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ABSTRACT

Title: Investigation Of Perturbation Approaches in the Solution of Ill-conditioned

Large-scale Power Flow Problems

This Ph.D. thesis presents approaches to calculate the solution of the power flow problem (PFP)

that involves ill-conditioned and large-scale systems. Iterative non-linear methods are employed

to solve the problem. The main strategy used in problem formulation is based on applying a

conditioning step to the initial of the iterative methods. This step consists of modifying the

initial estimate of the iterative method through a process that involves the Jacobian matrix and

the mismatch of the balance equations. Four approaches were developed. In the first approach,

the Jacobian matrix is used to form a linear system whose perturbed matrix results in a bet-

ter condition number. Another perturbation approach proposed in this work based on modal

analysis demonstrates that the primary cause of the ill-conditioning problem is associated with

the smallest magnitude eigenvalue of the first iteration of the Jacobian matrix. In addition, a

procedure is proposed to circumvent this problem by shifting away from zero, the smallest mag-

nitude eigenvalue of the Jacobian matrix. The third approach uses Tikhonov’s regularization

to initialize the iterative process. Subsequent iterations use the result of a regularized normal

equation, where the regularization parameter is selected using the traditional L-curve techni-

que. Finally, the last proposed approach is based on a two-step hybrid method to calculate

the PFP solution. The proposed techniques were investigated using the classical NR method,

the Heun-King-Werner (HKW) method, and some variants. The performance of the proposed

approaches is evaluated for various scenarios and test systems, including a 109,000-bus system.

The results demonstrated that the investigated methods significantly improved the convergence

process of the iterative techniques used to solve large and ill-conditioned PFPs, including the

classical Newton-Raphson method.

Keywords: Power flow problem; Newton-Raphson method; ill-conditioned systems; conditio-

ning step; Heun-King-Werner; MATPOWER.



RESUMO

Título: Investigação de Abordagens de Perturbação na Solução de Problemas de

Fluxo de Carga de Grande Porte e Mal-Condicionados

Esta tese de doutorado apresenta abordagens para calcular a solução do Problema de Fluxo de

Potência (PFP) envolvendo sistemas mal-condicionados e de grande porte. A estratégia baseia-

se em aplicar uma etapa de condicionamento à estimativa inicial usada nos métodos iterativos.

Essa etapa consiste em modificar a estimativa inicial do método iterativo através de um processo

que envolve a matriz Jacobiana e o mismatch das equações de balanço, ambas calculadas para

a estimativa inicial. Foram desenvolvidas quatro estratégias. Na primeira, a matriz jacobiana

é então usada para formar um sistema linear cuja matriz perturbada resulta em um melhor

número de condição. Uma segunda abordagem de perturbação proposta baseia-se em análise

modal e demonstra que a causa primária do problema de mau condicionamento está associada

ao autovalor de menor magnitude da primeira iteração da matriz Jacobiana. Deste modo, é

proposto um procedimento para contornar este problema afastando da região próximo de zero

o autovalor de menor magnitude da matriz Jacobiana. A terceira abordagem baseia-se na

utilização da regularização de Tikhonov para inicializar o processo iterativo. Nessa abordagem,

as iterações subsequentes utilizam o resultado de uma equação normal regularizada, onde o

parâmetro de regularização é selecionado utilizando a técnica tradicional da curva L. Por fim,

a última abordagem proposta baseia-se em um método híbrido para calcular a solução do PFP

que é composto por duas etapas. O desempenho das abordagens propostas é avaliado para uma

variedade de cenários e de sistemas-teste, incluindo um sistema de 109.000 barras. Os resultados

obtidos demonstraram que os métodos investigados conseguiram melhorar significativamente o

processo de convergência das técnicas iterativas usadas para resolver PFPs mal-condicionados

e de grande porte, incluindo o método clássico de Newton-Raphson.

Palavras-chave: Problema de Fluxo de Potência, Método de Newton-Raphson, Sistemas Mal-

Condicionados, Etapa de Condicionamento; Heun-King-Werner; MATPOWER.
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Power Flow studies consist of an essential tool for determining the steady-state operating point

of electrical power systems. Based on the solution obtained for the problem, it is possible to

investigate conditions that guarantee the successful operation of the power system under several

conditions (GLOVER et al., 2012).

The Power Flow Problem (PFP) is formulated as a set of nonlinear algebraic equations, and due

to its complex nature, iterative methods are typically employed to obtain a solution. Among

these methods, the classical Newton-Raphson (NR) technique has traditionally been adopted

as the standard approach (KUNDUR, 2007). The NR method relies on an initial estimate that

is ideally situated near the solution. However, several factors in today’s power systems can

introduce significant shifts in operating conditions. The widespread integration of renewable

energy sources (WENG et al., 2012), frequent reversals of power flows (TARANTO et al., 2022),

and load variations are just a few examples of such factors. As a result, the voltage magnitudes

and angles within the system can undergo substantial changes.

The dynamic nature of these changes poses a challenge in selecting an appropriate initial esti-

mate for the Power Flow (PF) solver. A common practice is to initialize the PF solver using a

flat start estimation, i.e., all bus voltage phase angles equal to zero and voltage magnitudes in

load buses equal 1 pu. However, this initial estimate may deviate significantly from the desired

solution in the analyzed power system model, and consequently, classical iterative methods may

diverge (TOSTADO-VÉLIZ et al., 2020a; TOSTADO-VÉLIZ et al., 2021).

According to Milano (2009), when the solution of the power flow problem cannot be obtained

using conventional methods and the standard flat-start initial guess, the problem is considered

ill-conditioned, despite the problem having a valid solution. Consequently, there is a need to
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develop more robust and accurate techniques for initializing the PF solver in order to enhance

its effectiveness in handling diverse operating conditions.

Several researchers have investigated different approaches to address ill-conditioned PFPs. A

method with optimal multipliers (OM) was first addressed in rectangular coordinates (IWA-

MOTO; TAMURA, 1981) and studied in the polar coordinates in (BRAZ et al., 2000). In

(TATE; OVERBYE, 2005), the superior performance of the polar coordinate form was proved

compared to the rectangular coordinate. In the previous studies involving polar coordinates,

only the information of the second-order term from the Taylor’s expansion is used in the com-

putation of OM. An NR method with OM using the sum of high-order terms of the Taylor’s

expansion in polar coordinates was proposed in (PAN et al., 2019). However, the study assumes

that the maximum absolute deviation of states approaches 0 or the OM approaches the unitary

value. This is a weak numerical property concerning the application of ill-conditioning and

large-scale systems.

Alternatively, techniques based on Continuous Newton’s (CN) philosophy, in which any nu-

merical integration method can be adapted to solve the PFP, were proposed in (HETZLER,

1997). Following this philosophy, in (MILANO, 2009), the problem was formulated as a set

of Ordinary Differential Equations (ODE) in which two new methodologies to solve the PFP

based on numerical methods were presented: the Robust Simple Method (RSM), which is ba-

sed on the methodology of Euler forward and the fourth-order Runge-Kutta method (RK4).

Moreover, similar study was proposed in (MILANO, 2019), using an Euler backward (implicit)

approach. Along the same lines investigated by (MILANO, 2009), a methodology based on the

combination of RK4 and the Broyden Method (BM) was proposed in (TOSTADO-VÉLIZ et

al., 2018a). The authors present the fourth-order Runge–Kutta Broyden method (RK4B) to

reduce the number of inversions in the Jacobian matrix to just one. In (TOSTADO-VÉLIZ

et al., 2020a), a method was developed for well- and ill-conditioned electrical systems models.

The resulting method is a combination of the King-Werner and Heun methods, and for this

reason, it was called the Heun-King-Werner (HKW) method. This method presented a superior

performance in terms of computational burden and iterations for convergence for ill-conditioned

systems compared to methods such as Newton-Raphson, Euler, Runge-Kutta, among others.

However, it depends on the setting of parameters highly sensitive to changes when applied to
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ill-conditioned and large-scale power system models.

Other recent advances for realistic large-scale ill-conditioned systems computational methods for

the power flow equations were reported in (TOSTADO-VÉLIZ et al., 2021; TOSTADO-VELIZ

et al., 2020; FREITAS; SILVA, 2022; PANDEY et al., 2021; JEREMINOV et al., 2019). In

(TOSTADO-VÉLIZ et al., 2021) a robust and efficient solution framework, competitive in both

well- and ill-conditioned cases were proposed. The explored technique presents some similitudes

with the OM. Therefore, it is also based on the truncation of the Newton’s increment vector.

However, it introduces paradigms aiming at overcoming some of the difficulties posed by this

kind of technique. In (TOSTADO-VELIZ et al., 2020), it was also developed an efficient and

robust power flow method but based on a Semi-Implicit approach which incorporates numerical

arrangements for enhancing its potentialities. The iterative algorithm reaches features by em-

ploying a combination of different numerical arrangements such as Lavrentiev’s regularization

(ARGYROS; GEORGE, 2014), Chebyshev-like method with cubic convergence (BABAJEE et

al., 2010), and Heun’s method (BUTCHER, 2008).

Unlike the CN philosophy techniques, which have a dynamic form, there are methods charac-

terized by a parametric static approach, in which several intermediate nonlinear systems are

sequentially solved until operating on the system that is really of interest. The methods that

explore the homotopy technique (FREITAS; SILVA, 2022) have these characteristics. Seve-

ral researches have been and continue to be developed in this direction. For example, PFP

homotopy-based approaches were investigated in (JEREMINOV et al., 2019; PANDEY et al.,

2021; FREITAS; SILVA, 2022). This methodology solves the PFP to satisfy a homotopy path

(curve) formed by the states computed for a given homotopy parameter set. Then, the PFP

needs to be solved for each path point. However, only the latter one has its result of interest.

The way how the homotopy problem is solved distinguishes the specific approach. In (JERE-

MINOV et al., 2019; PANDEY et al., 2021) an approach based on electric circuit is considered.

The authors in (FREITAS; SILVA, 2022) presented a methodology to depart from the flat start

estimate, whose solution of the parameterized PFP for this first point coincides with the initial

guess. In contrast, the last point of the set gives the effective PFP solution.

All methodologies previously discussed search the solution aiming for an accurate result for

the PFP. Depending on the adopted strategy, it can present limitations to convergence or even
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inferior performance computationally. The limitation may be, for instance, in some stagnation

or a low convergence rate.

The investigations previously mentioned motivated this doctoral thesis to search for new con-

tributions in the field of robust methods for solving the PFP with refined techniques.

1.2 OBJECTIVE

Considering the aspects and contributions pointed out for computing the solution of the PFP

in other publications, the main objective of this doctoral thesis is to investigate and improve

techniques for solving the PFP in ill-conditioned large-scale power system models. The propo-

sed approaches aim to overcome the limitations of traditional methods, such as the Newton-

Raphson solver, and provide accurate solutions, avoiding convergence problems. In this context,

the specific objectives include:

• Develop and implement methodologies based on Jacobian matrix perturbation to solve

power flow problems in large-scale and ill-conditioned systems, evaluating their effective-

ness in enhancing convergence and reducing computational cost;

• Conduct simulations using large-scale system models characterized by ill-conditioning,

aiming to evaluate the performance of the proposed methodologies and comparing it with

the performance of traditional methods, such as the Newton-Raphson method;

• Demonstrate the sensitivity of the results for an iterative PFP, starting from an initial

estimate based on a flat start. The study will emphasize how applying a conditioning

step in the first iteration benefits the process and proves to be sufficient for achieving

successful convergence of the problem;

• Proposal of different techniques to improve the resolution of the PFP for ill-conditioned

large-scale power system models;

• Perform simulations in networks considering base cases and critical loading conditions,

including operational power reactive limits in power generators;
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• Investigate the performance of direct and iterative linear methods, and reordering tech-

niques to optimize the computational cost of ill-conditioned large-scale PFP.

The proposed techniques investigated in this work basically involve adaptations to traditional

methods only in the calculations of the first iteration. As a first idea, the usual Jacobian of the

PFP is computed using the initial estimate. Then, it is modified by introducing a perturbed

term to improve the condition number of the resulting matrix. Another perturbation technique,

based on a modal approach, is also proposed. It consists in modifying the ill-conditioned

PFP Jacobian matrix for the initial iterate of the standard Newton’s method by moving away

just its smallest magnitude eigenvalue from near zero. The state deviations for this modified

condition are then efficiently computed. This procedure is performed by adding a 1-rank

perturbation matrix to the Jacobian matrix, but just for the first iteration and removing it for

all others. Another proposed approach incorporates the well-known Tikhonov’s regularization

as a conditioning step to initiate the iterative process. Tikhonov’s regularization is crucial

in reducing the norm deviation of states, facilitating efficient convergence during the iterative

process. A hybrid approach to solving the ill-conditioned power flow problem is also presented

as a fourth alternative. This approach is based on the same principle of improving the ill-

conditioning of the Jacobian matrix for the first iteration. The technique comprises a hybrid

method because the first step is characterized by the calculation of an inaccurate solution of the

PFP, while in the second, the high-accuracy solution is computed. The low precision solution

is determined by a homotopy technique (FREITAS; SILVA, 2022). However, the high-precision

solution is determined by another iterative method (IM) defined by the user, for example,

the classical NR. Experiments were carried out in five ill-conditioned large-scale power system

models, including a 109,000-bus system, revealing that the proposed initial estimate always

leads these methods to convergence.

1.3 CONTRIBUTIONS

This PhD Thesis presents some contributions to the field of iterative methods for solving the

power flow problem involving ill-conditioned and large systems. The main contributions of this

work can be summarized as follows:
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• Introduction of a procedure to improve the calculation of the result of the first iteration

of an iterative nonlinear problem, such as PFP, in which without this treatment, the

convergence fails;

• Developing conditioning techniques that allow the successful application of the classi-

cal NR solver in the resolution of large-scale and ill-conditioned power system models,

overcoming traditional convergence limitations;

• Proposition of techniques for handling scenarios with limited or unreliable initialization

information, critical for contingency analysis and restoration planning;

• Development of appropriate techniques for use under uncertain scenarios, such as load

variations and renewable generation fluctuations, providing a reliable solution for planning

under probabilistic conditions;

• Exploration of the root causes of ill-conditioning in power flow problems, emphasizing

the role of the Jacobian matrix’s smallest eigenvalues and proposal of a novel eigenvalue-

shifting strategy to mitigate ill-conditioning;

• Presentation a two-step hybrid methodology where approximate states computed in the

first step are refined using iterative techniques in the second step, combining the strengths

of different solvers;

• Investigation of the computational impact of direct methods, iterative linear methods,

and reordering techniques in the solution process of the Power Flow Problem, involving

large-scale ill-conditioned systems;

• Presentation of extensive numerical results for ill-conditioned and large-scale systems,

validating the effectiveness of the proposed approaches using the MATPOWER tool,

while demonstrating significant potential for integration into commercial power system

software.

Furthermore, it is worth noting that the studies conducted throughout this doctoral research

have yielded the following papers to date:
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• FREITAS, Francisco Damasceno; DE OLIVEIRA, Laice Neves. A Fractional Order Deri-

vative Newton-Raphson Method for the Computation of the Power Flow Problem Solution

in Energy Systems. Fractional Calculus and Applied Analysis, v. 27, p. 1-32, 2024.

• FREITAS, Francisco Damasceno; DE OLIVEIRA, Laice Neves. Conditioning step on the

initial estimate when solving ill-conditioned power flow problems. International Journal

of Electrical Power & Energy Systems, v. 146, p. 108772, 2023.

• DE OLIVEIRA, Laice Neves; FREITAS, Francisco Damasceno; MARTINS, Nelson. A

Modal-based Initial Estimate for the Newton Solution of Ill-conditioned Large-scale Power

Flow Problems. IEEE Transactions on Power Systems, V. 38, N. 5, pp. 4962-4965, Sep.

2023.

• FREITAS, Francisco Damasceno; DE OLIVEIRA, Laice Neves. Two-step hybrid-based

technique for solving ill-conditioned power flow problems. Electric Power Systems Rese-

arch, v. 218, p. 109178, 2023.

• DE OLIVEIRA, Laice Neves; FREITAS, Francisco Damasceno. Estratégia baseada em

Perturbação Inicial da Matriz Jacobiana para a Solução de Problemas de Fluxo de Carga

em Sistemas de Grande Porte e Mal-condicionados. In: Simpósio Brasileiro de Sistemas

Elétricos - SBSE, 2023, Manaus - AM.

• DE OLIVEIRA, Laice Neves; FREITAS, Francisco Damasceno. An Ill-conditioned Sys-

tem Study in a 11-bus Network and Characterization of the Problem considering the AC

Power Flow in the MATPOWER Tool. In: Simpósio Brasileiro de Sistemas Elétricos -

SBSE, 2023, Manaus - AM.

• DE OLIVEIRA, Laice Neves; FREITAS, Francisco Damasceno. Regularização Parcial de

Tikhonov aplicada na Resolução do Problema de Fluxo de Carga em Sistemas Elétricos

de Potência de Grande-Porte e Mal-condicionados. In: XXV Congresso Brasileiro de

Automática - CBA, 2024, Rio de Janeiro - RJ.

Part of the results of this thesis was highlighted at the XXV Brazilian Congress of Automation,

where the paper entitled ’Partial Tikhonov’s Regularization Applied to the Solution of the

Power Flow Problem in Large-Scale and Ill-Conditioned Power Systems’ received an honorable
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mention. This distinction recognizes the significant contribution of the work in advancing the

robustness and efficiency of solution methods for large-scale and ill-conditioned power flow

problems.

1.4 OUTLINE

This thesis includes eight chapters. Besides the introductory chapter, the remaining are:

• Chapter 2 explains the fundamentals of the Power Flow Problem, as well as the issues

related to ill-conditioning and the traditional solution methods;

• Chapter 3 presents direct and iterative methods for solving linear systems, as well as

reordering techniques used to improve the efficiency of these methods;

• Chapter 4 details the state of the art of the methods used to solve the ill-conditioned

power flow problem;

• Chapter 5 describes alternative methodologies to the Newton-Raphson method used to

solve the ill-conditioned PFP, such as techniques based on the Newton-Continuous metho-

dology, Levenberg-Marquadt method, and Tikhonov’s regularization;

• Chapter 6 presents the main methodology proposed in this work;

• Chapter 7 presents the numerical results obtained based on the methodologies analyzed

involving ill-conditioned and large-scale systems;

• Chapter 8 presents the main conclusions, and this chapter duly draws future perspectives.

• Also, Appendix A details the numerical fundamentals for implementing complex expres-

sions in the power flow problem.



CHAPTER 2

FUNDAMENTALS

The Power Flow Problem consists of determining the state of the network, the distribution

of flows, and other variables of interest (KUNDUR, 2007; JR; GRAINGER, 1994). It is an

essential tool for determining the state of the electrical network in a steady state, for real-time

operations, as well as in planning, expansion, and control studies of electrical power systems

(TOSTADO-VÉLIZ et al., 2021).

The PFP formulation is based on a set of non-linear algebraic equations that represent the

physical characteristics of the electrical systems. Various solution methods have been developed

and studied for decades. In this chapter, the basic formulation of power flow is presented, as

well as the problem discussion associated with ill-conditioning. Subsequently, more traditional

PFP solution methods are described.

2.1 POWER FLOW EQUATIONS

The goal of power flow calculations is to determine the voltages at all nodes and the currents

in all branches of the grid. Typically, for a grid with n independent nodes, the equations

(2.1)–(2.2) are applicable.


Y11 Y12 · · · Y13
Y21 Y22 · · · Y23
...

... . . . ...
Yn1 Yn2 · · · Ynn



V1
V2
...
Vn

 =


I1
I2
...
In

 (2.1)

[Y] [V] = [I] (2.2)

The node voltage vector is denoted as V , and the node current injection vector is denoted as

I. The admittance matrix Y or YBUS contains elements that describe the electrical properties
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of the network. The diagonal element Yii represents the self-admittance at node i, which is the

sum of all branch admittances connected to that node. Conversely, the off-diagonal element

Yij is the negative value of the branch admittance between nodes i and j. If no branch exists

between nodes i and j, then Yij is zero.

The complex power at node i is expressed as the product of the voltage and current vectors,

represented in (2.3). Consequently, the current flow at each node is represented in (2.4), where

the current entering each node from other nodes equals the current drawn by the complex power

load at that node.

Si = V iI
∗
i = Pi + jQi (2.3)

I i =

nb∑
k=1

Y ikV k =
Pi − jQi

V
∗
i

, i ϵ β (2.4)

in which β = {1,2,..., nb}, nb is the number of network buses, Y ik is the element (i,k) of the

admittance matrix Y , and Pi and Qi are the total injection of active and reactive power at

node i.

Therefore, (2.4) can be rewritten as (2.5):

Pi + jQi = V i

[
nb∑
k=1

Y ikV k

]∗
(2.5)

Since V i = Vie
jθi and Y ik = Yike

jδik = Gik + jBik, with i,k = 1, 2, · · · , nb, , then (2.5) becomes

Pi + jQi = Vi

nb∑
k=1

YikVke
j(θi−θk−δik) (2.6)

By separating the real and imaginary components of equation (2.6), we can express the power

balance equations as follows:

Pi = Vi

nb∑
k=1

YikVk cos(θi − θk − δik) (2.7)

Qi = Vi

nb∑
k=1

YikVk sin(θi − θk − δik) (2.8)
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Alternatively, when Yik is represented in rectangular coordinates, the power balance equations

(PBE) can be written as:

Pi = Vi

nb∑
k=1

Vk[Gik cos(θi − θk) +Bik sin(θi − θk)] (2.9)

Qi = Vi

nb∑
k=1

Vk[Gik sin(θi − θk)−Bik cos(θi − θk)] (2.10)

or, in terms of active and reactive power mismatches:

∆Pi = P sp
i − Vi

nb∑
k=1

Vk[Gik cos(θi − θk) +Bik sin(θi − θk)] (2.11)

∆Qi = Qsp
i − Vi

nb∑
k=1

Vk[Gik sin(θi − θk)−Bik cos(θi − θk)] (2.12)

in which ∆Pi and ∆Qi correspond to mismatches of active and reactive power at bus #i,

respectively, Vi and θi are, respectively, the voltage magnitude and phase angle of a nodal

voltage phasor at bus #i, V i = Vi∠θi; P sp
i is the net active power injected into bus #i, while

Qsp
i is the net reactive power injected into the same bus; Gik and Bik are the real and imaginary

parts of the entry Y ik = Gik+jBik of the system bus admittance matrix or simply matrix YBUS.

Additionally, P sp
i can be characterized by a generation P sp

Gi and a load contribution P sp
Li , in such

way that P sp
i = P sp

Gi−P
sp
Li . In this sense, depending on the type of bus, the generation and load

components can assume a voltage-dependent characteristic. Similarly, Qsp
i = Qsp

Gi −Qsp
Li, where

Qsp
Gi is the component for the generation and Qsp

Gi, for load. A traditional form is to represent the

load by a well-known ZIP model, where the power voltage-dependent is composed of constant

contributions of power, current, and impedance (KUNDUR, 2007).

In the traditional power flow formulation, there are four variables for each node: the node

voltage magnitude V , the voltage angle θ, the node active power injection P , and the node

reactive power injection Q. Typically, to solve equations (2.9)-(2.10), two of these variables

need to be specified at each node. Based on the known variables, the nodes can be classified

into (QIN, 2017; GLOVER et al., 2012):

• Slack Bus: It is also known as the reference node because both the voltage magnitude
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and voltage angle are specified. The voltage angles at other nodes are measured relative

to the voltage angle at the Slack bus. The active and reactive power at the Slack bus are

utilized to balance the power of the system. Consequently, this bus should be selected to

ensure it has a plant with high power availability.

• PV bus: For this type of bus, the active power and voltage magnitude are specified. It

typically represents the bus where a voltage source, such as generators with excitation

systems, is connected. The voltage angle and reactive power at this node are unknown.

Reactive power is usually subjected to constraints, such as those imposed by the gene-

ration capability curve, which limits the generator’s reactive power output based on its

active power production.

• PQ bus: At this type of bus, both active and reactive power are specified. It typically

represents the busbar where loads are connected, such as points of power consumption

or junctions of branches. However, the generator without voltage control abilities is also

connected to PQ node, as a negative load to produce the current instead of consuming it.

PQ buses are considered passive nodes, with their voltage magnitude and voltage angle

determined by the current flow in the grid.

Table 2.1 summarizes the main characteristics of the different type of buses. While the men-

tioned buses are commonly classified in traditional power flow analysis, additional types have

been contemplated for specific scenarios (QIN, 2017).

Table 2.1. Variables and parameters for each bus type in the classical power flow problem formulation.

Bus type Variables Data
Slack P,Q V, θ
PV Q,θ P, V
PQ V, θ P, Q

2.1.1 The Ill-Conditioned Power Flow Problem

The power balance equations in polar coordinates will be used in this work. The classical PBEs

as described in the previous section are given by (KUNDUR, 2007)
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0 = P sp
k − Vk

nb∑
m=1

Vm [Gkmcos(θk − θm) +Bkmsin(θk − θm)] , (2.13)

0 = Qsp
k − Vk

nb∑
m=1

Vm [Gkmsin(θk − θm)−Bkmcos(θk − θm)] , (2.14)

Assume that the set of PQ buses has nPQ equations, while the set of PVs contributes with nPV .

Also, we assume that the AC network is synchronous with only one slack bus in such a way

that nb = nPQ + nPV + 1.

Therefore, the number of equations (2.13)-(2.14) is given by N = 2nPQ + nPV . Then, this set

of nonlinear equations can be represented generically by

g(x) = 0 (2.15)

where the state vector is defined as x = [θT V T ]T ∈ Rn and g(x) is a map of the type

g(x) : Rn 7→ Rn.

In instances where (2.15) exhibits well-conditioning, achieving a solution is straightforward.

However, conventional solvers may encounter challenges in achieving convergence when con-

fronted with ill-conditioned Power Flow equations. The ill-conditioning of a power system

network may manifest as a result of the factors such as heavy loading conditions, large number

of radial lines, existence of negative line reactance, lines with high resistance to reactance ra-

tios or initial guess point outside the region of attraction or far from the solution (FAN, 1989;

TRIPATHY et al., 1982; TOSTADO-VÉLIZ et al., 2018a).

In (MILANO, 2009), the Power Flow Problem is categorized into four distinct classes, delineated

as follows:

• Well-conditioned : when the PF solution exists and is reachable using a flat initial guess

(i.e., all load voltage magnitudes equal to 1 pu and all bus voltage angles equal to 0) and

a standard Newton–Raphson’s method;

• Ill-conditioned : when the solution of the PFP does exist, but standard solution methods

fail to get this solution starting from a flat initial guess. This scenario often occurs when

the region of attraction for the power flow solution is either narrow or situated far from

the initial guess. In such instances, the ineffectiveness of conventional power flow solution
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methods can be attributed to the instability of the numerical method rather than any

instability in the PF equations.

• Bifurcation point : whose PF solution exists but it is either a saddle-node bifurcation or

a limit-induced bifurcation. In a system operating under maximum loading conditions,

saddle-node bifurcations may occur. The inadequacy of standard or robust power flow

methods in obtaining a solution is attributed to the singularity of the power flow Jacobian

matrix at the solution point. On the other hand, limited-induced bifurcations happen

when there is a physical limit in the system, such as insufficient reactive power from

generators.

• Unsolvable: when the PF solution does not exist.

In this PhD thesis, the focus is on exploring the second classification and illustrating instances

related to the ill-conditioning of the power flow problem.

If the initial estimation is within the solution point’s attraction region, standard numerical

methods typically converge. However, divergence may occur in certain instances. In such

cases, where the initial guess is considerably distant from the solution, it becomes appropriate

to employ robust numerical methods primarily before the Newton-Raphson (NR) method.

In the following subsections, the classic methods of Gauss-Seidel (GS), Newton-Raphson, and

their variants are reviewed and described. Additionally, some particularities associated with

each of them are discussed.

