a type to be able to use this
construct, it should follow specific algebraic laws [33] to then implement the MonadFix

type class found in Control.Monad.Fix 2 package:

class (Monad m) => MonadFix m where

mfix :: (a ->ma) ->m a

createInteg :: CT Double -> CT Integrator

createInteg i = do

2Control.Monad.Fix hackage documentation.

70

https://hackage.haskell.org/package/base-4.21.0.0/docs/Control-Monad-Fix.html

rl <- 1iftI0 . newIORef $ initialize i
r2 <- 1iftI0 . newIORef $ initialize i
let integ = Integrator { initial = i,
cache = ri,
computation = r2 }
z = do
ps <- ask
v <- 1iftI0 $ readIORef (computation integ)
local (const ps) v
y <- memo interpolate z
1iftI0 $ writeIORef (cache integ) y

return integ

readInteg :: Integrator -> CT Double
readInteg = join . 1iftI0 . readIORef . cache

updateInteg :: Integrator -> CT Double -> CT ()
updateIlnteg integ diff = do
let i = initial integ
z = do
ps <- ask
let f =
case (method $ solver ps) of
Euler -> integEuler
RungeKutta2 -> integRK2
RungeKuttad4 -> integRK4
y <- 1iftI0 $ readIORef (cache integ)
f diff iy
1iftI0 $ writeIORef (computation integ) z

7.4 'Tweak IV: Fixing FACT

The primitive createInteg is the one that first establishes what we are calling implicit

recursion. This scheme can be better perceived by Figure 7.3. The mutable references

cache and computation target memory regions that reference each other. When creating

an integrator, the field computation references a memory region that holds a continuous

machine which yields the initial value for the ODE. Later on, the primitive updateInteg

will mutate this region to use the proper differential equation of interest. On the other

hand, the field cache references a continuous machine called z. This machine will take

care of both interpolation and memoization strategies. Notice that the z machine reads

from the memory region that computation references. The red arrows in the figure should

help with this visualization: these I0Ref fields are indirectly interacting with each other;

71

integ

initial cache computation

Get initial
Mutable Mutable
value of
Reference Reference
the system
Reference to... Reference to...
Memory
2 y

— % — @ — interpolate . memo e % initialize 9@

T Reading from...

Figure 7.3: Diagram of createInteg primitive for intuition.

a change in one of them affects the other. This process, however, is completely hidden
from an usability’s point of view — the user of the FACT will not and should not interact
with this behavior.

Both remaining primitives work in a simpler manner. When retriving a state variable,
via the primitive readInteg, the function readInteg hooks onto the layout created by
the previous primitive and exposes its value when using FACT. The final step, plugging
the differential equations in integrators, is simply a writing operation on the reference
of computation with the correct continuous machine; replacing the one with the initial
value settled when we created the integrator initially. Notice that the differential equation
needs to interact with what is being referenced via the cache field — it will leverage the
use of memoization and interpolation using the same z machine from before.

As previously detailed, these primitives are not only required to model with FACT, but
the order in which the user needs to write them also is due to highly imperative nature
of this implementation. Differential equations of interest use state variables, provided by
readInteg, and the only way FACT allows one to retrive those is via the use of an inte-
grator. In order to have one of those, the user is obligated to first invoke createlInteg,
although what we are really interested in — transposing mathematical descriptions of dif-
ferential equations to software — can only happens at step updateInteg. Further, because
a model description in FACT uses a do-notation block, the sequential behavior imposed
by bind, a requirement for the Monad type class, cannot be transpassed — regardless if
doing so would be more natural from a modeling perspective. Hence, FACT solved this
problem by introducing the Integrator data type with its mutable reference fields. This
way allowed the use of good translation of differential equations into Haskell, via the

continuous machines, with the trade-off of exposing and forcing the use the integrator’s

72

10

11

primitives at the user level.

In contrast, FFACT’s use of mdo removes this existing limitation in FACT’s do. With
letrec’s flexibility via the type class MonadFix, one can use order-independent bindings,
which may need effects to be defined, as one would do with a piece of paper. From an
usability’s perspective, value recursion is closing the gap between the informal notion of
bindings mathematicians have and the more restricted notion programmers have, which
usually vary from programming language to programming language and each one comes
with its own different quirks and solutions to not incur into scoping issues.

