

Language Independent Text Summarizer

and Deep Self-Organizing Cube

Ahmed Abdelfattah Saleh Sherif

Tese De Doutorado em Sistemas Mecatrônicos

Programa de Pós-Graduação em Sistemas Mecatrônicos (PPMEC)

Departamento de Engenharia Mecânica – ENM

Orientador

Prof. Dr. Li Weigang

FACULDADE DE TECNOLOGIA

UNIVERSIDADE DE BRASÍLIA

Brasília

2022

Universidade de Brasília - UnB

Programa de Pós-Graduação em Sistemas Mecatrônicos - PPMEC

Departamento de Engenharia Mecânica – ENM

Language Independent Text Summarizer

and Deep Self-Organizing Cube

Ahmed Abdelfattah Saleh Sherif

Tese de Doutorado Acadêmico submetida ao Programa de Pós-graduação

(PPMEC) em Sistemas Mecatrônicos do Departamento de Engenharia

Mecânica da Faculdade de Tecnologia da Universidade de Brasília, como

Parte dos Requisitos Necessários para a Obtenção do Grau de Doutor em

Sistemas Mecatrônicos.

Aprovada por:

Prof. Dr. Li Weigang (Orientador)

CIC/UnB

Prof. Dr. Paulo Cesar Costa

(membro externo)

George Mason University, USA

Prof. Dr. Daniel Oliveira Cajueiro

(membro interno)

FACE/UnB

Prof. Dr. Peng Wei

(membro externo)

George Washington University

Prof. Dr. Daniel Mauricio Munoz Arboleda

(membro suplente)

ENM/UnB.

Brasília, 1 de Dezembro de 2022

Acknowledgement

I owe my deepest gratitude to my supervisor Prof. Dr. Li Weigang for

his continuous support and advice since the first Artificial Intelligence

course I took with him. He inspired me greatly to work in the field of

Artificial Intelligence and to continue pursuing my academic and

knowledge advancement.

Deep and special thanks as well to Mr. ambassador Hossam Zaki,

Deputy Secretary-General of the Arab League, for his great support and

continuous encouragement for me to work on my Ph.D. during his mission

as the ambassador of Egypt to Brazil.

At last and kindly, I would like to thank all my family members for

their continuous support, persistent help, encouragement and sincere

prayers.

Ahmed A. Saleh

2022

Resumo

O rápido desenvolvimento da Internet e o crescimento exponencial de dados em

texto na web trouxe desafios consideráveis para tarefas relacionadas ao gerenciamento

de texto, classificação e recuperação de informações. Nesta tese, propomos dois novos

modelos independents de domínio, com o objetivo de melhorar o desempenho da

generalização nas áreas de Processamento de Linguagem Natural (NLP) e Deep

Learning (DL), para enfrentar os desafios impostos pelo grande crescimento de dados

e a necessidade de extrair informação adequada e melhorar a inferência de

conhecimento. Ambos os modelos adotam uma abordagem direta, porém eficiente, que

depende da extração de características intrínsecas nos dados modelados, a fim de

realizar sua tarefa pretendida de forma totalmente independente do domínio. A

estratégia de avaliação de desempenho aplicada nesta tese visa testar o modelo em um

conjunto de dados de referência e então comparar os resultados obtidos com os modelos

padrão existentes. Além disso, os modelos propostos são testados contra modelos de

última geração apresentados na literature, para o mesmo conjunto de dados de

referência.

No domínio da NLP, a maioria das técnicas de resumo de texto na literatura

dependem, de uma forma ou de outra, de léxicos pré-estruturados dependentes da

linguagem, bancos de dados, marcadores (taggers) e/ou parsers. Tais técnicas

requerem um conhecimento prévio da linguagem do texto que está sendo resumido.

Nesta tese, propomos uma nova ferramenta de resumo, UnB Language Independent

Text Summarizer (UnB-LITS), que é capaz de resumir um texto de maneira

independente do idioma. O modelo proposto baseia-se em características intrínsecas do

texto que está sendo resumido e não de seu idioma e, portanto, elimina a necessidade

de léxicos, bancos de dados, e marcadores ou parsers que dependem do idioma. Dentro

dessa ferramenta, desenvolvemos uma forma inovadora de codificar as formas dos

elementos do texto (palavras, n-grams, frases e parágrafos), além de propor algoritmos

independentes de linguagem, capazes de normalizar palavras e performar derivações

relativas ou lematização. Os algoritmos propostos e sua rotina Shape-Coding permitem

que a ferramenta UnB-LITS extraia características intrínsecas dos elementos do

documento e os pontue estatisticamente para obter um resumo extrativo representativo

independente da linguagem do documento. O modelo proposto foi aplicado em

diferentes conjuntos de dados referência, em inglês e português, e os resultados foram

comparados com doze abordagens consideradas de ponta pela literatura recente. Além

disso, o modelo foi aplicado em conjuntos de dados de notícias em francês e espanhol,

e os resultados foram comparados aos obtidos por ferramentas comerciais padrão. O

UnB-LITS apresentou uma melhor performance do que todas as abordagens de última

geração, bem como quando comparado às outras ferramentas comerciais nos quatro

idiomas, mantendo a sua natureza independente à linguagem.

Por outro lado, a tarefa de classificação multidimensional (MDC) pode ser

considerada a descrição mais abrangente de todas as tarefas de classificação, pois une

vários espaços de classe e seus vários membros de classe em um único problema de

classificação composta. Os desafios no MDC surgem das possíveis dependências de

classe em diferentes espaços. E também do desequilíbrio de rótulos em conjuntos de

dados de treinamento devido à falta de todas as combinações possíveis. Nesta tese,

propomos um classificador de aprendizado profundo MDC que conta com uma

natureza simples mas eficiente, chamado “Deep Self-Organizing Cube” ou “DSOC”

que pode modelar dependências entre classes, enquanto consolida sua capacidade de

classificar combinações raras de rótulos. O DSOC é formado por dois componentes n-

dimensionais: o classificador de hipercubo (hypercube) e as múltiplas redes neurais

DSOC conectadas ao hipercubo. O componente de múltiplas redes neurais é

responsável pela seleção de recursos e segregação de classes, enquanto o classificador

hipercubo é responsável por criar a semântica entre vários espaços de classe e acomodar

o modelo para classificação de amostras raras. O DSOC é um algoritmo de aprendizado

de várias saídas que classifica amostras com sucesso em todos os espaços de classe, de

maneira simultanea. Para desafiar o modelo DSOC proposto, realizamos uma avaliação

em dezessete conjuntos de dados de referência nos quatro tipos de tarefas de

classificação: binário, multiclasse, multi-rótulo e multidimensional. Os resultados

obtidos foram comparados com quatro classificadores padrão e oito abordagens

competitivas de última geração relatadas na literatura. O DSOC alcançou desempenho

superior em relação aos classificadores padrão, bem como as abordagens de última

geração em todas as quatro tarefas de classificação. Além disso, em termos de métricas

de precisão exata (Exact Match), o DSOC performou melhor do que todas as

abordagens de última geração em 77,8% dos casos, o que reflete a capacidade superior

do DSOC de modelar dependências e classificar, com sucesso, as amostras raras em

todas as dimensões de maneira simultanea.

Palavras-chave: Summarization extractivas; Aprendizagem profunda; Classificador

de Aprendizagem Profundo; Cubos Profundos de Auto-Organização; DSOC; Idioma

Independente Summarization; UnB-LITS.

Abstract

The rapid development of the Internet and the massive exponential growth in web

textual data has brought considerable challenges to tasks related to text management,

classification and information retrieval. In this thesis, we propose two novel domain

agnostic models, aiming at improving the generalization performance in the fields of

Natural Language Processing (NLP) and Deep Learning (DL), to address the challenges

imposed by the massive growth in data and the need for proper information retrieval

and knowledge inference. Both models adopt a straightforward, yet efficient,

approaches that depend on extracting intrinsic features in the modeled data, in order to

perform their intended task in a totally domain agnostic manner. The performance

evaluation strategy applied in this thesis aims at testing the model on benchmark dataset

and then compare the obtained results against those obtained by the standard models.

Moreover, the proposed models are challenged against state-of-the-art models

presented in literature for the same benchmark dataset.

In NLP domain, the majority of text summarization techniques in literature depend,

in one way or another, on language dependent pre-structured lexicons, databases,

taggers and/or parsers. Such techniques require a prior knowledge of the language of

the text being summarized. In this thesis, we propose a novel extractive text

summarization tool, UnB Language Independent Text Summarizer (UnB-LITS), which

is capable of performing text summarization in a language agnostic manner. The

proposed model depends on intrinsic characteristics of the text being summarized rather

than its language and thus eliminates the need for language dependent lexicons,

databases, taggers or parsers. Within this tool, we develop an innovative way of coding

the shapes of text elements (words, n-grams, sentences and paragraphs), in addition to

proposing language independent algorithms that are capable of normalizing words and

performing relative stemming or lemmatization. The proposed algorithms and its

Shape-Coding routine enable the UnB-LITS tool to extract intrinsic features of

document elements and score them statistically to extract a representative summary

independent of the document language. The proposed model was applied on an English

and Portuguese benchmark datasets, and the results were compared to twelve state-of-

the-art approaches presented in recent literature. Moreover, the model was applied on

French and Spanish news datasets, and the results were compared to those obtained by

standard commercial summarization tools. UnB-LITS has outperformed all the state-of-

the-art approaches as well as the commercial tools in all four languages while

maintaining its language agnostic nature.

On the other hand, Multi-dimensional classification (MDC) task can be

considered the most comprehensive description of all classifications tasks, as it

joins multiple class spaces and their multiple class members into a single compound

classification problem. The challenges in MDC arise from the possible class

dependencies across different class spaces, as well as the imbalance of labels in

training datasets due to lack of all possible combinations. In this thesis, we propose

a straightforward, yet efficient, MDC deep learning classifier, named “Deep Self-

Organizing Cube” or “DSOC” that can model dependencies among classes in

multiple class spaces, while consolidating its ability to classify rare combinations

of labels. DSOC is formed of two n-dimensional components, namely the

Hypercube Classifier and the multiple DSOC Neural Networks connected to the

hypercube. The multiple neural networks component is responsible for feature

selection and segregation of classes, while the Hypercube classifier is responsible

for creating the semantics among multiple class spaces and accommodate the model

for rare sample classification. DSOC is a multiple-output learning algorithm that

successfully classify samples across all class spaces simultaneously. To challenge the

proposed DSOC model, we conducted an assessment on seventeen benchmark

datasets in the four types of classification tasks, binary, multi-class, multi-label and

multi-dimensional. The obtained results were compared to four standard classifiers and

eight competitive state-of-the-art approaches reported in literature. The DSOC has

achieved superior performance over standard classifiers as well as the state-of-the-art

approaches in all the four classification tasks. Moreover, in terms of Exact Match

accuracy metrics, DSOC has outperformed all state-of-the-art approaches in 77.8% of

the cases, which reflects the superior ability of DSOC to model dependencies and

successfully classify rare samples across all dimensions simultaneously.

Keywords: Extractive Summarization; Deep Learning, Deep Learning Classifier;

Deep Self-Organizing Cube; DSOC; Language Independent Summarization; UnB-

LITS.

Contents

Resumo ... i

Abstract ... iii

List of Figures ... viii

List of Tables .. x

List of Abbreviations .. xii

Chapter 1: Introduction .. 1

1.1 Overview .. 2
1.1.1 Language Agnostic Text Summarizer ... 2

1.1.1.1 Natural Language Processing (NLP) ... 2
1.1.2 Deep Learning Classifier ... 3

1.1.2.1 Multi-dimensional Classification .. 4

1.2 The Research Objective ... 5
1.2.1 Language Agnostic Text Summarizer ... 6

1.2.1.1 Problem Statement .. 6
1.2.1.2 Proposed Solution ... 6

1.2.2 Deep Learning Classifier ... 7
1.2.2.1 Problem Statement .. 7
1.2.2.2 Proposed Solution ... 7

1.3 Software ... 8

1.4 Contributions of the Thesis .. 8
1.4.1 Language Agnostic Text Summarizer ... 8

1.4.2 Deep Learning Classifier ... 8

1.5 Thesis Structure ... 9

Chapter 2: Literature Review and Related Work .. 11

2.1 Automatic Text Summarization ... 11

2.1.1 ATS Preprocessing Tools .. 12
2.1.2 Challenges in ATS ... 13
2.1.3 Categories of Extractive ATS .. 14

2.1.3.1 Statistical based Approaches .. 14
2.1.3.2 Topic-based Approaches .. 15
2.1.3.3 Graph-based Approaches ... 15
2.1.3.4 Machine Learning based Approaches .. 16
2.1.3.5 Discourse-based Approaches ... 16

2.2 Multi-dimensional classification .. 17
2.2.1 Binary Relevance Approach .. 17

2.2.2 Feature Manipulation approaches .. 17
2.2.3 Challenges in MDC.. 18
2.2.4 MDC Applications ... 18

Chapter 3: A Language Agnostic Text Summarization Model (UnB-LITS) ... 20

3.1 Document Elements ... 21
3.1.1 Paragraphs .. 22
3.1.2 Sentences .. 22
3.1.3 N-grams.. 22
3.1.4 Words ... 23

3.2 Shape Coding ... 23
3.2.1 Shape-Coding of Words and N-grams ... 24
3.2.2 Shape-Coding of Sentences .. 28
3.2.3 Shape-Coding of Paragraphs .. 31

3.3 Features Extraction .. 34

3.3.1 Words Scoring and Features Extraction.. 35
3.3.1.1 Process of Word Features Extraction ... 36
3.3.1.2 A Working Example .. 43

3.3.2 N-grams scoring and Features Extraction .. 46
3.3.2.1 Process of N-grams Features Extraction ... 48
3.3.2.2 A Working Example .. 51

3.3.3 Sentences Scoring and Features Extraction .. 55
3.3.4 Paragraphs Scoring and Features Extraction 62

3.4 Extract the Summary.. 62
3.4.1 A Working Example .. 63

Chapter 4: Performance Evaluation of the language agnostic summarizer (UnB –LITS) .. 65

4.1 The Experiment .. 65

4.1.1 Datasets .. 65
4.1.2 Parameters Selection .. 66

4.1.3 Evaluation Metrics ... 66
4.1.4 Compared Approaches ... 67

4.2 Results and Discussions ... 67

4.2.1 Reference Case Study .. 67
4.2.2 Comparing to State-of-the-Art approaches .. 72

4.2.3 Applying UnB-LITS on Spanish and French datasets 76

Chapter 5: Deep Self-Organizing Cube (DSOC) .. 77

5.1 Deep Self-Organizing Cube (DSOC)... 77
5.1.1 DSOC components ... 78

5.1.1.1 The DSOC Hypercube Classifier .. 78
5.1.1.2 The Deep Neural Network Component ... 79

5.1.2 Designing the DSOC model ... 82
5.1.2.1 Number of Dimensions (n) .. 82
5.1.2.2 Dimension Size (C) ... 82
5.1.2.3 The Alpha parameter (α) .. 83

5.1.3 Deciding the Training Parameters of the DSOC Model 83
5.1.3.1 Number of Iterations or Epochs (h) .. 83
5.1.3.2 Learning Rate (R) ... 83
5.1.3.3 The Neighborhood Distance (nD) .. 84

5.1.4 Model Training .. 85
5.1.4.1 Updating the weights vectors (wn) ... 85
5.1.4.2 Build the probabilistic model and construct the Hypercube Classifier 86

5.1.5 Classify Future samples ... 87

Chapter 6: Performance Evaluation of Deep Self-Organizing Cube (DSOC) 89

6.1 Experiment ... 89
6.1.1 Benchmark Datasets .. 89
6.1.2 Parameter Selection ... 89
6.1.3 Evaluation Metrics ... 91
6.1.4 Performance Assessment ... 91

6.2 Results and Discussions ... 92

6.2.1 Comparison to Standard Classifiers .. 97

6.2.2 Comparisons to the state-of-the-art methods 99
6.2.3 Collective Performance Remarks .. 102

Chapter 7: Conclusion and Future Work ... 104

7.1 Conclusion on Language Agnostic Text Summarization Model (UnB-LITS) . 104

7.2 Conclusion on Deep Self-Organizing Cube (DSOC) 105

7.3 Future Work ... 106

REFERENCES ... 108

List of Figures

Figure 1. Different classification tasks, where m is the number of class variables and k

is the number of possible values per class variable. [20] 5

Figure 2. Generalized Automatic text summarizer architecture for (a) Single-document

or (b) Multi-document [6]. ... 11

Figure 3. Abstractive summarization framework. .. 12

Figure 4. The hierarchal relation between document elements 21

Figure 5. Process of word features extraction and Word Score (WS) computation. ... 36

Figure 6. Extracting n-Grams and computing their scores (nGS). 47

Figure 7. Unigram frequency graph for encoded word shapes. 70

Figure 8. Word frequency graph for article WSJ880912-0064 70

Figure 9. ROUGE-1 results for UnB-LITS against state-of-the-art approaches applied

on DUC 2002 benchmark dataset. ... 73

Figure 10. ROUGE-2 results for UnB-LITS against state-of-the-art approaches applied

on DUC 2002 benchmark dataset. ... 74

Figure 11. ROUGE-1 results for UnB-LITS against state-of-the-art approaches applied

on Temario Portuguese benchmark dataset. .. 75

Figure 12. ROUGE-2 results for UnB-LITS against state-of-the-art approaches applied

on Temario Portuguese benchmark dataset. .. 75

Figure 13. A three-dimensional hypercube classifier of size (C1 × C2 × C3). a)

C2 Slices along the Language dimension. b) C3 slices along the Fields dimension;

and c) C1 slices along the Topics dimension. d) The winning neuron at hypercube

coordinates (2,4,3). .. 79

Figure 14. The DSOC Neural Network for Dimension 1. .. 80

Figure 15. DSOC training parameters. a) the learning rate R(t) as a function of time t,

using different values for the decay parameter d. b) The rate of decay of the

neighborhood distance nD(t) as a function of time. ... 84

Figure 16. A DSOC Hypercube classifier of size 5 x 4 x 3 sliced along the C3 dimension

into 3 plans of size 5 x 4. Every neuron has three weights vectors (b1, b2 and b3)

connected to the Pooling layers of the three DSOC Neural Networks. Each neuron

of the Hypercube represent a combination of classes from the three class spaces of

the model. ... 87

Figure 17. The effect of applying the VSC double layers on both classes of the second

dimension of the Image dataset, a) before applying the VSC double layer (135

features and 0.9643 correlation coefficient), b) after applying both the VSC

Selector and VSC Scaling layers (88 remaining features and 0.7242 correlation

coefficient). .. 95

Figure 18. The effect of the VSC double layer on the performance of the DSOC Model

applied on all benchmark datasets, a) Hamming Accuracy on all 17 datasets, b)

the Exact Match metric applied on the datasets of MLC and MDC tasks only. .. 96

Figure 19. The classification performance of DSOC model compared to standard

classifiers. a) Classification accuracy for BC, MCC, MLC and MDC datasets. b)

Exact Match accuracy for MLC and MDC datasets. ... 98

Figure 20. Comparison of the Hamming Accuracy of DSOC vs state-of-the-art

approaches applied on MLC and MDC benchmark datasets. 101

Figure 21. Comparison of the Exact Match Accuracy of DSOC vs state-of-the-art

techniques applied on MLC and MDC benchmark datasets. 102

List of Tables

Table 1. Set of codes used in shape-coding of words and n-grams. 24

Table 2. Example for shape-coding different n-grams. .. 28

Table 3. Sentence Code Set. .. 28

Table 4. Paragraph Code Set. .. 31

Table 5. Examples for combining similar words using a threshold of 0.68. Words with

DoS < the threshold (colored in red) are maintained unchanged. 39

Table 6. Document AP880911-0016 from DUC 2002 dataset. 43

Table 7. Example of Computing WfW for some normalized tokens. 45

Table 8. Frequencies of the extracted encoded shapes and their WsW. 45

Table 9. The overall word score (WS) for extracted tokens. 46

Table 10. Extracted n-grams. .. 51

Table 11: Extracted n-grams unique shapes with their frequency of occurrence. 52

Table 12. Example of computing nGfW for some extracted n-grams. 52

Table 13. Example of computing nGsW for some extracted n-grams shapes. 54

Table 14. Example of computing the overall nGW for some extracted n-grams 54

Table 15. Frequency of character pairs from an English text. 58

Table 16. Smoothed MLE of character pairs from an English text (using the frequencies

in the previous table). ... 58

Table 17. Frequency of character pairs from a Portuguese text. 59

Table 18. Smoothed MLE of character pairs from a Portuguese text (using the

frequencies in the previous table). ... 59

Table 19. Frequency of character pairs from a German text. 60

Table 20. Smoothed MLE of character pairs from German text (using the frequencies

in the previous table). ... 60

Table 21. The overall Sentence Score for the all 16 sentences of Document AP880911-

0016 from DUC 2002 benchmark dataset. Scores embossed in bold are the top 6

sentences in terms of the SC. ... 63

Table 22. Value of the parameters used for document element scoring in UnB-LITS.

 ... 66

Table 23. Sentences of the article WSJ880912-0064 .. 68

Table 24. Document WSJ880912-0064 Result Analysis .. 69

Table 25. The top five Sentences of the Document .. 71

Table 26. Evaluating the results of single English document summarization 72

Table 27. Comparing UnB-LITS against state-of-the-art methods applied on the entire

567 articles in the DUC2002 benchmark dataset for single document

summarization task. ... 73

Table 28. Comparing UnB-LITS to state-of-the-art methods applied to Temario

Portuguese benchmark dataset for single document summarization task. 74

Table 29. UnB-LITS summarization performance for Spanish and French datasets.. 76

Table 30. The characteristics of the benchmark datasets. ... 90

Table 31. DSOC Model parameters for each of the benchmark dataset obtained by

applying 10 fold CV. ... 93

Table 32. Values of the DSOC parameters for the “Image” dataset along the model 5

dimensions (L = 5). .. 94

Table 33. Effect of the VSC double layers on the performance of the DSOC Model

applied on all benchmark datasets in the four classification tasks. 96

Table 34. Comparing the classification results of DSOC against standard classification

algorithms applied on BC benchmark datasets. ... 98

Table 35. Comparing the classification results of DSOC against standard classification

algorithms applied on MCC benchmark datasets in terms of Hamming Accuracy.

 ... 98

Table 36. Comparing the classification results of DSOC against standard classification

algorithms applied on MLC benchmark datasets in terms of Hamming Accuracy

and Exact Match metrics. ... 99

Table 37. Comparing the classification results of DSOC against standard classification

algorithms applied on MDC benchmark datasets, in terms of Hamming Accuracy

and Exact Match metrics. ... 99

Table 38. Comparing the classification results of DSOC against state-of-the-art

techniques applied on the same MLC and MDC benchmark datasets in terms of

the Hamming Accuracy ... 100

Table 39. Comparing the classification results of DSOC against state-of-the-art

approaches applied on the same MLC and MDC benchmark datasets in terms of

the Exact Match. .. 101

List of Abbreviations

ATS Automatic Text Summarization

BC Binary Classification

BR Binary Relevance

CC Concrete Concepts

CNN Convolutional Neural Network

CPS Class Powerset

DiC Expected Degree of Interactions between Classes

DL Deep Learning

DNN Deep Neural Network

DoC Degree of Compression of the Summary

DoS Degree of Similarity

DSOC Deep Self-Organizing Cube

ESC Ensembles of Super Classes

GNN Graph Neural Network

LITS Language Independent Text Summarizer

LSTM Long-short Term Memory

MCC Multi-Class Classification

MDC Multi-Dimensional Classification

MLC Multi-Label Classification

nD Deep Self-Organizing Cube‘s Neighbor Distance

NE Named Entity

NER Named Entity Recognition

nGfW
N-gram Form Weight. It can be 2GfW, 3GfW, 4GfW or 5GfW

for bigrams, trigrams, 4-grams and 5-grams respectively.

 nGS
N-gram score. It can be 2GS, 3GS, 4GS or 5GS for bigrams,

trigrams, 4-grams and 5-grams respectively.

nGsW
N-gram Shape Weight. It can be 2GsW, 3GsW, 4GsW or 5GsW

for bigrams, trigrams, 4-grams and 5-grams respectively.

NLP Natural Language Processing

OOV Out-of-Vocabulary

PS Paragraph Score

PsW Paragraph Shape Weight

RNN Recurrent Neural Network

ROUGE Recall-Oriented Understudy for Gisting Evaluation

SC Sentence Score

SLU Sentence Language Uniformity

SsW Sentence Shape Weight

UnB-LITS UnB - Language Independent Text Summarizer

WfW Word Form Weight

WS Word Score

WsW Word Shape Weight

 1

Chapter 1: Introduction

This study focuses on developing domain agnostic models, aiming at improving

their generalization performance in fields of Natural Language Processing (NLP) and

Deep Learning (DL). With the recent advances in computation, NLP field is gaining

great advantage from adopting models and methodologies from Artificial Intelligence,

while DL is benefiting from the fast pace developments in computational power.

On the other hand, the rapid development of the Internet and the massive

exponential growth in web textual data has brought considerable challenges to tasks

related to text management, classification and information retrieval. As such,

Automatic text summarization (ATS) is becoming an extremely important means to

solve this problem. ATS tends to mine the gist of the original text and then

automatically generate a concise and readable summary that reflects the core important

information in that text. Therefore, developing an efficient text summarization model

is essential for information retrieval, knowledge inference, text processing, and

dimensionality reduction for subsequent classification and understanding.

As will be discussed in details in the following chapter, text summarization task

can be performed with a wide range of techniques. The vast majority of which depend

on pre-structured lexicons, databases, parsers and taggers, which are language

dependent. In other words, such techniques require a prior knowledge of the language

of the text to be summarized and in certain situations requires knowledge of the

contextual domain. Such prerequisite might affect the generalization performance of

the model in case it faces new language, therefore arises the need for an efficient,

straightforward language agnostic model.

Moreover, with this exponential growth in data, another challenge arises in the field

of classification tasks. Where, observations, data and knowledge components exist in

multidimensional spaces with complex interactions and dependencies. This complexity

is considered a major challenge that requires a multi-dimensional classifier capable of

modeling dependencies and infer knowledge at various abstract level. It requires an

efficient multi-dimensional classifier that is capable of performing seamlessly in a

domain agnostic manner while modeling complex semantics in data, and be prepared

for unseen observation in domains that suffer from profound data imbalance, and hence

maximize its generalization performance.

In this study, we propose two novel models, a language agnostic text

summarization model in the field of NLP, and a domain agnostic deep learning

classifier for multi-dimensional classification tasks. We call the first model UnB-LITS,

a short for “UnB-Language Independent Text Summarizer”, while the deep learning

classifier is called “DSOC”, stands for “Deep Self-Organizing Cube”.

 2

Due to the dual nature of this study, the thesis is divided between the language

agnostic summarization model and the deep multi-dimensional classifier. As such,

wherever relevant, a section will be divided into two subsections; one dedicated to each

of the research interlinked domains.

1.1 Overview

1.1.1 Language Agnostic Text Summarizer

The present description of sentence processing in human cortex differentiates three

linguistic processing phases [1]. In the first sentence-level processing phase, the local

phrase structure is built based on word category information. In the second phase,

syntactic and semantic relations in the sentence are computed. These involve the

computation of the relations between the verb and its arguments, thereby leading to the

assignment of thematic roles (i.e., the analysis of who is doing what to whom). Once

both semantic and syntactic information lead to the compatible interpretation,

comprehension can easily take place. [2]

This means, simply, that in order to understand a written text first we have to get

the words, then sentences and then relate them to topic comprehension or context to

achieve a human like understanding. Words themselves should be categorized into

Named Entities (nouns, concrete concepts, etc.) as well as verbs, prepositions, etc.

In this research, we aim to achieve similar level of textual understanding in a

language agnostic manner, avoiding the need to extract verbs, nouns or other syntactical

relations that require a prior knowledge of language and/or its context. Rather, we

extract prominent phrases to form an extractive summary and then use these features

and phrases to represent the document for further multi-dimensional classification, if

needed.

1.1.1.1 Natural Language Processing (NLP)

Natural language processing (NLP) applications have spread widely and

gained increased attention and focus in the recent years, for analyzing human

language computationally [3]. Many fields have benefited from the recent

advancement of NLP models and algorithms as machine translation, information

retrieval, summarization and question answering, etc.

Natural language processing is a field of computer science, artificial

intelligence, and computational linguistics concerned with the interactions

between computers and human natural languages [4].

The most important models used in the field of NLP are: a) State Machines,

b) Rule systems, c) Logic, d) Probabilistic models, and e) Vector-space models.

Other algorithms have been derived from these core models, among the most

important of which are: a) State Space Search Algorithms, such as Dynamic

Programming, and b) Machine Learning Algorithms, such as Classifiers and

 3

other learning algorithms [5].

In general, Natural Language Processing tasks can be grouped in many

classes, the most common of which are:

i. Text Summarization: to extract descriptive information from a text.

Summaries can be abstractive (text rephrasing), extractive (extract

important elements) summarization, or hybrid [6].

ii. Machine Translation: translate between different languages [7].

iii. Named Entity and Concrete Concepts Extraction: extract locations,

persons, drugs, addresses, titles, etc. [8]

iv. Information Retrieval and Extraction: extracting important information

from text, like a meeting, location, time, etc. [9]

v. Question Answering: to answer questions formulated using natural

language in a correct and efficient way. This field also includes

retrieving information from databases based on asked questions [10].

vi. Sentiment Analysis: extract the sentiment people have over a specific

topic, which has a wide range of applications in marketing and political

campaigning [11].

vii. Part-of-Speech (POS) tagging: to tag part of texts defining which part is

noun, verb, adjective, etc. [12]

In this research, we focus on Automatic Text Summarization (ATS) as a base

for more complex tasks, like information retrieval and concrete concepts

extractions and other, with no need of language dependent tools like parsers,

taggers, lexicons or databases. Detailed discussion on ATS as well as the recent

work in literature is presented in Chapter 2: Literature Review and Related Work.

1.1.2 Deep Learning Classifier

As mentioned in section 1.1.1.1, human brain performs at several levels of

processing in order to achieve the ultimate understanding or knowledge capturing. It is

believed that each level is learning features or representations at increasing levels of

abstraction. This kind of observations has inspired a fast growing trend in machine

learning known as Deep Learning [13], which attempts to replicate this kind of

architecture in computer [14].

Many algorithms have been used in the literature to achieve Deep Learning

Architecture, the classical and most widely used of which are: Deep Convolutional

Networks [15], Deep Boltzmann Machine [16], Deep Belief Network [17] and Deep

Neural Network [18].

Deep Learning though, has couple of disadvantages or limitations [19]. One of

which is the curse of dimensionality, where deep models often have millions of

parameters especially in the natural language processing NLP field. However, in this

study we are proposing a Deep Learning multi-dimensional classifier that has an

 4

integrated dimensionality reduction layers to address the curse of dimensionality

problem.

1.1.2.1 Multi-dimensional Classification

Multi-dimensional classification (MDC) is a generalization of the multi-label

classification (MLC) problem where the classification output is a vector in

multiple heterogeneous class spaces. The output (Y) is a vector of multiple class

variables, where each member (𝑌𝑖) specifies its class membership in one

particular class space. Ma & Chen [20] have displayed the different types of

classification problems in terms of the number of output class variables (m) and

their possible values (k) as shown in Figure 1. Both binary classification (BC)

and multi-class classification (MCC) have a single output class variable, whose

value is binary [0, 1] in case of BC and multiple [0, 1, ..K] in MCC. On the other

hand, both MLC and MDC have multiple output class variables (m ≥ 2), whose

values are binary in case of MLC and multiple in MDC.

From another perspective, BC and MCC are considered single-output learning

problems, while MLC and MDC are categorized under multiple-output learning.

Multiple-output classification aims at simultaneously predicting multiple outputs

given a single set of input variables. Xu et al. [21] have pointed out the lack of

sufficient studies that generalize different forms of multiple-output learning

despite of its growing importance in complex decision-making problems and the

attention it has got in the recent years. As such, they conducted a thorough survey,

depicting all aspects of multi-output learning including challenges, inputs and

outputs structure, evaluation metrics as well as applications (e.g. Multi-label

Document Categorization [22], Multi-label Semantic Scene Classification [23],

Multi-label Video Annotation [24], etc.).

Due to the multi-variate nature of the output space of multi-output

classification, classes across various dimensions might exhibit dependencies,

correlations and/or complex interactions that should be considered when

designing the classification model. Such dependencies and interactions means

that the prediction of one label influences predictions of other labels. MDC

models that do not take into consideration such dependencies will suffer from

propagation of error and lack of classification accuracy across the entire class

spaces. Independent Classifiers (IC) or Binary Relevance (BR) that involve

building single dimension multi-class classifier for each class variable [25] suffer

from lack of accuracy, while Classifiers Chain (CC) that involves chain of

Bayesian classifiers [26] or even the Monte Carlo scheme for chain sequencing

and inference [27] suffer from error propagation due to the difficulties in finding

optimal chain order. [28]

Dembczynski et al. [29] have categorized label dependencies among classes in

MLC into two categories, conditional and unconditional label dependencies.

