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Resumo
Esta tese propõe uma formulação do método dos elementos de contorno isogeométricos (IGABEM)

para a solução de problemas bidimensionais elastostáticos e de contato. A área de aplicação são os
cálculos de campos de tensões e de deslocamentos. A diferença entre as formulações isogeométrica
e lagrangiana é que enquanto esta utiliza funções polinomais, aquela faz uso de funções splines
racionais não-uniformes (NURBS), T-splines ou similares. Visando a facilitar a incorporação da
formulação isogeométrica a códigos BEM existentes, a decomposição de Bézier é utilizada. Desta
forma, as funções NURBS são decompostas em outras mais simples, que lembram as polinomais de
Lagrange. Para os problemas de contato, utiliza-se a formulação nó-a-nó, tradicionalmente adotada
na literatura para a definição dos modos de contato. O tratamento das singularidades nas integrais é
feita por meio da transformada de Telles e pela Técnica de Subtração da Singularidade (SST) para
singularidades fracas e fortes, respectivamente. Já a colocação é feita de acordo com as coordenadas de
Greville, por serem mais adequadas à formulação isogeométrica. O IGABEM possui resultados mais
precisos em relação ao BEM padrão por modelar sem aproximações geometrias complexas, as quais
são apenas aproximadas por funções polinomiais. Os resultados obtidos corroboram essa hipótese,
já que o IGABEM é consistentemente mais preciso do que o BEM padrão considerando o mesmo
número de graus de liberdade. São comparados os resultados obtidos e os presentes na literatura,
mostrando boa concordância. O IGABEM necessita de mais tempo de processamento para rodar o
mesmo problema, como era esperado devido às curvas NURBS serem mais caras computacionalmente
do que os polinômios de Lagrange. O BEM também é comparado com NTS-FEM, STS-FEM e
DMT-FEM para estimativa de vida à fadiga. Primeiramente, o histórico de tensões ao longo de um
ciclo de carregamento é computado por cada um dos métodos. Em seguida, utiliza-se um método de
plano crítico para obter a amplitude de tensão cisalhante e a máxima tensão normal. Finalmente, o
critério de falha de Fatemi-Socie é utilizado para estimar a vida à fadiga.

Palavras-chave: Método dos Elementos de Contorno, Análise Isogeométrica, NURBS, Fadiga por
fretting, Estimativa de vida



Abstract
This thesis presents an Isogeometric Boundary Elements formulation (IGABEM) for solving

bidimensional elastostatics and contact problems. It is applied to the calculation of the stresses and
displacements fields. The difference between isogeometric and lagrangian formulations is that while the
latter uses polynomial functions, the former uses nonuniform rational B-splines (NURBS), T-splines or
similar. Aiming to facilitate the implementation of the isogeometric formulation to existing BEM codes,
the Bézier decomposition is used. In this way, NURBS are decomposed in simpler basis functions,
which resembles lagrangian polynomials. For the contact problems, a node-to-node formulation is
adopted, which is a traditional technique in the literature for defining the contact modes. When it
comes to treating the singularities, Telles transformation and Singularity Subtraction Technique (SST)
are used for weak and strong singularities, respectively. Collocation, in turn, is made according to
Greville’s abscissae, for they are a better fit to isogeometric. IGABEM has more acurate results
when compared to standard BEM because the former is able to exactly describe complex geometries,
which are only approximated by polynomial functions. The results corroborate this hypothesis, since
IGABEM is consistently more accurate than standard BEM considering the same number of degrees
of freedom. The obtained results are compared to those available in the literature, showing good
agreement. IGABEM requires more processor time for running the same problem, as it was expected
due to NURBS being more costly than Lagrangian polynomials. BEM is also compared to NTS-FEM,
STS-FEM, and DMT-FEM for fatigue life estimation. Firstly, the stress history during a complete
loading cycle is computed by each framework. Then, a critical plane approach is used to obtain the
shear stress amplitude and the maximum normal stress. Lastly, the Fatemi-Socie criterion of failure is
used for estimating fatigue life.

Keywords: Boundary Elements Method, Isogeometric analysis, NURBS, Fretting fatigue, Life
estimation
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1 Introduction

1.1 General Considerations

Developing reliable and cost-effective models for analysing engineering problems is an area of great

interest to researchers. It is also stimulated by companies, especially with the increasing complexity of

mechanical, aerospace, and automotive industries, in which parts are required to be lightweight without

compromising high performance. For this reason, studying failure prediction models is essential for

creating safe and advanced structures. Several engineering problems involve contact of mechanical

components; this phenomenon can be crucial for determining the characteristics and resistance of a

given part.

Fretting fatigue is a phenomenon that occurs at the contact interface of a restrained structural

component that is subjected to vibratory excitations or oscillatory tangential forces. This kind of damage

process involves wear, corrosion and fatigue driven by both the micro-slip at the contact surface and

cyclic fretting contact stresses [1]. The micro-slip generates surface damage at a microscopic level,

creating cracks in the early life of a component. In the presence of cyclic remote stress, these cracks

may propagate and eventually lead to catastrophic failure [2]. One major difference between fretting

contact and sliding contact is that the applied tangential load on the former phenomenon is not enough

to create a global relative motion of the surfaces. Thus, it is possible to identify two regions of the

contact area - one with a relative motion (micro-slip) and the other with no relative motion (stick). The

fretting of, e.g., steel or aluminium, can be divided into three stages. First, the wearing process removes

the thin oxide layer which covers the surface. Then the oxide layer is degraded and the underlying metal

begins to adhere, forming a cold weld. Additionally, the process of adhesion accumulates a portion of

wear debris between the contact surfaces, which can increase the friction coefficient. Finally, as the

fretting cycles continue, near-surface plastic deformation arises and leads to microcracks nucleation.

Some examples where the contact is present are gearing, transmission using pulleys [3–5], bolted
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and fastened joints [6–8], dovetail joints [9–11], parts with relative movement like pistons [12–14],

overhead transmission cables [15–18], and human prosthetic devices [19–21]. Figures 1.1a, 1.1b and

1.1 show some of the applications of fretting fatigue analysis.

a) An overhead power line. b) A clamped power cable [22].

c) A fir-tree (or Christmas-tree) joint in a turbine. Modi-
fied from [23]

d) Bladed disk dovetail attachment region and its associ-
ated damage [24].

Figure 1.1 Applications.

Plain fatigue was originally studied by Wöhler [25, 26] who investigated railway axle failures. His

studies in this area, which spanned over two decades, were the first systematic investigation of S-N

curves, which later became known as Wöhler curves. Eden et al. [27] in their various experiments on

rotating beams, reported an oxide originated by mechanical means. Then, Tomlinson [28], with his

article entitled "The Rusting of Steel Surfaces in Contact", made experiments where a plane surface

and a spherical surface were in relative motion. He observed a red iron oxide and used the term ’fretting

corrosion’ for the first time. Warlow-Davies [29] discussed fretting corrosion and the possibility of its

effect on fatigue strength. In his studies with medium-carbon-steel and nickel-chromium-molybdenum
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alloy steel, he showed a reduction of fatigue strength of 13% and 18% after severe fretting, respectively.

Later investigations by [30] showed that fretting and fatigue acting together could produce strength

reducing factors (SRFs) of 2-5. In 1958, Fenner and Field [31] showed that the crack nucleation process

is highly accelerated by fretting. In plain fatigue, the stage of crack nucleation would take most of the

fatigue life (90%), while in fretting it would take only 5%.

Johnson [32] performed an experimental investigation of micro-displacement between elastically

loaded bodies under tangential forces. He was initially unaware of articles by Cattaneo [33] and Mindlin

[34], and gladly found out that his results fitted the predicted curves by Mindlin [34]. Waterhouse [35]

studied the impact of the friction coefficient between contact surfaces, the effect of frequency cyclic

stressing, and the required cycles for crack initiation and propagation. Later, Waterhouse also analysed

Hertzian contact under partial slip [36].

Nowell and Hills also made various contributions to contact and fretting, which they compiled

into two books [37, 38]. They cover contacts under partial slip, the influence of surface treatments on

fretting fatigue, and analysis of crack initiation and propagation. Araújo [39] focused on the initiation

and arrest of fretting fatigue cracks. He conducted several studies since.

All this research, combined with advances in numerical methods, has enabled the study of more

complex fretting fatigue problems. Petiot et al. [40] used Finite Elements Method (FEM) for determin-

ing the stress field before utilising Dang [41] multiaxial fatigue criterion to predict crack nucleation. It

describes the loading path using shear stress and hydrostatic tension. Then, the path is compared to

a material line, determined via tension and bending tests. Based on [40], Szolwinski and Farris [1]

modified the Smith-Watson-Topper criterion (SWT) to predict fatigue life in terms of number of cycles

to failure. Araújo [39] used the Critical plane method (CPM) and compared SWT and Fatemi-Socie

criterion (FS).

Determining the stress field evolution within a fretting cycle is essential to the evaluation of fatigue

resistance. Analysis of stress and strain due to external loads or interference as in the case of contact

can be carried out in several ways. On the one hand, analytical techniques and models are extremely

important in this context, as they enable a prompt response to the magnitudes involved in the problem.

On the other hand, they are limited to very specific situations and geometries. For more complex

situations and the validation of analytical and numerical models, it is possible to carry out experimental

tests. Although very important, they require complex equipment, incur in high cost of execution, and
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do not easily reproduce loads and geometries of specific parts.

Numerical analysis is an important tool for complex problems and provides the advantage of neither

being so costly as experimental tests nor so limited as analytical solutions. Several techniques are

currently employed, among which stand out the FEM, Meshless methods, and the Boundary Elements

Method (BEM). The numerical analysis approach’s advantages are that there is no limitation neither on

geometry nor on loads and the possibility of simulating components with any shape. Yet, application

of these techniques is limited by the development of models and computational power requirements.

As previously mentioned, one of the most used methods for analysis of contact problems is the

FEM, which is used in commercial software such as Ansys and Abaqus. It is a domain technique, i.e.,

the entire domain of the problem must be discretized, leading to a considerable requirement of available

memory for processing. In contrast, BEM is a technique that is growing in popularity and use and

provides specific advantages that can be decisive for this application. The main feature of BEM is that

only the boundary of the problem needs to be discretised. Through Green’s second identity, the order

of the problem is reduced. When it comes to the isogeometric formulation, BEM is highly indicated

precisely because it has only the discretized boundary, which greatly facilitates the application of this

method in relation to FEM. Also, for contact problems, the formulation is advantageous as it relates to

a surface (boundary), since the contact occurs on the contour. Surface forces are also naturally present

in the formulation, facilitating the contact analysis. Yet, one main disadvantage of BEM is that, unlike

finite elements, the matrix representing the resulting linear system is full and non-symmetric, therefore

increasing the computational cost. This disadvantage can though be minimized by the use of so-called

fast methods, such as Fast multipole method (FMM) [42–45], Adaptive cross approximation (ACA)

[46–50] and kernel interpolation [44].

BEM is widely used for many applications in engineering such as: crack growth [51], fatigue [52],

acoustics [53], and geotechnics [54, 55], just to mention a few. These are evidence of the method’s

versatility.

Since the concept of Isogeometric analysis (IGA) was introduced by [56], it has received attention

from many researchers due to its capacity to improve the established analysis process. Among other

contributions, IGA decreases the amount of user’s work, as the most time-consuming step – mesh gen-

eration – is reduced or even eliminated. To evidence isogeometric analysis advantages over lagrangian,

they are compared in this study.
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Figure 1.2 User’s time consumption on each stage of the design process [57].

Four years after their introductory work, [57] published another book about IGA. Instead of using

polynomial functions to discretise geometry and unknown fields, this novel method uses the same

basis as Computer-aided design (CAD) software. CAD mostly uses Non-uniform Rational B-Spline

(NURBS), which exactly describes the complex geometries that can only be approximated using

polynomials. Although initially presented with FEM as in [57], Isogeometric Boundary Elements

Method (IGABEM) for elastostatics was later developed in [58], and [59], with NURBS used to

approximate the geometry along with the displacement and traction fields around the boundary. Works

such as [60], and [61] already used B-splines as basis functions in BEM, however with no concern

about integrating with CAD.

Take, for instance, the case of Sandia National Laboratories. Figure 1.2 shows a flowchart of the

design process and the time consumed on each step from model creation on CAD software to the final

results after analysis. It is noteworthy that three phases consume approximately 67% of the user’s time:

creation and/or edit of analysis solid model, geometry decomposition, and meshing. Working on these

bottlenecks to enhance the process is the idea behind IGA in general and this thesis aims to apply it to

contact mechanics.

Contact mechanics has been modelled using Isogeometric Finite Elements Method (IGAFEM)

with different approaches. [62] , [63], and [64], use a knot-to-surface (KTS) or surface-to-surface (STS)

approach. Other applications of IGA are shells [65–68].
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More recent studies use IGABEM in acoustics [69], potential [70], structural optimization [71, 72],

and reinforced structures [73]. [74] use IGABEM with Bézier decomposition for solving crack propaga-

tion problems. This study also uses IGABEM with Bézier decomposition to facilitate incorporating

NURBS into existing boundary element codes for solving elastic and contact problems.

1.2 Motivation and objectives

As previously said, fretting fatigue is a failure process observed in many situations. As it is so

ubiquitous, it represents a significant part of a country’s gross national product Reed et al. [75]. Not

only financial, but also social costs are involved with fretting. Jet turbines frequently use dovetail joints,

which are subjected to fretting fatigue. Those engines are mainstream aviation propulsion for both

civilian and military applications. According to an USAF research [76], fretting fatigue is one of the

costliest sources of damage related to high cycle fatigue. Therefore, an efficient tool for analysing it is

essential and deserves research and investigation.

Another interesting application are overhead cables. Power outage related to a broken cable is cause

of both economic and social losses. For instance, on 30 April 2004, a broken line between Brasília and

Marajoara (in Brazil’s central area) resulted in a blackout that left about 636.700 inhabitants without

electricity for 33 hours. Further studies revealed that the failure in a CELG 138 kV overhead line

occurred in the fixation point of the clamp [77]. Adequate design of transmission equipment, cables,

and other related structures play a major role in increasing the reliability of power delivery. Methods

that facilitate the design process and increase its reliability and reduce the design time are always

welcome.

The main objective of this thesis is the development and implementation of isogeometric boundary

elements for elastostatics and fretting fatigue problems. A comparison between the proposed method

and others is made as well. Regarding the novelty and main contributions of this study, the main points

are:

• IGABEM was applied to contact of solids, but in a simpler problem [78]. They present an

example with normal load only and with no friction. In the present thesis, a complete fretting

simulation with shear and bulk loads is presented.

• Bézier extraction is used for representing NURBS. It facilitates incorporating NURBS to bound-
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ary elements codes.

• BEM and IGABEM are compared for fretting problems.

• The stress history for a complete loading cycle is computed and used for shear stress amplitude

and maximum normal stress determination.

1.3 Methodology

The first part of this work presents a formulation for isogeometric boundary elements, which

is applied to elastostatics problems with analytical solutions. Then, IGABEM and BEM codes are

implemented in Julia and Matlab, respectively. After validating both numerical methods with analytical

solutions, the code is extended to contact and fretting situations.

For fretting problems, tractions, displacements, and stresses at internal points are computed using

both codes and stored. Afterwards, the stress history is used as input into another Matlab code that,

using CPM, obtains the shear stress amplitude and the maximum normal stress. Lastly, FS criterion is

employed to estimate the fatigue life.

1.4 Outline

This study presents an isogeometric boundary element formulation for solving elastic and fretting

fatigue problems. In order to decrease computational time and to make implementation easier in

existing boundary element codes, NURBS are transformed into Bézier curves (Bézier decomposition).

Thus, each Bézier curve can be viewed as a boundary element in a conventional boundary element

implementation. The present work is divided as follows:

• Chapter 1 briefly describes the study, its objectives, and its motivation.

• Chapter 2 introduces concepts about elasticity.

• Chapter 3 focus on contact mechanics history and theory.

• Chapter 4 fretting fatigue and life estimation methods.

• Chapter 5 delineates the derivation of integral equation formulation.
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• Chapter 6 presents the mathematical background of Bézier curves, B-splines and NURBS. It

also explains the Bézier decomposition.

• Chapter 7 deals with the isogeometric analysis and its implementation in the boundary element

context.

• Chapter 8 details the numerical modelling of contact problems using the isogeometric boundary

element method.

• Chapter 9 shows the results and compares them with other methods.

• Chapter 10 presents the conclusion and final remarks of this study.



2 Elasticity Theory

Boundary Integral Equation (BIE) in elastostatics had its early days with [79], [80] and [81].

Though the fundamentals were developed, it was not until [82] and [83] that numerical formulations

appeared. Noteworthy contributions such as linear variation over elements was made by [84] and

[85], while isoparametric was presented by [86] and [87]. This chapter presents a brief description of

necessary concepts used throughout this study.

2.1 Basic concepts

2.1.1 Stress

Consider an arbitrary shaped body, as in Fig. 2.1a, which is in equilibrium under external loads

P1,P2, ...,Pn. Assuming the body is deformable, the forces are transmitted through its volume. If we

take an internal point O, there is a resulting force δP, as the body is in equilibrium. Analysing a small

area δA, it is reasonable to assume that δP is uniformly distributed over it.