With this context in mind, below we present the definition of mfix in the MonadFix
type class for the ReaderT type, the underlying type of the CT type alias, present in the
Control.Monad.Trans.Reader ® package:
instance (MonadFix m) => MonadFix (ReaderT r m) where

mfix f = ReaderT $ \ r -> mfix $ \ a -> runReaderT (f a) r

Because a continuous machine has embedded I0 in its data type definition, the monadic
fix implementation of a continuous machine monad, here presented by the ReaderT, also
leverages the instances of its internal, e.g., I0, for the same type class. Further, because a
continuous machine type is a type alias to ReaderT, which is a generalization to the Reader
(or Environment) monad, it can be shown that continuous machine’s implementation of
MonadFix satifies the laws mentioned at the end of Section 7.3 [33]. With access to mdo
syntax sugar, a new function, called integ, can therefore be implemented to perform
what FACT’s integrator was accomplishing instead:

integ :: CT Double -> CT Double -> CT (CT Double)
integ diff i =
mdo y <- memo interpolate z
z <- do ps <- ask
let £ =
case (method $ solver ps) of
Euler -> integEuler
RungeKutta2 -> integRK2
RungeKutta4d -> integRK4
pure $ f diff iy

return y
This new function received the differential equation of interest, named diff, and the ini-
tial condition of the simulation, identified as i, on line 2. Interpolation and memoization
requirements from FACT are being maintained, as shown on line 3. Lines 3 to 6 demon-
strate the use case for FFACT’s mdo. A continuous machine created by the memoization
function (line 3), y, uses another continuous machine, z, yet to be defined. This con-

tinuous machine, defined on line 4, retrieves the numerical method chosen by a value of

3Control.Monad.Trans.Reader hackage documentation.

73

https://hackage.haskell.org/package/mtl-2.3.1/docs/Control-Monad-Reader.html

type Parameters, via the function f. The outcome of the function integ is the outcome
of running the simulation of interest in the context of memoization and interpolation.
As a final note, just as with fix, there is a need for the function being applied to the
combinator to terminate the recursive process: this is being done via the function memo
within the integ function.

Finally, the Lorenz Attractor example is rewritten as the following:

lorenzModel :: Model Vector
lorenzModel = mdo
x <- integ (sigma * (y - x)) 1.0
y <- integ (x * (rho - z) - y) 1.0
z <- integ (x * y - beta * z) 1.0

return $ sequence [x, y, z]

lorenzSystem = runCT lorenzModel 100 lorenzSolver

Not surprisingly, the results of this new approach using the monadic fixed-point com-
binator are very similar to the performance metrics depicted in Chapter 6, Caching the
Speed Pill — indicating that we are not trading performance for a gain in conciseness.

Figure 7.4 shows the new results.

4

Time VS lterations

iM

100k

10k

1000

Time (Milliseconds)

100

10

100 1000 10k 100k 1M 10M 100M

Total Number of lterations

Figure 7.4: Results of FFACT are similar to the final version of FACT..

7.5 Examples and Comparisons

In order to assess how concise model can be in FFACT, in comparison with the math-
ematical descriptions of the models, we present comparisons between this dissertation’s
proposed implementation and the same example in SimulinkSimulink 4, Matlab 5, Mathe-
matica %, and Yampa ”. It is worth noting that the last one, Yampa, is also implemented in
Haskell as a HEDSL. In each pair of comparisons both conciseness and differences will be
considered when implementing the Lorenz Attractor model. Ideally, a system’s descrip-
tion should contain the least amount of notation noise and artifacts to his mathematical
counterpart. It is worth noting that these examples only show the system’s description,
i.e., the drivers of the simulations are being omitted when not necessary to describe the
system.

Figure 7.5 depicts a side-by-side comparison between FFACT and Simulink. The

Haskell HEDSL specifies a model in text format, whilst Simulink is a visual tool — you

4Simulink documentation.
5Matlab documentation.
6Mathematica documentation.
"Yampa hackage documentation.

5

http://www.mathworks.com/products/simulink/
https://www.mathworks.com/products/matlab.html
https://www.wolfram.com/mathematica/
https://hackage.haskell.org/package/Yampa

draw a diagram that represents the system, including the feedback loop of integrators,
something exposed in Simulink. A visual tool can be useful for educational purposes, and
a pictorial version of FFACT could be made by an external tool that from a diagram it

compiles down to the correspondent Haskell code of the HEDSL.

lorenzModel = mdo

x <- integ (sigma * (y - x)) 1.0
y <- integ (x * (rho - z) - y) 1.0
z <- integ (x * y - beta * z) 1.0
let sigma = 10.0

rho = 28.0

beta = 8.0 / 3.0
return $ sequence [x, y, z]

Figure 7.5: Comparison of the Lorenz Attractor Model between FFACT and a Simulink implementa-
tion [7].

