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Resumo

A sincronização de sistemas caóticos e hipercaóticos vem se destacando em diversas áreas
da ciência e tecnologia, como comunicação segura, criptografia e modelagem de fenômenos
naturais. Entretanto, grande parte das técnicas de sincronização descritas na literatura
apresentam alto grau de complexidade, o que dificulta sua aplicação prática. Neste trabalho,
propõe-se uma nova lei de controle neural e sub-atuada para a sincronização de um sistema
hipercaótico de quatro dimensões, caracterizada por sua simplicidade de implementação
e bom desempenho na presença de distúrbios limitados. A estratégia fundamenta-se na
teoria de estabilidade de Lyapunov e foi validada por meio de simulações no MATLAB® e
Simulink®. Além disso, demonstrou-se a aplicação da técnica de sincronização proposta
na criptografia de sinais para comunicação segura. Os resultados revelaram que a lei de
controle, atuando em apenas dois estados do sistema, é simples e robusta diante de distúrbios
limitados, mostrando-se eficaz após o escalonamento em amplitude de alguns estados do
sistema hipercaótico. Conclui-se que essa abordagem oferece uma solução prática e eficiente
para a sincronização de sistemas hipercaóticos, com potencial para aplicações em diversas
áreas que demandem controle de sistemas dinâmicos complexos. Esse estudo contribui
para a ampliação do conhecimento na área e abre caminho para futuras investigações sobre
controle simplificado e robusto em sistemas não lineares.

Palavras-chave: Análise de Lyapunov. Controle não-linear. Controle Neural. Sincronização
Caótica.



Abstract

Synchronization of chaotic and hyperchaotic systems has gained prominence in various
fields of science and technology, such as secure communication, cryptography, and mod-
eling of natural phenomena. However, many of the synchronization techniques described
in the literature exhibit a high degree of complexity, which complicates their practical im-
plementation. In this work, we propose a new neural and underactuated control law for
synchronizing a four-dimensional hyperchaotic system. This law stands out for its ease
of implementation and good performance in the presence of bounded disturbances. The
approach is based on Lyapunov stability theory and was validated through simulations in
MATLAB® and Simulink®. In addition, the application of the proposed synchronization
technique in signal cryptography for secure communication has been demonstrated. The
results revealed that the control law, acting on only two states of the system, is both simple
and robust against bounded disturbances, proving effective after amplitude scaling of certain
states of the hyperchaotic system. We conclude that this approach provides a practical and
efficient solution for synchronizing hyperchaotic systems, with potential applications in
various domains requiring control of complex dynamical systems. This study contributes to
advancing knowledge in the field and opens up new avenues for future research on simplified
and robust control in nonlinear systems.

Keywords: Lyapunov Analysis. Nonlinear control. Neural Control. Chaotic Synchroniza-
tion.
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1 Introdução

1.1 Contextualização e motivação

Nas últimas décadas, o estudo de sistemas dinâmicos caóticos tem recebido atenção
crescente em diversas áreas da ciência e engenharia, como comunicações seguras (GU-
LARTE, K. H.; HARA et al., 2023a,b; WANG, A. et al., 2025; PRAJAPAT; KUMAR, D.;
KUMAR, P., 2025; DHINGRA; DUA, 2025; GA; BHANU, 2025; MANHIL; JAMAL, 2024;
BABANLI; KABAOGLU, 2024), processamento de sinais (DUARTE; EISENCRAFT, 2024;
YU; CHEN, W.; POOR, 2024), teoria de controle (KARTAL, 2025; BASHIR; MALIK; HUS-
SAIN, S., 2025), reações químicas (RAZZAQ et al., 2025), meteorologia (DONG et al., 2024),
entre outros. A presença de sensibilidade às condições iniciais e comportamento impre-
visível são características marcantes dos sistemas caóticos (LORENZ, 1972), tornando-os
atrativos para aplicações que demandam alta complexidade dinâmica. No entanto, quando
se trata de sistemas hipercaóticos — isto é, sistemas caóticos com quatro ou mais dimensões
(dois ou mais expoentes de Lyapunov positivos) (LETELLIER; ROSSLER, O. E., 2007) —, a
investigação ainda se encontra em expansão, pois tais sistemas apresentam dinâmicas mais
complexas e um comportamento com ummaior grau de imprevisibilidade (JIN, M.; SUN;
WANG, H., 2022).

Dentro desse contexto, a sincronização de sistemas caóticos ou hipercaóticos surge
como um problema de grande interesse teórico e prático. O objetivo é garantir que as instân-
cias do sistema, mesmo quando sujeitas a perturbações ou incertezas, evoluam juntas ao
longo do tempo. As aplicações dessa sincronização abrangem desde comunicações criptogra-
fadas (CLEMENTE-LOPEZ; JESUS RANGEL-MAGDALENO; MUÑOZ-PACHECO, 2024;
WEN; LIN, 2024) até controle de robôs (MOYSIS et al., 2020; YANG; QIN; LIAO, 2023) e
sistemas de energia (TADJ et al., 2024), passando por processamento de sinais biomédicos
(PARBAT; CHAKRABORTY, 2021) e identificação de parâmetros em sistemas físicos (PENG;
HE; SUN, 2022). Contudo, o projeto de leis de controle e observadores que assegurem a
sincronização em sistemas de alta complexidade, como os hipercaóticos de quatro dimensões,
apresenta inúmeros desafios, especialmente no que se refere a robustez à disturbios, tempo
de convergência e implementação prática.

Para contornar essas dificuldades, diversas abordagens têm sido propostas, como
métodos baseados em realimentação linear (LAAREM, 2021), controle adaptativo (SHAFIQ;
AHMAD, 2025) e técnicas de observadores não lineares (HUSSAIN, M. M. et al., 2021).
Recentemente, o uso de redes neurais tem emergido como uma alternativa promissora,
devido à capacidade dessas estruturas de lidar com não linearidades complexas e de se



18

adaptarem dinamicamente às mudanças no sistema (ANH; DAT, 2024; JIN, J. et al., 2024).
Além disso, a sub-ação (ou sub-atuador) traz uma perspectiva interessante ao permitir que o
controle não precise atuar plenamente em todas as variáveis do sistema, diminuindo custos
de implementação e, em alguns casos, tornando o método mais resiliente a falhas parciais
(GULARTE, K. H. M.; GÓMEZ et al., 2023; GULARTE, K. H. M.; ALVES et al., 2021).

Neste trabalho, propõe-se combinar essas duas frentes—controle neural e sub-atuado
— para sincronizar um sistema hipercaótico tetradimensional. Amotivação principal decorre
da necessidade de métodos mais eficientes e flexíveis para lidar com a alta complexidade e
instabilidade desses sistemas. Ao empregar redes neurais, busca-se aproveitar sua capacidade
de aproximar funções e adaptar parâmetros em tempo real, mantendo ao mesmo tempo a
viabilidade de implementação, mesmo em cenários onde não haja atuadores em todas as
variáveis de estado. Essa combinação inovadora visa não apenas assegurar a sincronização
em cenários adversos, mas também oferecer uma abordagem robusta e generalizável a outros
sistemas hipercaóticos que venham a ser estudados no futuro.

Desse modo, a relevância do tema torna-se evidente: as possíveis aplicações práticas
e o avanço do conhecimento na área de sistemas hipercaóticos justificam a busca por novas
estratégias de controle que sejam teoricamente sólidas e, ao mesmo tempo, tenham potencial
de implementação em escala real. Acredita-se que o desenvolvimento e validação desse
método de sincronização contribuirão para expandir as fronteiras do controle de sistemas
hipercaóticos, fornecendo uma ferramenta útil para engenheiros, físicos e cientistas em geral
que lidam com problemas de alta complexidade dinâmica.

1.2 Estado da arte

A Figura 1 ilustra a evolução dos estudos sobre caos e hipercaos, evidenciando os
marcos históricos e conceituais que servem de base para o desenvolvimento das atuais
técnicas de controle e sincronização. O ponto de partida é atribuído a (LORENZ, 1963), que
descreveu o primeiro modelo efetivamente reconhecido como caótico, chamando atenção
para o fenômeno da sensibilidade às condições iniciais em sistemas dinâmicos não lineares.

Em (ROSSLER, O., 1979), aprofundou-se no tema ao introduzir o conceito de hi-
percaos, caracterizado por apresentar pelo menos dois expoentes de Lyapunov positivos,
ampliando a complexidade das trajetórias dinâmicas. Alguns anos mais tarde, em (PECORA;
CARROLL, 1990) lançou-se as bases da sincronização caótica, demonstrando que sistemas
caóticos podiam, sob certas condições de realimentação, evoluir de forma síncrona.

A partir desse alicerce, diversas vertentes de pesquisa começaram a florescer. Em
(FRISON, 1992) aplicou-se redes neurais ao controle do caos, evidenciando o potencial de
aprendizado e adaptação dessas estruturas para mitigar comportamentos caóticos indeseja-
dos ou instáveis. Paralelamente, em (BEDROSSIAN, 1991), propôs-se o controle sub-atuado
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de sistemas não lineares, sugerindo a possibilidade de reduzir a complexidade e o custo de
implementação ao usar menos atuadores do que o número de estados do sistema.

(LORENZ, 1963)
Primeiro modelo caótico

(ROSSLER, O., 1979)
Introduziu o con-
ceito de hipercaos

(PECORA; CAR-
ROLL, 1990)
Propôs a sincro-
nização caótica

(CUOMO; OPPE-
NHEIM; STRO-
GATZ, 1993)

Comunicação segura
baseada em caos

(GULARTE, K. H.;
RÊGO; VARGAS, 2018)
Comunicação segura
baseada em caos com
controle sub-atuado

(WANG, S., 2022)
Introdução de

um novo sistema
hipercaótico 4D

(Hara, F. O.;
Vargas, 2025)

Sincronização neural
e sub-atuada para um
sistema hipercaótico 4D

(BEDROSSIAN, 1991)
Controle sub-atuado

de sistemas não-lineares

(FRISON, 1992)
Controle do caos
com redes neurais

Figura 1 – Contribuições na área que culminaram na proposta deste trabalho.

Já em (CUOMO; OPPENHEIM; STROGATZ, 1993) popularizou-se a aplicação direta
do caos em comunicação segura, apontando como a alta sensibilidade do comportamento
caótico poderia ser explorada para criptografar informações. Seguindo essa linha, em (GU-
LARTE, K. H.; RÊGO; VARGAS, 2018) demonstrou-se como a integração de técnicas de
sub-atuadores poderia trazer maior robustez à comunicação segura baseada em caos.
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Mais recentemente, em (WANG, S., 2022) introduziu-se umnovo sistemahipercaótico
4D, evidenciando a continuidade das pesquisas em dinâmicas de alta dimensão, abrindo
caminho para a exploração de sistemas ainda mais complexos. Finalmente, na culminância
desta linha evolutiva, surge a proposta deste trabalho (Hara, F. O. e Vargas, 2025) – que
consiste na aplicação conjunta de redes neurais e do controle sub-atuado para efetuar a
sincronização de um sistema hipercaótico 4D.

Essa abordagem, objeto central da presente dissertação, visa combinar a adaptabi-
lidade das redes neurais com a eficiência do controle sub-atuado, oferecendo ummétodo
promissor para lidar com a instabilidade inerente a sistemas de alta ordem. A proposta reflete
não apenas o avanço conceitual ao longo dos últimos sessenta anos de pesquisa sobre caos
e hipercaos, mas também a convergência de duas ferramentas potentes — redes neurais
e controle sub-atuado — em prol de soluções inovadoras para problemas complexos de
sincronização.

A análise dos trabalhos dispostos na figura acima evidencia a evolução desta área ao
longo dos últimos anos, bem como a lacuna de pesquisa ainda existente. Especificamente,
observa-se a ausência de abordagens combinadas que unam técnicas neurais a estratégias
sub-atuadas em sistemas hipercaóticos de alta ordem. Essa lacunamotivou o presente estudo,
que visa contribuir para o avanço do estado da arte propondo uma nova estrutura de controle
neural e sub-atuada, a ser aplicada em ummodelo tetradimensional de sistema hipercaótico.
Espera-se, assim, reduzir a complexidade de projeto e incrementar a robustez, fornecendo
subsídios para aplicações em larga escala e/ou cenários de incerteza elevada.

1.3 Objetivos

O presente trabalho tem como principal objetivo desenvolver e validar uma nova
estratégia de controle capaz de promover a sincronização de um sistema hipercaótico te-
tradimensional, utilizando técnicas neurais e sub-atuadas. A proposta visa suprir lacunas
encontradas no estado da arte, unindo a flexibilidade de aproximação oferecida por redes
neurais à economia de recursos e robustez característica de esquemas sub-atuados.

Para alcançar este objetivo geral, os seguintes objetivos específicos foram estabeleci-
dos:

• Modelar e analisar o sistema hipercaótico tetradimensional, destacando suas principais
características dinâmicas e pontos críticos de instabilidade.

• Propor e desenvolver um controlador neural sub-atuado, descrevendo sua estrutura,
parâmetros de projeto e leis de adaptação.
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• Realizar a prova matemática de estabilidade, utilizando a Teoria de Lyapunov e demais
conceitos teóricos necessários para garantir a convergência do erro de sincronização a
valores próximos de zero.

• Implementar simulações computacionais no MATLAB, avaliando o desempenho da
técnica proposta em termos de rapidez de convergência, robustez a perturbações e
estabilidade.

• Aplicar a sincronização proposta em um esquema para comunicação segura e avaliar
o seu desempenho.

• Discutir as contribuições e limitações do método, sugerindo possíveis extensões e
aplicações práticas para pesquisas futuras.

Com base nestes objetivos, espera-se que a metodologia aqui proposta amplie as
perspectivas de uso do controle sub-atuado e das redes neurais na sincronização de sistemas
hipercaóticos, contribuindo para o avanço do conhecimento na área e incentivando novas
aplicações e desenvolvimentos.

1.4 Organização deste trabalho

Esta dissertação está organizada em cinco capítulos, além das referências bibliográfi-
cas e apêndice. A seguir, descrevemos brevemente o conteúdo de cada capítulo:

Capítulo 1 – Introdução: Apresenta a contextualização e motivação do tema, o
estado da arte relacionado aos estudos sobre sincronização de sistemas hipercaóticos, os
objetivos da pesquisa e, por fim, esta visão geral da estrutura da dissertação.

Capítulo 2 – Conceitos Preliminares: Revisa os principais fundamentos teóricos
necessários para o desenvolvimento do trabalho. São abordados temas como sistemas caóticos
e hipercaóticos, teoria de estabilidade de Lyapunov, desigualdade de Young, escalonamento
em amplitude e frequência e noções de redes neurais artificiais. Esses conceitos formam a
base que justifica as metodologias e análises adotadas nos capítulos seguintes.

Capítulo 3 – Proposta de Controle Neural e Sub-atuado: Descreve em detalhes o
sistema hipercaótico tetradimensional que serve de objeto de estudo e apresenta a técnica
de controle proposta. São discutidas a modelagem da estratégia de controle, a formulação do
controlador sub-atuado e as redes neurais utilizadas, culminando na prova matemática de
estabilidade e sincronização.

Capítulo 4 – Simulações e Validações: Relata a implementação das simulações no
MATLAB, destacando as configurações adotadas, os resultados obtidos e a sua aplicação
em comunicação segura. As métricas de desempenho, bem como aspectos de robustez e
convergência, são tratados neste capítulo.
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Capítulo 5 – Conclusões e Trabalhos Futuros: Traz o fechamento do trabalho,
sintetizando as principais contribuições e limitações encontradas, bem como possíveis
desdobramentos e sugestões para pesquisas futuras.

Após esses capítulos, são apresentadas as referências bibliográficas. Em seguida, são
disponibilizados apêndices contendo os códigos de simulação utilizados neste trabalho.
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2 Conceitos preliminares

2.1 Sistemas Caóticos e Hipercaóticos

A teoria do caos dedica-se ao estudo de sistemas dinâmicos não lineares que exibem
comportamentos aparentemente imprevisíveis, mesmo quando suas equações de evolução
são perfeitamente conhecidas. Em tais sistemas, pequenas perturbações nas condições
iniciais podem resultar em grandes diferenças na dinâmica ao longo do tempo, fenômeno
frequentemente associado ao chamado efeito borboleta (LORENZ, 1963).

2.1.1 Definição e Caracterização de Sistemas Caóticos

Considere um sistema dinâmico contínuo no tempo, descrito por:

𝐱̇(𝑡) = 𝐟
(
𝐱(𝑡), 𝑡

)
(2.1)

onde 𝐱(𝑡) ∈ ℝ𝑛 é o vetor de estados e 𝐟 ∶ ℝ𝑛 × ℝ → ℝ𝑛 é uma função não linear que define
a dinâmica do sistema. Em termos gerais, podemos chamar esse sistema de caótico se ele
apresenta:

1. Sensibilidade às Condições Iniciais: Dada uma condição inicial 𝐱0 e uma condição
perturbada 𝐱0 + 𝛿𝐱0 com ‖𝛿𝐱0‖muito pequena, as trajetórias 𝐱(𝑡) e 𝐲(𝑡) que partem
dessas condições divergem exponencialmente no tempo. Formalmente, existe pelo
menos um expoente de Lyapunov 𝜆 > 0 tal que

‖𝐱(𝑡) − 𝐲(𝑡)‖ ≈ ‖𝛿𝐱0‖ 𝑒𝜆𝑡, 𝜆 > 0 (2.2)

2. Densidade de Órbitas Periódicas: Em muitos sistemas caóticos, podem existir
órbitas periódicas dispersas pelo espaço de estados; entretanto, a presença simultânea
de sensibilidade às condições iniciais faz com que essas órbitas não sejam dominantes
na dinâmica.

3. MisturaTopológica: Qualquer região do espaço de estados eventualmente se “espalha”
(ou se mistura) em todo o conjunto invariante do sistema. Em outras palavras, as
trajetórias podem visitar complexamente diferentes partes do espaço de fases.

Em termos práticos, a sensibilidade às condições iniciais torna o longo prazo das
trajetórias extremamente difícil de prever, mesmo que o sistema seja determinístico (ou seja,
não haja incerteza ou aleatoriedade intrínseca nas equações).
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2.1.1.1 Exemplo Clássico: Sistema de Lorenz

Umdos exemplosmais conhecidos de sistema caótico é o Sistemade Lorenz (LORENZ,
1963), dado pelas equações:

⎧
⎪
⎨
⎪
⎩

𝑥̇ = 𝜎(𝑦 − 𝑥)

𝑦̇ = 𝑥(𝜌 − 𝑧) − 𝑦

𝑧̇ = 𝑥𝑦 − 𝛽𝑧

(2.3)

onde 𝜎, 𝜌 e 𝛽 são parâmetros positivos. Para certos valores (por exemplo, 𝜎 = 10, 𝜌 = 28,
𝛽 = 8∕3), esse sistema exibe o característico atrator de Lorenz (Figura 2), que marcou o
início do estudo detalhado de trajetórias caóticas em sistemas de três dimensões.

Figura 2 – Atrator de Lorenz.

