

Instituto de Ciências Biológicas

Programa de Pós-graduação em Botânica

# Composição florística e síndromes de dispersão associadas a cavidades naturais do Distrito Federal

Iane Perdigão Ferreira

Orientadora: Micheline Carvalho Silva

Brasília, Distrito Federal, 2025

IANE PERDIGÃO FERREIRA

Defesa de Dissertação: Composição florística e síndromes de dispersão associadas a cavidades naturais do Distrito Federal

Defesa de dissertação apresentada ao Programa de Pós Graduação em Botânica da Universidade de Brasília como requisito necessário para obtenção do título de Mestre em Botânica.

> Aluna: Iane Perdigão Ferreira Orientadora:: Micheline Carvalho Silva

| "() Chamo a gruta pelo seu nome e ela passa a viver com seu          |
|----------------------------------------------------------------------|
| miasma. Tenho medo então de mim que sei pintar o horror, eu, bicho   |
| de cavernas ecoantes que sou, sufoco porque sou palavra e também sou |
| o eco."                                                              |
| Clarice Lispector, 1973                                              |
|                                                                      |
|                                                                      |

### Introdução geral

Angiospermas formam o grupo mais diverso de plantas e estão amplamente distribuídas pelo globo, além de constituir um foco central da pesquisa botânica devido à sua vasta importância ecológica e evolutiva (Forzza et al., 2010; APG IV, 2016). No decorrer do tempo, a diversificação das angiospermas trouxe desafios taxonômicos para catalogar sua riqueza, principalmente em regiões como os Neotrópicos (Antonelli & Sanmartín, 2011). Ainda que o registro de plantas nas Américas remonte a séculos atrás, apenas nos últimos anos o acesso a todos os dados produzidos tornou-se algo de fácil alcance. Principalmente pelos avanços de plataformas e databases digitais.

No Brasil, país que abrange quase metade da região Neotropical (Schultz, 2005), os esforços iniciais para catalogar a diversidade vegetal incluem a extraordinária *Flora brasiliensis* (Martius et al., 1883), que documentou 22.767 espécies terrestres. Avanços subsequentes na ciência botânica levaram à identificação de novas espécies e ao refinamento de classificações por meio de estudos florísticos e monográficos (Forzza et al., 2012). Mais recentemente, o projeto *Flora e Funga do Brasil* (continuamente atualizado) visou compilar uma lista abrangente da flora brasileira, listando 36.425 espécies de plantas com sementes, 3.549 gêneros e 271 famílias. Dessas, cerca de 12.500 espécies são ocorrentes no Cerrado, destacando a rica biodiversidade do país (Flora e Funga do Brasil, 2024). Apesar desses avanços, ainda há lacunas a serem preenchidas no que tange a distribuição, identificação e exposição de todas as espécies vegetais.

Associadas ao Distrito Federal, foram documentadas 3.530 espécies de angiospermas, 130 samambaias ou licófitas e apenas 4 gimnospermas (Flora e Funga do Brasil, 2024). A vegetação dessa região é moldada por uma interação complexa de fatores como fertilidade do solo, pH, disponibilidade hídrica, clima, regimes de fogo, geomorfologia e atividades humanas (Haridasan, 1994; Reatto et al., 2008). Essas variáveis dão origem a um mosaico de tipos de vegetação, incluindo florestas, savanas e campos (Ribeiro e Walter 2008).

O Cerrado é, também, composto por ambientes cársticos, que, apesar de cobrirem cerca de 20% da superfície terrestre e 10% do território brasileiro, permanecem sub-representados em estudos botânicos (Bystriakova et al., 2019). O

Brasil abriga mais de 25.000 cavernas, sendo 58 localizadas no Distrito Federal, mas

apenas uma pequena fração foi cientificamente investigada (ICMBIO-Cecav, 2022;

CNC, 2024).

De forma a entender melhor a vegetação existente em ambientes cársticos,

com foco em cavidades naturais do Distrito Federal, o seguinte trabalho visa

identificar e construir um checklist de espécies vegetais presentes ao redor de

cavernas. Além de, tentar compreender a maneira que essa vegetação se exprimiu no

passar dos últimos anos.

Palavras chave: Florística, cavernas, novas ocorrências, anemofilia.

Capítulo 1. Composição florística e vegetação de quatro cavernas no Noroeste do

Distrito Federal, Brasil

Iane Perdigão<sup>1\*</sup> e Micheline Carvalho-Silva<sup>1</sup>

<sup>1</sup> Departamento de Botânica, Universidade de Brasília, Brasília, Brazil.

\*corresponding author: iane.unb@gmail.com

Perdigão I: orcid: https://orcid.org/0009-0006-5265-8527

Carvalho-Silva M: orcid: https://orcid.org/0000-0002-2389-3804

**Abstract** 

The floristic inventory of cave areas in the Federal District revealed a rich

vascular flora, with over 200 plant species inhabiting the surroundings of four caves,

highlighting the karst ecosystem's importance for biodiversity conservation. The

study identified 17 new records for the region, emphasizing the role of caves as

ecological refuges. The predominance of zoochory suggests strong plant-animal

interactions, while ruderal species indicate anthropogenic impacts. Despite the shared

phytophysiognomy, floristic similarity among caves was low. Conservation efforts

must address knowledge gaps, considering human land use impacts and the ecological

significance of these karst formations

Resumo

O inventário florístico das áreas cavernícolas do Distrito Federal revelou uma

flora vascular rica, com mais de 200 espécies de plantas habitando os arredores de

quatro cavernas, destacando a importância do ecossistema cárstico para a conservação

da biodiversidade. O estudo identificou 17 novos registros para a região, ressaltando o

papel das cavernas como refúgios ecológicos. A predominância da Zoocoria

fortes interações entre plantas e animais, enquanto a presença de espécies ruderais

indica impactos antropogênicos. Apesar da fitofisionomia semelhante, a similaridade

florística entre as cavernas foi baixa. Os esforços de conservação devem abordar

lacunas no conhecimento, considerando os impactos do uso da terra e a importância

ecológica dessas formações cársticas.

# INTRODUÇÃO

O Cerrado destaca-se como a savana tropical mais biodiversa do planeta (Myers et al., 2000), abrangendo 13 estados brasileiros em uma área de aproximadamente 200 milhões de hectares, sendo reconhecido como um hotspot global de biodiversidade (Klink & Machado, 2005; Hoffmann, 2021). Acredita-se que sua origem remonte há 10 milhões de anos, com a diversificação de suas linhagens vegetais coincidindo com a expansão das formações savânicas (Pennington et al., 2006; Simon et al., 2009). O Domínio abriga uma flora vascular bastante diversa, com cerca de 12.300 espécies de angiospermas e 330 outras traqueófitas (Flora e Funga do Brasil, 2024), das quais 40% são endêmicas, tornando-o um tesouro botânico de inestimável riqueza.

A vegetação do Cerrado compreende um mosaico de habitats que sustentam diferentes ecossistemas, variando de formações abertas, até áreas florestadas (Ribeiro & Walter, 2008). Essa diversidade de ambientes e a alta taxa de endemismo reforçam a importância global do bioma como hotspot de biodiversidade (Myers et al., 2000; Ponciano, 2015). A distribuição dessa vegetação é condicionada por diversos fatores ambientais, como a profundidade do lençol freático, os tipos de solo (Haridasan, 1994; Reatto et al., 2008) e a frequência das queimadas (Coutinho, 1990; Hoffmann, 1996). Cada ambiente abriga espécies com diferentes estratégias de vida, reprodução e crescimento, refletindo a complexidade ecológica do bioma (Eiten, 1994; Ratter et al., 1997).

Além disso, o Cerrado apresenta notável pluralidade ambiental, incluindo cerca de 10% de seu território composto por áreas cársticas (Bystriakova et al., 2019); que são paisagens formadas pela dissolução de rochas solúveis, incluindo calcário, dolomita e gesso, e ornamentadas por sumidouros, cavernas e sistemas de drenagem subterrâneos (Klimchouk, 2015). No Brasil, áreas cársticas são constantemente associadas ao ambiente ao redor de cavernas carbonáticas. Esse complexo de formação rochosa influi a composição da vegetação do ambiente, criando ilhas terrestres com microhabits de espécies acomodadas em áreas delimitadas pelo substrato rochoso em meio ao mosaico vegetal circundante (Conceição et al., 2007; de Paula et al., 2017). Perante conjunturas ímpares, pequenos ecossistemas são estabelecidos, que, apesar de dificultar o estabelecimento de plantas, acaba por

favorecer o surgimento de espécies raras e muitas vezes, ainda desconhecidas da literatura (Araújo et al., 2008).

Cavernas são espaços subterrâneos formados por processos naturais e acessível pelo ser humano, popularmente conhecidas como caverna, gruta, lapa, toca, abismo, furna ou buraco, incluindo seu ambiente, conteúdo mineral e hídrico, a fauna e a flora ali encontrados e o corpo rochoso onde os mesmos se inserem (BRASIL, 2008).

A heterogeneidade dos micro-habitats em ambientes cavernícolas, sugere a existência de endemismo, como já documentado em outras regiões do mundo, como no Sudeste Asiático, México e as Grandes Antilhas (Liogier 1981; Adams 1972; Brewer 2003; Pérez-García & Meave 2004; Zhu et al. 2017; Bystriakova et al., 2019). No entanto, pouco se sabe sobre a vegetação cárstica do Cerrado, indicando que pesquisas que documentam a diversidade vegetal nesses ambientes são necessárias (Bystriakova et al., 2019).

Embora estudos sobre a vegetação cársticas brasileira datem mais de 100 anos, com trabalhos iniciados por Warming (1908), ainda hoje esses ambientes se mantém alheios a florísticas habituais, sobretudo se comparados a publicações conduzidas em outras áreas rochosas, como cangas (Viana et al., 2016; Giulietti et al., 2019), inselbergs (França & Santos, 1997; Porembski et al., 2012; Couto et al., 2017; Lopes-Silva et al., 2019; Morales & Kollmann, 2019) ou campos rupestres (Peron, 1989; Viana & Lombardi, 2007; Rapini, 2008; Vasconcelos, 2011; Messias et al., 2011; Neves et al., 2018; Zappi et al., 2019). É possível, também, que haja uma subamostragem, uma vez que, alguns autores descrevem a vegetação de áreas cársticas apenas como vegetação de Mata Seca (Ferreira, 2020).

O Distrito Federal possui 58 cavernas registradas pelo Cadastro Nacional de Cavernas (CNC, 2025), e muitas outras ainda não devidamente registradas (Pereira et al., 2009) situadas majoritariamente no grupo geológico conhecido como Grupo Paranoá (Martins et al., 2004) na região norte-noroeste do Distrito Federal. E são nas parcelas compostas por solo formado por rochas pelito-carbonatadas que ocorrem a maioria das cavernas da região (Pereira et al., 2009).

As áreas cársticas do Grupo Paranoá são formadas por uma combinação de minerais como metargilitos, ardósias, metassiltitos, lentes de calcário e raros dolomitos com estromatólitos (Pereira et al., 2009). Mas a variedade cavernícola ultrapassa os limites físicos; apresentando também diversidade em fauna e flora (Ferreira et al., 2023).

O incentivo a estudos florísticos é extremamente importante para que haja fundamentos sobre a biodiversidade vegetal (Giulietti et al., 2005) desse ambiente. A maioria dos estudos florísticos brasileiros, realizados em locais de rocha calcária são referentes ao estrato arbóreo (Brewer et al., 2003; Silva & Scariot, 2004; Jumaat & Zahiruddin, 2005; Pérez-García, et al., 2009; Carvalho & Felfili, 2011; Melo et al., 2013). Porém, a vegetação cárstica também é formada por exemplares herbáceosarbustivos (Ferreira, 2020).

Embora a visão predominante sobre a conservação de cavidades naturais ainda seja limitada a recursos geológicos, a identificação de hotspots de biodiversidade vegetal nesses ambientes otimiza a alocação de recursos e a proteção desses ecossistemas únicos e frágeis (Ferreira et al., 2023). É provável que algumas espécies de plantas estejam vulneráveis ou não possuam registros de ocorrência devido à escassez de estudos sobre composição florística. Esse cenário destaca a relevância dos levantamentos da biodiversidade em ambientes cársticos para a formulação de estratégias de conservação (Carvalho & Felfili, 2011).

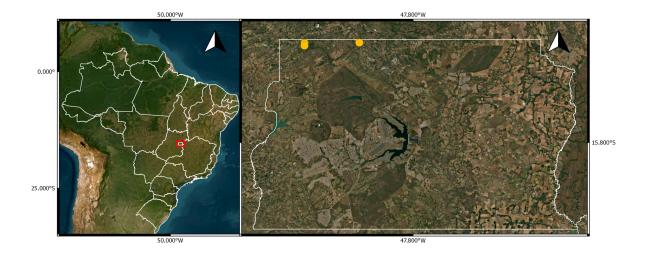
Para criar estratégias de conservação mais eficazes, é essencial compreender as ameaças que colocam essas regiões em risco, como o avanço humano, a poluição e as mudanças climáticas (dos Santos Fernandes et al., 2014). Ao explorar a biodiversidade taxonômica, as condições climáticas e os recursos orgânicos disponíveis nesses hotspots, instiga-se a compreensão de quais mecanismos ecológicos sustentam esses ecossistemas e dá-se luz a novas medidas de conservação.

Ambientes de afloramentos rochosos são moldados por condições ambientais extremas, como variações de temperatura e substratos pobres ou com baixa capacidade de retenção de água (Porembski & Barthlott, 2000). Esses desafios, conhecidos como filtros ambientais, exercem influência direta sobre as espécies vegetais, que apresentam alta especialização para sobreviver nessas condições rigorosas. Para superar as adversidades climáticas e do solo, essas espécies adotam diversas estratégias de interação, garantindo seu estabelecimento, desenvolvimento e a conclusão do ciclo reprodutivo (Cornwell et al., 2006).

As interações entre plantas e animais desempenham um papel crucial na evolução e na dispersão de diásporos ao longo da história das angiospermas (Jordano 1995; Fleming & Kress 2013). Compreender as plantas de uma comunidade com base em suas síndromes de dispersão e polinização pode ajudar a compreender melhor esses processos. Isso ocorre porque a morfologia das estruturas de dispersão

frequentemente representa adaptações específicas que favorecem a colonização de determinados ambientes, além de influenciar diretamente a distribuição geográfica das espécies (Fenner, 1985; Lorts et al., 2008).

Embora os ecossistemas subterrâneos e sua biodiversidade ofereçam inúmeros benefícios à humanidade, eles raramente são incluídos em planos de conservação de grande escala (Canedoli et al., 2022). Proteger a biodiversidade das cavernas exige não apenas a preservação das características únicas dos habitats subterrâneos, mas também a manutenção das condições ambientais intactas do ambiente epígeo circundante (Iannella et al., 2021). Nesse contexto, interpretar e monitorar o uso e a cobertura do solo nas áreas ao redor torna-se essencial, pois esses dados podem fornecer informações críticas para identificar possíveis impactos condizentes com a forma de ocupação da área, direcionar estratégias de conservação e garantir a proteção desses ecossistemas frágeis (Ferreira, 2020).


A fim de assegurar a conservação desse patrimônio natural e dos ecossistemas associados, a condução de estudos florísticos é essencial. Desta forma, para enriquecer o conhecimento sobre regiões cavernícolas brasilienses, foi realizado um levantamento florístico das espécies vasculares encontradas em quatro cavidades naturais do Distrito Federal.

Esperamos que os resultados contribuam para ampliar o entendimento sobre a flora cárstica e forneçam suporte para ações de manejo e conservação da vegetação no carste brasiliense.

### MATERIAL E MÉTODOS

### Área de estudo

As excursões para o levantamento florístico e a coleta de materiais botânicos foram realizadas entre abril de 2023 a abril de 2024 em duas regiões do Distrito Federal, Brazlândia e Fercal, compreendendo quatro cavidades naturais: Caverna Dois Irmãos, Caverna Barriguda (Brazlândia) e Caverna Maracanãzinho e Caverna 3 (Fercal) (Figura 1), todas dentro do complexo Grupo Paranoá.



**Figura 1.** Localização das cavernas Dois Irmãos, Barriguda, Maracanãzinho e Caverna 3.

A Caverna Dois Irmãos está situada na Região Administrativa de Brazlândia (RA IV), (Lat. 15° 31' 60" S; Long. 48° 7' 23" W). Embora a caverna faça parte do EcoParque Dois Irmãos, um espaço de ecoturismo privativo, sua vegetação circundante está alterada, com a presença constante de gado devido à atividade pecuária local. Sua vegetação é composta por plantas características de Mata Seca germinadas sob solo de afloramento rochoso.

A Caverna Barriguda (Lat. 15° 30' 10" S; Long. 48° 7' 49" W), também localiza-se na Região Administrativa de Brazlândia (RA IV), inserida em um ambiente fortemente impactado por atividades antropogênicas como a piscicultura, ecoturismo e especialmente pela predominância de pastagens e presença de gado. Ainda que se situe em um ambiente antropizado, seus arredores são constituídos por fragmentos de Mata Seca.

A Caverna Maracanãzinho está localizada na Região Administrativa da Fercal (RA XXXI) (Lat. 15° 30' 43" S; Long. 47° 57' 33" W). Apesar das imponentes formações rochosas circundantes, a prática esportiva e agropecuária na área é presente, alterando a vegetação originária.

A Caverna 3, está localizada na Região Administrativa da Fercal (RA XXXI) (Lat. 15° 30' 43" S; Long. 47° 57' 33" W), agregada ao mesmo paredão rochoso da caverna anterior, pertencente a um grande complexo cavernícola, margeado por área

de pasto dentro de uma propriedade privada conhecida popularmente como "Morro da Pedreira".

# Composição florística

A coleta de dados seguiu as diretrizes metodológicas estabelecidas por Fidalgo e Bononi (1989) nas áreas adjacentes à entrada das cavernas, em parcelas de 20 x 20 metros, abrangendo a crista e as laterais das cavidades naturais. O material botânico foi coletado por método de varredura, priorizando-se exemplares férteis, embora indivíduos estéreis também tenham sido incluídos para garantir a coleta de todas as espécies da área. Os espécimes coletados foram herborizados e depositados no herbário UB, da Universidade de Brasília.

A identificação dos táxons foi realizada utilizando chaves dicotômicas da *Flora do Distrito Federal* (Cavalcanti & Ramos, 2001, 2002, 2003, 2005; Cavalcanti & Batista 2009 e 2010) e do *Guia das Plantas do Cerrado* (Souza et al., 2018), com verificações complementares em recursos online como *Flora e Funga do Brasil* (<a href="https://reflora.jbrj.gov.br/">https://reflora.jbrj.gov.br/</a>) e speciesLink (<a href="https://specieslink.net/">https://specieslink.net/</a>), Floras do Cerrado, além de consultas a outros taxonomistas. A nomenclatura taxonômica acima do nível de gênero seguiu o sistema de classificação APG IV, enquanto os nomes das espécies acompanharam as atualizações da *Flora e Funga do Brasil* (2024).

Informações como distribuição geográfica, domínio fitogeográfico, ocorrência em ambientes antropizados ou categoria de ameaça foram extraídos do banco de dados da *Flora e Funga do Brasil* (2024).

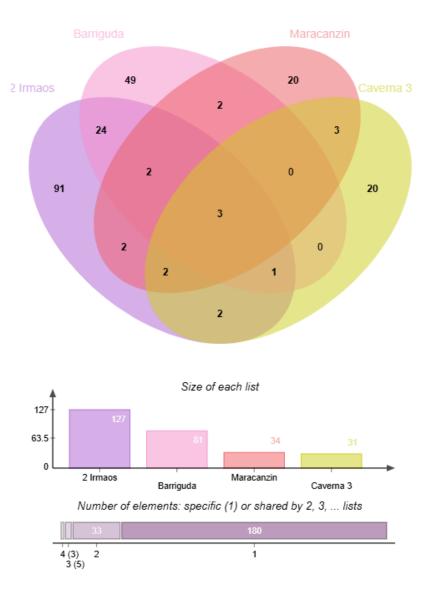
### Síndromes de polinização e dispersão

O inventário das síndromes associadas aos diásporos vegetais foi obtido através de uma revisão bibliográfica usando os termos "pollination cerrado", "pollination cave", "cave flora", "dispersal syndromes", "dispersal syndromes brazil" e "dispersão e polinização" em múltiplos bancos de dados *online*.

As síndromes de dispersão foram categorizadas segundo a tipologia de Van der Pijl (1982).

### Flutuação do uso de solo ao redor das cavernas

As análises de métricas da paisagem das cadeias montanhosas do Noroeste do Distrito Federal foram feitas utilizando o plugin LecoS – Landscape Ecology Statistics (Jung, 2016), implementado na plataforma QGIS v3.10 (QGIS Development Team, 2023). Para isso, foram utilizados os dados de uso e cobertura da terra referentes ao período de 2016 a 2022, obtidos da Coleção 9 do MapBiomas (MapBiomas, 2024). A resolução espacial das imagens raster, equivalem a cerca de 10 metros, o que garante maior precisão na representação do cenário analisado. Para avaliar a estrutura das paisagens, aplicamos a técnica de mínima envoltória complexa no QGIS, a fim de gerar métricas que auxiliam na compreensão da configuração espacial.


A confecção dos mapas foi feita utilizando o software QGIS versão 3.10 software (qgis.org - QGIS Association, 2021). Os shapefiles foram extraídos do CECAV BR (https://l1nk.dev/T94U8).

### RESULTADOS

### Composição florística

As cavidades naturais investigadas em Brazlândia e Fercal abrigam uma flora vascular diversificada, apresentando diferenças florísticas significativas, embora estejam localizadas no mesmo grupo geológico. O levantamento florístico resultou em 221 táxons identificados, distribuídos em 55 famílias botânicas (Tabela 1). As famílias Asteraceae Bercht. & J.Presl e Fabaceae Lindl., foram as mais ricas em números de espécie ao redor de três cavernas, Barriguda, Dois Irmãos e Caverna 3.

Como evidenciado na Figura 2, apenas 3 espécies são compartilhadas entre as quatro cavernas, sendo elas *Dorstenia vitifolia* Gardner, *Elephantopus mollis* Kunth e *Peperomia gardneriana* Miq.



**Figura 2**. Diagrama de Venn mostrando a similaridade florística entre quatro cavernas do Distrito Federal.

Circundando a caverna Barriguda, foram identificadas 77 gêneros e 81 espécies. As famílias Asteraceae e Fabaceae destacam-se, ambas com nove espécies, seguidas de Poaceae com cinco táxons distintos.

A caverna Dois Irmãos apresentou maior riqueza entre as cavernas avaliadas, com 95 gêneros e 127 espécies. As famílias botânicas mais ricas foram Fabaceae (14 espécies), Poaceae (12 espécies) e Asteraceae (8 espécies). Contudo, as famílias Malvaceae Juss. e Euphorbiaceae Juss. também se destacam, possuindo 7 espécies cada.

Entre ambas as cavidades naturais, 37 famílias e 39 gêneros são compartilhados, embora cada localidade mantenha características distintas em sua flora, uma vez que, a semelhança entre Dois Irmãos e Barriguda é de apenas 24 espécies vegetais, correspondente a cerca de 11,5%, da flora avaliada.

Dentre as cavernas avaliadas na Fercal, identificou-se 32 famílias divididas em 34 espécies.

Nas proximidades da Gruta Maracanãzinho, as famílias Sapindaceae Juss. e Orchidaceae Orchis L. se destacam pela diversidade, com quatro e três espécies, respectivamente, representando as mais ricas em número de espécies. Já nas imediações da Caverna 3, foram registradas 30 espécies vegetais, com destaque para as famílias Asteraceae e Fabaceae, que apresentaram, respectivamente, três e quatro espécies

Embora ambas cavidades naturais estejam estruturadas no mesmo complexo cavernícola, elas possuem apenas 8 espécies em comum, totalizando cerca de 12,3% da flora vascular identificada.

