
University of Brasília
Institute of Exact Sciences

Department of Computer Science

Diagnóstico de rastreio para Propriedades de Sinais
Temporais

Gabriel Frutuoso Pereira Araújo

Brasília
2024

University of Brasília
Institute of Exact Sciences

Department of Computer Science

Trace-Diagnostic for Signal Temporal Properties: An
Evolutionary Approach

Gabriel Frutuoso Pereira Araújo

Thesis presented in partial fulfillment of the requirements for the degree of Master of
Science in Informatics

Advisor
Prof.a Dr.a Genaína Nunes Rodrigues

Brazil
2024

University of Brasília
Institute of Exact Sciences

Department of Computer Science

Trace-Diagnostic for Signal Temporal Properties: An
Evolutionary Approach

Gabriel Frutuoso Pereira Araújo

Thesis presented in partial fulfillment of the requirements for the degree of Master of
Science in Informatics

Prof.a Dr.a Genaína Nunes Rodrigues (Advisor)
CIC/UnB

Prof. Dr. Rodrigo Bonifácio De Almeida Prof. Dr. Lars Grunske
CIC/UnB Institut für Informatik/HUB

Prof. Dr. Rodrigo Bonifácio
Coordinator of the Graduate Program in Informatics

Brazil, Brasília, October 18 2024

Dedication

Dedico esse trabalho aos meus pais, Maria de Lourdes e Evaldo Araújo, e à minha irmã,
Joana Patrícia.

iii

Acknowledgements

I would like to express my gratitude to everyone who made this work possible. First and
foremost, I extend my heartfelt thanks to my supervisor, Genaína Nunes, whose trust and
guidance were fundamental throughout this journey. I am also grateful to Claudio Menghi
for suggesting the idea for this work and providing valuable insights and discussions that
enriched it significantly. A big thank you to Patrizio Pelliccione, whose sharp reasoning
and pragmatic mindset helped steer this project toward achievable results. I appreciate my
colleague and friend, Ricardo Diniz, whom I have known since our undergraduate days; his
assistance in double-checking my decisions regarding implementation and research choices
has been invaluable. Thank you for our discussions.

I also want to thank Federico Formica; his involvement in the experimentation phase,
along with his numerous suggestions, has greatly enhanced the maturity of this work
beyond what I could have achieved alone.

Lastly, I am grateful to my alma mater, Universidade de Brasília, whose support and
resources were essential in helping me achieve these results.

iv

“Man is the measure of all things”

Protagoras of Abdera

v

Abstract

Cyber-physical systems (CPS) such as satellites, self-driving cars, service robots, and
IoTs are in our daily lives. These systems must satisfy requirements specifying their
operation over time. During the development of such systems, designers and engineers
must test whether the implementation meets its specifications. In addition, in the case of a
violation, they need to identify and diagnose where the failure comes from. Understanding
such violations is especially crucial in safety-critical systems.

This work presents a novel technique to diagnose any system using only its require-
ments and test traces. Leveraging techniques like trace-checking and genetic program-
ming, we deliver an informative diagnosis. The diagnosis shows to engineers what changes
are sufficient to satisfy the violation requirement. The user can also customize the ap-
proach to focus on specific information relevant to the user.

We evaluate our approach in two verticals: accuracy and efficiency. We evaluate the
capability of our approach in delivering informative diagnoses and the time it takes to
provide these diagnoses. Our approach shows that it can produce an informative output
for most of our experiments in a reasonable time. The tool exceeded its time budget for
the remaining experiments, not producing any diagnosis.

Keywords: Diagnostics, Trace checking, Run-time verification, Temporal properties,
Cyber-physical systems, Signals

vi

Resumo

Sistemas ciber-físicos (CPS), como satélites, carros autônomos, robôs de serviço e IoTs,
estão presentes em nossas vidas diárias. Esses sistemas devem atender a requisitos que
especificam seu funcionamento ao longo do tempo. Durante o desenvolvimento de tais
sistemas, designers e engenheiros devem testar se a implementação atende às suas especi-
ficações. Além disso, em caso de violação, é necessário identificar e diagnosticar de onde
vem a falha. Compreender tais violações é especialmente crucial em sistemas críticos de
segurança.

Este trabalho apresenta uma técnica inovadora para diagnosticar qualquer sistema
utilizando apenas seus requisitos e traços de teste. Aproveitando técnicas como verificação
de traços e programação genética, fornecemos um diagnóstico informativo. O diagnóstico
mostra aos engenheiros quais mudanças são suficientes para satisfazer o requisito violado.
O usuário também pode personalizar a abordagem para focar em informações específicas
relevantes para o seu contexto.

Nós avaliamos nossa abordagem em duas vertentes: acurácia e eficácia. Avaliamos a ca-
pacidade de nossa abordagem em fornecer diagnósticos informativos e o tempo necessário
para gerar esses diagnósticos. Nossa abordagem mostrou que pode produzir um resultado
informativo para a maioria de nossos experimentos em um tempo razoável. A ferramenta
excedeu o limite de tempo em alguns experimentos, não produzindo diagnóstico nesses
casos.

Palavras-chave: Diagnóstico, Verificação de rastro, Verificação em tempo-real, Pro-
priedades temporais, Sistemas Ciber-físicos, Sinais

vii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research Challenges . 3
1.3 Research Questions and Evaluation . 4

1.3.1 Research Question 1 . 4
1.3.2 Research Question 2 . 4

1.4 Research Contributions . 5
1.5 Document Roadmap . 5

2 Running Example 6
2.1 The Example . 6
2.2 Hybrid Logic of Signals . 8
2.3 ThEodorE . 9

3 Diagnosis 11
3.1 Search in Search-Based Trace-Diagnostic 11
3.2 Search-based Trace-Diagnostic . 12
3.3 Search-based Trace Diagnostic for HLS . 15

3.3.1 Change-Driven Diagnosis . 16
3.3.2 Generator of Mutations . 16
3.3.3 Trace-Checker . 20
3.3.4 Diagnostic Generator . 20

4 Evaluation and Discussion 22
4.1 Experiment Setting and Tool Configuration 22
4.2 Accuracy - EQ1 . 26
4.3 Efficiency - EQ2 . 30
4.4 Discussion and Threats to Validity . 31

5 Related Work 35

viii

6 Conclusion 37

References 39

ix

List of Figures

1.1 Autonomous forklift tipping and dropping its load. 2

2.1 Example of failure-revealing scenario. 7
2.2 A fragment of an execution trace for our case study. 7
2.3 Syntax of HLS. 9
2.4 Schematic representation of ThEodorE trace-checker from [1]. 10

3.1 The search-based trace-diagnostic framework. 12
3.2 Diagnosis generated for our automotive example 14
3.3 AST of an HLS requirement and its mutation obtained by applying the

mutation operator OP13 to the node with the blue background. 15
3.4 Example of application of the over operator: the requirement ϕ3 is obtained

from the requirement ϕ1 by swapping the subtree with the root node with
a red background with the corresponding subtree from the requirement ϕ2. 18

3.5 Example of fitness calculation using the score function of the Smith-Waterman
algorithm. 19

3.6 Entries considered by the learning algorithm. 21

4.1 Diagnostic and prediction for the experiment exp1. 28
4.2 Precision and recall of SBTD across the different experiments. Diamonds

depict the average, red lines are the median, and pluses depict the outliers. 30

x

List of Tables

3.1 Mutation Operators: the table contains the original formula and the mu-
tated formula . 15

3.2 Configuration Parameters for our SBTD framework. 17

4.1 Requirements from our benchmark. 24
4.2 HLS formalization for the requirements from 4.1. 25
4.3 Values for the configuration parameters of Diagnosis from 3.2. 26
4.4 Mutation operators (Operators) and ranges for the value terms (Ranges)

of each experiment (Exp). 27
4.5 Time required by our SBTD tool to extract the diagnosis. 31

xi

List of Acronyms

AST Abstract Syntax Tree

AT Automatic Transmission System

CC Chasing Cars System

CPS Cyber-Physical System

DT Decision Tree

EQ Evaluation Question

GA Genetic Algorithm

GP Genetic Programming

HLS Hybrid Logic of Signals

LTL Linear Temporal Logic

MTL Metric Temporal Logic

SBTD Search-Based Trace-Diagnostic

SMT Satisfiability Modulo Theories

STL Signal Temporal Logic

OPx Mutation Operator x

xii

Chapter 1

Introduction

1.1 Motivation

In 2021, while working at an autonomous forklift start-up, we encountered a critical issue
during field testing. Our navigation module was sending incorrect goal positions to the
planner during docking, causing the robot to replan several times. Although, the system
could recover from the problem, we decided to fix it as it led to repeated attempts when
picking up pallets, which were time-consuming and undesired for the customer.

We tested the bugfix in a simulated warehouse before deployment, but when applying
the fix in the actual robot, a small oversight in a parameter configuration resulted in a
costly mistake. The robot picked up the pallet slightly off-center, causing it to drop and
damage the goods. This incident highlighted to me how expensive and risky it is to test
robots in real environments, where even minor errors in setup or debugging can lead to
significant losses. Figure 1.1 shows an image generated based on the incident photograph
to maintain anonymity.

Cyber-Physical Systems (CPS) testing is an important task that is typically achieved
through various methods, like unit, integration and hardware testing. However, testing
CPSs like robots in real life is expensive because it requires significant time for setup and
execution, poses safety risks and involves the problem of debugging multiple modules at
once. Although testing itself does not guarantee correctness, it increases confidence in
system reliability [2]. The earlier mentioned episode illustrates how CPSs, despite prior
testing, can still fail due to overlooked factors. Such failures accentuate the need for
techniques that can help engineers quickly diagnose and correct bugs, ultimately reducing
the cost and risk associated with real-world CPS testing. This leads to a critical ques-
tion: how can engineers better ensure that CPS requirements are met and failures are
minimized?

1

Figure (1.1) Autonomous forklift tipping and dropping its load1.

To address this question, engineers rely on various testing techniques to detect require-
ment violations in complex CPSs. Many testing techniques (e.g., [3, 4, 5, 6, 7, 8, 9, 10]),
compared by existing competitions (e.g., [11]), rely on trace-checking where system be-
havior for a specific input is recorded and evaluated against a requirement. For example,
ThEodorE [1] is a trace-checking tool that supports requirements expressed using the
Hybrid Logic of Signals (HLS) [12], an expressive logic to capture CPS requirements.
Trace-checking techniques typically consider a trace and a property representing a re-
quirement and return a Boolean verdict: True if the trace satisfies the requirement, and
False otherwise. If the trace satisfies the requirement, testing tools automatically gener-
ate new test cases searching for a test case that violates the requirement. In the opposite
case, engineers need to inspect the trace to understand the cause of the violation.

In response to this, trace-diagnostic techniques have emerged to explain why a violation
occurred. Current approaches either isolate parts of the traces to identify the violation [13,
14, 15, 16] or analyze the traces for common behaviors leading to the violation [17, 18,
19, 20]. For example, Boufaied et al. [19] applied the latter method to diagnose violations

1Image generated using DALL-E.

2

in signal-based temporal requirements. The approach requires a language-specific library
of violation causes and diagnoses. Then, it uses its database to search for an explanation
for the requirement violation. Nevertheless, significant limitations were identified in this
method.

Signal-temporal languages, while useful for some CPS requirements, struggle to fully
capture the discrete behaviors often seen in CPS. Moreover, their catalog of violation
causes was incomplete and unable to explain many root causes in their dataset. A core
difficulty is that CPS, which often involves interactions with unpredictable physical envi-
ronments, cannot anticipate all possible interactions. As a result, it’s nearly impossible
to create a complete catalog of violation causes in advance. Complex CPS like satellites,
self-driving cars, service robots, and IoT systems feature numerous interconnected mod-
ules, and in many cases, engineers are left with only the system trace and specification to
work from, making full system modeling infeasible.

1.2 Research Challenges

Despite the progress in trace-diagnostic techniques, two major challenges limit their prac-
tical application:

• Challenge C1 : Incomplete Knowledge of System Behavior:

The inherent complexity of CPS is a challenge. These systems often involve various
components interacting in dynamic and unpredictable environments. Hence, engi-
neers naturally will have limited knowledge of all potential interactions and failure
modes prior to execution. This challenge makes pre-defining a complete set of vio-
lations and diagnoses difficult, opening diagnostic gaps when unexpected behaviors
arise.

• Challenge C2 : Unpredictability of Emergent Behaviors:

Even when a library of violation causes exists, CPS often exhibits emergent behav-
iors — unexpected interactions between components or the environment that were
not foreseen during design or testing. These emergent behaviors can lead to require-
ment violations that do not fit neatly within predefined categories, meaning existing
diagnostic libraries may fail to provide an explanation. This unpredictability makes
static approaches insufficient for fully diagnosing complex real-world systems.

This work mitigates these challenges by proposing search-based trace-diagnostic (SBTD),
a novel trace-diagnostic framework for CPS. Unlike existing techniques, SBTD uses an

3

evolutionary search approach to generate new candidate diagnoses. This automated gen-
eration enables the dynamic creation of new diagnoses and provides two benefits. First, it
addresses challenge C1 since it does not require as input a library of predefined violation
causes and diagnoses. This relieves engineers from the time-consuming and error-prone
definition of such a library, when it is unavailable. Second, it resolves the challenge C2 by
enabling the dynamic creation of new diagnoses, which increases the likelihood of finding
a valid explanation for a given violation. We defined Diagnosis, which is an instance of
SBTD that considers properties modeled using the Hybrid Logic of Signals (HLS) [12].