2.1.2 Conceito de Hipercaos

Enquanto em um sistema caótico tipicamente há apenas um expoente de Lyapunov
positivo, um sistema hipercaótico apresenta dois ou mais expoentes de Lyapunov positivos.
Para analisar os expoentes de Lyapunov, costuma-se linearizar o sistema em torno de uma
trajetória e estudar a evolução das variações infinitesimais, governadas pela derivada de 𝐟 .
No caso contínuo, define-se a matriz Jacobiana:

𝐉(𝐱) = 𝜕𝐟
𝜕𝐱(𝐱) (2.4)

Os expoentes de Lyapunov {𝜆𝑖}𝑛𝑖=1 são, emessência, valoresmédios da taxa de expansão
ou contração ao longo das direções dos autovetores de 𝐉. Matematicamente, um sistema de
dimensão 𝑛 é considerado hipercaótico se:

𝜆1 > 𝜆2 > 0, 𝜆𝑗 ∈ ℝ (𝑗 = 3,… ,𝑛) (2.5)

onde 𝜆1 e 𝜆2 são os primeiros dois maiores expoentes de Lyapunov positivos, indicando que
o sistema diverge exponencialmente em pelo menos duas direções independentes do espaço
de estados. Em geral, requer-se 𝑛 ≥ 4 para acomodar ao menos dois expoentes de Lyapunov
positivos.
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2.1.2.1 Exemplo de Sistema Hipercaótico

Um exemplo simples é o chamado Sistema Hipercaótico de Rössler modificado, que
introduz termos adicionais para permitir a existência de múltiplos expoentes de Lyapunov
positivos:

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝑥̇1 = −(𝑥2 + 𝑥3)

𝑥̇2 = 𝑥1 + 𝑎 𝑥2
𝑥̇3 = 𝑏 + 𝑥3(𝑥1 − 𝑐) + 𝑥4
𝑥̇4 = −𝑑 𝑥3

(2.6)

onde 𝑎, 𝑏, 𝑐 e 𝑑 são parâmetros ajustáveis. Para certas combinações desses parâmetros,
observa-se a existência de dois expoentes de Lyapunov positivos, caracterizando o hipercaos.

2.1.3 Implicações e Aplicações

A presença de múltiplos expoentes positivos torna os sistemas hipercaóticos parti-
cularmente atraentes para aplicações que se beneficiam de uma dinâmica rica e não linear.
Entre os principais campos de aplicação, destacam-se:

• Comunicação Segura e Criptografia: A elevada imprevisibilidade e pseudoaleatorie-
dade dos sinais hipercaóticos pode ser explorada para cifrar mensagens ou mascarar
informações.

• Processamento de Sinais: Geração de sequências pseudoaleatórias, compressão ou
análise de sinais que contenham comportamentos complexos.

• Modelagem de Fenômenos Naturais: Fenômenos em fluidodinâmica, química e
biologia podem semanifestar como processos hipercaóticos, sobretudo quando existem
inûmeras instabilidades acopladas.

2.1.4 Desafios para Controle e Sincronização

Apesar de seu valor científico e tecnológico, a alta complexidade dos sistemas hi-
percaóticos representa um obstáculo para o desenvolvimento de técnicas de controle e
sincronização eficazes. A divergência em múltiplas direções impõe requisitos mais rígidos
ao controlador, como:

• Dimensionamento de Atuadores: Garantir que mesmo um controle sub-atuado
(com menos variáveis controláveis do que o total de estados) seja capaz de suprimir ou
sincronizar a dinâmica hipercaótica.
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• Observadores Não Lineares: A construção de observadores mais sofisticados para
estimar estados não medidos, dada a possibilidade de crescimento exponencial dos
erros em diferentes direções.

• Tempo de Convergência e Robustez: As múltiplas instabilidades requerem leis de
controle com altas capacidades de reação e adaptação, além de robustez a perturbações
externas e incertezas.

Esses fatores motivam a investigação contínua de métodos mais avançados de sincro-
nização, incorporando abordagens como controle adaptativo, inteligência computacional,
observadores robustos e arquiteturas de redes neurais cada vez mais elaboradas.

2.2 Teoria de estabilidade de Lyapunov

O estudo de estabilidade em sistemas dinâmicos não lineares é amplamente funda-
mentado na Teoria de Lyapunov, inicialmente desenvolvida por Aleksandr Mikhailovich
Lyapunov no final do século XIX. Essa teoria fornece ferramentas conceituais e matemáticas
para analisar se um sistema permanece próximo de um ponto de equilíbrio (ou trajetória de
equilíbrio) ao sofrer pequenas perturbações em suas condições iniciais (KHALIL, 2009).

2.2.1 Definições de Estabilidade

Considere um sistema dinâmico contínuo descrito por:

𝐱̇(𝑡) = 𝐟
(
𝐱(𝑡)

)
, 𝐱(𝑡) ∈ ℝ𝑛 (2.7)

onde 𝐟 ∶ ℝ𝑛 → ℝ𝑛 é uma função contínua, não necessariamente linear. Suponha que exista
um ponto de equilíbrio 𝐱∗ ∈ ℝ𝑛 tal que

𝐟
(
𝐱∗
)
= 𝟎 (2.8)

A estabilidade desse ponto de equilíbrio pode ser definida de diferentes maneiras (SLOTINE;
LI et al., 1991):

Estabilidade de Lyapunov (no sentido de Lyapunov): O ponto de equilíbrio 𝐱∗ é estável
se, para todo 𝜀 > 0, existe um 𝛿 > 0 tal que, sempre que ‖𝐱(𝑡0) − 𝐱∗‖ < 𝛿, então

‖𝐱(𝑡) − 𝐱∗‖ < 𝜀 para todo 𝑡 ≥ 𝑡0

Em termos intuitivos, isso significa que, ao iniciar suficientemente próximo de 𝐱∗, a trajetória
permanece próxima a esse ponto.
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Estabilidade Assintótica: O ponto de equilíbrio 𝐱∗ é assintoticamente estável se, além de
ser estável no sentido de Lyapunov, vale

lim
𝑡→∞

‖𝐱(𝑡) − 𝐱∗‖ = 0

isto é, as trajetórias não apenas permanecem próximas de 𝐱∗, mas também convergem para
ele com o passar do tempo.

Estabilidade Exponencial: O ponto de equilíbrio 𝐱∗ é exponencialmente estável se existe
um conjunto de constantes positivas 𝐶 > 0 e 𝛼 > 0 tais que:

‖𝐱(𝑡) − 𝐱∗‖ ≤ 𝐶 𝑒−𝛼(𝑡−𝑡0)‖𝐱(𝑡0) − 𝐱∗‖

para todo 𝑡 ≥ 𝑡0. Nesse caso, a convergência até o ponto de equilíbrio se dá em velocidade
exponencial.

2.2.2 Método Direto de Lyapunov

O chamadométodo direto de Lyapunov (ou segunda forma de Lyapunov) não exige a
linearização do sistema e se baseia em uma função de Lyapunov, a qual desempenha um
papel análogo ao de uma energia potencial. O procedimento consiste em:

1. Escolher uma Função Candidata: Seja 𝑉(𝐱) ∶ ℝ𝑛 → ℝ uma função continuamente
diferenciável e positiva definida na vizinhança de 𝐱∗. Isso significa que

𝑉(𝐱) > 0 para 𝐱 ≠ 𝐱∗, e 𝑉(𝐱∗) = 0

2. Verificar a Derivada de 𝑉(𝐱) ao longo das Soluções: Calcule a derivada de 𝑉(𝐱(𝑡))
em relação ao tempo, que pode ser expressa por

𝑉̇(𝐱) = ∇𝑉(𝐱)⊤𝐟 (𝐱)

onde∇𝑉(𝐱) é o gradiente de𝑉. Analisa-se se 𝑉̇ é negativa semidefinida ou negativa
definida.

2.2.2.1 Critérios de Estabilidade

Com base na função de Lyapunov, têm-se os seguintes resultados (KHALIL, 2009):

• Se 𝑉(𝐱) é positiva definida e 𝑉̇(𝐱) é negativa semidefinida em uma vizinhança de
𝐱∗, então 𝐱∗ é estável no sentido de Lyapunov.

• Se 𝑉(𝐱) é positiva definida e 𝑉̇(𝐱) é negativa definida, então 𝐱∗ é assintoticamente
estável.

• Se, além disso, existem constantes 𝛼1, 𝛼2, 𝛼3 > 0 tais que

𝛼1‖𝐱‖𝑝 ≤ 𝑉(𝐱) ≤ 𝛼2‖𝐱‖𝑞, 𝑉̇(𝐱) ≤ −𝛼3‖𝐱‖𝑟

para algumas potências 𝑝, 𝑞, 𝑟 > 0, pode-se demonstrar estabilidade exponencial.
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2.2.3 Método Indireto de Lyapunov (Linearização)

A primeira abordagemde Lyapunov, também conhecida comométodo indireto, baseia-
se na análise de autovalores da parte linearizada do sistema em torno do ponto de equilíbrio.
Para o sistema (2.7), lineariza-se 𝐟 (𝐱) na vizinhança de 𝐱∗:

𝐀 = 𝜕𝐟 (𝐱)
𝜕𝐱

|||||||𝐱=𝐱∗
(2.9)

Se todas as partes reais dos autovalores de 𝐀 forem negativas, conclui-se que 𝐱∗ é
assintoticamente estável para o sistema não linear. Entretanto, caso haja autovalores com
parte real positiva ou nula, não se podem tirar conclusões definitivas sobre a estabilidade
não linear apenas com esse método (SLOTINE; LI et al., 1991).

2.2.4 Aplicações em Sistemas Caóticos e Hipercaóticos

Emsistemas caóticos ou hipercaóticos, a aplicação da Teoria de Lyapunov desempenha
um papel crucial na análise de convergência em problemas de sincronização. Por exemplo,
em esquemas de controle que buscam sincronizar duas réplicas de um sistema hipercaótico,
costuma-se projetar um controlador ou observador cujas leis de realimentação garantam a
dissipação da chamada função de Lyapunov associada ao erro de sincronização (CHEN, G.,
1999). Dessa maneira, demonstra-se formalmente que, mesmo diante da alta complexidade
e do número de expoentes de Lyapunov positivos, a dinâmica de erro converge a zero,
assegurando a sincronização.

Além disso, a escolha apropriada da função de Lyapunov é muitas vezes inspirada
em formas quadráticas ou combinações polinomiais específicas, adaptadas às não lineari-
dades presentes. Em alguns estudos, termos adicionais ou pesos variáveis são introduzidos
para lidar com o hipercaos de maneira eficiente. Na sub-seção 2.2.1 se define a Estabilidade
Exponencial que se revela particularmente relevante nesses cenários, pois o tempo de con-
vergência assume papel fundamental em aplicações práticas, tais como comunicação segura
e criptografia baseadas em caos.

Resumo

Em síntese, a Teoria de Lyapunov oferece uma estrutura robusta para analisar a
estabilidade de pontos de equilíbrio e trajetórias de sistemas não lineares, sem recorrer
somente à linearização ou a simplificações excessivas. Para fins de sincronização de sistemas
caóticos e hipercaóticos— abordagem central deste trabalho— a formulação de uma função
de Lyapunov adequada e a verificação de sua derivada negativa são etapas fundamentais
na demonstração formal de estabilidade e convergência dos erros de sincronização. Essas
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ferramentas matemáticas serão utilizadas nos capítulos subsequentes para desenvolver e
validar o controlador proposto.

2.3 Desigualdade de Young

A Desigualdade de Young constitui uma ferramenta matemática relevante para ma-
nipular e estimar produtos de termos em diversas áreas da análise, incluindo sistemas
de controle e teoria de estabilidade. Em sua forma mais simples, para números reais não
negativos, ela estabelece que:

𝑎𝑏 ≤ 𝑎𝑝
𝑝 + 𝑏𝑞

𝑞 (2.10)

onde 𝑎, 𝑏 ≥ 0 e 𝑝, 𝑞 > 1 satisfazem
1
𝑝 + 1

𝑞 = 1

Esse resultado é particularmente útil ao se lidarem com termos de produto que aparecem em
equações diferenciais, principalmente em provas de estabilidade via métodos de Lyapunov
(KHALIL, 2009).

2.3.1 Justificativa Geral

A idéia central por trás da Desigualdade de Young é fornecer umamaneira demajorar
𝑎𝑏 por uma expressão que separa as variáveis 𝑎 e 𝑏, cada uma elevada a um expoente
compatível. Dessa forma, é possível controlar cada termo de modo individual, o que se
mostra conveniente ao construir funções de Lyapunov ou ao analisar sistemas commúltiplos
graus de liberdade.

2.3.2 Aplicação em Sistemas Dinâmicos

Em sistemas dinâmicos— especialmente os não lineares— a Desigualdade de Young
geralmente aparece quando se deseja impor limites sobre termos cruzados na derivada de
uma função de Lyapunov. Por exemplo, ao avaliar 𝑉̇(𝐱), podem surgir produtos como 𝑥 𝑦,
que dificultam a análise do sinal dessa derivada. Por meio da Desigualdade de Young, esse
produto pode ser substituído por uma soma de potências separadas de 𝑥 e 𝑦, tornando mais
clara a análise de negatividade de 𝑉̇, além de possibilitar o uso de outros argumentos ou
parâmetros de controle para garantir a estabilidade.

2.3.2.1 Exemplo Simples

Seja o termo 𝑎𝑏, com 𝑎,𝑏 ≥ 0. Escolhendo 𝑝 = 𝑞 = 2 (pois 1∕𝑝+1∕𝑞 = 1), obtém-se:

𝑎𝑏 ≤ 𝑎2
2 + 𝑏2

2
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Dessa forma, “separa-se” o produto em duas parcelas quadráticas. Em provas de estabilidade,
esse procedimento costuma facilitar a análise, pois a derivada de Lyapunov pode ser somada
a outras parcelas quadráticas já presentes, contribuindo para estabelecer a negatividade de
𝑉̇(𝐱).

2.3.3 Extensões e Outras Versões

Existem versões mais gerais da Desigualdade de Young, incluindo formas integrais ou
conjugadas, que aparecem na análise de convoluções e transformadas de Fourier, bem como
em aplicações que envolvem espaços de funções 𝐿𝑝. Em controle adaptativo, a Desigualdade
de Young é frequentemente usada em conjunto com a Desigualdade de Cauchy-Schwarz
para tratar termos de ajuste e incertezas nos parâmetros.

Em todos esses cenários, a utilidade fundamental daDesigualdade deYoung reside em
quebrar produtos de difícil manipulação em partes independentes que podem ser controladas
ou estimadas separadamente. Essa característica faz dela um artifício matemático poderoso
em demonstrações de estabilidade, otimização e análise de sistemas não lineares.

2.4 Escalonamento em Amplitude e na Frequência

O escalonamento em amplitude e na frequência é uma técnica frequentemente
utilizada para ajustar sinais ou funções, de modo a tornar sua análise e/ou implementação
mais simples e estável (OPPENHEIM; VERGHESE, 2017). Em aplicações de controle de
sistemas dinâmicos, essas transformações podem servir, por exemplo, para:

• evitar saturações ou superaquecimentos ao manter valores de amplitude dentro de
uma faixa segura;

• facilitar a análise em torno de uma frequência específica de interesse, reescalonando a
dinâmica temporal para evidenciar períodos e características relevantes;

• ajustar ganhos de malha de controle em função de amplitude e frequência, garantindo
melhor desempenho e robustez.

2.4.1 Escalonamento em Amplitude

O escalonamento em amplitude (por vezes chamado de “normalização” ou “ajuste de
magnitude”) consiste em multiplicar o sinal ou variável de estado por um fator constante, 𝐴.
Se 𝑥(𝑡) é o sinal original, o sinal escalonado pode ser expresso como:

𝑥esc(𝑡) = 𝐴 ⋅ 𝑥(𝑡)
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• Se 𝐴 > 1, o sinal sofre amplificação, aumentando proporcionalmente toda a sua faixa
de valores.

• Se 0 < 𝐴 < 1, há atenuação, útil para manter o sinal dentro de limites de hardware ou
dentro de modelos analíticos lineares aproximados.

Em muitos problemas de controle não linear, esse escalonamento é crucial para
evitar que a variável controlada exceda os limites físicos de sensores ou atuadores, ou para
simplificar as condições iniciais em simulações numéricas.

2.4.1.1 Exemplo – Sistema de Lorenz:

Considere as variáveis do sistema de Lorenz (caótico) que podem atingir amplitu-
des muito elevadas para certos valores do parâmetro 𝜌. Uma abordagem para contornar
saturações de atuadores é:

𝑥esc(𝑡) =
1
𝑀𝑥(𝑡) 𝑦esc(𝑡) =

1
𝑀𝑦(𝑡) 𝑧esc(𝑡) =

1
𝑀𝑧(𝑡)

onde𝑀 é escolhido de modo que as novas variáveis 𝑥esc, 𝑦esc, 𝑧esc permaneçam em uma faixa
segura (por exemplo, entre -1 e 1). Isso não altera a natureza qualitativa do caos, mas diminui
a escala dos valores para algo mais manejável.

2.4.2 Escalonamento na Frequência (ou no Tempo)

O escalonamento na frequência envolve a modificação da escala de tempo na qual
o sistema é observado ou controlado. Se definimos 𝜏 = 𝛼 𝑡 com 𝛼 > 0, então um sinal 𝑥(𝑡)
transformado na nova escala fica:

𝑥esc(𝜏) = 𝑥
( 𝜏
𝛼
)

• Se 𝛼 > 1, o sistema é acelerado, equivalendo a compressão na escala de tempo (au-
mentando a frequência aparente das oscilações).

• Se 0 < 𝛼 < 1, há uma desaceleração, alongando a evolução no tempo (reduzindo a
frequência).

Esse procedimento pode ser útil para:

• análise de fenômenos rápidos ou lentos: realçar as oscilações de interesse, seja para
observar altas frequências ou estudar dinâmicas que se desenvolvem muito devagar;

• sintonia de controladores: ao retardar virtualmente um sistema muito rápido, pode-se
facilitar a identificação ou a implementação de leis de controle. Em sentido oposto,
acelerar a dinâmica ajuda a estudar sistemas muito lentos.
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2.4.2.1 Exemplo – Oscilador de Van der Pol:

O oscilador de Van der Pol pode ser descrito por:

𝑥̇ = 𝑦, 𝑦̇ = 𝜇
(
1 − 𝑥2

)
𝑦 − 𝑥

Para 𝜇muito grande, a convergência para a órbita periódica é muito rápida, tornando a simu-
lação rígida. Se definimos 𝜏 = 𝜇𝑡, a evolução na variável 𝜏 se torna mais lenta, permitindo
estudos de estabilidade e controle sem problemas de rigidez nos métodos numéricos.

2.4.3 Combinação de Escalonamentos

Em muitos casos práticos, é necessário combinar tanto o escalonamento em am-
plitude quanto o escalonamento na frequência. Isso ocorre, por exemplo, se há interesse
em:

• normalizar estados em uma faixa específica, como [−1, 1],

• ajustar a dinâmica temporal a um intervalo conveniente para medição ou para o
algoritmo de controle.

2.4.3.1 Exemplo – Sistema Hipercaótico 4D:

Para um sistema hipercaótico tetradimensional em que as variáveis 𝑥1, 𝑥2, 𝑥3, 𝑥4
podem assumir valores elevados e oscilar em diversas frequências, pode-se definir:

• Fatores de amplitude 𝛾𝑖 para cada estado, a fim de mantê-los em faixas adequadas;

• Uma transformação de tempo 𝜏 = 𝛼𝑡, compressora ou expansora, para realçar as
dinâmicas relevantes.

Tais procedimentos tornam o sistema mais seguro para implementação em hardware
e também facilitam a análise de controlabilidade e estabilidade.