Using the standard statistical notations of multivariate regression models (𝑌𝑖 =

 5

ℎ𝑖(𝑿) + 𝜖𝑖(𝑿)), unconditional dependence represents the deterministic part (i.e.

the function ℎ𝑖(𝑿)), while the conditional dependence represents the stochastic

part (i.e. the error 𝜖𝑖(𝑿)). As such, unconditional dependence refers to the

expected dependencies between classes in Y, and can be measured using Pearson

correlation or any other correlation coefficients.

To overcome the aforementioned drawbacks and limitations as well as to

model the underlying class dependencies in MLC, MCC and MDC, several

models and techniques were introduced in literature. Some of which involve

models that consider all possible class combinations as label powerset (LP) or

modified versions of it [30], others create Super-Classes based on the conditional

dependencies among all or part of the class spaces [31], as well as models based

on pairwise interactions among those classes [32]. Others used ensembles to

tackle the problem of label-combinations, as for example EPS that discard the

less frequent label combinations, RAKEL that creates ensemble of random label

subsets, etc. [33]. However, those methods still suffer from the imbalance

problem, where the output class variables combinations might not be uniformly

distributed over the data space in the training set. This imbalance causes the

classifier to lean (skew) towards the majority classes and fail to model the

characteristic of minority classes, with the risk of overfitting which will affect the

accuracy and robustness of the overall model. [34]

Figure 1. Different classification tasks, where m is the number of

class variables and k is the number of possible values per class

variable. [20]

1.2 The Research Objective

For each of the two studies conducted in this thesis, we can summarize the

research objective as follows:

 6

1.2.1 Language Agnostic Text Summarizer

1.2.1.1 Problem Statement

The main objective of this research is to obtain a model capable of

performing efficient extractive text summarization in a language independent

manner. However, this goal is challenged by the heavy dependence of text pre-

processing steps on language related preprocessing tools (parsers, stemmers,

taggers, stop words lexicons, etc.).

Moreover, efficient tagger or parsers are not always available for a

particular language. In addition, knowing that lexicons are mostly contextual,

therefore, preparing and refining domain specific lexicons for all languages is

considered a big challenge among linguistic researchers.

Apart from the language dependence of preprocessing tools, obtaining an

efficient representative summary also requires extracting or identifying Named

Entities (NE’s) and Concrete Concepts (CC’s) due to their influence on the

summarization quality. Such task is heavily dependent on prior knowledge of

the language of the text to be summarized.

1.2.1.2 Proposed Solution

In order to fulfill the objective of the study and to address the underlying

challenges, we propose a novel model that tackles the aforementioned problems

while achieving superior summarization performance in a language agnostic

manner. The proposed model should be characterized by the following, in order

to achieve its intended goal:

a) The model should depend on intrinsic features of the elements of the

document to be summarized rather than its language.

b) The model should be completely independent of any language-related tool

throughout the entire process, starting from the pre-processing step until the

post-processing step and the subsequent summary generation.

c) The model should be, as well, capable of removing or neutralizing the effect

of unimportant words (like stop words) without the need of stop words

lexicons that are by definition language dependent.

d) The model should preserve the weight of potential words and sentences, with

the ability to identify strong and important CC’s and NE’s without any

dependence on external databases or corpora.

e) Moreover, the model should be capable of determining sentences containing

multiple languages and determine the importance of those sentences in

accordance.

 7

As such, we propose a novel extractive text summarization tool, UnB

Language Independent Text Summarizer (UnB-LITS), which is capable of

performing text summarization in a language agnostic manner. The proposed

model depends on intrinsic characteristics of the text being summarized rather

than its language and thus eliminates the need for language dependent lexicons,

databases, taggers or parsers.

Within this tool, we develop an innovative way of coding the shapes of

text elements (words, n-grams, sentences and paragraphs), in addition to

proposing language independent algorithms that is capable of normalizing words

and performing relative stemming or lemmatization. The proposed algorithms

and its Shape-Coding routine enable the UnB-LITS tool to extract intrinsic

features of document elements and score them statistically, and identify

influential tokens (NE’s and CC’s) to extract a representative summary

independent of the document language.

1.2.2 Deep Learning Classifier

1.2.2.1 Problem Statement

Building a domain agnostic classifier, that achieve an efficient multiple-

output classification in a multi-dimensional class spaces, faces many

challenges, the most important of which are:

a) Dependencies among classes across the multiple class spaces.

b) Data imbalance, due to the enormous possible combinations of classes in

the model’s multi-dimensional spaces, which hinders the ability to provide

a training dataset that, contains all possible combinations in considerable

density.

c) Curse of dimensionality, where in certain domains (especially in text

datasets that use bag-of-words), the high dimensionality of data might

adversely affect the performance and/or the computational complexity of

MDC models.

1.2.2.2 Proposed Solution

For the proposed model to address the aforementioned challenges, it should

be capable of modeling class dependencies and manage the problem of data

imbalance, especially when classifying future samples with combination of

classes seen by the model for the first time.

Moreover, the model should be capable of performing adequate

dimensionality reduction, in order to reduce the computational complexity as well

as to improve its classification performance especially in highly sparse datasets.

As such, we propose a novel Deep Learning classifier, the Deep Self-

 8

organizing Cube, (DSOC) that address the aforementioned challenges, and can

be used for MDC, MLC, MCC as well as BC.

DSOC can model dependencies among classes in multiple class spaces,

while consolidating its ability to classify rare combinations of labels. DSOC

is formed of two n-dimensional components, namely the Hypercube

Classifier and the multiple DSOC Neural Networks connected to the

hypercube. The multiple neural networks component is responsible for

feature selection, dimensionality reduction and segregation of classes, while

the Hypercube classifier is responsible for creating the semantics among

multiple class spaces and accommodate the model for rare sample

classification. DSOC is a multiple-output learning algorithm that successfully

classify samples across all class spaces simultaneously.

1.3 Software

In this thesis, a set of software tools and libraries were used for model

building, analysis and data visualization. These tools are: Jupytar Notebooks [35]

for Python, Scikit-Learn machine learning library [36], MATLAB R2015a [37],

Voyant visualization tools [38], and VBA of Microsoft Excel [39].

1.4 Contributions of the Thesis

1.4.1 Language Agnostic Text Summarizer

The main contributions of this study are as follows: a) we propose an efficient,

language independent text summarizer, named “UnB-LITS”. b) UnB-LITS is an

entirely unsupervised model, in terms of extracting influential tokens as NE’s and

CC’s. c) We developed, as well, language agnostic algorithms for stemming and

stop words removal. Moreover, d) we proposed an algorithm we called, Sentence

Language Uniformity, “SLU”, that can identify sentences, which contain multiple

languages, as in the case of scientific papers with Latin expressions, or in case of

foreign names, etc.

1.4.2 Deep Learning Classifier

The main contributions of this study are as follows: a) we propose an efficient,

yet straightforward multidimensional deep learning classifier, the “DSOC”. b) The

model we designed has an embedded variable selection layers to achieve

dimensionality reduction while increasing the discriminatory power of the model

and achieve appropriate class segregation. c) This work experimentally

demonstrates the effectiveness of DSOC in all types of classification tasks,

regardless the severity of data imbalance or the strength of class dependencies, due

to its design that models semantics among classes along different classification

spaces even in case of imbalanced datasets.

 9

1.5 Thesis Structure

The rest of the thesis is structured in six more chapters covering all aspects of the

research, starting by literature review and related work, followed by presenting the two

proposed models, UnB-LITS and DSOC, and their performance evaluation approach,

and finally the study is concluded in chapter 7.

 Chapter 2 presents a detailed literature review for text summarization, as well as

multi-dimensional classification. The first section, presents an in-depth review for the

recent work done in text summarization as well as the challenges facing the

summarization tasks. It then focuses on the extractive summarization tasks in particular,

presenting the recent state-of-the-art models in each of the five categories of extractive

summarization. The second section presents challenges and state-of-the-art models and

approaches used to solve MDC tasks.

Chapter 3 presents the language independent text summarization model, UnB-

LITS, where the chapter is organized in sections and subsection presenting all aspects

of the proposed model. Our novel, shape-coding approach as well as our proposed

language agnostic stemmer and token normalization algorithm are discussed in details

with a working example. The document’s elements scoring algorithms and equations

are presented in details followed by the summary extraction strategy with hands-on

working example of an English news article obtained from DUC02 benchmark dataset.

Chapter 4 presents the performance evaluation of the proposed model. The first

section presents the conducted experiment, datasets, evaluation metrics and the

compared approaches. The following section shows a detailed case study, as the

proposed UnB-LITS model was applied on an English news article, where the outcomes

of the model are analyzed in details to discuss the effect of shape-coding on summary

extraction as well as named entities and concrete concepts identification. The following

sections apply UnB-LITS on two benchmark news datasets, English and Portuguese,

where the obtained results are compared to the state-of-the-art methods reported in

literature for the same benchmark datasets. The last section applies the proposed model

on Spanish and French datasets to prove the language agnostic nature of the model, the

results were compared to those obtained by commercial summarizers.

Moreover, Chapter 5 presents the proposed deep multi-dimensional classifier,

DSOC. The chapter is divided into sections and subsections that explain in details the

model components, namely the n-dimensional Hypercube Classifier and the multiple

novel DSOC Neural Networks connected to the hypercube. The chapter discusses the

role of each layer of those neural networks, specifically the rule of the VSC double layer

(based on our Variable Strength Coefficient) in achieving class segregation and

strengthening the discriminatory power of the model, and the role of the Pooling layers

in representing class spaces. The chapter shows how the Hypercube can model

dependencies among classes in different class spaces. Detailed discussions of all model

parameters, as well as the training and classifying processes are presented as well.

 10

On the other hand, Chapter 6 presents the empirical assessment to evaluate the

DSOC performance on seventeen benchmark datasets. The first subsection in the

experiment section presents all features of those datasets, which were selected to

evaluate the model performance in all four classification tasks. The following

subsections present the evaluation strategy, four standard classification algorithms

beside eleven state-of-the-art approaches selected to evaluate the model’s performance.

The results are then presented and discussed along several aspects in the last section of

the chapter.

 Finally, chapter 7 concludes the thesis for both proposed models, highlighting the

findings and conclusions of each individual study, as well as then future work and

research possibilities to extend the applications of both models.

 11

Chapter 2: Literature Review and Related Work

As stated in the introduction chapter that this study introduces two generalized

domain agnostic algorithms, the first one is a Language Independent Text Summarizer,

“UnB-LITS”, in the field of NLP, and a domain independent multi-dimensional deep

learning classifier, the Deep Self-Organizing Cube, “DOSC”. As such, this literature

review chapter is divided into two sections each of which covers a specific domain.

The first section covers the recent work and state-of-the-art models applied in the

field of text summarization with respect to the proposed language agnostic approach.

While, the following section presents literature review for different classification

approaches used in the field of MDC and the underlying challenges with respect to the

proposed straight forward deep learning classifier.

2.1 Automatic Text Summarization

Automatic Text Summarization (ATS) can be divided into three main approaches,

Extractive, acts on extracting the most influential sentences of the text to be

summarized [40]; Abstractive depends on semantics to create new representative

sentences made of new set of words [41]; and a Hybrid approach [42].

Another way to look at the ATS is by considering the dimensionality of the text to

be summarized. ATS could be applied for single document summarization, or multiple

document summarization, which typically involves summarizing a set of documents

belonging to the same topic while maintaining the relevancy and avoiding redundancy

[43].

From the architecture viewpoint, El-Kassas et al. [6] has divided ATS into three

distinct steps, Pre-processing, Processing and Post-processing as per Figure 2. Where,

pre-processing step [44] includes segmentation of sentences, tokenization, stemming,

lemmatization [45], tagging [46], stop words removal [47], etc. while the processing

step means applying the summarization technique itself, finally, the post-processing

step focuses on refining the summary by solving problems and facing challenges. On

the other hand, Figure 3 shows a generalized framework for abstractive ATS based on

neural networks.

Figure 2. Generalized architecture for automatic text summarizer for a single document or

multiple documents [6].

 12

Figure 3. Abstractive summarization framework for Single document or multiple documents.

2.1.1 ATS Preprocessing Tools

Language summarization algorithms typically depends on feature extraction

techniques, as stop words removal, stemming, lemmatization, POS tagging, etc. Such

techniques are language dependent in nature, which requires the presence of lexicons,

parsers and other language specific tools.

Stop words, for instance, are common words that are neither indexed nor

searchable in search engine [48], as in English languages, words like “is”, “the”, “in”,

and others, also, the words “كل“ ,”و“ ,”في”, etc. in Arabic language [49]. Stop words

impose noise to NLP models as such, their removal enhance the performance of NLP

models significantly.

On the other hand, stemming was introduced by [50], then it was developed

through the years, and many algorithms have been developed for specific languages, as

Nazief & Adriani stemmer for Indonesian language [51], improved Arabic light-based

stemmer [52], in addition to various specialized language dependent lemmatizers [53].

In addition, Part-of-Speech (POS) Tagging [54], which is the process of annotation

of tokens in a text, where a word is assigned to a speech class (noun, verb, subject, etc.),

has gained growing attention and were implemented in various languages across the

globe. As a language-dependent process, recent literature shows that intense work has

been done for POS tagging of different languages using wide range of machine learning

and deep learning models. For example, Bidirectional Encoder Representations from

Transformers (BERT) model was used to build POS taggers for Arabic [55], Croatian

[56] and even for ancient languages as Ancient and Byzantine Greek [57]. Moreover,

POS taggers were built for indigenous languages as Khasi language spoken by

indigenous people of the state of Meghalaya in India, where Conditional Random Field

(CRF) method was used to build a Khasi POS Tagger [58].

As deep learning techniques advances, many recent studies in literature have used

supervised deep learning models to build language dependent POS taggers [59]. For

example, [60] has used deep learning networks, recurrent (RNN) and long-short term

memory (LSTM) neural networks, to build a POS tagger for Turkish language, while

 13

[61] has used RNN and LSTM as well to build POS tagger for one of the south Indian

languages (Kannada). Moreover, many POS taggers were built based on deep learning

models for local languages, as Malayalam (south Indian language) [62], Maithili [63]

in addition to national languages as Kazakh [64], Persian [65], Thai [66], and

Mongolian [67].

Semi-unsupervised approaches, as well, have benefited from deep learning and its

deep neural networks to build POS taggers that can handle rare words, and out-of-

vocabulary tokens [68]. For example, [69] has used semi-unsupervised deep learning

based on word embedding representation to build POS taggers for Italian and English

language.

2.1.2 Challenges in ATS

In general, ATS frameworks, whether extractive, abstractive or hybrid, are less

biased and faster in processing than manually generated summarizes due to human bias.

However, ATS has its own set of challenges as: a) Minimizing Redundancy, b)

Maintaining diversity of topics in hybrid texts, as well as c) generating human readable

summary (especially in abstractive ATS), and d) the challenge of Out-of-Vocabulary

words (OOV) and repetition.

Many attempts were made to tackle those challenges. Kouris et al. [70] have

proposed a framework for human readable abstractive summarization using

knowledge-based content generalization and deep learning networks. Moreover, many

deep learning approaches especially Long-Short Term Memory (LSTM) have been

used to reduce redundancy while maintaining a readable human summary [71], even in

complex languages as Arabic language due to its high semantics, syntactical complexity

and enormous word derivatives [72]. In general, common deep neural networks

(DNNs) as recurrent neural networks (RNN), convolutional neural network (CNN), and

graph neural network (GNN) are widely used in abstractive summarization to tackle

some of the challenges mentioned above [73].

Many frameworks, in the deep learning domain of abstractive text summarization,

are used to tackle the challenge of understanding the text and generate human readable

summaries, as sequence-to-sequence framework [74] [75], as well as other encoder-

decoder models, as encoder-decoder with basic attention mechanism [76] [77],

Hierarchical Encoder-Decoder Models [78], and CNN-Based Encoder-Decoder

Models [79].

On the other hand, OOV words and repetition problems are handled in the

abstractive summarization tasks through mixed approaches in the deep learning

domain. Xu et al. [80] have integrated core word information of the original vocabulary

with the traditional attention mechanism to create FCWAM model, stands for Fusion

Core Word Attention Mechanism Model, to tackle that problem. Others created datasets

specific for particular languages as [81] did for Turkish and Hungarian languages.

 14

The aforementioned techniques has somehow tackled the challenges related to

structure and readability, however there is an important challenge that has not been

addressed appropriately, which is the challenge of topic bias. Where the summary could

be biased towards specific subtopics within a document (especially long ones) or in a

set of grouped documents (multi-document summarization).

This tradeoff between readability and bias is more prominent in abstractive text

summarization and to a lesser extend in extractive summarization. Recent work in

literature has faced this problem thorough introducing an unsupervised component in

the summarization model. In extractive summarization task, [82], [83] and [84] have

used topic modeling, while [85], [86] and [87] have used unsupervised clustering, and

[88] has used a combination of both approaches to achieve a proper unbiased

summaries.

2.1.3 Categories of Extractive ATS

Various extractive summaries approaches were introduced in literature in the

recent years, Gambhir and Gupta [89] have divided extractive summarization

approaches into five main categories according to the approach used in achieving the

ATS task. Those categories are, a) statistical based, b) Topic based, c) Graph based, d)

discourse based and e) machine learning based.

It is worth mentioning that most of these approaches are language dependent as

they depend in one or more steps on a language dependent tool (taggers, lemmatizer,

stemmers, etc.). Hereafter, we present the recent models introduced in literature in each

of these five categories of extractive ATS.

2.1.3.1 Statistical based Approaches

The extracted sentence depends on statistical features of the sentence itself

and its containing document rather than its linguistic properties. However, those

statistical methods might depend on one or more language dependent tool in the

preprocessing steps, as taggers, parsers, lexicons, etc. Many statistical methods

have been used for document element scoring, and the subsequent

sentence/element selection and extraction [90].

Zhou et al. [91] have integrated the sentence selection and scoring routines

into a single end-to-end neural network framework for extractive document

summarization using hierarchical encoder.

Some methods utilize single word statistics while others utilize n-grams and

other complex combinations of tokens. [92] used word frequency algorithms to

extract the main features from paragraphs to achieve summarization on the

paragraph level.

However, the work done by [93] is considered a strong base for statistical-

based extractive text summarization, where they have applied multiple statistics,

 15

optimization and neural networks techniques to score and extract sentence-level

features such as sentence position, positive keywords, negative keywords, and

more. Their work is extended in recent literature, [94] has introduced Ranksum,

an approach based on the rank fusion of sentence features that fused together

using weighted scores of topic information, semantic content, significant

keywords, and their positions in an unsupervised manner. While [95] has

combined the statistical and semantic features with topic modeling for Arabic text

summarization.

2.1.3.2 Topic-based Approaches

This approach was first introduced by Lin and Hovey。 They proposed to

extract automatically sets of topic signatures of related words, and compute their

associated weights as related to the head topics [96]. This approach becomes later

a base for a category of extractive text summarization task.

Belwal et al. [97] used a mixed approach of topic-based modeling and the

semantic measure within the vector space model to address the challenge of

redundancy mentioned earlier. They aimed at extracting the strong sentences that

represent the maximum of the embedded topics in the text to be summarized.

Srivastava et al. [98] has combined Latent Dirichlet Allocation (LDA) and

K-Medoids clustering, the first is used to cluster sentences according to topics and

the second to choose the most important sentences that form the summary in all

subtopics. This model is language dependent as it depends on spaCy’s POS

lemmatizer [99]. It is worth mentioning, that LDA was also used by [100] for

topic based approach text summarization but in the abstractive ATS tasks.

Moreover, [101] has proposed a topic modeling approach that is applied on

lower level entities inside a document, they modeled subtopics at clusters level in

a single document, and then they addressed the limitations that might arise using

an incorporated statement selection technique.

2.1.3.3 Graph-based Approaches

Since the graph based approach LexRank was introduced by [102], many

methods have been presented in literature using the graph-based approach with

different document elements graph representation.

Mallick et al. [103] have proposed a graph-based text summarization method

using modified TextRank algorithm to constructs a graph with sentences as the

nodes and compute their similarities to define the weights of the edges connecting

them. It is worth mentioning that TextRank is a graph-based word-ranking model

for keyword extraction, and widely used in text processing and summarization in

particular [104].

 16

Mohammed and Oussalah [105] have used a modified version of TextRank

to build the graph-based text summarizer, where they computed the modified

inverse sentence frequency-cosine similarity and used it to assign the weights for

graph edges. Their approach differ from the typically used cosine similarity in

that it gives different weightage to different words in the sentence, rather than the

equal weights assigned by the traditional cosine similarity.

El-Kassas et al. have also introduced an extractive graph-based framework,

named EdgeSumm [106], that combines a set of four extractive algorithms, a)

graph-based, b) statistical-based, c) semantic-based, and d) centrality-based

methods) to benefit from their advantages and overcome their specific

drawbacks.

Moreover, [107] has proposed a graph-based method integrated with a text

processing tool that maintains semantic relation between sentences. On the other

hand, [108] has introduced a mixed approach that integrates graphed-based

approach with topic-based one, to create a model that uses the similarity between

sentences and the document topic to assign the weight for the edges connecting

individual sentences.

2.1.3.4 Machine Learning based Approaches

The machine learning based approach is the one that uses common machine

learning algorithm, mostly classifiers, to achieve the summarization task through

clustering or classifying the document elements into “includeInSummary” or

“not(includeInSummary)”. The used machine-learning algorithms in this

approach include Support Vector Machines [109], Naïve Bayes [110], Decision

Trees [111], logistic regression [112], etc.

Moreover, deep learning networks have been applied under this approach to

achieve the summarization task. For example, Bae et al. [113] has used

reinforcement learning through combining BERT based extractor and LSTM

pointer network to achieve a hybrid extractive/abstractive summarization.

Ma et al. [114] have incorporated BERT and LSTM with word embedding

to build a hybrid model, T-BERTSum, which utilizes the topic-based and

machine-learning-based approaches to generate a topic-aware extractive and

abstractive summary. While, Grail et al. [115] have proposed a hierarchical

propagation layer to overcome the limitations of BERT on summarizing long

documents.

2.1.3.5 Discourse-based Approaches

On the other hand, since the introduction of Rhetorical Structure Theory in

the domain of computational linguistics in by Mann and Thompson in 1988 [116],

many Discourse-based applications in the field of computational linguistics have

been introduced [117].

 17

In the field of text summarization, Discourse-based summarizations models

have been introduced in literature; such approaches represent the discourse in a

document as a tree and focuses on the rhetorical connections between the text

elements as in [118], [119] and [120] for extractive summarization tasks, and

[121], [122] in case of abstractive summarization.

2.2 Multi-dimensional classification

Bogatinovski et al. [123] pointed out the increasing interest in MLC task from the

machine learning community, where they displayed a graph that showed an exponential

growth in the number of scientific papers published throughout the last decade. This

section presents the recent work in literature that tackles the classification problem from

a multi-way perspective and its recent applications.

As mentioned in the introduction section, MDC is a generalized form of multi-label

classification problem. Therefore, we are going to use the term MDC throughout the

thesis when referring to all types of non-binary classification problems, unless

otherwise specified.

2.2.1 Binary Relevance Approach

Despite the inability of Binary Relevance (BR) approach to model class correlations

and dependencies, nevertheless BR is one of the most widely used approaches for MDC

due to its simplicity and intuitiveness. BR techniques are built in one of two structures,

Chaining Structure and Stacking Structure, or a mix of them. In Chaining Structure,

independent binary classifiers are arranged in a chain order based on the results of the

previous classifiers [124]. While in Stacking Structure, a set of meta-level BR models

are stacked over another set of base-level BR models, where each meta-level binary

classifier is built upon the predictions of all base-level ones [125].

Many variations of BR were introduced lately in an attempt to overcome the BR core

limitations, some of which are: a) BR Stacking based on Pareto Optimum, a modified

version of the staking method that takes into consideration the inherit nature of class

labels and their own related subsets [126]. b) Dependent binary relevance (DBR), which

is a mixed approach of chaining and stacking [127]. c) Stacking Model with Label

Selection (SMLS), a two layer stacking based approach that overcomes limitations of

DBR, through intensifying the class correlations in subsets to augment the features

space [128].

2.2.2 Feature Manipulation approaches

While, most MDC approaches tends to model multiple class dependencies in the

output class spaces, Jia and Zhang [129] tried a different approach by manipulating the

input features space by enriching the existing original feature space with a set of new

features. Their augmented feature approach, called KRAM, uses simple counting

statistics and weighted kNN techniques (with extra bias terms) depending on the class

 18

membership of k nearest neighbors in the training set. KRAM showed good results when

compared to other models that use original input features space. Both Jia and Zhang

further extended their feature-augmentation strategy in [130] by introducing SFAM, an

abbreviation for Selective Features Augmentation for Multi-dimensional classification.

SFAM synergizes multiple kind of augmented features (standard kNN, weighted kNN

and maximum margin techniques) to achieve classification along different dimensions.

Furthermore, Wang et al. [131] proposed a deep neural network based model that

integrates the Feature Augmentation and Label Embedding techniques to model the

inter-class correlations and the intra-class exclusiveness in MDC problems.

In a related context, and to shed the light on the importance of features extraction,

De Handschutter et al. [132] published a thorough survey on deep matrix factorization

(deep MF) in comparison with constrained low-rank matrix approximations (CLRMA)

to deal with the extraction of several layers of features as a principal step before

conducting further machine learning tasks.

2.2.3 Challenges in MDC

As mentioned earlier in Chapter 1, class imbalance problem might affect the

classification accuracy of a MDC model as well as its performance evaluation metrics

[133]. Feature space manipulation can tackle the imbalance problem of MDC. Mishra

and Singh [134] proposed a method called Feature Construction and Smote-based

Imbalance handling (FCSMI), to tackle the problem of class combinations imbalances

in MLD. FCSMI uses the distance between minority classes and others to alter the

feature space and achieve the balance between minority and majority classes.

In addition, [135] proposed a Multi-Kernel Multi-Label (MKML) method to address,

simultaneously, both class dependencies and class imbalance problems in MLC. While,

[136] presented Partial Label Masking (PLM) method to tackle imbalanced datasets by

partially masking major and minor classes and then continually adapts the target ratio

based on the output probabilities, aiming at improving precision on frequent classes

and recall on less frequent ones. In image classification, [137] proposed a new loss

function that reduces the risk of misclassification of less frequent classes, by

neutralizing the probability distribution of incorrect classes leading to a more robust

classification of class-imbalanced scenarios. It is worth mentioning that the degree of

class imbalance and its impact on MDC can be assessed by using either the imbalance-

ratio or the imbalance-degree coefficient presented by [138], which is more sensitive

in reflecting the skewness in MDC distributions.

2.2.4 MDC Applications

In recent years, many applications in different domains have benefited from MDC

techniques. In the field of medicine, Yang [139] constructed a MDC model based on

Support Vector Machine (SVM) for the diagnosis of schizophrenia and bipolar

disorder. While in text MDC, Xie et al. in [140] proposed a multi-dimensional relation

model to incorporate relations between dimensions for dimension score prediction in

 19

multi-dimensional sentiment analysis (valence-arousal-irony, VAI) of a Chinese

corpus. Other applications in the field of text classification include Fake news

classification using LSTM and BERT [141], emotions classifications using LSTM and

Transformer Networks (RoBERTa and DistilBERT) [142].

 20

Chapter 3: A Language Agnostic Text

Summarization Model (UnB-LITS)

The idea of the research is to build a language agnostic summarizer, that we call

“UnB-Language Independent Text Summarizer” or “UnB-LITS” for short. A

summarizer that is capable of efficiently summarize text documents without any prior

knowledge of the language(s) of the text being summarized. The UnB-LITS performs

Extractive Summarization task that depend on extracting strong sentences that best

represent the document being summarized.

In order to achieve such a goal, the core model of the UnB-LITS depends on

extracting sets of features related to the document’s hierarchal elements namely

paragraphs, sentences and words. These sets of features are combined together to obtain

the overall sentence score (SC) for sentences used to build the extractive summaries.

As such, the core model depends on extracting strong sentences that, in turn,

consists of strong words and expressions (n-grams). In order to achieve this without

any prior knowledge of the language of the text to be summarized, we propose a novel

technique that converts words into a standard set of codes, we called “Shape Codes”,

which can then be quantified and used to assess the strength of a sentence. Shape Codes

are applied for both: a) the main document elements (paragraphs, sentences and words),

as well as, b) the extracted n-grams. The proposed technique then computes the relative

weights of those “encoded shapes” and combine them with other features to determine

the overall score of each element in the text.

In order to achieve an efficient language independent text summarizer, it is

required as well to construct a robust algorithm that is totally language agnostic along

all its sequential steps. In other words, basic NLP steps of stop word removal, stemming

or lemmatization, named entities extractions, etc. should all be carried out using

language agnostic procedures. As such, in this study we propose a chain of language

agnostic routines to achieve an efficient meaningful language independent extractive

summary.

In the following sections, the algorithms behind Shape-Coding as well as weights

computation are explained in details with working example form a benchmark dataset.

Section 3.1 explains the hierarchal document elements and how they can be linked

together to achieve efficient summarization. The following sections explain the

proposed language agnostic pre-processing techniques, followed by the shape-coding

techniques for all the four document elements, and finally the algorithms for computing

the overall score for each element in order to extract the automatic summary.

 21

3.1 Document Elements

The Semantically Annotated LaTeX project (SALT) [143] has divided the semantic

organization of a document, while preparing their sets of ontologies, into three layers:

structural layer, rhetorical layer and finally the annotation layer that links the rhetorical

characterizations with the structural components of the other two layers. While the

rhetorical layer is based on the meaningful parts of a document [144], the structural

layer is the one containing sentences, paragraphs, and other elements of a text document

[145].

In this study, we focused on the structural of document (or a piece of text), where

a document can be seen as a hierarchal structure that consists of four elements:

paragraphs, sentences, n-grams and words as seen in see Figure 4.

Figure 4. The hierarchal relation between document elements

Throughout the study, the following notation is being used. Where, A document

𝐷𝑗 is considered as a set of paragraphs 𝐷𝑗 = {𝑃1
𝑗
, 𝑃2

𝑗
, 𝑃3

𝑗
, . ., 𝑃𝑘

𝑗
 }, where k is the total

number of paragraphs in the document. On the other hand a single paragraph 𝑃𝑘
𝑗

consists of a set of sentences 𝑃𝑘
𝑗
= {𝑆1

𝑗,𝑘
, 𝑆2
𝑗,𝑘
, 𝑆3
𝑗,𝑘
, . ., 𝑆𝑚

𝑗,𝑘
 } , where m is the total

number of sentences in the paragraph. As the hierarchal relation goes deeper, a sentence

𝑆𝑚
𝑗,𝑘

, in turn, consists of a set of words 𝑆𝑚
𝑗,𝑘
= {𝑊1

𝑗,𝑘,𝑚
,𝑊2

𝑗,𝑘,𝑚
, . ., 𝑊𝑛

𝑗,𝑘,𝑚
}, where n is

the total number of words in a sentence.

A group of consecutive words in a sentence can be grouped together to form what

is called n-grams, where, a bigram is formed of two words 𝑊1
𝑗,𝑘,𝑚

,𝑊2
𝑗,𝑘,𝑚

 or

𝑊2
𝑗,𝑘,𝑚

,𝑊3
𝑗,𝑘,𝑚

, in addition a tri-gram consists of a sequence of three consecutive words

𝑊1
𝑗,𝑘,𝑚

,𝑊2
𝑗,𝑘,𝑚

,𝑊3
𝑗,𝑘,𝑚

 or 𝑊2
𝑗,𝑘,𝑚

, 𝑊3
𝑗,𝑘,𝑚

, 𝑊4
𝑗,𝑘,𝑚

. As such, a single sentence can also

be seen as a collection of different size n-grams. Definitions of the four document

Words

n-grams

Sentences

Paragraphs

Document Document

P 1

S 1

bigram 1

W 1 W 2

bigram 2

W 2 W 3

S 2

P 2

S 1

bigram 1

 22

elements, top down, used in this study are listed below with respect to the

aforementioned notations.

3.1.1 Paragraphs

A Paragraph is a brief piece of text that consists of at least one sentence that is

usually describing a single topic. A typical paragraph is formed of three main parts: i)

Topic sentence, that reflects the main idea (usually at the beginning of the paragraph);

ii) Supporting sentence, to explain or support the topic sentence, iii) Concluding

sentence, a brief summary for the main idea. [146]

However, some paragraphs may consist of a single sentence that, in certain cases,

might reflect its importance, as in document titles, section headings, numbered items,

etc. In this study, the relative length of the sentence is one of the factors affecting its

overall score.

