
Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

Lossless intra compression of point cloud geometry
based on S3D coder using threads and block

decomposition (Compressão de geometria de nuvem
de pontos intra sem perdas baseada no codificador
S3D com uso de threads e decomposição em bloco)

Otho T. Komatsu

Dissertação apresentada como requisito parcial para
conclusão do Mestrado em Informática

Orientador
Prof. Dr. Eduardo Peixoto Fernandes da Silva

Brasília
2024

Ficha Catalográfica de Teses e Dissertações

Está página existe apenas para indicar onde a ficha catalográfica gerada para dissertações de
mestrado e teses de doutorado defendidas na UnB. A Biblioteca Central é responsável pela ficha,
mais informações nos sítios:

http://www.bce.unb.br
http://www.bce.unb.br/elaboracao-de-fichas-catalograficas-de-teses-e-dissertacoes

Esta página não deve ser inclusa na versão final do texto.

Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

Lossless intra compression of point cloud geometry
based on S3D coder using threads and block

decomposition (Compressão de geometria de nuvem
de pontos intra sem perdas baseada no codificador
S3D com uso de threads e decomposição em bloco)

Otho T. Komatsu

Dissertação apresentada como requisito parcial para
conclusão do Mestrado em Informática

Prof. Dr. Eduardo Peixoto Fernandes da Silva (Orientador)
Universidade de Brasília

Prof. Dr. Pedro Garcia Freitas Prof. Dr. Luciano Volcan Agostini
CIC/UnB UFPel

Prof. Dr. Rodrigo Bonifácio de Almeida
Coordenador do Programa de Pós-graduação em Informática

Brasília, 19 de dezembro de 2024

Dedicatória

Agradeço a Deus pelo presente trabalho. Agradeço aos meus pais pelo cuidado e apoio
no decorrer de todo o meu projeto, que sem isso não conseguiria chegar à metade do que
progredi. E agradeço à Vitória por sempre estar presente me dando apoio e carinho no
que precisasse, e estar ao meu lado acompanhando o progresso do projeto praticamente
desde o início.

iv

Agradecimentos

Gostaria de deixar agradecimentos especialmente à paciência e zelo do meu orientador
Peixoto e Edil em me guiarem e darem as sugestões necessárias para o desenvolvimento
do presente trabalho. Agradeço também à banca examinadora da minha qualificação de
mestrado Luciano Agostini e Pedro Garcia pelos seus feedbacks e contribuições no meu
trabalho, que levaram a dar mais riqueza e capricho nos resultados. Por fim, agradeço às
instalações do laboratório GPDS para a coleta de resultados dos codificadores do projeto,
e especialmente ao William, por estar presente frequentemente lá e me dar assistência
quando fosse necessário.

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior - Brasil (CAPES), por meio do Acesso ao Portal de Periódicos.

v

Resumo

Nas últimas décadas, o rápido avanço da tecnologia digital e da internet aumentou
dramaticamente a demanda por dados. Esse crescimento nos requisitos de dados supera
continuamente as capacidades de processamento do hardware e dispositivos atuais. Contra
esse pano de fundo, o campo da compressão de sinais desempenha um papel fundamental
na era digital de hoje. Nuvens de pontos, que representam cenas 3D por meio de um
conjunto de pontos dentro de um espaço definido, emergiram como um formato significa-
tivo de nova mídia. As demandas de armazenamento de nuvens de pontos dinâmicas, que
capturam cenas 3D com movimento ao longo do tempo, semelhantes a vídeos, são par-
ticularmente desafiadoras, sublinhando a necessidade crítica de pesquisa em compressão
de nuvem de pontos. Enquanto técnicas tradicionais de compressão estabeleceram a base
para o desenvolvimento de novos codecs, os codificadores mais populares se baseam na rep-
resentação de geometria octree. No entanto, duas características cruciais que faltam nos
codecs recentes são a concorrência e a codificação em tempo real de aquisição. Este tra-
balho introduz melhorias no codec Silhouette 3D (S3D), especificamente projetado para
abordar essas lacunas. Apresentamos duas variações de multi-threading, S3D-Subtree
(S3D-S) e S3D-Subtree+Toptree (S3D-ST), que possibilitam o processamento concor-
rente, uma característica distintiva entre os codecs de geometria de nuvem de pontos de
última geração. Adicionalmente, propomos os codecs S3D Block Mode (S3D-BM) e S3D
Inverted Mode (S3D-IM), oferecendo alternativas mais simples e diretas à decomposição
diádica do S3D para contextos de aquisição em tempo real. Ao abordar a concorrência e a
codificação em tempo real, este trabalho avança significativamente o campo da compressão
de point clouds, possibilitando aplicações mais eficientes e práticas de representações de
cenas 3D.

Palavras-chave: Nuvem de pontos, Compressão de sinais, Compressão de geometria,
compressão intraframe;

vi

Abstract

In the last few decades, the rapid advancement of digital technology and the inter-
net has dramatically increased the demand for data. This growth in data requirements
continuously outpaces the processing capabilities of current hardware and devices. In
this scenario, the field of signal compression plays a pivotal role in today’s digital era.
Point clouds, which represent 3D scenes through a set of points within a defined space,
have emerged as a significant new media format. The storage demands of dynamic point
clouds, which capture 3D scenes with motion over time, akin to videos, are particularly
challenging, underscoring the critical need for research in point cloud compression. While
traditional compression techniques have laid the foundation for new codec development,
the most popular codecs are based in the octree geometry representation. However, two
crucial features lacking in recent codecs are concurrency and real-time acquisition en-
coding. This work introduces enhancements to Silhouette 3D (S3D) codec, specifically
designed to address these gaps. We present two multi-threading variations, S3D-Subtree
(S3D-S) and S3D-Subtree+Toptree (S3D-ST), which enable concurrent processing, a dis-
tinctive feature among state-of-the-art point cloud geometry codecs. Additionally, we
propose the S3D Block Mode (S3D-BM) and S3D Inverted Mode (S3D-IM) codecs, offer-
ing simpler and more direct alternatives to the dyadic decomposition of S3D for real-time
acquisition contexts. By addressing concurrency and real-time encoding, this work signifi-
cantly advances the field of point cloud compression, enabling more efficient and practical
applications of 3D scene representations.

Keywords: Point Clouds, Signal Compression, Geometry Compression, intraframe en-
coding

vii

Sumário

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 5
1.3 Problem . 7

1.3.1 Multi-thread S3D . 8
1.3.2 Block Mode . 8

1.4 Purpose . 9

2 Literature Review 12
2.1 Point Clouds . 12
2.2 Signal compression . 14

2.2.1 Geometry compression . 16
2.3 CABAC . 17

2.3.1 Arithmetic Coding . 18
2.3.2 Context Arithmetic Coding . 21
2.3.3 Context Adaptive Arithmetic Coding 21
2.3.4 Context Adaptive Binary Arithmetic Coding 22

2.4 Silhouette 3D . 24
2.4.1 Silhouette . 25
2.4.2 Dyadic Decomposition . 25
2.4.3 Single Mode . 31
2.4.4 Best choice . 33

2.5 Threads . 35
2.5.1 Multi-threading . 35

3 Proposed Algorithms 39
3.1 Multi-threaded S3D . 39

3.1.1 S3D-subtree(S3D-S) . 42
3.1.2 S3D-subtree + Top-tree (S3D-ST) 43

viii

3.2 S3D Block Mode . 44
3.2.1 Standard (S3D-BM) . 46
3.2.2 Inverted Mode (S3D-IM) . 47

3.3 Unified header . 48
3.4 Arithmetic Coding Contexts . 50

4 Results and analysis 52
4.1 2D and 3D contexts setting . 53
4.2 Standard S3D C++ algorithm results . 54
4.3 S3D-S and S3D-ST results . 56

4.3.1 Running time . 57
4.3.2 Rate . 59

4.4 S3D-Block Mode (S3D-BM) and S3D-Inverted Mode (S3D-IM) results . . . 62
4.5 S3D algorithms benchmark . 64

5 Conclusions 71

Referências 74

ix

Lista de Figuras

1.1 St. Gallen Cathedral point cloud example 3
1.2 Marketplace Feldkirch point cloud example 4
1.3 Dyadic decomposition on a single point cloud ilustrated 6
1.4 S4D decomposition process and context gathering 6

2.1 The octree geometry compression illustration 17
2.2 Interval from arithmetic coding tag generating 20
2.3 Point cloud sliced and its respective silhouettes projected 26
2.4 Ricardo9 point cloud projections . 27
2.5 Binary tree from point cloud recursive slices. 28
2.6 A silhouette decomposition illustration . 29
2.7 A silhouette decomposition example with 3 levels 30
2.8 Contexts used to encode a pixel . 31
2.9 The encoding process of the binary tree node using contexts. 32
2.10 Slices images merged . 33
2.11 Representation of the single mode operations - this figure illustrates a point

cloud of length L, resulting in L slices during the single mode operation. . 34
2.12 State diagram of mutex variable operations 38

3.1 Representation of the decomposition tree from the dyadic decomposition. . 40
3.2 Triad of nodes from each node half-decomposition. Each one has a father,

left child node and right child node. 41
3.3 Triad of nodes from each node half-decomposition. Each one has a father,

left child node and right child node. 41
3.4 The decomposition tree divided in each 4 subtrees beginning from the 3rd

level. 42
3.5 Decomposition tree of the S3D-S algorithm - highlighting the root node for

each subtree. 43

x

3.6 Decomposition tree of the S3D-ST algorithm - highlighting the root node
for each subtree. Here, we can observe that the encoding of the subtrees
and the root node are in different threads 45

3.7 Decomposition tree of the S3D-standard-block-mode algorithm - in the case
of this example, k = 2 and m = 4 . 46

3.8 Decomposition tree of the S3D-inverted-mode algorithm - in the case of
this example, k = 2 and m = 4 . 47

3.9 The general decomposition tree of the S3D block mode algorithm. Here
are clear the basic structure of the algorithm, and how it can branch in
the different algorithms in figures 3.7 and 3.8, changing the tree traversing
(top-down or bottom-up). 48

3.10 Unified header structure illustration, relating fields and its bit length. . . . 49
3.11 3D pixels contexts sequence for the previous and new version of the S3D. . 51

4.1 S3D standard contexts combination scatter plot on rate x time distribution,
bits per voxel x seconds . 54

4.2 S3D standard contexts combination scatter plot for 3D contexts equal to
9, bits per occupied voxel vs seconds . 55

4.3 Previous version of S3D utilizes pixel contexts, with five 2D contexts and
nine 3D contexts. In the case of encoding only with 2D contexts, the
selected contexts are represented in (a). When 3D contexts are used, the
selected contexts are represented in (b). 57

4.4 New version of S3D utilizes pixel contexts, with eight 2D contexts and nine
3D contexts. In the case of encoding only with 2D contexts, the selected
contexts are represented in (a). When 3D contexts are used, the selected
contexts are represented in (b). 58

4.5 Average Running Time for the first 12 frames from each dataset over diffe-
rent amount of threads for S3D-S and S3D-ST. 58

4.6 Average Rate for the first 12 frames from each dataset over different amount
of threads for S3D-S and S3D-ST. 59

4.7 Rate and running time plot over different amount of threads for S3D-S. . . 62
4.8 Rate and running time plot over different amount of threads for S3D-ST. . 63
4.9 Block mode performance for upper bodies datasets across various k values. 65
4.10 Block mode performance for full bodies datasets across various k values. . . 65
4.11 Inverted mode performance for each point cloud from upper bodies dataset

across various k values. 66
4.12 Inverted mode performance for each point cloud from full bodies dataset

across various k values. 66

xi

Lista de Tabelas

2.1 Initial Context Table . 22
2.2 Context Table after Encoding a1 . 22
2.3 Context Table after Encoding All Symbols 22

4.1 Results of rate (bits per occupied voxel) and time (seconds) from standard
S3D encoding based on different amount of 2D and 3D contexts, sorted in
descending order of mean_rate . 56

4.2 S3D standard comparison with state-of-the-art codecs for the first 100 fra-
mes average shown in bits per occupied voxel (bpov). 57

4.3 Rate results using the first 12 frames average of each sequence. All rates
are in bits per occupied voxel (bpov). 61

4.4 Running time results using the first 12 frames average of each sequence.
All running time are in seconds (s). 61

4.5 Comparison of Block mode with k = 2 with state-of-the-art codecs for the
first 100 frames from upper bodies and full bodies datasets, shown in bits
per occupied voxel (bpov). 67

4.6 Comparison between block mode and its inverted mode for the first 100
frames from from upper bodies and full bodies datasets, with k equals 2 . . 68

4.7 Rate benchmark of the work’s proposed algorithms, average of first 4 frames
from each dataset, sampled 3 times, shown in bits per occupied voxel (bpov). 69

4.8 Running time benchmark of the work’s proposed algorithms, average of
first 4 frames from each dataset, sampled 3 times, shown in seconds (s). . . 70

4.9 Product of rate and time benchmark of the proposed algorithms from the
work, average of first 4 frames from each dataset, sampled 3 times, shown
in bits per occupied voxel per second (bpov.s) 70

xii

Capítulo 1

Introduction

In this chapter, we will first explore the significance and applications of point clouds
in both industrial and academic settings. Next, we will provide a brief introduction to the
primary algorithm upon which this work is based, followed by an analysis of its notable
weaknesses and strengths. By examining these aspects, we aim to propose new variations
that mitigate the identified weaknesses and enhance the strengths, thereby improving the
algorithm. This constitutes the core objective of our research.

1.1 Context

Technological advancements in scanning and detecting three-dimensional (3D) objects
using specialized cameras represent a significant milestone and a recent trend in the indus-
try. With the advent of more consumer-accessible devices, the application of 3D models
has expanded beyond research to include industry and consumer markets. Examples
include virtual reality (VR) broadcasting, 3D videos, robotics, autonomous navigation
using large-scale dynamic 3D maps, geographic information system (GIS) applications,
tele-immersive applications [1], work-related applications [2], animations, gaming, and
scientific visualization [1].

A particularly interesting application is the creation of free viewpoint videos, where the
movements of active individuals and objects are captured and transmitted in real-time to
remote locations, allowing them to be viewed as 3D motion data from multiple positions
and angles. This rendering of 3D objects to remote locations facilitates collaboration as
if all parties were physically together. Such captures are made possible by arrangements
of multiple cameras (both infrared and standard), with real-time capturing and rendering
enabled by powerful graphics processing units (GPUs). The rendered images can then be
viewed through specialized rendering glasses [3]. The surge in research and growing market
demand for these technologies, fueled by recent innovations, has led to the development of

1

alternative methods for capturing and representing the data of these geometric volumes,
each aiming to address limitations of standard methods and optimize data representation
alongside hardware advancements.

With recent strides in 3D sensing and high-performance computing, point clouds have
attracted increased attention [1]. Mobile devices such as Apple’s iPhone X and Sony’s
Xperia XZ1 now support point-cloud representations of up to several hundred thousand
points. However, as point cloud technology advances, allowing for the detailed represen-
tation of complex objects, a significant challenge emerges: raw point cloud data require
a vast amount of storage space. This issue becomes particularly acute with the demand
for larger, high-quality models, which store extensive data including geometry (i.e., more
points), color, normals, reflectance, and other attributes [1]. This demand for larger re-
presentations and the consequent storage challenges are illustrated in figures 1.1 and 1.2,
showcasing detailed examples of point cloud data [4]. Given the need for many systems
and applications to utilize these large, high-quality point clouds for storage, transmission,
processing, and rendering—especially in real-time applications—the efficient compression
of this data is paramount. Consequently, the development of compression technologies
for point clouds has become a field of intense research activity [1].

A primary concern in the field of 3D model compression is decoding efficiency, which
ensures that end users experience swift reconstruction times for compressed models. This
efficiency necessitates straightforward decoder implementations. Additionally, the codec’s
memory usage is a critical factor, as it directly influences the compression ratio [5]. The
technique for coding 3D models has been under investigation for over a decade. While
3D mesh compression once dominated the discourse on graphics compression, the advent
of point cloud technology has shifted focus towards the compression of point cloud data,
making it a fervently researched area in recent times. In Queiroz et al. [3], an algo-
rithm was proposed for the compression of the colors of 3D point clouds, based on the
region-adaptive hierarchical transform, RAHT, and arithmetic coding driven by Lapla-
cian distribution models. Besides, in Huang et al. [5] is proposed a generic point cloud
encoder capable of compressing different attributes of a point cloud, such as position,
color, normal with arbitrary topology. In this work is proposed the iterative octree cell
subdivision model over its geometry. In 2014, MPEG initiated an exploratory activity
on Point Cloud Compression (PCC). Reflecting the growing interest in point-cloud-based
applications within the industry, MPEG issued a call for proposals (CfP) for PCC in
2/017 [6]. This led to the evaluation of 13 technical proposals in October 2017, resulting
in the selection of three different technologies as test models for three distinct content
categories [1]. Since then, the academic and industrial sectors have witnessed an influx
of research papers and method proposals for point cloud compression, underscoring the

2

Figura 1.1: Large point cloud example 1 - St. Gallen Cathedral point cloud 3d model
(32.342.450 points).