Síntese

Em síntese, o escalonamento em amplitude e na frequência representa uma estratégia
versátil para refinar o desempenho de simulações, contornar limitações físicas e ajustar
diferentes modos dinâmicos. Como resultado, essas técnicas são adotadas tanto em pesquisas
teóricas— a fim de facilitar análises de estabilidade e controle— quanto em implementações
práticas, auxiliando na proteção de equipamentos e na otimização de recursos.
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2.5 Correlação Não Linear de Kendall

Em várias situações de análise de dados e sinais, interessa avaliar se duas variáveis
(ou sinais) apresentam uma relaçãomonotônica, isto é, se é possível descrever uma tendên-
cia de crescimento ou decrescimento conjunto sem exigir linearidade estrita. Ummétodo
apropriado para isso é o coeficiente de correlação de Kendall, comumente denotado 𝜏 (tau).
Diferentemente das técnicas de correlação lineares, Kendall captura relações monotônicas
mais gerais e é considerada mais robusta em certos cenários estatísticos (KENDALL, 1938;
CONOVER, 1999).

2.5.1 Definição e Interpretação

Considere um conjunto de 𝑛 observações pareadas {(𝑥𝑖, 𝑦𝑖)}𝑛𝑖=1. Diz-se que um par
(𝑥𝑖, 𝑦𝑖) e (𝑥𝑗, 𝑦𝑗) é concordante se 𝑥𝑖 < 𝑥𝑗 e 𝑦𝑖 < 𝑦𝑗, ou se 𝑥𝑖 > 𝑥𝑗 e 𝑦𝑖 > 𝑦𝑗. Caso sejam
“invertidos” (por exemplo, 𝑥𝑖 < 𝑥𝑗 mas 𝑦𝑖 > 𝑦𝑗), o par é dito discordante. Então, define-se o
coeficiente 𝜏 de Kendall como

𝜏Kendall =
(número de pares concordantes) − (número de pares discordantes)

(𝑛
2

) (2.11)

onde
(𝑛
2

)
= 𝑛(𝑛−1)

2
é o total de pares possíveis. Assim, 𝜏Kendall varia de −1 (quando

todos os pares são discordantes) até +1 (quando todos são concordantes). Valores próximos
de 0 indicam que não há relação monotônica clara entre 𝑥 e 𝑦.

2.5.2 Aplicação em Sistemas Dinâmicos e Criptografia

No contexto de sinais dinâmicos ou mensagens cifradas, a correlação de Kendall
pode ser utilizada para aferir se dois sinais apresentam uma relação monotônica (ou se estão
essencialmente “desalinhados”). Isso é particularmente útil em situações em que:

• As variáveis podem ter relação não linear: Quando suspeita-se que a mensagem
cifrada ainda mantenha algum padrão com a mensagem original, mesmo que esse
padrão não seja linear, 𝜏Kendall pode detectar essa dependência.

• Deseja-se avaliar pequenas amostras: O cálculo de Kendall tende a ser mais robusto
em amostrasmenores, quando comparado a outras técnicas de correlações não lineares.

Em comunicação segura, se a correlação de Kendall entre a mensagem original e a
mensagem cifrada é próxima de zero, isso sugere que não há relação monotônica residual.
Assim, um interceptador sem a “chave” ou sem o conhecimento do esquema de sincronização
encontrará dificuldade em extrair padrões que revelem a mensagem original.
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Conclusão

De modo geral, o coeficiente de Kendall se mostra apropriado para quantificar a
existência de qualquer relação monotônica (não necessariamente linear) entre dois sinais.
Para este trabalho, avaliar 𝜏Kendall entre as mensagens originais e as mensagens criptografadas
pode confirmar a ausência de padrões e a robustez da técnica de cifragem. Se os valores
de 𝜏Kendall forem efetivamente reduzidos (próximos a 0), então a cifragem baseada em caos
estará bem sucedida.

2.6 Entropia de Sinais

A entropia é uma medida fundamental no contexto da teoria da informação e serve
para quantificar o grau de incerteza ou aleatoriedade presente em um conjunto de dados ou
em um sinal. Em essência, quanto maior a entropia, mais imprevisível é a distribuição dos
valores assumidos pelo sinal (SHANNON, 1948; COVER, 1999).

2.6.1 Definição de Shannon

Claude E. Shannon, em seu trabalho pioneiro sobre teoria da informação, definiu a
entropia de uma variável aleatória 𝑋 que pode assumir valores {𝑥1,𝑥2, … ,𝑥𝑛} com probabili-
dades {𝑝1,𝑝2, … ,𝑝𝑛} como:

𝐻(𝑋) = −
𝑛∑

𝑖=1
𝑝𝑖 log2 𝑝𝑖. (2.12)

Essa expressão reflete a quantidade média de informação necessária para descrever o re-
sultado de 𝑋. Quando todos os 𝑝𝑖 são iguais, 𝑋 é totalmente imprevisível — a entropia é
máxima; se, ao contrário, 𝑋 assume certo valor com probabilidade próxima de 1, há pouca
incerteza, e a entropia se torna baixa.

2.6.2 Entropia Diferencial

A entropia discutida por Shannon para variáveis aleatórias discretas mede a incerteza
em termos de uma soma sobre probabilidades. Para variáveis contínuas, em que a proba-
bilidade é descrita por uma densidade 𝑓𝑋(𝑥), a noção análoga recebe o nome de entropia
diferencial.1
1 Em alguns textos também chamada de entropia contínua. A formulação foi introduzida pelo próprio

Shannon na extensão contínua de sua teoria de informação.
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2.6.2.1 Definição

Seja 𝑋 uma variável aleatória contínua com densidade de probabilidade 𝑓𝑋(𝑥) defi-
nida em ℝ. A entropia diferencial de 𝑋 é definida por

ℎ(𝑋) = −∫
+∞

−∞
𝑓𝑋(𝑥) log2 𝑓𝑋(𝑥) 𝑑𝑥. (2.13)

O resultado é expresso em bits quando se usa logaritmo de base 2 (pode-se usar logaritmo
natural, obtendo-se o valor em nats).

2.6.2.2 Observações Importantes

• Diferentemente da entropia discreta, ℎ(𝑋) pode assumir valores negativos. Isso ocorre
porque a densidade de probabilidade pode ser maior que 1 em regiões muito concen-
tradas, de modo que log2 𝑓𝑋(𝑥) se torna positivo.

• A entropia diferencial não é invariante a mudanças de escala. Se 𝑌 = 𝑎𝑋 com 𝑎 ≠ 1,
então ℎ(𝑌) = ℎ(𝑋) + log2 |𝑎|.

• Apesar dessas particularidades, ℎ(𝑋)mantém várias propriedades úteis: maximiza-se
para a densidade Gaussiana com variância fixa, aparece em limites de capacidade de
canal e na definição de informação mútua contínua.

2.6.2.3 Interpretação em Processamento de Sinais

Em sinais analógicos pode-se estimar ℎ(𝑋) a partir de amostras, utilizando histo-
gramas finos ou técnicas de kernel density estimation. Valores altos de entropia diferencial
sugerem sinais amplamente dispersos ou ruidosos; valores baixos indicam sinais mais con-
centrados ou previsíveis.

2.6.2.4 Aplicação a Sinais Caóticos

Sinais provenientes de sistemas caóticos ou hipercaóticos tendem a ocupar regiões
complexas no espaço de fase, produzindo distribuições de amplitude com maior dispersão.
Assim, espera-se que apresentem entropia diferencial elevada em comparação a sinais
determinísticos regulares. Na prática:

• Um sinal caótico usado para mascarar umamensagem deve manter ou aumentar ℎ(𝑋),
dificultando a detecção de padrões pelo adversário.

• A comparação de ℎ(𝑋) antes e depois da inserção da mensagem permite avaliar se o
processo de cifragem preserva a “aleatoriedade aparente” do sinal.
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2.6.3 Relevância no Trabalho

Para este estudo, a análise de entropia pode servir como uma métrica de “qualidade”
ou “força” do mascaramento de sinais. Se a entropia do sinal criptografado (resultante do
caos + mensagem) permanecer elevada, então um interceptador (sem acesso aos parâmetros
de sincronização) terá maior dificuldade em distinguir o conteúdo original. Além disso, a
entropia pode indicar se a técnica de cifragem baseada em caos está produzindo um sinal
adequadamente complexo, reduzindo a sua correlação com a mensagem original.

Em suma, a entropia fornece uma perspectiva quantitativa do quão imprevisível é
um sinal. No âmbito de sistemas hipercaóticos e criptografia, manter ou aumentar a entropia
do sinal é desejável para dificultar ataques de força bruta ou análises estatísticas que possam
expor o conteúdo ou a chave de cifragem.

2.7 Redes Neurais Artificiais

As Redes Neurais Artificiais (RNAs) são estruturas computacionais inspiradas no com-
portamento do sistema nervoso biológico. Seu princípio fundamental consiste em combinar
diversos “neurônios artificiais” interconectados, de modo a aprender padrões complexos de
mapeamento entre entradas e saídas, sem a necessidade de especificar explicitamente um
modelo matemático detalhado (HAYKIN, 1998).

2.7.1 Arquitetura Básica

Uma rede neural típica feedforward (FNN) pode ser organizada em camadas: uma
camada de entrada, uma ou mais camadas intermediárias (ocultas) e uma camada de saída.
Cada neurônio em uma camada oculta recebe entradas de todos (ou parte) dos neurônios da
camada anterior, computa uma soma ponderada e aplica uma função de ativação não linear
para produzir sua saída.

Considere 𝐱 ∈ ℝ𝑛 como o vetor de entrada da rede, e 𝐲 ∈ ℝ𝑚 como o vetor de saída.
Em uma RNA com apenas uma camada oculta, cada neurônio da camada oculta efetua o
cálculo:

𝑧𝑗 =
𝑛∑

𝑖=1
𝑤(1)
𝑗𝑖 𝑥𝑖 + 𝑏(1)𝑗 , para 𝑗 = 1,2, … ,ℎ,

onde ℎ é o número de neurônios na camada oculta, 𝑤(1)
𝑗𝑖 são os pesos que ligam a 𝑖-ésima

entrada ao 𝑗-ésimo neurônio, e 𝑏(1)𝑗 é o termo de bias do 𝑗-ésimo neurônio da primeira
camada. Em seguida, uma função de ativação 𝑆(⋅) (ver Seção 2.7.2) é aplicada a cada 𝑧𝑗,
gerando uma saída 𝜎𝑗 = 𝑆(𝑧𝑗).
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Por fim, a camada de saída efetua nova soma ponderada das 𝜎𝑗:

𝑦𝑘 =
ℎ∑

𝑗=1
𝑤(2)
𝑘𝑗 𝜎𝑗 + 𝑏(2)𝑘 , para 𝑘 = 1,2, … ,𝑚,

onde 𝑤(2)
𝑘𝑗 e 𝑏

(2)
𝑘 são pesos e bias associados à camada de saída. Assim, o conjunto de parâme-

tros𝐖 e 𝐛 engloba todos esses valores, constituindo o “conhecimento” da rede neural.

2.7.2 Notação e Definições Matemáticas

Nesta dissertação, adotaremos a seguinte notação para representar os pesos da rede
neural ao longo das derivações de controle e sincronização:

• 𝐖∗: denota o conjunto de pesos ideais ou ótimos, isto é, aquele que melhor aproxima a
função alvo em um sentido teórico (por exemplo, sob certas hipóteses do Teorema da
Aproximação Universal).

• 𝐖̂: corresponde ao conjunto de pesos estimados em tempo real, que são adaptados por
um algoritmo de aprendizado ou de controle adaptativo. Em outras palavras, 𝐖̂ é a
estimativa dos pesos que a rede possivelmente converge para se aproximar de𝐖∗.

• 𝐖̃: representa o conjunto de erro de aproximação entre os pesos estimados e os pesos
ideais da rede neural. Usualmente, 𝐖̃ = 𝐖̂ −𝐖∗.

Além disso, definimos a função sigmoidal (ou logística) 𝑆 ∶ ℝ → ℝ, cujo papel é
introduzir não linearidade na rede:

𝑆(𝑢) = 1
1 + 𝑒−𝑢 .

Em alguns casos, também é conveniente adotar a forma derivada dessa função (para métodos
de retropropagação), notada por:

𝑆′(𝑢) = 𝑆(𝑢)
(
1 − 𝑆(𝑢)

)
.

Para redes com múltiplas camadas, a ideia é similar: cada camada 𝓁 terá pesos𝐖(𝓁)

e bias 𝐛(𝓁). No contexto específico desta dissertação, os símbolos𝐖∗, 𝐖̃ e 𝐖̂ serão utilizados
para destacar o papel de cada conjunto de pesos no esquema de controle adaptativo/neural.

2.7.3 Capacidade de Aproximação

Um resultado importante para o uso de RNAs em controle não linear e sincronização
de sistemas (hiper)caóticos é o Teorema da Aproximação Universal. Em termos gerais, ele
afirma que, sob certas condições (por exemplo, função de ativação contínua e ao menos uma
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camada oculta com número suficiente de neurônios), uma rede neural pode aproximar arbi-
trariamente bem qualquer função contínua definida em um conjunto compacto (HORNIK;
STINCHCOMBE; WHITE, 1989).

Essa capacidade de aproximação universal justifica empregar RNAs para lidar com
incertezas não lineares em sistemas dinâmicos complexos, pois podemos presumir a existên-
cia de um conjunto de pesos𝐖∗ capaz de representar (com erro arbitrariamente pequeno) a
dinâmica ou a função desconhecida.

2.7.4 Aprendizado e Ajuste dos Pesos

Para estimar 𝐖̂ em direção a𝐖∗, usam-se processos de aprendizado baseados em
métodos de gradiente ou em estratégias adaptativas. Se a rede for aplicada ao controle de
um sistema, um algoritmo de adaptação on-line pode atuar sobre 𝐖̂ de forma que a lei
de controle dependa tanto das medições de saída quanto de alguma função de erro. Esse
processo pode ser descrito genericamente por:

̇̂𝐖 = Γ𝜙
(
𝐱,𝐖̂

)
,

onde Γ é uma matriz (ou ganho) de adaptação, e 𝜙
(
𝐱,𝐖̂

)
representa uma função de correção

dos pesos, derivada de objetivos como minimizar um erro de aproximação ou garantir a
estabilidade de Lyapunov do erro de controle.

2.7.5 Aplicações em Sistemas de Alta Complexidade

Redes neurais são especialmente promissoras em sistemas caóticos e hipercaóticos,
pois:

• Permitem aproximar relações não lineares entre variáveis de estado e incertezas,
fundamental para lidar com vários expoentes de Lyapunov positivos.

• Podem ser treinadas on-line, ajustando-se dinamicamente aos parâmetros do sistema
que mudam ao longo do tempo.

• Integram-se bem a métodos de controle robusto ou sub-atuado, quando se deseja
projetar leis de controle que não dependam de um modelo matemático exato do
sistema.

Em síntese, ao longo deste trabalho, utilizaremos as notações 𝐖∗, 𝐖̂ e 𝐖̃ para
representar, respectivamente, os pesos ideais, pesos estimados e erro de aproximação de uma
rede neural. A função de ativação sigmoidal será denotada por 𝑆(⋅). Em capítulos posteriores,
esses elementos serão fundamentais para a formulação do controlador neural e sub-atuado,
garantindo simultaneamente a aproximação de incertezas e a estabilidade de um sistema
hipercaótico de quatro dimensões.
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3 Proposta de sincronização neural e
sub-atuada para um sistema hiper-
caótico tetradimensional

3.1 Descrição do Problema

Nesta seção, propõe-se uma abordagem de sincronização neural e sub-atuada para
um sistema hipercaótico tetradimensional. Primeiramente, apresenta-se o modelo original,
conforme descrito em (WANG, S., 2022), e, na sequência, introduzem-se as versõesmestre e
escravo obtidas por meio de escalonamento e acréscimo de termos adicionais para controle e
incertezas.

3.1.1 Sistema Hipercaótico Proposto por (WANG, S., 2022)

O sistema em estudo é composto por quatro variáveis de estado, 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡) e𝑤(𝑡).
Suas equações de evolução são dadas por:

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝑥̇ = 𝑎(𝑦 − 𝑥) + 𝑔𝑦𝑧

𝑦̇ = 𝑐𝑥 − 𝑑𝑥𝑧 + 𝑦 + 𝑤

𝑧̇ = 𝑥𝑦 − 𝑏𝑧

𝑤̇ = −𝑓𝑦

(3.1)

onde 𝑎 = 35, 𝑏 = 4.9, 𝑐 = 25, 𝑑 = 5, 𝑔 = 35 e 𝑓 = 100 são constantes. Esse modelo apresenta
múltiplos expoentes de Lyapunov positivos, caracterizando um regime hipercaótico. Como
consequência, as trajetórias exibem elevada sensibilidade às condições iniciais, o que o torna
adequado para avaliar métodos de sincronização em cenários de alta complexidade.

3.1.2 Planta Mestre (Versão Escalonada)

Para fins de controle e sincronização, considera-se uma forma escalonada do sistema,
a fim de manter as variáveis em faixas adequadas e facilitar a análise teórica. A planta mestre
passa a ser descrita pelas variáveis (𝑥𝑚, 𝑦𝑚, 𝑧𝑚, 𝑤𝑚), que obedecem:
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⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝑥̇𝑚 = 𝑎(𝑦𝑚 − 𝑥𝑚) + 𝛾1𝑔𝑦𝑚𝑧𝑚
𝑦̇𝑚 = 𝑐𝑥𝑚 − 𝛾2𝑑𝑥𝑚𝑧𝑚 + 𝑦𝑚 + 𝑤𝑚

𝑧̇𝑚 = 𝛾3𝑥𝑚𝑦𝑚 − 𝑏𝑧𝑚
𝑤̇𝑚 = −𝑓𝑦𝑚

(3.2)

onde 𝛾1, 𝛾2, e 𝛾3 são fatores de escalonamento que não alteram a natureza qualitativa do
hipercaos, mas podem melhorar a robustez ou a viabilidade numérica.

3.1.3 Planta Escravo (Versão Escalonada com Perturbações e Controle)

A planta escravo é construída demodo análogo,mas inclui termos adicionais relativos
a incertezas e sinais de controle. Supondo as variáveis (𝑥𝑠, 𝑦𝑠, 𝑧𝑠, 𝑤𝑠), o sistema segue:

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝑥̇𝑠 = 𝑎(𝑦𝑠 − 𝑥𝑠) + 𝛾1𝑔𝑦𝑠𝑧𝑠 + 𝑑1
𝑦̇𝑠 = 𝑐𝑥𝑠 − 𝛾2𝑑𝑥𝑠𝑧𝑠 + 𝑦𝑠 + 𝑤𝑠 + 𝑑2 + 𝑢2
𝑧̇𝑠 = 𝛾3𝑥𝑠𝑦𝑠 − 𝑏𝑧𝑠 + 𝑑3
𝑤̇𝑠 = −𝑓𝑦𝑠 + 𝑑4 + 𝑢4

(3.3)

onde:

• 𝑑1, 𝑑2, 𝑑3, 𝑑4 representam distúrbios externos ou perturbações que dependem do tempo
e dos estados do sistema mestre e escravo.

• 𝑢2, 𝑢4 constituem as variáveis de controle (sub-atuado e neural), projetadas de modo a
forçar o escravo a seguir as trajetórias do mestre.

3.1.4 Objetivo Geral de Sincronização

Com as duas versões (mestre e escravo), define-se formalmente um problema de
sincronização: deseja-se projetar leis de controle para 𝑢2, 𝑢4 que garantam que (𝑥𝑠(𝑡), 𝑦𝑠(𝑡),
𝑧𝑠(𝑡),𝑤𝑠(𝑡)) acompanhem (𝑥𝑚(𝑡), 𝑦𝑚(𝑡), 𝑧𝑚(𝑡), 𝑤𝑚(𝑡)) ao longo do tempo. Em outras palavras,
objetiva-se que o erro de sincronização convirja para valores próximos de zero, mesmo na
presença de incertezas, perturbações e não linearidades.

