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Resumo

A necessidade de lidar com a variabilidade durante a análise das Linhas de Produtos de
Software (LPS) é intrínseca, pois o número de combinações de produtos válidos pode
ser uma função exponencial em relação ao número de características. Além disso, à
medida que uma LPS evolui, os resultados das análises anteriores poderiam ser usados
para otimizar os cálculos. Entretanto, estas oportunidades de reúso são frequentemente
descartadas pelas técnicas de análise de LPS presentes no atual estado da arte. Este
trabalho propõe um método para embutir memoização em análises estáticas de Control-
Flow Graph (CFG) implementadas em Haskell e reescritas para serem aplicadas em LPS.
O método memoizado proposto foi usado para transformar seis análises estáticas de CFG
levantadas para LPSs, e comparou-se o desempenho destas em relação às suas contrapartes
sem memoização em um conjunto de dez versões da LPS BusyBox. Verificou-se que esta
técnica de memoização foi eficiente em reusar os resultados das análises aplicadas em
revisões anteriores, com reduções de tempo total computando análises de até duas ordens
de magnitude em relação às análises sem memoização, tendo impacto limitado no uso de
armazenamento dos resultados memoizados.

Palavras-chave: Linhas de Produtos de Software, Análise de Linhas de Produtos, Evo-
lução de Software, Programação Funcional, Memoização
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Abstract

Handling variability in Software Product Line (SPL) analyses is essential due to the vast
number of possible valid product combinations, which can grow exponentially with the
number of features. Furthermore, as a SPL evolves, results from previous analyses could
be used to optimize computations. However, these reuse opportunities are frequently
discarded by current state-of-the-art SPL analysis techniques. We contribute a method
for embedding memoization in Control-Flow Graph (CFG) static analyses implemented
in Haskell and rewritten to be applied on Software Product Lines. We compared a set
of six memoized analyses with their non-memoized counterparts in a set of ten revisions
from the BusyBox SPL. We observed that the memoization technique was effective in
reusing the results of the analyses applied in previous revisions, with reductions in total
time computing analysis reaching up to two orders of magnitude in relation to the non-
memoized analyses while having limited storage consumption impact.

Keywords: Software Product Lines, Product Line Analysis, Software Evolution, Func-
tional Programming, Memoization
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Chapter 1

Introduction

A Software Product Line (SPL) is a collection of software systems that share a managed
set of features, designed to meet the needs of a specific market segment, and built using
a common set of core assets [1]. In the SPL domain, the concept of variability manifests
itself in two dimensions: the dimension of space, which concerns the variants that coexist
simultaneously, and the dimension of time, which relates to the evolution that a software
faces through revisions and versioning [2].

An SPL is designed to generate a family of related products, or variants, each with
shared and unique features. Regarding the space dimension, Software Product Line Anal-
ysis aims to identify and address issues or errors in each variant. However, analyzing
every possible variant is often impractical, as the number of combinations is bounded by
an exponential function related to the number of features [3]. Current literature presents
methods for efficiently computing analysis considering the space variability aspect in spe-
cific scenarios [4, 5, 6, 7, 8, 9]. These methods work by leveraging commonalities in the
code as much as possible, following the principles of late split — conducting the analysis
without considering variability until it becomes necessary — and early join – merging
identical intermediate results as soon as possible [8]. Many of these transformations have
been custom-developed, though recent advances have enabled some to be computed au-
tomatically [4].

However, a recognized gap in current SPL analysis techniques is their limited ability
to handle both space variability and evolution simultaneously [2]. Therefore, due to this
lack of support for evolution-awareness in SPL analysis, it often occurs that neither results
from previous computations nor the change information itself are taken into consideration
in subsequent analysis. It may result in redundant computation on parts of the SPL that
were unaffected by the evolution [2].

In this work, we address this problem by embedding memoization into existing SPL
Control-Flow Graph (CFG) static analyses written in Haskell, aiming to reuse results
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from previous analyses across evolving revisions of SPLs. This approach allows avoiding
computations when valid data is present on cache from previous analysis. To preserve
the validity of cached data, we also implemented a DiffParser component that detects
relevant changes when the SPL evolves, allowing the removal of obsolete values from
cache.

To evaluate the memoization technique, we conducted an experiment using ten revi-
sions of the BusyBox project, a widely recognized SPL. The evaluation focuses on compar-
ing the performance of memoized and non-memoized versions of six CFG static analyses,
measuring computation time and storage costs across revisions. The results reveal perfor-
mance improvements for several of the subject analyses, with computation times reduced
by up to two orders of magnitude in specific scenarios, while maintaining limited storage
consumption.

In summary, the contributions of the present work are the following:

1. The implementation of approach for embedding memoization in SPL CFG static
analyses, addressing both spatial and temporal variability1;

2. The development of supporting infrastructure for detecting relevant changes intro-
duced by SPL source code evolution, allowing discarding no longer valid values from
memory 2;

3. An experiment3 comparing the proposed method to its non-memoized counterpart,
assessing the performance impacts when analyzing multiple revisions of an estab-
lished SPL project (BusyBox).

The remainder of this dissertation is structured as follows:

• Chapter 2 explains some foundational concepts related to SPLs, static analysis, and
techniques for handling variability in software systems, establishing the context for
better understanding of the method;

• Chapter 3 discusses work related to our research, emphasizing the lack of methods
that address both space and time dimensions of variability simultaneously, and
presents a motivating example;

• Chapter 4 demonstrates in details the introduction of memoization in CFG-based
static analyses for SPLs;

1https://github.com/BrunoMWorm/ProductLineAnalysis/tree/memoization
2https://github.com/BrunoMWorm/Evolution-Aware-SPL-Analysis-Experiments/blob/main/

Experiments/source-code/Auxiliary-Scripts/analyze_cfg_diff.py
3https://github.com/BrunoMWorm/Evolution-Aware-SPL-Analysis-Experiments/tree/main

2
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• Chapter 5 details the experiment comparing the memoized analyses with their non-
memoized peers;

• Chapter 6 presents the conclusion, the limitations of our method and future work.
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Chapter 2

Background

This chapter presents concepts directly related to our research. Section 2.1 outlines key
concepts of SPLs, the field that encompass our study. Section 2.2 and 2.3 introduce es-
sential concepts of a technique for computing with variability-aware data, which supports
a better understanding of our method.

2.1 Software Product Lines
A SPL is a set of software-intensive systems sharing a common, managed set of features
that satisfy the specific needs of a particular market segment or mission and that are
developed from a common set of core assets in a prescribed way [10]. The goal of applying
SPL techniques in software development is to produce tailor-made software with reduced
costs, improved quality and efficient time to market cycles [1].

2.1.1 Features

From an end-user perspective, a feature is a characteristic or visible behavior of a software
[1]. Through the process of feature selection, a configuration can be defined, so that a
specific product (also called variant) can be generated.

However, not all combinations of features are guaranteed to be available, as certain
features may impose constraints on the selection of others. These relationships are repre-
sented through feature models, which define the rules governing feature selection [1].

2.1.2 Software Product Lines Analysis

Below, we briefly outline categories of software analyses that operate independently of
code execution, highlighting adaptations that enable their employment in SPLs:
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• Type-Checking: an analysis method that ensures programs are well-typed accord-
ing to predefined rules [11], identifying type errors like incompatible casts, missing
method declarations, and duplicate class names [3]. In the SPL domain, Type-
Checking can be employed to detect variants with type errors [12];

• Model Checking: automated verification method for ensuring that a system model
satisfies specified requirements, such as safety properties or application-specific re-
quirements [13, 3]. Current literature presents reports of model-checking applied to
SPLs for computing reliability properties [14];

• Static Analysis: encompasses a range of techniques for examining code without
execution [15], including type and model checking. These analyses may vary from
lightweight tools that detect stylistic issues and suspicious structures (e.g., linters
[16]) to more comprehensive approaches that assess overall program behavior, such
as control-flow and data-flow analysis [3]. The lifting method introduced by Shahin
and Chechik [4] represents a significant advancement for paving the way for improved
adoption of static analyses in SPLs projects.

2.1.3 Variability Representation

We presented the concept of feature as a software characteristic desired by the user of
such system. To allow the generation of the desired products, an approach of product
generation and variability representation must be defined.

