UNIVERSIDADE DE BRASÍLIA FACULDADE DE MEDICINA PROGRAMA DE PÓS-GRADUAÇÃO EM PATOLOGIA MOLECULAR

TESE DE DOUTORADO

ANÁLISE PROTEÔMICA E FOSFOPROTEÔMICA DURANTE TRANSIÇÃO DIMÓRFICA EM Paracoccidioides brasiliensis .

CANDIDATA: DANIELLE SILVA ARAÚJO ORIENTADORA: CÉLIA MARIA DE ALMEIDA SOARES

Universidade de Brasília – UNB Faculdade de Medicina – FM Pós-Graduação em Patologia Molecular

ANÁLISE PROTEÔMICA E FOSFOPROTEÔMICA DURANTE TRANSIÇÃO

DIMÓRFICA EM Paracoccidioides brasiliensis

Tese apresentada ao programa de Pós-graduação em Patologia Molecular da Universidade de Brasília como requisito para obtenção do Título de doutor em Patologia Molecular.

Orientadora: Profa. Dra. Célia Maria de Almeida Soares

Brasília, DF

Julho de 2018

Banca examinadora

Titulares:

Dra. Célia Maria de Almeida Soares- Presidente da banca Instituto de Ciências Biológicas-UFG

Dr. Carlos André Ornelas Ricart Universidade de Brasília-UnB

Dr. Juliano Domiraci Paccez Instituto de Ciências Biológicas-UFG

Dr. Clayton Luiz Borges Instituto de Ciências Biológicas-UFG

Suplente: Dra. Patrícia de Souza Lima Universidade Estadual de Goiás-UFG

AGRADECIMENTOS

À Deus, porque tem sido tudo em minha vida. Por todas as bênçãos concedidas, por todos os milagres realizados. Por iluminar o meu caminho. Por sempre estar comigo, me ajudando a subir cada degrau da vida. Por ser minha inspiração ao prosseguir.

Aos meus pais, Ivani e Joaquim, a vocês que me fizeram acreditar na realização dos meus sonhos e trabalharam muito para que eu pudesse realizá-los.

A minha irmã, Helen, pelo apoio, amizade e companheirismo. Por sempre me ajudar quando eu mais preciso.

Reconheço que sem o apoio e investimento afetivo da família que tanto amo, em especial da tia Nilda, não teria chegado até aqui.

À Profa. Dra. Célia Maria de Almeida Soares, pela orientação, paciência e confiança. Admiro sua competência e profissionalismo.

Aos professores, Alexandre, Clayton, Juliana, Maristela, Mirelle, Silvia, Wagner Fontes, Carlos André por todos os auxílios e preciosos ensinamentos, que foram muito valiosos. Aos professores Carlos André, Wagner Fontes e Laurine pela contribuição no exame de qualificação. Por expandirem meu conhecimento, importante ferramenta para a minha formação acadêmica e científica.

Aos Professores, Juliano, Clayton e Carlos André por aceitarem participar da banca de defesa da tese de doutorado.

Ao programa de Pós-graduação em Patologia Molecular, coordenação, secretaria e corpo docente.

Ao auxílio financeiro, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), pela concessão da bolsa de estudo.

Ao Paulo Henrique, pela sua amizade. Por sempre estar ao meu lado.

Aos meus amigos, Igor, Juliana de Curcio, Lucas Nojosa e Marielle pela infinita ajuda, amizade, companheirismo e incentivo em todos os momentos.

Aos meus amigos Leandro de Prado, Amanda, Sam, Kleber, Marta, Lívia, Raisa, Lana, Karla, Kassyo, Luiz Paulo, Mariana Pedrosa, Denner, Moises e Ayda.

Aos companheiros de convivência e aprendizado em Brasília, Agenor, Guilherme Petito, Reinaldo, Arthur.

Aos colegas do laboratório Andrea, Aparecido, Gabriel, André, Lorena, Bianca, Mariana Tomazett, Vanessa, Lucas Weba pelo convívio, experiências compartilhadas, por participarem direta ou indiretamente para o desenvolvimento deste trabalho.

Aos funcionários da limpeza, pela dedicação de todos os dias.

A todos que fizeram desses quatro anos e meio, anos mais alegres.

Resumo

Paracoccidioidomicose (PCM) é uma micose sistêmica de alta incidência na América Latina, atribuída aos fungos termodimórficos do gênero Paracoccidioides. O contato com o hospedeiro ocorre através da inalação de conídios, que alcançam os alvéolos pulmonares e se diferenciam em leveduras. Esta etapa de transição é considerada vital na patogênese da PCM, permitindo a sobrevivência do fungo no hospedeiro. Assim, este estudo procurou identificar proteínas envolvidas nas fases miceliana e leveduriforme e na transição morfológica micéliolevedura de Paracoccidioides brasiliensis. Os peptídeos marcados com iTRAQ foram identificados por LC-MS / MS. Esta abordagem permitiu a identificação de 312 proteínas diferencialmente expressas em micélio, levedura e transição micélio-levedura. Na batalha contra o fungo, o hospedeiro desenvolve várias estratégias para eliminar o patógeno e o fungo por sua vez, reprograma seu metabolismo para subverter as estratégias de defesa do hospedeiro. A fase parasitária de P. brasiliensis utiliza as vias de beta-oxidação, TCA e cadeia transportadora de elétrons e fosforilação oxidativa para a produção de ATP. Na fase leveduriforme há a indução de fatores de virulência e proteínas de choque térmico que permitem que o fungo se adapte ao aumento na temperatura. Por outro lado, as enzimas reguladas positivamente da fase miceliana se relacionam com a fermentação alcoólica. Além disso, vias como o ciclo celular, a transcrição e o metabolismo da parede celular foram regulados em micélio. Após marcação com iTRAQ, uma alíquota foi submetida a enriquecimento dos fosfopeptídeos com TiO₂, seguido da identificação das proteínas por LC-MS / MS. O total de 72 e 23 fosfoproteínas foi identificado na fração enriquecida com TiO₂ e fração global, respectivamente. Fosfoproteínas foram diferencialmente acumuladas nas fases do fungo.

Abstract

Paracoccidioidomycosis (PCM) is a systemic mycosis with a high incidence in Latin America, attributed to the thermodimorphic fungi of the Paracoccidioides genus. The contact with host occurs through the inhalation of conidia, where once that this reach the pulmonary alveoli differentiate into yeast. This transition stage is considered vital in the pathogenesis of PCM allowing the survival of the fungus in the host. Thus, this study sought to identify proteins involved in the mycelium and yeast phases and in the mycelium-to-yeast transition of *Paracoccidioides brasiliensis.* This approach allowed the identification of 312 differentially expressed proteins in mycelium, yeast, and mycelial-yeast transition. In the battle against the fungus, the host develops several strategies to eliminate the pathogen and the fungus in turn reprogramme its metabolism to subvert the strategies of defense of the host. The parasitic phase of P. brasiliensis uses the beta-oxidation pathways, TCA and electron transport chain and oxidative phosphorylation for the production of ATP. In the yeast phase there is the induction of virulence factors and heat shock proteins that allow the fungus to adapt to the increase in temperature. On the other hand, the positively regulated enzymes of the mycelial phase are related to alcoholic fermentation. In addition, pathways such as the cell cycle, transcription, and cell wall metabolism were regulated in mycelium. After labeling with iTRAQ, an aliquot was submitted to enrichment of the phosphopeptides with TiO2, followed by identification of the proteins by LC-MS / MS. The total of 72 and 23 phosphoproteins were identified in the fraction enriched with TiO2 and overall fraction, respectively. Phosphoproteins were differentially accumulated in the fungus phases.

Sumário

ABF	REVIATURAS	. 10
1.	Introdução	1

1.1. Aspectos gerais de membros do gênero Paracoccidioides 1
1.2. Aspectos morfológicos de <i>Paracoccidioides</i> spp 2
1.3. Biologia de <i>Paracoccidioides</i> spp 4
1.4. Interação com o hospedeiro 8
1.5. Paracoccidioidomicose
1.6 Dimorfismo de <i>Paracoccidioides</i> spp17
1.7. Análises transcricionais e proteômicas durante transição morfológica em membros do complexo <i>Paracoccidioides</i>
2. Fosfoproteoma
2.1. Fosforilação de proteínas
2.2. Fosfoproteoma em micro-organismos
3. Justificativa
4. Objetivos
4.1. Objetivo Geral
4.2. Objetivos Específicos
Proteomic and phosphoproteomic analysis during dimorphic transition of <i>Paracoccidioides</i> brasiliensisErro! Indicador não definido.
Conclusão

CAPÍTULO I

Figura 1. Morfologia de Paracoccidioides brasiliensis.	. 3
Figura 2. Distribuição biogeográfica no território brasileiro onde a detecção ambiental (do	
solo, aerossol e tatus) de Paracoccidioides spp. foi realizada	. 7
Figura 3. Resposta imune adaptativa na PCM.	11

CAPÍTULO II

Figure 1. Ethanol measurements in protein extracts of mycelium, yeast cells and mycelium-to	
yeast transition and analysis of the transcript encoding pyruvate decarboxylase by qRT-	
PCR Erro! Indicador não definido	
Figure 2. Thiol measurements in protein extracts of mycelium, mycelium-to-yeast transition	
and yeast cells Erro! Indicador não definido	
Figure 3. Schematic diagram of the metabolic processes differentially expressed in mycelia	
and yeast cells Erro! Indicador não definido	
Figure 4. Number of phosphoproteins, phosphopeptides and phosphosites detected in <i>P</i> .	
brasiliensis yeast cells, mycelium and mycelium-to-yeast cells transitionErro	
Indicador não definido.	
Figure 5. Distribution of phosphoproteins identified in <i>P.brasiliensis</i> , among FunCat 2.0	
categories Erro! Indicador não definido	
Figure 6. Functional annotations of phosphoproteins identified during transition of Pb18	
obtained from GO slim terms Erro! Indicador não definido	

Supplementary Figure 1. Schematic overview of performed experiments Erro! Indicador não definido.

Supplementary Figure 2. Cell differentiation of *Paracoccidioides brasiliensis*.....Erro! Indicador não definido.

Supplementary Figure 3. Flowchart of the filters applied to the identified proteins during mycelium, yeast cells and mycelium-to-yeast transition... Erro! Indicador não definido.

Supplementary Figure 4. Proteins identified in *Pb*18 that were annotated by Blast2GO...**Erro!** Indicador não definido.

Supplementary Figure 5. Quantitation of the mRNA expression of selected genes of *P.brasiliensis* by quantitative real time RT-PCR...... Erro! Indicador não definido.Supplementary Figure 6. Schematic overview of experiments performed for enrichment with

TiO2. Phosphopeptides were enriched with TiO₂ and subjected to MS/ MS analysis.

...... Erro! Indicador não definido.

ABREVIATURAS

4-HPPD: 4-hidro-fenil-piruvato desidrogenase

2-DE: eletroforese bidimensional

ATP: adenosina trifosfato

cAMP: adenosina monofosfato cíclico

CaCl_{2:} cloreto de cálcio

GAPDH: gliceraldeído-3-fosfato desidrogenase

GPI: glicosil-fosfatidilinositol

H₂O₂: peroxido de hidrogênio

IFNγ: interferon gama

IL: interleucina

IMAC: immobilized metal affinity chromatography ou cromatografia de afinidade de íons metais imobilizados

iTRAQ: Isobaric tag for relative and quantitation

LC-MS/MS: espectrometria de massas acoplada à nano-cromatografia líquida de alta eficiência

NO: óxido nítrico

O⁻²: aníon superóxido

ONOO⁻: peroxinitrito

PAMP: padrões moleculares associados ao patógeno

PRRs: receptores de reconhecimento do padrão

PCM: Paracoccidioidomicose

TFA: ácido trifluoroacético

TEAB: tampão bicarbonato de trieltilamônico

TGF-β: fator de crescimento tumoral beta

- Th1: resposta imune T auxiliar do tipo 1
- **Th2:** resposta imune T auxiliar do tipo 2
- TiO2: dióxido de titânio
- **TNF-***α*: fator de necrose tumoral alfa

1. Introdução

1.1. Aspectos gerais de membros do gênero Paracoccidioides

Os fungos termodimórficos do gênero *Paracoccidioides* representados pelas espécies *P. brasiliensis*, *P. americana*, *P. restrepiensis*, *P. venezuelensis* e *P. lutzii* causam a micose denominada Paracoccidioidomicose (PCM) (BRUMMER et., 1993). Em 1908 Adolpho Lutz, foi o primeiro pesquisador a descrever o micro-organismo isolado de lesões orais de dois pacientes, o qual diferia do fungo já conhecido na Argentina, denominado *Coccidioides immitis*. Em seus achados Lutz enfatiza a ausência de esférulas com esporos no seu interior, o que foi visualizado através de exames histológicos realizados em suas amostras, assumindo que o fungo encontrado era diferente do *C. immitis* (Lutz, 1945). Inicialmente o fungo *P. brasiliensis* era conhecido por ser o único agente etiológico da micose, e a priori foi denominado *Zymonema brasiliensis* por Splendore em 1912. Floriano de Almeida propôs o nome *Paracoccidioides brasiliensis*, sendo em 1930 o nome do agente causador da PCM. Em 1971 em um encontro de micologistas o termo paracoccidioidomicose foi então reconhecido (Lacaz, 1994).

Uma nova espécie do gênero *Paracoccidioides* foi definida, por meio de estudos de sequenciamento de multilocus. Essa nova espécie foi denominada *Paracoccidioides lutzii* em homenagem a Adolpho Lutz (CARRERO et al., 2008; TEIXEIRA et al., 2009).

O complexo *brasiliensis* era composto por quatro diferentes espécies crípticas, como a seguir designado: PS1 (amplamente distribuída na América do Sul),

1

PS2 (isolada apenas no Brasil e Venezuela), PS3 (restrita à Colômbia) e PS4 (limitada à Venezuela) (Matute et al., 2006; Salgado-Salazar, Jones, Restrepo, & McEwen, 2010; Theodoro et al., 2012) e *P. lutzii* distribuída nas regiões central, oeste e noroeste do Brasil e Equador (TEIXEIRA et al., 2013; TEIXEIRA et al., 2009; THEODORO et al., 2012). Contudo essa classificação sofreu uma atualização recentemente. Um estudo realizado em 2017 propôs uma nova nomenclatura para o complexo *brasiliensis*, pois através das análises morfológicas e moleculares verificou-se que as espécies de *Paracoccidioides brasiliensis* apresentavam divergências entre si. Os autores do estudo sugeriram três novas espécies filogenéticas do gênero: *P. americana* para PS2, *P. restrepiensis* para PS3, *P. venezuelensis* para PS4. Já o termo *P. brasiliensis* refere-se apenas ao grupo monofilético S1 (Turissini, Gomez, Teixeira, McEwen, & Matute, 2017).

O genoma completo de três diferentes espécies filogenéticas do complexo *Paracoccidioides* (*Pb*01, *Pb*03 e *Pb*18) foi descrito (https://www.broadinstitute.org/fungal-genome-initiative/paracoccidioides-genome-project). O genoma do isolado *Pb*01 apresenta o maior número de bases representando 32,94 Mb, com um total de 9.132 genes. Os isolados *Pb*03 e *Pb*18 apresentam genomas com tamanho de 29,06 e 29,95 Mb, com 7.875 e 8.741 genes, respectivamente (Desjardins et al., 2011). Recentemente os genomas de *P. restrepiensis* (*Pb*Cnh) e *P. venezuelensis* (*Pb*300) foram descritos, os quais apresentaram 8.324 e 8.070 genes, respectivamente (Muñoz et al., 2016).

1.2. Aspectos morfológicos de Paracoccidioides spp.

Uma peculiaridade que os fungos dimórficos pertencentes à família Ajellomycetaceae, ordem Onygenales apresentam é a alteração morfológica associada à temperatura (DESJARDINS *et al.*, 2011; MCEWEN et al., 1987). Em condições ambientais ou durante o cultivo *in vitro*, a 22-25°C, o fungo *Paracoccidioides* apresentase como micélio, com hifas finas e septadas, com vários núcleos produzindo clamidósporos ou conídios; macroscopicamente o fungo apresenta aspecto algodonoso (BRUMMER et al., 1993). Nos tecidos do hospedeiro ou quando do cultivo a 36°C, *Paracoccidioides* é caracterizado por múltiplos brotamentos com morfologia oval ou alongada, contendo múltiplos núcleos e brotamentos, o que confere aspecto de "roda de leme" à forma leveduriforme (BRUMMER et al., 1993) (**Figura 1**).

Figura 1. Morfologia *de Paracoccidioides brasiliensis*. (A) micélio sob temperatura de 22°C (Aumento 100x), (B) levedura sob temperatura 36°C (Aumento 40x).

Quando se compara a morfologia de diferentes espécies de *Paracoccidioides* torna-se evidente que a morfologia/fisiologia conidial produzida por alguns isolados é um possível marcador para diferenciar espécies do gênero *Paracoccidioides*. Isolados como T5LN1, T10B1 e BT84, não produzem qualquer conídio; em paralelo, em isolados como T9B1, BT85 e D01 (pertencentes a espécies do grupo S1) a produção de conídio é alta,

quando os fungos são cultivados com substâncias contendo extratos do solo (TERÇARIOLI et al., 2007). Além disso, a morfologia conidial um pouco mais alongada em P. lutzii permite distingui-lo das outras espécies de Paracoccidioides. Entretanto, observa-se que as diferenças morfológicas da fase de levedura entre as espécies de Paracoccidioides são discretas; Pb01 apresenta leveduras maiores, quando comparado a outras espécies como P. brasiliensis, P. americana, P. restrepiensis (Theodoro et al., 2012)(TEIXEIRA et al., 2009). Nesse mesmo contexto a maioria dos isolados de P. americana com exceção de Pbdog e Pb927, apresentam leveduras alongadas similares a pseudohifas (Theodoro et al., 2008). Destaca-se ainda o fato que a espécie P. venezuelensis produz menos brotamentos a partir da célula mãe que as outras espécies, sendo esse aspecto considerado um constituinte de diagnóstico (Turissini et al., 2017). Ressalte-se que conhecer as divergências morfológicas e fisiológicas de cada espécie pode ser importante para o diagnóstico e tratamento da PCM (Batista et al., 2010; Taylor et al., 2000). Por exemplo, tem sido mostrado que isolados de P. lutzii são mais susceptíveis a sulfametoxazol-trimetroprim em comparação a outros isolados (Hahn et al., 2003).

1.3. Biologia de Paracoccidioides spp.

No que tange à biologia do fungo a dificuldade em predizer sua exata localização e o micro nicho está associada à escassez do isolamento da forma saprofítica na natureza (Franco, Bagagli, Scapolio, & da Silva Lacaz, 2000). Sabe-se que o fungo possui uma fase miceliana encontrada no solo, mas sua interação com fatores bióticos e abióticos do ambiente não tem sido completamente determinada (BAGAGLI et al., 2008). Pode-se supor, com base em dados na literatura, que o habitat da forma miceliana ocorre em locais úmidos, pluviosidade média para alta, temperaturas médias e com a presença de rios e florestas (RESTREPO; MCEWEN, 2001). Tem sido proposto também que regiões agrícolas constituem um ambiente com condições necessárias para o desenvolvimento do fungo; por exemplo, o solo argiloso poder reter mais água e nutrientes (BELLISSIMO-RODRIGUES et al., 2011; CADAVID; RESTREPO, 1993; SIMÕES et al., 2004). Além disso, a presença de tatus infectados com o fungo em áreas com solo arenoso e ácido sugere que ambientes similares podem ser o habitat para este patógeno (E Bagagli et al., 2003). Nota-se que a umidade é um aspecto importante para manutenção do fungo, tanto no solo argiloso quanto para o solo arenoso (TERÇARIOLI *et al.*, 2007).

Através da detecção do fungo em amostras provenientes da toca de tatus, especula-se que esse ambiente fornece condições satisfatórias para o fungo, entre elas umidade, temperatura (RESTREPO et al., 2001). Além disso, o hábito de escavar túneis contribui para a dispersão fúngica. Ademais, a temperatura corporal e a baixa imunidade celular dos tatus, sugerem que tais animais forneçam um importante reservatório para *Paracoccidioides* (TERÇARIOLI *et al.*, 2007; THEODORO et al., 2005). Vale ressaltar que o fungo tem sido frequentemente isolado em tatus tais como *Dasypus novemcinctus* e ocasionalmente em *Cabassus centralis*. O fungo pode causar infecção e doença em animais domésticos como tem sido relatado em cachorros. Esporadicamente tem sido isolado de fezes de morcegos e pinguins e comida de cachorros (BAGAGLI, E *et al.*, 2003; CORREDOR et al., 2005; FERREIRA et al., 1990; GROSE E, 1965; GARCIAI et al., 1993; RICCI et al., 2004).

Na tentativa de mapear a distribuição geográfica das espécies do gênero *Paracoccidioides* em áreas endêmicas da PCM no Brasil, Arantes e colaboradores (2016) utilizaram amostras provenientes do solo e aerossol, como representado na **Figura 2**. Corroborando com dados anteriores, ficou evidente que o crescimento e dispersão do fungo são influenciados pelo clima. A alta umidade propicia o crescimento fúngico e a sua manutenção no solo. Já períodos de seca promove uma dispersão mais fácil e intensa dos aerossóis (BARROZO et al., 2010, 2009; YAMAMOTO et al., 2012). Nesse sentido, quando avaliado o estado de Rondônia, a detecção de *Paracoccidioides* em amostras de aerossóis mostrou-se negativa e em contrapartida nas amostras do solo foram positivas. Os autores explicam que as coletas das amostras nessa região foram realizadas em período de chuva, o que pode favorecer a manutenção do fungo no solo (Arantes, Theodoro, Teixeira, Bosco, & Bagagli, 2016). Como ressaltado pelos autores esse fato também corrobora com o crescente número de casos após os períodos de chuvas em regiões endêmicas e o aumento de novos casos em áreas do Norte do Brasil (BARROZO et al., 2010, 2009; VIEIRA et al., 2014). Além disso, os estados de Rondônia e Goiás apresentam uma grande indecência de casos de PCM, possivelmente devido ao aumento da atividade agrícola nessas regiões (FERREIRA et al., 2012; GEGEMBAUER et al., 2014; VIEIRA et al., 2014).

No que se refere à distribuição das espécies filogenéticas no Brasil, *P. lutzii* e *P. brasiliensis* foram encontrados em todas as quatro regiões analisadas (Arantes et al., 2016). Acredita-se que tal fato está relacionado à capacidade de cada espécie produzir propágulos infectivos em áreas distintas. Com base na literatura, sugere-se que *P. brasiliensis* produza uma maior quantidade de conídios que as outras espécies, o que explicaria o alto índice de isolamento de *P. brasiliensis* em áreas endêmicas (MOLINARI-MADLUM et al., 1999; TERÇARIOLI et al., 2007). Ressalte-se que à época de publicação do trabalho citado, a espécie *P. brasiliensis* ainda comportava vários grupos filogenéticos.

Como abordado acima a produção de esporos assexuais dos fungos é importante para a disseminação destes na natureza (TERÇARIOLI et al., 2007). Evidências tem mostrado a expressão de genes relacionados à maquinaria sexual, sugerindo que reprodução sexual possa ocorrer durante o ciclo de vida de *P. brasiliensis* (TEIXEIRA et al., 2014).

Figura 2. Distribuição biogeográfica no território brasileiro onde a detecção ambiental (do solo, aerossol e tatus) de *Paracoccidioides* spp. foi realizada. As áreas de coleta abrangem os Estados de Minas Gerais (MG), Goiás (GO), Rondônia (RO), São Paulo (SP) e Pará (PA). Círculos fora do mapa indicam a porcentagem de positividade em cada área para *P. brasiliensis* (verde) e *P. lutzii* (vermelho) por hibridização *in situ* para amostras de aerossol. Os círculos fora do mapa em preto e cinza indicam a porcentagem de positividade em cada área para *P. brasiliensis* e *P. lutzii* por Nested PCR para amostras de solo e aerossol. O círculo branco indica a detecção negativa nas áreas avaliadas (N.D = Não detectado). Os tatus indicam o número de animais coletados e a positividade para isolamento de *P. brasiliensis (Pb)* em cada localidade (em RO, GO, MG, SP e PA). Os triângulos (verde), quadrados (amarelo) e círculos (vermelho) mostram a distribuição dos isolados clínicos para espécies crípticas (S1, PS2 e *P. lutzii*) Adaptado de Arantes (2016).

1.4. Interação com o hospedeiro

A interação do *Paracoccidioides spp.* com as células do hospedeiro é um evento chave na patogênese da PCM. Macrófagos alveolares e células epiteliais alveolares são as primeiras linhas de defesa que o fungo encontra. Uma vez no hospedeiro, o fungo pode ser completamente destruído, ou então persistir e se multiplicar (BORGES *et al.*, 2002; GONZALEZ *et al.*, 2005; MENDES-GIANNINI et al., 2005; MENDES-GIANNINI et al., 2000).

Durante a interação com as células do hospedeiro, tem sido demonstrado que o fungo consegue aderir e invadir células não fagocíticas como as células epiteliais e endoteliais (Filler & Sheppard, 2006). Esse processo de invasão permite que o fungo alcance a corrente sanguínea e se dissemine para outros tecidos (MENDES-GIANNINI et al., 2004; MENDES-GIANNINI et al., 2008). Tais células fornecem uma proteção para o fungo contra os macrófagos, permitindo sua evasão da resposta microbicida desses fagócitos, embora o fungo não seja um parasita intracelular obrigatório (FILLER; SHEPPARD, 2006; MENDES-GIANNINI et al., 2005; MENDES-GIANNINI et al., 2000; TUDER et al., 1985). Especula-se que para o sucesso da infecção o fungo deve primeiro aderir às células do hospedeiro podendo elas serem fagocíticas ou não; após essa etapa há a translocação do fungo para o citoplasma, seguida pela multiplicação da célula fúngica (MENDES-GIANNINI et. al, 2008). Sugere-se que o fungo induz sua própria endocitose, por desencadear sinais extracelulares específicos que culminam no rearranjamento do citoesqueleto, no ponto de contato fungo-célula (Swanson et al., 1995a; Swanson et al., 1995b). Uma vez que as células epiteliais não possuem receptores do tipo CR3, acredita-se que esse processo envolva integrinas e o rearranjamento do citoesqueleto (HAYWARD; KORONAKIS, 1999; MB; PJ, 1993; ROSENSHINE et al., 1992). Infere-se que *P. brasiliensis* possui dois mecanismos diferentes de invasão; um dependente de microfilamentos como actina e outro dependente de microtúbulos de tubulina, pois o tratamento com citocalasina D e colchicina reduzem a invasão das células fúngicas (MENDES-GIANNINI et. al, 2004).

Tem sido proposto que durante o processo de replicação, alguns patógenos empregam estratégias para impedir a morte da célula do hospedeiro, mas para que consiga escapar e disseminar para uma nova célula é preciso que haja destruição da célula infectada. Nesse sentido, o processo apoptótico tem sido destacado, pois a morte da célula do hospedeiro com o fungo dentro fornece uma rota de disseminação para sítios distantes. Outra hipótese sugere que células apoptóticas com o fungo dentro servem como um veículo para entrada em macrófagos, sem estimular sua atividade microbicida (MENDES-GIANNINI et.al, 2008). A apoptose de uma célula fagocítica como os macrófagos, permite que o fungo obtenha dois objetivos: o fungo promove a morte de uma célula microbicida para ele, impedindo assim sua própria morte, bem como promove a resposta inflamatória, que por sua vez pode propiciar a invasão fúngica aos tecidos, devido ao dano que esta resposta causa (Bayles et al., 1998; Lewis, 2000).

Por outro lado, as células do sistema imune do hospedeiro podem apresentar um arsenal capaz de eliminar o fungo. Assim, durante a batalha contra o fungo, as células do hospedeiro polarizam uma resposta imune T auxiliar do tipo 1 (Th1), caraterizada pela produção de interferon gama (IFN- γ), que culmina na ativação da atividade microbicida dos macrófagos (MENDES et al., 2017; SA et. al, 2003). A atividade microbicida dessas células está relacionada com a produção de produtos derivados de oxigênio, como peróxido de hidrogênio (H₂O₂) e aníon superóxido (O⁻₂) e principalmente, de óxido nítrico (NO) e seus metabólitos. Outra importante espécie reativa é o peroxinitrito (ONOO⁻), gerado a partir da interação de NO com superóxido (O⁻₂); este composto subsequentemente decompõe-se em outras moléculas reativas. Essas espécies reativas causam uma variedade de alterações no DNA incluindo quebras das fitas e desaminação, enquanto que em proteínas causam modificações que envolvem nitrosilação de resíduos de cisteína e tirosina, além da inativação de enzimas com núcleo de ferro-enxofre (PINA, et. al, 2013; FANG , 2004; D & Ehrt S et. al, 2003; C; MU, 2000).

A defesa do hospedeiro é mediada pelas seguintes etapas: a fagocitose entre a célula fagocítica e o patógeno, que ocorre por meio da ligação dos receptores de reconhecimento do padrão (PRRs- "*patterns recognizing receptors*") dos fagócitos às estruturas moleculares conservadas dos micro-organismos conhecidas como padrões moleculares associados aos patógenos (PAMPs- "*pattern associated molecular pathogens*") (CHAI et al., 2009; WHEELER et al., 2008). Nesta etapa, os macrófagos e as células dendríticas fazem a apresentação de antígenos fúngicos para linfócitos T, sendo que posteriormente tem-se uma resposta imune adaptativa que produzirá citocinas, que incluem fator de necrose tumoral (TNF- α) e IFN- γ , que induzirão os macrófagos a produzir espécies reativas de oxigênio e nitrogênio, que matam o fungo ou inibem seu crescimento (Gauthier & Klein, 2010).

Dessa maneira a resposta imune adaptativa é orquestrada pela interação entre as células imunes, anticorpos e citocinas e antígenos fúngicos, como representado na **Figura 3** (Mendes et al., 2017). Assim, indivíduos que entraram em contato com o fungo, mas não desenvolveram a doença, exibem uma resposta imune Th1, resultando na formação de um granuloma compacto capaz de controlar a replicação fúngica, embora ainda existam formas latentes do fungo dentro do granuloma (ROMANO et al., 2001; SHIKANAI-YASUDA *et al.*, 2017; SJ et al., 2002). Do outro lado temos os indivíduos que manifestam as formas aguda e crônica da PCM. Nesses indivíduos tem sido observado um padrão de resposta Th2 e Th9, onde não há formação de granulomas compactos, mas sim uma atividade de linfócitos B, que produzem altos níveis de anticorpos específicos, por exemplo IgE, cujo perfil do indivíduo com as formas aguda e crônica é caracterizado por hipergamaglobulinemia e eosinofilia (de Castro et. al, 2013).

Figura 3. Resposta imune adaptativa na PCM. (A) Ativação de subgrupos T auxiliar (Th). Células dendríticas (DCs) induzidas por moléculas antigênicas do fungo migram para o linfonodo onde apresentam antígenos processados para células Th virgens que se diferenciam em um dos subgrupos de linfócitos Th (Th1, Th2, Th9 e Th17), dependendo principalmente de citocinas presentes no ambiente extracelular. Para polarização Th1, IL-12 de DCs e macrófagos, e IFNy de células NK ativam a sinalização STAT1 / STAT4 para induzir a expressão do fator de transcrição específico de Th1, T-bet. Para polarização Th17, IL-6, IL-1β, TGF-β e IL-23 são necessárias para induzir a expressão do fator de transcrição específico para Th17, RORβτ, através da sinalização STAT3. Para a polarização Th2, a IL-4 das DCs ativa a sinalização STAT6 para induzir a expressão do fator de transcrição específico para Th2, GATA-3. Para a polarização Th9, IL-4 e TGF-β são necessários para induzir a expressão do fator de transcrição específico de Th9, PU.1. (**B**) Fases efetoras das respostas das células T. Os clones Th1, Th17, Th2 e Th9 podem ser distinguidos principalmente pelas citocinas produzidas pelas células. As células Th1 liberam altas quantidades de IFN-γ e TNF-α que classicamente ativam os macrófagos (M1) resultando na eliminação dos fungos. Células Th17 secretam IL-17 e IL-22 que recrutam neutrófilos e monócitos. Os neutrófilos atuam gerando espécies reativas de oxigênio (ROS) que resultam na eliminação de fungos. Os monócitos têm sido estudados na

PCM por induzir altos níveis de citocinas inflamatórias, como TNF- α e IL-1 β , e fatores de crescimento, como TGF- β e fator de crescimento de fibroblastos (FGF). Th2 apresenta várias funções que dependem de cada citocina secretada. A IL-4 induz a ativação de células B e subsequente produção de imunoglobulinas; A IL-5 desencadeia o recrutamento de eosinófilos; a IL-13 está envolvida na desativação de macrófagos denominados "macrófagos ativados alternativamente" (M2), que resultam em crescimento fúngico e também no reparo tecidual. Th9 libera IL-9 e IL-21 que atuam em sinergia com Th2 para produzir anticorpos. Adaptado de Mendes (2017).

Apesar do arsenal microbicida dos fagócitos, o fungo apresenta estratégias para escapar da destruição e sobreviver no interior dos macrófagos como parasitas intracelulares dessas células (BRUMMER et al., 1989, 1990; FAN et al., 2005). Como abordado acima, tem sido notado que em macrófagos não ativados as células fúngicas conseguem sobreviver e replicar, uma vez que há falhas na indução de espécies reativas de oxigênio (Gauthier & Klein, 2010). Assim, o macrófago não ativado fornece um ambiente favorável à multiplicação e também um mecanismo de transporte para as células de *Paracoccidioides* spp. via corrente sanguínea ou linfática. Desta forma, os macrófagos podem representar um papel importante na disseminação do fungo a partir do foco primário de infecção (JP, 2003; TAVARES et al., 2007).

Uma vez fagocitado, o patógeno exibe uma dramática reprogramação transcricional e traducional refletindo estratégias de adaptação ao ambiente hostil do fagócito (FAN et al., 2005; FERNANDES et al., 2008). Mudanças na parede celular contribuem para virulência e evasão imune da fase patogênica, as quais incluem o aumento de α -glicana. A α -glicana contribui para latência do fungo, protegendo a β glicana do reconhecimento das células do sistema imune inato, além de reduzir a produção de TNF- α pelas células infectadas. A β -glicana é um importante imunomodulador na resposta contra infecções fúngicas, induzindo a secreção de TNF- α que potencializa a resposta inflamatória e eliminação do patógeno (LEMUS et. al, 2014). Em *Paracoccidioides* o transcrito do gene codificante para β -glicana sintase, fks, foi suprimido em resposta ao ambiente intracelular do macrófago, o que sugere ser um importante mecanismo adaptativo que o fungo utiliza com o objetivo de reduzir a resposta inflamatória desencadeada pela β -glicana (TAVARES et al., 2007).

O fagossomo, presente no macrófago, é uma organela que apresenta um ambiente com limitações nutricionais, sendo pobre em fontes de glicose e aminoácidos e com pH extremamente baixo, assim como é um ambiente rico em espécies reativas de oxigênio (FERNANDES et al., 2008; SILVA et al., 2008). Neste contexto, em resposta ao microambiente hostil do macrófago, o fungo induz a expressão de genes relacionados ao processo de detoxificação de espécies reativas de oxigênio e biossíntese de aminoácidos, além de reprimir a expressão de genes codificantes de enzimas da via glicolítica (TAVARES et al., 2007).

Derengowski e colaboradores (2008) observaram a indução de genes que codificam para enzimas do ciclo do glioxalato (*icl* e *mls*) em leveduras recuperadas da internalização por macrófagos em um período de 9 horas, sugerindo que o patógeno é capaz de utilizar compostos de 2 carbonos para a síntese de glicose (Derengowski et. al, 2008). Voltan e colaboradores (2013) verificaram que em macrófagos infectados com *P. brasiliensis* ocorre diminuição na expressão de EEA1. Essa proteína é um marcador de fagossomo precoce, inferindo-se que possivelmente o fungo é capaz de modular o tráfego fagossomal (Voltan et al., 2013). A análise proteômica de *P. brasiliensis* sob interação com macrófagos revelou a indução de proteínas e enzimas relacionadas com a detoxificação de ROS, como a citocromo c peroxidase que protege o fungo contra o estresse nitrosativo. Ademais, o catabolismo de aminoácidos fornece percussores de glicose para a gliconeogênese, uma vez que há a mudança metabólica da glicólise para gliconeogênese (PARENTE et al., 2015).

Um recente trabalho foi publicado em nosso laboratório, buscando compreender a interação de *P. brasiliensis* com o hospedeiro. Um modelo de infecção intranasal foi realizado, o lavado broncoalveolar obtido foi analisado por abordagens transcricional e proteômica. A infecção das células pulmonares por um período de 6h, e posterior análise de RNAs e proteínas, demonstraram que as células leveduriformes mudam seu perfil metabólico, usando lipídios como fonte de energia durante a infecção. Ademais a resposta adaptativa inclui o aumento de vias relacionadas com a resposta protetiva contra ROS e inibição do metabolismo da parede celular (Lacerda Pigosso et al., 2017).

1.5. Paracoccidioidomicose

Por não ser uma doença de notificação compulsória, a prevalência da PCM é estimada com base em casos reportados, dados de hospitalização e morte. Presume-se que vários casos de PCM sejam diagnosticados por ano (Martinez, 2017). No Brasil esta taxa varia entre 3360 a 5600 casos por ano (Prado, da Silva, Laurenti, Travassos, & Taborda, 2009). Estima-se que a ocorrência da PCM em áreas endêmicas seja de 1 a 4 casos por 100.000 habitantes, por ano. Destaca-se que em regiões de elevada endemia, como Rondônia e região Oeste do Amazonas, esta média alcance 9.4 casos/100.000 habitantes/ano. Durante períodos de surto alguns municípios do Sudeste já registraram 40 casos/100.000 habitantes/ano (VIEIRA et al., 2014). Nota-se que a taxa de mortalidade por essa micose é em torno de 3% a 5%. No período de 1986 a 2006 um total de 1853 mortes foram registradas no Brasil, representando 51% do número de mortes por infecções fúngicas (Prado et al., 2009). As regiões Centro-Oeste e Norte do Brasil mostraram ter altas taxas de hospitalização e morte, ressaltando-se que a região Centro-Oeste do Brasil é uma importante área endêmica da PCM (Martinez, 2017).

A micose afeta principalmente indivíduos que desempenham atividades relacionadas com agricultura e a incidência da PCM após a puberdade é maior no sexo masculino; cerca de 75% a 95% são pacientes homens (Franco et al., 2000; Shikanai-Yasuda, Telles Filho, Mendes, Colombo, & Moretti, 2006) A capacidade que o estrógeno possui em inibir a transição micélio para levedura pode explicar essa diferença (Shankar, Restrepo, Clemons, & Stevens, 2011). A transmissão de uma pessoa para outra não tem sido relatada. Entre os fatores de risco para PCM estão o uso de álcool e tabaco (Santos, Silva, Passos, Zandonade, & Falqueto, 2003). Tem sido mostrado que neoplasias, tuberculose, chagas, leishmaniose, lepra, estrongiloidíase podem ocorrer, antes, após ou simultaneamente com a PCM (Bellissimo-Rodrigues et. al., 2011).

A PCM é uma micose que pode acometer qualquer órgão, aparelho ou sistema. Assim as formas clínicas da doença são classificadas de acordo com o International Colloquium on Paracoccidioidomycosis, realizado em Medelín, Colômbia no ano de 1986 (BELLISSIMO-RODRIGUES et al., 2013; FRANCO et al., 1987; FRANCO et al., 1989) Α doença é classificada em infecção Paracoccidioidomicose, Paracoccidioidomicose aguda/subaguda, forma crônica e forma residual ou sequelar (FRANCO et. al., 1987). A infecção Paracoccidioidomicose é caracterizada quando o indivíduo saudável entra em contato com o fungo e a infecção é diagnosticada por teste intradermo positivo para antígenos específicos do fungo (MONTENEGRO, 1994).

A forma aguda/subaguda corresponde a 5-25% dos casos. Nos estados do Maranhão, Minas Gerais, Pará, Goiás e São Paulo, essa forma da doença é comumente observada, por ser tratar de regiões endêmicas (Shikanai-yasuda et al., 2017). Crianças, adolescentes e jovens adultos entre 30 a 40 anos, são mais susceptíveis a desenvolver a PCM aguda/subaguda. Com relação ao gênero, nessa forma da PCM a distribuição tende a ser uniforme, principalmente na população adolescente (BELLISSIMO-RODRIGUES

et al., 2013; FABRIS et al., 2014; SHIKANAI-YASUDA et al., 2006). Nas manifestações clínicas da forma aguda é observado o envolvimento do sistema mononuclear fagocítico, com linfadenomegalia localizada ou geral, podendo ocorrer supuração, fistulas e hepatoesplêniomegalia. Há o envolvimento dos sistemas digestivo, cutâneo, osteoarticular e raramente há comprometimento pulmonar. Frequentemente estão associados a essa forma febre, perda de peso e anorexia. Uma massa tumoral resultante da linfadenomegalia intra-abdominal, pode comprimir vários órgãos (BARBOSA; DAHER, 1968; SHIKANAI-YASUDA et al., 2017)

A forma crônica da micose, ocorre em 74 a 96% dos casos, frequentemente acomete indivíduos entre faixa etária de 30 a 60 anos que trabalharam em atividades relacionadas com a agricultura. Indivíduos do sexo masculino são mais comumente afetados com uma proporção de 22 homens do sexo masculino, para 1 mulher. O desenvolvimento da PCM crônica é lento, os sintomas persistem entre 4 a 6 meses ou por um ano. Em alguns casos a doença pode apresentar-se assintomática. Em 90% dos casos há um comprometimento pulmonar, mas pode acometer outros órgãos como mucosa, via aero digestiva e pele (COSTA et al., 2013; RP, 1994; SHIKANAI-YASUDA et al., 2017). Nos casos graves da PCM crônica observa-se uma perda de peso superior a 10%, intenso envolvimento pulmonar, assim como de outros órgãos como glândulas adrenais, sistema nervoso central, medula e linfonodos. Em casos mais leves da PCM crônica, existe uma perda de peso entre 5% com envolvimento de um ou poucos órgãos ou tecido (Shikanaiyasuda et al., 2017). A forma residual é caracterizada pelas mudanças anatômicas e funcionais após o tratamento da PCM. Essa forma pode acontecer em vários órgãos, mas frequentemente acomete pulmão, pele, laringe, traqueia, adrenais, sistema linfático, sistema nervoso e mucosa do trato superior aero digestivo (MACHADO FILHO, 1965; TOBÓN et al., 2003; VALLE et al., 1995).

Para o tratamento da PCM medicamentos como itraconazol, cotrimoxazol (combinação de sulfametoxazol/trimetropim) e anfotericina B estão entre as principais escolhas de tratamentos praticados na clínica. Contudo a interação dos medicamentos, efeitos adversos e a terapia de longa duração são fatores que devem ser levados em consideração na escolha de tratamento da PCM (Shikanai-yasuda et al., 2017).

1.6 Dimorfismo de Paracoccidioides spp.

Como já abordado acima, Paracoccidioides é um fungo saprofítico, onde o contato com solo contaminado pelo fungo, pode ocasionar inalação dos propágulos infectivos (BRUMMER et al., 1993; LACAZ; PORTO, 1984). Assim, o ambiente fornecido pelo hospedeiro induz o fungo a desenvolver estratégias ou fatores de virulência para adaptar-se ao novo ambiente encontrado (DERENGOWSKI et al., 2008; FELIPE et al., 2003; FELIPE et al., 2005; PARENTE et al., 2015; TAVARES et al., 2005). Entre esses fatores de virulência está a transição morfológica para a forma parasitária caracterizada por leveduras com múltiplos brotamentos (BRUMMER et al., 1993). As leveduras de Paracoccidioides exibem um repertório de proteínas que permitem ao fungo se adaptar com essa mudança na temperatura como, por exemplo, proteínas do choque térmico (HSPs) como a hsp70 (Nunes, Costa de Oliveira, et al., 2005; Theodoro et al., 2008) Dessa maneira, a mudança morfológica que o fungo sofre é essencial para a patogenicidade de Paracoccidioides; concordando com tal fato, assume-se que linhagens incapazes de transitar para levedura não são virulentas (Nemecek, 2006). Além da temperatura, fatores nutricionais, como a adição de soro fetal podem desencadear a transição dirmórfica do fungo para a fase leveduriforme, a 25°C (VILLAR; SALAZAR, 1988). Por outro lado, fatores hormonais podem inibir a transição micélio para levedura (Shankar et al., 2011). Com base em dados epidemiológicos, mulheres são mais

resistentes ao desenvolvimento da PCM. Acredita-se que a presença do hormônio 17-βestradiol associado a EBP (Estradiol Binding Protein) iniba a transição micélio para levedura, explicando a baixa incidência da PCM em mulheres (FELIPE et al., 2005; LOOSE et al., 1983; SHIKANAI-YASUDA et al., 2017).

A adaptação ao aumento da temperatura requer mudanças morfológicas e bioquímicas orquestradas pela modulação da expressão de genes e proteínas (NUNES et al., 2005; REZENDE et al., 2011; TAVARES et al., 2015) Entre os genes identificados durante transição micélio-levedura incluem-se aqueles codificantes para proteínas envolvidas no metabolismo da parede celular (Nunes, Costa de Oliveira, et al., 2005). A parede celular de Paracoccidioides é composta por quitinas, glicanas, lipídeos e proteínas que podem ser cobertas por carboidratos (SAN-BLAS, 1982; SAN-BLAS; NIÑO-VEGA, 2008) Durante a transição morfológica para a fase de levedura, há uma migração e reorganização dos lipídeos, como glicoesfingolipídeos e alteração dos carboidratos da parede celular (Levery, Toledo, Straus, & Takahashi, 1998). Notavelmente há um aumento no conteúdo de quitina, além da mudança no polímero de β -1,3-glicana para α -1,3-glicana, que fornece proteção contra o reconhecimento das células do sistema imune inato, consequentemente reduzindo a produção de TNF-α pelas células infectadas (SAN-BLAS, 1982). Em concordância com esse dado, a analise transcricional de P. lutzii durante transição revelou a indução de vários genes relacionados com a síntese de carboidratos da parede. Entre eles incluem genes codificantes das enzimas fosfoglicomutase, UDP-glicose pirofosforilase e α -1,3-glicana sintase, permitindo o aumento da síntese de α-1,3-glicana na forma leveduriforme (BASTOS et al. 2007). Além disso, há uma maior expressão de genes que codificam quitina sintases; em contrapartida quitinases e endoquitinases foram reprimidas (Nunes, Costa de Oliveira, et al., 2005).

