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RESUMO  

 

A análise de rupturas em taludes submetidos a grandes deformações demanda metodologias 

numéricas capazes de representar não apenas a instabilidade, mas também a evolução e 

consequências pós-ruptura. Este trabalho investiga a aplicação do Material Point Method 

(MPM) e do Coupled Eulerian-Lagrangian (CEL) na simulação de rupturas progressivas e 

retrogressivas, com ênfase na fase pós-falha. Foram empregadas diferentes formulações no 

MPM, com o modelo constitutivo de Mohr-Coulomb com amolecimento por deformação 

(strain-softening), e no CEL, os modelos de Mohr-Coulomb e Drucker-Prager, ambos também 

com (strain-softening). A partir de análises paramétricas, identificou-se a influência direta de 

propriedades no comportamento do material e controle do mecanismo de ruptura. Foi possível 

identificar os tipos de ruptura, quantificar as distâncias alcançadas pelo material “run-out 

distance” e “retrogression distance” e avaliar a transição do mecanismo de falha para a fundação. 

Grandezas cinemáticas como velocidade e energia cinética, bem como forças de reação, foram 

extraídas, possibilitando avaliar interações com estruturas. Por fim, o desempenho 

computacional, as limitações e as capacidades de cada abordagem foram analisadas frente à 

modelagem de problemas geotécnicos com grandes deformações. 
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ABSTRACT 

  

The analysis of slope failures involving large deformations requires numerical methodologies 

capable of representing not only the onset of instability, but also the evolution and post-failure 

consequences. This study investigates the application of the Material Point Method (MPM) and 

Coupled Eulerian–Lagrangian (CEL) approach to simulate progressive and retrogressive 

landslides, with an emphasis on the post-failure stage. Different constitutive formulations were 

implemented in MPM using the Mohr–Coulomb model with strain-softening behavior, while 

CEL simulations adopted both Mohr–Coulomb and Drucker–Prager models, also incorporating 

strain-softening. Through parametric analyses, the influence of key material properties on failure 

mechanisms was identified, allowing for control over the type and extent of slope failure. The 

study enabled the identification of failure types, the quantification of run-out and retrogression 

distances, and the evaluation of the transition from failure to foundation settlement. Kinematic 

quantities such as velocity and kinetic energy, as well as reaction forces, were extracted to assess 

the interaction with structural elements. Finally, the computational performance, limitations, and 

capabilities of each numerical approach were evaluated in the context of large deformation 

geotechnical problems. 
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CAPÍTULO 1  

1.1 INTRODUÇÃO  

 

Taludes podem ser definidos como superfícies inclinadas formadas por solos ou rochas que, sob 

a ação de forças gravitacionais e ambientais, podem se tornar suscetíveis a processos de 

instabilidade. A análise da estabilidade de taludes é uma das áreas de pesquisa mais recorrentes 

dentro da engenharia geotécnica, abrangendo tanto formações naturais quanto intervenções 

humanas, como cortes em rodovias, pilhas de rejeito, barragens, aterros e encostas artificiais.  

 

A estabilidade desses taludes é um tema de extrema importância, pois a sua seguridade é 

essencial para evitar danos a estruturas de grande valor econômico, prevenir a ocorrência de 

prejuízos ambientais severos e, sobretudo, proteger vidas humanas em áreas vulneráveis. O 

entendimento dos mecanismos que levam à ruptura, bem como dos fatores que contribuem para 

a sua evolução, é fundamental para o planejamento seguro de obras de infraestrutura e para a 

gestão de riscos associados a deslizamentos. 

 

A instabilidade de um talude pode ser atribuída a alterações nas suas características geológicas 

e geomorfológicas, influenciadas por fatores internos como propriedades do solo, 

descontinuidades e cobertura vegetal e fatores externos, como chuvas intensas, sismos e 

intervenções antrópicas (INVIAS, 2006). Quando ocorrem, os movimentos de massa podem 

atingir o nível de desastre, comprometendo vidas humanas, afetando infraestruturas essenciais 

e alterando de maneira significativa o ambiente natural. 

 

Existem diferentes tipos de movimentos de massa, classificados conforme o mecanismo 

predominante de deslocamento. Segundo a classificação clássica de Varnes (1978) e posteriores 

atualizações propostas por Highland & Bobrowsky (2008) (apud Toro Rojas, 2019), destacam-

se: 

• Quedas: deslocamentos quase verticais de blocos de solo ou rocha; 

• Tombamentos: movimentos rotacionais ao redor de um ponto de apoio, geralmente em 

blocos rochosos; 

• Escorregamentos: deslocamentos sobre superfícies de ruptura bem definidas, podendo 

ser rotacionais ou translacionais; 
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• Espalhamentos laterais: deformações horizontais associadas a colapsos de materiais 

subjacentes; 

• Escoamentos: movimentos contínuos com comportamento semelhante a fluidos 

viscosos, como fluxos de detritos, fluxos de lama e avalanches de detritos; 

• Movimentos complexos: combinações de dois ou mais tipos anteriores. 

A Figura 1.1 apresenta uma representação esquemática dos principais tipos de movimentos de 

massa. 

    
a) Quedas  e) Espalhamento lateral  

     
b) Tombamentos  f) Fluxo de detritos  

                                                      
c) Escorregamento rotacional            g) Avalanche de detritos   

     

 d) Escorregamento translacional  h) Rastejo 

Figura 1.1. Tipos de movimentos de massa (Modificada de Highland & Bobrowsky, 2008; 

apud Toro Rojas, 2019). 

Embora diferentes mecanismos de movimento sejam reconhecidos, este trabalho concentra-se 

especialmente nas rupturas progressivas e retrogressivas, fenômenos de grande relevância para 

a estabilidade de taludes naturais, tanto em ambientes continentais quanto submarinos. 

 

 

As rupturas progressivas caracterizam-se por uma falha inicial localizada que se propaga 

gradativamente, decorrente da redução progressiva da resistência ao cisalhamento do solo à 
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medida que ele é submetido a deformações. A resistência reduzida permite que a falha inicial, 

geralmente localizada em áreas internas enfraquecidas do maciço, expanda-se gradualmente, 

alcançando camadas mais profundas ou chegando até a superfície do talude. Fatores 

desencadeantes típicos incluem remoção de suporte basal, cargas superficiais adicionais e 

eventos sísmicos, que atuam como gatilhos para a evolução da instabilidade (Dey et al., 2015; 

Wang et al., 2021). 

 

Por outro lado, as rupturas retrogressivas iniciam-se na base do talude e evoluem em direção 

contrária ao deslocamento inicial. Ocorrem frequentemente devido à remoção ou 

enfraquecimento do suporte basal, a remoção inicial do material causa redistribuição das tensões 

internas, gerando instabilidades subsequentes nas porções superiores, em uma sequência que se 

estende gradativamente para montante. Este tipo de ruptura é especialmente crítico por poder 

impactar extensas áreas além da zona inicial de deslizamento (Wang et al., 2016). Entre as 

formas características de rupturas progressivas e retrogressivas, destacam-se três mecanismos 

principais, ilustrados na Figura 1.2: 

 

Figura 1.2.(a) falha retrogressiva em série com fluxo de detritos, (b) falha progressiva em 

declive, (c) deslizamento retrógressivo ascendente "spread". (Modificado de Elfgren et al. 

2018). 

Traçado original 
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de ruptura 

Fluxo de detritos 

Rebaixamento 

do solo Perfil original Levantamento 

do solo 

Superfície de falha 

Superfície 

original 

Deslocamento 

dos destroços 

Superfície de falha 
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• Deslizamento retrogressivo em série com fluxo de detritos: Caracteriza-se pela 

ocorrência de múltiplas falhas subsequentes. O material desprendido pelo primeiro 

evento remobiliza-se e, ao fluir rapidamente para longe da zona inicial, facilita a 

exposição de novas superfícies instáveis, desencadeando falhas adicionais 

progressivamente em sentido contrário ao deslocamento inicial. 

• Ruptura progressiva em declive: Inicia-se a partir de uma zona inicial de fragilidade 

localizada, propagando-se para as áreas inferiores do talude. Geralmente é associada à 

aplicação de cargas adicionais ou mudanças significativas nas tensões internas, levando 

a deformações incrementais. 

• Deslizamento retrogressivo ascendente (spread): Neste mecanismo formam-se 

superfícies quase horizontais de cisalhamento na camada de argila sensível. A partir daí, 

ocorrem movimentos translacionais que resultam em estruturas típicas como "horsts" 

(blocos elevados) e "grabens" (depressões). Esses eventos são geralmente desencadeados 

pela erosão basal que leva à perda de suporte inferior, causando significativas 

redistribuições de tensão 

Esses mecanismos ocorrem preferencialmente em argilas sensíveis devido à intensa redução da 

resistência pós-pico, o que potencializa a progressão das falhas (Urmi et al., 2023). A Figura 1.3 

mostra a evolução típica das rupturas progressivas seguidas de rupturas retrogressivas: 

 

Figura 1.3.  Evolução de uma ruptura progressiva e retrogressiva. (Modificado de Urmi et al., 

2023) 

1° deslizamento 

rotacional  

Nova geometria 

após deslizamento 
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É importante salientar que deslizamentos retrogressivos em série com fluxo de detritos são 

especialmente críticos em taludes compostos por argilas altamente sensíveis, dada a rápida 

remoldagem do material e a perda substancial da resistência ao cisalhamento após a ruptura 

inicial. Este mecanismo permite um transporte rápido dos materiais remobilizados, facilitando 

a exposição de novas áreas vulneráveis (Dey et al., 2016). Por outro lado, rupturas retrogressivas 

ascendentes (spreads) apresentam inicialmente uma superfície quase horizontal, que evolui por 

movimentos translacionais até a formação de estruturas geomorfológicas características 

denominadas horsts e grabens. Este mecanismo ocorre, em geral, devido à erosão basal, que 

remove o suporte inferior e induz redistribuições significativas de tensões, favorecendo a 

propagação da ruptura em direção a montante (Urmi et al., 2023). A Figura 1.4 ilustra de forma 

esquemática a evolução dessas estruturas, enquanto a Figura 1.5 apresenta uma ocorrência real 

observada em campo. 

 

Figura 1.4. Evolução morfológica de uma falha do tipo spread, com a formação progressiva 

de horsts e grabens. Adaptado de Urmi et al. (2023). 

 

Figura 1.5. Regiões naturais onde se observa “horsts” e “grabens” (Leroueil et al. 2011) 
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Os deslizamentos retrogressivos em série com fluxo de detritos são observados principalmente 

quando o material remobilizado é rapidamente transportado para longe da região inicial da 

ruptura, permitindo a exposição contínua de novas áreas instáveis. Isso ocorre tipicamente em 

taludes de argilas altamente sensíveis, onde a remoldagem rápida e a perda substancial de 

resistência pós-pico viabilizam fluxos subsequentes (Dey et al., 2016). Portanto, a interpretação 

adequada desses mecanismos requer uma abordagem integrada que considere as interações entre 

a geometria do talude, as propriedades do solo e os fatores desencadeantes específicos. 

 

O desenvolvimento de rupturas em taludes, tanto em ambientes terrestres quanto submarinos, 

está intimamente relacionado a fatores que atuam como gatilhos de instabilidade. Entre os 

principais mecanismos de ativação, destacam-se: 

• Erosão superficial: A remoção da camada protetora do solo, intensificada por eventos de 

chuvas intensas, expõe materiais mais frágeis, reduzindo o fator de segurança do talude 

e favorecendo a progressão de rupturas (Bernander, 2011). 

• Sobrecarga superficial: A acumulação de material, construções ou aterros sobre o talude 

gera tensões adicionais, podendo levar a falha estrutural. "A aplicação de cargas 

concentradas ou a deposição excessiva de aterros podem modificar o estado de tensões 

do solo, reduzindo sua capacidade de suporte e aumentando o risco de falha" (Quinn et 

al., 2012). 

• Variação de umidade: A infiltração de água reduz a sucção matricial e a resistência ao 

cisalhamento, particularmente em solos coesivos, facilitando deslocamentos ao longo de 

planos de fraqueza e aumentando a vulnerabilidade do talude a escorregamentos (Shan 

et al., 2021). 

Além desses fatores terrestres, a instabilidade de taludes submarinos possui características 

específicas que ampliam a complexidade do processo: 

• Atividade sísmica: Embora eventos sísmicos possam afetar taludes expostos em terra, 

no ambiente submarino essa preocupação se intensifica. No contexto brasileiro, por 

exemplo, certos taludes submarinos estão localizados relativamente próximos a zonas de 

atividade tectônica ativa, elevando o risco de instabilidade induzida por vibrações e 

possíveis liquefações. 

• Deposições sedimentares rápidas: O acúmulo acelerado de sedimentos pode formar 

camadas instáveis com baixa resistência ao cisalhamento, propensas à falha. 
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• Dissociação de hidratos de gás: A liberação de metano a partir da desestabilização de 

hidratos reduz a resistência do solo e pode atuar como gatilho de instabilidade. "Gas 

hydrate dissociation has been identified as a triggering mechanism for submarine 

landslides, potentially leading to the sudden release of methane into the ocean, 

exacerbating greenhouse gas emissions and impacting marine ecosystems" (Masson et 

al., 2006). 

• Subsistência tectônica e movimentação de fluidos intersticiais: Como evidenciado por 

Kanamatsu et al. (2024), a subsidência associada à deformação de cristas tectônicas, 

como as do Nankai Trough, e o fluxo de fluidos ao longo de zonas de falha são fatores 

relevantes na desestabilização de taludes submarinos. 

• Atividades antrópicas relacionadas à produção offshore: Operações de extração de 

petróleo e gás podem induzir subsidência do solo, seja pela retirada de fluidos ou pela 

injeção de CO₂ e outros gases utilizados para aumentar a recuperação. Esses processos 

alteram o regime de tensões no subsolo e podem reativar falhas preexistentes, 

constituindo um importante fator de risco para instabilidade em regiões de produção 

offshore. 

Esses fatores, isoladamente ou combinados, são capazes de desencadear movimentos de massa 

de grandes dimensões, tanto em encostas naturais quanto em formações submarinas. A Figura 

1.6 resume os principais mecanismos responsáveis pela instabilidade de taludes submarinos. 

 

Figura 1.6. Principais mecanismos de instabilidade em taludes submarinos: deslizamentos 

retrogressivos, dissociação de hidratos de gás e falhas geológicas associadas à sismicidade. 

Modificado de Dey et al. (2016). 
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A compreensão dos mecanismos de ruptura progressiva e retrogressiva é fundamental para o 

entendimento da evolução da instabilidade em taludes e para o desenvolvimento de estratégias 

de prevenção e mitigação de desastres. A complexidade desses fenômenos, aliada às limitações 

dos métodos clássicos de análise, justifica a adoção de abordagens numéricas avançadas capazes 

de simular, de maneira realista, o comportamento de solos sujeitos a grandes deformações. 

1.2 IDENTIFICAÇÃO DO PROBLEMA  

 

A compreensão dos mecanismos de ruptura em taludes é fundamental não apenas para o avanço 

do conhecimento geotécnico, mas também para a prevenção de desastres associados a esses 

fenômenos. A ocorrência de instabilidades pode ter impactos severos, afetando desde pequenas 

comunidades até grandes sistemas de infraestrutura. Em taludes continentais, a ruptura pode 

comprometer rodovias, ferrovias, habitações, sistemas de abastecimento de água e redes de 

energia, além de provocar alterações significativas no meio ambiente. 

 

Entre 1995 e 2014, os deslizamentos de terra resultaram em danos estimados em R$ 182,7 

bilhões no Brasil, evidenciando o potencial destrutivo dessas instabilidades (CEPED UFSC, 

2016). Esses eventos não apenas causam perdas materiais expressivas, mas também geram 

impactos sociais, ambientais e econômicos de longo prazo, muitas vezes em áreas que já 

apresentam vulnerabilidades preexistentes. 

 

Além dos riscos em ambientes continentais, a instabilidade de taludes submarinos também 

representa uma ameaça significativa. Apesar da aparência de estabilidade devido às baixas 

inclinações (frequentemente inferiores a 2°), taludes submersos estão sujeitos a processos de 

instabilidade induzidos por fatores hidrodinâmicos, deposições sedimentares rápidas e atividade 

sísmica.  

 

Entre os eventos instabilizantes podemos citar eventos sísmicos capazes de desencadear a 

liquefação de camadas sedimentares saturadas, reduzindo a resistência ao cisalhamento e 

favorecendo a mobilização de grandes volumes de material. Estudos como o de Kanamatsu et 

al. (2024) demonstram que a subsidência de cristas tectônicas, aliada à recorrência de terremotos 

de alta magnitude, contribui significativamente para a instabilidade de taludes submarinos na 

região do Nankai Trough. 
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Além disso, a dissociação de hidratos de gás, a subsidência tectônica e a sobrecarga gerada por 

deposições sedimentares ou erupções vulcânicas submarinas são fatores críticos que podem 

desencadear rupturas de grande escala. (Masson et al., 2006). Conforme Liu et al. (2019), fluxos 

de detritos submarinos podem atingir distâncias superiores a 100 km, com potencial de soterrar 

e destruir estruturas instaladas no leito marinho. 

 

As consequências desses deslizamentos submarinos são vastas, gasodutos, oleodutos, cabos de 

telecomunicação e plataformas offshore estão vulneráveis à movimentação do solo, o que pode 

levar à ruptura, vazamentos de óleo ou gás e interrupções de serviços críticos. Conforme 

destacado na literatura, esse tipo de instabilidade representa um risco significativo à integridade 

de infraestruturas energéticas em águas profundas, exigindo avaliações rigorosas de estabilidade 

dos taludes submarinos para prevenir falhas catastróficas (Robert et al., 2012). 

 

Além dos impactos econômicos, deslizamentos submarinos podem causar danos ambientais 

severos. A ruptura de dutos pode resultar em vazamentos catastróficos, ameaçando a fauna 

marinha e a qualidade ambiental (Urlaub et al., 2015). A liberação de metano, proveniente da 

desestabilização de hidratos de gás, pode ainda intensificar o efeito estufa e contribuir para 

mudanças climáticas globais (Yincan et al., 2017). 

 

Outra consequência de grande magnitude são os tsunamis gerados por deslizamentos 

submarinos. Esses eventos, responsáveis por cerca de 8% dos tsunamis registrados 

mundialmente, podem ter efeitos devastadores em áreas costeiras (Vanneste et al., 2013). 

Exemplos históricos como o Storegga Slide, que produziu ondas de até 20 metros de altura 

(Haflidason et al., 2004), e o deslizamento de Grand Banks, em 1929, que resultou em 28 mortes 

na costa leste do Canadá (Brink et al., 2009), ilustram a magnitude dos desastres associados a 

instabilidades submarinas. 

 

A severidade dos tsunamis gerados por deslizamentos submarinos está diretamente relacionada 

à geometria da falha, à profundidade do evento e à quantidade de material mobilizado. "A análise 

detalhada da instabilidade dos taludes submarinos indica que tsunamis gerados por 

deslizamentos estão intimamente relacionados à geometria da falha, taxa de deslocamento dos 

sedimentos e presença de camadas fracas suscetíveis à liquefação." (Scarselli, 2020). 
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Diante da complexidade dos fatores envolvidos e da gravidade dos impactos potenciais, torna-

se evidente a necessidade de aprofundar a compreensão dos mecanismos de ruptura progressiva 

e retrogressiva, bem como de aprimorar as técnicas de modelagem numérica capazes de prever 

a evolução dessas falhas em diferentes contextos geotécnicos 

1.3 JUSTIFICATIVA  

 

Historicamente, a avaliação da estabilidade de taludes foi fundamentada no Método do 

Equilíbrio Limite (MEL), que assume um comportamento rígido perfeitamente plástico dos 

materiais e calcula o Fator de Segurança (FS) a partir da relação entre forças resistentes e 

mobilizadas. Embora eficiente para análises preliminares e amplamente utilizado na prática 

geotécnica, o MEL possui limitações significativas, pois desconsidera deformações e trata a 

ruptura como um evento puramente estático. Essa limitação torna o método inadequado para a 

representação de rupturas progressivas e retrogressivas, fenômenos caracterizados pela evolução 

gradual de superfícies de cisalhamento, redistribuição de tensões e deslocamentos acumulativos 

que podem se desenvolver até a ruptura global. 

 

O desenvolvimento de ferramentas de modelagem numérica, especialmente o Método dos 

Elementos Finitos (MEF), permitiu análises mais detalhadas, capazes de representar 

distribuições de tensões e deformações. No entanto, o Método dos Elementos Finitos (MEF) na 

formulação Lagrangeana convencional enfrenta severas limitações quando aplicado a problemas 

envolvendo grandes deformações, devido à distorção excessiva da malha, que compromete tanto 

a acurácia dos resultados quanto a estabilidade numérica da solução. 

 

Paralelamente, métodos probabilísticos modernos oferecem uma avaliação mais robusta da 

probabilidade de falha, considerando as incertezas inerentes aos parâmetros do problema. 

Entretanto, esses métodos ainda estão centrados na avaliação do estado limite, sendo 

insuficientes para descrever a evolução do processo de ruptura, os deslocamentos associados, a 

velocidade e a energia cinética da massa instabilizada, especialmente quando o interesse se 

estende ao comportamento pós-ruptura. 

 

No contexto específico deste trabalho, onde se analisam taludes submarinos, frequentemente 

associados à possibilidade de impactos significativos sobre infraestruturas localizadas a jusante 

ou montante, torna-se imprescindível ir além da simples avaliação da condição de estabilidade. 

É fundamental compreender a cinemática da ruptura, incluindo os deslocamentos, velocidade 
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do material deslocado e a energia mobilizada ao longo do processo. Essa abordagem é essencial 

para diferenciar eventos de ruptura que resultam em falhas catastróficas daqueles que, embora 

ocorram, não possuem consequências significativas sobre estruturas de interesse. 

 

Diante desse panorama, a adoção de métodos capazes de lidar com grandes deformações e de 

representar, de forma realista, tanto o processo de falha quanto a sua evolução pós-ruptura, 

mostra-se indispensável.  

 

Portanto, essa dissertação se propõe a investigar, selecionar e aplicar metodologias numéricas 

que permitam não apenas avaliar a condição de estabilidade dos taludes, mas também simular a 

evolução da ruptura e o comportamento pós-falha, incluindo o cálculo de deslocamentos, 

velocidades e energia cinética da massa instabilizada. Essa análise foi conduzida a partir de um 

estudo criterioso das diferentes abordagens disponíveis para a modelagem de grandes 

deformações, com especial atenção às ferramentas que incorporam modelos constitutivos 

capazes de representar “strain-softening”. A justificativa das abordagens adotadas, bem como os 

detalhes das formulações e modelos numéricos utilizados, será devidamente apresentada e 

discutida ao longo desta dissertação. 

1.4 OBJETIVOS  

 

O principal objetivo deste trabalho é desenvolver metodologias de análise para rupturas 

progressivas e retrogressivas, bem como para a avaliação do comportamento pós-ruptura 

utilizando métodos numéricos adequados para grandes deformações. 

 

1.4.1 OBJETIVOS ESPECIFÍCOS  

 

• Avaliar diferentes metodologias numéricas avançadas e ferramentas computacionais 

disponíveis para a análise de taludes submarinos com grandes deformações. 

• Comparar as soluções obtidas pelos métodos, observando suas particularidades, 

limitações e resultados para os cenários modelados. 

• Estudar a influência de parâmetros dos modelos constitutivos, índices físicos, e outros 

associados a modelagem do caso, nos resultados das análises. 

• Identificar os mecanismos de ruptura que se desenvolvem nos cenários simulados, 

avaliando sua relação com os parâmetros do material, geometria do talude e condições 

de contorno. 
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• Analisar os efeitos dos parâmetros de cálculo dos métodos numéricos tais como tamanho 

da malha, tipo de elemento, influência do material e condições de modelagem no 

incremento de tempo, no custo computacional e na precisão dos resultados. 

• Desenvolver critérios para a avaliação do impacto das rupturas, considerando 

deslocamentos máximos, energia cinética e número de superfícies de ruptura. 

1.5 MÉTODOLOGIA  

 

Para atingir os objetivos propostos nesta dissertação, a metodologia adotada foi estruturada em 

etapas, explicadas a seguir: 

• Etapa 1 – Revisão Bibliográfica: inicialmente, foi realizada uma revisão bibliográfica 

abrangente sobre os movimentos de massa, os mecanismos de rupturas progressivas e 

retrogressivas, e sobre os métodos numéricos aplicados à simulação de grandes 

deformações em taludes. Foram também analisadas as diferentes abordagens 

computacionais e suas respectivas formulações constitutivas. 

• Etapa 2 – Avaliação das Metodologias Numéricas Disponíveis: Com base na revisão 

realizada, foi conduzida uma análise crítica das metodologias numéricas existentes e dos 

softwares disponíveis, considerando a capacidade de modelar grandes deformações, 

representar o comportamento “strain-softening” e descrever adequadamente o pós-

ruptura. 

• Etapa 3 – Seleção e Estudo das Ferramentas Computacionais: A partir da avaliação 

anterior, foram selecionadas as ferramentas numéricas consideradas mais adequadas para 

a simulação dos problemas investigados. Estudou-se a estrutura dos métodos 

implementados, suas limitações e potencialidades para modelagem de instabilidades em 

taludes com alto grau de amolecimento. 

• Etapa 4 – Simulações Numéricas: Foram realizadas simulações de taludes sujeitos a 

diferentes mecanismos de ruptura. As análises contemplaram a variação de parâmetros 

físicos e constitutivos, bem como a influência de parâmetros de cálculo numérico, como 

malha, incremento de tempo etc. 

• Etapa 5 – Análises de Resultados e Identificação dos Mecanismos de Ruptura: Os 

resultados obtidos foram comparados, interpretados e classificados segundo o 

comportamento do talude em termos de deslocamentos, energia cinética mobilizada e 

tipos de falha predominantes 
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• Etapa 6 – Conclusões e Recomendações: A última etapa consistiu na síntese dos 

principais achados do estudo e na formulação de recomendações para futuras 

investigações. 

1.6  ESTRUTURA DO TRABALHO  

 

Esta dissertação foi estruturada em sete capítulos, organizados conforme a sequência a seguir: 

• Capítulo 1 apresenta a introdução ao tema, a identificação do problema, a justificativa, 

os objetivos e a metodologia da pesquisa, bem como a estrutura geral do trabalho. 

• Capítulo 2 aborda a revisão bibliográfica, discutindo os conceitos fundamentais sobre 

movimentos de massa, rupturas progressivas e regressivas, métodos numéricos para 

grandes deformações e trabalhos relevantes publicados na literatura. 

• Capítulo 3 apresenta a justificativa da adoção das abordagens numéricas selecionadas, 

detalha a formulação dos métodos numéricos, discute as particularidades de cada técnica 

utilizada e apresenta brevemente os modelos usados no ANURA3D e ABAQUS. 

• Capítulo 4 expõe os resultados das simulações realizadas, divididas entre as análises 

conduzidas com as duas metodologias adotadas, incluindo estudos paramétricos, 

identificação dos mecanismos de ruptura e avaliação do comportamento pós-ruptura. 

• Capítulo 5 apresenta o comparativo entre as metodologias aplicadas, discutindo as 

vantagens, limitações e coerência dos resultados obtidos. 

• Capítulo 6 apresenta as conclusões do trabalho e as sugestões para pesquisas futuras. 
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CAPÍTULO 2 

2. REVISÃO BIBLIOGRÁFICA  

 

A previsão e a análise de rupturas progressivas e regressivas em taludes exigem a adoção de 

metodologias numéricas capazes de representar adequadamente grandes deformações, 

processos de “strain-softening” e a evolução temporal do comportamento do solo. Com o 

objetivo de embasar a escolha das abordagens a serem empregadas neste trabalho, este capítulo 

apresenta uma revisão bibliográfica sobre: 

• Os métodos numéricos mais utilizados para modelagem de grandes deformações. 

• Os modelos constitutivos adequados para representação do comportamento de solos 

sensíveis e instabilidades progressivas.  

• As ferramentas computacionais disponíveis que implementam essas metodologias. 

• os principais trabalhos da literatura relacionados à análise de rupturas progressivas e 

regressivas. 

2.1       ABORDAGENS NUMÉRICAS PARA GRANDES DEFORMAÇÕES  

 

Nesta seção serão apresentadas as principais abordagens numéricas utilizadas para modelagem 

de grandes deformações, com foco na descrição dos princípios de funcionamento de cada 

método e nas estratégias empregadas para superar problemas relacionados à distorção excessiva 

da malha, as seções são descritas a seguir: 

• A Seção 2.1.1 descreve o Método do Ponto Material (MPM), baseado na combinação de 

uma malha fixa com pontos materiais móveis. 

• A Seção 2.1.2 apresenta o Método Coupled Eulerian-Lagrangian (CEL), que utiliza uma 

malha fixa permitindo o fluxo do material através dos elementos por meio de advecção. 

• A Seção 2.1.3 aborda o Método dos Elementos Finitos com Partículas (PFEM), no qual 

os nós da malha são tratados como partículas móveis e a malha é reconstruída 

dinamicamente. 

• A Seção 2.1.4 trata do Método de Hidrodinâmica de Partículas Suavizadas (SPH), uma 

técnica sem malha que representa o meio contínuo por meio de partículas interagentes. 

• A Seção 2.1.5 explora o Método Arbitrary Lagrangian-Eulerian (ALE), que ajusta a 

malha para acompanhar o movimento do material sem necessidade de técnicas de 

atualização de malha. 
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2.1.1      MÉTODO DO PONTO MATERIAL (MPM) 

 

O Método do Ponto Material (MPM) é um método numérico baseado na mecânica do contínuo, 

desenvolvido para resolver problemas que envolvem grandes deformações, superando as 

limitações associadas à distorção excessiva da malha que ocorrem em formulações tradicionais 

baseadas em elementos finitos. O MPM combina características das abordagens Lagrangeana e 

Euleriana: enquanto as variáveis de estado (posição, velocidade, tensões, densidade etc.) são 

armazenadas em pontos materiais móveis, os cálculos são realizados em uma malha de fundo 

fixa, facilitando a solução das equações de movimento. O processo de cálculo no MPM é 

estruturado em um ciclo composto por quatro etapas principais (Figura 2.1): 

• Transferência Partícula Nó: As propriedades dos pontos materiais, como massa e 

momento, são projetadas para os nós da malha de fundo, passo 1. 

• Resolução Nodal: As equações de movimento são resolvidas nos nós, determinando 

forças internas, externas, acelerações e velocidades, passo 2. 

• Transferência Nó-Partícula: As soluções nodais (velocidades e deslocamentos) são 

interpoladas de volta para os pontos materiais, passo 3. 

• Atualização dos Pontos Materiais: As posições dos pontos são atualizadas e o processo 

é reiniciado no novo estado, passo 4. 

Esse ciclo é repetido iterativamente ao longo do tempo de simulação, permitindo capturar 

fenômenos de grande deformação sem as limitações das malhas fixas tradicionais. A separação 

entre a malha de fundo e os pontos materiais, aliada a ausência de distorção acumulada da malha 

ao longo do tempo torna o MPM especialmente adequado para grandes deformações 

 

Figura 2.1. Ciclo de cálculo do Método dos Pontos Materiais. Modificado de (Soga et al, 

2016) 

(1) Partícula para nó (2) Solução nodal 

(3) Nó para partícula (4) Atualização das partículas 
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O método GIMP (Generalized Interpolation Material Point Method) é uma extensão do MPM 

tradicional que aprimora a interpolação acrescentando uma área de influência para os pontos 

materiais que permite que interpolem as variáveis com um número maior de nós da malha, 

permitindo uma interpolação mais suave das variáveis e reduzindo os erros numéricos 

associados à troca de células "grid-crossing error". 

Principais características do GIMP: 

• Melhoria na interpolação: Diferentemente do MPM convencional, o GIMP usa funções 

de forma estendidas que evitam a perda de coerência na transferência de variáveis ao 

longo do tempo. 

• Redução de erros numéricos: Mitiga problemas associados à troca de células na malha 

de fundo, que podem causar instabilidades no MPM clássico. 

Como esse método é uma evolução direta do MPM, seu uso pode ser relevante dependendo da 

precisão necessária e das características do problema analisado principalmente em casos que se 

lida com grandes erros numéricos. Contudo, essa abordagem adiciona um custo computacional 

maior em relação ao MPM convencional, pois aumenta o número de nós que contribuem para a 

solução e requer cálculos adicionais para a atualização das funções de forma. Segundo 

Bardenhagen & Kober (2004). 

 

2.1.2      MÉTODO EULERIANO LAGRANGIANO ACOPLADO (CEL) 

 

O Método Coupled Eulerian-Lagrangian (CEL) é uma formulação numérica híbrida que 

combina as vantagens dos sistemas de coordenadas Lagrangeano e Euleriano para lidar com 

grandes deformações, fluxos de materiais e interação fluido-estrutura. Embora tenha sido 

inicialmente desenvolvido para aplicações em fluidodinâmica computacional, o CEL pode ser 

utilizado em geotecnia devido à sua capacidade de simular deslocamentos extremos. A principal 

característica do CEL é a coexistência de dois domínios: o Lagrangeano, associado a corpos 

sólidos que mantêm a coesão estrutural, e o Euleriano, que modela materiais altamente 

deformáveis, como solos e fluidos. Nos elementos Lagrangeanos, a malha acompanha a 

deformação do material ao longo do tempo. Em contraste, nos elementos Eulerianos, o material 

se move através de uma malha fixa no espaço, permitindo simular fluxos e separações sem 

distorção dos elementos. 

 

O transporte do material dentro do domínio Euleriano é modelado por meio do Eulerian Volume 

Fraction (EVF), uma variável que representa a fração do volume de um elemento ocupada por 
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um determinado material. A atualização contínua do campo EVF durante a simulação possibilita 

rastrear a movimentação, entrada e saída de massa, bem como a separação de diferentes fases 

materiais, sem necessidade de atualização contínua da malha ou reconstrução geométrica. O 

ciclo de cálculo do método CEL pode ser resumido em quatro fases principais, conforme 

ilustrado esquematicamente na Figura 2.2: 

• Movimento da Estrutura Sólida (Domínio Lagrangeano): Os corpos Lagrangeanos 

deformam-se junto com a estrutura do material, seguindo a sua evolução ao longo do 

tempo. 

• Fluxo de Material (Domínio Euleriano): O material representado pelo domínio Euleriano 

escoa através da malha fixa, sem que esta sofra distorções, preservando a integridade 

computacional mesmo sob grandes deformações. 

• Interação entre os Domínios Lagrangeano e Euleriano: O contato entre sólidos e 

materiais em fluxo é resolvido por algoritmos específicos de interação, garantindo o 

acoplamento de forças e a transferência adequada de carga entre os diferentes domínios. 

• Atualização do Estado e da Fração de Volume (EVF): A evolução do campo EVF é 

recalculada continuamente, assegurando a correta representação da ocupação dos 

elementos e o transporte do material ao longo do tempo de simulação. 

A capacidade do CEL de evitar a distorção da malha durante grandes deformações, associada ao 

controle do transporte de material utilizando mecanismos de advecção para definir o 

preenchimento de material via EVF, torna o método adequado para análises de solos submetidos 

a grandes deslocamentos. 

 

Figura 2.2. Representação esquemática do método Coupled Eulerian-Lagrangian (Ko.et all. 

2017). 
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2.1.3      MÉTODO DOS ELEMENTOS FINITOS COM PARTÍCULAS (PFEM) 

 

O Método dos Elementos Finitos com Partículas (PFEM) é uma técnica numérica híbrida, 

baseada em uma descrição Lagrangeana, que combina os conceitos dos métodos de partículas 

com o método dos elementos finitos. Desenvolvido inicialmente para aplicações em mecânica 

dos fluidos, o PFEM foi posteriormente adaptado para problemas de engenharia geotécnica com 

grandes deformações, como rupturas retrogressivas e interação solo-estrutura. 

No PFEM, os nós da malha são tratados como partículas móveis que carregam as variáveis 

físicas do sistema, como tensões, deformações e variáveis internas. A malha é reconstruída 

dinamicamente a cada passo de tempo a partir da nova distribuição das partículas, o que permite 

evitar distorções excessivas e manter a qualidade da discretização espacial. 

A Figura 2.3 ilustra os principais passos do ciclo computacional do PFEM: 

• (a) Malha inicial a análise começa com uma malha de elementos finitos convencional 

associada a uma distribuição de partículas. 

• (b) Nuvem de partículas: ao final do passo de tempo, os nós são tratados como partículas 

e a malha é descartada. 

• (c) Nova geometria: com base na nova posição das partículas, o domínio computacional 

é reconstituído usando algoritmos de reconstrução de contorno, como o alpha-shape. 

• (d) Nova malha: uma nova malha é gerada por triangulação (geralmente Delaunay), 

permitindo a continuidade da análise no próximo passo de tempo. 

Esse ciclo contínuo de movimentação de partículas e remalhamento garante que o PFEM possa 

lidar com deformações extremas e alterações topológicas do domínio, preservando a acurácia 

numérica e a estabilidade computacional. A combinação da robustez do FEM com a flexibilidade 

do método de partículas torna o PFEM especialmente adequado para simular falhas progressivas 

e fluxos de material em solos sensíveis. 

 

Figura 2.3. Esquema do ciclo computacional básico do PFEM (Yuan et al. 2023). 
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A principal característica que diferencia o PFEM de outras abordagens para grandes 

deformações, como o ALE e o CEL, é a capacidade de reconstruir dinamicamente a malha para 

acompanhar a evolução da geometria do domínio. Enquanto no ALE a malha é suavemente 

ajustada e no CEL o material escoa por uma malha fixa, no PFEM a malha é reconstruída 

conforme a movimentação das partículas, mantendo elevada qualidade dos elementos mesmo 

em cenários de deformação severa. 

 

2.1.4      MÉTODO DE HIDRODINÂMICA DE PARTICULAS SUAVIZADA (SPH) 

 

O método Smoothed Particle Hydrodynamics (SPH) é uma técnica numérica do tipo meshless e 

totalmente Lagrangeana, originalmente desenvolvida para simulações em astrofísica (Gingold e 

Monaghan, 1977; Lucy, 1977), mas que foi adaptada para uma ampla gama de aplicações em 

dinâmica dos fluidos, interação solo-fluido e modelagem de grandes deformações em meios 

contínuos. 

 

Diferentemente dos métodos baseados em malha, como o Método dos Elementos Finitos (MEF), 

o SPH descreve o meio contínuo como um conjunto de partículas discretas que carregam 

propriedades físicas (como massa, velocidade, densidade e tensões) e evoluem segundo as 

equações governantes do problema. Cada partícula representa uma pequena porção do material, 

interagindo com suas vizinhas dentro de uma região de influência definida por uma função de 

suavização (kernel). 

 

O método SPH baseia-se na aproximação integral de funções e suas derivadas, substituindo o 

uso de malhas tradicionais por um conjunto de partículas interativas. Uma função arbitrária𝑓(𝐱) 

é representada por uma integral convolucional, em que a função delta de Dirac é substituída por 

um kernel de suavização 𝑊(𝐱 − 𝐱′, ℎ) , sendo ℎ  o parâmetro de influência espacial. Esse 

procedimento permite reescrever as equações de conservação da massa, quantidade de 

movimento e energia sem a necessidade de malha estruturada, o que confere ao SPH sua 

capacidade de lidar com grandes deformações e domínios com interfaces móveis. 

