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Resumo

A sincronizacdo de sistemas caoticos e hipercadticos vem se destacando em diversas 4reas
da ciéncia e tecnologia, como comunicacio segura, criptografia e modelagem de fendmenos
naturais. Entretanto, grande parte das técnicas de sincronizacdo descritas na literatura
apresentam alto grau de complexidade, o que dificulta sua aplicacdo pratica. Neste trabalho,
propde-se uma nova lei de controle neural e sub-atuada para a sincronizagdo de um sistema
hipercadético de quatro dimensdes, caracterizada por sua simplicidade de implementacao
e bom desempenho na presenca de disturbios limitados. A estratégia fundamenta-se na
teoria de estabilidade de Lyapunov e foi validada por meio de simulacées no MATLAB' e
Simulink’. Além disso, demonstrou-se a aplicacdo da técnica de sincronizacio proposta
na criptografia de sinais para comunicagdo segura. Os resultados revelaram que a lei de
controle, atuando em apenas dois estados do sistema, € simples e robusta diante de distarbios
limitados, mostrando-se eficaz ap6s o escalonamento em amplitude de alguns estados do
sistema hipercadtico. Conclui-se que essa abordagem oferece uma solucéo pratica e eficiente
para a sincronizacao de sistemas hipercadticos, com potencial para aplicacdes em diversas
areas que demandem controle de sistemas dinAmicos complexos. Esse estudo contribui
para a ampliacdo do conhecimento na 4rea e abre caminho para futuras investigacoes sobre

controle simplificado e robusto em sistemas nao lineares.

Palavras-chave: Andlise de Lyapunov. Controle ndo-linear. Controle Neural. Sincronizacio
Caotica.



Abstract

Synchronization of chaotic and hyperchaotic systems has gained prominence in various
fields of science and technology, such as secure communication, cryptography, and mod-
eling of natural phenomena. However, many of the synchronization techniques described
in the literature exhibit a high degree of complexity, which complicates their practical im-
plementation. In this work, we propose a new neural and underactuated control law for
synchronizing a four-dimensional hyperchaotic system. This law stands out for its ease
of implementation and good performance in the presence of bounded disturbances. The
approach is based on Lyapunov stability theory and was validated through simulations in
MATLAB’ and Simulink’. In addition, the application of the proposed synchronization
technique in signal cryptography for secure communication has been demonstrated. The
results revealed that the control law, acting on only two states of the system, is both simple
and robust against bounded disturbances, proving effective after amplitude scaling of certain
states of the hyperchaotic system. We conclude that this approach provides a practical and
efficient solution for synchronizing hyperchaotic systems, with potential applications in
various domains requiring control of complex dynamical systems. This study contributes to
advancing knowledge in the field and opens up new avenues for future research on simplified
and robust control in nonlinear systems.

Keywords: Lyapunov Analysis. Nonlinear control. Neural Control. Chaotic Synchroniza-
tion.
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1 Introducao

1.1 Contextualizacao e motivacao

Nas ultimas décadas, o estudo de sistemas dindmicos cadticos tem recebido atencio
crescente em diversas areas da ciéncia e engenharia, como comunicagdes seguras (GU-
LARTE, K. H.; HARA et al., 2023a,b; WANG, A. et al., 2025; PRAJAPAT; KUMAR, D,;
KUMAR, P., 2025; DHINGRA; DUA, 2025; GA; BHANU, 2025; MANHIL; JAMAL, 2024;
BABANLI; KABAOGLU, 2024), processamento de sinais (DUARTE; EISENCRAFT, 2024;
YU; CHEN, W.; POOR, 2024), teoria de controle (KARTAL, 2025; BASHIR; MALIK; HUS-
SAIN, S., 2025), reacoes quimicas (RAZZAQ et al., 2025), meteorologia (DONG et al., 2024),
entre outros. A presenca de sensibilidade as condic¢des iniciais e comportamento impre-
visivel sdo caracteristicas marcantes dos sistemas cadticos (LORENZ, 1972), tornando-os
atrativos para aplicacdes que demandam alta complexidade dindmica. No entanto, quando
se trata de sistemas hipercadticos — isto €, sistemas cadticos com quatro ou mais dimensoes
(dois ou mais expoentes de Lyapunov positivos) (LETELLIER; ROSSLER, O. E., 2007) —, a
investigacdo ainda se encontra em expansao, pois tais sistemas apresentam dindmicas mais
complexas e um comportamento com um maior grau de imprevisibilidade (JIN, M.; SUN;
WANG, H., 2022).

Dentro desse contexto, a sincronizagdo de sistemas cadticos ou hipercaéticos surge
como um problema de grande interesse tedrico e pratico. O objetivo é garantir que as instan-
cias do sistema, mesmo quando sujeitas a perturbacdes ou incertezas, evoluam juntas ao
longo do tempo. As aplicacOes dessa sincronizacdo abrangem desde comunicagdes criptogra-
fadas (CLEMENTE-LOPEZ; JESUS RANGEL-MAGDALENO; MUNOZ-PACHECO, 2024;
WEN; LIN, 2024) até controle de robos (MOYSIS et al., 2020; YANG; QIN; LIAO, 2023) e
sistemas de energia (TADJ et al., 2024), passando por processamento de sinais biomédicos
(PARBAT; CHAKRABORTY, 2021) e identificacio de parAmetros em sistemas fisicos (PENG;
HE; SUN, 2022). Contudo, o projeto de leis de controle e observadores que assegurem a
sincronizacdo em sistemas de alta complexidade, como os hipercadticos de quatro dimensdes,
apresenta iniumeros desafios, especialmente no que se refere a robustez a disturbios, tempo

de convergéncia e implementacdo pratica.

Para contornar essas dificuldades, diversas abordagens tém sido propostas, como
métodos baseados em realimentacio linear (LAAREM, 2021), controle adaptativo (SHAFIQ;
AHMAD, 2025) e técnicas de observadores nao lineares (HUSSAIN, M. M. et al., 2021).
Recentemente, o uso de redes neurais tem emergido como uma alternativa promissora,
devido a capacidade dessas estruturas de lidar com nio linearidades complexas e de se
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adaptarem dinamicamente as mudancas no sistema (ANH; DAT, 2024; JIN, J. et al., 2024).
Além disso, a sub-a¢do (ou sub-atuador) traz uma perspectiva interessante ao permitir que o
controle ndo precise atuar plenamente em todas as varidveis do sistema, diminuindo custos
de implementacdo e, em alguns casos, tornando o método mais resiliente a falhas parciais
(GULARTE, K. H. M.; GOMEZ et al., 2023; GULARTE, K. H. M.; ALVES et al., 2021).

Neste trabalho, prop6e-se combinar essas duas frentes — controle neural e sub-atuado
— para sincronizar um sistema hipercadtico tetradimensional. A motiva¢do principal decorre
da necessidade de métodos mais eficientes e flexiveis para lidar com a alta complexidade e
instabilidade desses sistemas. Ao empregar redes neurais, busca-se aproveitar sua capacidade
de aproximar funcées e adaptar pardmetros em tempo real, mantendo ao mesmo tempo a
viabilidade de implementacdo, mesmo em cendrios onde ndo haja atuadores em todas as
varidveis de estado. Essa combinagdo inovadora visa nao apenas assegurar a sincronizagao
em cendrios adversos, mas também oferecer uma abordagem robusta e generalizavel a outros

sistemas hipercadticos que venham a ser estudados no futuro.

Desse modo, a relevancia do tema torna-se evidente: as possiveis aplicacoes praticas
e o avanco do conhecimento na drea de sistemas hipercadticos justificam a busca por novas
estratégias de controle que sejam teoricamente solidas e, a0 mesmo tempo, tenham potencial
de implementacao em escala real. Acredita-se que o desenvolvimento e validacao desse
método de sincronizacdo contribuirdo para expandir as fronteiras do controle de sistemas
hipercadticos, fornecendo uma ferramenta ttil para engenheiros, fisicos e cientistas em geral
que lidam com problemas de alta complexidade dinamica.

1.2 Estado da arte

A Figura 1 ilustra a evolucao dos estudos sobre caos e hipercaos, evidenciando os
marcos histéricos e conceituais que servem de base para o desenvolvimento das atuais
técnicas de controle e sincronizacdo. O ponto de partida é atribuido a (LORENZ, 1963), que
descreveu o primeiro modelo efetivamente reconhecido como caético, chamando aten¢do
para o fendmeno da sensibilidade as condicdes iniciais em sistemas dindmicos ndo lineares.

Em (ROSSLER, O., 1979), aprofundou-se no tema ao introduzir o conceito de hi-
percaos, caracterizado por apresentar pelo menos dois expoentes de Lyapunov positivos,
ampliando a complexidade das trajetdrias dindmicas. Alguns anos mais tarde, em (PECORA,;
CARROLL, 1990) lancou-se as bases da sincronizacdo cadtica, demonstrando que sistemas
caoticos podiam, sob certas condicdes de realimentacdo, evoluir de forma sincrona.

A partir desse alicerce, diversas vertentes de pesquisa comecaram a florescer. Em
(FRISON, 1992) aplicou-se redes neurais ao controle do caos, evidenciando o potencial de
aprendizado e adaptacdo dessas estruturas para mitigar comportamentos cadticos indeseja-
dos ou instaveis. Paralelamente, em (BEDROSSIAN, 1991), propds-se o controle sub-atuado
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de sistemas ndo lineares, sugerindo a possibilidade de reduzir a complexidade e o custo de

implementacdo ao usar menos atuadores do que o numero de estados do sistema.

(FRISON, 1992)
Controle do caos

com redes neurais

(LORENZ, 1963)
| Primeiro modelo cadtico )

Y
(ROSSLER, 0., 1979)
Introduziu o con-
ceito de hipercaos

\
(PECORA; CAR-
ROLL, 1990)
Prop6s a sincro-

I

nizacdo caodtica

(CUOMO; OPPE-
NHEIM; STRO-
GATZ, 1993)
Comunicacdo segura
baseada em caos

Y
(GULARTE, K. H.;
REGO; VARGAS, 2018)

(BEDROSSIAN, 1991)
Controle sub-atuado

de sistemas nio-lineares

Comunicagio segura
baseada em caos com

controle sub-atuado

v
(WANG, S., 2022)
Introdugdo de
um novo sistema

hipercaético 4D

A 4

{ (Hara, F. O.;

Vargas, 2025)

e sub-atuada para um

»  Sincronizacio neural
{ sistema hipercaético 4D

Figura 1 - Contribuicdes na area que culminaram na proposta deste trabalho.

Jaem (CUOMO; OPPENHEIM; STROGATZ, 1993) popularizou-se a aplicagdo direta
do caos em comunicagdo segura, apontando como a alta sensibilidade do comportamento

cadtico poderia ser explorada para criptografar informacdes. Seguindo essa linha, em (GU-
LARTE, K. H.; REGO; VARGAS, 2018) demonstrou-se como a integracdo de técnicas de
sub-atuadores poderia trazer maior robustez & comunicag¢do segura baseada em caos.
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Mais recentemente, em (WANG, S., 2022) introduziu-se um novo sistema hipercadtico
4D, evidenciando a continuidade das pesquisas em dinamicas de alta dimensdo, abrindo
caminho para a exploragdo de sistemas ainda mais complexos. Finalmente, na culminancia
desta linha evolutiva, surge a proposta deste trabalho (Hara, F. O. e Vargas, 2025) — que
consiste na aplicacdo conjunta de redes neurais e do controle sub-atuado para efetuar a
sincronizacdo de um sistema hipercadtico 4D.

Essa abordagem, objeto central da presente dissertacdo, visa combinar a adaptabi-
lidade das redes neurais com a eficiéncia do controle sub-atuado, oferecendo um método
promissor para lidar com a instabilidade inerente a sistemas de alta ordem. A proposta reflete
ndo apenas o avanco conceitual ao longo dos ultimos sessenta anos de pesquisa sobre caos
e hipercaos, mas também a convergéncia de duas ferramentas potentes — redes neurais
e controle sub-atuado — em prol de solucdes inovadoras para problemas complexos de

sincronizacao.

A andlise dos trabalhos dispostos na figura acima evidencia a evolucdo desta area ao
longo dos ultimos anos, bem como a lacuna de pesquisa ainda existente. Especificamente,
observa-se a auséncia de abordagens combinadas que unam técnicas neurais a estratégias
sub-atuadas em sistemas hipercadticos de alta ordem. Essa lacuna motivou o presente estudo,
que visa contribuir para o avanco do estado da arte propondo uma nova estrutura de controle
neural e sub-atuada, a ser aplicada em um modelo tetradimensional de sistema hipercadtico.
Espera-se, assim, reduzir a complexidade de projeto e incrementar a robustez, fornecendo
subsidios para aplicacdes em larga escala e/ou cendrios de incerteza elevada.

1.3 Objetivos

O presente trabalho tem como principal objetivo desenvolver e validar uma nova
estratégia de controle capaz de promover a sincronizacdo de um sistema hipercadtico te-
tradimensional, utilizando técnicas neurais e sub-atuadas. A proposta visa suprir lacunas
encontradas no estado da arte, unindo a flexibilidade de aproximacao oferecida por redes
neurais a economia de recursos e robustez caracteristica de esquemas sub-atuados.

Para alcancar este objetivo geral, os seguintes objetivos especificos foram estabeleci-
dos:

« Modelar e analisar o sistema hipercaoético tetradimensional, destacando suas principais
caracteristicas dindmicas e pontos criticos de instabilidade.

« Propor e desenvolver um controlador neural sub-atuado, descrevendo sua estrutura,
parametros de projeto e leis de adaptacao.
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« Realizar a prova matemadtica de estabilidade, utilizando a Teoria de Lyapunov e demais
conceitos tedricos necessarios para garantir a convergéncia do erro de sincronizacdo a
valores proximos de zero.

« Implementar simulagées computacionais no MATLAB, avaliando o desempenho da
técnica proposta em termos de rapidez de convergéncia, robustez a perturbacoes e
estabilidade.

« Aplicar a sincronizacdo proposta em um esquema para comunicagdo segura e avaliar
o seu desempenho.

« Discutir as contribuicoes e limitacdes do método, sugerindo possiveis extensoes e
aplicacdes praticas para pesquisas futuras.

Com base nestes objetivos, espera-se que a metodologia aqui proposta amplie as
perspectivas de uso do controle sub-atuado e das redes neurais na sincronizacdo de sistemas
hipercadticos, contribuindo para o avanco do conhecimento na area e incentivando novas
aplicagdes e desenvolvimentos.

1.4 Organizacao deste trabalho

Esta dissertacdo estd organizada em cinco capitulos, além das referéncias bibliografi-
cas e apéndice. A seguir, descrevemos brevemente o contetido de cada capitulo:

Capitulo 1 - Introduciao: Apresenta a contextualizacdo e motivacdo do tema, o
estado da arte relacionado aos estudos sobre sincronizacdo de sistemas hipercaoéticos, os
objetivos da pesquisa e, por fim, esta visdo geral da estrutura da dissertacao.

Capitulo 2 - Conceitos Preliminares: Revisa os principais fundamentos teéricos
necessarios para o desenvolvimento do trabalho. Sdo abordados temas como sistemas cadticos
e hipercadéticos, teoria de estabilidade de Lyapunov, desigualdade de Young, escalonamento
em amplitude e frequéncia e nocdes de redes neurais artificiais. Esses conceitos formam a

base que justifica as metodologias e analises adotadas nos capitulos seguintes.

Capitulo 3 - Proposta de Controle Neural e Sub-atuado: Descreve em detalhes o
sistema hipercaotico tetradimensional que serve de objeto de estudo e apresenta a técnica
de controle proposta. Sdo discutidas a modelagem da estratégia de controle, a formulacio do
controlador sub-atuado e as redes neurais utilizadas, culminando na prova matematica de
estabilidade e sincronizacao.

Capitulo 4 - Simulacoes e Validacdes: Relata a implementacio das simulacdes no
MATLAB, destacando as configuragdes adotadas, os resultados obtidos e a sua aplicagdo
em comunicacdo segura. As métricas de desempenho, bem como aspectos de robustez e
convergéncia, sdo tratados neste capitulo.
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Capitulo 5 - Conclusdes e Trabalhos Futuros: Traz o fechamento do trabalho,
sintetizando as principais contribuicdes e limitacdes encontradas, bem como possiveis
desdobramentos e sugestdes para pesquisas futuras.

Ap0s esses capitulos, sdo apresentadas as referéncias bibliograficas. Em seguida, sdo
disponibilizados apéndices contendo os codigos de simulacio utilizados neste trabalho.
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2 Conceitos preliminares

2.1 Sistemas Caoéticos e Hipercaoéticos

A teoria do caos dedica-se ao estudo de sistemas dinamicos ndo lineares que exibem
comportamentos aparentemente imprevisiveis, mesmo quando suas equacgoes de evolugdo
sdo perfeitamente conhecidas. Em tais sistemas, pequenas perturbacdes nas condicdes
iniciais podem resultar em grandes diferencas na dindmica ao longo do tempo, fen6meno
frequentemente associado ao chamado efeito borboleta (LORENZ, 1963).

2.1.1 Definicao e Caracterizacdo de Sistemas Cadticos

Considere um sistema dindmico continuo no tempo, descrito por:

x(t) = £(x(),t) (2.1)

onde x(t) € R" é o vetor de estados e f : R"” X R — R" ¢ uma funcio néo linear que define
a dinamica do sistema. Em termos gerais, podemos chamar esse sistema de cadtico se ele
apresenta:

1. Sensibilidade as Condic¢des Iniciais: Dada uma condicio inicial x, e uma condicio
perturbada x,, + 6x, com ||d%,|| muito pequena, as trajetorias x(t) e y(t) que partem
dessas condicOes divergem exponencialmente no tempo. Formalmente, existe pelo

menos um expoente de Lyapunov A > 0 tal que

Ix(8) —y(@)|| = ||6%]| ¥, A >0 (2.2)

2. Densidade de Orbitas Periédicas: Em muitos sistemas caoticos, podem existir
orbitas periodicas dispersas pelo espaco de estados; entretanto, a presenca simultanea
de sensibilidade as condigdes iniciais faz com que essas Orbitas ndo sejam dominantes
na dindmica.