In other words, stress is a measure of internal forces which acts within a body. They are a response

to external loads applied to the body. Often, we write the force in terms of its normal and tangential

components, δPn and δPs, respectively. Therefore, it is also possible to define the associated normal

stress σ and the shear stress τ as:

σ = lim
δA→0

(
δPn

δA

)
=

dPn

dA
(2.1)

and

τ = lim
δA→0

(
δPs

δA

)
=

dPs

dA
. (2.2)
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δP

P1

P3

P2

a) Internal forces at a point.

δPn

P1

P2

δP

δPs

b) Internal forces at a point.

Figure 2.1 Internal forces at a point.

2.1.2 Equilibrium

Consider an infinitesimal cube of material of the body, as in Figure 2.2. It is possible to describe

the state of stress at a point O by stress components formed on the sides of this cube.

y

x

z

τxy

σxx

τxz

σyy

τyx

τyz

τzy

τzx

σzz

Figure 2.2 Stress in coordinate planes.

Total stress on each face of the planes has three components: one normal, and two tangential. Take,
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for example, the face in yz plane. σxx, a component in the x direction, is a normal component. Both τxy

and τxz, components in the y direction, are tangential components.

Stress is represented by nine quantities, with three components in each one of the three coordinate

faces. Components σxx, σyy and σzz are normal stresses, while the remaining are tangential. Stresses

are not as simple to describe as temperature, which is a scalar. They need a tensor in order to be

represented, σi j, in which i and j may be x, y, z. The first index refers to the direction of the normal to

the plane. The second describes the direction of the stress component.

Using equilibrium and taking moments with relation to the edges of cube, it is proved that:

σi j = σ ji (2.3)

which means that stress tensor is symmetric, i.e.:

σi j =


σxx τxy τxz

τyx σyy τyz

τzx τzy σzz

=


σxx τyx τzx

τxy σyy τzy

τxz τyz σzz

 . (2.4)

The equations of equilibrium for the three-dimensional system subjected to external forces and

body forces bx, by and bz are given by:

∂σxx

∂x
+

∂τxy

∂y
+

∂τxz

∂ z
+bx = 0,

∂τyx

∂x
+

∂σyy

∂y
+

∂τyz

∂ z
+by = 0,

∂τzx

∂x
+

∂τzy

∂y
+

∂σzz

∂ z
+bz = 0,

(2.5)

or using tensor notation for making it more compact:

σi j, j +bi = 0, (2.6)

where the subscript , j denotes differentiation with respect to x j.
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2.1.3 Deformation and Strain

A body under load experiments deformation, changing its geometry. Internal and external forces

generate linear and angular displacements in a deformable body. In general, they are defined in terms

of strains. Longitudinal (or normal) strains result from normal stresses and are related to changes in

length. Normal strain ε of a material line element or fibre axially loaded is expressed as the change in

length ∆L per unit of the original length L of the line element or fibres:

ε = lim
L→0

∆L
L
. (2.7)

Denoting displacements as ui = (ux,uy,uz), the three normal strain components corresponding to

the normal stress components are given by:

εxx =
∂ux

∂x
,

εyy =
∂uy

∂y
,

εzz =
∂uz

∂ z
.

(2.8)

There is also shear strain, which is a small distortion or change in angle between line segments in x

and y directions, as in Figure 2.3:

x

y

A B

C D

A′

B′

C′

D′

α

β

ux(x+ dx, y)

ux(x, y)

uy(x, y)

uy(x, y + dy)

∂uy

∂y
dy

∂ux

∂y
dy

∂uy

∂x
dx

∂ux

∂x
dx

dx

dy

Figure 2.3 Shear strain.

They are mathematically defined as:



Chapter 2 Elasticity theory 13

γxy =
1
2

(
∂ux

∂y
+

∂uy

∂x

)
,

γyz =
1
2

(
∂uy

∂ z
+

∂uz

∂y

)
,

γzx =
1
2

(
∂uz

∂x
+

∂ux

∂ z

)
.

(2.9)

Strain components can be represented in a matrix as follows:

εi j =


εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

=


εxx

1
2γxy

1
2γxz

1
2γyx εyy

1
2γyz

1
2γzx

1
2γzy εzz

 . (2.10)

Both normal and shear stains can be expressed in index notation as:

εi j =
1
2
(ui, j +u j,i). (2.11)

2.1.4 Compatibility

Compatibility conditions in linear elasticity are obtained by noting that the six strain-displacement

relations (εxx,εyy,εzz,γxy,γxz,γyz) are functions of three unknown displacements. Therefore, by repeated

differentiation of these relations, it is possible to remove displacements ux and uy given us the two-

dimensional compatibility conditions:

∂ 2εxx

∂y2 −2
∂ 2γxy

∂x∂y
+

∂ 2εyy

∂x2 = 0. (2.12)

In two dimensions, there are three strain-displacement relations but only two displacement com-

ponents, implying that strains are related. These relations between strains are known as compatibility

conditions. It is an equation that must be satisfied by the strains at all material particles.

In the continuum description of a solid body we imagine the body to be composed of a set of

infinitesimal volumes or material points. Each volume is assumed to be connected to its neighbors

without any gaps or overlaps. Certain mathematical conditions have to be satisfied to ensure that

gaps/overlaps do not develop when a continuum body is deformed. A body that deforms without

developing any gaps/overlaps is called a compatible body. Compatibility conditions are mathematical
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conditions that determine whether a particular deformation will leave a body in a compatible state.

2.1.5 Plane stress

A way to simplify the equilibrium Eqs. (2.5) is to use a two-dimensional approach of plane stress

conditions. This case is applicable to thin plates, i.e., when the thickness of a solid is much smaller

than the other dimensions. Considering that the thickness h is very small compared to the other two

dimensions, the tractions are assumed to be symmetrically distributed with respect to the mid-plane of

the body. In this stress state, we assume that stresses across the thickness are negligible, making σzz,

τxz and τyz all zero. Another assumption is that the remaining components σxx, σyy and τxy are constant

over the thickness. Equations (2.5) then become:

tx

tz

h/2

h/2

x

y

z

Figure 2.4 Thin elastic plate.

∂σxx

∂x
+

∂τxy

∂y
+bx = 0,

∂τyx

∂x
+

∂σyy

∂y
+by = 0.

(2.13)
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2.1.6 Plane strain

Another possible way to simplify Eqs. (2.5) is to assume the plane strain conditions, which are

applicable to thick bodies. This means that both geometry and loading do not vary significantly along

the z direction. For these problems, it is enough to solve a cross-section along the z direction, given

that the dependent variables are assumed to be function of x and y only. One consequence of this

assumption is that displacement uz in the z direction is equal to zero. This state of deformation appears

in very long prismatic or cylindrical bodies, as in Fig. 2.5, in which a long dam is represented.

z

x

y

O

Figure 2.5 Cross-section of a long dam under plane strain [88].

εxx =
∂ux

∂x
,

εyy =
∂uy

∂y
,

εzz =
∂uz

∂ z
.

(2.14)

2.1.7 Hooke’s law

It is known that every body under load will experiment deformation. In linear elastic materials,

strain is directly related to stress acting in the body. This relation is given by Hooke’s law, which

correlates Cauchy’s stress tensor and strain tensor. Considering a homogeneous isotropic material,

generalized Hooke’s law is written as:
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σi j = λδi juk,k +G(ui, j +u j,i) (2.15)

where λ is the Lamé constant, G is the shear modulus, which are defined in terms of Young’s modulus

E and Poisson’s ratio ν :

λ =
νE

(1+ν)(1−2ν)
, (2.16)

and

G =
E

2(1+ν)
. (2.17)

δi j is the Kronecker delta, with the following properties:

δi j =

 0, i f i ̸= j

1, i f i = j .
(2.18)



3 Contact Mechanics

As previously said, contact and fretting are of high interest when designing several mechanical

components, from bolted connections to jet turbines. Formal studies of tribology, although still in an

embryo state, can be traced back to the 15th century, when Leonardo da Vinci investigated blocks

being dragged along planes with different inclinations. His recordings in several notebooks - see Fig.

3.1 - are well-known among researchers [89]. Additionally, he studied the influence of contact pressure

and contact area on friction.

Figure 3.1 An excerpt from Leonardo da Vinci’s notebook [89]. (a) Sketches illustrating the effect of
contact pressure or contact area on friction. (b) Blocks sliding with different inclinations.

3.1 Initial considerations

[90] and [91] also developed their studies on friction. Those studies originated what today is widely

known as Coulomb’s law of friction, and which is used in the present work. Another major contributor
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to contact formulations is [92], who developed analytical solutions for elastic bodies in contact, from

elasticity and friction laws.

More recent references include [93], and [38]. While designing a structural component, the

engineer should be aware to avoid yield and brittle fracture. Dealing with yield is easier, requiring the

determination of stresses and designing the component to maintain stress below the yielding point.

Design against brittle fracture is harder and requires not only the determination of the state of stress

within an object, but also some speculation on the form, location, and origin of initial defects. After the

nucleation, these flaws usually grow by fatigue due to normal use during service life and, if nothing is

done, they may reach the critical threshold leading to catastrophic brittle failure.

It is worth mentioning that the fatigue life of a crack has two different phases: nucleation and

propagation. According to [37], the relative proportion of the total life expended in each stage will vary

tremendously. Among several factors, surface finish (ground, machined or cold-drawn, hot-rolled or

as-forged) influences nucleation and propagation time. Welded structures or those made from casting

will have some pre-existing defects and the entire life is expended in propagation.

Another form of crack initiation is where there is a connection between two components. Much

more agressive than the crack initiation prevalent at a free surface, this is the phenomenon of fretting

[37]. Fretting normally occurs whenever a junction between two components is subjected to some

oscillating force, and this gives rise to some minute relative tangential displacement over at least part

of the interface. It is fairly common in bolted or mechanically fastened joints, such as seen in Fig. 3.2.

Figure 3.2 A bolted connection [94].

As multi-body contact has several applications in practical situations, some previous works also

used BEM for analysing contact problems. [95] and [96], who used BEM for solving 2D non-linear



Chapter 3 Contact mechanics 19

frictional stress under proportional loading, [97], analysed a Cattaneo-Mindlin problem using BEM,

and [98] presented a boundary integral formulation of frictionless contact problems based on an

energetic approach. They all used standard polynomial BEM instead of IGABEM, one noticeable

difference from the present study. There are some works that model fretting-wear problems using

BEM, such as [99], [100], [101], and [102]. Also, [103], present a boundary element formulation for

3D fretting-wear, and [104], extend it for anisotropic problems. In these articles, the Holm-Achard

wear law is used in addition to contact formulation. It can be seen from these results that the BEM is

suitable to solving fretting-wear problems, as they present good agreement with the theoretical known

solutions.

Breakage of conductive cables occurs mainly due to fatigue, as a consequence of wind forces,

which cause vibration with high frequency and low amplitude. These vibrations are mainly present in

long spans, for example over wide rivers. Although this is a computational study, it aims to compare

the obtained results with the experimental results of [105], and [77]. These works used Aluminum

Conductor Steel Reinforced (ACSR) conductors, which are a type of stranded conductors with outer-

strands made of aluminium and the central strand is of steel for additional strength.

3.2 Contact modes

Figure 3.3 shows a classification of contact modes. The first illustration (Fig. 3.3 (a)) depicts a rigid

cylinder with radius R, pressed against a half-plane. As bodies firstly touch each other, contact is made

along a line and, with load increase, contact semi-width a rises. This kind of contact is referred to as

"incomplete", because it is not geometrically fixed, it varies with load. Besides that, contact pressure is

zero on its end. Figure 3.3 (b) illustrates a complete contact where the contact area is not influenced by

load and contact pressure has a singularity because there is no common tangent between the bodies at

the contact end. The next illustration (Fig. 3.3 (c)) is a mix of previous modes, as it has an edge with

singularity and other in which the pressure goes to zero. Lastly, Fig. 3.3 (d) represents a conforming

incomplete contact.

In the present study, contact zone behaviour is in accordance with classical computational mechanics

works such as [106]. There is a correlation between contact pressure pN and relative distance between

the bodies, also known as gap vN :
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Figure 3.3 Contact modes: (a) Non-conforming incomplete; (b) Complete; (c) Incomplete with
singularity; (d) Conforming and incomplete.

vN ≥ 0,

pN ≤ 0,

pNvN = 0. (3.1)

These two exclusive status: gap or non-contact (vN > 0 and pN = 0) or contact (vN = 0 and pN > 0)

are classically formulated by an impenetrability condition (vN ≥ 0), a compression condition (pN ≤ 0)

and a complementary condition.

One important study is pressure on the surface of contact. Considering two elastically similar

bodies in normal contact as in Fig. 3.4, as load is applied, contact pressure compresses both bodies and

a parallel displacement to contact zone occurs. However, as they both have the same elastic properties,

their particles will experience the same displacement in the x-direction, i.e., even with a non-zero

friction coefficient f between the surfaces, there will be no shear stress.

If a tangential load is applied and it is enough to start the slip between the two bodies, shear stress
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Body 1
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x

z

P

P

Figure 3.4 Normal contact between elastically similar bodies.

will appear. This stress will be the same over the entire contact and limited by friction coefficient f :

|q(x,y)|=− f p(x,y), (3.2)

where p(x,y) is the normal contact pressure and q(x,y) is the shear stress distribution. The direction of

shear tractions opposes relative motion of the surfaces:

sgn(q(x)) =−sgn
(

∂g
∂ t

)
, (3.3)

where g = u1(x)−u2(x) is the relative displacement of the contacting surfaces. Due to this shear stress,

a normal displacement will arise between the bodies surfaces. However, as they are elastically similar,

normal displacement will be the same, maintaining contact pressure the same as before. Fretting

problems usually have a smaller Q, which is not enough to create a total slip condition, i.e.:

|Q|<− f P, (3.4)

where P is the normal load. During fretting, the contact zone is divided in two parts, one stick and the

other slip. Figure 3.5 illustrates this better.
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Figure 3.5 Contact zones.

Within slip zone, shear traction is given by Eq. (3.2) and normal pressure tends to zero as it goes to

contact end. In stick zone, in turn, shear is given by Eq. (3.5):

|q(x,y)|<− f p(x,y). (3.5)

3.2.1 Contact modes evaluation

When solving computational contact problems, it is usual to assume a probable contact region

because of the changing zone, which changes with load. Internal nodes of these regions are often

called as contact node-pairs. They can be one of three contact modes, depending on shear and normal

tractions, tt and tn, and on shear and normal displacements, ut and un, respectively.

Let a and b be a node-pair initially in separation with a gap between them. As the load increases,

bodies 1 and 2 experiment deformation, reducing this gap and, at some time, this deformation will be

equal to the gap and both bodies will be in contact at that point. If the load continues to increase even

more, this node-pair will be part of the contact area. While modelling, contact modes can be thought as

constraints that must be satisfied for each node-pair within the contact zone. They can be each one of

the following three:

• Separate is when both nodes are within a positive and non-zero distance from each other.
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• Slip is when there is no gap between nodes, there is no restriction in tangential direction and

they are free to slide over each other.

• Stick represents when a pair of nodes are restricted in normal and tangential directions.

Table 3.1 gives values of how to represent the three modes of contact previously stated, where tn

and tt are the normal and tangential tractions, and un and ut are the normal and tangential displacements,

respectively, expressed in local coordinates. The gapab is the distance between bodies a and b.

Table 3.1 Contact modes.
Separate Slip Stick

ta
t − tb

t = 0 ta
t − tb

t = 0 ta
t − tb

t = 0

ta
n − tb

n = 0 ta
n − tb

n = 0 ta
n − tb

n = 0

ta
t = 0 ta

t ± f ta
n = 0 ua

t −ub
t = 0

ta
n = 0 ua

n −ub
n = gapab ua

n −ub
n = gapab

It is important to bear in mind that a node-pair might change its contact mode from one iteration to

the next.

3.2.2 Plane problem formulation

To obtain the sub-superficial stress, it is necessary to first determine shear stress field and pressure

distribution over the contact area. For that, the integral equations relating pressure p(x) and normal

displacement h(x) as in Figure 3.6 have to be solved, as well as shear stress distribution with relative

tangential displacement g(x). A more interested reader may look for [37] for details.

The normal load distribution over contact zone is given by:

1
A

∂h
∂x

=
1
π

∫ a

−a

p(ξ )
x−ξ

dξ (3.6)

And, for tangential load:

1
A

∂g
∂x

=
1
π

∫ a

−a

q(ξ )
x−ξ

dξ (3.7)

ξ is the load variable of integration and A is a measure of the compliance of the bodies:
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h(x)

Figure 3.6 Contact between two elastically similar bodies.

A = 2
(

k+1
4µ

)
(3.8)

where k = 3−4ν in plane strain, ν is the Poisson’s ratio and µ is the modulus of rigidity. It is important

to mention that Dundurs’ constant ([37]) is not taken into consideration in Eq. (3.6) because it will

vanish as we are considering two bodies made from the same material.

