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If you wish to make an apple pie from scratch, you must first invent the Universe.
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Resumo Expandido

RECALIBRAÇÃO DE REDES NEURAIS ARTIFICIAIS BASEADA EM QUANTIS

Redes neurais artificiais são ferramentas poderosas, amplamente utilizadas atualmente para

previsão e modelagem de dados. Embora venham se tornando cada vez mais poderosas, mel-

horias recentes vêm impactando negativamente sua calibração em prol de maior capacidade de

previsão, tornando sua real confiança difícil de avaliar (Guo et al., 2017) – ou seja, a acurácia

de suas previsões não corresponde à sua estimativa de confiança. Para ilustrar, considere um

evento que ocorre 90% das vezes em um experimento aleatório infinito. Uma previsão para tal

evento, realizada por um modelo bem calibrado, deveria então cair dentro de um intervalo de

90% de credibilidade cerca de 90% das vezes.

Para mitigar este problema, propomos um método de pós-processamento baseado em quan-

tis para recalibração de redes neurais. O método explora a informação contida nas probabili-

dades acumuladas, pi = F̂i(yi|xi), onde xi e yi representam, respectivamente, o i-ésiamo vetor

de variáveis explicativas e a i-ésiama variável dependente de um conjunto de recalibração. F̂i

denota a distribuição preditiva acumulada da rede neural. Por meio do método proposto, é

possível obter amostras de Monte Carlo da distribuição preditiva recalibrada.

Foi observado por Guo et al. (2017) que o aumento de capacidade das redes neurais e a

falta de regularização estão intimamente relacionadas à falta de calibração, que, por sua vez,
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se relaciona com o sobreajuste da log-verossimilhança durante o treinamento. Mukhoti et al.

(2020) observaram ainda que o aumento da confiança da rede em suas previsões incorretas para

amostras de teste classificadas incorretamente é um dos principais sintomas de descalibração e

propõem o uso da função de perda focal no lugar da função de entropia cruzada para contornar

o problema. Várias técnicas de pós-processamento também foram introduzidas na tentativa de

corrigir o problema da descalibração, como o método temperature scaling, proposto por Guo

et al. (2017). Kuleshov, Fenner, and Ermon (2018) propuseram que seria possível obter um

modelo calibrado a partir do ajuste de um algorítmo de regressão ao conjunto de recalibração

composto pelas probabilidades acumuladas e pelas estimativas empíricas dos respectivos quan-

tis de cada previsão feita pelo modelo descalibrado. Kumar, Liang, and Ma (2019), afirmando

que os métodos anteriores são menos calibrados do que o reportado, introduzem o scaling-

binning calibrator, reduzindo localmente a variância das previsões por meio do ajuste de uma

função paramétrica.

O método de recalibração proposto neste trabalho utiliza o fato de que, para cada i =

1, . . . , n em uma amostra com n elementos, a probabilidade acumulada estimada da i-ésima

previsão do modelo deve ter distribuição aproximadamente Uniforme(0, 1), possibilitando que,

global ou localmente, a informação do histograma dessas medidas seja utilizada para detec-

tar algum padrão de viés. Dessa forma, a partir da distribuição preditiva obtida pelo modelo,

é possível obter amostras recalibradas usando um simples algoritmo de simulação estocástica

que explora viéses locais do preditor, considerando uma vizinhança (no espaço de uma dada

camada da rede neural) da amostra a ser prevista.

Neste trabalho são apresentados dois exemplos ilustrativos da aplicação e do desempenho

da recalibração proposta. O primeiro considera um simples modelo heteroscedástico Gaussiano

com apenas uma covariável, ao qual foram ajustados um modelo linear homoscedástico e uma

rede neural simples. Neste exemplo, são comparados os efeitos da recalibração local em relação

à global. No segundo exemplo, considera-se uma variável resposta com distribuição Gama

com a superfície da média dada pela função de Rosenbrock, comumente utilizada como teste
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para otimização de algoritmos, ao qual é ajustada uma rede neural com camadas de dropout

intermediárias. Neste exemplo, a incerteza da rede é estimada de duas formas comumente

utilizadas na literatura: a primera por meio da weight scaling inference rule e a segunda pela

técnica de Monte Carlo Dropout, introduzida por Gal and Ghahramani (2016), ficando claro

neste exemplo o ganho de estimação da distribuição preditiva do primeiro método em relação

ao segundo. Em ambos os exemplos, os modelos recalibrados obtiveram performance preditiva

superior aos modelos descalibrados.

Seguindo os exemplos ilustrativos, é apresentado um estudo de simulação realizado para

investigar os efeito do método em diferentes cenários, incluindo tamanho da rede, camada de

recalibração, tamanho das amostras disponíveis para treinamento e a combinação de diferentes

parâmetros de recalibração. O estudo é feito com base em um modelo altamente não-linear,

Gaussiano, apresentado em Tran et al. (2020), no qual apenas dez de vinte covariáveis estão

probabilisticamente relacionadas à variável resposta. Neste estudo, é possível identificar fa-

tores importantes que afetam o uso de memória, o tempo de treinamento e de inferência e o

desempenho preditivo dos modelos recalibrados.

Por fim, o método proposto é testado em um conjunto de dados reais. Nessa seção propõe-

se uma análise do preço de cerca de 53.940 diamantes a partir de suas caracteristicas físicas

individuais. Assumindo distribuição condicional dos preços Y |X ∼ Gama(α, µ), ajustou-se

aos dados um modelo linear generalizado Gama com função de ligação logarítmica e uma rede

neural com função perda definida pela log-verossimilhança negativa da distribuição Gama. A

recalibração de ambos modelos foi capaz de aumentar a precisão das previsões e melhorar as

métricas intervalares.

De modo geral, a recalibração afetou positivamente as métricas de desempenho preditiva

analisadas e produziu uma estimativa mais precisa da incerteza do modelo, obtendo, assim,

uma melhor aproximação do processo gerador de dados. Embora hajam trabalhos com obje-

tivos similares, as soluções apresentadas na literatura tendem a considerar as previsões obtidas

na saída da rede e realizar a calibração de forma global. O método de recalibração proposto por
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este trabalho generaliza esse conceito, permitindo a calibração local em qualquer camada inter-

mediária da rede. Por si só, essa diferença metodológica abre novas possibilidades de acesso das

representações dos dados produzidas pela rede, além de permitir a correção de viéses específi-

cos de cada região. Ainda, é possível que a implementação conjunta com outras técnicas, como

a proposta por Yu et al. (2021), produza resultados ainda melhores permitindo, por exemplo,

uma melhor aproximação da forma das distribuições.

Palavras-chave: Calibração. Quantificação de incerteza. Intervalo de confiança. Cobertura.
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Abstract

Artificial neural networks (ANN) are powerful tools for prediction and data modeling. Al-

though they are becoming ever more powerful, modern improvements have compromised their

calibration in favor of enhanced prediction accuracy, thus making their true confidence harder

to assess. To address this problem, we propose a new post-processing quantile-based method of

recalibration for ANN. To illustrate the method’s mechanics we present two toy examples. In

both, recalibration reduced the Mean Squared Error over the original uncalibrated models and

provided a better representation of the data generative model. To further investigate the effects

of the proposed recalibration procedure, we also present a simulation study comparing various

parameter configurations – the recalibration successfully improved performance over the base

models in all scenarios under consideration. At last, we apply the proposed method to a problem

of diamond price prediction, where it was also able to improve the overall model performance.