 

O processo de solução no SPH ocorre em dois passos principais: 

•  Aproximação integral e discretização: as variáveis de interesse e suas derivadas são 

interpoladas com base em partículas vizinhas, ponderadas pela função kernel, passo 1; 
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• Movimentação das partículas: as partículas são atualizadas no tempo com base nas 

equações de movimento, transportando consigo suas propriedades físicas, passo 2. 

Entre as principais vantagens do SPH estão: 

• A capacidade de capturar superfícies livres de forma natural; 

• A ausência de distorção de malha, comum em métodos tradicionais sob grandes 

deformações; 

• A flexibilidade para lidar com domínios multifásicos, como água, sedimentos e ar em 

uma mesma simulação. 

No entanto, o método enfrenta desafios importantes, como a necessidade de técnicas específicas 

para estabilização da pressão. Uma das abordagens mais utilizadas para isso é o Weakly 

Compressible SPH (WCSPH), que permite o cálculo da pressão a partir de uma equação de 

estado, evitando a necessidade de resolver uma equação de Poisson para pressão, o que reduz a 

complexidade computacional em problemas fortemente transiente No contexto da modelagem 

de instabilidades em taludes submarinos e fluxos pós-ruptura, o SPH é particularmente atrativo 

pela sua capacidade de representar o transporte e a fragmentação de materiais sólidos, sem 

necessidade de remalhagem, e por conseguir capturar interfaces em movimento. O método 

também pode ser combinado com critérios de ruptura, como os de Shields e Drucker-Prager, 

permitindo simular tanto a iniciação quanto a evolução do movimento das partículas sólida. A 

Figura 2.4 ilustra de forma esquemática o funcionamento do método SPH aplicado à interação 

solo-fluido, considerando a formulação elastoplástica do solo acoplada às equações de Navier-

Stokes para o fluido 

 

Figura 2.4. Esquema da interação solo-água considerando o modelo elastoplástico e equações 

de Navier-Stokes. Modificado de (Islam et all. 2020). 
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2.1.5      MÉTODO EULERIANO LAGRANGIANO ARBITRÁRIO (ALE) 

 

O Método Arbitrary Lagrangian-Eulerian (ALE) é uma abordagem numérica desenvolvida para 

modelar problemas envolvendo grandes deformações, deslocamentos de interfaces e interação 

fluido-estrutura. Ele combina as vantagens das formulações Lagrangeana e Euleriana, 

permitindo que a malha computacional se mova de forma independente do material, adaptando-

se dinamicamente às necessidades locais da simulação. 

 

Na descrição Lagrangeana (Figura 2.5a), os nós da malha e o material se movem juntos. Esse 

comportamento é ideal para capturar deformações com alta precisão, mas tende a gerar 

distorções na malha sob grandes deslocamentos. Já na descrição Euleriana (Figura 2.5b), a 

malha permanece fixa no espaço enquanto o material flui através dela, sendo útil em simulações 

de escoamentos ou fragmentações, mas com menor resolução local. O método ALE (Figura 

2.5c) oferece uma solução intermediária, na qual a malha se move parcialmente com o material, 

conforme definido por critérios numéricos, permitindo o controle da distorção da malha sem a 

perda de fidelidade na representação física. 

 

O ciclo computacional do ALE pode ser descrito em quatro fases, integradas ao esquema da 

Figura 2.5: 

• (a) Movimento Lagrangeano: A malha se desloca com o material, capturando as 

deformações reais no tempo. 

• (b) Redistribuição da malha: Após a deformação, a malha é suavemente ajustada, 

desacoplando-se do movimento do material, minimizando distorções acumuladas. 

• (c) Atualização da geometria: O domínio computacional é redefinido com base na nova 

posição dos nós, preservando a qualidade dos elementos. 

• (d) Advecção das variáveis: As variáveis físicas (tensões, energia, deformações) são 

transportadas da malha antiga para a nova, garantindo continuidade no estado físico do 

meio. 

A possibilidade de controle independente da movimentação da malha permite ao ALE reduzir a 

distorção dos elementos e melhorar a precisão em análises de grandes deslocamentos, 

especialmente em casos de interação solo-estrutura, impacto ou fragmentação. Esse método é 

amplamente utilizado em análises acopladas fluido-estrutura e simulações de materiais 

altamente deformáveis. 
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Figura 2.5. Representação esquemática do método Arbitrary Lagrangian-Eulerian (ALE), com 

destaque para as descrições Lagrangeana (a), Euleriana (b) e ALE (c), e as etapas do ciclo 

computacional. Modificado de Donea et al. (2004) 

2.2        MODELOS CONSTITUTIVOS 

 

A modelagem constitutiva é um dos pilares fundamentais na análise de problemas geotécnicos, 

pois descreve a relação tensão-deformação dos materiais e seu comportamento sob diferentes 

estados de carregamento e saturação. Em geral, os modelos constitutivos buscam representar a 

resposta dos solos e rochas considerando aspectos como resistência, deformabilidade, dilatância, 

processos de ruptura e, em alguns casos, efeitos de tempo e saturação. 

 

Modelos constitutivos são relações matemáticas que descrevem o comportamento mecânico dos 

materiais em função de suas variáveis de estado, como tensão, deformação, poropressão e, 

quando aplicável, sucção etc. Em geotecnia, essas formulações são fundamentais para 

representar o comportamento dos solos sob diferentes condições de carregamento, saturação e 

tempo, sendo decisivas na simulação de rupturas, recalques, adensamento e instabilidades. 
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De modo geral, os modelos constitutivos devem ser compatíveis com o tipo de solo, sua 

condição de saturação e os fenômenos que se deseja representar. Em solos saturados, as tensões 

efetivas e as deformações são variáveis centrais, podendo-se empregar formulações totalmente 

acopladas hidromecânicas quando o problema exigir, por exemplo, para representar interações 

entre fluxo e deformação. Contudo, em muitas situações práticas, admite-se a adoção de 

simplificações, como as hipóteses de comportamento totalmente drenado ou não drenado, que 

dispensam a resolução conjunta dos campos hidráulico e mecânico. Em solos não saturados, por 

outro lado, o acoplamento entre comportamento hidráulico e mecânico é sempre indispensável, 

pois a sucção atua como variável de estado fundamental e afeta diretamente a resposta mecânica 

do material, conforme discutido por Fredlund & Rahardjo (1993) e aprofundado na tese de 

Cordão Neto (2005). 

 

A formulação constitutiva pode adotar diferentes abordagens, como leis elastoplásticas, 

viscoplásticas, combinações entre elas, entre outros. Na engenharia geotécnica, diferentes 

classes de modelos constitutivos são empregadas para representar o comportamento de materiais 

sob condições de carregamento diversas. De forma geral, destacam-se os modelos 

elastoplásticos, que simulam o comportamento até a plastificação e as deformações 

permanentes; os viscoplásticos, que incorporam os efeitos dependentes do tempo, como fluência 

e propagação de rupturas; e os modelos baseados no estado crítico, voltados para a simulação 

de fenômenos como colapso estrutural, liquefação e comportamento pós-ruptura de solos 

sensíveis. 

 

Entre os modelos mais utilizados estão: o modelo linear elastoplástico, adequado para análises 

preliminares com pequenas deformações; o critério de Mohr-Coulomb, amplamente adotado em 

avaliações de estabilidade de taludes; o modelo de Drucker-Prager, que apresenta vantagens 

numéricas em simulações tridimensionais e de grandes deformações; e o modelo de Tresca, 

comumente aplicado em análises não drenadas de solos saturados, mas que, assim como outros 

critérios de resistência perfeitamente plástica, pode apresentar dificuldades numéricas 

associadas a descontinuidades geométricas na superfície de escoamento. 

 

No contexto de fenômenos associados à liquefação, destacam-se os modelos baseados no estado 

crítico, como o NorSand, eficaz na representação de areias susceptíveis a colapso estrutural, e o 
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modelo CASM (Clay and Sand Model), que permite simular o comportamento de argilas e areias 

sensíveis sob diferentes trajetórias de deformação. 

 

A ocorrência de degradação da resistência por deformação é uma característica fundamental no 

comportamento de solos sensíveis, especialmente no desenvolvimento de rupturas progressivas. 

Esse fenômeno, denominado “strain-softening”, exerce influência direta na propagação da 

ruptura e na evolução das superfícies de cisalhamento. A Figura 2.6 apresenta curvas de 

resistência ao cisalhamento em função da deformação plástica acumulada, obtidas a partir de 

ensaios laboratoriais realizados por Quinn et al. (2011) e compilados por Urmi et al. (2023), que 

ilustram claramente esse comportamento. 

 

Figura 2.6. Curvas tensão amolecimento. Modificado de (Quinn et al. 2011). 

Por esse motivo, é indispensável a adoção de modelos constitutivos que considerem o “strain-

softening” nas análises de solos sensíveis. Esses modelos permitem representar a degradação 

progressiva da resistência ao longo da deformação e são fundamentais para a simulação de 

processos como falhas progressivas, retrogressivas e colapsos subsequentes. De maneira geral, 

os modelos convencionais são adaptados ou estendidos para incorporar esse efeito, destacando-

se: 

• Modelo Mohr-Coulomb com “strain-softening” (MCSS): Implementado por Urmi et al. 

(2024) no software Anura3D, esse modelo é baseado no critério clássico de Mohr-

Coulomb, porém incorpora uma lei de amolecimento exponencial para os parâmetros de 

resistência, considerando a degradação da coesão (c), do ângulo de atrito interno (ϕ) e 

do ângulo de dilatância (ψ) em função da deformação plástica acumulada. Além disso, 
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conta com a suavização da superfície de escoamento proposta por Abbo et al. (2011), 

que melhora significativamente a estabilidade numérica em análises tridimensionais. 

• Modelo Drucker-Prager com “strain-softening”: Adotado em diversos estudos recentes, 

como os de Wang et al. (2021) e Zhang et al. (2021), esse modelo permite a degradação 

progressiva da resistência através da variação do parâmetro “Yield Stress” em função da 

deformação plástica acumulada. A sua superfície de escoamento, definida no espaço dos 

invariantes de tensão, proporciona maior robustez numérica, especialmente em 

problemas envolvendo grandes deformações. 

• Modelo Tresca com comportamento de Bingham: Proposto por Zhang et al. (2017), trata-

se de um modelo elastoviscoplástico que combina o critério de Tresca com uma lei de 

fluência do tipo Bingham, incorporando uma degradação linear da resistência com a 

deformação plástica. Esse modelo é especialmente eficaz para representar a transição de 

materiais sensíveis do estado sólido para um comportamento fluido durante eventos de 

instabilidade. 

 

Além dos modelos baseados na degradação da resistência por deformação plástica acumulada, 

outra abordagem relevante consiste na formulação baseada no deslocamento relativo acumulado 

nas bandas de cisalhamento. Estudos utilizando o Método Coupled Eulerian-Lagrangian (CEL), 

como os de Dey et al. (2015) e Wang & Hawlader (2017), demonstraram que a degradação da 

resistência em função do deslocamento relativo permite capturar de forma mais realista a 

formação e a evolução de zonas de cisalhamento localizadas. Essa abordagem tem se mostrado 

particularmente eficaz na simulação de falhas retrogressivas em solos altamente sensíveis, como 

exemplificado na modelagem do deslizamento de Saint-Jude. 

 

Quando se considera o comportamento tempo-dependente dos solos sensíveis, torna-se ainda 

mais evidente a necessidade de modelos constitutivos que incorporem os efeitos de viscosidade 

e da taxa de deformação. A resistência e a velocidade de propagação das rupturas não dependem 

apenas da magnitude das tensões aplicadas, mas também do tempo e da velocidade com que 

essas tensões são mobilizadas. 

Nesse contexto, destacam-se modelos viscoplásticos como: 

• O Non-Associated Mohr-Coulomb (NAMC), desenvolvido por Zambrano et al. (2024), 

que amplia o critério clássico de Mohr-Coulomb para incluir tanto a dilatância não 

associada quanto os efeitos viscoplásticos dependentes da taxa de deformação; 
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• O modelo clássico de Perzyna (1966), no qual a taxa de deformação plástica é função da 

distância até a superfície de escoamento e de um parâmetro de viscosidade, sendo 

amplamente utilizado para capturar os efeitos de fluência e dissipação progressiva da 

resistência ao longo do tempo. 

Modelos viscoplásticos desse tipo são essenciais para representar adequadamente o 

comportamento de solos argilosos sensíveis, permitindo simular não apenas a evolução das 

superfícies de cisalhamento, mas também os efeitos da dissipação de energia, da propagação da 

ruptura e do comportamento pós-falha ao longo do tempo. Conforme discutido por Hinchberger 

e Qu (2009), a previsão precisa da formação e evolução das superfícies de cisalhamento em 

argilas estruturadas requer a consideração explícita da taxa de deformação e da duração das 

cargas aplicadas. 

Portanto, a modelagem precisa das falhas progressivas em solos sensíveis pode-se utilizar de 

abordagens que incorporem: 

• O amolecimento por deformação plástica acumulada; 

• A degradação por deslocamento relativo nas zonas de cisalhamento; 

• E os efeitos de viscosidade e da taxa de deformação, assegurando uma descrição mais 

realista e robusta dos processos de ruptura e pós-ruptura. 

Portanto, a escolha adequada do modelo constitutivo depende diretamente dos fenômenos a 

serem representados, considerando estabilidade numérica, se há a necessidade de representar os 

efeitos de amolecimento por deformação (“strain-softening”), dependência da taxa de 

deformação e aproximações baseadas no estado crítico. 

2.3        FERRAMENTAS DISPONÍVEIS 

 

Para definir as ferramentas adequadas para a análise de rupturas progressivas e regressivas em 

taludes submarinos, foi realizada uma pesquisa sobre os softwares que implementam o Método 

dos Pontos Materiais (MPM). Foram avaliadas suas capacidades de paralelização, que impactam 

diretamente o tempo de simulação, além das condições iniciais e de contorno disponíveis para a 

modelagem do problema e dos modelos constitutivos oferecidos. 

 

O Anura3D, desenvolvido pela comunidade de pesquisa Anura3D MPM Research Community, 

é um dos softwares mais consolidados para simulações geotécnicas envolvendo grandes 

deformações. Possui documentação detalhada, tutoriais em vídeo, suporte ao pré-processador 

GiD e ao pós-processador ParaView, o que facilita seu uso em projetos de pesquisa e aplicação 
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prática. Sua interface é relativamente acessível, mas o principal ponto limitante é a ausência de 

paralelização, operando apenas em um núcleo de CPU, o que restringe a eficiência para 

simulações de maior escala. 

 

O MPM-PUCRio, posteriormente renomeado para MPM-Geomechanics, foi desenvolvido por 

Fernández (2020) durante sua tese de doutorado na PUC-Rio. O software exige a criação manual 

de arquivos de entrada no formato JSON, com visualização dos resultados no ParaView. Sua 

implementação inclui paralelização via OpenMP, aumentando a eficiência de processamento. 

No entanto, a ausência de um pré-processador gráfico dedicado pode dificultar sua adoção por 

novos usuários. 

 

O CB-Geo MPM, desenvolvido na Universidade de Cambridge, é um código de pesquisa que 

exige ambiente Linux ou pode ser executado via Docker rodando um container operacional em 

Linux. Apesar de contar com paralelização funcional via CPU, sua instalação e operação são 

mais complexas, e não possui tantas formulações e condições de contorno como o ANURA3D 

(Kumar et al., 2019). 

 

O NairnMPM apresenta documentação organizada e integração com o ParaView para pós-

processamento dos resultados. No entanto, sua limitação de operação em apenas um núcleo de 

CPU impacta a viabilidade de aplicações de larga escala, modelos “strain softening” não foram 

encontrados na biblioteca padrão (Nairn, 2016). 

 

O ep2-3De v1.0, desenvolvido por pesquisadores da Universidade de Lausanne, é otimizado 

para execução em GPUs modernas e pode rodar simulações elastoplásticas utilizando 

arquiteturas como Ampere, Turing e Volta. Sua execução em múltiplas GPUs via MPI 

proporciona alta eficiência, mas sua configuração requer o uso do MATLAB para geração de 

dados de entrada e pós-processamento, aumentando a complexidade de utilização (Wyser et al., 

2021). 

 

O Uintah, desenvolvido na Universidade de Utah, é um framework de computação paralela para 

grandes simulações científicas, com capacidade de simular interação fluido-estrutura. Entretanto, 

sua documentação técnica e a necessidade de experiência prévia em programação podem 

representar um desafio adicional para novos usuários (Parker et al., 2020). 
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O CoSim-MPM, desenvolvido na Universidade de Tsinghua, implementa paralelização baseada 

em GPU e é voltado para pesquisas que exigem alta capacidade de processamento. Porém, a 

documentação limitada e a concentração de seu uso no meio acadêmico dificultam sua adoção 

em projetos de maior escala ou por novos usuários (Feng e Xu, 2021). 

 

A escolha do software depende diretamente do escopo da simulação e das exigências específicas 

do problema a ser modelado. O Anura3D é uma opção robusta para pesquisadores que buscam 

facilidade de uso, formulações acopladas (como saturada, não saturada com sucção e double-

point) e suporte comunitário ativo. Já o ep2-3De v1.0 e o CoSim-MPM se apresentam como 

alternativas viáveis para projetos que demandam alto desempenho computacional e capacidade 

de paralelização via GPU. 

 

Entre os softwares que utilizam o método numérico Particle Finite Element Method (PFEM), 

destacam-se diversas implementações utilizadas na academia e em aplicações de engenharia 

computacional. 

 

O Kratos Multiphysics, desenvolvido pelo International Center for Numerical Methods in 

Engineering (CIMNE), é uma estrutura computacional modular destinada a simulações 

multifísicas. Escrito em C++, é compatível com sistemas Linux e Windows e suporta 

paralelização via OpenMP e MPI, permitindo a execução em múltiplos núcleos e clusters de alto 

desempenho. O Kratos possibilita a modelagem de diferentes fenômenos físicos, utilizando uma 

interface baseada em scripts Python e integração com o GiD para pré-processamento. A 

documentação abrangente e a modularidade tornam o Kratos uma opção consistente para 

usuários que necessitam trabalhar com o PFEM, cujo desenvolvimento foi liderado por Oñate, 

Idelsohn e Rossi no CIMNE, e cuja implementação está disponível no repositório oficial da 

plataforma (Kratos Multiphysics, 2024). 

 

Dentro do Kratos Multiphysics, foi desenvolvido o módulo G-PFEM (Geotechnical Particle 

Finite Element Method), voltado especificamente para aplicações geotécnicas. O G-PFEM 

implementa estratégias numéricas para modelagem de grandes deformações, interação solo-

estrutura e fenômenos de instabilidade em solos saturados e não saturados. Este módulo possui 

implementações específicas de acoplamento hidromecânico e estratégias de estabilização 

numérica para meios porosos, sendo projetado para lidar com fenômenos típicos de ruptura 

progressiva e retrogressiva em geotecnia. 
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O PFEM2 é uma implementação alternativa especializada, também desenvolvida no CIMNE, 

focada em aplicações hidrodinâmicas e de mecânica dos fluidos em geral. O PFEM2 é otimizado 

para maior estabilidade e eficiência computacional, utilizando CUDA para paralelização em 

GPU. Desenvolvido em C++, é compatível apenas com sistemas Linux e oferece modelos 

constitutivos que abrangem viscoplasticidade, elastoplasticidade e interação fluido-solo. Apesar 

do alto desempenho, sua utilização requer conhecimento avançado em programação e 

configuração numérica, o que pode representar uma barreira para usuários menos experientes. 

 

Outra solução é o Abaqus-PFEM, que integra o método PFEM no ambiente comercial do 

Abaqus. Esta integração permite modelagens de grandes deformações em solos e fluidos 

utilizando os modelos constitutivos nativos da plataforma. A implementação é realizada em 

Python e Fortran, compatível com Windows e Linux. A principal limitação é a restrição da 

paralelização ao OpenMP para execução apenas em CPU, sem suporte nativo para GPUs. A 

principal vantagem do Abaqus-PFEM é a sua integração com a interface gráfica do Abaqus, 

simplificando sua adoção por usuários já familiarizados com o ambiente. 

 

O PFEM tem sido empregado em estudos envolvendo retrogressões de taludes em solos 

sensíveis, simulando a perda de resistência e o comportamento reológico associados a falhas 

progressivas. As implementações acadêmicas, geralmente desenvolvidas em C++, são 

compatíveis com Linux e Windows e incorporam modelos elastoviscoplásticos, como o modelo 

de Bingham e o critério de Tresca com strain-softening. Embora algumas versões experimentais 

explorem o uso de GPUs, a maioria dos códigos disponíveis utiliza paralelização via OpenMP 

em CPU. Essas abordagens, em geral, exigem configuração manual dos estudos de caso, uma 

vez que não contam com interfaces gráficas consolidadas. 

 

Assim, os softwares baseados no PFEM oferecem soluções capazes de modelar problemas 

geotécnicos envolvendo grandes deformações e interação fluido-estrutura. O Kratos 

Multiphysics e seu módulo G-PFEM destacam-se pela flexibilidade e pela possibilidade de 

personalização, enquanto o Abaqus-PFEM proporciona uma integração eficiente em ambientes 

comerciais. Já o PFEM2 e as demais implementações acadêmicas são voltadas para aplicações 

específicas, exigindo maior experiência em modelagem numérica e programação científica. 

 

O SPH-Flow é uma solução comercial voltada para a simulação de escoamentos hidrodinâmicos 

e de interação solo-fluido, compatível com fluidos Newtonianos e não-Newtonianos. 



 

30 
 

Desenvolvido em C++, é compatível com Windows e Linux e utiliza paralelização via CUDA 

para execução em GPUs, oferecendo uma interface gráfica integrada para pré-processamento e 

visualização dos resultados (Feng & Xu, 2021). 

 

O DualSPHysics é um software de código aberto voltado para a modelagem de fluidos e sólidos 

deformáveis. Também escrito em C++, é compatível com Windows, Linux e macOS, oferecendo 

modelos constitutivos para fluidos compressíveis e incompressíveis, além de interação fluido-

estrutura. Sua execução é acelerada por paralelização híbrida utilizando CUDA e OpenMP, com 

integração para visualização de resultados no Blender (Wang & Zhao, 2021). 

 

O SPHysics é uma ferramenta desenvolvida para simulações de processos hidráulicos 

complexos, como erosão costeira e escoamentos com superfície livre. Sua estrutura, baseada em 

Fortran e C++, é compatível com Windows e Linux, utilizando paralelização via OpenMP. Este 

software permite a modelagem de materiais elastoplásticos e viscoplásticos, sendo 

particularmente adequado para estudos de dinâmica de fluidos e transporte de sedimentos (Hu 

& Wang, 2022). 

 

O SPH-GEO é uma implementação desenvolvida especificamente para aplicações em 

engenharia geotécnica, incluindo deslizamentos de terra, processos de liquefação e erosão. 

Escrito em C++, é compatível com Windows e Linux e inclui modelos elastoviscoplásticos como 

Bingham e Tresca com strain-softening. A paralelização pode ser realizada por meio de OpenMP 

ou CUDA, permitindo o aproveitamento de recursos computacionais tanto em CPUs quanto em 

GPUs (Liu & Chen, 2022). 

 

Além dessas ferramentas, foi desenvolvido recentemente o GeoXPM por Bui et al. (2021), com 

o objetivo de modelar grandes deformações em solos, focando na análise de rupturas 

progressivas e processos de liquefação. O código é estruturado para lidar com a fragmentação 

de solos e permite a análise detalhada da evolução da ruptura, sendo particularmente útil em 

modelagens onde há a transição entre comportamento sólido e fluido do material. 

 

O Abaqus/CAE é uma ferramenta comercial que implementam o CEL, permitindo a análise de 

processos como corte de metais, fluxo de detritos e interação solo-estrutura (Fidelis, 2021), além 

disso o software possui muitos modelos constituivos, condições de contorno carregamento, 

possibilidade de se utilizar sub-rotinas constitutivas externas e scripts python. 
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Além do Abaqus, existem iniciativas específicas para aplicações mais restritas, como o ICECO-

CEL, desenvolvido para simulações de impactos hidrodinâmicos em ambientes nucleares (Yan 

et al., 2021). Essas implementações demonstram a versatilidade do CEL em modelagens que 

exigem o acompanhamento rigoroso da interação entre materiais deformáveis e fluídos. 

 

De modo geral, a seleção do CEL para simulações é recomendada em cenários onde as 

deformações são severas e a transição de fases ou a fragmentação do material são fenômenos 

relevantes para a resposta estrutural do sistema. 

 

A adoção do método ALE é recomendada para problemas que exigem o acompanhamento 

preciso de grandes deformações e o controle eficiente da qualidade da malha em regiões críticas. 

Entre as soluções comerciais, o Abaqus e o LS-DYNA são frequentemente utilizados em 

projetos de engenharia aplicada, enquanto o Kratos Multiphysics representa uma alternativa 

open-source com maior flexibilidade para aplicações acadêmicas e de pesquisa. 

 

O Abaqus com o método ALE foi estudado para simulações de interação solo-estrutura, 

impactos e grandes deformações. A plataforma permite modelar materiais não lineares, 

incluindo solos saturados, solos moles e estruturas sujeitas a carregamentos dinâmicos (Duarte 

et al., 2004). Aplicações incluem a análise da estabilidade de taludes, processos de penetração 

de estacas e o comportamento de fundações submetidas a esforços extremos (Donea et al., 2004) 

 

O LS-DYNA utilizado na literatura para simulações envolvendo colisões e impactos estruturais, 

sua formulação é otimizada para análises transientes altamente não-lineares e oferece 

paralelização eficiente via OpenMP e MPI, viabilizando simulações de grande escala em 

ambientes de computação de alto desempenho (Huerta et al., 2004). O LS-DYNA é 

frequentemente utilizado para modelar o comportamento de barragens, estruturas offshore e 

materiais sujeitos a impactos extremos (Rodríguez-Ferran et al., 2004). 

 

O Kratos Multiphysics disponibiliza um módulo de ALE focado em problemas multifásicos, 

como escoamento em meios porosos e interação entre fluidos e sólidos. O framework é 

desenvolvido em C++ com interface de scripts em Python, oferecendo flexibilidade na definição 

de modelos constitutivos e condições de contorno. Suporta paralelização via OpenMP e MPI, 

possibilitando simulações eficientes em clusters de processamento paralelo (Donea et al., 2004; 

Huerta et al., 2004). 
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2.4        REVISÃO DOS RESULTADOS ENCONTRADOS NA LITERATURA 

 

A análise dos trabalhos que obtiveram êxito em modelar grandes de deformações, taludes, 

rupturas progressivas e regressivas ajudará a pautar a escolha da solução para o problema em 

questão.  

 

Ceccato et al. (2024) realizaram uma revisão abrangente sobre a aplicação do Método dos Pontos 

Materiais (MPM) na modelagem de deslizamentos, identificando um aumento substancial no 

número de estudos realizados nos últimos anos. Os autores destacam que a popularidade do 

método tem crescido rapidamente, principalmente devido à sua semelhança com o Método dos 

Elementos Finitos (FEM) e ao acesso a códigos open-source, que facilitam sua aplicação. A 

revisão também aponta que a maioria dos trabalhos publicados se concentra na análise de 

deslizamentos rápidos, com formulações explícitas dinâmicas, e que as aplicações com 

formulações implícitas ainda são raras, sendo o estudo de Yamaguchi et al. (2023) uma das 

exceções. 

 

A revisão de Ceccato et al. (2024) também aponta que grande parte das pesquisas tem sido 

conduzida utilizando códigos como Anura3D, CB-Geo MPM e MPM3D, sendo o primeiro 

amplamente empregado para simulações de deslizamentos de terra e problemas de grande 

deformação, enquanto os demais têm sido aplicados para estudos tridimensionais e de alta 

complexidade numérica. A maioria dos trabalhos revisados utilizou abordagens bidimensionais 

para reduzir o custo computacional, embora simulações tridimensionais sejam essenciais para 

casos mais complexos, especialmente aqueles envolvendo geometria irregular e interação com 

estruturas. 

 

Os avanços no desenvolvimento desses códigos têm permitido uma representação mais precisa 

dos fenômenos de instabilidade de taludes. No entanto, desafios como o refinamento da 

formulação para minimizar oscilações numéricas e melhorar a eficiência computacional ainda 

representam tópicos de pesquisa em aberto. Além disso, a modelagem da interação entre 

diferentes fases do solo, como a inclusão de acoplamento hidromecânico, continua sendo um 

dos principais desafios para tornar o MPM ainda mais robusto na análise de deslizamentos de 

larga escala. 

 

Rohe e Martinelli (2017) revisaram o uso do Material Point Method (MPM) em aplicações de 

engenharia geotécnica, destacando sua implementação no software Anura3D. O estudo 
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apresentou diferentes formulações do MPM para simulação de deslizamentos, incluindo 

abordagens para solos saturados e não saturados. Segundo os autores, "o MPM combina 

vantagens dos métodos baseados em malha e de partículas, eliminando distorções de malha e 

preservando a história do material”. 

 

Os estudos de Feng et al. (2021) e Gutiérrez et al. (2024) merecem ser destacados por suas 

contribuições na aplicação do MPM para simulações de falhas induzidas por liquefação em 

barragens e taludes. Ambos os trabalhos demonstram que a implementação de modelos 

constitutivos avançados, capazes de capturar a degradação progressiva da resistência, bem como 

os efeitos hidromecânicos associados à liquefação, é crucial para representar adequadamente a 

evolução da falha e os processos pós-ruptura. 

 

Na mesma linha, o trabalho de Chen et al. (2013) propôs um método de redução dinâmica local 

de resistência, demonstrando que abordagens que permitem reduzir progressivamente os 

parâmetros de resistência, de maneira localizada, são mais eficazes na simulação de processos 

de ruptura progressiva. O estudo, realizado no software FLAC3D, reforça que o controle da 

degradação da resistência ao longo do tempo é fundamental para identificar de forma mais 

precisa a formação e a propagação de zonas de cisalhamento, além de permitir uma estimativa 

mais realista dos deslocamentos acumulados. 

 

MPM pode ser acoplado com o FEM como demonstrado por Zhou et al. (2022) que 

desenvolveram um algoritmo acoplado FEM-MPM otimizado para execução em GPU, com o 

objetivo de simular processos de falha em geomecânica. No método proposto, os elementos 

finitos distorcidos são substituídos por pontos materiais, permitindo a continuidade das 

simulações sem problemas de convergência numérica. A estratégia de acoplamento possibilita a 

utilização da precisão do FEM para pequenas deformações, enquanto o MPM assume a 

modelagem quando ocorrem grandes deslocamentos. Além disso, o algoritmo foi acelerado por 

meio de paralelização com CUDA, garantindo uma melhoria significativa na eficiência 

computacional, especialmente em aplicações de estabilidade de taludes e processos de ruptura 

progressiva. Segundo os autores, "a implementação baseada em GPU permite um aumento 

substancial na velocidade de processamento, tornando viável a análise de larga escala de 

instabilidades geotécnicas complexas" (Zhou et al., 2022). 
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Wang et al. (2016) analisaram os mecanismos de falha retrogressiva e progressiva utilizando o 

Material Point Method (MPM). Os autores observaram que as falhas progressivas tendem a se 

iniciar por zonas de fraqueza internas, evoluindo gradualmente devido à redistribuição de 

tensões no interior do solo, enquanto as falhas retrogressivas decorrem principalmente da perda 

de suporte na base, o que desencadeia o colapso sequencial das porções superiores do talude. Os 

resultados dessa análise, representados na Figura 2.7, ilustram a diferenciação entre os dois 

mecanismos e a evolução das superfícies de ruptura ao longo do tempo.. 

 

Figura 2.7. Resultadas de falhas progressivas no MPM demonstrados por Wang et al. (2016). 

Urmi et al. (2023) revisaram os principais mecanismos de falha e ferramentas numéricas 

aplicadas a deslizamentos em argilas sensíveis, destacando a importância de modelos 

constitutivos elastoviscoplásticos com leis de amolecimento não linear para representar a 

transição de estado sólido para líquido nesses materiais. O estudo enfatiza o uso do MPM como 

alternativa para contornar as limitações das abordagens convencionais em cenários de grandes 

deformações. Nas simulações realizadas com o software Anura3D, os autores avaliaram o papel 

da resistência não drenada de pico e residual, bem como do fator de amolecimento (shape factor), 

observando que valores baixos de resistência residual são cruciais para o surgimento de falhas 

progressivas. A Figura 2.8 ilustra o efeito do shape factor na propagação da ruptura, indicando 

que valores inferiores a 20 não foram suficientes para a formação de múltiplas superfícies de 

cisalhamento no caso analisado. 
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Figura 2.8. Efeito do shape factor na propagação da ruptura. Modificado de (Urmi et al. 

2023). 

Outro estudo realizado por Urmi et al. (2024) utilizou o Método dos Pontos Materiais (MPM) 

para simular os deslizamentos retrogressivos de Sainte-Monique (1994) e Saint-Jude (2010), 

aplicando um modelo constitutivo elastoplástico de Mohr-Coulomb com amolecimento. Os 

resultados evidenciaram a formação de estruturas típicas de falha, como "horsts" e "grabens", 

reproduzindo os padrões observados nos eventos reais. A correspondência entre a geometria 

final obtida no modelo e a configuração do deslizamento natural de Saint-Jude é apresentada na 

Figura 2.9, reforçando a validade do método e da abordagem adotada. 

 

 

Figura 2.9. Comparação da geometria pós falha do modelo e do deslizmento de Saint-Jude. 

Modificado de (Urmi et al. 2024). 
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Em geotecnia, o método CEL é aplicado na modelagem de dutos parcialmente enterrados em 

solos argilosos saturados, com acoplamento entre esforços hidrodinâmicos e mecânicos (Zhang 

et al., 2019). Também é utilizado para avaliar a estabilidade de solos muito moles sob 

carregamentos dinâmicos, permitindo representar grandes deslocamentos e falhas progressivas 

em taludes submersos (Chen et al., 2020; Lee et al., 2021). Na indústria de manufatura, o CEL 

simula com precisão processos como o corte ortogonal de metais e operações de furação com 

brocas indexáveis, considerando a separação do cavaco, altas taxas de deformação e transporte 

de cavacos (Wang et al., 2022; Fang et al., 2020). Na engenharia de desastres, é usado para 

simular fluxos de detritos, colapsos de barragens sob carregamentos de explosivos e impactos 

de ondas de choque em estruturas de concreto (Wang et al., 2020; Lu et al., 2019). Sua 

capacidade de representar grandes deformações transientes o torna adequado para eventos 

rápidos e catastróficos em solos coesivos. 

 

Além dessas aplicações, destaca-se o estudo de Wang et al. (2016), que aplicou o método 

Coupled Eulerian-Lagrangian (CEL) à simulação do deslizamento de Saint-Jude, utilizando o 

software Abaqus. Foi adotado um modelo com critério de plastificação de von Mises e 

degradação pós-pico da resistência ao cisalhamento não drenada, representando com precisão o 

comportamento da argila sensível. A Figura 2.10 apresenta os resultados da simulação, nos quais 

o CEL reproduziu a formação da banda de cisalhamento quase horizontal, as falhas rotacionais 

iniciais e estruturas do tipo "horsts" e "grabens", características do espalhamento progressivo 

observado. Os resultados numéricos mostraram boa concordância com os dados de campo, tanto 

na morfologia final dos detritos quanto na distância de retrogressão. 

 

Figura 2.10. Simulação numérica do deslizamento de Saint-Jude utilizando o Método Coupled 

Eulerian-Lagrangian (CEL). (Wang et al. 2016). 
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Dey et al. (2021) também investigaram falhas progressivas em solos sensíveis utilizando o 

método CEL no software Abaqus. O estudo analisou a degradação da resistência não drenada e 

a formação de bandas de cisalhamento ao longo do tempo, destacando que a remoção do suporte 

na base do talude pode desencadear múltiplas instabilidades em sequência. A Figura 2.11 ilustra 

a formação de estruturas do tipo "horsts" e "grabens" durante a evolução da ruptura. As 

simulações foram validadas com casos históricos, demonstrando que o CEL é capaz de 

reproduzir padrões de falha observados em deslizamentos reais. 

 

Figura 2.11. Formação de "Horsts" e "Grabens". (Dey et al. (2021). 

Outro estudo utilizando o CEL no software ABAQUS é o de Wang e Hawlader (2017), que 

investigou numericamente o comportamento de três modalidades de ruptura (Figuras 2.12, 2.13 

e 2.14 que apresentam três tipos de falha (a) falha progressiva em declive, (b) fluxo de detritos 

retrogressivo e (c) spread). O trabalho analisou diferentes geometrias, propriedades geotécnicas 

e gatilhos de instabilidade, reproduzindo de forma realista os mecanismos de iniciação, 

formação de bandas de cisalhamento, colapso global do talude e deslocamento pós-ruptura das 

massas de solo. Os resultados obtidos foram compatíveis com os modelos conceituais propostos 

com base em observações de campo, reforçando a aplicabilidade da modelagem numérica de 

grandes deformações na compreensão de fenômenos envolvendo solos com comportamento 

strain-softening.  
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Figura 2.12. Resultados numéricos utilizando modelagem CEL (a) falha progressiva em 

declive induzida por carregamento em encosta (Case-I). (Wang e Hawlader 2017). 

 

Figura 2.13. (b) fluxo de detritos retrogressivo provocado por erosão de toe (Case-II). 

 (Wang e Hawlader 2017). 

 

Figura 2.14. (c) spread com formação de horsts e grabens em resposta à perda de suporte na 

base (Case-III). (Wang e Hawlader 2017). 
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O deslizamento de Saint-Jude também foi analisado em um estudo de caso por Zhang et al. 

(2019), que modelaram numericamente o evento utilizando o método dos Elementos Finitos de 

Partículas (PFEM). O estudo empregou um modelo elastoviscoplástico baseado na combinação 

do critério de Tresca com amolecimento por deformação (strain-softening) e do modelo de 

Bingham, permitindo capturar tanto o comportamento sólido quanto fluido das argilas sensíveis. 

A Figura 2.15 apresenta os resultados obtidos, demonstrando que a estrutura computacional 

adotada foi capaz de reproduzir quantitativamente o processo de falha progressiva, a distância 

de retrogressão e o perfil final do deslizamento, validando a aplicabilidade do PFEM para a 

simulação de deslizamentos retrogressivos em argilas sensíveis. 

 

Figura 2.15.  Estudo de caso do deslizamento de Saint-Jude utilizando o PFEM.  

(Zhang et al. 2019). 

Outro trabalho relevante é o de Wang et al. (2021), que investigaram falhas progressivas em 

solos argilosos sob condições dinâmicas utilizando o Particle Finite Element Method (PFEM). 