3

Figura 1.2: Large point cloud example 2 - Marketplace Feldkirch point cloud 3d model
(22.760.334 points)

4

growing importance of this research area.

1.2 Motivation

Among the researches and papers published on point cloud compression techniques,
a notable contribution came in 2019, when an intra-frame geometry compression method
was presented at the IEEE VCIP. Their method leveraged JBIG and a novel approach
based on Boolean Decomposition [7]. Building on this foundation, a subsequent techni-
que, inspired by the Boolean Decomposition, was introduced in 2020 [8]. This method,
titled "Lossless Intra-Frame Compression of Point Cloud Geometry Using Dyadic Decom-
position,"employs a strategy of recursively splitting the original point cloud into halves,
creating child point clouds. For each child, a silhouette of the occupied volume is generated
along a specific axis. This process, akin to the previously mentioned Boolean Decompo-
sition, is illustrated in figure 1.3 [9], but is distinguished by its reliance on Silhouette
Decomposition. The encoding of silhouette decompositions utilizes a Context Adaptive
Binary Arithmetic Coder, alongside a single mode in the dyadic decomposition process,
leading to the development of the Silhouette-3D (S3D) technique. This methodology will
be elaborated upon in the literature review section.

When comparing compression rates, specifically in terms of bits per occupied voxel
(bpov), on two public databases, S3D surpasses all tested state-of-the-art intra coders,
including the MPEG G-PCC TMC13 v7.0, and even a recent state-of-the-art inter co-
der, Parent Node Inheritance plus Super-Resolution P (Full)[8]. Additionally, a lossy
approach employing downsampling and the omission of consecutive slices outperformed
TMC13 v7.0’s Trisoup and Octree for bitrates above 0.3 bpov in point-to-point error
(C2C) metrics[9].

Advancing the S3D concept to accommodate dynamic point clouds, which incorporate
a temporal dimension to represent motion in point cloud videos, a new technique was
introduced. This inter-frame lossless geometry coder for dynamic voxelized point clouds,
published in the same year, builds upon the S3D algorithm by incorporating a fourth pixel
context during the encoding process. This addition enables the use of pixel data from
another frame to aid in encoding, leading to the development of the Silhouette-4D (S4D)
method. This method, in addition to considering the pixel contexts from the current
silhouette, sibling silhouette, and parent, also factors in pixels from previous frames, as
depicted in figure 1.4. The S4D demonstrates superior lossless compression performance
compared to well-known techniques on the JPEG Pleno Database [10].

The novel methodologies and impressive performance outcomes based on the Dyadic
Decomposition approach and the foundational S3D technique have opened new avenues for

5

Figura 1.3: Dyadic decomposition on a single point cloud ilustrated.

Figura 1.4: S4D decomposition process and context gathering.

6

further research and development of this algorithm. Efforts have been made to optimize
this technique and delve deeper into the intricacies of the algorithm, aiming to produce
refined versions that offer improved results and performance. The S3D algorithm and
the S4D algorithm were originally implemented on the Matlab platform. While Matlab
provides syntactic ease and high-performance operations for matrix manipulations, it is
not typically chosen for codec development. As a non-compiled, interpreted language,
codecs developed in Matlab suffer from slower execution times. Additionally, Matlab’s
garbage collection and memory management mechanisms limit developers’ control over
structure allocation. Within the context of point cloud geometry encoding, this restriction
hampers the true potential of the algorithm and introduces time overhead due to garbage
collection of Matlab and built-in memory management tools.

Given these limitations, a shift to a more conventional programming language for codec
development was proposed to address the shortcomings of the Matlab implementation: a
C++ version of the S3D algorithm. Consequently, in 2021, a project was launched to mi-
grate the S3D algorithm from Matlab to C++. This C++ iteration adheres to the original
strategy outlined in [8]. Finishing this new C++ implementation, and benchmarking the
codec, was the first contribution of this work.

1.3 Problem

The definitive C++ implementation of the S3D algorithm has paved the way for an
in-depth exploration of its capabilities and various adaptations. Since the initial version
was implemented, different approaches inspired by the original S3D proposal have been
developed, as in Alves’s work [11], which proposes a parallelization of the S3D algorithm.

One of the main distinguishing features of our geometry decomposition approach,
compared to others, is the decomposition tree derived from dyadic decomposition and
single mode. As detailed further in Section 2, this tree can be interpreted as comprising
multiple independent subtrees. This characteristic, combined with the scarcity of multi-
threaded geometry decomposition algorithms, makes the exploration of a multi-threaded
S3D algorithm particularly compelling.

Another noteworthy aspect of the decomposition tree is the computational cost of its
construction. At each node, dyadic decomposition and single mode must be evaluated
to determine the optimal solution. Given that tree height is directly proportional to
the resolution of the point cloud, processing very large point clouds can be significantly
time-consuming. In light of this, the S3D algorithm requires a more streamlined and
straightforward approach to achieve comparable results at a similar cost.

7

In this work, we aim to explore four distinct algorithms: two utilize a multi-threaded
approach (Subtree and Subtree-Top), and two employ a predefined decomposition
strategy of the point cloud, referred to as Block Mode. We will first delve into the
multi-threaded strategies before addressing the Block Mode approach.

1.3.1 Multi-thread S3D

One of the more recent projects building upon this C++ implementation, which seeks
to explore new methods and explore the strengths of the algorithm, was introduced in a
2022 undergraduate thesis by Alves [11]. This thesis examines the feasibility of adapting
the algorithm to utilize threads in segments where concurrency and processing can be
independently managed. It proposes three algorithms: I, C, and S.

This approach, leveraging thread-based encoding, showcases promising results for op-
timizing time costs and broadening applicability across various domains, thus marking
the thread-based S3D algorithm as a noteworthy continuation in development. Moreover,
it is important to note that the threaded S3D algorithm stems from the initial version of
the C++ project, focusing solely on dyadic decomposition. Consequently, Alves’s work
did not fully explore the original S3D algorithm through a threaded lens. Additionally,
the methodology for decomposing the point cloud—termed the decomposition tree—is
initially loop-based. The proposed new approach shifts towards a recursion-based model,
where the decomposition process is driven by a main function that recursively calls itself,
ceasing only upon reaching the leaf nodes, which represent silhouettes of 1-length blocks
within the point cloud. The recursion implementation was adopted in this first version
considering the simplicity and similarity with the concept. Compared to an alternative
approach, iteration for instance, it involves a more complex abstraction and difficulty in
its implementation.

Therefore, this initiative advocates for the comprehensive development of the complete
S3D algorithm, inspired by Alves’s threading concepts as introduced in algorithms I, C,
and S. The resultant algorithms, S3D Subtree (S3D-S) and S3D Subtree-Top (S3D-
ST), aim to further refine and extend the capabilities of the S3D framework [12].

1.3.2 Block Mode

In the course of studying the application of threads to the S3D algorithm, various ap-
proaches to the decomposition of the recursion tree were considered and tested, targeting
potential improvements in different aspects of the algorithm, notably its computational
time cost. A significant portion of time and computational complexity in the original
S3D proposal was attributed to two main factors: the need to test the compression rate

8

between Dyadic Decomposition (DD) and Single Mode (SM) for each node in the recur-
sion tree, and the rigid approach to point cloud decomposition, which always splits it into
halves. For example, a point cloud represented with 9 bits would generate a recursion
tree of 1023 nodes. With each node offering two encoding possibilities—DD and SM—the
process could potentially evaluate 2046 different encoding, selecting only the most efficient
outcome.

The viability of this trade-off between performance and time cost largely depends on
the context. For a pre-captured point cloud with all points already defined, where the im-
mediacy of data availability is not critical, prioritizing performance despite increased time
may be acceptable. Conversely, in scenarios where the point cloud is dynamically evol-
ving with constantly added new points, the system cannot afford the luxury of extensive
processing times to make all frames of point cloud data available. In such cases, agility
becomes paramount, making time cost a far more critical consideration than compression
performance.

Given these considerations, an approach that directly decomposes the point cloud
into blocks of a predefined width and encodes each block through a more straightforward
process, such as single mode, emerges as notably advantageous in terms of speed. For
instance, since the encoding process slices the point cloud along a specific axis—processing
these slices into blocks—this model is particularly well-suited for applications involving
real-time acquisition, where points from a scene are progressively scanned to form the
complete point cloud. This principle forms the foundation of the Block Mode method
proposed in this work.

1.4 Purpose

In pursuit of a contemporary implementation of the S3D algorithm, the initial objec-
tive of this work is to develop the original S3D algorithm inclusive of the single mode
option—addressing a gap left by the previous migration to C++. Moreover, this itera-
tion introduces a comparison at each node within the decomposition tree between the
compression rates of dyadic decomposition and single mode, selecting the more effective
approach for each. The underlying assumption is that optimizing performance at the
node level will inherently enhance overall encoding efficiency.

Completing the C++ implementation of the original S3D codec enables the exploration
and evaluation of its performance when threading is applied across each subtree within
the decomposition tree. This process unveils two distinct methodologies for integrating
thread-based encoding:

9

1. Subtree Method (S3D-S): This involves slicing the point cloud into halves until
the number of subtrees aligns with the number of available threads. For exam-
ple, with four threads, the tree decomposes to the third level, resulting in exactly
four subtrees. Each subtree is then independently encoded by a dedicated thread,
employing the S3D codec strategy.

2. Subtree-Top Method (S3D-ST): Similar to the Subtree Method in initial de-
composition, this strategy diverges by not encoding the root node of each subtree.
To compensate, the top portion of the original recursion tree is encoded up to the
level where the subtrees begin. This approach ensures that information about the
unencoded root nodes is encapsulated within the final bitstream. Consequently,
this method necessitates an additional thread for encoding the top part of the tree,
increasing the total number of threads by one—for instance, five threads for four
subtrees plus the top part. The advantage is that these root nodes are compressed
more efficiently in terms of rate.

These methodologies necessitate the development of two threaded S3D codec variants.
Previously, in the original S3D threaded based work, similar approaches were named as
algorithms I and C. To distinguish from the original adaptations, we propose naming these
new variants the S3D codec Subtree (S3D-S) and S3D codec Subtree-Top (S3D-ST).

Complementing the thread-based encoding methodologies, the Block Mode strategy
introduces a streamlined, efficient algorithmic approach. This method facilitates the direct
partitioning of the point cloud into a pre-determined number of slices, where each width
of slice aligns with a power of two. This approach eliminates the necessity for iterative
bisecting typically seen in dyadic decomposition, opting instead for a direct partition at
a specific decomposition level.

A notable illustration of this strategy is the direct decomposition of a 9-bit point
cloud into four blocks. Rather than sequentially halving the point cloud through to the
third level of dyadic decomposition, this method immediately sections the point cloud
into four equally sized blocks, each 128 pixels wide. Subsequently, each block undergoes
encoding via the single mode approach, sidestepping the need to evaluate the most effi-
cient compression strategy for each segment. Thus, by utilizing the single mode, instead
of fully decomposing the point cloud partition in the dyadic decomposition tree, it di-
rectly decomposes the point cloud into unit-width slices that form the partition. This
example underscores the unique advantage of the Block Mode approach: by avoiding the
conventional dyadic decomposition in favor of immediate, level-specific partitioning, it
significantly enhances the speed and simplicity of the encoding process.

This development leads to two procedural variants: a top-down and a bottom-up ap-
proach, differing only in the sequence of encoding. The top-down variant, or Block Mode,

10

begins with high-level nodes before addressing block nodes via single mode. Conversely,
the bottom-up variant, dubbed Inverted Mode, starts with leaf node encoding, subsequen-
tly integrating these silhouettes into larger blocks. Originally, the Block mode proposal
was based only on the concept of top-down traversal. However, the bottom-up approach,
as will be explained in more detail in section 3, was thought to use its structure in speci-
fic situations. These situations are those in which the point cloud is not fully captured.
Then, parts of the point cloud are captured, and then, merged into a full captured. Avai-
ling the Block mode decomposition in the bottom-up traversal, motivated the usage of
the Inverted mode in these contexts. These methodologies and their/ implications will be
delineated throughout this work.

This work builds on the Silhouette 3D codec [8], which employs the concept of dya-
dic decomposition for point cloud geometry. The first proposed algorithm explores the
encoding of independent units over the subtrees created in the decomposition, facilita-
ting multi-threading. This concept was previously explored in earlier works [11], though
those studies were based on an earlier, non-definitive version of the S3D C++ implemen-
tation. The current work, therefore, proposes an updated version of the multi-threaded
S3D algorithm, providing a deeper understanding of its capabilities in a multi-threaded
context.

Additionally, a new approach called the S3D Block Mode is introduced, which employs
a novel concept of block decomposition. This method is designed to address the compu-
tational cost associated with the original approach. The S3D Block Mode simplifies the
process, making it particularly suited for applications that require time-efficient codecs.
Furthermore, this mode allows partial encoding of the point cloud, focusing on slices of
the captured object (e.g., ambient environments or moving objects). This feature makes
it an excellent candidate for real-time acquisition applications.

The proposed S3D variants and their underlying concepts will be explored in detail,
and their capabilities will be assessed. The success of these variants will be evaluated
based on the results. However, before delving into the specific contributions of this work,
it is essential to review fundamental concepts of point cloud compression and examine
the Silhouette 3D codec in greater detail, as it forms the foundation of this research.

11

Capítulo 2

Literature Review

Given the increasing relevance of point clouds today and the aim of this work to
contribute to point cloud geometry compression techniques, this section delve deeper into
the study of point clouds and the primary algorithm upon which this research is based.
Initially, this section examine the formal definition of a point cloud and the fundamental
concepts underlying its geometry compression.

Subsequently, we will describe the arithmetic encoder, a crucial component of the
S3D algorithm. We will also explore the main concepts associated with the S3D. Lastly,
in light of the multi-threaded S3D variant proposed in this research, we will introduce
elementary concepts of concurrent programming and multi-threading.

2.1 Point Clouds

A point cloud is defined as a set V of points [1]. The process known as voxelization
maps the points of a point cloud onto a 3D discrete grid, with each cubic unit of space
within this grid referred to as a voxel. In the context of this work, voxels serve as the 3D
counterparts to 2D image pixels, representing index triples that denote a spatial location
within a 3D grid of dimension 2i × 2j × 2k, where i, j, and k is a level within the voxel
hierarchy Vk. Associated with each voxel may be multiple attributes such as color and
reflectance. Voxelized point clouds are typically captured by specialized cameras and
undergo a voxelization process that assigns attribute values and geometric information.
The quantity of voxels within a point cloud is denoted as |Vk|, a measure proportional to
the surface area of the object. The term depth refers to the maximum number of levels
and is determined by the bit depth used for coordinate representation [13].

Point clouds are categorized as either static or dynamic, depending on the nature of
their captured environment. Static point clouds represent unchanging data over time,
devoid of motion or temporal variations. Conversely, dynamic point clouds incorporate

12

a temporal domain, capturing motion and changes across frames, which is essential for
applications such as 3D video, autonomous navigation with dynamic 3D maps, and VR
broadcasting [1]. To accommodate the diverse requirements of 3D applications, MPEG
PCC classifies point clouds into three categories, each tailored to specific compression
technologies and applications, as detailed in [1].

Polygon File Format (PLY) is the standard file representation for point clouds ac-
cording to MPEG PCC standards [1]. In this format, each position of voxel (geometric
information) and associated attributes are specified. Attributes typically describe voxel
properties, including colors and reflectance. A PLY file generally describes a point cloud
as a collection of vertices (and possibly edges and other elements), each accompanied by
a set of properties defined in the header of file. Typically, a PLY file representing a point
cloud contains a list of (X, Y, Z) triples for vertices, along with associated properties, as
we can see below:

ply
format ascii 1.0
element vertex 213609 {we have a point cloud of 213609 voxels}
property float x
property float y
property float z
property uchar red
property uchar green
property uchar blue
end_header
223 255 215 96 63 46
223 255 216 108 75 58
223 255 217 128 83 60

The above illustrated PC from the third frame of the "Ricardo9"sample file within the
JPEG Pleno Database [14]. The file begins with a header that adheres to the conventions
of the PLY format. The initial line identifies the file as a PLY format. The subsequent
line declares the file format, which, aside from the discussed ASCII, could alternatively
be in a binary format. Following this, the header outlines the elements from the object,
with the first element being "vertex"and its count in the file, which amounts to 213,609.
A series of property definitions follow, specifying the type and name of each property.
Given the object in question is a point cloud, no further elements are listed beyond this
point. The header concludes with an end_header line.

Subsequent to the header, the file lists the elements in accordance with the declarations
from the header, mapping property values to each element type accordingly. In this

13

instance, the ensuing 213,609 lines detail the voxels from the point cloud. Each line
describes a position from a voxel via (X, Y, Z) coordinates along with its color attributes
(R, G, B) [15].