The annotation-based approach involves embedding the code of all features into a
single source code base, using code snippets with special annotations to associate them
with the features [1]. Fig. 2.1 exhibits a classic annotation-based approach for repre-
senting variability in C/C++ code bases. The C code contains all product variations,
and pre-processing directives are employed to select which code fragments are included
or excluded based on feature selection. It is important to highlight that our method is
based on transforming analyses that operate on data structures generated from source
code managed by an annotation-based approach to variability.

On the other hand, a compositional-based approach is based on modularization of
code of different features in separate composable units [1]. The process of product deriva-
tion involves the selection and composition of all units into a final valid product. A
classic example is a plug-in architecture pattern for extending a framework with selected
functionality.
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Figure 2.1: Annotation-based method of representing variability through C Pre-processor
compiler directives.

2.2 Binary Decision Diagrams
In Section 2.3 we are going to explore a technique for encoding SPL variability in efficient
data structures, an essential step for enabling effective SPL analysis. Before exploring
this method, we introduce an essential structure for representing Boolean functions.

A Binary Decision Diagram (BDD) is a data structures heuristically efficiently in
representing and manipulating Boolean functions [17]. It organizes logical expressions
graphically, with nodes as decision points and branches showing variable outcomes. By
structuring Boolean functions as directed acyclic graphs, BDDs optimize storage and
computation by sharing common sub-graphs and reducing redundancy.

Fig. 2.2 displays a comparison between a complete Binary Decision Tree (BDT) and a
BDD for the Boolean function A ∧ ¬ B. The BDD can be constructed trough a reduction
algorithm [17], and its efficiency is based on the reuse of common sub-graphs, making
them a more compact representation for Boolean functions.

2.3 Variability Encoding
To apply analyses in SPLs, it is essential to have a suitable representation that captures
the variability of the underlying artifacts. Variational types and data structures, along

6



Figure 2.2: Binary Decision Tree (left) and Binary Decision Diagram (right) for the
formula A ∧ ¬ B.

with various representations and implementations, have been studied in the literature [5].
In this section, we detail the specific implementation presented by Shahin and Chechik
[4], which serve as a foundation for our work, as we build upon and extend their Haskell
lifting implementation to incorporate memoization.

2.3.1 Variability-Aware Values

In variability-aware contexts, such as source code files with annotations associating specific
code segments to features, a variable can hold different values simultaneously, depending
on the selected feature set. We can use variability-aware types to represent such values
in these contexts. A variability-aware value over a type is represented as a set of pairs
(v, pc), where v is a value of the aforementioned type, and pc is a presence condition. A
Presence Condition (PC) is a boolean expression that specifies the set of configurations
in which an element exists.

In the example below, the int variable x has a value which depends on whether the
feature A is defined or not. By using a variability-aware type, we can model this scenario
by lifting x to x↑, giving it the type int↑ (lifted int). We can interpret that the variable
x↑ evaluates to 2 on all configurations where feature A is defined, and 7 otherwise.

1 int x;
2 #ifdef A
3 x = 2;
4 #else
5 x = 7;
6 #endif

x↑ = {(2, A), (7,¬A)}

7



For this representation of variability-aware values, there are also two important invari-
ants that must hold: the disjointness invariant and the full coverage invariant.

Disjointness Invariant

The disjointness invariant ensures that a variability-aware value has at most one atomic
value in any given product configuration. This is achieved by requiring that two pres-
ence conditions are unsatisfiable if they represent non-overlapping product sets. With-
out this invariant, a valid configuration could produce multiple values, resulting in non-
deterministic semantics for variability-aware values.

v↑ = {(v1, pc1), . . . , (vn, pcn)},∀i ̸= j : unsat(pci ∧ pck)

Full Coverage Invariant

The Feature Model Φ is a propositional formula over all possible features, defining the
valid set of configurations. The full coverage invariant ensures that any variability-aware
value v↑ encompasses the entire product space, including all valid feature combinations.

v↑ = {(v1, pc1), . . . , (vn, pcn)},
∨
i

pci = Φ

Variability-Aware Type Definition

With both disjointness invariant and full coverage invariant defined, we can proceed to
formally define a variability-aware type. Given a type T , its corresponding variability-
aware type T ↑ consists of sets of (T, PC) pairs that satisfy both the disjointness and full
coverage invariants:

v1, . . . , vn : T, pc1, . . . , pcn : PC ∀i ̸= j · unsat(pci ∧ pcj)
∨

i pci = Φ
{(v1, pc1), . . . , (vn, pcn)} : T ↑ lifted-type

Lifted Functions

Functions and operators are also lifted to their corresponding variability-aware types. We
denote f : (a→ b)↑ as a lifted function f from a to b and x as a lifted value of type a. To
perform the lifted function application, the apply operator is defined. The apply operator
generates the cross product of functions and arguments from x, combines their presence
conditions, and filters out pairs where the conjunction is unsatisfiable. The semantics of
the apply operator is described below:

8



f : (a→ b)↑ x : a↑

(apply f x : b↑) = {(f ′(x′), fpc ∧ xpc) | (f ′, fpc) ∈ f, (x′, xpc) ∈ x, sat(fpc ∧ xpc)} apply

Although we will not outline the proof here (which can be found in the reference work
[4]), the apply operator preserves both the disjointness and full coverage invariants in its
outputs.

Polymorphic Types

For monomorphic types, lifting involves transforming values into sets of pairs, each consist-
ing of a value and a presence condition, as described in Subsection 2.3.1. For polymorphic
types, deep-lifting operates differently: pairs and lists are lifted as follows:

[T ]↑ ⇒ [T ↑]

(T1, T2)↑ ⇒ (T ↑
1 , T ↑

2 )

This implies that a lifted list is represented as a list of lifted values. Figure 2.3 illus-
trates a list of int values lifted to its variability-aware type. This approach is more efficient
than allocating a complete list for every possible product configuration, as common ele-
ments of the list are shared whenever possible. Note that when a value is independent of
a specific configuration, the presence condition is defined as the true condition T .

{(7, T )} {(4, T )}

{(8, A ∧B),
(3, A ∧ ¬B),
(1,¬A ∧B),

(0,¬A ∧ ¬B)}

{(2, T )} {(3, T )}

Figure 2.3: Representation of a lifted list of int values

2.3.2 Variational Types Implementation in Haskell

An implementation in Haskell for the definitions presented in Subsection 2.3.1 was also
presented by Shahin and Chechik [4]. In this Subsection we are going to highlight some
important definitions.
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Presence Conditions

The Presence Condition type represents a boolean proposition. In this Haskell imple-
mentation, boolean propositions are represented using Binary Decision Diagrams (BDDs)
structures, with the support of the CUDD library [18].

Listing 2.1: Presence Condition definition in Haskell
1 import Cudd.Cudd
2

3 newtype Prop = Prop {
4 b :: DDNode
5 } deriving (Generic , NFData)
6

7 type PresenceCondition = Prop

Var Type constructor

Variability aware values for a given type T are represented as a list of tuples of values of
type T with a corresponding presence condition.

Listing 2.2: Var Type definition in Haskell
1 type Val a = (a, PresenceCondition )
2

3 newtype Var t = Var [( Val t)]
4 deriving (Generic , NFData)

Analysis Transformation

Shahin and Chechik also present a transformation method for rewriting functions into
their variability-aware counterparts [4]. While we are not going to detail the transforma-
tion rules, which are described in the reference work [4], it is worthwhile to compare the
type signatures of the original and lifted versions of a Return Checker analysis, designed
to detect C functions lacking a return statement. Listings 2.3 and 2.4 show both signa-
ture versions. Notably, the lifted analysis’s return type is now a variability-aware list of
CFGNodes, as the analysis result depends on the specific configuration provided.

Listing 2.3: Original Return Checker Type Signature
1 -- Non -Variability -Aware Return Checker Type Signature
2 analyze :: CFG -> [ CFGNode ]
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Listing 2.4: Variability-Aware Return Checker Type Signature
1 -- Variability -Aware Return Checker Type Signature
2 analyze :: Var CFG -> [Var CFGNode ]

Variational Control-Flow Graph (VCFG)

The lifting implementation presented by Shahin and Chechik [4] does not support user-
defined types out-of-the-box. Nonetheless, for applying CFG analyses on variational data,
a suitable variational representation of a CFG must be defined. Listing 2.5 outlines the
Haskell implementation representing a Variational Control-Flow Graph (VCFG).