Oliveira e colaboradores (2017), verificaram que o transcrito correspondente a uma proteína que interage com a quitina denominada paracoccina (PCN), é mais expressa nas fases de micélio e transição de levedura-para-micélio, comparado à forma Segundo os autores, sua localização na ponta das hifas sugere leveduriforme. participação no crescimento do micélio, contribuindo para degradação de quitina e prolongamento da hifa devido à atividade de NAGase (N-acetil-β-D-glicosaminidase) dessa proteína. Os autores concluem que envolvimento da PCN é importante no processo de transição morfológica e consequentemente no remodelamento da parede celular, contribuindo para patogênese do fungo (OLIVEIRA et al. 2017). Um fato importante que deve ser ressaltado refere-se à resposta transcricional de P. brasiliensis para o hormônio estradiol. Durante transição por 2 e 6 horas com diferentes concentrações de estradiol, buscando representar níveis encontrados fisiologicamente, o gene que codifica quitina sintase 1 (CHS) foi menos expresso em ambos os pontos de transição analisados, corroborando com a inibição da transição micélio-levedura promovido por estradiol, já que as leveduras requerem um maior conteúdo de quitina (TAVARES et al., 2015). Duas quitinases foram descritas em P. lutzii. A PbCTS1 foi detectada em micélio, transição e levedura. Para levedura, quando comparados os extratos da fração de parede celular e a fração secretada, a quitinase PbCTS1 foi detectada apenas na fração secretada. Já a quitinase, de peso molecular 39 kDa, denominada *Pb*CTS2, foi detectada principalmente durante transição micélio-levedura e levedura. Sua presença na parede celular e meio extracelular sugere que tal proteína esteja relacionada com biossíntese da parede celular (SANTANA et al., 2012).

A proteína CDC42 é importante para o controle da transição dimórfica atuando na manutenção dos sinais intracelulares (SU et al., 2007; VANDENBERG et al., 2004). Em *P. brasiliensis* o silenciamento do gene codificante de *Pb*CDC42 em leveduras, produziu

linhagens com morfologia alterada, com redução no tamanho das células mãe e de brotamentos. Em modelo de infecção animal, essas células leveduriformes, com morfologia alterada devido ao silenciamento de cdc42, eram menos virulentas e apresentaram maior susceptibilidade à fagocitose (Almeida et al., 2009).

O papel das vias de sinalização que controlam a transição morfológica em *P*. *brasiliensis* ainda não é bem esclarecido. O híbrido histidina quinase (DRK1), é um sistema de sinalização de dois componentes, envolvido na transição dimórfica e virulência de fungos como *Blastomyces dermatidis* e *Histoplasma capsulatum*. Através do uso da técnica de RNA de interferência para o gene drk1, foi possível observar -se mudanças na parede celular de *B. dermatidis*, por redução da expressão do gene que codifica α -1,3-glicana sintase. Esse sistema, propicia a adaptação do fungo durante a transição bem como estimula o fungo a expressar fatores de virulência (Nemecek, 2006). Em *P. brasiliensis* o gene drk1 é induzido na transição dimórfica e linhagens que foram crescidas com inibidor para drk1 mostraram um atraso na diferenciação morfológica micélio-levedura (CHAVES et al., 2016).

A expressão de genes codificantes de calmodulina e da subunidade regulatória de calcineurina estão aumentadas durante a transição morfológica, sugerindo papel chave dessa via de transdução sinal na morfogênese (Nunes, Costa de Oliveira, et al., 2005). Além disso, drogas que bloqueiam cinases dependentes de Ca²⁺/calmodulina inibem a diferenciação de micélio para levedura (de Carvalho et al., 2003). Genes que codificam proteínas RAS1 e RAS2 estão envolvidos no dimorfismo de *P. lutzii*. Nesse mesmo estudo foi observado que o uso de inibidor para farnesilação durante a transição levedura-micélio, induziu aumento na filamentação, de maneira dose dependente (FERNANDES et al., 2008).

Avaliando processos biológicos importantes para *P. lutzii* sugeriu-se que enzimas relacionadas ao metabolismo de enxofre foram induzidas em levedura durante a transição, sugerindo relevância do metabolismo de enxofre para o processo de diferenciação celular (Andrade et al., 2006). Além disso, membros do complexo induzem a proteína ubiquinol oxidase alternativa, nos estágios iniciais da diferenciação micélio-levedura na tentativa de controlar os níveis de ROS (HERNÁNDEZ et al., 2015; MARTINS et al., 2011). Durante a transição de *P. lutzii*, catalases como *Pb*CatA, *Pb*CatP apresentaram expressão diferencial em resposta ao estresse oxidativo. A *Pb*CatA foi mais expressa em micélio, já a *Pb*CatP é mais expressa em levedura (CHAGAS et al., 2008; MOREIRA et al., 2004). Sugere-se que a *Pb*CatA está associada à proteção contra estresse oxidativo endógeno e *Pb*CatP contra a produção exógena de peróxido de hidrogênio (CHAGAS et al., 2008;GROSSKLAUS et al., 2013).

1.7. Análises transcricionais e proteômicas durante transição morfológica em membros do complexo *Paracoccidioides*

O perfil transcricional descrito para as fases miceliana e leveduriforme de *P. lutzii*, isolado *Pb*01, obtido através da abordagem de ESTs, resultou em 6.022 expressed sequenced tags (ESTs). Felipe e colaboradores (2005) propõem que a produção de ATP ocorra preferencialmente através da fermentação alcoólica em células levefuriformes e que micélio apresenta metabolismo mais aeróbico. Esse aspecto seria decorrente do fato que enzimas chaves do ciclo ácido-cítrico foram induzidas em micélio, tais como isocitrato desidrogenase e succinil-CoA sintetase e em contrapartida genes que codificam álcool desidrogenase I foram induzidos em levedura (FELIPE et al., 2005). Ainda em *P.lutzzi*, Rezende e colaboradores (2011) avaliaram a expressão diferencial, no nível de proteoma, para as fases de micélio, transição micélio-levedura e levedura. Um total de 18

proteínas foram diferencialmente expressas na fase de micélio, nas quais se incluem peroxiredoxina mitocondrial PRX1, Mn superóxido dismutase e aldeído desidrogenase. Em transição micélio para levedura 30 proteínas foram diferencialmente expressas tais como enolase, fosfoglicomutase, transaldolase e transcetolase. Na fase leveduriforme, 33 proteínas foram diferencialmente expressas como fosfoglicerato quinase, frutose-1,6-bifosfato aldolase, gliceraldeído-3-fosfato desidrogenase, isocitrato liase, enoil-CoA hidratase e metilcitrato desidratase. Os autores propõem um perfil metabólico durante a morfogênese do fungo. Dessa maneira, em leveduras a via glicolítica é induzida, sendo que algumas enzimas dessa via se acumulam durante a transição micélio-levedura. A via das pentoses fosfato é induzida na transição podendo fornecer substratos para a glicólise. No repertório de proteínas expressas em micélio estão aquelas envolvidas na manutenção do potencial redox intracelular, fosforilação oxidativa e proteção contra o estresse oxidativo (REZENDE et al. 2011).

A temperatura é o principal fator que governa a transição morfológica. Dessa maneira, compatível com o aumento na temperatura de crescimento da levedura (37°C), o número de chaperonas e co-chaperonas foi 38% maior na forma leveduriforme, do que em micélio. Fatores de virulência também foram identificados em levedura, entre os quais se incluem quitina desacetilase, isocitrato liase (FELIPE et al. 2005). De modo similar Goldman e colaboradores (2003), obtiveram as sequencias de 4.692 genes através da análise de ESTs de *P. brasiliensis* e identificaram homólogos à *C. albicans*. Entre os genes identificados, notam-se alguns relacionados com vias de transdução sinal tais como CST20, CPP1, CEK, PKA, CDC42 e GEF, atribuindo a participação desses genes para controlar a mudança morfológica. Ubiquitinas e proteínas de choque térmico como HSP70, HSP82 e HSP140 mostraram um perfil de expressão aumentado na transição

dimórfica de micélio para leveduras, sugerindo que há um maior controle de qualidade das proteínas durante a transição (Goldman et al., 2003).

Nunes e colaboradores (2005), realizaram microarranjos de DNA durante a transição morfológica de micélio para levedura nos tempos de 0, 5, 10, 24, 120 h pósalteração de temperatura. Essa abordagem permitiu aos autores identificar 2.583 genes diferencialmente expressos na transição micélio-leveduras. A inibição da enzima 4hidroxil-fenil piruvato dioxigenase (4-HPPD) pelo uso de NTBC [2-(2-nito-4trifluorometilbenzoil)-ciclohexano-1,3,-dione] afetou a transição dimórfica de maneira dose dependente; além disso sua expressão foi aumentada cerca de 15 vezes durante a transição.

A análise do transcriptoma de *P. lutzii* durante diferenciação morfológica de micélio para levedura foi realizado por Bastos e colaboradores (2007), como anteriormente citado. Entre os transcritos que tiveram expressão aumentada destacam-se aqueles relacionados com síntese de membrana e parede celulares. Um gene que codifica uma α -glicosidase, envolvido no processamento de β -1,6-glicana, bem como genes para quitinase 1 (CTS1) e 3 (CTS3) foram induzidos durante a transição micélio-levedura, sugerindo o processamento de quitina (BASTOS et al. 2007). Durante a transição morfológica foram identificados genes envolvidos em vias de transdução de sinais tais como MAPK (proteína cinase ativada por mitógeno), serina/treonina cinase e histidina cinase, sugerindo que a morfogênese em *Paracoccidioides* é mediada por vias de transdução de sinais que controlam a adaptação ao ambiente para sobrevivência do fungo no hospedeiro (BASTOS et al. 2007).
2. Fosfoproteoma

2.1. Fosforilação de proteínas

Dentre os eventos de modificações pós-traducionais inclui-se a fosforilação. A fosforilação é um evento chave para diversos processos biológicos como diferenciação, sinalização e metabolismo celulares, apoptose, degradação de proteínas, ciclo, homeostase, comunicação, proliferação e sobrevivência celulares entre outros (Delom & Chevet, 2006; Jensen & Larsen, 2007; Thingholm, Jensen, & Larsen, 2009). Esta modificação pós-traducional é caracterizada por ser um processo transitório e reversível, que desencadeia uma mudança na conformação, na atividade e interação de uma proteína, que culmina em uma resposta para o estímulo celular. Proteínas que mantém o controle dessa modificação pós-traducional são denominadas, cinases e fosfatases, responsáveis pelas atividades de fosforilação e defosforilação respectivamente (Thingholm et al., 2009). Estima-se que 2-3% dos genes de eucariotos são constituídos por proteínas cinases. Já no que tange a fosfatases cerca de 100 proteínas ou mais tem sido preditas em humanos (ALONSO et al., 2004; DE SOUZA et al., 2013; LAM; GERIK; LODGE, 2013; SELVAN et al., 2014).

A fosforilação é um evento enzimático onde proteínas específicas são responsáveis por fosforilar resíduos de aminoácidos específicos (BURNETT G, 1954). Em eucariotos a fosforilação ocorre nos resíduos de serina, treonina, tirosina e histidina sendo que esse último, por ser a fosforilação altamente lábil, raramente são identificados em estudos abrangendo análises fosfoproteômicas (Puttick, Baker, & Delbaere, 2008). Anteriormente especulava-se que a fosforilação em resíduos de Ser, Thr, Tyr predominava em eucariotos. Sabe-se atualmente que fosforilação desses resíduos também ocorre em Archea e bactérias (CHAO et al., 2014; KENNELLY, 2014) Nota-se também

que uma proteína pode ser composta por múltiplos sítios de fosforilação permitindo assim que ela possa se adaptar a diferentes funções (Thingholm et al., 2009).

Fosfoproteínas apresentam baixa abundância, assumindo-se que algumas dessas são constitutivamente fosforiladas, enquanto outras são transitoriamente fosforiladas; ainda a forma fosforilada de uma determinada proteína pode apresentar-se em menor quantidade do que sua forma nativa (Reinders & Sickmann, 2005; Zolnierowicz & Bollen, 2000) Com o intuito de melhorar a detecção dessas proteínas, diversos métodos analíticos que propõem abordagens mais sensíveis e especificas têm sido empregadas. Essas abordagens abrangem o uso de tampões com inibidores de proteases e fosfatases, permitindo que o isolamento dessas proteínas apresente uma qualidade de amostra sem degradação e perda de grupos fosfatos.

Várias estratégias estão disponíveis para a detecção de fosfoproteínas, como eletroforese em gel bidimensional (2-DE) que permite separar proteínas de uma amostra complexa através do seu p*I* e peso molecular. Tais fosfoproteínas quando coradas com corantes como coomassie blue e prata apresentam diferentes isoformas em decorrência da modificação do seu p*I*, resultado da adição ou subtração de um grupo químico (Baik, Joo, Kim, & Lee, 2008; Cole et al., 2007; Masaki, Yamada, Hirasawa, Todaka, & Kanekatsu, 2008; Park et al., 2006; Thingholm et al., 2009) Outra metodologia é a marcação radioativa com ³²P ou ³³P detectada por autorradiografia (EYMANN et al., 2007; REINDERS; SICKMANN, 2005; SU et al., 2007). Outra metodologia disponível é o uso de anticorpos anti-fosfoserina, anti-fosfotreonina e anti-fosfotirosina; contudo pode ocorrer co-migração de proteínas não permitindo identificar-se sítios específicos de fosforilação (Kaufmann, Bailey, & Fussenegger, 2001; Thingholm et al., 2009).

Diversos estudos de fosfoproteoma usam métodos de espectrometria de massa (MS), após processamento proteolítico, para caracterizar fosfoproteínas. Entretanto, a

análise por esse método torna-se um processo difícil por fatores como presença de peptídeos não modificados, baixa eficiência de ionização de peptídeos fosforilados resultando em baixos sinais de intensidades comparado com íons de peptídeos não fosforilados. Nesse sentido para aumentar a eficiência e sensibilidade de identificação dessas fosfoproteínas, estratégias de enriquecimento de fosfopeptídeos tem sido empregadas (Thingholm et al., 2009). Entre os métodos de enriquecimento, destacam-se a imunopreciptação, onde uma única fosfoproteína, a partir de um lisado celular, pode ser detectada por uso de anticorpos (Xu & Yu, 2007). Para enriquecimento de fosfopeptídeos a técnica de cromatografia de afinidade de íons metais imobilizados-IMAC (Immobilized Metal Affinity Chromatography) tem sido amplamente usada. Esta técnica de afinidade sofreu diversos ajustes buscando um melhor enriquecimento de fosfopeptídeos. Íons metais como Fe³⁺, Al³⁺, Ga³⁺ ou Co²⁺ são quelados por ácido nitrilotriacético ou ácido iminodiacético formando uma fase estacionária onde fosfopeptídeos carregados negativamente em uma fase móvel podem se ligar (Chaga, Hopp, & Nelson, 1999; Ficarro et al., 2002; Porath, Carlsson, Olsson, & Belfrage, 1975; Em estudos de fosfoproteoma, em larga escala, a Posewitz & Tempst, 1999). cromatografia com TiO₂ tem sido bastante usada, visto que o fosfato apresenta a capacidade para ligar a metais tais como TiO₂ e ZrO₂ na forma de óxidos covalentes. A base da interação consiste na troca de íons e interações de ácido e base de Lewis (Leitner, 2016). Uma notável vantagem de utilizar $TiO_2 \in a$ sua sensibilidade e a compatibilidade com diversos tampões e sais usados em laboratórios de biologia celular e bioquímica (Benschop et al., 2007; Jensen & Larsen, 2007; Leitner, Sturm, & Lindner, 2011; Olsen et al., 2006, 2007; Wilson-Grady, Villén, & Gygi, 2008). Técnicas de pré-fracionamento tem sido aplicadas para amostras complexas, antes do enriquecimento de fosfopeptídeos tais como, cromatografia de troca de íons que incluem SAX (troca intensa de ânions) e

SCX (troca intensa de cátions) e a cromatografia de interação hidrofílica (HILIC) (Thingholm et al., 2009). Todas essas metodologias têm sido desenvolvidas visando melhorar o estudo de fosfoproteínas.

2.2. Fosfoproteoma em micro-organismos

Durante seu ciclo de vida os fungos precisam detectar e responder a sinais como condições ambientais e estresse imposto a eles durante interação com o hospedeiro (Kosti, Mandel-Gutfreund, Glaser, & Horwitz, 2010). Avaliando artigos que estudam fosfoproteoma em micro-organismos, esses apresentam resultados que ressaltam a importância de se estudar tais proteínas. Um estudo enfatiza a importância de cinases na patogênese de Aspergillus fumigatus, mencionando a participação da fosforilação de calcineurina em uma região rica em prolina e serina. Tal proteína se localiza nas pontas das hifas e permite que esse fungo filamentoso invada o tecido afetado. No estudo, os autores notaram que quando há um bloqueio da fosforilação em resíduos específicos de serina, houve um significante defeito de crescimento e virulência (Juvvadi et al., 2013). Como drogas antifúngicas que atuam diretamente na calcinerina causam imunossupressão, estudos têm focado em buscar proteínas reguladoras associadas a calcinerina como alvo para novas drogas (Juvvadi et al., 2015).

Um estudo de fosfoproteoma em *Saccharomyces cerevisiae* durante sua transição para sua forma filamentosa, mostrou uma maior anotação de proteínas para o metabolismo de glicose. Embora o mecanismo que liga a via de sinalização e o crescimento da pseudohifa não seja claro, foi encontrada uma proteína cinase responsiva à glicose, SKs1p, a qual contribui para a morfogênese da levedura durante privação de glicose, sendo requerida para o crescimento da pseudohifa (Johnson et al., 2014). Em estudo avaliando fosfoproteínas do fungo *Aspergillus nidulans*, foi possível notar uma maior anotação, segundo os termos GO, de proteínas em categorias como sítio de crescimento polar. No que tange a processos biológicos houve uma maior anotação para transporte mediado por vesículas e organização do citoesqueleto (Ramsubramaniam, Harris, & Marten, 2014). *A. nidulans* é um fungo filamentoso que durante o processo de crescimento polar, uma maquinaria de proteínas do citoesqueleto como actina, microtúbulos e septinas e transporte mediado por vesículas se interconectam e atuam como um importante mecanismo para a morfogênese do fungo e secreção para as pontas das hifas (Riquelme, 2013), evidenciando assim a participação de fosfoproteínas durante processos de morfogênese em fungos.

Estudo avaliando o perfil de fosforilação de proteínas durante a resposta da levedura de P. brasiliensis ao estresse oxidativo, evidenciou que há uma ativação de diferentes sítios de fosforilação a esse estresse. Isso pode ser explicado pelo fato que ROS atua como um segundo mensageiro na via de sinalização celular induzindo a fosforilação. Como mencionado no estudo, foi possível verificar que existem diferentes vias que regulam os eventos de fosforilação, em diferentes condições de estresse oxidativo. Sugere-se que P. brasiliensis consiga proliferar em baixas concentrações de peróxido de hidrogênio, onde enzimas como ser/thr cinases são importantes reguladoras na capacidade de proliferação do fungo. Por sua vez, fosfatases regulam a redução da fosforilação em condições como resistência ao estresse oxidativo e morte celular (CHAVES et al., 2016). Um resultado interessante obtido pelos autores foi a descrição de sistemas de transdução sinal de dois componentes (TCST) (CHAVES et al., 2016). O mecanismo de ação desse sistema se dá através de um estímulo onde a proteína histidina cinase se autofosforila em um resíduo conservado de histidina, seguido pela transferência de um grupo fosforil para um resíduo de asparagina presente em uma proteína reguladora de resposta. Esse sistema tem sido descrito na patogênese de diversos fungos como

Candida albicans, Cryptococcus neoformans, B. dermatitidis e H. capsulatum, e uma vez que é ausente em mamíferos torna-se um alvo atrativo para terapias antifúngicas (Capra & Laub, 2012; Fassler & West, 2013).

Evento regulatório de enzimas produzido por fosforilação em *P. lutzii* foi descrito anteriormente para uma enzima chave do ciclo do glioxalato, a isocitrato liase (ICL). Essa capacidade regulatória mediada por fosforilação é explicada pelo fato que a desfosforilação *in vitro* da *Pb*ICL aumenta sua atividade em meio com glicose. os autores concluem que a regulação do ciclo do glioxilato é independe de regulação transcricional, mas controlado por modificação pós transcricional (CRUZ et al., 2011).

Em estudo proteômico quantitativo realizado pelo grupo do Laboratório de Biologia Molecular, UFG, utilizando-se 2-DE durante transição de P. lutzii foi possível identificar proteínas que apresentavam modificações pós-traducionais e entre as mais comuns foram a fosforilação (REZENDE et al. 2011). Entre as proteínas identificadas como fosforiladas incluem-se a enolase, gliceraldeído-3-fosfato desidrogenase, HSP70 e a fosfoglicerato cinase. A enolase é uma proteína que tem sido identificada em diferentes compartimentos celulares; em P. lutzii ela é localizada tanto no citosol, como na parede celular (Nogueira et al., 2010). Além disso, como elucidado por Rezende e colaboradores, (2011), 4 isoformas da enolase, com modificação por fosforilação, foram detectadas durante a transição micélio-levedura. Os dados sugerem que a enzima pode desempenhar diversas funções não só na via glicolítica, como também na virulência, através de processos como adesão, colonização e invasão (Donofrio et al., 2009; Nogueira et al., 2010). A gliceraldeído-3-fosfato desidrogenase é mais expressa em levedura de P. lutzii; os autores do trabalho ressaltam que sua localização na parede celular possibilita que a proteína se ligue à laminina, colágeno I e fibronectina, sugerindo seu papel na adesão do fungo à matriz extracelular do hospedeiro (Barbosa et al., 2006; Rezende et al., 2011). Todos os estudos citados acima mostram a importância de se conhecer melhor os eventos de fosforilação e como eles podem afetar nos mecanismos de morfogênese, virulência, patogênese, entre outros, para os fungos.

Assim o estudo de proteínas, enzimas e eventos de fosforilação e as vias de sinalização que ocorrem durante as fases morfológicas de *Paracoccidioides*, pode fornecer uma melhor compreensão da biologia do fungo, possibilitando a identificação de vias e proteínas chave que podem ser, posteriormente, novos alvos para antifúngicos.

3. Justificativa

A paracoccidioidomicose é uma importante micose sistêmica, com alta incidência em países como Brasil, Venezuela, Equador e Colômbia. Para o sucesso da infecção os fungos termodimórficos do gênero *Paracoccidioides*, sofrem uma mudança na sua morfologia sob influência da temperatura. Inicialmente quando encontrado em

condições ambientais ou durante o cultivo *in vitro* a 22-25°C manifesta-se como micélio. Nos tecidos do hospedeiro ou quando do cultivo a 36°C, membros do complexo *Paracoccidioides* são caracterizados na forma de levedura. A identificação de genes e proteínas especificamente envolvidos na transição dimórfica micélio-levedura têm sido objeto de grande interesse, uma vez que a patogenicidade está intimamente ligada à transição dimórfica, pois isolados que não são capazes de diferenciar para levedura não são virulentos.

Diversos estudos transcricionais tem descrito genes relacionados com o dimorfismo do complexo Paracoccidioides. Contudo, apenas um estudo em nível de proteínas foi realizado para descrever o perfil proteômico durante a transição, em P. lutzii. O conhecimento dos mecanismos moleculares, em nível de proteínas, que governam a transição de *P. brasiliensis* requer investigação. Este é o primeiro estudo que investiga o perfil proteômico durante a transição micélio-para-levedura em P. brasiliensis, através da marcação iTRAQ, permitindo a quantificação relativa das amostras, além de complementar os dados transcricionais, já descritos (Nunes, Costa de Oliveira, et al., 2005). Assim, compreender os mecanismos envolvidos no processo de transição, olhando para os eventos de fosforilação de proteínas, representa parte da estratégia o entendimento de como os fungos patogênicos se adaptam às condições ambientais e do hospedeiro que são impostos a eles, uma vez que a atividade de muitas proteínas é regulada por modificações como as fosforilações. Além disso, as fosfoproteínas tem se tornado um alvo promissor para novas drogas, pois suas funções são amplamente diversas e estão envolvidas em funções chave para os patógenos. Vale ressaltar que a abordagem proposta para o presente estudo deverá possibilitar um avanço no conhecimento do processo de diferenciação celular de *P. brasiliensis*.

4. Objetivos

4.1. Objetivo Geral

Identificar e comparar as proteínas e fosfoproteínas expressas no fungo patogênico humano *Paracoccidioides brasiliensis* nas formas micélio e levedura e durante a transição dimórfica micélio -levedura.

4.2. Objetivos Específicos

4.2.1. Realizar marcação das amostras com iTRAQ (isobaric tag for relative and absolute quantitation-iTRAQ)

4.2.2. Realizar o enriquecimento das amostras com TiO_{2;}

4.2.3. Realizar a identificação de proteínas por espectrometria de massas;

4.2.4. Descrever e comparar perfis de acúmulo das proteínas nas fases de micélio,

transição micélio- levedura e levedura;

4.2.5. Descrever mudanças metabólicas por meio de fosforilação de proteínas nas fases de micélio, transição micélio -levedura e levedura;

4.2.6. Realizar teste confirmatórios para o perfil metabólico encontrado.

Conclusão

Nossos resultados descrevem que durante a transição morfológica de micélio para levedura, *P. brasiliensis* sofre uma reorganização metabólica para se adaptar ao aumento da temperatura no hospedeiro. Este estudo evidência que o fungo favorece um metabolismo mais aeróbico através das vias de beta-oxidação e TCA para a produção de ATP na fase parasitária. Esse aspecto contrasta ao que foi descrito para outra espécie do complexo *Paracoccidioides*, onde a fase leveduriforme tem a glicólise e a fermentação alcoólica como principais vias de produção de energia. Surpreendentemente, aqui nesse estudo observamos que enzimas reguladas positivamente na fase micelial relacionam à fermentação alcoólica da glicose. Além disso, alguns fatores de virulência foram encontrados nas células em transição micélio para levedura e nas leveduras como Hsps e proteínas associadas à adesão celular. Esses fatores de virulência podem ser relevantes para que o fungo estabeleça a infecção no hospedeiro.

Os dados obtidos representam parte da estratégia para entender como os fungos patogênicos se adaptam às condições ambientais e do hospedeiro, observando os eventos de fosforilação proteica, uma vez que a fosforilação controla os principais eventos na biologia das células fúngicas. Assim descrevemos, pela primeira vez, as fosfoproteínas presentes em micélio, transição de micélio-para-levedura e levedura. Este estudo permitiu avaliar que processos biológicos como metabolismo de aminoácidos, nitrogênio e carboidratos, tradução, transporte celular, podem ser regulados por fosfoproteínas em *P. brasiliensis*. Além disso, as proteínas relacionadas na transcrição e no ciclo celular foram acumuladas em micélio e levedura, mostrando a importância da fosforilação para a transcrição modulada nestas fases morfológicas.

Manuscript Draft

Manuscript Number:

Title: Proteomic and phosphoproteomic analysis during dimorphic transition of Paracoccidioides brasiliensis

Article Type: Full Length Article

Section/Category: Original Article

Keywords: iTRAQ; proteomics; phosphoproteomics; neglected disease; paracoccidioidomycosis; dimorphism.

Corresponding Author: Professor Celia Maria de Almeida Soares, PhD

Corresponding Author's Institution: Universidade Federal de Goias

First Author: Danielle S Araújo, PhD

Order of Authors: Danielle S Araújo, PhD; Maristela Pereira, PhD; Igor G Portis, PhD student; Agenor C Junior, PhD; Wagner Fontes, PhD; Marcelo V de Sousa, PhD; Leandro P Assunção, PhD student; Lilian C Baeza, PhD; Alexandre M Bailão, PhD; Carlos A Ricart, PhD; Matthias Brock, PhD; Celia Maria de Almeida Soares, PhD

Abstract: Paracoccidioidomycosis (PCM) is a systemic mycosis, caused by thermodimorphic fungi of the genus Paracoccidioides. The transition process is vital in the pathogenesis of PCM allowing the survival of the fungus in the host. Thus, the present work performed a comparative proteome analysis of mycelia, mycelia to yeast- transition and yeast cells of Paracoccidioides brasiliensis. For that, tryptic peptides were labeled with iTRAQ and identified by LC-MS/MS and computational data analysis. This approach allowed the identification of 312 proteins differentially expressed in mycelia, mycelia-to-yeast transition and yeast cells. Data showed that P. brasiliensis yeast cells utilize aerobic betaoxidation and the tricarboxylic acid cycle accompanied by oxidative phosphorylation for ATP production. Furthermore, yeast cells show a metabolic reprogramming in amino acid metabolism and in the induction of virulence determinants and heat shock proteins allowing adaptation to environmental conditions as the temperature increases. Interestingly, mycelium showed an upregulation of enzymes related to alcoholic fermentation of glucose. Enrichment of phosphopeptides using TiO2 followed by their identification by LC-MS/MS was performed. Evaluation revealed 72 proteins with modification by phosphorylation. It was possible to describe some biological processes putatively regulated by phosphorylation in the fungus phases.

Suggested Reviewers: Joshua D Nosanchuk's PhD

josh.nosanchuk@einstein.yu.edu

Dr. Nosnchuk's research has focus on the pathogenesis of human pathogenic

fungi, especially Histoplasma capsulatum, Candida parapsilosis, Paracoccidioides and Cryptococcus neoformans.

Marcio L Rodrigues

marciolr@cdts.fiocruz.br

Dr. Rodrigues is an expertise in cell biology and microbiology. Recently, he published about proteomics and cellular events involving fungal vesicles.

Gregory M Gauthier gmg@medicine.wisc.edu Dr. Gauthier's research seeks to understand the pathogenesis of the thermally dimorphic fungi at the molecular level using Blastomyces dermatitidis as a model organism.

Carlos P Taborda tabordausp@gmail.com

Dr. Taborda is an expert in Paracoccidioides brasiliensis. His work focus on the biology and immunology of this pathogenic fungus.

Opposed Reviewers:

Cover Letter

To the Editor Journal of Proteomics Juan Calvete

Goiânia, October _9_th, 2018.

Dear Editor,

It is our pleasure to submit our article entitled "Proteomic and

phosphoproteomic analysis during dimorphic transition of *Paracoccidioides*

brasiliensis" to the Journal of Proteomics editorial board.

In dimorphic pathogenic fungi, transition process from mycelium to the yeast phase is essential to establish the disease, since strains that are unable to differentiate into yeast cells are avirulent. Therefore, identification of genes and proteins specifically involved in the mycelia-to-yeast transition has been subject of interest. The thermodymorphic fungi of the genus *Paracoccidioides* represented by the species *P. brasiliensis*, *P. americana*, *P. restrepiensis*, *P. venezuelensis* and *P. lutzii* cause mycosis called Paracoccidioidomycosis (PCM). Because it is not a compulsory notified disease, it is estimated 3360 to 5600 cases per year, in Brazil, the country with higher prevalence of the disease. The present work performed a comparative proteome analysis of, mycelia, mycelia-toyeast transition and yeast cells of *Paracoccidioides brasiliensis*. For that, tryptic peptides were labeled with iTRAQ and identified by LC-MS/MS and computational data analysis. This approach allowed the identification of 312 proteins differentially expressed in mycelia, myceliato-yeast transition and yeast cells.

Data showed that *P. brasiliensis* yeast cells utilize aerobic betaoxidation and the tricarboxylic acid cycle accompanied by oxidative phosphorylation for ATP production. This was a surprising result, as metabolism adapts in opposite of that found to *P. lutzii* another species in the complex. Furthermore, yeast cells show a metabolic reprogramming in amino acid metabolism and in the induction of virulence determinants and heat shock proteins. The data obtained here reinforce that during the morphological transition of mycelium-to-yeast cells, *P. brasiliensis* undergoes a metabolic reorganization for adapting to the increased temperature and nutritional environment in the host. Interestingly, mycelium showed an up-regulation of enzymes related to alcoholic fermentation of glucose, which was significantly less pronounced in the transition phase and in yeast cells. Moreover, some virulence determinants were found to be upregulated mainly in the mycelium-to-yeast transition phase and yeast

cells.

We also describe, for the first time, the phosphoproteins present in mycelia, mycelia-to-yeast transition and yeast cells. Enrichment of phosphopeptides using TiO₂ followed by their identification by LC-MS/MS was performed. Evaluation revealed 72 proteins with modification by phosphorylation. It was possible to describe some biological processes putatively regulated by phosphorylation in the fungus phases. Between them, proteins related to transcription and cell cycle were up-regulated in mycelium and yeast cells, showing the importance phosphorylation for modulating the transcriptionl in these morphological phases.

We believe that this article represents a great contribution for those involved in this area.

We hope to hear from you soon

Sincerely,

Célia Maria de Almeida Soares, PhD Laboratório de Biologia Molecular Instituto de Ciências Biológicas Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil. Tel/Fax:55-6235211736 email:<cmasoares@gmail .com >

*Significance

Significance

Members of the Paracoccidioides genus cause Paracoccidioidomycosis (PCM), the most prevalent systemic mycosis in Latin America. Here, we report and compare the proteomes of morphological stages of *Paracoccidioides brasiliensis*, one of the most investigated species in the genus. By quantitative proteomic analysis, we report that yeast parasitic cells utilize aerobic beta-oxidation and tricarboxylic acid cycle accompanied by oxidative phosphorylation, for ATP production, in opposite of that found to *Paracoccidioides lutzii*. Furthermore, yeast cells show a metabolic reprogramming in amino acid metabolism and in the induction of virulence determinants and heat shock proteins. The data obtained here reinforce that during the morphological transition of mycelium-to-yeast cells, P. brasiliensis undergoes a metabolic reorganization for adapting to the increased temperature and nutritional environment in the host. Interestingly, mycelium showed an up-regulation of enzymes related to alcoholic fermentation of glucose, which was significantly less pronounced in the transition phase and in yeast cells. In addition to describing metabolic peculiarities in the fungus phases, which may be related to the fungus adaptation to the host, we also describe, the phosphoproteins present the different fungus phases.

*Graphical Abstract Click here to download high resolution image

Highlights

- 1. The pathogenicity of *Paracoccidioides* is linked to the dimorphic transition.
- 2. A proteomic approach compared mycelia, mycelia-to-yeast transition and yeast.
- 3. The proteomic profile of mycelium suggested anaerobic metabolism.
- 4. The proteomic profile of yeast cells suggested aerobic metabolism.
- 5. Biological processes are regulated by phosphorylation in the fungus phases.

1 2 3	Proteomic and phosphoproteomic analysis during dimorphic transition of <i>Paracoccidioides brasiliensis</i>
4	Danielle Silva Araújo ^{1,2} , Maristela Pereira ¹ , Igor Godinho Portis ¹ , Agenor de Castro
5	Moreira dos Santos Junior ² , Wagner Fontes ² , Marcelo Valle de Sousa ² , Leandro do
6	Prado Assunção ¹ , Lilian Cristiane Baeza ³ ; Alexandre Mello Bailão ¹ , Carlos André
7	Ornelas Ricart ² , Matthias Brock ³ , Célia Maria de Almeida Soares ^{1*}
8	
9 ¹ L	aboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus 10 II, Universidade
Feder	al de Goiás, 74690-900, Goiânia, Goiás, Brazil;
11	² Laboratório de Bioquímica e Química de Proteínas, Instituto de Ciências Biológicas,
12	Universidade de Brasília, 70910-900, Brasília, DF- Brasil;
13	³ University of Nottingham, Fungal Biology and Genetics Group
14	* Corresponding author
15	Célia Maria de Almeida Soares
16	Laboratório de Biologia Molecular
17	Instituto de Ciências Biológicas II
18	Campus Samambaia
19	Universidade Federal de Goiás
20	74690-900, Goiânia, Goiás-Brazil
21	Tel: +55 62 3521-1736
22	E-mail address corresponding author: <u>cmasoares@gmail.com</u> (C.M.A Soares)

24 Key Words: iTRAQ, proteomics, phosphoproteomics, neglected disease, 25 paracoccidioidomycosis, dimorphism.

27

28 Abstract

29	Paracoccidioidomycosis (PCM) is a systemic mycosis, caused by thermodimorphic fungi of the
30	genus Paracoccidioides. The transition process is vital in the pathogenesis of PCM allowing the
31	survival of the fungus in the host. Thus, a comparative proteome analysis was performed on
32	mycelia, mycelia-to yeast transition and yeast cells of Paracoccidioides brasiliensis. Tryptic
33	peptides were labeled with iTRAQ and identified by LC-MS/MS and computational data
34	analysis, which allowed the identification of 312 proteins differentially expressed in different
35	morphological stages. Data showed that P. brasiliensis yeast cells utilize aerobic beta-
36	oxidation and the tricarboxylic acid cycle accompanied by oxidative phosphorylation for ATP
37	production. Furthermore, yeast cells show a metabolic reprogramming in amino acid
38	metabolism and in the induction of virulence determinants and heat shock proteins allowing
39	adaptation to environmental conditions during the increase of the temperature. Interestingly,
40	mycelium showed an up-regulation of enzymes related to alcoholic fermentation of glucose.
41	Enrichment of phosphopeptides using TiO $_2$ followed by their identification by LC-MS/MS was
42	performed. Evaluation revealed 72 proteins with modification by phosphorylation. It was
43	possible to describe some biological processes putatively regulated by phosphorylation in the
44	fungus phases.

45

46 Significance

47 Members of the *Paracoccidioides* genus cause Paracoccidioidomycosis (PCM), the 48 most prevalent systemic mycosis in Latin America. Here, we report and compare for the first 49 time, the proteomes of morphological stages of *Paracoccidioides brasiliensis*, one of the most 50 investigated species in the genus. By quantitative proteomic analysis, we report that yeast 51 parasitic cells utilize aerobic beta-oxidation and tricarboxylic acid cycle accompanied by 52 oxidative phosphorylation, for ATP production, in opposite of that found to *Paracoccidioides*

53 *lutzii*. Furthermore, yeast cells show a metabolic reprogramming in amino acid metabolism 54 and in the induction of virulence determinants and heat shock proteins. The data obtained 55 here reinforce that during the morphological transition of mycelium-to-yeast cells, P. 56 brasiliensis undergoes a metabolic reorganization for adapting to the increased temperature 57 and nutritional environment in the host. Interestingly, mycelium showed an up-regulation of 58 enzymes related to alcoholic fermentation of glucose, which was significantly less pronounced 59 in the transition phase and in yeast cells. In addition to describing metabolic peculiarities in the 60 fungus phases, which may be related to the fungus adaptation to the host, we also describe, 61 the phosphoproteins present in the different fungus phases.

62

63 Introduction

Dimorphic fungi of the *Paracoccidioides* genus cause a systemic mycosis called
Paracoccidioidomycosis (PCM) [1,2]. The genus *Paracoccidioides*, was previously described to
comprise a single species but more recent classifications divided the genus, in five species: *P. brasiliensis*, *P. americana*, *P. restrepiensis*, *P. venezuelensis* and *P. lutzii* [3,4].

68 Under free environmental conditions or during *in vitro* cultivation at 22-25°C,

69 members of this genus develop hyphae and form a mycelium. However, in host tissue or when

70 cultivated at 36°C, these organisms display a yeast cell morphology [1]. The mycelium generally

71 decomposes organic matter in soil that is necessary for environmental survival. Moreover,

72 mycelia can respond to different environmental conditions such as changes in temperature

and humidity and competition with other microorganisms [5]. Human infection initiates

through the inhalation of conidia or hyphal fragments , which reach the pulmonary alveoli and

transit to the yeast form in response to the increased temperature in the body [6,7].

The transition from mycelium into the yeast phase is essential for members of the
 Paracoccidioides complex to establish the disease, since strains that are unable to

differentiate into yeast cells are avirulent [8]. Therefore, identification of genes and proteins
specifically involved in the mycelia-to-yeast transition has been subject of interest, since
pathogenicity is intimately linked to the dimorphic transition [9]. In previous studies the
transcriptome of *Paracoccidioides lutzii* mycelium and yeast cells have been investigated and
provided insights into metabolism in the different fungal phases [10]. The transcription profile
of mycelium suggested the shunting of pyruvate into aerobic metabolism, whereas in yeast
cells pyruvate produced by glycolysis undergoes a fermentative metabolism [10].

85 Transcriptomic analysis of P. brasiliensis yeast cells deriving from a myceliumto-yeast 86 transition was performed by monitoring the expression of 4,692 genes at several time points of 87 the transition period by using microarray analyses [11]. The results revealed a total of 2,583 88 genes differentially expressed during transition, which were involved in several cellular 89 processes such as cell wall metabolism, signal transduction, and oxidative stress response. The 90 transcriptome analysis of early morphogenesis in P. lutzii mycelium undergoing transition to 91 yeast cells, performed at our laboratory, revealed 179 genes that were positively modulated 92 during the early transition process when compared to mycelia [12]. Of special note, genes 93 related to fungal cell wall and membrane remodeling were positively regulated during 94 mycelium to yeast transition, including those related to the cell wall carbohydrates 95 biosynthesis and degradation, transporters of the precursors for the synthesis of those 96 molecules, enzymes related to protein glycosylation and to the synthesis of membrane lipids. 97 Notably, 34 expressed sequenced tags (ESTS) were significantly induced, whose cognate 98 proteins were supposed to work in cell wall/membrane remodeling in the 22 initial hours of 99 the transition from mycelia to yeast cells. The data strongly suggest that P. lutzii favors the 100 membrane and cell wall remodeling in the early stages of the transition from mycelium to 101 yeast cells [12].

102 In a pioneering quantitative 2-D electrophoresis based (2-DE) proteomic study of the 103 morphological phases of P. lutzii, Rezende and colleagues (2011), detected changes in the 104 relative abundance of the components of the proteome in mycelia, mycelia-to-yeast transition 105 and yeast cells. This resulted in detailed 2-DE reference maps of proteins in the mycelia, yeast 106 cells and mycelia to yeast transition and revealed a global reorganization of the P. lutzii 107 metabolism during transition from mycelia to yeast cells [13]. A major change was detected in 108 the accumulation of glycolytic enzymes and of alcohol dehydrogenase starting at 22 hours 109 after the mycelium to yeast transition, consistent with transcriptional studies that have shown 110 a shift toward anaerobic metabolism in the yeast phase of *P. lutzii* [10]. 111 Proteomics can offer unique large-scale data on cellular differentiation, as we had 112 previously described [13]. However, measurements of protein abundances alone may be 113 insufficient to understand the regulation of the differentiation process since the activities of 114 many eukaryotic proteins are modulated at post-translational levels. For instance, 115 phosphorylation events may affect mechanisms of morphogenesis, virulence, pathogenesis 116 and others processes in fungi [14–21]. In this respect, we have previously identified a 117 phosphorylation dependent activation/inactivation cycle for isocitrate lyase, in P. brasiliensis 118 yeast cells that appears to dominate the regulation of glyoxylate cycle activity, rather than the 119 carbon source dependent gene expression [22]. 120 Therefore, the study presented here also aimed at analyzing the phosphoproteome in 121 the specific morphological phases and during the dimorphic transition. Integration of 122 proteomic and phosphoproteomic data demonstrated that in the yeast phase a metabolic 123 reprogramming occurs in pathways such as beta-oxidation, methylcitrate cycle and amino acid 124 metabolism. Furthermore, induction of virulence factors and heat shock proteins that allow

 $125\,$ $\,$ the fungus to adapt to the environmental conditions were observed. The alcoholic $\,$

126 fermentation appears more abundant in mycelium of *P. brasiliensis* as compared to the yeast

127 form. Proteins related to β -1,3glucan synthesis required for the mycelium to construct a cell 128 wall enriched in β -glucan polymers were annotated. In addition, SODs and thioredoxins 129 important for the mycelial phase to increase protection against oxidative stress were also 130 found to be differentially regulated.

131 possible to observe that biological lt was processes regulated by 132 phosphoproteins during the transition were distributed in functional categories such as amino 133 acids, nitrogen, carbohydrate metabolism, translation, cellular transport, transcription and cell 134 cycle. In the metabolism of nitrogen, formamidase was upregulated in mycelium. In addition, 135 two ribose-phosphate pyrophosphokinases, previously described as required in the growth 136 and maintenance of cell integrity were found in mycelium. Phosphorylation is also required for 137 governing biological processes as cell cycle and transcription. Among the cell cycle several 138 proteins that were modified by phosphorylation were up-regulated in mycelium and yeast 139 cells. Phosphoproteins related to transcription were detected reinforcing the importance of 140 phosphorylation for modulating transcriptional response in *P. brasiliensis*.

141

142 Material and Methods

143 Microorganisms and culture conditions

144 Paracoccidioides brasiliensis, Pb18, was used in all the experiments of this study. The 145 mycelium and yeast phases were maintained in vitro in solid BHI medium with 4% (w/v) 146 glucose at 22°C and 36°C for 15 and 7 days, respectively. The mycelium and yeast cells were 147 inoculated in liquid BHI with glucose, 4% (w/v) at 22° C and 36° C under constant agitation (150 148 rpm) for 72 hours. The mycelium-to-yeast transition was also performed in liquid BHI medium. 149 The fungus was initially incubated at 22°C for 18 hours and after this period, the temperature 150 was shifted to 36°C, for 22 hours. The whole procedure of sample preparation and analysis is 151 schematically depicted in Fig.

152 **S1**.

153 Extraction of proteins

- 154 Mycelia, mycelia in transition to yeast and yeast cells, were harvested by centrifugation
- 155 at $1200 \times g$ for 10 min at 4°C, washed three times with PBS and resuspended in lysis buffer [8
- 156 M Urea, 75 mM NaCl, 50 mM Tris, pH 8.2, 50 mM βglycerol phosphate, 1 mM sodium
- 157 orthovonadate, 10 mM sodium pyrophosphate, 1 mM PMSF]. After addition of glass beads
- 158 cells were mechanically lysed by vigorous shaking using a mini bead beater (Bio- Spec). Cell
- 159 debris were removed by centrifugation at 10,000 × g for 15 min at 4°C. Proteins contents were
- 160 estimated using the Qubit protein assay kit (Thermo Scientific, Bremen, Germany) and
- 161 confirmed on
- 162 12% SDS-PAGE gel. The supernatants were stored at -80°C.