Dos 221 táxons identificados, 17 espécies foram registradas pela primeira vez no Distrito Federal (Tabela 2). Essas espécies pertencem a 13 famílias distintas. A caverna Barriguda destaca-se como o local com o maior número de novas ocorrências, registrando um total de 11 espécies inéditas para o DF.

**Tabela 2**. Novas ocorrências de espécies botânicas no Distrito Federal

| Família/Espécie                          | Barrigud<br>a | Dois<br>irmão<br>s | Maracananzinho | Caverna<br>3 |
|------------------------------------------|---------------|--------------------|----------------|--------------|
| ANACARDIACEAE                            |               |                    |                |              |
| Astronium urundeuva<br>(M.Allemão) Engl. | X             |                    | X              |              |
| ARACEAE                                  |               |                    |                |              |
| Taccarum<br>crassispathum<br>E.G.Gonç.   | X             |                    |                |              |

### **ASPARAGACEAE**

Herreria interrupta Griseb. X

### **ASTERACEAE**

Bidens tenera O.E.Schulz X

Koanophyllon andersonii R.M.King & H.Rob. X

### COMBRETACEAE

Terminalia actinophylla Mart. X

CONVOLVULACEA E

Turbina corymbosa (L.) Raf. X

## **EUPHORBIACEAE**

Sebastiania brasiliensis Spreng. X

### FABACEAE

Ctenodon elegans (Schltdl. & Cham.) D.B.O.S.Cardoso & A.Delgado X

Centrosema fasciculatum Benth. X x

Centrosema sagittatum (Humb. & Bonpl. ex Willd.) Brandegee X

| Platymiscium trinitatis<br>Benth.         | X |   |   |
|-------------------------------------------|---|---|---|
| MARANTACEAE                               |   |   |   |
| Maranta pluriflora<br>(Petersen) K.Schum. | X |   |   |
| MORACEAE                                  |   |   |   |
| Dorstenia cayapia Vell.                   | X |   |   |
| RUBIACEAE                                 |   |   |   |
| Simira hexandra<br>(S.Moore) Steyerm.     |   | X |   |
| SOLANACEAE                                |   |   |   |
| Solanum oocarpum<br>Sendtn.               |   | X |   |
| TALINACEAE                                |   |   |   |
| Talinum paniculatum<br>(Jacq.) Gaertn     |   |   | X |

# Tratamento taxonômico das novas ocorrências

O tratamento taxonômico de todas as novas ocorrências foi realizado com o objetivo de descrever detalhadamente as espécies e compreender seu papel dentro desse tipo de vegetação, suas características e sua adaptação ao ambiente.

# Astronium urundeuva (Allemão) Engl., Bot. Jahrb. Syst. 1: 45. 1881.

**Descrição**:—Árvore terrícola de casca rugosa. Folhas com folíolos laterais obovados, elípticos ou oblongos, margem inteira, serrada ou sinuada, nervuras terciárias

inconspícuas. Flores com sépalas ciliadas e pistilódios ausentes; ovário com placentação sub-basal ou lateral. Frutos fusiformes com sépalas subiguais, medindo 0,4–0,7 cm.

**Distribuição**:—Norte (Acre, Rondônia, Tocantins), Nordeste (Alagoas, Bahia, Ceará, Maranhão, Paraíba, Pernambuco, Piauí, Rio Grande do Norte, Sergipe), Centro-Oeste (Goiás, Mato Grosso do Sul, Mato Grosso), Sudeste (Espírito Santo, Minas Gerais, Rio de Janeiro, São Paulo), Sul (Paraná, Rio Grande do Sul, Santa Catarina).

Novos registros:—BRASIL. Distrito Federal: Fercal, Morro da Pedreira, Caverna Maracanãzinho (15°30'41.0"S 47°57'38.0"W), habitat de mata seca alterada. 13 mar. 2024, Ferreira, I.P.; Carvalho-Silva, M.; Castro, C.O. & Vendramini, M. 446 (UB!). Brazlândia, Gruta da Barriguda (15°30'46.0"S 47°57'32.0"W), vegetação de mata seca alterada. 26 abr. 2024, Ferreira, I.P.; Carvalho-Silva, M.; Oliveira-Temoteo, M.E. & Moura, C.O. 352 (UB!).

**Notas**:—*Astronium urundeuva* é uma árvore de ampla distribuição, presente em todas as regiões do país. Embora esse seja o primeiro registro de coleta para o Distrito Federal (Flora e Funga do Brasil, 2025), outro indivíduo já havia sido coletado em 1990, porém, se manteve sem identificação por mais de 30 anos. Dispersão e polinização de diásporos: anemocoria e zoofilica.

### Bidens tenera O.E. Schulz, Bot. Jahrb. Syst. 50(Suppl.): 186. 1914.

**Descrição**:—Erva terrícola de caule glabrescente. Folhas pecioladas, inteiras ou tripartidas, com margens serradas ou denteadas e indumento esparsamente setoso na face adaxial. Inflorescências cimeiras de capítulos discoides. Flores amarelas com limbo cilíndrico e frutos lineares a oblongos, glabros, com páspus aristado.

Distribuição:—Norte (Tocantins), Centro-Oeste (Goiás), Sudeste (Minas Gerais).

**Novos registros**:—BRASIL. Distrito Federal: Brazlândia, Caverna Dois Irmãos (15°31'12.0"S 48°07'29.0"W), vegetação associada à caverna. 7 março 2024, Ferreira, I.P.; Carvalho-Silva, M. & Moura, C.O. 315 (UB!)

**Notas**:—*Bidens tenera* é uma espécie raramente encontrada em herbários. É possível que além de poucas coletas, alguns táxons estejam identificados erroneamente como *B. pilosa*. (Schulz 1914, Sherff 1937). Para maior confiabilidade de identificação, o especialista em Asteraceae, João Bringel foi consultado. Dispersão e polinização de diásporos: Zoocoria e Zoofilica.

# Centrosema fasciculatum Benth., Comm. Legum. Gen.: 56. 1837.

**Descrição:**—Cipó trepador/rastejante de hábito terrestre; caule coberto por indumento; estípulas interpeciolares; folhas ovadas/deltoides com indumento nas nervuras primárias; pecíolos alados; fruto do tipo legume, reto.

**Distribuição:**—Endêmica do Brasil. Centro-Oeste (Goiás, Mato Grosso) e Sudeste (Minas Gerais).

**Novos registros:**—BRASIL. Distrito Federal: Brazlândia, Caverna Dois Irmãos (15°31'11.0"S 48°07'29.0"W), entrada cercada por vegetação de floresta seca alterada. 11 maio 2023, Ferreira, I.P. et al. 229 (UB!).

**Notas**:—*Centrosema fasciculatum* é um táxon raro em herbários, possuindo cerca de dois espécimes por herbário nos outros estados onde é encontrada (Goiás, Mato Grosso e Minas Gerais). Embora seja de fácil identificação, sua raridade pode estar associada a pouco esforço de coleta. Dispersão e polinização de diásporos: Anemocórica e Zoofilica.

# Centrosema sagittatum (Humb. & Bonpl. ex Willd.) Brandegee, Zoë 5(10B): 202. 1905.

Descrição:—Erva trepadeira/rastejante de hábito terrestre; filotaxia alternada; folhas com margem sagitada, formato elíptico; pecíolos alados e alongados; flores conspícuas e brancas; fruto do tipo legume, com válvula pilosa e sementes oblongas. Distribuição:—Do México ao Paraguai e nordeste da Argentina; no Brasil, ocorre no Nordeste (Alagoas, Bahia, Ceará, Maranhão, Paraíba, Pernambuco, Rio Grande do Norte), Centro-Oeste (Goiás, Mato Grosso do Sul, Mato Grosso), Sudeste (Espírito Santo, Minas Gerais, Rio de Janeiro, São Paulo) e Sul (Paraná).

**Novos registros:**—BRASIL. Distrito Federal: Brazlândia, Caverna Dois Irmãos (15°31'11.0"S 48°07'29.0"W), entrada cercada por vegetação de floresta seca alterada. 11 maio 2023, Ferreira, I.P. et al. 192 (UB!).

**Notas**:—*Centrosema sagittatum* possui ampla distribuição pelo país, com registros de coleta em áreas cavernícolas do Distrito Federal. Porém, essas coletas anteriores não foram registradas no site *Flora e Funga do Brasil*, denotando uma necessidade de atualização da plataforma. Dispersão e polinização de diásporos: Anemocórica e Zoofilica.

Ctenodon elegans (Schltdl. & Cham.) D.B.O.S. Cardoso & A. Delgado, Neodiversity 13: 16. 2020.

**Descrição:**—Erva/subarbusto de hábito terrestre; caule cilíndrico e herbáceo, erecto; indumento seríceo no caule e nas folhas; folhas compostas paripinadas com estípulas, folíolos oblongos/elípticos, base arredondada, ápice cuspidado, consistência membranácea, nervura central proeminente, nervuras marginais ausentes; 6–18 folíolos por folha; inflorescência com 2 ou mais flores amarelas, estandarte externamente pubescente; fruto seco deiscente, em forma de foice.

**Distribuição:**—Nordeste (Alagoas, Bahia, Pernambuco), Centro-Oeste (Goiás, Mato Grosso do Sul), Sudeste e Sul do Brasil.

**Novos registros:**—BRASIL. Distrito Federal: Brazlândia, Caverna Dois Irmãos (15°31'11.0"S 48°07'29.0"W), entrada cercada por vegetação de floresta seca alterada. 11 maio 2023, Ferreira, I.P. et al. 258 (UB!).

**Notas**:—*Ctenodon elegans* é uma espécie recentemente publicada, com o basiônimo *Aeschynomene elegans* Schltdl. & Cham. Evidenciada por ser uma espécie ruderal, já possui ocorrências em toda Mata Atlântica e expande sua colonização para ambientes sobre afloramentos rochosos do Cerrado. Dispersão e polinização de diásporos: Anemocórica e Zoofilica.

# Dorstenia cayapia Vell., Fl. Flumin.: 52. 1825 [1829].

**Descrição**:—Erva terrícola com rizomas subterrâneos, caule glabro e entrenós congestos. Folhas cordadas, inteiras, com base cordada, margens denteadas e ápice arredondado. Inflorescências com receptáculo circular e pedúnculo alongado. Flores verdes a lilases, com estames alvo.

**Distribuição**:—Norte (Tocantins), Nordeste (Bahia, Pernambuco, Piauí, Rio Grande do Norte), Centro-Oeste (Goiás, Mato Grosso do Sul, Mato Grosso), Sudeste (Espírito Santo, Minas Gerais, Rio de Janeiro, São Paulo), Sul (Paraná).

**Novos registros**:—BRASIL. Distrito Federal: Brazlândia, Gruta da Barriguda (15°30'46.0"S 47°57'32.0"W), vegetação de mata seca alterada. 26 abr. 2024, Ferreira, I.P.; Carvalho-Silva, M.; Oliveira-Temoteo, M.E. & Moura, C.O. 358 (UB!).

**Notas**:—*Dorstenia cayapia* foi encontrada em pequenas populações ao redor da caverna acompanhada por espécimes de *D. vitifolia*. Embora seja uma espécie distribuída por todo o Brasil Central, o primeiro registro dessa espécie para o Distrito

Federal pode ser atrelado ao baixo esforço de coleta em áreas cársticas. Dispersão e polinização de diásporos: Zoocórica e Zoofílica.

### Herreria interrupta Griseb., Fl. Bras. 3(1): 24. 1842.

**Descrição**:—Liana volúvel terrícola, com ramos cilíndricos e pilosos, apresentando acúleos. Folhas papiráceas, elípticas a estreitamente elípticas. Inflorescência em racemos compostos e pilosos. Flores elipsóides, com tépalas amarelas e androceu formado por filetes subulados e anteras ovóides. Ovário trígono elipsóide.

Distribuição:—Centro-Oeste (Goiás), Sudeste (Minas Gerais).

**Novos registros**:—BRASIL. Distrito Federal: Brazlândia, Caverna Barriguda (15°30'46.0"S 47°57'32.0"W), vegetação de mata seca alterada. 26 abr. 2024, Ferreira, I.P.; Carvalho-Silva, M.; Oliveira-Temoteo, M.E. & Moura, C.O. 379 (UB!).

**Notas**:—*Herreria interrupta* é uma espécie rara em herbários, com poucas exsicatas presentes nos estados em que ocorrem. Para o Distrito Federal, uma pequena população de *H. interrupta* foi encontrada aos arredores da Caverna Barriguda com presença confirmada em épocas de seca e chuva. Dispersão e polinização de diásporos: Autocórica e Anemofilica.

### Koanophyllon andersonii R.M. King & H. Rob., Phytologia 46: 297. 1980.

Descrição:—Erva terrícola com folhas membranáceas ou cartáceas, pecioladas, glabras ou glandulosas na face abaxial. Inflorescência corimbiforme ou em cima corimbiforme. Frutos do tipo cipsela, pilosos e por vezes glandulosos.

Distribuição:—Centro-Oeste (Goiás).

**Novos registros**:—BRASIL. Distrito Federal: Brazlândia, Gruta da Barriguda (15°32'00.0"S 48°06'30.0"W), vegetação adjacente à caverna. 26 abril 2024, Ferreira, I.P.; Carvalho-Silva, M.; Oliveira-Temoteo, M.E. & Moura, C.O. 390 (UB!), 335 (UB!), 313 (UB!).

**Notas**:—Dentre todos os registros, *Koanophyllon andersonii* é o mais especial. Até o presente momento, seus únicos registros eram os registros Typo (Todos em Alto Paraíso - Go). Pela primeira vez esse táxon foi identificado no DF, com ajuda do taxonomista João Bringel. *Koanophyllon andersonii* foi coletado em três expedições diferentes para que houvesse maior disponibilidade de exsicatas da espécie no Herbário UB. Dispersão e polinização de diásporos: Anemocórica e Anemofilica.

### Maranta pluriflora (Petersen) K. Schum., Pflanzenr. IV. 48(Heft 11): 135. 1902.

**Descrição**:—Erva terrícola, não ramificada, com 0,20–1,2 m de altura. Folhas elípticas ou oblongas, com ápice acuminado e pulvinos esparsamente pilosos. Inflorescência com brácteas laxas. Flores com tubo curvo, ovário densamente seríceo. Frutos elipsoides e lisos.

**Distribuição**:—Norte (Tocantins), Nordeste (Maranhão), Centro-Oeste (Goiás, Mato Grosso), Sudeste (Minas Gerais).

**Novos registros**:—BRASIL. Distrito Federal: Brazlândia, Gruta da Barriguda (15°32'00.0"S 48°06'30.0"W), vegetação associada a floresta seca. 26 abril 2024, Ferreira, I.P.; Carvalho-Silva, M.; Oliveira-Temoteo, M.E. & Moura, C.O. 366 (UB!).

**Notas**:—*Maranta pluriflora* foi encontrada fértil uma única vez, com coleta de difícil acesso, pois encontrava-se em uma fissura rochosa. Dispersão e polinização de diásporos: Autocórica e Zoofílica.

*Platymiscium trinitatis* Benth., J. Linn. Soc., Bot. 4(Suppl.): 82. 1860. Descrição:—Árvore terrícola de folhas com estípulas triangulares e folíolos glabros, de 4–25 cm. Inflorescências em racemos ou panículas, eretas ou pendentes, com indumento piloso e brácteas caducas ou persistentes. Flores com unguículos curtos ou longos. Frutos em sâmara oblonga ou reniforme.

Distribuição:—Norte (Amazonas, Pará), Nordeste (Maranhão).

**Novos registros**:—BRASIL. Distrito Federal: Brazlândia, Gruta da Barriguda (15°32'00.0"S 48°06'30.0"W), vegetação calcária. 26 abril 2024, Ferreira, I.P.; Carvalho-Silva, M.; Oliveira-Temoteo, M.E. & Moura, C.O. 362 (UB!).

**Notas**:—Com registros exclusivos para a Amazônia, esse é o primeiro registro de *Platymiscium trinitatis* para o Cerrado (Flora e Funga do Brasil, 2025). Com apenas um indivíduo ocorrente ao redor da gruta Barriguda e coleta única, a identificação desse táxon foi realizada pelo taxonomista Jair Quintino Faria. Dispersão e polinização de diásporos: Anemocórica e Zoofilica.

### Sebastiania brasiliensis Spreng., Neue Entdeck. Pflanzenk. 2: 118. 1821.

**Descrição**:—Arbusto ou árvore rupícola e terrícola, de 4–10 m de altura. Ramos marrons, estriados e esfoliantes. Folhas alternas, subopostas a opostas, membranáceas,

elípticas, com margem crenada e nervação broquidódroma. Inflorescências unissexuais ou bissexuais, com brácteas glandulares e flores pistiladas séssil. Cápsulas não muricadas.

**Distribuição**:—Sudeste (Espírito Santo, Minas Gerais).

**Novos registros**:—BRASIL. Distrito Federal: Brazlândia, Gruta da Barriguda (15°32'00.0"S 48°06'30.0"W), vegetação calcária adjacente. 26 abril 2024, Ferreira, I.P.; Carvalho-Silva, M.; Oliveira-Temoteo, M.E. & Moura, C.O. 346 (UB!).

**Notas**:—*Sebastiania brasiliensis* vem sendo coletada em regiões cársticas do Distrito Federal desde 1964. Porém, a plataforma Flora e Funga do Brasil ainda disponibiliza dados de coleta apenas de Minas Gerais e Espírito Santo. Reforço aqui a necessidade de atualização do website. Dispersão e polinização de diásporos: Zoocórica e Zoofílica.

### Simira hexandra (S. Moore) Steyerm., Mem. Ne w York Bot. Gard. 23: 307. 1972.

**Descrição:**—Árvore/arbusto de hábito terrestre; caule ereto e ramificado; folhas opostas, simples, de formato oval/elíptico, consistência levemente coriácea, margens lisas; lâminas foliares alcançam até 17 cm de comprimento, com venação peltada e paralela.

**Distribuição:**—Não é endêmica do Brasil, mas ocorre nas regiões Norte (Pará, Rondônia, Tocantins), Centro-Oeste (Goiás, Mato Grosso do Sul, Mato Grosso), Sudeste (São Paulo) e Sul (Paraná).

**Novos registros:**—BRASIL. Distrito Federal: Brazlândia, Caverna Dois Irmãos (15°31'11.0"S 48°07'29.0"W), entrada cercada por vegetação de floresta seca alterada. 11 maio 2023, Carvalho-Silva, M. & Vendramini, M.; Maia, A.C. 3784 (UB!).

Categoria na Lista Vermelha da IUCN: EN (Em Perigo).

**Notas**:—Com ampla distribuição no Brasil Central, *Simira hexandra* é um dos únicos táxons (dentre os novos registros) que possui avaliação feita pelo IUCN. Catalogada como "Em Perigo" o registro dessa espécie é uma relíquia escondida nas áreas cársticas. Dispersão e polinização de diásporos: Anemocórica e Zoofilica.

Solanum oocarpum Sendtn., Fl. Bras. 10: 106. 1846.

**Descrição:**—Arbusto, árvore ou cipó trepador/rastejante de hábito terrestre; caule com indumento e acúleos, ramificação simpódica; folhas simples, cartáceas, com indumento e pecíolo; formato ovado, margem sinuada, ápice cuneado, base assimétrica/aguda; superfícies adaxial e abaxial com tricomas estrelados; flores pedunculadas, brancas com estames amarelos.

Distribuição:—Não é endêmico do Brasil, mas nativo da América do Sul.

**Novos registros:**—BRASIL. Distrito Federal: Brazlândia, Caverna Dois Irmãos (15°31'11.0"S 48°07'29.0"W), entrada cercada por vegetação de floresta seca alterada. 11 maio 2023, Ferreira, I.P. et al. 246 (UB!).

**Notas**:—Com registros datados a partir de 1963 (por Heringer, EP), *Solanum oocarpum* parece ser uma espécie bem adaptada ao carste. Embora haja registros de *S. oocarpum* no herbário UB, a plataforma Flora e Funga do Brasil carece de atualizações sobre a ocorrência da espécie, uma vez que não há citações acerca da sua distribuição geográfica. Dispersão e polinização de diásporos: Zoocórica e Zoofilica.

## Taccarum crassispathum E.G. Gonç., Aroideana 25: 21. 2002 [2003].

**Descrição:**—Erva geófita; caule tuberoso; folha solitária com pecíolo de 56,5 cm de comprimento, variegada, marmorizada, geralmente carmim na base, lâmina bipartida, ovada, 10 x 11 cm, lóbulos com margens inteiras; inflorescência solitária e ereta; pedúnculo de 14 cm, espata coriácea de coloração verde-pálida, com flores unissexuais e ausência de perigônio; sinândrias masculinas de 4 a 6 estames, porção feminina com estaminódios livres.

**Distribuição:**—Endêmica do Brasil, ocorrendo nas regiões Norte (Pará, Tocantins), Nordeste (Maranhão) e Centro-Oeste (Goiás, Mato Grosso).

**Novos registros:**—BRASIL. Distrito Federal: Brazlândia, Caverna Dois Irmãos (15°31'11.0"S 48°07'29.0"W), entrada cercada por vegetação de floresta seca alterada. 11 maio 2023, Carvalho-Silva, M. & Vendramini, M.; Maia, A.C. 3751 (UB!).

**Notas:**—*Taccarum crassispathum* possui ocorrência em afloramentos rochosos em estados ao redor do Distrito Federal, porém, esse é o primeiro registro para o estado. Possuindo apenas um indivíduo observável, a coleta foi indispensável. A identificação do táxon foi feita pela taxonomista Mel Camelo. Dispersão e polinização de diásporos: Zoocórica e Zoofílica.

### Talinum paniculatum (Jacq.) Gaertn., Fruct. Sem. Pl. 2: 219. 1791.

**Descrição**:—Erva rupícola ou terrícola com inflorescências ramificadas, portando mais de 50 flores. Pedúnculos cilíndricos. Flores com 10 a 15 estames. Frutos com sépalas caducas e sementes verrucosas.

**Distribuição**:—Norte (Acre, Amazonas, Pará, Rondônia), Nordeste (Alagoas, Bahia, Ceará, Maranhão, Paraíba, Pernambuco, Piauí, Rio Grande do Norte, Sergipe), Centro-Oeste (Goiás, Mato Grosso do Sul, Mato Grosso), Sudeste (Espírito Santo, Minas Gerais, Rio de Janeiro, São Paulo), Sul (Paraná, Rio Grande do Sul, Santa Catarina).

**Novos registros**:—BRASIL. Distrito Federal: Fercal, Morro da Pedreira, Caverna 3 (15°33'00.0"S 48°07'30.0"W), vegetação calcária associada. 29 fevereiro 2024, Carvalho-Silva, M.; Castro, C.O.; Lauriola, C. & Moura, C.O. 3797 (UB!).

Fercal, Morro da Pedreira, Caverna Maracanãzinho (15°33'30.0"S 48°07'00.0"W). 13 março 2024, Carvalho-Silva, M.; Castro, C.O. & Vendramini, M. 3821 (UB!).

**Notas**:—A família Talinaceae Doweld é amplamente distribuída pelo Brasil. Contudo, esse é o primeiro registro da família Talinaceae, do gênero *Talinum* Adans. e da espécie *Talinum paniculatum* para o Distrito Federal conforme o *Flora e Funga do Brasil* (2025). Por ser uma espécie ruderal, é caracterizada como erva daninha em outras regiões. Dispersão e polinização de diásporos: Zoocórica e Zoofilica.