3.3 Muskhelishvili’s potential

According to [37], although a direct method of attack, based on integration of the solution for a

line load is feasible, it is inefficient. A way to overcome this is using Muskhelishvili potentials, which

uses complex numbers. During this study, we shall denote the complex representation of a coordinate

by z as:

z = x+ iy. (3.9)

In Fig. 3.7, a semi-plane is under shear and normal tractions and the objective is to determine stress

in an arbitrary point inside the domain. Using Eq. (3.9) to represent coordinates, Muskhelishvili’s
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potential is:

σ

y

x

p(x); q(x)

Figure 3.7 Semi-plane under arbitrary load.

Φ(z) =
1

2πi

∫ p(t)− iq(t)
t − z

dt, (3.10)

where p(t) and q(t) are arbitrary normal and shear loads, respectively. Considering slip condition, they

are defined by Equation (3.2). Thus, Eq. (3.10) is written as:

Φ(z) =
1− i f
2πi

∫ p(t)
t − z

dt. (3.11)

The relationship between the potential Φ(z) and the stress components are:

σxx +σyy = 2(Φ(z)+Φ(z)) (3.12)

and

σyy −σxx +2iτxy = 2((z− z)Φ′(z)+Φ(z)−Φ(z)). (3.13)

where Φ′(z) is the derivative of pontential with respect to z, Φ(z) is the conjugate of potential and Φ(z)

is the conjugate of pontential of conjugate of z. Thus, only Φ′(z), Φ(z) and Φ(z) need to be evaluated

in order to obtain all stress components, which provides some economy in computational requirements.
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3.4 Hertz’s theory

A simple but important problem is the contact between two cylinders, pressed together with

their axes parallel. [92] created the analytical solution for contact problems, while making some

assumptions:

• Surfaces are non conforming and radii are much larger than contact width (a << R);

• Loads are small; this enables the relative normal approach of particles within the contact to be

approximated by a parabola.

• No shear traction must arise. Either the friction coefficient is zero ( f = 0) or both bodies have

the same elastic constants.

For achieving solutions (also known as inversions), it is important to isolate p(x). Before doing

that, however, it is important to define a weight function w(x) as, for this case (contact pressure is zero

on both ends) w(x) =
√

a2 − x2. So, p(x) is given by:

p(x) =−w(x)
Aπ

∫ a

−a

h′(ξ )
w(ξ )(ξ − x)

dξ + cw(x) (3.14)

p(x) =−
√

a2 − x2

Aπ

∫ a

−a

kξ√
a2 − x2(ξ )(x−ξ )

dξ (3.15)

where k is the parabola curvature.

Evaluation of the integral results in:

p(x) =
k

Aπ

√
a2 − x2π =

k
A

a

√
1−

(x
a

)2
. (3.16)

Equation (3.16) is of limited use, because in this form, the semi-width a is unknown. Assuring

equilibrium between applied load P and contact pressure:

P =−
∫ a

−a
p(ξ )dξ =

πka2

2A
. (3.17)

Simplifying for an elastic semi-space results in:
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p(x) =−p0

√
1−

(x
a

)2
, (3.18)

where p0 is peak contact pressure, obtained from:

p0 =
2P
πa

, (3.19)

and a is semi-width, given by:

a2 =
2PA
πk

. (3.20)

3.4.1 Contact under partial slip

Until now, two different types of problems were formulated. The first and simpler one was where

only normal force was applied, resulting in a null shear traction distribution. The other was where

shear tractions were equal to the limit q(x) = f p(x), so the shear force Q = f P results in gross sliding

all over the contact surface.

A brief explanation about commonly used friction laws is a useful way to start fretting studies. Cou-

lomb friction is a usual name for the theory created by Amontons and Coulomb based on experimental

investigation. Consider two rigid bodies experiencing gross sliding. The assumptions of this theory are:

• Frictional force Q, which opposes the relative motion between the two bodies, is proportional to

the normal force P. Q = f P, where f is the friction coefficient.

• Frictional force Q is independent of the area of contact.

• Frictional force that arises during gross sliding is independent of the velocity of sliding.

In the previous section the Hertzian contact was presented, which is when two elastically-similar

cylinders (or a cylinder and a flat surface) are pressed together under the action of a normal force P.

Now consider a subsequent application of a monotonically increasing tangential force Q, taking care

to set Q < f P. The aforementioned stick and slip regions will arise, but they are unknown a priori. As

the shear distribution over the surface is given by:



Chapter 3 Contact mechanics 28

q(x) =
C√

a2 − x2
, (3.21)

where C is a constant. One can observe that q(x) tends to infinity when x →±a and p(x) vanishes.

Hence, q(x)/p(x)→ ∞ and an infinite friction coefficient is required to avoid slip. Therefore, some

slip will occur, even if the tangential load Q is small.

For analysing the partial slip case, assume that the slip takes place in two symmetrical regions

a > |x| ≥ c on the edge of a central stick zone |x| < c. One can think of the shear tractions as a

perturbation on the fully-sliding solution as:

q(x) = f p0

√
1− (x/a)2 +q′(x), (3.22)

where the perturbation q′(x) = 0 in the slip zones. For determining q′(x) in the stick zone and its size c

we start by recalling that there is no relative displacements within the stick zone. Full description of

the process can be found in [38] and the ratio between stick and contact zones is c/a:

c
a
=

√
1− Q

f P
. (3.23)

The distribution of shear tractions for different values of Q/ f P is shown in Figure 3.8. It is clear

from it that the central stick zone increases when Q/ f P decreases. Also, when Q/ f P = 1 there is no

stick zone, i.e., gross sliding occurs between the surfaces.

According to [38], surface tractions can be thought of as a superposition of three elliptical distrubu-

tions:

1. A distribution of normal pressure of peak magnitude p0 acting between x =−a and x = a.

2. A distribution of shear traction of peak magnitude f p0 acting between x =±a.

3. A second shear traction distribution of peak magnitude − f p0c/a between x =±c.
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Figure 3.8 Shear traction distributions for different values of Q.

3.4.2 Load variation

Problems analysed until now have been all for a monotonically applied tangential force. In fretting

fatigue, though, that is not the case - there is a cyclic variation of a tangential force between constant

limits (±Qmax) as in Fig. 3.9. Previous equations were written considering the tangential load in its

maximum value Qmax (or −Qmax), which is respresented by point A (or E) in Fig. 3.9.

Figure 3.9 Tangential load history during fretting.

Let us consider two cylinders in contact with each other as in the previous section. The tangential

load Q starts to increase monotonically from 0 to Qmax, reaching point A. Shear tractions are described

by Equation (3.22) where the stick zone, c, is given by:

c
a
=

√
1− Qmax

f P
. (3.24)
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Proceeding to point B in loading history, the tangential load has been reduced infinitesimally from

Qmax. Due to this, shear tractions and tangential displacements also decrease. This means that the rate

of change of relative displacement ∂g
∂ t is opposite in sign to that in increasing load period.

Therefore, the requirement for the shear tractions in the slip zone to oppose relative motion is

violated, creating an instant of complete stick all over the contact region as in Fig. 3.10. A further

reduction in Q will lead to reverse slip at the edges of the contact (point C). So, in the new slip regions

(c′ < |x| ≤ a) the shear tractions will be − f p0
√

1− (x/a)2 instead of f p0
√

1− (x/a)2. A further

corrective traction distribution should be applied to the new stick zone |x|< c′.

A B C

D E

Figure 3.10 Shear tractions during loading cycle of Fig. 3.9.

By analogy, the new corrective shear distribution is:

q′′(x) = +2 f p0
c′

a

√
1− (x/c′)2. (3.25)

The factor two arises due to the need to cancel the relative displacements occurring when slip zone

tractions change by 2 f p0
√

1− (x/a)2, unlike f p0
√

1− (x/a)2 for the monotonically increasing case.

Table 3.2 presents four terms that when summed together are the total shear traction:
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Table 3.2 Four terms contributing to shear over each zone.

q(x) Zone of application

f p0
√

1− (x/a)2 |x| ≤ a

− f p0
( c

a

)√
1− (x/c)2 |x| ≤ c

−2 f p0
√

1− (x/a)2 |x| ≤ c

2 f p0

(
c′
a

)√
1− (x/c′)2 |x| ≤ c′

After summing the terms, net shear tractions are:

Table 3.3 Shear traction distributions for each zone for the history loading.

q(x)/ f p0 Zone of application

−
√

1−
( x

a

)2 c′ < |x| ≤ a

−
√

1−
( x

a

)2
+2 c′

a

√
1−

( x
c′
)2 c < |x| ≤ c′

−
√

1−
( x

a

)2
+2 c′

a

√
1−

( x
c′
)2 − c

a

√
1−

(x
c

)2 |x| ≤ c

As seen in [38], using equilibrium for calculating the position of the new stick zone yields:

c′

a
=

√
1− Qmax −Q(t)

2 f P
. (3.26)

An interesting fact happens when tangential load reaches point D in Fig. 3.9: even though there is

no tangential force anymore, some non-zero but self-equilibrating shear tractions persist. From this, we

conclude that the traction distribution depends on the history of loading. Therefore, it is not possible to

use superposition for determining the stress state. Figure 3.11 depicts the history of shear tractions for

an example case.
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Figure 3.11 Shear traction distributions during cycling of a tangential load.

3.4.3 Effect of bulk stress

Often fretting fatigue involves more than just the aforementioned normal and tangential loads. For

better understanding, imagine a turbine engine where the stresses arise due to the centrifugal load

in addition to the loading imposed by the blades. Figure 3.12 shows a tipical setting for experiment

where the speciment is subjected to an oscillating bulk stress σ . As the specimen is extended to the

right-hand side direction, the pads move with it and are retained by the springs, originating a tangential

fretting force Q, applied to the contact in phase with the bulk load. After carefully analysing the figure

one can see that the specimen, which is under a bulk stress, experiences a bulk strain ε , whereas the

pads do not. This creates another term in the tangential direction so the resulting shear tractions will be

different from the case without bulk stress. Unlike our previous situations, the stick zone will not be

centrally located. Then, the stick zone can be assumed to extend from x = e− c to x = e+ c where e is

the offset of the centre stick zone with relation to the centre of the contact, given by Eq. (3.27):

e
a
=

σb

4 f p0
. (3.27)

Equation (3.27) holds for the maximum absolute value of the tangential load and the stick zone

becomes |x− e| ≤ c. For different values of Q, during loading or unloading, equation is used and stick

zone becomes |x− e′| ≤ c, as in Eq. (3.28):
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Figure 3.12 Typical setting of a fretting fatigue experiment.

e′(t)
a

=
σb −σb(t)

8 f p0
. (3.28)

It is worth mentioning that the above solution is true only when e+ c ≤ a:

σ

f p0
≤ 4(1−

√
1−Q/ f P). (3.29)

If the bulk stress is larger, reverse slip arises at one edge of the contact. Figure 3.13 shows shear

tractions with a bulk stress and a shifted stick zone.
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Figure 3.13 Cyclic load with bulk stress in phase tangential load.



4 Fretting fatigue and life estimation

As previously said, fretting is a phenomemon that originates from the surface microslip associated

with small-scale oscillatory motion. Wear, corrosion and fatigue all contribute to fretting, which is a

crack nucleation mechanism. Comparing plain and fretting fatigue is important to see how the latter

influences the life of a given component. Figure 4.1 illustrates the life of AlSi9Cu2Mg aluminum alloy

for both plain and fretting fatigue according to [107] experimental data. Interestingly, the stress level

required to reach the endurance level is smaller in fretting fatigue.

Figure 4.1 S-N curves comparing plain and fretting fatigue for AlSi9Cu2Mg aluminum alloy [107].

Figure 4.2 Schematic view of the contact region [107].

Also, according to [108], states of stress and strain are more severe in fretting fatigue when
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compared to plain fatigue, resulting in an accelerated crack nucleation in the former. Also, experimental

studies have shown that the crack usually initiates at the trailing edge of the contact. Fig. 4.2 shows

that wear debris accumulates near the edges of the contact. This can change the friction coefficient,

causing severe abrasion and further accelerating the failure process.

Fatigue can be divided into three steps: crack nucleation, crack propagation, and failure. They are

detailed next.

4.1 Fretting

4.1.1 Crack nucleation

According to Hills and Nowell [37], crack initiation must be viewed as a continuous process rather

than a discrete event and it occurs due to gradual damage accumulation. This phenomenon happens on

a microscopic scale, within grains of the material. In fretting fatigue, the stress concentration due to

contact is so severe that often originates several micro cracks. These are nucleated at the contact edge

where the stresses are more concentrated, at the surface of the component. In aircraft industry, this

stage represents most of the component’s life, as they are replaced when a crack is detected.

4.1.2 Crack propagation

It is not straightforward to differentiate crack nucleation from crack propagation. Hills and Nowell

[37] states that crack propagation definition depends on what level of crack detection equipment is

available. If there is no crack above detection size, then the nucleation phase is still ongoing. Once the

crack is detected, it is considered to be in propagation stage. Another approach defines propagation as

the period of component life where the crack behaviour can be described by fracture mechanics. Even

though several micro cracks may be nucleated, not all of them reach propagation phase. There is the

phenomenon of crack arrest, first reported by [109]. A crack propagates when the stresses opening it

are higher than the fatigue limit.

If the crack continues to grow, it may eventually reach a critical size and its propagation can be

predicted using the stress intensity factor K - [110].
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4.1.3 Fracture

When the intensity factor reaches the fracture toughness, Kc, catastrophic failure occurs. This Kc

value is a material constant and does not depend on the geometry [111]. The crack propagation and the

fractures zone are noticeable even with naked eye. The latter has a polished appearance and presents

Wallner lines, whereas the former has a rough matte surface.

Figure 4.3 Fatigue failure of a rail [112].

4.2 Fatigue life

There are two main categories to approaching fatigue life. The total-life approach and the defect-

tolerant approach. This study focus on the former. In the late 1800s, Wöhler [25, 26] studies originated

the S-N curve (known as Wöhler diagram). It relates the stress amplitude applied to a specimen with

the number of cycles for failure. Most experimental investigations of fatigue use this curve, which can

be obtained by some different tests (push-pull, rotating-bending, torsion).

When it comes to fatigue life, ferrous and non-ferrous materials present different behaviours. Fig.

shows the relationship between stress, σ , and the number of cycles to failure, N f , for steel specimens.

An abrupt change can be seen in the S-N curve slope, which is often referred to as "knee point".

The stress amplitude at this point is the fatigue limit because even after a high number of cycles, the

specimen will not fail. Non-ferrous metals, on the other hand, do not have a defined fatigue limit. Fig.
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4.4 shows an aluminium alloy S-N curve, in which the fatigue limit continues to decrease. For this

reason, fatigue limit for non-ferrous metal is assumed as the stress amplitude for N f = 107.
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Figure 4.4 S-N curves of ferrous and non-ferrous metals.

4.2.1 Multiaxial

Crack nucleation in fretting fatigue occurs in a region under multiaxial stress state.

There are three main approaches to predict fatigue life of material submitted to multiaxial loading:

the critical plane, the invariant tensor and the energetic approach.

Non-local approaches such as the Theory of Critical Distances (TCD) have been widely used

recently. The Modified Wöhler Curve Method, Smith-Watson-Topper and Fatemi-Socie are examples

of TCD.

Critical plane

The CPM is based on experimental data that crack nucleation preferentially starts on planes under

high shear stress. Mean normal stresses are also considered, as they are expected to open crack faces,
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resulting in easier crack growth. One of CPM’s main advantages is that it not only predicts fatigue life

but also gives information on the orientation and location of the fatigue fracture plane. [113], [114],

[115].

Defining shear stress amplitude τa, however, is not a simple task for multiaxial stress situation. The

problem lies in how to define an amplitude for a time varying shear stress vector in a material plane δ

passing through point O. Plane orientation is described by the spherical coordinates φ and θ . Using

Cauchy’s theorem, vector t(t) is function of normal vector n and the stress tensor T(t).
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Figure 4.5 (a) Multiaxial loading. (b) Spherical coordinates. (c) Material point O. (d) Stress components
in a material plane δ [114].

Normal stress Most multiaxial models use normal and shear stresses acting on material plane.

Normal component can be characterised by maximum value, σn,max, minimum value σn,min, amplitude

σa, or mean value σmean (Tab. 4.1).
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Figure 4.6 MRH [114].

Table 4.1 Constant cyclic loading - definitions.

Stress amplitude σa =
σmax−σmin

2

Mean stress σm = σmax+σmin
2

0

σ

∆σ

σmax

σmin

σa

σa

σm

Stress variation ∆σ = σmax −σmin

Load ratio R = σmax
σmin

Shear stress Many techniques are available for computing the equivalent shear stress amplitude,

but the most used was proposed by Dang [41] and Papadopoulos [116]. In this method, τa is defined

as the radius of the minimum circle circumscribing (MCC) the shear stress vector path Ψ. Detailed

references are found in [41, 116, 117].

In this work, Maximum Rectangular Hull (MRH) was chosen for computing shear stress amplitude.

Araújo et al. [114] made a time comparison between MCC and MRH methods and the former was

approximately 5x slower to compute. An overview of the MRH method is given next.