2.2 GAUSS-SEIDEL METHOD

The Gauss-Seidel method was first applied to solve the Power Flow Problem in 1957 by Glimn

and Stagg (GLIMN; STAGG, 1957). This method is iterative and therefore requires an initial

estimate of the voltage values to start the process. During the iterations, the initial values are

continuously updated and replaced with newly calculated values. The process repeats until the

solution converges to a stable value or until a maximum number of iterations is reached.

The convergence of the Gauss-Seidel method is highly sensitive to the initial values chosen.

In many cases, an inappropriate choice of initial values can result in convergence problems,
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causing the method to fail in finding a satisfactory solution. Additionally, the convergence rate

of the method can be relatively slow, especially for large or complex systems. This limits the

effectiveness of the method in practical applications where the speed of obtaining solutions is

crucial (GLOVER et al., 2012).

However, the Gauss-Seidel method has some advantages. Its implementation is relatively

simple, and it requires less memory compared to other methods, such as Newton-Raphson.

Furthermore, the method is particularly effective in systems where the admittance matrix is

well-conditioned and the initial values are close to the actual solution. The methodology for

executing the Gauss-Seidel method in the context of solving the power flow problem is detailed

below (MILANO, 2010).

The Gauss-Seidel method is used to solve a system of linear equations represented in the

following form:

Ay = b (2.16)

It is important to note that the Gauss-Seidel method has seen widespread adoption in recent

decades for solving the power flow problem, primarily due to its avoidance of matrix A facto-

rization. However, with the relaxation of computation constrains, other methods have become

more favored (MILANO, 2010).

Decomposing A in a lower triangular component L and a strictly upper triangular one U,

A = L+U (2.17)

in which,

L =


a11 0 · · · 0
a21 a22 · · · 0
...

... . . . ...
an1 an2 · · · ann

 ,U =


0 a12 · · · a1n
0 0 · · · a2n
...

... . . . ...
0 0 · · · 0

 (2.18)

Therefore, Equation 2.16 can be expressed as:

Ly = b−Uy (2.19)
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The Gauss-Seidel method involves iteratively solving the left-hand side of equation using the

current values of the elements of the vector on the right-hand side:

y(i+1) = L−1(b−Uy(i)) (2.20)

or, in tensorial form, can be represented as:

y
(i+1)
h =

1

ahh

(
bh −

n∑
k=h+1

ahky
(i)
k −

h−1∑
k=1

ahky
(i+1)
k

)
, h = 1, 2, · · · , n (2.21)

The iterative process stops if the maximum equation mismatch is less than a given tolerance ϵ:

max
{∣∣Ay(i+1) − b

∣∣} < ϵ (2.22)

or the maximum variable variation is smaller than the tolerance ϵ:

max
{∣∣y(i+1) − y(i)

∣∣} < ϵ (2.23)

or even when the number of iterations is greater than a given limit itermax.

Equation (2.16) is linear, thus is not directly applicable to power flow equations. However,

consider the complex power injection into the buses as (2.24):

Sh = VhI
∗
h = Vh

∑
k ϵ β

Y ∗
hkV

∗
k , h ϵ β (2.24)

in which β = {1,2,..., nb}, nb is the number of network buses, and Yhk is the element (h,k) of

the admittance matrix YBUS.

The equation (2.24) can then be rewritten as (2.25):

∑
k ϵ β

YhkVk = S∗
h/V

∗
h (2.25)

Alternatively, in vectorial form

YV = [Ṽ∗]−1S∗ (2.26)
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in which Ṽ = diag(V1, V2,...,Vnb
). From the equation (2.16), defining A = Y, y = V and

b = [Ṽ∗]−1S∗, the Gauss-Seidel method can be directly implemented.

Thus, the voltage calculated in the ith iteration using the Gauss-Seidel method in a bus h of

type PQ is given by:

V
(i+1)
h =

1

Yhh

(
S∗
h

V
∗,(i)
h

−
∑
k>h

YhkV
(i)
k −

∑
k<h

YhkV
(i+1)
k

)
, h ϵ β, k ϵ β (2.27)

where S∗
h = P sp

h − jQsp
h .

When dealing with a PV bus h, the calculations are performed differently. This is because the

reactive power injection is unknown, and the voltage magnitude of the bus must be maintained

at a constant value V sp
h . Due to the reactive power limitations of the generator connected to

the bus, the reactive power injection Qh at a PV bus must be kept within the limits Qmin
h and

Qmax
h . In this case, the value of Qsp

h is replaced at each iteration by a value calculated from

(2.30):

Q
cal,(i)
h = −Im

{
V

∗,(i)
h

∑
k ϵ β

YhkV
(i)
k

}
, h ϵ β (2.28)

where Im {◦} corresponds to the imaginary part of ◦. Based on the value of Qcal
h , the voltage

Vh is calculated using (2.27). Note that equation (2.27) provides both new magnitude and new

phase of voltage V (i+1)
h . Since the PV generator sets the voltage magnitude, only the voltage

angle needs to be updated.

2.3 NEWTON-RAPHSON METHOD

In industrial applications, the conventional approach for determining the solution of Power

Flow Equations is through the use of the Newton-Raphson method (TINNEY; HART, 1967).

Typically, the method converges in a few iterations for well-conditioned cases. However, for

systems characterized as ill-conditioned, NR, like other classical techniques, may fail to converge

(MILANO, 2009; TOSTADO-VÉLIZ et al., 2020a; TOSTADO-VÉLIZ et al., 2021).

To demonstrate how the method is applied, consider the equation in a single variable, where

x ∈ R and g(x) ∈ R, expressed as:
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g(x) = c (2.29)

in which c ∈ R is a constant.

Let x(0) represent an initial guess for the solution of Eq. (2.29), and let ∆x(0) denote a small

disturbance around x(0). In this case, the function g(x) can be approximated as:

g(x(0) +∆x(0)) = c (2.30)

A Taylor series expansion of the left-hand side of Equation (2.30) around x(0) yields the following

expression:

g(x(0)) +

(
dg

dx

)(0)

∆x(0) +
1

2!

(
d2g

dx2

)(0)

(∆x(0))2 + · · · ≈ c (2.31)

Assuming that the root x(0) is close enough to the correct solution such that ∆x(0) is very small,

the higher-order terms can be neglected. Thus, Equation (2.31) can be linearly approximated

as shown in Equation (2.32):

∆c(0) ≃
(
dg

dx

)(0)

∆x(0) ∴ ∆x(0) ≃

[(
dg

dx

)(0)
]−1

∆c(0) (2.32)

where ∆c(0) = c − f(x(0)) represents the mismatch associated with the solution x(0). There-

fore, by incorporating the increment ∆x(0) into the initial estimate, we obtain the updated

approximation of the solution, as indicated in Eq. (2.33).

x(1) = x(0) +∆x(0) (2.33)

In this way, Equations (2.34), (2.35), and (2.36) can be used to construct a general structure

for the algorithm aimed at implementing the Newton-Raphson method.

∆c(i) = c− g(x)(i) (2.34)

∆x(i) =

[(
dg

dx

)(i)
]−1

∆c(i) (2.35)
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x(i+1) = x(i) +∆x(i) (2.36)

Alternatively, Equation (2.35) can be described as

∆c(i) = J (i)∆x(i) (2.37)

where J (i) =
(
dg
dx

)(i)
is the Jacobian matrix for g(x) evaluated at x = x(i).

Extending the application to a multivariable problem with x ∈ Rn and g(x) ∈ Rn, the lineari-

zation around an initial estimate x(0) is computed as shown in (2.38):



g
(0)
1 +

(
∂g1
∂x1

)(0)
∆x

(0)
1 +

(
∂g1
∂x2

)(0)
∆x

(0)
2 + · · ·+

(
∂g1
∂xn

)(0)
∆x

(0)
n = c1

g
(0)
2 +

(
∂g2
∂x1

)(0)
∆x

(0)
1 +

(
∂g2
∂x2

)(0)
∆x

(0)
2 + · · ·+

(
∂g2
∂xn

)(0)
∆x

(0)
n = c2

...

g
(0)
n +

(
∂gn
∂x1

)(0)
∆x

(0)
1 +

(
∂gn
∂x2

)(0)
∆x

(0)
2 + · · ·+

(
∂gn
∂xn

)(0)
∆x

(0)
n = cn

(2.38)

where c1, c2,...,cn are constant elements.

Equation (2.38) can be reformulated in matrix terms, as shown in (2.39). In this way, it is

possible to determine the increment ∆x
(0)
i for i = 1, 2, ..., n. Similarly, the increments for the

i-th iteration can also be computed.


c1 − g

(0)
1

c2 − g
(0)
2

...
cn − g

(0)
n

 =



(
∂g1
∂x1

)(0) (
∂g1
∂x2

)(0)
· · ·

(
∂g1
∂xn

)(0)(
∂g2
∂x1

)(0) (
∂g2
∂x2

)(0)
· · ·

(
∂g2
∂xn

)(0)
...

...
...

...(
∂gn
∂x1

)(0) (
∂gn
∂x2

)(0)
· · ·

(
∂gn
∂xn

)(0)




∆x

(0)
1

∆x
(0)
2

...
∆x

(0)
n

 (2.39)

A generalized expression for (2.39) is given by:

∆f = J∆x (2.40)

where ∆x, ∆f and J are calculated using (2.41), (2.42), and (2.43), respectively.
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∆x =


∆x1
∆x2

...
∆xn

 (2.41)

∆f =


c1 − g1(x1,x2, · · · ,xn)
c2 − g2(x1,x2, · · · ,xn)

...
cn − gn(x1,x2, · · · ,xn)

 (2.42)

J =



(
∂g1
∂x1

) (
∂g1
∂x2

)
· · ·

(
∂g1
∂xn

)(
∂g2
∂x1

) (
∂g2
∂x2

)
· · ·

(
∂g2
∂xn

)
...

...
...

...(
∂gn
∂x1

) (
∂gn
∂x2

)
· · ·

(
∂gn
∂xn

)

 (2.43)

In this context, J is known as the Jacobian matrix. If the estimates were exact, both ∆f and

∆x would equal zero. However, since they are only approximations, the errors ∆f are non-zero.

Eq. (2.40) establishes a linear relationship between the errors ∆f and the corrections ∆x via

the Jacobian matrix of the system of equations. Thus, for the ith iteration of the NR method,

the solution of the set of equations is iteratively calculated by:

x(i+1) = x(i) +∆x(i) (2.44)

This iterative process continues until the errors ∆fi are reduced below a specified tolerance

and, for each iteration, the Jacobian matrix must be recalculated.

2.3.1 Application of the NR method to power flow solution

In power flow analysis, the Newton-Raphson method stands out as one of the most effective

and widely adopted techniques for solving the nonlinear equations that characterize the power

flow problem. The power flow equations, as represented by (2.15), are inherently nonlinear due

to the complex relationships between bus voltages, angles, and injected powers. Consequently,

direct solutions are impractical, necessitating the use of iterative methods.

Among the various iterative techniques available, the NR method is preferred in most applicati-

ons because of its quadratic convergence properties and robust performance on power systems.
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This high convergence rate allows the NR method to achieve accurate solutions within a relati-

vely low number of iterations, provided the initial guess is sufficiently close to the true solution

(MILANO, 2009).

In each step of the process defined by Eq. (2.44), applied to PFP, ∆x(i) is calculated for a

mismatch g(x(i)) and Jacobian matrix J(x(i)) = gx(x
(i)) = ∂g(x)

∂x
|x(i) as

∆x(i) = −[J(x(i))]−1g(x(i)). (2.45)

It is important to mention that to obtain the PFP solution it is necessary to perform the LU

factorization of the Jacobian matrix, which is considered as the heaviest computational part

of NR (TOSTADO-VÉLIZ et al., 2018a). The computation of the Jacobian matrix elements

follows this procedure:

J(x(i)) =



∂P
(i)
1

∂θ1
· · · ∂P

(i)
1

∂θn... . . . ...
∂P

(i)
n

∂θ1
· · · ∂P

(i)
n

∂θn

∂P
(i)
1

∂|V1| · · · ∂P
(i)
1

∂|Vn|
... . . . ...

∂P
(i)
n

∂|V1| · · · ∂P
(i)
n

∂|Vn|
∂Q

(i)
1

∂θ1
· · · ∂Q

(i)
1

∂θn... . . . ...
∂Q

(i)
n

∂θ1
· · · ∂Q

(i)
n

∂θn

∂Q
(i)
1

∂|V1| · · · ∂Q
(i)
1

∂|Vn|
... . . . ...

∂Q
(i)
n

∂|V1| · · · ∂Q
(i)
n

∂|Vn|


=

∂P
∂θ

∂P
∂V

∂Q
∂θ

∂Q
∂V

(i)

(2.46)

The elements of the Jacobian matrix correspond to the partial derivatives of the equations for

PQ and PV buses evaluated at ∆θ
(i)
k and ∆|V (i)

k |. Another notation for (2.45) is as follows:

[
∆θ
∆V

]
= −

∂P
∂θ

∂P
∂V

∂Q
∂θ

∂Q
∂V

−1 [
∆P
∆Q

]
(2.47)

or, written in another way

[
∆θ
∆V

]
= −

J1 J3

J2 J4

−1 [
∆P
∆Q

]
(2.48)

It is assumed that the value x(i+1) converges numerically to the root x when ||g(x)||∞ < ϵ for

ϵ > 0 is sufficiently small. Typically, the number of iterations in the search for convergence

is limited for practical numerical reasons. The procedure is stopped if convergence does not

occur before reaching a maximum number of iterations, say itermax. Under these conditions,
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it is said that the iterative process is divergent and stopped (TOSTADO-VéLIZ et al., 2019).

Algorithm 1 briefly describes the steps of the classical Newton-Raphson method for solving the

iterative power flow problem for satisfying (2.15) through the iterate process (2.44), given a

tolerance for convergence ϵ.

Algorithm 1 Newton-Raphson Method Algorithm

1: Initialize the system state variables x(0) and set the iteration counter k = 0.

2: Set convergence criteria: tolerance ϵ, maximum iterations kmax = itermax.

3: while ||g(xk)||∞ > ϵ and k < kmax do

4: Calculate power mismatches g(xk) and construct the Jacobian matrix J(xk)

5: Solve the linear system (2.45)

6: Update the state variables (2.44)

7: if ||g(xk+1)||∞ < ϵ then ▷ Check for convergence

8: break ▷ The method converged

9: else
10: k = k + 1 ▷ Increment the iteration counter k and repeat from step 3.

11: end if

12: end while

13: return solution

The NR method has the property of quadratic convergence. Therefore, it is expected to converge

when an initial estimate x(0) is assigned in the solution attraction region. However, even within

this region, the convergence is not necessarily assured (MILANO, 2009). One of the reasons is

an estimate very far from the solution. In conditions where one does not know the initialization

of the iterative procedure, it is usual to start with a flat-start estimate. In this situation, the

voltage magnitudes on the load buses are initialized to 1.0 pu, while all phase angles are

initialized to zero. However, divergence may occur even for operating voltages close to the

nominal. In this case, the system is characterized as ill-conditioned (MILANO, 2009). On

the other hand, according to (GOLUB; LOAN, 1996), a problem is mathematically defined as

ill-conditioned if the calculated values are very sensitive to small changes in the parameters

that characterize the problem.

Systems categorized as ill-conditioned can have very large increment in (2.45). As a conse-

quence, very high values are obtained for x(i+1) in (2.44). A strategy to reduce the impact of

the ’explosion’ of the step ∆x(i) in x(i+1) is to introduce a single optimal multiplier (OM) hi
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(IWAMOTO; TAMURA, 1981; PAN et al., 2020) in such way that

x(i+1) = x(i) + hi∆x(i). (2.49)

Despite the insertion of an OM to control the step length hi during the PFP solution, the

problem can still diverge. Mainly when large-scale and ill-conditioned models are studied.

Because the bottleneck of the problem is related to the ill-conditioning of the Jacobian matrix

when it is calculated for a given state at the point x(i).

2.3.2 Complex-Variable NR Method

Historically, most algorithms for power system applications have been developed in the real

domain. However, real-valued models do not accurately represent the complex-valued voltage

and current phasors, which can result in solution methods that are prone to high computation

times and issues related to ill-conditioning, as discussed in the previous section. To address

these limitations, several recent studies have proposed algorithms that solve PFP directly in

the complex plane (NGUYEN, 1997; NGUYEN, 2006; PIRES et al., 2019; PIRES et al., 2022;

CHAGAS; PIRES, 2023).

As an advantage of implementing the approach in the complex plane, one can highlight that

directly handling complex quantities reduces the need for calculation transformations or appro-

ximations. A detailed analysis of the formulation confirms a significant reduction in memory

access when using the NR formulation with complex variables compared to the traditional

formulation based on real variables (NGUYEN, 2006). Additionally, this approach can be

competitive in terms of both accuracy and computational efficiency when compared to state

estimation using real variables (DŽAFIĆ; JABR, 2020).

Considering the advantages observed in implementing analyses in the complex domain, MAT-

POWER, one of the most widely used tools for power flow studies, already incorporates power

flow equations formulated directly in terms of complex matrices (SEREETER; ZIMMERMAN,

2018). This approach not only simplifies calculations but also enhances the computational per-

formance of simulations (see fundamental details as implemented by MATPOWER’s team in

Appendix A).
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2.4 FAST DECOUPLED LOAD FLOW

The strong interdependence among active powers, bus voltage angles, and reactive powers,

along with the magnitudes of voltages, represents an intrinsic characteristic of every practical

system of electric power transmission in steady-state operation (FAN, 1989). Based on this

strategy, the Fast Decoupled method (or fast decoupled NR method [FNR]) was proposed by

Stott & Alsac (1974). The method is a variant of the Newton-Raphson method, however,

it offers Jacobian matrix calculation simplifications, overcoming the heavier computational

part of NR. In addition to improving computational efficiency, the Fast-Decoupled method

provides valuable insights for the analysis of complex steady-state electrical systems, accurate

or approximate routine calculations, and offline and online contingency for networks of any size,

providing the solution in seconds (STOTT; ALSAC, 1974; GLOVER et al., 2012).

Considering that the systems under analysis exhibit a high X/R ratio, variations in active

power ∆P are less influenced by voltage magnitude ∆V changes and more susceptible to phase

angle variations ∆θ. Similarly, reactive power is less sensitive to changes in phase angle and is

predominantly associated with variations in voltage magnitude. In this context, it is appropriate

to assume that the elements J2 and J3 of the Jacobian matrix can be set to zero (SAADAT et

al., 1999). Thus, the Jacobian matrix can be represented in a reduced form as Eq. (2.50):

[
∆P
∆Q

]
=

[
J1 0
0 J4

] [
∆θ
∆V

]
(2.50)

The separation of Equation (2.50) into two independent parts, as expressed by (2.51) and

(2.52), is a procedure that not only simplifies the approach but also significantly reduces the

time required to solve these decoupled equations compared to solving (2.48). Additionally, it

is possible to further optimize the process through a simplification that eliminates the need to

recalculate J1 and J4 at each iteration. This optimization leads to the development of decoupled

power flow equations: (STOTT; ALSAC, 1974)

∆P = J1∆θ =

[
∂P

∂θ

]
∆θ (2.51)



2.5 – The DC Power Flow 25

∆Q = J4∆V =

[
∂Q

∂V

]
∆V (2.52)

Equations (2.51) and (2.52) can also be simplified and represented in a format called fast

decoupled, which has the following reduced form:

∆Pi

Vi
= −Bi

′∆θ, i = 1,2, . . . , (N − 1) (2.53)

∆Qi

Vi
= −Bi

′′∆V, i = 1,2, . . . , NPQ (2.54)

where Bi
′ denotes a row of the matrix B′, while Bi

′′ represents a row of the matrix B′′. Both

of these matrices derive from the imaginary part of the admittance matrix YBUS, equivalent to

the susceptance matrix B. The fundamental distinction between B′ and B′′ is the fact that B′′

is directly equivalent to the imaginary part of YBUS. On the other hand, B′ is simplified even

further, assuming the resistance values in the interconnections as negligible (MONTICELLI;

GARCIA, 1999).

Therefore, within the Fast Decoupled method, successive changes in voltage magnitude and

phase angle can be computed according to equations (2.55) and (2.56):

∆θ = −[B′]−1∆P

V
(2.55)

∆V = −[B′′]−1∆Q

V
(2.56)

where ∆P
V

and ∆Q
V

form vectors whose elements are, respectively, ∆Pi

Vi
and ∆Qi

Vi
, as calculated in

(2.53) and (2.54). Note that (2.55) and (2.56) only require one LU factorization for both B′

and B′′.

2.5 THE DC POWER FLOW

The DC Power Flow method stands as a pivotal simplification in power system analysis, offering

a streamlined approach to solving complex electrical network problems. By focusing solely on
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Algorithm 2 Fast Decoupled Algorithm

1: Initialize the system state variables x(0) and set the iteration counter k = 0.

2: Set convergence criteria: tolerance ϵ, maximum iterations kmax = itermax.

3: Compute the admittance matrix YBUS using network parameters

4: Build matrices B′ and B′′ from YBUS

5: while ||g(xk)||∞ > ϵ and k < kmax do

6: Solve equations (2.55) and (2.56)

7: Update the state variables (2.44)

8: if ||g(xk+1)||∞ < ϵ then ▷ Check for convergence

9: break ▷ The method converged

10: else
11: k = k + 1

12: end if

13: end while

14: return solution

active power and voltage phase angles while neglecting reactive power and voltage magnitudes,

this method significantly reduces computational complexity. Originally developed as a means

of addressing the challenges posed by nonlinear power flow equations, the DC Power Flow

method has significant importance in applications involving power system analysis, planning,

and optimization (GLOVER et al., 2012).

The fundamental premise of the DC power flow model revolves around prioritizing the (P, θ)

correlation while entirely disregarding the (Q, V ) correlation. This approach is substantiated

by the following hypotheses (MILANO, 2010):

• All voltage magnitudes are assumed constant and equal to 1.0 pu and reactive powers are

neglected;

• The computation of the simplified admittance matrix B excludes considerations of line

resistance and charging;

• Bus voltage phases are assumed to be small, allowing for simplifications such as sin θij ≈

θij and cos θij ≈ 1.0.

As a result, the system equations are simplified to:



2.6 – Final Considerations 27

P = Bθ (2.57)

where P represents the injected active powers, B denotes the simplified admittance matrix, θ

represents the vector of voltage angles.

Note that equation (3.22) resembles a linear equation commonly found in the solution of DC

resistive circuits, which explains the term “DC power flow” for this technique. However, unlike

previous power flow algorithms, the DC power flow method only provides an approximate

solution, with the level of approximation varying depending on the system characteristics.

In certain simulations, initiating the nonlinear PFP iterative resolution by using the result

obtained from the DC power flow as an initial estimate is considered. This approach provides

a starting point for the nonlinear iterative process, potentially improving its efficiency and

accuracy.

2.6 FINAL CONSIDERATIONS

In this chapter, fundamental concepts related to the ill-conditioned power flow problem were

presented, in addition to the basic formulation of PFP. Due to the nonlinear nature of the

system of equations involved in the power flow problem, iterative methods are commonly used

to solve it. The main classical techniques used to solve the PFP were discussed, including

Gauss-Seidel, Newton-Raphson and its Fast Decoupled variants, in addition to the DC Power

Flow method. Table 2.2 summarizes the main advantages and disadvantages of the discussed

methods.

The understanding of these classical techniques is crucial, as it establishes a solid foundation for

the analysis of advanced iterative methods. Although traditional methods such as Gauss-Seidel

and Newton-Raphson are effective in many situations, they present significant limitations when

applied to ill-conditioned systems, especially in cases where the power flow solution’s region

of attraction is narrow or far from the initial guess. Given the complexity and importance

of power systems, it is essential to develop and implement robust and efficient methods to

overcome these challenges.

The next chapter presents a literature review of some PFP methods since their origin, and ad-
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dresses a review class of methods that discuss and solve the ill-conditioned power flow problem.

Table 2.2. Comparison of classical power flow methods.
Method Main Advantages Main Disadvantages

Gauss-Seidel

• Simple implementation

• Low memory requirements

• Slow convergence

• Sensitive to initial guess

Newton-Raphson

• Fast convergence

• Robust and reliable

• Quadratic convergence or-
der

• Requires good initial guess

• Fail in ill-conditioned sys-
tems

Fast Decoupled

• Faster than Newton-
Raphson

• Less computational burden

• Easier implementation
compared to Newton-
Raphson

• Convergence issues in ill-
conditioned systems

• Less accurate for systems
with strong coupling

DC Power Flow

• Very fast and simple

• Good for initial analysis

• Reactive problem is neglec-
ted

• Voltage magnitudes are not
calculated

• Less accurate for detailed
analysis



CHAPTER 3

DIRECT AND ITERATIVE METHODS

This chapter provides the theoretical foundation for solving linear systems using both direct and

iterative methods, critical for handling large-scale problems in power systems. Large-scale ill-

conditioned power flow problems often involve linear systems with sparse matrices of significant

size, where efficient and stable solutions are essential due to computational constraints. For

these cases, iterative linear methods leveraging Krylov subspaces, such as GMRES (Generalized

Minimal Residual) and BiCGStab (Bi-Conjugate Gradient Stabilized), have shown effective

performance and are the primary focus of this study.

In power flow analysis, iterative linear methods are characterized by their memory efficiency

and ability to handle the large dimensions and sparsity of matrices in high-dimensional systems.

For ill-conditioned problems, direct solvers can suffer from numerical instability, which has led

to the development and improvement of iterative approaches.

To improve the performance and convergence of these iterative methods, particularly in ill-

conditioned and large-scale scenarios, this work examines several complementary techniques.

These include preconditioners which transform the original system into a form that improves

the efficiency of iterative methods. The use of complete and incomplete LU factorizations is

discussed, with incomplete LU offering a more memory-efficient alternative suited to iterative

methods while still preserving much of the matrix structure. Matrix reordering techniques are

also essential, as they can reduce fill-in during factorization and improve the sparsity pattern

of matrices, directly impacting the efficiency of solvers.

3.1 DIRECT METHODS FOR SOLVING LINEAR SYSTEMS

Direct methods are widely used to solve linear systems, especially in problems where it is

necessary to obtain all variables simultaneously. These methods are capable of finding the



3.2 – Description and Formulation of Direct Methods 30

exact solution, but are subject to rounding errors. Furthermore, their application in large

systems, especially with sparse matrices, presents some limitations that can compromise their

efficiency and computational feasibility (SAAD, 2003; GOLUB; LOAN, 1996).

In large power systems, consisting of thousands of buses, the representation of the relationships

between variables can result in high-dimensional and highly sparse matrices.

3.2 DESCRIPTION AND FORMULATION OF DIRECT METHODS

Consider the following linear system represented by Eq. (3.1):

Ax = b (3.1)

in which A ∈ Rn×n is a coefficient nonsingular matrix of the variables, x ∈ Rn represents the

unknown vector, and b ∈ Rn is the independent vector.

The objective of direct methods is to solve x through factorizations that facilitate the calculation

of the variables simultaneously. This section presents some of main direct methods used for

solving linear systems.

3.2.1 Gauss-Jordan

The Gauss-Jordan method is named in honor of the scientists Carl Friedrich Gauss (1777-1855)

and Wilhelm Jordan (1842-1899). This method extends the concept of Gaussian elimination

and works by transforming the expanded matrix (composed of the coefficient matrix and the

vector of independent terms) until it reaches the reduced row-echelon form. The main idea

is to simplify the system until it becomes equivalent to a system where each variable appears

separately in each row, making it easier to read the solutions.

Thus, the method begins by applying elementary row operations to transform the elements

below the main diagonal into zeros, creating an upper triangular matrix. The process continues

so that the elements above the main diagonal also become zeros. In this way, each row of the

matrix will have only one element, 1, in the position corresponding to a variable, with zeros in

the other elements of the column.
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The ultimate goal is to obtain an identity matrix in the coefficient part. When this identity

matrix is achieved, the solutions to the system of equations can be read directly from the vector

of independent terms.

