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Abstract

Learning-based image compression is emerging as a competitive alternative to conven-
tional image coding techniques. Neural image coding has advanced significantly, evolving
from struggling to match classical codecs to often surpassing them. Techniques such as
variational autoencoders and recurrent neural networks have shown promise in optimiz-
ing the rate-distortion trade-off while preserving image content. Rate control is a critical
feature, often a requirement for several still image coding applications. Achieving rate
control for every input with minimal impact on rate-distortion performance remains chal-
lenging. Typically, learning-based lossy codecs need multiple trained models for different
quality requirements. Although initiatives have aimed to enhance model flexibility by in-
corporating various rate-distortion points, the problem of consistent rate control—where a
model achieves a specific rate across all compressed images—remains underexplored and
poorly understood. This work proposes a non-constrained solution to the constrained
problem of training a learning-based image codec for a specific bitrate. The solution in-
volves modifying the loss function for autoencoder optimization. Additionally, inspired by
reinforcement learning, a temporal-adaptive approach is introduced, which incorporates
temporal behavior into the loss function, making the training process more robust against
optimization challenges. Experiments conducted on the Kodak and JPEG AI datasets
demonstrate that autoencoders trained with the proposed loss functions can achieve rate-
constrained encoding with negligible losses in Structural Similarity Index Measure (SSIM)
and Multi-scale Structural Similarity Index Measure (MS-SSIM). Some deterioration in
peak signal-to-noise ratio (PSNR) is observed compared to the variational baseline ar-
chitectures. However, this trade-off is expected, as restricted optimization scenarios are
inherently more challenging than unrestricted ones.

Keywords: image coding; neural networks; rate-distortion; rate control; neural compres-
sion; reinforcement learning; loss-adaptive parameters
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Compressão de Imagens com Controle de
Taxa Baseado em Autoencoders

Resumo

A compressão de imagens baseada em aprendizado tem se tornado uma alternativa pro-
missora às técnicas tradicionais de codificação. Os codecs neurais evoluíram rapidamente,
superando muitas vezes os métodos clássicos. Abordagens como autoencoders variacio-
nais e redes neurais recorrentes têm demonstrado eficiência na otimização do equilíbrio
entre taxa de compressão e qualidade da imagem. O controle de taxa é uma necessidade
em várias aplicações de codificação de imagens. No entanto, alcançar esse controle de
forma consistente e com impacto mínimo na qualidade da imagem ainda é um desafio.
Geralmente, codecs com perdas precisam de vários modelos treinados para diferentes ní-
veis de qualidade. Apesar de avanços para tornar os modelos mais flexíveis, permitindo
múltiplos pontos de taxa-distorção, o problema de controle de taxa consistente — onde
um único modelo entrega a taxa desejada para qualquer imagem — é pouco explorado.
Neste trabalho, propomos uma solução eficiente para realizar controle de taxa em um
único modelo baseado em aprendizado. Nossa abordagem modifica a função de perda
do autoencoder durante o treinamento. Além disso, inspirados pela área de aprendizado
por reforço, adicionamos uma estratégia temporal-adaptativa, que incorpora ajustes di-
nâmicos ao longo do tempo, tornando o treinamento mais robusto. Os resultados em
bases de dados como Kodak e JPEG AI mostram que nossos modelos atingem controle de
taxa com perdas mínimas nas métricas Índice Estrutural de Similaridade (SSIM, do inglês
Structural Similarity Index) e Índice Estrutural de Similaridade Multi-Escala (MS-SSIM,
do inglês Multi-Scale Structural Similarity Index). Observamos uma leve redução na Ra-
zão Pico-Sinal-Ruído (PSNR, do inglês Peak Signal-to-Noise Ratio) em comparação com
modelos variacionais tradicionais que otimizam como perda a função de taxa-distorção.

Palavras-chave: codificação de imagens; redes neurais; taxa-distorção; controle de taxa;
compressão neural; aprendizado por reforço; parâmetros adaptativos de perda
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CT Transform Coefficients.

D Distortion Measure.
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I Activation function.
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P Probability Measure.

Q Quantization operator.

Rest Entropy-estimated Rate.
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Rc1
t Generalized parabola coefficients at time t.

Rc2
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SiLU Sigmoid Linear Unit.

T Transfer function.

TM Transform Matrix.
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emat Exponential moving average at time t.
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Chapter 1

Introduction

Image compression is crucial for digital communication, transmission, and storage [1].
Techniques based on transformations, context predictions, quantization methods, and en-
tropy encoding are commonly used. These techniques have been successfully incorporated
into image compression methods and utilized in various coding standards.

The initial methods for image compression used entropy compression techniques to
reduce the statistical redundancy of images. The most well-known techniques include
Huffman encoding, Golomb codes, and arithmetic coding [2, 3, 4]. Later, transform
coding was proposed using Fourier and Hadamard transforms [5]. The Discrete Cosine
Transform (DCT), proposed by Ahmed et al. [6], was a significant advancement because
it compacts image energy much more efficiently than previous transforms [7].

Prediction and quantization techniques were proposed to reduce the spatial redun-
dancy of images. For instance, JPEG-1, a DCT-based CODEC, has dominated lossy
image compression since its introduction in 1992, employing both prediction and trans-
formation techniques [8]. The CODEC initially divides the image into blocks and applies
the DCT to these blocks. Differential Pulse Code Modulation (DPCM), a form of context
prediction, is applied to the DC components of the transform, with encoding adopted
only for the residuals. Additionally, a special quantization table is used to discard more
details than the principal components of the image [7].

The standard evolved with its successor, JPEG 2000 [9]. This transform-based encoder
has been used in cinema, medical imaging, and other areas. It uses a two-dimensional
wavelet transform and an efficient arithmetic coding method, Embedded Block Coding
with Optimal Truncation (EBCOT), to reduce the statistical redundancy of wavelet co-
efficients [10, 7].

The evolution of coding standards includes BPG (Better Portable Graphics) and JPEG
XR [11, 12]. These standards aim to achieve better compression rates than JPEG-1
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with a slight increase in algorithmic complexity. However, they have become obsolete,
particularly with limitations for HDR images. To overcome these limitations, JPEG
XT was launched to support HDR image compression and is compatible with previous
standards [13]. More recently, the JPEG committee standardized JPEG XL, aiming for
good rate-distortion performance for HD and UHD images, including functionalities for
web distribution and various applications [14].

The brief history of the evolution of coding standards demonstrates the community’s
significant interest in improving image compression. Artificial neural networks are being
considered for the task of compression. Recently, neural networks have been the state of
the art in semantic tasks such as image classification and object detection. They have
also shown high performance in low-level tasks, such as super-resolution and compres-
sion artifact reduction. The idea behind these approaches is to explore the hierarchical
correlation between neighboring values using cascading operations [7].

The recent success of neural networks in image processing and computer vision has
drawn the attention of the compression community. These algorithms are seen as potential
enhancements for compression performance. These approaches aim to either improve
components of classic standards using neural networks or completely replace the encoding
process with neural networks. This work focuses on methods that use neural networks to
replace the encoding process, known as end-to-end approaches.

Neural networks were expected to perform well in image compression. However, until
recently, there was little evidence that training a competitive neural network for different
images at different rates was possible. One of the first relevant approaches to using neural
networks in image coding is based on a cascade of autoencoders [15]. In this strategy,
each autoencoder compresses and reconstructs its input. The reconstruction error is then
used as input for the next autoencoder. This process repeats until a specified number of
autoencoders are reached.

This patch-based approach has served as a foundation for several proposals. These
include adopting memory layers for progressive encoding, incorporating quality objectives
for each image patch, and using neural networks for context prediction [16, 17, 18, 19].
Johnston et al. proposed optimized training strategies to enhance the memory capacity
of recurrent networks [20].

The works described thus far optimize distortion during training and adopt various
strategies to control the rate. These works have the advantage of controlling the rate
produced by the network for each image patch, and the code space is progressive. Thus, a
single neural network produces progressively better reconstructions at multiple controlled
rates. However, using neural networks with memory proved to be very costly computa-
tionally. Moreover, the performance of these approaches only surpasses JPEG-1 and rivals
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JPEG-2000, falling significantly behind other more powerful standards, such as BPG. Re-
searchers began to adopt an explicit entropy model in the neural architecture to optimize
distortion and the rate during neural network training, seeking to improve the end-to-end
compression results described in the previous paragraph.

One of the first approaches to consider this optimization delivered state-of-the-art re-
sults at the time [21]. Beyond improving rate-distortion performance, the authors demon-
strated that rate-distortion optimization, following certain modeling choices, is mathemat-
ically equivalent to the optimization performed in variational autoencoders [22], which
conduct variational Bayesian inference. Therefore, even though the coding approaches do
not have the same architecture as the work that proposed neural networks for Bayesian
inference, mathematically, this is accomplished by the neural network. Consequently, by
adopting variational autoencoders, the work in question [21] introduced a different line of
research from what was previously presented [15].

Approaches based on variational autoencoders mainly represent results surpassing
BPG and other more recent classic standards. Two enhancements proposed for the original
work [21] are noteworthy. The first adopts a more robust entropy modeling by introducing
a variational autoencoder that represents the hyperprior over the code space, improving
the previously obtained results [23]. The second improves the architecture with the hy-
perprior by introducing context analysis of the latent space with autoregressive neural
modeling [24].

The works based on variational inference presented so far have been enhanced in sev-
eral ways. Some approaches bring improvements to the entropy model, optimizations of
computational performance, models that produce multiple rates, the adoption of more ro-
bust neural operations for performance improvement, intelligent bit allocation and the use
of attention modules, post-processing modules, and generative compression for encoding
at very low rates [25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44].

Advantages of these approaches include more flexible latent space modeling, the ability
to compress the entire image, and better rate-distortion performance. Disadvantages
include the loss of progressive encoding, beneficial in various scenarios, and the lack of
control over the rate produced by each model.

1.1 Justification and Motivation

Despite progress in neural image compression, these methods have not been widely adopted
in practical applications. Challenges include distrust in the training methods and metrics,
the time needed to establish and incorporate new standards, and the computational de-
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mands of these approaches. Additionally, rate control for reconstructing arbitrary images
is a significantly underexplored problem in the literature.

Approaches based on Toderici’s work [16] allow obtaining target rates, but achieving
the desired rate requires encoding in multiple steps, making it complex for practical use.
Ballé’s approaches generally require training multiple networks to obtain rate-distortion
operating points [45, 23]. Each trained model has considerable variance in rate and dis-
tortion for different images, and even multi-rate approaches struggle to achieve consistent
target rates.

Minor advancements have been made in target-constrained training, such as Rozen-
daal’s work, which derived a loss function for a target quality [46]. They use a search
heuristic to fine-tune the hyperparameters of the rate-distortion loss. Recently, Zhang in-
troduced a Rate Controllable Variational Autoencoder (RC-VAE) for image compression,
which adapts to variable target rates [47]. This approach requires a complex, multi-stage
training procedure, and the difficulty of the task is evident with the rapid saturation of
quality reconstruction results at low bitrates. These challenges highlight the complexity
of optimizing target rate restrictions.

1.2 General Objective and Specific Objectives

The overall objective of this document is to present end-to-end neural image compression
architectures that can compress any image at a specific bitrate. The specific objectives
are:

• Review concepts related to Information Theory, Bayesian Inference, Image Compres-
sion fundamentals, and Autoencoders, which are naturally suited for compression
purposes;

• Conduct a literature review to find approaches related to optimizing under rate
restrictions;

• Formulate training strategies and modify architectures to encode images under rate
constraints;

• Implement and train the architectures, generate results, and validate/refine hy-
potheses;

• Perform empirical and theoretical analyses of the models and results to refine the
proposed approaches;

• Publish results in reputable conferences and journals.
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This document presents the results of some cumulative strategies for obtaining rate-
oriented neural networks, whose foundation lies in modifying the variational loss function
inspired by Lagrangian relaxation. Later, ideas of Reinforcement Learning are applied to
vastly generalize the robustness of the initial target-rate loss. The results, presented in
Chapter 5 and Chapter 6, demonstrate that it is possible to obtain models that encode
at specific rates with a particular variance without significant deterioration of results
compared to reference models without rate constraint.

1.3 Contributions

This document contributes to neural image compression, particularly in bitrate compres-
sion control. The first contribution is the idea of modifying a variational rate-distortion
loss into a constrained target bitrate loss using Lagrangian relaxation. This method
shows that even though these losses are not directly derived from variational Bayesian
inference, their hyperparameters retain some features of the variational approach. These
analyses and results were published in Signal Processing: Image Communication
as “Rate-constrained learning-based image compression” [48], detailed in Chap-
ter 4 and Chapter 5. Additionally, the analysis of the quantization mismatch problem,
termed the mean rate shift problem, caused by using additive uniform noise as a proxy for
non-differential quantization, is another contribution. A search heuristic was proposed to
address this issue.

The second set of contributions improves the heuristic to overcome the mean rate
shift problem. A solution to balance the mismatch caused by additive uniform noise
is proposed using reinforcement learning ideas. The training process is seen as a time-
evolution stochastic process, allowing temporal information to fine-tune neural network
training. This idea is detailed in Chapter 6 and published in IEEE Signal Process-
ing Letters as “Learning-Based Image Compression with Parameter-Adaptive
Rate-Constrained Loss” [49]. Additionally, this thesis presents a range of analyses,
potential extensions, and deeper investigations, highlighting future steps and contributing
to the field.

1.4 Document Structure

This document is organized as follows:

• Chapter 2 covers fundamental concepts central to this work, focusing on image
compression, neural networks and Bayesian inference, with a particular emphasis
on variational autoencoders;
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• Chapter 3 presents a literature review discussing recurrent network-based approaches,
variational approaches, and works related to the main improvement directions;

• Chapter 4 details seminal architectures, which will be deeply studied in subsequent
chapters. It also clearly states the main global problem this thesis addresses;

• Chapter 5 introduces a proposal for acquiring networks with rate constraints. It
describes and analyzes the proposed modifications and presents results, fostering
improvements in the approaches;

• Chapter 6 introduces an improved approach for rate-constrained coding in neural
networks, building on earlier work. It presents a generalization of the previous
proposal, now using reinforcement learning ideas to make the model auto-correct
mismatches;

• Chapter 7 aggregates conclusions from the above chapters into a general perspective,
pointing to future directions.
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Chapter 2

Theoretical Framework

This chapter delves into the fundamental concepts central to the proposals in this work,
focusing on two technical domains: image compression and neural networks. Sections
2.1 and 2.2 explore these domains, respectively. These sections build a robust theoretical
framework to support the arguments and findings in later chapters. They also aim to equip
the reader with the knowledge to appreciate the nuanced approaches and methodologies
proposed in this thesis.

Bayesian Inference, presented in Section 2.3, covers crucial topics for the rest of this
thesis, including variational Bayesian inference and variational autoencoders as a neural
model for variational inference. Understanding these concepts is essential to comprehend
the approaches discussed in this thesis.

The reader is assumed to be familiar with information theory concepts such as entropy,
mutual information, and Kullback-Leibler divergence, detailed in Appendix I. If the reader
is not well-versed in these topics, it is advisable to review this appendix before proceeding.

2.1 Image Coding

The core of this thesis explores image coding, focusing on its application within neural
networks for image compression. Since pixels in images and videos are highly correlated,
achieving efficient compression using only entropy CODECs is challenging [50]. Due to
the complexity of pixels, which are typically adjacent and have similar values, entropy
encoders require some degree of independence among data to function optimally. This
correlation leads to extensive spatial redundancy, which can be exploited by models [50].

Models often leverage subjective redundancy by exploiting the human visual system’s
sensitivity to various image and video characteristics. To address these redundancies,
many techniques have emerged, with Differential Pulse Code Modulation (DPCM) and
transform coding being prominent strategies, which will be discussed in detail.
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Given this general idea, the image coding domain has developed numerous compression
strategies. This section highlights some of the critical concepts and techniques used.
Figure 2.1 shows the overall scheme of techniques in image coding. “Preprocessing” refers
to any procedure applied before image transformation. The “Transform” step projects
the original data into another domain, allowing for the selection of valuable properties.
After transformation, a quantization technique is applied to the coefficients, which are
then encoded using entropy coding. Inverse processes are used to retrieve the data from
the compressed format.

 Preprocessing Transform Quantization
 Entropy
encoding

 Entropy
decoding

Inverse
Transform

 Data 

Encoded
data

Reconstructed
data

Figure 2.1: A prevalent scheme in image coding. While specific CODECs may incorporate
additional components, this flowchart elucidates the general concept of the methods.

Based on this scheme, the following sections will explain common image processing
techniques in detail. These include Differential Pulse Code Modulation (Section 2.1.1),
Transform Coding (Section 2.1.2), and Entropy Coding with Arithmetic Coding (Section
2.1.3). These techniques are widely used in "Hybrid DPCM/DCT Mode CODECs," whose
historical trajectory will be explained later in this section (Section 2.1.4).

The concepts explored in this section are deeply connected to Information Theory, a
branch of applied mathematics and electrical engineering that quantifies information. It
is strongly recommended to read Appendix I first, as it provides a solid grounding in the
key concepts and principles of Information Theory. This will enhance your understanding
of the technical depth and complexity of the subsequent discussions.

2.1.1 Differential Pulse-Code Modulation (DPCM)

Differential Pulse-Code Modulation (DPCM) is based on a predictive framework where
each sample is predicted based on its predecessors, reducing redundancy and aiding in
compression. This involves predicting a pixel value from previous pixel values and trans-
mitting the difference (prediction error) instead of the exact pixel value. The spatial
correlation in image data typically results in prediction errors that can be more efficiently
encoded, achieving compression [50].
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P1 P2

P5 ?

P3 P4

Figure 2.2: Schematic illustration of DPCM strategy. Given transmitted values
P1, P2, P3, P4, and P5, subsequent values (represented by the question mark) can be
predicted using P5 or a composite of preceding values. Adapted from [50]

Quantization enhances compression but introduces lossiness because it is irreversible.
It maps a range of input values to a single quantized value, reducing the number of bits
required for representation at the cost of fidelity. Consider a simple example to explain
the DPCM methodology. Suppose the original pixel values in grayscale range from 0 to
255 as follows:

V = [120, 123, 125, 128, 130, 133, 135]

In DPCM, the initial pixel value (120) is transmitted as it is. Subsequent pixel values
are predicted based on their predecessors. Using a simple prediction strategy where the
next pixel value is predicted to be the same as the current one ( ˆVi+1 = Vi), the prediction
error ∆Vi is:

∆Vi = Vi+1 − V̂i+1 (2.1)

By calculating and transmitting these difference values (∆V ), a series that potentially
requires fewer bits for encoding can be obtained, thus compressing the data:

∆V = [120, 3, 2, 3, 2, 3, 2]

Further compression can be achieved by quantizing these difference values, mapping
ranges of differences to single values, though this comes at the expense of perfect recon-
struction of the original data. Understanding these concepts is fundamental for grasping
how modern CODECs and neural network-based techniques refine and build upon these
strategies to deliver enhanced fidelity and compression, as discussed in the following sec-
tions.

2.1.2 Transform Coding

Transform coding, a fundamental methodology in image compression, converts image
samples into another domain, producing transform coefficients. The main objective is
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to minimize the correlation between coefficients, isolating a few with significant visual
importance. After transformation, a quantization process targets the less significant coef-
ficients for compression. Combined with entropy coding, transform coding is a backbone
for many image and video coding methods [50].

Consider an example to illustrate the mechanics of transform coding. Assume a 2× 2
block of pixel values from a grayscale image:

IF =
100 102

98 95


The transformation phase aims to represent these pixel values in a new domain, often
the frequency domain, for more efficient compression. A common transform in image
compression is the Discrete Cosine Transform (DCT). For simplicity, consider using a
hypothetical transform matrix TM for a 2× 2 block:

TM =
0.5 0.5
0.5 −0.5


We obtain the transform coefficients CT by multiplying the transform matrix TM with
the image block IF :

CT = TM × IF × TMT =
0.5 0.5
0.5 −0.5

×
100 102

98 95

×
0.5 0.5
0.5 −0.5

 =
c11 c12

c21 c22


The coefficients matrix CT represents the transformed domain of the original image block
IF . After transformation, most of the image’s energy is typically compacted into a few
coefficients, making the others prime candidates for quantization and compression with-
out significantly compromising the perceptual quality of the reconstructed image. This
example captures the essence of transform coding: moving to an alternative domain to
simplify later compression stages by reducing inter-coefficient correlations and focusing
energy on fewer coefficients. In real-world applications, the careful choice of transform
types and tailored quantization strategies address a wide range of use cases and content
types, which will be further detailed in upcoming sections.

2.1.3 Arithmetic Coder

General-purpose CODECs are designed to encode and compress data, especially data with
statistical redundancy. This concept means a signal rich in information can be compressed.
Compression is related to entropy, a measure of randomness or disorder in information.
This section explores the entropy CODEC, focusing on the arithmetic coder, a widely
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adopted algorithm for representing a signal according to its entropy [50]. Arithmetic
coding maps a sequence of symbols to fractional numbers, which are then converted into
binary for transmission. It offers superior compression compared to Huffman coding by
representing each symbol with a fractional number of bits, allowing for a more statistically
efficient allocation of data [50].

To differentiate symbol sequences effectively, a unique identifier is essential. These
identifiers come from real numbers within the unit interval [0, 1). Creating the identifier
involves narrowing the interval as more sequence elements appear [51]. Given an alphabet
A = {a1, a2, . . . , am} and a random variable X such that X(ai) = i and ai ∈ A, with
a probability model pA for the data source, the probability density function for X is
pX(i) = pA(ai). The cumulative distribution function FX is defined as [51]:

FX(i) =
i∑

k=1
pX(k) (2.2)

The arithmetic coder starts by dividing the unit interval [0, 1) into sub-intervals, each
corresponding to a symbol in A. For example, the symbol ai is mapped to the interval
[FX(i− 1), FX(i)]. Assume a sequence of symbols {ak, aj, . . .} is to be encoded. Encoding
the first symbol, ak, refines the coding interval to [lowak

, highak
] = [FX(k − 1), FX(k)].

The arithmetic coder processes one symbol at a time, iteratively refining the interval.
After encoding ak, suppose the next symbol to encode is aj. The interval for aj following
ak is derived from the previous interval, becoming [51]:

[lowaj
, highaj

] = [lowak
+ FX(j − 1) · (highak

− lowak
), (2.3)

lowak
+ FX(j) · (highak

− lowak
)] (2.4)

The encoding continues, progressively refining the interval for each subsequent symbol,
al, am, . . ., in the sequence.

Pseudo-Code for Arithmetic Encoding

The arithmetic encoding procedure compresses a sequence of symbols {ak, aj, al, am, . . .}
by iteratively narrowing a numerical interval based on the cumulative probability function
FX . The pseudo-code below explains this step-by-step method.
where

• seq: A sequence of symbols to be encoded.

• FX : The cumulative probability function for each symbol.

• low and high: Variables tracking the lower and upper bounds of the current interval.
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Algorithm 1: Arithmetic Encoding
Result: Return the interval [low, high)
Data: seq: a sequence of symbols, FX : cumulative probability function
Result: [low, high): the final interval that represents the encoded sequence

1 low ← 0
2 high← 1
3 for i← 1 to length(seq) do
4 range← high− low
5 high← low + range · FX(i)
6 low ← low + range · FX(i− 1)
7 return [low, high)

Illustrative Example of Encoding a Sequence

Consider an example with an alphabet A = {a, b, c} assigned the probabilities p(a) =
0.7, p(b) = 0.2, p(c) = 0.1. The corresponding cumulative function is:

FX(0) = 0, FX(1) = 0.7, FX(2) = 0.9, FX(3) = 1 (2.5)

Suppose the sequence to be encoded is {a, b, c}, with respective symbol indexes {1, 2, 3}.
The procedure is as follows:

• Initially: [low, high) = [0, 1)

• After encoding a: [low1, high1) = [FX(0), FX(1)) = [0, 0.7)

• After encoding b, calculate:

low2 = low1 + FX(1) · (high1 − low1) = 0.49,
high2 = low1 + FX(2) · (high1 − low1) = 0.63,

resulting in [low, high) = [0.49, 0.63).

• After encoding c, refine the interval to:

low3 = low2 + FX(2) · (high2 − low2) = 0.616,
high3 = low2 + FX(3) · (high2 − low2) = 0.63,

resulting in [low, high) = [0.616, 0.63).

Any number within the interval [0.616, 0.63) can accurately represent the encoded se-
quence {1, 2, 3}.
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Decoding Process

In arithmetic coding, decoding is the inverse operation that transforms encoded numerical
data back into its original symbolic form. Given an encoded number within a specific
numerical range and the cumulative probability function FX , the decoder sequentially
reveals the original symbols by navigating nested numerical intervals.

Initially, the decoder identifies which interval [FX(j − 1), FX(j)] contains the encoded
number, outputs the corresponding symbol aj, and updates the encoded number by nor-
malizing it to the relevant interval. This process continues until all symbols in the sequence
are decoded.

Algorithm 2: Arithmetic Decoding
Data: code: the encoded number, FX : cumulative probability function, n: length

of the original sequence
Result: The original sequence of symbols

1 for i← 1 to n do
2 Find the smallest j such that code < FX(j)
3 Output symbol aj as the next symbol in the decoded sequence
4 code← (code− FX(j − 1))/(FX(j)− FX(j − 1))

Illustrative Example of Decoding a Sequence

Consider the earlier encoding example with the sequence {a, b, c} and the cumulative
function:

FX(0) = 0, FX(1) = 0.7, FX(2) = 0.9, FX(3) = 1 (2.6)

Assume the number 0.62 (which resides within the final encoding interval [0.616, 0.63))
is chosen as the encoded number. The decoding process progresses as follows:

1. Find that j = 1 is the smallest index such that FX(1) > 0.62. Hence, the output
a1 = a, and update code can be given as follows:

code = 0.62− FX(0)
FX(1)− FX(0) = 0.62− 0

0.7− 0 = 0.8857

2. With the updated code, j = 2 satisfies FX(2) > 0.8857. So, a2 = b and code will be
updated again:

code = 0.8857− FX(1)
FX(2)− FX(1) = 0.8857− 0.7

0.9− 0.7 = 0.9285
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3. Lastly, j = 3 satisfies FX(3) > 0.9285. So, a3 = c is set and code is updated once
more:

code = 0.9285− FX(2)
FX(3)− FX(2) = 0.9285− 0.9

1− 0.9 = 0.285

Hence, the sequence is decoded as {a, b, c} from the number 0.62, demonstrating the
arithmetic decoding process.

Essentially, the arithmetic coder uses symbol probabilities to create partitions and
iteratively forms sub-partitions based on these. This mechanism can approximate entropy
and the theoretical compression limit with enhanced precision. However, it is crucial to
note that longer symbol sequences require higher precision to accurately represent the
fractional number [50].

2.1.4 Trajectory of Hybrid DPCM/DCT Mode CODECS

The evolution of image compression, crucial for advancements in multimedia and telecom-
munication applications like digital transmission CODECs and teleconferencing, has pro-
gressed through various phases, incorporating multiple techniques to reduce image data
efficiently [1]. These techniques, including transforms, predictions, and scalar quantiza-
tion, have been integrated into various image compression standards over time.

Early image compression methods used entropy coding to reduce statistical redun-
dancy in image data, utilizing Huffman coding [2], Golomb codes [3], and arithmetic
coding [4]. Transform coding then emerged, employing Fourier and Hadamard transforms
before the introduction of the DCT (discrete cosine transform) [6]. The DCT became
prominent for efficiently compacting image energy, surpassing earlier transforms [7].

JPEG-1, a DCT-based CODEC, is a significant example of integrating prediction and
quantization techniques to reduce spatial redundancy in images [8]. It combines prediction
and transform techniques by dividing images into blocks, applying the DCT to each, and
then using DPCM on the DC (direct current) components of the transform. Compression
is applied to the residuals using a specialized quantization table to discard less important
details while preserving the principal image components [7].

JPEG 2000 [9], a successor using a transform based on 2D wavelets, found applications
in fields like medical imaging and cinema. It uses an effective arithmetic coding method,
EBCOT [10], to reduce statistical redundancy in wavelet coefficients [7]. Subsequent
coding standards, such as BPG [11] and JPEG XR [12], aimed to improve compression
rates compared to JPEG-1, with an increase in algorithmic complexity. However, these
CODECs faced performance limitations with HDR (high dynamic range) images, leading
to the introduction of JPEG XT [13], which supports HDR image compression while
maintaining compatibility with earlier standards.
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The introduction of JPEG XL [14] by the JPEG committee represents the ongoing
quest for next-generation image compression systems. This standard aims to deliver ro-
bust rate-distortion performance for HD (high definition) and UHD (ultra high definition)
images while integrating features for web distribution across various applications.

In this historical context, contemporary classic CODECs continue to evolve, striving
for improved compression. Given the success of neural networks in image processing,
these techniques have gained significant research interest as promising approaches to en-
hance compression outcomes. The following chapters will review recent studies using
neural networks as holistic solutions for image coding. It is important to note that the
class of CODECs described in this Section will be referred to as “classical CODECs” to
differentiate them from end-to-end neural-based CODECs.

2.2 Machine Learning and Neural Networks

Machine learning, a subset of artificial intelligence, uses algorithms to enhance computa-
tional abilities by learning from data, often referred to as “experience” [52]. This paradigm
is closely tied to statistical analysis, focusing on identifying patterns and making data-
driven decisions. In image compression, machine learning is valuable for its ability to
distill, assimilate, and encode significant features of image data, streamlining storage and
transmission.

2.2.1 Algorithms and Tasks in Machine Learning

Machine learning comprises several core tasks, each offering a unique approach to data
analysis and manipulation:

• Classification: Assigning elements to predefined groups.

• Regression: Estimating a continuous value from input features.

• Ranking: Ordering elements based on certain criteria.

• Clustering: Grouping data based on similar characteristics.

• Dimensionality Reduction: Simplifying data’s feature space while retaining key
information.

In image compression, dimensionality reduction is crucial as it aims to maintain sig-
nificant image attributes while representing the data in a condensed form. For example,
if I ∈ Rm×n represents an image, the goal of dimensionality reduction is to find a func-
tion f : Rm×n → Rp×q, where p < m and q < n, that minimizes information loss while
reducing data size.
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Among various machine learning algorithms, such as decision trees, support vector
machines, and k-nearest neighbors, artificial neural networks (ANNs) stand out as a crit-
ical tool, particularly in applications that require deriving intricate patterns from data,
such as image compression. ANNs excel in learning and representing non-linear mappings,
which is essential for handling the complexity and high dimensionality of image data.

Unlike other machine learning algorithms that struggle with the intricate, multidimen-
sional structures of image data, ANNs leverage the correlations within this data. Through
training that involves forward propagation of input data and backpropagation of errors,
ANNs iteratively refine their internal weights to optimize a predefined objective function.
This optimization minimizes the loss between the network’s output and the actual data,
ensuring that the compressed representations retain maximal information relevant to the
original data.

2.2.2 Artificial Neural Networks and Multi-layer Percepton Net-
works

Artificial Neural Networks (ANNs) significantly advance image compression due to their
ability to learn intricate patterns and data representations. Originating from the concept
of the artificial neuron in the 1950s and 1960s, ANNs have evolved significantly, building
on the foundational logic of perceptrons but integrating more advanced neuron models.
Figure 2.3 illustrates the basic structure of an artificial neuron.

...

x1

x2

x3

xn

y

w1

w2

w3

wn

Figure 2.3: An artificial neuron comprising inputs x = {x1, x2, ..., xn} and corresponding
weights w = {w1, w2, ..., wn}, producing output y. Adapted from [53].

A perceptron processes multiple binary inputs x = {x1, x2, ..., xn} and produces a sin-
gle binary output based on a simple rule. The weights, represented as w = {w1, w2, ..., wn},
are real numbers indicating the significance of the corresponding input to the output. A
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threshold determines the output as follows [53]:

y =

0 if ∑j wjxj ≤ threshold

1 if ∑j wjxj > threshold
(2.7)

The threshold emulates neuronal firing characteristics, allowing for diverse decision
models by adjusting the weights and threshold value. Although a perceptron simplifies
the decision-making model, a network of perceptrons can theoretically formulate nuanced
decisions [53]. Figure 2.4 shows an ensemble of such connected neurons.

x0

x1

...

xn

y

Figure 2.4: Neural network demonstrating collective decision-making. Each neuron layer
amalgamates inputs, generating outputs utilized by subsequent layers, thereby facilitating
complex decision derivations. Adapted from [53].

In a multilayer perceptron (MLP), the initial layers make simple decisions, and subse-
quent layers produce increasingly complex determinations based on the outputs of previ-
ous layers [53]. ANNs improve their efficiency through collaborative neuron interaction,
where subtle weight changes can modify outputs. However, perceptrons have limitations:
minor parameter changes can lead to drastic output shifts during threshold transitions
[53]. Therefore, sigmoid neurons use the sigmoid function [53]. While retaining the per-
ceptron structure, they produce a smoother output across the [0, 1] interval:

η(wx + b) = 1

1 + e
−
(∑

j
wjxj

)
−b

(2.8)

The continuous transition facilitated by the sigmoid function ensures that small pa-
rameter adjustments lead to incremental output changes [53]:

∆y ≈
∑
j

∂y

∂wj
∆wj + ∂y

∂b
∆b (2.9)
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While individual neurons can make decisions, their limited flexibility for intricate cases
underscores the necessity of combining neurons into ANNs, comprising multiple layers.
The depth and structure of the network critically impact learning efficiency, predictive
accuracy, and problem-solving capabilities, warranting an exploration of diverse neural
network architectures and their merits [54].

2.2.3 Feedforward Neural Networks

Figure 2.4 shows that feedforward neural networks are foundational in deep learning
and image compression models. Herein, feedforward implies the unidirectional flow of
information from the input x, through intermediate layers determining network behavior,
to the output y [55].

Formally, a feedforward network aims to approximate a function f ∗. In a classification
context, y = f ∗(x) maps an input x to a category y. This mapping, parameterized by
θ, represents the set of weights and aims to learn θ such that y = f(x,θ) is a competent
approximation [55].

The network layers comprise the input layer (the first layer), hidden layers (intermedi-
ate layers), and the output layer (the final layer). The terms "network depth" and "width"
refer to the number of layers and the elements within a layer, respectively. Notably, the
activation function is employed post-input combination at each neuron [55].

2.2.4 Backpropagation in Neural Network Training

Training a feedforward neural network involves two critical stages: forward propagation
and backpropagation, which work together to optimize the network’s parameters, θ. Ini-
tially, an input x generates an output ŷ through forward propagation, and the scalar
cost J(θ) is calculated by comparing ŷ to the true output. Conversely, backpropagation,
introduced by Rumelhart et al. [56], works backward from the cost to calculate gradi-
ents essential for parameter optimization. These gradients are used with algorithms like
stochastic gradient descent to update the parameters. While backpropagation is com-
monly used to compute ∇θJ(θ), it can also be applied to other derivatives, highlighting
its versatility in various computational tasks [55].

