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Resumo

Nesta tese, estudamos as equagoes integrais funcionais do tipo Volterra—Stieltjes dadas

por:
t

ﬂ@=M®+JG@$ﬂ%ﬁNﬂﬂ L=ty

70
Ty, = O,

onde a integral no lado direito é entendida no sentido de Henstock—Kurzweil-Stieltjes.

Neste trabalho, apresentamos condigoes suficientes para garantir a existéncia, unici-
dade e prolongamento de solugoes para esse tipo de equagoes. Provamos também corre-
spondéncias entre essas equagoes e as equagoes delta integrais funcionais do tipo Volterra
em escalas temporais, bem como com as equagoes funcionais integrais do tipo Volterra—
Stieltjes com impulsos. Apresentamos resultados de estabilidade para suas solugoes, resul-
tados sobre dependéncia continua com respeito aos parametros e garantimos a existéncia
de solugoes periddicas para essas equagoes. Os resultados inéditos deste trabalho podem
ser encontrados em [31, 33, 32, 46].

Palavras-chave: Equagoes integrais funcionais; equacoes de Volterra—Stieltjes; equagoes
integrais com impulsos; equagoes A—integrais em escalas temporais; periodicidade; esta-

bilidade; dependéncia continua.



Abstract

In this thesis, we study the functional Volterra—Stieltjes integral equations given by:

£(t) = 9(0) + f alt, $)f (e 5) dg(s), 13> to

T0
Tyy = O,
where the integral on the right—hand side is taken in the sense of Henstock—Kurzweil—
Stieltjes.

In this work, we present sufficient conditions in order to guarantee the existence,
uniqueness and prolongation of solutions for this type of equations. We also prove the
correspondence between these equations and the functional Volterra delta integral equa-
tions on time scales, as well as with the impulsive functional Volterra—Stieltjes integral
equations. We present results concerning stability, continuous dependence with respect
on parameters and periodicity. The new results can be found in [31, 33, 32, 46].

Key-words: Functional integral equations; Volterra—Stieltjes equations; impulsive
integral equations; A—integral equations on time scales; periodicity; stability; continuous

dependence.
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Introduction

In the decades 20-40, Vito Volterra introduced in the literature an important class of
equations given by: t
£(t) = f(t) + J K(t, s)(s)ds, (0.0.1)
to
which can encompass many types of equations. The kernel that appears in the above
equation allows us to describe many types of phenomena, specially the ones related to the
memory, as we will see in this thesis. Throughout the years, several versions of equation
(0.0.1) started to appear in the literature in order to improve the descriptions of the
phenomena, including for instance integro—differential equations.

The study of Volterra equations is an emerging area of research which possesses in-
teresting mathematical questions and applications, since it can model several natural
phenomena such as anomalous diffusion processes, heat conduction with memory and dif-
fusion of fluids in porous media, among others and, therefore, it is an important equation
to be studied as it can be verified in the literature. Some few examples can be found in
1,4,7,8,7,10, 17, 34].

Let us observe a model describing temperature of one—dimensional bar:

-

Ty (& 1) = Tee(&, 1), €>0, >0,

Te(0,t) = aT(0,) — q(t), ¢ >0,
{ (0.0.2)
T 0)=0, &£=0,

lim T(&,¢) =0, ¢>0,

§—0

\

where T'(€,t) represents the temperature of one-dimensional bar for £ > 0 which loses
energy at a rate proportional to T'(0,¢) at the point £ = 0. Assume that an external
source generates heat proportional to the function ¢(¢) at this end of the bar, which is

insulated at all other parts, with temperature zero at time t = 0.



If £ = 0, then it is possible to obtain the solution of this problem by using the following
convolution Volterra integral equation
t
x(t) + J k(t —s)x(s)ds = f(t), t=0, (0.0.3)
0
where

a

ﬁt_l/Q and f(t) = \/1% L (t — )" Y2¢(s)ds.

Therefore, equation (0.0.2) is a particular case of equation (0.0.1), showing the variety

z(t) = T(0,t), k(t) =

of problems that Volterra equations can encompass, including important PDEs. Indeed,

using Laplace transforms in (0.0.2), we get the following definition for T'(¢,t):

T t) = \/17—? f:(t — S)_1/2€_£2/(4(t_5)) (q(s) —aT(0,s))ds, t>0, £=0,

obtaining the formulation above. This model can be found in [34].
In this thesis, we work with a more general class of equations, called functional
Volterra—Stieltjes integral equations, that are described as follows:

t

dﬂ=d®+fa@$ﬂ%ﬁwwﬁ,t>m o

ajto = ¢7

where 0 < tg < d, r > 0, ¢ € G([-r,0],R"), f: G([-r,0],R") x [tg,d) — R", a: [ty,d)* —
R and g: [tp,d) — R is a nondecreasing function, where t, < d < 4o,
zs: [-r,0] — R" is given by z,(0) = z(s + 0) for s € [to,d). Here, [ty,d)? denotes
the set [to,d) % [to, d).

The formulation (0.0.4) is even more general than the one first described by Volterra
and as we will see here in this work, it can encompass many types of equations. This fact
motivated us to investigate this type of problem. Depending on the definition of a, g and

r, equation (0.0.4) may encompass a huge variety of problems, as we describe below:

i) By choosing a(t,s) = 1,g9(s) = s, r = 0 and ¢ = x, we obtain the standard
formulation of ODEs:

Mﬂ=%+ff@@ﬁﬂa L= 1y,

to

y(to) = xo.



ii) If we choose a(t,s) = 1 and g(s) = s, we obtain the classical functional differential

equations:
t

o) = 00)+ [ fsds, ez
to

yto = ¢

i) If a(t,s) = (t — )7 /T'(a),g(s) = s, r = 0 and ¢ = x, then we are discussing the

standard Caputo fractional differential equations (see [17])

1 [t o1
) = 70+ o L(t—s) Fy(s).9)ds,  t3 o,

y(to) = xo.

The reader will see in later chapters that the functional Volterra—Stieltjes integral
equations encompass also integral equations with impulses. We will show how to make a

correspondence between the solutions (0.0.4) and the solutions of

U

z(v) —z(u) = JU a(v, s) f(xs, s)dg(s) — J a(u, s)f(xs, s)dg(s) for u,v € Jp, ke N

to to
A+‘r(tk) = ]k<x(tk))7 k= 17"'7m
:L‘t() = ¢7

(0.0.5)
where Jo = [to, 1], Jx = (tg,tosr], for k = 1,....m — 1, Jp, = (tm,d) and {tx}72, are
the pre-fixed moments of impulses, where each ¢, € [ty,d) and d < co. This fact allows
us to investigate impulsive equations “implicitly”, by only studying Volterra—Stieltjes
integral equations. We will also show in this work that the impulsive fractional differential
equations can also be regarded as Volterra—Stieltjes integral equations, even in the case
that the order of the derivative « is between 1 and 2, as well as between 0 and 1.

We will also describe a correspondence between the solutions of (0.0.4) and the solu-
tions of the functional Volterra A—integrals on time scales:

xz(t) = x(ty) + L a(t,s)f(xk, s)As, te[ty,d)T, (0.06)

x(t) = o(t), telto—rtolr,
where T is an arbitrary time scale, d € Tu {0}, ¢ € G([to—r, to]T, R™), f: G([-r,0],R") x
[to,d)r — R™ and [ty — 7, to]r, [to,d)T are time scales intervals. These equations play

an important role for applications, since the theory of times scales can unify discrete,



continuous and “in between” cases (see [13]). To motivate the study of Volterra A-
integral on time scales, we also present here a version of the famous model in economics
that is know as Keynesian-Cross model with “lagged” income, that can be described by a
Volterra A-integral on time scales, showing the importance of this type of equations. For
more details, see Chapter 2.

Moreover, the class of neutral functional differential equations (neutral FDEs, for
short) can also be regarded as functional Volterra—Stieltjes integral equations. Indeed,

neutral FDEs are usually described by:
t(t) = Lxy, (0.0.7)

where L is a continuous linear map from C([—7, 0], R") into R™. Using Riesz Representa-

tion Theorem, we can rewrite (0.0.7) as follows:

xzjj@wm@—@. (0.0.8)

Using the initial condition given by z(0) = ¢(6) for —h < 6 < 0, we get

fg it — 0)d0 + g(t)
(0.0.9)

where g(t) = £(t)(0) + §I' d€(8)o(t — 0).
Integrating (0.0.9), we have

J E(O)|x(t —0) —x(0)]do + th(s)ds, (0.0.10)

0

which implies x = x « £ + f, where

)= ol0)+ | " g(s)ds — ) ' €(6)d0(0).

Equation (0.0.10) is a type of Volterra integral equations, which shows us that it is
possible to rewrite the neutral equation given by (0.0.7) as a Volterra integral equation.

Therefore, it is clear how equation given by (0.0.4) can be general, since it encompasses
many type of equations.

Also, in this thesis, we employ the so—called Henstock—Kurzweil-Stieltjes integral,

which is more general than the Lebesgue—Stieltjes integral. Therefore, all the results



obtained here are valid for a more general class of functions than the Lebesgue integrable
functions, which allows an oscillating behavior.

This new integral was first defined by the mathematicians Jaroslav Kurzweil [45] in
1957 and Ralph Henstock [39] in 1961, who, independently, formulated an equivalent in-
tegral, capable of integrating functions that not even the Lebesgue integral could. The
motivation behind the Henstock—Kurzweil integral is the Kapitza pendulum, studied at
first by Andrew Stephenson [66]. This pendulum had a mass moving around a certain
support, like an ordinary pendulum, but also the support itself oscillated at a very high
frequency w. An unusual consequence of this oscillation was the fact that a stable equi-
librium position for the mass was exactly above the support, as it can be viewed in the

following picture.

Figure 1: Kapitza’s Pendulum
(obtained from Wikipedia website)

In 1951, the physicist Pyotr Kapitza [42, 41] was able to obtain a model that described
the movement of this pendulum:
aw? sin(wt)

. . g . _
0 = = sin(0) 7

2 sin(6), (0.0.11)

where g > 0 is the acceleration of gravity, L > 0 is the length of the pendulum, a > 0
is the amplitude of the support’s vibration and #: R — R is the angle made by the
pendulum with the vertical when the mass is placed upwards. However, because of the
high frequency w, the Lebesgue integral could not be used to find the solution for the

aforementioned equation.



The Henstock—Kurweil integral does not only integrate more functions than the
Lebesgue integral, but its definition is also simpler. This is very similar to the defini-
tion of the Riemann integral, with the difference that instead of asking the partitions to
be smaller than a certain constant, it is used a certain function, called gauge, which is
simply a positive function, to control the size of subintervals of the partitions (for a more
complete description of this integral, the reader may refer to [11, 53] and Chapter 1.2 of
this thesis).

On the other hand, since (0.0.4) encompasses (0.0.6), we will also present the basis of
the theory of time scales. It was in 1988 when Stefan Hilger introduced the concept of a
time scale in his PhD thesis [40]. He defined a time scale as any nonempty closed subset
of R. Hence, both R and Z are examples of time scales, but we have more sophisticated
examples of time scales such as the Cantor set and the quantum scale, among others.

Studying and solving problems for an arbitrary time scale would give us, as a con-
sequence, solutions for both the discrete and continuous cases, but not only that, since
one can construct sets that are not completely continuous nor discrete, but hybrid. In
this sense, Hilger ended up unifying the discrete and continuous analysis in a certain way.
Therefore, working in an arbitrary time scale, one can understand a great class of different
sets and instead of proving the same result for many different cases, one can prove it just
once and encompass all those cases. This theory is well described in [13, 14]. Much work
has being done concerning the theory of time scales, see for instance [5, 24, 47, 56, 65]
and the references therein.

In this work, we investigate deeply the solutions of (0.0.4), its properties and sufficient
conditions to ensure its existence, uniqueness, prolongation and boundary value problems.
Also, sufficient conditions to ensure its stability are provided via Lyapunov functionals
and continuous dependence with respect to the parameters and the correspondence be-
tween the solution of (0.0.4) and its analogue in the time scale setting and also, scope of
functional Volterra—Stieltjes integral equations with impulses.

The chapters of this thesis are defined in the following manner: in Chapter 1, we give
an overview of the theory of regulated functions, the Henstock—Kurzweil-Stieltjes integral
and time scale theory. We also present some important definitions and results that will

be essential to our purposes. The main references here are [11, 53, 60].



In Chapter 2, we present the correspondences between functional Volterra—Stieltjes in-
tegral equations, impulsive functional Volterra—Stieltjes integral equations and functional
Volterra A-integral equations on time scales that will be used throughout this thesis to
ensure that our results proved for functional Volterra—Stieltjes integral equations are also
true for impulsive functional Volterra—Stieltjes integral equations and functional Volterra
A-integral equations on time scales. Also, we present several examples and models that
can be described using Volterra—Stieltjes integral equations, illustrating their importance.
Further, we justify the generality of our conditions with an example.

In Chapter 3, we present the Volterra—Stieltjes integral equation that will be inves-
tigated here, give conditions to guarantee the existence of a unique solution to equation
(0.0.4) and prove versions for impulsive functional Volterra—Stieltjes integral equations
and functional Volterra A—integral equations on time scales. Also, we investigate the
existence and uniqueness of maximal solutions to all these equations.

In Chapter 4, we prove results concerning stability, asymptotic stability, uniform sta-
bility and exponential stability using Lyapunov functionals for equation (0.0.4). The
results presented here generalize the ones found in the literature for measure equations,
presenting more general conditions and considering the presence of the delays and ker-
nel in the equation, which turns the techniques more sophisticated to work. In Chapter
5, we present a periodic boundary value problem with respect to (0.0.4) and we prove
their analogues for the time scales and impulsive cases. Finally, in Chapter 6, we present
some results concerning continuous dependence with respect to the parameters of equation
(0.0.4), as well as their analogues to time scales and impulsive cases. The results presented

in Chapters 2, 3, 4, 5 and 6 are new and are presented in the papers [31, 33, 32, 46].



Chapter 1

Preliminaries

This chapter is divided in 3 sections. In the first section, we give some basic definitions
and results concerning the theory of regulated functions. In the second one, we present
some initial concepts and essential results about the Henstock—Kurzweil-Stieltjes integra-
tion theory. In the third section, we explore the theory of time scales, presenting the
most fundamental definitions and recalling some important concepts and theorems about
differentiation and integration on time scales. The main references to this chapter are
[11, 26, 53, 60].

The definitions and results presented in this chapter will be very important to prove

the main results of this work.

1.1 Regulated functions

We start by recalling the reader about some properties and basic definitions of regulated
functions. These properties will be essential to our work, since most of the functions

involved in our study are regulated.

Definition 1.1.1 ([26]). A function ¢: [«, 5] — R" is called regulated, if the lateral limits

o(t™) = lim o(s), te(a,p] and o(tT) = lim ¢(s), te|a,p)

s—t— s—tt

exist. The space of all regulated functions ¢: [«, ] — R" will be denoted by G([«, 5], R™).



It is a known fact that G([«, 5], R") endowed with the usual supremum norm

leleo = sup [e(s)]

sela,B

is a Banach space (see [26]). Let I < R be an interval. We denote by G(I, R™) the space
of all locally regulated functions x: I — R™, that is, for each compact interval [«, 5] < I,

the restriction of x to [«, 8] belongs to the space G([«, 5], R™).

Remark 1.1.2. If z € G(I,R") and [«, 8] = I, we will use the notation

[#] 0,51 := sup [(s)]

s€la,

to denote the norm of the function x restricted to the interval [«, /3].

Let g: [a, B] — R™ be a regulated function. We will denote by A*g(t) and A~g(t)
the jumps to the right g(t*) — g(¢) and the jumps to the left g(t) — g(t™), respectively.

Let us also define the variation of a function f: [a, 8] — X, where X is a Banach
space, over [, 3]. By | -||x, we denote the norm in X . A set D = {ag, 1,...,qp|} is
defined to be a partition of [a, 3] if & = ap < oy < ... < ajp—g. The set of all partitions

of [a, B] will be denoted by D[«, j].

Definition 1.1.3. We define the variation of f over [a, 3] as
|D|

vard(f) = sup > [ f(ay) = flay-1)lx.

If var?(f) < oo, then f is said to be a function of bounded variation on [, 3]. We will

denote the set of all the functions f: [, ] — X of bounded variaton by BV ([«, 8], X).

We recall that BV ([«, 8, X]) < G(|«, 5], X) (see [61]).
The next result gives us an equivalence for the concept of regulated function which
comes directly from the definition. With this equivalence in hands, it will become easier

to prove some results in the next chapters.

Theorem 1.1.4 (Ho6nig’s Theorem, [53, Theorem 4.15]). The following statements are

equivalent:

(i) feG([a, B, RY);



10
(i) for everye > 0, there is a division of the interval [a, f], @ = so < s1 < ... < s, = 3,
such that for everyie {1,...,n} and all t,r € (s;_1,;), we have | f(t) — f(r)] < e.

With the purpose of presenting an analogue of Arzela—Ascoli Theorem for regulated
functions, we give a definition of an equirequlated set and then, an equivalence for this

definition.

Definition 1.1.5 (26, Definition 1.3]). A set A < G([«, 5], R™) is called equiregulated, if

for every € > 0 and ¢ € [«, ], there exists a ¢ > 0 such that:
(1) ifze A, sela,f] and tg — § < s < tg, then |z(ty) — z(s)|| < &;
(2) ifze A, se[a,f] and tg < s < to + 0, then |z(t;) — z(s)| < .
Lemma 1.1.6 ([53, Lemma 4.3.4]). The following statements are equivalent.
(1) Ac G([a, B],R™) is equiregulated.

(2) For every e > 0, there is a division a = g < 1 < ... < 8, = [3 such that for all

ye A, allie{l,...,n} and all t,s € (s;_1,8;), we have |y(t) —y(s)| < e.

We now are ready to present an Arzela—Ascoli type theorem for the case of regulated

functions. See [53, Theorem 4.3.5] for its proof.

Theorem 1.1.7. A set A ¢ G([a, B],R™) is relatively compact if, and only if, it is

uniformly bounded and equirequlated.

This type of result will be very important to prove results related to existence and
prolongation of solutions. We also point out that there are more general versions of
this theorem in the literature, for example, for functions taking value in a Banach space
(see [27]), but for our purposes here, it is enough to work with the version presented in

Theorem 1.1.7.

1.2 Henstock—Kurzweil-Stieltjes integration

We begin this section with some definitions that are needed for the comprehension of the

Henstock—Kurzweil-Stieltjes integral. We also present some classical results in order to
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give the reader a clearer understanding of this type of integral. For more details, the
reader can consult [11, 53, 60].

We also point out that the use of the Henstock—Kurzweil-Stieltjes integral allows us
to work with a more general set of functions. This fact occurs because every Lebesgue
integrable function is also Henstock—Kurzweil integrable, but the reciprocal is not true,
except for positive functions, since a function f is Lebesgue integrable if and only if both
f and its absolute value | f|| are Henstock—Kurzweil integrable (see [11]).

To define the Henstock—Kurzweil-Stieltjes integral, we begin by letting [«, 8] < R,
a < f3, be a compact interval. We say that a tagged partition of |«, 3] is a set D of
ordered pairs (7;, [s;—1,si]), where av = sy < 51 < ... < s;p| = [ is a partition of [a, 3]
and 7; € [s;_1,8;], i = 1,2,...,|D|, where |D| denotes the cardinality of the set D. We
denote the tagged partition just by D = (7, [si-1, Si])-

Given a set B < [a, 3], we define a gauge on B as any function §: B — (0,00). Given
a gauge 0 on [, 3], we say that a tagged partition D = (7, [s;_1, $;]) is d—fine if for every
ie{l,2,...,|D|}, we have

[si—1,8i] = (1i = 6(73), 75 + 6(73)).

Definition 1.2.1. A function f: [a, 3] — R" is Henstock—Kurzweil-Stieltjes integrable
on [a, B] with respect to a function g: [«, 5] — R, if there is an element I € R™ such that

for every € > 0, there is a gauge J: [«, 8] — (0,0) such that

<€

2 F ) (g(s) = glsi-0)) — 1

for all d—fine tagged partition of [a, §]. In this case, I is called the Henstock—Kurzweil—
Stieltjes integral of f with respect to g over [a, §] and it will be denoted by Si f(s)dg(s),
or just by Sg fdg.

Note that when g is the identity function, that is, g(s) = s, we have the classical

Henstock—Kurzweil integral.

Lemma 1.2.2 (Cousin’s Lemma). If I := [a,b] is a nondegenerate compact interval in

R and ¢ is a gauge on I, then there exists a partition of I that is d-fine.
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A proof of the above result can be found in [11] and it is very important since it
ensures that this integral is well-defined.

The classical properties of linearity, additivity with respect to adjacent intervals and
integrability on subintervals are all valid for the Henstock—Kurzweil-Stieltjes integral.
(see [60] and the references therein).

The following result ensures that the class of regulated functions is Henstock—Kurzweil—
Stieltjes integrable with respect to a nondecreasing function. It also gives us an upper

bound for the absolute value of the definite integral in an interval.

Theorem 1.2.3 ([60, Corollary 1.34]). Let f: [a, f] — R™ be a regulated function and

g: [, B] = R be a nondecreasing function. Then, the following conditions hold:

(i) the mtegmlf f(s)dg(s) exists;

ff )dg(s

The next inequalities can be easily obtained from the definition of the Henstock—

11

)| < [ st < 111, 0) - e

Kurzweil-Stieltjes integral. A version of it for the case of Riemann—Stieltjes integral can

be found in [9, Theorem 7.20] and its proof is very similar to the result we present here.

Theorem 1.2.4. Let f1, fo: [, B] = R be Henstock—Kurzweil-Stieltjes integrable func-
tions on the interval [«, 3] with respect to a nondecreasing function g: [«, 5] — R and

such that fi(t) < fa(t), for t € |, 5]. Then

Jfl )dg(s sz )dy(s

Corollary 1.2.5. Let f: [«, B] — R be a Henstock—Kurzweil-Stieltjes integrable function
on the interval [a, B] with respect to a nondecreasing function g: [a, ] — R and such

that f(t) = 0 fort e [a, B]. Then
B
) | gt =
(ii) The function [, 5] 5t — S(tl f(s)dg(s) is nondecreasing.

The following theorem gives us information about the indefinite Henstock—Kurzweil—

Stieltjes integral. It is a special case of [60, Theorem 1.16].
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Theorem 1.2.6. Let f: [, ] = R™ and g: [«, B] — R be a pair of functions such that
g 1is requlated and Sg f(s)dg(s) exists. Then the function

h(t) = f £(s)dg(s), t € [ f]

is requlated on [a, B] and satisfies

B(E) = k(D) + fOAT(H), te[a,B),
h(E) = hit) — FOA (), te (oA

Theorem 1.2.7 ([54, Theorem 2.2]). Let g,¢, € G(|a, 5], R"™), f, fn € BV (|, 5], L(R™))

for n e N. Assume that

lim ||g, — gl =0, lim |fn — fleo =0 and ¢*: = supvaern < o0.
n—0o0 n—0o0 neN

I d[falgn — | d = 0.
Jim (;&}L [fnlg J [f]gH)

The following lemma will be crucial to prove that an impulsive Volterra integral equa-

Then

tion can always be transformed to a Volterra integral equation without impulses. This

result can be found in [25, Lemma 2.4].

Lemma 1.2.8. Let me N, a < t; <ty < --- < t,, < p. Consider a pair of functions
f:la,B] = R™ and g: o, 5] — R, where g is requlated, left-continuous on [a,b|, and
continuous at ty, ... t,. Let f: [a, ] = R™ and §: [o, 8] — R be such that f(t) = f(t)
for every t € |a, B]\{t1,...,tm} and g — g is constant on each of the intervals [c, 1],
(t1,ta], .., (tme1, tm], (tm,B]. Then the integral Sg fdg exists if and only if the integral

Sg fdg exists; in that case, we have

8 8 -
jf<s>dg<s>= f)dg(s)+ Y AT,

We end this section by presenting a Substitution-type Theorem for the Henstock—
Kurzweil-Stieltjes integral, as well as analogous versions of Gronwall Inequality and Dom-
inated Convergence Theorem for this integral. We also present a way of interchanging

the order of integrals.
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Theorem 1.2.9 ([53, Theorem 6.55]). Assume that the function h: [a, B] — R is bounded
and that the integral Sg f(s)dg(s) exists. If one of the integrals

B B

med ff@ﬁﬂ@ , fh@ﬁ@mmw,

« «

exists, then the other one exists as well, in which case the equality below holds

B B

fh@d ff@mmo :J%@ﬁ@mmw.

« «

Lemma 1.2.10 (Gronwall Inequality [60, Corollary 1.43]). Let g: [a, f] — [0,90) be a
nondecreasing and left-continuous function, k > 0 and | = 0. Assume that ¥: o, f] —

[0,00) is bounded and satisfies

3
WO <kt | wl)gls), € fa.pl
Then (&) < ket9©=9() for all € € [a, B].

Theorem 1.2.11 (Dominated Convergence Theorem [60, Corollary 1.32]). Let g: [a, 5] —
R be a nondecreasing function. Assume that the functions p,: [a, 5] — R are such that

the integral Sg on(s)dg(s) exists for all n € N. Suppose that

lim ¢, (s) = ¢(s) for s € [a, 5]

and the inequalities

k(s) < n(s) <w(s) forne N, s e [a, 5]

hold, where w,k: [a, 5] — R are such that the integrals Sg k(s)dg(s) and Sgw(s) dg(s)
exist. Then the integral Sg ©(s)dg(s) ezists and
B B

lim [ ou(s) dg(s) = f o(s) dg(s).

n—0o0
e}

We finish this section with a result that allows us to interchange the order of integrals.
It is interesting to note that since our integral is not necessarily continuous, when we
interchange the order of the integrals, it appears a sum with the jumps of the functions
related to the Stieltjes integral. This fact brings several complications, turning it much

more difficult, when one need to deal with these types of integrals.
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Lemma 1.2.12 ([64, Corollary 2.5]). If g,h: [a, f] — R are of bounded variation,
f: [, B] x [«, B] is Borel measurable and bounded, then

Lﬁ <L fl, y)dh(y)) dg(x)

B s (b

-| (f f<:c,y>dg<a:>) () + Y F A o)Ak — Y fa,)Ath(@)Ag(),
@ Y ye(a,f] z€[a,B)

with the convention that Ag(a) = AT g(a) and Ah(b) = A™h(b).

1.3 Time Scales Theory

In this section, we begin by giving the definition of a time scale and describing important
operators related to a given time scale. Then, we present fundamental results to the theory
of time scales. All the results and definitions presented here can be found in [13, 14, 65].

In 1988, in his PhD thesis ([40]), Stefan Hilger introduced the theory of time scales with
the aim of unifying discrete and continuous analysis. The intention behind the concept of
time scales is that one can obtain results to functions whose domain is an arbitrary time
scale, and so the result can be applied to the continuous case, the discrete case and even
hybrid cases, depending on how we choose the time scale. This allows us to prove results

to a very general class of functions and sets.

