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Resumo Expandido

FAMÍLIA DE DISTRIBUIÇÕES MULTIVARIADAS PARA MODELAGEM DE DADOS

COM SUPORTE POSITIVO: PROPRIEDADES E APLICAÇÕES

Este trabalho tem como objetivo o desenvolvimento de uma nova família de distribuições

elípticas multivariadas truncadas, ampliando as ferramentas de modelagem estatística para da-

dos multivariados que exibem características como caudas pesadas e assimetria. As distribuições

de Cauchy, t-Student e Normal servem de base para a construção dessas novas distribuições,

oferecendo diferentes formas de captura de comportamentos e estruturas de dependência entre

variáveis. A metodologia de construção envolve o uso de funções monotônicas crescentes, in-

versíveis e diferenciáveis, definidas no domínio dos números reais positivos, assegurando que

as densidades resultantes tenham suporte nos reais positivos. Essa abordagem inovadora per-

mite a preservação de propriedades fundamentais das distribuições elípticas, como a forma das

caudas, ao mesmo tempo que incorpora distorções que ajustam a função densidade às carac-

terísticas específicas dos dados analisados.

A classe de distribuições proposta oferece maior flexibilidade na modelagem de comporta-

mentos complexos de dados multivariados, sendo particularmente relevante em cenários onde

as distribuições tradicionais não capturam adequadamente a dinâmica dos dados. Ao mesmo

tempo, mantém a estrutura básica das distribuições elípticas, adaptando-se de maneira robusta

às particularidades observadas em fenômenos empíricos. A aplicabilidade desta nova classe de
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distribuições é avaliada por meio de simulações de Monte Carlo e da aplicação a dados reais

provenientes do Australian Institute of Sport (AIS) e de dados sobre os 50 estados dos Estados

Unidos, como expectativa de vida e taxa de homicídios. Esses estudos fornecem uma avaliação

prática da flexibilidade e desempenho das distribuições propostas.

Na seção de revisão de literatura e conceitos fundamentais, descrevem-se os conceitos bási-

cos necessários para o desenvolvimento do trabalho. Esses conceitos são essenciais para com-

preender os tópicos subsequentes, que envolvem modelagem estatística de distribuições multi-

variadas. A discussão desses fundamentos visa proporcionar ao leitor uma base sólida para o

entendimento das propriedades estatísticas e dos métodos empregados na análise e modelagem

dos dados.

A seção de desenvolvimento do modelo destaca a criação de um novo modelo de distribuição

assimétrica multivariada, baseado em distribuições elípticas e assimétricas. Esse modelo repre-

senta uma contribuição inédita no campo da estatística, integrando conceitos previamente explo-

rados na literatura, mas com uma nova abordagem para lidar com a assimetria em distribuições

multivariadas. A proposta amplia as possibilidades de análise e modelagem em contextos es-

tatísticos diversos, sendo particularmente útil em aplicações onde as distribuições convencionais

falham em capturar adequadamente os padrões dos dados.

No estudo de simulação, conduzimos uma avaliação detalhada do desempenho dos esti-

madores de máxima verossimilhança (MLEs) no caso bivariado, aplicando diferentes funções

de distorção, como Gi(x) = 1/α
(√

x/β −
√

β/x
)

, Gi(x) = log(x), Gi(x) = cosh−1(x+1),

Gi(x) = log(log(x + 1)), e Gi(x) = x − 1/x. Essas funções permitem ajustar a distribuição

para diferentes comportamentos dos dados, sendo analisadas com profundidade. Resultados

específicos para a função logq(x) estão detalhados no Apêndice.

Por fim, a aplicabilidade dos modelos propostos é avaliada em dados reais, utilizando-

se uma série de métricas para verificar a qualidade dos ajustes das distribuições aos dados.

Para isso, são aplicados testes estatísticos bem estabelecidos, como os testes de Kolmogorov-

Smirnov, Anderson-Darling e Cramér-von Mises, com o objetivo de identificar as distribuições
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que oferecem o melhor ajuste aos dados analisados. Esses resultados demonstram a robustez e

a flexibilidade das novas distribuições, contribuindo para o avanço das técnicas de modelagem

estatística multivariada.

Este trabalho, ao propor uma nova família de distribuições elípticas multivariadas assimétri-

cas, oferece novas perspectivas para a análise estatística de dados complexos, permitindo mod-

elagens mais robustas e adequadas à realidade dos dados. A abordagem inovadora traz avanços

significativos na modelagem de dados multivariados, com potencial para aplicações em diversas

áreas da ciência e da indústria.

Palavras-chave: Distribuições elípticas multivariadas, Modelagem estatística, Caudas pe-

sadas, Assimetria, Análise de dados multivariados.
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Abstract

This work proposes the development of a new family of multivariate truncated elliptical dis-

tributions, aiming to expand the possibilities of statistical modeling for multivariate data with

specific characteristics, such as heavy tails and asymmetry. The distributions used as a basis for

the construction of the new densities are Cauchy, t-Student and Normal, which allow capturing

different behaviors and dependence structures between variables. The construction of these new

distributions will be performed by applying monotonic increasing, invertible and differentiable

functions, defined in the domain of positive real numbers. These characteristics ensure that

the resulting density has support in positive real numbers. This new class of distributions of-

fers greater flexibility to model complex behaviors of multivariate data, preserving fundamental

characteristics of elliptical distributions, such as the shape of the tails, while incorporating dis-

tortions that adjust the density function to the particularities of the studied phenomenon. This

development opens new perspectives for statistical analysis, providing more robust models that

are appropriate to the reality of the data. A Monte Carlo simulation study will also be carried

out and applied to real data from the AIS (Australian Institute of Sport) and information on the

50 states of the United States (life expectancy and homicide rate).

Keywords: Multivariate elliptical distributions, Statistical modeling, Heavy tails, Skew-

ness, Multivariate data analysis.
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Chapter 1

Introduction

There is partial consensus that the skew-normal distribution was initially introduced by

(O’Hagan and Leonard, 1976) in the journal Biometrika. They presented a skewed distribution

as a prior distribution for Bayesian estimation. However, the most detailed and elaborate studies

on asymmetric distributions and their definitions were exhaustively covered by A. Azzalini,

who formalized the skew-normal distribution as we know it today. Azzalini highlighted the

need to explore a new class of parametric densities that included some characteristics of the

normal distribution, but that could not be modeled by conventional techniques or that avoided

complex and detailed mathematics. In (Azzalini, 1985) the author adapted the skewed normal

distribution, creating a class that encompasses normality and provided a flexible mathematical

framework for future advances by allowing a wide range of variations in the skewness and

kurtosis of the distribution.

After these initial advances, other works were published, expanding knowledge on the topic

and exploring different variations and applications.

Over time, since the first publication, there has been an expansion in the multivariate field

through the works of (Azzalini and Valle, 1996) and (Capitanio, Azzalini, and Stanghellini,

2003), in which other probabilistic and statistical properties were discovered. This further ex-

panded the model’s application horizon, giving rise to a series of other studies, such as those
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by (Nadarajah and Kotz, 2003), (Sahu, Dey, and Branco, 2003), (Arellano-Valle and Genton,

2005), (Marchenko and Genton, 2010) and (Arellano-Valle and Genton, 2010b).

Based on our studies in this area of knowledge, it was possible to find applications in several

areas, such as finance, economics, biology, ecology, engineering, medicine, IT and artificial

intelligence, social sciences, meteorology and environmental sciences, marketing and research.

market, quality and process control.

All this development, the result of extensive research, made it possible to expand to a new

family of distributions, which will be explored in more detail throughout this work.

All this development, the result of extensive research, not only made it possible to expand

knowledge about asymmetric normal distributions and its generalization to asymmetric distribu-

tions, but also paved the way for a new family of distributions. This new family of distributions,

inspired by theoretical and practical advances achieved over the last decades, can offer an even

more flexible and comprehensive approach to modeling a wide variety of phenomena in differ-

ent fields of knowledge. Throughout this work, this new family of distributions will be explored

in more detail, highlighting their properties, applications and implications for understanding and

analyzing data.

In order to structure this work in a detailed and organized manner, in chapter two, prelimi-

nary concepts, we will address fundamental topics that will serve as a basis for understanding

the proposed model. We will begin by discussing asymmetry, exploring its variations such as

positive asymmetry (or to the right), negative asymmetry (or to the left) and asymmetry with

long tails, essential aspects for understanding the dispersion of data in statistical models. Next,

distributions with heavy tails, which are of great relevance in modeling extreme events.

We will move on to Elliptical Distributions, with emphasis on the multivariate normal dis-

tribution, one of the best known within this group and widely used in various fields of statistics.

Later, we will explore the asymmetric elliptical distribution, which expands traditional ellip-

tical distributions by allowing the presence of asymmetries, offering greater flexibility in real

applications.
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We will also discuss the multivariate covariance matrix and the Cholesky decomposition,

which are indispensable tools for the construction and analysis of multivariate models, provid-

ing a deeper understanding of the variance and correlation relationships between variables.

The Chapter 2 will conclude with the presentation of goodness-of-fit tests, such as the

Kolmogorov-Smirnov test and the Anderson-Darling test, which are fundamental for assess-

ing the quality of the fit of distributions to empirical data. In this context, we will detail the

empirical distribution function, the Kolmogorov-Smirnov (KS) test and the Anderson-Darling

(AD) test, addressing their practical applications in the validation of statistical models. These

concepts will provide the essential theoretical basis for the subsequent chapters.

In the Chapter 3, the proposed distribution will be addressed, and we will explore in depth

the structure and properties of the multivariate asymmetric model. We will begin with a de-

tailed presentation of the model, including its mathematical formulation and the fundamental

characteristics that define it, emphasizing its ability to capture asymmetries in multivariate dis-

tributions.

We will then address some structural properties of the model, starting with the stochastic

representation, which describes the model in terms of latent variables and random components.

We will also analyze special cases that illustrate specific scenarios where the model can be

simplified or adjusted to different situations.

We will also explore marginal quantiles, which are essential to understanding the dispersion

of individual variables, and conditional distributions, which allow us to understand how the

distributions of variables are influenced by the fixation of other variables. We will also discuss

the existence of marginal moments, detailing the conditions for the existence of moments such

as means and variances, and the Mahalanobis distance for the particular case, a measure that

quantifies the distance of a point in relation to the mean considering the covariance structure.

Finally, we will analyze the dependence measures, which assess the relationships between

the model variables, capturing both linear and nonlinear correlations, essential for a compre-

hensive understanding of the model’s behavior in different contexts.
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In Chapter 4, a detailed study will be conducted using Monte Carlo simulations to verify

the convergence of the model parameters under various functions. This study will be crucial to

validate the model’s performance in different scenarios and conditions, providing evidence of

its robustness and applicability.

In Chapter 5 will focus on the practical application of the model in real data, using the

presented distribution to analyze different data sets. This section will highlight the model’s

capabilities and identify its limitations in the analysis of observed phenomena.

In Chapter 6, we will summarize the main results achieved, highlighting the theoretical

and practical contributions of the developed model. The implications of the findings will be

presented, as well as suggestions for future work. The work will be complemented by a com-

prehensive list of bibliographical references and an appendix with additional information, tech-

nical details and possible extensions of the study, enriching the understanding of the content

presented.
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Chapter 2

Preliminary Concepts

In this section, some basic and important concepts for the development of the work will be de-

scribed. It is important to emphasize that understanding these topics is essential, because, even

though they are fundamental concepts, they are crucial for understanding the topics covered

later. These concepts provide the necessary foundations for dealing with statistical properties

and data, offering a clear notion of how to work appropriately with the tools and techniques

involved throughout the study.

"Statistical thinking will one day be as neces-

sary for efficient citizenship as the ability to

read and write."

- H.G. Wells



§2.1. Asymmetry

2.1 Asymmetry

Asymmetry in a probability density function is a measure of its lack of symmetry with

respect to its center point. In other words, a distribution is considered asymmetric if it is not

symmetric about its mean. There are different types of asymmetry that can occur in a probability

distribution, the three main ones being:

2.1.1 Right or positive skewness

The right tail of the distribution is longer or more extended than the left tail. This means

that there are extreme or high values occurring more frequently than would be expected in a

symmetric distribution. The mean is greater than the median.

Figure 2.1: Empirical density plot of a right-skewed nor-
mal distribution.

2.1.2 Left or negative skewness

In this case, the left tail of the distribution is longer or extended than the right tail. This

implies that there are extreme or low values occurring more frequently than would be expected

in a symmetric distribution. The mean is smaller than the median.
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Figure 2.2: Empirical density plot of a
left-skewed normal distribution.

2.1.3 Long tail skewness

Refers to a distribution in which the tails (both ends) are heavier than those of a normal

distribution. This means that there is a greater likelihood of extreme values occurring than

would be expected in a normal distribution.

Figure 2.3: Empirical density graph of two
normal distributions, one skewed to the left
and the other to the right.

Figure 2.4: Empirical density plot of the sum
of two long-tailed distributions.

Skewness in a probability density function can be identified visually through histogram

plots or density plots, and can also be quantified through statistical measures such as Pearson’s

skewness coefficient or Fisher’s skewness coefficient.
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Visually, the asymmetry can be observed in histograms or by density graphs, the latter seen

above. A histogram organizes a set of data into specific intervals, displaying the frequency of

values in each interval. Asymmetry is evident if the histogram has a longer tail to the left or

right. Similarly, a density plot, which is a smooth estimate of the probability density function

of a continuous random variable, reveals asymmetry by the presence of a longer tail in one of

the directions.

Quantitatively, asymmetry can be measured using Pearson’s asymmetry coefficient or Fisher’s

asymmetry coefficient.

The equation that defines Fisher’s asymmetry coefficient (G1) according to the (Cain, Zhang,

and Yuan, 2017) article is given by:

G1 =

√
n(n− 1)

n− 2

m3

m
3/2
2

,

where mr =
∑n

i=1(xi − x̄)r/n represents the r-th central moment, calculated by the average of

the deviations of the values in relation to the mean sample x̄ raised to the power r. Here, x̄ is

the sample mean and n is the sample size.

2.2 Heavy-Tailed Distributions

According to (Nair, Wierman, and Zwart, 2024), a distribution function F is said to be

heavy-tailed if, and only if, for all µ > 0,

lim sup
x→∞

1− F (x)

e−µx
= lim sup

x→∞

S(x)

e−µx
= ∞.

Otherwise, F is light-tailed.

Being F of a random variable X , that is, F (x) = P(X ≤ x), and of the survival function S,

that is , S(x) = 1− F (x).