# Terminalia actinophylla Mart., Flora 24(2, Beibl.): 22. 1841.

**Descrição:**—Árvore terrestre; caule com ramos superiores glabros; folhas obovadas/subarredondadas, base aguda, ápice obtuso/arredondado, textura cartácea, venação broquidódroma com 5 a 9 nervuras secundárias, indumento glabro; inflorescência do tipo espiga, axilar/terminal; flores hermafroditas; fruto seco alado (2 a 4 asas), com formato arredondado/elíptico.

**Distribuição:**—Endêmica do Brasil, ocorrendo no Norte (Tocantins), Nordeste (Bahia, Maranhão, Piauí), Centro-Oeste (Goiás) e Sudeste (Minas Gerais).

**Novos registros:**—BRASIL. Distrito Federal: Brazlândia, Caverna Dois Irmãos (15°31'11.0"S 48°07'29.0"W), entrada cercada por vegetação de floresta seca alterada. 11 maio 2023, Ferreira, I.P. et al. 245 (UB!).

Categoria na Lista Vermelha da IUCN: LC (Pouco Preocupante).

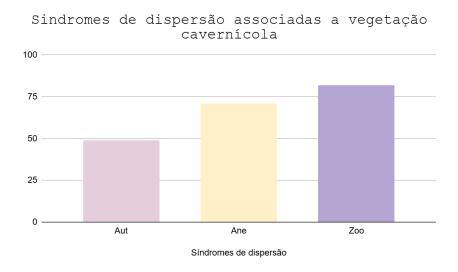
**Notas**:—Sendo a única árvore com mais de 10 metros nos arredores cavernícolas, *Terminalia actinophylla* mostrou-se peculiar por ser um dos poucos indivíduos arbóreos férteis durante a estação seca. Dispersão e polinização de diásporos: Anemocórica e Zoofilica.

### Turbina corymbosa (L.) Raf., Fl. Tellur. 4: 81. 1836 [1838].

**Descrição:**—Cipó terrestre trepador/rastejante; caule cilíndrico com ramos volúveis, consistência sublenhosa, ramificação monopódica; folhas pecioladas, com venação pinada, formato cordado, base cordada, ápice agudo, superfícies adaxial e abaxial glabras, consistência coriácea, margem inteira; flores pedunculadas, infundibuliformes, com corola branca; gineceu unicarpelar, estames superiores com anteras basais em torno do ovário.

**Distribuição:**—Presente no Norte (Pará), Nordeste (Bahia), Centro-Oeste (Mato Grosso do Sul, Mato Grosso), Sudeste e Sul do Brasil.

**Novos registros:**—BRASIL. Distrito Federal: Brazlândia, Caverna Dois Irmãos (15°31'11.0"S 48°07'29.0"W), entrada cercada por vegetação de floresta seca alterada. 11 maio 2023, Ferreira, I.P. et al. 198 (UB!)

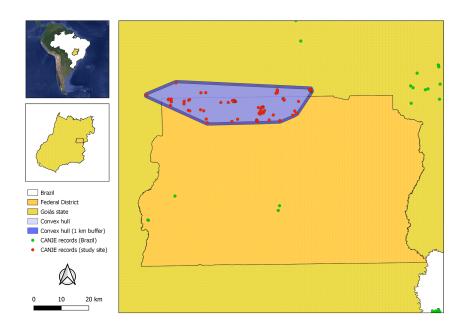

**Notas**:—A coleta de *Turbina corymbosa* surpreendeu a todos por ser um táxon sem registro no DF e Goiás. Sendo, também, o primeiro registro da espécie para áreas cársticas brasileiras. Dispersão e polinização de diásporos: Autocórica e Zoofilica.

### Síndromes de dispersão

A análise dos resultados revelados pelo levantamento bibliográfico permitiu a identificação de síndromes de dispersão em 202 das 221 espécies vegetais coletadas, o que representa uma expressiva proporção (Tabela 1). Dentre as síndromes, a Zoocórica destacou-se como a mais prevalente, abrangendo cerca de 40% das espécies (Figura 3).

A Anemocoria, com uma representatividade de aproximadamente 35%, surge como a segunda síndrome de dispersão mais comum. Por outro lado, a Autocoria foi identificada como a síndrome de dispersão menos frequente, apesar de corresponder a cerca de 24% das espécies relacionadas às cavernas.

Além disso, observou-se que, paralelamente à predominância da Zoocoria, a Zoofilia se destacou como a forma predominante de polinização, englobando praticamente todas as filias registradas.




**Fig. 3** Síndromes de dispersão associadas a vegetação cavernícola. **Aut:** Autocoria; **Ane:** Anemocoria; **Zoo:** Zoocoria

### Uso e cobertura de terra

Na Figura 4 é possível observar a delimitação da área denominada neste trabalho como "Noroeste do Distrito Federal", parte integrante do grupo espeleológico Paranoá, onde a maioria das Cavernas do Distrito Federal estão registradas.

Com os dados de uso da terra fornecidos pela Coleção 9 do MapBiomas Brasil, é possível identificar 12 diferentes classes de uso do solo na área abrangida pelo polígono que inclui Brazlândia e Fercal. As atividades agropecuárias são agrupadas em quatro categorias principais: pastagem, agricultura, silvicultura e mosaicos de uso. Dentre as áreas antropizadas, a "Pastagem" (22,4%) e os "Mosaicos de uso" (8,69%) se destacam como as mais representativas (Tabela 2).



**Fig 3**. Polígono evidenciando um conglomerado de cavernas na área noroeste do Distrito Federal.

Dentre as áreas de cobertura vegetal, a "Formação Savânica" (34,94%), "Formação Florestal" (24,1%) e "Formações Campestres" (6,10%) são destaques (Tabela 3).

**Tabela 3**. Porcentagem e formas de uso e cobertura do solo em um polígono abrangendo as cavernas Barriguda, Dois Irmãos, Maracanãzinho e Caverna 3.

| Classe                     | Cobertura do Solo (ha) | Porcentagem (%) |
|----------------------------|------------------------|-----------------|
| Formação Savânica          | 270.004.400,0          | 34,94           |
| Pastagem                   | 176.505.900,0          | 22,84           |
| Formação Florestal         | 186.225.200,0          | 24,10           |
| Mosaico de Usos            | 67.170.500,0           | 8,69            |
| Formação Campestre         | 47.106.800,0           | 6,10            |
| Outras Áreas não Vegetadas | 12.047.600,0           | 1,56            |
| Mineração                  | 7.208.700,0            | 0,93            |
| Silvicultura               | 3.758.200,0            | 0,49            |

| Campo Alagado e Área<br>Pantanosa | 1.114.300,0 | 0,14 |
|-----------------------------------|-------------|------|
| Lavoura Temporária                | 878.800,0   | 0,11 |
| Área Urbanizada                   | 717.400,0   | 0,09 |
| Rio, Lago e Oceano                | 81.300,0    | 0,01 |

As classes acima foram agrupadas em dois tipos principais de áreas (áreas naturais e áreas antropizadas) e submetidos à análise estatística (Tabela 4). Os resultados indicam que as áreas naturais possuem uma média de cobertura do solo significativamente maior do que as áreas antropogênicas, reforçando a predominância das formações naturais na paisagem regional.

**Tabela 4.** Média de cobertura do solo, discriminadas em "áreas naturais" e "áreas antropizadas"

| Tipo de Área       | Média (ha)    | Mediana (ha)   | Desvio Padrão (ha) |
|--------------------|---------------|----------------|--------------------|
| Áreas Naturais     | 100.906.400,0 | 0 47.106.800,0 | 121.338.362,0      |
| Áreas Antropizadas | 15.296.867,0  | 5.483.450,0    | 25.769.875,0       |

A análise percentual da distribuição do solo entre áreas naturais e antropogênicas indica que as áreas naturais representam mais de 65% da cobertura do solo, enquanto as áreas antropogênicas contribuem com cerca de 35%, denotando um cenário em que a conservação natural ainda é majoritária.

# **DISCUSSÃO**

Conferindo ao carste uma alta importância para a conservação da diversidade biológica (Ferreira, 2020), o inventário florístico realizado nas áreas cavernícolas do Distrito Federal revelou uma rica flora vascular, com mais de duzentas espécies de plantas habitando os arredores das quatro cavernas.

Influenciado pela queda sazonal das folhas, característica das matas secas, que ocorre como uma resposta adaptativa à escassez prolongada de água e às altas

temperaturas, coletas regulares foram indispensáveis para coletarmos o maior número de espécies da região.

O alto número de registros obtido foi provavelmente influenciado pelo extenso esforço amostral, que abrangeu expedições regulares, cobrindo todas as estações do ano (Brower et al.,1998). Algumas espécies, como *Terminalia fagifolia* Mart.., *Manihot anomala* Pohl e *Koanophyllon andersonii* R.M.King & H.Rob. florescem durante parte da estação seca, enquanto *Peperomia gardneriana* Miq., *Peperomia lanceolato-peltata* C.DC. só pode ser vista durante a estação chuvosa, desaparecendo totalmente na estação seca.

O registro de espécies com ocorrência ruderais evidencia a fragilidade cárstica diante das interferências humanas. Espécies como *Talinum paniculatum* e *Desmodium affine* Schltdl. possuem o potencial de alterar a dinâmica natural desses ambientes, competindo com espécies endêmicas. *Talinum paniculatum* foi vista por toda a extensão vegetativa ao redor das cavernas em Brazlândia, podendo indicar ameaça à biodiversidade (Ziller, 2001; Pyšek et al., 2004; Andrade, 2013).

Registros de ocorrência de espécies de *Peperomia* Ruiz & Pav. são frequentemente relatados em afloramentos calcários, com possíveis adaptações rupícolas (Yuncker, 1974; de Queiroz et al., 2014). Adaptações como suculência e o metabolismo ácido das crassuláceas (CAM) permitem que algumas espécies suportem o estresse hídrico ou cresçam diretamente em afloramentos rochosos (Yuncker, 1974). Notavelmente, *Peperomia gardneriana* foi uma das poucas espécies compartilhadas entre todas as quatro cavernas, possivelmente devido a sua adaptação rupícola.

Embora a vegetação cavernícola seja influenciada pela matriz fitogeográfica, não há uma relação florística evidente entre os sítios de coleta. Cada caverna abriga uma vegetação singular, composta por elementos exclusivos de sua flora. Apesar da semelhança fitofisionômica entre esses ambientes, a baixa similaridade florística é evidente, sendo exemplificada pelo compartilhamento de apenas três espécies.

Dentre as novas ocorrências, destaca-se a primeira de *Centrosema sagittatum* (Humb. & Bonpl. ex Willd.) Brandegee (Fabaceae) e *Bidens tenera* O.E.Schulz (Asteraceae), esta última registrada em poucos estados. Entre as Asteraceae registradas pela primeira vez no Distrito Federal, ressalta-se *Koanophyllon andersonii*, uma espécie raríssima, com coletas restritas à Chapada dos Veadeiros. Embora pouco presente em herbários, revelou-se bastante frequente ao redor de cavernas em Brazlândia. A presença humana pode estar impactando a biodiversidade

natural cárstica, evidenciada pela ocorrência dos gêneros *Desmodium* e *Elephantopus*, frequentemente associados a áreas antropizadas e com potencial efeito negativo sobre a biodiversidade nativa (Nicholls, 1972; Ferreira, 2020). Além disso, registra-se pela primeira vez a ocorrência de *Platymiscium trinitatis* Benth. (Fabaceae), anteriormente conhecida apenas para a região Norte do país (Flora e Funga do Brasil, 2025).

O desconhecimento sobre a biodiversidade cárstica, particularmente devido à escassez de registros florísticos, coloca essa flora inexplorada em risco iminente de extinção antes mesmo que sua extensão completa seja compreendida ou que medidas de proteção possam ser implementadas (Forzza et al., 2012). No contexto atual do desconhecimento da flora cárstica, os déficits Linneano e Wallaceano são evidentes. Nos quais, desafios de identificação de espécies e lacunas nos dados de ocorrência, respectivamente, dificultam a compreensão dessas áreas (Ferreira, 2020). O incentivo a estudos florísticos em afloramentos calcários é crucial para abordar esses déficits, contribuindo diretamente para estratégias de conservação, como a priorização de formações cársticas como áreas-chave de preservação (Lomolino, 2002; Whittaker et al., 2005).

O registro de dezessete novas ocorrências de plantas no Distrito Federal, indica a importância da biodiversidade local. Esses registros não apenas ampliam o conhecimento sobre a flora regional, mas também destacam a relevância dos ambientes cársticos como refúgios ecológicos e centros de endemismo. Além disso, documentar essas espécies é essencial para subsidiar estratégias de conservação direcionadas a essas formações geológicas singulares que conectam o ambiente epígio e subterrâneo.

A zoocoria é uma dessas conexões, pois caracteriza-se como a síndrome de dispersão mais prevalente em ambientes de Mata Seca, conforme, também, demonstrado por Mikich e Silva (2001). No Distrito Federal, a zoocoria foi predominante na dispersão de diásporos da maioria das angiospermas presentes em cavernas. Esse fenômeno sugere que as plantas dessa região dependem significativamente dos animais para a dispersão de suas sementes, reforçando a importância de polinizadores e dispersores faunísticos na manutenção da diversidade vegetal. Esse papel é especialmente crucial em ecossistemas que necessitam de interações bióticas para se manterem equilibrados (Fenner, 1985; Morellato & Leitão-Filho, 1992). A predominância da Zoocoria em fragmentos de vegetação semidecidual não implica necessariamente que a dispersão seja realizada

exclusivamente por animais. Mas, que sua ausência pode gerar mudanças significativas na estrutura da floresta, como alterações na ocupação espacial e intensificação da competição intraespecífica entre algumas espécies vegetais (Neto et al., 2001). Evidenciando a importância da intocabilidade nesses ambientes.

Embora a anemocoria, um processo menos dependente de interações biológicas diretas, também contribua para a dispersão de sementes, sua ocorrência destaca a relevância dos processos abióticos na dinâmica da vegetação (Van der Pijl, 1982). Por outro lado, processos de dispersão autocóricos podem favorecer espécies traqueófitas, como as Selaginellaceae Willk., possibilitando sua fixação em áreas rupícolas.

De acordo com a literatura, a maioria das angiospermas é polinizada por animais, principalmente insetos, mas também por vertebrados (Faegri & van der Pijl, 1979; Stephens et al., 2023). Este dado reforça os achados do estudo atual, que revela que a Zoofilia está presente em quase todas as espécies investigadas. No entanto, embora estudos como o de Monro (2018) descrevam cavernas como ecótonos naturais, com flora intimamente ligada à fauna local, são necessários mais estudos para avaliar a aplicabilidade dessa hipótese em cavernas do Distrito Federal.

Para que haja a conservação de áreas cársticas e sua fauna e flora associada, é necessário acompanhar a maneira que o solo ao seu redor é utilizado. Os dados obtidos neste trabalho indicam que as Áreas Naturais da região noroeste do Distrito Federal apresentam uma maior cobertura de solo em comparação com as Áreas Antropogênicas, conforme demonstrado pela análise estatística. A média de cobertura do solo nas áreas naturais é de aproximadamente 100.906.400,0 de hectares (65% da cobertura do solo), enquanto nas áreas antropogênicas é de 15.296.867,0 de hectares (35% da cobertura do solo). Esse cenário evidencia que, apesar da presença de atividades humanas, as áreas naturais ainda dominam a paisagem da região.

De acordo com Neves e colaboradores (2018), o Distrito Federal é composto por seis tipos de relevo, sendo que a região noroeste se caracteriza por uma combinação de chapadas e terrenos colinosos. Nas chapadas, que são áreas predominantemente planas com uma declividade de até 5%, as atividades agropecuárias se destacam. Essa característica está em consonância com os dados da Coleção 9 do MapBiomas Brasil, que entre os anos de 2016 a 2022, indicaram que aproximadamente 34% da região é ocupada por atividades agropecuárias.

Entretanto, é essencial utilizar rasters atualizados com uma resolução espacial de 10 metros, a fim de identificar com precisão essas nuances no uso do solo e nos limites de cada caverna. Isso é crucial para uma análise detalhada, uma vez que o estudo realizado por Neves et al. (2018), um dos poucos trabalhos com foco nessa área, utilizou rasters com resolução de 30 metros, o que dificultou a discussão das variações mais sutis desses ambientes e impediu uma análise mais acurada dos efeitos das atividades humanas.

Essa variante é observada por exemplo nas cavernas Maracanãzinho e Caverna 3, onde observa-se, presencialmente, uma sobreposição de áreas destinadas ao uso esportivo e agropecuário com as zonas cavernícolas, o que torna difícil a distinção entre "áreas naturais" e "áreas antropizadas". A sobreposição de usos e a falta de delimitação clara tornam o ambiente mais vulnerável a impactos indesejados, como a degradação e a fragmentação dos habitats.

Entender maneiras de observar o uso da terra, mesmo que a distância, possibilita maiores entendimentos sobre a expansão humana e auxilia a fomentar maneiras de proteger ambientes naturais de deteriorações desordenadas.

### Conclusões

Este é o primeiro estudo a documentar plantas vasculares em múltiplas cavernas do Distrito Federal ou da região Centro-Oeste, revelando uma flora composta por 221 táxons, incluindo 17 registros inéditos para o Distrito Federal. A descoberta tardia de uma flora tão diversa indica que a diversidade das cavernas tem recebido pouca atenção, subestimando a pluralidade da sua biodiversidade.

No contexto do Distrito Federal, a flora das áreas cársticas necessita urgentemente de revisões e atualizações de dados que embasam estratégias de conservação. Deve-se priorizar o incentivo a levantamentos florísticos, identificações taxonômicas e cumprimento de legislações que assegurem a proteção das cavernas e sua biodiversidade. A integração de dados regionais à literatura internacional pode oferecer alicerces para comparações globais e para a formulação de novas políticas de conservação. A publicação de informações espaciais acerca de ambientes cársticos pelo Centro Nacional de Pesquisa e Conservação de Cavernas (CECAV) e a

publicação de dados sobre distribuição, abundância e características de plantas *Flora* e *Funga do Brasil* representaram uma oportunidade para superar essas barreiras.

### Referências

Adams, C. D. (1972). Flowering plants of Jamaica. University of the West Indies.

Andrade, L. A. (2013). Plantas Invasoras: espécies vegetais exóticas invasoras da Caatinga e ecossistemas associados. Areia: CCA/UFPB, 100 p.

Antonelli, A., & Sanmartín, I. (2011). Why are there so many plant species in the Neotropics? *Táxon*, 60(2), 403–414.

APG II. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Botanical Journal of the Linnean Society. London, v.141, n.4, p.399-436, 2003.

APG IV. The Angiosperm Phylogeny Group, Byng, J. W., Chase, M. W., Christenhusz, M. J. M., Fay, M. F., Judd, W. S., Mabberley, D. J., Sennikov, A. N., Soltis, D. E., Soltis, P. S., & Stevens, P. F. (2016). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. *Botanical Journal of the Linnean Society*, 181(1), 1–20.

Brewer, S. W., Rejmanek, M., Webb, M. A. H., & Fine, P. V. A. (2003). Relationships of phytogeography and diversity of tropical tree species with limestone topography in southern Belize. *Journal of Biogeography*, 30(11), 1669–1688.

Brower, J. E., Zar, J. H., & Von Ende, C. N. (1998). Field and laboratory methods for general ecology

Bystryakova, N., et al. (2019). A preliminary evaluation of the karst flora of Brazil using collections data. *Scientific Reports*, 9(1), 17037.

Cavalcanti, T. B., & Ramos, A. E. (Orgs.). (2001–2005). *Flora do Distrito Federal*. Volumes 1–4. Brasília: Embrapa Recursos Genéticos e Biotecnologia.

Cavalcanti, T. B., & Batista, M. F. (Orgs.). (2009–2010). *Flora do Distrito Federal*. Volumes 7–8. Brasília: Embrapa Recursos Genéticos e Biotecnologia.

CONSELHO NACIONAL DO MEIO AMBIENTE (CONAMA). (2004). Resolução nº 347, de 10 de setembro de 2004. *Diário Oficial da União*, Seção 1, p. 54–55.

Coutinho, L. M. (1990). Fire in the ecology of the Brazilian cerrado. In *Fire in the tropical biota* (pp. 82–105). Springer Berlin Heidelberg.

de Queiroz, G. A., Guimarães, E. F., & de Barros, A. A. M. (2014). O gênero Peperomia Ruiz & Pav. (Piperaceae) na Serra da Tiririca, Rio de Janeiro, Brasil. Acta Biológica Catarinense, 1(2), 5-14.

Eiten, G. (1994). Vegetação do cerrado. In *Cerrado: caracterização, ocupação e perspectivas* (Vol. 2, pp. 17–73).

Faegri K, van der Pijl L. 1979. *The principles of pollination ecology, 3rd revised edn.* Oxford, UK: Pergamon Press

Fenner, M. (1985). Seed ecology. Chapman and Hall.

Fidalgo, O., & Bononi, V. L. R. (1989). *Técnicas de coleta, preservação e esterelização de material botânico*. São Paulo: Instituto de Botânica, Secretaria do Meio Ambiente, Governo do Estado de São Paulo.

Fleming, T. H., & Kress, J. W. (2013). *The ornaments of life: coevolution and conservation in the tropics*. University of Chicago Press.

Flora e Funga do Brasil. Jardim Botânico do Rio de Janeiro. Disponível em: <a href="http://floradobrasil.jbrj.gov.br/">http://floradobrasil.jbrj.gov.br/</a>. Acesso em: 07 de abril de 2024.

Forzza, R. C., Baumgratz, J. F. A., Bicudo, C. E. M., Canhos, D. A. L., Carvalho Junior, A. A., Nadruz-Coelho, M. A., et al. (2010). Catálogo de plantas e fungos do Brasil. Volume 1. Rio de Janeiro: Jardim Botânico do Rio de Janeiro.

Forzza, R. C., Baumgratz, J. F. A., Bicudo, C. E. M., Canhos, D., Carvalho Junior, A. A., Nadruz-Coelho, M. A., et al. (2012). New Brazilian floristic list highlights conservation challenges. *Bioscience Journal*, 62(1), 39–45.

Haridasan, M. (1994). Solos do Distrito Federal. In *Cerrado: caracterização*, *ocupação e perspectivas* (Vol. 2, pp. 321–344).

Hoffmann, W. A. (1996). The effects of fire and cover on seedling establishment in a neotropical savanna. *Journal of Ecology*, 383–393.

Hofmann, G. S., et al. (2021). The Brazilian Cerrado is becoming hotter and drier. *Global Change Biology*, 27(17), 4060–4073.

Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (Ibama). (1990). **Portaria nº 887, de 15 de julho de 1990.** Brasília, DF: Ibama.

Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio). Cadastro Nacional de Informações Espeleológicas (CANIE). Disponível em: <a href="https://www.gov.br/icmbio/pt-br/assuntos/centros-de-pesquisa/cavernas/cadastro-nacional-de-informacoes-espeleologicas/canie">https://www.gov.br/icmbio/pt-br/assuntos/centros-de-pesquisa/cavernas/cadastro-nacional-de-informacoes-espeleologicas/canie</a>. Acesso em: 8 jan. 2025.

Jiang, Z., Lian, Y., & Qin, X. (2018). Rocky desertification in Southwest China: Impacts, causes, and restoration. *Earth-Science Reviews*, 132, 1–12. https://doi.org/10.1016/j.earscirev.2018.02.004

Jordano, P. (1995). Angiosperm fleshy fruits and seed dispersers: a comparative analysis of adaptation and constraints in plant-animal interactions. *American Naturalist*, 145, 163–191.

Klimchouk, A. B. (2015). The karst paradigm: changes, trends and perspectives. Acta carsologica, 44(3).

Klink, C. A., & Machado, R. B. (2005). A conservação do Cerrado brasileiro. *Megadiversidade*, 1(1), 147–155.

