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ABSTRACT

Title: Synchronization of Underactuated Chaotic Systems with Applications to Information
Security

Author: Juan Carlos Gonzalez Gémez

Supervisor: José Alfredo Ruiz Vargas, Prof. Dr.

Graduate Program in Electrical Engineering

Brasilia, June 30th, 2023

Recently, several studies on the synchronization of chaotic systems have been published.
Generally, synchronizers in which control is present in all the state equations of the slave sys-
tem are widely found in the literature. On the other hand, works on secure communication
based on minimal synchronization are very rare. Motivated by the improvement possibilities,
this doctoral thesis proposes multiple synchronization schemes for chaotic and hyperchaotic
systems, where each system has a different proofing methodology, structure, and encryp-
tion and decryption process in secure communication. Consequently, each system has a
different contribution. Chapter 3 proposes a projective synchronization and antisynchroniza-
tion scheme based on underactuated control. The scheme is characterized by guaranteeing
the boundedness and convergence of the projective synchronization or antisynchronization
errors using the Lyapunov theory. Chapter 4 proposes an underactuated synchronization
scheme of a hyperchaotic financial system capable of considering bounded disturbances of
any nature. The system design uses Lyapunov theory to ensure that the system is robust.
Chapter 5 proposes a synchronizer based on a Liu chaotic system. It uses a signal of an
underactuated control based on Lyapunov theory to synchronize all states in the presence of
perturbations with bounded errors. It has a convenient structure, in conjunction with a non-
trivial Lyapunov candidate, to allow synchronization with only a control signal in the second
state equation of the slave system. In Chapter 6 of this thesis, the author proposes a simple
synchronization scheme for the Chua circuit, considering perturbations, with proportional
control in only one of the state equations of the system. In addition, a secure communication
scheme with parallel encryption is shown, in which the dimension of the messages is the
same as the dimension of the states. Chapter 7 proposes a robust underactuated synchro-
nization of a hyperchaotic Lorenz system. Furthermore, the proposed scheme is applied in
secure telecommunications. Finally, Chapter 8 proposes an underactuated synchronization
scheme for a perturbed hyperchaotic system using an alternative Lyapunov proof. The pro-
posed approach is minimal in the way that the synchronizer is simplified to the maximum
since the control is scalar and acts in only one state. The proposed schemes in all chapters

consider the presence of disturbances in all states in the stability analysis.

Keywords: Chaotic and Hyperchaotic Systems, Lyapunov Methods, Systems Synchronyza-
tion, Underactuated Systems.



RESUMO

Titulo: Sincronizacdo de Sistemas Cadticos Subatuados com Aplica¢des para Seguranga da
Informacao

Autor: Juan Carlos Gonzdlez Gémez

Orientador: José Alfredo Ruiz Vargas, Prof. Dr.

Programa de Pos-Graduaciao em Engenharia Eléctrica

Brasilia, 30 de junho de 2023

Recentemente, varios estudos sobre a sincronizagdo de sistemas cadticos foram publi-
cados. Geralmente, na literatura, encontram-se sincronizadores onde o controle estd pre-
sente em todas as equacdes de estado do sistema escravo. Por outro lado, trabalhos sobre
comunicacdo segura baseada em sincronizacdo minima sdo muito raros. Motivado pelas
possibilidades de melhoria, esta tese de doutorado propde multiplos esquemas de sincroni-
zagdo para sistemas cadticos e hipercadticos, onde cada sistema possui uma metodologia de
prova, estrutura e processo de criptografia e descriptografia distintos na comunicagdo segura.
Consequentemente, cada sistema tem uma contribuicao diferente. O capitulo 3 propde um
esquema de sincronizagdo e antissincronizacao projetiva baseado em controle subatuado. O
esquema ¢ caracterizado por garantir a limitacdo e a convergéncia dos erros de sincroni-
zacdo ou antissincronizacdo projetiva usando a teoria de Lyapunov. O capitulo 4 propde
um esquema de sincronizacido subatuado de um sistema financeiro hipercadtico capaz de
considerar distirbios limitados de qualquer natureza. O projeto do sistema usa a teoria de
Lyapunov para garantir que o sistema seja robusto. O capitulo 5 propde um sincronizador
baseado em um sistema cadtico de Liu. Ele usa um sinal de controle subatuado baseado na
teoria de Lyapunov para sincronizar todos os estados na presenca de perturbacdes com erros
limitados. O sistema apresenta uma estrutura conveniente, aliada a uma funcao candidata
a Lyapunov ndo trivial, para permitir a sincronizacdo com apenas um sinal de controle na
segunda equacdo de estado do sistema escravo. No capitulo 6 desta tese, o autor propde um
esquema simples de sincronizagdo para o circuito de Chua, considerando perturbagdes, com
controle proporcional em apenas uma das equagdes de estado do sistema. Além disso, € mos-
trado um esquema de comunicagdo segura com criptografia paralela, em que a dimensao das
mensagens ¢ a mesma que a dimensao dos estados. O capitulo 7 propde uma sincroniza¢ao
subatuada robusta de um sistema hipercadtico de Lorenz. Adicionalmente, o esquema pro-
posto € aplicado em telecomunicagdes seguras. Finalmente, o capitulo 8 propde um esquema
de sincronizagdo subatuada para um sistema hipercaético perturbado usando uma prova al-
ternativa de Lyapunov. A abordagem proposta ¢ minima na forma que o sincronizador é
simplificado ao maximo, uma vez que o controle € escalar e atua em apenas um estado. Os
esquemas propostos em todos os capitulos consideram a presenca de distirbios em todos os

estados na analise de estabilidade.

Palavras-chave: Sistemas Cadticos e Hipercadticos, Métodos de Lyapunov, Sincronizac¢io
de Sistemas, Sistemas Subatuados.
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INTRODUCTION

1.1 THESIS MOTIVATION

Recently several studies have been reported in the literature concerning the synchro-
nization of chaotic systems [1]. This interest is motivated, for example, by applications in
secure telecommunications [2]. In more detail, consider two chaotic master (transmitter) and
slave (receiver) systems, then secure encrypted communication proceeds when the signal to
be transmitted is encrypted in the transmitter system and decrypted in the receiver system,
which happens when both systems synchronize. Generally, synchronizers where control is
present in all state equations of the slave system are widely found in the literature [3-5]. Less
frequently, chaotic master-slave synchronization schemes have been found in the literature
where control is present in at least two state equations in the slave system [6—8]. Synchro-
nizers based on, for example, adaptive control, sliding, backstepping, etc. have been used
in these schemes [3,5,7-9]. However, all the works cited have limited application because
they assume that the disturbances and the control appear in the same equations of state [1]. In
addition, another restrictive assumption that is intended to be mitigated in this work is to con-
sider at least two control signals to synchronize the systems. Motivated by the background,
this work proposes a robust scheme for synchronizing a class of underactuated hyperchaotic
systems. The proposed method is based on Lyapunov theory, and the initial synchronization

error is assumed to be small to simplify the structure of the synchronizer.

1.2 JUSTIFICATION

Chaos theory is widely studied by experts in the field of chaos control. This field can
be divided into two research areas: chaos suppression and chaos synchronization. In the
last few decades, chaotic synchronization has become a subject of study due to its potential
applications in disciplines such as chemical reactions, power converters, aerospace, signal
processing, physical lasers, secure communications, satellite systems, and biological systems
[10, 11]. Chaotic synchronization consists of making several chaotic systems coincide and

converge on the same trajectory after a sufficient time [12].

The general idea of chaotic synchronization used in secure communications is as follows.
First, the transmitter encrypts the information using a chaotic system. In turn, the encrypted
information is sent over a public communication channel so that it can be received by the

receiver. The receiver, in turn, uses synchronization to recover the original message from the



encrypted information. A general scheme is shown in Figure 1.1.

(" Trnsmitter ) ( Receiver
Encrypts the Decrypts the message
message with the by synchronizing the
\ chaotic system ) | chaotic svstem )
s b

Figure 1.1 — General scheme of secure communication using chaotic synchronization.

1.3 PROBLEM DESCRIPTION

In the scenario where there is a master or controller system and a slave (or response) sys-
tem, there are several approaches to synchronization, including full synchronization, inverse
full synchronization, projective synchronization, generalized projective synchronization, hy-
brid projective synchronization, antisynchronization, as shown in Figure 1.2, these types will
be detailed in section 1.6.3 below, cited in [12—14]. Even different types of synchronization
can coexist when synchronizing two systems, as in [13]. The more complex the type of

synchronization, the more suitable its application in secure communications [14].

To realize a chaotic synchronization, it is necessary to use some control technique, Figure
1.3 represents some of the control techniques that have been applied, we will cover both
integer and fractional order. This thesis addresses the problem of synchronization and secure

communication of a generic class of underactuated chaotic systems.



Chaos Control

Synchronization Suppression

Complete
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Antisynchronization
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Projective
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Figure 1.2 — Most commonly used types of synchronization.

Control techniques
__— Used to perform chaotic synchronization between —
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Adaptive Control

Figure 1.3 — Control techniques used to perform chaotic synchronization between integer or
fractional chaotic systems.
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14.1

THESIS OBJECTIVES

General objective

Design of a robust synchronizer using a simple control strategy for a generic class of

chaotic systems and considering the presence of limited disturbances in all states.

1.4.2 Specific objectives

1.5

1.5.1

Development of a new proof methodology to be used in synchronization problems
for hyperchaotic systems in which disturbances are present in all states and only one-

dimensional control is available.
Application of the synchronization techniques developed for secure communication.
Perform a stability analysis based on Lyapunov theory to design the synchronizer.

Evaluate the synchronization performed through simulations in Matlab/Simulink and

applications using analog electronics.

Make a comparison between the proposed algorithms and others in the literature.

CONTRIBUTIONS OF THE THESIS

Main contribution

This thesis work presents a synchronization, and secure communication of a generic
class of under-actuated chaotic systems, this is one of the main contributions of this

doctoral thesis in the area of chaos-based cryptography.

Proposal of a robust scheme for minimal underactuated synchronization with applica-
tion to secure communication. Lyapunov stability theory is used to ensure the bound-

edness of the synchronization error.

The proposed approach is minimal in that the synchronizer is simplified as much as
possible since the control is scalar and proportional. In addition, it considers the pres-

ence of disturbances in all states in the stability analysis.
The slave system does not have to meet matching condition.

The proposal of an underactuated projective synchronization and antisynchronization
scheme of a chaotic system in which it is theoretically proven that the synchronization

error is limited even in the presence of external and internal disturbances.
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* Synchronization schemes have been applied for secure communications, where there

is encryption and decryption of messages.

* Most of the proposed control schemes are as simple as possible, with a proportional
control signal sufficient to synchronize even chaotic and hyperchaotic systems. This
feature makes it easy to use these synchronization and encryption schemes in practical

applications.

* Validation of the proposed schemes through extensive simulations with Matlab/Simulink

software.

* It is shown by simulations that it is possible to validate the state estimation even for
chaotic and hyperchaotic systems, and even in the presence of disturbances, demon-

strating the robustness of the proposed methods.

1.6 STATE OF THE ART

A review of the literature is presented that covers the main aspects of this research. To
begin, we review synchronization techniques applied to underactuated chaotic systems. Even
though full synchronization is not the most suitable for secure communication applications,
most of the reviewed studies employ it. It is important to work with other types of syn-
chronization, such as projective, generalized projective, antisynchronization, or combined
synchronization. Research their advantages and disadvantages compared to full synchro-
nization. Subsequently, the analysis becomes more specific by considering the information
in the literature, this work is initially in charge of analyzing some types of synchronization
associated with a classical communication scheme with security for chaotic systems of a
generic class. Some cases of synchronization of a class of chaotic systems have been studied
based on Lyapunov stability theory in the area of chaos-based cryptography, new under-
actuated synchronization schemes are proposed that are capable of synchronizing chaotic

and hyperchaotic systems.

1.6.1 Chaos

Chaos is a concept used to describe the complex behavior of deterministic dynamical
systems when it is aperiodic and extremely sensitive to initial conditions, cited by [15];
However, since the studies of Ott, Grebogi, and Yorke (OGY) presented in [16] and by Pec-
ora and Carrol in [17], However, since the studies of Ott, Grebogi y Yorke (OGY) shown in
Pecora and Carrol, who first considered methods to control chaos, from then on the scientific

community started a quest to find possible applications for chaos. Due to its unpredictable



behavior, secure communication emerged as one of its main applications; since then, im-
portant advances have been made in chaos theory and it is currently being studied for its
applications in control, biomedical engineering, secure communication, optimization, and
cryptography, among others [18]. In 1997 they presented a security scheme that combined
cryptography and chaos, cited in [19], thus generating a chaotic cryptosystem. Associated

with these secure communication schemes are synchronization techniques.

The study of chaotic systems is of great interest because the phenomenon of chaos oc-
curs in important dynamic systems or processes such as in [20-22]. A chaotic system is
dynamic and extremely sensitive to its initial conditions, so its behavior is practically unpre-
dictable. This means that the trajectories of the variables (states) of the system, with certain
initial conditions, are very different from the trajectories corresponding to a small change
in these initial conditions, as in the case of fluid turbulence, in meteorological dynamics, in
some biological processes, among others. In [23], a projective synchronization algorithm
based on Lyapunov stability theory has been proposed for a Chen system subject to bounded

disturbances.

Chaos control consists of designing strategies that allow chaotic systems to be assigned
the desired dynamics. There are two basic problems in chaos control: chaos suppression and
chaos synchronization. Chaos suppression is the stabilization of the trajectories of a chaotic
system around some equilibrium point or in a periodic orbit and is important because the
erratic oscillations of a chaotic system are unpredictable and they can cause damage. Chaos
suppression is currently being studied in the treatment of heart disease and epilepsy, in laser

systems, in mechatronics, and others, shown in [24-27].

Dynamical systems with chaotic behavior are getting more and more attention from re-

searchers as in [28-31]. Thus, the author Strogatz defines chaos as follows.

Definition 2.1: Chaos is noticed when a deterministic system exhibits aperiodic behavior
that depends sensitively on the initial conditions, thus making it impossible to predict its

future state.

* Deterministic system: It implies that the equations of the dynamic system have no
random inputs or parameters the erratic behavior of the system stems from its nonlinear

dynamics.

* Aperiodic behavior: It implies that there are no trajectories in phase space that settle
into fixed points or periodic orbits. Furthermore, the trajectories must be bounded;

they must not tend to infinity.

* Sensitivity to initial conditions: It implies that trajectories that are close together
in phase space initially separate exponentially fast in time, the system has a positive

Lyapunov exponent.



1.6.2 Synchronization techniques

This section is focused on work that performs synchronization of underactuated chaotic
systems where various control techniques have been used to perform synchronization be-
tween two chaotic systems. In the current literature, several techniques are presented ac-
cording to the type of control, method, or laws used, and a brief description of each one. In

Figure (1.4), a schematic of the reviewed synchronization techniques is presented.

Synchronization techniques

Pure Hybrids

Laplace transform and linear
Lyapunov functions stability theorem for
fraccionary systems

| | Linear stability theorem for Fuzzy control and sliding
fractional systems mode control
Sliding Mode Control Fuzzy adaptive control

Adaptive Control

Diffuse control

Stability Theorem in Finite
Time

Figure 1.4 — Schematic of synchronization techniques. Pure refers to the use of a single
technique. Hybrid refers to the combination of pure techniques.

The synchronization phenomenon can be induced artificially using a control action. Some
examples of controlled synchronization can be observed, such as telecommunications sys-
tems, whose transmission and reception systems must operate synchronously, autonomous
production lines, electrical circuits, and mechanical systems, among others. The key ingre-
dient for the synchronization phenomenon to exist is that there must be a medium, called
coupling, through which systems transfer energy to each other until their rhythms are ad-
justed [32].

Lyapunov functions have been used for control design. These must satisfy the Lyapunov
condition to achieve synchronization, cited in [33]. The main challenge in this type of ap-
proach is to find the candidates for Lyapunov functions that satisfy the required condition.
This control has been employed for full synchronization, inverse complete (IC), antisyn-
chronization (AS), inverse projective hybrid complete (IPHEC), and anti-phase (S-9) cited
in [11,13,34-36].

Another widely used approach is based on the linear stability theory of fractional sys-
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tems. This theory is an extension of the classical theory of linear stability [37]. This control
has been used in full synchronization (C), hybrid full projective (PHEC), IPHEC), general-
ized (GA), and (S-0), cited in [10, 13,34, 35,38-40].

Recently, papers have been published betting on sliding mode control as in [11, 41],
this is a nonlinear control method. It essentially consists of taking the system states over a
certain surface in state space and forcing them to evolve over it. Such a surface is called
a sliding surface. This type of control has been used in generalized complete (CMB) and

robust synchronization, cited by [11,41].

Other studies opt for the combination of Lyapunov functions and linear stability theory
of fractional systems, shown in [13,35]. With this hybrid control they achieved full synchro-
nization (C), full inverse (IC), anti-synchronization (AS), and full state hybrid projective
(PHEC), cited by [13,35]. Another study proposes a hybrid control whose novelty is to com-
bine a fuzzy control with adaptive sliding mode control. Their objective is to eliminate the
difficulties encountered when only sliding mode control is used. In addition, they work with
systems that present external disturbances. They have synchronized fully projective (CMB),

generalized projective (GP), and antiphase projective (AFP) [42].

An additional proposal is to use fractional linear stability theory together with fuzzy
adaptive control [43]. This study provides a generalized fuzzy Takagi Sugeno (T-S) sys-
tem that can uniformly approximate any continuous function on a compact set with random
precision using the Stone-Weierstrass theorem. This hybrid control has been successfully
applied to chaotic fractional systems with external disturbances and synchronized saturated

inputs in a generalized projective manner (GP) [43].

Adaptive control has also been cited in [44]. It has the ability to adjust to deal with model
uncertainties and worked with the assumption of having unknown external disturbances and
only performed a full synchronization. Another proposal opts for fuzzy control, which has
proven to be an effective control strategy, robust and can work with uncertain parameters,
cited by [45-48]. Based on the generalization of the T-S fuzzy model, in [45] provide a
stability condition for synchronizing chaotic fractional systems. This control has been used
for (C) synchronization, (AS), (G), and (GP) synchronization. Finite-time stability theory for
fractional order systems was proposed by [49], studies that opt for this approach use a finite-
time stability theorem to stabilize the error of the complete and combined synchronization at
a finite time, shown by [50-52].

In addition, we find works that combine some of the previously mentioned controls. In
this document we will call them hybrid controls. One such hybrid control combines the
Laplace transform with linear stability theory for fractional systems. This proposal consists

of applying the Laplace transform to the slave system, performing some operations, and then



applying the inverse Laplace transform. Following these transformations, control is derived
through linear stability theory of fractional systems. This control has been used to realize

(C) synchronization, (G), and (GI) synchronization, according to [34,53, 54].

Considerable advances have recently been made in the area of chaotic systems. Chaotic
systems are deterministic systems with aperiodic nonlinear behavior and are sensitive to ini-
tial conditions, as in [55]. A necessary condition for a system to be considered chaotic is
that at least one Lyapunov exponent is greater than zero, according to [56]. Chaotic sys-
tems have been used in many areas; the following are some of them such as biology [57],
chemicals [58], non-linear identification [9, 59], observation [3-5], welding [60] and secure

communication [2,50].

In recent years, several studies have been reported in the literature on the synchroniza-
tion of chaotic systems, shown in [2]. More specifically, chaotic system synchronization
considers two chaotic master and slave systems. The synchronization of chaotic systems
was first reported in 1990 by [17]. Many classes of synchronization have since been pro-
posed, such as (AS) [61], delay synchronization (SPA) [62], (P) projective synchronization,
cited in [11,63, 64]. Several articles have been published on the subject of antisynchroniza-
tion in [65, 66], dedicated to the investigation of the coexistence of (AS) and (C) synchro-
nization of two identical Lu hyperchaotic delay systems through partial variables. Based
on Lyapunov stability theory and cited by [67] discussed the (P) synchronization function
of the financial function chaotic system with external disturbances. At [68] introduced a
new chaotic finance system, which is a model of a complex economic system, and discussed
its control using adaptive control theory. At [69] a new secure and chaotic communication
system has been announced. Among other issues, in [70] a new 4D hyperchaotic system
with two quadratic nonlinearities was introduced and its (A) adaptive synchronization via

Lyapunov stability theory was discussed.

Motivated by this information above, in the next section, we review some types of syn-
chronization associated with a classic secure communication scheme, where each of which

will be analyzed in later chapters.

1.6.3 Synchronization of Underactuated Chaotic Systems

* Projective synchronization and antisynchronization.: Antisynchronization is a kind
of synchronization in which its associated errors lie in the addition of the master and
slave states, consult [71,72] for more details. However, most works on this subject
consider full-state actuation to have a negative impact on the structure of the synchro-
nizer, which in turn increases the implementation cost and computational burden in

analog and digital implementations, respectively.

Furthermore, different types of synchronizers based on full state control are mainly
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found in the literature, see for example [5,9]. Less frequently found in the litera-
ture are chaotic master-slave synchronization schemes in which control is present in
at least two state equations [6—8]. Synchronization (P) lies in the proportional syn-
chronization of the trajectories of the master and slave systems. The state of the slave
system follows the state of the master system by a ratio defined by a scale factor a.
This factor defines different types of synchronization, such as: (P) synchronization
(a is a non-zero constant), (MP) modified projective synchronization (« is an array);
(FP) function projective synchronization (« is a function), (I) identical synchroniza-
tion (o = 1), (ASP) projective antisynchronization (« s negative) and (AF) anti-phase
synchronization (&« = —1). Note that (P) synchronization is valuable because it allows
the synchronization of chaotic systems operating at different amplitudes and increases

the security of the encoding in a simple form.

In these works, synchronizers based on adaptive control, sliding and backtracking are
used , cited in [5-9]. However, they all have the peculiarity of assuming that distur-
bances and control appear in the same equations of state. Some projective synchro-
nization methods can be found in the literature [73, 74]. However, in [73] was not
considered an under-acting control. On the other hand, in [74] was considered an
under-actuated control methodology, but no disturbances were considered. Motivated
by the above facts, in chapter 3 a projective synchronization and antisynchronization
algorithm based on Lyapunov theory for an underactuated chaotic system subject to

disturbances is proposed.

Hyperchaotic Financial System: Chaotic systems are deterministic nonlinear sys-
tems with aperiodic behavior and sensitive dependence on initial conditions , cited
in [55]. Many papers propose new chaotic systems that have been proposed in the
literature, all of which are cited in [70, 75, 76]. On the other hand, work related to
hyperchaotic systems has increased in recent years. Hyperchaotic systems must have
at least two positive Lyapunov exponents, and their dimension must be greater than
three, as commented in [77]. Many works propose new hyperchaotic systems that

have recently appeared in the literature and are cited in [78-80].

On the other hand, chaotic and hyperchaotic systems have been applied in many dif-
ferent fields, including economics [79, 81], non-linear identification [59, 82], observa-
tion [9, 83], adaptive synchronization [3, 5], welding [84, 85] and secure communica-
tion, cited in [50,75, 86—89].

Most of the works proposed in the literature also have shortcomings, because in or-
der to perform the synchronization they usually need to control all dimensions of
the chaotic system, analyzed in [8§7-89], that is, they add a control signal in each of
the differential equations, another shortcoming is that synchronization algorithms usu-

ally do not consider internal and external disturbances in the stability analysis, shown

10



in [73,90,91], that may arise due to un-modeled dynamics (due to tolerances and non-
optimal component behavior), heating, and electromagnetic noise. Therefore, it is of
utmost importance that disturbances are predicted in the analyses done to ensure their
robustness in cases of practical application. Therefore, in chapter 4 based on Lya-
punov theory, an underactuated synchronization scheme of a hyperchaotic financial

system capable of taking into account disturbances of any nature is proposed.

Chaotic cryptography with non-trivial candidates:

Security is becoming more and more relevant every year. Information systems, databases,
distributed systems, and Internet communications are becoming more and more preva-
lent in the business world. Attacks on information are becoming increasingly sophis-
ticated and commonplace. Thus, many organizations have recognized that it is crucial

to have a comprehensive security strategy.

One option for increasing the level of security lies in using pseudo-random chaos be-
havior to encrypt information. This form of cryptography has recently spurred a great
deal of interest in various industries, cited in [1,47,71,73,74,87,90-93]. However,
this is a challenging problem, since the synchronization of chaotic systems, required
for secure communication, involves knowledge of different subjects, including nonlin-
ear control and electronic circuit design. In particular, it is crucial to select a suitable
candidate Lyapunov function in the synthesis phase to obtain the desired stability and
convergence properties for the synchronization algorithm, which may be non-trivial.
Synchronization involves forcing the trajectories of two or more systems to behave

similarly over time [32,94] which can be a non-trivial problem.

Interesting contributions to analog chaos-based cryptography were introduced in [47,
71,73,90,91,93,95]. However, a full state synchronization was only considered in
[73,90,91], with a negative impact on both cost and computational load. At [47,71],
The presence of disturbances in the stability analysis was not considered. At [95],
stability analysis in the presence of disturbances was performed, but with a structurally
complex synchronizer as in [47,93].

Based on the previous facts, in the chapter 5 a chaotic system is proposed by Liu, cited
in [96]. However, in contrast to [47,71,73,90,91,93,95], it uses an underactuated con-
trol, and the presence of disturbances is considered in the stability analysis to ensure

robustness against limited internal and external disturbances.

Chaos Synchronization Applied to Parallel Cryptography:

Analog cryptography consists of an application of chaotic systems that allow the en-
cryption of information due to its nonlinear and pseudo-random behavior. In secure
telecommunications, two chaotic systems are needed to fulfill the communication pro-

cess, a transmitter (also known as the master) and a receiver (slave). The master system

11



is used to encrypt information, while the slave system is used to decrypt it. Both sys-

tems must be synchronized for the communication process to be effective [2].

In [97], a control that uses only one signal was suggested, although they also did not
consider the disturbance in the equations. A synchronization method with applicabil-
ity in Chua’s circuit was presented by [98]; However, the complexity of the method
limits its practical application. At [99], a communication model with synchronization
has been proposed using two channels based on sliding mode control, but also with-
out considering disturbances. At [100], three types of synchronization were proposed
where control is applied to only one of the state equations; however, no disturbance
was considered in the system equations, this limits the applicability of the system in

the presence of internal and external disturbances.

A secure synchronization and communication scheme uses a single control signal and
considers that the system disturbance has been studied by [101]. In [102], another
successful approach for synchronizing Chua’s circuit was presented using only one
control signal and considering disturbances. However, these last two approaches used
complex synchronizers. At [103], a synchronizer was suggested for Chua’s circuit that
uses control in each state equation of the system and does not consider the presence
of noise. At [104], a synchronizer was developed for Chua’s circuit that uses a single
control in an extremely simple equation of state. However, without taking into account
the disturbance in the system. At [105], a simple synchronizer for the Chua circuit was
also proposed, but again without considering disturbances and employing controls in
each equation of states; finally, in [106] an underactuated synchronization scheme
has been proposed. However, in contrast to our proposal, partial knowledge of the
disturbances is considered; therefore, the control signal is adaptive and structurally

more complex than a simple proportional control.

Based on the above, all the studies cited above have weaknesses related to both the
lack of consideration of disturbances during stability analyses and the complexity of
the synchronization schemes. Therefore, in Chapter 6, we propose a simple synchro-
nization scheme for Chua’s circuit, considering the disturbances, with a proportional
control in only one of the state equations of the system. Furthermore, we show a se-
cure communication scheme with parallel cryptography, in which the dimension of the

messages is the same as the dimension of the states.
Underactuated 4D-hyper-chaotic system for secure communication in the pres-
ence of disturbances:

Synchronization of chaotic systems was first reported in 1990, cited by [17]. Muitas
classes de sincronizagdo t€m sido propostas desde entdo, tais como a antisincroniza-

cdo [107], delay synchronization [108], projective synchronization [109, 110]. Fur-
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thermore, different types of synchronization schemes based on full state control are

mainly found in the literature, see for example [5,111].

It should be noted that there have been few works where the dimension of the control
is smaller than the dimension of the dynamic system. However, there are some cases
asin [112-114]. Interesting contributions have been proposed in [114—117]. However,
disturbances were not considered in the stability and convergence analysis. In addition,
many works do not apply the synchronization scheme to ensure communication [114,
116,118].

1.7 THESIS OVERVIEW

A doctoral thesis is presented that is based on publications. This chapter presents the in-
troduction, motivation, objectives, contributions, and state of the art, in chapter 2 the funda-
mental basic theoretical concepts that underpin the later chapters of the paper are presented,
and Chapters 3-8 include the results of published articles. The doctoral thesis is organized

as follows.

In chapter 3, using Lyapunov stability theory, an underactuated projective synchroniza-
tion and antisynchronization scheme based on proportional control is proposed, and the con-
vergence of the synchronization error to a small neighborhood of the origin even in the

presence of disturbances is shown.

After that in chapter 4, a synchronizer for a hyperchaotic financial system is proposed. It
is worth noting that unlike most schemes usually found in the literature, the proposed scheme
requires only two controls to act on two states in the slave system equations. The proposed
scheme has the advantages of being robust against disturbances and being structurally sim-

ple, which is interesting because it leads to substantial cost reductions.

In chapter 5, a secure communication scheme is proposed based on the synchronization
of a chaotic Liu system with a candidate non-trivial Lyapunov function, which allows the
control signal to act only on one state of the slave system. The proposal has the advantages
of being robust against disturbances (internal and external) and simple because it leads to
significant cost reductions when implemented using analog electronics. A simulation study,
which considers the presence of disturbances, is used to validate the theoretical results and

show the easy implementation of the proposed approach.

Later in chapter 6, a simple synchronization scheme for Chua’s circuit is proposed, con-
sidering the disturbances, with proportional control in only one of the system’s state equa-
tions. Furthermore, we show a secure communication scheme with parallel encryption, in

which the dimension of messages is the same as the dimension of states.
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In chapter 7, an underactuated synchronization of a hyperchaotic system originating from
the Lorenz system is proposed. The main contributions are 1) The underactuated synchro-
nization of a hyperchaotic Lorenz system where disturbances are explicitly considered in the
stability analysis; 2) The application of the proposed scheme in secure communications in
which the goal is basically to encrypt information using chaotic systems. Thus, it is nec-
essary to use a transmitter system to encrypt sensitive information and a receiver system to

reconstruct the encrypted message.

Next in chapter 8, the main proposal of this thesis is described, in which a synchronizer
is proposed to apply it to the secure communication of chaotic systems of a generalized
class. The main peculiarities of the proposed scheme lie in its robustness against internal or
external disturbances and simplicity, which makes it very suitable for applications in secure

communication systems.

Finally, Chapter 9 summarizes the theoretical contributions of this thesis work, the re-
sults obtained, and suggestions for future research that are also discussed. Appendix A
describes the theoretical concepts of general mathematical representations and Lyapunov
stability theory that are the basis of the chapters in the study and Appendix C contains the

Matlab/Simulink language codes used to generate the figures.
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which are shown below.
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Paper submitted to a Jornal and accepted for publication in International Journal of
Control, Automation, and Systems (IJCAS).

* A Robust Underactuated Synchronizer for a Five-Dimensional Hyperchaotic System:

Applications for Secure Communication.
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TECHNICAL BACKGROUND

In this chapter, I will cover the theoretical background of the general considerations of
chaotic systems, synchronization, and secure chaos-based communication that will be used
throughout this thesis; my objective is to provide background information on the contents

used in this doctoral thesis.

2.1 SYNCHRONIZATION

System synchronization involves taking actions to get two or more systems to enter and
remain in a common behavior or at the same rhythm, which has been very interesting since
its first discoveries, both for its analysis and for the development of technologies derived
from an adequate manipulation of this phenomenon. This synchronization phenomenon can
be artificial using a control action. Some examples of controlled synchronization can be ob-
served: telecommunications systems, whose transmission and reception systems must oper-
ate synchronously, autonomous production lines, electrical circuits, and mechanical systems,
among others. The key ingredient for the synchronization phenomenon to exist is that there
must be a medium called coupling, through which systems transfer information to each other
until their rhythms coincide [32]. Several areas of knowledge explore the use of controllers,
and a case in point is the synchronization of master and slave systems. Cases such as chaotic
synchronization, proposed in 1990, emerged to increase the reliability of the communication

area with the security [2].

However, in these same fields discussed above, there are particular so-called chaotic sys-
tems in which it is not evident to achieve and maintain a state of synchrony. This is because
chaotic systems are deterministic dynamical systems in which the evolution of their vari-
ables, with certain initial conditions, is very different from the evolution of the variables of
the same system with a small change in their initial conditions. This occurs in phenom-
ena such as fluid turbulence, weather systems, mechanical and electrical systems, biological
processes, and others. Due to its high sensitivity to initial conditions, it is clear that two
isolated chaotic systems, even if they are identical, would not be in synchrony. However,
a study in [17] revealed that two identical chaotic systems with a common coupling signal
can evolve synchronously. On the other hand, chaos synchronization is the induction of a
regime in which two chaotic systems (one called master and one called slave) exhibit identi-
cal trajectories (x,, = x;) after introducing some kind of coupling between them, as shown

in Figure 2.1.
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Figure 2.1 — Schematic for synchronizing two systems via a coupling signal [44].

The schemes and techniques in this study have the disadvantage that chaotic systems,
even if they are identical replicas, in practice there are imprecisions and uncertainties in
the parameters and components of each system, synchrony is not robustly guaranteed, cited
by [119]. Currently, research and development of synchronization techniques point in the
direction of robust synchronization schemes for identical and different systems, with im-
precisions, unknown dynamics, different order, with limited information or partial measure-
ment of their variables, among others. In this regard, it should be that synchronization can be
achieved in different degrees or types, these are classified as identical synchronization, phase
synchronization, synchronization for backward and forward, generalized, complete, partial,
and reduced order, cited in [20,21,32,120-124].

2.1.1 Chaos Synchronization

Chaos synchronization consists of a regime in which two coupled chaotic systems (one
called master and the other called slave indicated in Figure 2.1, after called master and the
other called slave), after a transition time, exhibit identical chaotic oscillations. This be-
havior appears in many natural processes, such as the relationship between neurons and the
synchronization of the heart and lungs, to name some. Synchronization can be solved, from
a control point of view, by projecting the slave system using some technique. There is great
interest in the synchronization of chaotic systems since it is desirable to realize important ap-
plications for the secure transmission of communications, in services such as military com-
munication links and private companies, financial transactions, and commercial operations
with electronic signatures over the Internet, among others. At [125] shows a case of elec-
tronic commerce, where it is essential to maintain computer security for Internet buying and
selling operations and remote banking, protecting the identity and information of customers
and institutions. The motivation for using chaotic systems in information cryptography is
due to the unpredictability characteristic of this type of system, which provides a high level
of security, cited by [126].

The characteristics of chaotic synchronization are examined in terms of Lyapunov expo-
nents and the effects of the direct Lyapunov method. This method is then used to develop a
general approach in chaotic synchronization system projects. Pecora and Carroll [17] state
that chaotic systems are systems that, by themselves, appear to defy synchronization. Two

identical autonomous systems with the same initial conditions in phase space have trajecto-
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ries that quickly become uncorrelated even if the two systems map to the same attractor in
phase space. When dealing with chaotic synchronization several synchronization models are
used, among others [32]. Most chaos-based communications use full synchronization, delay
synchronization when the signal offset interval is considered, or generalized synchronization

when the receiving system is not identical to the transmitter.

2.1.2 Master-slave synchronization

As already mentioned, Pecora and Carroll’s synchronization scheme is known as the
"master-slave" system. A master-slave system consists of two chaotic systems described by
the same set of differential equations, with the same parameter values. It was shown in [17]
that for synchronization to occur, the output of at least one of the differential equations of the
first chaotic system must be made available to the second system. Thus, one chaotic system
is said to control the other chaotic system by the time series signal generated from one of
its differential equations, the master-slave system can also be seen as a transmitter-receiver
communication system. One of the necessary conditions for master-slave synchronization to
occur is that the slave system must copy the chaotic master system; then the slave system

behaves as chaotic.

2.1.3 Types of Synchronization.

Different types of synchronization found in the reviewed literature are collected, which
are classified as to the definition of the error. For this end, be the master system x,, = [Z1,,
Tom, - Tnm]; the slave system x = [x14, Tos, ... Tys] are state vectors and u = [uq, U, ... U]

is control.

* Projective Synchronization (P): The projective synchronization errors of the system

are defined with

€ = X35 — QT3 2.1)
where « is a scalar factor, then z35 and 3, are projectively synchronized [13].

¢ Antisynchronization (AS): If the error is defined as follows

€y = Tom + Tos (2.2)
then z9,, and x5, are antisynchronized [13].

* Complete or identical synchronization (C): If the system error is defined as
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€1 = T1s — Tim (2.3)

then =5 and x1,, are fully synchronized [13].

Complete synchronization: This implies the exact congruence between the vector
states of systems that are interacting with each other, either unidirectionally or re-
ciprocally: v(t) = wu(t) where these are the state vectors of two different systems.
This occurs only in systems with identical elements, each component having the same
dynamics and parameters [127-130].

Full inverse synchronization (CI): If the system error is defined as

€1 = Tim — Tis (2.4)

then x4, and x4 are completely inversely synchronized [13].

Anti-phase synchronization (AF): If the error is defined as follows

€2 = Tom — (—$25) (2.5)

then, x5, and x,, are synchronized in anti-phase [34]. Its concept refers to systems in
which phase 6(t) Its concept refers to systems in which phase 4 fluctuates chaotically
and signal amplitude evolves freely and unrelated [131, 132]. Phase synchronization
occurs when the instantaneous difference of phases 6 (t) and 6, (¢) of the chaotic sig-

nals are time-limited:

| 6,(t) — bo(t) |< C (2.6)
where C = cte.

Generalized or Adaptive Synchronization (GA): If the error is defined as

€ = Tjs — [@(%m)] 2.7)

fori=1,..,n

Assuming that n = m and (; : R" — R are differentiable functions, then z;, and x;,,
are synchronized in a generalized or adaptive form [34,41]. Adaptive synchronization

[127], which is a generalized mode of synchronization.

Generalized synchronization: is characterized by the existence of a functional relation-
ship between the states of the two systems, the receiving system represents a function
of the transmitting system, v(t) = F(u(t)) [17,129].
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Generalized Inverse Synchronization (GI): If the error is defined as

ei = Vi(Tis) — Ty fori=1,..,n (2.8)

Assuming that n = m and v); : R" — R are differentiable functions, then z;, and x;,,

are synchronized in a generalized form [34].

Generalized Projective Synchronization (GP): If the error is defined as

€i = Tis — NiTim (2.9)

Assuming that ); is a scalar factor, then x;; and x;,, are projectively synchronized and

generalized [42].

Synchronization ¢ (S-9): If the error is defined as

e =z, — 1, (2.10)

Considers that limy, ., ||e(t)|| > d, for some § > 0, then the systems are said to be

synchronized in 4. [10].

Full-state Hybrid Projective Synchronization (PHEC): If the error is defined as

e3 = Tys — (T1m + 2T + 3T3p,) (2.11)

where n = 3 and m = 4, then x4, synchronized in a hybrid projective form of complete
states with z,,, [13].

Combined Synchronization (CMB):The following systems are considered for this
synchronization: Dz as the first master system, Dy as the second master system, D
(z + w) as the slave system, where = [Z1,,; Tom, -+ Tomls Y = [Y1ms Y2ms - Ynm] and
z = [214, 224, ... Zns] are the state vectors and v = [uy, uo, ... u,] are the controls. If
there are three constant matrices (), W, £ € R" and E # 0 that satisfy that

tleHQIJrWy—EZH:O, (2.12)
Then you have the combined synchronization of x,,, y,, and z, [133].

Delay Synchronization (SA): Occurs when the interacting systems have practically
identical oscillations only shifted by a time interval 7', V'(t) ~ w(t + T"). This syn-
chronization is used when the time interval 7" comes from the travel time between the

transmitter and the receiver.
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2.2 SECURE COMMUNICATION BASED ON CHAOS

Today we know that the systems that prevail in nature are the so-called "chaotic sys-
tems". Although the word itself suggests disorder, from a scientific point of view, chaos
refers to complex dynamic behavior that can be modeled by nonlinear or difference differ-
ential equations. The characteristics it has are very particular, such as being sensitive to
initial conditions, generating "strange" attractors, and having at least one positive Lyapunov
exponent, among others. Secure communication is based on the synchronization of a chaotic
circuit that encrypts the transmitted information (master), with a chaotic oscillator to decrypt

the encrypted information (slave).