1.3.1 Definitions and basic properties

We define a time scale as any closed nonempty subset of R and usually denote an arbitrary
time scale by the symbol T. Given «, § € T, we use the notation [«, 5] to denote the set
{te T: a <t < B}, which is called a closed interval in T. Similarly, we define open and
half-open intervals in a time scale T.

The next three definitions can be found in [13].

Definition 1.3.1. Given a time scale T, we define the forward jump operator o: T — T
by
o(t) =inf{se T: s > t}

and we define the backward jump operator p: T — T by

p(t) =sup{seT: s < t}.
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In this definition, we put inf @ = sup T and sup @ = inf T. This means that o(t) = ¢,

if T has a maximum ¢ and p(s) = s, if T has a minimum s.

Definition 1.3.2. Let T be a time scale and ¢ and p be the forward and backward jump

operators, respectively, as defined above.

o If o(t) > t, we say that ¢ is right-scattered.

If p(t) < t, we say that ¢ is left-scattered.

Ift <supT and o(t) = t, we say that ¢ is right—dense.

If t > inf T and p(t) = t, we say that ¢ is left-dense.

If a point ¢ is right-scattered and left-scattered at the same time, we say that ¢ is isolated,

and if a point ¢ is right—dense and left—dense at the same time, we say that t is dense.

Definition 1.3.3. We define the graininess function p: T — [0, 00) by

pu(t) =o(t) —t.
Now, define the set T" as follows

% — T, if supT = oo, (1.3.1)
T\(p(sup T),sup T], if supT < 0.
In other words, if T has left-scattered maximum m, then T* = T\{m}. Otherwise, T* = T.

In the sequel, we present several definitions related to the extension of an arbitrary
time scale T.

Given a time scale T and a real number ¢t < sup T, we define t* := inf{s € T: s > t}.
This operator was introduced for the first time by Antonin Slavik in [65]. We call the
reader’s attention to the fact that t* and o(t) are not necessarily equal, since depending
on the chosen time scale, we can have o(t) # t*. Also, since T is closed, we get that
t* € T. Now, we define the set T* as an extension of T in the following way:

(—o0,00), if supT = oo,
T* =

(—oo,sup T, if supT < oo.
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Given a function f: T — R", we can extend it to the set T* by defining the function
f*: T* - R™ by
frt) = f(t"). (1.3.2)
Similarly, given a set B ¢ R" and a function f: B x T — R", we define f*(x,t) =
f(z,t*) for all x € B and t € T*.

Also, given a function a: T x T — R", we consider a**: T* x T* — R" given by
a**(t,s) :=a(t*,s*), (t,s)eT" x T*.

Lemma 1.3.4 (21, Lemma 5.1]). Let [o, B]r be a time scale interval. Let g: [a, 5] = R

be given by g(t) = t* for all t € [a, B]. Then g satisfies the following conditions:
(i) g is a nondecreasing function;

(i) g is left-continuous on («, (3].

1.3.2 Delta derivatives

Definition 1.3.5 ([13, Definition 1.10]). Let f: T — R" be a function and let ¢ € T*.
Then we define f2(t) to be the vector (if it exists) with the property that given any ¢ > 0,
there is a neighborhood U of t (i.e., U = (t — 0,t + 0) N T for some 6 > 0) such that

ILf(o(8)) = f()] = fF2(O)[o(t) = s]| < elo(t) — 5| for all s € U. (1.3.3)

We call f2(t) the delta (or Hilger) derivative of f at t.
We say that f is delta differentiable on T* provided that f~(¢) exists for all ¢ € T*.
The function f2: T — R" is called the delta derivative of f on T*.

The next theorem gives us some useful ways of finding the delta derivative of a function.

Theorem 1.3.6 ([13, Theorem 1.16]). Assume that f: T — R is a function and lett € T*".

Then we have the following statements:
1. if f is delta differentiable at t, then f is continuous at t;

2. if f is continuous at t and t is right-scattered, then f is differentiable at t with
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3. if t is right—dense, then f is delta differentiable at t if, and only if, the limit
)~ £(s)

so>t L —5
exists as a finite number. In this case,

(0 — 1 SO =)

s—t t—s

Now, we state some properties about sum, product and quotient of delta differentiable

functions. This theorem and its proof can be found in [13, Theorem 1.20].
Theorem 1.3.7. Assume f,g: T — R are delta differentiable functions at t € T*. Then:

1. The sum f+g: T — R is delta differentiable at t with
(f+9)2(t) = £2(1) + g2 ().
2. For any constant o, af: T — R ds delta differentiable at t with
(f)2(t) = af 2(1).
3. The product fg: T — R is delta differentiable at ¢ with
(fg)2(t) = fA(t)g(t) + f(a(t)g™(t) = f(H)g™(t) + f2(t)g(o(t)).

4. If g(t)g(o(t)) # 0, then g is delta differentiable at t with

<f) (t) = fR)g() — F(t)g™(t)

g g(t)g(o(t))

1.3.3 Delta integrals

We begin this section recalling some concepts that are needed to introduce the definition

of delta integrable functions in the sense of Henstock—Kurzweil. For more details, see [56].

Definition 1.3.8 ([13, Definition 1.57]). A function f: T — R" is called regulated pro-
vided its right-sided limits exist (finite) at all right—dense points in T and its left—sided
limits exist (finite) at all left-dense points in T.

Given a set B < R™, the symbol G([«, 5], B) will be used to denote the set of all

regulated functions f: [«, flr — B.
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Definition 1.3.9 ([13, Definition 1.58]). A function f: T — R" is called rd-continuous
provided it is continuous at right—dense points in T and its left—sided limits exist (finite)
at left—dense points in T. The set of all rd-continuous functions from T to R"™ will be

denoted in this work by
Crg = Crq(T) = Crg (T, R™).

Let § = (01,0r) be a pair of nonnegative functions defined on [«, 5]r. We say that
d is a A—gauge for [a, S|t provided d.(t) > 0 on (o, B]r, dr(t) > 0 on [«, 5)r, and
Or(t) = p(t) for all t € [a, B)r.

A tagged partition of [«, 8]t consists of division points sg, ..., S, € [a, f]r such that
a=35) <S8 <- - <S8, =/,and tags 7,...,Tm € [, B]r such that 7; € [s;_1, s;]7 for
every i € {1,...,m}. Such a partition is called d-fine if

7'2-—(5,;(7'1-) <81 < S <Ti+5R(Tl‘), ZE{]_,,TTL}

A function f: [«, 8]t — R™ is called Henstock—Kurzweil A—integrable, if there exists

a vector I € R™ such that for every ¢ > 0, there is a A—gauge 0 on [, 5]t such that

<€

if(%‘)(sz‘ —si1) =1

for every o—fine tagged partition of [, S]r. In this case, I is called the Henstock—Kurzweil
A—integral of f over [a, f]r and it will be denoted by Sg f(t)At.

Next, we present a class of functions that are Henstock—Kurzweil A—integrable on

[Oé,ﬁ]']l‘.

Theorem 1.3.10 ([56, Corollary 2.7]). Every regulated function f in [c, B]r is Henstock—

Kurzweil A—integrable on [a, f]r.

The next results are very important for the development of our theory, since with
them one can see that it is possible to carry the Henstock—Kurzweil-Stieltjes integral of a
function f to its time scale version and also the reciprocal. These results will be essential
to us, when proving the correspondence between our main problem and its analogue in

the theory of time scales.
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Theorem 1.3.11 ([25, Theorem 4.2]). Let [, 5]t be a time scale interval and f: [, Blr —
R™ be an arbitrary function. Define g(1) = 7* for every T € [a, B]. Then the Henstock—
Kurzweil A—integral Si f(s)As exists, if and only if, the Henstock—Kurzweil-Stieltjes in-

tegral Si f*(s)dg(s) exists; in this case, both integrals have the same value.

Lemma 1.3.12 ([25, Lemma 4.4]). Let T be a time scale such that o, 5 € T and g(t) = t*
foreveryte |[a,B]. If f: [a, B] = R™ is such that the Henstock—Kurzweil-Stieltjes integral
Sff(t)dg(t) exists for every c,d € [a, B], then

d d*
| gt = [ reragte
for every a < c < d < p.

Theorem 1.3.13 ([24, Theorem 4.1]). Let f: T — R"™ be a function such that the
Henstock—Kurzweil A—integral Sg f(s)As exists for every o, € T, a < . Choose an
arbitrary v € T and define

R :f F(s)As, teT,

B0 = [ ) agte), 1o

where g(s) = s* for every s € T*. Then Fy = F}.

Theorem 1.3.14 ([24, Theorem 4.2]). Let T be a time scale, g(s) = s* for every s € T*,
[a, B] < T*. Consider a pair of functions fi, fo: [a, f] — R™ such that fi(s) = fa(s)
for every s € |a, Blr. If Si fi(s)dg(s) exists, then Si fa(s)dg(s) exists as well and both

integrals have the same value.



Chapter 2

Correspondences among equations

This chapter provides an important motivation to consider Volterra—Stieltjes types of
equations, since we will show here that many other types of equations can be regarded as
a special case of them.

Before presenting the correspondence, we will present the classes of equations that will
be explored in this chapter.

The first type of equation that we will present here is the most important one, that
is, the functional Volterra—Stieltjes integral equations. These equations play an important

role here and they will be the main object of study in this thesis:

t

£(t) = 9(0) + f alt, $)f (s, 5)dg(s), > 70 o)

Lry = (b’

where 0 < tg < 19 < d, r > 0, ¢ € G([-r,0],R"), f: G([-r,0],R") x [ty,d) — R,
a: [to,d)?> - R and g: [ty,d) — R is a nondecreasing and left—continuous function, where
to < d < +o0, 1, [—1,0] — R is given by z,(0) = z(s + ) for s € [ty,d). Here, [ty,d)?
denotes the set [tg, d) x [to,d).

As we already described in the introduction, there are several equations that can be
viewed as a particular case of (2.0.1) such as fractional differential equations, functional
differential equations, ordinary differential equations, depending on the definitions of a, f
and g. Also, as we mentioned int the introduction, there are other types of equations that
can also be described as a particular case of these equations, but for that, it is necessary

to present a more sophisticated correspondence which is not only given by a very sim-

21
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ple definition of a, f and g but requires more elements to describe these correspondences
in a precise way. The equations that can be corresponded in this form are the impul-
sive functional Volterra—Stieltjes integral equations and functional Volterra delta integral
equations on time scales.

Let us describe these two equations in the sequel.

We start by introducing the impulsive functional Volterra—Stieltjes integral equations:

z(t) = ¢(0)+J a(t,s)f(zs s)dg(s) + > alt,te) [((ty))
o ke{L,....m} (2.0.2)

to<tp<t
Ty = @

where 0 < tg < 79 < d, r > 0, ¢ € G([-r,0],R"), f: G([-r,0],R") x [ty,d) — R",

a: [to,d)*> - R and g: [tg,d) — R is a nondecreasing function, where t, < d < +o0,

zs: [-7,0] > R™ is given by z,(0) = x(s + 0) for s € [ty,d). Here, [to,d)* denotes the

set [to,d) % [to,d) and Ir: R — R" k € N, is the impulse operator and {t;}}, are the
moments of impulse.

The other equation that will be investigated here is the functional Volterra A-integral

equation on time scales given by

o) = alto) +Jt a(t, ) f(z*, $)As, 1€ [to, d)r, .

xz(t) = o), telto—r tolr,
where 0 <ty <19 <d <0, r >0, ¢peG(—r0,R"), f: G([—r,0],R") x [ty,d)r — R,
a: [to,d)3 — R, z,: [—r,0] — R" is given by x4(0) = z(s + 6) for s € [tg,d). Moreover, T
is a time scale such that supT = +o0 and tg — r,tg e T.

Our goal in this chapter is to obtain correspondences between the solutions of these
three types of equations. To achieve this, we will divide this chapter into two sections. In
the first one, we will describe the correspondence between the solutions of (2.0.1) and the
solutions of (2.0.2) and in the second one, we will describe the correspondence between
the solutions of (2.0.1) and the solutions of (2.0.3).

This correspondence will be of great use in the following chapters, since it will allow
us to encompass these three types of equations in our results, although proving them just

once, for the functional Volterra—Stieltjes integral equations.
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We begin by giving below the definition of a solution of equation (2.0.1).

Definition 2.0.1. A function x: [ — r,7] = R", 79 < v < d, is called a solution of the

equation (2.0.1) on [r9 — r,~] if the following conditions are satisfied:

(i) For every 1y <t < 7, the equality
t

o(t) = 6(0) + f alt, 5)f (s, 5) dg(s)

70

holds.
(i) x(r9 +0) = ¢(0) for all § € [—r,0], i.e. z,, = ¢.

Remark 2.0.2. At this point, it is important to remark that our initial condition x,, = ¢
yields that z(s) = ¢(s—p) for all s € [To—7, 70]. Indeed, the equation z,, = ¢ is equivalent
to x(19 + s) = ¢(s) for all s € [—r,0]. Thus, in our problem, the initial condition gives us

the behaviour of the solution not only in a single point, but in all the interval [y — r, 7o].

b T,

N N

—r tog—7T 0 to =1 tog—1T 0 to

Remark 2.0.3. We define the norm || - |, of a bounded function z: X — R", where X
is a Banach space as |z|, := sup{|z(a)||: @ € X}. When restricting the function x to a

subset A of X, we will write |x|s 4 := sup{z(a) : a € A}.

For more details about functional differential equations, please consult [37, 38].
We emphasize here that the initial condition of our problem describes the behaviour
of the solution in a interval. Saying that z,, = ¢ means that the function x behaves in

[T0 — r, 70| as the function ¢ behaves in [—r,0].

Definition 2.0.4. A function z: [1g — r, 3) = R", 79 < 8 < d, is called a solution of the
equation (2.0.1) on [y — r, 3) if, for each 79 < a < 3, the restriction of x to 1y — 7, ] is

a solution of the equation (2.0.1).
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The results obtained in this chapter are new and are contained in [32]. They will be
very useful throughout this work. Using the correspondences here described, we will be
able to “transport” the results obtained for functional Volterra—Stieltjes integral equations

to the impulsive and time scales cases.

2.1 Impulsive functional Volterra—Stieltjes integral equa-
tions

In this section, our goal is to investigate a class of equations called impulsive functional
Volterra—Stieltjes integral equations and to show that this class of equations represents a
special case of the functional Volterra—Stieltjes integral equations. In order to establish
this fact, we follow some ideas from [6, 25].

Our attention will be focused on the case of pre—assigned moments of impulses. The
case of state-dependent impulses is more complicated and will not be treated here. How-
ever, as far as we know, it is still an open question how to relate these equations with
other types of equations and it is a very interesting question to answer.

Thus, let us assume that {¢;}7, are moments of impulses and each ¢, € [to,d), for
d < 0. Suppose also that the condition A*x(ty) = Ix(x(tx)), where I;: R™ — R" is the
impulse operator, is satisfied for each & = 1,...,m. Therefore, consider the following
equation

z(v) —z(u) = f a(v, s)f(zs,s)dg(s) — fua(u, s)f(xs,s)dg(s), foru,ve Jy, keN,

0 to

Atz(ty) = Ip(z(te), k=1,....m,
xto = gb?

where Jy = [to,t1], Jx = (tg,tgy1] for & = 1,...,m, and J,, = (t;,,d). Notice that the
value of both integrals

U

J:a(v,s)f(xs,s)dg(s) and ft a(u, s)f(xs, s)dg(s),

where u, v € Ji, do not change if we replace g by a function g such that g — g is a constant

function on Jj (see [25]). Moreover, assume the following conditions:
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(A1) The function g: [ty,d) — R is nondecreasing and left—continuous on (¢, d).

(A2) The function a: [tg,d)? — R is nondecreasing with respect to the first variable and

regulated with respect to the second variable.

e Henstock—Kurzweil-Stieltjes integra a(t,s)f(xs,s)dg(s) exists for each com-
A3) The H k-K 1-Stiel 1 :f f d f h
pact interval [19, 79 + o] < [to,d), all x € G([rg — 7,70 + ¢],R"™), t € [to,d) and all

ToST1 STy < Tg+oO.

(A4) There exists a locally Henstock—Kurzweil-Stieltjes integrable function M : [ty,d) —
R* with respect to g such that for each compact interval [y, 79 + o] < [to,d), we

have

T2

J(CQCL(TQ, s) + cra(r, s)) f(zs, s)dg(s)| < J|cza(7'2, s) + cia(ry, )| M(s)dg(s),

T1

for all x € G([ro —r,70 + ¢],R"), all ¢;,co e Rand all o < 7y < 7 < 719 + 0.

(A5) There exists a locally regulated function L: [ty,d) — R* such that for each compact
interval |19, 70 + o] < [to, d), we have

T2

Jdﬁﬁﬂﬂ%ﬁ)—f@&@ﬁﬂﬁ <JmmaﬁnL@>uf—%udM@,

T1

for all ,z € G([ro — 7,70 + 0|,R"), and all ) < 7y < 75 < 79 + 0.

Assume also that a is continuous with respect to the first variable at {t;}7~, and that g
is continuous on the moments of impulse ¢, for £k = 1,2,...,m. Under these assumptions,

our problem can be rewritten as

ﬂﬂ=¢@+[dmm%@®®+ S alt t) (1)

to kefl,...,
féqu} (2.1.1)
Lt = Qb
Since ¢ is continuous at t; for each k = 1,...,m and a is continuous with respect to the
first variable at ¢,k = 1,...,m, by the same arguments that will be used in the proof of

Lemma 3.2.5, we obtain that the function

tHﬁwmm%@@@
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is continuous at ti, ..., t, and, therefore, A*z(ty) = Ix(z(ty)) for every ke {1,...,m}. It
will be very important to obtain the analogue results for impulsive functional Volterra—
Stieltjes integral equations just knowing the results for functional Volterra—Stieltjes inte-
gral equations.

In the next result, we describe how we can transfer the conditions on impulsive
functional Volterra—Stieltjes integral equation to the conditions on functional Volterra—

Stieltjes integral equation.

Lemma 2.1.1. Let me N, tg <t; < - <t, <d, I1,...,L,: R" > R" a: [ty,d)? > R
is mondecreasing with respect to the first variable, requlated with respect to the second
variable and locally bounded on [ty,d)?. Assume that g: [to,d) — R is a left-continuous

and nondecreasing function. Let f: G([—r,0],R™) x [tg,d) — R™ be an arbitrary function.

Define f: G([—r,0],R") x [to,d) — R™ by
~ ,T), T E to,d tl,...,tm,
Flyr) = [y, 7) [t0, d)\{ }
Li(y(0), 7=ty ke{l,...,m},

and define §: [to,d) — R by

9(7), 7 € [to, 1],

(1) =R g(r)+k, 1€ {tpte] ke{l,...,m—1},

g(t)+m, T€ (ty,d).

\

Then the following statements hold.
1. The function g is nondecreasing and left—continuous.

2. If the Henstock—Kurzweil-Stieltjes integral

| " alt, 5) s 5)dg(s)

ul

exists for each compact interval |19, 7o + o] < [to,d), all x € G([10 — 7,70 + 0], R"),
t € [to,d) and 10 < uy < up < 7+ 0. Then the Henstock—Kurzweil-Stieltjes integral

| " alt, 5) Flan, 5)d3(s)

u1

exists for each compact interval [19, 70 + o] < [to,d), all x € G([1o — 7,70 + 0], R"),

te[to,d) CLTLdT0<U1<U2<To+O'.
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3. If there exists a locally Henstock—Kurzweil-Stieltjes integrable function M : [ty,d) —
R* with respect to g such that for each compact interval |19, 70 + o] < [to,d), we

have
u2

f b(us, ) f (i, $)dg(s) | < j Mi(s) |b(us, )| dg(s),

U1

for allx e G([to — 1,70 + 0|, R"), b€ Go([10,70 + 0%, R) and ty < uy < uy < 79+ 0,

and there exists a constant My > 0 such that
()] < Mo

for every k€ {1,...,m} and x € R". Then there exists a locally Henstock—Kurzweil-
Stieltjes integrable function M : [ty,d) — R* with respect to g such that for each

compact interval [19, 7o + o] < [to, d), we have

u2

fb<u2,s>f<xs,s>da<s> < j M(s) [b(uz, 5)| da(s).

w1

for allx e G([ro — 1,70 + 0|, R"), b€ Go([10,70 + 0%, R) and tyg < up < uy < 79+ 0.

4. If there ezists a regulated function Ly : [to,d) — RT such that
u u2

Ja(w s)[f (x5, 8) = f (2, 8)]dg(s)| < JLl(S) |a(ug, )| 25 = 2s[lodg(s),

(51 u1l
for all z,z € G([rg — r,70 + 0|, R™) and ty < uy < us < 79 + 0 and there exists a

constant Ly > 0 such that
[e(z) — Ik (2)|| < Lo |z — 2|

forevery k€ {1,...,m} and x, z € R™. Then there ezists a locally requlated function

L: [to,d) — RT such that for each compact interval |19, 70 + o] < [to, d), we have

f (g, $)[F(ar5) — iz 8)]di(s)] < j L(s) |a(uz, )| |22 — 2eoodii(5),

forallxz,ze G([ro — 7,70 + 0|, R") and ty < uy < ug <79+ 0.
Proof. The first statement is an immediate consequence from the definition of g. Also,

9(w) = g(u) = g(v) — g(u) (2.1.2)
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whenever ;5 < u < v < d. Notice that the second statement follows by combining item 1
and the hypotheses from f and a together with Lemma 1.2.8.
In order to prove the third statement, let 19, 7o+ 0] < [to,d), x € G([Tro—7, T9+ 0], R"),

be Gy([r9,70 + ]*,R) and ty < u; < up < 79 + 0. From Lemma 1.2.8, we obtain

| b iens s = [ b)) dgls) ¢ Y bt A (00

ul u1 ke{1,...,m},
w1 St <uz
U2
_ f bz, 5) Flsr ) dg(s) + S blus, ) L (w(t)) A*G (1)
uy ke(l,...,m},
w1 St <uz

and, therefore,

| btusfs) g

ui

ke{1,...,m},
ul <t <u2

< f Mi(s) [bluz, )| dg(s) + D) Mo [blus, )| A*G(t).

(2.1.3)
Using (2.1.2) and the definition of the Henstock—Kurzweil-Stieltjes integral, we have

le ) (a2, )| dg(s) fMl ) bz, 5)| g (s) jM ) bz, 5)] d(s),

where M(s) := 1+ My + M;(s) for all s € [to, to + o]. In particular

j My(5) [b(as, )| dg(s) j M(s) [b(us, 5)| dg(s). (2.1.4)
On the other hand, we observe that the function

h(t) := Jt M (s)|b(ug, s)|dg(s), te [, + 0],

is nondecreasing and AT h(ty) = M (ty) |b(ug, tp)| AT g(tg) for k€ {1,...,m}. Hence

D Malblus,ti)| ATG(t) < YL M(t) [bluz, 1) AT g(t)

ke{l,...,m}, ke{1,...,m},
u1 St <ug uy St <ug
U2
- Z A*R(ty) < h(ug) — h(uy) = J M(s) |b(uz, s)| dg(s). (2.1.5)
ke{l,...,m}, u1
ul <t <u2

Now, by (2.1.3), (2.1.4) and (2.1.5), we get

[ bt s) o5 i)

u1

<2 JUQ M(s) |b(ug, s)| dg(s), (2.1.6)

u1
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proving Condition 3.
To prove the fourth statement, let ¢y < w3 < uy < ¢y + 0. Using Lemma 1.2.8 again,

we obtain

| " iz, 8) (o, ) — F(zar)) di(s)

u
< le(S) la(us, 8)| s — zi|wdg(s) + > Lala(ua, te)] |(ts) — 2(ts)| AT g(ts).
i i

(2.1.7)

Using (2.1.2) and the definition of the Henstock—Kurzweil-Stieltjes integral, we see that

u u

f L1 (5) [a(uz, )] |22 — 2a]lodg(s) < f L1 (5) la(uz, 8)] |22 — 2]0dg(s)
< f L(s)[a(uz 8)| |7s — zaledg(s),  (218)

where L(s) := 1+ Ly + Ly(s) for all s € [to, ty + o].
Next, we observe that the function
t
(1) = L L(s) [a(uz, s)| |zs — 25| dg(s) ¢ € [0, 70 + 0],
is nondecreasing and AT~y (ty) = L(tx) |a(ug, ty)| |ze, — 21, [0 A1 G(tx).for k € {1,...,m}.
Therefore

D Lola(us,t)|| wy, — 2 [A%G(t) < ), Aty(ty)

ke{l,...,m}, ke{1,...,m},
u <ty <ug u <t <ug

< (ug) — y(ur)
_ f L(s) |a(us, )| |25 — 260 43 (s)

N (2.1.9)
and it follows from (2.1.7) and (2.1.9) that
[ ata,) (Flas) = Flewss)) das)] <2 | 205)atua, o) o, — 2210 dg(5),

proving the result. [l
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The following theorem describes a strong relation existent between impulsive Volterra—
Stieltjes integral equations and Volterra—Stieltjes integral equations without impulses. It

follows some ideas from [6].

Theorem 2.1.2. Let m € N, to < t; < -+~ < t, < d, I1,...,1,,: R" — R" and
f: G([-r,0],R") x [ty,d) — R™. Assume that g: [to,d) — R is a requlated and left-
continuous function which is continuous at ti, ..., t,, a: [ty,d)*> — R is nondecreasing
with respect to the first variable, requlated with respect to the second wvariable, locally

bounded on [ty,d)? and, continuous with respect to first variable at ty,...,t,. Define

f: G([—r,0],R") x [tg,d) — R™ by

fly,7), 7€ [to,d)\{t1,...,tm},

I(y(0), 7=t ke{l,...,m},

g(1), T € [to, t1],
(1) =< g(r)+k, 1€ {tpte] ke{l,...,m—1},

g(T)+m, 7€ (ty,d).

\

Then x: [t — r,to + o] — R", [to, to + o] < [to,d), is a solution of

t

() = #0)+ f alt, ) f(ens)dg(s) + S alt i) Ti(a ()
fo ke{l,....m}, (2.1.10)

if, and only if, x: [ty — r,tg + o] — R™ is a solution of

) = 0l0)+ [ alt. (o513 @111)
e = o

Proof. 1t is clear from the definition of g that A*g(tx) = 1 for every k € {1,...,m}. Also
by hypotheses, the integral Sfo a(t, s)f(xs,s)dg(s) exists for all ¢ € [tg, to+ o] and for every
z € G([to — r,to + ¢],R™). This implies by the definition of f and g, that the functions

f and § inherit the conditions from f and ¢ (see Lemma 2.1.1). Therefore, the integral
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SIO a(t, s)f(xs,s) dg(s) exists. According to Lemma 1.2.8 and by the definition of a, f and

g, we have

| att9f@nase) = [ ats)s@odg + ¥ atttfwati)

0 to kefl,...,m},

_ J; alt,s)f(xe8)dg(s) + Y alt,t) Tl (t)),

0 ke{1,...,m},
tr<t
i.e. the right-hand sides of (2.1.11) and (2.1.10) are indeed identical. O

We will present some examples to illustrate the impulsive functional Volterra—Stieltjes

integral equations. They are inspired in the ones found in [35].

