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Abstract

In recent years, semi-blind receivers based on tensor models for MIMO communication
systems have been widely used as they allow for a better estimation of parameters of interest
without prior channel knowledge. This thesis presents developments carried out in the scope
of new semi-blind receivers applied to point-to-point and cooperative MIMO communica-
tion systems to perform symbols and channel estimation. More specifically, the theoretical
contributions of this thesis are linked to the extension of the codings that introduce spatial
diversity to symbol matrices. These codings allow for the proposition of semi-blind receivers
to estimate the symbol and channel matrices without prior channel knowledge. In the first
part of this thesis, a particular case of the multiple Khatri-Rao space-time (MKRST) coding
is considered for a point-to-point MIMO system. For the MKRST coding, a symbol matrix is
assumed known, which can be considered as a pre-coding matrix. For this coding scheme,
a received signal tensor model is proposed, and new semi-blind receivers are presented to
jointly estimate the symbols and the channel. In the second part of this thesis, a new coding
extension based on the multiple Kronecker product of the symbol matrices is applied to a
two-hop MIMO relay system. This system considers a single relay and the coding scheme is
combined with a tensor space-time-frequency (TSTF) coding on both, transmit and relay
nodes denoted by TSTF-MSMKron coding. For the proposed system, the tensor model is
exploited to obtain receivers that jointly estimate channels and symbols in a semi-blind way.
In each part of the thesis, conditions related to the uniqueness of tensor decompositions and
the identifiability of the proposed algorithms are discussed. Simulation results are provided
to evaluate the performance of the proposed coding schemes and the semi-blind receivers.

Keywords: Tensor Decomposition. Khatri-Rao and Kronecker codings. Semi-blind receivers.
MIMO system.



Resumo

Nos últimos anos, receptores semi-cegos baseados em modelos tensoriais para sistemas de
comunicação MIMO têm sido amplamente utilizados, pois permitem uma melhor estima-
tiva dos parâmetros de interesse sem o conhecimento prévio do canal. Esta tese apresenta
desenvolvimentos realizados no âmbito de novos receptores semi-cegos aplicados a sistemas
de comunicação MIMO ponto-a-ponto e cooperativo para realizar estimativas das matrizes
de símbolos e canais. Mais especificamente, as contribuições teóricas desta tese estão ligadas
à extensão das codificações que introduzem a diversidade espacial às matrizes de símbo-
los. Essas codificações permitem propor receptores semi-cegos para estimar as matrizes de
símbolos e o canal sem o seu conhecimento prévio. Na primeira parte desta tese, um caso
particular da codificação MKRST (do inglês,multiple Khatri-Rao space-time) é considerado
para o sistema MIMO ponto-a-ponto. Para a codificação MKRST, uma matriz de símbolos é
assumida conhecida, que pode ser considerada como uma matriz de pre-codificação. Para
este esquema de codificação, ummodelo de tensor do sinal recebido é proposto e novos recep-
tores semi-cegos são apresentados para estimar conjuntamente as matrizes de símbolos e o
canal. Na segunda parte desta tese, uma nova extensão de codificação baseada em múltiplos
produtos de Kronecker das matrizes de símbolos é aplicada a um sistema de retransmissão
MIMO de dois saltos. Esse sistema considera um único relé e o esquema de codificação é
combinado com uma codificação TSTF em ambos os nós de transmissão e retransmissão,
nomeada como codificação TSTF-MSMKron. Para o sistema proposto, o modelo tensorial
é explorado para obter receptores que estimam conjuntamente os canais e as matrizes de
símbolos de forma semi-cega. Em cada parte da tese, condições relacionadas à unicidade
das decomposições tensoriais e à identificabilidade dos algoritmos propostos são discutidas.
Resultados das simulações de Monte Carlo são fornecidos para avaliar o desempenho das
codificações e dos receptores semi-cegos propostos.

Palavras-chave: Decomposição Tensorial. Codificações Khatri-Rao e Kronecker. Receptores
Semi-cegos. Sistema MIMO.
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1 Introduction

1.1 Thesis scope and motivation

Wireless communication systems have experienced great growth in the number of
users since the early 1990s [1]. The emergence of connected devices and the introduction
of new applications, such as autonomous vehicles, smart homes and cities, Internet of
Things (IoT) and virtual reality have paved the way for the integration of the multiple input
multiple output (MIMO) technologies that meet the requirements of 5G (fifth-generation)
wireless systems [2]. MIMO systems have been designed to support the growing demand
for high-quality multimedia services, with the best trade-offs between error performance
in terms of symbol error rate (SER), transmission rate in symbols per channel use, power
efficiency, and receiver complexity for symbol recovery. These systems use multiple antennas
at both transmitter and receiver ends, which allow for the increase of spatial diversity
and lead to communication systems with MIMO channels. The deployment of multiple
antennas on wireless systems allows for improved reliability in terms of the error rate and
transmission rate concerning single transmit antenna systems while keeping the same power
and transmission bandwidth [3, 4, 5, 6].

5G technology offers advantages in terms of data rate, reliability, latency, energy
efficiency and mobility [7, 8]. On the other hand, 5G technology brings some challenges
in the bag, such as, needing high frequency bands that are expensive. As the necessary
waves are high frequency, the length of the waves is shorter, not being able to travel for long
distances, thus requiring more base stations to a smaller area to give reliability to the user
in addition to the development of new low-cost devices that support the 5G technology [8].
Massive MIMO systems have emerged to solve most challenges faced by 5G technology.
These systems are composed of hundreds to thousands of receive and transmit antennas and
provide an increase in spectral efficiency, reduction of dead zones and calls being discarded,
also providing a uniform quality of services for different environments such as in urban and
rural areas [8, 9]. Now, the idea of future 6G (sixth-generation) wireless systems and networks
is specifically emerging to improve the functions and performance of future massive MIMO
systems, combining other innovative technologies, architectures, and strategies such as
intelligent omnisurfaces (IOSs)/intelligent reflecting surfaces (IRSs), artificial intelligence
(AI), THz communications, cell-free architecture, etc [10, 11]. In the last years, cooperative
MIMO systems have attracted a lot of attention to 5G mobile networks to increase the
transmission coverage area, data rates and performance of wireless communications [12].
The gains of the cooperative MIMO systems are related to spatial diversity by the use of
multiple antennas to transmit and receive signals and spatial multiplexing related to the use
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of multiple antennas to transmit independent data streams.

During the last two decades, tensor models have been widely used for designing
wireless communication systems [13, 14, 15, 16, 17]. See for instance their use in the context
of point-to-point MIMO systems [18, 19], and cooperative MIMO systems [20, 21, 22, 23, 24,
25]. Tensor models have the ability to capture the multidimensional nature of the wireless
channel, as well as their unique properties [26, 27]. These approaches also allow us to bring
into consideration different diversities (space, time, frequency, code, polarization, ...) during
system design, and to develop semi-blind receivers to jointly estimate the channels and
symbol matrices, under more relaxed conditions than the matrix-based methods.

In the context of cooperative systems, some results have been published on tensor-
based receivers. Some works are dedicated to the use of training sequences for estimating the
channels in a supervisedway, as in [28, 29] where a scenario of a three-hopmulti-relay system
is considered and multiple relay links are exploited at the receiver to estimate all partial
channels involved in the communication. Theseworks rely on supervised channel estimation
methods, which can be bandwidth-consuming, especially for moderate to large number of
antennas. This explains the development of semi-blind receivers for jointly estimating the
transmitted information symbols and channels, i.e., without the use of training sequences,
as in the case of the systems briefly introduced.

To improve the estimation of the transmitted information, it is also necessary to
exploit the space, time, and frequency codings. Diversity techniques aim to enhance the
quality of received signals in communication systems, where we create redundancies in
the signal, exploiting the random nature of radio propagation [12, 30, 31]. In addition to
introducing diversity into the system, codings allow the proposition of semi-blind receivers
that estimate channel and symbol matrices without prior knowledge of the channel. In
cooperative MIMO systems, the accuracy of channel state information (CSI) at each hop
influences the effectiveness of exploiting available diversities [23]. Several works combine
cooperative MIMO systems with space/time/frequency codings to increase system diversity
and obtain the best performance in channel and symbol estimation [17, 32, 33, 34]. Depending
on the coding chosen for the relay system, different tensor models are obtained for the signals
received at the relay and destination nodes. The exploitation of thesemodelsmakes it possible
to derive two families of receivers: the one of supervised receivers and the one of semi-blind
receivers.

In this thesis, new semi-blind receivers are addressed to jointly estimate channels
and symbol matrices in point-to-point and cooperative MIMO communication systems. In
particular, one of the main contributions of this thesis relies on the new coding scheme
obtained by combining the tensor space-time-frequency (TSTF) coding and the multiple
Kronecker product of symbol matrices (MSMKron) at the source and relay nodes. This new
coding scheme, called TSTF-MSMKron coding, can be viewed as a generalization of the
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codings proposed in [33] and [35]. TSTF-MSMKron coding is applied to a two-hop orthog-
onal frequency division multiplexing and code-division multiple-access (OFDM-CDMA)
MIMO relay communication system. In addition, a particular case of themultiple Khatri-Rao
space-time (MKRST) coding presented in [33] for multi-hop MIMO relay systems is consid-
ered. This coding is applied to a point-to-point MIMO system, where the pre-coding matrix
corresponds to a symbol matrix that is assumed known. By applying the proposed codings,
new received signal models based on tensor decomposition are presented and by exploiting
these system models, semi-blind receivers are proposed to jointly estimate the channels
and transmitted symbols for point-to-point and two-hop MIMO relay systems. Extensive
Monte Carlo simulations are performed to illustrate the behavior and the effectiveness of
the proposed schemes.

1.2 Thesis organization

This thesis is divided into five chapters, including this introductory chapter. In the
following, we briefly describe the content of the four remaining chapters.

Chapter 2: Tensor Prerequisites: This chapter provides a theoretical basis for the methods
developed in this thesis. First, a review of the definitions and operations of multilinear
algebra is presented, where the notations and operations involving matrices and tensors
are summarized. Second, some tensor approaches and algorithms are presented to model
systems and estimate the factor matrices in tensor decompositions.

Chapter 3: Semi-blind receivers for point-to-point MIMO system with MKRST coding: This
chapter presents a bibliography review of existingMIMO communication systems and coding
techniques. Furthermore, the first contributions of this thesis are introduced. A particular
case of the MKRST coding is considered, where the pre-coding matrix corresponds to a sym-
bol matrix that is assumed known. Considering the MKRST coding, a point-to-point MIMO
system is proposed based on tensor decompositions. By exploiting the tensor model of the
received signal, tensor-based semi-blind iterative and non-iterative receivers are proposed
to simultaneously estimate symbol and channel matrices. Simulation results are provided
to evaluate the performance of the proposed coding and receivers in terms of symbol and
channel estimation.

Chapter 4: Semi-blind receivers for two-hop MIMO relay communication system with TSTF-
MSMKron Coding: This chapter introduces a new coding scheme based on the Kronecker
product of multiple symbol matrices combined with a TSTF coding at the source and relay
nodes, denoted as TSTF-MSMKron coding. A new two-hop OFDM-CDMA MIMO relay
system is proposed based on this new coding scheme. In this system, the DF protocol is
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considered to transmit the symbols between the relay and the destination nodes. Then, the
proposed two-hop relay system is exploited to derive semi-blind receivers that jointly esti-
mate the source-relay and relay-destination channels and the transmitted symbol matrices.
The identifiability conditions of each receiver are analyzed. Monte Carlo simulation results
are provided to illustrate the effectiveness of the proposed coding scheme and semi-blind
receivers.

Chapter 5: Conclusions and Perspective: In the first part, a raising of the main conclusions
on the contributions of this work is presented. Some advantages and limitations of the
proposed methods and systems are highlighted. In the second part, some perspectives for
future research are outlined.

1.3 Main original contributions

Briefly, the main contributions of this thesis can be summarized as follows:

Chapter 3

• The presentation of the particular case of the MKRST coding scheme used to encode
signals to be transmitted in a point-to-point MIMO system;

• Proposition of the point-to-point MIMO communication system, which uses the
MKRST coding. It is established that the received signals tensor satisfies a PARAFAC
model;

• By exploiting the received signals tensor, proposition of new semi-blind receivers to
jointly estimate channel and symbol matrices;

• Discussion on identifiability conditions of the proposed algorithms;

• Study of MKRST coding performance and the impact of design parameters under
the assumption of perfect channel knowledge, by means of extensive Monte Carlo
simulations;

• Study of proposed semi-blind receivers in terms of SER for symbols estimation and
normalized mean square error (NMSE) for channel estimation.

Chapter 4

• Proposition of the new TSTF-MSMKron coding scheme as a combination of the TSTF
coding and the proposed MSMKron coding used to code the signals to be transmitted
in a two-hop MIMO system;



24

• Proposition of the new two-hop MIMO relay communication system, which uses the
TSTF-MSMKron coding to code the symbols. It is established that the tensor of received
signals at each hop satisfies a generalized Tucker model;

• By exploiting the signals received model at each hop, new semi-blind receivers are
proposed based on iterative and non-iterative (closed-form) algorithms. These receivers
are composed of two stages to jointly estimate the transmitted symbols and individual
channels;

• Discussion on identifiability conditions of the proposed semi-blind receivers;

• Study of the performance of the combined TSTF-MSMKron coding and the impact of
the design parameters under the assumption of perfect channel knowledge, by means
of extensive Monte Carlo simulations;

• Study of the proposed semi-blind receivers in terms of SER for symbols estimation and
NMSE for channel estimation.

1.4 Scientific production

This thesis gave rise to two conference publications and two journals/magazine
publications. The list of publications is as follows:

Conference papers:

• P. H. de Pinho, M. F. K. B. Couras, G. Favier, J. P. J. da Costa, de A. L. F. Almeida, J. P.
A. Maranhão, Semi-supervised receivers for MIMO systems with multiple Khatri-Rao
coding. In: 13th International Conference on Signal Processing and Communi-
cation Systems (ICSPCS). IEEE, p. 1-7, 2019.

• M. F. K. B. Couras, P. H. de Pinho, G. Favier, J. P. J. da Costa, V. Zarzoso, and de A. L.
F. Almeida, Multidimensional CX decomposition of tensors. In: 2019 Workshop on
Communication Networks and Power Systems (WCNPS). IEEE, p. 1-4, 2019.

Journal/Magazine papers:

• P.H. de Pinho, M. F. K. B. Couras, G. Favier, de A. L. F. Almeida, J. P. J. da Costa, Semi-
blind receivers for two-hop MIMO relay systems with a combined TSTF-MSMKron
coding. Sensors, 2023, 23(13), 5963.

• M. F. K. B. Couras, P. H. de Pinho, G. Favier, V. Zarzoso, de A. L. F. Almeida, and
J. P. J. da Costa, Semi-blind receivers based on a coupled nested Tucker-PARAFAC
model for dual-polarized MIMO systems using combined TST and MSMKron codings.
Digital Signal Processing, 2023, 137, p. 104043.
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2 Tensor Prerequisites

Tensors theory is the basis of multilinear algebra. In literature, there are several ap-
proaches to defining tensors. One of the definitions deals with tensors as multimodal arrays
with orders greater than two. System models based on tensor approaches are applied in many
areas such as chemometrics, psychometrics, numerical analysis, telecommunication systems,
signal and image processing, global navigation satellite systems (GNSSs), cyber attack detection,
sub Nyquist sampling, RADAR system and intracranial biosignals area [17, 26, 37, 38, 39, 40,
41, 42, 43, 36]. In particular, tensor models have been widely used in communication systems
over the last decades [14, 17, 39, 44, 45].

In this chapter, we review some importantmultilinear algebra definitions and operations
necessary for the development of this thesis. The chapter is divided into five sections. In Section
2.1, we define the notations. In Section 2.2, the Kronecker andKhatri-Rao products are presented.
In Section 2.3, a review of singular value decomposition (SVD), Kronecker factorization (KronF),
Khatri-Rao factorization (KRF) and their generalizations are derived. Section 2.4 presents some
concepts of multilinear algebra and basic operations involving matrices and tensors. Section
2.5 recalls the main tensor decompositions explored in the literature and some algorithms used
for matrices estimation in tensor decompositions. All content presented here will be widely used
throughout this thesis.

2.1 Notation

ℝ and ℂ denote the real and complex number fields, respectively. Scalars, column
vectors, matrices and tensors are denoted by lowercase, boldface lowercase, boldface upper-
case and calligraphic letters, e.g., 𝑦, y, Y, 𝒴, respectively. The transpose, complex conjugate,
complex conjugate transpose and Moore-Penrose pseudo-inverse of Y are represented by
YT,Y∗, YH and Y†, respectively, while Y𝑖. (resp. Y.𝑗) represents the 𝑖𝑡ℎ row (resp. 𝑗𝑡ℎ column)
of Y ∈ 𝐂𝐼×𝐽. The Kronecker, Khatri-Rao, Hadamard, inner and outer products are denoted
by⊗, ⋄,⊙, ⟨⋅⟩ and ◦, respectively. And the Frobenius norm is represented as the symbol
∥ ⋅ ∥𝐹.

1𝑁 stands the all-ones column vector of dimension 𝑁. I𝑅 and ℐ𝑁,𝑅 represent the
identity matrix of size 𝑅 × 𝑅 and the identity tensor of 𝑁-order and size 𝑅 × 𝑅 × .... × 𝑅,
respectively. e(𝑅)𝑟 stands for the 𝑟𝑡ℎ canonical vector of Euclidean spaceℝ𝑅, while 𝑟Y represents
the rank ofY. Ŷ denotes an estimate ofY, while ̂̂Y represents thematrix Ŷ after the correction
of ambiguities.

Y𝐼1×𝐼2𝐼3 is an unfolding of 𝒴 ∈ ℂ𝐼1×𝐼2×𝐼3 with dimension 𝐼1 × 𝐼2𝐼3. The vec(⋅) and
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unvec(⋅) operators are defined by y𝐼2𝐼3𝐼1 = vec
(
Y𝐼1×𝐼2𝐼3

)
∈ ℂ𝐼2𝐼3𝐼1 ↔ Y𝐼1×𝐼2𝐼3 = unvec

(
y𝐼2𝐼3𝐼1

)
.

The operator bdiag (⋅) forms a block-diagonal matrix from its matrix arguments, where
bdiag (X..𝑘) ≜ bdiag (X..1, ...,X..𝐾) ∈ ℂ𝐾𝐼×𝐾𝐽, and X..𝑘 ∈ ℂ𝐼×𝐽 is the 𝑘𝑡ℎ block on the diagonal
of 𝒳 ∈ ℂ𝐼×𝐽×𝐾.

The 𝑖𝑡ℎ element of a ∈ ℂ𝐼 is denoted by 𝑎𝑖, the (𝑖,𝑗)𝑡ℎ element of A ∈ ℂ𝐼×𝐽 is denoted
by 𝑎𝑖,𝑗 and the (𝑖1,...,𝑖𝑁)𝑡ℎ element of the 𝑁-order tensor 𝒜 ∈ ℂ𝐼1×...×𝐼𝑁 is given by 𝑎𝑖1,...,𝑖𝑁 .

2.2 Matrix operations

The Kronecker and Khatri-Rao products are important operations in multilinear
algebra. Often, these products are used to represent in a simplified way the matrix unfoldings
of tensor decompositions. Below, Kronecker and Khatri-Rao products are described in detail.

Definition 1. (Kronecker product) Given A ∈ ℂ𝐼×𝐽 and B ∈ ℂ𝐾×𝑀 , a Kronecker product to
the right of A by B is defined as:

A⊗ B =

⎡
⎢
⎢
⎢
⎢
⎣

𝑎1,1B 𝑎1,2B ... 𝑎1,𝐽B
𝑎2,1B 𝑎2,2B ... 𝑎2,𝐽B
⋮ ⋮ ⋮ ⋮

𝑎𝐼,1B 𝑎𝐼,2B ... 𝑎𝐼,𝐽B

⎤
⎥
⎥
⎥
⎥
⎦

∈ ℂ𝐼𝐾×𝐽𝑀. (2.1)

Note that the dimensions of A and B do not necessarily have to be the same to calculate the
Kronecker product. The Kronecker product of two matrices can be seen as a matrix of blocks
with 𝐼 blocks in the rows, 𝐽 blocks in the columns and each block is a matrix of size 𝐾 ×𝑀.

Definition 2. (Khatri-Rao product) Given A ∈ ℂ𝐼×𝐽 and C ∈ ℂ𝐾×𝐽 , the Khatri-Rao product is
equivalent to a column-wise Kronecker product defined as:

A ⋄ C =
[
A.1 ⊗ C.1 A.2 ⊗ C.2 ... A.𝐽 ⊗ C.𝐽

]
∈ ℂ𝐼𝐾×𝐽. (2.2)

The Khatri-Rao product of A and C only exists if the matrices have the same number of
columns. Let us define some useful matrix properties that involve the present operations.
For this, we consider the matrices A ∈ ℂ𝐼×𝑀, B ∈ ℂ𝐽×𝑁, C ∈ ℂ𝐽×𝑀, D ∈ ℂ𝐼×𝑁, E ∈ ℂ𝑀×𝑁,
F ∈ ℂ𝑀×𝐾 and G ∈ ℂ𝑁×𝐿.

Property 1.
(A⊗ B)𝐻 = A𝐻 ⊗ B𝐻, (2.3)

Property 2.
(A⊗ B) (F⊗ G) = AF⊗ BG, (2.4)

Property 3.
(A ⋄ C)𝐻 (D ⋄ B) = A𝐻D⊙ C𝐻B, (2.5)
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Property 4.
vec

(
AEB𝑇

)
= (B⊗A) vec (E) , (2.6)

Property 5.
vec

(
a(𝑁)◦...◦a(1)

)
= a(1) ⊗ ... ⊗ a(𝑁). (2.7)

Property 6. The rank of the product AB is less than or equal to the minimum between the
ranks of A and B [27]:

𝑟AB ≤ min (𝑟A,𝑟B) . (2.8)

Property 7. GivenM = A⊗ C, then 𝑟M = 𝑟A𝑟C. This implies thatM is full column rank if
and only if A and C are full column rank.

Definition 3. (Outer product of two vectors) Given two vectors a =
[
𝑎1, 𝑎2, ..., 𝑎𝑀

]
∈

ℂ𝑀 and b =
[
𝑏1, 𝑏2, ..., 𝑏𝑁

]
∈ ℂ𝑁 , their outer product C = a◦b ∈ ℂ𝑀×𝑁 is defined as:

C = a◦b = ab𝑇. (2.9)

This product can also be represented as:

𝑐𝑚,𝑛 = 𝑎𝑚𝑏𝑛. (2.10)

Definition 4. (Outer product of two matrices) Given A ∈ ℂ𝐼×𝐽 and B ∈ ℂ𝐾×𝑀 , their outer
product is defined as:

𝒟 = A◦B ∈ ℂ𝐼×𝐽×𝐾×𝑀. (2.11)

This product can also be represented as:

𝑑𝑖,𝑗,𝑘,𝑚 = 𝑎𝑖,𝑗𝑏𝑘,𝑚. (2.12)

Eq.(2.11) is a generalization of the concept of the outer product of two vectors.

Definition 5. (Kruskal rank) The Kruskal rank, also called 𝑘-rank, of a matrix A ∈ ℂ𝐼×𝐽 is
the maximum number 𝑘A such that any set of 𝑘A columns of A is linearly independent. Note
that the 𝑘-rank is always less than or equal to the rank of the matrix: 𝑘A ≤ 𝑟A ≤ 𝑚𝑖𝑛 (𝐼, 𝐽).

Definition 6. (vec(⋅) operator) Given B ∈ ℂ𝐾×𝑀 as:

B =
⎡
⎢
⎢
⎢
⎣

∣ ⋮ ∣
B.1 ⋯ B.𝑀

∣ ⋮ ∣

⎤
⎥
⎥
⎥
⎦

∈ ℂ𝐾×𝑀. (2.13)

The vectorization of B consists of stacking its columns as:

vec (B) =
⎡
⎢
⎢
⎢
⎣

B.1

⋮
B.𝑀

⎤
⎥
⎥
⎥
⎦

∈ ℂ𝑀𝐾. (2.14)

The unvec(⋅) operator is the inverse operator of the vec(⋅) operator.



28

2.3 Matrix factorizations

In this section, singular value decomposition (SVD), Kronecker factorization (KronF),
and Khatri-Rao factorization (KRF) are presented. The first is an important concept to
define the higher-order singular value decomposition (HOSVD) in the next sections. The
second and third are used to estimate the matrices of a Kronecker or a Khatri-Rao product,
respectively. These factorizations are closed-form algorithms to solve a set of rank-one
approximation problems. In some applications addressed in this thesis, we will be interested
in approximating a Khatri-Rao or a Kronecker product of 𝑁 matrices. These problems
repeatedly appear over the next chapters in the context of our applications.

2.3.1 Singular value decomposition (SVD)

The SVD was discovered independently by Eugenio Beltrani and Camille Jordan, in
1873 and 1874, respectively. This decomposition can be viewed as a generalization of the
eigendecomposition to a rectangular matrix A ∈ ℂ𝐼×𝐽 in the sense of a diagonalization by
means of two unitary matrices [46]. SVD corresponds to a matrix factorization technique
that consists of representing a matrix A as:

A = U𝚺V𝐻 =
min(𝐼,𝐽)∑

𝑟=1

𝜎𝑟u𝑟v𝐻𝑟 , (2.15)

where U ∈ ℂ𝐼×𝐼 is the matrix of the left singular vectors, V ∈ ℂ𝐽×𝐽 represents the matrix
of the right singular vectors and 𝚺 ∈ ℂ𝐼×𝐽 is a pseudo-diagonal matrix that contains the
non-zero singular values 𝜎1 ≥ 𝜎2 ≥ ... ≥ 𝜎𝑅 > 0 ordered by the magnitude on its main
diagonal and zero elsewhere, with 𝑅 ≤ min (𝐼,𝐽).

The derivation of the SVD is directly related to the property which, toA, the products
AA𝐻 and A𝐻A (or AA𝑇 and A𝑇A, in the case of a real matrix) are Hermitian matrices (or
real symmetric matrices) and therefore, they are diagonalizable by means of their eigende-
compositions, namely [46]:

AA𝐻 = UD1U
𝐻, (2.16)

A𝐻A = VD2V
𝐻, (2.17)

whereU is the matrix of eigenvectors of AA𝐻 and V is the matrix of eigenvectors of A𝐻A,
whose columns form two orthonormal bases, which implies:UU𝐻 = U𝐻U = I𝐼 and VV

𝐻 =
V𝐻V = I𝐽. The non-zero eigenvalues of AA

𝐻 and A𝐻A are equal, non-negative and ordered
by the magnitude, i.e, 𝜆1 ≥ 𝜆2 ≥ ... ≥ ... ≥ 𝜆𝑅 > 0.

Eq.(2.15) can be expressed as an economy SVD notation. The idea is to obtain the
same data matrix, reducing the number of columns ofU and V. The economy SVD of A is
defined as:

A = U𝑟𝚺𝑟V
𝐻
𝑟 =

𝑅∑

𝑟=1

𝜎𝑟u𝑟v𝐻𝑟 , (2.18)
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whereU𝑟 ∈ ℂ𝐼×𝑅 and V𝑟 ∈ ℂ𝐽×𝑅 contain the first 𝑅 columns ofU and V, respectively, and
𝚺𝑟 ∈ ℂ𝑅×𝑅 contains only the first 𝑅 non-zero singular values on its main diagonal. If A is a
rank-one matrix, the low-rank approximation of A is obtained by truncating its SVD to a
rank-one approximation as follows:

A = 𝜎1u1v𝐻1 , (2.19)

where u1 ∈ ℂ𝐼 is the left dominant singular vector of U, v1 ∈ ℂ𝐽 is the right dominant
singular vector of V, and 𝜎1 is the dominant singular value.

2.3.2 Kronecker factorization (KronF)

In this section, the KronF algorithm is summarized according to [14, 44, 45]. KronF
algorithm introduced by [47] presents a rank-one estimation of the Kronecker product of
two matrices. Consider the following product C = A⊗ B ∈ ℂ𝐼𝐽×𝐾𝑄 and the minimization
problem as:

min
A,B

∥ C −A⊗ B ∥2𝐹, (2.20)

where A ∈ ℂ𝐼×𝐾 and B ∈ ℂ𝐽×𝑄. The matrices can be estimated by calculating the rank-one
approximation of C defined as:

min
a,b

∥ C̃ − vec (B) vec (A)𝑇 ∥2𝐹, (2.21)

where C̃ ∈ ℂ𝑄𝐽×𝐾𝐼, a = vec(A) ∈ ℂ𝐾𝐼 and b = vec(B) ∈ ℂ𝑄𝐽. Defining C̃ = U𝚺V𝐻, a and b
can be estimated as [14]:

â =
√
𝜎1V

∗
.1 b̂ =

√
𝜎1U.1 , (2.22)

where U.1 ∈ ℂ𝑄𝐽 and V.1 ∈ ℂ𝐾𝐼 are the first columns of the left and right singular vector
matrices, respectively, and 𝜎1 is the dominant singular value. To find the estimated matrices
(Â, B̂), â and b̂must be unvectorized as:

Â = unvec (â) ∈ ℂ𝐼×𝐾, (2.23)

B̂ = unvec
(
b̂
)
∈ ℂ𝐽×𝑄. (2.24)

The KronF solution is not unique. Â and B̂ are subject to a scaling ambiguity given
by:

{
Â = A𝜆(1),
B̂ = B𝜆(2)

𝜆(1)𝜆(2) = 1 , (2.25)

where the scaling 𝜆(𝑛) for 𝑛 ∈ {1, 2} is determined from knowledge of one element of A or B
[14, 33]. Let us consider the element 𝑎1,1 of A known. For 𝜆(1), we have:

𝜆(1) =
�̂�1,1
𝑎1,1

, (2.26)
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where �̂�1,1 is the element (1,1) of Â. For B̂, we have:

𝜆(2) =
(
𝜆(1)

)−1
. (2.27)

Then, the final estimates are given by:

̂̂A = Â
(
𝜆(1)

)−1
, ̂̂B = B̂𝜆(1) . (2.28)

The KronF algorithm is described in Table 1

Table 1 – KronF algorithm.
KronF algorithm for estimating the factor matrices of a Kronecker
product
Input:matrix C, 𝐼, 𝐽, 𝐾 and 𝑄
Output: Estimated matrices ̂̂A and ̂̂B
1) Reshape C ∈ ℂ𝐼𝐽×𝐾𝑄 as:

C̃ = reshape (C,[𝑄𝐽, 𝐾𝐼]) . (2.29)

2) Calculate the SVD of C̃:
C̃ = U𝚺V𝐻. (2.30)

3) Estimate â and b̂ using Eq.(2.22) and unvectorize â and b̂ using Eqs. (2.23)-
(2.24), respectively.
4) Eliminate the scaling ambiguities using Eqs.(2.25)-(2.28).

2.3.2.1 Generalized Kronecker factorization (GKronF)

In this subsection, the generalized KronF algorithm is summarized according to [45].
Before presenting this procedure, let us present the following formula for row and column
permutation of the Kronecker product B⊗ C:

C⊗ B = 𝚷𝐼,𝐽 (B⊗ C)𝚷𝑆,𝑅 ∈ ℂ𝐼𝐽×𝑅𝑆, (2.31)

with C ∈ ℂ𝐼×𝑅, B ∈ ℂ𝐽×𝑆 and 𝚷𝐼,𝐽 ∈ ℂ𝐼𝐽×𝐽𝐼, 𝚷𝑆,𝑅 ∈ ℂ𝑆𝑅×𝑅𝑆 being permutation matrices
defined as:

𝚷𝐼,𝐽 =
∑

𝑖

∑

𝑗

(
e(𝐼)𝑖 e

(𝐽)𝑇
𝑗

)
⊗
(
e(𝐽)𝑗 e

(𝐼)𝑇
𝑖

)
∈ ℂ𝐼𝐽×𝐽𝐼, (2.32)

𝚷𝑆,𝑅 =
∑

𝑠

∑

𝑟

(
e(𝑆)𝑠 e(𝑅)𝑇𝑟

)
⊗
(
e(𝑅)𝑟 e(𝑆)𝑇𝑠

)
∈ ℂ𝑆𝑅×𝑅𝑆, (2.33)

where e(𝐼)𝑖 is the 𝑖𝑡ℎ canonical basis vector of the Euclidean spaceℝ𝐼, similarly for e(𝐽)𝑗 , e
(𝑆)
𝑠 and

e(𝑅)𝑟 . Now, let us consider the following product A = ⊗𝑁
𝑛=1A

(𝑛) ∈ ℂ𝐼×𝑅 and the minimization
problem as:

min
A(𝑛),𝑛∈{1,𝑁}

∥ A −⊗𝑁
𝑛=1A

(𝑛) ∥2𝐹, (2.34)
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where A(𝑛) ∈ ℂ𝐼𝑛×𝑅𝑛 are the matrices to be estimated, with 𝐼 =
∏𝑁

𝑛=1 𝐼𝑛 and 𝑅 =
∏𝑁

𝑛=1 𝑅𝑛.
This problem can be solved by determining A(𝑛), for 𝑛 ∈ {1, 𝑁} with a two-by-two search.
This basic algorithm was proposed by [47] to estimate two factor matrices of a Kronecker
product associated with third-order parallel factor analysis (PARAFAC) model presented
in the next sections. To illustrate the GKronF algorithm, consider the case 𝑁 = 3, with
A = A(1) ⊗A(2) ⊗A(3). The optimization problem becomes:

min
A(1),A(2),A(3)

∥ A −A(1) ⊗A(2) ⊗A(3) ∥2𝐹 . (2.35)

A(1) and A(3) can be estimated by applying the KronF algorithm presented in Table 1
to the following two decompositions of A:

A = A(1) ⊗A(2,3) ∈ ℂ𝐼1𝐼2𝐼3×𝑅1𝑅2𝑅3 , (2.36)

A = A(1,2) ⊗A(3) ∈ ℂ𝐼1𝐼2𝐼3×𝑅1𝑅2𝑅3 , (2.37)

where A(2,3) = A(2) ⊗ A(3) and A(1,2) = A(1) ⊗ A(2). To estimate A(2), we use the following
equation obtained by permuting the matrices A(1) and A(2):

A(2)
𝜋 =

(
𝚷𝐼2,𝐼1 ⊗ I𝐼3

)
A
(
𝚷𝑅2,𝑅1 ⊗ I𝑅3

)
= A(2) ⊗A(1) ⊗A(3) ∈ ℂ𝐼2𝐼1𝐼3×𝑅2𝑅1𝑅3 , (2.38)

A(2)
𝜋 = A(2) ⊗A(1,3) ∈ ℂ𝐼2𝐼1𝐼3×𝑅2𝑅1𝑅3 , (2.39)

where A(1,3) = A(1) ⊗A(3) and A(2)
𝜋 indicates the permutation between A(1) and A(2). From

Eq.(2.39), we apply again the KronF algorithm in Table 1 that allows estimating A(2).