In addition, the proposed shape coding technique depends on other paragraph

formatting characteristics as, initial marks (numbered, bulleted), font size, etc. as well

as other features related to the shapes of its individual words.

3.1.2 Sentences

Being the building unit of paragraphs, a sentence is considered the grammatical

unit that is formed of one or more words that expresses an independent statement,

question, request, command, exclamation, etc. A single sentence typically has a subject

as well as a predicate, and starts with a capital letter and ends with the appropriate

punctuation. [147].

As for shape coding of paragraphs, sentence shape coding and its subsequent

scoring will depend its formatting characteristics as size, font, punctuation, as well as

on its position in the paragraph and the scores of its individual words.

3.1.3 N-grams

An n-gram is a sequence of n words from a given sequence of text, where n is the

size of the window that forms the sequence of words [148]. To create n-grams, the n

sized window starts from the word at position one (creating the first n-gram from a

sequence of n words) then moves one word forward to create the new n-gram, and so

on. This process of moving n-sized window results in creating a set of n-grams for each

sentence. When n = 2, then the resultant sequences of words are called bigrams, while

n = 3 produces trigrams, subsequently n > 3 produces a list four-grams, five-grams and

so on. It is worth mentioning that a single word, i.e. n = 1, can be referred to as unigram.

For example, for the sentence "Egypt is a country linking northeast Africa with

the Middle East and it dates to the time of the pharaohs"

 If n=2 then the list of bi-grams would be: {Egypt is, is a, a country, country

 23

linking, linking northeast, northeast Africa,.., the pharaohs}, while if n=3 then the list

of tri-grams would be: {Egypt is a, is a country, a country linking, country linking

northeast, .., of the pharaohs}.

The total number of n-grams that can be extracted from a sentence m that consists

of N words can be determined using equation 3.1 below:

𝑛𝐺𝑟𝑎𝑚𝑠 𝐶𝑜𝑢𝑛𝑡 = 𝑁 − (𝑛 − 1) 3.1

As such, using the example mentioned above the total number of bigrams that can

be extracted from that sentence is: 𝑏𝑖𝑔𝑟𝑎𝑚𝑠 𝐶𝑜𝑢𝑛𝑡 = 20 − (2 − 1) = 19.

3.1.4 Words

A word is a single distinct meaningful element of speech or writing, used with others

(or sometimes alone) to form a sentence and typically shown with a space on either side

when written or printed. [149]. A single word can be considered as any segment of

written or printed discourse ordinarily appearing between spaces or between a space

and a punctuation mark [150].

In the proposed technique, the feature weights of a word depend on its shape code as

well as its position in the sentence and its frequency in the document to be summarized.

3.2 Shape Coding

Shape-Coding is the main feature used in the proposed model of the UnB-LITS

tool. The idea of shape coding is to extract the main features of a document element

and code them in a simple way to reflect these features using a compact and intuitive

sequence of letters. Shape-coding takes into consideration both the nature of the

characters forming a document element (numbers or letters), the case of that element

(capital, lower case or mixed) as well as its format (font size, bold, italic, etc.).

 This proposed technique of shape-coding is the main part of the algorithm

responsible for the language independent nature of the entire model.

With reference to the document elements mentioned earlier, three shape-coding

techniques are proposed in this thesis: a) shape-coding of words and n-grams, b) shape-

coding of sentences, and c) shape-coding of paragraphs.

These shape-coding techniques give the model the ability to extract the most

powerful and influential words, n-grams, Named Entities (NE’s), Concrete Concepts

(CC’s), key phrases and sentences. Where, combing the n-gram shapes with their

frequency of occurrence can lead to the identification of NE’s and CC’s in language

agnostic way. Those techniques are explained in details in the following sub-sections:

 24

3.2.1 Shape-Coding of Words and N-grams

Words are the building blocks of a document or text. As such, coding the shape of

a word will be reflected, directly, in coding its parent n-grams and, indirectly, in coding

the containing sentences and paragraphs. Shape-coding of a word means transferring

each character in the word to its corresponding code in a process that results in a

compact word in a limited set of codes, which in turn, reflects the word’s important

features.

In case of shape-coding of words, the code set consists of 5 elements (or letters)

that are used to encode the word features. This elements of the code set are {X, x, C, c,

N, n}. The indication of each code is explained in Table 1 below:

Table 1. Set of codes used in shape-coding of words and n-grams.

Code Element Indication

X Indicates a single capital letter.

x Indicates a single lower case letter.

C Indicates 1 or more capital letters.

c Indicates 1 or more lower case letters.

N Indicates a single numeric character.

n Indicates 1 or more numeric characters.

Shape-coding of a word is done in four main steps:

i. Remove all non-alphanumeric characters as: {. , “ / & ; : @ etc.}.

ii. Change all numeric characters to “N”.

iii. Change all letters to “X” and “x” for capital and lower case letters respectively.

iv. Group sequential repeated codes using “C”, “c” and “n” for repeated “X”, “x”

and “N” respectively. In other words, “C”, “c” or “n” are used to replace a

sequence of similar characters of size ≥ 2. Where, the first character of the

identical sequence is kept unchanged while all the following similar characters

are replaced with one of three continuity codes, “C”, “c” or “n”, to encode the

continuity of the same shape code.

For example, “XXX” is grouped using C to be “XC”, while “xxxx” and

“NNNNNN” are grouped using “c” and “n” resulting in “xc” and “Nn”

respectively.

 25

Using the aforementioned steps for shape-coding of words, below is a couple of

examples showing the shape-coding technique in step by step manner.

Example 1: The word “Egypt” can be coded as follows:

a) Encode the five letters into “X” and “x” according to the letter case,

“E”  “X”, “gypt”  “xxxx”.

Therefore, the first step results in “Egypt”  “Xxxxx”.

b) Group the sequence of similar codes using the continuity codes “C”

and/or “c”. Since “X” is not followed by any other capital “X” thus, no

grouping is performed. While, “gypt” resulted in a sequence of 4 lower

case x’s, “xxxx”, that can be grouped by maintaining the first x and

replacing the other 3 x’s with “c”, i.e. “xxxx”  “xc”.

c) Thus the final result of shape-coding of “Egypt” is “Xxc”.

Example 2: The word “mRNA” can be coded as follows:

a) Encode the four letters into “x” an “X” according to the letter case,

“m”  “x”, “RNA”  “XXX”. By the end of this step, the temporary

code for “mRNA” is “xXXX”.

b) Use the continuity codes to group the sequence of similar codes using

“C” and/or “c”.

In the first part of the word, since there is no other lower case x’s

following the first “x” thus, no grouping is required. While, for the

second part, “RNA”, there is a sequence of 3 capital X’s, “XXX”, that

can be grouped by maintaining the first X and replacing the other 2 X’s

with “C”, i.e. “XXX”  “XC”.

c) Thus the final shape-coding of “mRNA” is “xXC”.

Example 3: The word “UnB” can be coded as follows:

a) Change letters into “x” an “X” according to the letter case, “U”  “X”

, “n”  “x” and “B”  “X” Therefore the first step results in “UnB”

 “XxX”

b) Since there is no sequence of consecutive X’s or x’s, as such, no

grouping can be performed.

c) The final code of “UnB” is “XxX”.

 26

Example 4: The number “1,027,708” can be coded as follows:

a) Remove the non-alphanumeric characters. Thus, “1,027,708” 

“1027708”.

b) Change all numbers into “N”. Therefore, “1027708”  “NNNNNNN”

c) Group sequence of similar codes using the continuity code for

numbers, “n”, so that “NNNNNNN” is converted into “Nn”.

d) As such, the result of number shape-coding of “1,027,708” is simply

“Nn”.

Other examples:

a) Coding the word “game”:

game  xxxx  xc

b) Coding abbreviations, like “USA” or “U.S.A.”

USA  XXX  XC

U.S.A.  USA  XXX  XC

c) Coding the proposed tool UnB-LITS

UnB-LITS  UnBLITS  XxXXXXX  XcXC

d) Coding words containing alphanumeric characters, like “2-way”

2-way  2way  Nxxx  Nxc

e) Coding decimals as “25.44”

25.44  2544  NNNN  Nn

f) Coding single digit number, like “9”,

9  N  Nn

This is the only exception in grouping routines, where a word

consisting of a single character is mapped to a 2 characters word. For

example, a single digit number is mapped to “Nn” instead of “N” and

a single letter word like “a” is mapped as well to “xc”. This exception

is allowed in order to prevent giving higher weights for single character

words as discussed later in this chapter.

As seen from the examples above, shape-coding of words results in encoding those

words into a small set of equivalent classes that represent their shapes. For example, all

numbers are normalized to “Nn”, while the majority of words in the texts are converted

to “xc”. On the other hand, names of persons, cities are converted to “Xxc” that is less

common as compared to “xc”.

 27

In addition, the step of removing non-alphanumeric characters from a word, adds

more power to the proposed model as it helps in normalizing similar words especially

in case of abbreviations. For example, words like “USA” or “U.S.A.” referring to the

United States of America will be treated in our model in the same way, as both words

are encoded into the same shape-code “XC”.

The rareness of a word shape in a document reflects its importance. Using the same

examples stated above, a capitalized word as “USA” has a word shape “XC”. Moreover,

a rare word like the name of our proposed tool “UnB-LITS” has even more rare shape-

code, “XcXC”.

Both shapes “XC” and “XxXC” are rarer in a document than all other common

words (verbs, nouns, adjectives, etc.) that will typically be encoded into the most

abundant shape-code, “xc”.

In addition, words encoded into rare shape-codes, are most likely to be a Named-

Entity (name of a person, city, country, tool, abbreviations, etc.).

As a conclusion, shape-coding of words results in:

i. Mapping words into a small set of equivalent classes.

ii. Normalizing numbers and similar words into similar shape-codes.

iii. Identifies important words and NE’s.

On the other hand, Shape-coding of n-grams is performed simply by concatenating

the shapes of the n-gram’s individual words. Where, a bigram can be shape-coded by

encoding its two individual words and then concatenate them together using a space

delimiter. See Table 2 for some examples of shape-coding of n-grams.

In addition, words or n-grams format can also be encoded easily using the same

philosophy of the proposed shape-coding technique. Where different word formats can

be encoded simply by applying the same format of the word (bold, italic, etc.) on the

encoded shape.

For example, the word “Brazil” with bold and italic formatting will have a shape-

code “Xxc”, i.e. the shape-code is formatted in bold and italic as its parent word.

The rareness of formatted shape-codes reflects the importance or the influence of

the original words, as the in the case of: “UnB-LITS”  XcXC.

 28

Table 2. Example for shape-coding different n-grams.

n-gram Class n-grams n-grams Coded Shape

Bigram

Middle East Xxc Xxc

school bus xc xc

100 mph Nn xc

Trigrams

Republic of Ireland Xxc xc Xxc

189 square feet Nn xc xc

He plays football Xx xc xc

4-grams

linking northeast Africa with xc xc Xxc xc

Arab Republic of Egypt Xxc Xxc xc Xxc

United States of America Xxc Xxc xc Xxc

5-grams

the Federative Republic of Brazil xc Xxc Xxc xc Xxc

Egyptian Minister of Foreign Affairs Xxc Xxc xc Xxc Xxc

BFC bought 88% of BankAtlantic XC xc Nn xc XxcXxc

3.2.2 Shape-Coding of Sentences

Shape-coding of a sentence means transferring its main features into a

representative code in a process that results in a single compact code reflecting the

sentence’s important features.

Sentence shape-coding is much simpler than word’s shape-coding, where the code

set consists of only 2 elements (or letters) that are used to reflect the sentence features.

This code set’s elements are {Z, z}. The indication of those codes is explained in Table

3 below:

Table 3. Sentence Code Set.

Code Element Indication

Z Indicates a sentence with a capital initial letter.

z Indicates a sentence with an initial lower case letter.

Shape-coding of a sentence is done in the following main steps:

i. Before start encoding a sentence, it is worth mentioning that, in contrast to the

word’s shape-code, the sentence shape-code has a fixed length of three codes

whatever the length of the sentence or the shapes of its individual words are.

 29

ii. If the sentence starts in a word with a capital first letter then add “Z” to the

beginning of the code, while if it starts with a lower case letter (which is very

rare) then add “z” to the beginning of the shape-code.

iii. Count the number of words that starts in lower case letter (L) and the number

of other words that starts with an upper case letter (U).

iv. Calculate the ratio of words with initial capital letter in the sentence to its total

number of words and then decide the second part of the shape-code as seen in

equation 3.2 below.

𝑆ℎ𝑎𝑝𝑒𝐶𝑜𝑑𝑒 =

{

 𝑍𝑍 𝑖𝑓

𝑈

𝐿+𝑈
 ≥ 𝜔1

𝑍𝑧 𝑖𝑓
𝑈

𝐿+𝑈
 < 𝜔1 𝑎𝑛𝑑 ≥ 𝜔2

𝑧𝑧 𝑖𝑓
𝑈

𝐿+𝑈
 < 𝜔2

 3.2

Where, 𝜔1 and 𝜔2 are the code-shaping thresholds that are decided by

the model designer. In this study, the default values of these thresholds are

𝜔1 = 0.7, while 𝜔2 = 0.4.

v. Suppose we have a sentence that starts with a word with initial capital letter,

therefore the first code is “Z”, then coding the rest of the sentence will be

performed as follows:

a) If the ratio of words that starts in capital letter is more than 0.7 then the

code part “ZZ” will be added to the shape-code to be: “ZZZ” which

indicates that the sentence is almost fully capitalized (usually in

document titles).

b) While, if the ratio is more than 0.4 and less than 0.7 then the code part

“Zz” will be added to the shape-code to be: “ZZz” which indicates that

the sentence has mixed case words in considerable amount.

c) On the other hand, if the ratio of words that starts in capital letter is

less than 0.4, then the code part “zz” will be added to the shape-code

to be “Zzz”, that implies that the sentence is mostly lower case, similar

to the majority of sentences in English text.

vi. If the sentence starts with a word whose first letter is lower case, then the

sentence can be encoded as follows: “zzz”, “zZz” or “zZZ” which have the

same meaning discussed above with the exception that the sentence starts in a

lower case letter.

 30

vii. In cases where the sentence starts with a number, then consider the number as

an upper case letter, as such, the code-shape of the sentence will start with

“Z”.

Using the aforementioned steps for shape-coding of sentences, we present below a

couple of examples showing the shape-coding technique in a step by step manner.

Example 1: The sentence "Egypt is a country linking northeast Africa with the

Middle East and it dates to the time of the pharaohs", will be encoded

as follows:

a) It starts with the word “Egypt” that has a capital letter in the beginning.

Thus, the shape-code starts with “Z”

b) The total number of words that starts with a capital letter (U) = 4, while

the count of words that starts with lower case letters (L) = 16.

c) Ratio of U to the total number of words (U + L) = 0.2, thus the sentence

is considered to be mostly lower case, so we add “zz” to the coded

shape.

d) As such, the final shape-coding of the sentence is “Zzz”.

Example 2: The title sentence of this study: “Language Independent Text Summarizer

and Deep Self Organizing Cubes”, is encoded as follows:

a) It starts with the word “Language” that has a capital letter in the

beginning. Thus, the shape-code starts with “Z”

b) The total number of words that starts with a capital letter (U) = 8, while

the count of words that starts with lower case letters (L) = 1.

c) Ratio of U to the total number of words (U + L) = 0.88, thus the

sentence is considered to be upper case sentence, thus add “ZZ” to the

encoded shape.

d) As such, the final shape-coding of the sentence is “ZZZ”.

Example 3: The sentence “In this thesis we propose UnB Language Independent Text

Summarizer for language agnostic modeling”, is encoded as follows:

a) It starts with the word “In” that has a capital letter in the beginning.

Thus, the shape-code starts with “Z”

b) The total number of words that starts with a capital letter (U) = 6, while

the count of words that starts with small letters (L) = 8.

c) Ratio of U to the total number of words (U + L) = 0.43, thus the

sentence is considered to be a mixed case sentence, thus add “Zz” to

the coded shape.

 31

d) As such, the final shape-coding of the sentence is “ZZz”.

As seen from the examples above, shape-coding of sentences results in encoding

those sentences into a small set of equivalent classes that represent their shapes. The

rareness of a sentence shape in a document reflects the importance of that sentence. For

example a sentence like those of examples 2 and 3, with coded shapes “ZZz” and “ZZZ”

respectively, are much more rare than sentences with coded shape “Zzz” which reflects

their importance and therefore, should receive higher weights.

3.2.3 Shape-Coding of Paragraphs

Shape-coding of a paragraph means encoding its main features into a representative

code in a process that results in a single compact code reflecting the paragraph’s

important features.

The paragraph’s code set consists of 7 elements (or letters) that are used to reflect

the paragraph features. The code set’s elements are {B, N, O, S, M, P, p}. Indications

of those codes are listed in Table 4 below:

Table 4. Paragraph Code Set.

Code Element Indication

P Indicates a paragraph with a capital initial letter.

p Indicates a paragraph with an initial lower case letter.

N Indicates Numbered Paragraphs.

B Indicates Bulleted Paragraph.

O
Indicates Ordinary Paragraph (neither numbered nor

bulleted).

S Indicates a Single Sentence Paragraph.

M Indicates Multiple Sentences Paragraph.

Before start encoding a paragraph, it is worth mentioning that, alike the word’s

shape-code, the paragraph shape-code has a fixed length of five codes whatever the

shape or the size of the paragraph is. The five-length encoded shape has a pre-defined

fixed position for every main feature in the paragraph. Where, the first letter in the code

is reserved for bullets and numbering, the second letter is for the number of sentences

forming the paragraph, while the last three letters are for the spread of words that starts

with upper and lower case letters throughout the encoded paragraph.

Shape coding of a paragraph is performed as per the following steps:

 32

i. The first letter in the paragraph’s coded-shape indicates whether the paragraph

is numbered, bulleted or ordinary paragraph. Therefore, the first letter in the

code is either “N”, “B” or “O” respectively. Where:

a) If the paragraph starts with a numbered list formed from real number

(1, 2, 3, etc.), letters (a, b, c, etc.) or roman numerals (i, ii, iii, etc.) then

the first letter in the coded shape is encoded as “N”.

b) While, if the paragraph starts with bulleted list (−, , , , etc.) then

the first letter in the coded shape will be “B”.

c) However, if the paragraph is an ordinary paragraph that does not start

with numbered or bulleted system, then the first letter in the coded

shape is set to “O”.

ii. The second letter in the paragraph’s coded-shape indicates how many

sentences form the paragraph. Then, the second letter in the code is either “S”

or “M”. Where:

a) If the paragraph consists of a single sentence (like document titles,

subsection titles, etc.), then the second letter in the coded shape is set

to “S”.

b) On the other hand, if the paragraph consists of multiple sentences (like

the body of typical text paragraphs), then the second letter in the coded

shape is encoded to “M”.

iii. Moreover, if the paragraph starts in a word with capital first letter then add

“P” to the third position of the code, otherwise add “p” in case it starts with a

lower case letter.

iv. Count the number of words that start in lower case letter (L) and the number

of others that start with an upper case letter (U) in the entire paragraph.

v. Calculate the ratio of words with initial capital letter in the paragraph to its

total number of words and then decide the last two letters of the shape-code

as per equation 3.3 below.

𝑆ℎ𝑎𝑝𝑒𝐶𝑜𝑑𝑒 =

{

 𝑃𝑃 𝑖𝑓

𝑈

𝐿+𝑈
 ≥ 𝜔1

𝑃𝑝 𝑖𝑓
𝑈

𝐿+𝑈
 < 𝜔1 𝑎𝑛𝑑 ≥ 𝜔2

𝑝𝑝 𝑖𝑓
𝑈

𝐿+𝑈
 < 𝜔2

 3.3

 33

Where, 𝜔1 and 𝜔2 are the code-shaping thresholds similar to those used

in sentence shape-coding. Such thresholds are decided by the model designer.

In this study, the default values of these thresholds were set to 0.7 and 0.4 for

𝜔1 and 𝜔2 respectively, similar to the threshold values used for sentence

encoding.

vi. Defining the last two letters in the paragraph coded-shape can be done as

follows:

a) If the ratio of words that starts in capital letter is more than 0.7 then the

code part “PP” is added to the shape-code. Therefore, the last three

letters in the code are “PPP”, which indicate that the paragraph is

almost fully capitalized.

b) While, if the ratio is more than 0.4 and less than 0.7 then the code part

“Pp” is added to the shape-code. Therefore, the last three letters in the

paragraph code are set to “PPp”, which indicate that the paragraph has

mixed case words in considerable amount.

c) On the other hand, if the ratio of words that starts in capital letter is

less than 0.4, then the code part “pp” is added to the shape-code.

Therefore, the last three letters in the code will be “Ppp” showing that

the paragraph is mostly lower case, similar to the majority of

paragraphs in an English text.

vii. Moreover, if the paragraph starts with a word whose first letter is lower case,

then the last three letters in the paragraph shape code can be: “ppp”, “pPp” or

“pPP” which have the same meaning discussed above with the exception that

the paragraph starts in a lower case letter.

viii. In cases where the paragraph starts with a number that is not a numbered list,

then consider that number as an upper case letter. As such, the third letter of

the code-shape of the paragraph will start with “P”.

Using the aforementioned steps for shape-coding of sentences, below is a couple

of examples showing the shape-coding technique in a step by step manner.

Example 1: The paragraph "4. Results and Discussions", can be coded as follows:

a) It starts with a numbered list “4.”. Thus, the shape-code starts with

“N”.

b) It is a single sentence paragraph. Therefore, the second coded letter is

set to “S”.

c) Following the numbered list, the paragraph starts with the word

“Results” that has a capital initial letter. As such, the third letter of the

shape-code will be “P” in upper case.

 34

d) The total number of words that starts with a capital letter (U) = 2, while

the count of words that starts with lower case letters (L) = 1.

e) Ratio of U to the total number of words (U + L) = 0.75, thus the

paragraph is considered to be mostly upper case, thus add “PP” to the

coded shape.

f) As such, the final shape-coding of the paragraph is “NSPPP”.

Example 2: The paragraph “In this thesis we propose UnB Language Independent

Text Summarizer for language independent modeling. Also, Deep Self

Organizing Cubes is introduced for multidimensional classification.”,is

encoded as follows:

a) It starts with neither a numbered nor a bulleted list. Thus, the shape-

code starts with “O”, i.e. ordinary paragraph.

b) It is a two-sentence paragraph. Thus the second coded letter is “M”

c) It starts with the word “In” that has a capital letter in the beginning.

Thus, the third letter in the shape-code is set to “P”.

d) The total number of words that starts with a capital letter (U) = 11,

while the count of words that starts with lower case letters (L) = 13.

e) Ratio of U to the total number of words (U + L) = 0.46, thus the

paragraph is considered to be a mixed case paragraph, thus add “Pp”

to the coded shape.

f) As such, the final shape-coding of the paragraph is “OMPPp”.

As seen from the examples above, shape-coding of paragraphs results in encoding

those paragraphs into a small set of equivalent classes that represent their shapes.

As in the case of words and sentences, the rareness of a paragraph shape in a

document reflects its importance. For example, a single sentence paragraph with mostly

capitalized word initials “OSPPP” is more probably represents a title, where normal

paragraphs in the text will have a shape like “OMPpp”. In other words, the rareness of

“OSPPP” reflects its importance, which indicates that it should receive higher weight

while computing the final score.

3.3 Features Extraction

Features extraction is the process of identifying the main properties of a specific

element in a document. The extracted features will affect the overall score of that

element. Since the proposed model is based on a language independent approach,

therefore the properties or features to be extracted should not depend on any prior

 35

knowledge of the language of the text to be summarized with all of its etymology,

grammatical, semantic or syntactic relations.

As presented in the literature review and related work in Chapter 2:, most of text

summarization techniques are language dependent especially in the preprocessing

routines. Those language dependent preprocessing steps include stop words removal

[151], lemmatization or stemming [152], Part-of-Speech (POS) Tagging [153], and

other language dependent preprocessing routines. These techniques require prior

knowledge of the language of the text, to utilize the appropriate databases or lexicons

(stop words, dictionary, etc.), knowledge bases and hand coded rules for stemming and

lemmatization [154], as well as parsers and taggers (POS taggers, etc.) [155].

The proposed model is an unsupervised text summarizer that is totally language

agnostic and hence independent of any external databases or parsers (that by definition

are language dependent). As such, one of the main contributions of this study is

proposing a language agnostic stop words removal algorithm as well as a totally

language independent stemmer.

Below we explain the process of extracting intrinsic properties of document

elements, which are related to the frequency of occurrence of their forms as well as

their coded shapes.

3.3.1 Words Scoring and Features Extraction

Words are the main building blocks of all other document elements in the proposed

model starting from n-grams up to sentences and paragraphs. Extraction of word

features is a process of extracting statistical properties that depend on the word form

(spelling) as well as its coded shape, and give them a weighted score. A word score is

a combination of its extracted feature weights.

The score given to higher document elements depends heavily on the scores of

individual words, which form that element. As such, word feature extraction and its

subsequent scoring is the most crucial step in the entire model. Those features are:

i. Word Shape,

ii. Word Shape frequency,

iii. Word Form frequency,

iv. Overall Word Score.

Word feature extraction and scoring depends on two assumptions: a) rare words in

a text have more influence on the meaning of the text and should get heavier weights;

and b) rare or less frequent word shapes may indicate a NE that implies more influence

in the text, hence, receiving heavier weights. In conclusion, the rarer the word form and

shape are, the higher the word score and thus the more important it is for summarizing

the text.

 36

Figure 5. Process of word features extraction and Word Score (WS) computation.

3.3.1.1 Process of Word Features Extraction

The process of word features extraction involves many steps that begins with

language independent pre-processing; shape-coding; through counting frequencies of

shapes and forms; and ending with computing the final word score. Figure 5 shows the

process of word features extraction from the beginning of the preprocessing algorithm

till computing the word score. The steps of word features extraction are:

i. Extract Words (Tokenization): A sentence is segmented into its individual

tokens (words).

ii. Removal of special characters: All none alphanumeric characters, as commas,

hyphens, points, semicolons, etc., are removed from each individual token.

 37

iii. Normalize Numbers:

If the token is a number, then it is converted into “####”. This

normalization step of numbers is crucial to avoid assigning false high weights

for each number. Since numbers tend to be different in a document (i.e. it is

rare that a single number is repeated many times in a single document

especially in scientific texts), thus, without normalization, the model will

consider every number as a rare influential word leading to an over estimated

importance of the number and its containing sentence.

iv. Normalize Word Forms:

Encoded shapes depend on the word form and its case (upper case or

lower case letters or mixed). And since the rareness of a word shape reflects

its importance (usually Named Entities are capitalized or start with upper case

letter), thus it’s crucial to normalize word case such that upper case words are

those of NE’s and not for words that accidently appear at the beginning of a

sentence.

To achieve this normalization, each word that starts with a capital letter

is searched in the whole document. If the word was found in any other position

in the document with lower case letters, then, the word case is changed to

lower case.

v. Combining Similar Words:

Some words are similar and should be treated as one when counting the

frequency of occurrence of words. For example, in English, words like “year”

and “years”; “automatic” and “automatically”; or “allow” and “allowed”; and

in Portuguese, “embaixada” and “embaixadas”; or “quero” and “quer”.

Supervised text summarization models use stemming or lemmatization

to revert a word back to its root/stem and hence combine similar words. This

step, in case of supervised text summarization, is language dependent, due to

the need of lexicons or language dependent hand coded rules. Since our prosed

model is language agnostic, so it is important that we develop an algorithm

that combines similar words depending on the word forms and the degree of

similarities they have in common regardless the language of the original text

and its words.

The proposed algorithm tends to calculate the number of similar letters

between two words starting from the letter at position 1. In other words, the

algorithm computes the length of sequence of common letters between two

words, which is called Degree of Similarity or DoS for short.

 38

The Degree of Similarity is computed using equation 3.4, and if that DoS

value exceeds a predefined threshold, then the extra letters of the longer word

are discarded, so that it is converted into the smaller one.

𝐷𝑜𝑆 =
𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑐𝑜𝑚𝑚𝑜𝑛 𝑙𝑒𝑡𝑡𝑒𝑟𝑠 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒

𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑜𝑛𝑔𝑒𝑟 𝑤𝑜𝑟𝑑
 3.4

The pseudocode for similarity check between two tokens is explained in

Algorithm 1. If the algorithm returns True, then extra letters are removed from

the longer word in an action close to language dependent stemming of words.

Moreover, Table 5 present examples for combining similar words using

a threshold of 0.68.

Algorithm 1. The similarity check algorithm.

Pseudocode: Two words similarity check

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Inputs: strToken1, strToken2, dblThreshold

Result: isDoStemLongerWord

/* Check letters similarities */

intCount = 0;

dblDoS = 0;

If (Length(strToken1) >= strToken2) Then

 strLongToken = strToken1;

 strShortToken = strToken2;

Else

 strLongToken = strToken2;

 strShortToken = strToken1;

End if

For i = 1 To Length(strShortToken) do

 If (strShortToken[i] = strLongToken[i]) Then

 intCount = intCount + 1;

 Else

 Exit do;

 End if

Loop

/* Calculate Degree of Similarity */

dblDoS = intCount/Length(strLongToken);

/* Check if DoS exceeds the preset threshold */

If (dblDoS >= dblThreshold) Then

 39

26

27

28

29

30

31

 isDoStemLongerWord = True;

Else

 isDoStemLongerWord = False;

End if

Return isDoStemLongerWord;

Table 5. Examples for combining similar words using a threshold of 0.68. Words with

DoS < the threshold (colored in red) are maintained unchanged.

vi. Get Word Coded-Shape:

After normalizing tokens by converting numbers to “####”, change the

word case to the appropriate one and combine similar words. Each character

in the token is mapped to its appropriate shape code as mentioned under

section 3.2.1. Algorithm 2 shows the pseudocode for applying shape-coding

for extracted normalized tokens.

Word 1 Word 2
Number of

Similar letters
DoS

Action

Performed

Year Years 4 4/5 = 0.8

“Years” is

changed to

“Year”

Automatic Automatically 9 9/13 = 0.69

“Automatically”

is changed to

“Automatic”

An And 2 2/3 = 0.66
Both words are

maintained

Form From 1 1/4 = 0.25
Both words are

maintained

University Universities 9 9/12= 0.75

“Universities”

is changed to

“University”

Allow Allowed 5 5/7 = 0.71

“Allowed” is

changed to

“Allow”

Quer Quero 4 4/5 = 0.8

“Quero” is

changed to

“Quer”

 40

Algorithm 2. Shape-coding of normalized Tokens.

Pseudocode: Shape-Coding

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

Inputs: strToken

Result: strShape

/* Map each character to its appropriate code */

strTemp = “”;

For i = 1 To Length(strToken) do

 Switch Case (strToken[i])

 Case “#”

 strTemp = strTemp & “N”;

 Case Else

 If (isUpperCase(strToken[i])) Then

 strTemp = strTemp & “X”;

 Else

 strTemp = strTemp & “x”;

 End if

 End Switch

Loop

/* Group Similar Codes */

strShape = “”;

For i = Length(strTemp) To 2 Step -1 do

 If (strTemp[i] = strTemp[i-1]) Then

 If (isUpperCase(strTemp[i-1])) Then

 If (strTemp[i-1] = “X”) Then

 strShape = “C” & strShape;

 ElseIf (strTemp[i-1] = “N”) Then

 strShape = “n” & strShape;

 End if

 Else

 strShape = “c” & strShape;

 End if

 Else

 strShape = strTemp[i] & strShape;

 End If

Loop

strShape = strTemp[1] & strShape;

/* Return the coded shape */

Return strShape;

vii. Get Word Frequency and Compute Word Form Weight (WfW):

Get the count of each word in the text to be summarized. This word

frequency is used to compute the weight of the word form (WfW). Since, the

 41

proposed model assumes that a rare word has more influence on the text than

a more common word, thus as seen in equation 3.5 below, the WfW is

computed by taking the reciprocal of the natural logarithm (log of base e) of

the word count.

𝑊𝑓𝑊 =
1

ln(𝑐𝑜𝑢𝑛𝑡(𝑤𝑜𝑟𝑑) + 1)
 3.5

The natural logarithm is inverted in order to give non-linear higher

weights to rare words compared to abundant ones. While, the add 1

normalization is done to avoid dividing by zero in case of a word that was

mentioned only once, as ln(1) = 0.

The impact of the multiplicative inverse of the natural logarithm weight

and the assumption of the higher influence of rare words are better understood

using an example. Where, a word like “the” may be mentioned in a piece of

text around 40 times, while a word like “UnB” is mentioned twice. Thus the

WfW of “the” in this case is equal to
1

ln(40+1)
 = 0.2693, while the rare word

“UnB” will get a WfW = 0.9102. This weight reflects clearly the difference in

importance between these two words and the subsequent effect on evaluating

the importance of particular sentence.