Example 2.1.3. Let M be a constant and y, z € G([—r, 0], R"). Then the IVP:
(

o+ Mr=y, t#ty,k=1,...,m
\ Atafy, = L(2(te), k=1,...,m (2.1.12)

To = ¢

\

has a unique solution given by

2(t) = p(0)e Mt + f M=)y S e MO (1)), (2.1.13)

O<tp<t

Indeed, suppose that (2.1.13) is satisfied. Then, clearly 2y = ¢ and
A+$(tk) = $(t]j) — x(tk) = €_M(tk_tk)[k(2(tk)) = Ik(Z(tk»

Also, by (2.1.13), we have:

z(t)eM = $(0) + Jo Moy ds + Z M I (2(t)).
O<tp<t

Therefore, differentiating, we get for ¢ # t;, that (2/(t) + Mxz(t))eM! = eMty(t), which
implies that x satisfies (2.1.12).

Example 2.1.4. Now, let us consider the following IVP:

-

= f(t,z) — M(x—2), t=#t
§ Az|i—y, = Ii(2(ty)) (2.1.14)

£L’0=¢.

\
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Statement: The solution of (2.1.14) can be rewritten as the following Volterra-

Stieltjes functional integral equations:

t

z(t) = p(0)e ™M + J e MU= F (s, 2,) + Mz(s)]ds + Z e MU T (2(t)).

0 0<tp<t

Define x = Bz. Then, we get:

Bz(t) = ¢(0)e M + J e MU= f (s, 2,) + Mz(s)]ds + Z e MU T (2(t)).

0 o<ty <t
Using the same ideas as before, it is possible to show that = is a solution of the IVP

below:
.

= f(t,x), t#ty

A

A*zl_y, = Ii(z(ty) (2.1.15)

To= ¢

\

if and only if x = Bz = z, that is, x is a solution of

x(t) = ¢(0)e M + J e MU f(s x,) + Ma(s)]ds + Z e MUt I (2(ty,)).

0 O<trp<t

With this, we conclude the statement.

The fact that functional Volterra—Stieltjes integral equations encompass impulsive
functional Volterra—Stieltjes integral equations implies that these first equations also en-
compass the impulsive fractional functional differential equations.

Indeed, consider the following fractional functional differential equation with impulses:

-

“Dosa(t) == “Dea(t) = f(t,z), teJ = JI\{t1,...,tm},J :=[0,T]
< A+Jf(tk) = ]k<l’(tk)), k= 1, o, (2116)
x‘[—T,O] = ¢7
\
where CDta is the Caputo derivative, 0 =ty < t; < ... < tp, <ty =T, f: J x

G([-r,0]) - R", I,: R" —» R™.
In [36], the authors showed that if 0 < o < 1, then a solution of (2.1.16) satisfies the



following integral form:

o(t), te[-r0]
P(0) + w57 So(t = )27 f(s,2)ds, e [0,1]

2(t) = 9(0) + L@ (t)+) + ol Solt — )77 f(s,2.)ds, te (b, to]

2(0) + X, Tulw(t)+) + iy Solt — £)° (s, 2)ds, 1€ (T
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(2.1.17)

A careful examination shows that (2.1.17) is a special case of impulsive functional

Volterra—Stieltjes integral equations.

On the other hand, notice that even in the case that 1 < a < 2, these Volterra—

Stieltjes integral equations can encompass such equations. Indeed, consider the following

fractional impulsive equation (without delays):

(CDoult) = F(tult)), ted — I\t ...t

Au(ty) =yr, k=1,...,m

where 1 < o < 2.

(2.1.18)

In [68], the authors prove that (2.1.18) is equivalent to the following integral formula-

tion:

-

iy S0t = )1 £ (s, u(s))ds
a (Fa%l Sé(l —8)* 2 f(s,u(s))ds + X4, ?k> t, te0,t)
ﬁ S(t)(t —8)* 1 f(s,u(s))ds + gy (t — t1) + 1

u(t) = < ( 5 501 = 8)72 F(s,u(s))ds + ZZQ@Q t, te(ty,to

ﬁ%%@—Q“V@W@WB+Z£ﬂMP%O+Ziwi

. (ﬁ §o(1 = 5)272f(s,u(s))ds + X, ?k) t, te(tetpralk=1,....m

Therefore, we can see that it is a type of Volterra—Stieltjes integral equation with

impulses, motivating our study of these equations.
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2.2 Functional Volterra delta integral equations on
time scales

In this section, our goal is to investigate functional Volterra A—integral equations on time
scales, providing results concerning existence and uniqueness of solutions and existence
of maximal solutions for these equations. Also, our goal is to show a relation between
the functional Volterra—Stieltjes integral equations and functional Volterra delta integral
equations on time scales. Regarding the notation and previous results used in this section,
the reader may want to consult Section 1.3 and the references mentioned there.

Let T be a time scale such that supT = +o0 and ty — r,tg € T. In this section, we
consider the functional Volterra A—integral equation on time scales given by

2t = alt) +£ a(t, ) f(z*, $)As, 1€ [to, d)r, o)

xz(t) = o), telto—r tolr,
where d e T U {o0}, ¢ € G([ty — 7, to]r, R"), f: G([—r,0],R™) x [ty,d)r — R™.

To motivate the investigations of equation (2.2.1), let us consider a simple model from
economics in the time scale setting that is known as Keynesian—Cross model with “lagged”
income. See [67] for more details.

Let us consider a simple closed economy. Also, consider the following notation:

D: aggregate demand;
y: aggregate income;
C': aggregate consumption;
I: aggregate investment;
G: government spending.
With these variables in hands, consider the following model given by the equations

below:

D(it) = Cit)+I1+G (2.2.2)
Ct) = Coy+cy(t) (2.2.3)
y® = §[D7 —vy], t=to, (2.2.4)

where § < 1 is a positive constant interpreted as the “speed of adjustment term”, Cy and
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C are non-negative constants and ¢ty > 0. Let us assume for simplicity that G and I are
constants and the current consumption depends on current income.

This model is a generalization for time scales of the classical Keynesian—Cross model
for the discrete case.

Combining (2.2.2) and (2.2.3) in (2.2.4), we get:
y® =0[Co+cy’ +1+G —y]:=h(tyy).
Using the simple useful formula y° = y + uy® and assuming 1 — dcu(t) # 0, we get
y® = 0[Co +cly + py®) + 1 + G —y]

— & — Scpy® = 6Cy + cyd + 16 + G — yo
— 42 (1 — Scp) = 6Cy + cyd + I + G6 — yd.
Therefore,

A:5y(c—1) (Co+1+@G)
1—dcp 1—0dcp

It can be rewritten as follows:

y™ = f(t)y + g(t).

Using the Variation Constant Formula, we get:
y(t) = es(t, a) [y(to) + f 9(8>As] t =t (2.2.5)
’ wer(o(s),to) |
whenever f is a regressive function. Therefore, a careful examination shows that (2.2.5)
is a type of Volterra delta integral of the form:
t
t) = h(t) + | alt,)g(s)ss
0
showing the generality of this kind of equation, as well as motivating its study, since it is
possible to use them to investigate many types of problems, including important models.
In the next result, we establish a relationship between the solutions of the functional
Volterra A-integral equation on time scales and the solutions of functional Volterra—

Stieltjes integral equation. We follow some ideas from [24].
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Theorem 2.2.1. Let [to—7,to+n|r be a time scale interval, ty € T, [to, to+n]|T < [to, d)T,
a: [to,d)2 — R and f: G([-r,0],R™) x [to,d)r — R™. Define g: [to,d) — R by g(s) = s*,
for every s € [to,d). If x: [ty — r,to + n]r — R™ is a solution of the functional Volterra
A—integral equation on time scales

z(t) = x(ty) + ft a(t,s)f(xk, s)As, te [to, to+ T, (2.2.6)

x(t) = o), telto—rtolr,
Then x*: [to — r,to + n] — R™ is a solution of the functional Volterra—Stieltjes integral

equation

a(t) = x(to)+£ a*(t,5) f* (w5, 5) dg(s) (2.2.7)

xt() = Cb:tko
Conversely, if y: [to — r,to + n| — R™ satisfies the equation (2.2.7), then it must have the

form y = x*, where x: [ty — r,ty +n]r — R is a solution of the equation (2.2.6).

Proof. Suppose that x: [ty — 7, to + n]r — R” satisfies equation (2.2.6). Then
t
o) = alte) + [ alt.s)fal)ds, te ltoto+ ke
to

Proceeding as in [25], we have

which proves the first part.

Conversely, assume that y satisfies (2.2.7). If t € [to, to + n]\T, then g is constant on
[t,t*] and, therefore, y(t) = y(t*). It follows that y = x*, where z: [ty — r,to + n]r — R”
is the restriction of y to [to —r, to +n]r. By reversing our previous reasoning, we conclude

that x is a solution of (2.2.6). O

From now on, we will assume the following conditions concerning the functions

f: G([-r,0],R") x [ty,d)r — R" and a: [ty,d)% — R.

(C1) The function a: [tg,d)3 — R is nondecreasing with respect to the first variable,
regulated with respect to the second variable and rd—continuous with respect to the

first variable.



37

(C2) The Henstock—Kurzweil A—integral
| atmrtesas
S1
exists for each time scale interval [sg, so + 0]t < [to, d)r, x € G([s0 — 7, 50 + 6], R™),

T € [0, S0 + d]1 and s1, $2 € [S0, S0 + &)1, 51 < So.

(C3) There exists a locally Henstock-Kurzweil A-integrable function M;: [tg, d)r — R*
such that for each time scale interval [sg, s + 0]t < [to,d)T, we have

52

J(Cla(SQ, s) + coa(sy, s)) fxs, s)As| < fMl(s) lcra(sq, s) + caa(sy, s)| As,

S1

for all x € G([sg — 1, S0 + ], R"™), ¢1,¢0 € R and s1, $3 € [S0, S0 + O], 51 < So.

(C4) There exists a locally regulated function Ly : [tg,d)r — RT such that for each time

scale interval [sg, so + d]1 < [to, d)T, we have

j 052, 9)[f (£0:8) — F (20, 8)] A3 < f L1(s) [a(sa, 8)] |22 — 2], As,

for all z,z € G([so — 7,50 + §],R") and s1, s3 € [0, So + 0], S1 < So.

The next result will show how to transfer the conditions on functional Volterra A-

integral equations to functional Volterra—Stieltjes integral equations.

Lemma 2.2.2. Assume thatty,d € T, and that d is left dense. Moreover, let f: G([—r, 0], R™)x
[to,d)r — R™ and a: [tg,d)% — R be arbitrary functions. Define the functions g(s) := s*

for s € [to,d), f*(¢,s) := f(,s*) for s € [ty,d) and ¢ € G([—r,0],R") and a**(t,s) :=
a(t*, s*) fort,s € [ty,d). Then the following statements hold.

1. If a: [to,d)% — R satisfies condition (C1), then the function a**: [ty,d)* — R is
nondecreasing with respect to the first variable, requlated with respect to the second

variable and locally bounded on [to, d)>.

2. If f: G([-r,0],R™) x [to,d)r — R™ satisfies condition (C2), then the Henstock—

Kurzweil-Stieltjes integral

J% a**(t, ) f* (x5, 5)dg(s)

u1
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exists for each compact interval |19, 70 + 1] < [to,d), x € G([1o — r,70 + 1], R"),

tE[Tg,T0+77] and70<u1<u2<70+7].

3. If f: G([-r,0],R™) x[tg,d)r — R" satisfies condition (C3), then f*: G([—r, 0], R"™)x
[to,d) — R™ satisfies the condition

ug

J(cla**(uz, 8) + cea™*(uy, s)) f*(xs, s)dg(s)

w1

U2
< JZ\/[{"(S) lcra™ (ug, s) + coa™ (uq, s)| dg(s),

ul

for each compact interval |19, 79 + 1] < [to,d), x € G([T0 — r, 70 + 1], R™), 70 < ug <

uy < 179+ 1n and ¢y, co € R.

4. If f G([—r,0],R™) x[to, d)r — R" satisfies condition (C4), then f*: G([—r,0],R™)x
[to,d) — R"™ satisfies the condition

u u

f 0 () (0, 8) — (200 8)1dg (5)] < f L() [a** iz, )| 22 — 2], dg(s),

w1 ul
for each compact interval |19, 70 + 1] < [to,d), x,2 € G([To — r,70 + n],R™) and

7'0<U1<U2<T0+77.

Proof. 1t is clear from the definition of a** that it is nondecreasing with respect to the
first variable if a is nondecreasing with respect to the first variable.

On the other hand, it is easy to check that a** is locally bounded on [ty, d)?, since a
is locally bounded on [t, d)3.

Now, we show that a** is regulated with respect to the second variable. In fact, let
t € [to,d) be arbitrary, let us show that a**(¢,-) is regulated on each compact interval
[, 5] < [to, d). Indeed, let sg € (o, ] and consider two cases: so € T and otherwise.
If sy € T is such that it is left—dense, then

R 5 lim a(t*,s) = lim a(t*,s*) = lim a**(t, s).
s—s; s—s; s—sg

If s € T is such that it is left—scattered, then

R s a(t*,sp) = lim a(t*,s*) = lim a**(¢, s).

S—>SD S—>80
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Finally, if sq ¢ T, then

R s a(t*,s5) = lim a(t*,s*) = lim a™(¢,s).

S—>SO S—>SO

Hence, lim a**(t, s) exists for all sg € (o, ]. Analogously, we can prove that lim a**(¢, s)

S§—S, s

exists for aoll So € [, B), proving item 1. ’
To prove the second statement, consider an arbitrary compact interval [ry, 79 + 1] <
[to,d), v € G([to — r,70 + n],R") and t € [, 70 + n]. Let uy,us € [19, 70 + 1] be given
with u; < wug. Then t*, uf, ul € [75, (7o +n)*]. Therefore, by hypothesis (C2), the integral

uy
f a(t*,s)f(xs,s)As exists. Then, by Theorems 1.3.11, 1.3.14 and Lemma 1.3.12, we

*
1

have

u

JuQ a(t*,s)f(xzs, s)As = fu;k a(t*, s*) f(xg, s*)dg(s) = Jf a**(t, s) f(ze,s*)dg(s).

" (2.2.8)
Since a**(t, s) f (vsx, s*) = a**(t,s) f (x5, s*), for all s € [u},u}], by Theorem 1.3.14 and
Lemma 1.3.12, we get

u;< u2

a**(t,s) f(xs, s%)dg(s) = f a*(t,s) f*(xs, s)dg(s).

| " (1) F(e 57y (s) — | )
(2.2.9)

* *
Uy Uy

Now, according to (2.2.8) and (2.2.9), we obtain that the last integral exists and, in this

case,
uj

JW a**(t,s)f*(xs,s)dg(s) = J a(t*, s)f(xs,s)As. (2.2.10)

uy u;"

Now, let us prove the third statement. Indeed, let x € G([1o —r, 70 + 1], R"), ¢1,¢2 € R
and wuy,us € |19, 7o + 1] with u; < ug. Then, by (2.2.10), (C3), Theorems 1.3.11, 1.3.14
and Lemma 1.3.12, we have

u2

J(cla**(uQ, s) + coa™*(uy, 8)) f*(xs, s)dg(s)| =

U1

Jug (cra(uy, s) + caa(ui, s)) f(xs, s)As

*
Uy

*

Uy u2
< fMl(s*) lcra(uy, s*) + caa(uf, %) dg(s) = JM{"(S) lcra™ (ug, s) + coa™ (uq, s)| dg(s),

* u
uy 1

obtaining the desired result.
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Finally, for the fourth statement, let o < u; < us < to + 7, then using (2.2.10), (C4),
Theorems 1.3.11, 1.3.14 and Lemma 1.3.12, we get

u2
Ug
fa**(u% S)ILf (s, 8) — [* (25, 9)]dg(s)| = |J a(uy, s)[f(@s, s) = f(zs, 8)]As
w1y “1
< JLl(S*) |a(uz, s")| |lwex — 2o, dg(s) = ] Li(s) [a™* (uz, s)| |25 — 2], dg(s),
u;" U1
for all ,z € G([ty — r,to + 1], R™), proving the result. ]

We want to point out that Volterra integral on time scales play an important role for
applications, being used to describe several phenomena, specially when one considers the
discrete time scales such as T = Z or T = hZ. Many authors have investigated this type
of equations proving several properties for their solutions such as existence, uniqueness,
stability, asymptotic behavior of the solutions, among others (see [3, 30, 43, 52, 57, 59,
58, 62, 63, 18] and the references therein).

However, all the results presented here for these equations are more general, since we
require less regularity for the involved functions a and f in our equation. Also, in the
chapter about stability, the conditions on the Lyapunov functionals are more general than
the classical ones found in the literature.

This fact motivates us to consider this type of correspondence between functional
Volterra—Stieltjes integral equations and functional Volterra—Stieltjes delta integral equa-
tions on time scales, since the results that are obtained from the application of this
correspondence are usually more general and allow us to describe important models in a

precise way.



Chapter 3

Existence, uniqueness and

continuation of solutions

In this chapter, we prove results concerning existence and uniqueness of solutions for the
following functional Volterra—Stieltjes integral equation:

£(t) = 9(0) + j alt, $)f (s 5)dg(s), > 70 o

Also, we prove results concerning continuation of solutions of (3.0.1). These results
are crucial to investigate the asymptotic behavior of the solutions, such as stability.

Note that this equation encompasses many other types of equations depending on how
we choose our functions a, f and ¢g and if we take r = 0 or r > 0, as explained in the
introduction, and also in Chapter 2.

The results presented here are fundamental to prove the results of the next chapters,
since we will be investigating the properties of the solutions of these equations. All the
results of this chapter are new and are contained in [32].

We divide this chapter in 4 sections. In the first one, we prove the existence and
uniqueness of solutions of our integral equation. In the second section, we show that our
equation admits a unique maximal solution and give sufficient conditions under which the
interval of existence of the solution is unbounded. In the third one, we prove the analogue
results for impulsive functional Volterra—Stieltjes integral equations. In the fourth section,

we prove analogue results for functional Volterra—Stieltjes A-integral equations on time

41
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scales.

3.1 Existence and uniqueness of solutions

In this section, our goal is to prove local existence and uniqueness of solutions of the
following type of integral equation:

£(t) = 9(0) + f alt, $)f (e 5)dg(s), > 70 o

where 0 < tg < 79 < d, r > 0, ¢ € G([-r,0],R"), f: G([—r,0],R") x [ty,d) — R",
a: [ty,d)> - R and g: [tg,d) — R is a nondecreasing function, where t; < d < +o0,
zg: [—r,0] > R" is given by z4(0) = x(s + ) for s € [ty,d). Here, [to,d)? denotes the set
[to, d) x [to,d).

Throughout this text, we will assume that the integral in the right—hand side exists in
the sense of Henstock—Kurzweil-Stieltjes with respect to g, and thus, the integral equation
given by (3.1.1) makes sense and is well-defined.

Let tp € R and r > 0. Given x € G([tg — r, +0),R") and t > to, let z;: [—r,0] - R”
be defined as usual by

x(0) := x(t +6),
for all 0 € [—r,0]. See [38] for details.

The following result ensures that if x € G([typ — r, +©),R"), then z; € G([—r,0],R")

for all ¢t > ty. This property will be very important to our purposes.
Lemma 3.1.1. Let x € G([to—7,+0),R") and t = ty be given. Then z; € G([—r,0],R").

Proof. Let 7 € (—r,0] be fixed. We will show that lim x;(s) exists. Indeed, since

—T—

to—r <t+7and x € G([to —r, +0),R"), the limit L := . l(im) z(€) exists. Thus, given
—(t+7)—

e > 0, there exists 0 > 0 (we can take —r < 7 — ¢) such that
|z(€) —L| <&, forallée(t+7—0d,t+7).

This implies that
|x(s+t)—L| <e, forallse(r—2d,71).
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Consequently,

|xi(s) — L|| <&, forall se(r—d,7),

obtaining the desired result. The existence of lim x,(s) for 7 € [—r,0) can be proved

s—>T+

similarly. O]
As a consequence, we obtain immeadiately the next result.

Corollary 3.1.2. If x € G([ty — r, +20),R"), then for each compact interval [c, 5] <

[to, +0), the function s — |z, , 5 is regulated on [, B].

Throughout this thesis, we will use the symbol Go([to,d)? R) to denote the set of all
functions b: [tg,d)? — R that are regulated with respect to the second variable, that is,

for any fixed t € [tg, d), the function
b(t,-): s € [tg,d) —> b(t,s) e R

is regulated.

From Definitions 2.0.1 or 2.0.4, it is not possible to infer much information about the
properties of the function z: |79 — 7, «] — R™ which is a solution of (3.1.1). Nevertheless,
we assume the following conditions for which it is possible to get more specific information
about the solutions of equation (3.1.1), and it will allow us to ensure its existence and

uniqueness:
(A1) The function g: [ty,d) — R is nondecreasing and left—continuous on (¢, d).

(A2) The function a: [ty,d)? — R is nondecreasing with respect to the first variable and

regulated with respect to the second variable.

3 e Henstock—Kurzweil-Stieltjes integra a(t,s)f(xs,s)dg(s) exists for each com-
A3) The H k-K 1-Stiel 1 :f f d fi h
pact interval |19, 79 + o] < [to,d), all x € G([19 — 7,70 + o], R™), t € [to,d) and all

7'0<7'1<7'2<7'0+0'.

(A4) There exists a locally Henstock—Kurzweil-Stieltjes integrable function M : [ty,d) —
R* with respect to g such that for each compact interval [7g, 79 + o] < [to, d), we

have

T2

J(CQGJ(TQ, s) + cra(m, s)) f(xs, s)dg(s)| < J‘CQG(TQ, s) + cra(r, s)| M(s)dg(s),

T1
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forall x € G([ro —r,70 + ¢],R"), all ¢;,coe Rand all 7o < 7y < 7 < 79 + 0.

(A5) There exists a locally regulated function L: [ty,d) — R such that for each compact
interval |19, 70 + o] < [to, d), we have

T2

f (s ) f (0, ) — (200 9)]dg(s)]| < f|a<m )| L(s) |2s — 2., dg(s),

T1

for all 2,z € G([1o —r,70 + o|,R"), and all 7o < 73 < 72 < 79 + 0.

Remark 3.1.3. Notice that both the integrals

T2 T2
| o) 26) 1~ zedgle) and [ e ) M (5)dg (o
exist. Indeed, by Corollary 3.1.2, s — |z, — 24|, is regulated on |71, 72]. On the other
hand, since s — |a(m,s)| and s — L(s) are regulated on [71,72], we have that the
function s — |a(7s, s)| L(s) |xs — 2|, is regulated on [7y, 72]. Hence, by the properties of
this integral, it follows that
T2
| a9 5}~ 2 cda(s)

exists. For the second integral, note that the function |71, 73] 3 s — [b(72, s)| is bounded

and that [r, 7] 3t — S; M (s)dg(s) is a nondecreasing function. Then, similarly, the

T s
integral § |b(7, s)|d <S M(ﬁ)dg(f)) exists and, therefore, by Theorem 1.2.9, the integral
T2
§ [b(72, s)| M(s)dg(s) exists.
T1

Remark 3.1.4. We point out that in condition (A4), it is necessary to consider a general
kernel b € Go([79, 7o + 0] R). It is not enough to have this condition only for the kernel
a € Go([10, 70 + 0]?, R), since we will need to estimate linear combinations of the kernel a
applied to different values on [79, 79 + o]?>. However, this condition is adequated and it is

expected when we are dealing with Volterra—Stieltjes integral equations.

Remark 3.1.5. A first look at the conditions (A1)—(A5) seems to be very general and with
no motivation behind, however the next example shows a reason to require Carathéodory-
type conditions on the indefinite integral instead of simply imposing conditions to the

integrand. This example can be found in [15].
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Example 3.1.6. Consider the functions ¢, A: [0,1] — R defined by:

-1 k+12k
()k, if te [dk_l,dk), keN
p(t) =
0, ift=1,
and
2k
-, if te [dk—h dk>, keN
NOEREL
0, ift =1,
where d = 1 — 2%, k € N. Since the alternating harmonic series ;. | # converges, it

follows that ¢ is Riemann improper integrable function over [0, 1].

Indeed, let us prove this fact. For it, we present the proof found in [11, Example 2.7].

1

ZT,RENO

Let Zzozl ay be any convergent series in R and let A be its limit. Let ¢, := 1—

so that ¢g = 0,¢; = %,02 = %,03 = %, .... We define the function h: [0,1] — R by:

Qkak, ifte [Ckfl, ,Ck), keN
0, if t = 1.

Let us prove that h is Riemann improper integrable function over [0,1] and that
Sé hdt = A = ZZO:I ap. With this in hands, we will show the previous statement.
We start by remarking that the length of the interval [cj_1, ¢;] is 5. It implies that

if the integral exists, then
0 1 e¢]
k=1 k=1

In order to prove the integrability of A on [0, 1] with integral A, we need to choose an
appropriate gauge.

As explained previously, the main advantage of this integral is the fact that we can
“caliber” the gauge in an appropriate way in order to avoid the discontinuities and the
points that our function does not behave well. Therefore, here in this case, using this
fact, we need to choose a gauge that forces the points 1 and ¢, for sufficiently small £ € N
to be tags, since these points are the ones for which the function jumps.

We start by taking M > sup{|ax| : kK € N} and M > 1. Given € > 0 with € < 1, let
m(e) € N be such that if m > m(e), then

lay,| <e and <e.

0
2
k=m




46

This fact follows from the convergence of the series. Now, define £ := {¢; : k € N}u{1}

and define the gauge d. on [0, 1] by

r1 .

idlst(t, E), for t e [0,1\F
£

662 9 m, fort:Ck,]{eN

1
im(s), for t = 1.

Consider that P = {(t;, [zi—1,2;])}I~; is a d.—fine partition of [0,1]. We can also

1 < 2,1 < 1. Therefore, it follows from these facts that the point

suppose that ¢; = 3

t = 1 is the tag for the final subinterval [z, 1,1] in P.
Let p = inf{k € N: z,_; < ¢} be such that ¢, < x,_1 for kK =0,1,...,u— 1. The
fact the P is 6.—fine implies that

Il
—_
e
—~
=
N
8
3
|
—
N
O
=
—_

whence we have m(g) < p.
By the properties of d., each ¢ in [0, z,-1] < [0,¢,] is a tag for any subinterval in P
that contains this point. Also, it is possible to assume that each such point ¢ is a tag for

two consecutive subintervals in P. Therefore, we have two cases to consider.

e Case 1: z,_; = ¢,

For each k = 1,...,u, we let the contribution T}, to S(h;P) corresponding to the
subintervals [cx_1,x,], ... [zs, ck]. The last of these subintervals has tag at ¢, where

h(ck) = 2¥"tay, 1. All the other tags t,, ..., t,_; satisfy h(t;) = 2¥ay. It implies that:

T = 28ap (25 — coer) + 28 ag 1 (cp — x5).

On the other hand,

1

Ty — Cp—1 = (:L‘s - Ck;) + (Ck - Ck—l) = (l"s - Ck) + ?