2.3.2.2 Kronecker product approximation to rank-one tensors

This section presents how a Kronecker product of 𝑁 matrices can be reorganized as
a tensor. Let us consider the following Kronecker product:

A = A(1) ⊗ ... ⊗A(𝑁) ∈ ℂ𝐼1...𝐼𝑁×𝑅1...𝑅𝑁 , (2.40)

whereA(𝑛) are the matrices to be estimated for 𝑛 ∈ {1,𝑁}. This operation was defined in [48]
for Kronecker product of multiple matrices. The problem (2.40) becomes:

min
A(𝑛),𝑛∈{1,𝑁}

∥ A −A(1) ⊗ ... ⊗A(𝑁) ∥2𝐹 . (2.41)

A can be expressed as a rank-one tensor rearranging the Kronecker product into an
outer product. The problem (2.41) now becomes:

min
a(𝑛),𝑛∈{1,𝑁}

∥ 𝒜 − a(1)◦...◦a(𝑁) ∥2𝐹, (2.42)
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where a(𝑛) = vec(A(𝑛)) ∈ ℂ𝑅𝑛𝐼𝑛 and 𝒜 ∈ ℂ𝑅1𝐼1×...×𝑅𝑁𝐼𝑁 is a rank-one tensor defined as:

𝒜 = reshape (A, [𝑅1𝐼1, ..., 𝑅𝑁𝐼𝑁]) . (2.43)

Therefore, find the matrices A(𝑛) through the cost function (2.41) is equivalent to
finding vectors a(𝑛) that minimizes the cost function (2.42), i.e., the solution of a Kronecker
approximation problem can be recast as the solution of a rank-one tensor approximation
problem [46, 48, 49]. The matrices can be estimated using the truncated HOSVD (THOSVD)
[50] where the matrices are unique with some scaling factors, similar to the KronF algorithm
presented above:

⎧

⎨
⎩

Â
(𝑛)
= A(𝑛)𝜆(𝑛)

∏𝑁
𝑛=1 𝜆

(𝑛) = 1
. (2.44)

2.3.3 Khatri-Rao factorization (KRF)

This section summarizes the KRF algorithm presented in [51, 52]. It features a rank-
one estimate via the Khatri-Rao product. Let us assumeC = D⋄E ∈ ℂ𝐼𝐽×𝐾 and the following
minimization problem:

min
D,E

∥ C −D ⋄ E ∥2𝐹, (2.45)

where D ∈ ℂ𝐼×𝐾 and E ∈ ℂ𝐽×𝐾 can be estimated by calculating the rank-one approximation
of C defined for each column 𝑘 ∈ {1, 𝐾} as:

Z𝑘 = unvec (C.𝑘) = E.𝑘D
𝑇
.𝑘 ∈ ℂ𝐼𝐽, (2.46)

where D.𝑘 and E.𝑘 represents the 𝑘𝑡ℎ column of D and E, respectively. Defining the SVD of
Z𝑘 = U𝑘𝚺𝑘V

𝐻
𝑘 , D̂.𝑘 and Ê.𝑘 are given by [52]:

D̂.𝑘 =
√
𝜎1,𝑘

(
V∗
𝑘
)
.1

Ê.𝑘 =
√
𝜎1,𝑘 (U𝑘).1 , (2.47)

where (U𝑘).1 ∈ ℂ𝐽 and (V𝑘).1 ∈ ℂ𝐼 are the first columns of the 𝑘𝑡ℎ left and right singular
vector matrices, respectively, and 𝜎1𝑘 is the dominant singular value. The KRF solution is
not unique. There is a scaling ambiguity per column 𝑘 in each Khatri-Rao product [52]. For
this, we have the following relation:

{
D̂ = D𝚲(1),
Ê = E𝚲(2) 𝚲(1)𝚲(2) = I𝐾 . (2.48)

To find the scaling matrices, it is necessary to know a row of D or E [52]. Let us
consider the first row of D known. We have for each element of 𝚲(1) the following equation:

𝜆(1)𝑘 =
𝑑1,𝑘
𝑑1,𝑘

, (2.49)
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where 𝑑1,𝑘 and 𝑑1,𝑘 are the elements of the first row of D̂ andD, respectively.𝚲(1) corresponds
to a matrix with the elements 𝜆(1)𝑘 on the main diagonal. For E, we have:

𝚲(2) =
(
𝚲(1)

)−1
. (2.50)

So, the final estimates of D and E are:

̂̂D = D̂
(
𝚲(1)

)−1
, ̂̂E = Ê𝚲(1) . (2.51)

The KRF algorithm is described in Table 2.

Table 2 – KRF algorithm.
KRF algorithm for estimating the factormatrices of a Khatri-Rao prod-
uct
Input:matrix C, 𝐼, 𝐽 and 𝐾
Output: Estimated matrices ̂̂D and ̂̂E
1) Unvectorize C:
for 𝑘 ∈ {1, 𝐾}

Z𝑘 = unvec (C.𝑘) . (2.52)
2) Calculate the SVD for each column 𝑘:

Z𝑘 = U𝑘𝚺𝑘V
𝐻
𝑘 . (2.53)

3) Estimate D̂ and Ê using Eq.(2.47).
end
4) Store in the matrices as:

D̂ =
[ √

𝜎1,1 (V1).1 ...
√
𝜎1,𝐾 (V𝐾).1

]∗
∈ ℂ𝐼×𝐾, (2.54)

Ê =
[ √

𝜎1,1 (U1).1 ...
√
𝜎1,𝐾 (U𝐾).1

]
∈ ℂ𝐽×𝐾. (2.55)

5) Eliminate the scaling ambiguities using Eqs.(2.48)-(2.51).

2.3.3.1 Generalized Khatri-Rao factorization (GKRF)

In this subsection, the GKRF algorithm is summarized according to [45]. Before
presenting this procedure, let us present the following equation for the row permutation of
a Khatri-Rao product C ⋄A as:

A ⋄ C = 𝚷𝐼,𝐽 (C ⋄A) ∈ ℂ𝐼𝐽×𝐾, (2.56)

where A ∈ ℂ𝐼×𝐾, C ∈ ℂ𝐽×𝐾 and𝚷𝐼,𝐽 ∈ ℂ𝐼𝐽×𝐽𝐼 defined as Eq.(2.32). Now, let us consider the
following product B = ⋄𝑁𝑛=1B

(𝑛) ∈ ℂ𝐼×𝑅 and the minimization problem as:

min
B(𝑛),𝑛∈{1,𝑁}

∥ B − ⋄𝑁𝑛=1B
(𝑛) ∥2𝐹, (2.57)
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where B(𝑛) =
[
B(𝑛)
.1 , ..., B(𝑛)

.𝑅

]
∈ ℂ𝐼𝑛×𝑅 are the matrices to be estimated with 𝐼 =

∏𝑁
𝑛=1 𝐼𝑛.

To illustrate the GKRF algorithm, consider𝑁 = 3 andB = B(1)⋄B(2)⋄B(3). Theminimization
problem in Eq.(2.57) becomes now:

min
B(1),B(2),B(3)

∥ B − B(1) ⋄ B(2) ⋄ B(3) ∥2𝐹 . (2.58)

B(1) and B(3) can be estimated by applying the KRF algorithm presented in Table 2 to
the following two decompositions of B:

B = B(1) ⋄ B(2,3) ∈ ℂ𝐼1𝐼2𝐼3×𝑅, (2.59)

B = B(1,2) ⋄ B(3) ∈ ℂ𝐼1𝐼2𝐼3×𝑅, (2.60)

where B(2,3) = B(2) ⋄ B(3) and B(1,2) = B(1) ⋄ B(2). By vectorizing B in both equations, the
following LS criteria must be minimized:

min
B(1),B(2,3)

∥ vec (B) − vec
(
B(1) ⋄ B(2,3)

)
∥2𝐹= min

B(1).𝑟 ,B
(2,3)
.𝑟

𝑅∑

𝑟=1

∥ B.𝑟 − B(1)
.𝑟 ⋄ B(2,3)

.𝑟 ∥2𝐹, (2.61)

min
B(1,2),B(3)

∥ vec (B) − vec
(
B(1,2) ⋄ B(3)

)
∥2𝐹= min

B(1,2).𝑟 ,B(3).𝑟

𝑅∑

𝑟=1

∥ B.𝑟 − B(1,2)
.𝑟 ⋄ B(3)

.𝑟 ∥2𝐹 . (2.62)

Since each term in this sum can be minimized separately, the columns B(1)
.𝑟 ∈

ℂ𝐼1 , B(2,3)
.𝑟 ∈ ℂ𝐼2𝐼3 , B(1,2)

.𝑟 ∈ ℂ𝐼1𝐼2 and B(3)
.𝑟 ∈ ℂ𝐼3 are estimated by minimizing the criteria

minB(1).𝑟 ,B(2,3).𝑟

∑𝑅
𝑟=1 ∥ B.𝑟 − B(1)

.𝑟 ⋄ B(2,3)
.𝑟 ∥2𝐹 andminB(1,2).𝑟 ,B(3).𝑟

∑𝑅
𝑟=1 ∥ B.𝑟 − B(1,2)

.𝑟 ⋄ B(3)
.𝑟 ∥2𝐹, respec-

tively.

Let us define B𝑟 ≜ unvec (B.𝑟) as the matrix obtained by inverting the vectorization
operation for 𝑟 ∈ {1, 𝑅}. Applying Definition 3, then gives us:

min
B(1).𝑟 ,B

(2,3)
.𝑟

∥ B𝑟 − B(2,3)
.𝑟 B(1)𝑇

.𝑟 ∥2𝐹= min
B(1).𝑟 ,B

(2,3)
.𝑟

∥ B𝑟 − B(2,3)
.𝑟 ◦B(1)

.𝑟 ∥2𝐹, (2.63)

min
B(1,2).𝑟 ,B(3).𝑟

∥ B𝑟 − B(3)
.𝑟 B

(1,2)𝑇
.𝑟 ∥2𝐹= min

B(1,2).𝑟 ,B(3).𝑟
∥ B𝑟 − B(3)

.𝑟 ◦B
(1,2)
.𝑟 ∥2𝐹 . (2.64)

The vectors B(1)
.𝑟 , B

(2,3)
.𝑟 , B(1,2)

.𝑟 and B(3)
.𝑟 can be estimated by computing the rank-one

reduced SVD of B𝑟 as in Eq.(2.47) using the KRF algorithm described in Table 2. To estimate
B(2), we permute the matrices B(1) and B(2) as:

B(2)
𝜋 =

(
𝚷𝐼2,𝐼1 ⊗ I𝐼3

)
B = B(2) ⋄ B(1) ⋄ B(3) ∈ ℂ𝐼2𝐼1𝐼3×𝑅, (2.65)

B(2)
𝜋 = B(2) ⋄ B(1,3) ∈ ℂ𝐼2𝐼1𝐼3×𝑅, (2.66)
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where B(1,3) = B(1) ⊗ B(3) and B(2)
𝜋 indicates the permutation between B(1) and B(2). For KRF,

it is only necessary to permute the rows. For Eq.(2.66), the minimization problem becomes:

min
B(2).𝑟 ,B

(1,3)
.𝑟

∥ B(2)
𝜋𝑟 − B(2)

.𝑟 B
(1,3)𝑇
.𝑟 ∥2𝐹= min

B(2).𝑟 ,B
(1,3)
.𝑟

∥ B(2)
𝜋𝑟 − B(2)

.𝑟 ◦B
(1,3)
.𝑟 ∥2𝐹 . (2.67)

where B(2)
𝜋𝑟 ≜ unvec

(
[B(2)

𝜋 ].𝑟
)
. From (2.67) we apply again the KRF algorithm in Table 2 that

allows to estimate B(2).

2.4 Basics of tensor algebra

This section presents some concepts used in the multilinear algebra. For demonstra-
tions and discussions of these properties, see [42, 46]. A tensor is an array with an order
greater than two. It can be called amultidimensional array. For the next definitions presented
in this section, unless otherwise indicated, we consider the following tensors:

• an 𝑁-order tensor 𝒴 ∈ ℂ𝐼1×...×𝐼𝑁 ;

• a third-order tensor 𝒳 ∈ ℂ𝐼×𝐽×𝐾.

Definition 7. (Fiber) For a third-order tensor 𝒳 ∈ ℂ𝐼×𝐽×𝐾 , there are three types of fibers:
(i) column fibers

(
X.𝑗𝑘 ∈ ℂ𝐼

)
, where the indexes 𝑗 and 𝑘 are fixed and the index 𝑖 is varying,

forming a vector of size 𝐼; (ii) row fibers
(
X𝑖.𝑘 ∈ ℂ𝐽

)
, in this case the fixed indexes are 𝑖 and 𝑘,

and the index 𝑗 is varying. And finally, (iii) tubes fibers
(
X𝑖𝑗. ∈ ℂ𝐾

)
, creating a vector of size 𝐾

by fixing the indexes 𝑖 and 𝑗, and varying the index 𝑘 along the 𝐾 dimension as illustrated in
Figure 1.

XI

J

K

X X X. jk i.k ij.

(i) (ii) (iii)

Figure 1 – (i) Column fibers; (ii) row fibers; (iii) tube fibers

Definition 8. (Matrix slice) The matrix slices are matrices obtained by varying the indexes
of two modes and fixing all others. For an𝑁-order tensor, there are

(𝑁
2

)
ways to slice it, where
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(𝑁
2

)
denotes the binomial coefficient, i.e., the number of possibilities to choose 2 elements from

a set of 𝑁 elements. For the third-order tensor 𝒳, the three types of slices are (i) frontal slice
(
X..𝑘 ∈ ℂ𝐼×𝐽

)
; (ii) lateral slice

(
X.𝑗. ∈ ℂ𝐼×𝐾

)
; and (iii) horizontal slice

(
X𝑖.. ∈ ℂ𝐽×𝐾

)
. Figure 2

illustrates the three types of slices of a third-order tensor.

XI

J

K

X X X.. k . j. i..

(i) (ii) (iii)

Figure 2 – (i) Frontal slice; (ii) lateral slice; (iii) horizontal slice

Definition 9. (Matrix unfoldings)Matricization or matrix unfolding, is the process of reorder-
ing the elements of an 𝑁-way array into a matrix [42]. Given two ordered subset 𝕊1 and 𝕊2
constituted of 𝑝 and𝑁 − 𝑝 indexes, respectively. A general unfolding of 𝒴, for 𝑝 ∈ {1,𝑁 − 1}, is
given by [53]:

Y𝕊1×𝕊2 =
𝐼1∑

𝑖1

...
𝐼𝑁∑

𝑖𝑁

𝑦𝑖1,...,𝑖𝑁 ( ⊗
𝑛∈𝕊1

e(𝐼𝑛)𝑖𝑛
) ( ⊗

𝑛∈𝕊2
e(𝐼𝑛)𝑖𝑛

)
𝑇

∈ ℂ𝐽1×𝐽2 , (2.68)

with 𝐽𝑛1 =
∏

𝑛∈𝕊𝑛1

𝐼𝑛, for 𝑛1 ∈ {1, 2}. From Definition 9, we can see a mode-𝑛 unfolding as a

rearrangement of the elements of 𝒴 obtained by varying an index 𝑖𝑛 and keeping the others
indexes fixed, so that the fibers of the 𝑛𝑡ℎ mode are placed along rows (flat unfolding) or
columns (tall unfolding). In Figure 3 we present an example for the third-order tensor𝒳.
Note that a matrix unfolding can be obtained by stacking the slices in a certain mode. In our
notation, the subscribed characters show the order in which the modes are combined and
consequently, the size of the matrix unfolding.

Definition 10. (Inner product) Let us consider a tensor𝒯 ∈ ℂ𝐼1×...×𝐼𝑁 of the same order and
dimension of 𝒴. The inner product between 𝒴 and𝒯 is defined as:

⟨𝒴,𝒯⟩ =
𝐼1∑

𝑖1=1
⋯

𝐼𝑁∑

𝑖𝑁=1
𝑦𝑖1,...,𝑖𝑁 𝑡𝑖1,...,𝑖𝑁 . (2.69)
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...XI

J

K

I

KJ

X..1 X..2 X..K

Figure 3 – The matrix unfolding representation X𝐼×𝐾𝐽 for the third-order tensor 𝒳

Definition 11. (Frobenius norm) Frobenius norm of the tensor 𝒴 is defined as:

∥ 𝒴 ∥𝐹=
√
⟨𝒴𝒴⟩ =

⎛
⎜
⎝

𝐼1∑

𝑖1=1
⋯

𝐼𝑁∑

𝑖𝑁=1
|𝑦|2𝑖1,...,𝑖𝑁

⎞
⎟
⎠

1∕2

. (2.70)

The Frobenius norm can be interpreted as a measure of “energy” in the tensor.

Definition 12. (Outer product of tensors) The outer product between the𝑁-order tensor 𝒴
and the𝑀-order tensor 𝒵 produces a new tensor, whose entries are defined as:

[𝒴◦𝒵]𝑖1,...,𝑖𝑁𝑗1,...,𝑗𝑀 = 𝑦𝑖1,...,𝑖𝑁𝑧𝑗1,...,𝑗𝑀 . (2.71)

Eq.(2.71) defines a (𝑁+𝑀)-order tensor of size 𝐼1× ...×𝐼𝑁×𝐽1× ...×𝐽𝑀 and can be interpreted
as a generalization of the concept of outer product of two vectors.

Definition 13. (Rank-one tensor) The tensor 𝒴 is considered a rank-one tensor if it can be
written as the outer product of𝑁 vectors a(𝑛) ∈ ℂ𝐼𝑛 , with 𝑛 ∈ {1, 𝑁}, as follows:

𝒴 = a(1)◦...◦a(𝑁) ∈ ℂ𝐼1×...×𝐼𝑁 , (2.72)

whose entries are 𝑦𝑖1,...,𝑖𝑁 = 𝑎(1)𝑖1 ...𝑎
(𝑁)
𝑖𝑁
. This definition is a generalization of the concept of

rank-one matrix, where a matrix Y ∈ ℂ𝐼1×𝐼2 has rank equal to one if there are two vectors
a(1) ∈ ℂ𝐼1 and a(2) ∈ ℂ𝐼2 , such that Y = a(1)◦a(2) = a(1)a(2)𝑇. Some tensor decompositions
express the tensor as linear combinations of rank-one tensors.

Definition 14. (Tensor rank) The rank of a tensor is the smallest number of rank-one tensors
needed to write it as a linear combination.

The above definition implies that any arbitrary tensor of rank 𝑅 ≥ 1 can be written
as a sum of 𝑅 rank-one tensors as:

𝒴 =
𝑅∑

𝑟=1

A(1)
.𝑟 ◦...◦A

(𝑁)
.𝑟 ∈ ℂ𝐼1×...×𝐼𝑁 , (2.73)
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where A(𝑛)
.𝑟 ∈ ℂ𝐼𝑛 is the 𝑟𝑡ℎ column vector of A(𝑛) ∈ ℂ𝐼𝑛×𝑅, for 𝑟 ∈ {1, 𝑅} and 𝑛 ∈ {1, 𝑁}.

Definition 15. (Multilinear rank) Considering an𝑁-order tensor𝒴, the columns vectors of the
matricized formY(𝑛) ∈ ℂ𝐼𝑛×𝐼𝑛+1...𝐼𝑁𝐼1...𝐼𝑛−1 are themode-𝑛 vectors and𝑅𝑛 = 𝑟

(
Y(𝑛)

)
= 𝑟𝑛 (𝒴) ≤ 𝐼𝑛

is the mode-𝑛 rank of 𝒴. The𝑁-tuplet (𝑅1,...,𝑅𝑁) is called multilinear rank of 𝒴 [50].

Definition 16. (Identity tensor) An𝑁-order identity tensor, denoted by ℐ𝑁,𝑅 ∈ ℝ𝑅×𝑅×...×𝑅, is a
diagonal tensor containing elements equal to 1 at positions where all indices are the same and
equal to zero elsewhere.

Definition 17. (mode-𝑛 product) Corresponds to the multiplication of a tensor by a matrix
(or a vector) in mode-𝑛. For the matrix case, the mode-𝑛 product of an 𝑁-order tensor 𝒴
with a matrix U ∈ ℂ𝐽×𝐼𝑛 along the 𝑛𝑡ℎ mode is denoted by ℬ = 𝒴 ×𝑛 U and it is of size
𝐼1 × ...𝐼𝑛−1 × 𝐽 × 𝐼𝑛+1 × ... × 𝐼𝑁 . The element-wise is:

𝑏𝑖1,...,𝑖𝑛−1,𝑗,𝑖𝑛+1,...,𝑖𝑁 =
𝐼𝑛∑

𝑖𝑛=1
𝑦𝑖1,...,𝑖𝑛−1,𝑖𝑛 ,𝑖𝑛+1,...,𝑖𝑁𝑢𝑗,𝑖𝑛 . (2.74)

Each mode-𝑛 fiber is multiplied by the matrixU [53]. This idea can also be expressed in
terms of unfolded tensors as:

ℬ = 𝒴 ×𝑛 U⇔ B(𝑛) = UY(𝑛), (2.75)

with Y(𝑛) ∈ ℂ𝐼𝑛×𝐼𝑛+1...𝐼𝑁𝐼1...𝐼𝑛−1 and B(𝑛) ∈ ℂ𝐽×𝐼𝑛+1...𝐼𝑁𝐼1...𝐼𝑛−1 . The mode-𝑛 product of a tensor with
a matrix is related to a change of basis in the case where a tensor defines a multilinear operator.
We have the following properties for the mode-𝑛 product:

Property 8. Consider a third-order tensor 𝒳 ∈ ℂ𝐼×𝐽×𝐾 and the matrices A ∈ ℂ𝑀×𝐽 and
B ∈ ℂ𝑁×𝐾 . For distinct modes in a series of multiplications, the order of the multiplication is
irrelevant, i.e.:

(
𝒳 ×𝑗 A

)
×𝑘 B = (𝒳 ×𝑘 B) ×𝑗 A, 𝑗 ≠ 𝑘. (2.76)

Property 9. Consider A ∈ ℂ𝑀×𝐽 and C ∈ ℂ𝑃×𝑀 . As the modes are the same, then:

𝒳 ×𝑗 A ×𝑗 C = 𝒳 ×𝑗 (CA) . (2.77)

The order of multiplication is relevant.

Definition 18. (mode-𝑛 product between tensors) Let us consider 𝕊 as an ordered subset of
{𝑖𝑗1 , ..., 𝑖𝑗𝑀 } of 𝕁 = {𝑖𝑁1+1, ..., 𝑖𝑁}, with 𝑗𝑚 ∈ {𝑁1 + 1, 𝑁}, for𝑚 ∈ {1,𝑀}. The mode-𝑛 product
of ℬ ∈ ℂ𝑅1×...×𝑅𝑁1×𝐼𝑁1+1×...×𝐼𝑁 with 𝒜 ∈ ℂ𝐼𝑛×𝑅𝑛×𝐼𝕊 is denoted by ℬ ×𝑛 𝒜, where 𝑛 ∈ {1, 𝑁1}
and 𝐼𝕊 is a shortened writing for 𝐼𝑗1 × ... × 𝐼𝑗𝑀 . This product gives an 𝑁-order tensor 𝒴 ∈
ℂ𝑅1×...×𝑅𝑛−1×𝐼𝑛×𝑅𝑛+1×...×𝑅𝑁1×𝐼𝑁1+1×...×𝐼𝑁 , defined as [35]:

𝑦𝑟1,...,𝑟𝑛−1,𝑖𝑛 ,𝑟𝑛+1,...,𝑟𝑁1 ,𝕁 =
𝑅𝑛∑

𝑟𝑛=1

𝑏𝑟1,...,𝑟𝑛−1,𝑟𝑛 ,𝑟𝑛+1,...,𝑟𝑁1 ,𝕁𝑎𝑖𝑛 ,𝑟𝑛 ,𝕊. (2.78)

The sum is over the second index of the tensor𝒜.
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2.5 Theoretical background on tensor decompositions

This section presents some tensor decompositions that will be useful in the next
chapters, namely, Tucker, HOSVD and PARAFAC. During the past decade, other decompo-
sitions were developed with applications in communication systems, such as CONFAC [54],
PARATUCK [55], Tensor train [56], among others.

2.5.1 Tucker decomposition

Tucker decomposition was introduced in [57]. Tucker model decomposes a third-
order tensor 𝒳 ∈ ℂ𝐼1×𝐼2×𝐼3 into a core tensor multiplied by a matrix along each mode. Thus,
for 𝒳 we have:

𝑥𝑖1,𝑖2,𝑖3 =
𝑅1∑

𝑟1=1

𝑅2∑

𝑟2=1

𝑅3∑

𝑟3=1
𝑔𝑟1,𝑟2,𝑟3𝑎𝑖1,𝑟1𝑏𝑖2,𝑟2𝑐𝑖3,𝑟3 , (2.79)

where 𝑎𝑖1,𝑟1 , 𝑏𝑖2,𝑟2 and 𝑐𝑖3,𝑟3 are the (𝑖1,𝑟1)
𝑡ℎ, (𝑖2,𝑟2)

𝑡ℎ and (𝑖3,𝑟3)
𝑡ℎ elements of A ∈ ℂ𝐼1×𝑅1 ,

B ∈ ℂ𝐼2×𝑅2 andC ∈ ℂ𝐼3×𝑅3 , respectively, and 𝑔𝑟1,𝑟2,𝑟3 is the (𝑟1,𝑟2,𝑟3)
𝑡ℎ element of 𝒢 ∈ ℂ𝑅1×𝑅2×𝑅3 .

Tucker decomposition of 𝒳 is illustrated in Figure 4.

X G A

B

C

I1 I3

I2

R1=

R2

R3

Figure 4 – Tucker decomposition of a third-order tensor 𝒳 ∈ ℂ𝐼1×𝐼2×𝐼3 .

This decomposition can be written in terms of mode-𝑛 product as:

𝒳 = 𝒢 ×1 A ×2 B ×3 C ∈ ℂ𝐼1×𝐼2×𝐼3 , (2.80)

whereA, B and C are the factor matrices and can be considered the principal components in
each mode. 𝒢 is called the core tensor and its entries show the level of interaction between
the different components. The mode-𝑛matrix unfoldings of 𝒳 are:

X𝐼2𝐼3×𝐼1 = (B⊗ C)G𝑅2𝑅3×𝑅1A
𝑇, (2.81)

X𝐼3𝐼1×𝐼2 = (C⊗A)G𝑅3𝑅1×𝑅2B
𝑇, (2.82)
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X𝐼1𝐼2×𝐼3 = (A⊗ B)G𝑅1𝑅2×𝑅3C
𝑇, (2.83)

whereG𝑅2𝑅3×𝑅1 ,G𝑅3𝑅1×𝑅2 andG𝑅1𝑅2×𝑅3 are the mode-1, mode-2 and mode-3matrix unfoldings
of 𝒢, respectively.

Uniqueness

In general, the Tucker decomposition is not unique. The singularity can be obtained
by imposing some constraints on the core tensor 𝒢 or on the factor matrices A, B and C. To
demonstrate the non-uniqueness of the Tucker model we have 𝒳 decomposed as:

𝒳 = �̂� ×1 Â ×2 B̂ ×3 Ĉ, (2.84)

where �̂� ∈ ℂ𝑅1×𝑅2×𝑅3 , Â ∈ ℂ𝐼1×𝑅1 , B̂ ∈ ℂ𝐼2×𝑅2 and Ĉ ∈ ℂ𝐼3×𝑅3 . This decomposition is not
unique because it has freedom of rotation. Defining:

⎧
⎪
⎪

⎨
⎪
⎪
⎩

�̂� = 𝒢 ×1 T
(1) ×2 T

(2) ×3 T
(3),

Â = A
(
T(1)

)−1
,

B̂ = B
(
T(2)

)−1
,

Ĉ = C
(
T(3)

)−1
,

(2.85)

where T(𝑛) ∈ ℂ𝑅𝑛×𝑅𝑛 . Substituting Eq.(2.85) in Eq.(2.84) and applying the Property 9 we have:

𝒳 = 𝒢 ×1 T
(1) ×2 T

(2) ×3 T
(3) ×1 A

(
T(1)

)−1
×2 B(T

(2))−1 ×3 C
(
T(3)

)−1

= 𝒢 ×1 A
(
T(1)

)−1
T(1) ×2 B

(
T(2)

)−1
T(2) ×3 C

(
T(3)

)−1
T(3)

= 𝒢 ×1 A ×2 B ×3 C,

(2.86)

where
(
T(𝑛)

)−1
T(𝑛) = I𝑅𝑛 . From Eq.(2.86), note that Tucker decomposition is not unique

since its factor matrices are affected by arbitrary linear transformations, while the inverse of
these transformations affect the core tensor, leading to the same tensor 𝒳.

2.5.1.1 𝑁-order Tucker decomposition

Let us consider a 𝑁-order tensor 𝒴 ∈ ℂ𝐼1×...×𝐼𝑁 . The Tucker decomposition is given
by:

𝑦𝑖1,...,𝑖𝑁 =
𝑅1∑

𝑟1=1
...

𝑅𝑁∑

𝑟𝑁=1
𝑔𝑟1,...,𝑟𝑁

𝑁∏

𝑛=1

𝑎(𝑛)𝑖𝑛 ,𝑟𝑛
, (2.87)

where 𝑎(𝑛)𝑖𝑛 ,𝑟𝑛
and 𝑔𝑟1,...,𝑟𝑁 are the elements of A

(𝑛) ∈ ℂ𝐼𝑛×𝑅𝑛 and 𝒢 ∈ ℂ𝐼1×𝐼2×...×𝐼𝑁 for 𝑛 ∈ {1, 𝑁},
respectively. The Tucker decomposition can be written as the mode-𝑛 product such that:

𝒴 = 𝒢 ×1 A
(1) ×2 ... ×𝑁 A

(𝑁). (2.88)
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The mode-𝑛matrix unfolding of 𝒴 is given by:

Y𝐼𝑛+1...𝐼𝑁𝐼1...𝐼𝑛−1×𝐼𝑛 =
(
A(𝑛+1) ⊗ ... ⊗A(𝑁) ⊗A(1) ⊗ ... ⊗A(𝑛−1)

)
G𝑅𝑛+1...𝑅𝑁𝑅1...𝑅𝑛−1×𝑅𝑛A

(𝑛)𝑇, (2.89)

where G𝑅𝑛+1...𝑅𝑁𝑅1...𝑅𝑛−1×𝑅𝑛 ∈ ℂ𝑅𝑛+1...𝑅𝑁𝑅1...𝑅𝑛−1×𝑅𝑛 is the corresponding mode-𝑛 unfolding of 𝒢.

2.5.1.2 Special Tucker decompositions

Consider an𝑁-order tensor that has𝑁1 factor matrices, and𝑁−𝑁1matrices equal to
identity matrices, where 𝑁1 < 𝑁. Considering A(𝑛) = I𝐼𝑛 for 𝑛 ∈ {𝑁1 + 1, 𝑁}, which implies
𝑅𝑛 = 𝐼𝑛, the Tucker-(𝑁1,𝑁)model [53] corresponds to:

𝒴 = 𝒢 ×1 A
(1) ×2 ... ×𝑁1

A(𝑁1) ×𝑁1+1 I𝐼𝑁1+1 ×𝑁1+2 ... ×𝑁 I𝐼𝑁 , (2.90)

or simply:
𝒴 = 𝒢 ×1 A

(1) ×2 ... ×𝑁1
A(𝑁1) = 𝒢 ×𝑁1

𝑛=1 A
(𝑛). (2.91)

with 𝒢 ∈ ℂ𝑅1×...×𝑅𝑁1×𝐼𝑁1+1×...×𝐼𝑁 . Now, considering a third-order tensor 𝒳 ∈ ℂ𝐼1×𝐼2×𝐼3 , there
are two important variations of the Tucker-(𝑁1,𝑁) decomposition. The Tucker-(2,3) decom-
position or simply Tucker-2 has one of the factor matrices equal to the identity matrix,
i.e.:

𝒳 = 𝒢 ×1 A ×2 B ∈ ℂ𝐼1×𝐼2×𝐼3 . (2.92)

This is the same as Eq.(2.80) except that 𝒢 ∈ ℂ𝑅1×𝑅2×𝐼3 , where 𝐼3 = 𝑅3 and C = I𝐼3 ∈
ℝ𝐼3×𝐼3 . The Tucker-2 decomposition is illustrated in Figure 5.

X G A

B

I1

I2

R1=

R2

I3

Figure 5 – Tucker-2 decomposition of a third-order tensor 𝒳 ∈ ℂ𝐼1×𝐼2×𝐼3 .

Likewise, the Tucker-(1,3) decomposition, or simply Tucker-1 has two of the factor
matrices equal to the identity matrix. For example, if B = I𝐼2 ∈ ℝ𝐼2×𝐼2 and C = I𝐼3 ∈ ℝ𝐼3×𝐼3 ,
then we have:

𝒳 = 𝒢 ×1 A ∈ ℂ𝐼1×𝐼2×𝐼3 , (2.93)

where 𝒢 ∈ ℂ𝑅1×𝐼2×𝐼3 . The Tucker-1 decomposition is illustrated in Figure 6.
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X G A

I1

I2

R1=

I3

Figure 6 – Tucker-1 decomposition of a third-order tensor 𝒳 ∈ ℂ𝐼1×𝐼2×𝐼3 .

2.5.1.3 Generalized Tucker decomposition

The generalized Tucker decomposition has been introduced for wireless commu-
nication systems in [35]. Let us consider an 𝑁-order tensor 𝒴 ∈ ℂ𝐼1×...×𝐼𝑁 modeled by a
generalized Tucker-(𝑁1, 𝑁) decomposition, with 𝑁1 < 𝑁 as:

𝑦𝑖1,..,𝑖𝑁 =
𝑅1∑

𝑟1=1
...