León, H., & Sauget, J. S. (1946). *Flora de Cuba*. Volumen I. Contribuciones Ocasionales del Museo de Historia Natural del Colegio 'De La Salle', 8, 45–63.

Linnaeus, C. Species plantarum: a facsimile of the first edition, 1753. London: Ray Society, 1959. v.2.

Liogier, A. H. (1981). Antillean studies. I, flora of Hispaniola. Part 1, Celastrales, Rhamnales, Malvales, Thymeleales, Violales. Moldenke.

Lomolino, M. V. (2002). There are areas too small, and areas too large, to show clear diversity patterns. RH MacArthur (1972: 191). Journal of Biogeography, 29:555-557.DOI: DOI: 10.1046/j.1365-2699.2002.00700.x

Lorts, C. M., Briggeman, T., & Sang, T. (2008). Evolution of fruit types and seed dispersal: a phylogenetic and ecological snapshot. *Journal of Systematics and Evolution*, 46(3), 396–404.

Martius, C. F. P., Eschweiler, G. G., & Nees, A. B. (1833). *Flora brasiliensis, pars prior*. Stuttgartiae et Tubingen: Sumptibus J. G. Cottage.

Melo, P. H. A. D., Lombardi, J. A., Salino, A., & Carvalho, D. A. D. (2013). Composição florística de angiospermas no carste do alto São Francisco, Minas Gerais, Brasil. Rodriguésia, 64, 29-36.

Mendonça, R. C., Felfili, J. M., Walter, B. M. T., et al. (2008). Flora vascular do bioma Cerrado: checklist com 12.356 espécies. In Sano, S. M., Almeida, S. P., & Ribeiro, J. F. (Eds.), *Cerrado: Ecologia e Flora* (Vol. 2, pp. 421–1279). Embrapa Cerrados/Embrapa Informação Tecnológica, Brasília, DF.

Mikich, S.B.; Silva, S.M. 2001. Composição Florística e Fenologia das Espécies Zoocóricas de Remanescentes de Floresta Estacional Semidecidual no Centro - Oeste do Paraná, Brasil. Acta Botanica Brasilica, 15: 89-113.

Myers, N., Mittermeier, R. A., Mittermeier, C. G., Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. *Nature*, 403(6772), 853–858.

Neto, R. M. R., Watzlawick, L. F., & Caldeira, M. V. W. (2001). Diversidade florística e síndromes de dispersão de diásporos das espécies arbóreas de um fragmento de Floresta Ombrófila Mista. RECEN-Revista Ciências Exatas e Naturais, 3(2), 209-216.

Neves, G. D., Sena-Souza, J. P., Vasconcelos, V., Martins, É. D. S., & Couto, A. F. (2017). Dinâmica da cobertura da terra do Distrito Federal dentro de suas unidades geomorfológicas. *Sociedade & Natureza*, *29*(3), 387-400.

Pennington, R. T., Lewis, G. P., & Ratter, J. A. (2006). An overview of the plant diversity, biogeography and conservation of neotropical savannas and seasonally dry forests. In *Neotropical Savannas and Seasonally Dry Forests: Plant Diversity, Biogeography, and Conservation* (pp. 1–29). CRC Press, Boca Raton, FL.

Peres, M. K. (2016). Estratégias de dispersão de sementes no bioma Cerrado: considerações ecológicas e filogenéticas.

Pérez-García, E. A., & Meave, J. A. (2004). Heterogeneity of xerophytic vegetation of limestone outcrops in a tropical deciduous forest region in southern México. *Plant Ecology*, 175(2), 147–163. <a href="https://doi.org/10.1023/B:VEGE.0000048094.82819.61">https://doi.org/10.1023/B:VEGE.0000048094.82819.61</a>

Ponciano, T. A., Faria, K. M. S., Siqueira, M. N., & Castro, S. S. (2015). Fragmentação da cobertura vegetal e estado das Áreas de Preservação Permanente de canais de drenagem no Município de Mineiros, Estado de Goiás. *Ambiência*, 11, 545–561.

Proença, C. E. B., Munhoz, C. B. R., Jorge, C. L., & Nóbrega, M. G. G. (2001). Listagem e nível de proteção das espécies de fanerógamas do Distrito Federal, Brasil. *Flora do Distrito Federal, Brasil*, 1, 87–359.

Pyšek, P., Richardson, D. M., Rejmánek, M., Webster, G. L., Williamson, M., & Kirschner, J. (2004). Alien plants in checklists and floras: towards better communication between taxonomists and ecologists. Taxon, 53:131-143.DOI: https://doi.org/10.2307/4135498

Ratter, J. A., Ribeiro, J. F., & Bridgewater, S. (1997). The Brazilian cerrado vegetation and threats to its biodiversity. *Annals of Botany*, 80(3), 223–230.

Reatto, A., Correia, J. R., & Spera, S. T. (2008). Solos do bioma Cerrado. In Sano, S. M., Almeida, S. P., & Ribeiro, J. F. (Eds.), *Cerrado: Ecologia e Flora* (Vol. 1, pp. 109–149). Embrapa Cerrados/Embrapa Informação Tecnológica, Brasília, DF.

Ribeiro, J. F., & Walter, B. M. T. (2008). As principais fitofisionomias do bioma Cerrado. In Sano, S. M., Almeida, S. P., & Ribeiro, J. F. (Eds.), *Cerrado: Ecologia e Flora* (Vol. 1, pp. 151–212). Embrapa Cerrados/Embrapa Informação Tecnológica, Brasília, DF.

Rosa, M. R. (2017). Comparação e análise de diferentes metodologias de mapeamento da cobertura florestal da mata atlântica. *Boletim Paulista De Geografia*, (95), 25–34. Recuperado de https://publicacoes.agb.org.br/boletim-paulista/article/view/658

Schultz, J. (2005). The ecozones of the world: The ecological divisions of the geosphere. Berlin: Springer.

Simon, M. F., Grether, R., De Queiroz, L. P., Skema, C., Pennington, R. T., & Hughes, C. E. (2009). Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. *Proceedings of the National Academy of Sciences*, 106(48), 20359–20364.

Stephens, R. E., Gallagher, R. V., Dun, L., Cornwell, W., & Sauquet, H. (2023). Insect pollination for most of angiosperm evolutionary history. *New Phytologist*, 240(2), 880-891.

Sutherland, W. J., et al. (2012). A horizon scan of global conservation issues for 2012. *Trends in Ecology & Evolution*, 27(1), 12–18. https://doi.org/10.1016/j.tree.2011.10.011

Van Der Pijl L. 1982. Principles of Dispersal in Higher Plants. New York: SpringerVerlag Berlin Heidelberg

Walter, B. M. T. (2001). A pesquisa botânica na vegetação do Distrito Federal, Brasil. In Cavalcanti, T. B., & Ramos, A. E. (Orgs.), *Flora do Distrito Federal*. Volume I. Brasília: Embrapa Recursos Genéticos e Biotecnologia.

Walter, B. M. T. (2006). Fitofisionomias do bioma Cerrado: síntese terminológica e relações florísticas.

Whittaker, R. J., Araújo, M. B., Jepson, P., Ladle, R. J., Watson, J. E., & Willis, K. J. (2005). Conservation biogeography: assessment and prospect. Diversity and distributions, 11:3-23.

Whitten, T. (2012). Protecting biodiversity. *International Cement Review*, 116–119.

Wong, T.-C., Luo, T., Zhang, H., Li, S., & Chu, W. (2016). The socio-economic transformation of rocky karst areas: Case study of Qianxinan Prefecture, Guizhou Province, China. *Malaysian Journal of Chinese Studies*, 5(1), 49–65.

Yuncker, T. (1974). The Piperaceae of Brazil III. Peperomia; taxa of incertain status. Hoehnea 4: 192.

Zhu, X., Shen, Y., He, B., & Zhao, Z. (2017). Humus soil as a critical driver of flora conversion on karst rock outcrops. *Scientific Reports*, 7, 1–11. https://doi.org/10.1038/s41598-017-17357-2

ZILLER, S. R. (2001). Os processos de degradação ambiental originados por plantas exóticas invasoras. Ciência Hoje, 30:77-79.

Capítulo 2. Flora Associated with the Volks Club Cave: New Records for the Distrito

Federal (Brazil) and Conservation Notes

Flora Associated with the Volks Club Cave: New Records for the Distrito Federal

(Brazil) and Conservation Notes

Iane Perdigão<sup>1\*</sup>, Mel C. Camelo<sup>1</sup>, Chiara T. Lauriola<sup>1</sup>, Clapton O. Moura<sup>1</sup>, and

Micheline Carvalho-Silva<sup>1</sup>

<sup>1</sup>Departamento de Botânica, Universidade de Brasília, Brasília, Brazil.

\*corresponding author: iane.unb@gmail.com

Perdigão I: orcid: https://orcid.org/0009-0006-5265-8527

Camelo MC: orcid:https://orcid.org/0000-0002-4602-824X

Lauriola CT: https://orcid.org/0009-0009-7914-2805

Moura CO: https://orcid.org/0000-0001-9444-0418

Carvalho-Silva M: orcid: https://orcid.org/0000-0002-2389-3804

Abstract

Caves are natural cavities within rock formations that allow for human access,

varying in type based on topography, length, and shape. These complex environments,

characterized by vertical channels and irregular fractures, are shaped by water that

dissolves the matrix rock. Recognized as biodiversity hotspots, caves often lack

adequate management and conservation, particularly in urbanized areas. The

surrounding vegetation plays a crucial role in maintaining microclimatic conditions

and providing organic matter for subterranean ecosystems. In the Distrito Federal, the

Volks Club Cave exemplifies this interdependence. This study conducted the first

floristic survey of the cave complex, identifying 155 species and 10 new occurrences

of vascular plants. The results underscore the urgency of conserving the plant areas

associated with caves, highlighting the importance of an integrated approach for the

effective preservation of these ecosystems.

**Key words:** Biodiversity, Karsts, Cerrado, Ecosystems.

#### Resumo

As cavernas são cavidades naturais em rocha que permitem o acesso humano, variando em tipo conforme a topografia, comprimento e forma. Esses ambientes complexos, formados por canais verticais e fraturas irregulares, são modelados pela água, que dissolve a rocha matriz. Consideradas hotspots de biodiversidade, as cavernas frequentemente carecem de gestão e conservação adequadas, especialmente em áreas urbanizadas. A vegetação circundante desempenha um papel essencial na manutenção das condições microclimáticas e na provisão de matéria orgânica para os ecossistemas subterrâneos. No Distrito Federal, a Gruta Volks Club é um exemplo dessa interdependência. Este estudo realizou o primeiro levantamento florístico do complexo cavernícola, identificando 155 espécies e 10 novas ocorrências de plantas vasculares. Os resultados destacam a urgência na conservação das áreas vegetais associadas às cavernas, ressaltando a importância de uma abordagem integrada para a preservação eficaz desses ecossistemas.

Palavras-chave: Biodiversidade, Cárstico, Cerrado, ecossistemas.

#### Introduction

Caves are any natural holes in the ground large enough to allow human access and can exhibit various types, depending on topography, length, and shape (UIS 2024, ICMBio 2024). They constitute complex systems formed by vertical channels, irregular fractures, and horizontal variations, resulting from the action of water, the primary shaping agent, which dissolves the bedrock. Key indicators of the occurrence of these subterranean formations include soluble minerals such as dolomite, anhydrite, and rock salt (UIS 2024, ICMBio 2013, 2014; CPRM 2016). Caves play an essential role in sheltering local fauna and represent a unique category of geological formations that support highly specialized ecosystems. Characterized by factors such as limited light penetration, minimal temperature variations, high humidity levels, and low availability of organic matter, these subterranean habitats pose significant challenges to the survival and reproduction of many organisms (Cong *et al.* 2023). Due to these conditions, the ecological niches present in caves are classified as extreme habitats, and the species inhabiting these environments are subject to severe environmental stressors (Kosznik-Kwásnicka *et al.* 2022).

Caves serve as critical refuges and shelters for troglobiont species, organisms that are highly adapted to subterranean environments. According to Fraga (2023), the preservation of the surrounding vegetation is essential to maintaining the ecological balance and life cycles of these species. Disturbances in vegetation, often caused by anthropogenic activities, can lead to significant changes in the biodiversity and behavior of troglobionts. This is supported by research highlighting the interdependence between cave ecosystems and their external environments (Novak et al., 2011; Culver & Pipan, 2009; Pereira et al., 2023).

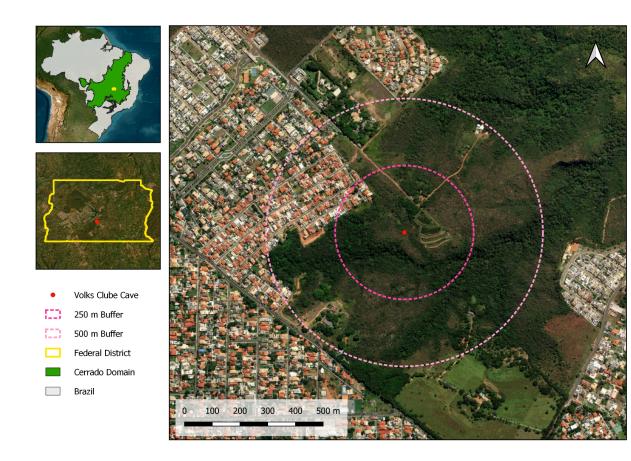
Additionally, cave ecosystems are highly vulnerable to environmental changes, as they not only possess a high degree of endemism but also rely on a continuous energy flow, necessitating greater attention in the face of anthropogenic activities (Donato & Ribeiro 2011; Fernandes *et al.* 2014; ICMBio 2013, 2014).

Brazil is home to 24.902 registered and recognized caves, according to the National Cave Registry (CECAV 2024), of which 10.981 are located in the Cerrado 58 of which are located in the Distrito Federal (CECAV 2024). Although caves are biodiversity hotspots, they often receive minimal attention and lack proper management from government authorities (Medellín *et al.* 2017; Ficetola *et al.* 2019). The vegetation surrounding caves plays a crucial role in maintaining these subterranean ecosystems (Ramalho *et al.* 2018). Vegetative cover is essential for preserving the microclimatic conditions of caves and for transporting organic residues into the cavities, which can be vital for the survival of cave-dwelling organisms (Medina *et al.* 2006). Cave conservation extends beyond protecting their underground structures; preserving the surrounding vegetation is also essential. Understanding the impact of anthropogenic migration on plant ecosystems requires adopting a temporal approach in studies of cave flora. This perspective enables the identification of how historical dynamics have shaped the composition and structure of present-day vegetation (Ramalho & Hobbs, 2012).

The Cerrado spans 13 Brazilian states, covering an area of approximately 200 million hectares, and is recognized as a global biodiversity hotspot (Hoffmann 2021). It is the world's richest savanna in terms of diversity and the second-largest domain in Brazil. The Cerrado landscape consists of a complex vegetational mosaic with high biodiversity, housing about one-third of the country's diversity (Hoffmann 2021). It is

home to an exceptionally rich vascular flora, comprising approximately 12,300 species of angiosperms and almost half are endemic (Flora e Funga do Brasil 2024). Despite these high numbers, its biodiversity is not fully understood, and many species still require documentation (Sobral & Stehmann 2009). One of the main drivers of flora loss in the Cerrado is habitat fragmentation. Population growth and agricultural expansion isolate previously continuous areas, preventing individuals from different locations from meeting and reproducing (MapBiomas 2024).

In the Distrito Federal (DF), the Volks Clube Cave, located in the Jardim Botânico Administrative Region (RA XXVII) within a residential condominium, serves as an example of this complexity (Silva 2007). Each cave hosts a unique ecosystem, and it is important to note that there are no previous records of research on cave flora in the region, making this study the first to address the cave flora of the DF. Therefore, this study aims to fill the knowledge gap regarding the flora surrounding the cave complex of the Volks Clube Cave.


#### **Materials and Methods**

## **Study Site**

The Volks Clube Cave (Figure 1) is located in the urban core of Brasília (-15.873457, -47.810306), DF (RA XXVII). Access to this natural cavity poses no significant obstacles, as it is situated within an urban area, and one of its entrances can be accessed through a route available in a nearby residential area, with the distance from the road to the cave entrance being approximately 100 meters.

Situated within the Environmental Preservation Area of the São Bartolomeu River Basin (APA São Bartolomeu), the cave develops in siliciclastic rocks of the Paranoá Group. Despite the predominance of silt-clay sediments, the cave also features thin strata of fine quartzites, which range in color from pink to reddish (Stumpf & Ribeiro 2019). The climate of the region is classified as *Aw* in the Köppen-Geiger system (Peel *et al.* 2007), indicating a tropical climate with a dry winter. It experiences a rainy season during the summer, from November to April, and a distinct dry season in the winter, from May to October.

Surrounding the cave, savanna formations (Cerrado *sensu lato*) and forest formations (gallery forest) predominate, with the savanna formations extending above the cave and surrounding areas, and the forest formations mixing with the savanna formations as they accompany the watercourse and its adjacent areas. Although the location is within a fragment covered by natural vegetation, the residential area is approximately 200 meters away from the cave.



**Figure 1.** Map of the location of the Volks Clube Cave, showing the dashed lines that indicate the 250 m and 500 m buffers surrounding the cave.

# Floristic Survey and New Records in the Distrito Federal

Data collection followed the methodological guidelines of Fidalgo & Bononi (1989) in areas surrounding the cave entrance. Samples were obtained using the sweep method, prioritizing fertile specimens; however, sterile individuals were also

included to enhance data completeness. The collected specimens were processed for herbarium preservation and deposited in the UB herbarium, following the standardized acronym set by Thiers (2022, continuously updated). Specimen identification utilized dichotomous keys from Flora do DF (Cavalcanti & Ramos, 2009) and the Guia das Plantas do Cerrado (Souza et al., 2018), with additional verification through online resources such as Flora e Funga do Brasil (https://reflora.jbrj.gov.br/) and *species*Link (https://specieslink.net/), as well as consultations with specialists. The nomenclature for taxa above the genus level adhered to the latest Angiosperm classification system, APG IV (Chase et al., 2016), while species names followed the updates in Flora e Funga do Brasil (2024).

Plant life forms were classified according to the terminology of Ribeiro and Walter (2008) for Cerrado phytophysiognomies, as cited by Flora e Funga do Brasil (2024). Dispersal syndromes were categorized using Van der Pijl's typology (1982) (Table 1). Additional classification data were gathered through field observations, herbarium consultations, and references from relevant taxonomic and regional/local floras. Families were organized by life form categories and Cerrado phytophysiognomies, facilitating the analysis of relationships between dispersal types and different biome environments.

For new records in the Distrito Federal, we also referred to Flora e Funga do Brasil (2024) and Flora of the Distrito Federal (Cavalcanti & Ramos, 2009). Species not documented in the Flora e Funga database or in the Flora of the Distrito Federal as occurring within the region were designated as new occurrences.

# **Land Cover Changes and Field Inspection**

In addition to the floristic survey, which included quantitative and qualitative data (such as the presence of exotic species and new records), a verification of the area's current condition was conducted. This involved analyzing land cover using MapBiomas data (Souza *et al.* 2020 - continuously updated, <a href="http://brasil.mapbiomas.org">http://brasil.mapbiomas.org</a>) from 1988 to 2023, at 5-year intervals. Rasters containing land cover classes for the study period were used and simplified into a

binary state (natural formation and anthropogenic formation). The workflow included using MapBiomas data (Collection 8), cropping the rasters with circular buffers of 250 meters and 500 meters, and analyzing quantitative data regarding land cover within these buffers using the LEcoS - Landscape Ecology Statistics plugin (Jung 2016) implemented in QGIS.org (2024). During the floristic survey, the presence or absence of litter, debris, and other signs of human influence on the area were also noted as a complement to the verification of the site's conservation.

#### **Results**

# **Floristic Survey**

The floristic survey conducted at Volks Club identified a total of 155 species, distributed across 105 genera and 49 families, as listed in Table 1. Among these, 10 species represent new occurrences for the Distrito Federal (Table 2), as confirmed by cross-referencing with *Flora e Funga do Brasil*. The family Asteraceae accounted for the highest number of species, with its 17 species representing 10.9% of the total. The family Fabaceae comprised 9% (14 species), while Malpighiaceae contributed 7.7% (12 species). Both Melastomataceae and Poaceae each accounted for 5% of the total, with eight species each. Together, these five families represent 38% of the total species sampled, whereas the remaining 44 families constitute the remainder. Of the 205 specimens collected, four remained unidentified and were categorized as indeterminate. The most frequent dispersal syndrome observed was zoochory, while zoophily was the most common pollination syndrome.

## **New Records**

During the collection period, we identified and documented new floristic occurrences in the Distrito Federal. Ten new records of angiosperms were documented for the Volks Club. These new records span six botanical families, with Fabaceae Lindl. and Polygalaceae Hoffmanns. & Link emerging as the most representative, each contributing three new occurrences. *Senega* Spatch stands out with two new occurrences. Notably, three of these newly recorded species are exotic,

while others appear to have been previously overlooked or unrecorded in the Flora e Funga database.

## **Land Cover Changes and Site's Conservation**

The analysis of land cover changes over the period 1988-2023 showed a general trend of increasing anthropogenic land cover and decreasing natural formations in the study area. The 500 meter buffer revealed more pronounced trends, indicating continuous human encroachment in the area surrounding the natural cave. Between 1988 and 1998, notable changes were observed in this buffer, with a marked increase in anthropogenic land cover and a corresponding decrease in natural areas. However, in the subsequent years, particularly after 1998, the anthropogenic land cover showed little increase, stabilizing over time. Although changes within the 250 meter buffer were less pronounced, a similar trend of encroachment was observed. This smaller buffer zone is particularly important, as it corresponds to the area legally designated for mandatory conservation. In addition to the land cover data, field observations also identified the presence of litter in the area, particularly discarded gardening materials such as plastic pots and parts of exotic plants. These materials, commonly used in local gardening activities, may facilitate the establishment of non-native species in natural environments. Notably, some of these exotic species were also recorded in the floristic survey, providing further insight into the influence of nearby human settlements on the natural area.

### **Taxonomic synopsis of New Records**

Amphilophium elongatum (Vahl) L.G. Lohmann, Nuevo Catálogo de la Flora Vascular de Venezuela 270. 2008

**Diagnosis**: Climbing or terrestrial liana. Leaves are compound, featuring bifoliate and obovate leaflets, with an acute apex, rounded base, coriaceous texture, and trifurcated or absent tendrils. The stem is cylindrical. Flowers are arranged in racemose inflorescences, with a curved funnel-shaped corolla that is white to yellowish in color. The fruit is a dry, acorn-like capsule, with shapes ranging from elliptical to curved.

**Distribution**: Not endemic to Brazil. Found in the North (Amazonas, Amapá, Pará, Rondônia, Roraima, Tocantins), Northeast (Bahia), Midwest (Goiás, Mato Grosso do Sul, Mato Grosso), Southeast (Minas Gerais, São Paulo), and South (Paraná).

**New records**: BRAZIL – Distrito Federal • Jardim Botânico, Volks Club Cave; Cerrado sensu stricto vegetation slightly altered around the entrance of the Cave; 15°52'24.0"S, 47°48'37.0"W; 01.IX.2023; Ferreira, I.P. et al. 02 (UB!).

Byttneria affinis Pohl, Plantarum Brasiliae Icones et Descriptiones 2: 73–74, pl. 147.

**Diagnosis**:Terrestrial subshrub. Leaves have an acute or acuminate apex, rounded base, glabrescent abaxial surface, entire margin, acrodromous venation, and winged peduncles. The stem has angular, unarmed branches. Flowers are arranged in racemose inflorescences, with green to yellowish petals and pinkish sepals.

Distribution: Endemic to Brazil, found in the state of Goiás.