Figure 7.6 shows a comparison between FFACT and Matlab. The main differeti-
ating factor between the two implementations is in Matlab the system, constructed via
a separate lambda function (named f in the example), has the initial conditions of the
system at ¢ty only added when calling the driver of the simulation — the call of the ode45
function. In FFACT, the interval for the simulation and which numerical method will be
used are completely separate of the system’s description; a model. Furthermore, Matlab’s
description of the system introduces some notation noise via the use of vars, exposing

implementation details to the system’s designer.

lorenzModel = mdo sigma = 10;

x <- integ (sigma * (y - x)) 1.0 beta = 8/3;

y <- integ (x * (rho - z) - y) 1.0 rho = 28;

z <- integ (x * y - beta * z) 1.0 f = @(t,vars)

let sigma = 10.0 [sigma*(vars(2) - vars(1));
rho = 28.0 vars(1)*(rho - vars(3)) - vars(2);
beta = 8.0 / 3.0 vars(1)*vars(2) - betaxvars(3)];

return $ sequence [x, y, z] [t,vars] = oded45(f,[0 50],[1 1 11);

Figure 7.6: Comparison of the Lorenz Attractor Model between FFACT and a Matlab implementation.

The next comparison is between Mathematica and FFACT, as depicted in Figure 7.7.
Differently than Matlab, Mathematica uses the state variables’” names when describing
the system. However, just like with Matlab, the initial conditions of the system are only
provided when calling the driver of the simulation. Moreover, there’s significant noise in

Mathematica’s version in comparison to FFACT’s version.

76

lorenzModel = NonlinearStateSpaceModel [

lorenzModel = mdo {{sigma (y - %),
x <- integ (sigma * (y - x)) 1.0 x (rho - 2) - vy,
y <- integ (x * (rho - z) - y) 1.0 x y - beta z}, {}},
z <- integ (x * y - beta * z) 1.0 {x, y, z},
let sigma = 10.0 {sigma, rho, betal}];
rho = 28.0 soln[t_] = StateResponsel[
beta = 8.0 / 3.0 {lorenzModel, {1, 1, 1}},
return $ sequence [x, y, z] {10, 28, 8/3},
{t, 0, 50}1;

Figure 7.7: Comparison of the Lorenz Attractor Model between FFACT and a Mathematica implemen-
tation.

Finally, Figure 7.8 contrasts FFACT with Yampa, another HEDSL for time modeling
and simulation. Although Yampa is more powerful and expressive than FFACT — Yampa
can accomodate hybrid simulations with both discrete and continuous time modeling —
its approach introduces some noise in the Lorenz Attractor model. The introduction of
proc, pre, »>, imIntegral, and -< all introduce extra burden on the system’s designer
to describe the system. After learning about proc-notation [35] and Arrows ¥, one can

describe more complex systems in Yampa.

lorenzModel = mdo lorenzModel = proc () -> do
x <- integ (sigma * (y - x)) 1.0 rec x <- pre >>> imIntegral 1.0 -< sigmax(y - x)
y <- integ (x * (rho - z) - y) 1.0 y <- pre >>> imIntegral 1.0 -< x*(rho - z) -y
z <- integ (x * y - beta * z) 1.0 z <- pre >>> imIntegral 1.0 -< (xxy) - (beta*z)
let sigma = 10.0 let sigma = 10.0
rho = 28.0 rho = 28.0
beta = 8.0 / 3.0 beta = 8.0 / 3.0
return $ sequence [x, y, z] returnA < (x, y, z)

Figure 7.8: Comparison of the Lorenz Attractor Model between FFACT and a Yampa implementation.

The function integ alone in FFACT ties the recursion knot previously done via the
computation and cache fields from the original integrator data type in FACT. Hence,
a lot of implementation noise of the DSL is kept away from the user — the designer
of the system — when using FFACT. With this Chapter, we addressed the third and
final concerned explained in Chapter 1, Introduction. The final Chapter, Conclusion, will
conclude this work, pointing out limitations of the project, as well as future improvements

and final thoughts about the project.