1.3 Research Questions and Evaluation

1.3.1 Research Question 1

Given the presented Research Challenges (C1 and C2), we can derive the following Re-
search Questions:

RQ1: How do we provide a diagnosis of a violation of the CPS requirement when
there is no complete knowledge of the cause?

This question aims to propose a method for diagnosing requirement violations in scenarios
where a library of causes is incomplete or unavailable before testing. In such cases, the
focus shifts toward developing strategies to identify violations even when prior information
is limited or missing. To address this question, we propose an approach in which the user
can diagnose any system by utilizing only a violated requirement and a trace from its
execution without any previous knowledge of the system. The details of this solution will
be presented in Chapter 3.

1.3.2 Research Question 2

Once we have a diagnosis, we can also evaluate the provided solution giving also another
Research Question:

RQ2: How trustworthy are the generated diagnoses?

This study evaluates the trustworthiness of the proposed diagnostic method, focusing on
accuracy and applicability of our solution in real-world CPS applications. We assess the
accuracy of the generated diagnoses through metrics such as precision and recall. While
applicability is determined using a benchmark comprising several case studies, designed
to stress test the system as well as explore edge cases. To achieve this, we compare our

4

results with those of domain experts using precision and recall, while also evaluating the
time required to generate a diagnosis.

We conducted 34 experiments involving 17 trace-requirement combinations that re-
sulted in property violations across three systems: two automotive and one robotics.
The effectiveness of our solution was measured by its ability to produce accurate and in-
formative diagnoses, providing actionable recommendations for system improvement. A
comprehensive discussion of our evaluation is presented in Chapter 5, which summarizes
that our framework demonstrated high accuracy in most experiments, although some
limitations were noted due to performance constraints.

1.4 Research Contributions

To summarize, our contributions are as follows:

• Search-based trace-diagnostic (SBTD), a novel trace-diagnostic technique for CPS
based on evolutionary search (Chapter 3);

• An SBTD framework that supports properties expressed using the HLS (Section 3.3);

• The implementation of our SBTD framework, namely Diagnosis, which is publicly
available [21];

• An extensive empirical evaluation of our solution (Chapter 4).

1.5 Document Roadmap

Our thesis is organized as follows. Chapter 5 discusses related work. Chapter 2 presents
our running example from the automotive domain. Chapter 3 introduces SBTD frame-
work. Chapter 4 evaluates our contribution and in Section 4.4 we reflect on our findings.
Chapter 6 presents our conclusions.

5

Chapter 2

Running Example

Building on the challenges and questions discussed earlier, this chapter introduces a run-
ning example that will be used throughout the thesis to illustrate our approach. By
following this example, the reader will better understand the concepts and techniques
developed in this work. Moreover, it will serve as a reference point for interpreting the
results and understanding how our approach functions in practice. The scenario, require-
ments, and trace presented here will be revisited in later chapters to explain key concepts
in context. In the following chapter, we will detail the approach, using this example to
walk through how it arrives at the expected outcomes.

2.1 The Example

Unlike the forklift example introduced earlier, which dealt with specific issues in real-world
testing, this example is designed to help explain our approach in a clear and focused
scenario. While this specific example will guide the reader through the key concepts
in the thesis, our approach is evaluated later using this and other different systems,
demonstrating its flexibility across various configurations. Our running example involves
a vehicle that must follow a trajectory while avoiding obstacles, as illustrated in Figure 2.1.
The solid line represents the intended trajectory, while the dashed line shows the actual
path taken by the vehicle.

Automotive engineers analyze if their system behaves correctly by considering a set
of driving scenarios. To specify the vehicle’s behavior and verify its adherence to the
trajectory-following requirement, engineers express the system’s requirements using the
model described by the Equation (2.1).

ϕ ::= ∀τ0 ∈ [0, ∞),

d_pos_x(τ0) − v_pos_x(τ0) < 20cm

d2obs(τ0) > 50cm
(2.1)

6

This requirement ϕ specifies that, for every time instant τ0 from the beginning (time
0) to the end (∞) of the simulation, the two following conditions should hold:

1. the difference (d_pos_x @t (τ0) − v_pos_x @t (τ0)) between the desired position
(d_pos_x) and the actual vehicle position (v_pos_x) in the x-axis at time τ0 is
lower than a threshold value (20cm), and

2. the Euclidean distance (d2obs) between the vehicle’s border and the obstacle’s bor-
der is greater than the threshold value (50cm).

0 5 10 15 x [m]20

0

5

10

-5

y [m]

0 2
1

3

4

5

Figure (2.1) Example of failure-revealing scenario.

The scenario from Figure 2.1 represents a failure-revealing scenario in which the re-
quirement ϕ is not satisfied: while following a desired trajectory (solid line), the course
followed by the car (dashed line) causes the vehicle to reach a position (“2” labeled posi-
tion) with a distance lower than 50cm from the obstacle.

v_pos_x −0.15 −0.16 5.66 11.87 17.49 19.31
d_pos_x −0.15 −0.16 7.86 14.56 19.09 19.31
d2obs 6.05 7.05 0.007 2.23 8.44 8.15

timestamp 0 1.0 5.0 11.0 12.5 15.0
position 0 1 2 3 4 5

Record r2

Figure (2.2) A fragment of an execution trace for our case study.

Figure 2.2 reports a fragment of the execution trace for this driving scenario. Each
position of the vehicle from Figure 2.1 is associated with a trace record that specifies the
values assumed by the variables v_pos_x, d_pos_x, and d2obs, representing the actual
position of the vehicle, the desired position of the vehicle, and the Euclidean distance

7

between vehicle’s and the closest obstacle’s border, at different simulation times. The
values assumed by the variable timestamp represent the time instant of the different trace
records. For example, the trace record r2 specifies that at time instant 5.0s, the position
of the vehicle is v_pos_x = 5.66m, the desired position is d_pos_x = 7.86m, and the
distance to the closest object’s border is d2obs = 0.007m.

When engineers inspect the execution trace, they need to identify the root causes of
the failure. For example, for the scenario from Figure 2.1 and the corresponding trace
in Figure 2.2, the vehicle fails to maintain the required safe distance of 50cm from the
obstacle. At time instant 5.0s the distance is 7mm. Obtaining these explanations is
usually challenging; requirements (e.g., expressed in HLS [12] or SB-TemPsy-DSL [19])
typically rely on many temporal operators and may have a complex structure. The goal
of SBTD is to support engineers in automatically producing diagnostic information that
can be useful for understanding the causes of the failure by relying on a search-based
trace-diagnostic approach.

2.2 Hybrid Logic of Signals

The Hybrid Logic of Signals (HLS) was first introduced in [12] as a new and more expres-
sive specification language compared to STL [22] and SB-TemPsy-DSL [23], tailored for
specifying CPS requirements. HLS enables engineers to define properties that reference
both time-stamps and indices in CPS traces, enabling easy specification of both cyber
and physical component behaviors and their interactions.

Figure 2.3 presents the grammar of HLS from [12], where symbol “|” separates alter-
natives, TV is a set of timestamp variables, IV is a set of index variables, RV is a set of
real-valued variables, and S is a set of signal variables.1 An HLS formula (non-terminal
p) is a relational expression over terms, a Boolean expression over formulae, or quantified
formulae. Quantified formulae support quantification over timestamp variables (▷ τ in
IT [. . .]), over index variables (▷ σ in IJ [. . .]), or over real-valued variables (▷ ρ [. . .]),
where ▷ represents the existential (exists) or universal (forall) quantifier. A term
(non-terminal tm) is a time term, an index term, or a value term. A time term (non-
terminal tt) is a timestamp variable τ , a literal denoting a value t, the value returned by
the operator i2t (“index to timestamp”), or an arithmetic expression over these entities.
An index term (non-terminal it) is an index variable σ, a literal denoting a value j, the
value returned by the operator t2i (“time to index”), or an arithmetic expression over
these entities. A value term (non-terminal vt) is a real-valued variable ρ, a literal denot-

1We slightly revisited the presentation of the grammar to include derived operators (e.g., forall,
and).

8

ing a value x, the value of a signal returned by the operators @i (“at index”) and @t (“at
timestamp”), or an arithmetic expression over these entities.

Formula p ::= tm1 ⊕ tm2 | not p | p1 ⊖ p2
| ▷ τ in IT such that p
| ▷ σ in IJsuch that p
| ▷ ρ such that p

Term tm ::= tt | vt | it

Time Term tt ::= τ | t | i2t(it) | tt1 ⊙ tt2

Index Term it ::= σ | j | t2i(tt) | it1 ⊙ it2

Value Term vt ::= ρ | x | (s @i it) | (s @t tt) | vt1 ⊙ vt2

t, x ∈ R, j ∈ N+, IT ⊆ R, IJ ⊆ N+, τ ∈ TV , σ ∈ SV , ρ ∈ RV , s ∈ S
⊙ ∈ {+, −, ∗, /};
⊕ ∈ {>, <, ≤, ≥, =, ̸=}
⊖ ∈ {or, and, implies}
▷ ∈ {exists, forall}.

Figure (2.3) Syntax of HLS.

Therefore, using HLS, engineers specify the same requirement ϕ of the vehicle as:

ϕ ::= forall τ0 in [0, ∞) such that

(d_pos_x @t (τ0) − v_pos_x @t (τ0)) < 20 cm and d2obs @t (τ0) > 50 cm

The semantics of the background colored boxes will be defined in Chapter 3 and
Section 3.3. We will use ϕ(and), ϕ(20), ϕ(50) to respectively indicate the operator
and and the values 20 and 50 contained within the yellow, red, and blue colored
background boxes of the requirement ϕ.

2.3 ThEodorE

ThEodorE was introduced in [1] as a tool for verifying traces based on properties defined
in HLS specifications. It simplifies trace verification by translating the problem into a
satisfiability task, which can be solved using a Satisfiability Modulo Theories (SMT)
solver.

As an Eclipse plugin, ThEodorE accepts both a system specification and an execution
trace. It then generates a Python script that leverages an SMT engine to check if the
trace conforms to the given specification.

ThEodorE offers users an intuitive graphical interface within Eclipse. This includes a
syntax checker for writing requirements and an automated process for verifying whether

9

those requirements hold true for execution traces of a Cyber-Physical System (CPS).
Figure 2.4 shows the schematic representation of the ThEodorE trace-checker and its
software components. The tool is available in a public repository in [24].

Figure (2.4) Schematic representation of ThEodorE trace-checker from [1].

10

Chapter 3

Diagnosis

In the previous chapter, we introduced our motivating example, outlining the inputs,
outputs, and rationale behind our approach. While demonstrating how to interpret the
results through a real-world case study. This established the need for effective diagnostics
in complex CPS systems.

In this chapter, we focus on the detailed workings of our approach and its three key
modules. We show their implementation and the reasoning behind the implementation
choices. Throughout, we refer to the motivating example introduced earlier to clarify
core concepts and illustrate how our approach operates in practice. The next chapter
is dedicated to evaluating the performance and flexibility of our approach across various
CPSs.

3.1 Search in Search-Based Trace-Diagnostic

Cyber-physical systems (CPS) are inherently complex due to dynamic interactions be-
tween components and their environment. This complexity extends to system require-
ments, which often include temporal operators and intricate structures. Diagnosing re-
quirement violations in such systems presents significant challenges, particularly in deter-
mining how individual terms contribute to these violations. Unlike traditional methods
relying on formal models, our approach is entirely model-independent, focusing solely on
requirement terms, making it applicable even when constructing formal models is imprac-
tical.

Genetic programming (GP) [25] offers a natural solution to explore large search spaces
effectively. Using crossover and mutation, GP generates diverse requirements variations,
enabling a wider exploration of term interactions. Our model-independent approach de-
rives insights directly from the structure of requirements without relying on formal models.
A reasonably defined fitness function [26] is sufficient to guide the GP process effectively,

11

although experimenting with different functions may enhance performance by avoiding
local optima and accelerating convergence.

One key challenge is comparing requirements involving a mix of logical, mathemat-
ical, and comparison operators, along with numerical values and time intervals. The
expressiveness of these requirements complicates measuring the “distance” between them,
necessitating further research. To address this complexity, we simplify by measuring the
similarity between two properties rather than directly assessing intricate operator inter-
actions, balancing implementation feasibility with effective exploration.

Gaaloul et al. [27] similarly applied GP to generate environment assumptions through
model checking. However, our approach differs by being entirely model-agnostic, evolving
requirement variations to uncover significant patterns associated with violations, thereby
extending applicability to a wider range of systems without model dependencies.

By expanding the search space through tailored mutation and crossover operations, GP
reveals patterns and relationships among terms that contribute to requirement violations.
These insights are systematically compiled into a reusable catalog of violation causes,
facilitating future diagnostics.

In conclusion, GP not only aids in diagnosing requirement violations but also provides
a systematic, model-independent framework for analyzing and categorizing the impact
of individual terms on system behavior. This model-free approach is particularly well
suited for diverse CPS scenarios where formal models are unavailable, thereby enhancing
its utility across various complex systems.