Computational graphs help clarify the backpropagation process, with nodes represent-
ing variables and directed edges representing operations. Variables can take various forms,
from scalars to tensors, and operations may range from simple to complex functions on
these variables. This formalized computational visualization, as shown in Figure 2.4, is
invaluable for understanding calculations in neural networks, especially when dealing with
several composed operations or variables with multiple entries [55].
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The chain rule of calculus is fundamental for computing derivatives of composite func-
tions and constructing the backpropagation framework. Let x ∈ Rm and y ∈ Rn, and
define two functions, g : Rm → Rn and f : Rn → R. If y = g(x) and z = f(y), then [55]:

dz

dx
= dz

dy

dy

dx
and ∇xz =

(
∂y

∂x

)⊤

∇yz (2.10)

where ∂y
∂x

is the Jacobian matrix of g. Thus, backpropagation fundamentally involves per-
forming a Jacobian-gradient product for each operation within the computational graph,
validating its efficiency across scenarios involving vectors and tensors of higher dimensions.

Within ANNs, where θ represents the weights of the neurons (or, as will be elaborated
in convolutional neural networks, the elements of the convoluting kernel), optimizing these
parameters (weights) is crucial. During training, the network adjusts θ to minimize the
cost function J(θ), which quantifies the deviation between the network’s prediction and
the actual data. The derivative of the cost function with respect to θ can be expressed
as:

∂J(θ)
∂θ

= ∂J

∂ŷ

∂ŷ

∂θ
, (2.11)

where ∂J
∂ŷ

represents the derivative of the cost function with respect to the network’s out-
put, and ∂ŷ

∂θ
denotes the derivative of the output with respect to the parameters. Although

the actual computations are more intricate when expanding the derivatives, especially in
a network with numerous layers, the overarching principle remains consistent: backprop-
agation propagates the error backward through the network, calculating gradients that
adjust the weights and biases to minimize the error function J .

Extending this logic, when the flow involves multiple layers or functions, the deriva-
tive of the output with respect to a parameter becomes a product of derivatives across
the sequence of functions (or layers) from the output back to the parameter in question.
This principle underscores the essence of backpropagation, where derivatives are calcu-
lated starting from the output and moving through each layer, exploiting the chain rule to
amalgamate local derivatives into global derivatives, thereby facilitating the optimization
of parameters even in deep structures. Each neuron’s contribution to the error is com-
puted using these gradients, guiding the parameter updates and refining the network’s
predictions through learning.
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2.2.5 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) specialize in processing data with a grid-like
topology. They are particularly suited for tasks like image compression and other appli-
cations involving structured data, such as time series or pixels [55].

The term “convolutional” originates from the mathematical operation “convolution”,
a specialized linear operation. A CNN uses convolution instead of matrix multiplication
in at least one of its layers, achieving notable success in real-world applications [55]. A
simple convolutional neural network, composed of two convolutional and two perceptron
layers, is depicted in Figure 2.5. The input layer intakes 2D grid-type data, x, which
undergoes processing via convolutions, yielding feature maps. Dashed squares indicate the
mapping executed by convolutional kernels. In this instance, the convolution operation is
paired with a subsampling operation, reducing the feature map size. The final two layers,
perceptron layers, transform the 2D feature maps into a set of activations, culminating
in a single value output, y.

x
y

Figure 2.5: An illustrative example of a convolutional neural network.

Let x be an input function and w a weighting function. The convolution operation is
defined as:

h(t) = (f ∗ g)(t) =
∫
f(x)g(t− x)dx (2.12)

In CNN terminology, f denotes the input, and g the kernel, with the output termed
the feature map. In neural network contexts, considering the elements are discrete, the
convolution translates into its discrete form [55]:

h(t) = (f ∗ g)(t) =
∞∑

x=−∞
f(x)g(t− x) (2.13)

Although the convolution is expressed in a 1D context above, it can be generalized
to 2D for image processing applications. In a 2D convolution, the kernel is also a 2D
function. Thus, the operation can be mathematically formulated as:

h(i, j) = (f ∗ g)(i, j) =
∑
m

∑
n

f(m,n)g(i−m, j − n) (2.14)
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where f(m,n) represents the image and g(i −m, j − n) is the kernel. Both f and g are
defined in two dimensions, and the sums are taken over all possible values of m and n.
This operation is performed for every pixel location (i, j) in the image, typically resulting
in an output image, h, of the same size as the input image, f . In convolutional neural
networks, this 2D convolution is crucial for filtering and deriving meaningful features from
the input image or feature maps by sliding the kernel across the input in both dimensions
(width and height).

In the context of Figure 2.5, the 2D convolutions are visualized abstractly as the
movement and application of kernels across the input grid data. While a single kernel
is often visualized for simplicity, in practice, a convolutional layer employs numerous
kernels simultaneously, each extracting different features, such as edges, textures, or more
complex patterns. These resultant feature maps then pass through subsequent layers,
enabling the network to progressively learn and make informed decisions based on the
hierarchical feature representations.

In image compression, the convolutional layers are pivotal for extracting and learn-
ing pertinent features representing the underlying data. These extracted features com-
press the representation, maintaining essential information while reducing dimensionality,
thereby enabling efficient storage and transmission.

2.2.6 Recurrent Neural Networks and their Temporal Dynamics

Recurrent Neural Networks (RNNs) excel at processing sequential data due to their ability
to remember past inputs using shared parameters over time steps [55]. RNNs effectively
manage dependencies between encoded frames for video compression with variational
autoencoders, enhancing compression results.

Unlike traditional feedforward networks, RNNs maintain a memory of past inputs.
This memory, stored in their internal state, changes through recurrent computations as
depicted in [55]:

h(t) = g(t)(x(t),x(t− 1), . . . ,x(2),x(1)) (2.15)
= f(h(t− 1),x(t); θ) (2.16)

Here, h(t) denotes the state at time t. The function g(t) takes the entire past sequence as
input and yields the current state. The recurrent structure is broken down by repeatedly
applying the function f . The RNN dynamics are further elucidated by the following
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update equations [55]:

a(t) = b + W · h(t− 1) + U · x(t) (2.17)
h(t) = tanh(a(t)) (2.18)
o(t) = c + V · h(t) (2.19)
ŷ(t) = softmax(o(t)) (2.20)

RNNs are usually trained via the Backpropagation Through Time (BPTT) approach.
The loss function, J , summarizes the losses across all sequence steps. As shown in [55]:

J ({x(1), . . . ,x(τ)}, {y(1), . . . ,y(τ)}) =
τ∑
t=1

J (t), (2.21)

where J (t) is the loss at each time step t.
Computing gradients in an RNN, essential for gradient-based optimization, uses the

general backpropagation algorithm applied to the unrolled computational graph. To un-
derstand how BPTT calculates gradients, consider the nodes representing parameters and
sequence-indexed nodes in the computational graph. To compute the gradient ∇NJ for
each node N , it depends on the gradient at the subsequent nodes. This recursion starts
with nodes just before the final loss [55]:

∂J

∂J (t) = 1. (2.22)

The gradient ∇o(t)J for the outputs at time t is:

(∇o(t)J)i = ∂J

∂o(t)i
= ∂J

∂J (t)
∂J (t)

∂o(t)i
(2.23)

Specialized RNN variants, such as Long Short-Term Memory (LSTM) networks [57]
and Gated Recurrent Units (GRUs) [58], address the challenges of traditional RNNs
in capturing long-term dependencies. LSTMs have features to carry information across
extensive sequences, while GRUs simplify LSTM structures by tweaking information flow.

Convolutional variants of LSTM and GRU, namely Convolutional LSTM (ConvLSTM)
[59] and Convolutional GRU (ConvGRU) [60], harness the spatially-local connectivity of
convolutional layers for grid data, like images or videos, while preserving their sequential
dependency capabilities.

In learned video compression, ConvLSTMs and ConvGRUs process the temporal de-
pendencies between video sequence frames. In a typical VAE, an encoder compresses the
input data into a latent space, and a decoder reconstructs it. ConvLSTMs/ConvGRUs
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ensure the compression model uses information from surrounding frames for the current
frame’s compressed representation. More details can be found in many works [59, 60].

2.2.7 Activation Functions and the GDN Function

The terminology related to activation functions in the context of artificial neural networks
(ANNs) has historically been somewhat inconsistent and has evolved over time. Terms
such as transfer function and output function have been used interchangeably with acti-
vation function in various contexts and literature. However, distinctions between these
terms have been made in some contexts [61]:

• Activation function I(x): An internal transformation of the input values x. Com-
monly, I(x) = wTx + b, where w and b are the neuron parameters (weights) and
bias, respectively.

• Output function o(a): A function which computes the output value of the neuron
using the activation value a = I(x), i.e., o : a ∈ R→ o(a) ∈ R.

• Transfer function T (x): Defined as the composition of the activation and output
function, T (x) = o(I(x)).

These definitions have not been consistently utilized across literature and practices.
In more recent practices, the term activation function has also been applied to what was
traditionally referred to as the output function, blurring the distinction between these
terms. Regardless, activation functions are typically characterized as mappings between
two subsets of the real numbers, adhering to specific properties to guarantee the universal
approximator property of multilayer feedforward (MLFF) networks. These functions are
usually non-constant, bounded, and monotonically increasing continuous functions [61].

Fixed-shape Activation Functions

Fixed-shape activation functions, devoid of adjustable parameters during training, have
significantly influenced the evolution and understanding of trainable functions, inspiring
the development of numerous derivatives and combinations. Despite historical limitations,
such as the identity function’s inability to approximate continuous functions in early
Neural Network (NN) architectures, these functions have paved the way for more refined
functions [61]. A detailed exposition of some of these pivotal functions, including the
identity function, can be found in Table 2.1.

NN architectures have preferred bounded activation functions like the sigmoid and
hyperbolic tangent due to their ability to approximate any continuous function defined on
a compact subset. This is true provided the number of hidden neurons is sufficiently large,
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and the functions are non-constant, bounded, and monotonically increasing continuous
entities (see Table 2.1, Sigmoid and Hyperbolic tangent) [61].

Table 2.1: Some of the most used fixed activation functions [61].

Name Expression Range
Identity id(a) = a (−∞,+∞)

Step (Heaviside) Th≥0(a) =
{

0 if a < 0
1 otherwise {0, 1}

Bipolar B(a) =
{
−1 if a < 0
+1 otherwise {−1, 1}

Sigmoid η(a) = 1
1+e−a (0, 1)

Bipolar sigmoid ηB(a) = 1−e−a

1+e−a (−1, 1)
Hyperbolic tangent tanh(a) (−1, 1)
Hard hyperbolic tangent tanhH(a) = max(−1,min(1, a)) [−1, 1]
Absolute value abs(a) = |a| [0,+∞)
Cosine cos(a) [−1, 1]
Softmax Softmax(a)i = eai∑

j
eaj (0, 1)

ReLU ReLU(a) = max(0, a) [0,+∞)
Leaky ReLU LeakyReLU(a) = max(αa, a) (−∞,+∞)
Softplus S+(a) = ln(1 + ea) (0,+∞)

ELU ELU(a;α) =
{
a if a > 0
α(ea − 1) otherwise (−α,+∞)

SiLU (Swish) SiLU(a) = aη(a) (−∞,+∞)

With the advent of the Rectified Linear Unit (ReLU) and its derivatives, a significant
shift in NN architecture has been observed. ReLU’s unbounded nature in the positive
domain and its capacity to encourage sparse activations have notably reduced the propen-
sity for the vanishing gradient problem, creating an environment where only a sparse set
of neurons are activated in a given layer. ReLU also confers robustness against minor
input perturbations and enhances representational capacity (see Table 2.1, ReLU) [61].

However, ReLU has challenges, such as the "dying" ReLU problem and non-differentiability
at zero. These issues are especially pronounced when a neuron has a significant nega-
tive bias, causing it to consistently output zero regardless of input. Variations like the
Leaky ReLU have been proposed to address these issues. Leaky ReLU introduces a small
non-zero gradient when the input is negative, alleviating the mentioned problems (see
Table 2.1, Leaky ReLU) [61].

Trainable Activation Functions

Research into trainable activation functions in neural networks has evolved since the
early 1990s, witnessing substantial developments in parameterized standard and ensem-
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ble methods-based activation functions. With the renewed interest in neural networks,
researchers continue to explore whether trainable activation functions could significantly
enhance neural network performance. Some examples of these activation functions, in-
cluding the Sigmoidal Selector and Flexible ReLU, are detailed in Table 2.2 [61].

Table 2.2: Examples of trainable activation functions. Note that exp represents the
exponential function ex [61].

Name Expression Trainable Range
Parameters

AGSig AGSig(a;α, β) = α
1+exp(−βa) α, β (0, α)

AGTanh AGTanh(a;α, β) = α(1−exp(−βa))
1+exp(−βa) α, β (−α, α)

PReLU PReLU(a;α) =
a if a > 0
αa otherwise

α (−∞,+∞)

PELU PELU(a; β, γ) =

β
γ
a if a ≥ 0
β(exp( a

γ
)− 1) otherwise

β, γ (−∞,+∞)

Swish Swish(a;α) = a · σ(αa) α (−∞,+∞)
Sigmoidal
Selector

Sk(a; k) =
(

1
1+exp(−a)

)k
k (0, 1)

Flexible
ReLU

frelu(a; β) = ReLU(a) + β β (−∞,+∞)

Trainable activation functions, particularly those derived from parameterized standard
activation functions, usually maintain a shape similar to their non-trainable counterparts,
achieving only modest enhancements in expressiveness. For example, AGSig and AG-
Tanh largely retain the shapes of sigmoid and Tanh functions, respectively, with modified
smoothness and amplitude modulated by parameters α and β (see Table 2.2). Similarly,
Swish can be considered a parameterized variant of SiLU/ReLU, learning its final shape
to balance between the two. However, its general shape remains closely related to the
primary function from which it was developed [61].

The Sigmoidal Selector represents a class of sigmoidal functions parameterized by a
value k in the interval (0,+∞), allowing for the selection of a practical function during
the learning process via gradient descent and backpropagation algorithms. Moreover,
the Flexible ReLU (frelu) introduced by Qiu, Xu, and Cai (2018) captures the negative
information lost with the classic ReLU function and provides the zero-like property while
having its parameters α and β learned by the data, offering a more adaptable activation
function [61].

A substantial portion of these functions, essentially a weighted output from the re-
spective weighted input of a fixed activation function, can be modeled via a shallow neural
subnetwork composed of a few neurons. These trainable activation functions highlight the
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potential versatility within neural network architectures, warranting further investigation
into their capabilities and limitations [61].

Generalized Divisive Normalization

The Generalized Divisive Normalization (GDN) is a notable activation function, deserving
detailed discussion due to its pivotal role in the baseline architectures explored in this
thesis [21, 45, 23]. GDN was initially envisioned as a mechanism for optimizing transforms
to acquire specific statistical properties in a transformed space, a concept fundamental to
efficient sensory coding theories in neurobiology. It has also found utility in the design of
cascaded operations, including deep neural networks [21].

The core of cascaded operations lies in seeking transformations that engender marginal
“directions” with minimized similarity to Gaussians, applying Gaussianization to these
directions through non-parametric non-linear scalar transforms [21]. While such transfor-
mations can converge to diverse data densities, their broad applicability can render models
susceptible to errors, requiring substantial data and potentially slow, data-dependent con-
vergence, primarily as they operate solely on marginals [21].

Divisive normalization operates as a form of gain control, dividing responses by a
weighted activity of neighbors, and has been widely adopted to elucidate the non-linear
properties of sensory neurons [21]. A typical representation of this transformation is:

yi = γ · xαi
βα +∑

j x
α
j

(2.24)

with parameters θ = {α, β, γ}. This transformation adapts responses to an intended
operating range while preserving relative values. A variant with α = 2 has demonstrated
its capacity to yield roughly Gaussian responses with notably diminished dependencies
[62], though its efficacy is predominantly observed when applied to groups of spatially
local responses [21].

GDN, a generalization featuring enhanced Gaussianization capabilities, extends ap-
plicability to more distant responses and those obtained via different filters [21]. GDN is
defined by a density transformation y = g(x; θ), wherein:

yi = zi
(βi +∑

j γij|zj|αij )ϵi (2.25)

z = T · x (2.26)

with parameter vector θ composed of vectors β, ϵ, and matrices T , α, and γ.
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An efficient inversion of this transformation is possible using fixed-point iteration [21]:

z
(0)
i = sgn(yi)(γϵiii |yj|)

1
1−αiiϵi (2.27)

z
(n+1)
i = (βi +

∑
j

γij|z(n)
j |αij )ϵiyi (2.28)

The originators illustrated that GDN adeptly “Gaussianizes” data via parameter op-
timization, achieved by minimizing the Kullback-Leibler divergence of the distribution
of transformed data relative to a Gaussian [21]. The details of the use of GDN will be
explored in subsequent chapters. For the definition of the Kullback-Leibler divergence,
please refer to Appendix I. As a crucial component in comprehending the reference archi-
tectures, further insights into GDN can be garnered from the proposed article [21].

2.2.8 Reinforcement Learning

The emergence of AlphaGo, a revolutionary AI program developed by Google DeepMind,
marked a watershed moment in artificial intelligence, defeating top human players in the
ancient game of Go in 2016 and 2017. Powered by advancements in reinforcement learn-
ing (RL), AlphaGo showcased the potential of machine learning across diverse domains,
including self-driving cars and data center optimization. Decision-making is crucial for
resource management across hierarchical time scales in process operations. While math-
ematical programming (MP) techniques like model predictive control are prevalent, they
encounter challenges in addressing large-scale stochastic problems [63].

Reinforcement learning (RL) offers a promising solution by deriving optimal decision
policies through interaction with the environment and feedback mechanisms. RL enables
data-driven dynamic programming and provides computationally feasible solutions using
stochastic simulations. Despite its potential, challenges remain, such as the complexities
of formulating Markov decision processes (MDPs) for multi-stage decision problems in
process operations [63].

This section will briefly discuss the main idea of reinforcement learning. The intent is
to provide the reader with a foundational understanding to extend the philosophy of the
approaches in this thesis [48].

The general idea of Reinforcement Learning

Machine Learning is fundamentally divided into three classes of algorithms: Supervised
Learning (SL), Unsupervised Learning (UL), and Reinforcement Learning (RL). In super-
vised learning, an agent learns to map from labeled examples to predict the values of new
inputs. For instance, given pictures of animals with corresponding labels, the agent learns
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to identify images containing specific types of animals. Unsupervised Learning involves
unlabeled data and aims to understand the data distribution. For example, the agent may
group pictures based on the kinds of animals they contain. The unsupervised paradigm is
strongly related to the idea of autoencoders. In contrast, Reinforcement Learning focuses
on learning the best way to accomplish tasks through interactions with the environment.
In this paradigm, the agent evaluates the long-term value of its actions [63].

Agent

EnvironmentRt+1
St+1

At
actionSt

state
Rt

reward

Figure 2.6: The basic idea of reinforcement learning. Adapted from [63]

The primary setting for RL, derived from Animal Psychology, is illustrated in Figure
2.6. It involves two entities: the Agent and the Environment. At each time step, the Agent
takes an action, affecting the environment and transitioning it from state St to St+1. This
action generates an immediate reward Rt+1. The Agent utilizes the state information
St+1 and immediate reward Rt+1 to determine the following action At+1, perpetuating the
cycle. The objective of the Agent is to learn a policy π(At = a|St = s) that maximizes a
long-term sum of future rewards, known as the value function vπ(s):

vπ(s) = E[Rt+1 + γRt+2 + γ2Rt+3 + . . . |St = s]

where γ ∈ [0, 1] is a discount factor that determines the importance of the future for the
decisions. RL algorithms can be considered iterative updates that improve the policy so
that the associated value function increases for all states [63].

2.3 Bayesian Inference

This section elucidates pivotal concepts intrinsic to Bayesian inference, establishing a
theoretical foundation that will seamlessly integrate with the advanced coding proposals
and methodologies explored in subsequent sections. The initial focus will be on unraveling
the intricacies of Bayes’ theorem, followed by a discussion on the inherent challenges
posed by intractability in Bayesian inference, and subsequently exploring its variational
formulation.
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The final topic covers variational autoencoders. Understanding these models is crucial
for comprehending the intricacies of this thesis. The choice to present variational autoen-
coders under Bayesian inference is to highlight these sophisticated neural architectures as
models for applying Bayesian mathematics, which is the focus of this thesis. Therefore,
this section is essential for understanding the core concepts of the proposals presented in
this document.

2.3.1 Bayes’ Theorem

Bayes’ theorem offers a methodical approach for updating probabilities or beliefs in light
of new data, especially within the realm of random variables. Let the random variables X
and Y symbolize specific events within a probabilistic framework. When we state X = x,
it implies that the random variable X assumes the vector value x [64].

The random variable type - discrete or continuous - dictates the function employed to
describe its probability distribution. If X is a continuous random variable, pX(x) denotes
the probability density function (PDF) of X at x. The PDF represents the likelihood of
X falling within a certain range of values. Conversely, if X is a discrete random variable,
its distribution is described using a probability mass function (PMF), similarly denoted
by pX(x).

Both the PDF and PMF define the distribution of a random variable for continuous
and discrete random variables, respectively. In Bayesian statistics, understanding how
observing X = x alters the probability associated with Y is crucial. The conditional
probability pY |X(y|x) represents the probability of y given that X = x and is defined as
follows [64]:

pY |X(y|x) = pX,Y (x,y)
pX(x) (2.29)

The multiplication rule of probability breaks down Equation 2.29 as:

pX,Y (x,y) = pX|Y (x|y)pY (y) (2.30)

Furthermore, the denominator in Equation 2.29, pX(x), can be found using the law
of total probability. In a continuous scenario, it can be written as:

pX(x) =
∫
pX|Y (x|y)pY (y)dy (2.31)

Substituting Equations 2.30 and 2.31 into 2.29, we obtain [64]:

pY |X(y|x) = pX|Y (x|y)pY (y)∫
pX|Y (x|y)pY (y)dy (2.32)
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With pX|Y (x|y) representing the likelihood and the integral
∫
pX|Y (x|y)pY (y)dy or

its discrete equivalent representing the marginal likelihood, these elements ensure consis-
tency across statistical and probabilistic theories, enabling Bayes’ theorem to systemati-
cally enable the updating of beliefs upon receiving new data, thereby supporting robust
methodologies in statistical inference and probabilistic data analysis [64].

2.3.2 Inference through Bayes’ Theorem

In Bayesian statistics, inference plays a critical role in updating the probabilities of hy-
potheses, denoted as Y , upon observing new data, symbolized as X. By anchoring our
discussion in Bayes’ Theorem, we explore the practice of inferential statistics where data
X and hypothesis Y engage in a sophisticated interaction [65].

Bayes’ theorem, adapted to our notation X and Y , is articulated as:

pY |X(y|x) = pY (y)pX|Y (x|y)
pX(x) (2.33)

Dissecting the components of the equation [65]:

• pY |X(y|x): The posterior probability, quantifying the belief in hypothesis Y after
observing X = x.

• pY (y): The prior probability, depicting the initial belief in Y without the new data.

• pX|Y (x|y): The likelihood, denoting the probability of observing X = x given Y = y

is true.

• pX(x): The marginal likelihood, illustrating the probability of observing X = x

without considering the validity of Y .

In the case of discrete random variables, the notation X = x denotes that the random
variable X takes the specific value x, using a probability mass function (PMF). For
continuous random variables, wherein a probability density function (PDF) is utilized,
P (X = x) = 0 for any specific x due to the infinite possibilities X might assume.
However, the notation X = x is still commonly employed for simplicity, even in the
continuous case, understanding that it typically denotes an interval around x.

Deepening our understanding of concepts vital to inference, wherein data (X) and
hypothesis (Y ) are entwined [66]:

• Parameter: A population is thought to be represented by a probability distribution
parameterized by θ = {θ1, θ2, ..., θk}.
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• Observation: Prior to data acquisition, future observations are categorized as ran-
dom variables X = {X1, X2, ..., Xn}, complying with the population distributions.
A specific realization, xk, is referred to as the realized value of Xk.

• Statistic: Within an inferential context, data statistics, or data summarizations,
are vital. A set of statistics is deemed sufficient if it encompasses all the information
necessary for inference concerning θ.

• Estimator: Denoted by θ̂, an estimator furnishes an approximation of the param-
eter θ.

When x represents observed data and θ signifies unobserved parameters, Estimation
relates to approximating a parameter’s value amidst the inherent variability and uncer-
tainty enveloping incomplete and noisy data. Conversely, Inference intertwines prior
knowledge and observations to compute the posterior, adhering to Equation 2.33. Bayes’
theorem facilitates a pathway for inference, empowering statistical methodologies to ju-
diciously interpret data and amalgamating prior knowledge and newly observed data into
a coherent probabilistic framework.

A last observation is related to the parameter vector θ. Given a function pX(x), the
parameters relate to the distribution of a random variable X according to X ∼ dist(θ),
where the notation representsX following a distribution parameterized by θ. For instance,
if X follows a normal (Gaussian) distribution, denoted as X ∼ N (µ,σ2), pX(x) =

1
σ

√
2πe

− 1
2(x−µ

σ )2

, where µ and σ2 are the mean and variance parameters, respectively. To
simplify our discussion and maintain cohesiveness in our exposition, we will occasionally
use the notation pX(x) with the implicit understanding that it refers to pX(x; θ) in the
ensuing text.

2.3.3 The Intractability Problem in Bayesian Inference

In Bayesian inference, parameter estimation and model fitting typically involve probability
distribution functions (or densities) that depend on unknown parameters. For a random
variable X following a distribution parameterized by θ, we can represent this as X ∼
dist(θ), with the corresponding probability function denoted as pX(x; θ) or implicitly as
pX(x). Conducting inference on the parameter vector θ involves interpreting it through
the lens of data represented by random variables X. This process entails identifying
probable values of θ and evaluating plausible values of its components while accounting
for the inherent uncertainty of such assessments [67].
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In parameter estimation, the Maximum Likelihood (ML) estimation approach is widely
adopted. It is mathematically expressed as follows [68]:

θ̂ML = arg max
θ

pX(x; θ), (2.34)

where pX(x; θ) elucidates the probabilistic relationship between the observations x and
the assumed model underlying these observations. Here, θ specifies the parameters of the
distribution under investigation.

In numerous scenarios, directly computing the function pX(x; θ) morphs into a com-
plex and formidable optimization problem. This computational challenge can be alleviated
by incorporating hidden variables, or latent variables, denoted by Y . While these
variables are not directly observable, they establish a connection between observations
and parameters via Bayes’ rule. They must encompass sufficient information to render
pX|Y (x|y) computationally manageable [68].

After defining these latent variables and their prior probability, pY (y), the marginal
likelihood can be derived via [68]:

pX(x) =
∫
pXY (x,y)dy =

∫
pX|Y (x|y)pY (y)dy (2.35)

Although seemingly straightforward, the integration within Equation 2.35 is pivotal
from a Bayesian perspective, facilitating the derivation of the likelihood function and, via
Bayes’ rule, the computation of the posterior of latent variables:

pY |X(y|x) = pX|Y (x|y)pY (y)
pX(x) (2.36)

After obtaining the posterior, inference concerning the latent variables becomes feasi-
ble. Nonetheless, in many instances, the integral within Equation 2.35 is either compu-
tationally infeasible or practically elusive to evaluate [68, 67].

In Bayesian inference, the essence lies in methodologies that allow for the bypassing
or approximation of this integral. Two primary categories of techniques emerge for this
purpose. The first includes numerical sampling methods, commonly known as Monte
Carlo techniques, and the second comprises deterministic approximation techniques [68].
The latter will be explored in Section 2.3.4.

2.3.4 Variational Inference

Variational Inference (VI) represents a systematic strategy to approximate complex con-
ditional densities through an optimization paradigm, distinctly different from previously
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discussed sampling methodologies. The essence of VI lies in approximating the conditional
density of latent variables given observed variables by exploiting a prescribed family of
densities and using optimization strategies. This approach uses a family of densities
parameterized by "variational parameters", creating a framework where the conditional
density is approximated by minimizing the Kullback-Leibler (KL) divergence [69].

To describe this mathematically, consider a family of densities, denoted as Q, over
latent variables Y . Each member, denoted by qY (y) within Q, serves as an approximating
candidate for the exact conditional density. Thus, the VI problem, defined through the
lens of KL divergence, is expressed as follows [69]:

q∗
Y (y) = arg min

qY (y)∈Q
KL[qY (y)||pY |X(y|x)], (2.37)

where q∗
Y (y) represents the optimal approximation of pY |X(y|x) from within the family

Q.
By using KL divergence as a measure, the optimization process aims for the closest

approximation within Q, balancing the trade-off between approximation accuracy and
computational cost. The complexity of the optimization process correlates with the com-
plexity of the family Q.

A computational bottleneck arises from the necessity of evaluating the objective func-
tion in Equation 2.37, which requires calculating the log evidence, log pX(x), known for
its computational difficulty. This computational challenge is addressed through the KL
divergence expansion [69]:

KL[qY (y)||pY |X(y|x)] = EqY
[log qY (y)]− EqY

[log pY |X(y|x)] (2.38)
= EqY

[log qY (y)]− EqY
[log pY X(y,x)] + log pX(x)

where EqY
represents the expected value under the distribution qY (y).

The Evidence Lower Bound (ELBO) is habitually employed as an effective surrogate
to alleviate this computational challenge. Given a data model pX(x), representing the
marginal likelihood or evidence, and a data distribution involving a variable y, represented
as pY X(y,x), the ELBO is invoked when a distribution of the latent variable y, denoted
as qY (y), is known or assumed [70].

The interplay between the latent variables y and observed data x constructs a scaffold
that facilitates this endeavor. A key aspect is to comprehend the marginal likelihood,
expressed as ln pX(x), which quantifies the log-probability of observing the data given the
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model pX . This can be expressed and manipulated as follows [71]:

ln pX(x) = ln
∑

y

pY X(y,x) (2.39)

= ln
∑

y

qY (y)pY X(y,x)
qY (y) (2.40)

= lnEqY

[
pY X(y,x)
qY (y)

]
(2.41)

Navigating through the principles of variational inference, Jensen’s Inequality illu-
minates a path to establish a lower bound. It connects the logarithm of the marginal
likelihood with the expectation across an approximated model [71]. To lay this founda-
tion, let us recall Jensen’s Inequality:

ln pX(x) ≥ EqY

[
ln pY X(y,x)

qY (y)

]
(2.42)

Here, pY X(y,x) denotes the joint distribution of the observed and latent variables, and
qY (y) signifies an approximating distribution aligned to the true posterior of the latent
variables Y . Let us focus on the Evidence Lower Bound (ELBO), symbolized by LqY

:

LqY
(y,x) = EqY

[
ln pY X(y,x)

qY (y)

]
(2.43)

Inspecting Equation 2.42, it becomes clear that the gap creating the inequality is the
Kullback-Leibler (KL) divergence, which measures the dissonance between two probability
distributions.

ln pX(x) = LqY
(y,x) +KL[qY (y)||pY |X(y|x)] (2.44)

Delving into the KL divergence, KL[qY (y)||pY |X(y|x)], provides insights into the vari-
ance between the ELBO and the marginal likelihood, indicating the tightness of the
bound. Minimizing this divergence implies that qY (y) is an apt approximation of the ac-
tual posterior, thus optimizing ln pX(x) and, concurrently, enhancing the approximation
qY (y) [72].

The crux of the matter revolves around maximizing the ELBO, which is equivalent to
refining the KL divergence, excluding the constant term log p(x) [69]. The ELBO conveys
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its mathematical essence as:

LqY
(y,x) = EqY

[log pY X(y,x)]− EqY
[log qY (y)] (2.45)

= EqY
[log pY (y)] + EqY

[log pX|Y (x|y)]− EqY
[log qY (y)]

= EqY
[log pX|Y (x|y)]−KL[qY (y)||pY (y)]

In this intricate process, ELBO optimization balances two crucial facets: (1) ampli-
fying the expected log-likelihood of the observed data and (2) minimizing the divergence
between the approximate and true posterior distributions, illustrating a harmony between
likelihood and prior [69]. This variational framework lays the foundation for advanced
methodologies, like variational autoencoders, within neural data encoding, fostering a
delicate balance between data adherence and model complexity.

2.3.5 Variational Autoencoders

Variational Autoencoders (VAEs), introduced by Kingma and Welling, pioneered a paradigm
shift in deep latent variable models by combining deep learning and Bayesian inference.
This formed a novel methodology for model training and inference through stochastic
gradient descent [72]. In understanding VAEs, distinguishing between generative and
discriminative modeling is imperative. While discriminative models predict dependent
variables given certain features, generative models, such as VAEs, aim to understand the
joint distribution of observed and latent variables, providing a fuller, generative represen-
tation of the data.

VAEs are a cornerstone within probabilistic modeling, leveraging variational inference
to streamline the optimization of complex, high-dimensional data. Instead of directly
defining the data distribution pX(x; θ), the focus is on sculpting a model, denoted as
pY |X(y|x; θ), that accurately mimics the actual distribution p∗(y|x) via latent variables
y and is conditioned on observable variables x, parameterized by θ [72]. The optimization
attempts to ensure:

pY |X(y|x; θ) ≈ p∗(y|x) (2.46)

The strategic utilization of neural networks becomes pivotal here due to their substan-
tial expressiveness in representing these distributions. Despite the possible simplicity of
the conditional distribution pY |X(y|x; θ), the marginal distribution pX(x; θ) can encapsu-
late a rich complexity, introducing arbitrary dependencies among variables [72]. However,
even with the proficient capabilities of deep models, the intractability problem, specifically
regarding the computation of pX(x; θ), remains a challenge.
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A committed approach to navigate the intractability problem, inspired by Variational
Inference, is to introduce a parametric model, symbolized as qY |X(y|x; ϕ) and referred to
as the encoder, as proposed by [22]. Given:

qY |X(y|x; ϕ) ≈ pY |X(y|x; θ) (2.47)

the optimization is conducted via SGD, detailing the VAE components and their respec-
tive mappings in Figure 2.7. Here, the encoder, expressed as qY |X(y|x; ϕ), approximates
the true posterior pY |X(y|x; θ), which is inherently intractable. Therefore, the encoder
operates as a stochastic mapping, connecting the observed variable x to the latent space
y, with its distribution representing the prior of the generative model, symbolized as
pY (y; θ). Concurrently, the decoder pX|Y (x|y; θ) performs a stochastic mapping from the
latent space y to an observed space region.

x space 

y space

pY(y;θ)

pX|Y(x|y;θ)qY|X(y|x;φ)

pX(x;θ)

Figure 2.7: Visualizing VAE’s stochastic mappings between observed and latent spaces.
VAEs establish a network of probabilistic mappings between the observed space x and
the latent space y, with respective distributions pX(x; θ) and pY (y; θ). [72].

Efficiency in the VAE’s optimization lies in its ability to leverage the latent space y,
which embodies a simpler, typically spherical distribution, as a powerful tool for capturing
and replicating the complexities and variances within the observed data x. Here, the
encoder functions as a probabilistic function that maps observed variables to a latent
space, which is further exploited by the decoder to generate new data samples, feeding
into the generative model capabilities of VAEs [72].