In this way, the original system Ax = b is transformed into:

Dx = c (3.2)

in which D is a diagonal matrix and c is a vector, both with dimensions A and b, respectively.

Thus, the linear system (3.2) is then solved directly.

3.2.2 LU factorization

The LU decomposition in linear algebra consists of expressing a non-singular matrix as the

product of two triangular matrices, one lower and one upper, both with the same dimension as

the original matrix. The lower matrix is triangular below the main diagonal, while the upper

matrix is triangular above the diagonal.

In some cases, it is necessary to pre-multiply the matrix to be decomposed by a permuta-

tion matrix. This decomposition is widely used in numerical analysis, particularly for solving

systems of equations more efficiently or calculating inverse matrices.

In general, the LU decomposition process is performed using Gaussian elimination, where,

during the transformation, matrix L stores the multiplier coefficients used in the elimination

operations, and matrix U contains the resulting elements of matrix A after these transformati-

ons, such that

A = LU. (3.3)

After performing the decomposition, solving the linear system Ax = b can be done more

efficiently. Instead of solving the equation Ax = b directly, two simpler systems of equations

are solved:

Ly = b (3.4)

Ux = y (3.5)
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where L is the lower triangular matrix and U is the upper triangular matrix.

The value of y, obtained from the first system, is then substituted into the second system to

find the solution x.

3.2.3 QR factorization

The QR decomposition, also known as QR factorization, is a mathematical technique used to

express a matrix as the product of two specific types of matrices: an orthogonal matrix and a

triangular matrix. For a real square matrix A, this decomposition is represented as:

A = QR, (3.6)

where Q is an orthogonal matrix (i.e. QTQ = I) and R is an upper triangular matrix. If A is

nonsingular, then this factorization is unique.

Numerous techniques can be employed to compute the QR decomposition, with the Gram-

Schmidt process being one of the commonly used methods (GOLUB; LOAN, 1996). Therefore,

consider the Gram-Schmidt procedure below, with the vectors to be considered in the process

as columns of the matrix A. That is,

A = [a1|a2| · · · |an]. (3.7)

Then,

u1 = a1, e1 =
u1

∥u1∥
, (3.8)

u2 = a2 − (a2 · e1)e1, e2 =
u2

∥u2∥
. (3.9)

uk+1 = ak+1 − (ak+1 · e1)e1 − · · · − (ak+1 · ek)ek, ek+1 =
uk+1

∥uk+1∥
. (3.10)

Note that ∥·∥ is the Euclidean norm.

Thus, the resulting QR factorization is given by Eq. (3.11).
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A = [a1|a2| · · · |an] = [e1|e2| · · · |en]


a1 · e1 a2 · e1 · · · an · e1

0 a2 · e2 · · · an · e2
...

... . . . ...
0 0 · · · an · en

 = QR. (3.11)

QR factorization also provides a reliable method for solving underdetermined systems Ax = b,

where A is m-by-n with m < n (BUKHSH, 2018). Ignoring the fill-reducing ordering, consider

the QR factorization QR = AT . The system becomes RTQTx = b. If the upper triangular

system RTy = b is solved for y, the solution to Ax = b is x = Qy.

3.2.4 Cholesky factorization

When the matrix of a linear system is symmetric, the calculations for LU decomposition can be

significantly simplified by taking advantage of this symmetry. This simplification is utilized by

the Cholesky method, also known as Cholesky factorization or decomposition. The method is

named after André-Louis Cholesky(1875-1918), who showed that a symmetric, positive-definite

matrix can be factored as the product of a lower triangular matrix and its transpose. This

approach allows the matrix A to be represented in the form:

A = LLT (3.12)

where L is a lower triangular matrix with strictly positive elements on the main diagonal. For

this, it is required that the matrix be symmetric and positive-definite. Thus, substituting (3.12)

into Ax = b yields

(LLT )x = b (3.13)

which can be decomposed into the following two triangular systems:

Ly = b (3.14)

LTx = y (3.15)

In this way, first, Ly = b is solved for y, and then LTx = y for x, using successive substitutions.
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Therefore, the Cholesky decomposition is especially useful because it allows fast and stable

resolution of linear systems, provided the matrix has the necessary properties. It has an ad-

vantage over other decompositions, such as LU, because it requires half the operations on a

symmetric matrix, resulting in lower computational cost (SÜLI; MAYERS, 2003).

3.2.5 Comparison and Limitations of Direct Methods for Large Systems

Each direct method presents advantages and disadvantages that must be considered when

choosing an approach for large-scale linear systems, especially in contexts where the matrices

are sparse. The primary limitation of direct methods is the occurrence of fill-in in sparse

matrices, a phenomenon where non-zero elements are introduced in previously zero positions

during factorization, drastically increasing memory usage and processing time.

3.3 ITERATIVE METHODS

The iterative methods require an initial estimate, x(0), from which successive approximations

x
(k)
i are generated at each step k, converging to an acceptable solution within a previously

established tolerance after a finite number of iterations. However, the effectiveness of iterative

methods can be compromised by the conditioning of the matrix A, which directly influences

the convergence and accuracy of the solution. Therefore, techniques such as reordering and

preconditioning are often applied to improve the efficiency and robustness of these methods,

especially in ill-conditioned systems.

Iterative methods can be classified into two main categories: stationary and non-stationary.

Stationary methods, such as Jacobi, Gauss-Seidel, and Successive Over-Relaxation (SOR), are

characterized by performing similar calculations with vectors at each iteration. On the other

hand, non-stationary methods aim to find a value for the variable by using search directions

derived from the theory of Krylov subspaces (SAAD; SCHULTZ, 1986). In this approach, the

coefficients are updated at each iteration, and the final result depends on a sequence of vectors

generated by the product of a power of the matrix with the initial residue. These vectors, which

form an orthogonal basis for a subspace, justify the term Krylov subspace.
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Thus, a solution to Eq. (3.1) can be obtained with the specified numerical precision. Starting

from an initial solution x(0), a sequence of approximations x(k) is generated through the ite-

rations k, so that, after a finite number of iterations and reaching the defined tolerance, the

solution converges to a value close to x:

x ≈ A−1b (3.16)

Although Krylov subspace-based methods theoretically converge to the solution with the num-

ber of iterations determined by the dimension of the matrix, in practice, rounding errors can

hinder this convergence, especially if the matrix is ill-conditioned. Therefore, a rational criterion

for deciding when to stop a method’s iterative calculation process should consider parameters

for solution evaluation, such as those based on the residual of the solution and the monitoring

of the convergence process (RECKTENWALD, 2012).

Based on equation Eq (3.1), the residue is defined as follows:

r = b− Ax (3.17)

Therefore, if x is the solution of Ax = b, r will be zero. For an iterative method the residue in

an iteration k is given by:

r(k) = b− Ax(k), k = 0,1,2, · · · (3.18)

If a method converges, the residual r(k) approaches zero as k tends to infinity.

3.3.1 Krylov subspace Methods

In 1931, Krylov introduced a technique for constructing the characteristic polynomials of ma-

trices (KRYLOV, 1931). This approach is based on the construction of a regular (non-singular)

matrix K and a Hessenberg matrix H such that their product K−1AK = H is verified. Due to

this similarity relationship, both matrices share the same characteristic polynomial. In the ini-

tial stage of this technique, the columns of matrix K are generated by multiplying a vector r by

A; specifically, the j -th column of K is given by Aj−1r , resulting in K = [r Ar A2r . . . Ak−1r].
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Thus, the Krylov subspace can be defined by a sequence of vectors whose basis consists of the

following:

Kk(A,r
(0)) := span(r(0), Ar(0), A2r(0), · · · ,Ak−1r(0)) (3.19)

r(0) = b− Ax(0) (3.20)

where A corresponds to the coefficient matrix, r(0) the initial residual and x(0) the initial

estimate.

The Krylov subspace method for solving Eq. (3.1) is based on an approximate solution x(k)

that belongs to a subspace Kk. Under these conditions, a minimum error norm condition for

the exact solution x∗ of Eq. (3.1) is established:

∥∥x∗ − x(k)
∥∥
2
= min

{∥∥x∗ − x(k)
∥∥
2
: x ∈ x0 +Kk

}
(3.21)

In the subsection below, several of the primary methods based on the Krylov subspace are

presented and discussed, including GMRES, BiCG, BiCGStab, and CGS(VORST, 2003).

3.3.2 GMRES

The Generalized Minimum Residual (GMRES) method aims to compute an approximation of

the solution x(k) , that is, the value of x at the k-th iteration, such that it satisfies the minimum

residual norm condition. To achieve this, an orthogonal basis of vectors is constructed from

the Krylov subspace (3.19) using the orthogonalization process known as the Arnoldi method

(SAAD, 2003). With this basis, x(k) is determined such that the resulting Euclidean norm of

the residual is minimized.

The approximate solution x(k) at the k-th iteration can be represented as:

x(k) = x(0) + V y(k) (3.22)

where x(0) corresponds to the initial estimate, V represents a matrix whose columns are the vec-

tors v(k) generated by the Arnoldi method and y(k) corresponds to the solution of the minimum
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residual norm problem, as expressed by:

Hky
(k) =

∥∥r(0)∥∥
2
ê1 (3.23)

where Hk is the upper Hessenberg matrix of size (k + 1) × k, according to Eq. (3.24), r(0) is

the initial residual, defined as r(0) = b−Ax(0), and ê1 is the canonical unit vector of dimension

k, given by ê1 = [1 0 0 . . . 0]T .

Hk =



h11 h12 · · · · · · h1k
h21 h22 · · · · · · h2k

0
. . . . . . ...

... . . . . . . ...
0 · · · · · · hk,k−1 hkk
0 · · · · · · 0 hk+1,k


(3.24)

After determining the matrix V and the vector y(k), the approximation x(k) is computed as

given by Eq. (3.22), and the residual r(k) is calculated as described by Eq. (3.18). This

iterative process is repeated for each iteration k until the convergence condition is satisfied. A

description of the operation of the GMRES method is presented in Algorithm 3.

Algorithm 3 GMRES

1: Compute r0 = b− Ax0, β := ∥r0∥2 , and v1 := r0/β.

2: for j = 1, 2, · · · ,m do

3: Compute wj := Avj

4: for i = 1, · ,j do
5: hij := (wj,vi)
6: wj := wj − hijvi
7: end for

8: hj+1,j = ∥wj∥2 .If hj+1,j = 0 set m := j and go to 11

9: vj+1 = wj/hj+1,j

10: end for

11: Define the (m+ 1)×m Hessenberg matrix H̄m = {hij}1≤i≤m+1,1≤j≤m. and Vm composed of
the vectors vi = 1,2, · · · ,m

12: Compute ym the minimizer of
∥∥βe1 − H̄my

∥∥
2

and xm = x0 + Vmym

The main drawback of the GMRES method is that the computational effort and storage re-

quirements per iteration increase linearly with the number of iterations, leading to a cost that

quickly becomes high. The most common approach to mitigate this problem is to restart
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the iteration process. After setting a number m of iterations, the accumulated information is

discarded, and the most recent results serve as initial data for the next m iterations. This

procedure is repeated until convergence is achieved. However, determining a suitable value for

m is challenging, because if m is too small, the GMRES(m) method may converge slowly or

even fail. On the other hand, an excessively large value of m requires a large amount of memory

space. Since there are no specific rules for choosing m, the decision about when to restart is

a practical matter, making the restart timing a decisive factor for the effective application of

GMRES(m) (SAAD, 2003).

3.3.3 The Conjugate Gradients Method

The Conjugate Gradient (CG) algorithm is one of the best known iterative techniques for solving

sparse Symmetric Positive Definite linear systems (VORST, 2003). Through this technique,

sequences of vectors with successive approximations of the solution and iteration residuals are

generated. Updates are performed by aiming to find the minimum residual. In each iteration,

two inner products are computed to satisfy orthogonality conditions.

The Conjugate Gradient algorithm can be derived from the Lanczos algorithm, as presented in

Algorithm 4 (SAAD, 2003).

Algorithm 4 CG

1: Compute r0 := b− Ax0 and p0 := r0.

2: for j = 0, 1, 2, · · · , until convergence do

3: aj := (rj,rj)/(Apj,pj)

4: xj+1 := xj + ajpj

5: rj+1 := rj − ajApj. If ∥rj+1∥ < ϵ (where ϵ is the tolerance), stop the iteration.

6: βj := (rj+1,rj+1)/(rj,rj)

7: pj+1 := rj+1 + βjpj

8: end for

The Conjugate Gradient method has several advantages, making it an efficient choice for solving

large linear systems. One of its main advantages is efficiency, as the method only requires the

calculation of matrix-vector products, which makes it significantly faster than direct methods

for large systems. Additionally, for symmetric and positive-definite matrices, the Conjugate
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Gradient method typically converges quickly, often reaching a satisfactory solution in just a few

iterations. However, the method also has some limitations. It is not applicable to nonsymmetric

systems or indefinite matrices, which limits its use to matrices with these properties.

3.3.4 The Bi-Conjugate Gradient Method

The Bi-Conjugate Gradient (BiCG) method exhibits significant differences compared to GM-

RES, particularly because it does not aim to minimize the residual directly at each iteration.

This method has a high computational cost, primarily due to requiring two matrix-vector pro-

ducts per iterative step, which can negatively affect overall performance (BARRETT et al.,

1994). Additionally, in each iteration, the BiCG performs separate matrix-vector multiplicati-

ons for two associated matrices, further increasing the computational cost.

A distinctive feature of the BiCG method is that orthogonalizations are not performed in a

conventional sequence but instead are mutually orthogonal, or bi-orthogonal. In the context of

Algorithm 5, steps 6 and 7 correspond to the computation of residuals, while steps 9 and 10

deal with the update of search directions, which are essential components for the progression

of the method.

Algorithm 5 BiCG

1: Compute r0 := b− Ax0. Choose r∗0 such that (r0,r
∗
0) ̸= 0.

2: Set p0 := r0, p
∗
0 := r∗0

3: for j = 0, 1, 2, · · · , until convergence do

4: aj := (rj,r
∗
j )/(Apj,p

∗
j)

5: xj+1 := xj + ajpj

6: rj+1 := rj − ajApj.

7: r∗j+1 := r∗j − ajA
Tp∗j

8: βj := (rj+1,r
∗
j+1)/(rj,r

∗
j )

9: pj+1 := rj+1 + βjpj

10: p∗j+1 := r∗j+1 + βjp
∗
j

11: end for
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3.3.5 The Bi-conjugate Gradient Stabilized Method

The Bi-Conjugate Gradient Stabilized method (BiCGStab) was developed to solve non-symmetric

linear systems, avoiding the irregular convergence patterns of the conjugate gradient method.

BiCGStab can be interpreted as the outcome of the BiCG method combined with the repe-

titive application of the GMRES method (BARRETT et al., 1994). It performs a localized

minimization of a residual vector, resulting in a smoother convergence behavior. However, if

the local GMRES step stagnates during its application, the Krylov space is not expanded, and

the BiCGStab method fails to converge.

Algorithm 6, described below, provides an approach for solving linear systems using the BiCGS-

tab method(SAAD, 2003).

Algorithm 6 BiCGStab

1: Compute r0 := b− Ax0.

2: Set p0 := r0

3: for j = 0, 1, 2, · · · , until convergence do

4: aj := (rj,r0)/(Apj,r0)

5: sj := rj + ajApj

6: wj := (Asj,sj)/(Asj,Asj)

7: xj+1 := xj + ajpj + wjsj

8: rj+1 := sj − wjAsj

9: βj :=
(rj+1,r0)

(rj ,r0)
× aj

wj

10: pj+1 := rj+1 + βj(pj − wjApj)

11: end for

Iterative methods applied directly to solve linear systems with asymmetric and indefinite matri-

ces often face challenges related to convergence. To address these limitations, system preconditi-

oning becomes an essential step. Furthermore, the reordering of equations and the arrangement

of variable elements within the system are fundamental aspects that can positively influence the

efficiency and success of the iterative methods’ convergence process (BENZI, 2002; GALIANA

et al., 1994).
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3.4 PRECONDITIONERS

The convergence rate of iterative methods for solving linear systems is significantly influen-

ced by the spectral properties of the coefficient matrix. Poor spectral properties can lead to

slow convergence, making the solution process computationally expensive. To address this,

preconditioning techniques are employed. A preconditioner is a matrix designed to transform

the original system into an equivalent one, maintaining the same solution while improving

its spectral properties. For example, given a coefficient matrix A, a preconditioner M that

approximates A can be used to form the system

M−1Ax =M−1b (3.25)

This transformed system (3.25) has the same solution as the original Ax = b, but the spectral

properties of its coefficient matrix M−1A may be more favorable (BARRETT et al., 1994).

The fundamental concepts related to preconditioners are presented below, highlighting their

importance in improving the efficiency and convergence of iterative methods applied to the

solution of linear systems.

For a matrix A , its eigenvalues and eigenvectors are obtained through the following equation:

(A− λI)x = 0 (3.26)

where λ represents the eigenvalue of A, x the corresponding right eigenvector, and I is the

identity matrix. The left eigenvector xL of A associated with λ can be determined using the

equation given in Eq. (3.27).

xL(A− λI) = 0. (3.27)

By calculating all the eigenvalues of A and constructing a matrix M whose columns are formed

by the corresponding right eigenvectors, it is possible to determine the matrix D using the

expression (3.28).

D =M−1AM (3.28)
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where D is a diagonal matrix whose elements are the eigenvalues of A. The matrix M−1,

required for the diagonalization of A, can be obtained from the left eigenvectors of A.

Thus, as shown in Eq. (3.28), any square matrix can be decomposed into a product of its

eigenvalues and eigenvectors. In iterative methods, the convergence rate of the eigenvectors is

directly related to the magnitude of their respective eigenvalues. Specifically, the convergence

of the eigenvector occurs faster when the magnitude of the eigenvalue is larger. On the other

hand, the convergence of an iterative method can be slow when there is a large difference

between the magnitudes of the eigenvalues of the system, which results in a higher number of

iterations and greater propagation of rounding errors.

To mitigate this issue, preconditioners are used to modify the matrix A in such a way that

its eigenvalues have more balanced magnitudes, thereby accelerating the convergence of the

iterative process. Preconditioning, therefore, aims to transform the system in a way that reduces

the number of iterations required to reach the solution, without altering the final eigenvalues

of the system.

There are two main types of preconditioning: the sparse approximation of the inverse matrix,

which aims to approximate M ≈ A−1, and the decomposed matrix, which seeks a matrix M

such that M ≈ A. For preconditioners approximating the inverse of the matrix (M ≈ A−1),

the system can be preconditioned in the following ways:

• Left Preconditioning: MAx = Mb, where the preconditioner M is multiplied on the

left side of the original system Ax = b. This approach modifies the matrix A and the

right-hand side b, preserving the solution x.

• Right Preconditioning: AMy = b, where x = My. Here, the preconditioner modifies

the solution vector, leaving the right-hand side b unchanged.

• Two-Sided Preconditioning: In this case, the preconditioner is applied on both sides,

resulting in the transformed system M2AM1y =M2b, where x =M1y.

For preconditioners based on a decomposition of the matrix (M ≈ A), the preconditioned

system can be expressed as:
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• Left Preconditioning: M−1Ax =M−1b, where the preconditioner M−1 is multiplied on

the left. This directly modifies both A and b to improve the conditioning of the system.

• Right Preconditioning: AM−1y = b, with the solution obtained as x =M−1y.

• Two-Sided Preconditioning: When the preconditioner is applied on both sides, the

system becomes M−1
2 AM−1

1 y =M−1
2 b, with x =M−1

1 y.

Both approaches, sparse approximation of the inverse and decomposed matrix preconditioning,

offer flexibility in improving the convergence properties of iterative solvers by altering the ori-

ginal structure of the system. The choice between left, right, or two-sided preconditioning

depends on the specific problem characteristics and the trade-offs in computational cost and

implementation complexity. In this sense, decomposed matrix preconditioning, particularly

through incomplete LU (ILU) factorization, gained significant attention for its ability to appro-

ximate the matrix A efficiently while preserving sparsity. The following subsection delves into

ILU factorization, exploring its principles and applications in preconditioning for large-scale

linear systems.

3.4.1 Incomplete LU Factorization (ILU)

A broad class of preconditioners is based on incomplete factorizations of the coefficient matrix.

A factorization is called incomplete if, during the factorization process, certain fill elements,

which are nonzero elements in the factorization at positions where the original matrix had a

zero, are ignored. Such a preconditioner is then given in factored form M = LU , where L is

lower triangular and U is upper triangular. The efficacy of the preconditioner depends on how

well M−1 approximates A−1 (BARRETT et al., 1994).

In the context of incomplete factorizations, managing fill elements often introduces challenges.

The ILU method may encounter issues with pivot elements, such as zero or negative values,

which can compromise the stability of the factorization. To address these issues, it becomes

necessary to apply strategies like replacing problematic pivots with arbitrary positive values or

reordering the matrix to ensure numerical robustness (MANTEUFFEL, 1980; BARRETT et

al., 1994).
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There are several variations of the incomplete LU factorization methods. The ILU(0) variant is

a structure that provides a simpler and computationally inexpensive factorization. The method

involves decomposing the matrix A as A = LU − R, where L and U are the lower and upper

triangular matrices, respectively, and, when added, they share the same distribution of non-zero

elements as the original matrix A. The matrix R represents the residual or error resulting from

the approximation by the product LU (SAAD, 2003).

Unlike ILU(0), which retains only the nonzero elements of the original matrix A , ILU(m)

allows controlled fill-ins during factorization. With ILU(m), all fill-ins with a level greater

than m are discarded. Note that for m = 0, the no-fill ILU(0) preconditioner is recovered.

In many cases, ILU(1) already provides a significant improvement over ILU(0), and the cost

of constructing and using the preconditioner remains acceptable. It is rarely advantageous to

consider higher values of m, except in very challenging problems, due to the rapidly increasing

cost of computing and applying the preconditioner as m increases (BENZI, 2002).

However, the level-of-fill approach may not be robust enough for certain classes of problems.

For matrices that are far from being diagonally dominant, ILU(m) may require storing many

fill-ins that are small in absolute value and, as a result, contribute little to the quality of the

preconditioner while significantly increasing the computational and storage costs. In many

cases, an efficient preconditioner can be achieved using an incomplete factorization where new

fill-ins are accepted or discarded based on their magnitude. This approach ensures that only

fill-ins that significantly enhance the quality of the preconditioner are retained and utilized.

A drop tolerance is a positive value used as a criterion for discarding elements. An absolute

dropping strategy may be employed, where new fill-ins are accepted only if their absolute value

exceeds a predefined threshold. However, this criterion may perform poorly if the matrix is

poorly scaled, in which case it is more appropriate to use a relative drop tolerance. For instance,

when eliminating row i, a new fill-in is accepted only if its absolute value is greater than τ∥ai∥2,

where ai denotes the i-th row of matrix A.

One drawback of this approach is the difficulty in selecting an appropriate drop tolerance value:

typically, this is done by trial and error using a few sample matrices from a given application,

until a satisfactory value of τ is found. In many cases, good results are achieved with values

of τ in the range of 10−4 to 10−2, but the optimal value is highly problem-dependent (BENZI,
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2002).

As a result, the preconditioner obtained, referred to as ILU(τ, p), proves to be highly effective.

Here, p limits the maximum number of non-zero elements allowed in each row of the L and U

factors, while τ represents the drop tolerance used to discard elements considered too small. In

this way, p controls memory usage, and τ helps reduce computational time.

3.5 REORDERING TECHNIQUES

Matrix reordering techniques are widely used in numerical methods to improve efficiency and

stability in several applications, such as matrix factorizations and iterative methods. The main

idea is to permute rows and/or columns of the original matrix to change its structure, aiming

to meet specific criteria that facilitate the resolution of linear systems.

By optimizing the matrix structure, reordering methods can significantly improve the conver-

gence of iterative algorithms, often reducing both the number of iterations and the computati-

onal time required (BENZI et al., 1999). As a consequence, obtaining preconditioning matrices

based on this reordered matrix also tends to improve the performance of algorithms for iterative

resolution of linear systems.

The reordering of a matrix is performed through permutations of its rows, columns, or both.

These permutations are represented as the product of matrix A with permutation matrices

RL and RR, which are derived from rearranging the rows and columns, respectively, of the

identity matrix. When RL multiplies A on the left, it rearranges the rows of A. Similarly, the

multiplication of A by RR on the right results in the rearrangement of the columns. If both

multiplications are applied, the rows and columns are simultaneously reordered (SAAD, 2003;

BENZI, 2002). Thus, the original Eq. (3.1) can be replaced by the equivalent reordered system

(3.29).

RLARRy = RLb x = RRy (3.29)

Importantly, the structural modifications introduced through reordering do not alter the spec-

tral properties of the coefficient matrix, such as its eigenvalues or condition number, ensuring
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that the reordered system remains mathematically equivalent to the original. Despite this

invariance, the improvements in computational efficiency and convergence are substantial.

The literature presents various matrix reordering methods, including the Reverse Cuthill-McKee

(RCM) (CUTHILL; MCKEE, 1969) and the Approximate Minimum Degree (AMD) (AMES-

TOY et al., 1996). Figure 3.1 shows an initial sparse matrix with n = 60 and its reordered

versions using the RCM and AMD methods. In both cases, the number of nonzero elements

remains unchanged compared to the original matrix. However, the reordering strategies differ

in their objectives and outcomes.
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Figure 3.1. Representation of an original sparse matrix and its reordered versions using the Reverse Cuthill-
McKee (RCM) and Approximate Minimum Degree (AMD) methods.

While the RCM method focuses on reducing the matrix bandwidth by concentrating the non-

zero elements into a narrow region around the main diagonal, the AMD method prioritizes

minimizing fill-in during matrix factorization, reducing the number of nonzero elements gene-

rated during the process. Thus, in some cases it can be seen that reordering the coefficient

matrix before performing the incomplete factorization can have the effect of producing stable

triangular factors, and hence more effective preconditions (BENZI et al., 1999).

Several other ordering methods are also discussed in the literature, including Cuthill-McKee

(CM) (CUTHILL; MCKEE, 1969), Nested Dissection (GEORGE, 1973), One-Way Dissection

(GEORGE; LIU, 1981), and Spiral Ordering (DUFF et al., 1976). For instance, in (DUFF;

MEURANT, 1989), the impact of a wide range of orderings on the convergence of the precondi-

tioned conjugate gradient method is analyzed. Among these, the spiral ordering demonstrated

superior performance compared to the Minimum Degree ordering in the scenarios considered,

highlighting its effectiveness in improving convergence.
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3.6 FINAL CONSIDERATIONS

This chapter provided an overview of direct and iterative methods for addressing ill-conditioned

problems. To enhance the performance and convergence of iterative methods, particularly in

large-scale and ill-conditioned scenarios, various complementary techniques were examined.

These included the use of preconditioners and LU factorizations, both complete and incom-

plete. Incomplete LU factorization offers a memory-efficient alternative, well-suited for iterative

methods, while preserving much of the matrix structure. Additionally, matrix reordering tech-

niques were evaluated, and the results regarding their impact on the efficiency and convergence

of the methods are detailed in Section 7. In the next section, a comprehensive literature review

on the power flow problem is presented, emphasizing the challenges related to ill-conditioning

and the proposed methods to address them.



CHAPTER 4

STATE OF THE ART

This chapter provides a simplified bibliographic review concerning the power flow problem

theme addressed in this thesis proposal. More specific details are found inside each reference,

which will be highlighted in the present work.

The main focus is discussing ill-conditioned problems and how they were historically identified

and treated along a timeline.

Before the digital computations introduction, the power flow studies were assessed using network

analyzers (BROWN; CLOUES, 1956).