3.2 Search-based Trace-Diagnostic

1 Generator
of Mutations

2 Trace-Checker

3 Diagnostic
GeneratorViolated

Requirements
(ϕ)

Diagnosis
or ‘Not found’

Mutated
Requirements
(Ψ)

Trace-checking
Verdicts
(∆)

Trace
(π)

Figure (3.1) The search-based trace-diagnostic framework.

Figure 3.1 presents an overview of SBTD. The input of SBTD is a trace-requirement
combination (⟨π, ϕ⟩) made by a requirement formalized as a property (ϕ) unsatisfied over
the trace (π) and a time budget (b). SBTD either successfully returns a diagnosis d or

12

informs the user that it could not find a diagnosis within the available budget. SBTD
works in three steps:

1 The Generator of Mutations step generates a set Ψ of candidate mutated require-
ments from a (set of) requirement(s). Our SBTD framework generates mutated
requirements with high similarity with the original requirement ϕ which can more
likely be informative in explaining the cause of the violation. For example, given
the requirement formalized as ϕ of our running example from Chapter 2, the gener-
ator synthesizes the following mutated requirement ϕ′ by changing the value ϕ(50)
reported within the blue colored background box (50cm) into 45cm.

ϕ′ ::= forall τ0 in [0, ∞) such that

(d_pos_x @t (τ0) − v_pos_x @t (τ0)) < 20 cm and d2obs @t (τ0) > 45 cm

2 The Trace-Checker step receives a set of mutated requirements Ψ and checks whether
each mutated requirement is satisfied or violated by the trace π rendering a set of
pairs each associating a trace-requirement combination with a Boolean value indi-
cating whether the requirement is satisfied or violated over the corresponding trace.
Considering our running example, when the trace-checker evaluates the mutated
requirement ϕ′, it detects that the trace π satisfies the requirement ϕ′ and produces
the pair {⟨π, ϕ′⟩, T rue}. The Trace Checker component produces a set ∆ of pairs
{⟨π, ϕ′⟩, υ} made by the trace π, the mutated requirement ϕ′, and the correspond-
ing trace checking verdict υ. However, to run the Diagnostic Generator step, it is
necessary to have at least a certain number of satisfied and violated requirements
within the set ∆, such that the Diagnostic Generator can produce an informative
diagnosis. Therefore, the Generator of Mutations and the Trace-Checker are exe-
cuted iteratively and the set ∆ is augmented with the newly generated pairs until
(at least) a certain number of satisfied and violated requirements are present.

3 The Diagnostic Generator step analyzes the requirement ϕ and the pairs contain-
ing the trace-checking verdicts of the mutated requirements (e.g., {⟨π, ϕ′⟩, T rue})
to produce a diagnosis. If it can not produce an informative diagnosis, it starts
another iteration by running step 1 and by considering a new set of the mutated
requirements. Otherwise, it returns the diagnosis to the user.

The algorithm stops by either outputting the informative diagnosis, if found within the
time budget (b), or by prompting a message indicating that SBTD could not produce a
diagnosis within the time budget.

13

To illustrate our methodology, Figure 3.2 presents a decision tree (DT) as the diagnosis
of our SBTD for the running example.

ϕ(and)

ϕ(50)

ϕ(20)

False (61)

≤ 547.2035

True (219)

> 547.2035

≤ 0.686

False (752)

> 0.686

and

ϕ(20)

ϕ(50)

True (65)

≤ 0.6942

False (191)

> 0.6942

≤ 547.4066

True (720)

> 547.4066

or

Figure (3.2) Diagnosis generated for our automotive example.1

The diagnosis highlights which sets of changes for ϕ(and), ϕ(50), ϕ(20) can make
the formula satisfied. For example, for the considered trace, to make the requirement
satisfied, the developer can maintain the and logical operator for ϕ(and), set a thresh-
old value ϕ(20) for the difference between the desired and the actual vehicle position
higher than 548.0303cm, and the threshold value ϕ(50) for the difference between the
vehicle border and the obstacle border lower than 0.6864cm. The tool identifies the values
548.0303cm and 0.6864cm since, for the considered trace, they are respectively the maxi-
mum distance between the desired and the actual trajectory and the minimum distance
between the vehicle and the obstacle border. This information shows to the engineer that
(a) the vehicle is not precisely following the desired trajectory (the difference between the
desired and the actual vehicle position should be increased) to satisfy the requirement,
and (b) the vehicle is also not maintaining the distance from the obstacle (the difference
between the vehicle border and the obstacle should be decreased to satisfy the require-
ment). However, since setting the value for the difference between the vehicle border
and the obstacle to 0.6864cm satisfies the requirement, the diagnosis also shows that the
vehicle does not collide with the obstacle. Changing the and logical operator into an
or enables engineers to understand that making only one of the aforementioned changes
makes the requirement satisfied.

SBTD can be customized depending on the type of diagnosis the engineers are looking
for. The definition of the diagnosis influences the behavior of the Generator of Mutations
and the Diagnostic Generator components. In the first place, the Generator of Mutations
should generate requirements that most likely guide the search toward the generation of a

14

suitable diagnosis. Then, the Diagnostic Generator should aggregate the pairs produced
by the Trace Checker based on the type of the desired diagnosis.

3.3 Search-based Trace Diagnostic for HLS

In this section, we describe an SBTD that supports requirements expressed in HLS. We
present change-driven diagnosis (Section 3.3.1), the type of diagnosis supported by our
SBTD instance. We describe the Generator of Mutations (Section 3.3.2), Trace-Checker
(Section 3.3.3), and Diagnostic Generator (Section 3.3.4) components that support this
type of diagnosis.

Table (3.1) Mutation Operators: the table contains the original formula and the mutated
formula

OP Original Formula Mutated Formula
OP1 p not p
OP2 tm1 ⊕ tm2 tm1 ⊕′ tm2
OP3 not p p
OP4 p1 ⊖ p2 p1 ⊖′ p2
OP5 ▷ τ in IT such that p ▷′ τ in IT such that p
OP6 ▷ σ in IJsuch that p ▷′ σ in IJsuch that p
OP7 ▷ ρ such that p ▷′ ρ such that p
OP8 tt1 ⊙ tt2 tt1 ⊙′ tt2

OP Original Formula Mutated Formula
OP9 it1 ⊙ it2 it1 ⊙′ it2
OP10 vt1 ⊙ vt2 vt1 ⊙′ vt2
OP11 t t′

OP12 j j′

OP13 x x′

OP14 s @i it s′ @i it
OP15 s @t tt s′ @t tt

⊕′ ∈ {>, <, ≤, ≥, =, ̸=} \ {⊕}
⊖′ ∈ {or, and, implies} \ {⊖}
⊙′ ∈ {+, −, ∗, /} \ {⊙};
if ▷ = forall, then ▷′ = exists if ▷ = exists, then ▷′ = forall.
t, t′ ∈ T, j, j′ ∈ J, x, x′ ∈ R, τ ∈ TV , σ ∈ SV , ρ ∈ RV , s, s′ ∈ S.

forall τ0 in IT such that p

[0, ∞) and

<

+

d_pos_x @t (τ0) v_pos_x @t (τ0)

20cm

>

d2obs @t (τ0) 50cm

(a) AST for the requirement ϕ

forall τ0 in IT such that p

[0, ∞) and

<

−

d_pos_x @t (τ0) v_pos_x @t (τ0)

20cm

>

d2obs @t (τ0) 45cm

(b) AST for the requirement ϕ′.
Figure (3.3) AST of an HLS requirement and its mutation obtained by applying the
mutation operator OP13 to the node with the blue background.

1For simplicity, in our running example, we removed the “implies” operator from the mutation.

15

3.3.1 Change-Driven Diagnosis

Change-driven diagnosis explains requirements violations by describing which (set of)
change(s) can lead to a requirement satisfied by the trace. For example, the decision
tree (DT) reported in Figure 3.2 explains to engineers which changes applied to the
requirement ϕ make it satisfied by the trace. This information helps engineers understand
that, although the 50cm safety distance is violated and that the car does not follow the
desired trajectory with a tolerance of 20cm, the car does not collide with the obstacle and
the car deviates from the desired trajectory by a few meters: Setting the threshold value
0.68cm as safety distance between the car and the vehicle and 548.04cm as the tolerated
deviation from the desired trajectory will make the requirement satisfied over the trace.

As our running example shows, engineers can select sub-portions of the requirements
the changes should target. For example, for the requirement ϕ from Chapter 2 the red,
yellow, and blue labeled boxes identify the sub-portions of the formula that the changes
should refer to. The engineer is interested in how changes affect the satisfaction of the
requirement, regarding: (i) the threshold distance between the desired and the actual
trajectory of the car (ϕ(20)), (ii) the threshold distance between the vehicle and the
obstacle (ϕ(50)), and (iii) the logical operator “and” (ϕ(and)) that relates (i) and (ii).
Intuitively, changes in the distances enable engineers to understand how the distance
between the desired and the actual trajectory of the car and between the vehicle and
the obstacle affect requirement satisfaction; changes in the logical operator “and” enable
engineers to understand if both clauses of the requirements are violated.

Definição 1 [Change-Driven Diagnosis] Let ⟨π, ϕ⟩ be a trace-requirement combina-
tion made by a requirement (ϕ) unsatisfied over the trace (π) and sub(ϕ) a portion
of the requirement the changes should target. A diagnosis d is a (set of) change(s) in
the portion sub(ϕ) of the requirement ϕ that makes the requirement ϕ satisfied by π.

An in-depth perspective of the SBTD steps to generate change-driven diagnosis for
HLS requirements follows.

3.3.2 Generator of Mutations

This component receives a (set of) requirement(s) as inputs and generates a set of mutated
requirements by sequentially performing the mutation and crossover operations.

The mutation operations component considers an HLS requirement and changes the
portions of the Abstract Syntax Tree (AST) that refer to the sub-portions of the require-
ments identified by the engineers. For example, the AST for the requirement ϕ of our
motivating example is presented in Figure 3.3a. The portions of the abstract syntax tree

16

(AST) referring to the sub-portions of the requirements identified by the engineers are
identified by colored nodes. Specifically, the nodes referring to the logical operator “and”
and the threshold values 20cm and 50cm are with yellow, red, and blue background col-
ors. The operator has to select the number of nodes to mutate between zero and the total
number of nodes of the AST. This selection is related to portions of the requirement that
the engineers are interested in. Then, it uses the mutation operators from Table 3.1 to
mutate the nodes of the AST. Depending on the specific application, engineers can specify
a subset of operators to be used by the generator of mutations. Operator OP1 mutates
the HLS requirement p into its negation not p. Operator OP2 mutates the relational op-
erator ⊕ by selecting another relational operator ⊕′. Operator OP3 removes the negation
operator from the HLS requirement not p. Operator OP4 mutates the Boolean operator
⊖ used to combine the two requirements p1 and p2 by selecting another Boolean operator
⊖′. The operators OP5, OP6, and OP7 mutate the existential quantifier exists into
the universal quantifier forall and vice versa. The operators OP8, OP9, and OP10
mutate the arithmetic operator ⊙ by selecting another arithmetic operator ⊙′. The op-
erators OP11, OP12, and OP13 mutate the time, index and value terms t, j, and x by
selecting new values t′, j′, and x′. Finally, the operators OP14 and OP15 mutate the
value terms s @i it and s @t tt into s′ @i it and s′ @t tt by selecting a new signal s′. All
the mutation operators do not change the structure of the AST of the formula, but only
the content of its nodes. In our running example, engineers select the operators OP4,
that can mutate the logical operator “and”, and the operator OP13 that can mutate the
value terms representing the threshold values 20cm and 50cm. Figure 3.3b presents the
AST of the requirement ϕ′: An example of a mutation for the AST from Figure 3.3a of
the requirement ϕ of our running example where the operator OP13 replaces the value
“50cm” with the value “45cm”.

ID Parameter Textual Description
CR Crossover rate Probability of applying the crossover operator.
MR Mutation rate Probability of applying the mutation operator.
PS Population size Number of requirements considered by the SBTD framework at each iteration.
SA Selection Algorithm The algorithm to be chosen for the selection of the requirements (Elitism or Roulette Wheel).
PTBC Parents to Be Chosen Number of requirements to be considered as a parent when using Elitism.
MG Max Generation Maximum number of iterations in the SBTD.
TS Tournament Size Number of requirements that compete to be selected as a parent.
TCTO Trace check time out Maximum time allowed for trace check to check a requirement.
PGTO Program time out Maximum time allowed for SBTD to find the requested solution.

Table (3.2) Configuration Parameters for our SBTD framework.

The crossover operator generates new candidate requirements by (a) selecting a pair
of requirements, and (b) combining them. Next, we further explain how our algorithm
selects the best pair of requirements by finding the best alignment between requirements,

17

forall τ0 in IT such that p

[0, ∞) and

<

+

d_pos_x @t (τ0) v_pos_x @t (τ0)

20cm

...

(a) Requirement ϕ1.

forall τ0 in IT such that p

[3, 5) or

≥

−

d_pos_x @t (τ0) v_pos_x @t (τ0)

50cm

...

(b) Requirement ϕ2.

forall τ0 in IT such that p

[0, ∞) and

≥

−

d_pos_x @t (τ0) v_pos_x @t (τ0)

50cm

...