Listing 2.5: CFG and CFGNode type definitions
1 -- Variational CFG structure
2 data CFG = CFG {
3 nodes :: M. ListMultimap Int (CFGNode ,

↪→ PresenceCondition )
4 }
5

6 -- Variational CFGNode
7 data CFGNode = CFGNode {
8 _nID :: Int ,
9 _fname :: T.Text ,

10 text :: T.Text ,
11 ast :: C.NodeType ,
12 _preds :: [Var Int],
13 _succs :: [Var Int]
14 } deriving (Show , Generic , NFData)

Figure 2.4 illustrates how the function defined in Figure 2.1 translates into a Vari-
ational Control-Flow Graph (VCFG) structure. Notice that all nodes and edges are
associated with a Presence Condition.
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Figure 2.4: Variational Control Flow Graph (VCFG).
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Chapter 3

Problem Statement

This initial part of this chapter is organized by examining related work within each vari-
ability dimension (Sections 3.1 and 3.2), outlining techniques for SPL analysis. Section
3.3 details efforts towards bridging the gap between both variability dimensions. Finally,
Section 3.4 presents an example that highlights the problem addressed in this work.

3.1 Variability in Space
Variation encoding is a method for representing the inherent variability present in Software
Product Lines. Walkingshaw et al. [5] explore trade offs of design decision for implement-
ing data structures for computing data with encoded variability. However, none of the
data structures analyzed in their study address dimension of temporal variability.

The TypeChef project [12] marked a significant advancement in variability-aware pars-
ing [7] and type checking [19] for established SPLs like BusyBox and the Linux kernel.
Although TypeChef does not handle variability over time, its variational parser was used
in this work to parse source code from the Busybox SPL, enabling us to apply both
memoized and non-memoized analyses.

Shahin and Chechik [4] propose two approaches for automatically lifting a functional
program for embedding variability-awareness. A shallow-lifting approach handles the
target program as a black-box, concerning variation computation as the combination
of all variation inputs, pruning unsatisfiable combinations beforehand. On the other
hand, the deep-lifting approach is based on source-code transformation, exploring more
opportunities of reuse of common variational data. However, neither approach explores
variation in time.
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3.2 Variability in Time
Incremental computation is a technique suited for accommodating changes in the input
a program receive. It consists in dividing a computation in sub-parts and reusing the
sub-results to compute the desired output. It can reduce redundant computation in cases
where the changes in input are small [20]. For functional programs, Carlsson [21] proposes
a monadic approach for incremental computation.

The REVISER approach proposed by Arzt and Bodden [22] optimizes inter-procedural
data-flow analysis using incremental program changes. Therefore, computation of unnec-
essary analysis on the unchanged parts of a library are avoided. Though REVISER does
not address the space dimension of variability, it provides evidence of the optimization
impacts of evolution-aware approaches to static analysis.

Memoization is a classic technique for storing the results of computations with a
provided input in memory, so that subsequent calls with the same input are not reeval-
uated [23]. Wimmer et al. [24] introduce a memoization framework, implemented for
Isabelle/HOL [25], that automatically generates a memoized version of an input function,
whose correctness theorem is also proved on the process.

3.3 Bridging the Variability Dimensions
There has been an effort to bridge the gap between variability in time and variability in
space. Thüm et al. [2] discuss possibilities for bridging the gap between analysis aware
of either variability in time or variability in space. They explore the different types of
analysis that are common to each dimension: regression analysis for variability in time,
and product-line analysis for variability in space. Then, they raise the necessity of iden-
tifying strategies for lifting an analysis to cope with both dimensions simultaneously and
efficiently. Considering this awareness, Ananieva et al. [26] develop a conceptual model
that unifies concepts from variation in space and time. It paves the way for clarifying com-
munication between researchers from the software product line engineering and software
configuration management areas to achieve efficient solutions.

Significant research has been dedicated to studying evolution highly-variable systems
such as the Linux kernel. Dintzner et al. [27] introduce FEVER, a tool that offers detailed
insights into changes within variability models and related assets, with a focus on studying
feature-oriented changes and artifact co-evolution. Kröher et al. [28] propose a fine-
grained approach for assessing the intensity of variability changes across various artifact
types, showing in their analysis of the Linux kernel that such changes are relatively rare
and typically impact only small segments of the affected artifacts. While these studies do
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not propose specific techniques for SPL analysis, their exploration of evolution patterns in
highly-variable systems provides valuable information for guiding techniques for enhancing
support for SPL evolution.

Higher-order delta modeling is an approach for encapsulating evolution operations in
a delta model representing commonalities and variation points of a SPL [29]. The 175%
modeling [30] is a formalism that includes possibilities for documenting and analyzing
evolving SPLs.

Despite the raised awareness and conceptual advancements highlighted above, there
remains a significant gap in the development of practical tools capable of performing
static analysis in SPLs with consideration for evolution. Consequently, the field still lacks
the necessary tooling to seamlessly integrate and manage both dimensions of variability
within SPLs.

3.4 Motivating Example
To illustrate the challenges of our problem, we use an example from a configurable C
program. This example reveals how different feature combinations in SPLs can introduce
configuration-specific issues. While existing solutions address the challenge of efficiently
analyzing multiple variants, we are going to highlight how they do not take into consid-
eration changes over time.

Fig. 3.1 demonstrates an issue that can arise in configurable software systems when dif-
ferent code variants are generated based on feature combinations. Using C Pre-Processor
(CPP) conditional compilation directives (#ifdef, #else), function foo is adapted to be-
have differently depending on whether features A and B are enabled. In the configuration
where A is defined and B is not, the function calculates a value x but lacks a return
statement, leading to a potential error in this variant. Only the A ∧ ¬ B variant displays
this problem — a missing return statement, which could lead to unexpected behavior.

One approach to detecting this issue is a Return Checker analysis, a well-known static
analysis technique for identifying C functions missing a return statement. However, as
shown in Fig. 3.1, multiple code variants can be generated, and only one of these variants
exhibits the missing return statement issue.

As discussed in Section 3.1, there are already state-of-the-art techniques for efficiently
analyzing such programs. Given a Haskell non-variational implementation of the CFG
Return Checker static analysis, one could employ the method described in 2.3 to lift the
original Return Checker and obtain a variability-aware version counterpart.

However, consider the patch shown in Fig. 3.2, which fixes the C program by eliminat-
ing the missing return statement issue. This patch affects only the A ∧ ¬ B variant of the
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Figure 3.1: Problematic variant in C source code.

program. If we were to rerun the lifted analysis, it would incur in redundant computation
on parts of the code which were unaffected by the patch, such as different variants and
other functions of the same program. This problem would be aggravated if the number
of variants were larger, which is often the case for larger code bases.

Figure 3.2: Missing return statement fix patch.

To effectively analyze large repositories with high variability and frequent evolution,
it is important to consider the scale and complexity of these systems. For example, the
BusyBox repository contains more than 17,000 revisions (i.e., commits) and hundreds of
thousands of lines of code, each potentially impacting numerous product variants. Static
analysis techniques must efficiently consider this variability aspect while accounting for
the continuous evolution of the codebase.

16



To the best of our knowledge, state-of-the-art SPL static analysis methods do not
adequately address evolution. While previous work in variability management has led
to significant improvements in handling static variability, there is potential for further
advancements by integrating these approaches with evolution-aware techniques, possibly
enhancing performance by leveraging results from both dimensions.

However, combining these techniques is not straightforward, as each dimension presents
its own challenges — variability in space involves handling numerous product combina-
tions, while variability in time requires managing changes across evolving SPL versions.

Problem Statement
There is a recognized lack in the state-of-the-art of analysis techniques that are
aware of both variability dimensions simultaneously.
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Chapter 4

Method

To address the problem at hand, we present in this section a method for embedding
memoization into SPL CFG static analyses, allowing results from previous analyses on
past versions to be reused. In Section 4.1, we provide an overview of the approach.
Section 4.2 explains the process of memoizing the selected static analyses, while Section
4.3 introduces our DiffParser module, responsible for detecting changes in the SPL over
time and ensuring that only valid cached data is reused following each evolution.