It provided quick and economical results of good accuracy. However, in some studies, the

network analyzer did not provide sufficient precision and in such cases, the digital computer

solution gained a considerable advantage. Among the various limitations of this type of analysis

tool was the detailed representation of the network. Therefore, developing equivalents that were

not always highly accurate for certain network portions was necessary. Interesting to note that

modification of the analyzer setup had been necessary whenever it was desired to change from

a system representation suitable for a load-flow study to a system representation suitable for a

stability study.

Around 1956, increasing attention was given to the capabilities of automatic digital computers

in application to power system problems (WARD; HALE, 1956). Digital solutions to this

type of problem could provide a valuable tool to supplement the AC network analyzer. So, in

(WARD; HALE, 1956), an iterative technique known as the "node method" was proposed. The

publication (MCGILLIS, 1957) illustrates the type of difficulty found in that date for a nodal

iterative technique implemented for the computation of power flow problem solution using an

IBM 604 Digital Computer.

Despite the limitations posed by the hardware, significant advancements were made in the

research of computational methods applied to the PFP. This progress was highlighted by the
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investigations utilizing the iterative Newton-Raphson method, which gained attention towards

the end of 1959 (NESS, 1959). After this, notable improvements were observed in the 1960s

(TINNEY; HART, 1967). Notably, methods aimed at accelerating computations were intro-

duced, exploiting simplifications in the Jacobian matrix (STOTT; ALSAC, 1974), and were

widely accepted by the power community.

Many solvers for digital simulations, including developments based on the NR method, were

developed until the mid-1970s (STOTT, 1974). The review paper (STOTT, 1974) presented

several methods that have received widespread practical application, recent attractive develop-

ments for the date, and other interesting or useful techniques.

In the 1960s, despite hardware limitations, the Newton-Raphson method effectively addressed

power flow issues in most power systems (TINNEY; HART, 1967). The use of sparsity tech-

niques (OGBUOBIRI et al., 1970; OGBUOBIRI, 1970) boosted the use of the NR method,

making it feasible to apply to larger networks than those usual at the time.

However, some systems are difficult to solve using NR. These systems are typically called ill-

conditioned systems, and their frequency has increased with network expansion since the 1970s.

As a result, while the solution to the power flow has been regarded as a classic and well-studied

topic, finding a solution to this problem in ill-conditioned systems has sparked great interest

among researchers.

Cases of difficult convergence were already investigated in the early 1970s (TREVINO, 1970;

SASSON et al., 1971). For example, (SASSON et al., 1971) demonstrated that a simple mo-

dification to Newton’s method, using nonlinear programming, made the iterative process more

powerful than the classical Newton-Raphson method. Moreover, the slight change could be ea-

sily incorporated into the existing Newton’s solver. The modifications included a more efficient

convergence process and a non-divergent characteristic for the problem.

From what we know, the ill-conditioned problem investigation for the PFP was introduced

in (IWAMOTO; TAMURA, 1981) in 1981. Notably, we follow Milano’s definition of an ill-

conditioned system in (MILANO, 2009). According to this definition, a power system is con-

sidered ill-conditioned if, although a solution exists, it cannot be achieved using the Newton-

Raphson method with flat start estimation. The strategy used in (IWAMOTO; TAMURA,

1981) as well as in (SASSON et al., 1971) is based on the optimal multiplier (OM) approach.
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This type of technique is known for its robustness and low sensitivity to the initial estimate,

providing a solution to the power flow problem even in situations where traditional methods fail.

However, these methods still do not compete with traditional solvers in some cases, as they tend

to converge slowly or even stagnate numerically (TOSTADO et al., 2019a; TOSTADO-VÉLIZ

et al., 2020a). In recent literature, optimal multiplier-based power flow solution methods have

been discussed in (PAN et al., 2019). These methods are also utilized to identify low-voltage

solutions of power flow equations (OVERBYE; KLUMP, 1996) and to tackle diverse challenges

in power flow computation, including automatic controls, heavy loads, and contingency issues

(KLUMP; OVERBYE, 2000).

In the 1990’s, the well-known method of Continuation Power Flow was proposed (AJJARAPU;

CHRISTY, 1992) to overcome the difficulties experienced by methods near the Maximum Load

Point (MLP). This type of technique can calculate power flow solutions for different loading

conditions and estimate a network’s maximum loading point. However, this technique aims to

calculate multiple power flow solutions. While this is interesting for other related tools, such

as voltage stability analysis, it has a disadvantage compared to conventional techniques, which

aim to calculate only a snapshot of the system for a specific load profile. Thus, the method can

be computationally intensive, requiring significant computational resources and time, especially

for large and complex power systems.

Alternatively, regularization techniques or Levenberg-type techniques (DEUFLHARD, 1974)

can also be employed to circumvent the singularity of the Jacobian matrix (POURBAGHER;

DERAKHSHANDEH, 2016; POURBAGHER; DERAKHSHANDEH, 2018). By enhancing the

condition number of the Jacobian matrix through the addition of diagonal elements, these

methods offer a viable solution. However, although regularization techniques tend to be more

efficient than continuation power flow methods, they incur a higher computational expense

compared to the Newton-Raphson method (MILANO, 2015). This is largely due to the requi-

rement for extra matrices product computations and a dense LU factorizations. Furthermore,

these methods often demonstrate slower convergence rates, especially when the initial guess is

very far from the solution. Additionally, the implementation of regularization might involve

tuning parameters, which can add to the complexity of the method.

In (TOSTADO et al., 2019b), the well-known Gauss-Newton minimization method is also stu-
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died for PF analysis. The proposed approach was evaluated in a wide variety of ill-conditioned

systems, ranging from 1888- to 70000-bus systems, under different scenarios. However, one

disadvantage of the method is associated with the high computational cost of factoring the

product of the Jacobian matrix and its adjoint matrix at each iteration.

Other strategies trying to circumvent the problem of ill-conditioning in the PFP were proposed

considering a non-iterative numerical strategy. The investigation was called the holomorphic

embedding load-flow model (HELM), a technique based on the complex analysis technique. The

algorithm was first applied to the power flow problem by Trias (TRIAS, 2012). Several works

have been proposed following this framework. The method starts from a flat start operational

condition and is guided to a final state based on setting a parameter for unity. In (RAO et al.,

2015), various techniques based on the holomorphic embedding method were presented. These

non-iterative techniques result in infinite formulations, each with different numerical properties.

However, the authors identified issues with numerical precision, particularly in scenarios with

high system loading levels. In (FREITAS et al., 2019), a restarted HELM (RHELM) was

introduced. The method works with a much reduced number of bus voltage Taylor’s series

coefficients, different from HELM. Despite being non-iterative, the framework based on the

holomorphic embedding method is sensitive to Taylor’s series coefficients, requiring an elevated

precision for such coefficients. In some cases, the highlighted limitation can lead to a stagnation

of the result of the PFP.

In the context of solving the PFP involving ill-conditioned systems, it is also worth highlighting

the techniques based on the Continuous Newton’s Method (CN) (NEUBERGER; NEUBER-

GER, 2010) in which, strictly speaking, any numerical integration method can be adapted to

solve the PFP. The NC methodology was initially proposed by Hetzler in 1997 (HETZLER,

1997) and later adapted for the PFP by Milano (MILANO, 2009), through the reformulation

of a set of Ordinary Differential Equations (ODEs).

In (MILANO, 2009), two methodologies were proposed for solving the PFP using explicit nu-

merical integration methods: the Simple Robust Method (SRM), based on the forward Euler’s

method, and the fourth-order Runge-Kutta method (RK4). The results obtained with these

techniques were compared to those from the NR and FNR methods and the method proposed

by Iwamoto (IWAMOTO; TAMURA, 1981). Milano’s study demonstrated that both metho-
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dologies were more robust than standard load flow solvers when initialized with a flat start and

significantly more efficient than Iwamoto’s method for a 1254-bus system. However, a draw-

back noted in the study was the high computational time and number of iterations required.

Additionally, the number of iterations increased logarithmically with the convergence limit.

Following the research path explored by Milano (MILANO, 2009), Tostado-Véliz et al. (TOSTADO-

VÉLIZ et al., 2018b) developed a methodology combining RK4 with the Broyden Method (BM).

They introduced the fourth-order Runge-Kutta Broyden method (RK4B) with the aim of re-

ducing the number of Jacobian matrix inversions from four (as in the original method) to just

one. The results indicated that these approaches exhibited superior computational performance

compared to traditional multi-stage numerical methods, all while preserving the robustness cha-

racteristics of the fourth-order Runge-Kutta method.

In (TOSTADO-VÉLIZ et al., 2020a), an approach for well-conditioned and ill-conditioned

power systems was also proposed. This approach combines the King-Werner and Heun’s

methods, resulting in the Heun-King-Werner (HKW) method. The developed approach invol-

ves LU factorization of two Jacobian matrices per iteration and naturally operates as a robust

method in ill-conditioned systems and as a high-order Newton-like method in well-conditioned

cases. Notably, the HKW method demonstrated superior efficiency and convergence perfor-

mance compared to conventional PFP solution methods. Other methods based on the HKW

were also proposed (OLIVEIRA; FREITAS, 2021). However, it’s worth highlighting that the

parameters of the HKW methods are subject to change when applied to ill-conditioned and

large-scale power system models.

In (TOSTADO-VELIZ et al., 2020), a three-stage algorithm called 3S-SIA was introduced

for addressing power-flow problems in large-scale ill-conditioned systems. It incorporates La-

vrentiev’s regularization, a Chebyshev-like method, and Heun’s method to obtain a balance

between robustness and efficiency. The validation of this algorithm involves simulations on

realistic systems across various demand conditions, alongside comparisons with standard and

robust power-flow solution methods. Results indicate that the proposed algorithm offers a ro-

bust methodology that effectively resolves all examined scenarios. However, 3S-SIA involves

managing two degrees of freedom that require updates in each iteration through adaptive me-

chanisms, increasing the computational complexity involved in obtaining the solution compared
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to other methods. Other approaches to solving PFP in ill-conditioned systems were also investi-

gated in (TOSTADO-VéLIZ et al., 2019; TOSTADO-VÉLIZ et al., 2020b; TOSTADO-VÉLIZ

et al., 2021).

Recent research has employed the homotopy technique to solve the ill-conditioned power flow

problem. The homotopy technique is widely applicable in various fields of knowledge and is

especially used for solving nonlinear ordinary and partial differential equations (LIAO, 2012).

In (FREITAS; LIMA-SILVA, 2023), the methodology structures the PFP equations to include a

fictitious network with shunt admittances, dimensioned so the initial solution coincides with the

initial estimate. These admittances are gradually removed as the homotopy process advances,

controlled by a parameter ranging from zero to one. A second homotopy parameter and a

scaling factor are used to reinforce interconnections near the slack bus, but only during the

intermediate stages. Once the first parameter reaches one, the shunt admittance network and

the scaling factor are fully removed, returning to the original network model used to determine

the final PFP solution. This strategy allows for the use of the traditional NR method at each

step of the first homotopy parameter. However, due to the multiple steps required to transition

from the initial solution to the final one, the homotopy-based method presents a computational

load that can reach approximately eight times higher than the cost of the standard Newton-

Raphson solver (FREITAS; SILVA, 2022), despite being able to obtain solutions in cases where

standard methods fail to converge. Additionally, in (LIMA-SILVA et al., 2023), a homotopy-

based approach was presented to solve the power flow for isolated microgrids, considering

droop-controlled DG units and different load characteristics and loading factors.

4.1 FINAL CONSIDERATIONS

As discussed in this chapter, most of the currently available robust power flow solvers are

inefficient in terms of computational performance when applied to large-scale, ill-conditioned

systems. This limitation restricts the widespread use of these solvers in industrial applications.

The next chapters are dedicated to introducing efficient and robust power flow solution appro-

aches developed in this work. These approaches aim to be comparable to the Newton-Raphson

method in terms of computational efficiency while surpassing this traditional method in solving
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ill-conditioned cases.

To achieve these objectives, the next chapter will present various robust numerical metho-

dologies, such as methods based on the Continuous Newton’s philosophy and the Levenberg-

Marquardt method. These methodologies form the basis for the development of the proposed

new approaches.



CHAPTER 5

NON-CONVENTIONAL METHODS

Research on robust methods to solve the Power Flow Problem has recently intensified. This

increasing pursuit is driven by various factors, such as the need to compute the operating

point in networks with diverse configurations, integrate new energy generation sources, and

manage heavily loaded and significantly sized networks. Particularly in cases involving large-

scale networks, obtaining an initial estimate for solving the power flow problem can become a

substantial challenge.

In certain situations, the classical Newton-Raphson (NR) method only presents convergence

when the solution is within the convergence region and the initial estimate is very close to

the solution (MILANO, 2009; TOSTADO-VÉLIZ et al., 2021; MILANO, 2019). However, in

complex scenarios, especially in large systems, this estimate close to the solution is often only

known after substantial modifications to the network for already known states and small changes

in the system structure. Consequently, considerable modifications to the network configuration

can represent a significant obstacle to establishing an effective initial estimate for resolving the

PFP using the NR method.

When dealing with the Power Flow Problem, a common practice is to initiate with a flat

start estimate. However, in large-scale systems, this strategy may fail when employing the

traditional NR method to calculate solutions close to the nominal values of the buses. This

chapter, therefore, primarily focuses on exploring alternative methods to the traditional NR,

considering the mentioned situations.

5.1 CONTINUOUS NEWTON’S METHOD

The Newton-Continuous (NC) approach is based on the premise that it is possible to adapt

any numerical integration method to solve the load flow problem, as discussed by (HETZLER,



5.1 – Continuous Newton’s method 56

1997). The techniques derived from the Newton-Continuous philosophy are recognized for their

efficiency, robustness and high reliability, as highlighted by (TOSTADO-VÉLIZ et al., 2020a).

Assume that (5.1) represents the standard form for the notation of a set of ordinary differential

equations of an autonomous system, which states x(t) are also a function of an implicit variable

t.

ẋ(t) = f(x(t)) (5.1)

Solving (5.1) in the discrete-time domain can be performed using a numerical integration

method. In the literature, the most elementary known method is the explicit Euler’s method

(FAIRES; BURDEN, 2012), where each k-th step is performed as follows:

∆x(k) = ∆tf(x(k))
x(k+1) = x(k) +∆x(k) (5.2)

where ∆t denotes the integration interval, considering that the variable x is a function of the

parameter t; x(k) represents the vector containing the values of x in step k; and ∆x(k) is the

increment calculated in step k to obtain the result in step k + 1 of the variable x.

A direct analogy between (2.45) and (5.2) can be made, assuming the Jacobian matrix J = dg
dx

non-singular:

f(x(k)) = −J(x(k))−1g(x(k)) (5.3)

Based on this analogy, we can interpret the traditional Newton-Raphson (NR) method for

solving non-linear equations as applying the explicit Euler’s method, where ∆t = 1 is the

integration step for solving an ordinary differential equation (ODE).

Therefore, other numerical integration methods, as will be presented in the sequence, can also

be applied to solve the power flow problem, considering the appropriate adaptation of the

problem as treatment by ODEs.
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5.1.1 Runge-Kutta Method

In this subsection, the classical Runge-Kutta (RK) method is discussed as a tool for solving

the PFP as a NC solver.

The suggested RK method for the NC is the same technique developed by the German mathe-

matician Carl Runge in 1895 and extended by Martin Wilhelm Kutta in 1901. It is a powerful

numerical technique widely employed for solving ordinary differential equations (FAIRES; BUR-

DEN, 2012). Its popularity stems from the ability to approximate solutions with high precision

and stability while maintaining computational efficiency (OKEKE et al., 2019; RAHMAN et

al., 2022).

The most comprehensive formulation of a Runge-Kutta technique to numerically approach a

problem involving a differential equation, such as that expressed by (5.1), is characterized by

the following expression:

x(k+1) = x(k) + h

p∑
i=1

biv
(k)
i (5.4)

where, h ∈ R+ is the integration step size, bi ∈ R are the weights, p ∈ N is the number of stages

defined for the method and vi ∈ Rn are calculated as follows:
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(5.5)

in which, ap,i ∈ R, i = 1,2, . . . ,p− 1 are the elements of the Runge-Kutta matrix.

The main computational effort in applying Runge-Kutta method is the evaluation of f . The

Runge-Kutta technique requires p Jacobian matrix calculations and respective LU factorization

at each iteration. Therefore, the more p stages, the greater the number of Jacobian matrix

calculations per iteration.

The order of convergence of RK method is limited by its number of stages. Table 5.1 defines the

highest order of convergence that can be obtained using RK methods with different numbers

of stages (FAIRES; BURDEN, 2012).
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Table 5.1. Maximum convergence order for an RK method with p stages.
Number of stages (p) 1 2 3 4 5 ≤ p ≤ 7 8 ≤ p ≤ 9 10 ≤ p
Best possible order 1 2 3 4 p− 1 p− 2 p− 3

5.1.1.1 Characterization of the Parameters in an Explicit Runge-Kutta Method

The parameters ai,j, bi, and ci of an RK method of p stages can be organized as shown in Table

5.2. This table type is a Butcher table (BUTCHER, 1964).

Table 5.2. Butcher table for an explicit RK method.
0
c2 a21
c3 a31 a32
...

...
... . . .

cp ap1 ap2 · · · app
b1 b2 · · · bp

The coefficients for RK methods of orders 1, 2, 3, and 4 are given, respectively, by Tables 5.3,

5.4, 5.5 and 5.6.

Table 5.3. Runge-Kutta method of order 1.
0

1

Table 5.4. Runge-Kutta method of order 2.
0
1 1

1
2

1
2

Table 5.5. Runge-Kutta method of order 3.
0
1 1
1
2

1
4

1
4

1
6

1
6

2
3

Table 5.6. Runge-Kutta method of order 4.
0
1
2

1
2

1
2

0 1
2

1 0 0 1
1
6

1
3

1
3

1
6
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5.1.2 Heun-King-Werner Methods

The Heun-King-Werner (HKW) method, presented by Tostado-Véliz et al. em (TOSTADO-

VÉLIZ et al., 2020a), is based on the Newton-Continuous approach. It stands out for its

effectiveness in dealing with ill-conditioned power systems, while also exhibiting comparable

performance to higher-order Newton’s methods in well-conditioned scenarios.

The adopted HKW strategy combines the Heun’s method, also known as the trapezoidal rule,

employed as the main loop and corrector, and the King-Werner method, mentioned in (ARGY-

ROS; MAGREÑÁN, 2017). The King-Werner solver family is recognized for achieving a con-

vergence order of 1 +
√
2, thus surpassing the NR method. Furthermore, the HKW method

incorporates a prediction step in which a root y(k) is calculated based on an estimate x(k). In

this step, the Euler’s method with a step h is used, and the predicted value is determined by

y(k) = x(k)+hf(x(k)), where f(x(k)) = −J(x(k))−1g(x(k)). The contribution of the King-Werner

method is incorporated by calculating an intermediate point between x(k) and the prediction

y(k), resulting in x̃(k) = 1
2
(x(k)+y(k)). This value is then used to calculate the update increment

f(x̃(k)) = −J(x̃(k))−1g(x̃(k)).

It is well-known that the form assumed by the second-order Heun’s method is as follows:

x(k+1) = x(k) +
h

2
[f(x̃(k)) + f(x(k))]. (5.6)

In (TOSTADO-VÉLIZ et al., 2020a), the expression (5.7) is modified, being changed to

x(k+1) = x(k) +
h

2
[(2− ψ(k))∆x̃(k) + ψ(k)∆x(k)] (5.7)

where ψ(k) = 2|SSR(k) − SSR(0)|/SSR(0) represents a weighting factor calculated at each

iteration, with initialization recommended as ψ(0) = 1; and SSR(k) = 1
2

[
g(x(k))

]T
g(x(k)).

In (5.7), it is observed that as x(k) approaches the solution of the equation, ψ(k) tends to 2.

Under these circumstances, the iterations resemble the Euler’s or NR methods, especially when

h = 1. Consequently, the authors propose restricting ψ to a maximum value of 2. Following

this restriction, whenever ψ(k) > ψmax, it is recommended to use the NR method directly.

Furthermore, the step h can be updated at each iteration.
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The application of the Heun-King-Werner method to solve the PFP is outlined in the following

steps. The Jacobian matrix is assumed to be nonsingular at every evaluation of the state x(k).

Step 0: This step involves reading input data and determining the system admittance matrix.

Subsequently, the iteration counter, denoted as k, is set to zero. Parameters are initialized,

such as tolerance ε, maximum number of iterations, kmax, step h, limiting α, and a starting

point x(0) is selected to initiate the iterative process.

Step 1: This step involves determining and evaluating the Jacobian matrix at the current

iteration point, denoted as x(k). Subsequently, (5.8) is calculated. This step is similar to the

process performed using the NR method.

∆x(k) = −J(x(k))−1g(x(k)). (5.8)

Step 2: Euler’s iteration update - as part of the Heun’s method, the state vector is initially

updated using the Euler’s method according to (5.9):

y(k) = x(k) + h(k)∆x(k) (5.9)

In this step, the increment vector in Newton’s method is adjusted to incorporate the effect of

the integration step h. The initialization of the step h follows the recommendations established

according to (TOSTADO-VÉLIZ et al., 2020a):

h(0) = max

{
hmin,min

{
hmax,

1

(SSR(0))µ

}}
(5.10)

where SSR is defined according to Equation (5.11). A value of µ = 0.06 is adopted, based on

experiments reported in (TOSTADO-VÉLIZ et al., 2020a), considered suitable for computing

the solution of the PFP.

SSR(k) =
1

2

[
g(x(k))

]T
g(x(k)) (5.11)

Step 3: King-Werner method update - the state vector is adjusted by calculating the midpoint

of the interval bounded by x(k) and y(k), as expressed in Equation (5.12).
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x̃(k) =
1

2

(
x(k) + y(k)

)
(5.12)

Step 4: Evaluation of state increments at the midpoint - in this step, the nonlinear equations

are reevaluated at the midpoint determined in Step 3. Consequently, an intermediate increment

vector is calculated using Equation (5.13).

∆x̃(k) = −J(x̃(k))−1g(x̃(k)) (5.13)

Step 5: Updating the solution using the Heun’s method - the state vector is updated using

Heun’s method as described in Equation (5.14).

x(k+1) = x(k) +
h(k)

2
(ψ(k)∆x(k) + (2− ψ(k))∆x̃(k)) (5.14)

where ψ(k) is a correction parameter updated at each iteration.

The authors in (TOSTADO-VÉLIZ et al., 2020a) suggest setting the initial value of the para-

meter ψ(0) = 1. Consequently, (5.14) represents the conventional configuration of the Heun’s

method with k = 0, as both ∆x and ∆x̃ have the same weight. As the iterative process pro-

gresses, adjustments in the parameter ψ(k) become essential in subsequent iterations (see Step

7).

Step 6: Convergence evaluation - if k > kmax or the mismatch in (5.15) is satisfied for x(k+1),

the iterative process is stopped. Otherwise, the k counter is incremented, and the algorithm

proceeds to Step 7.

∥g(x)∥∞ ≤ ε (5.15)

Step 7: Parameters update - at each iteration, the parameters ρ(k), h(k) and ψ(k) are updated

according to (5.16), (5.17) and (5.18), respectively.

ρ(k+1) =
∥∥x(k+1) − y(k)

∥∥
∞ (5.16)

h(k+1) =

{
max

{
0.9h(k), hmin

}
if ρ(k+1) > α

min
{
1.1h(k), hmax

}
otherwise (5.17)
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ψ(k+1) = 2

∣∣∣∣SSR(k) − SSR(0)

SSR(0)

∣∣∣∣ (5.18)

After correctly updating the parameters, the process returns to Step 1.

As can be seen, the Heun-King-Werner method involves evaluating and factoring two Jacobian

matrices at each iteration to achieve the solution of the nonlinear problem, as described in (5.8)

and (5.13). In (TOSTADO-VÉLIZ et al., 2020a), an automatic transition to the NR method

was suggested when ψ exceeds a predefined limit ψ̃, typically set as ψ̃ = 2. However, the need to

assemble and factorize the Jacobian matrix of the HKW method at each iteration continues to

represent a significant portion of computational time, especially in large-scale systems. In this

regard, two new approaches to the Heun-King-Werner method were proposed in (OLIVEIRA;

FREITAS, 2021) to achieve better computational performance of the HKW method.

5.1.3 Improved Heun-King-Werner Method Approaches

In (OLIVEIRA; FREITAS, 2021), two variants were presented to optimize the Heun-King-

Werner method, aiming to enhance its computational efficiency by reducing the number of

calculation operations and factorizations of Jacobian matrices. The first of these approaches,

HKW-1, focuses on avoiding one of the Jacobian matrix calculation steps during the iteration

of the HKW method and its subsequent factorization. Essentially, this entails computing and

maintaining only the expression (5.8) frozen during the iteration in (5.13) instead of performing

a new calculation as in Step 4 of the HKW method. Thus, the proposal involves replacing (5.13)

with (5.19).

∆x̃(k) = −J(x(k))−1g(x̃(k)) (5.19)

The second proposed strategy, called HKW-2, introduces an approach where the assembly and

factorization of Jacobian matrices from (5.8) and (5.13) are performed only in the first iteration

or in another iteration indicated by the user. After this, the last Jacobian matrix calculated in

(5.13) is fixed and kept constant for all subsequent iterations, thereby eliminating the need for

new LU factorizations.
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Even though both approaches have greatly reduced the computational cost compared to the

original method and have successfully solved the power flow problem, they still rely on a set

of parameters that are highly sensitive to changes when dealing with complex and large-scale

power system models. This sensitivity makes it challenging to implement these methodologies

for this type of application.

5.2 LEVENBERG–MARQUARDT METHOD

The power flow problem is typically solved as a system of nonlinear equations using itera-

tive methods. However, it can also be formulated as an optimization problem, allowing it to

be solved using minimization techniques (TOSTADO-VELIZ et al., 2020; BUKHSH, 2018).

Levenberg’s method, renowned for its versatility in nonlinear programming, has been widely

utilized in various optimization problems due to its effectiveness (MILANO, 2015).

Consider xi as the vector x value at the i − th iteration of an iterative method applied to

equation (2.15). The corresponding error vector associated to xi is:

ϵi = g(xi) (5.20)

When xi is modified to xi+1 = xi + ∆xi, it results in a new error vector ϵi+1, which can be

estimated through a first-order Taylor’s expansion:

ϵi+1 = g(xi +∆xi) ≈ ϵi + Ji∆xi, (5.21)

where Ji = ▽Tg(xi) represents the Jacobian matrix of g evaluated at xi. In Levenberg’s

method, the objective is to determine the variation ∆xi that minimizes the sum of the squares

of errors:

ηi = ϵTi+1ϵi+1 = ∆xT
i J

T
i Ji∆xi + 2∆xT

i J
T
i ϵi + ϵTi ϵi (5.22)

The minimum of (5.22) is obtained at:

▽ηi(∆xi) = 0 (5.23)
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Therefore, by combining equations (5.22) and (5.23), we obtain:

2JT
i Ji∆xi + 2JT

i ϵi = 0 (5.24)

Next, (5.24) is solved for ∆xi :

∆xi = −[JT
i Ji]

−1JT
i ϵi (5.25)

and the vector x is updated as follows:

xi+1 = xi +∆xi (5.26)

Note that, based on the property of the inverse of the product of two invertible square matrices,

we have:

[JT
i Ji]

−1JT
i = J−1

i [JT
i ]

−1JT
i = J−1

i I = J−1
i (5.27)

Therefore, equation (5.25) represents the increment obtained using the familiar Newton-Raphson

method. Additionally, it is recognized that the Newton-Raphson method, and consequently

equation (5.25), may diverge if the initial guess x0 is significantly distant from solution of pro-

blem. Levenberg’s main contribution lies in modifying the objective function ηi to improve

numerical convergence. This improvement involves incorporating the distance from the current

point xi into the objective function (MILANO, 2015), which can be expressed as follows:

ηλ,i = ηi + λ∆xT
i ∆xi (5.28)

where λ is known as the damping factor in Levenberg’s method. Consequently, equation (5.28)

modifies equation (5.25) as follows:

∆xi = −[JT
i Ji + λI]−1JT

i ϵi. (5.29)

Note that the value of λ significantly impacts the number of iterations needed to achieve

convergence. A larger value of λ reduces the number of iterations, but as the relative weight
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of JT
i Ji decreases, convergence is not guaranteed. In most cases, a variant of equation (5.29)

proposed by Marquardt is preferred:

∆xi = −[JT
i Ji + λdiag(JT

i Ji)]
−1JT

i ϵi, (5.30)

where the identity matrix I is substituted with a diagonal matrix composed of the diagonal

elements of JT
i Ji. This adjustment scales the impact of the damping factor and decreases

the number of iterations needed to achieve convergence. This modification leads to the well-

known Levenberg-Marquardt method (LM) described in equation (5.30). Aiming to improve

the convergence and numerical stability of the LM method, several variants have been proposed

in the literature such as (FAIRES; BURDEN, 2012).