1830

**New records**: BRAZIL – Distrito Federal • Jardim Botânico, Volks Club Cave; Cerrado sensu stricto vegetation slightly altered around the entrance of the Cave; 15°52'24.0"S, 47°48'37.0"W; 01.IX.2023; Ferreira, I.P. et al. 37 (UB!).

## Callistemon viminalis (Sol. ex Gaertn.) G. Don, Hort. Brit.: 197. 1830.

**Diagnosis:** tree or shrub with pendulous branches. Its leaves are lanceolate, simple and entire, leathery, and alternately arranged, measuring 1–6 inches in length. Its cylindrical stems support bright red, spike-like flowers resembling bottlebrushes. Fruits are woody capsules. **Distribuição: Geográfica:** Não é endêmica do Brasil. Encontrada em Sudeste (Rio de Janeiro, São Paulo)

**New records:** BRAZIL – Distrito Federal • Jardim Botânico, Volks Club Cave; Cerrado sensu stricto vegetation slightly altered around the entrance of the Cave; 15°52'24.0"S, 47°48'37.0"W; 0.X.2023; Carvalho-Silva et. al. 3136 (UB!)

**Diagnosis**: Terrestrial/aquatic herb. Leaves are simple, elongated, narrowly triangular, with an acute apex and entire margin, parallel venation. Stem trigonal/tetragonal. Flowers in terminal inflorescences, composed of 3–9 persistent spikelets with ascending axillary branches.

**Distribution**: Native to the North (Pará), Northeast (Bahia, Ceará), Midwest (Mato Grosso do Sul), Southeast (Minas Gerais, Rio de Janeiro, São Paulo), and South (Paraná, Rio Grande do Sul, Santa Catarina).

**New records**: BRAZIL – Distrito Federal • Jardim Botânico, Volks Club Cave; Cerrado sensu stricto vegetation slightly altered around the entrance of the Cave; 15°52'24.0"S, 47°48'37.0"W; 01.IX.2023; Ferreira, I.P. et al. 106 (UB!).

Hydrocotyle quinqueloba Ruiz & Pav., Flora Peruviana et Chilensis 3: 25, t. 248.

1802

**Diagnosis**: Terrestrial or climbing herb. Leaves are simple, palmately divided, with palmate venation and serrate or dentate margins. The stem is tuberous with foliar tendrils. Flowers are small, white, arranged in umbels, with a white or cream coloration. The fruit is small, measuring  $1.25-2.2 \times 1.5-3$  mm.

**Distribution**: Occurs from the Andes to the eastern Brazilian coast.

**New records**: BRAZIL – Distrito Federal • Jardim Botânico, Volks Club Cave; Gallery forest transitioning to slightly altered cerrado sensu stricto vegetation; 15°52'24.0"S, 47°48'37.0"W; 01.IX.2023; Ferreira, I.P. et al. 167 (UB!).

\_\_\_\_

*Miconia staminea* (Desr.) DC., Prodromus Systematis Naturalis Regni Vegetabilis 3: 187. 1828

**Diagnosis**: Terrestrial shrub or tree. Leaves are simple, petiolate, elliptic to ovate, with an acute or acuminate apex, rounded base, acrodromous venation featuring five longitudinal veins, and entire margins. The stem has axillary stipules. Flowers are arranged in dichasial inflorescences, with a gamopetalous corolla consisting of five petals and a deciduous calyx.

**Distribution**: Found in the North (Pará), Northeast (Bahia), Midwest (Mato Grosso do Sul, Mato Grosso), Southeast (Espírito Santo, Minas Gerais, Rio de Janeiro, São

Paulo), and South (Paraná, Santa Catarina).

**New records**: BRAZIL – Distrito Federal • Jardim Botânico, Volks Club Cave; Cerrado sensu stricto vegetation slightly altered around the entrance of the Cave; 15°52'24.0"S, 47°48'37.0"W; 01.IX.2023; Ferreira, I.P. et al. 97 (UB!).

*Myrcia splendens* (Sw.) DC., Prodromus Systematis Naturalis Regni Vegetabilis 3: 244. 1828

**Diagnosis**: Terrestrial tree. Leaves are simple and compound, with an adaxial surface featuring a prominent central vein and an abaxial surface covered in puberulent or tomentose indumentum, lanceolate in shape. The stem is monopodial with indumentum. Flowers are arranged in verticillaster inflorescences in axillary positions and thyrsoid inflorescences in terminal positions.

**Distribution**: Found in the North (Acre, Amazonas, Amapá, Pará, Rondônia, Roraima, Tocantins), Northeast (Alagoas, Bahia, Ceará, Maranhão, Paraíba, Pernambuco, Piauí, Rio Grande do Norte, Sergipe), Midwest (Goiás, Mato Grosso do Sul, Mato Grosso), Southeast (Espírito Santo, Minas Gerais, Rio de Janeiro, São Paulo), and South (Paraná, Rio Grande do Sul, Santa Catarina).

**New records**: BRAZIL – Distrito Federal • Jardim Botânico, Volks Club Cave; Cerrado sensu stricto vegetation slightly altered around the entrance of the Cave; 15°52'24.0"S, 47°48'37.0"W; 01.IX.2023; Ferreira, I.P. et al. 50 (UB!).

*Senega glochidata* (Kunth) J.F.B. Pastore, Annals of the Missouri Botanical Garden 108(1), 126-249. 2023

**Diagnosis**: Annual terrestrial herb. Leaves are simple, small, lanceolate to narrowly elliptical, sessile, with an acute apex and entire margin. The stem is erect, resembling a stipe. Flowers are arranged in terminal racemes or spikes, white to magenta, with membranous petals.

**Distribution**: Found in the North (Amazonas, Roraima), Northeast (Alagoas, Bahia, Ceará, Maranhão, Paraíba, Pernambuco, Piauí, Rio Grande do Norte, Sergipe), Southeast (Espírito Santo, Minas Gerais, Rio de Janeiro, São Paulo), and South (Paraná).

**New records**: BRAZIL – Distrito Federal • Jardim Botânico, Volks Club Cave; Cerrado sensu stricto vegetation slightly altered around the entrance of the Cave; 15°52'24.0"S, 47°48'37.0"W; 01.IX.2023; Ferreira, I.P. et al. 45 (UB!).

Senega poaya (Mart.) J.F.B. Pastore, Annals of the Missouri Botanical Garden 108(1), 126-249. 2023

**Diagnosis**: Erect subshrub, branching from the base. Leaves are simple, sessile, elliptical, measuring  $2.5-4 \times 0.9-1.6$  cm, with a cuspidate or attenuate apex, alternate phyllotaxy, and acrodromous venation. The stem is angular with whitish patches on the floral parts. Flowers are arranged in racemose inflorescences, small (7–8 mm), ranging in color from yellow to magenta.

**Distribution**: Endemic to Brazil.

**New records**: BRAZIL – Distrito Federal • Jardim Botânico, Volks Club Cave; Cerrado sensu stricto vegetation slightly altered around the entrance of the Cave; 15°52'24.0"S, 47°48'37.0"W; 01.IX.2023; Ferreira, I.P. et al. 34 (UB!).

\_\_\_\_\_

## Sticherus pruinosus (Mart.) Ching, Sunyatsenia 5(4): 284. 1940.

**Diagnosis:** Terrestrial plants with fronds branching 2 to 5 times. Leaves possess deltoid to triangular segments, contiguous and patent or nearly so, with strongly revolute margins and a glabrous abaxial surface. The rachis is cylindrical, bearing linear to lanceolate scales with ciliate margins. Additional features include a rhizome with linear-lanceolate, dark brown scales; fronds erect when young and pendulous at maturity; and segments with secondary veins at the same level as the laminar tissue. Glands and pseudo-stipules are present, with sori positioned medially to supramedially, containing bilateral spores.

**Distribution:** Not endemic to Brazil. Found in the Southeast (Espírito Santo, Minas Gerais, Rio de Janeiro, São Paulo) and South (Paraná, Rio Grande do Sul, Santa Catarina)

**New records**: BRAZIL – Distrito Federal • Jardim Botânico, Volks Club Cave; Cerrado sensu stricto vegetation slightly altered around the entrance of the Cave; 15°52'24.0"S, 47°48'37.0"W; 0.X.2023; Ferreira, I.P. et al. 123 (UB!).

#### **Discussion**

## Floristic survey

Within just 200 meters surrounding the Volks Clube Cave, 155 species were recorded, surpassing the average of 85 species cataloged across 841 km<sup>2</sup> in the designated Environmental Protection Area (GOV.BR 2018). These findings underscore that Cerrado caves could be biodiversity hotspots.

The most representative botanical families identified were Asteraceae and Fabaceae as expected (Joly 1977; Lawrence 1973; Heywood 1978; Mendonça et al. 2008). The predominance of zoochory and zoophily aligns with typical Cerrado patterns, where fauna-flora interactions play a crucial role in maintaining plant communities (Reis et al. 2014).

Of the 10 new occurrences documented for the Distrito Federal, three were exotic species, while the others, though native and widely distributed in Brazil, had not yet been recorded in the *Flora e Funga do Brasil* repository. This emphasizes the importance of continuously updating botanical databases to reflect the dynamic nature of regional flora.

The location of the Volks Clube Cave intensifies anthropogenic pressure, as evidenced by alterations in the local vegetation, including the introduction of exotic species such as *Cyperus alternifolius* L., an aquatic herbaceous plant native to Africa commonly used in ornamental landscaping. These introductions are likely linked to the unintentional transport of plant propagules facilitated by human activities, including the construction of luxury housing developments with artificial gardens. Moreover, the cave shows clear signs of physical degradation, with graffiti on its walls and ground excavations threatening its ecological and structural integrity. These impacts underscore the urgent need for effective management and conservation strategies to safeguard both the subterranean environment and its surrounding vegetation.

#### Landcover

Conservation of biodiversity and ecosystem services in environments modified by human activities is strongly linked to the ability of species to survive and disperse, particularly in the face of habitat loss and changes in the configuration of natural ecosystems over time (Lira et al., 2012; Coelho et al., 2020; Li et al., 2020). Understanding caves as ecotones directs us towards the need to comprehend plant diasporas and their connection to troglophilic animals, those that live exclusively in this environment.

The reduction in vegetation cover and the lack of connectivity between areas can significantly hinder the movement of individuals, potentially leading to population declines (Grande et al., 2020). As an ecotone, the presence of greater natural vegetation cover enables the persistence of various species previously adapted to that environment, including those most vulnerable to habitat loss, which helps mitigate the loss of ecosystem services, such as those provided by pollinators and seed dispersers (Poisot et al., 2013; Liu et al., 2018).

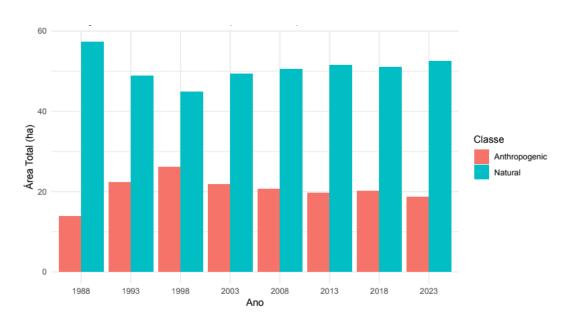



Figure 2. Land Cover Changes Around the Volks Clube Cave, 1988–2023

As established by Ordinance No. 887/1990, issued by IBAMA, a minimum protection area of 250 meters around caves must be maintained. However, the

analysis of the graph in Figure 1 reveals that this limit has often been exceeded due to human activities. Surpassing this threshold directly compromises the conservation status of the caves, as the absence of an effective buffer zone to mitigate the impacts of human presence and activities exposes the cave ecosystem to significant risks and alters the composition of local biodiversity.

Furthermore, as shown in Figure 2, there is stability in the land cover change around the Volks Clube Cave over the years, indicating the preservation of natural cover between 1988 and 2023, according to data from the MapBiomas project, collection 8. However, there is an issue not reflected in these results, as the classification obtained in the MapBiomas Collection 8 is unable to differentiate between native and exotic vegetation, both of which are considered as original Cerrado cover. This highlights the limitations of using MapBiomas land cover data in terms of resolution, which does not allow for proper classification of vegetation around caves. Field surveys proved essential in the refinement of these data, as they helped to understand that not all areas classified as natural vegetation truly represented such vegetation.

Currently, there are constructions of a small dam, access roads to the cave complex, and residences within the 250-meter perimeter around the cave, in violation of Ordinance No. 887/1990, which mandates the full conservation of this area. This data highlights the importance of these environments preservation and the pressing need for integrated conservation strategies.

## Acknowledgments

We would like to thank Vale for the fellowship granted the master scholarship to the first author. We thank CAPES-BRASIL the postdoctoral fellowship granted to the second author under project n. "88887.800986/2023-00". We thank the UB herbarium support received during the identification of Angiosperms and Dr. Jair Eustaquio Quintino de Faria Junior for all help in identifying some taxa.

#### References

Alarcón-Aguirre, G., Sajami Quispe, E., Vásquez Zavaleta, T., Ponce Tejada, L.V., Ramos Enciso, D., Rodríguez Achata, L. & Garate-Quispe, J. (2023). Vegetation dynamics in lands degraded by gold mining in the southeastern Peruvian Amazon. Trees, Forests and People, 11, 100369. <a href="https://doi.org/10.1016/j.tfp.2023.100369">https://doi.org/10.1016/j.tfp.2023.100369</a>

Assmann, T., Casale, A., Drees, C., Habel, J.C., Matern, A., & Schuldt, A. (2010). Review: The Dark Side of Relict Species Biology: Cave Animals as Ancient Lineages. In Habel, J.C., & Assmann, T. (Eds.), Relict Species. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92160-8-4

Assunção, V.A., Casagrande, J.C., & Sartori, L.B. (2014). Floristics and reproductive phenology of trees and bushes in central west Brazil. Anais da Academia Brasileira de Ciências, 86, 785–800. https://doi.org/10.1590/0001-3765201420130042

Borgiani, R., Grombone-Guaratini, M.T., Vargas, B.C., Martins, A.E., Camargo, M.G.G., & Morellato, L.P.C. (2022). Floristic composition, pollination and seed-dispersal systems in a target cerrado conservation area. Biota Neotropica, 22, e20211318. <a href="https://doi.org/10.1590/1676-0611-bn-2021-1318">https://doi.org/10.1590/1676-0611-bn-2021-1318</a>

Coelho, A.J.P., Magnago, L.F.S., Matos, F.A.R., Mota, N.M., Diniz, E.S., & Meira-Neto, J.A.A. (2020). Effects of Anthropogenic Disturbances on Biodiversity and Biomass Stock of Cerrado, the Brazilian Savanna. Biodiversity and Conservation, 29, 3151–3168. https://doi.org/10.1007/s10531-020-02013-6

de Fraga, R., Tavares, V., Simões, M.H., et al. (2023). Caves as Wildlife Refuges in Degraded Landscapes in the Brazilian Amazon. Scientific Reports, 13, 6055. <a href="https://doi.org/10.1038/s41598-023-32815-x">https://doi.org/10.1038/s41598-023-32815-x</a>

Dias Cabacinha, C., Guimarães Pereira, K.M., Gomes Cordeiro, N., Santos Fonseca, R., & Araújo Júnior, C.A. (2021). Tree component analysis in a savanna-forest

ecotone area of Minas Gerais state, Brazil. Scientia Agraria Paranaensis, 20, 405–413. https://doi.org/10.18188/sap.v20i4.29195

Donato, C.R., & Ribeiro, A.S. (2011). Caracterização dos impactos ambientais de cavernas do município de Laranjeiras, Sergipe. Caminhos de Geografia, 12, 243–255. <a href="https://doi.org/10.14393/rcg124016465">https://doi.org/10.14393/rcg124016465</a>

Grande, T.O., Aguiar, L.M.S., & Machado, R.B. (2020). Heating a Biodiversity Hotspot: Connectivity Is More Important Than Remaining Habitat. Landscape Ecology, 35, 639–657. https://doi.org/10.1007/s10980-020-00968-z

Heywood, V.H. (1978). Flowering plants of the world. Oxford University Press, Oxford.

Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (Ibama). (1990). Portaria nº 887, de 15 de julho de 1990. Brasília, DF: Ibama.

Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio). Cadastro Nacional de Informações Espeleológicas (CANIE). Disponível em: <a href="https://www.gov.br/icmbio/pt-br/assuntos/centros-de-pesquisa/cavernas/cadastro-nacional-de-informacoes-espeleologicas/canie">https://www.gov.br/icmbio/pt-br/assuntos/centros-de-pesquisa/cavernas/cadastro-nacional-de-informacoes-espeleologicas/canie</a>. Acesso em: 10 dez. 2024

Ishara, K.L., & Maimoni-Rodella, R.C.S. (2011). Pollination and dispersal systems in a Cerrado remnant (Brazilian Savanna) in Southeastern Brazil. Brazilian Archives of Biology and Technology, 54, 629–642. https://doi.org/10.1590/s1516-89132011000300025

Jacobi, C.M., & Carmo, F.F. (2011). Life-forms, pollination and seed dispersal syndromes in plant communities on ironstone outcrops, SE Brazil. Acta Botanica

Jung, M. (2016). LecoS—A Python Plugin for Automated Landscape Ecology Analysis. Ecological Informatics, 31, 18–21. <a href="https://doi.org/10.1016/j.ecoinf.2015.11.006">https://doi.org/10.1016/j.ecoinf.2015.11.006</a>

Klink, C.A., & Machado, R.B. (2005). Conservation of the Brazilian Cerrado. Conservation Biology, 19, 707–713. https://doi.org/10.1111/j.1523-1739.2005.00702.x

Kuhlmann, M., & Ribeiro, J.F. (2016a). Evolution of Seed Dispersal in the Cerrado Biome: Ecological and Phylogenetic Considerations. Acta Botanica Brasilica, 30, 271–282. <a href="https://doi.org/10.1590/0102-33062015abb0331">https://doi.org/10.1590/0102-33062015abb0331</a>

Lawrence, G.H.M. (1973). Taxonomia das plantas vasculares. (Antunes, M.S.T., trad.) Fundação Calouste Gulbenkian, Lisboa.

Li, Z., Han, H., You, H., Cheng, X., & Wang, T. (2020). Effects of Local Characteristics and Landscape Patterns on Plant Richness: A Multi-Scale Investigation of Multiple Dispersal Traits. Ecological Indicators, 117, 106584. <a href="https://doi.org/10.1016/j.ecolind.2020.106584">https://doi.org/10.1016/j.ecolind.2020.106584</a>

Liu, J., Wilson, M., Hu, G., Liu, J., Wu, J., & Yu, M. (2018). How Does Habitat Fragmentation Affect the Biodiversity and Ecosystem Functioning Relationship? Landscape Ecology, 33, 341–352. <a href="https://doi.org/10.1007/s10980-018-0620-5">https://doi.org/10.1007/s10980-018-0620-5</a>

Lira, P.K., Ewers, R.M., Banks-Leite, C., Pardini, R., & Metzger, J.P. (2012). Evaluating the Legacy of Landscape History: Extinction Debt and Species Credit in Bird and Small Mammal Assemblages in the Brazilian Atlantic Forest. Journal of

Mendonça, R., Sano, S.M., Almeida, S.P., & Ribeiro, J.F. (2008). Flora vascular do bioma Cerrado. In: Sano, S.M., Almeida, S.P., & Ribeiro, J.F. (Eds.) Cerrado: ecologia e flora, pp. 1028–1059.

Medina, B.M.O., Ribeiro, K.T., & Scarano, F.R. (2006). Plant–Plant and Plant–Topography Interactions on a Rock Outcrop at High Altitude in Southeastern Brazil. Biotropica, 38, 27–34. <a href="https://doi.org/10.1111/j.1744-7429.2006.00105.x">https://doi.org/10.1111/j.1744-7429.2006.00105.x</a>

Moseley, M. (2009). Are all caves ecotones? Cave and Karst Science, 36, 53–58.

Pivello, V.R. (2011). Invasões Biológicas no Cerrado Brasileiro: Efeitos da Introdução de Espécies Exóticas sobre a Biodiversidade. Ecologia Info, 33.

Peel, M.C., Finlayson, B.L., & McMahon, T.A. (2007). Updated World Map of the Köppen-Geiger Climate Classification. Hydrology and Earth System Sciences, 11, 1633–1644. https://doi.org/10.5194/hess-11-1633-2007

Poisot, T., Mouquet, N., & Gravel, D. (2013). Trophic Complementarity Drives the Biodiversity-Ecosystem Functioning Relationship in Food Webs. Ecology Letters, 16, 853–861. <a href="https://doi.org/10.1111/ele.12118">https://doi.org/10.1111/ele.12118</a>

QGIS.org. (2014). QGIS Geographic Information System. QGIS Association. <a href="http://www.qgis.org">http://www.qgis.org</a>

Ramalho, A.J., Zappi, D.C., Nunes, G.L., Watanabe, M.T.C., Vasconcelos, S., Dias, M.C., Jaffé, R., Prous, X., Giannini, T.C., Oliveira, G., & Giulietti, A.M. (2018). Blind Testing: DNA Barcoding Sheds Light Upon the Identity of Plant Fragments as a

Subsidy for Cave Conservation. Frontiers in Plant Science, 9, 1052. https://doi.org/10.3389/fpls.2018.01052

Ramalho, E.C., & Hobbs, R. (2012). Time for a Change: Dynamic Urban Ecology. Trends in Ecology and Evolution, 27(3), 179–188. <a href="https://doi.org/10.1016/j.tree.2011.10.008">https://doi.org/10.1016/j.tree.2011.10.008</a>

Ratter, J.A., Bridgewater, S., & Ribeiro, J.F. (2003). Analysis of the floristic composition of the Brazilian Cerrado vegetation III: Comparison of the woody vegetation of 376 areas. Edinburgh Journal of Botany, 60, 57–109. <a href="https://doi.org/10.1017/S0960428603000064">https://doi.org/10.1017/S0960428603000064</a>

Ribeiro, J.F., Fonseca, C.E., Sano, S.M., & Souza, M.F.S. (2022). Guia para recomposição da vegetação nativa do Cerrado. 1ª edição. Embrapa Cerrados, Brasília. Disponível em: <a href="https://www.bdpa.cnptia.embrapa.br">https://www.bdpa.cnptia.embrapa.br</a> (acesso em 4 Outubro 2024)

Ribeiro, A.K.M., Resende, U.M., & Schleder, E.J.D. (2014). Plant species and syndromes dispersion in a savanna remaining, Campo Grande Municipality, Mato Groso do Sul. Revista Ambiência, 10, e2410. <a href="https://doi.org/10.5935/ambiencia.2014.02.10">https://doi.org/10.5935/ambiencia.2014.02.10</a>

U.S. EPA. (2002). A Lexicon of Cave and Karst Terminology with Special Reference to Environmental Karst Hydrology (2002 Edition). U.S. Environmental Protection Agency, Office of Research and Development, National Center for Environmental Assessment, Washington Office, Washington, DC, EPA/600/R-02/003.

MapBiomas. (2024). Infográficos do Brasil. Accessed on 30/11/2024. https://brasil.mapbiomas.org/infograficos Peres, M.K. (2016). Estratégias de dispersão de sementes no bioma Cerrado: considerações ecológicas e filogenéticas. Tese de Doutorado, Universidade de Brasília, Brasília, 353 pp.