It implies that:

1
Tk = Qkak—k + (2k+1ak+1 - Zkak)(ck — I’S).

2

Therefore,
€ €

<
Q1IN T 9k

Ty, — ax| < 2"3M
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Considering the fact that the contribution to S(h;P) due to [z,-1,1] is h(1)(1 —
Tp—1) = 0, it follows that S(h;P) = >0 _, Tk.

Thus,

|S(h;P) — A| < +

@ 7 ©
ISP RARIINS
k=1 k=1 k=1

This implies that if P is d.—fine and if z,,_; = ¢, = 5, then |[S(h;P) — A| < 2¢,

o1

@ ©
15
<Z|Tk—ak\+€<2?+8<2a
k=1 k=1

and we have the desired result for this case.

e Case 2: 7,1 <¢,

In this case, note that the subintervals in P immediately preceding [z,_1, 1] have
the form: [c,—1,2,],...,[Tn—2,¥n_1] and the value of h at all of the tags for this
intervals is 2*a,. From this, we get that the contribution 7}, to S(h;P) from these
intervals is:

TM = QHG#(.In,l — Cufl).

On the other hand, we have ¢,1 < x,-1 < ¢,. This implies that 0 < ,_1 —¢,—1 <
Cp— Cpy—1 = 2%, so that
1
T, < 2M|au|27-

Thus,

pn—1

S(h;P) = > T+ T, + 0,

k=1

which implies that

o0

S

k=p

|S(h; P) — A < + T, + < 3e,

p—1 pn—1
PRI
k=1 k=1

getting the desired result for this case.

Therefore, we have that the statement is proved.

From this fact, we get that ¢ is Riemann improper integrable over [0, 1] and

J o(s)ds = Z (_113: ' :

0 k=1

On the other hand, the integral of A over [0, 1] is not finite. This means that it is not

Henstock—Kurzweil integrable over [0, 1] and hence, neither Lebesgue integrable. Since
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A(t) = |p(t)] for every t € [0,1], it implies that ¢ is not Lebesgue integrable, due to the
fact that it is not absolutely integrable.

Now, let us define f: G([—7,0],R) x [0,1] — R by f(&,s) = ¢(s) for every (&, s) €
G([-7,0],R) x [0, 1], where ¢ is given by

-1 k+12k

(>k” ifte [dkfl,dk),k eN
p(t) =

0, ift =1

and r > 0. Also, suppose that a(t,s) = 1 for all ¢, s € [0, 1]. Define g(s) = s. Thus, by the
definition, we get that f is independent of the first variable. By the previous statement, for

every x € G([—r, 1], R), the mapping s — f(zs,s) = ¢(s) is Henstock—Kurzweil-Stieltjes

f M(s

+ 1 for every s € [0,1]. On the other hand, we point out

integrable with respect to g over [0, 1] and

|  fla 5)ds | et 1 i

where M (s ‘Zk )
that (3.1.2) does not 1rnply that

k+1

+1, (3.1.2)

:];(—

k+1

k+1

|f (@5, 5)|

- %5
for every s € [0,1] and z € G([—r, 1], R). Otherwise, we would have:
a0

for every s € [0,1]. This fact would imply that ¢ is a Lebesgue integrable function, which

k+1

o(s)| = [ f (s, s

is a contradiction.

Therefore, this example motivates us to consider more general conditions to our func-
tions such as the conditions presented by (A1)-(A5). Notice also that these types of
assumptions allow that the involved functions a, f and g do not behave suitable, being

appropriate to describe important phenomena in a more precise way.

When the right-hand side of (3.1.1) satisfies the above mentioned conditions, the
solution x: 19 — 1, tp + 0] — R™ of (3.1.1) is a regulated function on [y — 7,y + o], as it

will be proved in the next lemma.
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Lemma 3.1.7. Assume f: G([—r,0],R") x [to,d) — R" satisfies conditions (A3) and
(A4), a: [to,d)? — R satisfies condition (A2) and g: [ty,d) — R satisfies condition (A1).
If v: [to — 1, to + 0] > R™, tg+ 0 < d, is a solution of the equation (3.1.1), then x is a

requlated function on [ty — r,ty + o].

Proof. Suppose that z: [tg — r,a] — R™ is a solution of equation (3.1.1). Let us prove
that z is regulated on [ty — 7, a].

Step 1. m|[t0_,ﬂ7t0] is a regulated function.

Indeed, let 7 € (tog — r,to]. Then 7 — tg € (—r,0]. Since ¢ € G([—r,0],R™), lim ¢(6)

0—(rt—to)—
exists and is given by

lim  ¢@)= lim @0+ty—ty) = Jim d(s —ty) = Jim T (s — to) = lim xz(s),

0—(T—t0)— 0—(T—to)— S—oT—

which implies that lim z(s) exists for 7 € (to — r,fo]. Similarly, we can prove that
hm x(s) exists for 7 € [tg — r, tp).

Step 2. Z|[t,t0+0] is a regulated function.

In fact, for tp < 7 < 7 <ty + o0, by conditions (A2), (A3), (A4), we have

|#(72) = a(

a9 (22 ) da(s) = |t 5) (o s) dot)|

to

< ‘

| ot s agts)

T1

 (a(r9) = atm.9)) o) )|

T1

< JT2| (19, 8)| M(s)dg(s) +£ la(2, 8) — a(m1, )| M(s)dg(s). (3.1.3)

T1 0
By (A2), a is nondecreasing with respect to the first variable and there exists ¢ :=

sup  |a(t,s)|. Thus, |a(m,s)| < ¢, for s € [tg, to + o] . Using this fact, we have
(t,9)€[to,to+0]?

ﬁ (ra, )| M(s) dg(s) + f a(ra 8) — a(r, )| M(s) dg(s)

T1 to

< fﬁ cM(s)dg(s) + Ln(a(rz, s) —a(mi,5))M(s) dg(s)

71 0
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< J " oM (s) dg(s) + J " (e, ) — alm, ) M(s) dg(s). (3.1.4)

T1 to

Combining (3.1.3) and (3.1.4), we get

to+o

cM(s)dg(s) + J (a(7, s) — a7, s))M(s)dg(s). (3.1.5)

to

T2

() — ()] < j

T1

Define h: [tg,to + 0] — R by
¢ to+o
h(t) := L} cM(s)dg(s) + LO a(t,s)M(s)dg(s), (3.1.6)
for every t € [tg,to + o]. Since M is a Henstock-Kurzweil-Stieltjes integrable function
with respect to g on [to,to + o], SEO cM (s)dg(s) exists for all ¢ € [tg,to + o]. On the other
hand, similarly as in Remark 3.1.3, we can prove that S:g” a(t,s)M(s)dg(s) exists for

all t € [to,to + o]. Then, h is well-defined and is a nondecreasing function. Also, using

(3.1.5) and (3.1.6), we have
|2(72) = 2(n)| < h(72) = h(n), (3.1.7)

for all ty < 7 < 1 <ty + 0. Now, by (3.1.7) and by the fact that h is a nondecreasing

function, the lateral limits

lim z(s) for 7 € [to, o + 0)

s—Tt

and
lim z(s) for 7 € (to, to + o]
S—>T
exist. This implies that x|y, 4,40 is regulated, proving the result. O]

In the sequel, we recall the classic Schauder Fixed—Point Theorem, which will be

important to our purposes.

Theorem 3.1.8 ([38, Lemma 2.4)). (Schauder Fized—Point Theorem) Let (E,| -||) be a
normed vector space, S a nonempty convex and closed subset of E. Assume thatT: S — S

is a continuous function such that T(S) is relatively compact. Then T has a fized point

mn S.

Now, we state the main theorem of this section, which gives us sufficient conditions in

order to guarantee the existence and uniqueness of a local solution of (3.1.1). The proof



51

of this result is similar to the one found in [6] with the necessary adaptations, but we will
write it here for the reader’s convenience. We call the reader’s attention that in [6], the

result was proved for the case without delays.

Theorem 3.1.9. Assume f: G([—r,0],R") x [to,d) — R"™ satisfies conditions (A3), (A4)
and (A5), a: [ty,d)* — R satisfies condition (A2) and g: [to,d) — R satisfies condition
(A1). Then for all 9 € [ty,d) and all ¢ € G([—r,0],R™), there exists a 0 > 0 and a

unique solution x: [t — r, 7o + o] — R™ of the initial value problem:

t

z(t) = ¢(0)+La(t7s>f(x578)d9<8> (3.1.8)
T = 0.

Proof. Let us start by proving the existence.

Existence. Consider the set

H¢ = {90 € G([TO — 1,70 + J]7Rn): Pro = ¢}

The idea now is to construct an operator 1': H;, — H, that satisfies all hypotheses of
Schauder’s Fixed Point Theorem and with it, to obtain that equation (3.1.8) possesses a
solution.

Assertion 1. The set H, is nonempty.
In fact, define I': [1y — r, 79 + 0] — R™ by

¢(t-7’0), te [7’0—7“,7'0]

»(0), t € [10,70 + 0.

L(t) =

Let 7 € [10 — 7,70 + o) and consider two cases: T € |1y, 7o + 0) and otherwise.
If 7 € [79,70 + 0), then lim I'(s) exists, since I'|[7, 7+ is a constant function.
S—>T
If 7 € [ro—rm), then 7 — 75 € [—7,0). Now, since ¢ € G([—r,0],R™), the limit

lim  ¢(n) exists and

n—(T—70)"

lim ¢(n) = lm ¢(n+7—7)= lim ¢(s —7) = lim I'(s),

n—(r—70)* n—(T—70) s—T s—T
proving that the last limit exists. Analogously, we can show that lim I'(s) exists for
S—>T

7 € (10 — 1,70 + o|. This implies that I' € G([1p — 7, 7o + 0], R"). On the other hand, given

0 € [—r,0], we have 0 + 79 € [19 — r, T0]. Also, for 6 € [—r,0], it follows

[ (0) :=T(0 + 70) = (0 + 10 — 70) = &(0),
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which implies that I';, = ¢ and, therefore, I' € Hy, proving Assertion 1.
Now, define the operator T': H, — H, by

ot — 10), t €m0 — 7, 70]
(Tz)(t) = t (3.1.9)
o(0) + | alt,s)f(xs,s)dg(s), te[r,T0+ 0]

70

Assertion 2. T is well-defined.
In order to show it, let us prove that T(Hy) < H,. Let © € H, be fixed. Using the
same arguments from the proof of Lemma 3.1.7, we can show that Tz is regulated on

[T0 — 7,70 + &]. Thus, for § € [—r, 0], we have:

(T2)7,(0) := (T2)(0 + 10) = $(0 + 70 — T0) = 9(0),

which implies (T'z),, = ¢. Hence Tx € H,.

Assertion 3. H, is a convex and closed set.
Let ¢, p € Hy be given. Then for £ € [0,1], it follows from the properties of regulated
functions that (1 — &)Y + {p € G([10 — 1,70 + 0]) and for § € [—r, 0], we get

(1= &)tr (0) + Ery (0) = (1 = )d(0) + £0(0) = ¢(6),

which implies that H is convex.
Now, let us prove that Hy is closed. Assume that ¢, € Hy, k € N, is a sequence which

converges in G([1p — r, 7 + o], R™) to a certain function . Given # € [—r, 0], we have
Pro (8> = 90(7_0 + 9) = IclgIolc ka(TO + 0) = ,}E{)lo(spk)m(e) = ¢(0)7

that is, ¢, = ¢, proving the assertion.

Assertion 4. A:=T(Hy) = {T'v: x € Hy} is relatively compact.

We will show that A is uniformly bounded and equiregulated. Indeed, let y € A be
arbitrary, then there exists x € Hy such that y = Tz. Let t € [1p — r, 79], then

[(T2)(®)] = ot = m0)| < S [6O)] = l[6]o- (3.1.10)
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On the other hand, for ¢ € |7y, 79 + o], by condition (A4), Theorem 1.2.4 and Corollary
1.2.5, we obtain

f alt, 5)f (s, 5) dg(s)

70

[(T2) ()] < e O)] +

rt

< [blloo + | lalt, 5)[M(s) dg(s)
J T

o

<[l + [ cM(s)dg(s)
J T

r‘70'0+0'

< [l + cM(s)dg(s) = [¢]o + B, (3.1.11)

JT10

where [ = S:sw cM(s)dg(s) < oo in view of condition (A4).
Combining (3.1.10) and (3.1.11), we conclude that

19l = [T2]o0 < K,

where K := |||, + 8 does not depend on y € A. Thus, the set A is uniformly bounded.

Next we show that A is equiregulated. In fact, let an arbitrary € > 0 be given. Since
the function |19 — 7, 70] 2t — ¢(t — 79) belongs to the set G([19 — 7, 70], R™), by Hoéning’s
Theorem (Theorem 1.1.4), there is a division of |19 — r, 9] given by 79 — r = g < oy <

... < ay = Ty such that

ly(@) = y(s)| = [(Tz)(t) = (Tx)(s)]| = [9(t = 70) = ¢(s = )| <&,

for all t,s € (a_1,0;), i€ {1,...,k}. On the other hand, by conditions (A2), (A3), (A4),
Theorem 1.2.4, Corollary 1.2.5 and using the same arguments as in Step 2 of the proof of

Lemma 3.1.7, we can prove that, for 7o < 74 <, < 19+ 0,

ly(72) = y(n)| = [(Tx)(72) — (Tx)(n)]

| [ et s asts) - |
< ["er) gt + | " (arar5) — alm, 5))M(s) dg(s).

T1 70

T1

a(r1,5)f (4, 5) dg )|

This gives
ly(72) = y(m)| < [h(72) = h(71)], (3.1.12)

for all y € A and all 7, 7 € [19, 7o + o], where h: |19, 7o + 0] — R is given by

h(t) := J cM(s)dg(s) + JTO ’ a(t,s)M(s)dg(s), (3.1.13)

T0
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for every t € [19, 70 + 0.
Since h clearly is a nondecreasing function on [y, 7o+ 0] (and, therefore, h € G([79, 70+
o], R)), then again by Honing’s Theorem (Theorem 1.1.4), there is a division of |1y, 79+ 0]

given by 7o = & < & < ... <&, = 79 + 0 such that
|h(t) — h(s)| <e,
for all t,s € (§_1,&) and i € {1,...,m}. Using this fact together with (3.1.12), we have

ly(t) —y(s)] <e,
forallye A, t,s € (§-1,&) and i € {1,...,m}. Now, define

4, ZG{O,,k’}
Vi =
Cick, 1€{k+1,k+2,....k+m}.

Obviously, 7o — 7 =7 <71 < ... < Ykm = To + 0 is a division of |1y — r, 79 + o] and

ly(®) —y(s)ll <,

for arbitrary y € A, t,s € (v;_1,7) and i € {1,...,k + m}. Hence by Lemma 1.1.6, A is
equiregulated. Therefore, by Theorem 1.1.7, A is relatively compact, proving the asser-

tion.

Assertion 5. T is continuous.

Let z,z € Hy be given. Then, for ¢ € [y — r, 79], we have

[(Tz)(t) = (T2) @) = |o(t —70) = ¢(t — 70)| = 0.

On the other hand, for ¢ € |7y, 79 + o], by condition (A5), Theorem 1.2.4 and Corollary
1.2.5, we get

t

1720 - 01 = | [ att, )0 o)~ [ att )70 9) gl
[ atts) 5t~ s gt

70
rt

< | lalts 9)[L(s)[zs — 240 dg(s)

JT10
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t
< J s — 2o )oocL(s) dg(s)
T0

TO+0
< f 25 — 23]l me(s) dg(s)

70

<lo—al ([ et asts).

70

since ||z — 250 < |2 — 2o for 7o <t < 79 + 0. These arguments together with the fact
that, by condition (A5), Sigw cL(s)dg(s) := v < oo, imply that T is continuous.

Finally, all the hypotheses from Schauder Fixed—Point Theorem (Theorem 3.1.8) are
satisfied. Then, we have that 7" has a fixed point in Hy4. By the definition of the operator
T given by (3.1.9), we conclude that (3.1.8) has a solution z: [1p — 7,70 + 0| — R™.

It remains to ensure the uniqueness of the solution.

Uniqueness. Assume that x, z: [7g—7, 790+0]| — R" are two solutions of equation (3.1.8).
It is clear that x(t) = z(t) = ¢(t — 10) for all t € [19 — 7, 70]. Keeping in mind condition
(A5) and Theorem 1.2.4, we have for t € |19, 79 + 0]

t

[ a5t dgto) - |

70 70

[ a7t - 10 oo

70

Jo(t) - 2(8)] = |

<

alt, )/ (25, ) dg(s)|

rt

la(t, )| L(s)]|zs — 2s]e0 dg(s)

70

t
< Ll pmomen f s — 240 dg(s).
T0

[S—

Using the fact that

|5 = 25l = sup (s +0) —2(s +0)| = sup Ja(n) —2(n)],

6e[—r,0] ne[s—r,s]
we get

t

Jo(t) = 2001 < ¢ gy |50 (o) = 20)] dg(s). (3.1.14)

70 ME[s—r,s]

Since the right-hand side of (3.1.14) is nondecreasing, we have

t
sup (1) = 2(7)| < C\L!w,[m,mﬂf sup [(n) — z(n)] dg(s),

TE[t—7,t] 70 NE[s—r,s]
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and, therefore,

t
sup Ixﬁﬂ-ZO?<éf+CﬂLmemm+ayf sup |z(n) = z(n)| dg(s)

TE[t—r,t] 70 ME[s—r,s]

for every € > 0. Then, by the Gronwall’s inequality for the Henstock—Kurzweil-Stieltjes
integral (Theorem 1.2.10), we obtain

sup ||z(7) — 2(7)| < el 79,7 +01(9(H) —9(70))
TE[t—r,t]

Since |z(t) — z(t)| < sup |lz(7) — 2(7)|, we have
Te[t—r,t]

lz(t) — ()] < eIl 7,7 +01(9() —9(70)).

Now, since ¢ > 0 is arbitrary, it follows that z(¢) = z(t) for all ¢t € [, 79 + o]. Hence

x = z, proving the uniqueness of the solution. O

Remark 3.1.10. If a(t, s) = 1, then equation (3.1.8) reduces to the usual measure func-

tional differential equation given by:

w)=¢@+Lﬂ%@@@ (3.1.15)
¢

Ty =

Results concerning existence and uniqueness for this type of equations were obtained
in [24], using the correspondence between (3.1.15) and generalized ODEs. Also, the
conditions presented in [24] are stronger than the ones presented here for the function f,
allowing us to get a more general result. A careful examination at the conditions assumed
by function f shows that it is required that f be bounded by a constant instead of its
integral be bounded by as a function as we require here.

On the other hand, considering a(t, s) = k(t — s) for every (t,s) € Dom(a) and g(t) = ¢
for every t € [to,d), equation (3.1.8) reduces to the usual functional Volterra integral

equations of convolution type given by
t

m)=¢@+LM“ﬂﬂ%Q® (3.1.16)
T = 0

The results presented here are more general than the ones found in the literature for
this type of equation (see [34]). The same applies for more general kernels, such as
k(t —s) = (t —s)* 1 /T(«), which transforms equation (3.1.16) in a fractional functional

differential equation.
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Remark 3.1.11. Notice that if
to+o
J cL(s)dg(s) <1,
to
then it is possible to show the existence and uniqueness of solutions using Banach’s Fixed
Point Theorem, since in this case, one can show that the operator T' defined previously

1S a contraction.

Now, we present a concrete example of our main result considering as external non-

linear force the function f(v,s) = e e s a5 well as the coupling of the Maxwell
tozfl

F(a)e_& for the case 1 < a < 2 and § = 0.

and power type materials in the kernel k(t) =

We were inspired by the example found in [8].

Example 3.1.12. We consider the following integral equation
t (t _ 8)0:—1 )
z(t) = ¢(0) —I—f e sinelmg(s), t= 1
»n (@) (3.1.17)
Ty = gbv
where v > 0, 1 < a < 2, ¢ € G([-r,0],R), g: [ty,+0) — R is a nondecreasing and
left—continuous function and T' is the gamma function. Taking a: [ty, +0)? — R and
f: G([-r,0],R) x [tg, +0) — R given, respectively, by

(t —s)ot

— if s<
F(@),lst

0, if t<s

and

f,s) = e e VN (g,s) € G([—, 0], R) x [t, +0),

we have that (3.1.17) is in the form of (3.1.8) with d = +o0. Observe that, since xs(—1) =
z(s — 1), we get f(z,5) = e e snals—l),

Let us show that conditions (A1)—(A5) are all satisfied. It is clear that g satisfies
condition (A1) by definition.

Note that for any ¢ € [to, +00), the function s — a(t, s) is regulated on [«, 3], for each
compact interval [«, 8] < [to, +20). On the other hand, given s € [ty, +0) fixed, we shall

prove that a(-, s) is nondecreasing. For it, we will consider three cases.



58

Case 1. Let tq,t5 € [to, +90) be such that s < t; < t5. Then

(tl — S)a_l < (tg — S)a_l

B YR Y

= a(ty, s).

Case 2. Let 1,15 € [tg, +90) be such that t; <ty < s. Then a(ty, s) = a(tq, s) = 0.
Case 3. Let ty,t5 € [to, +90) be such that ¢; < s < t5. Then

(ta —5)*!

a(ty,s) =0 < I'(a)

= a(ty, ).

In any case, we have that if ¢1,¢s € [ty, +00) are such that ¢; < t5, then a(t1, s) < a(t, s).
Also, clearly, a is bounded on any compact rectangle 9, 7o + o]* < [to, +0)%.

Note that if [r, 70 + o] < [to, +0), © € G([10 — 7,70 + o|,R), t € [to, +o0) and
70 < 11 < Tp < 7o + 0, then it follows that [r,72] 2 s — a(t,s)f(zs, s) is a regulated
function on [71,72]. This implies the existence of SZ a(t,s)f(zs, s)dg(s), proving that
condition (A3) is satisfied.

Now, let us prove that (A4) is satisfied. Define M : [ty, +00) — R* by M(s) = el 7%,
for s € [tg,+00). Observe that M is a locally Henstock—Kurzweil-Stieltjes integrable

function with respect to ¢ and

Thm1.2.3

% f " era(ma, 5) + caa(my, )| | (2o, )] dg(s)

T1

frz c1a(me, s) + caa(m, $) f(xs, s)dg(s)

T1

T2
= J lcra (T2, 8) + caa(my, 8)| [e 7 e =1 | dg(s)

T2
< J lc1a(Ta, s) + coa(my,s) e P edg(s)

T1

= JTQ c1a(7s, s) + cpa(T1, )| M(s)dg(s),

T1

for v € G([ro — 1,70 + 0|,R), 7o < 71 <72 <79+ 0 and ¢, 2 € R, getting (A4).

Finally, let us show that (A5) is also satisfied. Define L: [ty, +00) — R* by L(s) =
el™7% for s € [tg, +0). It is clear that L is a locally regulated function and for z,y €
G([ro — 7,70+ c|,R) and 7 < 71 < 7o < 79 + 0, we get

Thm1.2.3

< J |a(7a, s)| | f(2s,8) — f(ys, s)|dg(s)

T1

| " 8) [ (er5) — (e, 5)] dg(s)

T1

_ J 2 |a(ra, 5)| [e 7 (em (D) — emsnu("DY | qg(s)

T1
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< [l 77 (1) - (Dl o)

T1

<JﬁhumﬁﬂL@H%—%Mmdﬂ$v

T1
giving us condition (A5), where the third inequality follows from the estimates given by
the Mean Value Theorem.
Therefore, f, a and g satisfy all the hypotheses of Theorem 3.1.9. Thus, there exists

a o > 0 such that equation (3.1.17) has a unique solution on [ — 7, 7 + 0.
We finish this section with another example, which is completely new in the literature.

Example 3.1.13. Consider the following integral equation

uw=:wm+ﬁﬁmmwwwmmW@@»t>m .
o,

Ty =

where
s, s € 0,1],
9(s) =
s+1, se(l,d), d>1,
n: [to,d) — R* is a regulated function, 5: [tg,d) — R is a nondecreasing function, v > 0

and a < 0. Define the following functions

a(t,s): |[to,d) x [to,d) — R
(t,s) = B(t)e,

and for 0 € [—r, 0],

f(,s):  G([=r,0],R) x [to,d) — R
(1, 8) > p(s)e"TeosO),

By definition, it is clear that g satisfies (A1) and a satisfies (A2).

Since B(t)n(s)e*se75@(+0) ig regulated for all z € G([ry—r, 7o+, R), t € [to,d), [0, To+
o] < [to,d), the integral
J " ety (s)er e @) g )

T1
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exists in the sense of Henstock—Kurzweil-Stieltjes for all 7o < 71 < 7o < 79 + 0, getting
(A3).

To show (A4), notice that 0 < n(s)e™7 @) < p(s)e?. Defining M(s) := n(s)e” for
s € [to,d), we have that M is Henstock—Kurzweil-Stieltjes integrable with respect to g

and

< Jm lcra(Ty, s) + caa(Ty, 5)| M (s)dg(s),

T1

Jﬂ c1a(Te, s) + ca(m, 8) f(xs, s)dg(s)

T1

for x € G([ro —r,70 + 0],R), c1,cs e Rand 70 < 7y < 1 < 719 + 0, proving (A4).
Let L: [ty,d) — R* be defined as L(s) = vyen(s). Notice that by the Mean Value

Theorem, |e™7 ) — e=75(W)| < ye¥|u — v|. Hence

fmdmﬁﬁwwﬁ—ﬂ%$NM$

T1

T2
J a(ry, s)ip(s)[e”7 =0 — gm0 qg(s)

T1

A

F |a(72, 5)[n(s)eTy|zs — 2s]wdg(s)

T1

- JTQ la (1o, $)|L(8)|zs — 2s5|eodg(s),

T1

proving condition (A5). Therefore, all the hypotheses of Theorem 3.1.9 are satisfied, then

there exists a o > 0 such that equation (3.1.18) has a unique solution on [y — 7, 79 + 0].

3.2 Existence and uniqueness of maximal solutions

In this section, we are interested to investigate under which conditions we can ensure the

existence and uniqueness of maximal solutions of the following equation:
t

£t) = wm+Jam@ﬂ%»mm¢ - .

L7 = ¢7
where To = to, gb € G([_Ta O]aRn)a f: G([—T’, 0]7Rn) X [t()a +OO) - Rn’ a: [t07 +OO)2 - R
and g: [to, +90) — R is a nondecreasing function and the integral in the right-hand side

is understood in the sense of Henstock—Kurzweil-Stieltjes.
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We are now interested about maximal solutions since we intend to investigate the
asymptotic behaviour of the solutions of (3.2.1), such as stability results. From now on,

we assume the conditions (A1)—(Ab) for the case d = +o0, which can be read as follows:
(B1) The function g: [tg, +90) — R is nondecreasing and left—continuous on (¢, +00).

(B2) The function a: [tg, +90)* — R is nondecreasing with respect to the first variable,

regulated with respect to the second variable and, locally bounded on [ty, +0)2.

(B3) The Henstock—Kurzweil-Stieltjes integral
T2
| atto) gt
exists, for each compact interval 1,79 + o] < [to, +0), all x € G([1g — r, 70 +

ol,R"),t € [ty,+0) and all ) < 7y < 7o < 79 + 0.