5.3 TIKHONOV’S REGULARIZATION

The situation characterized by the Jacobian matrix severely ill-conditioned and/or the data (for

example, the mismatches) with very high deviations is challenging for the PFP convergence.

This occurs because the numerical solution of the problem can differ significantly from the

expected one. Therefore, it is necessary to investigate a way of circumventing such restrictions.

An alternative is to generate an adequate approximate solution for the state deviations. This

process generally involves transforming a nearby system, which is more robust concerning per-

turbations. The process done this way is commonly known as regularization (GOLUB; LOAN,

1996). One well-known regularization method is Tikhonov’s regularization (HANSEN, 1992;

LIU, 2013; GOLUB; LOAN, 1996).

In its simplest form, the Tikhonov regularization problem for the ith iteration replaces the

solution of the linear system in (2.45) by the minimization problem

min
∆x(i)

{∥∥J(x(i))∆x(i) − (−g(x(i)))
∥∥2 + µ

∥∥∆x(i)
∥∥2} , (5.31)

in which µ is an appropriate positive value known as the regularization parameter.

We can obtain the Tikhonov’s solution ∆x
(i)
µ by solving the “regularized normal equation”

(GOLUB et al., 1979; HANSEN, 1992; GOLUB; LOAN, 1996)
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([J(x(i))]TJ(x(i)) + µI)∆x(i)
µ = −[J(x(i))]Tg(x(i)) (5.32)

It is important to note that the minimization problem (5.31) has a unique solution for any

µ > 0, ∆x
(i)
µ , given by:

∆x(i)
µ = −[J(x(i))TJ(x(i)) + µI]−1J(x(i))Tg(x(i)) (5.33)

Therefore, comparing (5.31) and (5.29), it is verified that the results of Levenberg’s method

and Thikhonov’s regularization are equivalent.

Given the parameter regularization µ, our objective is to compute the solution (5.33) by sol-

ving the linear system (5.32). However, directly solving the large-scale linear system (5.32) is

not recommended due to the presence of the matrix product JTJ in the process. Evidently,

straightforward use of the resultant matrix compromises the sparsity of the conventional power

flow problem, even the Jacobian matrix being highly sparse. Then, in the case of large-scale

systems, an option is to investigate a modification of the original regularized normal equation

with a form in which the sparsity pattern is preserved.

5.3.1 Efficient Resolution of the Minimization Problem

Given that a straightforward resolution of (5.32) is carried out, the linear coefficient matrix

is composed of a product of matrices involving J(x(i)). This operation leads to a sparsity

reduction in relation to the original power flow problem. Then, aiming to reduce the loss of

sparsity in the linear system, it is proposed to solve (5.32) by using an equivalent augmented

linear system.

A generic linear system representing the normal equation (GOLUB; LOAN, 1996) (ATA +

µI)∆x = ATb for the regularized problem is equivalent to the form:

AT (A∆x− b) + µ∆x = 0. (5.34)

Then, we propose the following modifications. Let −z = A∆x− b. Then (5.34) is modified to

−ATz + µ∆x = 0. Rewriting the system with z =
√
µy, we can obtain ATy − √

µ∆x = 0.

Finally, an augmented linear system is determined:
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[
A

√
µ · I

−√
µ · I AT

] [
∆x
y

]
=

[
b
0

]
(5.35)

Therefore, the equivalent augmented linear system applied to the PFP corresponds to the

following equation: [
J(x(i))

√
µ(i) · I

−
√
µ(i) · I [J(x(i))]T

][
∆x(i)

y

]
=

[
−g(x(i))

0

]
, (5.36)

in which I is the identity matrix, ∆x(i) is the solution of interest and y is another variable, but

without interest for the PFP.

In (5.36), there is no product of matrices in the coefficient linear resulting matrix. On the other

hand, the linear system presents twice as many equations and unknowns as compared to the

conventional load flow problem. Despite this, the formulation implementation uses only the

original Jacobian matrix and PFP mismatch. Therefore, the gain in sparsity is expected to

compensate for the increase in dimension in the linear system.

Similarly, a second approach is proposed using an equivalent augmented linear system. The

normal equation can still be decomposed as

[AT √
µI]

[
A√
µI

]
∆x = ATb. (5.37)

Then, by establishing

z =

[
z1
z2

]
=

[
A√
µI

]
∆x −→ Ax = z1,

√
µI∆x = z2. (5.38)

Therefore, (5.37) can be solved through the augmented linear systemAT √
µI 0

−I 0 A
0 −I

√
µI

 z1
z2
∆x

 =

ATb
0
0

 (5.39)

In this case, the resulting linear system has three times as many variables as the original system.

For this situation, as in the augmented system defined in (5.36), one must evaluate whether its

implementation is the most appropriate.

5.3.2 Selection of the Regularization Parameter

The solution of (5.33) is intrinsically related to selecting the parameter µ. Then, its choice

aroused the interest of several kinds of investigations (GOLUB et al., 1979; SCHERZER, 1993;
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CALVETTI et al., 2000; HANSEN, 1992). Some different techniques were proposed in this

direction.

Let Ax = b, a generic linear system, where A is an ill-conditioned matrix; µ, the regularization

parameter; and the linear system associated solution xµ.

A technique known as generalized cross-validation (GCV) was defined in (GOLUB et al., 1979)

and consists of finding a parameter µ that minimizes the GCV function (LIU, 2013). The

discrepancy principle (SCHERZER, 1993) is another technique used to determine the regula-

rization parameter. For this strategy, the selection is based on choosing the parameter µ for

satisfying the norm of the residual vector for the regularized solution xµ, i.e., ||Axµ−b|| = τδ,

where τ > 1 and δ is a small positive number.

The method introduced in (HANSEN, 1992) known as L-curve proposes to find the optimized

regularization parameter by determining the value lying on the corner of a curve in the form of

"L". The curve is parameterized as a function of µ and is composed of the points defined by

(ρ(µ),η(µ)), where η(µ) = Φ(||xµ||), ρ(µ) = Φ(||Ax − b||), and in general the function Φ(t) is

chosen as Φ(t) = log10(t). Other L-curve versions are also found in (CALVETTI et al., 2000).

As described previously, all techniques to determine an optimized regularization parameter are

associated with computations involving a determined optimization problem in the regularization

parameter.

5.4 FINAL CONSIDERATIONS

In this chapter, methods based on the Newton-Continuous methodology, the Levenberg-Marquardt

method, and Tikhonov’s regularization were presented as robust alternatives for addressing ill-

conditioned PFP scenarios. These methodologies were designed to enhance convergence reliabi-

lity, making them suitable for solving PFP in large-scale networks with varying configurations

and significant loading conditions. However, despite their robustness, these methods exhibit

some disadvantages, particularly in terms of computational performance compared to the tradi-

tional NR method. Additionally, they often require extensive adjustments to accurately obtain

the PFP solution.

To address these drawbacks, the following chapter will propose methods aimed at improving

both the computational performance and robustness of existing techniques. These approaches
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focus on enhancing the conditioning of the Jacobian matrix, thereby facilitating more efficient

and reliable solutions to the Power Flow Problem.



CHAPTER 6

THESIS PROPOSED METHODS

In this chapter, new approaches are proposed to resolve the issue of ill-conditioning in the Jaco-

bian matrix within the context of the power flow problem. The ill-conditioning of the Jacobian

matrix poses a significant challenge, impacting the accuracy and efficiency of classical methods

like Newton-Raphson, particularly in cases where the power flow solution’s region of attraction

is narrow or far from the initial guess. This challenging condition can result in convergence pro-

blems, making the solution of the power flow problem a complex and computationally intensive

task.

To overcome these challenges, several approaches were proposed, including a conditioning step

to improve the initialization of the iterative Power Flow Problem. Among these approaches, the

application of Tikhonov’s regularization was also considered. Furthermore, a hybrid method

was developed, combining different techniques to address the issue of ill-conditioned power

flow in large-scale systems starting from a flat estimate. These approaches aim to overcome

the limitations of traditional methods and offer accurate solutions while avoiding convergence

problems.

6.1 THE TWO-STEP HYBRID METHOD

This section describes the two-step hybrid method to efficiently compute the PFP solution.

The approach was presented in (FREITAS; OLIVEIRA, 2023b). The first step uses a relaxed

homotopy approach. In contrast, the second stage employs the result of the relaxed part as

an estimate for a user-defined iterative solver, which computes the PFP-accurate solution. For

this reason, we call this approach a two-step hybrid method. The primary purpose is to deal

with ill-conditioned and large-scale power system models.

In (FREITAS; SILVA, 2022), a homotopy-based technique was presented to solve the PFP
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emanating from the flat start estimate and for ill-conditioned large-scale problems. However, it

is time-consuming because it is based on computations of iterations of the classical NR method

and requires many iterations to achieve the final desired solution. On the other hand, several

researches have demonstrated that NR-based solvers may be inefficient in solving ill-conditioned

power flow problems at all (TOSTADO-VÉLIZ et al., 2020a). Therefore, the study performed

in the sequence aims to exploit the weak points of methods such as homotopy and NR-based

and combine them into a hybrid and efficient manner to solve ill-conditioned and large-scale

PFP.

The principle of the method consists in determining an accurate solution of the PFP, x∗,

exploring a partially inaccurate solution, xh, which in turn is obtained from a guess x(0).

The computation process can be interpreted as a hybrid approach, where the relaxed interme-

diate solution, xh, is determined by the homotopy method as proposed in (FREITAS; SILVA,

2022). In that reference, the iterative PFP solution is determined exactly from a flat start

estimation. This partial result is used as an initial estimate for a generic Iterative Method (IM)

defined by the user. For example, the scheme in Fig. 6.1 illustrates a schematic for the generic

iterative method to obtain the final (accurate) PFP solution x∗. Therefore, the proposal in this

paper does not employ the homotopy technique in the second step to obtain an accurate PFP

solution. At the same time, in (FREITAS; SILVA, 2022), the high-precision result is already

determined directly from the homotopy technique.

Aiming to deal with ill-conditioned power system models, we set x(0) as a flat start type. As

stated before, this initialization was explored in (FREITAS; SILVA, 2022) for determining a

high-precision solution for the PFP. However, considering that this procedure is time-consuming

since it needs to use the NR solver several times to reach an accurate solution, our objective is

to relax the computations. i.e., a very low accuracy for the PFP result is set in this first step.

This way, the computational cost for the NR solver is significantly reduced, despite obtaining

an inaccurate solution. In contrast, it is expected that i) the weak solution be efficient in

initializing the IM and speed up the calculation of the accurate solution; and ii) the attraction

region of convergence in relation to the initial estimate assigning for the IM be more constrained

and have inside the PFP solution.
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Figure 6.1. Scheme illustrating a hybrid procedure composed of an intermediate relaxed state obtained by a
homotopy process and used as an initial estimate to obtain the solution of the PFP.

6.1.1 The first stage: partial solution

This subsection briefly describes the methodology presented in (FREITAS; SILVA, 2022) to

justify the employment of the homotopy stage and the computational burden reduction to

achieve the partial solution from the flat start guess.

The homotopy method’s partial solution xh is computed using a given tolerance for a relaxed

convergence for the power mismatch. For this situation, a tolerance value ϵh = 2.0 pu of

power mismatch is suggested, which is very high compared to a desired high-precision tolerance

adopted for the PFP, assigned as ϵ = 10−8 pu.

The PFP relaxed solution determined following the homotopy technique according (FREITAS;

SILVA, 2022) requires the computation of roots at each point of the homotopy path. Therefore,

solving a nonlinear equation system should find each path point. Considering that the tolerance

for the relaxed homotopy method is ϵh >> ϵ, the procedure reduces the demanded iterations

per homotopy point. This occurs because the NR solver is used for each point with a low

accuracy for convergence. Then, minimizing the iterations along the homotopy process can be

interpreted as another target to be reached in the proposed approach. A synthetic explanation

is highlighted in the sequence to understand better the path points composing the homotopy

path.

The homotopy process is formulated by incorporating parameters to incrementally alter a fic-

titious compensated network, referred to as the "easy" problem, which has a trivial solution.

This network is gradually adjusted until the original network is restored, known as the "diffi-

cult" problem, which involves finding the zeros of (2.15), i.e., without the fictitious compensated

network. It is also assumed that the simple solution of the "easy" problem is precisely equal

to the initial estimate used for solving the NR problem (FREITAS; LIMA-SILVA, 2023). The

homotopy path in (FREITAS; SILVA, 2022) is guided by two-homotopy parameters h1 and h2

featuring a two-dimensional problem. These parameters, in turn, are used to modify:
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• The diagonal admittance matrix of the system, which starts with a fictitious value and

returns to its original value at the end of the homotopy process;

• The admittance values connecting the slack bus to adjacent buses, forming a region around

the slack bus.

The nonlinear equation system resolution for each point i in the discrete parameters (h1i,h2i) of

the homotopy path is performed by the classical NR solver. The number of points for the path

depends on how the parameters h1 and h2 are discretized. The step-length for these parameters

are chosen differently. This process is carried out considering that parameter h2 has the binary

type, assuming only the on/off status (0 or 1 value). Then, first, for the value h2 = 0, only the

parameter h1 is changed. It is modified by step-length ∆h1 = 1/N , where N is the number

of step-length assigned in the interval [0,1]. In this case, each discrete value h1i is updated as

h1i = i∆h1, i = 0,1, . . . ,(N − 1), and h1N = 1.

The homotopy problem, when executed with h2 = 0 works with modified impedances connecting

the slack bus, as shown in Eq. (6.1).

ẑkm = rkm + j(1− h2)δxkm + jh2xkm (6.1)

where zkm = rkm + jxkm is the effective impedance connecting the slack bus, for h2 = 0 and

δ ∈ (0,1] is a scaling factor assigned by the user. In most cases, it is enough to set δ for the

unitary value, i.e., without changing in zkm. It is important to note that this strategy aims to

turn the region near the slack bus stronger and offer a “higher transmission capacity” for the

respective links along with the homotopy process. This way, it is expected that the transmission

links that connect the slack bus have a wide range of power variation flexibility (FREITAS;

SILVA, 2022). And we assume that the critical iterate oscillations can be verified near the slack

bus.

The parameter h1 (0 ≤ h1 ≤ 1) enables the connection of a fictitious shunt admittance at a

given bus k, yk (FREITAS; SILVA, 2022). Thus, just the diagonal of the admittance matrix

needs to be changed. Consider YBUS(k,k) to be a diagonal entry of the original admittance

matrix YBUS. The homotopy parameter h1 is utilized to calculate a dependent diagonal element

as follows:
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Y
(i)
BUS(k,k) = ŶBUS(k,k) + (1− h1i)yk, (6.2)

where yk = gk + jbk is the fictitious admittance fitted for i = 0, the initial path point; ŶBUS

is the network admittance matrix computed considering ẑkm. For the initial path point, the

initial estimate is x(0) and the PFP solution is adjusted to coincide with x(0). So, yk must be

imposed to reach the initial solution without needing additional iteration.

Finally, for h2 = 1, only the point for h1N need to be calculated, and the updated matrix is

Y
(N)
BUS(k,k) = YBUS, with YBUS being the original admittance matrix computed with the value

zkm instead of ẑkm. Therefore, the original network is entirely recovered, and the PFP solution

xh is obtained.

Given that initially, only a low-precision solution is sufficient, it imposes a low number of

step-length N on the homotopy curve, because this factor reduces the computational impact to

arrive at the solution xh. Conversely, when N is too much reduced, a large distance between the

points on the homotopy curve is verified. The result can be detrimental to the initial estimates

used on the homotopy curve to solve the partial PFP. Assuming that at h1 = 0 there is a

known ("easy") solution, the subsequent are calculated using the previous result as an initial

estimate. Therefore, considering this compromise, a relaxed solution with high mismatches, as

well as the objective of reducing the computational load to determine the solution in h1 = 1,

N , must be chosen in order to meet these requirements. In general, choosing at most N = 10

produces adequate results. Also, no more than 2 iterations are enough to reach the prescribed

mismatch ϵh at a given point h1i. Therefore, the total number of iterations to calculate xh is

in the range N to 2N . But, in most cases, only N iterations are enough at all.

6.1.2 The second stage: general iterative method

The IM part of the hybrid method investigated in this thesis proposal uses the partial solution

xh determined in the first stage using the homotopy technique. In this second stage, it is where

the accurate solution is determined. The IM is implemented by employing the classical NR

solver and its fast decoupled version FDXB (ZIMMERMAN et al., 2011). Besides, the HKW

method (TOSTADO-VÉLIZ et al., 2020a) and variants (OLIVEIRA; FREITAS, 2021) are also
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used. However, in principle, any other iterative techniques could also be evaluated.

The algorithm HKW (TOSTADO-VÉLIZ et al., 2020a) is a powerful method to solve (2.15)

for electrical networks considered ill-conditioned. In (OLIVEIRA; FREITAS, 2021), two vari-

ants of this method, HKW1, and HKW2, are also presented, which allows a reduction in the

computational burden of the original approach.

Although the methods HKW, HKW1, and HKW2 are robust and have obtained the solution

of the PFP for all systems presented in (OLIVEIRA; FREITAS, 2021), adjustments of the

parameters for large ill-conditioned systems need to be done by trial and error. This artifice

is laborious and is sometimes unsuccessful due to the number of involved parameters. The-

refore, by employing the hybrid strategy, it is expected to use a set of standard parameters

(TOSTADO-VÉLIZ et al., 2020a) for any ill-conditioned system involving the HKW methods,

without the need for specific adjustments, due to the improvement in the intermediate estimate

to be utilized.

6.2 CONDITIONING STEP-BASED METHOD

This section presents a technique based on an initialization step to allow convergence in the

iterative process to solve the PFP. The approach can be applied to any iterative method to

solve the PFP and can be interpreted as a modified first iteration of the global iterative process

to solve a nonlinear equation system. This work uses this adaptation to the classical NR,

and the HKW method (TOSTADO-VÉLIZ et al., 2020a) for ill-conditioned and large-scale

test systems. The former was reported in several works to fail for most of the experiments

(TOSTADO-VÉLIZ et al., 2020a). The latter was reported to be appropriate for dealing with

both well- and ill-conditioned systems.

In this approach for the PFP, the flat start is always assumed as the initial estimate. However,

the ’conditioning step’ procedure on the initial estimate is proposed because of the weakness in

obtaining an adequate convergence of the iterating process considering this initialization. Note

that the process differs from the pre-conditioning of matrices discussed in Chapter (3). While

the former is a proposition involving the sum of a perturbation matrix, the latter is related to

the products of matrices.
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Initially, given an initial guess x(0), the straightforward purpose would be to compute the

increment ∆x(0) by solving the linear system J(x(0))∆x(0) = −g(x(0)) and so to obtain x(1) =

x(0) + ∆x(0) at the end of the first iteration. However, numerically, the result ∆x(0) can be

equivalent to solving [J(x(0))]TJ(x(0))∆x(0) = −[J(x(0))]Tg(x(0)).

Therefore, the proposed procedure involves:

1. Adding a perturbation diagonal matrix
√
δI to J(x(0)) or alternatively, δI to [J(x(0))]TJ(x(0)),

with a scalar δ > 0 and δ small, in such way that
{
J(x(0)) +

√
δI
}
∆x̄

(0)
δ = −g(x(0)) or{

[J(x(0))]TJ(x(0)) + δI
}
∆x

(0)
δ = −[J(x(0))]Tg(x(0)) must be solved to compute ∆x̄

(0)
δ or

∆x
(0)
δ , instead to determine simply ∆x(0);

2. considering that, ∆x̄(0) ≈ ∆x
(0)
δ , the initial estimate x(0) can be ’conditioned’ to x

(0)
δ =

x(0) +∆x
(0)
δ , and the idea is then to set x(0) := x

(0)
δ to be used by an iterative method in

the subsequent iterations.

Then it is proposed to initialize the iterative process for the solution of the PFP by using the

conditioned estimate x
(0)
δ , as calculated previously in step 4, instead of initializing directly with

the original x(0). It is important to note that the proposed method differs from Levenberg’s

method in that the latter incorporates a perturbation parameter—referred to as the damping

factor in Levenberg’s method—at each iteration. In contrast, the approach outlined above only

introduces the perturbation matrix during the first iteration.

The perturbed linear systems in step 3 provide different solutions because they have different

forms of perturbations. So we can first classify them as two options:

• Option I: linear system
{
J(x(0)) +

√
δI
}
∆x̄

(0)
δ = −g(x(0)) with solution ∆x̄

(0)
δ ; or

• Option II:
{
[J(x(0))]TJ(x(0)) + δI

}
∆x

(0)
δ = −[J(x(0))]Tg(x(0)), with result ∆x

(0)
δ .

Assuming that the Jacobian matrix is ill-conditioned, the result ∆x(0) in steps 1 and 2 may

have a significant norm. Hence, when added to x(0), it causes large variations at the end of the

first iteration. This is one of the possible causes of the divergence of iterative methods. The

insertion of the perturbation matrices aims to reduce the condition number of the perturbed

matrices. Therefore, this procedure also contributes to reducing the high variations that occur
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due to the ill-conditioning of the non-perturbed matrices. However, the perturbation must

be introduced considering a limitation in the value of δ related to the condition number of

the coefficient matrices of the linear systems and matrix norms. Therefore, considering these

aspects for adequate proceeding implementation, this parameter should be chosen.

To select δ, we can use the norm relation between a result of a perturbed and a non-perturbed

linear system as presented in (GOLUB; LOAN, 1996). For example, consider for an estimate

x(0) of the PFP the following linear systems:

1. non-perturbed J∆x(0) = b; and

2. Jacobian perturbed by
√
δ∆J, resulting in (J+

√
δ∆J)∆x

(0)
δ = b, δ > 0.

According to (GOLUB; LOAN, 1996), for a small value δ, by using norm analysis, the following

result arises involving the deviation between the perturbed and non-perturbed solution to the

absolute non-perturbed solution.

||∆x
(0)
δ −∆x(0)||
||∆x(0)||

≤
√
δ||J−1|| · ||∆J|| =

√
δ
κ(J)

||J||
||∆J|| (6.3)

where κ(J) is the condition number of J, and || · || is a norm of ·.

By assigning ∆J = I, we conclude that the relations must satisfy a threshold that is associated

with δ, κ(J) and ||J||.

||∆x
(0)
δ −∆x(0)||
||∆x(0)||

≤
√
δ
κ(J)

||J||

Let ρ be the threshold of the user assignments, assuming a high deviation. Then,

||∆x
(0)
δ −∆x(0)||
||∆x(0)||

≤
√
δ
κ(J)

||J||
≤ ρ.

By setting ρ for a given relative error between the state of the perturbed and non-perturbed

linear system, the parameter δ can be limited by

√
δ ≤ ρ

||J||
κ(J)

. (6.4)

Finally, from (6.4), it is possible to estimate the parameter δ for setting a given small pertur-

bation to the Jacobian matrix. This procedure can also be used when the normal matrix [J]TJ

is used as an augmented matrix as presented in (6.5).
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In relation to using Option I, the perturbed term is added to the Jacobian matrix, which is

an indefinite matrix, i.e., its eigenvalues have negative and positive real parts. In this case,

the perturbation matrix may cause some eigenvalues that are near zero to move even closer

to zero. This would be bad for the conditioning of the linear system matrix, as it would have

worse conditioning than the undisturbed matrix. If this is not the case, the perturbation in

question is quite beneficial to significantly improve the conditioning of the coefficient matrix of

the linear system. Option II does not suffer from the described problem because the perturbed

term is added to a normal matrix (GOLUB; LOAN, 1996), i.e., a matrix which eigenvalues are

real and positive (positive-definite). Therefore, the perturbed term moves the eigenvalues in

the opposite direction to the null eigenvalue, a cause of singularity.

In Option II, an equivalent form for the perturbed linear system is proposed to be solved as

[
J(x(0))

√
δ · I

−
√
δ · I [J(x(0))]T

] [
∆x

(0)
δ

z

]
=

[
−g(x(0))

0

]
(6.5)

where I stands for the identity matrix of appropriate order and z is an auxiliary variable.

The computation of the increment ∆x
(0)
δ through (6.5) avoids the operation involving the pro-

duct of the Jacobian matrix required in step 3. However, the straightforward computation of

the product is unfavorable concerning sparsity compared with the proposed efficient computa-

tion process. Note that the sparsity of matrix J is preserved. Also, the condition number of

the augmented non-perturbed matrix, i.e., with δ = 0 in (6.5) is precisely equal to the one of

the Jacobian matrix.

A third option can be proposed as an alternative to the perturbed linear system in (6.5).

• Option III: two-parameter perturbed augmented form:

[
J(x(0)) (1 + d)

√
δ · I

−d
√
δ · I [J(x(0))]T

] [
∆x

(0)
δ

z

]
=

[
−g(x(0))

0

]
(6.6)

where d is an additional parameter assigned by the user.

The terms (1 + d) and d in (6.6) are introduced empirically, working as an additional freedom

degree among an infinite of possibilities to implement the perturbation on the linear system

derived from the normal matrix. The parameter d modifies the asymmetry of the perturbed

matrix, but its value should also be small as δ.
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The flowchart in Fig. 6.2 summarizes the implementation of the conditioning step (CS) and, as

a result, is used by an iterative method. Note that the CS procedure works as a modified first

iteration. Its implementation requires a little more computational cost than an iteration without

CS (bypassing CS), but the overall convergence benefit for an iterative method is tremendously

high. Because considering our numerous experiments with ill-conditioned systems and as will

be shown in the results later, it provides adequate conditioning to the global convergence of an

iterative method.

The following example illustrates the improvement introduced by a conditioning step on the

initial estimate for solving a generic nonlinear system which initial iteration consists of an ill-

conditioned linear system. Let g1(x1,x2) = x21+x
2
2−2x1x2−1 = 0, g2(x1,x2) = x1+x2−2 = 0,

and g(x1,x2) = [g1(x1,x2) g2(x1,x2)]
T a set of nonlinear algebraic equations. Suppose that

the initial estimate for solving the problem consists of the point x(0)1 = 1 and x
(0)
2 = 1. In

this example, the ill-conditioning (singularity of the Jacobian) is verified exactly at the initial

estimate point. However, the illustration is sufficient to highlight the importance of perturbation

for improving the performance of the convergence process.

The system’s roots can be found iteratively by applying the NR method. However, for the

given guess, the Jacobian matrix is singular. On the other hand, for a small increment (say ϵ)

only in x
(0)
2 , now produces a nonsingular Jacobian matrix; still, the resulting linear system is

ill-conditioned.

The iterative process behavior for the NR method for some values of ϵ is investigated. The

behavior is evaluated considering an initial estimate for the NR method used directly and by

considering its conditioned step (CS-NR). The value δ = 0.005 was adopted for the perturbation

in (6.5). Considering that the initial estimate produces a singular Jacobian matrix, the variable

x
(0)
2 was modified slightly by a value ϵ ̸= 0 to remove the singularity of J, i.e., x(0)

2 = 1+ ϵ. The

following values for ϵ were tested: 0.01, 0.001, and 0.0001. The roots converge to x1∗ = 0.5 and

x2∗ = 1.5.