The VAE optimization aims not only to model but also to generate new data by draw-
ing from this latent space, ensuring it adheres as closely as possible to the original data
distribution pX(x; θ). It holds potential for productive applications through proficient
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data generation and approximation. Concurrently, the model, via the optimization of
parameters θ and ϕ, attempts to minimize the divergence between the encoder’s approx-
imation qY |X(y|x; ϕ) and the true posterior pY |X(y|x; θ), creating a coherently organized
latent space and fostering enhanced generative capabilities. The objective function of
VAEs, similar to other variational methods, revolves around the ELBO. Optimizing the
ELBO coincides with optimizing the KL divergence. The relationship between the ELBO
and the KL divergence can be established based on the modeling context of this section
[22, 72]:

log pX(x; θ) = EqY |X(y|x;ϕ)[log pX(x; θ)]

= EqY |X(y|x;ϕ)

[
log

[
pXY (x,y; θ)
pY |X(y|x; θ)

]]

= EqY |X(y|x;ϕ)

[
log

[
pXY (x,y; θ)
qY |X(y|x; ϕ) ·

qY |X(y|x; ϕ)
pY |X(y|x; θ)

]]

= EqY |X(y|x;ϕ)

[
log

[
pXY (x,y; θ)
qY |X(y|x; ϕ)

]]
+ EqY |X(y|x;ϕ)

[
log

[
qY |X(y|x; ϕ)
pY |X(y|x; θ)

]]
log pX(x; θ) = Lθ,ϕ(x) +KL(qY |X(y|x; ϕ)||pY |X(y|x; θ)) (2.48)

From the derivation showcased in Equation 2.48, and considering the properties of
KL, it is clear that maximizing Lθ,ϕ(x) with respect to parameters θ and ϕ optimizes
two critical aspects. The first pertains to the maximization of the marginal likelihood
pX(x; θ), indicating enhancements in the generative model. Simultaneously, it minimizes
the KL divergence of the distribution qY |X(y|x; ϕ) with respect to the true posterior
pY |X(y|x; θ), thereby fine-tuning qY |X(y|x; ϕ) to be a more accurate approximation.

2.4 Summary

In conclusion, this chapter serves as a cornerstone in laying the theoretical groundwork
for the research endeavors outlined in this doctoral thesis. By delving into the intrica-
cies of image compression, neural networks, and Bayesian inference, the chapter provides
a comprehensive overview of key concepts essential for understanding the proposed ap-
proaches. In exploring image compression, fundamental techniques such as arithmetic
coding and transform coding are elucidated. It also offers readers a deep understanding
of the historical trajectory and evolution of classic CODECs. Integrating machine learn-
ing and neural networks into image compression techniques signifies a paradigm shift,
promising enhanced performance and adaptability in multimedia and telecommunication
applications.
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The discussion on neural networks covers various aspects, including feedforward neural
networks, convolutional neural networks, recurrent neural networks (RNNs), and activa-
tion functions. RNNs’ ability to process sequential data and capture temporal depen-
dencies opens avenues for applications in natural language processing, time-series analy-
sis, and more. Trainable activation functions represent advancements in neural network
design, offering flexibility, expressiveness, and robustness in model representation and
inference.

The chapter also emphasizes the importance of foundational concepts from informa-
tion theory and variational Bayesian inference, providing readers with the necessary back-
ground to effectively engage with the proposed research. The appendix detailing infor-
mation theory serves as a valuable resource for readers seeking further clarification and
understanding. Additionally, the section on Bayesian inference provides a deep under-
standing of the cornerstone model in this thesis, the Variational Autoencoders (VAEs).

As the chapter concludes, its significance becomes evident as a foundational pillar for
subsequent chapters. The theoretical framework established here not only supports the
thesis’s arguments and findings but also equips readers with a discerning lens to appreciate
the approaches and methodologies explored and proposed in the following chapters.
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Chapter 3

Literature Review

Neural networks are known to perform well in image compression. Until recently, there
was little evidence that training a competitive neural network for various images and rates
was possible. Nevertheless, several studies now demonstrate the power of neural networks
in compressing multiple data types.

This chapter reviews the most significant works in neural image coding. Non-recurrent
neural networks are discussed in Section 3.1, while recurrent neural network techniques are
covered in Section 3.2. Approaches based on variational autoencoders, the main methods
used in the field, are detailed in Section 3.3, which is further subdivided into topics such
as entropy model techniques, computational performance improvements, variable rate
methods, and attention-based techniques, among others.

3.1 Non-recurrent Neural Networks

Neural networks have recently become state of the art in semantic tasks such as image
classification and object detection. They also achieve high performance in low-level tasks
like super-resolution and compression artifact reduction by exploring the hierarchical cor-
relation between neighboring values using cascaded operations [7].

One of the first significant approaches to using neural networks in image coding is
based on a cascade of autoencoders [15]. In this strategy, each autoencoder compresses
and reconstructs its input, with the reconstruction error propagated as input to the next
autoencoder, repeating until a specified number of autoencoders. This approach, shown
in Figure 3.1, results in each autoencoder specializing in compressing and reconstructing
residuals. The strategy can be summarized in the following equations, where x is the
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input image, t is the index of the autoencoders, and rt is the t-th generated residual:

r0 = x (3.1)
ht(rt−1) = gt(b(ft(rt−1))) (3.2)

rt = ht(rt−1)− rt−1 (3.3)
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Figure 3.1: Multiple encoder-decoder pairs progressively refine residuals.
An architecture where several pairs of encoder and decoder progressively operate on the
residuals. The original block is the level 0 residual. From the reconstruction of this
residual, the error is calculated and propagated as a level 1 residual, and so on [15].

In this case, the pair (ft, gt) represents the autoencoder for the t-th level of residuals,
where ft is the encoder and gt is the decoder. Given the input residual for level t− 1, the
residual at level t is defined by the reconstruction error between the input rt−1 and the
reconstruction ft(rt−1). The term b represents the binarizer. Since the binarization step
is not differentiable, the authors proposed a training strategy where the output of the last
layer of the encoder, with hyperbolic tangent activation, was probabilistically binarized.
They considered the derivative of the operation in a statistical sense through expectation.

The authors used 16 levels of residuals in this work, with an input size of 32× 32. An
advantage of this strategy is that the coding is progressive, with each level encoding the
residuals of the previous level, incrementally increasing the rate. The dataset for training
consisted of 216 million random images collected from the internet, with 90% used for
training and 10% for testing.
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In the same work, the authors analyzed different variations of neural network archi-
tectures with fully connected and convolutional layers [15]. This work is significant as it
was one of the first to propose using neural networks for compression tasks. Subsequent
improvements based on this proposal have been suggested and will be presented later.

3.2 Recurrent Neural Networks

Unlike non-recurrent approaches that rely on fully connected or convolutional layers,
recurrent models use recurrent layers. A recurrent neural network uses memory to store
information about past inputs, with memory units having connections to themselves. This
temporal information alters the layer’s behavior concerning the current input [7].

Various layer implementations have been proposed to maintain temporal informa-
tion in neural networks. One of the earliest effective approaches is the use of LSTM
(Long Short-Term Memory). Subsequent improvements introduced GRU (Gated Recur-
rent Unit), which simplifies the recurrent component while maintaining the performance
of LSTM in some scenarios [7].

The work proposed by Toderici et al. [16] introduces an improvement over their
previous work [15], specifically related to memory components. Instead of using multiple
autoencoders, this approach utilizes a single network with memory components. The
reconstruction residue feeds back into the network, which uses this memory to attempt
a higher quality reconstruction of the image. Figure 3.2 illustrates this strategy. In
this approach, the latent layer is progressively composed. The authors analyzed the
performance of several layers, including LSTM and GRU, with GRU yielding the best
results.
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Figure 3.2: The architecture consists of a single autoencoder with memory layers. The
input is either the original image or the reconstruction residue [16].

Additional improvements included the introduction of a simultaneously trained net-
work and scaling of the input residues to ensure different levels of residues were within an
expected range to facilitate network convergence. Moreover, the binarization process was
enhanced by adopting an LSTM layer to model a context passed to an arithmetic encoder.
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Thus, the approach also introduces an architecture capable of performing compression at
variable rates. However, a significant issue is the lack of flexibility and the complexity
in training a memory model that performs multiple iterations over the data and residues
[16].

The architecture proposed by Toderici et al. [16] has been enhanced in several works.
Covell et al. addressed the rigidity issue in bit allocation [17]. The original proposal
had no criterion for bit allocation. However, allocating more bits to complex regions and
fewer bits to simple image regions can be beneficial. The authors propose this allocation
based on a desired quality level. A mask is used in the binarization layer before code
transmission to signal the following situations:

• The quality objective has been achieved;

• The encoder output is accidentally composed solely of zeros;

• A mask was applied to the code in the previous iteration.

In other words, it controls when additional iterations are no longer necessary to im-
prove the quality of the given block. The authors employ strategies so that the network
recognizes this pattern of latent components composed only of zeros as a signal that no
further refinement is needed, given the image’s quality level.

A concept inspired by traditional coding strategies, based on the architecture proposed
by Toderici et al., is presented by Minnen et al. In this approach, DPCM is simulated
using a neural network [18]. Here, the autoencoder processes only the residues obtained
in the initial stage instead of directly encoding the image. Adjacent blocks are used as
context for prediction, as shown in Figure 3.3.

Johnston et al. [20] modify the training strategy to enhance the neural network’s
generalization by better exploring the hidden states of the recurrent layers. This strategy,
termed "priming", involves running several "fake" iterations before generating binary codes
(encoder) or a reconstructed image (decoder) [16]. These fake iterations are not considered
in the final flow but are performed before iterations to improve the initialization of the
hidden states of memory layers. Figure 3.4 shows an example of "priming" with one "fake"
iteration.

A generalization of the priming strategy is also proposed, termed "diffusion". In this
case, for each real iteration for a block, "fake" iterations are interspersed, further refining
the hidden state of the recurrent layers. Although the diffusion strategy is much more
computationally intensive, it yields the best-reported results. The main drawback of this
approach is that it introduces even more complexity to the training of an architecture
that already requires extensive training.
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Figure 3.3: The architecture adds a context prediction network, which also follows the
architecture of an autoencoder. In this case, the input to the encoding network is no
longer an image block but the residue of context prediction as proposed by Minnen et al.
[18].
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Figure 3.4: The priming strategy encodes the input once, and the latent representation is
discarded. Only the encoder’s state is propagated forward, and the image is fed again. The
latent representation feeds the decoder twice, with the state of the first being propagated
to the second [20].
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3.3 Variational Autoencoders

Variational Autoencoders (VAEs) are neural networks that implement an approximate
model of the a posteriori in the context of variational Bayesian inference [22]. Since their
inception, VAEs have been extensively used as generative data models. However, they
have also proved to be very useful for encoding tasks. In encoding, these a posteriori
models are not used to generate new data but to model the density of the code space.

VAEs were adopted in the context of encoding as specific modeling choices led the
original loss function to become equivalent to the rate-distortion function [45]. The code
space model is obtained by relaxing the quantization operation. Since this operation is
non-differentiable, it is replaced by additive uniform noise of unit width during train-
ing. Moreover, like in Kingma’s work [22], the likelihood is modeled as a Gaussian with
constant variance and mean represented by the decoder. A flowchart of this approach is
described in Figure 3.5.

f g

U|Q

x x | x~ ^

y y | y~ ^

Figure 3.5: Function f represents the encoder, and g represents the decoder. In this case,
the model for y is a non-parametric distribution. The components U and Q represent
the quantization at training and testing times, where uniform noise is added to y during
training. This notation leads to the variables with the tilde accent (∼) and the circumflex
accent (∧) representing the values obtained at training time and testing time, respectively
[23].

A factorized distribution models the code space. When this restriction is adopted in
variational inference, the approach is termed the mean-field approximation. It is the most
common type of variational inference as it is conceptually simple, easy to implement, and
particularly feasible for problems with a large number of latent variables [73].

Various models with different λ values are trained on 6507 images from ImageNet [74].
The entropy encoder is an implementation inspired by CABAC (context-adaptive binary
arithmetic coding), and the evaluation is performed on the Kodak dataset [75]. With the
proposed equivalence, the authors introduce variational autoencoders in the context of
encoding, optimizing both the latent space and the reconstruction. This approach has
become the basis for many improvements and shows superior results compared to methods
based on Toderici’s approach [15].
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Ballé et. al. proposed an improvement in a later work [23], where their original idea is
enhanced with the introduction of a hyper a priori. The authors model the latent space
using a Gaussian with a mean of 0 and parametrized variance. To estimate the variance,
a new VAE serves as an a priori over the a prior (hence the name hyper a priori). The
output of this component is the variance vector of the data’s entropy model. The block
diagram of this approach is displayed in Figure 3.6. As the hyper a priori is a VAE, it
also has its own latent space that adopts the non-parametric modeling of their earlier
approach [45]. This information is considered additional (side information) to the main
latent.

In this case, training was conducted on a 1 million JPEG web image database, sized
3000× 5000. The images were sub-sampled to the size of 640× 1200, from which random
crops of size 256× 256 were taken. This sub-sampling was adopted to mitigate artifacts
produced by the pre-encoding JPEG of the images. This architecture, which employs
the hyper a priori, is the most adopted in subsequent works. The variational approaches
described in this chapter will be presented in detail in the following chapter since they
are the reference architectures used in this work. It is worth mentioning that the hyper a
priori approach [23] is the basis of a wide range of proposals.
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Figure 3.6: The hyperprior architecture proposed in [23].

Minne’s work [24] improves over Ballé’s hyperprior approach [23] including an au-
toregressive component. It was the first work to surpass HEVC (High Efficiency Video
Coding) in intra-prediction mode for PSNR (peak signal-to-noise ratio). The hyperprior
combined with the autoregressive component produces both parameters of the Gaussian
modeling of the central latent’s entropy: mean and variance. An entropy parameter net-
work receives both the output of the hyperprior and the output of the autoregressive
context component to produce the parameter vectors. A significant weakness of this work
is its low feasibility in real scenarios with large images due to the autoregressive com-
ponent. Furthermore, the results reported by the authors are estimated according to
Shannon entropy, not by actually performing the inference process.
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The role of non-linear transforms in VAEs is further studied in another paper of Ballé
[76]. This work comprehensively reviews non-linear transform coding (NTC) methods,
showcasing their competitiveness against leading linear transform codecs for image com-
pression. The empirical assessment of NTC’s rate-distortion performance employs simple
source examples, facilitating optimal quantizer performance estimation. The study in-
troduces an innovative variant of entropy-constrained vector quantization and analyzes
stochastic optimization techniques for NTC models. Architectures of artificial neural
network-based transforms and learned entropy models are reviewed. The paper also di-
rectly compares various methods for parameterizing the rate-distortion trade-off of non-
linear transforms. The variational approaches mentioned in this section will be explained
in greater detail in the following chapters, as they are the backbone architectures used in
this work.

3.3.1 Approaches Focusing on the Entropy Model

One of the main lines of improvement applied to the previously mentioned works is the
adoption of different entropy models, as it is the case of Minnen’s approach [25]. The
standard approach introduced by Ballé [45] is to learn a fixed entropy model through
non-linear transforms optimizing the rate-distortion. However, this global model is not
entirely suitable for all images. Side information is passed to specify specific entropy
models for each image to make the architecture more flexible. Among the local entropy
models generated a priori, the one that minimizes latent entropy is chosen.

Li et. al. [26], based on Minnen’s work [24], propose different modeling strategies
that address the inefficiency of the standard autoregressive component. Independence
conditions are adopted between groups of latent elements, and a zig-zag analysis is con-
ducted to parallelize some calculations. Another introduced change is that the code is
three-dimensional.

A multiscale autoregressive approach, based on Minnen’s work [24], is presented by
Zhou et al. [27]. The authors use causal masks of sizes 3×3, 5×5, and 7×7. The outputs
of this multiscale autoregressive model feed a parameter network, along with the output
of the hyperprior. Another difference is that the input to the hyperprior is a composition
of feature maps from various encoder layers. These multiscale approaches have been quite
common in neural networks. Another interesting idea presented in the paper is to have
the arithmetic encoder ignore maps almost entirely composed of zeros, saving bits.

Jiang et al. [77] introduce advancements in learned image compression, focusing on
the role of entropy models in enhancing rate-distortion performance. Existing entropy
models often capture correlations in a single dimension, neglecting channel-wise, local,
and global spatial correlations in latent representations. To address this limitation, the
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authors propose multi-reference entropy models (MEM and MEM+) capable of captur-
ing these various contexts. The latent representation is divided into slices, and during
decoding, previously decoded slices serve as contexts. An attention map of the preceding
slice predicts global correlations in the current slice, addressing local and global spatial
contexts.

Duan et al. [78] explore the intersection of generative modeling and lossy image
compression, drawing inspiration from the theoretical connection between variational au-
toencoders (VAEs) and rate-distortion theory. Building upon ResNet VAEs, initially
designed for data distribution modeling, the authors redesign the latent variable model
with a quantization-aware posterior and prior. The QRes-VAE (Quantized ResNet VAE)
model adopts a hierarchical architecture for entropy modeling, encoding, and decoding
coarse-to-fine images.

3.3.2 Improvements Regarding Computational Performance

Computational cost is one of the major hindrances to applying highly complex neural
architectures. As mentioned earlier, the approach proposed by Minnen [24], which applies
an autoregressive component, has restricted applicability due to the non-parallelism of this
component. Various works have focused on improving the efficiency of some models, either
by changing the entropy modeling [26] or by optimizing other features of the modeling.

The need to perform complete training for multiple models with different λ’s can be
problematic. In Theis’ work [28], the authors propose computationally efficient ways to
train models. They train networks with different optimization hyperparameters and adopt
a second hyperparameter to refine the rate-distortion learned by the reference model. Only
one refinement training is performed on the previous model with this new hyperparameter,
generating multiple models from each reference model. Although the standard optimiza-
tion is superior, this strategy allows training more models with minor performance losses.

A work focusing on improving computational efficiency through changes in the entropy
model can be seen in another Minnen’s approach [29]. The authors propose independence
between the channels of the latent representation, allowing all components of the same
channel to be processed in parallel. The autoregressive component is applied channel by
channel, introducing a higher level of parallelism than the element-by-element autoregres-
sive approach.

Hu et al. [30] abandon the autoregressive component and replace it with hierarchi-
cal modeling based on a set of hyperpriors, as shown in Figure 3.7. The components
make increasingly finer data analyses in this hierarchy of priors. Additionally, the hyper-
decoders not only predict the parameters of the distributions but also feed the primary

51



decoder to assist in the reconstruction, better utilizing the information passing through
these elements.
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Figure 3.7: The approach adopts a hierarchy of autoencoders. The process reports the
input I and the reconstruction I ′. In this case, the functions H − ENC and H −DEC
portray multiple hierarchical hyper a priori. Each processes the latent information of
the preceding one. These hyper-decoders produce the parameters for the component
hierarchically below and feed the main decoder to aid in the reconstruction [30].

An approach focused on optimizing network layers with hyper a priori [23] is presented
by Johnston et al. [31]. The authors argue the choice of the number of layers and
filters is arbitrary. They focus on improving the decoders’ performance using neural
network pruning techniques, achieving different network configurations. Specifically, Lasso
regularization is adopted to identify the adequate number of filters. However, the process
could not be fully automated as excessive restrictions sometimes occurred in predicting
the hyper-decoder.

Luo et al. [79] address some applicability challenges of Learned Image Compression
(LIC), particularly the high memory cost, which hinders their application on various
devices, especially portable and edge devices. They identify the over-parameterization of
the hyperprior module and the redundancy in its latent representation as contributors
to this memory cost. To address this, they propose a pruning method called Enhanced
Resrep on Hyper Path (ERHP), aimed at reducing the memory consumption of hyperprior
modules while enhancing network performance.

3.3.3 Variable Rate Models

The approaches presented earlier [45], [23], and [24] yield arbitrary compression rates with
different images. Moreover, this compression rate is fixed for a given image, making it
impossible to vary the rate. Several works have been proposed to overcome this limitation
and obtain architectures that produce variable compression rates. This class of approaches
is closely related to the proposals presented in this thesis.
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Conditional autoencoders are used for conditional data generation [80, 81]. Condi-
tioning variables, such as labels and attributes, feed the model. Choin et al. [32] use the
Lagrangian λ as the conditioning variable to vary the rate produced. Another change
is the adoption of universal quantization, which receives a parameter ∆ controlling the
precision of the rounding operation. The network is trained with different ∆s, and at
inference time, this parameter is also used to vary the rate.

Cai et al. adopt a multiscale residual decomposition, composing different latent repre-
sentations as more scales are used [33]. An allocation mechanism determines the number
of scales to achieve a target compression rate. Cui et al. [34] propose a G-VAE (Gained
Variational Autoencoder) architecture where a gain unit scales the produced latent. This
allows rates to be adjusted by modifying these gain vectors, achieving continuous rate
adjustment.

A sophisticated strategy to obtain multiple rates with a single model is presented
by Yang et al. [35]. The authors change the entropy encoder, enabling the strategy in
any variational autoencoder with mean field distributions. They modify the arithmetic
encoder to handle continuous values. The Bayesian arithmetic encoder uses ideas from
the standard encoder, such as the cumulative distribution function and an "uncertainty
region". Instead of a rigid uncertainty region, the goal is to find a point that identifies the
latent variables with high probability according to the variational distribution, minimizing
the number of bits.

Cui et. al. [82] address continuous rate adaptation by proposing the Asymmetric
Gained Variational Autoencoder (AG-VAE). AG-VAE introduces gain units for discrete
rate adaptation and employs an exponent interpolation formula for continuous rate adap-
tation without extra training. It also uses an asymmetric Gaussian entropy model for
accurate entropy estimation. This framework generalizes to various VAE-based compres-
sion methods and improves entropy estimation.

The use of progressive encoding to achieve variable bitrate is studied in Lu’s work
[83]. This paper introduces PLONQ, a progressive neural image compression scheme
that enables quality-scalable coding with a single bitstream. Unlike existing solutions,
PLONQ simplifies rate control and reduces storage requirements by allowing truncation
of a single bitstream for different qualities. It progressively refines latent representations
from coarse to fine quantization levels by leveraging latent scaling and introducing nested
quantization.

The approach of Baldassarre [84] enhances vector-quantized autoencoders for image
compression, addressing their limitation in allocating variable bits based on semantic
content or local saliency. The proposed method combines product quantization (PQ)
with structured dropout, enabling some degree of rate control for different image regions.
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The PQ-autoencoder is trained end-to-end with structured dropout, selectively masking
a variable number of codes at each location. This mechanism forces the decoder to
reconstruct the image based on partial information, allowing local rate control.

Many other approaches have been proposed regarding variable bitrate. For example,
Kao et al. [85] adopt Region-of-Interest control to vary the bitrate compression. Liang’s
work [86] introduces bitrate flexibility using spatial importance through a gain unit that
applies an importance mask. Tong et al. [87] use a quantization error regulator vector
aligned with predefined Lagrange multipliers to achieve variable rate. Duan et al. [88] em-
ploys a hierarchical quantization-aware ResNet VAE architecture with an adaptive layer
normalization operation for variable-rate compression. Cai’s approach [89] introduces
an Invertible Activation Transformation (IAT) module on a single-rate Invertible Neural
Network (INN) based model, feeding the quality level (QLevel) into the IAT to generate
scaling and bias tensors. Lee’s work [90] introduces Selective Compression of Representa-
tions (SCR) for variable-rate image compression using neural networks, which selectively
compresses latent representations using a 3D importance quality-adjusted map.

3.3.4 Approaches with Different Neural Operations

One of the leading introductions of modified neural operations comes from octave convo-
lutions, proposed in Chen’s work [36]. Natural images usually treat different frequency
components distinctly: high frequencies are associated with fine details, and low fre-
quencies with global structure. The authors factorize the convolution activation maps,
separating operations into two frequency bands. This approach improves recognition
task results and reduces computational cost. Figure 3.8 depicts a flowchart of this new
convolution operation.
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Figure 3.8: The approach introduces high-frequency components H and low-frequency
components L. A pooling operation and a supersampling operation allow the exchange
of information between the two components [36].

54



The applicability of octave operations in encoding was first addressed in Akbari’s work
[37]. The hyper a priori architecture from Minnen’s approach [24] was adopted for anal-
yses. However, the authors concluded that standard octaves do not outperform regular
convolution. The pooling and supersampling operations discard information relevant to
encoding. Therefore, the authors propose a generalization of the octaves where convolu-
tions replace subsampling and supersampling operations. This variation achieved superior
results, competing with newer encoding standards like the VTM.

Lin et al. [38] propose an extension of the generalized octaves from Akbari’s work [37].
The authors add a network to scale the convolution outputs with a parameter λ, naming
it modulated octave convolution. These operations preserve more spatial structure. The
architecture used to validate the results is derived from Ballé’s hyperprior approach [23],
and the performance surpasses the VTM (VVC Test Model) in some scenarios.

3.3.5 Approaches with Bit Allocation and Attention Modules

Neural image compression methods are limited in modeling and exploring spatial variation
and dependence of image contents. The invariant bit allocation is generally adopted,
while image content is spatially variant. More complex regions are usually essential for
constituting an image [39]. Given this, several proposals aim to develop strategies to
improve bit allocation. Another approach closely related to this idea is using attention
modules in neural networks.

In Zhou’s work [40], the authors propose an image compression approach for low com-
pression rates, inspired by Minnen’s autoregressive idea [24]. A PixelCnn++ represents
the autoregressive component [91]. Non-local residual attention modules [92] are used to
capture global data correlations. These modules can improve compression by allocating
more bits to important areas unsupervised. This architecture achieved the best result at
the CLIC 2019 competition.

A similar strategy with non-local attention modules is adopted in Chen’s and Liu’s
works [41, 42]. These modules enhance the capture of global and local correlations and
generate masks relevant to the images. These masks weigh the features, producing an
implicit bit allocation effect based on the element’s importance.

An approach with a similar idea that does not use variational autoencoders is presented
in Li’s work [39]. Although it is not within the scope of VAEs, it is worth mentioning due
to its relevance. The authors propose an encoding network, a decoding network, and a
network of importance maps. These maps are applied to the quantized code to truncate
elements based on their importance.

Jeny et al. [93] address the challenge of retaining local redundancies in non-repetitive
patterns. The proposed method utilizes an autoencoder-style network with three blocks:
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the adjacent attention block (AAB), the Gaussian merge block (GMB), and the decoded
image refinement block (DIRB). The AAB captures spatial correlations vertically and
horizontally, removing unnecessary information and improving entropy coding efficiency.
The GMB simulates the distribution of latent representations, enhancing rate-distortion
optimization performance. To mitigate compression artifacts, the DIRB leverages global
information to improve the quality of reconstructed images.

3.3.6 Post-Processing Based Approaches

Another approach in neural image coding involves adding a post-processing component
to the autoencoders’ reconstruction. A joint optimization scheme for coding and quality
enhancement, termed JointIQ-Net, is proposed. This scheme is the first to surpass VTM
[43]. The authors suggest strategies for context modeling, dividing them into local and
non-local contexts. The reported results were achieved with up to 3 million training
iterations on a CLIC database.

3.3.7 Generative Compression

A generative adversarial model approach is adopted by Agustsson et al. to produce pleas-
ing images at low rates [44]. The authors propose two types of generative compression:
global data generation and selective data generation. In the latter, the network input is
the image and its semantic segmentation. An encoder generates a bitstream, which is
processed by a generator/discriminator pair. The generator receives this bitstream and
the semantic map, learning to replicate the encoder’s data or create new data based on a
binary mask applied to the latent. This mask indicates the regions for compression and
generation, influencing the loss function.

A similar idea of generating data at low compression rates is adopted in Huang’s
work [94]. This approach uses an autoencoder architecture that represents data at three
different scales. The authors couple the output of this autoencoder with a discriminator
to enhance the autoencoder’s reconstruction at lower rates.

3.3.8 Target-based approaches

The core approaches explored in this thesis focus on fine-tuning neural models for specific
target bitrate compression. This problem has not been well studied in the literature,
with few examples available. One example introduces distortion-constrained optimiza-
tion (D-CO) as an alternative to λ-VAE for training end-to-end learned models in lossy
compression [46]. The proposed D-CO uses constrained optimization to achieve a rate
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subject to a distortion constraint. A drawback of this method is the need to search the λ
space to fine-tune the model’s loss.

A unique approach to target-bitrate constrained optimization is presented by Zhang
et al. [47]. This paper introduces a Rate Controllable Variational Autoencoder (RC-
VAE) for image compression, designed to adapt to specific target rates. Unlike models
in Section 3.3.3, which have multiple arbitrary operation points, this approach targets
specific bitrates in a variable rate model. The proposed model includes a Rate-Feature-
Level (RFL) neural component that outputs quantization levels to control the primary
model’s rates. This approach requires a complex, multi-stage training procedure. The
task’s difficulty is evident in the rapid saturation of quality reconstruction results at low
bitrates, highlighting the challenges of rate-constrained optimization, especially with a
single model.

3.3.9 Studies of quantization

One of the main problems in neural-based compression is the non-differentiability of the
quantization operation. This thesis explores some of these issues. Various works have
examined the impact of differential approximation of quantization from different per-
spectives. Guo et al. [95] address quantization challenges in neural image compression,
analyzing three methods: additive uniform noise, straight-through estimator (STE), and
soft-to-hard annealing. They identify that while additive uniform noise is advantageous
for learning expressive latent spaces, it suffers from train-test mismatch. This mismatch
is highlighted in this thesis. On the other hand, STE and annealing methods avoid this
mismatch but compromise latent representation ability. To reconcile these issues, the au-
thors propose a soft-then-hard quantization strategy. This involves a two-stage training
process: first using additive uniform noise to train a powerful encoder softly, followed by
hard quantization for decoder tuning.

Pan et al. [96] focus on challenges in quantization approximation for learned lossy
image compression, particularly the non-differentiability of quantization and its impact
on neural network training. While prior research has proposed different approximation
methods, there is a lack of theoretical understanding of the mechanisms behind their
success. The authors highlight three critical gaps: Discrete Gap, Entropy Estimation
Gap, and Local Smoothness Gap. These gaps characterize quantization approximation.
Visualizations demonstrate the significant influence of different quantization methods on
latent distribution and compression performance. To mitigate these gaps, the authors
propose a similar approach as Guo [95] with adaptations to address the gaps studied,
aiming for a more meaningful entropy estimation during training.
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3.3.10 Parameter-adaptative approaches

The area of Reinforcement Learning (RL) involves an agent interacting with an environ-
ment, where the agent takes actions resulting in immediate rewards. The objective is
for the agent to learn a policy that maximizes cumulative future rewards. The discount
factor determines the importance of future rewards. RL algorithms iteratively update the
policy to enhance the value function [97].

Although RL might seem distant from unsupervised learning approaches for compres-
sion, one approach proposed in this thesis draws inspiration from RL’s general setup. At
some point, the neural network training process will be viewed as a temporal evolution,
and an adaptive training strategy will be adopted, continuously adjusting hyperparame-
ters to achieve training goals. Known RL techniques will not be directly adopted, only
the "environment adaptation" inspiration, related to the automatic change of loss hyper-
parameters, which are usually constant values under optimization.

Zhe et al. [98] studied an idea of loss hyperparameters adaptation. This paper proposes
an enhanced training method for L2-normalized softmax in CNNs. L2-normalized softmax
has shown promise in improving CNN accuracy, especially in tasks like face recognition
and person re-identification. However, existing methods add extra parameters as class
centers without addressing how to learn them, limiting further improvement. The paper
addresses this issue by treating CNN training as a time series and introducing a learning
algorithm that combines gradient descent with exponential moving averages (EMA) to
update class centers. This approach illustrates adaptive training since softmax is usually
a fixed operation, not a mutable optimization target.

Zhang et al. [99] examine face recognition tasks using loss functions with angular
margin, which have been successful for this task. However, the authors tackle the insta-
bility problem caused by the sensitivity of the hyper-parameters setting. To handle this,
the authors propose an adaptive parameter softmax loss with different scale parameters
for target and non-target logits, while dynamically adapting margin parameters. The
sensitivity of training to loss hyper-parameters will also be addressed in this thesis.

Adaptive training ideas are also applied in semi-supervised learning to reduce de-
pendence on fully labeled datasets. In some scenarios, non-labeled targets are updated
through temporal process analysis, a form of meta-learning [100]. This approach views
neural network training as a temporal adaptive process. Semi-supervision can also be
applied adaptively through multiple models, for example, using a soft teacher to label
the unlabeled data, aiding in training the main neural network [101]. While these ap-
proaches are not directly related to the ideas developed in this thesis, they resemble the
core concepts explored in later chapters.
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3.4 Other Approaches

Generative adversarial models have also been applied in image coding [102]. Although
it was one of the first proposed works, it represented the best results in the field for a
long time. The authors attempted to simulate the behavior of a wavelet transform with
a neural structure that uses a pyramidal decomposition, as shown in Figure 3.9. Another
interesting aspect of this work is the adversarial training applied to the autoencoder to
produce more realistic reconstructions. The generator is an autoencoder inspired by the
wavelet transform, while the discriminator is a standard neural network.
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Figure 3.9: The pyramidal approach where the inputs are obtained by a subsampling
operation D, which generates the representations x1 and x2. These inputs are processed
by the functions f that generate different coefficients. The functions g align the size of
these coefficients, which are summed and processed one last time by the function h to
generate the latent y [102].

A different approach can be seen in Akbari’s work [103], which involves several com-
puter vision concepts. The authors utilize the classic encoders FLIF (Free Lossless Image
Format [104]) and BPG (Better Portable Graphics, based on a subset of the HEVC -
High Efficient Video Coding - open video compression standard [105]). Using segmen-
tation maps, they propose a reconstruction network that receives a subsampled image
version. The network then attempts to reconstruct the image. The residual difference is
compressed with BPG. The subsampled version and the segmentation map are losslessly
compressed using FLIF. Their results surpass BPG, except at high rates.

Although the focus of this work is not lossless neural compression, models from this
line can also contribute ideas to the field of lossy compression. An example of this idea
can be seen in Mentzer’s work [106], which presents hierarchical modeling. A sequence
of feature extractors is applied hierarchically to the non-quantized outputs of previous
extractors. In this manner, the i-th level extractor uses the output of the (i− 1)-th level
extractor.

The generated maps are quantized and passed to autoregressive predictors, which out-
put parameters to characterize the image distribution at multiple scales. These predictors
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are autoregressive because the i-th level predictor requires the output of the (i + 1)-th
level predictor as well as the quantized feature map of its level. The flowchart of this ar-
chitecture is shown in Figure 3.10. The authors report better results compared to PNG,
WebP, and JPEG2000.
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Figure 3.10: The approach uses a set of feature extractors E that establish a hierarchy.
The predictors P are fed both the quantized maps and the output of the lower-level
predictor. The symbol Q represents quantization, and the values z are the quantized
features [106].

Another work following this approach can be seen in Mentzer’s paper [107]. The
authors compress an image using BPG to obtain the residual. They use a neural model
that learns the distribution of the residual conditioned on the reconstruction obtained
with BPG. This distribution is combined with entropy coding to compress the residual.
They report better results compared to PNG, WebP, and JPEG2000.