Keywords: Calibration. Uncertainty assessment. Confidence interval. Coverage.
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Chapter 1

Introduction

Loosely inspired by the biological brain, artificial neural networks are powerful tools for predic-

tion and data-modeling. Their success in pattern recognition made them widely used in many

different tasks ranging from classification to forecasting. Neural networks with greater repre-

sentation capacity are generally flexible enough to represent all sorts of non-linear relationships

in the system being modeled. Due to modern improvement techniques though, neural networks

are no longer well calibrated compared with what they used to be earlier in this century (Guo

et al., 2017). That is to say, their accuracy does not match their confidence estimates.

Consider an event that occurs in 90% of an infinitely-large number of trials, for example.

A well-calibrated confidence (or credibility) interval should assign a probability of 0.9 to that

event. More formally, given xt ∈ Rd, yt ∈ R, for t = 1, . . . , N , independent identically

distributed (i.i.d.) realizations of X, Y random variables with conditional distribution F (Y |Xt),

and a confidence level of p, we say a neural network is calibrated if (Kuleshov, Fenner, and

Ermon, 2018):

∑N
t=1 I{yt≤F̂−1

t (p)}(t)

N
→ p,∀ p ∈ [0, 1] (1.1)

as N → ∞, where F̂ is the neural network’s cumulative predictive distribution and IA(t)
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denotes the indicator function which equals 1 if yt ∈ A and 0 otherwise. Stating it simply,

if a network is well-calibrated, its predictive and empirical cumulative distribution functions

should match given a large enough data set. Moreover, a sufficient condition for calibration is

(Kuleshov, Fenner, and Ermon, 2018):

P(Y ≤ F̂−1Y (p)) = p,∀ p ∈ [0, 1]. (1.2)

This notion of calibration can be easily transposed to the discrete case in a classification setting:

if, instead of R, the sample space is a finite set of labels, the neural network is calibrated if it

assigns probability p to an event that occurs approximately (100p)% of the time. For example,

in binary classification, where yt ∈ {0, 1}, the neural network is said to be calibrated if

∑N
t=1 ytI{F̂ (yt)=p}(t)∑N
t=1 I{F̂ (yt)=p}(t)

→ p, ∀ p ∈ [0, 1] (1.3)

as N →∞, where F̂ (yt) denotes P(Yt = 1|xt) estimated by the model, and a sufficient condi-

tion for calibration in this context is (Kuleshov, Fenner, and Ermon, 2018):

P(Y = 1|F̂Y (yt) = p) = p,∀ p ∈ [0, 1]. (1.4)

The existing methods of calibration are mostly based on the presented definition, especially

in the context of neural networks, and are also referred to as recalibration by some authors

(Rodrigues, Prangle, and Sisson, 2018; Prangle et al., 2014).

Guo et al. (2017) observed that increased model capacity and lack of regularization are

closely related to uncalibration, which in turn appear to be linked to overfitting during train-

ing. Mukhoti et al. (2020) further observed that an increase in the network’s confidence about

the wrongly classified test samples is one of the key symptoms of uncalibration, and proposed

the use of focal loss instead of cross-entropy loss to obtain well-calibrated models. Many post-

processing techniques have also been introduced to tackle the problem of uncalibration of neural
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network models. Guo et al. (2017) proposed temperature scaling, based on Platt scaling (Platt

et al., 1999), which divides a network’s logit by a scalar T > 0 then performs softmax, with

no effect on its accuracy. Kuleshov, Fenner, and Ermon (2018) proposed estimating the cumu-

lative distribution from Equation 1.2 by fitting a regression algorithm to the recalibration set

{Ft(yt), F̂ (yt)}Tt=1, with F̂ (yt) denoting the empirical estimate of P (yt ≤ F−1t (p)), to get a

calibrated model. Kumar, Liang, and Ma (2019) stated that popular recalibration methods like

Platt scaling and temperature scaling are actually less calibrated than reported and introduced

the scaling-binning calibrator which bins a parametric function fitting to reduce variance and

ensure calibration.

Although previous works have shown significant improvement on neural networks calibra-

tion, there are issues that could improve the results even further once addressed. First of all,

there is the assumption that the pattern of bias is the same throughout the covariate-space of

X, when in fact the model might behave differently across regions. For instance, a model may

perform well for typical values of X, but systematically fail to predict Y correctly when the

covariates are located in low-density regions. Another important aspect is that recalibration

methods tend to address uncalibration based on the network’s output predictions, even though

errors in prediction could have potentially been propagated from an intermediate layer to the

output layer. The intermediate (or even the input layer) may also provide a richer space for

diagnosing local biases.

To address these issues, we propose a post-processing recalibration algorithm similar to

that presented by Rodrigues, Prangle, and Sisson (2018). The latest was designed to recali-

brate approximate posterior distributions in the context of Approximate Bayesian Computation.

However, contrary to their strategy, we propose the calibration to be done in a network’s arbi-

trary layer instead of the original input-space, which often helps to mitigate the so-called curse

of dimensionality. Last but not least, for computational reasons, we propose the use of an ef-

ficient search algorithm, the approximate K-Nearest Neighbours (KNN) (Arya et al., 1998), to

compute the weights assigned to observations of what we call the recalibration set.

3
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This dissertation is organized as follows. In Chapter 2, we present a quantile-based method

for recalibration of neural networks. In Chapter 3, we apply the proposed method to a non-linear

Gaussian model and a Gamma model and discuss its impact on performance. In Chapter 4, we

conduct a simulation study to evaluate how the proposed method fares in a variety of scenarios,

including different recalibration configurations and network models. In Chapter 5 we test our

method with a real dataset example. Lastly, we summarise the results in Chapter 6.
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Chapter 2

Recalibration

There are several model diagnostic techniques based on residuals – that is, that directly compare

model predictions with observed values. Alternatively, one can evaluate model fitness by con-

fronting observed values with their respective estimated conditional (or predictive) distributions.

One long-established strategy for that is to analyse the histogram of the estimated distribution

functions, each evaluated at the corresponding observation. To put it more precisely, let yi be

the i-th observation of the random response variable Y . The cumulative probability estimate of

yi is

pi = F̂i(yi|xi), (2.1)

where F̂i is the i-th conditional cumulative distribution function estimated by the model and xi

is the covariate vector of the i-th observation. This quantity is called P -value by some authors

(Prangle et al., 2014; Rodrigues, Prangle, and Sisson, 2018).

Theorem 2.0.1 (Probability Integral Transformation). (Bain and Engelhardt, 1987) Let FY (y)

be the cumulative distribution function (CDF) of a continuous random variable Y , then U =

FY (Y ) ∼ Uniform(0, 1).

From Theorem 2.0.1, if the model is well specified, then pi ∼ Uniform(0, 1) for all i (Bain

and Engelhardt, 1987). Our method consists of exploiting this coverage property to recalibrate
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the model predictions. If the histogram shows any particular pattern of bias, even if only locally,

this piece of information can be directly used to derive a new predictive distribution which

compensate, to some extent, this known, undesired, behavior. Based on the same principle, Yu

et al. (2021) proposed a method for checking and adjusting approximate inference algorithms

using the law of total variance and the tower property of conditional expectation. However, their

approach only corrects for first and second order moments and it doesn’t address errors related

to the shape of an approximated distribution.

(a) A model that overestimates the median (b) A model that overestimates the variance

(c) A model that underestimates the variance (d) A possibly well specified model

Figure 2.1: Some possible patterns of cumulative probabilities histograms. (a) A model that
overestimates the median of the true distribution, with most observations below the predicted
p = 0.5. (b) A model that overestimates the variance, with most observations centered around
the median of the predictive distribution. (c) A model that underestimates the variance, with
most observations in the tails of the predictive distribution. (d) A model possibly well specified
model, with observations equally distributed.