A random variable X is said to be heavy-tailed (or light-tailed) if its distribution function is
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heavy-tailed (or light-tailed).

This definition applies to the right tail of the distribution, that is, to the behavior of the

probability of values greater than x as x tends to infinity. It can also be applied to the left tail

by considering the right tail of −X .

The book ((Nair, Wierman, and Zwart, 2024)) proves and asserts about a random variable

X are equivalent:

1. X is heavy-tailed.

2. M(s) := E[esX ] = ∞ for all s > 0.

3. lim infx→∞
− log P(X>x)

x
= 0.

Proof. (i) =⇒ (ii). Suppose X is heavy-tailed, with distribution F . By definition, this implies

that for any s > 0, there exists a strictly increasing sequence (xk)k≥1 satisfying limk→∞ xk =

∞, such that

lim
k→∞

esxkS(xk) = ∞. (2.2.1)

Now we can link E[esX ] as follows.

E[esX ] =
∫ ∞

0

esxdF (x) ≥
∫ ∞

xk

esxdF (x) ≥ esxkS(xk).

As the above inequality holds for all k, it now follows from 2.2.1 that E[esX ] = ∞. There-

fore, Condition (i) implies Condition (ii).

(ii) =⇒ (iii). Suppose X satisfies Condition (ii). For the purpose of obtaining a contradic-

tion, let us assume that Condition (iii) does not hold. Since lim infx→∞[− log Pr(X > x)]/x ≥

0, this means that

lim inf
x→∞

− logP(X > x)

x
> 0.

28



§2.2. Heavy-Tailed Distributions

The above statement implies that there exist µ > 0 and x0 > 0 such that

− logP(X > x)

x
≥ µ =⇒ P(X > x) ≤ e−µx ∀x ≥ x0. (2.2.2)

Now choose s such that 0 < s < µ. We can now limit the momentum generating function

of X in s as follows:

M(s) = E[esX ] =
∫ ∞

0

P(esX > x) dx =

∫ esx0

0

P(esX > x) dx+

∫ ∞

esx0
P
(
X >

log(x)

s

)
dx.

Here, we use the following representation for the expectation of a non-negative random

variable Y : E[Y ] =
∫∞
0

P(Y > y) dy. Although the first term above can be bounded from above

by esx0 , we can bound the second using 2.2.2, since x ≥ esx0 is equivalent to log(x)/s ≥ x0.

M(s) ≤ esx0 +

∫ ∞

esx0
e−µ

log(x)
s dx = esx0 +

∫ ∞

esx0
x−µ/s dx.

Since µ/s > 1, we have
∫∞
1

x−µ/s dx < ∞, which implies that M(s) < ∞, giving us a

contradiction. Therefore, Condition (ii) implies Condition (iii).

(iii) =⇒ (i). Suppose the random variable X , having distribution F , satisfies Condition

(iii). Thus, there exists a strictly increasing sequence (xk)k≥1 satisfying limk→∞ xk = ∞, such

that

lim
k→∞

− logS(xk)

xk

= 0.

Given µ > 0, this in turn implies that there exists k0 ∈ N such that

− logS(xk)

xk

≤ µ

2
,∀k ≥ k0;

=⇒ S(xk) ≥ e−
µ
2
xk ,∀k ≥ k0;

=⇒ eµxkS(xk) ≥ e
µ
2
xk ,∀k ≥ k0.
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cap. 2. Preliminary Concepts §2.3. Elliptical Distribution

The last statement above implies that limk→∞ eµxkS(xk) = ∞, which implies

lim sup
x→∞

S(x)eµx = ∞.

Since this is true for any µ > 0, we conclude that Condition (iii) implies Condition (i).

In other words, a distribution is considered heavy-tailed when its decay is slower than that

of the exponential distribution or when its generating moments tend to infinity. Some notable

examples of distributions with heavy tails include: the Pareto Distribution, the Stable Lévy

Distribution, the Lognormal Distribution, the Weibull Distribution (with shape parameter less

than 1), and the Generalized Extreme Value Distribution (GEV) .

2.3 Elliptical Distribution

Elliptical distributions represent an important and fundamental class of statistical and prob-

abilistic models, which offer flexibility and complex analyzes for data modeling. It’s distinctive

graphic characteristic is its elliptical shape, providing a particular geometric representation.

According to (Fang, Kotz, and Ng, 1990), a random vector X of dimension n × 1 follows

an elliptical distribution with a location parameter µ of dimension n × 1 and a scale matrix Σ

of dimension n× n if its density function is expressed as:

fX(x) = |Σ|−1/2g(n)
[
(x − µ)⊤Σ−1(x − µ)

]
,

where g(n) denotes the data generating distribution, and the exponent n represents the dimension

of the vector space in which the vector X is defined.

The data generator plays an essential role in this equation, especially when it is based on

symmetric distributions. The most commonly used ones include: multivariate normal, mul-

tivariate Cauchy, and multivariate Student’s t. These functions characterize the dispersion of

the data and the shape of the tails of the distributions, allowing us to model a wide range of
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§2.4. Multivariate Normal Distribution

multivariate probabilistic behaviors.

2.4 Multivariate Normal Distribution

The multivariate normal distribution, also known as elliptical normal distribution, is a gen-

eralization of the univariate normal distribution to the case in which there are multiple corre-

lated random variables. It is considered a random vector X with n random variables, where

X = (X1, X2, . . . , Xn).

According to (Johnson and Wichern, 2007), the probability density function of a multivari-

ate normal distribution is given by:

fX(x;µ,Σ) =
1

(2π)p/2 · |Σ|1/2
· exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
.

Here, µ represents the vector of means of the random variables, Σ is the covariance matrix

of the random variables, and |Σ| is the determinant of the covariance matrix.

The vector x is the multivariate random variable that follows the multivariate normal distri-

bution, and (x − µ)⊤ represents the transposition of the vector of differences between x and

µ.

This formula describes how the probability is distributed around the vector of means µ in a

n-dimensional space, taking into account the correlations between the variables represented by

the covariance matrix Σ , which is denoted by Nn(µ,Σ).

Below is a graphical example of the density (on the right) of a distribution N2(0, I) and a

scatterplot (on the left) of the joint N1(0, 1) and N1(0, 1), with each vector having 25 thousand

generated samples.
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Figure 2.5: Bivariate Normal Distribution
Density Chart.

Figure 2.6: Bivariate Normal Distribution
Scatter Plot.

2.5 Asymmetric Elliptical Distribution

The asymmetric elliptical distribution is an important class of multivariate distributions

that is characterized by not following a perfect circular or elliptical shape. Instead, it describes

a data set in which the tails of its univariate distributions are not symmetric about the median

of its density. This asymmetry can be observed in different dimensions, making the asymmetric

elliptical distribution a valuable tool for modeling a wide range of complex and heterogeneous

phenomena.

Where µ and Σ represent the location vector and the scale matrix, respectively, following

the same logic as the previous equations. Furthermore, g(n+1) denotes the spherical density

generating function with n+ 1 dimensions, as described by (Fang, Kotz, and Ng, 1990).

An essential characteristic of the asymmetric elliptical distribution is its stochastic represen-

tation, which allows the simulation of data according to this distribution. This representation

can be found in studies such as that of (Zuo, Balakrishnan, and Yin, 2023), providing a valuable

tool for statistical analysis and modeling in several areas.

To better understand and visualize this distribution, the density and spread of asymmetric
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elliptical data are often illustrated graphically. The examples below show a density plot and a

scatter plot, highlighting the distinct characteristics of this distribution.

Figure 2.7: Density plot of asymmetric el-
liptical (skew-normal) distribution.

Figure 2.8: Scatterplot of asymmetric el-
liptical (skew-normal) distribution.

These plots provide a powerful visual representation of the properties of the skewed ellipti-

cal distribution, aiding in the interpretation and analysis of data modeled by this distribution.

2.6 Covariance Matrix

To describe the covariance matrix in a multivariate context, we use a generalization used

by (Vila et al., 2023), which addresses the bivariate case. Based on this idea, we expand to the

general multivariate framework, as detailed below:

Σ =



σ2
1 ρ12σ1σ2 ρ13σ1σ3 · · · ρ1nσ1σn

ρ21σ2σ1 σ2
2 ρ23σ2σ3 · · · ρ2nσ2σn

ρ31σ3σ1 ρ32σ3σ2 σ2
3 · · · ρ3nσ3σn

...
...

... . . . ...

ρn1σnσ1 ρn2σnσ2 ρn3σnσ3 · · · σ2
n


.

In this matrix, Σ is the covariance matrix where the diagonal elements (σ2
1, σ

2
2, . . . , σ

2
n)
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correspond to the variances of the respective variables. The off-diagonal elements (ρijσiσj)

represent the covariances between pairs of variables, weighted by the correlation coefficients

ρij . Each σ2
i indicates the variability of a specific variable, while ρij reflects the degree of

correlation between two distinct variables, capturing how one variable can influence the other.

This structure is fundamental to understanding the interdependence between variables in a

multivariate context, as it reflects both the individual variability of the variables and the corre-

lation relationships between them. Non-zero correlation values (ρij) indicate a direct or inverse

relationship between variables, adding complexity to the analysis of multivariate data disper-

sion.

2.7 Cholesky decomposition

The data generation method is one of the important parts of this work, which involves

a simulation of data with multivariate normal distribution. The method chosen for this was

the Cholesky decomposition, developed by André-Louis Cholesky, a French army officer and

civil engineer, which was developed in the early 20th century (Cholesky, 2005). From this

factorization, it becomes possible to arrive at a covariance matrix, which has the property of

being symmetric and positive defined, always allowing the creation of a symmetric positive

defined matrix as a product of a lower triangular matrix and its transpose. For this to work,

follow these steps:

1. Generate a matrix Z of size n × d containing nd pseudo-random numbers from the dis-

tribution N(0, 1).

2. Compute the decomposition Σ = Q⊤Q.

3. Apply the transformation X = ZQ+ Jµ⊤, where J is a column vector of ones.

4. Get the matrix X of size n× d.
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Figure 2.9: Bivariate Scatterplot Obtained through
Cholesky Decomposition.

2.8 Fit Tests: Kolmogorov-Smirnov and Anderson-Darling

2.8.1 Empirical distribution function

The empirical distribution function (eCDF) is a fundamental tool in statistics for estimating

the cumulative distribution function of a random variable based on an observed sample. As

described in the book (Vaart, 1998) it is defined by the expression:

∀x ∈ R,∀ω ∈ Ω, Fn(x, ω) =
1

n

n∑
i=1

1{σ:Xi(σ)≤x}(ω),

where 1{σ:Xi(σ)≤x} is an indicator function that takes the value 1 if Xi(ω) is less than or

equal to x , and 0 otherwise. This indicator function allows you to check each element in the

sample to see if it satisfies the condition Xi(σ) ≤ x, adding 1 for each element that meets the

condition and 0 for those that do not. The sum
∑n

i=1 1{σ:Xi(σ)≤x} represents the total number of

elements in the sample that are less than or equal to x. Dividing this sum by the sample size n,
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we obtain the proportion of elements that satisfy the condition, thus estimating the distribution

function of the random variable based on the observed data.

One of the main advantages of eCDF is its non-parametric nature, that is, there is no need

for specific assumptions about the distribution of the data. This makes eCDF a flexible tool for

empirical analysis. However, there are also limitations to be considered, such as sensitivity to

small samples, which can result in high variability and significant fluctuations in estimating the

true distribution of the population.

As the sample size increases (n → ∞), the eCDF converges to the true population cumu-

lative distribution function. This behavior is guaranteed by the Glivenko-Cantelli Theorem,

which states that the eCDF is a consistent estimate, that is, it converges in probability, almost

certainly (law of large numbers) and uniformly, reinforcing its theoretical basis and reliability

for statistical inferences.

The eCDF concept extends from the univariate to the multivariate case, which is our con-

text, simply considering that the random variables are of d dimensions, belonging to Rd. In

the multivariate case, the approach remains similar, but the calculation and visualization can

become more complex due to the interaction between variables in multiple dimensions.

The concepts of Cumulative Distribution Function and eCDF are crucial in evaluating the

quality of the fit, comparing a simulated distribution, generated from the estimated data param-

eters, with the observed data set itself. We will make this comparison by performing statistical

tests such as Kolmogorov-Smirnov and Anderson-Darling, which use eCDF as a basis to eval-

uate the fit of simulated distributions to real data.

2.8.2 Kolmogorov-Smirnov test (KS)

The Kolmogorov-Smirnov (KS) test is a non-parametric statistical test used to compare two

probability distributions or check whether a sample follows a specific theoretical distribution,

it was introduced in (Kolmogorov, 1933) and improved in (Smirnov, 1939). It is useful for

testing the equality of distributions and the adherence of data to an expected distribution. It can
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be applied in two ways: with a single sample, comparing it with a theoretical distribution to

evaluate how well the data fits that distribution; or with two samples, comparing them to each

other to determine whether they both come from the same distribution.

The test measures the maximum difference between the cumulative distribution functions

(CDF) of the compared distributions:

D = sup |FX(x)− FY (x)|,

where D is the KS statistic, FX(x) is the CDF of sample X and FY (x) is the eCDF of sample

Y .

The p-value represents the probability of observing a difference as extreme as D, assuming

that the compared distributions are equal. In this work, we will adopt the significance level of

0.05 (5%), which is widely used in statistical analyses. The test hypotheses are as follows:

- H0: The data follows the same distribution.

- H1: The data does not follow the same distribution.

2.8.3 Anderson-Darling test (AD)

The Anderson-Darling test was developed by Theodore W. Anderson and Donald A. Darling

in 1952 in (Anderson and Darling, 1952) . It is an extension of the Kolmogorov-Smirnov test

and was introduced to improve the sensitivity of the test on the tail of distributions, making it

more effective at detecting outliers at the tails.

The Anderson-Darling test statistic, A2, is calculated based on the sample’s empirical dis-

tribution function (eCDF) and theoretical cumulative distribution function (CDF).

For an ordered sample X1, X2, . . . , Xn, the statistic A2 is given by:

A2 = −n− 1

n

n∑
i=1

((2i− 1) [ln(F (Xi)) + ln(1− F (Xn+1−i))]) ,

where n is the sample size, Xi is the ordered sample values and F (Xi) is the theoretical eCDF
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evaluated on the sample values.

This formula weights observed discrepancies with greater weight at the ends of the distri-

bution, making the test more sensitive to deviations in the tails. The higher the value of A2, the

greater the discrepancy between the sample and the theoretical distribution.

