
Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

A Framework for Automated Parallel Execution of
Scientific Multi-Workflow Applications in the Cloud

with Work Stealing

Helena Schubert I. L. Silva

Dissertação do Mestrado em Informática

Orientador
Prof. Dr. Alba C. M. A Melo

Brasília
2024

Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

A Framework for Automated Parallel Execution of
Scientific Multi-Workflow Applications in the Cloud

with Work Stealing

Helena Schubert I. L. Silva

Dissertação apresentada como requisito parcial
para conclusão do Mestrado em Informática

Prof. Dr. Alba C. M. A Melo (Orientador)
CIC/UnB

Prof. Dr. Lúcia Maria de A. Drummond Prof. Dr. Aleteia Patricia F. de Araujo
IC/UFF CIC/UnB

Prof. Dr. Rodrigo Bonifácio de Almeida
Coordenador do Programa de Pós-graduação em Informática

Brasília, 04 de outubro de 2024

Dedicatória

Primeiramente, dedico este longo trabalho e todos os frutos que dele vierem a meus amados
pais, Jurema Schubert e Antonio Elesbão. Obrigada, mãe, por todo seu apoio durante esse
período! Obrigada, mãe, por também ser meu ombro amigo nas dificuldades e por ser uma
das minhas principais inspirações na vida, principalmente sobre coragem! Obrigada, pai,
por sempre ter apoiado meus esforços e por ter falado que era melhor cursar computação
que física na graduação! Foi uma sábia escolha.

Dedico também este trabalho aos pais dos meus pais, cujas trajetórias estão sempre
ecoando na minha mente, provocando-me orgulho, servindo-me de exemplo e trazendo-me
carinho. Em particular, dedico este trabalho à minha avó Manuelina de Jesus Lima da
Silva, a Dona Santa. Que saudade, minha vó querida!

Por último, dedico também ao meu amado bem, Danilo Bispo, por me ouvir e me dar
forças, e à minha querida amiga Luana Signorelli, por me entender tão bem. Como é bom
ter companhia nas batalhas!

iii

Acknowledgments

I would like to thank the many professors and colleagues whose ideas and inspirations are
present in this work. In particular, I would like to mention Professor Dr. Maria Clícia
Castro, Dr. Fabrício A. B. Silva, and especially my advisor, Professor Dr. Alba Cristina
M. A. Melo, who has been a great inspiration to me and to many of us who graduated
from my beloved University of Brasília.

iv

Resumo

Um Framework para Execução Paralela
Automática de Aplicações de Múltiplos

Workflows Científicos na Nuvem com Roubo
de Trabalho

Workflows científicos são executados em diversos laboratórios de pesquisa todos os dias
em vários continentes, contribuindo significativamente para os avanços da Ciência. Na
maioria das vezes, os workflows são executados por scripts desenvolvidos de maneira ad
hoc em infra-estruturas computacionais defasadas. Na presente Dissertação de Mestrado,
visamos propor e avaliar um framework para execução automática de aplicações compostas
por múltiplos workflows científicos na nuvem AWS. Para tirar proveito do paralelismo, o
framework proposto executa-se em plataforma com diversos nodes computacionais e várias
threads em cada nodo. Adicionalmente, como existe um grande número de operações de
E/S nestes workflows, dois tipos de sistema de arquivos serão usados (compartilhado
e local). Finalmente, propomos uma estratégia multi-nível de roubo de trabalho para
reduzir o desbalanceamento de carga. Nossa resultados mostram que a estratégia paralela
combinada ao roubo de trabalho contribuem para a redução significativa de tempo de
execução.

Palavras-chave: Workflow científico, Roubo de trabalho, Computação em nuvem.

v

Abstract

Scientific Workflows are executed in several research laboratories every day on many con-
tinents, contributing significantly to advances in Science. Most of the time, workflows
are executed by scripts developed in an ad hoc manner on outdated computing infras-
tructures. In this MSc Dissertation, we propose and evaluate a framework for automatic
execution of scientific applications composed of multi-workflows in the AWS cloud. To
take advantage of parallelism, the proposed framework runs on two levels on a platform
with several computational nodes and several threads in each node. Furthermore, as there
is a large number of I/O operations in these workflows, two types of file systems are used
(shared and local). Finally, we propose a multi-level work stealing strategy to reduce
load imbalance. Our results show that the parallel strategy combined with work stealing
contributes to a significant reduction of the execution time.

Keywords: Scientific workflows, Work stealing, Cloud computing.

vi

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem assumptions . 3
1.3 Objective . 3
1.4 Contributions . 4
1.5 Organization of the Dissertation . 5

2 Overview of Workflows 6
2.1 Directed Acyclic Graph (DAG) . 6
2.2 Workflow Scheduling . 8
2.3 Work Stealing (WS) . 9

3 Large Scale Parallel and Distributed Systems 13
3.1 Overview . 13
3.2 High Performance Computing (HPC) . 14

3.2.1 History . 14
3.2.2 Architecture . 15
3.2.3 HPC Programming . 16
3.2.4 Message Passing Interface (MPI) . 17
3.2.5 Open Multi-Processing (OpenMP) . 18
3.2.6 Lustre . 20

3.3 Cloud Computing . 21
3.3.1 Cloud Computing Service Models . 22

3.4 HPC in Cloud Computing . 25
3.4.1 Microsoft Azure . 25
3.4.2 Google Cloud . 27
3.4.3 AWS ParallelCluster . 27

4 Related Work 30
4.1 Methodology . 30

vii

4.2 Durillo and Prodan, 2014 . 31
4.3 Sadooghi et al., 2016 . 31
4.4 Rodriguez and Buyya, 2017 . 32
4.5 Stavrinides and Karatza, 2021 . 33
4.6 Krämer et al., 2021 . 33
4.7 Chen et al., 2021 . 34
4.8 Taghinezhad-Niar et al., 2022 . 34
4.9 Xia et al., 2023 . 35
4.10 Comparative Table . 36

5 Design of the Framework 38
5.1 Linear Workflows Considered in the Framework 38
5.2 Framework Version 1 . 39

5.2.1 Initialization . 39
5.2.2 Workflow Execution . 41

5.3 Framework Version 2 . 41
5.3.1 Standard mode . 43
5.3.2 Work Stealing . 43

6 Experiments and Results 46
6.1 Test Environment . 46

6.1.1 Santos Dumont supercomputer . 46
6.1.2 AWS EC2 ParallelCluster . 47

6.2 Results for Version 1 - Synthetic I/O . 47
6.3 Framework Version 2 - Synthetic I/O fio application 51
6.4 Framework version 2 - Real Bioinformatics application 55

6.4.1 Description of the Application . 55
6.4.2 Execution times . 56
6.4.3 Idle thread Analysis . 57

7 Conclusion and Future Works 62
7.1 Conclusion . 62
7.2 Future works . 64

References 66

Annex 72

I Paper published in the International Conference Euro-Par 2024 73

viii

List of Figures

2.1 Example of an arbitrary DAG. 7
2.2 Some types of DAGs. 7
2.3 Applications composed of single and multiple workflows. 8
2.4 First level of scheduling taxonomy of Casavant and Kuhl [1]. 9
2.5 Task-VM mapping dynamicity of workflow scheduling in the cloud taxon-

omy of Rodriguez and Buyya [2]. 9

3.1 Representation of a generic HPC system. Adapted from [3]. 15
3.2 Example of a Slurm script . 17
3.3 Lustre cluster at scale example. From [4]. 21
3.4 Cloud computing system model. Figure from [5]. 23
3.5 Cloud computing service models. Adapted from [6]. 23
3.6 Usual workflow of an application deployed with Azure Batch. From [7]. . . 26
3.7 Google Cloud HPC architecture diagram. From [8]. 27
3.8 Possible design of ParallelCluster system utilization. Adapted from [9]. . . 28
3.9 AWS ParallelCluster functioning from [10] 29

5.1 Application composed of linear workflows scheduled in our framework. . . . 39
5.2 Overview of the architecture of the Framework version 1. 40
5.3 Skeleton and input file processing, for m workflows, each one with n tasks,

generating the Total Workflow Array (TWA). 40
5.4 Striped assignment of workflows to threads in Version 1. 41
5.5 Overview of the architecture of the Framwork version 2, with work stealing. 42
5.6 Striped function assignment with TWA and WAS. 44
5.7 Global work stealing node selection. 45

6.1 Synthetic I/O intensive workflow of version 1 48
6.2 Execution time of 100 I/O intensive workflows. Framework Version 1 . . . 49
6.3 Execution time per GB of each node in job with 2 nodes 49
6.4 Execution time per GB of each node in job with 4 nodes 50

ix

6.5 Execution time per GB of each node in job with 8 nodes 50
6.6 Execution time per GB of each node in job with 16 nodes 51
6.7 Synthetic I/O intensive workflows . 52
6.8 Execution time (1 processes/task) . 52
6.9 Execution time (4 processes/task) . 53
6.10 Lustre bandwidth for the fio application 54
6.11 Scratch bandwidth for the fio application 54
6.12 Real multi-workflow Bioinformatics application executed in our framework 55
6.13 Execution time of real multi-workflow application (400 workflows) 56
6.14 Speedup time of real multi-workflow application (400 workflows) 57
6.15 Gain of framework with work stealing compared with the framework with-

out work stealing in real Bioinformatics application 58
6.16 Execution time of each node with the moment that the first thread of each

node becomes idle, version 2 with 2 nodes, real multi-workflow application 59
6.17 Execution time of each node with the moment that the first thread of each

node becomes idle, version 2 with 4 nodes, real multi-workflow application 60
6.18 Execution time of each node with the moment that the first thread of each

node becomes idle, version 2 with 8 nodes, real multi-workflow application 60
6.19 Execution time of each node with the moment that the first thread of each

node becomes idle, version 2 with 16 nodes, real multi-workflow application 61

x

List of Tables

3.1 MPI functions . 19
3.2 OpenMP Directives . 20

4.1 Comparative table of works on workflow scheduling in clouds 36

6.1 Standard Deviation of each node’s first idle time and execution time 58

xi

Acronyms

ASCI-Red Accelerated Strategic Computing Initiative Red.

AWS Amazon Web Service.

BoT Bag-of-Tasks.

DAG Directed Acyclic Graph.

EC2 Elastic Computing Cloud.

ERES Energy and Resource Efficient workflow Scheduling.

EUSF Energy and Uncertain task ET aware workflow Scheduling Framework.

FaaS Function as a Service.

FIFO First-In-First-Out.

Flops Floating Point Operations per Second.

GPU Graphic Processing Unit.

HEFT Heterogeneous Earliest Finish Time.

HPC High Performance Computing.

HPCaaS High Performance Computing as a Service.

IaaS Infrastructure as a Service.

IaC Infrastructure as Code.

LIFO Last-In-First-Out.

MIMD Multiple Instructions Multiple Data.

xii

MOHEFT Multi-Objective Heterogeneous Earliest Finish Time.

MPI Message Passing Interface.

MPICH MPI over CHameleon.

NCBI National Center for Biotechnology Information.

NFS Network File System.

NOSF onliNe multi-workflOw Scheduling Framework.

OpenMP Open Multi-Processing.

PaaS Platform as a Service.

REST API Representational State Transfer Application Programming Interface.

ROSA unceRtainty-aware Online Scheduling Algorithm.

RPC Remote Procedure Call.

S3 Simple Storage Service.

SaaS Software as a Service.

Slurm Simple Linux Utility for Resource Management.

SRA Sequence Read Archive.

TCP/IP Transmission Control Protocol/Internet Protocol.

TWA Total Workflow Array.

VM Virtual Machine.

VPC Virtual Private Cloud.

WS Work Stealing.

WSA Workflow Status Array.

XaaS Everything as a Service.

xiii

Chapter 1

Introduction

In this chapter, we firstly introduce the motivation for this dissertation. Then, we present
the problem assumptions, followed by the objectives of this work. Afterwards, we present
the contributions which were achieved with this work and finally we appoint the organi-
zation of this document.

1.1 Motivation

Scientific workflows are executed in a regular basis in research laboratories all over the
world, aiming to solve complex problems from several domains such as Biology, Medicine,
Geology, among others. Usually, scientific workflows use real-world data as input. These
inputs are typically stored as files after being read by specialized machines. In Bioin-
formatics workflows, for example, it is common for each experiment to generate one or
more files containing their raw biological data, such as mRNA or DNA [11][12][13][14].
These files are then analyzed alongside other files of the same type using Bioinformat-
ics tools. Typically, each file needs to be preprocessed and pass through quality control
phases before analysis. Moreover, it is often beneficial to store the preprocessed files, in
addition to the original raw data, since multiple workflows may use the same preprocessed
inputs. This approach avoids repeating the preprocessing phase for each workflow, when
analyzing a previously processed input with different analyses’ tools. The preprocessing
and quality control stages typically take the form of a linear workflow and are applied to
each file within a given dataset.

Processing files involves numerous I/O operations, which can be time-consuming. Con-
sequently, the preprocessing and quality control phases are often the slowest part of a
Bioinformatics workflow. For instance, in the workflow proposed in [11], the preprocess-
ing and quality control phases took 60 hours, whereas the analysis’ phases took less than
5 minutes.

1

In most Bioinformatics laboratories, researchers are not experts in Computer Science
nor have experimented technicians at their disposal. They often use ad hoc execution
scripts which are error-prone and difficult to modify and update. This also may lead
to underuse of the available infrastructure. In addition, most Bioinformatics laboratories
cannot manage properly the computing infrastructure, which requires frequent updates of
the computing hardware (computers, network, disks, etc) and numerous substitutions of
faulty components. For this reason, in the last years, many laboratories have moved their
infrastructure to the cloud [15]. Executing workflows in the cloud can drastically reduce
the infrastructure costs but needs special attention, particularly when parallel executions
are targeted. Using scalable frameworks, instead of simple scripts, may also allow better
use of the cloud infrastructure.

In order to achieve better performance regarding execution time, cost and/or other
parameters, scientific workflows should be scheduled. Workflows are defined as sets of
tasks with temporal dependencies, meaning the output of one task serves as the input for
the next task, and they are expressed as a Directed Acyclic Graph (DAG) W = (T, E),
where T are the tasks and E are the dependencies among the tasks. The general problem
of scheduling tasks of a workflow is proven NP-Complete [16]. In addition, the problem
of scheduling a workflow composed of a sequence of tasks (linear workflow), in its general
formulation, is proven NP-Hard [17]. For this reason, many heuristic scheduling strategies
have been proposed in the literature in the last decades [18] [19] [20] [21] [22].

Workflow scheduling strategies may be classified as static, when they allocate tasks to
computing resources before the execution begins and do not change the allocation during
runtime [1]. Static scheduling strategies assume that a large amount of information about
the tasks and the computing environment is known a priori, including the tasks execu-
tion time, the performance of I/O operations, among others. However, in most realistic
scenarios, these data are not known previously and, thus, dynamic scheduling strategies
should be applied. Dynamic scheduling allocates and/or re-allocates tasks during run-
time. Usually, it assumes that very few information about the tasks and/or the execution
environment is known in the moment of the allocation [1]. In this case, a common goal
of dynamic schedulers is to achieve load balancing, since this contributes to reduce the
overall execution time.

Even though most schedulers deal with the problem of scheduling a single workflow
[23] [24], there are in the literature some proposals that tackle the problem of scheduling
multiple workflows. In [25], multiple linear workflows scheduled in a simulated distributed
system are taken into consideration. Applications are modelled as single workflows, which
may arrive at different moments and tasks that compose the workflows may be added or
suppressed during execution. The mean execution time of the tasks is known in advance

2

and, upon arrival, the workflow is assigned to the smallest queue of two randomly chosen
nodes. A strategy for scheduling multiple workflows with different arrival times is also
proposed in [26]. The workflows execute in a simulated cloud environment, with multiple
Virtual Machines (VMs), each one with a different cost. As in the previous case [25],
execution times of the workflows’ tasks in each VM are known in advance.

Even though many workflow managers have been proposed for cloud computing [27],
such as Galaxy [28] and Pegasus [29], they consider single workflow applications and
use static approaches to assign tasks to computing nodes. As far as we know, there is
no proposal in the literature that dynamically schedules multiple linear workflows with
unknown task execution times, aiming to reduce the overall execution time in a real cloud
environment.