8 Arrows hackage documentation.

7

https://hackage.haskell.org/package/base-4.18.1.0/docs/Control-Arrow.html

Chapter 8
Conclusion

Our motivation was to mitigate the high difficulty of modeling arbitrary closed feedback
loops, using the DSL proposed by Medeiros et al. [1]. In their DSL, time-varying signals
are abstracted by a function data type that updates the state of the system, and the
topology of the system can only be described via a set of composition operators instead
of dealing with the signals explicitly. In this work, we tackled this by proposing FACT:
a reimplementation of the DSL based on a new implementation abstraction, called CT,
whilst maintaining GPAC as the formal inspiration. This new data type holds the state of
the system indirectly, thus allowing the user of the DSL to directly manipulate the signals
when describing a system of equations. The guiding example used throughout this work,
the Lorenz Attractor in Figure 1.1, is an example of a system with feedback loops that
the former DSL could not express. Despite solving this expressivenness problem, FACT
introduced an abstraction leaking, exposing to the users of the DSL internal implementa-
tion details. We solved this issue leveraging the monadic fixed-point combinator, resulting
FFACT and thus improving the notation and usability.

Chapter 2 established the foundation of the implementation, introducing functional
programming (FP) concepts and the necessary types to model continuous time simulation
— with continuous time machines (CT) being the main type. Chapter 3 extended its power
via the implementation of typeclasses to add functionality for the CT type, such as binary
operations and numerical representation. Further, it also introduced the Integrator,
a CRUD-like interface for it, as well as the available numerical methods for simulation.
As a follow-up, Chapter 4 raised intuition and practical understanding of FACT via a
detailed walkthrough of an example. Chapter 5 explained and fixed the mix between dif-
ferent domains in the simulation, e.g., continuous time, discrete time and iterations, via
an additional linear interpolation when executing a model. Chapter 6 addressed perfor-
mance concerns via a memoization strategy. Finally, Chapter 7 introduced the fixed-point

combinator and its monadic counterpart in order to increase conciseness of the HEDSL,

78

bringing more familiarity to systems designers experienced with the mathematical de-
scriptions of their systems of interest. This notation enhancement is the defining feature

between FACT and FFACT.

8.1 Future Work

The following subsections describe the three main areas for future improvements in FFACT:

formalism, possible extensions, and code refactoring.

8.1.1 Formalism

One of the main concerns is the correctness of FACT between its specification and its final
implementation, i.e., refinement. Shannon’s GPAC concept acted as the specification of
the project, whilst the proposed software attempted to implement it. The criteria used
to verify that the software fulfilled its goal were by using it for simulation and via code
inspection, both of which are based on human analysis. This connection, however, was
not formally verified — no model checking tools were used for its validation. In order to
know that the mathematical description of the problem is being correctly mapped onto a
model representation some formal work needs to be done. This was not explored, and it
was considered out of the scope for this work.

This lack of formalism extends to the typeclasses as well. The programming language
of choice, Haskell, does not provide any proofs that the created types actually follow
the typeclasses’ properties — something that can be achieved with dependently typed
languages and/or tools such as Rocq, PVS, Agda, Idris and Lean. In Haskell, this burden
is on the developer to manually write down such proofs, a non-explored aspect of this
work. Hence, this work can be better understood as a proof of concept for FFACT, and one
potential improvement would be to port it to more powerful and specialized programming
languages, such as the ones mentioned earlier. Because FP is highly encouraged in those
languages, such port would not be a major roadblock. Thus, these tools would assure
a solid mappping between the mathematical the description of the problem, GPAC’s

specification and FFACT’s implementation, including the use of the chosen typeclasses.

8.1.2 Extensions

As explained in Chapters 1 and 2, there are some extensions that increase the capabilities
of Shannon’s original GPAC model. One of these extensions, FF-GPAC, was the one
chosen to be modeled via software. However, there are other extensions that not only ex-

pand the types of functions that can be modeled, e.g., hypertranscendental functions, but

79

also explore new properties, such as Turing universality [25, 26]. The proposed software
didn’t touch on those enhancements and restricted the set of functions to only algebraic
functions. More recent extensions of GPAC should also be explored to simulate an even
broader set of functions present in the continuous time domain.

In regards to numerical methods, one of the immediate improvements would be to use
adaptive size for the solver time step that change dynamically in run time. This strategy
controls the errors accumulated when using the derivative by adapting the size of the time
step. Hence, it starts backtracking previous steps with smaller time steps until some error
threshold is satisfied, thus providing finer and granular control to the numerical methods,

coping with approximation errors due to larger time steps.