The Pecora-Carroll synchronization scheme has often been described as a "master-slave"
system [134,135]. Essentially, a master-slave system consists of two chaotic systems. The
two systems are described by the same set of differential equations, with the same parameter
values. It has been shown in [17] that for synchronization to occur, the output of at least
one of the coupled differential equations of the first chaotic system must be made available
to the second chaotic system, as shown in Figure 2.2 cited in [2]. Thus, one chaotic system
is said to drive the other chaotic system by the time series signal generated from one of its
differential equations. The first thing that Poincaré developed more than a century ago was
the chaotic behavior of continuous dynamical systems. Having mentioned the above, for
there to be synchrony between chaotic systems, there needs to be a connection or coupling

between them.

Master system Slave System

| | I

: | ! |
| ) v=t | A |
u [ | | 0 I

I Driving | | il Driven I
I Master Subsvstem | | Slave Subsystem |
[ v I I |
| | | !
! | ! R :

W (0) | | v

| v | | Not driven |
| Non-Driving | | B Slave Subsystem |
| Master Subsystem | | V(0) # V(0) |
' | | !
. _ | L ___ !

Figure 2.2 — Pecora-Carroll master-slave system divided into subsystems [44].

In 1993 they developed the additive chaotic masking method [92]. In this method, infor-

mation is added to a state of the chaotic system and sent to another chaotic system, this signal
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is responsible for the synchronization. Due to the unpredictability of the chaotic behavior,
the information is considered encrypted and secure. Also in 1993, the chaotic shift-key
method was proposed by Dedieu and collaborators in [136]. In this method, the message
consisting of a sequence of bits acted by switching between two Chua circuits in the trans-
mitter; in the receiver, it also consisted of two Chua circuits, the message was recovered by
checking which circuit was synchronized; between late 1993 and 1996 two more masking
methods emerged. Yang and Chua in [137] introduced the concept of chaotic parameter
modulation, where the message to be transmitted was used to modify the system parameters.
Consequently, since the development of additive chaotic masking, much of the literature has
ignored the presence of disturbances in the systems being synchronized, as in [92,138-140].
Furthermore, they assume that the systems are entirely structurally known. The next section
presents one of the first chaotic communication techniques proposed by [92, 128, 141]. It is

based on the synchronization principles of Pecora and Carroll [17].

2.2.1 Chaotic Additive Masking

It involves the transmission of analog signals [128]. This principle involves adding a mes-
sage signal to a chaotic carrier, signal z, before the transmission of the sum of the two signals
occurs. In this way, the slave system at the receiver generates a signal x that is expected to
be synchronized with the corresponding master signal x from the transmitter, assuming that
noise is close to zero and that the transmitted message can be retrieved, shown in Figure
2.3 which consists of two identical chaotic systems. Chaotic mask x,,; represents one of the
states of the chaotic transmitter system. The message m/(t), which has an amplitude smaller
by 20dB to 30dB than x,,;, is added to the chaotic mask, giving rise to the transmitted signal
s(t). Since the chaotic signal x,,; is very complex and m(t) is much smaller than the signal,
it is expected that the message cannot be separated from s(t) without someone having the

exact knowledge of x,,,; [142].

22



Transmitter

|
|

: |
Chaotic System | ™ (r)ff-\ =0 l.(| Channel | | ro Chaotic el el :

 — ! \— : o —_

(Master System) 4 \+ / | Public || T Synchronization (Slave System) |

T |
| |
|L/ : ' 1 |
m () I (=) .

| | /

I I I b ""51 (’) I
I I | m |
| | | : |
| Message | [ Recovered |
| 7 | | Message |
I | [ Receiver |
| | | |

Figure 2.3 — Chaotic additive masking scheme [2].

The next section presents the chaotic modulation methods researched in [143].

2.2.2 Chaotic modulation

Unlike the chaotic masking scheme, whose information is summed directly to some state
of the transmitter without the transmitted message influencing its dynamics, chaotic modula-
tion incorporates the message into the dynamic equations by making the transmitter chaotic,
was investigated in [143], while chaotic masking is mainly used for analog transmission sys-
tems. Since chaotic systems are extremely sensitive to initial conditions and parameters, they
have come to be used in secure communication schemes. Different modes of transmitting in-
formation signals using chaotic dynamics have already been proposed. The implementation
of the chaotic system synchronization scheme in communications consists of a transmitter
system (master) generating a chaotic carrier signal, which is modulated by the information
signal so that the information is encrypted due to the chaotic characteristic of the carrier.
The encryption methods commonly found in the literature that are used for this purpose are

shown below.

* Modulation of chaotic parameters: The chaotic parameter modulation shown in Fig-
ure 2.4 is used to transmit information; this method uses the message signal to change
the parameters of the chaotic master system to constantly change the dynamics of the
system. At the receiver, a proportional adaptation law is used to estimate the slave
system parameters so that the synchronization error approaches a maximum of zero.
In this form, the original message is recovered based on the estimated parameters, as

investigated in [99].
* Non-autonomous chaotic modulation: This method uses the message signal to di-
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rectly change the trajectories that the system follows on the attractor of the master
chaotic system. In this case, the message should not be so much smaller than the
required in the additive chaotic masking scheme, as has been shown in [143]. The
message is not added only to one state of the chaotic system but is added with the use
of an encoding function to all states of the system. The message is retrieved bearing in

mind that the receiver has a decoding function, shown in Figure 2.5.

Chaotic Cryptosystem: In this scheme, there is a mix between encryption and syn-
chronization. The message signals m(¢) is encrypted before it is added to the chaotic
system using signal k(t), which represents one of the states of the master chaotic sys-
tem, as shown in [144]. The encrypted signal m.(t) changes the dynamics of the
master system, making it even more complex. Considering the possibility of a security
breach on the public channel, without the decryption rule there is no mode of obtaining
the message. You can note the presence of noise n(t) in the channel. So after synchro-
nization, they will be retrieved at receiver k(t) and n(t), but with some noise. Using

both in decryption gives the estimated message signal, as can be seen in Figure 2.6.

Chaotic Displacement Switching: The chaotic switching encryption scheme is shown,
which means transmitting a binary signal alternating between two chaotic carriers gen-
erated by two different systems, as shown in Figure 2.7, this scheme was developed
to transmit digital message signs, was investigated in [2]. The message signal m/(t)
is used as the input to a multiplexer that has as its output option two chaotic systems
of the same structure, but with different parameters. The received signal r(¢) leads to
synchronization with the slave system and the message is recovered using a low-pass

filter and then thresholding on the synchronization error signal e(t).

Subsequently, the signal modulated by any of the above methods is transmitted over a

public communication channel, and captured by the receiving (slave) system. This receiving

system must be able to synchronize with the master system and have a decryption technique

to recover the original information signal. The decryption process is realized using a syn-

chronization error detection process consisting of a low-pass filter and threshold detection,

as shown in the schematics and cited in [125].
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PROJECTIVE SYNCHRONIZATION AND
ANTISYNCHRONIZATION OF AN
UNDERACTUATED SYSTEM BASED ON
PROPORTIONAL CONTROL

The research results of this chapter were published as a conference paper entitled "Projective
Synchronization and Antisynchronization of Underactuated Systems" in [145]. This chapter

has extended and improved some parts compared to the original paper.

In this chapter, a simple synchronization and anti-synchronization scheme for a class of
chaotic systems is proposed. Based on Lyapunov arguments and proportional control, the
convergence of the synchronization error to a small neighborhood of the origin, even in the
presence of unmatched disturbances, is shown. The actuation mechanism, which is under-
actuated and uncomplicated, and the enhanced performance of the proposed method lie in
their main peculiarities. The synchronization and antisynchronization of a three-dimensional
chaotic system are accomplished to corroborate the theoretical results and show its straight-

forward application.

3.1 PROBLEM FORMULATION

Consider the following chaotic system by J. Lii [146]

T =dx(t) —yt)z(t) + ¢
y=—ay(t) + z(t)z(t) 3.1
2= —bz(t) + z(t)y(t)

where ¢ is the time, d = ab/(a + b), a = 10, b = 4, and ¢ = 0. Note that (), y(¢), and z(t)
are the system states and a, b, and ¢ are non-negative real constants. Based on (3.1), consider

the perturbed systems:

T (t) = dx, (t) — Ym () 20 () + ¢ + A1 (t)
U (1) = —aym (t) + T (t) 2 (t) + hom (1) (3.2)
Zm(t) = =02 (1) + 20y ()Y (£) + Bz (1)
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and slave system

t5(t) = dus(t) — ys(t)zs(t) + ¢ + hys(t) + us (t)
Us(t) = —ays(t) + x5(t)zs(t) + has(t) + ua(t) (3.3)
Z(t) = —bzs(t) + @s(t)ys(t) + has(t)

Note that x,,(t), ym(t), and z,,(t) are the states of the master system; x,(t), y,(t), and
z4(t) are the states of the slave system; hy,,,(t), han(t), and hs,, () are disturbances present
in the master system; h5(t), hos(t), and hss(t) are disturbances present in the slave system;

and u, (t) and us(t) are the control inputs.

The goal is to anti-synchronize or synchronize the systems (3.2) and (3.3), in which the
slave system has only two scalar control signals.

Remark 3.1: As is known, system (3.1) is a chaotic system. Hence, its behavior depends
strongly on the initial conditions, so the system is sensitive to changes in these conditions.
Due to this sensitivity and also the fact that it has aperiodic behavior, synchronization or
antisynchronization of chaotic systems is usually considered more challenging than if it were

done on other dynamic systems.

Assumption 3.1: Assume that

hl (t) :hls(t) — Oél'hlm(t)
hg (t) :hgs(t) — Odg‘hgm(t) (34)
hg(t) :hgs(t) — Oég'h3m(t)

Vt > 0, where oy, ais, and o3 are nonzero constants. The disturbances are assumed to be

upper-bounded such as

|ha(2)]
|ha(t)]
|ha(t)] <

IN

1
2 (3.5)

IA
> >

3

where hq,h9, and hs are unknown constants.

Remark 3.2: The purpose for presenting systems (3.2) and (3.3) in which disturbances are
explicitly considered is to point out that the studied projective synchronization scheme is
valid even in the presence of perturbations common in electronic circuits, such as tolerances,

non-ideal behavior, heating, and so on.

Fact 3.1: With the boundedness of the system (3.1) [146], it can be established that
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lzm(t)| < @
lym ()| <y (3.6)
lzm ()| < 2

Vt > 0, where 7, ¥/, and Z are unknown positive constants.

3.2 ERROR EQUATION AND PROPOSED CONTROL SIGNAL.0

The projective synchronization errors of the system are defined as:

€1 =Ts — 01Ty,
€2 = Ys — Q2lYm (3.7)
€3 = 25 — (3%,

Observe that if a1, s, and avg are negative, it corresponds to the case of antisynchroniza-

tion. Based on (3.7), we have

él = jfs — Oél,fm
ég = ys — Oégym (38)

é3 - Zs - Q‘Szm

Substituting (3.2) and (3.3) into (3.8), we obtain

é1 = dey — eze3 — 322 — (12€3Ym — YmZm (203 — 1) + his — o him + Uy
éy = —aeg + e1e3 + aze12y, + 1€3Ty + T zm (s — a2) + hos — aghoy +uy (3.9)

é3 = —bes + e1ea + ae1Ym + ar€2Ty, + TYm (e — o) + hss — ashay,

Once the synchronization errors are defined, an appropriate control signal is required for

the slave system to synchronize or anti-synchronize with the master system.

Theorem 3.1: Consider the master and slave systems described in (3.2) and (3.3) and the

proportional control laws described by

Uy = — ¢1€1

(3.10)
Uy = — ey

where 1; and 1), are a user-defined positive constants. It can be established that the syn-
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chronization or antisynchronization error converges in finite time to the compact set {? =

{e € R?| |le|]| < 6}, where 6 is a small positive constant.

Proof 3.1: Consider the following Lyapunov function candidate

1
V=3 (261 + €3+ €3) (3.11)

whose derivative is

V= 2€1é1 + €2é2 + €3é3 (312)

Substituting (3.9) into (3.12) we have

V = 2e;i[de; — ese3 — a2 — 2€3Ym — YmZm(a0s — 1) + his — b,

+ uy] + ea[—aey + eres + azerzy, + €3y, + Tpzm(@ras — ag) + hag

(3.13)
— ohom + Us] + e3[—bes + e1€2 + e1Ym + Q12T + T Ym (@102 — i)
+ hss — azhsp]
Rearranging and substituting (3.10) into (3.13), one can obtain
V = —€2 (201 — 2d) — €2(¢y + a) — be2 + 2e1(his — arhi)
+ e9(hos — aghay) + e3(hss — ashsy,) — eres(aym) — ere2(aszn) (3.14)

+ ese3 (200) — €1 [2ymzm(eas — aq)] + ea|xmzm (cas — as)]

+ eB[xmym(aloQ - &3)]

Based on Young’s inequality and applying [147] and applying (3.4) results
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261(h13 — Oélhlm) S 0'16% + 0'171]_73

62(h25 - O[thm) S 0.5 (0263 + 0'2_1;L3>

63(h33 — Oéghgm) S 0.5 <O’3€§ + U§1B§>
2 .2

—eres (aaym) < 0.5 (§2a261 + eg)
2 2 (3.15)

— e1es (a3z,) < 0.5 (Z2ade] + €3)
2eqe3 (a1 2,,) < T2aje; + e
— 21 [Ymzm (203 — )] < €2 + [z (a3 — on))°
ealYmzm (a1 — a2)] < 0.5{ €2 + [2Z (g5 — as)]’}
es[Tmiym (10y — a3)] < 0.5{e2 + [Z7 (a105 — a3)]*}
where o1, 09, and o3 are arbitrary positive constants. The terms z, y, Z are upper bounds for

the states of the master system. By using (3.15), (3.14) implies
V< —e2( —d) — oy — 0,5 (2+ 7203 + 2°a3)]—
e (Vat+a—o0y—1—7°a3) — e (b—2) + [§Z (s — ar)]*+ (3.16)

O, 5[1_32 (a1a3 — 062)]2 + O, 5[ng (0410[2 — @3)]
Consider that

p1:2(¢1—d)—01—0,5(2—1-@2@34—22043)

,0227,/)24-&—02—1—5/‘204%

p3=">b—o03—2

2R (3.17)
= T, |

1 2

h
52—T‘3

B3 = 9z (aars — a1)]* 4+ 0,5[2% (nas — az)]* + 0, 5[y (cnas — a3)]?

Substituting (3.17) into (3.16) results

V< —elp1 — e3p2 — €3ps + B+ B2 + B3 (3.13)

Remark 3.3: To analyze this inequality, it is important that p;, p2, and p3 be positive. Note
that p1, po, and p3 depend on 1, 13, 01, 09, and o3. One can choose these parameters to

ensure that p;, po, and ps are all positive. Defining: p =min {p1, p2, p3} and 8 = 1+ P2+ S,
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(3.18) can be written as

V<=p el +8 (3.19)
Then, we have V < 0 as long as ||e|| > <§> := 0. Because 0 is constant, it can be

established that either synchronization or antisynchronization error is bounded. Defining the
compact set 2 = {e € R*| ||e| < 6}, we have that if for any reason | e|| leave the residual
set (2, V becomes negative and forces the convergence of the synchronization error to the
residual set €2, according to (3.19). In other words, if V <0is satisfied, the error norm can
only decrease over time. Thus, we conclude that the synchronization error is bounded and

converges to a ball with a radius equal to 6.

Remark 3.4: Note that the proof covers any a4, oy, and ag. Theorem 1 shows that both the
synchronization and antisynchronization errors are bounded, i.e., the proof of the theorem is

valid in both the synchronization and antisynchronization case.

Remark 3.5: From (3.17), it can be seen that o; and o, can be freely chosen by the usuary.
This freedom is owing to the fact that p; and p, can be arbitrarily adjusted to be positive if
1 and 1), are adjusted as well. Likewise, O3 can be arbitrarily decreased through the scaling
factors. This favorable situation is not the same for 35, since the maximum value for o3 is
restricted to 2. However, as can be seen in our simulation, this performance restriction is not
important since the value o3 is enough to allow a good performance, as far as the residual

error is considered, in the presence of unmatched disturbances.

Remark 3.6: Some interesting cases to make 3 = 01in (3.17) are when oy = 1, @y = 1, and
a3 = 1 (identical synchronization), or a; = —1, ay = 1, and a3 = —1 (antisynchronization

and synchronization together).

Remark 3.7: It is well-known that the performance of chaos-based cryptography is straight-
forwardly related to the quality of the synchronizer. Hence, the design of synchronizers with
enhanced performance is a hot topic in the literature. In this context, the proposed approach
offers a way to increase antisynchronization performance. It was proven that the synchro-
nization and antisynchronization performed together are crucial to increase the performance

when unmatched disturbances are present.

3.3 SIMULATION

Matlab/Simulink(2020b) software on a Ryzen 7 1700 computer was used for the sim-
ulations with a variable step and odelS5s method. It was considered that a = 10, b = 4,
and ¢ = 0. The initial conditions were z,,, (0) = [3, —4, —2] and z, (0) = [5, —5, 3]. For
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synchronizing the master and slave systems we used the control law (3.10) with ¢; = 10000,
¢2 = 10000, o = —]_, Qg = 1, and g = —1.

After t = 10s disturbances were introduced in the simulation to check the robustness of
the proposed method. Their values are hy,, = cos(4t), hay,, = 1.2c0s(3t), hs,, = 0.1sin(7t),
his = 1.5sin(4t), has = cos(6t), and hss = 0.2sin(5t). Figures (3.1 - 3.3) show the results

of the simulation. For better visualization of the errors, Figures (3.4 - 3.6) were also included.

As can be seen from Figures (3.1 - 3.6) the simulations corroborate the theoretical results:
the synchronization and antisynchronization errors were close to zero. The reasons for this

WCEre:

1) aq, an, and a3 were chosen as established in Remark 6 to make 53 = 0;
2) The considered disturbance hg3, in the underactuated state was not huge;

3) 11 and v were chosen large enough.

In addition, it can be seen that the synchronizer is robust against matched and unmatched

disturbances.
40
disturbances Ty () 24 (1)
in action
20
0:
-20
-40
0 5 10 15 20

t(s)

Figure 3.1 — Performance in the antisynchronization of x,,(t) and x(t).

30

disturbances —Ym(t) ~ys(t)
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o /L
-10
-20
-30
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Figure 3.2 — Performance in the antisynchronization of y,,(t) and ys(¢).
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Figure 3.3 — Performance in the antisynchronization of z,,(t) and z4(t).
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Figure 3.4 — Antisynchronization error e (t).
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Figure 3.5 — Antisynchronization error es(t).
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Figure 3.6 — Antisynchronization error e3(t).

Table 3.1 shows the RMSE for different values of ¢). Small values of i) correspond to
large RMSE and transient. Also, large, ¢ corresponds to small RMSE and transient, as

shown in Table 3.1 and Figures (3.4 - 3.6).

Table 3.1 — Root mean square of the state errors for t = [0 20] seconds.

Mean square root of the state errors in the proposed algorithm

1 (2 €lms €2,1s €3,

10 10 2.553946 1.944666 2.170547
100 100 0.595966 0.162219 0.643714
1000 1000 0.272961 0.043283 0.504972
10000 10000 0.094767 0.012270 0.408499

3.4 CONCLUSIONS

This chapter proposes a projective synchronization and antisynchronization algorithm

based on Lyapunov theory for an underactuated chaotic system subject to disturbances. It

has been proven and validated in a simulation that only two control signals are needed to per-

form master and slave synchronization and antisynchronization. However, the synchronizer

has some limitations, such as the sensitivity of the errors to the disturbances present in the

disturbed states.
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SYNCHRONIZATION OF
A HYPERCHAOTIC FINANCIAL SYSTEM

The research results of this chapter were published as a conference paper entitled "Underac-
tuated Synchronization Scheme of a Hyperchaotic Finance System" in [148]. This chapter

has extended and improved some parts compared to the original paper.

This chapter considers an underactuated synchronization scheme of a hyperchaotic finan-
cial system based on Lyapunov analysis, capable of taking into account shocks of any nature.
However, it is very rare to find underactuated hyperchaotic systems, and as far as the authors
know, no work has been done on the underactuated synchronization of a hyperchaotic system
in the literature and that requires only two controls to act on two states in the slave system
equations. The proposed scheme has the advantage of being robust against disturbances
and structurally simple, which is interesting because it leads to substantial cost reductions.
Computational simulations were performed to validate the robustness and simplicity of the

proposed scheme.

4.1 PROBLEM FORMULATION

Consider the following chaotic system proposed by H. Yu [149]:

T =2z(t) + [yt) — alz(t) + w(t)
g =1=by(t) - 2*(t)
Z=—x(t) — cz(t)

w = —dz(t)y(t) — kw(t)

(4.1)

where a = 0.9; b = 0.2; ¢ = 1.5; d = 0.2 and k£ = 0.17. This system is proposed by [149].
x(t), y(t), z(t) and w(t) are the states of the system and a, b, ¢, d and k are real constants.

Based on (4.1), consider the following perturbed master system

T = Zm + (Ym — Q)T + Wy + Ay (2)
Um = 1 — by — 22, 4 hom(t)

Zm = —Tm — CZm + ham(t)

4.2)

Wy = —dTmYm — kW + ham (1)
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and slave system

jf’s:Zs+(ys_a)xs+ws+hls(t)+u1

Js = 1 — by, — 22 + hog(t

y Y 25(t) “3)
Zs = —s — czs + has(t)

Wy = drgys — kws + hys(t) + ug

where u; and uy are the control signals; x,,, Ym, 2m, and w,, are the states of the master
system; xg, ys, 25, and w, are the states of the slave system; hi,,, hom, h3m, and hy,, are
disturbances present in the master system; and hyg, hos, h3s, and hys are disturbances present

in the slave system.

The objective is to synchronize systems (4.2) and (4.3), in which the slave system allows
only two control signals, that is, acting only in two states. Since system (4.1) is chaotic, its
behavior depends heavily on the initial conditions so that the system is sensitive to changes
in these initial conditions. Because of this and because it has aperiodic behavior, synchro-
nization of chaotic systems is usually considered more challenging than performed on other
dynamical systems. Additionally, the master and slave systems can have the same structure,
which, just because they have different initial conditions, will also have different trajectories

over time.

Assumption 4.1: Consider that

4.4)
hs = hss(t) — hsp,(t
hy = hss(t) — hsp,(t
V¥t > 0. The disturbances are bounded such that
7 (8)] < ha
ha()| < h
1)) < s
|ha(t)] < hg
|ha(t)] < hy

where hq,hs, hs and h, are unknown constants.

Remark 4.1: The reason for presenting systems (4.2) and (4.3) in which disturbances are
explicitly considered is to emphasize that the proposed synchronization scheme is valid in

real situations.
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Fact 4.1: Note that the system (4.1) was proved to be bounded and dissipative in [149].
Therefore, it can be stated that

(4.6)

vVt > 0, where Z, y, Z and w are unknown positive constants.

4.2 SYNCHRONIZATION ERROR EQUATION AND PROPOSED CON-
TROL SIGNAL

The dynamics of errors can be defined as that derived from synchronization errors

I

€y = 's - 'm
2o 4.7)
€3 = Zs — Zm
€4 = Wy — Wy,
Substituting (4.2) and (4.3) in (4.7), and applying (4.4), then
é1=e3+ e+ e1(Ym — a) + ey +e4 + hy + ug
é2 = —b€2 — 6% — 2€1$m + h2 (48)
ég = —e1 —cez + hg

é4 = —d(€1€2 + esx,, + €1ym) — /{364 + h4 + U2
For the slave system to synchronize correctly with the master system, suitable u; and us
control signals are required.

Theorem 4.1: Consider the master and slave systems described in (4.2) and (4.3) and the

following control law

Uy = —reg — ¢2€?

4.9)
Uy = —1P3ey — 1/146?1

where 11, ¥, 103 and 1, are positive real parameters arbitrarily chosen by the designer. Thus,

the synchronization error converges in finite time to the compact set Q2 = {e € R*| || e ||< 6},
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where 6 is an unknown positive constant.

Proof 4.1: Consider the following Lyapunov function candidate

V==c(ei+es+e;+e))

DN | —

Deriving the trajectories (4.10) over time

V= elél + €2é2 + €3é3 + €4é4

Substituting (4.8) into (4.11), the result is

V:el[eg—i-el(ym—a)+e2xm+eleg+e4+h1+ul]
+ e (—bez —2e1Z, — €5 + hg) +e3(—ep — ces + hs)
+ e4 [—d (€2 + €1ym + €162) — keq + hy + us

Substituting (4.9) into (4.12), we obtain that

V= —ef (1 +a—ym) — be% - C€§ - ei(% + k) + erhy + exhy + e3hs

+ eqhy — dejesey — Tperes + ereq(1 — dyy,) — damesey — 1?2@‘11 - ¢463

Applying the Young inequality [147], we observed that

— Ymei < Jei

erhy < 0.5(c1€2 + oy 'hY)

exhy < 0.5(09€3 + 05 'h3)

eshs < 0.5(03e3 + o3 'hi)

eshy < 0.5(04e] + 0, h3)

— Tperey < 0.5(052%] + 05 te3)

(1 — dym)eres < 0.5]06(1 + d*y®)e] + o €]
— dxpmeses < 0.5(07d*z%e] + 07'€3)

— deyesey < 0.5d[oges + 0.2505 2 (e] + €1)]

where 0;,¢7 = 1, ..., 8 are positive parameters arbitrarily chosen, then consider that
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pr =V +a— g —0.5[0, + 053 + 06(1 + d*7?)]
p2 =b—0.5(co + 05" + 07" + dog)

pP3 = C— 0‘50'3
ps =13 +k—05(cs + 05" + 07d®T?) “.15)
ps =1 — 205 .
ps =ty — 2 %05”
B.=0.5(c7 hi + o, hY)
B = 0.5(0; hy + 037 h)
Thus, analyzing (4.13) in the case of V, and employing (4.15)
V < —pief — paeh — psel — paci — ps€l — pses + Be + Bn (4.16)

Note that 0,7 = 1, ..., 8 and 91, 19, 13, and ¢4 can be chosen in a way that p;,j = 1, ...,6
are positive. So, consider that p := min{p1, p2, p3, p4} and B := . + B, then (4.16) can be

rewritten as

V< —pllel]* + 8 (4.17)

Therefore, V' < 0 when ||e|| > \/é := 6. Since 6 is a constant, it can be stated that the
synchronization error is bounded. Defining the compact set 2 = {e € R* |||e|| < 6}, then
it can be stated that if for any reason ||¢|| leaves the residual set €2, V becomes negative and
forces the convergence of the synchronization error to the residual set €2, according to (4.17).
Thus, it is concluded that the synchronization error is bounded and converges to a ball with
a radius equal to 6 [59].

Remark 4.2: In (4.17), note that o1, 04 and og can be chosen freely, even being able to
assume high values. The reason is that p; and p, can remain positive as long as the gains from
the ¢/, and /5 controls are correctly adjusted. However, for p; and p3 to remain positive, the
maximum value of o5 and o3 in our scheme need to be small. Thus, with the control signals’
adjustment is possible to arbitrarily make the value (3; close to zero, while it is impossible to
decrease the values of 3, by adjusting the control signals. This is a standard limitation found

in the literature on underactuated synchronization works.

Remark 4.3: It is not possible to affirm the convergence of synchronization errors to zero
because of the 3 value. If 3 is small, then choosing a small 3; from the control parameters
adjustment, we will have a small /3 too. Thus, from the controller design parameters’ choice,

a synchronization error close to zero can be achieved, even in the presence of bounded dis-
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turbances in contexts where ho and hs are small.

4.3 SIMULATION

was made. The Matlab version 2020b on a Ryzen 7 1700 computer was used with the
ode15s method with variable steps. The initial conditions were z,,, (0) = [ 1, 2, 0.5, 0.5 ]

and x4 (0) = [ —2, 1.5, 1, —0.5 |. The parameter was chosen as ¥; = 1000, ¥, = 100,
13 = 1000 and ¥, = 100.

In this simulation, disturbances were introduced after forty seconds to show performance
better. The disturbances were chosen as hy,, = 0.25c0s(10t), ha,, = 0.05sin(2t), ha, =
0.03sin(5t), ham = 0.1cos(7t) + 0.1sin(10t), his = 0.2sin(4t), has = 0.07cos(5t), hss =
0.04cos(t) and hys = 0.25sin(15t).

Figures (4.1 - 4.8) show the results of the synchronization. In Figures (4.1 - 4.4) it is
shown that the master system has changed after the disturbances, which is not a problem,
as disturbances in the master system change its behavior over time. However, even in the

presence of disturbances, note that the synchronization occurred satisfactorily.

The Figures (4.5 - 4.8) show that the states where the control is present synchronize
perfectly, going to zero over time, even in the presence of disturbances greater than the
disturbances present in underactuated states. In Figures (4.6 - 4.7) from the introduction of
the disturbances, it can be seen that the disturbances do not go to zero but remain bounded.
This is expected since it is known that one of the limitations of the proposed synchronization

scheme is the sensitivity to disturbances in states not actuated.

Table 4.1 shows the RMSE for different values of ¢). A small value of ¢ corresponds
to a large RMSE and transient. Also, large, v corresponds to small RMSE and transient, as
shown in Table 4.1 and Figures (4.4 - 4.8).

Table 4.1 — Root of the mean square of the state errors for t = [0 20] seconds.

RMSE of state and message synchronization

1 o 3 Py €1, s €., €3,me €4pne

1 0.1 1 0.1 0.282143 0.171103 0.165737 0.101571
10 1 10 1 0.215306 0.067242 0.112798 0.085127
100 10 100 10 0.152840 0.075527 0.067677 0.056228
1000 100 1000 100 0.060506 0.079952 0.038423 0.021668
10000 1000 10000 1000 0.019924 0.080653 0.032165 0.007106
100000 10000 100000 10000 0.006364 0.080880 0.031660 0.002269
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Figure 4.1 — Performance in synchronization of x,,(t) and x(¢).
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Figure 4.2 — Performance in synchronization of y,, (¢) and y,(t).
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Figure 4.3 — Performance in synchronization of z,, () and z4(t).
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Figure 4.4 — Performance in synchronization of w,,(t) and w(t).
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Figure 4.6 — Synchronization error ey (t).
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Figure 4.7 — Synchronization error e3(t).
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Figure 4.8 — Synchronization error e4(t).

44 CONCLUSION

In this chapter, a synchronization algorithm based on the Lyapunov stability theory has
been proposed for a hyperchaotic financial system subject to bounded disturbances. It was
shown that for a correct synchronization between master and slave systems, it is a sufficient
condition to have control signals present in only two of the system states, and this is the
main contribution of the chapter. The main limitations of the chapter are the sensitivity of
the synchronization error to disturbances in underactuated states. Another limitation is the

need for the control dimension to be two and not one.
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CHAOS BASED CRYPTOGRAPHY

The research results of this chapter were published as a conference paper entitled "Chaos-
based Cryptography Using an Underactuated Synchronizer" in [150]. This chapter has ex-

tended and improved some parts compared to the original paper.

In this chapter, a secure communication scheme based on the synchronization of a chaotic
Liu system with a nontrivial Lyapunov function candidate has been proposed, which allows
the control signal to act only on one state of the slave system. The proposal uses an under-
actuated control and has the advantages of being robust against disturbances (internal and
external) and simple, which is essential because it leads to significant cost reductions when
implemented using analog electronics. Simulation work, which considers the presence of
disturbances, was used to validate the theoretical results and show the easy implementation
of the proposed approach.

5.1 PROBLEM FORMULATION

Consider the Liu system [96]:

&= —ax(t) + ay(t)
y = bx(t) — kx(t)z(t) (5.1
i = —cz(t) + ha®(t)

where ¢ is the time; x (t), y(¢), and z(t) are the system states; a = 10, b = 40, ¢ = 2,5,

h =4, and k = 1 are the system parameters. Based on (5.1), let us define the master system

as

Ty = —QATp, + QYm
Um = bxp, — kxpmzm (5.2)
Zm = —CZm + hxfn

and the slave system as
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Ty = —axs + ays + hq(t)
Us = brg — kxgszs + ho(t) + u (5.3)
2y = —czy + ha? + hy(t)
where z,,, y.., and z,, are the states of the master system; x, y,, and z, are the states of the
slave system; and hq, ho, and hj are disturbances present in the slave system.

Remark 5.1: The objective is to synchronize the systems (5.2) and (5.3), in which the slave
system allows only one scalar control signal, acting only in one state. The importance of syn-
chronization comes from the fact that the unmasking of messages in secure communication

happens when the master and slave systems are synchronized.

Remark 5.2: Since system (5.1) is chaotic, its behavior is highly dependent on the initial

conditions, and it also exhibits aperiodic behavior.

Assumption 5.1: It is assumed that the disturbances are bounded. More specifically,

h

IN

|7 (1))
|he (1)] <
|hs (1)]

>

(5.4)

2
3

[\
>

Yt > 0, being hq,ho, and hs unknown constants.

Remark 5.3: It should be noted that we have added the bounded disturbances in (5.3) to

analyze the performance of the proposed method in the presence of perturbations.

Fact 5.1: With the boundedness of the system (5.1) [96], the following inequalities can be
established

<y (5.5)

vVt > 0, where Z, y, and z are unknown positive constants
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5.2 SYNCHRONIZATION ERROR EQUATION AND PROPOSED CON-
TROL SIGNAL

Let us define the synchronization error equations as
€1 =Ts — Ty
€2 = Us — Um (5.6)
€3 = Zs — Zm

Substituting (5.2) and (5.3) into (5.6), results

él = —aey + aeg + h1
éy = bey — k (ere3 + €12 + e3xy,) + ho +u 5.7
é3 = —ces + h (6% + 2€ll'm) + h3

Once the error dynamic was defined, the next step is to design a suitable control signal

u, which is summarized in the following theorem.

Theorem 5.1: Consider the master and slave systems described in (5.2), (5.3) and the fol-

lowing control law

u=—trey — ¢2€g (5.8)

where 1, e 1), are a user-defined constant. Then, the synchronization error converges in finite
time to the compact set 2 = {e(t) € R? | V(e) < 0}, where 0 is a positive small constant,
being 6 := 2.

[0

Proof 5.1: Consider the following Lyapunov function candidate

V== (el +e3+63) (5.9)

N | —

The time-derivative of (5.9) along the error trajectories results in

V = e3¢y + egéy + esés (5.10)

Substituting (5.7) into (5.10), gives
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V = ¢} (—aey 4 aey + hy) + ey [ber — k (e1e5 + €12m + €3m) + ha + ]

(5.11)
+ e3 [—ces + h (€] + 2e12,,) + h3)
Substituting (5.7) into (5.11), we have
V= —aej + ae‘rfe2 + €3hy + berey — keg (e1e3 + €12 + €37,) (5.12)

— e (¢62 + eg) + eahy—ce3 + he, (ef + Qelxm) + eshs
Noting that
ethy < %€?+(61B1)2 < %6411—{—8(51) eres (b+kzy,) < % [
: [e%(k‘i)2 + eg} —kesgerey < 5 = + L(keier)® < 6—3 + 1 (K'e3 + €), exha < 1 (€3 + h3),
< les 41 (e‘ll+8h4:fz4>, eshs <

+e2(b+ k2) ], eses (k) <

heles < (€3 + h%el), 2heiesmy, < —e + 2h%e3z?
1 (€3 + h3), then (5.12) implies

V< —el {a— B+%h2”—e§(c—2)—e§{w—%[(b+k2)2+(k:z)2+5+1”

1o ] ]
+5 [16(h)" +2h3+an'z" + b3
(5.13)

Choosing a suitable t such that ¢ — 3 [(b + kzp)? + (kzm) + % + 1] > «, and con-

sidering that § = % [16(1_7,1)4 + 27L§+4h4i‘4 + l_zg} ,and 0.5 > o > 0.1, we can conclude

V<—aV+58 (5.14)

This implies that V < 0whenV > g := 6. Since 0 is a constant, it can be established
that V' and, hence, the synchronization error is bounded. If for any reason e leaves the
residual set €, V becomes negative definite and forces the convergence of e to the residual
set €). In addition, it can be concluded that the convergence is in a finite time owing to the

particular form of (5.13) [1], This concludes the proof.

By using Lemma 3.2.4 [1], it can be established that:

V(t) < ety (¢
() (to) 5.15)
Vt >t =0

Assuming that ty = 0, then V'(¢) < V(0)e™

Remark 5.4: It was impossible to design a synchronizer based on a scalar control using a
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trivial candidate (a quadratic function of the synchronization errors) and standard Lyapunov
arguments. However, this obstacle is overcome here by choosing a nontrivial candidate (5.8).
This selection allows us to decrease the complexity of the synchronizer. Hence, the proposed

synchronizer uses uncomplicated feedback based on a scalar control.

5.3 SIMULATION

Matlab version 2020b on a Ryzen 7 1700 computer was used for the simulations. The
initial conditions were @, (0) = | 0.2, —0.3, 0.4 | and x, (0) = [ 20, —30, 100 ] For
synchronizing the master and slave systems we used the control law (5.7) with ¢ = 100.

Figures (5.1 - 5.3) show the results of the synchronization. Note that the slave system
follows the master to make the synchronization errors close to zero. Although control is
present only in the second state, all three states show satisfactory synchronization responses.
To check the robustness of the proposed method, the bounded disturbances h; = 1.5sen(2t),
ho = 2cos(3t), and hy = sen (4t) were introduced at ¢ = 10s. Note in Figures (5.1 - 5.3)
that the performance of the proposed synchronizer is practically not affected by the presence

of disturbances, even in the unmatched case.

Finally, the message was encoded and decoded using the proposed approach. Figures (5.3
- 5.6) show the results of our simulations. The chosen message was msg = msg; + msgo,
where msg; = sin(2t) + 0.5sin(8t) + 0.3cos(20t) and msgs is a square signal of

amplitude 1 and period 27. This message was added to the first state of the master system.

The Figures (5.3 - 5.6) show that the synchronizer is robust, even when the introduced
unmatched disturbances are present. Furthermore, from Figure (5.4), it can be observed that
the encoded message differs from the original message, which ensures its confidentiality.
Note also from Figures (5.5 - 5.6) that the difference between the original and recovered
message is practically nonexistent. Furthermore, it is possible to improve the message re-
construction by increasing 1. It is also possible to decrease the time of convergence of the

synchronization error by chaotic circuit scaling.

Table 5.1 shows the RMSE for different values of 1. A small value of 1) corresponds to
a large RMSE and transient. In addition, 1/ corresponds to small transient RMSE, as shown
in Table 5.1 and in Figure 5.6.
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Table 5.1 — Root of the mean square of the errors of the difference between the recovered
and original messages for t = [0 20] seconds.

RMSE of the errors of the recovered and original messages.
Uy 10 100 1000 10000 100000
€rms | 3.638192  3.078710 1.722255 1.103631 0.976269

40
disturbances — Ty (E) 24 (1)
in action

20

0l
-20
-40 i |
0 5 10 15 2

t(s)

Figure 5.1 — Performance in the synchronization of x,,(¢) and x4(¢).
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Figure 5.2 — Performance in the synchronization of y,,(t) and y(t).
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Figure 5.3 — Performance in the synchronization of z,,(t) and z,(t).
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Figure 5.4 — Original and encrypted messages.
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Figure 5.5 — Original and decoded messages.
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Figure 5.6 — Difference between the retrieved and original messages.

5.4 CONCLUSIONS

In this chapter, a synchronization algorithm based on the Lyapunov stability theory has
been proposed for a Liu system subject to bounded disturbances. It was proved and vali-
dated via simulations that it is necessary to use the control signal in only one of the states
to achieve the complete synchronization of the master and slave systems, which is the main
advantage of the proposed method. The system presents as limitations the synchronization
error’s sensitivity to the presence of disturbances in non-actuated states. The proposed meth-
ods’ effectiveness to encode and restore the message both theoretically and in the simulations

was also demonstrated.
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CHAOS SYNCHRONIZATION AND ITS
APPLICATION IN PARALLEL
CRYPTOGRAPHY

The research results of this chapter were published as a conference paper entitled "Chaos
Synchronization and its Application in Parallel Cryptography" in [151]. This chapter has

extended and improved some parts compared to the original paper.