O estudo incorporou o comportamento de amolecimento por deformação ("strain-softening"), 

demonstrando sua influência nos padrões de falha e no deslocamento do material. A Figura 2.16 

ilustra os resultados obtidos, evidenciando a relação entre o índice de resistência de solos 

estratificados e a formação de superfícies de ruptura. Os autores concluíram que camadas com 

resistências semelhantes tendem a gerar deslizamentos rotacionais mais profundos e com maior 

alcance, ressaltando a eficácia do PFEM para simulações de rupturas progressivas, desde que o 

amolecimento seja devidamente considerado. 
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Figura 2.16. Resultados das rupturas no PFEM demonstrados por Wang et al. (2021) 

O estudo conduzido por Yuan et al. (2020) utilizou o Método dos Elementos Finitos de Partículas 

Suavizadas (SPFEM), baseado na estrutura do PFEM, para modelar a falha progressiva em 

encostas argilosas sensíveis. O modelo constitutivo adotado foi o critério de Tresca com 

amolecimento por deformação ("strain-softening"), permitindo a análise da propagação da falha 

ao longo do tempo e a formação de estruturas típicas como "horsts" e "grabens". A Figura 2.17 

apresenta os resultados obtidos na simulação, destacando que a retrogressão e a distância de 

deposição final da massa instável são altamente sensíveis ao módulo de amolecimento do solo. 

O estudo conclui que valores mais elevados de amolecimento resultam em maiores distâncias 

de retrogressão e espalhamento dos detritos. 

 

Figura 2.17. Resultados das rupturas progressiva no PFEM (Yuan et al. 2020). 
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O estudo realizado por Zhang et al. (2017) utilizou o Método dos Elementos Finitos de Partículas 

(PFEM) para modelar a falha retrogressiva em encostas compostas por argilas sensíveis. O 

modelo constitutivo empregado foi do tipo elastoviscoplástico com amolecimento por 

deformação (“strain-softening”), combinando elementos do critério de Tresca e do modelo de 

Bingham, o que permitiu representar adequadamente tanto o comportamento sólido da argila 

intacta quanto o comportamento semifluido da argila remoldada. Conforme ilustrado na Figura 

2.18, o PFEM foi capaz de reproduzir com sucesso o mecanismo de falha retrogressiva, 

demonstrando que uma falha inicial no pé do talude pode desencadear instabilidades sucessivas 

que se propagam ao longo da superfície basal, ascendendo progressivamente até atingir a porção 

superior do depósito argiloso. 

 

Figura 2.18. Resultados das rupturas progressivas. (Zhang et al. 2017). 

Estudos recentes demonstraram a capacidade do método SPH em representar de forma precisa 

a evolução da resistência dos solos e a fragmentação do material durante rupturas progressivas. 

Por exemplo, Kim & Park (2022) aplicaram SPH na análise de liquefação e fluxo de detritos, 

enquanto Zhao & Fang (2021) destacaram a capacidade do método em capturar a evolução de 

falhas geotécnicas complexas. De modo semelhante, Lee & Kang (2023) demonstraram a 

aplicação do SPH na análise de instabilidades em encostas e na mitigação de riscos associados. 

 

Outro trabalho relevante é o de Bui e Nguyen (2021), que apresentaram uma revisão abrangente 

sobre a formulação e as aplicações do método Smoothed Particle Hydrodynamics (SPH) na 

engenharia geotécnica. O estudo destaca a capacidade do SPH em lidar com grandes 

deformações, pós-ruptura e fluxos multifásicos em meios porosos, evidenciando que sua 

natureza totalmente sem malha elimina os problemas de distorção frequentemente enfrentados 
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em métodos baseados em malha, como o FEM tradicional. Para simulações de rupturas 

progressivas, os autores empregaram modelos constitutivos elastoplásticos e viscoplásticos 

baseados em plasticidade contínua, incluindo adaptações do modelo de Drucker-Prager e 

formulações granular-viscosas sensíveis à taxa de deformação. A Figura 2.19 apresenta os 

resultados dessas análises, ilustrando a capacidade do SPH em representar com precisão os 

mecanismos envolvidos na propagação de falhas progressivas.  

 

Figura 2.19. Resultados das rupturas progressivas analisadas. (Bui et al 2021). 

Bui e Nguyen (2021) destacam que "o SPH, quando formulado corretamente com esquemas de 

aproximação robustos e modelos constitutivos adequados, pode capturar não apenas o início da 

falha, mas também a evolução subsequente do fluxo do material e o colapso progressivo da 

estrutura".   

 

Diante do panorama apresentado, observa-se que os avanços recentes na modelagem numérica 

aplicada à geotecnia permitiram não apenas simular o estado limite de taludes, mas também 

compreender a evolução dos processos de ruptura e os mecanismos pós-falha. A literatura 

demonstra de forma consistente que a escolha do método numérico e do modelo constitutivo, é 

determinante para a representação adequada dos fenômenos envolvidos, as abordagens que 

obtiverem êxito e apresentam maior número de trabalhos acerca do tema são o MPM, CEL, 

PFEM e SPH, nessa revisão resultados sobre rupturas progressivas com o ALE e FVM não 

foram encontradas. 
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CAPÍTULO 3   

3. MÉTODOS ADOTADOS 

 

Nesta dissertação, optou-se por empregar os métodos numéricos com maior aderência à 

modelagem de rupturas progressivas: o Método dos Pontos Materiais (MPM), Coupled 

Eulerian-Lagrangian (CEL), Particle Finite Element Method (PFEM) e Smoothed Particle 

Hydrodynamics (SPH). Abordagens como Arbitrary Lagrangian-Eulerian (ALE) e Finite 

Volume Method (FVM) foram descartadas devido à escassez de aplicações compatíveis com o 

fenômeno estudado. 

 

No contexto do MPM, foram testados os softwares Anura3D, CB-Geo MPM e MPM-

Geomechanics. O Anura3D foi selecionado como principal ferramenta por oferecer robustez 

numérica, documentação abrangente, suporte a múltiplas formulações (incluindo double-point 

e saturada acoplada) e integração com o GiD. Mesmo sem paralelização, mostrou-se adequado 

para os objetivos do trabalho. 

 

O CB-Geo MPM, embora com suporte a múltiplos núcleos, apresentou limitações na execução 

de análises em múltiplas etapas. O MPM-Geomechanics, apesar de mais acessível, resultou em 

simulações inconsistentes no contexto de falhas progressivas. 

 

Para o método CEL, adotou-se o Abaqus/CAE, amplamente utilizado na engenharia geotécnica 

e com modelos constitutivos com strain-softening disponíveis na biblioteca padrão, sem 

necessidade de sub-rotinas externas. 

 

O método ALE foi descartado devido à distorção da malha em grandes deformações e aos 

problemas numéricos associados à movimentação nodal em contextos gravitacionais, conforme 

descrito por Alelvan (2017) e nos manuais do Abaqus.  

 

O PFEM foi inicialmente avaliado via Kratos Multiphysics, mas a ausência de modelos com 

degradação de resistência nas versões acessíveis e a dificuldade de compilação inviabilizaram 

sua aplicação. No caso do SPH, o código GeoXPM (Bui et al., 2021), que apresentou resultados 

coerentes com o esperado usando o modelo Drucker-Prager com strain-softening. O GeoXPM 

demonstrou bom potencial e resultados semelhantes ao MPM e CEL, e boa facilidade de uso, 
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apesar disso não foi obtida versão completa do código e não havia tempo hábil para completar 

todas as análises com esse método. 

 

Dessa forma, a seleção do Anura3D (MPM) e do Abaqus/CAE (CEL) fundamentou-se no 

equilíbrio entre estabilidade numérica, realismo físico e viabilidade prática para as simulações 

de rupturas progressivas e retrogressivas realizadas. 

 

A formulação matemática dos métodos numéricos empregados nesta dissertação (MPM e CEL) 

encontra-se apresentada no Anexo 1. O Anexo reúne a descrição da base teórica da mecânica do 

contínuo, comum ao Método dos Elementos Finitos (MEF), ao Método dos Pontos Materiais 

(MPM) e ao Método Coupled Eulerian–Lagrangian (CEL), abrangendo os princípios de 

conservação da massa, do momento linear, da energia interna e as relações constitutivas básicas. 

 

A formulação específica do MPM descrita no ANEXO1, utilizou de base a abordagem de Fern 

et al. (2019), no livro The Material Point Method for Geotechnical Engineering: A Practical 

Guide. A ordem e todas as equações relacionadas ao MPM seguem esta referência, com 

pequenas adaptações de apresentação realizadas para melhor enquadramento no contexto desta 

pesquisa. 

 

A descrição referente ao CEL foi estruturada conforme descrito no Abaqus/CAE User’s Guide 

(Dassault Systèmes, 2016), assegurando aderência às práticas implementadas no solver Explicit 

do software Abaqus/CAE utilizado nesta dissertação. 

 

Dessa forma, para evitar a repetição de conteúdos gerais e tornar o desenvolvimento mais fluido, 

o capítulo 3 desta dissertação será dedicado exclusivamente à apresentação das particularidades 

numéricas e operacionais associadas à aplicação dos métodos nas simulações realizadas. O 

capítulo será estruturado da seguinte forma: 

• Seção 3.1: Descrição das particularidades do Método dos Pontos Materiais (MPM), 

implementado no Anura3D. 

• Seção 3.2: Descrição das particularidades do Método Coupled Eulerian–Lagrangian 

(CEL), implementado no Abaqus/Explicit. 

• Seção 3.3: Descreve brevemente os modelos utilizados e algumas particularidades da 

versão disponível nos softwares. 
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3.1        MÉTODO DO PONTO MATERIAL (ANURA3D)  

 

Esta seção apresenta as particularidades do Método dos Pontos Materiais (MPM) nas simulações 

realizadas com o software Anura3D, complementando a fundamentação teórica apresentada na 

Seção 2.1.1 e no Anexo 1. 

 

Antes de detalhar a configuração adotada no Anura3D, é importante distinguir brevemente os 

principais tipos de solução temporal utilizados em numéricos: 

• Solução Explícita: Nessa formulação, o estado do sistema no próximo instante de tempo 

é calculado diretamente a partir das variáveis conhecidas no instante atual, sem a 

necessidade de resolver sistemas de equações. Trata-se de um método condicionalmente 

estável, em que o passo de tempo deve ser inferior a um limite crítico determinado pelo 

critério de Courant, Friedrichs e Lewy (1928), conhecido como condição CFL, para 

garantir a estabilidade numérica. A simplicidade de implementação e o menor custo 

computacional por passo de tempo tornam essa abordagem atrativa para simulações 

dinâmicas, embora requeira passos de tempo reduzidos, o que pode aumentar o tempo 

total de simulação (Fern et al., 2019). 

• Solução Implícita: Nessa abordagem, o estado futuro do sistema é obtido por meio da 

resolução de um sistema de equações que depende das variáveis no próprio instante 

futuro. Isso permite o uso de passos de tempo maiores, sendo vantajoso em análises 

quase-estáticas ou de longa duração. No entanto, o custo computacional por passo é 

geralmente maior, devido à necessidade de inversão de matrizes e à utilização de 

métodos iterativos. 

• Solução Semi-implícita: Combina características das formulações explícita e implícita. 

Termos não lineares ou altamente variáveis são resolvidos explicitamente, enquanto 

termos lineares ou difusivos são tratados implicitamente. Essa estratégia busca equilibrar 

estabilidade e desempenho computacional, sendo adequada para problemas multifísicos 

ou com múltiplas escalas de tempo. 

 

O Anura3D utiliza a formulação explícita, com integração no tempo baseada no método das 

diferenças centrais. Essa abordagem é particularmente eficiente na representação de eventos 

dinâmicos com grandes deformações, sendo condicionalmente estável conforme a condição 

CFL 

 



 

46 
 

Para as análises quase-estáticas, manteve-se o esquema explícito, mas introduzindo um 

amortecimento local artificial “local damping”. O amortecimento local é uma técnica 

implementada no Anura3D para introduzir dissipação de energia artificial no sistema, ajudando 

a estabilizar a solução numérica em diferentes tipos de análise. Essa abordagem consiste em 

adicionar uma força adicional proporcional à força desequilibrada ( 𝐟ext − 𝐟int  ) e e contrária à 

direção da velocidade. A formulação geral do termo de amortecimento para um grau de liberdade 

é expressa por: 

𝐟damp = −𝛼
|𝐟|𝐯

|𝐯|
                                                                  (3.1) 

onde: 𝛼  é o coeficiente de amortecimento local (adimensional), 𝐟 = 𝐟ext − 𝐟int   é a força 

desequilibrada e 𝐯 é a velocidade nodal. 

 

Além disso, o software dispõe da opção “Quasi-static Convergence”, ativada nas propriedades 

de cálculo. Essa ferramenta automatiza a detecção do estado de equilíbrio quase-estático, 

monitorando critérios como a razão entre a energia cinética e o trabalho das forças externas, ou 

a variação das forças internas. 

Assim, o procedimento nas fases quase-estáticas envolveu: 

• Solução explícita com aplicação de amortecimento local elevado (tipicamente entre 0,5 

e 0,8). 

• Utilização da opção “Quasi-static Convergence” para controlar o avanço automático do 

tempo até atingir a convergência desejada. 

𝐹 =
∥∥𝐟𝑒𝑥𝑡 − 𝐟int ∥∥

∥∥𝐟ext ∥∥
<  tolerância                                                  (3.2)

         𝐸 =
𝐾𝐸

𝑊ext 
<  tolerância                                                       (3.3)

 

Embora inicialmente desenvolvido para acelerar a convergência em análises quase-estáticas, o 

amortecimento local também pode ser empregado em simulações dinâmicas explícitas. Nesses 

casos, desde que utilizado com valores baixos de 𝛼  (tipicamente entre 0,05 e 0,15), o 

amortecimento auxilia na dissipação de oscilações numéricas sem comprometer 

significativamente a fidelidade da resposta dinâmica. Essa prática é particularmente relevante 

em materiais cujo modelo constitutivo não inclui mecanismos intrínsecos de dissipação de 

energia. 
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A importância da escolha adequada do coeficiente de amortecimento local foi evidenciada no 

estudo de Toro Rojas (2019), no qual se verificou que valores altos (𝛼  ≈0,75) resultam em 

comportamento quase-estático, enquanto valores baixos (0,01≤ 𝛼  ≤0,05) favorecem uma 

dissipação mais realista da energia e uma melhor representação dos deslocamentos. 

No presente trabalho, devido à natureza das rupturas progressivas analisadas — caracterizadas 

por grandes deslocamentos e degradação acentuada da resistência —, foram realizados testes 

comparativos com valores de amortecimento local iguais a 0,00; 0,02 e 0,05. Observou-se que 

𝛼 =0,05 reduziu os deslocamentos do material, enquanto 𝛼=0,02 proporcionou um equilíbrio 

satisfatório entre estabilidade numérica e realismo na resposta dinâmica, sendo este o valor 

adotado nas fases dinâmicas das simulações. Já nas fases quase-estáticas, utilizaram-se valores 

mais elevados, como 0,75 conforme prática recomendada. 

 

Vale observar que, além do amortecimento local, o Anura3D também disponibiliza parâmetros 

de viscosidade com função semelhante à viscosidade artificial empregada no Abaqus. Esses 

parâmetros, embora não explorados nesta etapa com o MPM, foram empregados com o método 

CEL. 

 

O ANURA3D oferece a possibilidade de selecionar diferentes métodos de integração através da 

opção “Computation Method”. Entre as alternativas disponíveis, destacam-se: 

• “Material Point Integration”, onde a integração das equações é realizada exclusivamente 

com base nas informações transportadas pelos pontos materiais; 

• “Mixed Integration”, que combina a integração tradicional dos pontos materiais com a 

integração de Gauss para elementos completamente preenchidos, visando aumentar a 

estabilidade e a precisão dos cálculos internos. 

 

Neste trabalho, foi adotado o método de Mixed Integration, tanto pela recomendação da 

literatura especializada quanto pela documentação oficial do Anura3D. Esta abordagem é 

especialmente indicada para problemas envolvendo grandes deformações e deslocamentos 

expressivos dos pontos materiais. Conforme descrito no Tutorial Manual 2024. O método de 

integração adotado nesse exemplo combina integração no ponto de Gauss para elementos 

completamente preenchidos com integração no ponto material para elementos parcialmente 

preenchidos. Dessa forma, a opção "MPM – mixed integration" deve ser selecionada (Manual 

do Anura3D, 2024). 
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O uso da integração mista tem como principal objetivo mitigar o ruído numérico associado à 

travessia dos pontos materiais pela malha (fenômeno conhecido como grid crossing error), o 

qual pode comprometer a precisão da integração puramente lagrangeana. Segundo análise de 

Beuth (apud Fern et al., 2019), a técnica de Mixed Integration mostra-se particularmente eficaz 

quando o volume total dos pontos materiais em um elemento se aproxima de 90% do volume 

do próprio elemento. 

 

Dessa forma, a configuração de Mixed Integration foi mantida em todas as fases das simulações 

numéricas deste trabalho, contribuindo diretamente para a estabilidade do modelo e para a 

representação adequada dos mecanismos de ruptura progressiva em taludes com comportamento 

de amolecimento (strain-softening). 

 

A estabilidade condicional do método exige que o incremento de tempo respeite um limite 

crítico determinado pelo critério CFL. O incremento crítico de tempo ( Δ𝑡cr   ) depende 

diretamente da menor dimensão dos elementos da malha ( 𝐿min ) e da velocidade de propagaçäo 

de ondas (c) no material, dada por: 

Δ𝑡𝑐𝑟 =
𝐿min

𝑐
,   com  𝑐 = √

𝐸𝑐

𝜌
                                                (3.4) 

 onde; 

•  𝐸𝑐 é o módulo de elasticidade ou de confinamento do material; 

•  𝜌 é a densidade do material. 

Essa relação evidencia que malhas mais refinadas (menores 𝐿min ) reduzem o valor crítico de 

tempo, enquanto materiais mais rígidos (maior 𝐸𝑐 ) aumentam a velocidade de propagação de 

ondas, exigindo incrementos ainda menores. Por outro lado, materiais mais densos (maior 𝜌 ) 

tendem a aumentar Δ𝑡cre , permitindo passos de tempo ligeiramente maiores. 

De forma prática, o Anura3D permite que o usuário ajuste o incremento de tempo via definição 

de um número de Courant (CNB), que atua como um fator multiplicativo de segurança: 

Δ𝑡 = 𝐶𝑁𝐵 × Δ𝑡𝑐𝑟 ,  0 < 𝐶𝑁𝐵 ≤ 1                                          (3.5) 

Valores de CNB próximos à 1 tornam a simulação mais rápida, mas aumentam o risco de 

instabilidades. Já valores menores de CNB oferecem maior robustez numérica, ao custo de um 

tempo de simulação proporcionalmente maior. Essa flexibilidade de ajuste é essencial para 

equilibrar a eficiência computacional e a estabilidade, especialmente em simulações com 
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geometrias refinadas ou materiais de alta rigidez, como também observado na prática de 

modelagem utilizando o método CEL no Abaqus/Explicit 

 

Além do ajuste do CNB, o Anura3D incorpora outras estratégias para otimizar a eficiência 

computacional em simulações quase-estáticas. Uma delas é o mass scaling, técnica que consiste 

em aumentar artificialmente a massa dos pontos materiais. Essa alteração reduz a velocidade de 

propagação de ondas (c) e, consequentemente, permite passos de tempo maiores sem alterar as 

forças estáticas do sistema. O uso de mass scaling, contudo, deve ser restrito a análises quase-

estáticas. Em simulações dinâmicas, a alteração da inércia dos corpos poderia comprometer a 

fidelidade física dos resultados. 

 

Para a definição do estado inicial de tensões em solos estratificados horizontais, o Anura3D 

oferece o procedimento 𝐾0 . Essa abordagem permite iniciar a simulaçäo com um estado de 

tensões laterais proporcional à tensão vertical, respeitando a condição: 𝜎′ℎ = 𝐾0 𝜎′𝑣 

 

O carregamento gravitacional pode ser aplicado ou não. Quando a gravidade não é aplicada, o 

usuário deve informar manualmente a profundidade da superfície do solo e o valor da tensão 

vertical inicial. Quando a gravidade é aplicada, o estado de tensões é calculado automaticamente 

em função do peso próprio e da profundidade dos estratos. Em ambas as situações, o 

procedimento contribui para evitar transientes artificiais na fase inicial da simulação, garantindo 

maior realismo no comportamento dos solos modelados. 

 

Essas estratégias combinadas, ajuste do número de Courant, uso criterioso de “mass scaling” e 

inicialização adequada de tensões são fundamentais para assegurar a estabilidade numérica, a 

eficiência computacional e a confiabilidade dos resultados obtidos com o Anura3D. 

 

O ANURA3D permite a seleção de diferentes formulações de material, as quais representam 

distintos níveis de interação entre a fase sólida e o fluido intersticial. A escolha da formulação 

afeta diretamente o grau de simplificação física do problema, o tempo de simulação, a 

necessidade de parâmetros hidráulicos e o realismo na representação do comportamento do solo. 

A massa total de cada ponto material no modelo é calculada pela soma das massas da fase sólida 

e da fase líquida, de acordo com a equação: 

𝑚 = V[(1 − 𝑛)𝜌𝑆 + 𝑛𝜌𝐿]                                                   (3.6) 
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onde V  é o volume do ponto material, 𝑛  a porosidade, 𝜌𝑆  é a densidade da fase sólida e 𝜌𝐿 a 

densidade da água. 

 

Na formulação “Dry material”, o solo é considerado seco, sem interação com fluido. A massa é 

calculada apenas pela contribuição da fase sólida e não há geração de poro-pressão ou efeitos 

hidromecânicos.  

 

A formulação “Saturated drained” representa um solo saturado, mas com drenagem instantânea. 

Toda a poropressão é dissipada, resultando em um comportamento equivalente ao de um 

material seco em termos de resistência, embora a massa inclua a contribuição da água.  

 

Na formulação “Saturated undrained” em tensões totais, o solo saturado é modelado sem 

permitir dissipação de poro-pressão, porém as tensões são tratadas como tensões totais. A poro-

pressão não é calculada explicitamente e, portanto, os efeitos hidrostáticos não são isolados.  

 

Na formulação “Saturated undrained” a geração de poro-pressão é calculada com base na 

deformação volumétrica utilizando a relação: 

Δp = 𝐾𝑤 ⋅ Δ𝜀𝑣𝑜𝑙                                                           (3.7) 

onde 𝐾𝑤é o módulo de bulk da água, adotado internamente pelo ANURA3D como um valor 

fixo, as tensões seguem a clássica relação das tensões efetivas: 

σ = σ′ + 𝑝 ⋅ 𝐼                                                              (3.8)  

A massa continua incluindo a fase líquida, mas não há fluxo, o que significa que o excesso de 

poro-pressão gerado pela deformação não se dissipa. 

 

Na formulação “Saturated fully coupled”, o meio é tratado como um sistema bifásico acoplado 

sólido-fluido, no qual a geração e a dissipação de poro-pressão são consideradas 

simultaneamente. A dissipação ocorre através da lei de Darcy: 

𝑞 =
𝑘

𝛾𝑤
∇𝑝 − 𝐟𝑑 + 𝜌𝐿𝐠                                                     (3.9) 

onde 𝑞 é o vetor de fluxo, 𝑘 a permeabilidade e 𝛾𝑤 é o peso específico da água. As tensões são 

calculadas segundo o princípio das tensões efetivas (σ = σ′ + 𝑝 ⋅ 𝐼) , 𝐟𝑑  representa termos 

adicionais de perda de carga (por exemplo, forças de arrasto ou correções numéricas associadas 
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à discretização), e o modelo permite representar corretamente a dissipação de excesso de poro-

pressão durante o carregamento. 

 

Por se tratar de uma formulação totalmente acoplada, além do fluxo advectivo descrito pela 

equação (3.9), inclui-se também o termo de armazenamento, que leva em conta a 

compressibilidade do fluido e da matriz sólida. Esse termo aparece na equação de conservação 

de massa da fase líquida, garantindo que a variação de poro-pressão ao longo do tempo seja 

corretamente representada: 

𝜕𝜁

𝜕𝑡
+ ∇ ⋅ 𝐪 = 0                                                       (3.10) 

em que 𝜁 representa o conteúdo de fluido armazenado por unidade de volume do meio poroso. 

 

Dessa forma, a formulação "fully coupled" não se restringe a um regime estacionário: ela é 

transiente, permitindo simular tanto a geração quanto a dissipação de poro-pressão durante o 

carregamento. O regime estacionário é apenas um caso limite em que 𝜕𝜁/𝜕𝑡 = 0 e as pressões 

se estabilizam no tempo. 

 

A formulação “Unsaturated 2-phase with suction effects” representa solos não saturados como 

um meio bifásico, composto por sólido e água, considerando também o ar na condição de 

pressão atmosférica. A influência da sucção é introduzida na resistência efetiva do solo através 

da equação de Bishop: 

σ′ = σ − 𝑢𝑎 ⋅ 𝐼 + 𝜒( 𝑢𝑎 − 𝑢𝑤) ⋅ 𝐼                                   (3.11) 

 

onde 𝑢𝑎 é a pressão do ar, 𝑢𝑤 a pressão da água e 𝜒  o fator de Bishop, função do grau de 

saturação. A sucção ( 𝑢𝑎 − 𝑢𝑤)  atua como um mecanismo adicional de resistência, muito 

relevante na mecânica dos solos não saturados. 

 

A formulação “Unsaturated 3-phase fully coupled” é uma abordagem de maior complexidade, 

que trata o solo como um sistema composto por três fases: sólido, água e ar. Nesse caso, tanto o 

fluxo de água quanto o de ar são resolvidos simultaneamente, permitindo a modelagem de 

variações de saturação, dissipação de sucção e mudanças dinâmicas na interação solo-fluido-ar. 

Esse modelo oferece uma representação fisicamente mais precisa, porém com custo 

computacional significativamente elevado e necessidade de parâmetros hidráulicos avançados. 
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Na formulação “Liquid”, o ANURA3D permite modelar a fase líquida de forma isolada, sendo 

aplicada em situações como escoamento livre, movimento de fluidos ou corpos d’água. Neste 

caso, apenas as equações de movimento da fase líquida são resolvidas, sem interação com uma 

matriz sólida. 

 

Por fim, a formulação “Double-point” utiliza dois conjuntos independentes de pontos materiais: 

um para representar a matriz sólida e outro para o fluido. A interação entre as fases é modelada 

explicitamente através de forças de acoplamento, permitindo representar movimentos relativos 

significativos entre sólido e fluido.  

 

Neste trabalho, foram utilizadas apenas as formulações para um material seco, material saturado 

totalmente não drenado (tensões efetivas ou totais), e principalmente um material saturado 

totalmente acoplado. 

3.2        MÉTODO EULERIANO LAGRANGEANO ACOPLADO (CEL) 

 

Como citado anteriormente e descrito de forma mais profunda no ANEXO1, o Método Coupled 

Eulerian–Lagrangian (CEL), implementado no Abaqus/Explicit, é uma formulação híbrida que 

combina as abordagens Euleriana e Lagrangeana, permitindo simular grandes deformações sem 

as limitações associadas à distorção da malha, comuns nos métodos Lagrangeanos 

convencionais. 

 

Na formulação CEL, materiais definidos como Eulerianos são representados por uma fração 

volumétrica dentro de uma malha fixa, o material flui através dessa malha por meio do EVF 

(Eulerian Volume Fraction). As variáveis de estado, como tensões, deformações e energia 

interna, são atualizadas em cada elemento com base nas frações volumétricas, que descrevem a 

quantidade de material presente no interior de cada célula da malha. Esse procedimento ocorre 

por meio de um processo advectivo no qual as propriedades do material são redistribuídas 

conforme o avanço do tempo. 

 

De forma análoga ao que ocorre na abordagem adotada no Método dos Pontos Materiais (MPM), 

o método Coupled Eulerian-Lagrangian (CEL) implementado no Abaqus/Explicit também 

utiliza um esquema de integração explícito no tempo, cuja estabilidade é condicionada pela regra 

de Courant-Friedrichs-Lewy (CFL). O cálculo do incremento crítico de tempo segue o mesmo 
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princípio, sendo controlado pela menor dimensão dos elementos da malha e pela velocidade de 

propagação de ondas no material, dependente de suas propriedades elásticas e densidade. 

 

Assim como discutido anteriormente na seção referente ao MPM, o CEL também emprega 

estratégias para otimizar o desempenho computacional, como o mass scaling, que consiste no 

aumento artificial da massa dos elementos, permitindo a utilização de incrementos de tempo 

maiores sem comprometer a estabilidade numérica. No Abaqus, essa técnica pode ser aplicada 

de forma automática ou manual, globalmente ou em regiões específicas, sendo especialmente 

útil em simulações quase-estáticas, onde os efeitos inerciais são desprezíveis. Vale destacar que 

essas práticas, hoje consolidadas em diferentes métodos numéricos, historicamente foram 

amplamente difundidas a partir de implementações em códigos comerciais como o próprio 

Abaqus. 

 

O desempenho computacional no CEL também é diretamente influenciado pela configuração do 

domínio. Simulações que utilizam exclusivamente materiais Eulerianos operam de maneira mais 

eficiente, pois dispensam algoritmos de contato. Contudo, sempre que existe interação entre 

corpos Eulerianos e Lagrangeanos, o “General Contact” do Abaqus é ativado, o que demanda 

processamento adicional para detecção de penetração, cálculo das forças de contato e 

atualização das interfaces. Esse efeito é particularmente relevante em simulações 

tridimensionais com múltiplas interfaces. 

 

Como citado anteriormente, o CEL não possui o de amortecimento local, “local damping”, o 

Abaqus/Explicit adota como principal recurso de estabilização numérica a inserção de 

viscosidade artificial “bulk viscosity”. Esse artifício visa mitigar oscilações numéricas, 

sobretudo em regiões sujeitas a compressões rápidas, frentes de choque ou formação de bandas 

de cisalhamento.A viscosidade artificial no Abaqus é definida por dois parâmetros 

adimensionais: 

• Linear bulk viscosity parameter (μL ) 

• Quadratic bulk viscosity parameter (μQ) 

 

A aplicação dessa viscosidade se dá apenas em regiões sujeitas a compressão volumétrica, não 

afetando diretamente zonas em expansão. Durante a fase de estabilização inicial das tensões, 

são utilizados os valores padrão recomendados no manual do Abaqus (μL =0,06 e μQ=1,2), que 
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garantem a suavização das respostas transitórias. Entretanto, na etapa de simulação da ruptura, 

esses parâmetros precisam ser reduzidos para evitar que a dissipação artificial de energia 

mascare o comportamento físico do sistema. Assim, foram adotados, após processo de 

calibração, os valores μL =0,002 e μQ=0,2, que proporcionaram um bom equilíbrio entre 

estabilidade numérica e realismo na resposta dinâmica, valores ainda menores provocaram 

inconvergência numérica. 

O Abaqus/Explicit monitora continuamente dois critérios de energia: 

• ALLAE (Artificial Energy): energia artificial introduzida no sistema pela viscosidade de 

massa; 

• ALLIE (Internal Energy): energia interna real armazenada no material devido à 

deformação. 

De acordo com o Abaqus User’s Manual, a recomendação é que a energia artificial (ALLAE) se 

mantenha inferior a 10%, e preferencialmente abaixo de 5%, da energia interna (ALLIE). 

O controle desses parâmetros foi essencial para garantir que a energia artificial se mantenha 

suficientemente baixa durante todas as simulações, assegurando que a dissipação numérica não 

interferisse de maneira significativa no comportamento físico observado.  

 

 

Figura 3.1 ALLAE e ALLIE retirado da interface do ABAQUS/CAE  

Durante a análise da deformação plástica acumulada nas simulações CEL, foram utilizadas duas 

variáveis principais do Abaqus: PEEQAVG (Equivalent Plastic Strain Average) e PEAVG 

(Plastic Strain Average). Ambas acumulam deformações ao longo do tempo, mas se diferenciam 

conceitualmente: 
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• PEEQAVG representa a deformação plástica equivalente média em um elemento. Trata-

se de uma medida escalar derivada dos invariantes do tensor de deformação plástica, 

amplamente usada como critério de dano ou ruptura. Sua definição é dada por: 

𝜀𝑝𝑒𝑞 = √
2

3
𝜀𝑖𝑗

𝑝𝜀𝑖𝑗
𝑝                                                            (3.12) 

onde 𝜀𝑖𝑗
𝑝

 são os componentes do tensor de deformação plástica. Essa medida é particularmente 

útil para avaliar a intensidade da deformação acumulada de forma global em zonas críticas. 

• PEAVG, por outro lado, representa a média volumétrica das componentes do tensor de 

deformação plástica ao longo do elemento, sem conversão para uma medida escalar. A 

variável é computada por. 

𝜀𝑝𝑎𝑣𝑔 =
1

𝑉
∫ 𝜀𝑖𝑗

𝑝𝑑𝑉
𝑉

                                                      (3.13) 

Durante os testes, observou-se que com o modelo Mohr-Coulomb (especialmente sob 

degradações acentuadas de resistência (valores elevados de shape factor) e malhas grosseiras a 

variável PEEQAVG pode indicar plastificação prematura em regiões ainda estáveis, dificultando 

a identificação precisa das superfícies de ruptura. Nesses casos, PEAVG se mostrou mais eficaz 

para representar as zonas de cisalhamento reais. Em contraste, quando se utilizou o critério 

Drucker-Prager ou degradações mais suaves, a PEEQAVG não apresentou regiões de 

plastificação prematura. Assim, optou-se pelo uso complementar das duas variáveis ao longo 

das análises com CEL, adaptando a escolha ao critério constitutivo e à qualidade da malha. 

3.3        MODELOS CONSTITUTIVOS UTILIZADOS NO ANURA3D E ABAQUS  

 

O modelo constitutivo Mohr-Coulomb com Strain-Softening (MCSS), utilizado no Anura3D, é 

derivado do critério clássico de Mohr-Coulomb, que define a condição de ruptura do material 

em função da coesão (𝑐), do ângulo de atrito interno (𝜙) e do ângulo de dilatância (𝜓). Este 

modelo é amplamente aplicado para representar materiais com degradação significativa da 

resistência pós-pico, como é o caso de solos sensíveis sujeitos a rupturas progressivas. 

 

Nesse modelo a redução é controlada pelo parâmetro exponencial η, também chamado de “shape 

factor”. Matematicamente, a resistência ao cisalhamento τ, considerando strain-softening, pode 

ser expressa pela seguinte equação geral: 

𝜏 = σ′tan [𝜙(𝑒𝑝)] + 𝑐(𝑒𝑝)                                            (3.14) 
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onde σ′  é a tensão efetiva normal no plano de cisalhamento, 𝑒𝑝 é a deformação plástica 

acumulada. As funções para 𝑐(𝑒𝑝), 𝜙(𝑒𝑝), 𝜓(𝑒𝑝)  seguem uma curva de decaimento 

exponencial, seguindo as equações a seguir. 

                                                𝑐 = 𝑐𝑟 + (𝑐𝑝 − 𝑐𝑟)𝑒
−𝜂𝜀𝑝                                                 (3.15) 

                                                            𝜙 = 𝜙𝑟 + (𝜙𝑝 − 𝜙𝑟)𝑒
−𝜂𝜀𝑝                                         (3.16) 

                                                            𝜓 = 𝜓𝑟 + (𝜓𝑝 − 𝜓𝑟)𝑒
−𝜂𝜀𝑝                                           (3.17) 

onde 𝑐𝑝, 𝜙𝑝, 𝜓𝑝 são os valores de pico, 𝑐𝑟, 𝜙𝑟,𝜓𝑟 os valores residuais e η é o parâmetro que 

controla a taxa de degradação. 

 

No espaço dos tensores principais (𝜎1, 𝜎2, 𝜎3), o critério clássico de Mohr-Coulomb possui uma 

superfície de escoamento não diferençável em alguns pontos caracterizada por arestas e vértices 

(Figura 3.2). Essa representação poligonal é consequência da projeção do critério nas direções 

principais de tensão, o que gera descontinuidades, particularmente evidentes no plano de tensões 

desviadoras e no plano octaédrico. No plano meridional, a representação é linear, formando uma 

linha quebrada definida pelo ângulo de atrito e pela coesão. Contudo, essa formulação pode lidar 

com dificuldades numéricas, especialmente em simulações tridimensionais, levando a 

problemas de convergência e resultados espúrios no processo de integração numérica do modelo 

constitutivo. 

 

Figura 3.2. Critério de ruptura no plano principal e no plano octaédrico (Abbo et al. 2011). 

 

Para contornar essas limitações, foi implementada por Urmi et al. (2024) no Anura3D a 

suavização da superfície de escoamento conforme a proposta de Abbo et al. (2011). Essa técnica 

consiste na aproximação da superfície poligonal do critério Mohr-Coulomb por uma superfície 

suavizada, geralmente de forma hiperbólica ou elipsoidal, no plano meridional e no plano 

desviador. 

https://symbl.cc/pt/1D70F/
https://symbl.cc/pt/1D70F/
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A Figura 3.3 ilustra essa suavização, onde a aproximação hiperbólica substitui a linha quebrada 

por uma curva contínua e derivável. Essa modificação permite: 

• Evitar singularidades na superfície de escoamento, especialmente nos vértices 

associados às combinações das tensões principais (𝜎1 =𝜎2, 𝜎2=𝜎3, etc.); 

• Melhorar a estabilidade numérica, reduzindo os problemas de não convergência que 

ocorrem nos pontos de descontinuidade da derivada; 

• Garantir continuidade no espaço das tensões desviadoras, essencial para o correto cálculo 

das direções de fluxo plástico, especialmente em análise tridimensional; 

• Proporcionar uma resposta mais realista no comportamento pós-pico, refletindo de forma 

mais estável a degradação progressiva da resistência do solo. 

Em termos numéricos, a suavização facilita o processo de integração das equações constitutivas, 

reduz o erro na avaliação da consistência plástica e melhora a robustez do processo iterativo na 

detecção do ponto de escoamento. Isso é particularmente crítico no contexto do MPM, onde a 

interação dos pontos materiais com a malha pode gerar perturbações que são amplificadas se a 

superfície de escoamento possui descontinuidades. 

 

 

Figura 3.3. Aproximação hiperbólica do critério de ruptura Mohr-Couloumb no plano 

meridional (Abbo et al. 2011). 

O modelo Mohr-Coulomb implementado no Abaqus utiliza uma formulação sem suavização da 

superfície de escoamento. No espaço tridimensional das tensões principais, isso resulta em uma 

superfície poligonal composta por planos com vértices e arestas bem definidos, o que introduz 

descontinuidades nas derivadas da função de escoamento. 
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Essa geometria não diferenciável pode comprometer a robustez numérica do modelo, 

especialmente em simulações tridimensionais. Embora não seja o único fator que afeta a 

convergência, é amplamente reconhecido na literatura como uma limitação relevante. Diversos 

autores, como Abbo et al. (2011), propõem técnicas de suavização da superfície como forma de 

mitigar essas dificuldades numéricas. 

 

Além disso, o critério Mohr-Coulomb apresenta sensibilidade à discretização da malha, sendo 

mais suscetível a instabilidades quando se utilizam malhas muito refinadas. Esse efeito é ainda 

mais significativo em formulações Eulerianas, onde a resolução adequada dos gradientes de 

tensão e deformação é essencial para garantir a estabilidade e a precisão da solução. 

 

Na prática, esses fatores resultaram em impactos diretos na estabilidade numérica, destacando-

se os seguintes problemas observados: 

• Maior sensibilidade da malha: A utilização de malhas mais refinadas, especialmente em 

modelos Eulerianos, intensifica erros numéricos e instabilidades. 

• Dificuldade na convergência: Observou-se não convergência em situações em que a 

tabela de amolecimento apresenta pontos de degradação acentuada, com elevada 

inclinação. 