8.1.3 Refactoring

In terms of the used technology, some ideas come to mind related to abstracting out
duplicated patterns across the code base. The proposed software used a mix of high level
abstractions, such as algebraic types and typeclasses, with some low level abstractions,
e.g., explicit memory manipulation. One potential improvement would be to explore an
entirely pure based approach, meaning that all the necessary side effects would be handled
only by high-level concepts internally, hence decreasing complexity of the software. For
instance, the memory allocated via the memo function acts as a state of the numerical
solver. Other Haskell abstractions, such as the ST monad !, could be considered for
future improvements towards purity. Going even further, given that FACT already uses
ReaderT, a combination of monads could be used to better unify all different behavior —
in Haskell, an option would be to use monad transformers. For instance, if the reader
and state monads, something like the RWS monad 2, a monad that combines the monads
Reader, Writer and ST, may be the final goal for a completely pure but effective solution.

Also, there’s GPAC and its mapping to Haskell features. As explained previously,
some basic units of GPAC are being modeled by the Num typeclass, present in Haskell’s
Prelude module. By using more specific and customized numerical typeclasses 3, it might
be possible to better express these basic units and take advantage of better performance

and convenience that these alternatives provide.

ST Monad wiki page.
2RWS Monad hackage documentation.
3Examples of alternative preludes.

80

https://wiki.haskell.org/State_Monad
https://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-RWS-Lazy.html
https://guide.aelve.com/haskell/alternative-preludes-zr69k1hc

Chapter 9

Appendix

9.1 Literate Programming

This dissertation made use of literate programming !, a concept introduced by Donald
Knuth [36]. Hence, this document can be executed using the same source files that the
PDF is created

This process requires the following dependencies:

e ghc - minimum version 9.6.6

e pdflatex - minimum version 3.141592653-2.6-1.40.25
e bibtex - minimum version 0.99d

The script located in doc/literate.sh is responsible to run all literate programming
functionalities. The available commands are (all of them need to run within the directory
doc):

./literate colorful - Generates the PDF named thesisColorful with the doc-

umentation with colorful code.

o ./literate gray - Generates the PDF named thesisGray with the documenta-
tion with verbatim code. An extra dependency, 1hs2Tex is necessary to run this

subcommand.
o ./literate repl - Enters the ghc REPL 2 with the code available for exploration.

e ./literate compile - Compiles an executable. Currently, the thesis is set to run
the final version of FACT (FFACT) running the latest iteration of the Lorenz Attractor
example, time step of 0.01 with the second-order Runge-Kutta method, with start

Literate Programming.
2Read-eval-print loop.

81

https://en.wikipedia.org/wiki/Literate_programming
https://en.wikipedia.org/wiki/Read-eval-print_loop

time set to 0 and final time set to 100. All intermadiate values from the three
state variables, z, y, and z, are displayed in stdout. Failures on commands for
specific OSes, such as commands for Windows when running in a Linux machine

and vice-versa, should be ignored.

9.2 FFACT’s Manual

This is a concise and pragmatic manual on how to create and run simulations using
FFACT. For a deeper and more detailed description of the internals of the DSL, includ-
ing a walkthrough via examples, please consult (and generate via literate.sh) either
GraduationThesis (for FACT) or MasterThesis (for FFACT).

9.2.1 Models

A simulation model is defined using mdo-notation (check recursive do) to describe a
system of differential equations. The current version of FFACT only supports continuous
simulations, i.e., discrete or hybrid simulations are future work. Alongside the equations,

one must provide initial conditions for each individual equation, such as the following:

lorenzModel :: Model [Double]
lorenzModel = mdo
x <- integ (sigma * (y - x)) 1.0
y <- integ (x * (rho - z) - y) 1.0
z <- integ (x * y - beta * z) 1.0
let sigma = 10.0
rho = 28.0
beta = 8.0 / 3.0

return $ sequence [x, y, z]

In this example, lorenzModel will return the state variables of interest via a list, hence
the model having the type Model [Double]. Recursive monadic bindings are possible
due to mdo, which makes the description of a model in code closer to its mathematical

counterpart.