(c) Offspring ϕ3.
Figure (3.4) Example of application of the over operator: the requirement ϕ3 is obtained
from the requirement ϕ1 by swapping the subtree with the root node with a red background
with the corresponding subtree from the requirement ϕ2.

then, we distill how we combine the best pair of requirements by swapping corresponding
nodes from the AST trees representing each requirement.

To select the best requirements pair, the crossover operator computes a fitness value
for each mutated requirement. The fitness value of each mutated requirement is obtained
by comparing the mutated requirement with the original requirement using the score
function of a pairwise alignment algorithm, namely Smith–Waterman [28]. Therefore, the
fitness value is the score of the best local alignment between requirements such that the
higher the fitness the more similar the mutated requirement to the original requirement
is. Our choice for rewarding the similarity between requirements is grounded in the
idea that fewer, but relevant, mutations in the requirements lead to fewer interactions
between term changes, and consequently reduce the effect of the confounding bias [29].
In other words, the higher the similarity between the originally violated and the mutated
HLS requirements, the lower the chances of having spurious factors that could incorrectly
imply causation between the term changes and the requirement satisfaction (or violation).

Figure 3.5 demonstrates an example of calculating the fitness value of the mutated
requirement ϕ′ using the score function of the Smith-Waterman algorithm. The algorithm
compares the distance between the original requirement (ϕ) and the mutated requirements
(ϕ′), term by term. We use the algorithm as follows2: (i) mapping terms, (ii) calculating
the initial scoring matrix, and (iii) collecting the score.

(i) Mapping terms. The algorithm maps the terms that can be mutated from both
requirements (ϕ and ϕ′) enriched with a “null” element to rows and columns of a scoring
matrix. For example, Figure 3.5 represents the scoring matrix SM associated with the
requirements ϕ and ϕ′, where the terms that can be mutated in ϕ (i.e., ϕ(20), ϕ(and),

2Originally the SW algorithm computes the best local alignment to find the places where the term
changes. However, for the purpose of informative diagnosis generation, we are concerned not only with
the places of change but also with the domain and range of the values where the change takes place. Such
step of our approach is further explained in Section 3.3.4.

18

null ϕ(20) ϕ(and) ϕ(50)

null 0 0 0 0
ϕ′(20) 0 3 1 0

ϕ′(and) 0 1 6 4
ϕ′(45) 0 0 4 3

Figure (3.5) Example of fitness calculation using the score function of the Smith-
Waterman algorithm.

ϕ(50)) and ϕ′ (i.e., ϕ′(20), ϕ′(and), ϕ′(45)), are respectively reported in the headers
of its rows and columns.

(ii) Calculating the scoring matrix. The value zero is associated with matrix cells from
rows and columns labeled with the “null” elements. The values of the remaining cells are
calculated according to Equation (3.1).

SM [i, j] = max

SM [i − 1, j − 1] + s(ϕi, ϕ′
j)

SM [i − 1, j] + W

SM [i, j − 1] + W

0

(3.1)

The equation specifies that the value of the scoring matrix SM in position i, j, i.e.,
SM [i, j], depends on the similarity score (s(ϕi, ϕ′

j)) of requirement ϕ in position i and
requirement ϕ′ in position j, with gap score (W , a.k.a. penality gap). The gap score
penalizes formulae that require swapping many terms to be aligned. We set the similarity
score s(ϕi, ϕ′

j) to the value 3 when the terms from the column headers i and j coincide,
to the value −3 otherwise. We considered the value −2 for the gap score (W).

(iii) Collecting the score and measuring the fitness. The score is the highest value in
the scoring matrix. In the example from Figure 3.5, the score is 6 from cell SM [3, 3].
Ultimately, we use the score as the fitness value in the following steps of the algorithm.

We implemented two selection methods that use these fitness values:

1. Elitism [30, 31]: selects two parents randomly between the best ten formulas follow-
ing their fitness.

2. Roulette wheel [30, 31]: selects two parents based on their fitness, where the higher
the fitness, the higher the probability of being selected.

To combine the pair of HLS requirements, we randomly select a node from the AST of
the first requirement and swap it with the corresponding node of the second requirement.
For example, Figure 3.4 presents an example of an application of the mutation operator:
The mutation operator selects the sub-tree from the requirement ϕ1 with the red node as

19

a root (Figure 3.4a) and swaps it with the corresponding sub-tree from the requirement ϕ2

(Figure 3.4b) leading to requirement ϕ3 (Figure 3.4c). Notice that, since the mutation
operators do not change the structure of the AST, all the requirements have the same
structure.

Table 3.2 lists the set of parameters to be configured by engineers to run the SBTD
framework. For example, the crossover rate (CR) is the probability of applying the
crossover operator.

The Generator of Mutations component generates a set of candidate requirements Ψ,
which are then considered by the Trace checker component, explained as follows.

For the generator of mutations (1), we developed a Python script (i.e., ga.py) that
implements the algorithm from Section 3.3.2. We decided to implement this procedure
(instead of using an external library) since this decision enables controlling the data struc-
tures used by the algorithms to represent HLS requirements. This decision simplified the
implementation of the operators from Table 3.1 and the fitness metric from Section 3.3.2.

3.3.3 Trace-Checker

The trace checker component considers the trace π and the candidate requirements Ψ and
verifies which requirements hold on π. This is done by considering each HLS requirement
ϕ ∈ Ψ, and by running an existing trace-checker that can verify whether the requirement
holds or not on the trace π, i.e., whether π |= ϕ.

The Trace Checker component produces a set ∆ of pairs {⟨π, ϕ′⟩, υ} made by the trace
π, the mutated requirement ϕ′, and the corresponding trace checking verdict υ. These
pairs are fed into the Diagnostic Generator.

For the trace checker component (2), we used the ThEodorE [1] trace-checking tool
since it supports requirements expressed in HLS. ThEodorE can produce three possible
verdicts: “satisfied”, if the trace satisfies the requirement, “violated”, if it does not, or
“unknown”, if the SMT solver used by ThEodorE to solve the trace-checking problem
can not deduce whether the requirement is satisfied or violated. The “unknown” verdict
is returned when the underlying SMT technology used by the solver can not produce
results for some specific instances of the problem [12]. Therefore, the diagnostic generator
component will also create leaves labeled with the “unknown” verdict to explain cases
where the trace-checker could not produce any verdict.

3.3.4 Diagnostic Generator

The Diagnostic Generator relies on two steps: (a) requirement filtering, and (b) decision-
tree computation.

20

1 forall τ0 in IT such that p,[0, ∞),and,<,+,...,satisfied
2 forall τ0 in IT such that p,[3, 5),and,≥,-,...,violated

Figure (3.6) Entries considered by the learning algorithm.

The requirement filtering step selects the requirement mutations that are more similar
to the original requirement for the computation of the decision tree while ensuring that the
number of satisfied and unsatisfied requirements is the same. The requirement filtering
ranks the mutated properties using the score function of the Smith–Waterman algorithm
(as done by the cross-over operator — Section 3.3.2) for selecting the requirements to
be combined. Then, it selects a subset of requirement mutations with the highest fitness
values. The number of selected requirement mutations is defined by the parameter Parents
to Be Chosen (PTBC) specified by the user (see Table 3.2).

The decision-tree computation works in two steps: Data Preparation and Learning

Data Preparation – Before running our learning technique, we have to prepare our
data. Specifically, we have to represent the AST of each requirement in a format that
is processable by a learning technique. We remark that the generator of mutations
creates properties by not changing the structure of the AST.

Learning – The learning algorithm processes the input file and classifies the require-
ments based on the trace-checking verdict (satisfied or violated). We run J48 [32],
a widely used ML algorithm [33] that generates decision trees that classify training
data. Figure 3.2 illustrates an example of a resulting decision tree where ϕ(and)
is the root node of the tree since splitting the ϕ(and) operator renders a bigger
information gain than a split in ϕ(50), ϕ(20). Leaf nodes (True, False) are labeled
with the frequency of whether the selected term results in the verdict.

For the diagnostic generator component (3), we used the Java implementation of the
C4.5 algorithm [32] available in Weka [34]. We selected the C4.5 algorithm, since it is a
widely used learning algorithm for decision trees [33], and Weka, since it is a well-known
library of machine learning algorithms [35].

21

Chapter 4

Evaluation and Discussion

This chapter shows how we evaluate the approach presented. Here, we will define both
the methodology and its results. Therefore, our evaluation assesses the trustworthiness of
SBTD in identifying the correct cause for violated requirements. To this end, we consider
two evaluation questions.

EQ1: How accurate is SBTD in producing diagnoses? (Section 4.2)

To answer this question, we validate the outcome from SBTD with a domain expert,
which is regarded the ground truth of the experiments we conduct.

EQ2: How efficient is SBTD in producing informative diagnoses? (Section 4.3)

To answer this question, we assess the time required by SBTD to produce the diagnoses
and assess the execution time of the components from Section 3.3.

To answer our questions we used Diagnosis as an instance of an SBTD framework.
Our answers are based on the following: benchmark, experimental settings, and tool
configuration of Diagnosis. Our Diagnosis tool has been implemented and is publicly
available [21]. An appendix with a complete analysis of each experiment is also publicly
available on Zenodo [36].

4.1 Experiment Setting and Tool Configuration

We considered 17 trace-requirement combinations, made by a trace and a requirement
violated by the trace. Out of these combinations, 16 trace-requirement combinations
were generated by considering 16 requirements from the ARCH 2023 Competition [11],
an international SBST competition for Simulink models. The ARCH 2023 competition
builds on previous editions to establish a consistent benchmark for falsifying temporal logic
requirements over Cyber-Physical Systems (CPS). Its models and requirements have been

22

validated over several years, forming a robust foundation for evaluating system behavior
across diverse scenarios. The requirements used are a comprehensive set of temporal logic
specifications designed to test the resilience and robustness of a system, providing insights
into its ability to maintain safety and functionality under varied conditions. This aligns
well with our objective to evaluate how effectively our tool understands and responds to
requirements in different scenarios.

The use of the ARCH benchmark is particularly relevant in our context because it
offers a well-established baseline for testing CPS models. The requirements are designed
not only to stress test the system but also to explore edge cases, making them ideal for
assessing the nuanced impact of different requirement modifications. These benchmarks
allow us to contextualize our tool’s performance within a broader research landscape and
identify areas of strength or improvement.

It is important to note, however, that our evaluation diverges from the primary goals
of the ARCH competition. While the competition focuses on the falsification of require-
ments, our approach is centered on diagnosing requirement violations and understanding
the underlying causes. This difference in focus means that direct comparisons between our
tool and the competition results are not feasible. Lastly, the additional trace-requirement
combination we used was derived from a recent example by Zhao et al. [37], which involves
a robot following a trajectory while avoiding collisions, further enriching the evaluation
context by incorporating real-world application scenarios.

The trace-requirement combinations from the ARCH 2023 Competition [11] were ex-
tracted from the replication package of two of the tools that participated in the compe-
tition (ARIsTEO[3] and ATheNA-S [4, 38]), and by considering a trace that violates the
requirement that was returned by one of the tools. The traces have a large number
of records (min=1594, max=10001, Avg=6565.3, StdDev=2656.9). Table 4.1 contains a
textual description of the requirements we considered in our evaluation. The column ID
reports the identifier from the ARCH 2023 competition. Out of the seven models used in
the competition, we considered only the Automatic Transmission (AT) and Chasing Cars
(CC) since they have the highest number of requirements. The requirement identifiers
from the AT and CC models start with “AT” and “CC”. For the robotic scenario, we
considered one trace-requirement combination (RR). The requirement [39] specifies that
the robot should follow a desired trajectory while avoiding collisions.

Since the requirements from the ARCH competition are formalized in Signal Temporal
Logic (STL) [40], and Diagnosis supports HLS, we proposed an alternative specification
of the requirements in HLS. Table 4.2 contains the HLS formalization for the requirements
from Table 4.1. Since HLS is more expressive than STL [12], all the requirements could
be expressed in HLS.

23

ID Textual description

AT1 The vehicle’s speed (v) shall be lower than 120 mph (v ≤ 120mph) within [0 , 20]s.
AT2 The engine speed (ω) shall be lower than 4750 rpm (ω ≤ 4750rpm) within [0 , 10]s.
AT51 If the transmission enters Gear 1 within the time interval [0 , 30]s, it shall remain in that gear for the next

2.5 s.
AT52 If the transmission enters Gear 2 within the time interval [0 , 30]s, it shall remain in that gear for the next

2.5 s.
AT53 If the transmission enters Gear 3 within the time interval [0 , 30]s, it shall remain in that gear for the next

2.5 s.
AT54 If the transmission enters Gear 4 within the time interval [0 , 30]s, it shall remain in that gear for the next

2.5 s.
AT6a If the engine speed is lower than 3000 rpm within [0, 30]s, then the vehicle speed shall be lower than 35 mph

within [0, 4]s.
AT6b If the engine speed is lower than 3000 rpm within [0, 30]s, then the vehicle speed shall be lower than 50 mph

within [0, 8]s.
AT6c If the engine speed is lower than 3000 rpm within [0, 30]s, then the vehicle speed shall be lower than 65 mph

within [0, 20]s.
AT6abc The requirements AT6a, AT6b, and AT6c shall be simultaneously satisfied. (Same mutation parameters as

AT6c)

CC1 Car 5 shall always be at most 40 m ahead of car 4 within [0 , 100]s
CC2 Within [0 , 70]s, car 5 shall be at least 15 m ahead of car 4 at least once for the next [0 , 30]s.
CC3 At all times within [0, 80]s, for the next 20s, car 2 shall always precede car 1 by at most 20m, or car 5

shall precede car 4 by 40m at least once.
CC4 At all times within [0, 65]s, at least once in the next 30s, car 5 shall always be at least 8 m ahead of car

4 for the next 5s.
CC5 Within [0, 72]s, at least once in the next 8s, if car 2 precedes car 1 by more than 9 m for 5s, then car 5

shall precede car 4 by more than 9 m in the next 15s.
CCx Within [0 , 50]s, all cars shall always be at least 7.5 m ahead of the car immediately behind it. (The

mutation operator is applied only for the distance between cars 4 and 5).