Figure 2.1 shows some typical cumulative probability histogram patterns and their respec-
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tive interpretations. The model in Figure 2.1a overestimates the median, since most probabilities

are located to the left (pi < 0.5) of its respective predictive distribution median. In Figure 2.1b,

since the histogram is concentrated around pi = 0.5, and therefore there are less observations

in the tails of the predictive distributions, the model overestimates the variance. The opposite

can be seen in Figure 2.1c, where the model underestimates the variance. Figure 2.1d shows

an approximately uniform histogram with no apparent bias. Notice that, while a non-uniform

histogram indicates a poorly fitted model, a uniform histogram on itself does not imply proper

calibration, since it does not guarantee uniformity for all i.

Algorithm 1 introduces our new post-processing method for recalibrating the predictive dis-

tributions of a probabilistic model built over a neural network. We assume an L-layers ANN has

been previously fitted, with the predictive distribution defined according to the network’s loss

function. For example, if the Mean Squared Error (MSE) was adopted as the loss function, the

neural network provides Maximum Likelihood Estimates (MLE) for the mean of a conditional

homoscedastic Gaussian distribution. Other approaches, including the non-parametric use of

dropout layers for estimating the predictive distributions, are discussed in Chapter 3.

Our recalibration method is composed of two stages: evaluating the predictive cumulative

probabilities for each sample in the validation set and, then, performing the recalibration for

each observation in the new set (a collection of samples from which the inputs are known and

we want to predict the respective responses).

For each sample j we want to predict, we assign weights to the samples i, in the validation

set, according to ||h(i)
val − h

(j)
new|| – that is, we ensure greater importance is given to samples

which are similar (according to some pre-specified metric ||.||), in terms of their activations h in

the l-th layer. This reflects the principle that closer observations are usually more informative

of the model’s predictive capabilities (at that particular location). This procedure is known as

localization. The size of the acceptance region, implied by the the number of observations

considered in the recalibration, k, or by the acceptance fraction, plays a critical role in the

recalibration performance. The smaller the region, the better the local bias is captured, at the

7
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Algorithm 1 Neural Network-based Model Recalibration

1: Input

• Validation (or calibration) set, {x(i)
val,y

(i)
val}ni=1, and new set, {x(j)

new}mj=1.

• A neural network and its associated predictive distribution, F̂ (· |x).
• A positive integer l defining the network’s layer where the samples are to be compared.

• Neural network’s outputs of the l-th layer on the validation set, {h(i)
val}ni=1.

• A smoothing kernel Ku(d) with scale parameter u > 0.

• A positive integer k defining the number of observations to be used for recalibration
within KNN search.

Cumulative probabilities

2: for i← 1 to n do
3: Set pi = F̂i(y

(i)
val|x

(i)
val).

4: end for

Recalibration

5: for j ← 1 to m do
6: Compute h

(j)
new = g(x

(j)
new), where g represents the network’s mapping from the input to

the l-th layer.
7: Use the approximate KNN search method to identify the observations in the validation

set for which the distances ||h(i)
val − h

(j)
new|| are within the k-smallest ones.

8: Compute the sample weight w(i) ∝ Ku(||h(i)
val − h

(j)
new||) for the i indexes identified in

Step 7 (that is, for which w(i) > 0).
9: Set ỹ(j)

i = F̂−1j (pi|x(j)
new).

10: end for

Output

11: A set of weighted samples {(ỹ(j)
i , w(i))}ni=1 from the recalibrated predictive distribution

F̃j(· |x(j)
new),

for j = 1, . . . ,m.

cost of an increased error associated with the smaller number of Monte Carlo samples found

in that region. Therefore, there is a trade-off to be considered when setting k. However, if

8
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one wishes to recalibrate a model globally, without considering local biases, it can be easily

achieved by choosing a constant weighting function for all observations in the validation set, in

Step 8.

The computational problem of identifying the closest samples to h
(j)
new in the validation set

(Step 7, Algorithm 1) is, therefore, very important to the efficiency of the algorithm. This is an

example of a general problem known in the computational literature as the post office problem.

Due to the curse of dimensionality it becomes increasingly more difficult to find an efficient

solution to this problem as the sample size and the number of dimensions of X increases. Given

a set S of n points in M , a d-dimensional space, and q ∈ M a single query point, a naive

approach to the problem of finding the closest point in S to q (through linear search) takes

O(dn) time. While not quite memory-efficient, there are solutions to this approach that make

use of a GPU upon calculating the distances to drastically speed up this process. This task

becomes even more costly when trying to find the k-closest points of S to a whole query set

Q. An efficient alternative for large datasets is the use of approximate methods such as the K-

Nearest Neighbour search. Arya et al., 1998, shows that, given ε > 0, the k (1+ε)-approximate

nearest neighbours of q can be computed in O(kd log n) time. Recent works in the problem of

identifying approximate nearest neighbors, such as the one proposed by Chen et al. (2021), can

compute a solution to this problem with billion-scale data sets twice as fast as the state-of-the-art

searching algorithms. In the subsequent chapters in this work, we use the Approximate Nearest

Neighbor approach and the Euclidean norm. The influence of the ε approximation parameter in

recalibration is tested, along with other parameters, in chapter 4.

Let p = (p1, p2, . . . , pn) be a vector of cumulative probabilities, as defined in Step 3. The

j-th recalibrated predicted value, ŷj , can then be obtained by taking the weighted average of the

recalibrated predictive distribution’s Monte Carlo samples, as given by

ŷj =
n∑
i=1

w(i)ỹ
(j)
i , (2.2)

9
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where ỹ
(j)
i = F̂−1j (pi|x(j)

new) (see Step 9). Interval predictions and estimates of other features of

the recalibrated predictive distributions (e.g. its variance) can also be easily derived. Notice that

only k samples in {(ỹ(j)
i , w(i))}ni=1 have positive weights. Therefore, in practice, this output set

can be safely reduced to store only the samples for which w(i) > 0.

One big change that comes with the proposed method is that it can be used in any layer of

a neural network, not just the output layer. Let l = 1, . . . , L denote the indexes of the network

layers, then if l = 1 recalibration is done in the input layer and if l = L recalibration is done in

the output layer. Many well known methods implicitly recalibrate on l = L, such as Guo et al.

(2017) and Kuleshov, Fenner, and Ermon (2018). Let’s say we would like to recalibrate the

network’s predictive distribution according to the representations learned in the layer l = L−1.

In order to perform recalibration, we then need to retrieve the data from the layers l = L − 1

and l = L, for every observation in the validation set. In Chapter 4 we further investigate the

effect of choosing different layers. The resulting dataset - the recalibration set - is composed of

1 + c + d columns, with the first column being the vector of cumulative probabilities, c being

the number of neurons in the layer L − 1 and d being the number of columns of the network’s

output (as can be seen in Chapter 5).

If performed in the covariate space, recalibration may require additional solutions to deal

with the dimensionality of x. At the other end of the spectrum, recalibrating on the output layer

does not guarantee the selected observations are in fact close, since only the target variable is

being taken into account – two samples far apart in the covariate space can lead to similar pre-

dictions. Recalibrating on an intermediate layer may, therefore, provide two related benefits:

the dimensionality can be easily controled when setting the ANN’s architecture and the dis-

tances are evaluated over a convenient representation (learned by the ANN itself) of the original

data.

Although the calibrated distribution is generally more reliable than the ones estimated by

the models, a considerable disadvantage of quantile-based recalibration techniques is the loss

of parameter interpretability. This, however, is not an issue in the context of neural networks

10
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since the network weights aren’t easily interpretable in most cases.