O Abaqus oferece, como recurso adicional, a possibilidade de aplicar o Shear Strength 

Reduction (SSR) de forma manual, por meio da vinculação de tabelas de propriedades (coesão, 

atrito e dilatância) a campos dependentes e amplitude. Nessa abordagem, os parâmetros de 

resistência são reduzidos globalmente de acordo com uma função predefinida. Embora eficiente 

para análises de estabilidade global, o SSR atua como uma degradação homogênea de todo o 

material, diferindo conceitualmente do amolecimento localizado, no qual a degradação ocorre 

de forma progressiva e restrita às regiões que efetivamente atingem a plastificação. 

 

O amolecimento no critério Mohr-Coulomb, conforme implementado no Abaqus, é definido por 

meio de uma tabela que relaciona a coesão à deformação plástica equivalente acumulada 

(PEEQ). Essa estratégia segue a mesma lógica do modelo MCSS utilizado no Anura3D, 

permitindo representar de forma localizada a degradação progressiva da resistência ao 

cisalhamento com base na evolução da deformação plástica. A Figura 3.4 ilustra a interface do 

Abaqus para esse tipo de definição, em que os parâmetros de resistência são atualizados em 

função da deformação plástica acumulada. 
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Figura 3.4. Exemplo de entrada no Abaqus para definição de amolecimento baseado em 

deformação plástica acumulada. 

Entretanto, diferentemente do Anura3D, o Abaqus não permite, de forma nativa, a degradação 

simultânea de outros parâmetros resistentes, como o ângulo de atrito (ϕ) e a dilatância (ψ). Para 

incorporar essa funcionalidade, seria necessário o uso de uma sub-rotina do tipo USDFLD ou a 

criação de um modelo constitutivo personalizado via UMAT. 

 

Apesar dessa limitação, a tabela de amolecimento aplicada à coesão é altamente flexível, 

permitindo, representar tanto softening quanto hardening, controlar o início da degradação a 

partir de um nível mínimo de deformação plástica, ajustar a resposta do material sem a 

obrigatoriedade de uma equação específica, por meio de valores interpolados linearmente entre 

os pontos. 

 

O modelo constitutivo Drucker-Prager, disponível na biblioteca padrão do Abaqus/CAE, é uma 

generalização do critério de Mohr-Coulomb para o espaço dos invariantes de tensão. Sua 

formulação apresenta uma superfície de escoamento convexa e contínua, geralmente de formato 

cônico no espaço tridimensional das tensões principais, eliminando os vértices e arestas 

característicos da formulação do Mohr-Coulomb. Essa característica proporciona maior 

robustez numérica, especialmente em simulações tridimensionais com grandes deformações. 
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A condição de escoamento no critério Drucker-Prager é definida em termos do primeiro 

invariante da tensão (I1) e do segundo invariante da tensão desviadora (J2), segundo a expressão 

geral: 

𝐹 = αI1 + √J2 − k = 0                                                 (3.18) 

 onde: 

• I1=𝜎1+𝜎2+𝜎3 é o primeiro invariante de tensões (tensão média ou traço do tensor de 

tensões); 

• J2=
1

2
sijsij  é o segundo invariante do tensor desviador de tensões, 

• α  e k  são parâmetros que definem, respectivamente, a inclinação e a posição da 

superfície de escoamento no espaço de tensões, estando diretamente relacionados ao 

ângulo de atrito interno (𝜙) e a coesão (𝑐); 

 

Os valores de α  e k  são determinados a partir dos parâmetros físicos do solo (𝑐  e 𝜙 ), sendo 

dependentes da forma como a aproximação do Drucker-Prager é realizada. No Abaqus adota-se 

aproximação circunscrita ao critério de Mohr-Coulomb (ou seja, o cone do Drucker-Prager 

envolve a superfície poligonal do Mohr-Coulomb). Essa escolha favorece uma estimativa 

conservadora muito utilizada em problemas geotécnicos. 

As relações são expressas de α e k  são expressas por: 

α =
2 ⋅ sin𝜙  

√3 ⋅ (3 − sin𝜙)
                                                      (3.19) 

k =
6 ⋅ 𝑐 ⋅ cos 𝜙  

√3 ⋅ (3 − sin𝜙)
                                                      (3.20) 

Quando o ângulo de atrito é nulo 𝜙 =0, o parâmetro α também se anula, fazendo com que a 

condição de escoamento dependa exclusivamente de k , o qual está diretamente associado a 

coesão. 

 

O Abaqus permite a definição do critério Drucker-Prager tanto na forma associada quanto não 

associada, sendo essa escolha controlada pelo parâmetro “flow stress ratio”. Na prática 

geotécnica, a formulação não associada costuma ser adotada por representar de forma mais 

realista o comportamento dos solos, que possuem dilatância limitada sob cisalhamento. 

Entretanto, nas simulações realizadas neste trabalho, foi utilizada a formulação associada, 

considerando critérios de comparabilidade entre modelos e maior estabilidade numérica. 
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O modelo Drucker-Prager no Abaqus permite a degradação da resistência por meio da aba Shear 

Hardening, onde se define uma tabela relacionando o "Yield Stress" à deformação plástica 

acumulada (Abs Plastic Strain). Quando se seleciona o modo Shear, o critério considera 

plastificação associada ao cisalhamento puro, sendo conceitualmente análogo à coesão no 

critério Mohr-Coulomb com ϕ = 0°, configuração frequentemente utilizada na modelagem de 

argilas sensíveis. 

 

Embora os nomes dos campos (“Yield Stress” e “Abs Plastic Strain”) permaneçam os mesmos 

nos modos Tension, Compression e Shear, a interpretação física da resistência depende do tipo 

de plastificação selecionado. O modo Shear é o mais adequado para aplicações geotécnicas, e 

foi o adotado neste trabalho. A entrada dos dados é feita por pontos tabulados, de forma idêntica 

àquela apresentada na Figura 3.4, com a única diferença sendo o parâmetro ajustado. A função 

de degradação adotada é definida pela expressão: 

σy = 𝑓𝑒𝑝                                                                  (3.21) 

 onde:  

• σy = resistência ao cisalhamento “Yield Stress”, 

• 𝑒𝑝  deformação plástica acumulada. 

No modelo Drucker-Prager, o yield stress atua diretamente sobre o segundo invariante da tensão 

desviadora (J₂), segundo a relação: 

√J2 = σy                                                                   (3.22) 

Assim, a plastificação ocorre quando a magnitude do segundo invariante atinge o valor crítico, 

sendo equivalente a:  

√J2 = k                                                                    (3.23) 

Esse comportamento é equivalente, do ponto de vista físico, ao critério de Mohr-Coulomb com 

𝜙 = 0, sendo especialmente útil para modelar argilas sensíveis sob condições não drenadas. 

 

Em situações em que o ângulo de atrito é nulo (𝜙 =0), o parâmetro Yield Stress no critério 

Drucker-Prager assume um papel funcional análogo ao da coesão (c) no critério Mohr-Coulomb, 

pois ambos controlam o início da plastificação. Contudo, essa equivalência é conceitual, e não 

numérica. A principal diferença reside no domínio em que atuam: 
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• No Mohr-Coulomb, a ruptura é definida no plano 𝜏 –𝜎𝑛, pela expressão (𝜏 = 𝜎𝑛tan𝜙 +

𝑐) ; 

• No Drucker-Prager, a plastificação ocorre quando o segundo invariante da tensão 

desviadora atinge o valor do “yield stress” pelo J2 = σy. 

Como o Drucker-Prager opera no espaço dos invariantes de tensão e o Mohr-Coulomb no plano 

de tensões tangenciais e normais, os valores numéricos atribuídos a 𝑐 e σy não são diretamente 

equivalentes.  
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CAPÍTULO 4 

4. RESULTADOS 

 

Este capítulo apresenta os resultados das simulações numéricas realizadas nos métodos: Material 

Point Method (MPM), implementado no software Anura3D, e Coupled Eulerian–Lagrangian 

(CEL), disponível no Abaqus/CAE. 

 

Para a modelagem das argilas sensíveis, especialmente sob condições não drenadas e sem atrito, 

adotou-se majoritariamente ângulo de atrito igual a zero (ϕ = 0°), conforme praticado 

amplamente na literatura (Wang et al., 2021; Yerro et al., 2015). Essa escolha reflete a 

simplificação comum baseada na resistência não drenada (Su), onde a coesão de pico (cp) 

representa a Su e a coesão residual (cr) representa a resistência remoldada (Sur). Tal abordagem 

reduz a complexidade computacional sem comprometer a representação dos principais 

mecanismos de ruptura. 

 

O parâmetro shape factor (η), que regula a taxa de degradação da resistência com a deformação 

plástica acumulada, foi investigado em uma ampla faixa de valores, entre 1 e 500. Ensaios 

laboratoriais apontam que a deformação necessária para atingir a resistência residual varia entre 

30% e 150% (Urmi et al., 2023; Quinn et al., 2011), o que corresponderia a η entre 20 e 3. 

 

Outros ensaios da literatura demonstram o valor residual sendo atingido apenas a deformações 

muito altas, justificando a inclusão de valores ainda menores de η.  Além disso valores de pico 

entre 21 até 320kPa foram demonstrados na literatura e casos menos recorrentes podem ocorrer, 

em que a degradação é mais rápida, justificando valores altos, como η ≥ 80. 

 

Embora o ângulo de atrito não tenha sido utilizado nas simulações principais deste trabalho, foi 

realizada uma análise pontual para avaliar sua influência no comportamento pós-ruptura. 

Estudos como o de Karim & Gnanendran (2014) indicam que argilas sensíveis apresentam 

ângulo de atrito efetivo de pico (ϕ’) entre 20° e 25° no estado intacto, que pode ser reduzido 

para valores entre 5° e 10° após a remoldagem, e em casos extremos, próximo de zero, refletindo 

um comportamento quase puramente coesivo 
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A organização dos resultados está estruturada em duas seções principais: 

• Seção 4.1, com os resultados obtidos por meio do MPM no Anura3D; 

• Seção 4.2, com os resultados gerados a partir do CEL no Abaqus/CAE. 

Essa divisão favorece uma análise comparativa entre as abordagens numéricas adotadas. Em 

ambas, são investigadas as principais formas de instabilidade em solos sensíveis, conforme 

ilustrado na Figura 1.2, incluindo: 

• Ruptura retrogressiva em série, com fluxo de detritos; 

• Ruptura progressiva em declive; 

• Deslizamento retrogressivo em subida “spread”,  

Os resultados são apresentados por meio de quadros estáticos extraídos de instantes específicos 

das simulações, priorizando os momentos de formação de novas superfícies de ruptura e 

estabilização da massa. Nos modelos com maior tempo de estabilização, utilizou-se um maior 

número de quadros, espaçados por intervalos de tempo mais amplos, a fim de evitar redundância 

visual. 

 

Para uma compreensão completa do comportamento dinâmico das falhas, os vídeos das 

simulações estão disponíveis por meio do QR Code da Figura 4.1 e do link a seguir. 

 

Figura 4.1. Vídeos dos resultados: https://drive.google.com/drive/folders/1zPU-

uKD9sesCOqNkNP0YYvw04gslz5Pz 

https://drive.google.com/drive/folders/1zPU-uKD9sesCOqNkNP0YYvw04gslz5Pz
https://drive.google.com/drive/folders/1zPU-uKD9sesCOqNkNP0YYvw04gslz5Pz
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4.1        DESCRIÇÃO DAS SIMULAÇÕES NO ANURA3D (MPM)  

 

Nesta seção são apresentados os resultados obtidos por meio do Material Point Method (MPM), 

utilizando o software Anura3D, empregando, majoritariamente, a formulação saturada 

totalmente acoplada. 

 

Como descrito anteriormente, foi adotado o modelo constitutivo Mohr-Coulomb com “strain-

softening” suavizado (MCSS), tal como implementado por Urmi et al. (2022). 

 

As análises estão organizadas em blocos, conforme descrito a seguir: 

• Seção 4.1.1 – Influência da coesão residual; 

• Seção 4.1.2 – Influência do “shape factor”: efeitos do fator de amolecimento(η), que 

controla a degradação exponencial da resistência no modelo; 

• Seção 4.1.3 – Efeito combinado dos parâmetros: coesão residual, coesão de pico e “shape 

factor”, esta seção consolida a interpretação dos comportamentos observados, 

especialmente no que se refere, à distância de corrida “run-out distance” e à extensão da 

retrogressão “retrogression distance”; 

• Seção 4.1.4 – Avaliação da influência da formulação: apresentam-se simulações 

comparativas entre diferentes formulações disponíveis para o material no Anura3D. 

• Seção 4.1.5 – Transição da ruptura do talude para a fundação: Análise do comportamento 

no qual o mecanismo de ruptura ocorre passando pela fundação do talude; 

• Seção 4.1.6 – Mecanismos: Explora os deslizamentos retrogressivos ascendentes 

“spreads”, e ruptura progressiva em declive; 

• Seção 4.1.7 – Análise de impacto e interação com estruturas: avalia-se a energia cinética, 

interação com corpos rígidos localizados a montante ou a jusante. 

 

4.1.1      INFLUÊNCIA DA COESÃO RESIDUAL 

 

Nesta seção, são avaliados os efeitos da coesão residual na evolução da instabilidade em taludes 

e no comportamento pós-ruptura. Para isolar a influência desse parâmetro, foram adotadas 

curvas de degradação da resistência com variação exclusiva da coesão residual, conforme 

ilustrado na Figura 4.4, mantendo constantes os demais parâmetros, como apresentado nas 

Tabelas 4.1 e 4.2. A resposta do modelo foi analisada a partir do deslocamento da massa de solo, 

incluindo a distância total percorrida após a ruptura e a extensão da falha retrogressiva. 
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O domínio geométrico da análise, representado na Figura 4.2, consiste em um retângulo de 250 

metros de comprimento por 20 metros de altura, delimitado pelas coordenadas (0,0), (250,0), 

(250,20) e (0,20). Internamente, foi inserido um talude com 15 metros de altura e inclinação de 

45°, definido pelos pontos (0,0), (105,0), (90,15) e (0,15). A superfície trapezoidal inferior 

representa o talude, sendo a região inicialmente preenchida por material, enquanto o restante do 

domínio corresponde à região livre, permitindo o deslocamento do solo após a ruptura. As linhas 

externas são utilizadas para definição das condições de contorno e de carregamento 

 

Figura 4.2. Representação do domínio da simulação no GID. 

De acordo com o manual do ANURA3D, em simulações bidimensionais com condição de 

deformação plana (plane strain), são utilizados elementos triangulares de 3 nós. A Figura 4.3 

apresenta a malha gerada no GID, composta por 4.918 elementos triangulares e 2.640 nós, 

correspondente à configuração base adotada para os resultados principais. Adicionalmente, 

outros testes de sensibilidade com diferentes refinamentos de malha foram realizados, 

avaliando-se o impacto no tempo de simulação e na resposta do modelo e outros resultados com 

malhas alternativas são discutidos na Seção 4.1.4. 

 

 

Figura 4.3. Malha gerada no GID utilizada nas simulações 

Para cada elemento de malha foram associados três pontos materiais, resultando em um total de 

4.164 pontos materiais na região onde foi atribuído material. Sobre a aplicação das condições 

de contorno, foram restringidos os deslocamentos em todas as direções na base do domínio, e 

no sentido do vetor normal ao plano nas demais faces, tanto para o fluido quanto para o sólido. 

A análise foi realizada em duas fases principais: 

• Fase 1 – Quase Estática: Com duração de 0,5 segundos, essa etapa teve o recurso quasi-

static convergence ativado. Foi utilizado um modelo linear elástico, com módulo de 

Young de 7.500 kPa, coeficiente de Poisson de 0,3, amortecimento local de 0,7 e com o 

recurso de strain smoothing ativado. Essa fase tem como objetivo estabilizar o modelo 

sob o carregamento inicial. 
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• Fase 2 –Dinâmica (Análise de Ruptura): Após a estabilização, a convergência quasi-

estática foi desativada e o modelo constitutivo foi alterado para Mohr-Coulomb com 

strain softening (MCSS), com os parâmetros definidos na Tabela 4.1. O amortecimento 

local foi ajustado para 0,02. Para essa etapa, o tempo de salvamento dos resultados foi 

alterado diretamente no arquivo. cps, definindo-se um intervalo de 0,25 segundos entre 

os registros. 

 

O parâmetro CNB, que controla a fração máxima de incremento permitida entre estados 

sucessivos da simulação, foi mantido constante em 0,98. Valores elevados desse parâmetro, 

conforme indicado no material do ANURA3D, permitem incrementos maiores, reduzindo o 

número total de passos de tempo. Contudo, isso pode afetar a resolução temporal e, em casos 

extremos, comprometer a estabilidade da simulação. 

Tabela 4.1. Propriedades do material  

Propriedade Unidade valor 

Permeabilidade (k) m/s 5e-10 

Densidade do sólido kg/m³ 2000 

Densidade do líquido kg/m³ 1000 

Porosidade - 0.55 

Modulo de Bulk do fluído kPa 35000 

Viscosidade dinâmica do 

liquido 
Pa·s 1.002e-6 

Coeficiente de Poisson - 0.3 

 

Tabela 4.2. Propriedades do modelo constitutivo 

Propriedade Unidade valor 

Módulo de Cisalhamento G 

(kPa) 
kPa 3500 

Coesão de Pico 𝑐𝑝  kPa 60 

Coesão Residual 𝑐𝑟  kPa 
Curvas: 

A, B, C, D, E, F 

Ângulo de Atrito de Pico φp 

(°) 
Deg. 0 

Ângulo de Atrito Residual φr 

(°) 
Deg. 0 

Ângulo de Dilitância de Pico 

ψp (°) 
Deg. 0 

Ângulo de Dilitância Residual 

ψr (°) 
Deg. 0 

“Shape Factor” 𝜂 - 80 
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As seis curvas simuladas são apresentadas a seguir na figura 4.4: 

 

 

Figura 4.4. Curvas de degradação da resistência adotadas nas simulações. 

 A escala da deformação plástica desvio está apresentado na Figura 4.5, variável que controla a 

degradação da resistência do material e permite a visualização das superfícies de ruptura. 

 

Figura 4.5. Escala de deformação plástica (desvio) utilizada na representação dos resultados. 

As Figuras 4.6 a 4.11 apresentam os campos de deformação plástica para os materiais simulados, 

seguindo a ordem: Curva A (Figura 4.6), B (4.7), C (4.8), D (4.9), E (4.10) e F (4.11). 

 

 

 

 

Figura 4.6. Deformação plástica da curva A 
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Figura 4.7. Deformação plástica da curva B 

 

 

 

 

Figura 4.8. Deformação plástica da curva C 

 

 

 

 

 

Figura 4.9. Deformação plástica da curva D. 
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Figura 4.10. Resultados da curva E. 

 

 

 

 

 

 

Figura 4.11. Resultados da curva F 
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A Curva D foi escolhida para análises complementares por estabilizar antes de atingir os limites 

do domínio, permitindo observar com mais clareza a evolução de outras variáveis. A escala de 

cores é exibida abaixo de cada resultado. As Figuras 4.12 a 4.14 mostram, respectivamente, os 

campos de tensão total (magnitude), tensão vertical (YY) e velocidade (magnitude) da Curva D.

 

 

 

 

 

 

Figura 4.12. Tensão total (Magnitude) da Curva D. 

 

 

 

 

 

 

Figura 4.13. Tensão total componente YY, da Curva D. 
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Figura 4.14. Evolução da velocidade Curva D. 

Em todas as simulações, variáveis foram monitoradas a partir de um mesmo ponto material, 

inicialmente localizado nas coordenadas (101,485 m; 2,78 m). As Figuras 4.15 e 4.16 

apresentam, respectivamente, o deslocamento e a velocidade nesse ponto, permitindo a 

comparação direta da resposta dinâmica entre as diferentes curvas de resistência simuladas. 

 

Além disso, para cada simulação foram identificados os pontos materiais extremos nas direções 

de retrogressão e de corrida (run-out). A distância de retrogressão corresponde ao deslocamento 

máximo da superfície de ruptura em sentido oposto ao movimento inicial, geralmente 

propagando-se para montante a partir da zona de falha inicial. Já a distância de corrida representa 

o avanço máximo da massa mobilizada na direção do movimento principal, medida a partir da 

posição inicial do pé do talude. Esses valores, obtidos para cada cenário, estão organizados na 

Tabela 4.3. 

Nos casos das curvas E e F, a simulação apresentou movimento contínuo até atingir o limite do 

domínio computacional, impossibilitando a determinação exata da distância de retrogressão. 

Velocidade do sólido (Magnitude) 
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Esse comportamento indica que, com um modelo de maior extensão, o deslocamento 

provavelmente continuaria. 

 

Figura 4.15. Deslocamento das seis curvas no mesmo ponto material. 

 

Figura 4.16. Velocidade das seis curvas no mesmo ponto material. 

Os pontos materiais de maior deslocamento nos dois sentidos (retrogressão e corrida) foram 

selecionados em cada resultado para determinar as distâncias de ruptura. A simulação foi 

executada até garantir a estabilização, dependendo dos parâmetros isso ocorre em diferentes 

tempos; assim, a linha nos gráficos se encerra em momentos diferentes, mas todas as simulações 

cessaram sua movimentação. 
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Tabela 4.3. Distâncias de retrogressão e corrida em cada curva. 

Curva X min(m) Retrogressão  
X máx(m) Distância de corrida 

(Run-out) 

A 70,12 19,88 124,185 19,185 

B 50,62 39,38 131,151 26,151 

C  45,00 45,00 141,401 36,401 

D 19,87 70,13 152,985 47,985 

E -  (todo o modelo) 167,471 62,471 

F -  (todo o modelo) 190,033 85,033 

 

Os resultados indicam uma forte correlação entre a redução da coesão residual e o aumento da 

mobilidade da massa instável. Por exemplo, a diminuição da coesão de 16 kPa (Curva A) para 

6 kPa (Curva F) provocou um aumento de aproximadamente 343% na distância total de corrida 

(de 19,18 m para 85,03 m). De modo análogo, a distância de retrogressão cresceu 126% entre as 

curvas C e D (de 45,00 m para 70,13 m), ilustrando a propagação da instabilidade para trás da 

face do talude à medida que a resistência residual se torna mais baixa. 

 

Nas curvas E e F, o deslocamento superou os limites do domínio simulado, evidenciando 

cenários de colapso total. Isso reforça a importância de uma caracterização precisa da resistência 

pós-pico em análises numéricas de taludes. 

 

Além disso, observou-se que a inclinação final da superfície de ruptura variou entre os materiais 

significativamente, essa tendência de redução do ângulo de repouso reflete a perda progressiva 

da capacidade de sustentação da massa instável à medida que a coesão residual diminui. O solo 

flui mais livremente, resultando em superfícies finais mais planas e depósitos mais extensos. 

 

4.1.2      INFLUÊNCIA DO “SHAPE FACTOR” 

 

Nesta etapa, a investigação concentrou-se na variação do parâmetro denominado “shape factor” 

(η), responsável por controlar a taxa de degradação da resistência do solo em função da 

deformação plástica. Para isolar o efeito desse parâmetro na dinâmica da ruptura, a coesão 

residual foi fixada em 12 kPa em todas as simulações. Esse valor foi escolhido com base nos 

resultados apresentados na Seção 4.1.1, em que coesões residuais muito baixas (como 6 kPa) 

atingiram domínio computacional, e valores de coesão mais elevados limitaram excessivamente 

os deslocamentos. O valor de 12 kPa representou, portanto, um ponto intermediário adequado 

para a avaliação da sensibilidade do modelo ao parâmetro η. 
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Foram testados sete valores de shape factor (η = 50, 90, 150, 200, 250, 300 e 500), embora 

apenas quatro curvas tenham sido apresentadas por já refletirem os principais padrões de 

comportamento observados. As curvas correspondentes aos valores destacados foram: η = 50, 

90, 250 e 500, correspondendo às curvas A, B, C e D, respectivamente. As propriedades básicas 

do material, bem como a geometria e as condições de contorno, permaneceram as mesmas 

utilizadas na Seção 4.1.1. A Figura 4.17 apresenta as curvas de degradação da resistência 

utilizadas neste conjunto de simulações. Já as Figuras 4.18 a 4.21 mostram a distribuição de 

deformação plástica acumulada para cada curva simulada, utilizando a mesma escala de cores 

apresentada anteriormente na Figura 4.5. 

 

Figura 4.17 Curvas A, B, C, D. 

 

 

 

Figura 4.18. Deformação plástica Curva A 
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Figura 4.19. Deformação plástica Curva B. 

 

 

Figura 4.20. Deformação plástica Curva C 

 

 

Figura 4.21. Deformação plástica Curva D 
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Tabela 4.4. Distância de retrogressão e corrida em cada curva. 

Curva X min(m) Retrogressão 
X máx(m) Distância de corrida 

(Run-out) 

A 80,92 9,08 130,27 25,27 

B 46,65 43,35 140,16 35,16 

C  36,51 53,49 144,19 39,19 

D 22,87 67,12 144,88 39,88 

 

Os resultados apresentados nas Figuras 4.18 a 4.21 e na Tabela 4.4 evidenciam o papel do shape 

factor (η) na dinâmica de ruptura. O valor de η controla a taxa de degradação da resistência do 

solo à medida que a deformação plástica se acumula, e, como consequência, influencia 

diretamente o mecanismo de ruptura, alterando o volume da massa mobilizada. 

 

Nesse caso para valores baixos de η (como 50, curva A), a resistência do solo se degrada 

lentamente, permitindo que a deformação se concentre na primeira superfície de falha. Isso 

resulta em uma ruptura frontal isolada, sem a formação de superfícies retrogressivas 

subsequentes.  

 

À medida que η aumenta, como observado nas curvas B (η = 90) e C (η = 250), a degradação 

da resistência se torna mais rápida e consequentemente acelera a formação de novas superfícies 

de ruptura, e com isso, ocorre um aumento significativo no volume deslocado, mas a distância 

final de corrida passa a variar menos significativamente com a degradação mais rápida de 

resistência, Por exemplo, a distância de retrogressão passa de 43,35 m para 53,49 m entre B e 

C, enquanto a distância de corrida aumenta apenas de 35,16 m para 39,19 m, isso ocorre porque 

nesses valores de η o material a jusante já se encontrava no valor residual de resistência. 

 

Na curva D (η = 500), esse efeito se estabiliza: a resistência residual é atingida muito 

rapidamente, e o mecanismo de ruptura não sofre alterações substanciais adicionais. A distância 

de retrogressão aumenta novamente (67,12 m), mas o run-out cresce muito pouco (39,88 m), 

sugerindo uma saturação da sensibilidade do modelo ao parâmetro η nesse intervalo. O talude 

se rompe em várias superfícies retrogressivas, porém com deslocamento vertical reduzido, com 

pequena variação do ângulo final do talude. 

 

Essa mudança no mecanismo de ruptura é um aspecto relevante desta análise: o shape factor 

controla como a falha progride no tempo e no espaço.  
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4.1.3      ANÁLISE COMBINADA CP, CR E “SHAPE FACTOR” 

 

Após a análise isolada dos parâmetros coesão residual (cr) e shape factor (η), esta seção avalia 

os efeitos combinados desses parâmetros com a coesão de pico (cp) sobre o comportamento do 

talude. Para isso, foram realizadas simulações que combinam as variações desses três 

parâmetros. 

 

Antes de apresentar os resultados principais da seção, foi realizada uma simulação comparativa 

com o objetivo de verificar se a variação da coesão de pico influenciaria significativamente a 

resposta do modelo em um cenário de degradação rápida da resistência. Para essa verificação, 

utilizou-se como base a Curva D da seção 4.1.1, definida por cp = 60 kPa, cr = 10 kPa e η = 80. 

A partir dessa curva, foi realizada simulações reduzindo o valor de pico até 20 kPa, mantendo 

os demais parâmetros constantes. 

 

A Figura 4.22 apresenta o estado final dessas duas simulações em duas escalas distintas: uma 

convencional (0 a 2,5) e outra refinada (0 a 0,06), valor próximo ao patamar no qual o material 

atinge sua resistência residual para η = 80. Observa-se que, em ambas as condições, o material 

nas regiões deslocadas já operava próximo à resistência residual. Isso explica por que a variação 

de cp, nessas circunstâncias, não resultou em alterações significativas nos padrões de ruptura. 

 

 

 

 

Figura 4.22. Comparação da coesão de pico 60kPa e 20kPa. 

Esse comportamento é visto nesse caso específico, portanto a influência da coesão de pico é 

dependente da combinação entre cp, cr e η. Para ilustrar essa dependência, foram realizados 

testes complementares com cp = 60 kPa, η = 5 e cr = 1 kPa. Nessas condições, mesmo após a 

formação de uma superfície de cisalhamento bem definida, não foi observada mobilização 

𝑐𝑝 = 60 

𝑐𝑝 = 20 

𝑐𝑝 = 60 

𝑐𝑝 = 20 
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suficiente da massa para iniciar o deslocamento. Isso demonstra que, quando o material 

apresenta elevada resistência de pico e degradação lenta, o sistema permanece estável. Em 

contrapartida, para η mais elevados, a degradação rápida da resistência favorece o 

desencadeamento da ruptura. 

 

Esse comportamento foi evidenciado em testes complementares, nos quais foram utilizados 

valores elevados de cp (60 kPa) combinados com shape factor baixos (η = 5) e coesão residual 

muito reduzida (1 kPa). Nestes casos, a ruptura não foi iniciada. O material apresentava uma 

superfície de cisalhamento bem definida, mas sem deformações suficientes para gerar o 

deslizamento da massa de solo. Isso demonstra que a resistência de pico elevada foi capaz de 

manter a estabilidade da massa, inibindo o início do processo progressivo. Já para valores mais 

altos de η, a resistência foi rapidamente degradada, permitindo a ativação das superfícies 

retrogressivas e o desenvolvimento da ruptura. 

 

Concluída essa etapa de verificação, foram realizadas simulações com diferentes curvas de 

degradação. Embora tenham sido testados diversos cenários adicionais, optou-se por apresentar 

seis curvas representativas (Curva A a Curva F), suficientes para ilustrar os principais 

comportamentos observados no modelo. Essas curvas permitem destacar, de forma clara, 

situações em que a coesão de pico exerce influência relevante, casos em que a degradação 

governada pelo shape factor modifica a distância de retrogressão, e até situações em que as 

distâncias de retrogressão e corrida se invertem em função da interação entre os parâmetros. A 

Figura 4.23 apresenta as curvas selecionadas, e a evolução da deformação plástica 

correspondente é mostrada nas Figuras 4.24 a 4.29, todas na mesma escala de cores da Figura 

4.5. As distâncias de retrogressão e corrida alcançadas em cada simulação estão resumidas na 

Tabela 4.5. 

 

Figura 4.23. Novas curvas simuladas 
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Figura 4.24. Deformação plástica Curva A 

 

 

 

 

 

 

Figura 4.25. Deformação plástica Curva B 
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Figura 4.26. Deformação plástica Curva C. 

 

 

 

 

 

 
Figura 4.27. Deformação plástica Curva D 
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Figura 4.28. Resultado da Curva E. 

 

 

 

 

 

 

 

Figura 4.29. Resultados da curva F. 
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Tabela 4.5. Distâncias percorridas em cada caso 

Curva X min(m) Retrogressão  
X máx(m) Distância de corrida 

(Run-out) 

A 72,37 17,63 150,17 45,17 

B 37,50 52,50 156,80 51,80 

C  33,37 56,63 169,40 64,40 

D 54.38 36,62 165,32 60,32 

E 30 60 186,40 81,40 

F 10,39 79,61 193,01 88,1 

 

Nas simulações com coesões residuais mais baixas (4 a 8 kPa) e shape factors menores (entre 1 

e 20), a influência da coesão de pico tornou-se mais evidente, sobretudo na retrogression 

distance. Essa tendência aparece claramente na comparação entre as curvas A e B, onde a 

redução da coesão de pico associada à degradação mais lenta favoreceu a formação de novas 

superfícies de cisalhamento e o avanço das falhas retrogressivas. 

 

Outro comportamento relevante ocorreu quando coesões residuais extremamente baixas foram 

combinadas a shape factors reduzidos. Nesses cenários, a degradação lenta manteve parte da 

resistência do maciço, retardando a propagação das falhas retrogressivas, mas permitindo 

maiores deslocamentos a jusante, com aumento significativo da run-out distance. Assim, a 

estabilização ocorreu de forma mais lenta, exigindo maior perda de suporte da base para a 

formação das falhas. Esses resultados estão em consonância com Urmi et al. (2023), que 

apontam 𝑐𝑟 e 𝜂 com o parâmetros centrais no controle do deslocamento pós-falha e mostram 

que valores baixos de resistência residual tendem a ampliar a run-out distance. 

 

Adicionalmente, verificou-se que inversões entre retrogression distance e run-out distance 

podem ocorrer em função da combinação específica entre coesão de pico, coesão residual e 

shape factor, revelando que a massa pode percorrer longas distâncias a jusante sem que haja 

formação expressiva de superfícies retrogressivas. 

 

Em síntese, os resultados apresentados, ainda que baseados em um subconjunto das curvas 

testadas, foram suficientes para demonstrar os mecanismos mais representativos. Fica evidente 

que a interpretação do processo de ruptura depende da interação entre os três parâmetros 

principais, cuja predominância varia conforme a sensibilidade do solo 
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4.1.4      INFLUÊNCIA DE OUTROS PARÂMETROS E DESEMPENHO 

COMPUTACIONAL 

 

Foram realizados testes com diferentes formulações disponíveis no Anura3D: não drenada em 

tensões efetivas, não drenada em tensões totais, totalmente saturada acoplada e condição seca. 

No entanto, não é adequado comparar diretamente essas formulações mantendo as propriedades 

de material, pois cada uma representa um modelo físico distinto. Em particular, as formulações 

em tensões totais e tensões efetivas não são diretamente compatíveis, e é necessário considerar 

as condições dos ensaios geotécnicos que deram origem a esses parâmetros, como o regime de 

drenagem, tempo de carregamento e trajetória de tensões aplicadas. Por esse motivo, optou-se 

por não realizar uma comparação quantitativa direta, restringindo-se à análise qualitativa do 

comportamento de cada formulação ao longo da simulação. Ainda assim observou-se que o 

Anura3D apresentou respostas coerentes com o comportamento físico esperado para cada tipo 

de formulação, com maior sensibilidade nas configurações não drenadas, seguida pela 

formulação acoplada e, por fim, pela condição seca. 

 

Na sequência, foram conduzidos testes com a formulação totalmente saturada acoplada do 

Anura3D, com o objetivo de avaliar a influência da permeabilidade do solo na mobilidade da 

massa instável. Para isso, adotou-se um mesmo conjunto de propriedades mecânicas, variando-

se apenas os valores da permeabilidade hidráulica em diferentes ordens de magnitude. 

 

A hipótese testada baseava-se no comportamento conhecido de solos saturados sob diferentes 

regimes de drenagem: em materiais com baixa permeabilidade, o fluxo de água é restrito durante 

o carregamento, resultando no acúmulo de poro pressão e em uma resposta próxima à condição 

não drenada, o que tende a reduzir as tensões efetivas e favorecer a ruptura. Por outro lado, em 

materiais com alta permeabilidade, a dissipação rápida da poro-pressão permite que o 

carregamento ocorra sob condição drenada, resultando em maiores tensões efetivas e, 

consequentemente, menor mobilidade da massa. 

 

Nos testes realizados, foram utilizados valores de permeabilidade entre 1×10⁻¹¹ m/s e 1×10⁻⁶ 

m/s. Não foram observadas diferenças significativas de deslocamento entre os casos com 

permeabilidades mais baixas. Entretanto, para 1×10⁻⁶ m/s, observou-se uma ligeira redução no 

deslocamento total da massa, com aproximadamente 7 metros de corrida e 5 metros de 

retrogressão ao final da simulação. Apesar de esse caso já apresentar sinais de instabilidade 
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numérica, os resultados indicam uma tendência de menores deslocamentos com 

permeabilidades mais elevadas. 

 

A Figura 4.30 mostra o estado final de cada simulação no tempo de 15 segundos, momento em 

que as cinco primeiras simulações já haviam cessado o movimento. 

 

 

 

 

 

 
 

 

Figura 4.30. Resultados do teste de permeabilidade, valores de poro-pressão plotados. 

A Figura 4.31 apresenta a evolução da simulação com permeabilidade 1×10⁻⁶, destacando os 

efeitos da instabilidade numérica observada nesse caso. Já os tempos de processamento estão 

organizados na Tabela 4.6, que apresenta tanto o tempo total necessário para completar cada 

simulação, e o tempo necessário para processar um segundo de simulação. 
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Figura 4.31. Evolução da poro-pressão com permeabilidade 1×10⁻⁶, 

Tabela 4.6. Influência da permeabilidade no tempo necessário para se realizar a simulação 

Permeabilidade 
Tempo por 

Segundo(minutos) 
Tempo total (minutos) 

1e-11 m/s 19,68 492 

1e-10 m/s 3,04 76 

1e-9 m/s 0,56 14 

1e-8 m/s 0,44 11 

1e-7 m/s 2,92 73 

1e-6 m/s 17,24 431 

 

Observou-se uma tendência não linear nos tempos de processamento: para valores muito baixos 

de permeabilidade, o tempo de simulação aumentou consideravelmente. Esse comportamento é 

coerente com o que é frequentemente observado no em simulações utilizando o método dos 

elementos finitos (MEF), em que baixos coeficientes de permeabilidade tornam o sistema mais 

rígido e exigem mais iterações para convergir. 

 

Por outro lado, para valores mais elevados de permeabilidade, observou-se inicialmente uma 

redução do tempo computacional, possivelmente associada à maior facilidade de dissipação das 

pressões de poro e, consequentemente, a um acoplamento menos restritivo entre as fases sólida 

e fluida. No entanto, a partir de certo ponto, o tempo volta a aumentar. Esse efeito pode ser 

explicado pelo surgimento de gradientes de poro-pressão elevados, que forçam o Anura3D a 

adotar incrementos de tempo menores para garantir a estabilidade numérica. Ainda que o passo 

de tempo não seja definido diretamente pelo usuário, o programa o ajusta automaticamente com 

base em critérios internos de estabilidade (ANURA3D SCIENTIFIC MANUAL, 2022). 
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Esse comportamento confirma que o desempenho computacional em formulações acopladas 

depende não apenas da permeabilidade em si, mas da interação entre o acoplamento 

hidromecânico e os critérios de estabilidade que controlam o avanço da simulação. 

 

Adicionalmente, foram realizados testes variando parâmetros básicos do modelo, como o 

coeficiente de Poisson, a densidade do material, o módulo de Young (nas fases quase-estáticas) 

e o módulo de cisalhamento (nas fases dinâmicas). O objetivo foi avaliar a sensibilidade desses 

parâmetros sobre os deslocamentos finais do talude. As variações no coeficiente de Poisson 

apresentaram baixa influência nos deslocamentos, sem tendência clara de comportamento. De 

modo semelhante, alterações nos valores do módulo de Young e do módulo de cisalhamento 

também não resultaram em mudanças significativas nas distâncias percorridas pela massa de 

solo, tanto na corrida quanto na retrogressão. Por outro lado, a densidade do material apresenta 

maior influência no comportamento: valores mais elevados de densidade levaram a 

deslocamentos maiores, o que pode ser atribuído ao aumento da energia cinética disponível no 

sistema durante a fase dinâmica. Esse efeito é ilustrado na Figura 4.32, que apresenta a influência 

da densidade sobre os deslocamentos observados. 