According to (GOLUB; LOAN, 1996), a problem is mathematically defined as ill-conditioned if

the calculated values are very sensitive to small changes in the parameters which characterize

the problem. Therefore, given a linear system Ax = b, a ’condition number’ provides an overall

assessment of the rate of change of the solution x concerning modifications in the parameters
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Start

Network input data: gene-
ration, branch, bus, load

Parameters: x(0), δ > 0,
max_iter = 50, tol = 10−8 pu
Initial guess: x(0) = [θT V T ]T

Compute g(x(0)), J(x(0))

Calculate ∆x
(0)
δ , solving the linear sys-

tem and by using one option (I, II or III)

[
J(x(0))

√
δ · I

−
√
δ · I [J(x(0))]T

] [
∆x

(0)
δ

z

]
=

[
−g(x(0))

0

]

[
J(x(0)) (1 + s)

√
δ · I

−s
√
δ · I [J(x(0))]T

] [
∆x

(0)
δ

z

]
=

[
−g(x(0))

0

]

(J(x(0)) +
√
δ ·

I)∆x
(0)
δ = −g(x(0))

x
(0)
δ := x(0) +∆x

(0)
δ

x(0) := x
(0)
δ , i := 0

Compute g(x(i))

∥∥g(x(i))
∥∥
∞ < tol Convergence

Compute ∆x(i) by a method, where
the method may be NR, HKW, etc.

e.g., for the NR solver,
∆x(i) = −[J(x(i))]−1g(x(i))
x(i+1) := x(i) + ∆x(i)

Determination of nodal
voltages and power flows

i := i+ 1

i > max_iter Divergence End

bypassing CS

CS

(I)

(III)

(II)

no

yes

yes

no

Figure 6.2. Flowchart illustrating the main procedure aspects of the CS and the iterations for the PFP.

in A or(and) b. A spectral definition (norm-2 based) for the condition number of the matrix A

is given by the index κ(A) = σmax(A)
σmin(A)

(GOLUB; LOAN, 1996), where σmax(A) and σmin(A) are

maximum and minimum singular values of A, respectively. As the condition number increases,

the degree of the ill-conditioned system grows as well (GOLUB; LOAN, 1996).

Table 6.1 depicts the condition number κ for four Jacobian matrices computed of different

forms to the three values of ϵ. The second column shows κ for the matrix JCS, which is the
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Jacobian matrix calculated for x
(0)
δ . The third column shows the κ for the Jacobian matrix’s

initial iteration of the traditional NR solver. The fourth column shows the condition number

for the perturbed matrix JTJ + δI. Finally, the fifth column shows κ calculated when the

augmented matrix Aa, the implicit form for JTJ + δI, is used as proposed in (6.5). We can

observe a substantial variation in the condition number associated with the Jacobian matrix of

the traditional NR solver.

Table 6.1. Condition number for the ε calculated for four different matrices.
ε JCS JNR JTJ+ δI Aa

10−4 6.2 104 401.0 20.0
10−3 1.6 103 400.4 20.0
10−2 13.6 102 345.7 18.6

Fig. 6.3 shows plots for the mismatch ||g(x1,x2)||∞. The experiments are carried out for the

values of ϵ considering the NR (dashed curve) and CS-NR (solid curve) solvers. Higher values

of ϵ give better conditioning for the Jacobian matrix of the initial solution. In this case, the

tendency is for the two curves to be close. However, the more ill-conditioned the system, the

further apart they are, indicating the better performance of the CS-NR solver. This is proven by

observing the number of iterations required for convergence for NR and CS-NR. Note that the

latter always requires fewer iterations for convergence. Fig. 6.4 shows plots for the mismatch

for the three options of implementation of the CS-NR, considering the NR solver without CS,

ϵ = 10−4, δ = 0.0036 and d = 0.1. The number of iterations reduces drastically from 17 (NR

without CS) to just three iterations when implementing the perturbation with Option III. The

other options also significantly reduce the number of iterations but are well above Option III’s.

This result demonstrates the high impact caused by an adequate selection of perturbation on

the global convergence of an iterative process.

Similar results are obtained if the perturbation on the initial estimate of the variable x2 is

taken as x(0)
2 = 1− ϵ. However, in this case, the convergence occurs for the point x1∗ = 1.5 and

x2∗ = 0.5.
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Figure 6.3. Plots illustrating the mismatches for an ill-conditioned initialization case for a generic nonlinear
system considering the NR and CS-NR approaches for three values of ε.
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Figure 6.4. Plots illustrating the mismatches for an ill-conditioned initialization case for a generic nonlinear
system considering different options to implement CS-NR approaches.

6.3 THE PSEUDO-REGULARIZED LOAD FLOW METHOD

In this section, an alternative approach to solving the power flow problem is proposed, exploring

the concept of regularization methodology presented in Section 5.3. However, the idea is to use

the regularization parameter only for the first iteration of the iterative Newton’s method applied

to the PFP, since the ill-conditioning of the problem is generally identified in this iteration.

Due to the application of this strategy, the method is referred to as the pseudo-regularized load

flow method.

The iterative solution of the PFP using this method is carried out in two stages:

• The first stage is equivalent to the first iteration of the load flow. However, the iteration is

solved assuming a regularized linear system constructed from the Jacobian matrix of the

first conventional PFP, A = J(x(0)), and the associated mismatch vector, b = −g(x(0)).

The user-defined regularization parameter is µ. Therefore, the state-vector in this stage
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is the result x(1), computed from (ATA + µI)∆x(0) = b, and x(1) = x(0) + ∆x(0). The

parameter µ can be assigned following one option as presented in Section 5.3.2.

• From the second iteration onward, the regularization parameter µ is removed, and the

calculations are performed as in the traditional NR method or another chosen one. For

NR, we proposed two alternatives: one uses the full Jacobian, labeled T-NR, while the

second uses only the second Jacobian’s iteration (frozen for subsequent iterations), called

T-NR1J.

The Alg. 7 highlights the main stages of the proposed method. Replace T-NR (T-NR1J) by the

desired approach when implementing other techniques. In Alg. 7, the tolerance corresponds to

the accuracy desired for the power mismatch in pu. The index maxiter is the maximum number

of iterations allowed for the load flow convergence. In step 2 of the algorithm, the L-curve can

be computed for a given number of points.

Algorithm 7 Pseudo-regularized load flow solver for the classical NR method.
1: Require: Flat start estimate x(0); tolerance ϵ; maxiter; grid data.

2: Ensure: Solution of the PFP, x∗, i.e., state vector of the system, x∗ =
[
θT V T

]T .

3: Do k = 0 and estimate µ∗ for the initial iteration, for example, using the L-curve;

4: Assign A = J(x(0)), b = −g(x(0)), compute (ATA + µ∗I)∆x(0) = b, x(1) = x(0) + ∆x(0),
compute g(x(1)) and go on with k = 1.

5: while (||g(x(k))||∞ > ϵ and k < maxiter) do

6: If k = 1, compute J(x(k)) and do J1 = J(x(1)).

7: If k > 1 and the selected method is T-NR1J, do J(x(k)) = J1; or case the method is
T-NR, calculate J(x(k)).

8: update the deviation ∆x(k) = −[J(x(k))]−1g(x(k));

9: update the state-vector x(k+1) = x(k) +∆x(k) and proceed with k := k + 1;

10: compute the mismatch g(x(k)).
11: end while

6.4 MODAL-BASED JACOBIAN MATRIX PERTURBATION

Aiming to circumvent (attenuate) the ill-conditioning effect of the PFP in the NR solver first

iteration, a modal-based technique is also proposed to move away the smallest eigenvalue of

the Jacobian (SEJ) matrix. The idea is to compute the SEJ and its respective right- and
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left-eigenvectors to move out the problematic mode from near to zero.

Let λ1 be the SEJ and u1 and v1 its respective right- and left-eigenvectors. Then a perturbed

Jacobian matrix Ĵ = J+ αv1λ1u
T
1 has its SEJ changed to λ̂1 = λ1 + αλ1 for a factor α. When

α > 1, the magnitude of λ̂1 grows. Then, α can be selected to yield |λ2| < (1 + α)|λ1|, where

λ2 is the second SEJ. In general, λ2 is relatively away from zero and is less dominant than

λ1. Therefore, the ill-conditioning related to the initial iterate for determining the approximate

increment ∆x for (2.44) is expected to be greatly reduced.

For the initial iteration, given x(0), the straightforward form to compute the increment ∆x(0)

is by solving the linear system J(x(0))∆x(0) = −g(x(0)) and so to obtain x(1) = x(0) + ∆x(0).

However, assuming that J(x(0)) is ill-posed, we propose to introduce a perturbation term on the

Jacobian matrix in such a way to move just the smallest eigenvalue of J(x(0)).

Using the 1-rank perturbation matrix for J(x(0)), we obtain an approximate deviation for the

initial iterate ∆x̂(0) as

[J(x(0)) + v1Λu
T
1 ]∆x̂(0) = −g(x(0)) (6.7)

where Λ = αλ1; α > 1 must be fixed in order to move away from near to zero the SEJ; and

both v1 and u1 are dense vectors.

An efficient way for solving (6.7) is applying the 1-rank Sherman-Morrison inverse technique

(HAGER, 1989) for the solution

∆x̂(0) = −[J(x(0)) + v1Λu
T
1 ]

−1g(x(0)) = ∆x(0) −∆v1[Λ
−1 + uT

1∆v1]
−1uT

1∆x(0), (6.8)

and ∆x(0) = −[J(x(0))]−1g(x(0)), ∆v1 = [J(x(0))]−1v1.

The expression (6.8) gives the approximate increment result for the states in the first iterate,

allowing the computation of x(1) ≈ x(0) +∆x̂(0). Note that just one LU factorization is needed

for the initial iterate, as done for the classical NR solver, and the sparsity of the standard

PFP is preserved. Besides, only one additional forward and backward substitution operation is

performed to determine ∆v1. Finally, the remainder iterates should be determined according

to (2.44) as for the standard NR solver, without the 1-rank perturbation matrix.
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6.5 FINAL CONSIDERATIONS

One of the main objectives of this work is to develop power flow solvers that are robust and effici-

ent, making them suitable for wide-scale use in solving large-scale and ill-conditioned systems.

To address these challenges, solution approaches were proposed that include a conditioning

step procedure to initialize the iterative process of the power flow problem, as well as a hy-

brid method that combines the homotopy technique with different methods to resolve the ill-

conditioned power flow problem starting from a flat start estimation.

The introduced solvers exhibit competitive computational load, comparable to the NR method,

as the proposed modifications only affect the first iteration. This computational efficiency is

a crucial feature for any industrial or commercial solver. In Chapter 7, several numerical

results are presented to evaluate the performance of the proposed approaches. These results

are validated on ill-conditioned systems of up to 70,000 buses and compared with standard

PFP solution methods, demonstrating the effectiveness and competitiveness of the new solvers.

In summary, the proposed conditioning step aims to improve the initial guess for the iterative

process, improving the conditioning of the Jacobian matrix, as well as reducing the number

of iterations required for convergence and enhancing the robustness of the solver. The hybrid

method takes advantage of the strengths of different techniques, such as the combination of

the homotopy technique with the Newton-Raphson method, Fast Decoupled Load Flow and

techniques based on the Continuous Newton’s methodology. This combination ensures that the

solver can effectively obtain the solution for large systems, even in ill-conditioned conditions,

maintaining stability and accuracy in the solutions.



CHAPTER 7

TESTS AND RESULTS

7.1 INTRODUCTION

In this chapter, the methods introduced in Chapter 6 are assessed regarding efficiency and

impact on power flow solutions. These approaches are employed to compute the power flow

solutions for large-scale realistic systems, with a particular focus on initializing with a flat start

estimate to evaluate the robustness of the techniques. The objective is to conduct simulations

and compare the results obtained from various methodologies, including the standard Newton-

Raphson (NR) method, an optimized NR variant with improved step calculation (OM-NR),

and the Heun King-Werner method (HKW) (TOSTADO-VÉLIZ et al., 2020a) along with its

two variants (HKW1 and HKW2) (OLIVEIRA; FREITAS, 2021).

All the analyzed techniques were implemented using the MATPOWER v6.0 application (ZIM-

MERMAN et al., 2011). This program uses the NR method to solve the PFP based on network

databases encoded in ’.m’ files, known as cases. These files contain data of buses, branches,

and generation, as required by professional computational programs used by electric utility

companies and research institutions. The user can also provide an initial estimate for solving

the PFP in the bus data. All the cases presented in the MATPOWER database are convergent.

However, this convergence is only assured because the initial estimate for the NR is assigned

(data of native files) very close to the solution, thus explaining convergence in a few iterations

for MATPOWER’s data cases. Therefore, this is the standard result used for comparison when

other techniques and different operating points are adopted in this work.

All simulations were conducted on a computer with an Intel® Core™ i5-9300H processor, 2.40

GHz (64-bit), and 8 GB of RAM. To estimate CPU time for evaluating the performance of the

methods and minimize the influence of other computational activities, each test on each system

was repeated 1,000 times, and the average solution times were calculated. A single convergence



7.2 – Systems analyzed 87

tolerance of ϵ = 10−8 pu was used for active and reactive power mismatches. A maximum of

50 iterations (itermax) was set for the convergence of the methods. All initial estimates were

initialized using a flat start guess, except the reference cases from the native MATPOWER’s

databank.

7.2 SYSTEMS ANALYZED

In order to validate the proposed methodologies, the following large realistic systems were

considered:

• case3012wp: 3012-bus of the Polish Transmission System during winter 2007-2008 evening

peak conditions (ZIMMERMAN; MURILLO-SÁNCHEZ, 2020);

• case3375wp: 3374-bus of the Polish Transmission System during winter 2007-2008 evening

peak conditions (ZIMMERMAN; MURILLO-SÁNCHEZ, 2020);

• case13659pegase: 13659-bus portion of the European high voltage transmission network

(JOSZ et al., 2016; FLISCOUNAKIS et al., 2013; ZIMMERMAN; MURILLO-SÁNCHEZ,

2020);

• case_ACTIVSg70k: Synthetic Eastern US 70000-bus power system model(BIRCHFIELD

et al., 2016; BIRCHFIELD et al., 2018; ZIMMERMAN; MURILLO-SÁNCHEZ, 2020);

and

• case109k: 109,272-bus system synthetic model (VéLIZ; JURADO, 2019).

Several experiments with the different systems were performed. In this proposal, priority was

given to presenting experiments considering the base cases of the test systems.

The experiments focus on tests considering the flat start guess for iterative PFP. Therefore,

it is important to show how the simulations are performed in practical situations, mainly

in relation to the starting point of iterations. Our simulations are carried out by using the

MATPOWER tool. For the analyses, test systems with Brazilian networks were not included,

as information from the MATPOWER database was used, which does not yet contain data on

Brazilian systems. The database of this framework, including the cases for the five test systems
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used in simulations in this work, depart from an initial guess x(0). This information is native

to the cases and can be modified by the user. We use the two forms.

When using MATPOWER’s ’native’ initialization, we consider it the reference because it always

presents convergent results that are considered correct. Then, the results obtained this way

are used for comparison purposes with the results we have computed. However, for better

evaluation, aiming at the robustness of the method, we always assume a flat start type of

initialization.

7.2.1 Characteristics of the initial estimate for MATPOWER

Before performing the simulations on the test systems, we check how close the initial estimate

given in MATPOWER is to the final computed states of the system.

Figs. 7.1 and 7.2 show the initial estimates and the PFP solution in plots, respectively, for the

bus nodal voltage magnitudes and angles for the 70,000-bus model. Without such an initial

estimate, divergence from the iterative process occurs when using the classical NR method to

determine the PFP solution.
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Figure 7.1. Plots illustrating the Initial estimation voltage magnitude, V(0), used by MATPOWER and final
states, V, for the 70,000-bus system.

The plots exhibit the closeness between the initially assigned values (red curve) and the final

results of the states (black curve). Conversely, one can observe a significant disparity when a

flat initial guess is used, especially with regard to the phase angles. In such a scenario, all phase

angles would be zero, resulting in the red curve becoming a straight line with a zero value.

Besides the remarked characteristics on the initial estimations used in the MATPOWER, in
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Figure 7.2. Plots illustrating the Initial estimation voltage phase angle, θ(0), used by MATPOWER and final
states, θ, for the 70,000-bus system.

the subsequent subsection, a study is assessed to highlight the problem of ill-conditioning when

treated for the Jacobian matrix for the initial iterate of the power flow.

7.2.2 Condition number and changing with shift-δ

This subsection presents a study concerning the condition number of the Jacobian matrix of

the initial iteration of the power flow, defined by J0 = J(x(0)), when it is calculated by the

initial estimate x(0). Simulations are performed to verify the changes of the condition number

of this matrix, κ, for various conditions imposed by a shift-δ term introduced on its diagonal.

This way, for a given δ ≥ 0, the matrix after a shift in the initial iteration was handled for

simulations as Jδ = J0+δI. A first experiment was carried out varying δ in the range 0 to 0.1 in

steps of 0.005 and calculated the condition number κ(Jδ) of Jδ. The spectral condition number

(see (GOLUB; LOAN, 1996) for details) κ = σmax

σmin
, where σmax and σmin are, respectively, the

maximum and minimum singular values of Jδ are calculated. The computations were performed

for the case13659pegase (13k) and case_ACTIVSg70k (70k). Figure 7.3 shows plots of κ for

these systems.

We can observe a similarity between the plots of the condition number of the matrix Jδ with the

L-curve in the Tikhonov’s regularization, which will be seen later. As in the L-curve, there is a

region where small variations of κ are detected. This region can be identified where adequate

values for δ can be chosen as a perturbation parameter to improve the condition number of the

original matrix, and so to solve the first iteration of the PFP. This first iteration can be crucial
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Figure 7.3. Plots illustrating the condition number (ordinate axis in logarithmic scale) of the modified matrix
Jδ as a function of the perturbation parameter δ.

for resolving the PFP, and the experiments will later demonstrate this. Then, considering these

remarks, other experiments were conducted to verify the computations of the states just for

the initial interaction. However, considering only one selected value of δ from the plots. The

criterion for the selection was the identification of small changes in κ in the range of δ, as

explained before.

Again, studies were assessed for the case13659pegase and case_ACTIVSg70k. The results were

obtained for the case δ = 0, i.e., the original Jacobian without perturbation; and for the

case δ = 0.01, from the plot visualization, κ ≈ 106.6 = 4 × 106 in the case13659pegase; and

κ ≈ 107.2 = 1.6×107 for case_ACTIVSg70k. Despite the elevated values for κ, it is emphasized

that without perturbation, these values achieve 9.6× 107 and 4× 108 for the case13659pegase

and case_ACTIVSg70k, respectively. Therefore, considering the simulations, the interpretation

of the condition number results indicates that we need to relatively see the condition number

for these large-scale system matrices. Only the absolute value of κ is not sufficient to conclude

on the ill-conditioning of a system matrix.

Therefore, considering the case13659pegase, from the plots in Figure 7.4, significative values for

the angle deviations are verified when δ = 0 (no perturbation) and Figure 7.4a and a deviation

that it is close to the final states as shown in Figure 7.4b. Concerning to the voltage magnitude,

significative deviations in relation to the perturbed and undisturbed cases are not observed.

Similar simulations were performed for the case_ACTIVSg70k, assuming the same value δ for

the perturbed condition. Figure 7.5 depicts the plots for this system.
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Figure 7.4. Deviations in the states (voltage angle, θ, and magnitude, V ) computed in the case13659pegase
for the initial iteration for θ (a) and (b); and Voltages (c) and (d).
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Figure 7.5. Deviations in the states computed in the case_ACTIVSg70k for the initial iteration for θ (a) and
(b); and Voltages (c) and (d).

Again, similar behavior of the results observed for case13659pegase was also confirmed for the

case_ACTIVSg70k. An elevated change in the deviations of voltage angles is verified in the



7.2 – Systems analyzed 92

case without perturbation and small differences when the analysis is for voltage magnitude.

7.2.3 Tests considering the classical NR with initialization by the Gauss-Seidel method

or with an optimal multiplier

This subsection discusses simulations and results assessed with the classical NR solver. The

four test systems were used for experiments with the NR method for different initializations.

Tests were performed considering the estimate presented in MATPOWER (ZIMMERMAN;

MURILLO-SÁNCHEZ, 2020) (MAT-NR), besides flat start (flat-NR) and Gauss-Seidel (GS-

NR). In the latter experiment, the Gauss–Seidel’s method was investigated similarly as the

homotopy approach for the first step in the scheme of Fig. 6.1 to generate a partial solution xh

and providing this result as the initial guess for the standard NR, used as IM. Two iterations of

the GS method were calculated for the PFP departing from the flat start estimation. Additional

experiments with more than two iterates for the GS were also investigated. Finally, the last

approach, considering an estimate with a flat start but evaluated for the Optimal Multiplier

(OM-NR) solver (see [2.49]), was studied. Tab. 7.1 depicts a summary iterate number for

convergence demanded for each technique, except for the cases using flat-NR because the NR

solver does not converge for these experiments. The divergent PFP results for the flat-NR

cases are in accordance with those reported in (TOSTADO-VÉLIZ et al., 2020a) and references

therein.

Table 7.1. Iterations for the solver GS-NR, OM-NR and MAT-NR.
Solver

System MAT-NR OM-NR GS-NR
case3012wp 3 20 3
case3375wp 4 X 4
case13659 5 16∗ 6∗

case_ACTIVSg70k 6 X X
* other point; X: divergent.

In Tab. 7.1, the results in the second column show that despite the initialization provided in

MATPOWER, at least 3 iterates are required for the smallest system and 6 for the largest. In

conjunction with an OM adjusted as suggested in (PAN et al., 2019), the NR solver presents

convergence for the correct operation point for the case3012wp, as exhibited in the third column.

Also, it presents convergence for the case13659pegase. However, the operation point has a
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voltage angular difference greater than 90o for some interconnections. Tests for the case3375wp

and case_ACTIVSg70k diverge. We verify from the NR-OM solver experiments that when the

PFP converges, the OM is approximately constant. Conversely, when divergence occurs, the

OM is reduced to values close to zero. Even in the event of convergence, it can be verified for

an unstable operation point with an angular difference above 90 degrees in interconnections.

The Gauss–Seidel solver (GS-NR) presents convergence for the cases case3012wp, case3375wp,

and case13659pegase. Even so, the latter converges for an unstable operation point (voltage

angular difference greater than 90o). The case_ACTIVSg70k diverges, and additional iterations

for the GS as the first step in Fig. 6.1 cause a detrimental impact on the results to initialize the

NR method. Therefore, considering the four test systems investigated, using the GS technique

to provide a partial solution xh is not recommended for the investigated test systems.

The following simulations were assessed considering the perturbation approaches and the two-

step homotopy-based method.

7.2.4 Simulations considering the HKW method with flat start estimation

This subsection considers experiments involving the HKW’s method and its variants.

The methods HKW, HKW1 and HKW2 involve several parameters that in (OLIVEIRA; FREI-

TAS, 2021) were configured according to the complexity of the analyzed system. The initial

parameters of the HKW method (universal parameters) and its approaches were defined as

hmin = 0.4, hmax = 1, µ = 0.06, α = 500, ψ(0) = 1 and ψmax = 1.9 as suggested in (TOSTADO-

VÉLIZ et al., 2020a).

Tests were performed for the four test systems assuming the universal parameter values. Howe-

ver, this setting was not able to obtain the PFP solution for all systems, particularly for

case13659pegase and case_ACTIVSg70k. Then, empirical adjustments of the terms needed to

be performed until convergence was reached. This task is not trivial, because it can demand

hours to obtain a successful parameter setting. Tab. 7.2 shows the results reproduced for

the experiments developed in (OLIVEIRA; FREITAS, 2021) for the two largest power system

models.

From Tab. 7.2, it is possible to verify the considerable difference values between the universal
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Table 7.2. Parameters used in the simulations for the HKW method and variants as adjusted in (OLIVEIRA;
FREITAS, 2021).

Parameters
case13659 case_ACTIVSg70k

HKW HKW1 HKW2 HKW HKW1 HKW2
hmin 0.3 0.3 0.3 0.1 0.3 0.3
ψ(0) 1.0 1.0 1.0 1.22 1.20 1.15
ψmax 1.6 1.6 2.0 1.6 2.0 1.5

parameters and those adjusted for the most significant models. The gap is most sensitive for the

case_ACTIVSg70k. The solvers demonstrated limitations for large-scale systems, as verified in

the latter two cases. Also, any significant deviation (e.g., 5%) on one of the parameters causes

divergence of the iterative process. These aspects have motivated the experiments with the

proposed technique as performed in the following simulations.

7.3 SIMULATIONS CONSIDERING THE TWO-STEP HYBRID METHOD

The two-step hybrid-based method was applied to solve the PFP for the four ill-conditioned test

systems, according to the case3012wp, case3375wp, case13659pegase, and case_ACTIVSg70k.

Initially, the problem was partially solved through the homotopy method (first stage) as pro-

posed in (FREITAS; SILVA, 2022), considering a flat start estimate, to determine the partial

solution, xh, and assuming convergence tolerance ϵh = 2.0 pu for the power mismatch. In the

second stage, the value xh was used as an initial estimate to solve the PFP through an iterative

method (IM stage). However, using tolerance ϵ = 10−8 pu. The iterative methods used in

the second stage were the classical NR (H-NR), the fast decoupled NR method considering

the XB version (FDXB) (H-FNR) (ZIMMERMAN et al., 2011), the HKW (H-HKW), and two

versions HKW1 (H-HKW1) and HKW2 (H-HKW2). Following (FREITAS; SILVA, 2022), the

full homotopy method for convergence tolerance 10−8 pu for each point of the homotopy curve

was also run. This procedure was labeled full-H. The relaxed homotopy-based procedure for

mismatch 2.0 pu was called partial-H. These two latter simulations were performed to also

demonstrate the contribution to the partial-H for an estimate and low computational cost in

the two-step homotopy-based method compared to the full-H.

A first set of experiments was performed to illustrate the high discrepancies in using the NR
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solver with flat start initialization (flat-NR) and the result (partial) provided by the first step in

the two-step homotopy-based solver. The accurate solution obtained by the two-step homotopy-

based method (hybrid) was computed to serve as a reference and compare partial results. The

simulations were assessed just to the largest model. The ones with the homotopy method were

performed with N = 8 and δ = 1.
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Figure 7.6. Voltages for the 70k-bus system at the end of the first iteration for the traditional NR method using
flat start and for partial-H (state xh): magnitude for 1st iteration (a), angle for 1st iteration (b), magnitude of
xh (c) and angle of xh (d).

Fig. 7.6 exhibits the results of voltages for the 70k-bus for different situations. Figs. 7.6.a and

7.6.b refer to simulations with the flat-NR solver (black) and the accurate solution obtained

by the two-step homotopy-based solver (red). Just plots for the voltage magnitudes and phase

angles of the first iteration for the flat-NR solver are shown in comparison with the same

quantities of the accurate result. Because, already for the first iteration of the flat-NR solver,

an elevated difference occurs among the respective values for the accurate result. Furthermore,

the ill-conditioning of the system generated very high deviations for the states to be used in the

second iteration. Remark that there is even a growth in the opposite direction in the case of the

phase angles in relation to the accurate result. The result confirms the previously mentioned

inefficiency of the flat-NR solver.

Meanwhile, Figs. 7.6.c and 7.6.d refer to simulations with the partial (black) and two-step
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homotopy-based accurate result (red). Although it has used a poor tolerance mismatch for

convergence, ϵh = 2.0 pu, the partial solution xh (black) presents visual effects closer to the

accurate solution (red). Therefore, this characteristic qualifies as favorable conditions for star-

ting an IM and having convergence for the precise solution. This way, the hybrid technique’s

first-step can be viewed as a virtual enabler for improving the original attraction convergence

region for the flat start estimate. However, this facilitator does not exist for the flat-NR solver

since it starts directly from the flat start guess.