This chapter considers an underactuated synchronization scheme for the Chua system
with application in secure analog communication. Based on Lyapunov’s theory, a control
scheme is presented, which in contrast to the most commonly found in literature, uses a
proportional control signal in only one of the state equations of the slave system. The main
advantages of the proposed secure communication scheme are its simplicity and robustness
against internal and external disturbances. Disturbances were considered in the stability
analysis. These peculiarities are of great significance in practical applications. To validate
the proposed approach, we considered a synchronization of two chaotic Chua circuits in the

presence of disturbances.

6.1 PROBLEM STATEMENT

Consider the following nonlinear system [106], [152]:

M _Va-Vi

4 T — f(W) + I
aLZ Ll_ L2
p— 6-1
Cy 5 I + 15 (6.1)

oly _ —Vs  Rily

ot L L

where t is the time.

The system (6.1) is obtained by applying Kirchhoff’s laws to Chua’s circuit in which V)
and V5 are the voltage across the capacitor C and C5, I, is the current flowing through the
inductor L-f(Viy) = f(Vi), f(Vi) = moVi + 3(my = mo)[[Vi + Bp | — | Vi — Bp |
expresses the current characterized by the nonlinear resistance of Chua’s circuit. Constants
mo, My, and Bp are —7.87-107* S, —1.4357-1073 S, and 1 V, respectively; constant R,

which defines the internal resistance of the circuit’s inductor is 2 2; C;, Cs, L, R, and I, are
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15 nF, 150 nF, 10 mH, 1 k€2, and 100 pA, respectively. For more details see [106], [152].

From system (6.1), changing the original variables to state variables x(t) = V1, y(t) =

Vs, and z(t) = I, and adopting some changes [106], we get the master system

B (t) = mYm(t) — 2 ()] + 0120 () + Oaf|2m(t) + Bp| — |2m(t) — Bp|] +d
U (t) = 2 (t) — ym(t) + 2z (1) (6.2)
Zm(t) = =BYm(t) — vzm(t)

and the slave system is

5(t) = mlys(t) — z5()] + O125(t) + d + has(t) + Oof|25(2) + Bp| — |2s(t) — Bpl]
+ u(t)

Ts(t) — ys(t) + 25(t) + has(t)

—Bys(t) — vzs(t) + hss(1)

(6.3)

ys(t)
Z(1)

where m = 10, 6§, = 7.87, 6 = 3.23, fp = 15, and v = 0.03. The state variables of the
master system are ., (t), Y (t), and z,,(t); the state variables of the slave system are, x,(t),
ys(t), and z4(t); the slave system’s disturbance are hq(t), ho(t), and hs(t); and the control

signal is u(t).

This study aims to synchronize systems (6.2) and (6.3), independent from the disturbance
and initial conditions, where the slave system will only be influenced by one control signal,

which can be found in the first state equation.

Remark 6.1: As the system (6.1) is assumed to be chaotic, its behavior is aperiodic and
sensitive to initial conditions. Thus, changes in the values of initial conditions will affect the

behavior of the system over time.

Assumption 6.1: We assume that the disturbances are bounded. More precisely, if:

his(t)] < ha
|has(t)] < hy (6.4)
|has(t)] < hs

Vt > 0, being hy, hs, and hs unknown positive constants..

Remark 6.2: System (6.3) shows explicit disturbance is rare to find in the literature. This
allows us to evaluate these uncertainties over the boundedness and convergence of the syn-

chronization errors. Disturbances are inevitable in practical implementations because of the
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components’ tolerance, environmental conditions, and electromagnetic noise, among others.

Fact 6.1 [106]: Once the system is bounded (6.2), then

‘xm(t” <z
[Ym(t)] < ¥ (6.5)
lzm ()| < 2

Vt > 0, where Z, ¥, and Z are unknown positive constants.

6.2 SYNCHRONIZATION ERROR AND PROPOSED SIGNAL CON-
TROL

Synchronization errors of the system are defined by

t) (6.6)

Then, dynamic equations of the errors can be obtained from the time-derivative of (6.6),

by using systems (6.2) and (6.3). Thus

é1 =mles —e1) +6ie1 4+ gs — gm + his +u
€y = —ey + ey + ez + haog (6.7)
e3 = —vye3 — Bey + has

where g, = 03(|7m + Bp| — [ — Bp|) and g5 = O2(|zs + Bp| — x5 — Bp]).

Theorem 6.1: Consider the master and slave system described in (6.2) and (6.3) and the

proportional control law defined by

u = —1e; (6.8)

where 1) is a positive constant defined by the designer. Then, the synchronization error
converges in finite time to the compact set = {e € R | |le|| < 0}, 0 := \/%, ¢ =0+ G,
p = min{pi, p2, p3}, and
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p1=1+m—0; —050; — 1 —m?

p2 = 0.75 — 0.509

ps =" = 0.503 (6.9)
¢, = 0.507 1 (h? + 1662)

Co = 0.5(05 ' hi + 03 57h3)

where o; (i = 1, ..., 3) are arbitrary positive constants.

Proof 6.1: Consider the following Lyapunov function candidate

V(t) =0.5[ef(t) + e5(t) + B 'es(t)] (6.10)

Deriving (6.10) based on the time over the error trajectory, results in:

V = 61é1 + €2é2 + ﬁ_legég (611)

Replacing (6.7) in (6.11), we get

V= er[m(es —e1) + b1e1 + gs — G + has + ul+
e, (6.12)
ey (—ea + €1 + €3+ hag) + E — ye3 — Beg + hsg

Replacing (6.8) in (6.12), we get

2
2 €3

V=—W+m—0) — e + e1his + eahag

p (6.13)

eshsg
Rl +e1(gs — gm) + erea(1 +m)

B

We analyze the case in which V <0, so that (6.13) is analyzed in the case of inequality.

Notice that —28p < |z, + Bp| — |2, — Bp| < 28p, —28p < |Tm + Bp| — |2m — Br| < 28p,
and from Young’s inequalities [147]:

e1(hy + 46,) < 0.5[01€2 + oy H(h? + 1663)]
eahy < 0.5(09€3 + 05 'h3)

B leshs < 0.5(03e; + o3 ' B72h3)
erea(1+m) < e3(1 +m?) + 0.25¢3

(6.14)

By using (6.14), (6.13) implies
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V=—e(tp+m—0 —0.50, — 1 —m?) —e2(0.75 — 0.505) —

. _ i (6.15)
e5(787" = 0.503) + 0.5[07 ' (A} + 1663) + o3 "h + o5 B R3]
Replacing (6.9) in (6.15), results
V < —elpr — éhpr — €3ps + G+ Go (6.16)

Observe that ¢ and o; (i = 1,...,3) can be selected so that p; > 0 (7 = 1, ..., 3). Thus,

(6.16) can be written as

V< —,0H6H2—|—C (6.17)

Based on (6.17) we reach the situation where V' < 0, when ||e|| > 6, being 6 constant.
Hence, it can be stated that the synchronization error is bounded. Therefore, if under any
circumstance ||e|| leaves the compact set 2, V' becomes negative definite and forces the

convergence of the synchronization error to a ball with radius equal 8, as shown in (6.17), [1].

Remark 6.3: It can be seen from the proof that bounded disturbances are being considered
in the Lyapunov stability analysis. Note that the synchronization errors are bounded even

with a simple underactuated proportional control, in contrast to [106].

Remark 6.4: It can be seen that o; can be freely chosen by the designer, and thus the value
of (;. This freedom is because p; can be arbitrarily adjusted to be positive if 1) is adjusted as
well.

Remark 6.5: Because of the structure of p; and p9, 02 and o3 can not be freely chosen. Since

the maximum value for o5 and o3 are restricted, thus there are restrictions to the choice of

G

6.3 SIMULATION

A computer simulation to validate the theoretical results was performed in a computer
with Ryzen 7 1700 processor and Matlab 2020b Software with the Ode45 integration method.
For the master system the following initial conditions were considered x,,,(0) = 0.2, y,,,(0) =
0.2, and z,,(0) = 0.2. For the slave system x,(0) = 0.3, y5(0) = 0, and z,(0) = —0.2. White
Gaussian noises were used as disturbances so that hy, hy, and h3 have the power of noise of
—3dBW, —10dBW , and —3dBW, respectively. The synchronization of the systems (6.2)
and (6.3) is achieved through the implementation of the control law (6.8) and by establishing
the parameter ) = 1000.
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In Figures (6.1 - 6.6), the synchronization results using Matlab are displayed. Based on
the results shown in these figures, it is possible to notice that the master and slave systems
get approximated. The results allow us to affirm that the synchronization error is small. The
results show that even though the control is applied to only one of the states (x), synchroniza-
tion is effectively achieved in the three states. However, synchronization errors are not equal
to zero due to the disturbances. This result was expected since, in Theorem 1, it was not

proved that the synchronization errors converge to zero. It was proved that they are bounded.

Applying the proposed scheme to secure communication we have as the transmitted mes-
sages my(t) = 0.2square(5t), ma(t) = 0.05cost(0.5t) + 0.025sin(10t), and ms(t) =
0.1sin(20t) + 0.2sin(8t). In this scheme, the master systems encoded the message and
the slave system decoded the message. Note that the amplitude of the messages represents
approximately 5% of the maximum amplitude of the master states. Assume that the encoded
messages are s1(t) = @, (t) +mi(t), s2(t) = ym () +ma(t), and s3(t) = 2,,,(t) +ms(t). The
decoded messages 1 (t) = s1(t) — x4(t), Mma(t) = so(t) — ys(t), and m3(t) = s3(t) — zs(t)
and the message errors are m;(t) = m;(t) — m;(t) (i = 1,...,3). A natural consequence
of the synchronization errors being bounded is that the message errors are also bounded. In
this case, due to having three simultaneous messages being transmitted in the scheme, it is a

parallel encryption system.

Figures (6.7 - 6.9) show the original, decoded, and encoded messages. We can see that
encrypted messages are different from the original messages. In addition, the retrieved mes-
sages are very close to the original messages. Figures 6.10 - 6.12 show that the errors in
the messages are small. These results were expected since it was theoretically shown that

synchronization errors are bounded.

Table 6.1 shows the RMSE for different values of 1. A small value of 1) corresponds to
a large RMSE and transient. In addition, 1/ corresponds to small transient RMSE, as shown
in Table 6.1 and in Figure (6.4 - 6.6) and (6.10 - 6.12).

Table 6.1 — RMSE of state and message synchronization for t = [0 20] seconds

RMSE of state synchronization and message errors in the proposed algorithm.

¢1 ‘ €s1 €52 €53 €ml €m2 €m3
10 0.062867 0.070627 0.277385| 0.214112 0.081983 0.322913
100 0.004 0.037418 0.129306| 0.200408 0.056139 0.209161

1000 0.002104 0.037522 0.124638| 0.199730  0.056667  0.205866
10000 0.001214 0.036046 0.122733| 0.199750  0.055300  0.204911
100000 | 0.000385 0.035271 0.121752] 0.199786  0.054588  0.204505
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Figure 6.1 — Synchronization of z state.
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t[s]

Figure 6.2 — Synchronization of y state.
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Figure 6.3 — Synchronization of z state.

59



0.15 T T T T T T T T

01

0.05

4 6 8 10 12 14 16
1‘[3]

Figure 6.4 — Synchronization error of x state.
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Figure 6.5 — Synchronization error of y state.
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Figure 6.6 — Synchronization error of z state.

60

18

20



0.8 T T T T T T T T T
= Original message
---------- Decoded message
~—— Encoded message

0 2 4 6 8 10 12 14 16 18 e
tls]

Figure 6.7 — Encoded and decoded messages (mj (t), m(t)).
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Figure 6.9 — Encoded and decoded messages (mg(t), ms(t)).
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Figure 6.10 — Message error 1.
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Figure 6.11 — Message error 2.
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Figure 6.12 — Message error 3.
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6.4 CONCLUSION

This chapter proposes an underactuated synchronization scheme of Chua’s chaotic sys-
tem and subject to disturbances based on Lyapunov’s stability theory. The main advantages
of the proposed scheme are its simplicity, as it is based on proportional control, and consid-
ering the presence of disturbance in the stability analysis. A secure communication scheme
is also suggested based on this proposal to emphasize its applicability in practical situations.
We also prove that only one control signal is enough to synchronize the master and slave
system through Lyapunov’s theory. The efficacy of the control signal is validated through

computer simulations using Matlab, and the results are a typical realization.
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UNDERACTUATED 4D-HYPERCAOTIC
SYSTEM FOR SECURE
COMMUNICATION.

The research results of this chapter were published as a conference paper entitled "Underac-

tuated 4D-Hyperchaotic System for Secure Communication in the Presence of Disturbances"

in [153]. This chapter has extended and improved some parts compared to the original paper.

This chapter deals with a secure communication scheme based on the synchronization

of an underactuated 4D hyperchaotic system. It is proven based on Lyapunov analysis that

the synchronization errors are bounded even with the consideration of disturbances in the

stability analysis. The proposed scheme requires only that control acts in two of the state

equations of the slave system. The scheme has the advantage to be robust against bounded

internal and external disturbances. Computational simulations have been done, including a

secure telecommunication scheme, to validate the robustness and simplicity of the method.

7.1 PROBLEM FORMULATION

Consider the following hyperchaotic Lorenz system [114]:

(t) = ay(t) — azx(t) + w(t)
g(t) = ca(t) — dy(t) — x(t)z(t) 7.1
(t) = z(t)y(t) — bz(t)

where ¢t is the time. Based on (7.1), the master system can be defined as

\

T (t) = aym (t) — azp,(t) + w(t)

Gm(t) = cxm(t) = Ym(t) = Tmzm(t) (7.2)
Zn(t) = 2 () Ym(t) — bz (1)

Wi (t) = =Ym () 2m(t) = wpn(t)

and the slave system can be defined as
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Ts(t) = ays(t) — axs(t) + ws(t) + hy(t)

Us(t) = cas(t) — ya(t) — 2s(t)2:(8) + ha(t) + ua(t)
2s(t) = 2sys(t) — bzs(t) + hs(t)

ws(t) = =ys(t)zs(t) — ws(t) + ha(t) + ua(t)

(7.3)

where x(t), y(t), z(t), and w(t) are the state variables of the system (7.1); z1,, (), Zom(t),
T3m(t), and x4,,(t) are state variables of the master system; and z14(t), xos(t), x34(t), and
x45(t) are state variables of the slave system. The system parameters are a = 10, b = 8/3,
¢ = 28, and d = 1. The disturbances of the slave system are h;(t), hs(t), h3(t), and
hy(t); and uq (t) and us(t) are the control signals. The objective is the synchronization of the
systems (7.2) and (7.3).

Remark 7.1: It should be noted that system (7.1) is hyperchaotic [114]; Then its behavior
depends on the initial conditions so that the system is sensitive to changes in these initial
conditions. In addition, in our approach, we consider (7.2) and (7.3) are different due to the

presence of disturbances and control signals in the actuated states.

Remark 7.2: The purpose of presenting a system (7.3) in which disturbances are explic-
itly considered is to emphasize that the studied synchronization scheme is valid even in the
presence of bounded disturbances. For example, applications in analog electronics could
happen, and changes may appear due to heating, component tolerances, or electromagnetic

noise, among others.

Hypothesis 7.1: It is assumed that the disturbances are bounded. More precisely

(7.4)

Yt > 0, where hq, hs, hs, and hy are unknown constants.

Fact 7.1 [114]: The states of the master system are bounded, i.e.,

: (7.5)

Vt > 0, where 7, ¥, Z, and w are unknown constants.
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7.2  SYNCHRONIZATION ERROR EQUATION AND PROPOSED CON-
TROL SIGNAL

The synchronization error can be defined as:

(7.6)

The error dynamic equation is obtained taking the time-derivative of (7.6) and using (7.2)
and (7.3). Therefore,

€1 = —ae; + aes +eq + hy
€9 = —d62 +cer —ee3 — €12y, — €3y, + h2 + U

(7.7)
é3 = —b€3 + e1ex + €1y + e2xy, + h3

€y = —€4 — €263 — €22y — €3Ym + Na + U

Theorem 7.1: Consider the master and slave system described in (7.2) and (7.3) and the

control laws defined by

ui(t) = —threa(t) — 1haes(t)

(7.8)
us(t) = —hzea(t) — vael(t)

where ¢; > 0 (i = 1,...,4) and their values are user-definable. Then, the synchronization

error converges in finite time to the compact set Q = {e € R* | ||e|| < A}, being 8 := /2,

p
B = 081+ Ba, p :=min{p1, pa, p3, ps}, and

p1=ay—0.5 (01 +2+ 4gjga§)
po =11 +d—0.5 (02 +2+ a272 + 222)

3
p3:b—0.50'3—§
pr =5+ 1—05 (04 +7° + 2 + 47 (7.9)
20’2 20’4
2B2 BQ
By =M M
20’1 20’3

where v and o; (i = 1, ..., 4) are arbitrary positive constants.
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Proof 7.1: Consider the following Lyapunov function candidate

V(1) = 5B ) + 3(0) + A1) + 1) (7.10)

Deriving (7.10) along the trajectories errors about time, we obtain

V = ye161 + €26 + €365 + €464 (7.11)

Substituting (7.7) and (7.8) at (7.11), we have

V= —Wae% — e%(d + 1) — beg — ei(l + 13) + yerhy
+ eshsy + eshs + eghy + e1e0(c — ay — z,) + Yereq (7.12)

4 4
+ €163V — €2€364 — €2€42, — €3€4Ym — Yol — Yyey

On the other hand, using Young’s inequality [147], the result is

verhy < 0.5(c1e3 + 207 hY); exhs < 0.5(0q€3 4 oy th3)
€3h3 < O.5(0’36§ + ngﬁg); 64h4 S 0.5(046421 + OZliLi)
eres(c — ay — z,) < 0.5[e2 + e3(c* + a*y? + 22)]

2
verey < 0.5(€2 +7%€2); ymeres < 25°€2 + % (7.13)

2
e
Zmees < 0.5Z(e5 4 €3); ymeses < gg + 2i°%¢]

2 4 4
€3 L 6 &

egezey < — + =~ + —
H D TN

By using (7.9) and (7.13), (7.12) implies

V < —pie] — pae) — pse; — paes — ps€y — pees + Bi + Bo (7.14)
Since v, ¢;(i = 1,..,4) and 0,(j = 1,...,4) are user-defined, they can be chosen so that

p1, P2, P3, and p4 are positive. Thus, there will be a positive p such that
V< —ple]*+5 (7.15)

Based on the compact set €2 and based on (7.15), the situation where V < 0 occurs
when |le|| > \/é = 0. Since 6 is constant, it can be stated that the synchronization error
is bounded. That is, if in any case ||e|| leaves the compact set €2, then V becomes negative

definite and forces the convergence of the synchronization error to the residual set €2 [114]:
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Remark 7.3: It can be seen from the proof that bounded disturbances are being considered
in the stability analysis, unlike [114]. Thus, the selection of certain controller design param-
eters can lead to a small finite-time synchronization error, even in the presence of bounded

disturbances.

Remark 7.4: It can be seen that o, and o4 can be freely chosen by the usuary. This freedom
is because po and p4 can be arbitrarily adjusted to be positive if ¢); and 1), are adjusted
as well. Thus, 8, can be arbitrarily decreased through the scaling factors. This favorable

situation is not the same for (35, since the maximum value for ¢; and o3 is restricted.

7.3 SIMULATION

Systems (7.2) - (7.3) and control law (7.8) were implemented in a computer simulation to
validate the theoretical results. The simulations were performed on a computer with Ryzen
7 1700 processor and with Matlab 2020b by the Ode45 integration method. The initial
conditions in the master system are x,,(0) = [0.6;1; —0.2; —0.4] and in the slave system
are x5(0) = [0.2; —0.5;0.1;0]. The disturbances are white Gaussian noises implemented
by using the (WGN) Matlab function so that hy, ho, hg, and hy have the power of noise of
1.46dBW, 3dBW, 1.46dBW, and 11.46d BW , respectively.

Control parameters were chosen as ¥; = 100, 12 = 10, ¢»3 = 100, and ¥, = 10. The
Figures (7.1 - 7.4) show the results of the synchronization. The figures show that although
the control signal is placed in only two of the state equations (state y and w), even so, the
synchronization occurs satisfactorily for the four states. In the Figures (7.5 - 7.8) it is possible
to see the difference between the states of the slave and master systems so that it can be said

that the synchronization errors are small.

The proposed scheme was also applied to secure communication problems. A scheme
that functions as a message encoder and decoder was simulated to analyze the effective-
ness and robustness of control in transmitting two messages placed in non-actuated states.
The messages used are m, (t) = 0.3sin(10t) + 0.45sin(30t) and mo(t) = 0.15sin(20t) +
0.3sin(2t) that are added to state x,, and z,, respectively. The amplitude of the messages
represents approximately 4% of the maximum amplitude of the x,, and z,, signals because if
it is too high, it will be easily noticeable when analyzing the signal, x,,, and if it is too small,
it will be recovered with too much sensitivity to disturbances. Assume that the encrypted
message is represented by s; and s, which are equal to s; = z,,, + m; and s = 2z, + mo.
The message is recovered by subtracting the s; sign from the = sign and the s, sign from
the z;.The message errors m; and ms are equal to the recovered messages minus the original

messages.
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The recovery of the messages and the encoded message can be seen in Figures (7.9
- 7.10), where it can be seen that there is almost perfect message recovery, showing the
efficiency of the controller. Also, note that the form of the encoded message is very different
from the original message. Figures (7.11 - 7.12) show the message errors. As can be seen,
the performance of the secure telecommunication scheme shows a result with small errors,
which is to be expected since what has been shown theoretically is that synchronization

errors are bounded.

A Tabela 7.1 shows the RMSE for different values of ). Small v value corresponds
to large RMSE and transient. Also, large, ¢/ corresponds to small RMSE and transient, as
shown in Table 7.1 and in Figures (7.5 - 7.8) and (7.11 - 7.12).
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Figure 7.1 — x state synchronization.
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Figure 7.2 — y state synchronization.
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Figure 7.11 — Message error 1.
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Figure 7.12 — Message error 2.

Table 7.1 — RMSE of state and message synchronization for t = [0 20] seconds.

RMSE of state synchronization and message errors in the proposed algorithm

Y1 P2 V3 Vs | ea €s2 €s3 €s4 | em1 €m?2

10 1 10 1 0.272708 0.401611 0.536434 0.461409| 0.272708 0.536434
100 10 100 10 0.050932 0.066544 0.048278 0.027194| 0.050932 0.048278
1000 100 1000 100 0.053566 0.062984 0.061886 0.028084 | 0.053566 0.061886
10000 1000 10000 1000 | 0.040419 0.037034 0.050518 0.016739| 0.040419 0.050518
100000 10000 100000 10000 | 0.029200 0.013716 0.040987 0.008500| 0.029200 040987

74 CONCLUSION

In this chapter, a synchronization algorithm based on the Lyapunov stability theory has
been proposed for a hyperchaotic system subject to bounded disturbances. It has been proven
and validated via simulations that it is sufficient to employ the control signal in only two
states to achieve complete synchronization of the master and slave systems. A simple and
robust system for secure communication has also been simulated. An application of the
proposed method was also implemented using message encoding and restoration. As a dif-
ferential about the literature, disturbances are assumed in all states and, therefore, in the

stability analysis.
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MINIMAL UNDERACTUATED SYN-
CHRONIZATION OF CHAOTIC SYSTEMS

The research outcomes of this chapter have been submitted to the CNSNS (Communications
in Nonlinear Science and Numerical Simulation). This paper was done in joint work with
other authors: Kevin Herman Muraro Gularte, Hiago dos Santos Rabelo, José Alfredo Ruiz
Vargas, The name of the submitted work is "Minimal Underactuated Synchronization with

Applications to Secure Communication”.

This chapter deals with the synchronization of a class of underactuated hyperchaotic sys-
tems. The proposed method is based on Lyapunov theory, and the initial synchronization
error is assumed to be small to simplify the synchronizer structure. The proposed synchro-
nization method ensures the convergence of the synchronization error to a neighborhood of
the origin, even employing a scalar proportional control law and in the presence of full-state
disturbances. A comparison study is accomplished to depict the advantages of the proposed
method. Furthermore, a secure communication system based on the proposed synchroniza-

tion approach is implemented using analog electronics to show a typical application.

8.1 INTRODUCTION

Chaos refers to an important nonlinear behavior found in the real world and has been
extensively studied in recent years. Chaotic systems are deterministic nonlinear systems
that have an aperiodic behavior and show sensitive dependence on initial conditions [55].
A necessary condition for a system to be chaotic is that at least one Lyapunov exponent is
positive [154]. The first chaotic model was introduced by Lorenz in 1963 [123]. Since then,
many other relevant chaotic systems have been proposed. See for instance, the seminal works
by Rossler [155], Chen [156], Sprott [157], and Lii [158]; and, more recently, the interesting
contributions in [70,76, 115].

On the other hand, hyperchaos has attracted the attention of a lot of researchers in recent
years. Hyperchaotic systems must have at least two positive Lyapunov exponents, and their
dimension must be higher than three [77]. Rossler introduced hyperchaos in 1979 [159].
Other important hyperchaotic models appeared in the following years, such as those by Chua
[154], Chen [160], L, [161], Lorenz [162]; and, more recently, [78,80,81,86,116,163—178].

Furthermore, since hyperchaotic systems have a more unpredictable behavior than those
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chaotic [179], these kinds of systems have motivated a lot of applications in secure commu-
nication [75, 86, 165, 180-185]. Chaotic and hyperchaotic systems have also been used in
many contexts, such as, for instance, biology [186], economy [79, 81, 187], image encryp-
tion [188—194], neural computing [9,59, 82, 195-198], optics [199] and robotics [200].

Chaos synchronization consists of the adjustment of the dynamic of a master (transmit-
ter) and a slave (receiver) chaotic system so that their trajectories converge over time. Pecora
and Carrol introduced the first work on this subject in 1990 [17]. Nowadays, there are various
types of synchronization found in the literature, such as antisynchronization [76,201], lag
synchronization [62,202], projective synchronization [109, 110, 184], hybrid synchroniza-
tion [175], predefined-time synchronization [203] and so on. Applications of hyperchaos-
based synchronization include cryptosystems for video/audio streaming [204], image en-
cryption [205,206], and secure communication using analog circuits [180, 184]. Other po-

tential applications can be found in [207].

Despite all the advances in this field, there are several drawbacks. For example, inter-
esting contributions were proposed in [43, 175, 187,208, 209] where different hyperchaotic
synchronizers were proposed based on the Lyapunov theory. However, disturbances were not
considered in the analysis, with a negative impact on the robustness of these methods. Pertur-
bations can occur due to various factors, such as tolerance, heating, non-ideal behavior, and
electromagnetic noise. Also, fully actuated schemes based on Lyapunov theory are usually
considered in the literature [3,5,11,43,118,182,208,210-213]. On the other hand, when un-
deractuated schemes are considered, the control law is not scalar [184,187,214-216], which
makes the control law complex. For example, robust control schemes, based on slide mode
and backstepping control, respectively, were utilized in [173,215,216] and [217] to synchro-
nize underactuated hyperchaotic systems. Nevertheless, in [173,214-217], the controls are

structurally complex.

In [167], a synchronization scheme based on a new hyperchaotic system, Lyapunov the-
ory, and adaptive control was proposed. The system proposed in [167] is fully actuated to
show that the synchronization error is bounded. In addition, the synchronization structure
is nine-dimensional and therefore complex. To the best of our knowledge, an underacted
synchronization scheme with only a proportional control signal for the system [167] has not
been proposed in the literature. So, it would be desirable to propose a synchronizer system
that: i) only uses one proportional control signal, thus facilitating the application; ii) consid-
ers disturbances in the Lyapunov analysis to make the system robust; iii) uses an alternative
proof methodology based on Lyapunov theory to ensure that the synchronization error is
bounded.

Motivated by the previous facts, this work proposes a robust scheme for synchronizing a
class of underactuated hyperchaotic systems. To simplify the synchronizer, the initial condi-

tion on the synchronization error is assumed to be small, which can be easily implemented
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by setting the initial conditions of the synchronization error to zero when the hyperchaotic
systems do not have a trivial equilibrium point. Lyapunov theory is used to ensure the bound-
edness of the synchronization error. The stability proof is possible due to the particular
structure of the system, small initial conditions, and control law. More precisely, this paper

presents the following contributions.

1) An underactuated synchronization scheme for a class of perturbed hyperchaotic sys-
tems based on [167] is proposed, in contrast to [3,5,11,43,118,182,210-213].

2) The proposed approach is minimal in the way that the synchronizer is simplified to the

maximum since the control is scalar and proportional, in contrast to [3,5,118,213,215,216,
218].

3) The proposed scheme considers the presence of disturbances in all states in the stability
analysis, in contrast to [43, 175, 187,208,209]. It is worth mentioning that the presence of
disturbances in the analysis ensures the robustness of the method.

4) The proposed scheme is applied to secure communication, in contrast to [43, 175,203,
208-210,217,219-222].

The rest of this work is organized as follows. Preliminaries are presented in Section 8.2.
In Section 8.3, the problem and main assumptions are introduced. The synchronization error
and secure communication procedure are introduced, respectively, in Section 8.4 and Section
8.5. In Section 8.6, the main contribution of the paper is presented, the stability proof of the
proposed minimal synchronization method. In Section 8.7, a comparison study with another
work in the literature and an application are presented. Finally, the conclusions of this work

are outlined in Section 8.8.

8.2 PRELIMINARIES

Let the two-norm (Euclidian norm) [223] of a vector e € R" be denoted by |le|| =
V2 i, €. By defining that a; and a, are positive variables, consider the following Young
inequality [224]

2a1a9 < a3 + aj (8.1

Definition 8.1 [223]. The solutions of & = f(z,t), with z(ty) = x¢ and = € R, are uniformly
ultimately bounded (u.u.b.) (with bound B) if there exists a B > 0 and if corresponding to
any 0 > 0 and ¢y, € R+, there exists a T = T'(6) > 0 (independent of t,) such that |zg| < §
implies |x(¢; t, )| < B forallt >ty + T.
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8.3 PROBLEM FORMULATION

Consider the following master hyperchaotic system [167]

"
T, = a(ym - xm)

i = CTm — Ym — TmZm + Wy — d
Y y mZm ©2)
Zm = —bZm + TmYm

| W = MY + Wi — nzd,

where a = 10, b = 2, ¢ = 28, d = 0.1, m = 27, and n = 0.5; and z,,, Ym, Zm, and w,, are
the states variables of the master system (8.2). Based on the system (8.2), we defined a class

of underactuated hyperchaotic slave systems as

(

x's:a'(ys_xs)_‘_hl

Js = CTs — Ys — Ts2s + Ws —d + h
Y Yy 2 (8.3)

23 = _bzs + T5ys + h3

Wy = My, + ws — nad + hy +u
\

where g, ys, 25, Wy are the state variables of the slave system (8.3); w is a scalar control to

be determined afterwards; and hq, hs, hs, hs are disturbances.

This work proposes the synchronization of (8.2) and (8.3) by using the scalar control u,

even in the presence of full-state disturbances.

Remark 8.1: Since system (8.2) is hyperchaotic [167], it follows that

(8.4)

vVt > 0, being z, ¥, z, and w positive constants.

Assumption 8.1: The disturbances are bounded. More exactly,

[hi(t)] < i, VE >0, (i = 1,...,4) (8.5)

where hy, ho, hs, and hy are positive constants.
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8.4 SYNCHRONIZATION ERROR

The synchronization error is defined as

€1 =Ts — Tm

€2 = Ys — Ym

(8.6)

€3 = Zs — Zm
€4 = Ws — Wy,
By using (8.2), (8.3), and the time-derivative of (8.6), the synchronization error equations

can be defined as

él = —aey + aeg + hl

€y = —€3 + C1 — €163 — Zy€1 — Tmez + €4 + o
(8.7)
€3 = —bes + e1ea + Yymer + T2 + hy

by = eq +mey — n(ed + 3x,e2 + 3x,2nel) + hs+u

8.5 SECURE COMMUNICATION

In addition to synchronization, we are interested in secure communication. For additional
details about this topic, refer to [2]. Motivated by [2], let us define

mi(t) = —ei(t), ¥t > 0 (8.8)

where m; = m;—m;, m; are the message reconstruction errors, 1, are the decoded messages,

and m; are the messages before codification for: =1, ..., 4.

Assumption 8.2: It is assumed that

ma(t)] < g, ¥t >0, (i = 1,...,4) (8.9)

where mq, ms, M3, and m, are positive constants. From equation (8.8), it can be concluded
that

Remark 8.2: Note in (8.8) that if the synchronization error is bounded, then the message

error is also bounded. Thus, it is sufficient to prove that the synchronization error is bounded
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for the message error and decoded message to be bounded.

8.6 UNDERACTUATED SYNCHRONIZATION AND LYAPUNOV ANAL-
YSIS

This section proposes a minimal underactuated synchronization scheme based on a pro-
portional scalar control. The design is based on an exhaustive Lyapunov analysis for a sim-
ple synchronization based on the domination of positive terms on the right-hand side of the
time-derivative of a Lyapunov function candidate [223]. The initial condition of the synchro-
nization error is assumed to be sufficiently small to simplify the structure of the synchronizer.

The main result of the paper is presented in the following.
Theorem 8.1:

Consider the master and slave systems described by (8.2)-(8.3) and the proportional con-

trol law defined by
U= —tey (8.11)
If,
le(0)[| € [0, @) (8.12)
Y >0 (8.13)
B <, (8.14)

Then, the synchronization error is bounded and converges to the compact set
0 ={ee R [l <6},

pot++/pP3—4p108
where @ = (/ —¥Y 2 —°=

2p10

p9—+/P§—4p108 5 —

is a sufficiently small constant, § = 5 , 01 =
P10

0.5[04 + (05 7% + 03 74) + o3 (m + 1)), 82 = -, B = By + B + Bes Bu = 0.507 12,

pro
B =05 (07'h2 + 07" h3 + 05" h3), B = SEHE L O ) — 0 0.5(01 +n20y), py =
1-0.5(09+010), p3 = c—0.503, py = v—01, ps = 0.5(05 *06+05 208+n2011+no1a+noys),
Pe = 0.505_206_1, pr = 0.507_208_1, Ps = 80_%2%13, po = min {pi, pz, p3, pa}, pro = mazx

{ps, pe, 7, ps}» 0i(t = 1, ..., 13) are positive constants, and ¢ is the control gain.

Proof 8.1: Consider the following Lyapunov function candidate
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V==c(ei+es+e;+e)) (8.15)

1

2

The time-derivative of (8.15) along the trajectories of (8.7) results
V= e1 (—aey + aeg + hy) + ea(—eq + cey — erez — zpeq

— Tpes +eq + hy) 4 es(—bes + ereg + ymer + Tez + ha) (8.16)
+ eqleq + meg — n(e} + 3xme] + 3x2,e1) + hy + U]

By using (8.11) in (8.16), after some manipulations, we have
V = —ae? — €2 —be2 — (1p — 1)e2 + hyey + hoey

+ hses + hyeq — ne‘;’e4 - anmefq +eres(a+c (8.17)

— Zm) + Ymer€3 — 3n$3n€1€4 + (m + 1)egey

On the other hand, by using Young’s inequality, the following expressions are true

erthy < 0.5(01€2 + o7 h?); exhs < 0.5(02€3 + 05 'h2)

eshs < 0.5(03e3 + 03 'h3); eqhy < 0.5(04e5 + oy 'h7)

o5(a* + 2+ 2% ogel €3
eiexla+c—z,) <
e )< 4 202 20i0¢
—9 4 4
Ymeres < +
4 20% 20%08 (8.18)

— 3na?eres < 0.5(0gn’e] + 904 t7te])

(m + 1)ezes < 0.5[010e3 + o7 (m + 1)%€]]

2 2 4 —1-2 2
— 3nzpeies < 0.5(o1n"e] + 9oy, T7€))
4 4
3 nej(oie + 013) ney
—nejes < 3

By employing (8.18) in (8.17), it can be concluded that

V < —piel — pael — p3€3 — paey + psel + pe€y + pres + psey + Bu+ Bu+ e (8.19)
which implies
V < —pollel” + puollell + 8 (8.20)

Hence, V <0as long as e € €2y, where
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Q={eeR"| 0 <|le|]| <a} (8.21)

Let us define 23 = Q; U s, then ¢(0) € Q3 by (8.12). Note that (8.14) ensures the
existence of a non-null set 2. In case that ¢(0) € €, the synchronization error can only
decrease until e(t) € Q; since V < 0. In case that ¢(0) € €, the synchronization error will
remain in the region €); forever due to the continuity of the states and V < 0in (),. Hence,
the synchronization error e is uniformly bounded [223]. Figure 8.1 shows the main sets. The

proof is complete.

Y

Figure 8.1 — Bounded sets.

Remark 8.3: From a theoretical point of view, the main innovation of our work lies in
the proposition of a stability-proof methodology based on an invariant annulus to make the
residual synchronization error bounded and arbitrarily small. The existence of the annulus
is assured when (8.13)-(8.14) are satisfied. On the other hand, minor errors can be obtained

when the control gain (8.11) is sufficiently large and the initial errors belong to the annulus.

Remark 8.4: Note that it is not possible to design a synchronizer for [167] using a
scalar control and based exclusively on the direct Lyapunov method. Basically, in (8.20),
it is not possible to make V < 0 due to the particular structure of [167]. However, the
synchronization error can be made bounded using (8.11)-(8.12) because the first term on the
right-hand side of (8.20) will dominate the second term, and this is only possible with a small

initial synchronization error.

Remark 8.5: Condition (8.12) can be easily satisfied when the chaotic master and slave
circuits are initialized in zero (for example, discharging energy storage devices). This is
possible in chaotic systems that do not have the origin as an equilibrium point. Note that

from (8.2) and (8.3) there is no trivial equilibrium point due to the presence of the constant d
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in the second state. Examples of other chaotic systems that have no trivial equilibrium points
can be found in [81,214,225-230].

Remark 8.6: By replacing the parameters m = 3.08571 and n = 4.06808 in (8.13),

(8.13) can be rewritten as

Y > 0.5[04 + (07 + 04 'T*) + 16.70,4 ] (8.22)

For instance, based on the simulation in the next section, it can be assumed that z = 2.2,
o4 = 10, 09 = 30, 019 = 1, and 01; = 1, then ¢p > 38.7. In general, the adjustment of the
control gains 1 can be made by a trial and error procedure depending on the requirements of

the user.

Remark 8.7 Condition (8.14) can be written as

EiZ 2 2 | 2 _2 2
Z—Jr(a TPy | For o b (8.23)
; 2 2 2p10

i=1

Notice that (8.23) prevents the upper bounds for Ay, hy, and h3 from being arbitrarily
high when the right-hand side of (8.23) remains small. In fact, from the definitions after
(8.14), we can conclude that, at most, o1 < 2a, 09 < 2, 03 < 2¢, and 04 < 21). Then,
since a4’1, 05, and o7 on the left-hand side of (8.23) can be adjusted arbitrarily small, for
instance, via a high gain control, it may be necessary to have small upper bounds for the
unmatched disturbances hi, ho, and hg to satisfy (8.23). In practice, it is enough to use a
high-gain controller. In addition, disturbances can be decreased, for example, by employing
operational amplifiers and multipliers with high precision; and capacitors and resistors with

small tolerances.

8.7 SIMULATIONS

Simulations are presented to validate the theoretical results and show the performance
and application of the proposed method. For all simulations, Matlab/Simulink ©, R2020a,
in a platform Windows 10, 15-3330, was used. Other simulation parameters were: ODEI15s
solver with variable-step, and relative tolerance of 10~%. Two cases were considered in this
section: 1) a comparison with another work in the literature, and 2) an implementation of
the proposed scheme by using analog electronics. The purpose is to show a comparative
performance with another work in the literature and the implementation of the proposed
method via analog electronics. In both simulation cases, the system parameters were a = 10,
b=2c=28d=01m=27,n = 0.5, and v = 10*. The initial conditions were
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Tm(0) = —2.9, y,,(0) = 3.8, 2,,(0) = 4.7, and w,,(0) = —1.2 for the master system, and
z5(0) = 12.4, ys(0) = —7.5, 2,(0) = 10.2, and w,(0) = 3.4 for the slave system.

8.7.1 Comparison with [167]

Table 8.1 — Comparison of control laws.