Shear stress amplitude is given by the Maximum Rectangular Hull of the shear stress vector path

Ψ in a material plane ∆. The main idea is to generate rectangular hulls circumscribing the vector path

using a rotation φ . Every rectangular hull can be defined by its half sides a1 and a2.
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ai(φ) =
1
2
[maxτi(φ , t)−minτi(φ , t)] (4.1)

and

τa(φ) = max
√

a2
1(φ)+a2

2(φ). (4.2)

4.2.2 Fatemi-Socie

Althought there are others criteria such as Modified Wöhler Curve Method [118], Smith-Watson-

Topper [119], the Fatemi-Socie criterion was chosen based on previous works. Doca et al. [120] used

the Fatemi-Socie criterion for estimating fatigue life and obtained good results.

Fatemi and Socie [121] proposed a modification to Brown and Miller’s approach to predict

multiaxial fatigue life. They take into consideration the maximum shear strain amplitude (τa) and the

maximum normal stress (σn,max) on the maximum shear strain amplitude plane. Their justification

is that they observed fatigue cracks initiate on the maximum shear strain planes in different loading

situations.

γmax

(
1+ k

σn,max

σy

)
= constant (4.3)

where the constant is known as the FS parameter. Considering an elastic regime, it can be rewritten as:

FS =
τa

G

(
1+ k

σn,max

σy

)
(4.4)

where G is the shear modulus, σy is the yield stress and k is a constant obtained from uniaxial and

torsional fatigue tests.

4.2.3 Life estimation

Fatigue life predictions are based on stress equivalent/stress invariants, integral or critical plane.

The latter has advantages and sometimes the critical plane is assumed to be the one under the greatest

shear stress amplitude. A drawback is that defining an amplitude for a multiaxial stresses state is

not straightforward.Araújo et al. [114] proposed a method for computing τa called the Maximum
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σ

γ

Figure 4.7 Fatemi and Socie failure model.

Rectangular Hull (MRH), so the shear stress amplitude τa and the maximum normal stress σn,max can

be computed.

FS = A [Nest ]
b , (4.5)

where Nest is the estimated number of cycles to failure.

For obtaining A and b parameters, V-notched specimens under elastic strains are tested for fatigue

life. Hence, a relationship between experimental lives and the effective stress can be determined via

the S-N curve. Both parameters can be obtained from fully reversed uniaxial loading (Aσ and bσ ) and

another from fully reversed torsional loading (Aτ and bτ ). After, a numerical method is applied to

identify the distance (L) in which the effective stress occurs. The final results are two modified L−N f

curves.

Lσ = Aσ [N f ]
bσ , (4.6)

and

Lτ = Aτ [N f ]
bτ . (4.7)

Lastly, an equivalent critical distance, Leq, can be obtained from the combination of both loads as

Leq = wσ Lσ +wτLτ . (4.8)
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Finally, the estimated number of cycles is

Nest = e
ln FS

A
b . (4.9)

4.3 Fretting fatigue problem setup

One of the problems that are going to be presented in the results chapter is the modelling of a

fretting fatigue experiment. It is a symmetrical problem in the y-axis and the upper part is shown in

Fig. 4.8.

Figure 4.8 Two-dimensioanl schematic representation of the fretting fatigue problem [120].

The dimensions of the cylindrical pad are: width (wc) of 13 mm, height (hc) of 6.5 mm, and radius

(r) of 70 mm. The specimen’s dimensions are width (ws) of 13 mm, and height (hs) of 6.5 mm. Both

are 13 mm thick. The specimen is fixed in its left side (x-direction) and on its bottom (y-direction due

to symmetry). Three loads are applied in a quasi-static condition. Firstly, a compression load (p) is

applied to establish the initial contact interface. Then, a shear load (q(t)), and a bulk load (b(t)) are

incrementally applied in-phase in a sinusoidal function. Two different materials are modelled with this

setup: Al7050-T7451 [122] and a Ti-6Al-4V [123]. Properties and loads are shown in Tab 4.2.
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Table 4.2 Properties and loading conditions for the chosen material configurations [120].
Al7050-T7451 Ti-6Al-4V

Elastic modulus, E(GPa) 73.4 120.0
Shear modulus, G(GPa) 26.9 46.5
Poisson’s coefficient, ν 0.33 0.29
Yield stress, σy(MPa) 453.8 910.2
Normal stress sensitivity coefficient, k 1.00 1.00
Uniaxial strength parameter, Aσ 0.2041 0.1438
Torsional strength parameter, Aτ 0.1784 0.1033
Uniaxial coefficient, bσ -0.00314 -0.00281
Torsional coefficient, bτ 0.06359 0.03812
Friction coefficient, µ 0.60 0.50
Constant normal force, p(N) 5800 10910
Mean shear force, qm(N) 0 0
Shear force amplitude, qa(N) 2300 2346
Mean bulk force, bm(N) 0 585
Bulk force amplitude, ba(N) 741 585



5 Integral Equation Formulation

Early works on integral equations as [124] on potential problems and [79] on elastic problems are

essential BEM. Numerous studies have been conducted since then. For example,Muskhelishvili [81]

and Mikhlin [125] contributed to the elasticity theory. [83] applied integral equations to solve problems

in two-dimensional elasticity, while [82] extended it to three-dimensional elasticity. The term BEM

first appearead in [126]. The following sections describe the BEM and its mathematical formulations.

More details can be found in [127] and [88].

5.1 Elasticity

There are many methods to derive the BEM formulations such as the reciprocal theorem, the

weighted residuals method, among others. In this work, the reciprocal theorem is used. An elasticity

problem may be represented as in Figure 5.1. It can have two different types of boundary conditions,

i.e., in Γu displacements are known and in Γt , tractions are known.

∫
Γ

tidΓ+
∫

Ω

bidΩ = 0 (5.1)

where ti are tractions and bi are body forces. Equation (5.1) have both volume and boundary integrals,

but we aim to reach an expression with boundary integral only. Therefore, it is possible to make use of

Green’s theorem, which transforms a volume integral into a boundary one. Applying the theorem:

∫
Ω

gi,idΩ =
∫

Γ

ginidΓ (5.2)

Also, using Cauchy’s stress tensor, which relates a unit-length vector ni to the stress vector ti across

an imaginary surface perpendicular to ni:
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Figure 5.1 Definition of domain.

ti = σi jni (5.3)

where σi jni are the components of the stress tensor.

The static equilibrium equation can now be written more conveniently as:

∫
Ω

σi j, jdΩ+
∫

Ω

bidΩ = 0. (5.4)

5.1.1 Maxwell-Betti reciprocal work theorem

As previously stated, the Maxwell-Betti reciprocal work theorem is used for deriving the boundary

element formulation for elastostatics in the present work. Betti’s theorem is based on the virtual work

principle and it states as follows:

The work done by a set of force acting through the displacements produced by a second

set of forces, is the same as done by the second set of forces when acting through the

displacements produced by the first set of forces.

In other words, given a body with two different stress-strain states, (σi j, εi j) and (σ∗
i j, ε∗i j) is

mathematically defined as:
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∫
Ω

σi jε
∗
i jdΩ =

∫
Ω

σ
∗
i jεi jdΩ. (5.5)

Equation (5.5) can be rewritten using deformation-displacement:

εi j =
1
2
(ui, j +u j,i) (5.6)

as

1
2

∫
Ω

σi j(ui, j +u j,i)
∗dΩ =

1
2

∫
Ω

σ
∗
i j(ui, j +u j,i)dΩ. (5.7)

Due to the symmetry of stress tensor, we end with:

∫
Ω

σi ju∗i, jdΩ =
∫

Ω

σ
∗
i jui, jdΩ. (5.8)

Using the product rule for derivatives

(σi jui), j = (σi j), jui +σi j(ui), j (5.9)

the left-hand side of Eq. (5.8) becomes:

∫
Ω

σi ju∗i, jdΩ =
∫

Ω

(σi ju∗i ), j −σi j, ju∗i dΩ. (5.10)

Representing the second term of the right-hand side of Eq. (5.10) as a body force, as in Eq. (5.4):

∫
Ω

σi ju∗i, jdΩ =
∫

Ω

(σi ju∗i ), jdΩ+
∫

Ω

biu∗i dΩ. (5.11)

After this, it is possible to apply the divergence theorem to the first right-hand side integral:

∫
Ω

σi ju∗i, jdΩ =
∫

Γ

(σi ju∗i )n jdΓ+
∫

Ω

biu∗i dΩ. (5.12)

The final form of Maxwell-Betti reciprocal work theorem after doing the previous manipulation on

both sides:
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∫
Γ

(σi ju∗i )n jdΓ+
∫

Ω

biu∗i dΩ =
∫

Γ

(σ∗
i jui)n jdΓ+

∫
Ω

b∗i uidΩ. (5.13)

and applying Cauchy’s transformation given in Eq. (5.3):

∫
Γ

tiu∗i dΓ+
∫

Ω

biu∗i dΩ =
∫

Γ

t∗i uidΓ+
∫

Ω

b∗i uidΩ. (5.14)

5.2 Boundary integral equation

Although Eq. (5.14) contains a domain integral, it can be transformed into a boundary integral. Let

system (1) be a problem to be solved and system (2), represented by the superscript ∗ be an arbitrary

stress state used to facilitate the problem’s solution. Consider an infinite elastic medium in which a

unit point load e j is applied at a point X ′ (system (2)), producing displacements at other points. This

point load is represented by Dirac’s delta that considers a body force bi. So, applying Dirac’s delta

properties to the last right-hand side of Eq. (5.14), results in:

b∗i = ∆(X −X ′)ei (5.15)

where the unit vector component ei corresponds to a unit positive force in the i direction applied at X ′.

Also, X ,X ′ ∈ Ω.

∫
Ω

b∗i uiΩ =
∫

Ω

∆(X −X ′)eiuidΩ = ui(X ′)ei. (5.16)

Meanwhile, considering variables from system ∗ as the responses to the unit point load:

u∗i =Ui j(X ′,X)e j (5.17)

t∗i = Ti j(X ′,X)e j (5.18)

where Q is a point over the boundary, p is a point within the domain and Ui j and Ti j are the fundamental

solutions. After substituting these terms in Eq. (5.14), the Somigliana identity for displacements is

obtained:
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ui(X ′)+
∫

Γ

Ti j(X ′,x)u j(x)dΓ =
∫

Γ

Ui j(X ′,x)t j(x)dΓ

where x ∈ Γ.

This previous equation relates displacements at an internal point X ′ with displacement and traction

values over the boundary. Afterwards, in Section 5.3, fundamental solutions are found.

5.3 Fundamental solutions

It is now possible to obtain Navier’s equation (which are the equilibrium equations written in terms

of displacements) for a unit point force applied to the body at a point X ′:

µu∗i, j j +
µ

1−2ν
u∗j, ji +∆(X −X ′)ei = 0. (5.19)

Solutions of governing equations such as 5.19 are known as fundamental solutions and there are a

few ways to obtain a solution. Galerkin vector is often used as in [128]. A particular one of Eq. (5.19) is

known as Kelvin’s fundamental solution. Displacements are expressed in terms of the Galerkin vector:

u∗i = Gi,kk −
1

2(1−ν)
Gk,ik. (5.20)

Displacement and traction fundamental solutions for 2D plane strain are given next and a detailed

explanation for obtaining them can be found in [88, 128, 129].

Ui j(X ′,x) =
1

8πµ(1−ν)

{
(3−4ν) ln(1/r)δi j + r,ir, j

}
(5.21)

and

Ti j(X ′,x) =
−1

4π(1−ν)r

{
[(1−2ν)δi j +2r,ir, j]

∂ r
∂n

− (1−2ν)(r,in j − r jni)

}
. (5.22)

In Eqs. (5.21) to (5.22), δi j is Kronecker’s delta, r(X ′,x) is the distance between source X ′ and

field x points, given by:

r = |x′− x| (5.23)
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r,i =
∂ r
∂xi

. (5.24)

Recalling Eq. (5.2):

ui(X ′)+
∫

Γ

Ti j(X ′,x)u j(x)dΓ =
∫

Γ

Ui j(X ′,x)t j(x)dΓ

and it contains only boundary terms, except for the first one on the left-hand side ui(X ′), which is an

internal point. It is possible to manipulate Eq. (5.3), so that all terms will be over the boundary, in the

following way. Firstly, point X ′ is transferred to the boundary, yielding r ≡ 0 and creating a singularity.

Then, integration is carried out around a circle of radius ε , while making ε → 0. This procedure must

be done to deal with the singularity, dividing the domain in two parts - one contains a singularity, the

other does not. As seen in Figure 5.2, a semicircle is centred at point x′.

∫
Γ

Ti j(X ′,x)u j(x)dΓ = lim
ε→0

∫
Γ−Γε

Ti j(x′,x)u j(x)dΓ+ lim
ε→0

∫
Γε

Ti j(x′,x)u j(x)dΓ. (5.25)

in which both limiting expressions on the right-hand side contain a strongly singular integrand of order

O(r−1) in two-dimensions and O(r−2) in three-dimensions. Hence, for treating these singularities, the

first integrand is evaluated in the Cauchy principle value sense, whereas the second is regularized by

the first term of a Taylor series expansion of the displacements about the source point x′, resulting in:

lim
ε→0

∫
Γε

Ti j(x′,x)u j(x)dΓ =

�������������������:0

lim
ε→0

{∫
Γε

Ti j(x′,x)[u j(x)−u j(x′)]dΓ

}
+u j(x′) lim

ε→0

{∫
Γε

Ti j(x′,x)dΓ

}
(5.26)

where the first integral on the right-hand side vanishes due to the requirement of displacement continuity.

Hence, the second integral gives rise to a jump term in the displacements:

u j(x′) lim
ε→0

∫
Γε

Ti j(x′,x)dΓ = αi j(x′)u j(x′) (5.27)

Equation (5.25) can now be written as

∫
Γ

Ti j(x′,x)u j(x)dΓ =−
∫

Γ

Ti j(x′,x)u j(x)dΓ+αi j(x′)u j(x′) (5.28)
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Boundary curve Γ
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r = ǫ

Boundary point P

Figure 5.2 Semicircle around point P for treating the singularity.

Therefore, the displacement boundary integral equation (DBIE) can be written as:

Ci j(x′)u j(x′)+−
∫

Γ

Ti j(x′,x)u j(x)dΓ =
∫

Γ

Ui j(x′,x)t j(x)dΓ+
∫

Ω

Ui j(x′,X)b j(X)dΓ (5.29)

where Ci j represents the jump term arising from the integration of the strongly singular kernel. It

depends on the geometry and for smooth boundaries, Ci j = δi j/2. Details on how to compute it can be

found in [130].

5.4 Numerical discretisation

It is only possible to solve Eq. (5.29) analytically for simple problems, so another approach is

needed if a practical problem with a complex geometry has to be modeled. The Boundary Element

Method (BEM) is a numerical technique which enables the solution of boundary integral equations

through a discretisation. Before introducing the concept of isogeometric BEM, it is important to show

the lagrangian formulation, also used in this study for comparison. In this case, shape functions are

Lagrangian polynomials and elements can be constant, linear, quadratic etc. In the next subsections,

the lagrangian (conventional) formulation is presented.
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5.4.1 Lagrangian formulation

First of all, the boundary is divided into elements, so that in the absence of body forces the equation

becomes:

Ci j(x′)u j(x′)+
Ne

∑
n=1

∫
Γn

Ti j(x′,x)u j(x)dΓ =
Ne

∑
n=1

∫
Γn

Ui j(x′,x)t j(x)dΓ (5.30)

where Γ = ∑
N
n=1 Γn.

In the lagrangian formulation, geometry x j, unknown displacements field u j(x) and tractions field

t j(x) are approximated using interpolation functions, in the following manner:

x j =
m

∑
α=1

Nα(ξ )xα
j

u j =
m

∑
α=1

Nα(ξ )uα
j

t j =
m

∑
α=1

Nα(ξ )tα
j

(5.31)

where Nα are the shape functions, which are polynomials of degree m−1. xα
j , uα

j and tα
j are the values

of the functions at node α . In order to make the numerical integration easier (using Gauss-Legendre),

those functions are defined in terms of a dimensionless parametric coordinate system for each element

ξ ∈ [−1,1], as in Fig. 5.3:

y

x

(x1, y1)

(x2, y2)

(x3, y3)

dΓ

−1 0 +1

dξ

ξ

Figure 5.3 Local parametric coordinate ξ .

When using quadratic continuous elements for discretizing, geometry is approximated by a quad-
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ratic function on each element. Three nodes are necessary for each element. For quadratic elements, as

the ones that are used in the present work (m = 3), shape functions become:

N1 =
1
2

ξ (ξ −1) (5.32)

N2 = 1−ξ
2 (5.33)

N3 =
1
2

ξ (ξ +1) (5.34)

The general form for defining shape functions derived from Lagrangian polynomials for degree

(m−1) is:

Nα(ξ ) =
m

∏
i=0, i̸=α

ξ −ξi

ξα −ξi
(5.35)

Some interesting properties of the Lagrangian shape functions can be seen in books such as [128].

An important one, for example, is that the sum of the shape functions is equal to unity at a given node

∑
m
α Nα = 1.