3.5 End-to-end Neural Approaches versus Classical
CODECs

Initial attempts at end-to-end neural compression using common autoencoders struggled
to match or surpass JPEG in terms of SSIM, MS-SSIM, and PSNR metrics [15, 16,
17, 18]. Later approaches, incorporating LSTM-based layers and Generative Adversar-
ial Networks, achieved MS-SSIM results comparable to BPG [20, 102]. However, these
autoencoder-based strategies faced challenges in consistently outperforming the best clas-
sical compression methods, even when incorporating auxiliary methods like FLIF, BPG
[103], relevance maps [39], or similar techniques.
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The breakthrough that enabled neural methods to surpass classical techniques came
with the advent of variational autoencoder-based approaches [45, 23]. These methods
began to outperform JPEG-2000 and BPG in specific metrics and scenarios. Adopting
the hyperprior mechanism [23] became prevalent in subsequent approaches, consistently
surpassing BPG and even VTM intra-encoders. Minnen’s work [108] notably was the
first to consistently outperform BPG across all metrics and scenarios. Other works [30]
showed comparable results to BPG, and some strategies [43, 37] began surpassing VTM
results in select scenarios.

It is crucial to emphasize that this thesis primarily focuses on target bitrate con-
trol of neural networks, specifically related to variable rate models (detailed in Section
3.3.3), quantization approximations (explored in Section 3.3.9), and other target-based
approaches (discussed in Section 3.3.8). The objective of these approaches is not always
to surpass existing neural methods but sometimes to introduce additional features to the
neural compression paradigm or enhance the understanding of these models.

Despite the significant advancements mentioned above, recent literature has presented
many results that surpass these achievements, including those that have already outper-
formed some of the best classical CODECs. Notable examples of these developments
include [86, 76, 93, 78, 89, 77, 34].

3.6 Conclusions

This chapter reviewed significant works in neural image coding, covering non-recurrent
neural networks, recurrent neural networks, variational autoencoders (VAEs), and vari-
ous methodologies within each category. It detailed approaches focusing on variable rate
models, different neural operations, bit allocation and attention modules, post-processing
techniques, generative compression, parameter-adaptive strategies, and quantization ap-
proximation issues.

The evolution of neural image coding techniques highlights the growing potential of
neural networks for efficient and effective image compression. The field has progressed
remarkably from early struggles to match classical codecs to recent advancements that
surpass them in many scenarios. Techniques like variational autoencoders and recurrent
neural networks have shown promise in optimizing the rate-distortion trade-off while
preserving image content.

One main characteristic of this review is the almost universal use of variational mod-
els derived from the original proposals of Ballé. Both parametric and non-parametric
approaches have been seminal for neural image compression. Despite various initiatives
to obtain greater flexibility with these models, such as incorporating the possibility of
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compression with multiple rate-distortion points, the problem of rate control—where a
model achieves a specific rate for all images it compresses—remains underexplored and
poorly understood.

Assimilating the concepts highlighted in this literature review is crucial for the sub-
sequent chapters, which will delve deeper into specific problems and techniques. By
narrowing the focus and detailing these approaches, the objective is to present proposals
that build upon the foundations established in this chapter. In summary, the knowl-
edge gleaned from this review sets the stage for the detailed exploration of neural image
compression techniques and problem-solving strategies in the following chapters.
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Chapter 4

Problem Statement

This chapter serves as a foundation for understanding the rationale and methodologies
employed in the subsequent approaches proposed in this thesis. It explores the funda-
mental concepts of rate control in compression and autoencoder modeling, focusing on
variational autoencoder (VAE) paradigms and variational Bayesian inference.

Section 4.1 delves into the intricate world of rate control in compression, grounded
in rate-distortion theory. This framework underpins the optimization modeling for ef-
fective compression with controlled rates. Following this, Section 4.1.1 draws parallels
between rate-distortion optimization and seminal architectures, particularly those incor-
porating variational Bayesian inference in neural network structures. These insights lay
the groundwork for understanding the architecture details presented in Section 4.2 and
its subsections, where two seminal compression architectures and their entropy modeling
intricacies are dissected.

A thorough understanding of the concepts outlined here requires prior knowledge from
Section 2.3 and Appendix I, which will be extensively referenced throughout the thesis.
It is strongly recommended that the reader fully understands the concepts presented in
those sections.

4.1 Rate Control in Coding

Efficient use of communication channel bandwidth is crucial in multimedia transmission.
Both rate control and bit allocation are needed to manage the encoding rate to meet
channel bandwidth constraints or memory requirements. JPEG-1, a popular image stan-
dard, lacked rate control and only offered a gradation of compression quality levels [8].
Its successor, JPEG-2000, introduced rate control mechanisms [9]. The efficiency of this
rate control in JPEG-2000 has been studied [109]. Similar studies exist for classic video
CODECs [110, 111].
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Rate control allows designers to create feasible schemes for specific applications more
flexibly. While trying to achieve a target rate, the control mechanism must consider
challenging issues like distortion [111]. According to rate-distortion theory, distortion D

decreases as rate R increases. Thus, the fundamental problem in rate control can be
formulated as follows [111]:

arg minD (4.1)
such that R ≤ Rmax

where Rmax is the maximum allowed rate. The goal is to achieve the highest quality
within the Rmax limit. Encoders adopt a Lagrangian rate-distortion cost function:

J = D + λ ·R (4.2)

where D is a measure of distortion, R is the rate, and λ is the Lagrange multiplier.
The rate-distortion space is characterized by the convex hull, shown in Figure 4.1. The
convex hull represents the best possible distortion for a given rate. Typically, points on
the convex hull cannot be achieved, so different encoders may reach different points when
compressing images at specific rates.
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Figure 4.1: The rate-distortion space characterized by the convex hull is denoted by blue
points, representing the optimal distortion values for a given rate. The green points
represent the performance of encoders, as it is not always possible to reach an optimal
point.

Theoretically, a value for λ can be optimized to encode an image at a target rate
optimally. However, λ is usually determined by other parameters, such as the quantization
step, to avoid the need for multiple iterations. Therefore, rate control tools are commonly
used when rate-distortion optimality cannot be guaranteed, yet the rate constraint is met.
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4.1.1 Behavior of the Rate in Variational Approaches

Although there are several approaches for rate control in classic CODECs, this remains
an underexplored problem in the context of neural coding, which motivates the discussed
approach. The rate control issue arises from the strategy of modifying λ, which cannot
be applied to variational neural models after training.

ELBO is the function typically used for optimization in Bayesian inference, as detailed
in Section 2.3.4. Its adoption is due to the KL divergence, denoted by KL, which is not
directly tractable because it depends on the true a posteriori [112]. A VAE [22] is a
neural network approximating the Bayesian inference a posteriori. The connection with
the encoding with VAEs is established in [45], leading to the following equation:

J = λ ·D +R (4.3)

Further details about this equation will be provided in Section 4.2. Notably, the above
equation is equivalent to Equation 4.2, but in variational inference derivation, λ must
specifically accompany the distortion term D.

Using this approach, the optimization algorithm finds parameters that minimize the
weighted sum of distortion and rate. Evaluating the distortion D involves assessing the
original and reconstructed image using a distance measure. The rate R is estimated using
the entropy of the model’s latent representation. Thus, by using different values for λ,
various models operating at different points on the convex hull can be obtained, as shown
in Figure 4.1.

For instance, when a neural network is trained using a function with specific parame-
ters, such as J = λ0D+R, its weights align to perform the task considering the trade-off
defined by λ0. Rate-distortion minimization means that during training, the model learns
to extract and refine features to optimize the compression task under these conditions.
Using λ0 during training results in a neural model whose weights are tied to this hyper-
parameter: λ0 =⇒ θλ0 . This weight vector, also known as the model parameter vector,
parameterizes the neural network.

Since the parameter vector θλ0 is only modified during training, choosing a λ1, where
λ0 ̸= λ1, would not significantly alter the established trade-off during inference. To
achieve a reconstruction with a trade-off defined by λ1, new training with λ1 =⇒ θλ1 is
necessary, and θλ0 ̸= θλ1 . This implies that when using the loss function from variational
Bayesian inference [22, 45], each neural model is tied to its respective λi. Therefore, each
model is represented by the pair (λi, θλi

), i ∈ N. This approach is used in most proposals,
following reference architectures in the literature [45, 23].

It is worth noting that there are multiple-rate architectures, as mentioned in Chapter
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3, specifically in Section 3.3.3. These approaches do not aim to achieve specific rates for
image compression. Using the adopted notation, these models are represented by the pair
(λ, θλ), where λ = {λ0, λ1, λ2, . . . , λi}, i ∈ N. In other words, these models generalize the
models proposed by Ballé’s works [45, 23] using different strategies and architectures.

However, there is a problem with these rate-distortion Lagrangian-based approaches.
For a trained model (λi, θλi

), i ∈ N, the operating point on the convex hull depends on
the image being compressed. Thus, if a specific rate ri is desired, there is no direct link
with λi: λi ≠⇒ ri.
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Figure 4.2: Results of models available on GitHub [113] by the authors of the VAE
proposals for compression [45, 23]. The points represent the rate for each image from the
Kodak database for each available model. The models were not trained to achieve specific
rates, showing that obtaining specific rates with the standard approach is not feasible.

This fact is illustrated in Figure 4.2, which shows the results of 8 pre-trained models
[113] with increasing λ, made available by the authors [45] on the Kodak database. These
models, not trained for specific rates, produce reconstructions at a wide range of rates
depending on the image. Each model shows significant variance in both rate and quality.
For example, Model 1 has a bpp (bits per pixel) ranging from 0.053 to 0.177. Model 5
has rates ranging from 0.276 to 1.579.

From Figure 4.2, we can also infer the behavior of multiple-rate models, denoted by
(λ, θλ), where λ = {λ0, λ1, λ2, . . . , λi}, i ∈ N. If a model is trained with multiple values
of λ using rate distortion, similar high-variance behavior in the encoding rate will be
observed.

In standard rate-distortion approaches, to achieve a specific rate, one could encode
an image with multiple neural models and select the representation with the closest rate.
By ordering models by λ, a binary search could be used to avoid testing all models.
However, this method has several flaws, as many models would be necessary to have a
high probability of achieving the desired rate. Moreover, even if the rate is achieved,
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both the encoder and decoder would need to store a large number of trained models,
taking up significant space and making the CODEC unfeasible for specific applications.
Considering these aspects of standard rate-distortion optimization, the proposal is to
train rate-oriented models. Section 4.2 will detail the VAEs used as references and their
features.

4.2 Baseline Architectures

This section presents details concerning the architectures used as a reference. The central
focus is the modeling adopted in autoencoders for compression [45] and their equiva-
lence with the variational optimization in VAEs [22]. This formalization provides insights
regarding the architecture and the impact of modifications.

To make the reading more concise, the section revisits the ideas of generalized divisive
normalization and the formulation of VAEs based on variational Bayesian inference. These
ideas are closely linked to the modeling of the architectures, which will be detailed. It is
highly advised that the reader review Section 2.3.4. A deep understanding of the baseline
architectures is essential to grasp the analyses and proposals of this thesis.

4.2.1 Activation Function of the architectures

A necessary component to describe the reference architectures is the GDN (generalized
divisive normalization) [21], detailed in Section 2.2.7. The authors optimized transforms
to achieve specific statistical properties in the transformed space. When adjusted as
cascaded operations, each stage produces marginal "directions" that are less similar to
Gaussians and then Gaussianize these directions using non-parametric non-linear scalar
transforms [21].

The generalized divisive normalization, a general approach of the divisive normaliza-
tion, was proposed by Ballé [21] and shown to work well as an activation function on the
baseline architectures [45, 23]. The authors demonstrated that the transformation adeptly
"Gaussianizes" the data by optimizing parameters to minimize the KL divergence of the
distribution of transformed data. They also proposed an ablation study comparing the
impact of the GDN in a separate work [114]. These non-linearities are distinct features
of the baseline architectures.

4.2.2 Optimization in VAEs

VAEs are probabilistic models that perform variational inference [72]. Uncertainty is spec-
ified through conditional probability distributions. The goal is not to model px(x; θ) but
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to model py|x(y|x; θ), parameterized by θ, that approximates the true distribution. Here,
the latent variables y are conditioned on the observed variables x [72]. The maximum
likelihood optimization in these models can be enhanced from a Bayesian standpoint using
Bayes’ Theorem, introduced in Section 2.3.1, through MAP (maximum a posteriori) [72]:

px(x; θ) =
∫
px,y(x,y; θ)dy =

∫
py(y; θ) · px|y(x|y; θ)dy (4.4)

where the model is derived from the conditional probability rule.
Neural networks are advantageous due to their expressiveness in representing distri-

butions. Even if the conditional distribution py|x(y|x; θ) is simple, the marginal distribu-
tion px(x; θ) can be complex, containing arbitrary dependencies between variables [72].
However, even in deep models, the intractability problem related to calculating px(x; θ),
presented in Section 2.3.3, still exists. The workaround is to introduce a parametric model
qy|x(y|x;ϕ), termed an encoder [22]:

qy|x(y|x;ϕ) ≈ py|x(y|x; θ) (4.5)

The optimization is carried out via SGD. In this case, the encoder serves as a stochastic
mapping between the observed variable x and the latent space y, with its distribution rep-
resenting the prior of the generative model, denoted by py(y; θ). The decoder px|y(x|y; θ)
is the stochastic mapping from the latent space y to a region in the observed space.

The objective function of VAEs is based on the ELBO (Equation 2.45). Optimizing the
ELBO is equivalent to optimizing the KL divergence, denoted by KL. The relationship
between the ELBO and the KL divergence can be derived as follows:

log px(x; θ) = Eqy|x(y|x;ϕ)[log px(x; θ)]

= Eqy|x(y|x;ϕ)

[
log

[
px,y(x,y; θ)
py|x(y|x; θ)

]]

= Eqy|x(y|x;ϕ)

[
log

[
px,y(x,y; θ)
qy|x(y|x;ϕ) ·

qy|x(y|x;ϕ)
py|x(y|x; θ)

]]

= Eqy|x(y|x;ϕ)

[
log

[
px,y(x,y; θ)
qy|x(y|x;ϕ)

]]
+ Eqy|x(y|x;ϕ)

[
log

[
qy|x(y|x;ϕ)
py|x(y|x; θ)

]]
log px(x; θ) = Lθ,ϕ(x) +KL(qy|x(y|x;ϕ)||py|x(y|x; θ)) (4.6)

From the above equation, it is evident that maximizing Lθ,ϕ(x) for parameters θ and
ϕ optimizes two major aspects. First, it maximizes the marginal likelihood px(x; θ),
improving the generative model. Additionally, it minimizes the KL divergence of the
distribution qy|x(y|x;ϕ) relative to the true posterior py|x(y|x; θ), making qy|x(y|x;ϕ) a
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better approximation. Equation 4.6 is crucial for understanding the link to rate-distortion
optimization in subsequent sections, which is why it is derived in detail here.

4.2.3 Non-Parametric Architecture

The architecture presented in this section was the first to consider the trade-off of rate-
distortion in its optimization [21], as discussed in Chapter 3. It has an equivalence with
the modeling of VAEs (detailed in Section 2.3.5). This architecture is optimized for the
objective, using non-linear transforms, as depicted in Figure 4.3.
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ga gs

y ŷ

x x̂

code space

Q

non-linear
transforms

data space

Figure 4.3: An image vector x ∈ Rn is mapped by a transformation called analysis,
y = ga(x;ϕ); y ∈ Rm. This representation is quantized (function Q), generating ŷ, from
which the rate of this discrete code is calculated (based on Shannon entropy, R = H(pŷ)).
For reconstruction, the elements of ŷ are interpreted as continuous vectors, returning to
the original domain through synthesis, x̂ = gs(ŷ; θ); x̂ ∈ Rn, ŷ ∈ Rm. From the pair (x, x̂)
a distortion measure D is calculated. The parameter vectors ϕ and θ are optimized via a
weighted sum of rate and distortion, R + λ ·D.

Most compression methods use orthogonal linear transforms to reduce data corre-
lations and simplify entropy coding [45]. However, the joint statistics of linear filter
responses exhibit strong higher-order dependencies, which can be significantly reduced
using non-linear gain control operations, such as GDN. The cascade of these operations
is more efficient in Gaussianizing the joint statistics of natural image data than cascades
of linear transforms followed by point non-linearities [21]. This efficiency is why GDN is
adopted as a non-linearity in this architecture.

The analysis transform ga consists of three stages: convolution, sub-sampling, and
generalized divisive normalization. It uses standard convolution operations with GDN
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Table 4.1: The analysis transform and synthesis transform are set up as detailed below. In
the adopted notation, C-9× 9, ↓2, GDN, 256 signifies a convolution layer with 256 filters,
featuring a spatial support of 9× 9, a subsampling factor of 2, and utilizing GDN as the
activation function. Similarly, TC-5×5, ↑2, IGDN, 256 refers to a transposed convolution
with 256 filters, a supersampling factor of 2, and IGDN as the activation function. When
no activation function is shown, it implies that the layer has no non-linear activation.

Analysis Synthesis
C-9× 9, ↓2, GDN, 256 TC-5× 5, ↑2, IGDN, 256
C-5× 5, ↓2, GDN, 256 TC-5× 5, ↑2, IGDN, 256

C-5× 5, ↓2, 256 TC-9× 9, ↑2, 256

as the non-linear activation function, defined in Equation 2.25. The fixed vectors for
the GDN are αij = 2 and ϵi = 1

2 , ∀i, j. As the operation combined with the GDN is a
convolution, the matrix T in these equations represents the result of the convolution with
sub-sampling.

In the synthesis transform gs, three stages of convolution, up-sampling, and generalized
divisive normalization are also performed. Here, the GDN is used in its inverse form,
IGDN, obtained through fixed-point iteration as presented in Equation 2.27. The fixed
vectors are αij = 2 and ϵi = 1

2 , ∀i, j. In both analysis and synthesis, the parameters
trained by SGD are βi and γij for GDN, and β̂i and γ̂ij for IGDN. The neural network
structure is shown in Table 4.1.

The goal is to minimize the weighted sum of rate and distortion, R + λD, over the
parameters of the analysis and synthesis transforms and the code entropy. The actual
rates achieved by a properly designated entropy encoder are slightly higher than the
entropy. The objective can be formulated as [45]:

J(x, x̂) = −Epŷ [log2 pŷ] + λE[d(x, x̂)] (4.7)

where d represents the distortion function, with expectations approximated by batches of
the training data. The quantized values are obtained through a rounding function ŷi =
round(yi), where i indexes all vector elements, including spatial positions and channels.
The marginal density of ŷi is represented by a PMF defined as [45]:

pŷ(n) =
∫ n+ 1

2

n− 1
2

pyi
(t)dt (4.8)

with n ∈ Z. Since the elements of Equation 4.7 depend on quantized values, and quanti-
zation is not a differentiable operation, the authors substitute the operation with uniform
additive noise of unit width, ∆y. The density ỹ = y + ∆y is a continuous approximation
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of the PMF of ŷ:
pỹ(n) = pŷ(n) (4.9)

The relation implies that the differential entropy of ỹ can approximate the discrete
entropy of ŷ. Uniform noise approximates the quantization error and is often used as a
quantization error model [45, 115]. With this continuous approximation for the distribu-
tion of quantized coefficients, the loss function is redefined as:

J(ϕ, θ) = Ex∼p(x)

[
−
∑
i

log2 pỹi
(ga(x;ϕ) + ∆y;ψ(i)) + λd(gs(ga(x;ϕ) + ∆y; θ), x̃)

]
(4.10)

where batches of training data approximate the expectation, and ψ(i) represents the pa-
rameter vector for the distribution pỹi

, which will be detailed later.

Rate-Distortion Optimization via Variational Inference

Although the model optimization is derived through rate-distortion optimization, with
the continuous relaxation of the quantization operation, these models have a strict re-
lationship with variational models [22] detailed in Section 4.2.2. In this modeling, the
goal is to approximate the true posterior py|x(y|x; θ), parameterized by θ, with a density
qy|x(y|x;ϕ), parameterized by ϕ.

To understand the equivalence between the architectures, consider that the generative
model is defined according to the following equations [45]:

px|ỹ(x|ỹ;λ, θ) = N
(
gs(ỹ; θ), (2λ)−11

)
(x) (4.11)

pỹ|ψ(ỹ|ψ) =
∏
i

(
pyi|ψ(i)

(
ψ(i)

)
∗ U

(
−1

2 ,
1
2

))
(ỹi) (4.12)

where U(−1
2 ,

1
2) is uniform noise in the interval

[
−1

2 ,
1
2

]
. The term N is a Gaussian

evaluated for x, with µ = gs(ỹ; θ) and σ2 = (2λ)−11. The entropy model of the prior has
parameters ψ, which are used to approximate the distribution but do not have a statistical
interpretation like the mean and variance of the Gaussian. Finally, the inference model
approximates the posterior by adding a uniform density of unit width around each point
yi [45]:

qỹ|x(ỹ|x;ϕ) =
∏
i

U
(
yi −

1
2 , yi + 1

2

)
(ỹi) (4.13)

with y = ga(x;ϕ). This variational interpretation for the rate-distortion modeling allows
the derivation of the proposed objective function in terms of the KL divergence between
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the inference model and the true posterior:

KL(qỹ|x∥pỹ|x) = Eỹ∼q ln qỹ|x(ỹ|x;ϕ)− Eỹ∼q ln pỹ|x(ỹ|x)
= Eỹ∼q ln qỹ|x(ỹ|x;ϕ)− Eỹ∼q ln px|ỹ(x|ỹ)− Eỹ∼q ln pỹ(ỹ) + Eỹ∼q ln px(x)

= −Eỹ∼q ln
(

1
(2π)n/2|(2λ)−1I|1/2 e

(− 1
2 (x−x̃)⊤((2λ)−1I)−1(x−x̃))

)
− Eỹ∼q ln pỹ(ỹ) + const

= −Eỹ∼q ln
(

1
(2π)n/2(2λ)−n/2 e

−λ∥x−x̃∥2
)
− Eỹ∼q ln pỹ(ỹ) + const

= λEỹ∼q
(
∥x− x̃∥2

)
− Eỹ∼q ln pỹ(ỹ) + const (4.14)

where x̃ = gs(ỹ; θ), I is the identity matrix, | · | is the determinant operator and ∥ · ∥2 is
the Euclidean norm operator. The second line of the equation is obtained by applying
Bayes’ Theorem. Since the distribution qỹ|x is represented as uniform noise of unit width,
its entropy is zero. The data distribution px is not optimized and remains constant. Fur-
thermore, the entropy is given in nat (natural unit of information). Since the unit only
affects the scale of the results, one can consider the entropy in bits for optimization with-
out affecting the outcome. Thus, minimizing the KL divergence between the variational
approximation and the true posterior is equivalent to optimizing a rate-distortion.

The Non-Parametric Entropy Model

A significant point regarding the architecture proposed by Ballé [45] is the approximation
of the distribution in Equation 4.12. To make the approximation applicable, the approach
uses cumulative distribution functions. A density p : R =⇒ R+ is defined through its
cumulative distribution function f : R =⇒ [0, 1]. If the cumulative is a composition of
functions, the density can be obtained through the chain rule for derivatives:

c = fK ◦ fK−1 ◦ fK−2...f1 (4.15)
p = f ′

K · f ′
K−1 · f ′

K−2...f
′
1 (4.16)

where the derivative of fk is represented by f ′
k. Considering fk as vector functions, fk :

Rdk =⇒ Rrk , the derivatives f ′
k are Jacobian matrices. Since these are univariate

distributions, we assume d1 = rK = 1. For p(x) to be a density, fK must map to the
interval [0, 1] and p(x) ≥ 0. This can be ensured by requiring the elements of the Jacobian
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to be non-negative. An effective choice for fk can be given by the following equations [23]:

fk(x) = gk(H(k)x + b(k)) (4.17)
fK(x) = η(H(K)x + b(K)) (4.18)
gk(x) = x + a(k) ⊙ tanh x (4.19)

1 ≤ k < K, where H(k) represent matrices, b(k) represent vectors, η is the sigmoid
function, and tanh is the hyperbolic tangent function. In this case, ⊙ denotes element-
wise multiplication. The idea behind the last non-linearity is that it allows the space to
be contracted or dilated near x = 0 through the parameter a(k) [23].

For the derivatives to be non-negative, it is necessary that H(k) only have non-negative
elements and that the elements of a(k) have −1 as their lower limit. This property is
achieved with a reparameterization [23]:

H(k) = softplus(Ĥ(k)) (4.20)
a(k) = tanh (â(k)) (4.21)

where the hat variables represent the actual parameters. These elements encompass all
the significant points in modeling the non-parametric architecture. Further details can be
found in the reference works [45, 23], which inspired the mathematical notations adopted
here.

4.2.4 Parametric Architecture

The parametric architecture [23, 24] extends the architecture presented in the previous
section [45]. Using a simple factorized distribution is a substantial oversimplification.
The quantized latent ŷ tends to produce non-zero responses clustered in regions of high
contrast, edges, and areas with textures. These clustered outputs imply a probabilistic
coupling between the responses, not represented in models with a fully factorized a priori
distribution [23].

The enhanced architecture uses side information, a strategy where additional infor-
mation sent from the encoder to the decoder signals modifications to the entropy model,
reducing misalignment. This method is feasible because the marginals for a particular
image vary significantly from those for the overall set of images the model is designed to
handle. The volume of side information sent is, on average, smaller than the reduction in
code length achieved by better adjusting p(ŷ) to the marginals of a particular image [23].

Using the formalism developed for VAEs, additional information can be seen as an
a priori on the parameters of the entropy model. This new a priori becomes a hyper a
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priori of the latent representation. The idea is to train it jointly with the network so that
it captures the fact that spatially neighboring elements of the latent tend to have their
scales vary in a coupled manner [23].

Introducing latent variables conditioned on another set of objective variables, assumed
to be independent, is a standard way of modeling dependencies between these variables
[116]. The idea is to introduce a set of random variables z to capture these spatial
dependencies, as shown in Figure 4.4.

ga
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x y ha
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z

D
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x̂ ŷ ẑ

Q

Figure 4.4: The architecture with the addition of the hyper a priori. In this case, ha and
hs represent the additional non-linear transforms, which make up the hyper a priori.

The variable z follows the same approach as the previous work [23], adopting a fully
factorized non-parametric model, given that there is no a priori distribution on this set
of variables [23]:

pz̃|ψ (z̃|ψ) =
∏
i

(
pzi|ψ(i)(ψ(i)) ∗ U

(
−1

2 ,
1
2

))
(z̃i) (4.22)

In this context, z̃ is obtained during training through the continuous relaxation of the
quantization operation via additive uniform noise. Again, ψ(i) represents the parameters
trained to portray the density, as discussed in the previous section. The variable ỹ is
subsequently modeled as a zero-mean Gaussian with its standard deviation σi, where
these values are predicted by applying a transform hs to z̃:

pỹ|z̃(ỹ|z̃; θh) =
∏
i

(
N
(
0, σ̃2

i

)
∗ U

(
−1

2 ,
1
2

))
(ỹi) (4.23)

with σ̃i = hs(z̃; θh) and θh being the set of parameters of the generative model for z. The
inference model is an extension of the model in Equation 4.13 [23]:

qỹ,z̃|x(ỹ, z̃|x;ϕg, ϕh) =
(∏

i

U
(
yi −

1
2 , yi + 1

2

)
(ỹi)

)
·

∏
j

U
(
zi −

1
2 , zi + 1

2

)
(z̃i)

 (4.24)

with y = ga(x;ϕg) and z = ha(y;ϕh). The parameters ϕg and ϕh denote the parameters of
the inference model with a priori hyperparameters. The loss function for this architecture,
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following the variational interpretation, is given by [23]:

KL(qỹ,z̃|x||pỹ,z̃|x) = Eỹ,z̃∼q ln qỹ,z̃|x(ỹ, z̃|x;ϕg;ϕh)− Eỹ,z̃∼q ln pỹ,z̃|x(ỹ, z̃|x) (4.25)

The first term, q, is a product of uniform densities with unit widths. Therefore, the
entropy of this term is 0. Applying Bayes’ theorem, the KL divergence can be expanded
as:

KL(qỹ,z̃|x||pỹ,z̃|x) = −Eỹ,z̃∼q ln px|ỹ(x|ỹ)−Eỹ,z̃∼q ln pỹ|z̃(ỹ|z̃)−Ez̃∼q ln pz̃(z̃)+const (4.26)

Where the first term (the likelihood) encapsulates the distortion and is tied to the decoder,
the second and third terms represent the cross-entropy of encoding ỹ and z̃, respectively.
Analogous to traditional transform coding, the last term can be interpreted as side infor-
mation.

The parametric architecture [23] is adopted in this chapter with a minor modification
in the modeling depicted above. It involves a slightly different version [24], where the
entropy model of ỹ is parameterized by a Gaussian with arbitrary mean and variance, as
shown in the equation below:

pỹ|z̃(ỹ|z̃; θh) =
∏
i

(
N
(
µ̃i, σ̃

2
i

)
∗ U

(
−1

2 ,
1
2

))
(ỹi) (4.27)

with [µ̃i, σ̃i] = hs(z̃; θh). In this case, the prior hyper is also responsible for estimating
the means for the Gaussians, which generalizes the model presented earlier [23]. However,
this alteration does not impose other differences in the modeling shown in the previous
equations. The specific values for the supports of the filters, the number of filters, can be
seen in Table 4.2, which uses the same notation as Table 4.1.

The details presented in this section constitute the differences between parametric
and non-parametric architecture. For further information, the reference works can be
consulted [23, 24]. These same works also inspired the mathematical notations adopted
here.

4.3 The General Idea of a Bitrate Control Approach

This chapter builds on the concepts proposed by Ballé [45, 23], where the direct optimiza-
tion of the rate-distortion loss function is pursued. A notable feature of both approaches is
the approximation of the quantization operation used during training. These approaches
achieve this by adopting additive uniform noise, using the differential entropy of the noisy
density function model during training. In contrast, the discrete entropy of the obtained
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Table 4.2: Description of layers of the parametric baseline.

The analysis transforms, synthesis, hyper-analysis, and hyper-synthesis have settings es-
tablished as per the values below, which follow the same notation adopted in Table 4.1.

Encoder Decoder
C-5× 5, ↓2, GDN, 256 TC-5× 5, ↑2, IGDN, 256
C-5× 5, ↓2, GDN, 256 TC-5× 5, ↑2, IGDN, 256
C-5× 5, ↓2, GDN, 256 TC-5× 5, ↑2, IGDN, 256

C-5× 5, ↓2, 256 TC-5× 5, ↑2, 256
Hyper Encoder Hyper Decoder

C-3× 3, ReLU, 256 TC-5× 5, ↑2, ReLU, 256
C-5× 5, ↓2, ReLU, 256 TC-5× 5, ↑2, ReLU, 256

C-5× 5, ↓2, 256 TC-3× 3, 256

probability mass function is used during inference. This statistical approximation and
its impact on the optimization of variational autoencoders remains an open question, as
discussed in Section 3.3.9.

Two aspects link to variational Bayesian approaches, such as variational autoencoders.
First, the entropy model is trained by optimizing the differential entropy of the noisy latent
space. Second, this modeling specifies the optimization of both distortion and compression
rate. The main characteristic is the variability of the operating points for each trained
model for different images, leading to high variability in the achieved compression rate.
Therefore, it would be necessary to train a large set of models to achieve compression
values close to the desired rate.

The exploration of this problem, and similar ones concerning the control of neural
network optimization, was presented in Section 3.3.8. The work of Zhang [47] stands out
for its more elaborate training strategy. In addition to the primary variational parametric
model, an auxiliary neural model receives data information (in the form of the latent
space) and the rate parameterization. This strategy involves using universal quantization
per arbitrary quantization interval, with the auxiliary neural model predicting the quan-
tization step necessary to achieve the desired rate. This model requires more elaborate
training in multiple steps [47] and is a multi-rate approach, similar to the methods in
Section 3.3.3. However, the approach suffers from the difficulties of rate-constrained op-
timization, showing little variability in reconstruction quality, with PSNR saturating at
almost constant values, even at low rates.

Another issue is that the problem is solved using a neural network as a black box,
transforming it into an optimization problem through non-linear transformation. This
approach may overlook the reasons for issues like "highly saturated results". The references
cited in the work may not be directly relevant to the thesis-specific focus.
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The philosophy behind this work is to control the rate of the models while maintaining
the nuances of Ballé’s seminal works [45, 23]. The focus on simplicity aims to make the
proposal a straightforward plugin for frameworks based on Ballé’s works, which dominate
the literature. Two possible paths are outlined:

• Modifying the optimization function.

• Utilizing auxiliary models with a simple strategy to maintain the usual optimization
function.

Considering the research objectives, a simpler approach is to modify the loss function
of variational autoencoders and study the nuances of this modification.

4.4 Discussions

This chapter has elucidated crucial aspects of image compression using neural networks,
particularly focusing on optimization methodologies and challenges associated with rate
control. A nuanced understanding of these concepts is essential for comprehending the
methods proposed in the ensuing chapters, as they form the foundation for the proposed
approaches.

Valuable pointers for developing practical solutions can be discerned from the insights
gleaned. Optimizing the logarithm of data involves optimizing KL-divergence, as shown in
Equation 4.6. This optimization paradigm underscores the essence of variational Bayesian
optimization, particularly in autoencoder-based rate-distortion optimization, elucidated
in Equation 4.14. The behaviors illustrated in Figure 4.2, discussed in Section 4.1.1, are
inherent consequences of the loss functions and the neural network architectures involved.

These discussions naturally lead to exploring potential solutions to these challenges,
particularly in achieving effective rate control using variational autoencoder models. One
direct solution is modifying the loss function, potentially employing Lagrangian relaxation
to establish the constraint into the loss. This idea sets the stage for further investigations
into overcoming the challenges outlined, especially in achieving nuanced rate control in
neural image compression.
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Chapter 5

Rate-Constrained Learning-based
Image Compression

This chapter details the adoption of Lagrangian relaxation as a solution to achieve target
bitrate control in neural networks and the repercussions of such a proposal. To present
this approach, Section 5.2 presents the preliminary concepts regarding the optimization
with restrictions. The desired properties of a loss function that makes the neural network
converge to a target bitrate are given in Section 5.3, followed by the proposed bitrate loss
and its deep analysis in Section 5.4. Lastly, several experiments are performed in Section
5.5 to show the method’s performance and some empirical evidence for the theoretical
problems pointed out throughout this chapter. One experiment in particular is evidence
of a highly pursued objective of this approach, which is to be a simple plug-in solution,
showing that the strategy still applies to a completely different architecture, as shown in
Section 5.5.7.

5.1 Mathematical Notation Rules

An important point relates to the mathematical notations adopted here, which will become
heavier than Chapter 4. Even though it will follow these earlier notations, it is important
to highlight that it will expand in many ways. Therefore, it is interesting to make it clear
a pattern of new symbols that will appear:

• Non-constant terms: these terms will always use the function notation, like f(x);

• Constant terms: in this case, the function notation will not be adopted. When-
ever a term does not adopt the function notation, it is not a function of anything.
Therefore it is constant;
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• Time-dependent terms: whenever a term is also a function of time, it will be
subscribed. For example, ft(x) would denote a function of x which is also time-
dependent;

• Parametrizations: whenever a term of function fundamentally dictates the behav-
ior of some function, the parametric function notation will be adopted. In ft(x; r),
there is a function f whose variable is x, which is time-dependent and has a param-
eter r, which influences different function behaviors.