3. Mistura Topolégica: Qualquer regido do espago de estados eventualmente se “espalha”
(ou se mistura) em todo o conjunto invariante do sistema. Em outras palavras, as
trajetorias podem visitar complexamente diferentes partes do espaco de fases.

Em termos praticos, a sensibilidade as condi¢ées iniciais torna o longo prazo das
trajetorias extremamente dificil de prever, mesmo que o sistema seja deterministico (ou seja,

ndo haja incerteza ou aleatoriedade intrinseca nas equagoes).
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2.1.1.1 Exemplo Cldassico: Sistema de Lorenz

Um dos exemplos mais conhecidos de sistema cadtico € o Sistema de Lorenz (LORENZ,
1963), dado pelas equagoes:

X =0y —x)
y=x(p—2)—-y (2.3)
z=xy—pz

onde o, p e 8 sdo parametros positivos. Para certos valores (por exemplo, o = 10, p = 28,
B = 8/3), esse sistema exibe o caracteristico atrator de Lorenz (Figura 2), que marcou o
inicio do estudo detalhado de trajetérias cadticas em sistemas de trés dimensdes.

Figura 2 — Atrator de Lorenz.

2.1.2 Conceito de Hipercaos

Enquanto em um sistema cadtico tipicamente h4 apenas um expoente de Lyapunov
positivo, um sistema hipercadtico apresenta dois ou mais expoentes de Lyapunov positivos.
Para analisar os expoentes de Lyapunov, costuma-se linearizar o sistema em torno de uma
trajetdria e estudar a evolucdo das variagdes infinitesimais, governadas pela derivada de f.

No caso continuo, define-se a matriz Jacobiana:

100= 20 29

Os expoentes de Lyapunov {4;};_, sdo, em esséncia, valores médios da taxa de expansao
ou contra¢do ao longo das direcdes dos autovetores de J. Matematicamente, um sistema de

dimensao n € considerado hipercaoético se:
L>2,>0, L, e€R (j=3,..,n) (2.5)

onde 4, e 4, sdo os primeiros dois maiores expoentes de Lyapunov positivos, indicando que
o sistema diverge exponencialmente em pelo menos duas dire¢des independentes do espaco
de estados. Em geral, requer-se n > 4 para acomodar ao menos dois expoentes de Lyapunov

positivos.
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2.1.2.1 Exemplo de Sistema Hipercaodtico

Um exemplo simples é o chamado Sistema Hipercadtico de Rissler modificado, que
introduz termos adicionais para permitir a existéncia de multiplos expoentes de Lyapunov
positivos:

X = —(x + x3)

X,=Xx,+ax

7 2 (2.6)
X3 =b+x;(x; —¢)+ x4

X4 = _dX3

onde a, b, ¢ e d sdo pardmetros ajustdveis. Para certas combinacdes desses parametros,
observa-se a existéncia de dois expoentes de Lyapunov positivos, caracterizando o hipercaos.

2.1.3 Implicacoes e AplicacOes

A presenca de multiplos expoentes positivos torna os sistemas hipercaoticos parti-
cularmente atraentes para aplicagcdes que se beneficiam de uma dindmica rica e nao linear.
Entre os principais campos de aplicacdo, destacam-se:

« Comunicacio Segura e Criptografia: A elevada imprevisibilidade e pseudoaleatorie-
dade dos sinais hipercadticos pode ser explorada para cifrar mensagens ou mascarar

informacodes.

« Processamento de Sinais: Geracao de sequéncias pseudoaleatorias, compressao ou

analise de sinais que contenham comportamentos complexos.

+ Modelagem de Fenémenos Naturais: Fenomenos em fluidodindmica, quimica e
biologia podem se manifestar como processos hipercadticos, sobretudo quando existem

inGimeras instabilidades acopladas.

2.1.4 Desafios para Controle e Sincronizacdo

Apesar de seu valor cientifico e tecnoldgico, a alta complexidade dos sistemas hi-
percadticos representa um obstaculo para o desenvolvimento de técnicas de controle e
sincronizacdo eficazes. A divergéncia em multiplas direcdes impde requisitos mais rigidos

ao controlador, como:

+ Dimensionamento de Atuadores: Garantir que mesmo um controle sub-atuado
(com menos variaveis controlaveis do que o total de estados) seja capaz de suprimir ou

sincronizar a dindmica hipercadtica.
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« Observadores Nio Lineares: A construcdo de observadores mais sofisticados para
estimar estados ndo medidos, dada a possibilidade de crescimento exponencial dos
erros em diferentes diregoes.

« Tempo de Convergéncia e Robustez: As multiplas instabilidades requerem leis de
controle com altas capacidades de reacdo e adaptacdo, além de robustez a perturbacdes
externas e incertezas.

Esses fatores motivam a investiga¢ao continua de métodos mais avangados de sincro-
nizacdo, incorporando abordagens como controle adaptativo, inteligéncia computacional,
observadores robustos e arquiteturas de redes neurais cada vez mais elaboradas.

2.2 Teoria de estabilidade de Lyapunov

O estudo de estabilidade em sistemas dindmicos ndo lineares é amplamente funda-
mentado na Teoria de Lyapunov, inicialmente desenvolvida por Aleksandr Mikhailovich
Lyapunov no final do século XIX. Essa teoria fornece ferramentas conceituais e matematicas
para analisar se um sistema permanece proximo de um ponto de equilibrio (ou trajetdria de

equilibrio) ao sofrer pequenas perturbacdes em suas condi¢des iniciais (KHALIL, 2009).

2.2.1 Definicoes de Estabilidade

Considere um sistema dindmico continuo descrito por:

x(t) = £f(x(1)), x(t) €R" (2.7)
onde f : R" — R" é uma funcdo continua, ndo necessariamente linear. Suponha que exista
um ponto de equilibrio x* € R" tal que

f(x*)=0 (2.8)

A estabilidade desse ponto de equilibrio pode ser definida de diferentes maneiras (SLOTINE;
LIetal., 1991):

Estabilidade de Lyapunov (no sentido de Lyapunov): O ponto de equilibrio x* é estavel

se, para todo ¢ > 0, existe um § > 0 tal que, sempre que ||x(¢,) — X*|| < §, entdo
||x(t) —x*|| < e paratodot > t,

Em termos intuitivos, isso significa que, ao iniciar suficientemente préximo de x*, a trajetoria

permanece proxima a esse ponto.
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Estabilidade Assintdtica: O ponto de equilibrio x* ¢ assintoticamente estavel se, além de

ser estavel no sentido de Lyapunov, vale
lim ||x(t) — x*|| =0
t—o0
isto é, as trajetdrias ndo apenas permanecem proximas de x*, mas também convergem para

ele com o passar do tempo.

Estabilidade Exponencial: O ponto de equilibrio x* é exponencialmente estivel se existe
um conjunto de constantes positivas C > 0 e a > 0 tais que:

I%(t) — x| < C e ||x(ty) — x|

para todo t > t,. Nesse caso, a convergéncia até o ponto de equilibrio se d4 em velocidade

exponencial.

2.2.2 Meétodo Direto de Lyapunov

O chamado método direto de Lyapunov (ou segunda forma de Lyapunov) ndo exige a
linearizacao do sistema e se baseia em uma funcdo de Lyapunov, a qual desempenha um

papel anédlogo ao de uma energia potencial. O procedimento consiste em:

1. Escolher uma Funcédo Candidata: Seja V(x) : R" — R uma funcdo continuamente

diferenciavel e positiva definida na vizinhanca de x*. Isso significa que
V(x)>0 parax#x*, e Vx)=0

2. Verificar a Derivada de V(x) ao longo das Solugdes: Calcule a derivada de V(x(t))

em relacdo ao tempo, que pode ser expressa por
V(x) = VV()f(x)
onde VV(x) é o gradiente de V. Analisa-se se V é negativa semidefinida ou negativa
definida.
2.2.2.1 Critérios de Estabilidade
Com base na funcdo de Lyapunov, tém-se os seguintes resultados (KHALIL, 2009):
« Se V(x) € positiva definida e V(x) ¢ negativa semidefinida em uma vizinhanca de
x*, entdo x* é estavel no sentido de Lyapunov.

« Se V(x) é positiva definida e V(x) ¢ negativa definida, entdo x* é assintoticamente

estavel.

« Se, além disso, existem constantes a,, a,, a; > 0 tais que
a|[x[|P < V(X) < alx|9, V(X)L —aslx|"

para algumas poténcias p, q,r > 0, pode-se demonstrar estabilidade exponencial.



28

2.2.3 Meétodo Indireto de Lyapunov (Linearizacado)

A primeira abordagem de Lyapunov, também conhecida como método indireto, baseia-
se na andlise de autovalores da parte linearizada do sistema em torno do ponto de equilibrio.

Para o sistema (2.7), lineariza-se f(x) na vizinhanca de x*:

_ Af(x)

A=— (2.9)

xX=x*

Se todas as partes reais dos autovalores de A forem negativas, conclui-se que x* é
assintoticamente estavel para o sistema nio linear. Entretanto, caso haja autovalores com
parte real positiva ou nula, ndo se podem tirar conclusdes definitivas sobre a estabilidade
ndo linear apenas com esse método (SLOTINE; LI et al., 1991).

2.2.4 Aplicacoes em Sistemas Cadticos e Hipercaoticos

Em sistemas cadticos ou hipercadticos, a aplicacio da Teoria de Lyapunov desempenha
um papel crucial na anélise de convergéncia em problemas de sincronizacdo. Por exemplo,
em esquemas de controle que buscam sincronizar duas réplicas de um sistema hipercaotico,
costuma-se projetar um controlador ou observador cujas leis de realimentagdo garantam a
dissipacdo da chamada funcdo de Lyapunov associada ao erro de sincronizacdo (CHEN, G.,
1999). Dessa maneira, demonstra-se formalmente que, mesmo diante da alta complexidade
e do namero de expoentes de Lyapunov positivos, a dinamica de erro converge a zero,

assegurando a sincronizacao.

Além disso, a escolha apropriada da funcdo de Lyapunov € muitas vezes inspirada
em formas quadraticas ou combinag¢des polinomiais especificas, adaptadas as nio lineari-
dades presentes. Em alguns estudos, termos adicionais ou pesos varidveis sdo introduzidos
para lidar com o hipercaos de maneira eficiente. Na sub-secdo 2.2.1 se define a Estabilidade
Exponencial que se revela particularmente relevante nesses cendrios, pois o tempo de con-
vergéncia assume papel fundamental em aplicagdes praticas, tais como comunicacio segura

e criptografia baseadas em caos.

Resumo

Em sintese, a Teoria de Lyapunov oferece uma estrutura robusta para analisar a
estabilidade de pontos de equilibrio e trajetorias de sistemas ndo lineares, sem recorrer
somente a linearizacdo ou a simplificacoes excessivas. Para fins de sincronizacdo de sistemas
cadticos e hipercaoticos — abordagem central deste trabalho — a formulacao de uma funcdo
de Lyapunov adequada e a verificacdo de sua derivada negativa sdo etapas fundamentais
na demonstracao formal de estabilidade e convergéncia dos erros de sincronizacao. Essas
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ferramentas matematicas serdo utilizadas nos capitulos subsequentes para desenvolver e

validar o controlador proposto.

2.3 Desigualdade de Young

A Desigualdade de Young constitui uma ferramenta matematica relevante para ma-
nipular e estimar produtos de termos em diversas areas da andlise, incluindo sistemas
de controle e teoria de estabilidade. Em sua forma mais simples, para nimeros reais nao
negativos, ela estabelece que:

p q
ab < & 42 (2.10)
p q
onde a,b > 0e p,q > 1 satisfazem
1 1
—+=-=1
P q

Esse resultado € particularmente util ao se lidarem com termos de produto que aparecem em
equacoes diferenciais, principalmente em provas de estabilidade via métodos de Lyapunov
(KHALIL, 2009).

2.3.1 Justificativa Geral

A idéia central por trds da Desigualdade de Young é fornecer uma maneira de majorar
ab por uma expressdo que separa as variaveis a e b, cada uma elevada a um expoente
compativel. Dessa forma, € possivel controlar cada termo de modo individual, o que se
mostra conveniente ao construir fun¢des de Lyapunov ou ao analisar sistemas com multiplos
graus de liberdade.

2.3.2  Aplicaclo em Sistemas Dindmicos

Em sistemas dindmicos — especialmente os nao lineares — a Desigualdade de Young
geralmente aparece quando se deseja impor limites sobre termos cruzados na derivada de
uma func¢io de Lyapunov. Por exemplo, ao avaliar V(x), podem surgir produtos como x y,
que dificultam a andlise do sinal dessa derivada. Por meio da Desigualdade de Young, esse
produto pode ser substituido por uma soma de poténcias separadas de x e y, tornando mais
clara a anélise de negatividade de V, além de possibilitar o uso de outros argumentos ou

pardmetros de controle para garantir a estabilidade.

2.3.2.1 Exemplo Simples
Seja o termo ab, com a,b > 0. Escolhendo p = g = 2(pois1/p+1/q = 1), obtém-se:

a? b?
b < —+ =
w =75 73
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Dessa forma, “separa-se” o produto em duas parcelas quadraticas. Em provas de estabilidade,
esse procedimento costuma facilitar a andlise, pois a derivada de Lyapunov pode ser somada
a outras parcelas quadraticas ja presentes, contribuindo para estabelecer a negatividade de
V(x).

2.3.3 ExtensoOes e Outras Versoes

Existem versdes mais gerais da Desigualdade de Young, incluindo formas integrais ou
conjugadas, que aparecem na andlise de convolugdes e transformadas de Fourier, bem como
em aplicagdes que envolvem espacos de funcdes LP. Em controle adaptativo, a Desigualdade
de Young ¢é frequentemente usada em conjunto com a Desigualdade de Cauchy-Schwarz
para tratar termos de ajuste e incertezas nos parametros.

Em todos esses cenarios, a utilidade fundamental da Desigualdade de Young reside em
quebrar produtos de dificil manipulacido em partes independentes que podem ser controladas
ou estimadas separadamente. Essa caracteristica faz dela um artificio matematico poderoso

em demonstracoes de estabilidade, otimizacdo e andlise de sistemas nao lineares.

2.4 Escalonamento em Amplitude e na Frequéncia

O escalonamento em amplitude e na frequéncia é uma técnica frequentemente
utilizada para ajustar sinais ou fun¢ées, de modo a tornar sua andlise e/ou implementacdo
mais simples e estavel (OPPENHEIM; VERGHESE, 2017). Em aplicacdes de controle de

sistemas dinamicos, essas transformacdes podem servir, por exemplo, para:

« evitar saturacdes ou superaquecimentos ao manter valores de amplitude dentro de

uma faixa segura;

« facilitar a andlise em torno de uma frequéncia especifica de interesse, reescalonando a

dindmica temporal para evidenciar periodos e caracteristicas relevantes;

« ajustar ganhos de malha de controle em funcio de amplitude e frequéncia, garantindo
melhor desempenho e robustez.

2.4.1 Escalonamento em Amplitude

O escalonamento em amplitude (por vezes chamado de “normalizacdo” ou “ajuste de
magnitude”) consiste em multiplicar o sinal ou variavel de estado por um fator constante, A.

Se x(t) € o sinal original, o sinal escalonado pode ser expresso como:

xesc(t) = A- X(t)
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« Se A > 1, o sinal sofre amplificacdo, aumentando proporcionalmente toda a sua faixa
de valores.

« Se 0 < A < 1, ha atenuacdo, atil para manter o sinal dentro de limites de hardware ou

dentro de modelos analiticos lineares aproximados.

Em muitos problemas de controle ndo linear, esse escalonamento é crucial para
evitar que a variavel controlada exceda os limites fisicos de sensores ou atuadores, ou para

simplificar as condi¢des iniciais em simulagdes numéricas.

2.4.1.1 Exemplo - Sistema de Lorenz:

Considere as variaveis do sistema de Lorenz (cadtico) que podem atingir amplitu-
des muito elevadas para certos valores do parametro p. Uma abordagem para contornar

saturacoes de atuadores é:

Xeel) = 160 Vo) = 3O 2al0) = 32200

onde M é escolhido de modo que as novas Variaveis X.q., Yesc» Zesc PEIManecam em uma faixa
segura (por exemplo, entre -1 e 1). Isso ndo altera a natureza qualitativa do caos, mas diminui

a escala dos valores para algo mais manejavel.

2.4.2 Escalonamento na Frequéncia (ou no Tempo)

O escalonamento na frequéncia envolve a modificacdo da escala de tempo na qual
o sistema € observado ou controlado. Se definimos 7 = at com a > 0, entdo um sinal x(t)

transformado na nova escala fica:
T

Xese(T) = x(a)

« Se o > 1, o sistema ¢é acelerado, equivalendo a compressdo na escala de tempo (au-

mentando a frequéncia aparente das oscilacoes).

+ Se 0 < a < 1, hd uma desaceleragdo, alongando a evolu¢do no tempo (reduzindo a

frequéncia).
Esse procedimento pode ser util para:

« andlise de fendmenos rapidos ou lentos: real¢ar as oscilagdes de interesse, seja para
observar altas frequéncias ou estudar dindmicas que se desenvolvem muito devagar;

« sintonia de controladores: ao retardar virtualmente um sistema muito rapido, pode-se
facilitar a identificacdo ou a implementacao de leis de controle. Em sentido oposto,
acelerar a dinamica ajuda a estudar sistemas muito lentos.
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2.4.2.1 Exemplo - Oscilador de Van der Pol:

O oscilador de Van der Pol pode ser descrito por:
x=y, y=u(l-x*)y-x

Para y muito grande, a convergéncia para a Orbita periodica € muito rapida, tornando a simu-
lagdo rigida. Se definimos t = ut, a evolucdo na varidvel t se torna mais lenta, permitindo
estudos de estabilidade e controle sem problemas de rigidez nos métodos numéricos.