Displacement and traction are approximated in the following way:

u =


u1

u2

u3

=

 N1 0 N2 0 N3 0

0 N1 0 N2 0 N3





u1
1

u1
2

u2
1

u2
2

u3
1

u3
2



= Nun (5.36)
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Figure 5.4 Shape functions for continuos quadratic elements.

t =


t1

t2

t3

=

 N1 0 N2 0 N3 0

0 N1 0 N2 0 N3





t1
1

t1
2

t2
1

t2
2

t3
1

t3
2



= Nt(n) (5.37)

where un
i and tn

i are nodal values of displacement and traction, respectively and Ni are shape functions,

which are defined in Eq. (5.34) and illustrated in Fig. 5.4.

Geometry is approximated by shape functions as well:



Chapter 5 Integral equation formulation 54


x1

x2

x3

=

 N1 0 N2 0 N3 0

0 N1 0 N2 0 N3





x1
1

x1
2

x2
1

x2
2

x3
1

x3
2



(5.38)

In standard boundary element, if we divide boundary Γ in Ne elements, a discretized version can be

obtained:

Ci j(x′)u j(x′)+
Ne

∑
j=1

∫ 1

−1
T ∗

ikui dΓ j =
Ne

∑
j=1

∫ 1

−1
U∗

ikt j dΓ j (5.39)

Equation (5.39) is then applied to each node of the element, resulting in a linear algebraic equation

system:

Hu = Gt (5.40)

where H and G have values of fundamental solutions Ti j and Ui j, t and u contain traction and

displacements, respectively. When dealing with a problem, often some traction and some displacement

are unknowns, and by using some algebra, it is possible to isolate these unknowns in a vector x. Hence,

Eq. (5.40) becomes:

Ax = b (5.41)

and only one solution is possible.

5.5 Stress at internal points

For an isotropic medium internal stresses can be computed by differentiating the displacements at

internal points and introducing the corresponding strains into the stress-strain relationships, i.e.:

σi j =
2µν

1−2ν
δi jui,i +µ(ui, j +u j,i) (5.42)
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All derivatives are taken at the internal point under consideration, which is the point of application

of the fundamental solution. Taking the corresponding derivatives of the fundamental solution the

above equation can be written, in a compact form, as:

σi j =
∫

Γ

Dki j pkdΓ−
∫

Γ

Ski jukdΓ+
∫

Ω

Dki jbkdΩ (5.43)

where

Dki j =
1
rα

{
(1−2ν)

{
δkir, j +δk jr,i −δi jr,k

}
+β r,ir, jr,k

} 1
4απ(1−ν)

(5.44)

Ski j =
2ν

rβ
β rn(1−2ν)δi jr,k +ν(δikr, j +δ jkr,i)− γr,ir, jr,k+

βν(nir, jr,k +n jr,ir,k)+(1−2ν)(βnkr,ir, j +n jδik +niδ jk)

− (1−4ν)nkδi j
1

4απ(1−ν)

(5.45)

5.6 Stress on the boundary

Although there are some ways for obtaining boundary stresses, the one used in this work is by

recovering boundary tractions and displacements from BEM solution and then tangential strains are

calculated using differentiation of shape functions. After applying Hooke’s law and Cauchy’s formula,

the stresses are finally obtained.

5.6.1 Two-dimensional

First of all, a local coordinate system is defined such that e1 is a normal unit vector and e2 is a

tangent unit vector as in and the vectors in this system can be represented as 5.5.

x = x1e1 + x2e2. (5.46)

The local unit tangential vector can be obtained by
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e1 = n, (5.47)

e2 =
m
|m| , (5.48)

where n is the normal and m is the tangential vector:

m =
dx(ξ )

dξ
. (5.49)

The transformation matrix A for the quantities from the global to the local coordinate system is:

A =

e1

e2

=

 n1 n2

−n2 n1

 (5.50)

We then denote displacements, tractions, strains and stresses in the local coordinates as û j, t̂ j, ε̂i j

and σ̂i j, respectively. The stress tensor in the local coordinate system is

σ̂11 = t̂1 (5.51)

σ̂12 = t̂2 (5.52)

σ̂22 =
E

1−ν2 ε̂22 +
ν

1−ν
t1 (5.53)

where the strain is given by

ε̂22 = û2,2 =
∂ û2

∂ξ

∂ξ

∂ x̂2
= A2 j

∂u j

∂ξ

∂ξ

∂ x̂2
(5.54)

and

∂ξ

∂ x̂2
=

1
|m| . (5.55)

Finally, the stress in global Cartesian coordinate system is:



Chapter 5 Integral equation formulation 57

θ

ex

ey

e1

e2

Figure 5.5 Local coordinate system.

σi j = AkiAn jσ̂kn. (5.56)



6 NURBS - Non Uniform Rational B-Splines

Standard BEM analysis uses polynomials as basis functions, while Isogeometric Boundary Element

Method (IGABEM) uses NURBS, as previously stated. Among advantages of using NURBS, is

integrating with Computer Aided Design (CAD) programs, the majority of which also use NURBS.

A detailed reference for understanding B-splines and NURBS is [131]. Further, works as [58] and

[59] are pioneers regarding isogeometric boundary element analysis in two-dimensional elasticity. The

following sections describe the basic theory for using B-splines and NURBS.

6.1 Bézier curves

Bézier curves are used in a wide variety of graphing software since they were created by Pierre

Bézier in 1962, while he was working for Renault. A Bézier curve is defined as:

C(ξ ) =
n

∑
i=0

Bi,p(ξ )Pi, 0 ≤ ξ ≤ 1 (6.1)

where Pi are control points and Bi,p(ξ ) are the Bernstein basis, defined as:

Bi,p(ξ ) =

(
p
i

)
ξ (1−ξ )p−i, (6.2)

and
(p

i

)
= i!

p!(p−i)! . A Bézier curve of degree p can be written as a linear combination of p+1 Bernstein

basis.

Let B(ξ ) = {Bi,p(ξ )}p+1
i=1 be a set of Bernstein basis functions and P = {Pi}p+1

i=1 its corresponding

set of control points, which are defined as Pi ∈ Rd where d = 2,3 for two and three-dimensional

problems, respectively. P is defined as a matrix of dimensions (p+1)×d:
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P =



P1
1 P2

1 . . . Pd
1

P1
2 P2

2 . . . Pd
2

...
... . . .

...

P1
p+1 P2

p+1 . . . Pd
p+1


(6.3)

An example is in Fig. 6.1, with the set of control points defined in Eq. (6.4). One can note that, as

there are four control points (and therefore p+1 = 4), the degree of this curve is p = 3.

P =



1.0 5.0

5.0 4.0

2.0 1.0

7.0 −1.0


(6.4)

Figure 6.1 A cubic Bézier curve.

6.2 B-Splines

Defining a knot vector is an important step for understanding B-splines and NURBS. Let Ξ =

{ξ0,ξ , · · · ,ξn+p} be a non-decreasing sequence of coordinates defined in the parameter space, i.e.,
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ξi ≤ ξi+1, where ξi is called knot, Ξ is the knot vector and n is the number of basis functions. B-spline

basis functions of degree p are recursively defined using Cox-de Boor recursive formula, starting with

basis of order p = 0:

Ni,0(ξ ) =

 1, if ξi ≤ ξ < ξi+1

0, otherwise
, (6.5)

and for higher p degrees as:

Ni,p(ξ ) =
ξ −ξi

ξi+p −ξi
Ni,p−1(ξ )+

ξi+p+1 −ξ

ξi+p+1 −ξi+1
Ni+1,p−1(ξ ) (6.6)

Using the previously defined basis functions, a B-spline curve C(ξ ) is defined as:

C(ξ ) =
n

∑
i=1

Ni,p(ξ )Pi (6.7)

where Ni,p is the i-th basis function of degree p and Pi are the control points.

The number of non-zero spans in Ξ defines the number of segments of the B-spline. Each segment

is influenced by p+ 1 control points. Thus, when ξ enters in a new span, a new control point is

activated, while an old is deactivated. The number of knots m+1, the number of control points n+1,

and the degree of the curve p, are related as m = n+ p+1.

6.3 NURBS

In this part, NURBS and their benefits over B-splines are presented. B-splines can be thought of

as a special case of NURBS, when the latter has all weights equal to one. Probably the most evident

gain of using NURBS instead of B-splines is exactly modeling circles or ellipsoids, which can only be

approximated by the latter. In order to create a NURBS from a set of control points P using NURBS,

we use:

C(ξ ) =
n

∑
i=1

Ri,p(ξ )Pi, (6.8)

where Ri,p are defined as:
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Ri,p(ξ ) =
Ni,p(ξ )wi

W (ξ )
(6.9)

where W (ξ ) = ∑
n
j=1 N j,p(ξ )w j.

Not only NURBS basis functions are important for IGABEM implementation, but also their

derivatives, as they are required for approximating unknown fields. The derivative of Eq. (6.9) is

defined as:

dRi,p(ξ )

dξ
= wi

W (ξ )N′
i,p −W ′(ξ )Ni,p(ξ )

W (ξ )2 , (6.10)

where

W (ξ ) =
n

∑
j=1

N j,p(ξ )w j, (6.11)

N′
i,p ≡

dNi,p

dξ
, (6.12)

and

W ′(ξ ) =
n

∑
j=1

N′
i,p(ξ )wi. (6.13)

6.3.1 NURBS derivative

A derivative of a B-spline basis function, as in Eq. (6.6), can be calculated as:

∂Ni,k(t)
∂ t

=
k

ti+k − ti
Ni,k−1(t)−

k
ti+k+1 − ti+1

Ni+,k−1(t). (6.14)

Substituting Eq. (6.14) in Eq. (6.7), the result is:

∂P(t)
∂ t

=
n−1

∑
i=0

Ni+1,k−1(t)Qi, (6.15)

where Qi is defined as:
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a) Perspective mapping of a quadratic B-
spline Ch(ξ ) curve in homogenuous form
R3 to a circular arc C(ξ ) in model space R2

[132].

b) Effect of modified weights wi in model
space: a B-spline curve (dashed) where all
weights are 1 and a NURBS curve (solid)
with w1 = cos(α/2) to define a circular arc
with opening angle α = 120◦ [132].

Figure 6.2 Homogenuous coordinates.

Qi =
n−1

∑
i=0

k
ti+k+1 − ti+1

(Pi+1 −Pi). (6.16)

It is clear that a derivative of a k-order B-spline is also a B-spline, though with order k−1 with

new control points Qi. This is a useful feature, enabling the approach used in a curve to be also used in

its derivative.

Homogeneous coordinates is the most convenient way of representing a NURBS curve and it can

be seen in Figs. 6.2a and 6.2b. This coordinate system is created by adding an extra dimension to

control points, called weights:

Ph = [Pxw Pyw w] (6.17)

where Ph is the control point represented in homogeneous coordinates.

6.3.2 Knot insertion

A characteristic that stands out when dealing with NURBS is the possibility of inserting knots in a

knot vector without changing the original geometry. For each inserted knot, a new control point must

also be created. When adding a new knot t̄ to the knot vector, the following control point is generated:
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B̄i =


B1 if i = 1,

αBi +(1−α)Bi−1 if 1 ≤ i ≤ m,

Bn if i = m,

(6.18)

where

α =


1 if i = 1,

t̄−ti
ti+p−εi

if 1 ≤ i ≤ m,

0 if i = m.

(6.19)

Nodal value may be inserted multiple times, but the continuity of basis functions is reduced by one

for each repeated knot. However, when defining the new control point as in Eqs. (6.18) and (6.19) the

continuity of the curve is kept. This process is used for Bézier extraction, which is described in the

following section.

6.3.3 Bézier decomposition/extraction

Bézier extraction is an approach defined in [133] which facilitates implementing IGA in an existing

FEM or BEM code. Although being used here with NURBS, it can also be used with T-splines [134].

The main idea of Bézier decomposition is to perform repeated knot insertion on all interior knots of a

knot vector until they have a multiplicity of p [133]. The so-called Bézier extraction operator maps the

Bernstein basis functions onto a B-spline. For each inserted knot, the continuity of basis function is

reduced while the curve itself remains unchanged. The resulting basis is decomposed in a set of Bézier

elements in which every element corresponds to a knot span in the original knot vector.

The original knot vector Ξ and its set of control points P = {Pi}n
i=1 are modified by inserting

{ξ̄1, ξ̄2, . . . , ξ̄m}. Then the number of knots is now n+m+ p+ 1 and the number of control points

becomes n+m. For each newly inserted knot ξ̄ j, we define α
j

i in order to compute the Bézier extraction

operator C j:
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C j =



α1 1−α2 0 · · · 0

0 α2 1−α3 0 · · · 0

0 0 α3 1−α4 0 · · · 0
...

...

0 · · · α(n+ j−1) 1−α(n+ j)


. (6.20)

Assuming P̄1 = P, new control points corresponding to the inserted knots are:

P̄ j+1 = CT
j P̄ j (6.21)

Hence, the final set of control points Pb is:

Pb = CT P (6.22)

Knot insertion does not cause geometric nor parametric change to a curve, so:

C(ξ ) = PT N(ξ ) = (Pb)T B(ξ ) = (CT P)T = PT CB(ξ ) (6.23)

where B(ξ ) is the set of Bernstein polynomials basis functions defined by the final knot vector Ξb. So,

this new operator C can be used to relate B-splines N(ξ ) and Bernstein B(ξ ) basis functions:

N(ξ ) = CB(ξ ). (6.24)

It is worth mentioning that the required input for computing C is only the knot vector, so it neither

depends on control points nor basis functions.

For a better understanding of the process, Figs. 6.3a to 6.3d show every newly added control point

due to a knot insertion in the knot vector and its respective change in basis functions.

The first knot vector is Ξ1 = {0,0,0, 1
4 ,

1
2 ,

3
4 ,1,1,1} and its corresponding set of control points as

can be seen in Tab. 6.1. Knots Ξ′ = {1
4 ,

1
2 ,

3
4} are added one at a time, reaching the final knot vector

Ξ4 = {0,0,0, 1
4 ,

1
4 ,

1
2 ,

1
2 ,

3
4 ,

3
4 ,1,1,1}.

As previously mentioned, a B-spline is a special case of NURBS when all weights are equal to the

unity. If that is not the case, one has to take into consideration the weights when performing the Bézier
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a) 6 control points.

b) 7 control points.

c) 8 control points.

d) 9 control points.

Figure 6.3 Bézier extraction process: second order curves (left) and NURBS basis functions (right) for
various number of control points.
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Table 6.1 Coordinates and weights of the first set of control points.
Control Point x y w

1 0.5 3.0 1.0
2 1.5 5.5 1.0
3 4.5 5.5 1.0
4 3.0 1.5 1.0
5 7.5 2.5 1.0
6 6.0 4.0 1.0

Table 6.2 New control points.
Control Point x y w

7 3.0 5.5 1.0
8 3.75 3.5 1.0
9 5.25 2.0 1.0

extraction. This can be done by substituting Eq. (6.24) in Eq. (6.9):

R(ξ ) =
1

wT CB(ξ )
WCB(ξ ) (6.25)

where W is the diagonal matrix of weights as defined in [133]. Hence, the NURBS curve can be

represented in terms of Bézier element as:

C(ξ ) = PT R(ξ ) (6.26)

=
1

wT CB(ξ )
PT WCB(ξ ) (6.27)

=
1

wT CB(ξ )
(CT WP)T B(ξ ) (6.28)



7 Isogeometric analysis with BEM

7.1 Introduction

Isogeometric analysis is a fairly new concept introduced by [56]. The novelty is to use the same

basis as CAD, such as NURBS, to perform analysis. NURBS are smooth and, according to [133],

using a smooth basis in analysis has shown computational advantages over standard finite elements in

many areas. Using the aforementioned Bézier extraction operator, the isogeometric analysis can be

incorporated into existing FEM or BEM codes.

7.2 Integral formulation

Now we focus on the isogeometric formulation and its differences from conventional BEM.

Approaches for collocation and integration are presented as well. As previously mentioned, the main

difference between IGABEM and the conventional BEM is that the former uses NURBS basis functions

to approximate the geometry and unknown boundary fields. In IGABEM, the definition of element is

not as straightforward as in the conventional formulation. Due to that, after discretizing the boundary,

physical domain is mapped to a parameter element [ξi,ξ j] which is the interval between two consecutive

unique knots. Then, the parameter element is linearly mapped to parent element [−1,1].

Writing geometry and unknown fields in the isoparametric fashion, it is possible to approximate

them as:

xe(ξ ) =
p+1

∑
i=1

Ri,p(ξ )xe
c (7.1)

ue(ξ ) =
p+1

∑
i=1

Ri,p(ξ )ue
c (7.2)
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te(ξ ) =
p+1

∑
i=1

Ri,p(ξ )te
c (7.3)

where xe
c is the coordinate of a control point and ue

c and te
c are displacements and tractions coefficients

at a control point c for the Bézier curve e, respectively. Attention is needed because those values

do not have a physical meaning as the control point might lie outside of the boundary. In order to

recover displacements and tractions associated with collocation points over the boundary we can do

the following:

u = Euc (7.4)

t = Etc (7.5)

where E is a transformation matrix defined in [60], [61].