Table 7.3. Iteration number required for the base loading case of the systems.
Method 3012wp 3375wp 13659 70k
HKW 8 8 8 15
HKW1 8 8 9 15
HKW2 22 24 38 32∗∗

H-NR 3 3 3 4
H-FNR 9P/9Q 9P/9Q 14P/13Q 16P/16Q
H-HKW 6 6 6 7
H-HKW1 6 6 6 7
H-HKW2 15 15 17 7
full-H 32 32 33 41
partial-H 8 8 9 8
** Jacobian matrix was intentionally frozen from the 7th iteration.

The set of experiments in the sequence has considered the method performance concerning

the algorithm convergence merit. Another objective is to use this merit index and show the

computational burden of the PFP with the homotopy method for their accurate and inaccurate

applications. Tab. 7.3 exhibits convergence iterations verified for some techniques and the four

system models. Second to fourth rows in the table shows results of the HKW’s approaches

without a first stage of initialization as proposed for the hybrid method (i.e., the computations

for solving the PFP are performed directly from a flat start estimation). Fifth to ninth rows

present results obtained by using the second stage methods of the two-step homotopy-based

method. For the solver H-FNR, the inclusion of the notation P/Q represents the iterations nee-

ded for convergence for the loops P and Q of the method FDXB. The tenth row depicts the total

amount of iterations required to determine the complete curve of homotopy and consequently

the converged PFP results (computation of the accurate result x∗). All the iterations using

homotopy are calculated through the classical NR solver. Finally, the eleventh row exhibits

only results of the first stage of two-step hybrid method (computation of the inaccurate result
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xh by the homotopy method). The simulations for the homotopy approaches were assessed

with N = 8. For all systems, δ = 1 was adopted, except for the system case13659pegase, whose

setting was δ = 1/8.

The approach HKW and its version HKW1 presented similar number of iterations for the three

smaller systems, even when the hybrid method was activated. However, for the largest system

the introduction of the first stage of the hybrid method contributed to significant reduction

from 15 to 7 iterations for the hybrid method. The HKW2 approach presented the highest

iterations for all systems. Conversely, for this solver the highest computational cost occurs for

the first iteration for the three smaller systems and the seven initial iterations for the largest

model. However, when an initial estimate obtained by the hybrid method is used, the number of

iterations of the HKW2 solver are drastically reduced. Extraordinary results are obtained using

the NR and the FDXB method with initial guess using the result of the first stage of the hybrid

method. These solvers present divergent results for all systems when flat start initialization is

directly used. Not only the two techniques are convergent with the hybrid approach, but the

NR method has the lowest number of iterations among all the tested solvers.

From Tab. 7.3, we can conclude that the accurate resolution of the PFP through the homotopy

method (full-H) requires an elevated number of iterations. However, when the method is used

to determine a partial result (partial-H), the number of iterations is significantly reduced (8 to

9 iterations of type NR for any size of tested system).

Fig. 7.7 shows plots of power mismatch norm for several solvers for the four test systems. The

curves reinforce the high-performance of the standard NR solver when it is used in the two-step

hybrid method, already detected in the results of simulations exhibited in Tab. 7.3.

The computational burden was also measured assuming the simulations verified in Tab. 7.3.

The CPU time was measured by performing 1000 repetitions for the same calculation in order

to avoid the influence of parallel tasks on the results. In this way, an average execution time

value was considered. Based on this information, the average CPU times were taken for the four

test systems and a specific method studied. Tab. 7.4 exhibits the average CPU time demanded

for each solver. In the table’s average CPU time exhibited for the two-step hybrid methods,

the execution time required for the assessment of the first step (partial-H) is excluded (i.e., the

measure is only for the second step in the solver).
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Figure 7.7. Characteristic of convergence as a function of the number of iterations for case3012wp (a),
case3375wp(b), case13659pegase (c) and case_ACTIVSg70k (d).

Table 7.4. Mean execution time in seconds for different approaches and systems.
Method 3012wp 3375wp 13659pegase 70k
HKW 0.3160 0.3640 1.5780 19.7300
HKW1 0.2297 0.2625 1.0250 13.2900
HKW2 0.0750 0.0830 0.6220 6.9900
H-NR 0.0724 0.0827 0.4087 3.5450
H-FNR 0.0321 0.0455 0.2577 1.2960
H-HKW 0.2456 0.2770 1.0760 9.3700
H-HKW1 0.1860 0.2359 0.7781 6.0650
H-HKW2 0.0609 0.0657 0.2380 1.5000
full-H 0.8590 0.9300 3.9400 32.9700
partial-H 0.2700 0.3300 1.2200 6.6500

From Tab. 7.4, it is highlighted the best performance of the solvers H-FNR (FDXB method

with initialization by the innacurate homotopy solver) and H-HKW2 (HKW2 used in the hybrid

approach). The result shows the importance of the initial estimate provided to the methods,

exemplifying that even methods neglected due to their inherent simplifications are capable of

converging. The classical NR (H-NR) solver also presented a low computational time require-

ment. However, even presenting a much smaller number of iterations than the H-FNR, it needed



7.3 – Simulations considering the two-step hybrid method 99

a higher computational cost. The highest computational cost was required from the full homo-

topy solver (full-H), demonstrating that its straightforward application is not recommended in

the PFP, particularly for applications that involve repetitive power flow calculations, such as

contingency analysis and stability studies. However, when combined with an IM it is powerful

to improve the calculation performance even for a very simple solver as the FDXB. Conversely,

the partial homotopy-based solution for the largest model is determined with approximately

20% of the computational cost of the full-H solver.

7.3.1 Influence of the initial estimate on the loading level

In this section, the load level of the studied systems was incremented to evaluate the behavior of

the proposed technique concerning the critical system loading. In the considered test scenario,

a scaling factor λ was used to modify uniformly the active and reactive powers injected into

the bus i through P sp
i = λP sp

i0 to PQ and PV buses and Qsp
i = λQsp

i0 for PQ buses, where

P sp
i0 and Qsp

i0 are the net and constant contribution of active and reactive power studied in the

load base case, respectively. The loading factor was also applied for the active and reactive

parts of constant impedance loads in the same bus i. The critical level λ was considered the

maximum value at which the H-NR solver diverges. i.e., the system loading λ was progressively

incremented until this limit was reached. Then, the immediately lower value of λ was considered

for the simulations. The same estimates used for the base case were assigned for the loading

level cases as well. The results in terms of iteration number for each method are reported in

Table 7.5. This table presents similar information to that of Tab. 7.3 aside from the last two

rows (homotopy iterations) that were removed.

From Tab. 7.5, we conclude that just the approaches with a two-step homotopy-based solver

presented convergence for the critical loading level considering a studied system. However, two

of them had failed to converge. The fast-decoupled version of the NR had convergence only

for the most significant model, while the simplest version of the HKW, the H-HKW2, diverged

for all systems. Furthermore, the HKW method departed from a flat start estimate, and its

versions could not achieve convergence in all tests. However, when using the result of the first

stage of the two-step hybrid method, convergence occurs for the HKW and HKW1 approaches.

Another observation regarding these convergent approaches is that they converge with a higher
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Table 7.5. Total iterations for the critical loading level considering the four test systems.
Method 3012wp 3375wp 13659 70k

λ = 2.358 λ = 2.462 λ = 1.061 λ = 1.011
HKW 11 10 12 X
HKW1 11 10 X 15
HKW2 X X X 34∗∗

H-NR 7 7 9 4
H-FNR X X X 17P/17Q
H-HKW 9 9 11 6
H-HKW1 9 9 11 7
H-HKW2 X X X 19∗∗

** Jacobian matrix frozen from the 7th iteration X - divergence.

number of iterations than the NR method. One justification for this difference in favor of NR

is that the HKW and HKW1 methods depend on the parameter adjustment, which in the

simulation in question was kept as those from the base load case. Therefore, the NR method

kept the best performance in the critical load situation, as was also the verification in the base

case.

7.3.2 Influence of the reactive power operational limits in generators

In this section, studies considering the reactive operational limits of generators were assessed.

The load base case was the one investigated considering the NR solver.

The operation point concerning the limits were evaluated interactively based on the classical

methodology as adopted in (ZIMMERMAN et al., 2011), as follows. Initially, the base case

solution, without constrains, was taken and the generators that had their limits violated were

identified. Once these generators were known, their associated PV buses were converted to

PQ and then the PFP was re-run. From the results, the situations of operational limits of the

generators were again evaluated. Continuing in this way, we reached the end of the process

with the final diagnosis of violations and the new states to deal with this situation. It should

be emphasized that each PFP with operational limits was executed always taking the result of

the previous PFP for the initial estimate of the next one.

Only test results with the largest systems (i.e., case13659pegase and case_ACTIVSg70k) were

considered, as these are those that present greater complexity in obtaining the states in the
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base case. The reactive operational limits assigned at the MATPOWER’s data bank were

preserved in the simulations. Regarding the 13659-bus system, it had only 1 limit violated

when verifying the result of the base case. Therefore, running a new simulation with the

respective bus converted to PQ, success was achieved in the convergence of the PFP and in

the control of all generator reactive limits. The treatment dedicated to the 70k-bus system was

more complex, because it presented many more PV buses with limit violations. The search

for the solution at each iteration was conducted as follows: 4,588 violated limits (2,190 upper

and 2,398 lower) were identified for the first iteration. In the second iteration, a total of 700

violated limits (422 upper and 278 lower) were detected. For the third iteration, the violations

were reduced, but 200 limits (143 upper and 57 lower) were still out of allowable ranges. The

violations were reduced to 11 in the fourth iteration, and finally, in the fifth iteration no more

limits were exceeded.

As a consequence of the rearrangement of the operational limits, the generation in the slack

bus was increased to accommodate the new operational situation. In addition, the NR method

was sufficient to compute all solutions, demanding at most three iterations per limit iterate

calculation.

7.4 TESTS CONSIDERING THE CONDITIONING STEP APPROACHES

This section presents the results obtained from applying the conditioning step (CS) approach

to solve the PFP for the ill-conditioned systems case3012wp, case3375wp, case13659pegase, and

case_ACTIVSg70k. To utilize the conditioning step procedure, restricted perturbations were

chosen according to (6.4), and simulations were conducted considering three values for δ: 0.001,

0.01, and 0.05. Note that these values are limited by ρ, a user-defined parameter, which is a

measure of the state deviation on using CS; and by the condition number of J(x(0)) and the

norm of this matrix, characterizing the dependence of a system. Then, executing the iteration

from the guess x(0)
δ obtained from the CS, simulations considering the NR and its version NR1J

based on the freezing of the Jacobian matrix in the 1st iteration, HKW, HKW1, and HKW2

were carried out with the universal parameters suggested in (TOSTADO-VÉLIZ et al., 2020a).

They were called CS-NR, CS-NR1J, CS-HKW, CS-HKW1, and CS-HKW2, respectively.
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The results for Option II are shown in Tab. 7.6 in terms of iterations for convergence for each

system. But, similar results for the Options I and III are also obtained. Interesting to note that

almost all simulations presented convergence in the range of values of δ, including the classical

NR solver. The NR method with the conditioning step in the initial estimate presented the best

performance for all systems. Even the Jacobian frozen version of NR presented convergence

for higher values of the parameter δ. The CS-HKW and its variant also had convergence, even

using the universal parameters suggested in (TOSTADO-VÉLIZ et al., 2020a). This result

demonstrates the robustness of the CS-HKW method when the conditioned initial estimate is

used. Additionally, a smaller number of iterations was required for simulation with every test

system, mainly concerning the biggest system because the NR solver required only 6 iterations

and the CS-HKW solver requested only 7. It should be noted that very small values for δ

tend to produce a higher number of iterations for convergence at all. This is justified because

in the limit when δ → 0 the results can be interpreted as J(x(0))∆x(0) = −g(x(0)), which

coincides with that one for the first iteration for the traditional NR solver ’bypassing CS’. On

the other hand, higher values for δ provide a stabilized number of iterations, demonstrating the

effectiveness of the CS strategy, even for ill-conditioned and large-scale systems.

Table 7.6. Iteration number required for the base loading case of the systems.
Method case3012wp case3375wp case13659pegase case_ACTIVSg70k
CS-NR 5 5 5 5 5 4 5 7 7 6 6 6
CS-NR1J 401 22 20 59 21 19 19 20 22 30 25 25
CS-HKW 7 7 7 7 7 7 7 7 8 7 7 7
CS-HKW1 8 7 7 7 7 7 7 7 8 7 7 7
CS-HKW2 326 23 21 51 22 20 22 23 25 28 28 28

Figure 7.8 exhibits plots for simulations considering the three options to implement the per-

turbation details for the two biggest power system models, according to the options proposed

in Section 6.2. The plot for option III was shown just to the NR solver since each other solver

had similar results considering this option. The results indicate agreement among the possibi-

lities to implement the amount and form of small perturbation on the ill-conditioned Jacobian

matrix. However, when option III is chosen, a slight improvement can be verified.

Figure 7.9 shows the plots of mismatches for simulations involving all test systems and the

methods investigated based on the conditioning step of the initial estimate. The value δ = 0.01

was used, and again, Option II was employed. We can observe that the NR method has the best
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Figure 7.8. Convergence characteristics of methods using Options I, II, and III for δ = 0.01 and d = 0.01 for
Option III.

performance, confirming the results in Tab. 7.6 and demonstrating a high level of convergence

quality when compared with the other solvers. Even the frozen version of the NR solver is

convergent, despite demanding a higher number of iterations and presenting similar behavior

to the HKW2 solver. This behavior would be unthinkable without the use of the CS strategy.

Also, the good performance of the HKW and its variant HKW1 is confirmed. However, as they

depend on the NR solver and other supplementary computations, the sufficiency of using only

the NR when CS is activated can be verified.

Besides their convergence profile, better information about the performance of the methods can

be evaluated through the execution time demanded in each case. Then the simulation CPU

time was assessed, and the results are exhibited in Tab. 7.7. The computational times for



7.4 – Tests considering the Conditioning Step Approaches 104

running the methods were measured by performing 1000 repetitions of the same simulation.

Therefore, the results in the table expose the mean CPU time. All simulations assume that

the reactive power limits of generators are disregarded. Therefore, the values presented in the

fifth line of the table (CS-1st) represent the mean CPU time required only by the conditioning

step. This burden given for CS-NR1J is the same time spent in CS-NR, CS-HKW, CS-HKW1,

and CS-HKW2 methods. All other computational times refer to the global time to perform CS

plus the remaining iterations to reach convergence.
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Figure 7.9. Convergence characteristics of methods using the Option II for implementing the perturbation
and δ = 0.01.

From Tab. 7.7, we conclude that the CS procedure provides a condition for using a frozen version

of the NR solver, although requiring a higher number of iterations to converge. This conclusion

is reinforced considering the frozen version of the CS-HKW solver, CS-HKW2, that, although

demanding a high number of iterations, also presents low-cost computational compared to the

CS-NR1J. The full methods needed fewer iterations for convergence but at the expense of

higher computational consumption. The result is an impressive improvement in investigating

iterative methods for computing the PFP solution. Mainly because the simulations involve ill-

conditioned and large-scale systems with flat-start initialization. Several works reported failing
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Table 7.7. Average computational execution time in seconds of the convergent methods for the PFP.
Method case3012wp case3375wp case13659pegase case_ACTIVSg70k
HKW 0.2308 0.2514 0.9582 12.5188
HKW1 0.1543 0.1831 0.7394 8.2111
HKW2 0.0466 0.0483 0.3497 4.3396
CS-1st 0.0411 0.0471 0.2079 1.4244
CS-NR1J 0.0775 0.0845 0.3444 2.4382
CS-NR 0.1182 0.1225 0.7640 5.1955
CS-HKW 0.2255 0.2547 1.0418 6.7826
CS-HKW1 0.1765 0.1992 0.7990 5.1605
CS-HKW2 0.0867 0.0962 0.5162 2.7471

the classical NR for this type of simulation (TOSTADO-VÉLIZ et al., 2020a), without the

conditioning step proposed in this work.

7.5 TESTS CONSIDERING MODAL-BASED JACOBIAN MATRIX PERTURBATION

In this section, experiments were carried out for two case studies in order to demonstrate the

performance of the proposed modal-based perturbation technique for PFP. The models include

a 13659- and a 70k-bus systems.

The simulations consist in computing the smallest eigenvalues of the Jacobian matrix J(x(0))

in (6.7) to identify the problematic mode affecting the ill-conditioning and from this result,

introducing a perturbation on the Jacobian matrix. The smallest eigenvalue λ1 of J(x(0))

and its associated right- and left-eigenvectors were calculated using the eigs code available in

Matlab’s kernel. Similar computation was performed for two other smallest eigenvalues greater

than λ1. Then, the participation factors (KUNDUR, 2007) associated with the modes were

determined. Fig. 7.10 illustrates the participation factors for the three modes for the 70k-bus

system load-base case, λ1 = 3.98 × 10−4, λ2 = 2.72 × 10−3 and λ3 = 6.69 × 10−3. The zoom

region in the plot comprises states ranging from 70k to 130k. This range is formed by the

voltage magnitudes states.

The PFs for λ1 presents high participation of a large number of states. However, the contribution

profile is more dominant for some states than for the profile for the modes λ2 and λ3. In fact,

when we quantify the participation with more than 90%, the mode λ1 has 7.2% of states from

a total of 134,104, while λ2 and λ3 have the participation of only 0.089% and 0.44% states,
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Figure 7.10. Plots illustrating the participation factors of the three smallest modes.

respectively. Also, the contributions are dominant for states characterized by phase angles. The

participation of states of type voltage magnitude is neglected for all three modes (see range

above the 69,999th index for the state scale in the zooming plots). Therefore, the critical mode

for the ill-conditioning is λ1.

In the sequence, the modal information for the critical mode was explored to solve the PFP.

Experiments were performed considering the classical NR (CS-NR) and the fast decoupled

NR (CS-FDXB) solvers using the 1-rank perturbation matrix for J(x(0)). Also, a uniform

perturbation at the diagonal of the Jacobian matrix was added by introducing a scaling factor

δ > 0. This approach was called here as shift-δ. In this case, the perturbed Jacobian matrix

was replaced in (6.7) by J(x(0)) + δI, as proposed in (FREITAS; OLIVEIRA, 2023a), where δ

acts shifting uniformly all eigenvalues of J(x(0)). The value δ was assigned for δ > λ1, but in

(FREITAS; OLIVEIRA, 2023a) this factor is assigned empirically.

The simulations with the 1-rank modal-based approach were carried out for α = 100, i.e., λ1

was moved to λ1 ≈ 3.98 × 10−2. Three values for δ, 0.001, 0.01 and 0.1 were adopted for the

shift-δ. Therefore, the computation of λ1 is applied for both 1-rank modal-based and shift δ

methodologies. A tolerance of 10−8 was adopted for convergence of power mismatches, while a

limit of 20 iterations was established for convergence.

All simulations are performed with flat start estimate and the perturbation term is introduced

just for the initial iteration of the NR solver. Both case13659pegase and case_ACTIVSg70k

diverge when they are solved with the classical NR method and its decoupled version without

the perturbation term added to the Jacobian matrix. Table 7.8 shows, in 2nd and 3rd columns,
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the iterates required for convergence of the simulated cases to the perturbed situations. For the

CS-FDXB, the table indications refer to the P- and Q-iteration loops, respectively. When using

the 1-rank perturbation matrix for J(x(0)), the CS-NR as well as the CS-FDXB obtained the

PFP solution for all systems and with less iterations. The shift-δ approach demonstrated to be

equivalent to the 1-rank perturbation for δ = 0.01. However, for other simulated values it has

presented worst performance. A similar conclusion was verified for the CS-FDXB approach.

The results indicate the importance of knowing λ1 for all methodologies investigated, because

it is a reference for the set α and δ. Figs. 7.11 show graphs that illustrate convergence

characteristics for the CS-NR solver and the perturbation profile in the Tab. 7.8. Again,

similar results are verified for the 1-rank and the shift-δ for δ = 0.01.
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Figure 7.11. Convergence characteristics of the CS-NR methods.

Table 7.9 shows the computational costs demanded by each method with its respective pertur-
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Table 7.8. Iteration required for the base loading case of the systems.
Method case13659pegase case_ACTIVSg70k
CS-NR (1-rank) 5 5
CS-NR (J + δI, δ = 0.001) 6∗ -
CS-NR (J + δI, δ = 0.01) 5 5
CS-NR (J + δI, δ = 0.1) 6 6
CS-FDXB (1-rank) 17P/16Q 17P/17Q
CS-FDXB (J + δI, δ = 0.001) 17P/16Q 18P/18Q
CS-FDXB (J + δI, δ = 0.01) 17P/16Q 17P/17Q
CS-FDXB (J + δI, δ = 0.1) 17P/16Q 18P/18Q
* other operating point.

bation approach in J(x(0)), according to simulations for Tab. 7.8. The mean execution time

for calculating only one eigenvalue and its right- and left-eigenvectors is 0.2877 s and 2.1545 s

for the case13659pegase and case_ACTIVSg70k, respectively, and they were excluded from

measured times in the table. It is observed that the CS-NR method (1-rank) needed smaller

computational time for the NR method than for the shift-δ approach. A similar conclusion

is verified for the CS-FDXB approach. Furthermore, the CS-FDXB has presented the best

performance for the solver requiring approximately only 1/3 of the computational cost of the

CS-NR. The results are amazing, not only because of the convergence of the NR method for

ill-conditioned and large-scale systems but also because of the excellent performance in terms

of computational time and accuracy achieved by the FDXB solver.

Table 7.9. Mean execution time in seconds for the cases in Tab. 7.8.
Method case13659pegase case_ACTIVSg70k
CS-NR (1-rank) 0.4622 3.0370
CS-NR (J + δI, δ = 0.001) 0.5594 -
CS-NR (J + δI, δ = 0.01) 0.5543 3.3694
CS-NR (J + δI, δ = 0.1) 0.5552 3.3751
CS-FDXB (1-rank) 0.1857 1.0756
CS-FDXB (J + δI, δ = 0.001) 0.2003 1.1076
CS-FDXB (J + δI, δ = 0.01) 0.1952 1.0992
CS-FDXB (J + δI, δ = 0.1) 0.1961 1.1049
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7.6 TESTS CONSIDERING THE PROPOSED TIKHONOV’S REGULARIZATION

APPROACH

In this section, simulations and results are presented considering the regularization parameter

method. Firstly, experiments were assessed to determine the test systems’ regularization pa-

rameters. The parameters were estimated through the traditional L-curve method. Therefore,

only the Jacobian matrix and mismatch vector of the first iteration (i.e., calculations assuming

flat start estimation) were used in the process.

Fig. 7.12 highlights the L-curve for the largest model system, (i.e., case109k). In general,

twenty points are calculated to get the plot. The plot shows the L-curve represented by η × ρ

(in black) and the regularization parameter curve µ × ρ (in red). It can be verified that the

corner of L-curve is well characterized. A value range can be identified for the regularized

parameter satisfying the corner curve. Therefore, results evidence that several values of µ near

a selected µ0 are still acceptable. Considering this assumption, we estimated the approximate

value µ = 2× 10−4 for the 109k-bus system.
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Figure 7.12. L-Curve for the case109k.

The performance of the simulations with the regularized normal equation was evaluated for the

computation of the L-curves, because it involves many calculations of linear systems of type

(5.32). The computation performance in CPU time just for one specific µ in the L-curve for a

given system is exhibited in Tab. 7.10. The three forms for calculations studied in this paper

are evaluated. The standard form is for the linear system (5.32). While Implicit I and II are

those proposed in (5.36) and (5.39), respectively.
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Table 7.10. Average CPU time in seconds for three different forms of computations involving the regularized
normal equation.

Method 3012wp 3375wp 13659pegase 70k 109k
standard 0.079 0.102 0.405 3.65 2.64
Implicit I 0.093 0.109 0.403 2.83 2.78
Implicit II 0.143 0.191 0.648 4.36 4.44

From Tab. 7.8, there is a tendency for the best performance of the implicit I form in relation to

the standard. On the other hand, in our experiments, this fact was contradicted by the results

presented in tests with the largest system. In this situation, the standard form performed the

best. We justify this result considering that the largest system is generated artificially by the

interconnection of eight original case13659pegase (VéLIZ; JURADO, 2019).

For the remaining systems, the approximated regularization parameters identified from the res-

pective L-curves were 2×10−3, 5×10−3, 1×10−4, and 5×10−4 respectively, for the case3012wp,

case3375wp, case13659pegase, and case_ACTIVSg70k. It was verified that variations around

the selected value of µ do not significantly affect the PFP convergence process in the simu-

lations. Therefore, Tikhonov’s method can achieve good performance with an approximate

estimation of the regularization parameter derived from the L-curve. Another contribution

of the computation of this parameter is that it can be used to estimate the shift-δ parameter

adopted in the perturbation method presented in Section 7.4. In the previous section, the para-

meter δ is chosen empirically. Then, it is proposed to estimate it from Tikhonov’s regularization

parameter, for example, as δ ≈ √
µ.

After determining the regularization parameter, simulations were performed to compare the

proposed performance of the method, considering the numerical errors along the iterations

with other perturbation approaches. In these situations, the first iteration is executed with

the regularization parameter, which is removed from the second onward. To compare with

similar methods that adopt a perturbation in the Jacobian matrix only in the first iteration,

two techniques were used: the shift-δ technique (FREITAS; OLIVEIRA, 2023a), and a modal

approach (OLIVEIRA et al., 2023).

Simulations considering the Tikhonov’s regularized PFP, the shift-δ, and modal approaches

were performed assuming classical NR solver from the second iteration. All systems were

studied using the previously standardized parameters estimated and the shift-δ approach using
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δ =
√
µ. For the modal approach, it was suggested to use a scaling factor α = 1/

√
µ and just one

eigenvalue for all systems unless the case109k. For this latter case, moving only one eigenvalue

is insufficient to eliminate the cause of ill-conditioning. Then, for this specific experiment, it

was proposed to move sixteen eigenvalues. Fig. 7.13 shows the mismatches along the iterations

for the 109k-bus system, considering Tikhonov’s regularization, shift-δ and modal approaches.

The results indicate the approximate equivalence of the three perturbation techniques.
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Figure 7.13. Norm for Tikhonov’s regularization, shift-δ and 1-rank modal perturbation approaches.

In addition to the classical NR solver, other simulations considered from the second iteration

were the methods HKW, HKW1, HKW2, and an approximation for the NR method in which

the Jacobian matrix is frozen from the second iteration. So, the methods were labeled T-NR,

T-HKW, T-HKW1, T-HKW2, and T-NR1J, respectively. The HKW method and its modified

solver used universal parameters (TOSTADO-VÉLIZ et al., 2020a) hmin = 0.4; hmax = 1; µ =

0.06; ψ(1) = 1; ψl = 1.9; α = 500. All simulations use the first iteration result obtained from

Tikhonov’s regularized NR method. The test results for the iterations required for convergence,

assuming that the regularization parameters determined previously according to the L-curve

are shown in the Tab. 7.11. It is possible to verify that all cases are convergent, even for the

stringent situation for the solvers T-NR1J and T-HKW2. Tab. 7.12 exhibits the CPU time for

the computation of the power flow solutions considering the cases in Tab. 7.11.

From Tab. 7.12, the solvers that use frozen Jacobian reach correct solutions of the PFP and

require the smallest computational costs. This result demonstrates the efficiency of using a
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Table 7.11. Iteration number required for the base loading case of the systems, considering the respective µ
determined for each case.