Control law in [167] Proposed control law
uy, = —a(t)(ey, — ey) — kpey

Uy = —C(t)e, + ey + Tozo — T121 — €y — kyey

. = b(t)es — zays + 21y1 — kzes

Uy = —10(t)ey — ey + N(t) (@3 — 7)) — kyey

a(t) = ex(e, — €x) u = —ey

b(t) = —e>

é(t) = e,€y

7 (1) = eyeu

n(t) = —ey(73 — a7)

In [167], a new hyperchaotic system was introduced; however, disturbances were not
considered in the stability analysis. Also, a fully actuated adaptive controller was used to
obtain finite-time synchronization. In Figure (8.2-8.9), we show the performance compari-
son between the proposed method and that in [167] for a time interval of 15 seconds. The
disturbances hy = 0.1sin(5t), hy = 0.1cos(3t), hy = 0.3cos(5t), and hy = 50[sin(2t) +
0.4sin(10t)] were considered at t = 7s to check the robustness of both methods.

Note that the main difference between both methods (Figure (8.2-8.9) lies in the transient
and robustness. The system proposed in [167] has a faster synchronization because it has the
control applied in all slave states. The synchronization using the proposed method (8.3)
synchronizes more quickly only in the fourth state, in which the control is present, and it is

robust against disturbances arising at ¢ = 7s.

Observe that the performance of the proposed method and that of [167] are similar. How-
ever, the proposed scheme is simpler. Table 8.1 shows the structural difference between
them. The proposed approach requires fewer components when implemented using analog

electronics and reduces the computational burden in digital applications.
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Figure 8.2 — Performance comparison between the proposed approach and that in [167] of
the first state.
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Figure 8.3 — Performance comparison between the proposed approach and that in [167] of
the second state.
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Figure 8.4 — Performance comparison between the proposed approach and that in [167] of
the third state.
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200 disturbances in action
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Figure 8.5 — Performance comparison between the proposed approach and that in [167] of
the fourth state.
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Figure 8.6 — Performance comparison between the proposed approach and that in [167], First
state error.
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Figure 8.7 — Performance comparison between the proposed approach and that in [167],
second state error.
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Figure 8.8 — Performance comparison between the proposed approach and that in [167], third
state error.
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Figure 8.9 — Performance comparison between the proposed approach and that in [167],
fourth state error.

8.7.2 Implementation Example

The implementation was performed in the following stages: 1) preliminary simulation
to verify the synchronization performance and state upper bounds, 2) amplitude and time

scaling to enable circuit implementation, 3) circuit design, and 4) circuit simulation using
Matlab/Simulink®.

The results of the preliminary simulation are shown in Figure (8.10-8.14). It can be

concluded that the synchronization performance is satisfactory since the errors converge to
a neighborhood of zero.
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Figure 8.10 — Synchronization performance of the non-scaled systems (8.2) and (8.3), z,,
and z.

—ymt) —ua®)]

Figure 8.11 — Synchronization performance of the non-scaled systems (8.2) and (8.3), v,,
and ys.

t[s]

Figure 8.12 — Synchronization performance of the non-scaled systems (8.2) and (8.3), z,,
and z,.
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Figure 8.13 — Synchronization performance of the non-scaled systems (8.2) and (8.3), w,,
and ws.
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Figure 8.14 — Synchronization performance of the non-scaled systems (8.2) and (8.3), eq, €2,
€3 and €4.

For the scaling phase, consider the scaled states X = 1125, Y =

Then, the magnitude scaling system results

;

X =17.7777Y — 10X

Y =15.75X — Y — 21.09375X Z + 8.75W — 0.005
Z = -2Z46XY

(W =3.08571Y + W — 4.06808X° + Ku

(8.24)

where « is a constant defined as 0 for the master and 1 for the slave system. The frequency

scaling is performed by dividing the left-hand side of (8.24) by 1000. Hence, we obtain the
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scaled system that will be used for implementation.

(

X = 17777.78Y — 10000X

Y  =15750X — 1000Y — 21093.75X Z + 8750 — 5
Z = —2000Z + 6000XY

W =3085.71Y 4 1000W — 4068.08 X3 4 1000xu

(8.25)

Figuras (8.15 - 8.20) show the electronic circuits associated with (8.25), where OA1
is an operational amplifier block (OPA228), I1 is an inverter block, and M is an analog

multiplier block (AD633JNC). Figure 8.15 depict the control block. It is possible to observe

Ris
Ry3*

Figure 8.16 shows the message and encoded message block in which the master states are

the simplicity of the control block defined by an adder circuit with R;3 = 214 and gain

added to the message. The state blocks, Figures (8.17-8.20), are different for the master and
slave systems due to the initial conditions, control, and disturbances. The initial conditions
are represented by the voltages on the capacitors, see Figures (8.17 - 8.20) for further details.

Rewriting (8.25) in terms of electronic components, we obtain

( dvcy _ 1 Ve — 1 ve
dt — Ri1Ch 2 R2Cq 1
dveg . _ 1 1 1 1 1
dt " R3Cs vy R4Co vC2 R5C5 Ve RgCso vVCy + R7Co ‘/d
(8.26)
dves _ 1 1
i T T o Ve + ToC; VC1UCS
dvcy _ 1 1 . 1 3
\ dt " R10Cq4 vep + R11Cy V€ R12Cy vey + FJC

where ( = RLCLI(UC;LS — VUC4m); R1 ... Rys, C1 ... Cyin Figures (8.15 - 8.20) have their values
described in Table 8.2; and the voltages vcy, veo, ves, and vey are defined as being the states
X, Y, Z, and W, respectively. The nominal values of the components are shown in Table

8.2.
]

In Figures (8.21) and (8.23), the analog multiplier blocks and operational amplifier blocks
are depicted. It is important to note that the blocks were constructed considering the datasheet
specifications (input bias and input offset voltage) of the OPA228 and AD633JNZ to model
their imperfections. We consider offset voltages S; = S5 = 50mV for the multiplier block
in Figure 8.21, and an output defined as O2 = {{-[(X1—X2)-(Y1-Y2)/v]—(Z1—Z2)},
with £ = 1 and v = 10. For the operational amplifier OPA228, we consider an offset voltage
S3 = 2001V and leakage current S; = S, = 10nA.

The inverter block is shown in Figure 8.22. It was constructed using resistors with 17} =
Ry = 1k€) and an OA1 block (OPA228).
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Figure 8.16 — Message and encoded message block, where VS1 (Voltage Source) is the
message, xi is the master state, and Mi+xi is the encoded message (i = 1,2,3,4)

C1
AW I Out|—
R2 I
W - < i
-Y R1 -i-_> AAAAAA
OA1
=61 1> {2
X -X

Figure 8.17 — X state block.
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Figure 8.19 — Z state block.
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2> A= In Out|-
- ;Dfﬂ ,,,,,
X3 R12 11
OA1
: +, -
=Y
R10 >
— G1 W -W

Figure 8.20 — W state block.
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Figure 8.21 — Analog multiplier block (AD633JNZ).
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Figure 8.22 — Inverter block, where OA1 is an operational amplifier block (OPA228).
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Table 8.2 — Electronic components used in Figures (8.15-8.20).

Parameter Meaning Value Standard Value
R Resistance 1kQ2 1kQ2
R, Resistance 5.62kS2 5.49k()
Ry Resistance 10k$2 10k$2
Rs Resistance  6.349k(2 6.34k(2
Ry Resistance 100kS?2 100k$2
Rs Resistance 4.74k$2 4.7k€)
R Resistance  11.43k() 11.5k2
Ry Resistance 10MQ2 10M(2
Rg Resistance 50k€? 50kS2
Ry Resistance  16.667k(2 16.7k)
Rio Resistance  32.41kQ2 32.80kf2
Ry Resistance 100k<2 100kS?
Ry, Resistance  24.58k() 24 .3k()
Ri3, R14, R15  Resistance 1k2 1kQ2
Ri6, Ri7, Ris Resistance 1kQ2 1k€2
C1, Cy, C3, Cy  Capacitance 10nF 10nF
Vi Voltage 2V 2V

To control the output gain of the multiplier AD633JNZ in Figure 8.21, the resistors R3 =
1k€Q2 and R, = 9k(2 are chosen, as shown in the Figure 8.24.

The simulation is performed following the tolerance and environment conditions con-
tained in Table 8.3.

Table 8.3 — Circuit Parameters.

Parameter Value

Resistor tolerance 0.1%
Capacitance tolerance 0.1%
Maximum voltage resistor 25V
Maximum voltage capacitor 25V

Maximum power rating resistor ~ 0.25W
Maximum power rating capacitor  40W
Temperature simulation 20°C

Noise sampling time 0.001s

Note that in Figure (8.25-8.32), the slave system trajectories converge to the master sys-
tem trajectories, and, consequently, the synchronization errors converge to a neighborhood
of the origin. The disturbances are due, mainly, to the imperfections of the components and

the tolerances of the devices considered in the simulation.

To apply the synchronization algorithm for secure communication, the messages m;, ms,
mg, and m,4 were defined as: 1) m; is a filtered square wave with an amplitude of 0.1V and

period of 1.25ms; 2) my is a filtered sawtooth wave with amplitude 0.06V and period of
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Figure 8.23 — Operational amplifier block (OPA228), where OA is an ideal operational am-
plifier.

A1
B1
—c2 W <{14>

A AB
T A2
{13> B2

B
ADB33JINZ
- R4 R3

Figure 8.24 — The multiplier block using the AD633JNZ CI. The block M is an analog
multiplier AD633JNZ.



1.25ms, and 3) mg and my are filtered random bit sequences of amplitude 0.04V and period
of 1.25ms. The filtered messages were obtained using a first-order filter with a transfer

function given by

50000

Bl (8.27)
s + 50000

—an(t)—au(t)

2

U

0 0.005 0.01 0.015 0.02 0.025

Figure 8.25 — Synchronization of the scaled master-slave system using circuital simulation.
Xy Xs.

0 0.005 0.01 0.015 0.02 0.025
t[s]

Figure 8.26 — Synchronization of the scaled master-slave system using circuital simulation.
Yin, Y.
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Figure 8.27 — Synchronization of the scaled master-slave system using circuital simulation.
Ly Ls.

11 _'wm('t) '“-'s(t)--

0 0.005 0.01 0.015 0.02 0.025

Figure 8.28 — Synchronization of the scaled master-slave system using circuital simulation.
W, W.

2 _ .
—ei(t)
1
0
Al
-2
0 0.005 0.01 0.015 0.02 0.025

t[s]
Figure 8.29 — Scaled master-slave system synchronization error using circuital simulation,
61<t).
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Figure 8.30 — Scaled master-slave system synchronization error using circuital simulation,
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Figure 8.31 — Scaled master-slave system synchronization error using circuital simulation,
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Figure 8.32 — Scaled master-slave system synchronization error using circuital simulation
64(t).

97



my mic mie

> » » ml N
Ld Ld ~ L
mo ) mae . mac i my
Messages s > Signal _ > Public _ > Signal oy »| Recovered
Generator »| Masking ° »{ Channel ° »{ Unmasking A3 »| Messages
my My q Myc | My -
» rd rd rd
-/ — J
A AA A A AA A
T X X )
Y, Y
Master 7 7 Slave
System m Y s System
: & -
m + {
e4 'SR
u
> Controller
—  J

Figure 8.33 — Block diagram of the secure communication system.

Being these filtered messages encoded by the master system according to Figure 8.33. The
encoded messages are defined as m;., ma., M3, and my.. In Figure (8.34-8.37), the original
and encrypted messages are compared. Figure (8.38 - 8.45) shows the original and decoded
messages. As expected, the decryption errors are small, even in the presence of non-modeled

dynamics and bounded disturbances due to the considered simulation parameters in Table
8.3.
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Figure 8.34 — Comparison between the original and encrypted messages with the conditions
given in the Table (8.3), mq, m;..
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Figure 8.35 — Comparison between the original and encrypted messages with the conditions
given in the Table (8.3), mq, ma..
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Figure 8.36 — Comparison between the original and encrypted messages with the conditions
given in the Table (8.3), ms, ma..
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Figure 8.37 — Comparison between the original and encrypted messages with the conditions
given in the Table (8.3), my, M.
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Figure 8.38 — Comparison between the recovered message and the original message. (1711
and m;)
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Figure 8.39 — Comparison between the recovered message and the original message. 775 and
mo.
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Figure 8.40 — Comparison between the recovered message and the original message. ms and
ms.
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Figure 8.41 — Comparison between the recovered message and the original message. 114 and
my.
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Figure 8.42 — Errors in the recovery of encrypted messages, 1.

01 .
—ra(t)

0.05

-0.05 : :
0.005 0.01 0.015 0.02 0.025 0.03

t[s]

Figure 8.43 — Errors in the recovery of encrypted messages, 1.
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8.8

posed in this chapter. Based on Lyapunov theory, a scalar control law has been introduced
to make the residual synchronization error small, even in the presence of full-state distur-
bances. The design considers that the initial synchronization error is sufficiently small to
simplify the structure of the synchronizer. This condition can be satisfied when the hyper-
chaotic systems do not have trivial equilibrium points. The main advantage of the proposed
scheme is its simplicity and robustness. A comparison study has been accomplished to show
the peculiarities of the proposed method. Besides, an secure communication example using
analog electronics has been considered to show a typical application. The main drawback

of the work is the impossibility of applying the proof methodology to systems with trivial

o018 ms(t)
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Figure 8.44 — Errors in the recovery of encrypted messages, ms.
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Figure 8.45 — Errors in the recovery of encrypted messages, 1my.
CONCLUSIONS

A minimal synchronization method for a class of hyperchaotic systems has been pro-
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equilibrium points. Another limitation is that preliminary knowledge of the master system
is required to design the proposed synchronizer. Future works include more sophisticated
synchronization algorithms based on complex strategies such as backstepping, sliding mode

control, and online approximators.
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CONCLUSIONS

This work different synchronization schemes were studied as a basis to then propose a

generic communication system based on hyperchaotic systems of a generic class.

9.1 CHAPTERS CONCLUSIONS

In chapter 3, a projective synchronization and anti-synchronization algorithm based on
Lyapunov theory was proposed for an underactuated chaotic system subject to disturbances
where only two control signals are required to perform master and slave synchronization and
anti-synchronization. The synchronizer has some limitations, such as the sensitivity of the
errors to the disturbances present in the disturbed states. Underactuated control is one of the
contributions of this work since it is rare in the literature to use the control signal in only
one state equation for the synchronization case. Computational simulations were performed

using Matlab and Simulink to validate the simplicity of the proposed scheme.

In chapter 4, a synchronization algorithm based on Lyapunov stability theory was pro-
posed for a hyperchaotic financial system subject to limited disturbances. It was shown that
for a correct synchronization between master and slave systems, it is a sufficient condition to
have control signals present in only two of the system states, and this is the main contribu-
tion of the work. The main limitations of the work are the sensitivity of the synchronization
error to disturbances in underactuated states. Another limitation is the need for the control
dimension to be two and not one. Computational simulations were performed using Matlab

to validate the designed scheme.

In chapter 5, A synchronization algorithm based on the Lyapunov stability theory was
proposed for a Liu system subject to bounded disturbances. It has been proven and validated
through computer simulations using Matlab and Simulink that it is necessary to use the
control signal in only one of the states to achieve complete synchronization of the master
and slave systems, which is the main advantage of the proposed method. The system has
limitations in the sensitivity of the synchronization error to the presence of disturbances in
non-actuated states. The effectiveness of the proposed method to encode and restore the

message in both theory and simulations has also been demonstrated.

In chapter 6, an under-actuated synchronization scheme for Chua’s chaotic system and
subject to disturbances based on Lyapunov stability theory is proposed. The main advan-

tages of the proposed scheme are its simplicity since it is based on proportional control, and
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considering the presence of disturbances in the stability analysis. A secure communication
scheme is also suggested based on this proposal to emphasize its applicability in practical
situations. We also prove that only one control signal is sufficient to synchronize the mas-
ter and slave system through Lyapunov theory. The effectiveness of the control signal is

validated through computer simulations using Matlab.

In chapter 7, a secure communication scheme based on the synchronization of an under-
actuated 4D hyperchaotic system is proposed. It is proven, based on Lyapunov analysis, that
synchronization errors are bound even with the consideration of disturbances in the stability
analysis. The proposed scheme only requires the control to act on two of the slave system’s
state equations. The scheme has the advantage of being robust against limited internal and
external disturbances. Computational simulations were performed using Matlab to validate

the robustness of the proposed scheme.

Finally, chapter 8 presents the main contribution of the thesis: a minimal synchronization
method for a class of hyperchaotic systems. Based on Lyapunov theory, a scalar control law
was introduced to make the residual synchronization error small, even in the presence of
full-state perturbations. The design considers that the initial synchronization error is small
enough to simplify the structure of the synchronizer. The main advantage of the proposed
scheme is its simplicity and robustness. A comparative study was conducted to show the
peculiarities of the proposed method. In addition, an example of secure communication using
analog electronics was considered to show a typical application. Computational simulations
were performed using Matlab and Simulink to validate the robustness and simplicity of the

proposed method.

9.2 FUTURE WORK

* Incorporate more sophisticated synchronization algorithms based on complex strate-
gies such as sliding mode control, online approximators, nonlinear damping, and con-
trol based on integrator backsteeping to improve synchronization performance and

hence the fidelity of the encrypted message reconstruction.

* Reduce implementation costs or limit the computational load to minimize the resource
usage of FPGAs.

* Validate the developed schemes using Matlab/Simulink by performing intensive sim-

ulations and using FPGAs.

* Propose robust, underactuated synchronization schemes applied to high-dimensional

hyperchaotic systems.
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LYAPUNOYV STABILITY THEORY

A.1 PRELIMINARY MATHEMATICS

This section provides some fundamental mathematical concepts that are necessary for

the chapters studied.

A.1.1 Vector norms

DEFINITION 1 Let z € X C R” be a n-dimensional vector. The p-norm of f is defined by

1/p
lally = (ZW) (A1)

for
p € [l,00)

Thus, by denoting p = 1, 2, oo, the corresponding normed spaces are called L1, Ly, Lo,

respectively. In this thesis usually, it is used the case where p = 2:

el = llzll2 = \/ZIIEW (A.2)

lz]|? =aT2, 2 € RV (A.3)

By defining a real constant «, using the vector z € ", and considering y € ¥ C 1" a

n-dimensional vector, the followings properties are true:

[|z[| >0 (A.4)
levz|| = [al|[=] (A.5)
|z +yll < [l=|[ + [lyl| (A.6)

More information can be found at [231,232]
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A.1.2 Lyapunov Stability Theory

We present in this section some concepts about Lyapunov stability theory. The following

definitions and theorem were extracted from [223].

A.1.3 Stability Principles

We consider systems described by ordinary differential equations of the form

= f(t,x), z(to) = xg (A7)

where x € R", f : 7 X B(r), 7 = [tg,00), and B (r) = {z € R"|||z|| < r} . We assume
that f is of such nature that for every zq € B (r) and every ¢, € R", (A.6) possesses one

and only one solution z (¢; t; o).

DEFINITION 2 A state x. is said to be an equilibrium state of the system described by
(A7) if

f(t,z.) =0 paratoda t >t (A.8)

DEFINITION 3 An equilibrium state z. is called an isolated equilibrium state if there
exists a constant > 0 such that B (z.,r) := {z| |z — z.|| < r} contains no equilibrium
state of (A.7) other than x..

DEFINITION 4 The equilibrium state x. is said to be stable(in the sense of Lyapunov) if for
arbitrary to and € > 0 there exists a d (¢, to) such that |xg — 2| < ¢ implies |x (¢; to; xg) — x|
for all ¢ > t.

DEFINITION 5 The equilibrium state x. is said to be uniformly stable (u.s) if it is stable
and if J (¢, ty) in Definition 4 does not depend on .

DEFINITION 6 The equilibrium state z. is said to be asymptotically stable (a.s) if (i) it is
stable, and (ii) there exists a d (Zy) such that |xg — x.| < 0 (to) implies limy | (£; to; xo) —

z.| = 0. If condition (ii) is satisfied, then the equilibrium state x. is said to be attractive.

DEFINITION 7 The set of all x5 € R" such that = (¢;to;29) — x. as t — oo for some
to > 0 is called the region of attraction of the equilibrium state x..

DEFINITION 8 The equilibrium state z. is said to be uniformly asymptotically stable
(uw.a.s) if (i) it is uniformly stable, (ii) for every € > 0 and any ¢, € R, there exist a 5o > 0
independent of ¢, and € and a 7' (¢) > 0 independent of ¢y, such that |x (¢;to; x0) — 2| < €
forall t > to + T (¢) whenever |xg — .| < do.
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DEFINITION 9 The equilibrium state z. is exponentially stable (e.s) if there exists an o >
0, and for every € > 0 there exists a ¢ (¢) > 0 such that

T (Tito;x0) — xe|| < €€ 7 Y paratoda t > 1y .
t;t a(t=to) toda t >t (A.9)

whenever ||zg — .|| < (¢) .

DEFINITION 10 The equilibrium state x. is said to be unstable if it is not stable. (A.6) have
a unique solution for each 25 € R" and t, € R*, we need the following definitions for the

global characterization of solutions.

DEFINITION 11 A solution z (¢;to; z) of (A.6) is bounded if there exists a 5 > 0 such
that |z (¢;to; o) | < B for all t > ¢,, where  may depend on each solution.

DEFINITION 12 The solutions of (A.6) are uniformly bounded (u.b) if for any o > 0 and
to € RT, there exists a 5 = J(«) independent of ¢y such that if |zq| < «, then |z (¢; to; xo) | <
G forallt > t,.

DEFINITION 13 The solutions of (A.6) are uniformly ultimately bounded (u.u.b) (with
bound B) if there exists a B > 0 and if corresponding to any o > 0 and ¢, € R, there exists
aT = T (a) > 0 (independent of ty) such that |zg| < a implies |z (¢;to;z0) | < B for all
t>tg+T.

DEFINITION 14 If x (t;to; xo) is a solution of & = f(¢, =), then the trajectory x (t;to; o)
is said to be stable (u.s., a.s., u.a.s., e.s., unstable) if the equilibrium point z, = 0 of the

differential equation

2= f(t,z+x(t;to;w0)) — f (¢, (L to; 20)) (A.10)

¢ estavel (u.d., a.e., u.a.e., e.e., instavel, respectivamente).

A.1.4 Lyapunov’s Direct Method

The stability properties of the equilibrium state or solution of (A.6) can be studied by
using the direct method of Lyapunov (also known as Lyapunov’s second method). The ob-
jective of this method is to answer questions of stability by using the form of f (¢, x) in (A.6)

rather than the explicit knowledge of the solutions. We start with the following definitions.

DEFINITION 15 A continuous function ¢ : [0,7] — R (or a continuous function ¢ :
[0,00) — R7T) is said to belong to class K, i.e., p € K, if
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1) ¢ (0) = 0.

(ii) ¢ is strictly increasing on [0, 7| (or on [0, 00)).

DEFINITION 16 A continuous function ¢ : [0,00) — R is said to belong to class K R,
1e.,p € KR, if

() ¢ (0) = 0.
(ii) ¢ is strictly increasing on [0, 00).
(i) lim, sop(r) = oc.

DEFINITION 17 Two functions 1, ¢ € K defined on [0, 7] (or on [0, co]) are said to be of

the same order of magnitude if there exist positive constants k1, ko, such that

kip1 (r1) < @o(r1) < koo (1) ,Vry € [0,7] (orVry € [0, 00]) (A.11)

DEFINITION 18 A function V (¢, z) : Rt x B(r) = Rwith V (¢,0) = 0,Vt € R is pos-
itive definite if there exists a continuous function ¢ € K such that V (¢,z) > ¢(|x|),Vt €
R*, z € B(r) and some r > 0. V (¢, x) is called negative-definite if —V (¢, x) is positive
definite.

DEFINITION 19 A function V (t,z) : ®T x B(r) — R with V (¢,0) = 0,Vt € RT is
said to be positive(negative) semidefinite if V' (¢,2) > 0(V (t,z) < 0), for all ¢ € Rt and
x € B(r) for some r > 0.

DEFINITION 20 A function V' (t,z) : RT x B(r) — R, with V' (¢,0) = 0,Vt € R* is said
to be decrescent if there exists ¢ € K such that |V (t,z) | < ¢ (|z]),¥t > 0and Vx € B (r)

for some r > 0.

DEFINITION 21 A function V' (t,z) : RT x R — R with V' (¢,0) = 0,Vt € R" is said to
be radially unbounded if there exists ¢ € K R such that V' (¢, z) > ¢ (|z|) for all x € R"
andt € RT.

It is clear from the Definition (21) that if V (¢, x) is radially unbounded, it is also positive

definite for all x € 3", but the converse is not true.

Let us assume (without loss of generality) that z. = 0 is an equilibrium point of (A.6) e

definir V para ser a derivada temporal da fungdo V' (¢, x) ao longo da solucao de (A.6), assim

oV
V=t (VW' f(t,z) (A.12)
. . a0 1T
where VV = g—;fl, g—;/z, - %] is the gradient of V' with respect to . The second method

of Lyapunov is summarized by the following theorem.
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THEOREM A.1.1 Suppose there exists a positive definite function V' (¢, z) : Rt x B(r) —
R for some r > 0 with continuous first-order partial derivatives with respect to z, ¢, and
V (t,0) = 0,Vt € RT. Then, the following statements are true:

) If 1% < 0, then z, = 0 is stable.
(i1) If V is decrescent and V <0, then x. = 0 is uniformly stable.
(iii) If V is decrescent and V < 0, then z. is uniformly asymptotically stable.

(iv) If V' 1s decrescent and there exist 1, @2, 3 € K of the same order of magnitude
such that

pr(lz)) <V (tz) < o (fa]), V(T 2) < —ps(|2]) (A.13)

forallz € B(r) and t € R, then 2. = 0 is exponentially stable.

In the above theorem, the state z is restricted to be inside the ball B(r) for some r > 0.

Therefore, the results (i) to (iv) of Theorem A.1.1 are referred to as local results.

THEOREM A.1.2 Assume that (A.7) possesses unique solutions for all z, € R". If there
exists a function V (¢, z) defined on |z| > R (where R may be large) and ¢t € [0, co) with
continuous first-order partial derivatives with respect to x, ¢ and if there exist @1, o € KR
such that

() @1 (Jz]) <V (t,2) < 2 (|z])

(ii) V (t,x) < O0forall |z| > Rand t € [0, 00), then, the solutions of (A.6) are uniformly
bounded. If in addition there exists 3 € K defined on [0, c0) and

(iii) V (t,2) < —¢ps (Jz]) for all |#] > Rand t € [0, 00) then, the solutions of (A.6) are

uniformly ultimately bounded.

A.1.5 Young inequality

By defining that a and b are positive variables, p > 1 and ¢ > 1, consider the following

Young inequality for products

p q
<Y (A.14)
p o q

where % + % = 1. Assuming p =2 and q = 2, then

2 b2
ab < % +5 (A.15)
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Note that this expression can also be deduced from inequality (@ —b)? > 0. This is important
because, in the case of p = 2 and ¢ = 2, (A.15) is also correct for any negative real value of
a and b. Rewriting (A.15) results

b\ _adr | PP
(av/5) (%) <7 (A.16)

being 0 > 0. More information can be obtained in [224].
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COMPUTATIONAL CODES USING

MATLAB

TO VALIDATE THE PROPOSED METHOD

B.1 CODES FOR SIMULATIONS IN CHAPTER 3

B.1.1 Simulink Plant for the Projective Synchronization and Antisynchronization
of an Underactuated System Based on Proportional Control, corresponding
to Figures 3.1-3.6 and the Table 3.1.

Planta_Master

p» Xmaster

x=(P;N) 1

Sincronizador

—P-Planta_Slave Xslave

x=(P;N) 2

Figure B.1 — Simulink Plant.

Listing B.1 — Planta-Master.m

function [sys,x0,str,ts]

a=-10; %$Constants
b=-4;

c=0;

switch flag,

sizes = simsizes;

sizes.NumContStates

sizes.NumDiscStates

sizes.NumOutputs

sizes.DirFeedthrough

sizes.NumSampleTimes

3;

sizes.NumInputs = 0;

SNumber
$Number
$Number

$Number

of
of
of
of
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sys = simsizes (sizes);

x0=[3 -4 2]; %$Initial Conditions

str=[1];

ts=[0 0];
©009000000000000
O 0OO0OoOO0OO0OOOOOOOOO
% Directives %

8990990000090 0

case 1, $Sistem
sys = [—(a*b/(a + b))*x(1l) - x(2)*x(3) + c;
a*x(2) + x(1)*x(3);
b*x (3) + x(1)*x(2)] + disturb(x,u,t);

9990990000

999000000

999090000

sys = ; % Does nothing
otherwise
error (["unhandled flag = ’,num2str(flag)]);

end

function disturb = disturb(x,u,t)
if t>=10
disturb= [l*cos (4xt); %4
1.2xcos (3*t);
O.1lxsin(7*t)1;

o°

o\°

else
disturb=0; %Until t=10 secs the disturb is null

end

Listing B.2 — Planta-Slave.m

function [sys,x0,str,ts] = Planta_Slave(t,x,u,flaqg)
a=-10; %Constants

b=-4;

c=0;

9990000000000 0000

9990090000000 000000
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sizes = simsizes;

sizes.NumContStates = 3; %Number of constants states
sizes.NumDiscStates = 0; %Number of discrete states
sizes.NumOutputs = 3; $Number of outputs
sizes.NumInputs = 3; $Number of inputs
sizes.DirFeedthrough = 1;

sizes.NumSampleTimes = 1;

sys = simsizes (sizes);
x0=[5 -5 3]; %Initial Conditions

899009

case 1, %$Sistem
sys = [—(axb/(a + b)) *x(1l) — x(2)*x(3) + c + u(l);
a*x(2) + x(1)*x(3) + u(2);
b*x(3) + x(1)*»x(2)+ u(3)] + disturb(x,u,t);

oo

8990099000 0

sys = ; %Does nothing
otherwise
error ([’unhandled flag = ' ,num2str(flag)]);

end

function disturb = disturb(x,u,t)
if t>=10
disturb= [1.5xsin(4*t); %4
lxcos (6*t) ; %6
0.2xsin (5*t) 1; %3
else
disturb=0; %Until t=10 secs the disturb is null

end

Listing B.3 — Sincronizador.m

function [sys,x0,str,ts] = Sincronizador (t,x,u,flaqg)
psi = 10000;

switch flag,
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9990000000000 0000

09000000000000000

case 0,
sizes = simsizes;
sizes.NumContStates = 3; $Number of constant states
sizes.NumDiscStates = 0; $Number of discrete states
sizes.NumOutputs = 3; $Number of outputs
sizes.NumInputs = 6; $Number of inputs
sizes.DirFeedthrough = 1;
sizes.NumSampleTimes = 1;
sys = simsizes (sizes);
x0=zeros (3,1); $Initial conditions
x0(1)=0;
x0(2)=0;
x0(3)=0;
str=[1];
ts=[0 0]

o\
w)
=
=
()
Q
o
e
<
()
n
o\

8990990000090 0

case 1, Shere would be estimators of the weights of a neural net if
there were, in this case there are not
[0; 0; OI];

89909909000

case 3, $controller
sys = [-lxpsix(u(4) + u(l));
—lxpsi*x(u(d) — u(2));

—-0xpsi*(u(6) + u(3))1;
case {2,4,9},

sys = [1;
otherwise
error (["unhandled flag = ’,num2str(flag)]);
end
Listing B.4 — Graficos.m
$Running this file —--> automatically shows the graphics of the %

simulation and saves it in the %folder in png format (you could choose
jpg format too)
clc

fsize=30;

fSize = 30;
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1Size = 2;
axesSize = 30;
dvlsize = 2;
dhlsize 2;

$Figure 1

fig=figure;

plot (t,Xmaster(:,1),t, Xslave(:,1),’:’,’LineWidth’,3);
set (0, "DefaultAxesFontSize’, 30);

grid on

grid minor

set (0, "DefaultAxesFontSize’, 30);

xlabel (' Time (s)’,’Fontsize’,fsize);

ylabel (" $S$x_{m} (t), x_{s}(t)S$S$’,’ Interpreter’,’Latex’,’Fontsize’, fsize)

YL = get(gca, ’'ylim’); %plot the vertical line

YR YL(2) - YL(1);

YL [YL (1) - 1000 = YR, YL(2) + 1000 = YR];

line([10, 10], YL, ’'YLimInclude’, ’'off’, ’'Color’,’k’,’LineWidth’,dvlsize)

4

pa = annotation(’arrow’); % store the arrow information in pa
pa.Parent = gca; % associate the arrow to the current axes
pa.X = [10 13.5]; % the location of the arrow

pa.Y = [25 25];

pa.LineWidth = dhlsize; % make the arrow bolder for the figure
pa.HeadWidth = 20;

pa.HeadLength 20;
text (10.05,32,"’disturbances’,’Fontsize’, fSize) % write a text on top of
the arrow

text (10.2,28,’in action’,’Fontsize’, fSize) $ write a text on top of the

arrow

h=legend(’'Master’,’Slave’,’Location’, ' northeast’);

set (h, "FontSize’, fsize);

set (gcf,’units’,’normalized’,’outerposition’, [0 0O 1 17]);
saveas (gcf, "FIGl.png’);

%$close (fiqg)

$Figure 2

fig=figure;

plot (t,Xmaster(:,2),t, Xslave(:,2),’:’,’LineWidth’, 3);
set (0, "DefaultAxesFontSize’, 30);
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grid on

grid minor

set (0, "DefaultAxesFontSize’, 30);
xlabel (' Time (s)’,’Fontsize’,fsize);

ylabel (" $Sy_{m}(t), y_{s}(t)S$S$’,’ Interpreter’,’Latex’,’Fontsize’, fsize)

YL = get(gca, ’'ylim’); %plot the vertical line
YR = YL(2) - YL(1);
YL = [YL(l) - 1000 % YR, YL(2) + 1000 * YR];

line([10, 10], YL, ’'YLimInclude’, ’'off’, ’'Color’,’k’,’LineWidth’,dvlsize)

4

pa = annotation(’arrow’); % store the arrow information in pa
pa.Parent = gca; % associate the arrow the the current axes
pa.X = [10 13.5]; % the location of arrow

pa.Y = [20 20];

pa.LineWidth = dhlsize; % make the arrow bolder for the figure
pa.HeadWidth = 20;

pa.HeadLength = 20;
text (10.05,25,"disturbances’,’Fontsize’,fSize) % write a text on top of
the arrow

text (10.2,22,’in action’,’Fontsize’,fSize) $ write a text on top of the

arrow

h=legend(’Master’,’Slave’,’'Location’, ' northeast’);

set (h, "FontSize’, fsize);

set (gcf,’units’,’normalized’,’outerposition’, [0 0O 1 17]);
saveas (gcf, 'FIG2.png’);

%$close (fiqg)

$Figure 3

fig=figure;

plot (t,Xmaster(:,3),t, Xslave(:,3),’:’,’LineWidth’,3);set (0,”’
DefaultAxesFontSize’, 30);

grid on

grid minor

set (0, "DefaultAxesFontSize’, 30);

xlabel (' Time (s)’,’Fontsize’, fsize);

ylabel ("$Sz_{m}(t), z_{s}(t)S$S$’,’ Interpreter’,’Latex’,’'Fontsize’, fsize)

YL = get(gca, ’'ylim’); %plot the vertical line
YR = YL(2) - YL(1);
YL = [YL(1l) - 1000 = YR, YL(2) + 1000 = YR];
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line([10, 10], YL, ’"YLimInclude’, ’'off’, ’'Color’,’k’,’LineWidth’,dvlsize)

pa = annotation(’arrow’); % store the arrow information in pa
pa.Parent = gca; % associate the arrow the the current axes
pa.X = [10 13.5]; % the location of arrow

pa.Y = [25 25];

pa.LineWidth = dhlsize; % make the arrow bolder for the figure
pa.HeadWidth = 20;

pa.HeadLength = 20;

[)

text (10.05,32,"disturbances’,’Fontsize’, fSize) % write a text on top of
the arrow

text (10.2,28,"in action’,’Fontsize’,fSize) % write a text on top of the

Arrow

h=legend(’Master’,’Slave’,’Location’,’northeast’);

set (h,"FontSize’, fsize);

set (gcf,’units’, ' normalized’,’outerposition’, [0 0 1 11]);
saveas (gcf, "FIG3.png’) ;

%$close (fig)

$Figure 4

fig=figure;

auxl = Xmaster(:,1) + Xslave(:,1);
plot (t,auxl,’LineWidth’, 3);

set (0, "DefaultAxesFontSize’, 30);
grid on

grid minor

set (0, "DefaultAxesFontSize’, 30);
xlabel (' Time (s)’,’Fontsize’, fsize);

ylabel (" $Se_{1}(t)$$’, ' Interpreter’,’Latex’,’Fontsize’, fsize)

YL = get(gca, ’'ylim’); %plot the vertical line
YR = YL(2) - YL(1);
YL = [YL(1) - 1000 = YR, YL(2) + 1000 = YR];

line([10, 10], YL, ’'YLimInclude’, ’'off’, ’'Color’,’k’,’LineWidth’,dvlsize)

4

pa = annotation(’arrow’); % store the arrow information in pa
pa.Parent = gca; % associate the arrow the the current axes
pa.X = [10 13.5]; % the location of arrow

pa.Y = [4 4];

pa.LineWidth = dhlsize; % make the arrow bolder for the figure
pa.HeadWidth = 20;

pa.HeadLength = 20;

140



text (10.05,4.65, " disturbances’,’'Fontsize’,£Size) % write a text on top of
the arrow
text (10.2,4.25,"in action’,’Fontsize’,fSize) % write a text on top of the

Arrow

set (gcf,’units’,’normalized’,’outerposition’, [0 0O 1 17);
saveas (gcf, "FIG4.png’);

%$close (fiqg)

$Figure 5

fig=figure;

aux?2 = Xslave(:,2) - Xmaster(:,2);
plot (t,aux2,’LineWidth’, 3);

set (0, " DefaultAxesFontSize’,30);
grid on

grid minor

set (0, "DefaultAxesFontSize’, 30);
xlabel (' Time (s)’,’Fontsize’, fsize);

ylabel (" $Se_{2}(t)$S$S’, ' Interpreter’,’Latex’,’Fontsize’, fsize)

YL = get(gca, ’'ylim’); %plot the vertical line

YR = YL(2) - YL(1);

YL [YL (1) - 1000 = YR, YL(2) + 1000 = YR];

line([10, 10], YL, ’"YLimInclude’, ’'off’, ’'Color’,’k’,’LineWidth’,dvlsize)

4

pa = annotation(’arrow’); % store the arrow information in pa
pa.Parent = gca; % associate the arrow the the current axes
pa.X = [10 13.5]; % the location of arrow

pa.Y = [-0.4 -0.4];

pa.LineWidth = dhlsize; % make the arrow bolder for the figure
pa.HeadWidth = 20;

pa.HeadLength = 20;

text (10.05,-0.32,"’disturbances’,’Fontsize’,fSize) $ write a text on top
of the arrow
text (10.2,-0.37,"in action’,’Fontsize’,fSize) % write a text on top of

the arrow
set (gcf,’units’, ' normalized’,’outerposition’, [0 0 1 11]);
saveas (gcf, "FIG5.png’) ;

%$close (fig)

$Figure 6

fig=figure;
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aux3 = Xmaster(:,3) + Xslave(:,3);
plot (t,aux3,’'LineWidth’, 3);

set (0, "DefaultAxesFontSize’, 30);
grid on

grid minor

set (0, "DefaultAxesFontSize’, 30);
xlabel (' Time (s)’,’Fontsize’, fsize);

yvlabel (" $Se_{3}(t)$S$S’, '’ Interpreter’,’Latex’, ' Fontsize’, fsize)

YL = get(gca, ’'ylim’); %plot the vertical line
YR = YL (2) - YL(1);
YL = [YL(l) - 1000 % YR, YL(2) + 1000 % YRI];

line([10, 101, YL, ’'YLimInclude’, ’'off’, ’'Color’,’k’,’LineWidth’,dvlsize)

4

pa = annotation (’arrow’); % store the arrow information in pa
pa.Parent = gca; % associate the arrow the the current axes
pa.X = [10 13.5]; % the location of arrow

pa.Y = [2 2];

pa.LineWidth = dhlsize; % make the arrow bolder for the figure

pa.HeadWidth 20;
pa.HeadLength = 20;

text (10.05,2.4,’disturbances’,’Fontsize’,fSize) % write a text on top of
the arrow
text (10.2,2.15,"in action’,’Fontsize’,fSize) % write a text on top of the

arrow

set (gcf,’units’,’normalized’,’outerposition’, [0 0O 1 17]);
saveas (gcf, 'FIG6.png’ ) ;

%close (fiqg)