The scale and measurement unit of the features can influence which of those becomes more

relevant. For example, if we wish to recalibrate a model that considers two variables, age

and height, the latter can become more or less relevant depending on its scale (centimeters,

decimeters, meters, etc). Normalizing the variables is frequently a convenient solution.

Another issue mentioned before is the well known curse of dimensionality. As the dimen-

sionality of X increases it can become very difficult to calculate the distances between the

observations. Beyer et al., 1999, showed that, under certain conditions, the distance to the near-

est neighbour observation approaches the distance to the furthest neighbour with the increase in

dimensions. In other words, the contrast in distances between two points in the covariate space

vanishes. Therefore, performing recalibration procedure can become very challenging in these

circumstances.

11



Chapter 3

Toy Examples

3.1 Heteroscedastic Gaussian Model

Consider n = 100, 000 samples from the following Gaussian heteroscedastic quadratic model

Y = 10 + 5X2 + e (3.1)

where e ∼ N(µ = 0, σ = 30X) (Figure 3.1a) and X ∼ U(2, 20), to which we fit the mis-

specified linear homoscedastic model µ̂Y = β0 + β1X . Figure 3.1b shows the fitted linear

regression line in contrast with the actual mean curve. The mean and the standard deviation

estimated by the linear model for the predictive distribution of the red-highlighted observation

(x, y) = (17.6, 2141.9), taken as an example, are ŷ = 1469.6 and σ̂ = 385.2, respectively.

Figure 3.1c shows that, for a random variable with distribution N(µ = 1469.6, σ = 385.2), the

highlighted observation has an associated cumulative probability of p = 0.959. The cumulative

probability histogram of all observations in Figure 3.1d hints at the global bias of this model

predictions.

Figure 3.1 depicts the poor quality of the linear model fit due to its misspecification. Frosini’s

test rejected the null hypothesis of uniformly distributed pi for all i with 5% significance level.



§3.1. Heteroscedastic Gaussian Model

(a) Scatterplot of Y given X. (b) Mean functions.

(c) Predictive density. (d) Global probability histogram.

(e) Two distinct neighborhood regions. (f) Local probability histograms.

Figure 3.1: (a) The true relationship between the response variable and the independent vari-
able, with the position of the highlighted observed point in relation to the predictive distribution
given by the model. (b) The true mean contrasted with the model’s estimated mean. (c) The
predictive density of the highlighted point and its cumulative probability. (d) The global cumu-
lative probabilities histogram shows the model’s global bias. (e) The neighborhood of the two
highlighted points. (f) The cumulative probabilities histogram of the model in the two high-
lighted neighborhoods showing that the model presents two distinct bias patterns depending on
the region.
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cap. 3. Toy Examples §3.1. Heteroscedastic Gaussian Model

The test’s results can be seen in Table 3.1. In the global cumulative probability estimates his-

togram (Figure 3.1d), it is possible to see a combination of bias patterns indicating both model’s

variance underestimation and overestimation in distinct regions of the covariate space (Figures

3.1e and 3.1f). Besides that, there are clues of negative and positive biases in the distribution’s

mean estimations.

Test statistics B P-value
2.1851 <0.001

Table 3.1: Frosini’s uniformity test of the pi. The test indicates that the cumulative probabilities
distribution is not Uniform and thus the model is not well calibrated.

In order to recalibrate the model, we split the dataset into training, validation and test sets

by randomly taking 80, 000 to the training set and 10, 000 observations to the validation and

test sets, respectively. In the context of recalibration, the validation set is used to compute the

cumulative probability estimates vector, p, and the test set is used to evaluate the performance.

Figure 3.2 compares the linear model and the global recalibration. Figure 3.2a shows the models

and the true probability density function of the highlighted observation in Figure 3.1a. Figure

3.2b shows the Kullback-Leibler divergence (KL divergence) between the models’ estimated

density and the true density for all observations. The Kullback-Leibler divergence (Kullback

and Leibler, 1951) is given by,

DKL(P ||Q) =
∫
P (y) log

(
P (y)

Q(y)

)
dy, (3.2)

where P and Q are density functions. A comparison between both models’ fitted values and

the true mean is shown in Figure 3.2c and a comparison between estimated and true standard

deviations are shown in Figure 3.2d.

Overall the global recalibration offered no significant improvement over the linear model

as seen in Figure 3.2. Table 3.2 shows that the average KL divergence of the global recali-

brated model is approximately 3% smaller than the linear model, indicating a small gain in data

14
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(a) Predictive density. (b) Kullback-Leibler Divergence.

(c) True and estimated mean. (d) True and estimated standard deviation.

Figure 3.2: (a) The predictive densities of the highlighted red point given by both models in
contrast to the true density. (b) The Kullback-Leibler divergence of the recalibration in relation
to the linear model. (c) Both models estimated means in relation to the true model. There seems
to be no apparent difference between them. (d) Both models estimated standard deviations in
relation to the true model.
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cap. 3. Toy Examples §3.1. Heteroscedastic Gaussian Model

distribution representation. Figure 3.2b indicates global recalibration offered estimation im-

provements in some regions of the prediction space while worsening them in others compared

to the linear model. There is also little difference in the mean estimates between the models.

Furthermore, both fitted models couldn’t capture the true model’s heteroscedasticity as seen in

Figure 3.2d. Table 3.2 shows a slight loss in prediction capacity of the global recalibration when

compared to the linear model.

Model MSE KL Divergence
Linear 14497.7 0.815
Global Recalibration 14676.8 0.806

Table 3.2: Comparison between the linear model and the global recalibration. Although there
was a small reduction in the global recalibration KL divergence, there was no gain in terms of
prediction accuracy.

Let us consider the two highlighted observations in Figure 3.1e. Looking at the histograms

in Figure 3.1f we see that the true model’s variance is underestimated in the red region while it is

overestimated in the blue region. This happens because the linear model assumes homoscedas-

ticity on the model’s variance. Since there is different prediction bias in each region, these

pieces of information can be added to the recalibrated model.

Next, in this example, we select and weigh the nearest neighbors using Epanechnikov’s

kernel,

ku(d) =
3

4

(
1−

(
dij
u

)2)
, (3.3)

where u is chosen such that the 10% closest observations to the i-th one have positive weights.

Also, in this case, dij is the Euclidean distance between the i-th and the j-th observations:

dij =
√

(xi − xj)2. (3.4)

In Figure 3.3 we can see that local recalibration offered a substantial improvement over

the linear model. Figure 3.3a shows that the local recalibration density estimator approximates
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(a) Highlighted observation’s density. (b) Kullback-Leibler Divergence.

(c) True and estimated mean. (d) True and estimated standard deviation.

Figure 3.3: (a) Predictive densities of the highlighted red point in comparison to the true density.
It can be seen how well the recalibrated model approximates the density in relation to the linear
model. (b) Kullback-Leibler divergence of the local recalibration in relation to the linear model.
(c) Both models estimated means in relation to the true model. (d) Both models estimated
standard deviation in relation to the true model.
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the true density of the highlighted observation better than the linear model. Figure 3.3b shows

information gained from local recalibration over the fitted linear model. In Figures 3.3c and

3.3d recalibrated estimates of the mean and the standard deviation align with the true values,

showing that the locally recalibrated model captures the heteroscedasticity of the true model.

Table 3.3 shows that recalibration mean squared error (MSE) is about 70% lower than the linear

model, also the reduction in divergence reflects information gained from recalibration.

Model MSE K-L Divergence
Linear 14497.7 0.762
Local Recalibration 361.6 0.129

Table 3.3: Comparison between the linear model and the local recalibration. There is a very
significant improvement in KL divergence and prediction accuracy from local recalibration in
relation to the linear model.