1.2 Problem assumptions

In this work, we are targeting a typical class of linear scientific Bioinformatics workflows,
where the same workflow is executed multiple times for different inputs. The workflows
we are targeting have the following characteristics:

1. the size of the input may be significant (from tens of Megabytes, up to hundreds of
Gigabytes) and vary for each workload;

2. several temporary files of considerable size are produced;

3. the execution time of each task is not previously known since it depends on the size
and the contents of the input;

4. the same chain of programs is executed for many input files, resulting in a multi-
workflow application;

5. executing the multi-workflow application can take hours.

To summarize, we are dealing with applications composed of long-lived multiple work-
flows, where the tasks of each workflow have unpredictable execution times and high disk
activity. In such scenario, parallel computing and sophisticated scheduling approaches are
required. In addition, we assume that the end-users do not have computational expertise.

1.3 Objective

The main goal of this dissertation is to investigate workflow scheduling strategies which are
appropriate for applications composed of multiple workflows. We also intend to propose

3

a framework that executes efficiently applications composed of scientific linear multi-
workflows with unknown task execution times in the cloud. As a secondary objective, we
aim to provide an easily configurable interface to the end-user.

1.4 Contributions

The main contributions of this work are:

1. An MPI/OpenMP framework to schedule linear multi-workflow applications in the
cloud or in a High Performance Computing (HPC) architecture (standard mode).
The framework receives two files as input: (a) a workflow skeleton file (b) an input
file with n file names. Using the skeleton, we generate n workflows, which will
process different input files, sorted by their lengths. The workflows are distributed
among the threads of each node, using a striped approach. The execution terminates
when all workflows are processed. The proposal was executed in the SDumont
supercomputer (sdumont.lncc.br) using 100 I/O intensive synthetic workflows. The
framework was tested in 1, 2, 4, 8 and 16 Virtual Machines (VMs), each one of them
with 24 CPUs. The storage used was the Lustre parallel file system (www.lustre.org).
We measured the total execution time and the execution time of each node.

2. An improved MPI/OpenMP version of the framework that incorporates dynamic
scheduling with work stealing, named work stealing mode, which executes jointly
with the standard mode. After having the workflows distributed among the nodes
with the striped approach, the work stealing mode starts its execution at the moment
when a thread becomes idle at the first time. In this case, the thread steals a
workflow from another thread within the same node at first. If all threads in the
same node are idle, work is stolen from another node. The execution finishes when all
workflows are processed. An evaluation of this proposal was made in the AWS EC2,
using the ParallelCluster (aws.amazon.com/hpc/parallelcluster) to deploy an HPC
like architecture. We tested in 1, 2, 4, 8 and 16 instances, each one of them with 4
vCPU. We used the Amazon FSx for Lustre (aws.amazon.com/pt/fsx/lustre) to save
the input and output files, and the local file system (Scratch) of each EC2 instance
to save the temporary files. The framework was tested with two applications. The
first one is composed of 74 I/O intensive synthetic workflows and the second one has
400 real Bioinformatics workflows which process RNA samples from real organisms.

A paper describing Contribution 2 and its results was published in [30].

4

1.5 Organization of the Dissertation

The remainder of this document is organized as follows. Chapter 2 presents the concepts
of workflow and workflow scheduling, with emphasis to work stealing. In chapter 3 we
present the concepts related to large scale parallel and distributed systems, focusing on
HPC, cloud computing and HPC in cloud computing. Chapter 4 discusses related work.
Chapter 5 presents the design of our framework. In chapter 6, we present our experimental
results. Chapter 7 presents the conclusion and future works. Finally, Annex I presents
the first page of our paper, published in the International Conference Euro-Par 2024.

5

Chapter 2

Overview of Workflows

In this chapter, we first present the basic concepts of workflows. Then we provide an
overview of the problem of workflows scheduling, focusing on the work stealing approach.

2.1 Directed Acyclic Graph (DAG)

Workflows are a traditional way to represent an application composed of tasks. Usually,
a Directed Acyclic Graph (DAG) is used to express temporal dependencies between two
tasks ti and tj [31]. Tasks are executable units and, along with edges, compose a workflow.

Figure 2.1 presents a workflow with 7 tasks (t0 to t6). In this workflow, task t2 must
be executed before task t4, since t2’s output is used as t4’s input. On the other hand,
tasks t3 and t4 may be executed in parallel. With the workflow model, weights may be
assigned to (a) the tasks, expressing the execution time, and (b) the edges, expressing the
communication time. If no weights are assigned, it often means that tasks execute in the
unity (1) and communication time is negligible.

Figure 2.1 illustrates an arbitrary DAG, but often DAGs have a predefined form such
as linear, tree, fork-join (Figure 2.2). In the linear graphs, each task is preceded of only
one task (except for the first one) and succeed of just one (except for the last one). Graphs
modeled as trees have tasks which can have multiple children, but each child task has only
one parent task. However, usually, the tree DAG graphs have a shared final task which
represents the end of all leaf tasks. Fork-join DAGs are graph in which the first task
represents the DAG’s beginning and has multiple children tasks that can be executed in
parallel, which in turn, share the same final child task.

A DAG can be expressed as W = (T, E) where W is workflow, T is the set of n tasks
of W , where T = {t0, t1, ..., tn−1} and E is the set of edges among the tasks, given by
E = {e(i,j)|(ti, tj ∈ T)} where an edge of a DAG indicates a direct dependency where,
given ei,j ∈ Es, and ti, tj ∈ T , ti must be executed before tj. Assuming that pred(tj)

6

Figure 2.1: Example of an arbitrary DAG.

Figure 2.2: Some types of DAGs.

is the set of tasks that precede tj and succ(ti) is the set of tasks that succeed ti, then
ti ⊂ pred(tj) and tj ⊂ succ(ti).

One or more workflows may compose a workflow application, resulting in a single
workflow or multi-workflow application, respectively. Multi-workflow applications are
also called workflow ensembles, since they are related to each other and the output of the
application is in fact the output of all workflows in the ensemble. The structure of each
workflow is very similar in the workflow ensemble and the main difference is the input
data of each workflow [2]. Figure 2.3 illustrates (a) single workflow and (b) multi-workflow
applications.

7

Figure 2.3: Applications composed of single and multiple workflows.

2.2 Workflow Scheduling

Workflow scheduling defines how to map a DAG that expresses an application onto a set
of resources, preserving the precedence conditions of the workflow. Typically, the goal of
workflow scheduling is to optimize objective functions that aim at costs, energy and the
overall execution time (makespan), among others [32]. The makespan of a workflow is
computed from the beginning of the execution of the first task to the end of the execution
of the last task (t0 and t6 in Figure 2.1, respectively).

The generic problem of scheduling a workflow is NP-complete [16], whereas scheduling
a linear workflow in a generic way is an NP-Hard problem [17]. For this reason, there
are several proposed algorithms that employ techniques to search for a good scheduling
solution within a reasonable time.

One of the first taxonomies for workflow scheduling was proposed by Casavant and
Kuhl [1], whose first level is in the Figure 2.4. In this taxonomy, static scheduling assumes
that a lot information about tasks is available beforehand and tasks-to-processor mapping
is done before the execution of the application begins. In dynamic scheduling, it is assumed
that very few information about the tasks and resources is available beforehand. Thus,
scheduling decisions are made when tasks of the workflow are already executing. The
same paper highlights the importance of load balancing, stating that assigning the same
load to all processors contributes to reduce the overall execution time.

The taxonomy proposed by Rodriguez and Buyya [2] is based on [1], applied to sci-
entific workflows executing in the cloud. Concerning the task-VM mapping dynamicity,
schedulers may be static, dynamic or hybrid, as shown in Figure 2.5. As in [1], in the

8

Figure 2.4: First level of scheduling taxonomy of Casavant and Kuhl [1].

static approaches, the task-VM mapping is produced at once before the execution of
the workflow begins. Dynamic schedulers take mapping decisions during runtime. The
hybrid approach may be "runtime refinement" or "subworkflow static". Runtime refine-
ment hybrid approaches make mapping decisions before execution begins. The system is
monitored during execution and scheduling decisions may be revisited, i.e., the mapping
may change at runtime. The subworkflow approach statically schedules each subworkflow
when its first task is ready.

Figure 2.5: Task-VM mapping dynamicity of workflow scheduling in the cloud taxonomy
of Rodriguez and Buyya [2].

2.3 Work Stealing (WS)

Work Stealing (WS) is a scheduling strategy that aims to achieve load balancing. It is
classified as dynamic according to [1] or as hybrid runtime refinement according to [2]
(Section 2.2). In WS, task-to-processor mapping is made before execution begins. When

9

a processor finishes to process its tasks, it becomes idle. Idle resources have the capability
to transfer and execute tasks from other busy resources.

There are three basic components in WS [33]:

• The task queue (stack), that contains the next tasks to be processed by a given
resource.

• The stealer (thief), is a manager of a resource that takes tasks from another resource
for itself to execute them. A stealer emerges when its resource becomes idle. This
occurs when the tasks originally assigned to it are completed.

• The stolen (victim), which is the one that has a busy resource, still having tasks in
its execution queue. When the resource realizes it has been stolen from, it does not
execute the stolen task.

In [33], Blumofe et al. proposed work stealing for a multi-threaded runtime system
called Cilk. Tasks are dynamically created, i. e., tasks can create (spawn) other tasks, and
tasks are non-blocking. The system is composed of several processors which in their turn,
may execute several tasks. The tasks are put in a ready pool, composed of priority queues,
which are called levels. Each processor has one ready pool. The processor executes the
tasks in the head of its pool (highest priority) until the pool is empty. In this case, it
becomes a stealer and steals tasks from a randomly selected processor, stealing the highest
priority tasks. Communication occurs with message passing.

The work [34], conducted by Blumofe and C. Leiserson, examined the complexity of
WS schedulers, addressing both temporal and spatial dimensions. Their work focused
on Multiple Instructions Multiple Data (MIMD) architectures, where processors execute
tasks in parallel. Threads execute tasks with dependencies according to a DAG. The
authors also contemplated that tasks could be dynamically invoked, where a parent task
is able to invoke a new task already with a list of tasks to be performed. This new task
is placed at the head of the processing stack of its processor, ready to be the next one
processed. To balance the workload among processors, an idle processor can steal a task
from a processor with tasks in waiting at the stack. However, unlike [33], when a processor
steals, it takes from the tail of the stolen processor’s stack.

The work [35], by Michael et al., proposes the idempotent work stealing approach
for shared memory multi-threaded (multi-processor) execution. With idempotence, the
authors mean that a task can be executed more than once, but at least once, without com-
promising the correctness of the application. This application-dependent feature allows
for the removal synchronization operations, thus increasing the performance.

10

In their work, a thread has a stack with tasks that it will execute. If a thread ex-
hausts its task stack, i.e., becomes idle, it is allowed to steal tasks from another thread.
Additionally, a thread can receive new tasks in the queue that it owns.

The authors proposed and evaluated three algorithms: Last-In-First-Out (LIFO) -
tasks are taken from the tail of the task queue; First-In-First-Out (FIFO) - tasks are
taken from the head of the queue; and double-ended - where the owner of the queue
extracts from the tail, and stealer threads extract from the head. In all these scenarios,
the owner thread inserts tasks at the tail of the queue. Furthermore, it is ensured that
all tasks will eventually be executed, and the stealing operation always returns a valid
outcome.

In all algorithms proposed in [35], when a thread steals a task, there is no need to
create a memory barrier, that would ensure no other thread accesses the queue at this
moment. Therefore, a stolen task may also be executed by its original thread.

With the advent of distributed architectures, more recent works employ WS across
multiple nodes. In contrast to earlier studies, there is now the utilization of distributed
memory. The purpose of Dinan et al.’s work [36], is to explore how dynamic load bal-
ancing implemented with WS behaves in a scalable system with shared memory - more
specifically, with the Partitioned Global Address Space (PGAS) model.

In the architecture of the model, the authors considered the use of a global Task Pool,
provided in PGAS, although the authors defined that each process should maintain its
own task queue with local access. Thus, even though each processor has its own task
queue, and there is only one thread running per processor, tasks are visible and made
available to other processors by PGAS, which provides asynchronous and non-blocking
access to tasks. In this work, all tasks in the pool are considered independent, meaning
their execution does not require any blocking for another task to complete. The task
execution order is LIFO, with each processor maintaining a queue from which tasks are
taken for processing from the head, while tasks are stolen from the end of the queue.

In the WS algorithm, an idle processor starts stealing from another chosen randomly
as soon as the tasks of the stealing node are concluded. The stealing processor checks the
metadata of the tasks from the stolen processor to see if there is still work to be done. If
so, the stealer locks the stolen queue, checks once again if there is still work to be done,
and then transfers one or more tasks from the end of the stolen queue to its own queue,
unlocking the stolen queue at the end. If there are no more tasks, the stealer selects
another processor randomly. This search continues until another processor with available
tasks is found or the global end condition is attained.

To find and inform all processors of the global end condition, there is a mapping of
all nodes in the form of a binary tree. When a process becomes idle, it gathers its vote

11

with the votes of its children nodes and sends it to its parent node. However, if a node
is being stolen from, it passes a negative vote upwards, requesting a revote. If the root
node receives a vote, it notifies all nodes of the result. If no further re-vote is required,
the root node sends one more message with the termination of work.

12

Chapter 3

Large Scale Parallel and Distributed
Systems

3.1 Overview

A distributed system is defined as "a collection of independent computers that appears to
its users as a single coherent system"[37]. In other words, a distributed system is built
upon a network of computers creating the illusion of a unique system for both users and
programmers [38]. A large scale distributed system is a distributed system composed of
numerous interconnected computers (nodes), which can be either heterogeneous or ho-
mogeneous. The large amount of connected nodes provides a great computational power,
which has been increasing quickly over the years. As examples of large scale distributed
systems there are supercomputers, grid computing, clusters and cloud computing. In the
following paragraphs, we provide a historical view of large scale distributed computing.

The concept of providing computational power as a service dates back to the 1960s. In
1961, McCarthy introduced the idea of utility computing, where computational resources
could be shared and rented by multiple users, similar to how telephone lines are used as
a service [39]. Right after that, in 1964, one of the first supercomputers was released: the
CDC 6600, focused on scientific applications performance and on the use of instruction-
level parallelism [3]. After that, in 1968, Licklider and Taylor proposed the concept of a
network with multiple interconnected computers, possible to be used through interactive
time-sharing multi-access points [40].

The evolution of supercomputers was benefited from technological advances.
ARPANET adopted the Transmission Control Protocol/Internet Protocol (TCP/IP) in
1983. Around the same time, the concept of Remote Procedure Call (RPC) was proposed
to operate over such protocols, and it became typically used in distributed systems for
communication [41]. Similar to what was foreseen by McCarthy, Licklider and Taylor, in

13

1995 the term grid computing was coined, denoting a large-scale distributed system with
geographically distant computers and storage systems. Its first purpose was to compute
data-intensive scientific applications [42]. In the 1990s, the concept of cluster also be-
came very popular. In cluster computing, many off-the-shelf computers were connected
in order to increase performance, as a supercomputer. In 1997, a new paradigm called
cloud computing [43] was first mentioned by Chellappa, which is a large scale distributed
system on-demand plataform with a more centralized physical infrastructure than grid
computing. Unlike grid computing, that provisions using whole time periods, the cloud
on-demand system charges the user only for the time the system was actually used, di-
minishing costs and avoiding over-provisioning [44].

3.2 High Performance Computing (HPC)

3.2.1 History

High Performance Computing (HPC), also known as Supercomputing, refers to the high
performance computers and their applications. Its objective is to run compute-intensive
applications within a feasible time. One of the strategies for increasing performance of
an application is to apply parallelism on it and HPC offers many levels of parallelism to
execute parallelized applications [45].

The development of HPC has supported the development of various scientific fields [3].
For instance, Linear Algebra problems benefit significantly from HPC, as these problems
can be easily decomposed into parallel computations. Nowadays, many fields execute
computationally intensive workflows in HPC, such as Financial Services, Oil and Gas and
Life Sciences [3], that take advantage on the HPC’s performance to produce results much
faster. Due the importance of these applications that run in HPC, its development keeps
going since the 1960 decade.