The interpretation of the p-value and the hypotheses of the Anderson-Darling test follow

the same principles as the Kolmogorov-Smirnov test, since the AD test is based on the KS. In

both tests, the p-value is used to determine whether there is enough evidence to reject the null

hypothesis, which assumes that the data follows the distribution.
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Chapter 3

Extended G-skew Distribution (EGSEn).

This section is one of the most relevant of this work, as it presents a new multivariate asymmetric

distribution model developed by us. Based on elliptical and asymmetric distributions, and based

on a vast literature review, this model integrates important concepts previously explored, but

from a new perspective. The proposal seeks to provide an innovative approach to the treatment

of asymmetric data, expanding the possibilities of analysis and application in different statistical

contexts.

"If I only had an hour to chop down a tree, I

would spend the first forty-five minutes sharp-

ening my axe."

- Unknown
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3.1 The multivariate asymmetric model

Let G1, . . . , Gn : (0,∞) → R, n ∈ N, be monotonically and strictly increasing func-

tions (consequently Borel-measurable). We say that a n-dimensional random vector Y =

(Y1, . . . , Yn)
⊤ has a multivariate extended G-skew-elliptical (EGSEn) distribution if its prob-

ability distribution function (PDF) at y = (y1, . . . , yn)
⊤ ∈ (0,∞)n, denoted by fY (y), is given

by

fY (y) =
1

|Σ|1/2Zg(n)

g(n)(q(yG))
FELL1(λ

⊤(yG − µ) + τ ; 0, 1, gq(yG))

FELL1(τ ; 0, 1 + λ⊤Σλ, g(1))

n∏
i=1

G′
i(yi), (3.1.1)

where g(n) is a density generator (Fang, Kotz, and Ng, 1990),

Zg(n) =
π(n)/2

Γ(n/2)

∫ ∞

0

un/2−1g(n)(u)du

is a normalization constant, µ = (µ1, . . . , µn)
⊤ ∈ Rn is a constant vector, Σ is a positive

definite n × n matrix, τ ∈ R is the extension parameter, λ = (λ1, . . . , λn)
⊤ ∈ Rn is the

skewness parameter vector, and

q(yG) = (yG − µ)⊤Σ−1(yG − µ), for yG = (G1(y1), . . . , Gn(yn))
⊤ ∈ Rn. (3.1.2)

Moreover, in formula (3.1.1), FELL1(·; 0, 1, gq(yG)) denotes the cumulative distribution

function (CDF) of a univariate elliptical (symmetric) (ELL1) and standardized random variable

(Fang, Kotz, and Ng, 1990) with density generator gq(yG), which is defined as

gq(yG)(s) =
g(2)(s+ q(yG))

g(1)(q(yG))
, s ∈ R. (3.1.3)

Analogously we define FELL1(·; 0, 1, g(1)). For simplicity of notation, we write

Y ∼ EGSEn(µ,Σ,λ, τ, g(n))
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§3.1. The multivariate asymmetric model

when a vector Y has EGSEn distribution (3.1.1). Table 3.1 presents some examples of functions

Gi’s for use in (3.1.1).

Table 3.1: Some Gi’s functions with their respective inverses and derivatives.

Gi(x) G−1
i (x) G′

i(x) Parameters

1
α

(√
x
β
−
√

β
x

)
β
[
α
2
x+

√(
(α
2
x)2 + 1

)]2
1

2αx

(√
x
β
+
√

β
x

)
α, β > 0

x1−q−1
1−q

[1 + (1− q)x]
1

1−q 1
xq q ̸= 1

log(x) exp(x) 1
x

-

cosh−1(x+ 1) cosh(x)− 1 1
(
√
x+2)

√
x

-

log(log(x+ 1)) exp(exp(x))− 1 1
(x+1) log(x+1)

-

x− 1
x

1
2

(
x+

√
x2 + 4

)
1
x2 + 1 -

2Fi(x)−1
Fi(x)[1−Fi(x)]

F−1
i

(
−(2−x)+

√
(2−x)2+4x

2x

)
2fi(x)·Fi(x)[1−Fi(x)]−(2Fi(x)−1)·fi(x)[1−2Fi(x)]

(Fi(x)[1−Fi(x)])
2 -

Recalling that Fi(x) denotes the cumulative distribution function (CDF), F−1
i (x) represents

its inverse (quantile function), and fi(x) is the associated probability density function (PDF).

In situations where the inverse of a function presents multiple possibilities, such as square

roots, it is crucial to consider the context of the domain. In particular, when we deal with

square roots in positive real numbers, we select the positive root. This choice arises from the

mathematical definition of the square root function: f(x) =
√
x, which associates each non-

negative real number with a single non-negative value.

In practice, the square root function is considered bijective when restricted to positive reals,

with the range being the interval (0,∞). By defining the inverse, this unique correspondence is

preserved, which means selecting the positive root. Without this restriction, the function would

not be a function in the strict sense, as each input would correspond to two possible outputs.

Therefore, when solving problems involving square roots, the choice of the positive root

is not just a convention, but a mathematical necessity that guarantees the precise definition of

the inverse, ensuring coherence and precision in the results within the domain of positive real

numbers.
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Below it is possible to observe Gi(x), G−1
i (x) and G′

i(x), respectively, graphically.
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Figure 3.1: Gi(x) =
1
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Figure 3.2: Gi(x) = log(log(x+ 1)).
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Figure 3.3: Gi(x) = log(x).
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Figure 3.4: Gi(x) = cosh−1(x+ 1).
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Figure 3.5: Gi(x) = log(log(x+ 1)).

0

25

50

75

100

0 25 50 75 100

x

F
un

ct
io

n 0

25

50

75

100

0 25 50 75 100

x

In
ve

rs
e

0

25

50

75

100

0 25 50 75 100

x

D
er

iv
at

iv
e

Figure 3.6: Gi(x) = x− 1
x
.

44



§3.2. The multivariate asymmetric model

Table 3.2 presents some examples of generators for use in (3.1.1).

Table 3.2: Normalization functions (Zg(n)) and density generators (g(n)).

Multivariate distribution Zg(n) g(n)(x) Parameter

Extended G-skew-Student-t Γ(ν/2)(νπ)n/2

Γ((ν+n)/2)
(1 + x

ν
)−(ν+n)/2 ν > 0

Extended G-skew-Cauchy π(n+1)/2

Γ((n+1)/2)
1

(1+x)(n+1)/2 −
Extended G-skew-normal (2π)n/2 exp(−x/2) −

Closed-form expressions for the PDF of Y ∼ EGSEn(µ,Σ,λ, τ, g(n)) corresponding to

multivariate extended G-skew-Student-t, multivariate extended G-skew-Cauchy and multivari-

ate extended G-skew-normal models (see Table 3.2), are provided in Subsection 3.2.2.

The EGSEn distribution provides a very flexible class of statistical models. Depending on

the choice of the functions G1, . . . , Gn we have a family of multivariate extended distributions,

with presence of asymmetry, which allows modeling date with positive support. For τ = 0

and Gi(x) = log(x), x > 0, i = 1, . . . , n, we obtain the multivariate log-skew-elliptical model

studied in Marchenko and Genton, 2010. In general, for the EGSEn model, it is not necessary

to consider all Gi’s equal as in Marchenko and Genton, 2010. For g(n)(x) = (1+x/ν)−(ν+n)/2,

ν > 0, we get the multivariate extended G-skew-Student-t, which reduces to the multivariate

extended G-skew-Cauchy and multivariate extended G-skew-normal distributions by letting

ν = 1 and ν → ∞, respectively.

Given the closed form of the density function, it is possible to obtain an idea of the Cumula-

tive Distribution Function (CDF). However, in our case, the CDF does not have a closed form,

requiring the use of numerical methods to estimate its values accurately. More details about the

estimation procedure can be found in the annex, where we describe the approaches used.

45
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3.2 Some structural properties

3.2.1 Stochastic representation
Let X = (X1, . . . , Xn)

⊤ be a n-dimensional random vector and Z be a real-valued random

variable. Assume that the (n + 1)-dimensional vector (Z,X)⊤ has a multivariate elliptical

(symmetric) (ELLn+1) distribution (Fang, Kotz, and Ng, 1990) with location vector (0,µ)⊤,

positive definite (n+ 1)× (n+ 1) dispersion matrix

1 0

0 Σ

 , Σ = (Σi,j)n×n, Σi,j = Cov(Xi, Xj), i, j = 1, . . . , n,

and density generator g(n+1). For simplicity, we write

Z

X

 ∼ ELLn+1

0

µ

 ,

1 0

0 Σ

 , g(n+1)

 .

Well-known results by Fang, Kotz, and Ng (1990) on marginals and conditionals of multi-

variate elliptic distributions provide the following statements:

Z − λ⊤(X − µ) ∼ ELL1

(
0, 1 + λ⊤Σλ, g(1)

)
, (3.2.1)

X ∼ ELLn(µ,Σ, g(n)), (3.2.2)

Z ∼ ELL1(0, 1, g
(1)), (3.2.3)

Z |X = x ∼ ELL1(0, 1, gq(x)), x = (x1, . . . , xn)
⊤ ∈ Rn, (3.2.4)

where q(x) and gq(x) are as in (3.1.2) and (3.1.3), respectively. F̌rom (3.2.2), X is multivariate

elliptic, then its corresponding PDF is

fX(x) =
1

|Σ|1/2Zg(n)

g(n)(q(x)), x ∈ Rn.
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§3.2. Some structural properties

Setting T = (G−1
1 (X1), . . . , G

−1
n (Xn))

⊤, by chain rule it is clear that

fT (y) = fX(yG)
n∏

i=1

G′
i(yi).

Hence, from (3.2.1), (3.2.2) and (3.2.4), the PDF (3.1.1) of Y ∼ EGSEn(µ,Σ,λ, τ, g(n))

is written as

fY (y) = fT (y)
FZ(λ

⊤(yG − µ) + τ |X = yG)

FZ−λ⊤(X−µ)(τ)
, y = (y1, . . . , yn)

⊤ ∈ (0,∞)n.

By using the above expression of fY (y) and then Bayes’ rule, we get

fY (y) = fT (y)

∫ ∞

0

fλ⊤(X−µ)−Z+τ |T=y(s)ds

P(Z − λ⊤(X − µ) < τ)

=

∫ ∞

0

fT ,λ⊤(X−µ)−Z+τ (y, s)ds

P(λ⊤(X − µ) + τ > Z)
= fT |λ⊤(X−µ)+τ>Z(y). (3.2.5)

This shows that Y ∼ EGSEn(µ,Σ,λ, τ, g(n)) admits the stochastic representation:

Y = T |λ⊤(X − µ) + τ > Z, (3.2.6)

where T = (G−1
1 (X1), . . . , G

−1
n (Xn))

⊤, and X and Z are distributionally related by Items

(3.2.1)-(3.2.4).

3.2.2 Special cases

In this subsection we develop some examples of multivariate EGSEn distributions as spe-

cial cases.

Proposition 3.2.1 (Multivariate extended G-skew-Student-t). Let Y ∼ EGSEn(µ,Σ,λ, τ, g(n)),

where g(n)(x) = (1 + x/ν)−(ν+n)/2, x ∈ R, is the PDF generator of the multivariate Student-t
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distribution with ν > 0 degrees of freedom. Then, the PDF of Y at y ∈ (0,∞)n is given by

fY (y) = tn(yG; µ,Σ, ν)
Fν+1

(
[λ⊤(yG − µ) + τ ]

√
ν+1

ν+q(yG)

)
Fν

(
τ√

1+λ⊤Σλ

) n∏
i=1

G′
i(yi), (3.2.7)

where yG and q(yG) are as given in (3.1.2) and (3.1.3), respectively. Moreover, tn(yG; µ,Σ, ν) =

g(n)(q(yG))/(|Σ|1/2Zg(n)), with Zg(n) being as in Table 3.2, denotes the PDF of the usual n-

dimensional Student-t distribution with location µ ∈ Rn, positive definite n × n dispersion

matrix Σ, and degrees of freedom ν > 0, and Fν denotes the univariate standard Student-t

CDF with degrees of freedom ν > 0.
Proof. By (3.1.1), it is enough to verify that

FELL1(λ
⊤(yG − µ) + τ ; 0, 1, gq(yG)) = Fν+1

(
[λ⊤(yG − µ) + τ ]

√
ν + 1

ν + q(yG)

)
(3.2.8)

and

FELL1(τ ; 0, 1 + λ⊤Σλ, g(1)) = Fν

(
τ√

1 + λ⊤Σλ

)
. (3.2.9)

The identity (3.2.9) follows directly when standardizing the corresponding random variable

of FELL1(·; 0, 1+λ⊤Σλ, g(1)). Therefore, it remains to verify (3.2.8). Indeed, as FELL1(·; 0, 1, gq(yG))

is the CDF of ELL1(0, 1, gq(yG)) with generator function gq(yG) as given in (3.1.3), we have

FELL1(λ
⊤(yG − µ) + τ ; 0, 1, gq(yG)) =

1

Zg(2)/Zg(1)

∫ λ⊤(yG−µ)+τ

−∞

g(2)(s2 + q(yG))

g(1)(q(yG))
ds,

which, by simple algebraic manipulations, can be written as

=
1

Zg(2)/Zg(1)

∫ λ⊤(yG−µ)+τ

−∞

(1 + s2+q(yG)
ν

)−(ν+2)/2

(1 + q(yG)
ν

)−(ν+1)/2
ds
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=
1

Zg(2)/Zg(1)

∫ λ⊤(yG−µ)+τ

−∞

(
1 + 1

ν+1

[
s
√

ν+1
ν+q(yG)

]2)−(ν+2)/2

√
1 + q(yG)

ν

ds.

By making the change of variable t = s
√

(ν + 1)/(ν + q(yG)), the last integral is

=
1

Zg(2)/Zg(1)

√
ν

ν + 1

∫ (λ⊤(yG−µ)+τ)
√

ν+1
ν+q(yG)

−∞

(
1 +

t2

ν + 1

)−(ν+2)/2

dt. (3.2.10)

A simple observation shows that

1

Zg(2)/Zg(1)

√
ν

ν + 1
=

[
((ν + 1)π)1/2Γ((ν + 1)/2)

Γ((ν + 2)/2)

]−1

.

So, the integral in (3.2.10) is written as

=

[
((ν + 1)π)1/2Γ((ν + 1)/2)

Γ((ν + 2)/2)

]−1 ∫ (λ⊤(yG−µ)+τ)
√

ν+1
ν+q(yG)

−∞

(
1 +

t2

ν + 1

)−(ν+2)/2

dt

= Fν+1

(
[λ⊤(yG − µ) + τ ]

√
ν + 1

ν + q(yG)

)
.

Then, the required formula in (3.2.8) follows.