9.2.2 Solver

Solver-specific configurations, e.g., which numerical method should be used and with
which time step, which solver stage should it start with, are configured separately from
the model and from executing a simulation. This sort of configuration details are set via

a separate record, such as the following:

82

https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/recursive_do.html

lorenzSolver = Solver { dt = 1,
method = RungeKutta2,
stage = SolverStage 0O

}

Available numerical methods:
e FEuler
e RungeKutta2

e RungeKutta4d

9.2.3 Simulation

A model and a record with solver’s configuration are some of the arguments to a driver
function. A driver function runs the simulation starting from 0 until a provided timestamp
(in seconds). Currently, runCTFinal outputs the final result of the system at the provided
final time and runCT outputs a list of intermediate values from the start until the provided
final time spaced by the time step within the solver’s configuration. The type signatures

of these functions are the following (Double is the final time of choice):

runCTFinal :: Model a -> Double -> Solver -> I0 a
runCT :: Model a -> Double -> Solver -> I0 [a]

9.2.4 Interpolation

Both FACT and FFACT use linear interpolation to approximate results in requested times-
tamps that are not reachable via the chosen time step within the solver’s configuration.
Driver functions automatically take care of detecting and running interpolations. The
type signature of the provided interpolation function (and probably future extensions) is

the following:

interpolate :: CT Double -> CT Double

9.2.5 Caching

Both FACT and FFACT employ a memoization strategy for caching, in order to speed up
the simulation execution. Without this, simulations recompute previously computed val-
ues multiple times, due to the recursive nature of the numerical methods available. A
table is saved in memory with already calculated values, and lookups are done instead of
triggering a new computation. The type signature of the provided memoization function

(and probably future extensions) is the following:

83

memo :: UMemo e => (CT e -> CT e) -> CT e —> CT (CT e)

The typeclass UMemo is provided custom typeclass.

9.2.6 Example

Lorenz Attractor complete example:

lorenzModel :: Model [Double]
lorenzModel = mdo
x <- integ (sigma * (y - x)) 1.0
y <- integ (x * (rho - z) - y) 1.0
z <- integ (x * y - beta * z) 1.0
let sigma = 10.0
rho = 28.0
beta = 8.0 / 3.0

return $ sequence [x, y, 2]

lorenzSolver = Solver { dt = 1,
method = RungeKutta2,
stage = SolverStage 0O

lorenz = runCTFinal lorenzModel 100 lorenzSolver

84

1]

[10]

[11]

References

Medeiros, José E. G. de, George Ungureanu, and Ingo Sander: An algebra for modeling
continuous time systems. In 2018 Design, Automation Test in Furope Conference
Ezhibition (DATE), pages 861-864, 2018. x, 4, 5, 6, 7, 9, 10, 78

Lemos, Eduardo: Continuous time modeling made functional: solving differential
equations with haskell. 2022. https://bdm.unb.br/handle/10483/32536. x, 4, 6,
7, 16, 20

Medeiros, Edil, Eduardo Peixoto, and Eduardo Lemos: Fact: A domain-specific lan-
guage based on a functional algebra for continuous time modeling. In 2023 Winter
Simulation Conference (WSC), pages 2650-2661, 2023. x, 6, 7

Medeiros, José E. G.: Unscented transform framework for quantization modeling in
data conversion systems. 2017. xii, 43

Erkok, Levent and John Launchbury: Recursive monadic bindings. SIGPLAN Not.,
35(9):174-185, sep 2000, ISSN 0362-1340. https://doi.org/10.1145/357766.
351257. xiii, 69, 70

Erkok, Levent and John Launchbury: A recursive do for haskell. In Proceedings
of the 2002 ACM SIGPLAN Workshop on Haskell, Haskell 02, page 29-37, New
York, NY, USA, 2002. Association for Computing Machinery, ISBN 1581136056.
https://doi.org/10.1145/581690.581693. xiii, 69, 70

Ekhande, Rahul: Chaotic signal for signal masking in digital communications. IOSR
Journal of Engineering, 4, January 2014. xiii, 76

Derler, Patricia, Edward A. Lee, and Albert Sangiovanni Vincentelli: Modeling cyber-
physical systems. Proceedings of the IEEE, 100(1):13-28, 2012. 1, 2, 5, 16, 23

Lee, Edward A.:. Cyber physical systems: Design challenges. In 2008 11th IEEE
International Symposium on Object and Component-Oriented Real-Time Distributed
Computing (ISORC), pages 363-369, 2008. 1, 2, 3

Lee, Edward A.: Fundamental limits of cyber-physical systems modeling. ACM
Transactions on Cyber-Physical Systems, 1(1), 2016. https://doi.org/10.1145/
2912149. 1, 2

Lee, Edward A.: Constructive models of discrete and continuous physical phenomena.
IEEE Access, 2:797-821, 2014. 1

85

https://bdm.unb.br/handle/10483/32536
https://doi.org/10.1145/357766.351257
https://doi.org/10.1145/357766.351257
https://doi.org/10.1145/581690.581693
https://doi.org/10.1145/2912149
https://doi.org/10.1145/2912149