In 1976, Seymour Cray founded the Cray Research and released Cray I, that could
operate up to 136 MegaFlops (Floating Point Operations per Second) and had only one
CPU. In 1982, Cray X-MP was released with support for four CPUs and could operate up
to 200 MegaFlops per CPU, or 800 at total. Three years latter, the Cray 2 was released
and overcame the memory bottleneck by using a local memory, which allowed the Cray 2
to reach up to 1.9 GigaFlops.

In the 1990s, the "supercomputer race" was at full pace and it was clear that there
should be an objective way to rank supercomputers. The Linpack benchmark, created by
Jack Dongarra et al. in the 1970s, measures how fast a computer solves a dense system of
linear equations and it was chosen to biannually rank the supercomputers [46]. Linpack is

14

being used to rank the 500 fastest supercomputers from 1993 to nowadays and the results
are available in the Top500’s site, https://www.top500.org.

Supercomputers’ performance kept increasing over the years and was continuously
compared using the Linpack benchmark. In 1996, Intel released the Accelerated Strate-
gic Computing Initiative Red (ASCI-Red), which was the first supercomputer built with
general-purpose devices, i.e. Pentium Pros and Pentium II Xeon processors, and it was
the first supercomputer to reach 1 TeraFlop [47]. The possibility of using generic proces-
sors allowed that many organizations to build their own supercomputers and computer
clusters.

In 2008, when IBM released the Roadrunner supercomputer, which had nodes com-
posed of 9 processors: one PowerPC and 8 simple vector processors called Synergistic
Processing Units (SPU), and it was the first supercomputer to reach the petascale, using
more than 20,000 CPUs [47]. In June 2024, the fastest supercomputer is Frontier, from
USA. It broke the exascale barrier on June 2022, reaching 1.1 ExaFlops with over 8 million
AMDs CPUs [48] [49].

3.2.2 Architecture

Figure 3.1: Representation of a generic HPC system. Adapted from [3].

A modern HPC system is represented on Figure 3.1. This system has a number of
nodes ranging from tens of thousands to millions. The nodes are connected by a global
interconnection network. Each node is composed of a set of CPUs (multicores), a set of
accelerators, which are mostly Graphic Processing Units (GPUs), and a set of memory
banks. Communication among nodes is made through message passing.

An ideal HPC application should be developed to utilize all available parallelism to
maximize its performance. This includes parallelism within nodes (using shared memory)
and among nodes (using distributed memory). Parallelism reduces the total execution

15

time of an application by breaking it into smaller tasks that can be computed simultane-
ously.

3.2.3 HPC Programming

Programming HPC applications is complex and many aspects should be taken into con-
sideration. In order to take advantage of the HPC environment, it is necessary to consider
the multiple nodes; the network among the nodes and their communication topology; the
possibility to use multi-core and shared memory programming; the storage systems, etc.
In this section, we explore some tools and concepts about running HPC applications.

Submitting jobs

Usually, HPC applications are executed in batch and are called jobs. Many users may
submit jobs to the same supercomputer, and they compete for the available resources,
which can be exclusive to a user or shared. Usually, each user has a fraction of the total
number of nodes available to use.

In an HPC environment, there can be more than one type of node. Logically, there
are login nodes and worker nodes. The first type is reserved for user connections, usu-
ally via SSH, while the second type is responsible for executing the jobs. Physically, a
supercomputer may have various types of nodes. Typically, applications are submitted to
the same kind of nodes, which are in the same queue, that consists of a pool of identical
nodes. Since many jobs can run simultaneously, a newly submitted job, requesting the
use of the nodes in one given queue, might have to wait in the queue to be executed.

Slurm

Before a job is executed, resources must be allocated to it. This is done by a resource
management and job scheduler, such as Simple Linux Utility for Resource Management
(Slurm), available at www.schedmd.com/download-slurm/. Slurm is a scalable and flexible
open-source resource manager and job scheduler used in HPC. It manages and allocates
computational resources, distributing them to users and applications. It offers a frame-
work for the user to start, to execute and to monitor her/his job. Moreover, it also
schedules the jobs and it is able to make contention of resources to allocate jobs that
request multiple nodes.

The Slurm’s framework uses a script to submit the job to execution. The job script
contains the reference to the actual application that will be executed; the reference to
input and outputs; the number of processes that will be used; the number of required

16

nodes; the required queue; the time limit, among others. The job script is very similar to
any bash script. Figure 3.2 shows an example of a Slurm script.

Figure 3.2: Example of a Slurm script

In Figure 3.2, at line 1, the script’s interpreter is set in line 1 (in this case, it is the bash
interpreter). In line 2, the name of the execution queue is provided and line 3 provides
the name of the job. The maximum job runtime is set in line 4. In line 5, it is set which
is the output file, where "%j" is the job’s id. In line 6 it is set how many nodes the job
will use and in line 7 it is provided the maximum number of processes per node. Finally,
in line 8 the execution command is provided.

After configuring the Slurm script, it is ready to be submitted to its queue. To do so,
one should type the command:

sbatch script_name

To monitor the jobs, it is used:

squeue -u your_user_name

which will show the list of all submitted jobs for the given user. This list shows the job
ID, its status, how much time it has already used, how many nodes it is using, and which
specific nodes they are.

3.2.4 Message Passing Interface (MPI)

Message Passing Interface (MPI) [50] is a community-driven standard interface for mes-
sage passing developed for distributed memory parallel computers, allowing the use of
multiple nodes in the same application. It consists in a standard API that does message-
passing calls, but its implementation may vary. At first, it was developed as a lan-
guage binding to Fortran 77 and to C, and the first implementation was called MPI over
CHameleon (MPICH), released in 1995 by Argonne National Laboratory. Nowadays,
many enterprises maintain their own MPI internal implementation, as does IBM and
Intel, but using the same standard interface.

17

Whereas the Slurm allocates resources and can set how many nodes and how many
processes per node an application will have, MPI does the communication among the
processes. The processes run concurrently, and each MPI process, that is called "rank",
has a number from 0 to n−1, where n is the number of processes. MPI provides an object
named "communicator" that manages the processes’ address space and other proprieties,
in order to provide the communication among them. An MPI application can contain one
or more communicators.

Table 3.1 presents some of the most used MPI’s functions. The initialization functions
set all the parameters for MPI environment. The standard one is the MPI_Init, that does
not have thread support. The initialization function MPI_Init_thread allows multiple
threads to run into the MPI process. There are multiple options for using threads with
an MPI process, and each one represents one level of thread support. The simplest thread
support is to allow only one thread per process, using MPI_THREAD_SINGLE. It is possible
to have multiple threads per MPI process using MPI_FUNNELED, but then only the main
thread is able to make MPI calls. With MPI_THREAD_SERIALIZED option, multiple threads
can make MPI calls per process, but only one at a time. Finally, the fourth level of thread
support is the MPI_THREAD_MULTIPLE, in which multiple threads can make MPI calls, with
no restrictions. The function MPI_Finalize clears the MPI environment.

The remainder functions of Table 3.1 are MPI functionalities. MPI allows to ob-
tain how many nodes are available with the MPI_Comm_size function. The function
MPI_Comm_rank gets the process’ rank. Nodes can communicate through messages using
blocking (MPI_Send and MPI_Recv) or non-blocking (MPI_Isend and MPI_Irecv) func-
tions. The first type is synchronous and the functions block the process which made the
call until the corresponding process has executed the MPI call properly. The second type
is the non-blocking or asynchronous, and its functions return right after being called,
allowing the process to keep working, regardless if the confirmation is received from the
corresponding part. To ensure that the messages are properly received, the MPI_Wait
may be used. It is a barrier that blocks the process until the message is received. As
alternative, the MPI_Test function may be executed, that checks if the message has al-
ready been received or not, verifying the message’s flags and status, without blocking the
process.

3.2.5 Open Multi-Processing (OpenMP)

In the HPC context, besides executing MPI in multiples nodes, it may be interesting to
run multiple threads on a single node, with two levels of parallelism. This concept is
called hybrid computing, mixing threads and processes. One of the options to program a
hybrid application is mixing MPI with OpenMP.

18

MPI_Init Initializes MPI environment
MPI_Init_thread Initializes MPI environment for multiple threads
MPI_Finalize Finalizes and restores state set by MPI initialization
MPI_Comm_size Returns number of MPI processes
MPI_Comm_rank Returns process’ id (rank)
MPI_Send Sends blocking message
MPI_Recv Receives blocking message
MPI_Isend Sends non-blocking message
MPI_Irecv Receives non-blocking message
MPI_Test Updates flags and status
MPI_Wait Blocks until confirmation

Table 3.1: MPI functions

Open Multi-Processing (OpenMP) [51] is an application programming interface for
the shared memory paradigm. It is available for C/C++ and Fortran that allows mul-
tiple threads to run with shared memory. OpemMP contains the compiler directives,
environment variables and runtime library routines.

Table 3.2 shows some of the OpenMP directives. Directives are used to specify
regions of the code that will be processed by threads and in which way. The direc-
tive #pragma omp parallel specifies that a certain code will be executed by multiple
threads. It is also possible to set the visibility of the variables for the parallel code using
clauses. The clause private sets the variables that will not be shared by the threads;
the clause shared sets the variables that will be shared among all the threads; the clause
firstprivate defines variables that will not be shared, their values existed prior the
thread invocation and remain the same. Apart from variables clauses, there is also the
num_threads one, which defines how many threads will be executed.

The directive #pragma omp single defines a code region that must be executed by
only one thread. This directive must be nested inside a parallel region code. By default,
threads not executing the single directive will wait at an implicit barrier at the end of the
single region, meaning the thread executing the single directive is not blocked, but rather,
all other threads wait until the single directive completes. To avoid this implicit barrier
and allow threads to continue executing, the clause nowait can be specified alongside the
single directive.

The directive #pragma omp critical specifies a code region that can be only executed
by one thread at a time. This functionality is particularly useful to avoid race conditions
when multiple threads are updating the same variable or shared resource. The directive
#pragma omp flush ensures that all threads have a consistent view of memory for all
shared objects. It is also possible to specify particular variables to be synchronized among
the threads.

19

#pragma omp parallel Defines the code to be executed by multiple threads
#pragma omp single Defines the code to be executed by a single thread
#pragma omp critical Defines the code to be executed by each thread at a time
#pragma omp flush Unifies all threads to share the same memory object

Table 3.2: OpenMP Directives

Apart from directives, there are also OpenMP functions. For instance, there is
omp_get_thread_num, which return the thread’s id. The threads id is in integer ranging
from 0 to the number of threads less 1. It is also possible to obtain the total number of
threads with the function omp_get_num_threads.

3.2.6 Lustre

Lustre (https://www.lustre.org) is a parallel distributed file system first released in 2003.
The name "Lustre" comes from combining "Linux" and "clusters". Its development was
initially part of the Department of Energy’s Accelerated Strategic Computing Initiative
(ASCI) Path Forward program. Lustre was designed to be highly scalable, making it an
usual choice for HPC. Not only storage, but also I/O throughput can be increased dynam-
ically. It can support tens of thousands of clients, store petabytes of data, and handle I/O
bandwidths reaching hundreds of gigabytes per second. It utilizes high-performance net-
working infrastructure, including low-latency communication and Remote Direct Memory
Access (RDMA) over InfiniBand. Lustre has high interoperability with a dedicated MPI-
IO interface, enhancing MPI applications. Moreover, it supports file exportation through
widely adopted distributed file system interfaces like Network File System (NFS).

Lustre ensures data and metadata consistency through its POSIX-compliant file sys-
tem interface, which supports atomic operations for most tasks. Lustre maintains high
availability through multiple failover modes that use shared storage partitions and in-
tegrate with various high-availability managers. These capabilities ensure that Lustre
remains operational and that data remains accessible even in the event of hardware fail-
ures.

Due to the I/O performance that Lustre enables in parallel and distributed architec-
tures, it was chosen as the parallel file system for our experiments, which involve multiple
nodes. Lustre provides scalability, enabling a single job to execute across multiple nodes
while accessing the same file system without becoming a bottleneck, which is beneficial
to our framework’s goal.

Figure 3.3 presents a typical Lustre structure. Apart from the clients and the Lustre
Networking (LNET), every Lustre aspect has two components: server and target. The
first one refers to an interface with other components, whereas the second one stores space

20

for the server. Thus, the Management Server (MGS) manages configuration information
to all Lustre components; and the Management Target (MGT) stores the MGS, which
may be redundant for security. The Metadata Server (MDS) manages the namespace, file
names, permissions, etc., whereas the Metadata Target (MDT) stores the same metadata.
The Object Storage Server (OSS) answers I/O requests and the Object Storage Target
(OST) stores and manages the physical files of content that are sent to user by OSS.
Each file is stored in one or more OST. The LNET connects the whole system, providing
communication, and it supports many protocols, such as TCP/IP.

Figure 3.3: Lustre cluster at scale example. From [4].

3.3 Cloud Computing

In late 1990s, Salesforce became one of the first cloud computing providers, offering a cloud
solution to manage enterprise sales [52]. In 2006, Amazon launched the Elastic Comput-
ing Cloud (EC2) and Simple Storage Service (S3) services, which are cloud computing
services that allow users to use Amazon’s computational resources through the Internet
[53]. Afterwards, cloud computing has become increasingly popular. Foster et al. in [44]
stated that the constant growth of data and scientific applications had contributed to
the rise of the cloud, along with the advent of multi-core architectures. Nowadays, many
companies offer cloud services, such as Microsoft with Azure [54] and Google with Google
Cloud [55], besides Amazon with Amazon Web Service (AWS).

21

Regarding the concept of cloud, it is a distributed computing paradigm that, according
to Foster et al. [44], "is driven by economies of scale, in which a pool of abstracted, virtu-
alized, dynamically-scalable, managed computing power, storage, platforms, and services
are delivered on-demand to external customers over the Internet".

Foster et al. in [44], aside with Mel et al. in [6] raised some important concepts applied
to cloud computing, namely:

• Virtualization: is the abstraction through software of a computational resource.
The virtual component, such as CPU or network, can be separated from its phys-
ical resource [56]. A Virtual Machine (VM), for example, is a virtualization of an
operating system over a hardware component. This isolates one VM environment
from another in the same host machine, and allows multiple users to share the same
hardware.

• Resource pooling: is the cloud provider set of computational resources that is avail-
able to the cloud users [6].

• On-demand: refers to resources availability to a cloud user only when they are in
fact demanded to be used. Cloud providers usually offer a on-demand self-service,
that dispenses previous negotiations between the parties [6]. In this case, the user
only pays for the resource he/she has effectively used (pay-as-you-go model).

• Elasticity refers to the possibility to the cloud user to require and release resources
on-demand from the resource pooling with dynamic-provisioning [6].

The entity that owns the infrastructure resources and offers the cloud as services
to cloud users is known as the cloud provider. The cloud user, or cloud costumer, is the
entity that uses the cloud. Figure 3.4 presents the main components of a cloud computing
system.

3.3.1 Cloud Computing Service Models

The cloud computing services have more than one model option available to cloud users.
Each one of them varies in flexibility and user responsibility over the cloud infrastructure,
as shown in Figure 3.5. The model of choice depends also on the cloud user purpose and
profile, i.e., if it is a end-user or a software developer. This section is based on [6][57][5]
and presents the classic cloud computing service models.

IaaS

In Infrastructure as a Service (IaaS), the user deploys her/his own VM in the cloud. The
user is capable of installing, managing and executing software on the VMs. IaaS provides

22

Figure 3.4: Cloud computing system model. Figure from [5].

Figure 3.5: Cloud computing service models. Adapted from [6].

high flexibility. The user can also chooses the storage devices, network and computational
resources. A well known example of IaaS service is the AWS EC2, that offers VMs running
over a myriad of available processors [58].

The flexibility and the infrastructure’s control provided by IaaS offers advantages as
the possibility to use any necessary tool, such as software and libraries. The flexibility
allows quick tools updates and changes in the resources, ensuring that the application can
adapt rapidly to new demands and technologies. On the other hand, security remains the

23

responsibility of the end user, which may represent risks if safe practices are not followed.