Listing B.5 — Graficos-sem-mensagem-estilo-3.m

fonte 10;
fSize = 12;
dhlsize = 2;

dvlsize = 2;

largura_linha = 2;
colorl [0 0.4470 0.74107;
color2 = [0.8500 0.3250 0.0980];

addpath (' . /Figuras/Figuras_3_sem_mensagem_estilo_3/");

local = 'Figuras/Figuras_3_sem_mensagem_estilo_3';
format = "png’;
format2 = ’epsc’;
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eps = ' .eps’;

nome_1 = ' /FIG_3_1";
nome_2 "/FIG_3_2";
nome_3 = ' /FIG_3_3';
nome_4 "/FIG_3_4";
nome_5 = ' /FIG_3_5";
nome_6 = ' /FIG_3_6";

local_1 = append(local, nome_1);
local_2 = append(local, nome_2);
local_3 = append(local, nome_3);
local_4 = append(local, nome_4);
local_5 = append(local, nome_5);
local_6 = append(local, nome_6);

set (0, "DefaultAxesFontSize’, fonte);

subplot = @(m,n,p) Subtightplot (m, n, p, 0.077, [0.14 0.02], [0.04
0.0111);

%$close (figure(1l));

figure(1l);

subplot (1,1,1);

plot (t,Xmaster(:,1),’-",’Color’,colorl,’LineWidth’, largura_linha);

grid on

grid minor

hold onj;

plot(t, Xslave(:,1),’:",’Color’,color2,’LineWidth’, largura_linha);

$ylim([-15 257])

YL = get(gca, ’'ylim’); %plot the vertical line
YR = YL(2) - YL(1);
YL = [YL(1) - 1000 = YR, YL(2) + 1000 =% YR];

line([10, 10], YL, ’'YLimInclude’, ’'off’, ’'Color’,’k’,’LineWidth’,dvlsize)

4

pa = annotation(’arrow’); % store the arrow information in pa
pa.Parent = gca; % associate the arrow the the current axes
pa.X = [10 147]; % the location of arrow

pa.Y = [-34 -34];

pa.LineWidth = dhlsize; % make the arrow bolder for the figure
pa.HeadWidth = 10;

pa.HeadLength 10;
text (10.05,-26.5,"disturbios’,’Fontsize’,fSize) % write a text on top of
the arrow

text (10.2,-30.5,"em acgao’,’'Fontsize’,fSize) % write a text on top of the

Arrow
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xlabel ("S$t[s]S$",  Interpreter’,’ latex’)

legend ("$x_m(t)$","$x_s(t)$",’ Interpreter’,’ latex’,’Location’, ' northeast’
,’Orientation’,’horizontal’)

set (gcf,’ renderer’,’painters’,’units’,’centimeters’,’ position’
,[5,5,17,81)

saveas (gcf, local_1, format);

saveas (gcf, append(local_1, eps), format2);

subplot = @(m,n,p) Subtightplot (m, n, p, 0.077, [0.14 0.02], [0.04
0.0111);

%close (figure (2));

figure(2);

subplot (1,1,1);

plot (t,Xmaster(:,2),’-",’Color’,colorl,’LineWidth’, largura_linha);

grid on

grid minor

hold on;

plot(t, Xslave(:,2),’:’,’Color’,color2,’LineWidth’, largura_linha);

Sylim([-1.5 2])

YL = get(gca, ’'ylim’); %plot the vertical line

YR = YL(2) - YL(1);

YL = [YL(1l) - 1000 = YR, YL(2) + 1000 = YRI];

line([10, 101, YL, ’"YLimInclude’, ’'off’, ’'Color’,’k’,’LineWidth’,dvlsize)

4

pa = annotation(’arrow’); % store the arrow information in pa
pa.Parent = gca; % associate the arrow the the current axes
pa.X = [10 141; % the location of arrow

pa.Y = [19 19];

pa.LineWidth = dhlsize; % make the arrow bolder for the figure
pa.HeadWidth = 10;

pa.HeadLength = 10;

text (10.05,25.4,"disturbios’,’Fontsize’,fSize) % write a text on top of
the arrow
text (10.2,21.7,"em acdo’,’Fontsize’,fSize) % write a text on top of the

Arrow

xlabel ("S$t[s]S$",  Interpreter’,’ latex’)

legend ("Sy_m(t)s$","sy_s(t)S$", ' Interpreter’,’ latex’,’Location’, '’ northeast’
,’Orientation’,’horizontal’)

set (gcf,’ renderer’,’painters’,’units’,’centimeters’, ' position’
,[5,5,17,81)

saveas (gcf, local_2, format);

saveas (gcf, append(local_2, eps), format2);
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subplot = @(m,n,p) Subtightplot (m, n, p, 0.077, [0.14 0.02], [0.04
0.0111);

%$close (figure (3));

figure (3);

subplot (1,1,1);

plot (t,Xmaster(:,3),’-",’Color’,colorl,’LineWidth’, largura_linha);

grid on

grid minor

hold on;

plot(t, Xslave(:,3),’:’,’Color’,color2,’LineWidth’, largura_linha);

Sylim([-12 127)

YL = get(gca, ’'ylim’); %plot the vertical line
YR = YL(2) - YL(1);
YL = [YL(1l) - 1000 = YR, YL(2) + 1000 = YR];

line([10, 10], YL, ’'YLimInclude’, ’'off’, ’'Color’,’k’,’LineWidth’,dvlsize)

4

pa = annotation(’arrow’); % store the arrow information in pa
pa.Parent = gca; % associate the arrow the the current axes
pa.X = [10 14]; % the location of arrow

pa.Y = [-34 -34];

pa.LineWidth = dhlsize; % make the arrow bolder for the figure
pa.HeadWidth = 10;

pa.HeadLength 10;

text (10.05,-26.5,"disturbios’,’Fontsize’,fSize) % write a text on top of
the arrow

text (10.2,-30.5,"em acao’,’Fontsize’,fSize) % write a text on top of the

arrow

xlabel ("$t[s]$",  Interpreter’,’ latex’)

legend ("S$z_m(t)s$","$Sz_s(t)S$", ' Interpreter’,’ latex’,’Location’, '’ northeast’
,’Orientation’,"horizontal’)

set (gcf,’ renderer’,’painters’,’units’,’centimeters’,’position’
,[5,5,17,81)

saveas (gcf, local_3, format);

saveas (gcf, append(local_3, eps), format2);

subplot = @(m,n,p) Subtightplot (m, n, p, 0.077, [0.14 0.02], [0.035
0.01171);

$close (figure (4));

figure (4);

subplot (1,1,1);

el = Xslave(:,1) + Xmaster(:,1);

plot(t,el,’-","Color’,colorl,’LineWidth’, largura_linha);

grid on

grid minor
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$ylim([-0.01 0.15])

YL = get(gca, ’'ylim’); %plot the vertical line
YR = YL(2) - YL(1);
YL = [YL(1) - 1000 = YR, YL(2) + 1000 =% YR];

line([10, 10], YL, ’'YLimInclude’, ’'off’, ’'Color’,’k’,’LineWidth’,dvlsize)

4

pa = annotation(’arrow’); % store the arrow information in pa
pa.Parent = gca; % associate the arrow the the current axes
pa.X = [10 147]; % the location of arrow

pa.Y = [4 4];

pa.LineWidth = dhlsize; % make the arrow bolder for the figure
pa.HeadWidth = 10;

pa.HeadLength 10;

text (10.05,5.1,"’disturbios’,’Fontsize’,fSize) % write a text on top of
the arrow

text (10.2,4.5,"'em acao’,’Fontsize’,fSize) $ write a text on top of the

arrow

xlabel ("St[s]$", ' Interpreter’,’ latex’)

legend ("Se_1(t)$",’' Interpreter’,’latex’,’ Location’, ' northeast’,”’
Orientation’,’horizontal’)

set (gcf,’ renderer’,’painters’,’units’,’centimeters’,’ position’
,[5,5,17,8])

saveas (gcf, local_4, format);

saveas (gcf, append(local_4, eps), format2);

subplot = @(m,n,p) Subtightplot (m, n, p, 0.077, [0.14 0.02], [0.045
0.0111);

%$close (figure (5));

figure (5);

subplot (1,1,1);

e2 = Xslave(:,2) — Xmaster(:,2);

plot(t,e2,’-","Color’,colorl,’LineWidth’, largura_linha);

grid on

grid minor

Sylim([-0.25 0.2])

YL = get(gca, ’'ylim’); %plot the vertical line
YR = YL(2) - YL(1);
YL = [YL(1l) - 1000 = YR, YL(2) + 1000 =% YR];

line([10, 10], YL, ’'YLimInclude’, ’'off’, ’"Color’,’k’,’LineWidth’,dvlsize)

4

pa = annotation(’arrow’); % store the arrow information in pa
pa.Parent = gca; % associate the arrow the the current axes
pa.X = [10 141; % the location of arrow
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pa.Y = [-0.6 -0.6];
pa.LineWidth = dhlsize; % make the arrow bolder for the figure
pa.HeadWidth = 10;
10;

pa.HeadLength

text (10.05,-0.47,"disturbios’,’Fontsize’,fSize) % write a text on top of
the arrow

text (10.2,-0.54,"’em acao’,’Fontsize’,fSize) % write a text on top of the

aArrow

xlabel ("St[s]$",  Interpreter’,’ latex’)

legend ("Se_2(t)$",’' Interpreter’,’latex’,’ Location’, ’northeast’,”’
Orientation’,’horizontal’)

set (gcf,’ renderer’,’painters’,’units’,’centimeters’,’ position’
, [5,5,17,81)

saveas (gcf, local_5, format);

saveas (gcf, append(local_5, eps), format2);

subplot = @(m,n,p) Subtightplot (m, n, p, 0.077, [0.14 0.02], [0.03
0.0111);

%close (figure (6));

figure (6);

subplot (1,1,1);

e3 = Xslave(:,3) + Xmaster(:,3);

plot(t,e3,’-","Color’,colorl,’LineWidth’, largura_linha);

grid on

grid minor

Sylim([-0.5 0.87])

YL = get(gca, ’'ylim’); %plot the vertical line
YR = YL(2) - YL(1);
YL = [YL(l) - 1000 % YR, YL(2) + 1000 * YR];

line([10, 10], YL, ’'YLimInclude’, ’'off’, ’'Color’,’k’,’LineWidth’,dvlsize)

4

pa = annotation(’arrow’); % store the arrow information in pa
pa.Parent = gca; % associate the arrow the the current axes
pa.X = [10 147]; % the location of arrow

pa.Y = [2 2];

pa.LineWidth = dhlsize; % make the arrow bolder for the figure
pa.HeadWidth = 10;

pa.HeadLength = 10;

text (10.05,2.65," disturbios’,’Fontsize’,fSize) % write a text on top of
the arrow
text (10.2,2.3,’em acao’,’Fontsize’,fSize) $ write a text on top of the

arrow
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xlabel ("S$t[s]S$",  Interpreter’,’ latex’)

legend ("Se_3(t)s$",’ Interpreter’,’latex’,’Location’, ' northeast’,”’
Orientation’,’horizontal’)

set (gcf,’ renderer’,’'painters’,’units’,’ centimeters’,’position’
, [5,5,17,81)

saveas (gcf, local_6, format);

saveas (gcf, append(local_6, eps), format2);

%$close (figure (1)) ;

x1l=(t);

yl=(el);
y2=(e2);
y3=(e3);

C=polyfit(xl,vy1l,1);

n=length (x1);

fxl=polyval (C,x1);

ecml=sqgrt (sum((fxl-y1l).%2)/n)
fprintf(1,’%f\n’,ecml)

y2=(e2);

C=polyfit(xl,y2,1);

ecm2=sqgrt (sum((fxl-y2).%2)/n)
fprintf(1,’%f\n’,ecm2)

y3=(e3);

C=polyfit(xl,y3,1);

ecm3=sqgrt (sum((fx1-y3).%2)/n)
fprintf(1,’%f\n’,ecm3)
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B.2 CODES FOR SIMULATIONS IN CHAPTER 4

B.2.1 Simulink Plant for the Synchronization of a Hyperchaotic Financial Sys-
tem, corresponding to Figures 4.1-4.8 and the Table 4.1.

———» Xmaster

x=(P;N) 1

Planta_Master

Sincronizador Planta_Slave » Xslave

x=(P;N) 2

Figure B.2 — Simulink Plant.

Listing B.6 — Planta-Master.m

function [sys,x0,str,ts] = Planta_Master (t,x,u,flaqg)
a=0.9; %$Constans
b=0.2;
=1.5;
=0.2;
k=0.17;

dl =0; $Disturbances

sizes = simsizes;

sizes.NumContStates SNumber of constant states

Il
=~
~.

sizes.NumDiscStates = 0; %Number of discrete states
sizes.NumOutputs = 4; $Number of outputs
sizes.NumInputs = 0O; $Number of inputs
sizes.DirFeedthrough = 1;

sizes.NumSampleTimes = 1;

sys = simsizes(sizes);
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x0=[1 2 0.5 0.5]; %Initial conditions

8990990000090 0

sys = [x(3) + (x(2) - a)*x(1l) + x(4);
1 - b*x(2) - x(1)*x(1);
-x(1) - c*xx(3);
—d*x (1) *x(2) — k*x(4)] + disturb(x,u,t);

999000000

999000000

sys = ; % Does nothing
otherwise
error (["unhandled flag = ’,num2str(flag)]);

end

function disturb = disturb(x,u,t)
if t>=40
disturb= [0.25xcos (10xt); %4
0.05%sin (2+t);
0.03%xsin(5+t); %6
O.1lxcos(7*xt) + 0.1lxsin(10=*t)]; %3
else
disturb=0; %Until t=10 secs the disturb is null

end
Listing B.7 — Planta-Slave.m
function [sys,x0,str,ts] = Planta_Slave(t,x,u,flaqg)
a=0.9; %Constants
=0.2;
=1.5;
=0.2;
k=0.17;

99000000000000000
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case 0,
sizes = simsizes;

sizes.NumContStates = 4; S%Number of constant states
sizes.NumDiscStates = 0; %Number of discrete states
sizes.NumOutputs = 4; $Number of outputs
sizes.NumInputs = 4; $Number of inputs
sizes.DirFeedthrough = 1;
sizes.NumSampleTimes = 1;
sys = simsizes (sizes);

x0=[-2 1.5 1 -0.5]; %Initial conditions

(x(2)-a)*»x (1) + x(4) + u(l);
1 = b*xx(2)-x(1)*x (1) + u(2);
-x(1)-c*x(3) + u(3);
x(1)*x(2) — k*x(4) + u(4)] + disturb(x,u,t);

8990990000

sys = ; % Does nothing
otherwise
error (["unhandled flag = ’,num2str(flag)]);

end

function disturb = disturb(x,u,t)
if t>=40
disturb= [0.2%sin(4xt); %4
0.07+cos (5+t);
0.04xcos (t); %6
0.25xsin(15*t)]1; %3
else
disturb=0; %Until t=10 secs the disturb is null

end

Listing B.8 — Sincronizador.m

function [sys,x0,str,ts] = Sincronizador (t,x,u,flaqg)
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psil = 100000;
psi2 = 10000;
psi3 = 100000;
psi4 = 10000;

simsizes;
.NumContStates =

.NumDiscStates =

sizes

~.

sizes

~.

sizes.NumOutputs =

sizes.NumInputs =

~.

sizes.DirFeedthrough =

~.

= = 0 s O b
~.

~.

sizes.NumSampleTimes

sys = simsizes (sizes);
x0=zeros (4,1);
x0(1)=0;

x0 (2

8990990000090 0

8990990000

case 3, $controller
sys = [ —1lx(psil=*

( (u(5)
—0x (psi2* (u(6)
—0x (psi3*(u(7)
—1x (psi3* (u(8)

case {2,4,9},

$Number
$Number
$Number

$Number

of
of
of
of

constant states
discrete states
outputs

inputs

$Initial conditions
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sys = [];

otherwise
error (["unhandled flag = ’,num2str(flag)]);

end

Listing B.9 — Graficos.m

$Running this file automatically shows the graphics of the simulation and

saves it in the folder in %png format (could be chosen jpg format too

clc

fsize=30;

fSize = 30;

1Size = 2;
axesSize = 30;
dvlsize = 2;

dhlsize = 2;

$Figure 1

fig=figure;

plot (t,Xmaster(:,1),t, Xslave(:,1),’:’,’LineWidth’,3);set (0,”’
DefaultAxesFontSize’, 30);

grid on

grid minor

set (0, "DefaultAxesFontSize’, 30);

xlabel (' Time (s)’,’Fontsize’, fsize);

ylabel (" $$x_{m} (t), x_{s}(t)$S$’,’ Interpreter’,’Latex’, ' Fontsize’, fsize)

YL = get(gca, ’'ylim’); %plot the vertical line
YR = YL(2) - YL(1);
YL = [YL(1) - 1000 % YR, YL(2) + 1000 % YR];

line([40, 40], YL, ’"YLimInclude’, ’'off’, ’'Color’,’k’,’LineWidth’,dvlsize)

4

pa = annotation(’arrow’); % store the arrow information in pa
pa.Parent = gca; % associate the arrow the the current axes
pa.X = [40 60]; % the location of arrow

pa.Y = [1.5 1.5];

pa.LineWidth = dhlsize; % make the arrow bolder for the figure
pa.HeadWidth = 20;

pa.HeadLength 20;

text (40.2,1.85,’disturbances’,’Fontsize’,fSize) % write a text on top of
the arrow

text (41.2,1.65,’in action’,’Fontsize’,fSize) % write a text on top of the

arrow
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h=legend(’Master’,’Slave’,’Location’,’northeast’);

set (h,"FontSize’, fsize);

ylim([-2.1 2.51);

set (gcf,’units’,’normalized’,’outerposition’, [0 O 1 1]);
saveas (gcf, "FIGl.png’);

close (fiqg)

$Figure 2

fig=figure;

plot (t,Xmaster(:,2),t, Xslave(:,2),’:’,’LineWidth’,3);set (0,”’
DefaultAxesFontSize’,30);

grid on

grid minor

h=legend(’Master’,’Slave’,’Location’,’southeast’);

xlabel (' Time (s)’,’Fontsize’, fsize);

ylabel (" $Sy_{m}(t), yv_{s}(t)$S$’,’ Interpreter’,’Latex’, ' Fontsize’, fsize)

YL = get(gca, ’'ylim’); %plot the vertical line

YR = YL(2) - YL(1);

YL = [YL(l) - 1000 % YR, YL(2) + 1000 * YR];

line([40, 40], YL, ’"YLimInclude’, ’'off’, ’'Color’,’k’,’LineWidth’,dvlsize)

4

pa = annotation(’arrow’); % store the arrow information in pa
pa.Parent = gca; % associate the arrow the the current axes
pa.X = [40 601]1; % the location of arrow

pa.Y = [3.3 3.31;

pa.LineWidth = dhlsize; % make the arrow bolder for the figure

pa.HeadWidth 20;
pa.HeadLength = 20;

text (40.2,3.65,’disturbances’,’Fontsize’,fSize) % write a text on top of
the arrow
text (41.2,3.45,’in action’,’Fontsize’,fSize) % write a text on top of the

Arrow

h=legend(’Master’,’Slave’,’Location’,’northeast’);

set (h,"FontSize’, fsize);

ylim([-0.35 471);

set (gcf,’units’,’normalized’,’outerposition’, [0 0O 1 11]);
saveas (gcf, 'FIG2.png’);

close (fiqg)
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$Figure 3

fig=figure;

plot (t,Xmaster(:,3),t, Xslave(:,3),’:’,’'LineWidth’,3);set (0,’
DefaultAxesFontSize’, 30);

grid on

grid minor

set (0, "DefaultAxesFontSize’, 30);

xlabel (' Time (s)’,’Fontsize’, fsize);

yvlabel (" $S$z_{m} (t), z_{s}(t)$S$S’,’ Interpreter’,’Latex’, Fontsize’, fsize)

YL = get(gca, ’'ylim’); %plot the vertical line
YR = YL (2) - YL(1);
YL = [YL(l) - 1000 % YR, YL(2) + 1000 % YRI];

line([40, 40], YL, ’'YLimInclude’, ’'off’, ’'Color’,’k’,’LineWidth’,dvlsize)

4

pa = annotation (’arrow’); % store the arrow information in pa
pa.Parent = gca; % associate the arrow the the current axes
pa.X = [40 601]; % the location of arrow

pa.Y = [0.95 0.95];

pa.LineWidth = dhlsize; % make the arrow bolder for the figure
pa.HeadWidth = 20;

pa.HeadLength = 20;

text (40.2,1.13,’disturbances’,’Fontsize’,fSize) % write a text on top of
the arrow
text (41.2,1.02,"in action’,’Fontsize’,fSize) % write a text on top of the

arrow

h=legend(’'Master’,’Slave’,’'Location’, ' northeast’);

set (h,"FontSize’, fsize);

ylim([-1 1.3]);

set (gcf,’units’,’normalized’,’outerposition’, [0 0O 1 17]);
saveas (gcf, "FIG3.png’);

close (fiqg)

$Figure 4

fig=figure;

plot (t,Xmaster(:,4),t, Xslave(:,4),’:’,’LineWidth’,3);set (0,”’
DefaultAxesFontSize’, 30);

grid on

grid minor

set (0, "DefaultAxesFontSize’, 30);

xlabel (' Time (s)’,’Fontsize’, fsize);

ylabel (F $Sw_{m} (t), w_{s} (t)$$’,  Interpreter’,’Latex’,’Fontsize’, fsize)
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YL = get(gca, ’'ylim’); %plot the vertical line
YR = YL(2) - YL(1);
YL = [YL(1l) - 1000 %= YR, YL(2) + 1000 x YR];

line([40, 40], YL, ’"YLimInclude’, ’'off’, ’'Color’,’k’,’LineWidth’,dvlsize)

4

pa = annotation(’arrow’); % store the arrow information in pa
pa.Parent = gca; % associate the arrow the the current axes
pa.X = [40 60]; % the location of arrow

pa.Y = [1.1 1.17;

pa.LineWidth = dhlsize; % make the arrow bolder for the figure

pa.HeadWidth 20;
pa.HeadLength = 20;

text (40.2,1.3,’disturbances’,’Fontsize’,fSize) % write a text on top of
the arrow
text (41.2,1.18,’in action’,’Fontsize’,fSize) % write a text on top of the

aArrow

h=legend(’Master’,’Slave’,’'Location’, ' northeast’);

set (h,"FontSize’, fsize);

ylim([-1.1 1.5]);

set (gcf,’units’,’normalized’,’outerposition’, [0 0O 1 17]);
saveas (gcf, "FIG4.png’);

close (fig)

$Figure 5

fig=figure;

auxl = Xslave(:,1) - Xmaster(:,1);
plot (t,auxl,’LineWidth’, 3);

set (0, "DefaultAxesFontSize’, 30);
grid on

grid minor

set (0, "DefaultAxesFontSize’, 30);
xlabel (' Time (s)’,’Fontsize’,fsize);

ylabel (" $Se_{1}(t)$$S’, ' Interpreter’,’Latex’,’Fontsize’, fsize)

YL = get(gca, ’'ylim’); %plot the vertical line
YR = YL(2) - YL(1);
YL = [YL(l) - 1000 % YR, YL(2) + 1000 * YR];

line([40, 40], YL, ’"YLimInclude’, ’'off’, ’'Color’,’k’,’LineWidth’,dvlsize)

4

[o)

pa = annotation(’arrow’); % store the arrow information in pa

[o)

pa.Parent = gca; % associate the arrow the the current axes
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pa.X = [40 60]; % the location of arrow
pa.Y = [-0.6 -0.6];
pa.LineWidth = dhlsize; % make the arrow bolder for the figure

pa.HeadWidth 20;
pa.HeadLength = 20;

text (40.2,-0.35,"’disturbances’,’'Fontsize’,£Size) % write a text on top of
the arrow
text (41.2,-0.5,’1in action’,’Fontsize’,fSize) % write a text on top of the

Arrow

set (gcf,’units’,’normalized’,’outerposition’, [0 0O 1 17]);
saveas (gcf, "FIG5.png’ ) ;
close (fiqg)

$Figure 6

fig=figure;

aux?2 = Xslave(:,2) - Xmaster(:,2);
plot (t,aux2,’LineWidth’, 3);

set (0, " DefaultAxesFontSize’, 30);
grid on

grid minor

set (0, "DefaultAxesFontSize’, 30);
xlabel (' Time (s)’,’Fontsize’, fsize);

ylabel (" $Se_{2}(t)$S$S’, ' Interpreter’,’Latex’,’'Fontsize’, fsize)

YL = get(gca, ’'ylim’); %plot the vertical line
YR = YL(2) - YL(1);
YL = [YL(1l) - 1000 = YR, YL(2) + 1000 % YR];

line([40, 40], YL, ’'YLimInclude’, ’'off’, ’"Color’,’k’,’LineWidth’,dvlsize)

4

pa = annotation(’arrow’); % store the arrow information in pa
pa.Parent = gca; % associate the arrow the the current axes
pa.X = [40 601]; % the location of arrow

pa.Y = [-0.4 -0.4];

pa.LineWidth = dhlsize; % make the arrow bolder for the figure
pa.HeadWidth = 20;

pa.HeadLength = 20;

text (40.2,-0.355,"disturbances’,’Fontsize’, fSize) % write a text on top
of the arrow
text (41.2,-0.38,"in action’,’Fontsize’,fSize) % write a text on top of

the arrow

ylim([-0.5 0.17]);
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set (gcf,’units’,’normalized’,’outerposition’, [0 0O 1 17]);
saveas (gcf, 'FIG6.png’);
close (fiqg)

$Figure 7

fig=figure;

aux3 = Xslave(:,3) - Xmaster(:,3);
plot (t,aux3,’LineWidth’, 3);

set (0, "DefaultAxesFontSize’, 30);
grid on

grid minor

set (0, "DefaultAxesFontSize’, 30);
xlabel (' Time (s)’,’Fontsize’, fsize);

ylabel (" $Se_{3}(t)$S’, ' Interpreter’,’Latex’,’'Fontsize’, fsize)

YL = get(gca, ’'ylim’); %plot the vertical line
YR = YL(2) - YL(1);
YL = [YL(1l) - 1000 = YR, YL(2) + 1000 % YR];

line([40, 40], YL, ’'YLimInclude’, ’'off’, ’"Color’,’k’,’LineWidth’,dvlsize)

4

pa = annotation(’arrow’); % store the arrow information in pa
pa.Parent = gca; % associate the arrow the the current axes
pa.X = [40 601]; % the location of arrow

pa.Y = [0.3 0.31;

pa.LineWidth = dhlsize; % make the arrow bolder for the figure
pa.HeadWidth = 20;

pa.HeadLength 20;

text (40.2,0.35,’disturbances’,’Fontsize’,fSize) % write a text on top of
the arrow

text (41.2,0.32,’in action’,’Fontsize’,fSize) % write a text on top of the

aArrow

ylim([-0.1 0.5]);

set (gcf,’units’, " normalized’,’outerposition’, [0 0 1 11]);
saveas (gcf, "FIG7.png’);

close (fig)

$Figure 8

fig=figure;

aux4 = Xslave(:,4) - Xmaster(:,4);
plot (t,aux4,’LineWidth’, 3);

set (0, "DefaultAxesFontSize’, 30);
grid on

grid minor
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set (0, "DefaultAxesFontSize’, 30);
xlabel (' Time (s)’,’Fontsize’, fsize);

yvlabel (" $Se_{4} (t)$S’, '’ Interpreter’,’Latex’, Fontsize’, fsize)

YL = get(gca, ’'ylim’); %plot the vertical line
YR = YL(2) - YL(1);
YL = [YL(1l) - 1000 = YR, YL(2) + 1000 % YR];

line([40, 40], YL, ’'YLimInclude’, ’'off’, ’"Color’,’k’,’LineWidth’,dvlsize)

4

pa = annotation(’arrow’); % store the arrow information in pa
pa.Parent = gca; % associate the arrow the the current axes
pa.X = [40 601]1; % the location of arrow

pa.Y = [-0.4 -0.4];

pa.LineWidth = dhlsize; % make the arrow bolder for the figure
pa.HeadWidth = 20;

pa.HeadLength = 20;

text (40.2,-0.315,"disturbances’,’Fontsize’, fSize) % write a text on top
of the arrow
text (41.2,-0.365,"in action’,’Fontsize’,fSize) % write a text on top of

the arrow
set (gcf,’units’,’normalized’,’outerposition’, [0 0O 1 17]);
saveas (gcf, "FIG8.png’) ;

close (fig)

Listing B.10 — Graficos-sem-mensagem-estilo-3.m

fonte = 10;
fSize = 12;
dhlsize = 2;
dvlsize = 2;

largura_linha = 2;
colorl [0 0.4470 0.74107;
color2 = [0.8500 0.3250 0.0980];

addpath (’ . /Figuras/Figuras_3_sem_mensagem_estilo_3/");

local = 'Figuras/Figuras_3_sem_mensagem_estilo_3';
format = ’'png’;

format2 = ’epsc’;

eps = ’'.eps’;

nome_1 = ' /FIG_3_1";
nome_2 = ' /FIG_3_2";
"/FIG_3_3";

nome_3
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"/FIG_3_4";
nome_>5 "/FIG_3_5";
nome_6 = ' /FIG_3_6";

nome_ 4

nome_7 = " /FIG_3_7";

nome_8 = ' /FIG_3_8';

local_1 = append(local, nome_1);
local_2 = append(local, nome_2);
local_3 = append(local, nome_3);
local_4 = append(local, nome_4);
local_5 = append(local, nome_5);
local_6 = append(local, nome_6);
local_7 = append(local, nome_7);
local_8 = append(local, nome_8);

set (0, "DefaultAxesFontSize’, fonte);

subplot = @(m,n,p) Subtightplot (m, n, p, 0.077, [0.14 0.02], [0.03
0.0161);

$close (figure (1)) ;

figure (1) ;

subplot (1,1,1);

plot (t,Xmaster(:,1),’-",’Color’,colorl,’LineWidth’, largura_linha);

grid on

grid minor

hold on;

plot (t, Xslave(:,1),’:",’Color’,color2,’LineWidth’, largura_linha);

ylim([-2 3])

YL = get(gca, ’'ylim’); %plot the vertical line
YR = YL(2) - YL(1);
YL = [YL(l) - 1000 % YR, YL(2) + 1000 * YR];

line([40, 40], YL, ’"YLimInclude’, ’'off’, ’'Color’,’k’,’LineWidth’,dvlsize)

4

pa = annotation(’arrow’); % store the arrow information in pa
pa.Parent = gca; % associate the arrow the the current axes
pa.X = [40 60]; % the location of arrow

pa.Y = [1.8 1.8];

pa.LineWidth = dhlsize; % make the arrow bolder for the figure
pa.HeadWidth = 10;

pa.HeadLength = 10;

text (40.5,2.35,’disturbios’,’Fontsize’, fSize) % write a text on top of
the arrow
text (41,2.05,’em acao’,’'Fontsize’,fSize) % write a text on top of the

arrow
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xlabel ("S$t[s]S$",  Interpreter’,’ latex’)

legend ("S$x_m(t)s$","$x_s(t)S", ' Interpreter’,’latex’,’Location’,’northeast’
,’Orientation’,’horizontal’)

set (gcf,’ renderer’,’'painters’,’units’,’ centimeters’,’position’
, [5,5,17,81)

saveas (gcf, local_1, format);

saveas (gcf, append(local_1l, eps), format2);

subplot = @(m,n,p) Subtightplot (m, n, p, 0.077, [0.14 0.02], [0.03
0.0161);

$close (figure (2));

figure(2);

subplot (1,1,1);

plot (t,Xmaster(:,2),’-","’Color’,colorl,’LineWidth’, largura_linha);

grid on

grid minor

hold on;

plot(t, Xslave(:,2),’:’,"’Color’,color2,’LineWidth’, largura_linha);

ylim([-1 5])

YL = get(gca, ’'ylim’); %$plot the vertical line

YR = YL(2) - YL(1);

YL = [YL(l) - 1000 % YR, YL(2) + 1000 * YR];

line([40, 40], YL, ’"YLimInclude’, ’'off’, ’'Color’,’k’,’LineWidth’,dvlsize)

4

pa = annotation(’arrow’); % store the arrow information in pa
pa.Parent = gca; % associate the arrow the the current axes
pa.X = [40 601]1; % the location of arrow

pa.Y = [3.5 3.51;

pa.LineWidth = dhlsize; % make the arrow bolder for the figure
pa.HeadWidth = 10;

pa.HeadLength = 10;

text (40.5,4.15,'disturbios’,’Fontsize’, fSize) % write a text on top of
the arrow
text (41,3.8,’em acdo’,’'Fontsize’,fSize) $ write a text on top of the

Arrow

xlabel ("S$t[s]S$",  Interpreter’,’ latex’)

legend ("Sy_m(t)s$","sy_s(t)S$", ' Interpreter’,’ latex’,’Location’, '’ northeast’
,’Orientation’,’horizontal’)

set (gcf,’ renderer’,’painters’,’units’,’centimeters’, ' position’
,[5,5,17,81)

saveas (gcf, local_2, format);

saveas (gcf, append(local_2, eps), format2);
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subplot = @(m,n,p) Subtightplot (m, n, p, 0.077, [0.14 0.02], [0.045
0.0161]);
%$close (figure (3));

figure (3);

subplot (1,1,1);

plot (t,Xmaster(:,3),’-","’Color’,colorl,’LineWidth’, largura_linha);
grid on

grid minor

hold onj;

plot(t, Xslave(:,3),’:’,’Color’,color2,’LineWidth’, largura_linha);
ylim([-1 1.5])

xlabel ("S$t[s]S$",  Interpreter’,’ latex’)

YL = get(gca, 'ylim’); %plot the vertical line
YR = YL(2) - YL(1);
YL = [YL(l) - 1000 % YR, YL(2) + 1000 * YRI];

line([40, 40], YL, ’"YLimInclude’, ’'off’, ’'Color’,’k’,’LineWidth’,dvlsize)

4

pa = annotation(’arrow’); % store the arrow information in pa
pa.Parent = gca; % associate the arrow the the current axes
pa.X = [40 60]; % the location of arrow

pa.Y = [1 1]1;

pa.LineWidth = dhlsize; % make the arrow bolder for the figure
pa.HeadWidth = 10;

pa.HeadLength 10;
text (40.5,1.25,"'disturbios’,’Fontsize’, fSize) % write a text on top of
the arrow

text (41,1.13,"’em acao’,’Fontsize’,fSize) % write a text on top of the

Arrow

legend ("S$z_m(t)s$","$z_s(t)S$",  Interpreter’,’ latex’,’Location’, ' northeast’
,’Orientation’,"horizontal’)

set (gcf,’ renderer’,’painters’,’units’,’centimeters’,’ position’
, [5,5,17,81)

saveas (gcf, local_3, format);

saveas (gcf, append(local_3, eps), format2);

subplot = @(m,n,p) Subtightplot (m, n, p, 0.077, [0.14 0.02], [0.045
0.0161);

%$close (figure (4));

figure (4);

subplot (1,1,1);

plot (t,Xmaster(:,4),’-",’Color’,colorl,’LineWidth’, largura_linha);

grid on
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grid minor

hold on;

plot(t, Xslave(:,4),’:’",’Color’,color2,’LineWidth’, largura_linha);
ylim([-1 1.5])

YL = get(gca, ’'ylim’); %plot the vertical line
YR = YL(2) - YL(1);
YL = [YL(1l) - 1000 = YR, YL(2) + 1000 % YR];

line([40, 40], YL, ’'YLimInclude’, ’'off’, ’"Color’,’k’,’LineWidth’,dvlsize)

4

pa = annotation(’arrow’); % store the arrow information in pa
pa.Parent = gca; % associate the arrow the the current axes
pa.X = [40 601]1; % the location of arrow

pa.Y = [1 1];

pa.LineWidth = dhlsize; % make the arrow bolder for the figure

pa.HeadWidth 10;

pa.HeadLength = 10;

text (40.5,1.27,"'disturbios’,’Fontsize’,fSize) % write a text on top of
the arrow

text (41,1.13,’em acao’,’'Fontsize’,fSize) % write a text on top of the

arrow

xlabel ("$t[s]$",’ Interpreter’,’ latex’)

legend ("Sw_m(t)$","Sw_s (t)S$",’ Interpreter’,’ latex’,’Location’, '’ northeast’
,’Orientation’,’horizontal’)

set (gcf,’ renderer’,’painters’,’units’,’centimeters’,’position’
,[5,5,17,81)

saveas (gcf, local_4, format);

saveas (gcf, append(local_4, eps), format2);

subplot = @(m,n,p) Subtightplot (m, n, p, 0.077, [0.14 0.02], [0.03
0.0161);

%close (figure (5));

$figure (5);

subplot (1,1,1);

el = Xslave(:,1l) — Xmaster(:,1);

plot(t,el,’-","Color’,colorl,’LineWidth’, largura_linha);

grid on

grid minor

ylim([-4 11)

YL = get(gca, ’'ylim’); %plot the vertical line
YR = YL (2) - YL(1);

YL = [YL(l) - 1000 % YR, YL(2) + 1000 =% YRI];

line([40, 40], YL, ’'YLimInclude’, ’'off’, ’'Color’,’k’,’LineWidth’,dvlsize)
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pa = annotation(’arrow’); store the arrow information in pa

pa.Parent = gca; % associate the arrow the the current axes
pa.X = [40 60]; % the location of arrow

pa.Y = [-3 -31;

pa.LineWidth = dhlsize; % make the arrow bolder for the figure
pa.HeadWidth = 10;

pa.HeadLength 10;
text (40.5,-2.45, " disturbios’,’Fontsize’, fSize) % write a text on top of
the arrow

text (41,-2.75,"'em acao’,’Fontsize’,fSize) $ write a text on top of the

Arrow

xlabel ("St[s]$",  Interpreter’,’ latex’)

legend ("Se_1(t)$",’ Interpreter’,’latex’,’ Location’, ' northeast’,”’
Orientation’,’horizontal’)

set (gcf,’ renderer’,’painters’,’units’,’centimeters’,’position’
, [5,5,17,81)

saveas (gcf, local_5, format);

saveas (gcf, append(local_5, eps), format2);

subplot = @(m,n,p) Subtightplot (m, n, p, 0.077, [0.14 0.02], [0.045
0.0161);

%$close (figure (6));

figure (6);

subplot (1,1,1);

e2 = Xslave(:,2) - Xmaster(:,2);

plot(t,e2,’-","Color’,colorl,’LineWidth’, largura_linha);

grid on

grid minor

ylim([-0.6 0.2])

YL = get(gca, ’'ylim’); %plot the vertical line
YR = YL(2) - YL(1);
YL = [YL(1) - 1000 = YR, YL(2) + 1000 = YR];

line([40, 40], YL, ’'YLimInclude’, ’'off’, ’'Color’,’k’,’LineWidth’,dvlsize)

4

pa = annotation(’arrow’); % store the arrow information in pa
pa.Parent = gca; % associate the arrow the the current axes
pa.X = [40 60]; % the location of arrow

pa.Y = [-0.4 -0.4];

pa.LineWidth = dhlsize; % make the arrow bolder for the figure
pa.HeadWidth = 10;

pa.HeadLength = 10;
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text (40.5,-0.31,"’disturbios’,’Fontsize’,fSize) % write a text on top of
the arrow
text (41,-0.36,’em acao’,’Fontsize’,fSize) $ write a text on top of the

Arrow

xlabel ("S$t[s]S$",  Interpreter’,’ latex’)

legend ("Se_2(t)$",’ Interpreter’,’latex’,’Location’, ' northeast’,”’
Orientation’,’horizontal’)

set (gcf,’ renderer’,’painters’,’units’,’centimeters’, ' position’
, [5,5,17,81)

saveas (gcf, local_6, format);

saveas (gcf, append(local_6, eps), format2);

subplot = @(m,n,p) Subtightplot (m, n, p, 0.077, [0.14 0.02], [0.045
0.0161);

%$close (figure (7)) ;

figure(7);

subplot (1,1,1);

e3 = Xslave(:,3) — Xmaster(:,3);

plot(t,e3,’-","Color’,colorl,’LineWidth’, largura_linha);

grid on

grid minor

ylim([-0.2 0.6])

YL = get(gca, 'ylim’); %plot the vertical line

YR YL(2) - YL(1);

YL [YL(1) - 1000 = YR, YL(2) + 1000 = YR];

line([40, 40], YL, ’"YLimInclude’, ’'off’, ’'Color’,’k’,’LineWidth’,dvlsize)

4

pa = annotation(’arrow’); % store the arrow information in pa
pa.Parent = gca; % associate the arrow the the current axes
pa.X = [40 60]; % the location of arrow

pa.Y = [0.2 0.2];

pa.LineWidth = dhlsize; % make the arrow bolder for the figure
pa.HeadWidth = 10;

pa.HeadLength = 10;

text (40.5,0.29,’disturbios’,’Fontsize’, fSize) % write a text on top of
the arrow
text (41,0.24,"’em acao’,’Fontsize’,fSize) % write a text on top of the

arrow
xlabel ("S$t[s]$",  Interpreter’,’ latex’)

legend ("Se_3(t)$",’ Interpreter’,’latex’,’Location’, ' northeast’,”’

Orientation’,’horizontal’)
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set (gcf,’ renderer’,’painters’,’units’,’centimeters’,’position’
,[5,5,17,81)

saveas (gcf, local_7, format);

saveas (gcf, append(local_7, eps), format2);

close (figure (1)) ;

subplot = @(m,n,p) Subtightplot (m, n, p, 0.077, [0.14 0.02], [0.045
0.0161);

%$close (figure (8));

figure (8);

subplot (1,1,1);

ed = Xslave(:,4) — Xmaster(:,4);

plot(t,e4,’-","Color’,colorl,’LineWidth’, largura_linha);

grid on

grid minor

ylim([-1.1 0.37)

YL = get(gca, ’'ylim’); %plot the vertical line

YR YL(2) - YL(1);

YL [YL (1) - 1000 = YR, YL(2) + 1000 = YR];

line([40, 40], YL, ’"YLimInclude’, ’'off’, ’'Color’,’k’,’LineWidth’,dvlsize)

4

pa = annotation(’arrow’); % store the arrow information in pa
pa.Parent = gca; % associate the arrow the the current axes
pa.X = [40 60]; % the location of arrow

pa.Y = [-0.7 =0.7];

pa.LineWidth = dhlsize; % make the arrow bolder for the figure
pa.HeadWidth = 10;

pa.HeadLength = 10;

text (40.5,-0.56,"’distuirbios’,’Fontsize’,fSize) % write a text on top of
the arrow

text (41,-0.63,’em acao’,’Fontsize’,fSize) $ write a text on top of the

arrow

xlabel ("St[s]$",  Interpreter’,’ latex’)

legend ("S$Se_4(t)s$", ' Interpreter’,’latex’,’ Location’, ' northeast’,’
Orientation’,’horizontal’)

set (gcf,’ renderer’,’painters’,’units’,’centimeters’,’ position’
, [5,5,17,81)

saveas (gcf, local_8, format);

saveas (gcf, append(local_8, eps), format2);

$close (figure (1)) ;
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yl=(el);
y2=(e2);
y3=(e3);
yd=(ed);

C=polyfit(xl,vy1l,1);

n=length (x1);

fxl=polyval (C,x1);

ecml=sqgrt (sum((fxl-y1l).%2)/n)
fprintf(1,’%f\n’,ecml)

y2=(e2);

C=polyfit(xl,y2,1);

ecm2=sqgrt (sum((fxl-y2).72) /n)
fprintf(1,’%f\n’,ecm2)

y3=(e3);

C=polyfit(x1l,y3,1);

ecm3=sqgrt (sum((fx1-y3).%2) /n)
fprintf(1,’%f\n’,ecm3)

yd=(ed);

C=polyfit(xl,vy4,1);

ecmd=sqgrt (sum((fxl-y4) .72) /n)
fprintf(1,’%f\n’,ecmd)

B.3 CODES FOR SIMULATIONS IN CHAPTER 5

B.3.1 Synchronization of a Cryptosystem Based on the Synchronization of a Chaotic
Liu System, corresponding to Figures 5.1-5.6 and the Table 5.1.