Method 3012wp 3375wp 13659pegase 70k 109k
T-NR 6 6 6 6 6
T-NR1J 24 22 22 28 22
T-HKW 8 8 8 8 8
T-HKW1 8 8 8 8 8
T-HKW2 24 25 24 30 24

Table 7.12. CPU time in seconds for executing the power flows in Tab. 7.11.
Method 3012wp 3375wp 13659pegase 70k 109k
T-NR 0.327 0.371 1.431 9.645 11.74
T-NR1J 0.203 0.232 1.037 6.054 7.64
T-HKW 0.567 0.630 2.642 16.495 21.47
T-HKW1 0.451 0.495 1.860 11.626 14.49
T-HKW2 0.236 0.252 1.090 6.530 7.81

Tikhonov’s regularized parameter to compute the problem solution. The calculation of the

regularized parameter requires the estimation of the L-curve. Despite this computational cost,

how the PFP solution result is obtained is highly beneficial, considering that it is possible

to solve ill-conditioned large-scale problems. In this sense, when estimating the L-curve, we

can generally obtain it with around twenty points. This is equivalent to solving the generalized

normal equation twenty times. Then, the CPU time can be estimated from the results presented

in Tab. 7.10.

7.6.1 Impact of the reactive power limits in generators

Simulations considering operational power reactive limits of generators (MAMANDUR; BERG,

1982) for the base were performed for all test systems. The reactive power operational gene-

rator limits from the MATPOWER’s databank cases were preserved in the simulations. For

simplicity purposes, only the case considering Tikhonov’s initialization approach, with the NR

solver (T-NR), was employed for the simulations. The power reactive limit method used in the

MATPOWER was applied for simulations. The method considers an external loop (labeled

here as external iteration). It is activated when power reactive limits are violated after the

convergence of the NR solver T-NR (the internal loop and where it is dependent on Tikhonov’s

initialization iteration). The external iteration is applied until a convergence/divergence sta-

tus is verified. Those generators with violated limits are selected and converted to load (PQ
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bus) in this external iteration. The procedure is repeated until all generators meet the limit

requirements or divergence occurs.

Table 7.13 depicts the information on the convergence process for the studied five test systems.

For each system, the number of violated limits in the PV buses is monitored and inserted from

the second to ninth columns. For the external ith iteration (iteri), it is verified if the upper (U)

or/and the lower(L) limits of the PV buses are violated. In the positive case, the number of

violations is counted, and the total is included in the table, depending on whether the situation

is upper or lower.

Table 7.13. Performance of the Newton-Raphson solver with Tikhonov’s initialization procedure (T-NR) for
the base cases assuming reactive power limits in PV buses.

iter1 iter2 iter3 iter4
CASE U L U L U L U L
case3012 228 9 4 - - - - -
case3375 123 76 11 2 1 - - -
case13659 1 - - - - - - -
case70k 2190 2398 422 278 143 57 8 3
case109k 8 - - - - - - -

All base cases in Tab. 7.13 present convergence using the approach T-NR and have reactive

power limits in PV buses with violations. The most critical situation occurs for the case70k,

which converges only in the fifth iteration. Note that, for this situation, the fourth column

in the table indicates that eight upper and three lower limits were still violated, respectively.

Therefore, the fifth iteration was necessary to check whether the PV to PQ conversion for the

buses resulted in successful convergence. The results in the table demonstrate that despite

starting from a flat start estimate and hard limits in the case70k, Tikhonov’s initialization is

efficient for providing convergence in the simulation. However, this initialization is used only for

determining the iter1, because the further external iterates use the results of previous external

iterations as the initial estimate.

7.6.2 Experiments for an operational point near the maximum loading

This subsection demonstrates the ability of the proposed methodology based on Tikhonov’s

initialization used for the NR solver (T-NR) again. It evaluates the performance of the stringent

problem considering the loading until near its maximum value, λ∗, including reactive power
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limits in generators. The experiments were carried out for the three largest model systems.

The previous section showed the influence of the reactive power limits in PV buses when the

base loading cases were studied. For the situation where the systems are submitted to additional

loads and supplied generation, we have assumed that the loads PL, QL (for the base case load

PL0, QL0) maintain the same power factor. i.e., PL = PL0(1+λ), QL = QL0(1+λ), where λ ≥ 0;

and the active power in generator, Pg, are incremented by the same factor λ in such way that,

for the base case generation Pg0, Pg = Pg0(1+λ). We are distinguishing in the simulations loads

of type constant power and constant impedance Zshunt as explained further. We are assuming

that the formers always change with λ, while the latter are simulated changing or not with the

loading factor.

To determine the maximum load factor, we developed an iterative strategy starting from a

supposed λ0 < λ∗ ≈ λmax, where λmax is assumed as the maximum loading factor. In the

first stage (PART I), the empirical scheme consists in incrementing λ geometrically from an

initial point, defined by λ0, in such a way that for an iteration k, λk = λ02
k up to divergence

is detected. When this divergence is reached, say for a given kd, the procedure switches to

a second computation stage (PART II) to determine a smaller and refined value λk < λkd ,

now for iterations k > kd. However, in this second stage, the well-known bisection method is

applied, taking as extreme values the points λ for the iterates (kd−1) (convergent case) and kd

(divergent case). The iterative process stops when a tolerance error δ is reached. In this case,

an approximation for the maximum loading λ∗ ≈ λaprox is obtained. The Flowchart in Fig. 7.14

illustrates the two parts of the numerical procedure. We emphasize that the scheme is applied

similarly for simulations taking into account (or not) power reactive limits in generators.

To illustrate the determination of the effectiveness of the proposed technique using Tikhonov’s

initialization approach to the NR solver (T-NR version), simulations were assessed in the largest

model systems (case 13659, case70k, and case 109k). This means that for each point λk, the

NR solver uses the result of Tikhonov’s initialization approach, which in turn departs from a

flat start estimation of the states. Tests were done to check the effect of power reactive limits

on generators. Therefore, situations with or without limits on PV buses. For all simulations,

the iterate starts with λ0 = 0.2 and an absolute error δ = 5 × 10−4 is required for global

convergence.
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Figure 7.14. Flowchart with the procedure to determine the maximum loading factor with or without power
limits in PV buses.

In the first set of simulations, with respect to the loads, only those ones with active and reactive

constant power declared in MATPOWER were submitted to change in the loading factor λ.

Therefore, loads declared as constant impedance, Zshunt, had preserved their values for any λ.

This is justified since many shunt impedances characterized this way are sources of reactive

power. Anyway, the loading for them can also be implemented in the iterative process, as will

be done in the second set of simulations ahead. Fig. 7.15 shows plots for iterations relating to

the computations of the loading factor until near the maximum value when the generators are

free of limits in PV buses. For case 70k, the loading factor converges to λ∗ = 0.09594, while

for case109k and case13659, the convergence is verified for λ∗ = 0.09594. This latter situation,
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whose values coincide, occurs because case109k is a synthetic system generated considering the

composition of eight case13659 systems (VéLIZ; JURADO, 2019). Then, when the PV buses

are limit-free, the loading factor for both systems is the same.
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Figure 7.15. Results for the loading factor convergence for maximum loading point when the reactive power
limits in PV buses are off.

Still considering constant impedance with preserved values for any λ, Fig. 7.16 shows the

situation when all generators’ power reactive limits are considered. The convergence related

to the loading factors near its maximum value λ∗ are verified for the values 0.02151, 0.02625,

and 0.03042, respectively, for the case70k, case109k, and case13659. Note that all these limit

values are much smaller than the respective values for the cases when the reactive power limits

in generators are free. Therefore, this is an important result since it demonstrates that the

effectiveness of the initialization procedure based on Tikhonov’s approach also works properly

even for hard situations near the maximum loading factor. Furthermore, it proves what is

already well known in the technical literature that the results of the load flow problem only

make sense if the operational limits of equipment are considered. In the particular case studied

in this paper, the limit evaluated was only for generators (reactive power in PV buses).

Now, a second set of experiments considering changes with the loading factor of loads of type

constant impedance, Zshunt, such as they are declared in MATPOWER was performed. Table

7.14 summarizes the limit factor λ∗ for this load type with and without modification using

λ. Results of the first experiment set, where Zshunt is insensitive to λ, are informed again in

columns four and five of the table.



7.6 – Tests considering the proposed Tikhonov’s regularization approach 117

0 2 4 6 8 10 12

iteration

0.02

0.025

0.03

0.035

0.04

λ
70k-bus

 109k-bus

13659-bus

Figure 7.16. Results for the loading factor convergence for maximum loading when the reactive power limits
in PV buses are activated.

Table 7.14. Performance of the Newton-Raphson solver with Tikhonov’s initialization procedure (T-NR) for
the base cases assuming reactive power limits and impedance load type Zshunt changing with the loading.

Zshunt changing Zshunt fixed
CASE limit free limit in PV limit free limit in PV
case13659 0.061015 0.032539 0.056563 0.03042
case70k 0.099297 0.023825 0.09594 0.02151
case109k 0.061015 0.028135 0.056563 0.02625

From Tab. 7.14, imposing Zshunt changing with λ allows a loading factor higher than the case

for a fixed value. However, the changes are not significant for both with or without reactive

power limits in PV buses. On the other hand, the existence of this type of support of shunt

reactive power alleviates the reactive power produced by the generators and is beneficial for

incrementing the system transmission capacity, even by a small amount as observed in the

table.

We also followed the evolution of the convergence process in detail for the case where the value

of λ∗ is calculated for case70k. The reactive power limits are assumed in the generators. The

step-by-step process is illustrated through the results shown in Tab. 7.15. Again, the iterative

process is used to determine the maximum loading factor by adopting the Newton-Raphson

solver with Tikhonov’s initialization procedure (T-NR). The results in the table correspond to

the black curve in Fig. 7.16. However, the table exhibits additional details, such as the number

of violated limits for each external PFP iteration. In the table, iteri stands for an external

iteration of the PFP, for verifying whether the upper (U) or/and lower (L) limits are violated.
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In the first column of Tab. 7.15, the loading factor λ is monitored at each iteration k. The result

in each table row shows the number of limits violated in PV buses according to the iteration

iteri for an external loop of the T-NR solver. Hence, the table illustrates the convergence for

λ and the power reactive limits in PV buses.

Table 7.15. Iterative process illustration for determining the maximum loading factor adopting the Newton-
Raphson solver with Tikhonov’s initialization procedure (T-NR) assuming reactive power limits and a loading
factor λ for the case 70k.

iter1 iter2 iter3 iter4 iter5 iter6 iter7
λk U L U L U L U L U L U L status
0.02 2478 2156 603 198 127 34 26 1 1 - - - conv
0.04 2720 1992 - - - - - - - - - - div
0.03 2612 2087 651 161 - - - - - - - - div
0.025 2542 2126 621 179 173 32 - - - - - - div
0.0225 2511 2140 607 189 153 30 31 1 - - - - div
0.02125 2504 2152 601 196 125 30 36 3 5 - - - conv
0.0219 2505 2148 606 194 138 29 39 1 17 - - - div
0.0216 2504 2148 605 194 130 29 43 9 - - - - div
0.0214 2504 2149 604 196 127 28 40 5 7 - 1 - conv
conv: convergence; div: divergence.

A description of the results can be done as follows. Following the flowchart according to PART

I in Fig. 7.14, an initial value assigned for the loading factor was established as λ0 = 0.02. Six

external iterations (reactive power limit iterations) were necessary to converge (see the row in

the table corresponding to λ0). The second iteration, k = 1, calculated the loading factor as

λ1 = 0.02 × 21. However, the iteration with limits diverges for the second external iteration

(iter2). Then, the algorithm switches to the PART II, considering λ2 = (0.2 + 0.4)/2 = 0.03.

But, this iteration for λ2 is also divergent. The iterations continue, and for λ5 = 0.2125, the

iterative process converges again, with an absolute error δ = 0.00125, requiring six iterations

to converge to the reactive power limits. Finally, after three more iterations on λ, i.e., for

λ8 = 0.0214, the convergence is verified with δ = 2× 10−4, converging in the seventh external

iteration of the PFP.

The plots and table results demonstrate the efficiency of the NR solver when initialized with

just one iteration of Tikhonov’s approach, even considering flat start estimation for determining

this initialization. The problem was investigated even for stringent conditions in this section,

such as the loading near its maximum allowable value and constrained limits in PV buses.
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7.7 TESTS CONSIDERING THE USE OF DIRECT AND ITERATIVE METHODS

This section details the results of the simulations performed with the direct and iterative

methods discussed in Chapter 3. The main objective is to evaluate the performance of these

approaches in scenarios that use the Tikhonov and δ perturbation strategies. This perturbation

strategy was applied exclusively during the first iteration of the solution process. Therefore,

for the subsequent iterations, the traditional Newton-Raphson (NR) method was used. For the

solution of the linear system involving the Jacobian matrix and mismatches both the direct and

iterative linear solvers were applied and their performance was evaluated. The linear system

was solved directly through the command dx = −J\F and also using the LU factors obtaining

via LU factorization in MATLAB’s lu function. The iterative linear methods analyzed inclu-

ded GMRES, BiCG, BiCGStab, and a method called Conjugate Gradient Squared (CGS), all

of them using codes available in MATLAB®. Unlike BiCG, which uses the residual and its

conjugate, CGS avoids using the transpose of the coefficient matrix by working with a squared

residual (BARRETT et al., 1994). These methods were studied for the two reordering schemes

AMD and RCM, which have been extensively studied in solving large-scale power flow problems

(FERNANDES, 2014).

Table 7.16 presents the results of the direct methods in simulations involving the three largest

systems studied. Two main approaches were analyzed: the first, referred to as T-NR, using

Tikhonov’s regularization for the first iteration as defined in (5.36), followed by the traditional

NR method in subsequent iterations. The second approach, CS-NR, incorporates a conditioning

step described in Option I of Section 6.2. For all cases, the computational time presented in

the table corresponds only to the time required to solve the linear system, directly or through

the LU method, without considering the conditioning step. Each simulation was repeated

100 times, and the average computational time was calculated. The standard deviation of

the measurements is shown in parentheses. The computational cost for the first iteration

(perturbation approaches) was already presented in Tables 7.7 and 7.10. The LU factorizations

demonstrated a lower computational cost slight better than the direct computation of dx =

−J\F in both approaches. This highlights an efficiency almost equivalent in both cases, even

for large-scale systems.

Table 7.17 presents the simulation results for the iterative linear methods GMRES, CGS, BiCG,
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Table 7.16. Average CPU time in seconds for solving power flow problems using direct methods, with standard
deviation shown in parentheses for 100 iterations.

Method 13659pegase 70k 109k
T-NR (Direct) 0.3228 (0.0325) 2.0842 (0.2135) 2.7053 (0.2712)
T-NR (LU) 0.3141 (0.0317) 2.0531 (0.2066) 2.6175 (0.2611)
CS-NR (Direct) 0.3214 (0.0321) 2.0676 (0.2083) 2.6905 (0.2792)
CS-NR (LU) 0.3134 (0.0314) 2.0656 (0.2109) 2.5985 (0.2602)

and BiCGStab, employing the incomplete LU (ILU) preconditioner generated using MATLAB’s

ilu function. These simulations also consider the application of AMD and RCM reorderings to

improve convergence efficiency. The conditioning step used was based on the PFP Tikhonov’s

regularization approach for the 1st iteration.

Table 7.17. Average CPU time in seconds for solving power flow problems using iterative linear methods with
their respective reorderings, and the standard deviation shown in parentheses for 100 iterations.

Reord. Method System
13659pegase 70k 109k

RCM

GMRES 0.4448 (0.0446) 11.8127 (1.6642) 5.4479 (0.5528)
CGS 0.4892 (0.0502) 13.3543 (1.3485) 5.3444 (0.5477)
BiCG 0.6771 (0.0708) 15.0637 (1.5137) 8.1833 (0.8655)
BiCGStab 0.4326 (0.0433) 11.8969 (1.2044) 4.6242 (0.4674)

AMD

GMRES 0.2271 (0.0231) 2.0788 (0.2244) 2.6241 (0.2677)
CGS 0.2296 (0.0261) 2.1306 (0.2201) 2.4284 (0.2503)
BiCG 0.3070 (0.0318) 2.8933 (0.2984) 4.1944 (0.4327)
BiCGStab 0.2100 (0.0212) 1.8781 (0.2072) 2.1020 (0.2135)

From the results obtained, it was observed that the best performance was achieved by combining

the BiCGStab method with AMD reordering. For the 70k-bus system, this combination resulted

in a computational time reduction of up to 81% when compared to the use of RCM reordering

with the same method. Additionally, across all analyzed scenarios, the BiCGStab method

converged with the lowest computational cost and the smallest standard deviation, highlighting

its consistency and efficiency.

The CGS and GMRES methods, when combined with AMD reordering, also delivered results

that were very close in performance to those of BiCGStab. This suggests that when combined

with an efficient reordering strategy like AMD, these iterative solvers are also well-suited for

solving large-scale ill-conditioned power flow problems.

On the other hand, the use of RCM reordering was proved inefficient in terms of computational

cost when addressing ill-conditioned, large-scale systems. This indicates that RCM may offer



7.8 – Final Considerations 121

benefits in some contexts, but is less effective for the specific challenges posed by this type of

power flow problem.

A comparison of the results obtained using direct and iterative linear solvers, as shown in

Tables 7.16 and 7.17, respectively, reveals that the iterative linear system based on BiCGStab

and AMD reordering scheme performs better. A reduction of about 25 % on the computational

burden is verified for the largest system and the T-NR solver (ratio 2.6175/2.102). Although

the differences in performance are not significant for the technical evaluations of the proposed

techniques in this work, we have retained all previous results obtained using the direct method,

as discussed in the earlier sections, for the assessment of the convergence performance of the

PFP methods.

7.8 FINAL CONSIDERATIONS

This section presented various numerical results aimed at validating the current PFP solvers.

Several large-scale ill-conditioned systems were considered for this purpose, analyzing the per-

formance of the methods in terms of the number of iterations required for convergence, as

well as the CPU time, different loading conditions, and the impact of reactive power limits on

generators.

Also, a study about the employment of iterative linear systems was conducted revealing the su-

perior performance of techniques such as BICGStab and CGS to solve the PFP in ill-conditioned

large-scale power system models.

The main conclusions of this chapter can be summarized as follows:

• A hybrid method approach was investigated, whose states were calculated in the first

step using the NR method and utilized as an estimate for an iterative method (IM) in

the second step. Solvers such as classical NR and its decoupled version converged quickly

after using the first step from the homotopy-based method. However, applying the full

homotopy solver (full-H) directly in PFP demands a high computational cost;

• Simulations involving three perturbation options of the Conditioning Step approach were

investigated. It was verified that perturbation option III performed slightly better than
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the others for the largest power system models. The results indicated that the proposed

conditioning strategy significantly improves the convergence process of iterative techni-

ques used to solve large-scale, ill-conditioned PFPs. This includes the classical Newton-

Raphson method, which failed to obtain a solution for all systems studied without CS

and flat start estimation;

• The proposed modal-based Jacobian matrix perturbation method for detecting the pri-

mary cause of ill-conditioning in the PFP also offers an efficient alternative for addressing

this issue. Despite requiring the calculation of the smallest eigenvalue and the corres-

ponding right and left eigenvectors of the Jacobian matrix, the results demonstrated the

robust performance of the modal-based approach when applied exclusively to the initial

iteration of the PFP, surpassing the computational efficiency of the shift -δ method; and

• Finally, the partial regularization method proved to be a robust methodology for solving

the ill-conditioned PFP, comparable to the modal approach, achieving convergence in

all analyzed scenarios. The main disadvantage observed was the computational cost

associated with determining the regularization parameter, µ, which was higher compared

to the cost of solving the nonlinear problem. However, given the ill-conditioned nature

of the problem, the benefits of using the method outweighs the global computations cost

required. It is worth noting that the calculation of the regularization parameter for the

Tikhonov’s method is also suitable for estimating parameters used in other pertubation

techniques.



CHAPTER 8

CONCLUSIONS AND FUTURE WORKS

8.1 GENERAL CONCLUSIONS

In this Ph.D. thesis, several PF solvers based on hybrid strategies and perturbations of the

Jacobian matrix applied from the initial iteration were studied and developed. These methodo-

logies aim to efficiently solve ill-conditioned cases where the Newton-Raphson method fails to

converge when initialized with a flat start. Extensive numerical results were presented, demons-

trating the performance of the proposed methods applied in large-scale ill-conditioned systems

under various loading scenarios and assessing the associated computational costs. Furthermore,

the impact of reactive power limits on generators was examined, highlighting their influence

on system behavior and the robustness of the solutions obtained. Additionally, a study on

iterative linear solvers revealed that techniques such as BICGStab and CGS outperform other

methods in solving the PFP for large-scale power system models, particularly when combined

with AMD reordering. Lastly, the main conclusions of this work are presented in the following.

For a Two-step Hybrid method, it was demonstrated that the first step of the hybrid technique

acts as a virtual enabler, effectively expanding the original convergence region of attraction

for the flat start estimate. In the first step of the method, a homotopy-based solver was

implemented to determine a low-accuracy solution, which was improved by using the second

step. Simulations performed on systems ranging from 3,012 to 70,000 buses confirmed that all

methods in the second stage employing this approach successfully solved the PFP under base

loading conditions. Regarding computational costs, solvers such as the classical NR method and

its decoupled variant used in the second step achieved fast convergence after incorporating the

initial step of the homotopy-based method. However, it was also shown that directly applying

the full homotopy solver (full-H) to calculate a high-precision solution for the PFP involves

significantly higher computational costs.
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The second proposed approach, the Conditioning Step, consisted of modifying the initial esti-

mate of the iterative method through a process involving the Jacobian matrix calculated for

the initial estimate. The Jacobian matrix formed a perturbed linear system whose resultant

perturbed matrix had a better condition number. Three options were proposed to implement

the perturbed form. Among these, perturbation option III demonstrated slightly better per-

formance for the largest power system models. In general, the results confirmed that the

proposed conditioning strategy significantly enhances the convergence process of iterative te-

chniques when applied to large-scale, ill-conditioned PFPs. In particular, the CS-NR method

demonstrated exceptional performance, successfully solving the PFP in all scenarios with the

fewest number of iterations.

A proposed modal-based Jacobian matrix perturbation method demonstrated that the primary

cause of the ill-conditioning problem was associated with the smallest magnitude eigenvalue

of the first iteration of the Jacobian PF matrix. Additionally, a procedure was proposed to

address this problem by shifting the smallest magnitude eigenvalue of the Jacobian matrix

away from zero. For this purpose, the smallest eigenvalue and its respective right- and left-

eigenvectors were computed. Then, a 1-rank perturbation matrix formed with this partial

eigendata was added to the Jacobian matrix. Finally, an approximation for the deviation

of states was efficiently computed, considering the same mismatches determined for the first

iteration. The results demonstrated the robust performance of the modal-based approach when

applied exclusively to the initial iteration of the PFP, surpassing the computational efficiency

of the shift -δ method. Furthermore, the results obtained suggest that the modal study for the

first iteration of the PFP and other applications may be promising research in the direction of

solving the ill-conditioning also in nonlinear problems at all.

A method based on Partial Tikhonov’s Regularization was also employed as a conditioning step,

applied exclusively to the initial iteration of the PFP. In this approach, the subsequent itera-

tions utilized the result of a regularized normal equation, where the regularization parameter,

µ, was selected using the traditional L-curve technique. From the second iteration onward,

various iterative methods, including NR, HKW, and their variants, were applied successfully,

all of which achieved the PFP solution, even for a 109,000-bus system. However, a disadvan-

tage presented by the method was the computational cost associated with determining the
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regularization parameter µ, which was higher than the cost of solving the nonlinear problem.

However, given the ill-conditioning characteristics of the problem, the benefits of employing

this method outweigh the overall computational costs. Additionally, it is worth highlighting

that the process of determining the regularization parameter in the Tikhonov’s method is well-

suited for estimating parameters used in other perturbation methods, as discussed in Section

7.6. This compatibility further underscores the versatility and potential applications of the

Tikhonov-based conditioning approach.

8.2 SUGGESTION FOR FUTURE WORKS

The methodologies presented in this work open several paths for future research and develop-

ment. These potential directions can be outlined as follows:

• Investigate optimized strategies for determining the regularization parameter µ, aiming to

minimize its computational overhead while maintaining accuracy and stability in solving

the PFP with partial Tikhonov’s Regularization;

• Explore alternative matrix reordering techniques, such as spiral reordering, combined

with iterative linear solvers, to assess their impact on the computational cost of solving

the PFP for large and ill-conditioned systems;

• Implement other forms of computations for the partial solution in the hybrid method and

extend the network modeling to include other devices and controls;

• Investigate the modal-based approach while considering multi-shift strategies to account

for a larger number of eigenvalues being shifted from near zero;

• Extension of investigations of the PFP regarding critical loading scenarios based on frac-

tional calculus theory, as preliminarily studied in (FREITAS; OLIVEIRA, 2024).
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APÊNDICE A

HANDLING COMPLEX NUMERICAL EXPRESSION
FOR THE RESOLUTION OF THE POWER FLOW

PROBLEM

This appendix details the complex expression used by its team to implement the power flow

in MATPOWER. The expressions are basics for the computation of both matrix Jacobian and

mismatches. However, all results are used in real and imaginary form to perform the power

flow problem iteration calculations (ZIMMERMAN, 2010).

A.1 MAKESBUS FUNCTION

The function makeSbus() builds the vector of complex bus power injections. The syntax used

in the program is presented below.

SBUS = makeSbus(BASEMVA, BUS, GEN, MPOPT, VM, SG): returns the vector of complex bus

power injections, that is, generation minus load. Power is expressed in per unit. In which:

BASEMVA: Value specifying the system MVA base used for converting power into per unit quan-

tities.

BUS: Vector corresponds to the buses of the system.

GEN: Vector corresponds to the PV bus types of the system.

MPOPT: MATPOWER options struct to override default options can be used to specify the

solution algorithm, output options termination tolerances.

VM: Vector of voltage magnitudes

SG: Complex power of generation buses.

If the MPOPT and VM arguments are present it evaluates any ZIP loads based on the provided

voltage magnitude vector. If VM is empty, it assumes nominal voltage. If SG is provided, it is
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a complex ng x 1 vector of generator power injections in p.u., and overrides the PG and QG

columns in GEN, using GEN only for connectivity information. Another syntax used for the

function is presented below.

[SBUS, DSBUS_DVM] = MAKESBUS(BASEMVA, BUS, GEN, MPOPT, VM) : With two output ar-

guments, it computes the partial derivative of the bus injections with respect to voltage mag-

nitude, leaving the first return value SBUS empty. If VM is empty, it assumes no voltage

dependence and returns a sparse zero matrix.

A.2 DSBUS_DV FUNCTION

The function dSbus_dV() is used in the MATPOWER to evaluate the partial derivatives of

Sbus with respect to V, where V represents the complex bus voltages. These derivatives are

later used to construct the Jacobian matrix within the newtonpf.m code. Below, the main

function and variables associated with the dSbus_dV code are described:

[dSbus_dV1, dSbus_dV2] = dSbus_dV(YBUS, V, vcart): When vcart = 1, the function

returns two matrices containing the partial derivatives of the complex bus power injections

with respect to the real and imaginary parts of the voltage, respectively, for all buses. In

which:

dSbus_dV1 corresponds partial derivative of the complex bus power injections with respect to

the real part of the voltage;

dSbus_dV2 corresponds partial derivative of the complex bus power injections with respect to

the imaginary part of the voltage.

A.3 NEWTONPF FUNCTION

The function newtonpf is an implementation of the Newton-method power flow solver. To

construct the Jacobian matrix, the following functions are used:

[dSbus_dVm, dSbus_dVa] = dSbus_dV(Ybus, V);

[dummy, neg_dSd_dVm] = Sbus(Vm);
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dSbus_dVm = dSbus_dVm - neg_dSd_dVm;

These functions were introduced in Sections A1 and A2 and then the real and imaginary parts

of the dSbus_dVm function are used to construct the Jacobian matrix.