PaaS

The Platform as a Service (PaaS) is less flexible than IaaS. It offers an environment
where the users are able to code, build and deploy their own applications. Usually, each
PaaS service offers languages, libraries and tools within a specific domain. Underlying
resources, as network, operating system or storage, are out of the user’s management
capability. One example of PaaS service is the Google Colab, a platform where the user
is able to program and run a Python application, using available libraries [59].

PaaS offers less control to the end user, which can prevent potentially dangerous
downloads and tool updates, making it ideal for organizations that need to retrain in-
frastructure access for their developers while still providing a development environment.
However, this may lead to difficulties such as tools compatibility issues. Some security
features may be difficult or impossible to configure due to provider lock-in, which may
also represent some level of risk.

SaaS

Software as a Service (SaaS) is the least flexible model, since it only offers a specific
software service. In the SaaS, the cloud runs an application, and only its user interface
is accessible to the users. All computing and deployment resources are unavailable. One
example of SaaS service is movie and series stream platforms, such as Netflix [60], which
offers a service that allows the user to watch a myriad of media ready to be consumed.

SaaS enables the distribution of services regardless of geographic location, allowing
end users to access the service from anywhere with an internet connection. It can also
provide quick service update to the service’s end users. One of the SaaS concerns is the
privacy, since the provider may access and store the users’ data. It also allows only limited
customization.

Other Cloud Service Models

Classic cloud computing services include IaaS, PaaS, and SaaS. However, some authors
also consider emerging service models, such as Function as a Service (FaaS), High Perfor-
mance Computing as a Service (HPCaaS), and the more generic Everything as a Service
(XaaS) [61]. FaaS is the common service model for serverless architectures, which are
designed to execute applications that respond to specific events with corresponding ac-
tions (or functions). These architectures are called serverless because applications only
run when triggered, typically operating in containers rather than on VMs [62].

24

HPCaaS offers HPC architecture and functionalities through a cloud provider (service
model explained further in Section 3.4). XaaS is a general term for any service model
available in the cloud, providing users with access to various resources and services over
the Internet to meet their specific needs [61].

3.4 HPC in Cloud Computing

Apart of the classic cloud models, there are other models, such as High Performance
Computing as a Service (HPCaaS), although it can be also classified within the classical
models (SaaS, PaaS and IaaS). The model consists of a service providing proper environ-
ment to execute HPC applications over a cloud infrastructure [63]. Using HPC in cloud
offers to the users the cloud’s benefits, as on-demand provisioning, that allows the user
to pay for only what she/he has used. Other benefits are the on-demand network access,
which provides HPC access to the user regardless of her/his geographical localization; the
possibility to choose and configure the VMs in a diverse resource pool; the fast resource
provisioning among others [64]. Since the HPC in the cloud usually allows the user to
configure the operating system and to install other softwares, the HPCaaS is typically
classified as a subset of IaaS.

An HPC cluster in the cloud must be deployed using several basic components. Pro-
cessors with one or more cores are required, along with a storage system, and possibly
accelerators such as GPUs [65]. Additionally, a head node is necessary, through which the
user will access the other components via the Internet. Ideally, the network connecting all
the components, the Virtual Private Cloud (VPC) network, should be high-performance.
Some software tools are also commonly required for HPC in the cloud, such as job sched-
uler and MPI implementation, and they should be available in the image used to deploy
the virtual machine on the nodes.

In order to deploy and to configure an HPC cluster in the cloud, the cloud providers
usually offer Infrastructure as Code (IaC) tools to the users. IaC enables provisioning,
configuring and managing the cloud infrastructure using source code, in addition to sim-
plifying the setup and the start-up [65]. These tools also allow the user to monitor and
to manage the life cyle of an HPC cluster in the cloud. Some of cloud providers and their
IaC options to deploy HPC are presented in the next sections.

3.4.1 Microsoft Azure

Microsoft Azure provides two options to manage a HPC in its infrastructure. One of
them is the IoC Azure Batch [7], which can be classified as IaaS model. It provides
multiple options of IaC languages and frameworks, which include python, .NET and

25

Terraform. It creates and manages a pool of nodes in the Azure cloud, in addition
to install applications. It also has its own job scheduler and resource manager, which
are able to calculate automatically the amount of required resources depending on the
application necessity. It supports Intel MPI and Microsoft MPI. Besides, Azure offers
three options of parallel file systems: Lustre, GlusterFS and BeeFs.

Figure 3.6 presents how usually an application is structured when it is deployed with
Azure Batch. Typically, the application server is consumed by final users as a SaaS. On
the application workflow, firstly a head node uploads data to a storage service, which will
be consumed by multiple worker nodes that execute a parallel job. The final results are
uploaded to the storage system and then consumed by the head node.

Figure 3.6: Usual workflow of an application deployed with Azure Batch. From [7].

The other Azure HPC manager is the Azure CycleCloud [66]. Unlike Azure Batch,
Azure CycleCloud provides multiple third party job schedulers and resources managers,
as Slurm, Grid Engine and HPC Pack among others. It provides a command line interface
and a web application interface to setup, execute and monitors the HPC infrastructure.
The CycleCloud interface does the role of middle-man between the user and the head
node. It is installed as an application server and the user communicates to it through
Representational State Transfer Application Programming Interface (REST API), thus
it can be classified as a PaaS. It also offers an orchestrator that is able to automatically
dimension the number of worker nodes.

26

3.4.2 Google Cloud

Google cloud offers the IoC Cloud HPC Toolkit [67]. It uses the HPC blueprint: a YAML
file composed of Terraform or Packer configuration files, called HPC modules, to setup the
HPC cluster. Then, another tool, namely "ghpc engine", generates a deployment folder,
which is used to deploy the cluster onto Google Cloud. The default job scheduler is the
Slurm and it also provides Intel MPI. In addition, Google Cloud offers DDN EXAscaler
Lustre as a parallel file system. It offers plenty flexibility to the users, being classified as
IaaS.

The HPC modules define many architectures settings, such as compute resources,
networking, job schedulers, file systems, and monitoring applications. In addition to DDN
EXAscaler Lustre, there are also NFS, Filestore (a high performance network file system)
and other types of storage systems. There are also multiple options of job schedulers,
such as Google Cloud’s Batch and GKE.

Figure 3.7 presents a typical HPC architecture deployed with the Cloud HPC Toolkit.
In this case, Slurm is used. Apart from the worker nodes in the compute partition (Figure
3.7), there also debug nodes in the debug partition, the login node and the controller
node. Cloud HPC Toolkit allows that different partitions have different instances types.

Figure 3.7: Google Cloud HPC architecture diagram. From [8].

3.4.3 AWS ParallelCluster

AWS ParallelCluster [10] is an IoC tool that assists users in deploying, configuring and
managing a High Performance Computing (HPC) architecture cluster hosted in the AWS

27

infrastructure, using instances of Elastic Computing Cloud (EC2) [10] and it was this
work IoC of choice, along with AWS cloud provider. With ParallelCluster, the users
are able to choose the type and number of VMs, alongside with storage systems, virtual
network, operating system, etc., to run their applications on, being classified a IaaS.
Figure 3.8 shows how a HPC system can be set using ParallelCluster. In this case, the
SSH connection is made to the head node, which mounts a file system on AWS FSx for
Lustre [4] with connection to the S3 storage. The processes that belong to the application
are mapped to the worker nodes using the Slurm scheduler [68]. In this example, GPU
instances (p3) are used.

Figure 3.8: Possible design of ParallelCluster system utilization. Adapted from [9].

Figure 3.9 presents the steps to design and to use the ParallelCluster. With the
ParallelCluster manager Python wizard, the user configures the ParallelCluster’s basic
setup. In this step, the user can set how many nodes she/he wants to have on her/his
cluster and if she/he wants the ParallelCluster to create a Virtual Private Cloud (VPC)
automatically or not. Then, it generates a configuration YAML file, which allows the user
to further customize the ParallelCluster’s design. For example, it is possible to set the
chosen storage system on the configuration file. Afterwards, the wizard assists the user
to deploy the cluster based on the YAML file. Then, the wizard also offers the option to
connect to the cluster via a SSH client. Once connected, the user finally is able to submit
jobs through a job scheduler (eg: Slurm). The complete documentation presenting the
configuration options and rules is available on [69].

The storage systems can be classified into shared and local. The local storage is
the one attached to the AWS instance. It is ephemeral, that is, once the instance is
deallocated, the data is deleted. Since the local storage device is locally attached to the

28

Figure 3.9: AWS ParallelCluster functioning from [10]

hardware component, it is supposed to have a lower latency than other more distant
storage devices. Due to those characteristics, the local storage system is commonly used
to store temporary files.

29

Chapter 4

Related Work

In this chapter, we present some related works about workflow scheduling in the cloud.
We discuss the objectives, the technique and the results of each one. We also classify
them according to the taxonomy discussed on the Section 2.2 (references [1] and [2]). At
the end of the chapter, we present and discuss a comparative table.

4.1 Methodology

To select the works explored in this chapter, we followed a sequence of steps. First, we
used a set of search strings in Google Schoolar (https://scholar.google.com/), namely:

• "scientific workflow", "cloud" and "scheduling";

• "workflow", "cloud" and "scheduling";

• "linear workflow" and "scheduling";

• "multi workflow" and "scheduling".

We then filtered for works published after 2014, focusing on recent research. We prioritized
articles from reputable journals and conferences.

For an initial analysis, we reviewed each paper’s abstract, introduction, and conclusion.
At this step, we selected papers focused on workflow scheduling in the cloud, giving
preference to those centered on scientific workflows. We also aimed to include a range of
different solutions, avoiding repetition of similar solutions. Finally, we read each article
in its entirety and carried out a detailed analysis.

30

4.2 Durillo and Prodan, 2014

The work proposed by Durillo and Prodan in [70] aims to schedule a single scientific
workflow in the cloud with multiple objectives. It uses the algorithm Multi-Objective Het-
erogeneous Earliest Finish Time (MOHEFT), a multi-objective version of the algorithm
Heterogeneous Earliest Finish Time (HEFT) [71], to achieve the Pareto front, consider-
ing the objectives of minimizing the makespan and minimizing the cost. The MOHEFT
algorithm presents a list of solutions, which enables the user to choose the one that suits
him/her more.

The original algorithm, HEFT, uses a heuristic to rank the tasks. The longest path
between each task and the final task of its workflow is this heuristic. Each task is then
mapped to the resource that will finish earlier to compute it, thus finding the optimal
scheduling of a workflow in a heterogeneous environment. MOHEFT also starts ranking
the tasks in the same way as HEFT, but instead of mapping them onto the resource that
will finish them earlier, it will create a list of possible solutions. The solutions must be
valid, non-dominated and diverse, exploring the entire solution space uniformly, avoiding
local optimal solutions [70].

The authors made the experiments with simulated and real workflows in the AWS
EC2 cloud, with makespan and economic costs as objectives. In the results, MOHEFT
had more diverse solutions than the multi-objective workflow scheduler SPEA2* [72],
which means that the users have more possibilities to choose among the tradeoff. Both
MOHEFT and SPEA2* found the lowest cost. MOHEFT is classified as static according
to both taxonomies, [1] and [2].

4.3 Sadooghi et al., 2016

In [73], I. Sadooghi et al. proposed Albatross, a task scheduler and execution framework
designed for multiple workflows of data analytics applications with Map-reduce workloads.
It is designed to run in the cloud or in other types of distributed systems, similar to Spark
[74] and Hadoop [75]. Albatross has distributed schedulers over the nodes, which pull
tasks to themselves, instead of receiving from a centralized scheduler. In the Albatross
framework, all nodes have their own distributed hash table and their own distributed
message queue. The first one manages the metadata, whereas the second one contains a
copy from the main queue, i.e. all the tasks and their dependencies, providing parallel
access to all the tasks while also guaranteeing that no task is read by more than one node.

The Albatross framework starts distributing the input dataset to all the nodes; then,
it distributes tasks among all the workers’ local queue using a hash function in a random

31

manner, pursuing load balance. In order to achieve data locality, when a node verifies
that it does not have a given task’s data, it tries to send the task to the node who has it.
If the node is overloaded, the task goes to the end of the first node local queue, that will
try to send the task once more, later. If the other node is still overloaded, the first node
imports the task’s data, improving load balance.

The absence of a centralized scheduler has similarities with the work stealing schedul-
ing, in which the nodes pull tasks or workflows to themselves. However, Albatross’ target
application has a large number of short-lived tasks, typical from data analytics applica-
tions and different from many scientific workflows, whose coarse-grain tasks may have
long duration.

Albatross was tested on AWS EC2 with benchmarks and real applications and its
throughput outperformed Spark’s and Hadoop’s when the applications had a high level
of task granularity. Since no information is used to schedule the task at first, Albatross’
scheduler can be classified as dynamic in [1], but as runtime refinement in [2], due the
task movement to adjust locality.

4.4 Rodriguez and Buyya, 2017

Rodriguez and Buyya proposed "BAGS" in [76], a scheduler and resource provisioner
that minimizes the makespan of a single scientific workflow in the cloud under a budget
constraint. The proposal is to firstly divide a DAG into Bag-of-Tasks (BoT), so that every
task of the same level can be executed concurrently, which can create homogenous BoTs
(all the tasks are the same), heterogeneous BoTs (with different tasks) and single-task
BoTs. Then, assuming that the faster a VM is, the more expensive it is, the BAGS’
system increases the VMs’ price of each task iteratively, until the most expensive VMs
are chosen when they still are under the budget.

To provision VMs for homogenous tasks in a BoT, the Mixed Integer Linear Program-
ming (MILP) model was applied, which was designed to estimate the number and types
of VMs that can be afforded within a given budget, ensuring tasks are processed with a
minimum makespan. A provisioning plan is executed for each BoT, allocating the type
and quantity of VMs according to the budget. During the scheduling, the tasks are sorted
based on their estimated execution time, and the longer tasks are executed first, using a
Max-Min algorithm. However, if there is one or more idle VMs from another BoT pro-
visioning plan, a task can be allocated on it, if it is at least as fast as the task’s original
scheduled VM. This feature allows the reuse of VMs and diminishes over-provisioning.

BAG was simulated with CloudSim and its performance was compared to GreedyTime-
CD and Critical-Greedy, and overall, BAG had better makespans than the other algo-

32

rithms and yet could meet the budget. It can be classified as static according to [1],
since it uses a lot of previous information of tasks and resources to schedule before the
execution, and as runtime refinement according to [2], since it can reschedule tasks to
reuse idle VMs.

4.5 Stavrinides and Karatza, 2021

In terms of objective, the most similar work to ours is [25], as its goal is to schedule multiple
linear workflows in the cloud, aiming to reduce the makespan of workflow applications.
However, the work considers an online system that receives workflows at various points
in time and allows changes on the linear structure, i.e., the task number increases or
decreases. To address this, the authors propose a dynamic and heuristic scheduler that
assumes the workflows’ tasks execution time is known in advance.

The work utilizes the Periodic-Shortest-Cumulative-Time-First algorithm to prioritize
workflows in the queue for each computational resource, placing the workflow with the
smallest cumulative service time at the front. At the end of each time period, the cumu-
lative time is recalculated. It considers that each workflow will be processed on the same
computational resource to reduce data transfer time between tasks. This scheduler peri-
odically reevaluates the priority queue, due the possible change in the number of tasks.
Additionally, new workflows may arrive. The Two Random Choices technique is used to
map workflows to computational resources, that is, the resource with the shortest queue
between two randomly selected nodes, will be chosen to receive a new workflow.

When compared to the baseline First-Come-First-Served scheduler, the proposed sched-
uler exhibited advantages ranging from 14.6% to 25.3% in makespan reduction. Since
this approach only monitors and reschedules prior to the execution and using information
about the workflow metrics, it can be classified as a static scheduler according to [1] and
to [2].

4.6 Krämer et al., 2021

Krämer et al.’s work [77] differs from most of other works (except for [73] and ours) by not
requiring any task data other than an initial workflow structure. The authors’ goal is to
develop a scientific workflow management system to be run in a distributed environment,
such as cloud, that supports workflows that are not DAGs, i.e., those with inner loops and
dynamic structures that are revealed during runtime. The authors also aim to develop
a simpler system to manage cyclic workflows than other existing solutions. Thus, those
goals are different than our work’s goal, which is primarily focused on makespan.