We then proceed to fit an arbitrary simple neural network model with two hidden layers,

where the first layer has six neurons and the second one has two neurons, both having ReLU

activation function. The output layer has a single neuron and linear activation function. We

also adopted the mean squared error loss function, assuming the predictive distributions are

Gaussian with the mean given by each prediction and variance equal to the mean squared error

of the model on the validation data.

Next, we recalibrate the neural network model using an arbitrarily chosen proportion of

10% nearest neighbors to each sample observation in the penultimate layer. Figures 3.4a and

3.4b show the estimated mean and standard deviation, respectively, for both global and local

recalibrated neural network models. It is possible to see that, while both models’ mean esti-

mates were similar, only the local recalibrated model captured the true heteroscedasticity. Table

3.4 shows the performance indicators for all the models considered. Although recalibration

increased the MSE of the ANN, it also reduced the average KL divergence, showing that the

recalibrated distribution offered a better approximation of the true distribution than the ANN.

The observed coverage in Table 3.4 represents the percentage of 95% confidence intervals

that captured the respective observed value in the test dataset. At a first glance, all the con-
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(a) True and estimated mean (b) True and estimated standard deviation.

Figure 3.4: Comparison between ANN and recalibrated models. (a) Estimated means in relation
to the true mean. (b) Estimated standard deviations in relation to the true model.

Model MSE K-L Divergence Observed Coverage sMIS
Linear 14497.7 0.815 93.76 2.717
Globally Recalibrated Linear 14676.8 0.806 94.83 2.698
Locally Recalibrated Linear 361.6 0.129 94.94 2.017
ANN 1457.9 0.864 93.36 2.636
Globally Recalibrated ANN 758.9 0.818 94.48 2.609
Locally Recalibrated ANN 342.1 0.191 94.99 2.013

Table 3.4: Performance comparison between linear and ANN models. There is clearly an im-
provement in terms of distribution approximation and interval prediction from recalibration in
relation to the base models.

fidence intervals are close to their nominal confidence level. However, Figure 3.5 shows that

only the local recalibration has evenly distributed predictions, meaning that the other models

capture more observations where variance is overestimated. Although the original and globally

recalibrated models miss approximately only 5% of the intervals on average, since their local

coverage is greater than 5% for lower values of x and lower for higher values, it can be seen

they still are uncalibrated. The standard Mean Interval Score (sMIS) (Gneiting and Raftery,

2007) in Table 3.4 is given by

ISα(i) = −
(
(qα

2
− q1−α

2
) +

2

α
(qα

2
− yi)I{y<qα

2
}(i) +

2

α
(yi − q1−α

2
)I{y>q1−α

2
}(i)

)
, (3.5)
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where i = 1, . . . , n, qα
2

and q1−α
2

are the upper and lower interval quantiles, standardized by the

validation set mean absolute values. sMIS directly compares prediction intervals by penalizing

observations missed and rewarding narrower intervals. It can be seen that local recalibration

performed best than the other models in terms of interval scores.

Figure 3.5: Interval coverage of each model in the covariate space. Local recalibration corrected
regional bias and provided a more adequate coverage pattern.
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§3.2. Non-Linear Gamma Model

3.2 Non-Linear Gamma Model

In this toy example we consider the Rosenbrock function, also known as Rosenbrock Vale,

notorious for its wide use as a test function for optimization algorithms. This function is given

by

f(x1, x2) = (a− x1)2 + b(x2 − x21)2, (3.6)

with a and b constants. Figures 3.6a and 3.6b show the function’s surface in three and two

dimensions, respectively.

We take the Rosenbrock function, within the intervals x1 ∈ (−2, 2) and x2 ∈ (−1, 5), with

a = 1 and b = 10, as the conditional mean (µ) of a Gamma distributed random variable Y with

shape parameter α = 100 and scale parameter given by

θ =
µ

α
. (3.7)

To simulate the relationship between the pair of independent variables and the response variable

we generate n = 100, 000 samples of x = (x1, x2) from the Uniform distribution such that

X1 ∼ Uniform(−2, 2) and X2 ∼ Uniform(−1, 5). Then, we generate n samples of Y

conditional to X1 and X2 so that Y |X1, X2 ∼ Gamma
(
100, f(x1,x2)

100

)
. Therefore, for each pair

(x1, x2), we have y sampled from a Gamma distribution with mean f(x1, x2). After that we split

the data into training (80%), validation (10%) and test (10%) data sets. Figure 3.6c shows the

generated test data in three dimensions, where it can be seen that the, farther the observations

are from the valley, the greater is the variability around the mean. Test data variability can also

be seen in Figure 3.6d.

To estimate the mean function from the data, we fit an arbitrary neural network model to

log(y), consisting of four hidden dense layers (6400, 6400, 240, 240 neurons) with ReLU activa-

tion function and an output linear layer with a single neuron. We also added batch normalization

layers and dropout layers with probability p = 0.5 between every hidden layer. The network
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(a) Rosenbrock function surface. (b) Rosenbrock function mapping.

(c) Test data surface. (d) Test data variability.

Figure 3.6: (a) Rosenbrock function’s surface in three dimensions. (b) Function values mapping
in the covariate space. (c) Test data variability as a function of x values. (d) Test data variability
versus the mean.

was trained for 75 epochs with a learning rate of 0.001, ADAM optimizer, MSE loss function

and batches of size 100. The network loss function progression during training and validation

can be seen in Figure 3.7a.

The use of dropout layers opens up two possibilities to estimate the network’s uncertainty.

The first approach consists of using the weight scaling inference rule (WSIR) to make a single

prediction for every data point in the test set, assuming normality in the logarithmic scale of

y. The second approach consists of using the dropout’s randomly generated masks to obtain a

sample of the network’s predictions for every data point in the test set, following the method-
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ology proposed by Gal and Ghahramani (2016) (Monte Carlo Dropout), without parametric

assumptions on the predictive distribution.

The logarithmic transformation takes the response variable from the interval Y ∈ [0,∞)

to log(Y ) ∈ (−∞,∞). Since the weight scaling inference rule averages the output of all

dropout masks, in the first approach we can assume the network outputs the mean of a Normal

distribution with variance equal to the validation set MSE. For every prediction, we generated a

sample of size 1, 000 of the predictive distribution in the log-scale, then applied the exponential

transformation, eŷ, to take the samples back to the interval Y ∈ [0,∞). By doing so, we got

a Monte Carlo sample of the predictive distribution for every observation in the test set in its

original scale.

The Monte Carlo Dropout (MC Dropout) approach uses the randomness intrinsic to the

dropout technique to get samples of the network’s predictions for each data point. At every iter-

ation, each dropout layer generates a random mask that turns off some of the neurons according

to the chosen dropout probability. We activated the dropout layers during the inference stage

and generated samples of size 1, 000 for each observation in the test set (in the original scale).

In both methods, the point estimates are the mean taken from the samples generated from the

predictive distributions. Figure 3.7b compares predictions from the two methods. It can be seen

that, for lower values of x2, MC Dropout tends to return slightly higher predictions than WSIR

method.

Since we have very high dimensionality in the network’s layers weight space, we recali-

brated both methods locating the nearest neighborhood of each observation in the input space.

In this example, if we fix the number (k) of neighbors, the observations on the edge of the mean

function’s region will have a much greater neighborhood area than the ones in the center. To

avoid that, for each observation in the test set, we selected the closest observations in the vali-

dation set based on a fixed maximum distance (equal to 0.5). Due to the non-parametric nature

of the samples generated by the MC Dropout method, to directly compare both method’s es-

timates, we calculated the cumulative probabilities empirically from the Monte Carlo samples
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(a) Network loss function. (b) Comparison between ANN methods.