4.1 Method Overview
Figure 4.1 represents the major components of our method, with their corresponding
inputs, outputs and intermediate results. The core components are the following:

• Lifting and memoization transformation: responsible for the embedding of
memoization into SPL CFG analyses implemented in Haskell and previously rewrit-
ten by the deep-lifting method proposed by Shahin and Chechik [4]1;

• DiffParser: a module2 specifically designed to detect changes in the SPL source
code, ensuring that relevant modifications are identified. This is necessary to assess
which parts of the previous results can be reused through memoization.

4.1.1 Method Walkthrough

To illustrate our method and its two core ideas, we provide a step-by-step walkthrough
of how an analysis can be memoized and executed:

1https://github.com/BrunoMWorm/ProductLineAnalysis/tree/memoization
2https://github.com/BrunoMWorm/Evolution-Aware-SPL-Analysis-Experiments/blob/main/

Experiments/source-code/Auxiliary-Scripts/analyze_cfg_diff.py
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Figure 4.1: Proposed method overview.

1. The original Analysis Function goes through a Lifting and Memoization
Transformation, becoming a Memoized Analysis Function;

2. Both Original and Evolved SPLs are processed by a Variational Parser into
their corresponding VCFG structures;

3. Both Original and Evolved VCFG structures are passed to the DiffParser mod-
ule that detects the List of Changed Functions;

4. Finally, the Evolved VCFG structure, the List of Changed Functions and the
Previous Analysis Results (if present) are fed into the Memoized Analysis
Function, yielding the evolved Analysis Result.

4.2 Memoization
The key idea in our method is to reuse results from previous computations in the cur-
rent analysis. To achieve this goal, we used a memoization technique for transforming
Haskell functions into their memoized counterparts. Thus, it is not necessary to rerun
computations in parts of the input where no modification has occurred.

Our technique is inspired by the transformation rules presented by Wimmer et al. [24].
The aforementioned contribution introduces a framework for automatically rewriting Is-
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abelle/HOL functions. We used this framework as a foundation to introduce memoization
into each of our Haskell static analyses. However, the primary focus of this work is to
demonstrate the feasibility of using memoization in SPL CFG analyses and to assess its
performance impact (Chapter 5), rather than to develop a fully automated transforma-
tion tool. Therefore, we manually transformed each subject analysis function, and the
implementation of a tool for automatically transforming Haskell programs is out of the
scope of this dissertation, being regarded as future work.

4.2.1 Memoized Fibonacci

To illustrate how our memoization transformation operates, consider the code in Listing
4.1, written in Haskell, that for a given natural number, computes its corresponding value
in the Fibonacci sequence:

Listing 4.1: Recursive Fibonacci function implementation in Haskell
1 fibonacci :: Int -> Int
2 fibonacci n = if n <= 2
3 then 1
4 else ( fibonacci (n - 1)) + ( fibonacci (n - 2))

This implementation is inefficient due to the exponential complexity caused by the
multiple recursive calls. Therefore, it is a classic target for employing a top-down dy-
namic programming algorithm that employs memoization for caching overlapping calls to
compute a certain Fibonacci sequence value.

Inspired on the contribution by Wimmer et al. [24], we implemented a set of functions
in Haskell for supporting the process of memoizing other Haskell functions. Listing 4.2
shows a memoized version of the aforementioned Fibonacci function:

Listing 4.2: Memoized Fibonacci function in Haskell
1 import Memoization .Core.State
2 import Memoization .Core.Memory
3

4 type StateConc = State MemoryConc
5 type MemoryConc = KeyValueArray Int Int
6

7 memoizedFibonacci :: Int -> StateConc Int
8 memoizedFibonacci n = if n <= 2
9 then return 1

10 else retrieveOrRun n
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11 (\_ -> do
12 fibonacciNMinus1 <- memoizedFibonacci (n - 1)
13 fibonacciNMinus2 <- memoizedFibonacci (n - 2)
14 return $ fibonacciNMinus1 + fibonacciNMinus2
15 )

The Memoization.Core module is part of our solution and is available on our GitHub
repository3 and, as mentioned before, contains important functions for memoization pur-
poses. Although we are not going to detail the complete library, it is worth explaining
some of its definitions and functions in depth for better understanding of the memoized
Fibonacci function presented before.

4.2.2 State Monad

In functional programming, functions are typically pure, meaning they don’t have side
effects or depend on external state. Therefore, a State-Monad based approach is a vi-
able solution for achieving memoization of functions written in a functional programming
language such as Haskell.

We implemented a library for the State type with its corresponding instances of the
Functor, Applicative, and Monad typeclasses. Although Haskell provides a built-in state
monad implementation, we explicitly implemented the Monad typeclass for didactic pur-
poses. We also implemented the runState, evalState, and execState functions for working
with our Monad, as detailed in Listing 4.3:

Listing 4.3: State type definition
1 newtype State m a = State { runState :: m -> (a, m)}
2

3 instance Functor (State s’) where
4 fmap :: (a -> b) -> State s’ a -> State s’ b
5 fmap f am = State $ \s ->
6 let (a, s’) = runState am s
7 in (f a, s’)
8

9 instance Applicative (State s’) where
10 pure :: a -> State s’ a
11 pure x = State (x,)

3https://github.com/BrunoMWorm/ProductLineAnalysis/tree/memoization/haskell/
benchmarks/ControlFlow/src/Memoization/Core
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12 (<*>) :: State s’ (a -> b) -> State s’ a -> State s’
↪→ b

13 fm <*> am = State $ \s ->
14 let (f, s’) = runState fm s
15 (a, s’’) = runState am s’
16 in (f a, s’’)
17

18 instance Monad (State s’) where
19 (>>=) :: State s’ a -> (a -> State s’ b) -> State s’

↪→ b
20 h >>= f = State $ \s ->
21 let (a, newState ) = runState h s
22 g = f a
23 in runState g newState
24

25 -- Runs the State computation , discards the new state
26 -- Use when you are only interested in the result of the

↪→ computation
27 evalState :: State s a -> s -> a
28 evalState act = fst . runState act
29

30 -- Runs the State computation , discards the computation
↪→ result

31 -- Use when you are only interested in the state
↪→ transformation

32 execState :: State s a -> s -> s
33 execState act = snd . runState act

Therefore, Listing 4.4 shows an example of how to interact with a memoized compu-
tation.

Listing 4.4: Interaction with a memoized function
1 let initialState = []
2 (newState , result) = runState ( memoizedFibonacci 40)

↪→ initialState
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4.2.3 Memory

For actually storing and retrieve values, we need a specification for types that can repre-
sent memory. The KeyMemory typeclass in Listing 4.5 illustrates the necessary function
definitions.

Listing 4.5: KeyMemory typeclass
1 class KeyMemory k v m where
2 mlookup :: k -> State m (Maybe v)
3 mupdate :: k -> v -> State m ()

We can use any given instance of the KeyMemory typeclass for storing and retrieving
values from memory. For interacting with the memory, we wrap the computation that is
being memoized with the retrieveOrRun function highlighted in Listing 4.6. Therefore,
given a certain key, computation is executed only if there is no corresponding value in
memory for this key.

Listing 4.6: RetrieveOrRun function
1 retrieveOrRun :: ( KeyMemory k v m) =>
2 k -> (() -> State m v) -> State m v
3 retrieveOrRun x t =
4 mlookup x
5 >>= ( \case
6 Just v -> return v
7 Nothing -> t () >>=
8 (\v -> mupdate x v >>= \_ -> return v)
9 )

We declared a KeyValueArray type as a concrete member of the KeyMemory typeclass,
as detailed in Listing 4.7. It is a simple structure consisting on an array of tuples - each
corresponding in a pair of a key and a value.