(B4) There exists a locally Henstock—Kurzweil-Stieltjes integrable function M : [to, +00) —

R* with respect to g such that for each compact interval [7y, 79 + o] < [to, +0), we

have
| e s)(s)gto) < [ o) M) (s),

for all x € G([1g — r, 70 + 0|, R"), all b € Go([10,70 + o]*,R) and all 9 < 71 < 7» <

To + O.

(B5) There exists a locally regulated function L: [ty,4+00) — R* such that for each
compact interval [7, 70 + o] < [to, +0), we have

T2

f a1, ) (s 8) — F(20, 9)]dg(s)]| < f a(ra, 8)] L(5)]s — 2alledlg(s),

T1

for all z,z € G([ro —r, 70+ o],R") and all o < 7y <K o < 79 + 0.

Definition 3.2.1. (Prolongation to the right) Let 7y > ¢y, ¢ € G([—r,0],R") and x: J —
R" J < [to — 7, +0), be a solution of (3.2.1) on the interval J with 79 —r = min J.
The solution y: J — R", J [to — 7, +00) with 79 — 7 = min J, of (3.2.1) is called a
prolongation to the right of x, if J < J and x(t) = y(t) for all t € J. If J < J, then y is
called a proper prolongation of x to the right.
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Definition 3.2.2. (Maximal solution) Let 75 = to, ¢ € G([—7,0],R"). A solution y: [ —
R™, I < [ty — r,+00) and I is such that 79 — r = min I, of the equation (3.2.1), is called
maximal, if there is no proper prolongation of y to the right. In this case, I is called the

maximal interval of existence of y.

The proof of the next result is very similar to the proof of the uniqueness of solution

(see Theorem 3.1.9) and thus, we will omit it here.

Lemma 3.2.3. Assume f: G([—r,0],R") x [tg, +0) — R™ satisfies the conditions (B3),
(B4) and (B5), a: [ty, +0)? — R satisfies condition (B2) and g: [to, +90) — R satisfies
condition (B1). Let 19 = ty, ¢ € G([—r,0],R") and consider the equation (3.2.1). If
z: Jy, = R" and y: J, — R™ are solutions of (3.2.1), where J, and J, are intervals such

that 7o —r = min J, = min J,, then x(t) = y(t) for allt € J, N J,.
Next, we present the main theorem of this section.

Theorem 3.2.4. Suppose f: G([—r,0],R™) x [tg, +0) — R™ satisfies conditions (B3),
(B4) and (B5), a: [ty, +0)? — R satisfies condition (B2) and g: [to, +90) — R satisfies
condition (B1). Then, for every 7o = to and ¢ € G([—r,0],R"), there exists a unique
mazximal solution x: I — R™ of the equation (3.2.1), where I is a nondegenerate interval

with 1o —r = min I. Also, I = [19 — r,w), with w < +00.

Proof. Let 19 = to and ¢ € G([—r,0],R™) be fixed. Firstly, we will show the existence of
a maximal solution.

Existence. Consider the set
S:={z: J, —» R": J, is an interval such that 7o —r = min .J, and

x is a solution of the equation (3.2.1)}

The set S is nonempty by the local existence and uniqueness of solution given in Theorem
3.1.9.
Define I := | J J, and z: I — R™ by the relation x(t) = y(t), where y € S and t € J,,.
yeSsS

Note that if y and z belong to S, then y(s) = z(s), for all s € J, n J,, by Lemma 3.2.3.

Thus, we conclude that = is well-defined. Note that I is an interval with 79 — r = min [
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(since I is union connected with a common point) and z is a maximal solution of the
equation (3.2.1), proving the existence of a maximal solution.

It remains to ensure the uniqueness of the maximal solution.
Uniqueness. Assume z: [{ — R" and z5: I, — R™ are two maximal solutions of the
equation (3.2.1), where I3, I are intervals such that 7o — r = min /; = min /5. Hence, by
Lemma 3.2.3, we have

x1(t) = xo(t), foralltel} n L. (3.2.2)

Since 79 — r = min /; = min I5, we have only one of the following possibilities:
1) L ¢ I,
2) Ll
3) I = L.

We will show that the only possibility is (3). Any other ones lead a contradiction. Indeed,
without loss generality, we assume that I; & I, then Iy n Iy = I; and, therefore, by (3.2.2),
we have x1(t) = x9(t) for all ¢t € I1. It implies that xs|;, = x1 and I} & I, ie., 25 is a
proper prolongation of x, that is assumed to be maximal, which is a contradiction. Hence
I, = I and z4(t) = x5(t), for all t € I, that is, 1 = xs.

Finally, let us prove that the interval of existence of the maximal solution must be
right—open.

Let ¢™**: [ — R" be the maximal solution of

t

2(t) = 6(0) + La@ﬁ)f(%ﬁ)dg(s)’ = (3.23)
ty = 6

where [ is an interval with 7 € I and min/f = 75 — 7.

It is clear that I < [ty — r,4+0). Define w := sup I. Hence w < +o0. If w = +o0, the
result follows immediately. Suppose that w < +oo.
Assertion 1. w ¢ [.

Let us assume that w € I, that is, I = [79,w]. Define v: [to, +90) — R" by

A1) = 6(0) + j alt,3)f (™, 5)dg (). (3.2.4)

70
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Notice that by definition v(w) = ¢™*(w). On the other hand, consider the following

problem

y(t) = ’y(t) + J a(t, S)f(ysa S)dg(3)> t=w, (3.2.5)

WV

maxr

Yw = Sow
Assertion 2. There exists a local solution y: [w — 7, w 4+ n] — R™ of (3.2.5).
Indeed, let n > 0. Consider the set

H = {7»/} € G([w —rw+ U]aRn)f ¢w = QDZWI}'
Clearly H is nonempty, closed and convex. Now, define the operator T': H — H by

e (t — w), telw—rw
(Tz)(t) = ¢ (3.2.6)
v(t) + J a(t, s)f(zs,s)dg(s), te [w,w+n],

w

where 7(t) is the function defined by (3.2.4).

Assertion 3. 7' is well-defined.

Let © € H be fixed. We need to prove that T'(H) < H. Therefore, we start by proving
that Tz is regulated on [w —7,w+n]. In order to do this, we divide the proof in two steps.
Step 1. The restriction of Tz to [w — r,w] is regulated.

Indeed, let 7 € (w — r,w], then 7 — w € (—r,0]. Now, since " e G([-r,0],R"),

w

, %im) @ (0) exists and

lim  @*(0) = lim (0 +w—w) = lim ¢"*(s —w) = lim (Tx)(s),

0—(T—w) v 0—(T—w) v s Y ST

which implies that lim (Tx)(s) exists for 7 € (w — r,w]. Similarly, we can prove that

lim (T'z)(s) exists for 7 € [w — r,w).
Step 2. The restriction of Tz to [w,w + 1] is regulated.
In fact, for w < 7 < 7 < w+7n, by conditions (B2), (B3), (B4), Theorem 1.2.4, Corollary

1.2.5 and the definition of v (given by (3.2.4)), we have

|(Tz)(72) — (Tx) (7))

T2

= [ = atm) + [ atrs) e s) dgts) = [ atrs) 1o s) ds)|

w

| a1t da) [ atrs) ) doto)|

< Iy(m) = 1)l + |
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<|

| (atr9) = atrio9)) st s) dglo)

70
T2 T1

!

JTl a(Ta, ) f(ws, s) dg(s) + J a(,s)f (s, s) dg(8)”

w T1

a7, 8) (s, 5) dg(s) —J

w

< j " Ja(ma,8) — alm, )| M(s) dg(s)

L (a(TQ, s) — a(m, s))f(xs, s) dg(s)H

!

[ atmsrtens) gt +]

T1

< [ latrs) — atr ) M) dg(s) + [ la(r )] 1) )

T1

+ Jﬁ la(2, s) — a(T1, s)| M(s)dg(s)

T1

_ f " a(ra, 5) M(s) dg(s) + f la(ra,5) — a(ry, 5)| M(s) dg(s).

T1 T0
By condition (B2), a is nondecreasing with respect to the first variable, and there exists

c:= sup |a(t,s)|. Hence
(t,8)€[w,w+n)?

T1

| " a(ra, 5) M(s) dg(s) + | latres) = atr )1 21 ags)

T1 70

T1

< JQ cM(s)dg(s) + J (a7, 8) — a(r1,s))M(s) dg(s)

70

w1

< f eM(s)dg(s) + f (a(r2, 5) — a(r, £))M(s) dg(s),

70

that is,

T2 w1

cM(s)dg(s) + J (a(7e,s) —a(m,s))M(s)dg(s). (3.2.7)

70

[Ta(rs) — T(m)] < f

T1
Define h: [w,w +n] — R by
¢ wtn
h(t) := f cM(s)dg(s) —I—J a(t,s)M(s)dg(s), (3.2.8)
70 70
for every t € [w,w + n]. In view of the Henstock—Kurzweil-Stieltjes integrability of the
function M with respect to the function g on |79, w + 7], the integral Sio cM(s)dg(s) exists
for all ¢ € [w,w + n]. In a similar way, we can prove that S:}OM a(t,s)M(s)dg(s) exists for

all t € [w,w + n]. Thus, h is well-defined and is a nondecreasing function. Also, using

(3.2.7) and (3.2.8), we have

[(Tz)(72) — (Tx) ()| < h(72) = h(m), (3.2.9)
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for all w < 74 < 7 < w +n. Now, by (3.2.9) and by the fact that h is a nondecreasing

function, both the lateral limits

lim (T'z)(s) for 7 € [w,w +n) and lim (Tx)(s) for 7 € (w,w + 1]

soTF §—>T ™

exist. This implies that the restriction of Tz to [w,w + n] is regulated, proving Step 2.

Also, notice that for § € [—r,0], we have § + w € [w — r,w] and, therefore,
(T2)w(0) = (Tz)(0 + w) = (0 + w —w) = @) (0),

which implies (T'z),, = ¢**. Hence Tz € H, proving the Assertion 3.

Assertion 4. A:=T(H) = {Tx: v € H} is relatively compact.

We will show that A is uniformly bounded and equiregulated. Indeed, let y € A be
arbitrary, then there exists z € H such that y = Tx. Let t € [w — r,w], then

[(Tz)(@)] = [l (t = w)| < S [ (O)] = ™ [leo- (3.2.10)

On the other hand, for t € [w,w + 1], by condition (A4), Theorem 1.2.4 and Corollary
1.2.5, we obtain

I(To)®)] < @) + f alt, $) (s, 5) dg(s)

w

f alt, $)f (s, ) dg(s)

w

:H¢>(0)+ w a(t, s)f (e, s)dg(s)| +

< 16(0) +f!ats\M<>dg f|ats\M<>dg<>
<ol + [ errts)agls) + [ ) agls)

= [[@llcc + | cM(s)dg(s)

J1o
rw+n

< o] + cM(s)dg(s). (3.2.11)

J TO

Combining (3.2.10) and (3.2.11), we conclude that
[9leo = |T2]0 < K,

where K := max {ngmaxﬂw, [0 + Sw+n } does not depend on y € A. Thus,

the set A is uniformly bounded.
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Next, we show that A is equiregulated. In fact, let an arbitrary ¢ > 0 be given. Since
the function [w — r,w] 3 t — @ (t — w) belongs to the set G(|w — r,w],R™), we can
use Honing’s Theorem to guarantee the existence of a division of the [w — r,w] given by

Ww—r=o0 <o <...<a=w such that

ly(®) = y(s)ll = [(T2)(t) = (Tx)(s)] = [@* (¢ = w) = pF* (s —w)l| <,

for all t,s € (;_1,;), i € {1,...,k}. On the other hand, by conditions (B2), (B3), (B4),

Theorem 1.2.4 and Corollary 1.2.5, we can prove that for w < 7y < 7 < w + 7,

ly(r2) = y(m)| = [(T)(72) = (Tx)(7)]

T2

— ‘7(7-2) — (1) —|—J a(ma, s)f(zs, s J a(ry, 8) f(xs, s )dg(S)H

w

Jw(a(Tz,s) — almy, 8)) fgm,

70

a7y, s) — a(m, 5)) f (s, 5)dg(s)

. ‘ J " e 5) (e, 5)dg(5)

T1

T2

< fn(a(ﬁ7 s) —a(r, s))M(s)dg(s) + J cM(s)dg(s)

70 T1

< JTQ cM(s)dg(s) + fwm(a(ﬁ, s) —a(m,s))M(s)dg(s).

T1 TO
This gives
ly(72) — y(r1)| < |h(72) — h(m1)], (3.2.12)

for all y € A and all 75, 7y € [w,w + 7], where h: [w,w + 1] — R is given by

t w7

h(t) := f cM(s)dg(s) + f a(t,s)M(s)dg(s), (3.2.13)

70 70
for every t € |[w,w + 7], which is a nondecreasing function on [w,w + 1] (and, therefore,
h € G(Jw,w + n],R)), then again by Honing’s Theorem, there is a division of [w,w + 7]
given by w = § < & < ... <&, = w+nsuch that |h(t) — h(s)| < ¢, for all ¢, s € (&-1,&)
and i € {1,...,m}. Using this fact together with (3.2.12), we have |y(t) — y(s)| < e, for
allye A, t,se (§-1,&) and i € {1,...,m}. Now, define

a;, i1€{0,...,k}
Vi =
Eick, 1e{k+1LkE+2,...,k+m}
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Obviously, w — 7 =7 <71 < ... < Ygtm = w + 7 is a division of [w — r,w + 7] and

ly() —y(s)ll <,

for arbitrary y € A, t,s € (7;_1,7) and i € {1,...,k + m}. Hence by Lemma 1.1.6, A is
equiregulated. Therefore, A is relatively compact, proving the assertion.
Assertion 5. T is continuous.

Let x,z € H be given. Then, for t € [w — r,w], we have

[(T2)(t) = (T2) )] = | (t —w) = 7™ (t = w)| = 0.

On the other hand, for ¢ € [w,w + 7], by condition (B5), Theorem 1.2.4 and Corollary
1.2.5, we get

t

[Latt. s 9050 |

w w

I(T2)() = (T2)(8)] = | alt, $)f (25, 5) dg(s)

[ att.s) )~ e o)
< [ttt L)1z, 241l

< [ I zhact)sts)

< [ = (o) dots)

w

<lo—el ([ erasts).

w

since ||xs — 25| < | — 2|loo for w < s < w + 1. These arguments imply that 7" is
continuous.

Since all the hypotheses of Schauder Fixed—Point Theorem (Theorem 3.1.8) are satis-
fied, we have that T" has a fixed point in H. By the definition of the operator 1" given by
(3.2.6), we conclude that the equation (3.2.5) possesses a solution y: |[w —r,w +n| — R™.
Thus, the assertion is true.

Now, define u: [1p — r,w + n] — R™ by

mar(), tel|ltg—r,w
u(t) = e (t) [ |

y(t), te (w,w+mn
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Note that, for 6§ € [—r, 0], we have 0 + 75 € [ — 1, 79| < [79 — r,w] and, therefore,

ury (0) = u(l + 70) = (0 + 70) = 7" (0) = &(0),

that is, u,, = ¢. If t € (w,w + 7], we have

u(t) =

a ySa g( )

t

ot ) (2" 5)dg(s) + [ alt,) (e 5)dg(s) (3:2.14)

w

-|- +
%h

Note that for 6 € [—r, 0] and s € |19, w], we get 6 + s € [1p — r,w] and, therefore,
P (0) = @0 + 5) = u(l + 5) = us(0),

that is, % = u, for all s € [19,w]. From this, we get

w

jw@@ﬂmM>@m [ ate.s) st 912900 (3.2.15)

70 70

On the other hand, since y is a solution of the IVP (3.2.5), we have y,, = ©'**, that is,
y(0 + w) = "0 + w) for all 6 € [—r,0], which implies

y(&) = @M (&) for all £ € [w — 7, w]. (3.2.16)

Now, for 6 € [-r,0], s € [w,tf] and t € (w,w + 7], we get w — 7 < O+s <t <w+n. In

particular, 0 + s € [w — r,w + 1] = [w — r,w] U (w,w + n]. Now, consider two cases:

(i) If 0+s € [w—r,w], then by (3.2.16), y(6+s) = ¢"**(6+s) = u(f+s) and, therefore,

Ys = Us.

(ii) If 0 + s € (w,w + 7], then according to the definition of u, y(6 + s) = u(6 + s) and,

therefore, v, = us.

Hence, ys = u, for all s € [w,t] and all t € (w,w + n]. From this, we get

t

ka@ﬂ%@@@=faw@ﬂ%@@@. (3.2.17)

w w

Thus, by (3.2.14), (3.2.15) and (3.2.17), we have

t

a(t, s) f(us, s)dg(s) + J a(t, s) f(us, s)dg(s) (3.2.18)

w

W

ut) = o0) + |

70
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t
= ¢(0) —i—f a(t,s) f(us, s)dg(s) (3.2.19)
70
for all ¢ € (w,w + n]. This implies that u is a solution of (3.2.1). It is easy to see that u

max

is a proper prolongation of ¢ which is assumed to be maximal. Therefore, we have a

contradiction. Hence w ¢ I and I = [y — r,w), getting the desired result. []

The following result will be crucial to prove that the maximal solution is defined on

[0 — 7, +00).

Lemma 3.2.5. Assume f: G([—r,0],R") x [to, +o0) — R™ satisfies the conditions (B3)
and (B4), a: [ty,+0)*> — R satisfies condition (B2) and g: [to, +0) — R satisfies
condition (B1). If a is left-continuous with respect to the first variable, then for each

ze G([rg—r B, R"), to < 19 < S, the function

(70, 8] = t — f alt, ) f (ze, 5)dg(s)

is left-continuous on (1q, 3], that is,
¢ 7

lim | a(t, s) f(zs, s) dg(s) =J a(n, s)f(xs,5)dg(s), € (10, ].

=07 Jr 70

Proof. Suppose that f, g and a satisfy the assumptions above. Using the same arguments
as Step 2 of the proof of Lemma 3.1.7, we can prove that

| alto)fas)dgts) - | alro)fs)dgs)

70 70

< |h(t) — h(7)], (3.2.20)

for all t, 7 € |70, 5], where h is given by
t 8
h(t) := f cM(s)dg(s) + f a(t,s)M(s)dg(s), te€ [m0,0]

70 70

Here c:= sup la(t, s)|. Notice that every point in (79 — r, 3] at which the function h
(t,5)€[70,8]2

is left—continuous is a left—continuity point of the function ¢ — S:O a(t, s) f(zs, s)dg(s).

In order to prove that h is left—continuous on (75 —r, 5], we will prove two statements.
Statement 1. hy(t) := Sio cM(s)dg(s), t € [to, to + o], is left—continuous on (1y — r, 5].
Indeed, since g is left—continuous (19 — r, 8], by Lemma 1.2.6, hy(t) := S:O cM(s)dg(s) is
left—continuous (79 — r, 8], proving statement 1.

Statement 2. hy(t) := Sfo a(t,s)M(s)dg(s), t € [0, 5], is left—continuous on (r5 — r, 3].
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n

Let n € (1o — 7, 8] and (7)nen < (70,7m] such that 7, "= 7. Define the sequence of

functions
©on(8) := a(t,, s)M(s), s € [0, B], (3.2.21)
and ¢: [1, 8] — R by
©o(s) = a(n,s)M(s), s € [0, B]-

Since a(-, s) is left-continuous at 7 and (7,,)nen < (70, 7] is such that 7,, "= 7, we have

lim a(Tp, s) = a(n, s) and, therefore,

that is,
lim o, (s) = ¢(s), s € [, 5]

According to condition (B3), Sfo a(Tp, s)M(s)dg(s) exists for all n € N. Using this fact
together with the (3.2.21), we get

B
f ©n(s)dg(s) exists for all n € N.

70

On the other hand, for all ¢ € [, #], we have
lon(t)| = |a(Tn, )M (t)| < c|M(t)| = cM(t), for all n e N,

This implies that £(t) < p,(t) < w(t),t € |19, ], where w(t) := c¢M(t) and k(t) = —cM (t).
Also, observe that the integrals Sfo k(s)dg(s) and Sfo w(s)dg(s) exist, since M is a locally
Henstock—Kurzweil-Stieltjes integrable function. Since all the hypotheses of Theorem
1.2.11 are satisfied, we obtain

B8 8
lim [ u(s)dg(s) = f o(s) dg(s),

n—00
70 to

that is,
Lim hs(7,) = ha(n).
Hence, the function hy is left—continuous at ), for each n € (79, 5], obtaining Statement 2.
Now, by Statements 1, 2 and the fact that h(t) = hi(t) + ho(t), it follow that h is

left—continuous on (79, 3]. Using this fact together with (3.2.20), we have that the function
[t —r,B] 2t — Sio a(t, s)f(xs, s)dg(s) is left—continuous on (19 — r, 5]. O



72

The next result provides conditions in order to ensure that the maximal solution is

defined on [y — 7, +0).

Theorem 3.2.6. Assume f: G([—r,0],R") x [ty, +00) — R" satisfies the conditions (B3),
(B4) and (B5), a: [ty, +0)?> — R satisfies condition (B2) and g: [ty, +0) — R satisfies
condition (B1). Suppose 1o = to, ¢ € G([—r,0],R") and x: [19—r,w) — R" is the mazimal
solution of the equation (3.2.1). If a is left-continuous with respect to the first variable,

then w = +o0.

Proof. Suppose that the conclusion of the theorem is not true, i.e., w < +o0.

Assertion 1. The limit lim z(t) exists.

t—ow™

By conditions (B2), (B3), (B4), Theorem 1.2.4, Corollary 1.2.5 and using the same argu-
ments as in Step 2 of the proof of Lemma 3.1.7, we can prove that, for any 7o < u <t < w,

we have

U

[ a5 a506) ~ [ at, )60, o)

70 70

J2(t) - w(w)] = |

<

[t rrteasasto)] + | (ats) - o)) o ) a0

u

(7

< J cM(s)dg(s) + f (a(t,s) — alu,s))M(s)dg(s)

u T0

w

< J cM(s)dg(s) + J (a(t,s) — a(u, s))M(s)dg(s).

70

It implies that
|x(t) — x(u)| < |h(t) — h(uw)|, forall t,u € [m,w), (3.2.22)

where h: |15, +o0) — R is given by

w

3
h(§) = f cM(s)dg(s) + f a(&, s)M(s)dg(s), (3.2.23)

70 70

for all £ € 19, +90). Taking into account that M is a locally Henstock—Kurzweil-Stieltjes
integrable function and using the same arguments as in the Remark 3.1.3, we infer that
the integrals on the right—hand side of (3.2.23) are well-defined. Now, since w € (g, +0)
and h is a nondecreasing function (which follows from definition), tli{f{ h(t) exists. Thus,
given £ > 0, by the Cauchy Condition, there exists § > 0 (we can take 79 < w — §) such
that

|h(t) — h(s)| <&, for all t,s € (w—d,w). (3.2.24)
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Then, by (3.2.22) and (3.2.24), the following inequality holds
|z(t) — z(w)] < [(t) = h(u)] <,

for every t,u € (w — d,w). Then, again by the Cauchy Condition, lim z(¢) exists. Define

t—w™
y: [10 —r,w] — R™ by
x(7), T € [10 — 1, W)
y(T) = (3.2.25)
tlim_ z(t), T=w.
Obviously, y € G(|1o — r,w],R™). By Lemma 3.2.5, we have
t w
tggl_ a(t,s)f(ys,s)dg(s) = J a(w, s)f(ys,s) dg(s). (3.2.26)
70

70

Therefore, we get

then
lim z(t) = ¢(0) + lim | a(t,s)f(ys, s)dg(s).

t—w™ t—w™ 0
Hence, by (3.2.25) and (3.2.26), we obtain

i) = 00) + e, 5) (g $)dg (5).

Thus y is a solution of the equation (3.2.1) and also, it is a proper prolongation of x, which

is assumed to be maximal. Therefore, we have a contradiction. Hence w = +o0o0. O

3.3 Existence and uniqueness of solutions of impul-
sive equations

In this section, we use the previous results to ensure the existence and uniqueness of
solutions for impulsive functional Volterra—Stieltjes integral equations, using the corre-

spondence presented in Chapter 2.
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Theorem 3.3.1. Let me N and to < t; < -+ < t,, < d. Assume that g: [ty,d) — R is
a requlated left—continuous function which is continuous at ti, ... t,, a: [ty,d)* — R is
nondecreasing with respect to the first variable, requlated with respect to the second vari-
able, locally bounded on [ty,d)* and, continuous with respect to first variable at ti,. .. tp,.
Also, suppose that I, ..., I,: R" — R™ and f: G([—r,0],R™) x [ty,d) — R™ satisfy the

following conditions:

1. The integral SZf a(t, s)f(xs, s)dg(s) exists in the sense of Henstock—Kurzweil-Stieltjes,
for each compact interval |19, 70+ 0| < [to,d), allx € G([To—7r, 70+ 0], R"™), t € [to,d)

and to < up < Uy < 79 + 0.

2. There exists a locally Henstock—Kurzweil-Stieltjes integrable function My : [ty,d) —
R* with respect to g such that for each compact interval 19,70 + o] < [to,d), we

have
u

[ b9 )dg(9)] < [ 315 bz, 9] ),

for all z € G([10 —r, 70 + 0|, R™), b€ Go[10, 70 + 0]*, R) and ty < uy < us < 79+ 0,

and there exists a constant My > 0 such that
()] < Mo
for every ke {1,...,m} and x € R™.

3. There exists a regulated function Ly : [ty,d) — R* such that

fa(uz, s$)f (s, 8) = f(25,8)]dg(s)| < JLl(é’) |a(ug, s)| s = 25]0dg(s),

for all z,z € G([rg — r,79 + 0|, R™) and ty < uy < uy < 79 + 0 and there exists a

constant Lo > 0 such that
[ e(2) = Le(y)| < L2 |z — y

for every ke {1,...,m} and z, y € R™.
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Then for all € G([—r, 0], R™) there exist a 0 > 0 and a unique solution x: [to—r,to+o| —

R™ of the initial value problem:

() = o0)+ j aft, ) fans)dg(s) + 3 alt i) Tl ()
fo ke{l,...m}, (3.3.1)

Tt = ¢
Proof. Let ¢ € G([—r,0],R") be given. Define f: G([—r,0],R") x [to,d) — R" by

fly,7), 7e€[to,d\{t1,-..,tm},
I(y(0), 7=t ke{l,...,m},

fly.7) =

and g: [to,d) — R by

g(7), T € [to, t1],

9T) =3 9(r)+k, 7€ (e tps], ke{l,...,m—1},

g(t)+m, TE€ (tm,d).

\

According to Lemma 2.1.1, we see that the functions f, §, and a satisfy all the hypothe-
ses of Theorem 3.1.9. Hence, there exist o > 0 and a unique solution z: [ty—r, to+o] — R"

of the functional Volterra—Stieltjes integral equation

() = #0) + f alt, ) f (s, $)dq(s)
Ty, = O.