𝑅𝑁1∑

𝑟𝑁1=1
𝑔𝑟1,...,𝑟𝑁1 ,𝑖𝑁1+1,...,𝑖𝑁

𝑁1∏

𝑛=1

𝑎(𝑛)𝑖𝑛 ,𝑟𝑛 ,𝕊𝑛
, (2.94)

where 𝕊𝑛 is an ordered subset of the set 𝕁 ∈ {𝑖𝑁1+1, ..., 𝑖𝑁}. In terms of mode-𝑛 product the
generalized Tucker-(𝑁1, 𝑁) decomposition can be written as:

𝒴 = 𝒢 ×𝑁1
𝑛=1 𝒜

(𝑛) ∈ ℂ𝐼1×...×𝐼𝑁 , (2.95)

where 𝒢 ∈ ℂ𝑅1×...×𝑅𝑁1×𝐼𝑁1+1×...×𝐼𝑁 is the core tensor and𝒜(𝑛) ∈ ℂ𝐼𝑛×𝑅𝑛×𝕊𝑛 are the tensor factors,
for 𝑛 ∈ {1, 𝑁1}. For example, let us consider two factors, where the first factor is a third-order
tensor 𝒜(1) ∈ ℂ𝐼1×𝑅1×𝐼3 and the second factor is a matrix A(2) ∈ ℂ𝐼2×𝑅2 . The generalized
Tucker-(2,4) decomposition is given by:

𝑦𝑖1,𝑖2,𝑖3,𝑖4 =
𝑅1∑

𝑟1=1

𝑅2∑

𝑟2=1
𝑔𝑟1,𝑟2,𝑖3,𝑖4𝑎

(1)
𝑖1,𝑟1,𝑖3

𝑎(2)𝑖2,𝑟2 , (2.96)

where 𝒢 ∈ ℂ𝑅1×𝑅2×𝐼3×𝐼4 . In terms of mode-𝑛 product, Eq.(2.96) can be written as:

𝒴 = 𝒢 ×1 𝒜(1) ×2 A
(2) ∈ ℂ𝐼1×𝐼2×𝐼3×𝐼4 . (2.97)

2.5.2 Higher-order singular value decomposition (HOSVD)

HOSVD, introduced by [50], is a generalization of thematrix SVD for𝑁-order tensors.
HOSVD is a way to compute the basis for each factor matrix of the Tucker decomposition.
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Every 𝑁-order tensor 𝒴 ∈ ℂ𝐼1×...×𝐼𝑁 can be written as the mode-𝑛 product:

𝒴 = 𝒮 ×1 U
(1) ×2 ... ×𝑁 U

(𝑁) ∈ ℂ𝐼1×...×𝐼𝑁 , (2.98)

where 𝒮 ∈ ℂ𝑅1×...×𝑅𝑁 is the core tensor andU(𝑛) ∈ ℂ𝐼𝑛×𝑅𝑛 are the left singular vector matrices,
with 𝑛 ∈ {1, 𝑁}. The set (𝑅1, ..., 𝑅𝑁) denotes the multilinear rank of 𝒴. The matrix U

(𝑛) is
computed as the 𝑅𝑛 left singular vectors of the 𝑛𝑡ℎ matrix unfolding of 𝒴, i.e.:

Y𝐼𝑛×𝐼𝑛+1...𝐼𝑁𝐼1...𝐼𝑛−1 = U(𝑛)𝚺(𝑛)V(𝑛)𝐻. (2.99)

FromU(𝑛) computed according to Eq.(2.99), the core tensor can be obtained as:

𝒮 = 𝒴 ×1 U
(1)𝐻 ×2 U

(2)𝐻 ×3 ... ×𝑁 U
(𝑁)𝐻. (2.100)

For a Tucker decomposition, HOSVD algorithm computes a basis for each factor
matrix via the SVD for each mode-𝑛 unfolding of the tensor. For the explanation, let us
consider the third-order tensor𝒳 ∈ ℂ𝐼1×𝐼2×𝐼3 modeled by Tucker decomposition as Eq.(2.80).
Computing the SVD we have:

X𝐼1×𝐼2𝐼3 = U(1)𝚺(1)V(1)𝐻, (2.101)

X𝐼2×𝐼3𝐼1 = U(2)𝚺(2)V(2)𝐻, (2.102)

X𝐼3×𝐼1𝐼2 = U(3)𝚺(3)V(3)𝐻. (2.103)

Since U(𝑛) is an unitary matrix of size 𝐼𝑛 × 𝑅𝑛, with 𝑛 ∈ {1, 2, 3}, that spans the
subspace of A, B and C. The HOSVD procedure is described in the pseudo-code form in
Table 3. In this thesis, HOSVD decomposition is applied to formulate efficient denoising
strategies in the following chapters.

2.5.3 Parallel factor analysis (PARAFAC) decomposition

PARAFAC decomposition was introduced in 1970 [58]. This decomposition can also
be called CPD (canonical polyadic decomposition). It expresses a tensor as the sum of a finite
number of rank-one tensors. The PARAFAC decomposition of a given third-order tensor
𝒳 ∈ ℂ𝐼1×𝐼2×𝐼3 can be represented as:

𝑥𝑖1,𝑖2,𝑖3 =
𝑅∑

𝑟=1

𝑎𝑖1,𝑟𝑏𝑖2,𝑟𝑐𝑖3,𝑟, (2.111)

where 𝑎𝑖1,𝑟, 𝑏𝑖2,𝑟 and 𝑐𝑖3,𝑟 are scalar elements of A ∈ ℂ𝐼1×𝑅, B ∈ ℂ𝐼2×𝑅 and C ∈ ℂ𝐼3×𝑅, respec-
tively. PARAFAC decomposition is expressed by a sum of triads as follows:

𝒳 =
𝑅∑

𝑟=1

A.𝑟◦B.𝑟◦C.𝑟 ∈ ℂ𝐼1×𝐼2×𝐼3 , (2.112)
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Table 3 – HOSVD algorithm.
HOSVD algorithm for estimation of Â, B̂, Ĉ and �̂�
Input: tensor 𝒳 and 𝑅𝑛, with 𝑛 ∈ {1, 2, 3}
Output: Estimated matrices Â, B̂, Ĉ and �̂�
1) Compute the SVD for each mode-𝑛 unfolding of 𝒳:

X𝐼1×𝐼2𝐼3 = U(1)𝚺(1)V(1)𝐻, (2.104)

X𝐼2×𝐼3𝐼1 = U(2)𝚺(2)V(2)𝐻, (2.105)

X𝐼3×𝐼1𝐼2 = U(3)𝚺(3)V(3)𝐻. (2.106)

2) Compute Â, B̂ and Ĉ using the matricesU(𝑛):

Â = U(1), (2.107)

B̂ = U(2), (2.108)
Ĉ = U(3). (2.109)

3) Compute the core tensor �̂�:

�̂� = 𝒳 ×1 Â
𝐻
×2 B̂

𝐻
×3 Ĉ

𝐻
. (2.110)

whereA.𝑟 ∈ ℂ𝐼1 ,B.𝑟 ∈ ℂ𝐼2 andC.𝑟 ∈ ℂ𝐼3 are the columns vectors ofA,B andC, respectively.𝑅
is the number of factors, also known as the rank of the decomposition. Figure 7 illustrates the
PARAFAC decomposition of the third-order tensor in Eq.(2.112). PARAFAC decomposition
can also be represented in terms of the mode-𝑛 product as:

=

C.1

B.1

A.1

C.2

B.2

A.1

C.R

B.R

A.R

+ + … +

XI 1

I 2
I 3

Figure 7 – PARAFAC decomposition of third-order tensor 𝒳 ∈ ℂ𝐼1×𝐼2×𝐼3 into 𝑅 components.

𝒳 = ℐ3,𝑅 ×1 A ×2 B ×3 C ∈ ℂ𝐼1×𝐼2×𝐼3 , (2.113)

where ℐ3,𝑅 represents the third-order identity tensor of size 𝑅 ×𝑅 ×𝑅. The matrix unfoldings
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of the third-order PARAFAC decomposition are given by:

X𝐼3𝐼2×𝐼1 = (C ⋄ B)A𝑇, (2.114)

X𝐼1𝐼3×𝐼2 = (A ⋄ C)B𝑇, (2.115)

X𝐼2𝐼1×𝐼3 = (B ⋄A)C𝑇. (2.116)

2.5.3.1 𝑁-order PARAFAC decomposition

Let us consider an 𝑁-order tensor 𝒴 ∈ ℂ𝐼1×...×𝐼𝑁 that satisfies the PARAFAC decom-
position. This tensor can be expressed as:

𝑦𝑖1,...,𝑖𝑁 =
𝑅∑

𝑟=1

𝑁∏

𝑛=1

𝑎(𝑛)𝑖𝑛 ,𝑟
, (2.117)

where 𝑎(𝑛)𝑖𝑛 ,𝑟
are the elements of A(𝑛) ∈ ℂ𝐼𝑛×𝑅, for 𝑛 ∈ {1, 𝑁}. Note that 𝑅 represents the rank

of 𝒴. The PARAFAC model can be represented by the following outer product:

𝒴 =
𝑅∑

𝑟=1

A(1)
.𝑟 ◦...◦A

(𝑁)
.𝑟 , (2.118)

where A(𝑛)
.𝑟 ∈ ℂ𝐼𝑛 is the 𝑟𝑡ℎ column vector of A(𝑛). PARAFAC decomposition can also be

interpreted as a special case of the Tucker decomposition with an identity core tensor, as in-
troduced in Definition 16. For PARAFAC decomposition, we have the following formulation
in terms of the mode-𝑛 product:

𝒴 = ℐ𝑁,𝑅 ×1 A
(1) ×2 ... ×𝑁 A

(𝑁). (2.119)

By using Definition 9, we have the following generic formulation for a flat mode-𝑛
matrix unfolding of the PARAFAC decomposition:

Y𝐼𝑛+1...𝐼𝑁𝐼1...𝐼𝑛−1×𝐼𝑛 =
(
A(𝑛+1) ⋄ ... ⋄A(𝑁) ⋄A(1) ⋄ ... ⋄A(𝑛−1)

)
A(𝑛)𝑇. (2.120)

Note the similarity between the Eqs.(2.89) and (2.120). The Kronecker product in the
matrix unfolding of the Tucker model is replaced by the Khatri-Rao product in the matrix
unfolding of the PARAFAC model since the matrices have the same number of columns,
while the core tensor is replaced by the identity tensor.

Uniqueness

The uniqueness of the PARAFAC model was discussed in several works such as
[59, 60, 61, 62], among others, but the most well-known result is attributed to Kruskal [59].
Kruskal derived conditions for essential uniqueness of third-order PARAFAC models and
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Sidiropoulos et al. [63, 64] extended the results for an𝑁-order tensor. PARAFAC decomposi-
tion is essentially unique, i.e., factor matrices can be estimated up to scaling and permutation
ambiguities. This uniqueness property is true if the following sufficient condition is satisfied:

𝑁∑

𝑛=1

𝑘A(𝑛) ≥ 2𝑅 + (𝑁 − 1) , (2.121)

where 𝑘A(𝑛) is the 𝑘-rank of A(𝑛). The condition (2.121) is sufficient but not necessary to
guarantee essential uniqueness [46]. The following theorem is valid for any arbitrary tensor
that satisfies a PARAFAC decomposition.

Theorem 1. Consider the 𝑁-order tensor 𝒴 ∈ ℂ𝐼1×...×𝐼𝑁 that satisfies a PARAFAC
decomposition. If the sufficient condition (2.121) is satisfied, the factormatricesA(𝑛) ∈ ℂ𝐼𝑛×𝑅, for
𝑛 ∈ {1, 𝑁}, are unique up to permutation and scaling ambiguities, such that Â

(𝑛)
= A(𝑛)𝚷𝚲(𝑛),

where𝚷 ∈ ℂ𝑅×𝑅 is the permutation matrix and 𝚲(𝑛) ∈ ℂ𝑅×𝑅 are diagonal scaling matrices,
with

∏𝑁
𝑛=1𝚲

(𝑛) = I𝑅.

2.5.3.2 Normalized form of the PARAFAC decomposition

PARAFAC decomposition can also be defined in normalized form as [46]:

𝑦𝑖1,...,𝑖𝑁 =
𝑅∑

𝑟=1

𝑔𝑟
𝑁∏

𝑛=1

𝑏(𝑛)𝑖𝑛 ,𝑟
, (2.122)

with 𝑔𝑟 > 0 and the column vectors B(𝑛)
.𝑟 are obtained by normalizing the columns A(𝑛)

.𝑟 as:

B(𝑛)
.𝑟 = 1

∥ A(𝑛)
.𝑟 ∥𝐹

A(𝑛)
.𝑟 , (2.123)

𝑔𝑟 =
𝑁∏

𝑛=1

∥ A(𝑛)
.𝑟 ∥𝐹, (2.124)

with 𝑟 ∈ {1, 𝑅} and 𝑛 ∈ {1, 𝑁}. In this case, the identity tensor ℐ𝑁,𝑅 in (2.119) is replaced by
the diagonal tensor 𝒢 ∈ ℂ𝑅×...×𝑅 whose diagonal elements are equal to the scaling factors 𝑔𝑟:

{
𝑔𝑟 if 𝑟1 = ... = 𝑟𝑁 = 𝑟, 𝑟 ∈ {1, 𝑅}
0 otherwise

. (2.125)

PARAFAC decomposition in normalized form can be seen as a Tucker model (𝒢,B(1),
...,B(𝑁)), where g = [𝑔1, ..., 𝑔𝑅]

𝑇 is the vector whose components are the weights 𝑔𝑟. The
matrix unfolding then becomes:

Y𝕊1×𝕊2 =
(
⋄𝑛∈𝕊1B

(𝑛)
)
diag(g)

(
⋄𝑛∈𝕊2B

(𝑛)
)𝑇
, (2.126)

where diag(g) is a diagonal matrix whose diagonal elements are the coefficients 𝑔𝑟.
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The normalized form of the PARAFAC decomposition is unique up to scaling ambi-
guities 𝜆(𝑛)𝑟 for each column of the factor matrices B(𝑛), satisfying

∏𝑁
𝑛=1 𝜆

(𝑛)
𝑟 = 1, for every

𝑟 ∈ {1, 𝑅}. To eliminate the permutation ambiguities of the columns, we can arrange them in
such away that they are associated with the factors 𝑔𝑟 in decreasing order (𝑔1 ≥ 𝑔2 ≥ ... ≥ 𝑔𝑅).

2.5.4 Estimation methods of the PARAFAC decomposition

Several PARAFACfitting algorithms have been proposed in the literature. They can be
classified into two categories: alternating algorithms and non-iterative algorithms. In the first
category, a subset of parameters is updated at each step whereas, in the second category, the
parameters are estimated in a closed-form way. The first category belongs to the alternating
least squares (ALS) algorithm, the gradient descent method and Levenberg-Marquardt (LM)
also called damped Gauss-Newton algorithm. The second category belongs to KRF, KronF
and THOSVD algorithms. In this section, some iterative methods are presented to estimate
the factor matrices in the PARAFAC model. These algorithms are ALS, gradient descent and
Levenberg-Marquardt.

2.5.4.1 Alternating least squares (ALS) method

The estimation of the three matrices of the PARAFAC decomposition is generally
carried out by minimizing the following cost function deduced from Eq.(2.113):

min
A,B,C

∥ 𝒳 − ℐ3,𝑅 ×1 A ×2 B ×3 C ∥2𝐹 . (2.127)

The principles of ALS were introduced in 1933 by [65] and it is based on the idea
of reducing the optimization problem to smaller sub-problems that are solved iteratively.
ALS method replaces the optimization problem (2.127) with three LS sub-problems deduced
from the matrix unfoldings (2.114)-(2.116), leading to the alternate minimization of the
following LS criteria:

min
A

∥ X𝐼3𝐼2×𝐼1 −
(
Ĉ[𝑖−1] ⋄ B̂[𝑖−1]

)
A𝑇 ∥2𝐹,→ Â[𝑖], (2.128)

min
B

∥ X𝐼1𝐼3×𝐼2 −
(
Â[𝑖] ⋄ Ĉ[𝑖−1]

)
B𝑇 ∥2𝐹←→ B̂[𝑖], (2.129)

min
C

∥ X𝐼2𝐼1×𝐼3 −
(
B̂[𝑖] ⋄ Â[𝑖]

)
C𝑇 ∥2𝐹←→ Ĉ[𝑖]. (2.130)

The update equations at iteration [𝑖] are given by:

Â[𝑖] = [
(
Ĉ[𝑖−1] ⋄ B̂[𝑖−1]

)†
X𝐼3𝐼2×𝐼1]

𝑇

, (2.131)

B̂[𝑖] = [
(
Â[𝑖] ⋄ Ĉ[𝑖−1]

)†
X𝐼1𝐼3×𝐼2]

𝑇

, (2.132)
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Ĉ[𝑖] = [
(
B̂[𝑖] ⋄ Â[𝑖]

)†
X𝐼3×𝐼2𝐼1]

𝑇

, (2.133)

where
(
Ĉ ⋄ B̂

)†
,
(
Â ⋄ Ĉ

)†
and

(
B̂ ⋄ Â

)†
denote the pseudo-inverse of

(
Ĉ ⋄ B̂

)
,
(
Â ⋄ Ĉ

)
and

(
B̂ ⋄ Â

)
, respectively. These matrices must have full column rank to ensure uniqueness of

the LS estimates, which implies the following necessary condition: 𝑅 ≤ min (𝐼3𝐼2, 𝐼1𝐼3, 𝐼2𝐼1).
Taking into account property 3, the computation of the pseudo-inverse in ALS algorithm
can be simplified as follows:

(
Ĉ[𝑖−1] ⋄ B̂[𝑖−1]

)†
= [

(
Ĉ[𝑖−1] ⋄ B̂[𝑖−1]

)𝐻 (
Ĉ[𝑖−1] ⋄ B̂[𝑖−1]

)
]
−1 (

Ĉ[𝑖−1] ⋄ B̂[𝑖−1]
)𝐻

= (Ĉ
𝐻
[𝑖−1]Ĉ[𝑖−1] ⊙ B̂

𝐻
[𝑖−1]B̂[𝑖−1])

−1 (
Ĉ[𝑖−1] ⋄ B̂[𝑖−1]

)𝐻
,

(2.134)

(
Â[𝑖] ⋄ Ĉ[𝑖−1]

)†
= [

(
Â[𝑖] ⋄ Ĉ[𝑖−1]

)𝐻 (
Â[𝑖] ⋄ Ĉ[𝑖−1]

)
]
−1 (

Â[𝑖] ⋄ Ĉ[𝑖−1]
)𝐻

= (Â
𝐻
[𝑖]Â[𝑖] ⊙ Ĉ

𝐻
[𝑖−1]Ĉ[𝑖−1])

−1 (
Â[𝑖] ⋄ Ĉ[𝑖−1]

)𝐻
,

(2.135)

(
B̂[𝑖] ⋄ Â[𝑖]

)†
=
[(
B̂[𝑖] ⋄ Â[𝑖]

)𝐻 (
B̂[𝑖] ⋄ Â[𝑖]

)]−1 (
B̂[𝑖] ⋄ Â[𝑖]

)𝐻

=
(
B̂
𝐻
[𝑖]B̂[𝑖] ⊙ Â

𝐻
[𝑖]Â[𝑖]

)−1 (
B̂[𝑖] ⋄ Â[𝑖]

)𝐻
.

(2.136)

This is equivalent to replacing the computation of pseudo-inverses of the matrices
of size 𝐼3𝐼2 × 𝑅, 𝐼1𝐼3 × 𝑅, and 𝐼2𝐼1 × 𝑅 calculating the inverses of the three matrices of size
𝑅 × 𝑅. For deciding the convergence of the ALS algorithm, we consider the error at the [𝑖]𝑡ℎ

iteration deduced from (2.116) as:

𝑒𝑟𝑟𝑜𝑟[𝑖] =∥ X𝐼1𝐼2×𝐼3 −
(
B̂[𝑖] ⋄ Â[𝑖]

)
Ĉ
𝑇
[𝑖] ∥2𝐹 . (2.137)

Convergence at the [𝑖]𝑡ℎ iteration is declared when this error does not significantly
change between two successive iterations, i.e., |𝑒𝑟𝑟𝑜𝑟[𝑖−1] − 𝑒𝑟𝑟𝑜𝑟[𝑖]| ≤ 𝛿, where 𝛿 is a prede-
fined threshold (e.g. 𝛿 = 10−6).

This algorithm has several advantages: it is easy to implement, ensures convergence
and is simple to extend to higher-order matrices. The shortcomings are mainly in the occa-
sional slowness of the convergence process in the presence of swamps [66] or high collinearity
[67]. In addition, the loss function decreases almost linearly with iterations, while other
methods can provide, at least in principle, superlinear or even quadratic convergence rate
[68]. The ALS algorithm for the estimation of factor matrices is summarized in Table 4.

2.5.4.2 Gradient descent algorithm

Let us consider the third-order tensor 𝒳 ∈ ℂ𝐼1×𝐼2×𝐼3 modeled by the PARAFAC
decomposition in Eq.(2.113) and the minimization problem as [69]:

Υ = min
A,B,C

∥ 𝒳 − ℐ3,𝑅 ×1 A ×2 B ×3 C ∥2𝐹 . (2.138)
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Table 4 – ALS algorithm.
ALS algorithm for estimation of Â, B̂ and Ĉ
Input: tensor ̂̂𝒳
Output: Estimated matrices Â, B̂ and Ĉ
1) Random initialization of B[0], C[0].
2) Update the estimates of Â, B̂ and Ĉ using Eqs.(2.131)-(2.133) or Eqs.(2.134)-
(2.136).
3) Calculate the error (2.137) and |𝑒𝑟𝑟𝑜𝑟[𝑖−1] − 𝑒𝑟𝑟𝑜𝑟[𝑖]|.
- if |𝑒𝑟𝑟𝑜𝑟[𝑖−1] − 𝑒𝑟𝑟𝑜𝑟[𝑖]| < 𝛿 or 𝑖 =maximum number of iterations
- stop
- else 𝑖 → 𝑖 + 1;
Â, B̂ and Ĉ
end

The goal of the Gradient descent algorithm is to minimize the Frobenius norm of
the partial derivative of each unfolding of 𝒳 with respect to matrix factors, which may be
written as:

Υ
(
p[𝑖]

)
=∥ X𝐼2𝐼3×𝐼1 −

(
B[𝑖] ⋄ C[𝑖]

)
A𝑇
[𝑖] ∥

2
𝐹 . (2.139)

For the gradient descent the iteration is given by [69]:

p[𝑖] = p[𝑖−1] − 𝜇[𝑖−1]g[𝑖−1], (2.140)

where p[𝑖] corresponds to the concatenation of vec
(
A[𝑖]

)
, vec

(
B[𝑖]

)
and vec

(
C[𝑖]

)
, g[𝑖] is the

concatenation of the gradient of X𝐼2𝐼3×𝐼1 , X𝐼3𝐼1×𝐼2 and X𝐼1𝐼2×𝐼3 with respect to vec(A) ∈ ℂ𝑅𝐼1 ,
vec(B) ∈ ℂ𝑅𝐼2 and vec(C) ∈ ℂ𝑅𝐼3 , respectively, and 𝜇[𝑖−1] is a step size of the previous iteration
that is varied as convergence progress. Even with a good strategy of variation of 𝜇[𝑖−1], this
algorithm has often very poor convergence properties. p[𝑖] and g[𝑖] are given by:

p[𝑖] =
⎡
⎢
⎢
⎢
⎣

vec
(
A[𝑖]

)

vec
(
B[𝑖]

)

vec
(
C[𝑖]

)

⎤
⎥
⎥
⎥
⎦

and g[𝑖] =
⎡
⎢
⎢
⎢
⎣

gA[𝑖]
gB[𝑖]
gC[𝑖]

⎤
⎥
⎥
⎥
⎦

. (2.141)

And gA[𝑖], gB[𝑖] and gC[𝑖] are given by [69]:

gA[𝑖] =
𝜕
(
X𝐼2𝐼3×𝐼1

)

𝜕 (vec(A[𝑖]))
, (2.142)

gB[𝑖] =
𝜕
(
X𝐼3𝐼1×𝐼2

)

𝜕 (vec(B[𝑖]))
, (2.143)

gC[𝑖] =
𝜕
(
X𝐼1𝐼2×𝐼3

)

𝜕 (vec(C[𝑖]))
, (2.144)
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Such that:

gA[𝑖] =
[
IA ⊗

(
C𝑇
[𝑖−1]C[𝑖−1] ⊙ B𝑇

[𝑖−1]B[𝑖−1]

)]
vec

(
A𝑇

)
−
[
IA ⊗

(
C[𝑖−1] ⋄ B[𝑖−1]

)]𝑇
vec

(
X𝐼2𝐼3×𝐼1

)
,

(2.145)
gB[𝑖] =

[
IB ⊗

(
A𝑇
[𝑖]A[𝑖] ⊙ C𝑇

[𝑖−1]C[𝑖−1]

)]
vec

(
B𝑇
)
−
[
IB ⊗

(
A[𝑖] ⋄ C[𝑖−1]

)]𝑇
vec

(
X𝐼3𝐼1×𝐼2

)
,

(2.146)
gC[𝑖] =

[
IC ⊗

(
B𝑇
[𝑖]B[𝑖] ⊙A𝑇

[𝑖]A[𝑖]

)]
vec

(
C𝑇
)
−
[
IC ⊗

(
B[𝑖−1] ⋄A[𝑖−1]

)]𝑇
vec

(
X𝐼1𝐼2×𝐼3

)
, (2.147)

The Gradient descent algorithm is summarized in Table 5.

Table 5 – Gradient descent algorithm.
Gradient descent algorithm for estimation of Â, B̂ and Ĉ
Input: tensor ̂̂𝒳
Output: Estimated matrices Â, B̂ and Ĉ
1) Random initialization of B[0], C[0].
2) Update the estimates of Â, B̂ and Ĉ using Eqs.(2.131)-(2.133) or Eqs.(2.134)-
(2.136).
3) Compute p[𝑖] as Eqs.(2.141) and (2.140).
4) Compute g[𝑖] as Eqs.(2.141)-(2.147).

- if Υ
(
p[𝑖]

)
< 𝛿

- stop
- else 𝑖 → 𝑖 + 1;
4) Compute Â, B̂ and Ĉ from p[𝑖].
end

2.5.4.3 Levenberg-Marquart algorithm

Damped Gauss-Newton algorithms, also known as Levenberg-Marquart algorithms,
take into account the second derivative. This allows faster local convergence. An approxima-
tion using only first-order derivatives is given by the iteration below [70]:

p[𝑖] = p[𝑖−1] −
[
H[𝑖−1] + 𝜆2[𝑖−1]I

]−1
g[𝑖−1], (2.148)

where H[𝑖−1] = J𝑇[𝑖−1]J[𝑖−1] denotes the approximate Hessian, J[𝑖−1] is the Jacobian matrix
[JA, JB, JC] at iteration [𝑖 − 1] with respect to vec(A), vec(B) and vec(C), respectively, and
𝜆2[𝑖−1] is a positive regularization parameter. The compact forms of Jacobian matrices of each
iteration are defined as:

JA[𝑖] = IA ⊗
(
C[𝑖−1] ⋄ B[𝑖−1]

)
, (2.149)

JB[𝑖] = 𝚷1
[
IB ⊗

(
A[𝑖] ⋄ C[𝑖−1]

)]
, (2.150)

JC[𝑖] = 𝚷2
[
IC ⊗

(
B[𝑖] ⋄A[𝑖]

)]
, (2.151)
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where𝚷1 and𝚷2 are permutation matrices that put the entries in the right order. There are
several ways to calculate 𝜆2[𝑖−1], and this has an important influence on convergence. Updates
of p and 𝜆2 are controlled by the gain ratio 𝛾 as:

𝛾 = Υ[𝑖−1] − Υ[𝑖] ⋅
(
Υ̂ (0) − Υ̂

(
∆p[𝑖−1]

))−1
, (2.152)

where Υ̂
(
∆p[𝑖−1]

)
is a second order approximation of Υ

(
p[𝑖−1] + ∆p[𝑖−1]

)
. The Levenberg-

Marquardt algorithm is summarized in Table 6.

Table 6 – Levenberg-Marquardt algorithm.
Levenberg-Marquardt algorithm for estimation of Â, B̂ and Ĉ
Input: tensor ̂̂𝒳
Output: Estimated matrices Â, B̂ and Ĉ
1) Random initialization of B[0], C[0]
2) Update the estimates Â, B̂ and Ĉ using Eqs.(2.131)-(2.133) or Eqs.(2.134)-
(2.136).
3) Update the gradient using Eq.(2.141).
4) Update Jacobians using Eqs. (2.149)-(2.151).
3) Find the new direction as:

∆p[𝑖] = −
[
J𝑇[𝑖]J[𝑖] + 𝜆2[𝑖]I

]−1
g[𝑖], (2.153)

4) Compute p[𝑖] as Eq.(2.148).
5) Compute Υ

(
∆p[𝑖]

)
as Eq.(2.139).

6) Compute 𝛾 as:

𝛾 = Υ[𝑖−1] − Υ[𝑖] ⋅
(
Υ̂ (0) − Υ̂

(
∆p[𝑖−1]

))−1
, (2.154)

- if 𝛾 ≥ 0, then p[𝑖] is accepted with:

𝜆2[𝑖] = 𝜆2[𝑖−1] ∗ max (
1
3 , 1 − (2𝛾 − 1)3) and 𝜈 = 2. (2.155)

- stop
- otherwise, p[𝑖] is rejected, then

𝜆2[𝑖] = 𝜈𝜆2[𝑖−1] and 𝜈 ← 2𝜈. (2.156)

7) Compute Â, B̂ and Ĉ from p[𝑖].
end
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2.6 Chapter summary

This chapter has provided some fundamentals of multilinear algebra, tensor de-
compositions and algorithmic backgrounds in multilinear algebra. All content presented
in this chapter provides the basic material that will be exploited throughout this thesis.
In the first part of this chapter, some notations were introduced. In the second and third
parts, we introduced some operations involving matrices, namely Kronecker and Khatri-Rao
products, SVD, KronF and KRF algorithms and their generalizations GKronF and GKRF
methods, respectively. In the fourth and fifth parts, we focused on presenting basic tensor
operations, tensor decompositions and some algorithms to estimate factor matrices in tensor
decompositions. These decompositions have been formulated in scalar, outer product and
mode-𝑛 product forms. In each case, the factorization of the tensor in matrix unfolding
form has been defined and the uniqueness conditions have been presented. Most algorithms
presented in this chapter are dedicated to estimate the factor matrices of PARAFAC de-
composition as ALS, gradient descent, LM, among others. Tensor decompositions are very
important in the contexts of application of this thesis, where they will be widely used in
MIMO communication systems.
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3 Semi-blind receivers for point-to-
point MIMO System with MKRST
Coding

In this chapter, the first original contributions of this work are presented. First, a biblio-
graphic review of existing tensor-based MIMO systems is presented in terms of coding. Then a
particular case of the multiple Khatri-Rao space-time (MKRST) coding is considered, where
the pre-coding matrix corresponds to a symbol matrix that is assumed known. MKRST coding
provides extra diversity due to multiple Khatri-Rao products of symbol matrices. Based on
this coding, a new point-to-point MIMO system is introduced. This system is modeled by the
PARAFAC decomposition, in which the MKRST coding is applied to the source to code the
signals to be transmitted.

By exploiting the tensormodel of the received signals, five semi-blind receivers are derived
to jointly estimate the channel and symbol matrices. The proposed receivers are semi-blind
since we have no channel knowledge and one symbol matrix should be known, which contains
pilot symbols. Monte Carlo simulation results illustrate the impact of design parameters on the
system performance and the behavior of the proposed receivers in terms of symbol error rate
(SER) and normalized mean square error (NMSE).

3.1 Bibliographic review of tensor-based MIMO sys-

tems and codings

With the advance of the 5G wireless communication system, the development of
6G mobile network has attracted a great deal of attention in massive MIMO systems. 6G is
expected to advance the current wireless technologies, providing considerably enhanced
system performance. In terms of speed, 6G will likely use a higher frequency spectrum that
should be about 100 to 1000 times faster than 5G to improve the data rate [11, 71]. More
specifically, 6G networks will allow a hundred gigabits per second to terabit-per-second
links by making use of multi-band high-spread spectrum [11, 72]. Massive MIMO is a
core technology of 5G and will probably be the system that requests the most attention
in the development of 6G. For massive MIMO, a very large number of antennas is used
when spatially multiplexing several users, reducing the multi-user interference (MUI), or to
compensate for the path loss when higher frequencies than microwaves are used, such as
the millimeter-waves [10]. Massive MIMO systems provide performance gains in terms of
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reliability and security over the existing MIMO communication systems [73, 74]. However,
realizing many of these advantages in practice hinges on accurate estimation of the CSI,
which affects the performance of beamforming and decoding accuracy at the receivers [75].
For that, it is necessary to propose received signal models and receivers that allow estimating
the channel and its parameters with better precision.

During the last years, several tensor decompositions have been widely proposed for
MIMO wireless communication systems due to their capacity to exploit multiple diversities.
The main goal of diversity techniques is to exploit several copies of the information symbols
to be recovered at the receiver. This enables the mitigation of fading in wireless links and
hence, an increase of the reception reliability, which leads to a reduction of error rate [14,
76]. A way to impose diversity on the system is to apply coding techniques combined with
tensor decompositions to transmit the information symbols. Tensor-based MIMO systems
combined with matrix or tensor codings allow for improving link reliability as well as
jointly estimating the channel and the transmitted symbols by means of semi-supervised or
supervised receivers. They have the advantage of not requiring a priori channel knowledge,
but only a few pilot symbols are needed to eliminate scaling ambiguities inherent to each
particular tensor model. Moreover, tensor codings lead to natural tensor formulations of
transmitted and received signals, and consequently to tensor system models [14].