This way the language agnostic proposed model, UnB-LITS, can get rid

of the effect of stop words, which are usually abundant in the text, without any

need of language dependent lists and lexicons.

viii. Get Coded Shapes Frequency and Compute Word Shape Weight (WsW):

Get the count of each word shape in the text to be summarized. This

shape frequency is used to compute the weight of the word shape (WsW).

Since, the proposed model assumes that a rare coded shape has more influence

on the text than a more common shape, thus as seen in equation 3.6 below, the

WsW is computed by taking the reciprocal of the logarithm (log of base 10) of

the coded shape count.

𝑊𝑠𝑊 =
1

log(𝑐𝑜𝑢𝑛𝑡(𝑠ℎ𝑎𝑝𝑒) + 1)
 3.6

The logarithm is inverted in order to give non-linear higher weights to

rare shapes compared to abundant ones. While, the add 1 normalization is used

to avoid dividing by zero in case of a word shape that existed only once, since,

log(1) = 0.

 42

For example: the coded shape of a word like “the” is “xc”, which is the

most abundant shape in the entire text, since all lower case words has that

encoded shape. If this shape exists “300 times” in the text, thus its WsW in this

case is equal to
1

log(300+1)
 = 0.4035. While a rare word like “UnB” which has

a relatively rare word shape “XcX” that might exist only three times in the

entire text. Therefore, the WsW of “XcX” in this case is equal to
1

log(3+1)
 =

1.6610. This weight reflects the difference in importance between these two

encoded shapes, which in turn affect their overall scores.

It is worth mentioning that logarithm of base 10 is used to compute WsW

rather than the natural logarithm used for computing WfW since this technique

will give much higher weights for shapes in comparison to word forms. Where,

if two words have equal frequency of occurrence, then the word with more

rare coded shape will have higher Word Score (WS). A detailed discussion of

the relative weights of WfW and WsW is presented under item ix computing

Word Score.

ix. Computing Word Score (WS):

Computing the Word Score (WS) of a token is simply done by combining

its Word form Weight (WfW) and its Word shape Weight (WsW) as seen in

equation 3.7 below.

𝑊𝑆 = (2 − 𝛼) 𝑊𝑓𝑊 + 𝛼 𝑊𝑠𝑊 3.7

Where α is constant greater than or equal to 0 and less than or equal to

2. The α constant is used to adjust the relative weights of each term of the WS

computing equation. Usually α is set to 1 in order to maintain the relative

weights of both terms of the equation imposed by the difference between log

and ln. However, in certain situations where short texts are to be summarized,

it is recommended to give larger weight for the shape term WsW, as in case of

short text unimportant words might, accidently, occur in unusual low

frequency. In such situation, higher α is used to give more weights for named

entities.

As discussed previously rare words with rare encoded shapes have

higher WS than the most abundant ones. Where, a common words like “the”

with frequency of occurrence = 40, and its encoded shape “xc” has frequency

= 300, will get a word score 𝑊𝑆 = 1 × 0.2693 + 1 × 0.4035 = 0.6728.

While, the word “UnB” that exists 2 times and its coded shape “XcX” exits

three times, its 𝑊𝑆 = 1 × 0.9102 + 1 × 1.6610 = 2.5712. Accordingly,

 43

the WS for both tokens reflect the importance of the token “UnB” when

compared to the token “the”.

As discussed in the previous section, the word shape is given a higher

weight than the word form by using the natural logarithm for computing WfW

and logarithm of base 10 for computing WsW. This technique of computing

weights is useful in giving a relatively lower score for relatively unimportant

words with very common shape “xc” that might appear, in rare situations, few

times in the text to be summarized. For example, a word like “for” may exists

only 3 times in a text, thus its common coded shape weight will pull it lower

as compared to other words that has equal frequency but more rare coded

shape.

3.3.1.2 A Working Example

This working example will implement all the techniques described above for

tokenization of a piece of text and its subsequent normalization, features extraction and

computing the overall word scores. This example uses a piece of text from a document

(ID: AP880911-0016) of the benchmark dataset (DUC2002) provided by the American

National Institute of Standards (NIST) during the Document Understanding Conference

in 2002 - DUC 2002 [156].

The document was subjected to a text segmentation process that resulted in 16

sentences listed in Table 6.

Table 6. Document AP880911-0016 from DUC 2002 dataset.

Sentence

ID
Sentence

S1

Hurricane Gilbert swept toward the Dominican Republic Sunday, and the Civil

Defense alerted its heavily populated south coast to prepare for high winds,

heavy rains and high seas.

S2
The storm was approaching from the southeast with sustained winds of 75 mph

gusting to 92 mph.

S3
``There is no need for alarm, ''Civil Defense Director Eugenio Cabral said in a

television alert shortly before midnight Saturday.

S4
Cabral said residents of the province of Barahona should closely follow

Gilbert's movement.

S5
An estimated 100,000 people live in the province, including 70,000 in the city

of Barahona, about 125 miles west of Santo Domingo.

S6
Tropical Storm Gilbert formed in the eastern Caribbean and strengthened into

a hurricane Saturday night.

S7

The National Hurricane Center in Miami reported its position at 2 a.m. Sunday

at latitude 16.1 north, longitude 67.5 west, about 140 miles south of Ponce,

Puerto Rico, and 200 miles southeast of Santo Domingo.

 44

S8

The National Weather Service in San Juan, Puerto Rico, said Gilbert was

moving westward at 15 mph with a ``broad area of cloudiness and heavy

weather'' rotating around the center of the storm.

S9
The weather service issued a flash flood watch for Puerto Rico and the Virgin

Islands until at least 6 p.m. Sunday.

S10
Strong winds associated with the Gilbert brought coastal flooding, strong

southeast winds and up to 12 feet feet to Puerto Rico's south coast.

S11 There were no reports of casualties.

S12
San Juan, on the north coast, had heavy rains and gusts Saturday, but they

subsided during the night.

S13
On Saturday, Hurricane Florence was downgraded to a tropical storm and its

remnants pushed inland from the U.S. Gulf Coast.

S14
Residents returned home, happy to find little damage from 80 mph winds and

sheets of rain.

S15
Florence, the sixth named storm of the 1988 Atlantic storm season, was the

second hurricane.

S16
The first, Debby, reached minimal hurricane strength briefly before hitting the

Mexican coast last month.

By applying all the steps of the word scoring technique described above on this

piece of text, we got the following:

i. Tokenization: resulted in 317 tokens, {Hurricane, Gilbert, swept, toward, the,

Dominican, Republic, Sunday, .., coast, .., ''Civil, 100,000, people, .., 67.5, ..,

mph, .., On, .., U.S., .., The, .., coastal, .., month}.

ii. Removal of special characters: All special characters as commas, decimal

points, punctuations, etc. were removed, as follows:

 100,000  100000, 67.5  675, ''Civil  Civil, U.S.  US, etc.

iii. Normalize Numbers: all numbers were changed to ####. For example, 100000

 ####, 675  ####.

iv. Normalize Word Forms: Different words were normalized to its appropriate

case. Where, some words that have initial capital letters were changed to lower

case, while others are maintained in their original case. For example:

Hurricane  hurricane, Gilbert  Gilbert, On  on, The  the, etc.

Therefore the set of normalized tokens become {hurricane, Gilbert, swept,

toward, the, Dominican, Republic, Sunday, .., coast,.., civil, ####, people, ..,

####, .., mph, .., on, .., US, .., the, .., coastal, .., month}.

v. Combining Similar Words: this step was performed using DoS Threshold =

0.6 resulted in 151 unique words. Where some words were combined together,

for example: coastal  coast, Gilbert’s  Gilbert, reported  report, etc.

Thus the set of tokens become {hurricane, Gilbert, swept, toward, the,

 45

Dominican, Republic, Sunday, .., coast,.., civil, ####, people, .., ####, .., mph,

.., on, .., US, .., the, .., coast, .., month}.

vi. Get Word Shapes: shape-coding of the normalized tokens resulted in 4 unique

word shapes {Nn, xc, Xxc, XC}. Where hurricane  xc, Gilbert  Xxc, US

 XC. As such, the set of encoded shape tokens is {xc, Xxc, xc, xc, xc, Xxc,

Xxc, Xxc, .., xc,.., xc, Nn, xc, .., Nn, .., xc, .., xc, .., XC, .., xc, .., xc, .., xc}.

vii. Get Word Frequency and Compute Word Form Weight (WfW): Table 7 shows

the frequency and the subsequently computed WfW of some tokens from the

sample text. As shown in the table, abundant unimportant words like “the” or

“####” have the least weights. While important words (NE), like “US” and

“Dominican”, have the highest weights reflecting their importance. However

some unimportant words like “from” has higher WfW than an obviously

important word in that context like “Gilbert”, this is due to the fact that the

word “from” occurred only 3 times in the whole text compared to “Gilbert”

that appeared 5 times. This pitfall will be corrected when the coded shape

weight (WsW) is included in computing the overall word score.

Table 7. Example of Computing WfW for some normalized tokens.

Token Count WfW

15 0.361

the 23 0.131

Gilbert 5 0.558

US 1 1.443

Dominican 1 1.443

from 3 0.721

viii. Get Coded Shapes Frequency and Compute Word Shape Weight (WsW): As

mentioned above, the shape-coding technique results in 4 shapes only. Table

8 shows the frequency and the WsW of these shapes.

Table 8. Frequencies of the extracted encoded shapes and their WsW.

Coded Shape Count WsW

Nn 15 0.830

xc 254 0.416

Xxc 47 0.595

XC 1 3.322

ix. Computing Word Score (WS): Table 9 shows the computed WS for the

selected tokens using α set to 1. The results shown below proves that using the

reciprocal logarithm of base 10 for encoded shapes has added more influence

 46

to rare words rather than the unimportant ones. As such, important words like

“Gilbert” got a higher overall WS than the unimportant word “from”.

Table 9. The overall word score (WS) for extracted tokens.

Token Shape WfW WcW WS

Nn 0.361 0.830 1.191

the xc 0.131 0.416 0.547

Gilbert Xxc 0.558 0.595 1.153

US XC 1.443 3.322 4.765

Dominican Xxc 1.443 0.595 2.038

from xc 0.721 0.416 1.137

3.3.2 N-grams scoring and Features Extraction

As defined earlier, an n-gram is a sequence of n words from a given text, where n

is the size of the window that forms the sequence of words. The extraction of n-gram

features is the process of extracting statistical properties based on the n-gram’s form

(spelling), and encoded shapes as well as the Word Scores of their constituent words.

The n-gram score (nGS) is a combination of the extracted feature weights. In this

model, we are going to extract features for bigrams, trigrams, 4-grams and 5-grams.

The extracted features are:

i. N-gram Shape,

ii. N-gram Shape frequency,

iii. N-gram Form frequency,

iv. Overall N-gram Score (nGS; Also it can be denoted as 2GS, 3GS, 4GS or 5GS

for bigrams, trigrams, 4-grams and 5-grams respectively).

 47

Figure 6. Extracting n-Grams and computing their scores (nGS).

In contrast to the word scoring assumption of rare words have more importance

than the more abundant ones, in our proposed model the n-gram feature extraction is

based on the exact opposite assumption. N-gram scoring approach assumes that

probable n-gram’s¸ in terms of form and shape, have more influence on the meaning of

the text than less probable ones, and accordingly should get heavier weights.

This assumption aids in identifying and extracting Named Entities and Concrete

Concepts in a language agnostic manner.

Moreover, this assumption and its rule in identifying NE’s and CC’s can be

explained in view of the fact that the overall score of an n-gram (nGS) is influenced by

the scores of its constituent words. As such, in case of bigrams for instance, the more

probable two rare words occur together the higher the weight the bigram should have.

For example, two rare words like “United” and “States” if they occur together in

relatively high frequency this indicates that the bigram “United States” (with shape

“Xxc Xxc”) is more likely to be a Named Entity or a Concrete Concept.

In conclusion, the more abundant the n-gram form and the more rare its individual

words are, the higher its nGS and thus the more important it is for summarizing the text.

 48

3.3.2.1 Process of N-grams Features Extraction

The process of n-gram features extraction involves many steps that depend mainly

on the previous step of Word Features Extraction. It starts with concatenating

normalized tokens and their shapes, and ends up with computing the final n-Gram Score

(nGS). No preprocessing or normalization techniques are applied in this step as the

tokens are already normalized and pre-processed before. Figure 6 shows the process of

extracting n-grams and computing their nGS. The steps of n-Gram features extraction

are:

i. Extract N-Grams:

Four different types of n-grams are extracted in this step; bigrams,

trigrams, 4-grams and 5-grams. As such and as discussed earlier, extracting n-

grams involves setting a window of size n (2, 3, 4 and 5) that moves forward

along each sentence extracting the appropriate n-grams and add them to a list.

ii. Get N-Grams Encoded Shapes:

This is simply done by concatenating the encoded shapes of the tokens

forming the n-gram and separated by a single space character. For example, if

a bigram is formed of the words “United” and “States” thus the bigram form

is “United States” and its encoded shape is “Xxc Xxc”, while for the trigram

“the United States” its coded shape will be “xc Xxc Xxc”.

iii. Get N-gram Frequency and Compute N-gram Form Weight (nGfW):

Get the count of each n-gram in the text to be summarized. The n-gram

frequency is used to compute the Maximum Likelihood Estimate (MLE) of

that n-gram form. Since, the proposed model assumes that the more likely

(probable) the n-gram is the more influential it is, thus the nGS is the product

of the MLE of the n-gram form (nGfW) and shape (nGsW), as per the equations

below.

𝑛𝐺𝑓𝑊 = (∏𝑃(𝑤𝑖|𝑤1, . . , 𝑤𝑖−1)

𝑛

𝑖=1

) × ∑𝑊𝑆(𝑤𝑜𝑟𝑑𝑖)

𝑛

𝑖=1

 3.8

𝑊ℎ𝑒𝑟𝑒, 𝑃(𝑤𝑖|𝑤1, . . , 𝑤𝑖−1) =
𝑐𝑜𝑢𝑛𝑡 (𝑤1, . . , 𝑤𝑖)

𝑐𝑜𝑢𝑛𝑡 (𝑤1, . . , 𝑤𝑖−1)

3.9

Where, 𝑤𝑖 is the word at position i of an n-gram. While,

∑ 𝑊𝑆(𝑤𝑜𝑟𝑑𝑖)
𝑛
𝑖=1 is the sum of words scores of all the words that form the n-

gram. This term is included to lower the value of nGfW for probable n-grams

 49

that are made from weak words, and hence, give higher weights for n-grams

made from stronger words.

As seen in equation 3.9, 𝑃(𝑤𝑖|𝑤1, . . , 𝑤𝑖−1) is the maximum likelihood

estimate of an n-gram formed from i words, which is calculated as the

probability of the word 𝑤𝑖 given the sequence of words {𝑤1, . . , 𝑤𝑖−1}, which

is equal to ratio of the frequency of occurrence of the whole sequence of words

{𝑤1, . . , 𝑤𝑖} to the frequency of occurrence of the sequence formed from the

words {𝑤1, . . , 𝑤𝑖−1}. [5]

Using the same working example stated in 3.3.1.2, computing the nGfW

(4GfW) for the 4-gram “Director Eugenio Cabral said” is done as follows:

a) Calculate the MLE for the 4-gram word form:

𝑀𝐿𝐸 =
𝑐 (𝑫𝒊𝒓𝒆𝒄𝒕𝒐𝒓 𝑬𝒖𝒈𝒆𝒏𝒊𝒐 𝑪𝒂𝒃𝒓𝒂𝒍 𝒔𝒂𝒊𝒅)

𝑐 (𝑫𝒊𝒓𝒆𝒄𝒕𝒐𝒓 𝑬𝒖𝒈𝒆𝒏𝒊𝒐 𝑪𝒂𝒃𝒓𝒂𝒍)
 ×

𝑐 (𝑫𝒊𝒓𝒆𝒄𝒕𝒐𝒓 𝑬𝒖𝒈𝒆𝒏𝒊𝒐 𝑪𝒂𝒃𝒓𝒂𝒍)

𝑐 (𝑫𝒊𝒓𝒆𝒄𝒕𝒐𝒓 𝑬𝒖𝒈𝒆𝒏𝒊𝒐)
 ×

𝑐 (𝑫𝒊𝒓𝒆𝒄𝒕𝒐𝒓 𝑬𝒖𝒈𝒆𝒏𝒊𝒐)

𝑐 (𝑫𝒊𝒓𝒆𝒄𝒕𝒐𝒓)

b) Compute the sum of word scores (WS) of the 4-gram words (from

“Director” to “said”):

𝑆𝑢𝑚 𝑜𝑓 𝑊𝑆𝐷𝑖𝑟𝑒𝑐𝑡𝑜𝑟
𝑆𝑎𝑖𝑑 = 𝑊𝑆(𝑫𝒊𝒓𝒆𝒄𝒕𝒐𝒓) +𝑊𝑆(𝑬𝒖𝒈𝒆𝒏𝒊𝒐) +𝑊𝑆(𝒄𝒂𝒃𝒓𝒂𝒍) +𝑊𝑆(𝒔𝒂𝒊𝒅)

c) Multiply the 𝑆𝑢𝑚 𝑜𝑓 𝑊𝑆 × 𝑀𝐿𝐸:

4𝐺𝑓𝑊 = 𝑀𝐿𝐸 × 𝑆𝑢𝑚 𝑜𝑓 𝑊𝑆𝐷𝑖𝑟𝑒𝑐𝑡𝑜𝑟
𝑆𝑎𝑖𝑑

iv. Get N-gram Shape Frequency and Compute N-gram Shape Weight (nGsW):

Get the count of coded shapes of each n-gram in the text to be

summarized. The n-gram shape frequency is used to compute the Maximum

Likelihood Estimate (MLE) of that n-gram shape that will be referred to as the

n-Gram shape Weight (nGsW) as per equation 3.10 below.

𝑛𝐺𝑠𝑊 = (∏𝑃(𝑠𝑖|𝑠1, . . , 𝑠𝑖−1)

𝑛

𝑖=1

) 3.10

𝑊ℎ𝑒𝑟𝑒, 𝑃(𝑠𝑖|𝑠1, . . , 𝑠𝑖−1) =
𝑐𝑜𝑢𝑛𝑡 (𝑠1, . . , 𝑠𝑖)

𝑐𝑜𝑢𝑛𝑡 (𝑠1, . . , 𝑠𝑖−1)

3.11

 50

Where, 𝑠𝑖 is the shape at position i of that n-gram.

As per Equation 3.11, 𝑃(𝑠𝑖|𝑠1, . . , 𝑠𝑖−1) is the maximum likelihood

estimate of an n-gram formed from i encoded shapes. The MLE in this case is

calculated as the probability of the shape 𝑠𝑖 given the sequence of encoded

shapes {𝑠1, . . , 𝑠𝑖−1}, which is equal to ratio of the frequency of occurrence of

the whole sequence of shapes {𝑠1, . . , 𝑠𝑖} to the frequency of occurrence of the

sequence formed from the shapes {𝑠1, . . , 𝑠𝑖−1}.

Using the same 4-gram example of “Director Eugenio Cabral said”, this

4-gram has encoded shape of “Xxc Xxc xc xc”, as such, for computing its

nGsW (4GsW), the MLE is computed as follows:

𝑀𝐿𝐸 =
𝑐 (𝑿𝒙𝒄 𝑿𝒙𝒄 𝒙𝒄 𝒙𝒄)

𝑐 (𝑿𝒙𝒄 𝑿𝒙𝒄 𝒙𝒄)
 ×

𝑐 (𝑿𝒙𝒄 𝑿𝒙𝒄 𝒙𝒄)

𝑐 (𝑿𝒙𝒄 𝑿𝒙𝒄)
 ×

𝑐 (𝑿𝒙𝒄 𝑿𝒙𝒄)

𝑐 (𝑿𝒙𝒄)

3.12

v. Computing N-gram Score (nGS):

Computing the n-gram score (nGS) for the extracted bigrams, trigrams,

4-grams and 5-grams is simply done by combining their n-gram form Weight

(nGfW) and their n-gram shape Weight (nGsW) as per equation 3.13 below.

𝑛𝐺𝑆 = 𝑛𝐺𝑓𝑊 × 𝑛𝐺𝑠𝑊 3.13

As discussed previously, the high probable n-grams form and shapes that

are composed of rare words will get higher nGS than the less probable and/or

weaker ones. For example in a text about astronomy, a relatively abundant

bigram like “Solar System” will get higher nGS than less abundant one like

“the flare”.

However, in certain circumstances, a highly probable n-gram can receive

lower nGS than less probable ones. This happens when the n-gram is

composed of weak words with weak WS. For example, a probable and

abundant bigram like “in the” with coded shape “xc xc” will have lower overall

nGS than other less probable ones like “United States” due to the fact that “in

the” is composed of weak words, while, “United States” is composed of strong

words that intensify its overall nGS.

As such, nGS reflects the actual importance of an n-gram based on its

probability of occurrence as well as the strength of its constituent words.

 51

3.3.2.2 A Working Example

Continuing with the working example of section 3.3.1.2. Applying the techniques

described above for scoring and extracting n-gram features on the selected text results

in the following:

i. Extract N-Grams: The technique extracted 268 bigrams, 281 trigrams, 269 4-

grams and 253 5-grams. Some of the extracted n-grams are listed in Table 10

below.

Table 10. Extracted n-grams.

N-gram N-gram Form

Bigrams

US Gulf

Director Eugenio

Dominican Republic

Virgin Islands

in the

on the

Trigrams

US Gulf coast

Virgin Islands until

Debby reached minimal

Director Eugenio cabral

in the city

on the north

4-grams

Virgin Islands until at

Debby reached minimal hurricane

Defense Director Eugenio cabral

Director Eugenio cabral said

in the city of

on the north coast

5-grams

Virgin Islands until at least

Debby reached minimal hurricane strength

Islands until at least ####

Director Eugenio cabral said in

in the city of Barahona

on the north coast had

ii. Get N-Grams Shape: shape-coding of the extracted n-grams resulted in 9

unique bigrams shapes, 18 unique trigrams shapes, 31 unique 4-grams shapes

and 48 unique 5-grams shapes. Some of the extracted n-grams shapes are listed

in Table 11 below.

 52

Table 11: Extracted n-grams unique shapes with their frequency of occurrence.

N-gram N-gram Shape Frequency

Bigrams

xc xc 196

xc Xxc 30

Xxc xc 28

xc Nn 15

Xxc Xxc 15

Nn xc 14

Trigrams

xc xc xc 152

xc xc Xxc 22

Xxc xc xc 22

xc Xxc xc 18

xc Nn xc 14

xc xc Nn 13

4-grams

xc xc xc xc 117

xc xc xc Xxc 18

Xxc xc xc xc 18

xc Xxc xc xc 15

xc xc Nn xc 12

xc Nn xc xc 11

5-grams

xc xc xc xc xc 92

xc Xxc xc xc xc 14

Xxc xc xc xc xc 13

xc xc xc xc Xxc 11

xc Nn xc xc xc 9

xc xc Nn xc xc 9

iii. Get N-gram Frequency and Compute N-gram Form Weight (nGfW): Table 12

shows the computed nGfW of some of the extracted n-gram from the sample

text. As shown in the table abundant unimportant n-grams like “in the” or “on

the” have the least weights. While, important n-grams (NE’s), like “Director

Eugenio cabral” and “Dominican Republic”, have the highest weights reflecting

their importance.

Table 12. Example of computing nGfW for some extracted n-grams.

N-gram N-gram Form ML
Sum of

Words
nGfW

Bigrams

US Gulf 1 6.802 6.802

Director Eugenio 1 4.075 4.075

Dominican Republic 1 4.075 4.075

Virgin Islands 1 4.075 4.075

in the 0.5 1.66 0.830

 53

on the 0.5 2.056 1.028

Trigrams

US Gulf coast 1 7.731 7.731

Virgin Islands until 1 5.933 5.933

Debby reached minimal 1 5.753 5.753

Director Eugenio cabral 1 5.401 5.401

in the city 0.167 3.518 0.588

on the north 0.5 3.382 1.691

4-grams

Virgin Islands until at 1 6.97 6.970

Debby reached minimal hurricane 1 6.683 6.683

Defense Director Eugenio cabral 0.5 6.906 3.453

Director Eugenio cabral said 1 6.653 6.653

in the city of 0.167 4.323 0.722

on the north coast 0.5 4.311 2.156

5-grams

Virgin Islands until at least 1 8.828 8.828

Debby reached minimal hurricane

strength
1 8.009 8.009

Islands until at least #### 1 7.982 7.982

Director Eugenio cabral said in 1 7.467 7.467

in the city of Barahona 0.167 5.828 0.973

on the north coast had 0.5 6.169 3.085

iv. Get N-gram Shape Frequency and Compute N-gram Shape Weight (nGsW):

Table 13 shows computed nGsW of some of the extracted n-gram shapes from

the sample text.

 54

Table 13. Example of computing nGsW for some extracted n-grams shapes.

N-gram N-gram Form nGsW

Bigrams

XC Xxc 1

Xxc Xxc 0.0213

Xxc Xxc 0.0213

Xxc Xxc 0.0213

xc xc 0.0039

xc xc 0.0039

Trigrams

XC Xxc xc 1

Xxc Xxc xc 0.0005

Xxc xc xc 0.0005

Xxc Xxc xc 0.0005

xc xc xc 1.5E-05

xc xc xc 1.5E-05

4-grams

Xxc Xxc xc xc 9.6E-06

Xxc xc xc xc 9.6E-06

Xxc Xxc Xxc xc 9.6E-06

Xxc Xxc xc xc 9.6E-06

xc xc xc xc 6.1E-08

xc xc xc xc 6.1E-08

5-grams

Xxc Xxc xc xc xc 2.1E-07

Xxc xc xc xc xc 2.1E-07

Xxc xc xc xc Nn 2.1E-07

Xxc Xxc xc xc xc 2.1E-07

xc xc xc xc xc 2.4E-10

xc xc xc xc xc 2.4E-10

v. Computing N-gram Score (nGS): Table 14 shows the computed nGS for the

extracted n-gram. The results shown below prove that important n-grams get

heavier weights than less important and less abundant ones.

Table 14. Example of computing the overall nGW for some extracted n-grams

N-gram N-gram Form nGfW nGsW nGW

Bigrams

US Gulf 6.802 1 6.802

Director Eugenio 4.075 0.0213 0.0868

Dominican Republic 4.075 0.0213 0.0868

Virgin Islands 4.075 0.0213 0.0868

in the 0.830 0.0039 0.0033

on the 1.028 0.0039 0.004

Trigrams
US Gulf coast 7.731 1 7.731

Virgin Islands until 5.933 0.0005 0.003

 55

Debby reached minimal 5.753 0.0005 0.0029

Director Eugenio cabral 5.401 0.0005 0.0027

in the city 0.588 1.5E-05 0.000009

on the north 1.691 1.5E-05 0.000025

4-grams

Virgin Islands until at 6.970 9.6E-06 0.00007

Debby reached minimal hurricane 6.683 9.6E-06 6.4E-05

Defense Director Eugenio cabral 3.453 9.6E-06 3.3E-05

Director Eugenio cabral said 6.653 9.6E-06 6.4E-05

in the city of 0.722 6.1E-08 4.4E-08

on the north coast 2.156 6.1E-08 1.3E-07

5-grams

Virgin Islands until at least 8.828 2.1E-07 1.9E-06

Debby reached minimal hurricane

strength
8.009

2.1E-07 1.7E-06

Islands until at least #### 7.982 2.1E-07 1.7E-06

Director Eugenio cabral said in 7.467 2.1E-07 1.6E-06

in the city of Barahona 0.973 2.4E-10 2.3E-10

on the north coast had 3.085 2.4E-10 7.4E-10

3.3.3 Sentences Scoring and Features Extraction

In extractive summarization task, sentences are the only output of any extractive

summarization tool. As such, sentence scoring is the ultimate goal of the entire

automatic summarization algorithm. After all the sentences in a text are scored, then,

they are arranged in descending order according to their overall score Sentence Score

(SC).

In contrast to word scoring, sentence scoring depends on both intrinsic properties

within the sentence itself, like the sentence shape and language (i.e. whether a sentence

has the same language like the rest of the text, which is done by unsupervised clustering

with no need to identify the language itself), as well as the score of all other documents

elements. As such, the sentence score is the combination of words, n-grams and

paragraph scores in addition to the score of the sentence’s intrinsic features.

Sentence features Extraction is the process of extracting statistical intrinsic

properties that depends on the sentence encoded shape, language uniformity as well as

its words and n-grams. The extracted features are:

i. Sentence encoded shape,

ii. Sentence’s Language Uniformity (SLU),

iii. Sum of scores of all of its Words,

iv. Sum of scores of all of its n-grams (bigrams, trigrams, 4-grams and 5-grams),

v. Overall Sentence Score.

 56

Sentence feature extraction and scoring depends on three assumptions, a) rare

sentence shape has more importance and should receive heavier weight. b) If the

language of the sentence is not uniform with respect to the language of the entire text,

then it should receive heavier weight. In addition, c) the higher the scores of the

sentence components (words and n-grams) the more important it is.

In conclusion, the rarer the sentence is and the more important (heavier) its

components the higher the sentence score and thus the higher the probability of its

appearance in the final summary of the text.

The process of sentence features extraction involves many steps that begins with

shape-coding, and the subsequent counting of shape frequencies; through detection of

language uniformity, up to summing the scores of its components and calculating the

final sentence score (SC).

The steps for sentence features extraction are as follows:

i. Get Sentence encoded shape:

A sentence shape-coding is done as mentioned under the shape-coding

section in this chapter. A sentence shape can be one of the following six

shapes: “Zzz, ZZZ, ZZz, zzz, zZZ or zZz”.

ii. Get encoded shape frequency and Compute Sentence shape Weight (SsW):

Get the count of each sentence shape in the text to be summarized. This

shape frequency is used to compute the weight of the sentence shape (SsW).

Since, the proposed model assumes that a rare encoded shape has more

influence on the text than a more common one, thus as seen below in

equation 3.14, the SsW is computed by taking the multiplication inverse of the

logarithm (log of base 10) of the encoded shape count.

𝑆𝑠𝑊 =
1

log(𝑐𝑜𝑢𝑛𝑡(𝑠ℎ𝑎𝑝𝑒) + 1)
 3.14

The logarithm is inverted in order to give non-linear higher weights to rare

shapes compared to the abundant ones. While, the add 1 normalization is used

to avoid dividing by zero in case of a sentence shape that existed only once,

since log(1) = 0.

For example, the coded shape of a typical sentence is “Zzz”, which is the

most abundant shape in the entire text. If this shape exists “30 times” in the

text, thus its SsW is equal to
1

log(30+1)
 = 0.6705. While a rare sentence like a

title sentence which has a rare shape “ZZZ” that might exist only once in the

entire text. Therefore, the SsW of “ZZZ” in this case is equal to
1

log(1+1)
 = 3.32.

 57

This result reflects clearly the difference in importance between these two

sentences and their encoded shapes, and the subsequent effect on computing

the overall score of the sentence.

iii. Get the Sentence Language Uniformity (SLU):

In this study, we propose a new term called Sentence Language

Uniformity or SLU. SLU is a term that we will use to indicate one of three

cases: a) if the sentence is written in the same language as the rest of the entire

text. b) It is written in a completely different language (this might happen if

the sentence is a quote of speech). Alternatively, c) the sentence contains a

mixture of languages, a case that might happen if the sentence contains some

Latin scientific terms or foreign names, etc.

Sentence Language Uniformity can be done in an entirely unsupervised

manner using any unsupervised clustering technique, in this study we use K-

Means clustering. SLU is calculated as follows:

a) First create a matrix of size (83 × 83), where both rows and columns

represent 83 different letters (A, B, C, Õ, Ç, Ñ, À, Á, Œ, etc.), then the

Maximum Likelihood Estimate of a letter being preceded by another

letter is calculated as seen in the equation 3.15 below. This extracts the

language pattern in the sentence.

𝑀𝐿𝐸𝐺,𝑁 =
𝑐𝑜𝑢𝑛𝑡 (𝑁𝐺) + 1

𝑐𝑜𝑢𝑛𝑡 (𝑁) + 83
 3.15

Equation 3.15 shows the MLE of the letter “G” being preceded by the

letter “N”, which is calculated by counting all the times that “NG” appears

together in the sentence and divide them by the total number that “N” appears

in that sentence. This equation is smoothed by 1-smoothing, where 1 is added

to the numerator while 83 (the total number of letters in the model) to account

for letters that doesn’t appear in that sentence and it should not take a

probability of zero.

The Tables below show examples for the frequencies and the maximum

likelihood estimate for the co-occurrences of two characters, i.e. the

probability of occurrence of a character pair giving the first character. Table

15 and Table 16 are for an English text, while Table 17 and Table 18 are for

a Portuguese text, and finally Table 19 and Table 20 are for a German text.