 
 

 

Figura 4.32. Influência da densidade nos deslocamentos 

Na sequência, foram realizados testes com diferentes valores de ângulo de atrito interno (ϕ), 

com o objetivo de avaliar sua influência sobre o comportamento global do talude. Embora 

argilas sensíveis geralmente apresentem ϕ próximo de 0° no estado remoldado, esse valor pode 

variar entre 5° e 25°, dependendo da estrutura inicial e do grau de confinamento. A proposta 

desta análise foi analisar o impacto do atrito na mobilidade da massa, sem que a resistência à 

ruptura fosse controlada exclusivamente pela coesão. 

ρ=2400 

ρ=2000 

ρ=1600 

Deslocamento do sólido (Magnitude) 
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Para isso, foram adotados valores fixos de coesão de pico (18 kPa) e coesão residual (6 kPa), 

suficientes para provocar grandes deslocamentos e atingir o limite do domínio computacional 

na direção de retrogressão e grandes distâncias de corrida. evitou-se o uso de coesão igual a 0°, 

pois esse valor representaria um comportamento puramente granular. Os valores de atrito 

adotados em cada curva estão organizados na Tabela 4.7. Os resultados visuais da deformação 

plástica acumulada para os materiais A a F são apresentados, respectivamente, nas Figuras 4.33 

a 4.38.  

Tabela 4.7. Propriedades utilizadas nos testes com ângulo atrito diferente de 0 

Material 𝝓𝒑 𝝓𝒓 η 

A 20 20 20 

B 20 20 80 

C  20 10 20 

D 20 10 80 

E 20 5 20 

F 20 5 80 

 

 

 

 

 

Figura 4.33. Deformação plástica material A 
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Figura 4.34. Deformação plástica material B. 

 

 

 

Figura 4.35. Deformação plástica material C 

 

 

 

Figura 4.36. Deformação plástica material D. 
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Figura 4.37. Deformação plástica material E. 

 

 

 

Figura 4.38. Deformação plástica material F 

 

A Figura 4.38 mostra o estado final de todos os sete modelos simulados, organizados de cima 

para baixo na seguinte ordem: Curvas A até F, seguidos de um caso adicional com ângulo de 

atrito igual a 0° e shape factor igual a 80, incluído para comparação. 
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Figura 4.39. Comparativo dos estados finais das simulações no momento de estabilização 

Os resultados obtidos evidenciam que a introdução do ângulo de atrito (ϕ), mesmo com valores 

moderados, foi suficiente para reduzir de forma significativa as distâncias de retrogressão e de 

corrida. Em casos em que o ângulo de atrito é maior percebe-se superfícies de ruptura mais rasas 

ao comparar com casos puramente coesivos, nos casos que o valor do ângulo de atrito residual 

é mais baixo (ϕᵣ = 10° e 5°) esse efeito se torna menos perceptível. Em todos os casos, os 

deslocamentos foram consideravelmente menores do que os observados no cenário com 

resistência puramente coesiva e ausência de atrito (ϕ = 0°). Isso confirma que mesmo baixos 

valores de atrito contribuem de maneira decisiva para limitar a mobilização da massa e controlar 

a extensão das falhas. Além disso, a ação do shape factor (η), conforme discutido nas seções 

anteriores, influenciou a rapidez com que o material alcançou a resistência residual. 

 

Nesta seção, são apresentados os testes de sensibilidade à malha para a condição 2D em plane 

strain, previamente utilizada na Curva D (Seção 4.1.1). O objetivo foi avaliar o impacto da 

discretização da malha sobre a estabilidade numérica e a representação das zonas de 

cisalhamento, tanto para a formulação acoplada quanto para a formulação não drenada em 

tensões efetivas. 

ϕ= 0 

F 

E 

D 

C 

B 
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A Tabela 4.8 apresenta as configurações testadas: quatro malhas bidimensionais com elementos 

triangulares de 3 nós e uma malha tridimensional com elementos tetraédricos de 10 nós, cujo 

resultado será discutido posteriormente. 

Tabela 4.8. Configuração das malhas 

Malha 
Número de 

elementos 
Número de nós 

Número de pontos 

materiais 

Tipo de elemento 

1 4918 2640 4164 Triangulo de 3 nós 

2 11400 5971 9879 Triangulo de 3 nós 

3 19884 10303 17550 Triangulo de 3 nós 
4 45495 23288 39666 Triangulo de 3 nós 

3D 217570 309283 63819 Tetraedro de 10 nós 

 

Na formulação acoplada, foram utilizados os mesmos parâmetros definidos para a Curva D. Já 

nos testes com a formulação não drenada (monofásica), os valores adotados foram: coesão de 

pico=30 kPa, coesão residual cr=7,5 kPac, e shape factor η=50, com o objetivo principal de 

avaliar a formação de superfícies de cisalhamento e a definição de estruturas internas 

características, como horsts e grabens. O processo de degradação da resistência segue equação 

3.15. 

 

A Figura 4.40 apresenta os resultados obtidos com as quatro malhas 2D na formulação acoplada, 

todas no mesmo instante de tempo, em ordem crescente de refinamento (de cima para baixo: 

malhas 1 a 4). 

 

 

 

 

Figura 4.40. Resultados com as malhas 1, 2, 3 e 4, formulação totalmente acoplada. 

Com o aumento da densidade de pontos materiais, foram observados erros numéricos crescentes, 

especialmente evidentes na malha 4, conforme ilustrado na Figura 4.41. Nota-se a presença de 
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pontos materiais flutuando de forma não física por volta do segundo 11, o que inviabiliza os 

estágios finais da simulação. 

 

 

 

 

 

 

 

Figura 4.41. Erros numéricos crescentes na malha 4, formulação totalmente acoplada. 

Tentativas de mitigação foram realizadas, incluindo a redução do número de Courant (CNB) de 

0,98 para 0,098, o que resultou em incremento de tempo dez vezes menor. Essa medida reduziu 

parcialmente os erros, mas aumentou significativamente o custo computacional. Alternativas 

como o aumento do amortecimento local poderiam auxiliar na estabilização, porém esse ajuste 

não foi testado no presente trabalho. Vale destacar que amortecimentos elevados afetam 

diretamente as distâncias percorridas. 

 

A Figura 4.42 apresenta os resultados para as mesmas quatro malhas, agora aplicadas à 

formulação não drenada em tensões efetivas, no mesmo instante de tempo. Observa-se uma 

evolução mais estável do modelo, mesmo para malhas mais refinadas. A Figura 4.43 detalha a 

evolução da ruptura ao longo do tempo utilizando a malha 4(Tabela 4.8) com a formulação não 

drenada. Essa simulação ilustra com clareza a formação progressiva das zonas de cisalhamento 

e estruturas do tipo Horsts & Grabens. 
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Figura 4.42. Influência da malha nos resultados 

 

 

 

 

 

 

Figura 4.43. Evolução da ruptura com a malha 4 

Diferentemente da formulação acoplada, nas simulações com a formulação não drenada o 

aumento da densidade de pontos materiais não gerou erros numéricos significativos. Mesmo em 

cenários com baixa coesão residual, a estabilidade numérica foi preservada. Esses resultados 

reforçam que os principais problemas de instabilidade estão associados a formulações 
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multifásicas, especialmente quando combinadas com choques entre pontos materiais em 

direções opostas, elevada densidade de pontos materiais, permeabilidades extremas e 

resistências residuais muito baixas. 

 

Prosseguindo com os testes de tempo de processamento agora na formulação tridimensional, 

utilizando a malha 3D descrita na Tabela 4.8, as simulações foram conduzidas na formulação 

não drenada e seca, a fim de avaliar os efeitos da geometria e da restrição lateral sobre o 

comportamento da ruptura. Para o material não drenado foi utilizada a Curva C da Seção 4.1.1, 

extrudando o domínio 2D em 15 metros na direção da profundidade. Adicionalmente, testou-se 

uma extrusão de 30 metros, sem que se observassem diferenças significativas no comportamento 

global do modelo. 

 

A Figura 4.44 apresenta os instantes iniciais da simulação na condição saturada não drenada em 

tensões efetivas, enquanto a Figura 4.45 mostra os tempos finais do processo de ruptura. 

 

Figura 4.44. Tempos iniciais na simulação 3D em condição saturada não drenada, tensões 

efetivas 
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Figura 4.45. Tempos finais na simulação 3D em condição saturada não drenada, tensões 

efetivas. 

 

Em comparação com a análise bidimensional, observou-se que a distância de retrogressão no 

modelo tridimensional foi significativamente maior, atingindo os limites do domínio. Além 

disso, o ângulo final do talude foi consideravelmente reduzido, o que indica uma maior 

deformabilidade do sistema. A distância de corrida (run-out), por outro lado, não apresentou 

variações expressivas. De forma geral, as simulações tridimensionais com essa formulação 

apresentaram um comportamento mais instável, com maior mobilidade. 

 

Adicionalmente, foi conduzido um segundo teste tridimensional com a formulação seca, 

adotando os seguintes parâmetros: shape factor η=80, coesão de pico =30 kPa, cr=10 kPa(Figura 

4.46). O valor de coesão de pico foi reduzido em relação ao teste anterior, pois, na formulação 

seca, a ruptura não se iniciaria com os mesmos parâmetros anteriormente adotados. 
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Figura 4.46. Resultado 3D na formulação seca 
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Neste caso, tanto a distância de retrogressão quanto a de corrida foram similares às observadas 

na versão bidimensional, embora tenha sido notado um maior abatimento vertical da massa de 

solo. O comportamento geral permaneceu estável e não foram observadas instabilidades 

numéricas relevantes. 

 

Em todas as simulações deste trabalho um i7 11800H foi utilizado, a Tabela 4.9 apresenta os 

tempos de processamento durante a fase de estabilização de tensões (quase-estática), com 

duração de 0,5 segundo de tempo físico. Observa-se que, para as simulações bidimensionais, o 

tempo de cálculo permanece relativamente baixo, mesmo na formulação acoplada. Entretanto, 

na simulação tridimensional acoplada, o tempo de processamento aumentou significativamente. 

Tabela 4.9. Tempo de processamento estabilização de tensões. 

Malha 
Tempo de 

(Monofásico) 
Tempo (acoplado) 

1 Menos de um minuto 1 minuto 

2 Menos de um minuto 2 minutos 

3 1 minuto 8 minutos 
4 3 minutos 16 minutos 

(3D) 14 minutos 26 horas 

 

A Tabela 4.10 apresenta os tempos de processamento na fase dinâmica, considerando 100 

incrementos de 0,25 segundos, totalizando 25 segundos de simulação física. Também são 

indicados os tempos normalizados por segundo de simulação. Verifica-se que, enquanto a 

formulação monofásica apresenta crescimento quase linear com o refino da malha, a formulação 

acoplada apresenta um aumento exponencial do custo computacional. Para o caso tridimensional 

acoplado, o tempo total foi estimado por extrapolação. A simulação foi executada continuamente 

durante 12 dias, alcançando apenas 3,5 segundos de tempo físico. A partir dessa taxa média, 

estimou-se que a simulação completa de 25 segundos exigiria aproximadamente 85 dias de 

processamento. 

Tabela 4.10. Tempos de processamento (Fase dinâmica) 

Malha 
Tempo total 

(Monofásico) 

Tempo total 

(acoplado) 

Tempo por 

segundo 

(Monofásico) 

Tempo por 

segundo 

(acoplado) 

1 6 min 14 minutos 14,4s 33,6s 

2 12 min 38 minutos 28,8s 91,2s 

3 24 minutos 1h e 47 minutos 57,6s 256,8 
4 58 minutos 7h e 34minutos 139,2 1089,6 

(3D) 2h 47min 85 dias (estimado) 400,8s 296228s 
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4.1.5     TRANSIÇÃO DO MECÃNISMO PARA A FUNDAÇÃO 

 

Nesta etapa, foi avaliado o efeito da resistência da fundação sobre a progressão da ruptura e o 

mecanismo de falha retrogressiva. O novo domínio, representado na Figura 4.47, segue o mesmo 

padrão geométrico das análises anteriores, com 250 metros de comprimento e 35 metros de 

altura, delimitado pelas coordenadas (0,0), (250,0), (250,35) e (0,35). O modelo é composto por 

duas camadas estratificadas: 

• Fundação: limitada pelos pontos (0,0), (250,0), (250,15) e (0,15). 

• Talude: definido pelos pontos (0,15), (105,15), (90,30) e (0,30). 

 

A discretização foi realizada com elementos triangulares de 3 nós, com malha equivalente à 

Malha 1 da seção anterior, gerando 8.582 elementos, 4.482 nós e 15.156 pontos materiais (três 

pontos por elemento com material). A malha gerada é apresentada na Figura 4.48. 

 

Figura 4.47. Domínio computacional. 

 

Figura 4.48. Malha gerada no GID. 

As condições de contorno, as fases de simulação (quase-estática e dinâmica), o modelo 

constitutivo adotado (Mohr-Coulomb com strain softening) e os demais parâmetros numéricos 

seguem o padrão descrito na Seção 4.1. O principal objetivo desta análise foi observar como a 

variação na resistência da fundação, em relação ao talude, influencia a formação das superfícies 

de cisalhamento, o alcance da ruptura retrogressiva e a mobilidade da massa instável. Para isso, 

foram simulados cinco cenários com diferentes relações de resistência entre a fundação e o 

talude, como detalhado na Tabela 4.11. Nessa tabela, o termo C2/C1 representa a razão entre a 

coesão do material da fundação (C2) e a coesão do solo que compõe o talude (C1), permitindo 

quantificar comparativamente a diferença de resistência entre essas duas regiões. As 

propriedades do talude foram mantidas constantes e correspondem à Curva D da Seção 4.1.1 
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Tabela 4.11 Propriedades do material da fundação 

Material Relação C2/C1 
Coesão de Pico - 

(kPa) 

Coesão Residual 

- (kPa) 

A - 400 - 

B  2,0 120 20 

C 1,8 108 18 

D  1,5 90 15 

E 1,2 72 12 

 

As Figuras 4.49 a 4.55 apresentam os resultados das simulações realizadas com os cinco 

materiais definidos na Tabela 4.11. A Figura 4.49 refere-se ao Material A; a Figura 4.50, ao 

Material B; as Figuras 4.51 e 4.52, ao Material C; as Figuras 4.53 e 4.54, ao Material D; e a 

Figura 4.56, ao Material E. 

 

 

 

 

 

Figura 4.49. Resultado com material A. 



 

101 
 

 

 

 

 

 

Figura 4.50. Resultado com o material B. 

 

 

Figura 4.51. Tempos iniciais com o material C 
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Figura 4.52. Tempos finais com o material C. 

 

 

 

 

Figura 4.53. Tempos iniciais com o material D. 

 

 



 

103 
 

 

 

Figura 4.54. Tempos finais com o material D. 

 

 

 

 

 

Figura 4.55. Resultados com o Material E. 

 

 



 

104 
 

A partir das simulações apresentadas nas Figuras 4.49 a 4.55, observa-se que a transição dos 

mecanismos de ruptura está diretamente relacionada à razão entre as resistências da fundação e 

do talude. Na Figura 4.49 (Material A), a elevada rigidez da fundação fez com que a 

movimentação do solo ocorresse exclusivamente na camada superior. Nas Figuras 4.50 a 4.52 

(Materiais B e C), a redução da resistência da fundação promoveu sua mobilização parcial; parte 

da energia é transferida para a fundação, que rotaciona e atua como uma barreira física, 

reduzindo a distância de corrida do material da camada superior. Ainda assim, percebe-se a 

diferença de resistência entre as camadas. 

 

Nas Figuras 4.53 e 4.54 (Material D), a ruptura evoluiu de forma mais expressiva: as distâncias 

de retrogressão e corrida já são maiores do que seriam se não houvesse fundação — apenas uma 

condição de contorno. Mesmo assim, ainda é possível observar uma interface definida pela 

diferença de resistência entre os materiais. Por fim, na Figura 4.55 (Material E), ambas as 

camadas se deslocaram em conjunto, configurando um colapso integrado, sem distinção clara 

entre talude e fundação. 

 

Esses resultados confirmam que a diminuição relativa da resistência da fundação induz uma 

mudança no comportamento do sistema, passando de uma falha localizada e superficial para um 

mecanismo generalizado, que envolve toda a massa estratificada. Esse padrão é coerente com 

os estudos de Urmi et al. (2023) e Wang et al. (2021), que destacam o papel crítico da relação 

de resistência entre camadas na dinâmica de falhas progressivas. 

 

Adicionalmente, conforme apontado por Wang et al. (2021), a presença de efeitos como strain 

softening, combinada a ações sísmicas, pode favorecer a ativação de múltiplas superfícies de 

cisalhamento e a ocorrência de falhas compostas, o que reforça a importância da análise de 

interações entre camadas em taludes naturais ou escavados. Cada simulação desta seção foi 

executada em aproximadamente 1 hora e 7 minutos, em média. 
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4.1.6      FALHAS PROGRESSIVAS EM DECLIVE E FALHAS RETROGRESSIVAS 

EM ASCENÇÃO “SPREAD” 

 

Esta seção trata da modelagem de falhas progressivas em declive, com base na geometria 

apresentada por Wang e Hawlader (2017). A configuração geométrica utilizada está ilustrada na 

Figura 4.56, com dimensões e inclinação semelhantes às do estudo original. 

 

Em cenários onshore carregamentos por aterros são comuns. Por outro lado, em ambientes 

submarinos as falhas progressivas em declive costumam ser desencadeadas principalmente por 

eventos sísmicos, ressaltando a importância de compreender diferentes mecanismos em 

contextos variados. Esses eventos geram rápida mobilização de esforços, induzindo falhas 

mesmo em taludes com baixa inclinação. Nesses casos, o uso de sobrecargas localizadas pode 

representar de forma simplificada o efeito inicial do carregamento. Outra abordagem 

complementar seria a aplicação do método Shear Strength Reduction (SSR), amplamente 

utilizado na avaliação da estabilidade de taludes. 

 

As falhas progressivas em declive são especialmente relevantes em taludes submarinos, onde, 

ao contrário das escarpas e margens fluviais (onde predominam falhas retrogressivas e spreads), 

observa-se uma maior propensão à ruptura descendente contínua. Esse tipo de instabilidade é 

documentado em diversos eventos reais, como os deslizamentos ocorridos na Escandinávia e no 

Canadá (Bernander et al., 2016; Locat et al., 2011; Wang e Hawlader, 2017). 

 

No presente trabalho, o modelo foi implementado nas formulações MPM nesta seção e CEL (na 

Seção 4.2.6). Na seção do CEL utilizou o modelo Drucker-Prager com amolecimento, isso difere 

da abordagem de Wang e Hawlader (2017), que implementaram uma sub-rotina no Abaqus onde 

o amolecimento ocorre em função do deslocamento relativo entre bandas de cisalhamento no 

modelo Mohr-Couloumb. 

 

Duas configurações de malha foram utilizadas para avaliar a influência do refinamento espacial 

nos resultados. A primeira, com elementos de 2 metros de lado, totalizou 4.499 elementos, 2.387 

nós e 8.001 pontos materiais (3 por elemento). A segunda malha, mais refinada, utilizou 

elementos de 1 metro, totalizando 18.434 elementos, 9.491 nós e 65.832 pontos materiais (6 por 

elemento). A Figura 4.56 mostra a geometria do modelo e a Tabela 4.12 apresenta as 

propriedades dos materiais adotados para o solo e o aterro. 
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Figura 4.56. Geometria do modelo para análise de falhas progressivas em declive. 

Tabela 4.12. Propriedades do material falha progressiva em declive 

Propriedade Solo Aterro 

Permeabilidade k (m/s) 5e-10 - 

Densidade do sólido kg/m³ 2000 2100 

Porosidade kPa 0.55 - 

Modulo de Bulk do kPa fluído 35000 - 

Viscosidade dinâmica do líquido (Pa·s) 1.002e-6 - 

Coeficiente de Poisson 0.35 0.35 

Modulo de Young - 10000 

Módulo de Cisalhamento G kPa 3500 - 

Coesão de Pico cp kPa 35 - 

Coesão Residual cr kPa 7,5 - 

Ângulo de Atrito de Pico φp (°) 0 0 

Ângulo de Atrito Residual φr (°) 0 0 

Fator de amolecimento “Shape Factor” η 120 - 

 

O objetivo da utilização de diferentes malhas foi verificar a sensibilidade dos resultados ao 

refinamento espacial e avaliar a geometria das falhas. As Figuras 4.57 e 4.58 apresentam os 

resultados com a primeira a segunda malha descrita. 

 

 

 

Figura 4.57. Evolução da falha progressiva em declive, primeira malha. 
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Figura 4.58. Evolução da falha progressiva em declive, segunda malha. 

As falhas retrogressivas ascendentes, são caracterizadas pela formação de uma superfície de 

cisalhamento predominantemente horizontal, normalmente situada em uma camada basal frágil 

ou sensível. A partir dessa superfície, a ruptura se propaga para cima de forma progressiva, 

fragmentando a massa superior em blocos relativamente intactos, conhecidos como Horsts e 

Grabens. Esse tipo de comportamento foi documentado por diversos autores (Dey et al., 2015; 

Wang et al., 2017) e observado em casos reais como Daniel’s Harbour, no Canadá (Karmaker et 

al., 2021; Locat et al., 2011). 

 

A ocorrência dessas falhas está geralmente associada a solos argilosos sensíveis, especialmente 

em ambientes marinhos e lacustres, onde a camada inferior apresenta alto grau de “strain-

softening” e a sobrejacente possui rigidez suficiente para se fragmentar em blocos coesos. A 

estabilidade e preservação dessas estruturas depende de diversos fatores, como a taxa de 

degradação da resistência, o comprimento do talude, a presença de crostas superficiais 

endurecidas e a resistência residual da fundação. Em especial, fundações altamente deformáveis 

ou liquefeitas favorecem grandes deslocamentos retrogressivos, mesmo com distâncias de 

corrida (run-out) reduzidas — como também observado por Wang et al. (2017). 

 

Neste trabalho, foi simulado um caso representativo de “spread”, com uma geometria composta 

por três camadas: solo superficial, camada frágil intermediária e fundação rígida. A Figura 4.59 

ilustra o domínio geométrico adotado, enquanto a Tabela 4.13 apresenta as propriedades de cada 
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camada. Foram utilizadas duas malhas com diferentes resoluções: uma com elementos de 1,5 

metros e outra mais refinada, com elementos de 0,75 metros. A Figura 4.61 mostra o resultado 

obtido com a malha mais grosseira, onde já é possível identificar a formação de superfícies 

horizontais e deslocamentos ascendentes. A Figura 4.62, correspondente à malha refinada, 

evidencia com maior clareza os blocos típicos de “Horsts & Grabens”, com zonas de 

cisalhamento bem definidas. 

 

 

Figura 4.59. Geometria do modelo utilizado na simulação de falha tipo spread. 

Tabela 4.13. Propriedades do material, falha retrogressiva ascendente 

Propriedade Solo Camada fragil Fundação 

Permeabilidade k (m/s) 5e-10 5e-10 5e-10 

Densidade do sólido kg/m³ 2050 

 

1900 

  

 

2250 

Porosidade kPa 0.55 0,55 0,4 

Modulo de Bulk do kPa fluído 35000 35000 35000 

Viscosidade dinâmica do líquido 

(Pa·s) 
1.002e-6 

1.002e-6 1.002e-6 

Coeficiente de Poisson 0.3 0.3 0.3 

Modulo de Young - - 10000 

Módulo de Cisalhamento G kPa 3500 3500 - 

Coesão de Pico cp kPa 40,5 25 70 

Coesão Residual cr kPa 30 7,5 - 

Ângulo de Atrito de Pico φp (°) 0 0 0 

Ângulo de Atrito Residual φr (°) 0 0 - 

Fator de amolecimento “Shape Factor” 

η 
100 100 

- 
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Figura 4.60. Resultado com a malha com elementos de 1,5 m. 

 

 

 

 

Figura 4.61. Resultado com a malha com elementos de 0,75 m. 

As análises realizadas para os dois tipos de falha, progressiva em declive e retrogressiva em 

ascensão (spread), demonstram que os mecanismos de instabilidade dependem fortemente da 

geometria do talude e das propriedades geotécnicas das camadas envolvidas. 

 

Nas Figuras 4.57 e 4.58, observa-se que, nas falhas progressivas em declive, a ruptura ocorre de 

forma gradual, seguindo a inclinação do terreno. Esse comportamento é impulsionado pela 

degradação da resistência devido ao strain-softening. A segunda malha, mais refinada (Figura 

4.59), possibilitou uma melhor definição das superfícies triangulares de cisalhamento, ainda que 

padrão geral da ruptura já fosse perceptível na primeira simulação. 
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Nas Figuras 4.60 e 4.61, os resultados das falhas retrogressivas em ascensão evidenciam a 

formação de blocos estruturais do tipo Horsts e Grabens e novamente a malha mais refinada 

demonstra melhor clareza na visualização (Figura 4.61). O contraste de resistência entre as 

camadas foi essencial para que a ruptura se propagasse no sentido oposto à inclinação, formando 

múltiplas fraturas ascendentes e mantendo a coesão entre os blocos superiores. 

 

No caso da falha progressiva em declive, a primeira malha foi simulada em aproximadamente 

39 minutos, enquanto a malha refinada exigiu cerca de 4 horas e 27 minutos para 25 segundos 

de tempo físico. Na falha retrogressiva em ascensão, o tempo de simulação foi de 

aproximadamente 13 minutos na malha mais grosseira e 2 horas e 52 minutos na malha refinada, 

considerando 20 segundos simulados. 

 

O refinamento da malha não alterou significativamente as distâncias de deslocamento, mas foi 

essencial para definir com maior precisão as superfícies de ruptura e as estruturas internas da 

falha. Para análises focadas em mecanismos detalhados de cisalhamento, malhas refinadas são 

recomendáveis, enquanto malhas mais simples são suficientes para estimativas globais de 

deslocamento. 

 

4.1.7      ANÁLISE DE IMPACTO E INTERAÇÃO COM ESTRUTURAS 

 

Para analisar os efeitos de falhas sobre estruturas situadas no topo ou à jusante do talude, foram 

realizadas simulações simplificadas no ANURA3D. O objetivo foi compreender, a interação 

entre a massa de solo em movimento e obstáculos rígidos. A geometria do modelo é apresentada 

na Figura 4.62. Dois blocos rígidos (3 m × 3 m) foram inseridos: um sobre o talude, com 

densidade de 500 kg/m³, e outro a jusante, com densidade de 2000 kg/m³. Ambos foram 

modelados com comportamento linear elástico (E = 20.000 kPa, ν = 0,33). Os parâmetros do 

solo seguem os utilizados na Seção 4.1.1, com cp = 30 kPa, cr = 8 kPa e η = 50, a escala de 

velocidades usada nas simulações é apresentada na Figura 4.64.  

 

Figura 4.62. Geometria do modelo 



 

111 
 

 

Figura 4.63. Escala de velocidade utilizada 

A Figura 4.64 mostra a distribuição de velocidades para o caso com o bloco a jusante, e a Figura 

4.64 sem o bloco. 

 

 

 

 

 

 

 

Figura 4.64. Distribuição de velocidades com a presença do bloco 

Velocidade do sólido (Magnitude) 
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Figura 4.65. Distribuição de velocidades sem o bloco a jusante 

A partir dos resultados apresentados nas Figura 4.64, e 4.65, forma analisados os resultados, 

primeiramente foi plotada a energia cinética total do sistema nas duas configurações. Os 

resultados demonstraram que a presença do bloco a jusante atuou como uma barreira, reduzindo 

a mobilidade geral da massa e dissipando parte da energia do sistema, como apresentado nas 

Figuras 4.66 e 4.67 e a diferença entre os resultados é apresentada na Figura 4.68. 
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Figura 4.67. Energia Cinética do sistema, simulação sem o bloco 

 

Figura 4.68. Energia Cinética do sistema, simulação com o bloco 

 

Figura 4.69. Diferença entre os gráficos anteriores 
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A energia cinética total revela uma dissipação quando o bloco está presente demonstrando uma 

diferença no pico justamente no momento de colisão com o bloco a jusante. no entanto, essa 

análise global não permite concluir se essa diferença foi mobilizada na estrutura, a redução do 

deslocamento do solo não implica, necessariamente, absorver toda a energia. Uma estrutura 

posicionada distante da zona de ruptura inicial pode atuar como barreira de contenção e parte 

da energia pode ter sido dissipada no própria interação solo-solo. 

 

Outra possibilidade é a extração de dados de pontos materiais específicos que permite extrair as 

velocidades e energias cinéticas individualmente, além disso é possível observar o 

comportamento do ponto material selecionado. Nas figuras 4.70 e 4.71 observa-se que alguns 

pontos cessaram o movimento ao colidir, enquanto outros ultrapassaram o bloco. 

 

 

 

 

 

 

 

 

 

 

Figura 4.70. Energia e velocidade de pontos materiais que não ultrapassam o bloco 

  

 

 

 

 

 

 

 

 

Figura 4.71. Energia e velocidade de pontos materiais que  ultrapassam o bloco 
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Para avaliar o somatório de uma quantidade representativa 13 pontos materiais próximos ao 

bloco no momento inicial de contato foram selecionados, a Figura 4.72 abaixo representa o 

somatório da energia cinética dos pontos materiais selecionados 

 

Figura 4.72. Energia cinética somada de 13 pontos materiais 

Apesar de fornecer uma boa resolução local, essa abordagem é limitada pela representatividade, 

visto que o modelo contém mais de 70 mil pontos, torna-se inviável identificar com precisão 

todos os que efetivamente transferiram energia à estrutura. 

 

Como alternativa, foi explorado o recurso de definição de uma "reaction surface" (ou linha de 

reação, no caso 2D) no ANURA3D, a linha selecionada é a linha vertical a esquerda do bloco a 

jusante do talude. Esse procedimento permitiu registrar as forças de contato nessa linha, com 

saída de dados ao longo do tempo. Os valores de força horizontal (Fx) e vertical (Fy) para cada 

material envolvido no contato com a linha de reação são escritos em um arquivo de texto, que 

foi utilizado para gerar os gráficos de reação, plotados na Figura 4.73 e Figura 4.74 que 

apresentam as forças de reação horizontal e vertical respectivamente. A linha de reação está fixa 

no espaço de Euler, vinculada aos elementos ou nós da malha, então seus valores não se 

atualizariam a superfície do bloco caso ele se movimentassse. 
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Figura 4.73. Força horizontal (Fx) na linha de reação, Bloco 2. 

 

Figura 4.74. Força vertical (Fy) na linha de reação, Bloco 2 

Cada abordagem (energia global, pontos materiais e linha de reação) fornece uma perspectiva 

distinta e complementar. Enquanto a análise global evidencia o impacto sistêmico, a individual 

permite rastrear colisões específicas e a linha de reação quantifica a transferência de força. A 

combinação desses métodos traz um entendimento mais claro do fenômeno, ainda que não se 

consiga mensurar completamente a energia absorvida. Contudo, há limitações: a energia global 

não distingue contato direto, a análise de pontos é amostral e a reação é retirada em linhas 

vinculadas a malha portanto não acompanha o corpo, portanto para definir trabalho realizado o 

deslocamento deveria ser medido. Ainda assim são recursos uteis disponíveis no Software e 

conjuntamente podem trazer uma estimativa da consequência da ruptura. 
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4.2         DESCRIÇÃO DAS SIMULAÇÕES NO ABAQUS (CEL)  

 

Esta seção apresenta os resultados obtidos por meio da técnica Coupled Eulerian–Lagrangian 

(CEL), implementada no software ABAQUS/CAE. Embora essa abordagem não permita 

acoplamento hidromecânico direto, sua formulação com malha fixa é especialmente adequada 

para representar a cinemática do escoamento, deslocamentos pós-falha e propagação da ruptura, 

evitando os problemas de distorção de malha que limitam outros métodos. A geometria e as 

condições de contorno adotadas nas simulações com CEL seguem a mesma lógica empregada 

nas análises com o MPM (Seção 4.1). O domínio e o material foram definidos com as mesmas 

dimensões e coordenadas usadas no MPM. As velocidades foram restringidas nos limites do 

domínio na direção normal às faces e em todos os sentidos na base. Para discretização, foram 

utilizados elementos hexaédricos do tipo EC3D8R, próprios da malha euleriana do ABAQUS. 

 

Dois métodos distintos de preenchimento do domínio com material foram empregados: 

• Partição geométrica: malha moldada diretamente à geometria; 

• Frações volumétricas: mantém a regularidade da malha, permitindo elementos 

parcialmente preenchidos. 

As leis constitutivas aplicadas foram: 

• Mohr-Coulomb com strain-softening, nas análises bidimensionais e de sensibilidade 

paramétrica; 

• Drucker-Prager com strain-softening, para casos tridimensionais e malhas refinadas, 

devido à maior robustez numérica. 

Essa escolha visou avaliar a estabilidade e os limites do CEL sob diferentes modelos 

constitutivos. O modelo Drucker-Prager demonstrou desempenho superior, especialmente em 

malhas refinadas, enquanto o Mohr-Coulomb apresentou instabilidades quando utilizados 

múltiplos elementos na profundidade. As subseções seguintes são estruturadas de forma 

semelhante aos blocos da seção 4.1, permitindo comparações diretas entre os métodos: 

• 4.2.1: Influência da coesão residual; 

• 4.2.2: Representação do parâmetro shape factor; 

• 4.2.3: Combinações entre cp, cr e η; 

• 4.2.4: Viabilidade computacional em malhas e análises 3D; 

• 4.2.5: Transição do mecanismo de ruptura para a fundação; 

• 4.2.6: Simulação de falhas progressivas em declive e spreads; 

• 4.2.7: Análise de impacto. 
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4.2.1      INFLUÊNCIA DA COESÃO RESIDUAL 

 

A modelagem com CEL foi realizada por meio do solver “Dynamic Explicit”, o que impede a 

definição direta do estado inicial de tensões. Para contornar essa limitação, aplicou-se a 

gravidade em uma etapa inicial com resistência artificialmente elevada, impedindo a 

plastificação. Na etapa seguinte, os parâmetros reais foram ativados para permitir o 

desenvolvimento da ruptura. 

 

Os materiais foram modelados com módulo de Young de 7500 kPa e coeficiente de Poisson de 

0,30. O ângulo de atrito foi mantido igual a zero, reproduzindo as condições da maioria dos 

testes com MPM, e o valor do ângulo de dilatância 𝜓 = 0,1 , valor mínimo reconhecido 

automaticamente pelo software para o modelo Mohr-Couloumb e 0 para o modelo Drucker-

Prager. A densidade adotada foi determinada a partir da fórmula de massa no MPM equação 3.6: 

𝑚 = 𝑉[(1 − 𝑛)𝜌𝑠 + 𝑛𝜌𝑙] onde: 

• 𝜌𝑠 = 2000 kg/m3 (sólido), 

• 𝜌𝑙 = 981 kg/m3 (líquido), 

• 𝑛 = 0,55 (porosidade). 

 

Com isso, a densidade média utilizada nas simulações com CEL foi 𝜌 = 2000 × 0,45 +

981 × 0,55 ≈ 1440 kg/m3. Essa aproximação teve como objetivo aproximar os resultados, em 

seções posteriores, será demonstrado como pequenas variações na densidade afetam 

significativamente a extensão da ruptura, reforçando a importância desse parâmetro, que é mais 

impactante nesse caso em que não há porosidade. 

 

As duas estratégias foram utilizadas para preenchimento do domínio Euleriano. No modelo 

Mohr- Coulomb, aplicou-se a partição geométrica, enquanto no Drucker-Prager, empregou-se o 

preenchimento por fração volumétrica. Essa escolha baseou-se em testes de malha com 

diferentes resoluções ( 1,00 m, 0,75 m, 0,50 m e 0,25 m ), descritos na Seção 4.2.4. O modelo 

Mohr-Coulomb apresentou instabilidades em malhas refinadas ou com múltiplas camadas, e só 

convergiu com elementos de 1,00 m ou maiores, nas duas abordagens de preenchimento. Já o 

Drucker-Prager demonstrou estabilidade mesmo com discretizações mais densas. Foi verificado 

que a partição geométrica produz menor difusão de plastificação em malhas grosseiras, ao evitar 

elementos parcialmente preenchidos. Em malhas refinadas, a diferença entre os métodos se 
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tornou irrelevante. Portanto a abordagem de partição foi utilizada com os testes Mohr-Coulomb 

e a abordagem de fração volumétrica utilizada com o Drucker-Prager. A Figura 4.74 apresenta a 

malha de 1 m utilizando partição geométrica, enquanto a Figura 4.75 mostra o modelo com 

material preenchido por frações volumétricas.  

 

Figura 4.75. Malha com elementos de 1m utilizando partição 

 

Figura 4.76. Malha com elementos de 1m utilizando fração volumétrica 

Antes da aplicação do modelo com strain-softening, foi realizado um teste com Shear Strength 

Reduction (SSR) para estimar o limite crítico de resistência para ruptura entre os modelos. A 

Figura 4.77 o SSR ao longo do tempo aplicado com o modelo Mohr-Coulomb, enquanto a Figura 

4.78 mostra o mesmo processo utilizando o modelo Drucker-Prager. A evolução da plastificação 

ao longo do tempo está ilustrada nas Figuras 4.79 e 4.80, respectivamente. 

 

 

Figura 4.77. Evolução temporal da Coesão do material ao longo do Tempo  
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Figura 4.78. Evolução temporal “Yield Stress” do material ao longo do Tempo 

 

 

Figura 4.79. Início da simulação, início da plastificação e estado final Mohr Couloumb 

 

 

 

Figura 4.80. Início da simulação, início da plastificação e estado final Drucker-Prager. 

Para análise quantitativa, foi monitorado o campo de deformação plástica equivalente (PEEQ) 

em um nó da base do talude. A evolução temporal da PEEQ é apresentada na Figura 4.81 para 

o modelo Mohr-Coulomb e na Figura 4.82 para o Drucker-Prager. 
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Figura 4.81. Deformação plástica x Tempo (Mohr-Couloumb) 

 

Figura 4.82. Deformação plastica x Tempo (Drucke Prager) 

A plastificação se iniciou mais rapidamente no modelo Drucker-Prager, mesmo com valores de 

resistência mais elevados. Como pode ser observado nas Figuras 4.81 e 4.82, a mobilização da 

massa foi mais intensa nesse modelo, esse comportamento justifica a adoção de diferentes 

valores nos testes subsequentes com “strain-softening”, essa tendência observada no SSR foi 

confirmada nos testes dinâmicos posteriores. Os valores de resistência utilizados no modelo 

Drucker-Prager têm o objetivo de explorar desde a ausência de retrogressão até o 

desenvolvimento de falhas globais. Para o modelo Mohr-Coulomb, procurou-se manter curvas 

de resistência equivalentes às utilizadas com MPM (Seção 4.1.1).  
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Como o ABAQUS não permite a inserção direta de curvas exponenciais para degradação de 

resistência, os valores foram tabulados ponto a ponto e interpolados linearmente. A Figura 4.83 

o amolecimento utilizado no modelo Mohr-Coulomb para representar a curva de degradação.  

.  

Figura 4.83. Amolecimento utilizado no modelo Mohr-Coulomb ABAQUS 

A escala adotada foi mantida a mesma para todos os resultados, conforme ilustrado na Figura 

4.84, mantendo os limites da escala de deformação plástica acumulada utilizadas no MPM. 