» Xmaster

to workspace1

Planta_Master |—e&—
Sincronizador [—®Planta_Slave Xslave

to workspace2

Figure B.3 — Planta Simulink.

Listing B.11 — Planta-Master.m

function [sys,x0,str,ts] = Planta_Master(t,x,u,flag)
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msg = lxsin(2xt) + 0.5%xsin(8xt) + 0.3xcos (20xt)

case 0,
sizes = simsizes;

sizes.NumContStates = 3; %Number of constant
sizes.NumDiscStates = 0; $%Number of discrete
sizes.NumOutputs = 3; $Number of outputs
sizes.NumInputs = 0O; %Number of inputs
sizes.DirFeedthrough = 1;
sizes.NumSampleTimes = 1;
sys = simsizes (sizes);

x0=[0.2 -0.3 0.4]; Initial conditions

8990990000090 0

case 1, $Sistema
sys = [—-a*x(l) + a»xx(2);

bxx (1) — kxx(1)*x(3);
—cxx(3) + h*x(1)"2];

sys = ; % Does nothing
otherwise
error (["unhandled flag = ’,num2str(flag)]);

end

Listing B.12 — Planta-Slave.m

+ lxsquare(t)

states

states

function [sys,x0,str,ts] = Planta_Slave(t,x,u,flaqg)
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9990090000000 000000

case 0,
sizes = simsizes;

sizes.NumContStates = 3; %Number of constant
sizes.NumDiscStates = 0; %Number of discrete
sizes.NumOutputs = 3; $Number of outputs
sizes.NumInputs = 3; $Number of inputs
sizes.DirFeedthrough = 1;
sizes.NumSampleTimes = 1;

sys = simsizes (sizes);

x0=[20 -30 100]; %Initial conditions

8990990000090 0

8990990009009 0 0

case 1, %$Sistema
sys = [—axx(l) + axx(2) + u(l);

bxx (1) — k*x(1)*x(3) + u(2);

—c*x(3) + hxx(1)"2 + u(3)] + disturb(x,u,t);

8990099000 9o

sys = ; %Does nothing
otherwise
error ([’unhandled flag = ' ,num2str(flag)]);

end

function disturb = disturb(x,u,t)
if t>=10
disturb= [1.5xsin(2*t); %4
2%cos (3*t); %6
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lxsin(4*t)]; %3
else

disturb=0; %Until t=10 secs the disturb is null

end

Listing B.13 — Sincronizador.m
function [sys,x0,str,ts] = Sincronizador (t,x,u,flaqg)
psi = 10;

99909000000 000000

case 0,

sizes = simsizes;
sizes.NumContStates = 3; $Number of constant states
sizes.NumDiscStates = 0; $Number of discrete states
sizes.NumOutputs = 3; $Number of outputs
sizes.NumInputs = 6; $Number of inputs
sizes.DirFeedthrough = 1;
sizes.NumSampleTimes = 1;
sys = simsizes (sizes);
x0=zeros (3,1); $Initial conditions

x0(1l) = 0y
x0(2) = 0;
x0(3) = 0;

str=[1];
ts=[0 0]

8990990000090 0

case 1, Shere would be estimators of the weights of a neural net if

there were, in this case there aren’t

case 3, $controller
sys = [-0x(psi*(u(4) - u(l)));

=1x(psi*x(u(5) - u(2))) - (u(d) - u(2))"3;
-0 (psix(u(6) — u(3)))1;

case {2,4,9},

sys = [1;
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otherwise
error ([’unhandled flag = ' ,num2str(flag)]);

end

Listing B.14 — Graficos.m

$Running this file —--> automatically shows the graphs of %the simulation
and saves it in the folder in png %format (you could choose Jjpg format
too)

clc

fsize=36;

msgl = l*sin(2xt) + 0.5%sin(8xt) + 0.3xcos (20xt);

msg2 = lxsquare (t);

msg = msgl + msg2;

fSize = 36;
1Size =
axesSize = 36;
dvlsize = 2;

dhlsize = 2;

$Figure 5

fig=figure;

plot (t,msg,t, Xmaster(:,1),’:’,’Linewidth’,3);

grid on

grid minor

h=legend(’Original Message’,’Encrypted Message’,’Location’,’northeast’);
set (h, "FontSize’, fsize);

set (0, "DefaultAxesFontSize’, 30);

xlabel ("Time (s)’,’Fontsize’,fsize);
set (gcf,’units’,’normalized’,’outerposition’, [0 0O 1 1]);
saveas (gcf, "FIG5.png’);

%close (fig)

$Figure 6

fig=figure;

aux = Xmaster(:,1) - Xslave(:,1);
plot (t,msg,t,aux,’:’,’ LineWidth’, 3);
grid on

grid minor

set (0, "DefaultAxesFontSize’, 30);
ylim([-20 107);

xlabel (' Time (s)’,’Fontsize’, fsize);

YL = get(gca, ’'ylim’); %plot the vertical line
YR = YL(2) - YL(1);
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YL = [YL(1) - 1000 = YR, YL(2) + 1000 % YR];
line([10, 101, YL, ’'YLimInclude’, ’'off’, ’'Color’,’k’,’LineWidth’,dvlsize)

4

pa = annotation(’arrow’); % store the arrow information in pa
pa.Parent = gca; % associate the arrow the the current axes
pa.X = [10 13.5]; % the location of arrow

pa.Y = [-17 -17];

pa.LineWidth = dhlsize; % make the arrow bolder for the figure
pa.HeadWidth = 20;

pa.HeadLength = 20;

text (10.05,-14.2,"’disturbances’,’Fontsize’,fSize) % write a text on top
of the arrow

text (10.2,-15.7,"in action’,’Fontsize’,fSize) % write a text on top of
the arrow

h=legend(’Original Message’,’Recovered Message’,’Location’,’northeast’);

set (h, "FontSize’, fsize);

set (gcf,’units’,’normalized’,’outerposition’, [0 0O 1 17]);

saveas (gcf, "FIG6.png’ ) ;

close (fig)

$Figure 7

fig=figure;

aux2 = aux - msg;

plot (t,aux2,’LineWidth’, 3);

grid on

grid minor

set (0, "DefaultAxesFontSize’, 30);
xlabel (' Time(s)’, ' Fontsize’, fsize);

ylabel (" Message error’,’Fontsize’, fsize);

YL = get(gca, ’'ylim’); %plot the vertical line
YR = YL (2) - YL(1);
YL = [YL(l) - 1000 % YR, YL(2) + 1000 =* YRI];

line([10, 101, YL, ’'YLimInclude’, ’'off’, ’'Color’,’k’,’LineWidth’,dvlsize)

4

pa = annotation(’arrow’); % store the arrow information in pa
pa.Parent = gca; % associate the arrow the the current axes
pa.X = [10 13.5]; % the location of arrow

pa.Y = [-10 -101];

pa.LineWidth = dhlsize; % make the arrow bolder for the figure
pa.HeadWidth = 20;

pa.HeadLength 20;

text (10.05,-7.8,’disturbances’,’Fontsize’, fSize) % write a text on top of
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the arrow

text (10.2,-9,’1in action’,’Fontsize’,fSize) $ write a text on top of the

Arrow

set (gcf,’units’, " normalized’,’outerposition’, [0 0 1 11]);
saveas (gcf, "FIGT7.png’);
close (fig)

x1l=(t);

yl=(aux2);
C=polyfit(xl,yl,1);

n=length (x1);

fxl=polyval (C,x1);

ecml=sqgrt (sum((fxl-y1l).72)/n)
fprintf(1,’%f\n’,ecml)

Listing B.15 — Graficos-com-mensagem-estilo-3.m

fonte = 10;
fSize = 12;
largura_linha = 2;
dhlsize = 2;

dvlsize = 2;
colorl = [0 0.4470 0.74101;
color2 = [0.8500 0.3250 0.0980171;

color3 = [0.4660 0.6740 0.1880];
msgl = 1xsin(2+xt) + 0.5%sin(8%t) + 0.3xcos (20xt);
msg2 = lxsquare(t);

msg = msgl + msg2;

addpath (' ./Figuras/Figuras_6_com_mensagem_estilo_3/");

local = 'Figuras/Figuras_6_com_mensagem_estilo_3';
format = ’"png’;

format2 = "epsc’;

eps = ' .eps’;

nome_1 = " /FIG_6_1";
nome_2 "/FIG_6_2";
nome_3 = ' /FIG_6_3";
nome_4 = " /FIG_6_4";
nome_5 "/FIG_6_5";
nome_6 = ' /FIG_6_6";
" JFIG_6_7";

nome_ "7
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" /FIG_6_8";

nome_9 "/FIG_6_9';

nome_10 = ' /FIG_6_10";
nome_11 = " /FIG_6_11";
nome_12 = ' /FIG_6_12";
nome_13 = ' /FIG_6_13";
nome_14 = ' /FIG_6_14";
nome_15 = ' /FIG_6_15";
nome_16 = ' /FIG_6_16";
nome_17 = ' /FIG_6_17";
nome_18 = ' /FIG_6_18";

nome_ 8

local_1 = append(local, nome_1);
local_2 = append(local, nome_2);
local_3 = append(local, nome_3);

local_4 = append

( ) i
( )
( ) i
(local, nome_4);
( )
( )
( )
( )

local_5 = append(local, nome_5);
local_6 = append(local, nome_6);
local_7 = append(local, nome_7);
local_8 = append(local, nome_38);
local_9 = append(local, nome_9);

local_10 = append(local, nome_10

4

local_11 = append(local, nome_11

4

local_ 12 = append(local, nome_12

4

local 13 = append(local, nome_13);
local_14 = append
local_15 = append(local, nome_15

4

local_16 = append(local, nome_16

4

)i
)
)
)
local, nome_14);
)
)i
)

local_17 = append(local, nome_17

(

(

(

(

(

(

( ;
local_ 18 = append(local, nome_18);
set (0, "DefaultAxesFontSize’, fonte);

$Figure 1

subplot = @(m,n,p) Subtightplot (m, n, p, 0.077, [0.14 0.02], [0.04
0.0131);

%$close (figure (1)) ;

figure (1) ;

subplot (1,1,1);

plot(t,msg(:,1),’-",’Color’,colorl,’LineWidth’,largura_linha);

grid on

grid minor

hold on;

plot (t, Xmaster(:,1),’:’,’Color’,color2,’LineWidth’, largura_linha);

Sylim([-0.3 0.71])

YL = get(gca, ’'ylim’); %plot the vertical line
YR YL (2) - YL(1);
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YL = [YL(1) - 1000 = YR, YL(2) + 1000 % YR];
line([10, 101, YL, ’'YLimInclude’, ’'off’, ’'Color’,’k’,’LineWidth’,dvlsize)

4

pa = annotation(’arrow’); % store the arrow information in pa
pa.Parent = gca; % associate the arrow the the current axes
pa.X = [10 141; % the location of arrow

pa.Y = [-17 -17]1;

pa.LineWidth = dhlsize; % make the arrow bolder for the figure
pa.HeadWidth = 10;

pa.HeadLength = 10;

text (10.05,-11.7,"disturbances’,’Fontsize’,fSize) % write a text on top
of the arrow
text (10.2,-14.5,"in action’,’Fontsize’,fSize) % write a text on top of

the arrow

h=legend(’Original message’, ’'Mensagem criptografada’,’Location’,’
northeast’);

set (h,"FontSize’, fonte);

xlabel (" $St[s]1S$’,’ Interpreter’,’Latex’,’Fontsize’, fonte);

set (gcf,’ renderer’,’painters’,’units’,’centimeters’,’position’
, [5,5,17,81)

saveas (gcf, local_7, format);

saveas (gcf, append(local_7, eps), format2);

$Figure 2

subplot = @(m,n,p) Subtightplot (m, n, p, 0.077, [0.14 0.02], [0.04
0.0131);

%$close (figure(2));

figure(2);

subplot (1,1,1);

aux = Xmaster(:,1) - Xslave(:,1);

plot(t,msg(:,1),’-",’Color’,colorl,’LineWidth’,largura_linha);

grid on

grid minor

hold on;

plot(t, aux,’:’,’Color’,color2,’LineWidth’, largura_linha);

ylim([-20 127)

YL = get(gca, ’'ylim’); %plot the vertical line
YR = YL(2) - YL(1l);
YL = [YL(l) - 1000 % YR, YL(2) + 1000 % YR];

line([10, 10], YL, ’"YLimInclude’, ’'off’, ’'Color’,’k’,’LineWidth’,dvlsize)

4
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o\

pa = annotation(’arrow’); store the arrow information in pa

pa.Parent = gca; % associate the arrow the the current axes
pa.X = [10 141; % the location of arrow

pa.Y = [-17 -17];

pa.LineWidth = dhlsize; % make the arrow bolder for the figure
pa.HeadWidth = 10;

pa.HeadLength = 10;

text (10.05,-13.5,"disturbances’,’Fontsize’, fSize) % write a text on top
of the arrow

text (10.2,-15.5,"em acao’,’Fontsize’,fSize) % write a text on top of the

arrow

h=legend(’Original message’, ’'Mensagem recuperada’,’Location’,’northeast’
)i

set (h, "FontSize’, fonte);

xlabel (7 $$t[s]1$$’, " Interpreter’,’Latex’,’Fontsize’, fonte) ;

set (gcf,’ renderer’,’painters’,’units’,’centimeters’,’position’
, [5,5,17,81)

saveas (gcf, local_10, format);

saveas (gcf, append(local_10, eps), format2);

$Figure 3

subplot = @(m,n,p) Subtightplot (m, n, p, 0.077, [0.14 0.02], [0.07
0.0131);

%$close (figure(3));

figure (3);

subplot (1,1,1);

aux = Xmaster(:,1) - Xslave(:,1);

aux2 = aux — msg;

plot (t,aux2,’Color’,colorl,’LineWidth’, largura_linha);

grid on

grid minor

YL = get(gca, ’'ylim’); %plot the vertical line

YR = YL(2) - YL(1);

YL = [YL(1) - 1000 % YR, YL(2) + 1000 % YRI];

line([10, 10], YL, ’'YLimInclude’, ’'off’, ’'Color’,’k’,’LineWidth’,dvlsize)

14

pa = annotation(’arrow’); % store the arrow information in pa
pa.Parent = gca; % associate the arrow the the current axes
pa.X = [10 141; % the location of arrow

pa.Y = [-17 -17];

pa.LineWidth = dhlsize; % make the arrow bolder for the figure

pa.HeadWidth

10;
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pa.HeadLength = 10;

text (10.05,-14.2,"disturbances’,’Fontsize’, fSize) % write a text on top
of the arrow
text (10.2,-15.8,"in action’,’Fontsize’,fSize) % write a text on top of

the arrow

xlabel (' $St[s]1$$’, " Interpreter’,’Latex’,’Fontsize’, fonte);

ylabel ("Message error’,’Fontsize’, fonte)

set (gcf,’ renderer’,’'painters’,’units’,’centimeters’,’position’
, [5,5,17,81)

saveas (gcf, local_16, format);

saveas (gcf, append(local_16, eps), format2);

%$close (figure (1)) ;

x1=(t);

yl=(aux2) ;
C=polyfit(xl,v1l,1);

n=length (x1);

fxl=polyval (C,x1);

ecml=sqgrt (sum((fxl-y1l).72)/n)
fprintf(1,’%f\n’,ecml)

B.4 CODES FOR SIMULATIONS IN CHAPTER 6

B.4.1 Chaos Synchronization and its Application in Parallel Cryptography, Cor-

responding Figures 6.1-6.12 and the Table 6.1.

Listing B.16 — Principal.m

clear $clears previous variables

clc %$clears what was written in the terminal

$Amplitude Scaling
x_fator = 1; $\bar{x} = x/x_fator , being "\bar{x}" the new value

and "x" the old value

y_fator = 1; $\bar{x} x/x_fator , being"\bar{x}" the new value

and "x" the old wvalue

z_fator = 1; $\bar{x} = x/x_fator , being "\bar{x}"the new value
and "x" the old value

$Frequency Scaling

freq fator = 1; $The higher, the faster the simulation runs
h = 1; %Presence or not of disturbances, h =0 if no, h=1 if yes
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%$Initial conditions, only essential rule is that master and slave states

are different.

x0_mestre = [0.2 0.2 0.27;

x0_escravo = [0.3 0 -0.2];

psi = 10000; $Underactuated control gain S

t_fim = 20; $Time at which the simulation ends

options = odeset ('RelTol’, 1le-10,... $simulation settings

"AbsTol’, 1le-10,...
"MaxStep’,0.001);

addpath (' . /Arquivos/’);

Simulate
%$Graphs

Listing B.17 — Sistema.m
function equation = Sistema(x, y, 2z)

%$alfa = 0.9346;
%betal = 0.15;
$beta?2 1.5;
0.1;

$gamma

%C2 = 150;
-0.7879;
-1.4357;

o\
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tetal = 7.87;
teta2 = 3.23;
gamma = 0.03;

d =1;

Bp = 1;

beta = 15;

$equation = [(y - x)=*(alfa/betal) - mO*xx/betal - 0.5x(ml - m0) * (abs (x +
Bp) - abs(x - Bp))/betal; $put here the structure of your dynamic
system

o

(x - y)*(alfa/beta2) + z/beta2;
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o\

-y/gamma — Rlxz/gammal;

equation = [m*x(y - x) + tetalsx + tetal«x(abs(x + Bp) - abs(x - Bp)) + d;
%put here the structure of your dynamic system
X -y + z;
- betaxy - gammax*z];

end

Listing B.18 — Mensagens.m

function msg = Mensagens (t)

msg = [0.2xsquare (5*t); $put here the structure of your dynamic system
0.05%cos (0.5+t) + 0.025%sin(10*t);
0.1xsin(20*t) + 0.2*sin(8xt)];

end

%$Messages sent (must be at most 5% of the maximum value reached by the

state)
%$Understand as msgl a message present in the first state, for example

$Do not put messages in states where control is present

Listing B.19 — Simular.m

t_ciclo = [0 t_fim 7]; $put the initial and final simulation time in a
vector

amp_f (1) = x_fator;

amp_f (2) = y_fator;

amp_f (3) = z_fator;

x0 (1) = x0_mestre (1)/amp_£f(1); %$passing the initial conditions to
scaled variables

x0(2) = x0_mestre (2)/amp_£f (2);

x0(3) = x0_mestre (3)/amp_f (3);

x0(4) = x0_escravo(l)/amp_f£f (1);

x0(5) = x0_escravo(2)/amp_£f (2);

x0(6) = x0_escravo (3)/amp_£f (3);

[t, x] = ode4d5(@Esquema, t_ciclo, x0, options, psi, h, amp_f, freq fator)

$runs the simulation and saves the results

aux = size(t);
msg = zeros (aux(l), 3);
for i = l:aux(1l)

tempo = t(i,1);
msg_aux = Mensagens (tempo) ;
msg (i, :) = msg_aux’;

end
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Xmaster_sem_msg = x(:, 1:3);

Xmaster = x(:, 1:3) + msg(:, 1:3);

Xslave = x(:, 4:6);

%Repassed the results to vectors simpler to print on graphics %
Xmaster_without_msg as the name %$suggests is the master state without
the presence of the message %$Xmaster is the encrypted or %encoded
message (with the presence of the message)

clearvars —-except t Xmaster_sem _msg Xmaster Xslave msg

function y = Esquema(t, x, psi, h, amp_£f, freq fator)

eqg _mestre = Sistema(amp_£f(1)*x(1),...

amp_f (2)*x(2),

amp_f (3)*x(3)); $master system equation
eqg_escravo = Sistema (amp_f(1l)*x(4),...

amp_f (2) »x (5),

amp_f (3)*x(6)); %$slave system equation
eq_mestre (1) = freq fator*eq_mestre(l)/amp_£f (1);

eq_mestre (2) freq fatorxeq mestre (2) /amp_f (2);

eq_mestre (3) = freq fator*eq mestre (3)/amp_f (3);

eqg_escravo (1) eq_escravo (1) /amp_£f (1) ;

eq_escravo (2) = eqg_escravo (2)/amp_£f (2);

eqg_escravo (3) eq_escravo (3) /Jamp_f (3);
y(1:3, 1) = eg _mestre;
yv(4:6, 1) = freq fatorx(eq_escravo + controle(x, psi)) + hxdisturb(t);

%$The result of the master and slave systems

end
function controle = controle(x, psi)
controle = [-psix(x(4) - x(1)); $control
sStructure
0;
0];
end
function disturb = disturb(t) $disturbances, if you want to put them
if t>=0 %$Start of disturbances starting at 5
seconds
disturb = [0.1lxsin(2*t);

0.01*cos (3*t);
0.02%«sin (4+*t)];
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else

disturb = 0; %Until t=10 seconds the disturbances are null
end
end
Listing B.20 — Graficos.m
clc

addpath (' . /Arquivos/’);
addpath (’ ./Figuras/’);

Graficos_sem _mensagem_estilo_3

Graficos_com_mensagem_estilo_3

Listing B.21 — Graficos-com-mensagem-estilo-3.m

fonte = 10;

largura_linha = 2;

colorl = [0 0.4470 0.7410];
color2 = [0.8500 0.3250 0.09801;
color3 = [0.4660 0.6740 0.18801];

addpath (' ./Figuras/Figuras_6_com_mensagem_estilo_3/");

local = 'Figuras/Figuras_6_com_mensagem_estilo_3';
format = ’"png’;
format2 = ’'epsc’;

eps = ' .eps’;

nome_1 "/FIG_6_1";
nome_2 = ' /FIG_6_2";
nome_3 = ' /FIG_6_3’;
nome_4 = ' /FIG_6_4";
" JFIG_6_5";
nome_6 " /FIG_6_6";
nome_7 = ' /FIG_6_7";
nome_8 "/FIG_6_8";
nome_9 = ' /FIG_6_9';
"/FIG_6_10";
nome_11 "/FIG_6_11";
nome_12 = ' /FIG_6_12";
nome_13 "/FIG_6_13";
nome_14 = ' /FIG_6_14";
"/FIG_6_15";
nome_16 "/FIG_6_16";
nome_17 = " /FIG_6_17";
"/FIG_6_18";

nome_5

nome_10

nome_15

nome_18
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local_1 = append(local, nome_1
local_2 = append(local, nome_2
local_3 = append(local, nome_3
local_4 = append

( )
( )
( )
(local, nome_4);
( )
( )
( )
( )

local_5 = append(local, nome_5);
local_6 = append(local, nome_6);
local_7 = append(local, nome_7);
local_8 = append(local, nome_38);
local_9 = append(local, nome_9);

local_10 = append(local, nome_10

4

local_11 = append(local, nome_11

4

local_ 12 = append(local, nome_12

4

local 13 = append(local, nome_13);
local_14 = append
local_15 = append(local, nome_15

4

local_16 = append(local, nome_16

4

)i
)
)
)
local, nome_14);
)
)i
)i

local_17 = append(local, nome_17

(

(

(

(

(

(

( ;
local_ 18 = append(local, nome_18);
set (0, "DefaultAxesFontSize’, fonte);

$Figure 1

subplot = @(m,n,p) Subtightplot (m, n, p, 0.077, [0.14 0.02], [0.03
0.0121);

close (figure(l));

figure (1) ;

subplot (1,1,1);

plot (t,Xmaster(:,1),’-","’Color’,colorl,’LineWidth’, largura_linha);

grid on

grid minor

hold on;

plot(t, Xslave(:,1),’:",’Color’,color2,’LineWidth’, largura_linha);

ylim([-5 10])

xlabel ("S$t[s]$",  Interpreter’,’ latex’)

legend ("S$x_m(t)s$","$x_s(t)S$", ' Interpreter’,’ latex’,’Location’,’northeast’
,’Orientation’, " horizontal’)

set (gcf,’ renderer’,’'painters’,’units’,’centimeters’,’position’
, [5,5,17,81)

saveas (gcf, local_1, format);

saveas (gcf, append(local_1, eps), format2);

$Figure 2

subplot = @(m,n,p) Subtightplot (m, n, p, 0.077, [0.14 0.02], [0.045
0.0121);

close (figure(2));

figure(2);

subplot (1,1,1);
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plot (t,Xmaster(:,2),’-","’Color’,colorl,’LineWidth’, largura_linha);

grid on

grid minor

hold on;

plot(t, Xslave(:,2),’:’",’Color’,color2,’LineWidth’, largura_linha);

ylim([-1.5 1.8])

xlabel ("S$t[s]S$",  Interpreter’,’ latex’)

legend ("Sy_m(t)s$","sy_s(t)S$", ' Interpreter’,’ latex’,’Location’, '’ northeast’
,’Orientation’,’horizontal’)

set (gcf,’renderer’,’painters’,’units’,’centimeters’,’'position’
,[5,5,17,81)

saveas (gcf, local_2, format);

saveas (gcf, append(local_2, eps), format2);

$Figure 3

subplot = @(m,n,p) Subtightplot (m, n, p, 0.077, [0.14 0.02], [0.04
0.0121);

close (figure(3));

figure (3);

subplot (1,1,1);

plot (t,Xmaster(:,3),’-",’Color’,colorl,’LineWidth’, largura_linha);

grid on

grid minor

hold on;

plot(t, Xslave(:,3),’:’,’Color’,color2,’LineWidth’, largura_linha);

ylim([-12 127)

xlabel ("St[s]$",  Interpreter’,’ latex’)

legend ("S$z_m(t)$","$z_s(t)S$", ' Interpreter’,’ latex’,’Location’, '’ northeast’
,’Orientation’,"horizontal’)

set (gcf,’ renderer’,’painters’,’units’,’centimeters’,’position’
, [5,5,17,81)

saveas (gcf, local_3, format);

saveas (gcf, append(local_3, eps), format2);

$Figure 4

subplot = @(m,n,p) Subtightplot (m, n, p, 0.077, [0.14 0.02], [0.045
0.0121);

close (figure (4));

figure(1l);

subplot (1,1,1);

el = Xslave(:,1) - Xmaster(:,1);

plot(t,el,’-","Color’,colorl,’LineWidth’, largura_linha);

grid on

grid minor

ylim([-0.3 0.4])

xlabel ("S$t[s]S$",  Interpreter’,’ latex’)

legend ("$Se_1(t)$",’ Interpreter’,’latex’,’Location’,’northeast’,’
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Orientation’,’horizontal’)

set (gcf,’ renderer’,’painters’,’units’,’centimeters’,’ position’
, [5,5,17,81)

saveas (gcf, local_4, format);

saveas (gcf, append(local_4, eps), format2);

$Figure 5

subplot = @(m,n,p) Subtightplot (m, n, p, 0.077, [0.14 0.02], [0.045
0.0121);

close (figure (5));

figure (5);

subplot (1,1,1);

e2 = Xslave(:,2) - Xmaster(:,2);

plot(t,e2,’-","Color’,colorl,’LineWidth’, largura_linha);

grid on

grid minor

ylim([-0.3 0.2])

xlabel ("S$t[s]S$",  Interpreter’,’ latex’)

legend ("Se_2(t)$",’ Interpreter’,’latex’,’Location’, ' northeast’,”’
Orientation’,’horizontal’)

set (gcf,’ renderer’,’painters’,’units’,’centimeters’, ' position’
, [5,5,17,81)

saveas (gcf, local_5, format);

saveas (gcf, append(local_5, eps), format2);

$Figure 6

subplot = @(m,n,p) Subtightplot (m, n, p, 0.077, [0.14 0.02], [0.045
0.0121);

close (figure(l));

figure (6);

subplot (1,1,1);

e3 = Xslave(:,3) - Xmaster(:,3);

plot(t,e3,’-","Color’,colorl,’LineWidth’, largura_linha);

grid on

grid minor

ylim([-0.5 17)

xlabel ("St[s]$",  Interpreter’,’ latex’)

legend ("S$e_3(t)s$", ' Interpreter’,’latex’,’ Location’, ' northeast’,”’
Orientation’,’horizontal’)

set (gcf,’ renderer’,’painters’,’units’,’centimeters’,’ position’
, [5,5,17,81)

saveas (gcf, local_6, format);

saveas (gcf, append(local_6, eps), format2);
$Figure 7

subplot = @(m,n,p) Subtightplot (m, n, p, 0.077, [0.14 0.02], [0.045
0.0121);
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close (figure(7));

figure(7);

subplot (1,1,1);

plot(t,msg(:,1),’-",’Color’,colorl,’LineWidth’, largura_linha);

grid on

grid minor

hold on;

plot(t, 0.05xXmaster(:,1),’:’,’Color’,color2,’LineWidth’, largura_linha);

ylim([-0.3 0.7])

h=legend(’Mensagem original’, ’'Messagem codificada’,’Location’,’northeast
")

set (h, "FontSize’, fonte);

xlabel (7 $$t[s]1$$’, " Interpreter’,’Latex’,’Fontsize’, fonte) ;

ylabel (#$Sm_1(t), 0.05{\cdot}s_1(t)$S$’,’' Interpreter’,’Latex’,’Fontsize’,
fonte) ;

set (gcf,’ renderer’,’painters’,’units’,’centimeters’,’ position’
, [5,5,17,81)

saveas (gcf, local_7, format);

saveas (gcf, append(local_7, eps), format2);

$Figure 8

subplot = @(m,n,p) Subtightplot (m, n, p, 0.077, [0.14 0.02], [0.06
0.0121);

close (figure(8));

figure (8);

subplot (1,1,1);

plot(t,msg(:,2),’-",’Color’,colorl,’LineWidth’, largura_linha);

grid on

grid minor

hold on;

plot(t, 0.05xXmaster(:,2),’:’,"Color’,color2,’LineWidth’, largura_linha);

ylim([-0.08 0.157])

h=legend(’Mensagem original’, ’'Messagem codificada’,’Location’,’northeast
")

set (h,"FontSize’, fonte);

xlabel (" $St[s]$S$’,’ Interpreter’,’Latex’,’Fontsize’, fonte);

yvlabel (7$$m_2(t), 0.05{\cdot}s_2(t)$$’,’' Interpreter’,’Latex’,’Fontsize’,
fonte);

set (gcf,’ renderer’,’painters’,’units’,’centimeters’,’position’
, [5,5,17,81)

saveas (gcf, local_8, format);

saveas (gcf, append(local_8, eps), format2);

$Figure 9
subplot = @(m,n,p) Subtightplot (m, n, p, 0.077, [0.14 0.02], [0.045
0.0121);

close (figure(9));
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figure (9);

subplot (1,1,1);

plot(t,msg(:,3),’-’","Color’,colorl,’LineWidth’,largura_linha);

grid on

grid minor

hold on;

plot(t, 0.05xXmaster(:,3),’:’,’Color’,color2,’LineWidth’, largura_linha);

ylim([-0.6 0.91])

h=legend(’Mensagem original’, ’'Messagem codificada’,’Location’,’northeast
")

set (h, "FontSize’, fonte);

xlabel (7 $$t[s]1$$’, " Interpreter’,’Latex’,’Fontsize’, fonte) ;

ylabel (7$Sm_3(t), 0.05{\cdot}s_3(t)$S$’,’' Interpreter’,’Latex’,’Fontsize’,
fonte) ;

set (gcf,’ renderer’,’'painters’,’units’,’centimeters’,’position’
, [5,5,17,81)

saveas (gcf, local_9, format);

saveas (gcf, append(local_9, eps), format2);

$Figure 10

subplot = @(m,n,p) Subtightplot (m, n, p, 0.077, [0.14 0.02], [0.045
0.0121);

close (figure (10));

figure (10);

subplot (1,1,1);

aux = Xmaster(:,1) - Xslave(:,1);

plot(t,msg(:,1),’-",’Color’,colorl,’LineWidth’, largura_linha);

grid on

grid minor

hold on;

plot(t, aux,’:’,’Color’,color2,’LineWidth’, largura_linha);

ylim([-0.25 0.51])

h=legend(’Mensagem original’, ’'Mensagem decodificada’,’Location’,’
northeast’);

set (h,"FontSize’, fonte);

xlabel (" $St[s]$S$’,’ Interpreter’,’Latex’,’Fontsize’, fonte);

ylabel (7 $Sm_1(t), \hat{m}_1(t)$S$’,’Interpreter’,’Latex’,’Fontsize’, fonte)
7

set (gcf,’ renderer’,’painters’,’units’,’centimeters’,’position’
, [5,5,17,81)

saveas (gcf, local_10, format);

saveas (gcf, append(local_10, eps), format2);

$Figure 11

subplot = @(m,n,p) Subtightplot (m, n, p, 0.077, [0.14 0.02], [0.06
0.0121);

close (figure (11));
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figure(1l1l);

subplot (1,1,1);

aux?2 = Xmaster(:,2) - Xslave(:,2);

plot (t,msg(:,2),’-",’Color’,colorl,’LineWidth’, largura_linha);

grid on

grid minor

hold on;

plot(t, aux2,’:’,’Color’,color2,’LineWidth’, largura_linha);

ylim([-0.15 0.31])

h=legend (’Mensagem original’, ’'Mensagem decodificada’,’Location’,’
northeast’);

set (h, "FontSize’, fonte);

xlabel (" $St[s]1$$’,’ Interpreter’,’Latex’,’Fontsize’, fonte);

ylabel (7 $$m_2(t), \hat{m}_2(t)$S$’,’ Interpreter’,’Latex’,’Fontsize’, fonte)
7

set (gcf,’renderer’,’painters’,’units’,’centimeters’,’'position’
, [5,5,17,81)

saveas (gcf, local_11, format);

saveas (gcf, append(local_1l1, eps), format2);

$Figure 12

subplot = @(m,n,p) Subtightplot (m, n, p, 0.077, [0.14 0.02], [0.045
0.0121);

close (figure(12));

figure (12);

subplot (1,1,1);

aux3 = Xmaster(:,3) - Xslave(:,3);

plot(t,msg(:,3),’-",’Color’,colorl,’LineWidth’,largura_linha);

grid on

grid minor

hold on;

plot(t, aux3,’:’,’Color’,color2,’LineWidth’, largura_linha);

ylim([-1 1])

h=legend(’Mensagem original’, ’'Mensagem decodificada’,’Location’,’
northeast’);

set (h,"FontSize’, fonte);

xlabel ("$St[s]1$S$’, " Interpreter’,’Latex’,’Fontsize’, fonte);

ylabel (" $Sm_3(t), \hat{m}_3(t)S$S$’,’ Interpreter’,’Latex’,’Fontsize’, fonte)
7

set (gcf,’renderer’,’painters’,’units’,’centimeters’,’'position’
, [5,5,17,81)

saveas (gcf, local_12, format);

saveas (gcf, append(local_12, eps), format2);
$Figure 13

subplot = @(m,n,p) Subtightplot (m, n, p, 0.077, [0.14 0.02], [0.045
0.0121);
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close (figure(13));

figure(13);

subplot (1,1,1);

aux4 = Xmaster(:,1) - Xslave(:,1);

plot(t,msg(:,1),’-",’Color’,colorl,’LineWidth’, largura_linha);

grid on

grid minor

hold on;

plot(t, aux4,’:’,’Color’,color2,’LineWidth’, largura_linha);

plot(t, 0.05xXmaster(:,1),’-",’Color’,color3,’LineWidth’, largura_linha);

ylim([-0.3 0.81])

h=legend(’Mensagem original’, ’'Mensagem decodificada’, ’'Messagem
codificada’,’Location’,’northeast’);

set (h,"FontSize’, fonte);

xlabel ("$St[s]1$S$’, " Interpreter’,’Latex’,’Fontsize’, fonte);

ylabel ("$Sm_1(t), \hat{m}_1(t), 0.05{\cdot}s_1(t)$S’,’ Interpreter’,’Latex
","Fontsize’, fonte);

set (gcf,’ renderer’,’painters’,’units’,’centimeters’,’ position’
, [5,5,17,81)

saveas (gcf, local_13, format);

saveas (gcf, append(local_13, eps), format2);

$Figure 14

subplot = @(m,n,p) Subtightplot (m, n, p, 0.077, [0.14 0.02], [0.06
0.0121);

close (figure (14));

figure (14);

subplot (1,1,1);

aux5 = Xmaster(:,2) - Xslave(:,2);

plot(t,msg(:,2),’-",’Color’,colorl,’LineWidth’,largura_linha);

grid on

grid minor

hold on;

plot(t, auxb5,’:’,’Color’,color2,’LineWidth’, largura_linha);

plot(t, 0.05xXmaster(:,2),’-",’Color’,color3,’LineWidth’, largura_linha);

ylim([-0.15 0.3])

h=legend(’Original message’, ’'Mensagem decodificada’, ’'Messagem
codificada’,’Location’,’northeast’);

set (h, "FontSize’, fonte);

xlabel (7 $$t[s]1$$’, " Interpreter’,’Latex’,’Fontsize’, fonte) ;

ylabel ($Sm_2(t), \hat{m}_2(t), 0.05{\cdot}s_2(t)$$’,’ Interpreter’,’Latex
","Fontsize’, fonte);

set (gcf,’ renderer’,’painters’,’units’,’centimeters’, ' position’
, [5,5,17,81)

saveas (gcf, local_14, format);

saveas (gcf, append(local_1l4, eps), format2);
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$Figure 15

subplot = @(m,n,p) Subtightplot (m, n, p, 0.077, [0.14 0.02], [0.045
0.0121);

close (figure (15));

figure (15);

subplot (1,1,1);

aux6 = Xmaster(:,3) - Xslave(:,3);

plot(t,msg(:,3),’-",’Color’,colorl,’LineWidth’,largura_linha);

grid on

grid minor

hold on;

plot(t, aux6,’:’,’Color’,color2,’LineWidth’, largura_linha);

plot(t, 0.05xXmaster(:,3),’-",’Color’,color3,’LineWidth’, largura_linha);

ylim([-1 1.5])

h=legend(’Original message’, ’'Mensagem decodificada’, ’'Messagem
codificada’,’Location’,’northeast’);

set (h, "FontSize’, fonte);

xlabel (7 $$t[s]1$$’, " Interpreter’,’Latex’,’Fontsize’, fonte) ;

ylabel ($Sm_3(t), \hat{m}_3(t), 0.05{\cdot}s_3(t)$S’,’ Interpreter’,’Latex
","Fontsize’, fonte);

set (gcf,’ renderer’,’painters’,’units’,’centimeters’, ' position’
, [5,5,17,81)

saveas (gcf, local_15, format);

saveas (gcf, append(local_15, eps), format2);

%$Figure 16

subplot = @(m,n,p) Subtightplot (m, n, p, 0.077, [0.14 0.02], [0.06
0.0121);

%$close (figure (16));

figure (16);

subplot (1,1,1);

aux’7 = Xmaster(:,1) - Xslave(:,1);

aux0 = aux7 - msg(:,1);

plot (t,aux0,’Color’,color3,’LineWidth’, largura_linha);

grid on

grid minor

ylim([-0.15 0.051])

h=legend ('’ $$\tilde{m}_1(t)$s$’,’ Interpreter’,’Latex’,’ Location’, ' northeast
")

set (h, "FontSize’, fonte);

xlabel (7 $S$t[s]1$$’, " Interpreter’,’Latex’,’Fontsize’, fonte) ;

ylabel ("Message error’,’Fontsize’, fonte)

set (gcf,’ renderer’,’painters’,’units’,’centimeters’, ' position’
,[5,5,17,81)

saveas (gcf, local_16, format);

saveas (gcf, append(local_16, eps), format2);
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$Figure 17

subplot = @(m,n,p) Subtightplot (m, n, p, 0.077, [0.14 0.02], [0.045
0.0121);

%$close (figure (17));

figure(17);

subplot (1,1,1);

aux8 = Xmaster(:,2) - Xslave(:,2);

aux00 = aux8 - msg(:,2);

plot (t,aux00,’Color’,color3,’LineWidth’, largura_linha);

grid on

grid minor

ylim([-0.2 0.31)

h=legend (' $$\tilde{m}_2(t)$S$’,  Interpreter’,’Latex’,’Location’,’northeast
")

set (h,"FontSize’, fonte);

xlabel (" $S$t[s]1$$’,’ Interpreter’,’Latex’,’Fontsize’, fonte);

ylabel (' Message error’,’Fontsize’, fonte)

set (gcf,’ renderer’,’painters’,’units’,’centimeters’,’ position’
, [5,5,17,81)

saveas (gcf, local_17, format);

saveas (gcf, append(local_17, eps), format2);

$close (figure (1)) ;

$Figure 18

subplot = @(m,n,p) Subtightplot (m, n, p, 0.077, [0.14 0.02], [0.045
0.0121);

%$close (figure (18));

figure (18);

subplot (1,1,1);

aux9 = Xmaster(:,3) - Xslave(:,3);

aux000 = aux9 - msg(:,3);

plot (t,aux000,’Color’,color3,’LineWidth’, largura_linha);

grid on

grid minor

ylim([-0.7 0.57])

h=legend (' $$\tilde{m}_3(t)$$’,’' Interpreter’,’Latex’,’Location’, northeast
")

set (h, "FontSize’, fonte);

xlabel (7 $$t[s]1$$’, " Interpreter’,’Latex’,’Fontsize’, fonte) ;

ylabel (Message error’,’Fontsize’, fonte)

set (gcf,’ renderer’,’painters’,’units’,’centimeters’,’position’
, [5,5,17,81)

saveas (gcf, local_18, format);

saveas (gcf, append(local_18, eps), format2);

%$close (figure (1)) ;
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yl=(aux7);

y2=(aux8);

y3=(aux9);
C=polyfit(xl,vy1l,1);

n=length (x1);

fxl=polyval (C,x1);

ecml=sqgrt (sum((fxl-y1l) .%2)/n)
fprintf(1,’%f\n’,ecml)

y2=(aux8) ;
C=polyfit(xl,y2,1);

ecm2=sqgrt (sum((fxl-y2).72)/n)
fprintf (1,’%f\n’,ecm2)

y3=(aux9) ;
C=polyfit(x1l,y3,1);

ecm3=sqgrt (sum((fx1l-y3).72)/n)
fprintf (1,’%f\n’,ecm3)

B.5 CODES FOR SIMULATIONS IN CHAPTER 7.