 58

Table 15. Frequency of character pairs from an English text.

A B C D E F G

A 0 15 39 25 2 3 23
B 14 0 0 0 33 0 0
C 24 12 10 0 51 0 3
D 20 0 1 1 72 0 0
E 47 11 36 66 25 11 5
F 17 1 0 0 14 11 0
G 8 1 0 0 37 0 1
H 71 1 0 0 160 0 0

I 27 11 46 22 34 12 33
J 1 0 0 0 6 0 0
K 1 1 0 0 15 0 0
L 43 0 0 28 54 3 0
M 27 1 3 0 44 0 0
N 29 0 21 78 81 2 67

Table 16. Smoothed MLE of character pairs from an English text (using the frequencies in the

previous table).

A B C D E F G

A 0.001 0.022 0.055 0.036 0.004 0.006 0.033
B 0.064 0.004 0.004 0.004 0.144 0.004 0.004
C 0.072 0.037 0.032 0.003 0.149 0.003 0.011
D 0.086 0.004 0.008 0.008 0.300 0.004 0.004
E 0.057 0.014 0.044 0.079 0.031 0.014 0.007
F 0.079 0.009 0.004 0.004 0.066 0.053 0.004
G 0.041 0.009 0.005 0.005 0.174 0.005 0.009
H 0.173 0.005 0.002 0.002 0.386 0.002 0.002
I 0.040 0.017 0.067 0.033 0.050 0.019 0.049

J 0.021 0.011 0.011 0.011 0.074 0.011 0.011
K 0.015 0.015 0.008 0.008 0.122 0.008 0.008
L 0.108 0.002 0.002 0.071 0.135 0.010 0.002

M 0.115 0.008 0.016 0.004 0.184 0.004 0.004
N 0.057 0.002 0.042 0.150 0.155 0.006 0.129

 59

Table 17. Frequency of character pairs from a Portuguese text.

A B C D E F G

A 0 11 36 82 0 3 29
B 17 0 1 0 12 0 0
C 42 12 3 0 44 0 3
D 85 0 1 0 185 0 0
E 10 13 40 27 3 8 13
F 16 1 0 0 13 1 0
G 11 1 0 0 30 0 0

H 24 0 0 0 10 0 0
I 76 4 47 42 16 8 27
J 5 0 0 0 13 0 0
K 0 1 0 0 1 0 0
L 27 0 0 0 40 0 2

M 79 6 3 0 86 0 0

N 54 0 27 63 22 4 9

Table 18. Smoothed MLE of character pairs from a Portuguese text (using the frequencies in

the previous table).

A B C D E F G

A 0.001 0.015 0.046 0.103 0.001 0.005 0.037
B 0.094 0.005 0.010 0.005 0.068 0.005 0.005
C 0.105 0.032 0.010 0.002 0.109 0.002 0.010
D 0.154 0.002 0.004 0.002 0.333 0.002 0.002
E 0.013 0.016 0.048 0.032 0.005 0.010 0.016
F 0.099 0.012 0.006 0.006 0.081 0.012 0.006
G 0.060 0.010 0.005 0.005 0.155 0.005 0.005
H 0.166 0.007 0.007 0.007 0.073 0.007 0.007

I 0.112 0.007 0.070 0.063 0.025 0.013 0.041
J 0.054 0.009 0.009 0.009 0.125 0.009 0.009
K 0.010 0.020 0.010 0.010 0.020 0.010 0.010
L 0.095 0.003 0.003 0.003 0.139 0.003 0.010

M 0.209 0.018 0.010 0.003 0.227 0.003 0.003
N 0.099 0.002 0.050 0.115 0.041 0.009 0.018

 60

Table 19. Frequency of character pairs from a German text.

A B C D E F G

A 1 30 50 9 0 14 34
B 15 0 0 0 84 0 1
C 1 12 4 0 11 0 3
D 61 1 1 0 221 0 1
E 9 21 16 14 11 5 20
F 21 1 0 0 16 12 0
G 12 1 0 0 128 0 2
H 36 1 0 1 70 1 0

I 12 4 83 12 172 5 65
J 5 0 0 0 12 0 0
K 8 1 0 0 21 0 2
L 18 7 1 2 76 2 5

M 17 0 3 2 56 0 1
N 44 4 2 115 142 9 72

Table 20. Smoothed MLE of character pairs from German text (using the frequencies in the

previous table).

A B C D E F G

A 0.003 0.050 0.083 0.016 0.002 0.024 0.057
B 0.059 0.004 0.004 0.004 0.316 0.004 0.007
C 0.005 0.035 0.014 0.003 0.033 0.003 0.011
D 0.124 0.004 0.004 0.002 0.442 0.002 0.004
E 0.007 0.016 0.012 0.011 0.008 0.004 0.015
F 0.086 0.008 0.004 0.004 0.066 0.051 0.004
G 0.039 0.006 0.003 0.003 0.384 0.003 0.009
H 0.099 0.005 0.003 0.005 0.189 0.005 0.003
I 0.015 0.006 0.098 0.015 0.202 0.007 0.077
J 0.056 0.009 0.009 0.009 0.120 0.009 0.009

K 0.047 0.010 0.005 0.005 0.114 0.005 0.016
L 0.048 0.020 0.005 0.008 0.194 0.008 0.015

M 0.074 0.004 0.017 0.012 0.236 0.004 0.008
N 0.066 0.007 0.004 0.169 0.208 0.015 0.106

b) Use the chosen unsupervised clustering technique, k-Means for

example, to cluster the sentences.

c) Calculate the frequency of occurrence for each class.

d) Then SLU for a sentence j is calculated as per equation 3.16 below.

𝑆𝐿𝑈𝑗 =
𝐶𝑜𝑢𝑛𝑡(𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠)

𝐶𝑜𝑢𝑛𝑡(𝑈𝑗)
 3.16

 61

Where, Count(𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠) is the total numbers of sentences in the text to

be summarized, while Count (𝑈𝑗) is the count of sentences that belong to the

same cluster as the sentence j. This equation gives more weight for sentences

represented by a rare cluster, which indicates the presence of unusual rare

character pattern that might be an indication of the presence of words from

different languages, foreign names or expressions.

iv. Calculate the Overall Sentence Score (SC):

Computing the Sentence Score (SC) of a sentence is done by combining

sentence shape weight (SsW) and SLU together with the sum of scores of its

words (WS) and n-grams (nGS), in addition to the score of its containing

paragraph (PS). SC is computed using equation 3.17 below.

𝑆𝐶𝑗 = 𝜂 .

(

 𝜆1∑
𝑊𝑆𝑖

max(𝑊𝑆)

𝑁𝑤
𝑗

𝑖=1

+ 𝜆2∑
2𝐺𝑆𝑖

max(2𝐺𝑆)

𝑁2𝑔
𝑗

𝑖=1

+ 𝜆3∑
3𝐺𝑆𝑖

max(3𝐺𝑆)

𝑁3𝑔
𝑗

𝑖=1

+ 𝜆4 ∑
4𝐺𝑆𝑖

max(4𝐺𝑆)

𝑁4𝑔
𝑗

𝑖=1

+ 𝜆5 ∑
5𝐺𝑆𝑖

max(5𝐺𝑆)

𝑁5𝑔
𝑗

𝑖=1
)

 + 𝛽.
𝑆𝑠𝑊

𝑚𝑎𝑥 (𝑆𝑠𝑊)
+ 𝛾.

𝑆𝐿𝑈

𝑚𝑎𝑥 (𝑆𝐿𝑈)

+ 𝛿.
𝑃𝑆

𝑚𝑎𝑥 (𝑃𝑆)

3.17

Where, Nw
j

, N2g
j

, N3g
j

, N4g
j

 and N5g
j

 are the total number of words,

bigrams, trigrams, 4grams and 5grams in sentence j respectively. While,

max(. .) means the maximum value of that score in the entire text (not only

the sentence).

The weights 𝜆1−5 are weights given to word and n-grams scores

respectively, to help tweaking the sentence-scoring performance. It is worth

mentioning that 𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 + 𝜆5 = 1.

In addition, 𝜂, 𝛽, 𝛾 𝑎𝑛𝑑 𝛿 are weights ranging between 0 and 1 to adjust

the relative importance of the sum of words and n-grams scores (WS and nGS),

the Sentence Shape Weight (SsW), the Sentence Language Uniformity (SLU)

and the Paragraph Score (PS) respectively.

It is worth mentioning that all scores are normalized by dividing them

with the maximum value of the score noticed in the entire text. This is done in

order to keep the scores of all elements between 0 and 1 and prevent any

unwanted effect of off-scale scores for some terms.

 62

3.3.4 Paragraphs Scoring and Features Extraction

The process of paragraph features extraction involves only two steps, a) shape-

coding, followed by b) counting the shape frequencies, in order to get the final

Paragraph Score (PS).

As such, the steps for paragraph features extraction are as follows:

i. Get the paragraph’s encoded shape:

Shape-coding of a paragraph is done as mentioned under the shape-

coding section earlier this chapter. A paragraph shape can be one of many

shapes, the most common of which is “OMPpp”, which is the typical multi-

sentence paragraph that starts with capital letter. Other encoded shapes, which

are relatively rare, include, “NSPPP” for numbered section titles, where the

paragraph is a part of a numbered list with single sentence and majority of

words start with capital letter. Alternatively, “OSPPP” for document titles,

where the paragraph is neither numbered nor bulleted, with single sentence

and majority of words start with capital letter.

ii. Get Encoded Shapes Frequency and Compute Paragraph Score:

Get the count of each paragraph shape in the text to be summarized. This

shape frequency is used to compute the weight of the paragraph shape (PsW).

In this case, since the paragraph score (PS) depends only on its shape, thus PS

is the same as PsW. Equation 3.18 is used to calculate the PsW by taking the

reciprocal of the logarithm (log of base 10) of the encoded shape count.

𝑃𝑆 = 𝑃𝑠𝑊 =
1

log(𝑐𝑜𝑢𝑛𝑡(𝑠ℎ𝑎𝑝𝑒) + 1)
 3.18

The logarithm is inverted in order to give non-linear higher weights to

rare paragraph shapes compared to the abundant ones. While, the add 1

normalization is used to avoid dividing by zero in case of a paragraph shape

that existed only once, since log(1) = 0.

It is worth mentioning that the Paragraph Score is one of the terms used

to calculate the overall sentence score as seen in equation 3.17.

3.4 Extract the Summary

After the document elements are scored properly, all sentences in the text are then

arranged in a descending order of their score. Then, the top N sentences are selected,

where the number of sentences to be selected (N) depends on the Degree of

Compression (DoC) of the summary.

Degree of Compression (DoC) can be set as: a) a percentage of sentences or words

 63

to be extracted from the original text, or b) the number of words that should appear in

the summary.

For example: DoC = 150e means that the extractive summary should contain

around 150 words, while DoC = 50% means that the summary should be compressed

to have a size that is 50% from the original text.

As such, the top sentences (with the highest scores) are extracted and ordered

according to their order in the original text to produce the required summary.

3.4.1 A Working Example

Continuing with the working example of section 3.3.1.2., applying feature extraction

and document element scoring routine resulted in the overall sentence score depicted

in Table 21.

Table 21. The overall Sentence Score for the all 16 sentences of Document AP880911-0016

from DUC 2002 benchmark dataset. Scores embossed in bold are the top 6 sentences in terms

of the SC.

Sentence

ID
Sentence SC

S1

Hurricane Gilbert swept toward the Dominican Republic Sunday, and

the Civil Defense alerted its heavily populated south coast to prepare

for high winds, heavy rains and high seas.

0.252367896

S2
The storm was approaching from the southeast with sustained winds of

75 mph gusting to 92 mph.

0.155781083

S3
``There is no need for alarm, ''Civil Defense Director Eugenio Cabral

said in a television alert shortly before midnight Saturday.

0.220551897

S4
Cabral said residents of the province of Barahona should closely

follow Gilbert's movement.

0.095416106

S5
An estimated 100,000 people live in the province, including 70,000 in

the city of Barahona, about 125 miles west of Santo Domingo.

0.333612589

S6
Tropical Storm Gilbert formed in the eastern Caribbean and

strengthened into a hurricane Saturday night.

0.117738646

S7

The National Hurricane Center in Miami reported its position at 2 a.m.

Sunday at latitude 16.1 north, longitude 67.5 west, about 140 miles

south of Ponce, Puerto Rico, and 200 miles southeast of Santo

Domingo.

0.615467358

S8

The National Weather Service in San Juan, Puerto Rico, said Gilbert

was moving westward at 15 mph with a ``broad area of cloudiness and

heavy weather'' rotating around the center of the storm.

0.286516823

S9
The weather service issued a flash flood watch for Puerto Rico and the

Virgin Islands until at least 6 p.m. Sunday.

0.208073321

S10

Strong winds associated with the Gilbert brought coastal flooding,

strong southeast winds and up to 12 feet feet to Puerto Rico's south

coast.

0.200377636

S11 There were no reports of casualties. 0.038714746

 64

S12
San Juan, on the north coast, had heavy rains and gusts Saturday, but

they subsided during the night.

0.131175308

S13
On Saturday, Hurricane Florence was downgraded to a tropical storm

and its remnants pushed inland from the U.S. Gulf Coast.

0.533937014

S14
Residents returned home, happy to find little damage from 80 mph

winds and sheets of rain.

0.161095457

S15
Florence, the sixth named storm of the 1988 Atlantic storm season, was

the second hurricane.

0.175060774

S16
The first, Debby, reached minimal hurricane strength briefly before

hitting the Mexican coast last month.

0.15586512

By applying DoC = 150e, only six sentences were extracted and ordered to form

an automatic summary made of approximately 150 words, representing 49.7%

compression rate.

The final generated automatic summary of the document using UnB-LITS tool is

as follows:

“Hurricane Gilbert swept toward the Dominican Republic Sunday,

and the Civil Defense alerted its heavily populated south coast to prepare

for high winds, heavy rains and high seas. “There is no need for alarm,”

Civil Defense Director Eugenio Cabral said in a television alert shortly

before midnight Saturday. An estimated 100,000 people live in the

province, including 70,000 in the city of Barahona, about 125 miles west

of Santo Domingo. The National Hurricane Center in Miami reported

its position at 2 a.m. Sunday at latitude 16.1 north, longitude 67.5 west,

about 140 miles south of Ponce, Puerto Rico, and 200 miles southeast of

Santo Domingo. On Saturday, Hurricane Florence was downgraded to

a tropical storm and its remnants pushed inland from the U.S. Gulf

Coast.”

 65

Chapter 4: Performance Evaluation of the

language agnostic summarizer (UnB –LITS)

This chapter aims to evaluate the performance of the proposed language

independent text summarization tool, UnB-LITS. The chapter is divided into three

sections, the first section presents the conducted experiment and the datasets used as

well as the evaluation metrics. The results and discussions are presented in the second

section, and then we conclude the study in the third section.

4.1 The Experiment

4.1.1 Datasets

In order to assess the performance of the proposed tool against state-of-the-art

summarization models listed in literature, a text summarization benchmark dataset was

selected. DUC2002, a benchmark dataset provided by the American National Institute

of Standards NIST for the Document Understanding Conference [156].

DUC20021 is considered one of the most widely used benchmark dataset for

English document summarization task. It consists of 59 sets of document, each of which

contains around 5-10 English news article, i.e. a total of 567 news articles.

Two assessors have manually summarized each article or set of articles, to be used

as the evaluation standard. A Single article is summarized to a level of 100 words per

summary. This rate of compression ranges from 40%, in case of documents with 250

words, down to 10% for documents with around 1000 words (which is considered a

high compression rate).

Moreover, and for testing the ability of UnB-LITS to undergo an efficient text

summarization in a language agnostic manner, three other datasets were used to assess

the language agnostic capabilities of the proposed tool. Datasets of text documents in

Portuguese, Spanish and French languages were selected.

For Portuguese language, TeMario2, a Brazilian Portuguese text collection, is used.

It consists of a collection of 100 news articles. The manually generated summaries are

done with a degree of compression (DoC), ranging from 25% to 30% of the original

documents.

While, in case of French and Spanish languages, two datasets 40 documents each,

were obtained from French and Spanish news websites respectively. Each article has

two manually generated summaries of 100 words length (i.e. DoC = 100e).

1 http://www-nlpir.nist.gov/projects/duc/past_duc/duc2002/test.html
2 http://www.linguateca.pt/Repositorio/TeMario/

 66

4.1.2 Parameters Selection

The model parameters could have been adjusted by tenfold cross validation

technique, using randomly selected articles. However, and in order to maintain the

unsupervised nature of the model, the parameters were initially set in a way that

gives equal weights to all terms of the sentence scoring equation as per Table 22

below.

Table 22. Value of the parameters used for document element scoring in UnB-LITS.

Parameter Value Applied to

DoS Threshold 0.65 Threshold for the degree of similarity between words

α 1 Apply weight to WsW and WfW to calculate WS

λ1 0.2 The weight of WS used in calculating the SC

λ2 0.2 The weight of 2GS used in calculating the SC

λ3 0.2 The weight of 3GS used in calculating the SC

λ4 0.2 The weight of 4GS used in calculating the SC

λ5 0.2 The weight of 5GS used in calculating the SC

η 1 Weight applied to the sum of WS and nGS in a sentence

β 1 Weight applied to the SsW to compute the SC

γ 1 Weight applied to the SLU to compute the SC

δ 1 Weight applied to the PS to compute the SC

4.1.3 Evaluation Metrics

The summarization results obtained are evaluated against the human generated

summaries using, standard text summarization evaluation metrics known as ROUGE-

1 and ROUGE-2 techniques [157].

The metric ROUGE stands for “Recall-Oriented Understudy for Gisting

Evaluation”. It is an evaluation metric for automatic text summarization task that does

not require human annotation. ROUGE is considered the most commonly used intrinsic

summarization evaluation metric, and was developed by Lin et al. [158], [159].

ROUGE is inspired by the BLEU metric, “bilingual evaluation understudy”, used

for evaluating machine translation output [160]. ROUGE evaluates the candidate of

computer-generated summaries by measuring the amount of n-grams overlap between

the candidate and human-generated summaries. ROUGE can be applied to measure the

overlap of any type of n-grams. As such, ROUGE-1 is used to measure the overlapping

unigrams, while ROUGE-2 and ROUGE-3 are used to measure the overlapping

bigrams and trigrams respectively.

To calculate the ROUGE metric for a computer-generated summary for a

document D, first, one or more human candidates should summarize that document.

Then the amount of overlapping (matching) n-grams between the computer-generated

 67

summary and each of the human generated ones is calculated. As such, ROUGE-n

metric is equal to the overall sum of the aforementioned overlaps. equation 4.1 shows

the calculation of ROUGE-2 metric using bigrams overlap.

𝑅𝑂𝑈𝐺𝐸2 =
∑ ∑ 𝐶𝑜𝑢𝑛𝑡𝑚𝑎𝑡𝑐ℎ(𝐵𝑖𝑔𝑟𝑎𝑚𝑠)𝑏𝑖𝑔𝑟𝑎𝑚𝑠 ∈S S ∈{𝑟𝑒𝑓 𝑠𝑢𝑚𝑚𝑎𝑟𝑖𝑒𝑠}

∑ ∑ 𝐶𝑜𝑢𝑛𝑡(𝐵𝑖𝑔𝑟𝑎𝑚𝑠)𝑏𝑖𝑔𝑟𝑎𝑚𝑠 ∈S S ∈{𝑟𝑒𝑓 𝑠𝑢𝑚𝑚𝑎𝑟𝑖𝑒𝑠}
 4.1

4.1.4 Compared Approaches

In this study, the language agnostic summarization performance of the proposed

UnB-LITS model was assessed by comparing the obtained results to that obtained

by commercial extractive summarization tools, as well as state-of-the-art extractive

summarization approaches.

For the English and Portuguese benchmark datasets, the classification

performance was assessed against state-of-the-art approaches that spans different

categories of the extractive summarization tasks.

However, for the Spanish and French datasets, two commercial summarization

tool were used, Apple’s integrated summarizer within macOS 12 “Monterey” and

Autosummarizer.com.

4.2 Results and Discussions

In this section, we present in details the summarization of a single English

document from DUC 2002 benchmark dataset. This document summarization case is

used as a reference case study to be implemented on the entire 567 news articles, as

well as the other three languages datasets in the following subsection.

4.2.1 Reference Case Study

In this section, we applied UnB-LITS to summarize English news article from the

DUC 2002 datasets, article WSJ880912-0064 was used in this case study (sentences

are listed in Table 23). In addition, the same article was summarized using the Text

Summarizer integrated within Apple’s macOS 12 “Monterey”. Both summaries were

compared against human generated summaries using ROUGE-1 and ROUGE-2.

The summarization were done at DoC = 100e, meaning that the summary should

contain sentences with around 100 extracted words. The summaries are evaluated using

ROUGE-1 and ROUGE-2 using the two human generated summaries, provided by

DUC.

 68

Table 23. Sentences of the article WSJ880912-0064
Sentence

ID
Sentence

S1

Hurricane Gilbert swept toward Jamaica yesterday with 100-mile-an-hour

winds, and officials issued warnings to residents on the southern coasts of the

Dominican Republic, Haiti and Cuba.

S2
The storm ripped the roofs off houses and caused coastal flooding in Puerto

Rico.

S3
In the Dominican Republic, all domestic flights and flights to and from Puerto

Rico and Miami were canceled.

S4

Forecasters said the hurricane was gaining strength as it passed over the ocean

and would dump heavy rain on the Dominican Republic and Haiti as it moved

south of Hispaniola, the Caribbean island they share, and headed west.

S5 "It's still gaining strength.

S6

It's certainly one of the larger systems we've seen in the Caribbean for a long

time," said Hal Gerrish, forecaster at the National Hurricane Center in Coral

Gables, Fla.

S7
At 3 p.m. EDT, the center of the hurricane was about 100 miles south of the

Dominican Republic and 425 miles east of Kingston, Jamaica.

S8
The hurricane was moving west at about 15 mph and was expected to continue

this motion for the next 24 hours.

S9
Forecasters said the hurricane's track would take it about 50 miles south of

southwestern Haiti.

S10
The hurricane center said small craft in the Virgin Islands and Puerto Rico

should remain in port until conditions improve.

S11
The forecasters said the Dominican Republic would get as much as 10 inches

of rain yesterday, with similar amounts falling in Haiti last night and tonight.

S12
Hurricane warnings were issued for the south coast of Haiti and Cuba by their

respective governments.

S13 In Jamaica, the government issued a hurricane watch for the entire island.

S14
Tropical Storm Gilbert formed in the eastern Caribbean and strengthened into

a hurricane Saturday night.

S15

In Puerto Rico, besides tearing off several roofs, the storm caused coastal

flooding and brought down power lines and trees along roads and highways in

the west and southwestern regions.

S16
Three people were injured in Guayanilla, Puerto Rico, when a tree fell on their

vehicle as they traveled along Route 97, police reported.

S17
Four policemen stationed on Mona Island, between Puerto Rico and the

Dominican Republic, were stranded as a result of the weather.

 69

As seen in Table 24, by running the UnB-LITS on the selected article, the model has

extracted 17 sentences, 354 words, 159 tokens (unique words) and 4 distinct word

encoded shapes. In addition, by implementing SLU algorithm using k-means clustering

(elbow method was used to determine the optimum number of k), a single cluster was

detected, which returns to fact that the entire article is only in English language.

The four distinct encoded shapes are = {Xxc, xc, Nn, Nnxc}, where:

a) “Xxc” was repeated 51 times, as this code represents 34 named entities as

Dominican, Republic, Gilbert and 17 words that start each of the 17

sentences in the article.

b) “xc” was repeated 293 times, as this code represents the majority of words

in the article, as such it gets less weight.

c) “Nn” was repeated 8 times, as this code represents the numbers that were

stated in the article as {3, 425, 15, ...}. This shape receives relatively higher

weight when compared to the previous two shapes.

d) “Nnxc” a very rare shape code that occurred only once, encoding the word

“100-mile-an-hour” that appeared in the first sentence, this shape code

receives the highest shape score.

Figure 7 shows the word frequency graph for the unigrams of the original article before

summarization.

Table 24. Document WSJ880912-0064 Result Analysis

Item Value

Number of Sentences 17

Tokens 354

Unique Words 159

Unique word encoded shapes 4

Bigrams 278

Bigrams encoded shapes 12

Trigrams 301

Trigrams encoded shapes 20

4-grams 297

4-grams encoded shapes 32

5-grams 284

5-grams encoded shapes 47

Unique Sentence encoded shapes 1

Unique Paragraph encoded shapes 1

SLU k clusters detected 1

Moreover, hundreds of n-grams forms and encoded shapes were extracted. In case

of bigrams, the most abundant shape was “xc xc” as it represents the majority of the

text. However, Xxc Xxc was significant in identifying NE’s as “Dominican Republic”,

“Hurricane Gilbert”, “Coral Gables”, etc.

 70

While in the case of trigrams, the shape “Xxc Xxc Xxc” was capable of identifying

an important NE in this context, “National Hurricane Center”.

It is worth mentioning that the number of unique shapes for sentences and

paragraphs is only 1 for both, as all sentences start with capital letter and dominated by

lower case words, thus the only sentence shape in the text was “Zzz”.

While, all paragraphs have the same shape “OSPpp”, i.e. ordinary single sentence

dominated by lower case letters despite a capital initial letter. The reason for obtaining

this single sentence paragraph encoded-shape, is because the article was originally

provided, from DUC, as segmented text with every sentence form its own paragraph.

Figure 7. Unigram frequency graph for encoded word shapes.

In addition, Figure 8 shows the unigram influence graph. It is clear that the most

influential words are Hurricane (repeated 9 times with XC shape), Dominican (6),

Republic (6), Puerto (6), Rico (6). This high influence is reflected when computing

their individual scores, in terms of their word and encoded shape frequency weights.

Figure 8. Word frequency graph for article WSJ880912-0064

 71

As such, and after computing the overall sentence score for each of the 17 sentences,

the top scored sentences are listed in Table 25 (in descending order of their score),

where it is clear that UnB-LITS was capable of identifying the most influential NE’s

and CC’s.

Since the summary is limited to 100e words only, thus only the top four sentences

were selected and then ordered according to their original order in the article, to

generate the summary.

Table 25. The top five Sentences of the Document

ID Score Sentence

S1 0.959

Hurricane Gilbert swept toward Jamaica yesterday with 100-mile-

an-hour winds, and officials issued warnings to residents on the

southern coasts of the Dominican Republic, Haiti and Cuba.

S7 0.814

At 3 p.m. EDT, the center of the hurricane was about 100 miles

south of the Dominican Republic and 425 miles east of Kingston,

Jamaica.

S6 0.189

It's certainly one of the larger systems we've seen in the Caribbean

for a long time," said Hal Gerrish, forecaster at the National

Hurricane Center in Coral Gables, Fla.

S16 0.159

Three people were injured in Guayanilla, Puerto Rico, when a tree

fell on their vehicle as they traveled along Route 97, police

reported.

S10 0.130
The hurricane center said small craft in the Virgin Islands and

Puerto Rico should remain in port until conditions improve.

As discussed above and shown in Figure 8, the model was capable of identifying

influential terms due to the rareness of their encoded shapes and forms. Among the top

important terms/entities that the model has successfully identified during the scoring

process, are: Hurricane Gilbert, Dominican Republic, Hal Gerrish, Jamaica, Caribbean,

Puerto Rico, Virgin Islands, etc.

The generated summary by UnB-LITS is as follows:

“Hurricane Gilbert swept toward Jamaica yesterday with 100-mile-an-hour winds,

and officials issued warnings to residents on the southern coasts of the Dominican

Republic, Haiti and Cuba. It's certainly one of the larger systems we've seen in the

Caribbean for a long time," said Hal Gerrish, forecaster at the National Hurricane

Center in Coral Gables, Fla. At 3 p.m. EDT, the center of the hurricane was about

100 miles south of the Dominican Republic and 425 miles east of Kingston, Jamaica.

Three people were injured in Guayanilla, Puerto Rico, when a tree fell on their

vehicle as they traveled along Route 97, police reported.”

The extracted summary was then evaluated using ROUGE-1 and ROUGE-2 against

human-generated summaries and compared to the summaries done by Apple macOS

12 integrated summarizer. The results are shown in Table 26 below:

 72

Table 26. Evaluating the results of single English document summarization

Standard File Tool ROUGE 1 ROUGE-2

A
UnB-LITS 61.2 36.3

macOS Summarizer 49.0 18.6

B
UnB-LITS 51.0 18.0

macOS Summarizer 46.8 14.6

Total
UnB-LITS 56.3 27.7

macOS Summarizer 47.9 16.8

As seen from the results above, UnB-LITS was able to summarize the news article

successfully, achieving 61% success when compared to human-generated summaries.

UnB-LITS has outperformed Apple’s macOS summarizer in both evaluation metrics,

ROUGE-1 and ROUGE-2.

4.2.2 Comparing to State-of-the-Art approaches

UnB-LITS was applied on two benchmark datasets, DUC2002 for English text

summarization, and TeMario for Portuguese text summarization. The obtained

summaries were evaluated against human generated summaries using ROUGE-1 and

ROUGE-2.

The results are then compared to state-of-the-art approaches reported in literature.

The state-of-the-art methods were chosen to span the different categories of extractive

summarization approaches discussed in chapter 2.

Table 27 and Table 28 compare the results of UnB-LITS to those reported in

literature for DUC2002 and TeMario datasets respectively.

With respect to DUC 2002 benchmark dataset, and as seen from the Table 27,

Figure 9 and Figure 10, the proposed UnB-LITS has outperformed all state-of-the-art

models in terms of ROUGE-1 metric, and scored better performance than 69% of those

models in terms of ROUGE-2 metric.

 73

Table 27. Comparing UnB-LITS against state-of-the-art methods applied on the entire 567

articles in the DUC2002 benchmark dataset for single document summarization task.

Category Tool ROUGE-1 ROUGE-2 REF

Statistical-

Based

UnB-LITS (Language agnostic

elements scoring)
53.54 25.97

-

Topic based

Topic modeled unsupervised

clustering
49.35 31.53 [98]

DeepSum (topic modeling and word

embedding)
53.2 28.7 [161]

Graph based

Topic Modeling based on weighted

graph representation
48.10 23.3 [162]

CoRank (word–sentence relationship

and graph-based ranking model)
52.6 25.8 [163]

Machine

Learning

based

BERT based extractor and LSTM

pointer network
43.39 19.38 [61]

Word2vector embedding 38.25 22.56 [164]

SummCoder (deep auto-encoders) 51.7 27.5 [165]

SummaRuNNer(RNN-based

sequence classifier)
47.4 24.0 [166]

HSSAS (Neural Network Classifier) 52.1 24.5 [167]

TCNN (combines NN and LexRank) 44.3 19.68 [168]

Discourse-

Based

FNARS (hierarchical Narrative

Summaries – fully structured)
48.3 28.3 [169]

SNARS (hierarchical Narrative

Summaries – semi structured)
52.9 24.8 [169]

Figure 9. ROUGE-1 results for UnB-LITS against state-of-the-art approaches applied on

DUC 2002 benchmark dataset.

 74

Figure 10. ROUGE-2 results for UnB-LITS against state-of-the-art approaches applied on

DUC 2002 benchmark dataset.

On the other hand, and with respect to Portuguese Language, UnB-LITS was

applied to the TeMario benchmark dataset. The generated summaries were 25-30% of

the size of the original documents.

The obtained results were then compared to that reported in literature [170],

Table 28, Figure 11 and Figure 12 shows that the proposed UnB-LITS has scored

better results than all state-of-the-art approaches reported in literature on the TeMario

dataset.

Table 28. Comparing UnB-LITS to state-of-the-art methods applied to Temario Portuguese

benchmark dataset for single document summarization task.

Tool ROUGE-1 ROUGE-2

UnB-LITS 0.57 0.22

MMR (λ =0.5) 0.43 0.15

Support Sets (Manhattan

Distance and Support set

cardinality = 2)

0.52 0.19

KP-Centrality (10 Key

Phrases)
0.54 0.20

LSA 0.56 0.20

GRASSHOPPER 0.54 0.19

LexRank 0.55 0.20

 75

Figure 11. ROUGE-1 results for UnB-LITS against state-of-the-art approaches

applied on Temario Portuguese benchmark dataset.

Figure 12. ROUGE-2 results for UnB-LITS against state-of-the-art approaches

applied on Temario Portuguese benchmark dataset.

 76

4.2.3 Applying UnB-LITS on Spanish and French datasets

Regarding, Spanish and French Languages, UnB-LITS was applied to generate a

summary of 100 words. Table 29 compares the summarization performance of UnB-

LITS to commercial tools applied on the same datasets.

The depicted results show that our proposed model has achieved superior results

when compared to those obtained by commercial tools, proofing the efficiency of the

language agnostic nature of the model.