Nas seções seguintes, serão detalhados:

• A função de erro que quantifica a distância entre as variáveis mestre e escravo.

• O controlador neural e sub-atuado, cujo núcleo está na adaptação dos pesos neurais
(𝐖̂) e na atuação parcial para otimizar custos e recursos.
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• A prova de estabilidade, baseada em métodos de Lyapunov e na Desigualdade de
Young, para assegurar convergência e robustez.

Dessa forma, o sistema hipercaótico tetradimensional aqui descrito, decomposto
em plantas mestre e escravo escalonadas, servirá de base para a validação da estratégia de
controle, demonstrando a viabilidade de sincronizar dinâmicas altamente instáveis por meio
de redes neurais e de uma lei de controle sub-atuada.

3.2 Prova de estabilidade usando a Teoria de Lyapunov

Conforme apresentado na Seção 3.1, nosso objetivo é garantir que o erro de sincro-
nização entre o sistema mestre e o escravo permaneça limitado e em valores próximos de
zero. Diferentemente de uma convergência assintótica estrita, mostraremos aqui que, ao
satisfazer certas condições, o erro e os parâmetros neurais permanecem em uma vizinhança
(ou conjunto compacto) que asseguram a estabilidade prática do sistema.

3.2.1 Função de Erro

Sejam as variáveis do sistemamestre denotadas por (𝑥𝑚, 𝑦𝑚, 𝑧𝑚, 𝑤𝑚) e as do sistema
escravo por (𝑥𝑠, 𝑦𝑠, 𝑧𝑠, 𝑤𝑠). Definimos então o erro de sincronização:

𝑒1 = 𝑥𝑠 − 𝑥𝑚
𝑒2 = 𝑦𝑠 − 𝑦𝑚
𝑒3 = 𝑧𝑠 − 𝑧𝑚
𝑒4 = 𝑤𝑠 − 𝑤𝑚

(3.4)

Nosso intuito é mostrar que 𝐞 = (𝑒1, 𝑒2, 𝑒3, 𝑒4) permanece dentro de uma faixa pe-
quena, ainda que perturbações e incertezas impeçam a convergência exata a 𝟎. Em outras
palavras, desejamos demonstrar a existência de um conjunto Ω ao redor de 𝟎 para o qual o
erro seja limitado, mantendo o escravo próximo do mestre em regime permanente.

Para atingir este objetivo, realiza-se as seguintes aproximações neurais:

𝐖∗𝑇
2 𝑆2 + 𝜀2 = 𝑐𝑥𝑠 + 𝑦𝑠 + 𝑤𝑠 + 𝑑2

𝐖∗𝑇
4 𝑆4 + 𝜀4 = −𝑓𝑦𝑠 + 𝑑4

(3.5)

onde:

• 𝐖∗
2 e𝐖∗

4 são pesos ideais de uma rede neural, empregados para tratar incertezas ou
dinâmicas não modeladas.

• 𝑆2, 𝑆4 denotam as funções sigmoidais dos neurônios da rede.
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• 𝜀2, 𝜀4 são erros de aproximação ou termos auxiliares de aprendizado.

Derivando-se as equações de erro e substituindo os valores de 3.2, 3.3 e 3.5, obtém-se as
seguintes equações para a dinâmica dos erros:

𝑒̇1 = 𝑥̇𝑠 − 𝑥̇𝑚 = 𝑎𝑒2 − 𝑎𝑒1 + 𝛾1𝑔
(
𝑒2𝑒3 + 𝑦𝑚𝑒3 + 𝑧𝑚𝑒2

)
+ 𝑑1

𝑒̇2 = 𝑦̇𝑠 − 𝑦̇𝑚 = 𝐖∗𝑇
2 𝑆2 + 𝜀2 − 𝑐𝑥𝑚 − 𝛾2𝑑

(
𝑒1𝑒3 + 𝑥𝑚𝑒3 + 𝑧𝑚𝑒1

)
− 𝑦𝑚 − 𝑤𝑚 + 𝑢2

𝑒̇3 = 𝑧̇𝑠 − 𝑧̇𝑚 = 𝛾3
(
𝑒1𝑒2 + 𝑥𝑚𝑒2 + 𝑦𝑚𝑒1

)
− 𝑏𝑒3 + 𝑑3

𝑒̇4 = 𝑤̇𝑠 − 𝑤̇𝑚 = 𝐖∗𝑇
4 𝑆4 + 𝜀4 + 𝑓𝑦𝑚 + 𝑢4

(3.6)

3.2.2 Controlador Neural e Sub-atuado

Neste trabalho, propõe-se um controlador sub-atuado que atua apenas em algumas
das equações (neste caso, 𝑦̇𝑠 e 𝑤̇𝑠), deixando as demais variáveis livres ou apenas escalo-
nadas. Adicionalmente, utilizam-se redes neurais para aproximar termos não lineares
desconhecidos.

De modo geral, define-se:

𝑢2 = −𝜆2𝑒2 − 𝐖̂𝑇
2𝑆2, 𝑢4 = −𝜆4𝑒4 − 𝐖̂𝑇

4𝑆4 (3.7)

onde 𝜆2 e 𝜆4 são constantes de realimentação de erro, e 𝐖̂2 e 𝐖̂4 são estimativas dos pesos
ideais𝐖∗

2 e𝐖∗
4, respectivamente.

A ideia principal é que:

• Os ganhos 𝜆2 e 𝜆4 supram a parte linear do erro, garantindo amortecimento e um
caminho para a estabilidade.

• As redes neurais 𝐖̂2 e𝐖4 adaptam-se para compensar não linearidades e incertezas,
via ummecanismo de atualização definido posteriormente na prova de Lyapunov.

• O controle seja sub-atuado, ou seja, não atue explicitamente em 𝑥̇𝑠 e 𝑧̇𝑠, com o ob-
jetivo de reduzir os custos e a complexidade da implementação, sem inviabilizar a
sincronização.

3.2.3 Prova de Estabilidade

3.2.3.1 Função Candidata de Lyapunov

Para verificar a estabilidade (no sentido demanter o erro em uma vizinhança próxima
de 𝟎), definimos a seguinte função candidata de Lyapunov:

𝑉
(
𝐞, 𝐖̃2, 𝐖̃4

)
= 1
2
(
𝑒21 + 𝑒22 + 𝑒23 + 𝑒24

)
+ 1
2
(
‖𝐖̃2‖2 + ‖𝐖̃4‖2

)
(3.8)
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onde
𝐖̃2 = 𝐖̂2 −𝐖∗

2, 𝐖̃4 = 𝐖̂4 −𝐖∗
4 (3.9)

representam os erros de estimação dos pesos da rede neural e

‖𝐖̃2‖2 = 𝐖̃𝑇
2𝐖̃2, ‖𝐖̃4‖2 = 𝐖̃𝑇

4𝐖̃4

Observe que𝑉 é positivo definido em torno de 𝐞 = 𝟎 e 𝐖̃𝑛 = 𝟎, satisfazendo o critério básico
para funções de Lyapunov.

3.2.3.2 Derivada de Lyapunov e Uso das Desigualdades de Young

Calculemos 𝑉̇ diferenciando cada parcela em função de 𝐞̇, ̇̃𝐖2 e ̇̃𝐖4. Após substituir
as dinâmicas do sistema (mestre e escravo), obtemos a seguinte expressão:

𝑉̇ = 𝑎𝑒1𝑒2 − 𝑎𝑒21 + 𝛾1𝑔𝑒1𝑒2𝑒3 + 𝛾1𝑔𝑦𝑚𝑒1𝑒3 + 𝛾1𝑔𝑧𝑚𝑒1𝑒2 + 𝑒1𝑑1

+ 𝑒2𝐖∗𝑇
2 𝑆2 + 𝑒2𝜀2 − 𝑐𝑒2𝑥𝑚 − 𝛾2𝑑𝑒1𝑒2𝑒3 − 𝛾2𝑑𝑥𝑚𝑒2𝑒3 − 𝛾2𝑑𝑧𝑚𝑒1𝑒2

− 𝑦𝑚𝑒2 − 𝑤𝑚𝑒2 + 𝑒2𝑢2

+ 𝛾3𝑒1𝑒2𝑒3 + 𝛾3𝑥𝑚𝑒2𝑒3 + 𝛾3𝑦𝑚𝑒1𝑒3 − 𝑏𝑒23 + 𝑒3𝑑3

+ 𝑒4𝐖∗𝑇
4 𝑆4 + 𝑒4𝜀4 + 𝑒4𝑓𝑦𝑚 + 𝑒4𝑢4 + 𝐖̃𝑇

2
̇̂𝐖2 + 𝐖̃𝑇

4
̇̂𝐖4

(3.10)

Define-se a dinâmica de adaptação dos pesos ̇̂𝐖2 e ̇̂𝐖4 como:

̇̂𝐖2 = 𝑒2𝑆2 − 𝜎2𝐖̂2, ̇̂𝐖4 = 𝑒4𝑆4 − 𝜎4𝐖̂4 (3.11)

Em que 𝜎2 e 𝜎4 são constantes. A partir de 3.11, obtém-se que

𝐖̃𝑇
2
̇̂𝐖2 = 𝑒2𝐖̃𝑇

2𝑆2 − 𝜎2𝐖̃𝑇
2𝐖̂2

𝐖̃𝑇
4
̇̂𝐖4 = 𝑒4𝐖̃𝑇

4𝑆4 − 𝜎4𝐖̃𝑇
4𝐖̂4

(3.12)

Além disso, a partir de 3.9, obtém-se as seguintes expressões:

𝑒2𝐖∗𝑇
2 𝑆2 + 𝑒2𝐖̃𝑇

2𝑆2 = 𝑒2𝐖̂𝑇
2𝑆2

𝑒4𝐖∗𝑇
4 𝑆4 + 𝑒4𝐖̃𝑇

4𝑆4 = 𝑒4𝐖̂𝑇
4𝑆4

(3.13)

Substituindo as leis de controle 3.7 e a expressão 3.12 na candidata 3.10 e usando o
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fato 3.13, obtém-se a sequinte expressão para 𝑉̇:

𝑉̇ = −𝑎𝑒21 − 𝜆2𝑒22 − 𝑏𝑒23 − 𝜆4𝑒24

− 𝑐𝑒2𝑥𝑚 − 𝑦𝑚𝑒2 − 𝑤𝑚𝑒2 + 𝑒4𝑓𝑦𝑚

+ 𝑎𝑒1𝑒2 + 𝛾1𝑔𝑦𝑚𝑒1𝑒3 + 𝛾1𝑔𝑧𝑚𝑒1𝑒2 − 𝛾2𝑑𝑥𝑚𝑒2𝑒3 − 𝛾2𝑑𝑧𝑚𝑒1𝑒2

+ 𝛾3𝑥𝑚𝑒2𝑒3 + 𝛾3𝑦𝑚𝑒1𝑒3 + 𝛾1𝑔𝑒1𝑒2𝑒3 − 𝛾2𝑑𝑒1𝑒2𝑒3 + 𝛾3𝑒1𝑒2𝑒3

+ 𝑒1𝑑1 + 𝑒2𝜀2 + 𝑒3𝑑3 + 𝑒4𝜀4

+ 𝜎2𝐖̃𝑇
2𝐖̂2 + 𝜎4𝐖̃𝑇

4𝐖̂4

(3.14)

Os erros podem ser definidos como:

ℎ1 = 𝑑1
ℎ2 = 𝜀2
ℎ3 = 𝑑3
ℎ4 = 𝜀4

(3.15)

Além disso, os erros e as variáveis de estados do sistema mestre são limitados, ou seja:

|ℎ1| ≤ ℎ̄1
|ℎ2| ≤ ℎ̄2
|ℎ3| ≤ ℎ̄3
|ℎ4| ≤ ℎ̄4

|𝑥𝑚| ≤ 𝑥̄𝑚
|𝑦𝑚| ≤ 𝑦̄𝑚
|𝑧𝑚| ≤ 𝑧̄𝑚
|𝑤𝑚| ≤ 𝑤̄2

(3.16)

Fazendo 𝛾2𝑑 = 𝛾1𝑔 + 𝛾3 e usando o fato 3.16, obtém-se:

𝑉̇ ≤ −𝑎𝑒21 − 𝜆2𝑒22 − 𝑏𝑒23 − 𝜆4𝑒24

+ 𝑐|𝑒2|𝑥̄𝑚 + |𝑒2|𝑦̄𝑚 + |𝑒2|𝑤̄𝑚 + 𝑓|𝑒4|𝑦̄𝑚

+ 𝑎|𝑒1||𝑒2| + 𝛾1𝑔𝑧̄𝑚|𝑒1||𝑒2| + 𝛾2𝑑𝑧̄𝑚|𝑒1||𝑒2| + 𝛾1𝑔𝑦̄𝑚|𝑒1||𝑒3|

+ 𝛾3𝑦̄𝑚|𝑒1||𝑒3| + 𝛾2𝑑𝑥̄𝑚|𝑒2||𝑒3| + 𝛾3𝑥̄𝑚|𝑒2||𝑒3|

+ |𝑒1|ℎ̄1 + |𝑒2|ℎ̄2 + |𝑒3|ℎ̄3 + |𝑒4|ℎ̄4

− 𝜎2𝐖̃𝑇
2𝐖̂2 − 𝜎4𝐖̃𝑇

4𝐖̂4

(3.17)
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Comentário:Os fatores de escalonamento 𝛾1, 𝛾2 e 𝛾3 devem ser escolhidos de modo que
𝛾2𝑑 = 𝛾1𝑔 + 𝛾3. Dessa forma, o sistema mantém sua natureza caótica ao mesmo tempo
em que se anulam os termos não lineares de terceira ordem (𝑒1𝑒2𝑒3). Para que a prova
matemática seja válida, é imprescindível que esses fatores satisfaçam esta condição.

Esta expressão possui diversos produtos cruzados que, para serem controlados, podem ser
tratados usando aDesigualdade de Young. Desta forma, as seguintes expressões foram obtidas:

|𝑒1|ℎ̄1 ≤
𝛽1𝑒21
2 +

ℎ̄21
2𝛽1

|𝑒2|ℎ̄2 ≤
𝛽2𝑒22
2 +

ℎ̄22
2𝛽2

|𝑒3|ℎ̄3 ≤
𝛽3𝑒23
2 +

ℎ̄23
2𝛽3

|𝑒4|ℎ̄4 ≤
𝛽4𝑒24
2 +

ℎ̄24
2𝛽4

|𝑒2|
(
𝑐𝑥̄𝑚 + 𝑦̄𝑚 + 𝑤̄𝑚

)
≤
𝛽5𝑒22
2 +

(
𝑐𝑥̄𝑚 + 𝑦̄𝑚 + 𝑤̄𝑚

)2

2𝛽5

|𝑒4|𝑓𝑦̄𝑚 ≤
𝛽6𝑒24
2 + 𝑓2𝑦̄2𝑚

2𝛽6

(
𝑎 + 𝛾1𝑔𝑧̄𝑚 + 𝛾2𝑑𝑧̄𝑚

)
|𝑒1||𝑒2| ≤

𝛽7
(
𝑎 + 𝛾1𝑔𝑧̄𝑚 + 𝛾2𝑑𝑧̄𝑚

)2
𝑒22

2 +
𝑒21
2𝛽7

(
𝛾2𝑑 + 𝛾3

)
𝑥̄𝑚|𝑒2||𝑒3| ≤

𝛽8
(
𝛾2𝑑 + 𝛾3

)2
𝑥̄2𝑚𝑒22

2 +
𝑒23
2𝛽8

(
𝛾1𝑔 + 𝛾3

)
𝑦̄𝑚|𝑒1||𝑒3| =

√
𝛾1𝑔 + 𝛾3

√
𝑦̄𝑚|𝑒1|

√
𝛾1𝑔 + 𝛾3

√
𝑦̄𝑚|𝑒3|

≤ 𝛾1𝑔 + 𝛾3
2 𝑦̄𝑚𝑒21 +

𝛾1𝑔 + 𝛾3
2 𝑦̄𝑚𝑒23

(3.18)

Já os termos neurais podem ser tratados usando a seguinte relação:

−𝜎2𝐖̃𝑇
2𝐖̂2 =

−𝜎2
2
(
‖𝐖̃2‖2𝐹 + ‖𝐖̂2‖2𝐹 − ‖𝐖∗

2‖2𝐹
)
≤ −𝜎2

2 ‖𝐖̃2‖2𝐹 +
𝜎2
2 ‖𝐖

∗
2‖2𝐹

−𝜎4𝐖̃𝑇
4𝐖̂4 =

−𝜎4
2
(
‖𝐖̃4‖2𝐹 + ‖𝐖̂4‖2𝐹 − ‖𝐖∗

4‖2𝐹
)
≤ −𝜎4

2 ‖𝐖̃4‖2𝐹 +
𝜎4
2 ‖𝐖

∗
4‖2𝐹

(3.19)

A partir das expressões obtidas em 3.18 deseja-se reagrupar os termos que multiplicam cada
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erro quadrático. Assim, define-se:

𝜌1 = 𝑎 − 1
2
[
𝛽1 +

1
𝛽7

+
(
𝛾1𝑔 + 𝛾3

)
𝑦̄𝑚
]

𝜌2 = 𝜆2 −
1
2
[
𝛽2 + 𝛽5 + 𝛽7

(
𝑎 + 𝛾1𝑔𝑧̄𝑚 + 𝛾2𝑑𝑧̄𝑚

)2
+ 𝛽8

(
𝛾2𝑑 + 𝛾3

)2
𝑥̄2𝑚
]

𝜌3 = 𝑏 − 1
2
[
𝛽3 +

1
𝛽8

+
(
𝛾1𝑔 + 𝛾3

)
𝑦̄𝑚
]

𝜌4 = 𝜆4 −
1
2
[
𝛽4 + 𝛽6

]

(3.20)

E com os termos restantes, define-se:

𝜂 =
4∑

𝑘=1

ℎ̄2𝑘
2𝛽𝑘

+
(
𝑐𝑥̄𝑚 + 𝑦̄𝑚 + 𝑤̄𝑚

)2

2𝛽5
+ 𝑓2𝑦̄2𝑚

2𝛽6
+ 𝜎2

2 ‖𝐖
∗
2‖𝐹 +

𝜎4
2 ‖𝐖

∗
4‖𝐹 (3.21)

3.2.3.3 Definição de Conjuntos Limitados e Condições para 𝑉̇ ≤ 0

Considere a candidata de Lyapunov e sua derivada, cujas manipulações levaram à
seguinte desigualdade (após aplicação da Desigualdade de Young e do tratamento dos termos
neurais):

𝑉̇ ≤ −𝜌1𝑒21 − 𝜌2𝑒22 − 𝜌3𝑒23 − 𝜌4𝑒24 −
𝜎2
2 ‖𝐖̃2‖2𝐹 −

𝜎4
2 ‖𝐖̃4‖2𝐹 + 𝜂 (3.22)

onde as constantes 𝜌𝑖 são definidas em (3.20) e o termo 𝜂 em (3.21).