5.2 General Formulation of a Target Bitrate Loss

Rate-distortion optimization often leads to models with significant variations in recon-
struction concerning rate and distortion, as discussed in Section 4.1. To address this,
modifying the standard loss function to control the operating point of the rate Rest based
on a target rate rtarget may be necessary. A more complex notation for terms will be
adopted to align with the notations used in subsequent approaches, where it will be fur-
ther extended.

It is important to clarify that the rate, originally denoted asRest, is based on estimating
entropy in the latent space, as presented in the previous chapter. The input data x and
its reconstructions are represented as x̂ during inference, where quantization is applied,
or x̃ during training, where reconstruction uses uniform noise approximation. Similarly,
the latent spaces are denoted as y, ŷ, and ỹ. The estimated rate Rest is given by:

Rest(ỹ) = −Eqỹ [log pỹ(ỹ)] = −
n∑
i

qỹi
(ỹi) log pỹi

(ỹi) (5.1)

where Rest(ỹ) is the estimated rate of the noisy latent, Epỹ represents the expectation,
and n is the dimensionality of the latent space. Equation 5.1 considers the factorization
of the distribution pỹ, where ỹ = [ỹi]ni=1 and pỹ = [pỹi

]ni=1. Analogously, it considers the
factorization of the variational distribution q. The rate for ŷ can be evaluated as:

Rest(ŷ) = −Eqỹ [log pỹ(ŷ)] = −
n∑
i

qỹi
(ŷi) log pỹi

(ŷi) (5.2)

However, in the context of neural network training, Rest is a function of the neural network,
estimated from the noisy latent space Rest(ỹ).
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Equation 4.1 introduced the optimization problem considering an upper limit for the
rate. This Lagrangian can be rewritten as a stronger constraint:

minD (5.3)
such that Rest = rtarget (5.4)

In this case, a rate Rest ≤ rtarget is not desired; instead, a rate Rest = rtarget is required.
Optimization problems with stronger constraints are usually challenging to solve, and
incorporating direct constraint optimization in a neural model is not straightforward.
However, a widely used tool in such cases is Lagrangian relaxation [117].

5.2.1 Setup of Lagrangian Relaxation for the Loss Function

As a fundamental technique in optimization, employing bounds is a core strategy [117].
Formally, when given a set M ∈ Rn and a simple function g (such as linear or quadratic),
the objective is to find a lower bound [117]:

min g(x) (5.5)

Lagrangian relaxation becomes relevant when the set M is defined as M = N ∩
x : f(x) = 0, where N provides a simplified subspace for optimizing g, while the con-
straints f = (f1, ..., fm) complicate the problem:

min g(x), x ∈ N, fj(x) = 0, j = 1, ...,m (5.6)

Upon adopting this technique, a Lagrangian is introduced as a function of x and an
auxiliary vector α ∈ Rm [117]:

N × Rm ∋ (x,α) =⇒ J(x,α) = g(x)−
m∑
j=1

αjfj(x) = g(x) + αT f(x) (5.7)

where f represents the m-dimensional constraint vector. Essentially, the Lagrangian sub-
stitutes each constraint with a linear "price" to be either paid or received, contingent
upon the sign of αj. The set N can be viewed as the "universe" of the variable x, while f
encapsulates the relaxed constraints [117].

5.2.2 Translating the Formulation to the Bitrate Control Loss

Using this optimization tool, the problem with the strong constraint in Equation 5.3 can
be transformed into one where the constraint Rest = rtarget is relaxed. To illustrate this,
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consider x as the original data and x̃ as the reconstructed data:

J(x, x̃) = D(x, x̃) + βf(y; rtarget) (5.8)

where D(x, x̃) is the distortion measure to be minimized, and f(y; rtarget) represents
the rate-constraining function introduced in the Lagrangian. The constraining function
generally depends on the latent y, which can refer to either the noisy latent ỹ or the
quantized latent ŷ, depending on x. To maintain concise notation, consider it simply a
function of y. These notations will be clearer as the specific loss is constructed for the
problem. The constant β represents the Lagrangian "price" paid in terms of distortion to
achieve the desired rate. The restriction function f is an arbitrary function that acts as
a cost function for the problem, i.e., f(y; rtarget)→ 0 when minimizing J(x, x̃).

5.3 Properties of a Target Bitrate Loss

The primary aim was to devise a loss suitable for neural networks. Defining some essential
properties for such a loss is necessary to achieve this goal.

5.3.1 Differentiability

Neural networks rely on the gradient descent technique, which involves propagating deriva-
tives of the loss for the parameters. Hence, differentiability is a vital property of the loss
function. In machine learning, many activations and functions aren’t differentiable across
their entire domains. For instance, consider the ReLU function (described in Section
2.2.7):

ReLU(x) = max(0, x) (5.9)

where max denotes the maximum of the two values. This function isn’t differentiable at
x = 0. Despite this, it’s widely used, and approximations for these derivatives are com-
monly employed in major frameworks. Another example is the absolute value function,
occasionally used in machine learning contexts:

|x| =

x, if x ≥ 0

−x, otherwise
(5.10)

This function isn’t differentiable at x = 0. Nonetheless, it’s frequently utilized with
gradient approximations at these non-differentiable points.

The objective is to devise the simplest loss function that meets the requirements. For
differentiable functions, options include trigonometric functions such as cosine and sine,

81



and polynomials. In the following sections, we’ll narrow down the possibilities for func-
tions possessing ideal properties to serve as loss functions for gradient descent optimization
of neural networks.

5.3.2 Unique Global Minimum

The second essential property is having a unique global minimum, crucial when designing
a loss function to achieve a target rate. A single global minimum prevents the neural
network from converging erroneously or encountering optimization difficulties.

For instance, suppose a target rtarget is to be reached by a loss function following
Equation 5.8. In such a scenario, there is a balance between distortion D and the target
function f . Now, consider a function f(x) = (x−2)(x−3) = x2−5x+6. This polynomial
has two roots at x = 2 and x = 3. In a minimization problem, these roots represent
points where the loss function achieves a zero value. If penalizing a rate mismatch,
it might encourage the neural network to converge towards a rate of 2. However, as
distortion typically decreases with a rate increase, convergence towards a rate of 3 might
be stimulated. This conflict undermines the objective of attaining a rate of 2.

Similar challenges arise with periodic functions like sine and cosine, which feature
multiple minima along the x-axis. While modifications can be made to these functions to
align with the objectives, such complexities can impede neural network convergence and
diverge from the aim of simplicity. Therefore, this property excludes many elementary
functions as potential candidates for the target loss function f .

5.3.3 Bounded Property

Another critical property is that the function yields bounded values across its domain.
These restrictions apply to the target function candidate and general loss functions used
for optimizing neural networks. Functions being minimized should be bounded below.
Unbounded functions pose a problem in minimizing a loss function. For example, con-
sider a linear function f = x − 3. Given the objective of controlling deviation from 3,
convergence towards 3 minimizes the loss for x values greater than 3. However, converging
towards any value less than 3 decreases the total function value as f becomes negative,
encouraging convergence to lower rate values. Hence, the function must be bounded below
across its domain.

5.3.4 Zero-Value at the Minimum

Consider a polynomial f(x) = (x− 2)2 + 2 = x2 − 4x+ 6. This polynomial has no roots,
even though it could be a suitable candidate considering the properties outlined. In the
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factorized version, the constant term +2 prevents the loss from reaching zero even when
the target value is attained. While this is not a problem for neural network convergence,
adding extra terms contradicts the aim of designing the simplest possible loss function.

5.3.5 Symmetry around the Minimum

Another ideal property is the symmetry of the function around the global minimum,
representing the situation where the neural network reaches the desired rate. A non-
symmetric function around the global minimum is undesirable because it would penalize
the network more heavily as the rate fluctuates above or below the target rate. While this
can be desirable in specific contexts, maintaining simplicity by using symmetric functions
for the first approach is preferred. Additionally, asymmetric penalization can make neural
network training harder as the rate rebounds between the minima.

5.3.6 Architecture-Independent

A desired property is that the approach can be applied to any neural solution, meaning
it works with different architectures and objectives. Following the path of simplicity,
the constraint function should be additive over the fundamental objective of the neural
network. This approach simplifies the optimization of the component dictating this feature
of the model. Therefore, following a Lagrangian relaxation setup would yield this feature.

5.4 The target bitrate loss

Considering the highlights of Section 5.3, it is possible to narrow the view of potential
elementary functions that could satisfy the requirements. The simplest one would be the
polynomials with multiple roots at the same value, like:

f(x) = (x− a)n (5.11)

where n is an even value and a is a positive value. The necessity of n being an even
number relies on the restrictions described in the last section. Therefore, the simplest
function that has all the desired properties is a quadratic function.

Given this, the loss can be written as:

f(y; rtarget) =
(
rtarget −Rest(ỹ)

rtarget

)2

(5.12)
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where y is the value of the latent and ỹ is the noisy latent. The function Rest(ỹ) stands
for the estimated Shannon entropy of the noisy latent based on the factorized entropy
model pỹ:

Rest(ỹ) = −Eqỹ [log pỹ(ỹ)] = −
n∑
i

qỹi
(ỹi) log pỹi

(ỹi) (5.13)

where Epỹ represents the expectation, and n is the dimensionality of the latent space.
Equation 5.13 is obtained considering the factorization of the distribution pỹ, where ỹ =
[ỹi]ni=1 and pỹ = [pỹi

]ni=1, following Balléś approaches [45, 23]. The full loss of Equation
5.8 becomes:

J(x, x̃) = D(x, x̃) + β

(
rtarget −Rest(ỹ)

rtarget

)2

(5.14)

Thus, the constraint of the target rate is tied to the minimization of f(y; rtarget)
whose relevance is determined by the constant β. The greater the deviation of Rest(ỹ)
from rtarget, the higher the penalty in the cost function. In the extreme case where
Rest(ỹ) = rtarget, the rate does not contribute to the cost function, and the model attempts
to optimize distortion only.

As explained earlier, the chosen function gf(y; rtarget) is smooth throughout its sup-
port, which is ideal for optimization in neural networks. Furthermore, the quadratic
function has the property of decreasing the penalty for values close to rtarget and in-
creasing the penalty for values far from rtarget, which can be interesting for optimization.
Another characteristic of the loss function is the normalization factor. This normalization
proved effective in making the loss function more robust to all target rates. Although the
quadratic function has been chosen for the study, any function with desirable properties
can be used. Nevertheless, unless a specific behavior is expected in the convergence, the
other candidates are not expected to bring noticeable improvements.

5.4.1 Analysis of the Proposed Modification

The proposed loss function can be expressed as follows:

J(x, x̃) = D(x, x̃) + β
Rest(ỹ)2

(rtarget)2 − 2βR
est(ỹ)
rtarget

+ β (5.15)

where y is not shown as a variable of J because it is a function of x. When Rest(ỹ) = rtarget,
the loss function reduces to J = D. Therefore, only the distortion will be minimized
whenever the target rate is met. Following this rationale, the function induces a local
minimum at Rest(ỹ)→ rtarget. These local minima are influenced not only by Rest(ỹ)→
rtarget but are also determined by low values of D at these points.
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The rate term, defined by the function f(y; rtarget) = β Rest(ỹ)2

(rtarget)2 − 2βRest(ỹ)
rtarget + β, is

a parabola with two roots at Rest(ỹ) → rtarget. The term β is related to the “width”
of the parabola: higher values will narrow the parabola, and lower values will make it
wider, as shown in Figure 5.1. Thus, higher values of β will penalize deviations from
Rest(ỹ) = rtarget more severely. Consequently, this hyperparameter will act as a control
mechanism to manage the variance of the achieved rate. A point worth noting is that
excessively high values for β impede the convergence of the solution, as the Lagrangian
relaxation approaches the constrained problem without relaxation, where β →∞.
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Figure 5.1: This graph depicts the overlay of different parabolas of the form f(y; rtarget) =(
rtarget−Rest(ỹ)

rtarget

)2
, with Rest(ỹ) ∈ [0.5, 2.5], rtarget = 1.5 and β = {100, 104, 3 × 104, 5 ×

104, 105, 1.5 × 105}. In this case, it is observable that β controls this "width" of the
parabola, which in this instance is linked to the range required for the parabola to rise
sharply. This derivative with very high values plays a role in influencing the variance of
the achieved rates, as deviations from Rest(ỹ) = rtarget will be penalized more severely.
It is interesting to note that, for instance, β = 100 makes the parabola appear flat
compared to the parabola with β = 1.5 × 105. This implies that deviations in this
range Rest(ỹ) ∈ [0.5, 2.5] will be less penalized when β = 100 compared to β = 1.5× 105.

It is worth mentioning that the term β is also dependent on another hyperparameter,
rtarget. This dependency is because the relevance of the rate to the optimization will be
relative to the relevance of the distortion. Naturally, when using lower values for rtarget,
the distortion D will be larger, which will decrease the significance of the constraint
f(y; rtarget). Therefore, higher values of β are expected to be necessary as the values of
rtarget decrease.

The characteristic of the function can be seen in Figure 5.2 in the context of the convex
hull. For this illustration, random points were chosen in the rate-distortion space. The
rate parabola can be considered a mechanism to focus on the desired points in the rate-
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distortion space since it contributes to the value of the loss function. Ideally, reaching
the red point on the convex hull would be desirable. However, as with any rate control
mechanism, constraint optimization is challenging.

Rate

D
is
to
rt
io
n

Figure 5.2: The parabola influences the points on the rate-distortion plane since it con-
tributes to the loss function. The dashed purple lines represent the additional values the
parabola introduces to the loss function. It establishes a tolerance interval, depicted by
the dashed red lines. The dashed red line in the center represents the target rate. This
tolerance interval is a consequence of the fact that points outside this interval will have
high values for the loss function and, consequently, are less likely to be selected. The
neural network can converge to any red points, but it is not necessarily the optimum
point on the convex hull (represented by the blue line).

5.4.2 Relation with Variational Inference

The reference architectures, introduced in Section 4.2, implemented for the experiments
of this chapter, directly optimize the rate-distortion. They are named VAEs due to the
equivalence between them, which can be observed from the derivations of Equations 4.6
and 4.14. The second step of these equations, which defines the calculation of the KL
divergence used as a loss function, can be specified as follows:

J(x, x̃) = Eỹ∼q log q(y|x;ϕ)− Eỹ∼q log px|ỹ(x|ỹ)− Eỹ∼q log pỹ(ỹ) + const (5.16)

As previously shown, adopting uniform noise of unit width reduces this loss function to
a rate-distortion function. For comparison purposes, the function with rate constraint
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relaxation shown in Equations 5.8 and 5.12 can be expanded and presented as follows:

J(x, x̃) = D(x, x̃) + β
(rtarget)2 − 2rtargetRest(ỹ) +Rest(ỹ)2

(rtarget)2

J(x, x̃) = D(x, x̃) + β − 2β
rtarget

Rest(ỹ) + β

(rtarget)2R
est(ỹ)2 (5.17)

This function corresponds to a parabola. Since β and rtarget are constants, this loss
function generically has the following structure:

J(x, x̃) = D(x, x̃) + c1R
est(ỹ) + c2R

est(ỹ)2 + c3 (5.18)

where c1, c2, and c3 are constants and y is a function of x. The term J = D+c1R
est(ỹ) has

a structure similar to the variational loss function; however, in this case, c1 is a negative
constant. There is also the Rest(ỹ)2 term, which balances the negative Rest(ỹ), ensuring
that the parabola in question never attains a negative value. This quadratic variable does
not have a formal correspondence with the derivation of variational inference based on KL
divergence, as presented in the equations of Section 4.2. This quadratic term results from
the use of a quadratic loss function, whose motivation was discussed in previous topics.

Different types of density and modeling choices would have to be made to equate with
the variational derivation presented. However, the implemented architectures retain the
modeling of the non-parametric architecture (Section 4.2.3) and parametric architecture
(Section 4.2.4). Therefore, considering the analysis from this viewpoint, the loss function
in question is not a variational inference function. Nevertheless, similar behaviors of the
rate-oriented and variational loss functions have been empirically observed, as will be
presented in Section 5.5.4. A formal equivalence, whether arising from different modeling
choices or formulations that do not adopt KL divergence, could be the subject of future
studies.

Another way to evaluate the function in question could be through the strict view
of rate-distortion. As presented in Equation 4.2, the characteristic of rate-distortion
optimization is the balance between distortion and rate terms weighted by a constant.
For theoretical evaluation purposes, the equation for the rate-oriented function could be
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expressed as follows:

J(x, x̃) = D(x, x̃) + β

(
rtarget −Rest(ỹ)

rtarget

)2

= D(x, x̃) + β

(
rtarget −Rest(ỹ)

rtarget

)2
Rest(ỹ)
Rest(ỹ)

= D(x, x̃) + β

rtarget −Rest(ỹ)
rtarget

√
Rest(ỹ)

2

Rest(ỹ)

= D(x, x̃) + h(y; rtarget, β)Rest(ỹ) (5.19)

where h(y; rtarget, β) is a function dependent on Rest(ỹ) with parameters β and rtarget.
The components of this equation could represent a generalization of a rate-distortion
function, where the relevance of optimizing the rate component is dependent on the
hyperparameters and the rate obtained. The balance between the distortion D and the
rate Rest(ỹ) is given dynamically.

From this perspective, it is as if the relevance of optimizing the rate Rest(ỹ) becomes
more significant as the rate diverges from rtarget. One effect of the quadratic function is
that if Rest(ỹ) is smaller than rtarget, the relevance of reducing the rate also increases.
However, in this case, as the distortion increases, at some point, it becomes more relevant
to optimize the gradients to decrease the distortion. This balance would converge the rate
to rtarget.

Equation 5.19 could be multiplied by h−1(Rest(ỹ); rtarget, β), which would maintain the
balance between rate and distortion. In this case, the rate-distortion equivalence would
be given by:

J(x, x̃) = h−1(Rest(ỹ); rtarget, β)D +Rest(ỹ)

= 1
β

 rtarget
√
Rest(ỹ)

rtarget −Rest(ỹ)

2

D(x, x̃) +Rest(ỹ) (5.20)

The balance achieved in this case is that as the rate Rest(ỹ) approaches rtarget, opti-
mizing the rate becomes less interesting, and optimizing the distortion dominates. Again,
if the rate Rest(ỹ) deviates from rtarget with smaller values, the relevance of the term
accompanying the distortion decreases, but it is balanced again by the increase in the
value of the distortion. Conversely, when Rest(ỹ) is greater than rtarget, the relevance of
the distortion decreases, as does the distortion itself, but the increase in Rest(ỹ) makes it
more attractive to optimize the gradients to decrease Rest(ỹ).

The parallel analysis raised in Equations 5.19 and 5.20 do not represent a formal
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argument regarding a rate-distortion interpretation, but they can help enhance the un-
derstanding of the behavior of this loss function. Despite the differences in the modeling
of rate-oriented architectures, the other aspects of the modeling presented in Sections
4.2.3 and 4.2.4 were adopted in the proposed method. Notably, modeling and possible
formalizations of rate-oriented architectures could be pretty interesting in future works.

5.4.3 The Non-linearity of Target Rate Losses

One crucial aspect emphasized throughout the discussion on loss functions is the necessity
of a non-linear complex balance between rate and distortion. This balance is encapsulated
in Equation 5.19, mediated by the balance term h(y; rtarget, β). In reality, even simple
modifications to baseline proposals necessitate a non-linear behavior.

The classical rate-distortion balance is given by the following equation:

J(x, x̃) = D(x, x̃) + λRest(ỹ) (5.21)

Here, λ can serve as a multiplier for both D(x, x̃) or Rest(ỹ), highlighting that the inter-
pretation of the term would change in different scenarios. Nevertheless, the optimization
principle remains intact in the context of neural networks.

Consider a proposal for f(y; rtarget) where it is adopted a linear function: f(y; rtarget) =
Rest(ỹ)−a, where a > 0.The target rate equation can be expanded to show the following:

J(x, x̃) = D(x, x̃) + βf(y; rtarget) (5.22)
= D(x, x̃) + β

(
Rest(ỹ)− a

)
= D(x, x̃) + βRest(ỹ)− βa
≈ D(x, x̃) + βRest(ỹ)

In the last line of the equation, the term βa can be disregarded as it is a constant.
Replacing β with λ makes it possible to obtain behavioral equivalence to Equation 5.21.
However, the problem with Equation 5.21 is that this loss does not converge to a target
rate behavior as applied in baseline works.

Instead, one could consider, for example, the absolute value function. However, as
defined in Equation 5.10, this function has two different behaviors depending on the value
it receives. Consider the expansion of the absolute function using the estimated rate
notation:

f(y; rtarget) =

R
est(ỹ)− a, if Rest(ỹ)− a ≥ 0

− (Rest(ỹ)− a) , Rest(ỹ)− a < 0
(5.23)
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Expanding the case where Rest(ỹ)−a ≥ 0, there is a behavior equivalence to Equation
5.22. However, considering the case where Rest(ỹ)− a < 0, there is some weird behavior,
described as follows:

J(x, x̃) = D(x, x̃) + βf(y; rtarget) (5.24)
J(x, x̃) = D(x, x̃) + β|Rest(ỹ)− a|

= D(x, x̃) + β
(
a−Rest(ỹ)

)
= D(x, x̃) + βa− βRest(ỹ)
≈ D(x, x̃)− βRest(ỹ)

The last line shows undesirable behavior unless β < 0. Even though β < 0 yields classical
rate-distortion behavior, it wouldn’t work for the case where Rest(ỹ) − a ≥ 0 since that
term is positive. In conclusion, although the absolute function seems suitable for the loss
function, except for its differentiability issue at the origin, it doesn’t exhibit desirable
behavior when its equations are expanded.

Main VAE

λ-VAE

x x~ J = D + λ R

?

J = ?

Figure 5.3: Diagram illustrating a general approach employing an auxiliary neural network
to assist the main network in optimizing a classical rate-distortion loss. The question
mark "?" indicates the unspecified input and loss function required by the neural network
to generate a suitable lambda value for the current image, considering the target rate
compression.

One potential solution to address the non-linearity issue is incorporating an auxiliary
model into the classical rate-distortion loss, as depicted in Figure 5.3. This approach
may avoid non-linear functions and relies on a simple classical rate-distortion loss with
an auxiliary neural network. However, this is not necessarily the case.

In general, the loss function of the auxiliary model could take various forms, penalizing
the model based on the image compression rate, as indicated by the λ output. For
instance, any loss satisfying the requirements outlined in Section 5.3 could be employed
as the training loss of the auxiliary λ-model. However, additional information is necessary

90



for this λ model. Considering that the auxiliary model should receive the image itself x
and the target rate rtarget is reasonable. In this general setup, the auxiliary lambda model
outputs:

λ′(x, Rest(ỹ); rtarget) = h(x, Rest
t (ỹ); θ) (5.25)

where h represents the neural network function, parameterized by θ. The term Rest(ỹ) is
explicitly included because, even though it is a function of x, it indicates that λ itself is
a function of the rate estimation.

The main loss function becomes:

J(x, x̃) = D(x, x̃) + λRest(ỹ) (5.26)
= D(x, x̃) + λ′(x, Rest(ỹ); rtarget)Rest(ỹ)

The second line of the equation reveals a λ function dependent on the rate Rest(ỹ), which
is multiplied by the rate Rest(ỹ), leading to a non-linear expansion of Rest(ỹ). Although
this idea is not extensively elaborated, it underscores that all simple sketches of solutions
to the problem may result in a non-linear loss. Therefore, the squared function remains
one of the simplest functions that satisfies all desired characteristics.

5.4.4 The Mean Rate Shift Problem

Adopting the loss function in Equation 5.8 introduced two new hyperparameters. First,
the parameter rtarget, which is related to the target rate and is connected to the average
rate that the network produces considering the training dataset. The second parameter,
β, controls the significance of optimizing the rate function in the loss equation. This
parameter has a more complex dynamic, given that the relevance of the rate function is
relative to the value of distortion. Thus, β does not define an absolute relevance as its
weight significance depends on other variables.

The λ in Equation 4.7 has a well-defined interpretation in the context of variational
inference. It is tied to the variance of the Gaussian that defines the marginal likelihood
(Equation 4.11). Higher or lower values of λ will increase or decrease the reconstruction
variance, which implies better or worse reconstruction quality. However, the behavior of
the parameters (rtarget, β) is not fully understood, as introduced in this chapter’s proposal.
Furthermore, the idea is that this approach should be general and applicable to various
neural compression architectures.

Initial experiments with the rate-oriented function in the architectures described in
Section 4.2 demonstrated a specific behavior of the loss function. Whenever a model
was trained to achieve a rate rtarget, upon evaluating the model, it would produce a rate
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Rest(ŷ) where Rest(ŷ) ≤ rtarget. This deviation from the average rate was larger as the
target rate rtarget was smaller. Regarding the hyper-parameter β, it indeed controls the
variance of the reconstructions, as will be presented in Section 5.5, but, being a function
of Rest(ỹ) and rtarget, it also increased the shift of the obtained average rate. The result
was a rate-oriented model with a real rate different from the rate during training.

Theoretical investigations into these preliminary results indicated that one of the pos-
sible causes of this issue is related to how quantization is performed during training and
that it is more noticeable at lower rates. In the reference architectures, quantization must
be replaced by a differentiable approximation to allow gradient back-propagation. Taking
the non-parametric architecture as a use case, which introduces the prior hyper, during
the inference step, each element yi of the raw latent y is scalar-quantized after subtracting
the mean µyi

. Thus, the quantized value ŷi is obtained after adding the mean:

ŷi = round(yi − µyi
) + µyi

(5.27)

where round rounds to the nearest integer. Conversely, during the training step, quanti-
zation is modeled as additive uniform noise:

round(yi − µyi
) ≈ (yi − µyi

) + U(−1
2 ,

1
2) (5.28)

Combining Equations 5.27 and 5.28 yields the latent at training time:

ỹi = yi + U(−1
2 ,

1
2) (5.29)

As the target rate rtarget shifts towards smaller values, the entropy of the latent repre-
sentations decreases, equivalent to saying that the uncertainty of the latent y is reduced.
The Gaussian distributions modeling the latent (Equation 4.23) begin to form sharper
peaks around their mean, with a smaller scale of variation. In this scenario, the difference
between the rate estimated using the noisy latent ỹ and the rate calculated using the
quantized latent ŷ becomes more noticeable.

Consider, without loss of generality, a latent element yi with a scale parameter σi < 1
2

and mean µi = 0. The noisy latent element ỹi will randomly lie in the interval [−1
2 ,

1
2 ],
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and its likelihood will be calculated as follows:

p(ỹi|σ̃i) =
(
N (0, σ̃i) ∗ U

(
−1

2 ,
1
2

)
)
)

(ỹi) (5.30)

=
∫ ỹi+ 1

2

ỹi− 1
2

N (0, σ̃i)(u)du (5.31)

= f
(
ỹi + 1

2

)
− f

(
ỹi −

1
2

)
(5.32)

where u is an integration variable and f is the CDF of the Gaussian N . Figure 5.4
schematically shows the likelihood calculated for ỹi. When ỹi ̸= 0, during training,
the likelihood of this element is equivalent to the Gaussian area in the unit interval[
ỹi − 1

2 , ỹi + 1
2

]
. In contrast, during inference, all values in the interval

[
−1

2 ,
1
2

]
will be

rounded to 0, and the likelihood will be the area of this interval.

Figure 5.4: The schematics of the probability of the unity interval around a noisy (left)
and quantized (right) value.

Given that pỹi
(ỹi) ≤ pỹi

(ŷi), as Figure 5.4 illustrates, the training entropy is higher
than the test entropy. The same scheme from Figure 5.4 applies to Gaussians with
an arbitrary mean. Preliminary analyses have also indicated that this effect occurs with
arbitrary distributions. This conclusion is based on observing deviations from the average
rate in the non-parametric model. It is essential to highlight that the average deviation
was smaller, as will be explored further in Section 5.5.

The consequence of this misalignment between the training entropy and the test-time
entropy is an over-penalization of the loss function through the rate function f(y; rtarget),
as the Rest(ỹ) during training will have to be shifted down more than necessary. This
mismatch was a fact that likely went unnoticed by most approaches since, in these other
cases, the optimization is not done concerning a target rate. However, an interesting
point about this deviation at lower rates is that it may hinder the performance of neural
networks at low rates, being an aspect to be studied to improve network performance at
low rates.

Nevertheless, an initial empirical experiment already pointed to problems based on this
relaxation of quantization. Ballé briefly analyzed the impact of the continuous relaxation
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of the additive uniform noise in his seminal work [45]. The authors selected a random
subset of 2169 images and plotted the points corresponding to many different λ values
in one experiment. The plot, which depicted the discrete entropy, where quantization is
applied, versus the differential entropy, which handles the noisy latent entropy estima-
tions, shows a deviation from the identity line. This analysis identified the quantization
approximation mismatch problem caused by the noisy estimations. This mismatch may
be one of the causes that translated as the rate mean-shift problem. That is because, in
the current approach, a tight estimation of the rate during training is necessary.

Approximations to address the non-differentiability issue of quantization are applied
in practically all neural compression approaches. Thus, different strategies to simulate
the operation can lead to different architectural behaviors. Since the loss function is
rate-oriented in this chapter’s proposal, this can cause different distortions concerning the
hyper-parameters (rtarget, β).

Given that this aspect of the networks became evident with the loss function, it is
necessary either to find some way to circumvent the problem of the average rate deviation
or to adopt some strategy to estimate the hyper-parameters (rtarget, β). Based on this
analysis, from now on, instead of using the rtarget in the loss equations, it will be adopted
the term Rparam, which stands for the actual value for the parameter loss that would yield
a real rate of rtarget. It is a function of many variables of the neural network.

5.4.5 Hyper-parameter Estimation

As presented earlier, the proposed loss function is defined by two hyperparameters:
(β, rtarget). rtarget is related to the average rate that the network produces, while β con-
trols the deviation of the average rate. Both parameters should be defined depending
on the architecture and the convergence of the neural network, something that can be
difficult to specify beforehand.

The complexity is even greater concerning β since it depends on the rate, in the same
way that λ is in the standard rate-distortion Lagrangian (Equation 4.1). Additionally,
there is the issue of quantization, which can lead to misalignment between estimates
during training and inference time.

A general training heuristic has been designed to define the introduced hyper-parameters.
The goal is to avoid many empirical tests, which would complicate the application in real
scenarios. The proposed heuristic for training is presented in Algorithm 3, where the
Rparam is the term adjusted to compose the loss and Rest(ŷ), the rate estimation based
on the quantized latent space, refers to the real rate obtained, not including the header
of the actual bitstream compression, as it is almost negligible on the rate.
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Algorithm 3: Pseudocode of the heuristic for hyper-parameter adjustment
Input : rtarget =⇒ desired average rate; σ2 =⇒ allowed variance for

compression; titer =⇒ number of iterations for training;
δβ =⇒ granularity of the adjustment of parameter β

Output : A neural network performing compression with average rate
rtarget using the parameter Rparam and variance σ2 using the
parameter β

Initialization: Rparam = rtarget; β = 1;
1 while Rest(ŷ) ̸= rtarget and σ̂ ̸= σ do
2 Train (or refine) the network with the loss function {Rparam, β} on the

training set until the rate becomes stable, following any desired criterion.
3 Perform inference with the pre-trained network on the validation database,

calculating the actual compression rate obtained for each image. Considering
the set of obtained rates, calculate the average rate Rest(ŷ) and the variance
of the rates, σ̂2

4 if Rparam ̸= rtarget then
5 Rparam = Rparam − [Rest(ŷ)− rtarget]
6 if σ̂2 > σ2 then
7 β = β + δβ
8 if σ̂2 < σ2 then
9 β = max(ϵ, β − δβ)

10 end
11 After obtaining the parameters {Rparam, β} of the loss function that causes the

network to compress at an average rate rtarget with a variance σ2, train the
neural network with the hyper-parameters {Rparam, β} for titer iterations on the
training database.
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The inputs for the algorithm are defined by the variables (rtarget, σ2, δβ), which have
the following meanings:

• rtarget is the average rate the model should achieve (the target rate);

• σ2 is the allowed tolerance for deviations from rtarget, defined in terms of the rate
variance;

• titer is the number of iterations for the training stage;

• δβ represents the granularity of adjustments made to the parameter β.

The heuristic consists of two major procedures: an adjustment stage and a training
stage. In the adjustment stage, representing lines [1, 10] of the algorithm, the goal is to
estimate values for the pair (β,Rparam). In this notation, Rparam represents the actual
value used as the real parameter of the loss function. In the second phase, the pre-trained
network from the previous phase is refined with these estimated values, which should
provide compression at the desired average rate rtarget and with the required deviation
tolerance σ2. It is essential to highlight that due to the average deviation problem, Rparam

will be set at a value different from the desired value rtarget, as will be detailed in Section
5.5.

An essential point in the adjustment phase is that the network training, line 2 of
the algorithm, should be conducted until stabilization of the rate function for a pair
{Rparam, β}. Figure 5.5 shows an example where the behavior of the estimated entropy
during training can be observed as different values for the pair {Rparam, β} are chosen.

In Figure 5.5, the typical behavior of the estimated entropy during the training of
the parametric model can be observed. Each segment, represented by a different color,
indicates a {Rparam, β} change in the pair. Changes in Rparam shift the signal’s mean,
while alterations in β reduce the signal’s variance. In the first segment, in blue, the output
generates an average rate significantly distant from the target rate, which is expected since
the training has just begun. Each modification of the parameters in the following segments
brings the average rate closer to the desired value. For the stopping criterion, about line 2
of the pseudo-code, various techniques can be employed to analyze the signal’s convergence
around a fixed value, such as techniques that examine the stationarity of functions [118].

In this case, the network used at each step is the resultant network from the previous
step. That is, it’s a sequence of refinements because training the network from scratch at
each stage could delay the initial convergence of the rate, and this approach has proven
efficient in terms of results. Figure 5.5 demonstrates that many iterations at each step
of the adjustment phase are unnecessary, as the entropy stabilizes quite rapidly once the
parameters have been altered. However, it is essential to note that this is architecture-
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Figure 5.5: This figure displays the behavior of the estimated rate during the training of
a version of the parametric architecture with the rate function as an example. Each color
represents the refinement of the model with a different set of parameters {Rparam, β}.

dependent. Approaches utilizing more complex neural models will naturally require more
iterations.

Once the network has been trained in one step of the adjustment stage, a validation
database must be used. If the results are unsatisfactory, it will be necessary to adjust
Rparam and β (lines 3-9). The term Rparam can be shifted concerning the average rate
difference from the desired value. On the other hand, the term β can be increased or
decreased if less or more variance is desired, with the step change determined by δβ. It
is worth noting that the granularity δβ impacts the time of the refinement stage. This
impact is because lower values for δβ will demand more refinement stages, while higher
values for the constant δβ will expedite the adjustment speed. However, if the granularity
is too high, fine control of the compression rate variance may not be possible.

Thus, the first stage of the heuristic can be seen as a procedure for estimating the
value of the loss function’s hyper-parameters. The result is a set {Rparam, β} of hyper-
parameters that yield a network with the desired rate and variance. This procedure allows
the application of the loss function in different architectures, as it will compensate for vari-
ations in the behavior of the loss function across different architectures. The overarching
goal is to obtain suitable hyper-parameters regardless of the chosen architecture.