2.2 Signal compression

At the heart of compression algorithms lies a dichotomy: the compression algorithm
(Encoder) and the reconstruction algorithm (Decoder). The former processes input data
X , producing a compressed counterpart Xc that embodies the original data in a reduced
bit representation. Conversely, the Decoder reconstructs Y from Xc, aiming to replicate
the original dataset X . This process bifurcates into lossless compression, where Y = X ,
and lossy compression, where Y ≠ X but typically achieves a higher compression rate.

The genesis of data compression algorithms entails two critical stages: modelling and
coding. The former identifies and characterizes data redundancies within a model, while
the latter encodes this model using a binary alphabet, often generating a residual that
quantifies the deviation from the original data.

The key to evaluating compression methodologies are two metrics: the compression
rate (CR) and rate (R), the former being the ratio of the original data size (So) to the
compressed data size (Sc):

CR = So

Sc

(2.1)

or, alternatively, expressed as a percentage reduction:

CR = 1 − Sc

So

(2.2)

Generally, the rate is defined as the average number of bits required to represent a
unit of information in the compressed format. In mathematical terms, for a given dataset,
the rate can be expressed as:

R = Sc

L
(2.3)

where R is the rate, Sc is the size of the compressed data in bits, and L is the length
of the dataset or the number of samples within it.

Particularly in the context of point clouds, which are comprised of three-dimensional
data points representing the external surface of objects, the concept of rate adopts a
specific form known as bits per voxel occupied. This measure reflects the average number
of bits used to encode each voxel within the point cloud. Voxels, the three-dimensional

14

equivalent of pixels, serve as the fundamental unit of space in a voxelized point cloud.
Therefore, the rate in this context is calculated as:

R = Sc

N
(2.4)

where N denotes the number of voxels occupied by the point cloud. This metric is
particularly insightful for assessing the efficiency of point cloud compression algorithms,
offering a direct measure of how compactly the three-dimensional spatial and attribute
information is encoded.

In the realm of lossy compression, distortion measures the divergence between the
original and reconstructed data, serving as an indicator of compression efficiency. Delving
deeper into the principles underpinning data compression, we find in information theory
the concept of self-information. Defined for an event A, with P (A) representing the
probability of A occurring, self-information (i(A)) quantifies the amount of surprise or
new knowledge contributed by the occurrence of A. It is mathematically defined as:

i(A) = − logb P (A) (2.5)

The choice of base b for the logarithm determines the unit of measurement: bits for
b = 2, nats for b = e, and hartleys for b = 10. This logarithmic relationship underscores
that events with higher probabilities contribute less new information (are less surprising),
whereas those with lower probabilities contribute more (are more surprising).

For a series of independent events Ai within an experiment S:

⋃
Ai = S (2.6)

the entropy (H) of the experiment, or the average self-information, is given by:

H = −
∑

P (Ai) logb P (Ai) (2.7)

Shannon’s entropy encapsulates the average minimum number of binary symbols re-
quired to encode the output of a source, thus representing the theoretical limit of lossless
compression efficiency.

Effective data modeling, whether through physical, probabilistic, or Markov models, is
essential for approximating source entropy and devising efficient compression algorithms.
Symbols from a given source data set form an alphabet A, with binary sequences, or
codewords, assigned to each symbol during the coding phase, constituting a code.

15

2.2.1 Geometry compression

Building on the foundational concepts of signal compression presented earlier, it is
appropriate to apply this understanding to the specific problem at hand. The discussion
has elucidated that through a compression algorithm, data can be compacted into a
file with fewer bits and later reconstructed. This algorithmic process bifurcates into
two pivotal phases: modeling and coding. The chosen model informs the coding phase,
where data source letters (from a defined alphabet) are translated into associated binary
sequences, known as codewords (from a designated code). Once the algorithm is both
modeled and implemented, assessing its performance becomes paramount. Key metrics
for this analysis include entropy and, in the context of lossy compression algorithms,
distortion. However, when focusing on point clouds, a vital question arises: what specific
data is compressed, given its potential to encapsulate a wide array of information?

The utility of a point cloud, and the attributes deemed essential for encoding, may
vary significantly depending on the application. Attributes such as color, geometry, and
reflectance are often critical. For the algorithm discussed herein, the emphasis will be
solely on geometry compression.

Geometry compression concerns itself with encoding the three-dimensional shape and
contour of a point cloud. This involves identifying and exploiting similarities across diffe-
rent sections of the volume, the space occupied, and the voids within. By analyzing these
characteristics, it is possible to uncover side information that, though not explicitly re-
presented, can be inferred from the context of the volume. Moreover, certain information
may be deemed redundant and safely omitted without detracting from integrity of the
model — a principle applied not only in point cloud compression but also in image and
video encoding.

Thus, geometry compression aims to efficiently represent the 3D shape of the point
cloud, leveraging the information and redundancies inherent in the 3D object relative to
the algorithmic approach adopted. It is crucial to recognize that geometry compression
is not exclusive to point clouds but extends to other 3D representations, such as meshes,
where additional volume-related information, like vertex connectivity, can be utilized.

A prominent example of a geometry compression algorithm is the octree approach [16],
which recursively divides the point cloud into eight cubes until reaching the voxel level.
This decomposition strategy, an extension of the 3D quad-tree [3], marks occupied volumes
as ’1’ in the tree and empty volumes as ’0’. These unoccupied spaces are treated as leaves,
as illustrated in figures 2.1a and 2.1b [3], effectively capturing the spatial hierarchy and
density of the point cloud.

16

(a) Unit cube divided into 8 sub-cube. (b) The volume encoding process.

Figura 2.1: The octree geometry compression approach illustration

2.3 CABAC

After a geometry compression has been applied to a volumetric object model, a subs-
tantial reduction in the number of bits required to represent its data is achieved. However,
geometric compression alone often falls short of maximizing efficiency in data compres-
sion. To further optimize the representation of geometry from the point cloud, leveraging
classic signal compression algorithms on the compressed geometric data becomes a crucial
step. These classical algorithms facilitate the generation of two principal types of codes:
fixed-length codes and variable-length codes.

Fixed-length codes are characterized by their uniformity; each symbol from the alpha-
bet is represented by codewords that consist of an identical number of bits. This approach
ensures simplicity and ease of decoding but may not always be the most space-efficient.
Conversely, variable-length codes assign a unique bit length to each symbol based on its
frequency or importance, allowing more common symbols to be encoded with fewer bits.
This adaptability can significantly reduce the overall size of the compressed data, making
variable-length codes particularly effective for further compressing the geometry of point
clouds.

A pivotal example of a variable-length compression algorithm, employed in the propo-
sed point cloud compression framework, is the Context Adaptive Binary Arithmetic Coding
(CABAC). This sophisticated algorithm represents the forefront of variable-length coding,
optimizing compression efficiency by dynamically adjusting the coding process based on
the context of the data being encoded.

This section delve into the fundamentals of the Context Adaptive Binary Arithmetic
Coder, outlining its basic implementation before transitioning to its application within
the targeted algorithm for point cloud compression. Starting with an exploration of
arithmetic coding principles, we will progressively build up to the context-adaptive aspects
that distinguish CABAC. By adjusting codeword lengths in response to the statistical

17

properties of the data, CABAC achieves a high compression ratio, making it an invaluable
tool in the realm of point cloud compression. The progression from elementary arithmetic
coding to the sophisticated application of Context-Adaptive Binary Arithmetic Coding
(CABAC) for point clouds elucidates the adaptation of traditional signal compression
methodologies to address the unique demands of volumetric data. This adaptation is
crucial for achieving efficient storage and transmission, while preserving the fidelity of
geometric information.

2.3.1 Arithmetic Coding

Arithmetic coding stands as a variable-length coding scheme, particularly effective
for encoding small alphabets, including those with highly skewed probabilities or binary
sources, such as the geometry compressed bitstream discussed in this work. Its utility
shines when the objective is to segregate the modeling and coding aspects within a lossless
compression framework.

The essence of arithmetic coding lies in its unique approach to generating codewords
for groups or sequences of symbols rather than for individual symbols in isolation. This
methodology yields enhanced compression efficiency for the final encoded sequence. Arith-
metic coding circumvents the need to create explicit codes for every possible sequence,
which would otherwise result in an impractical proliferation of side data. Instead, it
employs a singular identifier known as a tag. This tag serves as a unique binary code
generated from a sequence of symbols, facilitating both encoding and decoding processes
by allowing the original sequence to be accurately deciphered and reconstructed from the
tag.

The coding process necessitates a distinctive identifier or tag for each sequence of
symbols. An ideal candidate for such a tag is a decimal value within the interval [0, 1),
which, due to its infinite granularity, can uniquely represent each sequence. To map a
sequence of symbols to a value within this interval, the cumulative distribution function
(cdf) is utilized, effectively linking the random variable representation of the symbol to
its probability.

Given an alphabet A = {a1, a2, ..., am} of a discrete source, and X as a random
variable:

X(ai) = i, ai ∈ A (2.8)

we define a probability model P , representing the probability density function for the
random variable:

18

P (X = i) = P (ai) (2.9)

and the cumulative density function as:

FX(i) =
i∑

k=1
P (X = k) (2.10)

The process of generating the tag, synonymous with encoding in arithmetic co-
ding, iteratively narrows the interval within which the tag is generated as more se-
quence elements are processed. Initially, the unit interval [0, 1) is divided into sub-
intervals [FX(i − 1), FX(i)), i = 1, ..., m. Each symbol ai is then associated with a spe-
cific sub-interval. As symbols are encoded, the corresponding interval for each symbol,
[FX(k − 1), FX(k)), is further subdivided in proportion to the original interval, and the
interval from the tag is correspondingly adjusted. This refinement continues with each
new symbol received.

For instance, with a three-letter alphabet A = {a1, a2, a3} where P (a1) = 0.5, P (a2) =
0.2, and P (a3) = 0.3, the cumulative function values would be FX(1) = 0.5, FX(2) = 0.7,
and FX(3) = 1. Considering a sequence a1, a2, a3, the intervals derived through the
aforementioned algorithmic steps would be illustrated in Figure 2.2, demonstrating that
the intervals generated are distinct and non-overlapping for different sequences.

For encoding, we denote a source sequence of length n as (x1x2...xn). The portion of
the sequence encoded up to the kth element is represented as x = (x1x2...xk). The lower
and upper bounds of the interval where the tag resides at the kth element, denoted by l(k)

and u(k) respectively, are defined as:

l(k) = l(k−1) + (u(k−1) − l(k−1))FX(xk − 1) (2.11)

u(k) = l(k−1) + (u(k−1) − l(k−1))FX(xk) (2.12)

The tag value, represented as T X(x), is the midpoint of the final interval determined
by the last symbol:

T X(x) = u(n) + l(n)

2 (2.13)

The encoding process iteratively narrows the interval as symbols are processed, assig-
ning a unique decimal tag for each sequence. This tag is then truncated and converted
into a fixed-point binary representation, forming the encoded data.

Decoding mirrors the encoding steps, utilizing the tag to sequentially recover the
original data sequence. The process involves recalculating intervals to ensure the tag

19

Figura 2.2: Arithmetic coding tag’s interval generating for the sequence a1, a2, a3.

value falls within the correct sub range for each symbol decoded. This approach ensures
the reconstruction of the source sequence from the tag value.

Direct implementation faces challenges due to the finite precision of computer repre-
sentations, leading to potential interval convergence due to truncation. To address this,
intervals are rescaled as needed, maintaining synchronized and incremental encoding. Th-
ree scenarios trigger rescaling:

1. The interval lies entirely within the lower half of the unit interval [0, 0.5).

2. The interval lies entirely within the upper half of the unit interval [0.5, 1.0).

3. The interval straddles the midpoint of the unit interval.

Rescaling remaps the sub-interval to a new interval ranging [0, 1), sending correspon-
ding bits to the decoder and adjusting the interval accordingly:

1. For the lower half, send bit 1 and double the interval: E1(x) = 2x.

2. For the upper half, send bit 0 and shift and double the interval: E2(x) = 2(x − 0.5).

3. Continue processing without rescaling for intervals straddling the midpoint.

20

This rescaling ensures that arithmetic coding remains effective even within the limita-
tions of computer arithmetic, optimizing the balance between compression efficiency and
computational feasibility.

2.3.2 Context Arithmetic Coding

A significant enhancement can be incorporated into arithmetic coding through the
concept of contextual information. To elucidate, consider the following sequence:

(a1, a2, a2, a2, a1, a3, a3, a1, a4, a1, a3, a1)

Analyzing the frequency of a2 within this sequence reveals its occurrence constitutes only
25% of the total. However, by considering the preceding symbol, we can ascertain a more
precise probability of a2’s occurrence. Notably, a2 follows either a1 or a2. The probability
of a2 following a1 is 33%, while it escalates to 66% when preceding another a2.

This increased accuracy in predicting the likelihood of a2, given the knowledge of the
preceding symbol, introduces a layer of context. Incorporating contextual information
allows for a more nuanced probability estimate, enhancing data compression efficiency.
By leveraging the relationships and frequencies of symbols already encoded/decoded, the
algorithm gains an augmented capacity for predicting subsequent symbols based on prece-
ding ones. This contextual approach not only enriches the predictive power of the model,
but also underscores the adaptability and sophistication achievable in data compression
strategies.

2.3.3 Context Adaptive Arithmetic Coding

In the example provided, we have assumed that the context probability table is readily
available and computed. However, in most practical scenarios, this information is not
initially accessible to the encoder. Consequently, the algorithm must adapt to newly
learned distributions as the encoding progresses. A straightforward strategy involves
initializing the table with all elements as counters set to 1. Initially, this implies limited
knowledge about the source. As each symbol is encoded, the counter associated with its
context is incremented. This mechanism is mirrored in the decoder, ensuring that after
each symbol is encoded, the counter is updated accordingly.

Consider a source with an alphabet A = {a1, a2, a3} tasked with decoding the message:

(a1, a1, a2, a1, a3)

21

At the outset, the context table is initialized as follows, where each row represents a
specific context:

Tabela 2.1: Initial Context Table

Context/Symbol a1 a2 a3 Total
None 1 1 1 3

a1 1 1 1 3
a2 1 1 1 3
a3 1 1 1 3

Following the encoding of the first symbol a1, the table remains unchanged, as it is the
initial symbol without preceding context. After encoding the second symbol a1, the table
is updated as shown in Table 2.2. This process is repeated until all symbols are encoded,
resulting in the final context table presented in Table 2.3. This iterative process ensures
that all contexts are updated, with probabilities adapting to each symbol encoded, thereby
refining predictive power of the algorithm, based on previously encountered symbols.

Tabela 2.2: Context Table after Encoding a1

Context/Symbol a1 a2 a3 Total
None 1 1 1 3

a1 2 1 1 4
a2 1 1 1 3
a3 1 1 1 3

Tabela 2.3: Context Table after Encoding All Symbols

Context/Symbol a1 a2 a3 Total
None 1 1 1 3

a1 2 2 2 6
a2 2 1 1 4
a3 1 1 1 3

2.3.4 Context Adaptive Binary Arithmetic Coding

Having discussed the basics of arithmetic encoding, we are well-prepared to introduce
the Context Adaptive Binary Arithmetic Coder (CABAC), pivotal for encoding
the binary point cloud geometry in the S3D approach. CABAC proves to be advantageous
not only for point clouds but in many scenarios where the alphabet is binary, such as bilevel
documents or the binary representation of nonbinary data seen in H.264 CABAC. The
primary benefit of a binary alphabet lies in its simplified probability model, requiring only

22

a single value to represent the probability of one symbol. The probability of the alternate
symbol is then the complement of this value. This simplification facilitates the use of
multiple contexts in the encoding process, significantly enhancing compression efficiency.

CABAC Mechanism

The CABAC algorithm combines the Context Adaptive approach with binary arith-
metic coding. Initially, a word length m is chosen to map the interval [0, 1) to 2m binary
words, establishing a direct correspondence between decimal and binary representations.

Given the unpredictability of message length, and adhering to an adaptive case stra-
tegy, the choice of m is made independent of message length. Sayood demonstrates that
a word of length m accommodates a total count of 2m−2 or less, necessitating interval
rescaling as the symbol count nears 2m−2. This rescaling involves halving all numbers and
rounding up to ensure no value is diminished to zero, a measure that refreshes the count
table to better reflect the local statistics of the source.

Interval Computation and Updates

With a binary alphabet, interval computation simplifies to updating one endpoint and
the interval size, denoted by:

A(n) = u(n) − l(n) (2.14)

The tag of the sequence is then the binary representation of l(n), with symbols treated
as More Probable Symbol (MPS) and Less Probable Symbol (LPS) rather than direct
binary values. The probability of an LPS occurrence in context C is qc, influencing the
interval update equations for MPS and LPS occurrences respectively. The mapping of
interval values to binary words, and the significance of the most significant bit (MSB)
in determining the half of the interval, introduce specific operations E1, E2, and E3 to
manage encoding efficiently:

1. If the MSB from both bounds is equal, a left shift is performed. This operation
corresponds to E1 or E2 based on the value of the MSB: 0 for E1 and 1 for E2,
effectively doubling the size of the interval or shifting it to accommodate the new
value.