Ramos, W.M., & Sartori, A.L.B. (2013). Floristic analysis and dispersal syndromes of woody species of the Serra de Maracaju, Mato Grosso do Sul, Brazil. Brazilian Journal of Biology, 73, 67–78. <a href="https://doi.org/10.1590/s1519-69842013000100009">https://doi.org/10.1590/s1519-69842013000100009</a>

Ratter, J.A., Bridgewater, S., & Ribeiro, J.F. (2003). Analysis of the floristic composition of the Brazilian Cerrado vegetation III: Comparison of the woody vegetation of 376 areas. Edinburgh Journal of Botany, 60, 57–109. <a href="https://doi.org/10.1017/S0960428603000064">https://doi.org/10.1017/S0960428603000064</a>

# Apêndice do Capítulo 1

**Tabela 1**. Lista de espécies vegetais encontradas ao redor das cavernas Barriguda, Dois Irmãos, Maracanãzinho e Caverna 3; além das síndromes de dispersão e polinização associadas a elas. (**Aut** = Autocoria; **Zoo** = Zoocoria e/ ou Zoofilia; **Ane** = Anemocoria.)

|                          |           | Dois   |               | Caverna |           |             |
|--------------------------|-----------|--------|---------------|---------|-----------|-------------|
| Família/Espécies         | Barriguda | irmãos | Maracanãzinho | 3       | Dispersão | Polinização |
| ACANTHACEAE              |           |        |               |         |           |             |
| Justicia clivalis Wassh. |           |        | X             |         | Aut       | Zoo         |
| Justicia irwinii Wassh.  |           | X      |               |         | Aut       | Zoo         |
| Justicia thunbergioides  |           |        |               |         |           |             |
| (Lindau) Leonard         |           | X      | X             |         | Aut       | Zoo         |
| Lepidagathis             |           |        |               |         |           |             |
| floribunda (Pohl)        |           |        |               |         |           |             |
| Kameyama                 |           | x      |               |         | Aut       | Zoo         |
| Sp. I                    |           | x      |               |         |           |             |
| AMARANTHACEAE            |           |        |               |         |           |             |
| Alternanthera puberula   |           |        |               |         |           |             |
| D.Dietr.                 |           | X      |               |         | Aut       | Zoo         |
| Alternanthera sessilis   |           |        |               |         |           |             |
| (L.) R.Br.               |           |        | X             |         | Aut       | Zoo         |
| ANACARDIACEAE            |           |        |               |         |           |             |
| Astronium urundeuva      |           |        |               |         |           |             |
| (M.Allemão) Engl.        | X         |        | X             |         | Ane       | Zoo         |
| ARACEAE                  |           |        |               |         |           |             |
| Philodendron mayoi       |           |        |               |         |           |             |
| E.G.Gonç.                | X         | X      |               | X       | Zoo       | Zoo         |

| Taccarum                |   |   |   |   |     |     |
|-------------------------|---|---|---|---|-----|-----|
| crassispathum           |   |   |   |   |     |     |
| E.G.Gonç.               | X | X |   |   | Zoo |     |
| Xanthosoma              |   |   |   |   |     |     |
| pentaphyllum Engl.      |   |   | X |   | Zoo |     |
| ASPARAGACEAE            |   |   |   |   |     |     |
| Herreria interrupta     |   |   |   |   |     |     |
| Griseb.                 | x |   |   |   | Aut |     |
| Herreria salsaparilha   |   |   |   |   |     |     |
| Mart.                   | x | X |   |   | Aut |     |
| ASTERACEAE              |   |   |   |   |     |     |
| Bidens tenera           |   |   |   |   |     |     |
| O.E.Schulz              | x | X |   |   | Zoo |     |
| Centratherum            |   |   |   |   |     |     |
| punctatum Cass.         |   | X |   |   | Ane | Zoo |
| Chromolaena laevigata   |   |   |   |   |     |     |
| (Lam.) R.M.King &       |   |   |   |   |     |     |
| H.Rob.                  | X |   |   |   | Ane |     |
| Chromolaena             |   |   |   |   |     |     |
| maximiliani (Schrad. ex |   |   |   |   |     |     |
| DC.) R.M.King &         |   |   |   |   |     |     |
| H.Rob.                  |   | X |   |   | Ane | Zoo |
| Delilia biflora (L.)    |   |   |   |   |     |     |
| Kuntze                  |   |   |   | X | Aut | Aut |
| Elephantopus mollis     |   |   |   |   |     |     |
| Kunth                   | X | X | x | X | Ane | Zoo |
| Elephantopus sp.        |   | x |   |   | Ane | Zoo |
| Jungia floribunda Less. | X |   |   |   | Aut | Zoo |
|                         |   |   |   |   |     |     |

| Koanophyllon<br>andersonii R.M.King |   |   |   |   |     |     |
|-------------------------------------|---|---|---|---|-----|-----|
| _                                   |   |   |   |   | A   |     |
| & H.Rob.                            | X |   |   |   | Ane |     |
| Koanophyllon sp.                    | X |   | X |   | Ane |     |
| Lepidaploa aurea                    |   |   |   |   |     |     |
| (Mart. ex DC.) H.Rob.               |   | X |   |   | Ane | Zoo |
| Lepidaploa sp.                      | X |   |   |   | Ane | Zoo |
| Lessingianthus sp.                  | X |   |   |   | Ane | Zoo |
| Melampodium                         |   |   |   |   |     |     |
| paniculatum Gardner                 |   |   |   | X | Aut | Zoo |
| Mikania cordifolia                  |   |   |   |   |     |     |
| (L.f.) Willd.                       |   | X |   |   | Ane | Zoo |
|                                     |   |   |   |   |     |     |
| Sp.1                                |   | x |   |   |     |     |
| Trixis nobilis (Vell.)              |   |   |   |   |     |     |
| Katinas                             | x |   |   |   | Ane | Zoo |
| BIGNONIACEAE                        |   |   |   |   |     |     |
| Cuspidaria lateriflora              |   |   |   |   |     |     |
| (Mart.) DC.                         |   | X |   |   | Ane | Zoo |
|                                     |   |   |   |   |     |     |
| Dolichandra                         |   |   |   |   |     |     |
| unguis-cati (L.)                    |   |   |   |   |     |     |
| L.G.Lohmann                         |   | X |   |   | Ane | Zoo |
| Fridericia poeppigii                |   |   |   |   |     |     |
| (DC.) L.G.Lohmann                   |   | X |   |   | Ane | Zoo |
| Handroanthus                        |   |   |   |   |     |     |
| impetiginosus (Mart. ex             |   |   |   |   |     |     |
| DC.) Mattos                         | X | x |   |   | Ane | Zoo |
| Handroanthus                        |   |   |   |   |     |     |
| serratifolius (Vahl)                |   |   |   |   |     |     |
| S.Grose                             | X |   |   |   | Ane | Zoo |
|                                     |   |   |   |   |     |     |

| Jacaranda mimosifolia    |   |   |   |   |     |     |
|--------------------------|---|---|---|---|-----|-----|
| D. Don                   | X |   |   | X | Ane | Zoo |
| Jacaranda sp.            |   | X |   |   | Ane | Zoo |
| Tabebuia roseoalba       |   |   |   |   |     |     |
| (Ridl.) Sandwith         | X | X |   |   | Ane | Zoo |
| Jacaranda micrantha      |   |   |   |   |     |     |
| Cham.                    |   |   | X |   | Ane | Zoo |
| BORAGINACEAE             |   |   |   |   |     |     |
| Cordia trichotoma        |   |   |   |   |     |     |
| (Vell.) Arráb. ex Steud. | X | X |   |   | Zoo | Zoo |
| Sp.1                     |   | x |   |   |     |     |
| BROMELIACEAE             |   |   |   |   |     |     |
| Pitcairnia ensifolia     |   |   |   |   |     |     |
| Mez                      | X |   |   |   | Ane |     |
| Tillandsia geminiflora   |   |   |   |   |     |     |
| Brongn.                  |   |   |   | X | Ane |     |
| Tillandsia lorentziana   |   |   |   |   |     |     |
| Griseb.                  | X | X |   | X | Ane |     |
| CACTACEAE                |   |   |   |   |     |     |
| Epiphyllum phyllanthus   |   |   |   |   |     |     |
| (L.) Haw.                |   | X |   |   | Zoo | Zoo |
| Selenicereus setaceus    |   |   |   |   |     |     |
| (Salm-Dyck) Berg         | X |   |   |   | Zoo | Zoo |
| CELASTRACEAE             |   |   |   |   |     |     |
| Monteverdia floribunda   |   |   |   |   |     |     |
| (Reissek) Biral          |   | X |   |   | Zoo | Zoo |
| CANNABACEAE              |   |   |   |   |     |     |

| COMBRETACFAE  Terminalia actinophylla  Mart.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Celtis iguanaea (Jacq.)<br>Sarg. |   | x | X | x | Zoo  | Zoo |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---|---|---|---|------|-----|
| Mart.   x   Ane   Zoo  Terminalia argentea  Mart. & Zucc.   x   Ane   Zoo  Terminalia fagifolia  Mart.   x   Ane   Zoo  Terminalia phaeocarpa Eichler   x   Ane   Zoo  CONVOLVULACEAE  Jacquemontia sphaerostigma (Cav.) Rusby   x   Aut   Zoo  Turbina cordata (Choisy) D.F.Austin & Staples   x   Aut   Zoo  Turbina corymbosa (L.) Raf.   x   Aut   Zoo  COSTACEAE  Chamaecostus subsessilis (Nees & Mart.) C.D.Specht & D.W.Stev.   x   Zoo   Zoo  CYPERACEAE  Cyperus friburgensis Boeckeler   x   x   x   Aut   Aut  Rhynchospora ciliata | COMBRETACEAE                     |   |   |   |   |      |     |
| Terminalia argentea Mart. & Zucc.  x  Ane Zoo  Terminalia fagifolia Mart.  x  Ane Zoo  Terminalia phaeocarpa Eichler x  Ane Zoo  CONVOLVULACEAE  Jacquemontia sphaerostigma (Cav.) Rusby x  Aut Zoo  Turbina cordata (Choisy) D.F.Austin & Staples x  X  Aut Zoo  COSTACEAE  Chamaecostus subsessilis (Nees & Mart.) C.D.Specht & D.W.Stev. x  x  x  x  x  x  x  x  x  x  x  x  x                                                                                                                                                               |                                  |   | v |   |   | Δne  | 700 |
| Mart. & Zucc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | iviait.                          |   | А |   |   | THIC | 200 |
| Terminalia fagifolia Mart. x x Ane Zoo  Terminalia phaeocarpa Eichler x Ane Zoo  CONVOLVULACEAE  Jacquemontia sphaerostigma (Cav.) Rusby x X Aut Zoo  Turbina cordata (Choisy) D.F. Austin & Staples x Aut Zoo  Turbina corymbosa (L.) Raf. x Aut Zoo  COSTACEAE  Chamaecostus subsessilis (Nees & Mart.) C.D. Specht & D.W. Stev. x Aut Aut Rhymchospora ciliata                                                                                                                                                                               |                                  |   |   |   |   |      | _   |
| Mart. x Ane Zoo  Terminalia phaeocarpa Eichler x x Ane Zoo  CONVOLVULACEAE  Jacquemontia sphaerostigma (Cav.) Rusby x x Aut Zoo  Turbina cordata (Choisy) D.F.Austin & Aut Zoo  Turbina corymbosa (L.) Raf. x Aut Zoo  COSTACEAE  Chamaecostus subsessilis (Nees & Mart.) C.D.Specht & D.W.Stev. x X Aut Aut Rhynchospora ciliata                                                                                                                                                                                                               | Mart. & Zucc.                    |   | X |   |   | Ane  | Zoo |
| Eichler x x Ane Zoo  CONVOLVULACEAE  Jacquemontia sphaerostigma (Cav.) Rusby x Aut Zoo  Turbina cordata (Choisy) D.F.Austin & Staples x Aut Zoo  Turbina corymbosa (L.) Raf. x Aut Zoo  COSTACEAE  Chamaecostus subsessilis (Nees & Mart.) C.D.Specht & D.W.Stev. x X Aut Aut Rhynchospora ciliata                                                                                                                                                                                                                                              | Terminalia fagifolia             |   |   |   |   |      |     |
| Eichler x Ane Zoo  CONVOLVULACEAE  Jacquemontia sphaerostigma (Cav.) Rusby x x Aut Zoo  Turbina cordata (Choisy) D.F.Austin & X Staples x Aut Zoo  Turbina corymbosa (L.) Raf. x Aut Zoo  COSTACEAE  Chamaecostus subsessilis (Nees & Mart.) C.D.Specht & D.W.Stev. x X X X Aut Aut  Rhynchospora ciliata                                                                                                                                                                                                                                       | Mart.                            |   | X |   |   | Ane  | Zoo |
| CONVOLVULACEAE  Jacquemontia sphaerostigma (Cav.) Rusby x Aut Zoo  Turbina cordata (Choisy) D.F.Austin & Staples x Aut Zoo  Turbina corymbosa (L.) Raf. x Aut Zoo  COSTACEAE  Chamaecostus subsessilis (Nees & Mart.) C.D.Specht & D.W.Stev. x Zoo Zoo  CYPERACEAE  Cyperus friburgensis Boeckeler x x x Aut Aut  Rhynchospora ciliata                                                                                                                                                                                                          | Terminalia phaeocarpa            |   |   |   |   |      |     |
| Jacquemontia sphaerostigma (Cav.) Rusby x x Aut Zoo  Turbina cordata (Choisy) D.F.Austin & Staples x Aut Zoo  Turbina corymbosa (L.) Raf. x Aut Zoo  COSTACEAE  Chamaecostus subsessilis (Nees & Mart.) C.D.Specht & D.W.Stev. x Zoo Zoo  CYPERACEAE  Cyperus friburgensis Boeckeler x x x Aut Aut  Rhynchospora ciliata                                                                                                                                                                                                                        | Eichler                          | X |   |   |   | Ane  | Zoo |
| Rusby x Aut Zoo  Turbina cordata (Choisy) D.F.Austin & Aut Zoo  Turbina corymbosa (L.) Raf. x Aut Zoo  COSTACEAE  Chamaecostus subsessilis (Nees & Mart.) C.D.Specht & Zoo  CYPERACEAE  Cyperus friburgensis Boeckeler x x x Aut Aut  Rhynchospora ciliata                                                                                                                                                                                                                                                                                      | CONVOLVULACEAE                   |   |   |   |   |      |     |
| Rusby x Aut Zoo  Turbina cordata (Choisy) D.F.Austin & Aut Zoo  Staples x Aut Zoo  Turbina corymbosa (L.) Raf. x Aut Zoo  COSTACEAE  Chamaecostus subsessilis (Nees & Xoo  CYPERACEAE  Cyperus friburgensis Boeckeler x x Aut Aut  Rhynchospora ciliata                                                                                                                                                                                                                                                                                         | Jacquemontia                     |   |   |   |   |      |     |
| Turbina cordata (Choisy) D.F.Austin & Staples x Aut Zoo  Turbina corymbosa (L.) Raf. x Aut Zoo  COSTACEAE  Chamaecostus subsessilis (Nees & Mart.) C.D.Specht & D.W.Stev. x Zoo Zoo  CYPERACEAE  Cyperus friburgensis Boeckeler x x x Aut Aut  Rhynchospora ciliata                                                                                                                                                                                                                                                                             | sphaerostigma (Cav.)             |   |   |   |   |      |     |
| Choisy) D.F.Austin & Staples x Aut Zoo  Turbina corymbosa (L.) Raf. x Aut Zoo  COSTACEAE  Chamaecostus subsessilis (Nees & Xaut Zoo  D.W.Stev. x Zoo Zoo  CYPERACEAE  Cyperus friburgensis Boeckeler x x x Aut Aut  Rhynchospora ciliata                                                                                                                                                                                                                                                                                                        | Rusby                            |   | X |   |   | Aut  | Zoo |
| Staples x Aut Zoo  Turbina corymbosa (L.) Raf. x Aut Zoo  COSTACEAE  Chamaecostus subsessilis (Nees & Mart.) C.D.Specht & D.W.Stev. x Zoo Zoo  CYPERACEAE  Cyperus friburgensis Boeckeler x x x Aut Aut  Rhynchospora ciliata                                                                                                                                                                                                                                                                                                                   | Turbina cordata                  |   |   |   |   |      |     |
| Turbina corymbosa (L.) Raf. x Aut Zoo  COSTACEAE  Chamaecostus subsessilis (Nees & Mart.) C.D.Specht & D.W.Stev. x Zoo Zoo  CYPERACEAE  Cyperus friburgensis Boeckeler x x x Aut Aut  Rhynchospora ciliata                                                                                                                                                                                                                                                                                                                                      | (Choisy) D.F.Austin &            |   |   |   |   |      |     |
| Raf. x Aut Zoo COSTACEAE  Chamaecostus subsessilis (Nees & Mart.) C.D.Specht & D.W.Stev. x Zoo Zoo CYPERACEAE  Cyperus friburgensis Boeckeler x x x Aut Aut Rhynchospora ciliata                                                                                                                                                                                                                                                                                                                                                                | Staples                          | x |   |   |   | Aut  | Zoo |
| COSTACEAE  Chamaecostus subsessilis (Nees & Mart.) C.D.Specht & D.W.Stev. x Zoo Zoo  CYPERACEAE  Cyperus friburgensis Boeckeler x x x Aut Aut  Rhynchospora ciliata                                                                                                                                                                                                                                                                                                                                                                             | Turbina corymbosa (L.)           |   |   |   |   |      |     |
| Chamaecostus subsessilis (Nees & Mart.) C.D.Specht & D.W.Stev. x Zoo Zoo  CYPERACEAE  Cyperus friburgensis Boeckeler x x x Aut Aut  Rhynchospora ciliata                                                                                                                                                                                                                                                                                                                                                                                        | Raf.                             |   | X |   |   | Aut  | Zoo |
| Subsessilis (Nees & Mart.) C.D.Specht & Zoo Zoo D.W.Stev. x Zoo Zoo  CYPERACEAE  Cyperus friburgensis Boeckeler x x x Aut Aut  Rhynchospora ciliata                                                                                                                                                                                                                                                                                                                                                                                             | COSTACEAE                        |   |   |   |   |      |     |
| Mart.) C.D.Specht & Zoo Zoo D.W.Stev. x Zoo Zoo  CYPERACEAE  Cyperus friburgensis Boeckeler x x x Aut Aut  Rhynchospora ciliata                                                                                                                                                                                                                                                                                                                                                                                                                 | Chamaecostus                     |   |   |   |   |      |     |
| D.W.Stev. x Zoo Zoo CYPERACEAE  Cyperus friburgensis Boeckeler x x x Aut Aut  Rhynchospora ciliata                                                                                                                                                                                                                                                                                                                                                                                                                                              | subsessilis (Nees &              |   |   |   |   |      |     |
| CYPERACEAE  Cyperus friburgensis  Boeckeler x x x Aut Aut  Rhynchospora ciliata                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mart.) C.D.Specht &              |   |   |   |   |      |     |
| Cyperus friburgensis Boeckeler x x x Aut Aut  Rhynchospora ciliata                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D.W.Stev.                        |   | X |   |   | Zoo  | Zoo |
| Boeckeler x x Aut Aut  Rhynchospora ciliata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CYPERACEAE                       |   |   |   |   |      |     |
| Rhynchospora ciliata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cyperus friburgensis             |   |   |   |   |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Boeckeler                        |   |   | X | x | Aut  | Aut |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Rhynchospora ciliata             |   |   |   |   |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (Vahl) Kük.                      |   | X |   |   | Aut  | Aut |

# DILLENIACEAE

| Davilla nitida (Vahl)          |   |   |   |   |     |     |
|--------------------------------|---|---|---|---|-----|-----|
| Kubitzki                       | X |   |   |   | Zoo | Zoo |
| DIOSCOREACEAE                  |   |   |   |   |     |     |
| Dioscorea alata L.             | X |   |   |   | Ane |     |
| Dioscorea campestris Griseb.   |   |   | x |   | Ane |     |
| Dioscorea dodecaneura<br>Vell. |   |   | x |   | Ane |     |
| Dioscorea                      |   |   |   |   |     |     |
| orthogoneura Uline ex          |   |   |   |   |     |     |
| Hochr.                         |   |   |   | X | Ane |     |
| Dioscorea sp.                  | X | x |   |   | Ane |     |
| Dioscorea sp. 1                |   |   |   | X | Ane |     |
| Dioscorea sp. 2                |   |   |   | X | Ane |     |
| Dioscorea                      |   |   |   |   |     |     |
| stegelmanniana                 |   |   |   |   |     |     |
| R.Knuth                        | X |   |   |   | Ane |     |
| Dioscorea ternata              |   |   |   |   |     |     |
| Griseb.                        | X | X |   |   | Ane |     |
| EBENACEAE                      |   |   |   |   |     |     |
| Diospyros lasiocalyx           |   |   |   |   |     |     |
| (Mart.) B.Walln.               | X | X |   |   | Zoo | Zoo |
| ERYTHROXYLACEA<br>E            |   |   |   |   |     |     |
| Erythroxylum daphnites         |   |   |   |   |     |     |
| Mart.                          | X | X |   |   | Zoo | Zoo |

| Erythroxylum deciduum A.StHil.                         |   | x |   |   | Zoo | Zoo |
|--------------------------------------------------------|---|---|---|---|-----|-----|
| Erythroxylum sp.                                       | X |   |   |   | Zoo | Zoo |
| EUPHORBIACEAE                                          |   |   |   |   |     |     |
| Cnidoscolus urens (L.)<br>Arthur                       |   |   |   | X | Aut | Zoo |
| Euphorbia sp.                                          |   | x |   |   | Aut | Zoo |
| Manihot anomala Pohl                                   | X | x |   |   | Zoo | Zoo |
| Manihot esculenta                                      |   |   |   |   |     |     |
| Crantz                                                 |   | X |   |   | Zoo | Zoo |
| Manihot sp.                                            |   | x |   |   | Zoo | Zoo |
| Sapium glandulosum                                     |   |   |   |   |     |     |
| (L.) Morong                                            |   | X | X |   | Zoo | Zoo |
| Sapium sp.                                             |   | X |   |   | Zoo | Zoo |
| Sebastiania brasiliensis                               |   |   |   |   |     |     |
| Spreng.                                                | X | X |   |   | Zoo | Zoo |
| Sebastiania<br>ramosissima (A.<br>StHil.) A. L. Melo & |   |   |   |   |     |     |
| M. F. Sales                                            | X |   |   |   | Zoo | Zoo |
| FABACEAE                                               |   |   |   |   |     |     |
| Anadenanthera                                          |   |   |   |   |     |     |
| colubrina (Vell.)<br>Brenan                            | X | X |   |   | Ane | Zoo |
|                                                        |   |   |   |   | 7   | _00 |
| Bauhinia dumosa Benth.                                 | X |   |   |   | Aut | Zoo |
| Dellui.                                                | Λ |   |   |   | Aui | 200 |
| Bauhinia goyazensis                                    |   |   |   |   |     | -   |
| Harms                                                  |   |   |   | X | Aut | Zoo |