Hipóteses:

1. Os parâmetros de projeto 𝛽1,𝛽2, … ,𝛽8, os fatores de escalonamento 𝛾1,𝛾2,𝛾3 e os ganhos
de controle 𝜆2 e 𝜆4 são escolhidos de modo que

𝜌1 > 0, 𝜌2 > 0, 𝜌3 > 0, 𝜌4 > 0 (3.23)

2. Os parâmetros de adaptação 𝜎2 e 𝜎4 são estritamente positivos.

3. As variáveis de erro (do estado e dos pesos) estão associadas a uma candidata de
Lyapunov 𝑉 que é definida de forma positiva definida e que admite as desigualdades
quadráticas:

𝑘1‖𝑍‖2 ≤ 𝑉(𝑍) ≤ 𝑘2‖𝑍‖2 (3.24)

onde
𝑍 =

[
𝑒1 𝑒2 𝑒3 𝑒4 𝐖̃𝑇

2 𝐖̃𝑇
4

]𝑇

e 𝑘1, 𝑘2 > 0 são constantes conhecidas.
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3.2.3.3.1 Passo 1 – Reagrupamento dos termos:

Definindo
𝜌 = min {𝜌1, 𝜌2, 𝜌3, 𝜌4,

𝜎2
2 ,

𝜎4
2 } > 0

a desigualdade em (3.22) pode ser escrita de forma compacta como

𝑉̇ ≤ −𝜌
(
𝑒21 + 𝑒22 + 𝑒23 + 𝑒24 + ‖𝐖̃2‖2𝐹 + ‖𝐖̃4‖2𝐹

)
+ 𝜂 (3.25)

3.2.3.3.2 Passo 2 – Relação com 𝑉:

Utilizando a desigualdade (3.24), observa-se que

‖𝑍‖2 ≥ 𝑉(𝑍)
𝑘2

Portanto, a expressão em (3.25) implica

𝑉̇ ≤ −
𝜌
𝑘2
𝑉 + 𝜂 (3.26)

3.2.3.3.3 Passo 3 – Região Invariante:

Definindo
𝑉0 =

𝑘2
𝜌 𝜂

note que se 𝑉(𝑍) > 𝑉0 então

𝑉̇ ≤ −
𝜌
𝑘2
𝑉 + 𝜂 < −

𝜌
𝑘2
𝑉0 + 𝜂 = 0

Isso significa que, sempre que o valor de 𝑉(𝑍) estiver acima de 𝑉0, sua derivada será
negativa, fazendo com que a solução seja atraída para a região definida pelo nível 𝑉0. Logo,
o conjunto

Ω =
{
𝑍 ∈ ℝ𝑛 ∶ 𝑉(𝑍) ≤ 𝑉0

}
(3.27)

é positivamente invariante.

3.2.3.3.4 Conclusão:

A partir de (3.26) e da definição do conjunto Ω em (3.27), conclui-se que, para
quaisquer condições iniciais, a trajetória do sistema de erro evolui de forma que, após um
tempo finito, os erros 𝑒1,𝑒2,𝑒3,𝑒4 e as discrepâncias dos pesos 𝐖̃2 e 𝐖̃4 permanecem dentro
deΩ. Em outras palavras, os erros são uniformemente finalmente limitados, o que implica na
sincronização do sistema escravo em relação ao sistema mestre.
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Observação:A escolha dos parâmetros de projeto (inclusive os fatores de escalonamento
𝛾1, 𝛾2 e 𝛾3, os quais devem satisfazer 𝛾2𝑑 = 𝛾1𝑔+𝛾3) é fundamental para que as constantes
𝜌𝑖 sejam positivas e, assim, para que o argumento de estabilidade seja válido. Com essa
escolha, os termos não lineares de ordem superior são cancelados e os produtos cruzados
são adequadamente dominados pelos termos quadráticos, permitindo que se obtenha a
condição 𝑉̇ ≤ 0 fora do conjunto Ω.

Dessa forma, sob as hipóteses assumidas, a derivada da candidata de Lyapunov é
estritamente negativa fora de Ω, garantindo que os erros de sincronização se mantenham
dentro de um conjunto compacto e que a sincronização entre o sistema mestre e o sistema
escravo seja efetivamente estabelecida.
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4 Simulações e Validações

4.1 Configuração das Simulações

Nesta seção, descrevem-se as características de hardware e software empregadas para
realizar as simulações do sistema hipercaótico tetradimensional, bem como as configurações
específicas adotadas no ambiente Simulink®. Essas informações visam assegurar a reproduti-
bilidade e a consistência dos resultados, tornando mais transparente o processo de validação
dos métodos propostos. Os códigos das simulações estão disponíveis no Apêndice A, ao final
deste trabalho.

4.1.1 Ambiente de Computação

4.1.1.1 Hardware

• Processador: AMD Ryzen 5 Mobile 5500U, com 6 núcleos e 12 Threads a 2.1 GHz.

• GPU: AMD Radeon Graphics.

• Memória RAM: 20 GB DDR4.

• Disco Rígido: SSD de 512 GB.

• Sistema Operacional: Windows 11 23H2.

Essa configuração assegura o desempenho adequado na execução de simulações
intensivas, em especial para dinâmicas hipercaóticas com múltiplos expoentes de Lyapunov
positivos e possíveis algoritmos de controle adaptativo em tempo real.

4.1.1.2 Software

• Plataforma de Simulação:MATLAB® R2023b com o Simulink® 23.2.

Tais ferramentas permitem modelar, simular e analisar sistemas dinâmicos de forma
interativa e modular, possibilitando a inclusão de blocos customizados para o sistemamestre,
escravo e o controlador.
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4.1.2 Arquitetura do Modelo no Simulink®

4.1.2.1 Organização de Blocos

Para reproduzir o comportamento do sistema hipercaótico tetradimensional e im-
plementar o controle neural sub-atuado, foi criado um diagrama no Simulink® (Figura 3)
contendo:

Figura 3 – Diagrama de blocos no Simulink®.

• Bloco do SistemaMestre (Planta_Master): representa as equações de estado do
Sistema Mestre Escalonado, conforme definido em 3.2.

• Bloco do Sistema Escravo (Planta_Slave): representa as equações de estado do
Sistema Escravo a ser sincronizado com o Sistema Mestre.

• Bloco de Controle (Sincronizador): responsável por gerar os sinais de controle
(𝑢2, 𝑢4) conectados ao Sistema Escravo.

• Bloco de Observação ou Registro de Dados (Xmaster, Xslave): armazena variáveis
de interesse (𝑥𝑚, 𝑦𝑚, 𝑧𝑚, 𝑤𝑚, 𝑥𝑠, 𝑦𝑠, 𝑧𝑠, 𝑤𝑠) para análise posterior.

• Bloco de Ruído Branco (Localizado abaixo da Planta_Master): Adiciona distúr-
bios limitados aos sinais gerados pelos estados do sistema mestre.

4.1.2.2 Passo de Integração e Solver

As configurações utilizadas para o Passo de Integração e o Solver encontram-se na
Figura 4 a seguir.

• Solver: optou-se pelo solver ode15s, pela estabilidade e eficiência na resolução de
sistemas não lineares.
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• Passo de Integração: adotou-se um passo variável (opção padrão do Simulink®) com
tolerâncias de erro relativas e absolutas definidas em 10−8.

Figura 4 – Configurações para a simulação no Simulink®.

4.1.3 Parâmetros de Inicialização

• Condições Iniciais: As condições iniciais para as variáveis do sistema mestre, foram
𝑥𝑚(0) =

1
𝛾1
, 𝑦𝑚(0) =

1
𝛾2
, 𝑧𝑚(0) =

1
𝛾3
, 𝑤𝑚(0) = 1 e para o sistema escravo, foram

𝑥𝑠(0) =
−2
𝛾1
, 𝑦𝑠(0) =

2
𝛾2
, 𝑧𝑠(0) =

3
𝛾3
, 𝑤𝑠(0) = 4.

• Tempo de Simulação: Fixado em𝑇 = 8 [s] para abranger a fase transiente e identificar
o regime permanente do sistema.

• Parâmetros de Escalonamento: Os fatores de escalonamento considerados na si-
mulação foram 𝛾1 = 0.02, 𝛾2 = 0.158, 𝛾3 = 0.09. Observe que estes valores foram
escolhidos de modo que a condição 𝛾2𝑑 = 𝛾1𝑔 + 𝛾3 (definida no Capítulo 3) fosse
satisfeita.
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• Ganho do Controlador e Parâmetros da Rede Neural: definidos no como sendo
𝜆2 = 𝜆4 = 5000 e 𝜎2 = 𝜎4 = 10, satisfazendo as condições mostradas em 3.23.

4.1.4 Estratégia de Execução e Coleta de Dados

4.1.4.1 Execução e Scripts de Automação

Para garantir consistência nos resultados, cada simulação é executada por meio de
scripts (Apêndice A) emMATLAB (Planta_Master.m, Planta_Slave.m, Sincronizador.m
e Graficos.m), que:

1. Carregam valores de parâmetros (𝛾𝑖, 𝜆𝑖, 𝜎𝑖, etc.).

2. Simulam a dinâmica dos estados mestre, escravo e do sincronizador em relação ao
tempo.

3. Armazenam os resultados em estruturas para a plotagem.

4.1.4.2 Coleta e Pós-Processamento

• Registro dos Estados dos Sistemas Mestre e Escravo: são gravadas em blocos
To Workspace do Simulink, nomeados como Xmaster e Xslave, respectivamente, per-
mitindo análise off-line. Os erros 𝑒1(𝑡), 𝑒2(𝑡), 𝑒3(𝑡), 𝑒4(𝑡) são calculados a partir das
diferenças entre os estados do Sistema Escravo e os estados do Sistema Mestre.

• Análise de Estabilidade: verifica-se se os erros permanecem limitados dentro de
faixas predefinidas e se há convergência a valores próximos de zero.

• Plotagem dos resultados: scripts específicos geram gráficos para avaliar o desempe-
nho de sincronização da técnica proposta.

4.1.5 Observação sobre Reprodutibilidade

Devido à natureza hipercaótica dos sistemas que estão sendo simulados, é esperado
que pequenas variações no hardware ou na versão do software utilizado ocasionem em
diferenças consideráveis nas trajetórias das curvas dos estados dos Sistemas Mestre e Escravo
ao se reproduzir o que foi obtido neste estudo. Esta característica é inerente às simulações
de sistemas caóticos e foi verificada em (NAZARÉ et al., 2020).

As próximas seções detalham os resultados numéricos obtidos com essa configuração,
analisando tanto a performance do método de sincronização quanto a robustez diante de
perturbações e incertezas.
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4.2 Arquitetura das Redes Neurais Utilizadas

Nesta seção, descrevem-se em detalhes as redes neurais que foram utilizadas na
Simulação e que compõem o sincronizador do sistema hipercaótico tetradimensional. O
código-fonte completo da S-Function Sincronizador.m (listadonoApêndiceA) implementa
tanto as leis de aprendizagem dos pesos neurais como a geração de sinais de controle para
forçar a sincronização.

4.2.1 Objetivo das Redes Neurais no Sincronizador

O principal objetivo das redes neurais (aqui tratadas como duas redes separadas) é
compensar incertezas ou termos não modelados no sistema hipercaótico, permitindo que
o controlador sub-atuadomantenha o escravo em sincronismo com o mestre, mesmo em
presença de distúrbios ou parâmetros incertos. Cada rede neural fornece uma saída escalar
que se soma a um termo linear de controle, resultando em um sinal adaptativo capaz de
aproximar dinâmicas complexas.

4.2.2 Arquitetura (Rede Neural de Alta Ordem)

No arquivo Sincronizador.m, são definidas duas redes neurais distintas:𝐖2 e𝐖4,
cada qual com 8 pesos. Em termos de arquitetura, verifica-se:

• Rede Neural de Alta Ordem (KOSMATOPOULOS et al., 1995): Foram utilizadas
duas Redes Neurais de Alta Ordem para realizar a sincronização, cada uma com uma
camada de entrada com 8 neurônios e uma camada de saída (Figura 5).

• Entrada (𝐙(𝑢)): vetor de 8 componentes não lineares, obtidos pela função Z(u). Cada
componente é uma combinação de sig(u(i)) ou [sig(u(i))]2, onde sig corresponde
a uma função de ativação sigmoidal e u(i) são os estados do sistema escravo na notação
utilizada no código da simulação.

• Pesos (𝐖): cada rede𝐖2 e𝐖4 é inicializada com 8 parâmetros ([1, 0, 0, 0, 0, 0, 0, 0]𝑇,
por exemplo).

• Saída (escalar):𝐖𝑇 𝐙(𝑢), resultado do produto interno entre pesos e entradas, ser-
vindo de “termo adaptativo” na lei de controle.

• Sem Camadas Ocultas: não há camadas intermediárias, pois toda a não linearidade
provém do regressor 𝐙(𝑢), que já inclui aplicações de sigmoide e sigmoide ao quadrado
sobre certas variáveis.

A figura a seguir ilustra a arquitetura das redes𝐖2 e𝐖4 que foram consideradas na simula-
ção.
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𝑍1

𝑍2

𝑍3

𝑍4

𝑍5

𝑍6

𝑍7

𝑍8

Σ

𝑊
1𝑊

2𝑊
3

𝑊4

𝑊5

𝑊 6
𝑊 7

𝑊 8

𝐖𝑇𝐙(𝑢) Saída

Figura 5 – Arquitetura das redes neurais consideradas na simulação.

A seguir, detalha-se cada passo que garante o funcionamento deste esquema de redes.

4.2.3 Função de Ativação Sigmoidal

No código, a função sig(uu) implementa uma sigmoide logística escalonada:

1 function out = sig(uu)
2 alfa = 5; beta = 0.5; lamda = 0;
3 out = alfa/(exp(-beta*uu)+1) + lamda;
4 end

Isso cria uma curva sigmoidal entre 0 e 5 (devido ao fator alfa=5), ajustada por beta=0.5.
O lamda=0 implica que não se adiciona offset adicional à saída.

4.2.4 Vetor de Entrada (Regressor) 𝐙(𝑢)
A função Z(u):

1 function out = Z(u)
2 out = [
3 sig(u(5));
4 sig(u(6));
5 sig(u(7));
6 sig(u(8));
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7 sig(u(5))^2;
8 sig(u(6))^2;
9 sig(u(7))^2;
10 sig(u(8))^2
11 ];

Cada rede neural recebe 8 entradas (𝑍1, 𝑍2, … , 𝑍8), correspondendo ao valor da sigmoide
(sig(...)) e sua forma ao quadrado de algumas variáveis do sistema (𝑢(2), 𝑢(4), 𝑢(5), 𝑢(7)).
Dessa forma, há não linearidades tanto na fase de entrada (sigmoidal) quanto no uso dessas
saídas ao quadrado.

4.2.5 Lei de Aprendizado dos Pesos

No case 1 do switch (que computa derivadas de estados), são definidas as equações
de adaptação:

1 sys = [
2 (u(6)-u(2))*Z(u) - sigma2 *( x(1:8) - W2 );
3 (u(8)-u(4))*Z(u) - sigma4 *( x(9:16) - W4 )
4 ];

Isso indica que os pesos de cada rede neural (armazenados em 𝑥(1 ∶ 8) e 𝑥(9 ∶ 16)) sofrem
uma atualização contínua:

𝐖̇2 =
(
𝑢(6) − 𝑢(2)

)
𝐙(𝑢) − 𝜎2

[
𝐖2(𝑡) − 𝐖∗

2
]
,

𝐖̇4 =
(
𝑢(8) − 𝑢(4)

)
𝐙(𝑢) − 𝜎4

[
𝐖4(𝑡) − 𝐖∗

4
]
,

onde 𝜎2 e 𝜎4 são os ganhos de adaptação, enquanto 𝐖∗
2 e 𝐖∗

4 são valores de referência
(inicialmente 1 e zeros). Essa lei de aprendizado ajusta os pesos de modo a compensar erros
no canal 2 e canal 4 do sistema.

4.2.6 Saída das Redes e Lei de Controle

No case 3 (saídas do bloco), cada rede fornece um valor escalar:

1 -( x(1:8)-W2 )’ * Z(u) - lambda2 *(u(6)-u(2))

Esse termo se soma aos sinais medidos do sistema para gerar o controle que será enviado
ao escravo. Assim, o produto interno

[
𝐖 −𝐖∗]𝑇𝐙(𝑢) forma o termo neural que compensa

discrepâncias, enquanto −𝜆2 (𝑢(6) − 𝑢(2)) adiciona a componente linear de realimentação.
O mesmo se repete para𝐖4.
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4.2.7 Conclusão e Importância

Ao fim, a arquitetura das redes neurais equivale a dois perceptrons de camada única
(single-layer), cada um com 8 entradas e 1 saída, sem camadas ocultas intermediárias.
A fonte de não linearidade provém das funções sigmoides aplicadas ao vetor 𝐙(𝑢). Essa
solução se mostra suficientemente flexível para aproximar efeitos não modelados no sistema
hipercaótico, ainda quemantenha uma estrutura de implementação relativamente simples.
Os pesos são adaptados on-line via leis de aprendizado, contribuindo para a robustez do
sincronizador frente a distúrbios ou incertezas de modelagem.

Assim, as redes neurais servem comomecanismos adaptativos que refinam a ação de
controle sub-atuada, garantindo sincronizaçãomesmo em regimes não lineares complexos.
A lógica de cálculo e atualização dos pesos pode ser verificada no código Sincronizador.m,
disponível no Apêndice A.

4.3 Resultados da Sincronização

Nesta seção, apresentam-se os resultados numéricos referentes à sincronização entre
os sistemas hipercaóticos tetradimensionaismestre e escravo, considerando o controlador
neural e sub-atuado proposto e as configurações de simulação descritas na Seção 4.1. São
exibidos, em especial, os gráficos de trajetórias das variáveis (mestre e escravo), a evolução
da norma dos pesos estimados e o comportamento do erro de sincronização ao longo do
tempo.

4.3.1 Trajetórias do Sistema Mestre e Escravo

Nas Figuras 6, 7, 8 e 9, são ilustradas as trajetórias dos estados dos sistemas mestre e
escravo ao longo do tempo.
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Figura 6 – Desempenho de sincronização entre 𝑥𝑚(𝑡) e 𝑥𝑠(𝑡).

Figura 7 – Desempenho de sincronização entre 𝑦𝑚(𝑡) e 𝑦𝑠(𝑡).



58

Figura 8 – Desempenho de sincronização entre 𝑧𝑚(𝑡) e 𝑧𝑠(𝑡).

Figura 9 – Desempenho de sincronização entre 𝑤𝑚(𝑡) e 𝑤𝑠(𝑡).

Observa-se:

1. CorrespondênciaQualitativa: As curvas do sistema escravo tendema acompanhar as
do sistemamestre após determinado intervalo transiente, indicando uma sincronização
satisfatória.

2. RegimedeOscilação: Em regime permanente, as dinâmicas se sobrepõemdemaneira
consistente, mesmo diante da instabilidade inerente ao sistema hipercaótico.

4.3.2 Norma dos Pesos Estimados

Para verificar a adaptação das redes neurais e o comportamento dos parâmetros de
controle ao longo do tempo, acompanha-se a norma dos pesos estimados (‖𝐖̂2‖ e ‖𝐖̂4‖).
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As Figuras 10 e 11 ilustram:

Figura 10 – Evolução da norma dos pesos estimados ‖𝐖̂2‖, mostrando a adaptação da rede neural.

Figura 11 – Evolução da norma dos pesos estimados ‖𝐖̂4‖, mostrando a adaptação da rede neural.

Observa-se:

• Convergência e Limitação: Após o transiente inicial, as normas dos pesos tendem a
um valor estável e permanecem limitadas em uma região, evidenciando que as redes
neurais se ajustam para compensar os termos não lineares.