2. If the 2nd MSB from u(n) is 0 and from l(n) is 1, operation E3 is engaged, shifting
each bound 1 bit to the left and then complementing the MSB. This ensures the
interval is adjusted without losing precision.

23

Consider nj as the amount of the symbol j occurrence in a sequence of length Total_count.
Besides, considering Cum_count as:

Cum_count(k) =
k∑

i=1
ni (2.15)

The updated bounds are calculated as follows:

l(n) = l(n−1) +
⌊

(u(n−1) − l(n−1) + 1) × Cum_count(xn − 1)
Total_count

⌋
(2.16)

u(n) = l(n−1) +
⌊

(u(n−1) − l(n−1) + 1) × Cum_count(xn)
Total_count

⌋
− 1 (2.17)

Decoding mirrors these steps, with t∗ determined by:

t∗ = (t − l + 1) × Total_Count − 1
u − l + 1 (2.18)

where t∗ is the tag value. This process ensures the efficient reconstruction of the
original message.

2.4 Silhouette 3D

Having established a foundational understanding of signal compression and the CA-
BAC, an instrumental algorithm for this work, we now shift our focus to the primary
algorithm responsible for point cloud compression. This algorithm draws inspiration from
existing work but with notable distinctions. Before delving into the geometry compression
part of our algorithm, it is essential to explore other point cloud geometry encoders for
context.

One of the primary codecs for point cloud compression is based on an octree structure,
which involves recursively dividing the point cloud into eight smaller cubes that comprise
the entire volume [16]. The MPEG G-PCC geometry compression builds on the octree
concept, applying an arithmetic coder to enhance the geometry compression. Other codec
variations extend the octree approach with various arithmetic encoders [3]. An alternative
method in the codec of M. Krivokuca et. al [17] utilizes volumetric functions based on
B-spline wavelets to encode the geometry and attributes of point clouds. Additionally,
strategies employing deep learning techniques represent another innovative direction for
point cloud compression [5]. These methods leverage the ability of deep learning models
to abstract complex data structures, including point clouds, into a more manageable form,
often treated as sequences of symbols for compression.

24

The S3D algorithm introduces a novel approach by focusing on the silhouettes of point
cloud slices for geometry coding. Unlike previous methods that emphasize volumetric
properties and patterns directly from raw data, S3D leverages binary images of silhouettes
as the basis for compression. This distinctive feature makes binary image compression
techniques particularly suitable for S3D, resulting in efficient compression rates [8] and
outperforming G-PCC v7.0 performance. The following section explores the theoretical
underpinnings and methodologies employed in the S3D algorithm.

2.4.1 Silhouette

The S3D algorithm employs two primary approaches to determine the most effective
compression method: the dyadic decomposition and the single mode. Both approaches
adhere to the core concepts and elements proposed by the algorithm.

Central to these approaches is the utilization of the point cloud geometry as a 3D
occupancy array N ×N ×N , where occupied coordinates are marked as 1, and unoccupied
as 0, effectively treating it as a 3D Boolean array G(x, y, z). By slicing the point cloud
along a specific axis and projecting the occupied points within each slice onto an N × N

image, we generate what can be likened to a silhouette of the region from the point cloud.
A silhouette is thus defined as:

I(i, j) = silhouette(G, axis, iStart, iEnd) =

∑iEnd

n=iStart G(axis, start, end) if axis = x∑iEnd
n=iStart G(start, axis, end) if axis = y∑iEnd
n=iStart G(start, end, axis) if axis = z

(2.19)
Where the summation is performed via a logical OR operation, merging all slices in

the interval [iStart, iEnd] into a single bitmap image I(i, j). This process is visualized
in Figures 2.3 and 2.4, illustrating the sliced point cloud and its respective projected
silhouettes.

2.4.2 Dyadic Decomposition

Having established silhouettes as elements that describe the point cloud geometry
from its slices, the algorithm employs a recursive basis. First, a deep analysis into the
dyadic decomposition will be conducted, a primary approach utilized in the S3D algorithm.
Initially, the point cloud is segmented into two smaller intervals, each further divided in
two, adhering to the dyadic decomposition principle where interval ranges are halved from

25

Figura 2.3: Point cloud sliced and its respective silhouettes projected

the original slice. This recursive halving continues until a slice contains no points or
reaches an atomic width of 1, becoming essentially a bitmap image.

This recursive process manifests as a binary tree, where each node represents a slice
of the point cloud. From these slices, N × N silhouettes are projected, as depicted in
Fig. 2.5 [9], with each node signifying a slice and the red shading indicating a silhouette
projection along the vertical axis.

Given this binary tree of silhouettes that describe the point cloud at each interval, the
geometry compression, rooted in silhouette decomposition, begins by encoding the bitmap
image of each tree node to transmit the images that comprise the entire point cloud. This
approach leverages a specific characteristic of the silhouette generation process regarding
unoccupied voxels: if a silhouette pixel is blank, it implies the absence of occupied pixels
across all contributing slices for that coordinate. This inference is drawn from the OR
operation employed during silhouette creation, ensuring the occupation of the pixel in the
projection if it is occupied in at least one slice.

In the tree context, no subtree generated from a node silhouette will contain occupied
pixels where the parent node does not. Furthermore, this decomposition process capitali-
zes on the similarities between adjacent node silhouettes—the parent node and its sibling,
or "brother node,"leading to the nomenclature dyadic decomposition. It is noteworthy that
this process excludes the root node due to its lack of a parent or sibling node.

26

(a) ricardo9 point cloud rendered (b) ricardo9 silhouette along axis X

(c) ricardo9 silhouette along axis Y (d) ricardo9 silhouette along axis Z

Figura 2.4: Ricardo9 point cloud and its silhouettes projections along entire axis

27

Figura 2.5: Binary tree derived from the point cloud recursive slices.

28

For a node in the tree YC , along with its child nodes YL (left) and YR (right), the
transmission of both children assumes YC has already been transmitted, following these
steps for transmission:

1. For transmission of YL, utilizing the parent image YC as a mask, only the bits where
YC is 1 are sent from YL.

2. For transmission of YR, considering both the parent image YC and YL as masks, only
the bits where both YC and YL are 1 are sent from YR.

This decomposition approach is viable because YC = YL +YR under an OR operation.
The scenario where YC is 0 implies that both YL and YR are also 0. Given prior trans-
mission of YC , these values can be inferred for both child silhouettes, hence transmitting
only where YC is 1. The rationale for the second decomposition step, given transmission
from YC and YL, is that the bits where YC is 1 and YL is 0 necessitate YR to be 1, thus
only transmitting bits where both parent and right child are 1.

Consider the illustration in Fig. 2.6 for a clearer understanding.

Figura 2.6: A simple silhouette decomposition illustration

Blue pixels denote occupied areas, white pixels represent empty spaces, and the red
contour outlines the transmission-required bits, delimited by the mask of occupied pixels
in either the parent or left node silhouette. Fig. 2.7 expands this decomposition across
three levels, with silhouette 1 as the root node. Only the root silhouette is transmitted
in full, with subsequent silhouettes transmitted via decomposition. The bitstream sent
from each node is:

1. 0011001101110101

29

2. 111011010

3. 001111

4. 1010

5. 110000

6. 11100

7. 111

Figura 2.7: A silhouette decomposition example with 3 levels.

The final bitstream, following the number ordering, becomes:

0011001101110101111011010001111101011000011100111

This sequence occupies 49 bits, compared to sending all four 4×4 images, which would
occupy 64 bits. It is important to note that the silhouette decomposition process follows
a preorder tree traversal, encoding from the parent node to the left child node and then to
the right child node, recursively. Thus, the images from the point cloud are transmitted
in this order.

As the geometry encoding is done for each node from the binary tree, the aim to
optimize the compression rate involves performing a second level of encoding on the
bitstream generated from the previous step, in this case, using CABAC.

The CABAC has 16 bits of precision, and all its contexts are initialized only once
with a value of 1. When the first image is transmitted and compressed with CABAC,

30

the contexts used are the 10 pixels from the image itself as in Fig. 2.8 (a). These pixel
contexts are called 2D contexts. The image YL, following the tree notation, is encoded
with the 2D contexts, 5 pixels, plus 9 pixel contexts from an additional image: the YC .
These are referred to as 3D contexts, as shown in Fig. 2.8 (b) [8]. Finally, the image
YR is encoded using the 2D contexts, with the additional 3D contexts provided by the
YL pixels. This encoding process is illustrated in Fig. 2.9. This procedure is repeated
until all nodes are covered, following a preorder traversal, culminating in the final encoded
bitstream.

Figura 2.8: Contexts used to encode pixel p: (a) 2D Contexts and (b) 3D Contexts

The decoding process mirrors the encoding steps. Initially, the bitstream is decoded
using CABAC. Armed with an understanding of the tree traversal sequence, the decoder
can identify which image from the tree is being decoded and, consequently, apply the
appropriate 3D contexts derived from the pixels of external images. Once the geometry
bitstream is recovered, it becomes feasible to reconstruct the silhouettes from the point
cloud that populate its occupancy voxels. Given that the leaf nodes represent slices with
a width of 1, their alignment and combination effectively reconstitute the entire point
cloud, as illustrated in Fig. 2.10. Through this process, we can successfully restore the
original point cloud without any loss of voxels.

2.4.3 Single Mode

With an understanding of how Dyadic Decomposition (DD) operates, grasping the
mechanics of the Single Mode (SM) mechanism becomes simpler, as it builds upon the
same foundational encoding principles.

Consider a point cloud segmented along an arbitrary axis a from the set S = {x, y, z},
resulting in a slice of length L. This process generates L slices, or ’children’, from the point
cloud, as depicted in Fig. 2.11. Each point cloud slice, and consequently its silhouette If

31

(a) YC encoding

(b) YL encoding

(c) YR encoding

Figura 2.9: The binary tree node’s encoding process using contexts. The slices are along
axis z. The read contour denotes the current node being encoded and the blue contour
the image whose 3D contexts is extracted.

32

Figura 2.10: An illustrative purpose image depicting slices images from decode, leaf nodes,
merged and reconstituting the original point cloud on axis Y.

(termed the ’father silhouette’), alongside the silhouettes I i
c generated from each slice (the

’children silhouettes’), where 0 ≤ i < L, form the basis for the Single Mode encoding.
The encoding begins with the first child silhouette, utilizing contexts exclusively from

If . Subsequent child silhouettes I i
c are encoded by employing contexts from both the

father silhouette and the previously encoded child silhouette I i−1
c . This process continues

through to the final silhouette, which is encoded using contexts from I i−1
c and a mask

generated by iteratively performing an OR operation across all previously encoded chil-
dren, denoted as ∑L−2

n=0 I i
c. Consequently, the Single Mode bitstream is composed of the

CABAC-encoded silhouettes of the L point cloud slices.

2.4.4 Best choice

Exploring the two encoding strategies reveals distinct characteristics of each. The
Dyadic Decomposition (DD) unfolds as a recursive process within a tree structure, metho-
dically dividing the point cloud into halves at each level until achieving a unitary width.
Conversely, the Single Mode (SM) adopts a straightforward approach, encoding all one-
width slices of a point cloud simultaneously, culminating in the final bitstream. This can
be envisaged as a tree with just two levels: the root representing the entire silhouette of

33

Figura 2.11: Representation of the single mode operations - this figure illustrates a point
cloud of length L, resulting in L slices during the single mode operation.

point cloud and its direct children corresponding to the leaf nodes—each a slice of width
1.

From these perspectives, each algorithm can be succinctly summarized: DD is re-
cursive, requiring successive applications on increasingly smaller segments, whereas SM
operates in a singular, comprehensive step, immediately yielding its output upon appli-
cation.

The S3D algorithm, thus, can be visualized as originating from a DD recursion tree,
where at any node, an application of SM might prune the tree. This conceptualization
provides a holistic view of the S3D’s adaptability, employing the most effective encoding
combination at each step for optimal performance.

Through this metaphorical explanation, the operational essence of S3D is unveiled.
Initially, both SM and DD are evaluated to determine which approach offers superior
compression performance. Should SM emerge as the preferred choice, the algorithm con-
cludes promptly. Alternatively, selecting DD opens avenues for further decision-making
in subsequent subtrees, indicating a potentially intensive computational process due to

34

the exhaustive evaluation of all feasible combinations.
Consequently, the S3D bitstream embodies the most efficient compression pathway

among all considered options. To assist the decoder in navigating these choices, flags are
embedded within each bitstream segment, signaling the encoding strategy employed for
each subtree. This methodology promises significant compression rate enhancements by
leveraging optimal choices. Nonetheless, the associated computational cost of discerning
these options must also be acknowledged.

2.5 Threads

This work proposes an algorithm that utilizes multi-threading programming to leve-
rage the capability of encoding the point cloud decomposition tree subtrees concurrently,
aiming to enhance the algorithm’s time performance. To grasp the mechanism of this
algorithm, a review of some pivotal concepts in this domain is necessary.

2.5.1 Multi-threading

As described by Tanenbaum [18], a thread is essentially a basic unit of CPU utiliza-
tion, comprising an ID, a program counter, a register set, and a stack. It operates as
a "lightweight process."Being an independent execution flow, multiple threads can run
in cooperation within a single process, sharing the resources allocated to that process.
Hence, a thread represents an execution path within an operation of process. A simple
process functioning with a single execution flow is recognized as a single-threaded pro-
gram. Conversely, if a process executes more than one concurrent flow, sharing resources
like memory, stack, and files, it is considered multi-threaded.

Introducing multiple execution flows might raise concerns about increased code com-
plexity, especially when threads access a shared resource simultaneously, potentially le-
ading to inconsistent states. The question arises: why pursue multi-threading given the
complexity of managing concurrent access to shared resources? The primary motivation
for integrating concurrency is to fully utilize the capabilities of the computing device.
In scenarios where algorithm components are independent, a single-threaded implemen-
tation would force these components to execute sequentially due to the singular flow of
execution. By adopting multi-threading, different parts of the algorithm can be processed
in parallel, even as computations continue in other threads. This approach ensures con-
tinuous CPU engagement, contrasting with single-threaded models where CPU resources
may remain underutilized.

Another key advantage of threading is the shared resources among threads, particularly
relevant when processing large point clouds on devices with capable CPUs and substantial

35

memory. A standalone, single-threaded process might not efficiently manage memory
or CPU resources. However, threads, being lightweight, allow for parallel computation
without significantly increasing memory usage. Despite the added complexity of managing
concurrency, the benefits of enhanced computational throughput and efficient resource
utilization justify the multi-threaded approach.

Race Condition

When two execution flows operate concurrently, sharing common resources without
synchronized access, unexpected outcomes can arise. A classic scenario involves reader
and writer processes accessing shared memory. Imagine two processes reading from, and
one process writing to, this shared memory. The sequence of their operations might unfold
in several ways:

1. The writer updates the shared memory with new data, denoted as α, followed by
both readers accessing this updated information, reading α

2. One reader accesses the memory first, reading the old data γ, before the writer
updates it to α; subsequently, the second reader accesses the updated data, α.

3. Both readers access the memory before the writer has a chance to update it, reading
the old data γ; the writer then updates the memory to α

In scenarios where readers must access the latest data, the latter two cases present
inconsistencies, with at least one reader obtaining outdated information, γ. The second
scenario further complicates matters by introducing a discrepancy in the data read by the
two processes, casting doubt on the reliability of the data.

Critical Section

The root of such issues lies in multiple processes accessing shared memory without co-
ordinated operation management. If a writing process initiates, no other operation should
occur simultaneously on that memory. This principle also applies to reading processes; if
a read occurs while another process writes, the reader may receive a mix of old and new
data, leading to inconsistency among processes accessing the memory. To ensure proper
behavior, processes must mutually exclude each other from accessing the shared resource
during operation. The program code segment where the shared resource is accessed is
termed the critical section. Guaranteeing that only one process or thread executes within
the critical section at any time upholds mutual exclusion. A straightforward and effective
solution employed in this work is the use of a mutex.

36

Mutex

A mutex (mutual exclusion lock) is a mechanism designed to prevent race conditions
by ensuring one process/thread can access a shared resource at a time. Originating from
the semaphore concept by E. W. Dijkstra, the mutex addresses concurrency issues such as
the producer-consumer problem through lock and unlock operations and two states:
locked and unlocked.

Locking a mutex (mutual exclusion lock) is a critical operation in concurrent pro-
gramming. When a thread attempts to lock a mutex that is already in a locked state, it
enters a wait state. This mechanism prevents multiple threads from accessing a shared
resource simultaneously, which could lead to data corruption or inconsistent states. The
thread that has locked the mutex effectively has exclusive access to the shared resource
it protects.