By letting ν = 1 in Proposition 3.2.1, we have the following result.

Proposition 3.2.2 (Multivariate extended G-skew-Cauchy). Let Y ∼ EGSEn(µ,Σ,λ, τ, g(n)),

where g(n)(x) = 1/(1 + x)(n+1)/2, x ∈ R, is the PDF generator of the multivariate Cauchy

distribution. Then, the PDF of Y at y ∈ (0,∞)n is given by

fY (y) = cn(yG; µ,Σ)
F2

(
[λ⊤(yG − µ) + τ ]

√
2

1+q(yG)

)
F1

(
τ√

1+λ⊤Σλ

) n∏
i=1

G′
i(yi), (3.2.11)

where yG and q(yG) are as given in (3.1.2) and (3.1.3), respectively. Moreover, cn(yG; µ,Σ) =
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g(n)(q(yG))/(|Σ|1/2Zg(n)), with Zg(n) being as in Table 3.2, denotes the PDF of the usual n-

dimensional Cauchy distribution with location µ ∈ Rn and positive definite n × n dispersion

matrix Σ, and Fν denotes the univariate standard Student-t CDF with degrees of freedom ν ∈

{1, 2}.

By letting ν → ∞ in Proposition 3.2.1, the following result follows.

Proposition 3.2.3 (Multivariate extended G-skew-normal). Let Y ∼ EGSEn(µ,Σ,λ, τ, g(n)),

where g(n)(x) = exp(−x/2), x ∈ R, is the PDF generator of the multivariate Gaussian distri-

bution. Then, the PDF of Y at y ∈ (0,∞)n is given by

fY (y) = ϕn(yG; µ,Σ)
Φ
(
λ⊤(yG − µ) + τ

)
Φ
(

τ√
1+λ⊤Σλ

) n∏
i=1

G′
i(yi), (3.2.12)

where yG is as given in (3.1.2). Here, ϕn(yG; µ,Σ, ν) = g(n)((yG−µ)⊤Σ−1(yG−µ))/(|Σ|1/2Zg(n)),

with Zg(n) being as in Table 3.2, denotes the PDF of the usual n-dimensional Gaussian distri-

bution with location µ ∈ Rn and positive definite n × n dispersion matrix Σ, and Φ denotes

the univariate standard Gaussian CDF. Table 3.3 summarizes the results found in Propositions

3.2.1, 3.2.2 and 3.2.3. Right after the table, several examples are presented with density and

scatter plots, respectively.

Table 3.3: Densities fY of the EGSEn distributions of Table 3.2.

Multivariate distribution fY (y)

Extended G-skew-Student-t tn(yG; µ,Σ, ν)
Fν+1

(
[λ⊤(yG−µ)+τ ]

√
ν+1

ν+q(yG)

)
Fν

(
τ√

1+λ⊤Σλ

) ∏n
i=1 G

′
i(yi)

Extended G-skew-Cauchy cn(yG; µ,Σ)
F2

(
[λ⊤(yG−µ)+τ ]

√
2

1+q(yG)

)
F1

(
τ√

1+λ⊤Σλ

) ∏n
i=1G

′
i(yi)

Extended G-skew-normal ϕn(yG; µ,Σ)
Φ(λ⊤(yG−µ)+τ)
Φ
(

τ√
1+λ⊤Σλ

) ∏n
i=1 G

′
i(yi)
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Figure 3.7: Density and scatter plots (with marginal densities) of the function Gi(x) =

1
α

(√
x
β
−
√

β
x

)
with covariance matrix Σ =

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
, where σ1 = 1, σ2 = 2, ρ =

0.9, µ = (4, 12), λ = (10,−3), τ = 5, α = 2.72, β = 3.14.
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Figure 3.8: Density and scatter plots (with marginal densities) of the function Gi(x) =
x1−q−1
1−q

with covariance matrix Σ =

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
, where σ1 = 0.5, σ2 = 0.25, ρ = 0.75, µ =

(4, 8), λ = (−10, 5), τ = 0.5, q = 0.5.
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Figure 3.9: Density and scatter plots (with marginal densities) of the function Gi(x) = log(x)

with covariance matrix Σ =

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
, where σ1 = 0.75, σ2 = 0.5, ρ = 0.95, µ =

(3, 2), λ = (−5, 15), τ = 1.
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Figure 3.10: Density and scatter plots (with marginal densities) of the function Gi(x) =

cosh−1(x+1) with covariance matrix Σ =

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
, where σ1 = 0.75, σ2 = 0.5, ρ =

0.1, µ = (3, 1.5), λ = (−13, 22), τ = −1.
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Figure 3.11: Density and scatter plots (with marginal densities) of the function Gi(x) =

log(log(x+1)) with covariance matrix Σ =

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
, where σ1 = 0.3, σ2 = 0.15, ρ =

0.01, µ = (0.15, 0.75), λ = (20,−5), τ = −1.
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Figure 3.12: Density and scatter plots (with marginal densities) of the function Gi(x) = x− 1
x

with covariance matrix Σ =

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
, where σ1 = 0.75, σ2 = 0.25, ρ = 0.70, µ =

(2.5, 6), λ = (7.5,−10), τ = −3.
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Given the context of the distributions discussed previously, we will conduct simulations

using the Extended G-skew-Cauchy and Extended G-skew-Student-t distributions. The simula-

tions will be carried out varying the degrees of freedom from 1 to 9. It is worth noting that, when

the degree of freedom is equal to 1, the distribution reduces to the particular case of Cauchy,

and for greater degrees of freedom, the distribution approaches the Student-t. To simplify the

analysis, we will maintain the same parameters as the previous graphs for each applied function.

The only function that will not be demonstrated is loqq(x), as this is generalized by the function

log(x) when q = 1.

1 2 3

4 5 6

7 8 9

Figure 3.13: Gi(x) =
1
α

(√
x
β
−
√

β
x

)
.
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Figure 3.14: Gi(x) = log(x).
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Figure 3.15: Gi(x) = cosh−1(x+ 1).
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1 2 3
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Figure 3.16: Gi(x) = log(log(x+ 1)).
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Figure 3.17: Gi(x) = x− 1
x
.
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In the Cauchy distribution, samples are heavily concentrated around the center, making

central points difficult to see and allowing extreme values to have a significant influence on the

tails of marginal distributions. This behavior is especially useful for modeling data with heavy

clustering and the presence of prominent outliers. As the degrees of freedom increase, there is a

greater dispersion of the points, reducing the central concentration and causing the distribution

to gradually approach normal. With higher degrees of freedom, the distribution becomes almost

identical to the Extended G-skew-normal, with less pronounced tails and less impact of extreme

values. This versatility demonstrates the potential of the distribution to adjust to a wide variety

of data modeling situations, from scenarios with high concentration to contexts that present

normal variability with asymmetries present.

3.2.3 Marginal Quantiles

Let Yi = Ti|λT (X − µ) + τ > Z; i = 1, ..., n be, where Ti = G−1
i (Xi), i = 1, ..., n. Let

p ∈ (0, 1), the p-quantile for Yi (which we call marginal quantile for Y = (Y1, ..., Yn)
T ) denoted

by QYi
(p), is a real number such that:

P(Yi ≤ QYi
(p)) = p, i = 1, ..., n. (3.2.13)

We can define the (conditional) random variable Wi = Xi|λT (X−µ)+ τ > Z, i = 1, ..., n.

Since Gi is monotone, we can rewarite the above relation, following way:

p = P(Yi ≤ QYi
(p)) = P(Ti ≤ QYi

(p)|λT (X − µ) + τ > Z)

= P(Xi ≤ Gi(QYi
(p))|λT (X − µ) + τ > Z)

= P(Wi ≤ Gi(QYi
(p))).

Hence,

QYi
(p)) = G−1

i (QWi
(p)), i = 1, ..., n.
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In other words, the relationship between the p quantiles for Yi and Wi is bidirectional: the p

quantile for Yi is determined by the corresponding p quantile of Wi, and vice versa. Thus, it is

sufficient to investigate the distribution of Wi to establish the p quantile for Yi. Fortunately, the

distribution of Wi for the cases studied in this work has already been characterized, as discussed

in the Section dedicated to Conditional Distributions.

3.2.4 Conditional distributions

In the context of multivariate sample selection models (Heckman, 1976), the interest lies

in finding the PDF of Yi |Yj > κ, i ̸= j ∈ {1, . . . , n}, given that Y = (Y1, . . . , Yn)
⊤ ∼

EGSEn(µ,Σ,λ, τ, g(n)), with κ > 0. For this purpose, let W = (W1, . . . ,Wn)
⊤ = X |λ⊤X+

τ > Z be a multivariate extended skew-elliptical random vector.

Analogously to the steps developed in (3.2.5), Bayes’ rule gives

fYi |Yj>κ(y) = fYi
(y)

∫ ∞

κ

fYj |Yi=y(s)ds

P(Yj > κ)
, y > 0, κ > 0. (3.2.14)

If Yi = y then Wi = Gi(y). So, the distribution of Yj |Yi = y is the same as the distribution of

G−1
j (Wj) |Wi = Gi(y). Consequently, the PDF of Yj given Yi = y is given by

fYj |Yi=y(s) = fWj |Wi=Gi(y)(Gj(s))G
′
j(s). (3.2.15)

Since fYi
(y) = fWi

(Gi(y))G
′
i(y) and fYj

(s) = fWj
(Gj(s))G

′
j(s), from (3.2.14) and (3.2.15)

we get

fYi |Yj>κ(y) = fWi
(Gi(y))G

′
i(y)

∫ ∞

κ

fWj |Wi=Gi(y)(Gj(s))G
′
j(s)ds∫ ∞

κ

fWj
(Gj(s))G

′
j(s)ds

.
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Equivalently,

fYi |Yj>κ(y) = fWi
(Gi(y))G

′
i(y)

SWj |Wi=Gi(y)(Gj(κ))

SWj
(Gj(κ))

, y > 0, κ > 0, (3.2.16)

where SX denotes the survival function (SF) of X . In other words, to determine the distribution

of Yi |Yj > κ it is sufficient to know the unconditional and conditional distributions of the

multivariate extended skew-elliptical random vector W .

In what remains of this subsection we present closed-forms for the PDF (3.2.16) of Yi |Yj >

κ by considering the Student-t, Cauchy and Gaussian generator densities.

Student-t density generator

Let g(n)(x) = (1+x/ν)−(ν+n)/2, x ∈ R (see Table 3.2), be the Student-t density generator

of the EGSEn (multivariate extended G-skew-Student-t) distribution.

Definition 3.2.1. A random variable X follows a univariate extended skew-Student-t (EST1)

distribution, denoted by X ∼ EST1(µ, σ
2, λ, ν, τ), if its PDF is given by see Arellano-Valle and

Genton, 2010a

fEST1(x;µ, σ
2, λ, ν, τ) =

1

σ
fν(z)

Fν+1

(
(λz + τ)

√
ν+1
ν+z2

)
Fν

(
τ√

1+λ2

) , x ∈ R; µ, λ, τ ∈ R, σ, ν > 0,

where z = (x − µ)/σ, and fν and Fν denote the PDF and CDF of the standard Student-t

distribution with ν > 0 degrees of freedom, respectively. Let SESN1(x;µ, σ
2, λ, τ) be the SF

corresponding to EST1 PDF.

Let W = (W1, . . . ,Wn)
⊤ = X |λ⊤X + τ > Z. From Arellano-Valle and Genton, 2010a,
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the unconditional and conditional distributions of W are respectively given by

Wi ∼ EST1

µi, σ
2
i ,

λiσi + λjσjρij

σi

√
1 + λ2

jσ
2
j (1− ρ2ij)

, ν,
τ√

1 + λ2
jσ

2
j (1− ρ2ij)

 , (3.2.17)

Wj ∼ EST1

µj, σ
2
j ,

λjσj + λiσiρij

σj

√
1 + λ2

iσ
2
i (1− ρ2ij)

, ν,
τ√

1 + λ2
iσ

2
i (1− ρ2ij)

 , (3.2.18)

and

Wj |Wi = y ∼ EST1

(
µy, σ

2
y;ν , λjσj

√
1− ρ2ij, ν + 1, τy;ν

)
, (3.2.19)

where we are adopting the following notation:

µy = µj + σjρij

(
y − µi

σi

)
;

σ 2
y;ν =

ν +
(

y−µ1i

σi

)2
ν + 1

σ2
j (1− ρ2ij);

τy;ν =
[
(λiσi + λjσjρij)

(
y−µi

σi

)
+ τ
]√

ν+1

ν+
(

y−µi
σi

)2 .

(3.2.20)

Hence, by combining (3.2.16) with (3.2.18), (3.2.19) and (3.2.20), we obtain

fYi |Yj>κ(y) = fEST1

Gi(y); µi, σ
2
i ,

λiσi + λjσjρij

σi

√
1 + λ2

jσ
2
j (1− ρ2ij)

, ν,
τ√

1 + λ2
jσ

2
j (1− ρ2ij)

G′
i(y)

×
SEST1

(
Gj(κ); µGi(y)

, σ 2
Gi(y);ν

, λjσj

√
1− ρ2ij, ν + 1, τ

Gi(y);ν

)
SEST1

Gj(κ); µj, σ2
j ,

λjσj + λiσiρij

σj

√
1 + λ2

iσ
2
i (1− ρ2ij)

, ν,
τ√

1 + λ2
iσ

2
i (1− ρ2ij)

 ,

(3.2.21)
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for y > 0 and κ > 0.
Example 3.2.1. By taking Gi(x) = log(x), x > 0, i = 1, . . . , n (see Table 3.2), we get the

multivariate asymmetric version of the Student-t model addressed in Marchenko and Genton,

2010. So, from (3.2.21) and Table 3.1, we have

fYi |Yj>κ(y) = fEST1

log(y); µi, σ
2
i ,

λiσi + λjσjρij

σi

√
1 + λ2

jσ
2
j (1− ρ2ij)

, ν,
τ√

1 + λ2
jσ

2
j (1− ρ2ij)

 1

y

×
SEST1

(
log(κ); µ

log(y)
, σ 2

log(y);ν
, λjσj

√
1− ρ2ij, ν + 1, τ

log(y);ν

)
SEST1

log(κ); µj, σ2
j ,

λjσj + λiσiρij

σj

√
1 + λ2

iσ
2
i (1− ρ2ij)

, ν,
τ√

1 + λ2
iσ

2
i (1− ρ2ij)

 ,

for y > 0, κ > 0, and µy, σ 2
y;ν and τy;ν being as in (3.2.20).