33

In order to achieve their goals, Krämer et al. proposed an algorithm that receives a
YAML file that contains the structure of a workflow. Their algorithm identifies process
chains, which are linear subworkflows that take part of a greater original workflow, and
are generated from workflow inner loops. A scheduler allocates resources dynamically to
compute each linear workflow.

Compared to the workflow management system Pegasus [78], the work of Krämer et
al. enables cyclic workflows, which Pegasus does not support. Pegasus requires prior
knowledge of the workflow structure, unlike [77]. This scheduler can be classified as
dynamic according to [1], and as subworkflow scheduling according to [2], since it schedules
each one of the linear subworkflows only once.

4.7 Chen et al., 2021

The scheduler proposed on [79], namely unceRtainty-aware Online Scheduling Algorithm
(ROSA), also schedules online multiple workflow applications, but its objective is to meet
the workflows deadline, while trying to minimize the cost. Based on an estimated ex-
ecution time, the algorithm computes the Predicted Latest Start Time (PLST) of each
task, which is the latest time that a task can start, so that it does not exceed the work-
flow predicted finish time threshold, namely the deadline. This prediction is made with
uncertainty, thus a value is added to the PLST, which is based on probability.

The uncertain value is propagated through the workflows’ PLST tasks, however, once
a task is finished, its uncertainty disappears, and the PLSTs of its successor tasks are
calculated. The ready tasks are sorted in a non-descending order based on their PLST.
An estimated instance cost is also computed for each task. At the end of the algorithm,
the task is mapped to the computational resource with the smallest cost that does not
exceeds the deadline.

The results show that this work outperformed other algorithms, being more cost-
effective than EPSM [80], which exceeded the cost limit by 10.07%. The ROSA algorithm
must receive tasks duration beforehand, but it recalculates their expected finish time and
it can do allocations changes if it perceives a delay that would exceed the deadline, thus
it can be seen as a dynamic scheduling according to [1] and to [2].

4.8 Taghinezhad-Niar et al., 2022

Similarly to Section 4.7, the work of Taghinezhad-Niar et al. [81] employs heuristics
considering uncertainties in task duration and dynamically adjusts workflow applications
as needed to schedule multiple workflows in an online platform. The work in [81] aims

34

to maintain the execution of workflows within cost, time, and energy constraints. Two
schedulers are proposed: (a) Energy and Uncertain task ET aware workflow Scheduling
Framework (EUSF) and (b) CUSF, its Cost-aware extension, to reduce costs for the end
user. Both leverage stochastic task execution times to calculate the resource to which
each task is allocated.

Tasks are prioritized based on the Earliest Deadline First and executed when all their
preceeding tasks have been completed. Furthermore, energy-aware and cost-aware algo-
rithms provision resources based on energy and cost constraints, respectively, for task
allocation. Parameters such as Earliest Start Time and Earliest Finish Time are adjusted
at the end of the execution of each task, potentially influencing the resources allocated to
subsequent tasks in a cascading manner.

When compared to the Energy and Resource Efficient workflow Scheduling (ERES)
algorithm [82], EUSF achieved a 15% energy savings and a 34% cost reduction. Both
EUSF and CUSF increased the deadline meeting success rate by almost 15% and 55%,
respectively, compared to onliNe multi-workflOw Scheduling Framework (NOSF) [83] and
ERES. The scheduling strategy can be classified as dynamic according to both [1] and [2].

4.9 Xia et al., 2023

The work of Xia et al. [26] employs heuristic algorithms to minimize the makespan and the
cost of online scheduling workflow applications, each one of them with a single workflow.
Firstly, the algorithm maintains a ready tasks pool, with all the workflows’ tasks that
are ready to be executed. Then, it calculates a priority rank of each task from the ready
task pool based on the longest path between each task and the final task of its workflow,
alongside with the sum of the estimated duration of the tasks in the path and their data
transmission time between tasks.

The task with the highest priority rank is selected and goes to a resource allocation
phase based on Technique for Order of Preference by Similarity to Ideal Solution (TOP-
SIS) [84] to find the minimum makespan and cost. TOPSIS is a method to make decisions
based on multiple objectives, which, in this case, are: minimizing workflow’s makespan
and minimizing the cost. It calculates the possible choices and chooses the option which
is the closest to the best choice of both objectives simultaneously. With the best resource
chosen, the task is sent to a ready queue of that specific resource.

When compared to other similar algorithms, as [85], the work [26] achieved the lowest
makespan for all cases with different workflow arrival intervals. It uses known information
about tasks, resources and communication, but, since it recalculates tasks scheduling after

35

they arrive on the ready pool tasks, it can be classified as an dynamic scheduling according
to [1] and [2].

4.10 Comparative Table

Table 4.1 presents the main characteristics of the works discussed in this chapter. The
terms "mult" means multiple; "sing" means single; "r ref" means runtime refinement; "s
sch" means subworkflow scheduling; "dyn" means dynamic. In addition, "info" refers to the
information required to do the scheduling, "wf" means workflow, "app" means application
and "sched class" means scheduling classification.

Table 4.1: Comparative table of works on workflow scheduling in clouds
Paper Year Info Goal Wf type Wf in app Platform Technique Sched

Class
Durillo [70] 2014 exec time & makespan & generic sing AWS EC2 sched all tasks static

transf time cost & MOHEFT
Sadooghi [73] 2016 none min. data generic sing AWS EC2 pulling r ref

movement & & locality dyn
fairness

Rodriguez [76] 2017 exec time & makespan & generic sing simulated sched ready tasks r ref
transf time cost & MILP static

Stavrinides [25] 2021 exec time cost & linear sing simulated sched ready tasks static
resrc util & & queue system

fairness
Krämer [77] 2021 none fairness generic sing AWS EC2& sched ready tasks s sch

& FCFS dyn
Chen [79] 2021 exec time cost generic sing simulated sched ready tasks dyn

& queue system
Taghinezhad [81] 2022 exec time makespan & generic sing simulated sched ready tasks dyn

cost& & EDF
energy

Xia [26] 2023 exec time & makespan & generic sing simulated sched ready tasks dyn
transf time cost & decis matrices

Our 2024 none makespan linear mult AWS EC2& sched all tasks r ref
work Parallel & re-sched with dyn

Cluster work stealing

It can be seen in Table 4.1 that the only work that considers an application composed
of multiple workflows is ours. Moreover, most of the works assume that the execution
time of the tasks and/or the resources’ data are known previously. Most of the works
were evaluated in simulated cloud environments (e.g. CloudSim). The works [77] and
[73] do not use information about tasks, and the work [77] was evaluated in AWS EC2
and Terraform, and since [77] is a workflow management system, its goal is to provide
fairness. In [73] it is actually assumed that workflows’ tasks are many and executed very
quickly, typical from data analytics workflows, and it also pursues fairness.

In the column ’Wf in app,’ we present the number of workflows for each application.
All of the works we found, except ours, schedule each workflow application individually,
i.e. they schedule a single workflow application. Our work, however, manages a multi-
workflow application, scheduling multiple workflows within the same application to reduce
its overall makespan.

36

Apart from our work, two works used runtime refinement: [73] and [76], which means
that, after a previous scheduling, during runtime tasks are rescheduled. While [73] uses it
to maintain the fairness, [76] uses the runtime refinement to avoid overprovision of VMs
and idle time. To our knowledge, this is the first work which schedules an application
composed of multiple workflows in a real cloud, with no a priori information on execution
or transfer time, using work stealing, aiming to reduce makespan.

37

Chapter 5

Design of the Framework

The framework proposed in the MsC dissertation was developed in two moments. First,
we designed an MPI/OpenMP framework to execute applications composed of multi-
workflows in the cloud. This is called version 1 in this document. Then, we included the
work stealing policy into our framework, generating version 2.

In Section 5.1, we discuss the linear workflows scheduled in our framework. The version
1 of our Framework is presented in the Section 5.2, whereas Section 5.3 presents version
2.

5.1 Linear Workflows Considered in the Framework

Figure 5.1 presents the linear workflows scheduled in our framework. The multi-workflow
application is composed of m workflows which execute the same n tasks, and each task
constitutes one processing step. Each workflow receives a different input file (or files)
and produces an output file (or files). In the processing steps, intermediary files may be
produced.

It is assumed that each workflow has at least two tasks. The concept of workflow usu-
ally means that the output of a task is the input of the next one, however, in our approach,
we do not restrict to this concept and the tasks may have independent inputs/outputs or
even no input at all. Nonetheless, the workflows still have temporal dependency. That
means that, for example, that each task may generate an independent output that will
not be processed by the next task. Nevertheless, in the linear structure, ti will only be
executed when ti−1 finishes its execution.

38

…Workflow W0

File0.in

File0.out

T0

T1

Tn-1

…

T0

T1

Tn-1

…

Workflow W1

File1.in

File1.out

T0

T1

Tn-1

…

Workflow Wm-1

Filen.in

Filen.out

Input names

commands

Figure 5.1: Application composed of linear workflows scheduled in our framework.

5.2 Framework Version 1

The version 1 of the proposed framework executes a multi-workflow application in a
multi-node environment inside the cloud or in an HPC architecture, where each node
has one process composed of multiple threads, embodying a hybrid parallel architecture.
Nodes communicate through message passing (e.g. MPI) and threads inside each node
communicate through shared memory (e.g. OpenMP).

Figure 5.2 shows an overview of Framework version 1. Each node has at least one
working thread and only the Node0 has a control thread. In the beginning, the Node0’s
control thread reads two files: workflow skeleton and input files names. The workflow
skeleton contains an ordered list of n commands, one command per line, and the input
files names contains m names of the input files. The Node0’s control thread instantiates
m workflows, with n tasks each, which will process different input files and stores the
instantiated workflows in the Total Workflow Array (TWA), which has m entries and
contains the information about all workflows, each one in a specific position. After that,
Node0’s control thread sends the TWA to all nodes. Upon reception, the TWA is put
on shared memory and, in a self-assignment and striped way, it is used by the working
threads in each node (including Node0’s working threads) to determine which workflow
to execute. The framework ends when all workflows are executed.

5.2.1 Initialization

To initiate the application, Node0’s controller thread reads two files: (a) workflow skeleton,
which contains an ordered list of commands, with their input marked as $, and (b)

39

output
files

input files
names

control thread
Node 0

Initializationskeleton

TWA

input
files

Obtain
workflow

Node x-1

Execute
workflow

Terminate temporary
files

worker thread 0
worker thread k-1…execution loop

Node 1

Send TWA

...

Node

Thread

File

Shared
memory

Legend

Figure 5.2: Overview of the architecture of the Framework version 1.

workflow input files names, with the actual workflow input file names. Using (b), a list
sorted by the sizes of the input files is created.

Subsequently, on Node0, the skeleton and input name files are processed, generating
the Total Workflow Array (TWA), with instantiated workflows. In this step, every $ is
replaced by the actual file name (Figure 5.3). Following this step, the TWA is sent as a
message to all other nodes (Figure 5.2), i.e., the TWA is fully replicated.

Figure 5.3: Skeleton and input file processing, for m workflows, each one with n tasks,
generating the Total Workflow Array (TWA).

40

Figure 5.4: Striped assignment of workflows to threads in Version 1.

5.2.2 Workflow Execution

In order to allocate workflows to threads, we opted to use a function, in order to avoid
communication at allocation time. The TWA indexes are locally accessed by the threads
inside the nodes in a striped way. The working threads use the Equation 5.1 to obtain
the index (indexj) of the workflow they will compute.

indexj = (n ∗ t ∗ j) + (n ∗ Threadi) + Nodek (5.1)

In this equation, indexj is the TWA index, n is the number of nodes, t is the number
of working threads per node, Nodek is the node identifier, Threadi is the thread identifier
and j is the iteration number.

For example, in an application with 2 nodes, 2 threads per node and 8 instan-
tiated workflows, Thread1 of Node1 will execute the workflow in TWA[3], where
index0 = 2 ∗ 2 ∗ 0 + 2 ∗ 1 + 1 = 3 at the first iteration (j = 0) and in TWA[7], where
index1 = 2 ∗ 2 ∗ 1 + 2 ∗ 1 + 1 = 7 at the second one (j = 1), as shown in Figure 5.4. This
way, the workflows executions are distributed in a striped way among the nodes and
among the threads within the nodes iteratively.

The application execution finalizes when all its workflows are concluded. If a node
finishes its assigned workflows before other ones, it will await all of them to be released.

5.3 Framework Version 2

The version 2 of our framework is an improvement of version 1, thus it also executes the
same type of multi-workflow application in the cloud or in an HPC architecture. Version

41

2 has of two modes: (a) standard mode and (b) work stealing mode. The standard mode
functioning is similar to the one presented in Section 5.2: the Node0’s control thread
receives the skeleton file and the input files names and generates the TWA, which will
be sent to every other node (Figure 5.5). Just as in version 1, in the standard mode, the
threads use self-assignment striped functions to select the workflows to be executed, with
no synchronization.

Figure 5.5: Overview of the architecture of the Framwork version 2, with work stealing.

The main difference between versions 1 and 2 is the addition of the work stealing mode
in version 2. When a thread of a given node becomes idle for the first time, it enters in
the local work stealing mode (Figure 5.5). Another difference between the versions is
the management of the workflows’ statuses. In version 2, each node has a control thread
that initiates and, during the global work stealing, updates the Workflow Status Array
(WSA), which contains the statuses of each one of the workflows assigned to it: waiting;
started; done. Besides, the worker threads also updates the WSA when they begin and
conclude a workflow. At the beginning, all statuses are set to waiting.

At the execution’s beginning, the working threads enter in the standard mode and
execute their assigned workflows by locally accessing the TWA and updating the workflow
status at the WSA, both at the beginning (started) and at the end (done) of each execution
(execution loop in Figure 5.5). The temporary files are written into a local file system
and the output is written to a shared file system.

42

When a thread of a given node first becomes idle, its node enters in the local work
stealing mode. In local work stealing, the idle threads first steal workflows from threads
that belong to their node. If all workflows are at the done state that node, the threads
start to steal workflows from threads in other nodes (global work stealing). In both cases,
local or global, the data structure (WSA or TWA) is accessed by the stealer from the end
to the beginning, in search of a workflow in the waiting state, i.e., its execution has not
started yet. The application terminates when all threads of all nodes finish to process all
workflows.

5.3.1 Standard mode

Just as in Framework version 1, in version 2 standard mode, Node0 firstly receives the
skeleton file and the input file names file. Node0 uses these files to create the TWA
(Figure 5.3) and sends a copy of it to every other node (Figure 5.5). As soon as a node
receives the TWA, its control thread initiates the Workflow Status Array (WSA), which
contains all instantiated workflows statuses assigned to that node, and sets all elements
of this array as waiting. The standard mode avoids communication between the nodes
and also uses a striped function to access the TWA.

As in version 1, in version 2 the workflows assignment to each thread is done in a
striped manner, using Equation 5.1, in order to calculate the TWA index to be accessed.
In Figure 5.6, the same example used in Section 5.2.1 is shown, in which there are two
nodes with two threads each, thus the calculated TWA’s indexes are the same. However,
in the version 2 of our framework, there is an additional structure in each node: the WSA.
When a thread reads a workflow from the TWA, it updates its status in its node’s WSA,
from waiting to started. After the workflow is finished, the thread updates its status to
done. When a thread becomes idle, it may initiate the work stealing mode or, if there is
no workflow steal, the thread terminates itself.

5.3.2 Work Stealing

When a working thread of Nodes concludes its assigned workflows and becomes idle, it
starts to steal workflows inside the node entering in the local work stealing mode (Figure
5.5). The stealer thread accesses the WSA, from back to front, looking for workflows in
the waiting state. If such a workflow is found, its state is changed to started and the
stealer thread executes the workflow.

If there are no workflows in the local WSA in the waiting state, global work stealing
starts, and the state of the node (Nodes) is changed to stealer. The control thread of

43

Figure 5.6: Striped function assignment with TWA and WAS.

Nodes computes which node will be stolen (Nodet), using Equation 5.2

Nodet = |Nodes − n + 1| (5.2)

where n is the number of nodes, Nodet is the node to be stolen and Nodes is the stealer.
The Figure 5.7 shows which node is selected either to steal or to be stolen by its pair.
The first node to conclude its assigned work, will steal from its pair, which can vary at
each job execution.