During this waiting period, the thread is suspended, consuming minimal resources as
it awaits the release (unlocking) of the mutex. This suspension ensures that other threads,
including the one holding the mutex lock, can continue execution, potentially leading to
the eventual unlocking of the mutex.

Once the mutex is unlocked by the thread that originally locked it, the waiting thread
(or one of the waiting threads, if multiple) is awakened and given the opportunity to
acquire the mutex lock. This transition from a locked to unlocked state, followed by
the immediate locking by a previously waiting thread, maintains a controlled and orderly
access to the shared resource. Notably using standard C++ library <threads>, if multiple
threads are waiting, the release of one waiting thread upon unlocking does not follow a
specified order according to its documentation.

The effectiveness of mutexes in enforcing mutual exclusion hinges on the atomicity
of lock and unlock operations, ensuring these actions are indivisible and executed to
completion before any other thread can perform the same operation. This atomic nature
guarantees the consistent state of the mutex. Fig. 2.12 illustrates the behavior and state
transitions of a mutex in managing access to shared resources.

This chapter reviewed key concepts from the signal compression field, with a focus on
voxelized point clouds and their geometry. It also covered the theory behind arithmetic
encoding and the Context-Adaptive Binary Arithmetic Coding (CABAC), which is central
to the silhouette encoding in S3D. Next, the foundational principles of S3D were explained,
as they are crucial for the algorithms proposed in the following chapter. Finally, the
theory of concurrent programming was introduced to enhance understanding of the role
of threads in algorithm implementation.

In the next chapter, two main groups of algorithm proposals will be presented: first,
the S3D Block Mode and S3D Inverted Mode based on block decomposition, followed

37

Figura 2.12: State diagram summarizing the mutex variable behaviour given the mutex
variable operations.

by the multi-threaded S3D-S and S3D-ST. Implementation details will also be discussed,
including a unified header model for standardization in future versions. Additionally, a
new order of 3D pixel context selection will be proposed, setting the stage for further
research into S3D codec variants implementation.

38

Capítulo 3

Proposed Algorithms

In the preceding section, we explored the essential subjects within the domain of point
cloud compression, delving into the core principles and various representations of point
clouds. Subsequently, we touched on key notions within the field of signal compression
and its relevance to point cloud compression. We then provided an in-depth explanation
of how an arithmetic codec operates, specifically the Context-Adaptive Binary Arithmetic
Coding (CABAC) model that influenced the codec used in this research. Following this,
we introduced the geometry codec central to our study - the Silhouette 3D. Moreover,
we examined concurrent programming principles through the lens of multi-threading,
gaining insights into its fundamental concepts and the potential challenges it poses for
this research.

In this section, we will provide a detailed discussion of the algorithms proposed in this
study, emphasizing their development process, underlying motivations, as well as their
benefits and limitations. Furthermore, we will address the updates made to the S3D
algorithm, focusing on its header design and silhouette-context-based arithmetic coding.

3.1 Multi-threaded S3D

One of the standout features of the S3D (Silhouette 3D) method in geometry repre-
sentation and encoding, as it navigates through the point cloud, is the modular nature
of the encoding components. Specifically, when we diagrammatically represent the S3D
decomposition process using a tree structure, as shown in Figure 3.1, a repeating pattern
emerges. This pattern involves context-based encoding among a set of three nodes: a
parent and its two child nodes, with one on the left and the other on the right, as il-
lustrated in Figure 3.2. This trio of nodes can be seen as a foundational element that,
through repeated occurrence, forms the entire decomposition tree, as depicted in Figure
3.3. Analyzing the encoding process for each triad reveals that, theoretically, the enco-

39

ding of each is independent of the others, aside from the contextual information stored
alongside the pixel encoding for each silhouette, which could enhance the efficiency of
the arithmetic codec. Additionally, the silhouette decomposition process utilizes only the
known occupied and unoccupied pixels from the parent node or its left sibling, making
the process self-contained within each triad.

This perspective allows us to view the decomposition tree as composed of discrete,
independent components, as exemplified in Figure 3.4. Each subtree at a given level
can be seen as an autonomous segment of the whole. Given its recursive structural
representation—a tree made up of smaller trees, echoing the principle of a fractal—this
design was deemed an intriguing subject for examination. Specifically, this structure laid
the groundwork for the development of multi-threaded versions of the S3D algorithm, as
proposed in the S3D-subtree (S3D-S) and S3D-subtree top (S3D-ST) models [12].

Figura 3.1: Representation of the decomposition tree from the dyadic decomposition.

40

Figura 3.2: Triad of nodes from each node half-decomposition. Each one has a father,
left child node and right child node.

Figura 3.3: Triad of nodes from each node half-decomposition. Each one has a father,
left child node and right child node.

41

Figura 3.4: The decomposition tree divided in each 4 subtrees beginning from the 3rd
level.

3.1.1 S3D-subtree(S3D-S)

The S3D-S algorithm marks the inaugural use of concurrency and thread-based pro-
gramming within the Silhouette 3D (S3D) framework. This method hinges on partitioning
the decomposition tree into distinct subtrees, as illustrated in Figure 3.5. The number
of these independent subtrees directly correlates with the level at which the division is
initiated. Therefore, selecting the level k (starting from 0) for subdivision results in 2k

subtrees, where k represents a non-zero natural number. In this approach, the autonomy
of each subtree permits its independent encoding, enabling the assignment of each sub-
tree to a distinct thread. This is achieved by initializing thread objects with the standard
C++ thread library(<threads>) constructor. Within this constructor, the specific enco-
ding function associated with a subtree is passed as a parameter, thus linking the function
to the thread. After initializing thread objects for each subtree, the join method is invo-
ked. This method ensures that the main program waits for all threads to complete their
execution, thereby synchronizing the termination of all encoding processes. Considering
the concurrent execution flows, the primary race condition observed involves the counting
of the created threads and the identification of each subtree, which is necessary for seg-
menting the associated point cloud section. To address this, the increment in the number
of executing threads is managed within a critical section. This section is safeguarded by
calls to the mutex lock and unlock functions, ensuring that these operations are perfor-
med atomically, thereby preventing inconsistencies and ensuring the correct association
of threads to their respective subtrees. In the context of a computer capable of managing
hundreds of threads, this approach enables the concurrent encoding of the point cloud
across n threads. Ensuring each subtree is encoded while maintaining the sequence of the

42

subtrees enables the original point cloud to be reconstructed during decoding by piecing
together each segment.

As depicted, the encoding process initiates at the root node of each subtree, applying
the S3D algorithm independently to each segment. Following the completion of all enco-
dings, the bitstreams are consolidated in a sequential manner from left to right.

The decoding mirrors the encoding strategy, leveraging information provided in the
header about the number of subtrees and the size of each bitstream. The decoder retrieves
each bitstream, dedicating a thread to the decoding of each subtree using the same S3D
mechanism. In the same way, the race condition occurs on the counting of the created
threads, and identification of the associated point cloud segment. Once the point cloud
of each subtree is reconstructed and the sequence within the tree is established, the point
cloud segments are accurately aligned and merged, thereby reconstituting the original
point cloud. The process of simultaneously decoding point cloud segments, reconstructing
these segments, and merging them into a complete point cloud involves access to common
variables and resources. Consequently, this concurrency introduces a race condition. To
manage this issue effectively, mutex lock and unlock operations are employed around
the procedures of retrieving the point cloud segment and integrating it with the final
reconstructed point cloud. These operations ensure serialized access to shared resources,
thereby preventing data corruption and ensuring consistency in the final output.

Figura 3.5: Decomposition tree of the S3D-S algorithm - highlighting the root node for
each subtree.

3.1.2 S3D-subtree + Top-tree (S3D-ST)

In the S3D-S we observe that for each subtree encoded the root node is totally sent
in the bitstream considering that it follows the S3D algorithm. If we have more subtrees,

43

more silhouettes of root node we are sending in the bitstream, making the encoding not
much performative and advantageous in its compression rate loss compared with its speed
gain. In order to reduce this compression rate loss for each root node subtree, the idea
is not encode these nodes entirely, but find an alternative way of encode these nodes
leveraging the decomposition from above layers.

In this way, the alternative version of the S3D-S proposes a similar idea, however the
encoding adds an additional subtree: the top subtree. Thus, the threads objects creation,
execution and race condition resolution are exactly as the S3D-S method, but now ad-
ding the top subtree thread. This approach is illustrated at image 3.6. Basically the top
subtree has the responsibility of encode the root nodes from the children subtrees, thus,
the root nodes is transmitted in the bitstream in a more performative way without losing
its information. The top tree follows a very similar S3D encoding mechanism, however
the single mode has its particularity. Instead of the single mode operation decompose
point cloud slice in multiples unitary silhouettes slices, the single mode decomposes until
reach the silhouettes from blocks that belongs to the level n chosen to the subtrees de-
composition. This happens because theoretically the subtree is limited to the top subtree
division, not being allowed to surpass the levels below where the subtrees is already en-
coded. Otherwise, redundant data would be sent along with the subtrees encodings. The
subtrees encoding follows the same mechanism as the S3D-S.

In the decoding the same idea is repeated. First, the top tree is decoded, then the
root nodes from the subtrees is restored. With these nodes restored, we can compute the
decoding on each subtree following the same idea. It is important to note that once there
is an additional step involving the top subtree encoding the root nodes from each subtree,
we would require n threads plus the top tree thread. Thus, we have n + 1 threads used
in the encoding process.

3.2 S3D Block Mode

Prior to the development of the block mode concept, a series of tests and performance
evaluations were conducted on the C++ implementation of S3D, focusing on dyadic de-
composition and single mode testing. The results indicated that the single mode often
outperformed or matched the efficiency of dyadic decomposition encoding in most scena-
rios. Consequently, it became apparent that single mode could potentially offer robust
performance on its own, eliminating the need for dyadic decomposition testing as initially
conceived in the original framework.

Through this analysis, two principal advantages emerged from favoring the single mode
approach. The first advantage is the simplification of the encoding process. Unlike the

44

Figura 3.6: Decomposition tree of the S3D-ST algorithm - highlighting the root node for
each subtree. Here, we can observe that the encoding of the subtrees and the root node
are in different threads

comprehensive decomposition required by recursive binary division, the point cloud is di-
rectly segmented into unitary silhouette slices. This direct approach not only simplifies the
encoding procedure but also significantly accelerates it, as it demands less computational
effort.

The second advantage, though indirectly mentioned, pertains to the increased effici-
ency and speed of the encoding process as a direct result of this simplification. With fewer
steps involved in breaking down the point cloud, the encoding becomes more straight-
forward and fast. However, it is important to note that this efficiency comes with a
trade-off: The single mode is more direct method results in a loss of contextual depth.
Since fewer silhouettes are encoded, the algorithm has less contextual data to leverage
during the pixel encoding process, a domain where the dyadic decomposition technique
offers superior performance by enriching the context through its more layered approach.

In seeking an alternative to dyadic decomposition that retains context while maintai-
ning efficiency, the investigation led to a more adaptable decomposition strategy. Instead
of solely bifurcating the point cloud, considering its division into powers of two offered
a promising foundation for the block mode strategy, thereby inspiring one of the novel
algorithms introduced in this study.

45

3.2.1 Standard (S3D-BM)

The standard block mode algorithm simplifies the point cloud encoding process into
two primary steps. The initial step involves dividing the original point cloud into m

blocks, where m is a power of two, represented as 2k, with k being a non-zero natural
number. This division strategy becomes clearer when examining the decomposition tree,
as shown in Figure 3.7. Similar to the original S3D algorithm, the point cloud is initially
split in halves. However, the block mode diverges by directly slicing the point cloud into
blocks at the kth level of decomposition, as illustrated for k = 2. Consequently, the m

blocks produced correspond to 2k, aligning with the level k where the division occurs.
This method effectively jumps directly to the level k in the decomposition tree, bypassing
intermediate steps. The encoding process begins with the root node, followed by encoding
each silhouette of the block, which then serves as context for the CABAC encoding.

After this initial decomposition into blocks, each block undergoes a single mode de-
composition as detailed in Figure 3.7. This results in the encoding of each point cloud slice
within the blocks, culminating in the final bitstream. The decoding process mirrors the
encoding steps, ensuring the restoration of the original point cloud. This approach is no-
tably more straightforward and direct compared to the exhaustive performance testing of
methods within the original S3D algorithm, suggesting a potential for faster performance
due to its reduced computational complexity.

Figura 3.7: Decomposition tree of the S3D-standard-block-mode algorithm - in the case
of this example, k = 2 and m = 4

However, while this method streamlines the S3D algorithm, it also highlights a need for
enhanced versatility, particularly in real-time acquisition scenarios. For instance, a camera
capturing a point cloud progressively along a given axis may find this method unsuitable,
as it relies on prior knowledge of the entire point cloud geometry. This limitation is
significant in real-time applications where geometry is captured incrementally. To address

46

this challenge, an Inverted mode of the Block mode algorithm is introduced, aiming to
adapt the encoding process to scenarios where point clouds are progressively acquired,
thereby enhancing the applicability of the method in dynamic environments.

3.2.2 Inverted Mode (S3D-IM)

The inverted mode is essentially a reversal of the procedural steps outlined in the
standard Block Mode algorithm, while still retaining the foundational elements of each
phase—namely, executing the single mode on unitary silhouettes followed by the encoding
of silhouette blocks. Initially, the inverted mode begins with the encoding of unitary
silhouettes from the point cloud utilizing the single mode approach, as illustrated in
Figure 3.8. This methodology aligns well with scenarios where the point cloud geometry
is progressively captured over time.

Once the geometry of the point cloud is fully captured within a defined volumetric
space, the process progresses to the next phase. The task of deducing the blocks from
the point cloud becomes straightforward by amalgamating the unitary silhouettes into
widths that correspond to the desired block dimensions, adhering to the formula width =
L/2k, where L represents the total width of the point cloud and k denotes the level of
decomposition. This procedure is depicted in Figure 3.8. Upon determining all blocks, the
silhouettes of each block are encoded, culminating in the encoding of the root node. The
decoding sequence mirrors that of the Block Mode strategy, albeit in reverse, meticulously
following the steps delineated above.

Figura 3.8: Decomposition tree of the S3D-inverted-mode algorithm - in the case of this
example, k = 2 and m = 4

Comparing the two methodologies, it becomes apparent when examining a represen-
tation of the decomposition tree for the block mode, as depicted in Figure 3.9, that the

47

standard and the inverted methods fundamentally share the same structure, differing
primarily in their traversal approach.

The standard mode adopts a top-down methodology, commencing from the root and
progressing downwards through the decomposition tree. Conversely, the inverted mode
employs a bottom-up strategy, initiating from the unitary silhouettes and working upwards
towards the root. Despite both methods relying on identical computational bases, they
are not expected to yield equivalent encoding performance. This disparity arises from the
differing nature of context information available to each method. The standard approach
benefits from a richer context in the initial pixels encoded, offering a more detailed basis
for subsequent encoding steps. On the other hand, the inverted mode starts with pixels
at the edge slices of the point cloud, which generally provide less valuable context for the
overall encoding of the point cloud.

Figura 3.9: The general decomposition tree of the S3D block mode algorithm. Here are
clear the basic structure of the algorithm, and how it can branch in the different algorithms
in figures 3.7 and 3.8, changing the tree traversing (top-down or bottom-up).

3.3 Unified header

All four proposed algorithms, along with the original S3D algorithm, were integrated
as modes of the proposed codec, avaible in the repository of Github [19]. This integration
allows for the selection of one of the five S3D variations during the encoding process.
Depending on the selected algorithm and the corresponding user-specified parameters, all
relevant data are collected and inserted into a universal header, which is common across
all S3D variation bitstreams. The structure of this header is illustrated in Figure 3.10.

Given this context, the header can be described as follows:

1. nBits - Specifies the resolution of the point cloud.

48

2. axis - Indicates the axis chosen for point cloud encoding.

• 1 corresponds to the X-axis.

• 2 corresponds to the Y-axis.

• 3 corresponds to the Z-axis.

3. algorithmChoice - Denotes the algorithm selected for encoding.

4. m - Represents the bit length of the CABAC tag.

5. nc1D - The number of contexts used in 1D for silhouette CABAC encoding.

6. nc2D - The number of contexts used in 2D for silhouette CABAC encoding.

7. nc3D - The number of contexts used in 3D for silhouette CABAC encoding.

8. k - Relevant to the S3D Block Mode and S3D Inverted Mode algorithms. Param
that indicates the number of levels traversed from the root to reach the level where
block mode encoding is applied.

9. nParallelism - Pertains to the S3D-S and S3D-ST algorithms. It is the logarithm
base 2 of the number of threads used during encoding.

10. lengthBitstreamParam - Refers to the size of the bitstream generated during the
silhouettes tree encoding process.

Figura 3.10: Unified header structure illustration, relating fields and its bit length.