[12]

[13]

[22]

Ungureanu, George, Jose E. G. de Medeiros, and Ingo Sander: Bridging discrete and
continuous time models with atoms. In 2018 Design, Automation & Test in Furope
Conference & Exhibition (DATE), pages 277-280, 2018. 1

Attarzadeh-Niaki, Seyed Hosein and Ingo Sander: Heterogeneous co-simulation for
embedded and cyber-physical systems design. SIMULATION, 96(9):753-765, 2020.
https://doi.org/10.1177/0037549720921945. 1, 2, 6

Ungureanu, George, Edil G. de Medeiros, Timmy Sundstrom, Ingemar Soderquist,
Anders Ahlander, and Ingo Sander: Forsyde-atom: Taming complezity in cyber phys-
ical system design with layers. ACM Transactions on Embedded Computing Systems,
20(2):1-27, 2021. 1

Graga, Daniel and José Costa: Analog computers and recursive functions over the
reals. Journal of Complexity, 19:644-664, October 2003. 1, 4, 9, 33

Shannon, Claude E: Mathematical theory of the differential analyzer. Journal of
Mathematics and Physics, 20(1-4):337-354, 1941. 1, 4, 8, 9

Bush, Vannevar: The differential analyzer. a new machine for solving differential
equations. Journal of the Franklin Institute, 212(4):447-488, 1931. 1

Lee, Edward A. and Alberto L. Sangiovanni-Vincentelli: Component-based design for
the future. In 2011 Design, Automation Test in Furope, pages 1-5, 2011. 1, 2

Churchill, Winston: HC Deb 28 October 1943 (House Of Commons Rebuilding), vol-
ume 393 of 5th, page 403. Bantam, London, 1943. https://hansard.parliament.
uk/commons/1943-10-28/debates/4388c736-7e25-4a7e-92d8-eccb751c4f56/
HouseOfCommonsRebuilding. 1

Lee, E.A. and A. Sangiovanni-Vincentelli: A framework for comparing models of
computation. ITEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 17(12):1217-1229, 1998. 2, 16

Chupin, Guerric and Henrik Nilsson: Functional reactive programming, restated.
In Proceedings of the 21st International Symposium on Principles and Practice of
Declarative Programming, PPDP ’19, pages 1-14, New York, NY, USA, 2019. As-
sociation for Computing Machinery, ISBN 9781450372497. https://doi.org/10.
1145/3354166.3354172. 2

Perez, Ivan: The beauty and elegance of functional reactive animation. In Proceed-
ings of the 11th ACM SIGPLAN International Workshop on Functional Art, Music,
Modelling, and Design, FARM 2023, page 820, New York, NY, USA, 2023. Associa-
tion for Computing Machinery, ISBN 9798400702952. https://doi.org/10.1145/
3609023.3609806. 2

Rovers, K.C.: Functional model-based design of embedded systems with
UniTi. Phd thesis - research ut, graduation ut, University of Twente,
Netherlands, December 2011, ISBN 978-90-365-3294-5. eemcs-eprint-21156
http://eprints.ewi.utwente.nl/21156. 2

86

https://doi.org/10.1177/0037549720921945
https://hansard.parliament.uk/commons/1943-10-28/debates/4388c736-7e25-4a7e-92d8-eccb751c4f56/HouseOfCommonsRebuilding
https://hansard.parliament.uk/commons/1943-10-28/debates/4388c736-7e25-4a7e-92d8-eccb751c4f56/HouseOfCommonsRebuilding
https://hansard.parliament.uk/commons/1943-10-28/debates/4388c736-7e25-4a7e-92d8-eccb751c4f56/HouseOfCommonsRebuilding
https://doi.org/10.1145/3354166.3354172
https://doi.org/10.1145/3354166.3354172
https://doi.org/10.1145/3609023.3609806
https://doi.org/10.1145/3609023.3609806

[24]

[25]

[20]

[27]

[30]

[31]

[32]

[35]

Sander, Ingo, Axel Jantsch, and Seyed Hosein Attarzadeh-Niaki: ForSyDe: Sys-
tem Design Using a Functional Language and Models of Computation, pages 1-42.
Springer Netherlands, Dordrecht, 2017, ISBN 978-94-017-7358-4. https://doi.org/
10.1007/978-94-017-7358-4 5-1. 2, 6

Graga, Daniel: Some recent developments on shannon’s general purpose analog com-
puter. Math. Log. Q., 50:473-485, September 2004. 4, 8, 9, 27, 80