163 Acetone Precipitation of Proteins

Before performing protein digestion, an acetone precipitation step was performed on
the cell extracts [23]. A total of 150 μg of protein sample was mixed with ice-cold acetone at
1:5 volume ratio and incubated for 16 h at -20°C. Subsequently, the samples were centrifuged
at 1500 □ g, for 5 min, followed by removal of the supernatant. The pellet was resuspended in

168 lysis buffer [8 M urea, 0.05 M triethylammonium bicarbonate buffer (TEAB), pH 7.9].

169 Sample preparation for LC-MS/MS

170 A trypsin digestion was performed on the acetone-precipitated and resuspended

- 171 proteins. The sample in lysis buffer was maintained at 4°C and sonicated for 60 seconds.
- 172 $\,$ Subsequently a reduction step was performed for 25 min at 55°C by the addition of 0.005 M $\,$
- 173 dithiothreitol. Iodoacetamide (0.014 M) was added and the samples were held for 40 min at
- 174 room temperature in the dark. Soon after, DTT was added to the sample to give a final
- 175 concentration of 0.005 M. To this sample 0.025 M TEAB, pH 7.9, 0.001 M CaCl₂, was added at a
- 176 volume ratio of 1:5. Digestion was then performed by addition of trypsin (Promega) at the

177 enzyme:substrate ratio of 1:50, with incubation at 37°C for 12 h. The peptide samples were

178 acidified with 0.1% TFA (v/v). Then, 50 µg of the sample was desalted in a StageTip on the low-

- binding P-200 tip with a C18 disc, and the rest of the sample was stored at -80°C. The eluate
- 180 resulting from desalting was collected and dried in vacuum.

181 iTRAQ labeling

182 For iTRAQ labeling of protein samples of biological triplicates from each cultivation 183 condition, the manufacturer's specifications were followed with some modifications. A total of 184 50 μ g desalted and dried peptide was resuspended in 17 μ l of 300 mM TEAB. Then iTRAQ 185 reagent, which was resuspended in 70 µl of ethanol, was added. The solution was mixed and 186 incubated at room temperature for 2 h, followed by mixing all the labeled samples in equal 187 proportion (mycelium 114; transition 116; yeast 115). Samples were desalted with a StageTip 188 on the low-binding P-200 tip with C18 matrix, and dried under vacuum. Phosphopeptide 189 enrichment

190 The labeled samples were enriched with TiO₂, according to standard protocols [24], 191 with some modifications. Briefly, iTRAQ-labeled multiplexed samples (100 μ g for each 192 replicate) were suspended in 1 M glycolic acid in 80% acetonitrile/5% TFA (v/v), and 0.6 mg of 193 TiO_2 beads were added per 100 µg of peptide, followed by incubation under shaking (200 rpm) 194 for 15 min. Beads were spun down, and the supernatant was transferred to microtubes. 195 Addition of TiO₂ beads to the supernatants (using 0.3 mg TiO₂ per 100 μ g of peptide) was 196 repeated twice. The TiO₂ beads from the three rounds of enrichment were combined and 197 washed first with 80% acetonitrile/1% TFA (v/v) and then with 10% acetonitrile/0.1% TFA (v/v) 198 to remove non-phosphorylated peptides bound to TiO₂ in StageTip on the low-binding P-200 199 tip with a C18. Phosphopeptides were then eluted with 1.5% (v/v) ammonia solution, pH 11.5, 200 and dried in vacuum.

201 Data acquisition by LC/MS-MS

202	The tryptic peptides were separated using a capillary column chromatography system
203	(nano-UHPLC Dionex Ultimante 3000) coupled to a hybrid ion trap-orbitrap mass
204	spectrometer, Orbitrap Elite $^{\mathrm{m}}$ (Thermo Scientific). The first chromatography was carried out
205	on a pre-column with internal diameter of 100 μm x 200 mm in length, packed in-house with
206	silica spherical particles coated with C18 ReprosilPur of 5 μm with 120 Å pores (Dr. Maisch
207	GmbH, Ammerbuch, Germany). The second
208	chromatography was carried out using an analytical column of internal diameter of 75 μm and
209	350 mm in length, also packed in-house with C18 Reprosil of particles $3\mu m$ with 120 Å pores
210	(Dr. Maisch GmbH, Ammerbuch, Germany). The gradient for sample elution followed from
211	100% phase A (0.1% formic acid) to 26% phase B (0.1% formic acid, 95% ACN) for 180 min, 26%
212	to 100% phase B for 5 min and 100% B phase for 8 min (a total of 193 min at 200 nL / min).
213	After each run, the column was washed with
213 214	After each run, the column was washed with 90% B-phase and re-equilibrated with phase A.
213214215	After each run, the column was washed with 90% B-phase and re-equilibrated with phase A. The spectra were acquired in positive mode by applying data-dependent automatic MS
213214215216	After each run, the column was washed with 90% B-phase and re-equilibrated with phase A. The spectra were acquired in positive mode by applying data-dependent automatic MS scan and acquisition of mass spectra in tandem (MS/MS). All MS scans in the orbitrap (mass
 213 214 215 216 217 	After each run, the column was washed with 90% B-phase and re-equilibrated with phase A. The spectra were acquired in positive mode by applying data-dependent automatic MS scan and acquisition of mass spectra in tandem (MS/MS). All MS scans in the orbitrap (mass amplitude: m/z 350-1800 and resolution: 120000) were followed by MS/MS of the fifteen most
 213 214 215 216 217 218 	After each run, the column was washed with 90% B-phase and re-equilibrated with phase A. The spectra were acquired in positive mode by applying data-dependent automatic MS scan and acquisition of mass spectra in tandem (MS/MS). All MS scans in the orbitrap (mass amplitude: m/z 350-1800 and resolution: 120000) were followed by MS/MS of the fifteen most intense ions in the LTQ. Fragmentation in LTQ occurred by high-energy collision-induced
 213 214 215 216 217 218 219 	After each run, the column was washed with 90% B-phase and re-equilibrated with phase A. The spectra were acquired in positive mode by applying data-dependent automatic MS scan and acquisition of mass spectra in tandem (MS/MS). All MS scans in the orbitrap (mass amplitude: m/z 350-1800 and resolution: 120000) were followed by MS/MS of the fifteen most intense ions in the LTQ. Fragmentation in LTQ occurred by high-energy collision-induced dissociation (HCD) and selected ion sequences were dynamically deleted every 15 sec. The
 213 214 215 216 217 218 219 220 	After each run, the column was washed with 90% B-phase and re-equilibrated with phase A. The spectra were acquired in positive mode by applying data-dependent automatic MS scan and acquisition of mass spectra in tandem (MS/MS). All MS scans in the orbitrap (mass amplitude: m/z 350-1800 and resolution: 120000) were followed by MS/MS of the fifteen most intense ions in the LTQ. Fragmentation in LTQ occurred by high-energy collision-induced dissociation (HCD) and selected ion sequences were dynamically deleted every 15 sec. The search and identification of proteins used Proteome Discoverer v.1.3 beta software (Thermo
 213 214 215 216 217 218 219 220 221 	After each run, the column was washed with 90% B-phase and re-equilibrated with phase A. The spectra were acquired in positive mode by applying data-dependent automatic MS scan and acquisition of mass spectra in tandem (MS/MS). All MS scans in the orbitrap (mass amplitude: m/z 350-1800 and resolution: 120000) were followed by MS/MS of the fifteen most intense ions in the LTQ. Fragmentation in LTQ occurred by high-energy collision-induced dissociation (HCD) and selected ion sequences were dynamically deleted every 15 sec. The search and identification of proteins used Proteome Discoverer v.1.3 beta software (Thermo Scientific) with Mascot algorithm v.2.3 against <i>P. brasiliensis</i> database installed on the lab
 213 214 215 216 217 218 219 220 221 222 	After each run, the column was washed with 90% B-phase and re-equilibrated with phase A. The spectra were acquired in positive mode by applying data-dependent automatic MS scan and acquisition of mass spectra in tandem (MS/MS). All MS scans in the orbitrap (mass amplitude: m/z 350-1800 and resolution: 120000) were followed by MS/MS of the fifteen most intense ions in the LTQ. Fragmentation in LTQ occurred by high-energy collision-induced dissociation (HCD) and selected ion sequences were dynamically deleted every 15 sec. The search and identification of proteins used Proteome Discoverer v.1.3 beta software (Thermo Scientific) with Mascot algorithm v.2.3 against <i>P. brasiliensis</i> database installed on the lab server and generated using the

224 UniProt/TrEMBL. The searches were made with the following parameters: MS precision of 10

225 ppm, MS/MS of 0.05 Da, until 2 cleavage sites lost;

carbamidomethylation of cysteines as modification and oxidation of methionine and Nterminal
acetylation of the protein as variable modifications. The number of proteins, the group of
proteins and the number of peptides were filtered with a false positive detection rate (FDR) of
less than 1% and peptides with a rank of 1 and a minimum of 2 peptides per protein were
accepted for identification with Proteome Discoverer. The Protein Center software (Thermo
Scientific) was used to interpret the identified proteins.

232 Statistical analysis

The differences in protein expression levels among the three conditions were tested using the ANOVA and Tukey's test; the latter was applied after statistically significant results were obtained by ANOVA and was used to compare the differences among the means in analyzed groups. The statistical analyses were performed using R software (http://www.rproject.org/). A p-value ≤ 0.05 was considered statistically significant. For this analysis, only proteins detected in at least two replicates were evaluated.

239 Bioinformatics analysis

240 For the identified proteins we performed a search using the Blast2GO

- 241 (https://www.blast2go.com/). Thus, the annotations of the identified proteins were assessed
- using the BLASTP algorithm with a BLAST Expect value of 10⁻³ and a maximum number of 30
- 243 hits in a non-redundant protein sequence database. After these analyses the mapping and
- annotation steps were performed [25]. The Motif-X algorithm (<u>http://motif-</u>
- 245 <u>x.med.harvard.edu/</u>) was used to build motif enrichment and phosphorylation sites [26][27].
- 246 The reference database used in this search was the SGD
- 247 Yeast Proteome, and the central characters were Ser, Thr or Tyr with windows of 13, 15, and
- 248 17 amino acids. In addition, the identified proteins were sorted into functional categories
- 249 based on the MIPS Functional categories database (Funcat 2.0) (http://mips.helmholtz-
- 250 <u>muenchen</u>), available in pedant (<u>http://pedant.gsf.de/</u>). For cellular localization prediction, the

- 251 WoLF PSORT bioinformatics tool was used (<u>https://wolfpsort.hgc.jp/</u>). The heat maps were
- generated using the package *heatmap.plus* of software R [28].

253 Determination of ethanol concentrations in fungal lysates

A total of 2 g of yeast cells, mycelium and mycelium-to-yeast cells in transition were

- used to perform the assay. Briefly, the cells were lysed using glass beads and mini bead beater
- apparatus (Bio-Spec) in 4 cycles of 30 sec, keeping the samples on ice in the interval of each
- 257 cycle. The cell lysates were centrifuged at 10,000 × g for 15 min at 4°C and the supernatant was
- used for the enzymatic assay. The concentration of ethanol was quantified by using an
- 259 enzymatic detection kit according to the manufacturer's instruction (UV-test for ethanol,
- 260 RBiopharm, Darmstadt, Germany). In the presence of the enzyme alcohol dehydrogenase,
- 261 ethanol is oxidized to acetaldehyde by nicotinamide-adenine dinucleotide (NAD⁺).
- 262 Subsequently the acetaldehyde is quantitatively oxidized to acetic acid in the presence of
- 263 aldehyde dehydrogenase and NAD⁺, releasing NADH, which is determined by means of its
- absorbance at 340 nm.
- 265 Concentrations of ethanol were determined in biological triplicates.

266 Evaluation of reduced thiol level

267 Concentrations of thiol were determined in biological triplicates. Briefly, a total of 2g of 268 mycelium, yeast cells and mycelium-to-yeast cells in transition were used to perform the assay. 269 The cells were disrupted in lysis buffer (50 mM Tris-Cl, 150 mM NaCl, 50 mM ethylenediamine 270 tetraacetic acid [EDTA], pH 7.2), using glass beads and a mini bead beater apparatus (Bio-Spec) 271 in 4 cycles of 30 sec, keeping the samples on ice in the interval of each cycle. The cell lysates 272 were centrifuged at 10,000 \Box g for 15 min at 4°C and the supernatant was used for enzymatic 273 assay. Thereafter, 100 μ L of supernatant was combined with 100 μ L of 500 mM sodium 274 phosphate buffer, pH 7.5 and transferred in a microtiter well, followed by the addition of 20 µL 275 of 1 mM DTNB (2-nitrobenzoic acid). Absorbance was measured at 412 nm using a plate

- 276 reader. The reaction principle is based on the fact that thioredoxin (Trx) is reduced to dithiol
- 277 T(SH)2 by thioredoxin reductase (TR), in the thioredoxin system. The inhibition of TR decreases
- the amount of total reduced thiol [29]. Free thiol levels were determined using
- 279 Ellman's reagent, 5, 50- dithio-bis-(2-nitrobenzoic acid), DTNB (Sigma Aldrich, Co).

280 RNA extraction, cDNA synthesis and real-time RT-PCR

- 281 RNAs obtained by using Trizol were treated with DNase (RQ1 RNase-free DNase,
- 282 Promega). Then, the cDNAs were prepared using Superscript II reverse transcriptase
- 283 (Invitrogen[™], Life Technologies, Carlsbad, CA) and oligo (dT)15 primer.
- 284 Quantitative real-time PCR reactions were performed in a StepOnePlus™ real-time PCR system
- 285 (Applied Biosystems, Foster City, CA) using the SYBR green PCR master mix (Applied
- Biosystems). The genes encoding chitinase II (PADG_00994), pyruvate decarboxylase
- 287 (PADG_00714) and the antigen gp43 (PADG_07615), were selected for analysis. Constitutively
- 288 expressed alpha tubulin and L34 was selected to normalize the samples [30]. An aliquot of
- 289 cDNA from each sample, serially diluted 1:5 was mixed and used to generate a relative
- 290 standard curve. The relative expression levels of selected genes were calculated using the
- standard curve method for relative quantification [31].
- 292 Statistical analysis was performed by the student's t-test where p-values \leq 0.05 were
- 293 considered statistically significant.

294 Mitochondrial activity assay

Mycelia, transition mycelia-to-yeast and yeast cells of *P. brasiliensis*, were grown in biological triplicates. After, cells were harvested by centrifugation at 2,000 x g for 5 min at 4°C and diluted in PBS buffer at 10⁶cells/ml. Then, the cells were stained with Rhodamine 123 (1.2 mM) (Sigma Aldrich) according to the manufacturer's protocol and following washed twice with 1X PBS. Stained cells were observed under a fluorescence microscope (AxioScope A1, Carl
300	Zeiss) and analyzed with the 546–512 nm filter. The imagens were acquired using the
301	AxioVision Software (Carl Zeiss).
302	
303	Results and Discussion
304 305 306	Analysis of proteins in mycelium, mycelium-to-yeast transition and yeast cells A large-scale proteome analysis was performed for mycelium, mycelium-toyeast
307	transition and yeast cells, in which an isobaric tag to proteins from each condition allowed
308	relative quantification of the expressed proteins. A flow chart of the experimental steps is
309	shown in Fig. S1 .
310	Proteins with high FDR confidence and found in at least 2 replicates were selected for
311	further analysis as depicted in ${f Fig.~S2}$. A total of 1008 proteins were identified through mass
312	spectrometry. In ${f TableS1}$ the protein accession number and description, the coverage of
313	proteins, the number of peptides, unique peptides, groups of proteins, number of amino acids
314	identified, protein molecular mass (kDa) and isoelectric point are presented. In addition, ${f Table}$
315	${f S1}$ also depicts the post translational modifications found for each protein, the protein
316	abundance and the protein score.
317	Statistical analysis, ANOVA ($p \le 0.05$) and Tukey's test, determined 312 differentially regulated
318	$P.\ brasiliensis$ proteins. Table S2 summarizes all differentially expressed proteins from the
319	three morphological phases; whereby the accession number and description of the protein, p-
320	value determined by the ANOVA test, and average abundance obtained in the Tukey's test is
321	given. Furthermore, the identified proteins were sorted into functional categories by the
322	functional catalog (Funcat 2.0) or KEGG terms and depicts the score of the proteins obtained
323	from the MS Amanda 2.0 and pvalue (≤ 0.05, ANOVA). Several proteins have been grouped as

- 324 unclassified, since their biological function is still unknown. Most of these unclassified proteins
- 325 are hypothetical (even after Blast2GO search), which may explain why no term can be assigned

- 326 to most of these proteins (Fig. S3, panel A). Figure S3, panel B depicted top-hit of species in
- 327 the genus *Paracoccidioides* that were homologous for proteins found using Blast2GO.

328

329 Metabolic changes in the mycelium

330 At first, we compared the differentially expressed proteins in mycelium to the 331 transition state and to yeast cells. In the metabolism category, mycelium presented 332 upregulation of proteins related to nucleotide/nucleoside/nucleobase, carbohydrate 333 metabolism, phosphate metabolism, and secondary metabolism (Table S3). We first focused 334 on the category of genes encoding for proteins related to energy production. Mycelium 335 presented a high number of up-regulated enzymes related to glycolysis and fermentation than 336 the transition phase and yeast cells. For example, fructose-1,6bisphosphate aldolase, class 2 337 (PADG_00852), hexokinase (PADG_07950), triosephosphate isomerase (PADG_06906) and 2,3-338 bisphosphoglycerate-independent phosphoglycerate mutase (PADG 05109) were up-regulated 339 in mycelium. In respect to enzymes related to alcoholic fermentation, two alcohol 340 dehydrogenases (PADG 11405) and (PADG 04701) were induced in comparison to the other 341 two developmental stages. This fact caught our attention since it had been previously 342 described that P. lutzii presents a more anaerobic metabolism in yeast cells, when compared 343 to mycelia [10,13]. Therefore, we studied ethanol accumulation by comparing mycelium, 344 transition of mycelium-to-yeast and yeast phases, as shown in Fig. 1, panel A. In agreement to 345 the proteomic data, the mycelium showed a higher accumulation of ethanol than the other 346 phases. In addition, analysis of the level of expression of alcohol dehydrogenase (PADG 11405) 347 from proteomic analysis confirmed that the abundance of this enzyme was significantly higher 348 in mycelium (Table S3). Pyruvate decarboxylase (PADG_00714) is required to shunt pyruvate 349 from glycolysis into the fermentative pathway of ethanol production by converting pyruvate 350 into acetaldehyde. Therefore, we performed expression analyses on the respective transcript 351 by real time PCR (Fig. 1B) demonstrating a 6 times higher expression in mycelium. This

reinforces that in contrast to *P. lutzii* the mycelium from *P. brasiliensis* is dominated by a fermentative metabolism producing ethanol from pyruvate. This is also in line with a high activity of glycolysis since enzymes of the glycolytic pathway are induced in the mycelium (**Table S3**).

While our data strongly suggest that *P. brasiliensis* presents a more anaerobic metabolism in the mycelium compared to mycelia-to-yeast transition phase and yeast cells, previous transcriptional studies with *P. brasiliensis* undergoing mycelia-to-yeast transition using a biochip detected an induction of transcripts encoding alcohol dehydrogenase I and pyruvate decarboxylase during the dimorphic transition from mycelia to yeast cells. However, the latter data were obtained at last 120 h after dimorphic transition, which could explain the difference in the transcript levels compared to the protocol used here [11].

363 Besides an increased fermentation capacity, proteins related to the maintenance of 364 the intracellular redox state and protection against oxidative stress such as glutathione S-365 transferase Gst3 (PADG_03423), two thioredoxins (PADG_02764, PADG_05504), mitochondrial 366 peroxiredoxin PRX1 (PADG_03095), superoxide dismutase [Cu-Zn] SOD1 (PADG_07418), Fe-Mn 367 family superoxide dismutase SOD2 (PADG 01755) were up regulated in mycelium (Table S3). 368 In agreement with these proteomic data, evaluation of the enzymatic activity of thioredoxin by 369 measuring the thiol dosage revealed that mycelium produces more thiols than the other two 370 morphological phases (Fig. 2A). The thiol levels also correlated with the expression of 371 thioredoxins that were up-regulated in mycelium (Fig. 2B). This suggests a need for increased 372 protection against reactive oxygen species in mycelia compared to the other phases. 373 An accumulation of Rad23 also caught our attention. Rad23 is an important protein 374 involved in nucleotide excision repair (NER) and Saccharomyces cerevisiae rad23 deletion 375 mutants show increased sensitivity to DNA-damaging agents as Rad23 has been assumed to 376 protect Rad4 from degradation by the proteasome in cells [32].

Similarly in plants ultraviolet light causes DNA damage and the proteins RAD4 and RAD23 are
required for UV tolerance [33]. As the mycelium is the major morphology in the free
saprobiotic phase, those proteins could be of special importance to provide protection against
DNA damage from conditions found in the environment.

381 We also detected major differences in the abundance of enzymes involved in cell wall 382 biosynthesis and degradation. A chitinase class II (PADG_00994) showed an accumulation in 383 mycelium (**Table S3**). Additionally, other enzymes such as β -1,3exoglucanase (PADG 03691), 384 cell wall protein ECM33 precursor (PADG_04499) and β -1,3-glucosidase (PADG_02862) were 385 more abundant in mycelium compared to the mycelium to yeast transition and yeast cells 386 (Table S3). Of special note, β -1,3glucosidase (PADG 02862), and β -1,3-exoglucanase 387 (PADG_03691) cleave β -1,3 glucan polymers that predominate in mycelia and consequently 388 may be relevant for cell wall maintenance [34]. A diagram depicting the processes potentially 389 induced and repressed in the P. brasiliensis cell wall mycelia and yeast cells is shown in

390 Supplementary Fig. 4.

391

392 Table S4 depicts the down regulated proteins in mycelia compared to the other 393 analyzed phases. Amino acid metabolism was down-regulated in mycelium compared to yeast 394 cells, which is consistent with transcriptional data, in which P. brasiliensis revealed a 395 predominance of up regulated transcripts related to the amino acid metabolism in yeast cells 396 [11]. Furthermore, most enzymes of the tricarboxylic acid cycle, electron transport and 397 oxidative phosphorylation were repressed in mycelium compared to mycelium-to-yeast 398 transition and yeast cells (Table S4). Most strikingly, all enzymes involved in beta-oxidation of 399 fatty acids were down regulated (Table S4). Those data reinforce the presence of a more 400 anaerobic metabolism in the mycelium phase, compared to transition phase and yeast cells. 401 These data demonstrate significant metabolic differences among members of the

fermentative pathway, transcriptomic and proteomic analyses of the different morphological
phases of *P. lutzzi* demonstrated a more anaerobic metabolism for yeast cells [10, 13]. A heat
map and the related metabolic pathways that are induced and repressed in *P. brasiliensis*mycelia compared to mycelia-to-yeast transition and yeast cells is shown in **Fig. 4**.

Paracoccidioides genus. While metabolism of mycelium from P. brasiliensis seems to follow a

407 Interestingly, differences were also observed in proteins related to ribosome
408 biogenesis, protein synthesis, protein folding and stabilization (Table S4). Here these data

409 indicate a decreased turnover of proteins in mycelium compared to mycelium-toyeast

410 transition and yeast cells.

411

402

412 Metabolic changes during the mycelium-to-yeast transition phase413

414 Metabolic processes that predominate during the mycelium-to-yeast transition 415 compared to mycelium and yeast cells are depicted in Supplementary Table 5. The 416 accumulation of phosphoenolpyruvate carboxykinase (PADG 08503) suggests a shift of 417 metabolism to gluconeogenesis at 22 h after entering the transition phase. This enzyme 418 produces phosphoenolpyruvate, a precursor of glucose synthesis. In P. brasiliensis the enzyme 419 phosphoenolpyruvate carboxykinase has been described as relevant for metabolic adaptation 420 within macrophages [35]. Additionally, the exoantigen Gp43 (PADG_07615) accumulates 421 during transition. However, despite significant changes on the transcript level [11], overall only 422 19 proteins accumulated at the 22 h transition phase, which could be explained by the time 423 required to translate a protein from a transcript. 424 Besides proteins strongly upregulated, the 22 h temperature shift period resulted in a 425 reduction of several proteins that are involved in different metabolic processes

426 (Supplementary Table 6). Proteins involved in amino acid metabolism were strongly down

427	regulated. Similarly, the TCA, glycolysis, alcoholic fermentation, electron transport and
428	oxidative phosphorylation were repressed at this cellular stage, strongly suggesting a major
429	repression of the overall cellular metabolism at this early time of transition. According to
430	Medoff and collaborators (1987), immediately after the temperature shift, the metabolism of
431	Paracoccidioides is characterized by partial or complete uncoupling of oxidative
432	phosphorylation and immediate decline in ATP levels. Subsequently, there is a dormant period
433	of 4 to 6 days that is characterized by absent or low rates of respiration and inhibition of
434	protein synthesis [36]. Our proteomic data showing a high number of repressed proteins
435	corroborate with the description of the metabolic changes described above.
436	
437 438	Metabolic changes in the established yeast phase
439	In yeast cells several enzymes of amino acid metabolism were more abundant than in
440	mycelium and during the transition phase (Supplementary Table 7). In particular, the
441	accumulation of 4-hydroxyphenylpyruvate dioxygenase (PADG_08468) an enzyme essential for
442	tyrosine metabolism, was observed in yeast cells. This is in agreement with previous
443	microarray analyses and it had been shown that inhibition of this enzyme inhibits the
444	dimorphic transition in <i>P. brasiliensis</i> [11].
445	Furthermore, 24 ribosomal proteins showed an accumulation in yeast cells
446	(Supplementary Table 7), which indicates an increased requirement for <i>de novo</i> protein
447	biosynthesis in this morphological state. In terms of metabolic physiology proteins related to
448	the tricarboxylic-acid cycle (TCA), such as pyruvate dehydrogenase
449	(PADG_00246), ATP-citrate synthase (PADG_04993), succinyl-CoA ligase (PADG_02260 and
450	PADG_00317) and aconitate hydratase (PADG_11845), were more abundant in yeast cells
451	compared to transition phase and mycelium. Also, proteins involved in the electron transport

452 chain and ATP synthase complex also were predominantly induced in yeast cells (PADG 07813, 453 PADG_05402, PADG_08349, PADG_07042, PADG_02561), which agrees with an increased 454 metabolite flux through the TCA cycle accompanied by aerobic respiration. The Supplementary 455 Fig. 5 depicts activity assays from mycelia, transition phase and yeast cells where it was 456 possible to observe an increased aerobic respiration in yeast cells compared to mycelia and 457 transition phase. This is also in accordance with biochemical data published for 458 Paracoccidioides sp. in which Medoff and collaborators (1986) described increasing 459 concentrations of cytochrome components and resumption of the normal respiration in yeast 460 cells five days after transition [36]. Interestingly, our data indicate that metabolism appears 461 not to be directly dependent on glucose utilization, as all enzymes involved in beta-oxidation 462 of fatty acids were highly abundant in yeast cells compared to the mycelia-to-yeast transition 463 and mycelia (Supplementary Table 7). In agreement, during in vivo infection of lungs by P. 464 brasiliensis, enzymes related to lipid degradation were up-regulated in yeast cells [37]. 465 In fungi, regulation of production of heat shock proteins (HSPs) is modulated in 466 response to various stimuli, including temperature. As the process of cell differentiation in 467 Paracoccidioides spp. to the parasitic phase requires an increase of the temperature, HSPs are 468 expected to accumulate during the morphological transition [38]. However, our data indicate 469 that accumulation of HSPs does not immediately take place at 22 h after temperature shift but 470 is slightly delayed with seven more abundant HSPs (PADG 01711, PADG_02785,

471 PADG_07715, PADG_00430, PADG_08369,

472 PADG_02761) in the yeast phase. Fig. 5 depicts a heat map the HSPs induced and repressed in
473 yeast cells compared to mycelia and mycelia-to-yeast transition.

Besides HSPs, cytochrome c peroxidase, which is an important cell-rescue related
protein, accumulated in yeast cells compared to the other phases. This enzyme is involved in *P*. *brasiliensis* in the response to oxidative and nitrosative stresses and mutants with low

477 expression of the gene were more sensitive to nitrosative stress [39]. Furthermore, these 478 antisense knockdown mutants of P. brasiliensis revealed a decreased survival inside 479 macrophages and in a murine model of infection [39]. The higher expression in yeast cells 480 added of the previous data, corroborate the protein to be designated as a virulence factor. 481 Evaluation of proteins at the yeast phase revealed down regulation of enzymes 482 involved in ethanol production such as the alcohol dehydrogenases Adh1 and Adh2 483 (PADG_11405 and PADG_04701) (Supplementary Table 8). Of special note six enzymes of the 484 glycolysis, including hexokinase, were down regulated in yeast cells compared to mycelia and 485 mycelia-to yeast transition. These data strongly support the observed metabolic preference 486 for the TCA cycle and respiration and is in agreement with similar observations in *Talaromyces* 487 marneffei [40].

488 We also observed a dramatic change in the composition of cell wall related enzymes. 489 The chitinase class II (PADG_00994), β-1,3-glucosidase (PADG_02862) and β-1,3-exoglucanase 490 (PADG_03691) showed a significant decrease (**Supplementary Table 8**). Especially the 491 decrease in the amount of chitinase correlates to the high amount of chitin found in yeast cells 492 [41].

493

494 Summary of metabolic pathways in *P. brasiliensis* in the different

495 morphological phases

Proteomic analysis of the three morphological phases of *P. brasiliensis* revealed
unexpected data related to carbon source utilization and energy production. While yeast cells
of *P. lutzii* use glycolysis and fermentation as main energy production pathways, *P. brasiliensis*yeast cells rely on the aerobic beta-oxidation and the TCA cycle for ATP production, as depicted

in Fig. 6. This observation is sustained by the accumulation of enzymes such as acyl-CoA
dehydrogenase (EC 1.3.8.1), enoyl-CoA hydratase,

502 (EC:4.2.1.17), aconitate hydratase (EC:4.2.1.3), thiolase (EC:2.3.1.16), citrate synthase 503 (EC:2.3.3.1), succinyl-CoA transferase (EC:2.8.3.5) and others that were highly present in yeast 504 cells. In addition, eight proteins of oxidative phosphorylation were induced in the yeast form. 505 Furthermore, besides an accumulation of enzymes involved in betaoxidation of fatty acids, an 506 accumulation of methylcitrate synthase and methylcitrate dehydratase was observed. These 507 enzymes play an essential role in the methylcitrate cycle and convert propionyl-CoA into 508 pyruvate. As propionyl-CoA can derive from the beta-oxidation of odd-chain fatty acids and 509 from degradation of amino acids, this metabolic pathway may be essential for increasing the 510 nutritional status of yeast cells by simultaneously preventing the accumulation of toxic 511 propionyl-CoA that may derive the degradation pf amino acids [42]. 512 In contrast, alcoholic fermentation of glucose was found to be up-regulated in 513 mycelium. This is supported by the accumulation of glycolytic enzymes such as the glycolysis 514 specific enzyme hexokinase (EC:2.7.1.1), fructose 1,6-biphosphate aldolase (EC:4.1.2.13), triose 515 phosphate isomerase (EC:5.3.1.1), and phosphoglycerate mutase (EC:5.3.1.1), as well as two 516 alcohol dehydrogenases (EC:1.1.1.1), (Fig. 4). Although a dominant fermentative metabolism 517 of P. brasiliensis mycelium was not expected, this data agrees with the dimorphic fungus T. 518 marneffei in which hyphae also predominantly exhibit a fermentative metabolism with the 519 production of ethanol and a minimum flow of pyruvate through the citric acid cycle. On the

520 contrary, yeast cells of both, *P. brasiliensis* and *T. marneffei*, display increased use of shunting

521 metabolites through the TCA cycle [40].

522 In agreement with a limited glucose supply during the parasitic phase, the metabolism 523 of amino acids seems important for adaptation to the host environment. This may explain the 524 increased abundance of proteins involved in amino acid metabolism in yeast cells of *P*.

525 brasiliensis [43,44]. The highly abundant protein 4HPPD (EC:1.13.11.27) is related to tyrosine 526 degradation and had been described as a new potential drug target, since the use of the 527 specific 4-HPPD inhibitor NTBC [2-(2nitro-4trifluoromethyl-benzoyl)-cyclohexane-1,3-dione] 528 prevents the dimorphic transition in a dose-dependent manner [11]. Studies on T. marneffei 529 yeast cells revealed a lower consumption rate of glucose in yeast cells compared to hyphae 530 accompanied by the utilization of several amino acids that are likely to undergo deamination 531 and fuel the TCA cycle. This shift to a more efficient energy metabolism reduces the 532 requirement for exogenous glucose, allowing for an optimization of nutrient utilization in the 533 limited environment of macrophages [40]. We also observed an accumulation of the enzyme 534 adenosylhomocysteinase (EC:3.3.1.1) in yeast cells of P. brasiliensis. This enzyme degrades S-535 adenosylhomocysteine, which is a strong inhibitor of S-adenosyl methionine-dependent 536 methyltransferases, which is essential for the synthesis of the phospholipid 537 phosphatidylcholine, preferentially found in yeast cells [45,46].

538 Besides the carbon flux through metabolic pathways, remodeling of the cell wall during 539 the transition from mycelium to yeast cells is vital. As with other fungi, the cell wall of P. 540 brasiliensis is a network of glycoproteins and polysaccharides that protects the fungal cell from 541 environmental stress [47] and confers virulence to the fungus. Compared to mycelium, an 542 increase in chitin levels in parasitic phases was detected in *P. brasiliensis* [48], which defines 543 the cell wall thickness [48]. Furthermore, the chitin degrading chitinase CTS2 was accumulated 544 in mycelium and decreased in the yeast phase. Moreover, glucans account for approximately 545 40% of the cell wall components in mycelium and yeast cells of P. brasiliensis [48]. α -glucan is 546 the major cell wall glucan of the yeast form, whereas the mycelial form contains larger 547 amounts of β glucan [49,50]. An α -glucan layer is essential for avoiding dectin-1-mediated 548 phagocytosis of yeast cells by macrophages, by masking the β -1,3-glucan layer, as shown for 549 Histoplasma capsulatum chemotype II cells [51]. Therefore, variations in cell wall glucans may 550 play a key role in the dimorphism of the fungus and, thus, its pathogenesis. For a remodeling of

551 the glucan structure, β -(1,3)-glucanase plays a key role in morphogenetic-morpholytic 552 processes by hydrolyzing the β -glucan chain, which is largely predominant in mycelial phase 553 [34]. In agreement with an alteration of the glucan structure, a β -(1,3)-exoglucanase was up 554 regulated in mycelium and transition of mycelium-to-yeast cells. Furthermore, other cell wall 555 related proteins such as Ecm33 were differentially produced in mycelia (Supplementary Fig.4). 556 Ecm33 is a GPI-linked cell wall protein that plays an important role for cell wall integrity and 557 architecture in C. albicans [52][53]. In P. lutzii this protein occurs in the mycelium cell wall, in 558 agreement to the data here presented [54].

559

560 Phosphoproteins identified in the three morphological phases of

561 Paracoccidioides brasiliensis

562 Similarly, to the filter applied to proteins found in global fraction of the different 563 morphological phases of the fungus, the fraction of proteins enriched with TiO₂ was composed 564 of those that presented high and medium FDR confidence and were found in at least 2 565 replicates, resulting in identification of a total of 195 proteins, as depicted in Table S9. The 566 table shows the protein accession number and description, the coverage of proteins, the 567 number of peptides, unique peptides, groups of proteins, number of identified amino acids, 568 molecular weight (kDa), isoelectric point of proteins. In addition, it shows the modifications 569 found for each protein, the protein abundance and the protein score. After this selection, we 570 searched proteins that showed phosphorylation modification, both in the global fraction and in 571 the TiO₂ enriched fraction. It was possible to find 72 proteins in the enriched TiO₂ fraction and 572 23 proteins in the global fraction, which presented phosphorylation, as shown in Tables S10 573 and 11, respectively. By using TiO_2 enrichment, phosphoproteins that are less abundant in 574 complex samples, can be isolated by the ability of the phosphate group to bind metals such as

575 TiO₂ in the form of covalent oxides, allowing an enriched fraction of phosphoproteins
576 (Supplementary Fig. S6) [55].

577	When evaluating the phosphoproteins, our proteomic analyzes resulted in a total of
578	178 and 40 phosphopeptides for the enriched TiO $_{2}$ and global, fractions, respectively and 220
579	and 51 phosphosites respectively (Fig. $6A$). Of the total of 178 phosphopeptides, 140 had one
580	phosphorylation, 34 had two phosphorylations and 4 contained three phosphorylations for the
581	enriched TiO_2 fraction. The proportion for global fraction corresponded to 30:9:1 for one, two
582	and three phosphorylations of the total of 40 phosphopeptides. Therefore, we were able to
583	verify multiple phosphorylation events in the different morphological phases (Tables S10-11).
584	Moreover, when we evaluated the residues that comprise phosphosites, the
585	proportion of 160:31:1 for Ser/Thr/Tyr were identified in enriched TiO $_2$ fraction (Fig.
586	6B). For the global fraction this proportion corresponded to 34:17:5 Ser/Thr/Tyr residues (Fig.
587	${f 6B}$). It is known that protein kinases are the key enzymes for phosphorylation of Ser/Thr/Tyr
588	residues. This event depends on the recognition of a consensus sequence (phosphorylation
589	motif), represented by amino acids that surround the phosphorylation sites. To search for
590	these consensus sequences in the identified proteins, we used the Motif-X algorithm, which
591	allows the enrichment of such motifs.
592	Fig. 6C shows the result of these analyzes where the proportion of enriched motifs were
593	21:13:1 Ser/Thr/Tyr residues in TiO $_2$ enriched fraction and 6:3 Ser/Thr residues in global
594	fraction.
595	Supplementary ${f Fig.}$ 7 shows the functional classification of phosphoproteins found for
596	the three phases of <i>P. brasiliensis</i> , obtained by the functional catalog (Funcat
597	2.0) or KEGG terms, for both TiO $_2$ enriched and global fraction (Tables S10 and S11). Proteins
598	were distributed in several functional categories such as, metabolism (8%), energy (3%), cell

cycle and DNA processing (8%), transcription (23%), protein synthesis (8%), protein folding
(8%). The categories of cellular transport (12%), cellular communication (3%), cell rescue (2%),
biogenesis of cellular components (1%), cell fate (1%) and unclassified proteins (23%) were
also included.

603 **Supplementary Figure 8** depicts the distributions of terms obtained from Gene

604 Ontology (Blast2GO) for categories, to obtain more information about those proteins.

605 Regarding to cell localization, the proteins were mainly distributed in nucleus (49%), followed

by cytoplasm (14%), mitochondrion (13%), membrane (11%), ribosome (4%), and peroxisome

607 (2%). In agreement to our results, the analysis of phosphoproteins from *C. albicans* and

608 Aspergillus nidulans, revealed a predominant localization in cytoplasm and nucleus as

609 deduced from the GO terms of cellular components [20,21]. According to the annotation for

610 molecular function, proteins with RNA binding (8,1%), protein binding (6%), nucleotide binding

611 (3.5%), DNA binding (3.5%), catalytic activity (3.5%) were observed.

612

613 Profile of phosphoproteins differentially accumulated in the three

614 morphological phases of *Paracoccidioides*

615

616Due to our focus on differentially regulated proteins in phases of *P. brasiliensis*, we617gave attention to the phosphoproteins up and down regulated in the different morphological618phases as shown in **Table S12**. We considered phosphopeptides that differed in relative619abundance among the individual phases and a difference was considered as significant if p620 ≤ 0.05 as determined by the *t* test.621At first, we directed our attention to the phosphoproteins regulated in yeast cells. 18

and 4 phosphoproteins were down and up regulated, respectively, in yeast cells compared to

623 the other fungus phases, as depicted in **Table S12**. The down regulated phosphoproteins 624 belong to the functional categories of carbohydrate and amino acid metabolism, transcription, 625 protein synthesis and 4 were unclassified. Regarding to the up regulated phosphoproteins in 626 the yeast phase, they were classified as members of the metabolism of amino acids, cell cycle 627 and DNA processing and protein synthesis and folding. Regarding to mycelium only a single 628 phosphoprotein was decreased in comparison to the two other analyzed phases and no 629 phosphoprotein was up regulated in mycelium. 20 phosphoproteins shared an increase in two 630 phases and 4 shared a decrease, as depicted in Table S12. Regarding to mycelia-to-yeast 631 transition only one phosphoprotein was decreased in comparison to the two other analyzed 632 phases and no phosphoprotein was up regulated; 18 phosphoproteins shared increase in two 633 morphological phases and 4 shared a decrease as depicted in Table S12. Therefore, it can be 634 concluded that an increase of phosphoproteins is most frequently occurring in yeast cells.

635 However, ribose-phosphate pyrophosphokinase (PADG_00780) was down-636 regulated in yeast cells. This protein plays a role in a diverse range of functions such as the 637 pentose phosphate pathway, nucleotide metabolism, in the biosynthesis of nucleotides and 638 coenzymes, and biosynthesis of the amino acids histidine and tryptophan [56]. In S. cerevisiae 639 its presence is related to maintenance of cell integrity [57]. One member of this family in S. 640 cerevisiae, Prs5 is a protein kinase, donating a phosphate group to ribose-5-phosphate to yield 641 PRPP [58]. Mutation of three phosphosites in the protein compromised the expression of the 642 gene encoding the stressactivated β -1,3 glucan synthase, Fks2 [59]. In *P. brasiliensis* β -1,3 643 glucan predominates in the mycelia phase, in agreement to the up regulation of ribose-644 phosphate pyrophosphokinase in mycelia and transition from mycelia to the yeast phase. 645 CCR4-Not complex is a multifunctional regulator that plays important roles in multiple

646 cellular processes in eukaryotes. In the present study, a protein homologue accumulates in

yeast cells. FonNot2, a core subunit of the CCR4-Not complex, plays a critical role in regulating
virulence in the water melon wilt pathogen *Fusarium oxysporum* f. sp. *niveum* [60].

649

650 Conclusion

651 In this work we have studied the transition process of *P. brasiliensis*, one of the most 652 studied members of the Paracoccidioides complex, by proteomic, biochemical and molecular 653 analyses. Results revealed that yeast cells of P. brasiliensis compared to mycelium display a 654 more aerobic metabolism. This was a surprising result, as metabolism adapts in opposite of 655 that found to P. lutzii. The data obtained here reinforce that during the morphological 656 transition of mycelium-to-yeast cells, P. brasiliensis undergoes a metabolic reorganization for 657 adapting to the increased temperature and nutritional environment in the host. This study 658 provides evidence that P. brasiliensis favors beta-oxidation, methylcitrate cycle, electron 659 transfer and oxidative phosphorylation in the parasitic phase. Even more surprising, alcoholic 660 fermentation, at least under laboratory conditions, is strongly favored in mycelium compared 661 to yeast cells. Some virulence determinants were found to be upregulated mainly in the 662 mycelium-to-yeast transition phase and yeast cells, with a special importance of HSPs, proteins 663 associated to cell adhesion, and cytochrome c peroxidase. Those virulence determinants can 664 be assumed to be relevant for the fungus to establish an infection. We also investigated the 665 phosphoproteome of the three morphological phases. As a result, this study implicates that 666 biological processes such as amino acid, nitrogen and carbon metabolism, translation and 667 cellular transport might be regulated by phosphorylation events in *P. brasiliensis*. In addition, 668 proteins related to transcription and cell cycle were up-regulated in mycelium and yeast cells, 669 indicating the importance of phosphorylation for modulating the transcription in these 670 morphological phases. The in silico analysis of the phosphopeptides additionally allowed the 671 characterization of putative phosphorylation motifs in *P. brasiliensis*.

672 673	Acknowldegments This work at Universidade Federal de Goiás was supported by grants from				
674	Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de				
675	Amparo à Pesquisa do Estado de Goiás (FAPEG) and the Medical Research Council (MRC). This				
676	work is part of the National Institute of Science and				
677	Technology of the Strategies of Host-Pathogen Interaction (HPI).				
678 679					
680					
681 682	REFE	RENCE E Brummer E Castaneda A Bestreno Paracoccidioidomycosis: an undate			
692	[1]	Clin Microbiol Doy 6 (1002) 80, 117			
005		CIIII. IVIICIODIOI. Rev. 6 (1993) 89–117.			
684		http://www.ncbi.nlm.nih.gov/pubmed/8472249.			
685	[2]	S.H. Marques-da-Silva, A.M. Rodrigues, G.S. De Hoog, F. Silveira-Gomes, Z.P. De Camargo,			
686		Case report: Occurrence of Paracoccidioides lutzii in the Amazon			
687		Region: Description of two cases, Am. J. Trop. Med. Hyg. 87 (2012) 710–714.			
688		doi:10.4269/ajtmh.2012.12-0340.			
689	[3]	M.M. Teixeira, R.C. Theodoro, M.J.A. de Carvalho, L. Fernandes, H.C. Paes, R.C. Hahn, L.			
690		Mendoza, E. Bagagli, G. San-Blas, M.S.S. Felipe, Phylogenetic analysis reveals a high level			
691		of speciation in the Paracoccidioides genus, Mol.			
692		Phylogenet. Evol. 52 (2009) 273–283. doi:10.1016/j.ympev.2009.04.005.			
693	[4]	D.A. Turissini, O.M. Gomez, M.M. Teixeira, J.G. McEwen, D.R. Matute, Species boundaries			
694		in the human pathogen Paracoccidioides, Fungal Genet. Biol.			
695		106 (2017) 9–25. doi:10.1016/j.fgb.2017.05.007.			