Cauchy density generator

Let g(n)(x) = 1/(1 + x)(n+1)/2, x ∈ R (see Table 3.2), be the Cauchy density generator of

the EGSEn (multivariate extended G-skew-Cauchy) distribution.

By taking ν = 1 in formula (3.2.21), we have

fYi |Yj>κ(y) = fEST1

Gi(y); µi, σ
2
i ,

λiσi + λjσjρij

σi

√
1 + λ2

jσ
2
j (1− ρ2ij)

, 1,
τ√

1 + λ2
jσ

2
j (1− ρ2ij)

G′
i(y)

×
SEST1

(
Gj(κ); µGi(y)

, σ 2
Gi(y);1

, λjσj

√
1− ρ2ij, 2, τGi(y);1

)
SEST1

Gj(κ); µj, σ2
j ,

λjσj + λiσiρij

σj

√
1 + λ2

iσ
2
i (1− ρ2ij)

, 1,
τ√

1 + λ2
iσ

2
i (1− ρ2ij)

 ,

(3.2.22)

for y > 0 and κ > 0.

Example 3.2.2. By taking Gi(x) = x− 1/x, x > 0, i = 1, . . . , n, from (3.2.22) and Table 3.1,
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we have

fYi |Yj>κ(y) = fEST1

y − 1

y
; µi, σ

2
i ,

λiσi + λjσjρij

σi

√
1 + λ2

jσ
2
j (1− ρ2ij)

, 1,
τ√

1 + λ2
jσ

2
j (1− ρ2ij)

(1 + 1

y2

)

×
SEST1

(
κ− 1

κ
; µ

y− 1
y

, σ 2

y− 1
y ;1
, λjσj

√
1− ρ2ij, 2, τy− 1

y ;1

)

SEST1

κ− 1
κ
; µj, σ2

j ,
λjσj + λiσiρij

σj

√
1 + λ2

iσ
2
i (1− ρ2ij)

, 1,
τ√

1 + λ2
iσ

2
i (1− ρ2ij)

 ,

for y > 0, κ > 0, and µy, σ 2
y;ν and τy;ν being as in (3.2.20).

Gaussian density generator

Let g(n)(x) = exp(−x), x ∈ R (see Table 3.2), be the Gaussian density generator of the

EGSEn (multivariate extended G-skew-normal) distribution.

Definition 3.2.2. A random variable X follows a univariate extended skew-normal (ESN1) dis-

tribution, denoted by X ∼ ESN1(µ, σ
2, λ, τ), if its PDF is given by see Vernic, 2005; Arellano-

Valle and Genton, 2010a

fESN1(x;µ, σ
2, λ, τ) =

1

σ
ϕ(z)

Φ(λz + τ)

Φ
(

τ√
1+λ2

) , x ∈ R; µ, λ, τ ∈ R, σ > 0,

where z = (x− µ)/σ, and ϕ and Φ denote the PDF and CDF of the standard normal distribu-

tion, respectively. Let SESN1(x;µ, σ
2, λ, τ) denote the SF corresponding to ESN1 PDF.

Since

lim
ν→∞

σ 2
y;ν = σ2

j (1− ρ2ij), lim
ν→∞

τy;ν = (λiσi + λjσjρij)

(
y − µi

σi

)
+ τ,

and limν→∞ fEST1(x;µ, σ
2, λ, ν, τ) = fESN1(x;µ, σ

2, λ, τ), by letting ν → ∞ in (3.2.21), we
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obtain

fYi |Yj>κ(y) = fESN1

Gi(y); µi, σ
2
i ,

λiσi + λjσjρij

σi
√
1 + λ2

jσ
2
j (1− ρ2ij)

, ν,
τ√

1 + λ2
jσ

2
j (1− ρ2ij)

G′
i(y)

×
SESN1

(
Gj(κ); µj + σjρij

(
Gi(y)−µi

σi

)
, σ2

j (1− ρ2ij), λjσj
√

1− ρ2ij , (λiσi + λjσjρij)
(
Gi(y)−µi

σi

)
+ τ
)

SESN1

Gj(κ); µj , σ2
j ,

λjσj + λiσiρij

σj
√
1 + λ2

iσ
2
i (1− ρ2ij)

, ν,
τ√

1 + λ2
iσ

2
i (1− ρ2ij)

 ,

(3.2.23)

for y > 0 and κ > 0.

Example 3.2.3. By taking Gi(x) = (
√
β/x −

√
x/β)/α, x > 0, i = 1, . . . , n, from (3.2.23)

and Table 3.1, we have

fYi |Yj>κ(y) = fESN1

 1

α

(√
β

y
−
√

y

β

)
; µi, σ

2
i ,

λiσi + λjσjρij

σi

√
1 + λ2

jσ
2
j (1− ρ2ij)

, ν,
τ√

1 + λ2
jσ

2
j (1− ρ2ij)

[− 1

2αy

(√
β

y
+

√
y

β

)]

×
SESN1

(
1
α

(√
β
κ
−
√

κ
β

)
; µj + σjρij

(
1
α

(√
β
y
−
√

y
β

)
−µi

σi

)
, σ2

j (1− ρ2ij), λjσj

√
1− ρ2ij , (λiσi + λjσjρij)

(
1
α

(√
β
y
−
√

y
β

)
−µi

σi

)
+ τ

)

SESN1

 1
α

(√
β
κ
−
√

κ
β

)
; µj , σ2

j ,
λjσj + λiσiρij

σj

√
1 + λ2

i σ
2
i (1− ρ2ij)

, ν,
τ√

1 + λ2
i σ

2
i (1− ρ2ij)


,

for y > 0 and κ > 0.

3.2.5 Existence of marginal moments

The objective of this subsection is to provide sufficient conditions to ensure the existence

of the real moments of the random variable Yi = Ti |λ⊤(X−µ)+ τ > Z, with Ti = G−1
i (Xi),

i = 1, . . . , n. To do this, we will consider the notation Wi = Xi |λ⊤X + τ > Z, i = 1, . . . , n,

used in Subsection 3.2.13.

Indeed, by using the well-known identity

E(Y p) = p

∫ ∞

0

yp−1P(Y > y)dy, Y > 0, p > 0, (3.2.24)
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and by employing the relation

Yi
d
= G−1

i (Wi), i = 1, . . . , n,

with d
= denoting equality in distribution, it follows that

E(Y p
i ) = p

∫ ∞

0

yp−1P(Wi > Gi(y))dy

= p

∫ a

0

yp−1P(Wi > Gi(y))dy + p

∫ ∞

a

yp−1P(Wi > Gi(y))dy

⩽ ap + p

∫ ∞

a

yp−1P(Wi > Gi(y))dy,

for some a ∈ (0,∞). Therefore, a sufficient condition for the existence of positive order

moments of Yi is that

I =

∫ ∞

a

yp−1P(Wi > Gi(y))dy < ∞, i = 1, . . . , n. (3.2.25)

In what remains of this subsection we will analyze condition in (3.2.25) in the special case

that (see Table 3.1)

Gi(x) =
2Fi(x)− 1

Fi(x)[1− Fi(x)]
, x > 0, i = 1, . . . , n, (3.2.26)

with Fi being the CDF of a continuous random variable with positive support. Indeed, as

{Wi > Gi(y)} ⊂ {|Wi| > Gi(y)}, the integral in (3.2.25) is

I ⩽
∫ ∞

a

yp−1P(|Wi| > Gi(y))dy.
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By Markov’s inequality, the above expression is at most

E(|Wi|p)
∫ ∞

a

yp−1

Gp
i (y)

dy = E(|Wi|p)
∫ ∞

a

yp−1

Gp−1
i (y)

Fi(y)[1− Fi(y)]

[2Fi(y)− 1]
dy.

As Gi and Fi are increasing, for p > 1, the above expression is

⩽
E(|Wi|p)

Gp−1
i (a)[2Fi(a)− 1]

∫ ∞

a

yp−1[1− Fi(y)]dy

⩽
E(|Wi|p)

Gp−1
i (a)[2Fi(a)− 1]

∫ ∞

0

yp−1[1− Fi(y)]dy,

provided Fi(a) ̸= 1/2 and Gi(a) ∈ (0,∞). If S > 0 is a continuous random variable such that

Si
d
= Fi, by (3.2.24), the above integral is

=
E(|Wi|p)E(Sp

i )

pGp−1
i (a)[2Fi(a)− 1]

.

Therefore, for the choice of Gi as in (3.2.26), we have verified that

I ⩽
E(|Wi|p)E(Sp

i )

pGp−1
i (a)[2Fi(a)− 1]

.

Hence, if Gi as in (3.2.26), a > 0 is such that Fi(a) ̸= 1/2 and Gi(a) ∈ (0,∞), E(|Wi|p) <

∞ and E(Sp
i ) < ∞ for some p > 1, then E(Y p

i ), i = 1, . . . , n, exists.

3.2.6 Mahalanobis distance

To evaluate the residuals of the model, we propose a metric that uses the Mahalanobis dis-

tance. This approach consists of individually checking whether each data point belongs to the

proposed distribution, based on a threshold distance ϵ. If the distance of a point in relation to the

center of the distribution is within this threshold, the point is considered part of the distribution,

indicating that the data follow the distribution EGSEn(µ,Σ,λ, τ, g(n)). Thus, this metric allows

68



§3.2. Some structural properties

a robust assessment of whether the observed points are aligned with the theoretical distribution,

ensuring a more detailed analysis.

Y = T |λT (X − µ) + τ > Z, T = (G−1
1 (X1), ..., G

−1
n (Xn)).

Let be Z∗ = λT (X − µ) + τ − Z, then Y = T |Z∗ > 0.

We can define the Mahalanobis distance in terms of Y :

d2 = (Y − µY )
TΣ−1

y (Y − µY ); µY = (µy1 , ..., µyn)
T .

We goal is calculate of accumulate function of d2. In this sense it’s can be define

Fd2(x) = P(d2 ≤ x); f.d.a; ∀x ∈ R.

We can to use the Cholesky decomposition to describe the covariance matrix:

ΣY = LLT ,

remember that covariance matrix is symmetric and positive and L is inferior triangular matrix.

Therefore

Σ−1
Y = (LLT )−1 = (LT )−1L−1 = (L−1)TL−1.

Hence

d2 = (Y −µy)
T (L−1)TL−1(Y −µy) = L−1(Y −µY )

TL−1(Y −µY ) = STS =
n∑

i=1

S2
i = ||S||2,

where S = (S1, ..., Sn)
T = L−1(Y − µY ) and || · || denote the euclidean norm.

Let L−1 the triangular matrix originating the Cholesky decomposition n×n and let Y −µY

be a vetor n× 1:
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L−1 · (Y − µY) =


a11 0 · · · 0

a21 a22 · · · 0

...
... . . . ...

an1 an2 · · · ann


·


Y1 − µY1

Y2 − µY2

...

Yn − µYn


. (3.2.27)

The product in (3.2.27) results in a vector S given by:

S =


S1

S2

...

Sn


=


a11(Y1 − µY1)

a21(Y1 − µY1) + a22(Y2 − µY2)

...

an1(Y1 − µY1) + ...+ ann(Yn − µYn)


. (3.2.28)

Then by (3.2.28) there is cij : 1 ≤ j ≤ i ≤ n such that

S1 = c11(Y1 − µY1),

S2 = c21S1 + c22(Y2 − µY2),

...

Sn−1 =
n−2∑
i=1

c(n−1)iSi + c(n−1)(n−1)(Yn−1 − µYn−1),

Sn =
n−1∑
i=1

cniSi + cnn(Yn − µYn).

Now we can define the accumulate function by Mahalanobis square distance

Fd2(x) = P(d2 ≤ x)
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= P
( n∑

i=1

S2
i ≤ x

)
= E[1{

∑n
i=1 S

2
i ≤x}].

Applying the Law of total expectation we have

P
( n∑

i=1

S2
i ≤ x

)
= E[1{

∑n
i=1 S

2
i ≤x}] = E[E(1{

∑n
i=1 S

2
i ≤x}|S1, ..., Sn−1)]

= E[E(1{
∑n

i=1 S
2
i ≤x}|S1, ..., Sn−1)] =

∫
...

∫
Rn−1

E(1{
∑n

i=1 S
2
i ≤x}|S1, ..., Sn−1)dFS1,...,Sn−1

=

∫
...

∫
Rn−1

E(1{S2
n≤x−

∑n−1
i=1 S2

i }
|S1, ..., Sn−1)dFS1,...,Sn−1

=

∫
...

∫
∑n−1

i=1 ≤x

E(1{−
√

x−
∑n−1

i=1 Si≤Sn≤
√

x−
∑n−1

i=1 Si}
|S1, ..., Sn−1)dFS1,...,Sn−1 .

Although the mathematical development is solid and well-founded, the computational im-

plementation of this concept has not yet been achieved. However, we have registered this pro-

posal so that, in the future, with the advancement of new studies or techniques, it will be possible

to overcome these limitations and evaluate the model as presented. It is important to emphasize

that the main challenge lies in the calculation of multiple integrals of the conditional expecta-

tion, characterized as a highly complex and non-trivial expression. This record not only serves

as a starting point for future investigations and improvements, but also as a reference for other

researchers who may be interested in exploring or developing this methodology.
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3.3 Maximum likelihood estimation

Consider {Yk = (Y1k, Y2k, . . . , Ynk)
⊤ : k = 1, . . . ,m} to be a multivariate random sample of

size m from the distribution Y ∼ EUGSEn(µ,Σ,λ, τ, g(n)), with the joint PDF given in the

expression (3.1.1). Suppose yk = (y1k, y2k, . . . , ynk)
⊤ is an observed realization of Yk. To find

the maximum likelihood estimates (MLEs) of the parameters of the model, whose parameter

vector is θ = (µ,Σ,λ, τ)⊤, it is necessary to maximize the following log-likelihood function

ℓ(θ) =
m∑
k=1

log(fX(yG,k)) +
m∑
k=1

log(FELL1(λ
⊤(yG,k − µ) + τ ; 0, 1, gq(yG,k)))

−m log(FELL1(τ ; 0, 1 + λ⊤Σλ, g(1))) +
m∑
k=1

n∑
i=1

log(G′
i(yik)),

where yG,k = (G1(y1k), . . . , Gn(ynk))
⊤. Since X ∼ ELLn(µ,Σ, g(n)), by the expression 3.1.1,

the log-likelihood function (neglecting the additive constant) is written as:

ℓ(θ) =
m

2
log(|Σ−1|) +

m∑
k=1

log(g(n+1)((yG,k − µ)⊤Σ−1(yG,k − µ)))

+
m∑
k=1

log

(∫ λ⊤(yG,k−µ)+τ

−∞
g(2)(s2 + (yG,k − µ)⊤Σ−1(yG,k − µ))ds

)

−
m∑
k=1

log(g(1)((yG,k − µ)⊤Σ−1(yG,k − µ)))

+
m

2
log(1 + λ⊤Σλ)−m log

(∫ τ

−∞
g(1)

(
s2

1 + λ⊤Σλ

)
ds

)
.