The Nodes sends the ws message to Nodet, requesting its WSA (WSAt). Upon
reception of the ws message, Nodet becomes stolen and sends its WSA (WSAt) to Nodes,
which updates its own copy of WSA (WSAs) (Figure 5.6). Nodes accesses then its WSAs

from the end to the beginning, until it finds a workflow that is marked as waiting. The
stealer thread then marks this workflow as started in the local WSAs and starts the
execution of the stolen workflow. When the workflow execution terminates, its status is
set to done.

The WSA exchange occurs regularly between Nodes and Nodet, and reaches its end
when any of those nodes finish to search for waiting workflows. Since WSAs are exchanged
periodically between Nodes and Nodet, a situation may arise where Nodes (stealer)
chooses a workflow in the waiting status but, meanwhile, Nodet (stolen) has started
its execution. In this case, Nodet will notice this in the next communication period and
will abort the workflow’s execution. Since we are dealing with long-lived workflows and
temporary files are written into the local node’s file system, we guarantee that the correct
output will be produced. Therefore, our work stealing approach is idempotent (Section

44

Figure 5.7: Global work stealing node selection.

2.3), but the duplicate processing will only occur within one communication period (e.g.
1s) between nodes Nodet and Nodes.

Regarding the stolen node, the another difference between the standard mode and
the WS mode is the periodic exchange of WSA (Figure 5.5). Nodes sends a message to
Nodet with WSAs. When Nodet receives WSAs, it updates its local copy. If the same
workflow is in the started status in WSAt and WSAs, it means that both nodes started
its execution. In this case, Nodet terminates the execution of the workflow, marking it
in WSAt as done. So, in the point of view of the stolen node, this workflow’s execution
is responsibility of Nodes. For the other cases, WSAt is updated with the same statuses
of WSAs (done and waiting). When all assigned workflows of Nodet or Nodes are set as
done or started, the node’s control thread sends the last message, warning that the WSA
exchange will end.

Similarly, when the stealer node Nodes asks and receives WSAt from Nodet, it marks
every started or done element from WSAt, to done in WSAs. When a working thread
becomes idle, it accesses the WSAs, from end to beginning, and looking for the first
workflow in the waiting state (i). When it is found, the working thread uses the index i

of WSAs in Equation 5.3 to access the workflow in TWA[inverted_indexi].

inverted_indexi = i ∗ n + Nodet (5.3)

The working thread sets WSA[i] as started and proceeds to execute its workflow. At
the end of the execution, the working thread sets WSA[i] as done. When a working
thread of Nodes does not find a waiting element in WSAs, Nodes’s control thread sends
a final message to Nodet, ending the WSA exchange.

45

Chapter 6

Experiments and Results

In our experiments, we used two versions of our framework (Sections 5.2 and 5.3). Frame-
work version 1 refers to "without WS" experiments and Framework version 2 refers to
"with WS" experiments.

Each experiment used a different multi-workflow application. An I/O intensive multi-
workflow application was executed in the supercomputer SDumont with the Framework
version 1 and two multi-workflow applications, a synthetic and a real one, were executed
in AWS ParallelCluster with the Framework version 2. We had to use two different
environments because the access to SDumont was terminated during our work, which led
us to switch to the AWS environment to finish it.

In this chapter, we first present the experiments made with Framework version 1 in
the supercomputer (Section 6.2). Then, we present the Framework version 2 results in
the AWS Cloud with a synthetic (Section 6.3) and a real application (Section 6.4).

6.1 Test Environment

The development of our Framework version 1 and its tests were done in the SDumont
supercomputer. Afterwards, our Framework version 2 was developed and tested in AWS
EC2 ParallelCluster.

6.1.1 Santos Dumont supercomputer

SDumont [86] is a Brazilian supercomputer for scientific researches. It is composed of
multiple types of processors and accelerators. In SDumont, jobs may be submitted to
different queues using the Slurm job scheduler. The queue used in our experiments was
comprised of nodes with Intel Xeon Cascade Lake Gold 6252 processors with 24 cores.
Each pair of processors composes a resource node, and each resource node has 768GB

46

of RAM. The network that connects all SDumont devices is the Infiniband EDR, with
100Gb/s.

We used 1, 2, 4, 8 and 16 nodes, and each one of them has one Intel processor. Our
framework was compiled with gcc and run with a version of openMPI 4 developed for
SDumont. The file system used was Lustre v2.12.

6.1.2 AWS EC2 ParallelCluster

The second environment of our experiments was the AWS cloud and we opted to create
a cluster environment inside the cloud with the AWS ParallelCluster tool (Section 2.4.1).
We used the m6idn.xlarge EC2 (Elastic Computing Cloud) instance, which has an Intel
Xeon of third generation processor with 4 vCPUs, 16 GiB of RAM, 237 GB SSD and up
to 30 Gbps of network bandwidth.

The AWS Parallel Cluster was configured with 1, 2, 4, 8 or 16 VM in-
stances inside the AWS region us-east-2 (Ohio). Amazon FSx for Lustre
(https://aws.amazon.com/fsx/lustre/) was the file system used for the input and out-
put files whereas the temporary files were placed in the local storage of each instance,
in a volume called scratch. Our framework was compiled with gcc/9.4.0, using the MPI
version openmpi40-aws-4.1.5-1.

6.2 Results for Version 1 - Synthetic I/O

In this experiment, we executed in the SDumont supercomputer a multi-workflow appli-
cation composed of two simple I/O intensive tasks that generates two files and computes
the difference (diff) between these files. The job receives a list of files sorted by their
sizes, that will compose the workflows. The first task creates a file of size s, where s is
the number of GB specified as a parameter. The second task reads the file written by the
previous task, and copies its content to another file. The diff is used to see if both files
are actually equal. Figure 6.1 illustrates this synthetic I/O intensive workflow.

All the files were written on Lustre. The experiment had 100 workflows and the files’
size were stratified into 10 groups, from 10GB to 1GB, decrementing 1GB in each group.
Each node used up to 24 threads, which is the total number of cores per node. Jobs with
1, 2 and 4 nodes used exactly 24 threads, whereas the remaining jobs divided the number
of workflows evenly, that is, in jobs with 8 nodes, there were 12 or 13 threads; in jobs
with 16 nodes, there were 6 or 7 threads per node.

Figure 6.2 presents the average makespan and the minimum makespan of the jobs
running the I/O intensive multi-workflow application. For each number of nodes, the
experiment was repeated three times, and the standard deviation was between 0.13 (16

47

Figure 6.1: Synthetic I/O intensive workflow of version 1

nodes) and 3.48 (8 nodes). The best makespan was achieved with 4 nodes (minimum of
18.35 minutes), whereas the worst makespan happened with 16 nodes (minimum of 36.85
minutes).

In order to further understand the behaviour of Framework version 1, we used the
metric GB/s, which was calculated by taking the sum of the GB assigned to each node
and dividing it by the total execution time (in seconds) that each node took to complete
all its workflows, as shown in Figures 6.3 (2 nodes) to 6.6 (16 nodes).

In Figure 6.3 (2 nodes), we can see that the nodes’ performances are balanced. On the
other hand, in the Figure 6.4 (4 nodes), the fastest node had over twice the performance
of the slowest one, indicating an imbalance. Such performance difference is greater in
the job with 8 nodes: the fastest node’s performance was over 11 times the slowest one
(Figure 6.5). We observed a similar behaviour with 16 nodes, where the fastest node’s
performance was over 16 times the slowest one (Figure 6.6).

According to the Figures 6.4 to 6.6, there are notable performance discrepancies among
identical nodes, even when workloads are fairly distributed with the striped function.
External factors affecting the final makespan were not anticipated before the workflows’
execution. This highlights the need for a dynamic scheduling approach, such as work
stealing.

48

Figure 6.2: Execution time of 100 I/O intensive workflows. Framework Version 1

Figure 6.3: Execution time per GB of each node in job with 2 nodes

49

Figure 6.4: Execution time per GB of each node in job with 4 nodes

Figure 6.5: Execution time per GB of each node in job with 8 nodes

50

Figure 6.6: Execution time per GB of each node in job with 16 nodes

6.3 Framework Version 2 - Synthetic I/O fio applica-
tion

To evaluate the performance of the Framework version 2 in the AWS ParallelCluster with
an I/O bound scenario, the fio IO benchmark tool (https://linux.die.net/man/1/fio) was
employed. The following metrics were collected: average bandwidth and execution time.
The I/O bound multi-workflow fio application had 74 workflows, where files were written
to and read from AWS Lustre and AWS local store volumes (scratch), using fio calls, as
shown in Figure 6.7.

The local store volumes (scratch) were 237GB SSD volumes with individual usage
to each node, whereas Lustre is the parallel file system. The sizes of the input files
ranged from 1M to 946MB, following a random stratified approach, distributed as follows:
[946MB,400MB]: 11 files (14.8%); [399MB,100MB]:20 files (27.1%); [99MB,1MB]:43 files
(58.1%). We considered 2 scenarios: 1 process per task (fio’s parameter numjob set to 1)
and 4 processes per task (fio’s parameter numjob set to 4), with 1, 2, 4, 8 and 16 nodes.

The execution times for each workflow application are presented in Figures 6.8 and
6.9. The best speedup compared to sequential time for numjob=1 was 3.56x, using 8
nodes and with WS. As for numjob=4, the best speedup was 3.44x, using 4 nodes and
with WS.

51

…

…

Workflow W0

temp.file0

fio_read_lustre

fio_write_lustre

fio_rw_lustre

fio_read_scratch

fio_write_scratch

fio_rw_scratch

Workflow Wm-1

temp.filem-1

fio_read_lustre

fio_write_lustre

fio_rw_lustre

fio_read_scratch

fio_write_scratch

fio_rw_scratch

Figure 6.7: Synthetic I/O intensive workflows

Figure 6.8: Execution time (1 processes/task)

52

Figure 6.9: Execution time (4 processes/task)

When observing the bandwidth results generated by fio (Figures 6.10 and 6.11) on
the framework version 2, it is noted that Lustre does not exhibit an overall clear pattern
of behavior regarding bandwidth, specially when the average bandwidth is considered.
However, we can see that the bandwidth is smaller when 4, 8 and 16 nodes are used
during the reading. The bandwidth showed unpredictable behavior, with a minimum
average of up to 12.5MB/s in the case of reading with 1 process per task in the framework
with 8 nodes, up to a maximum average of 2924.3MB/s in the case of 4 simultaneous
processes per task also in 8 nodes.

On the other hand, the bandwidth observed in the scratch volume had a clearer
behaviour pattern as seen in Figure 6.11. It was noted that the average bandwidths
were higher with 4 or more nodes than with 1 or 2 nodes per framework across all cases
of reading and writing, with both 1 or 4 processes per task. Furthermore, the average
bandwidth in scratch was also higher, ranging from 1031.2MB/s when reading with one
process per node and using 2 nodes, to 4072.2MB/s in writing with 4 processes per node
and using 16 nodes. So, based on these results, we concluded that it is better to use the
local scratch file system, whenever possible.

53

Figure 6.10: Lustre bandwidth for the fio application

Figure 6.11: Scratch bandwidth for the fio application

54

…Workflow W0 Workflow Wm-1

SRA_sample0

File0.fastq.gz

vdb-validate

fastq-dump

gzip

SRA_samplem-1

Filem-1.fastq.gz

vdb-validate

fastq-dump

gzip

…

Figure 6.12: Real multi-workflow Bioinformatics application executed in our framework

6.4 Framework version 2 - Real Bioinformatics ap-
plication

6.4.1 Description of the Application

In the real application experiment, we executed the data-preprocessing phase of the Cell-
heap bioinformatics workflow [11]. Our multi-workflow application (Figure 6.12) receives
as input RNA-seq Sequence Read Archive (SRA) samples and executes three programs.

First, vdb-validate is executed to validate the integrity of the SRA input sample. Then,
fastq-dump is executed to convert SRA files into fastq files. These two tools are available
at https://github.com/ncbi/sra-tools/. Finally gzip is executed to compress the files. For
each workflow, the output file is a fastq.gz file which contains the sequence reads that
correspond to the sample and will be used in further analyses.

The samples used in the experiment are a part of real dataset project PRJNA743046,
available at National Center for Biotechnology Information (NCBI) [87], which has 30587
samples from covid-19 genome sequencing and it is part of the Covid-19 Outbreak umbrella
project (PRJNA615625), which compiles various subprojects of Covid-19 sequencing. We
decided to use 400 of those samples, generating 400 workflows, i. e., m in Figure 6.12
is equal to 400. The sample sizes ranged from 10MB to 200MB, and the samples were
selected with the stratified random sampling technique, considering 3 strata, depending

55

Figure 6.13: Execution time of real multi-workflow application (400 workflows)

on their size: (a) 10MB to 100MB; (b) 100MB to 110MB; and (c) 190MB to 200MB.
In strata (a), (b) and (c), 300, 95 and 5 samples were selected.The configuration of
the three strata was done based on the characteristics of the dataset. The overall size
of the input data for the whole application was 19.7GB, considering the 400 samples.
We downloaded the samples from the public repository found in National Center for
Biotechnology Information (NCBI) and placed them in AWS S3 buckets. Then, the first
task (vdb-validate) accesses S3 and writes its output temporary file to the local file system
and so on. The final output (filex.fastq.gz in Figure 6.12) is written to AWS Lustre, a
total of 20.9GB for output files. Temporary files of roughly 180GB were produced during
the execution of the real multi-workflow application.

6.4.2 Execution times

The execution times were collected in the AWS ParallelCluster (Section 6.1.2) with 1, 2,
4, 8 and 16 VMs. The results are shown in Figure 6.13 and 6.14, where label 1 corresponds
to the sequential solution and labels 4(1), 8(2), etc, correspond to the parallel execution
in the format Threads(Nodes).

In Figure 6.13, we can see that our framework was able to attain a substantial reduction
in the execution time. For instance, the execution time was reduced from 1 hour and 57
min (sequential) to 2 min and 52 sec (16 nodes with WS). If we consider 8 nodes with
WS, the execution time was 5 min and 20 sec. Similar to the I/O intensive synthetic

56

Figure 6.14: Speedup time of real multi-workflow application (400 workflows)

application, we observed a great reduction in the execution time when 2 and 4 nodes are
considered. In this case, the reduction was from 39 min and 55 sec to 10 min and 14 sec.

We can see in Figure 6.14 that our framework provides a solution with very good
scalability. Also, adding work stealing improves the speedup, becoming better as long as
more nodes are considered, if we compare to the no work stealing mode.

Figure 6.15 presents the work stealing gain, showing how much the framework with WS
reduces the execution time when compared to the framework without WS for each number
of threads in the real Bioinformatics multi-workflow application with 400 workflows. The
gain is calculated as (etnoW S − etW S)/etnoW S, where etnoW S is the execution time of the
job without work stealing and etW S is the execution time with work stealing for each given
number of threads. As it is shown, when the number of threads (and nodes) increases, so
does the gain. The greatest work stealing gain was a little over 20%, in the job with 16
nodes and 64 threads.

6.4.3 Idle thread Analysis

As stated in Section 6.2, the execution time of each node can vary, even when the striped
function is applied to achieve load balance. As an attempt to improve the load balance,
the version with work stealing (version 2) was developed and executed. Besides the

57

Figure 6.15: Gain of framework with work stealing compared with the framework without
work stealing in real Bioinformatics application

first idle moment std. dev. nodes’ execution time std. dev.
2 nodes 70.71 2.83
4 nodes 10.03 6.38
8 nodes 17.96 6.23
16 nodes 13.57 7.33

Table 6.1: Standard Deviation of each node’s first idle time and execution time

clear improvement reached with the jobs’ execution time, we also analyzed the individual
performance of each node.

In order to identify the influence of the work stealing, we measured, for each job of
the real Bioinformatics multi-workflow application, the standard deviation of the moment
that the first thread became idle in each node and the standard deviation of the total
execution time of each node. In Table 6.1, we present these results. In the second column,
there is the standard deviation of the moment that the first thread of each job’s node
became idle. In the third column, it is shown the standard deviation of the execution
time of each node. When we compared both metrics for each number of nodes, we see
that the standard deviation of the nodes’ execution time is smaller than the one of the
first thread to become idle moment. That is an indication that the work stealing actually
increased the work balance.