RR From the beginning (time 0) to the end (∞) of the simulation, the following two conditions should hold: the
difference (d_pos_x @t (τ0) − v_pos_x @t (τ0)) between the desired position (d_pos_x) and the actual robot
position (v_pos_x) in the x-axis at time τ0 is lower than a threshold value (20 cm), and the Euclidean
distance (d2obs) between the robot’s border and the obstacle’s border is greater than the threshold value
(50 cm).

Table (4.1) Requirements from our benchmark.

For each trace-requirement combination, we defined the terms from the requirements
that should be considered to understand the causes of the violations. The parts of the
requirements and their formalization considered to understand the cause of the violations
are colored in Table 4.1 and Table 4.2. We performed two experiments for each trace-
requirement combination, considering different subsets of terms to be mutated. The two
columns of Table 4.4 report the subset of terms considered for each trace-requirement
combination. Considering two subsets of terms to be mutated for each trace-requirement
combination led to 34 experiments (17 × 2) marked in Table 4.4 with the identifiers exp1,
exp2, . . . , exp34. The mutation operators to be used for each experiment and the value
ranges to be considered to mutate the values of the real-valued variables are reported in
Table 4.4. For example, for the requirement AT1 and experiment exp1 the tool operator
considered the mutation operator OP13 for changing AT1(120) with threshold values
of [100, 140]mph; for experiment exp2 the operator considered the mutation operators

24

ID HLS formalization

AT1 forall τ0 in [0 , 20] such that v@t(τ0) ≤ 120 .
AT2 forall τ0 in [0 , 10] such that ω@t(τ0) ≤ 4750 .
AT51 forall σ0 in [t2i(0)+1,t2i(30)] such that ((gear@i(σ0-1) ̸= 1) and (gear@i(σ0) = 1)) implies (forall

τ0 in [i2t(σ0), i2t(σ0)+ 2.5] such that (gear @t(τ0) = 1)).
AT52 forall σ0 in [t2i(0)+1,t2i(30)] such that ((gear@i(σ0-1) ̸= 2) and (gear@i(σ0) = 2)) implies (forall

τ0 in [i2t(σ0), i2t(σ0)+ 2.5] such that (gear @t(τ0) = 2)).
AT53 forall σ0 in [t2i(0)+1,t2i(30)] such that ((gear@i(σ0-1) ̸= 3) and (gear@i(σ0) = 3)) implies (forall

τ0 in [i2t(σ0), i2t(σ0)+ 2.5] such that (gear @t(τ0) = 3)).
AT54 forall σ0 in [t2i(0)+1,t2i(30)] such that ((gear@i(σ0-1) ̸= 4) and (gear@i(σ0) = 4)) implies (forall

τ0 in [i2t(σ0), i2t(σ0)+ 2.5] such that (gear @t(τ0) = 4)).
AT6a (forall τ0 in [0, 30] such that ω@t(τ0) < 3000) implies (forall τ1 in [0, 4] such that v@t(τ1) < 35).
AT6b (forall τ0 in [0, 30] such that ω@t(τ0) < 3000) implies (forall τ1 in [0, 8] such that v@t(τ1) < 50).
AT6c (forall τ0 in [0, 30] such that ω@t(τ0) < 3000) implies (forall τ1 in [0, 20] such that v@t(τ1) < 65).
AT6abc ((forall τ0 in [0,30] such that ω@t(τ0) < 3000) implies (forall τ1 in [0,4] such that v@t(τ1) < 35)) and

((forall τ2 in [0,30] such that ω@t(τ2) < 3000) implies (forall τ3 in [0,8] such that v@t(τ3) < 50)) and
((forall τ4 in [0, 30] such that ω@t(τ4) < 3000) implies (forall τ5 in [0, 20] such that v@t(τ5) < 65)).

CC1 forall τ0 in [0 , 100] such that ((y5@t(τ0) - y4@t(τ0)) ≤ 40).
CC2 forall τ0 in [0 ,70] such that (exists τ1 in [τ0+ 0 ,τ0+30] such that ((y5@t(τ1) - y4@t(τ1)) > 15).
CC3 forall τ0 in [0,80] such that ((forall τ1 in [τ0,τ0+20] such that ((y2@t(τ1) - y1@t(τ1)) < 20)) or

(exists τ2 in [τ0,τ0+20] such that ((y5@t(τ2) - y4@t(τ2)) > 40))).
CC4 forall τ0 in [0,65] such that (exists τ1 in [τ0,τ0+30] such that (forall τ2 in [τ1,τ1+5] such

that ((y5@t(τ2) - y4@t(τ2)) > 8))).
CC5 forall τ0 in [0,72] such that (exists τ1 in [τ0,τ0+8] such that ((forall τ2 in [τ1,τ1+5] such

that ((y2@t(τ2) - y1@t(τ2)) > 9)) implies (forall τ3 in [τ1+5,τ1+20] such that ((y5@t(τ3) - y4@t(τ3))
> 9)))).

CCx (forall τ0 in [0 , 50] such that ((y5@t(τ0) - y4@t(τ0)) > 7.5)) and (forall τ1 in [0,50] such that ((y4@t(τ1)
- y3@t(τ1)) > 7.5)) and (forall τ2 in [0,50] such that ((y3@t(τ2) - y2@t(τ2)) > 7.5)) and (forall τ3 in [0,50]
such that ((y2@t(τ3) - y1@t(τ3)) > 7.5)).

RR forall τ0 in [0,∞] such that ((d_pos_x @t(τ0) - v_pos_x @t(τ0)) < 20 and d2obs @t(τ0) > 50).

Table (4.2) HLS formalization for the requirements from 4.1.

OP11, with value ranges of [0, 10]s for AT1(0) and [10, 30]s for AT1(20), and OP13,
with value range of [100, 140]mph for AT1(120).

To answer the research questions of the evaluation, we configured Diagnosis as de-
tailed in Section 4.1. We set 0.95 as a value for the crossover rate (CR) as done in a recent
work [41]. Unlike Nunez et al. [41], who considered 0.10 as a value for the mutation rate
(MR), we selected 0.90 to favor the generation of new mutations. The population size is
set to 50 properties. We used the roulette wheel as a selection algorithm (SA), as done in
a recent work [42]. We set 10 as a value for the parents to be chosen (PTBC) parameter.
We set the value of the population size (50) for the tournament size (TS). The maximum
number of generations (MG) is configured to stop the search when Diagnosis finds 1000
satisfied over the trace. We set a timeout of one hour for the trace-checking activity
(TCTO). Diagnosis stops if it can not produce a diagnosis within five days (PGTO).

We executed experiments on a large computing platform with 1109 nodes, 64 cores,
memory 249G or 2057500M, CPU 2 x AMD Rome 7532 2.40 GHz 256M cache L3.

25

Parameter Value Parameter Value
CR 0.95 PTBC 10
MR 0.90 MG 1000 satisfied prop.
PS 50 TS 50
TCTO 1 hour SA Roulette Wheel
PGTO 5 days

Table (4.3) Values for the configuration parameters of Diagnosis from 3.2.

4.2 Accuracy - EQ1

Our research hypothesis is that SBTD is effective in producing informative diagnoses.
We assessed how accurate SBTD is in producing a diagnoses to validate our hypothesis.
We compare diagnostics produced using Diagnosis to the causes that led to requirement
violation, according to an expert.

Methodology. We compared diagnostics and predictions to answer whether SBTD
is effective. Diagnosis generated diagnostics, an expert synthesized predictions for the
requirements from Table 4.1. The comparison results from experiments with mutated
operators, according to valid ranges.

The experiment participants were the following: one played the role of the Diagnosis
tool operator is the author of this thesis, and the other played the role of the expert is an
authority on the AT and CC systems. Both participants did not exchange information
about the experiments during the experimental set. The experimental set followed two
steps: (i) cause derivation and (ii) diagnostics and prediction comparison. The experi-
mental set is summarized in Table 4.4, which maps the requirement IDs to independent
variables (namely Operators), and valid ranges exercised in each experiment. The colored
background in Table 4.4 maps terms from the Table 4.1 to mutated operators.

(i) Cause Derivation. The tool operator and the expert worked separately to derive
the causes of the violated requirements. The tool operator configured Diagnosis using
the configuration parameters in Section 4.1. As a result, the tool operator collected one
decision tree for each experiment. For example, Figure 4.1a reports the diagnosis for the
experiment exp1 that considers the impact of the value AT1(120) on the satisfaction
of the requirement AT1. The decision tree shows that setting the value of AT1(120)
higher and lower than 120.006093 respectively makes the property satisfied or violated
since the signal reaches the value 120.006093. Note that the DT leaves contain the same
number (1013) of satisfied and unsatisfied requirements since the requirement filtering
step ensures that the number of satisfied and unsatisfied requirements is the same.

The expert analyzed the violated requirement according to their experience and man-
ually synthesized a prediction. To synthesize the prediction, the expert plotted the trace

26

Req.
ID

Exp. Operators Valid Range Exp. Operators Valid Range

AT1 exp1 OP13 [100,140]mph exp2 OP11 , OP11 ,
OP13

[0,10]s , [10,30]s , [100,140]mph

AT2 exp3 OP13 [4700,4800]rpm exp4 OP11 , OP11 ,
OP13

[0,5]s , [5,15]s , [4700,4800]rpm

AT51 exp5 OP11 [0,5]s exp6 OP11 , OP11 ,
OP11

[0,15]s , [15,45]s , [0,5]s

AT52 exp7 OP11 [0,5]s exp8 OP11 , OP11 ,
OP11

[0,15]s , [15,45]s , [0,5]s

AT53 exp9 OP11 [0,5]s exp10 OP11 , OP11 ,
OP11

[0,15]s , [15,45]s , [0,5]s

AT54 exp11 OP11 [0,5]s exp12 OP11 , OP11 ,
OP11

[0,15]s , [15,45]s , [0,5]s

AT6a exp13 ∗† OP13 ,
OP13

[2800,3200]rpm ,
[30,40]mph

exp14 ∗† OP11 , OP13 ,
OP11 , OP13

[20,40]s , [2800,3200]rpm , [2,6]s ,
[30,40]mph

AT6b exp15 ∗† OP13 ,
OP13

[2800,3200]rpm ,
[40,60]mph

exp16 ∗† OP11 , OP13 ,
OP11 , OP13

[20,40]s , [2800,3200]rpm ,
[4,12]s , [40,60]mph

AT6c exp17 ∗† OP13 ,
OP13

[2800,3200]rpm ,
[50,80]mph

exp18 ∗† OP11 , OP13 ,
OP11 , OP13

[20,40]s , [2800,3200]rpm ,
[15,25]s , [50,80]mph

AT6abc exp19 ∗† OP13 ,
OP13

[2800,3200]rpm ,
[50,80]mph

exp20 ∗† OP11 , OP13 ,
OP11 , OP13

[20,40]s , [2800,3200]rpm ,
[15,25]s , [50,80]mph

CC1 exp21 † OP13 [30,50]m exp22 † OP11 , OP11 ,
OP13

[0,50]s , [50,100]s , [30,50]m

CC2 exp23 ∗† OP11 [0,20]s exp24 ∗† OP11 , OP11 ,
OP13

[0,20]s , [0,10]s , [12,18]m

CC3 exp25 ∗ OP5 {forall,exists} exp26 ∗ OP5 , OP5 ,
OP4

{forall,exists} ,
{forall,exists} , {and, or}

CC4 exp27 ∗† OP13 [6,10]m exp28 ∗† OP5 , OP5 , OP13 {forall,exists} ,
{forall,exists} , [6,10]m

CC5 exp29 ∗† OP13 ,
OP13

[7,11]m , [7,11]m exp30 ∗† OP2 , OP13 ,
OP2 , OP13

{>, <} , [7,11]m , {>, <} ,
[7,11]m

CCx exp31 † OP13 [5,10]m exp32 † OP11 , OP11 ,
OP13

[0,25]s , [25,75]s , [5,10]m

RR exp33 OP13 ,
OP4

[500,700]cm ,
{and, or, implies}

exp34 OP13 , OP4 ,
OP13

[500,700]cm , {and, or} ,
[0,2.5]cm

Table (4.4) Mutation operators (Operators) and ranges for the value terms (Ranges) of
each experiment (Exp).

27

AT1(120)

False (690)

≤ 120.011319

True (690)

> 120.011319

(a) Diagnostics.