2.4.3 Combinacio de Escalonamentos

Em muitos casos praticos, € necessario combinar tanto o escalonamento em am-
plitude quanto o escalonamento na frequéncia. Isso ocorre, por exemplo, se hd interesse

em:

« normalizar estados em uma faixa especifica, como [—1, 1],

« ajustar a dinamica temporal a um intervalo conveniente para medicdo ou para o

algoritmo de controle.

2.4.3.1 Exemplo - Sistema Hipercaotico 4D:

Para um sistema hipercaoético tetradimensional em que as variaveis x;, x,, X3, X4

podem assumir valores elevados e oscilar em diversas frequéncias, pode-se definir:

« Fatores de amplitude y; para cada estado, a fim de manté-los em faixas adequadas;

« Uma transformacio de tempo 7 = at, compressora ou expansora, para realgar as

dinamicas relevantes.

Tais procedimentos tornam o sistema mais seguro para implementacao em hardware
e também facilitam a andlise de controlabilidade e estabilidade.

Sintese

Em sintese, o escalonamento em amplitude e na frequéncia representa uma estratégia
versatil para refinar o desempenho de simulagées, contornar limitacoes fisicas e ajustar
diferentes modos dindmicos. Como resultado, essas técnicas sdo adotadas tanto em pesquisas
teoricas — a fim de facilitar andlises de estabilidade e controle — quanto em implementacoes
préticas, auxiliando na protecdo de equipamentos e na otimizagdo de recursos.
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2.5 Correlacao Nao Linear de Kendall

Em vérias situag6es de andlise de dados e sinais, interessa avaliar se duas variaveis
(ou sinais) apresentam uma relacdo monotonica, isto é, se é possivel descrever uma tendén-
cia de crescimento ou decrescimento conjunto sem exigir linearidade estrita. Um método
apropriado para isso € o coeficiente de correlagcdo de Kendall, comumente denotado 7 (tau).
Diferentemente das técnicas de correlacio lineares, Kendall captura relagcées monotdnicas
mais gerais e ¢ considerada mais robusta em certos cenarios estatisticos (KENDALL, 1938;
CONOVER, 1999).

2.5.1 Definicdo e Interpretacio

Considere um conjunto de n observagdes pareadas {(x;, y;)}_,. Diz-se que um par
(x;, ;) € (x},;) € concordante se x; < x;ey; < y;,ousex; > x;ey; > y;. Casosejam
“invertidos” (por exemplo, x; < x; mas y; > y;), o par é dito discordante. Entdo, define-se o
coeficiente 7 de Kendall como

(numero de pares concordantes) — (nimero de pares discordantes)
TKendall = (n)

2

(2.11)

n(n-1) , . . .
@D ¢ o total de pares possiveis. Assim, Tg,qa; Varia de —1 (quando

onde () =
todos os pares sdo discordantes) até +1 (quando todos sdo concordantes). Valores proximos
de 0 indicam que ndo ha relacio monotonica clara entre x e y.

2.5.2 Aplicacio em Sistemas Dindmicos e Criptografia

No contexto de sinais dindmicos ou mensagens cifradas, a correlacdo de Kendall
pode ser utilizada para aferir se dois sinais apresentam uma relacdo monotonica (ou se estao
essencialmente “desalinhados”). Isso é particularmente util em situagées em que:

+ As variaveis podem ter relacdo nao linear: Quando suspeita-se que a mensagem
cifrada ainda mantenha algum padrdo com a mensagem original, mesmo que esse
padrdo ndo seja linear, g4 pode detectar essa dependéncia.

+ Deseja-se avaliar pequenas amostras: O cilculo de Kendall tende a ser mais robusto

em amostras menores, quando comparado a outras técnicas de correlagdes nao lineares.

Em comunicacgdo segura, se a correlacdo de Kendall entre a mensagem original e a
mensagem cifrada é préxima de zero, isso sugere que ndo hé relagdo monotonica residual.
Assim, um interceptador sem a “chave” ou sem o conhecimento do esquema de sincronizacdo
encontrard dificuldade em extrair padrdes que revelem a mensagem original.
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Conclusio

De modo geral, o coeficiente de Kendall se mostra apropriado para quantificar a
existéncia de qualquer relacdo monotonica (ndo necessariamente linear) entre dois sinais.
Para este trabalho, avaliar 7.4, €ntre as mensagens originais e as mensagens criptografadas
pode confirmar a auséncia de padrdes e a robustez da técnica de cifragem. Se os valores
de Tgenqan forem efetivamente reduzidos (préximos a 0), entdo a cifragem baseada em caos
estard bem sucedida.

2.6 Entropia de Sinais

A entropia é uma medida fundamental no contexto da teoria da informacdo e serve
para quantificar o grau de incerteza ou aleatoriedade presente em um conjunto de dados ou
em um sinal. Em esséncia, quanto maior a entropia, mais imprevisivel € a distribuicdo dos
valores assumidos pelo sinal (SHANNON, 1948; COVER, 1999).

2.6.1 Definicdo de Shannon

Claude E. Shannon, em seu trabalho pioneiro sobre teoria da informacao, definiu a
entropia de uma varidvel aleatéria X que pode assumir valores {x;,X,, ... ,X,} com probabili-
dades {p;,p,, --- ,Pn} COMO: )

HX) = —Zpi log, p;. (2.12)
i=1
Essa expressdo reflete a quantidade média de informacdo necessaria para descrever o re-
sultado de X. Quando todos os p; sdo iguais, X € totalmente imprevisivel — a entropia é
maxima; se, ao contrario, X assume certo valor com probabilidade préxima de 1, h4 pouca
incerteza, e a entropia se torna baixa.

2.6.2 Entropia Diferencial

A entropia discutida por Shannon para varidveis aleatorias discretas mede a incerteza
em termos de uma soma sobre probabilidades. Para variaveis continuas, em que a proba-
bilidade € descrita por uma densidade fx(x), a nocdo andloga recebe o nome de entropia
diferencial.!

1 Em alguns textos também chamada de entropia continua. A formulacio foi introduzida pelo proprio

Shannon na extensdo continua de sua teoria de informacéao.
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2.6.2.1 Definicao

Seja X uma variavel aleatdria continua com densidade de probabilidade fx(x) defi-
nida em R. A entropia diferencial de X é definida por

B0 = =[x g, fx(d. 213)

O resultado ¢é expresso em bits quando se usa logaritmo de base 2 (pode-se usar logaritmo

natural, obtendo-se o valor em nats).

2.6.2.2 Observacoes Importantes

« Diferentemente da entropia discreta, h(X) pode assumir valores negativos. Isso ocorre
porque a densidade de probabilidade pode ser maior que 1 em regiées muito concen-

tradas, de modo que log, fx(x) se torna positivo.

« A entropia diferencial ndo é invariante a mudancas de escala. Se Y = aX com a # 1,
entdo h(Y) = h(X) + log, |al.

« Apesar dessas particularidades, 7(X) mantém varias propriedades uteis: maximiza-se
para a densidade Gaussiana com variancia fixa, aparece em limites de capacidade de

canal e na definicdo de informagdo miitua continua.

2.6.2.3 Interpretacdo em Processamento de Sinais

Em sinais analégicos pode-se estimar h(X) a partir de amostras, utilizando histo-
gramas finos ou técnicas de kernel density estimation. Valores altos de entropia diferencial
sugerem sinais amplamente dispersos ou ruidosos; valores baixos indicam sinais mais con-

centrados ou previsiveis.

2.6.2.4 Aplicaclo a Sinais Cadticos

Sinais provenientes de sistemas cadticos ou hipercadticos tendem a ocupar regioes
complexas no espaco de fase, produzindo distribui¢ées de amplitude com maior dispersao.
Assim, espera-se que apresentem entropia diferencial elevada em comparagdo a sinais
deterministicos regulares. Na prética:

« Um sinal caético usado para mascarar uma mensagem deve manter ou aumentar h(X),
dificultando a deteccdo de padrdes pelo adversario.

« A comparacdo de h(X) antes e depois da inser¢cdo da mensagem permite avaliar se o
processo de cifragem preserva a “aleatoriedade aparente” do sinal.
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2.6.3 Relevancia no Trabalho

bad

Para este estudo, a andlise de entropia pode servir como uma métrica de “qualidade
ou “forca” do mascaramento de sinais. Se a entropia do sinal criptografado (resultante do
caos + mensagem) permanecer elevada, entdo um interceptador (sem acesso aos parametros
de sincronizacdo) terd maior dificuldade em distinguir o contetido original. Além disso, a
entropia pode indicar se a técnica de cifragem baseada em caos estd produzindo um sinal
adequadamente complexo, reduzindo a sua correlagdo com a mensagem original.

Em suma, a entropia fornece uma perspectiva quantitativa do qudo imprevisivel é
um sinal. No &mbito de sistemas hipercaotticos e criptografia, manter ou aumentar a entropia
do sinal € desejavel para dificultar ataques de forca bruta ou andlises estatisticas que possam

expor o conteudo ou a chave de cifragem.

2.7 Redes Neurais Artificiais

As Redes Neurais Artificiais (RNAs) sdo estruturas computacionais inspiradas no com-
portamento do sistema nervoso biolégico. Seu principio fundamental consiste em combinar
diversos “neurdnios artificiais” interconectados, de modo a aprender padrées complexos de
mapeamento entre entradas e saidas, sem a necessidade de especificar explicitamente um
modelo matematico detalhado (HAYKIN, 1998).

2.7.1 Arquitetura Basica

Uma rede neural tipica feedforward (FNN) pode ser organizada em camadas: uma
camada de entrada, uma ou mais camadas intermediarias (ocultas) e uma camada de saida.
Cada neurdnio em uma camada oculta recebe entradas de todos (ou parte) dos neurdnios da
camada anterior, computa uma soma ponderada e aplica uma funcdo de ativacdo ndo linear
para produzir sua saida.

Considere x € R" como o vetor de entrada da rede, e y € R™ como o vetor de saida.
Em uma RNA com apenas uma camada oculta, cada neurdénio da camada oculta efetua o
calculo:

n

1 (€Y) .

z; = Zwﬁ x; + bj , paraj=12,..,h,

i=1

0

ji

entrada ao j-ési Oni bV ¢ de bias do j-ési onio d imei
J-eésimo neurénio, e b;” ¢ o termo de bias do j-¢simo neurénio da primeira

onde h € o numero de neurdnios na camada oculta, w},” sdo os pesos que ligam a i-ésima

camada. Em seguida, uma funcéo de ativagdo S(-) (ver Se¢do 2.7.2) € aplicada a cada z;,

gerando uma saida o; = S(z;).
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Por fim, a camada de saida efetua nova soma ponderada das o;:

h
Vi = Zw,(fj) g + bfcz), parak =1,2,...,m,
j=1

@) 2
k €by
tros W e b engloba todos esses valores, constituindo o “conhecimento” da rede neural.

onde w sdo pesos e bias associados a camada de saida. Assim, o conjunto de pardme-

2.7.2 Notacdo e Definicdes Matematicas

Nesta dissertacdo, adotaremos a seguinte notacdo para representar os pesos da rede
neural ao longo das derivagdes de controle e sincronizacao:

« W*: denota o conjunto de pesos ideais ou 6timos, isto €, aquele que melhor aproxima a
funcdo alvo em um sentido tedrico (por exemplo, sob certas hipdteses do Teorema da
Aproximacgao Universal).

« W: corresponde ao conjunto de pesos estimados em tempo real, que sdo adaptados por
um algoritmo de aprendizado ou de controle adaptativo. Em outras palavras, W ¢ a
estimativa dos pesos que a rede possivelmente converge para se aproximar de W*.

« W: representa o conjunto de erro de aproximagdo entre os pesos estimados e 0s pesos
ideais da rede neural. Usualmente, W = W — W*.

Além disso, definimos a fungdo sigmoidal (ou logistica) S : R — R, cujo papel é
introduzir ndo linearidade na rede:

1
1+eu’

S(u) =

Em alguns casos, também é conveniente adotar a forma derivada dessa funcdo (para métodos
de retropropagacio), notada por:

S'(w) = Su)(1—S)).

Para redes com multiplas camadas, a ideia € similar: cada camada ¢ terd pesos w®
e bias b®). No contexto especifico desta dissertacio, os simbolos W*, W e W serdo utilizados

para destacar o papel de cada conjunto de pesos no esquema de controle adaptativo/neural.

2.7.3 Capacidade de Aproximacdo

Um resultado importante para o uso de RNAs em controle nao linear e sincronizagao
de sistemas (hiper)caoticos é o Teorema da Aproximagdo Universal. Em termos gerais, ele
afirma que, sob certas condic¢des (por exemplo, funcdo de ativacdo continua e ao menos uma
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camada oculta com numero suficiente de neurdnios), uma rede neural pode aproximar arbi-
trariamente bem qualquer funcio continua definida em um conjunto compacto (HORNIK;
STINCHCOMBE; WHITE, 1989).

Essa capacidade de aproximagdo universal justifica empregar RNAs para lidar com
incertezas nao lineares em sistemas dindmicos complexos, pois podemos presumir a existén-
cia de um conjunto de pesos W* capaz de representar (com erro arbitrariamente pequeno) a

dinamica ou a funcdo desconhecida.

2.7.4 Aprendizado e Ajuste dos Pesos

Para estimar W em direcio a W*, usam-se processos de aprendizado baseados em
métodos de gradiente ou em estratégias adaptativas. Se a rede for aplicada ao controle de
um sistema, um algoritmo de adaptagdo on-line pode atuar sobre W de forma que a lei
de controle dependa tanto das medicoes de saida quanto de alguma funcdo de erro. Esse

processo pode ser descrito genericamente por:

A~

W = T¢(xW),

onde I' ¢ uma matriz (ou ganho) de adaptacio, e qb(x,W) representa uma funcdo de correcdo
dos pesos, derivada de objetivos como minimizar um erro de aproximacao ou garantir a
estabilidade de Lyapunov do erro de controle.

2.7.5 Aplicacoes em Sistemas de Alta Complexidade

Redes neurais sdo especialmente promissoras em sistemas cadticos e hipercaoticos,

pois:

« Permitem aproximar relacdes nio lineares entre varidveis de estado e incertezas,
fundamental para lidar com varios expoentes de Lyapunov positivos.

« Podem ser treinadas on-line, ajustando-se dinamicamente aos parametros do sistema
que mudam ao longo do tempo.

+ Integram-se bem a métodos de controle robusto ou sub-atuado, quando se deseja
projetar leis de controle que ndo dependam de um modelo matematico exato do

sistema.

Em sintese, ao longo deste trabalho, utilizaremos as notacdes W*, WeW para
representar, respectivamente, os pesos ideais, pesos estimados e erro de aproximacdo de uma
rede neural. A funcdo de ativacio sigmoidal sera denotada por S(-). Em capitulos posteriores,
esses elementos serdo fundamentais para a formulacdo do controlador neural e sub-atuado,
garantindo simultaneamente a aproximacgdo de incertezas e a estabilidade de um sistema
hipercadtico de quatro dimensoes.
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3 Proposta de sincronizacao neural e
sub-atuada para um sistema hiper-
caotico tetradimensional

3.1 Descricao do Problema

Nesta se¢do, propde-se uma abordagem de sincronizacdo neural e sub-atuada para
um sistema hipercadtico tetradimensional. Primeiramente, apresenta-se o modelo original,
conforme descrito em (WANG, S., 2022), e, na sequéncia, introduzem-se as versoes mestre e
escravo obtidas por meio de escalonamento e acréscimo de termos adicionais para controle e

incertezas.

3.1.1 Sistema Hipercadtico Proposto por (WANG, S., 2022)

O sistema em estudo é composto por quatro varidveis de estado, x(t), y(t), z(t) e w(t).
Suas equacdes de evolucdo sdo dadas por:
"
x=a(y—x)+gyz
y=cx—dxz+y+w

) (3.1)
z=Xxy—bz

w=—fy

\

ondea =35,b =4.9,c =25,d =5,g = 35e f = 100 sdo constantes. Esse modelo apresenta
multiplos expoentes de Lyapunov positivos, caracterizando um regime hiperca6tico. Como
consequéncia, as trajetorias exibem elevada sensibilidade as condig¢des iniciais, o que o torna
adequado para avaliar métodos de sincronizacdo em cendrios de alta complexidade.

3.1.2 Planta Mestre (Versao Escalonada)

Para fins de controle e sincronizagdo, considera-se uma forma escalonada do sistema,
a fim de manter as varidveis em faixas adequadas e facilitar a andlise teérica. A planta mestre

passa a ser descrita pelas variaveis (x,,, Y,.» Zn» W), que obedecem:
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xm = a(ym - xm) + V18YmZm

Dy = CXyy — V2AX 20 + Yy + Wy

) y V2 y 32)
m = V3Xm¥m — me

kwm = _fym

onde ¥4, 75, € 75 sdo fatores de escalonamento que ndo alteram a natureza qualitativa do

hipercaos, mas podem melhorar a robustez ou a viabilidade numérica.

3.1.3 Planta Escravo (Versido Escalonada com Perturbacdes e Controle)

A planta escravo é construida de modo andlogo, mas inclui termos adicionais relativos

a incertezas e sinais de controle. Supondo as variaveis (x,, y;, z;, W;), O Sistema segue:

r

xs = a(ys - xs) + V18)sZs + dl

P, = CX, — ¥, dxz, +yo +wy +dy +u
<).’ Y2 y 2 2 (3.3)
Zg = Y3XsYs — bzs + d3

\ws:_fys+d4+u4

onde:

« d,,d,, d;, d, representam disturbios externos ou perturbacées que dependem do tempo
e dos estados do sistema mestre e escravo.