Hence, Eq. (5.40) can be rewritten as:

Huc = Gtc (7.6)

and then applying the transformation matrix yields:

HE−1u = GE−1t (7.7)

7.3 Integration

As seen in [59], a key feature of any BEM implementation is the evaluation of the boundary

integrals containing the kernels over element domains. It is well-known that both regular and singular

integrands are found depending on the position of the collocation point relative to the field element.

Essentially, the evaluation of BEM integrals is split into three different types described as:

1. Regular integration: the collocation point lies in an element different from the field element.

2. Nearly singular integration: the collocation point lies in an element not on but near the field

element.
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3. Singular integration: the collocation point lies in the field element and can be one of two types:

Strongly singular integral: Ti j kernel, O(1/r) in 2D.

Weakly singular integral: Ui j kernel, O(ln(1/r)) in 2D.

This work deals with both regular and nearly singular integral in the same way, treating weak

singularities with [135] scheme and strong ones with [136] Singularity Subtraction Technique (SST).

7.3.1 Weakly singular integrals

Fundamental solutions used for solving problems are singular when the source point is located

within the influence domain. Because of this, the integral is singular and needs a treatment that varies

with the kind of problem. When dealing with elasticity, a usual way to treat it is using rigid-body

motion. Firstly, all non-singular integrals are solved for a collocation point and then rigid-body motion

is applied to solve the remaining integrals. When using standard BEM with polynomials basis functions,

the number of singular integrals and rigid-body motions is the same. This is true because for each

collocation point and the corresponding singular element, only one basis function is non-zero, which

means only one singular integral on each element. In IGABEM this is not true, because several NURBS

basis functions are different from zero on collocation points. For each collocation point, k singular

integrals need special treatment.

A well established method for weakly singular treatment is the one created by [135]. It consists of

co-ordinate transformation based on a third degree polynomial.

ξ̂ =
(γ − γ ′)3 + γ ′(γ ′2 +3)

1+3γ ′2
(7.8)

ξ
′ =

3
√

ξ̂ ′(ξ̂ ′2 −1)+ |ξ̂ ′2 −1|+ 3
√

ξ̂ ′(ξ̂ ′2 −1)+ |ξ̂ ′2 −1|+ ξ̂ ′ (7.9)

where ξ̂ ′ denotes the location of the singularity in the parent space (ξ̂ ′ ∈ [−1,1]) and γ represents the

new integration variable. Hence, a jacobian of this transformation is given by:

dξ̂ =
3(γ − γ ′)2

1+3γ ′2
dγ. (7.10)
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7.3.2 Strongly singular integrals

There are some techniques to evaluate strongly singular integrals. This work uses a direct evaluation

method for strongly singular integrals. As in [137], the method is semi-analytical in the sense that

all singular integrations are performed analytically and the limiting process is performed exactly.

Therefore, numerical integration has only to deal with regular integrals. For two-dimensional BEM,

this technique is applied to an integral over a boundary element in its normalized coordinates:

∫
Γ

Ki jdΓ =
∫ 1

−1
Ti j(p,Q)φa(ξ )Jn(ξ )dξ (7.11)

where φa is an interpolating function related to node a and Jn is the jacobian. The first step is to use a

Laurent series expansion centred at η :

Ki j(ξ ,η) =
F−1(η)

ρ
+

F−2(η)

ρ2 +O(1) (7.12)

where ρ = ξ −η is the image of radius and η is the position of the source point. The final expression

for an element containing the singular point is [137]:

∫
Γ

Ki jdΓ =
∫

Γ

[
Ki j −

(
F−1(η)

ρ
+

F−2(η)

ρ2

)]
dΓ+F−1 log | 1−η

−1−η
|+

F−2

(
− 1

1−η
+

1
−1−η

) (7.13)

Adding and subtracting the first two terms of the series expansion in Eqs. (7.12) and (7.11),

promoting a regular integrand and making integration straightforward. The general application of this

method requires only knowing the terms of expansion F−1 and F−2.

As in [138], for tractions in two-dimensional elastic problems:

F−1 =− 1−2ν

4π(1−ν)
[nα(p)tβ (p)−nβ (p)tα(p)]φa(η) (7.14)

F−2 = 0. (7.15)
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7.4 Collocation points

In conventional BEM, it is usual to collocate at the nodes. This is not possible in IGABEM, though,

given that the equivalent of nodes would be control points and, as already mentioned, may not lie

over the boundary. In order to overcome this, some collocation strategies are available. Among them,

probably the Greville abscissae is the most used as seen in [59], [69]. In this study, we choose to use a

modified version of Greville abscissae, as in [48]. Collocation points in parameter space are given by:

ξ
′
i =

ξi+1 +ξi+2 + · · ·+ξi+p

p
. (7.16)

The modification previously stated is in the first and last collocation points, which are offset to the

inner part of the element and now respectively defined as (Figure 7.1):

ξ
′
1 = ξ1 +β (ξ2 −ξ1) (7.17)

ξ
′
n = ξn +β (ξn −ξn−1) (7.18)

where β is a shift coefficient defined in [139] and adopted as β = 0.5.

Note that only the first and last collocation points in 7.1 are different between them, while all others

coincide. This is to avoid collocating twice at the same coordinate when considering an edge, which

can be prejudicial to the integration.
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Figure 7.1 Modified Greville’s abscissae.



8 Numerical modelling

Using the present formulation, problems with any number of two-dimensional bodies in contact

can be analysed. In this work, however, let us consider two homogeneous isotropic linearly elastic

bodies (say A and B) initially in a separate state (Fig. 8.1). Then, they come closer to each other, until

there is a contact between them. It is possible to define two regions for each body, one that can be in

contact Γ
A,B
c and other that cannot Γ

A,B
nc . Their deformations can be described by two coupled integral

equations, one for each body. As a numerical solution is desired, it makes sense to present the equations

after discretization:

B

A

A

B

Γ
A
c

Γ
B
c

Γ
A
nc

Γ
B
nc

Figure 8.1 Contact and non-contact zones.

cA
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i jt
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j (8.1)

and similarly for body B:

cB
i ju

B
j +

NB

∑
n=1

HB
i ju

B
j =

NB

∑
n=1

GB
i jt

B
j (8.2)
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where NA and NB are the number of nodes of bodies A and B, respectively.

Therefore, two sets of linear equations are obtained. In a matrix form, they become:

[H]γ {u}γ = [G]γ {t}γ , γ = A,B (8.3)

As noted by [95], for linear problems, once this system of equations has been solved, the final

solution for displacements and tractions everywhere on the boundaries can be obtained. This is not the

case for this study, as we are dealing with a non-linear problem. This non-linearity comes from the

fact that the extend of contact region is not known a priori and it must be determined as part of the

solution. In order to overcome this, the same approach used in [140], [141], [97] is used. It consists of

an iterative method known as generalized Newton’s method. The system of equations in Eq. (8.3) can

be rearranged to the form:

Ax = b (8.4)

8.1 Numerical implementation

This section presents the approaches used for modelling and solving the problem, such as constraint

equations and how to consider different modes of contact. In addition, the algorithm for solving the

non-linear system is also shown. In order to make the whole process clear, a flowchart depicts the main

steps of the code (Fig. 8.2).

Since the contact zone of bodies A and B share nodes, they must be coupled in eq. (8.3). At this

point, though, the contact width is unknown, resulting in an unbalanced system with more variables

than equations. For the non-contact region, a mixed matrix containing both displacements and tractions

is obtained:
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
A1

nc 0 H1
c 0 −G1

c 0

0 A2
nc 0 H2
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t
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nc
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nc
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=


b1

b2

v1,2

 . (8.5)

The third row in matrix in Eq. (8.5) represents the contact contraints. These constraints C1,2
u and

C1,2
t are respectively, displacement and traction constraints for each node-pair. They can be one of the

following three:

Slip:

cu =



0 0 0 0

0 0 0 0

Ea
l 0 Eb

l 0

0 0 0 0





ua
t

ua
n

ub
t

ub
n



ct =



Ea
l 0 −Eb

l 0

±( f ×Ea
l ) Ea

l 0 0

0 0 0 0

0 0 ±( f ×Eb
l ) Eb

l





ta
t

ta
n

tb
t

tb
n


Stick:

cu =



0 0 0 0

0 0 0 0

Ea
l 0 Eb

l 0

0 Ea
l 0 Eb

l





ua
t

ua
n

ub
t

ub
n



ct =



Ea
l 0 −Eb

l 0

0 Ea
l 0 −Eb

l

0 0 0 0

0 0 0 0





ta
t

ta
n

tb
t

tb
n





Chapter 8 Numerical modelling 76

Separate:
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where El are the entries of matrix E corresponding to the local segment (curves of the contact surfaces).

8.1.1 Non-linear equation solution

As Eq. (8.5) is non-linear, generalized Newton-Raphson’s method was used as in [142]. It is an

iterative technique that requires an initial guess xk−1 to find an approximated solution of x as follows.

Given an initial value for the vector (say x0), we need to find a ∆x0 such that f(x0 +∆x0) = 0. Using

the first-order Taylor series, it can be approximated as:

f(x0 +∆x0)≈ f(x0)+J0∆x0 (8.6)

where J is the n×n Jacobian. We are looking for f(x0 +∆x0) = 0, so the increment ∆x0 is computed

as:

∆x0 ≈− [J]−1 f(x0). (8.7)

Vector x is updated as:

xk = xk−1 +∆xk−1 (8.8)

xk = xk−1 −JR (8.9)
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Figure 8.2 Procedure flowchart.
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where R is the residual function. For this particular problem, we use them as defined in [140], i.e.,

J = A−1 and R = Axk−1 −b. The process continues until the residual is smaller than a prespecified

tolerance ε , defined as:

ε =
√
(xk −xk−1)T (xk −xk−1) (8.10)

Algorithm 1 Main code
Input Geometry, load, material properties

1: for i do12 ▷ Assemble matrices for bodies 1 and 2

2: Assemble Gi and Hi

3: Apply BC on non-contact region

4: Insert matrices Ai in ANL

5: for i do1number of load steps

6: Compute the gap g0 between node-pairs in contact zone.

7: Apply Newton-Raphson’s method for solving R = Ax−b

8: Vector ∆u and ∆t based on BCs and unknowns.

9: ui = ui−1 +∆u

10: ti = ti−1 +∆t
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Algorithm 2 Newton-Raphson’s method
Input A,b,x0

1: Initialize x0

2: while R > ε do

3: Assemble matrix ANL and vector bNL

4: Assemble matrix A and vector b

5: R = Ax−b

6: d =−A−1R

7: x = x0 +d

8: δ =
√
(xk −xk−1)T (xk −xk−1)

9: x0 = x

10: return x
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9 Results

9.1 Introduction

This chapter presents examples used for validating the code, comparing isogeometric formulation

with both Standard BEM using quadratic elements and with analytical results for elastic problems.

Furthermore, frictionless cases of contact problems are shown for one body in contact with a rigid

half-plane and for two elastically-similar bodies. Lastly, fatigue life predictions are shown. The steps

required to perform the analysis were shown in Fig. 8.2. Although similar to a standard BEM analysis,

differences comprise:

1. The definition of elements is given by unique knot vector values.

2. NURBS basis functions are used instead of polynomial shape functions.

3. Collocation occurs at points defined by the modified Greville’s abscissae.

9.1.1 Relative errors

In order to compare standard BEM and IGABEM accuracy, displacement and traction norms can

be used for error estimation. These norms can be computed, respectively as:

∥u∥L2 =

√∫
Γ

Ne

∑
i=1

(ui)2dΓ (9.1)

and

∥t∥L2 =

√∫
Γ

Ne

∑
i=1

(ti)2dΓ. (9.2)

Hence, the relative error for ∥u∥ and ∥t∥ are, respectively:
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εu =
∥u−uexact∥L2

∥uexact∥L2

(9.3)

εt =
∥t− texact∥L2

∥texact∥L2

. (9.4)

Mesh naming: For naming the different meshes for each method and for each problem, a name

convention was used. We denote standard as S, isogeometric as I; cylinder as C, infinite plate as P,

beam as B. For example, we use SC− 3 to refer to the third standard BEM mesh for the cylinder,

whereas IP−5 refers to the fifth isogeometric BEM mesh for inifinite plate.

9.2 Elastic problems

9.2.1 Pressurised cylinder

Thick-walled cylinders (in this work also referred as tubes) are commonly used in industry. In

most of the cases, the cylinder has a constant wall thickness and is subjected to a uniform internal

and/or external pressure. The isotropy assumption leads to axisymmetric deformation of the cylinder.

A pressurized cylinder is the first example, with only a quarter of it being modelled (due to symmetry)

as in Figs. 9.1 and 9.2. It is assumed under plane strain and 32 Gauss points are used. Geometric and

material properties can be seen in Table 9.1.

Table 9.1 Geometric and material properties - tube.

Property Symbol Value

Inner Radius Ra 50 mm

Outer Radius Rb 100 mm

Young’s Modulus E 200 GPa

Poisson’s ratio ν 0.32

Pressure P 100 N/mm

Given that this problem is axisymmetric, it is assumed that there are only radial displacements. The

analytical solution for radial displacement ur and boundary stresses σr and σθ are:
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a) Radii of the cylinder.
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b) Internal stresses of cylinder.

Figure 9.1 Geometry of the cylinder.

ur =
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2Eb2

[
(1−2ν)r+

b2

r

]
(9.5)

σr =
a2P

b2 −a2

(
1− b2

r2

)
(9.6)

σθ =
a2P

b2 −a2

(
1+

b2

r2

)
(9.7)
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3

4

P

Figure 9.2 Boundary conditions of problem 1.
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Lagrangian

For the standard lagrangian simulation, six different meshes were used (Table 9.2). They all used

quadratic elements, with three nodes per element.

Table 9.2 Number of elements per segment for the 6 meshes - tube.

Elem. per segment

Mesh 1 2 3 4 Total nodes DOF

SC-1 1 3 1 2 14 28

SC-2 2 6 2 4 28 56

SC-3 3 9 3 6 42 84

SC-4 4 12 4 8 56 112

SC-5 5 15 5 10 70 140

SC-6 10 30 10 20 140 280

Isogeometric

Isogeometric simulation, in turn, used 13 different meshes (Table 9.3). All of them used a quadratic

NURBS p = 2, with increasing number of Bézier per segment.

Table 9.3 Number of elements per segment for the 13 meshes.

Mesh Bézier elem. per seg. DOF

IC-1 1 24

IC-2 2 32

IC-3 3 40

IC-4 4 48

IC-5 5 56

IC-6 10 96

Displacements and Stresses

The numerical results obtained for both displacements and stresses show good agreement with the

analytical solutions. For this part of the study, only the finest mesh of each method was used, i.e., SC-6

and IC-6.
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Displacements Displacements were measured for different locations over segment 1 and both

methods are accurate compared to the analytical solution, as seen in Figure 9.3.

Figure 9.3 Displacements of the thick-walled tube discretization.

Stresses on the boudary Figures 9.4a and 9.4b show the results for boundary stresses along segment

1, using Standard BEM, while Fig. 9.5b illustrates the same for isogeometric BEM. Exact solutions for

σr and σθ are those from Eqs. (9.6) and (9.7), respectively.
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a) σR along segment 1.
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Figure 9.4 Boundary stress along segment 1 for standard BEM.
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Figure 9.5 Boundary stress along segment 1 for IGABEM.

Stresses at internal points Stresses at internal points were also calculated for both Standard BEM

and IGABEM. For comparing their results, three internal points were used (Table 9.4) and the results

for stresses σ11, σ22 and σ12 are in Table 9.5.

Table 9.4 Coordinates of internal points - cylinder.

Internal Point x y

1 0.0667 0.0333

2 0.0333 0.0667

3 0.0667 0.0667

Table 9.5 Stresses at internal points - cylinder.

Standard IGABEM

Internal Point σ11 σ22 σ12 σ11 σ22 σ12

1 -2.6672 69.3342 -48.0010 -2.6667 69.3336 -48.0002

2 69.3374 -2.6673 -48.0008 69.3336 -2.6667 -48.0002

3 33.3341 33.3342 -37.5009 33.3335 33.3335 -37.5001

A colour map with 154 internal points for the standard simulation is shown in Figure 9.6. Deformed

configuration was also plotted as the black line.
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Figure 9.6 Stresses in tube - numerical results (standard).

Mesh convergence

The last comparison for this example is regarding error. A mesh convergence for IGABEM was

performed for the cylinder, for radial displacements ur and stresses σr and σθ . Results are shown in

Figs. 9.7, 9.8 and 9.9.
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Figure 9.7 ur relative errors vs degrees of freedom for tube.
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Figure 9.8 σR relative errors vs degrees of freedom for tube.
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Figure 9.9 σθ relative errors vs degrees of freedom for tube.

9.2.2 Infinite plate with a hole

The second example of this part is an infinite plate with a circular hole, with a distributed tension P

along x direction, as shown in Figure 9.10. Geometric and material properties are in Table 9.6. It is

under plane-strain and 32 Gauss points are used for integration.
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Table 9.6 Geometric and material properties - plate.