A fundamental point about the heuristic concerns the convergence Rest(ŷ) → rtarget.
Currently, there is no way to mathematically demonstrate that Rest(ŷ)→ rtarget and that
the variance will become the desired one with the heuristic. Since Rest(ŷ) is a variable
of the loss function, which uses the constant rtarget as a reference, the convergence of the
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heuristic relies on the convergence of the neural architecture, as is the case for any use of
neural networks.

Considering this fact and the experimental results that will be shown in the results
section, it can be empirically posited that the rate-oriented loss function generally has
good convergence properties and, consequently, Rest(ŷ)→ rtarget in most cases. However,
if any convergence issues occur, one path is to attempt different or more robust architec-
tures. It is essential to mention that the network and heuristic convergence may be the
subject of future studies.

5.5 Results

This section will present the experiments and results obtained with the proposed ap-
proach. Section 5.5.1 will detail the datasets and the procedures performed for training
and inference. Meanwhile, Section 5.5.2 will introduce the first experiment to validate
the rate-oriented approach. The feature related to the variational loss function will be
explored in Section 5.5.4. The comprehensive rate-distortion analysis and comparison
with reference architectures will be displayed in Section 5.5.5. Figures and charts for
comparison and subjective evaluation of the results will be presented in Section 5.5.8.

5.5.1 Training and Testing Specifications

The parametric and non-parametric architectures, whether original or modified, were
implemented using a framework provided by the authors via Tensorflow [113]. For the
training of the models tested in this chapter, images from the following datasets were
considered:

• CLIC Professional dataset [119];

• CLIC Mobile dataset [119];

• DIV2K dataset [120];

• Ultra-Eye Ultra HD dataset [121];

• MCL-JCI [122, 123];

• FLICKR2K dataset [124];

The image preparation involved extracting fragments of size 256× 256 pixels from all
the datasets. The extracted image fragments do not overlap. To test the method’s gener-
ality, eight neural networks were trained, each aiming to achieve one of the following rates:
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{0.06, 0.12, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0}, considering each of the reference architectures, the
parametric [45] and the non-parametric [23].

The criterion to consider that the model has achieved the target rate is a maximum
deviation of 15% from the target rate. This tolerance is quite challenging, especially for
lower rates. For instance, in the case of rtarget = 0.06, the range is [0.051, 0.069], allowing
minimal variance in the rate. It is crucial to highlight that stricter criteria for the target
rate will significantly impact rate-distortion performance

The number of iterations (titer, in heuristic 3) was set to 500, 000 to check if convergence
could be achieved without overly prolonged training. The parameter δβ was inversely
proportional to the rate in the range [500, 20, 000]. In this case, the lower rates had
the most considerable update steps, which was unnecessary for the higher rates. The
determining factor is the structure of Equations 5.8 and 5.12 because the relevance of β is
relative to the magnitude of the distortion. Naturally, compression at lower rates will yield
higher distortion D values, which decreases the importance of rate Rest(ỹ) relatively. A
higher value of β is also needed to ensure the desired variance, as the tolerance for variation
at lower rates is very small. It is worth noting that lower values for δβ would increase the
number of necessary steps for stipulating the hyperparameters Rparam, β. Conversely, a
very high value would reduce the fine control of the variance.

Two datasets were used for evaluating the trained models:

• JPEG AI dataset [125];

• Kodak dataset [75];

The Kodak dataset is the most widely used in the literature and consists of 24 uncom-
pressed images. The JPEG AI dataset, being more recent, comprises 16 images. It is
an interesting dataset because it includes high-resolution images, such as 4K, which is a
feature not present in the Kodak dataset images.

For comparison purposes, six models of each of the architectures were trained, using
the following values of λ = {10−4, 10−3, 10−2, 5 × 10−2, 10−1, 2 × 10−1}. The values of λ
were chosen to cover the low and high rates usually obtained with these values for this
constant. The training process also adopted 500, 000 iterations on the same datasets used
for the rate-oriented models.

5.5.2 Analysis of Average Rate and Variance

The initial step is to demonstrate that the proposed approach attains the desired out-
comes. In this case, each model aims to achieve one of the specified rates. Thus, ex-
periments were similar to those illustrated in Figure 4.2. The outcomes are displayed in
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Figure 5.6: Results of both architectures on the JPEG AI database.

Figures 5.6a, 5.6b, 5.7a, and 5.7b. In the case of the parametric architecture, the only
point outside the tolerance interval occurred at the rate of 0.06. It is not visible as the
deviation was minor, given the small allowable interval at this rate. In contrast, for the
non-parametric architecture, the only point outside the tolerance interval occurred at the
rate of 2.0. In this case, it is visible in the graph since the tolerance for this rate is higher.

Figures 5.6a and 5.6b show the results for the parametric and non-parametric models
applied to the JPEG AI database, respectively. In the case of the parametric model, there
was only one violation of the tolerance interval, occurring at the rate of 0.06. It is not
apparent in the graph as the interval was very narrow at the rate of 0.06, and the deviation
was also barely noticeable. Conversely, in the non-parametric model, the compression of
one image was outside the tolerance interval at the rate of 2.0. This violation of the
interval is visible in the graph because the tolerance interval is wider at that point.
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Figure 5.7: Results of both architectures on the Kodak database. In this instance, no
points were outside the tolerance interval.

Results on the Kodak database are illustrated in the pair of Figures 5.7a and 5.7b,
referring to the parametric and non-parametric models, respectively. In this instance,
there were no points outside the tolerance interval. Notably, the images in the Kodak
database are of size 512×768 pixels or 768×512 pixels. Therefore, this represents a more
straightforward scenario than the JPEG AI database, which contains images of much
larger sizes with more details.

Considering the JPEG AI database, which contains 16 images, each evaluated with 8
models (for each of the 8 rates), a total of 128 reconstructions were performed for each
architecture. This total implies that only 1 out of 128 reconstructions fell outside the
interval for each architecture. It is worth mentioning that these reconstructions were
above the tolerance interval by only 3% deviation. In the case of Kodak, containing 24
images results in a total of 192 reconstructions for each architecture.
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Thus, it can be asserted that most points lie within the tolerance interval, contrasting
with the results in Figure 4.2. These findings suggest that the proposed loss function
performs well for images not seen during training and, therefore, can generalize with the
rate constraint included via Lagrangian relaxation.

A noteworthy aspect regarding the generalization of the loss function pertains to the
number of iterations used to train each model. In this scenario, the networks underwent
training for only 500, 000 iterations. One way to enhance the neural network’s generaliza-
tion is to train for more iterations, provided it is not overfitting. Given the convergence
exhibited by the introduced loss function, this can potentially decrease the likelihood of
obtaining images outside the tolerance interval. These scenarios are tied to the network’s
generalization capability because the loss function introduces the rate parameter in the
optimization. If an increase in the number of iterations results in an excessively long ad-
justment stage of the heuristic 3, a viable strategy is to increase the value of δβ to reduce
the number of adjustment steps for β.

5.5.3 Impact of the β Parameter

The previous section highlighted that it is possible to achieve the desired rates by appro-
priately defining the values of the parameters Rparam, β of the loss function. It was also
mentioned in this chapter that the constant β, besides depending on the values related
to the rate Rparam, also controls the variance of the rate.

This β parameter effect can be seen through an experiment where 6 rate-oriented
models were trained using the non-parametric architecture. The training specifications
followed the ones described in Section 5.5.1. Thus, these models were each trained with
500, 000 iterations. All models had rtarget = 0.06, and each was parameterized by a
different value for β. The set of values is given by [100, 101, 102, 103, 104, 105].

Therefore, it is possible to evaluate the impact of the variation of the β parameter on
the rate’s variance, as per Figure 5.8, which presents the rate values for reconstructions
of the Kodak database. The graph shows that the increase of the β parameter decreases
the variance of the rates. The decrease obtained by varying the parameter value from 100

to 102 is especially notable. Beyond this, the reductions in variance are less noticeable.
It is worth mentioning that this decrease in variance, resulting from the increase in the
value of β, comes at the cost of a drop in rate-distortion performance, as previously men-
tioned. This drop is because, from the perspective of Lagrangian relaxation, increasing
the relevance of the constraint brings the relaxed Lagrangian closer to the constrained
Lagrangian, which typically represents a complex problem to be optimized. Thus, defin-
ing a β value tunned for the application’s requirements is interesting to avoid drops in
performance.
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Another interesting point regarding the variation of the value of β is related to the
effect it has not only on the variance but also on the convergence in the mean. For
instance, when the value of β was set to 100 and 101, it is evident that not even the mean
rate was around 0.06. An effect of better convergence of the mean to the target rate
rtarget = 0.06 is only observed from β = 102 onwards.

Lastly, it is essential to emphasize that this impact of β depends on rtarget as it
represents the relative relevance of converging the rate requirements with the distortion.
In this manner, larger β values are expected to be significant for the results to begin to be
substantial. Conversely, smaller β values are expected to have a more significant impact
at higher rates. This fact will be evidenced in the next section, presenting the results
from Table 5.3a.

Another interesting aspect is the relationship of the β parameter to the distortion
measure, in this case, MSE. This relationship can be seen in Figure 5.9. As expected,
the increase in the parameter value has an inverse effect on the MSE. This is because
different images require different rates to be compressed to the same quality. By forcing
the reduction of the variance of the rates produced by the model, this will result in more
variation in distortions.

For example, observing the dispersion of distortions at β = 100, one can notice that
the points are relatively close, except for the point with the maximum MSE. However, at
β = 105, the mean distortion has shifted upwards. Moreover, some points have become
entirely separated from the primary grouping. Analyzing the impact of these points,
which have experienced significant distortion shifts, can provide a better understanding
of network convergence. This understanding might inspire improved strategies to prevent
potential excessive deterioration of the reconstructions.

5.5.4 Variational Loss Function Characteristics

As discussed in this chapter, the loss function employed in VAEs, initially proposed in [22],
is associated with the variational formulation of Bayesian inference and is defined in terms
of the KL divergence between the variational family qϕ(y|x) and the true posterior qθ(y|x).
Considering the modeling presented in the reference work [45], where quantization is
modeled as additive uniform noise of width 1, the loss function becomes the rate-distortion
Lagrangian.

Not all distortions or perceptual measures lead to a normalizable density. Therefore,
equivalence with VAEs cannot always be assured. Affine and invertible transforms and any
translation-invariant metric correspond to a normalizable density [45]. It is noteworthy
that the loss function introduced in Equations 5.8 and 5.12 may not be considered a
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Figure 5.8: The graph shows the relationship between β and the rates produced for
reconstructions in the Kodak database. It can be seen that the parameter decreases the
variance of the rates and forces the model in question to produce reconstructions with the
average rate following the desired.
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Figure 5.9: The graph shows the relationship between β and the MSE for reconstructions
in the Kodak database. It can be observed that, in this case, the parameter has the
opposite effect on the MSE. This impact is expected since different images require different
rates to be compressed to the same quality. By forcing the reduction of the variance of
the rates, the resulting distortions will consequently increase.
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Figure 5.10: MSE behavior for the parametric architecture on Kodak for different λ
values. It can be seen that the constant affects the reconstruction variance in each of
the models. For instance, in the model with λ = 104, the range of values for the MSE is
around [200, 1600]. In the case of λ = 2×101, the reconstruction values have significantly
reduced variance.

variational optimization function, as presented in Section 5.4.2, since it exhibits some
distinct characteristics.

In the case of the Bayesian loss function adopted in VAEs [22], the term λ represents
the inverse of the likelihood variance in variational Bayesian inference. It is a term related
to reconstruction: high values will reduce the variance of the reconstruction, while low
values will allow for higher variance in the reconstruction values. The behavior of this
term λ can be observed in Figure 5.10, which displays the MSE values on Kodak for each
model trained with a different λ. This experiment refers to the parametric model [23]
trained as the reference architecture for comparison with the target rate models.

It is noteworthy that the proposed loss function retains this characteristic of the
Bayesian inference function, as demonstrated by Figures 5.11a, 5.11b, 5.12a, and 5.12b.
The graphs indicate that the parameter Rparam, and by transitivity the constant rtarget,
has an effect equivalent to λ in the variational Bayesian formulation. Thus, higher Rparam

values result in lower MSE variance, while lower Rparam values lead to higher MSE vari-
ance.

Another aspect to consider concerns the other hyperparameter of the loss function,
β. This parameter will also impact the dispersion of the reconstructions. As previously
mentioned, there is an intrinsic link between the value of β and Rparam. Additionally, β
tightens or loosens the rate variation requirements. This change can cause fluctuations
in the MSE, which tend to become relatively more consistent as the rates converge to
a specific value. However, this effect is less significant than that induced by Rparam

considering the actual values used for β during training.
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Figure 5.11: MSE on the JPEG AI dataset in both architectures.
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Figure 5.12: MSE on the Kodak dataset in both architectures.
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The conclusion from this experiment is that the variance characteristics of the re-
construction of the variational function in VAEs are primarily achieved with Rparam and
peripherally with β. There exists a possibility that there might be some mathematical
relation with the variational formulation that is not so evident. The mathematical study
of loss functions can be insightful for discovering relationships with the standard formu-
lation of Bayesian inference or even with different problem formulations. The intriguing
aspects include connections with variational inference and enhancements in the results
presented in this section. Thus, it could be an interesting avenue for future work.

5.5.5 Rate-Distortion Performance

This section will present the results considering the rate-distortion performance of the
proposed approach. Table 5.1 displays the reconstructions’ averages for parametric and
non-parametric architectures. The chosen metrics were SSIM, MS-SSIM, and PSNR. It is
noteworthy that perceptual metrics have received particular attention concerning neural
compression, as neural networks tend to produce good reconstructions considering these
metrics even when not explicitly optimized for them.

The averages in the table consider only the images whose reconstructions were within
the tolerance range for each rate. An unexpected point is that the parametric model
performed similarly or worse than the non-parametric one. The results were equivalent
in perceptual metrics, but in PSNR, the non-parametric model exhibited performance
comparable to the parametric model. This outcome does not align with the papers that
proposed these architectures [45, 23], where the parametric architecture demonstrated
notable improvements compared to the non-parametric architecture. This difference is
an intriguing finding, as it is a different behavior from the standard optimization of
autoencoders and could be studied in more detail in the future.

Table 5.2 displays the results on the Kodak dataset, where the same criteria applied
to Table 5.1 were implemented. In this instance, the outcomes also suggest that the
parametric architecture did not yield superior results to the non-parametric architecture,
reinforcing that the proposed loss function has some specificities concerning the standard
loss function.

This result indicates a more significant relative deterioration in the parametric model
than the non-parametric model concerning the reference architectures. A relevant point
to consider is that the issue of average rate deviation, formally analyzed in this chapter,
affected the parametric architecture more than the non-parametric architecture.

This higher mismatch can be observed in Table 5.3, which shows the value of the
parameters to achieve the desired rate and variance. It is intriguing to note that the issue
of average rate deviation affected the parametric architecture significantly more than the
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Table 5.1: Results for the parametric and non-parametric architecture on the JPEG AI
base. Averages are calculated considering only the images within the tolerance range for
each target rate, representing this value by the column “#”. A distinct point from the
reference works [45, 23] is that the parametric architecture did not yield better results
than the non-parametric architecture

(a) Parametric Architecture

Rate # SSIM MSSSIM PSNR
0.06 15 0.617 0.835 23.18
0.12 16 0.735 0.915 25.62
0.25 16 0.817 0.951 27.80
0.5 16 0.882 0.973 30.04
0.75 16 0.916 0.982 31.67
1.0 16 0.935 0.986 32.79
1.5 16 0.964 0.992 35.04
2.0 16 0.978 0.995 36.75

(b) Non-parametric Architecture

Rate # SSIM MSSSIM PSNR
0.06 16 0.629 0.836 23.20
0.12 16 0.701 0.900 24.90
0.25 16 0.790 0.942 26.93
0.5 16 0.875 0.970 29.74
0.75 16 0.912 0.980 31.42
1.0 16 0.936 0.986 32.84
1.5 16 0.959 0.991 34.77
2.0 15 0.978 0.995 37.44

Table 5.2: Results for the parametric and non-parametric architecture on the Kodak
dataset. Here, it can also be observed that the non-parametric architecture had results
similar to those of the parametric one.

(a) Parametric Architecture.

Rate # SSIM MSSSIM PSNR
0.06 24 0.609 0.832 23.73
0.12 24 0.710 0.909 26.08
0.25 24 0.797 0.949 28.30
0.5 24 0.870 0.972 30.76
0.75 24 0.909 0.982 32.53
1.0 24 0.930 0.987 33.75
1.5 24 0.961 0.993 36.42
2.0 24 0.975 0.995 38.36

(b) Non-parametric Architecture.

Rate # SSIM MSSSIM PSNR
0.06 24 0.611 0.833 23.82
0.12 24 0.678 0.896 25.40
0.25 24 0.768 0.939 27.32
0.5 24 0.863 0.969 30.30
0.75 24 0.906 0.981 32.17
1.0 24 0.933 0.987 33.74
1.5 24 0.956 0.992 35.86
2.0 24 0.974 0.995 38.33
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non-parametric one. As can be seen in the parametric model table, higher values for
Rparam were necessary at lower rates to achieve the target rate. For instance, to reach the
actual rate 0.06, an Rparam = 0.254 was required.

Another relevant point, as addressed in the theoretical analysis of Section 5.4.4, is
that this effect diminishes as higher entropies are desired. In the case of the parametric
model, up to the actual rate of 1.5, a deviation from the mean is noticeable, requiring
Rparam values more significant than the target rate. However, at 2.0, the Rparam value
fluctuated around the exact rate, indicating that the mean shift’s effects are negligible.

The contrast becomes evident when observing the parameter values for the non-
parametric architecture. A slight mean shift could be attributed to the actual rates 0.06
and 0.12, which required Rparam values of 0.07 and 0.145, respectively. Percentage-wise,
these were the highest deviations between the actual rate and the Rparam parameter.

This scattered result raises quite an interesting aspect regarding the approach of this
chapter. There seems to be some correlation between the mean shift and the degradation
of the architecture’s performance, which could be further substantiated with additional
investigations. If this hypothesis generally holds, it could point to some directions for
future work. As the degradation of the reconstruction seems to be tied to the mean shift,
which may result from the misalignment of the approximate quantization during training
and the actual quantization at test time, the mean shift might be a parameter to guide
better quantization strategies. Using the mean shift as a parameter could be helpful in
modeling architectures that are not necessarily rate-oriented. One possibility is obtaining
better-performing models by observing this effect on the objective rate function, even
if these models are not rate-oriented. It is worth mentioning that the problem of the
quantization operation in neural compression is still an open issue.

The second experiment of this section aims to compare the degradation that the rate
constraint, included via Lagrangian relaxation, has caused in the models. The standard
models trained under the same circumstances as the rate-oriented models were used. It is
important to recall that these standard models have different rate and distortion values
for each λ, dependent on the input image.

The 6 standard models trained for each architecture were interpreted as a single
CODEC to conduct a fair comparison. Each test image was applied to each of the 6
models. If any of the models generated a reconstruction whose rate is within the tolerance
limit for the target rate, the image was considered for comparison purposes. Moreover,
only the images that satisfy the tolerance range concerning the rate-oriented models were
chosen. Thus, a set of images with a specific rate is obtained. This selection enables a
direct comparison using the averages of the reconstructions, as was done in Tables 5.2
and 5.1.
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Table 5.3: The parameters {Rparam, β} used for the loss function, after the heuristic
adjustment step. A notable point is that the parametric model suffered much more
intensely from the mean shift. For instance, to achieve an actual rate of 0.06, it was
necessary to use the value Rparam = 0.254. In contrast, the non-parametric model had
little to no mean shift. This demonstrates that Gaussians are more affected by the shift
than arbitrary distributions.

(a) Parametric Architecture.

Target Rate Rparam β
0.06 0.254 60000
0.12 0.275 55000
0.25 0.410 30000
0.5 0.65 9000
0.75 0.86 6500
1.0 1.08 5500
1.5 1.55 5000
2.0 1.93 2500

(b) Non-parametric Architecture.

Target Rate Rparam β
0.06 0.07 55000
0.12 0.145 55000
0.25 0.25 25000
0.5 0.53 9000
0.75 0.8 6000
1.0 1.08 5500
1.5 1.5 3000
2.0 2.0 1500

The comparisons are displayed in Table 5.4 for the parametric architectures and in
Table 5.5 for the non-parametric architectures. In both cases, SSIM, MSSSIM, and PSNR
are assessed. In all scenarios, it is interesting that the difference in subjective metrics
is relatively small, except at the lower rates. The difference becomes more significant
in PSNR. However, it is known that SSIM and MS-SSIM correlate more with human
perceptual quality [126, 127].

It is worth noting that no specific training was conducted for the perceptual metrics,
with MSE being adopted as the distortion measure in all models. However, as previously
emphasized, neural networks produce images with high perceptual quality even when not
explicitly trained for such metrics. Therefore, MSE was chosen to evaluate PSNR while
maintaining high perceptual quality.

As expected, even using reconstructions from any of the 6 standard trained models,
only some of these reconstructions meet the requirements of target rates, showing that
coding with rate restriction is a very relevant feature in the field of neural coding. On the
other hand, this chapter’s proposal can achieve good rate-distortion results at each rate
using only one model per rate.

The results from Tables 5.4 and 5.5 also make evident the fact mentioned earlier about
the deterioration of the parametric model. This relative deterioration is more pronounced
in the pair of parametric architectures than in the pair of non-parametric architectures,
using PSNR as a reference. These results re-emphasize the possible correlation between
the mean deviation and deterioration concerning the reference models.
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Table 5.4: Comparison of the proposed parametric quantized model (denoted as “Pro-
posal”) to the rate with the Ballé parametric model (denoted as “Standard”) on both
JPEG AI and Kodak databases. The number of common images whose rate met the
tolerance criteria is displayed in the “#” column.

(a) JPEG AI.

Rate # SSIM MSSSIM PSNR
Standard Proposal Standard Proposal Standard Proposal

0.06 4 0.736 0.660 0.888 0.849 27.07 24.16
0.12 2 0.737 0.701 0.920 0.912 24.22 23.21
0.25 5 0.936 0.898 0.981 0.972 33.28 29.60
0.5 3 0.934 0.908 0.987 0.982 32.71 29.46
0.75 6 0.975 0.960 0.995 0.990 37.96 33.50
1.0 12 0.948 0.929 0.989 0.984 36.45 33.03
1.5 12 0.972 0.958 0.994 0.991 37.47 34.88
2.0 6 0.979 0.982 0.995 0.995 36.25 34.93

(b) Kodak.

Rate # SSIM MSSSIM PSNR
Standard Proposal Standard Proposal Standard Proposal

0.06 9 0.756 0.703 0.902 0.872 27.83 25.06
0.12 3 0.614 0.618 0.870 0.885 24.19 23.67
0.25 10 0.876 0.840 0.968 0.958 33.52 30.53
0.5 6 0.894 0.871 0.976 0.973 33.65 30.58
0.75 13 0.932 0.917 0.987 0.984 36.45 33.38
1.0 16 0.949 0.933 0.990 0.987 38.19 34.46
1.5 20 0.964 0.960 0.993 0.993 38.46 35.83
2.0 11 0.974 0.973 0.995 0.995 38.23 36.19
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Table 5.5: Comparison of the non-parametric models, following the same structure as
Table 5.4.

(a) JPEG AI.

Rate # SSIM MSSSIM PSNR
Standard Proposed Standard Proposed Standard Proposed

0.06 3 0.679 0.664 0.866 0.861 27.65 26.94
0.12 5 0.734 0.699 0.904 0.901 24.68 23.80
0.25 1 0.705 0.697 0.917 0.915 31.156 30.54
0.5 4 0.853 0.860 0.960 0.963 30.82 29.82
0.75 6 0.934 0.925 0.985 0.982 35.07 32.53
1.0 5 0.940 0.944 0.988 0.988 34.23 32.56
1.5 15 0.964 0.960 0.992 0.991 37.38 35.25
2.0 10 0.970 0.972 0.994 0.994 37.64 36.70

(b) Kodak.

Rate # SSIM MSSSIM PSNR
Standard Proposed Standard Proposed Standard Proposed

0.06 2 0.721 0.702 0.881 0.875 27.62 26.87
0.12 3 0.513 0.500 0.826 0.842 22.82 22.21
0.25 1 0.912 0.887 0.974 0.965 34.58 30.58
0.5 5 0.837 0.845 0.960 0.965 30.37 29.31
0.75 9 0.920 0.921 0.984 0.984 34.99 32.98
1.0 11 0.932 0.935 0.986 0.987 36.78 34.88
1.5 21 0.962 0.958 0.993 0.992 38.75 36.44
2.0 16 0.968 0.973 0.994 0.994 37.87 37.39

113



Table 5.6: The mean rate obtained by the quantized models.

Target
Rate

Parametric
Model

Non-parametric
Model

0.06 0.08 0.07
0.12 0.116 0.180
0.25 0.246 0.260
0.5 0.531 0.512
0.75 0.752 0.757
1.0 0.989 1.013
1.5 1.511 1.516
2.0 2.020 2.031

5.5.6 Quantization-Based Architecture to Overcome the Mean
Rate Shift Problem

The mean rate shift problem was analyzed theoretically in Section 5.4.4. Even though it
presents a potential reason for the shift problem, it does not follow a deductive approach,
which does not guarantee validity. Therefore, a small and simple experiment was devised
to test the impact of eliminating the additive uniform noise of the architectures. Instead
of adopting this approximation, it followed a simple rule of applying the quantization
directly on training and ignoring the gradients of this operation, making its derivative
have a value of 1. Therefore, the effect is to ignore the quantization non-differentiability
problem in the neural network.

The training setup followed the ones of Section 5.5.1. A set of neural networks was
obtained adopting the loss parameter to be equal to the desired rate, Rparam = rtarget.
So, this strategy considered the match of the real rate and the estimated loss paramater,
and did not apply the heuristics described in Section 5.4.5. The results of the mean rates
obtained in the Kodak dataset can be seen in Table 5.6. It is essential to highlight that
the exact value of β was adopted for these models, as the focus was not on observing
this perfect tuning of the models, only if the mismatch would occur. Nevertheless, these
models exhibited more variation, which would require a higher value for the β constant.

The main focus of observation here is that the high shift, especially in the parametric
model, did not occur. As a rewind, the parametric model required a Rparam = 0.254 to
attain a rate rtarget = 0.06, while a value Rparam = 0.410 was required to achieve a rate
of rtarget = 0.25. Therefore, it is strong evidence, along with the theoretical derivations
of Section 5.4.4, for the additive uniform noise to cause the mean rate shift problem.

Another point is that as the quantized models seem to not suffer from the mean rate
shift problem, they could be used instead of the additive uniform noise, requiring only a
search for the parameters of β. However, they produced inferior results, mainly in the low
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Table 5.7: Table showing the results of the quantized model experiment.

Target
Rate

Parametric
Model

Non-parametric
Model

PSNR SSIM MSSSIM PSNR SSIM MSSSIM
0.06 19.787 0.456 0.595 16.539 0.409 0.437
0.12 22.363 0.562 0.755 19.271 0.460 0.542
0.25 25.150 0.701 0.882 23.515 0.600 0.793
0.5 29.642 0.854 0.959 29.589 0.850 0.957
0.75 31.728 0.901 0.976 31.866 0.901 0.975
1.0 33.358 0.929 0.984 33.634 0.931 0.984
1.5 36.087 0.960 0.992 36.366 0.960 0.992
2.0 38.463 0.976 0.995 38.616 0.975 0.995

rates, compared with the additive uniform noise equivalent, as shown in Table 5.7. Even
though they have comparable results in higher rates, these rates are specifically where
the mean rate shift problem does not occur strongly. This set of observations makes
these models useless for the primary strategy: obtaining a general model and training
approach. Nevertheless, the study and tuning of these models, which do not use proxies
for the quantization operation, can be the object of future work. Section 3.3.9 showed
some approaches that study the quantization problem.

The results seen in Table 5.7 can be seen in Image 5.13, where a comparison of a
reconstruction from the models is observed. It is clear the heavy quality deterioration
suffered by the quantized model, which is expected from the metrics shown in Table 5.7.
Therefore, the quantized model does not suffer from the mean rate shift problem but
considerably degrades at low rates. Also, this small experiment gives some evidence to
the mean rate shift problem theoretically explained in Section 5.4.4.

5.5.7 Application in Different Architectures

One of the goals of this proposal is that the modified loss can be applied to different
architectures. The baseline models selected were the seminal works in the area, named
Balle’s parametric and non-parametric approaches [45, 23]. Nevertheless, to test the
extensiveness of the approach not only through architectures that explore different entropy
models but also through different neural operations, a simple experiment was devised on
a non-parametric entropy approach which, instead of pairs of convolution + GDN, has
successive residual layers, widely used in the field of deep learning, and initially proposed
in [128] to solve the problem of gradients vanishing/exploding in deep architectures.

Therefore, instead of using the layers of convolutions followed by GDNs, an alternative
transform that uses the same number of layers but adopts the residual blocks is imple-
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Original NT Parametric, bpp=0.12 QT Parametric, bpp=0.12

Original NT Non-parametric, bpp=0.12 QT Non-parametric, bpp=0.12

Figure 5.13: Reconstructions obtained using the parametric and non-parametric mod-
els for images from the Kodak dataset. These images compare the target model, which
applied the uniform noise (NT), and the target model, which directly applies the quanti-
zation on training (QT). It is possible to see a great deterioration of the images, something
already seen by the metrics exposed in Table 5.7.

Table 5.8: The parameters {Rt, β} adopted in the residual layers transform for the non-
parametric models evaluated.

r Rt β
0.06 0.065 55000
0.75 0.77 6000
2.0 2.0 1500

mented. A residual layer can be seen in Figure 5.14. The layers were linear, removing the
last ReLU activations on the last layer of the analysis and the synthesis transform. It is
the same way it is done with the GDN convolutional layers. One hundred twenty-eight
filters were adopted for this experiment.

As this experiment was devised only to see if a different transform would converge to
restrict the rate of the entropy model, the complete heuristic was not applied here. The β
values were set the same as the GDN non-parametric transform, using the values of Table
5.3a. There were only some adjustments in the Rt constant to converge the mean rate to
the desired rate. Also, since it is an experiment with a focus on testing the extensiveness
of the approach, it was trained only for some target rates r = {0.06, 0.75, 2.0}, which are
the extreme rates explored in this work, besides an intermediate rate. The parameters
for the loss are shown in Table 5.8.

The rate results for this experiment are shown in Table 5.9 considering both validation
datasets in the three specified rates. The rate’s mean, minimum, maximum, and standard
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Figure 5.14: The building block of the residual layer. The dashed lines represent a single
residual layer.

deviation statistics are presented. These results show that the approach can still achieve
the desired bitrate even using a completely different network architecture. The standard
deviation in each case was minimal, suggesting that lower betas could be used, which, in
turn, would probably improve the mean PSNR. However, tuning ResNet-like architectures
was not the aim of this experiment. The PSRN was only presented to show the monotonic
behavior of the quality metric while increasing the rate, which is the expected behavior.
Therefore, experiments with these different types of transforms will not be considered for
the RD performance comparisons and may be an object of future works.

Table 5.9: The results of the residual layers experiment considering the non-parametric
model for the specified target rate. It is possible to see that with the parameters specified
by Table 5.8, it is possible to reach a good convergence on the rate on both datasets. The
PSRN quality measure shows a monotonic behavior of the quality when increasing the
rate, which is the expected behavior.

Target
Rate

Kodak JPEG AI
Rate Mean

PSNR
Rate Mean

PSNRMean Min Max σ Mean Min Max σ

0.06 0.059 0.057 0.061 0.0008 20.77 0.059 0.057 0.067 0.0012 19.32
0.75 0.742 0.721 0.798 0.0206 31.77 0.749 0.719 0.822 0.0231 30.89
2.0 2.004 1.965 2.123 0.0423 34.95 2.030 1.958 2.208 0.0563 33.26
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5.5.8 Subjective Evaluation

Figures 5.15 and 5.19 display some reconstructions using the standard parametric archi-
tecture for each database. Each row represents one of the images whose reconstruction
fell within the tolerance range for both the standard and proposed architectures in this
chapter. Similarly, examples of non-parametric models are showcased in Figures 5.17 and
5.21.

It is noteworthy that in some cases, the proposed model yields better perceptual
results than the standard architecture: the second row in Figure 5.15 and the first row in
Figure 5.17. The standard architecture seems slightly superior in the first row of Figure
5.19. Meanwhile, the decoded images have perceptible distortions in different locations
in the first row of Figure 5.21. However, the reconstructions have little to no perceptual
difference for most bit rates. Thus, the proposed method does not introduce perceptible
artifacts differing from the reference models.

Rate-distortion curves for all valid metrics for each of the selected images for the
parametric models can be seen in Figures 5.16 and 5.20 for each database, respectively.
The rate-distortion curves for the pair of non-parametric models are displayed in Figures
5.18 and 5.22. As can be observed, although there is a loss in terms of PSNR, SSIM, and
MSSSIM, the proposed method exhibits rate-distortion results that are pretty competitive
with the standard models. It even outperforms the standard models for some images at
medium and low rates. It is worth noting that a significant drop in PSNR for restricted
rate coding is expected as it is present even in traditional CODECs, such as VVC [129].

5.6 Conclusions

This chapter introduces an approach for rate-constrained coding in neural networks, an
open problem in CODECs of this type. A loss function parameterized by {β,Rparam}
was proposed, considering the average target rate and a desired variance. A heuristic
was proposed to estimate the values of {β,Rparam}, making the methodology generic
and applicable to various architectures. Rate control is a desirable feature in practical
scenarios, and the proposed method can aid in introducing a neural image CODEC in
real applications.

Like any image encoder, the rate-distortion performance is affected when introducing
a rate control mechanism. Nonetheless, the proposed method exhibits minimal losses
with the MSSSIM and SSIM metrics. For some images, a rate-distortion gain can be
achieved at medium to low rates in these metrics. Additionally, from the visual examples,
it is evident that there are no significant perceptual differences in the reconstructions
compared to the standard approaches.
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The design of the rate-oriented training also highlighted the rate misalignment. The
mismatch may be caused by the approximation of the quantization operation during
training time, not excluding other possible unexplored causes. This misalignment became
evident with the average rate deviation issue, inspiring the adoption of heuristics to esti-
mate the loss function parameters. Empirical tests and theoretical analysis pointed out
that the misalignment between the estimated rate during training and the actual rate
during inference is related to additive uniform noise. Other causes may influence this
behavior, but in this work, only this perspective is considered and analyzed. This sce-
nario may result in a rate overestimation and, consequently, an over-penalization during
training, shifting the actual rate at inference time below the expected value.

The rate-oriented approach could be improved. For instance, a more detailed study of
the impact of different loss functions on rate-distortion performance could be conducted.
This loss analysis might inspire architectures with minimal deterioration compared to
reference architectures.

Different quantization strategies could also be explored to mitigate or even avoid the
problem of average rate deviation. Obtaining efficient approximations for quantization
is, in itself, an open problem in the field. However, the main benefit of this chapter’s
proposal is aligning the loss function hyper-parameters with the actual values obtained
later during inference, thus reducing the need for a heuristic for parameter estimation.