* u,,u, constituem as variaveis de controle (sub-atuado e neural), projetadas de modo a

forcar o escravo a seguir as trajetorias do mestre.

3.1.4 Objetivo Geral de Sincronizacdo

Com as duas versoes (mestre e escravo), define-se formalmente um problema de
sincronizagdo: deseja-se projetar leis de controle para u,, u, que garantam que (x,(t), y,(¢),
z(t),w,(t)) acompanhem (x,,(t), ¥,,(t), z,,(t), w,,(t)) ao longo do tempo. Em outras palavras,
objetiva-se que o erro de sincronizacdo convirja para valores proximos de zero, mesmo na

presenca de incertezas, perturbacdes e ndo linearidades.

Nas sec¢oes seguintes, serdo detalhados:

« A funcio de erro que quantifica a distancia entre as varidveis mestre e escravo.

« O controlador neural e sub-atuado, cujo nucleo estd na adaptacio dos pesos neurais
(W) e na atuacdo parcial para otimizar custos e recursos.
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« A prova de estabilidade, baseada em métodos de Lyapunov e na Desigualdade de

Young, para assegurar convergéncia e robustez.

Dessa forma, o sistema hipercaético tetradimensional aqui descrito, decomposto
em plantas mestre e escravo escalonadas, servird de base para a validacao da estratégia de
controle, demonstrando a viabilidade de sincronizar dindmicas altamente instaveis por meio
de redes neurais e de uma lei de controle sub-atuada.

3.2 Prova de estabilidade usando a Teoria de Lyapunov

Conforme apresentado na Secao 3.1, nosso objetivo € garantir que o erro de sincro-
nizacdo entre o sistema mestre e o escravo permaneca limitado e em valores proximos de
zero. Diferentemente de uma convergéncia assintética estrita, mostraremos aqui que, ao
satisfazer certas condicdes, o erro e os parametros neurais permanecem em uma vizinhanga
(ou conjunto compacto) que asseguram a estabilidade prdtica do sistema.

3.2.1 Funcao de Erro

Sejam as variaveis do sistema mestre denotadas por (x,,, V> Z,» Wy,) € as do sistema
escravo por (X, y;, Z,, W, ). Definimos entdo o erro de sincronizacdo:
€1 =Xy — Xy

€ =Ys = Vm

e;=2z,—2Z,

(3.4)
e, = Wy — W,

Nosso intuito é mostrar que e = (ey, e,, €3, e,) permanece dentro de uma faixa pe-
quena, ainda que perturbacdes e incertezas impecam a convergéncia exata a 0. Em outras
palavras, desejamos demonstrar a existéncia de um conjunto Q ao redor de 0 para o qual o

erro seja limitado, mantendo o escravo préximo do mestre em regime permanente.
Para atingir este objetivo, realiza-se as seguintes aproximacodes neurais:

Wi'S, + &, = cx + ¥, + w + d,

(3.5)
WZTS4 + E4 _fyS + d4

onde:

« W} e W, sdo pesos ideais de uma rede neural, empregados para tratar incertezas ou

dinamicas nao modeladas.

« S,,S, denotam as fung¢des sigmoidais dos neurdnios da rede.
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. &,,¢, sd0 erros de aproximacdo ou termos auxiliares de aprendizado.

Derivando-se as equacdes de erro e substituindo os valores de 3.2, 3.3 e 3.5, obtém-se as
seguintes equacgoes para a dindmica dos erros:

é, = X, — X, =ae,—ae, + ylg(e2e3 + yne; + zmez) +d,

=Yy —Vm = WZTsz +& —CX, — Vzd(ele3 + Xpesz + Zmel) — Y — Wy T U, (3.6)
€3 =2y —Zp = 73(ele2 + Xpe + ymel) —be; + d;

by =Wy — Wy, = W' Syt + [y, +uy

3.2.2 Controlador Neural e Sub-atuado

Neste trabalho, propde-se um controlador sub-atuado que atua apenas em algumas
das equagdes (neste caso, y, e W,), deixando as demais variaveis livres ou apenas escalo-
nadas. Adicionalmente, utilizam-se redes neurais para aproximar termos nao lineares

desconhecidos.

De modo geral, define-se:
u2 = —/1262 - WgSZ, u4 = —/1464 - W£S4 (3.7)

onde 4, e 4, sdo constantes de realimentacdo de erro, e W, e W, sdo estimativas dos pesos
ideais W3 e W, respectivamente.

A ideia principal é que:
« Os ganhos 4, e 1, supram a parte linear do erro, garantindo amortecimento e um

caminho para a estabilidade.

« Asredes neurais W, e W, adaptam-se para compensar nao linearidades e incertezas,

via um mecanismo de atualizagdo definido posteriormente na prova de Lyapunov.

« O controle seja sub-atuado, ou seja, nao atue explicitamente em X, e Z;, com o ob-
jetivo de reduzir os custos e a complexidade da implementacdo, sem inviabilizar a
sincronizacao.

3.2.3 Prova de Estabilidade
3.2.3.1 Funcdo Candidata de Lyapunov

Para verificar a estabilidade (no sentido de manter o erro em uma vizinhanga préxima
de 0), definimos a seguinte funcdo candidata de Lyapunov:

—_ 1 1/ ~— —
V(e,W,,W,) = E(ef +el+eltel)+ §(||w2||2 +IW,I?) (3.8)
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onde
Wz = Wz - W;, W4 = W4 - WZ (3.9)

representam os erros de estimagdo dos pesos da rede neural e
W] = W W, [[W,]I? = W, W,

Observe que V é positivo definido em torno de e = 0 e W,, = 0, satisfazendo o critério basico
para funcdes de Lyapunov.

3.2.3.2 Derivada de Lyapunov e Uso das Desigualdades de Young

Calculemos V diferenciando cada parcela em funcio de €, W, e W,. Apos substituir
as dinamicas do sistema (mestre e escravo), obtemos a seguinte expressio:

V = aee, — ae; + 718€,6,63 + ¥18Vme18; + V18Zme18; + 1d,
+ eZW;kTS2 + e,&, — ce, X, — y,de e es — v,dx,e.e; — y,dz,e e,
— Ym€2 — Wy + Uy (3.10)
+ 73616263 + V3X €83 + V3V e e; — be: + esd;

+ e, WIS, +e,e, + €,V + sty + WIW, + WIW,

Define-se a dinamica de adaptacdo dos pesos W, e W, como:

W2 = eZSZ - GZWZa W4 = e4S4 - O'4W4 (311)

Em que o, e g, sdo constantes. A partir de 3.11, obtém-se que

~T/'\ _ <o TGS
WIW, = ¢,W!S, — 0,WIW,

, (3.12)
Wz;wzl = 64W£S4 - U4W£W4
Além disso, a partir de 3.9, obtém-se as seguintes expressoes:
e, WIS, + e, WS, = e,W'5,

(3.13)

e, WIS, +e,WIS, = ¢,W'S,

Substituindo as leis de controle 3.7 e a expressdo 3.12 na candidata 3.10 e usando o
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fato 3.13, obtém-se a sequinte expressdo para V:
V = —ae} — A& — bel — A e;
—Ce Xy — Y€ — W€ + €4 f Vi

+ aeje; + 718y me1e; + V18Zpe1e; — Vadxeses — v,dzye e,

(3.14)
+ V3Xmer€3 + V3¥mer€s + V18e1e.e3 — yadeeyes + y3ee5e3
+e,d; + e,6, +eds + ese,
+0,WIW, + 0,W!'W,
Os erros podem ser definidos como:
h, =d,
h,=c¢
2 (3.15)
hy =d;
hy=¢,

Além disso, os erros e as varidveis de estados do sistema mestre sdo limitados, ou seja:

|| < hy
|hy| < hy
|hs| < Ry

|hy| < hy
(3.16)

Fazendo y,d = y,g + v, e usando o fato 3.16, obtém-se:
V < —ae? — 1,e5 — be2 — A,el
+ C|62|xm + |62|J_}m + |e2|u_)m + f|e4|}7m
+ alei|le;| + v18Znleillex] + v2dzylelles] + vi8Vmle|les]
(3.17)
+ 73Vmlerlles| + v2dX,leslles| + vsX, ey |es]

+ ley|hy + eyl hy + |€3|I’_L3 + leg| by

- O.sz W2 - O-4W4W4
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Comentario: Os fatores de escalonamento y,, ¥, € y; devem ser escolhidos de modo que
y,d = 7,8 + y5. Dessa forma, o sistema mantém sua natureza cadtica a0 mesmo tempo
em que se anulam os termos nao lineares de terceira ordem (e, e,e;). Para que a prova
matematica seja valida, ¢ imprescindivel que esses fatores satisfacam esta condicao.

Esta expressdo possui diversos produtos cruzados que, para serem controlados, podem ser
tratados usando a Desigualdade de Young. Desta forma, as seguintes expressoes foram obtidas:

_ Bt R
ley|hy < + —
T2 2B

_ Bl R
ley|h, < + —=
2 2 2 252

I N
leslhy < —— + —
2 2[5’3

_ e2 h?
les|hy < & + —
2 2B,

2
les|(cX + i + W )<55e§+(cxm+ym+w"1)
2 m ym m) — 2

25 (3.18)
[
5 Pl
|e4|fym — 2 2,86
2
B,(a+7y.82, +7,dz,) €2  ¢?
(a+y1g2m +V2d2m)|e1||ez| < 7( - ) - ) =+ ﬁ
7

Bs(v.d + yg)zfcz ez e
_ m=?)
(72d+y3)xm|ez||e3| < > +2—‘§8

(118 + 73)Tmlerlles] = Vrig + vsVInlelVrig + vsvInlesl

V18t Vs Vi8 73
SRl haiviy FRthe PR

J4 os termos neurais podem ser tratados usando a seguinte relacio:

o WIW, = “2(IWLlf + WL~ IWSI2) < 22 WLl + 2w

(3.19)
—O4 STAE W I12 W12 <_G4‘~N 2, 94 W12
=N (W12 + (IWll2 — [[W3]I2) < T” allp + 7” 2z

NT/\
—o,WI'W,

A partir das expressoes obtidas em 3.18 deseja-se reagrupar os termos que multiplicam cada
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erro quadratico. Assim, define-se:
1
B7

1 _ _ \2 2_
Py =4, — 5[52 +Bs + 57(61 + V182, + Vzdzm) + 68(72‘1 + 7’3) xrzn]

1 ]
pr=a-— 5[51 +—+ (g8 +73)Vml

1 . (3.20)
p3=Db— 5[;33 + -+ (Vlg + 73)}7m]
Bs
1
Py = A4 — 5[54 + ﬁs]
E com os termos restantes, define-se:
LR (Rt I+ W) f252
k m m m Ym g, Oy )
n=), —+ + + = [Willr + = [[WI (3.21)
235, o7 5, + 2 IWalle+ SIWilr

3.2.3.3 Definicdo de Conjuntos Limitados e Condicdes para V < 0

Considere a candidata de Lyapunov e sua derivada, cujas manipulacdes levaram a
seguinte desigualdade (ap6s aplicacio da Desigualdade de Young e do tratamento dos termos

neurais):
. 0y —~ Oy, ~
V < —pief — pae; — p3€; — Pa€; — 7||W2||?: - ?||W4||12v +7 (3.22)

onde as constantes p; sdo definidas em (3.20) e o termo 7 em (3.21).

Hipoteses:

1. Os parametros de projeto (,,53,, ... ,3s, 0s fatores de escalonamento y;,y,,y5 € os ganhos
de controle 4, e 4, sdo escolhidos de modo que

p1>0, >0, p3>0, py3>0 (3.23)

2. Os parametros de adaptacgao o, e g, sdo estritamente positivos.

3. As variaveis de erro (do estado e dos pesos) estdo associadas a uma candidata de
Lyapunov V que ¢ definida de forma positiva definida e que admite as desigualdades
quadraticas:

klZ|I? < V(Z) < k,||1Z|)? (3.24)

onde
— 1T
Z=le, e e ey WL W

e k,, k, > 0 sdo constantes conhecidas.
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3.2.3.3.1 Passo 1 - Reagrupamento dos termos:

Definindo
. O, 04
E = min {plﬁ P25 P35 Pas ?’ 72 >0

a desigualdade em (3.22) pode ser escrita de forma compacta como
V<—p(et+el+el+e+ W2+ [IW,]2) +7 (3.25)
3.2.3.3.2 Passo 2 - Relagdo com V:

Utilizando a desigualdade (3.24), observa-se que

V(Z)
1Z]* > o
2
Portanto, a expressdo em (3.25) implica
) P
V<—=V+y (3.26)
k,
3.2.3.3.3 Passo 3 - Regido Invariante:
Definindo
v, =
0 o Y]
note que se V(Z) > V, entdo
|4 pv pV 0
<—=V4+n<—-=Vy+n=
— kz 77 k2 0 77

Isso significa que, sempre que o valor de V(Z) estiver acima de V,, sua derivada sera
negativa, fazendo com que a soluc¢do seja atraida para a regido definida pelo nivel V.. Logo,
0 conjunto

Q:&eR":wmgm} (3.27)

¢€ positivamente invariante.

3.2.3.3.4 Conclusio:

A partir de (3.26) e da definicdo do conjunto Q em (3.27), conclui-se que, para
quaisquer condig¢des iniciais, a trajetodria do sistema de erro evolui de forma que, ap6s um
tempo finito, os erros e,,e,,e;,e, € as discrepancias dos pesos W, e W, permanecem dentro
de Q. Em outras palavras, os erros sao uniformemente finalmente limitados, o que implica na

sincronizacdo do sistema escravo em relacdo ao sistema mestre.
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Observacao: A escolha dos pardmetros de projeto (inclusive os fatores de escalonamento
Y1, Y2 €73, 08 quais devem satisfazer y,d = y,g+7;) é fundamental para que as constantes
©; sejam positivas e, assim, para que o argumento de estabilidade seja valido. Com essa
escolha, os termos ndo lineares de ordem superior sdo cancelados e os produtos cruzados
sdo adequadamente dominados pelos termos quadraticos, permitindo que se obtenha a
condicdo V < 0 fora do conjunto Q.

Dessa forma, sob as hipoteses assumidas, a derivada da candidata de Lyapunov é
estritamente negativa fora de Q, garantindo que os erros de sincronizacdo se mantenham
dentro de um conjunto compacto e que a sincronizacao entre o sistema mestre e o sistema

escravo seja efetivamente estabelecida.
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4 Simulacoes e Validacoes

4.1 Configuracao das Simulacoes

Nesta secdo, descrevem-se as caracteristicas de hardware e software empregadas para
realizar as simulacdes do sistema hipercaético tetradimensional, bem como as configuracoes
especificas adotadas no ambiente Simulink’. Essas informacdes visam assegurar a reproduti-
bilidade e a consisténcia dos resultados, tornando mais transparente o processo de validacao
dos métodos propostos. Os codigos das simulacdes estdo disponiveis no Apéndice A, ao final
deste trabalho.

4.1.1 Ambiente de Computacdo

4.1.1.1 Hardware

Processador: AMD Ryzen 5 Mobile 5500U, com 6 ntucleos e 12 Threads a 2.1 GHz.
« GPU: AMD Radeon Graphics.

« Memoria RAM: 20 GB DDRA4.

Disco Rigido: SSD de 512 GB.

Sistema Operacional: Windows 11 23H2.

Essa configuracio assegura o desempenho adequado na execucgdo de simulacées
intensivas, em especial para dinamicas hipercadticas com multiplos expoentes de Lyapunov

positivos e possiveis algoritmos de controle adaptativo em tempo real.

4.1.1.2 Software

« Plataforma de Simulacido: MATLAB" R2023b com o Simulink” 23.2.

Tais ferramentas permitem modelar, simular e analisar sistemas dindmicos de forma
interativa e modular, possibilitando a inclusdo de blocos customizados para o sistema mestre,
escravo e o controlador.
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4.1.2 Arquitetura do Modelo no Simulink”
4.1.2.1 Organizacdo de Blocos

Para reproduzir o comportamento do sistema hipercaético tetradimensional e im-
plementar o controle neural sub-atuado, foi criado um diagrama no Simulink” (Figura 3)
contendo:

N

— | Xmaster

Planta_Master

Sincronizador —®{Planta_Slave p| Xslave

il

Figura 3 - Diagrama de blocos no Simulink .

« Bloco do Sistema Mestre (Planta_Master): representa as equacdes de estado do
Sistema Mestre Escalonado, conforme definido em 3.2.

+ Bloco do Sistema Escravo (Planta_Slave): representa as equacdes de estado do
Sistema Escravo a ser sincronizado com o Sistema Mestre.

+ Bloco de Controle (Sincronizador): responsavel por gerar os sinais de controle
(u,, u,) conectados ao Sistema Escravo.

+ Bloco de Observacio ou Registro de Dados (Xmaster, Xslave): armazena varidveis

de interesse (X,,, Vs Zm»> Wins Xs» Vs» Zs» Wy) para andlise posterior.
« Bloco de Ruido Branco (Localizado abaixo da Planta_Master): Adiciona distur-
bios limitados aos sinais gerados pelos estados do sistema mestre.
4.1.2.2 Passo de Integracdo e Solver
As configuragdes utilizadas para o Passo de Integracdo e o Solver encontram-se na

Figura 4 a seguir.

« Solver: optou-se pelo solver ode15s, pela estabilidade e eficiéncia na resolucio de
sistemas ndo lineares.



51

« Passo de Integracdo: adotou-se um passo variével (op¢do padrio do Simulink”) com
tolerancias de erro relativas e absolutas definidas em 1078.