• Robustez: Pequenas flutuações podem surgir em razão do caráter hipercaótico do
sistema, mas sem prejudicar a estabilidade do controle.
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4.3.3 Erro de Sincronização

O ponto crucial para avaliar a eficácia do método é a evolução dos erros de sincroni-
zação. Nas Figuras 12, 13, 14 e 15, são mostradas as dinâmicas dos erros 𝑒1(𝑡), 𝑒2(𝑡), 𝑒3(𝑡) e
𝑒4(𝑡), respectivamente.

Figura 12 – Comportamento do erro de sincronização 𝑒1(𝑡) ao longo do tempo.

Figura 13 – Comportamento do erro de sincronização 𝑒2(𝑡) ao longo do tempo.
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Figura 14 – Comportamento do erro de sincronização 𝑒3(𝑡) ao longo do tempo.

Figura 15 – Comportamento do erro de sincronização 𝑒4(𝑡) ao longo do tempo.

A parttir dos resultados obtidos, observa-se:

1. Decaimento Inicial: Durante o período transiente, os módulos dos erros decrescem
rapidamente à medida que o controlador atua para alinhar as dinâmicas do escravo às
do mestre.

2. Regime Final ou Limitação Última: Depois de certo tempo, os erros se mantém
próximo de zero de modo a caracterizar a sincronização, conforme previsto pela Teoria
de Estabilidade de Lyapunov, em (3.27).

3. Perturbações e Oscilações: Em sistemas hipercaóticos, incertezas podem provo-
car pequenas oscilações sem, contudo, acarretar divergência do erro, em virtude do
controlador sub-atuado e da adaptação neural.
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4.3.4 Análise Global

Com base nos resultados acima, pode-se extrair as seguintes conclusões parciais:

• Eficiência do Controlador: O método neural sub-atuado demonstrou bom desempe-
nho na supressão das divergências hipercaóticas, mantendo a dinâmica do escravo
próxima à do mestre.

• Convergência ou Limitação do Erro: Em todos os cenários simulados, o erro de
sincronização reduziu para valores pequenos, reforçando a viabilidade prática da
técnica.

• Adaptação Neural: A rede neural, mesmo atuando em um ambiente hipercaótico,
ajustou seus pesos para compensar boa parte das não linearidades do sistema.

• Sensibilidade a Parâmetros: A estabilidade e velocidade de sincronização podem
variar segundo os ganhos de controle (𝜆2, 𝜆4) e parâmetros de aprendizado da rede.
Ajustes finos podem otimizar a resposta conforme as demandas da aplicação.

Nas próximas seções, discute-se a aplicação da técnina de sincronização em comuni-
cação segura, aprofundando-se a análise de robustez e sensibilidade do controlador.

4.4 Aplicação em Comunicação Segura

Nesta seção, ilustra-se como a sincronização neural e sub-atuada proposta pode
ser utilizada para comunicação segura em sistemas hipercaóticos. O objetivo é mascarar
uma mensagem (sinal de informação) adicionando-a aos estados do sistema mestre e, pos-
teriormente, recuperar essa informação no sistema escravo por meio da sincronização. São
apresentados o diagrama de blocos do processo de criptografia/recuperação, bem como os
resultados de simulação que comparam as mensagens transmitidas e recuperadas.

4.4.1 Diagrama de Blocos

A Figura 16 exibe o esquema de comunicação segura com base na sincronização
caótica. A arquitetura compreende:

1. SistemaMestre: Gera as dinâmicas caóticas (ou hipercaóticas) que serão utilizadas
para criptografar os sinais mensagens.

2. Mistura (Criptografia): Os sinas demensagem𝑚𝑥(𝑡) e𝑚𝑧(𝑡) são somados aos estados
do sistemamestre 𝑥𝑚 e 𝑧𝑚, respectivamente, resultando em sinais caóticos que seguem
pelo canal de comunicação.
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3. Canal de Comunicação: Pode estar sujeito a atenuação, ruídos (𝑑1, 𝑑2, 𝑑3, 𝑑4) e possí-
veis interceptações.

4. Receptor (Sincronizador + Sistema Escravo): Mantém um sistema escravo sincro-
nizado com o mestre, permitindo estimar e subtrair (desmisturar) o sinal caótico, de
modo a recuperar as mensagens transmitidas, resultando em 𝑚̂𝑥 e 𝑚̂𝑧.

Figura 16 – Diagrama de blocos da aplicação em comunicação segura, mostrando a mistura da
mensagem no transmissor e a recuperação no receptor.

Observa-se que neste esquema para comunicação segura é utilizada uma criptografia
simétrica (SCHNEIER, 1996) já que tanto o transmissor (mestre) quanto o receptor (escravo)
utilizam a mesma estrutura (dinâmica gerada pelo sistema hipercaótico) para mascarar e
recuperar as mensagens. Além disso, a chave para realizar a cifragem das mensagens são os
sinais gerados nos estados do sistema mestre e estes sinais são reconstruídos no receptor
(escravo), uma vez que a sincronização é realizada de forma bem sucedida.

4.4.2 Propriedade de Segurança Preservada

Na área de segurança da informação, enfatizam-se propriedades fundamentais conhe-
cidas pelo acrônimo C.I.A.: Confidencialidade, Integridade e Disponibilidade (STALLINGS,
2017). Em protocolos mais completos, podem-se incluir ainda Autenticidade e Não Repúdio.
Entretanto, o sistema proposto neste trabalho – baseado na sincronização hipercaótica e
no mascaramento de um sinal de mensagem dentro dos estados do sistema mestre – atua
primordialmente sobre a Confidencialidade, garantindo que apenas as partes autorizadas (ca-
pazes de reproduzir a dinâmica hipercaótica no sistema escravo) possam extrair o conteúdo
original do sinal encriptado.

• Confidencialidade: A mistura ou injeção da mensagem nos estados caóticos do
sistemamestre dificulta que um interceptador, ao captar o sinal transmitido, identifique
ou decodifique a informação sem conhecer os parâmetros do controlador sub-atuado
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e dos blocos neurais. Dessa forma, terceiros não autorizados tornam-se incapazes de
recuperar o conteúdo do sinal, caso não disponham do esquema de sincronização.

Por outro lado, Integridade, Autenticidade e Disponibilidade – embora essenciais em sistemas
de comunicação completos – não são diretamente garantidas pelo método de caos aqui
desenvolvido. Mecanismos adicionais, como assinaturas digitais, checagem de integridade
(hash), protocolos de autenticação e sistemas de redundância, podem ser incorporados para
assegurar as demais propriedades. No presente trabalho, a ocultação do sinal e a conse-
quente dificuldade de acesso indevido evidenciam a Confidencialidade como a principal
propriedade de segurançã atendida pelo arranjo hipercaótico descrito. Em síntese, a técnica
proposta prioriza a proteção do conteúdo transmitido, abrindo caminho para aplicações que
demandem elevado nível de privacidade em transmissão de dados.

4.4.3 Injeção e Recuperação da Mensagem

Para demonstrar o funcionamento, considerou-se os seguintes sinais de mensagem:

𝑚𝑥(𝑡) = 12𝑠𝑒𝑛
(
2𝜋1.7𝑡 + 𝜋

3
)
− 11𝑐𝑜𝑠

(
2𝜋0.8𝑡

)
+ 4𝑠𝑒𝑛

(
2𝜋0.4𝑡

)

𝑚𝑧(𝑡) = 3.6𝑠𝑞𝑢𝑎𝑟𝑒
(
2𝜋1.25𝑡

)
+ 2.4𝑠𝑞𝑢𝑎𝑟𝑒

(
2𝜋1.53𝑡 + 𝜋

5
) (4.1)

Estes sinais são adicionados aos estados do sistema mestre 𝑥𝑚(𝑡) e 𝑧𝑚(𝑡), rexpectivamente,
gerando as combinações 𝑥𝑚(𝑡)+𝑚𝑥(𝑡) e 𝑧𝑚(𝑡)+𝑚𝑧(𝑡). Em seguida, estes sinais atravessam o
canal de comunicação resultando em 𝑟𝑥(𝑡) = 𝑥𝑚(𝑡) +𝑚𝑥(𝑡) + 𝑑1 e 𝑟𝑧(𝑡) = 𝑧𝑚(𝑡) +𝑚𝑧(𝑡) + 𝑑3
devido aos disturbios do canal de comunicação. Ao serem recebidos no receptor, o sistema
escravo e a lei de sincronização neural e sub-atuada realizam a sincronização dos estados
do sistema escravo ao sistema mestre e, pela diferença entre os sinais recebidos e os sinais
gerados pelos estados do sistema escravo o sistema recupera as mensagens transmitidas
resultando em 𝑚̂𝑥 e 𝑚̂𝑧. Portanto, evidencia-se que o algoritmo para criptografar amensagem
é a soma e o algoritmo para decifrar é a subtração.

4.4.4 Resultados de Simulação

Nos experimentos realizados, empregou-se o mesmo ambiente de simulação descrito
na Seção 4.1. A seguir, apresentam-se os principais gráficos e análises.

4.4.4.1 Comparação entre Mensagens Originais e Encriptadas

As Figuras 17 e 18 ilustram, em ummesmo eixo temporal, asmensagens originais
𝑚𝑥(𝑡) e𝑚𝑧(𝑡) e o resultado encriptado 𝑠𝑥(𝑡) = 𝑥𝑚(𝑡) + 𝑚𝑥(𝑡) e 𝑠𝑧(𝑡) = 𝑧𝑚(𝑡) + 𝑚𝑧(𝑡) com os
devidos ajustes de escala. Observa-se que:
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Figura 17 – Mensagem original𝑚𝑥(𝑡) e mensagem criptografada 𝑠𝑥(𝑡) = 𝑚𝑥(𝑡) + 𝑥𝑚(𝑡),
evidenciando como o sinal caótico oculta as características de𝑚𝑥(𝑡) (Com ajustes de

escala).

Figura 18 – Mensagem original𝑚𝑧(𝑡) e mensagem criptografada 𝑠𝑧(𝑡) = 𝑚𝑧(𝑡) + 𝑧𝑚(𝑡), evidenciando
como o sinal caótico oculta as características de𝑚𝑧(𝑡) (Com ajustes de escala).

• Os sinais encriptados mantém o comportamento caótico do sistema, dificultando a
identificação do conteúdo original de𝑚𝑥(𝑡) e𝑚𝑧(𝑡).

• A amplitude e frequências características da mensagem são “camufladas” pelo com-
portamento não linear do sistema mestre.

4.4.4.1.1 Correlação não linear entre Mensagens Originais e Encriptadas

Com o intuito de quantificar se há qualquer relaçãomonotônica entre as mensagens
originais e as mensagens cifradas, calculou-se a correlação de Kendall no MATLAB por meio
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dos comandos:

tau1 = corr(messageX, Xmaster(:,1), ’Type’, ’Kendall’);
tau2 = corr(messageZ, Xmaster(:,3), ’Type’, ’Kendall’);

onde messageX e messageZ são as sequências referentes às mensagens originais, enquanto
Xmaster(:,1) e Xmaster(:,3) correspondem às mensagens cifradas (hipercaóticas). Os
valores obtidos de correlação foram:

𝑡𝑎𝑢1 ≈ 0.1033 e 𝑡𝑎𝑢2 ≈ 0.1426,

Estes resultados indicam uma baixa correlação de Kendall entre cada mensagem original e a
respectiva versão encriptada. Esse resultado sugere que, sob a métrica de relação monotô-
nica, as mensagens cifradas não preservam um alinhamento significativo com as mensagens
originais, reforçando a eficiência do processo de mascaramento baseado em caos. Quanto
mais próximo de zero o coeficiente, menor a dependência entre as séries, e, portanto, maior a
dificuldade de um interceptador em reconstruir o conteúdo sem o conhecimento do esquema
de sincronização.

4.4.4.1.2 Entropia diferencial dos sinais analisados

A Tabela 1 apresenta os valores de entropia diferencial obtidos para quatro grupos
de sinais: (i) as mensagens originais𝑚𝑥 e𝑚𝑧; (ii) os estados do sistema mestre sem adição
de mensagem (𝑥𝑚,𝑦𝑚,𝑧𝑚,𝑤𝑚); (iii) as mensagens criptografadas 𝑠𝑥 e 𝑠𝑧; e (iv) um sinal de
referência formado por amostras pseudoaleatórias uniformemente distribuídas no intervalo
[0,100]. Os valores foram obtidos por meio do script Entropia_Diferencial.m, cujo código
completo se encontra no Apêndice A.

Tabela 1 – Entropia diferencial estimada (ℎ [bits]) dos sinais de interesse

Categoria Sinal Entropia ℎ

Mensagens originais 𝑚𝑥 4.0658
𝑚𝑧 2.6654

Estados do mestre (sem mensagem)

𝑥𝑚 6.0607
𝑦𝑚 5.4860
𝑧𝑚 6.0786
𝑤𝑚 8.7193

Mensagens criptografadas 𝑠𝑥 6.1767
𝑠𝑧 6.0815

Referência aleatória 𝑢[0,100] 6.6428

Observa-se que as mensagens originais apresentam entropia relativamente baixa, es-
pecialmente𝑚𝑧, refletindo suamaior previsibilidade. Já os estados caóticos do sistemamestre
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exibem entropias significativamente mais altas (∼ 6−9 bits), evidenciando a complexidade
dinâmica inerente ao regime hipercaótico.

Após o mascaramento, as mensagens criptografadas 𝑠𝑥 e 𝑠𝑧 alcançam valores de
entropia (≈ 6.1 bits) muito próximos aos dos próprios estados caóticos e comparáveis ao sinal
aleatório de referência (6.64bits). Isso indica que o processo de cifragem eleva a incerteza
estatística das mensagens, tornando-as praticamente tão imprevisíveis quanto o sinal caótico
original e o ruído uniforme. Consequentemente, um interceptador sem conhecimento do
esquema de sincronização enfrentará dificuldade adicional em distinguir ou recuperar o
conteúdo embutido, o que reforça a eficácia do método de comunicação segura proposto.

4.4.4.2 Comparação entre Mensagens Transmitidas e Recuperadas

Após a passagem pelo canal e o processo de sincronização no sistema escravo, obtém-
se 𝑚̂𝑥(𝑡) e 𝑚̂𝑧, isto é, as versões recuperadas dasmensagens. Na Figuras 19 e 20, confrontam-se
𝑚𝑥(𝑡), 𝑚̂𝑥(𝑡) e𝑚𝑧(𝑡), 𝑚̂𝑧(𝑡) . Verifica-se:

Figura 19 – Comparação entre a mensagem original𝑚𝑥(𝑡) e a mensagem recuperada 𝑚̂𝑥(𝑡),
ressaltando o sucesso do processo de sincronização e decodificação.
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Figura 20 – Comparação entre a mensagem original𝑚𝑧(𝑡) e a mensagem recuperada 𝑚̂𝑧(𝑡),
ressaltando o sucesso do processo de sincronização e decodificação.

1. Fidelidade: Em regime permanente, 𝑚̂𝑥(𝑡) e 𝑚̂𝑧(𝑡) aproximam-se satisfatoriamente
de𝑚𝑥(𝑡) e𝑚𝑧(𝑡), respectivamente, indicando que o método proposto preserva a inte-
gridade da informação.

2. Perturbações e Ruídos: Pequenas discrepâncias podem ocorrer em função do canal,
ruído e da dinâmica hipercaótica, sem comprometer a inteligibilidade do sinal.

4.4.4.3 Erro entre as Mensagens Originais e Recuperadas

Para avaliar quantitativamente o quão próximo os sinais recuperados 𝑚̂𝑥(𝑡) e 𝑚̂𝑧(𝑡)
estão dos sinais originais𝑚𝑥(𝑡) e𝑚𝑧(𝑡), calculou-se os erros de mensagem definidos por:

𝑒𝑚𝑥(𝑡) = 𝑚𝑥(𝑡) − 𝑚̂𝑥(𝑡)
𝑒𝑚𝑧(𝑡) = 𝑚𝑧(𝑡) − 𝑚̂𝑧(𝑡)

(4.2)

As Figuras 21 e 22 mostram a evolução temporal desses erros, evidenciando o nível
de fidelidade obtido pela sincronização caótica sub-atuada:
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Figura 21 – Evolução do erro de mensagem 𝑒𝑚𝑥(𝑡) = 𝑚𝑥(𝑡) − 𝑚̂𝑥(𝑡) ao longo do tempo,
demonstrando a fidelidade do processo de recuperação.

Figura 22 – Evolução do erro de mensagem 𝑒𝑚𝑧(𝑡) = 𝑚𝑧(𝑡) − 𝑚̂𝑧(𝑡) ao longo do tempo,
demonstrando a fidelidade do processo de recuperação.

A análise destes erros confirmam que o método de sincronização proposto é eficaz
quando aplicado em comunicação segura, visto que, depois de algum tempo os erros se
mantém próximos de zero mostrando que as mensagens recuperadas possuem uma boa
fidelidade com as mensagens que foram transmitidas.
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4.5 Comparação entre os Controles com e sem Redes

Neurais

Com o propósito de avaliar a eficácia das redes neurais na sincronização do sistema
hipercaótico, foram realizadas duas simulações distintas, introduzindo-se perturbações
dependentes dos estados do Sistema Escravo e ajustando alguns parâmetros de controle no
código disponibilizado no Apêndice A:

1. Simulação 1 (Controle Neural Sub-atuado Completo): Inclui a parte proporcional
(𝜆2, 𝜆4) e as leis de adaptação das redes neurais (𝐖2,𝐖4).

2. Simulação 2 (Controle Sub-atuado apenas Proporcional): Utiliza exclusivamente
os termos lineares −𝜆2(𝑦𝑠 − 𝑦𝑚) e −𝜆4(𝑤𝑠 − 𝑤𝑚), desativando os componentes neural
𝐖𝑇

2𝐙(𝑢) e𝐖𝑇
4𝐙(𝑢).

Em ambos os cenários, foram somados sinais de distúrbios dependentes dos estados
do Sistema Escravo às equações de estado 𝑥𝑠, 𝑦𝑠, 𝑧𝑠 e 𝑤𝑠, buscando simular situações de
incertezas ou forças externas. A seguir, discute-se a configuração detalhada e os resultados
obtidos.

4.5.1 Configuração das Simulações

• Parâmetros de Controle: Ajustou-se os ganhos proporcionais 𝜆2 e 𝜆4 para valores
mais baixos (𝜆2 = 𝜆4 = 8), a fim de avaliar como o componente neural influencia o
comportamento.

• Redes Neurais: Ajustou-se os parâmetros de aprendizado 𝜎2 e 𝜎4 para 100 e manteve-
se os vetores iniciais de pesos (𝐖2,𝐖4) conforme descrito na seção 4.2.

• Distúrbios adicionados aos estados do sistema escravo: Adicionou-se os seguintes
distúrbios aos respectivos estados do sistema escravo: 𝑑1 = 0.01𝑥2𝑠 , 𝑑2 = 0.1𝑦2𝑠 , 𝑑3 =
0.001𝑦2𝑠 e 𝑑4 = 0.01𝑦2𝑠 .

As demais configurações das simulações foram mantidas as mesmas das descritas na
seção 4.1.

4.5.2 Resultados e Análise

A seguir, são mostrados os gráficos com o desempenho de sincronização para cada
estado, sendo que a Simulação 1 se refere a simulação comoControle Neural, e a Simulação
2 se refere a simulação somente com o Controle Proporcional, sem o uso das redes neurais.
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4.5.2.1 Resultados da Simulação 1 (Controle Neural Completo)

Figura 23 – Desempenho de Sincronização entre 𝑥𝑚(𝑡) e 𝑥𝑠(𝑡) para o caso com Controle Neural.