Table 29. UnB-LITS summarization performance for Spanish and French datasets.

Dataset Tool ROUGE-1 ROUGE-2

Spanish News

Dataset

UnB-LITS 0.6778 0.4652

Apple macOS 12 0.5310 0.2451

Autosummarizer 0.5377 0.2640

French News

Dataset

UnB-LITS 0.5762 0.3389

Apple macOS 12 0.5075 0.2760

Autosummarizer 0.4577 0.2221

 77

Chapter 5: Deep Self-Organizing Cube

(DSOC)

In this study, we propose a new Deep Learning classifier, the Deep Self-organizing

Cube, (DSOC) that can be used for MDC, MLC, MCC as well as BC. DSOC takes into

consideration class dependencies across class spaces while implementing multi-output

learning, where classification across all dimensions is performed simultaneously. Due

to the self-organizing nature of DSOC’s Pooling layer as well as its probabilistic

Hypercube, the model overcomes the problem of class imbalance among training

dataset instances.

As such, the main contribution of this study is as follows: a) we propose an

efficient, yet straightforward multidimensional deep learning classifier, the

“DSOC”. b) The model we designed has an embedded variable selection layers to

achieve dimensionality reduction while increasing the discriminatory power of the

model and achieve appropriate class segregation. c) This work experimentally

demonstrates the effectiveness of DSOC in all types of classification tasks,

regardless the severity of data imbalance or the strength of class dependencies, due

to its design that models semantics among classes along different classification

spaces even in case of imbalanced datasets.

This chapter and the following one are structured as follows; we introduce the

proposed DSOC classifier in section 1, followed by the applied experiment in section

2, the results and discussions in section 3. Finally, we conclude the model in section 4.

5.1 Deep Self-Organizing Cube (DSOC)

In this section, we propose a new Deep Learning classifier that can be used in all

four types of supervised classification tasks (BC, MCC, MLC and MDC). The proposed

model is called “DSOC” a short for “Deep Self Organizing Cube”. The model is based

on the well-established concept of Self-Organizing Maps (SOM) introduced by [171]

and the Once Learning approach introduced by [172] that adapts the SOM training

routine into all-at-once learning, imitating the human brain activity of learning just

once, “Once Seen Never Forgotten” approach.

In “Deep Self-Organizing Cube”, the word “Deep” refers to the nature of the model

that involves a multi-layer system of connected neurons, arranged in multiple

abstraction levels (dimensions). While, the term “Self-Organizing” refers to the ability

of the neurons within the model to organize themselves into various arrangement,

enabling the “DSOC” to model inter and intra class dependencies. Finally, the word

“Cube” refers to the multi-dimensional hypercube that lies at the center of the multi-

layer neuron system.

 78

In short, “DSOC” is a deep learning classifier, which consists of multi-layer neuron

system connected to a central hypercube. The hypercube is an n-way cube formed of

output neurons arranged in orthogonal plans, where each plan represents a classification

dimension of a class apace.

5.1.1 DSOC components

Despite the multi-dimensional and multi-layer nature of the DSOC model, its

structure can be divided into two major components, the Hypercube Classifier

component, and the Deep Neural Network component.

5.1.1.1 The DSOC Hypercube Classifier

The DSOC’s hypercube component is a multi-way cube responsible for the

multi-output classification task across all class spaces. The hypercube is formed

of n dimensions, each of which represents a classification space (C) with its own

set of classes. Where, an n-way hypercube consists of n class spaces, i.e.

(𝐻𝑦𝑝𝑒𝑟𝑐𝑢𝑏𝑒 = 𝐶1 × 𝐶2 ×···× 𝐶𝑛), with each class space formed of m classes

(𝐶𝑛 = {𝐶1
𝑛, 𝐶2

𝑛, … , 𝐶𝑚
𝑛 }). As such, a 3-dimensional hypercube is formed of N

output neurons equal to the product of class members of all class spaces, i.e. (𝑁 =

 𝐶1 × 𝐶2 × 𝐶3). Each neuron 𝑐1,2,..,𝑛 represents a combination of classes in the n-

dimensional cube. The classification concept of the entire DSOC model is to find

the winning neuron in the Hypercube classifier. Therefore, the final classification

output of the model is a class vector (Y) of size n whose members represent the

assigned classes of the winning neuron across the n dimensions, i.e. (𝑌 =

 [𝑦1, 𝑦2, … , 𝑦𝑛]).

From a different viewpoint, in case of a 3-dimensional DSOC, the hypercube

classifier can be viewed as a stack of slices/plans of size (𝐶1 × 𝐶2) each of which

represent a two-dimensional classification plan for a single class space (𝐶3) along

the third dimension. For example, in a problem where text scientific papers are to

be classified according to their Topics, Languages and scientific Fields. DSOC

algorithm considers this example a 3-way multidimensional classification

problem along three linked but discrete modes, of size 𝐶1, 𝐶2and 𝐶3

respectively. As seen in Figure 13, the three-dimensional hypercube classifier

could be seen as: a) a stack of 𝐶2 two-dimensional plans of size (𝐶1 × 𝐶3) along

the Languages dimension; b) a stack of 𝐶3 two-dimensional plans of size (𝐶1 ×

𝐶2) along the Fields dimension; or c) a stack of 𝐶1 two-dimensional plans of size

(𝐶2 × 𝐶3) along the Topics dimension.

Using the previous example, if the DSOC algorithm has selected a winning

neuron (𝑐2,4,3) whose coordinates in the hypercube classifier are (2, 4, 3), then

this neuron represents a document whose Topic belongs to class 2, written in

Language 4 and under Scientific Field 3.

 79

Figure 13. A three-dimensional hypercube classifier of size (𝑪𝟏 × 𝑪𝟐 × 𝑪𝟑).

a) 𝑪𝟐 Slices along the Language dimension. b) 𝑪𝟑 slices along the Fields

dimension; and c) 𝑪𝟏 slices along the Topics dimension. d) The winning

neuron at hypercube coordinates (2,4,3).

5.1.1.2 The Deep Neural Network Component

In order for the DSOC’s Hypercube classifier to emit the classification vector

(Y) across all dimensions, one of its output neuron has to be activated. The

winning neuron activation process occur through a stack of deep neural networks,

that we call “DSOC Neural Network”, with one network for each dimension of

the model. Therefore, in an n-dimensional DSOC model there are n “DSOC

Neural Networks” that are connected to all N output neurons of the DSOC’s

Hypercube.

As seen in Figure 14, a single “DSOC Neural Network” consists of three main

layers of neurons:

a) Input layer, consists of P neurons corresponding to sample input features

(p).

b) VSC double layer, which consists of two connected layers, VSC Selector

layer and VSC Scaling layer, this double layer depends on the Variables

Selection Coefficient (VSC) algorithm introduced by [173].

c) Pooling layer, a Gaussian Probability function layer, whose neurons are

directly connected to the DSOC hypercube classifier, and responsible for

activating the hypercube winning neuron.

(c) (d)

(a) (b)

 80

Figure 14. The DSOC Neural Network for Dimension 1.

5.1.1.2.1 The VSC Double Layer

Variable Strength Coefficient (VSC) is the overall measure of strength of a

variable (feature) in fitting the data, as well as discriminating the classes within

a class space. VSC combines, linearly, both Modeling Power of a variable for

all classes in the model with the Discriminatory Power of the same variable for

the same class space. The Modeling Power is the assessment of the ability of a

variable to model data of a specific class, while Discriminatory Power is the

assessment of its ability to discriminate between two classes. For example, for a

variable i in class j the Modeling Power 𝑴𝑖
𝑗
, and its Discriminatory Power

𝑫𝒊
𝒋,𝒋+𝟏

 for classes j and j+1, are calculated as follows [174]:

 𝑴𝑖
𝑗
= 1 −

𝑺𝑖𝑟𝑎𝑤
𝑗

𝑺𝑖𝑟𝑒𝑠𝑖𝑑
𝑗

5.1

 𝑫𝒊
𝒋,𝒋+𝟏

= √
 𝑗 𝑚𝑜𝑑𝑒𝑙 (𝑗 + 1)𝑺𝒊𝒓𝒆𝒔𝒊𝒅

𝟐 + (𝑗 + 1) 𝑚𝑜𝑑𝑒𝑙 𝑗𝑺𝒊𝒓𝒆𝒔𝒊𝒅
𝟐

 𝑗 𝑚𝑜𝑑𝑒𝑙 𝑗𝑺𝒊𝒓𝒆𝒔𝒊𝒅
𝟐 + (𝑗 + 1) 𝑚𝑜𝑑𝑒𝑙 (𝑗 + 1)𝑺𝒊𝒓𝒆𝒔𝒊𝒅

𝟐
5.2

Where 𝑺𝑖𝑟𝑎𝑤
𝑗

 is the standard deviation of variable i in the raw data and

𝑺𝑖𝑟𝑒𝑠𝑖𝑑
𝑗

 is the standard deviation of the residuals for the same variable i in the

model.

 p1

 p2

 pP

.

.

.

 f(p1)

 f(p2)

 f(pP)

.

.

.

Features
VSC

Selector Layer
VSC

Scaling Layer

DSOC Neural Network for Dimension 1

of n

𝑙1 𝑤1,1

𝑤2,1

𝑤1,𝑘

𝑙𝑘

 modVSC1

 modVSC2

 modVSCm

.

.

.

Input Layer VSC Double Layer Pooling Layer

The Hypercube

Classifier

𝑤2,𝑘

𝑤𝑚,1

𝑤𝑚,𝑘

 81

The VSC for a variable i (𝑽𝑺𝑪𝑖) is then calculated by linearly combining the

overall modeling power of that variable (𝑴𝑖) along all classes in the class space,

with its overall discriminatory power (𝑫𝑖) as shown in the equations below [175].

 𝑴𝑖 = ∑𝑴𝑖
𝑗

𝑙

𝑗=1

 .
𝑛𝑗

𝑁

5.3

 𝑫𝑖 = √
∑ ∑ 𝑗 𝑚𝑜𝑑𝑒𝑙 𝑐 𝑺𝒊𝒓𝒆𝒔𝒊𝒅

𝟐𝑙
𝑐

𝑙
𝑗

∑ 𝑗 𝑚𝑜𝑑𝑒𝑙 𝑗 𝑺𝒊𝒓𝒆𝒔𝒊𝒅
𝟐𝑙

𝑗

5.4

 𝑫𝑖 =
𝑫𝑖 −min{𝑫}

max{𝑫} − min{𝑫}

5.5

 𝑽𝑺𝑪𝑖 =
𝒘 .𝑴𝑖 + (2 − 𝒘) 𝑫𝑖

2

5.6

In the DSOC Neural Network component, the purpose of the VSC double layer

is strengthening the discriminatory power of the model, as well as inducing proper

segregation of adjacent classes, especially in models with dense class spaces, and

overlapping class boundaries. This purpose is achieved through the following:

a) VSC Selector Layer, a VSC strength threshold is determined, where an

input feature with a stronger VSC (i.e. the feature’s VSC is higher than the

predetermined threshold) will pass to the following layer, while weaker

features are discarded and excluded from the model.

b) VSC Scaling Layer, this layer contains a modified version the VSC

equation, where the VSC weight variable w is not restricted to a value

between [0,2] as in the original coefficient, but could take any value greater

than zero. As such, a strong variable i that has passed successfully through

the previous VSC Selector layer is then scaled up or down by that dynamic

modified coefficient (modVSCi).

The VSC double layer results in: a) dimensionality reduction of input features,

by discarding variables with weak modeling and discriminatory powers, and b)

independently scale each of the remaining features. As such, adequate

segregation between classes is achieved, which is then reflected in the overall

classification performance of the DSOC model.

The VSC Selector threshold as well as the weight variable of the VSC Scaling

layer are both determined through cross-validation procedure during the training

process of the DSOC model.

The effect of VSC double layer on the performance of the model is discussed

in the following chapter.

 82

5.1.1.2.2 The Pooling Layer

A single pooling layer consists a set of neurons (L) of size 𝐶𝑛 × 𝛼𝑛, where 𝐶𝑛

is the number of class members in this dimension and 𝛼𝑛 is a scaler indicating

the number of neurons that models each class member in a class space. The

default value of 𝛼𝑛 is 1, however it could be set to any value greater than or equal

to 1. The optimum value of 𝛼𝑛 is decided through cross validation routine. For

example, in case of a binary class space, the number of neurons constructing this

pooling layer is 2 × 𝛼1, i.e. the pooling layer is formed of at least two neurons

(L1 = {𝑙1 , 𝑙2}). Moreover, if 𝛼1 = 3, this means that each class is modeled by 3

neurons, and the total number of neurons forming the layer is 6 (i.e. L1 =

{𝑙1 , … , 𝑙6}).

Each neuron (l) in the pooling layer has a weight vector (w) that connects it to

the VSC Scaling layer. The size of w is equal to the number of neurons (M) in the

VSC Scaling layer.

5.1.2 Designing the DSOC model

In order to design a DSOC model, certain parameters should be specified. Those

parameters include; the number of classification dimensions (n), the size of each

dimension (C) which is the number of classes modeled by that dimension, in addition

to the value of the alpha parameter (α) per dimension.

5.1.2.1 Number of Dimensions (n)

The number of dimensions in a DSOC model refers to the number of class

spaces in the model. Where, in case of BC and MCC the number of dimensions (n)

is equal to1 since those tasks have single output class space, while in case of MLC

and MDC tasks, n is equal to the number of class variables (spaces) in the dataset.

Both DSOC components, the Hypercube Classifier and the DSOC Neural

Network, have the same number of dimensions; therefore, by setting the value of

n, we construct an n-dimensional hypercube as well as n DSOC Neural Networks

connected to it.

5.1.2.2 Dimension Size (C)

The size of dimension (C) is simply the number of class members in a specific

class space (dimension), or the number of possible values a class variable can have.

In binary class spaces, where the class members could be {0, 1} or {-1, 1}, then the

dimension size is 2 (C = 2). The number of classes per dimension determines the

size of the Hypercube Classifier as well as the minimum number of neurons in the

Pooling layer in each of the n DSOC Neural Networks.

For example, in case of the 3-dimenstional DSOC model mentioned in

section 5.1.1.1, the model has three classification dimensions representing (topics,

 83

languages and fields), therefore the size of every dimension depends on the number

of possible classes C in that class space. As such, if the topics class space has 5

possible values, while fields and languages have 3 and 5 possible values

respectively, (i.e. 𝐶𝑇𝑜𝑝𝑖𝑐 = 5 , 𝐶𝐹𝑖𝑒𝑙𝑑 = 3 and 𝐶𝐿𝑎𝑛𝑔 = 5), then the DSOC model

is formed of a 3-dimensional Hypercube Classifier of size (5 × 3 × 5 = 75 neuron),

and 3 DSOC Neural Networks whose Pooling layers have 5𝛼1 , 3𝛼2 and 5𝛼3

neurons respectively.

5.1.2.3 The Alpha parameter (α)

The alpha parameter 𝛼𝑛, is the parameter that decides the number of neurons that

models each class in a particular dimension and span the variance among its

members . For example, if 𝛼2 = 10, thus each class will be modeled by 10 neurons

in the Pooling layer of the second DSOC Neural Network component. Moreover, if

𝐶2 = 5 then the corresponding Pooling layer will have 50 neurons. As mentioned

earlier, the default value of 𝛼𝑛 is 1, but other values could be used after performing

the cross validation routine during the training step.

Every neuron in the n Pooling layers of the model has a weights vector (𝑤𝑛) of

size 𝑀𝑛 which is equal to the number of neurons in the previous VSC Scaling Layer.

The weights of this vector are determined through the training process.

It is worth mentioning that the number of neurons in the VSC Selector layer is

equal to the number of input neurons or features 𝑃𝑛 in that dimension, while the

number of neurons in the VSC Scaling Layer 𝑀𝑛 is less than or equal to the number

of neurons in the VSC Selector layer, i.e. 𝑀𝑛 ≤ 𝑃𝑛.

5.1.3 Deciding the Training Parameters of the DSOC Model

DSOC model training parameters are those determining the rate by which the

Pooling neurons weights vectors (𝑤𝑛) are being updated, as well as the range of

neurons to be updated in each step of training. There are three main training

parameters that should be decided before training the DSOC model, these parameters

are: the number of iterations or epochs (h), the learning rate (R) and the neighborhood

distance (nD).

5.1.3.1 Number of Iterations or Epochs (h)

The number of iterations, which is also called (epochs), is the number of times

by which the entire training set is presented to the DSOC model for training and

weights update. In this research, the default value is 100.

5.1.3.2 Learning Rate (R)

Learning rate is the rate by which the neurons weights vectors are updated at

each iteration h as a function of time t. The learning rate should have a value greater

than 0 and less than or equal to 1. In this study, the learning rate is initiated at ≈

0.7-0.8 then decreases exponentially with time. It is worth mentioning that the

 84

word “time” with its notation t in this context refers to each time a training sample

is presented to the cube. As such, the total “time” T of the training process equals

to the product of the number of training samples and the number of iterations or

epochs, as seen in equation 5.7.

𝑇 = ℎ × 𝑐𝑜𝑢𝑛𝑡(𝑠𝑎𝑚𝑝𝑙𝑒𝑠) 5.7

In this study we propose that the value of the learning rate as a function of time t

is calculated as shown in equation 5.8 5.8below.

𝑅(𝑡) = 𝑒(−
𝑑𝑡
𝑇
) + 0.01

5.8

Where, 𝑅(𝑡) is the learning rate as a function of time t and T is the total training

time as calculated in equation 5.8 above while 𝑒(…) is the natural exponential

function (exp) and d is the decay parameter. Figure 15 (a) demonstrates the effect

of the decay parameter d on the learning rate. In this research we used d = 6 and

the initial learning rate = 0.83.

Figure 15. DSOC training parameters. a) the learning rate R(t) as a function of time t, using different

values for the decay parameter d. b) The rate of decay of the neighborhood distance nD(t) as a function

of time.

5.1.3.3 The Neighborhood Distance (nD)

The neighborhood distance nD determines the number of neurons in the Pooling

Layers whose weights are to be updated at each time t. This process aims at

rearranging the Pooling neurons in a manner that reflects their class similarities in

terms of features and properties. For example, suppose we construct a language

classifier, it is expected that Portuguese and Spanish languages be represented by

very close neurons while oriental languages are represented by distant neurons due

to the intrinsic dissimilarities among their language families.

A decay function is applied to the nD as well so that the neighborhood of

neurons decreases with time t. Based on experience, the model designer decides

the neighborhood rate of decay as a function of time nD(t). In this study, the default

neighborhood distance was set to 1 (i.e. nD = 1) across all dimensions.

 Figure 15 (b) shows the rate of decay of nD(t) as a function of time t. As

noticed from the graph, when the initial value of nD is set to 1, then it reaches zero

(a) (b)

 85

at half the total time of training (T). On the other hand, higher nD keeps its initial

value during the first one third of the training time, and then decreases linearly

until it reaches 0 at the beginning of the last third of training.

5.1.4 Model Training

DOSC model training is the process of updating the weights of the weight vectors

(wn) of all neurons in the n-Pooling layers of the model, and then build the probability

model of the n-dimensional Hypercube Classifier. The training process aims to make

every neuron of the hypercube capable of representing a set of dependent classes across

all class spaces simultaneously. As such, the training process of the DSOC model is

performed in two stages:

5.1.4.1 Updating the weights vectors (𝑤𝑛)

Hereafter we present the weights update process in a specific dimension (j).

The same weights update process is then repeated in all n dimensions of the model.

The process of weights update reorganizes the Pooling neurons and bring them

closer to the class they represent. As such, for any particular dimension in the

DSOC model, the weights update process is performed as follows:

i. Initialize the weights vectors: For all neurons (𝐿𝑗) in the Pooling layer,

randomly initialize a single weights vector (𝑤𝑗) of size 𝑀𝑗, which is equal

to the number of neurons in the previous VSC Scaling layer in dimension j.

ii. Start the first Epoch: for each sample (i) in the training set, compute its

Euclidian distance (𝐸𝐷𝑖
𝑗

) from the pooling weights vector. For each

samples in the model, 𝐸𝐷𝑖
𝑗
 is computed as the distance between the VSC

Scaling neurons (𝑣𝑗) and (𝑤𝑗) in the DSOC Neural Network of dimension

j.

𝐸𝐷𝑖
𝑗
= 𝑆𝑄𝑅𝑇(∑(𝑣𝑞

𝑖 − 𝑤𝑞
𝑗
)
2

|𝑀𝑗|

𝑞=1

)
5.9

iii. Get the winning neurons: the neuron with the least 𝐸𝐷 is the winning

neuron (𝑢).

iv. Get the sub-set of neighboring neurons: For each winning neuron get a

subset of neighboring neurons according to the neighborhood distance nD.

v. Update the weights of the winning neuron and its neighbors: The weight

update is done using equation 5.10 below for both the wining neuron and

its neighbors. The magnitude of weights update depends on the learning

rate of the model.

 86

𝑤𝑗 (𝑡 + 1) = 𝑤𝑗 (𝑡) − 𝑅(𝑡)(𝑣𝑗 − 𝑤𝑗 (𝑡)) 5.10

vi. Repeat until end of Epochs: A single epoch means going through the entire

training set and applying the steps of finding the winning neuron and

weights update for all the samples in the training set. After finishing the

first epoch, repeat the steps from ii to v on the entire training set until the

maximum number of epochs h is reached.

5.1.4.2 Build the probabilistic model and construct the Hypercube Classifier

The last few steps of training the model are performed based on the Gaussian

Naïve Bayes concept. The remaining steps aim at constructing the Hypercube

classifier and populate it with the classification prior probabilities. These steps

are carried out as follows:

5.1.4.2.1 Construct the hypercube

i. Create n dimensional hypercube of size ∏ 𝐶𝑗𝑛
𝑗=1 neurons where each

neuron of the cube represent a combination of classes across all

dimensions of the model.

ii. For each neuron (r) in the hypercube, set its initial value to 1 (to

account for class imbalance and rare combinations with no training

samples).

iii. Iterate through the training samples, where the value of the hypercube

neuron (r) is incremented by 1 if, and only if, the class vector (𝑌𝑖) of

that sample (i) exactly matches the combination of classes of that

neuron.

iv. Calculate the probability of each neuron (r) in the cube. This is

considered the prior probability of that neuron given the combinations

of class members of all n-class spaces.

v. Each of the hypercube neurons is connected to the Pooling layer of

each dimension through a weight vector (𝑏𝑗) of size equals to the

number of neurons 𝐿𝑗 in that Pooling layer. For example, in a 3-

dimensional DSOC model, each neuron in the hypercube classifier has

three weights vector (𝑏1, 𝑏2 and 𝑏3) of size 𝐿1, 𝐿2 and 𝐿3 respectively

(see Figure 16). The members of (𝑏𝑗) vector are the prior probabilities

of neurons 𝐿𝑗 given a class member {𝑐 ∈ 𝐶𝑗} .

 87

Figure 16. A DSOC Hypercube classifier of size 5 x 4 x 3 sliced along the

C3 dimension into 3 plans of size 5 x 4. Every neuron has three weights

vectors (b1, b2 and b3) connected to the Pooling layers of the three DSOC

Neural Networks. Each neuron of the Hypercube represent a combination of

classes from the three class spaces of the model.

5.1.4.2.2 Build the probabilistic model

For every neuron (l) of the 𝐿𝑗 neurons of the Pooling Layer of dimension j, do

the following:

i. Compute the standard deviation and mean ED for all samples

belonging to each class of the dimension class space (𝐶𝑗).

ii. Compute the probability when this neuron was activated, given each

class in (𝐶𝑗) as per equation 5.11. This is considered the prior

probability of that neuron given a specific class.

 𝑝(𝑙𝑘|𝐶𝑞
𝑗
) =

∑ 𝑎𝑐𝑡𝑖𝑣𝑒(𝑙𝑘|𝐶𝑞
𝑗
)

∑ 𝑠𝑎𝑚𝑝𝑙𝑒𝑠| 𝐶𝑞
𝑗
 5.11

iii. These three values are used during the classification process of new

samples.

5.1.5 Classify Future samples

When a new sample (i) is introduced to the DSOC, the classification process

is performed in the following steps in each dimension j of the n dimensional

model:

i. Sample features are presented to the VSC double layer of the DSOC

Neural Network j, where sample features that have registered weak

VSC during the training process are discarded by the VSC Selector

layer and only strong features pass through to the VSC Scaling layer

for feature independent scaling.

 88

ii. The surviving neurons are then presented to the Pooling layer of

dimension j, where the 𝐸𝐷𝑖
𝑗
 is computed between the (𝑣𝑗) and (𝑤𝑗) as

per equation 5.9.

iii. For each neuron (𝑙𝑗) of the 𝐿𝑗 neurons, use the computed 𝐸𝐷𝑖
𝑗
 as well

the mean and standard deviations computed in 5.1.4.2.2 to compute

the likelihood of that neuron, 𝐿𝑖𝑘𝑒𝑙𝑖ℎℎ𝑜𝑑(𝑙𝑘
𝑗
 | 𝑐𝑞

𝑗
), given each class

𝑐𝑞 where {𝑐𝑞 ∈ 𝐶
𝑗}.

iv. The previous steps (i to iii) are repeated for all n dimensions in the

model.

v. As per equation 5.12, for every neuron (r) in the Hypercube Classifier,

Compute the sum of the natural log of its vector (𝑏𝑗), which is the

likelihoods computed for the Pooling layer in the previous step as well

as the prior probabilities computed in equation 5.12, given the class

represented by that neuron in each dimension (𝑐𝑞
𝑗
). Add the result to

the natural log of the neuron’s prior probability computed in 5.1.4.2.1

to calculate the probability 𝑝(𝑟) that this neuron is activated.

𝑝(𝑟) =∑∑ln (𝐿𝑖𝑘𝑒𝑙𝑖ℎℎ𝑜𝑑(𝑙𝑘
𝑗
 | 𝑐𝑞

𝑗
))

𝐿

𝑘=1

𝑗

𝑖=1

+ ∑∑ln (𝑝(𝑙𝑘|𝐶𝑞
𝑗
))

𝐿

𝑘=1

𝑗

𝑖=1

+ ln(𝑝𝑟𝑖𝑜𝑟(𝑟))

5.12

vi. Compare the computed 𝑝(𝑟) for all neurons in the Hypercube

Classifier, where the neuron with the highest 𝑝(𝑟) is the winning

neuron.

vii. Emit the classification vector 𝑌𝑟 related to the winning neuron r,

whose members are the classes represented by the winning neuron,

𝑌𝑟 = [𝑦
1, 𝑦2, … , 𝑦𝑛]

As such, a full classification across the n dimensions of the MDC task was

performed simultaneously. In this setup, the Hypercube classifier is capable

of classifying class combinations that were not presented to the model during

the training process, due to the bond it creates among various class spaces in

the model through discrete yet connected probabilities.

 89

Chapter 6: Performance Evaluation of

Deep Self-Organizing Cube (DSOC)

6.1 Experiment

The aim of the study is to propose a deep learning classifier that can be used

for multi-output learning problems as well as for the single-output learning ones.

The experiment was designed to evaluate the performance of the proposed DSOC

model in the four types of classification problems discussed earlier: BC, MCC,

MLC and MDC.

As such, we conducted an empirical assessment on a variety of benchmark

datasets, in order to compare the proposed model to standard classifiers. The

proposed DSOC was then challenged with competitive state-of-the-art techniques

reported in literature.

6.1.1 Benchmark Datasets

To evaluate the performance of the proposed model, DSOC was tested on

seventeen benchmark datasets frequently used in literature to evaluate the

performance of different classification models. The datasets were chosen to cover

different aspects of classification tasks that are tackled by the proposed DSOC

model. Those aspects include multiple dimensions, multi-class variables and labels

per dimension, imbalance of labels, etc. The datasets are divided into four

categories according to the type of the classification problem, where four datasets

were chosen for BC problems, three for MCC, four for MLC and six for MDC.

Table 30 summarizes the main characteristics of the chosen datasets, as the

number of observations and features, number of class spaces (i.e. number of

dimensions), number of class labels per dimension, as well as their classification

task category.

6.1.2 Parameter Selection

For the datasets that were not initially divided into Training and Test sets, a

random selection technique was applied to divide the observations of the original

dataset set into Training and Test sets in 75:25 ratio. Then a tenfold cross validation

(CV) technique was employed on the training set to decide the DSOC model

parameters. For the sake of simplicity, each of the general DSOC parameters

(neighborhood, epochs and the decay parameter) was set to a constant value

throughout the experiment (nD=1, h = 100 and d = 6).

On the other hand, for the dimension specific parameters (VSC Scaling

parameter, VSC Selector and α) the aforementioned tenfold CV was applied to

decide those three parameters for each of the model multi-dimensional space.

 90

Table 30. The characteristics of the benchmark datasets.

Classification

Category

Dataset Number of

Observations

Number

of

Features

Number of

Dimensions

Number of

Classes

per

Dimension

Domain

and

Reference

BC

Diabetes3 768 8 1 2 Medical

[176]

Sonar4 208 60 1 2 Signal

[177]

Banknote5 1372 4 1 2 Forensic

[178]

Ionosphere2 351 34 1 2 Signal

[179]

MCC

Iris3 150 4 1 3 Plant

[180]

Seeds2 210 7 1 3 Plant

[181]

Abalone3 4177 8 1 28
Marine

[182]

MLC

Scene2 2407 294 6 2 Image

[183]

Emotions2 593 72 6 2 Music

[184]

Yeast2 2417 103 14 2 Genes

[185]

Image2 2000 135 5 2 Image

[186]

MDC

Solar Flare3 315 10 3 3,4,2 Astronomy
[187]

Edm2 154 16 2 3 Machinery
[188]

WaterQuality2 1060 16 14 4 Life form

[189]

WQplants2* 1060 16 7 4 Plants

[189]

WQanimals2* 1060 16 7 4 Animals

[189]

Enb2 768 6 2 2,4 Energy

[190]

* WQplants and WQanimals are subsets of the parent Water Quality dataset used to

predict the relative representation of plant and animal species in Slovenian rivers.

3 https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
4 https://www.openml.org/
5 https://archive.ics.uci.edu/ml/index.php

 91

6.1.3 Evaluation Metrics

In this paper, three widely used classification evaluation metrics are used to

evaluate the performance of the proposed model. In BC problem, the F1 measure

is used as shown in equation 6.1. Where TP, FP and FN are True Positive, False

Positive and False Negative respectively and are used to calculate the recall and

precision as in [191].

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

Or,

𝐹1 =
𝑇𝑃

𝑇𝑃 +
1
2
(𝐹𝑃 + 𝐹𝑁)

6.1

 While in MLC and MDC tasks, Hamming Accuracy (HAccuracy) and Exact

Match (EM) are used for evaluation. The Hamming Accuracy is the average of

classification accuracy of all class variables in all dimensions, and it is used as well

in MCC task. On the other hand, the Exact Match is the accuracy of predicting the

entire classification vector across all class spaces simultaneously. [192], [131]

𝐻𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1

𝑁
 ∑

|𝑌𝑖 ∩ 𝑌𝑖
∗|

𝐿

𝑁

𝑖=1

 6.2

𝐸𝑀 =
1

𝑁
 ∑𝑓(𝑌𝑖, 𝑌𝑖

∗)

𝑁

𝑖=1

 6.3

Where, N is the number of observations, and n is the number of dimensions in

the model. 𝑌𝑖 is the actual classification vector of size L while 𝑌𝑖
∗ is the predicted

classification vector of the same size and |𝑌𝑖 ∩ 𝑌𝑖
∗| indicates the number of

intersections between both vectors. On the other hand, 𝑓(𝑌𝑖, 𝑌𝑖
∗) is a function that

returns 1 when both classification vectors exactly match, and 0 otherwise.

6.1.4 Performance Assessment

In this study, the classification performance of the proposed DSOC model was

assessed by comparing the obtained results to that obtained by standard

classification algorithms, as well as state-of-the-art MDC approaches. All

techniques were applied on the same benchmarks datasets.

For the single-output learning tasks, BC and MCC, the DSOC classification

performance was assessed against four standard classification algorithms, namely

k-Nearest Neighbor (kNN), Support Vector Machine (SVM), Naïve Bayes (NB)

and Decision Tree (DT).

 92

However, for the multi-output learning tasks, MLD and MDC, the DSOC

performance was compared to eleven different approaches, divided into five

categories that span the full classification challenges:

a) Standard Classification Algorithms: the same standard methods mentioned

above.

b) Approaches based on manipulating the class spaces: Binary Relevance

(BR), which divides the task into independent binary classifiers. Ensembles

of Class Powersets (ECP) creates a combination of labels and treat the entire

set of combinations as a single-dimension single-label class space.