@ Configuration Parameters: Syncronizador/Configuration (Active) — (m] X
Solver Simulation time

Data Import/Export
Math and Data Types
» Diagnostics
Hardware Implementation

Start time: (0.0 Stop time: |8

Solver selection

Model Referencing Type: | Variable-step ¥ | Solver: |ode15s (stiffNDF) hd
Simulation Target
» Code Generation ¥ Solver details
Coverage
Max step size auto Relative tolerance 1e-8
Min step size: auto Absolute tolerance 1e-8
Initial step size auto +| Auto scale absolute tolerance
Solver reset method: |Fast * | Maximum order: 5%
Shape preservation: Disable All L4
Number of consecutive min steps 1
Solver Jacobian method: auto v

Zero-crossing options
Zero-crossing control: |Use local settings = | Algorithm Nonadaptive -
Time tolerance 10*128%eps Signal threshold: auto

Number of consecutive zero crossings: [1000

Tasking and sample time options
Automatically handle rate transition for data transfer
Allow multiple tasks to access inputs and outputs

Higher priority value indicates higher task priority

| OK H Cancel || Help

Figura 4 - Configuracoes para a simulacio no Simulink .

4.1.3 Parametros de Inicializacdo

« Condicées Iniciais: As condicdes iniciais para as varidveis do sistema mestre, foram

x,,(0) = i, Ym(0) = l, z,(0) = i, w,,(0) = 1 e para o sistema escravo, foram
V1 V2 V3
-2 2 3
xs(o) = > ys(O) = Zs(o) = ws(o) =4.
4! V2 V3

+ Tempo de Simulacao: Fixadoem T = 8 [s] para abranger a fase transiente e identificar
o regime permanente do sistema.

« Parametros de Escalonamento: Os fatores de escalonamento considerados na si-
mulacio foram y; = 0.02,y, = 0.158,y; = 0.09. Observe que estes valores foram
escolhidos de modo que a condicdo y,d = y,2 + y; (definida no Capitulo 3) fosse
satisfeita.
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« Ganho do Controlador e Parametros da Rede Neural: definidos no como sendo
A, =, = 5000 e o, = g, = 10, satisfazendo as condi¢ées mostradas em 3.23.

4.1.4 Estratégia de Execuclo e Coleta de Dados
4.1.4.1 Execucio e Scripts de Automacao

Para garantir consisténcia nos resultados, cada simulacdo € executada por meio de
scripts (Apéndice A) em MATLAB (Planta_Master.m,Planta_Slave.m, Sincronizador.m
e Graficos.m), que:

1. Carregam valores de parametros (y;, 4;, 0;, etc.).

2. Simulam a dinamica dos estados mestre, escravo e do sincronizador em relacdo ao
tempo.

3. Armazenam os resultados em estruturas para a plotagem.

4.1.4.2 Coleta e Pos-Processamento

» Registro dos Estados dos Sistemas Mestre e Escravo: sdo gravadas em blocos
To Workspace do Simulink, nomeados como Xmaster e Xslave, respectivamente, per-
mitindo analise off-line. Os erros e,(t), e,(t), e5(t), e,(t) sdo calculados a partir das
diferencas entre os estados do Sistema Escravo e os estados do Sistema Mestre.

+ Analise de Estabilidade: verifica-se se os erros permanecem limitados dentro de

faixas predefinidas e se h4 convergéncia a valores préximos de zero.

» Plotagem dos resultados: scripts especificos geram graficos para avaliar o desempe-
nho de sincronizagdo da técnica proposta.

4.1.5 Observacao sobre Reprodutibilidade

Devido a natureza hipercadtica dos sistemas que estao sendo simulados, é esperado
que pequenas variagdes no hardware ou na versao do software utilizado ocasionem em
diferencas consideraveis nas trajetdrias das curvas dos estados dos Sistemas Mestre e Escravo
ao se reproduzir o que foi obtido neste estudo. Esta caracteristica € inerente as simulacdes
de sistemas caéticos e foi verificada em (NAZARE et al., 2020).

As proximas secdes detalham os resultados numéricos obtidos com essa configuracgao,
analisando tanto a performance do método de sincronizacao quanto a robustez diante de
perturbacdes e incertezas.
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4.2 Arquitetura das Redes Neurais Utilizadas

Nesta se¢do, descrevem-se em detalhes as redes neurais que foram utilizadas na
Simulacdo e que compdem o sincronizador do sistema hipercaoético tetradimensional. O
cddigo-fonte completo da S-Function Sincronizador.m(listado no Apéndice A) implementa
tanto as leis de aprendizagem dos pesos neurais como a geracdo de sinais de controle para
forcar a sincronizacao.

4.2.1 Objetivo das Redes Neurais no Sincronizador

O principal objetivo das redes neurais (aqui tratadas como duas redes separadas) é
compensar incertezas ou termos ndo modelados no sistema hipercaoético, permitindo que
o controlador sub-atuado mantenha o escravo em sincronismo com o mestre, mesmo em
presenca de disturbios ou parametros incertos. Cada rede neural fornece uma saida escalar
que se soma a um termo linear de controle, resultando em um sinal adaptativo capaz de

aproximar dindmicas complexas.

4.2.2 Arquitetura (Rede Neural de Alta Ordem)

No arquivo Sincronizador.m, sdo definidas duas redes neurais distintas: W, e W,,

cada qual com 8 pesos. Em termos de arquitetura, verifica-se:

+ Rede Neural de Alta Ordem (KOSMATOPOULOS et al., 1995): Foram utilizadas
duas Redes Neurais de Alta Ordem para realizar a sincroniza¢io, cada uma com uma

camada de entrada com 8 neur6nios e uma camada de saida (Figura 5).

« Entrada (Z(u)): vetor de 8 componentes nio lineares, obtidos pela funcio Z(u). Cada
componente ¢ uma combinagdo de sig(u(i)) ou[sig(u(i))]? onde sigcorresponde
auma funcdo de ativacio sigmoidal e u (i) sdo os estados do sistema escravo na notacdo
utilizada no codigo da simulacao.

+ Pesos (W): cada rede W, e W, ¢ inicializada com 8 parAmetros ([1,0, 0, 0,0, 0,0, 0],

por exemplo).

« Saida (escalar): W' Z(u), resultado do produto interno entre pesos e entradas, ser-

vindo de “termo adaptativo” na lei de controle.

« Sem Camadas Ocultas: nio hd camadas intermedidrias, pois toda a ndo linearidade
provém do regressor Z(u), que ja inclui aplicacdes de sigmoide e sigmoide ao quadrado

sobre certas variaveis.

A figura a seguir ilustra a arquitetura das redes W, e W, que foram consideradas na simula-
cdo.
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Saida

Figura 5 - Arquitetura das redes neurais consideradas na simulacao.

A seguir, detalha-se cada passo que garante o funcionamento deste esquema de redes.

4.2.3 Funcdao de Ativacdo Sigmoidal

No cédigo, a funcdo sig(uu) implementa uma sigmoide logistica escalonada:

function out = sig(uu)

alfa = 5; beta = 0.5; lamda = O;

out = alfa/(exp(-beta*uu)+1) + lamda;
end

Isso cria uma curva sigmoidal entre 0 e 5 (devido ao fator alfa=5), ajustada por beta=0.5.
O lamda=0 implica que nao se adiciona offset adicional a saida.

4.2.4 Vetor de Entrada (Regressor) Z(u)

A funcéio Z (u):

function out = Z(u)
out = [
sig(u(b5));
sig(u(6));
sig(u(7));
sig(u(8));
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sig(u(b))"2;

sig(u(6))~2;

sig(u(7))~2;

sig(u(8))-2
I

Cada rede neural recebe 8 entradas (Z,, Z,, ..., Zg), correspondendo ao valor da sigmoide
(sig(...))esuaforma ao quadrado de algumas varidveis do sistema (u(2), u(4), u(5), u(7)).
Dessa forma, ha ndo linearidades tanto na fase de entrada (sigmoidal) quanto no uso dessas

saidas ao quadrado.

4.2.5 Leide Aprendizado dos Pesos

No case 1do switch (que computa derivadas de estados), sdo definidas as equacdes
de adaptacdo:

sys = [
(u(6)-u(2))*Z(u) - sigma2*( x(1:8) - W2 );
(u(8)-u(4))*Z(u) - sigmad*x( x(9:16) - W4 )
13

Isso indica que os pesos de cada rede neural (armazenados em x(1 : 8) e x(9 : 16)) sofrem

uma atualizacdo continua:
W, = (u(6) — u(2)) Z(w) — 0, [W,(t) — W3],

W, = (u(8) — u(4)) Z(u) — o, [W,(t) — W],

onde o, e g, sdo os ganhos de adaptacdo, enquanto W3 e W, sdo valores de referéncia
(inicialmente 1 e zeros). Essa lei de aprendizado ajusta os pesos de modo a compensar erros

no canal 2 e canal 4 do sistema.

4.2.6 Saida das Redes e Lei de Controle

No case 3 (saidas do bloco), cada rede fornece um valor escalar:

-( x(1:8)-W2 )’ *x Z(u) - lambda2*(u(6)-u(2))

Esse termo se soma aos sinais medidos do sistema para gerar o controle que serd enviado
ao escravo. Assim, o produto interno [W — W*]TZ(u) forma o termo neural que compensa
discrepancias, enquanto —1, (u(6) — u(2)) adiciona a componente linear de realimentacao.
O mesmo se repete para W,.
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4.2.7 Conclusdo e Importancia

Ao fim, a arquitetura das redes neurais equivale a dois perceptrons de camada unica
(single-layer), cada um com 8 entradas e 1 saida, sem camadas ocultas intermediérias.
A fonte de ndo linearidade provém das funcdes sigmoides aplicadas ao vetor Z(u). Essa
solucdo se mostra suficientemente flexivel para aproximar efeitos ndo modelados no sistema
hipercaético, ainda que mantenha uma estrutura de implementacao relativamente simples.
Os pesos sdo adaptados on-line via leis de aprendizado, contribuindo para a robustez do

sincronizador frente a disturbios ou incertezas de modelagem.

Assim, as redes neurais servem como mecanismos adaptativos que refinam a acdo de
controle sub-atuada, garantindo sincronizagdo mesmo em regimes nao lineares complexos.
A logica de célculo e atualizacdo dos pesos pode ser verificada no codigo Sincronizador .m,
disponivel no Apéndice A.

4.3 Resultados da Sincronizacao

Nesta secdo, apresentam-se os resultados numéricos referentes a sincronizagdo entre
os sistemas hipercadticos tetradimensionais mestre e escravo, considerando o controlador
neural e sub-atuado proposto e as configuracdes de simulacdo descritas na Secdo 4.1. Sdo
exibidos, em especial, os graficos de trajetdrias das varidveis (mestre e escravo), a evolugdo
da norma dos pesos estimados e o comportamento do erro de sincronizac¢do ao longo do
tempo.

4.3.1 Trajetorias do Sistema Mestre e Escravo

Nas Figuras 6, 7, 8 € 9, sdo ilustradas as trajetorias dos estados dos sistemas mestre e
escravo ao longo do tempo.
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Figura 6 - Desempenho de sincronizacao entre x,,(t) e x,(t).
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Figura 7 - Desempenho de sincronizacao entre y,,(t) e y,(t).
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Figura 8 - Desempenho de sincronizacao entre z,,(t) e zy(t).
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Figura 9 - Desempenho de sincronizacio entre w,,(t) e w(t).
Observa-se:

1. Correspondéncia Qualitativa: As curvas do sistema escravo tendem a acompanhar as
do sistema mestre apés determinado intervalo transiente, indicando uma sincronizacio
satisfatoria.

2. Regime de Oscilacdo: Em regime permanente, as dindmicas se sobrepdem de maneira

consistente, mesmo diante da instabilidade inerente ao sistema hipercaético.

4.3.2 Norma dos Pesos Estimados

Para verificar a adaptacdo das redes neurais e o comportamento dos parametros de
controle ao longo do tempo, acompanha-se a norma dos pesos estimados (||W,|| e [|[W,]|)-
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As Figuras 10 e 11 ilustram:

15
il

0.5 |
S IR
o 1t 2 3 4 5 6 7 8

Figura 10 - Evolucio da norma dos pesos estimados ||W,||, mostrando a adaptacdo da rede neural.

15
i

0.5 |
o ElWel
o t 2 3 4 5 6 7 8

Figura 11 - Evolucio da norma dos pesos estimados ||W,||, mostrando a adaptacdo da rede neural.

Observa-se:

+ Convergéncia e Limitacdo: Apos o transiente inicial, as normas dos pesos tendem a
um valor estavel e permanecem limitadas em uma regido, evidenciando que as redes
neurais se ajustam para compensar os termos ndo lineares.

+ Robustez: Pequenas flutuacdes podem surgir em razdo do carater hipercaético do
sistema, mas sem prejudicar a estabilidade do controle.
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4.3.3 Erro de Sincronizacio

O ponto crucial para avaliar a eficicia do método é a evolucdo dos erros de sincroni-
zacdo. Nas Figuras 12, 13, 14 e 15, sdo mostradas as dindmicas dos erros e, (t), e,(t), e;(t) e

e,(t), respectivamente.

50
0 (\,\,
-50
—ei(t)
_1 00 | | | | | | |
0 1 2 3 4 5 6 7 8

t[s]

Figura 12 - Comportamento do erro de sincronizacgdo e;(t) ao longo do tempo.

2

1 - 4

1 I I I I I I \_62 (t)
0 1 2 3 4 ) 6 7 8

t[s]

Figura 13 - Comportamento do erro de sincronizacdo e,(t) ao longo do tempo.
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Figura 14 - Comportamento do erro de sincronizacao e;(t) ao longo do tempo.

0.2

0.1

t[s]

Figura 15 - Comportamento do erro de sincronizacio e4(t) ao longo do tempo.

A parttir dos resultados obtidos, observa-se:

1. Decaimento Inicial: Durante o periodo transiente, os médulos dos erros decrescem
rapidamente a medida que o controlador atua para alinhar as dinamicas do escravo as
do mestre.

2. Regime Final ou Limitacao Ultima: Depois de certo tempo, os erros se mantém
proximo de zero de modo a caracterizar a sincronizacdo, conforme previsto pela Teoria
de Estabilidade de Lyapunov, em (3.27).

3. Perturbacdes e Oscilacdes: Em sistemas hipercaoéticos, incertezas podem provo-
car pequenas oscilacdes sem, contudo, acarretar divergéncia do erro, em virtude do
controlador sub-atuado e da adaptacdo neural.
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4.3.4 Andlise Global

Com base nos resultados acima, pode-se extrair as seguintes conclusdes parciais:

« Eficiéncia do Controlador: O método neural sub-atuado demonstrou bom desempe-
nho na supressdo das divergéncias hipercaoticas, mantendo a dindmica do escravo

proxima a do mestre.

« Convergéncia ou Limitacao do Erro: Em todos os cendrios simulados, o erro de
sincronizacdo reduziu para valores pequenos, reforcando a viabilidade pratica da

técnica.

« Adaptacao Neural: A rede neural, mesmo atuando em um ambiente hipercaotico,

ajustou seus pesos para compensar boa parte das ndo linearidades do sistema.

« Sensibilidade a Parametros: A estabilidade e velocidade de sincronizacdo podem
variar segundo os ganhos de controle (1,, 1,) e parametros de aprendizado da rede.

Ajustes finos podem otimizar a resposta conforme as demandas da aplicagdo.

Nas proximas secoes, discute-se a aplicacdo da técnina de sincronizacdo em comuni-

cacdo segura, aprofundando-se a andlise de robustez e sensibilidade do controlador.

4.4 Aplicacao em Comunicacao Segura

Nesta secdo, ilustra-se como a sincroniza¢do neural e sub-atuada proposta pode
ser utilizada para comunicacao segura em sistemas hipercadticos. O objetivo ¢ mascarar
uma mensagem (sinal de informacao) adicionando-a aos estados do sistema mestre e, pos-
teriormente, recuperar essa informacao no sistema escravo por meio da sincronizacio. Sao
apresentados o diagrama de blocos do processo de criptografia/recuperacdo, bem como os
resultados de simulagdo que comparam as mensagens transmitidas e recuperadas.

4.4.1 Diagrama de Blocos

A Figura 16 exibe o esquema de comunicagdo segura com base na sincronizacao

caotica. A arquitetura compreende:

1. Sistema Mestre: Gera as dindmicas caoticas (ou hipercaodticas) que serdo utilizadas

para criptografar os sinais mensagens.

2. Mistura (Criptografia): Os sinas de mensagem m(t) e m,(t) sdo somados aos estados
do sistema mestre x,, € z,,, respectivamente, resultando em sinais caéticos que seguem
pelo canal de comunicagdo.
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3. Canal de Comunicacao: Pode estar sujeito a atenuacio, ruidos (d;, d,, d;, d,) e possi-

veis interceptacoes.

4. Receptor (Sincronizador + Sistema Escravo): Mantém um sistema escravo sincro-
nizado com o mestre, permitindo estimar e subtrair (desmisturar) o sinal caotico, de

modo a recuperar as mensagens transmitidas, resultando em 71, e Ai,.

Re N e >
: . : . N
/" Transmissor \ ! X + My +dy Receptor \
[
f : i Ym + dZ |
| H
; Zm+m, +d
i My, M, i i m zZ 3 I
i i i Wiy £ dy i
| ' ' + :
| . | | . ~
: Sistema Canal de ; si i Sistema - My |
P ! incronizador PG
i Mestre comunicacao i Uy Escravo m, |
: u |
| | 4 :
| ’ : ; I ‘ 2 |
! m Zy, T my: : W i
| w. I I !
. m W, : .
\ moy \ 1
~ /' N /_-/

Figura 16 - Diagrama de blocos da aplicacdo em comunicacdo segura, mostrando a mistura da
mensagem no transmissor e a recuperacao no receptor.