AT1(120)

False

≤ 120.022620

True

> 120.022620

(b) Prediction.
Figure (4.1) Diagnostic and prediction for the experiment exp1.

and tried to reverse-engineer the cause of the violation and express it as a DT. For exam-
ple, 4.1b reports the prediction for the experiment exp1. Note that, for this example, since
the expert can inspect the trace, they can identify the exact condition (>120.022620) that
turns the property from violated to satisfied.

(ii) Diagnostics and Prediction Comparison. We compared the diagnostics (tool oper-
ator’s decision trees) and the predictions (expert’s decision trees).

For our experiments, the DT produced by the tool operator and the expert can be
significantly different: values can be considered in multiple orders and be split various
times by each decision tree. Therefore, to compare these DTs we use an empirical approach
inspired by the approach presented by Gaaloul et al. [27] originally used to compare
software assumptions. The approach requires generating a set of properties by considering
101 assignments for each numerical value mutated by the SBTD algorithm. For example,
for exp2 a set of properties is generated by considering 101 assignments for each variables:
for AT1(0) values from 0 to 10 with increments of 0.1, for AT1(20) values from 10 to 30
with increments of 0.2, and for AT1(120) values from 100 to 140 with increments of 0.4.
Considering the combinations of these values leads to a total of 1 030 301 properties. When
the mutations also involved logical operators (e.g., exp26) this procedure was replicated for
all the possible assignments of the logical operators. For example, for exp26 the procedure
assigned CC3(forall), CC3(forall), CC3(and) to both {forall, forall, and},
{forall, forall, or}, and {forall, exists, and}, and all the remaining combinations
of logical operators. For each property, we assessed whether the property was expected to
be satisfied or violated according to the DTs produced by the tool operator and the expert.
This was done by assessing whether the leaf of the DT associated with that formula was
labeled with a True or a False value. A true positive (TP) is when the property is satisfied
according to both the DTs (the one from the tool operator and the one from the expert).
A true negative (TN) is when the property is violated according to both DTs. A false
positive (FP) is when the property is satisfied by the DT returned by the tool operator
and violated by the one produced by the expert. Finally, a false negative (FN) is when
the property is violated by the DT returned by the tool operator and satisfied by the one
produced by the expert. We analyzed the precision and recall of the method.

Note that the ThEodorE trace-checker returns that a property is violated by a trace

28

when Z3 confirms that the logical formula generated by the trace-checker is satisfiable;
It returns that the property is satisfied in the opposite case. In our case, Z3 formula
contains quantifiers, we empirically observed that Z3 usually takes longer to confirm the
satisfiability of the logical formula, i.e., to show that a property is violated by a trace.
Therefore, for some of our experiments in which the trace-checker could return that the
property was satisfied by some traces but could not provide the opposite result (marked
with an asterisk “∗” in Table 4.4), we assume the property to be violated when the Z3
solver returned “unknown” result, assuming that for these instances the Z3 solver would
have returned a “satisfied” verdict with more time available. Our results confirm the
validity of this hypothesis for our experiments. Finally, for some of our experiments
Diagnosis could not generate 1000 satisfied properties (see Table 3.2) within five days.
For those cases (marked with an asterisk “†” in Table 4.4 and Section 4.3), we run the
DT computation manually after Diagnosis ends.1

Results. Running our experiments would have required approximately 109 days. The
time was reduced to five days by exploiting the parallelization facilities of our computing
platform.

For 33 out of 34 experiments, the SBTD tool could produce a diagnosis within five days.
The boxplot from Figure 4.2 presents the precision (T P

T P +F P
) and recall (T P

T P +F N
) of SBTD

across the different experiments. SBTD shows a considerable precision (min=90.2%,
max=100.0%, Avg=98.9%, StdDev=2.1%) across the different experiments showing that
the value ranges for which the requirements are satisfied are confirmed by the expert.
SBTD shows a considerable recall (min=54.6%, max=100.0%, Avg=92.7%, StdDev=12.3%)
across the different experiments showing that SBTD can identify most of the values for
which the requirements are satisfied.

For one out of 34 experiments (exp25 — identified with a brown background in Ta-
ble 4.4), the SBTD could not produce a diagnosis within five days. For this case, the
ThEodorE trace-checker leads to the timeout of the SBTD tool. As reported by the au-
thors [1, 12], while supporting an expressive logic (HLS), ThEodorE inherits the limitations
of the SMT technology used to solve the trace-checking problem, which can require con-
siderable time to solve the satisfiability problem and terminate with an “unknown” result.
Note that we assumed that an “unknown” result confirmed the violation of a property
only when for some of the generated trace-requirements combinations the trace-checker
could confirm that the property was satisfied by the trace. This was not the case for
exp25, where ThEodorE could never produce a trace-checking verdict.

1For exp26 could not create a thousand mutations since there are only eight possible mutations of the
original requirement.

29

Precision Recall
50

60

70

80

90

100

Pe
rc

en
ta

ge
 [%

]

Figure (4.2) Precision and recall of SBTD across the different experiments. Diamonds
depict the average, red lines are the median, and pluses depict the outliers.

EQ1 - Accuracy
The results show that our SBTD framework returned an accurate diagnosis for 33 out
of 34 experiments. For one of our experiments, the performance limitations of the
trace-checker we selected (ThEodorE) did not enable our SBTD framework to produce
a diagnosis.

4.3 Efficiency - EQ2

We assessed how long SBTD takes in producing informative diagnoses as follows.
Methodology. We consider the experiments executed to answer section 4.2. We

recorded the time Diagnosis, and its components (see Chapter 3), required to produce
the diagnoses and analyzed it.

Results. Section 4.3 reports the total time required by each experiment as well as the
time required by the generator of mutations 1 , the trace-checker 2 , and the diagnostic
generator 3 . SBTD could produce a diagnosis within 47 hours (min=6.1h, max=46.7h,
Avg=14.8h, StdDev=9.6h) for 14 experiments. This computational time is acceptable for
many applications since it is negligible compared to the development time of the CPS.
For 20 out of 34 experiments, SBTD could not generate 1000 satisfied requirements (see
Table 3.2) within five days (120h). However, as discussed in Section 4.2, forcing the com-
putation of the DT manually leads to accurate results even with fewer satisfied properties.
Finally, for experiment exp25 (labeled with the ‘-’ character in Section 4.3) Diagnosis
could not produce a diagnosis within 120h and we could not force its computation man-
ually since ThEodorE did not produce a trace-checking verdict for any of the requirement
mutations.

30

ID Exp. Tool (total) Tool 1 Tool 2 Tool 3 Exp. Tool (total) Tool 1 Tool 2 Tool 3
AT1 exp1 11.6h 10.5min 11.4h 5.09s exp2 8.8h 11.5min 8.6h 6.12s
AT2 exp3 7.9h 10.6min 7.7h 6.52s exp4 6.1h 11.7min 5.9h 6.42s
AT51 exp5 12.5h 18.8min 12.2h 6.17s exp6 16.1h 20.7min 15.7h 6.67s
AT52 exp7 12.5h 25.1min 12.3h 5.71s exp8 46.7h 1.63h 45.0h 6.13s
AT53 exp9 22.1h 14.8min 21.9h 6.89s exp10 13.0h 21.0min 12.7h 7.40s
AT54 exp11 16.5h 17.2min 16.2h 6.02s exp12 11.5h 14.3min 11.2h 7.74s
AT6a exp13 † 120.0h 10.26s 111.3h 1.31s exp14 † 120.0h 4.15s 108.6h 2.34s
AT6b exp15 † 120.0h 3.56s 111.3h 2.02s exp16 † 120.0h 4.89s 105.0h 2.52s
AT6c exp17 † 120.0h 5.15s 104.0h 2.17s exp18 † 120.0h 3.87s 112.3h 2.50s
AT6abc exp19 † 120.0h 10.08s 118.6h 2.37s exp20 † 120.0h 19.29s 115.1h 2.95s
CC1 exp21 † 120.0h 14.10s 113.8h 1.55s exp22 † 120.0h 32.85s 114.8h 2.84s
CC2 exp23 † 120.0h 19.28s 117.3h 2.42s exp24 † 120.0h 5.86s 112.5h 2.19s
CC3 exp25 † 120.0h 0.44s 81.5h - exp26 120.0h 0.44s 81.5h 1.24s
CC4 exp27 † 120.0h 4.27s 91.9h 1.97s exp28 † 120.0h 3.75s 107.0h 2.06s
CC5 exp29 † 120.0h 0.52s 92.9h 1.93s exp30 † 120.0h 2.21s 101.3h 2.32s
CCx exp31 † - - - - exp32 † - - - -
RR exp33 6.4h 6.7min 6.2h 0.12s exp34 4.6h 1.53min 4.6h 7.70s

Table (4.5) Time required by our SBTD tool to extract the diagnosis.

EQ2 - Efficiency
Our SBTD framework could produce a diagnosis within 47 hours for 14 of our experi-
ments. For 20 experiments our SBTD did not terminate within five days since it could
not generate 1000 satisfied requirements. For one of our experiments, Diagnosis
could not produce a diagnosis.

4.4 Discussion and Threats to Validity

Our SBTD approach uses DT to express the diagnosis and inherits the limitations of this
technology: The DT expresses conjunctions of conditions expressed by its node, and each
node of the DT expresses a condition that only refers to one term of the formula. There-
fore, we can not learn more complex relations between input signals like the quadratic
relation between the upper temporal limit AT1(20) and the upper speed limit AT1(120)
in exp2. We plan to address this limitation by considering other ML techniques (e.g., Ge-
netic Programming) in the future.

SBTD is defined to support and complement the activity of expert designers. First,
it can automatically synthesize a diagnosis without any human intervention. Second,
it can also help experts by confirming their diagnostic witnesses since experts can be
wrong or miss corner cases. Third, another advantage of Diagnosis is that its activity
can be parallelized. While the expert activity is sequential and can not be parallelized,
many instances of Diagnosis can be executed in parallel by analyzing different trace-
requirements combinations. Finally, our results show that SBTD can produce accurate

31

results in a few days. Engineers can wait a few days for an informative diagnosis in many
practical scenarios (e.g., safety-critical applications),

Internal Validity. We compared the diagnosis produced by Diagnosis with the one
proposed by an expert. We remark that our expert has extensive knowledge about our
benchmark models. Therefore, it is likely that they are producing accurate diagnoses.

For EQ1, the metric used to compare the DTs produced by the tool and the expert
could threaten the internal validity of our results. For experiments in which only one
value was mutated, we could have computed the error between the values identified by
the expert and the tool as a metric for success. However, this metric would not apply to
experiments with multiple values. Our approach enables us to consider these two cases
seamlessly.

For EQ1 and EQ2, the values selected for the configuration parameters of our tool
(Table 3.2) threaten the internal validity of our results. For example, the maximum
number of generations (MG) and the usage of the J48 algorithm could have threatened the
precision and recall of the SBTD procedure. To have a ballpark estimation of considering
a lower value for MG on our results, we repeated exp2 and exp4 by setting the value of
MG to 100 (instead of 1000). The precision and recall (EQ1) of the SBTD procedure
for MG equal 1000 and 100 are comparable: for exp2 changed respectively from 98.6%
and 97.6% (MG=1000) to 96.4% and 89.8% (MG=100), for exp4 changed respectively
from 98.9% and 100.0% (MG=1000) to 100.0% and 100.0% (MG=100). The computation
time (EQ2) of the SBTD procedure for exp2 changed from 8.78h (MG=1000) to 1.12h

(MG=100). The computation time (EQ2) of the SBTD procedure for exp4 changed from
6.16h (MG=1000) to 0.86h (MG=100). While our experiments provide the results for
a specific configuration (defined by selecting configuration values from the literature), in
practice, engineers should configure the SBTD tool depending on their domain-specific
needs and the desired precision and recall.

We selected ThEodorE as a trace-checking tool to implement our methodology since
it supports complex signal logic specifications. Our experimentation confirms some of
the limitations regarding the efficiency of this tool [12]. Specifically, in some of our
experiments (e.g., exp17, exp23, exp29), the trace-checker could not provide a verdict
within the allotted time. For these cases, the problem was the size of the instance the
SMT solver had to consider. In the future, we plan to extend our framework to consider
other trace-checking tools. Other trace-checkers (e.g., dp-Taliro [43]) are more efficient,
but support less expressive languages.

The DTs defined by the experts threaten the internal validity of our results. First, we
used the DTs provided by the expert as a ground truth. However, we are not sure that the
prediction provided by the expert is correct. The only way to have a correct prediction

32

would have been to verify all the possible requirements with a trace-checker. However,
this is impossible since (a) the properties are defined on real numbers (and therefore are
infinite), and (b) considering a large subset of properties would have been computationally
demanding (e.g., for exp9 running the trace-checking tool for all the 1 030 301 properties
would have required more than a year). Second, other engineers could have defined other
DTs for our case studies. However, for experiments concerning requirements expressing
invariants where a single value is to be considered in the diagnostic activity the procedure
followed by the expert is not subjective: The expert defined the DTs by extracting the
minimum and maximum values assumed by the signals. For the other requirements, the
opinion of the expert penalizes our research. Our expert knows the models from which the
traces are obtained and has inspected the traces. However, our expert is not the developer
of these models and their opinion about the diagnosis may not be correct. Therefore,
when there are mispredictions from the expert (i.e., false positives and false negatives)
the expert could be wrong and the tool may produce the correct answer. Considering the
opinions of other experts may reduce the number of false positives and negatives in our
study.