- L. V Barrozo, R.P. Mendes, S.A. Marques, G. Benard, M.E.S. Silva, E. Bagagli, Climate and
 acute/subacute paracoccidioidomycosis in a hyper-endemic area in Brazil, Int. J.
 Epidemiol. 38 (2009) 1642–1649. doi:10.1093/ije/dyp207.
- 699 [6] R. Buccheri, Z. Khoury, L.C.B. Barata, G. Benard, Incubation Period and Early Natural
- 700 History Events of the Acute Form of Paracoccidioidomycosis: Lessons from Patients with
- 701a Single Paracoccidioides spp. Exposure, Mycopathologia.
- 702 181 (2016) 435–439. doi:10.1007/s11046-015-9976-0.
- 703 [7] J.A. Smith, C.A. Kauffman, Pulmonary fungal infections, Respirology. 17 (2012) 913–926.
 704 doi:10.1111/j.1440-1843.2012.02150.x.
- 705 [8] J.C. Nemecek, Global Control of Dimorphism and Virulence in Fungi, Science
- 706 (80-.). 312 (2006) 583–588. doi:10.1126/science.1124105.
- 707 [9] P.J. Rooney, B.S. Klein, Linking fungal morphogenesis with virulence, Cell.
- 708 Microbiol. 4 (2002) 127–137.
- 709 [10] M.S.S. Felipe, Transcriptional Profiles of the Human Pathogenic Fungus Paracoccidioides
- 710 brasiliensis in Mycelium and Yeast Cells, J. Biol. Chem. 280 (2005) 24706–24714.
- 711 doi:10.1074/jbc.M500625200.
- 712 [11] L.R. Nunes, R. Costa de Oliveira, D.B. Leite, V.S. da Silva, E. dos Reis Marques, M.E. da
- 713 Silva Ferreira, D.C.D. Ribeiro, L.A. de Souza Bernardes, M.H.S.
- 714 Goldman, R. Puccia, L.R. Travassos, W.L. Batista, M.P. Nóbrega, F.G. Nobrega,
- 715 D. Yang, C.A. de Bragança Pereira, G.H. Goldman, Transcriptome analysis of
- 716 Paracoccidioides brasiliensis cells undergoing mycelium-to-yeast transition., Eukaryot.
- 717 Cell. 4 (2005) 2115–28. doi:10.1128/EC.4.12.2115-2128.2005.
- 718 [12] K.P. Bastos, A.M. Bailão, C.L. Borges, F.P. Faria, M.S.S. Felipe, M.G. Silva, W.S. Martins,
- 719 R.B. Fiúza, M. Pereira, C.M. a Soares, The transcriptome analysis of early morphogenesis
- in Paracoccidioides brasiliensis mycelium reveals novel and induced genes potentially
- 721 associated to the dimorphic process., BMC

- 722 Microbiol. 7 (2007) 29. doi:10.1186/1471-2180-7-29.
- 723 [13] T.C. V Rezende, C.L. Borges, A.D. Magalhães, M.V. de Sousa, C.A.O. Ricart,
- A.M. Bailão, C.M.A. Soares, A quantitative view of the morphological phases of
- 725 Paracoccidioides brasiliensis using proteomics, J. Proteomics. 75 (2011) 572–587.
- 726 doi:10.1016/j.jprot.2011.08.020.
- 727 [14] M.R. Flory, H. Lee, R. Bonneau, P. Mallick, K. Serikawa, D.R. Morris, R.
- 728 Aebersold, Quantitative proteomic analysis of the budding yeast cell cycle using acid-
- 729 cleavable isotope-coded affinity tag reagents, Proteomics. 6 (2006) 6146– 6157.
- 730 doi:10.1002/pmic.200600159.
- 731 [15] S.B. Ficarro, M.L. McCleland, P.T. Stukenberg, D.J. Burke, M.M. Ross, J. Shabanowitz, D.F.
- Hunt, F.M. White, Phosphoproteome analysis by mass spectrometry and its application
- to Saccharomyces cerevisiae., Nat. Biotechnol.
- 734 20 (2002) 301–305. doi:10.1038/nbt0302-301.
- 735 [16] A. Carpy, K. Krug, S. Graf, A. Koch, S. Popic, S. Hauf, B. Macek, Absolute
- 736 Proteome and Phosphoproteome Dynamics during the Cell Cycle of
- 737 Schizosaccharomyces pombe (Fission Yeast), Mol. Cell. Proteomics. 13 (2014) 1925–
- 738 1936. doi:10.1074/mcp.M113.035824.
- 739 [17] L.D.N. Selvan, S. Renuse, J.E. Kaviyil, J. Sharma, S.M. Pinto, S.D. Yelamanchi,
- 740 V.N. Puttamallesh, R. Ravikumar, A. Pandey, T.S.K. Prasad, H.C. Harsha,
- 741 Phosphoproteome of Cryptococcus neoformans, J. Proteomics. 97 (2014) 287–295.
- 742 doi:10.1016/j.jprot.2013.06.029.
- 743 [18] P.R. Kraus, D.S. Fox, G.M. Cox, J. Heitman, The Cryptococcus neoformans MAP kinase
- 744 Mpk1 regulates cell integrity in response to antifungal drugs and loss of calcineurin
- 745 function, Mol. Microbiol. 48 (2003) 1377–1387.
- 746 doi:10.1046/j.1365-2958.2003.03508.x.

- 747 [19] J.J. Benschop, S. Mohammed, M. O'flaherty, A.J.R. Heck, M. Slijper, F.L.H. Menke,
- 748 Quantitative Phosphoproteomics of Early Elicitor Signaling in
- 749 Arabidopsis, Mol. Cell. Proteomics. 6.7 (2007) 1198–1214.
- 750 doi:10.1074/mcp.M600429-MCP200.
- [20] N. Ramsubramaniam, S.D. Harris, M.R. Marten, The phosphoproteome of Aspergillus
 nidulans reveals functional association with cellular processes involved in morphology
 and secretion, Proteomics. 14 (2014) 2454–2459. doi:10.1002/pmic.201400063.
- 754 [21] S.D. Willger, Z. Liu, R.A. Olarte, M.E. Adamo, J.E. Stajich, L.C. Myers, A.N. Kettenbach, D.A.
- Hogan, Analysis of the Candida albicans phosphoproteome, Eukaryot. Cell. 14 (2015)
 474–485. doi:10.1128/EC.00011-15.
- 757 [22] A.H. Da Silva Cruz, M. Brock, P.F. Zambuzzi-Carvalho, L.K. Santos-Silva, R.F. Troian, A.M.
- Gões, C.M. De Almeida Soares, M. Pereira, Phosphorylation is the major mechanism
 regulating isocitrate lyase activity in Paracoccidioides brasiliensis yeast cells, FEBS J. 278
 (2011) 2318–2332. doi:10.1111/j.17424658.2011.08150.x.
- 761 [23] M.-H. Lin, N. Sugiyama, Y. Ishihama, Systematic profiling of the bacterial
 762 phosphoproteome reveals bacterium-specific features of phosphorylation, Sci.
- 763 Signal. 8 (2015) rs10-rs10. doi:10.1126/scisignal.aaa3117.
- S.S. Jensen, M.R. Larsen, Evaluation of the impact of some experimental procedures on
 different phosphopeptide enrichment techniques., Rapid Commun.
- 766 Mass Spectrom. 21 (2007) 3635–45. doi:10.1002/rcm.3254.
- 767 [25] A. Conesa, S. Götz, J.M. García-Gómez, J. Terol, M. Talón, M. Robles, Blast2GO: A
- 768 universal tool for annotation, visualization and analysis in functional genomics research,
- 769 Bioinformatics. 21 (2005) 3674–3676.
- doi:10.1093/bioinformatics/bti610.
- 771 [26] M.F. Chou, D. Schwartz, Biological Sequence Motif Discovery Using *motif-x*,

- 772 Curr. Protoc. Bioinforma. (2011) 1–52. doi:10.1002/0471250953.bi1315s35.
- 773 [27] D. Schwartz, S.P. Gygi, An iterative statistical approach to the identification of protein
- phosphorylation motifs from large-scale data sets, Nat. Biotechnol. 23
- 775 (2005) 1391–1398. doi:10.1038/nbt1146.
- R.C. Team, R: A language and environment for statistical computing. R Foundation for
 Statistical Computing, Vienna, Austria., (2018).
- 778 [29] P. De Souza Bonfim-Mendonça, B.A. Ratti, J. Da Silva Ribeiro Godoy, M.
- 779 Negri, N.C.A. De Lima, A. Fiorini, E. Hatanaka, M.E.L. Consolaro, S. De Oliveira Silva,
- 780 T.I.E. Svidzinski, β-Glucan induces reactive oxygen species production in human
- 781 neutrophils to improve the killing of Candida albicans and Candida glabrata isolates
- 782 from vulvovaginal candidiasis, PLoS One. 9 (2014) 1– 14.
- 783 doi:10.1371/journal.pone.0107805.
- 784 [30] C.L. Borges, A.M. Bailão, S.N. Báo, M. Pereira, J.A. Parente, C.M. de Almeida Soares,
- 785 Genes Potentially Relevant in the Parasitic Phase of the Fungal Pathogen
- 786 Paracoccidioides brasiliensis, Mycopathologia. 171 (2011) 1–9.
- 787 doi:10.1007/s11046-010-9349-7.
- 788 [31] A.L. Bookout, C.L. Cummins, D.J. Mangelsdorf, J.M. Pesola, M.F. Kramer, High-throughput
- 789 real-time quantitative reverse transcription PCR., Curr. Protoc.
- 790 Mol. Biol. Chapter 15 (2006) Unit 15.8. doi:10.1002/0471142727.mb1508s73.
- 791 [32] Z. Xie, S. Liu, Y. Zhang, Z. Wang, Roles of Rad23 protein in yeast nucleotide excision repair,
- 792 Nucleic Acids Res. 32 (2004) 5981–5990.
- 793 doi:10.1093/nar/gkh934.
- 794 [33] T. Lahari, J. Lazaro, D.F. Schroeder, RAD4 and RAD23/HMR contribute to arabidopsis UV
- 795 tolerance, Genes (Basel). 9 (2018) 1–12.

796 doi:10.3390/genes9010008.

797 [34] D.J. Adams, Fungal cell wall chitinases and glucanases, Microbiology. 150

798 (2004) 2029–2035. doi:10.1099/mic.0.26980-0.

799 [35] L.S. Derengowski, A.H. Tavares, S. Silva, L.S. Procópio, M.S.S. Felipe, I. Silva-

800 Pereira, S.-P.I. Derengowski LS, Tavares AH, Silva S, Procópio LS, Felipe MS,

- 801 Upregulation of glyoxylate cycle genes upon Paracoccidioides brasiliensis internalization
- 802 by murine macrophages and in vitro nutritional stress condition., Med. Mycol. 46 (2008)
- 803 125–34. doi:10.1080/13693780701670509.
- 804 [36] G. Medoff, A. Painter, G.S. Kobayashi, Mycelial- to Yeast-phase transitions of the 805 dimorphic fungi Blastomyces dermatitidis and Paracoccidioides brasiliensis, J. Bacteriol.
- 806 169 (1987) 4055–4060. doi:10.1128/jb.169.9.4055-4060.1987.
- 807 [37] L. Lacerda Pigosso, L.C. Baeza, M. Vieira Tomazett, M. Batista Rodrigues
- 808 Faleiro, V.M. Brianezi Dignani de Moura, A. Melo Bailão, C.L. Borges, J. Alves
- 809 Parente Rocha, G. Rocha Fernandes, G.M. Gauthier, C.M. de A. Soares, Paracoccidioides
- 810 brasiliensis presents metabolic reprogramming and secretes a serine proteinase during
- 811 murine infection, Virulence. 8 (2017) 1417–1434.
- 812 doi:10.1080/21505594.2017.1355660.
- 813 [38] C.A. Rappleye, W.E. Goldman, Defining virulence genes in the dimorphic fungi.,
- 814 Annu. Rev. Microbiol. 60 (2006) 281–303.
- 815 doi:10.1146/annurev.micro.59.030804.121055.
- 816 [39] J.A. Parente-Rocha, A.F.A. Parente, L.C. Baeza, S.M.R.C. Bonfim, O.
- 817 Hernandez, J.G. McEwen, A.M. Bailão, C.P. Taborda, C.L. Borges, C.M. De Almeida
- 818 Soares, Macrophage interaction with *Paracoccidioides brasiliensis* yeast cells
- 819 modulates fungal metabolism and generates a response to oxidative stress, PLoS One.
- 820 10 (2015) 1–18. doi:10.1371/journal.pone.0137619.

- 821 [40] S. Pasricha, J.I. MacRae, H.H. Chua, J. Chambers, K.J. Boyce, M.J. McConville, A.
- 822 Andrianopoulos, Extensive Metabolic Remodeling Differentiates Nonpathogenic and
- 823 Pathogenic Growth Forms of the Dimorphic Pathogen
- Talaromyces marneffei, Front. Cell. Infect. Microbiol. 7 (2017) 1–12.
- 825 doi:10.3389/fcimb.2017.00368.
- [41] G. San-Blas, The cell wall of fungal human pathogens: its possible role in hostparasite
 relationships., Mycopathologia. 79 (1982) 159–84.
- 828 http://www.ncbi.nlm.nih.gov/pubmed/6755258.
- 829 [42] M. Brock, W. Buckel, On the mechanism of action of the antifungal agent propionate.

830 Propionyl-CoA inhibits glucose metabolism in Aspergillus nidulans,

- 831 Eur. J. Biochem. 271 (2004) 3227–3241. doi:10.1111/j.1432-1033.2004.04255.x.
- 832 [43] Y.J. Zhang, E.J. Rubin, Feast or famine: The host-pathogen battle over amino acids, Cell.
- 833 Microbiol. 15 (2013) 1079–1087. doi:10.1111/cmi.12140.
- 834 [44] M. Costa, C.L. Borges, A.M. Bailão, G. V. Meirelles, Y.A. Mendonça, S.F.I.M.
- 835 Dantas, F.P. de Faria, M.S.S. Felipe, E.E.W.I. Molinari-Madlum, M.J.S. MendesGiannini,
- 836 R.B. Fiuza, W.S. Martins, M. Pereira, C.M.A. Soares, Transcriptome profiling of
- 837 Paracoccidioides brasiliensis yeast-phase cells recovered from infected mice brings new
- 838 insights into fungal response upon host interaction, Microbiology. 153 (2007) 4194–
- 839 4207. doi:10.1099/mic.0.2007/009332-0.
- 840 [45] N. Malanovic, I. Streith, H. Wolinski, G. Rechberger, S.D. Kohlwein, O. Tehlivets, S841 adenosyl-L-homocysteine hydrolase, key enzyme of methylation metabolism, regulates
- 842 phosphatidylcholine synthesis and triacylglycerol homeostasis in yeast: Implications for
- homocysteine as a risk factor of atherosclerosis, J. Biol. Chem. 283 (2008) 23989–23999.
- 844 doi:10.1074/jbc.M800830200.
- 845 [46] M. Manocha, Lipid composition of Paracoccidioides brasiliensis: comparison between
 846 the yeast and mycelial forms., Sabouraudia. 18 (1980) 281–6.

- 847 [47] P.W.J. De Groot, A.F. Ram, F.M. Klis, Features and functions of covalently linked proteins
- in fungal cell walls, Fungal Genet. Biol. 42 (2005) 657–675.

849 doi:10.1016/j.fgb.2005.04.002.

- 850 [48] F. Kanetsuna, L.M. Carbonell, R.E. Moreno, J. Rodriguez, Cell wall composition of the 851 yeast and mycelial forms of Paracoccidioides brasiliensis., J. Bacteriol. 97 (1969) 1036–
- 41. http://www.ncbi.nlm.nih.gov/pubmed/5776517.
- F. Kanetsuna, L.M. Carbonell, Cell wall glucans of the yeast and mycelial forms of
 Paracoccidioides brasiliensis., J. Bacteriol. 101 (1970) 675–680.
- 855 [50] G. San-Blas, F. San-Blas, *Paracoccidioides brasiliensis*: cell wall structure and virulence.
- 856 A review., Mycopathologia. 62 (1977) 77–86.
- 857 http://www.ncbi.nlm.nih.gov/pubmed/340954.
- [51] J.A. Edwards, E.A. Alore, C.A. Rappleye, The yeast-phase virulence requirement for αglucan synthase differs among histoplasma capsulatum chemotypes, Eukaryot. Cell. 10
 (2011) 87–97. doi:10.1128/EC.00214-10.
- 861[52]R. Martinez-Lopez, L. Monteoliva, R. Diez-Orejas, C. Nombela, C. Gil, The GPI-anchored862protein CaEcm33p is required for cell wall integrity, morphogenesis and virulence in
- 863 *Candida albicans*, Microbiology. 150 (2004) 3341–3354. doi:10.1099/mic.0.27320-0.
- 864 [53] R. Martinez-Lopez, H. Park, C.L. Myers, C. Gil, S.G. Filler, *Candida albicans* Ecm33p is 865 important for normal cell wall architecture and interactions with host cells., Eukaryot.
- 866 Cell. 5 (2006) 140–7. doi:10.1128/EC.5.1.140-147.2006.
- 867 [54] D.S. Araújo, P. de Sousa Lima, L.C. Baeza, A.F.A. Parente, A. Melo Bailão, C.L.
- 868 Borges, C.M. de Almeida Soares, Employing proteomic analysis to compare
- 869 Paracoccidioides lutzii yeast and mycelium cell wall proteins, Biochim. Biophys.
- 870 Acta Proteins Proteomics. 1865 (2017) 1304–1314.
- 871 doi:10.1016/j.bbapap.2017.08.016.

- 872 [55] A. Leitner, Phospho-Proteomics, Springer New York, New York, NY, 2016.
 873 doi:10.1007/978-1-4939-3049-4.
- 874 [56] P. Jiang, W.F. Wei, G.W. Zhong, X.G. Zhou, W.R. Qiao, R. Fisher, L. Lu, The function of the
 875 three phosphoribosyl pyrophosphate synthetase (Prs) genes in hyphal growth and
 876 conidiation in Aspergillus nidulans, Microbiol. (United Kingdom). 163 (2017) 218–232.
 877 doi:10.1099/mic.0.000427.
- R. Schneiter, A.T. Carter, Y. Hernando, G. Zellnig, L.M. Schweizer, M. Schweizer, The
 importance of the five phosphoribosyl-pyrophosphate synthetase (Prs) gene products of
 Saccharomyces cerevisiae in the maintenance of cell integrity and the subcellular
 localization of Prs1p, Microbiology. 146 (2000) 3269–3278. doi:10.1099/00221287-14612-3269.
- J. Fasol, P.M. Kim, A. Sboner, M. Gerst, F. Sun, R. Chen, D. Sharon, Divers protein kinase
 interac o s ident f by protein microa ys rev al novel con e ti s betw n cel u ar proces, Genes
 Dev. (2010) 767–778. doi:10.1101/gad.1998811.Freely.
- 886 [59] E.A. Ugbogu, K. Wang, L.M. Schweizer, M. Schweizer, Metabolic gene products have
 887 evolved to interact with the cell wall integrity pathway in
- 888 Saccharomyces cerevisiae, FEMS Yeast Res. 16 (2016) 1–10.
- 889 doi:10.1093/femsyr/fow092.
- 890 [60] Y. Dai, Z. Cao, L. Huang, S. Liu, Z. Shen, Y. Wang, H. Wang, H. Zhang, D. Li, F. Song, CCR4891 not complex subunit Not2 plays critical roles in vegetative growth, conidiation and
- 892 virulence in watermelon fusarium wilt pathogen
- 893 Fusarium oxysporum f. sp. niveum, Front. Microbiol. 7 (2016) 1–20.
- 894 doi:10.3389/fmicb.2016.01449.

895

897 Figure legends

- 898 Figure 1. Ethanol measurements in protein extracts of mycelium, mycelium-toyeast
- 899 transition and yeast cells and analysis of the transcript encoding pyruvate decarboxylase
- 900 by qRT-PCR. (A) Measurement of ethanol accumulation in *P. brasiliensis* morphological
- 901 phases: M: mycelium; T: transition mycelium-to-yeast cells; Y: yeast cells; (B) Analysis of the
- 902 abundance of the transcript encoding pyruvate decarboxylase. *Asterisks evidence statistical
- 903 differences observed by the Student T test presenting p value ≤ 0.05 considered significant.
- 904
- 905 Figure 2. Thiol measurements in protein extracts of mycelium, mycelium-to-yeast
- 906 transition and yeast cells. (A) Increased production of thiol in *P. brasiliensis* morphological
- 907 phases: M: mycelium; T: transition mycelium-to-yeast cells; Y: yeast cells; (B) Expression levels
- 908 of the proteins for PADG 05504/ thioredoxin; PADG 02764/ thioredoxin, from proteomic
- 909 analysis [fmol/µL (log2]). *Asterisks evidence statistical differences observed by the Student T
- 910 test presenting p value ≤ 0.05 considered significant.
- 911
- 912 Figure 3. Schematic diagram of the metabolic processes differentially expressed in mycelia
- 913 compared to yeast cells and transition mycelia-to-yeast (A). The figure summarizes the data
- 914 obtained from proteomic analysis; enzymes are listed as follows: HK: hexokinase; FBA:
- 915 fructose-1,6-bisphosphate aldolase; TPI: triosephosphate isomerase; PGM: phosphoglycerate
- 916 mutase; ADH 1 and 2: Alcohol dehydrogenase; MTAP: methylthioadenosine phosphorylase;
- 917 SRM: spermidine synthase; MTCBP: 1,2dihydroxy-3-keto-5-methylthiopentene dioxygenase.
- 918 (B) Heat map of proteins in mycelium compared to mycelium-to-yeast transition and yeast
- 919 cells. The color scale shows the mean of abundance of proteins obtained that were
- 920 differentially expressed by the ANOVA test (p-value ≤0.05). Functional categories were
- 921 obtained by manual search in the annotation database Pedant (<u>http://pedant.gsf.de/</u>) on
- 922 MIPS that provides a tool to search the Functional Categories (Funcat 2.0). Red represents
- 923 significantly higher expression and green represents a significantly low level of expression.

- 925 Figure 4. Heat map of HSPs induced and repressed in yeast cells compared to mycelia and
- 926 **mycelia-to-yeast transition.** The color scale shows the mean of abundance of differentially
- 927 expressed proteins (p-value ≤0.05). Functional categories were obtained by manual search in
- 928 the annotation database Pedant (<u>http://pedant.gsf.de/</u>) on MIPS that provides a tool to search

the Functional Categories (Funcat 2.0). Red represents significantly higher expression andgreen represents a significantly low level of expression.

931

932 Figure 5. Schematic diagram of the metabolic processes differentially expressed in yeast 933 cells compared to mycelia-to-yeast transition and mycelia. (A) The figure summarizes the 934 data obtained from proteomic analysis; enzymes are listed as follows: Acad: acyl-CoA 935 dehydrogenase; ECH: enoyl-CoA hydratase; ACAT: ketoacyl-CoA thiolase; MCS: methylcitrate 936 synthase; MCD: methylcitrate dehydrogenase; ACO: aconitase; CS: citrate synthase; SUCLA: 937 succinyl-CoA ligase; PDH: pyruvate dehydrogenase; ATPase: ATP synthase, ANT: aspartate 938 aminotransferase; HPPD: hydroxyphenylpyruvate dioxygenase; FAH: fumarylacetoacetase; 939 CRAT: carnitine acetyltrasnferase; SRM: spermidine synthase; MTAP: methylthioadenosine 940 phosphorylase; MTCBP: 1,2-dihydroxy-3-keto-5-methylthiopentene dioxygenase. (B) Heat 941 map of proteins in mycelium, mycelium-to-yeast transition and yeast. The color scale shows 942 the mean of abundance of differentially expressed proteins (p-value ≤0.05). Functional 943 categories were obtained by manual search in the annotation database Pedant 944 (http://pedant.gsf.de/) on MIPS that provides a tool to search the Functional Categories 945 (Funcat 2.0). Red represents significantly higher expression and green represents a significantly 946 low level of expression.

947

948 Figure 6. Number of phosphoproteins, phosphopeptides and phosphosites detected in *P*.

949 *brasiliensis*, mycelium, mycelium-to-yeast cells transition and yeast cells. The proteins were

analyzed by LC-MS-MS before and after enrichment with TiO₂. (A) Number of

951 phosphoproteins, phosphopeptides and phosphosites from protein extracts of mycelia,

952 mycelium-to-yeast transition and yeast; (B) distribution of the phosphorylation sites on the

953 amino acid residues serine, threonine and tyrosine; (C) Motifs found using the Motif-X

954 algorithm (<u>http://motif-x.med.harvard.edu/</u>); as central characters were selected the residues

955 of Ser, Thr or Tyr. The gray bar corresponds to the total fraction and the black bar corresponds

956 to the enriched fraction.

957

958 Supplementary Figure 1. Schematic overview of performed experiments. Nine cultures

959 were prepared with *P. brasiliensis*, grown as mycelium, mycelium to-yeast and yeast cells.

960 After 72 h of growth for mycelium and yeast and 22 h for transition, the cultures were

- 961 collected and the proteins extracted and digested in peptides. The threecondition samples
- 962 (mycelium, transition and yeast) from each replicate were labeled with iTRAQ (114,116 and
- 963 115 tag).
- 964
- 965 Supplementary Figure 2. Flowchart of the filters applied to the identified proteins during
- 966 mycelium, mycelium-to-yeast transition and yeast cells. It was considered those proteins
- 967 with high or medium FDR confidence and those that were found in at least 2 replicates.
- 968
- 969 Supplementary Figure 3. Proteins identified in *P. brasiliensis* that were annotated by
- Blast2GO. (A) Number of sequences analyzed and that had annotation; (B) Top-hit of speciesthat were homologous to proteins found using Blast2GO.
- 972
- 973 Supplementary Figure 4. Schematic diagram of the metabolic
- 974 processes in cell wall differentially expressed in mycelia and yeast
- 975 cells. The figure summarizes the data obtained from proteomic
- analysis; enzymes are listed as follows: CTS2: chitinase;
- 977 ECM33; β-1,3-exoglucanase; 1,3- β-glucosidade; β-1,6 glucan synthase (Knh1). M: mycelium; T:
- 978 transition from mycelium to yeast cells; Y: yeast cells.
- 979
- 980 Supplementary Figure 5. Mitochondrial activity assay in mycelia, transition mycelia-to-
- 981 yeast, yeast cells. The images were acquired to mycelia, transition myceliato-yeast and yeast
- 982 cells (magnification x 400) in the Microscope Axio Scope A1 (Zeiss), using the AxioVision
- 983 Software (Carl Zeiss).
- 984
- Supplementary Figure 6. Schematic overview of experiments performed for enrichment
 with TiO₂. Phosphopeptides were enriched with TiO₂ and subjected to MS/ MS analysis.
- 987
- 988
- 989

- 990 Supplementary Figure 7. Distribution of phosphoproteins identified in *P. brasiliensis*,
- 991 according to FunCat 2.0 categories. The categories were generated by manual search based
- 992 on FunCat 2.0 functional annotation (<u>http://pedant.gsf.de/</u>).

1046 Supplementary Figure 8. Functional annotations of phosphoproteins identified 1047 during transition of *Pb*18 obtained from GO slim terms. Cellular component.

Click here to download Supplementary material: Supplementary tables.xlsx
Click here to download Supplementary material: Fig. S1.jpg

Click here to download Supplementary material: Fig. S2.jpg

Click here to download Supplementary material: Fig. S3.jpg

Click here to download Supplementary material: Fig. S4.jpg

Click here to download Supplementary material: Fig. S5.jpg

Click here to download Supplementary material: Fig. S6.jpg

Click here to download Supplementary material: Fig. S7.jpg

Click here to download Supplementary material: Fig. S8.jpg

Click here to download Conflict of Interest: coi_disclosure (4)CMAS.pdf

Click here to download Conflict of Interest: coi_disclosure Agenor.pdf

Click here to download Conflict of Interest: coi_disclosure Carlos Andr.pdf

Click here to download Conflict of Interest: coi_disclosure Danielle.pdf

Click here to download Conflict of Interest: coi_disclosure Igor.pdf

Click here to download Conflict of Interest: coi_disclosure_ALEX.pdf

Click here to download Conflict of Interest: coi_disclosure_Maristela (1).pdf

Click here to download Conflict of Interest: coi_disclosureCristiane.pdf

Click here to download Conflict of Interest: coi_disclosureFontes.pdf

Click here to download Conflict of Interest: coi_disclosuremathias.pdf

Click here to download Conflict of Interest: coi_disclosureSouza.pdf

Click here to download Conflict of Interest: Conflito de interesse Leandro.pdf

Supplementary Tables

Table S2. Identified proteins from *Paracoccidioides brasiliensis* regulated in mycelia phase, mycelia-to-yeast transition and yeast phases (312 proteins)

Acession number ^a	Protein description ^b	(ANOVA) p-value ^c		Tukey's test ^d	
Functional categories ^e					
METABOLISM			Mycelium	Transition	Yeast
Amino acid metabolism					
PADG_01488	thiol methyltransferase	0.00859584687713703	4,357395921	4,457967301	4,930534141
PADG_02214	4-aminobutyrate aminotransferase	0.000473697117025741	4,774082039	4,742095318	4,259441682
PADG_01621	aspartate aminotransferase	0.000603223867301128	4,338645698	4,386894559	4,988491176
PADG_05277	Serine hydroxymethyltransferase 2-oxoisovalerate dehydrogenase subunit	0.00298066391122739	4,313434112	4,537809004	4,907056998
PADG_03627	beta	0.0373648418664289	4,532748713	4,496012916	4,792385261
	asparagine synthase (glutamine-				
PADG_08262	hydrolyzing)	0.0374351680322741	4,484731825	4,298103427	4,932595586
PADG_03522	methylthioadenosine phosphorylase	0.00188671139057892	4,859110833	4,651349554	4,247099542
PADG_00888	Argininosuccinate synthase	0.0283905003634937	4,512792078	4,386215185	4,874246012
	1,2-dihydroxy-3-keto-5-methylthiopentene				
PADG_06252	dioxygenase	0.00701338481935753	4,772594359	4,587661184	4,470433667
PADG_06144	saccharopine dehydrogenase	0.00527529557636022	4,823341923	4,603325863	4,374084022
	Saccharopine dehydrogenase [NADP+, L-				
PADG_01718	glutamate-forming]	0.0221450392480064	4,780448166	4,602597515	4,437593924
	phospho-2-dehydro-3-deoxyheptonate				
PADG_08021	aldolase	0.00034871632473159	4,877840236	4,532623342	4,37805998
PADG_05058	chorismate mutase	0.0226842449859004	4,452149194	4,573981509	4,793085575
PADG_04487	chorismate synthase	0.0314909968419182	4,476966948	4,68357954	4,679151712
PADG_01886	adenosylhomocysteinase	0.02113109868656	4,409869706	4,450179505	4,901358859
PADG_04603	spermidine synthase	0.0432103775062461	4,796966216	4,528418021	4,492998824
PADG_00210	glycine dehydrogenase	0.0105405077270114	4,432687389	4,551247093	4,824906144
PADG_08468	4-hydroxyphenylpyruvate dioxygenase	0.00549013636700336	4,33976034	4,690252318	4,76955878
PADG_08465	fumarylacetoacetase	0.0108038616369285	4,331202389	4,367229714	4,990015745

	methylcrotonoyl-CoA carboxylase subunit				
PADG_07366	alpha	0.0509066885694793	4,446444661	4,49685016	4,845850704
Nucleotide/nucleoside	e/nucleobase metabolism				
PADG_00780	ribose-phosphate pyrophosphokinase II	0.00949990061787514	4,726349088	4,629276735	4,483911142
	purine nucleoside phosphorylase I, inosine				
PADG_08066	and guanosine-specific	0.00427473565670872	4,865537705	4,602304101	4,301426508
	xanthine-guanine phosphoribosyl				
PADG_00322	transferase	0.00126429186045653	4,922411517	4,728670169	3,954547923
PADG_00621	Hydroxyisourate hydrolase	0.0195414250770774	4,722482955	4,591608884	4,531697027
	phosphoribosylaminoimidazolecarboxamide				
PADG_04099	formyltransferase/IMP cyclohydrolase	0.0290343921451513	4,483577849	4,595723993	4,754511436
PADG_07970	dihydroorotase, homodimeric	0.000601494528361185	4,991544911	4,497471404	4,198579474
PADG_01100	uracil phosphoribosyltransferase	0.00342045544824264	4,85832049	4,669313701	4,213034304
	Deoxyuridine 5'-triphosphate				
PADG_07782	nucleotidohydrolase	0.00385911777105953	4,779608694	4,655545988	4,375951356
PADG_01159	Uridylate kinase	0.0225226043444458	4,444078824	4,600156216	4,777968858
PADG_06054	deoxyribose-phosphate aldolase	0.0359382344610037	4,791283412	4,628635869	4,381937664
PADG_05321	DNA RNA non-specific nuclease	0.0499799223721024	4,489899421	4,538990484	4,791304551
PADG_02658	nucleoside-diphosphate-sugar epimerase	0.000440673349932956	4,990042242	4,693718456	3,852417285
Phosphate metabolism	n				
PADG_0417	Inorganic pyrophosphatase	0.00039648057603618	4,782424549	4,670177805	4,356346182
C-compound and carb	ohydrate metabolism				
PADG_03118	aldose 1-epimerase family	0.0473203607543561	4,37165452	4,493943291	4,887357209
PADG_00649	alcohol oxidase	0.000210018090153545	4,962803672	4,744007286	3,802490419
	short-chain dehydrogenase reductase				
PADG_04687	family	0.00109994176880593	4,794811557	4,650258297	4,36161594
PADG_03859	NADP-dependent mannitol dehydrogenase	0.0016711614063246	4,86517442	4,804952725	3,916394521
PADG_00735	Lactam utilization protein lamB	0.00269083936760223	4,842857422	4,56686141	4,389733319
PADG_01372	mannitol-1-phosphate 5-dehydrogenase	0.00320014525763444	4,898708002	4,60128546	4,241112488
PADG_05855	lactonohydrolase	0.00734969612425638	4,724017248	4,617268936	4,50241177
PADG_00912	UDP-galactopyranose mutase	0.00775039746204842	4,408709844	4,395977585	4,937538497
PADG_07606	2,5-diketo-D-gluconic acid reductase A	0.010818881866288	4,81211545	4,621084036	4,364412925
PADG_06740	betaine aldehyde dehydrogenase	0.0325496051578872	4,909650786	4,627054209	4,122307349

PADG_04710	2-methylcitrate mitochondrial	0.00129368626044376	4,324990832	4,45976783	4,951290254
PADG_01677	acetyl-coenzyme A synthetase	0.0413980013723899	4,695949428	4,740065239	4,3677976
PADG_05081	Aldehyde dehydrogenase	0.000318428299089706	4,865377473	4,807954631	3,935349485
Lipid, fatty acid and is	soprenoid metabolism				
PADG_12025	glutaryl- CoA dehydrogenase	0.0378176148991082	4,434739438	4,417009061	4,898457292
PADG_03492	phosphatidylserine decarboxylase	0.00185747080872941	4,983469681	4,625121469	3,994671637
PADG_01228	3-hydroxybutyryl-CoA dehydrogenase	0.00942493695792639	4,354421308	4,520679397	4,892191139
PADG_03449	Isopentenyl-diphosphate delta-isomerase	0.0209229087713661	4,938486367	4,570222911	4,168964753
	fatty acid synthase beta subunit				
PADG_00255	dehydratase	0.0372553299870248	4,445759947	4,363560056	4,922206428
PADG_04718	2-methylcitrate dehydratase	0.000131666517534101	4,053654335	4,403710395	5,100529262
Metabolism of vitam	ins, cofactors, and prosthetic groups				
PADG_00443	Dihydropteroate synthase	0.00123800894548555	4,216512814	4,535664446	4,95778356
PADG_05822	Pyridoxine biosynthesis protein pyroA	0.00277034051507976	4,262083878	4,623090523	4,871129629
PADG_08457	biotin synthase	0.0395889417320599	4,498044895	4,582941514	4,75345774
Secondary metabolis	m				
PADG_08034	dienelactone hydrolase family protein	0.00108007819663931	5,000018595	4,627709395	3,942709651
	3-demethylubiquinone-9 3-				
PADG_01052	methyltransferase	0.00572417440168868	4,928667501	4,619226437	4,132627594
PADG_00312	cytochrome c heme lyase	0.0179304699139903	4,82805197	4,673890027	4,249379481
ENERGY					
Glycolysis and glucon	eogenesis				
PADG_00852	fructose-1,6-bisphosphate aldolase, class 2	0.0321261222174796	4,883148515	4,598238224	4,245067703
PADG_07950	glucokinase	0.0269789169774159	4,767477211	4,666734275	4,37011628
PADG_08503	Phosphoenolpyruvate carboxykinase	0.0115249761276736	4,634733167	4,696117599	4,51720421
PADG_01896	Phosphoglycerate kinase	0.000712735140039373	4,282905818	4,480390608	4,962068686
PADG_06906	Triosephosphate isomerase	0.00153813947318225	4,72253189	4,64278566	4,475694292
PADG_04059	Enolase	0.00541040257511781	4,526980304	4,62178786	4,700181624
	2,3-bisphosphoglycerate-independent				
PADG_05109	phosphoglycerate mutase	0.0117496849150458	4,697818777	4,661476065	4,483192077
	Glyceraldehyde-3-phosphate				
PADG_02411	dehydrogenase	0.0492052726676888	4,691169819	4,711898586	4,417702937
Tricarbovulia acid pat	thway (citrate cycle, Krobs cycle, TCA cycle)				

Tricarboxylic-acid pathway (citrate cycle, Krebs cycle, TCA cycle)

	pyruvate dehydrogenase E1 component				
PADG_00246	subunit beta	0.0014620825618247	4,467508969	4,476987844	4,85747928
PADG_04993	ATP-citrate synthase subunit 1	0.0215948774017605	4,357064943	4,595652482	4,834104584
	pyruvate dehydrogenase complex				
PADG_04165	component Pdx1	0.00131307433739174	4,699334268	4,619484707	4,53142248
	pyruvate dehydrogenase complex				
PADG_07213	dihydrolipoamide acetyltransferase	0.006306183339428	4,434292544	4,606149474	4,782783259
PADG_11845	Aconitate hydratase, mitochondrial	0.0302112190508672	4,483588291	4,519733136	4,810778766
PADG_00317	succinyl-CoA ligase subunit beta	0.0126837599715285	4,411623854	4,540414639	4,846019033
PADG_02260	succinyl-CoA ligase subunit alpha	0.0326252304957893	4,432012377	4,516637915	4,843352517
	Succinyl-CoA:3-ketoacid-coenzyme A				
PADG_04939	transferase	58,28	0.0201943831690541	0,52	0,34
PADG_08387	Citrate synthase	76,95	0.00379083047685583	1,21	0,8
	Dihydrolipoamide acetyltransferase				
PADG_01797	component of pyruvate dehydrogenase	57,76	0.0128389547829813	0,83	0,42
Electron transport an	d membrane-associated energy conservation				
PADG_02561	ATP synthase subunit alpha, mitochondrial	0.00099703997320092	4,514311737	4,54718815	4,774140041
PADG_05436	Cytochrome b-c1 complex subunit Rieske	0.00954500862971618	4,315058774	4,601035599	4,8553777
PADG_06196	12-oxophytodienoate reductase	0.000130524968963367	4,221724966	4,958880373	4,535806942
	NADH-ubiquinone oxidoreductase 30.4 kDa				
PADG_03516	subunit	0.00859471577854355	4,413920482	4,598805445	4,80183725
PADG_07749	NAD(P)H:quinone oxidoreductase, type IV	0.0488987573295302	4,764273976	4,673423235	4,358226487
Respiration					
PADG_05750	cytochrome c oxidase polypeptide VI	0.000329872995986405	4,327414272	4,583503177	4,870384569
PADG_07081	electron transfer flavo alpha subunit	0.0265951000485402	4,467574541	4,594267781	4,766509434
PADG_03039	MICOS complex subunit MIC60	0.0458991211511605	4,614707509	4,538443978	4,695847586
	mitochondrial import inner membrane				
PADG_03872	translocase subunit tim1	0.0280037026658489	4,512346768	4,509263593	4,798797544
PADG_07042	ATP synthase F1, delta subunit	0.0514263542897544	4,467080817	4,578621275	4,776631304
PADG_07813	ATP synthase F1, gamma subunit	0.00320229579998738	4,412755298	4,534006308	4,852687023
PADG_08349	ATP synthase subunit beta, mitochondrial	0.0091913956997716	4,464996516	4,593674453	4,771136879
	NADH-ubiquinone oxidoreductase 21 kDa				
PADG_05403	subunit	0.0252028231260988	4,716340303	4,697210773	4,407618916
PADG_02454	NADH-ubiquinone oxidoreductase	0.0505489922010667	4,506005914	4,491903257	4,811385388

PADG_05402	mitochondrial F1F0 ATP synthase subunit	0.0128065223457609	4,423523411	4,510957779	4,857985376
Fermentation					
PADG_11405	Alcohol dehydrogenase 1	0.000117667332982207	4,952888704	4,747259161	3,846698619
PADG_04701	Alcohol dehydrogenase	0.0398751128886334	4,729114784	4,583255636	4,53121067
Oxidation of fatty acids					
PADG_06805	acyl- dehydrogenase	93,54	0.00228164549110767	0,93	0,63
PADG_01209	enoyl-CoA hydratase	75,09	0.0158508402126517	0,9	0,82
PADG_07023	carnitine O-acetyltransferase	23,7	0.0299195036063134	0,52	0,42
PADG_01687	3-ketoacyl-CoA thiolase	148,38	0.000606823603773545	0,59	0,27
CELL CYCLE AND DNA P	ROCESSING				
DNA processing					
PADG_03459	replication factor-A protein	0.0149027131920101	4,803611291	4,631925045	4,364286479
PADG_05818	HLH DNA binding	0.0230078557563301	4,79948516	4,634164835	4,363756203
PADG_00656	Non-histone chromosomal protein 6	0.00349912944508594	4,906250412	4,600075027	4,221520091
PADG_02683	UV excision repair protein Rad23	0.0101122103649832	4,856812725	4,58476368	4,335095591
PADG_05709	histone acetyltransferase type B subunit 2	0.00164234466516168	4,872207824	4,608112384	4,287139498
Cell cycle					
PADG_04795	deubiquitination-protection protein dph1	0.00011583181867771	4,943714372	4,668528478	4,042339871
PADG_05683	cell division control protein 48	0.000330152297791995	4,728360485	4,570125724	4,549182823
PADG_07319	septin-1	0.000818895717889287	4,943927683	4,618243319	4,123545495
PADG_07515	NSFL1 cofactor p47	0.0143456926429943	4,751931979	4,70872448	4,337770908
TRANSCRIPTION					
RNA synthesis					
PADG_00814	branchpoint-bridging protein mRNA binding post-transcriptional	0.000361519806372817	5,047732467	4,673468071	3,675357801
PADG_04307	regulator	0.00322339287702619	4,751796253	4,575249434	4,513237913
PADG_02555	nucleic acid-binding protein	0.0101850714020848	4,302673113	4,686218094	4,794858851
PADG_01508	U1 small nuclear ribonucleoprotein C	0.0268581913593662	4,846954785	4,609097493	4,314940715
PADG_01455	KH domain RNA-binding protein	0.000544832339699319	4,883202937	4,59033517	4,29517172
PADG_08081	zinc knuckle domain	0.000727891867202843	5,145549837	4,598537389	3,374465368
PADG_00220	class 2 transcription repressor NC2	0.00304321420966517	4,715661439	4,703197836	4,406054885
PADG_04311	cellular nucleic acid-binding protein	0.0115271319353104	4,755938062	4,680801878	4,374570008

PADG_03869	HMG box	0.0149326260057446	4,777629973	4,647394631	4,38649155
PADG_00872	histone H4	0.0252015733715969	4,094860492	4,597863514	4,949826114
PADG_06182	transcriptional repressor	0.0323405291079937	4,750188446	4,576900111	4,510062701
RNA processing					
PADG_02783	RNA-binding La domain-containing protein	0.0252707765390186	4,806173642	4,608765672	4,386423159
PADG_07689	transformer-SR ribonucleoprotein	0.00285515817257463	4,806471097	4,711771461	4,245265591
PADG_00044	28 kDa ribonucleoprotein	0.0311052414112992	4,826318919	4,603172713	4,356169393
	RNA recognition domain-containing protein				
PADG_00576	containing protein, variant	0.000366474914980045	5,069074064	4,60559948	3,780682898
PADG_05340	pre-mrna splicing factor	0.00567170230733727	4,732043744	4,598566473	4,513185844
PADG_04369	splicing factor U2AF 23 kDa subunit	0.0093556652043975	4,83916269	4,756474346	4,084939571
PADG_04301	WD repeat-containing protein	0.0304988927372442	4,818757102	4,627822306	4,336149519
PROTEIN SYNTHESIS					
Ribosome biogenesis					
PADG_11904	Ribosomal protein L1	0.0547556214196747	4,333029061	4,397187409	4,952762219
PADG_03856	60S ribosomal protein L15	0.000948265034607996	4,189422544	4,40680774	5,043969711
PADG_01026	60S ribosomal protein L43	0.00189393950236822	4,809348217	4,580571089	4,427329649
PADG_04848	60S ribosomal protein L8-B	0.00391393542396789	4,365212074	4,453111871	4,930933449
PADG_04862	50S ribosomal protein Mrp49	0.0046969426014565	4,418086256	4,682786869	4,726134701
PADG_05686	ribosome biogenesis protein	0.0171919284417786	4,801621339	4,659351825	4,326989436
PADG_05721	60S ribosomal protein L4	0.031687423620715	4,404223676	4,500729435	4,870044136
PADG_00784	40S ribosomal protein S0	0.038488765469723	4,369239676	4,469794223	4,907728943
PADG_00335	40S ribosomal protein S14	0.0009283171462339	4,793071291	4,647424884	4,369497964
PADG_02056	ribosomal protein L7	0.00101174747252608	4,307582955	4,474848419	4,952560187
PADG_01654	40S ribosomal protein S6-A	0.00128612006836141	4,427246586	4,569962116	4,817963337
PADG_07583	40S ribosomal protein S21	0.00321015987134523	4,864587041	4,561849834	4,358935866
PADG_00354	40S ribosomal protein S17	0.00512401922994533	4,640741634	4,534444795	4,676807142
PADG_01914	60S ribosomal protein L35	0.00595985342101163	4,443572878	4,494247565	4,859613758
	mitochondrial large ribosomal subunit L49,				
PADG_00627	variant	0.00635571801442804	4,177210626	4,685931824	4,857318127
PADG_01387	60S ribosomal protein L7	0.00676476492288821	4,478819934	4,458638854	4,859308418
PADG_03781	60S ribosomal protein L30	0.00769160773234302	4,801662368	4,485606126	4,536244441