It is important to note that depending on the algorithm selected, certain fields may
not be relevant for decoding and are therefore ignored. Nonetheless, these fields are still
populated with zero values across all corresponding bits.

49

3.4 Arithmetic Coding Contexts

In the original silhouette coding, the 3D context choices, as explained in 2.4.2, follow
the order shown in figure 3.11a. As we can observe, this particular selection was not
based on any specific motivation but rather on the author’s convenience and personal
preference. In this work, however, a new sequence has been chosen, as illustrated in figure
3.11b. This new arrangement was made to improve the readability of the pixel context
indexing in the code implementation, as seen when comparing the old version (listing 3.1)
to the new version (listing 3.2).

Listing 3.1: Previous version 3D contexts
p i x e l s [0] = image . P ixe lPre s ent (y − 1 , x − 1) ;
p i x e l s [1] = image . P ixe lPre s ent (y − 1 , x) ;
p i x e l s [2] = image . P ixe lPre s ent (y − 1 , x + 1) ;
p i x e l s [3] = image . P ixe lPre s ent (y , x − 1) ;
p i x e l s [4] = image . P ixe lPre s ent (y , x) ;
p i x e l s [5] = image . P ixe lPre s ent (y , x + 1) ;
p i x e l s [6] = image . P ixe lPre s ent (y + 1 , x − 1) ;
p i x e l s [7] = image . P ixe lPre s ent (y + 1 , x) ;
p i x e l s [8] = image . P ixe lPre s ent (y + 1 , x + 1) ;

Listing 3.2: New version 3D contexts
p i x e l s [0] = image . P ixe lPre s ent (y , x) ;
p i x e l s [1] = image . P ixe lPre s ent (y , x + 1) ;
p i x e l s [2] = image . P ixe lPre s ent (y , x − 1) ;
p i x e l s [3] = image . P ixe lPre s ent (y + 1 , x) ;
p i x e l s [4] = image . P ixe lPre s ent (y − 1 , x) ;
p i x e l s [5] = image . P ixe lPre s ent (y + 1 , x + 1) ;
p i x e l s [6] = image . P ixe lPre s ent (y − 1 , x + 1) ;
p i x e l s [7] = image . P ixe lPre s ent (y − 1 , x − 1) ;
p i x e l s [8] = image . P ixe lPre s ent (y + 1 , x − 1) ;

50

Figura 3.11: 3D pixels contexts sequence for the previous and new version of the S3D.

(a) Previous S3D version 3D contexts choices. (b) New S3D version 3D contexts choices.

51

Capítulo 4

Results and analysis

With an in-depth exploration of the mechanisms behind the algorithms presented and
proposed in this study, we now shift our focus to evaluating their performance. This
evaluation will not only detail each performance metrics of the algorithm, but also eluci-
date their distinctive features through study cases and various performance assessments
involving different parameter settings. The results of this analysis will allow us to more
thoroughly examine and verify the hypotheses posited in the section of this work dedicated
to the proposed algorithms.

First, the performance of the new S3D C++ implementation rate was assessed, high-
lighting its performance difference with the previous Matlab version. For this, different
combinations of 2D and 3D contexts were tested over the dataset before, in order to de-
termine which amount of contexts would give the best rate. With this combination, a
definitive version of the standard S3D C++ is obtained, which allows one to obtain the
definitive results of the S3D final version.

The rate and time performance of the thread-based algorithms S3D-S and S3D-ST are
evaluated using different numbers of threads. Each thread is applied to encode the point
cloud as independent subtrees. The objective is to analyze the relationship between the
number of threads and the performance in time and rate of the algorithm. Additionally,
the rate performance of the S3D Block Mode and Inverted Mode is examined. This new
approach explores the concept of jumping directly to specific levels of dyadic decompo-
sition, offering a simpler and more direct method. Moreover, this dynamic allows the
algorithm to be applied in previously unexplored contexts, such as real-time acquisition
encoding. By analyzing its behavior under different parameters and approaches, top-down
(block mode) and bottom-up (inverted mode), this study aims to explore the potential of
the S3D algorithm for various applications and identify its most efficient configuration.

All rate and time results were collected using the Microsoft Voxelized Upper Bodies
[14] and 8i Voxelized Full Bodies (8iVFB v2) [20] as dataset. All results were collected on

52

a computer with an Intel® Core™ i7-5820K CPU @ 3.30GHz × 12 running on Ubuntu
22.04 LTS, compiling the program using C++17. It is important to note that each codec
can be applied along any of the available axes of a point cloud: x, y, and z. Encoding is
performed along each axis with the optimal rate selected from them.

4.1 2D and 3D contexts setting

Before assessing the S3D rate performance, an important aspect that was reviewed
and explored was the combination of 2D and 3D context amounts. From a range of
different combinations, each one were tested to determine which combination yields the
best rate performance, considering the primary goal of the codec(rate performance). For
this, the last three frames of each point cloud in the upper bodies and full bodies datasets
were encoded, with the 2D context ranging between [4, 10] and the 3D context varying
between {1, 5, 9}.

For each combination of 2D and 3D contexts (e.g., (4,1) represents all frames encoded
using four 2D contexts and one 3D context, (4,5) uses four 2D contexts and five 3D
contexts, and so on), the rate and time were collected. The average and standard deviation
of these values were computed.

These results were plotted in a rate vs. time (bits per occupied voxel vs. seconds)
scatter distribution, with the average and standard deviation as illustrated in figure 4.1.
It was observed that the best results in terms of rate were obtained with a 3D context
amount equal to 9. To refine the selection, a second scatter plot, focusing only on the 3D
context equal to 9, was produced in figure 4.2. This scatter plot revealed more details,
showing that a configuration with eight 2D contexts offers the best rate performance.

Further insights can be found in table 4.1, where rate is in bits per occupied voxel and
time in seconds. Thus, the optimal configuration for S3D performance is achieved when
eight 2D contexts and nine 3D contexts are applied in the silhouette encoding. All the
following results in this work will be based in this configuration of contexts.

As discussed in Section 3.4, the selection of 2D and 3D pixel contexts for silhouette
encoding was updated in the new implementation. In the previous version, the 2D and 3D
contexts, illustrated in Figure 4.3, consisted of five 2D contexts and nine 3D contexts. In
the updated version, now employing eight 2D contexts and nine 3D contexts, the encoding
process is represented in Figure 4.4.

53

Figura 4.1: S3D standard contexts combination scatter plot on rate x time distribution,
bits per voxel x seconds

4.2 Standard S3D C++ algorithm results

Building on the enhancements made to the C++ implementation of the S3D algo-
rithm—specifically the integration of single-mode encoding and extensive testing across
the decomposition tree—it is crucial to document the key outcomes of this work as discus-
sed in Section 1.4. Additionally, as detailed in Section 2.4.2, the objective of the testing
process is to determine the most efficient approach at each node within the decomposition
tree, whether through dyadic decomposition or single-mode encoding. This strategy ena-
bles a systematic identification of performance-optimized decomposition pathways on a
global scale. Moreover, as discussed in the previous section, the optimization of the num-
ber and order of 2D and 3D contexts has led to significant rate performance improvements.
This will be assessed in the rate performance results presented in this section.

All results across the datasets were obtained by averaging the first 100 frames. As
illustrated in Table 4.2, introducing an additional encoding option within the decompo-
sition tree - namely, the single mode - enables the exploration of alternative point cloud
encoding strategies beyond dyadic decomposition. When evaluating the performance on
the Microsoft Voxelized 9-bit Upper Bodies database, the enhanced S3D C++ imple-

54

Figura 4.2: S3D standard contexts combination scatter plot for 3D contexts equal to 9,
bits per occupied voxel vs seconds

mentation demonstrates a notable outperformance of 5.26% in compression rate average
efficiency relative to the best result achieved by other state-of-the-art algorithms, the
CS-S4D. Besides, when compared to original S3D Matlab implementation it presents a
relative outperformance of 17.43%.

Furthermore, while the S3D C++ implementation may not surpass the performance
of the TMC13 algorithm on the 8i Voxelized Full Bodies database, it nevertheless outper-
forms the majority of competing algorithms, having a relative outperformance of 2.41%
over the CS-S4D. The inferior performance compared to TMC13 primarily results from
the transmission of excessive empty voxel data in the bitstream when applied to 10-bit
resolution point clouds. This leads to significant redundancy of blank volumes that the
S3D strategy fails to address, a limitation that becomes particularly pronounced with
high-resolution point clouds.

In addition, it achieves a relative outperformance of 15.3% of the average rate over the
original S3D algorithm. Notably, its performance remains competitively close to that of
the TMC13 algorithm, despite the S3D’s reliance on a more constrained set of encoding
options — limited to just two choices. This underscores the effectiveness of the proposed

55

nc2d nc3d mean rate(bpov) deviation rate(bpov) mean time(s) deviation time(s)

8 9 0.856401 0.064370 286.103296 213.281962
6 9 0.861040 0.055692 221.681815 178.453861
9 9 0.862302 0.069131 317.667704 227.129691
7 9 0.862542 0.058770 251.287926 190.878672
10 9 0.868723 0.075311 414.098185 269.033280
5 9 0.871494 0.058336 214.422111 178.844944
4 9 0.883520 0.059436 213.411111 178.216343
10 5 0.960845 0.083371 176.938852 132.526578
9 5 0.966207 0.077405 179.115852 143.921869
8 5 0.970450 0.071464 181.820519 153.356921
7 5 0.988746 0.068081 203.055296 168.247118
6 5 0.995178 0.065271 194.302778 163.187633
5 5 1.022610 0.066861 208.079259 173.735663
4 5 1.045876 0.069439 207.292519 174.123963
10 1 1.152158 0.053405 188.543444 161.173013
9 1 1.178870 0.060332 175.178778 153.541889
8 1 1.210307 0.076666 155.263074 117.542732
7 1 1.253442 0.088000 140.352593 101.424913
6 1 1.295345 0.113604 139.082296 101.616206
5 1 1.363893 0.144390 138.088296 101.875288
4 1 1.410650 0.160503 138.085407 102.309323

Tabela 4.1: Results of rate (bits per occupied voxel) and time (seconds) from standard
S3D encoding based on different amount of 2D and 3D contexts, sorted in descending
order of mean_rate

S3D enhancements in achieving superior compression rates, even within the context of
limited encoding strategies compared to TMC13.

4.3 S3D-S and S3D-ST results

From the results of migrating the classic S3D to C++, we have observed a significant
performance improvement. Building upon this version, the proposed multi-threaded va-
riants, S3D-S and S3D-ST, will be evaluated in terms of two crucial aspects: time and
compression rate. It is important to highlight that the primary goal of both algorithms
is to improve the execution time of S3D, addressing its previously lengthy run times.

However, this improvement in time efficiency comes at the cost of compression perfor-
mance, particularly due to the separation of CABAC contexts among different subtrees.
In our rate analysis, we will explore the relationship between improvements in running
time and the associated trade-offs in rate performance. Also, all results across the datasets
were obtained by averaging the first 12 frames, one sample per frame.

56

TMC13 FRL S3D CS-S4D S3D
Sequence v19 [21] [22] Matlab [23] [24] C++
Andrew 1.03 1.00 1.12 0.95 0.95
David 0.95 0.94 1.06 0.94 0.87
Phil 1.05 1.02 1.14 1.02 0.95
Ricardo 0.97 0.93 1.04 0.90 0.87
Sarah 0.96 0.95 1.07 0.92 0.88
Average 0.99 0.97 1.09 0.95 0.90

LongDress 0.76 0.86 0.95 0.88 0.80
Loot 0.71 0.83 0.92 0.84 0.76
RedAndBlack 0.84 0.94 1.02 0.94 0.87
Soldier 0.76 0.88 0.96 0.65 0.81
Average 0.77 0.88 0.96 0.83 0.81

Tabela 4.2: S3D standard comparison with state-of-the-art codecs for the first 100 frames
average shown in bits per occupied voxel (bpov).

Figura 4.3: Previous version of S3D utilizes pixel contexts, with five 2D contexts and nine
3D contexts. In the case of encoding only with 2D contexts, the selected contexts are
represented in (a). When 3D contexts are used, the selected contexts are represented in
(b).

4.3.1 Running time

Considering the primary objective of the thread-based algorithms S3D-S and S3D-ST
— to reduce encoding time by segmenting the encoding process into concurrent execution
flows, represented by each subtree — the initial results focus on the relationship between
the encoding time of each algorithm and the number of threads utilized.

Given that each subtree within the described algorithms functions as an independent
unit of encoding, carried out by a separate thread, and thus partitions the computation
of the encoding bitstream across the exact number of subtrees generated, it is anticipated
that the more the decomposition tree is segmented into subtrees, the less global com-
putation time is required. This expectation hinges on the optimized utilization of the
CPU facilitated by the thread-based approach. These considerations led us to analyze
the chart in Figure 4.5, which delineates the correlation between the execution time of

57

Figura 4.4: New version of S3D utilizes pixel contexts, with eight 2D contexts and nine
3D contexts. In the case of encoding only with 2D contexts, the selected contexts are
represented in (a). When 3D contexts are used, the selected contexts are represented in
(b).

each algorithm and the number of threads deployed in the computation. In this plot, the
upper bodies time performance is result of averaging all datasets results in seconds, for
each number of threads. The same is applied to upper bodies.

1 2 4 8 16 32 6410
20
30
40
50
60
70
80
90

100
110
120
130

Threads amount (powers of 2)

Ru
nn

in
g

tim
e

(s
ec

on
ds

)

Running time vs. Threads amount (Log scale X-axis)

S3D-S
S3D-ST

Figura 4.5: Average Running Time for the first 12 frames from each dataset over different
amount of threads for S3D-S and S3D-ST.

Observations reveal that the utilization of additional threads — corresponding to a
greater subdivision of the decomposition tree into subtrees — results in reduced time to
produce the final bitstream, which amalgamates the bitstreams generated by each subtree.
Specifically, applying a decomposition into 4 subtrees, as illustrated in the chart, leads
to a reduction of approximately 60% in time compared to employing a single thread,

58

synonymous with the standard S3D algorithm. Thus, it is evident that segmenting the
encoding process of the algorithm significantly decreases its operational duration.

Another notable finding is the performance parity between S3D-S and S3D-ST up to
16 threads. Beyond this point, the S3D-S algorithm demonstrates superior performance
over S3D-ST. A plausible rationale for this divergence is the extra computational overhead
introduced by the top subtree encoding in S3D-ST, as opposed to the singular encoding
task of one silhouette from the parent node for each subtree in S3D-S. It is critical to
acknowledge that this additional computation represents a deliberate compromise between
time expenditure and compression efficiency. The purpose behind this compromise — to
enhance the encoding of silhouette pixels through the provision of additional context —
will be further elucidated in the forthcoming analysis concerning the interplay between
compression rate and the quantity of threads employed.

4.3.2 Rate

1 2 4 8 16 32 640.85
0.9

0.95
1

1.05
1.1

1.15
1.2

1.25

Threads amount (powers of 2)

R
at

e
(b

po
v)

Rate vs. Threads amount (Log scale X-axis)

S3D-S
S3D-ST

Figura 4.6: Average Rate for the first 12 frames from each dataset over different amount
of threads for S3D-S and S3D-ST.

With the preliminary analysis focused on the correlation between running time and
the number of threads, we now shift our attention to the influence of thread quantity
on the ultimate compression rate. This investigation yields two critical insights: firs-
tly, the manner and extent to which thread count impacts algorithm performance; and
secondly, and more crucially, the trade-off between running time and compression rate,
both of which are contingent on the amount of threads utilized. As the number of th-
reads escalates, a worsen compression rate is anticipated due to the loss of contextual

59

information during the encoding of silhouettes for each subtree, attributed to the reduced
number of symbols encoded by each codec of the subtree. Consequently, we expect an
direct relationship between compression rate and running time - adjustments in thread
quantity within the same dataset will expedite algorithm execution, albeit at the expense
of compression efficiency.

This result illuminates the potential to discern an optimal thread usage value, indi-
cative of an encoding that achieves the best compromise between compression rate and
time efficiency. This optimum not only signifies the peak relative performance of the al-
gorithm, but also serves as a benchmark for application-specific performance calibration.
For instance, in scenarios necessitating swift compression, such as on-the-fly applicati-
ons, a slight compromise on compression quality for enhanced time performance may be
deemed acceptable. Conversely, if superior compression quality is desired without a sig-
nificant detriment to time efficiency, this reference value guides the adjustment of thread
count to achieve the preferred balance. In contexts where time constraints are negligible,
reverting to a single-thread approach, akin to the original S3D algorithm, might prove
optimal. This flexibility and the range of choices offered by the multi-threaded S3D al-
gorithms underscore their significant contribution to the realm of geometric point cloud
encoding.