For improving the error performance in parameter estimation, a key idea is to jointly
exploit the system diversities. The diversity here corresponds to a set of techniques that aims
to enhance the quality of received signals in communication systems, providing a wireless
link improvement at a relatively low cost [77, 78]. When the diversity in MIMO systems is
exploited, it means that redundancies in the signal are created by exploiting the random
nature of the radio propagation in such a way that different and independent versions of
the same signal reach the destination. There are many ways to obtain diversity [12, 30,
31]. For example, spatial diversity can be found in wireless MIMO systems and consists
of transmitting independent data streams in parallel on multiple-transmit antennas and
can be used for increasing the transmission rate. The benefit from spatial diversity comes
from the redundancies in the transmitted signal, leading the receive antennas to possibly
obtain uncorrelated faded versions of the same signal increasing the probability of effective
reception of the transmitted information. Time diversity can be obtained by transmitting the
same symbols or data streams over multiple blocks, each symbol period corresponding to a
single channel use. The time spreading also can be obtained via codingwhere the information
is coded and dispersed in the time domain in different periods so that different parts of
the codewords experience roughly uncorrelated fading [63, 79, 80]. The frequency diversity
can be provided by the channels as is the case with frequency-selective and time-selective
channels, leading to frequency or multipath diversity and Doppler diversity, respectively.

Since the pioneering work [63], tensor models combined with coding schemes have
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been extensively used to model wireless communication systems, such as the point-to-point
MIMO communication systems [35, 55, 63, 81] and cooperative MIMO systems [17, 23,
33]. Tensor-based wireless communication systems can be classified according to the type
of system (code-division multiple access (CDMA), direct sequence CDMA (DS-CDMA),
OFDM, CDMA-OFDM, time division duplex (TDD), among others); type of coding (space-
time (ST), space-time-frequency (STF), multiple Kronecker product (KronST, MKronST),
multiple Khatri-rao product (KRST, MKRST), matrices/tensors); and type of tensor model:
PARAFAC [63], PARATUCK-(2,4) [55], PARATUCK-2 [82], generalized PARATUCK [35],
nested PARAFAC [16]. According to [55], also there are different ways of classifying cod-
ing schemes as the type of MIMO channel (flat fading/frequency selective/ time-varying
MIMO channels); the amount of CSI knowledge at the transmitter; and design criteria to be
optimized (i.e. tradeoffs to be achieved).

The use of these codings with tensor approaches for the design of MIMO wireless
communication systems, mainly in cooperative MIMO systems, has led to the development
of new supervised and semi-supervised receivers. Table 7 presents some coding schemes
that are combined with tensor approaches to model received signals.

Table 7 – Presentation of different codings.
Codings Transmission rate Dimension of

the received
signal

received signal
tensor

KRST [20] 𝑅∕𝑃 𝑃𝑁 × 𝑅 nested-PARAFAC
ST [82] 𝑅∕𝑃 𝑀 ×𝑁 × 𝑃 Paratuck-2
STF [83] 𝑅∕𝐹𝑃 𝐹 ×𝑀 ×𝑁 × 𝑃 generalized

PARATUCK-2
TST [55] 𝑅∕𝑃 𝑀 ×𝑁 × 𝑃 × 𝐽 PARATUCK-(2,4)
TSTF [35] 𝑅∕𝑃𝐹 𝑀 ×𝑁 ×𝐹 × 𝑃 × 𝐽 generalized

PARATUCK-(2,5)
STM [84] 𝑅∕𝑃 𝑀 × 𝑃 ×𝑁 block-PARAFAC
MKRST

(
𝑅
∑𝐿

𝑙=1𝑁𝑙

)
∕
(
𝑃
∏𝐿

𝑙=1𝑁𝑙

)
𝑃𝑁 × 𝑅 PARAFAC

[33]
MKronST

(∑𝐿
𝑙=1𝑁𝑙𝑅𝑙

)
∕
(
𝑃
∏𝐿

𝑙=1𝑁𝑙

)
𝑃𝑁 × 𝑅 PARAFAC

[33]
particular case
of MKRST [81]

(
𝑅
∑𝐿

𝑙=2𝑁𝑙

)
∕
(
𝑁1

∏𝐿
𝑙=2𝑁𝑙

)
𝑁 × 𝑅 PARAFAC

Regarding Table 7, it is important to note that all these coded signals consider one
symbol matrix associated with a coding tensor/matrix or an allocation tensor/matrix to
transmit the symbols except for [33] and its particular case [81], that considers more than
one symbol matrix to be transmitted. The combination of coding matrices/tensors or allo-
cation matrices/tensors improves the space diversity because creates redundancy of each
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transmitted symbol, improving the estimation at the receiver. The received signal model of
the system depends on the coding used to encode the symbols. Depending on the system, it
is necessary to know one symbol or even more to eliminate scaling ambiguities.

3.2 Proposed system model

Let us consider the point-to-point MIMO wireless communication system presented
in Figure 8, whereH ∈ ℂ𝐾×𝑅 is the channel matrix with 𝐾 receive antennas and 𝑅 transmit
antennas and S ∈ ℂ𝑁×𝑅 consists in a multiple Khatri-Rao product of 𝐿 symbol matrices,
where each symbol matrix being formed of 𝑅 data streams composed of 𝑁𝑙 symbols each, to
be multiplexed by 𝑅 transmit antennas. The symbols are encoded at the transmitter. Sections
3.2.1 and 3.2.2 describe the coding used and the model of the received signals, respectively.

Tx Rx

R K

Figure 8 – Block diagram of the point-to-point MIMO systems.

3.2.1 MKRST coding

This section presents the coding used at the transmitter, which is called multiple
Khatri-Rao space-time (MKRST) coding [33]. In this case, we consider a particular case of
MKRST coding, where the pre-codingmatrix corresponds to a symbol matrix that is assumed
to be known. This coding provides extra diversity due to multiple Khatri-Rao products of the
symbol matrices, by jointly adding time and space spreadings [81]. It consists in a multiple
Khatri-Rao product of 𝐿 symbol matrices S(𝑙) ∈ ℂ𝑁𝑙×𝑅, 𝑙 ∈ {1, 𝐿}, each one being formed of 𝑅
data streams composed of 𝑁𝑙 symbols each:

S = ⋄𝐿𝑙=1S
(𝑙) ≜ S(1) ⋄ ... ⋄ S(𝐿) ∈ ℂ𝑁×𝑅, (3.1)

where 𝑁 =
∏𝐿

𝑙=1𝑁𝑙. The scalar writing of (3.1) is as follow:

𝑠𝑛,𝑟 =
𝐿∏

𝑙=1

𝑠(𝑙)𝑛𝑙 ,𝑟, 𝑛 ∈ {1,𝑁} , 𝑟 ∈ {1, 𝑅}, (3.2)
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with 𝑛 = 𝑛(𝐿)𝐿 +
(
𝑛(𝐿−1)𝐿−1 − 1

)
𝑁𝐿 +⋯ +

(
𝑛(1)1 − 1

)∏𝐿
𝑙=2𝑁𝑙, where 𝑛

(𝑙)
𝑙 ∈ {1, 𝑁𝑙} denotes the

index 𝑛𝑙 in 𝑠
(𝑙)
𝑛𝑙 ,𝑟. This writing (3.2) highlights the way to compute each element of themultiple

Khatri-Rao product matrix S.

3.2.2 Point-to-point MIMO system

In the noise-free case, the received signals are obtained by transmitting the coded
signal matrix (3.1) through the wireless channelH ∈ ℂ𝐾×𝑅, which gives a standard system
model as:

X = HS𝑇 ∈ ℂ𝐾×𝑁, (3.3)

where H is the channel matrix drawn from a Gaussian distribution and S is the symbol
matrix. The symbol matrix S is coded at the transmitter by the MKRST coding (3.1) which
provides extra diversity due to the multiple Khatri-Rao product of the symbol matrices. The
received signal in (3.3), can be written in a scalar form as:

𝑥𝑘,𝑛 =
𝑅∑

𝑟=1

ℎ𝑘,𝑟𝑠𝑛,𝑟, (3.4)

with 𝑘 ∈ {1, 𝐾}, 𝑟 ∈ {1, 𝑅} and 𝑛 ∈ {1,𝑁}, such that 𝑛 = 𝑛(𝐿)𝐿 +
(
𝑛(𝐿−1)𝐿−1 − 1

)
𝑁𝐿 + ⋯ +

(
𝑛(1)1 − 1

)∏𝐿
𝑙=2𝑁𝑙. Substituting (3.1) in (3.3), leads to the received signals written in terms

of mode-1 unfolding:
X𝐾×𝑁1...𝑁𝐿

= H(S(1) ⋄ ... ⋄ S(𝐿))𝑇, (3.5)

where𝑁 = 𝑁1...𝑁𝐿. The received signals form a tensor that satisfies a (𝐿+1)-order PARAFAC
model with rank 𝑅 given by:

𝒳 = ℐ𝐿+1,𝑅 ×1 H ×2 S
(1) ×3 ... ×𝐿+1 S

(𝐿), (3.6)

where S(𝑙) for 𝑙 ∈ {1, 𝐿} are the symbol matrices coded by the MKRST coding and 𝒳 ∈
ℂ𝐾×𝑁1×...×𝑁𝐿 . From (3.3)-(3.6), we can conclude that the tensor of received signals satisfies
an (𝐿 + 1)-order PARAFAC model, as illustrated by means of the blocks diagram in Figure
9. Note that the first block represents the transmitted symbols coded by the particular case
of the MKRST coding, the second block is the channel matrix, the third block presents
the received signal tensor and the fourth block corresponds to the estimated symbols and
channel by using the proposed receivers presented in next sections.

Let us consider S(1) known and S(𝑐) = ⋄𝐿𝑙=2S
(𝑙) ∈ ℂ𝑁𝑐×𝑅 being the symbol matrices

that we must estimate, with 𝑁𝑐 =
∏𝐿

𝑙=2𝑁𝑙. Combining modes 3 to 𝐿 + 1 of 𝒳 results in
contracted form 𝒳𝑐 ∈ ℂ𝐾×𝑁1×𝑁𝑐 and the expression (3.6) can be rewritten as:

𝒳𝑐 = ℐ3,𝑅 ×1 H ×2 S
(1) ×3 S

(𝑐). (3.7)
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Transmitted
 symbols

Channel Received 
signal tensor

receivers

Estimated
 Symbols and 

channel

Figure 9 – Block diagram of the system represented by a (𝐿 + 1)-order PARAFAC model.

Based on the contracted third-order PARAFAC model (3.7), it is easy to deduce the
following matrix unfoldings of the tensor 𝒳:

X𝐾×𝑁1𝑁𝑐
= H

(
S(1) ⋄ S(𝑐)

)𝑇
∈ ℂ𝐾×𝑁1𝑁𝑐 , (3.8)

X𝑁1×𝑁𝑐𝐾 = S(1)
(
S(𝑐) ⋄H

)𝑇
∈ ℂ𝑁1×𝑁𝑐𝐾, (3.9)

X𝑁𝑐×𝐾𝑁1
= S(𝑐)

(
H ⋄ S(1)

)𝑇
∈ ℂ𝑁𝑐×𝐾𝑁1 . (3.10)

For MKRST coding, five semi-blind receivers are presented for channel and symbol
matrices estimation. The receivers are considered semi-blind since the symbol matrix S(1) is
assumed to be known at the receiver.

3.3 Semi-blind receivers

In this section, we exploit the tensor model of the point-to-point MIMO system
presented in Subsection 3.2.2 to develop five semi-blind receivers to jointly estimate the
symbol matrices and the channel. The first three receivers are closed-form solutions based
on LS estimation of the Khatri-Rao products (KRF) and THOSVD methods. The last two
receivers are iterative algorithms based on the ALS method. The estimation of the unknown
parameters in a unique way is related to the uniqueness properties of the involved tensor
methods. The PARAFACmodel is unique up to scaling ambiguities when one of the matrices
is known (see Theorem 1, Subsection 2.5.5). Here, we assume that the pilot symbol matrix
S(1) is known. Following, for the purpose of simplicity, the equations are derived from the
noiseless case.

3.3.1 Receivers based on Khatri-Rao product

In this section, three semi-blind receivers are presented to estimate the channel and
symbol matrices. From the 3-mode matrix unfolding (3.9) we deduce the LS estimation of
the Khatri-Rao product as:

[
(
S(1)

)†
X𝑁1×𝑁𝑐𝐾]

𝑇

= S(𝑐) ⋄H ∈ ℂ𝑁𝑐𝐾×𝑅, (3.11)
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where
(
S(1)

)†
is the pseudo-inverse of S(1). Considering two symbol matrices being transmit-

ted such that S(𝑐) = S(2) ⋄ S(3) ∈ ℂ𝑁2𝑁3×𝑅, we have:

Z = S(2) ⋄ S(3) ⋄H ∈ ℂ𝑁2𝑁3𝐾×𝑅 = [
(
S(1)

)†
X𝑁1×𝑁2𝑁3𝐾]

𝑇

. (3.12)

where 𝑁𝑐 = 𝑁2𝑁3. From Eq.(3.12) we can formulate four receivers based on the Khatri-Rao
product. KRF, KRF-KRF, THOSVD and Rank-one ALS receivers are described in the next
section.

Identifiability condition and ambiguities relations

For computing the pseudo-inverse in Eq.(3.11), one condition is required to ensure
the uniqueness. S(1) must be left-invertible, i.e., it must be full column rank,

𝑅 ≤ 𝑁1. (3.13)

For KRF, KRF-KRF, THOSVD and rank-one ALS receivers presented in this section,
the unknown parameters are affected by the following ambiguities:

⎧
⎪

⎨
⎪
⎩

Ŝ
(2)
= S(2)𝚲(2),

Ŝ
(3)
= S(3)𝚲(3), 𝚲(2)𝚲(3)𝚲(𝐻) = I𝑅,

Ĥ = H𝚲(𝐻).

(3.14)

The scaling ambiguities of Ŝ
(2)
and Ŝ

(3)
can be removed by assuming the prior knowl-

edge of one row of S(2) and S(3), respectively, where the first row is formed by 1’s. The elements
of 𝚲(𝑙), with 𝑙 ∈ {2, 3} are:

𝜆(𝑙)𝑟 = 𝑠(𝑙)1𝑟 , (3.15)

where 𝑠(𝑙)1𝑟 are the elements of the first row of Ŝ
(𝑙)
, for 𝑟 ∈ {1, 𝑅}. The scaling matrix 𝚲(𝑙)

corresponds to a matrix with the elements 𝜆(𝑙)𝑟 on the main diagonal. Thus, to eliminate the
scaling ambiguities on the estimated parameters, we use the following equations:

̂̂S(𝑙) → Ŝ
(𝑙) (

𝚲(𝑙)
)−1

, ̂̂H→ Ĥ
(
𝚲(2)𝚲(3)

)
. (3.16)

3.3.1.1 KRF receivers

Based on the KRF algorithm (Table 2), we present two semi-blind receivers. The first
one is based on the GKRF algorithm summarized in Subsection 2.3.3.1, and the second one
is based on the KRF algorithm in two steps.

KRF receiver
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The receiver proposed in this section uses the GKRF algorithm described in Subsec-
tion 2.3.3.1 to estimate the channel and symbol matrices in Eq.(3.12) as,

Z = S(2) ⋄ S(3) ⋄H ∈ ℂ𝑁2𝑁3𝐾×𝑅 = [
(
S(1)

)†
X𝑁1×𝑁2𝑁3𝐾]

𝑇

. (3.17)

To estimate S(2) andH we consider respectively:

Z = S(2) ⋄ B(1), (3.18)

Z = B(2) ⋄H, (3.19)

Note that B(1) = S(3) ⋄H and B(2) = S(2) ⋄ S(3). To estimate S(2) andH in (3.18) and
(3.19), respectively, we apply the KRF algorithm described in Table 2. For estimating S(3), we
permute the rows of (3.12) as:

ZS(3) =
(
𝚷𝑁3,𝑁2

⊗ I𝐾
)
Z = S(3) ⋄ S(2) ⋄H, (3.20)

ZS(3) = S(3) ⋄ B(3), (3.21)

where B(3) = S(2) ⋄H and𝚷𝑁3,𝑁2
is defined in expression (2.32). From (3.21) we apply again

the KRF algorithm that allows us to estimate S(3). The final estimated symbols are obtained
after a projection onto the finite alphabet. The KRF receiver is summarized in Table 8.

Table 8 – KRF algorithm for estimating the channel and the symbol matrices.
KRF algorithm for estimating ̂̂S(2), ̂̂S(3) and ̂̂H.
Input:matrix 𝒳, S(1) and 𝑅.
Output: Estimated matrices ̂̂S(2), ̂̂S(3) and ̂̂H.

1) Calculate the LS estimate Z defined in (3.12).
2) Estimate Ŝ

(2)
from (3.18) by means of the KRF algorithm in Table 2, where

S(2) corresponds to D.
3) Estimate Ĥ from (3.19) by means of the KRF algorithm in Table 2, where
H corresponds to E.
4) Permute the rows of (3.12) as (3.20).
5) Estimate Ŝ

(3)
from (3.21) by means of the KRF algorithm in Table 2, where

S(3) corresponds to D.
6) Eliminate the scaling ambiguities using (3.15)-(3.16).
7) Project the estimated symbols onto the finite alphabet.

KRF-KRF receiver

The receiver proposed in this section uses the KRF algorithm summarized in Table 2
in two steps to estimate the channel and symbol matrices in Eq.(3.11). To estimate S(𝑐) and
H consider:

Z = S(𝑐) ⋄H. (3.22)



61

First we apply KRF algorithm (Table 2) to estimate S(𝑐) andH. After, in the second
step we apply again the KRF algorithm to separate the symbol matrices S(2) and S(3), such
that:

S(𝑐) = S(2) ⋄ S(3). (3.23)

Note that the KRF-KRF receiver has an error propagation that can affect the estima-
tion of ̂̂S(2), ̂̂S(3). The KRF-KRF receiver is summarized in Table 9.

Table 9 – KRF-KRF algorithm for estimation of the channel and symbol matrices.
KRF-KRF algorithm for estimating ̂̂S(2), ̂̂S(3) and ̂̂H.
Input:matrix 𝒳, S(1) and 𝑅.
Output: Estimated matrices ̂̂S(2), ̂̂S(3) and ̂̂H.

Step 1) KRF algorithm
1) Calculate the LS estimate Z defined in (3.12).
2) Estimate ̂̂S(𝑐) and ̂̂H by means of the KRF algorithm in Table 2.

Step 2) KRF algorithm
3) From ̂̂S(𝑐), estimate ̂̂S(2) and ̂̂S(3) by means of the KRF algorithm in Table 2.
4) Eliminate the scaling ambiguities using (3.15)-(3.16).
5) Project the estimated symbols onto the finite alphabet.

3.3.1.2 THOSVD receiver

In this section the truncated HOSVD (THOSVD) algorithm is presented to directly
and jointly estimate the channel and symbol matrices, using a closed-form solution based
on the THOSVD algorithm. Let us consider Eq.(3.12) and Definition 2, Z can be defined as a
Kronecker product in columns such as:

Z =
[
S(2).1 ⊗ S(3).1 ⊗H.1 ... S(2).𝑅 ⊗ S(3).𝑅 ⊗H.𝑅

]
∈ ℂ𝑁2𝑁3𝐾×𝑅, (3.24)

where S(2).𝑟 ∈ ℂ𝑁2 , S(3).𝑟 ∈ ℂ𝑁3 , H.𝑟 ∈ ℂ𝐾 represent the column vectors of the matrices S(2),
S(3),H, respectively, with 𝑟 ∈ {1,𝑅}. From Eq.(3.24) we define each column 𝑟 as a rank-one
tensor such that:

𝒵𝑟 = S(2).𝑟 ◦S
(3)
.𝑟 ◦H.𝑟 ∈ ℂ𝑁2×𝑁3×𝐾. (3.25)

The factor matrices can be estimated by calculating the rank-one approximation for
each column (𝑟 = 1, ..., 𝑅) through the THOSVD algorithm. It consists of taking the HOSVD
on the Eq.(3.25), which corresponds to calculate the SVD of its matrix unfolding for each 𝑟
as:

[Z𝑟]𝑁2×𝑁3𝐾
= U(1)

𝑟 𝚺
(1)
𝑟 V

(1)𝑇
𝑟 = Ŝ

(2)
.𝑟

(
S(3).𝑟 ⊗H.𝑟

)𝑇
, (3.26)
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[Z𝑟]𝑁3×𝐾𝑁3
= U(2)

𝑟 𝚺
(2)
𝑟 V

(2)𝑇
𝑟 = Ŝ

(3)
.𝑟

(
H.𝑟 ⊗ S(2).𝑟

)𝑇
, (3.27)

[Z𝑟]𝐾×𝑁2𝑁3
= U(3)

𝑟 𝚺
(3)
𝑟 V

(3)𝑇
𝑟 = Ĥ.𝑟

(
S(2).𝑟 ⊗ S(3).𝑟

)𝑇
. (3.28)

Each column of each factor matrix corresponds to the first left singular vector cal-
culated for each 𝑛-mode matrix unfolding of 𝑟 tensors 𝒵𝑟. The estimated matrices are con-
structed as:

Ŝ
(2)
=
[ (

U(1)
1

)

.1
...

(
U(1)
𝑅

)

.1

]
∈ ℂ𝑁2×𝑅, (3.29)

Ŝ
(3)
=
[ (

U(2)
1

)

.1
...

(
U(2)
𝑅

)

.1

]
∈ ℂ𝑁3×𝑅, (3.30)

Ĥ =
[ (

U(3)
1

)

.1
...

(
U(3)
𝑅

)

.1

]
∈ ℂ𝐾×𝑅, (3.31)

where
(
U(𝑛)
𝑟

)

.1
is the dominant left singular vector for the 𝑛-mode matrix unfolding. Note

that KRF and THOSVD are equivalent from a computation point of view. The difference lies
in the fact that for the THOSVD receiver Z is reorganized as a tensor of rank-one 𝒵𝑟 for each
𝑟 to then estimate the matrices, while the KRF considers the matrix Z and the permutation
between matrices to make the estimation. The THOSVD receiver is summarized in Table 10.

Table 10 – THOSVD algorithm for estimation of the channel and symbol matrices.
THOSVD algorithm for estimating ̂̂S(2), ̂̂S(3) and ̂̂H.
Input:matrix 𝒳, S(1) and 𝑅.
Output: Estimated matrices ̂̂S(2), ̂̂S(3) and ̂̂H.

1) Calculate the LS estimate Z defined in (3.12).
for 𝑟 ∈ {1,𝑅}
2) Build the rank-one tensor 𝒵𝑟 of size 𝑁2 ×𝑁3 × 𝐾 from Z.
3) Compute the SVD of each 𝑛-mode unfolding of 𝒵𝑟, and calculate the esti-
mates Ŝ

(2)
, Ŝ

(3)
and Ĥ as Eqs.(3.29)-(3.31).

end
4) Eliminate the scaling ambiguities using (3.15)-(3.16).
5) Project the estimated symbols onto the finite alphabet.

3.3.1.3 Rank-one ALS receiver

In this section rank-one ALS algorithm is presented for the estimation of the channel
H and symbol matrices S(2) and S(3). Rank-one ALS receiver is based on the ALS algorithm
presented in Table 4. From Eq.(3.12), we define each column 𝑟 of Z as a rank-one tensor
in Eq.(3.25) and estimate the matrices calculating the rank-one approximation for each
column.
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The factor matrices can be estimated through the rank-one ALS algorithm calculated
for each tensor 𝒵𝑟. The optimization problem to be solved is:

min
S(2).𝑟 ,S

(3)
.𝑟 ,H.𝑟

∥ 𝒵𝑟 − S(2).𝑟 ◦S
(3)
.𝑟 ◦H.𝑟 ∥2𝐹, (3.32)

with respect to S(2).𝑟 , S
(3)
.𝑟 ,H.𝑟, for 𝑟 ∈ {1, 𝑅}. The rank-one ALS method replaces the optimiza-

tion problem (3.32) with three LS sub-problems, leading to the alternate minimization of
the following LS criteria:

min
H.𝑟∈ℂ𝐾

∥ [Z𝑟]𝐾×𝑁2𝑁3
−H.𝑟 (Ŝ

(2)
.𝑟[𝑖−1] ⊗ Ŝ

(3)
.𝑟[𝑖−1])

𝑇

∥2𝐹→ Ĥ.𝑟[𝑖], (3.33)

min
S(2).𝑟 ∈ℂ𝑁2

∥ [Z𝑟]𝑁2×𝑁3𝐾
− S(2).𝑟 (Ŝ

(3)
.𝑟[𝑖−1] ⊗ Ĥ.𝑟[𝑖])

𝑇

∥2𝐹→ Ŝ
(2)
.𝑟[𝑖], (3.34)

min
S(3).𝑟 ∈ℂ𝑁3

∥ [Z𝑟]𝑁3×𝐾𝑁2
− S(3).𝑟 (Ĥ.𝑟[𝑖] ⊗ Ŝ

(2)
.𝑟[𝑖])

𝑇

∥2𝐹→ Ŝ
(3)
.𝑟[𝑖], (3.35)

where [Z𝑟]𝐾×𝑁2𝑁3
, [Z𝑟]𝑁2×𝑁3𝐾

and [Z𝑟]𝑁3×𝐾𝑁2
are the 1-mode, 2-mode and 3-mode matrix

unfolding of 𝒵𝑟. The rank-one ALS method solves the three LS sub-problems (3.33)-(3.35)
for each 𝑟 to obtain the matrices Ĥ, Ŝ

(2)
and Ŝ

(3)
. The updates are:

Ĥ.𝑟[𝑖] = [Z𝑟]𝐾×𝑁2𝑁3
[(Ŝ

(2)
.𝑟[𝑖−1] ⊗ Ŝ

(3)
.𝑟[𝑖−1])

𝑇

]
†

, (3.36)

Ŝ
(2)
.𝑟[𝑖] = [Z𝑟]𝑁2×𝑁3𝐾

[(Ŝ
(3)
.𝑟[𝑖−1] ⊗ Ĥ.𝑟[𝑖])

𝑇

]
†

, (3.37)

Ŝ
(3)
.𝑟[𝑖] = [Z𝑟]𝑁3×𝐾𝑁2

[(Ĥ.𝑟[𝑖] ⊗ Ŝ
(2)
.𝑟[𝑖])

𝑇

]
†

. (3.38)

For the updates we have:

Ĥ.𝑟[𝑖] = [Z𝑟]𝐾×𝑁2𝑁3

(Ŝ
(2)
.𝑟[𝑖−1] ⊗ Ŝ

(3)
.𝑟[𝑖−1])

∗

∥ Ŝ
(2)
.𝑟[𝑖−1] ∥22∥ Ŝ

(3)
.𝑟[𝑖−1] ∥22

, (3.39)

Ŝ
(2)
.𝑟[𝑖] = [Z𝑟]𝑁2×𝑁3𝐾

(Ŝ
(3)
.𝑟[𝑖−1] ⊗ Ĥ.𝑟[𝑖])

∗

∥ Ŝ
(3)
.𝑟[𝑖−1] ∥22∥ Ĥ.𝑟[𝑖] ∥22

, (3.40)

Ŝ
(3)
.𝑟[𝑖] = [Z𝑟]𝑁3×𝐾𝑁2

(Ĥ.𝑟[𝑖] ⊗ Ŝ
(2)
.𝑟[𝑖])

∗

∥ Ĥ.𝑟[𝑖] ∥22∥ Ŝ
(2)
.𝑟[𝑖] ∥22

. (3.41)
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The error at the [𝑖]𝑡ℎ iteration is considered for deciding the convergence of the
rank-one ALS algorithm:

𝑒𝑟𝑟[𝑖] =∥ [Z𝑟]𝐾×𝑁2𝑁3
−H.𝑟[𝑖] (Ŝ

(2)
.𝑟[𝑖] ⊗ Ŝ

(3)
.𝑟[𝑖])

𝑇

∥2𝐹 . (3.42)

Convergence at the [𝑖]𝑡ℎ iteration is declared when this error does not significantly
change between two successive iterations, i.e., |𝑒𝑟𝑟[𝑖−1] − 𝑒𝑟𝑟[𝑖]| ≤ 𝛿, where 𝛿 is a predefined
threshold.

Proof. For Eqs.(3.39)-(3.41) let us consider a full-row rank matrixD ∈ ℂ𝑀×𝑁, its right
pseudo-inverse is given by:

D† = D𝐻
(
DD𝐻

)−1
. (3.43)

Note that the Khatri-Rao product is the column-wise Kronecker product and since
D.𝑚 is a column vectors, we can rewrite Eq.(3.43) as:

[
(D.𝑚)

𝑇
]†
= D∗

.𝑚

(
D𝑇
.𝑚D

∗
)−1

. (3.44)

By replacing (D.𝑚)
𝑇 by (Ŝ

(2)
.𝑟 ⊗ Ŝ

(3)
.𝑟 )

𝑇

in Eq.(3.36):

[(Ŝ
(2)
.𝑟 ⊗ Ŝ

(3)
.𝑟 )𝑇]

†

= (Ŝ
(2)
.𝑟 ⊗ Ŝ

(3)
.𝑟 )

∗

[(Ŝ
(2)
.𝑟 ⊗ Ŝ

(3)
.𝑟 )𝑇(Ŝ

(2)
.𝑟 ⊗ Ŝ

(3)
.𝑟 )∗]

−1

. (3.45)

Using properties 1 and 2 (Eqs.(2.3)-(2.4)) we have:

[(Ŝ
(2)
.𝑟 ⊗ Ŝ

(3)
.𝑟 )𝑇]

†

= (Ŝ
(2)
.𝑟 ⊗ Ŝ

(3)
.𝑟 )

∗

[(Ŝ
(2)𝑇
.𝑟 Ŝ

(2)∗
.𝑟 )⊗ (Ŝ

(3)𝑇
.𝑟 Ŝ

(3)∗
.𝑟 )]

−1

,

=
(Ŝ

(2)
.𝑟 ⊗ Ŝ

(3)
.𝑟 )

∗

∥ Ŝ
(2)
.𝑟 ∥22∥ Ŝ

(3)
.𝑟 ∥22

. (3.46)

Identifiability conditions and ambiguity relations

As Rank-one ALS is based on Eq.(3.11), then only one condition is required to ensure
the uniqueness, where S(1) must be left-invertible, i.e., it must be full column rank,

𝑅 ≤ 𝑁1. (3.47)

Note that the identifiability condition is always satisfied for a row. Moreover, for the
factors estimated through the rank-one ALS receiver, there are implicit scaling ambiguities.
The relation for the scaling ambiguities is similar to the relation presented for the KRF and
THOSVD receivers in Eqs.(3.15)-(3.16). These ambiguities are eliminated by assuming a
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priori knowledge of the first row of each matrix S(𝑙), for 𝑙 ∈ {2, 3}, where these rows are
formed by 1’s.

This process continues iteratively until some convergence criterion is satisfied. The
rank-one ALS receiver is sub-optimal with respect to the ALS receiver presented in next
section. The rank-one ALS receiver is summarized in Algorithm 11.

Table 11 – Rank-one ALS algorithm for estimation of the channel and symbol matrices.
Rank-one ALS algorithm for estimating ̂̂S(2), ̂̂S(3) and ̂̂H.
Input:matrix 𝒳, S(1) and 𝑅.
Output: Estimated matrices ̂̂S(2), ̂̂S(3) and ̂̂H.

1) Calculate the LS estimate Z defined in (3.12).
for 𝑟 ∈ {1,𝑅}
2) Build the rank-one tensor 𝒵𝑟 of size 𝑁2 ×𝑁3 × 𝐾 from Z𝑟.
3) Initialization of S(2).𝑟[0] and S

(3)
.𝑟[0] with symbols randomly drawn from the

alphabet.
4) Update the estimates of S(2), S(3) andH using Eqs.(3.39)-(3.41).
5) Calculate the error (3.42) and |𝑒𝑟𝑟[𝑖−1] − 𝑒𝑟𝑟[𝑖]|.
- if |𝑒𝑟𝑟[𝑖−1] − 𝑒𝑟𝑟[𝑖]| ≤ 𝛿 or 𝑖 =maximum number of iterations.
- stop
- else 𝑖 → 𝑖 + 1.
end
6) Eliminate the scaling ambiguities using (3.15)-(3.16).
7) Project the estimated symbols onto the finite alphabet.

3.3.1.4 ALS receiver

The ALS algorithm is used to jointly estimate the symbol matrices (S(2), S(3)) and the
channel (H) and results from the minimization of the following LS criteria:

min
S(2),S(3),H

∥ 𝒳 − ℐ4,𝑅 ×1 S
(1) ×2 S

(2) ×3 S
(3) ×4 H ∥2𝐹, (3.48)

where S(1) is considered known. The ALS method replaces the optimization problem (3.48)
with three LS sub-problems leading to the alternate minimization of the following LS criteria:

min
H∈ℂ𝐾×𝑅

∥ X𝐾×𝑁1𝑁2𝑁3
−H (S(1) ⋄ Ŝ

(2)
[𝑖−1] ⋄ Ŝ

(3)
[𝑖−1])

𝑇

∥2𝐹→ Ĥ[𝑖], (3.49)

min
S(2)∈ℂ𝑁2×𝑅

∥ X𝑁2×𝑁3𝐾𝑁1
− S(2) (Ŝ

(3)
[𝑖−1] ⋄ Ĥ[𝑖] ⋄ S

(1))
𝑇

∥2𝐹→ Ŝ
(2)
[𝑖] , (3.50)

min
S(3)∈ℂ𝑁3×𝑅

∥ X𝑁3×𝐾𝑁1𝑁2
− S(3)

(
Ĥ[𝑖] ⋄ S

(1) ⋄ S(2)[𝑖]
)𝑇
∥2𝐹→ Ŝ

(3)
[𝑖] . (3.51)
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The update equations at iteration [𝑖] are given by:

Ĥ[𝑖] = X𝐾×𝑁1𝑁2𝑁3
[(S(1) ⋄ Ŝ

(2)
[𝑖−1] ⋄ Ŝ

(3)
[𝑖−1])

𝑇

]
†

, (3.52)

Ŝ
(2)
[𝑖] = X𝑁2×𝑁3𝐾𝑁1

[(Ŝ
(3)
[𝑖−1] ⋄ Ĥ[𝑖] ⋄ S

(1))
𝑇

]
†

, (3.53)

Ŝ
(3)
[𝑖] = X𝑁3×𝐾𝑁1𝑁2

[(Ĥ[𝑖] ⋄ S
(1) ⋄ Ŝ

(2)
[𝑖] )

𝑇

]
†

. (3.54)

The error at the [𝑖]𝑡ℎ iteration is considered for deciding the convergence of the ALS
algorithm:

𝑒𝑟𝑟[𝑖] =∥ X𝐾×𝑁1𝑁2𝑁3
−H[𝑖] (S

(1) ⋄ Ŝ
(2)
[𝑖] ⋄ Ŝ

(3)
[𝑖] )

𝑇

∥2𝐹 . (3.55)

Convergence at the [𝑖]𝑡ℎ iteration is declared when this error does not significantly
change between two successive iterations, i.e., |𝑒𝑟𝑟[𝑖−1] − 𝑒𝑟𝑟[𝑖]| ≤ 𝛿, where 𝛿 is a predefined
threshold.