0.0128434095495006	4,391561477	4,364361928	4,959189085			
0.0155770103199853	4,753200876	4,706126019	4,334911423			
0.0202870981819721	4,464415059	4,419543415	4,887507806			
0.0326173334051663	4,397480509	4,4764334	4,888334657			
0.049831342606761	4,6721549	4,634018134	4,545273527			
0.0498924638228775	4,511865866	4,5150257	4,793093079			
0.00976778835723734	4,253816826	4,43760718	4,986899377			
0.0516200825998414	4,466153191	4,623416439	4,741101244			
0.00188255977619058	4,780783503	4,590982975	4,457546658			
0.00145057927925207	4,5444158	4,45935618	4,816455562			
0.00058696534564495	4,397019825	4,458751242	4,914581945			
0.0280593514265553	4,43905201	4,507306026	4,848014728			
0.0319912825552141	4,218909607	4,385583492	5,01356461			
0.0441806922768012	4,239394371	4,339910872	5,023802484			
0.00947872658438146	4,424046408	4,528604172	4,846860462			
0.00717309135667122	4,028680901	4,733512273	4,880313615			
0.000328396134515179	4,367074803	4,505714536	4,902468013			
0.0033049385655597	4,297478086	4,440733419	4,973961821			
0.0305078072836169	4,808578979	4,628513924	4,353437358			
0.00055674974717756	4,949665607	4,74902932	3,823345641			
0.00217169449999158	4,802673995	4,563534348	4,457022653			
0.0127112389368946	4,717625813	4,623735614	4,502564617			
0.0258640355371289	4,901266984	4,565821794	4,249253249			
0.0525198964080063	4,744329655	4,583201125	4,509362113			
0.00977484226145031	4,359842122	4,404776422	4,956060943			
0.00245190358187735	4,306685534	4,471280725	4,953718586			
0.0284549763738526	4,399126604	4,572192477	4,826642684			
PROTEIN FOLDING AND STABILIZATION						
	0.0128434095495006 0.0155770103199853 0.0202870981819721 0.0326173334051663 0.049831342606761 0.0498924638228775 0.00976778835723734 0.0516200825998414 0.0516200825998414 0.00188255977619058 0.00145057927925207 0.00058696534564495 0.0280593514265553 0.0319912825552141 0.0441806922768012 0.00947872658438146 0.00717309135667122 0.000328396134515179 0.0033049385655597 0.0305078072836169 0.00055674974717756 0.00217169449999158 0.0127112389368946 0.0258640355371289 0.0525198964080063 0.00977484226145031 0.00245190358187735	0.01284340954950064,3915614770.01557701031998534,7532008760.02028709818197214,4644150590.03261733340516634,3974805090.0498313426067614,67215490.04989246382287754,5118658660.009767788357237344,2538168260.009767788357237344,2538168260.00145057927925074,54441580.000586965345644954,3970198250.02805935142655534,439052010.0319912825521414,2189096070.04418069227680124,2393943710.009478726584381464,4240464080.0033049385655574,2974780860.03050780728361694,8085789790.000556749747177564,9496656070.002171694499991584,8026739950.01271123893689464,7176258130.02586403553712894,9012669840.05251989640800634,7443296550.009774842261450314,3598421220.002451903581877354,399126604	0.01284340954950064,3915614774,3643619280.01557701031998534,7532008764,7061260190.02028709818197214,4644150594,4195434150.03261733340516634,3974805094,47643340.0498313426067614,67215494,6340181340.04989246382287754,5118658664,51502570.009767788357237344,2538168264,437607180.05162008259984144,4661531914,6234164390.001882559776190584,7807835034,5909829750.001450579279252074,54441584,459356180.000586965345644954,3970198254,4587512420.02805935142655534,439052014,5073060260.03199128255521414,2189096074,3855834920.04418069227680124,2393943714,3399108720.003283961345151794,3670748034,5057145360.00330493856555974,2974780864,4407334190.3050780728361694,8085789794,6285139240.002171694499991584,8026739954,5635343480.0127112389368464,7176258134,6237356140.02586403553712894,9012669844,568217940.05251989640800634,7443296554,5832011250.009774842261450314,3598421224,4047764220.002451903581877354,3066855344,4712807250.02845497637385264,3991266044,572192477			

Protein folding and stabilization

PADG_12323	peptidyl-prolyl cis-trans isomerase	0.000811310718754342	4,269159364	4,619869091	4,872745703
PADG_12329	prefoldin subunit 2	0.00122708938870604	4,854558774	4,658516886	4,244446155
PADG_08587	Peptidylprolyl isomerase	0.000635200628117717	4,729995443	4,766144736	4,293032079
	ATP-dependent Clp protease ATP-binding				
PADG_02895	subunit ClpB	0.00276781772538938	4,309112753	4,586539333	4,874189192
PADG_07815	disulfide-isomerase domain	0.00378267127358446	4,427835248	4,609493963	4,785028387
PADG_04092	peptidyl-prolyl cis-trans isomerase B	0.00718691945820977	4,45601706	4,503789035	4,845143342
PADG_05628	Protein disulfide-isomerase domain	0.0189209329424933	4,383572565	4,585127806	4,82622498
	small glutamine-rich tetratricopeptide				
PADG_01852	repeat-containing protein	0.0194408966072878	4,797137292	4,629881365	4,376494646
PADG_06488	peptidyl-prolyl cis-trans isomerase D	0.0284592321370524	4,359952662	4,664029466	4,775411091
PADG_05203	Peptidyl-prolyl cis-trans isomerase	0.028957954112554	4,919547485	4,596710017	4,167124876
PADG_08048	T-complex protein 1 subunit beta	0.0435867936243462	4,572410426	4,567250563	4,709244123
PADG_01565	calnexin	0.0476035441549569	4,444980406	4,69442803	4,689870869
PADG_07953	Peptidyl-prolyl cis-trans isomerase	0.00239744249348738	4,787055659	4,584064055	4,455706867
PADG_04034	Chaperone DnaJ	0.0070692227624351	4,558610158	4,758515213	4,521182693
PADG_02206	DnaJ domain protein Psi	0.0474842422073504	4,552133162	4,807494028	4,449863068
PADG_05229	chaperone protein dnaJ 3	0.00851844162738829	4,458411173	4,80311525	4,559839006
Protein targeting, sorting	and translocation				
PADG_02619	F-box domain-containing	0.0017688464217684	4,884213308	4,619984634	4,245578509
PADG_08188	vacuolar-sorting protein snf7	0.00562474527488371	4,924496022	4,629892113	4,119413712
PADG_08646	class E vacuolar -sorting machinery HSE1	0.0176936537439237	4,842217291	4,681826504	4,204193377
	mitochondrial import inner membrane				
PADG_03274	translocase subunit tim9	0.0226626979060814	4,78379858	4,581068394	4,458070753
PADG_00240	SNF7 family protein Fti1/Did2	0.00561971799727414	4,922978229	4,715685856	3,959057129
Protein modification					
PADG_00809	ubiquitin-conjugating enzyme	0.00179716781257883	4,851076997	4,737854341	4,109317376
PADG_07925	ubiquitin-conjugating enzyme E2 N	0.00217641874973217	4,778034896	4,60878509	4,43966477
PADG_00569	5'/3'-nucleotidase SurE	0.0203490779710472	4,814937844	4,595744091	4,391319978
PADG_05929	protein-L-isoaspartate O-methyltransferase	0.000104293058688337	5,015705218	4,715644074	3,704689037
Protein/peptide degradat	ion				
PADG_04167	aspartyl aminopeptidase	0.000221830754827111	4,711707982	4,761664746	4,32935125
PADG_02637	ubiquitin-conjugating enzyme	0.00552046595228165	4,872792902	4,74713498	4,027498635

PADG_06290	proteasome component PRE5	0.0119003210880048	4,766307346	4,669917249	4,373567455
PADG_03221	thimet oligopeptidase	0.0152211653648595	4,80783707	4,592539483	4,408436623
PADG_05922	glutamate carboxypeptidase	0.018794315888034	4,73451406	4,71895508	4,348713572
PADG_05820	xaa-Pro aminopeptidase	0.0537361658754471	4,727833223	4,664197629	4,432840532
PADG_05160	Dipeptidyl peptidase 3	0.000553026709381306	4,873587688	4,631341491	4,253430698
PADG_08442	Proteasome subunit alpha type	0.00644585367629858	4,755281119	4,638679663	4,433031534
PADG_03967	proteasome component C5	0.012833799267322	4,786024043	4,639418991	4,383072309
PADG_00599	26S protease regulatory subunit 6A	0.0340488792956519	4,595244231	4,576041291	4,681882584
PADG_07190	Proteasome endopeptidase complex	0.0500129362578737	4,685808127	4,644370537	4,516694831
PADG_00634	vacuolar protease A	0.00276331930081985	4,968790506	4,530863777	4,194408176
PADG_06546	Aminopeptidase	0.018748446410497	4,830794751	4,571297209	4,395915568
CELLULAR TRANSPORT					
Transported compounds	(substrates)				
PADG_07964	V-type proton ATPase subunit E	0.00770764690084264	4,729775199	4,646047625	4,460493418
PADG_06692	mitochondrial phosphate carrier protein	0.028478971205458	4,39420673	4,490605834	4,882011935
	phosphatidylinositol-phosphatidylcholine				
PADG_08176	transfer protein	0.0103878866021587	4,784662539	4,635754975	4,392693401
	diazepam-binding inhibitor (GABA receptor				
PADG_01363	acylbinding)	0.0170201896661536	4,92734214	4,669880198	3,987396721
PADG_03559	Cytochrome b5	0.0428430530059768	4,522398224	4,667890812	4,658478151
PADG_01440	ADP, ATP carrier protein	0.00222386670540909	4,098809904	4,459730894	5,045813264
Transport facilities					
	mitochondrial outer membrane protein				
PADG_08263	porin	0.00119131447896499	4,366925706	4,526098105	4,887228756
Transport routes					
PADG_02022	clathrin light chain	0.00526327780889446	4,816200246	4,626926026	4,354178111
	G2/M phase checkpoint control protein				
PADG_02924	Sum2	0.000640360610487575	4,825499055	4,681949322	4,265576511
PADG_07014	vesicular-fusion sec17	0.0410862235352565	4,746350966	4,585578765	4,504549974
CELLULAR COMMUNICAT	ION				
Cellular signalling					
PADG_08191	cAMP-dependent kinase regulatory subunit	0.000153652216039725	4,905139026	4,724698939	4,024461135
PADG_02845	CORD and CS domain-containing	0.000230062222189261	4,42651858	4,702698151	4,703069903

PADG_04383	tricalbin-3	0.00157729548942107	4,833496334	4,683724573	4,245252584
PADG_08342	GTP-binding protein ypt1	0.0262887200043236	4,373899747	4,617449581	4,805830969
PADG_07652	CAMK/CAMK1/CAMK1-CMK protein k	0.00982473505840494	4,617217107	4,739956467	4,481243158
PADG_07287	WD repeat	0.0424886349236938	4,778071968	4,624811589	4,407390063
PADG_03219	myosin regulatory light chain cdc4	0.00245254380627877	4,856051855	4,638140556	4,269488836
CELL RESCUE					
Stress response					
PADG_02981	ThiJ/PfpI family protein	0.0202700356111835	4,969158895	4,653292207	3,862802668
PADG_03170	serum paraoxonase/arylesterase 2	0.0049738065878992	4,263271672	4,534383093	4,930269596
PADG_01711	Hsp90 co-chaperone AHA1	0.00381621468774507	4,418910947	4,665225748	4,742829359
PADG_07715	hsp90-like protein	0.00592148500579047	4,272601712	4,506756175	4,944427698
PADG_02761	hsp75-like protein	0.0479601189854827	4,625108398	4,555358538	4,672132226
PADG_08369	hsp60-like protein	0.00127751244263923	4,269861989	4,623919284	4,868828951
PADG_03562	chaperone DnaK	0.00874116932727769	4,416981747	4,670109878	4,737873104
PADG_00430	70 kDa heat shock protein	0.00660782723481957	4,277611741	4,636715823	4,848676144
PADG_02785	heat shock protein Hsp88	0.0223062727662165	4,421970281	4,566846133	4,818361241
PADG_08118	hsp72-like protein	0.00757422338032652	4,503971072	4,807084211	4,510914648
PADG_03963	30 kDa heat shock	0.000805454890924632	3,907234604	5,040011608	4,593466774
PADG_05032	Hsp90 binding co-chaperone (Sba1)	0.0317768742306163	4,760075651	4,723692703	4,287059782
PADG_03163	cytochrome c peroxidase, mitochondrial	0.000593374880337985	4,149460697	4,552686262	4,97892349
PADG_04912	AhpC/TSA family protein	0.0170318717607415	4,422928572	4,43992092	4,900662484
PADG_07946	peroxisomal matrix protein	0.0297718977714577	4,603479545	4,547338774	4,699472102
PADG_00207	ribosome associated chaperone Zuotin	0.0439051277963011	4,487465531	4,493959266	4,822791798
PADG_03654	hypothetical protein	0.000102412429082015	5,232858129	4,510580278	3,142854946
PADG_03423	glutathione S-transferase Gst3	0.000573696552796715	4,861451528	4,642080797	4,260052768
PADG_02764	thioredoxin-like protein	0.00495776661632139	4,970281957	4,613656546	4,028733488
PADG_05504	thioredoxin	0.0208911445460205	4,839752856	4,666219097	4,227951953
PADG_05344	peroxiredoxin Q BCP	0.00309586826577796	4,908836395	4,675628207	4,091123767
PADG_03095	mitochondrial peroxiredoxin PRX1	0.0351949640957963	4,770536689	4,57017366	4,488509141
Virulence, disease factors					
PADG_07422	serine proteinase	0.00264817902949662	5,023466375	4,4580047	4,164800203
Detoxification					

	SAM-dependent methyltransferase COQ5				
PADG_00073	family	0.000874824117092326	5,02377962	4,673354018	3,778110074
PADG_07418	superoxide dismutase [Cu-Zn] SOD1	0.00119250240482325	5,002572022	4,694157826	3,748331219
PADG_01755	Fe-Mn family superoxide dismutase SOD2	0.0191136606558536	4,747140254	4,730220693	4,308531933
CELL FATE					
Cell growth / morphoge	nesis				
PADG_05517	rho-gdp dissociation inhibitor	0.019945607030085	4,695970017	4,674661965	4,467466281
PADG_04559	progesterone binding	0.0378473693930494	4,890078931	4,554044211	4,289504007
Cell death					
PADG_06087	hypothetical protein	0.000495869192119841	5,057736394	4,505364369	4,013416318
INTERACTION WITH THE	ENVIRONMENT				
Cell adhesion					
PADG_04440	14-3-3-like protein	0.0115304629233556	4,474747759	4,558294872	4,792281251
PADG_07615	immunodominant antigen Gp43	0.00164042968040959	4,666062545	5,03618576	3,737957307
BIOGENESIS OF CELLULA	AR COMPONENTS				
Cell wall					
PADG_00994	chitinase class II	0.000152810421803673	5,076451382	4,682857856	3,526148881
PADG_03691	cell wall glucanase	0.000192529842468642	5,034906222	4,798688942	3,309820744
PADG_04499	cell wall protein ECM33 precursor	0.000415316082694873	5,013609023	4,588094308	4,000958064
PADG_05303	beta-1,6-glucan biosynthesis (Knh1)	0.013018510681609	4,176862126	4,450846863	5,014504656
PADG_02862	1,3-beta-glucosidase	0.0194863299097851	4,967639252	4,671081374	3,875321475
CELL TYPE					
DIFFERENTIATON					
Fungal/microorganismic	cell type differentiation				
PADG_04260	NIMA-interacting protein TinC	0.000707300897920691	4,902369826	4,716769921	4,038720453
PADG_08091	cell polarity (Alp11)	0.0208774113534429	4,819567617	4,640531791	4,314261242
UNCLASSIFIED PROTEIN	S				
PADG_02604	hypothetical protein	0.00015844299425143	3,233564568	5,086561244	4,737180078
PADG_02181	HAD-superfamily hydrolase	0.000200997050975056	4,053767528	5,043066536	4,510838058
PADG_12447	hypothetical protein	0.000252966887635888	3,859343	4,914596903	4,786711526
PADG_04907	hypothetical protein	0.000318705002215328	2,79302038	5,255516879	4,500497277
PADG_05157	cell surface protein, putative	0.000347601158886615	3,342738381	5,159512053	4,584087403

PADG_04343	short chain dehydrogenase/reductase	0.000645592053848837	3,885565792	4,943943662	4,739162014
PADG_01857	Uncharacterized protein	0.000735739746029736	3,475920184	5,210426343	4,449778533
PADG_02967	Uncharacterized protein	0.000954103076199105	3,980577659	4,913308671	4,729137937
PADG_06021	hypothetical protein	0.000987328858139613	3,812707863	5,038164044	4,628818149
PADG_06202	Arp2 3 complex subunit Arc16	0.00132807191136456	4,115747717	4,883504224	4,697949964
PADG_07670	SAP domain-containing protein	0.0013911862778064	4,09916138	4,898914551	4,68836461
PADG_11347	hypothetical protein	0.00197211084602885	4,241811493	4,847036187	4,669120514
PADG_00422	actin cytoskeleton protein (VIP1)	0.00207529238829785	4,090794531	4,863618806	4,730589951
PADG_04205	hypothetical protein	0.00267855755722755	3,67182148	5,11971357	4,547409828
	erythrocyte band 7 integral membrane				
PADG_01002	protein	0.00271552290942387	4,109788027	4,892394591	4,689302311
PADG_02858	hypothetical protein	0.00310539167374307	3,98101627	4,984665705	4,619603997
PADG_11101	hypothetical protein	0.00317627875002816	4,250211253	4,855392875	4,652679694
PADG_12152	hypothetical protein	0.00345282888989835	5,054402241	4,032047001	4,484611312
PADG_00674	hypothetical protein	0.00394824311127837	3,434948878	5,07839186	4,66710289
PADG_02909	Uncharacterized protein	0.00455833380773627	4,278707126	4,681344705	4,8137992
PADG_11424	hypothetical protein	0.00515308641760238	4,349022319	4,808892077	4,640147015
PADG_02338	Uncharacterized protein	0.00599800759227989	4,442172881	4,882050852	4,461177222
PADG_12252	hypothetical protein	0.00737286242790404	4,120546287	4,922314886	4,639368701
PADG_08152	hypothetical protein	0.00772151473816209	4,232944489	4,867997096	4,64225325
PADG_08270	UBX domain-containing protein	0.00779498683485196	4,283499377	4,761452674	4,733948994
PADG_02944	hypothetical protein	0.00846113292689915	3,941461494	4,922342363	4,717490349
PADG_05356	isochorismatase domain-containing protein	0.00876062721083998	4,809702986	4,411124649	4,591003962
PADG_00921	Uncharacterized protein	0.00965739615783812	4,287608501	4,773037508	4,718379986
PADG_11487	hypothetical protein	0.0106368435907347	3,670316578	5,027612697	4,671415452
PADG_07225	Uncharacterized protein	0.0107115482507958	4,054135489	4,924010107	4,66342363
PADG_11950	hypothetical protein	0.0114196399407177	4,330746747	4,818522183	4,637288403
	related to mismatched base pair and				
PADG_06136	cruciform dna recognition	0.0130031745279776	3,61461079	5,16149797	4,452555837
PADG_07506	hypothetical protein	0.0146863742665499	4,230198937	4,766928354	4,754791959
PADG_02118	Uncharacterized protein	0.016955093392485	3,90669173	4,980449614	4,62905153
PADG_04818	hypothetical protein	0.0170034848346801	4,166392385	4,801772905	4,747415906

PADG_00676	hypothetical protein	0.0225015189702146	4,372216502	4,787850896	4,642178096
PADG_04685	Uncharacterized protein	0.0233426763011714	4,515853332	4,695951088	4,635245877
PADG_03203	BAR domain-containing protein	0.0256785799658214	4,519041996	4,715698997	4,610822345
PADG_04215	DUF124 domain-containing protein	0.026961653931293	3,977082861	4,895178906	4,719112589
PADG_01688	DlpA domain-containing protein	0.030468175182578	4,437803058	4,793920884	4,582297304
PADG_02709	hypothetical protein	0.0373430897201166	4,314839579	4,774355705	4,68820212
PADG_05584	hypothetical protein	0.0507774717047346	4,318844881	4,816236545	4,63363081
PADG_02307	CUE domain-containing	0.052604670310913	4,379546441	4,815450114	4,595509363
PADG_04806	hypothetical protein	0.0526341547562164	4,304262402	4,855251489	4,589656491
PADG_06945	GYF domain-containing protein	0.0535146776162895	4,351586581	4,811209957	4,620114275
PADG_06080	hypothetical protein	0.00220468098930026	4,946386859	4,250591833	4,525162759
PADG_06699	Uncharacterized protein	0.000786530106643649	3,644784847	4,550367318	5,134387548
PADG_11413	hypothetical protein	0.0184217228588476	4,887682067	4,415166133	4,467751787
PADG_11832	hypothetical protein	0.0233063048763567	4,790666354	4,618384776	4,399943327
PADG_01128	hypothetical protein	0.0298111381892491	4,732805598	4,420444995	4,669133595
PADG_04439	Uncharacterized protein	0.054953798716532	4,948640174	4,227123579	4,482777612

^aAcession number - acession number of matched protein from *Paracoccidioides brasiliensis* Uniprot

database

^bProtein description - proteins annotation from *Paracoccidioides brasiliensis* database or by

homology in Blast2GO or NCBI

 $^{\rm c}\text{p-value}$ - statistically significant differences are considered with ≤ 0.05

(ANOVA)

^dTukey's test- average of the Tukey test (of mycelia, mycelia-to-yeast transition and yeast) used for

statistical

^e Biological process of differentially expressed proteins from MIPS (http://mips.helmholtz-muenchen.de/funcatDB) and Uniprot databases (http://www.uniprot.org/)

Table S3. Identified proteins from Paracoccidioides brasiliensis up-regulated in the mycelia phase compared to the mycelia-to-yeast transition and yeast cells

Acession number ^a	Protein description ^b	Score ^c	p-value ^d
Functional categories ^e			

METABOLISM

Amino acid metabolism			
PADG_02214	4-aminobutyrate aminotransferase	146,62	0.000473697117025741
PADG_03522	methylthioadenosine phosphorylase	61,07	0.00188671139057892
PADG_06252	1,2-dihydroxy-3-keto-5-methylthiopentene dioxygenase	29,88	0.00701338481935753
PADG_06144	saccharopine dehydrogenase	25,89	0.00527529557636022
PADG_01718	Saccharopine dehydrogenase [NADP+, L-glutamate-forming]	25,07	0.0221450392480064
PADG_08021	phospho-2-dehydro-3-deoxyheptonate aldolase	35,26	0.00034871632473159
PADG_04603	spermidine synthase	34,69	0.0432103775062461
Nucleotide/nucleoside/nucleobase m	ietabolism		
PADG_00780	ribose-phosphate pyrophosphokinase II	65,5	0.00949990061787514
PADG_04869	HIT domain-containing	27,59	0.00214233464281135
PADG_08066	purine nucleoside phosphorylase I, inosine and guanosine-specific	14,82	0.00427473565670872
PADG_00322	xanthine-guanine phosphoribosyl transferase	29,21	0.00126429186045653
PADG_00621	Hydroxyisourate hydrolase	5,54	0.0195414250770774
PADG_07970	dihydroorotase, homodimeric	36,69	0.000601494528361185
PADG_01100	uracil phosphoribosyltransferase	22,47	0.00342045544824264
PADG_07782	Deoxyuridine 5'-triphosphate nucleotidohydrolase	81,69	0.00385911777105953
PADG_06054	deoxyribose-phosphate aldolase	14,93	0.0359382344610037
PADG_02658	nucleoside-diphosphate-sugar epimerase	26,88	0.000440673349932956
Phosphate metabolism			
PADG_0417	Inorganic pyrophosphatase	101,62	0.00039648057603618
C-compound and carbohydrate metal	bolism		
PADG_00649	alcohol oxidase	99,63	0.000210018090153545
PADG_04687	short-chain dehydrogenase reductase family	63,12	0.00109994176880593
PADG_03859	NADP-dependent mannitol dehydrogenase	37,32	0.0016711614063246
PADG_00735	Lactam utilization protein lamB	19,26	0.00269083936760223
PADG_01372	mannitol-1-phosphate 5-dehydrogenase	98,2	0.00320014525763444
PADG_05855	lactonohydrolase	38,03	0.00734969612425638
PADG_07606	2,5-diketo-D-gluconic acid reductase A	77,45	0.010818881866288
PADG_06740	betaine aldehyde dehydrogenase	60,37	0.0325496051578872
PADG_05081	Aldehyde dehydrogenase	222,22	0.000318428299089706

Lipid, fatty acid and isoprenoid metabo	lism		
PADG_03492	phosphatidylserine decarboxylase	29,91	0.00185747080872941
PADG_03449	Isopentenyl-diphosphate delta-isomerase	20,95	0.0209229087713661
Secondary metabolism			
PADG_08034	dienelactone hydrolase family protein	107,18	0.00108007819663931
PADG_01052	3-demethylubiquinone-9 3-methyltransferase	20,31	0.00572417440168868
PADG_00312	cytochrome c heme lyase	15,03	0.0179304699139903
ENERGY			
Glycolysis and gluconeogenesis			
PADG_00852	fructose-1,6-bisphosphate aldolase, class 2	18,6	0.0321261222174796
PADG_07950	glucokinase	34,61	0.0269789169774159
PADG_06906	Triosephosphate isomerase	155,73	0.00153813947318225
PADG_05109	2,3-bisphosphoglycerate-independent phosphoglycerate mutase	62,5	0.0117496849150458
Tricarboxylic-acid pathway (citrate cycle	e, Krebs cycle, TCA cycle)		
PADG_04165	pyruvate dehydrogenase complex component Pdx1	38,2	0.00131307433739174
Respiration			
PADG_05403	NADH-ubiquinone oxidoreductase 21 kDa subunit	61,24	0.0252028231260988
PADG_07749	NAD(P)H:quinone oxidoreductase, type IV	209,82	0.0488987573295302
Fermentation			
PADG_11405	Alcohol dehydrogenase 1	181,54	0.000117667332982207
PADG_04701	Alcohol dehydrogenase	19,87	0.0398751128886334
CELL CYCLE AND DNA PROCESSING			
DNA processing			
PADG_03459	replication factor-A protein	33,18	0.0149027131920101
PADG_05818	HLH DNA binding	11,19	0.0230078557563301
PADG_02683	UV excision repair protein Rad23	95,32	0.0101122103649832
PADG_05709	histone acetyltransferase type B subunit 2	27,36	0.00164234466516168
PADG_00656	Non-histone chromosomal protein 6	49,18	0.00349912944508594
Cell cycle			
PADG_04795	deubiquitination-protection protein dph1	66,45	0.00011583181867771
PADG_05683	cell division control protein 48	276,29	0.000330152297791995
PADG_07319	septin-1	30,11	0.000818895717889287

PADG_07515	NSFL1 cofactor p47	31,97	0.0143456926429943
TRANSCRIPTION			
RNA synthesis			
PADG_00814	branchpoint-bridging protein	22,78	0.000361519806372817
PADG_04307	mRNA binding post-transcriptional regulator	149,3	0.00322339287702619
PADG_01508	U1 small nuclear ribonucleoprotein C	9,16	0.0268581913593662
PADG_01455	KH domain RNA-binding protein	177,31	0.000544832339699319
PADG_08081	zinc knuckle domain	30,31	0.000727891867202843
PADG_00220	class 2 transcription repressor NC2	9,43	0.00304321420966517
PADG_04311	cellular nucleic acid-binding protein	21,89	0.0115271319353104
PADG_03869	HMG box	37,81	0.0149326260057446
PADG_06182	Glucose repression regulatory protein TUP1	130,91	0.0323405291079937
RNA processing			
PADG_02783	RNA-binding La domain-containing protein	35,41	0.0252707765390186
PADG_07689	transformer-SR ribonucleoprotein	63,33	0.00285515817257463
PADG_00044	28 kDa ribonucleoprotein	51,51	0.0311052414112992
PADG_00576	RNA recognition domain-containing protein containing protein, variant	43,25	0.000366474914980045
PADG_05340	pre-mrna splicing factor	73,65	0.00567170230733727
PADG_04369	splicing factor U2AF 23 kDa subunit	7,35	0.0093556652043975
PADG_04301	WD repeat-containing protein		0.0304988927372442
PROTEIN SYNTHESIS			
Ribosome biogenesis			
PADG_01026	60S ribosomal protein L43	48,71	0.00189393950236822
PADG_05686	ribosome biogenesis protein	19,52	0.0171919284417786
PADG_00335	40S ribosomal protein S14	150,13	0.0009283171462339
PADG_07583	40S ribosomal protein S21	54,68	0.00321015987134523
PADG_03781	60S ribosomal protein L30	65,22	0.00769160773234302
PADG_00995	ubiquitin-40S ribosomal protein S27a	80,68	0.0155770103199853
PADG_02249	60S ribosomal protein L2	50,71	0.049831342606761
PADG_01427	40S ribosomal protein S12	55,94	0.00188255977619058
Translation			
PADG_01079	translation initiation factor 4B	132,46	0.0305078072836169
PADG_07356	woronin body major protein	79,11	0.00055674974717756
---	--	-------	----------------------
PADG_01865	Eukaryotic translation initiation factor 3 subunit H	84,83	0.00217169449999158
PADG_00457	translation initiation factor 4G	97,39	0.0127112389368946
PADG_06110	translation initiation factor SUI1	25,21	0.0258640355371289
PADG_02691	eukaryotic translation initiation factor 6	19,22	0.0525198964080063
PROTEIN FOLDING AND STABILIZATION			
Protein folding and stabilization			
PADG_12329	prefoldin subunit 2	15,08	0.00122708938870604
PADG_01852	small glutamine-rich tetratricopeptide repeat-containing protein	61,51	0.0194408966072878
PADG_05203	Peptidyl-prolyl cis-trans isomerase	49,8	0.028957954112554
PADG_07953	Peptidyl-prolyl cis-trans isomerase	32,66	0.00239744249348738
Protein targeting, sorting and translocatio	n		
PADG_02619	F-box domain-containing	45,73	0.0017688464217684
PADG_08188	vacuolar-sorting protein snf7	23,85	0.00562474527488371
PADG_08646	class E vacuolar -sorting machinery HSE1	22,48	0.0176936537439237
PADG_03274	mitochondrial import inner membrane translocase subunit tim9	36,03	0.0226626979060814
PADG_00240	SNF7 family protein Fti1/Did2	20,82	0.00561971799727414
Protein modification			
PADG_00809	ubiquitin-conjugating enzyme	17,71	0.00179716781257883
PADG_07925	ubiquitin-conjugating enzyme E2 N	24,77	0.00217641874973217
PADG_00569	5'/3'-nucleotidase SurE	7,3	0.0203490779710472
PADG_05929	protein-L-isoaspartate O-methyltransferase	8,5	0.000104293058688337
Protein/peptide degradation			
PADG_02637	ubiquitin-conjugating enzyme	47,99	0.00552046595228165
PADG_06290	proteasome component PRE5	48,18	0.0119003210880048
PADG_03221	thimet oligopeptidase	44,01	0.0152211653648595
PADG_05922	glutamate carboxypeptidase	62,82	0.018794315888034
PADG_05820	xaa-Pro aminopeptidase	60,96	0.0537361658754471
PADG_05160	Dipeptidyl peptidase 3	42,94	0.000553026709381306
PADG_08442	Proteasome subunit alpha type	30,72	0.00644585367629858
PADG_03967	proteasome component C5	45,24	0.012833799267322
PADG_07190	Proteasome endopeptidase complex	37,56	0.0500129362578737

PADG_00634	vacuolar protease A	25,22	0.00276331930081985
PADG_06546	Aminopeptidase	59,91	0.018748446410497
CELLULAR TRANSPORT			
Transported compounds (substrates)			
PADG_07964	V-type proton ATPase subunit E	83,38	0.00770764690084264
PADG_08176	phosphatidylinositol-phosphatidylcholine transfer protein	31,56	0.0103878866021587
PADG_01363	diazepam-binding inhibitor (GABA receptor acylbinding)	84,2	0.0170201896661536
Transport routes			
PADG_02022	clathrin light chain	84,07	0.00526327780889446
PADG_02924	G2/M phase checkpoint control protein Sum2	24,09	0.000640360610487575
PADG_07014	vesicular-fusion sec17	58,84	0.0410862235352565
CELLULAR COMMUNICATION			
Cellular signalling			
PADG_08191	cAMP-dependent kinase regulatory subunit	15,37	0.000153652216039725
PADG_04383	tricalbin-3	25,57	0.00157729548942107
PADG_07287	WD repeat	13,98	0.0424886349236938
PADG_03219	myosin regulatory light chain cdc4	34,13	0.00245254380627877
CELL RESCUE			
Stress response			
PADG_02981	ThiJ/PfpI family protein	71,14	0.0202700356111835
PADG_05032	Hsp90 binding co-chaperone (Sba1)	39,31	0.0317768742306163
PADG_03423	glutathione S-transferase Gst3	28,83	0.000573696552796715
PADG_02764	thioredoxin-like protein	76,21	0.00495776661632139
PADG_05344	peroxiredoxin Q BCP	15,93	0.00309586826577796
PADG_05504	thioredoxin	106,67	0.0208911445460205
Virulence, disease factors			
PADG_07422	serine proteinase	29,51	0.00264817902949662
Detoxification			
PADG_03095	mitochondrial peroxiredoxin PRX1	33,08	0.0351949640957963
PADG_00073	SAM-dependent methyltransferase COQ5 family	35,14	0.000874824117092326
PADG_07418	superoxide dismutase [Cu-Zn] SOD1	101,1	0.00119250240482325
PADG_01755	Fe-Mn family superoxide dismutase SOD2	40,2	0.0191136606558536

CELL FATE			
Cell growth / morphogenesis			
PADG_05517	rho-gdp dissociation inhibitor	21,41	0.019945607030085
PADG_04559	progesterone binding	16,55	0.0378473693930494
Cell death			
PADG_06087	hypothetical protein	15,32	0.000495869192119841
BIOGENESIS OF CELLULAR COMPONENT	S		
Cell wall			
PADG_00994	chitinase class II	236,68	0.000152810421803673
PADG_03691	cell wall glucanase	9,66	0.000192529842468642
PADG_04499	cell wall protein ECM33 precursor	22,82	0.000415316082694873
PADG_02862	1,3-beta-glucosidase	9,17	0.0194863299097851
CELL TYPE DIFFERENTIATON			
Fungal/microorganismic cell type differe	entiation		
PADG_04260	NIMA-interacting protein TinC	29,3	0.000707300897920691
PADG_08091	cell polarity (Alp11)	11,88	0.0208774113534429
UNCLASSIFIED PROTEINS			
PADG_02604	hypothetical protein	33,89	0.00015844299425143
PADG_02181	HAD-superfamily hydrolase	36,51	0.000200997050975056
PADG_12447	hypothetical protein	102,27	0.000252966887635888
PADG_04907	hypothetical protein	47,96	0.000318705002215328
PADG_05157	cell surface protein, putative	27,81	0.000347601158886615
PADG_04343	short chain dehydrogenase/reductase	21,75	0.000645592053848837
PADG_01857	Uncharacterized protein	41,39	0.000735739746029736
PADG_02967	Uncharacterized protein	111,93	0.000954103076199105
PADG_06021	hypothetical protein	32,74	0.000987328858139613
PADG_06202	Arp2 3 complex subunit Arc16	66,98	0.00132807191136456
PADG_07670	SAP domain-containing protein	30,66	0.0013911862778064
PADG_11347	hypothetical protein	33,49	0.00197211084602885
PADG_00422	actin cytoskeleton protein (VIP1)	162,78	0.00207529238829785
PADG_04205	hypothetical protein	39,47	0.00267855755722755
PADG_01002	erythrocyte band 7 integral membrane protein	17,5	0.00271552290942387

PADG_02858	hypothetical protein	37,78	0.00310539167374307
PADG_11101	hypothetical protein	41,61	0.00317627875002816
PADG_00674	hypothetical protein	13,05	0.00394824311127837
PADG_11424	hypothetical protein	41,88	0.00515308641760238
PADG_02338	Uncharacterized protein	19,47	0.00599800759227989
PADG_12252	hypothetical protein	8,88	0.00737286242790404
PADG_08152	hypothetical protein	13,17	0.00772151473816209
PADG_08270	UBX domain-containing protein	8,33	0.00779498683485196
PADG_02944	hypothetical protein	23,01	0.00846113292689915
PADG_00921	Uncharacterized protein	35,19	0.00965739615783812
PADG_11487	hypothetical protein	17,57	0.0106368435907347
PADG_07225	Uncharacterized protein	24,59	0.0107115482507958
PADG_11950	hypothetical protein	122,48	0.0114196399407177
PADG_06136	related to mismatched base pair and cruciform dna recognition	21,36	0.0130031745279776
PADG_07506	hypothetical protein	44,27	0.0146863742665499
PADG_02118	Uncharacterized protein	16,96	0.016955093392485
PADG_04818	hypothetical protein	5,42	0.0170034848346801
PADG_00676	hypothetical protein	128,58	0.0225015189702146
PADG_04685	Uncharacterized protein	15,49	0.0233426763011714
PADG_03203	BAR domain-containing protein	88,17	0.0256785799658214
PADG_04215	DUF124 domain-containing protein	21,2	0.026961653931293
PADG_01688	DlpA domain-containing protein	12,4	0.030468175182578
PADG_02709	hypothetical protein	17,25	0.0373430897201166
PADG_05584	hypothetical protein	13,06	0.0507774717047346
PADG_02307	CUE domain-containing	12,64	0.052604670310913
PADG_04806	hypothetical protein	14,14	0.0526341547562164
PADG_06945	GYF domain-containing protein	26,02	0.0535146776162895

^aAcession number - acession number of matched protein from *Paracoccidioides brasiliensis* Uniprot database ^bProtein description - proteins annotation from *Paracoccidioides brasiliensis* database or by homology in Blast2GO or NCBI ^cScore - score obtained from the MS Amanda 2.0 ^dp-value - statistically significant differences are considered with ≤ 0.05 (ANOVA) ^eBiological process of differentially expressed proteins from MIPS (http://mips.helmholtz-muenchen.de/funcatDB) and Uniprot databases (http://www.uniprot.org/).

Acession number ^a	Protein description ^b	Score ^c	p-value ^d
Functional categories ^e			
METABOLISM			
Amino acid metabolism			
PADG_01488	thiol methyltransferase	16,36	0.00859584687713703
PADG_01621	aspartate aminotransferase	76,22	0.000603223867301128
PADG_05277	Serine hydroxymethyltransferase	84,56	0.00298066391122739
PADG_03627	2-oxoisovalerate dehydrogenase subunit beta	40,81	0.0373648418664289
PADG_08262	asparagine synthase (glutamine-hydrolyzing)	7,22	0.0374351680322741
PADG_00888	Argininosuccinate synthase	54,79	0.0283905003634937
PADG_05058	chorismate mutase	36,37	0.0226842449859004
PADG_01886	adenosylhomocysteinase	101,7	0.02113109868656
PADG_00210	glycine dehydrogenase	39,27	0.0105405077270114
PADG_08468	4-hydroxyphenylpyruvate dioxygenase	60,91	0.00549013636700336
PADG_08465	fumarylacetoacetase	57,67	0.0108038616369285
PADG_07366	methylcrotonoyl-CoA carboxylase subunit alpha	32,16	0.0509066885694793
PADG_04487	chorismate synthase	22,9	0.0314909968419182
Nucleotide/nucleoside/nucle	obase metabolism		
PADG_04099	phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase	105,74	0.0290343921451513
PADG_01159	Uridylate kinase	25,89	0.0225226043444458
PADG_05321	DNA RNA non-specific nuclease	31,72	0.0499799223721024
C-compound and carbohydrat	te metabolism		
PADG_03118	aldose 1-epimerase family	20,92	0.0473203607543561
PADG_00912	UDP-galactopyranose mutase	49,9	0.00775039746204842
PADG_01677	acetyl-coenzyme A synthetase	23,94	0.0413980013723899
PADG_04710	2-methylcitrate mitochondrial	179,9	0.00129368626044376

Table S4. Identified proteins from Paracoccidioides brasiliensis down-regulated in the mycelia phase compared to the mycelia-to-yeast transition and yeast cells

Lipid, fatty acid and isop	renoid metabolism		
PADG_12025	glutaryl- CoA dehydrogenase	11,75	0.0378176148991082
PADG_01228	3-hydroxybutyryl-CoA dehydrogenase	26,98	0.00942493695792639
PADG_00255	fatty acid synthase beta subunit dehydratase	97,69	0.0372553299870248
PADG_04718	2-methylcitrate dehydratase	162,21	0.000131666517534101
Metabolism of vitamins,	cofactors, and prosthetic groups		
PADG_00443	Dihydropteroate synthase	75,47	0.00123800894548555
PADG_05822	Pyridoxine biosynthesis protein pyroA	89,63	0.00277034051507976
PADG_08457	biotin synthase	6,95	0.0395889417320599
ENERGY			
Glycolysis and gluconeog	<i>g</i> enesis		
PADG_01896	Phosphoglycerate kinase	134,19	0.000712735140039373
PADG_08503	Phosphoenolpyruvate carboxykinase	71,43	0.0115249761276736
PADG_02411	Glyceraldehyde-3-phosphate dehydrogenase	554,25	0.0492052726676888
PADG_04059	Enolase	350,01	0.00541040257511781
Tricarboxylic-acid pathw	ay (citrate cycle, Krebs cycle, TCA cycle)		
PADG_00246	pyruvate dehydrogenase E1 component subunit beta	71,06	0.0014620825618247
PADG_04993	ATP-citrate synthase subunit 1	69,17	0.0215948774017605
PADG_07213	pyruvate dehydrogenase complex dihydrolipoamide acetyltransferase	103,07	0.006306183339428
PADG_11845	Aconitate hydratase, mitochondrial	207,07	0.0302112190508672
PADG_00317	succinyl-CoA ligase subunit beta	48,46	0.0126837599715285
PADG_02260	succinyl-CoA ligase subunit alpha	74,34	0.0326252304957893
PADG_04939	Succinyl-CoA:3-ketoacid-coenzyme A transferase	58,28	0.0201943831690541
PADG_08387	Citrate synthase	76,95	0.00379083047685583
PADG_01797	Dihydrolipoamide acetyltransferase component of pyruvate dehydrogenase	57,76	0.0128389547829813
Electron transport and m	embrane-associated energy conservation		
PADG_02561	ATP synthase subunit alpha, mitochondrial	327,16	0.00099703997320092
PADG_05436	Cytochrome b-c1 complex subunit Rieske	13,56	0.00954500862971618
PADG_03516	NADH-ubiquinone oxidoreductase 30.4 kDa subunit	15,29	0.00859471577854355
PADG_06196	12-oxophytodienoate reductase	53,59	0.000130524968963367
Respiration			
PADG_05750	cytochrome c oxidase polypeptide VI	57,71	0.000329872995986405

PADG_07081	electron transfer flavo alpha subunit	85,34	0.0265951000485402
PADG_03039	MICOS complex subunit MIC60	52,1	0.0458991211511605
PADG_03872	mitochondrial import inner membrane translocase subunit tim1	28,08	0.0280037026658489
PADG_07042	ATP synthase F1, delta subunit	73,15	0.0514263542897544
PADG_07813	ATP synthase F1, gamma subunit	94,65	0.00320229579998738
PADG_08349	ATP synthase subunit beta, mitochondrial	526,17	0.0091913956997716
PADG_05402	mitochondrial F1F0 ATP synthase subunit	32,02	0.0128065223457609
Oxidation of fatty acids			
PADG_06805	acyl- dehydrogenase	93,54	0.00228164549110767
PADG_01209	enoyl-CoA hydratase	75,09	0.0158508402126517
PADG_07023	carnitine O-acetyltransferase	23,7	0.0299195036063134
PADG_01687	3-ketoacyl-CoA thiolase	148,38	0.000606823603773545
TRANSCRIPTION			
RNA synthesis			
PADG_02555	nucleic acid-binding protein	62,4	0.0101850714020848
PADG_00872	histone H4	71,3	0.0252015733715969
PROTEIN SYNTHESIS			
Ribosome biogenesis			
PADG_11904	Ribosomal protein L1	36,56	0.0547556214196747
PADG_03856	60S ribosomal protein L15	31,71	0.000948265034607996
PADG_04848	60S ribosomal protein L8-B	58,13	0.00391393542396789
PADG_04862	50S ribosomal protein Mrp49	12,73	0.0046969426014565
PADG_05721	60S ribosomal protein L4	139	0.031687423620715
PADG_00784	40S ribosomal protein SO	43,43	0.038488765469723
PADG_02056	ribosomal protein L7	39,41	0.00101174747252608
PADG_01654	40S ribosomal protein S6-A	84,13	0.00128612006836141
PADG_00354	40S ribosomal protein S17	91,49	0.00512401922994533
PADG_01914	60S ribosomal protein L35	36,39	0.00595985342101163
PADG_00627	mitochondrial large ribosomal subunit L49, variant	5,15	0.00635571801442804
PADG_01387	60S ribosomal protein L7	35,88	0.00676476492288821
PADG_03778	60S ribosomal protein L10-A	56,25	0.0128434095495006
PADG_04106	60S ribosomal protein L11	47,97	0.0202870981819721

PADG_03873	60S ribosomal protein L20	18,21	0.0326173334051663
PADG_06525	40S ribosomal protein S1	78,17	0.0498924638228775
PADG_05939	60S ribosomal protein L27a	92,23	0.00976778835723734
PADG_03326	40S ribosomal protein S9	28,36	0.0516200825998414
PADG_03315	40S ribosomal protein S4	84,65	0.00145057927925207
PADG_02888	60S ribosomal protein L6 O	64,61	0.00058696534564495
PADG_06838	40S ribosomal protein S5	81,11	0.0280593514265553
PADG_02828	Ribosomal protein	35,23	0.0319912825552141
PADG_06048	40S ribosomal protein S27	16,06	0.0441806922768012
PADG_11379	60S ribosomal protein L5	90,99	0.00947872658438146
Translation			
PADG_02759	ribosome recycling factor domain-containing protein	14,85	0.00717309135667122
PADG_02896	elongation factor 1-beta	55,72	0.000328396134515179
PADG_00692	elongation factor 1-alpha	229,91	0.0033049385655597
PADG_08125	Elongation factor 2	258,41	0.00977484226145031
PADG_06265	elongation factor 1-gamma	94,06	0.00245190358187735
Aminoacyl-tRNA-synthetases			
PADG_05848	glycine-tRNA ligase	29,33	0.0284549763738526
PROTEIN FOLDING AND STABILIZATION			
Protein folding and stabilization			
PADG_12323	peptidyl-prolyl cis-trans isomerase	46,01	0.000811310718754342
PADG_02895	ATP-dependent Clp protease ATP-binding subunit ClpB	62,13	0.00276781772538938
PADG_07815	disulfide-isomerase domain	37,88	0.00378267127358446
PADG_04092	peptidyl-prolyl cis-trans isomerase B	109,77	0.00718691945820977
PADG_05628	Protein disulfide-isomerase domain	65,37	0.0189209329424933
PADG_06488	peptidyl-prolyl cis-trans isomerase D	139,23	0.0284592321370524
PADG_08048	T-complex protein 1 subunit beta	88,82	0.0435867936243462
PADG_08587	Peptidylprolyl isomerase	24,02	0.000635200628117717
PADG_01565	calnexin	82,6	0.0476035441549569
PADG_04034	Chaperone DnaJ	148,98	0.0070692227624351
PADG_02206	DnaJ domain protein Psi	62,1	0.0474842422073504
PADG 05229	chaperone protein dnaJ 3	20,67	0.00851844162738829

Protein/peptide degradation			
PADG_00599	26S protease regulatory subunit 6A	58,13	0.0340488792956519
PADG_04167	aspartyl aminopeptidase	86,75	0.000221830754827111
CELLULAR TRANSPORT			
transported compounds (substrates)			
PADG_06692	mitochondrial phosphate carrier protein	49,55	0.028478971205458
PADG_01440	ADP, ATP carrier protein	185,6	0.00222386670540909
PADG_03559	Cytochrome b5	28,87	0.0428430530059768
Transport facilities			
PADG_08263	mitochondrial outer membrane protein porin	144,86	0.00119131447896499
CELLULAR COMMUNICATION			
Cellular signalling			
PADG_02845	CORD and CS domain-containing	36,07	0.000230062222189261
PADG_08342	GTP-binding protein ypt1	36,58	0.0262887200043236
PADG_07652	CAMK/CAMK1/CAMK1-CMK protein k	16,53	0.00982473505840494
CELL RESCUE			
Stress response			
PADG_03170	serum paraoxonase/arylesterase 2	8,91	0.0049738065878992
PADG_01711	Hsp90 co-chaperone AHA1	85,65	0.00381621468774507
PADG_07715	hsp90-like protein	342,67	0.00592148500579047
PADG_02761	hsp75-like protein	294,38	0.0479601189854827
PADG_08369	hsp60-like protein	831,65	0.00127751244263923
PADG_03562	chaperone DnaK	355,03	0.00874116932727769
PADG_03163	cytochrome c peroxidase, mitochondrial	109,64	0.000593374880337985
PADG_04912	AhpC/TSA family protein	50,22	0.0170318717607415
PADG_07946	peroxisomal matrix protein	44,1	0.0297718977714577
PADG_00430	70 kDa heat shock protein	484,2	0.00660782723481957
PADG_02785	heat shock protein Hsp88	152,1	0.0223062727662165
PADG_00207	ribosome associated chaperone Zuotin	60,82	0.0439051277963011
PADG_08118	hsp72-like protein	959,26	0.00757422338032652
PADG_03963	30 kDa heat shock	138,26	0.000805454890924632
PADG_03654	hypothetical protein	19,31	0.000102412429082015

INTERACTION WITH THE ENVIRONMENT			
Cell adhesion			
PADG_04440	14-3-3-like protein	109,53	0.0115304629233556
PADG_07615	immunodominant antigen Gp43	22,2	0.00164042968040959
BIOGENESIS OF CELLULAR COMPONENTS			
Cell wall			
PADG_05303	beta-1,6-glucan biosynthesis (Knh1)	5,13	0.013018510681609
UNCLASSIFIED PROTEINS			
PADG_12152	hypothetical protein	10,19	0.00345282888989835
PADG_05356	isochorismatase domain-containing protein	80,89	0.00876062721083998
PADG_06080	hypothetical protein	17,63	0.00220468098930026
PADG_11413	hypothetical protein	19,14	0.0184217228588476
PADG_11832	hypothetical protein	18,79	0.0233063048763567
PADG_01128	hypothetical protein	11,22	0.0298111381892491
PADG_04439	Uncharacterized protein	18,72	0.054953798716532
PADG_02909	Uncharacterized protein	14,92	0.00455833380773627
PADG_06699	Uncharacterized protein	14,25	0.000786530106643649

^bProtein description - proteins annotation from *Paracoccidioides brasiliensis* database or by homology in Blast2GO or NCBI

^cScore - score obtained from the MS Amanda 2.0

^dp-value - statistically significant differences are considered with \leq 0.05 (ANOVA)

^eBiological process of differentially expressed proteins from MIPS (http://mips.helmholtz-muenchen.de/funcatDB) and Uniprot databases (http://www.uniprot.org/).