Observa-se que neste esquema para comunica¢do segura € utilizada uma criptografia
simétrica (SCHNEIER, 1996) ja que tanto o transmissor (mestre) quanto o receptor (escravo)
utilizam a mesma estrutura (dindmica gerada pelo sistema hipercattico) para mascarar e
recuperar as mensagens. Além disso, a chave para realizar a cifragem das mensagens sdo os
sinais gerados nos estados do sistema mestre e estes sinais sdo reconstruidos no receptor

(escravo), uma vez que a sincronizagio € realizada de forma bem sucedida.

4.4.2 Propriedade de Seguranca Preservada

Na 4rea de seguranca da informacao, enfatizam-se propriedades fundamentais conhe-
cidas pelo acrénimo C.I.A.: Confidencialidade, Integridade e Disponibilidade (STALLINGS,
2017). Em protocolos mais completos, podem-se incluir ainda Autenticidade e Ndo Repudio.
Entretanto, o sistema proposto neste trabalho — baseado na sincronizacdo hipercadtica e
no mascaramento de um sinal de mensagem dentro dos estados do sistema mestre — atua
primordialmente sobre a Confidencialidade, garantindo que apenas as partes autorizadas (ca-
pazes de reproduzir a dindmica hipercaética no sistema escravo) possam extrair o contedo
original do sinal encriptado.

+ Confidencialidade: A mistura ou injecdo da mensagem nos estados caoticos do
sistema mestre dificulta que um interceptador, ao captar o sinal transmitido, identifique
ou decodifique a informacdo sem conhecer os pardmetros do controlador sub-atuado
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e dos blocos neurais. Dessa forma, terceiros nao autorizados tornam-se incapazes de

recuperar o conteudo do sinal, caso ndo disponham do esquema de sincronizacao.

Por outro lado, Integridade, Autenticidade e Disponibilidade — embora essenciais em sistemas
de comunicacdo completos — ndo sdo diretamente garantidas pelo método de caos aqui
desenvolvido. Mecanismos adicionais, como assinaturas digitais, checagem de integridade
(hash), protocolos de autenticacgio e sistemas de redundancia, podem ser incorporados para
assegurar as demais propriedades. No presente trabalho, a ocultacdo do sinal e a conse-
quente dificuldade de acesso indevido evidenciam a Confidencialidade como a principal
propriedade de seguranca atendida pelo arranjo hipercaotico descrito. Em sintese, a técnica
proposta prioriza a protecido do conteudo transmitido, abrindo caminho para aplicacdes que

demandem elevado nivel de privacidade em transmissao de dados.

4.4.3 Injecdo e Recuperacdo da Mensagem

Para demonstrar o funcionamento, considerou-se os seguintes sinais de mensagem:

m,(t) = 12sen(271.7t + %) — 11cos(270.8t) + 4sen(270.4t)
(4.1)
m,(t) = 3.6square(271.25t) + 2.4square(271.53t + %)

Estes sinais sdo adicionados aos estados do sistema mestre x,,(t) e z,,(t), rexpectivamente,
gerando as combinacdes x,,(t) + m,(t) e z,,(t) + m,(t). Em seguida, estes sinais atravessam o
canal de comunicacio resultando em r(t) = x,,(t) + m,(t) +d, e r,(t) = z,,(t) + m,(t) + d,
devido aos disturbios do canal de comunicacdo. Ao serem recebidos no receptor, o sistema
escravo e a lei de sincronizacdo neural e sub-atuada realizam a sincronizacdo dos estados
do sistema escravo ao sistema mestre e, pela diferenca entre os sinais recebidos e os sinais
gerados pelos estados do sistema escravo o sistema recupera as mensagens transmitidas
resultando em 11, e M,. Portanto, evidencia-se que o algoritmo para criptografar a mensagem
¢ a soma e o algoritmo para decifrar ¢ a subtracao.

4.4.4 Resultados de Simulacdo

Nos experimentos realizados, empregou-se 0 mesmo ambiente de simulagdo descrito
na Secdo 4.1. A seguir, apresentam-se os principais graficos e analises.
4.4.4.1 Comparacio entre Mensagens Originais e Encriptadas

As Figuras 17 e 18 ilustram, em um mesmo eixo temporal, as mensagens originais
m,(t) e m,(t) e o resultado encriptado s,(t) = x,,(t) + m,(¢t) e s,(t) = z,,(t) + m,(t) com os
devidos ajustes de escala. Observa-se que:
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100

-100

-200

Figura 17 - Mensagem original m,(t) e mensagem criptografada s, (t) = m,(t) + x,,,(¢t),
evidenciando como o sinal cadtico oculta as caracteristicas de m,(t) (Com ajustes de
escala).

t[s]

Figura 18 - Mensagem original m,(t) e mensagem criptografada s,(t) = m,(t) + z,,(t), evidenciando
como o sinal caético oculta as caracteristicas de m,(t) (Com ajustes de escala).

« Os sinais encriptados mantém o comportamento caético do sistema, dificultando a
identificacdo do conteudo original de m,.(t) e m,(t).

« A amplitude e frequéncias caracteristicas da mensagem sdo “camufladas” pelo com-

portamento nio linear do sistema mestre.

4.4.4.1.1 Correlacio ndo linear entre Mensagens Originais e Encriptadas

Com o intuito de quantificar se ha qualquer relacdo monotoénica entre as mensagens
originais e as mensagens cifradas, calculou-se a correlacdo de Kendall no MATLAB por meio
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dos comandos:

taul = corr(messageX, Xmaster(:,1), ’Type’, ’Kendall’);
tau2 = corr(messageZ, Xmaster(:,3), ’Type’, ’Kendall’);

onde messageX e messageZ sdo as sequéncias referentes as mensagens originais, enquanto
Xmaster(:,1) e Xmaster(:,3) correspondem as mensagens cifradas (hipercaoéticas). Os
valores obtidos de correlacdo foram:

taul ~ 0.1033 e tau2 =~ 0.1426,

Estes resultados indicam uma baixa correlagdo de Kendall entre cada mensagem original e a
respectiva versdo encriptada. Esse resultado sugere que, sob a métrica de relacio monoto-
nica, as mensagens cifradas ndo preservam um alinhamento significativo com as mensagens
originais, reforcando a eficiéncia do processo de mascaramento baseado em caos. Quanto
mais proximo de zero o coeficiente, menor a dependéncia entre as séries, e, portanto, maior a
dificuldade de um interceptador em reconstruir o conteido sem o conhecimento do esquema

de sincronizacao.

4.4.4.1.2 Entropia diferencial dos sinais analisados

A Tabela 1 apresenta os valores de entropia diferencial obtidos para quatro grupos
de sinais: (i) as mensagens originais m, e m,; (ii) os estados do sistema mestre sem adi¢ao
de mensagem (X,,,Y,.,Zm>Wp); (iii) as mensagens criptografadas s, e s,; e (iv) um sinal de
referéncia formado por amostras pseudoaleatorias uniformemente distribuidas no intervalo
[0,100]. Os valores foram obtidos por meio do script Entropia_Diferencial .m, cujo codigo
completo se encontra no Apéndice A.

Tabela 1 - Entropia diferencial estimada (& [bits]) dos sinais de interesse

Categoria Sinal  Entropia h
Mensagens originais e 4.0658
& & m, 2.6654
X, 6.0607
Vo 5.4860
Estados do mestre (sem mensagem) z 6.0786
w,, 8.7193
. S, 6.1767
Mensagens criptografadas . 6.0815
Referéncia aleatéria u[0,100] 6.6428

Observa-se que as mensagens originais apresentam entropia relativamente baixa, es-
pecialmente m,, refletindo sua maior previsibilidade. J4 os estados cadticos do sistema mestre
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exibem entropias significativamente mais altas (~ 6—9 bits), evidenciando a complexidade

dindmica inerente ao regime hipercaotico.

ApOs o mascaramento, as mensagens criptografadas s, e s, alcancam valores de
entropia (= 6.1 bits) muito proximos aos dos proprios estados caéticos e comparaveis ao sinal
aleatorio de referéncia (6.64bits). Isso indica que o processo de cifragem eleva a incerteza
estatistica das mensagens, tornando-as praticamente tdo imprevisiveis quanto o sinal ca6tico
original e o ruido uniforme. Consequentemente, um interceptador sem conhecimento do
esquema de sincronizacdo enfrentara dificuldade adicional em distinguir ou recuperar o
conteudo embutido, o que reforca a eficicia do método de comunicacdo segura proposto.

4.4.4.2 Comparacdo entre Mensagens Transmitidas e Recuperadas

Apés a passagem pelo canal e o processo de sincronizacio no sistema escravo, obtém-
se i, (t) e Mm,, isto é, as versoes recuperadas das mensagens. Na Figuras 19 e 20, confrontam-se
m,(t), m,(t) e m,(t), M, (t) . Verifica-se:

Figura 19 - Comparacio entre a mensagem original m,(t) e a mensagem recuperada i, (t),
ressaltando o sucesso do processo de sincronizagdo e decodificagdo.
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t[s]

Figura 20 - Comparagio entre a mensagem original m,(t) e a mensagem recuperada 17,(t),
ressaltando o sucesso do processo de sincronizacdo e decodificacao.

1. Fidelidade: Em regime permanente, 7, (t) e ,(t) aproximam-se satisfatoriamente
de m,(t) e m,(t), respectivamente, indicando que o método proposto preserva a inte-

gridade da informacao.

2. Perturbacdes e Ruidos: Pequenas discrepancias podem ocorrer em funcdo do canal,
ruido e da dindmica hipercaética, sem comprometer a inteligibilidade do sinal.

4.4.4.3 Erro entre as Mensagens Originais e Recuperadas

Para avaliar quantitativamente o quio proximo os sinais recuperados 71, (t) e m,(t)
estdo dos sinais originais m,(t) e m,(t), calculou-se os erros de mensagem definidos por:

A

emx(t) = mx(t) - mx(t)
emz(t) = mz(t) - n/iz(t)

(4.2)

As Figuras 21 e 22 mostram a evolugdo temporal desses erros, evidenciando o nivel

de fidelidade obtido pela sincronizacdo caotica sub-atuada:
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Figura 21 - Evolugdo do erro de mensagem e, (t) = m,(t) — m,(t) ao longo do tempo,
demonstrando a fidelidade do processo de recuperacio.
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Figura 22 - Evolucdo do erro de mensagem e,,,(t) = m,(t) — m,(t) ao longo do tempo,
demonstrando a fidelidade do processo de recuperacio.

A anélise destes erros confirmam que o método de sincronizagdo proposto é eficaz
quando aplicado em comunicag¢do segura, visto que, depois de algum tempo os erros se
mantém proximos de zero mostrando que as mensagens recuperadas possuem uma boa

fidelidade com as mensagens que foram transmitidas.
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4.5 Comparacao entre os Controles com e sem Redes
Neurais

Com o proposito de avaliar a eficdcia das redes neurais na sincronizacao do sistema
hipercaético, foram realizadas duas simulacdes distintas, introduzindo-se perturbagdes
dependentes dos estados do Sistema Escravo e ajustando alguns pardmetros de controle no
codigo disponibilizado no Apéndice A:

1. Simulacao 1 (Controle Neural Sub-atuado Completo): Inclui a parte proporcional
(1,,4,) e as leis de adaptacdo das redes neurais (W,, W,).

2. Simulacio 2 (Controle Sub-atuado apenas Proporcional): Utiliza exclusivamente
os termos lineares —4,(y, — ¥,,) € —44(w, — w,,), desativando os componentes neural
WIZ(u) e W, Z(u).

Em ambos os cenérios, foram somados sinais de disturbios dependentes dos estados
do Sistema Escravo as equagoes de estado x,, y,, z, € W, buscando simular situacdes de
incertezas ou forcas externas. A seguir, discute-se a configuracado detalhada e os resultados
obtidos.

4.5.1 Configuracio das Simulac¢des

« Parametros de Controle: Ajustou-se os ganhos proporcionais 4, e 4, para valores
mais baixos (1, = 4, = 8), a fim de avaliar como o componente neural influencia o
comportamento.

« Redes Neurais: Ajustou-se os pardmetros de aprendizado o, e o, para 100 e manteve-

se os vetores iniciais de pesos (W,, W,) conforme descrito na se¢io 4.2.

 Disturbios adicionados aos estados do sistema escravo: Adicionou-se os seguintes
disturbios aos respectivos estados do sistema escravo: d, = 0.01x2, d, = 0.1y2, d; =
0.001yZ e d, = 0.01y?.

As demais configuracdes das simulacdes foram mantidas as mesmas das descritas na
secdo 4.1.

4.5.2 Resultados e Analise

A seguir, sdo mostrados os graficos com o desempenho de sincronizagdo para cada
estado, sendo que a Simulacio 1 se refere a simulacdo com o Controle Neural, e a Simulacao

2 se refere a simulacdo somente com o Controle Proporcional, sem o uso das redes neurais.
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4.5.2.1 Resultados da Simulacio 1 (Controle Neural Completo)
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Figura 23 - Desempenho de Sincronizagio entre x,,,(t) e x,(t) para o caso com Controle Neural.
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Figura 24 - Desempenho de Sincronizacio entre y,,(t) e y,(t) para o caso com Controle Neural.



72

80 ]

60 ., . ]

40 -

Figura 25 - Desempenho de Sincronizacgdo entre z,,(t) e z,(t) para o caso com Controle Neural.
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Figura 26 - Desempenho de Sincronizagio entre w,,(t) e wy(t) para o caso com Controle Neural.

Observa-se que mesmo com 4; configurado em um valor moderado, os termos neurais
W§Z(u) e WZZ(u) compensaram parte substancial das ndo linearidades, assegurando uma
sincronizacdo eficiente. A sincronizagdo em todos os estados se manteve mesmo apds a
introducdo de disturbios parametricamente dependentes dos estados do escravo.
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4.5.2.2 Simulagdo 2 (Somente Controle Proporcional)
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Figura 27 - Desempenho de Sincronizacio entre x,,(t) e x,(t) para o caso sem Controle Neural.
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Figura 28 - Desempenho de Sincronizacio entre y,,(t) e y,(t) para o caso sem Controle Neural.



74

Figura 29 - Desempenho de Sincronizagao entre z,,(t) e z,(t) para o caso sem Controle Neural.
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Figura 30 - Desempenho de Sincronizagio entre w,,(t) e wy(t) para o caso sem Controle Neural.

Utilizando um ganho 4; menor, observou-se que, para este caso, 0 escravo nao con-
segue acompanhar o mestre de forma eficaz e se mostrou mais suscetivel aos disturbios
injetados. Em alguns instantes, o erro de sincronizacdo apresentou picos bem mais elevados

do que no método com redes neurais.

Ao comparar diretamente os graficos de desempenho de sincronizacdo, nota-se que o
controle com redes neurais atinge ou preserva a sincronizacdo com desempenho muito
superior — sobretudo para ganhos proporcionais mais baixos. No caso de ganhos lineares
elevados, o controlador puramente proporcional também pode suprimir distarbios, mas

pode exigir maior energia de controle ou apresentar riscos de saturacdo em aplicacdes reais.
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4.5.3 Conclusoes da Comparacao

« Desempenho Melhorado com Redes Neurais: Ao permitir que as leis de apren-
dizagem compensem incertezas e ndo linearidades, o controle neural sub-atuado
demonstrou sincronizagdo robusta, inclusive sob disturbios dependentes do sistema
escravo.

« Dependéncia dos Ganhos Proporcionais: O controle somente proporcional tem
eficicia limitada quando 4; ¢ mantido em valores menores, pois lhe faltam mecanismos
adaptativos. J4 a abordagem neural requer menor dependéncia de 4; para suprimir
desvios.

« Implementacao Pratica: Ganhos muito altos podem gerar problemas de saturagdo
ou instabilidade numérica, ao passo que as redes neurais compensam essas dinamicas

sem demandar tanto do termo linear.

Dessa forma, conclui-se que a arquitetura neural sub-atuada oferece vantagens
claras em condicoes de menores ganhos proporcionais ou distirbios mais complexos, refor-
cando seu potencial de aplicagdes em cendrios que requeiram menor esforco de controle ou

lidem com incertezas relevantes no modelo.

4.6 Discussao dos Resultados

Ao longo deste capitulo, foram desenvolvidas simulacdes que verificaram a eficicia da
sincronizacdo neural sub-atuada para um sistema hipercadtico tetradimensional, bem como
uma aplicacdo desse método em um esquema de comunicacdo segura. A seguir, resumem-se
os principais pontos observados:

1. Sincronizacao do Sistema Hipercaédtico

« As secoes iniciais demonstraram que o controlador neural e sub-atuado é capaz
de alinhar as trajetorias de um sistema escravo as de um sistema mestre, mesmo
diante de ndo linearidades e multiplos expoentes de Lyapunov positivos.

« Os erros de sincronizacdo (e, e,, €5, €,) exibiram reducoes consideraveis na fase
transiente, mantendo-se limitados e proximos de zero em regime permanente.
Esses comportamentos confirmam a robustez do método, garantindo estabilidade
pratica em cendarios adversos.

2. Adaptacao Neural e Sub-atuada
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« Aintroducdo de redes neurais possibilitou a compensacdo dindmica das incertezas
ndo lineares, enquanto a sub-acdo (controle aplicado em parte das varidveis)
diminuiu a complexidade de implementacao.

« Observou-se, pelas normas dos pesos estimados, que as redes se adaptam ao longo
do tempo, convergindo para valores estdveis que asseguram a sincronizacgao.

3. Aplicacdo em Comunicacio Segura

« A injecdo de uma mensagem nos estados do sistema mestre, seguida da recupera-
cdo desse sinal no sistema escravo, evidenciou o potencial pratico da sincronizacio
hipercadtica.