Identifiability conditions and ambiguity relations

In the case of the ALS algorithm, for the uniqueness of the pseudo-inverse, the

matrices (Ŝ
(3)
⋄ Ĥ ⋄ S(1))

𝑇

, (Ŝ
(3)
⋄ Ĥ ⋄ S(1))

𝑇

and (Ĥ ⋄ S(1) ⋄ Ŝ
(2)
)
𝑇

must be full-row rank,
i.e.,

𝑅 ≤ min (𝑁1𝑁2𝑁3, 𝑁3𝐾𝑁1, 𝐾𝑁1𝑁2) . (3.56)

For the scaling ambiguities, the relations are similar to the previous algorithms and
they are presented in Eqs.(3.15)-(3.16). We assume a priori knowledge of the first row of
matrices S(2) and S(3), where these rows are formed by 1′s. The ALS receiver is summarized
in Table 12.

3.3.1.5 Zero-forcing-KRF receiver with perfect channel knowledge

To evaluate the impact of the design parameters on the system performance, we
use the zero-forcing (ZF)-KRF receiver, which assumes perfect channel knowledge. This
algorithm is called ZF-KRF because it has a second step called KRF. At this step, symbol
matrices are estimated using the KRF algorithm. The ZF-KRF receiver is derived from
Eq.(3.10) and given by:

X𝑁𝑐×𝐾𝑁1
= S(𝑐)

(
H ⋄ S(1)

)𝑇
∈ ℂ𝑁𝑐×𝐾𝑁1 , (3.57)

where S(𝑐) = S(2) ⋄ S(3). The LS estimate of S(𝑐) is obtained using (3.10), withH replaced by
the true channelH, which gives:

ˆS(2) ⋄ S(3) = X𝑁𝑐×𝐾𝑁1
[
(
H ⋄ S(1)

)𝑇
]
†

. (3.58)
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Table 12 – ALS algorithm for estimation of the channel and symbol matrices.
ALS algorithm for estimating ̂̂S(2), ̂̂S(3) and ̂̂H.
Input:matrix 𝒳, S(1) and 𝑅.
Output: Estimated matrices ̂̂S(2), ̂̂S(3) and ̂̂H.

𝑖 = 0
1) Initialization of S(2)[0] and S

(3)
[0] with symbols randomly drawn from the alpha-

bet and 𝑠(𝑙)1𝑟 = 1, for 𝑙 ∈ {2, 3}.
2) Update the estimates of S(2), S(3) andH using Eqs.(3.52)-(3.54).
3) Calculate the error (3.55) and |𝑒𝑟𝑟[𝑖−1] − 𝑒𝑟𝑟[𝑖]|.
- if |𝑒𝑟𝑟[𝑖−1] − 𝑒𝑟𝑟[𝑖]| ≤ 𝛿 or 𝑖 =maximum number of iterations.
- stop
- else 𝑖 → 𝑖 + 1.
4) Eliminate the scaling ambiguities using (3.15)-(3.16).
5) Project the estimated symbols onto the finite alphabet.

Then, the symbol matrices S(2) and S(3) are estimated using the KRF algorithm sum-
marized in Table 2.

Identifiability conditions and ambiguities relations

In the case of the ZF-KRF receiver, for the uniqueness of the pseudo-inverse,
(
H ⋄ S(1)

)𝑇

must be full row rank,i.e.,
𝑅 ≤ 𝑁1𝐾. (3.59)

The relations for the scaling ambiguities are similar to the previous algorithms
presented in Eqs.(3.15)-(3.16). To find the scaling ambiguities, we assume a priori knowledge
of the first row of the symbol matrix S(2), where this row is formed by 1′s.

Table 13 summarizes the necessary conditions for parameter identifiability with
each receiver. Note that the identifiability conditions of the KRF, KRF-KRF, THOSVD and
rank-one ALS receivers are the same because these receivers consider Eq.(3.12) to estimate
the symbol and channel matrices. Regarding the ALS algorithm note that the identifiability
conditions differ because the ALS receiver considers the LS criteria (3.48) to estimate the
symbol and channel matrices such that S(𝑐) is replaced by the Khatri-rao product of S(2) and
S(3). In both receivers the symbol matrix S(1) is considered known.
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Table 13 – Identifiability conditions for the receivers.
Receiver Identifiability conditions
KRF 𝑅 ≤ 𝑁1
KRF-KRF 𝑅 ≤ 𝑁1
THOSVD 𝑅 ≤ 𝑁1
Rank-one ALS 𝑅 ≤ 𝑁1
ALS 𝑅 ≤ min (𝑁1𝑁2𝑁3, 𝑁3𝐾𝑁1, 𝐾𝑁1𝑁2)
ZF-KRF 𝑅 ≤ 𝑁1𝐾

3.3.2 Computational complexity

In this section, we compare the computational complexity of the proposed semi-blind
receivers in terms of FLOPS (Floating-point Operations Per Second), considering the most
expensive matrix operation is the SVD whose complexity is 𝑂 (𝐼𝐽min(𝐼, 𝐽)) for a matrix
A ∈ ℂ𝐼×𝐽. The complexities are evaluated taking the identifiability conditions into account.

Computing the HOSVD of an 𝑁-order tensor 𝒳 ∈ ℂ𝐼1×...×𝐼𝑁 requires 𝑁 SVDs of
𝐼𝑛 × 𝐼𝑛+1...𝐼𝑁𝐼1...𝐼𝑛−1 matrices, for 𝑛 ∈ {1, 𝑁}, inducing the following overall computational
complexity 𝑂

(
(
∑𝑁

𝑛=1 𝐼𝑛)
∏𝑁

𝑞=1 𝐼𝑞
)
if 𝐼𝑛 ≤

∏𝑁
𝑞≠𝑛 𝐼𝑞. In particular, the complexity of the KRF

algorithm described in section 2.3.3 for estimating the symbol matrices and the channel is
𝑂
(
𝐾𝑅(

∑𝐿
𝑙=1𝑁𝑙)

∏𝐿
𝑞=1𝑁𝑞

)
. To compute the PARAFAC decomposition of an 𝑁-order tensor

𝒳 of size 𝐼1 × ... × 𝐼𝑁 and assumed to be of rank 𝑅, using the ALS algorithm, requires to
compute𝑁 LS estimates, which needs to pseudo inverse

∏𝑁
𝑞≠𝑛 𝐼𝑞×𝑅matrices, for 𝑛 ∈ {1, 𝑁},

and induces the overall computational complexity 𝑂
(
𝑅2
∑𝑁

𝑛=1(
∏𝑁

𝑞≠𝑛 𝐼𝑞)
)
, at each iteration.

See [69] for more details.

In Table 14, the computational complexities of the receivers are compared, i.e., the
KRF, KRF-KRF, THOSVD, Rank-one ALS and ALS algorithms. The complexity of the KRF,
KRF-KRF and THOSVD is lower than that of the Rank-one ALS and ALS because they must
be multiplied by the number of iterations needed for convergence, which explains why the
computation time with the closed-form solutions (KRF, KRF-KRF and THOSVD algorithm)
is generally lower than with the iterative Rank-one ALS and ALS algorithms.
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Table 14 – Computational complexity of the KRF, KRF-KRF, THOSVD, Rank-one ALS and ALS
receivers.

Algorithms Computational complexity
KRF 𝑂

(
𝑅2𝑁1

)
+ 𝑂

(
2𝑅(

∑𝐿
𝑙=2𝑁𝑙)

∏𝐿
𝑞=2𝑁𝑞𝐾

)

KRF-KRF 𝑂
(
𝑅2𝑁1

)
+𝑂 (𝑅𝑁1𝐾) + 𝑂

(
𝑅(
∑𝐿

𝑙=2𝑁𝑙)
∏𝐿

𝑞=2𝑁𝑞

)

THOSVD 𝑂
(
𝑅2𝑁1

)
+ 𝑂 (

(
(
∑𝐿

𝑙=2𝑁𝑙)
∏𝐿

𝑞=2𝑁𝑞

)2
𝐾) + 𝑂

(
𝐾𝑅(

∑𝐿
𝑙=2𝑁𝑙)

∏𝐿
𝑞=2𝑁𝑞

)

Rank-one ALS 𝑂
(
𝑅2𝑁1

)
+𝑂

(
𝑅(
∑𝐿

𝑙=2𝑁𝑙)
∏𝐿

𝑞=2𝑁𝑞 +𝑁3𝐾 + 𝐾𝑁2

)

ALS 𝑂
(
𝑅(𝑁3

1((
∑𝐿

𝑙=2𝑁𝑙)
∏𝐿

𝑞=2𝑁𝑞)3 +𝑁3
1𝑁

3
3𝐾

3 +𝑁3
1𝑁

3
2𝐾

3)
)

3.4 Simulation results

In this section, we evaluate the performance of the proposed point-to-point MIMO
system and associated receivers. First, in Section 3.4.1, the simulations and the considered
performance criteria are presented. In Section 3.4.2, the impact of design parameters on
symbol error rate (SER) is studied considering the ZF-KRF receiver. Finally, in Section 3.4.3
the proposed semi-blind receivers are compared in terms of SER and channel normalized
mean square error (NMSE).

3.4.1 General description of the simulations

The noisy received signals tensor 𝒴 is simulated as:

𝒴 = 𝒳𝑐 + 𝛼𝒱 ∈ ℂ𝑁𝑐×𝑁1×𝐾, (3.60)

where 𝒳𝑐 contains the noise-free received signals obtained by means of (3.7), and 𝒱 is the
additive noise tensor whose entries are zero-mean circularly-symmetric complex-valued
Gaussian random variables, with unit variance, and 𝛼 allows to fix the signal-noise ratio
(SNR) calculated as:

𝑆𝑁𝑅 = 20log
∥ 𝒳𝑐 ∥𝐹
𝛼 ∥ 𝒱 ∥𝐹

, (3.61)

which gives 𝛼 =
∥ 𝒳𝑐 ∥𝐹
∥ 𝒱 ∥𝐹

10𝑆𝑁𝑅∕20. At each Monte Carlo run, the entries of the channelH ∈

ℂ𝐾×𝑅 are drawn from aGaussian distributionwith variance 1𝑅 and the symbols of S(𝑙) ∈ ℂ𝑁𝑙×𝑅,
for 𝑙 ∈ {1, 3} are randomly generated from the 64-QAM (quadrature amplitude modulation)
alphabet with a uniform distribution. As mentioned before, the symbol matrix S(1) ∈ ℂ𝑁1×𝑅

is assumed known throughout the simulations. The number of transmit antennas 𝑅, the
number of receive antennas 𝐾 and the number of symbols per data stream𝑁𝑙, with 𝑙 ∈ {2, 3}
are varied to evaluate the performance. The performance criteria, plotted versus SNR, are
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calculated as:

𝑁𝑀𝑆𝐸(H) = 1
𝑀

𝑀∑

𝑚=1

∥ Ĥ𝑚 −H𝑚 ∥2𝐹
∥ H𝑚 ∥2𝐹

, (3.62)

where Ĥ𝑚 is the channel matrix H𝑚 estimated at the 𝑚𝑡ℎ run. The SER and NMSE are
calculated by averaging the results over𝑀 = 104 Monte Carlo runs, after truncating the 5%
worse and 5% better values to eliminate the influence of ill-convergence and outliers.

The transmission rate 𝑇 in bits per channel is given by [76]:

𝑇 =
𝑛𝑠
𝑛𝑝𝑠

log2 (𝜇) , (3.63)

where 𝑛𝑠 corresponds to the number of unknown symbols in the matrix S, 𝑛𝑝𝑠 is the number
of symbol periods and 𝜇 denotes the number of constellation points. Then, the transmission
rate is:

𝑇 =
𝑅
(∑𝐿

𝑙=2𝑁𝑙 − 𝐿
)

𝑁1
∏𝐿

𝑙=2𝑁𝑙

log2 (𝜇) . (3.64)

Note that increasing the number of data streams/transmit antennas 𝑅 in the symbol
matrix S(𝑙) induces an increase in transmission rate 𝑇, while increasing the number of
unknown symbols 𝑁𝑙 induces a decrease in transmission rate.

For bit rate note that as the number of symbols increases, more data bits are trans-
mitted per symbol. For example, 32-QAM is a QAM scheme with 32 symbols, and 64-QAM
is a scheme with 64 symbols. 64-QAM conveys 6 bits per symbol (as 64 = 26), so achieving
twice the data rate of 8-QAM for the same symbol rate. The bit rate is given by:

𝐵 = 𝑇
𝑇𝐵

(3.65)

where 𝑇 corresponds to the transmission rate in Eq. (3.64) that represents the number of
bits transmitted according to the modulation and 𝑇𝐵 is the bit time in seconds. Then,

𝐵 =
𝑅
(∑𝐿

𝑙=2𝑁𝑙 − 𝐿
)

𝑁1
∏𝐿

𝑙=2𝑁𝑙

log2 (𝜇)
1
𝑇𝐵
. (3.66)

3.4.2 Impact of design parameters

In this section, we evaluate the SER performance of the proposed system under
perfect channel knowledge. In this case, the ZF-KRF receiver is applied to estimate the
transmitted symbols by means of Eq.(3.58). The design parameters used for the simulations
are provided in Table 15 and the corresponding transmission rates are given in Table 16.

Figure 10 shows the impact on the SER for different numbers of symbols per data
stream: 𝑁2 = 𝑁3 ∈ {4, 8, 12}. Note that SER(S) corresponds to the mean of the SERs calcu-
lated for each symbol matrix. From these simulation results, it can be concluded that the
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Table 15 – Parameters for the simulations.
Figures Impact of Parameters
Figure 10 numbers of symbols per

data stream
𝑁1 = 𝐾 = 4; 𝑅 = 2 𝑁2 = 𝑁3 ∈ {4, 8, 12}

Figure 11 numbers of data stream
and transmit antennas

𝑁1 = 10; 𝐾 = 4; 𝑁2 = 𝑁3 = 8; 𝑁1 =
𝑅 ∈ {4, 6, 8}

Figure 12 numbers of receive an-
tennas

𝑁1 = 4, 𝑅 = 2; 𝑁2 = 𝑁3 = 8; 𝐾 ∈
{4, 6, 8}

Figure 13 different configurations
for 𝑁2 and 𝑁3

𝑁1 = 4, 𝑅 = 2; 𝐾 = 6; 𝑁2 = 4; 𝑁3 = 12

Figure 14 𝑚-QAM 𝑁1 = 4 𝑅 = 2; 𝐾 = 4; 𝑁2 = 𝑁3 = 8;
𝑚 ∈ {4, 8, 16, 32, 64}

Figures 15-16 Comparison of the
proposed semi-blind
receivers

𝑁1 = 4, 𝑅 = 2; 𝐾 = 4; 𝑁2 = 𝑁3 = 8

SER is improved when the number of symbols increases, which implies an increase in coding
diversity, since 𝑁2𝑁3 is a dimension of the contracted form 𝒴𝑐 of the data tensor, which is
not the case for 𝑅. As the number of symbols increases, the transmission rate decreases as
shown in Table 16.

Table 16 – Transmission rates for different configurations.
Figures Parameters Transmission rate

(bits per channel)
Figure 10 𝑁2 = 𝑁3 ∈ {4, 8, 12} 𝑇 = 1.125; 0.656;0.458
Figure 11 𝑅 ∈ {4, 6, 8} 𝑇 = 0.525; 0.787; 1.05
Figure 12 𝐾 ∈ {4, 6, 8} 𝑇 = 0.656
Figure 13 𝑁2 = 4; 𝑁3 = 12 𝑇 = 0.875
Figure 14 𝑚 ∈ {4, 8, 16, 32, 64} 𝑇 = 0.218; 0.328; 0.437; 0.546; 0.656
Figures 15-16 Comparison of the proposed

semi-blind receivers
𝑇 = 2.906

Figure 11 compares the SER for three different data stream numbers/ transmit an-
tenna numbers: 𝑅 ∈ {4, 6, 8}. Note that increasing 𝑅 implies an increase of the number of
symbols to be estimated, without increasing the number of data in the tensor 𝒴𝑐 for perform-
ing the symbol estimation, thus inducing a degradation of the SER, while the transmission
rate increases (Table 16).

Figure 12 shows the impact on the SER for different numbers of receive antennas:
𝐾 ∈ {4, 6, 8}. From these simulation results, it can be concluded that the SER is improved
when the number of receive antennas increases, which implies an increase of coding diversity
since 𝐾 is a dimension of the contracted form 𝒴𝑐 of the data tensor, while the transmission
rate remains the same as shown in Table 16.
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Figure 10 – Impact of numbers of symbols per data stream.

Figure 11 – Impact of numbers of data streams and transmit antennas.

In Figure 13, the simulation results compare the SER𝑔𝑙𝑜𝑏𝑎𝑙 with the individual SERs
for S(2) and S(3), when 𝑁2 = 4, 𝑁3 = 12 and 𝑅 = 2. For this configuration, the Khatri-Rao
product between S(2) and S(3) induces a greater diversity for S(2) than for S(3), due to the fact
that each symbol of S(2) is repeated 12 times while each symbol of S(3) is repeated only 4
times. That implies a SER smaller for S(2) than for S(3).

Figure 14 compares the SER obtained with five different modulations𝑚-QAM,𝑚 ∈
{4, 8, 16, 32, 64}. As expected, the SER performance is better when the 4-QAM is considered,
because decoding with 4-QAM is easier than with the other modulations. On the other hand,
the transmission rate for 4-QAM (see Table 16) is less than 64-QAM, because 4-QAM has a
lower diversity of elements.
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Figure 12 – Impact of numbers of receive antennas.

Figure 13 – Impact on the SER of individual symbol matrices.

3.4.3 Comparison of the proposed semi-blind receivers

In the next experiments, we compare the SER and NMSE obtained with the proposed
semi-blind and ZF-KRF receivers. First, the results are presented in terms of SER (Figure
15), then, we compare the performance of semi-blind receivers in terms of channel NMSE
(Figure 16). For these simulations, the design parameters are fixed with the following values:
𝑁2 = 𝑁3 = 8, 𝑁1 = 𝐾 = 4, and 𝑅 = 2.

From Figure 15, we can conclude that the THOSVD, KRF and KRF-KRF provide
a better SER performance related to ALS receiver. That is due to the closed-form solution
of these receivers allowing to jointly estimate the channel and symbol matrices, while the
ALS is an iterative algorithm. Comparing the THOSVD, KRF and KRF-KRF solutions to
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Figure 14 – Impact of modulation (𝑚-QAM).

Figure 15 – SER comparison with KRF, KRF-KRF, Rank-one ALS, THOSVD, ALS and ZF receivers.

the Rank-one ALS receiver, note that the SER performance for the three receivers is a little
better than for Rank-one ALS. This is because these algorithms have all closed-form steps,
while the Rank-one ALS algorithm only has the first step in a closed form where the second
is iterative. Considering rank-one ALS and ALS algorithms, note that the first is better than
the second one because in this receiver the problem is solved for each vector and not for
each matrix as for the ALS algorithm.

In Figure 16, the channelNMSE results are plotted. The results presented demonstrate
that KRF, KRF-KRF and THOSVD receivers have the best performance among all receivers.
This happens because these three receivers are closed-form, while rank-one ALS and ALS
algorithms are iterative. Note that the KRF and THOSVD have better performance than
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Figure 16 – Channel NMSE comparison with KRF, KRF-KRF, Rank-one ALS, THOSVD and ALS
receivers.

KRF-KRF due to the propagation error implicit in KRF-KRF algorithm. And rank-one ALS
receiver has better performance than the ALS receiver. This is because, in rank-one ALS, the
problem is more subdivided into smaller sub-problems where the matrices are estimated
column by column on each iteration, while the ALS estimates the complete matrices on
each iteration.

In Table 14, a comparison of the complexities of KRF, KRF-KRF, THOSVD, rank-one
ALS and ALS receivers is provided. Based on this table we can define the ratios 𝑂1, 𝑂2, 𝑂3,
𝑂4, 𝑂5 and 𝑂6, which expresses how many times one algorithm is more computationally
demanding than another algorithm, such that:

• 𝑂1 =
𝑂𝐾𝑅𝐹

𝑂𝐾𝑅𝐹−𝐾𝑅𝐹
: expresses how many times KRF algorithm is more computationally

demanding than KRF-KRF algorithm;

• 𝑂2 =
𝑂𝑇𝐻𝑂𝑆𝑉𝐷

𝑂𝐾𝑅𝐹
: expresses how many times THOSVD algorithm is more computation-

ally demanding than KRF algorithm;

• 𝑂3 =
𝑂𝑇𝐻𝑂𝑆𝑉𝐷

𝑂𝑟𝑎𝑛𝑘−𝑜𝑛𝑒𝐴𝐿𝑆
: expresses how many times THOSVD algorithm is more computa-

tionally demanding than rank-one ALS algorithm;

• 𝑂4 =
𝑂𝑟𝑎𝑛𝑘−𝑜𝑛𝑒𝐴𝐿𝑆

𝑂𝐾𝑅𝐹
: expresses how many times rank-one ALS algorithm is more com-

putationally demanding than KRF algorithm;

• 𝑂5 =
𝑂𝐴𝐿𝑆

𝑂𝑇𝐻𝑂𝑆𝑉𝐷
: expresses how many times ALS algorithm is more computationally

demanding than THOSVD algorithm;
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• 𝑂6 =
𝑂𝐴𝐿𝑆

𝑂𝑟𝑎𝑛𝑘−𝑜𝑛𝑒𝐴𝐿𝑆
: expresses how many times ALS algorithm is more computationally

demanding than rank-one ALS algorithm.

Each ratio above can be defined as:

𝑂1 =
𝑂𝐾𝑅𝐹

𝑂𝐾𝑅𝐹−𝐾𝑅𝐹
=

𝑅2𝑁1 + 2𝑅(
∑𝐿

𝑙=2𝑁𝑙)
∏𝐿

𝑞=2𝑁𝑞𝐾

𝑅2𝑁1 + 𝑅𝑁1𝐾 + 𝑅(
∑𝐿

𝑙=2𝑁𝑙)
∏𝐿

𝑞=2𝑁𝑞

, (3.67)

𝑂2 =
𝑂𝑇𝐻𝑂𝑆𝑉𝐷

𝑂𝐾𝑅𝐹
=
𝑅2𝑁1 +

(
(
∑𝐿

𝑙=2𝑁𝑙)
∏𝐿

𝑞=2𝑁𝑞

)2
𝐾 + 𝐾𝑅(

∑𝐿
𝑙=2𝑁𝑙)

∏𝐿
𝑞=2𝑁𝑞

𝑅2𝑁1 + 2𝑅(
∑𝐿

𝑙=2𝑁𝑙)
∏𝐿

𝑞=2𝑁𝑞𝐾
, (3.68)

𝑂3 =
𝑂𝑇𝐻𝑂𝑆𝑉𝐷

𝑂𝑟𝑎𝑛𝑘−𝑜𝑛𝑒𝐴𝐿𝑆
=
𝑅2𝑁1 +

(
(
∑𝐿

𝑙=2𝑁𝑙)
∏𝐿

𝑞=2𝑁𝑞

)2
𝐾 + 𝐾𝑅(

∑𝐿
𝑙=2𝑁𝑙)

∏𝐿
𝑞=2𝑁𝑞

𝑅2𝑁1 + 𝑖1
(
𝑅(
∑𝐿

𝑙=2𝑁𝑙)
∏𝐿

𝑞=2𝑁𝑞 +𝑁3𝐾 + 𝐾𝑁2

) , (3.69)

𝑂4 =
𝑂𝑟𝑎𝑛𝑘−𝑜𝑛𝑒𝐴𝐿𝑆

𝑂𝐾𝑅𝐹
=
𝑅2𝑁1 + 𝑖1

(
𝑅(
∑𝐿

𝑙=2𝑁𝑙)
∏𝐿

𝑞=2𝑁𝑞 +𝑁3𝐾 + 𝐾𝑁2

)

𝑅2𝑁1 + 2𝑅(
∑𝐿

𝑙=2𝑁𝑙)
∏𝐿

𝑞=2𝑁𝑞𝐾
, (3.70)

𝑂5 =
𝑂𝐴𝐿𝑆

𝑂𝑇𝐻𝑂𝑆𝑉𝐷
=

𝑖2
(
𝑅(𝑁3

1((
∑𝐿

𝑙=2𝑁𝑙)
∏𝐿

𝑞=2𝑁𝑞)3 +𝑁3
1𝑁

3
3𝐾

3 +𝑁3
1𝑁

3
2𝐾

3)
)

𝑅2𝑁1 +
(
(
∑𝐿

𝑙=2𝑁𝑙)
∏𝐿

𝑞=2𝑁𝑞

)2
𝐾 + 𝐾𝑅(

∑𝐿
𝑙=2𝑁𝑙)

∏𝐿
𝑞=2𝑁𝑞

, (3.71)

𝑂6 =
𝑂𝐴𝐿𝑆

𝑂𝑟𝑎𝑛𝑘−𝑜𝑛𝑒𝐴𝐿𝑆
=
𝑖2
(
𝑅(𝑁3

1((
∑𝐿

𝑙=2𝑁𝑙)
∏𝐿

𝑞=2𝑁𝑞)3 +𝑁3
1𝑁

3
3𝐾

3 +𝑁3
1𝑁

3
2𝐾

3)
)

𝑅2𝑁1 + 𝑖1
(
𝑅(
∑𝐿

𝑙=2𝑁𝑙)
∏𝐿

𝑞=2𝑁𝑞 +𝑁3𝐾 + 𝐾𝑁2

) . (3.72)

where 𝑖1 and 𝑖2 are the average numbers of iterations for convergence of the rank-one ALS
and ALS algorithms, respectively. Figure 17 shows the complexity ratios 𝑂1, 𝑂2, 𝑂3 and 𝑂4,
while Figure 18 presents the complexity ratios 𝑂5 and 𝑂6. In both figures, the complexity
ratios are calculated using average values for 𝑖1 and 𝑖2 obtained from all the Monte Carlo runs
and considering the variation of the number of data streams/ transmit antennas 𝑅 ∈ {4,12}.
From Figures 17 and 18, we can note that even as the number of data streams/ transmit
antennas increases, the complexities considered in 𝑂1, 𝑂4, 𝑂5 and 𝑂6 are linear, while the
complexities considered in 𝑂2 and 𝑂3 decreases as 𝑅 increases. Also note that the complexity
ratios 𝑂5 and 𝑂6 present the highest complexity ratios and is due that they are in a separate
figure. The KRF-KRF is much less computationally demanding than the other algorithms
because besides being a closed-form algorithm, also divides the problems into two steps to
estimate separately the channel and symbol matrices, unlike the other algorithms, such that
𝑂𝐴𝐿𝑆 >> 𝑂𝑇𝐻𝑂𝑆𝑉𝐷 >> 𝑂𝐾𝑅𝐹 >> 𝑂𝑟𝑎𝑛𝑘−𝑜𝑛𝑒𝐴𝐿𝑆 >> 𝑂𝐾𝑅𝐹−𝐾𝑅𝐹.
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Figure 17 – Complexity ratio of KRF, KRF-KRF, Rank-one ALS and THOSVD receivers.

Figure 18 – Complexity ratio of Rank-one ALS, THOSVD and ALS receivers.

3.5 Chapter summary

In this chapter, we have presented a particular case of MKRST coding where the
pre-coding matrix corresponds to a symbol matrix that is assumed known. Based on the
coded symbols, a new received signal model is proposed. This coding provides extra space
diversity through the multiple Khatri-Rao product of the symbol matrices. On the other
hand, there is a decrease in the transmission rate, as shown. The contributions of this chapter
extend previous works in different ways, either by using new coding, by extending to a newly
received signal tensor, or by different estimation algorithms.

By exploiting the proposed received signal tensor model, we have derived five semi-
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blind receivers and the identifiability conditions for each receiver. These receivers are based
on closed-form and iterative algorithms. They allow to jointly estimate the channel and the
symbol matrices without channel knowledge since one symbol matrix S(1) is known. Besides,
for the symbol estimation, a ZF receiver was considered to evaluate the impact of design
parameters on the performance of the systems.

Simulation results have shown the performance of the proposed receivers for the new
point-to-point MIMO system. The receivers are efficient in jointly estimating the channel
and the symbol matrices, especially when they are based on closed-form solutions. The
results for MKRST coding demonstrate that an increase in the number of data streams or
the number of receiver antennas significantly improves the performance in terms of SER.
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4 Semi-blind receivers for two-hop
MIMO relay communication system
with TSTF-MSMKron Coding

In this chapter, first a bibliographic overview of multi-hop MIMO relay systems is
presented. Then one of the main original contributions of this thesis is introduced. In particular,
a new coding scheme based on multiple Kronecker products of symbol matrices called multiple
symbol matrices Kronecker (MSMKron) coding is presented. MSMKron coding does not have a
pre-coding matrix but provides extra diversity due to multiple Kronecker products of symbol
matrices. Associated with the MSMKron coding is applied a TSTF coding at each hop, namely
TSTF-MSMKron. Based on TSTF-MSMKron coding, a new two-hop OFDM-CDMA MIMO
system is presented by the generalized Tucker decomposition, in which the source and relay use
the proposed coding to code the signals to be transmitted. The protocol is the decode-forward
(DF), where the signals are transmitted, estimated and retransmitted at the relay.

By exploiting the tensor model of the received signals and assuming the codings tensors
known at each hop, two semi-blind receivers are derived to jointly estimate the transmitted
symbols and the channels. The proposed receivers are semi-blind since we have no channel
knowledge and only one symbol of each symbol matrix should be known. For each receiver,
the identifiability conditions and computational complexities are established. Note that unlike
almost all relay systems existing in the literature that use the AF protocol, the proposed two-
hop system uses the DF protocol at the relay, which greatly facilitates its generalization to the
multi-hop case.

Monte Carlo simulation results are provided to illustrate the performance of the TSTF-
MSMKron coding, the impact of design parameters on the system performance and the behavior
of the proposed receivers in terms of SER and NMSE.

4.1 Overview on multi-hop MIMO systems

Cooperative MIMO systems were introduced by Meulen in 1971 [85], in which a
cooperative channel was used to transmit information from the source to the destination.
These systems are based on the exploitation of users or fixed stations as retransmitters
(relays) of the signal coming from other users. On the other hand, all the involved nodes can
be used as relays of the signal transmitted by the source. The repetition of the signal sent
by the source through the relay allows the extension of the coverage area, amplifying the
signal power that arrives at the destination, yielding significant gains in the capacity and
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performance of the system [22].

Relaying protocols are techniques that define how the relays process the signal to be
retransmitted. In literature, many relay processing protocols can be found in [86, 87]. The
protocols can be divided into fixed and selective relaying schemes [87]. For the fixed relaying
schemes the protocol used at the relay node is independent of the quality of the channel. For
selective relaying schemes, the SNR (signal-noise ratio) of the received signal at the relay
node is taken into account. In selective relaying schemes, a single relay or multiple relays
are selected to collaborate on information transmission, where the relay selection could be
based on distance information or instantaneous channel gains [88]. Most existing results on
these schemes focus on the multiplexing diversity tradeoff analysis, where a fixed power
level is assumed at the source and relays [89]. Fixed relaying schemes protocols are namely
amplify-and-forward (AF) and decode-and-forward (DF). For AF protocol, also known as a
non-regenerative protocol, the relay receives the signal from the source and amplifies it. This
protocol is attractive for systems that consider constant channels, due to its simplicity. The
use of the AF protocol is more frequent in cases when the relay is closer to the destination
than the source to compensate for the fading. DF protocol, known as a regenerative protocol,
consists of decoding the signal at the relay, and re-transmit to the destination. It is possible
to apply coding at the relay node before retransmitting the signal [87, 90].

Cooperative MIMO systems provide spatial diversity and spatial multiplexing due
to the use of multiple antennas to transmit and receive signals at each node of the systems.
However, individual channel estimation in a cooperative MIMO system is a fundamental
problem to solve, since the reliability of the system greatly depends on the accuracy of
channel state information (CSI) in each hop [91]. During the last two decades, tensor models
have been widely used for designing wireless communication systems [14, 15]. In the context
of cooperative systems, some works are dedicated to the use of a training sequence for
estimating the channels in a supervised way, as in [92, 93]. Such supervised systems are
bandwidth-consuming, which explains the development of semi-blind receivers to jointly
estimate the transmitted information symbols and the channels, i.e., without the use of
training sequences, such as in the case for the systems briefly introduced below.

Many works combine cooperative MIMO systems with different space/time/fre-
quency codings to increase system diversity and obtain better performance in terms of
channel and symbol estimation. Among the used codings, one can mention the Khatri–Rao
space–time (KRST) coding [20, 94, 21, 45], themultipleKhatri–Rao andKronecker space–time
(MKRST and MKronST) codings [33, 19], the TST [55, 95, 49] and TSTF codings [35]. De-
pending on the coding chosen for the relay system, different tensor models are obtained
for the signals received at the relay and destination nodes. An exploitation of these models
makes it possible to derive two families of receivers. One is made up of the most common re-
ceivers based on iterative algorithms such as ALS or the LM method. The other is composed
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of closed-form algorithms based on SVD calculation, such as Khatri–Rao and Kronecker
factorization algorithms, which are denoted KRF and KronF respectively. In Table 17, the
tensor-based MIMO cooperative systems of the above cited references are compared in terms
of the number of hops, coding, tensor model, and receiver, with the proposed MIMO relay
system, which is referenced as “Proposed” in Table 17.