Now, by Theorem 2.1.2, the function x is also a unique solution of the impulsive functional

Volterra—Stieltjes integral equation

w(t) = 60)+ j aft, ) fens)dg(s) + S alt i) Tl ()

to ke{l,...,m},
an = (b

proving the desired result. O]

The next result gives us sufficient conditions to ensure the existence and uniqueness

of maximal solution of impulsive functional Volterra—Stieltjes integral equation.
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Theorem 3.3.2. Let {t;}{_, be the moments of impulses in [ty, ), such that t, < tyi1 for
all k € N and limy_,o, t, = 0. Assume that g: [ty,0) — R is a requlated left—continuous
function which is continuous at {t;.}_,, a: [to,0)*> — R is nondecreasing with respect to
the first variable, requlated with respect to the second variable, locally bounded on [tg, 0)?
and, continuous with respect to first variable at {tx}7,. Also, suppose that I;;: R" — R",

keN, and f: G([-r,0],R") x [tg,0) — R" satisfy the following conditions:

1. The integral Sjﬁ a(t, s)f(xs, s)dg(s) exists in the sense of Henstock—Kurzweil-Stieltjes
for each compact interval [19,70 + o] < [to,0), all x € G([1o — r,70 + o], R"),

tE[to,OO) andt0<u1<u2<m+a.

2. There exists a locally Henstock—Kurzweil-Stieltjes integrable function My : [tg, 00) —
R* with respect to g such that for each compact interval |19, 70 + o] < [to,0), we

have
u

[ b9 )dg(9)] < [ 305 bz, 9] ),

for all z € G([1o —r, 70 + 0|, R"), b€ Go([10, 70 + 0]*, R) and ty < uy < us < 79 + 0,

and there exists a constant My > 0 such that
()] < Mo
for every k € N and x € R™.

3. There exists a requlated function Ly: [ty,0) — R such that

fa(uz, s)[f (s, 8) = f(25,8)]dg(s)| < JLl(é’) |a(ug, s)| s = 25]0dg(s),

for all z,z € G([rg — r,79 + 0|, R™) and ty < uy < us < 79 + 0 and there exists a

constant Lo > 0 such that

[ 1x(2) = Ie(y)]| < La |z — 9]

for every k e N and x, y € R".
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Then for all ¢ € G([—r,0],R™) there exists a unique maximal solution x: I — R™ of the

initial value problem:
x(t) = ¢(0)+ f a(t,s)f(xs,8)dg(s) + Y, alt,t)Ie(x(t)), t=t

xto = ¢7

where I = [ty —r,w),w < 0.

Proof. Let ¢ € G([—r,0],R") be given. Define f: G([—r,0], R") x [to,0) — R™ by

~ f(va)a TE [t07 OO)\{tk}locO:D
fly,7) =
]k(y(())), T:tk, kJEN,

and g: [tg,0) — R by

9(7_)7 TE [t07t1]7

9(7—) + ka TE (tkatk+1], k e N.

According to Lemma 2.1.1, we see that the functions f, §, and a satisfy all the hy-
potheses of Theorem 3.2.4. Therefore, there exists a unique maximal solution x: I — R",
I = [ty — r,w), of the functional Volterra—Stieltjes integral equation

z(t) = ¢(0)+L@(t,8)f($s>5>d§(s> (3.3.3)
Ty, = O

Now, by Theorem 2.1.2, the function x is also a unique solution of the impulsive functional
Volterra—Stieltjes integral equation

t

o) = 00)+ | alt.s) (s dgls) + D alt )l (6)

to keN;t, <t (3.3.4)
.’Eto = ¢

It is clear that x is a maximal solution of (3.3.4), otherwise there would be y: J — R™,
I < J, such that y is a solution of (3.3.4). However, Theorem 2.1.2 would imply that y is

a solution of (3.3.3), contradicting the maximality of .
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3.4 Existence and uniqueness of solutions A-integral

equations on time scales

In this section, we use the previous results to ensure the existence and uniqueness of

solutions for functional Volterra A-integral equations on time scales. We begin by recalling

the assumed conditions on Section 2.2.

(C1)

(C2)

(C3)

(C4)

The function a: [ty,d)2 — R is nondecreasing with respect to the first variable,
regulated with respect to the second variable and rd—continuous with respect to the

first variable.

The Henstock—Kurzweil A-integral
S2
| atrs) st s)as
81
exists for each time scale interval [sg, so + 0]t < [to, d)r, € G([so — 1, 5o + 0], R"),

T € [0, S0 + d]1 and s1, $2 € [S0, S + O], 51 < So.

There exists a locally Henstock—Kurzweil A-integrable function M;: [to, d)y — R*
such that for each time scale interval [sg, sg + 0]t < [to, d)T, we have

52

f(61a(32, s) + coa(sy, s)) fxs, s)As| < fMl(s) lc1a(sq, 8) + caa(sy, s)| As,

S1

for all x € G([sg — 1,50 + ], R™), ¢1,¢2 € R and s1, 82 € [s0, S + O], 51 < So.

There exists a locally regulated function Ly : [to,d)r — R* such that for each time
scale interval [sg, so + 0|1 < [to, d)r, we have

52 52

j (52, 3)[f (@0, 8) — F (20 )]s < fm(s) a(s2, )| |2s — 2|, As,

S1 S1

for all z, z € G([so — 1, s0 + 0], R") and s1, s3 € [S0, So + d]1, 51 < S0

The next result gives sufficient conditions to ensure the existence and uniqueness of

solutions of functional Volterra A-integral equations on time scales.
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Theorem 3.4.1. Let [to—r,to]r be a time scale interval and let d € T be a left dense point
such that d > ty. Assume a: [to, d)2 — R satisfies condition (C1), and f: G([—r,0], R™) x
[to, d)r — R™ satisfies conditions (C2)-(C4). Then, for all p € G([to — r,to]y,R") there
exists 1 > 0 such that n = u(ty) and to + n € T, and a function x: [ty — r,tg + n]r — R”
which is a unique solution of the functional Volterra A—integral equation on time scales
given by

o) — x(t0)+£ a(t, ) f(z*,$)As, € [torto + nlr, .

x(t) = o(t), telto—rto]r.
Proof. Define the functions g(s) = s* for s € [tg,d), f*(¥,s) = f(1,s*) for s € [to,d)
and ¢ € G([-r,0],R") and a**(t,s) = a(t*,s*) for t,s € [tyg,d). Using the hypotheses
and Lemma 2.2.2, we get that f*, a**, ¢} and g satisfy all conditions of Theorem 3.9.
Hence, there exists § > 0 and a unique solution y: [ty — r,to + ] — R™ of the functional
Volterra—Stieltjes integral equation

y(t) = ylto) + f 0 (1, ) * (4er 5) dg(s) .

Yo = Cbiko-

If ¢y is right—dense, then there exists 7 € T such that ty < 7 <ty + 8. Define n := 7 — t,.
Notice that n > 0 and to +n = 7 € T. Since [ty —7,t0 + 1) < [to — 7, t0 + B], Ylpo—r,to+n] 1
also a solution of (3.4.2) (on [ty — 7, to + n]). Then, by Theorem 2.2.1, y|y—r o4y = 2,
where x: [ty — r,to + n]r — R™ is a solution of the equation (3.4.1). Again by Theorem
2.2.1, we conclude that x is the unique solution of the functional Volterra A-integral
equation on time scales (3.4.1).

If to is right—scattered, then without loss of generality, we can assume that n > u(to);
otherwise, let y(o(to)) = ¢(to) + f(&F,, to)(to) to obtain a solution defined on [ty — 7,y +

* where

t(to)]r. Then, as the same way as before, by Theorem 2.2.1, y|—rig+n = T
x: [to — r,tg + n]r — R™ is a solution of Equation (3.4.1). Again by Theorem 2.2.1, we
conclude that z is the unique solution of the functional Volterra A—integral equation on

time scales (3.4.1). O

The next result ensures that there exists a unique maximal solution of the functional

Volterra A-integral equation on time scales.
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Theorem 3.4.2. Let T be a time scale such that supT = oo and tg — r,tg € T. Let
[to — 7 to]r be a time scale interval. Assume a: [ty,0)% — R satisfies condition (C1),
where d = oo, and f: G([—r,0],R™) x [to, 0)r — R™ satisfies conditions (C2)-(C4), where
d = 0. Then, for all ¢ € G([tg — r,to]p,R") there exists a function x: [to —r,w)r — R",
w < 00, which is a unique maximal solution of the functional Volterra A—integral equation
on time scales given by

z(t) = x(to) + £ a(t,s)f(x¥, s)As, te [t to+ w*)rT, (3.4.3)

z(t) = ot), tel[to—r, to]r.

Also, if w < o0, then w € T and w is left-dense.

Proof. Define the functions g(s) = s* for s € [tg, ), f*(¢,s) = f(¢,s*) for s € [ty,0)
and ¥ € G([-r,0],R") and a**(t,s) = a(t*,s*) for t,s € [ty,o0). Using the hypotheses
and Lemma 2.2.2, we get that f*, ™, ¢} and g satisfy all conditions of Theorem 3.2.4.
Hence, there exists w < oo and a unique solution y: [ty — r,w) — R™ of the functional
Volterra—Stieltjes integral equation

y(t) = ylty) + f a**(t, 5) f* (4 ) dg(s) i

Yo = ¢Zk0-

Let us consider two cases:

Case 1: w =

By Theorem 2.2.1, y: [to — r,w) — R™ must have the form y — z*, where x: [ty —
r,00)r — R™ is a solution of the functional Volterra A—integral equation on time scales
(3.4.3). Clearly, z is a maximal solution of the functional Volterra A—integral equation
on time scales (3.4.3).

Case 2: w < ®
Assertion 1: we T

Suppose that w ¢ T and define B := {se€ T : s < w}. Clearly, B is nonempty, since
to€ B. Since w ¢ T, B =T n (—o0,w] and thus, this implies that B is a closed subset of
R.

Denote § := sup B. Since B is closed, [ € B. By the definition of B, § < w, but since
w ¢ T, we have that f < w.
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By the definition of g, it follows that g is constant on (3, w] and, therefore,

[ att0100n 1005 =

s

for all t,s € (5, w].
Let 0 € (B,w) be fixed and define a function u: [ty — r,w) — R™ by

r

o(t), telto—rto]

u(t) = S y(t), te[to,w) (3.4.5)

Note that u is well-defined and u|p, .y = y.
Assertion 1.1: The function u defined by (3.4.5) is a solution of the functional Volterra—
Stieltjes integral equation (3.4.4) on [ty — r,w].

Clearly, u satisfies the initial condition of (3.4.4) by definition.

Now, let s1, 59 € [tg,w] be such that s; € [tg,w) and s3 = w. Then,

u(sz) —u(s1) = ylo)—y(s1)

ro

= | a**(t,s) f*(ys, s)dg(s)

f‘; s " : H3k * d

- e (t,s)f (ys,s)dg(S)JrL a™*(t, s) [*(ys, s)dg(s) (3.4.6)
— f a**(t,s)f*(ys,s)dg(s)

_ rs2 a™* (t, s) f* (us, s)dg(s),

Jsq

which implies that:

u@ﬁ‘“@ﬁ—JwaM@ﬁﬁW%ﬁﬁﬂ@

1
for all sq, sy € [tg,w] such that s; € [tp,w) and sy = w.

It remains to check only the case where s1, s3 € [tg,w). This follows immediately from
the definition of u and from the fact the y is a solution of (3.4.4).

Then, u is a solution of (3.4.4) on [ty — r,w]. Therefore, it implies that u is a proper
prolongation of y: [ty — r,w) — R™ to the right, which contradicts the fact that y is the

maximal solution of the functional Volterra—Stieltjes integral equation (3.4.4).
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From this, we conclude that w € T and we prove the Assertion 1.
Assertion 2: w is left-dense

Suppose the contrary, that is, p(w) = sup{se T : s < w} < w.

By the definition of g, we get that g is constant on (p(w),w]. Hence, arguing the same
way as in the proof of Assertion 1, taking 8 = p)(w), we can prove that there exists a
proper prolongation of y: [tg — r,w) — R™ to the right, which contradicts the fact that y
is the maximal solution of (3.4.4). Thus, we have that w is left-dense.

Now, note that by Theorem 2.2.1, y: [ty — r,w) — R™ must have the form y = z*
where x: [tg — r,w)r — R™ is a solution of the functional Volterra A-integral equation on
time scales (3.4.3).

Assertion 3: x: [tp — r,w)r — R" is a maximal solution of (3.4.3).

Suppose the contrary, that is, let z: Jp — R™ be a proper prolongation of x: [ty —
r,w)r — R™ to the right. Then, without loss of generality, consider Jr = [ty — 7, w]T.
Since z: [tg — r,w]|r — R" is a solution of (3.4.3), Theorem 2.2.1 implies that z*: [ty —
r,w] — R™ is a solution of functional Volterra—Stieltjes integral equation (3.4.4). On the
other hand, notice that z*|j;,—,.) = y. It implies that z*: [ty — r,w] — R™ is a proper
prolongation of y: [to — r,w) — R"™, which contradicts the fact that y is the maximal
solution of the functional Volterra—Stieltjes integral equation (3.4.4). Hence, it follows
that x: [to — r,w)r — R™ is a maximal solution of functional Volterra A-integral on time
scales (3.4.3), proving the Assertion 3.

Now, it remains to prove the uniqueness of the maximal solution x. Suppose that
v: Ly — R™ is also a maximal solution of (3.4.3).

Assertion 4: x(t) = v(t) for all t € [tg — r,w)r N L.

Indeed, by Theorem 2.2.1, v*: L — R" is a solution of the functional Volterra—Stieltjes
integral equation (3.4.4). On the other hand, y: [to — r,w) — R™ is the maximal solution
of (3.4.4). It implies that y(t) = v*(t) for every t € [ty — r,w) N L.

In particular, since [tg — r,w)r N Lt = [tg —r,w) n L n'T < [ty — r,w) n L, we have

that y(t) = v*(t) for all [ty — r,w)r N Lt, which implies that, for ¢ € [to — r,w)r N Lr,

2(t) = a(t") = 2%(t) = y(t) = 0*(t) = v(t") = v(1),

that is, z(t) = v(t) for all t € [to — r,w)T N L.
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This concludes the proof of Assertion 4.

Now, define A: Er — R", E = [ty — r,w) u L, by:

AE) = x(t), tel[to—rw)r (3.4.7)

’U(t), te L']T-
By Assertion 4, A is well defined. Clearly, A is a solution of (3.4.4) and the time scales
intervals [to — r,w)r and Lt are contained in Er. Also:

Mito—rw)ye = @
o) (3.4.8)

/\|LT = .

Since = and v are maximal solutions of (3.4.3), it follows that Er = [ty — r,w)r = Lt
and A(t) = x(t) = v(t) for all t € Er, that is, x(t) = v(t) for all t € Ep = [to —r,w)r = Lr,

proving the uniqueness of x. O
As an immediate consequence, we obtain the following corollary:

Corollary 3.4.3. Let T be a time scale such that supT = co. Let [tg — 7, to|T be a
time scale interval. Assume a: [ty,0)? — R satisfies condition (C1), where d = oo
and f: G([—r,0],R") x [to,0)r — R™ satisfies conditions (C2)-(C4), where d = 0. Let
x: [to—r,w)r — R™ be the mazimal solution of the functional Volterra A-integral equation
o time scales (3.4.3) (ensured by Theorem 3.4.2). If each point of T is left scattered, then

W = 0.

Proof. Suppose the contrary, that is, w < c0. Then, Theorem 3.4.2 implies that w € T and
w is left-dense, which contradicts the hypothesis that each point of T is left-scattered. [



Chapter 4

Stability of solutions

We begin this chapter by considering our usual functional Volterra—Stieltjes integral equa-

tion:

£(t) = 6(0) + f alt, $)f (20 $)dg(s), 1>ty o

where r = 0, tg < d < o, f: G([-r,0],R™) x [tg,d) — R" is regulated, g: [to,d) —
R is nondecreasing and left—continuous, a: [ty,d)*> — R is nondecreasing with respect
to the first variable and left—continuous with respect to the second variable and ¢ €
G([-r,0],R™). To ensure that the problem (4.0.1) makes sense, we assume that the
Henstock—Kurzweil-Stieltjes integral, ~which appears in the right-hand side,
SZ a(t,s)f(xs, s)dg(s) exists for each compact interval [11, 2] < [to, d), for all z € G([ty —
r,d),R"), t € [to,d) and all tm < 7 < 7 < d.

In this chapter, we will investigate four types of stability for our equation: stability,
asymptotic stability, uniform stability and exponential stability. We will use Lyapunov
functionals to study these types of stability. In what follows, we will adopt the notation
B(0,¢) to denote the set {x € R™ : ||z|| < £} for some positive real number &.

Now, we present the definitions of stability, asymptotic stability, uniform stability and
uniform asymptotic stability for equation (4.0.1). We will denote by z(t) = x(t,to, ¢),
t € [to — r, +00), the unique solution of (4.0.1) and z; by z(to, ). The existence of the

solution is guaranteed by Theorem 3.2.4.

Definition 4.0.1. The trivial solution = 0 of (4.0.1) is said to be:

84
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o stable if for every € > 0, there exists 0 = d(e,t) > 0, such that for all ¢ € B(0,9) <
G([—r,0],R™), z(to, ¢) € B(0,¢) = G([—r,0],R™) for all t > t.

o asymptotically stable if it is stable and there exists n > 0, such that if ¢ € B(0,7n) <
G([—r,0],R™), then z(ty, ¢)(t) — 0 when ¢t — o0.

o uniformly stable if it is stable with § > 0 independent of ;.

o uniformly asymptotically stable if there exists oy > 0 and for every £ > 0, there
exists T = T'(e) = 0 such that if £, > 0 and ¢ € B(0,d9) < G([—r,0],R™), then
z(to, ¢) € B(0,e) < G([—r,0],R™) for all t € [to, w(to, ®)] N [to + T, ).

In order to Definition 4.0.1 to make sense, we assume that f(0,¢) = 0. With these
assumptions, x = 0 is a solution of (4.0.1).

The investigations made by A. M. Lyapunov more than a hundred years ago are still
very important and relevant in many different problems. The first publication of Lyapunov
concerning stability of motion of systems with a finite number of degrees of freedom were
in 1888. Four years later, Lyapunov presented a rigorous definition of stability, which was
part of his PhD thesis entitled “The General Problem of Stability of Motion”.

Until nowadays, the work of many mathematicians receives his influence and to un-
derstand the stability of solutions of certain equation is among the most studied topics in
the last years, and his techniques are applied in most of cases.

On the other hand, the investigations concerning stability for Stieltjes integral equa-
tions type are very recent. First, because these equations started to be studied in the last
few years and the second reason for that comes from the fact that it is not easy to deal
with Stieltjes integral equations, since their solutions are not continuous in most of the
cases. Therefore, the discontinuities which appear can complicate a lot the study of the
dynamic of the solution. Also, since the solution of a Stieltjes integral equation does not
need to be differentiable, this turns the problem even more complicated.

However, although the difficulties behind such problem, some authors investigated
the classical concepts of stability for these equations by using Lyapunov functionals (see
[22, 28]). As a consequence, they obtained more general results than the ones found in

the literature, that could allow that the Lyapunov functional to be very general.
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All the results presented here, even the ones that employ Lyapunov functionals, are
more general than the ones presented previously in the literature. It follows directly from
the generality of the equation that we are considering.

We divide this Chapter into two sections. The results of the first section investigate
many types of stability using Lyapunov functionals. They are inspired by the results of
[28] and can be found in [33, 46]. In the second section, we show that the theorem present
in the first section are also valid when dealing with impulsive functional Volterra—Stieltjes

integral equations.

4.1 Lyapunov’s Second Method
Here, we consider the particular case of (4.0.1) given by

o(t) = (0) + f alt, $)f (e, $)dg(s), 1> to .

Try = O,
where r = 0, f: G([-7,0],R") x [ty,0) — R" is such that f(0,¢) = 0 for all ¢ € [ty, 0),
a: [tg,0) x [tg,0) — R is regulated with respect to the second variable, g: R — R
is a nondecreasing left—continuous function, ¢ € G([—r,0],R") and the integral in the
right—hand side is understood on the sense of Henstock—Kurzweil-Stieltjes.

Below, we recall important definitions.

Definition 4.1.1. We say that V': [tg, ) x B, — R is a Lyapunov functional with respect
to (4.1.1), where B, = {y € G([-r,0],R") : |y| < p}, p > 0, if the following conditions

are satisfied:

(V1) For every solution z of (4.1.1), the function from [ty, 0) to R defined by t — V(t, ;)

is continuous;

(V2) For every (to,¢) € R x B,, the function defined by t — V (¢, z.(to, ¢)) is nonin-

creasing, where x is the unique maximal solution of (4.1.1) with initial condition

Tty = gb

With these definitions in hands, we are ready to state and prove our first result of

stability, which ensures that the trivial solution of (4.1.1) is stable.
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Theorem 4.1.2. Letty € R and suppose that there exists a Lyapunov functional V' [ty, c0) x
B,—R, B,={yeG([-r,0],R") : |y| < p}, p> 0, with respect to (4.1.1) such that

1. V(t,0) = 0 for all t € [ty, 0);

2. If x: [to — r,00) — R"™ is a solution of (4.1.1), then a(|xs|) < V(t,x;) for all
t € [to,0), where a:: [0,00) — [0,00) is an increasing function such that «(0) = 0

and limg_, a(s) = o0.
Then the trivial solution x =0 of (4.1.1) is stable.

Proof. Let ¢ > 0. We want to show that there exists § > 0 such that if ¢ € B(0,9), then
the solution x of (4.1.1) exists for all ¢ > ¢y and x(ty,¢) € B(0,¢) for all ¢t > t5. The
existence is ensured by Condition 2 and the properties of the Lyapunov functional.

According to item (V1) from the Definition 4.1.1 and by hypothesis, given a(e) > 0,
there exists d := d(tp,€) > 0 such that if |z|, < 6, then

V(to, 1) < afe). (4.1.2)

Let ¢ € B(0,0) < G([—r,0],R™). By hypothesis and (4.1.2), for all ¢ € [to, ), we
have

af[z:(to, 9)) < V(t, 2:) < V(to, x1,) = V(to, §) < ale), (4.1.3)

where the second inequality follows from the fact that ¢ — V(¢,x;) is nonincreasing.
Since « is an increasing function, ||z, (o, @)|| < € for all ¢ = ty, as desired, and the result

follows. OJ

The next result gives sufficient conditions to ensure that the trivial solution of (4.1.1)

is asymptotically stable.

Theorem 4.1.3. Let ty € R and suppose there exists a Lyapunov functional V': [ty,0) x
B, — R with respect to (4.1.1) and a function «: [0,00) — [0,00) that satisfy all the
conditions of Theorem 4.1.2. Suppose also that, for all nonextendable solution x: [ty —
r,0) — R™ of (4.1.1), we have

t

Vit 2)) - V(s,2.) < — f SV (€, ) Ay (€) (4.1.4)

S
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for all t,s € [ty,0) with t = s, where v: [ty,0) — R is a nondecreasing function such
that lim ~(t) = o0 and a: [ty,0) — [ty,0) is an increasing function such that a(0) = 0

and limg_,o, &(s) = 0. Then the trivial solution x =0 of (4.1.1) is asymptotically stable.

Proof. Since all the hypotheses of Theorem 4.1.2 are satisfied, it follows that z = 0 is
stable. Thus there exists 7 > 0 satisfying Definition 4.0.1 such that ||¢|| < 7 and let
xy = x4(to, @).

Notice that for ¢ € [t, 20), the function t — V (¢, ;) is nonincreasing and since z is a
solution of (4.1.1), a(|z|) < V(t,x;) for all ¢ € [ty,0), which implies that V (¢, z,) = 0.
Therefore, there exists z > 0 such that tli_)rg) V(t,xy) = z. If z > 0, then, by (4.1.4), we get

0<V(t,z) < V(to,xy) — J a(V(s,xs))dy(s)

to

< Vit z1,) —f a(2)d(s)

to
= Vlto, x1,) — a(z)[y(t) —~(to)]- (4.1.5)
For sufficiently large ¢, the right-hand side of (4.1.5) is negative, leading us to a
contradiction. Hence, we conclude that z = 0.
Thus, since 0 < o(]|z])) < V (¢, z¢), we have thn% a(|z¢]) = 0, which implies tlirg) x(t) =

0, by the property of «, proving the theorem. O

The next result provides sufficient conditions to ensure that the trivial solution of

(4.1.1) is uniformly stable.

Theorem 4.1.4. Let V: [ty,0)x B, — R", 0 < p < ¢, be a Lyapunov functional. Assume

also that V' satisfies the following condition:

(H) There exist two continuous increasing functions «,: [0,0) — [0,0) satisfying
a(0) = 0 = B(0) such that for every solution z:: [to—r, ) — B, of equation (4.1.1),
we have

Blldlw) < V(20 < alfzdo), (4.1.6)

for allt = ty.

Then the trivial solution x = 0 of the equation (4.1.1) is uniformly stable.
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Proof. Let ty > 0 and € > 0. Since «(0) = 0, « is increasing and oy is uniformly
continuous, there exists 6 = d(¢), 0 < § < € such that «(d) < B(e).
Suppose ¢ € B, and the maximal solution of z of (4.1.4) satisfies [¢|, < 6. We need

to show that 2], < € for all ¢ € [tg,w). Since V is a Lyapunov functional, then
V(t, $t> < V(to, a;‘to)

for all t € [tg,w).

Hence, by hypotheses, for every t € [ty,w), we get
Bllzelo) < VI(E x) < V(to, 21) < g, ]0) < a(d) < Be).

Since [ is an increasing function, we get |24/, < ¢ for all ¢ € [y, w), getting the desired

result. O
Now, let us define ezponential stability of the trivial solution of (4.1.1).

Definition 4.1.5. We say that the trivial solution of (4.1.1) is exponentially stable if
there exist constants p,a,b > 0 such that if t > ¢, and |¢|, € B(0,p) < G([—r,0],R"),
then

|4(to, 9) o0 < @l @]e ™) (4.1.7)

for all t = t,.

The next result gives us conditions that will ensure that the trivial solution of (4.1.1)

is exponentially stable.

Theorem 4.1.6. Suppose that there exist positive constants o, 3, a,k and a Lyapunov

functional V': [tg, 0) x B, — R with respect to equation (4.1.1) such that
1. ool < V(t,¢) < B¢l for all g€ B, and t > to.
2. For every mazimal solution x(t) = x(t, so, V) with (so,v) € Q of (4.1.1), we have
Vit z) - Vis,z.) < —a f V(€ ze)de
for allt,s e [sg,0) with t < s.

Then the trivial solution y = 0 of (4.1.1) is exponentially stable.
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Proof. Let V': [tg, ) x B, — R be a Lyapunov functional satisfying Conditions 1 and 2
of Theorem 4.1.6. Note that if x: [tg,0) — R" is a solution of (4.1.1), we have

ozl <Vt z) < BloE ¥ ot =,

which implies that Conditions 1 and 2 of Theorem 4.1.2 are fulfilled. Thus, the trivial
solution x = 0 is stable.