Figure 3.7: (a) Neural network loss function during training and validation. (b) Comparison
between WSIR and MC Dropout predictions. MC Dropout tends to overestimate predictions
for lower values of x2 in relation to WSIR.

obtained from each method and generated unweighted samples of the recalibrated predictive

distributions according to the weights defined by the Epanechnikov kernel. The cumulative

probability histograms in Figures 3.8a and 3.8c indicate that both methods are not well cali-

brated globally. While the predictions made based on the WSIR predictive distribution appear

to mainly overestimate the mean, the predictions of the MC Dropout method tend to overesti-

mate the true model’s variance. Figures 3.8b and 3.8d indicate both models are possibly well

calibrated after the local recalibration procedure. Figures 3.9a and 3.9b show WSIR predictions

and residuals in the covariate space. One of the major effects of recalibration on both ANN

models was decreased prediction values for lower values of x2, previously overestimated, as

illustrated with the WSIR method in 3.9c. Figure 3.9d shows WSIR method’s recalibration

residuals.

In summary, the analysis was carried out as follows:

1. Fit an ANN to the training data and validate in the validation data, in the log-scale;

2. Generate samples of the normal predictive distribution for every test observation, using

the WSIR. Exponentiate, then take the mean of each sample as the point prediction;
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(a) WSIR cumulative probabilities. (b) WSIR recalibration cumulative probabilities.

(c) MC Dropout cumulative probabilities. (d) MC Dropout recalibration probabilities.

Figure 3.8: (a) WSIR predictions overestimate the mean. (b) WSIR cumulative probabilities
after recalibration. (c) MC Dropout predictions overestimate the variance. (d) MC Dropout
cumulative probabilities after recalibration.

3. Generate samples of the empirical ANN predictive distribution for every test observation

using MC Dropout. Exponentiate the samples, then take the mean of each sample as the

point prediction;

4. Recalibrate each method using Algorithm 1;

5. For each point in the test set, generate samples from the true model’s distribution. Take

the mean of each sample.

6. Calculate the MSE, confidence interval coverage and standardized mean interval score
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(a) WSIR predictions mapping. (b) WSIR residuals mapping.

(c) WSIR predictions and recalibration. (d) WSIR recalibration residuals.

Figure 3.9: (a) WSIR predictions in the covariate space. (b) WSIR residuals. (c) Recalibra-
tion effect on WSIR predictions, varying according to the x2 space. (d) WSIR recalibration
residuals.

for all methods.

The performance of all methods was measured from samples obtained from their estimated

predictive distributions and compared against samples taken from the true model’s distribution.

While the predictions taken from the WSIR presented smaller MSE value than the ones taken

from the MC Dropout, the recalibrated methods resulted in the predictions closest to the true

samples by a large margin, indicating recalibrated predictions were much closer to the original

test data on average. In regards to confidence interval predictions, considering 95% confidence

intervals, the largest coverage and interval score were presented by the MC Dropout method,
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which suggests this method generated too wide prediction intervals. The recalibrated methods

generated confidence intervals coverage and score metrics very close to the true model. All

performance metrics can be seen in Table 3.5.

Model MSE Coverage sMIS
WSIR ANN 71.2516 0.9548 0.5689
MC Dropout ANN 75.0649 0.9899 0.8745
Recalibrated WSIR ANN 60.5202 0.9432 0.4995
Recalibrated MC Dropout 60.4355 0.9468 0.4990
True model 59.6438 0.9462 0.4775

Table 3.5: Performance comparison between all methods.

The coverage of all methods is shown in Figure 3.10, where light red points represent ob-

servations not captured by the prediction intervals. It can be seen that ANN predictions, despite

getting close to the nominal coverage level, as was the case in the previous example, presented

a very clear pattern, missing observations in specific areas. MC Dropout method’s wide interval

estimation is reflected in the interval coverage surface, showing a similar bias pattern to the first

method while having a larger MSE. On the other hand, recalibration appears to have largely

reduced local biases. In addition, after the recalibration (regardless of the base model), the cov-

erage showed a much more evenly spread pattern throughout the covariate space, an indication

that these models are well-calibrated.
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(a) WSIR coverage (b) WSIR recalibration coverage

(c) MC Dropout coverage (d) MC Dropout recalibration coverage

Figure 3.10: Confidence interval misses (light red points) throughout the covariate space. (a)
WSIR. (b) WSIR with local recalibration. (c) MC Dropout. (d) MC Dropout with local recali-
bration.
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Chapter 4

Simulation Study

In this analysis, we run a simulation study to investigate and quantify the effect of recalibration

of neural network models under various conditions. We revisit the analysis in Tran et al. (2020)

and consider the highly nonlinear model given by

y = 5+10x1+
10

x22 + 1
+5x3x4+2x4+5x24+5x5+2x6+

10

x27 + 1
+5x8x9+5x29+5x10+δ, (4.1)

where δ ∼ N(0, 1). We generate the variables x1, . . . , x20, from which x11, . . . , x20 are non-

informative to the model, from a multivariate normal distribution with mean vector 0 = (0)i,

i = 1, . . . , 20, and covariance matrix (0.5|i−j|)i,j , i = 1, . . . , 20, j = 1, . . . , 20, i 6= j. Data is

simulated from this process in sets of sizes N = 103, 104, 105 and 106. Then, in each scenario,

we randomly split the data into a training set, a validation set and a test set using 80%, 10%

and 10%, respectively. We propose to fit and recalibrate two neural network models as well as

compare recalibration performance with a K-Nearest Neighbor (KNN) regression model, due

to methodological similarities.

Because this section compares the models’ performances for each configuration under study,

both recalibrations and the KNN regression models are fit with the validation set and evaluated

with the test set, not being necessary to optimize KNN regression parameter values.
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Apart from the number of neurons, the two neural networks considered are identical in ar-

chitecture, both being composed of a 20 neurons input layer, followed by four hidden layers

with ReLU activation function, then a linear output layer with a single neuron. The "small" net-

work’s hidden layers are all composed of 5 neurons, while the "big" network’s first three hidden

layers have 200 neurons and its last hidden layer has 5 neurons. Both networks are trained with

the Adam optimizer and mean squared error loss function with the early stop callback. Due to

computational and time constraints, both neural network model’s learning rates were optimized

in advance for every scenario considered in the simulation, with values ranging from 10−4 to

10−2.

Both neural network models are recalibrated assuming normally distributed predictive dis-

tributions and considering Epanechnikov’s kernel function to weight the recalibrated samples.

To evaluate the effects of recalibration, both networks are recalibrated on the input layer, the

fourth layer, the fifth layer and the output layer.

The networks are recalibrated with the 100, 500 and 1000 nearest neighbors, corresponding

to different proportions of the validation and test data sets. The nearest neighbor search is

conducted with three degrees of approximation: ε = 0 (exact search), ε = 0.5 and ε = 1, where

ε is the KNN search approximation parameter.

An algorithm directly comparable to the proposed recalibration method is the KNN regres-

sion, which we also apply considering the Epanechnikov’s kernel function, the same KNN

approximate search algorithm and the same set of values of the K (nearest samples) and ε pa-

rameters, for direct comparison. Due to memory and time constraints, both recalibrated models

and KNN regression were fit in batches according to test set size, KNN regression being applied

only to the first two scenarios of N = 103 and N = 104. In the last two scenarios, KNN regres-

sion computational cost was simply too high to be carried over with the available computational

resources, taking alone up to two-thirds of the total simulation time, on average. As shown in

the next set of graphic panels though, it is clear that, while KNN regression is comparable to the

recalibration in terms of methodology, it does not compare in terms of computational efficiency
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and model performance.