B.5.1 Underactuated 4D-Hypercaotic System for Secure Communication, Corre-
sponding to the Figures 7.1-7.12 and the Table 7.1

Listing B.22 — Principal.m

clear %$clears previous variables
clc %$clears what was written in the terminal

$Amplitude Scaling
x_fator = 1; $\bar{x} = x/x_fator , being "\bar{x}" the new value

and "x" the old wvalue

y_fator = 1; $\bar{y} = y/y_fator , being "\bar{x}" the new value
and "x" the old value

z_fator = 1; $\bar{z} z/z_fator , being "\bar{x}" the new value
and "x" the old value

w_fator = 1; S\bar{w}

w/w_fator , being "\bar{x}" the new value
and"x" the old value
$Frequency Scaling

freq_fator = 1; %$The higher it is, the faster the simulation happens

h = 1; %Ppresence or not of disturbances, h =0 if no, h=1 if yes

$Initial conditions, the only essential rule is that master and slave
states are different.

x0_mestre = [0.6 1 -0.2 =-0.47;
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x0_escravo = [0.2 -0.5 0.1 0];

psi_1 = 100; %$Gain of the underactuated control S
psi_2 = 10;

psi_3 = 100;

psi_4 = 10;

t_fim = 10; $Time at which the simulation ends

options = odeset ('RelTol’, 1le-10,... $simulation settings

"AbsTol’, le-10,...
"MaxStep’,0.001);

addpath (' ./Arquivos/’);

Simulate
%$Graphis
Listing B.23 — Sistema.m
function equation = Sistema(x, y, z, W)
a = 10;
b = 8/3;
c = 28;
d=1;
equation = [a*y — a*x + w; %$put here the structure of your dynamic
system

cxx — dxy — X*z;

xX*xy — bxz;

~y*z — wl;
end

Listing B.24 — Mensagens.m

function msg = Mensagens (t)
msg = [0.3%(sin(1l0xt) + 1.5%sin(30*t)); %$coloque aqui a estrutura do
seu sistema dindmico
0;
0.15%sin(20xt) + 0.3xsin(2xt);
01;
end
%$Messages sent (must be at most 5% of the maximum value reached by the
state) Understand as msgl a %message present in the first state, for

example Do not put messages in states where control is %present

Listing B.25 — Simular.m

t_ciclo = [0 t_fim ]; $put the initial and final simulation time in a
vector

psi = [psi_l psi_2 psi_3 psi_41;
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amp_f (1) = x_fator;

amp_f (2) = y_fator;

amp_f (3) = z_fator;

amp_f (4) = w_fator;

x0 (1) = x0_mestre (1)/amp_f(1l); %passing the initial conditions to
scaled variables

x0(2) = x0_mestre (2)/amp_£f (2);

x0(3) = x0_mestre (3)/amp_£f (3);

x0(4) = x0_mestre (4)/amp_f (4);

x0(5) = x0_escravo (1) /amp_£f (1);

x0(6) = x0_escravo(2)/amp_£f (2);

x0(7) = x0_escravo (3)/amp_£f (3);

x0(8) = x0_escravo (4)/amp_f (4);

[t, x] = ode45(@Esquema, t_ciclo, x0, options, psi, h, amp_£f, freq fator)

$runs the simulation and saves the results

aux = size(t);
msg = zeros (aux(l), 4);
for i = l:aux (1)

tempo = t(i,1);
msg_aux = Mensagens (tempo) ;
msg (i, :) = msg_aux’;

end

Xmaster_sem_msg = x(:, 1:4);
Xmaster = x(:, 1:4) + msg(:, 1:4);
Xslave = x(:, 5:8);

%Repassed the results to vectors simpler to print on graphics

o

°

Xmaster_without_msg as the name %$suggests is the master state without

the presence of the message %$Xmaster is the encrypted or %encoded

message (with the presence of the message)

clearvars —-except t Xmaster_sem_msg Xmaster Xslave msg

function y = Esquema(t, x, psi, h, amp_£f, freq_fator)

eq _mestre = Sistema (amp_f (1)x*x (1),
amp_f (2)*x(2),
amp_f (3)*x(3), .
amp_f (4) *x (4))

eq_escravo = Sistema (amp_f (1)*x(5),
amp_f (2) xx (6),
amp_f (3)*x(7),

H %master system equation



amp_f (4) *x(8)); %$slave system equation

eq_mestre(l) = freqg fator*eq mestre(l)/amp_£f(1);
eq_mestre (2) = freq fator*eqg_mestre (2)/amp_£f (2);
eq_mestre (3) = freq fator*eq_mestre (3)/amp_£f (3);
eq_mestre (4) = freq fator*eq_mestre (4)/amp_f (4);
eq_escravo (l) = eq_escravo(l)/amp_£f (1);
eq_escravo (2) = eqg_escravo (2)/amp_£f (2);
eq_escravo (3) = eqg_escravo (3)/amp_£f (3);
eq_escravo (4) = eqg_escravo (4) /amp_f (4);
v(l:4, 1) = eqg_mestre;
yv(5:8, 1) = freq fatorx(eq_escravo + controle(x, psi)) + hxdisturb(t);
%$The result of the master and slave systems
end
function controle = controle(x, psi)
controle = [0; $control structure
—1x(psi(1)*(x(6) — x(2)) + psi(2)*(x(6) - x(2))"3);
0;
—1x(psi(3)*(x(8) — x(4)) + psi(4)*(x(8) - x(4))"3)];
end
function disturb = disturb(t) $disturbances, if you want to place them
if t>=0 %$Start of disturbances starting at 5
seconds
disturb = [0.1lxsin(5*t);
0.25%cos (3+t);
0.15%cos (5%t) ;
0.2xsin(t)];
else
disturb = 0; %Until t=10 seconds the disturbances are null
end
end
Listing B.26 — Graficos.m
clc

addpath (' . /Arquivos/’) ;
addpath (' ./Figuras/’);

Graficos_sem_mensagem_estilo_3

Graficos_com _mensagem_estilo_3

$Hint for older Matlabs, if you are having difficulty displaying style 2
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and 3 graphs,

easier to remove whitespace,

Matlab systems

fonte =

colorl =

color?2

color3 =

addpath (' ./Figuras/Figuras_6_com_mensagem_estilo_3/");

local =

format = ’"png’;

format2 = ’"epsc’;

eps = ' .eps’;

nome_1 = " /FIG_6_1";
nome_2 = " /FIG_6_2";
nome_3 = ' /FIG_6_3';
nome_4 = ' /FIG_6_4";
nome_5 = ' /FIG_6_5";
nome_6 = ' /FIG_6_6";
nome_7 = " /FIG_6_7";
nome_8 = ' /FIG_6_8";
nome_9 = ' /FIG_6_9’;
nome_10 = ' /FIG_6_10";
nome_11 = ' /FIG_6_11";
nome_12 = " /FIG_6_12";
nome_13 = /' /FIG_6_13";
nome_14 = ' /FIG_6_14";
nome_15 = ' /FIG_6_15";
nome_16 = ' /FIG_6_16";
local_1 = append(local,
local_2 = append(local,
local_3 = append(local,
local_4 = append(local,
local_5 = append(local,
local_6 = append(local,
local_7 = append(local,
local_8 = append(local,
local_9 = append(local,
local 10 = append(local,
local_11 = append(local,
local_12 = append(local,

Listing B.27 — Graficos-com-mensagem-estilo-3.m

10;
largura_linha = 2;
[0 0.4470 0.74107;
[0.8500 0.3250 0.09801;
[0.4660 0.6740 0.1880171;

"Figuras/Figuras_6_com_mensagem_estilo_3';

nome_9) ;
nome_10) ;
nome_11);

nome_12) ;

prioritize %style 1 graphs Style 2 and 3 graphs make
but they often do not
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local_13 append (local, nome_13

4

) .
local, nome_14);
)

(
local_14 = append(
local_ 15 = append(local, nome_15);
local_16 = append(local, nome_16);

set (0, "DefaultAxesFontSize’, fonte);

$Figure 1

subplot = @(m,n,p) Subtightplot (m, n, p, 0.077, [0.14 0.02], [0.04
0.0121);

%$close (figure(1l));

figure(1l);

subplot (1,1,1);

plot (t,Xmaster(:,1),’-","’Color’,colorl,’LineWidth’, largura_linha);

grid on

grid minor

hold on;

plot(t, Xslave(:,1),’:",’Color’,color2,’LineWidth’, largura_linha);

ylim([-25 30])

xlabel ("S$t[s]S$",  Interpreter’,’ latex’)

legend ("$x_m(t)s$","Sx_s(t)S$", ' Interpreter’,’latex’,’Location’, '’ northeast’
,’Orientation’,’horizontal’)

set (gcf,’ renderer’,’painters’,’units’,’centimeters’,’ position’
, [5,5,17,81)

saveas (gcf, local_1, format);

saveas (gcf, append(local_1l, eps), format2);

$Figure 2

subplot = @(m,n,p) Subtightplot (m, n, p, 0.077, [0.14 0.02], [0.04
0.0121);

$close (figure (2));

figure (2);

subplot (1,1,1);

plot (t,Xmaster(:,2),’-",’Color’,colorl,’LineWidth’, largura_linha);

grid on

grid minor

hold on;

plot(t, Xslave(:,2),’:’",’Color’,color2,’LineWidth’, largura_linha);

ylim([-25 407])

xlabel ("S$t[s]S$",  Interpreter’,’ latex’)

legend ("Sy_m(t)s$","Sy_s(t)S$",  Interpreter’,’ latex’,’Location’, '’ northeast’
,’Orientation’,’horizontal’)

set (gcf,’ renderer’,’painters’,’units’,’centimeters’,’position’
, [5,5,17,81)

saveas (gcf, local_2, format);

saveas (gcf, append(local_2, eps), format2);

$Figure 3
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subplot = @(m,n,p) Subtightplot (m, n, p, 0.077, [0.14 0.02], [0.035
0.0121);

%$close (figure (3));

figure (3);

subplot (1,1,1);

plot (t,Xmaster(:,3),’-",’Color’,colorl,’LineWidth’, largura_linha);

grid on

grid minor

hold on;

plot(t, Xslave(:,3),’:’,’Color’,color2,’LineWidth’, largura_linha);

ylim([O 557)

xlabel ("S$t[s]$",  Interpreter’,’ latex’)

legend ("S$z_m(t)s$","$z_s(t)S$", ' Interpreter’,’ latex’,’Location’, '’ northeast’
,’Orientation’,’horizontal’)

set (gcf,’ renderer’,’'painters’,’units’,’centimeters’,’position’
, [5,5,17,81)

saveas (gcf, local_3, format);

saveas (gcf, append(local_3, eps), format2);

$Figure 4

subplot = @(m,n,p) Subtightplot (m, n, p, 0.077, [0.14 0.02], [0.055
0.0121);

%$close (figure (4));

figure (4);

subplot (1,1,1);

plot (t,Xmaster(:,4),’-",’Color’,colorl,’LineWidth’, largura_linha);

grid on

grid minor

hold on;

plot(t, Xslave(:,4),’:’,’Color’,color2,’LineWidth’, largura_linha);

% ylim([-0.5 5])

xlabel ("St[s]$",’ Interpreter’,’ latex’)

legend ("Sw_m(t) $","Sw_s (t)S$", ' Interpreter’,’ latex’,’Location’, '’ northeast’
,’Orientation’,"horizontal’)

set (gcf,’ renderer’,’painters’,’units’,’centimeters’,’ position’
, [5,5,17,81)

saveas (gcf, local_4, format);

saveas (gcf, append(local_4, eps), format2);

$Figure 5

subplot = @(m,n,p) Subtightplot (m, n, p, 0.077, [0.14 0.02], [0.045
0.0121);

%close (figure (5));

figure (5);

subplot (1,1,1);

el = Xslave(:,1) - Xmaster(:,1);

plot(t,el,’-","Color’,colorl,’LineWidth’, largura_linha);
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grid on

grid minor

% ylim([-0.05 0.0517)

xlabel ("St[s]$",  Interpreter’,’ latex’)

legend ("S$e_1(t)s$",’' Interpreter’,’latex’,’ Location’, ' northeast’,”’

Orientation’,’horizontal’)

set (gcf,’ renderer’,’painters’,’units’,’centimeters’,’ position’

,[5,5,17,8])
local_5,
append (local_5,

saveas (gcf, format) ;

saveas (gcf, eps),
$Figure 6

subplot = @(m,n,p) Subtightplot (m, n, p,
0.0121);

%$close (figure (6));

figure (6);

subplot (1,1,1);

e2 = Xslave (:,2)

plot(t,e2,’-",’Color’,colorl,’LineWidth’,

- Xmaster (:,2);

grid on

grid minor

% ylim([-0.05 0.05])

xlabel ("S$t[s]S$",  Interpreter’,’ latex’)

format2);

0.077,

largura_linha);

[0.14 0.027,

[0.045

legend ("Se_2(t)$",’ Interpreter’,’latex’,’Location’, ' northeast’,”’

Orientation’,’horizontal’)

set (gcf,’ renderer’,’'painters’,’units’,’ centimeters’,’position’

, [5,5,17,81)
local_¢6,
append (local_o6,

saveas (gcf, format) ;

saveas (gct, eps),
$Figure 7

@(m,n,p) Subtightplot (m, n, p,
0.0121);

%close (figure (7)) ;

subplot =

figure(7);

subplot (1,1,1);
Xslave (:, 3)
plot(t,e3,’-","Color’,colorl,’LineWidth’,

el3 = - Xmaster (:,3);

grid on

grid minor

ylim([-1 1])

xlabel ("S$t[s]$",  Interpreter’,’ latex’)

legend ("S$e_3(t)s$", ' Interpreter’,’latex’,’ Location’, ' northeast’,

Orientation’,’horizontal’)

set (gcf,’ renderer’,’painters’,’units’,’centimeters’,’position’

»15,5,17,8])

saveas (gcf, local_7, format);

198

format2) ;

0.077,

largura_linha);

[0.14 0.027,

[0.045

4



saveas (gcf, append(local_7, eps), format2);

$Figure 8

subplot = @(m,n,p) Subtightplot (m, n, p, 0.077, [0.14 0.02], [0.05
0.0121);

close (figure(8));

figure(8);

subplot (1,1,1);

ed = Xslave(:,4) - Xmaster(:,4);

plot(t,ed4,’-","Color’,colorl,’LineWidth’, largura_linha);

grid on

grid minor

ylim([-0.3 0.57])

xlabel ("$t[s]$",’ Interpreter’,’ latex’)

legend ("S$Se_4(t)$",’ Interpreter’,’latex’,’ Location’, ' northeast’,”’
Orientation’,’horizontal’)

set (gcf,’ renderer’,’painters’,’units’,’centimeters’,’position’
, [5,5,17,81)

saveas (gcf, local_8, format);

saveas (gcf, append(local_8, eps), format2);

$Figure 9

subplot = @(m,n,p) Subtightplot (m, n, p, 0.077, [0.14 0.02], [0.045
0.0121);

%$close (figure (9));

figure (9);

subplot (1,1,1);

plot(t,msg(:,1),’-",’Color’,colorl,’LineWidth’,largura_linha);

grid on

grid minor

hold on;

plot(t, 0.04xXmaster(:,1),’:’,"Color’,color2,’LineWidth’, largura_linha);

ylim([-1 2])

h=legend(’Mensagem original’, ’'Mensagem codificada’,’Location’,’northeast
")

set (h,"FontSize’, fonte);

xlabel ("$St[s]1$S$’, " Interpreter’,’Latex’,’Fontsize’, fonte);

ylabel ("$Sm_1(t), 0.04{\cdot}s_1(t)$S$’," Interpreter’,’Latex’,’Fontsize’,
fonte);

set (gcf,’ renderer’,’painters’,’units’,’centimeters’,’ position’
, [5,5,17,81)

saveas (gcf, local_9, format);

saveas (gcf, append(local_9, eps), format2);
$Figure 10

subplot = @(m,n,p) Subtightplot (m, n, p, 0.077, [0.14 0.02], [0.045
0.0121);
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%$close (figure (10));

figure (10);

subplot (1,1,1);

plot(t,msg(:,3),’-",’Color’,colorl,’LineWidth’, largura_linha);

grid on

grid minor

hold on;

plot (t, 0.04xXmaster(:,3) - 1,":’,’Color’,color2,’LinewWidth’,
largura_linha);

ylim([-1.5 21)

h=legend(’Mensagem original’, ’'Mensagem codificada’,’Location’,’northeast
")

set (h,"FontSize’, fonte);

xlabel (" $5t[s]$S$’, " Interpreter’,’ Latex’,'Fontsize’, fonte);

ylabel ("$Sm_2(t), 0.04{\cdot}s_2(t) - 1$$’,’Interpreter’,’Latex’,’
Fontsize’, fonte);

set (gcf,’ renderer’,’painters’,’units’,’centimeters’,’position’
, [5,5,17,81)

saveas (gcf, local_10, format);

saveas (gcf, append(local_10, eps), format2);

$Figure 11

subplot = @(m,n,p) Subtightplot (m, n, p, 0.077, [0.14 0.02], [0.045
0.0121);

%$close (figure (11));

figure (11);

subplot (1,1,1);

aux = Xmaster(:,1) - Xslave(:,1);

plot(t,msg(:,1),’-",’Color’,colorl,’LineWidth’,largura_linha);

grid on

grid minor

hold onj;

plot(t, aux,’:’,’Color’,color2,’LineWidth’, largura_linha);

ylim([-1 1.57])

h=legend(’Mensagem original’, ’'Mensagem decodificada’,’Location’,’
northeast’);

set (h,"FontSize’, fonte);

xlabel (" $S$t[s]1$$’,’ Interpreter’,’Latex’,’Fontsize’, fonte);

ylabel ("$Sm_1(t), \hat{m}_1(t)$S$’,’ Interpreter’,’Latex’,’Fontsize’, fonte)
7

set (gcf,’ renderer’,’painters’,’units’,’centimeters’,’position’
, [5,5,17,81)

saveas (gcf, local_11, format);

saveas (gcf, append(local_11, eps), format2);

$Figure 12
subplot = @(m,n,p) Subtightplot (m, n, p, 0.077, [0.14 0.02], [0.045
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0.0121);

%close (figure (12));

figure (12);

subplot (1,1,1);

aux = Xmaster(:,3) - Xslave(:,3);

plot(t,msg(:,3),’-",’Color’,colorl,’LineWidth’,largura_linha);

grid on

grid minor

hold on;

plot(t, aux,’:’,’Color’,color2,’LineWidth’, largura_linha);

ylim([-0.8 17)

h=legend(’Mensagem original’, ’'Mensagem decodificada’,’Location’,’
northeast’);

set (h,"FontSize’, fonte);

xlabel ("$St[s]1$S$’, " Interpreter’,’Latex’,’Fontsize’, fonte);

ylabel ("$Sm_2(t), \hat{m}_2(t)S$S$’,’ Interpreter’,’Latex’,’Fontsize’, fonte)
7

set (gcf,’renderer’,’painters’,’units’,’centimeters’,’position’
, [5,5,17,81)

saveas (gcf, local_12, format);

saveas (gcf, append(local_12, eps), format2);

$Figure 13

subplot = @(m,n,p) Subtightplot (m, n, p, 0.077, [0.14 0.02], [0.045
0.0121);

%$close (figure (13));

figure (13);

subplot (1,1,1);

aux?2 = Xmaster(:,1) - Xslave(:,1);

plot(t,msg(:,1),’-",’Color’,colorl,’LineWidth’,largura_linha);

grid on

grid minor

hold on;

plot(t, aux2,’:’,’Color’,color2,’LineWidth’, largura_linha);

plot(t, 0.04xXmaster(:,1),’-",’Color’,color3,’LineWidth’, largura_linha);

ylim([-1 2])

h=legend(’Mensagem original’, ’'Mensagem decodificada’, ’Mensagem
codificada’,’Location’,’northeast’);

set (h, "FontSize’, fonte);

xlabel (7 $$t[s]1$$’, " Interpreter’,’Latex’,’Fontsize’, fonte) ;

ylabel ($Sm_1(t), \hat{m}_1(t), 0.04{\cdot}s_1(t)$S’,’' Interpreter’,’Latex
","Fontsize’, fonte);

set (gcf,’ renderer’,’painters’,’units’,’centimeters’, ' position’
, [5,5,17,81)

saveas (gcf, local_13, format);

saveas (gcf, append(local_13, eps), format2);
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$Figure 14

subplot = @(m,n,p) Subtightplot (m, n, p, 0.077, [0.14 0.02], [0.045
0.0121);

%$close (figure (14));

figure (14);

subplot (1,1,1);

aux3 = Xmaster(:,3) - Xslave(:,3);

plot(t,msg(:,3),’-",’Color’,colorl,’LineWidth’,largura_linha);

grid on

grid minor

hold on;
plot(t, aux3,’:’,’Color’,color2,’LineWidth’, largura_linha);
plot(t, 0.04xXmaster(:,3) - 1,’-",’Color’,color3,’LineWidth’,

largura_linha);

ylim([-1.5 2.51])

h=legend(’Mensagem original’, ’'Mensagem decodificada’, ’Mensagem
codificada’,’Location’,’northeast’);

set (h, "FontSize’, fonte);

xlabel (7 $S$t[s]1$$’, " Interpreter’,’Latex’,’Fontsize’, fonte) ;

ylabel ("$Sm_2(t), \hat{m}_2(t), 0.04{\cdot}s_2(t) - 1$$’,’Interpreter’,’
Latex’,’Fontsize’, fonte);

set (gcf,’ renderer’,’painters’,’units’,’centimeters’,’ position’
,[5,5,17,81)

saveas (gcf, local_14, format);

saveas (gcf, append(local_l1l4, eps), format2);

%$Figure 15

subplot = @(m,n,p) Subtightplot (m, n, p, 0.077, [0.14 0.02], [0.045
0.0121);

%$close (figure (15));

figure (15);

subplot (1,1,1);

aux = Xmaster(:,1) - Xslave(:,1);

aux4 = aux — msg(:,1);

plot (t,aux4,’Color’,color3,’LineWidth’, largura_linha);

grid on

grid minor

h=legend ('’ $$\tilde{m}_1(t)$s$’,’' Interpreter’,’Latex’,’ Location’, ' northeast
")

set (h,"FontSize’, fonte);

xlabel (7 $S$t[s]1$$’, " Interpreter’,’Latex’,’Fontsize’, fonte) ;

ylabel (Message error’,’Fontsize’, fonte)

set (gcf,’renderer’,’painters’,’units’,’centimeters’,’position’
, [5,5,17,81)

saveas (gcf, local_15, format);

saveas (gcf, append(local_15, eps), format2);
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$Figure 16

subplot = @(m,n,p) Subtightplot (m, n, p, 0.077, [0.14 0.02], [0.045
0.0121);

%$close (figure (16));

figure (16);

subplot (1,1,1);

aux = Xmaster(:,3) - Xslave(:,3);

aux5 = aux - msg(:,3);

plot (t,aux5,’Color’,color3,’LineWidth’, largura_linha);

grid on

grid minor

h=legend ('’ $S\tilde{m}_2(t)$S$’,  Interpreter’,’Latex’,’Location’,’northeast
")

set (h,"FontSize’, fonte);

xlabel (" $St[s]$S$’,  Interpreter’,’Latex’,’Fontsize’, fonte);

ylabel ("Message error’,’Fontsize’, fonte)

set (gcf,’ renderer’,’painters’,’units’,’centimeters’,’position’
, [5,5,17,81)

saveas (gcf, local_16, format);

saveas (gcf, append(local_16, eps), format2);

%$close (figure(1l));

B.6 CODES FOR SIMULATIONS IN CHAPTER 8

B.6.1 Minimal Underactuated Synchronization of Chaotic Systems.

B.6.2 Simulink Plant used for simulations corresponding to Figures (8.2-8.14);
(8.25-8.32) and (8.34-8.45).

p{Proposed_Master

To File1

Plant_Master

P Synchronizer —# Plant_Slave p{Proposed_Slave

To File

Figure B.4 — Comparative scheme to show the peculiarities of the proposed method.

Listing B.28 — PlantaMaster.m

function [sys,x0,str,ts] = Plant_Master(t,x,u, flaqg)
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5 8 4 0 O 9
[
o
&

9990000000000 0000

case 0,
sizes = simsizes;

sizes.NumContStates = 4; S%Number of constants states
sizes.NumDiscStates = 0; %Number of discrete states
sizes.NumOutputs = 4; %Number of outputs
sizes.NumInputs = 0O; $Number of inputs
sizes.DirFeedthrough = 1;
sizes.NumSampleTimes = 1;
sys = simsizes (sizes);

x0=[-2.9 3.8 4.7 -1.2]; %Initial conditions

9990000000000 0

case 1, %System
sys = [ax(x(2) - x(1));
(cxx (1) - x(2) - x(1)*x(3) + x(4) - d);

(-bxx (3) + x(1)*x(2));
(m*x(2) + x(4) - n*x(x(1)"3))1;

99900000000

9990900090000

s = [X(1)+ 0.1lxsin(8xt); x(2)+ 0.1l%xsin(9+t);
(4)+ O.lxsquare(10xt)];
sys = [x(1); x(2); x(3); x(4)]1;

[)

sys = ; % It does not do anything
otherwise

error ([’unhandled flag = ' ,num2str(flag)]);
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end

Listing B.29 — PlantaSlave.m

function [sys,x0,str,ts] = Plant_Slave(t,x,u,flag)

= 10;
= 2;
= 28;
0.1;
= 27;

5 2 0 a0 oW
Il

case 0,
sizes = simsizes;
sizes.NumContStates = 4; S%Number of constants states
sizes.NumDiscStates = 0; $%Number of discrete states
sizes.NumOutputs = 4; $Number of outputs
sizes.NumInputs = 4; %Number of inputs
sizes.DirFeedthrough = 1;
sizes.NumSampleTimes = 1;
sys = simsizes (sizes);
x0=[12.4 -7.5 10.2 3.4]; %Initial conditions
str=[];
ts=[0 0];
% Directives %
case 1, %System
sys = [a*x(x(2) — x(1)) + u(l);
c*x (1) — x(2) = x(1)*x(3) + x(4) - d + u(2);

“b*x(3) + x(1)*x(2) + u(3);
m*x (2) + x(4) - nx(x(1)"3) + u(4)] + disturb(x,u,t);

8990990090000

8990099000 0o

; % It does not do anything
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otherwise
error (['unhandled flag = ' ,num2str(flag)]);

end

function disturb = disturb(x,u,t)

if t>=7
disturb = [0.1lxsin(5*t); 0.l1l*cos(3*t); 0.3xcos(5+xt); 50%(sin(2*t) +
0.4%xsin(10%t))]; %disturbance

else

disturb = 0; %Until t=10 secs the disturb is null

end
Listing B.30 — Graphs-comparacao.m
S e ’Scheme proposed '/
% Proposed_Master(:,1) = Master time
% Proposed_Master(:,2) until Proposed_Master(:,5) = Xm, Ym, Zm and Wm

states, respectivaly, from the master system

o\°

o\

Proposed_Slave(:,1) = Slave time

o\

Proposed_Slave(:,2) until Proposed_Slave(:,5) = Xs, Ys, Zs and Ws

states, respectivaly, from the slave system

clc
format = "png’;
addpath (' ./Figuras/’");

local_1 = ’'Figuras/Comparison’;

fonte = 10;

fonte_letrinhas = 8;
largura_linha = 1.5;

load ("Article2015_Master.mat’);
Article2015_Master = Article2015_Master’;

load ("Article2015_Slave.mat’);
Article2015_Slave = Article2015_Slave’;

load (' Proposed_Master.mat’);

Proposed_Master = Proposed_Master’;

load (' Proposed_Slave.mat’);

Proposed_Slave = Proposed_Slave’;

o\
o\
o\
o\
o\°
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\°
o\
o\
o\
o\
o\°
o\
o\
o\
o\

$ % % % % % % Differential Equation % % % % % % %



subplot = @(m,n,p) Subtightplot (m, n, p, 0.077, [0.064 0.006], [0.045
0.0121);

colorl = [0 0.4470 0.7410];

color2 = [0.8500 0.3250 0.09807;

F355%5%55%%%%%%%%% single figures$%$%%%%%%%%%%%%

format = "png’;

addpath (' ./Figuras/’");

local_2 = ’'Figuras/fig_27’;

local_3 = ’'Figuras/fig_3’;

local_4 = 'Figuras/fig_4’;

local_5 = 'Figuras/fig_5';

local_6 = ’'Figuras/fig_6’;

local_7 = ’'Figuras/fig_7'";

local_8 = ’'Figuras/fig_8';

local_9 = ’'Figuras/fig_9’;

fonte = 20;

fonte_letrinhas = 24;

largura_linha = 1.5;

%$close (figure (5));

figure (5);

$Figure 5

$subplot (4,2,1)

plot (Artic

le2015_Slave(:,1),

LineWidth’,largura_linha);

hold on
plot (Propo

sed_Slave(:,1),

LineWidth’, largura_linha);

hold on
plot (Artic

1le2015_Master(:,1),

Article2015_Slave(:,2),

Proposed_Slave(:,2), ’':',

r-r,"Color’,colorl,”’

"Color’,colorz,’

Article2015_Master(:,2),’—-","’Color’,

[0,0.7,0],’LinewWidth’, largura_linha);

grid on

grid minor
YL get (g
YR YL(2)
YL [YL(1

line([7, 7

ca, 'ylim’);
- YL(1);
) — 1000 % YR, YL(2)

1, YL,

"YLimInclude’,

$plot the vertical line

+ 1000 % YR];
"off’, ’'Color’,’k’,’"LineWidth’,1);
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o)

pa = annotation(’arrow’); % store the arrow information in pa

pa.Parent = gca; % associate the arrow the the current axes
pa.X = [7 141; % the location of arrow

pa.Y = [21 21];

pa.LineWidth = 1; % make the arrow bolder for the figure
pa.HeadWidth = 8;

pa.HeadLength 8;

Stext (7.2,25,’disturbances in action’,’Fontsize’,8) % write a text on top
of the arrow

text (7.2,25,’disttrbios em acao’,’Fontsize’,8) % write a text on top of

the arrow

ylim([-45, 301);
x1lim ([0, 15]);

(t)$’, " Interpreter’,’ latex’,’Location’,’ southeast’,’NumColumns’, 2)

legend (' $x_{s} (£)$ em [1]’',’Sx_{s}(t)$ em (8.3)',’Sx_{m}(t)sS’,’
Interpreter’,’latex’,’Location’,’northeast’,’NumColumns’, 2)

title(’ (a)’, ’'Units’, ’'normalized’, ’'Position’, [0.5, -0.36, 0],’ fontname
",’times’,’FontSize’, fonte_letrinhas,’'FontWeight’, ' Normal’);

set (gcf,’ renderer’,’painters’,’units’,’centimeters’, ' position’
, [5,5,17,201)

saveas (gcf, local_2, format);

saveas (gcf, 'Figuras/fig_2.eps’, epsc’);

%$close (figure(2));on’, [0.5, -0.36, 0],’ fontname’,’times’,’FontSize’,
fonte_letrinhas,’FontWeight’,’Normal’);

xlabel ("St[s]$",  Interpreter’,’ latex’)

%$close (figure (6));
figure (6);
$Figure 6

$Error 1

plot (Article2015_Slave(:,1l), Article2015_Slave(:,2) - Article2015_Master
(:,2), "=",’Color’,colorl,’LineWidth’, largura_linha);

hold on

plot (Proposed_Slave(:,1), Proposed_Slave(:,2) - Proposed_Master(:,2), ’':’

,'Color’,color2,’LineWidth’, largura_linha);
grid on

grid minor

YL = get(gca, ’'ylim’); %plot the vertical line

YR = YL(2) - YL(1);

YL = [YL(l) - 1000 % YR, YL(2) + 1000 % YR];

line([7, 7], YL, ’'YLimInclude’, ’'off’, ’'Color’,’k’,’LineWidth’,1);

[o)

pa = annotation(’arrow’); % store the arrow information in pa

[o)

pa.Parent = gca; % associate the arrow the the current axes
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pa.X = [7 141; % the location of arrow

pa.Y = [12 12];

pa.LineWidth = 1; % make the arrow bolder for the figure
pa.HeadWidth = 8;

pa.HeadLength = 8;

text (7.2,15,’disturbances in action’,’Fontsize’,8) % write a text on top

of the arrow

(6)",’'Interpreter’,’latex’,’Location’,’ southeast’,’Orientation’,”’
horizontal’)

legend (" Se_{1}(t)$ in [1]7,"Se_{1}(t)$ in (8.6)’,' Interpreter’,’latex’,’
Location’,’northeast’,’Orientation’, " horizontal’)

title(’ (b)’, ’'Units’, ’'normalized’, ’"Position’, [0.5, -0.36, 0],’fontname
",’times’,’'FontSize’, fonte_letrinhas,’FontWeight’, Normal’);

xlabel ("St[s]$",  Interpreter’,’ latex’)

ylim([-25, 201]);

x1im ([0, 157);

set (gcf,’ renderer’,’painters’,’units’,’centimeters’,’ position’
, [5,5,17,2071)

saveas (gcf, local_3, format);

saveas (gcf,’Figuras/fig_6.eps’, epsc’);

%close (figure (7)) ;

figure(7);

$Figure 7

plot (Article2015_Slave(:,1), Article2015_Slave(:,3), ’'-",’Color’,colorl,”’
LineWidth’, largura_linha);

hold on

plot (Proposed_Slave(:,1), Proposed_Slave(:,3), ’':’,’Color’,color2,”’
LineWidth’,largura_linha);

plot (Article2015_Master(:,1), Article2015_Master(:,3),’—-’,’Color’,
[0,0.7,0],’Linewidth’, largura_linha);

grid on

grid minor

YL = get(gca, 'ylim’); %plot the vertical line

YR = YL(2) - YL(1);

YL = [YL(l) - 1000 % YR, YL(2) + 1000 =% YR];

line([7, 7], YL, ’'YLimInclude’, ’'off’, ’'Color’,’k’,’LineWidth’,1);

pa = annotation(’arrow’); % store the arrow information in pa
pa.Parent = gca; % associate the arrow the the current axes
pa.X = [7 147; % the location of arrow

pa.Y = [29 29];

pa.LineWidth = 1; % make the arrow bolder for the figure

pa.HeadWidth = §;

pa.HeadLength 8;

209



o)

text (7.2, 35,’disturbios em acdao’,’Fontsize’,8) % write a text on top of
the arrow

(t)$’, " Interpreter’,’latex’,’Location’,’southeast’,’NumColumns’, 2)

legend (' $y_{s}(£)$ em [1]',’Sy_{s}(t)$ em (8.3)","Sy_{m}(t)$',’
Interpreter’,’latex’,’Location’,’northeast’,’NumColumns’, 2)

title(’ (¢)’, ’'Units’, ’'normalized’, ’'Position’, [0.5, -0.36, 0],’fontname
’,’times’,’FontSize’, fonte_letrinhas,’FontWeight’,’Normal’);

xlabel ("S$t[s]S$",  Interpreter’,’ latex’)

ylim([-60, 40]);

x1lim ([0, 157);

set (gcf,’ renderer’,’painters’,’units’,’centimeters’, ' position’
,[5,5,17,2071)

saveas (gcf, local_4, format);

saveas (gcf,’Figuras/fig_3.eps’,’epsc’);

figure (8);

plot (Article2015_Slave(:,1l), Article2015_Slave(:,3) - Article2015_Master
(:,3), "-7,’Color’,colorl,’LineWidth’, largura_linha);

hold on

plot (Proposed_Slave(:,1l), Proposed_Slave(:,3) - Proposed_Master(:,3),’:’,

"Color’,color2,’LineWidth’, largura_linha);
grid on

grid minor

YL = get(gca, ’'ylim’); %plot the vertical line

YR = YL(2) - YL(1);