Figura 24 – Desempenho de Sincronização entre 𝑦𝑚(𝑡) e 𝑦𝑠(𝑡) para o caso com Controle Neural.
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Figura 25 – Desempenho de Sincronização entre 𝑧𝑚(𝑡) e 𝑧𝑠(𝑡) para o caso com Controle Neural.

Figura 26 – Desempenho de Sincronização entre 𝑤𝑚(𝑡) e 𝑤𝑠(𝑡) para o caso com Controle Neural.

Observa-se quemesmo com 𝜆𝑖 configurado em um valormoderado, os termos neurais
𝐖𝑇

2𝐙(𝑢) e𝐖𝑇
4𝐙(𝑢) compensaram parte substancial das não linearidades, assegurando uma

sincronização eficiente. A sincronização em todos os estados se manteve mesmo após a
introdução de distúrbios parametricamente dependentes dos estados do escravo.
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4.5.2.2 Simulação 2 (Somente Controle Proporcional)

Figura 27 – Desempenho de Sincronização entre 𝑥𝑚(𝑡) e 𝑥𝑠(𝑡) para o caso sem Controle Neural.

Figura 28 – Desempenho de Sincronização entre 𝑦𝑚(𝑡) e 𝑦𝑠(𝑡) para o caso sem Controle Neural.



74

Figura 29 – Desempenho de Sincronização entre 𝑧𝑚(𝑡) e 𝑧𝑠(𝑡) para o caso sem Controle Neural.

Figura 30 – Desempenho de Sincronização entre 𝑤𝑚(𝑡) e 𝑤𝑠(𝑡) para o caso sem Controle Neural.

Utilizando um ganho 𝜆𝑖 menor, observou-se que, para este caso, o escravo não con-
segue acompanhar o mestre de forma eficaz e se mostrou mais suscetível aos distúrbios
injetados. Em alguns instantes, o erro de sincronização apresentou picos bem mais elevados
do que no método com redes neurais.

Ao comparar diretamente os gráficos de desempenho de sincronização, nota-se que o
controle com redes neurais atinge ou preserva a sincronização com desempenho muito
superior — sobretudo para ganhos proporcionais mais baixos. No caso de ganhos lineares
elevados, o controlador puramente proporcional também pode suprimir distúrbios, mas
pode exigir maior energia de controle ou apresentar riscos de saturação em aplicações reais.
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4.5.3 Conclusões da Comparação

• Desempenho Melhorado com Redes Neurais: Ao permitir que as leis de apren-
dizagem compensem incertezas e não linearidades, o controle neural sub-atuado
demonstrou sincronização robusta, inclusive sob distúrbios dependentes do sistema
escravo.

• Dependência dos Ganhos Proporcionais: O controle somente proporcional tem
eficácia limitada quando 𝜆𝑖 émantido em valoresmenores, pois lhe faltammecanismos
adaptativos. Já a abordagem neural requer menor dependência de 𝜆𝑖 para suprimir
desvios.

• Implementação Prática: Ganhos muito altos podem gerar problemas de saturação
ou instabilidade numérica, ao passo que as redes neurais compensam essas dinâmicas
sem demandar tanto do termo linear.

Dessa forma, conclui-se que a arquitetura neural sub-atuada oferece vantagens
claras em condições de menores ganhos proporcionais ou distúrbios mais complexos, refor-
çando seu potencial de aplicações em cenários que requeiram menor esforço de controle ou
lidem com incertezas relevantes no modelo.

4.6 Discussão dos Resultados

Ao longo deste capítulo, foram desenvolvidas simulações que verificaram a eficácia da
sincronização neural sub-atuada para um sistema hipercaótico tetradimensional, bem como
uma aplicação desse método em um esquema de comunicação segura. A seguir, resumem-se
os principais pontos observados:

1. Sincronização do Sistema Hipercaótico

• As seções iniciais demonstraram que o controlador neural e sub-atuado é capaz
de alinhar as trajetórias de um sistema escravo às de um sistema mestre, mesmo
diante de não linearidades e múltiplos expoentes de Lyapunov positivos.

• Os erros de sincronização (𝑒1, 𝑒2, 𝑒3, 𝑒4) exibiram reduções consideráveis na fase
transiente, mantendo-se limitados e próximos de zero em regime permanente.
Esses comportamentos confirmam a robustez do método, garantindo estabilidade
prática em cenários adversos.

2. Adaptação Neural e Sub-atuada



76

• A introdução de redes neurais possibilitou a compensação dinâmica das incertezas
não lineares, enquanto a sub-ação (controle aplicado em parte das variáveis)
diminuiu a complexidade de implementação.

• Observou-se, pelas normas dos pesos estimados, que as redes se adaptam ao longo
do tempo, convergindo para valores estáveis que asseguram a sincronização.

3. Aplicação em Comunicação Segura

• A injeção de umamensagem nos estados do sistema mestre, seguida da recupera-
ção desse sinal no sistema escravo, evidenciou o potencial prático da sincronização
hipercaótica.

• A análise dos sinais encriptados e recuperados mostrou que a ocultação dos
conteúdos originais é eficaz (dificultando a extração por um interceptador) e
que os erros entre as mensagens transmitidas e recebidas permanecem próximos
de zero, mesmo na presença de distúrbios limitados, garantindo a fidelidade na
transmissão.

4. Desempenho e Robustez

• As simulações realizadas indicaram que pequenas perturbações (ruído, atenu-
ação) no canal de comunicação não inviabilizam o processo de sincronização,
permitindo a recuperação da mensagem.

• A sensibilidade aos parâmetros de controle (𝜆𝑖) e às constantes de aprendizado
das redes neurais é relevante: ajustando-os adequadamente, melhoram-se os
tempos de convergência e a resistência a incertezas mais intensas.

5. Limitações e Perspectivas

• Embora a convergência a zero seja possível em determinados cenários, ambientes
fortemente não lineares e ruídosos podem implicar apenas estabilidade prática,
na qual o erro se mantém em uma faixa reduzida, sem necessariamente atingir
zero.

• Investigações adicionais podem contemplar testes em hardware para avaliar a
viabilidade em tempo real.

Em síntese, os resultados apresentados neste capítulo sustentam a efetividade do con-
trolador neural sub-atuado para sincronizar sistemas hipercaóticos, mostrando ainda como
essa propriedade pode ser explorada em comunicação segura. As métricas de erro, as análises
de estabilidade e o desempenho global do esquema encriptado confirmam o potencial de
aplicações em cenários que demandam alta complexidade, robustez e confidencialidade.
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5 Conclusões e trabalhos futuros

5.1 Resumo dos Resultados Obtidos

Ao longo desta dissertação, o objetivo central foi desenvolver e validar uma estraté-
gia de sincronização neural e sub-atuada para um sistema hipercaótico tetradimensional,
demonstrando tanto a fundamentação teórica quanto sua aplicação prática. Inicialmente,
revisou-se a teoria de estabilidade de Lyapunov e a Desigualdade de Young, que embasam a
demonstração da estabilidade prática em cenários de alta complexidade dinâmica. Em se-
guida, realizou-se experimentos de simulação que confirmaram a capacidade do controlador
proposto de alinhar as trajetórias de um sistema escravo às de um sistema mestre, mesmo
em presença de múltiplos expoentes de Lyapunov positivos.

Os principais resultados podem ser sumarizados em:

1. Prova Matemática de Sincronização: Utilizando a teoria de Lyapunov e a inclusão
de redes neurais adaptativas, mostrou-se que o erro de sincronização permanece
limitado e próximo de zero, mesmo diante de não linearidades e de distúrbios limitados.

2. Eficiência do Controle Sub-atuado: Verificou-se que atuar em apenas parte das
variáveis de estado não inviabiliza a sincronização. Pelo contrário, a sub-ação reduziu
a complexidade de implementação e se manteve eficaz para suprimir as instabilidades
típicas do regime hipercaótico.

3. Aplicação em Comunicação Segura: A abordagem foi aplicada na cifragem de duas
mensagens simultaneamente, somando-as aos estados não atuados do sistema mestre
e recuperando-as no sistema escravo. As simulações evidenciaram que a recuperação
das mensagens ocorre com uma boa fidelidade, enquanto o processo de encriptação
dificulta a extração do conteúdo por interceptadores.

4. Robustez e Flexibilidade: Mesmo em cenários de ruído e perturbações externas, os
resultados confirmaram a capacidade do método em manter o erro de sincronização
dentro de faixas seguras. Além disso, o ajuste dos parâmetros de controle e das redes
neurais demonstrou flexibilidade para lidar com diferentes configurações e velocidades
de convergência.

Em síntese, o conjunto de experimentos e análises realizadas comprova a eficácia
da lei de controle neural e sub-atuada não apenas para a sincronização de sistemas hiper-
caóticos complexos, mas também para aplicações práticas envolvendo comunicação segura,
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sinalizando o potencial de extensão e inovação tecnológica na área de controle de sistemas
não lineares.

5.2 Sumário de Contribuições do Trabalho

Nesta dissertação, foi introduzida e validada uma abordagem de sincronização neu-
ral e sub-atuada aplicada a um sistema hipercaótico tetradimensional. Ao longo de seu
desenvolvimento, destacam-se as seguintes contribuições específicas:

1. Proposição de um Controlador Sub-atuado para Sistemas Hipercaóticos

• Ao contrário de métodos convencionais que exigem a atuação em todas as variá-
veis de estado, o controlador desenvolvido atua apenas sobre parte das variáveis,
reduzindo significativamente a complexidade de implementação.

• Essa redução de atuadores não compromete a estabilidade do sistema, e a prova
de estabilidade evidenciou a eficácia em cenários de não linearidades elevadas.

2. Integração de Redes Neurais como Elemento de Compensação Adaptativa

• As redes neurais foram empregadas para lidar com incertezas e termos não
modelados, adaptando-se dinamicamente à evolução do sistema hipercaótico.

• A utilização das redes neurais, em conjunto com os fundamentos de Lyapunov,
formou um arcabouço robusto para garantir que o erro de sincronização perma-
necesse baixo, mesmo na presença de perturbações ou parâmetros incertos.

3. Demonstração de Estabilidade Prática em Regime Hipercaótico

• Em cenários altamente instáveis, a estabilidade prática (em vez de estritamente
assintótica) mostrou-se suficiente para manter o sistema escravo em proximidade
das trajetórias do sistema mestre.

• Isso abre caminho para aplicações em situações onde ruídos externos impeçam
uma convergência exata.

4. Aplicação em Comunicação Segura

• Foi desenvolvida e validada uma estratégia para encriptar e recuperar duas men-
sagens simultaneamente utilizando o comportamento hipercaótico, evidenciando
a potencialidade do método em mascarar sinais de forma que um terceiro não
autorizado não consiga extrair o conteúdo.

• Os resultados das simulações demonstraram valores de erros baixos na recu-
peração do sinal, reforçando a viabilidade prática em cenários de transmissão
confidencial de dados.
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5. Flexibilidade e Extensibilidade

• A abordagem de controle sub-atuado e redes neurais pode ser estendida a ou-
tros sistemas não lineares de maior dimensão, desde que sejam respeitadas as
hipóteses de projeto.

• Parâmetros como os ganhos de controle (𝜆𝑖) e as taxas de aprendizado neural
podem ser ajustados para atender diferentes requisitos de robustez, rapidez de
convergência e limitações de hardware.

Em conjunto, essas contribuições reforçam a ideia de que a sincronização sub-atuada
apoiada em redes neurais não apenas colabora para o avanço teórico sobre controle de
sistemas hipercaóticos,mas também sinaliza aplicações práticas em áreas como comunicação
segura, processamento de sinais não lineares e engenharia de controle em geral.

5.3 Publicação de Trabalhos com Resultados Prelimi-

nares

No decorrer do desenvolvimento deste mestrado, foram alcançados resultados preli-
minares relacionados à sincronização de sistemas hipercaóticos sub-atuados, sob a ênfase em
comunicação segura. Esses resultados foram consolidados em duas publicações científicas,
listadas nas Referências Bibliográficas:

1. Hyperchaos-Based Secure Communication Using Lyapunov Theory (GULARTE, K. H.;
HARA et al., 2023a).

2. Secure Communications in the Presence of Disturbances Based on Lyapunov Theory
(GULARTE, K. H.; HARA et al., 2023b).

Em ambas as publicações, propõe-se a utilização de técnicas de controle sub-atuado
fundamentadas na teoria de Lyapunov para manter a sincronização entre um sistema mestre
e um sistema escravo hipercaóticos, possibilitando a cifragem de mensagens através do
mascaramento das variáveis de estado. Embora esses trabalhos não adotem redes neurais em
sua estrutura de controle, as soluções apresentadas demonstraram que o controle sub-atuado
—mesmo sem camadas de adaptação — pode garantir a sincronização em diversos cenários,
mostrando-se viável para aplicações de comunicação segura onde a redução de complexidade
e custo (em termos de atuação) seja primordial.

O material publicado reforça a idéia de que o uso de sistemas hipercaóticos e de
métodos de controle baseados em Lyapunov forma uma base sólida para garantir a confi-
dencialidade das comunicações. A partir dessas contribuições iniciais, o presente trabalho
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evoluiu para incorporar redes neurais adaptativas, aprofundando a robustez e a versatilidade
da solução de sincronização, conforme discutido nos capítulos anteriores. Dessa forma, a
pesquisa atual pode ser considerada uma extensão e aprimoramento natural das técnicas
preliminares, ampliando o escopo e a eficácia no tratamento de não linearidades e distúrbios
mais complexos.

5.4 Trabalhos Futuros

Apesar dos resultados positivos obtidos ao longo desta dissertação, há alguns aspectos
que podem ser aprofundados ou estendidos em pesquisas futuras:

1. Implementação Discreta do Controlador Uma possibilidade de evolução consiste
em desenvolver uma versão discreta do controlador neural sub-atuado, adaptada a
sistemas amostrados. Nesse cenário, as equações diferenciais e as leis de adaptação
neural precisariam ser reformuladas em termos de diferenças finitas ou em função
de um período de amostragem definido. Essa abordagem permitiria a execução do
controle em plataformas digitais (por exemplo, microcontroladores, DSPs ou FPGAs),
viabilizando testes em tempo real e assegurando que atrasos e quantizações inerentes
a processos discretos não comprometam a convergência e a robustez do método. Além
disso, a implementação discreta abriria caminho para estratégias de otimização e ajuste
de parâmetros em algoritmos de controle adaptativo on-line, levando a soluções ainda
mais eficientes e compatíveis com restrições práticas de hardware.

2. Aplicação em Outros Sistemas Dinâmicos
Estender o método a sistemas hipercaóticos de dimensão superior ou a outros modelos
não lineares complexos, verificando se a estabilidade prática e a sub-atuação mantêm
sua eficácia em cenários ainda mais desafiadores.

3. Análise de Desempenho emHardware
Implementar o sistema utilizando componentes de eletrônica e verificar o seu de-
sempenho e suas limitações em um cenário em que os sinais são influenciados pelas
limitações e não-idealidades dos componentes.

4. Comunicação Segura em Larga Escala
Ampliar os testes de comunicação caótica para cenários multiusuário (Como em comu-
nicações vehicle-to-everything (V2X), por exemplo) ou de redes, com diferentes níveis
de ruído e atenuação. Analisar a capacidade de canal e a taxa de transmissão quando
se emprega a sincronização hipercaótica em diferentes protocolos de comunicação.

Essas direções sinalizam oportunidades de evolução tanto no âmbito teórico quanto
na aplicação prática, consolidando e expandindo o potencial da sincronização neural sub-
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atuada em sistemas hipercaóticos para diferentes nichos de pesquisa e desenvolvimento
tecnológico.
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APÊNDICE A – Códigos de simulação
no MATLAB

A.1 Código para a Planta Master (Mestre)

Código A.1 – Planta_Master.m
1 function [sys ,x0,str ,ts] = Sistema(t,x,u,flag)
2
3 %constantes
4 a = 35;
5 b = 4.9;
6 c = 25;
7 d = 5;
8 e = 35;
9 f = 100;
10
11 gamma3 = 0.09;
12 gamma1 = 0.02;
13 gamma2 = (gamma1*e + gamma3)/d;
14
15 %mensagens a serem transmitidas
16 messageX = 12*sin(2*pi*1.7*t+pi/3) +11* cos(2*pi*0.8*t);
17 messageZ = 3.6* square (2*pi *1.25*t)+2.4* square (2*pi *1.53*t+pi/5);
18
19 switch flag ,
20 %%%%%%%%%%%%%%%%%%
21 % Inicialização %
22 %%%%%%%%%%%%%%%%%%
23 case 0,
24 sizes = simsizes;
25 sizes.NumContStates = 4; %Número de estados contínuos
26 sizes.NumDiscStates = 0; %Número de estados discretos
27 sizes.NumOutputs = 4; %Número de saídas
28 sizes.NumInputs = 0; %Número de entradas
29 sizes.DirFeedthrough = 1;
30 sizes.NumSampleTimes = 1;
31 sys = simsizes(sizes);
32 x0=[1/ gamma1 1/ gamma2 1/ gamma3 1]; %Condições iniciais
33 str =[];
34 ts=[0 0];
35 %%%%%%%%%%%%%%%
36 % Diretivas %
37 %%%%%%%%%%%%%%%
38 case 1, %Planta do sistema mestre
39 sys = [a*(x(2)-x(1))+gamma1*e*x(2)*x(3);
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40 c*x(1)-gamma2*d*x(1)*x(3)+x(2)+x(4);
41 gamma3*x(1)*x(2)-b*x(3);
42 -f*x(2)];
43 %%%%%%%%%%%
44 % Saídas %
45 %%%%%%%%%%%
46 case 3,
47 sys = [x(1) + messageX; x(2); x(3) + messageZ; x(4)];
48 %%%%%%%%%
49 % Fim %
50 %%%%%%%%%
51 case {2,4,9},
52 sys = []; % Não faz nada
53 otherwise
54 error([’unhandled flag = ’,num2str(flag)]);
55 end

A.2 Código para a Planta Slave (Escravo)

Código A.2 – Planta_Slave.m
1 function [sys ,x0,str ,ts] = Sistema(t,x,u,flag)
2
3 %constantes
4 a = 35;
5 b = 4.9;
6 c = 25;
7 d = 5;
8 e = 35;
9 f = 100;
10
11 gamma3 = 0.09;
12 gamma1 = 0.02;
13 gamma2 = (gamma1*e + gamma3)/d;
14
15 %OBS não foi necessário incluir o disturbio pois o mesmo foi

adicionado no Simulink
16
17 switch flag ,
18 %%%%%%%%%%%%%%%%%%
19 % Inicialização %
20 %%%%%%%%%%%%%%%%%%
21 case 0,
22 sizes = simsizes;
23 sizes.NumContStates = 4; %Número de estados contínuos
24 sizes.NumDiscStates = 0; %Número de estados discretos
25 sizes.NumOutputs = 6; %Número de saídas
26 sizes.NumInputs = 7; %Número de entradas
27 sizes.DirFeedthrough = 1;
28 sizes.NumSampleTimes = 1;
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29 sys = simsizes(sizes);
30 x0=[-2/ gamma1 2/ gamma2 3/ gamma3 4]; %Condições iniciais
31 str =[];
32 ts=[0 0];
33 %%%%%%%%%%%%%%%
34 % Diretivas %
35 %%%%%%%%%%%%%%%
36 case 1, %Planta do sistema escravo
37 sys = [a*(x(2)-x(1))+gamma1*e*x(2)*x(3)+u(1)+d1;
38 c*x(1)-gamma2*d*x(1)*x(3)+x(2)+x(4)+u(2)+d2;
39 gamma3*x(1)*x(2)-b*x(3)+u(3)+d3;
40 -f*x(2)+u(4)+d4];
41 %%%%%%%%%%%
42 % Saídas %
43 %%%%%%%%%%%
44 case 3,
45 sys = [x(1);x(2);x(3);x(4);u(6);u(7)];
46 %%%%%%%%%
47 % Fim %
48 %%%%%%%%%
49 case {2,4,9},
50 sys = []; % Não faz nada
51 otherwise
52 error([’unhandled flag = ’,num2str(flag)]);
53 end