 

Figura 4.84. Escala utilizada para deformação plástica. 

As Figuras 4.85 a 4.90 apresentam os campos finais de deformação plástica (PEEQ) obtidos 

para os materiais A a F, respectivamente, utilizando o modelo Mohr-Coulomb com 

amolecimento implementado conforme Figura 4.83.  
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Figura 4.85. Deformação plástica (PEEQ). Material A. 

 

 

 

Figura 4.86. Deformação plástica (PEEQ) Material B. 

 

 

 

 

Figura 4.87. Deformação plástica (PEEQ). Material C. 
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Figura 4.88. Deformação plástica (PEEQ). Material D. 

 

 

Figura 4.89. Deformação plástica (PEEQ). Material E. 

 

 

 

 

Figura 4.90. Deformação plástica (PEEQ). Material F. 
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Os resultados obtidos com a formulação CEL reforçam a tendência já identificada com o método 

MPM: a coesão residual exerce controle direto sobre o padrão de ruptura e os deslocamentos 

pós-falha. No entanto, observou-se que, no modelo Mohr-Coulomb com CEL, valores muito 

baixos de resistência residual resultaram em deslocamentos ligeiramente inferiores aos obtidos 

com o MPM, o que pode ser atribuído à discretização espacial mais grosseira e às limitações do 

modelo constitutivo utilizado. 

 

Conforme identificado nos testes com o método SSR (Figuras 4.79 a 4.82), uma coesão de pico 

de 60 kPa não foi suficiente para mobilizar a ruptura com o modelo Mohr-Coulomb. Entretanto, 

nas simulações com curvas de amolecimento abrupto (alta η), o rápido alcance da resistência 

residual permitiu a progressão da falha mesmo com altos valores de coesão inicial, 

comportamento coerente com o observado no MPM. 

 

Além disso, constatou-se que o modelo Mohr-Coulomb apresentou zonas com grande 

plastificação acumulada (PEEQ) sem, necessariamente, mobilizar grandes deslocamentos, o que 

motivou a adoção da variável PE (Plastic Strain Average) como forma alternativa de avaliar a 

extensão da falha (Figura 4.91). Isso possibilitou representar melhor as superfícies de ruptura 

nos seis materiais simulados (A a F), cada um com um valor distinto de coesão residual. 

 

 

 

 

 

 

Figura 4.91. Deformação (PE) dos materiais A até F respectivamente. 
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Para os testes com o modelo Drucker-Prager, o amolecimento foi definido conforme Figura 4.92. 

As simulações com os materiais A a E, utilizando esse modelo, estão apresentadas nas Figuras 

4.93 a 4.97, respectivamente, evidenciando a influência da coesão residual sobre a extensão da 

falha e o padrão de deformação plástica no método CEL. 

 

Figura 4.92. Pontos planilhados utilizados para o modelo Drucker-Prager no ABAQUS. 

 

 

 

 

Figura 4.93. Deformação plástica (PEEQ) Material A. 
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Figura 4.94. Deformação plástica (PEEQ) Material B. 

 

 

 

Figura 4.95. Deformação plástica (PEEQ) Material C. 

 

 

 

Figura 4.96. Deformação plástica (PEEQ) Material D. 
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Figura 4.97. Deformação plástica (PEEQ) Material E. 

Nos cinco materiais simulados com o modelo Drucker-Prager e malha refinada (0,25 m), 

confirmou-se a tendência observada nas demais abordagens: a redução da coesão residual 

aumenta as distâncias de retrogressão e de corrida. A consistência entre os métodos (MPM e 

CEL) e os modelos constitutivos (Mohr-Coulomb e Drucker-Prager) reforça a robustez do efeito 

desse parâmetro sobre o comportamento pós-ruptura. A malha refinada permitiu observar com 

clareza as superfícies de cisalhamento e a formação de estruturas do tipo “Horsts and Grabens”. 

Diferentemente dos casos com malhas mais grosseiras ou com o modelo Mohr-Coulomb, não 

foram identificadas zonas de plastificação sem deslocamento, indicando maior coerência física 

com o modelo Drucker-Prager. Para o material D, foram plotados os campos de tensão vertical 

(YY) e tensão de von Mises. As escalas utilizadas são apresentadas na Figura 4.98; a Figura 4.99 

mostra a distribuição da tensão vertical e a Figura 4.100, o campo de von Mises, que evidência 

com maior nitidez as zonas cisalhadas e o desconfinamento nas superfícies de ruptura. 

 

 

 

 

 

 

 

 

Figura 4.98. Escalas utilizadas para tensão vertical e Mises em Pascal. 
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Figura 4.99. Tensão vertical (YY). Curva D. 

 

 

 

Figura 4.100. Tensão Mises. Curva D. 

Enquanto a variável "Stress Magnitude" utilizada no MPM corresponde à norma do tensor de 

tensões ‖𝜎‖ = √𝜎𝑥𝑥
2 + 𝜎𝑦𝑦

2 + 𝜎𝑧𝑧
2 + 2(𝜏𝑥𝑦

2 + 𝜏𝑦𝑧
2 + 𝜏𝑧𝑥

2 ) , agregando todas as componentes 



 

130 
 

normais e cisalhantes, e portanto se comportando de maneira semelhante à tensão vertical, a 

tensão de von Mises é uma medida que reflete a intensidade do cisalhamento atuante no material, 

expressa por 𝜎vM =  √
1

2
[(𝜎𝑥𝑥 − 𝜎𝑦𝑦)

2
+ (𝜎𝑦𝑦 − 𝜎𝑧𝑧)

2
+ (𝜎𝑧𝑧 − 𝜎𝑥𝑥)2 + 6(𝜏𝑥𝑦

2 + 𝜏𝑦𝑧
2 + 𝜏𝑧𝑥

2 )] . 

Essa última métrica é mais eficaz para identificar zonas de plastificação ativa, por capturar 

diretamente a intensidade do cisalhamento. Esse contraste será ainda mais evidente nas seções 

seguintes, que exploram materiais com menor resistência residual e taxas de degradação mais 

suaves. 

 

4.2.2      INFLUÊNCIA DO “SHAPE FACTOR” 

 

Nesta etapa, buscou-se avaliar o impacto da taxa de degradação da resistência ao cisalhamento 

no modelo Mohr-Coulomb, utilizando a planilha de pontos baseada na mesma equação 

empregada no ANURA3D. Os valores simulados estão apresentados na Figura 4.101. 

 

 

Figura 4.101. Amolecimento utilizado no ABAQUS para o Modelo Mohr-Couloumb. 

A Figura 4.102 mostra o resultado do Material A (η = 20), no qual se observa a formação de uma 

única superfície retrogressiva. Já os Materiais B e C, representados nas Figuras 4.103 e 4.104, 

com η = 250 e η = 500 respectivamente, demonstram um comportamento com amplas regiões 

de plastificação, mesmo em regiões sem deslocamento da massa. Esse efeito decorre da 

degradação extremamente rápida da resistência, que leva o material a atingir valores próximos 

da coesão residual com pequenas deformações, agravado pela malha com elementos grandes 

(1 m) e pela sensibilidade da sub-rotina Mohr-Coulomb no ABAQUS a essas condições.  
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Figura 4.102. Deformação plástica (PEEQ.) Material A 

 

 

 

Figura 4.103. Deformação plástica (PEEQ.) Material B 

 

Figura 4.104. Deformação plástica (PEEQ.) Material C 
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Esses resultados indicam que valores de η acima de 80 produzem degradação muito rápida da 

resistência, gerando regiões extensas de plastificação mesmo em áreas sem deslocamento 

significativo. Isso reduz a sensibilidade do modelo ao shape factor, diferentemente do que foi 

observado no MPM, onde a transição entre mecanismos ocorreu de forma mais progressiva. 

Ainda assim, conclui-se que o shape factor influência mais diretamente a distância de 

retrogressão do que a de corrida, com impacto limitado sobre o ângulo final do talude. A Figura 

4.105 apresenta o amolecimento do material definido no modelo Drucker-Prager. As Figuras 

4.106 a 4.109 mostram os campos de deformação plástica acumulada (PEEQ) para os Materiais 

A, B, C e D, respectivamente. Os testes com esse critério e com malha mais refinada 

apresentaram resposta física mais coerente, sem regiões de plastificação incompatíveis com os 

deslocamentos observados.  

 

Figura 4.105. Amolecimento utilizado para o modelo Drucker-Prager nesta seção. 

 

 

 

Figura 4.106. Deformação plástica (PEEQ). Material A. 
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Figura 4.107. Deformação plástica (PEEQ). Material B. 

 

Figura 4.108. Deformação plástica (PEEQ). Material C. 

 

 

 

Figura 4.109. Deformação plástica (PEEQ). Material D. 
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4.2.3      ANÁLISE COMBINADA 

 

Nesta subseção, foi realizada uma análise combinada variando os parâmetros de coesão de pico 

(cp), coesão residual (cr) e shape factor (η), conforme testes anteriores com o MPM. No entanto, 

no método CEL, observou-se maior sensibilidade à coesão de pico, especialmente com o modelo 

Mohr-Coulomb. 

 

A Figura 4.110 apresenta o campo de deformação plástica (PEEQ) para os três valores de coesão 

de pico testados (60, 40 e 20 kPa). Verifica-se uma diferença significativa entre os valores de 60 

e 40 kPa, e menor variação entre 40 e 20 kPa, nesse casoo valor de pico apresentou maior 

sensibilidade no CEL. E para verificar a sensibilidade do modelo no critério Mohr-Coulomb os 

mesmos parâmetros testados no MPM são reproduzir aqui, conforme demonstrado na Figura 

4.111. 

 

 

Figura 4.110. Deformação plástica (PEEQ). 

 

Figura 4.111. Amolecimento aplicado no Mohr-Coulumb 
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As Figuras 4.112 a 4.117 mostram os resultados de deformação plástica para os Materiais A a F. 

 

 

Figura 4.112. Deformação plástica (PEEQ) Material A. 

 

 

 

 

Figura 4.113. Deformação plástica (PEEQ) Material B. 
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Figura 4.114. Deformação plástica (PEEQ) Material C. 

 

 

 

 

 

 

Figura 4.115. Deformação plástica (PEEQ). Material D. 
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Figura 4.116. Deformação plástica (PEEQ). Material E. 

 

 

 

 

 

 

Figura 4.117. Deformação plástica (PEEQ). Material F. 
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A Figura 4.118 o amolecimento utilizado no modelo Drucker-Prager, Os resultados de 

deformação plástica para os Materiais A a E com Drucker-Prager são apresentados nas Figuras 

4.119 a 4.123. 

 

Figura 4.118. Amolecimento utilizado para o modelo Drucker-Prager no nesta seção. 

 

 

 

 

 

 

Figura 4.119. Deformação plástica (PEEQ). Material A. 
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Figura 4.120. Deformação plástica (PEEQ). Material B. 

 

 

 

 

 

 

 

Figura 4.121. Deformação plástica (PEEQ). Material C. 
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Figura 4.122. Deformação plástica (PEEQ). Material D. 

 

 

 

 

 

Figura 4.123. Deformação plástica (PEEQ). Material E. 
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Para complementar a análise, foram plotados os campos de tensão de von Mises para os 

Materiais D e E (Drucker-Prager), utilizando a escala apresentada na Figura 4.124. As 

distribuições de tensão são mostradas nas Figuras 4.125 e 4.126. 

 

Figura 4.124. Escala de von Mises utilizada. 

 

 

 

 

 

Figura 4.125. von Mises. Material D. 
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Figura 4.126. von Mises. Material E. 

Os resultados desta seção confirmam a tendência observada anteriormente com o MPM (Seção 

4.1.3), evidenciando que a combinação entre coesão de pico, coesão residual e taxa de 

degradação é determinante para o desenvolvimento das rupturas. No entanto, no contexto do 

CEL, especialmente com o modelo Mohr-Coulomb, a coesão de pico exerceu influência mais 

pronunciada sobre a propagação das falhas e os padrões de plastificação. 

 

A análise dos campos de tensão de von Mises (Figuras 4.125 e 4.126) para esta seção, demonstra 

o desconfinamento das regiões cisalhadas evidenciando o desconfinamento localizado e a 

extensão das zonas plastificadas em função da degradação progressiva da resistência de forma 

mais clara que no caso em que a degradação é mais rápida (Figura 4.100) 

 

Por fim, enquanto os resultados anteriores (Seção 4.2.1) com Mohr-Coulomb apresentavam 

comportamento mais rígido, comparável à formulação acoplada do MPM, os casos analisados 

nesta seção demonstraram maior deformabilidade, mais próximos da resposta observada na 

formulação não drenada, em contrapartida degradações mais suaves de resistência não 

apresentaram regiões de plastificação intensa incoerentes fisicamente como na seção 4.2.1. 
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4.2.4      INFLUÊNCIA DA DENSIDADE, MALHA E CUSTO COMPUTACIONAL 

 

A densidade é um dos parâmetros que mais influenciam o comportamento dinâmico das 

simulações no método CEL, especialmente por não haver representação explícita de porosidade 

ou fluido. Diferentemente do MPM, onde a densidade do sólido impacta apenas parcialmente a 

massa total (considerando a presença de poropressão), no CEL a densidade define diretamente 

a massa do material, afetando deslocamentos, energia cinética e a progressão da ruptura. 

 

Como citado anteriormente foi adotada uma densidade a partir da média ponderada, conforme 

a expressão apresentada na seção 3.2, dada por: 𝑚 = 𝑉[(1 − 𝑛)𝜌𝑆 + 𝑛𝜌𝐿]. A densidade efetiva 

utilizada nos modelos principais foi de 1440 kg/m³, correspondendo a uma porosidade de 0,55, 

com valores típicos de 2000 kg/m³ para o sólido e 981 kg/m³ para o fluido. Ainda assim, foram 

testados valores de 1000, 1200, 1700 e 2000 kg/m³ para avaliar a sensibilidade do modelo a esse 

parâmetro. A literatura corrobora a escolha desses intervalos. Por exemplo, no estudo de Qiu et 

al. (2011), foi utilizado um peso específico de 24,6 kN/m³ (aproximadamente 2500 kg/m³) para 

um material granular do tipo cascalho-areia, mas a simulação não precisava considerar poro 

pressões e esses materiais normalmente têm maior densidade. Em modelos submarinos com 

argilas sensíveis, como os utilizados por Dutta et al. (2015), a unidade de peso submerso adotada 

foi de 6,5 kN/m³ (cerca de 660 kg/m³), refletindo condições saturadas e menor densidade. Já no 

estudo de Kim et al. (2022), foi utilizado um peso específico total de até 14 kN/m³ 

(aproximadamente 1400 kg/m³), considerando o efeito da pressão total em solos saturados. 

 

Esses valores evidenciam a ampla faixa de densidades efetivas plausíveis para solos submarinos 

em simulações CEL, especialmente quando se busca compensar a ausência de representação 

explícita da poropressão. Dessa forma, os valores testados nesta seção foram definidos para 

cobrir adequadamente o espectro de condições esperadas em taludes argilosos saturados, 

garantindo representatividade física e coerência com os parâmetros adotados em estudos 

similares. Os resultados obtidos nos testes a seguir ilustram a sensibilidade do modelo à 

densidade adotada, permitindo uma avaliação mais robusta dos efeitos dinâmicos associados à 

massa do sistema simulado. 

 

As simulações utilizaram o Material D da Seção 4.2.2 com o modelo Drucker-Prager, variando 

exclusivamente a densidade. As Figuras 4.127 a 4.130 mostram os resultados obtidos para 

densidades de 1000, 1200, 1700 e 2000 kg/m³, respectivamente.  
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Figura 4.127. Deformação plástica (PEEQ), densidade de 1000. 

 

 

 

 

Figura 4.128. Deformação plástica (PEEQ), densidade de 1200. 

 

 

Figura 4.129. Deformação plástica (PEEQ), densidade de 1700. 
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Figura 4.130. Deformação plástica (PEEQ), densidade de 2000. 

Nesta etapa, foi avaliada a influência da discretização da malha sobre o desempenho 

computacional e os resultados obtidos com o método CEL, utilizando o modelo Drucker-Prager 

e os parâmetros da Curva D da Seção 4.2.2. Foram testadas quatro malhas bidimensionais com 

tamanhos de elemento de 1,0 m, 0,75 m, 0,5 m e 0,25 m. Os campos de deformação plástica 

(PEEQ) dessas simulações são apresentados nas Figuras 4.131 a 4.134, respectivamente, sendo 

a Figura 4.134 uma composição comparativa das quatro malhas. 

 

 

 

 

Figura 4.131. Resultado da malha1 elementos com 1m. 
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Figura 4.132. Resultado da malha2 elementos com 0,75m. 

 

Figura 4.133. Resultado da malha3 elementos com 0,5m. 

 

 

 

 

Figura 4.134. Resultados das malhas 1 a 4 respectivamente. 
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Tabela 4.14 Malhas simuladas 

Malha 
Tamanho dos 

elementos (m) 

Número de 

elementos(domínio) 
Tempo de 

simulação (s) 

Tempo regularizado 

para 1 núcleo(s) 

1 1,0 5000 14 70 

2 0,75 8991 28 140 

3 0,5 20000 101 505 
4 0,25 80000 823 4115 

 

Os dados de tempo de simulação estão organizados na Tabela 4.14, que mostra o aumento 

exponencial do custo computacional à medida que os elementos são refinados. A malha mais 

fina (0,25 m) levou 823 s com cinco núcleos, enquanto a malha mais grosseira (1,0 m) levou 

apenas 14 s. O critério CFL (Courant–Friedrichs–Lewy) e o processo de advecção são os 

principais responsáveis por essa sensibilidade no CEL, em que o custo cresce de forma mais 

acentuada que na formulação monofásica no MPM. 

 

Outro ponto observado nos testes com o CEL, é que o tempo de processamento tende a cair ao 

longo da análise, especialmente após a estabilização do material. Quando as superfícies de 

ruptura deixam de evoluir, o número de cálculos de contato e advecção diminui 

consideravelmente, acelerando os incrementos de tempo. 

 

Para testar a paralelização nativa do Abaqus, foram utilizadas simulações com até 6 núcleos, e 

os ganhos de desempenho se mostraram praticamente proporcionais. Esse comportamento é 

coerente com benchmarks como os do “Cinebench”, que indicam ganhos lineares até cerca de 

40 núcleos, para verificar até quantos núcleos o solver do Abaqus consegue ganhar desempenho 

linearmente outros testes devem ser realizados com um processador com um número alto de 

núcleos. Nos exemplos dessa dissertação o domínio computacional foi dividido 

proporcionalmente ao número de elementos para cada núcleo, sem sobrecarga perceptível de 

comunicação entre processadores. 

 

Quanto à qualidade dos resultados, observou-se que, nas malhas mais grosseiras, embora as 

principais superfícies de ruptura pudessem ser identificadas, o espectro de cores (especialmente 

nos últimos quadros da malha 1) dificultava a interpretação de regiões mais discretas. À medida 

que a malha se tornava mais refinada, as superfícies de ruptura tornaram-se progressivamente 

mais bem definidas, e a representação de estruturas como “Horts e Grabens” foi facilitada. A 
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difusão observada anteriormente nos resultados com Mohr-Coulomb pode ter sido decorrente 

da malha empregada, e não da formulação em si. 

 

Em extensão aos testes 2D, uma simulação tridimensional foi realizada com elementos de 0,5 m 

e extrusão de 15 m, totalizando 600.000 elementos. O resultado visual é mostrado na Figura 

4.135. O tempo de simulação foi de 2494 s (cinco núcleos), comparado a 101 s para uma malha 

2D com elementos do mesmo tamanho, o aumento do número de camadas não implicou em 

crescimento linear do tempo (30×101 s = 3030 s), reforçando que o acréscimo de elementos na 

profundidade, em regiões com comportamento semelhante, impacta menos o desempenho do 

que a redução do tamanho dos elementos.  

 

Figura 4.135. Resultado do teste com seção extrudada(15m) 

O tempo de simulação registrado para essa malha tridimensional foi de 2494 s utilizando cinco 

núcleos. Comparando-se ao tempo da malha 3 com apenas uma camada (101 s), que exige passos 

de tempo menores devido ao critério de Courant-Friedrichs-Lewy (CFL). 

 

Para testar o método em geometrias reais, foi modelado um talude submarino tridimensional 

com dados georreferenciados. O domínio, com 6.500 m × 4.000 m, inclui cinco camadas, as 

cinco camadas são distribuídas conforme: duas primeiras com 25 m de espessura, uma 

intermediária com 50 m, uma de 100 m, e a última até uma base plana. Os elementos do tipo 

hexaédrico (EC3D8R) foram empregados em duas malhas: uma com 50 m (SSR) totalizando 

208.000 elementos, e outra com 25 m (strain-softening) totalizando 1.664.000 elementos. 

 

Para o teste com SSR as propriedades das camadas estão descritas na Tabela 4.15, e para o teste 

com amolecimento as curvas de amolecimento são mostradas na Figura 4.139. As Figuras 4.136 
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a 4.138 apresentam a geometria geral, a malha para SSR (208 mil elementos) e a malha com 

strain-softening (1,66 milhões de elementos) 

 

Figura 4.136. Geometria das camadas 

 

Figura 4.137. Malha do domínio para o caso com SSR. 

 

Figura 4.138. Malha do domínio com 1664000 elementos. 
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Tabela 4.15. Parâmetros definidos no material. 

Propriedade C1 C2 C3 C4 

Densidade(kg/m³) 2000 1800 1800 1800 

Modulo Young (Pa) 1e9 1e8 5e7 5e7 

Coeficiente de 
Poisson 

0.3 0.3 0.3 0.3 

Ângulo de dilatância 0 0 0  0  

“Yield Stress” Inicial 
(Pa) 

5e5 4.2e5 3.6e5 3e5 

““Yield Stress” Final 
(Pa) 

SSR não 
aplicado 

1.4e5 1.2e6 1e5 

 

 

Figura 4.139. “Strain-Softening” aplicado nas 3 priemeiras camadas 

Os campos de velocidade da simulação com SSR são apresentados nas Figuras 4.140 a 4.142, 

nos tempos de 6 s, 14 s e 20 s, respectivamente. Já para o modelo com strain-softening, os 

tempos de 6 s, 16 s e 40 s são mostrados nas Figuras 4.143 a 4.145. A simulação com SSR foi 

concluída em 303 s, enquanto a com amolecimento exigiu 8.641 s (40 s simulados). Mesmo com 

esse custo elevado, a simulação foi estável e apresentou bons resultados, mesmo com elementos 

parcialmente preenchidos e múltiplos materiais em um mesmo elemento. 
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Figura 4.140. Velocidades no tempo 6 segundos (Simulação com SSR). 

 

Figura 4.141. Velocidades no tempo 14 segundos (Simulação com SSR). 

 

Figura 4.142. Velocidades no tempo 20 segundos (Simulação com SSR). 
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Figura 4.143. Velocidades no tempo 6segundos (Simulação com amolecimento). 

 

Figura 4.144. Velocidades no tempo 16segundos (Simulação com amolecimento). 

 

Figura 4.145. Velocidades no tempo 40segundos (Simulação com amolecimento). 
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Nos 2 testes é perceptível a alteração das isocurvas e movimentação do material ao longo do 

tempo, e com a ajuda da paralelização presente no software as simulações se tornam viáveis 

mesmo em modelos com um número grande de elementos, e de um modo geral o CEL e o solver 

Dynamic Explicit do ABAQUS apresentam boa eficiência computacional, aliada à boa 

representação das superfícies de ruptura e movimentação das isocurvas, reforça o potencial do 

CEL para aplicações em larga escala. 

 

4.2.5      TRANSIÇÃO DO MECÃNISMO PARA A FUNDAÇÃO 

 

Nesta seção, avalia-se a influência da resistência da fundação sobre o comportamento do talude 

durante e após a ruptura, utilizando a formulação Coupled Eulerian–Lagrangian (CEL) com os 

modelos constitutivos de Mohr-Coulomb e Drucker-Prager. As simulações adotam a mesma 

geometria da Seção 4.1.5 (MPM), permitindo uma comparação direta entre os métodos e 

assegurando coerência na avaliação dos efeitos estratigráficos. 

 

Nos testes com o modelo Mohr-Coulomb, foi adotado como base o material D da Seção 4.2.1, 

com coesão de pico de 60 kPa, residual de 10 kPa e fator de amolecimento η = 80. Para o modelo 

Drucker-Prager, utilizou-se o material D da Seção 4.2.2, com “Yield Stress” inicial de 60 kPa, 

residual de 25 kPa e η = 20. Os demais parâmetros permanecem consistentes com a Seção 4.2.1, 

incluindo densidade de 1440 kg/m³ e coeficiente de Poisson de 0,3. As propriedades dos 

materiais simulados estão organizadas na Tabela 4.16 para o modelo Mohr-Coulomb e na Tabela 

4.17 para o modelo Drucker-Prager. As relações de resistência entre fundação e talude variam 

de 2,0 a 1,2, de modo a avaliar diferentes níveis de participação da fundação na propagação da 

ruptura. 

 

Diferentemente da abordagem adotada na Seção 4.1.5, não foram incluídos casos com fundações 

extremamente rígidas, visto que esses cenários, conforme verificado nas simulações com MPM, 

resultaram em comportamento semelhante ao de uma condição de contorno fixa na base, sem 

mobilização significativa da fundação. A atenção foi, portanto, voltada para os casos em que a 

fundação é efetivamente envolvida no processo de falha. Para o modelo Mohr-Coulomb, a 

variável PE (média volumétrica das deformações plásticas) foi utilizada como principal 

indicador da formação das superfícies de ruptura, dada a instabilidade do campo PEEQ em 

malhas mais grosseiras com degradação abrupta. Já no modelo Drucker-Prager, esse problema 

não se manifestou, permitindo o uso direto da variável PEEQ. 
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Tabela 4.16. Materiais simulados no modelo Mohr-Coulomb 

Material Relação C2/C1 
Coesão de Pico - 

(kPa) 

Coesão Residual 

- (kPa) 

A 2,0 120 20 

B 1,8 108 18 

C  1,5 90 15 

D 1,2 72 12 

Tabela 4.17. Materiais simulados no modelo Drucker-Prager 

Material Relação C2/C1 
“Yield Stress” 

pico - (kPa) 

Yield Stress” 

residual - (kPa) 

A 2,0 120 50 

B 1,8 108 45 

C  1,5 90 37,5 

D 1,2 72 30 

 

As Figuras 4.146 a 4.151 apresentam os resultados obtidos com o modelo Mohr-Coulomb, para 

os materiais A a D da Tabela 4.16 enquanto as Figuras 4.152 a 4.157 correspondem às 

simulações realizadas com o modelo Drucker-Prager. Para os materiais A a D da tabela 4.17. 

 

 

 

Figura 4.146. Material A, Mohr-Couloumb. 
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Figura 4.147. Material B. Mohr Coulumb 

 

 
 

Figura 4.148. Tempos iniciais Material C. Mohr Coulumb 
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Figura 4.149. Tempos finais Material C, Mohr-Couloumb 

 

 
 

Figura 4.150. Tempos finais Material D, Mohr-Couloumb. 
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Figura 4.151. Tempos finais Material D, Mohr-Couloumb. 

 

 

 

Figura 4.151. Material A, Drucker-Prager. 
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Figura 4.152. Material B, Drucker-Prager 

 

 

Figura 4.153. Tempos iniciais Material C, Drucker-Prager 
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Figura 4.154. Tempos finais Material C, Drucker-Prager 

 

Figura 4.155. Tempos iniciais Material D, Drucker-Prager 
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Figura 4.156. Tempos finais Material D, Drucker-Prager 

Os resultados obtidos com o método CEL confirmam os padrões identificados no MPM quanto 

à influência da resistência relativa da fundação na progressão da ruptura. Assim como observado 

na Seção 4.1.5, a transição de um mecanismo localizado no talude para um colapso que envolve 

a fundação ocorre de forma contínua à medida que a razão C₂/C₁ diminui. 

 

Com o modelo Mohr-Coulomb, o Material A (Figura 4.145) limitou a ruptura à camada superior, 

mas percebe-se com flutuações elásticas na fundação e mesmo sem plastificação significativa 

percebe-se maiores deslocamento se comparado ao caso com apenas a condição de contorno 

(Figura 4.87), no Material B (Figura 4.146), a mobilização parcial da fundação resultou em um 

deslocamento reduzido da massa, comportamento também identificado no MPM. A progressão 

observada nos Materiais C e D (Figuras 4.147 a 4.150) já demonstram maior mobilização do 

material da base. 

 

Com o modelo Drucker-Prager, a transição dos mecanismos foi representada com maior nitidez, 

a malha refinada permitiu capturar superfícies de cisalhamento bem definidas (Figuras 4.151 a 

4.156), e o comportamento geral foi confirmado, demonstrando que a redução da resistência da 

camada inferior promove progressivamente a movimentação conjunta entre as camadas. Embora 

a comparação direta das distâncias percorridas entre os dois métodos não seja possível, devido 

às diferenças nos modelos constitutivos e nas propriedades adotadas, os mecanismos de 

instabilidade observados foram consistentes. Os resultados confirmam a capacidade do CEL de 

capturar, com boa fidelidade, os efeitos de transição de ruptura para a fundação, mesmo em 

cenários de grande deformação e heterogeneidade de materiais. 
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4.2.6      FALHAS PROGRESSIVAS EM DECLIVE E FALHAS RETROGRESSIVAS 

EM ASCENÇÃO “SPREAD” 

 

Nesta etapa, foi realizada a simulação de uma ruptura progressiva em declive utilizando o 

método Coupled Eulerian–Lagrangian (CEL) com o critério constitutivo de Drucker-Prager. A 

geometria, condições de contorno e carregamento (sobrecarga superior) seguem o modelo 

adotado na seção 4.1.6, permitindo a avaliação qualitativa do comportamento.  

 

O modelo foi discretizado com malha refinada composta por elementos de 0,25 m, a fim de 

garantir maior precisão na representação das superfícies de ruptura e na captura do processo 

progressivo. Para a densidade do solo do talude, foi adotado o valor de 1440 kg/m³, conforme a 

lógica empregada nas seções anteriores, baseada na média ponderada entre sólidos e fluido em 

meio poroso. O aterro, por sua vez, foi modelado com densidade de 2100 kg/m³. As propriedades 

elásticas do aterro foram mantidas idênticas às utilizadas no MPM, enquanto o solo do talude 

teve seus parâmetros de resistência ajustados (conforme gráfico apresentado adiante) para 

viabilizar o processo de ruptura no critério Drucker-Prager. 

 

Apesar das diferenças nos modelos constitutivos e nos valores adotados para os parâmetros, o 

objetivo não foi a comparação quantitativa direta das distâncias percorridas, mas sim a análise 

qualitativa do comportamento da ruptura progressiva e a verificação da compatibilidade do 

mecanismo com os resultados previamente obtidos com o MPM. As curvas de amolecimento 

utilizadas estão representadas na Figura 4.157, onde é apresentado o amolecimento utilizado no 

material. A Figura 4.158 mostra a distribuição da deformação plástica acumulada (PEEQ). 

 

Figura 4.157. Amolecimento utilizado no modelo Drucker-Prager falha progressiva 
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Figura 4.158. Resultado deformação plástica falha progressiva em declive 

Para a falha retrogressiva ascendente do tipo foi mantida a mesma configuração geométrica e 

parâmetros mecânicos da seção 4.1.6, com elementos de 0,25 m. As densidades dos materiais 

foram: 1462 kg/m³ (camada superior), 1394,55 kg/m³ (camada frágil intermediária) e 

1742 kg/m³ (fundação inferior). As curvas de amolecimento para os materiais principais estão 

representadas na Figura 4.159, a Figura 4.160 apresenta o campo de deformação plástica 

acumulada (PEEQ), os parâmetros elásticos (módulo de Young e coeficiente de Poisson) foram 

definidos de maneira idêntica aos adotados no MPM, assim como o ângulo de atrito e a 

dilatância definidos como 0.  

 

Figura 4.159. Amolecimento utilizados para o modelo Drucker-Prager falha retrogressiva 
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Figura 4.160. Ruptura retrogressiva ascendente, deformação plástica (PEEQ). 

Os resultados obtidos com o método CEL confirmaram a capacidade da formulação em 

representar, com fidelidade, os mecanismos típicos de falhas progressivas em declive e falhas 

retrogressivas ascendentes do tipo “spread”. Em ambos os casos, a discretização refinada e a 

estabilidade numérica do modelo Drucker-Prager permitiram capturar com nitidez as superfícies 

de cisalhamento e a evolução dos deslocamentos, com destaque para a clareza na formação de 

estruturas internas. 

 

No caso da falha em declive, a sequência progressiva de plastificação, partindo da região de 

sobrecarga e evoluindo no sentido descendente, foi compatível com o padrão observado no 

MPM. Embora os deslocamentos absolutos não tenham sido comparáveis diretamente, o 

comportamento qualitativo demonstrou forte concordância entre os métodos. 

 



 

164 
 

Para a falha retrogressiva ascendente, os resultados também reproduziram com fidelidade o 

mecanismo observado na seção 4.1.6, com a formação de blocos e característicos das estruturas 

tipo Horsts e Grabens.  

 

4.2.7      ANÁLISE DE IMPACTO E INTERAÇÃO COM ESTRUTURAS 

 

Nesta seção, é apresentada a análise da interação entre massas instabilizadas e estruturas 

adjacentes por meio da formulação Coupled Eulerian–Lagrangian (CEL) implementada no 

Abaqus. O objetivo principal, alinhado à abordagem adotada na Seção 4.1.7 com o MPM, é 

explorar os recursos disponíveis no CEL para estimar os efeitos da ruptura sobre estruturas 

localizadas a montante e a jusante, com ênfase na medição de forças e momentos transmitidos. 

 

A geometria, o posicionamento dos blocos e os parâmetros dos materiais foram mantidos 

idênticos à configuração anterior, incluindo dois blocos rígidos de 3 m × 3 m, com densidades 

de 500 kg/m³ (bloco superior) e 2000 kg/m³ (bloco jusante), apoiados sobre uma fundação 

elástica com módulo de Young de 20.000 kPa e coeficiente de Poisson de 0,33, aqui foi adotado 

o modelo Drucker-Prager com degradação do parâmetro Yield Stress em função da deformação 

plástica acumulada. A curva planilhada desse amolecimento é apresentada na Figura 4.162. 

 

A densidade adotada foi de 1440 kg/m³, conforme os critérios definidos na Seção 4.2.1. A malha 

Euleriana foi definida com elementos tridimensionais EC3D8R e elementos de (0,25 m), apenas 

1 elemento na profundidade, os resultados foram posteriormente normalizados para representar 

1 metro de profundidade, multiplicando-se os esforços obtidos por um fator de 4 aproximando-

se da condição de deformação plana. 

 

Foram realizados dois cenários distintos: no primeiro, o bloco jusante foi modelado como 

elástico e deslocável. A Figura 4.162 mostra o resultado dessa simulação, e a Figura 4.163 

apresenta a escala de velocidades adotada nas análises. No segundo cenário, o bloco jusante foi 

definido como indeslocável, modelado com elemento tipo “shell” e acoplado cinematicamente 

a um Reference Point (RP). Isso permitiu o registro das reações globais ao longo do tempo, 

incluindo forças nos eixos X e Y e momentos em torno dos eixos correspondentes, a Figura 

4.164 ilustra a simulação com o bloco rígido, enquanto os gráficos de reação no RP estão 

apresentados nas Figuras 4.165 a 4.168.  
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Figura 4.161. Amolecimento aplicado no material 

 

 

 

 

 

 

 

Figura 4.162. Simulação com o bloco deslocável. 
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Figura 4.163. Escala de velocidade adotada nas duas simulações 

 

 

 

 

 

 

 

Figura 4.164. Simulação com o bloco indeslocavel 
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Figura 4.165. Força de reação em X no "Reference Point". 

 

Figura 4.166. Força de reação em Y no "Reference Point". 

 

Figura 4.167. Momento de reação em X no "Reference Point". 
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Figura 4.168. Momento de reação em Y no "Reference Point". 

A análise com a formulação CEL demonstrou que o uso de Reference Points (RP) no Abaqus é 

uma estratégia eficaz para mensurar o impacto de massas instabilizadas sobre estruturas rígidas. 

A força registrada no RP representa a reação global transmitida ao corpo, independentemente da 

malha ou do ponto de contato, o que se reflete diretamente nas Figuras 4.165 a 4.168, que 

apresentam, respectivamente, as componentes da força horizontal (RFx), vertical (RFy) e os 

momentos em torno dos eixos X (RMx) e Y (RMy). Esse recurso se destaca em relação ao 

ANURA3D, onde a linha de reação (reaction surface) é fixa e restrita à malha Euleriana. Além 

disso, no Abaqus é possível registrar diretamente os momentos de reação, o que amplia a 

capacidade de avaliação da resposta estrutural. 

 

No cenário analisado em que o bloco a jusante foi modelado como deslocável, a energia cinética 

do corpo rígido foi monitorada ao longo do tempo. A Figura 4.169 mostra que o pico de energia 

ocorreu próximo aos 5 segundos, coincidindo com o momento de impacto da frente da massa 

de solo. Após esse ponto, a energia cinética decresceu gradualmente, refletindo o deslocamento 

do bloco até o esgotamento da força impulsora. Como não foram definidos parâmetros de atrito 

ou penalidades de contato com a fundação, o bloco cessou o movimento apenas pela ausência 

de força, e não por resistência tangencial. 

 

Também foi testada a soma das reações nodais (RFx) em todos os nós do bloco móvel. No 

entanto, essa abordagem apresentou inconsistências conceituais: como o corpo está livre para se 

mover, as reações nodais incluem efeitos inerciais internos, o que pode distorcer a interpretação 

da força efetiva transmitida pela massa de solo.  
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Figura 4.169. Energia cinética no bloco 2 ao longo do tempo 

Por fim, foi considerado e descartado o cálculo de trabalho a partir da curva força versus 

deslocamento no bloco, uma vez que os impactos não ocorrem simultaneamente nem sobre os 

mesmos pontos. O bloco rígido é atingido por diferentes partes da massa em tempos distintos 

do bloco móvel, tornando a integração entre os dois cenários fisicamente incoerente. Ressalta-

se, no entanto, que a estratégia adotada no ANURA3D, realizar uma simulação com o bloco e 

outra sem, e comparar a energia cinética total do sistema, também seria perfeitamente aplicável 

no CEL. Essa abordagem não foi implementada nesta seção para manter a concisão do texto. 

 

Em síntese, a formulação CEL mostrou-se adequada para análises de impacto em estruturas, 

oferecendo diferentes abordagens para a estimativa de energia e forças envolvidas. O uso de 

Reference Points destacou-se como a forma mais precisa e direta para corpos rígidos, enquanto 

a energia cinética se mostrou útil para blocos móveis. A tridimensionalidade do método requer 

adaptação para equivalência com análises bidimensionais, mas não compromete a validade dos 

resultados. A seção demonstrou que, embora cada abordagem possua limitações específicas, a 

combinação dos recursos disponíveis no Abaqus oferece ferramentas robustas e complementares 

para a avaliação da interação entre solo e estruturas em cenários de instabilidade. 
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CAPÍTULO 5 

5. COMPARATIVO DAS METODOLOGIAS 

 

A comparação entre os métodos Material Point Method (MPM) e Coupled Eulerian–Lagrangian 

(CEL), ao longo desta dissertação, demonstrou que ambos são capazes de representar os 

principais mecanismos de instabilidade progressiva e retrogressiva em taludes. Contudo, é 

fundamental separar os efeitos atribuíveis à formulação numérica daqueles decorrentes das 

plataformas empregadas — ANURA3D no caso do MPM e Abaqus/CAE no caso do CEL. Antes 

de aprofundar essa distinção, esta seção apresenta estados finais representativos de simulações 

realizadas com ambos os métodos, priorizando a avaliação qualitativa da configuração final das 

rupturas, da transição entre camadas e da influência dos modelos constitutivos. Ressalta-se que 

não é apropriado realizar uma comparação quantitativa direta entre deslocamentos ou distâncias 

de corrida e retrogressão, uma vez que os critérios constitutivos, malhas, representações físicas 

(como porosidade e pressão de poros) e modelos de amolecimento diferem substancialmente 

entre as abordagens. 