Table 17 – Tensor-based MIMO cooperative systems.
Ref. System Types Codings Tensor Models Receivers
[94] two-hop KRST PARAFAC/

PARATUCK
ALS

[20] two-hop KRST nested
PARAFAC

ALS

[21] two-hop KRST nested
PARAFAC

KRF

[17] two-hop TST nested Tucker ALS-KronF
[33] two-hop MKRST/MKronST nested

PARAFAC
KRF/KronF

[95] two-hop TST coupled nested
Tucker

KronF

[49] three-hop TST + PARAFAC nested Tucker coupled
SVD/ALS

[25] three-hop KRST nested
PARAFAC

ALS/KRF

[23] multi-hop TST high-order
nested Tucker

KronF

[45] multi-hop KRST nested
PARAFAC

KRF

Proposed
[91]

two-hop TSTF-MSMKron generalized
Tucker

ALS-
KronF/THOSVD

Note that all systems presented in Table 17 consider an AF protocol at the relays
except the system in [33] for which the AF protocol is compared with the DF and EF ones,
showing that the use of these last two protocols allows significantly improving the SER
performance at the cost of an additional computational complexity at the relay. From a
coding point of view, the KRST coding was first used in [94, 20, 21] for a two-hop system and
then in [45] for a multi-hop system. In [25], KRST coding is combined with a rotation coding
matrix for a three-hop system. The TST coding initially proposed in [55], in the context of
point-to-point systems, was used for a two-hop system in [17], leading to a new tensor model
called nested Tucker decomposition and then for a multi-hop system in [23]. In this last
reference, a new tensor model based on the nested Tucker decomposition was introduced.
In [95], TST coding is used in a two-hop multi-relay system where the relays directly and
sequentially communicate with the destination node. The sequential transmission from the
relays to the destination leads to a new coupled nested Tucker model. In [49], TST coding
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is combined with a PARAFAC coding structure for a two-half-duplex relay system. Two
new codings, denoted MKRST and MKronST, were proposed in [33] for a two-hop system,
leading to a nested PARAFAC model for the tensor of signals received at the destination
which is exploited to develop closed-form semi-blind receivers for joint symbol and channel
estimation.

An important difference between the systems in Table 17 and the system presented
here concerns the a priori information needed to eliminate scaling ambiguities. Thus, the
proposed system only requires a priori knowledge of one symbol of the symbol matrices,
whereas all the systems in Table 17 also require knowledge of one entry or of one row of
the channel matrices, which is a much more restrictive assumption [91]. Based on that, this
chapter proposes a new two-hop OFDM-CDMAMIMO relay system that combines a TSTF
coding with a MSMKron at the source and relay nodes. This new coding scheme, called
TSTF-MSMKron coding, can be viewed as a generalization of the codings proposed in [33,
35], with the aim of increasing the diversity gain [91].

4.2 System model

4.2.1 Presentation of the proposed two-hop system

Consider a two-hop MIMO OFDM-CDMA system, as illustrated in Figure 19 and
presented in [91]. This system is equipped with 𝑀𝑆, 𝑀𝑅 and 𝑀𝐷 antennas at the source,
relay and destination nodes, respectively. The source-relay (ℋ(𝑆𝑅) ∈ ℂ𝑀𝑅×𝑀𝑆×𝐹) and relay-
destination (ℋ(𝑅𝐷) ∈ ℂ𝑀𝐷×𝑀𝑅×𝐹) channels are assumed to be flat Rayleigh fading, which is
represented by third-order tensors whose coefficients are zero-mean circularly symmetric
complex Gaussian i.i.d. (independent and identically distributed) random variables, constant
during at least 𝑃 transmission blocks.

The DF protocol is considered at the relay, and the transmission occurs in two hops.
During the first one, the coded symbols are transmitted by the source to the relay via the
channelℋ(𝑆𝑅) and decoded at the relay. During the second one, the estimated symbols are
re-encoded and then re-transmitted by the relay to the destination via the channelℋ(𝑅𝐷).
Each symbol matrix S(𝑙) = [𝑠(𝑙)𝑛𝑙 ,𝑟𝑙] ∈ ℂ𝑁𝑙×𝑅𝑙 , with 𝑟𝑙 ∈ {1, 𝑅𝑙}, 𝑛𝑙 ∈ {1, 𝑁𝑙}, for 𝑙 ∈ {1, 𝐿}, is
composed of 𝑅𝑙 data streams, each one containing𝑁𝑙 information symbols. The transmission
protocol is detailed in the next section which defines the TSTF-MSMKron coding. Then, in
sections 4.2.3 and 4.2.4, the tensors of signals received at the relay and the destination will
be described, respectively.
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Figure 19 – Block diagram of the two-hop MIMO relay system.

4.2.2 TSTF-MSMKron coding

In the proposed system, the coding at the source node is composed of two steps.
During the first one, a multiple Kronecker product of 𝐿 symbol matrices is calculated as:

S = ⊗𝐿
𝑙=1S

(𝑙) ≜ S(1) ⊗ ... ⊗ S(𝐿) ∈ ℂ𝑁×𝑅, (4.1)

where 𝑁 =
∏𝐿

𝑙=1𝑁𝑙, and 𝑅 =
∏𝐿

𝑙=1 𝑅𝑙. The scalar form of (4.1) is:

𝑠𝑛,𝑟 =
𝐿∏

𝑙=1

𝑠(𝑙)𝑛𝑙 ,𝑟𝑙 , 𝑛 ∈ {1,𝑁} , 𝑟 ∈ {1, 𝑅}, (4.2)

with 𝑛 = 𝑛(𝐿)𝐿 +
(
𝑛(𝐿−1)𝐿−1 − 1

)
𝑁𝐿 +⋯ +

(
𝑛(1)1 − 1

)∏𝐿
𝑙=2𝑁𝑙, and 𝑟 = 𝑟(𝐿)𝐿 +

(
𝑟(𝐿−1)𝐿−1 − 1

)
𝑅𝐿 +

⋯ +
(
𝑟(1)1 − 1

)∏𝐿
𝑙=2 𝑅𝑙, where 𝑛

(𝑙)
𝑙 ∈ {1, 𝑁𝑙}, and 𝑟

(𝑙)
𝑙 ∈ {1, 𝑅𝑙} denote the indices 𝑛𝑙 and 𝑟𝑙 in

𝑠(𝑛)𝑛𝑙 ,𝑟𝑙 . This operation, called MSMKron coding, corresponds to a simplified version of the
MKronST coding [33] without a known precoding matrix. This coding is called multiple
symbol matrices Kronecker (MSMKron) coding and induces time and code spreadings of
each symbol 𝑠(𝑙)𝑛𝑙 ,𝑟𝑙 due to the multiple Kronecker product of the symbol matrix S

(𝑙) with the
other matrices S(𝑙

′) ,𝑙′ = 1, ..., 𝐿 and 𝑙′ ≠ 𝑙.

The transmission being composed of 𝑃 time-slots means each symbol 𝑠(𝑙)𝑛𝑙 ,𝑟𝑙 is re-

peated 𝑃
( 𝐿∏

𝑙′=1
𝑙′≠𝑙

𝑁𝑙′
)( 𝐿∏

𝑙′=1
𝑙′≠𝑙

𝑅𝑙′
)
times, which implies an increase of time and code diversities when

increasing the dimensions 𝑁𝑙 and 𝑅𝑙, respectively.

During the second step, the MSMKron coding is combined with a tensor space-
time-frequency (TSTF) coding [35] carried out by means of the (𝐿 + 3)-order tensor 𝒢(𝑆) ∈
ℂ𝑀𝑆×𝑅1×...×𝑅𝐿×𝐹×𝑃 in such a way that the tensor of signals coded at the source satisfies an
(𝐿 + 3)-order Tucker model given by:

𝒱 (𝑆) = 𝒢(𝑆) ×1 I𝑀𝑆
×2 S

(1) ×3 ... ×𝐿+1 S
(𝐿) ×𝐿+2 I𝐹 ×𝐿+3 I𝑃 ∈ ℂ𝑀𝑆×𝑁1×...×𝑁𝐿×𝐹×𝑃. (4.3)

Note that the core tensor of this decomposition is the coding tensor 𝒢(𝑆). In scalar
notation, the coded signals transmitted by the 𝑚𝑡ℎ

𝑆 antenna at the source, using the 𝑓𝑡ℎ
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subcarrier, during the 𝑝𝑡ℎ time slot are given by:

𝑣(𝑆)𝑚𝑆 ,𝑛1,...,𝑛𝐿 ,𝑓,𝑝
=

𝑅1∑

𝑟1=1

...
𝑅𝐿∑

𝑟𝐿=1

𝑔(𝑆)𝑚𝑆 ,𝑟1,...,𝑟𝐿 ,𝑓,𝑝

𝐿∏

𝑙=1

𝑠(𝑙)𝑛𝑙 ,𝑟𝑙 , (4.4)

where𝑚𝑆 ∈ {1,𝑀𝑆}, 𝑓 ∈ {1,𝐹}, 𝑝 ∈ {1,𝑃}. The TSTF-MSMKron coding increases space-time-
frequency diversity, as will be illustrated in the simulations.

4.2.3 Tensor of signals received at the relay

In the noise-free case and assuming a flat Rayleigh fading propagation channel, the
signal 𝑥(𝑆𝑅)𝑚𝑅 ,𝑛1,...,𝑛𝐿 ,𝑓,𝑝

received at the𝑚𝑡ℎ
𝑅 antenna of the relay, during the 𝑛𝑡ℎ𝑙 symbol period of

the 𝑝𝑡ℎ block and associated with the 𝑓𝑡ℎ subcarrier, is given by:

𝑥(𝑆𝑅)𝑚𝑅 ,𝑛1,...,𝑛𝐿 ,𝑓,𝑝
=

𝑀𝑆∑

𝑚𝑆=1

ℎ(𝑆𝑅)𝑚𝑅 ,𝑚𝑆 ,𝑓
𝑣(𝑆)𝑚𝑆 ,𝑛1,...,𝑛𝐿 ,𝑓,𝑝

, (4.5)

where 𝑚𝑅 ∈ {1,𝑀𝑅} and ℎ
(𝑆𝑅)
𝑚𝑅 ,𝑚𝑆 ,𝑓

is an entry of the channelℋ(𝑆𝑅) ∈ ℂ𝑀𝑅×𝑀𝑆×𝐹. In terms of
mode-𝑛 products, we have:

𝒳(𝑆𝑅) = 𝒱 (𝑆) ×1 ℋ(𝑆𝑅) ∈ ℂ𝑀𝑅×𝑁1×...×𝑁𝐿×𝐹×𝑃. (4.6)

Note that the transmission via channelℋ(𝑆𝑅) can be interpreted as a mode-1 linear
transformation applied to the tensor 𝒱 (𝑆) of coded signals. Substituting (4.4) into (4.5) gives
the signal received at the relay written in a scalar form as:

𝑥(𝑆𝑅)𝑚𝑅 ,𝑛1,...,𝑛𝐿 ,𝑓,𝑝
=

𝑀𝑆∑

𝑚𝑆=1

𝑅1∑

𝑟1=1

...
𝑅𝐿∑

𝑟𝐿=1

𝑔(𝑆)𝑚𝑆 ,𝑟1,...,𝑟𝐿 ,𝑓,𝑝
ℎ(𝑆𝑅)𝑚𝑅 ,𝑚𝑆 ,𝑓

𝐿∏

𝑙=1

𝑠(𝑙)𝑛𝑙 ,𝑟𝑙 . (4.7)

The signals received at the relay form the tensor 𝒳(𝑆𝑅) that satisfies a generalized
Tucker-(𝐿 + 1, 𝐿 + 3) model given by:

𝒳(𝑆𝑅) = 𝒢(𝑆) ×1 ℋ(𝑆𝑅) ×2 S
(1) ×3 ... ×𝐿+1 S

(𝐿) ×𝐿+2 I𝐹 ×𝐿+3 I𝑃, (4.8)

where S(𝑙) represents the symbol matrices encoded by the TSTF-MSMKron coding for 𝑙 ∈
{1, 𝐿} and 𝒢(𝑆) is the core tensor of the Tucker model. As it is well known, knowledge of the
core tensor implies the uniqueness of this model. Combining modes 2 to 𝐿+1 of tensors 𝒢(𝑆)

and𝒳(𝑆𝑅) results in contracted forms 𝒢(𝑆)𝑐 ∈ ℂ𝑀𝑆×𝑅×𝐹×𝑃 and𝒳(𝑆𝑅)
𝑐 ∈ ℂ𝑀𝑅×𝑁×𝐹×𝑃, and Eq.(4.8)

can be rewritten as:
𝒳(𝑆𝑅)
𝑐 = 𝒢(𝑆)𝑐 ×1 ℋ(𝑆𝑅) ×2 S ×3 I𝐹 ×4 I𝑃. (4.9)

From the Tucker model (4.9), it is easy to deduce the following matrix unfoldings of
the tensor 𝒳(𝑆𝑅):

X(𝑆𝑅)
𝐹𝑃𝑁×𝑀𝑅

= (I𝐹𝑃 ⊗ S)G(𝑆)
𝐹𝑃𝑅×𝐹𝑀𝑆

H(𝑆𝑅)
𝐹𝑀𝑆×𝑀𝑅

∈ ℂ𝐹𝑃𝑁×𝑀𝑅 , (4.10)
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X(𝑆𝑅)
𝑃𝐹𝑀𝑅×𝑁

=
(
I𝑃 ⊗ bdiag

(
H(𝑆𝑅)

..𝑓

))
G(𝑆)
𝑃𝐹𝑀𝑆×𝑅

S𝑇 ∈ ℂ𝑃𝐹𝑀𝑅×𝑁, (4.11)

X(𝑆𝑅)
𝑀𝑅𝑁×𝐹𝑃

=
(
H(𝑆𝑅)

𝑀𝑅×𝐹𝑀𝑆
⊗ S

)
G(𝑆)
𝐹𝑀𝑆𝑅×𝐹𝑃

∈ ℂ𝑀𝑅𝑁×𝐹𝑃, (4.12)

withH(𝑆𝑅)
..𝑓 ∈ ℂ𝑀𝑅×𝑀𝑆 and bdiag(.) previously defined in the notation. Note that the identity

matrix I𝐹𝑃 ∈ ℝ𝐹𝑃×𝐹𝑃 in (4.10) is associated with 𝐹𝑃 repetitions of the symbol matrices
inducing time-frequency diversity for the system.

The block structure of the matrix unfoldings G(𝑆)
𝐹𝑃𝑅×𝐹𝑀𝑆

and G(𝑆)
𝐹𝑀𝑆𝑅×𝐹𝑃

in Eqs.(4.10)
and (4.12), respectively, is defined as follows:

G(𝑆)
𝐹𝑃𝑅×𝐹𝑀𝑆

= bdiag
[
vec(𝒢(𝑆)1..𝑓.) ... vec(𝒢(𝑆)𝑀𝑆 ..𝑓.

)
]
= bdiag (

[
G(𝑆)
𝑃𝑅×𝑀𝑆

]

𝑓
) , (4.13)

G(𝑆)
𝐹𝑀𝑆𝑅×𝐹𝑃

= bdiag
[
vec(𝒢(𝑆)...𝑓1) ... vec(𝒢(𝑆)...𝑓𝑃)

]
= bdiag (

[
G(𝑆)
𝑀𝑆𝑅×𝑃

]

𝑓
) . (4.14)

G(𝑆)
𝐹𝑃𝑅×𝐹𝑀𝑆

in Eq.(4.13) is a block-diagonal matrix, formed of 𝐹 diagonal blocks of
dimension 𝑃𝑅 ×𝑀𝑆, each block being formed of 𝑀𝑆 column vectors corresponding to a
vectorized form of the tensor slice 𝒢(𝑆)𝑚𝑆 ..𝑓.

of size 𝑅1 × ... × 𝑅𝐿 × 𝑃, for𝑚𝑆 ∈ {1,𝑀𝑆}, such that
vec(𝒢(𝑆)𝑚𝑆 ..𝑓.

) ∈ ℂ𝑃𝑅. Similarly, G(𝑆)
𝐹𝑀𝑆𝑅×𝐹𝑃

in (4.14) is a block-diagonal matrix whose diagonal
blocks are of dimension𝑀𝑆𝑅 × 𝑃, with vec(𝒢

(𝑆)
...𝑓𝑝) ∈ ℂ𝑀𝑆𝑅.

To illustrate the matrix unfolding (4.14), consider the case where 𝑅 = 𝑃 = 𝑀𝑆 = 𝐹 =
2, leading to the following matrix:

G(𝑆)
𝐹𝑀𝑆𝑅×𝐹𝑃

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑔(𝑆)1111 𝑔(𝑆)1112

𝑔(𝑆)2111 𝑔(𝑆)2112

𝑔(𝑆)1211 𝑔(𝑆)1212

𝑔(𝑆)2211 𝑔(𝑆)2212

0 0
0 0
0 0
0 0

0 0
0 0
0 0
0 0

𝑔(𝑆)1121 𝑔(𝑆)1122

𝑔(𝑆)2121 𝑔(𝑆)2122

𝑔(𝑆)1221 𝑔(𝑆)1222

𝑔(𝑆)2221 𝑔(𝑆)2222

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.15)

4.2.4 Tensor of signals received at the destination

With the DF protocol, the symbols received at the relay are first decoded by means of
one of the receivers described in Section 4.3, leading to the estimated symbol matrices ̂̂S(𝑙),
which are also written as S(𝑙)𝑅 . The estimated symbols are then re-encoded at the relay using
a TSTF-MSMKron coding, with the tensor coding 𝒢(𝑅) ∈ ℂ𝑀𝑅×𝑅1×...×𝑅𝐿×𝐹×𝑃. The re-encoded
signals are transmitted by the relay to the destination via the channelℋ(𝑅𝐷) ∈ ℂ𝑀𝐷×𝑀𝑅×𝐹.
The signals received at the destination are similar to the signals received at the relay, defined
by Eqs. (4.7) and (4.8), with the following correspondences:

(
𝒢(𝑆),ℋ(𝑆𝑅),S(𝑙)

)
↔

(
𝒢(𝑅),ℋ(𝑅𝐷),S(𝑙)𝑅

)
, (4.16)
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(𝑀𝑅,𝑀𝑆)↔ (𝑀𝐷,𝑀𝑅) , (4.17)

Similar to (4.7), in the noiseless case, the signal received at the𝑚𝑡ℎ
𝐷 antenna of the

destination node, during the 𝑛𝑡ℎ𝑙 symbol period of the 𝑝𝑡ℎ time block and associated with the
𝑓𝑡ℎ subcarrier, is given by:

𝑥(𝑅𝐷)𝑚𝐷 ,𝑛1,...,𝑛𝐿 ,𝑓,𝑝
=

𝑀𝑅∑

𝑚𝑅=1

𝑅1∑

𝑟1=1

...
𝑅𝐿∑

𝑟𝐿=1

𝑔(𝑅)𝑚𝑅 ,𝑟1,...,𝑟𝐿 ,𝑓,𝑝
ℎ(𝑅𝐷)𝑚𝐷 ,𝑚𝑅 ,𝑓

𝐿∏

𝑙=1

[𝑠(𝑙)𝑅 ]𝑛𝑙 ,𝑟𝑙 , (4.18)

and the generalized Tucker-(𝐿 + 1, 𝐿 + 3) model (4.7) becomes:

𝒳(𝑅𝐷) = 𝒢(𝑅) ×1 ℋ(𝑅𝐷) ×2 S
(1)
𝑅 ×3 ... ×𝐿+1 S

(𝐿)
𝑅 ×𝐿+2 I𝐹 ×𝐿+3 I𝑃, (4.19)

where 𝒳(𝑅𝐷) ∈ ℂ𝑀𝐷×𝑁1×...×𝑁𝐿×𝐹×𝑃. Matrix unfoldings of this tensor can be deduced from
(4.10)-(4.12) using the correspondences (4.16)-(4.17) with G(𝑅)

𝑃𝐹𝑀𝑅×𝑅
, G(𝑅)

𝐹𝑃𝑅×𝐹𝑀𝑅
and G(𝑅)

𝐹𝑀𝑅𝑅×𝐹𝑃

instead of G(𝑆)
𝑃𝐹𝑀𝑆×𝑅

, G(𝑆)
𝐹𝑃𝑅×𝐹𝑀𝑆

and G(𝑆)
𝐹𝑀𝑆𝑅×𝐹𝑃

, respectively.

Combining the modes 2 to 𝐿+ 1 of tensors 𝒢(𝑅) and𝒳(𝑅𝐷) results in contracted forms
𝒢(𝑅)𝑐 ∈ ℂ𝑀𝑅×𝑅×𝐹×𝑃 and 𝒳(𝑅𝐷)

𝑐 ∈ ℂ𝑀𝐷×𝑁×𝐹×𝑃, and Eq.(4.8) can be rewritten as:

𝒳(𝑅𝐷)
𝑐 = 𝒢(𝑅)𝑐 ×1 ℋ(𝑅𝐷) ×2 S𝑅 ×3 I𝐹 ×4 I𝑃. (4.20)

From the Tucker model (4.20), it is easy to deduce the following matrix unfoldings of
the tensor 𝒳(𝑅𝐷):

X(𝑅𝐷)
𝐹𝑃𝑁×𝑀𝐷

= (I𝐹𝑃 ⊗ S𝑅)G
(𝑆)
𝐹𝑃𝑅×𝐹𝑀𝑅

H(𝑅𝐷)
𝐹𝑀𝑅×𝑀𝐷

∈ ℂ𝐹𝑃𝑁×𝑀𝐷 , (4.21)

X(𝑅𝐷)
𝑃𝐹𝑀𝐷×𝑁

=
(
I𝑃 ⊗ bdiag

(
H(𝑅𝐷)

..𝑓

))
G(𝑅)
𝑃𝐹𝑀𝑅×𝑅

S𝑇𝑅 ∈ ℂ𝑃𝐹𝑀𝐷×𝑁, (4.22)

X(𝑅𝐷)
𝑀𝐷𝑁×𝐹𝑃

=
(
H(𝑅𝐷)

𝑀𝐷×𝐹𝑀𝑅
⊗ S𝑅

)
G(𝑅)
𝐹𝑀𝑅𝑅×𝐹𝑃

∈ ℂ𝑀𝐷𝑁×𝐹𝑃, (4.23)

withH(𝑅𝐷)
..𝑓 ∈ ℂ𝑀𝐷×𝑀𝑅 , and bdiag(.) previously defined in the notation. The proposed OFDM-

CDMA relaying system is illustrated by means of the block diagram in Figure 20. The system
design parameters and the definitions of the system matrices and tensors are summarized in
Tables 18 and 19, respectively.

Table 18 – System design parameters.
System design parameters Definitions

𝐿 number of symbol matrices
𝑅𝑙 number of data streams in S(𝑙)
𝑁𝑙 number of symbols in the 𝑅𝑡ℎ𝑙 data

stream
𝐹 number of subcarriers
𝑃 number of time blocks
𝑀𝑆 number of antennas at the source
𝑀𝑅 number of antennas at the relay
𝑀𝐷 number of antennas at the destination
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Table 19 – System matrices and tensors.
Symbol matrices

S(𝑙) ∈ ℂ𝑁𝑙×𝑅𝑙 , for 𝑙 ∈ {1, 𝐿}
S = S(1) ⊗ ... ⊗ S(𝐿) ∈ ℂ𝑁×𝑅

𝑁 =
∏𝐿

𝑙=1𝑁𝑙, 𝑅 =
∏𝐿

𝑙=1 𝑅𝑙
Channel tensors
ℋ(𝑆𝑅) ∈ ℂ𝑀𝑅×𝑀𝑆×𝐹

ℋ(𝑅𝐷) ∈ ℂ𝑀𝐷×𝑀𝑅×𝐹

Space-time-frequency coding tensors
𝒢(𝑆) ∈ ℂ𝑀𝑆×𝑅1×...×𝑅𝐿×𝐹×𝑃

𝒢(𝑅) ∈ ℂ𝑀𝑅×𝑅1×...×𝑅𝐿×𝐹×𝑃

Received signals tensors
𝒳(𝑆𝑅) ∈ ℂ𝑀𝑅×𝑅1×...×𝑅𝐿×𝐹×𝑃

𝒳(𝑅𝐷) ∈ ℂ𝑀𝐷×𝑅1×...×𝑅𝐿×𝐹×𝑃

MSMKron
coding

Source-relay
channel

Source

Signals received
at relay

Receiver

^

MSMKron
coding

Relay

ReceiverRelay-destination
channel

Signals received
at destination

^

Destination

Relay

TSTF
coding

TSTF
coding

Figure 20 – Block diagram of the proposed two-hop MIMO OFDM-CDMA communication system.

4.2.5 Comparison with other MIMO systems using coding tensors

In Table 20, we present several tensor-based MIMO systems using coding in a unified
way. From this Table, we can conclude that:
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• The proposed TSTF-MSMKron coding extends the TSTF coding presented in [35], com-
bining TSTF andMSMKron codings and not considering allocation tensors. MSMKron
coding adds diversity to the system by the multiple Kronecker products of the symbol
matrices.

• The TSTF-MSMKron coding can be viewed as a CDMA extension of the STF coding in
[83], where the STF uses only a bi-dimensional coding.

• The TSTF-MSMKron coding can also be viewed as an OFDM extension of the TST
system [55] with a combination of a TSTF with the MSMKron instead of a third-order
tensor coding.

Table 20 – Comparison of tensor-based systems.
Coding Channel Coding Tensor model Ref.
TSTF- ℋ ∈ ℂ𝑀𝑅×𝑀𝑆×𝐹 𝒢 ∈ ℂ𝑀𝑆×𝑅×𝐹×𝑃 generalized proposed
MSMKron ℋ ∈ ℂ𝑀𝑅×𝑀𝑆×𝐹 S = ⊗𝐿

𝑙=1S
(𝑙) ∈ ℂ𝑁×𝑅 Tucker-

(𝐿 + 1,𝐿 + 3)
system [91]

TSTF ℋ ∈ ℂ𝑀𝑅×𝑀𝑆×𝐹 𝒲 ∈ ℂ𝑀𝑆×𝑅×𝐹×𝑃×𝐽 generalized
PARATUCK-
(2,5)

[35]

STF H ∈ ℂ𝑀𝑅×𝑀𝑆 W ∈ ℂ𝑀𝑆×𝑅 generalized
PARATUCK-
(2,4)

[83]

TST H ∈ ℂ𝑀𝑅×𝑀𝑆 𝒲 ∈ ℂ𝑀𝑆×𝑅×𝐽 PARATUCK-
(2,4)

[55]

ST H ∈ ℂ𝑀𝑅×𝑀𝑆 W ∈ ℂ𝑀𝑆×𝑅 PARATUCK-2 [96]

4.3 Semi-blind receivers

In this section, as in [91], two semi-blind receivers are proposed to estimate the
channel tensors and symbol matrices at the relay and destination nodes. We assume that
the coding tensors 𝒢(𝑆) and 𝒢(𝑅) are known. We also assume that one symbol of each symbol
matrix is known to eliminate scalar ambiguities. The symbol matrices S(𝑙) and the channel
tensorℋ(𝑆𝑅) are estimated at the relay, while the symbol matrices S(𝑙)𝑅 and the channel tensor
ℋ(𝑅𝐷) are estimated at the destination. The proposed receivers are detailed for the relay. The
same receivers can be derived for the destination, using the correspondences (4.16) and
(4.17). The first one is based on the ALS algorithm to estimate the channel and the Kronecker
product of symbol matrices, which is followed by the KronF method to separate the symbol
matrices, while the second one is a closed-form solution allowing to jointly estimate the
channel and the symbol matrices through the THOSVD algorithm.
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4.3.1 Bi-ALS-KronF receiver

In the first step, the bi-alternating least squares (Bi-ALS) algorithm is used to jointly
estimate theMSMKron product S and the channel tensorℋ(𝑆𝑅). Then, the KronF algorithm is
applied to separate the symbolmatrices. The Bi-ALS algorithm results from theminimization
of the following cost function deduced from Eq.(4.9) [91] :

min
S,ℋ(𝑆𝑅)

∥ 𝒳(𝑆𝑅)
𝑐 − 𝒢(𝑆)𝑐 ×1 ℋ(𝑆𝑅) ×2 S ×3 I𝐹 ×4 I𝑃 ∥2𝐹, (4.24)

The Bi-ALSmethod replaces the optimization problem (4.24) by two LS sub-problems
deduced from the matrix unfoldings (4.10) and (4.11), leading to the alternate minimization
of the following LS criteria:

min
H(𝑆𝑅)
𝐹𝑀𝑆×𝑀𝑅

∥ X(𝑆𝑅)
𝐹𝑃𝑁×𝑀𝑅

−
[(
I𝐹𝑃 ⊗ Ŝ[𝑖−1]

)
G(𝑆)
𝐹𝑃𝑅×𝐹𝑀𝑆

]
H(𝑆𝑅)

𝐹𝑀𝑆×𝑀𝑅
∥2𝐹,→ Ĥ

(𝑆𝑅)
𝐹𝑀𝑆×𝑀𝑅[𝑖], (4.25)

min
S

∥ X(𝑆𝑅)
𝑃𝐹𝑀𝑅×𝑁

− (I𝑃 ⊗ bdiag (Ĥ
(𝑆𝑅)
..𝑓[𝑖]))G

(𝑆)
𝑃𝐹𝑀𝑆×𝑅

S𝑇 ∥2𝐹,→ Ŝ
𝑇
[𝑖]. (4.26)

The update equations at iteration [𝑖] are given by:

Ĥ
(𝑆𝑅)
𝐹𝑀𝑆×𝑀𝑅[𝑖] =

[(
I𝐹𝑃 ⊗ Ŝ[𝑖−1]

)
G(𝑆)
𝐹𝑃𝑅×𝐹𝑀𝑆

]†
X(𝑆𝑅)
𝐹𝑃𝑁×𝑀𝑅

, (4.27)

Ŝ
𝑇
[𝑖] = [(I𝑃 ⊗ bdiag (Ĥ

(𝑆𝑅)
..𝑓[𝑖]))G

(𝑆)
𝑃𝐹𝑀𝑆×𝑅

]
†

X(𝑆𝑅)
𝑃𝐹𝑀𝑅×𝑁

. (4.28)

To simplify the computation of the estimate Ĥ
(𝑆𝑅)
𝐹𝑀𝑆×𝑀𝑅

in Eq.(4.27), we assume that
the matrices

[
G(𝑆)
𝑃𝑅×𝑀𝑆

]

𝑓
and S have full column rank, which implies:𝑀𝑆 ≤ 𝑃𝑅 and 𝑅 ≤ 𝑁,

respectively. Moreover, to simplify the computation of Ŝ in Eq.(4.28), we assume that the
unfolding G(𝑆)

𝑃𝐹𝑀𝑆×𝑅
is chosen as a full column rank truncated DFT matrix, which allows

us to replace its pseudo-inverse by its transconjugate, implying the necessary condition:
𝑅 ≤ 𝑃𝐹𝑀𝑆. We also assume thatℋ

(𝑆𝑅)
..𝑓 has full column rank, implying𝑀𝑆 ≤ 𝑀𝑅. Exploiting

these assumptions and substituting the unfolding G(𝑆)
𝐹𝑃𝑅×𝐹𝑀𝑆

by Eq.(4.13) simplifies the LS
estimates (4.27) and (4.28) as:

Ĥ
(𝑆𝑅)
𝐹𝑀𝑆×𝑀𝑅[𝑖] = bdiag (

[
G(𝑆)
𝑃𝑅×𝑀𝑆

]†
𝑓
) (I𝐹𝑃 ⊗ Ŝ

†
[𝑖−1])X

(𝑆𝑅)
𝐹𝑃𝑁×𝑀𝑅

, (4.29)

Ŝ
𝑇
[𝑖] =

(
G(𝑆)
𝑃𝐹𝑀𝑆×𝑅

)𝐻
(I𝑃 ⊗ bdiag (Ĥ

(𝑆𝑅)†
..𝑓[𝑖] ))X

(𝑆𝑅)
𝑃𝐹𝑀𝑅×𝑁

. (4.30)

The Bi-ALS algorithms (4.29) and (4.30) are simplified versions of (4.27) and (4.28)
in terms of pseudo-inverses computation at the price of additional constraints on the design
parameters.
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The error at the [𝑖]𝑡ℎ iteration, deduced from (4.10), is considered for deciding the
convergence of the Bi-ALS algorithm:

𝑒𝑟𝑟[𝑖] =∥ X(𝑆𝑅)
𝐹𝑃𝑁×𝑀𝑅

−
(
I𝐹𝑃 ⊗ Ŝ[𝑖]

)
G(𝑆)
𝐹𝑃𝑅×𝐹𝑀𝑆

Ĥ
(𝑆𝑅)
𝐹𝑀𝑆×𝑀𝑅[𝑖] ∥

2
𝐹 . (4.31)

Convergence at the [𝑖]𝑡ℎ iteration is declared when this error does not significantly
change between two successive iterations, i.e., |𝑒𝑟𝑟[𝑖−1]−𝑒𝑟𝑟[𝑖]| ≤ 𝜖, where 𝜖 is a predefined
threshold. Then, the symbolmatrices S(𝑙) are then estimated bymeans of theKronF algorithm
presented in Table 1, minimizing the following LS cost function:

min
S(𝑙),𝑙∈{1,𝐿}

∥ ̂̂S − S(1) ⊗ ... ⊗ S(𝐿) ∥2𝐹 . (4.32)

After applying the KronF algorithm, the estimated symbol matrix Ŝ
(𝑙)
is obtained by

unvectorizing ŝ(𝑙) as:
Ŝ
(𝑙)
= unvec

(
ŝ(𝑙)
)
∈ ℂ𝑁𝑙×𝑅𝑙 , (4.33)

As mentioned previously, the Bi-ALS-KronF receiver at the destination can be de-
duced from the one at the relay, using the correspondences (4.16) and (4.17), to estimate
the channelℋ(𝑅𝐷) ∈ ℂ𝑀𝐷×𝑀𝑅×𝐹 and the symbol matrices denoted S(𝑙)𝑅 ∈ ℂ𝑁𝑙×𝑅𝑙 . To eliminate
the scaling ambiguities in the second hop, we use the same relation (4.37) for the KronF
algorithm. At each hop, the estimated symbols are obtained after a projection onto the
symbol alphabet. The Bi-ALS-KronF algorithm is summarized in table 21.