Ensembles of Classifier Chains (ECC), which divides the task into a chain

of multi-class independent classifiers. Ensembles of Super Class Classifiers

(ESC), which divides the classification space into sections of super-classes,

formed of combination of subsets of class spaces. [31]

c) Approaches based on feature augmentation: those approaches tend to

manipulate the input feature spaces rather than the output ones. This

category includes, KRAM and SFAM (mentioned earlier in the literature

review section).

d) Dependency modelling approach, the Stacked Dependency Exploitation

(SEEM), which uses deterministic strategy to model class dependencies

instead of the widely used probabilistic models. [28]

e) Regression based approach, gMML that creates independent regression

models for each class variable and then, uses the Mahalanobis distance in

the final classification step. [20]

The results obtained by applying those approaches on the selected benchmark

datasets were extracted from literature, and used to assess the performance of

the proposed DSOC model.

6.2 Results and Discussions

As mentioned earlier, the aim of the study is to construct a deep learning classifier

that fits both single and multi-output learning tasks, with no structural alteration in

the core design of the model other than simple parameters tweaking. In addition, the

proposed design should be capable of successfully classifying observations in MLC

and MDC tasks while modeling the class dependencies across all dimensions.

Moreover, the model was challenged with datasets suffering from class imbalance

in its multi-class spaces to assess its ability to classify, successfully, future rare

observations.

A separate DSOC model was built for each of the 17 datasets. The DSOC

dimensional parameters were determined using 10 fold CV applied on the training

set. Table 31 presents the selected parameters per dataset as well as the number of

 93

features that passed through the VSC Selector layer. The detailed parameters per

dimension for one of the datasets, “Image” dataset, is presented in Table 32.

As seen in the last column of Table 31, the VSC Selector layer conducted a feature

reduction routine that resulted in a substantial reduction in number of features in

most of the models. The Ionosphere dataset was subjected to a sever dimensionality

reduction, where only 35% of the original features have passed through the VSC

Selector layer, while in case of Image and Seeds datasets only 52% and 57% have

passed through that layer respectively. The other datasets were subjected to the same

routine resulting in various levels of dimensionality reduction. On the other hand,

six datasets have retained their full number of input features along all dimensions.

Table 31. DSOC Model parameters for each of the benchmark dataset obtained by applying 10

fold CV.

Classification

Category

Dataset VSC Selector Features

Neurons

VSC Scaling

Parameter
α

Selected

Features

after VSC

BC

Diabetes 0 8 12.5 2 100%

Sonar 0.6123 46 5.0 3 77%

Banknote 0.735 3 5.5 3 75%

Ionosphere 0.891 12 5.0 1 35%

MCC
Iris 0 4 10.5 1 100%

Seeds 0.5383 4 2.5 1 57%

 Abalone 0 8 1.0 1 100%

MLC*

Scene [0 – 0.7717] [271 –

294]
[1 – 12] [1 – 10] 98%

Emotions 0 72 [1 – 5.5] [1 – 3] 100%

Yeast [0 - 0.928] [7-103] [1 – 10.5] [1 – 10] 76%

Image [0 - 0.9571] [10 -135] [2 - 7.5] [1 – 4] 52%

MDC

Solar Flare 1 0 10 1,1.5,1 1 100%

Edm 0.3398,0 9,16 1,1.5 3,4 78%

WaterQuality 0 16 [1-3.5] [1-3] 100%

WQplants* [0-0.7375] [4-16] [1-2] [1-2] 70%

WQanimals* [0-0.8059] [10-16] [1-4.5] [1-2] 82%

Enb* 0 6 1,3.5 1,3 100%

* Values between brackets are the range of values of the DSOC parameter along the model’s dimensions.

For example, in the Scene dataset, the VSC Scaling parameter has a range of values of [1-12], which

represents the range of values along the model’s 6 dimensions whose values were modVSC1 = 1,

modVSC2 = 1, modVSC3 = 12, modVSC4 = 10.5, modVSC5 = 8, modVSC6 = 1.

 94

Table 32. Values of the DSOC parameters for the “Image” dataset along the model 5

dimensions (L = 5).

Parameter L1 L2 L3 L4 L5

VSC

Selector

0.6526 0.6383 0.9571 0.8554 0

modVSC 2.5 2 5 2 7.5

α 1 4 4 4 2

W 86 88 10 32 135

The VSC Selector layer serves two purposes, a) maximizing the DSOC’s

modeling and discriminatory power among classes in each of the class spaces, as

well as b) reducing the size of input spaces by discarding the features that will

inversely affect the classification power of the model. Reducing the input space is

reflected in less computational power and time needed to train and implement the

model as well as in maximizing the DSOC’s discriminatory and modeling powers.

The effect of the VSC Selector layer is further augmented by the next layer, the

VSC Scaling layer, which aims at deepening the discriminatory differences among

classes along the remaining features.

In datasets with dense class spaces, classes are not clearly separated, but might

suffer from sever overlap of their class spheres. Such density and overlap could be

noticed in the tight Euclidian distances and the high similarity/correlation between

classes that might, in some cases, reaches full correlation. DSOC model tackles this

problem through its VSC double layer, Selector and Scaling layers, where both

layers tend to intensify the discriminatory power of variables that, in turn, results in

widening the distances between classes and relatively break the correlation among

them.

Figure 17 demonstrates the effect of applying the VSC double layer on the

“Image” dataset. The substantial reduction in dimensionality and the noticeable

strengthening of the discriminatory power of the remaining input variables have

resulted in widening the distance between classes from 0.0060 to 0.0191, and

breaking the tight correlation from 0.9643 down to 0.7242, i.e. 313% and 25%

improvement in class separation respectively.

 95

Figure 17. The effect of applying the VSC double layers on both classes of the second

dimension of the Image dataset, a) before applying the VSC double layer (135 features and

0.9643 correlation coefficient), b) after applying both the VSC Selector and VSC Scaling layers

(88 remaining features and 0.7242 correlation coefficient).

A closer look at Figure 17 (a) shows that the input features within the range [18-

30] have the worst adverse effect on the model’s discriminatory power. Such an

effect was detected by the VSC Selector layer, which applied a threshold of 0.6383,

where all features with VSC weaker than that threshold were discarded. As such,

and as seen in subfigure (b), only 88 features have passed the VSC Selector layer,

causing a significant dimensionality reduction, where only 65% of the original input

features have survived the Selector. In order to deepen the difference between

classes, the next layer, the VSC Scaling layer, has applied a dynamic scaling factor

(based on its modVSC2 = 2) ranging from 0.2654 to 0.9578 on the remaining 88

features, which results in expanding the ED between both classes by 313%.

Moreover, applying the VSC double layer on the “Image” dataset has increased

the classification Hamming accuracy from 0.7100 to 0.8325, while the Exact Match

metric has improved from 0.3198 to 0.3750. These results reflect the importance of

the VSC double layer in improving the overall model accuracy as well as its ability

to predict the exact classification vectors. Table 33 presents the effect of applying

the VSC double layer on the seventeen DSOC models constructed in this study, in

terms of HAccuracy and EM. In addition, Figure 18 visualizes the results presented

in the table, demonstrating that the VSC double layer has enhanced the classification

performance of the DSOC model in all of the four classification tasks.

(a) (b)

 96

Table 33. Effect of the VSC double layers on the performance of the DSOC Model applied on

all benchmark datasets in the four classification tasks.

Classification

Category
Datasets

Hamming Accuracy Exact Match

VSC double

layer Applied

Without VSC

double layer

VSC double

layer Applied

Without VSC

double layer

BC

Diabetes 0.7708 0.6471 - -

Sonar 0.7692 0.5952 - -

Banknote 0.9854 0.9489 - -

Ionosphere 0.8740 0.7571 - -

MCC
Iris 0.9867 0.9000 - -

Seeds 0.9143 0.8810 - -

 Abalone 0.3599 0.2491 - -

MLC

Scene 0.9398 0.8312 0.5334 0.4749

Emotions 0.7463 0.5998 0.2178 0.0941

Yeast 0.7719 0.7501 0.1538 0.1298

Image 0.8325 0.7100 0.3750 0.3198

MDC

Solar Flare 1 0.9418 0.9101 0.8846 0.7460

Edm 0.8000 0.7667 0.6333 0.6333

WaterQuality 0.6405 0.5893 0.0047 0.0000

WQplants 0.6604 0.6220 0.1038 0.0660

WQanimals 0.6462 0.4993 0.0849 0.0142

Enb 0.9019 0.8497 0.8823 0.7516

Figure 18. The effect of the VSC double layer on the performance of the DSOC Model applied on all

benchmark datasets, a) Hamming Accuracy on all 17 datasets, b) the Exact Match metric applied on the

datasets of MLC and MDC tasks only.

 For evaluating of the proposed DSOC, comparisons have been conducted to the

DSOC classification performance against that of standard classifiers as well as state-

of-the-art MDC approaches on the benchmark datasets. Those comparisons are

presented in the following three subsections.

(a) (b)

 97

6.2.1 Comparison to Standard Classifiers

The experimental results are reported in details in four tables, one for each of the

classification tasks. Table 34 for BC, Table 35 for MCC, Table 36 for MLC and

Table 37 for MDC. Based on the results obtained in these tables, we can point out

the following observations:

 With regards to the standard classification techniques (kNN, NB,

SVM and DT), a total of 112 experiments were carried out. Those

experiments are composed of 5 standard algorithms, in addition to

the proposed DSOC, 2 evaluation metrics and 17 datasets.

 Those experiments are divided across the four classifications tasks as

follows: 20 experiments in the BC task, 16 in MCC, 32 in MLC and

48 in MDC.

 As seen in the aforementioned tables (with the winning results

embossed in bold), the proposed DSOC model has outperformed the

standard methods in 50% of the cases in the BC task, 100% in MCC,

75% in MLC and 83% in case of MDC. Moreover, Figure 19 (a)

shows the accuracy results of the proposed DSOC in comparison with

the other standard classifiers.

 With the exception of the “EnB” and “Yeast” datasets, the DSOC has

outperformed all other standard algorithms in MLC and MDC, in

terms of the Exact Match metrics. Since the EM metric reflects the

ability of the model to successfully classify the instance along all

dimensions, therefore the proposed DSOC is more capable of

classifying the observations across all class spaces simultaneously. A

comparison of the EM accuracy of the proposed DSOC and the other

standard classifiers are shown in Figure 19 (b).

 The last mentioned observation points out the intrinsic ability of the

DSOC to span and to model dependencies among class variables

across different dimensions.

 98

Figure 19. The classification performance of DSOC model compared to standard classifiers.

a) Classification accuracy for BC, MCC, MLC and MDC datasets. b) Exact Match accuracy

for MLC and MDC datasets.

Table 34. Comparing the classification results of DSOC against standard classification

algorithms applied on BC benchmark datasets.

Dataset

F1 Measure

kNN SVM NB DT DSOC

Diabetes 0.7396 0.7760 0.7552 0.6979 0.7708

Sonar 0.8077 0.8077 0.6923 0.6538 0.7692

Banknote 0.9708 0.9854 0.8321 0.9635 0.9854

Ionosphere 0.8000 0.8429 0.8286 0.8143 0.8740

Table 35. Comparing the classification results of DSOC against standard classification

algorithms applied on MCC benchmark datasets in terms of Hamming Accuracy.

Dataset

Hamming Accuracy

kNN NB DT DSOC

Iris 0.9067 0.9333 0.9467 0.9867

Seeds 0. 8952 0.8857 0. 8952 0.9143

Abalone 0.1657 0.1897 0.1933 0.3599

(a) (b)

 99

Table 36. Comparing the classification results of DSOC against standard classification

algorithms applied on MLC benchmark datasets in terms of Hamming Accuracy and

Exact Match metrics.

Dataset

Hamming Accuracy Exact Match

kNN NB DT DSOC kNN NB DT DSOC

Scene 0.8913 0.7565 0.8478 0.9398 0.5008 0.1756 0.3687 0.5334

Emotions 0.7046 0.7302 0.7112 0.7463 0.1931 0.1683 0.1436 0.2178

Yeast 0.7803 0.6991 0.7184 0.7719 0.2061 0.1036 0.0523 0.1450

Image 0.7925 0.7235 0.7435 0.8325 0.3329 0.1725 0.2350 0.3750

Table 37. Comparing the classification results of DSOC against standard classification

algorithms applied on MDC benchmark datasets, in terms of Hamming Accuracy and Exact

Match metrics.

Dataset

Hamming Accuracy Exact Match

kNN NB DT DSOC kNN NB DT DSOC

Solar Flare 1 0.9103 0.8974 0.8846 0.9418 0.8333 0.8462 0.859 0.8846

Edm 0.6833 0.6667 0.650 0.80 0.433 0.4667 0.4333 0.6333

Water

Quality
0.6179 0.4481 0.5236 0.6405 0 0 0 0.0047

WQplants 0.6301 0.4023 0.5553 0.6604 0.0755 0 0.0472 0.1038

WQanimals 0.6186 0.4434 0.5802 0.6462 0.0660 0 0.0556 0.0849

Enb 0.9935 0.9412 0.9869 0.9019 0.9869 0.9150 0.9739 0.8823

6.2.2 Comparisons to the state-of-the-art methods

In order to assess the ability of the proposed DSOC algorithm to model complex

dependencies as well as imbalanced class spaces, the obtained results were

challenged with state-of-the-art approaches from literature. The selected approaches

span different approaches for solving classification tasks, these include approaches

that depends on manipulating the class spaces during training (BR, ECC, ECP and

ESC), approaches that uses feature augmentation to manipulate the input space

(KRAM and SFAM), in addition to SEEM approach that model dependencies and

gMML that uses regression approach to solve the classification task.

The results of the selected approaches were collected from recent literature ([28],

[129] and [130]) to reflect the most recent work applied on the MLC and MDC

 100

benchmark datasets. It is worth mentioning that KRAM and the ensembles

approaches are all based on Naïve Bayes classifiers.

Table 38 and Figure 20 depicts the comparison between the proposed DSOC

model and eight state-of-the-art approaches in terms of the HAccuracy. On the other

hand, Table 39 and Figure 21 present the same comparison in terms of EM accuracy

to assess the model ability to model dependencies. From those tables and figures,

one can observe the following:

 In terms of Hamming Accuracy, DSOC has outperformed all state-of-

the-art approaches in 5 datasets (55.6%), and achieved equivalent results

in 3 datasets (33.3%).

 In terms of Exact Match, DSOC has outperformed all state-of-the-art

approaches over 7 datasets (77.8%), which reflects the superior ability

of DSOC to model dependencies and successfully classify samples

across all dimensions simultaneously.

Table 38. Comparing the classification results of DSOC against state-of-the-art techniques

applied on the same MLC and MDC benchmark datasets in terms of the Hamming Accuracy

Dataset

Hamming Accuracy

Classes Based Approaches
Feature

Augmentation

Dependency

Modelling

Regression

Based

BR ECC ECP ESC KRAM SFAM SEEM gMML DSOC

Solar Flare1 0.886 0.883 0.908 0.896 0.872 0.925 0.925 0.923 0.9418

Edm 0.677 0.690 0.731 0.674 0.680 - - 0.714 0.8000

Water

Quality
0.389 0.360 0.599 0.609 0.488 0.641

0.646 0.643 0.6405

WQplants 0.397 0.353 0.607 0.442 0.506 0.666 0.661 0.655 0.6604

WQanimals 0.381 0.377 0.590 0.577 0.419 0.641 0.635 0.630 0.6462

Enb 0.774 0.773 0.764 0.754 - 0.865 0.777 0.742 0.9019

Scene 0.763 0.767 0.867 0.866 0.777 - - 0.893 0.8913

Yeast 0.699 0.696 0.773 0.716 0.695 - - 0.800 0.7719

Image 0.573 0.576 0.746 0.593 0.586 - - 0.811 0.8325

 101

Figure 20. Comparison of the Hamming Accuracy of DSOC vs state-of-the-art approaches

applied on MLC and MDC benchmark datasets.

Table 39. Comparing the classification results of DSOC against state-of-the-art approaches

applied on the same MLC and MDC benchmark datasets in terms of the Exact Match.

Dataset

Exact Match

Classes Based Approaches
Feature

Augmentation

Dependency

Modelling

Regression

Based

BR ECC ECP ESC KRAM SFAM SEEM gMML DSOC

Solar Flare 1 0.774 0.774 0.790 0.780 0.756 0.824 0.818 0.821 0.8846

Edm 0.432 0.451 0.554 0.432 0.445 - - 0.487 0.6333

Water Quality 0.000 0.000 0.008 0.002 0.000 0.009 0.009 0.006 0.0047

WQplants 0.001 0.001 0.034 0.001 0.036 0.100 0.096 0.092 0.1038

WQanimals 0.004 0.007 0.020 0.024 0.008 0.058 0.049 0.062 0.0849

Enb 0.548 0.546 0.529 0.508 - 0.729 0.554 0.554 0.8823

Scene 0.177 0.181 0.550 0.541 0.198 - - 0.457 0.5334

Yeast 0.095 0.102 0.203 0.110 0.115 - - 0.134 0.1450

Image 0.069 0.069 0.285 0.069 0.074 - - 0.289 0.3750

 102

Figure 21. Comparison of the Exact Match Accuracy of DSOC vs state-of-the-art techniques

applied on MLC and MDC benchmark datasets.

6.2.3 Collective Performance Remarks

By analyzing the overall results obtained under sections 6.2.1 and 6.2.2, we can

conclude the following:

a. Despite the imbalance of class labels in MLC and MDC datasets

(especially those with high dimensionality and variety of class labels),

DSOC was capable of achieving better results than most standard

classifiers as well as state-of-the-art approaches included in the study.

b. The better classification performance achieved by the DSOC implies its

ability to segregate different classes within all dimensions

simultaneously.

c. The superior performance of DSOC over other approaches in terms of EM

indicates the built-in ability of different layers within the DSOC to model

dependencies, which in turn is reflected in better classification

performance.

d. In contrast to other approaches, which require specific steps to model

decencies or handle class imbalance, DSOC uses a single straightforward

approach that tackles those problems simultaneously in a single learning

routine without prior treatment or algorithms.

From those four conclusion remarks, the superior performance of DSOC could

be attributed to the following design characteristics of the proposed model:

a. The VSC double layer (VSC Selector and VSC Scaling layers) is

responsible for segregation of classes and deepening the differences

 103

between them, which is then reflected in a better discriminatory power

and superior classification performance.

b. The DSOC’s final classifier hypercube and its self-organizing structure,

is responsible for modeling class dependencies and classify unseen class

combinations in future samples of imbalanced datasets.

c. Moreover, the straightforward learning approach of DSOC provides it

with the ability to solve tasks in different domains regardless the intensity

of class dependencies or the severity of data imbalance.

 104

Chapter 7: Conclusion and Future Work

In this chapter, we conclude the work done in both studies, the language

independent summarization model and the deep learning multi-dimensional classifier.

The chapter is divided into three sections; the first one concludes the work done in

the text summarization field and the proposed language agnostic model, UnB-LITS. The

second section concludes the work performed in the deep learning domain, to solve

multi-dimensional classification tasks using the proposed deep learning classifier,

DSOC. Finally, the third section presents our vision for future work using these two

domain agnostic models.

7.1 Conclusion on Language Agnostic Text Summarization Model (UnB-LITS)

In this study, a new automatic text summarization model is introduced, which is

capable of performing text summarization in a language independent manner. The

proposed tool, UnB-LITS or “UnB-Language Independent Text Summarizer”,

generates efficient language independent extractive summary when evaluated against

human generated summaries. The tool extracts intrinsic features of text elements

(words, n-grams, sentences and paragraphs) using an innovative way of Shape-Coding

of those elements. Shape-Coding is performed by transferring the text element to a

normalized shape that fits into relatively small number of encoded classes, which in

turn, reflects the importance of elements with rare shapes.

The proposed tool is totally free of any particular language tools dependency due

to the fact that it is capable of removing or neutralizing the effect of unimportant words

(stop words) without the need of stop words lexicons that are by definition language

dependent. The proposed model is capable, as well, of grouping similar words together

in a way similar to stemming without the need of language dictionaries or hand coded

stemmer tools.

As such, the proposed model preserves the weight of potential words and

sentences, with the ability to extract strong and important key phrases with no

dependency on external language databases or corpora.

The proposed tool, UnB-LITS, was tested on news datasets written in English,

Portuguese, French and Spanish. The obtained results were evaluated against human-

generated summaries using ROUGE-1 and ROUGE-2 metrics. In case of English and

Portuguese the results were compared to state-of-the-art models and systems listed in

literature. While, for French and Spanish results were compared to those obtained by

Apple macOS 12 integrated summarizer as well as the online Automatic summarizer.

UnB-LITS achieved better performance over other tools in all of the four languages.

These results were achieved with no dependency on any domain specific or language

related lexicons, parsers or corpora, which proves the quality of the proposed

contributions.

 105

7.2 Conclusion on Deep Self-Organizing Cube (DSOC)

Multi-dimensional classification (MDC) task can be considered the most

inclusive description of all classifications tasks, as it joins multiple class spaces and

their multiple class membership into a single compound classification problem.

The challenges in MDC arise from the possible dependencies that classes in

different class spaces could have, as well as the imbalance of labels in training

datasets due to the enormous number of combinations needed for all labels across

multiple class spaces. In this study, we proposed an MDC deep learning classifier,

named “Deep Self-Organizing Cube” or “DSOC”, which could model

dependencies among classes in multiple class spaces, while consolidating its ability

to classify combinations of labels that were not presented to the model during the

training process. DSOC achieved its intended purpose through its two connected

components, the n-dimensional Hypercube classifier, and n DSOC Neural

Networks connected to the cube. Each of the DSOC’s multiple neural networks,

one per dimension, consists of three main hidden layers, namely the VSC Selector,

VSC Scaling layers and the Pooling layer. The VSC double layer is responsible for

feature selection and segregation of classes while the Pooling layer is responsible

for developing the probability model per dimension. In addition, in the central core

of the DSOC model, lies the Hypercube classifier, responsible for creating the

semantics among multiple class spaces and accommodate the model for rare

samples classification.

DSOC model belongs to multiple-output learning, where it emits a

classification vector formed of a class label from each class space in the model. As

such, DSOC is capable of classifying a sample along multiple class spaces

simultaneously, achieving the core purpose of multiple-output learning.

Considering this feature, DSOC can be used in multiple output classification tasks,

as multi-dimensional classification and multi-label classification, as well as in

single-output learning, as in binary classification and multi-class classification

problems.

For challenging the proposed DSOC model, an experiment was designed to

evaluate the performance of the proposed DSOC model in the four types of

classification problems BC, MCC, MLC and MDC. We conducted an empirical

assessment of the model on seventeen benchmark datasets, and the obtained

classification results were compared to those obtained by four standard classifiers as

well as by eight competitive state-of-the-art approaches reported in literature. The

selected state-of-the-art approaches were chosen to challenge the model in solving the

aforementioned MDC problems. These include approaches that manipulate the input

feature space through feature augmentation, and approaches that manipulate the output

class spaces to tackle the problem of dependencies, in addition to others based on

regression or pure dependency modelling.

 106

 The DSOC has achieved superior performance over both standard classifiers as

well as the state-of-the-art approaches in all the four classification tasks. In case of

standard classifiers, DSOC has outperformed the standard methods in 50% of the cases

in the BC task, 100% in MCC, 75% in MLC and 83% in case of MDC. Moreover, with

the exception of only two datasets, DSOC has outperformed the standard algorithms in

terms of the Exact Match accuracy metric, which measures the ability of the model to,

successfully, classify a sample across all dimensions simultaneously.

In the same context, in terms of Exact Match, DSOC has outperformed all state-

of-the-art approaches in 77.8% of the cases, which reflects the superior ability of DSOC

to model dependencies and successfully classify samples across all dimensions

simultaneously.

In contrast to other state-of-the-art approaches, the DSOC’s structure,

components and design do not change from one classification task to the other.

DSOC maintains its straightforward training and classification technique regardless

of the type of classification task.

As such, the main contribution of this study is proposing a straightforward

yet efficient deep learning classifier of superior performance, which does not

require structural modifications regardless the task in hand. A model that

manipulates the input features space, via its VSC layers, to increase the

discriminatory power of the model and segregate classes through augmenting the

differences between different input variables. A model capable of modeling

semantics among classes along different classification spaces even in case of data

imbalance.

7.3 Future Work

As seen in the conclusion sections above, both models achieved significantly

superior results, and outperformed the state-of-the-art algorithms in both fields. Both

models have proven their ability to perform efficiently in a domain agnostic manner;

UnB-LITS as a language independent summarizer, and DSOC as an MDC domain

agnostic classifier.

Both of these findings encouraged us to explore the possibilities of extending the

boundaries of this research, and seek the opportunities for more applications. Such

motivation is reflected below in our plan for future wok.

In case of the language independent text summarization model, UnB-LITS, future

research could tackle the following points:

i. Extending the boundaries of the model to solve multiple documents

summarization tasks.

ii. The multiple-document summarization could be extended and applied on long

texts or sets of documents that contain mixed languages or context, as in the

case of scientific papers and language books.

iii. Expand the model’s application domain to include oriental languages as Arabic,

 107

Persian, etc.

iv. Conduct experiments to study the effect of tweaking the model parameters for

extracting NE’s and CC’s while maintaining the language agnostic nature of the

model.

On the other hand, in case of the deep learning multi-dimensional classification

model, DSOC, future research could tackle the following points:

i. Increase the number of Pooling layers of the DSOC neural networks in order to

achieve features extraction at various abstract level, and study its effect on the

overall classification performance of the model.

ii. Study the applicability and impact of adding additional VSC double layer after

the Pooling layers, in order to achieve more class segregation as well as better

modeling of dependencies across different class spaces.

iii. Tweak the parameters to expand the model boundaries in order to solve

regression problems with discrete outputs.

iv. Study the ability of achieving unsupervised multi-dimensional clustering by

tweaking the model parameters as well as the weight vectors of the pooling

layer.

 108

REFERENCES

[1] A. D. Friederici, "Towards a neural basis of auditory sentence processing,"

Trends in Cognitive Sciences, vol. 6, pp. 78-84, 2002.

[2] A. D. Friederici, "The Brain Basis Of Language Processing: From Structure To

Function," Physiol, vol. 91, p. 1357–1392, 2011.

[3] D. Khurana, A. Koli, K. Khatter and S. Singh, "Natural language processing:

State of the art, current trends and challenges.," Multimedia Tools and

Applications, pp. 1-32, 2022.

[4] A. Clark, C. Fox and S. Lappin, The Handbook of Computational Linguistics

and Natural Language Processing, 2010.

[5] D. Jurafsky and J. Martin, Speech and Language Processing, 3rd Edition, 2nd

ed., New Jersy: Pearson, 2021.

[6] W. S. El-Kassas, C. R. Salama, A. A. Rafea and H. K. Mohamed, "Automatic

text summarization: A comprehensive survey," Expert Systems with

Applications, vol. 165, 2021.

[7] I. Rivera-Trigueros, "Machine translation systems and quality assessment: a

systematic review.," Language Resources and Evaluation, pp. 1-27, 2021.

[8] L. B. W. L. &. S. A. A. Monteiro, "An approach of vector space model to link

concrete concepts with Wiki entities.," in 2015 IEEE International Conference

on Computer and Information Technology; Ubiquitous Computing and

Communications; Dependable, Autonomic and Secure Computing; Pervasive

Intelligence and Computing., IEEE, 2015.

[9] J. Mothe, "Analytics Methods to Understand Information Retrieval

Effectiveness—A Survey.," Mathematics, vol. 10, no. 12, 2022.

[10] M. A. C. Soares and F. S. Parreiras, "A literature review on question answering

techniques, paradigms and systems.," Journal of King Saud University-

Computer and Information Sciences., vol. 32, no. 6, pp. 635-646, 2020.

[11] M. Birjali, M. Kasri and A. Beni-Hssane, "A comprehensive survey on

sentiment analysis: Approaches, challenges and trends.," Knowledge-Based

Systems, vol. 226, 2021.

[12] S. G. Kanakaraddi and S. S. Nandyal, "Survey on parts of speech tagger

techniques.," in International Conference on Current Trends towards

Converging Technologies (ICCTCT), IEEE, 2018.

[13] Y. Bengio, "Learning Deep Architecture for AI," Foundations and Trends in

Machine Learning, vol. 2, no. 1, pp. 1-127, 2009.

[14] M. A. Wani, F. A. Bhat, S. Afzal and A. I. Khan, Advances in deep learning,

Springer, 2020.

[15] S. Mallat, "Understanding deep convolutional networks.," Philosophical

Transactions of the Royal Society A: Mathematical, Physical and Engineering

Sciences, vol. 374, no. 2065, 2016.

[16] R. Salakhutdinov and G. Hinton, "Deep Boltzman Machine," in Proceedings of

the 12th International Conference on Artificial Intelligence and Statistics, 2009.

 109

[17] Y. Hua, J. Guo and H. Zhao, "Deep belief networks and deep learning.," in

Proceedings of 2015 International Conference on Intelligent Computing and

Internet of Things, IEEE, 2015.

[18] R. M. Cichy and D. Kaiser, "Deep neural networks as scientific models.," Trends

in cognitive sciences, vol. 23, no. 4, pp. 305-317, 2019.

[19] B. Zohuri and M. Moghaddam, "Deep learning limitations and flaws.," Modern

Approaches on Material Science, vol. 2, pp. 241-250, 2020.

[20] Z. Ma and S. Chen, "Multi-dimensional classification via a metric approach.,"

Neurocomputing, vol. 275, pp. 1121-1131, 2018.

[21] D. Xu, Y. Shi, I. W. Tsang, Y. S. Ong, C. Gong and X. Shen, "Survey on multi-

output learning.," IEEE transactions on neural networks and learning systems,

vol. 31, no. 7, pp. 2409-2429, 2020.

[22] D. Song, A. Vold, K. Madan and F. Schilder, "Multi-label legal document

classification: A deep learning-based approach with label-attention and domain-

specific pre-training.," Song, D., Vold, A., Madan, K., & Schilder, F. (2022).

Multi-label legal document classificatInformation Systems, vol. 106, 2022.

[23] D. Senthilkumar and C. Akshayaa, "Efficient Deep Learning Approach for

Multi-label Semantic Scene Classification.," in Proceedings of the International

Conference on Image Processing and Capsule Networks, Bangkok, 2020.

[24] X. S. Xu, Y. Jiang, X. Xue and Z. H. Zhou, "Semi-supervised multi-instance

multi-label learning for video annotation task.," in Proceedings of the 20th ACM

international conference on Multimedia, Nara, 2012.

[25] M. L. Zhang, Y. K. Li, X. Y. Liu and X. Geng, "Binary relevance for multi-label

learning: an overview.," Frontiers of Computer Science, vol. 12, no. 2, pp. 191-

202, 2018.

[26] J. Read, B. Pfahringer, G. Holmes and E. Frank, "Classifier chains for multi-

label classification.," Machine learning, vol. 85, no. 3, pp. 333-359, 2011.

[27] J. Read, L. Martino and D. Luengo, "Efficient monte carlo methods for multi-

dimensional learning with classifier chains.," Pattern Recognition, vol. 47, no.

3, pp. 1535-1546, 2014.

[28] B. B. Jia and M. L. Zhang, "Multi-dimensional classification via stacked

dependency exploitation.," Science China Information Sciences, vol. 63, no. 12,

pp. 1-14, 2020.

[29] K. Dembszynski, W. Waegeman, W. Cheng and E. Hüllermeier, "On label

dependence in multilabel classification.," in In Workshop Proceedings of

Learning from Multi-Label Data, Haifa, 2010.

[30] J. C. Junior, E. R. Faria, J. A. Silva and R. Cerri, "Label powerset for multi-label

data streams classification with concept drift.," in Proceedings of the 5th

Symposium on Knowledge Discovery, Mining Learn, Uberlandia, 2017.

[31] J. Read, C. Bielza and P. Larrañaga, "Multi-dimensional classification with

super-classes.," IEEE Transactions on knowledge and data engineering, vol. 26,

no. 7, pp. 1720-1733, 2013.

[32] J. Arias, J. A. Gamez, T. D. Nielsen and J. M. Puerta, "A scalable pairwise class

interaction framework for multidimensional classification.," International

Journal of Approximate Reasoning, vol. 68, pp. 194-210, 2016.

 110

[33] F. Charte, A. J. Rivera, M. J. del Jesus and F. Herrera, "Addressing imbalance

in multilabel classification: Measures and random resampling algorithms.,"

Neurocomputing, vol. 163, pp. 3-16, 2015.

[34] A. N. Tarekegn, M. Giacobini and K. Michalak, "A review of methods for

imbalanced multi-label classification.," Pattern Recognition, vol. 118, pp. 1-12,

2021.

[35] T. Kluyver, B. Ragan-Kelley and F. P., "Jupyter Notebooks – a publishing

format for reproducible computational workflows.," in Positioning and Power

in Academic Publishing: Players, Agents and Agendas, F. Loizides and B.