A.3 Código para o Sincronizador

Código A.3 – Sincronizador.m
1
2 function [sys ,x0,str ,ts] = Sincronizador(t,x,u,flag)
3
4 %constantes sincronizador
5 a = 35;
6 b = 4.9;
7 c = 25;
8 d = 5;
9 e = 35;
10 f = 100;
11
12 %constantes definidas pelo usuario
13 sigma2 = 10;
14 sigma4 = 10;
15
16 lambda2 = 5000;
17 lambda4 = 5000;
18
19 % parametros iniciais matriz w
20 W2=[1 0 0 0 0 0 0 0]’;
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21 W4=[1 0 0 0 0 0 0 0]’;
22
23 switch flag
24 %%%%%%%%%%%%%%%%%
25 % Inicialização %
26 %%%%%%%%%%%%%%%%%
27 case 0
28
29 sizes = simsizes;
30 sizes.NumContStates = 16; %Número de estados continuos
31 sizes.NumDiscStates = 0; %Número de estados discretos
32 sizes.NumOutputs = 7; %Número de saídas
33 sizes.NumInputs = 10; %Número de entradas
34 sizes.DirFeedthrough = 1;
35 sizes.NumSampleTimes = 1;
36 sys = simsizes(sizes);
37 x0=zeros (16,1); %Condições iniciais
38 str =[];
39 ts=[0 0];
40
41 %%%%%%%%%%%%%%
42 % Diretivas %
43 %%%%%%%%%%%%%%
44 case 1 %aqui ficam os estimadores dos pesos de uma rede neural
45 sys = [(u(6)-u(2))*Z(u) - sigma2 *(x(1:8)-W2);
46 (u(8)-u(4))*Z(u) - sigma4 *(x(9:16) -W4)];
47 % lei de aprendizado
48
49 %%%%%%%%%%
50 % Saídas %
51 %%%%%%%%%%
52 case 3 %saidas u enviadas para o sistema escravo
53 sys = [0;%-lambda1 *(u(5)-u(1));
54 -(x(1:8)-W2)’*Z(u)-lambda2 *(u(6)-u(2));
55 0;
56 -(x(9:16) -W4)’*Z(u)-lambda4 *(u(8)-u(4));
57 u(2);
58 norm(x(1:8));
59 norm(x(9:16))]; %pesos das redes
60 case {2,4,9}
61 sys = [];
62
63 otherwise
64 error([’unhandled flag = ’,num2str(flag)]);
65 end
66
67 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
68 function out = Z(u) %Regressor
69 out =[1*( sig(u(5)));
70 1*(sig(u(6)));
71 1*(sig(u(7)));
72 1*(sig(u(8)));
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73 1*(sig(u(5))^2);
74 1*(sig(u(6))^2);
75 1*(sig(u(7))^2);
76 1*(sig(u(8))^2)];
77
78 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
79 function out = sig(uu) %funcao de ativacao
80 lamda =0;
81 alfa =5;
82 beta =.5;
83 out=alfa/(exp(-beta*uu)+1)+lamda;

A.4 Código para a obtenção dos gráficos

Código A.4 – Graficos.m
1 %Executando esse arquivo --> automaticamente mostra os gráficos da
2 %simulação e salva na pasta em formato png e epsc
3 clc
4 close all
5
6 format1 = ’png’;
7 format2 = ’epsc’;
8
9 fSize = 38;
10 axesSize = 38;
11 lSize = 3.6;
12 dvlsize = 2;
13 dhlsize = 2;
14 fonte = 38;
15 largura_linha = 2;
16 color1 = [0 0.4470 0.7410];
17 color2 = [0.8500 0.3250 0.0980];
18 color3 = [0.4660 0.6740 0.1880];
19
20 messageX = 12*sin(2*pi*1.7*t+pi/3) +11* cos(2*pi*0.8*t);
21 messageZ = 3.6* square (2*pi *1.25*t)+2.4* square (2*pi *1.53*t+pi/5);
22
23 set(0,’DefaultAxesFontSize ’,axesSize);
24
25 %Figura 1
26 fig=figure(’visible ’,’off’, ’DefaultAxesPosition ’, [0.096 , 0.172,

0.890, 0.800]);
27 plot(t,Xmaster (:,1),t, Xslave (:,1),’:’,’LineWidth ’,lSize);
28 grid on
29 grid minor
30 h=legend(’$x_m(t)$’,’$x_s(t)$’,’Location ’,’southeast ’);
31 set(h,’Interpreter ’,’Latex’,’FontSize ’,fSize);
32 ylim ([-180 150]);
33 xlabel(’$t[s]$’,’Interpreter ’,’Latex’,’Fontsize ’,fSize);
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34 set(gcf ,’units’,’normalized ’,’outerposition ’ ,[0 0 1 1]);
35 saveas(gcf ,’Figuras /1_XsXm’, format1);
36 saveas(gcf ,’Figuras /1_XsXm’, format2);
37 close(fig)
38
39 %Figura 2
40 fig=figure(’visible ’,’off’, ’DefaultAxesPosition ’, [0.096 , 0.172,

0.890, 0.800]);
41 plot(t,Xmaster (:,2),t, Xslave (:,2),’:’,’LineWidth ’,lSize);
42 grid on
43 grid minor
44 h=legend(’$y_m(t)$’,’$y_s(t)$’,’Location ’,’southeast ’);
45 set(h,’Interpreter ’,’Latex’,’FontSize ’,fSize);
46 ylim ([-140 100]);
47 xlabel(’$t[s]$’,’Interpreter ’,’Latex’,’Fontsize ’,fSize);
48 set(gcf ,’units’,’normalized ’,’outerposition ’ ,[0 0 1 1]);
49 saveas(gcf ,’Figuras /2_YsYm’, format1);
50 saveas(gcf ,’Figuras /2_YsYm’, format2);
51 close(fig)
52
53 %Figura 3
54 fig=figure(’visible ’,’off’, ’DefaultAxesPosition ’, [0.096 , 0.172,

0.890, 0.800]);
55 plot(t,Xmaster (:,3),t, Xslave (:,3),’:’,’LineWidth ’,lSize);
56 grid on
57 grid minor
58 h=legend(’$z_m(t)$’,’$z_s(t)$’,’Location ’,’southeast ’);
59 set(h,’Interpreter ’,’Latex’,’FontSize ’,fSize);
60 ylim ([-15 65]);
61 xlabel(’$t[s]$’,’Interpreter ’,’Latex’,’Fontsize ’,fSize);
62 set(gcf ,’units’,’normalized ’,’outerposition ’ ,[0 0 1 1]);
63 saveas(gcf ,’Figuras /3_ZsZm’, format1);
64 saveas(gcf ,’Figuras /3_ZsZm’, format2);
65 close(fig)
66
67 %Figura 4
68 fig=figure(’visible ’,’off’, ’DefaultAxesPosition ’, [0.096 , 0.172,

0.890, 0.800]);
69 plot(t,Xmaster (:,4),t, Xslave (:,4),’:’,’LineWidth ’,lSize);
70 grid on
71 grid minor
72 h=legend(’$w_m(t)$’,’$w_s(t)$’,’Location ’,’southeast ’);
73 set(h,’Interpreter ’,’Latex’,’FontSize ’,fSize);
74 xlabel(’$t[s]$’,’Interpreter ’,’Latex’,’Fontsize ’,fSize);
75 set(gcf ,’units’,’normalized ’,’outerposition ’ ,[0 0 1 1]);
76 saveas(gcf ,’Figuras /4_WsWm’, format1);
77 saveas(gcf ,’Figuras /4_WsWm’, format2);
78 close(fig)
79
80 %Figura 5
81 fig=figure(’visible ’,’off’, ’DefaultAxesPosition ’, [0.096 , 0.172,

0.890, 0.800]);
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82 plot(t, Xslave (:,5),’LineWidth ’,lSize);
83 grid on
84 grid minor
85 h=legend(’$||\ widehat{W}_{2}(t)||$’,’Location ’,’southeast ’);
86 set(h,’Interpreter ’,’Latex’,’FontSize ’,fSize);
87 ylim ([0 1.5]);
88 xlabel(’$t[s]$’,’Interpreter ’,’Latex’,’Fontsize ’,fSize);
89 set(gcf ,’units’,’normalized ’,’outerposition ’ ,[0 0 1 1]);
90 saveas(gcf ,’Figuras /5 _Norma_Pesos_Estimados ’, format1);
91 saveas(gcf ,’Figuras /5 _Norma_Pesos_Estimados ’, format2);
92 close(fig)
93
94 %Figura 6
95 fig=figure(’visible ’,’off’, ’DefaultAxesPosition ’, [0.096 , 0.172,

0.890, 0.800]);
96 plot(t, Xslave (:,6),’LineWidth ’,lSize);
97 grid on
98 grid minor
99 h=legend(’$||\ widehat{W}_{4}(t)||$’,’Location ’,’southeast ’);
100 set(h,’Interpreter ’,’Latex’,’FontSize ’,fSize);
101 ylim ([0 1.5]);
102 xlabel(’$t[s]$’,’Interpreter ’,’Latex’,’Fontsize ’,fSize);
103 set(gcf ,’units’,’normalized ’,’outerposition ’ ,[0 0 1 1]);
104 saveas(gcf ,’Figuras /6 _Norma_Pesos_Estimados ’, format1);
105 saveas(gcf ,’Figuras /6 _Norma_Pesos_Estimados ’, format2);
106 close(fig)
107
108 %Figura 7
109 fig=figure(’visible ’,’off’, ’DefaultAxesPosition ’, [0.096 , 0.172,

0.890, 0.800]);
110 plot(t,Xslave (:,1)-Xmaster (:,1),’LineWidth ’,lSize);
111 grid on
112 grid minor
113 h=legend(’$e_1(t)$’,’Location ’,’southeast ’);
114 set(h,’Interpreter ’,’Latex’,’FontSize ’,fSize);
115 ylim ([-100 50]);
116 xlabel(’$t[s]$’,’Interpreter ’,’Latex’,’Fontsize ’,fSize);
117 set(gcf ,’units’,’normalized ’,’outerposition ’ ,[0 0 1 1]);
118 saveas(gcf ,’Figuras /7_e1’, format1);
119 saveas(gcf ,’Figuras /7_e1’, format2);
120 close(fig)
121
122 %Figura 8
123 fig=figure(’visible ’,’off’, ’DefaultAxesPosition ’, [0.096 , 0.172,

0.890, 0.800]);
124 plot(t,Xslave (:,2)-Xmaster (:,2),’LineWidth ’,lSize);
125 grid on
126 grid minor
127 h=legend(’$e_2(t)$’,’Location ’,’southeast ’);
128 set(h,’Interpreter ’,’Latex’,’FontSize ’,fSize);
129 ylim([-1 2]);
130 xlabel(’$t[s]$’,’Interpreter ’,’Latex’,’Fontsize ’,fSize);
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131 set(gcf ,’units’,’normalized ’,’outerposition ’ ,[0 0 1 1]);
132 saveas(gcf ,’Figuras /8_e2’, format1);
133 saveas(gcf ,’Figuras /8_e2’, format2);
134 close(fig)
135
136 %Figura 9
137 fig=figure(’visible ’,’off’, ’DefaultAxesPosition ’, [0.096 , 0.172,

0.890, 0.800]);
138 plot(t,Xslave (:,3)-Xmaster (:,3),’LineWidth ’,lSize);
139 grid on
140 grid minor
141 h=legend(’$e_3(t)$’,’Location ’,’southeast ’);
142 set(h,’Interpreter ’,’Latex’,’FontSize ’,fSize);
143 ylim ([-15 15]);
144 xlabel(’$t[s]$’,’Interpreter ’,’Latex’,’Fontsize ’,fSize);
145 set(gcf ,’units’,’normalized ’,’outerposition ’ ,[0 0 1 1]);
146 saveas(gcf ,’Figuras /9_e3’, format1);
147 saveas(gcf ,’Figuras /9_e3’, format2);
148 close(fig)
149
150 %Figura 10
151 fig=figure(’visible ’,’off’, ’DefaultAxesPosition ’, [0.096 , 0.172,

0.890, 0.800]);
152 plot(t,Xslave (:,4)-Xmaster (:,4),’LineWidth ’,lSize);
153 grid on
154 grid minor
155 h=legend(’$e_4(t)$’,’Location ’,’southeast ’);
156 set(h,’Interpreter ’,’Latex’,’FontSize ’,fSize);
157 ylim ([-0.2 0.2]);
158 xlabel(’$t[s]$’,’Interpreter ’,’Latex’,’Fontsize ’,fSize);
159 set(gcf ,’units’,’normalized ’,’outerposition ’ ,[0 0 1 1]);
160 saveas(gcf ,’Figuras /10_e4’, format1);
161 saveas(gcf ,’Figuras /10_e4’, format2);
162 close(fig)
163
164 % %Figura 11
165 fig=figure(’visible ’,’off’, ’DefaultAxesPosition ’, [0.060 , 0.172,

0.920, 0.800]);
166 plot(t,5* messageX ,t,Xmaster (:,1),’:’,’LineWidth ’,lSize);
167 grid on
168 grid minor
169 h=legend(’$$5 m_{x}(t)$$’, ’$$s_{x}(t)$$’,’Location ’,’southeast ’);
170 set(h,’Interpreter ’,’Latex’,’FontSize ’,fSize);
171 ylim ([-220 180]);
172 xlabel(’$t[s]$’,’Interpreter ’,’Latex’,’Fontsize ’,fSize);
173 set(gcf ,’units’,’normalized ’,’outerposition ’ ,[0 0 1 1]);
174 saveas(gcf ,’Figuras /11 _encrypted_message_comparison_X ’, format1);
175 saveas(gcf ,’Figuras /11 _encrypted_message_comparison_X ’, format2);
176 close(fig)
177
178 %Figura 12
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179 fig=figure(’visible ’,’off’, ’DefaultAxesPosition ’, [0.096 , 0.172,
0.890, 0.800]);

180 plot(t,5* messageZ + 30,t,Xmaster (:,3),’:’,’LineWidth ’,lSize);
181 grid on
182 grid minor
183 h=legend(’$$5 m_{z}(t)+30$$’,

’$$s_{z}(t)$$’,’Location ’,’southeast ’);
184 set(h,’Interpreter ’,’Latex’,’FontSize ’,fSize);
185 ylim ([-20 65]);
186 xlabel(’$t[s]$’,’Interpreter ’,’Latex’,’Fontsize ’,fSize);
187 set(gcf ,’units’,’normalized ’,’outerposition ’ ,[0 0 1 1]);
188 saveas(gcf ,’Figuras /12 _encrypted_message_comparison_Z ’, format1);
189 saveas(gcf ,’Figuras /12 _encrypted_message_comparison_Z ’, format2);
190 close(fig)
191
192 % %Figura 13
193 fig=figure(’visible ’,’off’, ’DefaultAxesPosition ’, [0.060 , 0.172,

0.920, 0.800]);
194 plot(t,messageX ,t,Xmaster (:,1) -

Xslave (:,1),’:’,’LineWidth ’,lSize);
195 grid on
196 grid minor
197 h=legend(’$$m_{x}(t)$$’,

’$$\widehat{m}_{x}(t)$$’,’Location ’,’southeast ’);
198 set(h,’Interpreter ’,’Latex’,’FontSize ’,fSize);
199 ylim ([-50 30]);
200 xlabel(’$t[s]$’,’Interpreter ’,’Latex’,’Fontsize ’,fSize);
201 set(gcf ,’units’,’normalized ’,’outerposition ’ ,[0 0 1 1]);
202 saveas(gcf ,’Figuras /13 _retrieved_message_comparison_X ’, format1);
203 saveas(gcf ,’Figuras /13 _retrieved_message_comparison_X ’, format2);
204 close(fig)
205
206 %Figura 14
207 fig=figure(’visible ’,’off’, ’DefaultAxesPosition ’, [0.096 , 0.172,

0.890, 0.800]);
208 plot(t,messageZ ,t,Xmaster (:,3) -

Xslave (:,3),’:’,’LineWidth ’,lSize);
209 grid on
210 grid minor
211 h=legend(’$$m_{z}(t)$$’,

’$$\widehat{m}_{z}(t)$$’,’Location ’,’southeast ’);
212 set(h,’Interpreter ’,’Latex’,’FontSize ’,fSize);
213 ylim ([-11 7]);
214 xlabel(’$t[s]$’,’Interpreter ’,’Latex’,’Fontsize ’,fSize);
215 set(gcf ,’units’,’normalized ’,’outerposition ’ ,[0 0 1 1]);
216 saveas(gcf ,’Figuras /14 _retrieved_message_comparison_Z ’, format1);
217 saveas(gcf ,’Figuras /14 _retrieved_message_comparison_Z ’, format2);
218 close(fig)
219
220 %Figura 15
221 fig=figure(’visible ’,’off’, ’DefaultAxesPosition ’, [0.060 , 0.172,

0.920, 0.800]);
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222 plot(t,messageX - Xmaster (:,1) + Xslave (:,1),’LineWidth ’,lSize);
223 grid on
224 grid minor
225 h=legend(’$$e_{mx}(t)$$’,’Location ’,’northeast ’);
226 set(h,’Interpreter ’,’Latex’,’FontSize ’,fSize);
227 ylim ([-20 32]);
228 xlabel(’$t[s]$’,’Interpreter ’,’Latex’,’Fontsize ’,fSize);
229 set(gcf ,’units’,’normalized ’,’outerposition ’ ,[0 0 1 1]);
230 saveas(gcf ,’Figuras /15 _message_X_error ’, format1);
231 saveas(gcf ,’Figuras /15 _message_X_error ’, format2);
232 close(fig)
233
234 %Figura 16
235 fig=figure(’visible ’,’off’, ’DefaultAxesPosition ’, [0.096 , 0.172,

0.890, 0.800]);
236 plot(t,messageZ - Xmaster (:,3) + Xslave (:,3),’LineWidth ’,lSize);
237 grid on
238 grid minor
239 h=legend(’$$e_{mz}(t)$$’,’Location ’,’northeast ’);
240 set(h,’Interpreter ’,’Latex’,’FontSize ’,fSize);
241 ylim([-5 15]);
242 xlabel(’$t[s]$’,’Interpreter ’,’Latex’,’Fontsize ’,fSize);
243 set(gcf ,’units’,’normalized ’,’outerposition ’ ,[0 0 1 1]);
244 saveas(gcf ,’Figuras /16 _message_Z_error ’, format1);
245 saveas(gcf ,’Figuras /16 _message_Z_error ’, format2);
246 close(fig)

A.5 Código para a obtenção dos valores de entropia

diferencial

Código A.5 – Entropia_Diferencial.m
1 [x_pdf , f_pdf] = ksdensity(sinal); % ’sinal ’ é o vetor do sinal

contínuo e deve ser substituído pelo sinal que se deseja
calcular a entropia diferencial

2
3 % Calcular a entropia diferencial (integral numérica)
4 H_diff = -trapz(x_pdf , f_pdf .* log2(f_pdf + eps)); % Adiciona eps

para evitar log(0)
5 fprintf(’Entropia diferencial: %.4f bits\n’, H_diff);
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