« A andlise dos sinais encriptados e recuperados mostrou que a ocultacdo dos
conteudos originais € eficaz (dificultando a extracdo por um interceptador) e
que os erros entre as mensagens transmitidas e recebidas permanecem proximos
de zero, mesmo na presenca de disturbios limitados, garantindo a fidelidade na
transmissao.

4. Desempenho e Robustez

« As simulacdes realizadas indicaram que pequenas perturbagoes (ruido, atenu-
acdo) no canal de comunica¢do ndo inviabilizam o processo de sincronizacio,
permitindo a recuperacdo da mensagem.

« A sensibilidade aos parametros de controle (4;) e as constantes de aprendizado
das redes neurais ¢ relevante: ajustando-os adequadamente, melhoram-se os

tempos de convergéncia e a resisténcia a incertezas mais intensas.
5. Limitacées e Perspectivas

« Embora a convergéncia a zero seja possivel em determinados cendrios, ambientes
fortemente nao lineares e ruidosos podem implicar apenas estabilidade pratica,
na qual o erro se mantém em uma faixa reduzida, sem necessariamente atingir
Zero.

« Investigacdes adicionais podem contemplar testes em hardware para avaliar a
viabilidade em tempo real.

Em sintese, os resultados apresentados neste capitulo sustentam a efetividade do con-
trolador neural sub-atuado para sincronizar sistemas hipercaéticos, mostrando ainda como
essa propriedade pode ser explorada em comunicacdo segura. As métricas de erro, as analises
de estabilidade e o desempenho global do esquema encriptado confirmam o potencial de
aplicacoes em cendrios que demandam alta complexidade, robustez e confidencialidade.



77

5 Conclusoes e trabalhos futuros

5.1 Resumo dos Resultados Obtidos

Ao longo desta dissertacdo, o objetivo central foi desenvolver e validar uma estraté-
gia de sincronizacdo neural e sub-atuada para um sistema hipercadtico tetradimensional,
demonstrando tanto a fundamentacdo teérica quanto sua aplicacdo pratica. Inicialmente,
revisou-se a teoria de estabilidade de Lyapunov e a Desigualdade de Young, que embasam a
demonstracdo da estabilidade pratica em cendrios de alta complexidade dinamica. Em se-
guida, realizou-se experimentos de simulagio que confirmaram a capacidade do controlador
proposto de alinhar as trajetérias de um sistema escravo as de um sistema mestre, mesmo
em presenca de multiplos expoentes de Lyapunov positivos.

Os principais resultados podem ser sumarizados em:

1. Prova Matematica de Sincronizacio: Utilizando a teoria de Lyapunov e a inclusdo
de redes neurais adaptativas, mostrou-se que o erro de sincronizacdo permanece

limitado e préximo de zero, mesmo diante de ndo linearidades e de disturbios limitados.

2. Eficiéncia do Controle Sub-atuado: Verificou-se que atuar em apenas parte das
varidveis de estado nlo inviabiliza a sincronizacdo. Pelo contrario, a sub-a¢ao reduziu
a complexidade de implementacdo e se manteve eficaz para suprimir as instabilidades

tipicas do regime hipercaotico.

3. Aplicacdo em Comunicacao Segura: A abordagem foi aplicada na cifragem de duas
mensagens simultaneamente, somando-as aos estados ndo atuados do sistema mestre
e recuperando-as no sistema escravo. As simulacgdes evidenciaram que a recuperacao
das mensagens ocorre com uma boa fidelidade, enquanto o processo de encriptacdo
dificulta a extracdo do conteudo por interceptadores.

4. Robustez e Flexibilidade: Mesmo em cendrios de ruido e perturbacdes externas, os
resultados confirmaram a capacidade do método em manter o erro de sincronizacio
dentro de faixas seguras. Além disso, o ajuste dos parametros de controle e das redes
neurais demonstrou flexibilidade para lidar com diferentes configuracoes e velocidades

de convergéncia.

Em sintese, o conjunto de experimentos e andlises realizadas comprova a eficicia
da lei de controle neural e sub-atuada ndo apenas para a sincronizacdo de sistemas hiper-

caoticos complexos, mas também para aplicacdes praticas envolvendo comunicacdo segura,
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sinalizando o potencial de extensao e inovacao tecnoldgica na drea de controle de sistemas

nao lineares.

5.2 Sumario de Contribuicoes do Trabalho

Nesta dissertacao, foi introduzida e validada uma abordagem de sincronizagcdo neu-
ral e sub-atuada aplicada a um sistema hipercaotico tetradimensional. Ao longo de seu
desenvolvimento, destacam-se as seguintes contribuicdes especificas:

1. Proposicao de um Controlador Sub-atuado para Sistemas Hipercadticos

« Ao contrario de métodos convencionais que exigem a atuacdo em todas as varia-
veis de estado, o controlador desenvolvido atua apenas sobre parte das variaveis,
reduzindo significativamente a complexidade de implementacao.

« Essa reducdo de atuadores ndo compromete a estabilidade do sistema, e a prova

de estabilidade evidenciou a eficidcia em cendarios de nio linearidades elevadas.
2. Integracao de Redes Neurais como Elemento de Compensacido Adaptativa

« As redes neurais foram empregadas para lidar com incertezas e termos nao
modelados, adaptando-se dinamicamente a evolucdo do sistema hipercaético.

« A utilizaclo das redes neurais, em conjunto com os fundamentos de Lyapunov,
formou um arcabouco robusto para garantir que o erro de sincronizag¢do perma-
necesse baixo, mesmo na presenca de perturbagdes ou pardmetros incertos.

3. Demonstracio de Estabilidade Pratica em Regime Hipercaodtico

« Em cendrios altamente instaveis, a estabilidade pratica (em vez de estritamente
assintdtica) mostrou-se suficiente para manter o sistema escravo em proximidade
das trajetorias do sistema mestre.

« Isso abre caminho para aplicagdes em situacoes onde ruidos externos impegam
uma convergéncia exata.

4. Aplicacao em Comunicacido Segura

« Foi desenvolvida e validada uma estratégia para encriptar e recuperar duas men-
sagens simultaneamente utilizando o comportamento hipercaético, evidenciando
a potencialidade do método em mascarar sinais de forma que um terceiro ndo
autorizado ndo consiga extrair o conteudo.

» Os resultados das simulacdes demonstraram valores de erros baixos na recu-
peracdo do sinal, refor¢cando a viabilidade pratica em cendrios de transmissao
confidencial de dados.
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5. Flexibilidade e Extensibilidade

« A abordagem de controle sub-atuado e redes neurais pode ser estendida a ou-
tros sistemas nao lineares de maior dimensdo, desde que sejam respeitadas as
hipéteses de projeto.

« Pardmetros como os ganhos de controle (4;) e as taxas de aprendizado neural
podem ser ajustados para atender diferentes requisitos de robustez, rapidez de
convergéncia e limitacdes de hardware.

Em conjunto, essas contribuicdes reforcam a ideia de que a sincronizacdo sub-atuada
apoiada em redes neurais ndo apenas colabora para o avango tedrico sobre controle de
sistemas hipercaodticos, mas também sinaliza aplicacdes praticas em areas como comunicacao

segura, processamento de sinais ndo lineares e engenharia de controle em geral.

5.3 Publicacao de Trabalhos com Resultados Prelimi-
nares

No decorrer do desenvolvimento deste mestrado, foram alcangados resultados preli-
minares relacionados a sincronizagdo de sistemas hipercadticos sub-atuados, sob a énfase em
comunicagdo segura. Esses resultados foram consolidados em duas publicagoes cientificas,

listadas nas Referéncias Bibliogréficas:

1. Hyperchaos-Based Secure Communication Using Lyapunov Theory (GULARTE, K. H.;
HARA et al., 2023a).

2. Secure Communications in the Presence of Disturbances Based on Lyapunov Theory
(GULARTE, K. H.; HARA et al., 2023b).

Em ambas as publicacdes, propde-se a utilizacdo de técnicas de controle sub-atuado
fundamentadas na teoria de Lyapunov para manter a sincronizacio entre um sistema mestre
e um sistema escravo hipercaoticos, possibilitando a cifragem de mensagens através do
mascaramento das varidveis de estado. Embora esses trabalhos ndo adotem redes neurais em
sua estrutura de controle, as solucoes apresentadas demonstraram que o controle sub-atuado
— mesmo sem camadas de adaptacdo — pode garantir a sincronizacdo em diversos cenarios,
mostrando-se viavel para aplica¢des de comunicacdo segura onde a reducdo de complexidade

e custo (em termos de atuacdo) seja primordial.

O material publicado reforca a idéia de que o uso de sistemas hipercaéticos e de
métodos de controle baseados em Lyapunov forma uma base sélida para garantir a confi-

dencialidade das comunicagdes. A partir dessas contribuicées iniciais, o presente trabalho
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evoluiu para incorporar redes neurais adaptativas, aprofundando a robustez e a versatilidade
da solucdo de sincronizacio, conforme discutido nos capitulos anteriores. Dessa forma, a
pesquisa atual pode ser considerada uma extensao e aprimoramento natural das técnicas
preliminares, ampliando o escopo e a eficicia no tratamento de nio linearidades e disturbios

mais complexos.

5.4 Trabalhos Futuros

Apesar dos resultados positivos obtidos ao longo desta dissertacdo, ha alguns aspectos
que podem ser aprofundados ou estendidos em pesquisas futuras:

1. Implementacao Discreta do Controlador Uma possibilidade de evolucdo consiste
em desenvolver uma versdo discreta do controlador neural sub-atuado, adaptada a
sistemas amostrados. Nesse cenario, as equacoes diferenciais e as leis de adaptacdo
neural precisariam ser reformuladas em termos de diferencas finitas ou em funcio
de um periodo de amostragem definido. Essa abordagem permitiria a execug¢do do
controle em plataformas digitais (por exemplo, microcontroladores, DSPs ou FPGAs),
viabilizando testes em tempo real e assegurando que atrasos e quantizacdes inerentes
a processos discretos ndo comprometam a convergéncia e a robustez do método. Além
disso, a implementacdo discreta abriria caminho para estratégias de otimizacao e ajuste
de pardmetros em algoritmos de controle adaptativo on-line, levando a solu¢des ainda

mais eficientes e compativeis com restricdes praticas de hardware.

2. Aplicacao em Outros Sistemas Dinadmicos
Estender o método a sistemas hipercadticos de dimensdo superior ou a outros modelos
ndo lineares complexos, verificando se a estabilidade pratica e a sub-atuacdo mantém
sua eficdcia em cendrios ainda mais desafiadores.

3. Andlise de Desempenho em Hardware
Implementar o sistema utilizando componentes de eletronica e verificar o seu de-
sempenho e suas limitacdes em um cendrio em que os sinais sdo influenciados pelas

limitacdes e ndo-idealidades dos componentes.

4. Comunicacao Segura em Larga Escala
Ampliar os testes de comunicacdo cadtica para cenarios multiusudrio (Como em comu-
nicacgdes vehicle-to-everything (V2X), por exemplo) ou de redes, com diferentes niveis
de ruido e atenuacao. Analisar a capacidade de canal e a taxa de transmissao quando

se emprega a sincronizagdo hipercaética em diferentes protocolos de comunicacao.

Essas direcdes sinalizam oportunidades de evolucio tanto no Ambito tedrico quanto
na aplicacdo pratica, consolidando e expandindo o potencial da sincronizacao neural sub-



81

atuada em sistemas hipercadticos para diferentes nichos de pesquisa e desenvolvimento

tecnologico.
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APENDICE A - Coédigos de simulacdo
no MATLAB

A.1 Cadigo para a Planta Master (Mestre)

Codigo A.1 - Planta_Master.m

function [sys,x0,str,ts] = Sistema(t,x,u,flag)

%constantes

a = 35;

b = 4.9;

c = 25;

d = 5;

e = 35;

f = 100;

gamma3d = 0.09;

gammal = 0.02;

gamma2 = (gammalxe + gamma3)/d;

Jmensagens a serem transmitidas
messageX = 12*sin(2*pi*1.7xt+pi/3)+11*cos (2*pi*0.8%t);
messageZ = 3.6*square (2*pix1.25*t)+2.4*xsquare (2*pi*x1.53*%t+pi/5);

switch flag,
T 1o 16T %%l ToTo To To 76 %6 %6 %o % % %o
% Inicializagio %
T 1o 1616 %% % T To To To 7o 76 76 %o % % %o
case O,
sizes = simsizes;
sizes.NumContStates %Nimero de estados continuos
sizes.NumDiscStates %Numero de estados discretos
sizes.NumOutputs = 4; %Nimero de saidas
sizes.NumInputs = O; %Nimero de entradas
sizes.DirFeedthrough
sizes.NumSampleTimes
sys = simsizes(sizes);
x0=[1/gammal 1/gamma2 1/gamma3 1]; Y Condic¢des iniciais
str=[1;
ts=[0 0];
Do t6T6 %l hhoToTo To To 7o 7o 1o Yo
% Diretivas A
Do t6 %% h DT ToTo To To 1o 7o 1o To
case 1, %Planta do sistema mestre
sys = [a*x(x(2)-x(1))+gammal*e*xx(2)*x(3);

o
o
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c*x (1) -gamma2x*d*x (1) *x (3) +x(2) +x (4) ;
gamma3*x (1) *x (2) -b*x(3) ;
-fxx(2)1;
Dot tlotolotoTotsTo % %o
% Saidas Y%
Y Y
case 3,
sys = [x(1) + messageX; x(2); x(3) + messageZ; x(4)];
Dot totolo Tl T %o
% Fim %
Y
case {2,4,9},
sys = [1; % N&do faz nada
otherwise
error ([?unhandled flag = ’,num2str(flag)]);
end

A.2 Cadigo para a Planta Slave (Escravo)

Codigo A.2 — Planta_Slave.m

function [sys,x0,str,ts] = Sistema(t,x,u,flag)

%constantes

a = 35;

b = 4.9;

c = 25;

d = 5;

e = 35;

f = 100;

gamma3 = 0.09;

gammal = 0.02;

gamma2 = (gammalxe + gamma3)/d;

%0BS ndo foi necessdrio incluir o disturbio pois o mesmo foi
adicionado no Simulink

switch flag,
Dot T 1o T o To 1o o To 1o To 1o o To 16 %o
% Inicializagio %
Dol 1ol TotoTotoTo 1o o 16 1o %o To %o o
case O,
sizes = simsizes;

sizes.NumContStates %Nimero de estados continuos

1]
W

sizes.NumDiscStates = 0; %Numero de estados discretos
sizes.NumOutputs = 6; %Nimero de saidas
sizes.NumInputs = 7; %Nimero de entradas
sizes.DirFeedthrough = 1;

sizes.NumSampleTimes 1;
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sys = simsizes(sizes);
x0=[-2/gammal 2/gamma2 3/gamma3 4]; JCondicdes iniciais
str=[];
ts=[0 0];
Do loTo % TotoTotoTo 1o To to o 1o
% Diretivas %
YNNI
case 1, %Planta do sistema escravo
sys = [ax(x(2)-x(1))+gammal*exx(2)*x(3)+u(1l)+d1l;
c*x (1) -~gamma2*d*x (1) *x (3) +x(2) +x(4) +u(2) +d2;
gamma3*x (1) *x (2) -b*x (3) +u(3) +d3;
-fxx(2)+u(4)+d4];
Dot T To T To 1o % %o
% Saidas %
Dot T To T To 1o %o o
case 3,
sys = [x(1);x(2);x(3);x(4);u(6);u(7)];
Dol hh % h %
% Fim %
Dot T T T %ol T %
case {2,4,9},
sys = [1; % Ndo faz nada
otherwise
error ([?unhandled flag = ’,num2str(flag)]);
end

A.3 Cadigo para o Sincronizador

Codigo A.3 - Sincronizador.m

function [sys,xO,str,ts] = Sincronizador(t,x,u,flag)

J%constantes sincronizador

a = 35;
b = 4.9;
c = 25;
d = 5;

e = 35;
f = 100;

hconstantes definidas pelo usuario
sigma2 = 10;
sigma4 = 10;

lambda?2
lambda4d

5000;
5000;

% parametros iniciais matriz w
W2=[1 0 0 0 0 O 0 0]°;
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W4=[1 0 0 0 O 0 0 0]°;

switch flag
ot ToToto T To 1o %o %o To To %o
% Inicializagdo Y%

Toto 1o 16T %%l hoToTo To To To 1o 7o Vo

case O
sizes = simsizes;
sizes.NumContStates = 16;
sizes.NumDiscStates = 0;
sizes.NumQOutputs = 73
sizes.NumInputs = 10;
sizes.DirFeedthrough = 1;
sizes.NumSampleTimes = 1;
Sys = simsizes(sizes);
x0=zeros (16,1) ;
str=[];
ts=[0 0];

oo ol to ot Tolo s
% Diretivas %

Do t6T6%%hhhhoToToTo To T

%Numero de estados continuos
%Nimero de estados discretos
%#Numero de saidas

%Nimero de entradas

%#Condigdes iniciais

case 1 Joaqui ficam os estimadores dos pesos de uma rede neural

sys = [(u(6)-u(2))*Z(u)
(u(8)-u(4))*Z(u)

- sigma2*(x(1:8)-W2);
- sigmad*(x(9:16)-W4)1];

% lei de aprendizado

BT to Tl bt T 7o
% Saidas Y%
Bl to Tttt Ty

case 3 YJsaidas u enviadas para o sistema escravo
sys = [0;%-lambdal*(u(5)-u(l));
-(x(1:8)-W2) ’+Z(u) -lambda2*(u(6) -u(2));

0;

-(x(9:16) -W4) >*Z(u) -

u(2);
norm(x(1:8));

lambdad *(u(8)-u(4));

norm(x(9:16))]; %pesos das redes

case {2,4,9}
sys = [1;

otherwise

error ([?unhandled flag = ’,num2str(flag)]);

end

Tttt ToToToToToTohhoToTo 1o 1o 1o %ol ToTo To 1o 1o 1o %o T To To 1o 1o 16 %o To To To 1o 16 1o 1o o To To To 1o 16 %o o o To To 1o 1o 1o %o o o o To 1o 76 %o %o o o

function out = Z(u) %Regressor
out=[1*(sig(u(5)));