| Bauhinia longifolia   |   |   |   |   |        |     |
|-----------------------|---|---|---|---|--------|-----|
| (Bong.) Steud.        |   | X |   |   | Aut    | Zoo |
|                       |   |   |   |   |        |     |
| Bauhinia rufa (Bong.) |   |   |   |   |        |     |
| Steud.                | X |   | X |   | Aut    | Zoo |
| Destruction I         |   |   |   |   | A4     | 7   |
| Bauhinia ungulata L.  | X |   |   |   | Aut    | Zoo |
| Centrolobium          |   |   |   |   |        |     |
| tomentosum Guillem.   |   |   |   |   |        |     |
| ex Benth.             |   |   |   | X | Ane    | Zoo |
| VII D VIII            |   |   |   |   | 1 2224 | 200 |
| Centrosema            |   |   |   |   |        |     |
| fasciculatum Benth.   | X | X |   |   | Ane    | Zoo |
|                       |   |   |   |   |        |     |
| Centrosema sagittatum |   |   |   |   |        |     |
| (Humb. & Bonpl. ex    |   |   |   |   |        |     |
| Willd.) Brandegee     |   | X |   |   | Ane    | Zoo |
|                       |   |   |   |   |        |     |
| Ctenodon elegans      |   |   |   |   |        |     |
| (Schltdl. & Cham.)    |   |   |   |   |        |     |
| D.B.O.S.Cardoso &     |   |   |   |   |        |     |
| A.Delgado             |   | X |   |   | Ane    | Zoo |
| Desmodium affine      |   |   |   |   |        |     |
|                       |   |   |   |   | 7      | 7   |
| Schltdl.              |   |   | X |   | Zoo    | Zoo |
| Desmodium             |   |   |   |   |        |     |
| cajanifolium (Kunth)  |   |   |   |   |        |     |
| DC.                   |   |   |   | X | Zoo    | Zoo |
|                       |   |   |   |   |        |     |
| Desmodium incanum     |   |   |   |   |        |     |
| (Sw.) DC.             | X |   |   |   | Zoo    | Zoo |
|                       |   |   |   |   |        |     |
| Desmodium             |   |   |   |   |        |     |
| platycarpum Benth.    | X |   |   |   | Zoo    | Zoo |
| D 1:                  |   |   |   |   |        |     |
| Desmodium             |   |   |   |   | 7      | 7   |
| subsecundum Vogel     | X |   |   |   | Zoo    | Zoo |
| Desmodium tortuosum   |   |   |   |   |        |     |
| (Sw.) DC.             |   |   |   | X | Zoo    | Zoo |
| (5) 20.               |   |   |   | А | 200    | 200 |

| Desmodium uncinatum                     |   |   |      |     |
|-----------------------------------------|---|---|------|-----|
| (Jacq.) DC.                             |   | X | Zoo  | Zoo |
| Machaerium hirtum                       |   |   |      |     |
| (Vell.) Stellfeld                       |   | x | Ane  | Zoo |
|                                         |   |   |      |     |
| Piptadenia Benth.                       |   | x | Aut  | Zoo |
| Platymiscium                            |   |   |      |     |
| floribundum Vogel                       |   | x | Ane  | Zoo |
|                                         |   |   |      |     |
| Platymiscium trinitatis                 |   |   |      | _   |
| Benth.                                  | X |   | Ane  | Zoo |
| Platypodium elegans                     |   |   |      |     |
| Vogel                                   |   | x | Ane  | Zoo |
| Senna hirsuta (L.)                      |   |   |      |     |
| H.S.Irwin & Barneby                     |   | X | Aut  | Zoo |
| 11.5.11 will & Barneby                  |   | A | Aut  | 200 |
| Senna macranthera                       |   |   |      |     |
| (DC. ex Collad.)                        |   |   |      |     |
| H.S.Irwin & Barneby                     |   | X | Aut  | Zoo |
| Senna obtusifolia (L.)                  |   |   |      |     |
| H.S.Irwin & Barneby                     |   | x | Aut  | Zoo |
|                                         |   |   |      |     |
| Senna pendula                           |   |   |      |     |
| (Humb.& Bonpl.ex<br>Willd.) H.S.Irwin & |   |   |      |     |
| Barneby                                 |   | X | Aut  |     |
| 2                                       |   |   | 1100 |     |
| GESNERIACEAE                            |   |   |      |     |
| Drymonia serrulata                      |   |   |      |     |
| (Jacq.) Mart.                           |   | x | Zoo  | Zoo |
|                                         |   |   |      |     |
| HELIOTROPIACEAE                         |   |   |      |     |
| Myriopus rubicundus                     |   |   |      |     |
| (Salzm. ex DC.)                         |   |   |      |     |
| Luebert                                 |   | X | Zoo  | Zoo |
| LAMIACEAE                               |   |   |      |     |

| Cantinoa sp.                                 | x |   | Aut | Zoo |
|----------------------------------------------|---|---|-----|-----|
| Hyptis pulegioides Pohl ex Benth.            |   | x | Aut | Zoo |
| Ocimum campechianum Mill.                    |   | x | Aut | Zoo |
| Ocimum gratissimum<br>L.                     |   | X | Aut | Zoo |
| LOGANIACEAE                                  |   |   |     |     |
| Strychnos sp.                                |   | X | Zoo | Zoo |
| MALPIGHIACEAE                                |   |   |     |     |
| Banisteriopsis oxyclada<br>(A.Juss.) B.Gates | x | X | Ane | Zoo |
| Heteropterys eglandulosa A.Juss.             |   | x | Ane | Zoo |
| Sp.1                                         |   | x |     |     |
| MALVACEAE                                    |   |   |     |     |
| Apeiba tibourbou Aubl.                       |   | x | Zoo | Zoo |
| <i>Guazuma ulmifolia</i><br>Lam.             |   | x | Zoo | Zoo |
| Helicteres brevispira A.StHil.               | X | X | Aut | Zoo |
| Luehea divaricata                            |   |   |     |     |
| Mart.                                        | X |   | Ane | Zoo |
| Sida cordifolia L.                           |   | X | Ane | Zoo |
| Sida glomerata Cav.                          |   | X | Ane | Zoo |
| Triumfetta semitriloba                       |   |   |     |     |
| Jacq.                                        |   | X | Ane | Zoo |

| Waltheria indica L.                                     |   | x |   |   | Aut | Zoo |
|---------------------------------------------------------|---|---|---|---|-----|-----|
| MARANTACEAE                                             |   |   |   |   |     |     |
| Goeppertia eichleri<br>(Petersen) Borchs. &<br>S.Suárez | x |   |   | X | Zoo | Zoo |
| Goeppertia sellowii<br>(Körn.) Borchs. & S.<br>Suárez   |   | x | x |   | Zoo | Zoo |
| Maranta incrassata<br>L.Andersson                       |   |   |   | X | Aut | Zoo |
| Maranta pluriflora (Petersen) K.Schum.                  | X |   |   |   | Aut | Zoo |
| Sp.1                                                    |   | X |   |   |     |     |
| MELASTOMATACEA<br>E                                     |   |   |   |   |     |     |
| Miconia albicans (Sw.)<br>Steud.                        | x |   |   |   | Zoo | Zoo |
| MELIACEAE                                               |   |   |   |   |     |     |
| Cedrela fissilis Vell.                                  |   | X |   |   | Ane | Zoo |
| Cedrela odorata L.                                      |   | X |   |   | Ane | Zoo |
| Trichilia catigua A.Juss.                               | X | x |   |   | Zoo | Zoo |
| Trichilia elegans A.Juss.                               | X | x |   |   | Zoo | Zoo |
| METTENIUSACEAE                                          |   |   |   |   |     | 200 |
| Emmotum nitens                                          |   |   |   |   |     |     |
| (Benth.) Miers                                          |   | x |   |   | Zoo | Zoo |
| MORACEAE                                                |   |   |   |   |     |     |

| Dorstenia cayapia Vell. | X |   |   |   | Zoo | Zoo |
|-------------------------|---|---|---|---|-----|-----|
| Dorstenia vitifolia     |   |   |   |   |     |     |
| Gardner                 | X | X | X | X | Zoo | Zoo |
| Ficus obtusifolia Kunth |   | X |   |   | Zoo | Zoo |
| Maclura tinctoria (L.)  |   |   |   |   |     |     |
| D.Don ex Steud.         | X |   |   |   | Zoo | Zoo |
| MYRTACEAE               |   |   |   |   |     |     |
| Campomanesia            |   |   |   |   |     |     |
| velutina (Cambess.)     |   |   |   |   |     |     |
| O.Berg                  | X | X |   |   | Zoo | Zoo |
| Eugenia sp.             | X |   |   |   | Zoo | Zoo |
| Sp.1                    |   | X |   |   |     |     |
| ORCHIDACEAE             |   |   |   |   |     |     |
| Cranichis scripta       |   |   |   |   |     |     |
| Kraenzl.                |   |   | X |   | Ane |     |
| Cranichis sp.           | X |   |   |   | Ane |     |
| Galeandra montana       |   |   |   |   |     |     |
| Barb.Rodr.              |   |   | X |   | Ane |     |
| Habenaria cryptophila   |   |   |   |   |     |     |
| Barb.Rodr.              |   |   | X |   | Ane |     |
| Oeceoclades maculata    |   |   |   |   |     |     |
| (Lindl.) Lindl.         |   |   |   | x | Ane |     |
| Sp.1                    |   | x |   |   |     |     |
| ~ <i>p</i> · · ·        |   |   |   |   |     |     |
| OXALIDACEAE             |   |   |   |   |     |     |
| Oxalis cytisoides Mart. |   |   |   |   |     |     |
| ex Zucc.                |   | X |   |   | Aut | Zoo |

| Oxalis umbraticola     |   |   |   |   |     |     |
|------------------------|---|---|---|---|-----|-----|
| A.StHil.               |   |   | X |   | Aut | Zoo |
| PHYLLANTHACEAE         |   |   |   |   |     |     |
| Phyllanthus sp.1       | X |   |   |   | Zoo | Zoo |
| Phyllanthus sp.2       |   | X |   |   | Zoo | Zoo |
| PHYTOLACCACEAE         |   |   |   |   |     |     |
| Phytolacca thyrsiflora |   |   |   |   |     |     |
| Fenzl. ex J.A.Schmidt  |   |   | X |   | Zoo | Zoo |
| PIPERACEAE             |   |   |   |   |     |     |
| Peperomia gardneriana  |   |   |   |   |     |     |
| Miq.                   | X | X | X | X | Zoo | Zoo |
| Peperomia              |   |   |   |   |     |     |
| lanceolato-peltata     |   |   |   |   |     |     |
| C.DC.                  | X | x |   |   | Zoo | Zoo |
| Piper aduncum L.       |   |   |   | X | Zoo | Zoo |
| POACEAE                |   |   |   |   |     |     |
| Hildaea pallens (Sw.)  |   |   |   |   |     |     |
| C.Silva & R.P.Oliveira |   | X |   |   | Ane |     |
| Ichnanthus sp. l       | x |   |   |   | Zoo |     |
| Ichnanthus sp.2        |   | x |   |   | Zoo |     |
| Lasiacis ligulata      |   |   |   |   |     |     |
| Hitchc. & Chase        |   | X |   |   | Zoo |     |
| Lasiacis sp.           | X |   |   |   | Zoo |     |
| Oplismenus hirtellus   |   |   |   |   |     |     |
| (L.) P.Beauv.          |   | x |   |   | Zoo |     |
| Oplismenus sp.         | X |   |   |   | Zoo |     |
|                        |   |   |   |   |     |     |

| Paspalum pilosum       |   |   |   |     |     |
|------------------------|---|---|---|-----|-----|
| Lam.                   |   | X |   | Ane |     |
| Paspalum sp.           | x |   |   | Ane |     |
| Rugoloa pilosa (Sw.)   |   |   |   |     |     |
| Zuloaga                |   | X |   | Aut |     |
| Sp.1                   | x |   |   |     |     |
| Sp.2                   |   | x |   |     |     |
| Sp.3                   |   | x |   |     |     |
| Sp.4                   |   | x |   |     |     |
| Sp.5                   |   | x |   |     |     |
| Sp.6                   |   | X |   |     |     |
| Urochloa brizantha     |   |   |   |     |     |
| (Hochst. ex A.Rich.)   |   |   |   |     |     |
| R.D.Webster            |   | X |   | Zoo |     |
| Urochloa decumbens     |   |   |   |     |     |
| (Stapf) R.D.Webster    |   | X |   | Zoo |     |
| PRIMULACEAE            |   |   |   |     |     |
| Clavija nutans (Vell.) |   |   |   |     |     |
| B.Ståhl                |   | X |   | Zoo | Zoo |
| PTERIDACEAE            |   |   |   |     |     |
| Adiantum deflectens    |   |   |   |     |     |
| Mart.                  |   | X |   | Aut |     |
| Adiantum pectinatum    |   |   |   |     |     |
| Kunze ex Baker         |   | x |   | Aut |     |
| Adiantum sp.           |   | X | x | Aut |     |
| RHAMNACEAE             |   |   |   |     |     |

| Gouania latifolia         |   |   |   |   |     | _   |
|---------------------------|---|---|---|---|-----|-----|
| Reissek                   |   | X |   |   | Ane | Zoo |
| Rhamnidium                |   |   |   |   |     |     |
| elaeocarpum Reissek       |   |   | X | X | Ane | Zoo |
| RUBIACEAE                 |   |   |   |   |     |     |
| Borreria capitata (Ruiz   |   |   |   |   |     |     |
| & Pav.) DC.               |   | x |   |   | Aut | Zoo |
| Borreria tenera DC.       |   | x |   |   | Aut | Zoo |
| Chomelia ribesioides      |   |   |   |   |     |     |
| Benth. ex A.Gray          |   |   | X | X | Zoo | Zoo |
| Cordiera elliptica        |   |   |   |   |     |     |
| (Cham.) Kuntze            | X | X |   |   | Zoo | Zoo |
|                           |   |   |   |   |     |     |
| Cordiera sessilis (Vell.) |   |   |   |   | _   | -   |
| Kuntze                    | X | X | Х |   | Zoo | Zoo |
| Guettarda viburnoides     |   |   |   |   |     |     |
| Cham. & Schltdl.          | X | X |   |   | Zoo | Zoo |
| Palicourea marcgravii     |   |   |   |   |     |     |
| A.StHil.                  | X |   |   |   | Zoo | Zoo |
| A.StIIII.                 | Λ |   |   |   | 200 | 200 |
| Tocoyena formosa          |   |   |   |   |     |     |
| (Cham. & Schltdl.)        |   |   |   |   |     |     |
| K.Schum.                  |   | X |   |   | Zoo | Zoo |
| SANTALACEAE               |   |   |   |   |     |     |
| Phoradendron              |   |   |   |   |     |     |
| mucronatum (DC.)          |   |   |   |   |     |     |
| Krug & Urb.               | X | x |   |   | Zoo | Zoo |
| SAPINDACEAE               |   |   |   |   |     |     |
| Allophylus racemosus      |   |   |   |   |     |     |
| Sw.                       |   | x | X | X | Zoo | Zoo |

| Allophylus strictus     |   |   |   |   |     |     |
|-------------------------|---|---|---|---|-----|-----|
| Radlk.                  |   |   | X |   | Zoo | Zoo |
| Dilodendron             |   |   |   |   | _   | _   |
| bipinnatum Radlk.       | X | X | X |   | Zoo | Zoo |
| Serjania marginata      |   |   |   |   |     |     |
| Casar.                  | X |   |   |   | Ane | Zoo |
| Serjania paludosa       |   |   |   |   |     |     |
| Cambess.                |   |   |   | X | Ane | Zoo |
| Serjania reticulata     |   |   |   |   |     |     |
| Cambess.                |   |   | X |   | Ane | Zoo |
| Serjania sp.            | X |   |   |   | Ane |     |
| Sp.1                    |   | X |   |   |     |     |
| SAPOTACEAE              |   |   |   |   |     |     |
| Pouteria gardneri       |   |   |   |   |     |     |
| (Mart. & Miq.) Baehni   | X |   |   |   | Zoo | Zoo |
| SELAGINELLACEAE         |   |   |   |   |     |     |
| Selaginella marginata   |   |   |   |   |     |     |
| (Humb. & Bonpl. ex      |   |   |   |   |     |     |
| Willd.) Spring          |   | X |   |   | Aut |     |
| Selaginella sp.1        | x |   |   |   | Aut |     |
| Selaginella sp.2        | x |   |   |   | Aut |     |
| SMILACACEAE             |   |   |   |   |     |     |
| Smilax elastica Griseb. |   | x |   |   | Zoo | Zoo |
| SOLANACEAE              |   |   |   |   |     |     |
| Cestrum axillare Vell.  | X |   |   |   | Zoo | Zoo |
| Cestrum obovatum        |   |   |   |   |     |     |
| Sendtn.                 |   | X |   |   | Zoo | Zoo |

| Cestrum sp.              | x |   |   |   | Zoo | Zoo |
|--------------------------|---|---|---|---|-----|-----|
| Solanum americanum       |   |   |   |   |     |     |
| Mill.                    |   | X |   |   | Zoo | Zoo |
| Solanum oocarpum         |   |   |   |   |     |     |
| Sendtn.                  |   | X |   |   | Zoo | Zoo |
|                          |   |   |   |   |     |     |
| TALINACEAE               |   |   |   |   |     |     |
| Talinum paniculatum      |   |   |   |   |     |     |
| (Jacq.) Gaertn.          |   |   | X | X | Ane | Ane |
| URTICACEAE               |   |   |   |   |     |     |
| Urera baccifera (L.)     |   |   |   |   |     |     |
| Gaudich. ex Wedd.        |   |   |   | X | Zoo | Zoo |
| VERBENACEAE              |   |   |   |   |     |     |
| Lantana camara L.        |   | X |   |   | Zoo | Zoo |
| Stachytarpheta           |   |   |   |   |     |     |
| cayennensis (Rich.)      |   |   |   |   |     |     |
| Vahl                     |   | X |   | X | Aut | Zoo |
| VIOLACEAE                |   |   |   |   |     |     |
| Pombalia communis        |   |   |   |   |     |     |
| (A.StHil.)               |   |   |   |   |     |     |
| Paula-Souza              |   |   | X |   | Aut | Zoo |
| VITACEAE                 |   |   |   |   |     |     |
| Cissus erosa Rich.       |   |   | x |   | Zoo | Zoo |
| Clematicissus simsiana   |   |   |   |   |     |     |
| (Schult. & Schult.f.)    |   |   |   |   |     |     |
| Lombardi                 |   |   | X |   | Zoo | Zoo |
| VOCHYSIACEAE             |   |   |   |   |     |     |
| Vochysia elliptica Mart. | x |   |   |   | Ane | Zoo |

## **Appendix from Chapter two:**

Table 1. List of identified species. Life form; Habit. DISP: Dispersal syndrome; POL: Pollination syndrome.

|                                          |     |     | Eastern       |                            |             |
|------------------------------------------|-----|-----|---------------|----------------------------|-------------|
| Família/Espécie                          | DIS | POL | Forma<br>vida | de<br>Hábito               | Voucher     |
| ACANTHACEAE                              |     |     |               |                            |             |
| Justicia chrysotrichoma (Nees) Benth.    | Aut |     | Herb          | Terrestrial                | IPF 24      |
| Justicia irwinii Wassh.                  | Aut |     | Shrub         | Terrestrial                | MCS 3135    |
| Justicia thunbergioides (Lindau) Leonard | Aut |     | Shrub         | Terrestrial                | MCS 3119    |
| ALSTROEMERIACEAE                         |     |     |               |                            |             |
| Alstroemeria gardneri Baker              | Aut | Zoo | Herb          | Terrestrial                | MCS 3129    |
| Alstroemeria stenopetala Schenk          | Zoo | Zoo | Herb          | Terrestrial                | IPF 138     |
| AMARANTHACEAE                            |     |     |               |                            |             |
| Pfaffia denudata (Moq.) Kuntze           | Aut |     | Herbs         | Terrestrial                | IPF 21, 169 |
| ANACARDIACEAE                            |     |     |               |                            |             |
| Tapirira guianensis Aubl.                | Zoo | Zoo | Tree          | Terrestrial                | IPF 142     |
| ANEMIACEAE                               |     |     |               |                            |             |
| Anemia presliana Prantl                  | _   | _   | Herb          | Terrestrial,<br>Rupicolous | IPF 124     |
| Annona tomentosa R.E.Fr.                 | Zoo | Zoo | Tree          | Terrestrial                | IPF 42      |
| APIACEAE                                 | 200 | 200 | 1100          | 10110311141                | 111 12      |
| Hydrocotyle quinqueloba Ruiz & Pav.      | Zoo | _   | Herb          | Terrestrial                | IPF 168     |
| ARACEAE                                  |     |     |               |                            |             |
| Philodendron guaraense E.G.Gonç.         | Zoo | Zoo | Herb          | HemiEpiphyte               | 3138 B      |
| ARALIACEAE                               |     |     |               |                            |             |

| Didymopanax macrocarpus (Cham. & Schltdl.)        | &<br>—    | _   | Tree     | Terrestrial                | IPF 67          |
|---------------------------------------------------|-----------|-----|----------|----------------------------|-----------------|
| Didymopanax morototoni (Aubl.) Decne<br>& Planch. | e.<br>Zoo | Zoo | Tree     | Terrestrial                | IPF 129         |
| ARECACEAE                                         |           |     |          |                            |                 |
| Syagrus flexuosa (Mart.) Becc.                    | Zoo       | Zoo | Palmeira | Terrestrial                | IPF 17          |
| ASTERACEAE                                        |           |     |          |                            |                 |
| Baccharis dracunculifolia DC.                     | Ane       | Zoo | SubShrub | Terrestrial                | IPF 68, 137     |
| Baccharis retusa DC.                              | Ane       | Zoo | Shrub    | Terrestrial,<br>Rupicolous | IPF 107         |
| Chromolaena laevigata (Lam.) R.M.Kin              | g         |     |          |                            |                 |
| & H.Rob.                                          | Ane       | _   | Herb     | Terrestrial                | IPF 162         |
| Chromolaena pungens (Gardner                      | r)        |     |          |                            |                 |
| R.M.King & H.Rob.                                 | Ane       | Zoo | Shrub    | Terrestrial                | IPF 46          |
| Eremanthus mollis Sch.Bip.                        | Ane       | Zoo | Shrub    | Terrestrial                | IPF 56          |
| Gamochaeta americana (Mill.) Wedd.                | Ane       | Zoo | Herb     | Terrestrial                | IPF 115         |
| Ichthyothere latifolia (Benth.) Gardner           | Ane       | Ane | SubShrub | Terrestrial                | IPF 30          |
| Ichthyothere linearis Baker                       | Ane       | Zoo | Herb     | Terrestrial                | IPF 131         |
| Lessingianthus ammophilus (Gardner                | r)        |     |          |                            |                 |
| H.Rob.                                            | Ane       | Zoo | Shrub    | Terrestrial                | IPF 35          |
| Lessingianthus elegans (Gardner) H.Rob.           | Aut       | Zoo | Shrub    | Terrestrial                | IPF 130         |
| Lessingianthus ligulifolius (Mart. ex DC          | .)        |     |          |                            |                 |
| H.Rob.                                            | Ane       | Zoo | SubShrub | Terrestrial                | IPF 135         |
| Mikania microcephala DC.                          | Ane       | Zoo | Liana    | Terrestrial                | IPF 105         |
| Mikania purpurascens (Baker) R.M.Kin              | _         |     |          |                            |                 |
| & H.Rob.                                          | Ane       | Zoo | SubShrub | Terrestrial                | IPF 107         |
| Tilesia baccata (L.) Pruski                       | Zoo       | _   | Shrub    | Terrestrial                | MCS 3118        |
| Vernonanthura membranacea (Gardner                |           | 7   | CI I     | T                          | IDE 70, 70, 101 |
| H.Rob.                                            | Ane       | Zoo | Shrub    | Terrestrial                | IPF 78, 79, 101 |
| Wedelia regis H.Rob.                              | Ane       | Zoo | SubShrub | Terrestrial                | IPF 28          |
| Youngia japonica (L.) DC.                         | Ane       | Zoo | Herb     | Terrestrial                | IPF 114         |
| BIGNONEACEAE                                      |           |     |          |                            |                 |