Table S5. Identified proteins from Paracoccidioides brasiliensis up-regulated in the mycelia-to-yeast transition compared to the mycelia phase and yeast cells				
Acession number ^a	Protein description ^b	Score ^c	p-value ^d	
Functional categories ^e				
METABOLISM				

Amino acid metabolism			
PADG_04487	chorismate synthase	22,9	0.0314909968419182
C-compound and carbohydrate metabol	ism		
PADG_01677	acetyl-coenzyme A synthetase	23,94	0.0413980013723899
ENERGY			
Glycolysis and gluconeogenesis			
PADG_08503	Phosphoenolpyruvate carboxykinase	71,43	0.0115249761276736
PADG_02411	Glyceraldehyde-3-phosphate dehydrogenase	554,25	0.0492052726676888
Electron transport and membrane-assoc	iated energy conservation		
PADG_06196	12-oxophytodienoate reductase	53 <i>,</i> 59	0.000130524968963367
PROTEIN FOLDING AND STABILIZATION			
Protein folding and stabilization			
PADG_08587	Peptidylprolyl isomerase	24,02	0.000635200628117717
PADG_01565	calnexin	82,6	0.0476035441549569
PADG_04034	Chaperone DnaJ	148,98	0.0070692227624351
PADG_02206	DnaJ domain protein Psi	62,1	0.0474842422073504
PADG_05229	chaperone protein dnaJ 3	20,67	0.00851844162738829
Protein/peptide degradation			
PADG_04167	aspartyl aminopeptidase	86,75	0.000221830754827111
CELLULAR TRANSPORT			
Transported compounds (substrates)			
PADG_03559	Cytochrome b5	28,87	0.0428430530059768
CELLULAR COMMUNICATION			
Cellular signalling			
PADG_07652	CAMK/CAMK1/CAMK1-CMK protein k	16,53	0.00982473505840494
CELL RESCUE			
Stress response			
PADG_08118	hsp72-like protein	959,26	0.00757422338032652
PADG_03963	30 kDa heat shock	138,26	0.000805454890924632
PADG_03654	hypothetical protein	19,31	0.000102412429082015
INTERACTION WITH THE ENVIRONMENT			
Cell adhesion			

PADG_07615	immunodominant antigen Gp43	22,2	0.00164042968040959
UNCLASSIFIED PROTEINS			
PADG_06699	Uncharacterized protein	14,25	0.000786530106643649
PADG_02909	Uncharacterized protein	14,92	0.00455833380773627

^bProtein description - proteins annotation from *Paracoccidioides brasiliensis* database or by homology in Blast2GO or NCBI

^cScore - score obtained from the MS Amanda 2.0

^dp-value - statistically significant differences are considered with \leq 0.05 (ANOVA)

^eBiological process of differentially expressed proteins from MIPS (http://mips.helmholtz-muenchen.de/funcatDB) and Uniprot databases (http://www.uniprot.org/).

Acession number ^a	Protein description ^b	Score ^c	p-value ^d
Functional categories ^e			
METABOLISM			
Amino acid metabolism			
PADG_01488	thiol methyltransferase	16,36	0.00859584687713703
PADG_02214	4-aminobutyrate aminotransferase	146,62	0.000473697117025741
PADG_01621	aspartate aminotransferase	76,22	0.000603223867301128
PADG_05277	Serine hydroxymethyltransferase	84,56	0.00298066391122739
PADG_03627	2-oxoisovalerate dehydrogenase subunit beta	40,81	0.0373648418664289
PADG_08262	asparagine synthase (glutamine-hydrolyzing)	7,22	0.0374351680322741
PADG_03522	methylthioadenosine phosphorylase	61,07	0.00188671139057892
PADG_00888	Argininosuccinate synthase	54,79	0.0283905003634937
PADG_06252	1,2-dihydroxy-3-keto-5-methylthiopentene dioxygenase	29,88	0.00701338481935753
PADG_06144	saccharopine dehydrogenase	25,89	0.00527529557636022
PADG_01718	Saccharopine dehydrogenase [NADP+, L-glutamate-forming]	25,07	0.0221450392480064

Table S6. Identified proteins from Paracoccidioides brasiliensis down-regulated in the mycelia-to-yeast transition compared to the mycelia and yeast cells

phospho-2-dehydro-3-deoxyheptonate aldolase	35,26	0.00034871632473159
chorismate mutase	36,37	0.0226842449859004
adenosylhomocysteinase	101,7	0.02113109868656
spermidine synthase	34,69	0.0432103775062461
glycine dehydrogenase	39,27	0.0105405077270114
4-hydroxyphenylpyruvate dioxygenase	60,91	0.00549013636700336
fumarylacetoacetase	57,67	0.0108038616369285
methylcrotonoyl-CoA carboxylase subunit alpha	32,16	0.0509066885694793
obase metabolism		
HIT domain-containing	27,59	0.00214233464281135
ribose-phosphate pyrophosphokinase II	65,5	0.00949990061787514
purine nucleoside phosphorylase I, inosine and guanosine-specific	14,82	0.00427473565670872
xanthine-guanine phosphoribosyl transferase	29,21	0.00126429186045653
Hydroxyisourate hydrolase	5,54	0.0195414250770774
phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase	105,74	0.0290343921451513
dihydroorotase, homodimeric	36,69	0.000601494528361185
uracil phosphoribosyltransferase	22,47	0.00342045544824264
Deoxyuridine 5'-triphosphate nucleotidohydrolase	81,69	0.00385911777105953
Uridylate kinase	25,89	0.0225226043444458
deoxyribose-phosphate aldolase	14,93	0.0359382344610037
DNA RNA non-specific nuclease	31,72	0.0499799223721024
nucleoside-diphosphate-sugar epimerase	26,88	0.000440673349932956
Inorganic pyrophosphatase	101,62	0.00039648057603618
e metabolism		
aldose 1-epimerase family	20,92	0.0473203607543561
alcohol oxidase	99 <i>,</i> 63	0.000210018090153545
short-chain dehydrogenase reductase family	63,12	0.00109994176880593
NADP-dependent mannitol dehydrogenase	37,32	0.0016711614063246
Lactam utilization protein lamB	19,26	0.00269083936760223
mannitol-1-phosphate 5-dehydrogenase	98,2	0.00320014525763444
lactonohydrolase	38,03	0.00734969612425638
	phospho-2-dehydro-3-deoxyheptonate aldolase chorismate mutase adenosylhomocysteinase spermidine synthase glycine dehydrogenase 4-hydroxyphenylpyruvate dioxygenase fumarylacetoacetase methylcrotonoyl-CoA carboxylase subunit alpha obase metabolism HIT domain-containing ribose-phosphate pyrophosphokinase II purine nucleoside phosphorylase I, inosine and guanosine-specific xanthine-guanine phosphoribosyl transferase Hydroxyisourate hydrolase phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase dihydroorotase, homodimeric uracil phosphoribosyltransferase Deoxyuridine 5'-triphosphate nucleotidohydrolase Uridylate kinase deoxyribose-phosphate aldolase DNA RNA non-specific nuclease nucleoside-diphosphate-sugar epimerase e metabolism aldose 1-epimerase family alcohol oxidase short-chain dehydrogenase reductase family NADP-dependent manitol dehydrogenase Lactam utilization protein lamB mannitol-1-phosphate 5-dehydrogenase lactonohydrolase	hospho-2-dehydro-3-deoxyheptonate aldolase 35,26 chorismate mutase 36,37 adenosylhomocysteinase 3101,7 spermidine synthase 34,69 glycine dehydrogenase 39,27 4-hydroxyphenylpyruvate dioxygenase 60,91 fumarylacetoacetase 57,67 methylcrotonoyl-CoA carboxylase subunit alpha 32,16 obase metabolism 127 hIIT domain-containing 27,59 ribose-phosphate pyrophosphokinase II 65,5 purine nucleoside phosphorylase I, inosine and guanosine-specific 14,82 xanthine-guanine phosphoribosyl transferase 29,21 Hydroxyisourate hydrolase 5,54 phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase 105,74 dihydroorotase, homodimeric 36,69 uracil phosphoribosyltransferase 22,47 Deoxyuridine 5'-triphosphate nucleotidohydrolase 34,69 Uridylate kinase 25,89 deoxyribose-phosphate aldolase 14,93 DNA RNA non-specific nuclease 31,72 nucleoside-diphosphate-sugar epimerase 26,88 deoxyribose-phosphate aldolase 25,89 deoxyribose-phosphate aldolase 34,69 Uridylate kinase 26,88 deoxyribose-phosphate aldolase 34,72 nucleoside-diphosphate-sugar epimerase 26,88 NADP-dependent manitol dehydrogenase reductase family 30,33 short-chain dehydrogenase reductase family 31,22 NADP-dependent manitol dehydrogenase 37,32 Lactam utilization protein lamB 39,26 manitol-1-phosphate 5-dehydrogenase 48,2 lactonohydrolase 38,03

PADG_00912	UDP-galactopyranose mutase	49,9	0.00775039746204842
PADG_07606	2,5-diketo-D-gluconic acid reductase A	77,45	0.010818881866288
PADG_06740	betaine aldehyde dehydrogenase	60,37	0.0325496051578872
PADG_04710	2-methylcitrate mitochondrial	179,9	0.00129368626044376
PADG_05081	Aldehyde dehydrogenase	222,22	0.000318428299089706
Lipid, fatty acid and isoprenoid metab	olism		
PADG_12025	glutaryl- CoA dehydrogenase	11,75	0.0378176148991082
PADG_03492	phosphatidylserine decarboxylase	29,91	0.00185747080872941
PADG_01228	3-hydroxybutyryl-CoA dehydrogenase	26,98	0.00942493695792639
PADG_03449	Isopentenyl-diphosphate delta-isomerase	20,95	0.0209229087713661
PADG_00255	fatty acid synthase beta subunit dehydratase	97,69	0.0372553299870248
PADG_04718	2-methylcitrate dehydratase	162,21	0.000131666517534101
Metabolism of vitamins, cofactors, and	d prosthetic groups		
PADG_00443	Dihydropteroate synthase	75,47	0.00123800894548555
PADG_05822	Pyridoxine biosynthesis protein pyroA	89,63	0.00277034051507976
PADG_08457	biotin synthase	6,95	0.0395889417320599
Secondary metabolism			
PADG_08034	dienelactone hydrolase family protein	107,18	0.00108007819663931
PADG_01052	3-demethylubiquinone-9 3-methyltransferase	20,31	0.00572417440168868
PADG_00312	cytochrome c heme lyase	15,03	0.0179304699139903
ENERGY			
Glycolysis and gluconeogenesis			
PADG_00852	fructose-1,6-bisphosphate aldolase, class 2	18,6	0.0321261222174796
PADG_07950	glucokinase	34,61	0.0269789169774159
PADG_06906	Triosephosphate isomerase	155,73	0.00153813947318225
PADG_05109	2,3-bisphosphoglycerate-independent phosphoglycerate mutase	62,5	0.0117496849150458
PADG_01896	Phosphoglycerate kinase	134,19	0.000712735140039373
PADG_04059	Enolase	350,01	0.00541040257511781
Tricarboxylic-acid pathway (citrate cyc	le, Krebs cycle, TCA cycle)		
PADG_00246	pyruvate dehydrogenase E1 component subunit beta	71,06	0.0014620825618247
PADG_04993	ATP-citrate synthase subunit 1	69,17	0.0215948774017605
PADG_04165	pyruvate dehydrogenase complex component Pdx1	38,2	0.00131307433739174

PADG_07213	pyruvate dehydrogenase complex dihydrolipoamide acetyltransferase	103,07	0.006306183339428
PADG_11845	Aconitate hydratase, mitochondrial	207,07	0.0302112190508672
PADG_00317	succinyl-CoA ligase subunit beta	48,46	0.0126837599715285
PADG_02260	succinyl-CoA ligase subunit alpha	74,34	0.0326252304957893
PADG_01797	Dihydrolipoamide acetyltransferase component of pyruvate dehydrogenase	57,76	0.0128389547829813
PADG_04939	Succinyl-CoA:3-ketoacid-coenzyme A transferase	58,28	0.0201943831690541
PADG_08387	Citrate synthase	76,95	0.00379083047685583
Electron transport and membrane	e-associated energy conservation		
PADG_02561	ATP synthase subunit alpha, mitochondrial	327,16	0.00099703997320092
PADG_05436	Cytochrome b-c1 complex subunit Rieske	13,56	0.00954500862971618
PADG_03516	NADH-ubiquinone oxidoreductase 30.4 kDa subunit	15,29	0.00859471577854355
PADG_07749	NAD(P)H:quinone oxidoreductase, type IV	209,82	0.0488987573295302
Respiration			
PADG_05750	cytochrome c oxidase polypeptide VI	57,71	0.000329872995986405
PADG_07081	electron transfer flavo alpha subunit	85,34	0.0265951000485402
PADG_03039	MICOS complex subunit MIC60	52,1	0.0458991211511605
PADG_03872	mitochondrial import inner membrane translocase subunit tim1	28,08	0.0280037026658489
PADG_07042	ATP synthase F1, delta subunit	73,15	0.0514263542897544
PADG_07813	ATP synthase F1, gamma subunit	94,65	0.00320229579998738
PADG_08349	ATP synthase subunit beta, mitochondrial	526,17	0.0091913956997716
PADG_05403	NADH-ubiquinone oxidoreductase 21 kDa subunit	61,24	0.0252028231260988
PADG_02454	NADH-ubiquinone oxidoreductase	12,12	0.0505489922010667
PADG_05402	mitochondrial F1F0 ATP synthase subunit	32,02	0.0128065223457609
Fermentation			
PADG_11405	Alcohol dehydrogenase 1	181,54	0.000117667332982207
PADG_04701	Alcohol dehydrogenase	19,87	0.0398751128886334
Oxidation of fatty acids			
PADG_06805	acyl- dehydrogenase	93 <i>,</i> 54	0.00228164549110767
PADG_01209	enoyl-CoA hydratase	75,09	0.0158508402126517
PADG_07023	carnitine O-acetyltransferase	23,7	0.0299195036063134
PADG_01687	3-ketoacyl-CoA thiolase	148,38	0.000606823603773545
CELL CYCLE AND DNA PROCESSING	G		

DNA processing			
PADG_03459	replication factor-A protein	33,18	0.0149027131920101
PADG_05818	HLH DNA binding	11,19	0.0230078557563301
PADG_02683	UV excision repair protein Rad23	95,32	0.0101122103649832
PADG_05709	histone acetyltransferase type B subunit 2	27,36	0.00164234466516168
PADG_00656	Non-histone chromosomal protein 6	49,18	0.00349912944508594
Cell cycle			
PADG_04795	deubiquitination-protection protein dph1	66,45	0.00011583181867771
PADG_05683	cell division control protein 48	276,29	0.000330152297791995
PADG_07319	septin-1	30,11	0.000818895717889287
PADG_07515	NSFL1 cofactor p47	31,97	0.0143456926429943
TRANSCRIPTION			
RNA synthesis			
PADG_00814	branchpoint-bridging protein	22,78	0.000361519806372817
PADG_04307	mRNA binding post-transcriptional regulator	149,3	0.00322339287702619
PADG_02555	nucleic acid-binding protein	62,4	0.0101850714020848
PADG_01508	U1 small nuclear ribonucleoprotein C	9,16	0.0268581913593662
PADG_01455	KH domain RNA-binding protein	177,31	0.000544832339699319
PADG_08081	zinc knuckle domain	30,31	0.000727891867202843
PADG_00220	class 2 transcription repressor NC2	9,43	0.00304321420966517
PADG_04311	cellular nucleic acid-binding protein	21,89	0.0115271319353104
PADG_03869	HMG box	37,81	0.0149326260057446
PADG_00872	histone H4	71,3	0.0252015733715969
PADG_06182	transcriptional repressor	130,91	0.0323405291079937
RNA processing			
PADG_02783	RNA-binding La domain-containing protein	35,41	0.0252707765390186
PADG_07689	transformer-SR ribonucleoprotein	63,33	0.00285515817257463
PADG_00044	28 kDa ribonucleoprotein	51,51	0.0311052414112992
PADG_00576	RNA recognition domain-containing protein containing protein, variant	43,25	0.000366474914980045
PADG_05340	pre-mrna splicing factor	73,65	0.00567170230733727
PADG_04369	splicing factor U2AF 23 kDa subunit	7,35	0.0093556652043975
PADG_04301	WD repeat-containing protein	33,57	0.0304988927372442

PROTEIN SYNTHESIS			
Ribosome biogenesis			
PADG_11904	Ribosomal protein L1	36,56	0.0547556214196747
PADG_03856	60S ribosomal protein L15	31,71	0.000948265034607996
PADG_01026	60S ribosomal protein L43	48,71	0.00189393950236822
PADG_04848	60S ribosomal protein L8-B	58,13	0.00391393542396789
PADG_04862	50S ribosomal protein Mrp49	12,73	0.0046969426014565
PADG_05686	ribosome biogenesis protein	19,52	0.0171919284417786
PADG_05721	60S ribosomal protein L4	139	0.031687423620715
PADG_00784	40S ribosomal protein SO	43,43	0.038488765469723
PADG_00335	40S ribosomal protein S14	150,13	0.0009283171462339
PADG_02056	ribosomal protein L7	39,41	0.00101174747252608
PADG_01654	40S ribosomal protein S6-A	84,13	0.00128612006836141
PADG_07583	40S ribosomal protein S21	54,68	0.00321015987134523
PADG_00354	40S ribosomal protein S17	91,49	0.00512401922994533
PADG_01914	60S ribosomal protein L35	36,39	0.00595985342101163
PADG_00627	mitochondrial large ribosomal subunit L49, variant	5,15	0.00635571801442804
PADG_01387	60S ribosomal protein L7	35,88	0.00676476492288821
PADG_03781	60S ribosomal protein L30	65,22	0.00769160773234302
PADG_03778	60S ribosomal protein L10-A	56,25	0.0128434095495006
PADG_00995	ubiquitin-40S ribosomal protein S27a	80,68	0.0155770103199853
PADG_04106	60S ribosomal protein L11	47,97	0.0202870981819721
PADG_03873	60S ribosomal protein L20	18,21	0.0326173334051663
PADG_02249	60S ribosomal protein L2	50,71	0.049831342606761
PADG_06525	40S ribosomal protein S1	78,17	0.0498924638228775
PADG_05939	60S ribosomal protein L27a	92,23	0.00976778835723734
PADG_03326	40S ribosomal protein S9	28,36	0.0516200825998414
PADG_01427	40S ribosomal protein S12	55,94	0.00188255977619058
PADG_03315	40S ribosomal protein S4	84,65	0.00145057927925207
PADG_02888	60S ribosomal protein L6 O	64,61	0.00058696534564495
PADG_06838	40S ribosomal protein S5	81,11	0.0280593514265553
PADG_02828	Ribosomal protein	35,23	0.0319912825552141

40S ribosomal protein S27	16,06	0.0441806922768012
60S ribosomal protein L5	90,99	0.00947872658438146
ribosome recycling factor domain-containing protein	14,85	0.00717309135667122
elongation factor 1-beta	55,72	0.000328396134515179
elongation factor 1-alpha	229,91	0.0033049385655597
translation initiation factor 4B	132,46	0.0305078072836169
woronin body major protein	79,11	0.00055674974717756
Eukaryotic translation initiation factor 3 subunit H	84,83	0.00217169449999158
translation initiation factor 4G	97,39	0.0127112389368946
translation initiation factor SUI1	25,21	0.0258640355371289
eukaryotic translation initiation factor 6	19,22	0.0525198964080063
Elongation factor 2	258,41	0.00977484226145031
elongation factor 1-gamma	94,06	0.00245190358187735
glycine-tRNA ligase	29,33	0.0284549763738526
TION		
TION		
TION peptidyl-prolyl cis-trans isomerase	46,01	0.000811310718754342
TION peptidyl-prolyl cis-trans isomerase prefoldin subunit 2	46,01 15,08	0.000811310718754342 0.00122708938870604
TION peptidyl-prolyl cis-trans isomerase prefoldin subunit 2 ATP-dependent Clp protease ATP-binding subunit ClpB	46,01 15,08 62,13	0.000811310718754342 0.00122708938870604 0.00276781772538938
TION peptidyl-prolyl cis-trans isomerase prefoldin subunit 2 ATP-dependent Clp protease ATP-binding subunit ClpB disulfide-isomerase domain	46,01 15,08 62,13 37,88	0.000811310718754342 0.00122708938870604 0.00276781772538938 0.00378267127358446
TION peptidyl-prolyl cis-trans isomerase prefoldin subunit 2 ATP-dependent Clp protease ATP-binding subunit ClpB disulfide-isomerase domain peptidyl-prolyl cis-trans isomerase B	46,01 15,08 62,13 37,88 109,77	0.000811310718754342 0.00122708938870604 0.00276781772538938 0.00378267127358446 0.00718691945820977
TION peptidyl-prolyl cis-trans isomerase prefoldin subunit 2 ATP-dependent Clp protease ATP-binding subunit ClpB disulfide-isomerase domain peptidyl-prolyl cis-trans isomerase B Protein disulfide-isomerase domain	46,01 15,08 62,13 37,88 109,77 65,37	0.000811310718754342 0.00122708938870604 0.00276781772538938 0.00378267127358446 0.00718691945820977 0.0189209329424933
TION peptidyl-prolyl cis-trans isomerase prefoldin subunit 2 ATP-dependent Clp protease ATP-binding subunit ClpB disulfide-isomerase domain peptidyl-prolyl cis-trans isomerase B Protein disulfide-isomerase domain peptidyl-prolyl cis-trans isomerase D	46,01 15,08 62,13 37,88 109,77 65,37 139,23	0.000811310718754342 0.00122708938870604 0.00276781772538938 0.00378267127358446 0.00718691945820977 0.0189209329424933 0.0284592321370524
TION peptidyl-prolyl cis-trans isomerase prefoldin subunit 2 ATP-dependent Clp protease ATP-binding subunit ClpB disulfide-isomerase domain peptidyl-prolyl cis-trans isomerase B Protein disulfide-isomerase domain peptidyl-prolyl cis-trans isomerase D T-complex protein 1 subunit beta	46,01 15,08 62,13 37,88 109,77 65,37 139,23 88,82	0.000811310718754342 0.00122708938870604 0.00276781772538938 0.00378267127358446 0.00718691945820977 0.0189209329424933 0.0284592321370524 0.0435867936243462
TION peptidyl-prolyl cis-trans isomerase prefoldin subunit 2 ATP-dependent Clp protease ATP-binding subunit ClpB disulfide-isomerase domain peptidyl-prolyl cis-trans isomerase B Protein disulfide-isomerase domain peptidyl-prolyl cis-trans isomerase D T-complex protein 1 subunit beta small glutamine-rich tetratricopeptide repeat-containing protein	46,01 15,08 62,13 37,88 109,77 65,37 139,23 88,82 61,51	0.000811310718754342 0.00122708938870604 0.00276781772538938 0.00378267127358446 0.00718691945820977 0.0189209329424933 0.0284592321370524 0.0435867936243462 0.0194408966072878
TION peptidyl-prolyl cis-trans isomerase prefoldin subunit 2 ATP-dependent Clp protease ATP-binding subunit ClpB disulfide-isomerase domain peptidyl-prolyl cis-trans isomerase B Protein disulfide-isomerase domain peptidyl-prolyl cis-trans isomerase D T-complex protein 1 subunit beta small glutamine-rich tetratricopeptide repeat-containing protein Peptidyl-prolyl cis-trans isomerase	46,01 15,08 62,13 37,88 109,77 65,37 139,23 88,82 61,51 49,8	0.000811310718754342 0.00122708938870604 0.00276781772538938 0.00378267127358446 0.00718691945820977 0.0189209329424933 0.0284592321370524 0.0435867936243462 0.0194408966072878 0.028957954112554
TION peptidyl-prolyl cis-trans isomerase prefoldin subunit 2 ATP-dependent Clp protease ATP-binding subunit ClpB disulfide-isomerase domain peptidyl-prolyl cis-trans isomerase B Protein disulfide-isomerase domain peptidyl-prolyl cis-trans isomerase D T-complex protein 1 subunit beta small glutamine-rich tetratricopeptide repeat-containing protein Peptidyl-prolyl cis-trans isomerase Peptidyl-prolyl cis-trans isomerase	46,01 15,08 62,13 37,88 109,77 65,37 139,23 88,82 61,51 49,8 32,66	0.000811310718754342 0.00122708938870604 0.00276781772538938 0.00378267127358446 0.00718691945820977 0.0189209329424933 0.0284592321370524 0.0435867936243462 0.0194408966072878 0.028957954112554 0.00239744249348738
TION peptidyl-prolyl cis-trans isomerase prefoldin subunit 2 ATP-dependent Clp protease ATP-binding subunit ClpB disulfide-isomerase domain peptidyl-prolyl cis-trans isomerase B Protein disulfide-isomerase domain peptidyl-prolyl cis-trans isomerase D T-complex protein 1 subunit beta small glutamine-rich tetratricopeptide repeat-containing protein Peptidyl-prolyl cis-trans isomerase Peptidyl-prolyl cis-trans isomerase Slocation	46,01 15,08 62,13 37,88 109,77 65,37 139,23 88,82 61,51 49,8 32,66	0.000811310718754342 0.00122708938870604 0.00276781772538938 0.00378267127358446 0.00718691945820977 0.0189209329424933 0.0284592321370524 0.0435867936243462 0.0194408966072878 0.028957954112554 0.00239744249348738
TION peptidyl-prolyl cis-trans isomerase prefoldin subunit 2 ATP-dependent Clp protease ATP-binding subunit ClpB disulfide-isomerase domain peptidyl-prolyl cis-trans isomerase B Protein disulfide-isomerase domain peptidyl-prolyl cis-trans isomerase D T-complex protein 1 subunit beta small glutamine-rich tetratricopeptide repeat-containing protein Peptidyl-prolyl cis-trans isomerase Peptidyl-prolyl cis-trans isomerase Slocation F-box domain-containing	46,01 15,08 62,13 37,88 109,77 65,37 139,23 88,82 61,51 49,8 32,66 45,73	0.000811310718754342 0.00122708938870604 0.00276781772538938 0.00378267127358446 0.00718691945820977 0.0189209329424933 0.0284592321370524 0.0435867936243462 0.0194408966072878 0.028957954112554 0.00239744249348738
	60S ribosomal protein L5 ribosome recycling factor domain-containing protein elongation factor 1-beta elongation factor 1-alpha translation initiation factor 4B woronin body major protein Eukaryotic translation initiation factor 3 subunit H translation initiation factor 4G translation initiation factor SUI1 eukaryotic translation initiation factor 6 Elongation factor 2 elongation factor 1-gamma	60S ribosomal protein L590,99ribosome recycling factor domain-containing protein14,85elongation factor 1-beta55,72elongation factor 1-alpha229,91translation initiation factor 4B132,46woronin body major protein79,11Eukaryotic translation initiation factor 3 subunit H84,83translation initiation factor 4G97,39translation initiation factor 5Ul125,21eukaryotic translation initiation factor 619,22Elongation factor 1-gamma94,06glycine-tRNA ligase29,33

PADG_08646	class E vacuolar -sorting machinery HSE1	22,48	0.0176936537439237
PADG_03274	mitochondrial import inner membrane translocase subunit tim9	36,03	0.0226626979060814
PADG_00240	SNF7 family protein Fti1/Did2	20,82	0.00561971799727414
Protein modification			
PADG_00809	ubiquitin-conjugating enzyme	17,71	0.00179716781257883
PADG_07925	ubiquitin-conjugating enzyme E2 N	24,77	0.00217641874973217
PADG_00569	5'/3'-nucleotidase SurE	7,3	0.0203490779710472
PADG_05929	protein-L-isoaspartate O-methyltransferase	8,5	0.000104293058688337
Protein/peptide degradation			
PADG_02637	ubiquitin-conjugating enzyme	47,99	0.00552046595228165
PADG_06290	proteasome component PRE5	48,18	0.0119003210880048
PADG_03221	thimet oligopeptidase	44,01	0.0152211653648595
PADG_05922	glutamate carboxypeptidase	62,82	0.018794315888034
PADG_05820	xaa-Pro aminopeptidase	60,96	0.0537361658754471
PADG_05160	Dipeptidyl peptidase 3	42,94	0.000553026709381306
PADG_08442	Proteasome subunit alpha type	30,72	0.00644585367629858
PADG_03967	proteasome component C5	45,24	0.012833799267322
PADG_00599	26S protease regulatory subunit 6A	58,13	0.0340488792956519
PADG_07190	Proteasome endopeptidase complex	37,56	0.0500129362578737
PADG_00634	vacuolar protease A	25,22	0.00276331930081985
PADG_06546	Aminopeptidase	59,91	0.018748446410497
CELLULAR TRANSPORT			
Transported compounds (substrates)			
PADG_07964	V-type proton ATPase subunit E	83,38	0.00770764690084264
PADG_06692	mitochondrial phosphate carrier protein	49,55	0.028478971205458
PADG_08176	phosphatidylinositol-phosphatidylcholine transfer protein	31,56	0.0103878866021587
PADG_01363	diazepam-binding inhibitor (GABA receptor acylbinding)	84,2	0.0170201896661536
PADG_01440	ADP,ATP carrier protein	185,6	0.00222386670540909
Transport facilities			
PADG_08263	mitochondrial outer membrane protein porin	144,86	0.00119131447896499
transport routes			
PADG_02022	clathrin light chain	84,07	0.00526327780889446

PADG_02924	G2/M phase checkpoint control protein Sum2	24,09	0.000640360610487575
PADG_07014	vesicular-fusion sec17	58,84	0.0410862235352565
CELLULAR COMMUNICATIO	DN		
Cellular signalling			
PADG_08191	cAMP-dependent kinase regulatory subunit	15,37	0.000153652216039725
PADG_02845	CORD and CS domain-containing	36,07	0.000230062222189261
PADG_04383	tricalbin-3	25,57	0.00157729548942107
PADG_08342	GTP-binding protein ypt1	36,58	0.0262887200043236
PADG_07287	WD repeat	13,98	0.0424886349236938
PADG_03219	myosin regulatory light chain cdc4	34,13	0.00245254380627877
CELL RESCUE			
stress response			
PADG_02981	ThiJ/PfpI family protein	71,14	0.0202700356111835
PADG_03170	serum paraoxonase/arylesterase 2	8,91	0.0049738065878992
PADG_01711	Hsp90 co-chaperone AHA1	85,65	0.00381621468774507
PADG_07715	hsp90-like protein	342,67	0.00592148500579047
PADG_02761	hsp75-like protein	294,38	0.0479601189854827
PADG_08369	hsp60-like protein	831,65	0.00127751244263923
PADG_03562	chaperone DnaK	355,03	0.00874116932727769
PADG_03163	cytochrome c peroxidase, mitochondrial	109,64	0.000593374880337985
PADG_04912	AhpC/TSA family protein	50,22	0.0170318717607415
PADG_07946	peroxisomal matrix protein	44,1	0.0297718977714577
PADG_00430	70 kDa heat shock protein	484,2	0.00660782723481957
PADG_02785	heat shock protein Hsp88	152,1	0.0223062727662165
PADG_00207	ribosome associated chaperone Zuotin	60,82	0.0439051277963011
PADG_05032	Hsp90 binding co-chaperone (Sba1)	39,31	0.0317768742306163
PADG_03423	glutathione S-transferase Gst3	28,83	0.000573696552796715
PADG_02764	thioredoxin-like protein	76,21	0.00495776661632139
PADG_05344	peroxiredoxin Q BCP	15,93	0.00309586826577796
PADG_05504	thioredoxin	106,67	0.0208911445460205
PADG_03095	mitochondrial peroxiredoxin PRX1	33,08	0.0351949640957963

Virulence, disease factors

PADG_07422	serine proteinase	29,51	0.00264817902949662
Detoxification			
PADG_00073	SAM-dependent methyltransferase COQ5 family	35,14	0.000874824117092326
PADG_07418	superoxide dismutase [Cu-Zn] SOD1	101,1	0.00119250240482325
PADG_01755	Fe-Mn family superoxide dismutase SOD2	40,2	0.0191136606558536
CELL FATE			
Cell growth / morphogenesis			
PADG_05517	rho-gdp dissociation inhibitor	21,41	0.019945607030085
PADG_04559	progesterone binding	16,55	0.0378473693930494
Cell death			
PADG_06087	hypothetical protein	15,32	0.000495869192119841
INTERACTION WITH THE ENVIRONMENT			
Cell adhesion			
PADG_04440	14-3-3-like protein 2	109,53	0.0115304629233556
BIOGENESIS OF CELLULAR COMPONENTS			
Cell wall			
PADG_00994	chitinase class II	236,68	0.000152810421803673
PADG_03691	cell wall glucanase	9,66	0.000192529842468642
PADG_04499	cell wall protein ECM33 precursor	22,82	0.000415316082694873
PADG_05303	beta-1,6-glucan biosynthesis (Knh1)	5,13	0.013018510681609
PADG_02862	1,3-beta-glucosidase	9,17	0.0194863299097851
CELL TYPE DIFFERENTIATON			
Fungal/microorganismic cell type differentiation	on		
PADG_04260	NIMA-interacting protein TinC	29,3	0.000707300897920691
PADG_08091	cell polarity (Alp11)	11,88	0.0208774113534429
UNCLASSIFIED PROTEINS			
PADG_02604	hypothetical protein	33 <i>,</i> 89	0.00015844299425143
PADG_02181	HAD-superfamily hydrolase	36,51	0.000200997050975056
PADG_12447	hypothetical protein	102,27	0.000252966887635888
PADG_04907	hypothetical protein	47,96	0.000318705002215328
PADG_05157	cell surface protein, putative	27,81	0.000347601158886615
PADG_04343	short chain dehydrogenase/reductase	21,75	0.000645592053848837

PADG_01857	Uncharacterized protein	41,39	0.000735739746029736
PADG_02967	Uncharacterized protein	111,93	0.000954103076199105
PADG_06021	hypothetical protein	32,74	0.000987328858139613
PADG_06202	Arp2 3 complex subunit Arc16	66,98	0.00132807191136456
PADG_07670	SAP domain-containing protein	30,66	0.0013911862778064
PADG_11347	hypothetical protein	33,49	0.00197211084602885
PADG_00422	actin cytoskeleton protein (VIP1)	162,78	0.00207529238829785
PADG_04205	hypothetical protein	39,47	0.00267855755722755
PADG_01002	erythrocyte band 7 integral membrane protein	17,5	0.00271552290942387
PADG_02858	hypothetical protein	37,78	0.00310539167374307
PADG_11101	hypothetical protein	41,61	0.00317627875002816
PADG_12152	hypothetical protein	10,19	0.00345282888989835
PADG_00674	hypothetical protein	13,05	0.00394824311127837
PADG_11424	hypothetical protein	41,88	0.00515308641760238
PADG_02338	Uncharacterized protein	19,47	0.00599800759227989
PADG_12252	hypothetical protein	8,88	0.00737286242790404
PADG_08152	hypothetical protein	13,17	0.00772151473816209
PADG_08270	UBX domain-containing protein	8,33	0.00779498683485196
PADG_02944	hypothetical protein	23,01	0.00846113292689915
PADG_05356	isochorismatase domain-containing protein	80,89	0.00876062721083998
PADG_00921	Uncharacterized protein	35,19	0.00965739615783812
PADG_11487	hypothetical protein	17,57	0.0106368435907347
PADG_07225	Uncharacterized protein	24,59	0.0107115482507958
PADG_11950	hypothetical protein	122,48	0.0114196399407177
PADG_06136	related to mismatched base pair and cruciform dna recognition	21,36	0.0130031745279776
PADG_07506	hypothetical protein	44,27	0.0146863742665499
PADG_02118	Uncharacterized protein	16,96	0.016955093392485
PADG_04818	hypothetical protein	5,42	0.0170034848346801
PADG_00676	hypothetical protein	128,58	0.0225015189702146
PADG_04685	Uncharacterized protein	15,49	0.0233426763011714
PADG_03203	BAR domain-containing protein	88,17	0.0256785799658214
PADG_04215	DUF124 domain-containing protein	21,2	0.026961653931293

PADG_01688	DlpA domain-containing protein	12,4	0.030468175182578
PADG_02709	hypothetical protein	17,25	0.0373430897201166
PADG_05584	hypothetical protein	13,06	0.0507774717047346
PADG_02307	CUE domain-containing	12,64	0.052604670310913
PADG_04806	hypothetical protein	14,14	0.0526341547562164
PADG_06945	GYF domain-containing protein	26,02	0.0535146776162895
PADG_06080	hypothetical protein	17,63	0.00220468098930026
PADG_11413	hypothetical protein	19,14	0.0184217228588476
PADG_11832	hypothetical protein	18,79	0.0233063048763567
PADG_01128	hypothetical protein	11,22	0.0298111381892491
PADG_04439	Uncharacterized protein	18,72	0.054953798716532

^bProtein description - proteins annotation from *Paracoccidioides brasiliensis* database or by homology in Blast2GO or NCBI

^cScore - score obtained from the MS Amanda 2.0

^dp-value - statistically significant differences are considered with \leq 0.05 (ANOVA)

^eBiological process of differentially expressed proteins from MIPS (http://mips.helmholtz-muenchen.de/funcatDB) and Uniprot databases (http://www.uniprot.org/).