Another line of study relates to the hypothesis of a correlation between performance
deterioration and the problem of average rate deviation. Future work investigating this
hypothesis in rate-oriented or standard approaches could provide insights into aspects re-
lated to quantization, for example. If there is indeed a correlation, exploring quantization
strategies using average rate deviation as a reference could lead to better approximations
of quantization and, consequently, enhance the overall performance of neural compression.

Applying the proposed approach to architectures with multiple target rates could also
constitute interesting future work. Instead of obtaining one model representing multiple
arbitrary points in the convex case, achieving multiple desired rates with this single model
would be possible. Considering all that has been presented in this chapter, the next
chapter will address the main issues of this work with an improved and clever proposal
for the same problems outlined in the current chapter.
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Original Ballé Parametric, bpp=0.06 Proposed Parametric, bpp=0.06

Original Ballé Parametric, bpp=0.12 Proposed Parametric, bpp=0.12

Original Ballé Parametric, bpp=0.5 Proposed Parametric, bpp=0.5

Original Ballé Parametric, bpp=1.0 Proposed Parametric, bpp=1.0

Original Ballé Parametric, bpp=1.5 Proposed Parametric, bpp=1.5

Figure 5.15: Reconstructions obtained using the parametric models for images from
the JPEG AI database. Original (on the left), Ballé Parametric (in the middle), and
Proposed Parametric (on the right). The rates considered for the reconstructions are
{0.06, 0.12, 0.5, 1.0, 1.5}, each representing a row of images.
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Figure 5.16: Rate-distortion curves for the parametric models, of the reconstructions in
Figure 5.15, utilizing the metrics PSNR (on the left), SSIM (in the middle), and MS-SSIM
(on the right).
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Original Non-parametric Ballé, bpp=0.06 Proposed Non-parametric, bpp=0.06

Original Non-parametric Ballé, bpp=0.12 Proposed Non-parametric, bpp=0.12

Original Non-parametric Ballé, bpp=0.5 Proposed Non-parametric, bpp=0.5

Original Non-parametric Ballé, bpp=1.5 Proposed Non-parametric, bpp=1.5

Figure 5.17: Reconstructions obtained using the non-parametric models for images
from the JPEG AI database. Original (on the left), parametric Ballé (in the middle),
and proposed parametric (on the right). The rates considered for the reconstructions are
{0.06, 0.12, 0.5, 1.5}, each representing a row of images.
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Figure 5.18: Rate-distortion curves for the non-parametric models, corresponding to
the reconstructions in Figure 5.17, using the PSNR (left), SSIM (middle), and MS-SSIM
(right) metrics.

123



Original Ballé Parametric, bpp=0.12 Proposed Parametric, bpp=0.12

Original Ballé Parametric, bpp=0.25 Proposed Parametric, bpp=0.25

Original Ballé Parametric, bpp=0.5 Proposed Parametric, bpp=0.5

Original Ballé Parametric, bpp=0.75 Proposed Parametric, bpp=0.75

Original Ballé Parametric, bpp=1.5 Proposed Parametric, bpp=1.5

Figure 5.19: Reconstructions obtained using the parametric models for images from
the Kodak dataset. Original (on the left), Ballé Parametric (in the middle), and Pro-
posed Non-parametric (on the right). The considered rates for the reconstructions are
{0.12, 0.25, 0.5, 0.75, 1.5}, each representing a row of images.
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Figure 5.20: Rate-distortion curves for the parametric models, relating to the recon-
structions in Figure 5.19, using the PSNR metrics (on the left), SSIM (in the middle),
and MS-SSIM (on the right).
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Original Non-parametric Ballé, bpp=0.12 Proposed Non-parametric, bpp=0.12

Original Non-parametric Ballé, bpp=0.25 Proposed Non-parametric, bpp=0.25

Original Non-parametric Ballé, bpp=0.5 Proposed Non-parametric, bpp=0.5

Original Non-parametric Ballé, bpp=0.75 Proposed Non-parametric, bpp=0.75

Original Non-parametric Ballé, bpp=1.5 Proposed Non-parametric, bpp=1.5

Figure 5.21: Reconstructions obtained using the non-parametric models for images
from the Kodak dataset. Original (left), Non-parametric Ballé (center), and Pro-
posed Non-parametric (right). The considered bit rates for the reconstructions are
{0.12, 0.25, 0.5, 0.75, 1.5}, each representing a row of images.
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Figure 5.22: Rate-distortion curves for the non-parametric models, relating to the
reconstructions in Figure 5.21, using the PSNR (on the left), SSIM (in the middle),
and MS-SSIM (on the right) metrics.
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Chapter 6

Learning-Based Image Compression
with Parameter-Adaptive
Rate-Constrained Loss

This chapter details the adoption of Reinforcement Learning as a solution for achieving
target bitrate control in neural-based compression approaches. This idea generalizes the
earlier proposal. Section 6.1 will review the main ideas from the last chapter, motivating
the current work. Additionally, the concept of Reinforcement Learning in neural training
will be introduced to serve as a foundation for later sections.

Section 6.2 will present the generalized loss proposed in this chapter. The reader will
be guided through the interpretation of training as a time evolution process, leading to
the derivation and expanded analysis of the loss. Section 6.3 will detail the experiments
using this technique and provide an ablation study. The notations adopted in this chapter
are consistent with Chapter 5, as described in Section 5.1.

6.1 Problem Statement

The mean rate shift problem attributes the rate discrepancy to using additive uniform
noise as a differential proxy for the quantization process. When an input x is fed into
this network, it produces a raw latent vector y. During training, additive uniform noise
is incorporated into the latent components. The initial strategy to address the rate
shift problem involved alternating training and validation steps. During training, the
noisy latent space was considered, while during validation, the quantization operation
was applied. By swiftly converging to the desired rate, a relatively small number of
iterations enabled the network output to stabilize, facilitating the measurement of shifts
and adjustments to the mean-rate hyperparameter Rparam of the loss function [48].

128



This heuristic method effectively rectified the mean-shift mismatch attributed to the
noisy latent space [48]. However, it necessitated numerous alternating training and vali-
dation steps. Despite setting the training iterations to 50, 000, achieving the desired rate
convergence of the hyperparameter Rparam often required many alternating steps. Sub-
sequently, a complete training of 500, 000 iterations was conducted using the corrected
Rparam. This approach, reliant on neural network training, incurs high computational
costs, prompting the exploration of more efficient solutions to address this challenge.

6.1.1 Reinforcement Learning Modeling for the Rate-Constrained
Model

A relationship between reinforcement learning and the target-rate loss can be inferred from
iterative updates, extending Guerin’s work [48]. The primary target loss (Equation 5.14)
comprises two hyperparameters {β,Rparam}, which undergo iterative updates through the
alternating steps of the heuristic outlined in Algorithm 3.

The parameter search heuristic resembles the basic concept of reinforcement learning,
as depicted in Section 2.2.8. Therefore, it suggests viewing neural network training as
a temporal adaptive process. As iterations progress, the neural network (the Agent)
better understands the data (the Environment). This interpretation implies that the
neural network can increasingly correct the rate mismatch problem during continuous
training. This process implicitly reflects the notion of a policy in reinforcement learning.
As stated in Section 3.3.10, few works in supervised/unsupervised learning paradigms
interpret neural network training as a temporal process with updated values that were
otherwise constants in canonical approaches. However, none of these works are close to
the interpretation proposed here.

6.2 Parameter-Adaptive Target-Rate Loss

This section details the approach devised to overcome the mean-rate mismatch without
using the costly heuristic. The idea is to devise a time-adaptive target-rate loss that
constantly corrects the rate estimation mismatch. The entropy modeling introduced in
[45, 23] is adopted as described in the following sections.

6.2.1 Training as a Temporal Process

The basic setup of the reinforcement learning paradigm is to model the environment as
a Markov Decision Process, which analyzes the temporal evolution of the training. This
idea can be interpreted by viewing the iterations of neural network training as a temporal
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evolution process. To this proposal, it is necessary to generalize the notations adopted in
Chapter 5.

Let xt denote the input to the neural network at time t. Time now stands for the
iterations of the neural network. For example, the basic setup training of models proposed
in Chapter 5 was a total of 500000 iterations after the heuristic search stage. Now, each
of these iterations will be indexed by the time variable. Therefore, x0 stands for the input
of the neural network at the first iteration.

Analogously, x̃t and x̂t define the outputs of the neural networks at time t using
the notations of the noisy approximation of the latent space and the quantized latent
space, respectively. This notation extends to the latent space variables, with ỹt and ŷt
representing the noisy and quantized latent space at time t, respectively.

6.2.2 Latent Rate Estimation

The estimations for the rate remain the same, but now adopting the subscript t. For
simplicity, the index t will be used only in core values related to the time adaptation pro-
posed in this approach. This will help keep the notation concise and not overly complex.
Given the entropy model pỹ, which will not have the t subscript, it is possible to estimate
the rate using Shannon’s entropy:

Rest
t (ỹ) = −Eqỹ [log pỹ(ỹ)] = −

n∑
i

qỹi
(ỹi) log pỹi

(ỹi) (6.1)

where Rest
t (ỹ) is the estimated rate of the noisy latent at time t, Epỹ represents the

expectation, and n is the dimensionality of the latent space. Equation 6.1 is obtained
considering the factorization of the distribution pỹ, where ỹ = [ỹi]ni=1 and pỹ = [pỹi

]ni=1.
Analogously, it considers the factorization of the variational distribution q. The rate can
also evaluate for ŷ:

Rest
t (ŷ) = −Eqỹ [log pỹ(ŷ)] = −

n∑
i

qỹi
(ŷi) log pỹi

(ŷi) (6.2)

where Rest
t (ŷ) is the estimated rate for the quantized latent ŷ at time t, and ŷ = [ŷi]ni=1.

Note that the distribution is the noisy distribution obtained in the training of the neural
network, as it is used in the evaluation time, where quantization is adopted. These two
rate estimations will be central to generalizing the target rate loss of Equation 5.14.
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6.2.3 The Mean-shift Function

As explained earlier, the basic idea is inspired by the reinforcement learning process of
iterative updates of some parameters that improve the agent’s behavior. The fundamental
equation for this idea is called the mean-shift function. This function aims to measure
the mismatch occurring at time t. It is defined as follows:

Rshift
t (y) = Rest

t (ỹ)−Rest
t (ŷ) (6.3)

To simplify the notation, Rshift
t is posed as a function of y since its definition uses both ỹ

and ŷ. Nevertheless, both terms can be considered as y functions. Equation 6.3 directly
measures the current mismatch between the noisy estimation Rest

t (ỹ) and the quantized
estimation Rest

t (ŷ). It does not yet incorporate the temporal dependency, which will be
constructed in the following sections.

6.2.4 Time-adaptive Rate Parameter

The next step in generalizing the work of [48] involves modifying the loss rate parameter.
Initially, after the search heuristics, Rparam was a fixed constant during the "real" training
after the heuristic. Now, it will be changed to a temporal function that accounts for the
shift estimated by Equation 6.3.

Considering the desired rate rtarget, the target parameter related to the control of the
mean rate obtained by the neural network can be given as:

Rparam
t (y; rtarget) = rtarget +Rshift

t−1 (y) (6.4)

where Rshift
t−1 is the rate mismatch occurring at training time t−1. If t = 0, then Rshift

t−1 = 0.
Therefore, the rate loss parameter Rparam

t , in the t-th iteration, is based on information
from past iterations, namely the (t− 1)-th iteration, which structures a temporal expan-
sion, as follows:

Rparam
t (y; rtarget) = rtarget +Rshift

t−1 (y) (6.5)
Rparam
t (y; rtarget) = rtarget +

(
Rest
t−1(ỹ)−Rest

t−1(ŷ)
)

The fundamental piece of this new approach relies on this change. Rparam, once a
constant, is generalized to Rparam

t (y; rtarget), which is a function of the latent space at the
past time, specifically the past mismatch estimation. It should be clear that more robust
corrections relying on more past information can be applied here. However, for simplicity,
this basic setup relying on the (t− 1)-th iteration showed promising results. Future work
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could refine this iterative correction process to account for more helpful information about
the current estimations of the neural network regarding the mismatch.

When applying gradient descent optimization, it is assumed that Rparam
t (y; rtarget) is

constant. This approach is justified since, from the perspective of the target rate loss,
the rate parameter can be viewed as a conventional constant hyperparameter. Empirical
tests have shown significant stability caused by this change. This simple convention makes
training far more stable and reliable.

6.2.5 The Time-Adaptive Target-Rate Loss

Considering the steps developed in the earlier sections, it is possible to derive the full
rate-parameter time-adaptive loss, generalizing the heuristic and fixed rate-parameter
loss proposed in [48]. This new loss, using the t indexing, is given as:

Jt(x, x̃) = Dt(x, x̃) + βft(y; rtarget) (6.6)

where Dt(x, x̃) denotes the distortion measured by the mean squared error, and β repre-
sents the fixed variance hyperparameter proposed in [48], which, in the current step of the
proposal, remains a conventional constant hyperparameter. Expanding the ft(y; rtarget)
in terms of the new notation:

ft(y; rtarget) =
(
Rparam
t (y; rtarget)−Rest

t (ỹ)
Rparam
t (y; rtarget)

)2

(6.7)

The Equation 6.7 can be applied in Equation 6.6 to get the full view of the equation of
the loss:

Jt(x, x̃) = Dt(x, x̃) + β

(
Rparam
t (y; rtarget)−Rest

t (ỹ)
Rparam
t (y; rtarget)

)2

(6.8)

Jt(x, x̃) = Dt(x, x̃) + β

rtarget +
(
Rest
t−1(ỹ)−Rest

t−1(ŷ)
)
−Rest

t (ỹ)
rtarget + (Rest

t−1(ỹ)−Rest
t−1(ŷ)))

2

Several estimation functions are involved in this generalization, related to the iterative
corrections of the time-adaptive rate parameter. Figure 6.1 illustrates the training flow
of this neural network. The normal mapping from x to x̃ yields y, the noisy ỹ, and the
quantized ŷ. Both ỹ and ŷ have their entropy estimated by the current entropy model.
This entropy model, shown as a separate block in the figure, can be considered part of
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the encoder. The estimated noisy rate and the real rate are obtained, and based on these
estimates, iterative corrections of the parameters can be applied.

x x~

y ~y

U

Entropy
model

ŷ Q

Real rate

ga

(analysis transform)
gs

(synthesis transform)

Noisy Estimated
Rate

Iterative corretion
of parameters

[...]

Figure 6.1: The figure depicts the schematics of the time-dynamical feedback flow of the
neural network.

Analysis of the Time-Adaptive-Parameter Loss

The derivations of the new loss remain closely related to the version described in Section
5.4. The proposed loss function can be expressed as follows:

Jt(x, x̃) = Dt(x, x̃) + β
(Rest

t (ỹ))2

(Rparam
t (y; rtarget))2 − 2β Rest

t (ỹ)
Rparam
t (y; rtarget) + β (6.9)

which resembles the structure presented in Equation 5.15. WhenRest
t (ỹ) = Rparam

t (y; rtarget),
the loss function reduces to Jt(x, x̃) = Dt(x, x̃). As before, only the distortion will be
minimized whenever the current rate estimation meets the time-adaptive rate param-
eter. Following this idea, the target function induces a local minimum at Rest

t (ỹ) →
Rparam
t (y; rtarget). The full function, however, has local minima influenced not only by

Rest
t (ỹ)→ Rparam

t (y; rtarget), but also by low values of Dt(x, x̃).
The term β still controls the width of this dynamic parabola. Even though the local

minima considering only the target change as time t progresses, β remains a constant
hyperparameter, keeping the width of the parabolas fixed. Therefore, higher or lower
values of β will again determine the penalization for the deviation from the rate. This
penalization is also dependent on rtarget and, consequently, on Rparam

t (y; rtarget). This
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dependency is due to the values of Dt(x, x̃), which will be higher or lower depending on
the target rates.
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Figure 6.2: The convex hull depicted with the parabola penalization, dynamically chang-
ing.

Figure 6.2 generalizes the idea presented in Figure 5.2, but now the schematic follows
a time variation. The values of the Rparam

t (y; rtarget) can oscillate as a feedback reaction
to the mismatch function, trying to compensate for the noisy-caused rate shift at each
time. In this scenario, Rparam

t (y; rtarget) which was once a constant hyperparameter, now
is a function of time and may be considered more challenging in terms of convergence of
the neural network. In part, as it heavily dictates the behavior of the convergence of the
neural network.

The Generalized Loss Relation with the Variational Inference

In many aspects, this section follows the corresponding Section 5.4.2. The architectures
adopted are named VAE due to their equivalence with variational Bayesian inference
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optimization. While this more complex function can seem complicated, the focus remains
on changing the constant Rparam to the function Rparam

t (y; rtarget). This function is also
considered a constant during the network backpropagation and does not contribute to the
gradient descent. With this setup, it is feasible to establish an equivalence between them.

The starting point is Equation 5.16, which corresponds to the minimization of the KL-
divergence between the true a posteriori, depicted by the function p, and the approximated
a posteriori, represented as q. Therefore, it is possible to derive the current formulation
into its expanded form:

J(x, x̃) = D(x, x̃) + β
(Rparam

t (y; rtarget))2 − 2Rparam
t (y; rtarget)Rest(ỹ) + (Rest(ỹ))2

(Rparam
t (y; rtarget))2

(6.10)

J(x, x̃) = D(x, x̃) + β − 2β
Rparam
t (y; rtarget)R

est(ỹ) + β

(Rparam
t (y; rtarget))2 (Rest(ỹ))2

J(x, x̃) = D(x, x̃) +Rc1
t (y; rtarget)Rest(ỹ) +Rc2

t (y; rtarget)(Rest(ỹ))2 + c3

where Rc1
t (y; rtarget) = 2β

Rparam
t (y;rtarget) and Rc2

t (y; rtarget) = β

(Rparam
t (y;rtarget))2 . These terms

correspond to the c1 and c2 terms in Equation 5.18. Mathematically, they are functions
that complicate the analysis. However, as stated earlier, from the optimization perspec-
tive, these are constants. Thus, the optimization factors do not relate to these new
complicated functions compared to Equation 5.18. As a result, it is possible to "change"
the notation to constants, as in Equation 5.18:

J(x, x̃) = D(x, x̃) + c′
1R

est(ỹ) + c′
2(Rest(ỹ))2 + c3 (6.11)

where c′
1 stands for c1 and c′

2 replaces c2 in the form of Equation 5.18. Considering this
interpretation, at any fixed time t, as the optimization flows, the Rparam

t (y; rtarget) derived
“coefficients” are constants of the optimization.

In this scenario, again, the term J(x, x̃) = D(x, x̃) + c′
1R

est(ỹ) stands to the VAE
equivalent rate-distortion loss. But the term c′

2(Rest(ỹ))2 is not correspondent to the
traditional variational loss. Therefore, the generalization of the loss remains as if it is
not a directly VAE-derived function. Nevertheless, as done in Section 5.4.2, this new
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formulation can be put into a non-canonical variational loss as follows:

J(x, x̃) = D(x, x̃) + β

(
Rparam
t (y; rtarget)−Rest(ỹ)

Rparam
t (y; rtarget)

)2

= D(x, x̃) + β

(
Rparam
t (y; rtarget)−Rest(ỹ)

Rparam
t (y; rtarget)

)2
Rest(ỹ)
Rest(ỹ)

= D(x, x̃) + β

Rparam
t (y; rtarget)−Rest(ỹ)
Rparam
t (y; rtarget)

√
Rest(ỹ)

2

Rest(ỹ)

= D(x, x̃) + h(y;Rparam
t (y; rtarget), β)Rest(ỹ) (6.12)

where, in comparison with Equation 5.19, Rparam
t (y; rtarget), a function taken as a con-

stant in the optimization replaces the old parametrization of h which was rtarget. This
substitution, as a consequence, may represent a generalization of rate-distortion classical
loss with h(y;Rparam

t (y; rtarget), β) playing the role of a dynamical component, instead of
the classical λ Lagrangian term. Following this idea, it is also possible to represent a
version where this complex variable relevance term is accompanied by the D(x, x̃):

J(x, x̃) = h−1(Rest(ỹ);Rparam
t (y; rtarget), β)D(x, x̃) +Rest(ỹ)

= 1
β

 Rparam
t (y; rtarget)

√
Rest(ỹ)

Rparam
t (y; rtarget)−Rest(ỹ)

2

D(x, x̃) +Rest(ỹ) (6.13)

In these two equations above, Rparam
t (y; rtarget)−Rest(ỹ) plays a fundamental role in both

h and h−1. In h, this term zeroes the function as Rparam
t (y; rtarget)→ Rest(ỹ) because it is

located in the numerator. In the second version, using h−1, Rparam
t (y; rtarget)−Rest(ỹ) is in

the denominator. As Rparam
t (y; rtarget) → Rest(ỹ), the function increases the importance

of minimizing the distortion since the rate is close to the desired value.
The remaining term in the fractions, Rparam

t (y; rtarget)
√
Rest(ỹ), can be interpreted as

relevance factors that contribute to this dynamic relevance in the rate-distortion gener-
alization view. Therefore a similar VAE behavior in this tradeoff is expected, apart from
the more unstable convergence due to its dynamic and more complex structure. The par-
allel analysis in Equations 6.12 and 6.13 does not represent a formal argument regarding
a rate-distortion interpretation. However, it can help enhance the understanding of the
behavior of this loss function and its relation to the variational formulation in a non-linear
fashion.
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6.2.6 The General Time-Adaptive Target-Rate Loss

The definition of Rparam
t (y; rtarget) replaces the old constant Rparam in several equations

derived in this chapter. As shown in the previous sections, Rparam, related to mean-rate
convergence, heavily influences the neural network’s behavior. Since this influence factor
is stable, there will be no oscillations in the neural network’s convergence apart from the
expected statistical variability of the signals. In this chapter, Rparam

t (y; rtarget) can oscil-
late over time. For convergence in this scenario, as training progresses, Rparam

t (y; rtarget)
must start to oscillate less. This allows the neural network to converge to the desired be-
havior. Therefore, a fundamental aspect of employing the complex formulation presented
earlier is controlling the stability of this training process.

Based on these assumptions, there is still some interesting generalization of the behav-
ior of the loss in Equation 6.7 regarding the stability of Rparam

t (y; rtarget). Additionally,
an empirical strategy will be provided to show improvements in the low-rate compression
range.

Exponential Desired-Rate Decay

An empirical hypothesis when applying this loss function, despite the greater difficulty
in optimization, is that it would be beneficial to train the neural network at a higher
rate initially and then gradually impose increasing rate restrictions. The rationale is that
low-rate compression is very restricted due to the high β values in function 6.7. Given
the variability of Rparam

t (y; rtarget), it is challenging to start neural network optimization
under such restrictive and potentially unstable conditions.

The idea is to train a neural network more “freely” at first and then impose higher
restrictions. A mechanism was devised to stimulate a smooth transition between this
“pre-training” step and the final training. This separation is for clarity only, as it is still
a regular full training. Therefore, an exponential target-rate decay was implemented into
Rparam
t (y; rtarget), based on the following parameter:

rpt (rtarget, rmax, b, titer) =


min

(
rmax, rtarget · b

max(0,titer−t)
titer

)
, if rtarget ≤ 0.5

rtarget, otherwise
(6.14)

for t > 0, where min and max denote the minimum and maximum between two val-
ues, respectively, and titer controls the decay’s velocity and the b constant. Hereafter,
rpt (rtarget, rmax, b, titer) stands for the parameter adopted in the next equations. It is,
again, a parameterizer that is a function of the time variable. In the first case, it behaves
as an exponential function, while in the latter, it shows a constant behavior. The alter-
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nation of this behavior when rtarget ≤ 0.5 is empirically given by focusing this strategy on
very-low-to-low rate compression. A more robust way of smoothly selecting the behavior
of the neural network fundamental parameter can be the object of future studies. This set
of parameters will be described as θrpar = {rtarget, rmax, b, titer}, leading to the definition
of the function as rpt (θrpar), representing the time-dependent target rate parametrized by
θrpar.

Instead of using the common target rtarget, it will be adopted in the already shown
equations to formulate a new rate parameter as follows, extending the behavior of Equa-
tion 6.4:

Rparam
t (y; rpt (θrpar))) = rpt (θrpar) +Rshift

t−1 (y) (6.15)

which would extend to the following two scenarios:

Rparam
t (y; rpt (θrpar))) =


min

(
rmax, rtarget · b

max(0,titer−t)
titer

)
+Rshift

t−1 (y), if rtarget ≤ 0.5

rtarget +Rshift
t−1 (y), otherwise

(6.16)

Exponential Moving Average

In machine learning, particularly in time series forecasting, the Exponential Moving Aver-
age (EMA) is a pivotal tool for enhancing predictive accuracy and robustness. The Expo-
nential Moving Average, a key concept in financial analysis, is seamlessly integrated into
machine learning frameworks to smooth historical data and uncover underlying trends.
Unlike traditional moving averages, the EMA assigns exponentially decreasing weights
to historical observations, providing a nuanced understanding of evolving patterns and
trends in time series data. A classic example of using EMA in machine learning relates
to one of the most adopted optimizers, Adam [130].

Although it is widely adopted and known, it is useful to define EMA to clarify later
equations. The definition is as follows:

emat = αxt + (1− α)emat−1 (6.17)

where xt represents a temporal series, emat is the value of the average at time t and α

is a value on the interval [0, 1]. This parameter controls the weight relevance of the new
value compared to the estimated average.

As depicted in earlier sections, Rparam
t (y; rpt (θrpar))) is more prone to data and train-

ing variance. As a preventive measure, it is useful to derive a smoother version of
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Rparam
t (y; rpt (θrpar)), which is an application of the definition in Equation 6.17:

Rema
t (y; rpt (θrpar)) = αRparam

t (y; rpt (θrpar)) + (1− α)Rema
t−1 (y; rpt (θrpar)) (6.18)

The Composed Loss

Considering the derivations in the previous sections and empirical testing, it is possible to
derive a more general formulation of Equation 6.9. The first component is the parameter
rpt (θrpar) from Equation 6.14. The last modification is the smoothed Rema

t (y; rpt (θrpar))
as derived in Equation 6.18. The general target-rate parameterized function is given by:

ft(y; rpt (θrpar)) =
(
Rema
t (y; rpt (θrpar))−Rest

t (ỹ)
Rema
t (y; rpt (θrpar))

)2

(6.19)

Equation 6.19 is used in the general target-distortion formulation, defined as:

Jt(x, x̃) = Dt(x, x̃) + β

(
Rema
t (y; rpt (θrpar))−Rest

t (ỹ)
Rema
t (y; rpt (θrpar))

)2

(6.20)

In this context, the full expansion of the loss into a parabola results in the following
set of equations:

J(x, x̃) = D(x, x̃) + β
(Rema

t (y; rpt (θrpar)))2 − 2Rema
t (y; rpt (θrpar))Rest(ỹ) + (Rest(ỹ))2

(Rema
t (y; rpt (θrpar)))2

J(x, x̃) = D(x, x̃) + β − 2β
Rema
t (y; rpt (θrpar))R

est(ỹ) + β

(Rema
t (y; rpt (θrpar)))2 (Rest(ỹ))2

J(x, x̃) = D(x, x̃) +Rd1
t (y; θrpar))Rest(ỹ) +Rd2

t (y; θrpar))(Rest(ỹ))2 + c3 (6.21)

The main difference from Equation 6.10 is the coefficient terms of the penalization parabola.
Previously, these terms wereRc1

t (y; rtarget) = 2β
Rparam

t (y;rtarget) andRc2
t (y; rtarget) = β

(Rparam
t (y;rtarget))2 .

Now, there are new coefficients given by:

Rd1
t (y; rtarget) = 2β

Rema
t (y; rpt (θrpar) (6.22)

Rd2
t (y; rtarget) = β

(Rema
t (y; rpt (θrpar))2

This interpretation still applies because, as in the scenario in Equation 6.10, the coeffi-
cients only concern terms that will be fixed in the gradient calculations of J(x, x̃). These
target-rate parabolas can be interpreted as dynamic parabolas adapting to the many
stochastic elements in training this neural network. However, Equation 6.21 exhibits a
heavier time-dependent update flow given the EMA introduction in the rate parameter.
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These derivations yield very complex formulas in terms of the fundamental components of
the estimations. Still, their expansion does not highlight any easily interpretable aspect
in general. Nevertheless, a more profound comprehension and analysis of the modeling
could be done along with empirical experiments to understand the repercussions of this
new model and provide the chance for better fine-tuning.

In a final comparison, we can derive a “dynamic rate-distortion” view of the formula
as it was exhibited in the earlier versions of the loss:

J(x, x̃) = D(x, x̃) + β

(
(Rema

t (y; rpt (θrpar))−Rest(ỹ)
(Rema

t (y; rpt (θrpar))

)2

= D(x, x̃) + β

(
(Rema

t (y; rpt (θrpar))−Rest(ỹ)
(Rema

t (y; rpt (θrpar))

)2
Rest(ỹ)
Rest(ỹ)

= D(x, x̃) + β

(Rema
t (y; rpt (θrpar))−Rest(ỹ)

(Rema
t (y; rpt (θrpar))

√
Rest(ỹ)

2

Rest(ỹ)

= D(x, x̃) + h(y; (Rema
t (y; rpt (θrpar)), β)Rest(ỹ) (6.23)

which, again, could be interpreted as a dynamic rate-distortion formula whose weights are
dynamically adjusted considering the whole set of estimations detailed in this proposal as
a whole. As the results will highlight, this model behaves similarly to the one detailed in
Chapter 5.

6.3 Results

The experiments performed using the proposal depicted in this chapter are described
in this section. First, the training and inference setup is presented in Section 6.3.1. An
analysis of the stability of the convergence of the target rate is depicted in Section 6.3.2. A
complete rate-distortion comparison with the target-rate baseline is presented in Section
6.3.3. Lastly, Section 6.3.4 presents an ablation study.

6.3.1 Training and Inference Specifications

Non-overlapping patches of size 256× 256 are used for model training, gathered from the
following datasets:

• CLIC Professional dataset [119];

• CLIC Mobile dataset [119];

• DIV2K dataset [120];
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Table 6.1: The models compared in the main results.

Models Reference

Target Baseline (TB) Models using Guerin’s proposal (Equation 5.14),
which were trained for 500k iterations [48]

Rate Adaptation (RA) Models adopting the Time-adaptative-parameter idea
(Equation 6.8), which were trained for 500k iterations

Best Strategy (BS)
Models implementing the General Time-adaptive-parameter
approach (Equation 6.20), which were trained for 750k
iterations

• Ultra-Eye Ultra HD dataset [121];

• MCL-JCI [122, 123];

• FLICKR2K dataset [124];

This alignment is useful for comparing the model proposed in Chapter 5 with the cur-
rent one. Eight networks were trained to achieve rates {0.06, 0.12, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0},
with a maximum deviation of 15%, in line with the setup in Chapter 5. The networks
were trained for 500k and 750k iterations to evaluate the impact of increased training
time on the newer losses.

The β constant in Equation 6.6 was set in accordance with [48]. This parameter is
heuristic-dependent, but the next step is to apply the idea developed in this chapter to
rtarget in the β constant. The values were empirically set for the exponential moving
average to α = 0.99, rmax = 3, and b = 50, as it represents a high initial rate compared to
the target rates. Lastly, the desired rate decay was performed for titer = 150k iterations.
The results presented here were evaluated only on the Kodak dataset and also applied to
the JPEG AI dataset.

The details presented in the following sections compare three different models de-
scribed in Table 6.1. The baseline model is the earlier approach, which is published in
Guerin’s work [48] and detailed in the last chapter. The Rate Adaptation (RA) model is
the one presented in the current chapter under Equation 6.8, with models trained only
for 500k iterations as in the previous approach. Lastly, the Best Strategy (BS) model is
the one derived in Section 6.2.6 represented by Equation 6.20, with models trained for
750k iterations.

6.3.2 Analysis of the Average Rate and Variance

The first analysis in this version of the work is the convergence to the average rate and
the variance for each of these rates. For this purpose, we analyzed the mean values and
variance of the rates obtained in the Kodak dataset.
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Table 6.2: The non-parametric models’ mean and variance of rates reached.

Target
Rate

Average Standard deviation

Best Strategy Rate
Adaptation

Target
Baseline Best Strategy Rate

Adaptation
Target

Baseline
0.06 0.062 0.058 0.057 0.003 0.004 0.001
0.12 0.119 0.119 0.12 0.003 0.006 0.003
0.25 0.252 0.252 0.239 0.007 0.007 0.004
0.50 0.508 0.505 0.485 0.024 0.019 0.024
0.75 0.764 0.759 0.729 0.031 0.029 0.035
1.0 1.009 1.007 0.99 0.036 0.038 0.04
1.5 1.524 1.513 1.405 0.04 0.045 0.059
2.0 2.044 1.975 1.995 0.065 0.062 0.085

Tables 6.2 and 6.3 show the expected results for both the parametric and non-parametric
entropy models. Regarding Table 6.2, the mean values of all rates remained close to the
target rates. The oscillations are due to the variance of the output rates and as in all
these neural-based approaches, only a mean behavior with intrinsic variance can be ob-
served. This variance can be controlled by the β constant in Equations 6.8, 6.20, and
5.14. However, since the β constant remained unchanged, the parameters from the re-
sults presented in Guerin’s work were adopted here. These β values are shown in Table
5.3. Ideally, β values would differ for the approaches in this chapter. Alternatively, the
current approaches would require a dynamic and clever way to set β values.

The results are quite good, even when adopting the non-ideal β values from Guerin’s
approach [48] for the current approach. A lower deviation is observed as the rates are
lowered. This is expected because the β values are noticeably higher for these rates, as
controlling a 15% deviation from the target becomes increasingly challenging. Therefore,
the current models maintained the same final behavior as the baseline target approach.

It is important to note that all considerations applied to the non-parametric model
results also apply to the parametric model results, depicted in Table 6.3. The mean
rates reached values near the target rates, and the variance exhibited the same behavior
as in the non-parametric results. This is expected because the interpretation of the β
constant is the same for the parametric model, where lower rates require higher β. This
also shows that the time-variable-parameter idea can work with different entropy models.
In conclusion, the strategy applied here can potentially be extended, supporting the idea
of being a simple plug-in solution for complex architectures.
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f
Table 6.3: The mean and variance of rates reached by the parametric models.

Target
Rate

Average Standard deviation

Best Strategy Rate
Adaptation

Target
Baseline Best Strategy Rate

Adaptation
Target

Baseline
0.06 0.06 0.058 0.059 0.004 0.002 0.003
0.12 0.119 0.118 0.118 0.007 0.003 0.004
0.25 0.253 0.246 0.252 0.01 0.006 0.006
0.50 0.496 0.498 0.49 0.029 0.029 0.027
0.75 0.753 0.753 0.731 0.043 0.043 0.03
1.0 1.024 1.024 0.956 0.051 0.051 0.034
1.5 1.534 1.534 1.467 0.053 0.053 0.041
2.0 2.034 2.034 1.917 0.074 0.074 0.067

6.3.3 Rate-distortion Comparison

This section shows the rate-distortion comparison of the three models in Table 6.1 in
terms of PSNR, MSSIM, and MS-SSIM measures. The first comparison is presented in
Table 6.4 and analyzes the PSNR results. These results show an average improvement
in the basic Rate Adaptation model compared to the Baseline model. Furthermore, the
Best Strategy model showed better average results than the Rate Adaptation model.