The likelihood equations are given by

∂ℓ(θ)

∂µ
= 0n×1,

∂ℓ(θ)

∂Σ−1
= 0n×n,

∂ℓ(θ)

∂λ
= 0n×1,

∂ℓ(θ)

∂τ
= 0.
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In what follows we determine ∂ℓ(θ)/∂µ, ∂ℓ(θ)/∂Σ−1, ∂ℓ(θ)/∂λ and ∂ℓ(θ)/∂τ . Indeed, by

using the identities

∂a⊤x

∂x
= a⊤,

∂x⊤Ax

∂x
= 2Ax,

∂x⊤Ax

∂A
= xx⊤,

∂x⊤A−1x

∂A
= −A−⊤xx⊤A−⊤,

∂ log(|A|)
∂A

= A−⊤,

with A being a n× n invertible matrix and x an n-dimensional vector, we have

(i)

∂ℓ(θ)

∂µ
= −2Σ−1

m∑
k=1

(yG,k − µ)
[g(n+1)]′((yG,k − µ)⊤Σ−1(yG,k − µ))

g(n+1)((yG,k − µ)⊤Σ−1(yG,k − µ))

− λ⊤
m∑
k=1

g(2)([λ⊤(yG,k − µ) + τ ]2 + (yG,k − µ)⊤Σ−1(yG,k − µ))∫ λ⊤(yG,k−µ)+τ
−∞ g(2)(s2 + (yG,k − µ)⊤Σ−1(yG,k − µ))ds

− 2Σ−1
m∑
k=1

(yG,k − µ)

∫ λ⊤(yG,k−µ)+τ
−∞ [g(2)]′(s2 + (yG,k − µ)⊤Σ−1(yG,k − µ))ds∫ λ⊤(yG,k−µ)+τ
−∞ g(2)(s2 + (yG,k − µ)⊤Σ−1(yG,k − µ))ds

+ 2Σ−1
m∑
k=1

(yG,k − µ)
[g(1)]′((yG,k − µ)⊤Σ−1(yG,k − µ))

g(1)((yG,k − µ)⊤Σ−1(yG,k − µ))
,

(ii)

∂ℓ(θ)

∂Σ−1
=

m

2
Σ+

m∑
k=1

(yG,k − µ)(yG,k − µ)⊤
[g(n+1)]′((yG,k − µ)⊤Σ−1(yG,k − µ))

g(n+1)((yG,k − µ)⊤Σ−1(yG,k − µ))

+
m∑
k=1

(yG,k − µ)(yG,k − µ)⊤
∫ λ⊤(yG,k−µ)+τ
−∞ [g(2)]′(s2 + (yG,k − µ)⊤Σ−1(yG,k − µ))ds∫ λ⊤(yG,k−µ)+τ
−∞ g(2)(s2 + (yG,k − µ)⊤Σ−1(yG,k − µ))ds

−
m∑
k=1

(yG,k − µ)(yG,k − µ)⊤
[g(1)]′((yG,k − µ)⊤Σ−1(yG,k − µ))

g(1)((yG,k − µ)⊤Σ−1(yG,k − µ))

− m

2

Σλλ⊤Σ

1 + λ⊤Σλ
−m

Σλλ⊤Σ

(1 + λ⊤Σλ)2

∫ τ
−∞ s2 [g(1)]′

(
s2

1+λ⊤Σλ

)
ds∫ τ

−∞ g(1)
(

s2

1+λ⊤Σλ

)
ds

,
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(iii)

∂ℓ(θ)

∂λ
=

m∑
k=1

(yG,k − µ)
g(2)([λ⊤(yG,k − µ) + τ ]2 + (yG,k − µ)⊤Σ−1(yG,k − µ))∫ λ⊤(yG,k−µ)+τ
−∞ g(2)(s2 + (yG,k − µ)⊤Σ−1(yG,k − µ))ds

+m
Σλ

1 + λ⊤Σλ
+ 2m

Σλ

(1 + λ⊤Σλ)2

∫ τ
−∞ s2[g(1)]′

(
s2

1+λ⊤Σλ

)
ds∫ τ

−∞ g(1)
(

s2

1+λ⊤Σλ

)
ds

,

(iv)

∂ℓ(θ)

∂τ
=

m∑
k=1

g(2)([λ⊤(yG,k − µ) + τ ]2 + (yG,k − µ)⊤Σ−1(yG,k − µ))∫ λ⊤(yG,k−µ)+τ
−∞ g(2)(s2 + (yG.k − µ)⊤Σ−1(yG,k − µ))ds

−m
g(1)
(

τ2

1+λ⊤Σλ

)∫ τ
−∞ g(1)

(
s2

1+λ⊤Σλ

)
ds

.

No closed-form solution to the maximization problem is available. As such, the maximum likelihood

(ML) estimator of θ, denoted by θ̂, can only be obtained via numerical optimization. If I(θ0) denotes

the expected Fisher information matrix, where θ0 is the true value of the population parameter vector,

then, under well-known regularity conditions (Davison, 2008), it follows that

√
m[I(θ0)]

1/2(θ̂ − θ0)
d−→ N(0(n+1)2×1, I(n+1)2×(n+1)2), as m → ∞,

where 0(n+1)2×1 is the (n + 1)2× zero vector, and I(n+1)2×(n+1)2 is the (n+ 1)2 × (n+ 1)2 identity

matrix. Since the expected Fisher information can be approximated by its observed version (obtained

from the Hessian matrix), we can use the diagonal elements of this observed version to approximate the

standard errors of the ML estimates.
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Chapter 4

Simulation study

In this section, the results obtained from Monte Carlo simulations will be presented and discussed, with

the aim of evaluating the quality of the estimates related to the distribution under study. Simulations

allow examining the performance of estimators under different scenarios, providing a detailed analysis

of their accuracy, bias and variance. Through this approach, it will be possible to validate the robustness

of the methods employed, as well as identify possible limitations, contributing to a more comprehensive

understanding of the behavior of the distribution under different conditions.

"All models are wrong, but some are useful"

- George E. P. Box
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4.1 Simulation Study

In this section, we conduct a simulation study to evaluate the performance of maximum like-

lihood estimators (MLEs). The simulation focuses on the estimation of the model parameters in

the bivariate case. We present the results for the extended unit-G-skew normal distribution with

the following Gi functions: Gi(x) =
1
α

(√
x
β
−
√

β
x

)
, Gi(x) = log(x), Gi(x) = cosh−1(x+1),

Gi(x) = log(log(x+1)), and Gi(x) = x− 1
x
. In the context of the function logq(x), the detailed

estimates are available in the Appendix A.

The efficiency of MLEs is evaluated using two key metrics: relative bias (RB) and root mean

square error (RMSE). These are calculated as follows:

R̂B(θ̂) =
1

N

N∑
i=1

∣∣∣∣∣ θ̂(i) − θ

θ

∣∣∣∣∣ ,
where θ̂(i) is the estimated value in the ith iteration and N is the number of simulations. Simi-

larly, the RMSE is calculated by:

R̂MSE(θ̂) =

√√√√ 1

N

N∑
i=1

(
θ̂(i) − θ

)2
.

The simulation scenario employed samples of the following orders n ∈ {100, 200, 500, 1000},

where the true parameters are specified as follows

(µ1, µ2, λ1, λ2, τ, σ1, σ2)
⊤ = (1, 1, 0.5, 0.6, 0.5, 1, 1)⊤,

and ρ takes on values in {0.10, 0.25, 0.50, 0.75, 0.90}. In each case, 100 Monte Carlo replicates

were performed for each configuration.

Figures 4.1–4.10 show the simulation results of the maximum likelihood estimation. It can

be observed that the relative bias decreases with increasing sample size, which indicates that the
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estimates are approaching the real values. For smaller ρ, the bias is larger, while larger values

of ρ have a smaller bias, proving that the choice of ρ affects the precision of the estimates. The

curves show a rapid decrease in bias with the increase in n, confirming the consistency of the

estimators and emphasising the importance of large samples to improve accuracy.

Figures 4.1–4.10 also show that the RMSE decreases with increasing sample size, which

indicates that the estimates become more accurate and are closer to the true values of the pa-

rameters. Larger ρ values tend to show smaller MSEs, while smaller ρ values show a larger

error, reflecting the influence of ρ on the accuracy of the estimates. The curves show a strong

decrease in RMSE with increasing n, especially for small samples, emphasising the importance

of larger samples for more accurate and reliable estimates.
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Figure 4.1: Relative bias for Gi(x) =
1
α

(√
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)
.
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Figure 4.3: Relative bias for Gi(x) = log(x).
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Figure 4.4: Root mean squared error for Gi(x) = log(x).
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Figure 4.5: Relative bias for Gi(x) = cosh−1(x+ 1).
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Figure 4.6: Root mean squared error for Gi(x) = cosh−1(x+ 1).
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Figure 4.7: Relative bias for Gi(x) = log(log(x+ 1)).
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Figure 4.8: Root mean squared error for Gi(x) = log(log(x+ 1)).
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Figure 4.9: Bias for Gi(x) = x− 1
x
.
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Figure 4.10: Root mean squared error for Gi(x) = x− 1
x
.
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Chapter 5

Applications

In this section, we apply the proposed models to real data, utilizing a range of metrics to evaluate

the quality of the model fits. To assess how well the data fits with the proposed distributions,

we employ well-established statistical tests, including the Kolmogorov-Smirnov, Anderson-

Darling, and Cramér-von Mises tests. The aim is to identify which distributions offer the best

fit for the data

"Without data, you’re just another person

with an opinion."

- W. Edwards Deming
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5.1 Application to real data

5.1.1 Data description

In this chapter we will present a dataset extracted from (Cook and Weisberg, 2009), which

contains information about athletes from the Australian Institute of Sport (AIS). The available

data include the athlete’s sex (Sex), sport (Sport), red blood cell count (RCC), white blood

cell count (WCC), haematocrit (Hc), haemoglobin concentration (Hg), blood iron (Fe), body

mass index (BMI), sum of skin folds (SSF), body fat percentage (Bfat), lean body mass (LBM),

height (Ht) and weight (Wt).

Initially, height and weight information will be analysed without distinction of sex, but later

these variables will be separated by sex. For ease of understanding, height will be referred to

by the acronym Ht and weight by Wt. Where there is a distinction by sex, we will use the

acronyms Ht-M and Wt-M for males and Ht-F and Wt-F for females. The analysis is bivariate.

Descriptive statistics and data summaries are presented below.

Table 5.1: Summary statistics covering both sexes.

Variables n Minimum Median Mean Maximum SD CV CS CK
Ht 202.00 148.90 179.70 180.10 209.40 9.73 5.40 -0.20 3.53
Wt 202.00 37.80 74.40 75.01 123.20 13.93 18.57 0.24 3.39

Table 5.2: Summary statistics for males.

Variables n Minimum Median Mean Maximum SD CV CS CK
Ht-M 102.00 165.30 185.55 185.51 209.40 7.90 4.26 0.07 3.00
Wt-M 102.00 53.80 83.00 82.52 123.20 12.41 15.03 0.39 3.41

Table 5.3: Summary statistics for females.

Variables n Minimum Median Mean Maximum SD CV CS CK
Ht-F 100.00 148.90 175.00 174.59 195.90 8.24 4.72 -0.56 4.20
Wt-F 100.00 37.80 68.05 67.34 96.30 10.92 16.21 -0.17 3.13

Then, the scatter and contour plots of each of the previously mentioned data can be analyzed.
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Figure 5.1: Scatterplot with contour lines illustrating the relationship between height and
weight of athletes from the AIS database.
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Figure 5.2: Scatterplot with contour lines showing the relationship between height and weight
of athletes in the AIS database, with male athletes on the left and female athletes on the right.
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Note that the graphs have distorted elliptical shapes, characteristics that are of particular

interest for modelling the data in question.

Below are the boxplots for the three characteristics (both sexes, male and female), first for

the weights and then for the heights.
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Figure 5.3: Boxplot of the athletes’ weight, separated by sex (male and female) and with an
overview of the total.

It can be concluded that there are significant differences in weight between the sexes, with

men on average being heavier than women, as shown by the higher median weight in the male

group. This difference can be seen in the fact that most of the male weights are concentrated

between 70 kg and 90 kg, while the female weights are between 60 kg and 75 kg, reinforcing

the trend towards greater body mass in men.

Furthermore, the presence of outliers in both groups, especially in the highest values, indi-

cates the existence of individuals with weights significantly outside the expected standard, both
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above and below the main range. These outliers contribute to the formation of heavy tails in the

distributions, highlighting the variability and dispersion of the weights.
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Figure 5.4: Boxplot of the athletes’ height, separated by sex (male and female) and with an
overview of the total.

It can be concluded that there are significant differences in height between the sexes, with

men on average being taller than women. The median height is higher in the male group, close

to 185 cm, while in the female group the median is around 170 cm, showing a clear difference

between the distributions.

Men show a wider dispersion of heights, with most heights between 175 cm and 195 cm,

while the female group has a narrower concentration, with heights predominantly between 165

cm and 175 cm.

Furthermore, the presence of outliers in the three groups, with values significantly above

200 cm or below 160 cm, suggests the existence of individuals with heights outside the expected

standard, resulting in distributions with heavy tails.
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5.1.2 Fit I

In this first data model using the EGSE distribution, the fit was performed using the log-q

function. This function was developed based on the ideas presented by Constantino Tsallis in his

seminal article (Tsallis, 1988), a fundamental reference for the generalization of logarithmic and

exponential functions in the context of non-extensive statistics. In this work, Tsallis introduces

the entropy Sq, a generalized function parameterized by q, which extends the applications of

traditional functions.

The main reference for understanding this function in the context of this study was found in

(Yamano, 2002). The extended logarithmic function, or skewed as it is commonly called, allows

for more refined control of growth behavior. Consequently, this concept can also be applied to

the exponential case with its inverse function. The log-q distribution is defined as

lnq x :=
x1−q − 1

1− q
. (5.1.1)

Therefore, its inverse is given by:

x1−q − 1

1− q
= y,

x1−q − 1 = y(1− q),

x1−q − 1 = y − qx,

x1−q = y − qx+ 1,

x = [y − qx+ 1]
1

1−q ,

where

exq :=


[1 + (1− q)x]

1
1−q , if 1 + (1− q)x ≥ 0,

0, otherwise.