Table S7. Identified proteins from	Paracoccidioides brasiliensis u	p-regulated in the	veast phase compa	ared to the mycelia-to	o-veast transition and m	vcelia phases

Acession number ^a	Protein description ^b	Score ^c	p-value ^d
Functional categories ^e			
METABOLISM			
Amino acid metabolism			
PADG_01488	thiol methyltransferase	16,36	0.00859584687713703
PADG_01621	aspartate aminotransferase	76,22	0.000603223867301128
PADG_05277	Serine hydroxymethyltransferase	84,56	0.00298066391122739
PADG_03627	2-oxoisovalerate dehydrogenase subunit beta	40,81	0.0373648418664289
PADG_08262	asparagine synthase (glutamine-hydrolyzing)	7,22	0.0374351680322741

PADG_00888	Argininosuccinate synthase	54,79	0.0283905003634937
PADG_05058	chorismate mutase	36,37	0.0226842449859004
PADG_01886	adenosylhomocysteinase	101,7	0.02113109868656
PADG_00210	glycine dehydrogenase	39,27	0.0105405077270114
PADG_08468	4-hydroxyphenylpyruvate dioxygenase	60,91	0.00549013636700336
PADG_08465	fumarylacetoacetase	57,67	0.0108038616369285
PADG_07366	methylcrotonoyl-CoA carboxylase subunit alpha	32,16	0.0509066885694793
Nucleotide/nucleoside/nucleobase	metabolism		
PADG_04099	phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase	105,74	0.0290343921451513
PADG_01159	Uridylate kinase	25,89	0.0225226043444458
PADG_05321	DNA RNA non-specific nuclease	31,72	0.0499799223721024
C-compound and carbohydrate met	abolism		
PADG_03118	aldose 1-epimerase family	20,92	0.0473203607543561
PADG_00912	UDP-galactopyranose mutase	49,9	0.00775039746204842
PADG_04710	2-methylcitrate synthase mitochondrial	179,9	0.00129368626044376
Lipid, fatty acid and isoprenoid met	abolism		
PADG_12025	glutaryl- CoA dehydrogenase	11,75	0.0378176148991082
PADG_01228	3-hydroxybutyryl-CoA dehydrogenase	26,98	0.00942493695792639
PADG_00255	fatty acid synthase beta subunit dehydratase	97,69	0.0372553299870248
PADG_04718	2-methylcitrate dehydratase	162,21	0.000131666517534101
Metabolism of vitamins, cofactors,	and prosthetic groups		
PADG_00443	Dihydropteroate synthase	75,47	0.00123800894548555
PADG_05822	Pyridoxine biosynthesis protein pyroA	89,63	0.00277034051507976
PADG_08457	biotin synthase	6,95	0.0395889417320599
ENERGY			
Glycolysis and gluconeogenesis			
PADG_01896	Phosphoglycerate kinase	134,19	0.000712735140039373
PADG_04059	Enolase	350,01	0.00541040257511781
Tricarboxylic-acid pathway (citrate	cycle, Krebs cycle, TCA cycle)		
PADG_00246	pyruvate dehydrogenase E1 component subunit beta	71,06	0.0014620825618247
PADG_04993	ATP-citrate synthase subunit 1	69,17	0.0215948774017605
PADG_07213	pyruvate dehydrogenase complex dihydrolipoamide acetyltransferase	103,07	0.006306183339428

PADG_11845	Aconitate hydratase, mitochondrial	207,07	0.0302112190508672
PADG_00317	succinyl-CoA ligase subunit beta	48,46	0.0126837599715285
PADG_04939	Succinyl-CoA:3-ketoacid-coenzyme A transferase	58,28	0.0201943831690541
PADG_08387	Citrate synthase	76,95	0.00379083047685583
PADG_01797	Dihydrolipoamide acetyltransferase component of pyruvate dehydrogenase	57,76	0.0128389547829813
PADG_02260	succinyl-CoA ligase subunit alpha	74,34	0.0326252304957893
Electron transport and membrane-asso	ociated energy conservation		
PADG_02561	ATP synthase subunit alpha, mitochondrial	327,16	0.00099703997320092
PADG_05436	Cytochrome b-c1 complex subunit Rieske	13,56	0.00954500862971618
PADG_03516	NADH-ubiquinone oxidoreductase 30.4 kDa subunit	15,29	0.00859471577854355
Respiration			
PADG_05750	cytochrome c oxidase polypeptide VI	57,71	0.000329872995986405
PADG_07081	electron transfer flavo alpha subunit	85,34	0.0265951000485402
PADG_03039	MICOS complex subunit MIC60	52,1	0.0458991211511605
PADG_03872	mitochondrial import inner membrane translocase subunit tim1	28,08	0.0280037026658489
PADG_07042	ATP synthase F1, delta subunit	73,15	0.0514263542897544
PADG_07813	ATP synthase F1, gamma subunit	94,65	0.00320229579998738
PADG_08349	ATP synthase subunit beta, mitochondrial	526,17	0.0091913956997716
PADG_05402	mitochondrial F1F0 ATP synthase subunit	32,02	0.0128065223457609
Oxidation of fatty acids			
PADG_06805	acyl- dehydrogenase	93,54	0.00228164549110767
PADG_01209	enoyl-CoA hydratase	75,09	0.0158508402126517
PADG_07023	carnitine O-acetyltransferase	23,7	0.0299195036063134
PADG_01687	3-ketoacyl-CoA thiolase	148,38	0.000606823603773545
TRANSCRIPTION			
RNA synthesis			
PADG_02555	nucleic acid-binding protein	62,4	0.0101850714020848
PADG_00872	histone H4	71,3	0.0252015733715969
PROTEIN SYNTHESIS			
Ribosome biogenesis			
PADG_11904	Ribosomal protein L1	36,56	0.0547556214196747
PADG_03856	60S ribosomal protein L15	31,71	0.000948265034607996

PADG_04848	60S ribosomal protein L8-B	58,13	0.00391393542396789
PADG_04862	50S ribosomal protein Mrp49	12,73	0.0046969426014565
PADG_05721	60S ribosomal protein L4	139	0.031687423620715
PADG_00784	40S ribosomal protein SO	43,43	0.038488765469723
PADG_02056	ribosomal protein L7	39,41	0.00101174747252608
PADG_01654	40S ribosomal protein S6-A	84,13	0.00128612006836141
PADG_00354	40S ribosomal protein S17	91,49	0.00512401922994533
PADG_01914	60S ribosomal protein L35	36,39	0.00595985342101163
PADG_00627	mitochondrial large ribosomal subunit L49, variant	5,15	0.00635571801442804
PADG_01387	60S ribosomal protein L7	35,88	0.00676476492288821
PADG_03778	60S ribosomal protein L10-A	56,25	0.0128434095495006
PADG_04106	60S ribosomal protein L11	47,97	0.0202870981819721
PADG_03873	60S ribosomal protein L20	18,21	0.0326173334051663
PADG_06525	40S ribosomal protein S1	78,17	0.0498924638228775
PADG_05939	60S ribosomal protein L27a	92,23	0.00976778835723734
PADG_03326	40S ribosomal protein S9	28,36	0.0516200825998414
PADG_03315	40S ribosomal protein S4	84,65	0.00145057927925207
PADG_02888	60S ribosomal protein L6 O	64,61	0.00058696534564495
PADG_06838	40S ribosomal protein S5	81,11	0.0280593514265553
PADG_02828	Ribosomal protein	35,23	0.0319912825552141
PADG_06048	40S ribosomal protein S27	16,06	0.0441806922768012
PADG_11379	60S ribosomal protein L5	90,99	0.00947872658438146
translation			
PADG_02759	ribosome recycling factor domain-containing protein	14,85	0.00717309135667122
PADG_02896	elongation factor 1-beta	55,72	0.000328396134515179
PADG_00692	elongation factor 1-alpha	229,91	0.0033049385655597
PADG_08125	Elongation factor 2	258,41	0.00977484226145031
PADG_06265	elongation factor 1-gamma	94,06	0.00245190358187735
Aminoacyl-tRNA-synthetases			
PADG_05848	glycine-tRNA ligase	29,33	0.0284549763738526
PROTEIN FOLDING AND STABILIZATION			
Protein folding and stabilization			

PADG_02895	ATP-dependent Clp protease ATP-binding subunit ClpB	62,13	0.00276781772538938
PADG_07815	disulfide-isomerase domain	37,88	0.00378267127358446
PADG_08048	T-complex protein 1 subunit beta	88,82	0.0435867936243462
PADG_12323	peptidyl-prolyl cis-trans isomerase	46,01	0.000811310718754342
PADG_04092	peptidyl-prolyl cis-trans isomerase B	109,77	0.00718691945820977
PADG_05628	Protein disulfide-isomerase domain	65,37	0.0189209329424933
PADG_06488	peptidyl-prolyl cis-trans isomerase D	139,23	0.0284592321370524
Protein/peptide degradation			
PADG_00599	26S protease regulatory subunit 6A	58,13	0.0340488792956519
CELLULAR TRANSPORT			
Transported compounds (substrates)			
PADG_06692	mitochondrial phosphate carrier protein	49,55	0.028478971205458
PADG_01440	ADP, ATP carrier protein	185,6	0.00222386670540909
Transport facilities			
PADG_08263	mitochondrial outer membrane protein porin	144,86	0.00119131447896499
CELLULAR COMMUNICATION			
Cellular signalling			
PADG_02845	CORD and CS domain-containing	36,07	0.000230062222189261
PADG_08342	GTP-binding protein ypt1	36,58	0.0262887200043236
CELL RESCUE			
Stress response			
PADG_01711	Hsp90 co-chaperone AHA1	85,65	0.00381621468774507
PADG_07715	hsp90-like protein	342,67	0.00592148500579047
PADG_02761	hsp75-like protein	294,38	0.0479601189854827
PADG_08369	hsp60-like protein	831,65	0.00127751244263923
PADG_03562	chaperone DnaK	355,03	0.00874116932727769
PADG_00430	70 kDa heat shock protein	484,2	0.00660782723481957
PADG_02785	heat shock protein Hsp88	152,1	0.0223062727662165
PADG_04912	AhpC/TSA family protein	50,22	0.0170318717607415
PADG_03170	serum paraoxonase/arylesterase 2	8,91	0.0049738065878992
PADG_03163	cytochrome c peroxidase, mitochondrial	109,64	0.000593374880337985
PADG_07946	peroxisomal matrix protein	44,1	0.0297718977714577

PADG_00207	ribosome associated chaperone Zuotin	60,82	0.0439051277963011
INTERACTION WITH THE ENVIRONMENT			
Cell adhesion			
PADG_04440	14-3-3-like protein	109,53	0.0115304629233556
BIOGENESIS OF CELLULAR COMPONENTS			
Cell wall			
PADG_05303	beta-1,6-glucan biosynthesis (Knh1)	5,13	0.013018510681609
UNCLASSIFIED PROTEINS			
PADG_12152	hypothetical protein	10,19	0.00345282888989835
PADG_05356	isochorismatase domain-containing protein	80,89	0.00876062721083998
PADG_06080	hypothetical protein	17,63	0.00220468098930026
PADG_11413	hypothetical protein	19,14	0.0184217228588476
PADG_11832	hypothetical protein	18,79	0.0233063048763567
PADG_01128	hypothetical protein	11,22	0.0298111381892491
PADG_04439	Uncharacterized protein	18,72	0.054953798716532

^bProtein description - proteins annotation from *Paracoccidioides brasiliensis* database or by homology in Blast2GO or NCBI

^cScore - score obtained from the MS Amanda 2.0

^dp-value - statistically significant differences are considered with \leq 0.05 (ANOVA)

^eBiological process of differentially expressed proteins from MIPS (http://mips.helmholtz-muenchen.de/funcatDB) and Uniprot databases (http://www.uniprot.org/).

Table S8. Identified proteins from *Paracoccidioides brasiliensis* down-regulated in the yeast phase compared to the mycelia-to-yeast transition and mycelia phases

Acession number ^a	Protein description ^b	Score ^c
Functional categories ^e		
METABOLISM		
Amino acid metabolism		
PADG_02214	4-aminobutyrate aminotransferase	146,62

PADG_03522	methylthioadenosine phosphorylase	61,07
PADG_06252	1,2-dihydroxy-3-keto-5-methylthiopentene dioxygenase	29,88
PADG_06144	saccharopine dehydrogenase	25,89
PADG_01718	Saccharopine dehydrogenase [NADP+, L-glutamate-forming]	25,07
PADG_08021	phospho-2-dehydro-3-deoxyheptonate aldolase	35,26
PADG_04603	spermidine synthase	34,69
Nucleotide/nucleoside/nucleobase me	etabolism	
PADG_04869	HIT domain-containing	27,59
PADG_00780	ribose-phosphate pyrophosphokinase II	65,5
PADG_08066	purine nucleoside phosphorylase I, inosine and guanosine-specific	14,82
PADG_00322	xanthine-guanine phosphoribosyl transferase	29,21
PADG_00621	Hydroxyisourate hydrolase	5,54
PADG_07970	dihydroorotase, homodimeric	36,69
PADG_01100	uracil phosphoribosyltransferase	22,47
PADG_07782	Deoxyuridine 5'-triphosphate nucleotidohydrolase	81,69
PADG_06054	deoxyribose-phosphate aldolase	14,93
PADG_02658	nucleoside-diphosphate-sugar epimerase	26,88
Phosphate metabolism		
PADG_0417	Inorganic pyrophosphatase	101,62
C-compound and carbohydrate metabo	olism	
PADG_00649	alcohol oxidase	99,63
PADG_04687	short-chain dehydrogenase reductase family	63,12
PADG_03859	NADP-dependent mannitol dehydrogenase	37,32
PADG_00735	Lactam utilization protein lamB	19,26
PADG_01372	mannitol-1-phosphate 5-dehydrogenase	98,2
PADG_05855	lactonohydrolase	38,03
PADG_07606	2,5-diketo-D-gluconic acid reductase A	77,45
PADG_06740	betaine aldehyde dehydrogenase	60,37
PADG_01677	acetyl-coenzyme A synthetase	23,94
PADG_05081	Aldehyde dehydrogenase	222,22
Lipid, fatty acid and isoprenoid metabo	olism	
PADG_03492	phosphatidylserine decarboxylase	29,91

PADG_03449	Isopentenyl-diphosphate delta-isomerase	20,95
Secondary metabolism		
PADG_08034	dienelactone hydrolase family protein	107,18
PADG_01052	3-demethylubiquinone-9 3-methyltransferase	20,31
PADG_00312	cytochrome c heme lyase	15,03
ENERGY		
Glycolysis and gluconeogenesis		
PADG_00852	fructose-1,6-bisphosphate aldolase, class 2	18,6
PADG_07950	glucokinase	34,61
PADG_08503	Phosphoenolpyruvate carboxykinase	71,43
PADG_06906	Triosephosphate isomerase	155,73
PADG_05109	2,3-bisphosphoglycerate-independent phosphoglycerate mutase	62,5
PADG_02411	Glyceraldehyde-3-phosphate dehydrogenase	554,25
Tricarboxylic-acid pathway (citrate cycle	, Krebs cycle, TCA cycle)	
PADG_04165	pyruvate dehydrogenase complex component Pdx1	38,2
Electron transport and membrane-assoc	iated energy conservation	
PADG_06196	12-oxophytodienoate reductase	53,59
PADG_07749	NAD(P)H:quinone oxidoreductase, type IV	209,82
Respiration		
PADG_05403	NADH-ubiquinone oxidoreductase 21 kDa subunit	61,24
Fermentation		
PADG_11405	Alcohol dehydrogenase 1	181,54
PADG_04701	Alcohol dehydrogenase	19,87
CELL CYCLE AND DNA PROCESSING		
DNA processing		
PADG_03459	replication factor-A protein	33,18
PADG_05818	HLH DNA binding	11,19
PADG_02683	UV excision repair protein Rad23	95,32
PADG_05709	histone acetyltransferase type B subunit 2	27,36
PADG_00656	Non-histone chromosomal protein 6	49,18
Cell cycle		
PADG_04795	deubiquitination-protection protein dph1	66,45

PADG_05683	cell division control protein 48	276,29
PADG_07319	septin-1	30,11
PADG_07515	NSFL1 cofactor p47	31,97
TRANSCRIPTION		
RNA synthesis		
PADG_00814	branchpoint-bridging protein	22,78
PADG_04307	mRNA binding post-transcriptional regulator	149,3
PADG_01508	U1 small nuclear ribonucleoprotein C	9,16
PADG_01455	KH domain RNA-binding protein	177,31
PADG_08081	zinc knuckle domain	30,31
PADG_00220	class 2 transcription repressor NC2	9,43
PADG_04311	cellular nucleic acid-binding protein	21,89
PADG_03869	HMG box	37,81
PADG_06182	transcriptional repressor	130,91
RNA processing		
PADG_02783	RNA-binding La domain-containing protein	35,41
PADG_07689	transformer-SR ribonucleoprotein	63,33
PADG_00044	28 kDa ribonucleoprotein	51,51
PADG_00576	RNA recognition domain-containing protein containing protein, variant	43,25
PADG_05340	pre-mrna splicing factor	73,65
PADG_04369	splicing factor U2AF 23 kDa subunit	7,35
PADG_04301	WD repeat-containing protein	33,57
PROTEIN SYNTHESIS		
Ribosome biogenesis		
PADG_01026	60S ribosomal protein L43	48,71
PADG_05686	ribosome biogenesis protein	19,52
PADG_00335	40S ribosomal protein S14	150,13
PADG_07583	40S ribosomal protein S21	54,68
PADG_03781	60S ribosomal protein L30	65,22
PADG_00995	ubiquitin-40S ribosomal protein S27a	80,68
PADG_02249	60S ribosomal protein L2	50,71
PADG_01427	40S ribosomal protein S12	55,94

Translation		
PADG_01079	translation initiation factor 4B	132,46
PADG_07356	woronin body major protein	79,11
PADG_01865	Eukaryotic translation initiation factor 3 subunit H	84,83
PADG_00457	translation initiation factor 4G	97,39
PADG_06110	translation initiation factor SUI1	25,21
PADG_02691	eukaryotic translation initiation factor 6	19,22
PROTEIN FOLDING AND STABILIZATION		
Protein folding and stabilization		
PADG_12329	prefoldin subunit 2	15,08
PADG_08587	Peptidylprolyl isomerase	24,02
PADG_01852	small glutamine-rich tetratricopeptide repeat-containing protein	61,51
PADG_05203	Peptidyl-prolyl cis-trans isomerase	49,8
PADG_01565	calnexin	82,6
PADG_07953	Peptidyl-prolyl cis-trans isomerase	32,66
PADG_04034	Chaperone DnaJ	148,98
PADG_02206	DnaJ domain protein Psi	62,1
PADG_05229	chaperone protein dnaJ 3	20,67
Protein targeting, sorting and translocatio	n	
PADG_02619	F-box domain-containing	45,73
PADG_08188	vacuolar-sorting protein snf7	23,85
PADG_08646	class E vacuolar -sorting machinery HSE1	22,48
PADG_03274	mitochondrial import inner membrane translocase subunit tim9	36,03
PADG_00240	SNF7 family protein Fti1/Did2	20,82
Protein modification		
PADG_00809	ubiquitin-conjugating enzyme	17,71
PADG_07925	ubiquitin-conjugating enzyme E2 N	24,77
PADG_00569	5'/3'-nucleotidase SurE	7,3
PADG_05929	protein-L-isoaspartate O-methyltransferase	8,5
Protein/peptide degradation		
PADG_04167	aspartyl aminopeptidase	86,75
PADG_02637	ubiquitin-conjugating enzyme	47,99

PADG_06290	proteasome component PRE5	48,18		
PADG_03221	thimet oligopeptidase	44,01		
PADG_05922	glutamate carboxypeptidase	62,82		
PADG_05820	xaa-Pro aminopeptidase	60,96		
PADG_05160	Dipeptidyl peptidase 3	42,94		
PADG_08442	Proteasome subunit alpha type	30,72		
PADG_03967	proteasome component C5	45,24		
PADG_07190	Proteasome endopeptidase complex	37,56		
PADG_00634	vacuolar protease A	25,22		
PADG_06546	Aminopeptidase	59,91		
CELLULAR TRANSPORT				
Transported compounds (substrates)				
PADG_07964	V-type proton ATPase subunit E	83,38		
PADG_08176	phosphatidylinositol-phosphatidylcholine transfer protein	31,56		
PADG_01363	diazepam-binding inhibitor (GABA receptor acylbinding)	84,2		
PADG_03559	Cytochrome b5	28,87		
Transport routes				
PADG_02022	clathrin light chain	84,07		
PADG_02924	G2/M phase checkpoint control protein Sum2	24,09		
PADG_07014	vesicular-fusion sec17	58,84		
CELLULAR COMMUNICATION				
Cellular signalling				
PADG_08191	cAMP-dependent kinase regulatory subunit	15,37		
PADG_04383	tricalbin-3	25,57		
PADG_07652	CAMK/CAMK1/CAMK1-CMK protein k	16,53		
PADG_07287	WD repeat	13,98		
PADG_03219	myosin regulatory light chain cdc4	34,13		
CELL RESCUE				
Stress response				
PADG_02981	ThiJ/PfpI family protein	71,14		
PADG_08118	hsp72-like protein	959,26		
PADG_03963	30 kDa heat shock	138,26		

PADG_03654	hypothetical protein	19,31
PADG_05032	Hsp90 binding co-chaperone (Sba1)	39,31
PADG_03423	glutathione S-transferase Gst3	28,83
PADG_02764	thioredoxin-like protein	76,21
PADG_05344	peroxiredoxin Q BCP	15,93
PADG_05504	thioredoxin	106,67
PADG_03095	mitochondrial peroxiredoxin PRX1	33,08
Virulence, disease factors		
PADG_07422	serine proteinase	29,51
Detoxification		
PADG_00073	SAM-dependent methyltransferase COQ5 family	35,14
PADG_07418	superoxide dismutase [Cu-Zn] SOD1	101,1
PADG_01755	Fe-Mn family superoxide dismutase SOD2	40,2
CELL FATE		
Cell growth / morphogenesis		
PADG_05517	rho-gdp dissociation inhibitor	21,41
PADG_04559	progesterone binding	16,55
Cell death		
PADG_06087	hypothetical protein	15,32
INTERACTION WITH THE ENVIRONMENT		
Cell adhesion		
PADG_07615	immunodominant antigen Gp43	22,2
BIOGENESIS OF CELLULAR COMPONENTS		
Cell wall		
PADG_00994	chitinase class II	236,68
PADG_03691	cell wall glucanase	9,66
PADG_04499	cell wall protein ECM33 precursor	22,82
PADG_02862	1,3-beta-glucosidase	9,17
CELL TYPE DIFFERENTIATON		
Fungal/microorganismic cell type differentiation		
PADG_04260	NIMA-interacting protein TinC	29,3
PADG_08091	cell polarity (Alp11)	11,88

UNCLASSIFIED PROTEINS		
PADG_02604	hypothetical protein	33,89
PADG_02181	HAD-superfamily hydrolase	36,51
PADG_12447	hypothetical protein	102,27
PADG_04907	hypothetical protein	47,96
PADG_05157	cell surface protein, putative	27,81
PADG_04343	short chain dehydrogenase/reductase	21,75
PADG_01857	Uncharacterized protein	41,39
PADG_02967	Uncharacterized protein	111,93
PADG_06021	hypothetical protein	32,74
PADG_06202	Arp2 3 complex subunit Arc16	66,98
PADG_07670	SAP domain-containing protein	30,66
PADG_11347	hypothetical protein	33,49
PADG_00422	actin cytoskeleton protein (VIP1)	162,78
PADG_04205	hypothetical protein	39,47
PADG_01002	erythrocyte band 7 integral membrane protein	17,5
PADG_02858	hypothetical protein	37,78
PADG_11101	hypothetical protein	41,61
PADG_00674	hypothetical protein	13,05
PADG_02909	Uncharacterized protein	14,92
PADG_11424	hypothetical protein	41,88
PADG_02338	Uncharacterized protein	19,47
PADG_12252	hypothetical protein	8,88
PADG_08152	hypothetical protein	13,17
PADG_08270	UBX domain-containing protein	8,33
PADG_02944	hypothetical protein	23,01
PADG_00921	Uncharacterized protein	35,19
PADG_11487	hypothetical protein	17,57
PADG_07225	Uncharacterized protein	24,59
PADG_11950	hypothetical protein	122,48
PADG_06136	related to mismatched base pair and cruciform dna recognition	21,36
PADG_07506	hypothetical protein	44,27

PADG_02118	Uncharacterized protein	16,96
PADG_04818	hypothetical protein	5,42
PADG_00676	hypothetical protein	128,58
PADG_04685	Uncharacterized protein	15,49
PADG_03203	BAR domain-containing protein	88,17
PADG_04215	DUF124 domain-containing protein	21,2
PADG_01688	DlpA domain-containing protein	12,4
PADG_02709	hypothetical protein	17,25
PADG_05584	hypothetical protein	13,06
PADG_02307	CUE domain-containing	12,64
PADG_04806	hypothetical protein	14,14
PADG_06945	GYF domain-containing protein	26,02
PADG_06699	Uncharacterized protein	14,25

^bProtein description - proteins annotation from *Paracoccidioides brasiliensis* database or by homology in Blast2GO or NCBI

^cScore - score obtained from the MS Amanda 2.0

^dp-value - statistically significant differences are considered with ≤ 0.05 (ANOVA)

^eBiological process of differentially expressed proteins from MIPS (http://mips.helmholtz-muenchen.de/funcatDB) and Uniprot databases (http://www.uniprot.org/).

Table S10. Identified phosphoproteins in TiO ₂ enriched fraction of Paracoccidioides brasiliensis in the mycelia phase, m	nycelia-to-yeast transition and yeast cells
--	---

				# Protein	#						
				Unique	Unique	MW					
Acession number ^a	Protein description ^b	Coverage	# Peptides	Peptides	Peptides	[kDa]	calc. pl	Modifications ^c		Tukey's test	d
Functional categories ^e											
METABOLISM								-	Yeast	Mycelium	Transition

Amino acid

metabolism
	cystathionine beta-							Phospho			
PADG_05301	synthase	5,816135	1	1	1	57,6	6,49	[\$348(95.9)]	3,102419	2,768614	2,872892
	2-oxoisovalerate										
	dehydrogenase E1 alpha							Phospho			
PADG_03514	subunit	3,104213	1	1	1	50,6	7,81	[S338(97)]	3,138558	3,098288	2,866981
Nitrogen, sulfur an	d selenium metabolism										
								Phospho			
PADG_06490	formamidase	25,0646	6	6	6	42,3	6,09	[S280(100)]	5,945806	6,855969	6,537993
C-compound and c	arbohydrate metabolism										
								Phospho			
								[Y124(84.1);			
	ribose-phosphate							T125(87.8);			
PADG_00780	pyrophosphokinase II	12,11454	4	4	4	49	8,15	S167(98.8)]	4,94918	5,618977	5,198683
	ribose-phosphate							Phospho			
PADG_07217	pyrophosphokinase 1	2,692998	1	1	1	60,6	6,32	[\$322(100)]	3,052182	3,298006	3,018495
Lipid, fatty acid and	d isoprenoid metabolism										
								Phospho			
	choline-phosphate		_	_	_			[S18(99.9);			
PADG_02299	cytidylyltransferase	11,70213	3	3	3	61	8,88	S69(97)]	3,973515	4,517121	4,114901
ENERGY											
Glycolysis and gluc	coneogenesis										
								Phospho			
PADG_11132	Phosphoglucomutase	3,23741	2	2	2	60 <i>,</i> 4	7,17	[T112(98.4)]	3,587329	3,732349	3,387184
	2,3-bisphosphoglycerate-										
BABC 05400	independent	0.040050	2	2	2			Phospho			
PADG_05109	phosphoglycerate mutase	9,213052	2	2	2	57,3	5,94	[\$72(100)]	4,531219	4,04/183	4,343606
CELL CYCLE AND DI	NA PROCESSING										
DNA processing											
								Phospho			
PADG_06339	DNA topoisomerase 2	1,128784	1	1	1	216	8,51	[S1557(100)]	2,926207	1,997747	2,417284
	PHD finger domain-	2 202 474		4		00 7	7 00	Phospho			0 400677
PADG_08705	containing	3,289474	1	1	1	98,7	7,02	[\$471(96.4)]	2,808023	3,494123	3,133677
cell cycle											
		4 200504		4	4	105 1		Phospho	4 4 2 0 7 2 2	2 04 02 4	2 747664
PADG_00085	arsenite resistance Ars2	1,260504	1	1	1	105,1	6,44	[238(100)]	4,139722	3,91924	3,/4/664

								Phospho			
PADG 07515	NSFL1 cofactor p47	8 673469	1	1	1	42.4	5.22	[SII0(100); S114(100)]	5,281732	5,183344	4,953863
1100_01010		0,070,000	-	-	-	, .	5)22	Phospho	0,201,02	5,2000 11	1,5555666
PADG_01028	sister chromatid cohesion	1,204056	1	1	1	173,4	6,51	[S317(100)] Phospho	2,570917	2,785402	2,435109
PADG_05893	nucleosome assembly	17,31707	4	4	4	46,6	4,54	[S318(100)]	4,419136	4,748355	4,369767
TRANSCRIPTION											
RNA synthesis											
								Phospho			
PADG_01678	nucleoporin SONB	0,856855	1	1	1	211,3	6,23	[S810(98.5)]	2,866148	2,797013	2,69628
	le vers els sectores le viel els se							Phospho			
	branchpoint-bridging	7 61 5 9 0 4	1	Λ	٨		0 5 4	[5127(100);	1 557001	4 007641	4 527727
PADG_00814	PIOLEIII RNA polymerase-	7,013694	4	4	4	05,5	0,54	3129(99.9)] Phospho	4,557664	4,997041	4,557727
PADG 02315	associated protein LEO1	6 168224	3	3	3	60 1	4 58	[\$140(100)]	3 881798	4 883672	4 339849
17700_02010		0,100224	5	5	5	00,1	4,50	Phospho	5,001750	4,000072	4,555045
PADG 02652	RNP domain	26,12613	6	6	6	35	8,24	[\$316(100)]	7,260518	7,33824	6,972037
-								Phospho			,
PADG_07379	transcription factor	7,719298	1	1	1	32,1	6,81	[S122(100)]	3,698978	4,492681	3,647539
	transcription initiation							Phospho			
PADG_11651	factor TFIID subunit 1	2,043693	1	1	1	159	5,64	[S1214(99.9)]	2,166544	2,587685	2,261753
	CCR4-NOT transcription							Phospho			
PADG_02622	complex subunit	9,596929	2	2	2	55,9	7,03	[S371(98.6)]	2,90465	2,559746	2,451958
	CCR4-NOT transcription		_	-	-			Phospho			
PADG_03515	complex subunit 4	4,035309	2	2	2	170,1	8,72	[T391(98.7)]	2,670121	2,926809	2,680752
	LINAC how		1	1	1	20.7	0 5 7	Phospho	2 240027	2 706 426	2 515121
PADG_03869	HIVIG DOX	5,800007	T	T	T	39,7	8,57	[5117(100)]	2,340837	2,786426	2,515131
	associated complex							Phospho			
PADG 04730	subunit alpha	28 22967	2	2	2	22 5	4 96	[\$29(98 7)]	5 297625	5 94457	5 40916
17100_01730	serine-threonine kinase	20,22307	2	2	2	22,5	1,50	[323(30.7)]	5,257625	5,51157	3,10310
	receptor-associated							Phospho			
PADG_07287	protein	10,19737	1	1	1	32,7	6,52	[\$91(96.5)]	2,416966	3,10709	2,747216
RNA processing											

	pinin SDK memA domain-							Phospho			
PADG_11196	containing transformer-SR	5,111111	1	1	1	49,8	5,99	[S329(100)] Phospho	2,473888	2,892355	2,524801
PADG_07689	ribonucleo	12,78689	3	3	3	34,3	9,38	[T152(100)]	4,761749	4,845409	4,463838
	nuclear mRNA splicing							Phospho			
PADG_02899	factor-associated	8,270677	2	2	2	45,4	4,84	[S22(99.2)]	4,712949	5,177192	4,769349
								Phospho			
	-		_	_	_			[S121(100);			
PADG_05340	pre-mRNA splicing factor	21,13402	5	5	5	23,1	9,79	S182(100)]	6,264775	6,255803	5,922197
								Phospho			
	PAR1 hinding	7 642885	5	5	5	120 5	0 17	[3724(93.8);	2 171206	2 72110/	2 120052
1 ADG_02330	T ADI DINUNG	7,043003	5	5	J	120,5	5,47	Phospho	5,471250	5,721154	3,433333
PADG 00167	pre-mRNA-splicing factor	5.524862	1	1	1	39.6	6.92	[\$67(100)]	2.55847	2.888766	2.745651
PROTEIN SYNTHESIS		-,				,-	- / -		,	,	,
Ribosome biogenesis											
								Phospho			
PADG_03778	60S ribosomal protein L10	9,865471	2	2	2	25,7	10,29	[S221(100)]	2,924283	2,539464	2,635543
translation											
	eukaryotic translation										
	initiation factor 3 subunit							Phospho			
PADG_04057	J	23,15789	4	4	4	31,4	4,94	[S101(100)]	4,622483	5,615766	5,170419
	alan aation faatan 2	1 02002	1	1	1	110 0	F 24	Phospho	2 50002		2 4 4 9 2 2
	elongation factor 2	1,82002	1 C	I C	1	110,0	5,24	[338(100)]	2,500983	2,800570	2,44833
PADG_02896	elongation factor 1-beta	51,56951	0	0	T	25	4,84	Phospho [593]	0,074853	6,31/398	6,202431
PADG 05358	initiation factor 5	9 090909	2	2	2	47 8	5 24	[\$47(100)]	4 896248	5 317287	4 719477
17100_00000		5,050505	2	2	2	47,0	3,24	Phospho	4,000240	5,517207	+,/10+//
	WD repeat-containing							[\$351(100);			
PADG_01250	protein JIP5	6,53753	1	1	1	43,9	5,45	S353(100)]	4,183511	4,536677	4,165468
PROTEIN FOLDING AND	STABILIZATION										
Protein folding and stal	bilization										
-								Phospho			
PADG_02206	DnaJ domain protein Psi	7,629428	2	2	2	39,4	9,26	[T188(100)]	3,001708	1,240666	2,498676
Protein targeting, sorti	ng and translocation										

								Phospho			
PADG_06817	translocation SEC63	3,757225	1	1	1	77,5	6,18	[S633(100)] Phospho [S455(97.3); S540(99.9);	3,151088	2,485279	2,611368
RADC 00011	actin hinding	17 00122	7	7	7	9 <i>6</i> 6	E 11	S559(100);	1 201566	1 700060	1 250001
PADG_00011 Protein modification		17,90125	/	/	/	80,0	3,11	3027(100)]	4,364300	4,700808	4,239004
Protein mounication	SAGA complex							Phospho			
PADG 05366	component	7 280514	1	1	1	18 0	0 73	[\$30/(100)]	2 111360	2 27/256	2 160323
Protoin /nontido dos	radation	7,200314	1	T	Ŧ	40,5	5,75	[5504(100)]	2,111305	2,274230	2,105525
Protein/peptide deg	gradation							Phospho			
PADG_02430 CELLULAR TRANSPORT	AAA family ATPase	1,292597	1	1	1	188,7	5,55	[S495(96.8)]	2,87433	2,781365	2,667517
Transported compo	unds (substrates)										
Transported compo	succinate fumarate							Phospho			
PADG_01020	antiporter	5,538462	2	2	2	35,1	9,89	[S150(100)] Phospho	3,009416	2,908169	2,615264
PADG 03545	niemann-Pick C1 protein	2,431373	1	1	1	139,9	6,34	[S312(97.1)]	1,743632	1,329995	1,520132
Transport routes											
•								Phospho			
PADG_01191	nuclear export Yrb2	3,295311	1	1	1	84	4,96	[T319(98.3)] Phospho	1,059796	1,447115	1,198162
PADG_01114	importin subunit alpha-1 peroxisomal biogenesis	6,6787	1	1	1	60,7	5,03	[S84(92.5)] Phospho	1,452801	1,271282	1,220611
PADG_00061	factor 6	1,69262	1	1	1	159,5	6,15	[S1457(100)] Phospho	1,178066	1,260667	1,208226
PADG_07659	transport sec9	6,651376	1	1	1	48	6,32	[S370(100)] Phospho	2,388188	2,055762	2,199313
PADG_06945	GYF domain-containing actin cytoskeleton-	3,005636	2	2	2	170,4	7,42	[S1225(98.3)]	3,626758	4,390126	3,969773
PADG 01152	regulatory complex	7 220/5	Λ	Л	4	165.2	6.24	PHOSPHO	1 207772	1 670157	1 277750
		1,33743	4	4	4	105,2	0,24	[3919(94.7]]	1,331113	1,070137	т, <i>зтт</i> о
	NICATION										

Cellular signalling											
								Phospho [S131(100); T270(100);			
PADG_03715	FK506-binding	21,0101	8	8	8	53,5	4,69	S295(100)]	6,762602	6,540751	6,278808
CELL RESCUE											
Stress response											
	Hsp90 co-chaperone							Phospho			
PADG_01711	AHA1 ribosome associated	6,811146	1	1	1	36	5,48	[S154(94.8)] Phospho	2,740702	2,878043	2,503326
PADG_00207	chaperone Zuotin	4,719101	2	2	2	50,6	8 <i>,</i> 95	[S82(100)]	4,847958	4,71884	4,525201
CELL FATE											
Cell growth / morpl	hogenesis										
								Phospho			
PADG_05959	hypothetical protein	11,61826	1	1	1	26,5	6,67	[S104(100)]	4,773336	4,950183	4,651108
UNCLASSIFIED											
								Phospho			
								[S129(100);			
PADG_00166	MGMT family	15,97222	1	1	1	16,1	5,31	S133(99.9)]	3,713882	4,282924	3,766512
								Phospho			
								[1153; 5155;			
	hypothetical protein	13 /615/	1	1	1	<u>, , , , , , , , , , , , , , , , , , , </u>	5 /1	T166]	1 07//33	2 282182	2 276036
TADO_00000	hypothetical protein	13,40134	I	T	Ŧ	23,2	5,41	Phospho	1,574455	2,302102	2,270030
PADG 01149	hypothetical protein	2.404526	1	1	1	76.4	6.87	[S289(99.9)]	2.325296	2.506974	2.223895
	, , , , , , , , , , , , , , , , , , ,	,				- 7	- / -	Phospho	,	,	,
PADG_02076	hypothetical protein	1,264138	1	1	1	164,5	6,47	[S292(100)]	3,208983	2,474665	2,615864
—								Phospho			
PADG_02307	CUE domain-containing	14,28571	2	2	2	47,8	5,05	[S381(99.9)]	4,003074	4,063819	3,824686
								Phospho			
PADG_02967	Uncharacterized protein	34,52381	18	18	1	61,9	5,49	[T484; S485]	5,1707	5,671596	5,326313
				_				Phospho			
PADG_03822	Uncharacterized protein	31,70732	1	1	1	9	5,17	[S75(100)]	3,570318	3,961034	3,36203
	hypothetical aretain	0 042527	1	4	4	140	11 20		4 120027	4 140204	4 000004
PADG_03827	nypothetical protein	ŏ,ŏ4ɔ́ɔ́ɔ́/	T	T	T	14,6	11,39	[322(99.4)]	4,128037	4,140261	4,006001

								Phospho			
PADG_04006	hypothetical protein	7,692308	2	2	2	31,9	10,68	[S79(89.2)] Phospho	2,492957	2,440826	2,304749
PADG_04243	transcriptional regulator	8,762887	2	2	2	43,2	5,78	[S356(98.2)] Phospho	2,764076	2,520841	2,615695
PADG_04442	hypothetical protein	3,333333	1	1	1	62,2	5,03	[S79(100)] Phospho [S255(92.9);	2,574349	2,981064	2,754124
PADG_05112	hypothetical protein spindle poison sensitivity	7,978723	1	1	1	41,6	7,4	S258(92.9)] Phospho [S118(98.8);	3,230977	3,46201	3,038037
PADG_05935	Scp3	13,62984	4	4	4	73,7	9,19	S370(97.7)] Phospho [S115(97.6);	4,758374	5,080931	4,815578
PADG_07022	hypothetical protein CBS and PB1 domain-	19,70149	3	3	3	36,3	7,03	S137(100)] Phospho	5,195515	5,12415	4,84574
PADG_08239	containing	3,725782	1	1	1	72,6	6,21	[S462(100)] Phospho	1,399811	1,72896	1,503784
PADG_11936	apses transcription	7,637232	2	2	2	46,1	6,1	[S370(100)] Phospho [Y112(98.6);	2,444898	2,898177	2,520452
PADG_11982	hypothetical protein	6,695157	2	2	2	78,4	8,54	S565(99.9)] Phospho	3,485453	2,383411	2,756194
PADG_12447	hypothetical protein	25,04673	5	5	5	56,6	5,69	[S383(100)]	4,902494	5,855668	5,318341

^aAccession number - acession number of matched protein from *Paracoccidioides brasiliensis*

Uniprot database

^bProtein description - proteins annotation from *Paracoccidioides brasiliensis* database or by homology in Blast2GO or NCBI identified in

enriched fraction

^cModification- modification in the enriched fraction obtained

from the MS Amanda 2.0

^dTukey's test- average of the Tukey test (of mycelia, mycelia-to-yeast transition and yeast)

^e Biological process of differentially expressed proteins from MIPS (http://mips.helmholtz-muenchen.de/funcatDB) and Uniprot databases (http://www.uniprot.org/)

			#	# Unique	# Protein	MW					
Acession number ^a	Protein description ^b	Coverage	Peptides	Peptides	Groups	[kDa]	calc. pl	Modifications ^c		Tukey's test	d
Functional categories ^e											
METABOLISM									Yeast	Mycelium	Transition
Amino acid metabolism											
	cystathionine beta-										
PADG_05301	synthase	34,33396	13	13	1	57,6	6,49	Phospho [S348]	4,669516	4,573088	4,604525
	spermine spermidine							Phospho [T316];			
PADG_07312	synthase family	4,152249	1	1	1	63,5	7,61	Methyl [E319]	1,3783	1,482255	1,684557
ENERGY											
Glycolysis and gluconeog	enesis										
	2,3-										
	bisphosphoglycerate-										
	independent										
	phosphoglycerate							Phospho [S58;			
PADG_05109	mutase	26,10365	9	9	1	57,3	5,94	S59; S72]	4,483192	4,697819	4,661476
CELL CYCLE AND DNA PRO	DCESSING										
Cell cycle											
	SUMO-conjugating							Phospho [T191;			
PADG_12492	enzyme ubc9	7,211538	1	1	1	23,3	7,27	Y196]	1,347677	1,617028	1,594244
TRANSCRIPTION											
RNA processing											
	pre-mrna splicing										
PADG_05340	factor	27,31959	6	6	1	23,1	9,79	Phospho [S182]	4,513186	4,732044	4,598566
	RNP domain-							Phospho [S46;			
PADG_04934	containing	49,26625	14	14	1	50,9	9,86	S48; S51]	4,531108	4,768104	4,522713
								Phospho [T374;			
	DNA-binding protein							S401]; Methyl			
PADG_03236	creA	7,02403	1	1	1	58	9,69	[D372]	1,448436	1,600157	1,55319
								Phospho [T14;			
PADG_06336	cell lysis protein cwl1	17,19298	3	3	1	32,2	6,62	S17]	2,881565	3,174896	3,140182
PROTEIN SYNTHESIS											
Translation											

	translation initiation										
PADG_04057	factor 3 subunit J	40	7	7	1	31,4	4,94	Phospho [S101]	4,335911	4,789044	4,656223
	translation initiation							Phospho [S343;			
PADG_01079	factor 4B	36,69565	13	13	1	62,4	9,51	T345]	4,353437	4,808579	4,628514
	elongation factor 1-										
PADG_02896	beta	51,56951	6	6	1	25	4,84	Phospho [S93]	4,902468	4,367075	4,505715
PROTEIN FOLDING AND ST	ABILIZATION										
Protein targeting, sorting a	and translocation										
	exocyst complex										
PADG_05074	component exo84	1,404056	1	1	1	71,7	9,22	Phospho [T362]	1,319824	1,64428	1,576151
	peroxisomal							Phospho [S226;			
	membrane protein							S227; S228; S229;			
PADG_00828	receptor Pex19	6,132075	1	1	1	43,9	4,41	T233]	2,502621	3,293574	3,186362
CELLULAR TRANSPORT											
Transport routes											
	actin like protein 2/3										
PADG_00945	complex, subunit 5	54,40415	5	5	1	20,5	6,1	Phospho [S141]	4,550736	4,696068	4,591444
								Phospho [S506;			
PADG_03336	annexin ANXC4	2,567095	1	1	1	97,2	9,06	T508]	0,973755	1,743814	1,53129
CELLULAR											
COMMUNICATION											
Cellular signalling											
	FK506-binding										
PADG_03715	protein	30,70707	10	10	1	53,5	4,69	Phospho [S131]	4,65136	4,5741	4,619937
	leucine Rich Repeat							_			
	domain-containing			_				Phospho [S366;			
PADG_04046	protein	4,109589	1	1	1	87	9,67	S367; S369]	1,652733	1,389491	1,526106
CELL RESCUE											
Stress response											
	ribosome associated										
PADG_00207	chaperone Zuotin	31,68539	10	10	1	50,6	8,95	Phospho [S82]	4,822792	4,487466	4,493959
BIOGENESIS OF CELLULAR	COMPONENTS										
Cell wall											
	GPI-anchored cell							Phospho [S135;			
PADG_03105	surface glycoprotein	2,838221	1	1	1	114,4	7,37	S136; Y139]	1,386332	1,438175	1,703114

UNCLASSIFIED

PADG_02863	hypothetical protein	0,778689	1	1	1	267,4	5,48	Phospho [S2091]	1,726674	1,34108	1,420022
PADG_12447	hypothetical protein	38,8785	10	10	1	56,6	5,69	Phospho [S383]	3,859343	4,914597	4,786712
								Phospho [T125;			
	Uncharacterized							T128; S131; S132;			
PADG_05228	protein	21,79487	1	1	1	17,2	7,52	S136; S140]	0	0	0
	Uncharacterized							Phospho [T484;			
PADG_02967	protein	34,52381	18	18	1	61,9	5,49	S485]	3,980578	4,913309	4,729138

^aAcession number - acession number of matched protein from *Paracoccidioides brasiliensis* Uniprot

database

^bProtein description - proteins annotation from *Paracoccidioides brasiliensis* database or by homology in Blast2GO or NCBI identified in enriched fraction

 $^{\rm c}\mbox{Modification-modification}$ in the enriched fraction obtained from the

MS Amanda 2.0

^dTukey's test- average of the Tukey test (of mycelia, mycelia-to-yeast transition and yeast) used for statistical

^e Biological process of differentially expressed proteins from MIPS (http://mips.helmholtz-muenchen.de/funcatDB) and Uniprot databases (http://www.uniprot.org/)

Produção científica durante o doutoramento

Artigo publicado

ARAÚJO, D. S; Lima, P. S; Baeza, L. C. ¹; Parente, A. F. A.; Bailão, A. M.; Borges, C. L.; Soares, C. M. A. Employing proteomic analysis to compare Paracoccidioides lutzii yeast and mycelium cell wall proteins. *Biochimica et Biophysica Acta - Proteins and Proteomics*, v. 1865, n. 11, p. 1304–1314, 2017. Disponível em: http://dx.doi.org/10.1016/j.bbapap.2017.08.016>.

Trabalhos em publicação:

- PHOSPHOPROTEOMIC ANALYSIS OF MEMBERS OF THE PARACOCCIDIOIDES GENUS. Portis, I. G.; Araújo, D. S.; Santos Júnior, A. C. M.; Pontes, A. H., Fontes, W.; Paccez, J. D.; Ricart, C. A. O.; Soares, C. M. A.
- 2. PROTEOMIC ANALYSIS OF CELL WALL OF THE *Paracoccidioides brasiliensis* CRYTIC SPECIES *Pb*03 and *Pb*18. Ayda Luz Malaver Salamanca.
- ANALYSIS OF *Paracoccidioides* HOMEOSTASIS IN RESPONSE TO HYPOXIC STRESS. Lucas Nojosa Oliveira.
- PROTEOMIC ANALYSIS OF *Paracoccidioides brasiliensis* during infection of alveolar primed or not by interferon gamma. Edilânia G. A. Chaves¹, Lilian C. Baeza^{1,2}, Danielle S. Araújo¹, Clayton L. Borges¹, Juliana A. Parente-Rocha¹, Milton A. P. de Oliveira³, Célia M. A. Soares^{1*}.