Listing 4.7: KeyValueArray type
1 type KeyValueArray k v = [(k, v)]
2

3 instance Eq k => ( KeyMemory k v) ( KeyValueArray k v)
↪→ where

4 mlookup :: k -> State ( KeyValueArray k v) (Maybe v)
5 mlookup a = State (\s -> (lookup a s, s))
6 mupdate :: k -> v -> State ( KeyValueArray k v) ()
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7 mupdate a v =
8 State
9 ( \s ->

10 (() , (a, v) : s)
11 )

4.2.4 Example of a CFG Static Analysis - Return Checker

Although the Fibonacci function is a suitable example for understanding some of the inner
works and type classes of our memoization library, it is still a very simple function which,
in its core, accepts an Int as an input and yields an Int as its output. To better understand
how we introduced memoization at a full-fledged SPL CFG static analysis, lets consider
again the Return Checker analysis presented in the Problem Statement section.

We are using the exact Haskell implementation which was presented by Shahin and
Chechik [4]. Algorithm 1 outlines a simplified explanation of how the used implementation
of the Return Check analysis operates:

Algorithm 1 Variability-Aware Return Checker
1: Input: Variational CFG structure
2: Output: Variational list of nodes representing functions with no return statements

3: procedure Variability-Aware Return Checker
4: Step 1: Filter nodes corresponding to function definitions
5: Step 2: For each node, apply a “hasReturn” check:
6: 2.1: Perform a DFS (Depth-First Search) for any return statements
7: 2.2: If at least one successor is a return statement, the search yields true
8: Step 3: The Return-Check result is the list of nodes for which the DFS search

yielded false
9: end procedure

With the overall idea of the algorithm, now we are able to inspect its implementation
details. Observe the analyze function signature in Listing 4.8, which serves as the CFG
analysis’ entry-point. It accepts a Var CFG as its input, representing a C program with
a #ifdef style of compile-time variability encoding. As its output, it yields a list of Var
CFGNode structures, which are the CFG nodes representing the roots of functions which
do not have any return statement.

Listing 4.8: Analyze function signature
1 analyze :: Var CFG -> [Var CFGNode ]
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Both input and output are now more complex structures. Furthermore, as the analysis
was transformed through the deep-lifting framework presented in [4], we are now dealing
with Variational types, which is indicated by the usage of the Var type class.

In Section 2.3.2 we presented the definitions of the CFG and CFGNode types. We
highlight those definitions in Listing 4.9, so that we can make the two following observa-
tions about those structures:

• The CFG structure associates each CFGNode in the multimap with a corresponding
PresenceCondition. This reflects the fact that the existence of a specific CFGNode
may depend on the configuration provided during the SPL compilation process;

• Both the predecessors (_preds) and successors (_succs) fields in the CFGNode type
are variational. The rationale for this is similar: the connections between nodes can
vary based on different configurations.

Listing 4.9: Revisiting the CFG and CFGNode type definitions
1 -- Variational CFG structure
2 data CFG = CFG {
3 nodes :: M. ListMultimap Int (CFGNode ,

↪→ PresenceCondition )
4 }
5

6 -- Variational CFGNode
7 data CFGNode = CFGNode {
8 _nID :: Int ,
9 _fname :: T.Text ,

10 text :: T.Text ,
11 ast :: C.NodeType ,
12 _preds :: [Var Int],
13 _succs :: [Var Int]
14 } deriving (Show , Generic , NFData)

With the input and output structures in mind, we can now explore the implementation
of the Return Checker in Listing 4.10. The code below provides an overview of the key
functions used in the Return Check CFG analysis. While the full implementation is
available in our source code repository, for the purpose of explaining the memoization
process, for now it is sufficient to focus on the function declarations:

Listing 4.10: Functions used in the Return Checker analysis
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1 -- Analyzes a control flow graph (CFG) to find functions
2 -- that do not contain return statements .
3 analyze :: Var CFG -> [Var CFGNode ]
4

5 -- Checks if the node is the root of a function
6 isFnRoot :: Var CFGNode -> Var Bool
7

8 -- Determines if a function ( represented by its root node
↪→ )

9 -- has a return statement .
10 hasReturn :: Var CFG -> Var CFGNode -> Var Bool
11

12 -- Follows the successors of a node in the control flow
↪→ graph ,

13 -- checking if it or its successors contain a return
↪→ statement .

14 followSuccessor :: Var CFG -> [Var Int] -> Var CFGNode ->
↪→ Var Bool

15

16 -- Recursively follows all successors of a node ,
17 -- checking if any contain a return statement .
18 followSuccessors :: Var CFG -> [Var Int] -> Var CFGNode

↪→ -> Var Bool
19

20 -- Finds if a node is in a list of nodes.
21 find :: Var Int -> [Var Int] -> Var Bool
22

23 -- Determines if the node represents a return statement
24 isReturn :: Var CFGNode -> Var Bool
25

26 -- Checks if the node is a function call or declaration
27 isFuncCall :: Var CFGNode -> Var Bool

At this point, the challenges of memoizing the Return Checker analysis become clearer:

• The Fibonacci program uses a single recursive function with a simple primitive
type input and output, making the memoization process relatively straightforward;
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• In contrast, the Return Checker analysis involves more complex data structures
and multiple interacting functions, increasing the complexity of the memoiza-
tion process.

Now we begin to explain our process of memoization. There are two steps involved:

1. First, we inspect the analysis and select which function is going to be memoized;

2. Next, we define a key based on the function’s input parameters, which will be used
to store and retrieve values in memory.

This process requires manual inspection of the analysis source code, which is a current
limitation of our method. In the case of the Return Checker analysis, we identified the
hasReturn function as an ideal candidate for memoization. This decision is supported by
the following factors:

• It can be parameterized with a key that uniquely identifies a CFGNode;

• It operates independently of other functions, meaning changes in one function do
not propagate to others, preserving the integrity of cached results;

• If a result for a given CFGNode is already stored, memoization avoids the need for
a full DFS search within the function definition.

Any Haskell function can be selected for memoization, provided that a suitable mem-
oization key can be derived from its input arguments. As previously mentioned, this
key can be a value that uniquely identifies a CFGNode representing a function root. We
choose a pair consisting of the function name and the hash of its presence condition as the
memoization key. In Listing 4.11 is the non-memoized version of the hasReturn function:

Listing 4.11: Non-memoized hasReturn function
1 hasReturn :: Var CFG -> Var CFGNode -> Var Bool
2 hasReturn cfg n = followSuccessors cfg [_nID ’ n] n

And in Listing 4.12 is the memoized version, where the key is used to cache and
retrieve results. Notice that now the return type now is a State Monad.

Listing 4.12: Memoized hasReturn function
1 -- Memory definition : Tuple of (functionName , hash(

↪→ presenceCond ))
2 type MemoryConc = KeyValueArray (String , Int) (Var Bool)
3 type StateConc = State MemoryConc
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4

5 hasReturn :: Var CFG -> Var CFGNode -> StateConc (Var
↪→ Bool)

6 hasReturn cfg n@(Var ns) =
7 -- Memoization key definition
8 let fname = show $ _fname (fst (head ns))
9 presenceCond = (snd (head ns))

10 in retrieveOrRun
11 -- Memoization key usage
12 (fname , hash (show presenceCond ))
13 ( \_ ->
14 let follow = followSuccessors cfg [_nID ’ n] n
15 in return follow
16 )

All parts of the program that use the hasReturn function must be adapted to handle
its new monadic version. This adaptation mainly involves wrapping and unwrapping com-
putations within the state monad, without requiring direct interaction with the memory.
The complete implementation can be reviewed in the source code repository4. Below in
Listing 4.13 is the updated and monadified signature for the analyze entry point for the
Return Checker:

Listing 4.13: Monadified analyze function signature
1 analyze :: Var CFG -> StateConc [Var CFGNode ]

Now we have successfully obtained a memoized version of the Return Checker CFG
analysis. The final step is to implement a mechanism to detect whether the values stored
in memory for each function remain valid after the SPL evolves or if the functions have
been modified. This process is explained in detail in 4.3.

4.2.5 List of memoized CFG Static Analyses

In the previous section we described the basic mechanism employed for memoizing a
Haskell SPL CFG static analysis. We applied this process in each of the deep-lifted
analyses used in the evaluation chapter of the work proposed by Shahin and Chechik [4],
as they are also subjects of our experiment detailed in Chapter 5. Table 4.1 describes
each static analysis.