Identifiability conditions and ambiguity relations

In the case of the Bi-ALS step, for the uniqueness of the pseudo-inverse, it is necessary
that the matrices

[
(I𝐹𝑃 ⊗ S)G(𝑆)

𝐹𝑃𝑅×𝐹𝑀𝑆

]
and

[(
I𝑃 ⊗ bdiag

(
H(𝑆𝑅)

..𝑓

))
G(𝑆)
𝑃𝐹𝑀𝑆×𝑅

]
be full column

rank to ensure uniqueness of the LS estimates, which implies the following necessary
conditions:

𝑀𝑆 ≤ 𝑃𝑁 and 𝑅 ≤ 𝑃𝐹𝑀𝑅. (4.34)

In the case of the Bi-ALS-KronF algorithm, since the core tensor 𝒢(𝑆) is assumed to
be known, there is no permutation ambiguity, and the generalized Tucker model (4.9) is
unique up to scalar scaling ambiguities. The LS estimates ̂̂H(𝑆𝑅)

𝐹𝑀𝑆×𝑀𝑅
and ̂̂S, at convergence,

after correcting the ambiguities are given by:

̂̂S = Ŝ
(
𝜆(𝑆)

)−1
, ̂̂H(𝑆𝑅)

𝐹𝑀𝑆×𝑀𝑅
= Ĥ

(𝑆𝑅)
𝐹𝑀𝑆×𝑀𝑅

(
𝜆(𝐻)

)−1
, with 𝜆(𝑆)𝜆(𝐻) = 1. (4.35)

For eliminating the scaling ambiguities in Bi-ALS step, it is sufficient to assume that
one element of S is known a priori, e.g., 𝑠11 = 1. Under this assumption, 𝜆(𝑆) is calculated as:

𝜆(𝑆) = 𝑠11. (4.36)
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Considering the KronF step, we assume 𝑠(𝑙)11 = 1 and the scalar ambiguity is corrected
by:

̂̂S(𝑙) = Ŝ
(𝑙) (

𝑠(𝑙)11
)−1

. (4.37)

Table 21 – Bi-ALS-KronF receiver for estimation of the channels and symbol matrices.
Bi-ALS-KronF receiver for estimating symbol matrices S(𝑙) and the
channelsℋ(𝑆𝑅) andℋ(𝑅𝐷).
Input: tensors 𝒳(𝑆𝑅), 𝒳(𝑅𝐷), 𝒢(𝑆), 𝒢(𝑅)
Output: Estimated symbol matrices and channels
First hop: source - relay
- Step 1: Bi-ALS algorithm
𝑖𝑡 = 0
1) Initialization of S(𝑙)[0] with symbols randomly drawn from the alphabet
and 𝑠(𝑙)11 = 1, for 𝑙 ∈ {1, 𝐿}.
2) Update the estimates of H(𝑆𝑅)

𝐹𝑀𝑆×𝑀𝑅
and S using Eqs.(4.27) and (4.28) or

(4.29) and (4.30).
3) Calculate the error (4.31) and |𝑒𝑟𝑟[𝑖 − 1] − 𝑒𝑟𝑟[𝑖]|.
-if |𝑒𝑟𝑟[𝑖 − 1] − 𝑒𝑟𝑟[𝑖]| ≤ 𝜖 or 𝑖𝑡 =maximum number of iterations
- stop
- else 𝑖𝑡 → 𝑖 + 1;
4) Eliminate the scaling ambiguities using Eq.(4.35).

- Step 2: KronF algorithm
5) Build the rank-one tensor: ̂̂𝒮 = reshape

( ̂̂S, [𝑅1𝑁1,...,𝑅𝐿𝑁𝐿]
)
.

6) Estimate each vector ŝ(𝑙) by means of the KronF algorithm recalled in
Table 1, and unvectorize it using Eq.(4.33).
7) Eliminate the scaling ambiguities using Eq.(4.37).
8) Project the estimated symbols onto the symbol alphabet.

Second hop: relay - destination
- Step 1: Bi-ALS algorithm
- Apply the stages 1) to 4) of the first hop, using the correspondences (4.16)
and (4.17).

- Step 2: KronF algorithm
- Apply the stages 5) to 8) of the first hop, using the correspondences (4.16)
and (4.17).

4.3.2 THOSVD-based receiver

The THOSVD-based receiver is proposed to jointly estimate the channels and the
symbol matrices. This closed-form solution can be viewed as a generalization of the KronF
algorithm used to separate the symbol matrices. The difference is that we can now simulta-
neously estimate all the matrices

(
H(𝑆𝑅)

𝑀𝑅×𝐹𝑀𝑆
, S(1), ..., S(𝐿)

)
. From the matrix unfolding (4.12),
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with S and G(𝑆)
𝐹𝑀𝑆𝑅×𝐹𝑃

replaced by their expressions (4.1) and (4.14), we deduce the following
LS estimate of the multiple Kronecker product:

Z(𝑆𝑅) ≜ ˆH(𝑆𝑅)
𝑀𝑅×𝐹𝑀𝑆

⊗ S(1) ⊗ ... ⊗ S(𝐿) = X(𝑆𝑅)
𝑀𝑅𝑁×𝐹𝑃

[bdiag (
[
G(𝑆)
𝑀𝑆𝑅×𝑃

]†
𝑓
)] , (4.38)

with Z(𝑆𝑅) ∈ ℂ𝑀𝑅𝑁×𝐹𝑀𝑆𝑅. The matrices S(𝑙) and H(𝑆𝑅)
𝑀𝑅×𝐹𝑀𝑆

are jointly estimated by means of
the rank-one approximation-based KronF algorithm, described in Table 1. The THOSVD
receiver at the destination is deduced from the one at the relay, using the correspondences
(4.16) and (4.17), to estimate the channelℋ(𝑅𝐷) and the symbol matrices S(𝑙)𝑅 . The THOSVD
receiver is summarized in Table 22.

Identifiability conditions and ambiguity relations

In the case of the THOSVD algorithm, for the uniqueness of the pseudo-inverse, it is
necessary that the unfolding

[
G(𝑆)
𝑀𝑆𝑅×𝑃

]

𝑓
be full row rank for ensuring the uniqueness of this

LS estimate, which induces the necessary condition:

𝑀𝑆𝑅 ≤ 𝑃. (4.39)

For the scaling ambiguities, we assume a priori knowledge of the first element of the
matrices S(𝑙), for 𝑙 ∈ {1, 𝐿}, e.g., 𝑠11 = 1. Under this assumption, 𝜆(𝑙) is calculated as:

𝜆(𝑙) = 𝑠(𝑙)11 , 𝜆
(𝐻) = (

∏

𝑙=1

𝐿𝑠(𝑙)11)
−1

. (4.40)

Table 22 – THOSVD receiver for estimation of the channels and symbol matrices.
THOSVD receiver for estimating symbol matrices S(𝑙) and the chan-
nelsℋ(𝑆𝑅) andℋ(𝑅𝐷).
Input: tensors 𝒳(𝑆𝑅), 𝒳(𝑅𝐷), 𝒢(𝑆), 𝒢(𝑅)
Output: Estimated symbol matrices and channels
First hop: source - relay
1) Calculate the LS estimate Z(𝑆𝑅) defined in (4.38).
2) Build the rank-one tensor 𝒵(𝑆𝑅) of size 𝑅1𝑁1 × ... × 𝑅𝐿𝑁𝐿 × 𝐹𝑀𝑆𝑀𝑅 from
Z(𝑆𝑅).
3) Compute the SVD of each mode-𝑛 unfolding of 𝒵(𝑆𝑅), and calculate
the estimates ŝ(𝑙) = vec (Ŝ

(𝑙)
) and ĥ

(𝑆𝑅)
= vec (Ĥ

(𝑆𝑅)
𝑀𝑅×𝐹𝑀𝑆

) as the first left
singular vector of each mode-𝑛 unfolding.
4) Unvectorize ŝ(𝑙) and ĥ

(𝑆𝑅)
to obtain the estimates ̂̂S(𝑙) and ̂̂H(𝑆𝑅)

𝑀𝑅×𝐹𝑀𝑆
.

5) Eliminate the scaling ambiguities.
6) Project the estimated symbols onto the symbol alphabet.

Second hop: relay - destination
- Apply the stages 1) to 6) of the first hop, using the correspondences (4.16)
and (4.17).
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4.3.3 Zero-forcing (ZF)-KronF receiver

To evaluate the impact of the design parameters on the system performance, we use
the zero-forcing (ZF)-KronF receiver, which assumes perfect channel knowledge. The LS
estimate of S is obtained using (4.28) or (4.30), withH(𝑆𝑅)

..𝑓[𝑖] replaced by the true channel slice
H(𝑆𝑅)

..𝑓 , which gives:

Ŝ
𝑇
𝑍𝐹 =

[(
I𝑃 ⊗ bdiag

(
H(𝑆𝑅)

..𝑓

))
G(𝑆)
𝑃𝐹𝑀𝑆×𝑅

]†
X(𝑆𝑅)
𝑃𝐹𝑀𝑅×𝑁

, (4.41)

or
Ŝ
𝑇
𝑍𝐹 =

(
G(𝑆)
𝑃𝐹𝑀𝑆×𝑅

)𝐻 (
I𝑃 ⊗ bdiag

(
H(𝑆𝑅)†

..𝑓

))
X(𝑆𝑅)
𝑃𝐹𝑀𝑅×𝑁

. (4.42)

As for the Bi-ALS algorithm, the use of (4.41) or (4.42) implies the following nec-
essary conditions: 𝑅 ≤ 𝑃𝐹𝑀𝑅 or 𝑅 ≤ 𝑃𝐹𝑀𝑆, and 𝑀𝑆 ≤ 𝑀𝑅. Then, the symbol matrices
S(𝑙) are estimated using the KronF algorithm as in the second step of the Bi-ALS-KronF
receiver. For the second hop, the ZF-KronF receiver is similar to the one in the first hop with
the correspondences (4.16) and (4.17),H(𝑅𝐷)

..𝑓 considered known and the matrix unfolding
G(𝑅)
𝑃𝐹𝑀𝑅×𝑅

chosen as a truncated DFTmatrix. The uniqueness of the ZF solution for the second
hop implies the necessary conditions: 𝑅 ≤ 𝑃𝐹𝑀𝐷 or 𝑅 ≤ 𝑃𝐹𝑀𝑅, and𝑀𝑅 ≤ 𝑀𝐷.

Table 23 – Identifiability conditions for the receivers.
Receiver Identifiability condi-

tions (First hop)
Identifiability condi-
tions (Second hop)

Bi-ALS-KronF 𝑅 ≤ 𝑃𝐹𝑀𝑅; 𝑅 ≤ 𝑃𝐹𝑀𝐷;
(4.27) and (4.28) 𝑀𝑆 ≤ 𝑃𝑁 𝑀𝑅 ≤ 𝑃𝑁
Bi-ALS-KronF 𝑀𝑆 ≤ min (𝑃𝑅,𝑀𝑅); 𝑀𝑅 ≤ min (𝑃𝑅,𝑀𝐷);
(4.29) and (4.30) 𝑅 ≤ min (𝑁, 𝑃𝐹𝑀𝑆) 𝑅 ≤ min (𝑁, 𝑃𝐹𝑀𝑅)
THOSVD 𝑀𝑆𝑅 ≤ 𝑃; 𝑀𝑅𝑅 ≤ 𝑃
ZF-KronF (4.41) 𝑅 ≤ 𝑃𝐹𝑀𝑅 𝑅 ≤ 𝑃𝐹𝑀𝐷
ZF-KronF (4.42) 𝑅 ≤ 𝑃𝐹𝑀𝑆;𝑀𝑆 ≤ 𝑀𝑅 𝑅 ≤ 𝑃𝐹𝑀𝑅;𝑀𝑅 ≤ 𝑀𝐷

Table 23 summarizes the necessary conditions for parameter identifiability with each
receiver. Comparing the identifiability conditions for the Bi-ALS-KronF algorithm (4.29)
and (4.30) with the ones for the Bi-ALS-KronF algorithms (4.27) and (4.28), we can deduce
some implications. Indeed, for the estimate (4.29), the conditions𝑀𝑆 ≤ 𝑃𝑅 and 𝑅 ≤ 𝑁 imply
𝑀𝑆 ≤ 𝑃𝑁, i.e., the identifiability condition for the LS solution (4.27). For the estimate (4.30),
the conditions 𝑅 ≤ 𝑃𝐹𝑀𝑆 and𝑀𝑆 ≤ 𝑀𝑅 imply 𝑅 ≤ 𝑃𝐹𝑀𝑅, i.e., the identifiability condition
for the LS solution (4.28). In other words, if the identifiability conditions for (4.29) and (4.30)
are satisfied, then the ones for the Bi-ALS algorithm (4.27) and (4.28) are automatically
satisfied. Note also that 𝑅 ≤ 𝑃𝐹𝑀𝑆 and𝑀𝑆 ≤ 𝑃𝑅 imply 𝑅 ≤ 𝑃2𝐹𝑅, which is always satisfied.
Therefore, the condition𝑀𝑆 ≤ 𝑃𝑅 can be discarded.
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Algorithms Computational Complexity
Bi-ALS-KonF 𝑂

(
𝐹3𝑀2

𝑆𝑃𝑁
)
+ 𝑂

(
𝑅2𝑃𝐹𝑀𝑅

)
+ 𝑂

((∑𝐿
𝑙=1𝑁𝑙𝑅𝑙

)∏𝐿
𝑞=1𝑁𝑞𝑅𝑞

)

(4.27) and (4.28)
Bi-ALS-KonF 𝑂

(
𝑀2

𝑆𝑃𝑅
)
+𝑂

(
𝑅2𝑁

)
+𝑂

(
𝐹3𝑀2

𝑅𝑀𝑆
)
+𝑂

((∑𝐿
𝑙=1𝑁𝑙𝑅𝑙

)∏𝐿
𝑞=1𝑁𝑞𝑅𝑞

)

(4.29) and (4.30)
THOSVD 𝑂

(
𝑃2𝐹𝑀𝑆𝑅

)
+𝑂

(
𝐹2𝑀2

𝑆𝑀𝑅
)
+𝑂

(
𝐹𝑀𝑆𝑀𝑅(

∑𝐿
𝑙=1𝑁𝑙𝑅𝑙)

∏𝐿
𝑞=1𝑁𝑞𝑅𝑞

)

Table 24 – Computational complexity of the Bi-ALS-KronF and THOSVD algorithms at the first hop.

We can also conclude that the THOSVD receiver is more restrictive than the Bi-
ALS receivers in the sense that a higher value of 𝑃 is required, implying a reduction in the
transmission rate. As the ZF-KronF receiver (4.42) only estimates the symbol matrices, its
identifiability conditions are a subset of those of the second Bi-ALS-KronF receiver.

4.4 Computational complexity

In this section, we compare the computational complexity of the proposed semi-blind
receivers THOSVD and Bi-ALS-KronF by evaluating the cost of SVD calculation, which
is the most expensive matrix operation. Note that for a matrix of dimensions 𝐼 × 𝐽, the
complexity of SVD computation of O(𝐼𝐽min(𝐼,𝐽)). The complexities are evaluated by taking
the identifiability conditions into account.

The complexity of the HOSVD algorithm for an 𝑁-th-order tensor 𝒳 ∈ ℝ𝐼1×...×𝐼𝑁

is of the order of 𝑂
(
(
∑𝑁

𝑛=1 𝐼𝑛)
∏𝑁

𝑞=1 𝐼𝑞
)
if 𝐼𝑛 ≤

∏𝑁
𝑞≠𝑛 𝐼𝑞, requiring to compute 𝑁 SVDs of

𝐼𝑛 × 𝐼𝑛+1...𝐼𝑁𝐼1...𝐼𝑛−1 matrices for 𝑛 ∈ {1, 𝑁}. The ALS algorithm requires, at each iteration,
the overall computational complexity 𝑂

(
𝑅2
∑𝑁

𝑛=1(
∏𝑁

𝑞≠𝑛 𝐼𝑞)
)
to compute the PARAFAC de-

composition of an 𝑁-order tensor 𝒳 ∈ ℂ𝐼1×...×𝐼𝑁 assumed to be of rank 𝑅. This algorithm
requires calculating𝑁 LS estimates, which need to pseudo-inverse

∏𝑁
𝑞≠𝑛 𝐼𝑞 ×𝑅matrices, for

𝑛 ∈ {1, 𝑁}. For estimating the 𝐿 symbol matrices from their Kronecker product, the KronF
algorithm has a complexity of 𝑂

(
(
∑𝐿

𝑙=1(𝑁𝑙𝑅𝑙)
∏𝐿

𝑞=1𝑁𝑞𝑅𝑞
)
flops.

In Table 24, the computational complexities of the Bi-ALS-KronF and THOSVD
receivers are compared for the first hop. The computational complexities for the second hop
can be easily derived using the correspondences (4.17) between the dimensions.

Note that, simplifying the pseudo-inverses in (4.27) and (4.28) results in less compu-
tational complexity for the Bi-ALS-KronF (4.29) and (4.30). Regarding the computational
complexity of the closed-form THOSVD receiver, it is generally lower than the one of the
iterative Bi-ALS algorithms, which depends on the number of iterations needed for conver-
gence.



95

4.5 Simulation results

In this section, we evaluate the performance of the proposed two-hop OFDM-CDMA
MIMO system and the associated receivers. First, in Section 4.5.1, we describe the simulations
and present the considered performance criteria. In Section 4.5.2, we study the impact of
design parameters on the SER, using the ZF-KronF receiver. Finally, in Section 4.5.3, the
proposed semi-blind receivers are compared in terms of SER and channel NMSE.

4.5.1 Description of the simulations

The noisy signals received at each hop, 𝒴(𝑆𝑅) and 𝒴(𝑅𝐷), respectively, are simulated as:

𝒴(𝑆𝑅) = 𝒳(𝑆𝑅) + 𝛼(𝑆𝑅)𝒩(𝑆𝑅) ∈ ℂ𝑀𝑅×𝑁1×...×𝑁𝐿×𝐹×𝑃, (4.43)

𝒴(𝑅𝐷) = 𝒳(𝑅𝐷) + 𝛼(𝑅𝐷)𝒩(𝑅𝐷) ∈ ℂ𝑀𝐷×𝑁1×...×𝑁𝐿×𝐹×𝑃, (4.44)

where𝒩(𝑆𝑅) ∈ ℂ𝑀𝑅×𝑁1×...×𝑁𝐿×𝐹×𝑃 and𝒩(𝑅𝐷) ∈ ℂ𝑀𝐷×𝑁1×...×𝑁𝐿×𝐹×𝑃 are additive white Gaussian
noise (AWGN) tensors whose entries are zero-mean circularly-symmetric complex-valued
Gaussian random variables, the tensors 𝒳(𝑆𝑅) and 𝒳(𝑅𝐷) contain the noise-free received
signals obtained by means of Eqs.(4.8) and (4.19), respectively, and 𝛼(𝑆𝑅) and 𝛼(𝑅𝐷) allow
fixing the SNR calculated as:

SNR(𝑆𝑅) = 20 log (
∥ 𝒳(𝑆𝑅) ∥𝐹

𝛼(𝑆𝑅) ∥𝒩(𝑆𝑅) ∥𝐹
) , (4.45)

SNR(𝑅𝐷) = 20 log (
∥ 𝒳(𝑅𝐷) ∥𝐹

𝛼(𝑅𝐷) ∥𝒩(𝑅𝐷) ∥𝐹
) , (4.46)

which gives 𝛼(𝑆𝑅) = ∥𝒳(𝑆𝑅)∥𝐹
∥𝒩(𝑆𝑅)∥𝐹

10−SNR∕20 and 𝛼(𝑅𝐷) = ∥𝒳(𝑅𝐷)∥𝐹
∥𝒩(𝑅𝐷)∥𝐹

10−SNR∕20. Note that the SNRs at the
relay and destination nodes are chosen equal in the simulations. The channel tensorsℋ(𝑆𝑅)

andℋ(𝑅𝐷) have i.i.d. complex Gaussian entries. The symbols of S(𝑙) are randomly generated
from the 64-QAM alphabet with a uniform distribution, for 𝑙 ∈ {1, 2}. It is worth mentioning
that our proposed coding scheme and semi-blind receivers are not dependent on a specific
choice for the modulation format as presented in [97, 98]. The proposed system may operate
with any modulation, although the resulting SER performance and transmission rate will
be affected by this choice. For instance, increasing the modulation cardinality of𝑀-PSK
(phase-shift keying) or𝑀-QAM type constellations (under the same total transmit power
constraint) would result in a higher transmission rate at the cost of an SER performance
degradation. In this work, we have adopted 64-QAM since it offers a good trade-off between
SER performance and transmission rate.

As mentioned before, the coding tensors are designed for each Monte Carlo run, in
such a way that, their matrix unfoldings G(𝑆)

𝑃𝐹𝑀𝑆×𝑅
and G(𝑅)

𝑃𝐹𝑀𝑅×𝑅
are truncated DFT matrices.
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The performance criteria, plotted versus SNR ∈ {−10, 20} dB, are calculated as:

NMSE(𝒵) = 1
𝐾

𝐾∑

𝑘=1

∥ 𝒵𝑘 − 𝒵𝑘 ∥2𝐹
∥ 𝒵𝑘 ∥2𝐹

, (4.47)

where 𝒵𝑘 is the tensor 𝒵𝑘 estimated at the 𝑘𝑡ℎ run, with 𝒵𝑘 ∈ {ℋ(𝑆𝑅)
𝑘 ,ℋ(𝑅𝐷)

𝑘 }. The SER and
NMSE are calculated by averaging the results over 𝐾 = 5 × 104 Monte Carlo runs, after
truncating the 5% worse and 5% better values to eliminate the influence of ill-convergence
and outliers.

The transmission rate 𝑇 in bits per channel is given by [76]:

𝑇 =
∑𝐿

𝑙=1𝑁𝑙𝑅𝑙 − 𝐿

𝐹𝑃
∏𝐿

𝑙=1𝑁𝑙

log2 (𝜇) , (4.48)

where
∑𝐿

𝑙=1𝑁𝑙𝑅𝑙 corresponds to the total number of transmitted symbols, 𝐿 is the number of
symbols assumed to be a priori known for ambiguity suppression, and 𝜇 denotes the number
of constellation points. Note that increasing the number 𝑁𝑙 of symbols in the symbol matrix
S(𝑙) induces an increase of coding diversity and a lower transmission rate 𝑇, while an increase
of the number 𝑃 of repetitions implies a decrease of 𝑇.

For bit rate note that as the number of symbols increases, more data bits are transmit-
ted per symbol, and we have a greater diversity of symbols. For example, 64-QAM is a QAM
scheme with 64 symbols, and 256-QAM is a scheme with 256 symbols. 256-QAM conveys
8 bits per symbol (as 256 = 28), so achieving twice the data rate of 16-QAM for the same
symbol rate. The bit rate is given by:

𝐵 = 𝑇
𝑇𝐵

(4.49)

where 𝑇 corresponds to the transmission rate in Eq. (4.48) that represents the number of
bits transmitted according to the modulation and 𝑇𝐵 is the bit time in seconds. Then,

𝐵 =
∑𝐿

𝑙=1𝑁𝑙𝑅𝑙 − 𝐿

𝐹𝑃
∏𝐿

𝑙=1𝑁𝑙

log2 (𝜇)
1
𝑇𝐵
. (4.50)

4.5.2 Impact of design parameters

In this section, we evaluate the SER performance of the proposed system under
perfect channel knowledge. In this case, we use the ZF-KronF receiver to estimate the
transmitted symbol matrices by means of Eq. (4.42). The results presented in Figs. 22-27
were obtained for both hops, but due to lack of place, some SER results are shown only for
the relay. All parameters used for the simulations are provided in Table 25. Note that the
default values of these parameters are chosen equal to two. The corresponding transmission
rates are given in Table 26.
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Figure 21 – Impact of numbers of symbols per data stream.

Figure 21 shows the impact on the SER for different numbers of symbols per data
stream: 𝑁1 = 𝑁2 ∈ {8, 12, 16}, where S𝑟𝑒𝑙𝑎𝑦 and S𝑑𝑒𝑠𝑡 denote the SER at the relay and the
destination, respectively. From these simulation results, it can be concluded that the SER
is improved when the numbers of symbols increase, which implies an increase of coding
diversity, since 𝑁 = 𝑁1𝑁2 is a dimension of the contracted form 𝒴(𝑆𝑅)

𝑐 and 𝒴(𝑅𝐷)
𝑐 of the

data tensors, which is not the case for 𝑅 = 𝑅1𝑅2. On the other hand, the transmission rate
decreases as shown in Table 26. In addition, note that the SER at the relay is better than
the one at the destination. This happens because, with the DF protocol, the symbols are
estimated and decoded before they are retransmitted by the relay to the destination, which
induces a propagation error due to the decoding.
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Table 25 – Parameters for the simulations.
Figures Impact of Parameters
Figure 21 Number of sym-

bols
(𝑀𝑆,𝑀𝑅,𝑀𝐷) = (2, 4, 6); 𝐹 = 2;𝑃 = 2;

per data stream 𝑅1 = 𝑅2 = 2; 𝑁1 = 𝑁2 ∈ {8, 12, 16}
Figure 22 Number of (𝑀𝑆,𝑀𝑅,𝑀𝐷) = (2, 4, 6); 𝐹 = 4;

data streams 𝑃 = 12; 𝑁1 = 𝑁2 = 4; 𝑅1 = 𝑅2 ∈ {4, 6, 8}
Figure 23 Different configu-

rations
(𝑀𝑆,𝑀𝑅,𝑀𝐷) = (2, 4, 6); 𝑃 = 𝐹 = 2;

for 𝑁1 and 𝑁2 𝑅1 = 𝑅2 = 2; 𝑁1 = 4; 𝑁2 = 12
Figure 24 Different (𝑀𝑆,𝑀𝑅,𝑀𝐷) = (2, 4, 6); 𝑁1 = 𝑁2 = 4;

𝑅1 = 𝑅2 = 2;
configurations for
(F, P)

(F, P) ∈ {(2,2), (4,2), (8,2), (2,4), (2,8)}

Figure 25 L = 2: 𝑁1 = 𝑁2 = 4; 𝑅1 = 𝑅2 = 4; 𝐹 = 8;
𝑃 = 12; (𝑀𝑆,𝑀𝑅,𝑀𝐷) = (8, 8, 9)

Number of L = 3: 𝑁1 = 𝑁2 = 4;
symbol 𝑁3 = 1; 𝑅1 = 4; 𝑅2 = 2; 𝑅3 = 9;
matrices 𝐹 = 8; 𝑃 = 12; (𝑀𝑆,𝑀𝑅,𝑀𝐷) = (8, 8, 9)

L = 5: 𝑁1 = 𝑁2 = 𝑁3 = 𝑁4 = 2; 𝑁5 = 1;
𝑅1 = 𝑅2 = 𝑅3 = 𝑅4 = 4; 𝑅5 = 3; 𝐹 = 8;
𝑃 = 12; (𝑀𝑆,𝑀𝑅,𝑀𝐷) = (8, 8, 9)

Figure 26 Different antenna 𝑁1 = 𝑁2 = 4; 𝑅1 = 𝑅2 = 2; 𝐹 = 2; 𝑃 = 4;
configurations (𝑀𝑆,𝑀𝑅,𝑀𝐷) ∈

{(2,4,6), (4,2,6), (2,2,4),(2,6,6)}
Figure 27 Comparison of the

TSTF-
(𝑀𝑆,𝑀𝑅,𝑀𝐷) = (2, 4, 6); 𝑁1 = 𝑁2 = 2;
𝑅1 = 3;

MSMKron and
TSTF codings

𝑅2 = 4; 𝐹 = 2; 𝑃 = 4; 𝑁 = 2; 𝑅 = 7

Figures 28-30 Comparison of the (𝑀𝑆,𝑀𝑅,𝑀𝐷) = (2, 4, 4); 𝑁1 = 𝑁2 = 4;
proposed semi-
blind receivers

𝑅1 = 𝑅2 = 2; 𝑃 = 18; 𝐹 = 2

Figures 22 to 27 present the SER obtained at the relay (S𝑟𝑒𝑙𝑎𝑦). Figure 22 compares
the SER for three different data stream numbers: 𝑅1 = 𝑅2 ∈ {4, 6, 8}. From this figure, it
can be concluded that increasing 𝑅1 and 𝑅2 implies an increase of the number of symbols
to be estimated without increasing the number of data in the tensor 𝒴(𝑆𝑅) for performing
the symbol estimation, thus inducing a degradation of the SER, while the transmission rate
increases (see Table 26).
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Figure 22 – Impact of data stream numbers.

Table 26 – Transmission rate for different configurations
Figures Parameters Transmission Rate

(bits per channel)
Figure 21 𝑁1 = 𝑁2 ∈ {8, 12, 16} T = 0.703; 0.479; 0.363
Figure 22 𝑅1 = 𝑅2 ∈ {4, 6, 8} T = 0.234; 0.359; 0.484
Figure 23 𝑁1 = 4; 𝑁2 = 12 T = 0.812
Figure 24 (𝐹,𝑃) ∈ {(2,2), (4,2), (8,2), (2,4), (2,8)} T = 1.312; 0.656; 0.328;

0.656; 0.328
Figure 25 𝐿 ∈ {2,3,5} T = 0.117
Figure 26 (𝑀𝑆,𝑀𝑅,𝑀𝐷) ∈

{(2,4,6), (4,2,6), (2,2,4), (2,6,6)}
T = 0.656

Figure 27 Comparison of the TSTF-MSMKron and
TSTF codings

T = 2.25; 𝑇S = 5.25

Figs. 28-30 Comparison of the proposed semi-blind
receivers

T = 0.145

In Figure 23, the simulation results compare the SER𝑔𝑙𝑜𝑏𝑎𝑙 with the individual SERs
for S(1) and S(2), when 𝑁1 = 4, 𝑁2 = 12 and 𝑅1 = 𝑅2 = 2. For this configuration, the
Kronecker product between S(1) and S(2) induces a greater diversity for S(1) than for S(2),
due to the fact that each symbol of S(1) is repeated 12𝑅2 times while each symbol of S

(2) is
repeated only 4𝑅1 times. That implies a SER smaller for S

(1) than for S(2).

Figure 24 presents the results considering different configurations for the numbers
of subcarriers (𝐹) and time blocks (𝑃). Note that a performance improvement is obtained
when 𝐹 and/or 𝑃 are/is increased due to an increase of frequency and/or time diversities.
On the other hand, the transmission rate decreases. We can also remark that for the same
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Figure 23 – Impact on the SER of individual symbol matrices.

Figure 24 – Impact of different configurations of (𝐹,𝑃).

value of the product 𝐹𝑃 = 8 or 𝐹𝑃 = 16, the diversity gain is the same, implying very close
SERs, which illustrates the symmetric role played by the frequency and time diversities in
the SER performance.

In Figure 25, we compare the SER for different numbers of symbol matrices (𝐿 ∈
{2, 3, 5}). The design parameters have been chosen so that the transmission rate is the same
for the three values of 𝐿. The TSTF-MSMKron scheme with 𝐿 = 5 provides the best SER
performance in comparison with 𝐿 ∈ {2, 3}. These results corroborate the coding gain
provided by the Kronecker product of symbol matrices.
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Figure 25 – Impact of 𝐿 on the SER.

In Figure 26, the SERs are plotted for different configurations of antenna numbers
(𝑀𝑆, 𝑀𝑅, 𝑀𝐷) ∈ {(2,4,6), (2,4,2), (4,2,6)}. Comparing these configurations, we note that the
best SER is obtained when𝑀𝐷 > 𝑀𝑅 > 𝑀𝑆. For the configuration (4,2,6), the SER is not
good in both at the relay and the destination, because the identifiability condition (𝑀𝑆 ≤ 𝑀𝑅)
at the relay is not satisfied. For the configuration (2,4,2), the SER at the relay is similar to
the one for the configuration (2,4,6) because the antenna numbers (𝑀𝑆,𝑀𝑅) are the same
for both configurations, but the SER at the destination is not good because the identifiability
condition (𝑀𝑅 ≤ 𝑀𝐷) at the destination is not satisfied for the configuration (2,4,2), which
is not the case of the configuration (2,4,6). With this last configuration, we note that the SER
at the relay is better than the one at the destination.

In Figure 27, the proposed TSTF-MSMKron coding is comparedwith the TSTF coding,
i.e., using a single symbolmatrix S ∈ ℂ𝑁×𝑅 instead of amultiple Kronecker product of symbol
matrices. With the TSTF coding, the symbol matrix is estimated using Eq. (4.28), and the
transmission rate is given by:

𝑇S =
𝑅
𝐹𝑃 log2(𝜇). (4.51)

For both codings, the number (14) of transmitted symbols is the same. See the design
parameters in Table 25.

As expected, from Figure 27, we conclude that the TSTF-MSMKron coding gives
a better SER than the TSTF coding thanks to a greater coding diversity brought by the
Kronecker product of symbol matrices. In counterpart, the transmission rate with the TSTF-
MSMKron coding is smaller than the one with the TSTF coding. See Table 26.

We can draw the following conclusions about the new TSTF-MSMKron coding based
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Figure 26 – Impact of different numbers of antennas.

Figure 27 – Comparison of the TSTF-MSMKron and TSTF codings.
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on analyzing the above presented experimental results:

• space diversity is provided by both the relay/destination antennas (𝑀𝑅,𝑀𝐷) and the
coding tensors (𝒢(𝑆),𝒢(𝑅)) via the source/relay antennas (𝑀𝑆,𝑀𝑅), respectively, imply-
ing an increase of the dimensions of the received signals tensor at each hop, and a
greater redundancy in the transmitted symbols, respectively;

• time and frequency diversities are provided by the transmission in 𝑃 blocks and 𝐹
subcarries which implies a repetition of transmitted symbols and an increase of the
number of received signals;

• coding diversity is introduced by theTSTF-MSMKron codingwhich creates redundancy
of each transmitted symbol while increasing the number of received signals via the
dimensions 𝑁𝑙 of the received signals tensor.

Space, time, frequency and coding diversities are highlighted in the expressions (4.7)
and (4.18) of received signals at each hop, respectively, owing the sums on source/relay
antennas due to the tensor coding, and on the numbers of symbols contained in each
data stream, as resulting from cross-multiplications between symbols provided by multiple
Kronecker products which define the MSMKron coding.