Remembering that the value of the expression within the root must not be negative, which

justifies the condition established previously.
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The derivative of Equation 5.1.1 can be expressed as follows:

∂ lnq(x)

∂x
=

(1− q) (x1−q−1)

(1− q)
= x−q =

1

xq

Note that the final expression presented above is similar to the derivative of ln(x), differing

only by the presence of the exponent q in the denominator.

These three expressions are of fundamental importance for the distribution, as the function

and its derivative are essential in calculating the density and the accumulated function, while

the inverse function is crucial for generating data from the stochastic representation.

Using AIS data considering both sexes and applying the log−q function with variation

in q values, the degrees of freedom were estimated in the context of the Extended G-skew

distribution t-Student-. The following table presents the results of the statistical adherence

tests, highlighting the metrics KS test, AD test and the log-MLE value for each variation of q:

Table 5.4: Resultados dos testes para o modelo EGSE2-t.

q df KS.test AD.test log-MLE
0.75 34 0.070 0.132 1452.744
0.80 35 0.041 0.088 1452.398
0.85 22 0.054 0.108 1452.771
0.90 69 0.031 0.084 1455.953
0.95 14 0.070 0.125 1453.524
1.00 15 0.041 0.094 1454.505
1.05 13 0.041 0.087 1457.627
1.10 33 0.054 0.114 1459.853
1.15 11 0.115 0.174 1456.742
1.20 11 0.054 0.066 1457.416
1.25 8 0.796 0.412 1456.451

Taking into account the two tests carried out, the most appropriate model among those

simulated in Extended G-skew-tStudent is the one with q = 1.25 and 8 degrees of freedom.

Below are scatter plots illustrating the model fit: on the left, the actual values; on the right, the

values generated with the parameters estimated by the stochastic representation.
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Figure 5.5: On the left are the real data, and on the right are the simulated data with the
estimated parameters.
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Below, the estimated parameters are presented along with their respective estimation stan-

dard errors, indicated in parentheses.

Table 5.5: Estimation of parameters with standard errors indicated in parentheses.

µ̂1 µ̂2 λ̂1 λ̂2 σ̂1 σ̂2 ρ̂ ν̂
2.688 2.918 -18.437 -4.347 0.080 0.017 0.869 8

(0.012) (0.003) (6.066) (29.651) (0.009) (0.002) (0.037) -

To estimate the model parameters, we chose to set the parameter τ to zero, with the aim of

simplifying the model and reducing computational costs. This choice is particularly strategic

when the inclusion of τ does not significantly improve the fit or when its presence increases

complexity, increasing the risk of overfitting and making the estimation process more laborious.
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The parameter τ is valued for its ability to add flexibility to the model and can be adjusted

according to the needs of the application. Setting it to zero is beneficial in situations where its

extension function is unnecessary, resulting in a simpler and more efficient model. When the

extra flexibility provided by τ is needed, it can be reintroduced and adjusted according to the

context, maintaining the balance between accuracy and efficiency.

In summary, τ is an important component of the model that provides versatility in applica-

tion. It can be estimated to capture additional details of the data, or fixed to maintain simplicity,

adapted according to the specific objectives of the analysis.

It is now applied in the case of the Extended G-skew-normal:

Table 5.6: Test results for the EGSE2-Normal model.

q KS.test AD.test log-MLE
0.75 0.031 0.061 1461.284
0.80 0.031 0.061 1460.881
0.85 0.023 0.057 1461.131
0.90 0.023 0.059 1460.769
0.95 0.007 0.039 1465.461
1.00 0.023 0.065 1460.380
1.05 0.017 0.061 1460.917
1.10 0.115 0.075 1460.819
1.15 0.017 0.062 1460.669
1.20 0.000 0.000 1616.649
1.25 0.000 0.000 1723.706

It is possible to infer that the best model was the one with q = 1.10, where both tests

present a significance level greater than 0.05. Below, scatter plots illustrating the model fit are

displayed: on the left, the observed values; on the right, the values generated with the parameters

estimated by the stochastic representation.
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Figure 5.6: On the left are the real data, and on the right are the simulated data with the
estimated parameters.
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The estimated parameters, together with their respective estimation standard errors (in paren-

theses), are presented below.

Table 5.7: Estimation of parameters with standard errors indicated in parentheses.

µ̂1 µ̂2 λ̂1 λ̂2 σ̂1 σ̂2 ρ̂
4.017 3.486 160.507 -29.452 0.046 0.123 0.566

(0.003) (0.023) (30.379) (5.307) (0.003) (0.006) (0.123)

Between the two distributions evaluated, the Extended G-skew-t Student model stood out

as the best fit, possibly due to the inclusion of an additional parameter, the degree of freedom,

which gives the model greater flexibility. However, it is important to stress that the results of

the goodness of fit tests (Kolmogorov-Smirnov and Anderson-Darling) are not definitive, but

only serve as a guideline for the selection of the most appropriate model. In several simulations,
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in particular for Extended G-skew-tStudent, a high degree of similarity between the simulated

and real values was observed graphically, providing visual support for the choice.

Despite the importance of goodness of fit tests, other validation metrics such as information

criteria should also be considered for a more robust evaluation, such as the Akaike Information

Criterion (AIC) (Akaike, 1998) and the Bayesian Information Criterion (BIC) (Schwarz, 1978).

These metrics allow the goodness of fit between models to be compared, taking into account

both fit and complexity, providing a more comprehensive basis for selecting the optimal model.

No specific applications were performed for the Extended G-skew-Cauchy model, as we

believe that this case is assumed when the degree of freedom is equal to 1. However, as this

value was not found in any of the estimates obtained, it was not possible to identify the presence

of the Extended G-skew-Cauchy model in the results.

It can be considered that the best fit between the two families presented was that of the

t-student distribution, according to the Kolmogorov-Smirnov (KS) test, which showed a signif-

icantly superior performance when comparing the two best models in each case.

To consolidate the model fit, in this and subsequent cases we will use the RQ residuals (Ran-

domized Quantile Residuals), defined by (Dunn and Smyth, 1996) as RRQ
i = Φ−1[F (yi|θ)]. In

this formula, F (yi|θ) is the cumulative distribution function (CDF) of the model fitted to each

observation yi, and Φ−1 is the function quantile of the standard normal distribution N(0, 1).

When F the model is correctly specified, the RQ residuals follow a standard normal distribu-

tion. The QQ plot of the RQ residuals is used to assess the compliance of the residuals with

normality. In this plot, the quantiles of the residuals are compared with the theoretical quantiles

of the standard normal distribution. The proximity of the points to the reference line indicates

that the residuals follow a normal distribution, indicating a good fit of the model. Substantial

deviations from the line indicate possible problems, such as poor model specification or the

presence of outliers. To improve the analysis, a 95% confidence envelope is included, which

helps to visualise the expected variability of the residuals and facilitates the identification of

significant deviations.
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Figure 5.7: Q-Q plot of RQ residuals - t-Student Family.
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Figure 5.8: Q-Q plot of the RQ residuals - Normal Family.
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5.1.3 Fit II

To continue the analysis of the male athletes’ data, we focus on modeling based on the

EGSE2-Student-t distribution. This approach uses a specific function, described by the equa-

tion 1
α

(√
x
β
−
√

β
x

)
, which comes from the Birnbaum-Saunders distribution, as discussed in

(Leiva, 2015). The choice of this function is justified by its ability to capture complex behaviors

in the data, being particularly useful for modeling asymmetric and heavy-tailed distributions,

characteristics frequently observed in sports performance datasets.

To demonstrate the flexibility of the proposed distribution, we used widely recognized con-

stants in the field of mathematics, such as the value of pi (π = 3.1415) and Euler’s constant

(e = 2.71828). These constants were chosen not only for their mathematical relevance, but also

for their applicability in different modeling contexts, allowing a robust and intuitive parameter-

ization of the distribution.

The following table presents the results of the tests for the t-Student variant of the model,

which demonstrate the quality of the fit to the athlete data.

Table 5.8: Test results for the EGSE2-t model.

α β df KS.test AD.test log-MLE
π e 14 0.82 0.54 714.536

The results obtained, as presented in Table 5.19, indicate a robust fit of the t-Student model

to the analyzed data. The value of α was parameterized as π, while β was fixed as e, reflecting

the strategic use of these constants. The degrees of freedom parameter was estimated at 14,

which suggests a distribution with slightly heavier tails than the standard normal.

The goodness-of-fit tests, including the Kolmogorov-Smirnov test and the Anderson-Darling

test, presented values of 0.82 and 0.54, respectively. These values are significantly above the 5%

significance level, demonstrating that the model fits the data well and that there is no evidence

of significant deviation between the theoretical distribution and that observed in the athletes’

data.
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These results highlight the ability of the EGSE2-Student-t distribution to capture the nu-

ances present in the data and to provide an appropriate statistical representation of the athletes’

performance.

Figure 5.9: Comparison between real (left) and simulated (right) data with estimated parame-
ters.
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The best value estimate for the parameter ν was 14. The graph confirms that the simulated

data fits the real data well, demonstrating the quality of the model.

Table 5.9: Estimation of parameters with standard errors indicated in parentheses.

µ̂1 µ̂2 λ̂1 λ̂2 σ̂1 σ̂2 ρ̂ ν̂
1.592 2.595 24.616 -43.254 0.155 0.053 0.497 14

(0.024) (0.011) (6.470) (12.129) (0.018) (0.004) (0.121) -

We then analyze the fit using the EGSE2-Normal distribution.

Table 5.10: Test results for the EGSE2-Normal model.

α β KS.test AD.test log-MLE
π e 0.48 0.20 713.505
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The results indicate that the fit to the Normal distribution was also satisfactory, with both

tests above the significance level.

Figure 5.10: Comparison between real (left) and simulated (right) data with estimated param-
eters.
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The graph confirms that the simulated data fit the real data well. The table below shows the

estimated parameters.

Table 5.11: Estimation of parameters with standard errors indicated in parentheses.

µ̂1 µ̂2 λ̂1 λ̂2 σ̂1 σ̂2 ρ̂
1.583 2.593 24.122 -41.144 0.172 0.056 0.507

(0.023) (0.011) (6.196) (10.931) (0.019) (0.003) (0.117)

The Q-Q plots of the fits reveal that the residuals follow the proposed distributions well.

102



§5.1. Application to real data

−2 −1 0 1 2

−
2

−
1

0
1

2

8

86

Figure 5.11: Q-Q plot of RQ residuals - t-Student Family.
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Figure 5.12: Q-Q plot of RQ residuals - Normal Family.

Comparing the models, the Extended G-skew-Student-t showed the best overall perfor-
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mance, considering both the tests and the graphs. However, the G-skew-Student-Normal model

also showed a good fit, being a viable alternative for modeling.

5.1.4 Fit III

Now, we consider the fit to the female data using the function cosh−1(x + 1) within the

G-skew-Student-t distribution.

Table 5.12: Test results for the EGSE2-t model.

df KS.test AD.test log-MLE
6 0.48 0.21 692.415

The test results were similar to those obtained for the male data, all above the 5% signif-

icance level, indicating that the fit is adequate. The following figure compares the real and

simulated data.

Figure 5.13: Comparison between real (left) and simulated (right) data with estimated param-
eters.
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The standard errors of the estimated parameters remained high, reflecting the difficulty of

identifiability mentioned above.

Table 5.13: Estimation of parameters with standard errors indicated in parentheses.

µ̂1 µ̂2 λ̂1 λ̂2 σ̂1 σ̂2 ρ̂ ν̂
5.062 5.902 -9.287 -20.973 0.198 0.054 0.848 6

(0.025) (0.006) (4.226) (10.602) (0.025) (0.006) (0.041) -

For the G-skew-Student-Normal case, the results are presented below.

Table 5.14: Test results for the EGSE2-Normal model.

KS.test AD.test log-MLE
0.28 0.20 690.239

Although the KS test has decreased, the fit is still considered good as shown graphically.

Figure 5.14: Comparison between real (left) and simulated (right) data with estimated param-
eters.
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Below, the estimated parameters are presented.

Table 5.15: Estimation of parameters with standard errors indicated in parentheses.

µ̂1 µ̂2 λ̂1 λ̂2 σ̂1 σ̂2 ρ̂
5.082 5.907 -7.980 -18.285 0.244 0.067 0.877

(0.022) (0.006) (2.892) (7.514) (0.024) (0.006) (0.027)

The Q-Q plots confirm the good fit of the residuals to the proposed models.
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Figure 5.15: Q-Q plot of RQ residuals - t-Student Family.
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Figure 5.16: Q-Q plot of RQ residuals - Normal Family.
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Based on the analysis of the fits and the test results, we conclude that both the G-skew-

Student-t and the G-skew-Student-Normal models offer good performance in modeling the

data, with the former showing slightly superior results.

5.1.5 Fit IV

In this excerpt, we will use the data presented by (Becker, Chambers, and Wilks, 1988), which

cover information from the 50 states of the United States. Among the variables available in the

database, we will analyze life expectancy in years (1969–1971) and the rate of homicides and

negligent deaths per 100,000 inhabitants (1976) for each state, totaling 50 bivariate samples.
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Figure 5.17: Scatterplot with contour lines illustrating the relationship between life expectancy
and the rate of homicide or negligent deaths.

Below, we present a descriptive table that provides an overview of the main information of

the dataset in question.
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Table 5.16: Summary statistics.

Variables n Minimum Median Mean Maximum SD CV CS CK
Life Exp 50.00 67.96 70.68 70.88 73.60 1.34 1.89 -0.16 -0.57
Murder 50.00 1.40 6.85 7.38 15.10 3.69 50.03 0.13 -1.14

The fits will now be evaluated using the Cramér–von Mises criterion (also known as the

Cramér–von Mises test), originally developed by Harald Cramér and Richard Edler von Mises,

later adapted for the comparison between two samples, as described in (Anderson, 1962). These

fits will be applied to the distributions of the functions log(log(x+1)) and x− 1
x
, both monoton-

ically increasing, invertible and differentiable. Below, we present a table containing the fitted

data in the context of the Extended G-skew-normal model, showing the p-value of the test and

the log-MLE.

Table 5.17: Test results for the EGSE2-Normal model

G(x) Cramér–von Mises criterion log-MLE

log(log(x+ 1)) 0.62 202.999

x− 1
x

0.83 199.942

It is confirmed that the adjustments in both distributions are good, since the p-value is above

the defined significance level, which is 5% or 0.05, the same used in the other tests.

Table 5.18: Estimation of parameters with standard errors indicated in parentheses.