58

Figure 6.16: Execution time of each node with the moment that the first thread of each
node becomes idle, version 2 with 2 nodes, real multi-workflow application

Considering the real Bioinformatics multi-workflow application experiment, we com-
pared the total execution time of each individual node on the real workflow case with the
moment that the first thread of each node became idle. Figures 6.16 to 6.19 show the
execution time that each node of each job (2, 4, 8 and 16 nodes) took. The lines over the
execution time bars indicate when was the moment that a thread became idle and started
to steal work within the node or from another node.

The Figure 6.16 presents the execution time of each node of the the job with two
nodes. Both nodes concluded their workload almost at same time, but Node1 started to
steal slightly earlier than Node0.

In Figure 6.17 there is the execution time of the job with 4 nodes. In this case, the
execution time of each node is close to each other, and Node3 begun to steal earlier than
the others, although there is not a visible difference among the other nodes’ idle moment.

In Figure 6.18, we can see a greater difference between the moment that each of the
eight nodes first had an idle thread, however each node execution time remained almost
the same. With eight nodes, Node7 was the first to have an idle thread. The difference
of the first thread idle moment is the greatest with 16 nodes (Figure 6.19). In this case,
the first node to have an idle thread was node 14.

59

Figure 6.17: Execution time of each node with the moment that the first thread of each
node becomes idle, version 2 with 4 nodes, real multi-workflow application

Figure 6.18: Execution time of each node with the moment that the first thread of each
node becomes idle, version 2 with 8 nodes, real multi-workflow application

60

Figure 6.19: Execution time of each node with the moment that the first thread of each
node becomes idle, version 2 with 16 nodes, real multi-workflow application

61

Chapter 7

Conclusion and Future Works

In this chapter, we present the conclusion of our work, comparing the initial objectives
with the obtained results. Then, we discuss some future works.

7.1 Conclusion

Our main goal was to investigate workflow scheduling strategies to efficiently execute linear
multi-workflow applications in a distributed architecture. In order to achieve this goal,
we firstly focused on developing a framework to be executed in a distributed architecture,
then we opted for developing a work stealing version of our framework. Besides, we
maintained our framework configuration simple to the end-user.

First of all, we proposed and evaluated two versions of an MPI/OpenMP framework
for execute a linear multi-workflow application in large scale distributed architectures, fo-
cusing cloud computing and HPC. The linear multi-workflow application is a usual class of
Bioinformatics workflows, and we assumed that (a) there is considerable I/O activity, (b)
there is production of many temporary files, (c) very few information about the workflows’
tasks is known before execution, (d) the size of the input may have impact on the overall
execution time. We developed our framework versions using and MPI/OpenMP approach
with multiple processes along multiple computer nodes and multiple threads within the
nodes. This allowed the scalability of our framework versions and the distribution of the
multi-workflows through the nodes and threads.

Another objective was to reduce the multi-workflow application makespan, so that the
application could be executed efficiently. Apart from the possibility to run the workflows
in a parallel manner, which already diminishes makespan, we added a work stealing
scheduling policy to our framework version 2 in order to avoid idle resources and to increase
load balancing, thus further reducing the total makespan. The work stealing scheduler

62

does not need previous information about the tasks, which makes it computationally
inexpensive and independent from task data.

Our work stealing scheduler has two phases: inter-node and intra-node. Firstly, the
idle thread steals a linear workflow from another thread within its node. Secondly, if there
is no more workflow in that node, the idle thread can steal from another node. Stealing
from another thread within the same node reduces the need for message passing between
nodes, which is advantageous since message passing involves costly I/O operations.

Finally, our last objective was to facilitate the configuration of the framework by the
end-user. Both framework versions require two files: one with the workflow skeleton,
containing a linear list of tasks, and one for the input list, ordered by descending size.
Both files can be created using a simple text editor and do not require prior programming
knowledge. To configure the framework, users only need knowledge of the tasks and their
inputs, which is suitable for biologists and other researchers who are our target audience.

In the experimental results, firstly we tested our framework version 1 (without work
stealing) in the supercomputer SDumont, using up to 16 nodes and an I/O intensive
synthetic multi-workflow application (100 workflows). Our results showed that the frame-
work job running on 4 nodes was the fastest, achieving a 1.71x speedup compared to the
slowest job running on 16 nodes, and a 1.41x speedup compared to the job running on 1
node on average.

When we analysed the individual performance of each node in the SDumont exper-
iment, we realized that there was a great difference among them, specially when more
nodes were added. This performance difference could be relieved with a dynamic schedul-
ing strategy and that is why we included work stealing.

After developing the framework version 2 (with work stealing), we set up a cluster
of up to 16 VMs instances inside the cloud AWS, using the ParallelCluster tool, with
different file systems: one for input/output files and other for temporary files. Our results
with an I/O intensive benchmark multi-workflows application and a real Bioinformatics
multi-workflow application show that our framework is able to reduce considerably the
makespan, taking advantage of parallelism and work stealing.

The results for the I/O intensive benchmark showed that the fastest job had 16 threads
(4 nodes) and work stealing, achieving 3.44x speedup when compared to the sequential
job. The best result for the real Bioinformatics application was met in the job with
64 threads (16 nodes) and with work stealing: it took less than 3 minutes, while the
sequential execution of the multi-workflow application too almost 2 hours, with a 40.90x
speedup compared to the sequential processing job. It is also notable that the influence
of the work stealing scheduler increases with the number of nodes used per job. The time
savings of framework version 2 were over 20% with 16 nodes per job, whereas with only

63

2 nodes per job, the time savings were 4%.
When we analyzed the moment when the first thread of each node became idle and

compared it with the execution time per node, we observed the load balance brought
by work stealing. In the real Bioinformatics multi-workflow application, we analyzed
both metrics and their standard deviation. The standard deviation of individual node’s
execution times for each number of nodes per job was significantly lower than the standard
deviation for the first idle thread moment. This indicates the impact of work stealing on
load balance and total execution time.

In conclusion, the work stealing approach allowed the workflows distribution to achieve
a lower makespan. Although the work stealing makes a significantly makespan reduction,
the parallel workflows processing has a greater influence on the reduction, when compared
to the sequential execution. The amount of I/O operations also has an impact on the
makespan. In both environments, SDumont and AWS ParallelCluster, during the I/O
intensive multi-workflow application, the lowest makespan was achieved with 4 nodes.

7.2 Future works

As future work, we suggest:

• to investigate a different policy for choosing the node to be stolen. Since each thread
currently has only one node option to steal from, it may not always steal from the
node with the greatest need. A different stealing choice strategy can further benefit
load balancing. However, any change must maintain the message passing as low as
possible;

• to investigate tuning configuration, such as the most appropriate number of threads
per node according to the input and to the performance and the optimal frequency
to exchange the Workflow Status Array (WSA) between stealer and stolen nodes;

• to design a scheduler that considers both the makespan and the cost, since the cost
of a cloud service can be very high when too much time and/or too many VMs are
used;

• to adapt Framework version 2 to transient instances cloud service (e.g. AWS spot),
which may reduce the cost. This allows to allocate a new spot instance during the
execution and to re-instantiate a suspended task on it. However, it needs to be
continuously monitored and adjusted accordingly, thus it is necessary to develop a
fault tolerance policy to use in case of spot instance revocation;

64

• to add the framework to a Bioinformatics portal. This would be even more friendly
to the end-users as it would free them to manage an IaaS model cloud, replacing it
for a SaaS model. This approach could also reach a greater audience;

• to add our Framework version 2 to a scientific workflow scheduler system as an
extension, so that other users may see our Framework as an available option for
executing applications composed of multiple linear workflows;

• to investigate the use of containers and adapt our work for execution on them.

65

References

[1] Casavant, Thomas L. and Jon G. Kuhl: A taxonomy of scheduling in general-
purpose distributed computing systems. IEEE Transactions on software engineering,
14(2):141–154, 1988. ix, 2, 8, 9, 30, 31, 32, 33, 34, 35, 36

[2] Rodriguez, Maria Alejandra and Rajkumar Buyya: A taxonomy and survey on
scheduling algorithms for scientific workflows in iaas cloud computing environments.
Concurrency and Computation: Practice and Experience, 29(8):e4041, 2017. ix, 7,
8, 9, 30, 31, 32, 33, 34, 35, 36

[3] Sterling, Thomas, Maciej Brodowicz, and Matthew Anderson: High performance
computing: modern systems and practices. Morgan Kaufmann, 2018. ix, 13, 14,
15

[4] Lustre. https://www.lustre.org/, Accessed on Mars 28, 2024. ix, 21, 28

[5] Leite, Alessandro Ferreira: A user-centered and autonomic multi-cloud architecture
for high performance computing applications. 2015. ix, 22, 23

[6] Mell, Peter, Tim Grance, et al.: The nist definition of cloud computing. 2011. ix, 22,
23

[7] What is azure batch. https://learn.microsoft.com/pt-br/azure/batch/
batch-technical-overview#additional-batch-capabilities, Accessed on June
20, 2024. ix, 25, 26

[8] Cloud hpc toolkit. https://cloud.google.com/hpc-toolkit/docs/quickstarts/
slurm-cluster, Accessed on June 20, 2024. ix, 27

[9] Ford, Alex: Building an interactive and scalable ml research environment using
aws parallelcluster. https://aws.amazon.com/pt/blogs/machine-learning/
building-an-interactive-and-scalable-ml-research-environment-using\
-aws-parallelcluster/, visited on 2019-11, Accessed on Mars 28, 2024. ix, 28

[10] Aws parallelcluster. https://aws.amazon.com/pt/hpc/parallelcluster/, visited
on 2024-25-03. ix, 27, 28, 29

[11] Silva, Vanessa S, Maiana OC Costa, Maria Clicia S Castro, Helena S Silva, Maria
Emilia MT Walter, Alba CMA Melo, Kary AC Ocaña, Marcelo T dos Santos, Marisa
F Nicolas, Anna Cristina C Carvalho, et al.: Cellheap: A workflow for optimizing
covid-19 single-cell rna-seq data processing in the santos dumont supercomputer. In

66

https://www.lustre.org/
https://learn.microsoft.com/pt-br/azure/batch/batch-technical-overview##additional-batch-capabilities
https://learn.microsoft.com/pt-br/azure/batch/batch-technical-overview##additional-batch-capabilities
https://cloud.google.com/hpc-toolkit/docs/quickstarts/slurm-cluster
https://cloud.google.com/hpc-toolkit/docs/quickstarts/slurm-cluster
https://aws.amazon.com/pt/blogs/machine-learning/building-an-interactive-and-scalable-ml-research-environment-using \ -aws-parallelcluster/
https://aws.amazon.com/pt/blogs/machine-learning/building-an-interactive-and-scalable-ml-research-environment-using \ -aws-parallelcluster/
https://aws.amazon.com/pt/blogs/machine-learning/building-an-interactive-and-scalable-ml-research-environment-using \ -aws-parallelcluster/
https://aws.amazon.com/pt/hpc/parallelcluster/

Advances in Bioinformatics and Computational Biology: 14th Brazilian Symposium
on Bioinformatics, BSB 2021, Virtual Event, November 22–26, 2021, Proceedings
14, pages 41–52. Springer, 2021. 1, 55

[12] Chen, Yang, En Min Li, and Li Yan Xu: Guide to metabolomics analysis: a bioin-
formatics workflow. Metabolites, 12(4):357, 2022. 1

[13] Cadzow, Murray, James Boocock, Hoang T Nguyen, Phillip Wilcox, Tony R Mer-
riman, and Michael A Black: A bioinformatics workflow for detecting signatures of
selection in genomic data. Frontiers in Genetics, 5:293, 2014. 1

[14] Ko, GunHwan, Pan Gyu Kim, Jongcheol Yoon, Gukhee Han, Seong Jin Park,
Wangho Song, and Byungwook Lee: Closha: bioinformatics workflow system for the
analysis of massive sequencing data. BMC bioinformatics, 19:97–104, 2018. 1

[15] Banimfreg, Bayan H: A comprehensive review and conceptual framework for cloud
computing adoption in bioinformatics. Healthcare Analytics, page 100190, 2023. 2

[16] Ullman, Jeffrey D.: Np-complete scheduling problems. Journal of Computer and Sys-
tem sciences, 10(3):384–393, 1975. 2, 8

[17] Agrawal, Kunal, Anne Benoit, Loic Magnan, and Yves Robert: Scheduling algorithms
for linear workflow optimization. In 2010 IEEE International symposium on parallel
& distributed processing (IPDPS), pages 1–12. IEEE, 2010. 2, 8

[18] Teylo, Luan, Alan L Nunes, Alba CMA Melo, Cristina Boeres, Lúcia Maria de A
Drummond, and Natalia F Martins: Comparing sars-cov-2 sequences using a com-
mercial cloud with a spot instance based dynamic scheduler. In 2021 IEEE/ACM
21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid),
pages 247–256. IEEE, 2021. 2

[19] Konjaang, J Kok and Lina Xu: Cost optimised heuristic algorithm (coha) for scientific
workflow scheduling in iaas cloud environment. In 2020 IEEE 6th Intl Conference
on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High
Performance and Smart Computing,(HPSC) and IEEE Intl Conference on Intelligent
Data and Security (IDS), pages 162–168. IEEE, 2020. 2

[20] Khaleel, Mustafa Ibrahim: Multi-objective optimization for scientific workflow
scheduling based on performance-to-power ratio in fog–cloud environments. Simu-
lation Modelling Practice and Theory, 119:102589, 2022. 2

[21] Gao, Yongqiang, Shuyun Zhang, and Jiantao Zhou: A hybrid algorithm for multi-
objective scientific workflow scheduling in iaas cloud. IEEE Access, 7:125783–125795,
2019. 2

[22] Iranmanesh, Amir and Hamid Reza Naji: Dchg-ts: a deadline-constrained and cost-
effective hybrid genetic algorithm for scientific workflow scheduling in cloud comput-
ing. Cluster Computing, 24:667–681, 2021. 2

[23] Durillo, Juan J and Radu Prodan: Multi-objective workflow scheduling in amazon
ec2. Cluster computing, 17:169–189, 2014. 2

67

[24] Rodriguez, Maria A and Rajkumar Buyya: Budget-driven scheduling of scientific
workflows in iaas clouds with fine-grained billing periods. ACM Transactions on
Autonomous and Adaptive Systems (TAAS), 12(2):1–22, 2017. 2

[25] Stavrinides, Georgios L and Helen D Karatza:Multicriteria scheduling of linear work-
flows with dynamically varying structure on distributed platforms. Simulation Mod-
elling Practice and Theory, 112:102369, 2021. 2, 3, 33, 36

[26] Xia, Yuanqing, Yufeng Zhan, Li Dai, and Yuehong Chen: A cost and makespan aware
scheduling algorithm for dynamic multi-workflow in cloud environment. The Journal
of Supercomputing, 79(2):1814–1833, 2023. 3, 35, 36

[27] Badia Sala, Rosa Maria, Eduard Ayguadé Parra, and Jesús José Labarta Mancho:
Workflows for science: A challenge when facing the convergence of hpc and big data.
Supercomputing frontiers and innovations, 4(1):27–47, 2017. 3

[28] Jalili, Vahid, Enis Afgan, Qiang Gu, Dave Clements, Daniel Blankenberg, Jeremy
Goecks, James Taylor, and Anton Nekrutenko: The galaxy platform for accessible, re-
producible and collaborative biomedical analyses: 2020 update. Nucleic acids research,
48(W1):W395–W402, 2020. 3

[29] Deelman, Ewa, Rafael Ferreira da Silva, Karan Vahi, Mats Rynge, Rajiv Mayani,
Ryan Tanaka, Wendy Whitcup, and Miron Livny: The pegasus workflow management
system: translational computer science in practice. Journal of Computational Science,
52:101200, 2021. 3

[30] Silva, Helena SIL, Maria CS Castro, Fabricio AB Silva, and Alba CMA Melo: A
framework for automated parallel execution of scientific multi-workflow applications
in the cloud with work stealing. In European Conference on Parallel Processing, pages
298–311. Springer, 2024. 4