 

Apesar dessas limitações, observou-se alta coerência no comportamento geral dos modelos. Em 

ambas as formulações, a redução da coesão residual resultou em maior extensão da ruptura e 

deslocamentos acumulados. Além disso, rupturas secundárias e a mobilização da fundação 

foram reproduzidas com padrões qualitativos semelhantes. A Figura 5.1 apresenta uma 

comparação direta entre os estados finais simulados com o MPM (à esquerda) e o CEL (à direita), 

utilizando os mesmos materiais em cada par de imagens. Sendo 6 pares correspondentes aos 

materiais A até F de cima para baixo, conforme definido na Tabela 4.2. 

 

Figura 5.1. Influência da coesão residual no MPM e CEL 
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Nesse caso, observou-se que o MPM apresentou maior sensibilidade às variações de resistência, 

especialmente em situações com degradação acentuada. Os resultados foram mais concentrados 

na região de movimentação, sem plastificação excessiva fora das zonas de ruptura, como visto 

na Figura 4.9 (MPM – Curva D). Em contraste, no CEL, a mesma simulação (Figura 4.88) 

apresentou amplas regiões plastificadas mesmo onde não havia deslocamentos significativos, 

devido à sensibilidade do modelo de Mohr-Coulomb no ABAQUS e à utilização de malha 

grosseira. Esse comportamento é comparado na Figura 5.4, que mostra a evolução da energia 

cinética total do sistema para essas duas simulações. 

 

Nas seções 4.1.3 (MPM) e 4.2.3 (CEL), em que foram adotadas taxas de degradação mais suaves 

e valores de pico mais baixos (Curvas D, E e F), o CEL apresentou uma resposta global mais 

deformável, com deslocamentos mais amplos e propagação mais extensa da ruptura (Figura 5.2). 

Esse comportamento se assemelha ao observado no MPM utilizando a formulação não drenada 

em tensões efetivas, como ilustrado na Figura 5.3 

 

 

 

Figura 5.2. Comparação dos materiais D, E e F nas seções 4.1.3 e 4.2.3, MPM na formulação 

saturada totalmente acoplada

 

Figura 5.3. Comparação dos materiais D, E e F nas seções 4.1.3 e 4.2.3, MPM na formulação 

saturada não drenada 

A Figura 5.5 compara a energia cinética total do sistema para os casos da Figura 4.27 (MPM – 

Curva D, não drenada) e da Figura 4.115 (CEL – Curva D). Nessas simulações, observa-se que 

a taxa de degradação influencia diretamente a evolução da energia cinética: nos casos com 

degradação rápida, a energia se concentra em um pico pronunciado, e a estabilização também é 

mais rápida. Já nos casos com degradação lenta, o sistema apresenta múltiplos picos secundários 

associados à mobilização progressiva de volumes adicionais de solo, retardando o processo de 

estabilização global, a Figura 5.5 demonstra a energia cinética da Curva D 
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Figura 5.4. Energia cinética do sistema no resultado correspondente a simulação da Figura 4.9 

(MPM) e 4.88 (CEL) 

 

Figura 5.5. Energia cinética do sistema no resultado correspondente a Figura 4.27 (MPM) e 

4.115(CEL). 

Esse mesmo padrão foi observado nas simulações com o modelo Drucker-Prager aplicadas aos 

materiais A e D da seção 4.2.3, cujas energias cinéticas são apresentadas nas Figuras 5.6 

(Material A, Figura 4.119) e 5.7 (Material D, Figura 4.122). Os gráficos reforçam a influência 

da curva de resistência na dissipação de energia e na dinâmica da ruptura.7. 
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Figura 5.6. Energia cinética material A, seção 4.1.3(Figura 119) Drucker-Prager 

 

Figura 5.7. Energia cinética material D, seção 4.1.3(Figura 122) Drucker-Prager 

Em resumo, esta seção confirma que, apesar das diferenças metodológicas entre MPM e CEL, 

os mecanismos de ruptura, padrões de mobilização e influência dos parâmetros constitutivos 

foram representados de forma coerente por ambas as abordagens. A análise conjunta reforça a 

robustez dos modelos numéricos adotados e valida o uso complementar das duas metodologias 

na simulação de taludes sensíveis submetidos a processos de instabilização progressiva. 

 

Nos casos de ruptura progressiva em declive e retrogressiva ascendente, os resultados obtidos 

com os métodos MPM e CEL demonstraram morfologia semelhante das estruturas formadas, 

como grabens, blocos deslocados e superfícies de cisalhamento. Mesmo com parâmetros 

constitutivos distintos, os dois métodos foram capazes de representar com fidelidade os 
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mecanismos envolvidos, desde que utilizadas malhas adequadas e parametrizações consistentes. 

A comparação qualitativa entre os estados finais simulados está apresentada na Figura 5.8, para 

a ruptura progressiva em declive, e na Figura 5.9, para a ruptura retrogressiva ascendente. 

 

Figura 5.8. CEL e MPM, ruptura progressiva em declive. 

 

Figura 5.9. CELe MPM, ruptura retrogressiva ascendente. 

 

Além da comparação dos mecanismos físicos de ruptura, foi avaliada a eficiência computacional 

dos dois métodos adotados, com foco no impacto do refinamento de malha, na formulação 

numérica (monofásica ou acoplada) e na complexidade tridimensional dos modelos. O tempo 

de simulação, especialmente em análises com degradação acentuada ou domínios extensos, 

mostrou-se um fator decisivo na escolha metodológica. As Tabelas 5.1 e 5.2 a seguir sintetizam 

os tempos de simulação observados com o MPM (ANURA3D) e o CEL (ABAQUS), 

respectivamente, abrangendo diferentes tamanhos de malha, formulações numéricas e graus de 

complexidade geométrica e física. 
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Tabela 5.1. Tempos de processamento MPM 

Caso / Malha 
Tipo de 

Análise 

Tempo 

Físico 

Tempo 

Computacional 
Formulação 

Malha 4 – estabilização Quase-Estática — 3/ 16 min 
Monofásica / 

Acoplada 

Malha 1 Dinâmica — 6 / 14 min 
Monofásica / 

Acoplada 

Malha 4 Dinâmica — 58 / 454 min 
Monofásica / 

Acoplada 

Retrogressiva (malha 1) 

– Seção 4.1.6 
Dinâmica 20 s 13 min Saturada acoplada 

Retrogressiva (malha 2) 

– Seção 4.1.6 
Dinâmica 20 s 2h 52min Saturada acoplada 

Progressiva (malha 1) – 

Seção 4.1.6 
Dinâmica 25 s 39 min Saturada acoplada 

Progressiva (malha 2) – 

Seção 4.1.6 
Dinâmica 25 s 4h 27min Saturada acoplada 

Fundação – Seção 4.1.5 Dinâmica 25 s 1h 07min Saturada acoplada 

Impacto – Seção 4.1.7 
Interação 

estrutural 
25 s 2h 55min 

Não drenada 

(tensões efetivas) 

3D Monofásico  Dinâmica 25 s 2h e 47min  Não drenada 3D 

3D acoplado – malha 

completa 
Dinâmica 25 s 

~85 dias 

(estimado) 

Acoplada 

saturada 3D 

Tabela 5.2. Tempos de processamento CEL 

Caso Elemento (m) 
Tipo de 

Análise 
Tempo Físico 

Tempo 

Computacional 

Malha 1 (5000 

elementos) 
1,0 Dinâmica 25 s 

14 s (70 s, 1 

núcleo) 

Malha 4 (80000 

elementos) 
0,25 Dinâmica 25 s 

823 s (4115 s, 1 

núcleo) 

Fundação (Mohr-

Coulomb) – Seção 4.2.5 
1,0 Dinâmica 25 s 37 s 

Fundação (Drucker-

Prager) – Seção 4.2.5 
0,25 Dinâmica 25 s 33 min 

Retrogressiva – Seção 

4.2.6 
0,25 Dinâmica 20 s 27 min 

Progressiva – Seção 4.2.6 0,25 Dinâmica 20 s 57 min 

Impacto– Seção 4.2.7 0,25 
Interação 

com estrutura 
25 s 1h 24min 

Extrudada (3D) – Seção 

4.2.4 
0,5 3D  20 s 41 min 

Geometria real 3D – SSR 

(50 m) 
50 3D SSR 20 s 5 min 

Geometria real 3D – 

Amolecimento (25 m) 
25 

3D strain-

softening 
40 s 2h 24min 
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A Tabela 5.1 evidencia que o refinamento da malha no MPM tem impacto computacional 

consideravelmente mais severo na formulação acoplada do que na monofásica. Na malha 1, por 

exemplo, o tempo por segundo simulado é de 33,6 s, enquanto na malha 4 esse valor ultrapassa 

18 minutos (1089,6 s). A escalada do custo computacional na formulação saturada é mais de 32 

vezes entre essas malhas, ao passo que na monofásica o aumento é inferior a 10 vezes. Esse 

comportamento torna-se ainda mais crítico em modelos tridimensionais: conforme estimado na 

Seção 4.1.4, uma simulação de 25 s em 3D com formulação acoplada exigiria aproximadamente 

85 dias de processamento. 

 

No CEL, como mostrado na Tabela 5.2, os tempos iniciais são extremamente baixos mesmo 

com discretizações refinadas. Simulações com elementos de 0,25 m foram concluídas entre 27 

minutos e 1h24min, e modelos tridimensionais com geometrias reais, como na Seção 4.2.4, 

foram executados em menos de 3 horas. Embora o refinamento leve a um aumento de custo mais 

expressivo que na formulação monofásica do MPM, o método permanece eficiente devido à 

paralelização nativa do ABAQUS, ao solver explícito e ao algoritmo de advecção, que acelera 

os incrementos à medida que o sistema se estabiliza. Elementos já estabilizados ou inativos não 

impõem carga significativa ao processamento, diferentemente do que ocorre no MPM. 

 

Nos casos de impacto com interação estrutura-solo (Seções 4.1.7 e 4.2.7), o CEL também 

apresentou melhor desempenho: a simulação com bloco rígido foi concluída em menos de 

1h30min, enquanto o MPM levou quase 3 horas com tempo físico idêntico, mesmo em 

formulação não drenada. Além disso, o CEL possibilitou o registro direto de forças e momentos 

via Reference Points, um recurso inexistente de forma nativa no ANURA3D. 

 

Esses dados reforçam que a escolha do método mais adequado deve considerar não apenas a 

fidelidade física, mas também a escalabilidade computacional e os recursos oferecidos pelas 

plataformas. O MPM mostrou-se indispensável para análises multifásicas, solos não saturados 

e problemas com acoplamento hidromecânico, permitindo rastrear variáveis diretamente nos 

pontos materiais com alto grau de precisão. No entanto, seu custo computacional cresce 

rapidamente com o refinamento da malha e em modelos tridimensionais, sobretudo na 

formulação acoplada, que se mostrou sensível ao número de pontos materiais e pouco 

beneficiada pela estabilização do sistema. 
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O CEL, por outro lado, destacou-se pela eficiência computacional em simulações monofásicas 

de larga escala. Mesmo com discretizações refinadas, apresentou desempenho estável graças à 

paralelização nativa do ABAQUS e ao solver explícito otimizado. Sua eficiência é reforçada 

pelo fato de que elementos estabilizados ou inativos praticamente não impactam o custo 

computacional, o que o torna mais adequado para modelos com grandes domínios parcialmente 

mobilizados. 

 

Do ponto de vista das plataformas, o Abaqus/CAE oferece uma interface robusta, ampla 

biblioteca de materiais, algoritmos avançados de contato e suporte à paralelização, sendo mais 

apropriado para simulações complexas com geometria real. O ANURA3D, embora limitado em 

termos de modelos constitutivos e paralelização, permite a análise de problemas acoplados e 

não saturados, com boa visualização dos resultados no ParaView, sendo uma alternativa 

acessível e eficaz para os estudos abordados nessa dissertação. 
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CAPÍTULO 6 

6. CONCLUSÕES E SUGESTÕES PARA PESQUISAS FUTURAS 

 

Neste capítulo são apresentadas as conclusões da dissertação, e as sugestões para trabalhos 

futuros focando em continuidade no tema pesquisado e ampliação das capacidades e aplicações 

dos métodos utilizados. 

6.1   CONCLUSÕES  

 

O objetivo deste trabalho foi desenvolver e comparar metodologias numéricas capazes de 

representar, com fidelidade, os mecanismos de ruptura progressiva e regressiva em taludes, com 

foco na caracterização do comportamento pós-ruptura. Foram investigadas duas formulações 

distintas: o Material Point Method (MPM), por meio do software ANURA3D, e a abordagem 

Coupled Eulerian–Lagrangian (CEL), implementada no ABAQUS/Explicit. 

 

Ambos os métodos se mostraram adequados para simular os principais mecanismos de 

instabilidade observados em solos sensíveis, permitindo a representação de falhas retrogressivas, 

progressivas em declive, mobilização gradual para a fundação, além de possibilitar a estimativa 

de impactos sobre estruturas. As simulações confirmaram a viabilidade técnica das abordagens 

estudadas, e revelaram suas respectivas forças e limitações. 

 

As análises paramétricas realizadas demonstraram que a degradação da resistência (parâmetro 

η) exerce forte influência sobre os mecanismos de falha. Em ambos os métodos, valores baixos 

de η resultam em comportamento longo e necessidade de uma maior perda de suporte para 

geração de uma nova superfície de ruptura, enquanto curvas muito abruptas degradam a 

resistência do material rapidamente favorecendo a formação de novas superfícies retrogressivas 

rapidamente, até o ponto em que a degradação é tão rápida que o modelo perde sensibilidade ao 

parâmetro. O MPM apresentou melhor resposta a essas variações, enquanto o modelo Mohr-

Coulomb do CEL mostrou regiões plastificadas sem mobilização real em malhas grosseiras, um 

efeito atribuído à sub-rotina constitutiva do Abaqus e não ao método CEL em si. O critério 

Drucker-Prager não apresentou esse problema, demonstrando coerência física dos resultados. 
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A influência da coesão de pico e residual também foi consistente entre os métodos. A redução 

da coesão residual aumentou as distâncias de retrogressão e de corrida em todos os casos. A 

coesão de pico demonstra maior influência quando aliada a degradações lentas da resistência em 

ambos os casos, mas a coesão de pico teve maior impacto nas simulações CEL. os efeitos 

observados indicam que, mesmo com formulações distintas, os dois métodos respondem de 

forma coerente à variação dos parâmetros de resistência. 

 

A representação das falhas retrogressivas ascendentes e progressivas em declive foi 

particularmente esclarecedora quanto à robustez dos métodos. As estruturas internas, como 

“horts &grabens” e superfícies de cisalhamento inclinadas, foram identificadas com clareza nos 

dois modelos, desde que fossem utilizadas malhas refinadas. A semelhança na morfologia final 

das rupturas demonstra que ambos os métodos são capazes de reproduzir com fidelidade o 

comportamento observado em campo, ainda que por caminhos numéricos distintos. 

 

Parâmetros físicos como a densidade tiveram impacto mais expressivo nas simulações com CEL. 

Como essa abordagem não incorpora porosidade nem pressão de poros, a densidade adotada 

define diretamente a massa do sistema. Foi observada uma forte sensibilidade da energia cinética 

e da extensão da ruptura às variações de densidade, o que reforça a necessidade de uma escolha 

criteriosa desse valor, especialmente em contextos submarinos. Já no MPM, a densidade sólida 

afeta apenas parte da massa total, uma vez que o modelo bifásico considera separadamente a 

fase fluida e o índice de vazios. A representação do comportamento geotécnico saturado mais 

realista no MPM permanece como uma de suas principais vantagens. 

 

Ao considerar as diferenças entre as plataformas de simulação, é importante destacar que muitas 

limitações observadas não derivam do método numérico em si, mas da implementação adotada. 

O ANURA3D, embora gratuito e especializado em MPM, ainda não conta com paralelização, o 

que restringe sua aplicação em simulações tridimensionais ou com grande número de pontos 

materiais. Em contrapartida, o ABAQUS/Explicit permite uso extensivo de múltiplos núcleos e 

é otimizado para grandes domínios, como demonstrado nas seções com simulações 3D. 

 

O CEL mostrou desempenho computacional notavelmente superior em simulações monofásicas 

com materiais que se estabilizam. Após a fase de ruptura, o tempo de processamento por 

incremento reduziu significativamente, graças à eficiência do algoritmo de advecção e ao menor 
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custo computacional de regiões estáticas. Esse comportamento, menos perceptível no MPM, é 

uma das principais vantagens da abordagem Euleriana no contexto avaliado. 

 

Adicionalmente, a integração com ferramentas comerciais no caso do ABAQUS apresenta maior 

controle de carregamentos, condições de contorno e extração de reações estruturais. Em 

contrapartida, o MPM apresentou vantagem no rastreamento do histórico de deformações e na 

construção de gráficos baseados em pontos materiais, o que proporciona maior resolutividade 

espacial em análises localizadas. 

 

6.2         SUGESTÕES PARA PESQUISAS FUTURAS 

 

Durante o desenvolvimento deste trabalho, foram identificadas diversas oportunidades de 

aprimoramento nas abordagens numéricas empregadas, tanto no Método do Ponto Material 

(MPM), com foco na plataforma ANURA3D, quanto na formulação Coupled Eulerian–

Lagrangian (CEL), conforme implementada no software ABAQUS. Esses aprimoramentos 

visam ampliar a robustez, a eficiência computacional e a aplicabilidade das ferramentas no 

contexto da engenharia geotécnica, especialmente em simulações de rupturas progressivas, 

liquefação e análises pós-falha. 

 

Um ponto prioritário para investigações futuras é a adoção de gatilhos mais representativos para 

simulações submarinas, como sismos, variações de poro-pressão ou sobrecargas localizadas, em 

substituição ao carregamento por aterro. Também se recomenda a aplicação de modelos 

constitutivos mais avançados, como o CASM ou modelos viscoplásticos, que podem representar 

de forma mais precisa o amolecimento de solos sensíveis e os efeitos tempo-dependentes. 

Com relação ao Método do Ponto Material, as seguintes melhorias são sugeridas: 

•  Paralelização computacional utilizando OpenMP, MPI ou CUDA, visando a redução 

dos tempos de simulação em problemas tridimensionais ou multifásicos com elevado 

número de pontos materiais. 

• Integração do método Shear Strength Reduction (SSR) à lógica do MPM, para análises 

iniciais de estabilidade de taludes. 

•  Expansão dos tipos de carregamentos e condições de contorno disponíveis no 

ANURA3D, aumentando a versatilidade das simulações. 
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• Aprimoramento do algoritmo de contato, com maior flexibilidade na interação entre 

múltiplos materiais. 

• Adoção de técnicas de estabilização numérica voltadas a malhas densas, permeabilidades 

extremas ou choques de MPs. 

• Exploração de esquemas de integração temporal implícitos ou semi-implícitos, 

reduzindo oscilações e instabilidades em formulações acopladas. 

• Implementação do GIMP (Generalized Interpolation Material Point), para mitigar erros 

associados ao grid-crossing. 

• Suporte a novos tipos de malha (como quadriláteros e hexaedros) e configurações nodais 

variadas. 

• Opções de controle sobre os arquivos de saída, incluindo frequência, compactação e 

precisão decimal. 

• Melhorias na visualização no ParaView, com personalização do tamanho e forma dos 

MPs, o que pode facilitar a interpretação de simulações com baixa densidade de pontos. 

No caso do método CEL, considerando as limitações da implementação atual no ABAQUS, 

destacam-se as seguintes sugestões: 

• Desenvolvimento de uma formulação capaz de representar o comportamento multifásico 

em meios porosos, viabilizando a simulação de interações entre solo, água e 

eventualmente ar. 

• Criação de estratégias para rastreamento de variáveis no material (e não na malha), com 

volumes ou pontos representativos que permitam acompanhamento local do histórico de 

tensão e deformação. 

 

Além disso, recomenda-se a reprodução dos cenários simulados nesta dissertação em outras 

metodologias baseadas em partículas, como o Smoothed Particle Hydrodynamics (SPH), 

utilizando o código GeoXPM, e o Particle Finite Element Method (PFEM), implementado no 

Kratos Multiphysics. Essas abordagens possuem potencial relevante para representar grandes 

deformações, separação de fases e liquefação, além de apresentarem flexibilidade geométrica e 

formulários multifásicos. 
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APÊNDICE A – Padronização gráfica e scripts de análise 

A.1 INTRODUÇÃO 

Durante o desenvolvimento das análises numéricas apresentadas nesta dissertação, foi 

necessário adotar uma padronização rigorosa das imagens e gráficos, com o objetivo de garantir 

uniformidade na apresentação dos resultados, clareza visual e comparabilidade entre os 

diferentes métodos numéricos (MPM e CEL). Além disso, foram desenvolvidos scripts 

personalizados para automatizar o processamento dos resultados, reduzir o tempo de análise e 

permitir uma extração mais eficiente das variaveis. 

 

A.2 Scripts para análise dos dados do MPM (Anura3D) 

Foi desenvolvido um script em Python para tratamento dos dados exportados do Anura3D via 

ParaView. Esse script permite: 

• Geração automática de gráficos por variável para cada ponto material; 

• Geração de gráficos comparativos de uma mesma variável entre múltiplos pontos; 

• Cálculo da energia cinética individual e total (por ponto e somatório); 

• Tradução automática dos nomes das variáveis para português (requer melhorias); 

• Agrupamento de imagens por tipo de variável e por tempo de simulação. 

• Esse script tornou possível agilizar a criação dos gráficos no MPM. 

 

A.3 Padronização gráfica no Paraview 

Para os resultados do Anura3D, o software Paraview foi utilizado como ambiente de pós-

processamento. As vantagens observadas incluíram: 

• Flexibilidade na configuração da viewport ; 

• Possibilidade de exportação com controle preciso da resolução; 

• Retenção da posição da câmera entre simulações; 

• Aplicação de ajustes automáticos em série (por scripts ou pipeline); 

• Adição do tempo nas imagens finais via script externo (última etapa da padronização). 

 

A principal limitação observada no Paraview refere-se à visualização dos pontos materiais: todos 

são renderizados com mesma forma e tamanho, o que pode gerar lacunas visuais (falsos vazios) 

em regiões menos densas. Apesar disso, com densidade adequada de pontos, o Paraview se 

mostrou superior à interface nativa do Abaqus para esse tipo de visualização. 
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A.4 Padronização gráfica no Abaqus Viewer 

 

No caso do CEL (Abaqus), a padronização foi mais complexa e demandou esforço significativo. 

O Viewer do Abaqus não permite configurar diretamente o número exato de pixels da imagem 

exportada nem salvar a posição da câmera de forma consistente entre diferentes arquivos de 

resultado. Diante disso, a padronização foi feita da seguinte forma: 

• Posicionamento manual da viewport com o mouse, ajustando pixel a pixel em dois eixos 

até igualar visualmente ao padrão do Paraview; 

• Salvamento da posição ideal da câmera e reaplicação em outras simulações (apenas 

viável quando a geometria tinha mesma proporção); 

• Exportação das imagens; 

• Utilização de um segundo script para sobrepor o grid de referência (mantendo 

consistência espacial); 

• Aplicação de um terceiro script para inserir o tempo da simulação com mesmo padrão 

visual adotado para o MPM. 

Apesar de todos esses esforços, não foi encontrada uma solução automatizada definitiva para a 

padronização no Abaqus Viewer. Recomenda-se, para trabalhos futuros, considerar: 

• O uso de ferramentas alternativas de visualização que consigam importar resultados do 

Abaqus com maior controle gráfico; 

• Ou a evolução do próprio visualizador da Dassault Systèmes, permitindo ajustes 

objetivos de escala, resolução e câmera. 

Todos os scripts mencionados neste apêndice podem ser acessados por meio do QR Code e link 

presente na Figura 4.1. 
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ANEXO 1. FORMULAÇÕES DO MPM e CEL 

 

Este anexo apresenta as equações relacionadas a mecânica dos meios contínuos, comuns para o 

MEF, MPM e CEL e aborda particularidades da formulação e particularidades algorítmicas dos 

métodos citados. 

 

A.1 FORMULAÇÃO COMUM  

 

Até certo ponto, as equações fundamentais utilizadas no Método dos Pontos Materiais (MPM) 

são idênticas às do Método dos Elementos Finitos (MEF) em sua formulação lagrangeana e à 

formulação Coupled Eulerian–Lagrangian (CEL). Nesta seção, será descrita a parte da 

formulação que é comum aos métodos MPM, MEF e CEL, uma vez que todos compartilham as 

mesmas equações básicas da mecânica do contínuo. 

 

O solo, material de interesse para essas formulações, é um meio poroso multifásico composto 

por um esqueleto sólido preenchido por fluidos (líquidos ou gases). No entanto, em diversas 

situações práticas, ele pode ser tratado como um material homogêneo monofásico. A formulação 

“one-phase single-point” do MPM é aplicável quando apenas a fase sólida é considerada na 

análise seja para materiais secos, em condições drenadas, ou totalmente não drenadas, o que 

simplifica consideravelmente o tratamento numérico. 

 

O comportamento do solo saturado depende diretamente de sua permeabilidade e da taxa de 

carregamento. Em condições drenadas, a dissipação da pressão de poro ocorre de maneira tão 

rápida que pode ser desconsiderada. Já em condições não drenadas, a carga é aplicada de forma 

suficientemente rápida para gerar pressões de poro significativas, embora o movimento relativo 

entre as fases sólida e líquida seja desprezível. Nessas duas situações, a modelagem pode ser 

feita considerando apenas a fase sólida. Entretanto, em condições parcialmente drenadas, nas 

quais a geração e a dissipação da pressão de poro não podem ser negligenciadas, a formulação 

monofásica se torna insuficiente, sendo necessária a adoção de uma abordagem bifásica para 

capturar o comportamento totalmente acoplado entre sólido e fluido. 
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A1.1 Equações Fundamentais da Formulação Monofásica 

 

A formulação baseia-se nas leis fundamentais da termodinâmica, que incluem: 

1. Conservação de Massa 

2. Conservação de Momento 

3. Conservação de Energia 

4. Relações Constitutivas 

A equação de conservação de massa para um meio contínuo, quando não há fontes ou 

sumidouros de massa, pode ser escrita como: 

                                                   
dρ

dt
+ ρ div(v) = 0                                                   (A.1) 

 onde 
d

dt
 representa a derivada total, ρ é a densidade do material, e v é o vetor de velocidade. 

 

A conservação do momento implica a preservação tanto do momento linear quanto do momento 

angular. A conservação do momento linear representa a equação de movimento de um meio 

contínuo, seguindo a Segunda Lei de Newton, que relaciona a cinemática do meio às forças 

internas e externas atuantes. A equação diferencial que descreve essa conservação pode ser 

expressa como: 

                                                ρ
dv

dt
=  div(𝛔𝐓) + ρg                                                 (A.2) 

onde 
dv

dt
= representa o vetor aceleração, 𝛔 é o tensor de tensões e g é o vetor da aceleração 

gravitacional.  

 

Tanto no Método dos Elementos Finitos (MEF), no Método dos Pontos Materiais (MPM) quanto 

no Método Coupled Eulerian–Lagrangian (CEL), o termo de aceleração é levado em 

consideração na formulação dinâmica, permitindo a modelagem de problemas onde os efeitos 

inerciais são relevantes. Além da conservação do momento linear, a conservação do momento 

angular impõe a simetria do tensor de tensões: 

                                                         𝛔 = 𝛔𝐓                                                                       (A.3) 

Na formulação adotada, assume-se que os efeitos térmicos e qualquer fonte de energia térmica 

são desprezados, considerando-se apenas o trabalho mecânico como a única fonte de energia do 

sistema. Com essa consideração, a equação da conservação de energia pode ser expressa como: 

                                                                   ρ
dE

dt
= ϵ̇T 𝛔                                                          (A.4) 
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onde E representa a energia interna por unidade de massa e  ϵ̇ é a matriz de taxa de deformação. 

Essa equação descreve a variação da energia interna do meio contínuo devido à deformação e 

às tensões aplicadas, sendo um aspecto fundamental na análise de problemas geotécnicos 

dinâmicos. 

 

Condições Iniciais e de Contorno 

 

As condições iniciais e de contorno desempenham papel fundamental na formulação dos 

métodos MEF, MPM e CEL, pois definem as restrições e influenciam a evolução do sistema no 

tempo. Seja ∂Ω a fronteira do domínio Ω ocupado pelo meio, composta por duas partes distintas: 

• ∂Ωufronteira onde o deslocamento é prescrito (condições essenciais, ou condições de 

Dirichlet); 

• ∂Ωτ: fronteira onde as tensões ou trações são especificadas (condições naturais, ou 

condições de Neumann). 

As condições de contorno de deslocamento, também conhecidas como condições essenciais ou 

condições de Dirichlet, podem ser expressas como: 

𝐮(𝐱, t) = 𝐔(t)  em  ∂Ωu(t)                                        (A. 5) 

onde U(t)  representa o vetor de deslocamento prescrito na superfície. 

 

Por outro lado, as condições de contorno de tração, também chamadas de condições naturais ou 

condições de Neumann, são definidas por: 

σ(x, t)n = τ(t)  em  ∂Ωτ(t)                                     (A.6) 

onde n é o vetor normal unitário para fora da superfície de contorno ∂Ω, e τ(t) representa o vetor 

de tração prescrito sobre essa superfície. As condições iniciais para a análise são dadas por: 

𝐮(𝐱, t0) = 𝐔0,  𝐯(𝐱, t0) = 𝐕0,  𝛔(𝐱, t0) = 𝛔0                       (A.7) 

onde 𝐔0 é o deslocamento inicial, 𝐕0  a velocidade inicial 𝛔0  o estado de tensões iniciais no 

domínio.   
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A.1.2 Tensor de Tensões e Notação de Voigt 

 

O tensor de tensões de Cauchy σ é o principal parâmetro utilizado para descrever o estado de 

tensões internas na configuração atual do meio contínuo, sendo amplamente utilizado nas 

formulações MPM e CEL, O tensor de tensões de Cauchy é definido na configuração 

atual(deformada) e se difere dos tensores de Piola-Kirchhoff já que o segundo é definido na 

configuração inicial (não deformada), e trata-se de um tensor simétrico de segunda ordem, cuja 

forma expandida em três dimensões é: 

𝛔 = [

σxx σxy σxz

σxy σyy σyz

σxz σyz σzz

]                                                   (A. 8) 

Devido à conservação do momento angular, impõe-se a simetria do tensor, ou seja: 

σxy = σyx e σyz = σzy                                                 (A. 9) 

Para fins computacionais, especialmente em métodos numéricos como o MEF, o MPM e o CEL, 

é comum representar esse tensor na chamada notação de Voigt, que o expressa como um vetor 

coluna com seis componentes independentes: 

σVolgt =

[
 
 
 
 
 
σxx

σyy

σzz

σyz

σxz

σxy]
 
 
 
 
 

                                                               (A. 10) 

De forma análoga, o vetor de deformações na notação de Voigt é: 

εVolgt =

[
 
 
 
 
 
εxx

εyy

εzz

γyz

γxz

γxy]
 
 
 
 
 

                                                                (A. 11) 

Neste contexto, as componentes de deformação por cisalhamento são definidas como γij = 2εij, 

garantindo a consistência energética entre a formulação vetorial e a tensorial. Essa equivalência 

é assegurada pela preservação do produto interno: 

𝛆T𝛔 = 𝛆: 𝛔                                                          (A. 12) 



 

199 
 

Taxa Objetiva de Jaumann 

Em simulações que envolvem grandes deformações e rotações, como aquelas realizadas 

utilizando os métodos MPM e CEL, o uso direto da derivada material do tensor de tensões de 

Cauchy (σ̇) pode gerar inconsistências numéricas. Isso ocorre porque, sob rotações finitas, a 

derivada material não preserva a objetividade, ou seja, não é invariante sob mudanças no 

referencial em rotação. 

 

Para garantir que a evolução do estado de tensões seja independente de rotações rígidas do corpo, 

é necessário utilizar uma taxa objetiva da tensão. A abordagem mais utilizada para esse fim é a 

taxa corrotacional de Jaumann, que remove os efeitos puramente rotacionais. Sua formulação é 

dada por: 

𝛔̇J = 𝛔̇ + 𝛔𝛚 − 𝛚𝛔                                                   (A. 13) 

onde: 

• 𝛔̇ é a taxa material da tensão de Cauchy; 

• 𝛚 é a matriz de spin, dada pela parte antissimétrica do gradiente de velocidade 𝐋 = ∇𝐯 

: 

ω =
1

2
(∇𝐯 − (∇𝐯)T)                                                 (A. 14) 

O uso da taxa de Jaumann garante que a atualização das tensões permaneça objetiva, ou seja, 

invariável sob rotações rígidas do sistema de referência, condição essencial para a estabilidade 

numérica em análises envolvendo grandes deslocamentos ou rotações acumuladas. 

 

Nos métodos MPM e CEL, essa correção é implementada de forma sistemática, sendo aplicada 

a cada passo de tempo na integração das equações constitutivas. No método dos elementos 

finitos (MEF), a adoção de taxas objetivas como a de Jaumann é dependente da formulação 

escolhida, sendo intrínseca em abordagens corrotacionais e “Updated Lagrangian”, mas não 

obrigatória em formulações “Total Lagrangian”, onde todas as variáveis são referenciadas à 

configuração inicial. 

 

Para a implementação numérica das leis constitutivas, assume-se que a taxa de tensão objetiva 

como a taxa de Jaumann é função da taxa de deformação, do estado atual de tensões, da 
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temperatura (quando aplicável) e de um conjunto de variáveis internas que descrevem o estado 

evolutivo do material, como endurecimento, amolecimento e dano acumulado. A relação 

incremental entre tensão e deformação será apresentada na sequência, considerando essas 

dependências. 

𝛔̇ = f(ε̇, σ, T, χ)                                                          (A. 15) 

De maneira geral, a taxa objetiva de tensão 𝛔 ˙ é função da taxa de deformação ε̇˙, do estado atual 

de tensões σ, da temperatura T (quando relevante) e de um conjunto de variáveis internas χ, que 

representam o estado evolutivo do material, como parâmetros associados a plasticidade, 

amolecimento, dano ou envelhecimento estrutural. 

Para grande parte dos modelos constitutivos, essa relação pode ser expressa, em regime 

incremental, de forma linear por meio da matriz constitutiva tangente 𝐃: 

𝛔̇ = 𝐃𝛆                                                                 (A. 16)˙  

A matriz D contém os coeficientes constitutivos tangentes do material e caracteriza sua resposta 

instantânea à deformação. A formulação apresentada estabelece uma base para a modelagem de 

materiais com comportamentos complexos, como plasticidade, viscoplasticidade ou 

acoplamentos hidromecânicos. 

A.1.3 Formulação Fraca da Conservação do Momento Linear 

A implementação numérica da equação de conservação do momento linear nos métodos 

baseados em formulações do tipo MEF, incluindo o Método dos Pontos Materiais (MPM) e o 

Coupled Eulerian–Lagrangian (CEL), inicia-se com a conversão da forma forte da equação em 

sua forma fraca, também conhecida como equação do trabalho virtual. Esta transformação é 

essencial para permitir a discretização espacial do problema. 

Multiplicando a equação de movimento por uma função de teste, a velocidade virtual δv⃗  e 

integrando sobre o domínio atual Ω, obtém-se: 

∫  
Ω

δv⃗ ρ
 dv⃗ 

 dt
 dΩ = ∫  

Ω

δv⃗ div(𝛔) dΩ + ∫  
Ω

δv⃗ ρg⃗  dΩ                              (A. 17) 
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onde δv⃗ = 0em dΩu que representa a fronteira do domínio com deslocamentos prescritos. O 

primeiro termo do lado direito pode ser reformulado usando a identidade: 

∫  
Ω

δv⃗ div(𝛔) dΩ = ∫  
Ω

div(δv⃗ 𝛔) dΩ − ∫  
Ω

div(δv⃗ ) 𝛔dΩ                       (A. 18) 

Aplicando o teorema da divergência de Gauss ao primeiro termo no lado direito da equação, 

obtemos: 

∫  
Ω

div(δv⃗ 𝛔) dΩ = ∫  
∂Ω

δv⃗ (𝛔n⃗ )dS = ∫  
∂Ωτ

δv⃗ τ⃗  dS                           (A. 19) 

onde dS representa a integral sobre a superfície de contorno e ∂Ωτé a região onde as forças de 

tração são aplicadas. 

Substituindo essas expressões na equação original, a forma fraca da equação de conservação do 

momento linear resulta em: 

∫  
Ω

δv⃗ ρ
 dv⃗ 

 dt
 dΩ = ∫  

∂Ω

δv⃗ τdS − ∫  
Ω

div (δv⃗ )σdΩ + ∫  
Ω

δv⃗ ρ𝐠dΩ               (A. 20) 

A.1.4 Aproximação Espaço-Temporal e Discretização 

A discretização espacial é realizada subdividindo o domínio Ω elementos finitos Ωelconectados 

por nós. Cada variável de campo, como deslocamento 𝐮 , velocidade v e aceleração a, é 

interpolada usando funções de forma N(𝐱). 

𝐮(𝐱, t) ≈ N(𝐱)𝐮(t),  𝐯(𝐱, t) ≈ N(𝐱)𝐯(t),  𝐚(𝐱, t) ≈ N(𝐱)𝐚(t)                 (A. 21) 

onde os vetores 𝐮(t), 𝐯(t)  e 𝐚(t)  contêm os valores nodais do deslocamento, velocidade e 

aceleração, respectivamente. As quantidades virtuais correspondentes são aproximadas da 

mesma forma, isto é, δ𝐮 ≈ Nδ𝐮. 