Let so = to,¢ € Bs, where 0 < § < p is chosen by the stability of x, and let z(-) =
x(+, 89, ¢) be the maximal solution of (4.1.1) defined on [sg, o).

Combining the second condition of this theorem with the fact that ¢t — V(¢,2;) is a

nonincreasing function, for every sg < #; < 0y < o0, we estimate

V (01, 29,) — V (b2, x9,) = aL62 V(& xe)dE = osz V(0s, 24,)dE = aV (02, xp,) (02 — 01)
1 1
From this, we get
V(01,29,) = (14 a(fs — 01))V (02, z9,) (4.1.8)
for all sg < 01 < 0y < 0.
On the other hand, we claim that
V(s + 80, Tstsy) < €V (80, 9) (4.1.9)

for all s € [0, ).

In fact, let s € [0,0) be given and let n be an arbitrary fixed natural number. Define
is .
T, = —+so forall ie{l,2,...,n}.
n

Note that

S
So=Top<TI < <T,=8+58) and 7, —T,_1 = —.
n

Using this fact together with (4.1.8), we have

V(Tic1,xr_ ) = (L + i — 721) )V (i, 20,) = (1 + %) V(7 zs;)

n
for all i € {1,2,...,n}. Hence, using a recursive argument, we obtain
as\m"
V (1o, 2r,) = (1 + —) V(tn, z0). (4.1.10)
n
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Since V(19,25,) = V(so,¢) and V(7,,2,,) = V(s + So,%s1s,), We conclude that
V(so, ) = (1 + %)n V(s + So,Tsrs,) for all s = 0 and all n € N. Therefore, as n tends to

o0, we obtain that V(sg, ¢) = e**V (s + 8o, Ts1s,), getting the claim, which implies that
V(t,z) < e 20V (50, ¢) for all t e [sq,0).
According to Condition 1 of this Theorem,
olz |k < V(t,z,) and V(sg,¢) < B||o]E.
Therefore, we get that

ozl <Vt ) < e 0V (s, 0) < e 03¢5

el < (2) lollsemate-,

which leads to

1
E —
e < (2) Bl (4.1.11)

proving that the trivial solution is indeed exponentially stable. O]

To finish this section, we present an example to illustrate Theorem 4.1.6. This example

was inspired by [28].
Example 4.1.7. Let {t;}{; be moments of impulses such that ¢, < tx;1 for k € N.
Consider the following Volterra—Stieltjes integral equation:

x(t) = z(0) + J a(t,s)f(zs, s)dg(s), (4.1.12)

0
where g(t) = g(0) + 1+ 272 X(t;.0)(t), t € [0,00) and x is the characteristic function. The
function f: G([—r,0],[1,90)) x [0,0) — R is given by:

(sin(In(t + 1)) — 2)xy, if t # t

f(xtat) =

the function a: [0,0) x [0,00) — R is given by

e~ if t £t
a(t, s) =

Giﬁ(tftkfl)’yk, ift = tk,
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where o, 5 > 0 and —1 < vy < 0.
Thus by Theorem 2.1.2, our Volterra—Stieltjes integral equation (4.1.12) can be rewrit-

ten as an impulsive Volterra equation given by:

z(t) = z(0) + f: eI (sin(In(s + 1)) — 2)z,ds, t # t, 4113

ATx(t) = Pty 2(t), t =t
Assuming that x is differentiable a.e., the integral equation above can be rewritten as
the following impulsive differential equation a.e.:

2'(t) = e =) (sin(ln(s + 1)) — 2)z ds, t#t
(t) (sin(In(s + 1)) —2) ! (41.14)

AFx(t) = e PUtt)myya(t), t =t

Defining V (¢, x;) = (‘E‘(QO))Q = (w(;))z, we have that

For t = ty, we get
+112 7 )
Vit zs,) = (@(tx))" _ (x(te) + Le(2(tr)))

2 9

_ (z(te) + e_ﬁ(tk—tk—l)fykx(tk))z

N 2

_ (1 + 6_6(t’€_tk71)ryk>$(tk>)2

N 2

< (14 e PUDy 2V (g, a(te)) < V(tk, 2(t)),

since v, < 0.
Therefore, all the assumptions of Theorem 4.1.6 are satisfied, which implies that the

trivial solution x = 0 of (4.1.12) is exponentially stable.

4.2 Lyapunov’s Second Method for impulsive func-
tional Volterra—Stieltjes integral equations

In this section we will use the correspondence between the functional Volterra—Stieltjes
integral equations and the impulsive functional Volterra Stieltjes integral equations to

obtain the results about stability for the impulsive case.
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Throughout this section, assume that {5}, are the moments of impulses in [tg, o0)
such that ¢t < ty4q for all £ € N and limy_,, t, = o0. Let us recall the definitions of the
functions f and §:

Define f: G([—r,0],R") x [to, 0) — R" by

~ ,T), T E o,d k Oozl,
P ¥ I U
Ik(y(())), T:tlm kEN,

and g: [tg,0) — R by
9(7), T € [to, t1],
9(7_) +k, TE (tkzatk+1], k e N.

Consider here the following functional Volterra—Stieltjes integral equations with im-

pulses

ot) = M@+Ja@$ﬂawﬂﬂﬁ+ S alt, to) Iy (x(t)
to keN (4.2.1)

to<tp<t

‘(Eto = ¢7

and assume that [(0) = 0 for each k € N.

Theorem 4.2.1. Letty € R and suppose that there exists a Lyapunov functional V' [ty, 0) x
B, — R, B,={yeG([-r,0],R") : |y| < p}, p> 0, with respect to (4.2.1) such that

1. V(t,0) = 0 for all t € [ty, 0);

2. If x: [to — r,0) — R"™ is a solution of (4.2.1), then a(|zi|) < V(t,x¢) for all
t € [to, ), where a:: [0,00) — [0,00) is an increasing function such that «(0) = 0

and limg_, a(s) = o0.
Then the trivial solution x =0 of (4.2.1) is stable.

Proof. By Theorem 2.1.2, (4.2.1) has a solution if, and only if,

) = 0(0)+ [ alt. (o )50 (122)
Ty = ¢

has a solution and, in this case, the solutions are the same.
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By Theorem 4.1.2, the trivial solution of (4.2.2) is stable, that is, for every ¢ > 0,
there exists § = d(g,ty) > 0, such that for all ¢ € B(0,9) < G([—r,0],R™), the solution x
exists for every t > tg and x4(ty, ¢) € B(0,¢) < G([—r,0],R™) for all t > t.

Since the solutions of (4.2.2) and (4.2.1) are equal for all ¢ € [ty, ), it follows they

have the same properties, which means the trivial solution of (4.2.1) is stable. O]

The proof of the following theorems are very similar to the proof of Theorem 4.2.1,
since the same argument is used in all of them, that is, the correspondence between the
equations and the known results for functional Volterra—Stieltjes integral equations. In

order not to tire the reader, we will omit them.

Theorem 4.2.2. Let ty € R and suppose there exists a Lyapunov functional V': [ty,0) x
B, — R with respect to (4.2.1) and a function «: [0,00) — [0,00) that satisfy all the
conditions of Theorem 4.1.2. Suppose also that, for all nonextendable solution x: [ty —

r,00) — R™ of (4.2.1), we have

t

V(t,zy) — V(s,xs) < —J a(V(&, xe))dy(€) (4.2.3)

for all t,s € [ty,0) with t = s, where v: [tg,0) — R is a nondecreasing function such
that thn% ~v(t) = o0 and a: [ty,0) — [ty, ) is an increasing function such that a(0) = 0
and lim_,o, 0(s) = 0.

Then the trivial solution x =0 of (4.2.1) is asymptotically stable.

Theorem 4.2.3. Let V': [ty,0)x B, — R", 0 < p < ¢, be a Lyapunov functional. Assume

also that V' satisfies the following condition:

(H) There exist two continuous increasing functions a, f: [0,00) — [0,00) satisfying
a(0) = 0 = 5(0) such that for every solution x: [to—r, ) — B, of equation (4.2.1),
we have

Bllaele) < VIt 20) < al|zd ), (4.2.4)

for allt = to.
Then the trivial solution x = 0 of the equation (4.2.1) is uniformly stable.

Theorem 4.2.4. Suppose that there exist positive constants o, 3, a,k and a Lyapunov

functional V': [tg, 0) x B, — R with respect to equation (4.2.1) such that
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1. ool < V(t,¢) < Blg|E, for all g € B, and t > to.

2. For every maximal solution z(t) = x(t, so, 1) with (so, ) € Q of (4.2.1), we have

Vit~ Visa) < —a [ ViE e

s

for allt,s € [sg,0) witht < s.
Then the trivial solution y =0 of (4.2.1) is exponentially stable.

Remark 4.2.5. It is also possible to translate all the results to their analogues in the

time scale case.



Chapter 5

Periodic boundary value problem

In this chapter, we consider the following periodic boundary value problem:

rx(t) = ¢(0) +J a(t,s)f(xzs,s)dg(s), te[0,w]

0
$oo = b (5.0.1)

where ¢ € G([—r,0],R"), f: G([-r,0],R") x [0,w] — R™, a: [0,w]* > R and g: [0,w] —
R is nondecreasing and left continuous on [0, w]. Here, [0, w]? denotes the set [0, w] x [0, w].

The goal of this chapter is to seek solutions for this problem. We investigate sufficient
conditions on the functions a, f and ¢ in order to guarantee the existence of a solution
of this type of problem. All the results of this chapter are new and can be found in
[31]. We divide this chapter in three sections. In the first section, we study the existence
of solutions of the periodic boundary value problem (5.0.1). In the second section, we
present a correspondence between (5.0.1) and its analogue with impulses. In the third
section, we prove the analogue results to A-integral equations on time scales.

The motivation to investigate this kind of problems for Volterra—Stieltjes equations
came initially from [23]. In this paper, the authors study the existence of periodic solutions
for generalized ordinary differential equations (GODEs for short) and they apply their
results to other types of equations such as measure equation without delays.

It is important to emphasize that that are other papers in this direction such as
[16, 48, 49, 50, 51], and this type of problem has been attracting the attention by several

researchers, since periodicity appears quite natural in most of phenomena.

96
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5.1 Solutions for periodic boundary value problems

We begin this section by assuming the following conditions:
(H1) The function ¢: [0,w] — R is nondecreasing and left—continuous on (0,w].

(H2) The function a: [0,w]* — R is nondecreasing with respect to the first variable and

regulated with respect to the second variable.

(H3) The Henstock—Kurzweil-Stieltjes integral
T2
| atto) as)dgts

exists, for all x € G([—r,w],R"), all t € [0,w] and all 0 < 71 < 7» < w.

(H4) There exists a Henstock—Kurzweil-Stieltjes integrable function M: [0,w] — R
with respect to g such that

T2

f (Baa(7s, 5) + Bra(rs, 8)) £ (s, 5)dg(s)| < j 1Baa(ra, 8) + Pra(m, )| M(s)dg(s),

T1

for all x € G([—r,w],R"), all B, e Rand all 0 < 71 < 75 < w.

(H5) There exists a regulated function L: [0,w] — R* with respect to g such that

T2

f (1) (22, 8) — f(zer 8)]dg(s)]| < f a(r8)] L(8) |25 — 2oy (5),

T1

for all z,z € G([—r,w],R") and all 0 < 7, < 7» < w.

Remark 5.1.1. It is easy to check that if a satisfies condition (H2), then a is bounded

in [0, w]?
For further purposes, let us define the following constant:

n:= sup |a(t,s)], (5.1.1)
(t,s)€[0,w]?
which is well-defined by Remark 5.1.1.

The next result can be found in [44] and will be essential to prove the existence of

solutions for the main problem of this section.
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Theorem 5.1.2 (Krasnosel’skii Fixed Point Theorem). Let X be a Banach space and
Y be a nonempty convex and closed subset of X. Let G1,Gy: Y — X be two operators

satisfying
(i) if u,v ey, then Giu+ Gov e Y.
(ii) Gy is a contraction on'Y .
(iii) Gy is compact and continuous on 'Y .
Then, there exists z € Y such that Giz + Gaz = 2.
The following corollary is a consequence of the previous theorem with ¥ = X.

Corollary 5.1.3. Let X be a Banach space. Let Gi1,Go: X — X be two operators such
that Gy satisfies condition (ii) of Theorem 5.1.2 and Gs satisfies condition (iii) of Theorem
5.1.2. Then, there exists x € X such that Gix + Gox = x.

Next, we exhibit the main result of this section. By using Theorem 5.1.2 (Krasnosel’skii
Fixed Point Theorem), we obtain a criterion to guarantee the existence of at least one

solution for the periodic boundary value problem (5.0.1). In order to use Theorem 5.1.2,

we will consider Y = X = R" x G([-r,w],R").

Theorem 5.1.4. Consider the periodic boundary value problem:

(2(t) = 6(0) + [ ottt agts). re ol

0
$ao— o (5.1.2)

and assume that conditions (H1)-(H5) are satisfied. Moreover, suppose that the following

condition holds
nlIL], (9(w) —g(0)) <1,

where n is given by (5.1.1) and L is given in (H5). Then the periodic boundary value

problem (5.1.2) has at least one solution.

Proof. Let us consider the Banach space R" x G([—r,w],R") endowed with the norm

1B, 2)lgn oo = 18] + 2] 5, for (8,2) € R" x G ([0,w],R"),
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where || - | is any norm in R™ and | - [, is given by [z]w = supei_,. . |2(2)]-
Consider operators W: R"xG([—r,w],R") —» R" and Q: G([-r,w],R") —» G([-r,w],R")
defined by

w

WW@%=5+JaWﬁUW&Q®@)

0
and

o(t), te[—r0]

t

mm+faw@m%®@@xtewML

0
for all z € G([—r,w],R"), all t € [-r,w] and all § € R™.

Qx)(t) =

By condition (H3), the integral §; a(w, s) f (x5, s) dg(s) exists in the sense of Henstock—
Kurzweil-Stieltjes. Thus, W(8,x) € R™. On the other hand, using the same arguments
as in Lemma 3.1.7, we can prove that the function Q(z) is regulated on [—r,w], that is,
Q(x) € G([—r,w],R™).

Now, consider the operators Gi,Gs: R" x G([—r,w],R") — R" x G([—r,w],R") de-
fined for (8, z) € R" x G([—r,w],R") by

g1(67x) = <0R”7 Q(l‘)) and gg(ﬂ,SE) = (W<67'r)70G)7

where Ogn := (0,...,0) and Og: [—r,w] — R™ is given by 0g(t) = Ogn for t € [—r, w].

Statement 1. If (5, ) is a fixed point of the operator G; + G, then x is a solution
of the periodic boundary value problem (5.1.2).

Suppose that (G; + G2)(5,z) = (8, z). Thus,
Jw a(w, s)f(xs,s)dg(s) =0 (5.1.3)
0

and, for all ¢t € [—r, w], we obtain

o(t), te[—r0]
x(t) = ’ (5.1.4)

#(0) + f a(t,s)f(xs,s)dg(s), tel0,w].

0
In view of (5.1.4), x is a solution of the functional Volterra—Stieltjes integral equation

t

x@=¢@+jaw@m%@®@xtemw

0
IL‘():qb.
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On the other hand, taking ¢t = w in (5.1.4) and using (5.1.3), we get z(0) = z(w), proving
Statement 1.
Statement 2. G; is a contraction.
Initially, note that
16108, 2) = Gi(@, 2) [gn oo = [[(Opn, Q(2) — Q(2)) R0 = S 1Q(z)(t) — Q(=)(®)] -
e[—rw

Let x, z € G([—r,w],R™) be given. Then, for t € [—r, 0], we get

[Q)(t) = Q) (B)] = [#(0) = ¢(0)] =0,

and for ¢ € [0,w], by (H5), (5.1.1), Theorem 1.2.4 and Corollary 1.2.5, we have

jo alt, ) ([ (e 8) — (2, 5)) dg(s)
< J; lalt, $)|L(8) |2 — zs]lo dg(s)

(Q@)(1) — Q(=)(1)] = \

rt
< | Bl s = 2]l dg(s)

< | Il s = 2] dg(s)
n

0

<L, (9(w) = 9(0)) |z — 2] - (5.1.5)

Since by hypothesis 7 | L], (9(w) — ¢(0)) < 1, we have that G, is a contraction. Notice

that for s € [0,w], we obtain
|xs — 2s|lw = sup |lz(s+0) — z(s+ 0)]
fe[—r,0]

— sup [z(&) — 2(6)]

gefs—r.s]

< sup |z(§) — z(8)]
ge[—rw]

= ||ZE - 2”007

which shows the inequality (5.1.5).
Statement 3. G, is continuous.

Note that, for z,z € G([—r,w],R™) and «, f € R", we have

1G2(8, ) = Ga(e, 2)[gn oo = || V(B 2) = W, 2), 06) [ oo
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= [W(B,z) = W(a, 2)]| .
Hence, by (H5), Theorem 1.2.4 and the fact that |z, — z| , < ||z — 2|, , we obtain

IW(B,2) — Wia, )| = HB —at [Cal) (1)~ Te0rs)) dols)

0

<5l + [ latw. o) LG5 s = 2l dos)
< 18—l + ( [ otz dg<s>) e — 2.,
< (1 # [t 9l 265 dg<s>) 18.2) — (0, ) .

The last inequality follows from the fact that

18 =al <(8;2) = (@, 2)[gn e and |z = 2], <[(6,2) = (@, 2)]gn o -

From this estimate, we get that G, is continuous.

Statement 4. G, is compact.
Let B = By x By € R" x G([—r,w],R"™) be bounded. Then, there exist constants C; > 0
and Cy > 0 such that |5]| < C, for all 5 € By and |z], < Cy, for every z € Bs.

The goal is to show that Go(B) is relatively compact in R” x G([—r,w],R"). In fact,

notice that
Go2(B) = {W(B,x),0g) : B € By, x € By} = W(B) x {0g}.

Since {0g} is relatively compact in G([—r,w],R"), it is sufficient to prove that W(B) is
relatively compact in R".

Let (B, z) € B. Then, by (H4), we get

IW(B.1)] = Hﬂ + [ a9 asts)

<18+ J Ja(w, )| M(s) dg(s)

<O+ Lw la(w, s)| M(s)dg(s).

Thus, W(B) is bounded, which implies that W(B) is also bounded. Now, since W(B) is

bounded and closed in R™, we conclude that W(B) is compact on R™.
Since all hypotheses of Krasnosel’skii Fixed Point Theorem (Theorem 5.1.2) are sat-

isfied, we conclude that G; + G has a fixed point (8, z) € R" x G([—r,w],R").
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Therefore, by Statement 1, z: [—r,w] — R™ is a solution of the periodic boundary

value problem (5.1.2) and this completes the proof. O

5.2 Periodic impulsive boundary value problems

In this section, our goal is to translate Theorem 5.1.4 to impulsive functional Volterra—
Stieltjes integral equations. At first, we start by describing the correspondence between
the two boundary value problems. Then, using this correspondence and the proved result,
we get our result to impulsive functional Volterra—Stieltjes integral equations. Clearly,
it will follow very similar to the proof presented in Section 2.1 with obvious adaptations
that we will describe here.

We start by considering the periodic impulsive boundary value problem below:

z(v) —z(u) = J

0
A+‘r(tk) = [k(:c(tk)>7 k= 17"'7m7

v U

a(v, s)f(zs,s)dg(s) — f a(u, s)f(xs, s)dg(s), for u,ve Ji, keN,
0

ro = ¢
2(0) = a(w),

where Jy = [0,t1], Jx = (tg, trs1] for k=1,...,m, and J,, = (t;,,w]. The same as it was

remarked before, the value of both integrals

U

fa(us)f(xs,s)dg(s) and f a(u, ) f (s, 5) dg(s),

0 0

where u, v € Ji, do not change if we replace g by a function g such that g — g is a constant

function on Jj (see [25]). Rewriting the above equations as

t

x(t)=¢(0)+fa(tS)f(:rs,s)dg(S)Jr Y, altt)h(z(t)), te[0]

0 ke{l,...,m}
P O<i<t (5.2.1)

Now, we define the functions f and § the same way as in Section 2.1, that is: f: G([—r,0], R")x
[0,w] — R™ is defined by

fly,7), T7e[0,w]\{t1,...,tm},

I (y(0)), 7=t ke{l,...,m},
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and g: [0,w] — R is defined by

-

g(7), 7€ [0,t],

9(1) =1 9(r)+k, T€ (tp,tes], ke {l,...,m—1},

\g(T) +m, TE€E (tm,w].

Theorem 5.2.1. Let m e N, 0 < t;, < - < t, < d, I,...,1,,: R - R"” and
f: G([-r,0],R") x [0,w] — R™ Assume that g: [0,w] — R is a nondecrasing left-
continuous function which is continuous at ti,...,t,, a: [0,w]* — R is nondecreasing
with respect to the first variable, requlated with respect to the second variable and continu-

ous with respect to first variable at ty, ..., t, and that conditions (H3)-(H5) are satisfied.
Assume also that the function L: [0,w] — R*Y in Lemma 2.1.1 is such that

ML, (9(w) = 9(0)) <1,
where n is given by (5.1.1). Then, equation (5.2.1) has a solution on [0,w].
Proof. By Theorem 2.1.2, equation (5.2.1) has a solution on [0, w] if, and only if, equation

—&-Ja a:s, s)dg(s)
0

L (5.2.2)

has a solution, and, in this case, the solution is the same for both equations.

By Lemma 2.1.1, we know that the functions §,a and f satisfy conditions (H1)—(H5)
and we have that n||L|_, (§(w) — g(0)) < 1, thus the solution of (5.2.2) is guaranteed by
Theorem 5.1.4. Therefore, the result follows. O

5.3 Periodic boundary value problem on time scales

In this section, our goal is to prove the analogue of Theorem 5.1.4 for the following periodic

boundary value problem on time scale:

i = blto) (5.3.1)
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where T is a w—periodic time scale, that is, t € T implies t + w € T. Also, 0 € T.

We point out that there are many different concepts of periodicity on time scales,
but here we will consider the classical one, that is, the one which requires the additive
property of the time scale. In a certain way, it excludes interesting time scales such
as quantum scales, some hybrid ones, but on the other hand, there are several time
scales that satisfy this property and it is interesting to consider these cases such as T =
Z,hZ,R,\Up_,lak, b], among others.

Now, consider the main theorem of this section.

Theorem 5.3.1. Let [—r,w]r be a time scale interval such that 0 € T. Consider the

periodic boundary value problem:

(a:(t) =x(0) + f a(t,s)f(z¥, s)As

Y = olto) (5.3.2)

where T is a w—periodic time scale, that is, t € T implies t +w € T. Assume also that the

following conditions hold.

(C1) The function a: [0,w]3: — R is nondecreasing with respect to the first variable,
requlated with respect to the second variable and rd—continuous with respect to the

first variable.

(C2) The Henstock—Kurzweil A—integral
| atroresas
S1

exists for x € G([0,w],R™), 7 € [0,w]r and s1, s9 € [0,w]T, $1 < S9.

(C3) There exists a locally Henstock—Kurzweil A—integrable function Mi: [0,w]r — RT
such that

52

f(cla(SZ, s) + caa(s1, s)) f(xs, s)As| < fMl(s) |cra(sq, s) + caa(sy, s)| As,

S1

for all x € G([0,w],R™), ¢1,¢0 € R and sy, s € [0, w]r, $1 < $a.
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(C4) There exists a locally regulated function Ly: [0,w]r — RT such that

52

52

f 052, 9)[f (0:8) — F (20, 8)]As]| < f L1(5) a5, )| |20 — 2], As,

S1

51

for all x,z € G([0,w],R™) and sy, s2 € [0,w]T, $1 < S9.

Moreover, suppose that

nLyl,w <1,

where 1 1= SUP; 40,1 @** (¢, 8) and Ly is given in (C4). Then the periodic boundary value

problem (5.1.2) has at least one solution.

Proof. Let g: [0,w] — R be defined as g(s) = s*. Notice that, since 0,w € T, g(0) = 0* =

0 and g(w) = w* = w, hence g(w) — ¢(0) = w. This fact together with Lemma 2.2.2 and

the Conditions (C1)—(C4) imply that the functions a** and f* satisfy the Conditions of

Theorem 5.1.4. Thus, the equation

(5.3.3)

has a solution y: [—r,w] — R™. Using Theorem 2.2.1, we get that y must be of the form

y = x*, where z: [—r,w]r — R" is a solution of (5.3.2), as we desired.



Chapter 6

Continuous dependence with respect

to parameters

In this chapter, our goal is to investigate under which conditions the solutions of a sequence

of equations

£(t) = 6a(0) + f an(t,8) fules $)dgu(s), 13 to o

xto = ¢n7
n € N, converge to a solution of the equation

£(t) = (0) + f alt, $)f(za $)dg(s), 1> to 0n

where ¢,,, ¢ € G([-7,0],R"), an,a: [to,to+0]> > R, 0 >0, f, fr: G([~r,0], R") x [to, to+
o] - R™ and g,,¢: [to,to + o] — R. Also, using the correspondence between functional
Volterra—Stieltjes integral equations and impulsive functional Volterra—Stieltjes integral
equations as well as the correspondence between the first one and the functional Volterra
delta integral equations on time scales, we prove the analogue results for these types of
equations.

Results concerning convergence of a sequence of problems was already investigated by
several researchers, specially the ones related to time scales theory. In 2004, the article

[19] considered families of dynamic equations on time scales given by:
% = f(t,2)

106
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subject to the initial condition z(tg) = x¢ over different time scales. The main goal
of this paper was to investigate the behavior of the solutions with the same initial value
problems over different time scales in order to understand phenomena such as bifurcations
and the asymptotic behavior for variable time scales. Also, they proved that the limit
of the solutions over convergent sequences of time scales converges to a solution over the
limiting time scale.

In [29], Garay and Hilger discussed the continuous dependence of solutions of a dy-

namic equation in its integral form given by:

y(t) = ylto) + f £(5,9(s)) A (s).

investigating this equation in “the space of graphs”. In other words, they replaced an
analytical concept (the distance of functions) by a geometric concept (the distance of
curves), bringing several interesting results.

On the other hand, in 2008, Adamec [2] investigated the same type of problem con-
sidering the usual “distance of functions”. To prove his results, he employed the method
of Euler polygons, having a good approach.

In 2009, Esty and Hilger [20] investigated about the convergence of solutions of dy-
namic equations on time scales considering the Fell topology instead of Hausdorff topology,
bringing interesting remarks and results about that, and also justifying the use of this
topology in the framework of time scales.

In 2013, Bohner, Federson and Mesquita [12] extended these results for a more general
class of functions, called measure functional differential equations and using the relation
between them and impulsive measure functional differential equations and impulsive func-
tional dynamic equations on time scales, they proved results concerning the convergence
of the solutions of a sequence of equations to the solution of the limiting problem for all
these equations.

In this work, we consider a more general equation, the so-called functional Volterra—
Stieltjes integral equations, which has a kernel in its formulation. Also, the conditions
that appear in our results are more general than the ones assumed in [12], even in the case
that the kernel a = 1, allowing that the involved functions have many discontinuities.