4https://github.com/BrunoMWorm/ProductLineAnalysis/blob/memoization/haskell/
benchmarks/ControlFlow/src/ReturnDeepMemo.hs
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Analysis Description
Call Density Calculates the average number of function calls per C function

within a source file.
Case Termination Checking whether each non-empty case in a C-language switch

statement ends with a break statement.
Dangling Switch Checking if there is any dead-code (anything other than a

declaration) between a switch statement and the first case or
default.

Goto Density Calculates the average number of goto statements per label
within a C source file.

Return Checker Checking whether each non-void C function has at least one
return statement.

Return Average Calculates the average number of return statements per C
function within a source file.

Table 4.1: Description of the static analyses in which we introduced memoization. The
list of analysis is the same as presented by Shahin and Chechik [4].

We inspected each analysis looking for candidate functions suitable for memoization.
The rest of each program was rewritten to account for calls to the new memoized function,
as they are transformed in State-Monad computations. Table 4.2 describes, for each
analysis, the selected functions for memoization. The complete implementation of each
analysis is available in our GitHub repository5.

Analysis Memoized function
Call Density callDensity: for a given CFGNode representing a function

declaration, calculates its number of function calls.
Case Termination analyze: for a given complete CFG structure, returns the list

of non-empty cases without a break statement.
Dangling Switch analyze: for a given complete CFG structure, returns the list

of nodes representing switch statements with dead code.
Goto Density analyze: for a given complete CFG structure, calculates the

average number of goto statements per label.
Return Checker hasReturn: for a given CFGNode representing a function dec-

laration, checks if it has at least one return statement.
Return Average returnAvg: for a given CFGNode representing a function dec-

laration, computes the number of return statements.

Table 4.2: Description of the functions selected for memoization in each analysis.

The memoization targets of the Call Density, Return Checker and Return Average
analyses are functions that operate on individual CFGNodes. On the other hand, the

5https://github.com/BrunoMWorm/ProductLineAnalysis/tree/memoization/haskell/
benchmarks/ControlFlow/src
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memoization targets for the Case Termination, Dangling Switch and and Goto analyses
are their entry-points functions, operating on a complete CFG structure level. In such
cases, the memoization key is the relative path and name of the C program inside the
source code repository.

This approach was taken because no other suitable candidates for memoization were
identified within the source code of these analyses. As a result, we opted to memoize the
entry-point function itself. A trade-off of this decision is that any change to a function
within the program will invalidate the entire cache for that file, rather than just the
affected nodes.

4.3 DiffParser
The DiffParser module is responsible for tracking changes in the SPL revisions. Figure
4.2 displays an overview of its inputs, outputs and inner components, which are going to
be thoroughly detailed in following sections.

• Inputs: both original and evolved revisions of the SPL source code are passed as
inputs to our DiffParser;

• Output: the output of our Diff Algorithm is a list of functions modified by the
evolution.

4.3.1 Definition of a Modified Function

We explained that the expected output of our diff algorithm is a list of modified functions.
First, it is important to clarify this definition. A function is considered modified if any of
the following conditions occur in its Abstract Syntax Tree (AST):

• Insertion or deletion of any AST node within the function;

• Modification of the content of any AST node within the function;

• Changes to the Presence Condition of any AST node within the function (or of the
function itself);

• Alteration in the order of AST nodes within the function.

For the specific analyses outlined in Table 4.1, changes inside a function do not impact
the results of nodes outside it, even if the modified node interacts (calls or is called by)
with external nodes. These analyses verify properties and compute metrics that are scoped
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Figure 4.2: DiffParser overview.

to the internal structure and behavior of individual functions. This allows the analysis of
each function to be conducted independently.

However, for analyses where modifications within one function may propagate and im-
pact other functions, a different diff algorithm would be necessary. While these scenarios
present paths for further exploration, it is beyond the scope of the current work.

4.3.2 Modified TypeChef

The first step of the DiffParser method is to generate the adequate data structures. Con-
sidering that the actual input of the analyses are VCFG structures parsed by TypeChef
[7], we also considered them to be solid input options for our Diff Parsing algorithm.

However, the original TypeChef has a specific limitation for our use case. When it
generates identifiers for the VCFG nodes, it uses the System::identityHashCode method
from the JDK6. This method does not guarantee that generated identifiers for the same
objects remain consistent from one execution of an application to another, which is a
requirement of our algorithm, as we need to track nodes by their identifiers to check for
modifications.

6https://docs.oracle.com/javase/7/docs/api/java/lang/Object.html#hashCode()
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Therefore, we modified TypeChef7 to use customized approach for generating identi-
fiers to nodes. When parsing a source file, it generates, for each CFG node, an identifier
which is a hash function application on the following parameters:

• The content of the node;

• The presence condition of the node;

• The container of the node, which can be a specific function or the source code file
itself;

• The position of the node inside its container, which can be relative to the source
code file or inside a specific function.

4.3.3 Diff Algorithm

Having both VCFG structures with deterministically-generated identifiers in hand, we are
ready to apply our Diff Algorithm. Algorithm 2 describes this process, whose implemen-
tation in our framework was made using Python8. The core principle of our algorithm
is, for each pair of original/evolved source code files of the SPL, to detect inserted and
removed identifiers on the new source code file. For each inserted/removed identifier, we
add its container function to the result set. Therefore, the output is a list of names of the
modified functions in each file.

Intuitively, the algorithm functions by detecting new identifiers for nodes. Thus, any
change in one of the parameters specified in List 4.3.2 will result in a different node
identifier being generated, which our diff algorithm promptly detects.

4.3.4 Sanitizing stored memoization values

The output of the Diff Algorithm is used prior to executing the memoized analyses. Before
running each analysis, the list of modified functions is used to filter out any cached values
that are no longer valid. The library that facilitates this process is available in our source
code repository9.

For memoized functions that work with individual CFGNodes (Return, Return Checker,
Call Density), cached values corresponding to modified function names are removed from

7https://github.com/BrunoMWorm/TypeChef/commit/1e4eda0fe53ac9a91e88a7b70f7093903235a092#
diff-200ec32540e611df2f909a6c1e984f55148e29a0c321136eff71c83a10b3dd38L193

8https://github.com/BrunoMWorm/Evolution-Aware-SPL-Analysis-Experiments/blob/main/
Experiments/source-code/Auxiliary-Scripts/analyze_cfg_diff.py

9https://github.com/BrunoMWorm/ProductLineAnalysis/tree/memoization/haskell/
benchmarks/ControlFlow/src/Serialization
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Algorithm 2 Diff Algorithm for Indentifying Modified Functions from VCFGs
1: Input: V CFGorig, V CFGevolv ▷ Original and evolved VCFGs
2: Output: ModifiedFunctions
3: Construct Maporig: Map from node identifiers to their container function in V CFGorig

4: Construct Mapevolv: Map from node identifiers to their container function in
V CFGevolv

5: InsertedNodes← {id | id ∈ V CFGevolv ∧ id /∈ V CFGorig}
6: RemovedNodes← {id | id ∈ V CFGorig ∧ id /∈ V CFGevolv}
7: ModifiedFunctions← ∅
8: for all id ∈ InsertedNodes ∪RemovedNodes do
9: if id ∈ InsertedNodes then

10: func←Mapevolv[id]
11: else if id ∈ RemovedNodes then
12: func←Maporig[id]
13: end if
14: if func /∈ModifiedFunctions then
15: Add func to ModifiedFunctions
16: end if
17: end for
18: return ModifiedFunctions

memory. For memoized functions that operate on entire CFG structures (Case Termi-
nation, Dangling Switch, Goto Density), if any function in a file has been modified, the
entire cached value for that file is invalidated and removed.
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Chapter 5

Empirical Evaluation

In this chapter we describe the evaluation of the proposed method and report the observed
results and discussions. Section 5.1 defines experiment structure. Section 5.2 presents the
experiment planning. The results are reported in Section 5.3. Sections 5.4 and 5.5 discuss
the findings and threats to validity, respectively.

5.1 Definition
We employ the Goal Question Metric (GQM) approach [31] is employed to describe the
structure of the experiment. Table 5.1 synthesizes the evaluation goal. The baseline is
the set of non-memoized CFG static analyses presented in Section 4.1. Each analysis was
previously lifted by the deep-rewriting method presented by Shahin and Chechik [4].