| Amphilophium elongatum (Va          | hl)   |     |             |              |              |
|-------------------------------------|-------|-----|-------------|--------------|--------------|
| L.G.Lohmann                         | Ane   | Zoo | Liana       | Terrestrial  | IPF 2        |
| Jacaranda caroba (Vell.) DC.        | Ane   | Zoo | Shrub       | Terrestrial  | IPF 92       |
| Jacaranda mimosifolia D. Don        | Ane   | Zoo | Tree        | Terrestrial  | IPF 156      |
| BLECHNACEAE                         |       |     |             |              |              |
|                                     |       |     |             | Terrestrial, |              |
| Blechnum occidentale L.             | Ane   | Ane | Herb        | Rupicolous   | IPF 178      |
| CALOPHYLLACEAE                      |       |     |             |              |              |
| Kielmeyera coriacea Mart. & Zucc.   | Ane   | Zoo | Tree        | Terrestrial  | IPF 12       |
| COMMELINACEAE                       |       |     |             |              |              |
|                                     |       |     |             | Terrestrial, |              |
| Commelina erecta L.                 | Zoo   | Zoo | Herb        | Rupicolous   | IPF 164      |
| CYPERACEAE                          |       |     |             |              |              |
|                                     |       |     |             | Aquática,    |              |
| Cyperus alternifolius L.            | Ane   | _   | Herb        | Terrestrial  | IPF 106, 172 |
| Rhynchospora consanguinea (Kun      | , i   |     |             |              |              |
| Boeckeler                           | Aut   | Ane | Herb        | Terrestrial  | IPF 184      |
| DILLENIACEAE                        |       |     |             |              |              |
| Davilla elliptica A.StHil.          | Zoo   | Zoo | Tree        | Terrestrial  | IPF 9        |
| DIOSCOREACEAE                       |       |     |             |              |              |
| Dioscorea dodecaneura Vell.         | Zoo   | Zoo | Liana       | Terrestrial  | IPF 121      |
| ERYTHROXYLACEAE                     |       |     |             |              |              |
| Erythroxylum campestre A.StHil.     | Zoo   | Zoo | Tree        | Terrestrial  | IPF 73       |
| Erythroxylum daphnites Mart.        | Zoo   | Zoo | Shrub       | Terrestrial  | IPF 72       |
| Erythroxylum sp.                    | Zoo   | Zoo | Shrub, Tree | Terrestrial  | IPF 147      |
| EUPHORBIACEAE                       |       |     |             |              |              |
| Alchornea glandulosa Poepp. & Endl. | Zoo   | Zoo | Tree        | Terrestrial  | IPF 108      |
| Dalechampia caperonioides Baill.    | Aut   | Zoo | Herb        | Terrestrial  | IPF 10       |
|                                     | Aut,Z | o   |             |              |              |
| Manihot anomala Pohl                | o     | Zoo | Shrub       | Terrestrial  | IPF 44       |
| Maprounea brasiliensis A.StHil.     | Zoo   | Zoo | Tree        | Terrestrial  | IPF 158      |
|                                     |       |     |             |              |              |

| Maprounea sp.                                       | Zoo       | Zoo | Shrub, Tree | Terrestrial             | IPF 86          |
|-----------------------------------------------------|-----------|-----|-------------|-------------------------|-----------------|
| FABACEAE                                            |           |     |             |                         |                 |
| Andira vermifuga (Mart.) Benth.                     | Zoo       | Zoo | Tree        | Terrestrial             | IPF 58          |
| Bauhinia rufa (Bong.) Steud.                        | Aut       | Zoo | Shrub       | Terrestrial             | IPF 49, 144     |
| Betencourtia scarlatina (Mart. ex Benth.            | .)        |     |             |                         |                 |
| L.P.Queiroz                                         | _         | Zoo | Liana       | Terrestrial             | IPF 5, 144      |
| Calliandra dysantha Benth.                          | Aut       | Zoo | Shrub       | Terrestrial             | IPF 74          |
| Chamaecrista conferta (Benth.) H.S.Irwi             |           | -   | 0.1.011     | m                       | IDE (O          |
| & Barneby                                           | Aut       | Zoo | SubShrub    | Terrestrial             | IPF 69          |
| Chamaecrista orbiculata (Benth. H.S.Irwin & Barneby | .)<br>Aut | Zoo | Tree        | Terrestrial, Rupicolous | IPF 71          |
| Crotalaria grandiflora Benth.                       | Aut       | Zoo | Shrub       | Terrestrial             | IPF 14          |
| Dalbergia miscolobium Benth.                        | Ane       | _   | Tree        | Terrestrial             | IPF 59          |
| Desmodium uncinatum (Jacq.) DC.                     | Ane       | Zoo | SubShrub    | Terrestrial             | IPF 8           |
| Dimorphandra mollis Benth.                          | Zoo       | Zoo | Tree        | Terrestrial             | IPF 62          |
| -                                                   |           |     |             | Terrestrial             |                 |
| Mimosa urbica (Barneby) Marc.F.Simon                | Aut       | Zoo | Shrub       |                         | IPF 80          |
| Periandra gracilis H.S.Irwin & Arroyo               | Aut       | Zoo | Shrub       | Terrestrial             | IPF 55          |
| Periandra mediterranea (Vell.) Taub.                | Aut       | Zoo | Shrub       | Terrestrial             | IPF 23          |
| Poiretia coriifolia Vogel                           | Aut       | Zoo | SubShrub    | Terrestrial             | IPF 11, 85, 140 |
| Sp.1                                                | _         | _   | _           | _                       | _               |
| Stryphnodendron adstringens (Mart.                  | .)        |     |             |                         |                 |
| Coville                                             | Aut       | Zoo | Tree        | Terrestrial             | IPF 64          |
| GLEICHENIACEAE                                      |           |     |             |                         |                 |
|                                                     |           |     |             | Terrestrial,            |                 |
| Sticherus lanuginosus (Fée) Nakai                   | _         | _   | Herb        | Rupícula                | IPF 165         |
| Stick anna musica and (Mart) China                  |           |     | Howh        | Terrestrial,            | IDE 122         |
| Sticherus pruinosus (Mart.) Ching                   | _         | _   | Herb        | Rupícula                | IPF 123         |
| HYMENOPHYLLACEAE                                    |           |     |             |                         |                 |
| Abrodictyum rigidum (Sw.) Ebihara &<br>Dubuisson    | k<br>Aut  | Zoo | Herb        | Terrestrial             | IPF 180         |
| LAMIACEAE                                           | rut       | 200 | 11010       | 10110511141             | 11 100          |
| LAMIACEAE                                           |           |     |             |                         |                 |

| Hypenia macrantha (A.StHil. ex Benth.        |          |     |                |              |                        |
|----------------------------------------------|----------|-----|----------------|--------------|------------------------|
| Harley                                       | Aut      | Zoo | SubShrub       | Terrestrial  | IPF 31                 |
| Hyptidendron canum (Pohl ex Benth.<br>Harley | )<br>Zoo | Zoo | Shrub, Tree    | Terrestrial  | IPF 160                |
| Hyptis nudicaulis Benth.                     | Aut      | Z00 | SubShrub       | Terrestrial  | IPF 18                 |
| Oocephalus grazielae Harley                  | Aut      | 200 | SubShrub       | Terrestrial  | IPF 186                |
| LORANTHACEAE                                 | Aut      | _   | Substitub      | Terresurar   | 111 100                |
|                                              | 7        | 7   | IIl.           | II           | IDE 77                 |
| Passovia ovata (Pohl ex DC.) Tiegh.          | Zoo      | Zoo | Herb           | Hemiparasite | IPF 77                 |
| LYTHRACEAE                                   |          |     |                |              |                        |
| Cuphea spermacoce A.StHil.                   | Aut      | Zoo | SubShrub       | Terrestrial  | IPF 127, MCS<br>3127 B |
| Diplusodon lanceolatus Pohl                  | _        | _   | SubShrub       | Terrestrial  | MCS 3128               |
| Diplusodon virgatus Pohl                     | Aut      | Zoo | Shrub          | Terrestrial  | IPF 3, 4               |
| MALPIGHIACEAE                                | 1140     | 200 | Sin <b>u</b> o | 10110001101  | 111 2, 1               |
| Banisteriopsis campestris (A.Juss.) Little   | Ane      | Zoo | Shrub          | Terrestrial  | IPF 6                  |
| Banisteriopsis gardneriana (A.Juss.          |          |     | J <b>V-</b>    |              |                        |
| W.R.Anderson & B.Gates                       | Ane      | Zoo | Shrub          | Terrestrial  | IPF 84, 96             |
| Banisteriopsis latifolia (A.Juss.) B.Gates   | Ane      |     | Tree           | Terrestrial  | IPF 148                |
| Banisteriopsis megaphylla (A.Juss.           | )        |     |                |              |                        |
| B.Gates                                      | Ane      | Zoo | Shrub          | Terrestrial  | IPF 132                |
|                                              |          |     |                |              | IPF 48, 61, 82, 83,    |
| Byrsonima crassifolia (L.) Kunth             | Zoo      | Zoo | Tree           | Terrestrial  | 149, 152               |
| Byrsonima verbascifolia (L.) DC.             | Zoo      | Zoo | Tree           | Terrestrial  | IPF 81                 |
| Heteropterys byrsonimifolia A.Juss.          | Ane      | Zoo | Tree           | Terrestrial  | IPF 70                 |
| Heteropterys campestris A.Juss.              | Ane      | Zoo | SubShrub       | Terrestrial  | IPF 22, 27, 133        |
| Heteropterys coriacea A.Juss.                | Zoo      | Zoo | Tree           | Terrestrial  | IPF 87, 102            |
| Heteropterys pteropetala A.Juss.             | Zoo      | Zoo | Shrub          | Terrestrial  | IPF 65                 |
| Pterandra pyroidea A.Juss.                   | Ane      | Zoo | Tree           | Terrestrial  | IPF 63                 |
| MALVACEAE                                    |          |     |                |              |                        |
| Byttneria affinis Pohl                       | Aut      |     | SubShrub       | Terrestrial  | IPF 37                 |
|                                              |          |     |                |              |                        |

|                                       | Aut,Zo | o   |             |             |                  |
|---------------------------------------|--------|-----|-------------|-------------|------------------|
| Pavonia grandiflora A.StHil.          | o      | _   | SubShrub    | Terrestrial | IPF 25           |
|                                       | Aut,Zo | 0   |             |             |                  |
| Pavonia pohlii Gürke                  | 0      | _   | Shrub       | Terrestrial | IPF 181          |
| Peltaea sp.                           |        | _   | Herb        | Terrestrial | IPF 161          |
| MELASTOMATACEAE                       |        |     |             |             |                  |
| Leandra adenothrix Cogn.              | Zoo    | Zoo | Shrub, Tree | Terrestrial | IPF 116          |
| Leandra melastomoides Raddi           | Zoo    | Zoo | Shrub       | Terrestrial | IPF 100          |
| Miconia burchellii Triana             | Zoo    | Zoo | Shrub       | Terrestrial | IPF 146          |
| Miconia pepericarpa DC.               | Zoo    | Zoo | Shrub       | Terrestrial | IPF 95, 151      |
| Miconia sp.1                          |        | _   | Tree        | Terrestrial | IPF 98           |
| Miconia sp.2                          | _      | _   | _           | _           | _                |
| Miconia staminea (Desr.) DC.          | Zoo    | Zoo | Shrub, Tree | Terrestrial | IPF 97           |
| Pleroma stenocarpum (Schrank et Mar   | t.     |     |             |             |                  |
| ex DC.) Triana                        | Ane    | Zoo | Tree        | Terrestrial | IPF 159          |
| Sp.1                                  | _      | _   | Shrub       | Terrestrial | _                |
| Tibouchina aegopogon (Naudin) Cogn.   | Aut    | Zoo | Tree        | Terrestrial | IPF 93           |
| MYRTACEAE                             |        |     |             |             |                  |
| Callistemon viminalis (Sol. ex Gaertn | .)     |     |             |             |                  |
| G.Don                                 | _      | _   | Shrub       | Terrestrial | MCS 3136         |
| Myrcia guianensis (Aubl.) DC.         | Zoo    | Zoo | Tree        | Terrestrial | IPF 52, 53       |
| Myrcia splendens (Sw.) DC.            | Zoo    | Zoo | Tree        | Terrestrial | IPF, 50, 54, 155 |
| Myrcia tomentosa (Aubl.) DC.          | Zoo    | Zoo | SubShrub    | Terrestrial | IPF 76, 153      |
| NYCTAGINACEAE                         |        |     |             |             |                  |
| Guapira graciliflora (Mart. ex Schmid | t)     |     |             |             |                  |
| Lundell                               | Zoo    | Zoo | Tree        | Terrestrial | IPF 103          |
| Guapira noxia (Netto) Lundell         | Zoo    | Zoo | Tree        | Terrestrial | IPF 75           |
| OCHNACEAE                             |        |     |             |             |                  |
| Ouratea castaneifolia (DC.) Engl.     | Zoo    | Zoo | Tree        | Terrestrial | IPF 134          |
| Ouratea floribunda (A.StHil.) Engl.   | Zoo    | Zoo | SubShrub    | Terrestrial | IPF 89           |
| OPILIACEAE                            |        |     |             |             |                  |

| Agonandra sp.                              | Zoo | Zoo | Shrub, Tree | Terrestrial  | IPF 150        |
|--------------------------------------------|-----|-----|-------------|--------------|----------------|
| ORCHIDACEAE                                |     |     |             |              |                |
| Cranichis scripta Kraenzl.                 | _   | _   | Herb        | Terrestrial  | MCS 3127 A     |
| OXALIDACEAE                                |     |     |             |              |                |
| Oxalis densifolia Mart. & Zucc. ex Zucc.   | Aut | Zoo | Herb        | Terrestrial  | IPF 16         |
| PIPERACEAE                                 |     |     |             |              |                |
|                                            |     |     |             | Terrestrial, |                |
| Peperomia gardneriana Miq.                 | Zoo | Zoo | Herb        | Rupicolous   | MCS 3115, 3125 |
|                                            |     |     |             | Terrestrial, |                |
| Peperomia lanceolato-peltata C.DC.         | Zoo | Zoo | Herb        | Rupicolous   | MCS 3116, 3122 |
| D: 1 I                                     | 7   | 7   | Clauda Tucc | Terrestrial  | IPF 104, 113;  |
| Piper aduncum L.                           | Zoo | Zoo | Shrub, Tree |              | MCS 3137       |
| Piper macedoi Yunck.                       | Zoo | Zoo | Shrub       | Terrestrial  | IPF 117        |
| Piper tectoniifolium Kunth                 | Zoo | _   | Shrub       | Terrestrial  | MCS 3130       |
| POACEAE                                    |     |     |             |              |                |
| Acroceras zizanioides (Kunth) Dandy        | Aut | Ane | Herb        | Terrestrial  | IPF 154        |
| Axonopus siccus (Nees) Kuhlm.              | Aut | Ane | Herb        | Terrestrial  | IPF 41         |
| Echinolaena inflexa (Poir.) Chase          | Aut | _   | Herb        | Terrestrial  | IPF 109        |
| Hildaea tenuis (J. Presl & C.Presl) C.Silv | a   |     |             |              |                |
| & R.P.Oliveira                             | Aut | _   | Herb        | Terrestrial  | IPF 182        |
| Ichnanthus bambusiflorus (Trin.) Döll      |     | _   | Herb        | Terrestrial  | IPF 43         |
| Ichnanthus sp.3                            | _   | _   | Herb        | Terrestrial  | IPF 26         |
|                                            |     |     |             | Terrestrial, |                |
| Paspalum burchellii Munro ex Oliv.         | Aut | Ane | Herb        | Rupicolous   | IPF 111        |
| Paspalum foliiforme S.Denham               | Aut | Ane | Herb        | Terrestrial  | IPF 40         |
| Paspalum geminiflorum Steud.               | Ane | Ane | Herb        | Terrestrial  | IPF 33, 183    |
| Urochloa brizantha (Hochst. ex A.Rich.)    |     |     |             |              |                |
| R.D.Webster                                | Aut | _   | Herb        | Terrestrial  | IPF 110        |
| POLYGALACEAE                               |     |     |             |              |                |
| Campyloneurum centrobrasilianur            |     |     | Uarh        | Epiphyte     | IDE 170        |
| Lellinger                                  | Ane | _   | Herb        | Epipilyte    | IPF 179        |

| Polygala cuspidata DC.                  | Zoo | Zoo | Herb         | Terrestrial   | IPF 7             |
|-----------------------------------------|-----|-----|--------------|---------------|-------------------|
| Senega cuspidata (DC.) J.F.B.Pastore    | Aut | _   | Herb         | Terrestrial   | IPF 185           |
| Senega glochidata (Kunth) J.F.B.Pastore | Aut | _   | Herb         | Terrestrial   | IPF 45            |
|                                         |     |     | Herb,        |               |                   |
| Senega poaya (Mart.) J.F.B.Pastore      | Aut | _   | SubShrub     | Terrestrial   | IPF 34            |
| PROTEACEAE                              |     |     |              |               |                   |
| Roupala montana Aubl.                   | Ane | Zoo | Shrubs, Tree | s Terrestrial | IPF 66            |
| PTERIDACEAE                             |     |     |              |               |                   |
|                                         |     |     |              |               | IPF               |
|                                         |     |     |              | Terrestrial,  | 112,122,167,175,1 |
| Adiantum raddianum C.Presl              | Ane | Ane | Herb         | Rupicolous    | 76                |
| Pteris vittata L.                       | Ane | _   | Herb         | Terrestrial   | IPF 119           |
| RUBIACEAE                               |     |     |              |               |                   |
| Coccocypselum aureum (Spreng.) Chan     | 1.  |     |              |               |                   |
| & Schltdl.                              | Zoo | Zoo | Herb         | Terrestrial   | IPF 32, 143       |
| Palicourea deflexa (DC.) Borhidi        | Zoo | Zoo | Shrub        | Terrestrial   | IPF 170           |
| Palicourea marcgravii A.StHil.          | Zoo | Zoo | Shrub        | Terrestrial   | IPF 171           |
|                                         |     |     |              | Terrestrial,  |                   |
| Palicourea officinalis Mart.            | Zoo | Zoo | Shrub        | Rupicolous    | IPF 19            |
| Sabicea brasiliensis Wernham            | Zoo | Zoo | SubShrub     | Terrestrial   | IPF 38            |
| SALICACEAE                              |     |     |              |               |                   |
| Casearia grandiflora Cambess.           | Zoo | Zoo | Tree         | Terrestrial   | IPF 47            |
|                                         |     |     | Shrub, Tree  | 2,            |                   |
| Casearia sylvestris Sw.                 | Zoo | Zoo | SubShrub     | Terrestrial   | IPF 145           |
| SAPINDACEAE                             |     |     |              |               |                   |
| Matayba guianensis Aubl.                | Zoo | Zoo | Tree         | Terrestrial   | IPF 94            |
| SELAGINELLACEAE                         |     |     |              |               |                   |
|                                         |     |     |              | Epiphyte,     |                   |
|                                         |     |     |              | Rupicolous,   |                   |
| Selaginella flexuosa Spring             | _   | _   | Herb         | Terrestrial   | IPF 177           |

|                                        |     |     |       | Epiphyte, Rupicolous, |                   |  |  |
|----------------------------------------|-----|-----|-------|-----------------------|-------------------|--|--|
| Selaginella P.Beauv.                   |     | _   | Herb  | Terrestrial           | MCS 3132          |  |  |
| SMILACACEAE                            |     |     |       |                       |                   |  |  |
| Smilax goyazana A.DC.                  | Zoo | Zoo | Shrub | Terrestrial           | IPF 60            |  |  |
| STYRACACEAE                            |     |     |       |                       |                   |  |  |
| Styrax camporum Pohl                   | Zoo | Zoo | Tree  | Terrestrial           | IPF 88            |  |  |
| Styrax ferrugineus Nees & Mart.        | Zoo | Zoo | Tree  | Terrestrial           | IPF 29            |  |  |
| THELYPTERIDACEAE                       |     |     |       |                       |                   |  |  |
| Christella conspersa (Schrad.) Á.Löve  | &   |     |       |                       |                   |  |  |
| D.Löve                                 | Ane | _   | Herb  | Terrestrial           | IPF 118, 125, 126 |  |  |
| Christella dentata (Forssk.) Brownsey  | &   |     |       | Terrestrial,          |                   |  |  |
| Jermy                                  | Ane | _   | Herb  | Rupicolous            | IPF 174           |  |  |
|                                        |     |     |       | Terrestrial           | e                 |  |  |
| Christella hispidula (Decne.) Holttum  | Ane | _   | Herb  | Rupicolous            | IPF 166, 173      |  |  |
| URTICACEAE                             |     |     |       |                       |                   |  |  |
| Cecropia pachystachya Trécul           | Zoo | Zoo | Tree  | Terrestrial           | IPF 90            |  |  |
| Urera baccifera (L.) Gaudich. ex Wedd. | Zoo | Zoo | Tree  | Terrestrial           | MCS 3120          |  |  |
| VERBENACEAE                            |     |     |       |                       |                   |  |  |
| Lippia stachyoides var. martiana       |     |     |       |                       |                   |  |  |
| (Schauer) Salimena & Múlgura           | Aut | Zoo | Shrub | Terrestrial           | IPF 39            |  |  |
| Lippia vernonioides Cham.              | Aut | Zoo | Shrub | Terrestrial           | IPF 157           |  |  |
| Stachytarpheta villosa (Pohl) Cham.    | Aut | Zoo | Shrub | Terrestrial           | IPF 1, 36         |  |  |
| NÃO IDENTIFICADAS:                     |     |     |       |                       |                   |  |  |
| Indet 1                                | _   | _   |       | _                     | IPF 57            |  |  |
| Indet 2                                |     | _   | _     | _                     | IPF 91            |  |  |
| Indet 3                                | _   | _   | _     | _                     | MCS 3133          |  |  |
| Indet 4                                | _   | _   | _     | _                     | MCS 3138 A        |  |  |

**Table 2.** List of new occurrences for the Distrito Federal (Flora e Funga do Brasil, 2024). DISP: Dispersal syndrome; POL: Pollination syndrome; Life form; Habit.

| Family/Species                          | DIS | POL | Life forms     | Habit        | Voucher      |  |
|-----------------------------------------|-----|-----|----------------|--------------|--------------|--|
| ARALIACEAE                              |     |     |                |              |              |  |
| Hydrocotyle quinqueloba Ruiz & Pav.     | Zoo | _   | Herb           | Terrestrial  | IPF 168      |  |
| BIGNONIACEAE                            |     |     |                |              |              |  |
| Amphilophium elongatum (Vah             | 1)  |     |                |              |              |  |
| L.G.Lohmann                             | Ane | Zoo | Climber/vine   | Terrestrial  | IPF 2        |  |
| CYPERACEAE                              |     |     |                |              |              |  |
|                                         |     |     |                | Aquatic,     |              |  |
| Cyperus alternifolius L.                | Ane | _   | Herb           | Terrestrial  | IPF 106, 172 |  |
| GLEICHENIACEAE                          |     |     |                |              |              |  |
|                                         |     |     |                | Terrestrial, |              |  |
| Sticherus pruinosus (Mart.) Ching       | _   | _   | Herb           | Rupicolous   | IPF 123      |  |
| MALVACEAE                               |     |     |                |              |              |  |
| Byttneria affinis Pohl                  | Aut | _   | Subshrub       | Terrestrial  | IPF 37       |  |
| MELASTOMATACEAE                         |     |     |                |              |              |  |
| Miconia staminea (Desr.) DC.            | Zoo | Zoo | Shrub, Tree    | Terrestrial  | IPF 97       |  |
| MYRTACEAE                               |     |     |                |              |              |  |
| Callistemon viminalis (Sol. ex Gaertn.) |     |     |                |              |              |  |
| G.Don                                   | _   | _   | Shrub          | Terrestrial  | MCS 3136     |  |
|                                         |     |     |                |              | IPF 50, 54,  |  |
| Myrcia splendens (Sw.) DC.              | Zoo | Zoo | Tree           | Terrestrial  | 155          |  |
| POLYGALACEAE                            |     |     |                |              |              |  |
| Senega glochidata (Kunth) J.F.B.Pastore | Aut |     | Herb           | Terrestrial  | IPF 45       |  |
| Senega poaya (Mart.) J.F.B.Pastore      | Aut |     | Herb, Subshrub | Terrestrial  | IPF 34       |  |