The selection of HLS could threaten the internal validity of our results. Considering
other languages (e.g., SB-TemPsy-DSL [44], Restricted Signals First Order Logic [45]) for
specifying the requirements could lead to different results.

Although the Generator of Mutations is a stochastic algorithm that could provide
different running times every run, we could not run our experiment multiple times due
to limited computational resources. Running our experiment would have required ap-
proximately 109 days (reduced to five days by exploiting the parallelization facilities of
our computing platform). However, running our experiments for different models and
requirements mitigates this threat.

External Validity. The set of trace-requirement combinations we considered in our
experiments could threaten the external validity of our results as considering other trace-
requirement combinations may lead to different results. However, the requirements of our
benchmark refer to different case studies and use different logical operators.

Overfitting and hyperparameter tuning could threaten the external validity of our
results, i.e., the same configuration applied to other benchmarks could produce different
results. However, our configuration is not experiment-specific: It is shared across all
of our experiments including different models and requirements. Moreover, through the
fitness function, we select the parameters that are more likely to explain the cause of the
requirement violation across different models of our experiments. Through the informative
diagnosis cycle, we identify the ranges of those parameters that are crucial for one to reason
why the various requirements were violated. However, due to the stochastic nature of our

33

process, the diagnosis cycle is not guaranteed to find an optimal solution.

34

Chapter 5

Related Work

Property violations are typically explained by exploiting some notion of causality (e.g., [15,
46, 18]) to extrapolate the causes of the failure (e.g., an event A is said to be a cause of
event B if, had A not happened then B would not have happened). These causes typically
refer to portions of (a) the trace (e.g., portions of the trace), or (b) the property (e.g.,
portions of the property) responsible for the violation.

Approaches that extrapolate information coming from the trace typically isolate slices
of the traces that contain the causes for the property violation (e.g., [47, 13, 14, 15, 16,
18]). Other approaches explain the property violation by checking for traces showing com-
mon behaviors that lead to the satisfaction and violation of the property (e.g., [20, 17]).
Unlike these approaches, Diagnosis explains the violation by describing how mutations
applied to the property lead to its satisfaction or violation.

Approaches that extrapolate information coming from the property (e.g., [19, 48])
typically exploit its structure to provide viable diagnoses. For example, pattern-based
diagnostic approaches (e.g., [19]), enrich trace-checking verdicts (i.e., [44]) by exploiting
the syntactical structure of the property (i.e., the patterns used to define the property
of interest) to compute viable diagnoses. These approaches require engineers to define a
predefined set of possible violation causes and corresponding diagnoses upfront or assume
a library of violation causes and corresponding diagnoses to be available. Unlike these
approaches, Diagnosis relies on a novel evolutionary approach that can dynamically
generate new diagnoses by applying the mutation and cross-over operators.

Approaches that can explain property violations are also common within the context of
model-checking. Most of the existing approaches (e.g., [49, 50, 51, 52, 53, 54, 55]) are based
on deductive reasoning techniques that start from some initial assertions examine how
logical operators support the conclusion that the property is violated. Other approaches
extract information from the model (e.g., model slices) to explain the model-checking
verdict (e.g., [56, 57, 58, 59, 48, 60, 61, 62, 63, 64]). Explainability was also studied in the

35

context of anomaly detection (see [65] for a recent survey). Recent work also considered
how to explain spurious failures detected by test case generation frameworks [66] and
via feature engineering [67]. Unlike these approaches, Diagnosis produces informative
diagnosis in the context of the trace-checking problem domain, a significantly different
problem. Additionally, Diagnosis relies on an evolutionary approach.

The literature on Mutation Testing (e.g., [68, 69, 70, 71, 72]) highlights the challenge
of equivalent mutants — mutants that show no detectable behavioral changes compared
to the original program. These mutants are indistinguishable from the original and un-
dermine the mutation testing process by clouding the observable space. Our approach
uses Genetic Programming to modify violated requirements, which could also encounter
equivalent mutants. However, we mitigate these issues through: (i) User-Selected Terms
for Mutation, (ii) Constrained Requirement Generation, and (iii) Information from No
Impact. By allowing users to specify changeable terms, enforcing structural constraints,
and treating unchanged output as valuable data, we ensure focused modifications and
extract meaningful information even from equivalent mutants.

36

Chapter 6

Conclusion

In this work, we proposed a Search-Based Trace-Diagnostic (SBTD) technique, a novel
trace-diagnostic approach designed to help engineers understand the cause of violations
of Cyber-Physical System (CPS) requirements. This technique is based on evolutionary
search, utilizing mutation, recombination, and selection to iteratively refine a set of can-
didate diagnoses. The evolutionary search is guided by a fitness function, which evaluates
the quality of the identified solutions, allowing the technique to efficiently explore the
space of possible diagnoses.

The SBTD technique does not require any formal system model to generate diagnoses,
which reduces overhead and makes it practical for complex systems where constructing an
explicit model would be challenging. Instead, it relies solely on a violated property and a
system’s trace, which makes it particularly well-suited for situations where constructing an
explicit system model would be difficult or impractical. By applying evolutionary search
to generate new candidate diagnoses, the SBTD approach offers a powerful mechanism
to identify the most relevant changes that could explain requirement violations, even in
complex CPS environments.

Our SBTD framework supports properties expressed using the Hybrid Logic of Signals
(HLS), a highly expressive formalism that enables requirements to be described in terms
of temporal relationships and signal properties. We developed a set of mutation operators
specifically designed for HLS requirements, enabling the evolutionary algorithm to gen-
erate meaningful variations in the properties while maintaining logical consistency. This
approach helps ensure that each mutation leads to a candidate requirement that remains
similar enough to the original, thus providing more useful insights into the root causes of
the observed violations.

The implementation of our SBTD framework is available as an open-source tool named
Diagnosis, which takes signal-based temporal logic requirements (expressed in HLS) as
input and produces a diagnosis that explains the observed violation. Diagnosis was rig-

37

orously evaluated in terms of both accuracy and efficiency, with an extensive empirical
evaluation involving 17 trace-requirement combinations that led to property violations.
The results of this evaluation demonstrated that Diagnosis is capable of generating trust-
worthy diagnoses, accurate within a practical time frame, thereby supporting engineers
in the task of trace analysis for CPS.

Due to the novelty of the approach, we were unable to directly compare our technique
with other existing methods from the literature. However, we performed a comparative
analysis with expert predictions, and the results indicate that Diagnosis can produce
diagnoses that are consistent with expert assessments in most experiments. This validates
the trustworthiness of our approach in identifying the root causes of CPS requirement
violations.

Our tool, Diagnosis, is publicly available, making it accessible for researchers and
practitioners alike. It can also be extended to support properties specified in other logics,
provided that a corresponding trace-checker is available. The generality of our approach,
combined with the expressiveness of HLS, results in a powerful tool capable of diagnosing
virtually any system. The SBTD framework can provide informative insights into the
problems that occurred during the trace without requiring human intervention.

Nevertheless, Diagnosis is not without limitations. The lack of an explicit system
model means that the tool cannot directly infer the specific point of failure within the
system; instead, it relies on the operator to investigate that aspect. Additionally, the
tool’s performance is inherently tied to the efficiency of the trace-checker used. For some
experiments, the given time budget was insufficient to produce results, highlighting the
need for efficient trace-checkers to support rapid diagnostics.

In future work, we plan to experiment on different case studies, e.g., in the space
domain, to check the generality of Diagnosis, as well as to better assess its accuracy
and efficiency. We also plan to benchmark other similarity fitness functions and research
a fitness function specifically targeted to CPS requirements. Additionally, we intend to
experiment with languages different from HLS, such as SB-TemPsy-DSL or Restricted
Signals First-Order Logic, to determine the extent to which the results in this thesis are
confirmed. Finally, we also aim to research and study alternatives for the implementation
of Diagnostic Generator (DG), such as Genetic Programming (GP), Machine Learning
(ML), and other methods, and benchmark them to explore potential improvements.

38

References

[1] Menghi, Claudio, Enrico Viganò, Domenico Bianculli, and Lionel C Briand:
Theodore: A trace checker for cps properties. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering: Companion Proceedings (ICSE-Companion),
pages 183–184. IEEE, 2021. x, 2, 9, 10, 20, 29

[2] Krueger, Charles W.: Software reuse. ACM Comput. Surv., 24(2):131–183, June
1992, ISSN 0360-0300. https://doi.org/10.1145/130844.130856. 1

[3] Menghi, Claudio, Shiva Nejati, Lionel Briand, and Yago Isasi Parache:
Approximation-refinement testing of compute-intensive cyber-physical models: An
approach based on system identification. In International Conference on Software
Engineering (ICSE), page 372–384. IEEE / ACM, 2020. 2, 23

[4] Formica, Federico, Fan Tony, and Claudio Menghi: Search-based software testing
driven by automatically generated and manually defined fitness functions. ACM
Transactions on Software Engineering and Methodology, 33(2), 2023. 2, 23

[5] Waga, Masaki: Falsification of cyber-physical systems with robustness-guided black-
box checking. In International Conference on Hybrid Systems: Computation and
Control (HSCC). ACM, 2020. 2

[6] Zhang, Zhenya, Deyun Lyu, Paolo Arcaini, Lei Ma, Ichiro Hasuo, and Jianjun Zhao:
Effective Hybrid System Falsification Using Monte Carlo Tree Search Guided by QB-
Robustness. In Computer Aided Verification, pages 595–618. Springer, 2021. 2

[7] NNFal. https://gitlab.com/Atanukundu/NNFal, April 2023 [Online]. 2

[8] Peltomäki, Jarkko and Ivan Porres: Requirement falsification for cyber-physical sys-
tems using generative models. arXiv preprint arXiv:2310.20493, 2023. 2

[9] Annpureddy, Yashwanth, Che Liu, Georgios Fainekos, and Sriram Sankara-
narayanan: S-TaLiRo: A tool for temporal logic falsification for hybrid systems. In
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems, pages 254–257. Springer, 2011. 2

[10] Thibeault, Quinn, Jacob Anderson, Aniruddh Chandratre, Giulia Pedrielli, and
Georgios Fainekos: PSY-TaLiRo: A Python Toolbox for Search-Based Test Genera-
tion for Cyber-Physical Systems. In Formal Methods for Industrial Critical Systems,
pages 223–231. Springer, 2021, ISBN 978-3-030-85248-1. 2

39

https://doi.org/10.1145/130844.130856
https://gitlab.com/Atanukundu/NNFal

[11] Menghi, Claudio, Paolo Arcaini, Walstan Baptista, Gidon Ernst, Georgios Fainekos,
Federico Formica, Sauvik Gon, Tanmay Khandait, Atanu Kundu, Giulia Pedrielli,
et al.: Arch-comp 2023 category report: Falsification. In International Workshop on
Applied Verification of Continuous and Hybrid Systems (ARCH23), volume 96, pages
151–169, 2023. 2, 22, 23

[12] Menghi, Claudio, Enrico Viganò, Domenico Bianculli, and Lionel C Briand: Trace-
checking CPS properties: Bridging the cyber-physical gap. In International Confer-
ence on Software Engineering (ICSE), pages 847–859. IEEE/ACM, 2021. 2, 4, 8, 20,
23, 29, 32

[13] Ferrère, Thomas, Oded Maler, and Dejan Ničković: Trace diagnostics using temporal
implicants. In International Symposium on Automated Technology for Verification
and Analysis, pages 241–258. Springer, 2015. 2, 35

[14] Mukherjee, Subhankar and Pallab Dasgupta: Computing minimal debugging windows
in failure traces of ams assertions. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 31(11):1776–1781, 2012. 2, 35

[15] Beer, Ilan, Shoham Ben-David, Hana Chockler, Avigail Orni, and Richard Trefler: Ex-
plaining counterexamples using causality. Formal Methods in System Design, 40:20–
40, 2012. 2, 35

[16] Ničković, Dejan, Olivier Lebeltel, Oded Maler, Thomas Ferrère, and Dogan Ulus:
Amt 2.0: qualitative and quantitative trace analysis with extended signal temporal
logic. International Journal on Software Tools for Technology Transfer, 22:741–758,
2020. 2, 35

[17] Dawes, Joshua Heneage and Giles Reger: Explaining violations of properties in
control-flow temporal logic. In International Conference on Runtime Verification
(RV), pages 202–220. Springer, 2019. 2, 35

[18] Dou, Wei, Domenico Bianculli, and Lionel Briand: Model-driven trace diagnostics for
pattern-based temporal specifications. In International Conference on Model Driven
Engineering Languages and Systems, MODELS, page 278–288. ACM/IEEE, 2018,
ISBN 9781450349499. 2, 35

[19] Boufaied, Chaima, Claudio Menghi, Domenico Bianculli, and Lionel C Briand: Trace
diagnostics for signal-based temporal properties. IEEE Transactions on Software En-
gineering, 49(5):3131–3154, 2023. 2, 8, 35

[20] Luo, Qingzhou, Yi Zhang, Choonghwan Lee, Dongyun Jin, Patrick O’Neil Mered-
ith, Traian Florin Şerbănuţă, and Grigore Roşu: Rv-monitor: Efficient parametric
runtime verification with simultaneous properties. In International Conference on
Runtime Verification (RV), pages 285–300. Springer, 2014. 2, 35