YL = [YL(1) - 1000 % YR, YL(2) + 1000 % YRI];

line([7, 7], YL, ’'YLimInclude’, ’'off’, ’'Color’,’k’,’LineWidth’,1);

pa = annotation(’arrow’); % store the arrow information in pa
pa.Parent = gca; % associate the arrow the the current axes
pa.X = [7 141; % the location of arrow

pa.Y = [11.5 11.5];

pa.LineWidth = 1; % make the arrow bolder for the figure
pa.HeadWidth = 8;

pa.HeadLength 8;
text (7.2,15,’disttrbios em acdo’,’Fontsize’,8) % write a text on top of

the arrow

legend (" Se_{2}(t)$ em [1]7,"Se_{2}(t)$ em (8.6)’, " Interpreter’,’latex’,’
Location’,’'northeast’,’Orientation’, " horizontal’)

title(’ (d)’, ’"Units’, ’'normalized’, ’'Position’, [0.5, -0.36, 0],’ fontname
",’times’,’FontSize’, fonte_letrinhas,’'FontWeight’,’Normal’);

xlabel ("St[s]$",’ Interpreter’,’ latex’)

ylim([-35, 20]);

x1im ([0, 157);

set (gcf,’ renderer’,’painters’,’units’,’centimeters’,’ position’
, [5,5,17,201)
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saveas (gcf, local_5, format);

saveas (gcf, 'Figuras/fig_7.eps’, " epsc’);

figure (9);

plot (Article2015_Slave(:,1), Article2015_Slave(:,4), ’'-'",’Color’,colorl,”’
LineWidth’, largura_linha);

hold on

plot (Proposed_Slave(:,1), Proposed_Slave(:,4), ’:’,’Color’,color2,”’
LineWidth’,largura_linha);

plot (Article2015_Master(:,1), Article2015_Master(:,4),’—-",’Color’,
[0,0.7,0],’Linewidth’, largura_linha);

grid on

grid minor

YL = get(gca, 'ylim’); %plot the vertical line

YR = YL(2) - YL(1);

YL = [YL(1l) - 1000 % YR, YL(2) + 1000 = YRI];

line([7, 7], YL, ’'YLimInclude’, ’'off’, ’'Color’,’k’,’LineWidth’,1);

pa = annotation(’arrow’); % store the arrow information in pa
pa.Parent = gca; % associate the arrow the the current axes
pa.X = [7 147; % the location of arrow

pa.Y = [63 63];

pa.LineWidth = 1; % make the arrow bolder for the figure
pa.HeadWidth = §;

|
o
~.

pa.HeadLength =
text (7.2, 70,’disturbios em acdo’,’Fontsize’,8) % write a text on top of

the arrow

legend(’$z_{s}(£)$ em [1]','Sz_{s}(t£)$ em (8.3)","'Sz_{m}(L)$',”’
Interpreter’,’latex’,’Location’,’northeast’,’NumColumns’, 2)

title(’ (e)’, ’'Units’, ’'normalized’, ’"Position’, [0.5, -0.36, 0],’fontname
’,’times’,’FontSize’, fonte_letrinhas,’FontWeight’, ' Normal’) ;

xlabel ("St[s]S$",  Interpreter’,’ latex’)

ylim([-30, 801);

x1im ([0, 151);

set (gcf,’ renderer’,’painters’,’units’,’centimeters’,’ position’
, [5,5,17,201)

saveas (gcf, local_6, format);

saveas (gcf,'Figuras/fig_4.eps’,’ epsc’);

figure (10);

plot (Article2015_Slave(:,1), Article2015_Slave(:,4) - Article2015_Master
(:,4), "-’,’Color’,colorl,’LineWidth’, largura_linha);

hold on

plot (Proposed_Slave(:,1), Proposed_Slave(:,4) - Proposed_Master(:,4), ':’

, Color’,color2,’LineWidth’, largura_linha);

grid on
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grid minor

YL = get(gca, ’'ylim’); %plot the vertical line

YR = YL(2) - YL(1);

YL = [YL(l) - 1000 % YR, YL(2) + 1000 % YR];

line([7, 7], YL, ’'YLimInclude’, ’'off’, ’'Color’,’k’,’LineWidth’,1);

pa = annotation(’arrow’); % store the arrow information in pa
pa.Parent = gca; % associate the arrow the the current axes
pa.X = [7 141; % the location of arrow

pa.Y = [31 311;

pa.LineWidth = 1; % make the arrow bolder for the figure

pa.HeadWidth 8;

pa.HeadLength = §;

text (7.2, 35,’disturbances in action’,’Fontsize’,8) % write a text on top

of the arrow

legend (" Se_{3}(t)$ em [1]7,"Se_{3}(t)$ in (8.6)’," Interpreter’,’latex’,’
Location’,’northeast’,’Orientation’, ’'horizontal’)

title(' (£f)’, ’'Units’, ’'normalized’, ’'Position’, [0.5, -0.36, 0],’ fontname
",’times’,’FontSize’, fonte_letrinhas,’'FontWeight’, ' Normal’);

xlabel ("St[s]$", ' Interpreter’,’ latex’)

ylim([-30, 401);

x1im ([0, 157);

set (gcf,’ renderer’,’painters’,’units’,’centimeters’,’ position’
, [5,5,17,201)

saveas (gcf,local_7, format);

saveas (gcf,’Figuras/fig_8.eps’,’epsc’);

figure(11l);

plot (Article2015_Slave(:,1), Article2015_Slave(:,5), ’'-’,’Color’,colorl,’
LineWidth’,largura_linha);

hold on

plot (Proposed_Slave(:,1), Proposed_Slave(:,5), ’':’,’Color’,color2,”’
LineWidth’,largura_linha);

plot (Article2015_Master(:,1), Article2015_Master(:,5),’—--",’Coloxr’,
[0,0.7,0],’Linewidth’, largura_linha);

grid on

grid minor

YL = get(gca, ’'ylim’); %plot the vertical line

YR = YL (2) - YL(1);

YL = [YL(l) - 1000 % YR, YL(2) + 1000 * YR];

line([7, 7], YL, ’'YLimInclude’, ’'off’, ’'Color’,’k’,’LineWidth’,1);

pa = annotation (’arrow’); % store the arrow information in pa
pa.Parent = gca; % associate the arrow the the current axes
pa.X = [7 147; % the location of arrow

pa.Y = [170 1701;
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pa.LineWidth
pa.HeadWidth

1; % make the arrow bolder for the figure
8;
pa.HeadLength = 8;

text (7.2, 205,’disturbios em acédo’,’Fontsize’,8) $ write a text on top of
the arrow

legend (' $w_{s} (£)$ em [1]','Sw_{s}(£)$ em (8.3)"," Sw_{m}(t)$’,’
Interpreter’,’latex’,’Location’,’northeast’,’NumColumns’, 2)

title(’ (g)’, ’'Units’, ’'normalized’, ’'Position’, [0.5, -0.36, 0],’fontname
,’times’,’FontSize’, fonte_letrinhas,’'FontWeight’, ' Normal’);

xlabel ("St[s]$",’ Interpreter’,’ latex’)

x1lim ([0, 15]);

ylim([-420, 2401);

set (gcf,’ renderer’,’painters’,’units’,’centimeters’,’ position’
, [5,5,17,201)

saveas (gcf, local_8, format);

saveas (gcf,’Figuras/fig_9.eps’,’epsc’);

figure(12);

plot (Article2015_Slave(:,1), Article2015_Slave(:,5) - Article2015_Master
(:,5), "-7",’Color’,colorl,’LineWidth’, largura_linha);

hold on

plot (Proposed_Slave(:,1), Proposed_Slave(:,5) - Proposed_Master(:,5), ':’

, Color’,color2,’LineWidth’, largura_linha);
grid on

grid minor

YL = get(gca, ’'ylim’); %plot the vertical line

YR = YL (2) - YL(1);

YL = [YL(1l) - 1000 = YR, YL(2) + 1000 = YR];

line([7, 7], YL, ’'YLimInclude’, ’'off’, ’'Color’,’k’,’LineWidth’,1);

pa = annotation(’arrow’); % store the arrow information in pa
pa.Parent = gca; % associate the arrow the the current axes
pa.X = [7 141; % the location of arrow

pa.Y = [13 131;

pa.LineWidth = 1; % make the arrow bolder for the figure
pa.HeadWidth = §;

pa.HeadLength =

|
o
~

o

text (7.2,15,’disturbances in action’,’Fontsize’,8) % write a text on top

of the arrow

legend (" Se_{4}(t)$ em [1]7,"Se_{4}(t)$ em (8.6)’, " Interpreter’,’latex’,’
Location’,’northeast’,’Orientation’, ’'horizontal’)

title(’ (h)’, ’'Units’, ’'normalized’, ’'Position’, [0.5, -0.36, 0],’fontname
",’times’,’FontSize’, fonte_letrinhas,’FontWeight’, Normal’) ;

xlabel ("S$t[s]$",  Interpreter’,’ latex’)

x1im ([0, 1571);

ylim([-20, 18]);
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set (gcf,’ renderer’,’painters’,’units’,’centimeters’,’position’
,[5,5,17,207)

saveas (gcf, local_9, format);

saveas (gcf,'Figuras/fig_9.eps’,’epsc’);

%$close (figure(12));

Listing B.31 — Graphs-desempenho da sincronizacao.m

[

% This script is responsasible for generating the Figure 1 at the article

clc

format = ’"png’;
addpath (' ./Figuras/’);
local_1 = ’'Figuras/Figl’;
local_2 = ’'Figuras/Figl_el_e2_e3_ed’;
local_3 = ’'Figuras/sincro_x';
local_4 = ’'Figuras/sincro_y’;
local_5 = ’'Figuras/sincro_z’;
local_6 = ’'Figuras/sincro_w’;
fonte = 10;

fonte_letrinhas = 8;
largura_linha = 1.5;

set (0, "DefaultAxesFontSize’, fonte);

load ("Proposed_Master.mat");
Proposed_Master = Proposed_Master’;
load ("Proposed_Slave.mat");

Proposed_Slave = Proposed_Slave’;

subplot = @(m,n,p) Subtightplot (m, n, p, 0.077, [0.075 0.006], [0.038

0.0301);
colorl = [0 0.4470 0.74101;
color2 = [0.8500 0.3250 0.09801];
$%%%%%%%%%%%1individual figures$$%%%%%%%%%%%%%%%%%%%%

%$close (figure(1l));

figure (2);

$Figure 2

plot (Proposed_Master(:,1),Proposed_Master(:,2),’-",’Color’,colorl,”’
LineWidth’,largura_linha);

hold on

plot (Proposed_Slave(:,1),Proposed_Slave(:,2),’:","Color’,color2,”’

LineWidth’,largura_linha);
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grid on

grid minor

legend ("$x_m(t)$","$x_s(t)$",’ Interpreter’,’ latex’,’Location’,’southeast’
,’Orientation’,’horizontal’)

title(’ (a)’, ’'Units’, ’'normalized’, ’'Position’, [0.5, -0.28, 0],’fontname
",’times’,’FontSize’, fonte_letrinhas,’FontWeight’, Normal’);

xlabel ("S$t[s]S$",  Interpreter’,’ latex’)

ylim([-30 20]);

saveas (gcf, local_3, format);

saveas (gcf,'Figuras/sincro_x.eps’,’epsc’);

$close (figure (2));

$close (figure (3));

figure (3);

$Figure 3

plot (Proposed_Master(:,1),Proposed_Master(:,3),’-",’Color’,colorl,”’
LineWidth’,largura_linha);

hold on

plot (Proposed_Slave(:,1),Proposed_Slave(:,3),’:","Color’,color2,”’
LineWidth’, largura_linha);

grid on

grid minor

legend ("Sy_m(t)s$","Sy_s(t)S$",  Interpreter’,’ latex’,’Location’,’ southeast’
,’Orientation’,’horizontal’)

xlabel ("St[s]$",  Interpreter’,’ latex’)

title(’ (b)’, ’'Units’, ’'normalized’, ’'Position’, [0.5, -0.28, 0],’fontname
",’times’,’FontSize’, fonte_letrinhas,’FontWeight’, Normal’) ;

ylim([-40 30]);

saveas (gcf, local_4, format);

saveas (gcf,'Figuras/sincro_y.eps’,’ epsc’);

%$close (figure(3));

%close (figure (4));

figure (4);

$Figure 4

plot (Proposed_Master(:,1),Proposed_Master(:,4),’-","’Color’,colorl,”’
LineWidth’, largura_linha);

hold on

plot (Proposed_Slave(:,1),Proposed_Slave(:,4),’:","Color’,color2,”’
LineWidth’,largura_linha);

grid on

grid minor

legend ("S$z_m(t)s$","$z_s(t)S$",  Interpreter’,’ latex’,’Location’,’ southeast’
,’Orientation’,’horizontal’)

title(’ (¢)’, ’'Units’, ’'normalized’, ’"Position’, [0.5, -0.28, 0],’fontname

215



",’times’,’FontSize’, fonte_letrinhas,’FontWeight’,’Normal’);
xlabel ("S$t[s]S$",  Interpreter’,’ latex’)
ylim([-20 80]);
saveas (gcf, local_5, format);
saveas (gcf,'Figuras/sincro_z.eps’,’epsc’);

%$close (figure (4));

%$close (figure (5));

figure (5);

$Figure 5

plot (Proposed_Master(:,1),Proposed_Master(:,5),"-","Color’,colorl,”’
LineWidth’, largura_linha);

hold on

plot (Proposed_Slave(:,1),Proposed_Slave(:,5),’:",’Color’,color2,”’
LineWidth’, largura_linha);

grid on

grid minor

legend ("Sw_m(t)$","s$w_s(t)S$", ' Interpreter’,’ latex’,’Location’,’ southeast’
,’Orientation’,’horizontal’)

title(’ (d)’, ’'Units’, ’'normalized’, ’'Position’, [0.5, -0.28, 0],’fontname
",’times’,’FontSize’, fonte_letrinhas,’FontWeight’, Normal’) ;

xlabel ("S$t[s]S$",  Interpreter’,’ latex’)

ylim([-400 200]);

saveas (gcf, local_6, format);

saveas (gcf,'Figuras/sincro_w.eps’, epsc’);

figure (6);

subplot (1,2, [1 21)

el = Proposed_Slave(:,2) - Proposed_Master(:,2);

e2 = Proposed_Slave(:,3) - Proposed_Master(:,3);

e3 = Proposed_Slave(:,4) - Proposed_Master(:,4);

e4 = Proposed_Slave(:,5) - Proposed_Master(:,5);

plot (Proposed_Master(:,1),el,Proposed_Master(:,1),e2,’-.’, LineWidth’
,1.8);

hold on

plot (Proposed_Master(:,1),e3,’"-—-", ’'Color’, [0,0.7,0],’LineWidth’,1.8);

plot (Proposed_Master(:,1),e4,’k:’,’LineWidth’,1.8);

grid on

grid minor

title(’ (e)’, ’'Units’, ’'normalized’, ’"Position’, [0.5, -0.28, 0],’fontname
",’times’,’FontSize’, fonte_letrinhas,’FontWeight’,’Normal’) ;

xlabel ("S$t[s]$",  Interpreter’,’ latex’)

legend ("Se_1(t)s","Se_2(t)S","Se_3(t)s$","Se_4(t)S$", ' Interpreter’,’ latex’,
"Location’,’southeast’,’Orientation’,’horizontal’)

ylim([-40 40]);

set (gcf,’ renderer’,’painters’,’units’,’centimeters’,’ position’
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» [5,5,17,20])
saveas (gcf, local_2, format);
saveas (gcf,’Figuras/Figl_el_e2_e3_ed.eps’,’epsc’);

%$close (figure (6));

Listing B.32 — Graphs-Comparacao entre mensagens.m

%% Description of DataCompSimulWithMSG:
% DataCompSimulWithMSG has the rows and collumns inverted, so it is

% necessary to use the transpose of it

load (’"Data.mat’);
Data = DataCompSimulWithMSG’;

% ——— Description —-—-
$ Data(:,1) : Time
% Data(:,2) até Data(:,5): Xmaster

o\

(:
(:
Data(:, 6) até Data(:,9): Xslave
(:
(:

% Data(:,10) até Data(:,13): Msg
% Data(:,14) até Data(:,17): Xmaster + Msg
% Graphics

clc

format = ’"png’;
addpath (' ./Figuras/’);

local_1 = ’'Figuras/Fig3’;
local_2 = ’'Figuras/Fig5’;
local_3 = 'Figuras/Fig4d’;
local_4 = ’'Figuras/Fig6’;
local_5 = ’'Figuras/Fig7’;

local_6 = ’'Figuras/Fig8’;
local_7 = 'Figuras/Fig9’;
local_8 = ’'Figuras/Figl0’;
local_9 = 'Figuras/Figll’;
local_10 = ’'Figuras/Figl2’;
local_11 = ’'Figuras/Figl3’;

local_12 = ’'Figuras/Figl4’;
local_13 = ’"Figuras/Figl5’;
local_14 = 'Figuras/Figl6’;

local_15 = ’"Figuras/Figl7’;

local_16 = ’'Figuras/Figl8’;
local_17 = ’'Figuras/Figl9’;
local_18 = ’'Figuras/Fig20’;
local_19 = ’'Figuras/Fig2l’;
local_20 = ’'Figuras/Fig22’;
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local_21 = ’'Figuras/Fig23’;
local_22 = 'Figuras/Fig24’;
local_23 = ’'Figuras/Fig25’;
local_24 = ’'Figuras/Fig26’;

fonte = 20;
fonte_letrinhas = 24;
largura_linha = 1.5;

set (0, " DefaultAxesFontSize’, fonte);

o\
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Real Components Simulation - no message

% This part will generate the Figure 5 at the article

subplot = @(m,n,p) Subtightplot (m, n, p, 0.077, [0.065 0.006], [0.023
0.0301);

colorl [0 0.4470 0.74107;
color2 = [0.8500 0.3250 0.098071;

$%%%%%%5%5%55%5%5%5%5%%SINGLE FIGURESS$%%%%%%%%%%%%%%%%

% Real Components Simulation - no message
% This part will generate the Figure 5 at the article
subplot = @(m,n,p) Subtightplot (m, n, p, 0.077, [0.065 0.006], [0.023

0.0301);

colorl [0 0.4470 0.74107;
color2 = [0.8500 0.3250 0.09807;

figure (6);

plot (Data(:,1),Data(:,2),’-",’Color’,colorl,’LineWidth’,largura_linha);

grid on

grid minor

hold on

plot (Data(:,1),Data(:,6),’:’,’Color’,color2,’LineWidth’, largura_linha);

legend ("S$x_m(t)$","S$x_s(t)S$", ' Interpreter’,’ latex’,’Location’,’ southeast’
,’Orientation’,"horizontal’)

xlabel ("S$t[s]S$",  Interpreter’,’ latex’)

title(’ (a)’, ’'Units’, ’'normalized’, ’'Position’, [0.5, -0.37, 0],’fontname
’,’times’,’FontSize’, fonte_letrinhas,’FontWeight’, ' Normal’) ;

ylim([-2.5, 2]);

x1lim ([0, 0.0251);

set (gcf,’ renderer’,’painters’,’units’,’centimeters’,’ position’
, [5,5,17,201)
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saveas (gcf,local_4, format);
saveas (gcf, 'Figuras/Fig6.eps’, epsc’);

%$close (figure (6));

$Error 1

%$close (figure (7)) ;

figure(7);

plot (Data(:,1), Data(:,6) - Data(:,2),’-",’Color’,colorl,’LineWidth’,
largura_linha);

grid on

grid minor

title(’ (b)’, ’"Units’, ’'normalized’, ’'Position’, [0.5, -0.37, 0],’fontname
’,’times’,’FontSize’, fonte_letrinhas,’FontWeight’, Normal’) ;

xlabel ("St[s]$",  Interpreter’,’ latex’)

legend ("Se_1(t)$",’' Interpreter’,’latex’,’ Location’,’southeast’,”’
Orientation’,’horizontal’)

yvlim([-2.5, 21);

x1im ([0, 0.025]);

set (gcf,’ renderer’,’painters’,’units’,’centimeters’, ' position’
,[5,5,17,207)

saveas (gcf, local_5, format);

saveas (gcf, 'Figuras/Fig7.eps’, epsc’);

%$close (figure (7)) ;

figure (8);

plot (Data(:,1),Data(:,3),’-",’Color’,colorl,’LineWidth’,largura_linha);

grid on

grid minor

hold on

plot (Data(:,1),Data(:,7),’:","Color’,color2,’LineWidth’, largura_linha);

legend ("Sy_m(t)s$","Sy_s(t)S$", ' Interpreter’,’ latex’,’Location’,’ southeast’
,’Orientation’,"horizontal’)

xlabel ("S$t[s]S$",  Interpreter’,’ latex’)

title(’ (¢)’, ’'Units’, ’'normalized’, ’"Position’, [0.5, -0.37, 0],’fontname
,’times’,’FontSize’, fonte_letrinhas,’FontWeight’, ' Normal’) ;

ylim([-2.4, 271);

x1lim ([0, 0.0257);

set (gcf,’ renderer’,’painters’,’units’,’centimeters’,’ position’
,[5,5,17,201)

saveas (gcf, local_6, format);

saveas (gcf,’Figuras/Fig8.eps’, ' epsc’);

$close (figure(8));

219



$Error 2

figure(9);

plot (Data(:,1), Data(:,7) - Data(:,3), ’'-’,’Color’,colorl,’Linewidth’,
largura_linha);

grid on

grid minor

title(’ (d)’, ’'Units’, ’'normalized’, ’"Position’, [0.5, -0.37, 0],’fontname
",’times’,’FontSize’, fonte_letrinhas,’FontWeight’,’Normal’);

xlabel ("S$t[s]$",  Interpreter’,’ latex’)

legend ("S$e_2(t)$", ' Interpreter’,’latex’,’ Location’,’southeast’,”’
Orientation’,’horizontal’)

ylim([-2.4, 21);

x1im ([0, 0.025]);

set (gcf,’ renderer’,’painters’,’units’,’centimeters’,’ position’
, [5,5,17,201)

saveas (gcf, local_7, format);

saveas (gcf,’Figuras/Fig9.eps’,'epsc’);

%close (figure (9));

figure (10);

plot (Data(:,1),Data(:,4),’-",’Color’,colorl,’LineWidth’,largura_linha);

grid on

grid minor

hold on

plot (Data(:,1),Data(:,8),’:’,"Color’,color2,’LineWidth’,largura_linha);

legend ("$z_m(t)s$","Sz_s(t)S$",’ Interpreter’,’ latex’,’Location’,’ southeast’
,’Orientation’,’horizontal’)

xlabel ("S$t[s]S$",  Interpreter’,’ latex’)

title(’ (e)’, ’'Units’, ’'normalized’, ’"Position’, [0.5, -0.37, 0],’fontname
",’times’,’FontSize’, fonte_letrinhas,’FontWeight’,’Normal’);

yviim([-1, 2.41);

x1lim ([0, 0.025]);

set (gcf,’ renderer’,’painters’,’units’,’centimeters’, ' position’
,[5,5,17,207)

saveas (gcf, local_8, format);

saveas (gcf,’Figuras/FiglO.eps’,’epsc’);

figure (11);

$Error 3

plot (Data(:,1), Data(:,8) - Data(:,4),’-",’Color’,colorl,’LineWidth’,
largura_linha);

grid on

grid minor

title(’ (£f)’, ’'Units’, ’'normalized’, ’'Position’, [0.5, -0.37, 0],’fontname
",’times’,’FontSize’, fonte_letrinhas,’FontWeight’, Normal’) ;

xlabel ("S$t[s]$",  Interpreter’,’ latex’)

legend ("Se_3(t)s$",’ Interpreter’,’latex’,’ Location’,’southeast’,”’

Orientation’,’horizontal’)
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ylim([-1, 2.47);

x1im ([0, 0.025]);

set (gcf,’ renderer’,’painters’,’units’,’centimeters’,’ position’
, [5,5,17,201)

saveas (gcf, local_9, format);

saveas (gcf,’Figuras/Figll.eps’, epsc’);

%$close (figure(11));

%$close (figure (12));

figure (12);

plot (Data(:,1),Data(:,5),’-",’Color’,colorl,’LineWidth’,largura_linha);

grid on

grid minor

hold on

plot (Data(:,1),Data(:,9),’:’,’Color’,color2,’LineWidth’, largura_linha);

legend ("Sw_m(t)S$","Sw_s(t)$",’ Interpreter’,’ latex’,’ Location’,’southeast’
,’Orientation’,’horizontal’)

xlabel ("S$t[s]S$",  Interpreter’,’ latex’)

title(’ (g)’, ’'Units’, ’'normalized’, ’'Position’, [0.5, -0.37, 0],’fontname
",’times’,’FontSize’, fonte_letrinhas,’'FontWeight’, ' Normal’);

yvlim([-2.4, 1.21);

x1lim ([0, 0.0257]);

set (gcf,’ renderer’,’painters’,’units’,’centimeters’,’position’
, [5,5,17,207)

saveas (gcf,local_10, format);

saveas (gcf, 'Figuras/Figl2.eps’, " epsc’);

%close (figure(12));

$Error 4

figure (13);

plot (Data(:,1), Data(:,9) - Data(:,5),’-",’Color’,colorl,’LineWidth’,
largura_linha);

grid on

grid minor

title(’ (h)’, ’'Units’, ’'normalized’, ’"Position’, [0.5, -0.37, 0],’fontname
",’times’,’'FontSize’, fonte_letrinhas,’FontWeight’, Normal’);

xlabel ("St[s]$",  Interpreter’,’ latex’)

legend ("S$e_4(t)s$",’ Interpreter’,’latex’,’ Location’,’southeast’,”’
Orientation’,’horizontal’)

ylim([-2.4, 1.2]);

x1im ([0, 0.025]);

set (gcf,’ renderer’,’painters’,’units’,’centimeters’,’position’
, [5,5,17,201)

saveas (gcf,local_11, format);

saveas (gcf, 'Figuras/Figl3.eps’, " epsc’);

%close (figure (13));

221



o\

o o o o o 9o o o o 9o 9 9o o o o o o o o o 9o o o
© © © © © © © © © © © © © © © © © © © © © ©° ©

o\

Real Components Simulation -

o
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o\

o\

This part will generate the Figure 6 at the article

o\
o\

subplot = @(m,n,p) Subtightplot (m, n, p, 0.077, [0.065 0.006], [0.045
0.10]);

% Data(:,10) até Data(:,13): Msg
% Data(:,14) até Data(:,17): Xmaster + Msg

%$close (figure (14));

figure (14);

plot (Data(:,1),0.05%«Data(:,14)+0.05,’~",’Color’,colorl,’LineWidth’,
largura_linha)

hold on

plot (Data(:,1),Data(:,10),’:","Color’,color2,’LineWidth’,largura_linha);

grid on

grid minor

title(’ (a)’, ’'Units’, ’'normalized’, ’'Position’, [0.5, -0.37, 0],’fontname
’,’times’,’FontSize’, fonte_letrinhas,’FontWeight’, Normal’);

legend (”$$0.05\cdot m_{1lc} (t)+0.05%S$","$S{m}_{1}(t)$$’,’' Interpreter’,’
latex’,’Location’,’southeast’,’Orientation’,’horizontal’)

xlabel ("St[s]$",  Interpreter’,’ latex’)

ylim([-0.08, 0.15]);

x1im([0.005, 0.031);

set (gcf,’ renderer’,’painters’,’units’,’centimeters’,’ position’
, [5,5,17,207)

saveas (gcf, local_12, format);

saveas (gcf,’Figuras/Figld.eps’, epsc’);

figure (15);

plot (Data(:,1),0.05«Data(:,15)+0.025,"’~","’Color’,colorl,’LineWidth’,
largura_linha)

hold on

plot (Data(:,1),Data(:,11),’:’,"Color’,color2,’LineWidth’, largura_linha);

grid on

grid minor

title(’ (b)’, ’'Units’, ’'normalized’, ’"Position’, [0.5, -0.37, 0],’fontname
",’times’,’FontSize’, fonte_letrinhas,’FontWeight’,’Normal’);

legend (’$$0.05\cdot m_{2c} (£)+0.025S8s’,”S$S{m}_{2}(t)$s$’,’ Interpreter’,’
latex’,’Location’,’southeast’,’Orientation’,’horizontal’)

xlabel ("St[s]$",  Interpreter’,’ latex’)

ylim([-0.09, 0.11);

x1im([0.005, 0.03]1);set(gcf,’renderer’,’painters’,’units’,’centimeters’,”’
position’, [5,5,17,20])
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set (gcf,’ renderer’,’painters’,’units’,’centimeters’,’position’
,[5,5,17,207)

saveas (gcf, local_13, format);

saveas (gcf,’Figuras/Figl5.eps’,"epsc’);

%close (figure (15));

figure(16);

plot (Data(:,1),0.05«xData(:,16)-0.025,"~-",’Color’,colorl,’LineWidth’,
largura_linha)

hold on

plot (Data(:,1),Data(:,12),’:’,"Color’,color2,’LineWidth’, largura_linha);

grid on

grid minor

title(’ (¢)’, ’'Units’, ’'normalized’, ’'Position’, [0.5, -0.37, 0],’fontname
’,’times’,’FontSize’, fonte_letrinhas,’FontWeight’, Normal’) ;

legend (' $$0.05\cdot m_{3c} (t)-0.0258$",7$S{m}_{3}(t)s$S$’, ' Interpreter’,’
latex’, " Location’,’southeast’,’Orientation’,’horizontal’)

xlabel ("S$t[s]S$",  Interpreter’,’ latex’)

ylim([-0.03, 0.0641]);

x1im([0.005, 0.031);

set (gcf,’ renderer’,’painters’,’units’,’centimeters’, ' position’
,[5,5,17,207)

saveas (gcf,local_14, format);

saveas (gcf,'Figuras/Figl6.eps’, epsc’);

figure (17);

plot (Data(:,1),0.05«xData(:,17)+0.025,”~-",’Color’,colorl,’LineWidth’,
largura_linha)

hold on

plot (Data(:,1),Data(:,13),’:’,"Color’,color2,’LineWidth’,largura_linha);

grid on

grid minor

title(’ (d)’, ’'Units’, ’'normalized’, ’'Position’, [0.5, -0.37, 0],’fontname
,’times’,’FontSize’, fonte_letrinhas,’FontWeight’, Normal’);

legend (”$$0.05\cdot m_{4c} (t)+0.025$$","S$S{m}_{4}(t)$$’,’ Interpreter’,”’
latex’, " Location’,’southeast’,’Orientation’,’horizontal’)

xlabel ("$t[s]$",’ Interpreter’,’ latex’)

ylim([-0.07, 0.091);

x1im([0.005, 0.031);

set (gcf,’ renderer’,’painters’,’units’,’centimeters’,’position’
,[5,5,17,207)

saveas (gcf, local_15, format);

saveas (gcf,'Figuras/Figl7.eps’, epsc’);

%$close (figure(17));
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o\°

% This part will generate the Figure 7 at the article

o\
o

subplot = @(m,n,p) Subtightplot (m, n, p, 0.077, [0.065 0.006], [0.045
0.11);

%$close (figure (18));

figure (18);

e = Data(:,14) - Data(:,6);

plot (Data(:,1),e,’-","Color’,colorl,’LineWidth’,largura_linha)

grid on

grid minor

hold on

plot (Data(:,1),Data(:,10),’:","Color’,color2,’LineWidth’, largura_linha);

legend (" $$\hat{m}_{1}(t)S$S’,"S$S{m}_{1}(t)$s$’, ' Interpreter’,’latex’,’
Location’,’southeast’,’Orientation’, " horizontal’)

xlabel ("S$t[s]S$",  Interpreter’,’ latex’)

title(’ (a)’, ’'Units’, ’'normalized’, ’'Position’, [0.5, -0.37, 0],’ fontname
",’times’,’FontSize’, fonte_letrinhas,’'FontWeight’, ' Normal’);

ylim([-0.1, 0.21);

x1im([0.005, 0.0301);

set (gcf,’ renderer’,’painters’,’units’,’centimeters’,’position’
, [5,5,17,207)

saveas (gcf,local_16, format);

saveas (gcf, 'Figuras/Figl8.eps’, epsc’);

%$close (figure (18));

close (figure(19));

figure (19);

plot (Data(:,1), (e - Data(:,10)),’-’,’Color’,colorl,’Linewidth’,
largura_linha);

grid on

grid minor

xlabel ("S$t[s]S$",  Interpreter’,’ latex’)

title(’ (b)’, ’'Units’, ’'normalized’, ’"Position’, [0.5, -0.37, 0],’fontname
,’times’,’FontSize’, fonte_letrinhas,’FontWeight’, ' Normal’) ;

legend (' $$\tilde{m}_{1}(t)$S’,’ Interpreter’,’latex’,’Location’,’southeast
’,"Orientation’,"horizontal’)

ylim([-0.1, 0.21);

x1im([0.005, 0.0301);

set (gcf,’ renderer’,’painters’,’units’,’centimeters’,’position’
, [5,5,17,201)

saveas (gcf,local_17, format);

saveas (gcf, 'Figuras/Figl9.eps’, " epsc’);

%close (figure (19));
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close (figure (20));

figure (20);

e = Data(:,15) - Data(:,7);

plot (Data(:,1),e,’-","Color’,colorl,’LineWidth’, largura_linha)

grid on

grid minor

hold on

plot (Data(:,1),Data(:,11),’:’,"Color’,color2,’LineWidth’,largura_linha);

legend (" $$\hat{m}_{2}(£)S$S$’, " $S{m}_{2} (t)$S$’, " Interpreter’,’ latex’,”’
Location’,’southeast’,’Orientation’,’horizontal’)

xlabel ("St[s]$",  Interpreter’,’ latex’)

title(’ (¢)’, ’'Units’, ’'normalized’, ’"Position’, [0.5, -0.37, 0],’fontname
",’times’,’FontSize’, fonte_letrinhas,’FontWeight’,’Normal’);

ylim([-0.05, 0.11);

x1im([0.005, 0.0301);

set (gcf,’ renderer’,’painters’,’units’,’centimeters’,’ position’
,[5,5,17,207)

saveas (gcf,local_18, format);

saveas (gcf, 'Figuras/Fig20.eps’, "epsc’);

%$close (figure (20));

figure(21);

plot (Data(:,1), (e - Data(:,11)),’-’,’Color’,colorl,’LineWidth’,
largura_linha);

grid on

grid minor

xlabel ("St[s]$",  Interpreter’,’ latex’)

title(’ (d)’, ’'Units’, ’'normalized’, ’'Position’, [0.5, -0.37, 0],’fontname
’,’times’,’FontSize’, fonte_letrinhas,’FontWeight’,’Normal’);

legend (’ $$\tilde{m}_{2} (t)$$’, " Interpreter’,’ latex’,’Location’,’ southeast
’,"Orientation’,’horizontal’)

ylim([-0.05, 0.11);

x1im([0.005, 0.0301);

set (gcf,’ renderer’,’painters’,’units’,’centimeters’,’position’
,[5,5,17,207)

saveas (gcf,local_19, format);

saveas (gcf, 'Figuras/Fig2l.eps’, " epsc’);

%close (figure(21));

figure (22);

e = Data(:,16) - Data(:,8);

plot (Data(:,1),e,’-","Color’,colorl,’LineWidth’,largura_linha)

grid on

grid minor

hold on

plot (Data(:,1),Data(:,12),’:’,"Color’,color2,’LineWidth’,largura_linha);
legend (" $$\hat{m}_{3}(t)$s$’,"S$S{m}_{3}(t)S$s’,’ Interpreter’,’ latex’,”’
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Location’,’southeast’,’Orientation’, " horizontal’)
xlabel ("S$t[s]S$",  Interpreter’,’ latex’)
title(’ (e)’, ’"Units’, ’'normalized’, ’'Position’, [0.5, -0.37, 0],’fontname
’,’times’,’FontSize’, fonte_letrinhas,’FontWeight’, ' Normal’) ;
ylim([-0.03, 0.071);
x1im([0.005, 0.0301);
set (gcf,’ renderer’,’painters’,’units’,’centimeters’,’ position’
, [5,5,17,201)
saveas (gcf, local_20, format);
saveas (gcf,'Figuras/Fig22.eps’, epsc’);

%$close (figure (22));

figure(23);

$Error Message 3

plot (Data(:,1), (e - Data(:,12)),’-’,’Color’,colorl,’Linewidth’,
largura_linha);

grid on

grid minor

xlabel ("S$t[s]S$",  Interpreter’,’ latex’)

title(’ (£)’, ’'Units’, ’'normalized’, ’Position’, [0.5, -0.37, 0],’fontname
",’times’,’FontSize’, fonte_letrinhas,’FontWeight’, ' Normal’) ;

legend (' $$\tilde{m}_{3}(t)$S’,’ Interpreter’,’latex’,’Location’,’southeast
’,’Orientation’,’horizontal’)

ylim([-0.03, 0.071);

x1im([0.005, 0.0301);

set (gcf,’ renderer’,’'painters’,’units’,’ centimeters’,’position’
, [5,5,17,201)

saveas (gcf,local_21, format);

saveas (gcf, 'Figuras/Fig23.eps’, epsc’);

%$close (figure (23));

figure (24);

e = Data(:,17) - Data(:,9);

plot (Data(:,1),e,’-",’Color’,colorl,’LineWidth’,largura_linha)

grid on

grid minor

hold on

plot (Data(:,1),Data(:,13),’:",’Color’,color2,’LineWidth’, largura_linha);

legend (" $S\hat{m}_{4}(t)$S’,’S$S{m}_{4}(t)$S’,’ Interpreter’,’latex’,”’
Location’,’southeast’,’Orientation’, " horizontal’)

xlabel ("S$t[s]S$",  Interpreter’,’ latex’)

title(’ (g)’, ’"Units’, ’'normalized’, ’'Position’, [0.5, -0.37, 0],’fontname
",’times’,’FontSize’, fonte_letrinhas,’FontWeight’, ' Normal’) ;

ylim([-0.03, 0.071);

x1im([0.005, 0.0301);

set (gcf,’ renderer’,’painters’,’units’,’centimeters’,’ position’
, [5,5,17,201)
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saveas (gcf,local_22, format);
saveas (gcf, 'Figuras/Fig24.eps’, " epsc’);

%$close (figure (24));

%$Error Message 4

figure (25);

plot (Data(:,1), (e - Data(:,13)),’-’,’Color’,colorl,’LineWidth’,
largura_linha);

grid on

grid minor

xlabel ("St[s]$",  Interpreter’,’ latex’)

title(’ (h)’, ’'Units’, ’'normalized’, ’"Position’, [0.5, -0.37, 0],’fontname
",’times’,’FontSize’, fonte_letrinhas,’FontWeight’,’Normal’);

legend (' $S\tilde{m}_{4} (t)$S’,’ Interpreter’,’latex’,’Location’,’southeast
’,"Orientation’,’horizontal’)

ylim([-0.03, 0.071);

x1im([0.005, 0.0301);

set (gcf,’ renderer’,’painters’,’units’,’centimeters’,’ position’
, [5,5,17,2071)

saveas (gcf, local_23, format);

saveas (gcf,’Figuras/Fig25.eps’, " epsc’);

%$close (figure (25));

%$close (figure (26));

figure (26);

% %Figura 26

plot (Data(:,1), (e - Data(:,13)),’-",’Color’,colorl,’LinewWidth’,2);set (0,
"DefaultAxesFontSize’, 24);

grid on

grid minor

h=legend (' $$\tilde{m}_{4}(t)$$’, ' Interpreter’,’ latex’,’Location’,’
northeast’,’Orientation’,’horizontal’)

set (h,"FontSize’, fsize);

set (0, "DefaultAxesFontSize’, 24);

xlabel ("S$t[s]$",  Interpreter’,’ latex’,’Fontsize’, fsize)

ylim([-0.03, 0.03]);

x1im([0.005, 0.0301);

set (gcf,’units’, ' normalized’,’outerposition’, [0 0 1 11]);

saveas (gcf, local_24, format);

saveas (gcf,’Figuras/Fig26.eps’);

%$close (figure (26));
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