Property Symbol Value

Radius R 50 mm

Young’s Modulus E 105 Pa

Poisson’s ratio ν 0.25

Distributed load P 1 N/mm

One important difference between the tube in Example 1 and the plate in Example 2 is related to

the stress state. While the former is considered under plane strain state, the latter is simulated as under

plane stress state. Boundary elements for these cases are based on the plane strain approach but can be

extended to plane stress if the elastic coefficients are replaced by the corresponding equivalent values.

This means that, for plane stress, fundamental solutions can be obtained by substituting Poisson’s ratio

and Young’s modulus as follows:

ν
′
=

ν

1+ν
(9.8)

E
′
= E

[
1− ν

′2

(1+ν
′
)2

]
(9.9)

So, after adjustment, mechanical properties of the plate become E ′ = 179520 and ν ′ = 0.2424.

Figure 9.10 Representation of the plate.

Figure 9.11 illustrates the plate with more details and shows the boundary conditions with segment
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numbers. The boundary conditions applied to segments 1 and 4 are known displacements, while

segments 2 and 3 are known tractions. Lastly, segment 5 is a free surface with traction equal zero.

Figure 9.11 Detailed representation of plate with boundary conditions.

This problem has an analytical solution for stress field as follows:


σ11(r,θ)

σ22(r,θ)

σ12(r,θ)

=


1− a2

r2 (
3
2 cos(2θ)+ cos(4θ)+ 3a4

2r4 cos(4θ))

−a2

r2 (
1
2 cos(2θ)− cos(4θ)− 3a4

2r4 cos(4θ))

−a2

r2 (
1
2 sin(2θ)+ sin(4θ)+ 3a4

2r4 sin(4θ))

 . (9.10)

where r and θ are the usual polar coordinates, centered at the center of the hole. Exact solutions for

displacement are given by:

 u1(r,θ)

u2(r,θ)

=

 10a
8G

{
r
a(κ +1)cos(θ)+ 2a

r [(1+κ)cos(θ)+ cos(3θ)]− 2a3

r3 cos(3θ)
}

10a
8G

{
r
a(κ −3)sin(θ)+ 2a

r [(1−κ)sin(θ)+ sin(3θ)]− 2a3

r3 sin(3θ)
}

 . (9.11)
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Lagrangian

Simulations for the infinite plate have results in good agreement with the exact solution. It is

possible to see in Figure 9.12 that numerical and analytical results are close.

Table 9.7 Number of elements per segment for the 5 meshes - plate.

Elem. per segment

Mesh 1 2 3 4 5 Total nodes DOF

SP-1 1 1 1 1 1 10 20

SP-2 2 2 2 2 2 20 40

SP-3 5 5 5 5 5 50 100

SP-4 10 10 10 10 10 100 200

SP-5 25 25 25 25 25 250 500

Isogeometric

As in the cylinder problem, 5 different meshes were also used for this problem (Table 9.8), with

degree p = 2.

Table 9.8 Number of elements per segment for the 5 meshes.

Mesh Bézier elem. per seg. DOF

IP-1 1 28

IP-2 2 58

IP-3 3 78

IP-4 4 118

IP-5 5 138



Chapter 9 Results 92

Displacements and Stresses

Figure 9.12 Displacements for the plate - Standard BEM.
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Figure 9.13 Displacements for the plate - IGABEM.

Displacements For this problem, tractions along segments 2 and 3 were calculated. The recovered

tractions from IGABEM match very well the exact solutions, as can be seen in Figs. 9.14a, 9.14b,

9.15a and 9.15b.
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Figure 9.14 Tractions along segment 2 for IGABEM
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Figure 9.15 Tractions along segment 3 for IGABEM

Stresses at internal points Stresses at internal points were also calculated for both Standard BEM

and IGABEM. For comparing their results, three internal points were used (see Tab. 9.9) and the results

for stresses σ11, σ22 and σ12 are in Tab. 9.10.
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Table 9.9 Coordinates of internal points - plate.

Internal Point x y

1 1.6667 1.6667

2 3.3333 1.6667

3 1.6667 3.3333

4 3.3333 3.3333

Table 9.10 Stresses at internal points - plate.

Standard IGABEM

Internal Point σ11 σ22 σ12 σ11 σ22 σ12

1 1.1314 -0.1314 -0.0900 1.1314 -0.1314 -0.0900

2 0.9532 -0.0396 -0.0905 0.9531 -0.0396 -0.0905

3 1.0828 0.0036 0.0329 1.0828 0.0036 0.0329

4 1.0420 -0.0420 -0.0225 1.0420 -0.0419 -0.0225

A colour map with 163 internal points for the standard simulation is shown in Figure 9.16. Deformed

configuration was also plotted as the black line.

Figure 9.16 Stresses in plate - numerical results (standard).
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9.2.3 Beam

In this example, consider a beam of dimensions L×D and unit depth, assumed to be in a plane

stress state. As in the previous examples, 32 Gauss points are used for integration. Figure 9.17 shows

the boundary condition for the cantilever beam. The parabolic traction, applied in the end of the beam

is described by

t2(y) =− P
2I

(
D2

4
− y2

)
, (9.12)

where I = D3/12 is the moment of inertia.

Figure 9.17 Cantilever beam [143].

Analytical solutions for displacements are:

u1(x,y) =− Py
6EI

[
(6L−3x)x+(2+ν)

(
y2 − D2

4

)]
(9.13)

and

u2(x,y) =
P

6EI

[
(3ν)y2(L− x)+(4+5ν)

D2x
4

+(3L− x)x2
]
. (9.14)

For stresses, the solutions are given by:

σxx(x,y) =−P(L− x)y
I

, (9.15)

τxy(x,y) =− P
2I

(
D2

4
− y2

)
, (9.16)
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and

σyy = 0. (9.17)

Geometric and material properties are shown in Tab. 9.11, whilst the five meshes are defined in

Tab. 9.12.

Lagrangian

Table 9.11 Geometric and material properties - beam.

Property Symbol Value

Length L 48

Radius D 12

Young’s Modulus E 3×107

Poisson’s ratio ν 0.3

Distributed load P 1000

Table 9.12 Number of elements per segment for the 5 meshes - beam.

Elem. per segment

Mesh 1 2 3 4 Total nodes DOF

SB-1 12 3 12 3 60 120

SB-2 16 4 16 4 80 160

SB-3 20 5 20 5 100 200

SB-4 40 10 40 10 200 400

SB-5 80 20 80 20 400 800
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Isogeometric

Table 9.13 Number of elements per segment for the 5 meshes - beam.

Mesh Bézier elem. per seg. Collocation points DOF

IB-1 1 12 24

IB-2 2 16 32

IB-3 3 20 40

IB-4 5 28 56

IB-5 10 48 96

Displacements Two sets of internal points were used for measuring the u1 and u2 displacements.

The first set of points, illustrated in 9.18a, consists of 14 points distributed along the y-direction, with

x = L/2 and y ∈ [−D/2,D/2]. The other set, 9.18b, consists of 16 evenly distributed points along the

length of the beam, i.e. x ∈ [0,L] and y = 0.

a) First set of internal points for the cantilever beam. b) Second set of internal points for the cantilever beam.

Figure 9.18 Two different sets of internal points.

For the lagrangian analysis, a mesh with 50 elements and 200 DOFs was used. Displacements were

measured and showed good agreement with the exact solutions from Eqs. (9.13) and (9.14). Firstly,

displacement in the x direction was measured and compared at the centre of the beam, i.e., for x = L/2.

Then, the normalized result was plotted as seen in Fig. 9.19a. Those displacements were obtained

from the first set of internal points, as in Fig. 9.18a. Secondly, displacements in the y direction were

computed at y = 0 along the whole length (x ∈ [0,L]), using the second set of internal points (Fig.
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9.18b). These displacements are depicted in Fig. 9.19b.
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Figure 9.19 Normalised displacements of the cantilever-beam for x = L
2

Stresses Afterwards, the stresses were numerically determined and then compared to analytical

solutions in Eqs. (9.15), (9.16) and (9.17). Both stresses used the first set of internal points in Fig.

9.18a, meaning that they were determined for x = L/2 along the entire height of the beam.
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Figure 9.20 Stress distribution for x = L/2 and y ∈ [−D/2,D/2]
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9.2.4 Cavity

The last example for validating the IGABEM code in elasticity is a circular cavity under internal

pressure in an infinite medium (Fig. 9.21). Once more, we compare the results from analytical solutions,

Standard BEM and IGABEM. It is a plane strain problem and integration is performed with 32 Gauss

points. Table 9.14 describes its geometry, internal points, material properties and load.

r = 3m r = 4m r = 6m r = 10m r = 20m

Figure 9.21 Circular cavity under internal pressure - internal points.

Exact solutions are known for this problem - radial stresses σr and radial displacements ur are

described in Eqs. (9.18) and 9.19, respectively.

σR =− pa2

r2 (9.18)

uR =
pa2(1+ν)

Er
(9.19)

Table 9.14 Geometric and material properties - cavity.

Property Symbol Value

Radius Ra 3 m

Young’s Modulus E 207900 Pa

Poisson’s ratio ν 0.1

Pressure P 100 Pa
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Lagrangian

Table 9.15 Number of elements per segment - cavity.

Elem. per segment

Mesh 1 2 3 4 Total nodes DOF

SC-1 1 1 1 1 8 16

Isogeometric

Table 9.16 Number of Bézier curves per segment - cavity.

Mesh Bézier curves per seg. Collocation points DOF

IC-1 1 12 24

Displacements and Stresses at internal points

For this example, coarse meshes are used for both Standard BEM and IGABEM, because even with

one element for each quarter of the circle, results are in good agreement with the analytical solutions.

Numerical values from Standard BEM and IGABEM can be seen in Tabs. 9.17 and 9.18, respectively.

It is seen that even with a low number of DOFs (16 for standard BEM and 24 for IGABEM), errors

are as low as 0.00099% for displacements and 0.00125% for stresses.

Table 9.17 Radial displacements on internal points - cavity.

R Analytical solution Standard BEM IGABEM

4 1.1904761905e-03 1.1904761904e-03 1.1904879886e-03

6 7.9365079365e-04 7.9365079365e-04 7.9367493192e-04

10 4.7619047619e-04 4.7619047619e-04 4.7621101083e-04

20 2.3809523810e-04 2.3809523810e-04 2.3810692715e-04
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Table 9.18 Radial stresses on internal points - cavity.

R Analytical solution Standard BEM IGABEM

4 -56.25 -56.8674679629 -56.2492985883

6 -25.00 -24.9144213220 -25.0009752794

10 -9.00 -8.9298621781 -9.0003949020

20 -2.25 -2.2284373006 -2.2501103171

Our conclusion is that, as expected for infinite domains, both Standard BEM and IGABEM are

accurate when comparing to the exact solutions. Some comparison with FEM, for instance, would be

interesting in this case.

9.3 Contact problems

9.3.1 Cattaneo-Mindlin problem

The chosen configuration for the Cattaneo-Mindlin problem is depicted in Fig. 9.22. It consists

of two elastically-similar bodies in frictional contact. The body is loaded with a normal force and a

tangential force while restricted at its central node in the x− direction in order to avoid gross slip and

the system turning into a mechanism. The body 2 is fully restrained on its bottom. For this model, plane

strain is assumed and integration is performed with 20 points. Parts of this section are reproductions of

the research paper Analysis of 2D contact problems under cyclic loads using IGABEM with Bézier

decomposition [144]. 1

Firstly, a normal load is applied. Then, this load is maintained constant while a tangential load is

cyclically applied. A depiction of the loading scheme is shown in Fig. 9.23.

1© 2022 Elsevier Ltd. Reproduced with non-commercial purposes.
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P

w

2.5w

w2.5w

Body 2

Body 1

R

R

Figure 9.22 Cattaneo-Mindlin - problem configuration.

As the two bodies have similar geometries, they are discretised in the same fashion and can be

thought as mirrored along the x−axis. Equivalent segments have the same number of elements, for

example, the segments in contact are discretised in the same way.

To easily compare results from conventional BEM and IGABEM, the mesh is discretised in a way

that both have the same number of node-pairs in the contact zone, i.e., NPc = 61.



Chapter 9 Results 103

Time

Qmax

−Qmax

Load

P

A

B

C

D

E

Normal Load (P )
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Figure 9.23 Cattaneo-Mindlin - loading scheme containing five steps (A-E).

In Figure 9.23, point A is when the normal load P reaches its final value, whereas point B is the

moment when the maximum tangential load is applied. Afterwards, tangential load starts to decrease,

passing through zero at point C and decreasing further. Point D is when the tangential load is in its

minimum value and, finally, point E is when the tangential load reaches zero again. Geometric and

material properties can be seen in Table 9.19.

Table 9.19 Cattaneo-Mindlin - Dimensions and material properties.

Property Symbol Value

Radius R 70 mm

Length w 6.5 mm

Young’s Modulus E 73.4 GPa

Poisson’s ratio ν 0.33

Pressure P 100 N/mm

Friction coefficient f 0.3

In this problem, both BEM and IGABEM have a finer mesh in segments that may be in contact.

Figures 9.24a and 9.24b show the meshes for BEM and IGABEM.
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a) BEM.
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Figure 9.24 Cattaneo-Mindlin - meshes for 61 node-pairs.

Tractions

Figures. 9.25a- 9.25d compare the tractions of conventional BEM and IGABEM with the analytical

solution for four out of five loading steps, B to E. Both normal and tangential tractions for BEM (tBEM
n

and tBEM
t ), IGABEM (tIGA

n and tIGA
t ) and analytical solutions (tA

n and tA
t ) are shown.

The vertical dimension of the two bodies is large enough (2.5w) to provide no tangential load in

the first step as demanded by the analytical solution. So tt ≈ 0 in the first step.

Displacements

Displacements fields in normal and tangential directions were measured and their results are

presented in this section. Figures (9.26a-9.26d) compare the displacements for BEM and IGABEM for

load steps 2 to 5.
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a) Load step B.
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b) Load step C.
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c) Load step D.
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Figure 9.25 Cattaneo-Mindlin - normal (tn) and tangential (tt) tractions comparison of IGABEM, BEM
and analytical results at four load steps (B-E).
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Only the displacements of node-pairs within the contact zone are shown. A good agreement

between the two methods is evident.

a) Step 2.
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Figure 9.26 Cattaneo-Mindlin - IGABEM and BEM normal (un) and tangential (ut) displacements
fields over contact surface for load steps (B-E).

The results are in good agreement. The maximum error is 4.104 % for shear tractions localised

in the frontier of the slip-stick region. In all other points, all curves are very close. Normal tractions

remain the same during the load steps while tangential tractions change.

Peak pressure p0 and contact half-width a comparison for different meshes

In this part, contact half-width (a) and peak pressure (p0) are compared for five different meshes.

For both BEM and IGABEM, the mesh remains the same in all but the contact surfaces. The first mesh

has 21 node-pairs, the second has 41 and they get more refined up to 101 node-pairs.

Starting with the peak pressure comparison, Table 9.20 shows data for the first time step, for
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each mesh. Analytical value for peak pressure is p0 = 698 MPa. Using the coarsest mesh, IGABEM

outperforms BEM when describing the maximum normal pressure. For other meshes, BEM and

IGABEM have almost similar errors and can be considered as equivalent. Also, the error does not

seem to decrease with mesh refinement over the contact area, fluctuating around 0.2%.

As observed in Table 9.21 and Figure 9.28, the half-width (a) error is more affected by mesh

refinement, as it starts around 45% and 42% with the coarse mesh and decreases to 1.21% and 0.14%

for BEM and IGABEM, respectively.

This behaviour reveals an advantage of IGABEM over BEM for the contact half-width even with

fewer degrees of freedom. Both are equivalent for modelling the maximum normal pressure.

Since Lagrange functions form polynomial shape functions, they cannot represent conic sections

such as circular arcs, for example. NURBS, on the other hand, can exactly represent circular arcs. In

the two examples, circular arcs are used for modelling the geometry. This fact makes IGABEM more

accurate when describing the geometry.
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Figure 9.27 Cattaneo-Mindlin - load step (A) normal pressure error comparison for different meshes.
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Table 9.20 Cattaneo-Mindlin - peak pressure (p0) comparison of IGABEM, BEM and analytical results
for different number of node-pairs.

Node-
DOFs DOFs

pairs BEM |εBEM(%)| BEM IGA |εIGA(%)| IGA
21 669.167 4.104 152 694.078 0.534 132
41 696.462 0.192 232 699.121 0.189 212
61 698.958 0.166 312 699.453 0.237 292
81 700.332 0.363 392 700.127 0.333 372
101 701.197 0.487 472 700.603 0.401 452

Analytical
p0 = 697.8025 MPa

Table 9.21 Cattaneo-Mindlin - contact half-width (a) comparison of IGABEM, BEM and analytical
results for different number of node-pairs.

Node-pairs BEM |εBEM(%)| IGABEM |εIGABEM(%)|
21 0.651 45.116 0.686 42.186
41 0.976 17.675 1.002 15.505
61 1.085 8.525 1.104 6.913
81 1.139 3.954 1.154 2.672

101 1.172 1.214 1.184 0.143
Analytical

a = 1.1860 mm
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Figure 9.28 Cattaneo-Mindlin - contact half-width (a) error comparison for different meshes.