Referencing the chart in Figure 4.6, the anticipated direct correlation between com-
pression rate and thread count is evident. In this plot, all results is obtained as the running
time chart in figure 4.5, by averaging the results across the datasets. Notably, up to 16
threads, the performance of both algorithms is similar across datasets (Upper Bodies and
Full Bodies); beyond this threshold, as hypothesized, the S3D-ST demonstrates superior
efficiency, attributable to the additional computational load imposed by encoding the top
subtree.

This extra computational effort, while increasing runtime, results in more efficient
encoding compared to the S3D-S approach of transmitting the complete image for each
subtree. In the S3D-ST model, encoding is confined to the root node of the entire decom-
position tree and the subsequent top subtree, enhancing context aggregation and reducing
the bit requirement for conveying each parent of the subtree silhouette.

In Table 4.3 and 4.4, the comprehensive performance metrics of rate and running time
from each algorithm are presented for the point clouds of each dataset. It is noteworthy
that employing merely a single thread across these algorithms yields results akin to those
achieved through direct application of the S3D algorithm.

Finally, an interesting analysis arises when both the rate and running time are plotted
together. As shown in Figure 4.7 and Figure 4.8, increasing the number of threads leads
to a higher rate and a reduction in running time. Conversely, when reduced, lower rate,

60

Tabela 4.3: Rate results using the first 12 frames average of each sequence. All rates are
in bits per occupied voxel (bpov).

S3D S3D-S S3D-ST

Database Sequence 1 2 4 8 16 32 64 2 4 8 16 32 64

Microsoft
Voxelized

Upper
Bodies

[25]

Andrew 0.948 0.981 1.008 1.048 1.105 1.209 1.359 0.987 1.016 1.052 1.106 1.198 1.317
David 0.922 0.943 0.969 1.026 1.109 1.212 1.367 0.950 0.981 1.036 1.110 1.199 1.321
Phil 0.974 0.998 1.028 1.068 1.143 1.257 1.418 1.002 1.034 0.965 1.143 1.243 1.369
Ricardo 0.869 0.878 0.884 0.924 0.987 1.095 1.255 0.878 0.886 0.925 0.984 1.075 1.195
Sarah 0.925 0.958 0.974 1.012 1.074 1.166 1.314 0.966 0.978 1.020 1.078 1.158 1.273
Average 0.948 0.981 1.008 1.048 1.105 1.209 1.359 0.987 1.016 1.052 1.106 1.198 1.317

8i
Voxelized

Full
Bodies

[20]

LongDress 0.791 0.802 0.817 0.840 0.864 0.913 0.997 0.810 0.824 0.846 0.871 0.914 0.981
Loot 0.751 0.752 0.767 0.782 0.813 0.866 0.954 0.761 0.777 0.791 0.821 0.865 0.936
RedAndBlack 0.857 0.866 0.871 0.892 0.927 0.982 1.077 0.879 0.884 0.909 0.939 0.990 1.065
Soldier 0.805 0.806 0.822 0.835 0.869 0.925 1.023 0.805 0.822 0.835 0.867 0.916 0.995
Average 0.798 0.807 0.819 0.837 0.868 0.974 1.013 0.854 0.853 0.871 0.926 0.974 1.017

Tabela 4.4: Running time results using the first 12 frames average of each sequence. All
running time are in seconds (s).

S3D S3D-S S3D-ST

Database Sequence 1 2 4 8 16 32 64 2 4 8 16 32 64

Microsoft
Voxelized

Upper
Bodies

[25]

Andrew 109,748 71,669 34,624 20,469 11,811 9,437 8,916 73,398 35,364 20,914 13,517 14,210 21,210
David 125,801 79,701 37,956 17,950 14,891 13,566 12,598 81,508 38,908 19,264 16,455 22,381 31,880
Phil 131,569 83,179 41,158 21,362 14,386 12,115 11,248 85,470 42,156 22,437 15,062 20,139 28,895
Ricardo 85,172 48,394 38,120 18,970 9,745 6,859 6,314 51,087 39,216 19,394 9,695 9,550 14,644
Sarah 121,234 75,143 41,631 21,658 13,231 10,912 10,165 76,825 42,739 22,483 13,748 17,416 25,298
Average 114,705 71,617 38,698 20,082 12,813 10,578 9,848 73,465 39,917 21,498 14,171 14,837 20,385

8i
Voxelized

Full
Bodies

[20]

LongDress 496,048 239,225 113,646 75,865 38,961 25,724 21,241 241,607 157,631 72,764 39,841 29,813 43,994
Loot 269,025 230,638 127,702 67,369 32,875 23,263 20,733 239,091 132,851 70,215 35,328 27,647 41,210
RedAndBlack 454,626 218,969 143,152 67,454 32,163 21,699 18,392 204,987 146,288 70,016 32,543 22,977 34,744
Soldier 629,549 313,226 167,726 89,125 41,551 28,547 24,719 325,348 174,935 93,721 46,512 37,958 55,504
Average 462,312 250,515 138,057 74,953 36,388 24,808 21,271 247,007 153,681 77,730 38,057 29,349 43,866

61

however, at the cost of higher running time. Although this project does not define a
specific optimal value, as previously mentioned, the point where the two curves intersect
serves as a useful reference. This intersection suggests that a value near 8 threads may
be an effective choice.

1 2 4 8 16 32 640.85
0.9

0.95
1

1.05
1.1

1.15
1.2

1.25

Threads amount (powers of 2)

R
at

e
(b

po
v)

S3D-S Rate and Running time vs. Threads amount (Log scale X-axis)

Rate

10
20
30
40
50
60
70
80
90
100
110
120
130

Ru
nn

in
g

tim
e

(s
ec

on
ds

)

Time

Figura 4.7: Rate and running time plot over different amount of threads for S3D-S.

Here, it is more clear the features and characteristics observed. The more threads
are used, the less performative the algorithm becomes. Thus, when we prioritize the
performance over running time, directly using S3D algorithms becomes more advantageous
over the thread-based algorithms. Moreover, when we analyze the efficiency among the
thread based algorithms, the S3D-ST performance, as noted before, is better than the
S3D-S algorithm when the number of threads is greater than 16. For an amount less than
this value, it becomes unworthy to add extra running time with the S3D-ST choice as
long as the S3D-S algorithm shares similar or even better performance.

4.4 S3D-Block Mode (S3D-BM) and S3D-Inverted
Mode (S3D-IM) results

The average compression rate for the initial 100 frames from both the Upper Bodies
and Full Bodies datasets was analyzed for the two variants of the proposed method: S3D-
BM and S3D-IM. This average was then compared with the state-of-the-art compression
rates, also computed for the first 100 frames of these datasets.

Table 4.5 shows the compression rates achieved with a dyadic decomposition level
jump of k = 2, where k indicates the number of dyadic decomposition levels skipped.

62

1 2 4 8 16 32 640.85
0.9

0.95
1

1.05
1.1

1.15
1.2

1.25

Threads amount (powers of 2)

R
at

e
(b

po
v)

S3D-ST Rate and Running time vs. Threads amount (Log scale X-axis)

Rate

10
20
30
40
50
60
70
80
90
100
110
120
130

Ru
nn

in
g

tim
e

(s
ec

on
ds

)

Time

Figura 4.8: Rate and running time plot over different amount of threads for S3D-ST.

Specifically, skipping two levels corresponds to advancing to the decomposition level where
the point cloud is divided into four block slices of uniform width.

In the table, the average compression rate across the first 100 frames is compared
with state-of-the-art methods. For the Upper Bodies dataset, the results show a clear
trend: the proposed variants outperform the TMC13 in average by 5.2%. Notably, CS-
S4D [24] introduces a complex approach for selecting the most effective pixel contexts.
In comparison, the simpler approach of the S3D-BM achieves performance that is either
comparable to or, in some cases, exceeds that of CS-S4D, with an average improvement
of 3.16%.

On the other hand, analysis of the Full Bodies dataset reveals that the TMC13 codec
still outperforms the other proposals, achieving an average compression rate 4.94% higher
than the S3D-BM method. However, the S3D-BM codec still performs better than all
other codecs, surpassing the top-performing CS-S4D by 2.41%. These results highlight
the efficiency that a simpler variant of the S3D algorithm can offer in terms of compression
performance.

Additionally, Table 4.6 presents an interesting comparison between the S3D-BM and
S3D-IM variants at k = 2. For both the Upper Bodies and Full Bodies datasets, the
results show negligible differences in compression rates, despite the Inverted Mode using
less contextual data. The performance of both variants is virtually identical when rounded
to two decimal places. This finding underscores the adaptability of the algorithm to va-
rious scenarios, whether in real-time acquisition or other applications, without significant
degradation in performance. As such, this flexibility provides users with more options to

63

select the most suitable codec for their specific needs.
Furthermore, the performance of both the S3D-BM and S3D-IM algorithms was eva-

luated across a range of k values to assess how the algorithms respond to an increasing
number of decomposition blocks, for both the Upper Bodies and Full Bodies datasets.
The data, presented in Figures 4.9, 4.10, 4.11, and 4.12, show the average compression
rate achieved by these algorithms across the first 100 frames for each dataset, with k

varied. A clear inverse relationship between k and compression efficiency emerges from
these results: as k increases, compression performance decreases. This trend is expec-
ted, as increasing k means decomposing the point cloud into more blocks, which requires
transmitting additional bits per subtree in the bitstream, thereby reducing efficiency.

In a real acquisition scenario, the amount of k can be interpreted as the availability of
storage buffer along the scenario capturing. Considering a device that captures the scene
along a single direction in a environment, and its storage is very limited and scarce, it is
very important that the codec is capable of compress the little amount of the captured
point cloud despite of the lack of great part of the rest. Thus, in the S3D-BM and S3D-
IM scenario, this can be easily addressed by increasing the amount of k. We will have
more division of blocks of the point cloud, making them narrower, and then adaptable
to these scenarios. On an opposite scenario, when the buffer resource availability is
abundant, we can have the flexibility of reducing the amount of block by reducing k. And
as observed previously in the charts, a more efficient compression performance can be
obtained. Therefore, the codec offers more solutions choices to different scenarios, with
their pros and cons.

4.5 S3D algorithms benchmark

In the previous results, the aspects and goals of each algorithm were assessed by
analyzing their rate, execution time, and the relationship between these metrics and
each parameters of the algorithm. This provided a detailed analysis for each algorithm.
Now, an overall benchmark is necessary to highlight the strengths and weaknesses of each
algorithm.

To simplify the comparison between algorithms, and considering that each may exhibit
varying performance based on different parameter values, each algorithm was configured
with parameter settings that yielded the best average rate and time across the upper
bodies and full bodies. The process for determining the optimal parameters involved

64

0 1 2 3 4 5 6 7 8 90.8

0.9

1

1.1

1.2

1.3

1.4

k

bp
ov

Upper bodies

Andrew
David
Phil

Ricardo
Sarah

Figura 4.9: Block mode performance for upper bodies datasets across
various k values.

0 1 2 3 4 5 6 7 8 90.7

0.8

0.9

1

1.1

k

bp
ov

Full bodies

Longdress
Loot

Redandblack
Soldier

Figura 4.10: Block mode performance for full bodies datasets across
various k values.

65

0 1 2 3 4 5 6 7 8 9

0.9

1

1.1

1.2

1.3

1.4

k

bp
ov

Upper Bodies

Andrew
David
Phil

Ricardo
Sarah

Figura 4.11: Inverted mode performance for each point cloud from upper
bodies dataset across various k values.

0 1 2 3 4 5 6 7 8 90.7

0.8

0.9

1

1.1

1.2

1.3

k

bp
ov

Full Bodies

Longdress
Loot

RedAndblack
Soldier

Figura 4.12: Inverted mode performance for each point cloud from full
bodies dataset across various k values.

66

TMC13 FRL S3D CS-S4D S3D-BM
Sequence v19 [21] [22] Matlab [23] [24]
Andrew 1.03 1.00 1.12 0.95 0.96
David 0.95 0.94 1.06 0.94 0.88
Phil 1.05 1.02 1.14 1.02 0.97
Ricardo 0.97 0.93 1.04 0.90 0.88
Sarah 0.96 0.95 1.07 0.92 0.89
Average 0.99 0.97 1.09 0.95 0.92
LongDress 0.76 0.86 0.95 0.88 0.80
Loot 0.71 0.83 0.92 0.84 0.76
RedAndBlack 0.84 0.94 1.02 0.94 0.88
Soldier 0.76 0.88 0.96 0.65 0.81
Average 0.77 0.88 0.96 0.83 0.81

Tabela 4.5: Comparison of Block mode with k = 2
with state-of-the-art codecs for the first 100 frames
from upper bodies and full bodies datasets, shown in
bits per occupied voxel (bpov).

sorting the results by the best rate performance. To reconcile this with time performance,
the configuration with the next best rate, if its execution time was at least 15% shorter
and the rate difference was less than 0.01, was selected. This criterion served as the
stopping condition for the algorithm. This process was repeated in a top-down manner
through the results until the condition was met. The final selected configuration was then
used for the benchmark.

Although different setups could be selected for benchmarking each codec, this selection
method was designed to balance rate performance and execution time, aiming to maximize
the benefits of each codec without significant loss in rate. Through this process, the
algorithm configurations for the benchmark were determined. Since the S3D C++ codec
has no configurable parameters, no selection was necessary. For the S3D-BM and S3D-
IM codecs, the optimal setup used k = 2. For the S3D-S and S3D-ST codecs, the best
configuration was obtained by decomposing the encoding into 4 threads.

The results were based on three repeated measurements taken from the first four
frames of both the upper bodies and full bodies datasets. For each set of measurements,
the average rate and time were calculated. The average of the results from the four
frames’ was then computed for both rate and time. All encodings were performed along
the fixed x-axis. The rate and time results are shown in Figures 4.7 and 4.8, respectively.
An additional table, which illustrates the relationship between rate and time in a single
value (by the product of rate and time), is presented in Figure 4.9.

Several key findings emerge from the results. The S3D C++ codec exhibits the best
encoding performance, with the lowest rate for nearly all point clouds, except for Re-

67

Sequence S3D-BM S3D-BMI
Andrew 0.96 0.96
David 0.88 0.88
Phil 0.97 0.97
Ricardo 0.88 0.88
Sarah 0.89 0.89
Average 0.92 0.92
Longdress 0.80 0.80
Loot 0.76 0.76
RedAndBlack 0.88 0.88
Soldier 0.81 0.81
Average 0.81 0.81

Tabela 4.6: Comparison between block mode
and its inverted mode for the first 100 frames
from from upper bodies and full bodies datasets,
with k equals 2

dAndBlack. However, this performance comes at the cost of execution time, as it has the
worst time performance. This trade-off is consistent with the analysis of the S3D-S and
S3D-ST results when only one thread is applied. In that case, the encoding approach of
the algorithm closely resembles that of S3D C++, with only minor differences. This rela-
tionship highlights a key trend: when fewer threads are used, rate performance improves,
but execution time worsens. This trend is particularly evident with the S3D C++ codec.

Table 4.9 further supports this analysis showing the rate.time product. The higher
the product, the worse is the codec performance in terms of rate and time. On the other
hand, lower product reflects in a better performance. For S3D C++, which is one of
the highest values. This suggests that, although the rate is low, the execution time is
significantly longer compared to the other variants, making the product larger.

Furthermore, when comparing the S3D C++ codec with S3D-BM, the same contrast is
observed. While S3D C++ offers better rate performance, S3D-BM and S3D-IM achieve
execution times that are almost 20 times faster. This difference in execution time can be
attributed to the more complex encoding mechanism of S3D C++, which tests the best
choice between single mode and dyadic decomposition for each node. In contrast, the
simpler and more direct approach of S3D-BM and S3D-IM, using block decomposition
followed by single mode, results in significantly faster execution. This disparity is particu-
larly evident in the product rate.time, where the S3D-BM and S3D-IM product is nearly
8 times larger than those of S3D-S and S3D-ST, despite the similar rate performance.

Finally, when comparing S3D-BM and S3D-IM with S3D-S and S3D-ST, we observe
that they share similar rate performance but differ significantly in execution time. S3D-
BM and S3D-IM are approximately 7 times faster in execution. This indicates that,

68

even with concurrent executions in S3D-S and S3D-ST, the simpler approach of S3D-BM
and S3D-IM leads to faster performance. The time efficiency of S3D-BM is particularly
noticeable when comparing the product of rate.time between the codecs, making the
result smaller.

While these results highlight the relative strengths and weaknesses of each codec in
terms of rate and time, it is important to note that each algorithm offers more than just
an improvement in rate or time performance. They also contribute to the development of
point cloud geometry encoding strategies through their unique characteristics. For exam-
ple, S3D-BM and S3D-IM offer the potential for use in real-time acquisition applications,
while S3D-S and S3D-ST explore how geometry decomposition can be combined with
multi-threading — an advantage enabled by the S3D approach.