G(x) µ̂1 µ̂2 λ̂1 λ̂2 σ̂1 σ̂2 ρ̂

log(log(x+ 1)) 1.453 0.628 8.939 0.658 0.004 0.281 -0.719

- (0.004) (0.117) (507.986) (2.439) (0.0002) (0.0313) (0.018)

x− 1
x

68.649 14.185 59.616 -24.808 2.359 7.330 -0.937

- (0.148) (0.359) (81.842) (34.835) (0.243) (0.745) (0.016)

Furthermore, it is possible to observe that the standard errors in the asymmetry parameters

remain high, while in the other parameters the errors are well behaved. The value of ρ shows
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a strong and negative correlation. Below are the Q-Q plot graphs of the residuals, which were

also used in the previous adjustments.
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Figure 5.18: Q-Q plot of RQ residuals - Normal Family - log(log(x+ 1)).
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Figure 5.19: Q-Q plot of RQ residuals - Normal Family - x− 1
x
.
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Similarly, the Extended G-skew-Student-t distribution was used with the same functions

and in the same data set.

Table 5.19: Test results for the EGSE2-t model.

G(x) ν Cramér–von Mises criterion log-MLE

log(log(x+ 1)) 15 0.69 201.434

x− 1
x

24 0.54 205.857

The results continue to show good p-values, i.e., above 0.05, indicating that there is no

evidence to reject the hypothesis that the data are not significantly different from each other.

This suggests that the models used capture the characteristics of the data well, maintaining

the consistency of the adjustments. Below, we present the parameter estimates for the applied

transformations, with the respective standard errors in parentheses.

Table 5.20: Estimation of parameters with standard errors indicated in parentheses.

G(x) µ̂1 µ̂2 λ̂1 λ̂2 σ̂1 σ̂2 ρ̂ ν

log(log(x+ 1)) 1.448 1.003 20.382 -32.538 -0.005 0.431 0.882 15

- (0.0002) (0.033) (314.478) (11.876) (0.0004) (0.040) ( 0.028) -

x− 1
x

68.649 14.185 59.616 -24.808 2.359 7.333 -0.937 24

- (0.148) (0.359) (81.842) (34.835) (0.243) (0.745) (0.016) -

The estimated parameters are quite similar to those previously obtained with the Extended

G-skew-normal, indicating consistency in the results between the different modeling approaches.

This similarity suggests that the methods employed are robust, even when considering differ-

ent functions. The Cramér–von Mises test presented slightly better results with the G-skew-

Student-t, suggesting a marginally better fit for this distribution. This behavior can be attributed

to the small number of samples, a situation in which the G-skew-Student-t is theoretically more

effective.

In addition, the analysis of the residuals reinforces the quality of the fit, with the residual
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values remaining within the 95% confidence envelope, demonstrating that the model captures

the variability of the data well. This good fit of the residuals indicates that the model not only

adapts well to the main data, but also that the observed deviations are consistent with what was

expected, evidencing an adequate conformity to theoretical expectations.
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Figure 5.20: Q-Q plot of RQ residuals - t-Student Family - log(log(x+ 1)).
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Figure 5.21: Q-Q plot of RQ residuals - t-Student Family - x− 1
x
.

The use of the Cramér–von Mises (CvM) test and its satisfactory results reinforce the effec-

tiveness of this approach for modeling asymmetric or distorted data. The choice of this test in

the final example aimed to demonstrate this capability, highlighting that the CvM presents a ro-
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bust performance across the data distribution, being less sensitive to small samples and effective

in complex distributions. In contrast, the Kolmogorov–Smirnov (KS) test is more intuitive and

easy to interpret, but presents unequal sensitivity across the distribution. The Anderson–Darling

(AD) test is particularly efficient in detecting differences in the tails, but may be less consistent

across the rest of the distribution. In addition, the low p-values observed in the KS and AD tests

are often due to the presence of ties, compromising the results, which is not the case with the

CvM, demonstrating its superiority in these contexts.
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Chapter 6

Conclusion

Based on the results of this work, it was possible to verify that the distributions studied

demonstrate great versatility in different contexts. As evidenced in the application, these distri-

butions, despite their complexity, are rich in details that allow you to configure different aspects

of data with their particularities. They have the characteristic of being modeled based on dif-

ferentiable, invertible and monotonically increasing functions, inserted in a class of asymmetric

distributions, which has been widely explored by several authors. This approach enabled the de-

velopment of distributions with the capacity to model different sets of positive data in different

ways, expanding the scope of study of normal distributions.

This study marks the beginning of a new class of distributions, paving the way for the con-

struction of new metrics and probabilistic and statistical concepts. The importance of asymmet-

ric data in our world is highlighted, since most real data presents some degree of asymmetry,

which is rarely considered in the multivariate context. The proposed approach differentiates

itself by dealing with such asymmetries in a practical and efficient way.

During the simulations carried out in the study phase, a tendency towards reduction of the

two metrics used — relative bias and mean squared error — was observed in most cases of pa-

rameter estimation. This trend suggests a very effective estimation, although the model presents

a characteristic of non-identifiability. This aspect is important in certain applications, which
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practically suggests that different sets of parameters can result in the same maximum likelihood

function, significantly impacting parametric estimation processes.

Additionally, it was identified that, in some mathematical contexts, such as marginal mo-

ments, it is not possible to guarantee the finiteness of these moments due to the domain of the

functions involved in density. Another relevant observation is that the product present in the

density function does not directly affect the parameter estimation process, but can influence the

scale of the density function. An explicit characterization for the Mahalanobis distance was

presented, and the emphasis given to heavy-tailed distributions at the beginning of this study

makes it possible to classify them in a new category, in addition to the traditional asymmetric

distributions.

Finally, it is essential to recognize the contribution of renowned authors who were pioneers

in this field, such as Adelchi Azzalini, Marc Genton, Arnold Balakrishna, Yulia Machekha,

Samuel Kotz, Kai-Tai Fang, Marlene Branco, Eustáquio A. Valle, Sangyeol Lee, Dimitris Karlis

and Guangyuan Yu. The work developed dialogues with the ideas of these scholars, advancing

the understanding and application of new distributions for statistical modeling.
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Appendix A

Cumulative Distribution Function

To find the best fit of the proposed distributions, it was necessary to calculate the cumulative

distribution function (CDF) of the multivariate distributions. In general, in the multivariate case,

the CDF is given by:

FY(y) =

∫ y1

0

∫ y2

0

. . .

∫ yn

0

fY(u1, u2, . . . , un) dun . . . du2du1.

Note that the integrals start at 0, since the support of the distributions considered is the range

from zero to infinity. For the distributions developed in this work, we have:

• Extended G-skew-Student-t:

F(µ,Σ,λ,τ,g(n),ν)(y) =

∫ y1

0

∫ y2

0

. . .

∫ yn

0

tn(yG;µ,Σ, ν)
Fν+1

(
λ⊤(yG − µ) +

√
ν+1

ν+(yG−µ)⊤Σ−1(yG−µ)

)
Fν

(√
ν+(yG−µ)⊤Σ−1(yG−µ)

1+λ⊤Σλ

)
×

n∏
i=1

G′
i(yi) dun . . . du2du1.
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• Extended G-skew-Cauchy:

F(µ,Σ,λ,τ,g(n))(y) =

∫ y1

0

∫ y2

0

. . .

∫ yn

0

cn(yG;µ,Σ)
F2

([
λ⊤(yG − µ) + τ

]√
2

1+q(yG)

)
F1

(
τ√

1+λ⊤Σλ

)
×

n∏
i=1

G′
i(yi) dun . . . du2du1.

• Extended G-skew-normal:

F(µ,Σ,λ,τ,g(n))(y) =

∫ y1

0

∫ y2

0

. . .

∫ yn

0

ϕn(yG;µ,Σ)

Φ

(
λ⊤(yG−µ)+τ√

1+λ⊤Σλ

)
Φ

(
τ√

1+λ⊤Σλ

) n∏
i=1

G′
i(yi) dun . . . du2du1.

As the calculation of these integrals is analytically unfeasible, there are no known closed

expressions for the cumulative distribution function (CDF) of these distributions. Due to the

complexity of the multivariate integrals involved, numerical methods were used to evaluate

these functions.

To overcome computational difficulties, adaptive integration techniques have been explored,

such as those presented by (Piessens et al., 1983), which dynamically adjust the integration

process to achieve the desired accuracy, efficiently dealing with function variations and com-

plexities. Algorithms such as Vegas, Suave, Divonne and Cuhre, described by (Hahn, 2005),

use these methods to refine estimates based on the local characteristics of the integrand, being

especially effective when dealing with multivariate distributions with complex behaviors.

The process begins with dividing the integration interval into smaller subintervals, allowing

simultaneous evaluation of the function in different regions. The function is evaluated at strate-

gic points within these subintervals, capturing the overall shape of the integrand. With these

initial evaluations, estimates of the integral are obtained by methods such as the trapezoid or

Simpson’s rule, serving as a basis for subsequent refinements.
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If the desired precision is not achieved, the algorithm subdivides the intervals with the great-

est errors again, introducing new evaluation points to improve estimates in problem areas. Tech-

niques such as adaptive subdivision and Monte Carlo sampling with variance reduction are ap-

plied iteratively until the difference between successive estimates is below a tolerance limit,

ensuring the accuracy of the integral calculation.
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Appendix B

Monte Carlo Simulation

In this section, we present graphics for Gi = logq(x), derived from Monte Carlo simulations

using sample sizes ranging from 200 to 1000, with 100 replicas for each size. The parameter q

varied across the set {0.75, 0.85, 0.95, 1.05, 1.15}. The grid of initial values considered was:

(µ1, µ2, λ1, λ2, τ, σ1, σ2, ρ) = (1, 1, 0.5, 0.6, 0.5, 1, 1)

The metrics used were Relative Bias (RB) and Root Mean Square Error (RMSE). Overall,

we observe that both metrics converge towards zero.
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Figure B.1: Relative bias for and root mean squared error for Gi(x) = log0.75(x).

119



cap. B. Monte Carlo Simulation §B.0.

200 600 1000

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

n

R
B

µ̂1(ρ = 0.1)
µ̂1(ρ = 0.25)
µ̂1(ρ = 0.5)
µ̂1(ρ = 0.75)
µ̂1(ρ = 0.9)

200 600 1000

0.
4

0.
6

0.
8

1.
0

1.
2

n

R
B

µ̂2(ρ = 0.1)
µ̂2(ρ = 0.25)
µ̂2(ρ = 0.5)
µ̂2(ρ = 0.75)
µ̂2(ρ = 0.9)

200 600 1000

0
5

10
15

20

n

R
B

λ̂1(ρ = 0.1)
λ̂1(ρ = 0.25)
λ̂1(ρ = 0.5)
λ̂1(ρ = 0.75)
λ̂1(ρ = 0.9)

200 600 1000

0
5

10
15

n

R
B

λ̂2(ρ = 0.1)
λ̂2(ρ = 0.25)
λ̂2(ρ = 0.5)
λ̂2(ρ = 0.75)
λ̂2(ρ = 0.9)

200 600 1000

0
5

10
15

n

R
B

λ̂2(ρ = 0.1)
λ̂2(ρ = 0.25)
λ̂2(ρ = 0.5)
λ̂2(ρ = 0.75)
λ̂2(ρ = 0.9)

200 600 1000

5
10

15
20

25

n

R
B

τ̂(ρ = 0.1)
τ̂(ρ = 0.25)
τ̂(ρ = 0.5)
τ̂(ρ = 0.75)
τ̂(ρ = 0.9)

200 600 1000

0.
05

0.
10

0.
15

0.
20

0.
25

n

R
B

σ̂2(ρ = 0.1)
σ̂2(ρ = 0.25)
σ̂2(ρ = 0.5)
σ̂2(ρ = 0.75)
σ̂2(ρ = 0.9)

200 600 1000

0.
10

0.
15

0.
20

n

R
B

ρ̂(ρ = 0.1)
ρ̂(ρ = 0.25)
ρ̂(ρ = 0.5)
ρ̂(ρ = 0.75)
ρ̂(ρ = 0.9)

200 600 1000

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

n

R
M

S
E

µ̂1(ρ = 0.1)
µ̂1(ρ = 0.25)
µ̂1(ρ = 0.5)
µ̂1(ρ = 0.75)
µ̂1(ρ = 0.9)

200 600 1000

0.
5

1.
0

1.
5

2.
0

2.
5

n

R
M

S
E

µ̂2(ρ = 0.1)
µ̂2(ρ = 0.25)
µ̂2(ρ = 0.5)
µ̂2(ρ = 0.75)
µ̂2(ρ = 0.9)

200 600 1000

0
5

10
15

20

n

R
M

S
E

λ̂1(ρ = 0.1)
λ̂1(ρ = 0.25)
λ̂1(ρ = 0.5)
λ̂1(ρ = 0.75)
λ̂1(ρ = 0.9)

200 600 1000

0
5

10
15

20

n

R
M

S
E

λ̂2(ρ = 0.1)
λ̂2(ρ = 0.25)
λ̂2(ρ = 0.5)
λ̂2(ρ = 0.75)
λ̂2(ρ = 0.9)

200 600 1000

0.
1

0.
2

0.
3

0.
4

0.
5

n

R
M

S
E

τ̂(ρ = 0.1)
τ̂(ρ = 0.25)
τ̂(ρ = 0.5)
τ̂(ρ = 0.75)
τ̂(ρ = 0.9)

200 600 1000

10
20

30
40

50

n

R
M

S
E

σ̂1(ρ = 0.1)
σ̂1(ρ = 0.25)
σ̂1(ρ = 0.5)
σ̂1(ρ = 0.75)
σ̂1(ρ = 0.9)

200 600 1000

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

n

R
M

S
E

σ̂2(ρ = 0.1)
σ̂2(ρ = 0.25)
σ̂2(ρ = 0.5)
σ̂2(ρ = 0.75)
σ̂2(ρ = 0.9)

200 600 1000

0.
1

0.
2

0.
3

0.
4

0.
5

n

R
M

S
E

ρ̂(ρ = 0.1)
ρ̂(ρ = 0.25)
ρ̂(ρ = 0.5)
ρ̂(ρ = 0.75)
ρ̂(ρ = 0.9)

Figure B.2: Relative bias for and root mean squared error for Gi(x) = log0.85(x).
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Figure B.3: Relative bias for and root mean squared error for Gi(x) = log0.95(x).
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Figure B.4: Relative bias for and root mean squared error for Gi(x) = log1.05(x).
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Figure B.5: Relative bias for and root mean squared error for Gi(x) = log1.15(x).
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