4.5.3 Comparison of THOSVD and Bi-ALS-KronF receivers

In the next experiments, we compare the SERs obtainedwith the proposed semi-blind
and ZF-KronF receivers. First, the results are presented in terms of SER at the relay (S𝑟𝑒𝑙𝑎𝑦 -
Figure 28) and the destination (S𝑑𝑒𝑠𝑡. - Figure 29). Then, we compare the performance of semi-
blind receivers, in terms of channel NMSE at each hop (Figure 30). For these simulations, the
design parameters are fixed with the following values:𝑀𝑆 = 2,𝑀𝑅 = 𝑀𝐷 = 4, 𝑁1 = 𝑁2 = 4,
𝑅1 = 𝑅2 = 2, 𝑃 = 18, and 𝐹 = 2.

From Figures 28 and 29, we can conclude that the THOSVD receiver provides a better
SER performance than the Bi-ALS-KronF receiver. That is due to the closed form of the
THOSVD receiver allowing to jointly estimate the channel and symbol matrices, while the
Bi-ALS-KronF receiver is composed of two steps, one iterative and one closed-form. On the
other hand, the THOSVD receiver is more constraining in terms of identifiability conditions
(𝑀𝑆𝑅 ≤ 𝑃) than the Bi-ALS-KronF receiver, inducing a reduction of the transmission rate,
as can be seen in Table 26. It can also be noted that the SER at the relay is better than the
one at the destination due to error propagation caused by decoding at the relay. As expected,
the ZF-KronF receiver provides the best SER due to a priori knowledge of the channels.

In Figure 30, the channel NMSE results obtained at each hop are plotted. Note that
the THOSVD receiver gives better results than the Bi-ALS-KronF one. As for the SER, this
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Figure 28 – SER comparison with THOSVD, Bi-ALS-KronF Eqs.(4.29)-(4.30) and ZF receivers at the
relay.

Figure 29 – SER comparison with THOSVD, Bi-ALS-KronF Eqs.(4.29)-(4.30) and ZF receivers at the
destination.
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Figure 30 – Channel NMSE comparison with THOSVD and Bi-ALS-KronF Eqs.(4.29)-(4.30)
receivers.

is because the THOSVD is a closed-form solution, while the Bi-ALS algorithm is iterative.
Moreover, the channel estimation in the first hop is slightly better than the one in the second
hop. This is due to error propagation in the retransmission of symbol matrices after decoding
at the relay.

In Table 24, a comparison of the complexities of Bi-ALS-KronF receiver, both versions
corresponding to Eqs.(4.27)-(4.28) and Eqs.(4.29)-(4.30) and THOSVD is provided. Based
on this table we can define the ratios 𝑂1 = 𝑂𝐵𝑖−𝐴𝐿𝑆−𝐾𝑟𝑜𝑛𝐹(4.27)−(4.28)∕𝑂𝐵𝑖−𝐴𝐿𝑆−𝐾𝑟𝑜𝑛𝐹(4.29)−(4.30),
𝑂2 = 𝑂𝑇𝐻𝑂𝑆𝑉𝐷∕𝑂𝐵𝑖−𝐴𝐿𝑆−𝐾𝑟𝑜𝑛𝐹(4.27)−(4.28) and 𝑂3 = 𝑂𝑇𝐻𝑂𝑆𝑉𝐷∕𝑂𝐵𝑖−𝐴𝐿𝑆−𝐾𝑟𝑜𝑛𝐹(4.29)−(4.30), which ex-
presses how many times Bi-ALS-KronF (4.27)-(4.28) is more computational complexity than
Bi-ALS-KronF (4.29)-(4.30) and how many times THOSVD is more complexity demanding
than Bi-ALS-KronF algorithms. We have

𝑂1 =
𝑖1
(
𝐹3𝑀2

𝑆𝑃𝑁 + 𝑅2𝑃𝐹𝑀𝑅
)
+
(∑𝐿

𝑙=1𝑁𝑙𝑅𝑙
)∏𝐿

𝑞=1𝑁𝑞𝑅𝑞

𝑖2
(
𝑀2

𝑆𝑃𝑅 + 𝑅2𝑁 + 𝐹3𝑀2
𝑅𝑀𝑆

)
+
(∑𝐿

𝑙=1𝑁𝑙𝑅𝑙
)∏𝐿

𝑞=1𝑁𝑞𝑅𝑞
(4.52)

𝑂2 =
𝑃2𝐹𝑀𝑆𝑅 + 𝐹2𝑀2

𝑆𝑀𝑅 + 𝐹𝑀𝑆𝑀𝑅(
∑𝐿

𝑙=1𝑁𝑙𝑅𝑙)
∏𝐿

𝑞=1𝑁𝑞𝑅𝑞

𝑖1
(
𝐹3𝑀2

𝑆𝑃𝑁 + 𝑅2𝑃𝐹𝑀𝑅
)
+
(∑𝐿

𝑙=1𝑁𝑙𝑅𝑙
)∏𝐿

𝑞=1𝑁𝑞𝑅𝑞
(4.53)

𝑂3 =
𝑃2𝐹𝑀𝑆𝑅 + 𝐹2𝑀2

𝑆𝑀𝑅 + 𝐹𝑀𝑆𝑀𝑅(
∑𝐿

𝑙=1𝑁𝑙𝑅𝑙)
∏𝐿

𝑞=1𝑁𝑞𝑅𝑞

𝑖2
(
𝑀2

𝑆𝑃𝑅 + 𝑅2𝑁 + 𝐹3𝑀2
𝑅𝑀𝑆

)
+
(∑𝐿

𝑙=1𝑁𝑙𝑅𝑙
)∏𝐿

𝑞=1𝑁𝑞𝑅𝑞
(4.54)

where 𝑖1 and 𝑖2 are the average numbers of iterations for convergence of the Bi-ALS-KronF
(4.27)-(4.28) and Bi-ALS-KronF (4.29)-(4.30) algorithms, respectively. Figure 31 shows the
complexity ratios𝑂1,𝑂2 and𝑂3 calculated using average values for 𝑖1 and 𝑖2 obtained from all
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Figure 31 – Complexity ratio of THOSVD, Bi-ALS-KronF Eqs.(4.29)-(4.30) and Bi-ALS-KronF
Eqs.(4.27)-(4.30x) receivers.

theMonte Carlo runs and considering the variation of the number of time blocks 𝑃 ∈ {18, 26}.
From this figure, we can note that even as the number of time blocks increases, the complexity
ratios 𝑂2 and 𝑂3 for the three receivers are linear, while the complexity ratio 𝑂1 for Bi-
ALS-KronF Bi-ALS-KronF (4.27)-(4.28) compared to Bi-ALS-KronF (4.29)-(4.30) increases
as 𝑃 increases. The Bi-ALS-KronF (4.29)-(4.30) is much less computationally demanding
than Bi-ALS-KronF (4.27)-(4.28) and THOSVD algorithms due the simplification of the
pseudo-inverse where this algorithm needs less number of iterations to converge, such that
𝑂𝐵𝑖−𝐴𝐿𝑆−𝐾𝑟𝑜𝑛𝐹(4.27)−(4.28) >> 𝑂𝑇𝐻𝑂𝑆𝑉𝐷 >> 𝑂𝐵𝑖−𝐴𝐿𝑆−𝐾𝑟𝑜𝑛𝐹(4.29)−(4.30).

4.6 Chapter summary

In this chapter, we have proposed a new coding scheme based on the multiple
Kronecker product of symbolmatrices, leading to the so-calledMSMKron coding. Combining
the MSMKron with the TSTF to transmit the symbols we propose the TSTF-MSMKron
coding. This new coding makes it possible to improve the gains in diversity and throughput.
Based on the proposed TSTF-MSMKron, a new two-hop CDMA-OFDMMIMO system was
proposed. We have shown that the tensors of signals received at the relay and destination
nodes satisfy two generalized Tucker models whose core tensors are the TSTF coding tensors.
The contributions in this chapter extend previous works in different ways, either by using a
new coding or extending to a newly received signal tensor model.

By assuming the TSTF coding tensors known, two semi-blind receivers have been
derived to jointly estimate the transmitted information symbols and the channels. One
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called the Bi-ALS-KronF receiver, is composed of two stages. The first stage is based on the
iterative ALS algorithm to estimate the Kronecker product S and the channels, while the
second stage applies the closed-form KronF algorithm to separate the symbol matrices. The
other one, called THOSVD receiver, is a closed-form solution that allows simultaneously
estimating the channel and the symbol matrices by means of SVD computations as with the
KronFmethod. Necessary conditions for system identifiability have been established for each
receiver, showing that the THOSVD receiver is more constraining than the Bi-ALS-KronF
one for the choice of the number of time blocks and consequently from the data rate point
of view.

Extensive Monte Carlo simulations have allowed us to illustrate the impact of all
the design parameters on the SER performance. The performances of the proposed semi-
blind receivers have been compared in terms of SER and channel NMSE. As expected, the
closed-form THOSVD receiver outperforms the iterative Bi-ALS-KronF receiver. Moreover, a
comparison with the standard TSTF coding has corroborated the SER improvement brought
by the MSMKron coding which allows to increase the diversity gain. Also, regarding the
parameters, it can be noted that the system configuration influences the efficiency of the
parameter estimation.



108

5 Conclusions and Perspectives

5.1 Conclusions

This thesis has addressed the study of semi-blind receivers applied to point-to-point
and two-hop MIMO systems. In particular, a new coding called TSTF-MSMKron and a
particular case of the MKRST coding were proposed. By exploiting the proposed codings,
new received signal models based on tensor decomposition and new semi-blind receivers
were presented that perform the joint estimation of the transmitted symbols and the channels.
Performance analysis of each proposed system was provided to illustrate its behavior and
effectiveness, evaluating the improvements of the techniques addressed for MIMO systems.
In the sequel, we provide a brief conclusion of each chapter that has proposed original
contributions.

In Chapter 3, we presented a particular case of the MKRST coding where the pre-
coding matrix corresponds to a symbol matrix that is assumed known. It allows us to
propose a new point-to-point MIMO system based on tensor decomposition. By exploiting
the proposed received signal tensor model, we have derived five semi-blind receivers to
jointly estimate the transmitted symbols and channel. Simulation results showed that the
MKRST coding increases spatial diversity when the number of symbols per data stream or
the number of received antennas increases. Based on the results, also note that the semi-
blind receivers are efficient, especially when based on closed-form solutions, to estimate the
parameters without channel knowledge, knowing only the pilot symbol matrix.

In Chapter 4, we proposed a new coding scheme based on the multiple Kronecker
product of symbol matrices, leading to the so-called MSMKron coding. Combining the
proposed MSMKron with the TSTF coding to transmit the symbols, we proposed a new
coding called TSTF-MSMKron. This new coding makes it possible to improve gains in time,
frequency and space diversity and throughput. TSTF-MSMKron coding allows us to propose
a new two-hop CDMA-OFDMMIMO. We have shown that the tensors of signals received at
the relay and destination nodes satisfy two generalized Tuckermodels whose core tensors are
the TSTF coding tensors. By exploiting the proposed received signal tensor model, we have
derived two semi-blind receivers to jointly estimate the transmitted symbols and channels.
The first proposed receiver was based on the Bi-ALS and KronF algorithms, where the
first was applied to estimate the channel and the Kronecker product, while the second
was applied to separate the symbol matrices. The second proposed receiver is based on the
closed-form THOSVD algorithm which allows simultaneously estimating the channel and
the symbol matrices by means of SVD computations as with the KronF method. Simulation
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results allowed us to illustrate the impact of the design parameters on the SER performance.
TSTF-MSMKron coding provides an increase in spatial, time and frequency diversities when
the number of symbols per data stream or the number of antennas at the relay or destination
increases. The semi-blind receivers are efficient, especially when they are based on closed-
form solutions, to estimate the parameters without channel knowledge, knowing only one
symbol of each symbol matrix. On the other hand, the closed-form THOSVD receiver is more
constraining than the iterative Bi-ALS-KronF one in terms of the number of time blocks
and consequently from the data rate point of view.

5.2 Perspectives and next steps

Given the results presented and the main conclusions highlighted above, in this
section, we raise the main perspectives that can be derived from the research carried out in
this thesis:

• To extend the two-hop MIMO systems proposed for the multi-hop case using the
amplify-and-forward (AF) protocol, and present new receivers to jointly estimate the
channels and symbols. In addition, study different settings of the codings applied at
the source and at the relay.

• To take into account allocation tensors as in [35] combined with the coding extensions
presented and to propose new received signals tensor models and receivers to estimate
the symbols and the channels in multi-hop MIMO systems. The allocation tensors
allow us to control the sending and receiving of the symbols and can indicate which
antenna transmitted or received the information.

• To develop relaying systems with TSTF-MSMKron coding for double directional dual-
polarized MIMO systems and IRS-assisted systems.
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Introdução

Os sistemas de comunicação sem fio experimentaram grande crescimento no número
de usuários desde o início dos anos 90 [1]. O surgimento de dispositivos conectados e a
introdução de novos aplicativos, como veículos autônomos, cidades inteligentes, casas in-
teligentes, Internet das Coisas (IoT) e realidade virtual, abriram o caminho para a integração
de sistemas MIMO sem fio, do inglêsmultiple input multiple output [2]. Os sistemas MIMO
foram projetados para suportar a crescente demanda por serviços multimídia de alta quali-
dade, com as melhores compensações entre o desempenho do erro em termos de SER (do
inglês, symbol error rate), taxa de transmissão, etc. Esses sistemas usam várias antenas nas
extremidades do transmissor e do receptor, o que permite o aumento da diversidade de
espaço e leva a sistemas de comunicação com canais MIMO. A implantação de múltiplas
antenas em sistemas sem fio permite melhorar a confiabilidade em termos da taxa de erro e
da taxa de transmissão em relação aos sistemas de antena de transmissão única, mantendo a
mesma largura de banda de energia e transmissão [3,4,5,6].

Nos últimos anos, os sistemas MIMO cooperativos atraíram muita atenção para
as redes móveis 5G por aumentar a área de cobertura de transmissão, taxas de dados e
desempenho de comunicações sem fio [10]. Os ganhos dos sistemas MIMO cooperativos
estão relacionados à diversidade espacial pelo uso de múltiplas antenas para transmitir
e receber sinais e multiplexação espacial relacionada ao uso de múltiplas antenas para
transmitir fluxos de dados independentes.
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Durante as últimas décadas, os modelos tensoriais tem sido amplamente utilizados
para projetar sistemas de comunicação sem fio [13, 14, 15, 16, 17]. Veja o seu uso no contexto
de sistemas MIMO ponto a ponto [18, 19], e sistemas MIMO cooperativos 20, 21, 22, 23, 24,
25]. Os modelos tensoriais têm a capacidade de capturar a natureza multidimensional do
canal sem fio, bem como suas propriedades exclusivas [26, 27]. Essas abordagens também
nos permitem desenvolver receptores semi-cegos para estimar em conjunto os canais e as
matrizes de símbolos, sob condições mais relaxadas do que os métodos baseados em matriz.
No contexto de sistemas cooperativos, alguns resultados foram publicados em receptores
baseados em tensores. Alguns trabalhos são dedicados ao uso de sequências de treinamento
para estimar os canais de maneira supervisionada, como em [28, 29] onde múltiplos links do
relé são explorados para estimar todos os canais parciais envolvidos na comunicação. Esses
trabalhos dependem de métodos supervisionados de estimativa de canal, que podem ser
consumidos por largura de banda, especialmente para um moderado a grande número de
antenas. Isso explica o desenvolvimento de receptores semi-cegos para estimar em conjunto
os símbolos de informação transmitidos e os canais, isto é, sem o uso de sequências de
treinamento, como no caso dos sistemas introduzidos brevemente.

Para melhorar a estimativa das informações transmitidas, também é necessário ex-
plorar as codificações de espaço, tempo e frequência. Vários trabalhos combinam sistemas
MIMO cooperativos com codificações de espaço/tempo/frequência para aumentar a diversi-
dade do sistema e obter o melhor desempenho na estimativa dos símbolos e do canal [17,
32, 33, 34]. Dependendo da codificação escolhida para o sistema de relé, diferentes modelos
de tensores são obtidos para os sinais recebidos nos nós de relé e destino. A exploração
desses modelos permite derivar duas famílias de receptores. A primeira são os receptores
supervisionados e a segunda são os receptores semi-cegos.

Nesta tese, abordamos novos receptores semi-cegos para estimar em conjunto as
matrizes de canal e dos símbolos nos sistemas de comunicação MIMO ponto a ponto e
cooperativos. Em particular, uma das principais contribuições desta tese depende do novo
esquema de codificação obtido pela combinação das codificações TSTF e MSMKron nos nós
da fonte e retransmissão . Esse novo esquema de codificação, chamado de codificação TSTF-
MSMKron pode ser visto como uma generalização das codificações propostas em [33] e [35].
A codificação TSTF-MSMKron é aplicada a um sistema de comunicação OFDM-CDMA de
dois saltos. Além disso, apresentamos um caso particular da codificação MKRST, onde uma
matriz de símbolos é assumida conhecida, sendo assim considerada como a matriz de pré-
codificação. A codificação MKRST é aplicada a um sistema MIMO ponto a ponto. Ao aplicar
as codificações propostas, novos modelos de sinais recebidos com base nas decomposições
tensoriais são apresentados e, ao explorar esses modelos, receptores semi-cegos são propostos
para estimar em conjunto as matrizes de símbolos transmitidos e dos canais em sistemas
MIMO de dois saltos e ponto a ponto. São realizadas extensas simulações de Monte Carlo
para ilustrar o comportamento e a eficácia dos esquemas propostos.
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Modelo do sistema

Considere um sistema MIMO OFDM-CDMA de dois saltos equipado com𝑀𝑆,𝑀𝑅 e
𝑀𝐷 antenas nos nós da fonte, relé e destino, respectivamente. Os canais fonte-relé (ℋ(𝑆𝑅) ∈
ℂ𝑀𝑅×𝑀𝑆×𝐹) e relé-destino (ℋ(𝑅𝐷) ∈ ℂ𝑀𝐷×𝑀𝑅×𝐹) são assumidos como flat Rayleigh fading, rep-
resentado por tensores de 3-ordem cujo os coeficientes são variáveis aleatórias independente
e identicamente distribuídas, constantes durante os últimos 𝑃 blocos de transmissão.

O protocolo DF é considerado no relé, e a transmissão ocorre em dois saltos. Durante
o primeiro salto, os símbolos codificados são transmitidos pela fonte para o relé, através do
canalℋ(𝑆𝑅), e decodificados no relé. Durante o segundo salto, os símbolos estimados são
recodificados e depois re-transmitidos pelo relé para o destino através do canalℋ(𝑅𝐷). Cada
matriz de símbolos S(𝑙) = [𝑠(𝑙)𝑛𝑙 ,𝑟𝑙] ∈ ℂ𝑁𝑙×𝑅𝑙 , com 𝑟𝑙 ∈ {1, 𝑅𝑙}, 𝑛𝑙 ∈ {1, 𝑁𝑙}, para 𝑙 ∈ {1, 𝐿}, é
composta de 𝑅𝑙 fluxos de dados, cada um contendo 𝑁𝑙 símbolos.

O sinal recebido no relé forma um sinal 𝒳(𝑆𝑅) que satisfaz a decomposição Tucker-
(𝐿 + 1, 𝐿 + 3) generalizada dada por:

𝒳(𝑆𝑅) = 𝒢(𝑆) ×1 ℋ(𝑆𝑅) ×2 S
(1) ×3 ... ×𝐿+1 S

(𝐿) ×𝐿+2 I𝐹 ×𝐿+3 I𝑃, (A.1)

onde S(𝑙) são os símbolos decodificados pela codificação TSTF-MSMKron para 𝑙 ∈ {1, 𝐿} e
𝒢(𝑆) é o tensor do núcleo do modelo Tucker. O conhecimento do tensor do núcleo implica a
unicidade desse modelo. O sinal recebido no destino é similar ao sinal recebido no relé com
as seguintes correspondências:

(
𝒢(𝑆),ℋ(𝑆𝑅),S(𝑙)

)
↔

(
𝒢(𝑅),ℋ(𝑅𝐷),S(𝑙)𝑅

)
, (A.2)

(𝑀𝑅,𝑀𝑆)↔ (𝑀𝐷,𝑀𝑅) , (A.3)

tal que:
𝒳(𝑅𝐷) = 𝒢(𝑅) ×1 ℋ(𝑅𝐷) ×2 S

(1)
𝑅 ×3 ... ×𝐿+1 S

(𝐿)
𝑅 ×𝐿+2 I𝐹 ×𝐿+3 I𝑃, (A.4)

onde 𝒳(𝑅𝐷) ∈ ℂ𝑀𝐷×𝑁1×...×𝑁𝐿×𝐹×𝑃. O sistema relé OFDM-CDMA proposto é ilustrado na
Figura 32.
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Figure 32 – Diagrama de blocos do sistema de comunicação MIMO OFDM-CDMA proposto.

Receptores semi-cegos

Dois receptores semi-cegos são apresentados para estimar os tensores do canal e as
matrizes de símbolos, nos nós de relé e destino. Assumimos que os tensores de codificação
𝒢(𝑆) e 𝒢(𝑅) são conhecidos. Também assumimos que um símbolo de cada matriz de símbolos
é conhecido para eliminar ambiguidades de escala. As matrizes de símbolo S(𝑙) e o tensor
do canalℋ(𝑆𝑅) são estimados no relé, enquanto as matrizes de símbolos S(𝑙)𝑅 e o tensor do
canalℋ(𝑅𝐷) são estimados no destino. Os receptores propostos são detalhados para o relé.
Os mesmos receptores podem ser derivados para o destino, usando as correspondências
(A.2) e (A.3). O primeiro receptor é baseado no algoritmo ALS para estimar o canal e o
produto Kronecker entre as matrizes de símbolos, seguido pelo método KronF para separar
as matrizes de símbolos, enquanto o segundo é uma solução de forma fechada, permitindo
que estime em conjunto o canal e as matrizes de símbolos através do algoritmo THOSVD.
Os dois receptores são apresentados nas tabelas a seguir.
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Table 27 – Receptor Bi-ALS-KronF para estimação dos canais e matrizes de símbolos.
Receptor Bi-ALS-KronF para estimar S(𝑙),ℋ(𝑆𝑅) eℋ(𝑅𝐷).
Entrada: tensores 𝒳(𝑆𝑅), 𝒳(𝑅𝐷), 𝒢(𝑆), 𝒢(𝑅)
Saída:Matrizes de símbolos e canais estimados
Primeiro salto: fonte - relé
- Etapa 1: algoritmo Bi-ALS
𝑖𝑡 = 0
1) Inicialização de S(𝑙)[0] com símbolos gerados aleatóriamente apartir do
alfabeto e 𝑠(𝑙)11 = 1, para 𝑙 ∈ {1, 𝐿}.
2) Atualiza as estimações deH(𝑆𝑅)

𝐹𝑀𝑆×𝑀𝑅
e S usando Eqs.(4.27)-(4.28) ou (4.29)-

(4.30).
3) Calcula o erro (4.31) e |𝑒𝑟𝑟[𝑖 − 1] − 𝑒𝑟𝑟[𝑖]|.
-se |𝑒𝑟𝑟[𝑖 − 1] − 𝑒𝑟𝑟[𝑖]| ≤ 𝜖 ou 𝑖𝑡 = número máximo de iterações
- para
- caso contrário 𝑖𝑡 → 𝑖 + 1;
4) Elimina as ambiguidades de escala usando Eq.(4.35).

- Etapa 2: algoritmo KronF
5) Constrói o tensor de posto um: ̂̂𝒮 = reshape

( ̂̂S, [𝑅1𝑁1,...,𝑅𝐿𝑁𝐿]
)
.

6) Estima cada vetor ŝ(𝑙) através do algoritmo KronF na Tabela 1, e desve-
toriza com a Eq.(4.33).
7) Elimina as ambiguidades de escala usando Eq.(4.37).
8) Projeta os símbolos estimados no alfabeto do símbolo.

Segundo salto: relé - destino
- Etapa 1: algoritmo Bi-ALS
- Aplica os estágios 1) ao 4) do primeiro salto, usando as correspondências
(A.2)-(A.3).

- Etapa 2: algoritmo KronF
- Aplica as etapas 5) ao 8) do primeiro salto, usando as correspondências
(A.2)-(A.3).
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Table 28 – Receptor THOSVD para estimação dos canais e matrizes de símbolos.
Receptor THOSVD para estimar S(𝑙),ℋ(𝑆𝑅) eℋ(𝑅𝐷).
Entrada: tensores 𝒳(𝑆𝑅), 𝒳(𝑅𝐷), 𝒢(𝑆), 𝒢(𝑅)
Saída: Canais e matrizes de símbolos estimados
Primeiro salto: fonte - relé
1) Calcula a estimação LS Z(𝑆𝑅) definida em (4.38).
2) Constrói o tensor de posto um𝒵(𝑆𝑅) de tamanho𝑅1𝑁1×...×𝑅𝐿𝑁𝐿×𝐹𝑀𝑆𝑀𝑅

a partir de Z(𝑆𝑅).
3) Calcula a SVD de cada desdobramento de modo-𝑛 de 𝒵(𝑆𝑅), e calcula a
estimação ŝ(𝑙) = vec (Ŝ

(𝑙)
) e ĥ

(𝑆𝑅)
= vec (Ĥ

(𝑆𝑅)
𝑀𝑅×𝐹𝑀𝑆

) como o primeiro vetor
singular esquerdo de cada desdobramento de modo-𝑛.
4) Desvetoriza ŝ(𝑙) e ĥ

(𝑆𝑅)
para obter a estimação ̂̂S(𝑙) e ̂̂H(𝑆𝑅)

𝑀𝑅×𝐹𝑀𝑆
.

5) Elimina as ambiguidades de escala.
6) Projeta os símbolos estimados no alfabeto do símbolo.

Segundo salto: relé - destino
- Aplica as etapas 1) ao 6) do primeiro salto,usando as correspondências
(A.2)-(A.3).

Resultados

Impacto dos parâmetros de design

Nesta seção, avaliamos o desempenho da SER do sistema proposto sob o conheci-
mento perfeito do canal. Nesse caso, usamos o receptor ZF-KronF para estimar as matrizes
de símbolo transmitido por meio da Eq. (4.42). Os resultados apresentados nas Figuras 34 a
38 foram obtidos para ambos os saltos, mas aqui são apresentados apenas para o relé.

Figura 33 apresenta o impacto na SER para diferentes números de símbolos por
fluxo de dados: 𝑁1 = 𝑁2 ∈ {8, 12, 16}, onde S𝑟𝑒𝑙𝑎𝑦 e S𝑑𝑒𝑠𝑡 denotam a SER no relé e no
destino, respectivamente. A partir desses resultados de simulação, pode-se concluir que
a SER melhora quando o número de símbolos aumenta, o que implica um aumento da
diversidade de codificação, pois𝑁 = 𝑁1𝑁2 é uma dimensão da forma contraída 𝒴

(𝑆𝑅)
𝑐 e 𝒴(𝑅𝐷)

𝑐

nos tensores de dados, o que não é o caso de 𝑅 = 𝑅1𝑅2. Por outro lado, a taxa de transmissão
diminui como mostrado na Tabela 26. Além disso, observe que a SER no relé é melhor
que a no destino. Isso acontece porque, com o protocolo DF, os símbolos são estimados e
decodificados antes de serem retransmitidos pelo relé para o destino, o que induz um erro
de propagação devido à decodificação.
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Figure 33 – Impacto do número de símbolos por fluxo de dados.

Figuras 34 a 38 apresentam a SER obtida no relé (S𝑟𝑒𝑙𝑎𝑦). Figura 22 compara a SER
para três diferentes números de fluxos de dados: 𝑅1 = 𝑅2 ∈ {4, 6, 8}. A partir desta figura,
pode-se concluir que o aumento de 𝑅1 e 𝑅2 implica um aumento do número de símbolos a
serem estimados, sem aumentar o número de dados no tensor 𝒴(𝑆𝑅) para estimar os símbolos,
induzindo assim uma degradação da SER, enquanto a taxa de transmissão aumenta (veja
Tabela 26).

Figure 34 – Impacto do número de fluxos de dados.

Na Figura 35, os resultados das simulações comparam a SER𝑔𝑙𝑜𝑏𝑎𝑙 com as SERs
individuais para S(1) e S(2), quando 𝑁1 = 4, 𝑁2 = 12 e 𝑅1 = 𝑅2 = 2. Considerando essa
configuração, o produto de Kronecker para S(1) e S(2) induz uma alta diversidade para S(1)

que para S(2), devido ao fato de que cada símbolo de S(1) é repetido 12𝑅2 vezes enquanto cada
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símbolo de S(2) é repetido somente 4𝑅1 vezes. O que implica em uma menor SER para S(1)

que para S(2).

Figure 35 – Impacto na the SER matrizes de símbolos individuais.

Figura 36 apresenta os resultados considerando diferentes configurações para o
número de subportadoras (𝐹) e blocos de tempo (𝑃). Observe que uma melhoria de desem-
penho é obtida quando𝐹 e/ou 𝑃 são/é aumentado(s), devido a um aumento da diversidade da
frequência e/ou de tempo. Por outro lado, a taxa de transmissão diminui. Também podemos
observar que, para o mesmo valor do produto 𝐹𝑃 = 8 ou 𝐹𝑃 = 16, o ganho da diversidade é
o mesmo, implicando SERs muito próximas, o que ilustra o papel simétrico desempenhado
pela diversidade da frequência e do tempo no desempenho da SER.

Figure 36 – Impacto das configurações diferentes de (𝐹,𝑃).

Na Figura 37, a SER é comparada para diferentes números de matrizes de símbolos
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(𝐿 ∈ {2, 3, 5}). Os parâmetros de design foram escolhidos para que a taxa de transmissão seja
a mesma para os três valores de 𝐿. A codificação MSMKron com 𝐿 = 5 fornece o melhor
desempenho da SER em comparação com 𝐿 ∈ {2, 3}. Esses resultados corroboram o ganho
de codificação fornecido pelo produto de Kronecker das matrizes de símbolos.

Figure 37 – Impacto de 𝐿 na SER.

Na Figura 38, a codificação TSTF-MSMKron proposta é comparada com a codificação
TSTF, ou seja, usando apenas uma matriz de símbolos S ∈ ℂ𝑁×𝑅 ao invés de um produto de
Kronecker de várias matrizes de símbolos. Com a codificação TSTF, a matriz de símbolos é
estimada usando a Eq. (4.28). Como esperado, a partir da Figura 38, nós concluímos que a
codificação TSTF-MSMKron fornece uma melhor SER do que a codificação TSTF, graças
a uma maior diversidade de codificação imposta pelo produto de Kronecker das matrizes
de símbolos. Em contrapartida, a taxa de transmissão para a codificação TSTF-MSMKron é
menor que a taxa de transmissão com a codificação TSTF. Veja Tabela 26.
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Figure 38 – Comparação das codificações TSTF-MSMKron e TSTF.

Comparação dos receptores THOSVD e Bi-ALS-KronF

A partir das Figuras 39 e 40, podemos concluir que o receptor THOSVD fornece uma
melhor performance na SER comparado ao receptor Bi-ALS-KronF. Isso se deve à forma
fechada do receptor THOSVD, permitindo estimar conjuntamente as matrizes do canal e
dos símbolos, enquanto o receptor Bi-ALS-KronF é composto por duas etapas, uma iterativa
e uma de forma fechada. Por outro lado, o receptor THOSVD é mais restritivo em termos de
condições de identificabilidade (𝑀𝑆𝑅 ≤ 𝑃) do que o receptor Bi-ALS-KronF, induzindo uma
redução da taxa de transmissão, como pode ser visto na Tabela 26. Também pode-se notar
que a SER no relé é melhor que a SER no destino devido à propagação de erro causada pela
decodificação no relé. Como esperado, o receptor ZF-KronF fornece a melhor SER devido ao
conhecimento a priori dos canais.
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Figure 39 – Comparação da SER com os receptores THOSVD, Bi-ALS-KronF Eqs.(4.29)-(4.30) e ZF
no relé.

Figure 40 – Comparação da SER com os receptores THOSVD, Bi-ALS-KronF Eqs.(4.29)-(4.30) e ZF
no destino.

Na Figura 41, os resultados obtidos para a NMSE do canal em cada salto são apresen-
tadas. Observe que o receptor THOSVD fornece melhores resultados do que os receptores
Bi-ALS-KronF. Como para a SER, isso ocorre porque o THOSVD é uma solução de forma
fechada, enquanto o algoritmo Bi-ALS é iterativo. Além disso, a estimativa do canal no
primeiro salto é um pouco melhor que a do segundo salto. Isso se deve à propagação de erros
na retransmissão das matrizes de símbolos após a decodificação no relé.
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Figure 41 – Comparação da NMSE para a estimação do canal com os receptores THOSVD e
Bi-ALS-KronF Eqs.(4.29)-(4.30).

Conclusão

Ao explorar o modelo do sinal recebido, derivamos dois receptores semi-cegos para
estimar em conjunto os símbolos transmitidos e os canais. O primeiro receptor proposto foi
baseado nos algoritmos Bi-ALS e KronF, onde o primeiro foi aplicado para estimar o canal e o
produto Kronecker, enquanto o segundo foi aplicado para separar as matrizes de símbolos. O
segundo receptor proposto é baseado no algoritmo THOSVD de forma fechada, que permite
estimar simultaneamente o canal e as matrizes de símbolo por meio do cálculo de SVDs,
como no método KronF. Os resultados da simulação nos permitiram ilustrar o impacto dos
parâmetros de design no desempenho da SER. A codificação TSTF-MSMKron fornece um
aumento nas diversidades espaciais, de tempo e frequência quando o número de fluxos
de dados ou o número de antenas na fonte ou relé aumenta. Os receptores semi-cegos são
eficientes, especialmente quando são baseados em soluções de forma fechada, para estimar
os parâmetros sem o conhecimento do canal, conhecendo apenas um símbolo de cada matriz
de símbolos. Por outro lado, o receptor THOSVD de forma fechada é mais restritivo do que o
Bi-ALS-KronF iterativo implicando em uma baixa taxa de transmissão.
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