Bournez, Olivier, Daniel Graga, and Amaury Pouly: On the functions generated by
the general purpose analog computer. Information and Computation, 257, January
2016. 4, 8, 80

Backus, John: Can programming be liberated from the von neumann style? a func-
tional style and its algebra of programs. Commun. ACM, 21(8):613-641, aug 1978,
ISSN 0001-0782. https://doi.org/10.1145/359576.359579. 5

Landin, P. J.: The next 700 programming languages. Communications of the ACM,
9(3):157-166, 1966. https://doi.org/10.1145/365230.365257. 6

Wadler, Philip and Stephen Blott: How to make ad-hoc polymorphism less ad hoc.
In Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 60-76, New York, NY, USA, 1989. Association for
Computing Machinery. 12

Tennent, R.D.: Semantics of Programming Languages. PHI series in computer sci-
ence. Prentice Hall, 1991, ISBN 9780138055998. https://books.google.com.br/
books?id=K7N7QgAACAAJ. 67

Bryant, Victor: Metric Spaces: Iteration and Application. Cambridge University
Press, 1985. 67

Stoy, Joseph E.: Denotational Semantics: The Scott-Strachey Approach to Program-
ming Language Theory. MIT Press, Cambridge, MA, USA, 1977, ISBN 0262191474.
67

Erkok, Levent: Value recursion in monadic computations. PhD thesis, 2002,

ISBN 0493822941. AAI3063791. 68, 70, 73

Adams, N. I., D. H. Bartley, G. Brooks, R. K. Dybvig, D. P. Friedman, R. Halstead,
C. Hanson, C. T. Haynes, E. Kohlbecker, D. Oxley, K. M. Pitman, G. J. Rozas, G. L.
Steele, G. J. Sussman, M. Wand, and H. Abelson: Revised5 report on the algorithmic
language scheme. SIGPLAN Not., 33(9):26-76, sep 1998, ISSN 0362-1340. https:
//doi.org/10.1145/290229.290234. 70

Perez, Ivan: The beauty and elegance of functional reactive animation. In Proceed-
ings of the 11th ACM SIGPLAN International Workshop on Functional Art, Music,
Modelling, and Design, FARM 2023, page 820, New York, NY, USA, 2023. Associa-
tion for Computing Machinery, ISBN 9798400702952. https://doi.org/10.1145/
3609023.3609806. 77

87

https://doi.org/10.1007/978-94-017-7358-4_5-1
https://doi.org/10.1007/978-94-017-7358-4_5-1
https://doi.org/10.1145/359576.359579
https://doi.org/10.1145/365230.365257
https://books.google.com.br/books?id=K7N7QgAACAAJ
https://books.google.com.br/books?id=K7N7QgAACAAJ
https://doi.org/10.1145/290229.290234
https://doi.org/10.1145/290229.290234
https://doi.org/10.1145/3609023.3609806
https://doi.org/10.1145/3609023.3609806

[36] Knuth, Donald E.: Literate programming. Center for the Study of Language and
Information, USA, 1992, ISBN 0937073806. 81

88

	IfLanguageNameamericanDedicated toDedicatória
	IfLanguageNameamericanAcknowledgementsAcknowledgments
	Abstract
	Resumo
	Introduction
	Contribution
	Executable Simulation
	GPAC: inspiration for a Formal Model
	Expressiveness and Conciseness

	Outline

	Design Philosophy
	Shannon's Foundation: GPAC
	The Shape of Information
	Modeling Reality
	Making Mathematics Cyber

	Effectful Integrals
	Uplifting the CT Type
	GPAC Bind I: CT
	Exploiting Impurity
	GPAC Bind II: Integrator
	Using Recursion to solve Math

	Execution Walkthrough
	From Models to Models
	Driving the Model
	An attractive example
	Lorenz's Butterfly

	Travelling across Domains
	Time Domains
	Tweak I: Interpolation

	Caching the Speed Pill
	Performance
	The Saving Strategy
	Tweak II: Memoization
	A change in Perspective
	Tweak III: Model and Driver
	Results with Caching

	Fixing Recursion
	Integrator's Noise
	The Fixed-Point Combinator
	Value Recursion with Fixed-Points
	Tweak IV: Fixing FACT
	Examples and Comparisons

	Conclusion
	Future Work
	Formalism
	Extensions
	Refactoring

	Appendix
	Literate Programming
	FFACT's Manual
	Models
	Solver
	Simulation
	Interpolation
	Caching
	Example

	References