As quantidades virtuais correspondentes seguem a mesma interpolação: 

δ𝐮(𝐱, 𝐭) ≈  N(𝐱)δ𝐮(𝐭)                                                  (A. 22) 

onde cada função de forma Ni(𝐱) pode ser expressa na forma matricial para cada nó i como 
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Ni(𝐱) = [

Ni(𝐱) 0 0

0 Ni(𝐱) 0

0 0 Ni(𝐱)
]                                           (A. 23) 

A matriz de deformação-deslocamento B, que contém os gradientes das funções de forma, pode 

ser escrita como: 

B(𝐱) = [B1(𝐱) B2(𝐱) … Bnn(𝐱)]                                     (A. 24) 

Com cada Bi(𝐱) definido como: 

Bi(𝐱) =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
∂Ni(𝐱)

∂x1
0 0

0
∂Ni(𝐱)

∂x2
0

0 0
∂Ni(𝐱)

∂x3

∂Ni(𝐱)

∂x2

∂Ni(𝐱)

∂x1
0

0
∂Ni(𝐱)

∂x3

∂Ni(𝐱)

∂x2

∂Ni(𝐱)

∂x3
0

∂Ni(𝐱)

∂x1 ]
 
 
 
 
 
 
 
 
 
 
 
 
 

                                       (A. 25) 

A.1.5 Forma Discretizada do Trabalho Virtual 

A equação do trabalho virtual, na forma discretizada, torna-se: 

δ𝐯T ∫  
Ω

NTρN𝐚dΩ = δ𝐯T ∫  
∂Ωτ

NTτdS − δ𝐯T ∫  
Ω

BTσdΩ + δ𝐯T ∫  
Ω

NTρ𝐠dΩ      (A. 26) 

onde τ⃗  e g⃗  contêm, respectivamente, as componentes das forças de tração e da aceleração 

gravitacional. O vetor δv⃗  representa as velocidades nodais virtuais, que são arbitrárias em todo 

o domínio, exceto nas fronteiras onde uma velocidade é prescrita. 

Dessa forma, a equação do trabalho virtual na sua forma discretizada pode ser reescrita como: 

∫  
Ω

NTρN𝐚dΩ = δ𝐯T ∫  
∂Ωτ

NTτdS − δ𝐯T ∫  
Ω

BTσdΩ + δ𝐯T ∫  
Ω

NTρ𝐠dΩ       (A. 27) 
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Na implementação numérica, as integrais da equação de conservação do momento linear são 

avaliadas para cada elemento, percorrendo todos os elementos da malha computacional. As 

matrizes globais são então formadas pelo processo de montagem das matrizes elementares. A 

integração numérica da equação: 

∫  
Ω

NTρN𝐚dΩ = ∫  
∂Ωτ

NTτdS∫  
Ω

BTσdΩ + ∫  
Ω

NTρ𝐠dΩ                      (A. 28) 

E finalmente, a equação global do sistema é escrita como: 

M 𝐚 = 𝐟ext − 𝐟int                                                        (A. 29) 

onde a matriz de massa M, as forças externas 𝐟ext as forças internas𝐟intt, as forças de tração 𝐟trac 

e as forças gravitacionais 𝐟grav são definidas como: 

M  = ∫  
Ω

 NTρNdΩ                                                   (A. 30)

𝐟ext = 𝐟trac + 𝐟grav  = ∫  
∂Ωr

 NT𝛕dS + ∫  
Ω

 NTρ𝐠dΩ                        (A. 31)

𝐟int  = ∫  
Ω

 BT𝛔dΩ                                                      (A. 32)

  

Nessa formulação, os vetores 𝛕  e 𝐠  contêm, respectivamente, as componentes das forças de 

tração e da aceleração gravitacional. O vetor δ𝐯 representa as velocidades nodais virtuais, que 

são arbitrárias exceto nas fronteiras onde uma velocidade é prescrita 

A.2 Seção específica ao MPM. 

A.2.1 Aproximação Espaço-Temporal e Discretização no MPM 

 

Aproximação Espaço-Temporal e Discretização no MPM: No Método dos Pontos Materiais 

(MPM), a aproximação espaço-temporal e a discretizaçäo do domínio diferem do MEF clássico, 

principalmente devido à introdução de pontos materiais como portadores de informações físicas 

(massa, velocidade, tensão etc.). 

Em vez de discretizar o meio contínuo apenas em termos da malha de elementos fixos, o MPM 

utiliza: 

• Uma malha de cálculo (geralmente estruturada, euleriana), temporariamente usada para 

calcular gradientes e resolver o sistema de equações; 
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• Pontos materiais que se movem com o meio e carregam todas as variáveis de estado 

(posição, velocidade, tensão, deformação, variáveis internas). 

 

A sequência principal é: 

1 Interpolação: As informações dos pontos materiais são projetadas (interpoladas) para os 

nós da malha usando as funções de forma N(x). 

2 Cálculo nodal: As equações (massas, forças, acelerações) são resolvidas nos nós da 

malha. 

3 Atualização: As acelerações e velocidades nodais são usadas para atualizar os pontos 

materiais (movimentá-los). 

4 Reset: A malhaé "zerada" após cada passo de tempo (não acumula variáveis) - apenas os 

pontos materiais guardam o histórico. 

O deslocamento, velocidade e aceleração de um ponto material p são aproximados por: 

𝐮p(t) ≈ ∑  

nn

i=1

Ni(𝐱p)𝐮i(t) 𝐯p(t) ≈ ∑  

nn

i=1

Ni(𝐱p)𝐯i(t) 𝐚p(t) ≈ ∑  

nn

i=1

Ni(𝐱p)𝐚i(t)      (A. 33) 

onde Ni(𝐱p)  é o valor da funçäo de forma do nó i  avaliada na posiçäo do ponto p . 

Essa característica confere ao MPM grande capacidade de tratar grandes deformações sem os 

problemas de distorção da malha típicos do MEF puro. 

Resumo: 

• A integração no MPM é realizada sobre os pontos materiais. 

• A malha atua apenas como ferramenta auxiliar de cálculo e não guarda histórico. 

• Cada passo de tempo consiste em mapear estados entre pontos e nós e reverter. 

 

A.2.2 Formulação Monofásica Single Point no MPM 

 

Nesta seção, é descrita a formulação específica do Método dos Pontos Materiais (MPM) para o 

caso monofásico (single-point), destacando as diferenças fundamentais em relação ao Método 

dos Elementos Finitos (MEF). A principal diferença do MPM em relação ao MEF é que o meio 

contínuo é discretizado não apenas pela malha de cálculo, mas também em um número finito de 

subdomínios denominados pontos materiais. O número total de pontos materiais dentro de um 

elemento é denotado por nMP. 
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Cada ponto material move-se junto com o esqueleto sólido do meio que representa, 

proporcionando uma descrição Lagrangeana do movimento. Os pontos carregam todas as 

informações relevantes, como deslocamento, velocidade, tensão, deformação e variáveis 

internas. A massa associada a cada ponto material permanece constante ao longo do tempo. 

 

Em termos numéricos, os pontos materiais podem ser comparados aos pontos de integração de 

Gauss do MEF, com a diferença crucial de que, no MPM, esses pontos podem se mover 

livremente pela malha computacional e não estão fixos dentro dos elementos. 

 

Os elementos que contêm pelo menos um ponto material são chamados de elementos ativos. 

Apenas os nós desses elementos participam na formação e solução das equações de balanço de 

momento. Elementos vazios, que não possuem pontos materiais, são ignorados durante o 

cálculo, reduzindo o custo computacional. 

 

Inicialmente, cada ponto material é posicionado em uma coordenada local 𝝃𝑀𝑃 pré-definida 

dentro do elemento. Sua posição global 𝐱𝑀𝑃 é interpolada a partir das coordenadas nodais 𝐱𝑖 

usando as funções de forma N𝑖: 

𝐱𝑀𝑃(𝝃𝑀𝑃) ≈ ∑  

𝑛𝑛,𝑒𝑙

𝑖=1

𝑁𝑖(𝝃𝑀𝑃)𝐱𝑖                                            (𝐴. 34) 

onde 𝑛𝑛, 𝑒𝑙 é o número de nós por elemento, 𝑁𝑖(𝝃𝑀𝑃) é a função de forma associada ao nó 𝑖 

avaliada na posição local do ponto material e 𝐱𝑖 sã̃o as coordenadas nodais. O volume associado 

a cada ponto material é calculado de forma que todos os pontos materiais dentro de um elemento 

compartilhem, inicialmente, a mesma fração do volume total do elemento. Assim, o volume do 

ponto material é dado por:  

𝑉𝑀𝑃 =
1

𝑛𝑀𝑃
∫  
Ω𝑒𝑙

∑  

𝑛𝑞,𝑒𝑙

𝑞=1

𝑤𝑞𝐉(𝝃𝑞)𝑑Ω𝑒𝑙                                       (𝐴. 35) 

onde 𝑉𝑀𝑃 é o volume associado ao ponto material, 𝑛𝑀𝑃 é o número de pontos materiais dentro 

do elemento, 𝑛𝑞,𝑒𝑙  é o número de pontos de Gauss no elemento, 𝑤𝑞  é o peso de integração 

associado ao ponto de Gauss 𝑞, e J é a matriz Jacobiana.  

A massa de cada ponto material é então calculada como: 
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𝑚𝑀𝑃 = 𝜌𝑀𝑃𝑉𝑀𝑃                                                         (𝐴. 36) 

onde 𝜌𝑀𝑃  é a densidade do material ao qual o ponto material está associado. 

Para simplificar os cálculos, pode-se utilizar uma matriz de massa concentrada (𝑀𝑙𝑢𝑚𝑝𝑒𝑑) em 

vez da matriz de massa consistente 𝑀. A matriz de massa concentrada é uma matriz diagonal, 

cujos elementos 𝑚  são obtidos somando-se os valores correspondentes da matriz de massa 

consistente, resultando na equação: 

𝑀𝑙𝑢𝑚𝑝𝑒𝑑 = ∑  

𝑛𝑀𝑃

𝑀𝑃=1

𝑚𝑀𝑃𝑁(𝝃𝑀𝑃)                                          (𝐴. 37) 

O uso dessa matriz de massa concentrada simplifica a inversão da matriz de massa, tornando-a 

trivial. No entanto, uma consequência dessa simplificação é a introdução de uma leve dissipação 

da energia cinética no sistema. No MPM, as tensões são integradas nos pontos materiais, o que 

significa que os pontos de quadratura coincidem com os pontos materiais. O peso de integração 

associado a cada ponto material é o seu volume 𝑉𝑀𝑃, permitindo que a integração das tensões 

seja aproximada pela equação: 

∫ 𝐵𝑇  𝝈𝑑Ω𝑒𝑙
Ω𝑒𝑙

≈ ∑  

𝑛𝑀𝑃

𝑀𝑃=1

𝑉𝑀𝑃 𝐵𝑇(𝝃𝑀𝑃)𝝈𝑀𝑃                               (𝐴. 38) 

Essa abordagem permite uma modelagem mais flexível das deformações do meio contínuo, 

garantindo que a informação de tensão e deformação seja transportada junto aos pontos 

materiais, o que diferencia o MPM de outras abordagens baseadas em malha fixa. 

As forças externas são mapeadas para os pontos materiais (MPs) localizados próximos aos 

elementos de contorno onde são aplicadas as trações. Esses MPs, denominados boundary MPs, 

transportam a carga de tração superficial ao longo da simulação. A força de tração na superfície 

é interpolada a partir dos nós do elemento de contorno até os MPs de contorno, de modo que a 

tração em um ponto material localizado na fronteira pode ser expressa como 

𝝉(𝐱𝑏𝑀𝑃) ≈ ∑  

𝑛𝑛,𝑏𝑒𝑙

𝑖=1

𝑁𝑖(𝝃𝑏𝑀𝑃)𝝉(𝐱𝑖)                                          (𝐴. 39) 

onde 𝑛𝑛 , bel representa o número de nós do elemento de contorno, 𝑁𝑖  é a função de forma 

associada ao nó 𝑖 do elemento de contorno, e 𝝃𝑏𝑀𝑃 são as coordenadas locais do ponto material 



 

207 
 

de contorno (boundary MP). Essas coordenadas correspondem à projeção do ponto material 

sobre o elemento de contorno. A superfície de tração do elemento de contorno é denotada por 

𝑆𝑒𝑙. Assim, as integrais da equação de balanceamento de momento podem ser aproximadas para 

cada elemento por: 

𝑀 ≈ ∑  

𝑛𝑀𝑃

𝑀𝑃=1

 𝑚𝑀𝑃𝑁(𝝃𝑀𝑃)                                                      (𝐴. 40) 

𝐟trac ≈ ∑  

𝑛𝑏𝑀𝑃

𝑏𝑀𝑃=1

 (
𝑆𝑒𝑙

𝑛𝑏𝑀𝑃
𝑁𝑇(𝝃𝑀𝑃) ∑  

𝑛𝑛,𝑏𝑒𝑙

𝑖=1

 𝑁𝑖(𝝃𝑏𝑀𝑃)𝜏(𝐱𝑖))                    (𝐴. 41) 

𝐟𝑔𝑟𝑎𝑣 ≈ ∑  

𝑛𝑀𝑃

𝑀𝑃=1

𝑚𝑀𝑃𝑁𝑇(𝝃𝑀𝑃)𝐠, 𝐟𝑖𝑛𝑡                                       (𝐴. 42) 

𝐟𝑖𝑛𝑡 ≈ ∑  

𝑛𝑀𝑃

𝑀𝑃=1

𝑉𝑀𝑃𝐵𝑇(𝝃𝑀𝑃)𝝈𝑀𝑃                                            (𝐴. 43) 

 

O tempo é discretizado em instantes 𝑘 , com incrementos de tempo Δ𝑡 , de forma que a 

atualização temporal segue a relação: 

𝑡𝑘+1 = 𝑡𝑘 + Δ𝑡                                                           (𝐴. 44) 

A equação de balanço de momento (Eq. 2.23) é escrita no instante 𝑡𝑘, resultando em: 

𝑀𝑘𝐚𝑘 = 𝐟𝑒𝑥𝑡
𝑘 − 𝐟𝑖𝑛𝑡

𝑘                                                      (𝐴. 45) 

onde 𝐚𝑘  é a aceleração desconhecida a ser determinada. 

Para a atualização da velocidade, é utilizado um esquema explícito de integração temporal de 

Euler, que é um método numérico de primeira ordem para a solução de equações diferenciais 

ordinárias com um valor inicial dado. Sendo 𝐯𝑘 a velocidade no instante 𝑡𝑘, a velocidade no 

próximo passo de tempo 𝑡𝑘+1 é calculada a partir da aceleração no instante anterior, conforme: 

𝐯𝑘+1 = 𝐯𝑘 + Δ𝑡𝐚𝑘                                                      (𝐴. 46) 

Os deslocamentos 𝐮  no tempo 𝑡𝑘+1  são calculados utilizando a velocidade nodal atualizada 

𝐯𝑘+1, conforme 

𝐮𝑘+1 = 𝐮𝑘 + Δ𝑡𝐯𝑘+1                                                  (𝐴. 47) 

Esse algoritmo foi originalmente desenvolvido por Sulsky et al. e é idêntico ao utilizado no 

método dos elementos finitos Lagrangeano (FEM). No entanto, essa abordagem pode levar a 
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matrizes de massa mal condicionadas no MPM, pois as massas nodais podem atingir valores 

próximos de zero quando um ponto material entra em um elemento anteriormente vazio e ainda 

está próximo da fronteira desse elemento. 

Para mitigar esse problema, Sulsky et al. introduziram uma modificação no algoritmo que 

substitui o uso direto da velocidade pelo uso do momento sempre que possível, evitando a 

divisão por massas nodais próximas de zero, o que melhora a estabilidade numérica do método. 

O ciclo computacional do Método dos Pontos Materiais (MPM) em cada passo de tempo pode 

ser resumido nas seguintes etapas: 

 

1 Cálculo da massa nodal: A massa nodal é calculada utilizando as funções de forma para 

formar a matriz de massa concentrada 𝑀𝑖
𝑘 no instante 𝑡𝑘, conforme a equação 

𝑀 ≈ ∑  

𝑛𝑀𝑃

𝑀𝑃=1

𝑚𝑀𝑃𝑁(𝜉𝑀𝑃)                                               (𝐴. 48)  

2 Avaliação das forças internas e externas: As forças internas 𝐟𝑖𝑛𝑡,𝑖
𝑘  e externas 𝐟ext ,𝑖

𝑘  nos nós 

são avaliadas utilizando as equações 

𝐟trac ≈ ∑  

𝑛𝑏𝑀𝑃

𝑏𝑀𝑃=1

 (
𝑆𝑒𝑙

𝑛𝑏𝑀𝑃
𝑁𝑇(𝝃𝑀𝑃) ∑  

𝑛𝑛,𝑏𝑒𝑙

𝑖=1

 𝑁𝑖(𝝃𝑏𝑀𝑃)𝝉(𝐱𝑖))                (𝐴. 49) 

𝐟𝑔𝑟𝑎𝑣 ≈ ∑  

𝑛𝑀𝑃

𝑀𝑃=1

 𝑚𝑀𝑃𝑁𝑇(𝝃𝑀𝑃)𝐠                                         (A. 50) 

𝐟𝑖𝑛𝑡 ≈ ∑  

𝑛𝑀𝑃

𝑀𝑃=1

 𝑉𝑀𝑃𝐵𝑇(𝝃𝑀𝑃)                                            (𝐴. 51) 

3 Resolução da equação de balanço do momento e determinação da aceleração nodal: A 

aceleração nodal 𝐚𝑖
𝑘 é determinada a partir da equação 

𝐚𝑖
𝑘 = (𝑀𝑖

𝑘)
−1

(𝐟𝑒𝑥𝑡,𝑖
𝑘 − 𝑓𝑖𝑛𝑡,𝑖

𝑘 )                                         (𝐴. 52) 

4 Atualização da velocidade nos pontos materiais: As velocidades nos MPs são atualizadas 

utilizando as acelerações nodais e as funções de forma, conforme 

𝐯𝑀𝑃
𝑘+1 = 𝐯𝑀𝑃

𝑘 + Δ𝑡 ∑  

𝑛𝑛,𝑒𝑙

𝑖=1

𝑁𝑖(𝝃𝑀𝑃
𝑘 )𝐚𝑖

𝑘                                       (𝐴. 53) 
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5 Atualização do momento nodal: O momento nodal é atualizado considerando as velocidades 

dos MPs 

𝐏𝑖
𝑘+1 = ∑  

𝑛𝑒𝑙,𝑖

𝑒𝑙=1

∑  

𝑛𝑀𝑃

𝑀𝑃=1

𝑚𝑀𝑃𝑁𝑖(𝝃𝑀𝑃
𝑘 )𝐯𝑀𝑃

𝑘+1                                 (𝐴. 54) 

6 Atualização das velocidades nodais: As velocidades nodais são recalculadas conforme 

𝐯𝑖
𝑘+1 =

𝐏𝑖
𝑘+1

𝑀𝑖
𝑘                                                          (𝐴. 55) 

7    Cálculo do incremento de deslocamento nodal: O deslocamento nodal é atualizado com 

Δ𝐮𝑖
𝑘+1 = Δ𝑡𝐯𝑖

𝑘+1                                                     (3.56)  

8 Cálculo do incremento de deformação: O incremento de deformação nos MPs é computado 

como 

Δ𝜀𝑀𝑃
𝑘+1 = 𝐵(𝝃𝑀𝑃

𝑘 )Δ𝐮𝑖
𝑘+1                                             𝐴. 57) 

9    Atualização das tensões utilizando o modelo constitutivo: A partir da relação incremental 

entre tensão e deformação, conforme 

𝝈̇ = 𝐃𝜀                                                              (𝐴. 58) 

10 Atualização do volume e da densidade de massa dos MPs O volume e a densidade dos MPs 

são recalculados utilizando 

𝑉𝑀𝑃
𝑘+1 = (1 + Δ𝜀𝑣𝑜𝑙,𝑀𝑃

𝑘+1 )𝑉𝑀𝑃  
𝑘                                         (𝐴. 59)

 

𝜌𝑀𝑃
𝑘+1 =

𝜌𝑀𝑃
𝑘

1 + Δ𝜀𝑣𝑜𝑙,𝑀𝑃
𝑘+1                                                  (𝐴. 60) 

11 Atualização das posições e deslocamentos dos MPs: As posições e deslocamentos dos MPs 

são atualizados conforme 

𝐮𝑀𝑃
𝑘+1 = 𝐮𝑀𝑃

𝑘 + ∑  

𝑛𝑛,𝑒𝑙

𝑖=1

 𝑁𝑖(𝝃𝑀𝑃
𝑘 )Δ𝐮𝑖

𝑘+1                                     (𝐴. 61) 

𝐱𝑀𝑃
𝑘+1 = 𝐱𝑀𝑃

𝑘 + ∑  

𝑛𝑛,𝑒𝑙

𝑖=1

 𝑁𝑖(𝝃𝑀𝑃
𝑘 )Δ𝐮𝑖

𝑘+1                                     (𝐴. 62) 

12 Reinicialização da malha computacional: Após o passo de tempo, os valores nodais são 

descartados, pois todas as informações atualizadas são transportadas pelos pontos materiais. 

Em seguida, a malha computacional é reinicializada para o próximo passo de tempo. 
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Esse ciclo computacional é repetido a cada incremento de tempo, garantindo a evolução 

dinâmica da simulação no Método dos Pontos Materiais. 

 

A.2.3 Formulação bifásica single point MPM 

 

Diferente da formulação monofásica, onde apenas a fase sólida é considerada, a formulação 

bifásica single-point permite capturar fenômenos como o desenvolvimento de pressões de poro 

e o fluxo de fluido dentro do meio poroso. Essa formulação é mais complexa que a monofásica, 

mas é bem mais simples que a formulação bifásica “double-point”. A principal vantagem da 

formulação “single-point” é a simplicidade na implementação, pois mantém um único conjunto 

de MPs para representar o meio saturado. No entanto, a suposição de que os MPs seguem o 

movimento da fase sólida pode limitar a precisão da modelagem quando há grande fluxo relativo 

entre as fases, o que leva à necessidade da formulação double-point. 

 

No contexto do MPM, a formulação bifásica single-point adota um único conjunto de pontos 

materiais (MPs) para representar o meio poroso saturado. Cada MP representa um volume de 

solo saturado, armazenando informações de ambas as fases, sólida e líquida. O volume 

associado a um ponto material é a soma dos volumes parciais da fase sólida e da fase líquida, de 

acordo com 

𝑉𝑀𝑃 = 𝑉𝑀𝑃
𝑆 + 𝑉𝑀𝑃

𝐿                                                       (𝐴. 63) 

onde os subscritos 𝑆  e 𝐿  referem-se, respectivamente, às fases sólida e líquida. 

Diferente do modelo monofásico, onde a massa do MP é constante, aqui a massa total pode 

variar devido ao fluxo de líquido para dentro ou para fora do MP. No entanto, a massa da fase 

sólida permanece constante ao longo da simulação, garantindo automaticamente a conservaçảo 

da fase sólida. A descrição do movimento continua Lagrangeana para a fase sólida, enquanto o 

deslocamento da fase líquida é descrito em relação ao movimento da fase sólida. 

 

Equações Governantes: A formulação bifásica single-point é construída dentro do formalismo 

de meio contínuo, resolvendo um conjunto de equações físicas que incluem o balanço dinâmico 

de momento para a fase líquida, o balanço dinâmico de momento para a mistura e as equações 

de conservação de massa para ambas as fases. 
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Conservação do Momento: O balanço de momento para a mistura, considerando ambas as fases, 

é expresso como 

𝑛𝑆𝜌𝑆𝐚𝑆 + 𝑛𝐿𝜌𝐿𝐚𝐿 = div(𝜎) + 𝜌𝑚𝐠                                      (A. 64) 

onde 𝜌𝑆  e 𝜌𝐿  são, respectivamente, as densidades das fases sólida e líquida, 𝑛𝑆  e 𝑛𝐿  säo as 

frações volumétricas das fases sólida e líquida, e 𝜌𝑚 é a densidade da mistura, definida como: 

𝜌𝑚 = 𝑛𝑆𝜌𝑆 + 𝑛𝐿𝜌𝐿                                                    (𝐴. 65) 

Para solos saturados, a fração volumétrica da fase líquida 𝑛𝐿 equivale à porosidade do esqueleto 

sólido 𝑛 , satisfazendo a relação 𝑛𝐿 + 𝑛𝑆 = 1 . 

A equação de balanço de momento para a fase líquida, por unidade de volume de fluido, é escrita 

como: 

𝜌𝐿𝐚𝐿 = ∇𝑝𝐿 − 𝐟𝑑 + 𝜌𝐿𝐠                                               (A. 66) 

onde 𝑝𝐿 é a pressõo da fase líquida e f𝑑 é a força de arrasto exercida pela fase sólida sobre o 

fluido. 

Conservaçõo de Massa: A equação de conservação de massa da fase sólida é dada por: 

𝑑(𝑛𝑠𝜌𝑆)

𝑑𝑡
+ div(𝑛𝑠𝜌𝑠𝐯𝑠) = 0                                         (A. 67) 

onde 𝐯𝑠 é 𝑜 vetor velocidade da fase sólida. Analogamente, a conservação de massa para a fase 

líquida pode ser expressa como: 

𝑑(𝑛𝐿𝜌𝐿)

𝑑𝑡
+ div(𝑛𝐿𝜌𝐿𝐯𝐿) = 0                                          (A. 68) 

onde 𝐯𝐿  representa a velocidade real da fase líquida: Ao assumir que os grãos sólidos săo 

incompressíveis e desprezar variações espaciais na densidade e na porosidade, as equações de 

conservação de massa para as fases sólida e líquida se reduzem para: 

−
𝐷𝑆𝑛𝐿

𝐷𝑡
+ 𝑛𝑆 div(𝐯𝑆) = 0                                                (A. 69) 

𝜌𝐿

𝐷𝑆𝑛𝐿

𝐷𝑡
+ 𝑛𝐿

𝐷𝑆𝜌𝐿

𝐷𝑡
+ 𝑛𝐿𝜌𝐿 div(𝐯𝐿) = 0                                  (A. 70) 

onde a derivada material em relação à fase sólida é dada por: 

𝐷𝑆(⋅)

𝐷𝑡
=

𝑑(⋅)

𝑑𝑡
+ 𝐯𝑠∇(⋅)                                                   (𝐴. 71) 

ao substituir a equação de conservação de massa da fase sólida na equação da fase líquida, o 

termo 
𝐷flnk 

𝐷𝑡𝑡
 é eliminado, resultando em: 
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𝑛𝑆 div(𝐯𝑆) + 𝑛𝐿

𝐷𝑆𝜌𝐿

𝐷𝑡
+ 𝑛𝐿 div(𝐯𝐿) = 0                                 (A. 72) 

O fluido é considerado fracamente compressível, e a taxa de variação da deformação 

volumétrica da fase líquida 𝜀vol,𝐿 é definida como: 

𝐷𝑆𝜀vol,𝐿

𝐷𝑡
= −

1

𝜌𝐿

𝐷𝑆𝜌𝐿

𝐷𝑡
                                                    (𝐴. 73) 

Substituindo essa relação na equação de conservação de massa da mistura, obtemos: 

𝐷𝑆𝜀vol,𝐿

𝐷𝑡
=

1

𝑛𝐿

[𝑛𝑆 div(𝐯𝑆) + 𝑛𝐿 div(𝐯𝐿)]                                  (𝐴. 74) 

Essa equação, conhecida como equação de armazenamento, representa a taxa de deformação 

volumétrica do fluido intersticial. Por fim, ao reorganizar os termos da equação de conservação 

de massa da fase sólida, obtemos: 

𝐷𝑆𝑛𝐿

𝐷𝑡
= 𝑛𝑆 div(𝒗𝑆)                                                      (𝐴. 75) 

Esta equação expressa a variação da fração volumétrica da fase líquida (porosidade), 

fundamental para a análise da resposta hidromecânica do meio saturado. 

 

Na formulação bifásica single-point, as equações constitutivas para ambas as fases são 

essenciais para descrever completamente o comportamento dos solos saturados. Assumindo a 

validade do conceito de tensões efetivas de Terzaghi, o comportamento mecânico do esqueleto 

sólido pode ser modelado em termos de tensões efetivas. A relação geral entre tensão e 

deformação para a fase sólida é dada por: 

𝐷𝑆𝜎
′

𝐷𝑡
= 𝐃

𝐷𝑆𝜀

𝐷𝑡
                                                            (𝐴. 76) 

onde 𝐃 é a matriz de rigidez tangente do material. Para a fase líquida, a relação constitutiva 

considera a relação entre a deformação volumétrica do fluido intersticial e a pressão da fase 

líquida, expressa por: 

𝐷𝑆𝑝𝐿

𝐷𝑡
= 𝐾𝐿

𝐷𝑆𝜀𝑣𝑜𝑙,𝐿

𝐷𝑡
                                                     (𝐴. 77) 

onde 𝐾𝐿  é o módulo de compressibilidade volumétrica do fluido. Essa equação descreve a 

variação da pressão do fluido em resposta às mudanças no volume dos poros. 

Condições de Contorno: A formulação proposta requer que a fronteira do domínio seja a união 

das seguintes condições de contorno: 
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∂Ω = ∂Ω𝑢 ∪ ∂Ω𝜏 ∪ ∂Ω𝑣𝐿 ∪ ∂Ω𝑝                                        (𝐴. 78) 

onde ∂Ω𝑢 é a fronteira com deslocamento (ou velocidade) prescrito para a fase sólida, ∂Ω𝜏 é a 

fronteira com tensões totais prescritos, ∂Ω𝑣𝐿  representa a fronteira com velocidade prescrita 

para a fase líquida, e ∂Ω𝑝 define a fronteira onde a pressão da fase líquida é imposta. Além disso, 

as seguintes condições devem ser satisfeitas para evitar sobreposição de restrições. 

∂Ω𝑢 ∩ ∂Ω𝜏 = 0,  ∂Ω𝑣𝐿 ∩ ∂Ω𝑝 = 0                                     (A. 79) 

Hipóteses da Formulação: Para simplificar o modelo, algumas hipóteses são adotadas. Assume-

se que as variações espaciais de densidade e porosidade são desprezíveis, considerando os grãos 

sólidos como incompressíveis. Além disso, o escoamento da fase líquida é considerado laminar 

e estacionário para regimes de baixa velocidade. A força de interação entre as fases sólida e 

líquida, ou seja, a força de arrasto 𝐟𝑑, segue a Lei de Darcy, dada por: 

𝐟𝑑 = 𝑛𝐿

𝜇𝐿

𝜅𝐿
(𝐯𝐿 − 𝐯𝑆)                                                      (𝐴. 80) 

onde 𝜇𝐿 é a viscosidade dinâmica do fluido e 𝜅𝐿 é a permeabilidade intrínseca da fase líquida. 

Essa hipótese pode ser controversa para fluxos de alta velocidade, onde as forças de arrasto 

tornam-se não lineares. A permeabilidade intrínseca 𝜅𝐿  pode ser expressa em termos da 

permeabilidade de Darcy 𝑘𝐿, conforme: 

𝜅𝐿 =
𝑘𝐿𝜇𝐿

𝜌𝐿𝑔
                                                                 (𝐴. 81) 

A conservação de massa da fase sólida é automaticamente satisfeita, pois a massa da fase sólida 

permanece constante em cada MP. No entanto, essa condição não se mantém naturalmente para 

a fase líquida, já que o fluido pode se mover em relação ao esqueleto sólido devido a variações 

na deformação volumétrica do solo (mudanças na porosidade). Como resultado, a massa de 

fluido nos MPs pode variar, e a precisão da solução depende da exatidão com que o balanço de 

massa da fase líquida é resolvido. 

 

Na formulação bifásica single-point, fluxos resultantes de variações espaciais da massa líquida 

são desprezados, ou seja, assume-se que 

∇(𝑛𝐿𝜌𝐿) ≈ 0                                                           (A. 82) 

Essa hipótese é razoável quando os gradientes de porosidade são pequenos, mas pode introduzir 

erros quando materiais com porosidades muito diferentes estão em contato. Além disso, para 
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derivar as equações de armazenamento e permeabilidade, o fluido é considerado fracamente 

compressível, e as tensões cisalhantes na fase líquida são desprezadas. 

 

A.3 SEÇÃO ESPECÍFICA CEL 

O Método Coupled Eulerian-Lagrangian (CEL), conforme implementado no Abaqus/Explicit, 

emprega uma abordagem específica de discretização e movimentação de material que difere 

tanto do Método dos Elementos Finitos (MEF) convencional quanto do Método dos Pontos 

Materiais (MPM). 

 

No CEL, o domínio é discretizado por uma malha fixa euleriana tridimensional composta por 

elementos EC3D8R (elemento hexaédrico com integração reduzida). No CEL:O domínio Ω é 

discretizado utilizando uma malha fixa euleriana, que cobre uma regiäo do espaço que pode ou 

não ser inicialmente preenchida por material. O material é representado dentro dos elementos 

por meio de uma fração de volume ( 𝑉𝑓 ), uma variável que indica a proporção do elemento 

ocupada pelo material. 

• As quantidades de interesse físico (massa, momento, energia) são transportadas através 

da malha fixa segundo o movimento relativo do material em relação aos elementos. 

A fração de volume em cada elemento 𝑉𝑓(𝑥, 𝑡) é definida no intervalo: 

0 ≤ 𝑉𝑓(𝑥, 𝑡) ≤ 1 

sendo: 

•  𝑉𝑓 = 0 para elementos vazios, 

• 𝑉𝑓 = 1 para elementos totalmente preenchidos, 

• 0 < 𝑉𝑓 < 1 para elementos de interface. 

As variáveis de campo, como deslocamento 𝐮(𝒙, 𝑡) , são aproximadas através de funções de 

forma associadas à malha euleriana: 

𝐮(𝑥, 𝑡) ≈ ∑  

𝑛𝑛

𝑖=1

𝑁𝑖(𝑥)𝐮𝑖(𝑡)                                                 (𝐴. 83) 

onde 𝑁𝑖(𝑥) säo as funções de forma associadas aos nós da malha. 
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A.3.1 Movimentação do Material e Atualização de Volume no CEL 

No Método Coupled Eulerian–Lagrangian (CEL), a movimentação do material é representada 

por meio da variável fração de volume associada a cada elemento da malha fixa. O material 

atravessa os elementos ao longo do tempo, enquanto a malha permanece imutável (não sofre 

deformação). Esse processo é essencial para garantir a correta conservação das grandezas físicas 

— massa, quantidade de movimento e energia — no domínio Euleriano. A estratégia de 

atualização do estado do sistema no CEL é dividida em duas fases principais: 

Fase Lagrangeana: Inicialmente, as equações de conservação são resolvidas assumindo que o 

material se move junto com os nós da malha, de forma semelhante ao comportamento do Método 

dos Elementos Finitos (MEF) em sua formulação lagrangeana. Nesta fase não há transporte 

relativo do material entre os elementos, as grandezas físicas (massa, momento e energia) são 

atualizadas considerando o material fixo em relação à malha, são aplicados  

 

No entanto, esse avanço temporal baseado na suposição de movimento conjunto entre malha e 

material não é suficiente para representar corretamente os efeitos de grandes deformações, visto 

que, no CEL, a malha permanece fixa e é o material que se move através dela. 

Então após a etapa Lagrangeana, é realizada uma correção para contabilizar o transporte efetivo 

do material em relação à malha fixa, conhecida como fase Euleriana ou de advecção. Nessa 

etapa o fluxo de material entre os elementos da malha é computado, as frações de volume 𝑉𝑓 =

(x,t) de cada elemento são atualizadas, as variáveis associadas ao material, como densidade, 

energia interna e outras propriedades, são redistribuídas. 

A advecção é implementada de forma explícita, utilizando esquemas numéricos que garantem: 

sendo: 

• A conservação rigorosa da massa no domínio computacional, 

• A preservação das propriedades do material durante o transporte, 

• A minimização de erros numéricos, como oscilações espúrias ou difusão numérica 

artificial excessiva 

Este mecanismo é indispensável para simulações envolvendo grandes deslocamentos, colapsos, 

impactos ou escoamentos, onde o material pode atravessar sucessivamente os limites de 

múltiplos elementos ao longo do tempo de simulação 
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A. 3.2 Métodos de Advecção e Projeção no CEL do Abaqus 

Durante a fase Euleriana, o Abaqus/Explicit realiza o transporte das variáveis físicas com os 

seguintes esquemas numéricos: 

a) Método de Advecção de Segunda Ordem (Van Leer): 

• Baseado em Van Leer (1977), é utilizado para transportar massa, energia e outras 

grandezas; 

• Utiliza interpolação quadrática com limitadores para preservar monotonicidade e reduzir 

difusão numérica; 

• Opera com base volumétrica, integrando variáveis sobre o volume dos elementos 

destino; 

• É fundamental para manter a formulação volumétrica e garantir estabilidade e precisão. 

b) Projeção do Momento (Moment Projection Method): 

• Utiliza massas e velocidades nodais para recalcular a quantidade de movimento após a 

advecção; 

• Garante conservação da quantidade de movimento entre elementos; 

• Essencial para evitar inconsistências nos campos de velocidade, especialmente após 

grandes fluxos materiais. 

Esses métodos formam a base do transporte explícito no CEL e são críticos para a robustez do 

método quando aplicado a grandes deformações. 

A. 3.3 Integração das Fases 

O esquema global de resolução em cada incremento de tempo no CEL, portanto, é composto 

por: 

1. Fase Lagrangeana: atualização temporária da resposta do material assumindo que a 

malha acompanha o movimento; 
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2. Fase Euleriana: advecção e atualização explícita das frações de volume e quantidades 

materiais em cada elemento. 

Essa estrutura híbrida permite que o CEL combine: 

• A robustez da resolução Lagrangeana para efeitos locais (como impacto e contato), 

• Com a flexibilidade da movimentação Euleriana para descrever grandes fluxos e 

deformações. 

Conservação de Massa e Equilíbrio no CEL 

Conforme discutido anteriormente na formulação geral, os princípios de conservação da massa, 

do momento linear e da energia interna governam o comportamento de um meio contínuo. 

 

No contexto específico do Método Coupled Eulerian-Lagrangian (CEL), implementado no 

Abaqus/Explicit, esses princípios continuam válidos, mas säo tratados de maneira particular em 

razäo da movimentação do material através da malha fixa. 

Conservação de Massa: Após à movimentação do material (fases Lagrangeana e Euleriana 

descritas na Seção 3.2.2), o Abaqus realiza a atualizaçảo das fraçöes de volume 𝑉𝑓(𝑥, 𝑡) nos 

elementos eulerianos. A conservação de massa é assegurada mediante: 

• A contabilização do fluxo de material entre elementos adjacentes durante a fase 

Euleriana; 

• A imposição explícita de que a massa total do material transferido de um elemento para 

seus vizinhos seja igual à massa removida do elemento de origem. 

Durante o processo de advecção, a massa em cada elemento é atualizada utilizando a seguinte 

expressão discretizada: 

𝑚𝑖
𝑛+1 = 𝑚𝑖

𝑡 + ∑  

𝑗

𝑚𝑗𝑖 − ∑  

𝑗

𝑚𝑖𝑗                                         (𝐴. 84) 

onde: 

• 𝑚𝑖
𝑛 é a massa do elemento 𝑖 no instante 𝑛, 

• Δ𝑚in  é a variação de massa resultante do fluxo de material entre os elementos durante o 

incremento de tempo. 
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Esse procedimento garante que a massa global do sistema permaneça constante, respeitando o 

princípio de conservação de massa, mesmo diante de grandes deformações e movimentações de 

material através da malha. 

 

Conservação de Momento e Equilibrio: Em paralelo à atualização da massa, o equilíbrio das 

forças no domínio euleriano é mantido. 

 

Após o remapeamento (advecçäo): 

• As quantidades como quantidade de movimento ( 𝜌𝐯 ) e energia interna sâo recalculadas 

com base nas novas frações de volume. 

• As forças intemas e externas são atualizadas levando em consideração a nova 

distribuição de material. 

O equilíbrio das forças é resolvido a partir da forma discretizada da equação do movimento, 

como descrito na anteriormente, mas agora ponderado pela fração de volume 𝑉𝑓  de cada 

elemento. 

 