The simulation study is run multiple times, each with a different seed. For each replication

of the simulation study, we generate a data set withN observations of the independent variables

X and the response variable Y , then we split it into training, validation and test sets. The neural

network models are trained and validated with the generated data and then, with their predictions

and weight sets in hand, we calculate the networks predictions cumulative probabilities and

the target layers predictions of X validation and test sets. The recalibration predictions are

then obtained for each target layer, nearest samples size and approximation value. At this

moment, the KNN regression predictions are also obtained for each nearest sample size and

approximation value.

In this study, we split model fitting in two stages. The training stage consists of minimiz-

ing the neural network’s loss functions, calculating the cumulative probabilities vector and the

network’s representations in the validation set.Since we are looking at the whole process until

the final model is obtained, recalibration time in training stage consists of the networks training

time plus the time taken to obtain recalibration data. Recalibration memory usage in training

stage is composed of the networks’ weights and the data necessary to obtain the nearest sam-

ples, the cumulative probabilities and the validation set representations. Since KNN regression

doesn’t need parameter optimization in this case, we consider its training time to be zero in all

scenarios. Prediction stage consists of acquiring models predictions, which is mainly obtaining

the nearest samples and kernel matrices for both methods. Memory usage in prediction stage

consists of all data generated in this process and the data used to obtain the models predictions.

For each sample size, we report the time and memory usage in training stage (training time

and training memory), MSE, interval coverage, interval score, also time and memory usage in

prediction stage (prediction time and prediction memory).

Figure 4.1a shows that recalibration (RC) does not significantly affect model training time

as sample sizes increase. KNN regression training time is considered zero and thus is not

represented. In all scenarios, training time increments scale with the neural networks (NN)
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time. However, it does affect inference (prediction) time as sample size increases, as seen

in Figure 4.2a. Recalibration’s target layer also doesn’t seem to affect training time, as seen

in Figure 4.1b. However, it appears to affect prediction time positively the higher the layer

dimensions are, as shown in Figure 4.2c. The nearest samples size also increases prediction

time – as it grows, the time taken by the KNN approximate search increases, as shown in Figure

4.2b. This is mitigated by the search level of approximation, with the exact search taking longer

than a higher approximation level, as in Figure 4.2d.

Data memory size increases proportionally to sample size and dimensionality both in the

training and prediction stages (Figures 4.1c and 4.2e), while neural networks memory size

doesn’t increase at the same rate in the prediction stage. Figure 4.1d shows recalibration mem-

ory usage in the training stage in comparison to neural network training for each sample size,

as a function of the target layer. Recalibration prediction memory size grows in O(n), propor-

tional to n(2k + h+ d), where n is the number of test observations, k is the number of nearest

samples, h is the number of neurons in the target layer and d is the size of the network’s output.

Two matrices of size n × k are generated from the approximate KNN search algorithm,

one kernel matrix, obtained with the nearest samples distances to each test sample, and one

matrix with the k-nearest samples indexes. The network output has size n × d, where, in this

simulation study, d = 1. Figure 4.2f shows how prediction memory usage is related to the

main objects generated by recalibration, based on batch size. While other object sizes remain

constant as batch size increases, the kernel matrix rapidly dominates recalibration’s prediction

memory usage. Both kernel matrix and indexes matrix become the most relevant objects time

and memory-wise for large data sets.

In Panel 4.3, the true model MSE (equal to 1) is represented by the golden dashed line.

Figure 4.3a shows models MSE as sample size increases. Overall, recalibration improved the

networks MSE on average, benefiting the most when there is plenty of data. It can be observed

that even with more data provided, the smaller neural network’s low capacity prevents it from

improving model MSE. Even in this case, recalibration was able to improve performance, on
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(a) Training time by data size. (b) Training time by layers.

(c) Training memory size by data size. (d) Training memory by data size, by layers.

Figure 4.1: (a) Training time on each data set size scenario for neural networks (NN0 and
recalibration (RC) models. (b) Recalibration training time on each NN target layer. (c) Training
data memory size on each data set size. (d) Training data memory size for each sample size,
stratified by target layer. NA represents neural network without recalibration.
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average. In Figure 4.3b, increasing the nearest samples size improved the biggest recalibrated

model’s MSE on average with diminishing effects as nearest samples size increases, meaning

that increasing the proportion of nearest data won’t add much information to the model predic-

tions when there is already enough information, in terms of model capacity. The target layer

also doesn’t seem to influence much predictions accuracy, as Figure 4.3c shows, although it is

relevant to prediction time. This fact suggests the information given by the nearest neighbors is

roughly the same regardless of how it’s been represented by the network, but the dimensionality

of such space can speed up significantly prediction time. Approximation level also doesn’t ap-

pear to affect MSE significantly. Figure 4.3d shows its effect for N = 106, excluding the KNN

regression’s MSE.

Figure 4.4a and Figure 4.4d show models performance on 95% confidence intervals for

all sample sizes. With larger samples, neural networks interval coverage increases, surpassing

nominal confidence level. Additionally, for small networks, interval scores remain constant

on average, as sample size increases, while for big networks the scores decrease. This sug-

gests that, again, the network’s confidence interval performance is being limited by its capacity.

Meanwhile, recalibration kept overall interval coverage below nominal level, on average, and

improved interval scores in both cases, for all sample sizes, indicating that it successfully man-

ages to improve interval prediction and interval width at the same time. While it does not seem

to affect MSE, the target layer choice seem to slightly improve interval coverage as dimension-

ality decreases, as shown in Figure 4.4c. Interval coverage is also improved as nearest samples

size increases, as in Figure 4.4b.

Specific effects of recalibration can be analysed when factoring different sample sizes. In

the case when N = 106, Figures 4.5a, 4.5c and 4.5e show that decreasing nearest samples size

improves MSE, as well as decreases prediction time substantially. On the other hand, increas-

ing nearest samples size improves interval scores on average. MSE and interval score appear to

increase with the choice of a target layer with reduced dimensionality, as shown in Figures 4.5b

and 4.5d, in the case where N = 106. However, figure 4.5f show a substantial decrease of pre-
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diction time as layer dimensions decrease. While the smaller recalibrated model benefits from

higher dimensionality, the bigger recalibrated model performs better on intermediate layers.
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(a) Prediction time by data size. (b) Prediction time by nearest samples.

(c) Prediction time by layers. (d) Prediction time by approximation.

(e) Prediction memory size by data size. (f) Recalibration data size.

Figure 4.2: (a) Prediction time on each data set size scenario for neural networks (NN) recal-
ibrations (RC) and KNN regression (KNN). (b) Recalibration prediction time on each data set
size, for each target layer. (c) Recalibration prediction time on each ANN target layer. (d) Re-
calibration prediction time for each approximation level value, for N = 106. (e) Training data
memory size on each data set size. (f) Recalibration nearest samples data size and kernel data
size compared to the theoretical sizes. 36
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(a) MSE by data size. (b) MSE by nearest samples.

(c) MSE by layers. (d) MSE by approximation.