Sequence S3D C++ S3D-BM S3D-IM S3D-S S3D-ST
Andrew 0.9799 0.9978 0.9983 1.0419 1.0489
David 0.9521 0.9698 0.9701 1.0208 1.0298
Phil 1.0086 1.0244 1.0247 1.0763 1.0856
Ricardo 0.9035 0.9153 0.9159 0.9662 0.9741
Sarah 0.9572 0.9720 0.9724 1.0235 1.0345
Average 0.9606 0.9759 0.9763 1.0227 1.0306

LongDress 0.8169 0.8207 0.8209 0.8362 0.8379
Loot 0.7588 0.7631 0.7632 0.7747 0.7755
RedAndBlack 0.8866 0.8821 0.8823 0.8840 0.8866
Soldier 0.8055 0.8083 0.8084 0.8211 0.8227
Average 0.8140 0.8185 0.8187 0.8280 0.8307

Tabela 4.7: Rate benchmark of the work’s proposed
algorithms, average of first 4 frames from each dataset,
sampled 3 times, shown in bits per occupied voxel
(bpov).

69

Sequence S3D C++ S3D-BM S3D-IM S3D-S S3D-ST
Andrew 104.7795 5.912 6.1705 36.7165 37.5545
David 127.3900 7.6375 7.9095 39.0445 40.0300
Phil 134.6940 8.2025 8.5175 40.4785 41.5995
Ricardo 99.7590 4.4700 4.6355 31.8935 32.3905
Sarah 129.4885 7.4315 7.6920 36.1600 36.9380
Average 126.4220 6.5705 6.7830 36.6586 37.3025

LongDress 294.1765 28.3005 29.1415 116.2695 120.2100
Loot 267.1380 22.5470 23.3000 128.0595 133.3510
RedAndBlack 147.1220 21.7080 22.4210 141.2840 147.1220
Soldier 368.9705 33.8635 34.9270 167.8515 174.6460
Average 270.6018 22.7574 22.9845 138.3664 143.8323

Tabela 4.8: Running time benchmark of the work’s
proposed algorithms, average of first 4 frames from
each dataset, sampled 3 times, shown in seconds (s).

Sequence S3D C++ S3D-BM S3D-IM S3D-S S3D-ST
Andrew 102.67 5.90 6.16 38.25 39.39
David 121.29 7.41 7.67 39.86 41.22
Phil 135.85 8.40 8.73 43.57 45.16
Ricardo 90.13 4.09 4.25 30.82 31.55
Sarah 123.95 7.22 7.48 37.01 38.21
Average 121.44 6.41 6.62 37.49 38.44

LongDress 240.31 23.23 23.92 97.22 100.72
Loot 202.70 17.21 17.78 99.21 103.41
RedAndBlack 130.44 19.15 19.78 124.90 130.44
Soldier 297.21 27.37 28.23 137.82 143.68
Average 220.27 18.63 18.82 114.57 119.48

Tabela 4.9: Product of rate and time benchmark of
the proposed algorithms from the work, average of
first 4 frames from each dataset, sampled 3 times,
shown in bits per occupied voxel per second (bpov.s)

70

Capítulo 5

Conclusions

This work introduces modifications to the S3D C++ implementation, along with vari-
ants based on multi-threading concepts and block decomposition. Initially, the selection
of 2D and 3D contexts was reviewed by sampling different results from each combination,
using the Microsoft Voxelized Upper Bodies [14] and 8i Voxelized Full Bodies (8iVFB v2)
[20]. It was concluded that the optimal setup consisted of eight 2D contexts and nine 3D
contexts, which served as the foundation for the subsequent experiments. Additionally,
the selection of 3D context pixels was reorganized to improve the readability and clarity
of the indexing in the code implementation. With these configurations set for all codecs,
each codec was then implemented.

The S3D C++ codec was updated to address pending issues that in the previous
version were not covered but were present in the original Matlab implementation, parti-
cularly the lack of a single mode and the absence of node testing that compares single
mode with dyadic decomposition to determine the more efficient option. The updated
S3D C++ outperformed the best state-of-the-art algorithm, CS-S4D, by 5.26% in average
compression rate for upper bodies. For full bodies, however, TMC13 still yielded the best
results on most datasets, surpassing CS-S4D by an average of 2.41%. Nevertheless, S3D
C++ showed superior performance when compared to other variants. Specifically, com-
pared to the original Matlab implementation of S3D, S3D C++ demonstrated a relative
improvement of 17.43% for upper bodies and 15.3% for full bodies.

Next, the S3D-S and S3D-ST codecs are proposed as variants based on multi-threading.
These codecs aim to maximize the processing capabilities of the device by leveraging re-
cursive and independent subtrees for concurrent processing. For each subtree, a separate
thread is assigned for encoding. This enables concurrent processing of each tree by its
respective thread, optimizing the overall encoding process by distributing the CPU wor-
kload across multiple processes, rather than treating the entire tree as a single process.
This approach aims to reduce encoding time, though it sacrifices performance by losing

71

context between the subtrees.
Two variants are proposed: S3D-S and S3D-ST. In S3D-S, the encoding is performed

in the same manner as the original S3D for each subtree, with the results aggregated into
a bitstream. In S3D-ST, each subtree is encoded similarly to S3D, but the root node is
ignored in the encoding process, using only its context. To achieve this, a reduced S3D
encoding is performed at the top of the dyadic decomposition tree of the point cloud,
where the leaf nodes represent the root nodes of the subtrees.

An analysis of the relationship between time performance improvements and trade-
offs in rate performance with increasing threads is presented. In terms of time, significant
reductions in execution time are observed with the increase in threads for both S3D-S
and S3D-ST, with a 60% reduction when using 4 threads compared to the original S3D.
However, the rate performance deteriorates as the number of threads increases. Notably,
for thread counts below 16, the performance of both algorithms remains similar, but
beyond this threshold, S3D-ST demonstrates higher efficiency. This was expected, as
S3D-ST encodes the root nodes of subtrees through a reduced S3D process at the top of
the complete tree, rather than encoding large-scale silhouettes in their entirety.

The final group of proposed codecs is based on block decomposition: S3D-Block Mode
(S3D-BM) and S3D-IM. These codecs introduce a new geometric decomposition model for
point clouds, in addition to those already present in S3D (dyadic decomposition and single
mode). The block decomposition model directly partitions the point cloud into blocks of
fixed size, where the size is a power of 2. Compared to dyadic decomposition, this approach
effectively skips directly to a specific level in the decomposition tree. A fixed parameter
k is introduced to the algorithm, representing the number of levels skipped from the root
node in the decomposition tree, resulting in 2k blocks. While S3D-BM employs a top-
down approach, S3D-IM adopts a bottom-up approach, making it suitable for real-time
acquisition contexts.

When comparing S3D-BM (k = 2) with state-of-the-art codecs on the upper bodies
dataset, it demonstrates an average outperformance of 5.2% relative to TMC13. Additi-
onally, compared to CS-S4D, it achieves an average improvement of 3.16%. On the full
bodies dataset, however, TMC13 of MPEG remains the top performer, outperforming
S3D-BM by an average of 4.94%. Nonetheless, S3D-BM surpasses other state-of-the-art
codecs, particularly CS-S4D, which is the best-performing among them, by an average
of 2.41%. This is a notable result, given that CS-S4D employs a more complex appro-
ach compared to the simplicity of S3D-BM, highlighting the effectiveness of the proposed
method.

The comparison between S3D-BM and S3D-IM reveals that both variants exhibit
similar rate performance. This similarity indicates the versatility of these codecs for diffe-

72

rent scenarios, such as real-time acquisition or simpler contexts. Finally, the relationship
between rate performance and the parameter k in S3D-BM and S3D-IM is plotted. The
results show that as k increases (i.e., as the number of blocks grows), rate performance
worsens. This is due to the increased number of blocks to be encoded and sent in the
bitstream. The choice of k can be linked to device buffer constraints: with higher storage
capacity, fewer blocks (2k) are needed, improving rate performance. Conversely, in scena-
rios with limited storage capacity, higher k values (smaller blocks) are more appropriate,
albeit at the cost of reduced rate efficiency.

After analyzing the specific characteristics of each S3D variant, a benchmark was
conducted to assess the rate and time performance of all the algorithms. For this purpose,
each result from the codec were based on the best combination of parameters, balancing
the optimal rate with minimal running time. With the best setups identified for each S3D
codec, the results were collected. In addition to comparing rate and time individually,
a new metric was introduced, which is the product between rate and the running time,
in order to better understand the balance between both metrics. This helps to avoid
favoring codecs that either have a low rate with long execution times or short execution
times with high rates.

The analysis showed that S3D-BM does not achieve the best rate, but it strikes a
favorable balance with a good rate and fast running time. While these metrics help
identify the best and worst performers, the main contribution of each codec lies in its
unique applicability and characteristics. S3D-C++ delivers a superior rate compared
to state-of-the-art algorithms. S3D-BM and S3D-IM offer a simpler approach to point
cloud decomposition, based on the S3D method, and their decomposition mechanism ma-
kes them well-suited for real-time acquisition contexts. Finally, the thread-based S3D-S
and S3D-ST codecs introduce a novel method for geometry point cloud encoding while
exploring the use of multi-threading in their decomposition approach. The range of ap-
plicability and the concepts explored by these variants are the key contributions of this
work.

73

Referências

[1] Cui, Li, Rufael Mekuria, Marius Preda e Euee S. Jang: Point-cloud compression:
Moving picture experts group’s new standard in 2020. IEEE Consumer Electronics
Magazine, 8(4):17–21, 2019. 1, 2, 12, 13

[2] Mekuria, Rufael, Kees Blom e Pablo Cesar: Design, implementation, and evaluation
of a point cloud codec for tele-immersive video. IEEE Transactions on Circuits and
Systems for Video Technology, 27(4):828–842, 2017. 1

[3] Queiroz, Ricardo L. de e Philip A. Chou: Compression of 3d point clouds using
a region-adaptive hierarchical transform. IEEE Transactions on Image Processing,
25(8):3947–3956, 2016. 1, 2, 16, 24

[4] Hackel, Timo, N. Savinov, L. Ladicky, Jan D. Wegner, K. Schindler e M. Polle-
feys: SEMANTIC3D.NET: A new large-scale point cloud classification benchmark.
Em ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, volume IV-1-W1, páginas 91–98, 2017. 2

[5] Huang, Yan, Jingliang Peng, C. C. Jay Kuo e M. Gopi: A generic scheme for progres-
sive point cloud coding. IEEE Transactions on Visualization and Computer Graphics,
14(2):440–453, 2008. 2, 24

[6] MPEG: Call for proposals for point cloud compression v2. ISO/IEC
JTC1/SC29/WG11 MPEG2017/N16763, April 2017, Hobart, AU. 2

[7] Rosário, Rodrigo e Eduardo Peixoto: Intra-frame compression of point cloud geometry
using boolean decomposition. Em 2019 IEEE Visual Communications and Image
Processing (VCIP), páginas 1–4, 2019. 5

[8] Peixoto, Eduardo: Intra-frame compression of point cloud geometry using dyadic de-
composition. IEEE Signal Processing Letters, 27:246–250, 2020. 5, 7, 11, 25, 31

[9] Freitas, Davi R., Eduardo Peixoto, Ricardo L. de Queiroz e Edil Medeiros: Lossy point
cloud geometry compression via dyadic decomposition. Em 2020 IEEE International
Conference on Image Processing (ICIP), páginas 2731–2735, 2020. 5, 26

[10] Peixoto, Eduardo, Edil Medeiros e Evaristo Ramalho: Silhouette 4d: An inter-frame
lossless geometry coder of dynamic voxelized point clouds. Em 2020 IEEE Interna-
tional Conference on Image Processing (ICIP), páginas 2691–2695, 2020. 5

74

[11] Alves, Lucas Martins: Paralelização do algoritmo de compressão de nuvem de pon-
tos silhouette 3d. Relatório Técnico, Trabalho de Conclusão de Curso. (Graduação
em Engenharia Elétrica) - Universidade de Brasília. Orientador: Eduardo Peixoto
Fernandes da Silva, 2022. 7, 8, 11

[12] Komatsu, Otho T., Edil Medeiros, Lucas M. Alves e Eduardo Peixoto: Multithreaded
algorithms for lossless intra compression of point cloud geometry based on the silhou-
ette 3d coder. Em 2023 IEEE International Conference on Image Processing (ICIP),
páginas 1880–1884, 2023. 8, 40

[13] Loop, Charles, Cha Zhang e Zhengyou Zhang: Real-time high-resolution sparse
voxelization with application to image-based modeling. Em Proceedings of the 5th
High-Performance Graphics Conference, HPG ’13, página 73–79, New York, NY,
USA, 2013. Association for Computing Machinery, ISBN 9781450321358. https:
//doi.org/10.1145/2492045.2492053. 12

[14] Jpeg pleno database: Microsoft voxelized upper bodies - a voxelized point cloud dataset.
http://plenodb.jpeg.org/pc/microsoft. Accessed: 2021-08-29. 13, 52, 71

[15] Ply - polygon file format. http://paulbourke.net/dataformats/ply/. Accessed:
2021-08-29. 14

[16] Schnabel, Ruwen e Reinhard Klein: Octree-based point-cloud compression. Em
Proceedings of the 3rd Eurographics / IEEE VGTC Conference on Point-Based
Graphics, SPBG’06, página 111–121, Goslar, DEU, 2006. Eurographics Association,
ISBN 3905673320. 16, 24

[17] Krivokuća, Maja, Philip A. Chou e Maxim Koroteev: A volumetric approach to point
cloud compression–part ii: Geometry compression. IEEE Transactions on Image
Processing, 29:2217–2229, 2020. 24

[18] Tanenbaum, Andrew S.: Operating Systems: Design and Implementation. Prentice
Hall, 2006. 35

[19] Peixoto, E., E. Medeiros, E. Lemos, E. Albuquerque, O.T. Komatsu e R.
Borba: S3d c++ implementation codec. https://github.com/pointcloud-unb/
SilhouetteCoder. Accessed: 2024-01-05. 48

[20] d’Eon, E., B. Harrison, T. Myers e P. A. Chou: 8i Voxelized Full Bodies, version 2 –
A Voxelized Point Cloud Dataset. Relatório Técnico, ISO/IEC JTC1/SC29/WG11
m40059 ISO/IEC JTC1/SC29/WG1 M74006 Geneva, Switzerland, 2017. 52, 61, 71

[21] 3DG: G-PCC codec description v4. Relatório Técnico, ISO/IEC JTC 1/SC 29/WG
11 input document w18673, 2019. 57, 67

[22] Tzamarias, Dion E. O., Kevin Chow, Ian Blanes e Joan Serra-Sagristà: Fast run-
length compression of point cloud geometry. IEEE Transactions on Image Processing,
31:4490–4501, 2022. 57, 67

[23] Peixoto, Eduardo: Intra-frame compression of point cloud geometry using dyadic de-
composition. IEEE Signal Processing Letters, 27:246–250, 2020. 57, 67

75

https://doi.org/10.1145/2492045.2492053
https://doi.org/10.1145/2492045.2492053
http://plenodb.jpeg.org/pc/microsoft
http://paulbourke.net/dataformats/ply/
https://github.com/pointcloud-unb/SilhouetteCoder
https://github.com/pointcloud-unb/SilhouetteCoder

[24] Ramalho, Evaristo, Eduardo Peixoto e Edil Medeiros: Silhouette 4d with context
selection: Lossless geometry compression of dynamic point clouds. IEEE Signal Pro-
cessing Letters, 28:1660–1664, 2021. 57, 63, 67

[25] Loop, C., Q. Cai, S. O. Escolano e P. A. Chou: Microsoft Voxelized Upper Bodies –
A Voxelized Point Cloud Dataset. Relatório Técnico, ISO/IEC JTC1/SC29/WG11
m38673 ISO/IEC JTC1/SC29/WG1 M72012, Geneva, Switzerland, 2016. 61

76

	Dedicatória
	Agradecimentos
	Resumo
	Abstract
	Introduction
	Context
	Motivation
	Problem
	Multi-thread S3D
	Block Mode

	Purpose

	Literature Review
	Point Clouds
	Signal compression
	Geometry compression

	CABAC
	Arithmetic Coding
	Context Arithmetic Coding
	Context Adaptive Arithmetic Coding
	Context Adaptive Binary Arithmetic Coding

	Silhouette 3D
	Silhouette
	Dyadic Decomposition
	Single Mode
	Best choice

	Threads
	Multi-threading

	Proposed Algorithms
	Multi-threaded S3D
	S3D-subtree(S3D-S)
	S3D-subtree + Top-tree (S3D-ST)

	S3D Block Mode
	Standard (S3D-BM)
	Inverted Mode (S3D-IM)

	Unified header
	Arithmetic Coding Contexts

	Results and analysis
	2D and 3D contexts setting
	Standard S3D C++ algorithm results
	S3D-S and S3D-ST results
	Running time
	Rate

	S3D-Block Mode (S3D-BM) and S3D-Inverted Mode (S3D-IM) results
	S3D algorithms benchmark

	Conclusions
	Referências