Schmidt, 2016, pp. 87-90.

[36] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.

Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.

Cournapeau, M. Brucher, M. Perrot and E. Duchesnay, "Scikit-learn: Machine

Learning in Python," Journal of Machine Learning Research, vol. 12, pp. 2825-

-2830, 2011.

[37] I. The MathWorks, MATLAB R2015a, Massachusetts: Natick, 2015.

[38] S. Sinclair and G. Rockwell, Voyant Tool v 2.6.1, https://voyant-tools.org/,

2022.

[39] C. Microsoft, Microsoft Excel, Seattle, 2016.

[40] S. R. Rahimi, A. T. Mozhdehi and M. Abdolahi, "An overview on extractive text

summarization.," in IEEE 4th International Conference on Knowledge-Based

Engineering and Innovation (KBEI), 2017.

[41] A. Alomari, N. Idris, A. Q. M. Sabri and I. Alsmadi, "Deep reinforcement and

transfer learning for abstractive text summarization: A review.," Computer

Speech & Language, vol. 71, 2022.

[42] W. T. Hsu, C. K. Lin, M. Y. Lee, K. Min, J. Tang and M. Sun, "A unified model

for extractive and abstractive summarization using inconsistency loss.," in

Proceedings of the 56th Annual Meeting of the Association for Computational

Linguistics., Melbourne, Australia, 2018.

[43] M. Tomer and M. Kumar, "Multi-document extractive text summarization based

on firefly algorithm.," Journal of King Saud University-Computer and

Information Sciences, vol. 34, no. 8, pp. 6057-6065, 2022.

[44] K. Smelyakov, D. Karachevtsev, D. Kulemza, Y. Samoilenko, O. Patlan and A.

Chupryna, "Effectiveness of preprocessing algorithms for natural language

processing applications.," in IEEE International Conference on Problems of

Infocommunications. Science and Technology (PIC S&T), IEEE, 2020.

[45] T. Bergmanis and S. Goldwater, "Context sensitive neural lemmatization with

lematus.," in Proceedings of the 2018 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language

Technologies, 2018.

[46] S. Warjri, P. Pakray, S. A. Lyngdoh and A. K. Maji, "Part-of-speech (pos)

tagging using conditional random field (crf) model for khasi corpora.,"

International Journal of Speech Technology, vol. 24, no. 4, pp. 853-864, 2021.

[47] J. Kaur and P. K. Buttar, "A systematic review on stopword removal

algorithms.," International Journal on Future Revolution in Computer Science

& Communication Engineering, vol. 4, no. 4, pp. 207-210, 2018.

 111

[48] D. J. Ladani and N. P. Desai, "Stopword identification and removal techniques

on tc and ir applications: A survey.," in 6th International Conference on

Advanced Computing and Communication Systems (ICACCS) , IEEE, 2020.

[49] D. Namly, K. Bouzoubaa and A. Yousfi, "A bi-technical analysis for arabic stop-

words detection.," Compusoft, vol. 8, no. 5, pp. 3126-3134, 2019.

[50] J. Lovins, "Development of a stemming algorithm," Mech. Trans. Comput.

Linguist., vol. 11, no. 21, pp. 22-31, 1968.

[51] J. Jumadi, D. S. Maylawati, L. D. Pratiwi and M. A. Ramdhani, "Comparison of

Nazief-Adriani and Paice-Husk algorithm for Indonesian text stemming

process.," in IOP Conference Series: Materials Science and Engineering, 2021.

[52] H. Alshalabi, S. Tiun, N. Omar, F. N. AL-Aswadi and K. A. Alezabi, "Arabic

light-based stemmer using new rules.," Journal of King Saud University-

Computer and Information Sciences., vol. 34, no. 9, pp. 6635-6642, 2022.

[53] R. Gupta and A. G. Jivani, "LemmaQuest Lemmatizer: A Morphological

Analyzer Handling Nominalization.," IETE Journal of Research, pp. 1-9, 2022.

[54] A. Voutilainen, "Part-of-Speech Tagging," in The Oxford Handbook of

Computational Linguistics, 2003, pp. 219-231.

[55] R. Saidi, F. Jarray and M. Mansour, "A BERT based approach for Arabic POS

tagging.," in International Work-Conference on Artificial Neural Networks,

Cham, Springer, 2021, pp. 311-321.

[56] D. Vasić, B. Žitko, A. Grubišić, S. Stankov, A. Gašpar, I. Šarić-Grgić and M.

Markić-Vučić, "Croatian POS Tagger as a Prerequisite for Knowledge

Extraction in Intelligent Tutoring Systems.," in International Conference on

Human-Computer Interaction, Cham, 2021.

[57] P. Singh, G. Rutten and E. Lefever, "A Pilot Study for BERT Language

Modelling and Morphological Analysis for Ancient and Medieval Greek.," in

The 5th Joint SIGHUM Workshop on Computational Linguistics for Cultural

Heritage, Social Sciences, , Humanities and Literature., 2021.

[58] S. Warjri, P. Pakray, S. A. Lyngdoh and A. K. Maji, "Part-of-speech (pos)

tagging using conditional random field (crf) model for khasi corpora.,"

International Journal of Speech Technology, vol. 24, no. 4, pp. 853-864, 2021.

[59] A. Chiche and B. Yitagesu, "Part of speech tagging: a systematic review of deep

learning and machine learning approaches.," Journal of Big Data, vol. 9, no. 1,

pp. 1-25, 2022.

[60] C. A. Bahcevan, E. Kutlu and T. Yildiz, "Deep neural network architecture for

part-of-speech tagging for turkish language.," in 3rd International Conference

on Computer Science and Engineering (UBMK), Bosnia and Herzegovina, 2018.

[61] M. Rajani Shree and B. R. Shambhavi, "POS Tagger Model for South Indian

Language Using a Deep Learning Approach.," in ICCCE, Singapore, Springer,

2021, pp. 155-168.

[62] M. K. Junaida and A. P. Babu, "A Deep Learning Approach to Malayalam Parts

of Speech Tagging.," in Second International Conference on Networks and

Advances in Computational Technologies, Cham, 2021.

[63] A. &. S. S. K. Priyadarshi, "A study on the performance of Recurrent Neural

Network based models in Maithili Part of Speech Tagging.," Transactions on

Asian and Low-Resource Language Information Processing., 2022.

 112

[64] A. Serek, A. Issabek, A. Akhmetov and A. Sattarbek, "Part-of-speech tagging

of Kazakh text via LSTM network with a bidirectional modifier.," in 16th

International Conference on Electronics Computer and Computation

(ICECCO), 2021.

[65] S. Besharati, H. Veisi, A. Darzi and S. H. H. Saravani, "A hybrid statistical and

deep learning based technique for Persian part of speech tagging.," Iran Journal

of Computer Science, vol. 4, no. 1, pp. 35-43, 2021.

[66] S. Chotirat and P. Meesad, "Part-of-Speech tagging enhancement to natural

language processing for Thai wh-question classification with deep learning.,"

Heliyon, vol. 7, no. 10, 2021.

[67] G. Lkhagvasuren, J. Rentsendorj and O. E. Namsrai, "Mongolian Part-of-Speech

Tagging with Neural Networks.," in Advances in Intelligent Information Hiding

and Multimedia Signal Processing, Singapore, Springer, 2021, pp. 109-115.

[68] B. Alshemali and J. Kalita, "Improving the reliability of deep neural networks

in NLP: A review.," Knowledge-Based Systems, vol. 191, 2020.

[69] M. Pota, F. Marulli, M. Esposito, G. De Pietro and H. Fujita, "Multilingual POS

tagging by a composite deep architecture based on character-level features and

on-the-fly enriched Word Embeddings.," Knowledge-Based Systems, vol. 164,

pp. 309-323, 2019.

[70] P. Kouris, G. Alexandridis and A. Stafylopatis, "Abstractive text summarization:

Enhancing sequence-to-sequence models using word sense disambiguation and

semantic content generalization.," Computational Linguistics, vol. 47, no. 4, pp.

813-859, 2022.

[71] D. Suleiman and A. Awajan, "Deep learning based abstractive text

summarization: approaches, datasets, evaluation measures, and challenges.,"

Mathematical problems in engineering, 2020.

[72] Y. M. Wazery, M. E. Saleh, A. Alharbi and A. A. Ali, "Abstractive Arabic Text

Summarization Based on Deep Learning.," Computational Intelligence and

Neuroscience, 2022.

[73] M. Zhang, G. Zhou, W. Yu, N. Huang and W. Liu, " A Comprehensive Survey

of Abstractive Text Summarization Based on Deep Learning.," Computational

Intelligence and Neuroscience, 2022.

[74] T. Cai, M. Shen, H. Peng, L. Jiang and Q. Dai, "Improving transformer with

sequential context representations for abstractive text summarization.," in CCF

International Conference on Natural Language Processing and Chinese

Computing, Cham, Springer, 2019, pp. 512-524.

[75] T. Dong, S. Shan, Y. Liu, Y. Qian and A. Ma, "A Pointer-Generator Based

Abstractive Summarization Model with Knowledge Distillation.," in

International Conference on Neural Information Processing, Cham, Springer,

2021, pp. 168-177.

[76] S. Chopra, M. Auli and A. M. Rush, "Abstractive sentence summarization with

attentive recurrent neural networks.," in Proceeding of 2016 conference of the

North American Chapter of the Association for Computational Linguistics,

California, 2016.

[77] C. Qu, L. Lu, A. Wang, W. Yang and Y. Chen, "Novel multi‐domain attention

for abstractive summarisation.," CAAI Transactions on Intelligence Technology,

2022.

 113

[78] M. Qi, H. Liu, Y. Fu and T. Liu, "Improving Abstractive Dialogue

Summarization with Hierarchical Pretraining and Topic Segment.," in Findings

of the Association for Computational Linguistics, 2021.

[79] A. Kumar and M. K. Gupta, "Abstractive Summarization System.," Journal of

Electronics, vol. 3, no. 4, pp. 309-319, 2021.

[80] W. Xu, C. Xiong and H. Cheng, "Research on Chinese Text Summarization

Based on Core Word Attention Mechanism. In 2021," in 16th International

Conference on Computer Science & Education (ICCSE) , 2021.

[81] B. Baykara and T. Güngör, "Abstractive text summarization and new large-scale

datasets for agglutinative languages Turkish and Hungarian.," Language

Resources and Evaluation, pp. 1-35, 2022.

[82] R. &. L. D. K. Rani, "An extractive text summarization approach using tagged-

LDA based topic modeling.," Multimedia tools and applications, vol. 80, no. 3,

pp. 3275-3305, 2021.

[83] Y. Zou, L. Zhao, Y. Kang, J. Lin, M. Peng, Z. Jiang and X. Liu, "Topic-oriented

spoken dialogue summarization for customer service with saliency-aware topic

modeling," in Proceedings of the AAAI Conference on Artificial Intelligence,

2021.

[84] K. Issam and S. Patel, "Topic modeling based extractive text summarization.,"

The International Journal of Innovative Technology and Exploring Engineering,

vol. 9, 2020.

[85] C. Ma, W. E. Zhang, M. Guo, H. Wang and Q. Z. Sheng, "Multi-document

summarization via deep learning techniques: A survey.," ACM Computing

Surveys (CSUR)., 2020.

[86] R. M. Alguliyev, R. M. Aliguliyev, N. R. Isazade, A. Abdi and N. Idris,

"COSUM: Text summarization based on clustering and optimization.," Expert

Systems, vol. 36, no. 1, 2019.

[87] S. Akter, A. S. Asa, M. P. Uddin, M. D. Hossain, S. K. Roy and M. I. Afjal, "An

extractive text summarization technique for Bengali document (s) using K-

means clustering algorithm.," in IEEE International Conference on Imaging,

2017.

[88] N. Alami, M. Meknassi, N. En-nahnahi, Y. El Adlouni and O. Ammor,

"Unsupervised neural networks for automatic Arabic text summarization using

document clustering and topic modeling.," Expert Systems with Applications,

vol. 172, 2021.

[89] M. Gambhir and V. Gupta, "Recent automatic text summarization techniques: a

survey.," Artificial Intelligence Review, vol. 47, no. 1, pp. 1-66, 2017.

[90] A. A. Deshpande and V. G. Kottawar, "Survey of Sentence Scoring Techniques

for Extractive Text Summarization.," in Proceeding of International Conference

on Computational Science and Applications, Singapore, 2021.

[91] Q. Zhou, N. Yang, F. Wei, S. Huang, M. Zhou and T. Zhao, "Neural document

summarization by jointly learning to score and select sentences.," in

Proceedings of the 56th Annual Meeting of the Association for Computational

Linguistics, 2018.

[92] G. K. Kumar and D. M. Rani, "Paragraph summarization based on word

frequency using NLP techniques.," in AIP conference proceedings.

 114

[93] M. AbdelFattah and F. Ren, "GA, MR, FFNN, PNN and GMM based models

for automatic text summarization," Computer Speech & Language, vol. 23, no.

1, pp. 126-144, 2009.

[94] A. Joshi, E. Fidalgo, E. Alegre and R. Alaiz-Rodriguez, "RankSum—An

unsupervised extractive text summarization based on rank fusion," Expert

Systems with Applications, vol. 200, 2022.

[95] A. Qaroush, I. A. Farha, W. Ghanem, M. Washaha and E. Maali, "An efficient

single document Arabic text summarization using a combination of statistical

and semantic features.," Journal of King Saud University-Computer and

Information Sciences, vol. 33, no. 6, pp. 677-692, 2021.

[96] C.-Y. Lin and E. Hovy, "The automated acquisition of topic signatures for text

summarization.," in Proceedings of the 18th conference on Computational

linguistics, 2000.

[97] R. C. Belwal, S. Rai and A. Gupta, "Text summarization using topic-based

vector space model and semantic measure.," Information Processing &

Management, vol. 58, no. 3, 2021.

[98] R. Srivastava, P. Singh, Rana, K. P. S. and V. Kumar, "A topic modeled

unsupervised approach to single document extractive text summarization.,"

Knowledge-Based Systems, vol. 246, 2022.

[99] s. Lemmatizer, "spaCy API Lemmatizer," 2022. [Online]. Available:

https://spacy.io/api/. [Accessed 25 10 2022].

[100] M. Ailem, B. Zhang and F. Sha, "Topic augmented generator for abstractive

summarization.," arXiv preprint , 2019.

[101] R. C. Belwal, S. Rai and A. Gupta, "Extractive text summarization using

clustering-based topic modeling.," Soft Computing, pp. 1-18, 2022.

[102] G. Erkan and D. Radev, "LexRank: Graph-based lexical centrality as salience in

text summarization," Journal of Artificial Intelligence Research, vol. 22, p. 457–

479, 2004.

[103] C. Mallick, A. K. Das, M. Dutta, A. K. Das and A. Sarkar, " Graph-based text

summarization using modified TextRank.," in Soft computing in data analytics,

Singapore., Springer, 2019, pp. 137-146.

[104] M. Zhang, X. Li, S. Yue and L. Yang, "An empirical study of TextRank for

keyword extraction.," IEEE Access, vol. 8, pp. 178849-178858, 2020.

[105] M. Mohamed and M. Oussalah, "SRL-ESA-TextSum: A text summarization

approach based on semantic role labeling and explicit semantic analysis.,"

Information Processing & Management, vol. 56, no. 4, pp. 1356-1372, 2019.

[106] W. S. El-Kassas, C. R. Salama, A. A. Rafea and H. K. Mohamed, "EdgeSumm:

Graph-based framework for automatic text summarization.," Information

Processing & Management, vol. 57, no. 6, 2020.

[107] T. Uçkan and A. Karcı, "Extractive multi-document text summarization based

on graph independent sets.," Egyptian Informatics Journal, vol. 21, no. 3, pp.

145-157, 2020.

[108] R. C. Belwal, S. Rai and A. Gupta, "A new graph-based extractive text

summarization using keywords or topic modeling.," Journal of Ambient

Intelligence and Humanized Computing, vol. 12, no. 10, pp. 8975-8990, 2021.

 115

[109] X. Mao, H. Yang, S. Huang, Y. Liu and R. Li, "Extractive summarization using

supervised and unsupervised learning.," Expert systems with applications, vol.

133, pp. 173-181, 2019.

[110] S. Adhikari, "Nlp based machine learning approaches for text summarization.,"

in Fourth International Conference on Computing Methodologies and

Communication (ICCMC), IEEE, 2020.

[111] Z. Nasar, S. W. Jaffry and M. K. Malik, "Textual keyword extraction and

summarization: State-of-the-art.," Information Processing & Management, vol.

56, no. 6, 2019.

[112] X. Mao, H. Yang, S. Huang, Y. Liu and R. Li, "Extractive summarization using

supervised and unsupervised learning.," Expert systems with applications, vol.

133, pp. 173-181, 2019.

[113] S. Bae, T. Kim, J. Kim and S. G. Lee, "Summary level training of sentence

rewriting for abstractive summarization.," arXiv preprint , 2019.

[114] T. Ma, Q. Pan, H. Rong, Y. Qian, Y. Tian and N. Al-Nabhan, "T-bertsum: Topic-

aware text summarization based on bert.," IEEE Transactions on Computational

Social Systems, vol. 9, no. 3, pp. 879-890, 2021.

[115] Q. P. J. &. G. E. Grail, "Globalizing BERT-based transformer architectures for

long document summarization.," in Proceedings of the 16th Conference of the

European Chapter of the Association for Computational Linguistics, 2021.

[116] W. Mann and S. Thompson, " Rhetorical structure theory: Toward a functional

theory of text organization.," Text 8, pp. 243-281, 1988.

[117] S. Hou, S. Zhang and C. Fei, "Rhetorical structure theory: A comprehensive

review of theory, parsing methods and applications.," Expert Systems with

Applications, vol. 157, 2020.

[118] T. Ishigaki, H. Kamigaito, H. Takamura and M. Okumura, "Discourse-aware

hierarchical attention network for extractive single-document summarization.,"

in Proceedings of the International Conference on Recent Advances in Natural

Language Processing., 2019.

[119] J. Xu, Z. Gan, Y. Cheng and J. Liu, "Discourse-aware neural extractive text

summarization.," arXiv preprint, 2019.

[120] Z. Liu and N. Chen, "Exploiting discourse-level segmentation for extractive

summarization.," in Proceedings of the 2nd Workshop on New Frontiers in

Summarization, 2021.

[121] X. Feng, X. Feng, B. Qin, X. Geng and T. Liu, "Dialogue discourse-aware graph

convolutional networks for abstractive meeting summarization.," arXiv

preprint, 2021.

[122] J. Chen and D. Yang, "Structure-aware abstractive conversation summarization

via discourse and action graphs.," arXiv preprint, 2021.

[123] J. Bogatinovski, L. Todorovski, S. Džeroski and D. Kocev, "Comprehensive

comparative study of multi-label classification methods.," Expert Systems with

Applications, vol. 203, pp. 1-18, 2022.

[124] J. Read, B. Pfahringer, G. Holmes and E. Frank, "Classifier chains for multi-

label classification.," in Joint European conference on machine learning and

knowledge discovery in databases., Berlin, 2009.

 116

[125] S. Godbole and S. Sarawagi, "Discriminative methods for multi-labeled

classification.," in Pacific-Asia conference on knowledge discovery and data

mining., Berlin, 2004.

[126] W. Weng, C. L. Chen, S. X. Wu, Y. W. Li and J. Wen, "An efficient stacking

model of multi-label classification based on pareto optimum.," IEEE Access,

vol. 7, pp. 127427-127437, 2019.

[127] E. Montañes, R. Senge, J. Barranquero, J. R. Quevedo, J. J. del Coz and E.

Hüllermeier, "Dependent binary relevance models for multi-label

classification.," Pattern Recognition, vol. 47, no. 3, pp. 1494-1508, 2014.

[128] Y. N. Chen, W. Weng, S. X. Wu, B. H. Chen, Y. L. Fan and J. H. Liu, "An

efficient stacking model with label selection for multi-label classification.,"

Applied Intelligence, vol. 51, no. 1, pp. 308-325, 2021.

[129] B. B. Jia and M. L. Zhang, "Multi-dimensional classification via kNN feature

augmentation.," vol. 106, p. Pattern Recognition, 2020.

[130] B. B. Jia and M. L. Zhang, "Multi-dimensional classification via selective

feature augmentation.," Machine Intelligence Research, vol. 19, no. 1, pp. 38-

51, 2022.

[131] H. Wang, C. Chen, W. Liu, K. Chen, T. Hu and G. Chen, "Incorporating label

embedding and feature augmentation for multi-dimensional classification.," in

Proceedings of the 34th AAAI Conference on Artificial Intelligence, New York,

2020.

[132] P. De Handschutter, N. Gillis and X. Siebert, "A survey on deep matrix

factorizations.," Computer Science Review, vol. 42, pp. 1-18, 2021.

[133] A. Luque, A. Carrasco, A. Martín and A. de Las Heras, "The impact of class

imbalance in classification performance metrics based on the binary confusion

matrix.," Pattern Recognition, vol. 91, pp. 216-231, 2019.

[134] N. K. Mishra and P. K. Singh, "Feature construction and smote-based imbalance

handling for multi-label learning.," Information Sciences, vol. 563, pp. 342-357,

2021.

[135] M. Han and H. Zhang, "Multiple kernel learning for label relation and class

imbalance in multi-label learning.," Information Sciences, vol. 613, pp. 344-356,

2022.

[136] K. Duarte, Y. Rawat and M. Shah, "Plm: Partial label masking for imbalanced

multi-label classification.," in Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 2021.

[137] Y. Kim, Y. Lee and M. Jeon, "Imbalanced image classification with complement

cross entropy.," Pattern Recognition Letters, vol. 151, pp. 33-40., 2021.

[138] J. Ortigosa-Hernández, I. Inza and J. A. Lozano, "Measuring the class-imbalance

extent of multi-class problems.," Pattern Recognition Letters, vol. 98, pp. 32-

38, 2017.

[139] Q. Yang, Y. Li, B. Li and Y. Gong, "A novel multi-class classification model

for schizophrenia, bipolar disorder and healthy controls using comprehensive

transcriptomic data.," Computers in Biology and Medicine, vol. 148, pp. 1-11,

2022.

[140] H. Xie, W. Lin, S. Lin, J. Wang and L. C. Yu, "A multi-dimensional relation

model for dimensional sentiment analysis.," Information Sciences, vol. 579, pp.

832-844, 2021.

 117

[141] N. Rai, D. Kumar, N. Kaushik, C. Raj and A. Ali, "Fake News Classification

using transformer based enhanced LSTM and BERT.," International Journal of

Cognitive Computing in Engineering, vol. 3, pp. 98-105, 2022.

[142] I. Ameer, N. Bölücü, M. H. F. Siddiqui, B. Can, G. Sidorov and A. Gelbukh,

"Multi-label emotion classification in texts using transfer learning.," Expert

Systems with Applications, vol. 213, 2023.

[143] T. Groza, S. Handschuh, K. Möller and S. Decker, "SALT-Semantically

Annotated $\mbox {\LaTeX} $ for Scientific Publications.," in European

Semantic Web Conference, Berlin, 2007.

[144] A. Brack, A. Hoppe, M. Stocker, S. Auer and R. Ewerth, "Analysing the

requirements for an Open Research Knowledge Graph: use cases, quality

requirements, and construction strategies.," International Journal on Digital

Libraries, vol. 23, no. 1, pp. 33-55, 2022.

[145] A. Constantin, S. Peroni, S. Pettifer, D. Shotton and F. Vitali, "The document

components ontology (DoCO).," Semantic web, vol. 7, no. 2, pp. 167-181, 2016.

[146] M. Firestone and B. L., "Paragraph Form: Definition, Types & Examples," 2022.

[Online]. Available: http://study.com/academy/lesson/paragraph-form-

definition-types-examples.html. [Accessed 26 10 2022].

[147] Dictionary.com, "Sentence," 2022. [Online]. Available:

http://dictionary.reference.com/browse/sentence. [Accessed 26 10 2022].

[148] G. Sidorov, Syntactic n-grams in Computational Linguistics, Cham: Springer

International Publishing, 2019.

[149] OxfordDictionary, "oxforddictionaries.com," 2015. [Online]. Available:

http://www.oxforddictionaries.com/us/definition/american_english/word.

[Accessed 8 11 2015].

[150] Merriam-Webster, "Word," 2022. [Online]. Available: https://www.merriam-

webster.com/dictionary/word. [Accessed 26 10 2022].

[151] G. Pant, P. Srinivasan and F. Menczer, "Crawling the Web," in Web Dynamics:

Adapting to Change in Content, Size, Topology and Use, 2004, pp. 153-178.

[152] D. Khyani, B. S. Siddhartha, N. M. Niveditha and B. M. Divya, "An

Interpretation of Lemmatization and Stemming in Natural Language

Processing.," Journal of University of Shanghai for Science and Technology.,

vol. 22, no. 10, pp. 350-357, 2021.

[153] A. R. Martinez, "Part‐of‐speech tagging.," Wiley Interdisciplinary Reviews:

Computational Statistics, vol. 4, no. 1, pp. 107-113, 2012.

[154] K. Janaki Raman and K. Meenakshi, Automatic text summarization of article

(NEWS) using lexical chains and wordnet—A review., Singapore: Springer,

2021, pp. 271-282.

[155] N. &. C. S. Moratanch, "A survey on extractive text summarization.," in

International conference on computer, communication and signal processing

(ICCCSP), Chennai, 2017.

[156] NIST, "DUC 2002," 2002. [Online]. Available: http://www-

nlpir.nist.gov/projects/duc/past_duc/duc2002/test.html. [Accessed 1 Nov 2015].

[157] J. Rojas-Simon, Y. Ledeneva and R. Garcia-Hernandez, "State-of-the-art

Automatic Evaluation Methods," in Evaluation of Text Summaries Based on

Linear Optimization of Content Metrics, Cham., Sprinher, 2022, pp. 107-136.

 118

[158] C.-Y. Lin and E. H. Hovy, "Automatic evaluation of summaries using N-gram

co-occurrence statistics," in HLT NAACL, 2003.

[159] C.-Y. Lin, "ROUGE: A package for automatic evaluation of summaries," in ACL

- Workshop on Text Summarization Branches Out., 2004.

[160] K. Papineni, S. Roukos, T. Ward and W. J. Zhu, "BLEU: a method for automatic

evaluation of machine translation.," in 40th Annual meeting of the Association

for Computational Linguistics., Philadelphia, 2002.

[161] A. Joshi, E. Fidalgo, E. Alegre and L. Fernández-Robles, "DeepSumm:

Exploiting topic models and sequence to sequence networks for extractive text

summarization.," Expert Systems with Applications, vol. 211, 2023.

[162] D. Parveen, H. M. Ramsl and M. Strube, "Topical coherence for graph-based

extractive summarization.," in Proceedings of the 2015 conference on empirical

methods in natural language processing., 2015.

[163] C. Fang, D. Mu, Z. Deng and Z. Wu, "Word-sentence co-ranking for automatic

extractive text summarization.," Expert Systems with Applications, vol. 72, p.

189–195, 2017.

[164] A. Jain and D. T. M. K. Bhatia, "Extractive text summarization using word

vector embedding.," in International Conference on machine learning and data

science (MLDS), IEEE, 2017.

[165] A. Joshi, E. Fidalgo, E. Alegre and L. Fernández-Robles, "SummCoder: An

unsupervised framework for extractive text summarization based on deep auto-

encoders.," Expert Systems with Applications, vol. 129, pp. 200-215, 2019.

[166] R. Nallapati, F. Zhai and B. Zhou, "Summarunner: A recurrent neural network

based sequence model for extractive summarization of documents. In," in

Thirty-first AAAI conference on artificial intelligence., 2017.

[167] K. Al-Sabahi, Z. Zuping and M. Nadher, "A hierarchical structured self-attentive

model for extractive document summarization (HSSAS).," IEEE Access, pp.

24205-24212, 2018.

[168] X. Mao, H. Yang, S. Huang, Y. Liu and R. Li, "Extractive summarization using

supervised and unsupervised learning.," Expert systems with applications, vol.

133, pp. 173-181, 2019.

[169] S. Ghodratnama, A. Beheshti, M. Zakershahrak and F. Sobhanmanesh,

"Intelligent narrative summaries: From indicative to informative

summarization.," Big Data Research, vol. 26, 2021.

[170] M. Aparício, P. Figueiredo, F. Raposo, D. M. de Matos, R. Ribeiro and L.

Marujo, "Summarization of films and documentaries based on subtitles and

scripts.," Pattern Recognition Letters, vol. 73, pp. 7-12, 2016.

[171] T. Kohonen, "The Self-Organizing Map," in Proceedings of the IEEE 78, 1990.

[172] L. Weigang, "A Study of Parallel Self-Organizing Map," in Proceedings of the

International Joint Conference on Neural Networks , 1999.

[173] A. A. Saleh and L. Weigang, "A New Variables Selection And Dimensionality

Reduction Technique Coupled With Simca Method For The Classification Of

Text Documents," in Proceeding of MakeLearn & TIM Joint International

Conference 2015, Bari, Italy, 2015.

[174] R. Brereton, Chemometrics: Data Analysis for the Laboratory and Chemical

Plant, Chichester: Wiley, 2003.

 119

[175] A. A. Saleh, M. Hegazy, S. Abbas and A. Elkosasy, "Development of

distribution maps of spectrally similar degradation products by Raman chemical

imaging microscope coupled with a new variable selection technique and

SIMCA classifier.," Spectrochimica Acta Part A: Molecular and Biomolecular

Spectroscopy, vol. 268, pp. 1-11, 2022.

[176] J. Smith, J. Everhart, W. Dickson, W. Knowler and R. Johannes, "Using the

ADAP learning algorithm to forecast the onset of diabetes mellitus.," in

Proceedings of the 10th Symposium on Computer Applications and Medical

Care, Piscataway, 1988.

[177] R. P. Gorman, Sejnowski and T. J., "Analysis of hidden units in a layered

network trained to classify sonar Targets," Neural Networks, vol. 1, no. 1, pp.

75-89, 1988.

[178] D. Dua and C. Graff, "UCI Machine Learning Repository,"

https://archive.ics.uci.edu/ml/datasets/banknote+authentication, 2019.

[179] V. G. Sigillito, S. P. Wing, L. V. Hutton and K. B. Baker, "Classification of

radar returns from the ionosphere using neural networks.," Johns Hopkins APL

Technical Digest, vol. 10, pp. 262-266, 1989.

[180] R. A. Fisher, "The use of multiple measurements in taxonomic problems.,"

Annals of eugenics, vol. 7, no. 2, pp. 179-188, 1936.

[181] M. Charytanowicz, J. Niewczas, P. Kulczycki, P. A. Kowalski, S. Łukasik and

S. Żak, "Complete gradient clustering algorithm for features analysis of x-ray

images.," in Information technologies in biomedicine, Berlin, 2010.

[182] D. Dua and C. Graff, "UCI Machine Learning Repository,"

https://archive.ics.uci.edu/ml/datasets/Abalone, 2019.

[183] M. R. Boutell, J. Luo, X. Shen and C. M. Brown, "Learning multi-label scene

classification.," Pattern recognition, vol. 37, no. 9, pp. 1757-1771, 2004.

[184] K. Trohidis, G. Tsoumakas, G. Kalliris and I. P. Vlahavas, "Multi-label

classification of music into emotions.," ISMIR , vol. 8, pp. 325-330, 2008.

[185] A. Elisseeff and J. Weston, "A kernel method for multi-labelled classification.,"

Advances in neural information processing systems, vol. 14, 2001.

[186] M. L. Zhang and Z. H. Zhou, "ML-KNN: A lazy learning approach to multi-

label learning.," Pattern recognition, vol. 40, no. 7, pp. 2038-2048, 2007.

[187] D. Dheeru and E. K. Taniskidou, "UCI machine learning repository.,"

http://archive.ics.uci.edu/ml/datasets/solar+flare, 2017.

[188] A. Karalič and I. Bratko, "First order regression.," Machine learning, vol. 26,

no. 2, pp. 147-176, 1997.

[189] S. Džeroski, D. Demšar and J. Grbović, "Predicting chemical parameters of river

water quality from bioindicator data.," Applied Intelligence, vol. 13, no. 1, pp.

7-17, 2000.

[190] A. Tsanas and A. Xifara, "Accurate quantitative estimation of energy

performance of residential buildings using statistical machine learning tools.,"

Energy and buildings, vol. 49, pp. 560-567, 2012.

[191] G. Tsoumakas and I. Katakis, "Multi-label classification: An overview.,"

International Journal of Data Warehousing and Mining, vol. 3, no. 3, pp. 1-13,

2007.

 120

[192] J. Wang, F. Tian, H. Yu, C. H. Liu, K. Zhan and X. Wang, "Diverse non-negative

matrix factorization for multiview data representation.," IEEE transactions on

cybernetics, vol. 48, no. 9, pp. 2620-2632, 2017.