Results concerning the convergence of solutions as the one presented here are very
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important to researchers that work with numerical analysis and numerical simulations,
since we translate the results for equations on time scales and it is very useful to employ
discrete equations defined on hZ, h € N, to investigate the approximations of solutions of
continuous equations defined on R.

All the results in this chapter are new and can be found in [33].

Throughout this chapter, we also assume the following conditions on functions a, a,,, f, f., g

and g,, n € N:

(B1) The functions f, f,,: G([—r,0],R™) x [to, to + 0] — R™ are regulated with respect to

the second variable, for o > 0.

(B2) The functions ¢, g,: [to,to + 0] — R are nondecreasing and left—continuous on

(to,to + U],U > 0.

(B3) The functions a,a,: [ty,to + 0]> — R are nondecreasing with respect to the first

variable and regulated with respect to the second variable, o > 0.

(B4) The Henstock—Kurzweil-Stieltjes integrals

T2

j " alt, )£ (9., 5)dg(s) and f an(t, 5) o (ger )G (s)

T1 T1

exist for all y € G([to—r,to+0]|,R"), t € [to, to+0],n € Nand allty < 7 < 7 < fp+0.

(B5) For each n € N, there exist regulated functions M, M,,: [to,to + 0] — R such that

f(cla(Tg, s) + caa(T, 8)) f(ys, s)dg(s)| < J(Cla(Tg, s) + caa(T, s))M(s)dg(s)
and
J(Clnan(T% 5) + CQnan(Th S))fﬂ(?/sa S)dgn(s) < f(cl7Lan(72a 3)+62nan(7-17 5))Mn(3)dgn(s)a

for all y € G([to — r,to + o], R"™), all ¢1,¢a,¢1,,02, E Rand all tg < 7y < 79 <t + 0.

(B6) There exist regulated functions L, L,,: [tg,to + 0] — R* such that

T2

j a7, ) (9os 8) — (22 8)]dg(s)] < f a(ra, $)|L(s) [5s — 2., dg(s)

T1
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and

T2

f (72, 8) [ (s 8) — Fuzer $)]dgn(3)] < f a(r, )| L(s) 95 — 2], dgn(s),

T1

for all y,z € G([to — r,to + o|,R"), and all tg < 7 < 75 <tp + 0.

The next theorem gives us conditions in order to guarantee that the solutions of a

sequence of IVPs converges to the solution of the limiting IVP. We follow some ideas from

[60, Theorem 8.2].

Theorem 6.0.1. For each n € N, let r > 0 and ¢, € G([—r,0],R™). Consider the
following sequence of equations

£(t) = 6u(0) + f an(t, ) fuler $)dgu(s), £ > o 05

xto = (bTLJ
where o > 0, f,: G([—1,0],R™) x [to,to + 0] — R" a,: [to,to + o] % [to,to + 0] —
R, gn: [to,to + o] — R.

Moreover, assume that

lim an(t,s) = al(t,s) uniformly on [to,to + o],
lim fo(zs,5) = f(xs,s) uniformly on G([—r,0],R") x [to, o + o],
lim gn(s) = g(s) uniformly on [to,to + o],
nll_{rolo on(t) = o(t) uniformly on [—r,0],

where fr, f: G([—r,0],R") x [to,to + 0] — R”, an,a: [to,to + o] % [to,to + 0] — R,
n, 9: [to, to + o] = R and ¢y, ¢: [—r,0] - R™. Assume also that the functions ¢ and ¢,
are requlated and a, f, g, an, fn and g, satisfy the conditions (B1)—(B6) for eachn € N, and
that the sequences {an(t, s)}nen, {Mn(S)}nen and {L(S)}nen are, each of them, uniformly
bounded by the positve constants A, M and L, respectively, fort,s € [to, to + o]

Let z,,: [to — r,to + o] — R™ be the unique solution of (6.0.3) and assume that

lim z,(t) = z(t), te[to—rto+ o]

n—0o0

Then x: [ty — r,to + o] — R"™ is the unique solution of

x(t) = 6(0) + f alt, ) (w:,5)dg(s), ¢ >ty (6.0.4)
T, = ¢
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Proof. Notice that, if t € [tg — r,to], then z,(t) = ¢,(t — to). By hypothesis, ¢, (t — t)
converges uniformly to ¢(t —tgy) on [to—r,to| and x,(t) converges to x(t) on [ty —r,to+ o).
By the uniqueness of the limit, we get that x(t) = ¢(t — tg), and hence z;, = ¢.

Since ¢,(s) — ¢(s) uniformly on [tg,tg + o], it follows that ¢ — g, pointwisely on
[to,to + o]|. This fact implies that g,(to) — g(to) and g,(to + o) — g(to + o). As a
consequence, the sequences {g,(to)}r_, and {g,(to + 0))}°_, are bounded. Hence, the
function g, is of bounded variation on [tg,tg + o]. More precisely, there exists a constant
G = 0 such that V,°*?(g,) = gn(to + o) — gu(to) < G for all n € N, where V’(g) denotes
the total variation of a function g on the interval [a, b].

Therefore, this fact implies that the integral

toto
| att st - o
exists in the sense of Henstock—Kurzweil-Stieltjes, since s — f(zg,s) and s — a(t, s) are

regulated and g, — g is BV. Thus, by Theorem 1.2.7, we have that
t

lim | a(t,s)f(zs,s)d(g, —g)(s) =0

n—o
to

uniformly with respect to t € [tg, to + o]|. Hence, for an arbitrary ¢ > 0, there exists m € N

such that

<e, foralln >m and t € [to,to + o]

L a(t, 8)f (s, 8)d(gn — 9)(5)

0

Assume now that ¢ € [ty,ty + o] and fix ¢ > 0. By the uniform convergence, there

exists n sufficiently large such that for n > n, we have:

lan(t,s) —a(t,s)| <e, (t,5)€ [to,to+ o] (6.0.5)

I fa(zs,8) — flas,8)| <&, (2,5) € G[to — 1, to + 0], R") x [to,to + o] (6.0.6)
lgn(5) — g(s)| < &, se€[to,to+ o] (6.0.7)

[n(s) — o(s)| <e. s € lto, to+o]. (6.0.8)

Suppose y: [to,to + o] — R™ is a solution of (6.0.4), we shall prove that y = x.

For t € [to, to + o], we have

£alt) = 6(0) + f an(t,$) fu(s, $)dgn(s)

to
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and

y(t) = 3(0) + f alt, $)f (s, 5)dg s).

to

Therefore, for t € [to, to + o] and n > max{m,n}, we have

[ () = y(®)] =

6u(0) + f an(t,5) Fu (@), 5)dga(s) — B(0) — f alt, 5 (s, 5)dg(s)

t

f an(t, 8) fu((2n)s, )dgn(s) —f an(t, $) fn(Ys, 5)dgn(s)

to to

rt rt

' H [t )t 1000 = [ a9

to Jio

n \ [ atts )t 1000 = [ a5 5105

to Jto

+

ft alt, $)f (v, 5)dgn(s) —ft alt, 5)f (ys, 5)dg(s)

Using conditions (B5) and (B6), the estimates (6.0.5), (6.0.6) and Theorem 1.2.7, we

obtain, for n > max{n,n} and t € [to, ty + o],

lzn(t) = y(8)]

+ 2¢

L t a(t, 5)dga(s)

t t
< j an(t, )| Ln(5) |20, — yalodgn(s) + € j M, (s)dga(s) + €
to to

t
< J lan(t, $)|Ln(8)||Tn, — Ys|oodgn(s) + 5(]\7[G + AG + 2).
to

Therefore,

Jzn(t) —y(®)] < L |an(t, 8)[Ln(s) sup |zn(s +0) —y(s + 0)|dgn(s)

0e[—r,0]
+e(MG + AG + 2)
¢
= f |an(t, )| Ln(s) sup  [z,(0) — y(0)|dgn(s) + (MG + AG + 2)
to

0c[s—r,s]
t
< Aif sup [2n(s) — y(s)|dgn(s) + c(NC + AG +2).
t

o O€[s—r,s

(6.0.9)

Since the right-hand side of (6.0.9) is nondecreasing, we have
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sup (1) —y(n)|| < fliﬁ sup | za(s) — y(s)dgn(s) + (MG + AG +2) (6.0.10)

ne(t—r,t] o O€[s—r,s]

Using Gronwall Inequality for Stieltjes integrals (Lemma 1.2.10), we obtain

|2a(t) — y(t)| < e(MG + AG + 2)eC, (6.0.11)
and the result follows. O

In the sequel, we state the well-known Helly’s First Choice Theorem. It will be im-

portant to prove our next result.

Theorem 6.0.2 ([55, Helly’s First Choice Theorem|). Let an infinite family of functions
F = {f(x)} be defined on the segment [a,b]. If all functions of the family and the total

variation of all functions of the family are bounded by a single number

[f(@)] < K, warg(f) < K,

a

then there exists a sequence {f,(x)} in the family F which converges at every point of

[a,b] to some function ¢(x) of finite variation.

The next result on continuous dependence allows us to construct a sequence of func-
tions formed by solutions of a sequence of problems that converges to our solution of a
limiting problem. It is a type of “inverse” problem. This result is very useful to prove
nonperiodic averaging principles, since we need to deal with some convergences and con-
tinuous dependence results to get those results (see [60]). The proof of the next result is

inspired by [60, Theorem 8.6].

Theorem 6.0.3. For eachn €N, letr > 0, ¢, € G([—r,0],R™) and consider the sequence

of problems:

o(t) — ¢n(0)+£ an(t, 5) fo(s,5)dg(s), = to (6.0.12)

Ty, = On
where o > 0, f,: G([—r,0,R™) x [to,to + 0] — R" an: [to,to + o] X [to,to + 0] —
R,g: [to,to + 0] — R satisfy conditions (B1)-(B6), with M,(t) = M(t), L,(t) = L(t)
for alln e N and t € [ty,to + o].
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Let us also assume that {a,}>_, is uniformly bounded in compact sets and that there
exist functions a: [to,to + o] x [to,to + o] > R and f: G([-r,0],R") x [to,to + o] — R"
satisfying conditions (B1)—(B6) such that:

lim ¢, = ¢ uniformly on [—r, 0],
lim an(t,s) = al(t,s) uniformly on [to,to + o],

f(zs, s) uniformly on G([—r,0],R™) x [to,to + o],

=
=
—
8
N
NP
l

for every x € G([ty — r,to + o], R"™), t, s € [to, to + 0.
Let xq: [to — 1, tg + o] = R™ be the unique solution of

2(t) = ¢<o>+£ alt,5)f (s, s)dg(s), ¢ > to (6.0.13)

Lty = (b
Then there exists a sequence of solutions x,: [to — r,to + o] — R"™ of (6.0.12) such that

Ty — T AS TN — OO,

Proof. The existence of solutions of (6.0.12) is guaranteed by Theorem 3.1.9, since all
hypotheses are satisfied. Thus, it remains to prove that the sequence of solutions {z,}>_,
of (6.0.12) converges to .

Since {a,}_; is uniformly bounded in compact sets, there exists a regulated function
a: [to,to + o] x [to, to + 0] — R, nondecreasing with respect to the first variable such that
a(t, s) = ay,(t, s) for every (t,s) € [to, to + o] x [to,to + o] and n € N.

Define the function h: [tg, %o + 0] — R by

ht): :J eM(s)dg(s) + f "t )M (5)dg(s) (6.0.14)

to to
The function h is nondecreasing, since g is nondecreasing and for s,t € [to, to+ 0], s >t

|2n(s) — z,(t)| < h(s) — h(t) by assumptions (B1)—-(B6) and using the fact that x,, is a
solution of (6.0.12). Therefore, it follows that z,, is of bounded variation and the total
variation of @, V,°*7(z,), satisfies V,"*7(z,,) < h(ty + o) — h(ty) for all n € N.

Since ¢, — ¢ uniformly and, for each n € N, ¢, is a regulated function, it follows that
¢ is also regulated (because it is the uniform limit of regulated functions). Hence, there

exists a positive constant K such that |¢,(¢)| < K and |¢(t)|| < K for all t € [—r, 0] and

n € N. Therefore, for t > t,
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la(®)] = 6u(0)] + f an(t, 5) (s $)dg (5)

to

< K+ tAM(S)dg(s)

to

to
< K+J +0AM (s)dg(s),

to
where A is a uniform bound of {a,}°_;.

Notice also that if t € [ty — r,to], we can write t = ¢y + 6, where 6 € [—r,0]. Hence, in
this case, |z, (£)]| = [zn(to + 0)|| = [(zn) (O)] = |60 (0)]| < K, 0 € 7, 0]

Since the function M is regulated, it is also integrable in the sense of Henstock—
Kurzweil-Stieltjes, then, for each n € N, the functions {x,}_; is uniformly bounded
on [to,to + o]. Hence, by Helly’s First Choice Theorem (Theorem 6.0.2), {z,};~_; has a
subsequence that converges to a function y. By Theorem 6.0.1 and from the uniqueness

of solutions, we have that y must be z(, and we finish the proof of this Theorem. O

6.1 Continuous dependence on impulsive equations

In this section, we will show that we can use the correspondence obtained in Section
2.1 to obtain the analogues of Theorem 6.0.1 and Theorem 6.0.3 also hold for impulsive
functional Volterra—Stieltjes integral equations.

In this section, let the functions f, f,,, a,a,, g and g, be defined as in the first part of
this chapter. Also, let us assume that conditions (B1)—(B6) are satisfied. We will also
consider the functions f , fn, g and g, which will be defined in the same manner that it

was done in Section 2.1, that is:
e f:G([~r,0],R") x [to, 1o + 0] — R™ by

. B fly,7), 7€ [to,to+o)\{t1,...,tm},

I(y(0), 7=tx, ke{l,...,m},
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e §: [to,to + 0] — R be given by

g(T), T €E [to,tl],
9(T) = g(r)+k, 1€ (tpte], kef{l,...,m—1},

g(t)+m, TE€E (tm,to+ ol

\

The functions f, and g, are defined analogously. The next theorem shows that we can
obtain the analogous result as in Theorem 6.0.1 to impulsive functional Volterra—Stieltjes

integral equations.

Theorem 6.1.1. For each n € N, let r > 0 and ¢, € G([—r,0],R™). Consider the

following sequence of equations

z(t) = ¢n(0) + f an(t, 8) fu(zs, $)dgn(s) + Z an(t, te) I (x(tg)), t=1o

to ke{l,...,m}
to<tr <t

Lty = ¢n7
(6.1.1)

where {ty}, are the moments of impulses and each ty € [to,to + o].

Moreover, assume that

lim an(t,s) = alt,s) uniformly on [to,to + o]?,
lim fo(zs,5) = f(xs,s) uniformly on G([—r,0],R") x [to, o + o],
lim gn(s) = g(s) uniformly on [to,to + o],
7}1_1}1010 on(t) = o(t) uniformly on [—r,0],

where fnmf: G([_T7 0]7Rn) X [t07t0 + U] - Rn; Qp, @: [t()?t() + U] X [t()?t() + O'] - R;
n, 9: [to, to + o] = R and ¢, ¢: [—r,0] = R™. Assume also that the functions ¢ and ¢,
are requlated and a, f, g, an, f. and g, satisfy the conditions (B1)—(B6) for eachn € N, and

that the sequences {an(t, s)}nen, {Mn(S)}nen and {L(s)}nen are, each of them, uniformly
bounded by constants A, M and L, respectively, fort,s e [to,to + o].

Let z,: [to — r,to + o] — R™ be the unique solution of (6.1.1) and assume that

lim z,(t) = z(t), te[to—rto+ o]

n—ao0
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Then x: [ty — r,to + o] — R"™ is the unique solution of

t

xz(t) = ¢(0) + J a(t,s)f(xs, s)dg(s) + Z a(t, tp) Ik (z(ty)), t=to
o ke(L,...m} (6.1.2)

to<tp<t
Lty = ¢
Proof. Using Theorem 2.1.2 and by hypotheses, we know that z, is also the unique

solution of

£(t) = 6a(0) + f an(t, ) Foles $)An(s), 13 to s

Ty = On,
for each n € N.
In view of the definitions of a,, f, and §,, it is clear that these functions converge to
a, f and g, respectively, uniformly. Therefore, we can use Theorem 6.0.1 to obtain that x
is the solution of

() = ¢(0) + L alt, s) f(vs,5)dg(s), t=to (6.1.4)

since lim,, o ,(t) = z(t), te€[to—r, to+ ol

Using Theorem 2.1.2 once again, we conclude that x is the unique solution of

z(t) :¢(0)+fa(t,S)f(:rs,S)dg(SH DT alt )z (t), t=to
o ke(l,....m} (6.1.5)

to<tp<t

xto = ¢7

as desired. O

Proceeding in a similar manner as in the previous theorem, we can also obtain an

analogue result to Theorem 6.0.3 for the corresponding equations in the impulsive case.

Theorem 6.1.2. For eachn €N, letr > 0, ¢, € G([—r,0],R™) and consider the sequence

of problems:

x(t) = ¢n(0)+f an(t,8) fu(xe, s)dg(s) + D0 an(t ti)In(z(te)), >t

to ke{l,...,m}
to<tp<t

Ty = ¢n
(6.1.6)
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where {tx}}_, are the moments of impulses and each ty € [to, to+0]|. Also, f,: G([—r,0],R")x
[to, to + o] = R™, a,: [to,to + o] x [to,to + o] = R, g: [to,to + 0] — R satisfy conditions
(B1)-(B6), with M, (t) = M(t), L,(t) = L(t) for alln € N and t € [ty,to + o]. Let us
also assume that {a,}r_, is uniformly bounded in compact sets and that there exist func-
tions a: [to,to + o] x [to,to + 0] = R and f: G([—r,0],R"™) x [to, o + o] — R™ satisfying
conditions (B1)-(B6) such that:

lim ¢, = ¢ uniformly on [—r, 0],
lim an(t,s) = al(t,s) uniformly on [to,to + o],

5im fu(ze,s) = f(..s) uniformly on G([—r, 0], R") x [to,t + o,

for every x € G([ty — r,to + o], R™), t, s € [to, to + 0.

Let xq: [to — 1, to + 0] = R™ be the unique solution of

t

z(t) = ¢(0)+Ja(t,s)f($s,s)dg(s)+ Z a(t, te)I(x(ty)), t=tg
fo ke{L,...m} (6.1.7)

to<tp<t
N = Qb
Then there exists a sequence of solutions x,: [to — r,to + 0] — R™ of (6.1.6) such that

Ty, — Ty GS N — 0.

Proof. By Theorem 2.1.2 and by hypotheses, xz( is also the unique solution of

(t) = ¢(o>+L“(t,s>f(fvsa8>d§(5>7 t=h (6.1.8)
T, = ¢

By hypothesis and the definitions of a, an, f, fn,§ and §,, it follows that a, — a,

fn — f and g, — § uniformly.
Hence, by Theorem 6.0.3, there exists a sequence of solutions z,,: [tg —r,tg + o] — R”

of

t
o) = )+ | anlt ) fulen)dils) 120
to (6.1.9)
Tt = ¢n
such that z, — xy. By Theorem 2.1.2, once again, x,, for each n € N, is also a solution

of the equation (6.1.6), which concludes the proof.
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6.2 Continuous dependence on time scales

In this section, we want to prove analogues results for a sequence of functional Volterra—
Stieltjes A- integral equations on time scales.
Assume the following conditions concerning the functions f: G([—r, 0]r, R"™) x [to, to +

olr — R" and a: [to,ty + 0]% — R.

(C1) The function a: [to,to + o] — R is nondecreasing with respect to the first variable,

regulated with respect to the second variable and rd—continuous.

(C2) The Henstock-Kurzweil A-integral

JSQ a(t,s)f(xs, s)As

S1

exists for each time scale interval [sq, sa|t < [to, to + o1, € G([to — T, to + o1, R™),

T € [to,to + 0']11‘.

(C3) There exists a Henstock—Kurzweil A-integrable function M;: [tg,tg + o] — RT
such that

52

f(cla(SZ, s) + caa(s1, s)) fxs, s)As| < fMl(s) lc1a(sg, s) + caa(sy, s)| As,

S1

for all x € G([to — r,to + o)1, R"™), ¢1,¢2 € R and s1, 89 € [to,to + o], $1 < So.

C4) There exists a regulated function L;: [tg, ¢y + o]t — R™ such that
( g :

f (52, 8)[f (20, 8) — F 20, 5)] s < f Li(5) [a(s2, )| |20 — e,

for all x,z € G([to — r,to + o], R™) and s1, 89 € [to, to + o]T, $1 < So.

Theorem 6.2.1. Let T, be a sequence of time scales. For some o > 0 and each n € N,

assume that to,tg + o € T. Consider the following sequence of equations:

t

z(t) = ¢(0) + L an(t,s)fu(zk, s)As, te[to,to+olr, (6.2.1)

x(t) = o(t), te [to— 7 to]r,,
where ¢, € G([to—r,to]r,, R"™), fn: G([—r,0]r,,R"™) X [to, to + o1, — R™ and a,: [to,to+
olr, X [to,to + o], — R. Also define the functions g: [to,to + o] — T, by gn(s) = s*
and g: [to,to + o] — T by g(s) = s*.
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Moreover, assume that

lim. or(t) = @*(t) uniformly on [ty — r, to], (6.2.2)
lim a;*(t,5) = a™(t,s) uniformly on [to,to + o], (6.2.3)
lim fi(zs,s) = [*(xs,s) uniformly on G([—r,0],R") x [to,to + 0],  (6.2.4)

lim g.(s) = g(s) uniformly on [to,to + 0] (6.2.5)

where f: G([—r,0]r, R"™) x [to, to+ o]t — R"™, a: [to, to+ 0|1 X [to, to+0|T — R, g: [to, to+
olr — T and the functions a, f,a, and f, satisfy the conditions (C1)-(C4) for eachn € N.
Let x,,: [to — r,to + o], — R™ be the solution of

z(t) = ¢n(0) + ft an(t, 8) fn(z¥, 8)As te[to,to+ olr, (6.26)

x(t) = on(t), telto—rtolr,

and assume that

lim z,(t) = z(t). (6.2.7)

n—0oo
Then x: [ty — r,to + o]t — R™ is the solution of
t

z(t) = ¢(0) + fo a(t,s)f(zk, s)As te[ty,to + olr (6.2.8)

x(t) =o(t), teto—r, tolr
Proof. First, we call the reader’s attention to the fact that ¢*(t) = ¢,(t*), where t* =
inf{ € T,, : £ = t}, whereas ¢*(t) = ¢(t*), where t* = inf{€ € T : £ > ¢}. Analogously, we
define the functions a**,a’*, f*, and f.
Notice that, by Theorem 2.2.1, 2} is a solution of
t

o) = a(ty) +L (4 5) (@, 8) dgn(s) 1€ [t o + 0] 620

Ltg = ((b;kz)tO'

Since for all t € [ty — r,to + o|r, lim, o z,(t) = x(t), it follows that

where z*: [tg — 1, tp + 0] — R™ and z7: [ty — 7, tp + 0] — R". Hence, by Theorem 6.0.1,

we obtain that z* is a solution of
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t

;z;(t) _ l‘(to) n J; a**(t, S)f*(g;:’ 5>dg<8), te [t07t0 + J] (6 9 10)

Loy = (¢*)to'
Using Theorem 2.2.1 again, we obtain that z: [tg — r,tg + o]t — R" is a solution of

t

x(t) = x(ty) + L a(t,s)f(x¥, s)As, te[to,to+ olr, (6:2.11)

(E(t) = ¢(t), te [to -, t()]']r,

as desired, proving the result. O

Theorem 6.2.2. Let T be a time scale and let T, be a sequence of time scales such that
to,to + 0 € T and ty,tg + 0 € T,. For each n € N, consider the following sequence of
equations:

z(t) = ¢a(0) + L an(t, 8) ful2y, 8)As, T [to,to + o]r, (6.2.12)

z(t) = ¢n(t),t e [to—r tolr,,

where ¢, € G([to — r,t0], R"™), fn: G([—7r,0]r,,R") x [to,to + o]1, — R™ and a,: [to,to +
o]z, — R. Also define the functions g, : [to, to+0] — Ty by gn(s) = s* and g: [to, to+0] —
T by g(s) = s*.

Moreover, assume that, fort,s e T

lim ¢, (t) = ¢*(t) uniformly on [to — 7, to], (6.2.13)

lim ar*(t,s) = a**(t,s) uniformly on [to,to + o], (6.2.14)

lim f¥ (x5, s) = [*(ws, s) uniformly on G([—r,0],R") x [to, o + o], (6.2.15)
lim gn(s) = g(s) uniformly on [to,to + o], (6.2.16)

where f: G([—r,0],R") x [to,to + o]t — R",a: [to,to + o]3 — R, g: [to,to + o] — T.
Assume also that the functions a, f,a, and f, satisfy the conditions (C1)-(C4) for each
n € N and that there exists a nondecreasing left continuous function §: R — R, such that

the conditions (B5) and (B6) can be rewritten as:

(B5) For each n € N, there exist requlated functions M, M,: [to,to + 0] — R such that

T2 T2

f (e10(r: 3) + e2a(ri, ) f (s 5)dg ()] < f (cr(ras 3) + caa(ry, ) M(s)dg(s)

T1 T1
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and
f<c1nan<r2, )+ C2,0n(11, 8)) fulys, $)dga(s)| < j (1, 0n(72, 8) 2, 00(71, 8)) Mo ()3 (5),

for ally e G([to —r,to+ o], R™), all ¢1,¢a,¢1,,C0, € R and allty < 71 < 19 <t + 0.

(B6) There exist requlated functions L, L, : [to,to + o] — R such that

T2

| @l ws5) = £ Ndgls)] < [ lalra L) I = 21, dg()
and

T2

f( N (Wer ) — Fulzer 8)dga(s)| < f a(r )| La(s) s — 2], d3(s),

T1

for ally,z € G([to — r,to + o], R™), and all tg < 71 < 7o <ty + 0.

In this case, let x: [to,to + o]t — R™ be the solution of

t

z(t) = ¢(0) + L a(t,s)f(x5,s)As  te[to,to + oln (6.2.17)

z(t) = o¢(t), telto—r, to]r

Then there exists a sequence of solutions x,: [to —r,to + o|r, — R of (6.2.12) such that

Ty, — T AS TN — 00,

Proof. Notice that, by Theorem 2.2.1, z*: [ty — r,ty + 0] — R" is a solution of

t
x(t) = x(ty) + J a**(t,s)f*(xs, ) dg(s), te[to,to+ 0]
to (6.2.18)
xtO = ¢2<0
Consider the following sequence of problems:

v (to) + L (4 5) 5o, 5) dga(s), € [torto + o]

o (6.2.19)
x;ko = (¢;)t0'

By Theorem 6.0.3, the uniform limits and considering the function h defined by

z*(t)

h(t): = J cM(s)dg(s) + f o a(t,s)M(s)dg(s), (6.2.20)

to to
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we conclude that the sequence of solutions of (6.2.19) converges to the solution of (6.2.18).
Now, using Theorem 2.2.1 once again to go back to the original sequence of problems
on time scales, we obtain that the sequence of solutions of (6.2.12) converges to the

solution of (6.2.17), proving the desired result. [
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