Table 5.1: GQM goal
Purpose Compare
Issue Performance
Object {Evolution,non-evolution}-aware SPL CFG Static Analyses
Viewpoint Quality Assurance
Context Evolving Annotative SPL

We defined the following questions and metrics to allow comparison of our method to
the baseline. The measurement is addressed in terms of time computing analysis and the
associated storage cost for the memoized analyses.

• Q1: Compared to the baseline, how faster are memoized lifted analyses?

– M1.1: Average time analysing each revision of the SPL.

• Q2: What is the storage cost of employing memoization in SPL CFG static analyses?

– M2.1: Total disk usage.
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5.2 Planning

5.2.1 Subject System Selection

The BusyBox SPL was chosen as the evaluation target due to its use in the experiments
conducted by Shahin and Chechik [4]. This also helps to ensure consistency in our com-
parative analysis and allows us to build on previous infrastructure.

The analyses selected for this study are outlined in Table 4.1, which is the same set
of analyses used on the experiment presented by Shahin and Chechik [4]. Our primary
objective is to evaluate the impact of memoization on SPL analysis. To achieve this, we
compared two versions of each deep-lifted static analysis: one incorporating memoization
and the other without it. The specific steps where memoization was applied for each
analysis are detailed in Table 4.2.

5.2.2 Revision Selection

Given that the evaluation target is a well-established SPL with its source code and history
accessible on GitHub, we were able to select a set of Git commits to serve as our revision
points. This selection ensures that our evolution scenario reflects real-world modifications
within the SPL.

Table 5.2 displays the selected revisions along with the number of C source code files.
The sampling process involved using the command git log –pretty=oneline 1_18_0...1_19_0
to generate a list of commits between these versions. Starting from the first commit in
version 1_18_0, we selected nine additional commits at intervals of ten commits each.
This approach was chosen to capture a representative subset of modifications, particularly
those affecting C source-code files. The decision to focus on only 10 commits was driven
by the need to balance comprehensiveness with the computational cost of running the
subsequent experiments, which are time-consuming.

5.2.3 Experiment Design and Analysis Procedures

For each Busybox file of each revision, we used the Haskell library criterion1 to benchmark
the time spent computing analyses with both our method and the baseline. At least 4
measurements were made to each file. This aims to gather metrics relevant for answering
our first research question (Q1 - Comparing to the baseline, how faster are memoized lifted
analyses?). From these benchmarks, we obtained the average and standard deviation for
each file. To compute the metrics for the entire SPL, we summed the individual averages

1https://hackage.haskell.org/package/criterion

35

https://hackage.haskell.org/package/criterion


Revision Label Git commit hash Source code files
R1 5ab20641d687bfe4d86d255f8c369af54b6026e7 508
R2 1c31e9e82b12bdceeec4f8e07955984e20ee6b7e 508
R3 3f2477e8a89ddadd1dfdd9d990ac8c6fdb8ad4b3 508
R4 31905f94777ae6e7181e9fbcc0cc7c4cf70abfaf 509
R5 0d6a4ecb30f596570585bbde29f7c9b42a60b623 509
R6 2f7d9e8903029b1b5e51a15f9cb0dcb6ca17c3ac 509
R7 6088e138e1c6d0b73f8004fc4b4e9ec40430e18e 509
R8 0cd4f3039b5a6518eb322f26ed8430529befc3ae 509
R9 642e71a789156a96bcb18e6c5a0f52416c49d3b5 509
R10 df1689138e71fa3648209db28146a595c4e63c26 509

Table 5.2: Set of selected commits, extracted from the Busybox SPL GitHub mirror, as
evaluation revisions.

and calculated the square root of the total variance sum, as we considered measurements
in different files to be linearly independent.

As for the second research question (Q2 - What is the storage cost of employing
memoization in SPL CFG static analyses?), we measured the storage costs using the du
command on the memoization artifacts, which were persisted through the usage of the
Haskell bindings2 for the CUDD library [18]. The exact parameters for both criterion3

and du4 are in the source code repository.

5.2.4 Instrumentation and Operation

Each analysis was executed on an Ubuntu 22.04 VM instance hosted on the Digital Ocean
cloud provider. Each instance was configured with 2 dedicated Intel(R) Xeon(R) Plat-
inum 8168 vCPUs, with clock frequency of 2.70GHz, 50GB of SSD and 8GB of RAM.
Correctness was assessed by comparing the textual result of the outputs of both non-
memoized and memoized analyses. The reproducibility package is available at our source
code repository5.

5.3 Results
According to the plan laid out in Section 5.2, we now report corresponding results for
analysis time (Section 5.3.1) and storage cost (Section 5.3.2).

2https://hackage.haskell.org/package/cudd
3https://github.com/BrunoMWorm/Evolution-Aware-SPL-Analysis-Experiments/blob/main/

Experiments/source-code/Auxiliary-Scripts/run_analyses.sh
4https://github.com/BrunoMWorm/Evolution-Aware-SPL-Analysis-Experiments/blob/main/

Results/disk_space.sh
5https://github.com/BrunoMWorm/Evolution-Aware-SPL-Analysis-Experiments
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5.3.1 Analysis Time

Figures 5.1 – 5.6 present the results for analysis time. The X-axis labels each revision as
[R1, R2, ..., R10] for conciseness. The Y-axis represents the time it took (in seconds) to
complete each analysis on the BusyBox source code files.

Figure 5.1: Call Density - Total Analysis Time per Revision.
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5.3.2 Storage Cost

Regarding the storage cost specific to the memoized analysis, Table 5.3 displays the total
disk space used after applying each analysis in all revisions.

Table 5.3: Storage cost for memoized analyses (kB)
Analysis R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Call Density 27,140 26,932 27,140 26,844 27,220 27,076 26,804 27,164 27,192 27,160
Case Termination 9,084 9,056 9,056 9,072 9,072 9,072 9,072 9,072 9,072 9,072
Dangling Switch 8,144 8,112 8,112 8,128 8,128 8,128 8,128 8,128 8,128 8,128
Gotos Density 12,396 12,348 12,348 12,368 12,372 12,372 12,372 12,372 12,372 12,372
Return Checker 23,624 23,592 23,592 23,672 23,672 23,672 23,676 23,536 23,688 23,684
Return Average 23,912 23,656 23,912 23,736 23,992 23,736 23,996 23,920 23,856 23,916
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Figure 5.2: Case Termination - Total Analysis Time per Revision.
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Figure 5.3: Dangling Switch - Total Analysis Time per Revision.
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Figure 5.4: Gotos Denisity - Total Analysis Time per Revision.
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Figure 5.5: Return Checker - Total Analysis Time per Revision.

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10
0

200

400

600

800

1,000

1,200

1,400

1,600

1,
00

7.
1 1,

22
7.

96

1,
25

8.
47

1,
32

2.
64

1,
31

7.
73

1,
29

7.
13

1,
25

2.
97

1,
25

3.
29

1,
12

3.
94

1,
14

2.
67

1,
02

1.
25

3.
46

6.
32

3.
32

3.
33 10
.5

4

3.
31 38

.5
4

3.
18

3.
32

Revision

T
im

e
Sp

en
t

(s
ec

on
ds

)

Non-memoized
Memoized

39



Figure 5.6: Return Average - Total Analysis Time per Revision.

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

1,
17

9.
37

1,
55

1.
52

1,
52

3.
89

1,
46

1.
05

1,
48

4.
94

1,
36

0.
74

1,
47

8.
65

1,
35

9.
69

1,
29

4.
23

1,
43

1.
22

1,
18

8.
6

5.
96

7.
83

5.
09

5.
51 11
.6

1

5.
29 36
.6 18

3.
76

5.
37

Revision

T
im

e
Sp

en
t

(s
ec

on
ds

)

Non-memoized
Memoized

5.4 Analysis and Discussion
In this section we examine the results obtained from applying the memoized and non-
memoized versions of our SPL static analyses, highlighting performance differences, stor-
age costs and defining metrics for better understanding of the results.

5.4.1 Analysis Time

From the results presented in 5.3.1, we observe two patterns of results:

• Figures 5.1, 5.2, 5.5 and 5.6 show similar analysis times for the R1 revision, followed
by a consistent performance improvement in favor of the memoized subjects across
the remaining revisions;

• In contrast, Figures 5.3 and 5.4 do no exhibit this trend. Notably, Figure 5.3 actually
displays a performance penalty for the memoized analysis.