[21] Diagnosis. https://github.com/Gastd/ga-hls/tree/main, October 2024 [Online].
5, 22

40

https://github.com/Gastd/ga-hls/tree/main

[22] Maler, Oded and Dejan Nickovic: Monitoring temporal properties of continuous sig-
nals. In Lakhnech, Yassine and Sergio Yovine (editors): Formal Techniques, Mod-
elling and Analysis of Timed and Fault-Tolerant Systems, pages 152–166, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg, ISBN 978-3-540-30206-3. 8

[23] Boufaied, Chaima, Claudio Menghi, Domenico Bianculli, Lionel Briand, and Yago
Isasi Parache: Trace-checking signal-based temporal properties: A model-driven ap-
proach. In 2020 35th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 1004–1015, 2020. 8

[24] ThEodorE. https://github.com/SNTSVV/ThEodorE, January 2024 [Online]. 10

[25] Koza, John R.: Genetic programming as a means for programming computers by
natural selection. Statistics and Computing, 4(2):87–112, Jun 1994, ISSN 1573-1375.
https://doi.org/10.1007/BF00175355. 11

[26] Goldberg, David E.: Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley Longman Publishing Co., Inc., USA, 1st edition, 1989,
ISBN 0201157675. 11

[27] Gaaloul, Khouloud, Claudio Menghi, Shiva Nejati, Lionel C Briand, and Yago Isasi
Parache: Combining genetic programming and model checking to generate environ-
ment assumptions. IEEE Transactions on Software Engineering, 48(9):3664–3685,
2021. 12, 28

[28] Smith, T.F. and M.S. Waterman: Identification of common molecular subsequences.
Journal of Molecular Biology, 147(1):195–197, 1981, ISSN 0022-2836. 18

[29] Pearl, Judea: Statistics and causal inference: A review. Test, 12:281–345, 2003. 18

[30] Mitchell, Tom M: Machine learning and data mining. Communications of the ACM,
42(11):30–36, 1999. 19

[31] Goldberg, David E: Genetic and evolutionary algorithms come of age. Communica-
tions of the ACM, 37(3):113–120, 1994. 19

[32] Quinlan, J Ross: C4. 5: programs for machine learning. Elsevier, 2014. 21

[33] Witten, Ian H and Eibe Frank: Data mining: practical machine learning tools and
techniques with java implementations. ACM SIGMOD Record, 31(1):76–77, 2002. 21

[34] Hall, Mark, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Ian H Witten: The weka data mining software: an update. ACM SIGKDD
explorations newsletter, 11(1):10–18, 2009. 21

[35] Witten, Ian H, Eibe Frank, Mark A Hall, Christopher J Pal, and Mining Data:
Practical machine learning tools and techniques. In Data mining, volume 2, pages
403–413, Amsterdam, The Netherlands, 2005. Elsevier. 21

[36] Appendix: Tool vs Prediction. https://doi.org/10.5281/zenodo.12520834, June
2024 [Online]. 22

41

https://github.com/SNTSVV/ThEodorE
https://doi.org/10.1007/BF00175355
https://doi.org/10.5281/zenodo.12520834

[37] Zhao, Xiao Wen, Zhi Hong Guan, Juan Li, Xian He Zhang, and Chao Yang Chen:
Flocking of multi-agent nonholonomic systems with unknown leader dynamics and
relative measurements. International Journal of Robust and Nonlinear Control,
27(17):3685–3702, 2017. 23

[38] Formica, Federico, Mohammad Mahdi Mahboob, Mehrnoosh Askarpour, and Clau-
dio Menghi: ATheNA-S: a Testing Tool for Simulink Models Driven by Software
Requirements and Domain Expertise. In Companion Proceedings of the 32nd ACM
International Conference on the Foundations of Software Engineering (FSE Com-
panion ’24),, New York, NY, USA, 2024. ACM. 23

[39] Reynolds, Craig W.: Flocks, herds and schools: A distributed behavioral model. In
Proceedings of the 14th Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’87, page 25–34, New York, NY, USA, 1987. Association
for Computing Machinery. 23

[40] Maler, Oded and Dejan Nickovic: Monitoring temporal properties of continuous sig-
nals. In Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant
Systems, pages 152–166, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg. 23

[41] Nunez-Letamendia, Laura: Fitting the control parameters of a genetic algorithm:
An application to technical trading systems design. European journal of operational
research, 179(3):847–868, 2007. 25

[42] Poli, Riccardo, William B. Langdon, and Nicholas Freitag McPhee: A field guide
to genetic programming. Published via http://lulu.com and freely available at
http://www.gp-field-guide.org.uk, 2008. (With contributions by J. R. Koza).
25

[43] Fainekos, Georgios E., Sriram Sankaranarayanan, Koichi Ueda, and Hakan Yazarel:
Verification of automotive control applications using S-TaLiRo. In 2012 American
Control Conference (ACC), pages 3567–3572, 2012. 32

[44] Boufaied, Chaima, Claudio Menghi, Domenico Bianculli, Lionel Briand, and Yago
Isasi Parache: Trace-checking signal-based temporal properties: A model-driven ap-
proach. In International Conference on Automated Software Engineering, pages 1004–
1015. IEEE/ACM, 2020. 33, 35

[45] Menghi, Claudio, Shiva Nejati, Khouloud Gaaloul, and Lionel C Briand: Generating
automated and online test oracles for Simulink models with continuous and uncertain
behaviors. In ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pages 27–38, 2019. 33

[46] Diehl, Maximilian and Karinne Ramirez-Amaro: Why Did I Fail? a Causal-Based
Method to Find Explanations for Robot Failures. IEEE Robotics and Automation
Letters, pages 1–8, 2022. 35

[47] Stratan, Cristina, Joshua Dawes, and Domenico Bianculli: Diagnosing Violations of
Time-based Properties Captured in iCFTL. In FormaliSE’24: International Confer-
ence on Formal Methods in Software Engineering. ACM, New York, United States-
New York, 2024. 35

42

http://lulu.com
http://www.gp-field-guide.org.uk

[48] Chechik, Marsha and Arie Gurfinkel: A framework for counterexample generation
and exploration. International Journal on Software Tools for Technology Transfer,
9:429–445, 2007. 35

[49] Peled, Doron and Lenore Zuck: From model checking to a temporal proof. In Model
Checking Software, pages 1–14, Berlin, Heidelberg, 2001. Springer. 35

[50] Bernasconi, Anna, Claudio Menghi, Paola Spoletini, Lenore D Zuck, and Carlo
Ghezzi: From model checking to a temporal proof for partial models. In Software
Engineering and Formal Methods, SEFM 2017, pages 54–69, Cham, 2017. Springer.
35

[51] Peled, Doron, Amir Pnueli, and Lenore Zuck: From falsification to verification. In
FST TCS 2001: Foundations of Software Technology and Theoretical Computer Sci-
ence, pages 292–304, Berlin, Heidelberg, 2001. Springer. 35

[52] Mebsout, Alain and Cesare Tinelli: Proof certificates for SMT-based model check-
ers for infinite-state systems. In 2016 Formal Methods in Computer-Aided Design
(FMCAD), pages 117–124. IEEE, 2016. 35

[53] Basin, David, Bhargav Nagaraja Bhatt, and Dmitriy Traytel: Optimal proofs for
linear temporal logic on lasso words. In Automated Technology for Verification and
Analysis, pages 37–55, Cham, 2018. Springer. 35

[54] Pnueli, Amir and Yonit Kesten: A deductive proof system for ctl. In International
Conference on Concurrency Theory, pages 24–40. Springer, 2002. 35

[55] Balaban, Ittai, Amir Pnueli, and Lenore D Zuck: Proving the refuted: Symbolic model
checkers as proof generators. Concurrency, Compositionality, and Correctness: Es-
says in Honor of Willem-Paul de Roever, pages 221–236, 2010. 35

[56] Menghi, Claudio, Alessandro Maria Rizzi, and Anna Bernasconi: Integrating topo-
logical proofs with model checking to instrument iterative design. In Fundamental
Approaches to Software Engineering, pages 53–74, 2020. 35

[57] Schuppan, Viktor: Towards a notion of unsatisfiable and unrealizable cores for ltl.
Science of Computer Programming, 77(7-8):908–939, 2012. 35

[58] Hantry, François and Mohand Said Hacid: Handling Conflicts in Depth-First-Search
for LTL Tableau to Debug Compliance Based Languages. In Fifth Workshop on
Formal Languages and Analysis of Contract-Oriented Software (FLACOS), pages
39–53, Málaga, Spain, 2011. Open Publishing Association. 35

[59] Zheng, Guolong, ThanhVu Nguyen, Simón Gutiérrez Brida, Germán Regis, Marcelo
F Frias, Nazareno Aguirre, and Hamid Bagheri: Flack: Counterexample-guided fault
localization for alloy models. In 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE), pages 637–648. IEEE, 2021. 35

43

[60] Bochot, Thomas, Pierre Virelizier, Hélène Waeselynck, and Virginie Wiels: Paths to
property violation: A structural approach for analyzing counter-examples. In 2010
IEEE 12th International Symposium on High Assurance Systems Engineering, pages
74–83. IEEE, 2010. 35

[61] Griggio, Alberto, Marco Roveri, and Stefano Tonetta: Certifying proofs for LTL
model checking. In 2018 Formal Methods in Computer Aided Design (FMCAD),
pages 1–9. IEEE, 2018. 35

[62] Funke, Florian, Simon Jantsch, and Christel Baier: Farkas certificates and minimal
witnesses for probabilistic reachability constraints. In International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, pages 324–345.
Springer, 2020. 35

[63] Timm, Nils, Stefan Gruner, Madoda Nxumalo, and Josua Botha: Model checking
safety and liveness via k-induction and witness refinement with constraint generation.
Science of computer programming, 200:102532, 2020. 35

[64] Gurfinkel, Arie and Marsha Chechik: Proof-like counter-examples. In International
Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), pages 160–175. Springer, 2003. 35

[65] Li, Zhong, Yuxuan Zhu, and Matthijs Van Leeuwen: A survey on explainable anomaly
detection. Transactions on Knowledge Discovery from Data, 18(1):1–54, 2023. 36

[66] Jodat, Baharin A, Abhishek Chandar, Shiva Nejati, and Mehrdad Sabetzadeh: Test
generation strategies for building failure models and explaining spurious failures.
ACM Transactions on Software Engineering and Methodology, 33(4):1–32, 2024. 36

[67] Araujo, João Paulo Costa de, Genaína Nunes Rodrigues, Marc Carwehl, Thomas
Vogel, Lars Grunske, Ricardo Caldas, and Patrizio Pelliccione: Explainability for
property violations in cyber-physical systems: An immune-inspired approach. IEEE
Software, 2024. 36

[68] DeMillo, R.A., R.J. Lipton, and F.G. Sayward: Hints on test data selection: Help for
the practicing programmer. Computer, 11(4):34–41, 1978. 36

[69] Basile, Davide, Maurice H. ter Beek, Sami Lazreg, Maxime Cordy, and Axel
Legay: Static detection of equivalent mutants in real-time model-based mutation
testing. Empirical Software Engineering, 27(7):160, Sep 2022, ISSN 1573-7616.
https://doi.org/10.1007/s10664-022-10149-y. 36

[70] Do, Van Nho, Quang Vu Nguyen, and Thanh Binh Nguyen: Evaluating mutation
operator and test case effectiveness by means of mutation testing. In Nguyen, Ngoc
Thanh, Suphamit Chittayasothorn, Dusit Niyato, and Bogdan Trawiński (editors):
Intelligent Information and Database Systems, pages 837–850, Cham, 2021. Springer
International Publishing, ISBN 978-3-030-73280-6. 36

[71] Offutt, A. Jefferson and Roland H. Untch: Mutation 2000: Uniting the Orthogonal,
pages 34–44. Springer US, Boston, MA, 2001, ISBN 978-1-4757-5939-6. https:
//doi.org/10.1007/978-1-4757-5939-6_7. 36

44

https://doi.org/10.1007/s10664-022-10149-y
https://doi.org/10.1007/978-1-4757-5939-6_7
https://doi.org/10.1007/978-1-4757-5939-6_7

[72] Papadakis, Mike and Nicos Malevris: An empirical evaluation of the first and second
order mutation testing strategies. In 2010 Third International Conference on Software
Testing, Verification, and Validation Workshops, pages 90–99, 2010. 36

45

	Dedicatória
	Agradecimentos
	Abstract
	Resumo
	Introduction
	Motivation
	Research Challenges
	Research Questions and Evaluation
	Research Question 1
	Research Question 2

	Research Contributions
	Document Roadmap

	Running Example
	The Example
	Hybrid Logic of Signals
	ThEodorE

	Diagnosis
	Search in Search-Based Trace-Diagnostic
	Search-based Trace-Diagnostic
	Search-based Trace Diagnostic for HLS
	Change-Driven Diagnosis
	Generator of Mutations
	Trace-Checker
	Diagnostic Generator

	Evaluation and Discussion
	Experiment Setting and Tool Configuration
	Accuracy - EQ1
	Efficiency - EQ2
	Discussion and Threats to Validity

	Related Work
	Conclusion
	References