Figure 4.3: (a) MSE on each data set size scenario. (b) MSE on each nearest samples size, for
all N sizes. (c) MSE on each ANN target layer, for all N sizes. (d) Recalibration MSE for each
approximation level value, for N = 106.
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(a) Coverage by data size (b) Coverage by nearest samples

(c) Coverage by layers (d) Interval score by data size

Figure 4.4: (a) Interval coverage on each data set size scenario. (b) Interval coverage on each
nearest samples size. (c) Interval coverage on each ANN target layer. (d) Interval score on each
data set size scenario.
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(a) MSE by nearest samples (b) MSE by layer

(c) Interval score by nearest samples (d) Interval score by layer

(e) Prediction time by nearest samples (f) Prediction time by layer

Figure 4.5: (a) MSE on each nearest sample size for N = 106. (b) MSE on each target layer
for N = 106. (c) Interval score on each nearest sample size for N = 106. (d) Interval score on
each target layer for N = 106. (e) Prediction time on each nearest sample size for N = 106. (f)
Prediction time on each target layer for N = 106.
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Chapter 5

Diamond Price Prediction

Diamonds are among the most valued materials extracted from nature. Desired not only as an

adornment, but their physical properties - such as hardness and electrical conductivity - make

them very desirable in many industries and scientific fields. All those different properties and

applications, however, make their value hard to quantify. Polished diamond prices may vary

widely depending on their individual characteristics, especially carat weight, color, cut and

clarity. In this section we explore the data from 53, 940 diamonds from the data set "diamonds"

available in the ggplot2 R package (Wickham, 2016). This dataset lists several individual char-

acteristics as variables, such as price in US dollars, carat weight, quality of the cut, diamond

color, diamond clarity, length in millimeters, width in millimeters, depth in millimeters and

table width (width of the top of the diamond relative to the widest point).

Our interest is to model diamond prices conditional to their physical attributes. For this,

we assume the response variable to be Gamma distributed, Y |X ∼ Gamma(α, µ), with µ =

E(Y |X) the conditional mean and α the shape parameter. After cleaning up, the data was

randomly assigned 70% to the training set, 20% to the validation set and 10% to the test set.

For this analysis we consider two models - a generalized linear Gamma model (GLM) with

logarithmic link function and a neural network model with negative Gamma log-likelihood loss

function.
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The neural network model architecture as well as both recalibrated models’ target layer and

nearest samples sizes are tuned and the final hyperparameter combinations are the ones that

minimize loss, in the case of the network, and MSE in the validation set. The final network

architecture is composed of an input layer, a hidden layer with 100 neurons and ReLu activation

function, two hidden layers with 5 neurons and ReLu activation function and a forked output

with two exponential layers, one for estimating the mean, µ, and the other with zero-constrained

weights for estimating the shape parameter, α. Figure 5.1 shows the model’s training and val-

idation loss. The GLM is recalibrated in the input space with a neighborhood of 20% of the

validation set and the neural network model is recalibrated in the output space with all informa-

tion from the validation set.

Figure 5.1: Neural network loss function during prediction and validation.

Figures 5.2a and 5.2b show greater dispersion for higher values of Y , meaning that both

models perform worst in this interval compared to the lower values of Y . While both models

overestimate predictions for higher values of Y , the neural network in general gives more pre-

cise estimations than GLM (Table 5.2). Two distinct points, y(0)test = 4, 113 and y(1)test = 18, 026,

are highlighted in order to show model bias and recalibration effect in different regions of the

dependent-variable space. Table 5.1 shows GLM and neural network estimates of the shape

parameter and the exponential-family dispersion parameter, φ = 1
α

.

The cumulative probabilities histograms, in Figures 5.3a and 5.3b, show, respectively, GLM
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(a) GLM predictions. (b) NN predictions.

Figure 5.2: (a) GLM predictions variability in relation to the true data. (b) NN predictions
variability in relation to the true data.

Parameter GLM ANN
Dispersion 0.0232 0.0175
Shape 43.1116 57.2838

Table 5.1: Dispersion (φ) and shape (α) parameters estimates.

local estimation bias in the neighborhood of the highlighted points and global neural network

estimation bias. The GLM cumulative probabilities show that model mostly overestimates vari-

ance for lower values of y while underestimating the median for higher values. On the other

hand, the neural network globally overestimates the median at the same time it overestimates

the variance of the distribution. In both cases, as Figures 5.3c and 5.3d show, the recalibration

of the models produced lower predictions for higher values of y than the original models. Fig-

ures 5.3e and 5.3f compare the predictive distributions of all models for the highlighted points.

It is shown that in all cases the recalibration effect appear to have decreased the variance as

well as adjusted the distribution mean. Table 5.2 shows overall recalibration impact in both

models. MSE metrics were improved with recalibration as well as interval metrics. Although

GLM interval coverage presented a minor increase, its interval score was reduced, meaning the

recalibration produced more accurate intervals.

42



§5.0.

(a) GLM local cumulative probabilities. (b) NN global cumulative probabilities.

(c) GLM recalibration. (d) NN recalibration.

(e) y(0)test predictive distribution. (f) y(1)test predictive distribution.

Figure 5.3: (a) GLM local cumulative probabilities at y(0)test (blue) and y
(1)
test (red) neighbour-

hoods. (b) NN global cumulative probabilities. (c) Recalibration effect on GLM predictions.
(d) Recalibration effect on NN predictions. (e) Estimated predictive distributions centered in
y
(0)
test. (f) Estimated predictive distributions centered in y(1)test.
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Model MSE Coverage sMIS
GLM 758079.0 0.9737 0.7473
NN 722841.3 0.9749 0.7391
Recalibrated GLM 668665.0 0.9733 0.6792
Recalibrated NN 650431.6 0.9718 0.6651

Table 5.2: Performance comparison between all methods.
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Chapter 6

Conclusion

This work presented a promising new method for (re)calibration of neural networks based on

the cumulative probabilities of its predictive distributions. While there are many works with

similar ideas, they mainly address the problem of calibration considering a network’s output in

its entirety, hence not capturing region-specific bias patterns. The proposed method generalizes

this concept and recalibrates the networks locally, by selecting a proportion of the closest points

to each new observation in any given layer.

The analyzed toy examples showed that the proposed method positively affected the Mean

Squared Error, confidence intervals coverage and interval scores of uncalibrated models posi-

tively, generating better predictions and approximating the true distribution. Recalibrated mod-

els presented evenly distributed interval coverage whilst narrowing interval width, meaning they

successfully corrected local prediction bias and variance estimation.

The simulation study investigates even further the effects of different parameter configura-

tions in recalibration and compares its performance with the base models and the KNN regres-

sion model, which is very close to this work in terms of methodology. It was shown that, while

training time is mostly affected by data dimensionality, prediction time also increases along

with nearest samples size and decreases as target layer dimensionality and approximation level

increase. Recalibration successfully provided better MSE and interval metrics in all cases pre-
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sented. Overall, given the same conditions, recalibrated neural networks also proved to be much

more efficient than the simple application of KNN regression. Against real data, recalibration

was also shown to have positive effects on prediction precision and confidence interval metrics,

adjusting the predictive distributions according to local bias.

This work uses two different methods to create probabilistic neural networks and generate

the predictive distributions needed for recalibration. The first method consists of assuming a

probabilistic model by choosing an appropriate loss function. One of the most popular choices

of loss function in regression settings, the Mean Squared Error, assumes a Gaussian model.

However, other distributions can be approximated, as was the case in Chapter 5 with the choice

of the Gamma negative likelihood loss function. An empirical predictive distribution was also

obtained from Monte Carlo Dropout, in Chapter 3, by activating the dropout layers during pre-

diction. It is also possible to obtain a more precise empirical predictive distribution from quan-

tile regression, by estimating the response variable’s distribution conditional quantiles instead

of its conditional mean – a method not explored in this work.

It might be possible to further improve recalibration shape approximations by applying cor-

rections to the predictive distributions mean and variance beforehand, as proposed by Yu et

al. (2021). While potentially greatly enhancing predictions and coverage, our method could

become computationally expensive depending on the number of covariates and the choice of

recalibration parameters. Quantile-based recalibration might contribute less in cases where it is

possible (or feasible) to fit large, expensive models or there is access to a large enough data set.
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