BEM reaches 4.1037% error for peak pressure even with coarsest mesh, while IGABEM reaches

0.5338% for the same number of degrees of freedom. This shows how accurate the IGABEM is for

coarse mesh. The length of the contact area, on the other hand, seems to be highly affected by the

number of node-pairs over the contact segments. This was expected as we are considering a node-to-

node contact algorithm. With fewer node-pairs over the segment, the distance between them increases,
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making it difficult to accurately determine the contact area. To improve the accuracy for the length of

contact area with coarse mesh, the implementation of segment-to-segment contact algorithm is strongly

recommended.

Newton-Raphson’s Method error evolution

The generalised Newton method was successfully used for solving contact problems [97, 103, 140].

In this problem, it converged with less than 10 iterations for conventional and isogeometric BEM on

all steps, considering ε = 10−9.

Figures 9.30 and 9.29 present the error evolution for conventional BEM and IGABEM, respectively.

As expected, the first load step demands more iterations to converge. IGABEM needed 8 iterations for

convergence, while BEM needed 7.
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Figure 9.29 Cattaneo-Mindlin - Newton Method error evolution for conventional BEM.
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Figure 9.30 Cattaneo-Mindlin - Newton Method error evolution for IGABEM.

CPU time comparison

CPU time data presented in Table 9.22 shows that IGABEM incurs in higher computational cost,

as expected. This is due to the basis functions being more complex than conventional Lagrangian

polynomials. The data can be used to compare the amount of time needed for running the entire

problem and for solving all Newton’s method iterations as well.

BEM was faster and the ratio between BEM and IGABEM range from 41.17% for 21 node-pairs

to 53.08% for 101 node-pairs. Nonetheless, the most time-consuming problem to run was solved in

less than 9 seconds.

Table 9.22 Cattaneo-Mindlin - CPU time comparison.

Newton Method Entire problem

Node pairs BEM IGABEM BEM IGABEM

21 0.0246 3.0479 2.1057 5.1151

41 0.0942 3.0593 2.7981 5.3816

61 0.2111 3.1950 3.2974 6.0469

81 0.2780 3.4878 3.8804 6.9831

101 0.4967 3.9759 4.4349 8.3559
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9.3.2 Bulk stress problem

The bulk stress problem geometry is shown in Fig. 9.31. In this problem, tangential and bulk loads

are in phase with each other. Geometry, material and load properties are in Tab. 9.23. This problem is

considered under plane strain and integration is carried out with 20 Gauss points. Parts of this section

are reproductions of the research paper Analysis of 2D contact problems under cyclic loads using

IGABEM with Bézier decomposition [144]. 2

Table 9.23 Bulk stress problem - geometric and material properties.

Property Symbol Value

Radius R 70 mm

Width w 6.5 mm

Young’s Modulus E 73.4 GPa

Poisson’s ratio ν 0.33

Friction coefficient f 0.3

Pressure P 100 N/mm

Tangential load Q 15 N/mm

Bulk load B 15 N/mm

2© 2022 Elsevier Ltd. Reproduced with non-commercial purposes.
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Figure 9.31 Bulk stress problem geometry.

This configuration has been chosen because it is commonly used for fretting fatigue experiments

[122] , as shown in Fig. 9.32.

Figure 9.32 Detailed view of a fretting fatigue experimental setup. 1) roller, 2) dog-bone specimen, 3)
cylindrical pad and 4) pad holder.

In this problem, both BEM and IGABEM have a finer mesh in segments that may be in contact and

where the bulk load is applied. Figures (9.33a) and (9.33b) show meshes for BEM and IGABEM.
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a) BEM.
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Figure 9.33 Bulk stress problem - meshes for 61 node-pairs.

Tractions

Figures (9.34a-9.34d) show the normal and tangential tractions for BEM, IGABEM and analytical

results for steps B to E. There are 61 node-pairs over the contact segments but only those within the

contact are shown. Both normal and tangential tractions for BEM (tBEM
n and tBEM

t ), IGABEM (tIGA
n

and tIGA
t ) and analytical solutions (tA

n and tA
t ) are shown.

Although BEM and IGABEM perform similarly, it is difficult for IGABEM to accurately represent

the sharp edges on tangential traction tx. This is because the NURBS used as basis functions for

IGABEM are smooth as in Fig. 9.35.

Figure 9.35 Bulk stress problem - NURBS basis functions for 21 contact node-pairs.

Displacements

Similarly to the previous example, figures (9.36a-9.36d) compare the displacements for BEM and

IGABEM for load steps 2 to 5.

Only the displacements of node-pairs within the contact zone are shown. Both methods provide
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a) Load step B.
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b) Load step C.
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c) Step load D.
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d) Load step E.
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Figure 9.34 Bulk stress problem - normal (tn) and tangential (tt) tractions comparison of IGABEM,
BEM and analytical results at four load steps (B-E).
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similar results.

a) Step 2.
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c) Step 4.
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d) Step 5.
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Figure 9.36 Bulk stress problem - IGABEM and BEM normal (un) and tangential (ut) displacements
fields over contact surface for load steps (B-E).

Peak pressure p0 and contact half-width a comparison for different meshes.

Similarly to the previous example, peak pressure (p0) and contact half-width (a) are compared for

different meshes. Table 9.24 shows maximum normal pressure data for the first time step, for each

mesh. The exact value of peak pressure is p0 = 486.92 MPa. Error versus DOFs are depicted in Figure

9.37. Noticeably, the errors for both methods are small (less than 1%) for all meshes. Except for the

coarsest mesh, further refinement does not seem to have much influence on errors, as they start around

0.8 %, decrease and then fluctuate near 0.25 %.

The values of contact half-width, a, and the relative errors, ε , using the analytical solution as

reference are listed in Tab. 9.25 and show that the relative error is quite similar for both methods.
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The largest difference of 4.086% happens in the coarsest mesh, with IGABEM being more accurate.

IGABEM outperforms BEM for all but the last case, when BEM is 0.201% more accurate.

Figure 9.38 presents the error for contact half-width (a) as being highest with the coarsest mesh

(21 node-pairs) and then decreasing, increasing at 61 node-pairs and then decreasing even further. This

behaviour, also observed by [97], is due to the node-to-node approach where the contact half-width is

highly dependent on mesh refinement and on the location of the collocation points. In this study, for 41

node-pairs, a collocation point (at x = 1.6700 mm) gets closer to the exact value for the contact edge

(a = 1.6997 mm) and still is inside the contact zone. When refined to 61 node-pairs, collocation points

change and the closest collocation point (at 1.5455 mm) to the contact edge within the contact zone is

not as close as with 41 node-pairs.
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Figure 9.37 Bulk stress problem - load step 1 normal pressure error comparison for different meshes.
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Figure 9.38 Bulk stress problem - contact half-width (a) error comparison for different meshes.
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Table 9.24 Bulk stress problem - maximum normal pressure (tY ) and peak pressure (p0) comparison
for different number of node-pairs.

Node-
DOFs DOFs

pairs BEM |εBEM(%)| BEM IGA |εIGA(%)| IGA
21 490.876 0.812 204 483.394 0.724 182
41 487.104 0.038 324 488.021 0.226 302
61 487.988 0.219 444 488.204 0.264 422
81 488.240 0.271 564 487.869 0.195 542
101 488.317 0.287 684 488.218 0.267 662

Analytical
p0 = 486.9200 MPa

Table 9.25 Bulk stress problem - contact half-width (a) for different number of node-pairs.
Node-pairs BEM |εBEM(%)| IGABEM |εIGABEM(%)|

21 1.302 23.410 1.371 19.324
41 1.627 4.266 1.670 1.745
61 1.518 10.649 1.546 9.071
81 1.627 4.266 1.649 2.989

101 1.692 0.435 1.711 0.636
Analytical

a = 1.6997 mm

A similar scenario happens for this example. Both BEM and IGABEM show accurate results for

peak pressure even with coarse meshes, with errors ranging from 0.812% to 0.038%.

Newton-Raphson’s Method error

Figures 9.40 and 9.39 present the error evolution for conventional BEM and IGABEM, respectively.

In this example, IGABEM converges in 8 iterations for the first step, while BEM converges in 11. This

is not seen in example 1, where both needed the same number of iterations. After all steps, IGABEM

needed 23 iterations, while BEM needed 29.
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Figure 9.39 Bulk - Newton Method error evolution for conventional BEM.
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Figure 9.40 Bulk - Newton Method error evolution for IGABEM.

CPU time comparison

Similarly to the previous example, CPU time data presented in 9.26 shows that IGABEM has

higher computational cost. Times for the Newton method iterations and for the entire problem are

presented.

For this problem BEM was again faster and the ratio between BEM and IGABEM ranged from

33.05% for 21 node-pairs to 47.71% for 101 node-pairs. BEM and IGABEM codes took only 7.51

and 15.75 seconds, respectively, for running the entire problem.
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Table 9.26 Bulk - CPU time comparison.
Newton Method Entire problem

Node pairs BEM IGABEM BEM IGABEM
21 0.0635 2.9879 2.5296 7.6540
41 0.1614 3.1440 3.6625 8.2275
61 0.3188 3.5693 4.6125 10.4082
81 0.5772 3.9489 5.6883 11.9495
101 1.1958 4.8743 7.5147 15.7519

9.4 Fatigue life estimation

Parts of this section are reproductions of the research paper Numerical frameworks for fretting

fatigue life analysis: Modeling, validation and experimental comparison [120]. 3

Life evaluations results showing numerical estimation, Nest , versus experimental life, Nexp, are

plotted in a log-log form and using factors, m, equal to 1, 2 and 4, as seen in Fig. 9.41. Its is important

to emphasize that the reference line (m=1) is built from multiple data entries from experimental tests.

Results are shown for life estimations using Leq, Lσ and Lτ .

Overall, the results from the Titanium models have shown a higher accuracy. This is probably due

to higher stiffness and the slightly lower friction coefficient, which leads to a more stable contact zone

(higher normal pressure and lower friction force). The NTN-BEM and NTS-FEM results are almost

identical in most scenarios, while the STS-FEM is better and the DMT-FEM is the best. Nevertheless,

by employing Leq all results falls precisely into the factor 1 reference line. In fact, the difference for

the predictions of the aluminium life is so small that they become indistinguishable. For the Titanium,

life estimations with NTN-BEM and NTS-FEM models are slightly higher (3.21% and 5.98%).

All numerical simulations have been carried-out in the same Workstation (02 Intel® Xeon® E5-

2630 v3 with 8Cores at 3.2 GHz and 20Mb cache; and 196GB of available RAM). Herein, such a

high-capacity computer is employed to make sure that a simulation would not consume all processing

power available (bottleneck). It is important to emphasize that each framework can be run in a computer

with significantly lower specifications.

The costs in terms of processor usage, RAM usage and computation time are listed in Table 9.27.

The average processor usage, average memory bandwidth and computation time of a given simulation

are retrieved from the resource monitor of the operating system using the system registry. To ensure a

3© 2022 Elsevier Ltd. Reproduced with non-commercial purposes.
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Figure 9.41 Life predictions and comparison to experimental data: a) Aluminium; b) Titanium.

stable and uniform computational environment, all background processes are ended before the start of

a simulation. Moreover, each simulation is run individually and only the resources consumed in their

processing (.exe) are measured. The steps of construction of the stress load history, identification of

the critical plane, computation of τa, and the maximum normal stress, σn,max, and life estimation are

carried-out separately using a MATLAB code and they require a similar cost for all frameworks: in

average, 276s of computing time, using 15.2% processor capacity and 406MB of RAM.

The materials have shown no significant influence on the performance results. Nevertheless, a

comparison of the frameworks show drastic differences. For instance, the NTN-BEM framework shows

Table 9.27 Performance parameters for each framework and material configuration.
Framework Parameter Al7050-T7451 Ti-6Al-4V

Processor usage (%) 13.3 14.1
NTN-BEM RAM usage (MB) 773.3 833.5

Computation time (s) 178.0 177.0
Processor usage (%) 25.7 24.3

NTS-FEM RAM usage (MB) 334.2 328.7
Computation time (s) 131.0 127.0
Processor usage (%) 23.7 24.8

STS-FEM RAM usage (MB) 341.7 346.0
Computation time (s) 133 131
Processor usage (%) 32.6 34.1

DMT-FEM RAM usage (MB) 501.3 509.7
Computation time (s) 128.0 126.0
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the lowest processor usage, but the highest RAM usage. For that matter, they will be used as reference.

The NTS and STS frameworks show a similar performance. They both require a processor usage of

two times that of the NTN-BEM, approximately 51% of the RAM usage and a 26% less time. The

DMT-FEM method shows the highest processor usage (+42%), but the lowest time (-61%) while

requiring 37% of the RAM used by the NTN-BEM. When using a computer powerful enough, most

users neglect the processing cost as long its lower than what is available. In fact, the highest level of

processor usage observed in this study is close to one-third of the total capacity available. However,

when compared, the NTN-BEM shows a process usage less than half (14.1%) of the DMT-FEM

(34.1%). This means that one could run a numerical model with a much more refined mesh using the

NTN-BEM while achieving a better representation of the problem and maintaining a lower comparative

cost. Nevertheless, the implementation of NTN-BEM in MATLAB required considerably more RAM

which can become much worse when using a more refined mesh.



10 Conclusion and final remarks

This work presented an isogeometric formulation for modelling elasticity and contact problems in

two-dimensional domains. They were also compared to analytical and BEM solutions. Furthermore,

for fretting fatigue life prediction, boundary elements results were compared with finite elements,

where their stress histories were used as an input for the Fatemi-Socie failure criterion.

Isogeometric analysis allows more accurate computation of stress and strain than standard BEM.

Using NURBS instead of polynomials as a basis for approximation of geometry and unknown fields

presents advantages such as higher results accuracy and less time invested by engineers due to a

simplification or even elimination of meshing.

Despite being harder to implement, IGABEM can be adapted to regular BEM codes if Bézier

decomposition is used. Bézier decomposition is achieved by inserting repeated knots in the knot vector

until they reach a multiplicity equal to the curve’s degree.

The examples make clear that the proposed approach is more accurate when compared to quadratic

elements, even with a coarser mesh. For the pressurised cylinder, IGABEM had a smaller error than

BEM considering the same of DOFs. Radial displacements errors ur were 3 times smaller in IGABEM

considering the coarsest mesh, whereas 33 times with the finest one. When it comes to σθ error,

IGABEM was 89 times more accurate with the coarsest mesh.

The proposed method also showed good agreement on the infinite plate with a hole and on the

beam. BEM presented a good accuracy as well, as seen on the figures comparing numerical results

and analytical results. In these examples, it is noticeable that the isogeometric method can use coarser

meshes and still perform well.

Section 9.3 showed somepresented several contact problems, starting with a cylinder to cylinder

contact. This model had normal and tangential loads applied as depicted in 9.23. BEM and IGABEM

behaved similarly for this case, with the latter being more accurate in terms of contact peak pressure

using 21 node pairs (4.104% versus 0.534% error). IGABEM was also closer to the analytical solutions
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for contact half-width in every scenario (from 21 to 101 node pairs).

A second contact problem was modelled as a specimen under a fretting rig configuration. BEM was

again faster to compute than IGABEM in this case, but they used 29 and 23 iterations for convergence,

respectively. The isogeometric approach was more accurate in terms of contact peak-pressure and

contact half-width. In some cases, BEM had a slighter better tx agreement with analytical solutions.

This happened because NURBS used in IGABEM are smooth and presented some difficulties in

representing sharp edges.

Section 9.4 presented fatigue life estimation using the stress history obtained from different

methods, namely NTN-BEM, NTS-FEM, STS-FEM, and DMT-FEM. After obtaining the stress history

using these frameworks, a code was used to determine the shear stress amplitude and the maximum

normal stress of aluminium and titanium specimens. BEM was the most affordable method in terms

of processor usage (13.7% on average), whereas NTS-FEM used 25%, STS-FEM used 24.3%, and

DMT-FEM, 33.4%. RAM usage, on the other hand, was costlier in BEM. It needed 803.4 Mb on

average, against 331.5, 343.9, and 505.5 Mb for NTS-FEM, STS-FEM, and DMT-FEM, respectively.

All methods presented a good representation of normal, shear, and bulk stress. Furthermore, life

estimation using a calibrated L-N curve showed good agreement with experimental data, as all Nest

were within m = 4 error band and most were within m = 2. Results using an equivalent critical distance,

Leq, have demonstrated that a precise estimation can be obtained.

10.1 Recommendations for future work

Some alternatives for future work based on this thesis arise, such as studying enriched formulations

or knot repetition on contact edges. These could increase even further the method’s accuracy, as

some sharp edges were difficult to obtain using NURBS. Another possible continuation is to model

anisotropic materials, as some components are cast as a single-crystal, and they are anisotropic.

Expanding the code to model three-dimensional problems is also a suggestion, as the isogeometric

approach has the advantage of linking CAD and analysis. 3D models are more complex and demand

a considerable amount of time for meshing and remeshing. Therefore, it would be a significant

contribution. Furthermore, adding a surface-to-surface or dual mortar method would be a great

contribution, as it would provide more accuracy for more complex problems.
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