The great advantage of the proposal in this chapter is that it abandons the costly
heuristic search presented in Chapter 5. Although the current strategy still relies on
searching for the β parameter, which was maintained as in the previous approach, applying
it to the β parameter is feasible. This adaptation can be straightforwardly adapted to
the requirements of the β constant. Consequently, more robust modeling behavior on this
variance parameter can be employed with the time-adaptive idea.

The rate-distortion results for the perceptual measures are presented in Table 6.5 for
the SSIM measure and Table 6.6 for the MSSIM measure. It is important to note that the
results for both SSIM and MSSSIM are almost equivalent between the baseline target and
the two models proposed in this chapter. It is known in the neural-compression literature
that neural networks, for many potential reasons, possess interesting reconstruction results
regarding the subjective appearance of images. They exhibit considerable results even at
low rates like 0.06.

From the perceptual point of view, these reconstructions were already good in Chapter
5 compared to Ballé’s approaches [45, 23]. Early results showed almost no loss compared
to the non-restricted optimization of Ballé’s models. Consequently, extending this obser-
vation to the time-variable-parameter approach proposed in this chapter can be interest-
ing. It also exhibits no loss compared to the baseline target and, by extension, to Ballé’s
original approaches.
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Table 6.4: The mean results of the PSRN obtained in the Kodak dataset for the three
models compared in this chapter. It is possible to see that the Best Strategy model
consistently showed the best results among the three.

Rate
x

PSNR

Non-parametric Parametric

Best Strategy Rate
Adaptation

Target
Baseline Best Strategy Rate

Adaptation
Target

Baseline
0.06 24.25 23.86 23.82 24.78 24.09 23.73
0.12 25.94 25.91 25.40 26.24 25.60 26.08
0.25 28.08 27.81 27.32 28.20 27.58 28.30
0.50 30.59 30.51 30.30 30.93 30.74 30.76
0.75 32.35 32.43 32.17 32.87 32.67 32.53
1.0 33.99 33.91 33.74 34.48 34.20 33.75
1.5 36.27 36.15 35.86 36.94 36.56 36.42
2.0 38.57 38.09 38.33 39.11 38.65 38.36

Table 6.5: The mean results of the SSIM obtained in the Kodak dataset for the three
models are compared in this chapter.

Rate
×

SSIM

Non-parametric Parametric

Best Strategy Rate
Adaptation

Target
Baseline Best Strategy Rate

Adaptation
Target

Baseline
0.06 0.64 0.61 0.61 0.65 0.62 0.61
0.12 0.71 0.70 0.68 0.71 0.70 0.71
0.25 0.80 0.79 0.77 0.80 0.78 0.80
0.50 0.87 0.87 0.86 0.87 0.88 0.87
0.75 0.91 0.91 0.91 0.92 0.92 0.91
1.0 0.93 0.93 0.93 0.94 0.94 0.93
1.5 0.96 0.96 0.96 0.97 0.97 0.96
2.0 0.98 0.97 0.97 0.98 0.98 0.97

Table 6.6: The mean results of the MSSSIM obtained in the Kodak dataset for the three
models compared in this chapter.

Rate
×

MSSSIM

Non-parametric Parametric

Best Strategy Rate
Adaptation

Target
Baseline Best Strategy Rate

Adaptation
Target

Baseline
0.06 0.85 0.81 0.83 0.86 0.84 0.83
0.12 0.90 0.90 0.90 0.91 0.90 0.91
0.25 0.95 0.94 0.94 0.94 0.94 0.94
0.50 0.97 0.97 0.97 0.97 0.97 0.97
0.75 0.98 0.98 0.98 0.98 0.98 0.98
1.0 0.98 0.98 0.98 0.98 0.98 0.98
1.5 0.99 0.99 0.99 0.99 0.99 0.99
2.0 0.99 0.99 0.99 0.99 0.99 0.99
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6.3.4 Ablation Study of the Adaptive Loss

Section 6.3.3 compared the results of three models: the Target Baseline model, the Rate
Adaptation model, and the Best Strategy model. Please refer to Table 6.1 for the model
nomenclature. The results of the Best Strategy model showed improvements compared
to the other models. Also, even if no improvements in the mean rate-distortion analysis
were observed, the time-adaptive idea can bring the most significant improvement of
discarding the extensive space parameter search proposed by the heuristics described in
the last chapter. This idea could be applied in many areas of machine learning where some
parameters are constants but could be transformed into functions of the neural network’s
behavior concerning the model’s primary objective.

We can compare the Rate Adaptation model directly with the Target Baseline model
since the modification relies on one component of the initial model, the constant Rparam.
The Rate Adaptation model transforms it into a function Rparam

t (y; rtarget). This function
triggers a chain of dependency on the parameter with respect to the time evolution of the
training and the intrinsic behaviors of the neural networks concerning the whole target-
rate distortion objective. The rate-distortion results depicted in Tables 6.4, 6.5, and 6.6
show no degradation in this scenario. This potential degradation was a concern since the
number of free adaptive variables increased, and the formula introduced time feedback.

This direct comparison, regarding the change of Rparam to Rparam
t (y; rtarget), can be

concluded from this direct analysis. Nevertheless, the Best Strategy model adopted more
processing steps for the parameter, leading to the mean-rate parameter Rema

t (y; rpt (θrpar)).
This mean-rate parameter introduces an EMA calculation, now referred to as Rema

t , and an
inner parameter that controls a rate-decay strategy, depicted by rpt (θrpar). Therefore, it is
interesting to derive statistics on the impact of these strategies to make the Best Strategy
model more robust compared to the other two. Namely, the effect of the extended training
time, the repercussions of the smoothing of Rparam

t (y; rtarget), and the rate-decay target
parameterized by rpt (θrpar). The following sections will explore this in more detail.

Impact of Training Time

As mentioned earlier, given the increased parameter complexity of the Rate Adaptation
model and the Best Strategy model, increasing the training time may improve the models’
outcomes. The statistical results are shown in Table 6.7, where a comparison between
the Best Strategy and Rate Adaptation models is performed. In this scenario, where
non-parametric entropy modeling is adopted, the increased training time consistently
improved the results. As the perceptual metrics quickly saturate at high values when the
compression method is neural-based, PSNR was chosen because it is more sensitive to
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Table 6.7: Ablation study of the impact of the training time on both the Rate Adaptation
model and the Best Strategy Model for the non-parametric modeling.

Rate
×

PSNR

Non-parametric
Rate

Adaptation
Best

Stragey
Number of
iterations 500000 750000 500000 750000

0.06 23.86 23.47 24.18 24.25
0.12 25.91 25.94 25.91 25.95
0.25 27.81 27.96 27.99 28.08
0.50 30.51 30.61 30.50 30.79
0.75 32.43 32.53 32.40 32.47
1.0 33.91 33.92 33.73 33.84
1.5 36.15 36.38 36.17 36.41
2.0 38.09 38.48 38.39 38.68

variations. Nevertheless, with 500, 000 iterations, the baseline results were already good
in terms of SSIM and MSSSIM.

It is essential to highlight that the analysis of the ablation section will rely only on
PSRN. Not only because of its sensitivity to changes in the models but also because when
Ballé’s models are considered as reference [45, 23], the basic target-rate models detailed
in Chapter 5 demonstrated significative deteriorations only regarding the PSNR measure.
Therefore, the improvements shown here imply a decrease in the gap between the non-
restrict rate-distortion optimization and the restrict-relaxed rate-distortion optimization.

As in the non-parametric scenario, comparing the models with parametric modeling
showed the same tendency. Improvements were observed with increased training time.
Therefore, considering that the increase of 250,000 training steps is almost negligible in
the current AI hardware scenario, it is worth considering this a general approach to apply
to all parameter-adaptive models.

Smoothing of Rparam
t

One hypothesis for making the parameter Rparam
t a time-adaptive function is that the

network would be more prone to training variations and noise due to the batch-based
correction of the mean-rate mismatch. Therefore, applying EMA smoothing was intended
to make it less susceptible to these oscillations, especially in the early training steps.

The results for the non-parametric model are shown in Table 6.9. The table compares
the rate adaptation model, the Best Strategy model that applies only smoothing, and the
full Best Strategy model. With only smoothing, slight improvements in the PSNR can be
seen when comparing the Target Baseline model and the Best Strategy model. The Best
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Table 6.8: Ablation study of the impact of the training time on both the Rate Adaptation
model and the Best Strategy Model for the parametric modeling.

Rate
×

PSNR

Parametric
Rate

Adaptation
Best

Stragey
Number of
iterations 500000 750000 500000 750000

0.06 24.09 24.06 24.51 24.78
0.12 25.60 25.45 26.20 26.24
0.25 27.58 27.65 28.15 28.20
0.50 30.74 30.87 30.85 30.90
0.75 32.67 32.83 32.83 32.91
1.0 34.20 34.36 34.20 34.37
1.5 36.56 36.73 36.63 36.69
2.0 38.65 38.81 38.79 39.02

Strategy model shows, in general, almost no variation compared to the strategy without
the decay component.

This is one of the highlights of this ablation study. The non-parametric model showed
slight improvement with smoothing the mean-rate parameter. However, considering the
whole strategy, which includes the decay strategy, almost no improvements are observable
in any range of rates. As these two strategies are easily implemented and impose no com-
putational burden on conventional hardware, they were adopted as the general strategy
for both the parametric and non-parametric models.

The parametric model analysis, depicted in Table 6.10, shows similar results for the
smoothing and the whole strategy for the parametric model, with some improvements in
some scenarios and stability in others. It is interesting to note that, in general, the use of
decay, especially for medium-to-high rates, deteriorated the results. This is why Section
6.2.6 established an empirical threshold for the technique’s applicability. In general, these
refinements made the Best Strategy model the most stable proposal. The decay analysis
will be discussed in the next section of the ablation study.

The Rate Decay Strategy

The rate decay strategy is probably the most specific approach presented in this ablation
study. This can be seen in the results of Table 6.9 and Table 6.10, where, at medium-to-
high rates, the absence of decay presents worse results compared to the scenarios where
only smoothing is applied. However, it showed stable results or slight improvements
at very-low-to-low rates. For parametric and non-parametric models, these results are
presented in Table 6.11 and Table 6.12, respectively.
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Table 6.9: Ablation study of the impact of the smoothing on both the Rate Adaptation
model and the Best Strategy Model for the non-parametric modeling.

Rate
×

PSNR
Non-Parametric

Number of
iterations Rate Adaptation

Best Strategy
without
Smoothing

Best Strategy

0.06 23.47 23.96 24.25
0.12 25.94 25.95 25.95
0.25 27.96 28.08 28.08
0.50 30.61 30.60 30.79
0.75 32.53 32.35 32.47
1.0 33.92 33.99 33.84
1.5 36.38 36.27 36.41
2.0 38.48 38.57 38.68

Table 6.10: Ablation study of the impact of the smoothing on both the Rate Adaptation
model and the Best Strategy Model for the parametric modeling.

Rate
×

PSNR
Parametric

Number of
iterations Rate Adaptation

Best Strategy
without
Smoothing

Best Strategy

0.06 24.06 24.68 24.78
0.12 24.45 25.69 26.24
0.25 27.65 28.05 28.20
0.50 30.87 30.72 30.90
0.75 32.83 32.70 32.91
1.0 34.36 34.41 34.37
1.5 36.73 36.66 36.69
2.0 38.81 38.63 39.02
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Table 6.11: Ablation study of the impact of decay on both the Rate Adaptation model
and the Best Strategy Model for the non-parametric modeling.

Rate
×

PSNR
Non-Parametric

Number of
iterations Rate Adaptation

Best Strategy
without
Decay

Best Strategy

0.06 23.47 24.24 24.25
0.12 25.94 25.95 25.95
0.25 27.96 28.04 28.08
0.50 30.61 30.74 30.79
0.75 32.53 32.57 32.47
1.0 33.92 33.93 33.84
1.5 36.38 36.50 36.41
2.0 38.48 38.75 38.68

In the non-parametric model, as shown in Table 6.11, the decay strategy alone pre-
sented improvements at a rate of 0.06 and stability or slight enhancements up to the
target of 0.50. At higher rates, these improvements were not consistent. Therefore, it was
hypothesized that the decay strategy could be helpful at very low rates.

The results for the parametric model, shown in Table 6.12, show consistent improve-
ments at the lowest range of rates and some stability up to around 0.50. This observation
inspired the idea proposed by Equation 6.14, which was applied with a threshold of 0.50.

This could improve parametric models at the lowest range and could be explored in
further studies. As shown in the analysis of Chapter 5, the non-parametric model showed
significant stability compared to the parametric model. Coincidentally or not, the non-
parametric model exhibited a low mean rate shift effect. The studies and differences
between these models could be of high interest, especially regarding potential tunings to
make these models more robust to restricted optimizations.

6.3.5 Subjective evaluation

Figures 6.3 and 6.4 display reconstructions using the Target Baseline (TB) architecture
and the Rate Adaptation (RA) model for the Kodak dataset. Each row represents an
image whose reconstruction fell within the tolerance range for both architectures. Figure
6.3 relates to the non-parametric models, while Figure 6.4 shows results for the parametric
models.

In this chapter, the same set of images selected in the Chapter 5 experiments were
chosen, as depicted in Figures 5.21 and 5.19. As can be seen, perceptually, the images

149



Table 6.12: Ablation study of the impact of decay on both the Rate Adaptation model
and the Best Strategy Model for the parametric modeling.

Rate
×

PSNR
Parametric

Number of
iterations Rate Adaptation

Best Strategy
without
Decay

Best Strategy

0.06 24.06 24.06 24.78
0.12 25.45 25.69 26.24
0.25 27.65 27.63 28.20
0.50 30.87 30.93 30.90
0.75 32.83 32.87 32.91
1.0 34.36 34.48 34.37
1.5 36.73 36.94 36.69
2.0 38.81 39.11 39.02

maintain the same behavior of the Target Baseline model compared to the Rate Adap-
tation model. However, there are noticeable improvements in some images at very-low-
to-low rates. For example, at a rate of 0.12, depicted in the first row of Figure 6.3, it is
possible to see a perceptual improvement, especially in the river, from the Target Baseline
to the Rate Adaptation. The perceptual quality sometimes fluctuates, as seen in Figure
5.19, where the Target Baseline model showed slightly less blurred image reconstructions.
It is challenging to notice perceptual differences between the two approaches at higher
rates.

The results of the rate-distortion metrics showed this equivalence. Therefore, this
new rate adaptation model maintains, in general, the subjective quality around the base-
line target and applies the strategy with the potential to overcome the need for search
heuristics. It also shows improvements in some scenarios.

As a final observation, a comparison between the three models at low rates of [0.12, 0.25]
is shown in Figure 6.5. From this figure, it can be seen that the Best Strategy improves
the subjective quality of the image compared to the Rate Adaptation model, which aligns
with the rate-distortion measures shown earlier.

6.4 Conclusions

This chapter introduces an improved approach for rate-constrained coding in neural net-
works, building upon the earlier work detailed in Chapter 5. The previous approach
proposed a target-rate loss, where the mean-rate shift problem was considered a conse-
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Original Non-parametric TB , bpp=0.12 Non-parametric RA, bpp=0.12

Original Non-parametric TB , bpp=0.25 Non-parametric RA, bpp=0.25

Original Non-parametric TB , bpp=0.5 Non-parametric RA, bpp=0.5

Original Non-parametric TB , bpp=0.75 Non-parametric RA, bpp=0.75

Original Non-parametric TB , bpp=1.5 Non-parametric RA, bpp=1.5

Figure 6.3: Reconstructions obtained using the target non-parametric models for images
from the Kodak dataset. Original (left), Non-parametric TB (center), and Non-parametric
RA (right). The considered bit rates for the reconstructions are {0.12, 0.25, 0.5, 0.75, 1.5},
each representing a row of images.
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Original Parametric TB, bpp=0.12 Parametric RA, bpp=0.12

Original Parametric TB, bpp=0.25 Parametric RA, bpp=0.25

Original Parametric TB, bpp=0.5 Parametric RA, bpp=0.5

Original Parametric TB, bpp=0.75 Parametric RA, bpp=0.75

Original Parametric TB, bpp=1.5 Parametric RA, bpp=1.5

Figure 6.4: Reconstructions obtained using the parametric models for images from the
Kodak dataset. Original (on the left), Parametric TB (in the middle), and Parametric RA
(on the right). The considered rates for the reconstructions are {0.12, 0.25, 0.5, 0.75, 1.5},
each representing a row of images.
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Non-parametric TB , bpp=0.12 Non-Parametric RA, bpp=0.12 Non-Parametric BS, bpp=0.12

Non-parametric TB , bpp=0.25 Non-Parametric RA, bpp=0.25 Non-Parametric BS, bpp=0.25

Parametric TB, bpp=0.12 Parametric RA, bpp=0.12 Parametric BS, bpp=0.12

Parametric TB, bpp=0.25 Parametric RA, bpp=0.25 Parametric BS, bpp=0.25

Figure 6.5: Reconstructions obtained using the parametric and non-parametric models
for images from the Kodak dataset. Target baseline (on the left), Rate adaptation (on
the center), and Best Strategy (on the right).
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quence of the additive uniform noise approximation. Theoretical and empirical evidence
was provided. The proposed solution in that scenario involved costly search heuristics to
find optimal values for its hyperparameters.

The current chapter generalizes the earlier proposal, essentially following the same ap-
proach of devising a target-rate loss. However, inspired by reinforcement learning ideas,
the mean-rate hyperparameter is now converted into a time-dynamical function of the neu-
ral network information, designed to make the model auto-correct the shift mismatches.

Compared to the target baseline of Chapter 5, the approach in this chapter shows
improvements or similar results in all main measures (PSNR, SSIM, MSSSIM), but now
adopts an idea that can release the approach from the burden of the costly search heuris-
tics. The method remains a plug-in solution suitable for more complex approaches.

There is room for several improvements upon the parameter-adaptive loss. The most
straightforward extension would be to adapt and apply the time-adaptive idea to the
other hyperparameters of the loss, namely, the β. These temporal analysis ideas can be
used in the core architecture to provide more robust modeling behaviors. For example,
it could be applied to give the entropy model different properties. This core idea could
also be used in other related approaches within the supervised and unsupervised learning
paradigms.

Besides generalizing the mathematics to the β parameter, completely overcoming the
heuristics could make this proposal extensible to multi-target rate models, as it will correct
itself for the shift. The result could be a multi-target rate model that carries the basic
idea proposed here without too many modifications. This extension would reinforce the
plug-in idea of these approaches.

Additionally, a detailed analysis of the minor corrections applied, such as the EMA
smoothing or the rate decay, could be conducted. Specifically, the decay approach could
be fine-tuned to harness more potential from the neural networks at very low rates. Lastly,
much of the future work described in Chapter 5 can also be applied here, such as using
different quantization strategies to improve performance. Additionally, there is potential
to study the differences between the parametric and non-parametric modeling proposed
by Ballé’s works to guide an improved entropy model for the current rate-restricted opti-
mization.
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Chapter 7

Conclusion

This thesis studied the general approach of using neural networks to perform end-to-end
optimization based on variational methods. These variational approaches mathemati-
cally reduce to classical rate-distortion optimization. Specifically, this document thor-
oughly discussed the problem of imposed rate constraints. Despite progress in neural
image compression, these methods have not been widely adopted in practical applica-
tions. One significant reason highlighted is the underexplored problem of rate control for
reconstructing arbitrary images.

Approaches achieving the desired rate require encoding in multiple steps, making them
complex for practical use. Seminal approaches generally require training multiple net-
works to obtain rate-distortion operating points. Additionally, only minor advancements
have been made in target-constrained training, presenting the complexity of optimizing
target rate restrictions. Given this setup, this thesis deeply discussed a set of ideas and
architectures to address this underexplored problem.

The VAE-based architectures were thoroughly presented in Chapter 4. The main
focus was to show the problems when controlling the rate. Seminal baselines do not con-
trol rate deviation, so each trained model operates on different RD points on the convex
plane. This chapter also detailed seminal parametric and non-parametric entropy model-
ing works. This comprehensive approach was used in later chapters, where modifications
with profound implications are presented.

Based on the earlier chapters’ studies, the first basic approach was presented in Chap-
ter 5. This approach modified the loss function to minimize distortion while including the
rate restriction using Lagrangian relaxation ideas. It led to a loss function where training
could yield models that reconstruct around a target rate. Some issues with the additive
uniform noise approximation were covered, named the rate mean-shift problem.

The design of rate-oriented training highlighted the misalignment caused by the ap-
proximation of the quantization operation during training. This misalignment became
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evident with the average rate deviation issue, inspiring heuristics to estimate the loss func-
tion parameters. Empirical tests and theoretical analysis concluded that the misalignment
between the estimated rate during training and the actual rate during inference is related
to additive uniform noise. This issue results in a rate overestimation and, consequently,
an over-penalization during training, shifting the actual rate at inference time below the
expected value.

Chapter 6 introduced an improved approach for rate-constrained coding in neural
networks, building upon the earlier work detailed in Chapter 5. This method generalized
the earlier proposal by devising a target-rate loss inspired by reinforcement learning ideas.
The mean-rate hyperparameter was converted into a time-dynamical function of the neural
network information, designed to auto-correct the shift mismatches. Compared to the
target baseline of Chapter 5, the approach in Chapter 6 showed improvements or similar
results in all main measures (PSNR, SSIM, MSSSIM). This approach adopts an idea that
can eliminate the need for costly search heuristics, making it a plug-in solution suitable
for more complex approaches.

This thesis presents several contributions. One is modifying a variational rate-distortion
loss into a constrained target bitrate loss using Lagrangian relaxation. This method shows
that even though these losses are not directly derived from variational Bayesian inference,
their hyperparameters retain some features of the variational approach. Additionally,
the analysis of the quantization mismatch problem, termed the mean rate shift problem,
caused by using additive uniform noise as a proxy for non-differential quantization, is
another contribution. A search heuristic was proposed to address this issue.

Another contribution is the solution using different ideas to solve the rate mismatch
problem, namely adopting general reinforcement learning ideas. The training process
is seen as a time-evolution stochastic process, allowing temporal information to fine-
tune neural network training. Lastly, this thesis presents a range of analyses, potential
extensions, and deeper investigations, highlighting future steps and contributing to the
field.

7.1 Future Works

Several improvements can be made to the works proposed here. Regarding the parameter-
adaptive loss, a straightforward extension would be to adapt and apply the time-adaptive
idea to other hyperparameters of the loss (namely, β). These temporal analysis ideas
can be used in the central architecture to provide more robust modeling behaviors. For
example, they could give the entropy model different time-dynamic properties. This core
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idea could be applied to other related approaches in supervised and unsupervised learning
paradigms.

Another improvement is the detailed study of the applicability of these approaches to
different or more complex architectures, fully basing the idea that this loss is generalizable
to any compression end-to-end neural architecture. That is, whenever rate control is
desired.

Besides generalizing the mathematics to the β parameter, eliminating the heuristics
could make this proposal extensible to multi-target rate models since it will correct itself
for the shift. The result can be a multi-target rate model that carries the basic idea
proposed here without too many modifications. This potential extension reinforces the
plug-in idea of these approaches. It is interesting to highlight that this extension could
be more challenging using only the ideas of Chapter 5.

A thorough analysis of the minor corrections applied in the parameter-adaptive loss,
like the EMA smoothing or the rate decay, can also be studied. Specifically, the decay
approach could be fine-tuned to maximize the potential of neural networks at low rates.
Lastly, much of the future work described in Chapter 5 can also be applied here. For
example, different quantization strategies can be used to improve performance. There is
also the potential to study the differences between the parametric and non-parametric
modeling proposed by Ballé’s works to guide an improved entropy model for the current
rate-restricted optimization.
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Appendix I

Information Theory

Information theory, originating with Claude Shannon in the mid-20th century, provides
the foundation for the systematic study of data transmission and encoding schemes. This
framework unravels the intricacies of data transmission—the means by which information
is sent from a source to a receiver—and encoding schemes—strategies employed to rep-
resent data in a particular form [131]. The main goal of information theory is twofold:
first, to define theoretical boundaries for efficient communication from a source through a
channel using various encoding methods, and second, to develop encoding strategies that
approach optimal performance [71, 132].

At the core of information theory are entropy and mutual information, both crucial
within theoretical frameworks. Entropy measures the unpredictability or randomness of
information content, while mutual information assesses the extent of information shared
between two random variables. Entropy, rooted in thermodynamics, relates to discrete-
time symbols from stochastic processes, representing the inherent information quantity of
the process. Mutual information quantifies the knowledge one process has about another,
differentiating itself from entropy, which relates only to a process’s self-information [71,
132].

Aiming to illuminate foundational concepts in information theory, this appendix fur-
nishes readers with the essential knowledge for navigating the upcoming chapters of
this thesis, particularly fortifying the understanding of the neural compression approach
adopted herein. Subsequent sections will delve into these concepts with enhanced depth,
highlighting their relevance in the context of this research.

I.1 Introduction to Information Sources

Information theory, since its inception, has illuminated the understanding of information
sources and effective communication by concentrating on the conceptual frameworks and
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mechanisms that govern them [131]. Shannon’s foundational work went beyond just facili-
tating communication. He provided a theoretical architecture that improved the efficiency
of communication channels, considering both data compression and error correction [131].

Data transmission fundamentally encompasses the movement of data, rendered as
symbols or messages, from a sender (source) to a receiver (destination) via a communi-
cation channel. Encoding schemes refer to the methodologies used to render messages
in a format amenable to transmission. The information source is pivotal in this context.
It acts as a model representing a physical entity, generating sequences of symbols in a
stochastic manner [132].

To illustrate, consider a biased die as an analogy for comprehending the concept of
an information source generating symbols stochastically. Each face (symbol) of the die
(information source) may not have an equal likelihood of being selected (turning up when
rolled). The source alphabet is essentially the repository of all conceivable symbols or
outcomes, analogous to the six faces of a die.

Pivoting towards a more robust mathematical exploration, it is crucial to define some
quintessential concepts with refined clarity. A random variable, X, is defined as a function
that maps from a sample space S to the real line: X : S → R. The distribution P (X)
captures the probability of X holistically. For a random variable X, if it assumes a value
x, the expression X = x becomes pertinent. Additionally, pX(x) denotes the probability
function value at X = x, providing a more detailed, localized view of X’s distribution.

The random variable type - discrete or continuous - dictates the kind of function
employed to describe its probability distribution. If X is a continuous random variable,
pX(x) denotes the probability density function (PDF) of X at x. The PDF represents
the likelihood of X falling within a certain range of values. Conversely, if X is a discrete
random variable, its distribution is described using a probability mass function (PMF),
similarly denoted by pX(x).

Given a function pX(x), the parameters relate to the distribution of a random variable
X according to X ∼ dist(θ), where the notation represents X following a distribution
parameterized by θ. For instance, if X follows a normal (Gaussian) distribution, denoted
as X ∼ N (µ,σ2), pX(x) = 1

σ
√

2πe
− 1

2(x−µ
σ )2

, where µ and σ2 are the mean and variance
parameters, respectively. To simplify the discussion and maintain cohesiveness in the
exposition, the notation pX(x) will occasionally be used with the implicit understanding
that it refers to pX(x; θ) in the ensuing text.

When these variables are strung along discrete time indices, they form a discrete-time
random process, Xn, with n ∈ T , where T serves as an indexing set, and n and Xn

designate the index and the nth random variable of the sequence, respectively [132].
For instance, the concept of the information source can be interlinked with a simple
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stochastic process: consider a telegraph signal as the information source, where the state
at a discrete time n, Xn, may represent a transmitted symbol at that instant, e.g., a dot
or a dash in Morse code. If T signifies time, Xn might be the symbol being sent at time n,
with the transition probabilities (change from one symbol to another) being determined
stochastically, thereby forming a stochastic process.

This mathematical framework is tethered to a probabilistic space, often symbolized
by the triplet (S,F , P ) [132], wherein:

• S, the sample space, envelops all potential outcomes of the random process.

• F , the sigma-algebra, represents a collection of events, generated as the power set
of S, therefore encapsulating all possible sets of outcomes.

• P , the probability measure, adheres to probability axioms, gauging the events within
F and bestowing a probability upon each feasible event.

I.2 Shannon Entropy

Claude E. Shannon’s concept of Shannon entropy serves as a vital measure within the
realm of information theory. It quantifies a random variable’s unpredictability or inherent
informational content. Delineating the average "information" or "surprise" engendered by
a random variable indirectly provides insight into the variable’s randomness or disorder.

Consider a random variable X, which is affiliated with a finite alphabet A, where
A encompasses all possible symbols or outcomes that X can attain. Shannon entropy,
mathematically expressed as H(X), can be formulated as [71, 132]:

H(X) = −
∑
x∈A

pX(x) logb pX(x) (I.1)

where pX(x) denotes the probability density function of the random variable X, explicat-
ing the probability of X assuming a specific value x, which is represented as P [X = x].
The logarithmic base b prescribes the unit of entropy: utilizing Euler’s constant (e) frames
entropy in “nats”, while base 2 formulates it in “bits”. For instance, due to its binary
outcome, a fair coin toss incurs an entropy of 1 bit.

As the discussion transitions towards scenarios involving multiple random variables, it
becomes pertinent to consider joint entropy. When contemplating two distinct variables,
X and Y , each with respective finite alphabets AX and AY , the joint entropy, symbolizing
the collective unpredictability across both variables, is denoted asH(X, Y ), and calculated
as [71, 132]:

H(X, Y ) = −
∑

x∈AX

∑
y∈AY

pXY (x,y) log pXY (x,y) (I.2)
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where pXY (x,y) is the joint probability distribution, defining the probability that X
and Y assume values x and y concurrently. This combined perspective of multi-variable
entropy paves the path towards exploring mutual information, a topic further explored in
subsequent sections.

I.3 Conditional Entropy and Mutual Information

In the continual exploration of entropy, attention subtly shifts to its derivatives, particu-
larly focusing on conditional entropy and mutual information. These concepts intertwine
and build upon the fundamental principles of entropy discussed in preceding sections
[71, 132].

I.3.1 Understanding Conditional Entropy

Conditional entropy, symbolized asH(Y |X), quantifies the residual uncertainty or entropy
of a random variable Y , given the value of another variable X is known. For random
variables X and Y with a joint distribution pXY (x,y), the conditional entropy can be
articulated through several equivalent mathematical expressions, as follows [71, 132]:

H(Y |X) =
∑

x∈AX

pX(x)H(Y |X = x) (I.3)

= −
∑

x∈AX

pX(x)
∑

y∈AY

pY |X(y|x) log pY |X(y|x) (I.4)

= −
∑

x∈AX

∑
y∈AY

pY |X(y|x) log pY |X(y|x) (I.5)

= −EpY |X log pY |X(y|x) (I.6)

In the above expressions, pY |X(y|x) symbolizes the conditional probability of Y given
X, and EpY |X represents the expected value operator concerning pY |X . Conceptually, con-
ditional entropy encapsulates the remaining unpredictability of Y when X is ascertained,
providing a measure of how much "new" information is presented by Y in the context of
the known variable X.

I.3.2 Relating Entropies

The following relation harmoniously captures the synergy between joint entropy and con-
ditional entropy, linking the entropy of a combination of two variables to the sum of the
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entropy of one variable and the conditional entropy of the other [71]:

H(X, Y ) = H(X) +H(Y |X) (I.7)

This relation subtly illustrates that the total unpredictability (or entropy) of a pair
of variables (X, Y ) is the sum of the individual unpredictability of X and the remaining
unpredictability of Y once X is known.

I.3.3 Mutual Information: Quantifying Dependency

Moving deeper into the concept of mutual information, a significant metric that quantifies
the information shared between two random variables is engaged, thus establishing a
measure of their statistical dependence. Mathematically, mutual information, denoted as
I(X, Y ), is computed using the joint and marginal probability mass functions pXY (x,y),
pX(x), and pY (y), formulated as follows [71]:

I(X, Y ) =
∑

x∈AX

∑
y∈AY

pXY (x,y) log pXY (x,y)
pX(x)pY (y) = EpXY

log pXY (x,y)
pX(x)pY (y) (I.8)

In the field of image compression, mutual information becomes pivotal in assessing how
the value of one pixel (or a set of pixels or features) might influence others. Here, I(X, Y )
is not merely a measure of shared information but might offer insights into identifying and
leveraging dependencies between different parts of an image for more effective compression
strategies.

Further, mutual information is also expressible in terms of entropy and conditional
entropy [71]:

I(X, Y ) = H(X) +H(Y )−H(X, Y ) (I.9)
= H(X)−H(X|Y ) = H(Y )−H(Y |X) (I.10)

In a metaphorical sense, I(X, Y ) reflects the intersection of the information content
of X and Y . Thus, it provides an incisive view into the shared information realm of these
variables, which is pictorially illustrated via a Venn diagram (see Figure I.1) [71].

I.4 Relative Entropy and Divergence

Information theory, especially in the context of finite alphabets, elucidates several pivotal
information measures that burgeon essential properties, crucially emanating from the
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H(X|Y) H(Y|X)I(X;Y)

H(X, Y)

H(X) H(Y)

Figure I.1: Interplay between entropy and mutual information. Adapted from [71].

generalized divergences framework [132]. One such prominent measure is relative entropy,
frequently denominated as divergence or Kullback-Leibler (KL) divergence.

KL divergence stands out as an instrumental measure in information theory, notwith-
standing its non-compliance with specific mathematical properties typically associated
with a distance measure. It does not assure symmetry and fails to satisfy the triangle
inequality. Despite these mathematical peculiarities, it offers a sturdy methodology to
gauge the dissimilarity between two probability distributions, represented as pX and pY .
Formally, the definition of relative entropy is provided as follows [71]:

KL(pX ||pY ) = sup
A
KLA(pX ||pY ) (I.11)

In the context of this equation, A symbolizes a finite alphabet of the sample space,
while KLA denotes the KL divergence computed over the said alphabet. Furthermore,
the operation supA refers to the supremum (or the least upper bound) with respect to A.
To illustrate this, consider a set S defined as S = {x ∈ R : x < 2}. Here, sup(S) is 2,
given that 2 is the smallest real number greater than or equal to every number in S.

The depth of KL divergence extends further, elucidating its essence through a math-
ematical representation that defines divergence in the semblance of entropy, leveraged
through the logarithmic ratio of the distributions [71]:

KL(pX ||pY ) =
∑
x∈A

pX(x) log pX(x)
pY (x) (I.12)

= EpX
log pX(x)

pY (x) (I.13)

Here, EpX
signifies the expected value concerning pX . Further, it is pivotal to note

that the non-negativity attribute of relative entropy entails that it is zero when pX = pY ,
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portraying absolute similarity or a positive value, highlighting the disparity between the
compared distributions. In the realm of image compression, this metric can serve as a
critical indicator, illuminating the fidelity and efficacy of compression algorithms by man-
ifesting the divergence from the original distribution, essentially providing a quantitative
measure of the information loss during the compression process.
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