1x(sig(u(6)));

1x(sig(u(7)));

1x(sig(u(8)));
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1*x(sig(u(5))~2);
1*(sig(u(6))~2);
1x(sig(u(7))-2);
1*(sig(u(8))~2)1;

Tttt TototohoTototohoToTotohoToTotohoToToto e To Toto %o To To to %o To To To %o To To %o %o o To 1o %o o To 1o %o o To 1o %o o To 1o %o o To 16 %o o o 7o o
function out = sig(uu) Y%funcao de ativacao

lamda=0;

alfa=5;

beta=.5;

out=alfa/(exp(-beta*uu)+1)+lamda;

A.4 Cadigo para a obtencao dos graficos

Codigo A.4 - Graficos.m

%Executando esse arquivo --> automaticamente mostra os graficos da
%simulacgdo e salva na pasta em formato png e epsc

sle

close all

formatl = ’png’;
format2 = ’epsc’;
fSize = 38;
axesSize = 38;
15ize = 3.6;
dvlsize = 2;

dhlsize = 2;
fonte = 38;
largura_linha = 2;

colorl = [0 0.4470 0.7410];

color2 = [0.8500 0.3250 0.0980];

color3 = [0.4660 0.6740 0.1880];

messageX = 12*sin(2*pi*1.7*t+pi/3)+11*xcos (2*xpi*0.8%*t);

messageZ 3.6*square (2xpi*1.25xt)+2.4*square (2*pix1.53*t+pi/5);

set (0, ’DefaultAxesFontSize’,axesSize);

hFigura 1

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.096, 0.172,
0.890, 0.8001]1);

plot (t,Xmaster(:,1),t, Xslave(:,1),’:’,’LineWidth’,18ize);

grid on

grid minor

h=legend (’$x_m(t)$’,’$x_s(t)$’,’Location’,’southeast’);

set(h,’Interpreter’,’Latex’,’FontSize’,fSize);

y1lim ([-180 150]);

xlabel (’$t[s]$’,’Interpreter’,’Latex’, ’Fontsize’,fSize);
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set (gcf ,’units’,’normalized’,’outerposition’,[0 0 1 1]);
saveas (gcf,’Figuras/1_XsXm’, formatl);
saveas (gcf,’Figuras/1 _XsXm’, format2);

close(fig)

hFigura 2

fig=figure(’visible’,’off’, ’DefaultAxesPosition’,

0.890,

plot (t,Xmaster (:,2),t,

grid on
grid minor

0.8001) ;

[0.096,

Xslave(:,2),’:’,’LineWidth’,1Size) ;

h=legend (’$y_m(t)$’,’$y_s(t)$’,’Location’,’southeast’);
set(h,’Interpreter’,’Latex’,’FontSize’,fSize);

ylim([-140

100]1) ;

xlabel (’$t[s]$’,’ Interpreter’,’Latex’, ’Fontsize’,fSize);
set (gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);
saveas (gcf,’Figuras/2_YsYm’, formatl);
saveas (gcf,’Figuras/2_YsYm’, format2);

close(fig)

hFigura 3

fig=figure(’visible’,’off’, ’DefaultAxesPosition’,

0.890,

plot (t,Xmaster (:,3),t,

grid on
grid minor

0.8001) ;

[0.096,

Xslave(:,3),’:’,’LineWidth’ ,1Size) ;

h=legend (’$z_m(t)$’,’$z_s(t)$’,’Location’,’southeast’);
set (h,’Interpreter’,’Latex’,’FontSize’,fSize);

ylim ([-15

651) ;

xlabel (’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);
set (gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);
saveas (gcf,’Figuras/3_ZsZm’, formatl);
saveas (gcf,’Figuras/3_ZsZm’, format2);

close(fig)

%Figura 4

fig=figure(’visible’,’off’, ’DefaultAxesPosition’,

0.890,

plot (t,Xmaster (:,4),t,

grid on
grid minor

0.8001) ;

[0.096,

Xslave(:,4),’:’,’LineWidth’ ,1Size) ;

h=legend (*’$w_m(t)$’,’$w_s(t)$’,’Location’,’southeast’);
set (h,’Interpreter’,’Latex’,’FontSize’,fSize);
xlabel (’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);
set (gcf ,’units’,’normalized’,’outerposition’,[0 0 1 1]);
saveas (gcf,’Figuras/4 _WsWm’, formatl);
saveas (gcf,’Figuras/4 _WsWm’, format2);

close(fig)

sFigura 5

fig=figure(’visible’,’o0ff’, ’DefaultAxesPosition’,

0.890,

0.8001) ;

[0.096,

0.172,

0.172,

0.172,

0.172,
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plot(t, Xslave(:,5),’LineWidth’,1Size);
grid on
grid minor

h=legend (’$||\widehat{W}_{2}(t)||$’,’Location’,’southeast’);

set(h,’Interpreter’,’Latex’,’FontSize’,fSize);

ylim ([0 1.5]);

xlabel (’$t[s]1$’,’Interpreter’,’Latex’,’Fontsize’,fSize);
set (gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);
saveas (gcf,’Figuras/5 _Norma_Pesos_Estimados’, formatl);
saveas (gcf, ’Figuras/5_Norma_Pesos_Estimados’, format2);
close(fig)

sFigura 6

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.096,
0.890, 0.800]);

plot(t, Xslave(:,6),’LineWidth’,1Size);

grid on

grid minor

0.172,

h=legend (’$||\widehat{W}_{4}(t)[1$’,’Location’,’southeast’);

set(h,’Interpreter’,’Latex’,’FontSize’,fSize) ;

ylim ([0 1.51);

xlabel (’$t[s]1$’,’Interpreter’,’Latex’,’Fontsize’,fSize);
set (gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);
saveas (gcf,’Figuras/6 _Norma_Pesos_Estimados’, formatl);
saveas (gcf,’Figuras/6 _Norma_Pesos_Estimados’, format2);
close(fig)

hFigura 7

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.096,
0.890, 0.8001]1);

plot (t,Xslave(:,1) -Xmaster(:,1),’LineWidth’,1Size);

grid on

grid minor

h=legend(’$e_1(t)$’,’Location’,’southeast’);

set(h,’Interpreter’,’Latex’,’FontSize’,fSize) ;

ylim ([-100 50]);

xlabel (’$t[s]$’,’ Interpreter’,’Latex’,’Fontsize’,fSize);

set (gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas (gcf,’Figuras/7_el’, formatl);

saveas (gcf,’Figuras/7_el’, format2);

close(fig)

sFigura 8

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.096,
0.890, 0.800]);

plot (t,Xslave(:,2) -Xmaster(:,2),’LineWidth’,1Size) ;

grid on

grid minor

h=legend(’$e_2(t)$’,’Location’,’southeast’);

set(h,’Interpreter’,’Latex’,’FontSize’,fSize);

ylim([-1 21);

xlabel (’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

0.172,

0.172,
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set (gcf ,’units’,’normalized’,’outerposition’,[0 0 1 1]);
saveas (gcf,’Figuras/8_e2’, formatl);

saveas (gcf,’Figuras/8_e2’, format2);

close(fig)

hFigura 9

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.096, 0.172,
0.890, 0.8001]1);

plot (t,Xslave(:,3) -Xmaster(:,3),’LineWidth’,1Size);

grid on

grid minor

h=legend(’$e_3(t)$’,’Location’,’southeast’);

set(h,’Interpreter’,’Latex’,’FontSize’,fSize);

ylim ([-15 151);

xlabel (’$t[s]$’,’ Interpreter’,’Latex’, ’Fontsize’,fSize);

set (gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas (gcf,’Figuras/9_e3’, formatl);

saveas (gcf,’Figuras/9_e3’, format2);

close(fig)

hFigura 10

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.096, 0.172,
0.890, 0.800]);

plot (t,Xslave(:,4)-Xmaster (:,4),’LineWidth’,1Size);

grid on

grid minor

h=legend(’$e_4(t)$’,’Location’,’southeast’);

set(h,’Interpreter’,’Latex’,’FontSize’,fSize);

ylim([-0.2 0.2]);

xlabel (’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

set (gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas (gcf,’Figuras/10_e4’, formatl);

saveas (gcf,’Figuras/10_e4’, format2);

close(fig)

% hFigura 11

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.060, 0.172,
0.920, 0.8001);

plot (t,5*messageX ,t,Xmaster(:,1),’:’,’LineWidth’,1Size) ;

grid on

grid minor

h=legend (*$$5 m_{x}(t)$$’, ’$$s_{x}(t)$$’,’Location’,’southeast’);
set (h,’Interpreter’,’Latex’,’FontSize’,fSize);

ylim ([-220 180]);

xlabel (’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

set (gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas (gcf,’Figuras/11 _encrypted_message_comparison_X’, formatl);
saveas (gcf,’Figuras/11 _encrypted_message_comparison_X’, format2);
close(fig)

hFigura 12
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fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.096, 0.172,
0.890, 0.8001]1);

plot (t,5*messageZ + 30,t,Xmaster(:,3),’:’,’LineWidth’,1S8ize);

grid on

grid minor

h=legend (’$$5 m_{z}(t)+308$’,
'$$s_{z}(t)$$°’,’Location’,’southeast’);

set (h,’Interpreter’,’Latex’,’FontSize’,fSize);

ylim([-20 65]) ;

xlabel (’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

set (gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas (gcf ,’Figuras/12 _encrypted_message_comparison_Z’, formatl);

saveas (gcf,’Figuras/12 _encrypted_message_comparison_Z’, format2);

close(fig)

% %WFigura 13

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.060, 0.172,
0.920, 0.800]);

plot (t,messageX ,t,Xmaster (:,1) -
Xslave(:,1),’:’,’LineWidth’,1Size) ;

grid on

grid minor

h=legend (’$$m_{x}(t)$$’,
>$$\widehat{m}_{x}(t)$$’,’Location’,’southeast’);

set(h,’Interpreter’,’Latex’,’FontSize’,fSize) ;

ylim([-50 30]);

xlabel (’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

set (gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas (gcf,’Figuras/13 _retrieved_message_comparison_X’, formatl);

saveas (gcf,’Figuras/13 _retrieved_message_comparison_X’, format2);

close(fig)

hFigura 14

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.096, 0.172,
0.890, 0.800]);

plot (t,messageZ,t,Xmaster (:,3) -
Xslave(:,3),’:’,’LineWidth’,1Size) ;

grid on

grid minor

h=legend (’$$m_{z}(t)$$’,
’$$\widehat{m}_{z}(t)$$’,’Location’,’southeast’) ;

set(h,’Interpreter’,’Latex’,’FontSize’,fSize);

ylim([-11 71);

xlabel (’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

set (gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas (gcf,’Figuras/14 _retrieved_message_comparison_Z’, formatl);

saveas (gcf,’Figuras/14 _retrieved_message_comparison_Z’, format2);

close(fig)

sFigura 15
fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.060, 0.172,
0.920, 0.800]);
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plot (t,messageX - Xmaster(:,1) + Xslave(:,1),’LineWidth’,1Size);
grid on

grid minor

h=legend (*$$e_{mx}(t)$$’,’Location’,’northeast’);
set(h,’Interpreter’,’Latex’,’FontSize’,fSize);

ylim([-20 32]);

xlabel (’$t[s]1$’,’Interpreter’,’Latex’,’Fontsize’,fSize);
set (gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);
saveas (gcf,’Figuras/15 _message_X_error’, formatl);
saveas (gcf ,’Figuras /15 _message_X_error’, format2);
close(fig)

hFigura 16

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.096, 0.172,
0.890, 0.8001]1);

plot (t,messageZ - Xmaster(:,3) + Xslave(:,3),’LineWidth’,1Size);

grid on

grid minor

h=legend (’$$e_{mz}(t)$$’,’Location’, ’northeast’);

set(h,’Interpreter’,’Latex’,’FontSize’,fSize) ;

ylim ([-5 15]);

xlabel (’$t[s]1$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

set (gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas (gcf ,’Figuras/16 _message_Z_error’, formatl);

saveas(gcf,’Figuras/16_message_Z_error’, format?2) ;

close(fig)

A.5 Coddigo para a obtencao dos valores de entropia
diferencial

Cadigo A.5 - Entropia_Diferencial.m

[x_pdf, f_pdf] = ksdensity(sinal); % ’sinal’ & o vetor do sinal
continuo e deve ser substituido pelo sinal que se deseja
calcular a entropia diferencial

% Calcular a entropia diferencial (integral numérica)

H_diff = -trapz(x_pdf, f_pdf .* log2(f_pdf + eps)); % Adiciona eps
para evitar log(0)

fprintf (’Entropia diferencial: %.4f bits\n’, H_diff);



	Folha de rosto
	Folha de aprovação
	Dedicatória
	Agradecimentos
	Epígrafe
	Resumo
	Abstract
	Lista de ilustrações
	Lista de tabelas
	Sumário
	Introdução
	Contextualização e motivação
	Estado da arte
	Objetivos
	Organização deste trabalho

	Conceitos preliminares
	Sistemas Caóticos e Hipercaóticos
	Definição e Caracterização de Sistemas Caóticos
	Exemplo Clássico: Sistema de Lorenz

	Conceito de Hipercaos
	Exemplo de Sistema Hipercaótico

	Implicações e Aplicações
	Desafios para Controle e Sincronização

	Teoria de estabilidade de Lyapunov
	Definições de Estabilidade
	Método Direto de Lyapunov
	Critérios de Estabilidade

	Método Indireto de Lyapunov (Linearização)
	Aplicações em Sistemas Caóticos e Hipercaóticos

	Desigualdade de Young
	Justificativa Geral
	Aplicação em Sistemas Dinâmicos
	Exemplo Simples

	Extensões e Outras Versões

	Escalonamento em Amplitude e na Frequência
	Escalonamento em Amplitude
	Exemplo – Sistema de Lorenz:

	Escalonamento na Frequência (ou no Tempo)
	Exemplo – Oscilador de Van der Pol:

	Combinação de Escalonamentos
	Exemplo – Sistema Hipercaótico 4D:


	Correlação Não Linear de Kendall
	Definição e Interpretação
	Aplicação em Sistemas Dinâmicos e Criptografia

	Entropia de Sinais
	Definição de Shannon
	Entropia Diferencial
	Definição
	Observações Importantes
	Interpretação em Processamento de Sinais
	Aplicação a Sinais Caóticos

	Relevância no Trabalho

	Redes Neurais Artificiais
	Arquitetura Básica
	Notação e Definições Matemáticas
	Capacidade de Aproximação
	Aprendizado e Ajuste dos Pesos
	Aplicações em Sistemas de Alta Complexidade


	Proposta de sincronização neural e sub-atuada para um sistema hipercaótico tetradimensional 
	Descrição do Problema
	Sistema Hipercaótico Proposto por (WANG, S., 2022)
	Planta Mestre (Versão Escalonada)
	Planta Escravo (Versão Escalonada com Perturbações e Controle)
	Objetivo Geral de Sincronização

	Prova de estabilidade usando a Teoria de Lyapunov
	Função de Erro
	Controlador Neural e Sub-atuado
	Prova de Estabilidade
	Função Candidata de Lyapunov
	Derivada de Lyapunov e Uso das Desigualdades de Young
	Definição de Conjuntos Limitados e Condições para 0
	Passo 1 – Reagrupamento dos termos:
	Passo 2 – Relação com V:
	Passo 3 – Região Invariante:
	Conclusão:




	Simulações e Validações
	Configuração das Simulações
	Ambiente de Computação
	Hardware
	Software

	Arquitetura do Modelo no Simulink®
	Organização de Blocos
	Passo de Integração e Solver

	Parâmetros de Inicialização
	Estratégia de Execução e Coleta de Dados
	Execução e Scripts de Automação
	Coleta e Pós-Processamento

	Observação sobre Reprodutibilidade

	Arquitetura das Redes Neurais Utilizadas
	Objetivo das Redes Neurais no Sincronizador
	Arquitetura (Rede Neural de Alta Ordem)
	Função de Ativação Sigmoidal
	Vetor de Entrada (Regressor) Z(u)
	Lei de Aprendizado dos Pesos
	Saída das Redes e Lei de Controle
	Conclusão e Importância

	Resultados da Sincronização
	Trajetórias do Sistema Mestre e Escravo
	Norma dos Pesos Estimados
	Erro de Sincronização
	Análise Global

	Aplicação em Comunicação Segura
	Diagrama de Blocos
	Propriedade de Segurança Preservada
	Injeção e Recuperação da Mensagem
	Resultados de Simulação
	Comparação entre Mensagens Originais e Encriptadas
	Correlação não linear entre Mensagens Originais e Encriptadas
	Entropia diferencial dos sinais analisados

	Comparação entre Mensagens Transmitidas e Recuperadas
	Erro entre as Mensagens Originais e Recuperadas


	Comparação entre os Controles com e sem Redes Neurais
	Configuração das Simulações
	Resultados e Análise
	Resultados da Simulação 1 (Controle Neural Completo)
	Simulação 2 (Somente Controle Proporcional)

	Conclusões da Comparação

	Discussão dos Resultados

	Conclusões e trabalhos futuros
	Resumo dos Resultados Obtidos
	Sumário de Contribuições do Trabalho
	Publicação de Trabalhos com Resultados Preliminares
	Trabalhos Futuros

	Referências
	Apêndices
	Códigos de simulação no MATLAB
	Código para a Planta Master (Mestre)
	Código para a Planta Slave (Escravo)
	Código para o Sincronizador
	Código para a obtenção dos gráficos
	Código para a obtenção dos valores de entropia diferencial