A suitable metric for assessing the performance impact of memoization is the obtained
speedup obtained through memoization. Given the presence of multiple revisions, it
is helpful to use metrics such as the aggregate, minimum and maximum speedups to
better assess performance across revisions. Also, special attention should be given to the
measured speedup in the first revision (R1), as for this specific case there are no previous
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Table 5.4: Speedup (slowdown) metrics for time spent computing analysis when employing
memoization

Analysis Aggregate Minimum Maximum R1
Call Density 10.7x 79.4x 193.0x 0.993x

Case Termination 8.8x 17.0x 106.2x 0.999x
Dangling Switch 0.593x 0.568x 0.782x 0.809x
Gotos Density 1.178x 1.097x 2.219x 0.819x

Return Checker 11.1x 32.5x 398.3x 0.986x
Return Average 9.7x 7.0x 286.9x 0.992x

values stored for memoization purposes. Therefore, this speedup provides insight into the
performance overhead associated with loading and storing values in memory.

The following list summarizes the metrics computed for assessment of our method:

• Aggregate speedup: calculated as the ratio of the sum of time spent computing
the analysis across all revisions, comparing non-memoized and memoized methods;

• Minimum/maximum speedup (ex-R1): calculated by determining, for all revi-
sions except R1, the minimum and maximum speedup of the time spent computing
the analysis between non-memoized and memoized approaches;

• R1 speedup: calculated as the ratio of time spent computing the analysis specifi-
cally for R1, comparing non-memoized and memoized methods.

Table 5.4, presents these metrics for all six analyses. Greater values indicate greater
performance improvements from using memoization—for example, a 1.5x speedup means
the memoized analysis performed 50% times faster than its non-memoized counterpart.
It is important to note that speedup values lower than 1.0x indicate a slowdown, which
means that the use of memoization yields slower performance.

The aggregate speedup, calculated by comparing the total time spent on analysis across
all revisions, provides insight into the return on investment of using memoization across
multiple revisions. The most notable performance gains are seen in the Return Checker
(11.1x), Call Density (10.7x), Return Average (9.7x), and Case Termination (8.8x). How-
ever, the performance gap narrows for Gotos Density (1.178x), and a performance penalty
is observed for Dangling Switch (0.593x).

A likely explanation for the limited effectiveness of memoization in Gotos Density and
Dangling Switch analyses is their relatively low computational cost. Across all revisions,
these analyses consistently complete in under 2.5 seconds for the entire Busybox project.
This suggests that memoization may be more beneficial for computationally heavier anal-
yses, where the overhead of (de)serializing data to and from disk is justified.
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For all analyses except Dangling Switch, the minimum speedup occurs during the
initial analysis (in R1). This is expected, as there are no pre-existing values in storage to
reuse for computations. As a result, performance is impacted due to the need to serialize
and store the initial data, which is observed by speedups smaller than 1.0x.

In subsequent revisions, we can observe substantial improvements in performance.
For the Return Checker, a maximum speedup of 398.3x occurs for R4, indicating that
the memoized analysis was nearly 400 times faster than the non-memoized analysis for
this specific revision. Similar performance improvementes are observed for the Return
Average (286.9x), Call Density (193.0x) and Case Termination (106.2x).

Memoization Performance Impact

Memoization can yield analysis times up to 398.3 times faster than non-memoized
counterparts in later revisions.

5.4.2 Storage Cost

For all six analyses, storage consumption remained stable across all revisions, with the
percentage difference between the maximum and minimum consumption never exceeding
1.6%. Table 5.5 shows the average storage cost and standard deviation considering all
revisions.

Table 5.5: Average storage cost and standard deviation (kB)
Analysis Average storage cost (kB) Standard deviation
Call Density 27,067.2 143.16
Case Termination 9,070.0 7.85
Dangling Switch 8,126.4 8.62
Gotos Density 12,369.2 12.91
Return Checker 23,640.8 49.27
Return Average 23,863.2 109.70

Memoization storage cost

The storage cost of retaining previous results consistently remains below 28 MB for
all analyses.

5.5 Threats to Validity
To address the potential internal validity threat of overlooking the time spent on additional
steps specific to our memoized analyses, we explicitly benchmarked the (de)serialization
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process of storing and retrieving values. As a result, the time spent on these steps was
accounted for in our performance evaluation.

Potential threats to external validity arise from the selection of the subject systems.
The selection of BusyBox, a well-established and widely used production SPL, is our first
strategy to mitigate this threat. Additionally, we deliberately introduced an interval of 10
commits between each selected BusyBox revision to ensure that a substantial amount of
modifications were considered in the analyses. This aims to avoid selecting a set of overly
similar revisions, which could bias the results in favor of the memoized analyses. In fact,
this setup might even bring a performance disadvantage for the memoized method, as
it aggregates changes from multiple commits, and our method would benefit most from
smaller changes.

The selection of analyses also poses a potential threat to external validity. Specifically,
we relied on the exact set of CFG analyses used in the method evaluation by Shahin and
Chechik [4], which may limit the generalizability of our findings to other types of analyses
or contexts not covered in their study.
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Chapter 6

Conclusion

We presented a practical application of memoization in SPL analysis analysis, specifically
in CFG static analyses. By embedding memoization, we effectively enabled the reuse of
results across evolving revisions of SPLs, avoiding redundant computations. Our imple-
mentation demonstrated how memoization, combined with a change detection mechanism
like the DiffParser, can maintain data validity while handling variability in both space
and time dimensions.

Our empirical evaluation of the memoization method confirms its effectiveness in im-
proving the performance of SPL analyses across evolutions. By applying the method to
multiple revisions of the Busybox SPL, we observed notable reductions in computation
time. Notably, for the most resource-intensive analyses such as Return Checker and Re-
turn Average, computation times were reduced from thousands of seconds to just tens
of seconds, demonstrating the substantial efficiency gains achieved through memoization
while having a limited storage cost.

6.1 Limitations
Our proposed memoization technique, while effective in optimizing CFG analyses of evolv-
ing SPLs, has limitations that affect its general applicability across different contexts.

Implementation language of analyses. Our memoization technique was applied
specifically to analyses implemented in Haskell, a functional programming language.
While the concept of memoization is not inherently tied to any particular programming
paradigm, our method leverages the State Monad construct, making it not directly trans-
latable to analyses implemented in other paradigms, such as imperative programming.

DiffParser dependency on specific analyses. As discussed in Subsection 4.3.1,
the DiffParser currently provides a list of modified functions, which was sufficient to
maintain the validity of cached values for our subject analyses. However, this approach
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may not be sufficient for all types of CFG analyses, where changes in one function could
impact others. In such cases, the DiffParser would need to be extended to capture a
broader scope of modifications.

Dependency on knowledge of the subject analysis implementation. A limita-
tion of the proposed method is its dependence on knowledge of the implementation of each
analysis to effectively embed memoization. As explained in Subsection 4.2.4 the memoiza-
tion process requires a manual inspection of the analysis code to identify suitable functions
for memoization and to define appropriate keys for caching, which is labor-intensive and
error-prone.

6.2 Future work
Considering the promising results of the empirical evaluation of our method, and con-
sidering its current limitations, we look at the following directions for improvement and
extension:

Rewrite rules and automatic rewrite tool. The most direct continuation of
our work is the development of automatic rewrite rules and an accompanying tool for
embedding memoization into Haskell-based static analyses. A dedicated framework im-
plementing these rules would eliminate the inspection process of each analysis and thus
make memoization technique more practical for broader adoption in SPL analysis.

Formal proof. While the proposed method has been empirically validated, future
work should focus on developing a formal proof of correctness for the memoized SPL CFG
analysis. With a set of rewrite rules, establishing a formal verification would provide
stronger guarantees about the reliability and accuracy of the memoized transformations,
ensuring that they yield the same results as their non-memoized counterparts.

Application on other categories of analysis. A key direction for future research is
to extend this approach to other analysis categories, such as data flow analysis, variability-
aware type checking, or dependency analysis. These analyses may have different structural
requirements and computational patterns, necessitating adaptations of the memoization
strategy. Successfully applying memoization to a broader range of analyses would demon-
strate its versatility and effectiveness.
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