[31] Benoit, Anne, Ümit V Çatalyürek, Yves Robert, and Erik Saule: A survey of pipelined
workflow scheduling: Models and algorithms. ACM Computing Surveys (CSUR),
45(4):1–36, 2013. 6

[32] Singh, Lovejit and Sarbjeet Singh: A survey of workflow scheduling algorithms and
research issues. International Journal of Computer Applications, 74(15), 2013. 8

[33] Blumofe, Robert D, Christopher F Joerg, Bradley C Kuszmaul, Charles E Leiserson,
Keith H Randall, and Yuli Zhou: Cilk: An efficient multithreaded runtime system.
ACM SigPlan Notices, 30(8):207–216, 1995. 10

[34] Blumofe, Robert D., Charles E. Leiserson, R. D. Blumofe, and C. E. Leiserson:
Scheduling multithreaded computations by work stealing. Journal of the ACM,
46(5):720–748, 1999, ISSN 00045411. 10

[35] Michael, Maged M., Martin T. Vechev, and Vijay A. Saraswat: Idempotent work
stealing. ACM SIGPLAN Notices, 44(4):45–53, 2009, ISSN 15232867. 10, 11

68

[36] Dinan, James, D. Brian Larkins, P. Sadayappan, Sriram Krishnamoorthy, and Jarek
Nieplocha: Scalable work stealing. Proceedings of the Conference on High Perfor-
mance Computing Networking, Storage and Analysis, SC ’09, 2009. 11

[37] Van Steen, Maarten and A Tanenbaum: Distributed systems principles and
paradigms. Network, 2(28):1, 2002. 13

[38] Coulouris, George F, Jean Dollimore, and Tim Kindberg: Distributed systems: con-
cepts and design. pearson education, 2005. 13

[39] Garfinkel, Simson: Architects of the information society: 35 years of the Laboratory
for Computer Science at MIT. MIT press, 1999. 13

[40] Licklider, Joseph CR and Robert W Taylor: The computer as a communication device.
Science and technology, 76(2):30–32, 1968. 13

[41] A survey of remote procedure calls. ACM SIGOPS Operating Systems Review,
24(3):68–79, 1990. 13

[42] Abramson, H Ñimrod D and R Giddy Sosic: The grid: Blueprint for a new computing
infrastructure. IEEE, USA, 1995. 14

[43] Chellappa, Ramnath: Intermediaries in cloud-computing: A new computing
paradigm. In INFORMS Annual Meeting, Dallas, pages 26–29, 1997. 14

[44] Foster, Ian, Yong Zhao, Ioan Raicu, and Shiyong Lu: Cloud computing and grid
computing 360-degree compared. In 2008 grid computing environments workshop,
pages 1–10. Ieee, 2008. 14, 21, 22

[45] Borin, Edson, Lúcia Maria A Drummond, Jean Luc Gaudiot, Alba Melo, Maicon
Melo, and Philippe OA Navaux: Why move hpc applications to the cloud? In High
Performance Computing in Clouds: Moving HPC Applications to a Scalable and
Cost-Effective Environment, pages 1–5. Springer, 2023. 14

[46] The linpack benchmark. https://www.top500.org/project/linpack/, Accessed on
May 30, 2024. 14

[47] Anthony, Sebastian: The history of supercomputers. https://www.extremetech.
com/extreme/125271-the-history-of-supercomputers, visited on 2012-04, Ac-
cessed on May 31, 2024. 15

[48] Frontier - hpe cray. https://top500.org/system/180047/, Accessed on May 30,
2024. 15

[49] No. 1 since june 2022. https://www.top500.org/resources/top-systems/
frontier-doescoak-ridge-national-laboratory/, Accessed on June 9, 2024. 15

[50] Mpi documents. https://www.mpi-forum.org/docs/, Accessed on July 13, 2024.
17

[51] The openmp api specification for parallel programming. https://www.openmp.org/,
Accessed on July 13, 2024. 19

69

https://www.top500.org/project/linpack/
https://www.extremetech.com/extreme/125271-the-history-of-supercomputers
https://www.extremetech.com/extreme/125271-the-history-of-supercomputers
https://top500.org/system/180047/
https://www.top500.org/resources/top-systems/frontier-doescoak-ridge-national-laboratory/
https://www.top500.org/resources/top-systems/frontier-doescoak-ridge-national-laboratory/
https://www.mpi-forum.org/docs/
https://www.openmp.org/

[52] Surbiryala, Jayachander and Chunming Rong: Cloud computing: History and
overview. In 2019 IEEE Cloud Summit, pages 1–7. IEEE, 2019. 21

[53] Kaufman, Lori M: Data security in the world of cloud computing. IEEE Security &
Privacy, 7(4):61–64, 2009. 21

[54] Microsoft azure. https://azure.microsoft.com/en-us/resources/
cloud-computing-dictionary/what-is-azure/, Accessed on April 07, 2024.
21

[55] Google cloud. https://cloud.google.com/, Accessed on April 07, 2024. 21

[56] Goldberg, Robert P: Survey of virtual machine research. Computer, 7(6):34–45, 1974.
22

[57] Hoefer, Christina N and Georgios Karagiannis: Taxonomy of cloud computing ser-
vices. In 2010 IEEE Globecom Workshops, pages 1345–1350. IEEE, 2010. 22

[58] Aws ec2. https://aws.amazon.com/pt/ec2/, Accessed on June 19, 2024. 23

[59] Google colab. https://colab.google/, Accessed on June 19, 2024. 24

[60] What is netflix? https://help.netflix.com/en/node/412, Accessed on Setember
9, 2024. 24

[61] Sharma, Sugam: Evolution of as-a-service era in cloud. arXiv preprint
arXiv:1507.00939, 2015. 24, 25

[62] Lynn, Theo, Pierangelo Rosati, Arnaud Lejeune, and Vincent Emeakaroha: A pre-
liminary review of enterprise serverless cloud computing (function-as-a-service) plat-
forms. In 2017 IEEE International Conference on Cloud Computing Technology and
Science (CloudCom), pages 162–169. IEEE, 2017. 24

[63] Deniziak, Stanislaw and Slawomir Bąk: Scheduling of distributed applications in hh-
pcaas clouds for internet of things. In 2020 23rd International Symposium on Design
and Diagnostics of Electronic Circuits & Systems (DDECS), pages 1–4. IEEE, 2020.
25

[64] Alves, Maicon Melo: What is cloud computing? In High Performance Computing
in Clouds: Moving HPC Applications to a Scalable and Cost-Effective Environment,
pages 9–25. Springer, 2023. 25

[65] Borin, Edson and Otávio O Napoli: Deploying and configuring infrastructure. In
High Performance Computing in Clouds: Moving HPC Applications to a Scalable
and Cost-Effective Environment, pages 55–74. Springer, 2023. 25

[66] Azure cyclecloud documentation. https://learn.microsoft.com/en/azure/
cyclecloud/?view=cyclecloud-8, Accessed on June 20, 2024. 26

[67] Cloud hpc toolkit. https://cloud.google.com/hpc-toolkit/docs/overview, Ac-
cessed on June 20, 2024. 27

70

https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-azure/
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-azure/
https://cloud.google.com/
https://aws.amazon.com/pt/ec2/
https://colab.google/
https://help.netflix.com/en/node/412
https://learn.microsoft.com/en/azure/cyclecloud/?view=cyclecloud-8
https://learn.microsoft.com/en/azure/cyclecloud/?view=cyclecloud-8
https://cloud.google.com/hpc-toolkit/docs/overview

[68] Slurm - workfload manager. https://slurm.schedmd.com/, visited on 2015-25-03.
28

[69] Aws parallelcluster user guide (v3). https://docs.aws.amazon.com/pdfs/
parallelcluster/latest/ug/aws-parallelcluster-ug.pdf, Accessed on Mars
28, 2024. 28

[70] Durillo, Juan J and Radu Prodan: Multi-objective workflow scheduling in amazon
ec2. Cluster computing, 17:169–189, 2014. 31, 36

[71] Topcuoglu, Haluk, Salim Hariri, and Min You Wu: Performance-effective and low-
complexity task scheduling for heterogeneous computing. IEEE transactions on par-
allel and distributed systems, 13(3):260–274, 2002. 31

[72] Yu, Jia, Michael Kirley, and Rajkumar Buyya: Multi-objective planning for work-
flow execution on grids. In 2007 8th IEEE/ACM International Conference on Grid
Computing, pages 10–17. IEEE, 2007. 31

[73] Sadooghi, Iman, Geet Kumar, Ke Wang, Dongfang Zhao, Tonglin Li, and Ioan Raicu:
Albatross: An efficient cloud-enabled task scheduling and execution framework using
distributed message queues. In 2016 IEEE 12th International Conference on e-Science
(e-Science), pages 11–20. IEEE, 2016. 31, 33, 36, 37

[74] Zaharia, Matei, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion
Stoica: Spark: Cluster computing with working sets. In 2nd USENIX workshop on
hot topics in cloud computing (HotCloud 10), 2010. 31

[75] White, Tom: Hadoop: The definitive guide. " O’Reilly Media, Inc.", 2012. 31

[76] Rodriguez, Maria A and Rajkumar Buyya: Budget-driven scheduling of scientific
workflows in iaas clouds with fine-grained billing periods. ACM Transactions on
Autonomous and Adaptive Systems (TAAS), 12(2):1–22, 2017. 32, 36, 37

[77] Krämer, Michel, Hendrik M Würz, and Christian Altenhofen: Executing cyclic sci-
entific workflows in the cloud. Journal of Cloud Computing, 10(1):1–26, 2021. 33,
34, 36

[78] Deelman, Ewa, Karan Vahi, Gideon Juve, Mats Rynge, Scott Callaghan, Philip J
Maechling, Rajiv Mayani, Weiwei Chen, Rafael Ferreira Da Silva, Miron Livny, et al.:
Pegasus, a workflow management system for science automation. Future Generation
Computer Systems, 46:17–35, 2015. 34

[79] Chen, Huangke, Xiaomin Zhu, Guipeng Liu, and Witold Pedrycz: Uncertainty-aware
online scheduling for real-time workflows in cloud service environment. IEEE Trans-
actions on Services Computing, 14(4):1167–1178, 2018. 34, 36

[80] Rodriguez, Maria A and Rajkumar Buyya: Scheduling dynamic workloads in multi-
tenant scientific workflow as a service platforms. Future Generation Computer Sys-
tems, 79:739–750, 2018. 34

71

https://slurm.schedmd.com/
https://docs.aws.amazon.com/pdfs/parallelcluster/latest/ug/aws-parallelcluster-ug.pdf
https://docs.aws.amazon.com/pdfs/parallelcluster/latest/ug/aws-parallelcluster-ug.pdf

[81] Taghinezhad-Niar, Ahmad, Saeid Pashazadeh, and Javid Taheri: Qos-aware online
scheduling of multiple workflows under task execution time uncertainty in clouds.
Cluster Computing, 25(6):3767–3784, 2022. 34, 36

[82] Garg, Neha, Damanpreet Singh, and Major Singh Goraya: Energy and resource ef-
ficient workflow scheduling in a virtualized cloud environment. Cluster Computing,
24:767–797, 2021. 35

[83] Liu, Jiagang, Ju Ren, Wei Dai, Deyu Zhang, Pude Zhou, Yaoxue Zhang, Geyong
Min, and Noushin Najjari: Online multi-workflow scheduling under uncertain task
execution time in iaas clouds. IEEE Transactions on Cloud Computing, 9(3):1180–
1194, 2019. 35

[84] Uzun, Berna, Mustapha Taiwo, Aizhan Syidanova, and Dilber Uzun Ozsahin: The
technique for order of preference by similarity to ideal solution (topsis). Application
of multi-criteria decision analysis in environmental and civil engineering, pages 25–30,
2021. 35

[85] Hsu, Chih Chiang, Kuo Chan Huang, and Feng Jian Wang: Online scheduling of
workflow applications in grid environments. Future Generation Computer Systems,
27(6):860–870, 2011. 35

[86] Sdumont. https://sdumont.lncc.br/, Accessed on July 10, 2024. 46

[87] National center for biotechnology information (ncbi), project prjna743046. https:
//www.ncbi.nlm.nih.gov/Traces/study/?acc=PRJNA743046&o=acc_s%3Aa, Ac-
cessed on Mars 01, 2024. 55

72

https://sdumont.lncc.br/
https://www.ncbi.nlm.nih.gov/Traces/study/?acc=PRJNA743046&o=acc_s%3Aa
https://www.ncbi.nlm.nih.gov/Traces/study/?acc=PRJNA743046&o=acc_s%3Aa

Annex I

Paper published in the International
Conference Euro-Par 2024

73

A Framework for Automated Parallel
Execution of Scientific Multi-workflow
Applications in the Cloud with Work

Stealing

Helena S. I. L. Silva1, Maria C. S. Castro2, Fabricio A. B. Silva3,
and Alba C. M. A. Melo1(B)

1 University of Brasilia (UnB), Brasilia 70910-900, Brazil
200051873@aluno.unb.br, alves@unb.br

2 Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
clicia@ime.uerj.br

3 Fundacao Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
fabricio.silva@fiocruz.br

Abstract. In this paper, we propose and evaluate an MPI/OpenMP
framework to execute cloud applications composed of scientific linear
multi-workflows with unknown task execution times and substantial I/O
activity. In order to achieve load balancing, our framework incorporates a
two-level work stealing strategy, with intra-node and inter-node stealing.
The framework was evaluated in a cluster of 16 virtual machine (VM)
instances (4 vCPUs), deployed on AWS Parallel Cluster. The results
show that, for a real Bioinformatics application composed of 400 work-
flows, we are able to reduce the execution time from 1 h and 57 min
(sequential) to 2 min and 52 s (16 instances), achieving a speedup of
40.89x, with 64 threads.

Keywords: Scientific workflows · Work stealing · Cloud computing

1 Introduction

Scientific workflows are a powerful tool for executing complex scientific applica-
tions composed of tasks with temporal dependencies, where the output of one
task is the input of another. Workflows are expressed as a Directed Acyclic
Graph (DAG). The general problem of scheduling tasks of an arbitrary work-
flow is proven NP-Complete [20], and the problems of mininizing the period and
minimizing the latency for scheduling workflows composed of a sequence of tasks
(linear workflow) is proven NP-Hard [3] for most formulations. For this reason,
many heuristic strategies have been proposed [13,14].

Workflow scheduling strategies [3,11] may be classified as static, when they
use a large amount of information about the tasks and computing environment

Supported by CNPq/Brazil and Fiocruz/Brazil.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Carretero et al. (Eds.): Euro-Par 2024, LNCS 14803, pp. 298–311, 2024.
https://doi.org/10.1007/978-3-031-69583-4_21

74

	Dedicatória
	Agradecimentos
	Resumo
	Abstract
	Introduction
	Motivation
	Problem assumptions
	Objective
	Contributions
	Organization of the Dissertation

	Overview of Workflows
	DAG
	Workflow Scheduling
	Work Stealing (WS)

	Large Scale Parallel and Distributed Systems
	Overview
	HPC
	History
	Architecture
	HPC Programming
	MPI
	OpenMP
	Lustre

	Cloud Computing
	Cloud Computing Service Models

	HPC in Cloud Computing
	Microsoft Azure
	Google Cloud
	AWS ParallelCluster

	Related Work
	Methodology
	Durillo and Prodan, 2014
	Sadooghi et al., 2016
	Rodriguez and Buyya, 2017
	Stavrinides and Karatza, 2021
	Krämer et al., 2021
	Chen et al., 2021
	Taghinezhad-Niar et al., 2022
	Xia et al., 2023
	Comparative Table

	Design of the Framework
	Linear Workflows Considered in the Framework
	Framework Version 1
	Initialization
	Workflow Execution

	Framework Version 2
	Standard mode
	Work Stealing

	Experiments and Results
	Test Environment
	Santos Dumont supercomputer
	AWS EC2 ParallelCluster

	Results for Version 1 - Synthetic I/O
	Framework Version 2 - Synthetic I/O fio application
	Framework version 2 - Real Bioinformatics application
	Description of the Application
	Execution times
	Idle thread Analysis

	Conclusion and Future Works
	Conclusion
	Future works

	References
	Annex
	Paper published in the International Conference Euro-Par 2024