Referências

- Adams, D. J. (2004). Fungal cell wall chitinases and glucanases. *Microbiology*, 150(7), 2029–2035. https://doi.org/10.1099/mic.0.26980-0
- Almeida, A. J., Cunha, C., Carmona, J. A., Sampaio-Marques, B., Carvalho, A., Malavazi, I., ... Rodrigues, F. (2009). Cdc42p controls yeast-cell shape and virulence of Paracoccidioides brasiliensis. *Fungal Genetics and Biology*, 46(12), 919–926. https://doi.org/10.1016/j.fgb.2009.08.004
- Alonso, A., Sasin, J., Bottini, N., Friedberg, I., Friedberg, I., Osterman, A., ... Mustelin, T. (2004). Protein tyrosine phosphatases in the human genome. *Cell*, 117(6), 699– 711. https://doi.org/10.1016/j.cell.2004.05.018
- Andrade, R. V, Paes, H. C., Nicola, A. M., De, M. J. A., Fachin, A. L., Cardoso, R. S., ... Felipe, S. S. (2006). Cell organisation, sulphur metabolism and ion transportrelated genes are differentially expressed in Paracoccidioides brasiliensis mycelium and yeast cells. *BMC Genomics*, 7(208), 1–13. https://doi.org/10.1186/1471-2164-7-208
- Arantes, T. D., Theodoro, R. C., Teixeira, M. de M., Bosco, S. de M. G., & Bagagli, E. (2016). Environmental Mapping of Paracoccidioides spp. in Brazil Reveals New Clues into Genetic Diversity, Biogeography and Wild Host Association. *PLoS Neglected Tropical Diseases*, 10(4), 1–18. https://doi.org/10.1371/journal.pntd.0004606
- Araújo, D. S., de Sousa Lima, P., Baeza, L. C., Parente, A. F. A., Melo Bailão, A., Borges, C. L., & de Almeida Soares, C. M. (2017). Employing proteomic analysis to compare Paracoccidioides lutzii yeast and mycelium cell wall proteins. *Biochimica et Biophysica Acta - Proteins and Proteomics*, 1865(11), 1304–1314. https://doi.org/10.1016/j.bbapap.2017.08.016
- Bagagli, E., Franco, M., Bosco, S. D. M. G., Hebeler-Barbosa, F., Trinca, L. a, & Montenegro, M. R. (2003). High frequency of Paracoccidioides brasiliensis infection in armadillos (Dasypus novemcinctus): an ecological study. *Medical Mycology : Official Publication of the International Society for Human and Animal Mycology*, 41(3), 217–223. https://doi.org/10.1080/13693780310001597368
- Bagagli, E., Theodoro, R. C., Bosco, S. M. G., & McEwen, J. G. (2008). Paracoccidioides brasiliensis: Phylogenetic and ecological aspects. *Mycopathologia*, 165(4–5), 197–207. https://doi.org/10.1007/s11046-007-9050-7
- Baik, J. Y., Joo, E. J., Kim, Y. H., & Lee, G. M. (2008). Limitations to the comparative proteomic analysis of thrombopoietin producing Chinese hamster ovary cells treated with sodium butyrate. *Journal of Biotechnology*, 133(4), 461–468. https://doi.org/10.1016/j.jbiotec.2007.11.008
- Barbosa, S. M., Báo, S. N., Andreotti, P. F., Faria, F. P. De, Felipe, M. S. S., Feitosa, L. D. S., ... Soares, C. M. D. A. (2006). Glyceraldehyde-3-Phosphate Dehydrogenase of *Paracoccidioides brasiliensis* Is a Cell Surface Protein Involved in Fungal Adhesion to Extracellular Matrix Proteins and Interaction with Cells. *Infection and Imunnity*, 74(1), 382–389. https://doi.org/10.1128/IAI.74.1.382
- Barbosa W, Daher R, O. A. F. (1968). Forma linfático-abdominal da blastomicose sulamericana. Rev Inst Med Trop São Paulo, 10(1), 16–27.
- Barrozo, L. V., Benard, G., Elisa, M., Silva, S., Bagagli, E., Alencar, S., & Mendes, R.
 P. (2010). First Description of a Cluster of Acute / Subacute
 Paracoccidioidomycosis Cases and Its Association with a Climatic Anomaly, 4(3),

2-5. https://doi.org/10.1371/journal.pntd.0000643

- Barrozo, L. V., Mendes, R. P., Marques, S. A., Benard, G., Siqueira Silva, M. E., & Bagagli, E. (2009). Climate and acute/subacute paracoccidioidomycosis in a hyperendemic area in Brazil. *International Journal of Epidemiology*, 38(6), 1642–1649. https://doi.org/10.1093/ije/dyp207
- Bastos, K. P., Bailão, A. M., Borges, C. L., Faria, F. P., Felipe, M. S. S., Silva, M. G., ... Soares, C. M. a. (2007). The transcriptome analysis of early morphogenesis in Paracoccidioides brasiliensis mycelium reveals novel and induced genes potentially associated to the dimorphic process. *BMC Microbiology*, 7, 29. https://doi.org/10.1186/1471-2180-7-29
- Batista, J., de Camargo, Z. P., Fernandes, G. F., Vicentini, A. P., Fontes, C. J. F., & Hahn, R. C. (2010). Is the geographical origin of a Paracoccidioides brasiliensis isolate important for antigen production for regional diagnosis of paracoccidioidomycosis? *Mycoses*, 53(2), 176–180. https://doi.org/10.1111/j.1439-0507.2008.01687.x
- Bayles, K. W., Wesson, C. A., Liou, L. E., Fox, L. K., Bohach, G. A., & Trumble, W.
 R. (1998). Intracellular Staphylococcus aureus Escapes the Endosome and Induces Apoptosis in Epithelial Cells. *Infect Immun.*, 66(1), 336–342.
- Beatrix, B., Sakai, H., & Wiedmann, M. (2000). The α and β subunit of the nascent polypeptide-associated complex have distinct functions. *Journal of Biological Chemistry*, 275(48), 37838–37845. https://doi.org/10.1074/jbc.M006368200
- Bellissimo-Rodrigues, F., Bollela, V. R., Da Fonseca, B. A. L., & Martinez, R. (2013). Endemic paracoccidioidomycosis: relationship between clinical presentation and patients' demographic features. *Medical Mycology*, 51(3), 313–318. https://doi.org/10.3109/13693786.2012.714529
- Bellissimo-Rodrigues, F., Machado, A. A., & Martinez, R. (2011).
 Paracoccidioidomycosis epidemiological features of a 1,000-cases series from a hyperendemic area on the southeast of Brazil. *American Journal of Tropical Medicine and Hygiene*, 85(3), 546–550. https://doi.org/10.4269/ajtmh.2011.11-0084
- Benschop, J. J., Mohammed, S., O'flaherty, M., Heck, A. J. R., Slijper, M., & Menke, F. L. H. (2007). Quantitative Phosphoproteomics of Early Elicitor Signaling in Arabidopsis. *Molecular & Cellular Proteomics*, 6.7, 1198–1214. https://doi.org/10.1074/mcp.M600429-MCP200
- Bookout, A. L., Cummins, C. L., Mangelsdorf, D. J., Pesola, J. M., & Kramer, M. F. (2006). High-throughput real-time quantitative reverse transcription PCR. *Current Protocols in Molecular Biology / Edited by Frederick M. Ausubel ... [et Al.]*, *Chapter 15*, Unit 15.8. https://doi.org/10.1002/0471142727.mb1508s73
- Borges-walmsley, M. I., Chen, D., Shu, X., & Walmsley, A. R. (2002). The pathobiology of Paracoccidioides brasiliensis, *10*(2), 80–87.
- Borges, C. L., Bailão, A. M., Báo, S. N., Pereira, M., Parente, J. A., & de Almeida Soares, C. M. (2011). Genes Potentially Relevant in the Parasitic Phase of the Fungal Pathogen Paracoccidioides brasiliensis. *Mycopathologia*, 171(1), 1–9. https://doi.org/10.1007/s11046-010-9349-7
- Borges, C. L., Parente, J. A., Barbosa, M. S., Santana, J. M., Báo, S. N., de Sousa, M. V., ... De Almeida Soares, C. M. (2010). Detection of a homotetrameric structure and protein-protein interactions of *Paracoccidioides brasiliensis* formamidase lead to new functional insights. *FEMS Yeast Research*, 10(1), 104–113. https://doi.org/10.1111/j.1567-1364.2009.00594.x
- Brummer, E., Castaneda, E., & Restrepo, A. (1993). Paracoccidioidomycosis: an

update. *Clinical Microbiology Reviews*, 6(2), 89–117. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8472249

- Brummer, E., Hanson, L. H., Restrepo, A., & Stevens, D. A. (1989). Intracellular multiplication of Paracoccidioides brasiliensis in macrophages: Killing and restriction of multiplication by activated macrophages. *Infection and Immunity*, 57(8), 2289–2294.
- Brummer, E., Sun, S. H., Harrison, J. L., Perlman, A. M., Philpott, D. E., & Stevens, D. A. (1990). Ultrastructure of phagocytosed Paracoccidioides brasiliensis in nonactivated or activated macrophages. *Infection and Immunity*, 58(8), 2628–2636.
- Buccheri, R., Khoury, Z., Barata, L. C. B., & Benard, G. (2016). Incubation Period and Early Natural History Events of the Acute Form of Paracoccidioidomycosis: Lessons from Patients with a Single Paracoccidioides spp. Exposure. *Mycopathologia*, 181(5–6), 435–439. https://doi.org/10.1007/s11046-015-9976-0
- Buchan, J. R., & Parker, R. (2009). Eukaryotic Stress Granules: The Ins and Outs of Translation. *Molecular Cell*, 36(6), 932–941. https://doi.org/10.1016/j.molcel.2009.11.020
- BURNETT G, K. E. (1954). The enzymatic phosphorylation of proteins. *J Biol Chem.*, 211(2), 969–980.
- C, N., & MU., S. (2000). Reactive oxygen and nitrogen intermediates in the relationship between mammalian host and microbial pathogens. *Proc Natl Acad Sci U S A.*, *1*(97), 8841–8848.
- Cadavid, D., & Restrepo, a. (1993). Factors associated with Paracoccidiodes brasiliensis infection among permanent residents of three endemic areas in Colombia. *Epidemiology and Infection*, 111(1), 121–133. https://doi.org/10.1017/S0950268800056740
- Capra, E. J., & Laub, M. T. (2012). Evolution of Two-Component Signal Transduction Systems. Annual Review of Microbiology, 66(1), 325–347. https://doi.org/10.1146/annurev-micro-092611-150039
- Carpy, A., Krug, K., Graf, S., Koch, A., Popic, S., Hauf, S., & Macek, B. (2014).
 Absolute Proteome and Phosphoproteome Dynamics during the Cell Cycle of Schizosaccharomyces pombe (Fission Yeast). Molecular & Cellular Proteomics, 13(8), 1925–1936. https://doi.org/10.1074/mcp.M113.035824
- Carrero, L. L., Niño-Vega, G., Teixeira, M. M., Carvalho, M. J. A., Soares, C. M. A., Pereira, M., ... San-Blas, G. (2008). New *Paracoccidioides brasiliensis* isolate reveals unexpected genomic variability in this human pathogen. *Fungal Genetics* and Biology : FG & B, 45(5), 605–612. https://doi.org/10.1016/j.fgb.2008.02.002
- Chaga, G., Hopp, J., & Nelson, P. (1999). Immobilized metal ion affinity chromatography on Cobalt - carboxymethylaspartate – agarose Superflow, as demonstrated by one-step purification of lactate dehydrogenase from chicken breast muscle. *Biotechnology and Applied Biochemistry*, *24*, 19–24. https://doi.org/10.1111/j.1470-8744.1999.tb01144.x
- Chagas, R. F., Bailão, A. M., Pereira, M., Winters, M. S., Smullian, A. G., Deepe, G. S., & de Almeida Soares, C. M. (2008). The catalases of Paracoccidioides brasiliensis are differentially regulated: Protein activity and transcript analysis. *Fungal Genetics and Biology*, 45(11), 1470–1478. https://doi.org/10.1016/j.fgb.2008.08.007
- Chai, L. Y. A., Netea, M. G., Vonk, A. G., & Kullberg, B. (2009). Fungal strategies for overcoming host innate immune response. *Med Mycol.*, 47(3), 227–236. https://doi.org/10.1080/13693780802209082
- Chao, J. D., Wong, D., & Av-Gay, Y. (2014). Microbial protein-tyrosine kinases.

Journal of Biological Chemistry, 289(14), 9463–9472. https://doi.org/10.1074/jbc.R113.520015

- Chaves, A. F. A., Castilho, D. G., Navarro, M. V., Oliveira, A. K., Serrano, S. M. T., Tashima, A. K., & Batista, W. L. (2016). Phosphosite-specific regulation of the oxidative-stress response of Paracoccidioides brasiliensis: A shotgun phosphoproteomic analysis. *Microbes and Infection*, (August), 1–13. https://doi.org/10.1016/j.micinf.2016.08.004
- Chaves, A. F. A., Navarro, M. V., Castilho, D. G., Calado, J. C. P., Conceição, P. M., & Batista, W. L. (2016). A conserved dimorphism-regulating histidine kinase controls the dimorphic switching in Paracoccidioides brasiliensis. *FEMS Yeast Research*, 16(5), 1–10. https://doi.org/10.1093/femsyr/fow047

Chou, M. F., & Schwartz, D. (2011). Biological Sequence Motif Discovery Using motifx. Current Protocols in Bioinformatics, 1–52. https://doi.org/10.1002/0471250953.bi1315s35

- Cole, J. N., Aquilina, J. A., Hains, P. G., Henningham, A., Sriprakash, K. S., Caparon, M. G., ... Walker, M. J. (2007). Role of group A Streptococcus HtrA in the maturation of SpeB protease. *Proteomics*, 7(24), 4488–4498. https://doi.org/10.1002/pmic.200700626
- Collart, M. A. (2016). The Ccr4-Not complex is a key regulator of eukaryotic gene expression. *Wiley Interdisciplinary Reviews: RNA*, 7(4), 438–454. https://doi.org/10.1002/wrna.1332
- Conesa, A., Götz, S., García-Gómez, J. M., Terol, J., Talón, M., & Robles, M. (2005). Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. *Bioinformatics*, 21(18), 3674–3676. https://doi.org/10.1093/bioinformatics/bti610
- Corredor GG1, Peralta LA, Castaño JH, Zuluaga JS, Henao B, Arango M, Tabares AM, Matute DR, McEwen JG, R. A. (2005). The naked-tailed armadillo Cabassous centralis (Miller 1899): a new host to Paracoccidioides brasiliensis. Molecular identification of the isolate. *Med Mycol.*, *43*(3), 275–280.
- Costa, A., Benard, G., Albuquerque, A., Fujita, C., Magri, A., Salge, J., ... Carvalho, C. (2013). The lung in paracoccidioidomycosis: new insights into old problems. *Clinics*, *68*(4), 441–448. https://doi.org/10.6061/clinics/2013(04)02
- Costa, M., Borges, C. L., Bailão, A. M., Meirelles, G. V., Mendonça, Y. A., Dantas, S. F. I. M., ... Soares, C. M. A. (2007). Transcriptome profiling of Paracoccidioides brasiliensis yeast-phase cells recovered from infected mice brings new insights into fungal response upon host interaction. *Microbiology*, 153(12), 4194–4207. https://doi.org/10.1099/mic.0.2007/009332-0
- D, S., & Ehrt S, Voskuil MI, Liu Y, Mangan JA, Monahan IM, Dolganov G, Efron B, Butcher PD, Nathan C, S. G. (2003). Transcriptional Adaptation of Mycobacterium tuberculosis within Macrophages: Insights into the Phagosomal Environment. *J Exp Med.*, 198.
- Da Silva Cruz, A. H., Brock, M., Zambuzzi-Carvalho, P. F., Santos-Silva, L. K., Troian, R. F., Gões, A. M., ... Pereira, M. (2011). Phosphorylation is the major mechanism regulating isocitrate lyase activity in Paracoccidioides brasiliensis yeast cells. *FEBS Journal*, 278(13), 2318–2332. https://doi.org/10.1111/j.1742-4658.2011.08150.x
- de Arruda Grossklaus, D., Bailão, A. M., Vieira Rezende, T. C., Borges, C. L., de Oliveira, M. A. P., Parente, J. A., & de Almeida Soares, C. M. (2013). Response to oxidative stress in *Paracoccidioides* yeast cells as determined by proteomic analysis. *Microbes and Infection / Institut Pasteur*, 15(5), 347–364.

https://doi.org/10.1016/j.micinf.2012.12.002

- de Carvalho, M. J. A., Amorim Jesuino, R. S., Daher, B. S., Silva-Pereira, I., de Freitas, S. M., Soares, C. M. A., & Felipe, M. S. S. (2003). Functional and genetic characterization of calmodulin from the dimorphic and pathogenic fungus Paracoccidioides brasiliensis. *Fungal Genetics and Biology : FG & B*, *39*(3), 204–210. https://doi.org/10.1016/S1087-1845(03)00044-6
- de Castro LF, & Ferreira MC, da Silva RM, Blotta MH, Longhi LN, M. R. (2013). Characterization of the immune response in human paracoccidioidomycosis. *J Infect.*, 67(5), 470–485.
- De Groot, P. W. J., Ram, A. F., & Klis, F. M. (2005). Features and functions of covalently linked proteins in fungal cell walls. *Fungal Genetics and Biology*, 42(8), 657–675. https://doi.org/10.1016/j.fgb.2005.04.002
- De Souza Bonfim-Mendonça, P., Ratti, B. A., Da Silva Ribeiro Godoy, J., Negri, M., De Lima, N. C. A., Fiorini, A., ... Svidzinski, T. I. E. (2014). β-Glucan induces reactive oxygen species production in human neutrophils to improve the killing of Candida albicans and Candida glabrata isolates from vulvovaginal candidiasis. *PLoS ONE*, 9(9), 1–14. https://doi.org/10.1371/journal.pone.0107805
- De Souza, C. P. C., Horn, K. P., Masker, K., & Osmani, S. a. (2003). NIMA Kinase in Aspergillus nidulans.
- De Souza, C. P. C., Osmani, A. H., Wu, L. P., Spotts, J. L., & Osmani, S. A. (2000). Mitotic histone H3 phosphorylation by the NIMA kinase in Aspergillus nidulans. *Cell*, 102(3), 293–302. https://doi.org/10.1016/S0092-8674(00)00035-0
- De Souza, C. P., Hashmi, S. B., Osmani, A. H., Andrews, P., Ringelberg, C. S., Dunlap, J. C., & Osmani, S. A. (2013). Functional Analysis of the Aspergillus nidulans Kinome. *PLoS ONE*, 8(3). https://doi.org/10.1371/journal.pone.0058008
- Delom, F., & Chevet, E. (2006). Phosphoprotein analysis: from proteins to proteomes. *Proteome Science*, *4*, 15. https://doi.org/10.1186/1477-5956-4-15
- Derengowski LS, Tavares AH, Silva S, Procópio LS, Felipe MS, S.-P. I. (2008). Upregulation of glyoxylate cycle genes upon Paracoccidioides brasiliensis internalization by murine macrophages and in vitro nutritional stress condition. *Med Mycol.*, 46(2), 125–134. https://doi.org/10.1080/13693780701670509
- Desjardins, C. A., Champion, M. D., Holder, J. W., Muszewska, A., Goldberg, J., Bailão, A. M., ... Cuomo, C. A. (2011). Comparative genomic analysis of human fungal pathogens causing paracoccidioidomycosis. *PLoS Genetics*, 7(10), e1002345. https://doi.org/10.1371/journal.pgen.1002345
- Donofrio, F. C., Calil, A. C. A., Miranda, E. T., Almeida, A. M. F., Benard, G., Soares, C. M. de A. C. P., ... Mendes Giannini, M. J. S. (2009). Enolase from Paracoccidioides brasiliensis: Isolation and identification as a fibronectin-binding protein. *Journal of Medical Microbiology*, 58(6), 706–713. https://doi.org/10.1099/jmm.0.003830-0
- Eymann, C., Becher, D., Bernhardt, J., Gronau, K., Klutzny, A., & Hecker, M. (2007). Dynamics of protein phosphorylation on Ser/Thr/Tyr in Bacillus subtilis. *Proteomics*, 7(19), 3509–3526. https://doi.org/10.1002/pmic.200700232
- Fabris LR, & Andrade UV, Dos Santos AF, Marques APC, de Oliveira SMVL, Mendes RP, et al. (2014). Decreasing prevalence of the acute/ subacute clinical form of paracoccidioidomycosis in Mato Grosso do Sul State, Brazil. *Rev. Inst. Med. Trop. Sao Paulo*, 56(2), 121–125.
- Fan W, & Kraus PR, Boily MJ, H. J. (2005). Cryptococcus neoformans gene expression during murine macrophage infection. *Eukaryot Cell.*, 4(8), 1420–33.
- Fang FC. (2004). Antimicrobial reactive oxygen and nitrogen species: concepts and

controversies. Nat Rev Microbiol., 2(10), 820-832.

- Fassler, J. S., & West, A. H. (2013). Histidine phosphotransfer proteins in fungal twocomponent signal transduction pathways. *Eukaryotic Cell*, 12(8), 1052–1060. https://doi.org/10.1128/EC.00083-13
- Favreau, C., Worman, H. J., Wozniak, R. W., Frappier, T., & Courvalin, J. C. (1996). Cell cycle-dependent phosphorylation of nucleoporins and nuclear pore membrane protein Gp210. *Biochemistry*, 35(24), 8035–8044. https://doi.org/10.1021/bi9600660
- Felipe, M. S. S. (2005). Transcriptional Profiles of the Human Pathogenic Fungus Paracoccidioides brasiliensis in Mycelium and Yeast Cells. *Journal of Biological Chemistry*, 280(26), 24706–24714. https://doi.org/10.1074/jbc.M500625200
- Felipe, M. S. S. (2005). Transcriptional Profiles of the Human Pathogenic Fungus Paracoccidioides brasiliensis in Mycelium and Yeast Cells. *Journal of Biological Chemistry*, 280(26), 24706–24714. https://doi.org/10.1074/jbc.M500625200
- Felipe, M. S. S., Andrade, R. V., Petrofeza, S. S., Maranhão, A. Q., Torres, F. A. G., Albuquerque, P., ... Brígido, M. M. (2003). Transcriptome characterization of the dimorphic and pathogenic fungus Paracoccidioides brasiliensis by EST analysis. *Yeast (Chichester, England)*, 20(3), 263–271. https://doi.org/10.1002/yea.964
- Fernandes, F. F., Oliveira, A. F., Landgraf, T. N., Cunha, C., Carvalho, A., Vendruscolo, P. E., ... Roque-Barreira, M. C. (2017). Impact of paracoccin gene silencing on Paracoccidioides brasiliensis Virulence. *MBio*, 8(4), 1–12. https://doi.org/10.1128/mBio.00537-17
- Fernandes, L., Paes, H. C., Tavares, A. H., Silva, S. S., Dantas, A., Soares, M. A., ... Felipe, M. S. S. (2008). Transcriptional pro ¢ le of ras1 and ras2 and the potential role of farnesylation in the dimorphism of the human pathogen Paracoccidioides brasiliensis. *FEMS Yeast Res.*, 8(2), 300–310. https://doi.org/10.1111/j.1567-1364.2007.00317.x
- Ferreira MS1, Freitas LH, Lacaz Cda S, del Negro GM, de Melo NT, Garcia NM, de Assis CM, Salebian A, H.-V. E. (1990). Isolation and characterization of a Paracoccidioides brasiliensis strain from a dogfood probably contaminated with soil in Uberlândia, Brazil. J Med Vet Mycol, 28(3), 253–256.
- Ferreira, S. D. P., Santos, S., Paula, L. B. De, & Adamski, A. (2012). Prevalência da Paracoccidioidomicose em pacientes diagnosticados no Hospital Araújo Jorge me Goiânia-Goiás, Brasil. *Revista Da Universidade Vale Do Rio Verde, Três Corações, 10*(1), 167–177.
- Ficarro, S. B., McCleland, M. L., Stukenberg, P. T., Burke, D. J., Ross, M. M., Shabanowitz, J., ... White, F. M. (2002). Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. *Nature Biotechnology*, 20(3), 301–305. https://doi.org/10.1038/nbt0302-301
- Filler, S. G., & Sheppard, D. C. (2006). Fungal invasion of normally non-phagocytic host cells. *PLoS Pathog*, 2(12). https://doi.org/10.1371/journal.ppat.0020129
- Flory, M. R., Lee, H., Bonneau, R., Mallick, P., Serikawa, K., Morris, D. R., & Aebersold, R. (2006). Quantitative proteomic analysis of the budding yeast cell cycle using acid-cleavable isotope-coded affinity tag reagents. *Proteomics*, 6(23), 6146–6157. https://doi.org/10.1002/pmic.200600159
- Franco M, Montenegro MR, Mendes RP, Marques SA, Dillon NL, M. N. (1987). Paracoccidioidomycosis: a recently proposed classification of its clinical forms. *Revista Da Sociedade Brasileira de Medicina Tropical*, 20(2), 129–132.
- Franco, M., Bagagli, E., Scapolio, S., & da Silva Lacaz, C. (2000). A critical analysis of isolation of Paracoccidioides brasiliensis from soil. *Medical Mycology*, 38(3), 185–

191. https://doi.org/10.1080/714030941

- Franco M, & Mendes RP, Moscardi-Bacchi M, Rezkallah-Iwasso M, M. M. (1989). Paracoccidioidomycosis. *Baillière's Clinical Tropical Medicine and Communicable Diseases*, 4, 185–220.
- Fraser, J. A., Davis, M. A., & Hynes, M. J. (2001). The formamidase gene of Aspergillus nidulans: Regulation by nitrogen metabolite repression and transcriptional interference by an overlapping upstream gene. *Genetics*, 157(1), 119–131. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11139496
- G, B., & Romano CC, Cacere CR, Juvenale M, Mendes-Giannini MJ, D. A. (2001). Imbalance of IL-2, IFN-gamma and IL-10 secretion in the immunosuppression associated with human paracoccidioidomycosis. *Cytokine.*, *13*(4), 248–252.
- Gauthier, G., & Klein, B. S. (2010). Insights into Fungal Morphogenesis and Immune Evasion: Fungal conidia, when situated in mammalian lungs, may switch from mold to pathogenic yeasts or spore-forming spherules. *Microbe Wash DC.*, 3(9), 416–423.
- Gegembauer, G., Araujo, L. M., Pereira, E. F., Rodrigues, A. M., Mello, A., Paniago, M., ... Camargo, Z. P. De. (2014). Serology of Paracoccidioidomycosis Due to Paracoccidioides lutzii, 8(7). https://doi.org/10.1371/journal.pntd.0002986
- Goldman, G. H., Marques, R., Luciano, A., Bernardes, D. S., Quiapin, C., Vitorelli, P. M., ... Goldman, M. H. S. (2003). Expressed Sequence Tag Analysis of the Human Pathogen Paracoccidioides brasiliensis Yeast Phase : Identification of Putative Homologues of Candida albicans Virulence and Pathogenicity Genes. *Eukaryot Cell*, 2(1), 34–48. https://doi.org/10.1128/EC.2.1.34
- Gonzalez, A., Lenzi, H. L., Motta, E. M., Caputo, L., Sahaza, J. H., Cock, A. M., ... Cano, L. E. (2005). Expression of adhesion molecules in lungs of mice infected with Paracoccidioides brasiliensis conidia. *Microbes Infect.*, 7, 666–673. https://doi.org/10.1016/j.micinf.2005.01.004
- Grasser, M., Lentz, A., Lichota, J., Merkle, T., & Grasser, K. D. (2006). The Arabidopsis Genome Encodes Structurally and Functionally Diverse HMGB-type Proteins. *Journal of Molecular Biology*, 358(3), 654–664. https://doi.org/10.1016/j.jmb.2006.02.068
- Grose E, T. J. (1965). Paracoccidioides brasiliensis recovered from the intestinal tract of three bats (Artibeus lituratus) in Colombia, S.A. *Sabouraudia*, 4(2), 124–125.
- Hahn, R. C., Macedo, A. M., Fontes, C. J. F., Batista, R. D., Santos, N. L., & Hamdan, J. S. (2003). Randomly amplified polymorphic DNA as a valuable tool for epidemiological studies of Paracoccidioides brasiliensis. *Journal of Clinical Microbiology*, 41(7), 2849–2854. https://doi.org/10.1128/JCM.41.7.2849
- Hayward, R. D., & Koronakis, V. (1999). Direct nucleation and bundling of actin by the SipC protein of invasive Salmonella. *EMBO J.*, *18*(18), 4926–4934.
- Hernández O, Araque P, Tamayo D, Restrepo A, Herrera S, Mcewen JG, Pelaez C, A. A. (2015). Alternative oxidase plays an important role in Paracoccidioides brasiliensis cellular homeostasis and morphological transition. *Medical Mycology*, 53(3), 205–214. https://doi.org/10.1093/mmy/myu091
- JA, S., & SC., B. (1995). Phagocytosis by zippers and triggers. *Trends Cell Biol.*, 5(3), 89–93.
- Jensen, S. S., & Larsen, M. R. (2007). Evaluation of the impact of some experimental procedures on different phosphopeptide enrichment techniques. *Rapid Communications in Mass Spectrometry : RCM*, 21(22), 3635–3645. https://doi.org/10.1002/rcm.3254
- Jiang, P., Wei, W. F., Zhong, G. W., Zhou, X. G., Qiao, W. R., Fisher, R., & Lu, L.

(2017). The function of the three phosphoribosyl pyrophosphate synthetase (Prs) genes in hyphal growth and conidiation in Aspergillus nidulans. *Microbiology* (*United Kingdom*), *163*(2), 218–232. https://doi.org/10.1099/mic.0.000427

- Johnson, C., Kweon, H. K., Sheidy, D., Shively, C. A., Mellacheruvu, D., Nesvizhskii, A. I., ... Kumar, A. (2014). The Yeast Sks1p Kinase Signaling Network Regulates Pseudohyphal Growth and Glucose Response. *PLOS Genetics*, 10(3), e1004183. Retrieved from https://doi.org/10.1371/journal.pgen.1004183
- JP, W. (2003). Knocking on the right door and making a comfortable home: Histoplasma capsulatum intracellular pathogenesis. *Curr Opin Microbiol.*, 6(4), 327–331.
- Juvvadi, P. R., Gehrke, C., Fortwendel, J. R., Lamoth, F., Soderblom, E. J., Cook, E. C., ... Steinbach, W. J. (2013). Phosphorylation of Calcineurin at a Novel Serine-Proline Rich Region Orchestrates Hyphal Growth and Virulence in Aspergillus fumigatus. *PLoS Pathogens*, 9(8). https://doi.org/10.1371/journal.ppat.1003564
- Juvvadi, P. R., Ma, Y., Richards, A. D., Soderblom, E. J., Arthur Moseley, M., Lamoth, F., & Steinbach, W. J. (2015). Identification and mutational analyses of phosphorylation sites of the calcineurin-binding protein CbpA and the identification of domains required for calcineurin binding in Aspergillus fumigatus. *Frontiers in Microbiology*, 6(MAR), 1–10. https://doi.org/10.3389/fmicb.2015.00175
- Kanetsuna, F., & Carbonell, L. M. (1970). Cell wall glucans of the yeast and mycelial forms of Paracoccidioides brasiliensis. *Journal of Bacteriology*, *101*(3), 675–680.
- Kanetsuna, F., Carbonell, L. M., Moreno, R. E., & Rodriguez, J. (1969). Cell wall composition of the yeast and mycelial forms of Paracoccidioides brasiliensis. *Journal of Bacteriology*, 97(3), 1036–1041. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/5776517
- Kaufmann, H., Bailey, J. E., & Fussenegger, M. (2001). Use of antibodies for detection of phosphorylated proteins separated by two-dimensional gel electrophoresis. *Proteomics*, 1(2), 194–199. https://doi.org/10.1002/1615-9861(200102)1:2<194::AID-PROT194>3.0.CO;2-K
- Kennelly, P. J. (2014). Protein Ser/Thr/Tyr phosphorylation in the archaea. *Journal of Biological Chemistry*, 289(14), 9480–9487. https://doi.org/10.1074/jbc.R113.529412
- Kosti, I., Mandel-Gutfreund, Y., Glaser, F., & Horwitz, B. A. (2010). Comparative analysis of fungal protein kinases and associated domains. *BMC Genomics*, *11*(1), 133. https://doi.org/10.1186/1471-2164-11-133
- Kraus, P. R., Fox, D. S., Cox, G. M., & Heitman, J. (2003). The Cryptococcus neoformans MAP kinase Mpk1 regulates cell integrity in response to antifungal drugs and loss of calcineurin function. *Molecular Microbiology*, 48(5), 1377–1387. https://doi.org/10.1046/j.1365-2958.2003.03508.x
- Kummasook, A., Cooper, C. R., Sakamoto, A., Terui, Y., Kashiwagi, K., & Vanittanakom, N. (2013). Spermidine is required for morphogenesis in the human pathogenic fungus, Penicillium marneffei. *Fungal Genetics and Biology*, 58–59, 25–32. https://doi.org/10.1016/j.fgb.2013.08.001
- Kun Ping Lu, Kemp, B. E., & Means, A. R. (1994). Identification of substrate specificity determinants for the cell cycle- regulated NIMA protein kinase. *Journal of Biological Chemistry*, 269(9), 6603–6607.
- Lacaz, C. S. (1994). Historical Evolution of the knowledge on Paracoccidioidomycosis and its Etiolologic Agent, Paracoccidoides brasiliensis. In *Paracoccidioidomycosis* (pp. 1–7).

- Lacaz CS, Porto E, M. J. (1984). Paracoccidioidomicose In: Lacaz CS, Porto E, Martins JEC, editors. *Micologia Medica.*, 189–216.
- Lacerda Pigosso, L., Baeza, L. C., Vieira Tomazett, M., Batista Rodrigues Faleiro, M., Brianezi Dignani de Moura, V. M., Melo Bailão, A., ... Soares, C. M. de A. (2017). Paracoccidioides brasiliensis presents metabolic reprogramming and secretes a serine proteinase during murine infection. *Virulence*, 8(7), 1417–1434. https://doi.org/10.1080/21505594.2017.1355660
- Lahari, T., Lazaro, J., & Schroeder, D. F. (2018). RAD4 and RAD23/HMR contribute to arabidopsis UV tolerance. *Genes*, 9(1), 1–12. https://doi.org/10.3390/genes9010008
- Lam, W. C., Gerik, K. J., & Lodge, J. K. (2013). Role of Cryptococcus neoformans Rho1 GTPases in the PKC1 signaling pathway in response to thermal stress. *Eukaryotic Cell*, 12(1), 118–131. https://doi.org/10.1128/EC.05305-11
- Lara-Lemus R, Alvarado-Vásquez N, Zenteno E, G. P. (2014). Effect of Histoplasma capsulatum glucans on host innate immunity. *Rev Iberoam Micol.*, *31*(1), 76–80.
- Leitner, A. (2016). *Phospho-Proteomics*. (L. von Stechow, Ed.) (Vol. 1355). New York, NY: Springer New York. https://doi.org/10.1007/978-1-4939-3049-4
- Leitner, A., Sturm, M., & Lindner, W. (2011). Tools for analyzing the phosphoproteome and other phosphorylated biomolecules: A review. *Analytica Chimica Acta*, 703(1), 19–30. https://doi.org/10.1016/j.aca.2011.07.012
- Levery, S. B., Toledo, M. S., Straus, A. H., & Takahashi, H. K. (1998). Structure elucidation of sphingolipids from the mycopathogen Paracoccidioides brasiliensis: An immunodominant β -galactofuranose residue is carried by a novel glycosylinositol phosphorylceramide antigen. *Biochemistry*, *37*(24), 8764–8775. https://doi.org/10.1021/bi9730083
- Lewis, K. I. M. (2000). Programmed Death in Bacteria. *Microbiol Mol Biol Rev.*, 64(3), 503–514.
- Lim JP, & PA., G. (2011). Macropinocytosis: an endocytic pathway for internalising large gulps. *Immunol Cell Biol.*, 89(8), 836–843.
- Lin, M.-H., Sugiyama, N., & Ishihama, Y. (2015). Systematic profiling of the bacterial phosphoproteome reveals bacterium-specific features of phosphorylation. *Science Signaling*, 8(394), rs10-rs10. https://doi.org/10.1126/scisignal.aaa3117
- Loose, D. S., Stover, E. P., Restrepo, A., Stevens, D. A., & Feldman, D. (1983). Estradiol binds to a receptor-like cytosol binding protein and initiates a biological response in Paracoccidioides brasiliensis. *Proceedings of the National Academy of Sciences*, 80(24), 7659–7663. https://doi.org/10.1073/pnas.80.24.7659
- Lutz, A. (1945). Uma micose pseudococcídica localizada na boca e observada no Brasil . Contribuição ao conhecimento das. *Adolpho Lutz - Obra Completa*, 483–494.
- Machado Filho J, M. J. & T. G. (1965). Das sequelas da blastomicose sul americana. *O Hospital*, 68, 1346–1354.
- Malanovic, N., Streith, I., Wolinski, H., Rechberger, G., Kohlwein, S. D., & Tehlivets, O. (2008). S-adenosyl-L-homocysteine hydrolase, key enzyme of methylation metabolism, regulates phosphatidylcholine synthesis and triacylglycerol homeostasis in yeast: Implications for homocysteine as a risk factor of atherosclerosis. *Journal of Biological Chemistry*, 283(35), 23989–23999. https://doi.org/10.1074/jbc.M800830200
- Manocha, M. (1980). Lipid composition of Paracoccidioides brasiliensis: comparison between the yeast and mycelial forms. *Sabouraudia*, *18*(4), 281–286.
- Marques-da-Silva, S. H., Rodrigues, A. M., De Hoog, G. S., Silveira-Gomes, F., & De Camargo, Z. P. (2012). Case report: Occurrence of Paracoccidioides lutzii in the

Amazon Region: Description of two cases. *American Journal of Tropical Medicine and Hygiene*, 87(4), 710–714. https://doi.org/10.4269/ajtmh.2012.12-0340

- Martani, F., Marano, F., Bertacchi, S., Porro, D., & Branduardi, P. (2015). The Saccharomyces cerevisiae poly(A) binding protein Pab1 as a target for eliciting stress tolerant phenotypes. *Scientific Reports*, 5(November), 1–13. https://doi.org/10.1038/srep18318
- Martinez-Lopez, R., Monteoliva, L., Diez-Orejas, R., Nombela, C., & Gil, C. (2004). The GPI-anchored protein CaEcm33p is required for cell wall integrity, morphogenesis and virulence in *Candida albicans*. *Microbiology*, *150*(10), 3341– 3354. https://doi.org/10.1099/mic.0.27320-0
- Martinez-Lopez, R., Park, H., Myers, C. L., Gil, C., & Filler, S. G. (2006). Candida albicans Ecm33p is important for normal cell wall architecture and interactions with host cells. Eukaryotic Cell, 5(1), 140–147. https://doi.org/10.1128/EC.5.1.140-147.2006
- Martinez, R. (2017). New Trends in Paracoccidioidomycosis Epidemiology. *Journal of Fungi*, *3*(1), 1. https://doi.org/10.3390/jof3010001
- Martins, V. P., Dinamarco, T. M., Soriani, F. M., Tudella, V. G., Oliveira, S. C., Goldman, G. H., ... Uyemura, S. A. (2011). Involvement of an alternative oxidase in oxidative stress and mycelium-to-yeast differentiation in paracoccidioides brasiliensis. *Eukaryotic Cell*, 10(2), 237–248. https://doi.org/10.1128/EC.00194-10
- Masaki, S., Yamada, T., Hirasawa, T., Todaka, D., & Kanekatsu, M. (2008). Proteomic analysis of RNA-binding proteins in dry seeds of rice after fractionation by ssDNA affinity column chromatography. *Biotechnology Letters*, 30(5), 955–960. https://doi.org/10.1007/s10529-007-9619-8
- Matute, D. R., McEwen, J. G., Puccia, R., Montes, B. A., San-Blas, G., Bagagli, E., ... Taylor, J. W. (2006). Cryptic speciation and recombination in the fungus Paracoccidioides brasiliensis as revealed by gene genealogies. *Molecular Biology* and Evolution, 23(1), 65–73. https://doi.org/10.1093/molbev/msj008
- MB, G., & PJ., S. (1993). Shigella subversion of the cellular cytoskeleton: a strategy for epithelial colonization. *Infect Immun*, *61*(12), 4941–4946.
- McEwen JG, Bedoya V, Patiño MM, Salazar ME, R. A. (1987). Experimental murine paracoccidiodomycosis induced by the inhalation of conidia. *J Med Vet Mycol.*, 25(3), 165–75.
- Medoff, G., Painter, A., & Kobayashi, G. S. (1987). Mycelial- to Yeast-phase transitions of the dimorphic fungi Blastomyces dermatitidis and Paracoccidioides brasiliensis. *Journal of Bacteriology*, 169(9), 4055–4060. https://doi.org/10.1128/jb.169.9.4055-4060.1987
- Mendes-Giannini MJ, Hanna SA, da Silva JL, Andreotti PF, Vincenzi LR, Benard G, Lenzi HL, S. C. (2004). Invasion of epithelial mammalian cells by Paracoccidioides brasiliensis leads to cytoskeletal rearrangement and apoptosis of the host cell. *Microb Infect.*, *6*, 882–891. https://doi.org/10.1016/j.micinf.2004.05.005
- Mendes-Giannini MJ, Monteiro da Silva JL, de Fátima da Silva J, Donofrio FC, Miranda ET, Andreotti PF, S. C. (2008). Interactions of Paracoccidioides brasiliensis with host cells : recent advances. *Mycopathologia*., 237–248. https://doi.org/10.1007/s11046-007-9074-z
- Mendes-Giannini MJ, Soares CP, da Silva JL, A. P. (2005). Interaction of pathogenic fungi with host cells : Molecular and cellular approaches. *FEMS Immunol Med Microbiol*, 45, 383–394. https://doi.org/10.1016/j.femsim.2005.05.014
- Mendes-Giannini MJ, Taylor ML, Bouchara JB, Burger E, Calich VL, Escalante ED,

Hanna SA, Lenzi HL, Machado MP, Miyaji M, Monteiro Da Silva JL, Mota EM, Restrepo A, Restrepo S, Tronchin G, Vincenzi LR, Xidieh CF, Zenteno E.Mendes-Giannini MJ1, Taylor ML, B, Z. E. (2000). Pathogenesis II : Fungal responses to host responses : interaction of host cells with fungi. *Med Mycol.*, *38*(1), 113–123.

- Mendes, R. P., Cavalcante, R. de S., Marques, S. A., Marques, M. E. A., Venturini, J., Sylvestre, T. F., ... Levorato, A. D. (2017). *Paracoccidioidomycosis: Current Perspectives from Brazil. The Open Microbiology Journal* (Vol. 11). https://doi.org/10.2174/1874285801711010224
- Molinari-Madlum EE1, Felipe MS, S. C. (1999). Virulence of Paracoccidioides brasiliensis isolates can be correlated to groups defined by random amplified polymorphic DNA analysis. *Med Mycol.*, *37*(4), 269–276.
- Montenegro MR, F. M. (1994). Paracoccidioidomycosis. Pathology, 131-150.
- Moreira SF, Bailão AM, Barbosa MS, Jesuino RS, Felipe MS, Pereira M, de A. S. C. (2004). Monofunctional catalase P of Paracoccidioides brasiliensis : identification , characterization , molecular. *Yeast*, 21(2), 173–182. https://doi.org/10.1002/yea.1077
- Muñoz, J. F., Farrer, R. A., Desjardins, C. A., Gallo, J. E., Sykes, S., Sakthikumar, S., ... Cuomo, C. A. (2016). Genome Diversity, Recombination, and Virulence across the Major Lineages of *Paracoccidioides*. *MSphere*, 1(5), e00213-16. https://doi.org/10.1128/mSphere.00213-16
- Nemecek, J. C. (2006). Global Control of Dimorphism and Virulence in Fungi. *Science*, *312*(5773), 583–588. https://doi.org/10.1126/science.1124105
- Nilma Maciel GarciaI; Gilda Maria Barbaro Del NegroI; Elisabeth Maria Heins-VaccariI; Natalina Takahashi de MeloI; Cezar Mendes de. (1993). Paracoccidioides brasiliensis, nova amostra isolada de fezes de um pinguim (Pygoscelis adeliae). *Rev. Inst. Med. Trop. S. Paulo*, *35*(3). https://doi.org/http://dx.doi.org/10.1590/S0036-46651993000300003
- Nogueira, S. V., Fonseca, F. L., Rodrigues, M. L., Mundodi, V., Abi-Chacra, E. A., Winters, M. S., ... De Almeida Soares, C. M. (2010). Paracoccidioides brasiliensis enolase is a surface protein that binds plasminogen and mediates interaction of yeast forms with host cells. *Infection and Immunity*, 78(9), 4040–4050. https://doi.org/10.1128/IAI.00221-10
- Nunes, L. R., Costa de Oliveira, R., Leite, D. B., da Silva, V. S., dos Reis Marques, E., da Silva Ferreira, M. E., ... Goldman, G. H. (2005). Transcriptome analysis of Paracoccidioides brasiliensis cells undergoing mycelium-to-yeast transition. *Eukaryotic Cell*, 4(12), 2115–2128. https://doi.org/10.1128/EC.4.12.2115-2128.2005
- Nunes, L. R., Oliveira, R. C. De, Batista, D., Schmidt, V., Marques, R., Eliana, M., ... Goldman, G. H. (2005). Transcriptome Analysis of Paracoccidioides brasiliensis Cells Undergoing Mycelium-to-Yeast Transition Transcriptome Analysis of Paracoccidioides brasiliensis Cells Undergoing Mycelium-to-Yeast Transition. *Eukaryotic Cell*, 4(12), 2115–2128. https://doi.org/10.1128/EC.4.12.2115
- Olsen, J. V., Blagoev, B., Gnad, F., Macek, B., Kumar, C., Mortensen, P., & Mann, M. (2006). Global, In Vivo, and Site-Specific Phosphorylation Dynamics in Signaling Networks. *Cell*, 127(3), 635–648. https://doi.org/10.1016/j.cell.2006.09.026
- Olsen, J. V, Macek, B., Lange, O., Makarov, A., Horning, S., & Mann, M. (2007). Higher-energy C-trap dissociation for peptide modification analysis. *Nature Methods*, 4(9), 709–712. https://doi.org/10.1038/nmeth1060
- Parente-Rocha, J. A., Parente, A. F. A., Baeza, L. C., Bonfim, S. M. R. C., Hernandez, O., McEwen, J. G., ... De Almeida Soares, C. M. (2015). Macrophage interaction

with *Paracoccidioides brasiliensis* yeast cells modulates fungal metabolism and generates a response to oxidative stress. *PLoS ONE*, *10*(9), 1–18. https://doi.org/10.1371/journal.pone.0137619

- Park, S.-H., Kim, J.-W., Yun, S.-H., Leem, S. H., Kahng, H.-Y., & Kim, S. Il. (2006). Characterization of beta-ketoadipate pathway from multi-drug resistance bacterium, Acinetobacter baumannii DU202 by proteomic approach. *Journal of Microbiology (Seoul, Korea)*, 44(6), 632–640. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/17205041
- Pasricha, S., MacRae, J. I., Chua, H. H., Chambers, J., Boyce, K. J., McConville, M. J., & Andrianopoulos, A. (2017). Extensive Metabolic Remodeling Differentiates Non-pathogenic and Pathogenic Growth Forms of the Dimorphic Pathogen Talaromyces marneffei. *Frontiers in Cellular and Infection Microbiology*, 7(August), 1–12. https://doi.org/10.3389/fcimb.2017.00368
- Porath, J., Carlsson, J., Olsson, I., & Belfrage, G. (1975). Metal chelate affinity chromatography, a new approach to protein fractionation. *Nature*, 258(5536), 598– 599. https://doi.org/10.1038/258598a0
- Posewitz, M. C., & Tempst, P. (1999). Immobilized Gallium (III) Affinity Chromatography of Phosphopeptides peptides, as a front end to mass spectrometric analysis, the use of an immobilized metal affinity chromatography. *Biosystems*, 71(14), 29520–29529. https://doi.org/10.1021/ac981409y
- Prado, M., da Silva, M. B., Laurenti, R., Travassos, L. R., & Taborda, C. P. (2009). Mortality due to systemic mycoses as a primary cause of death or in association with AIDS in Brazil: A review from 1996 to 2006. *Memorias Do Instituto Oswaldo Cruz*, 104(3), 513–521. https://doi.org/10.1590/S0074-02762009000300019
- Puttick, J., Baker, E. N., & Delbaere, L. T. J. (2008). Histidine phosphorylation in biological systems. *Biochimica et Biophysica Acta*, *1784*(1), 100–105. https://doi.org/10.1016/j.bbapap.2007.07.008
- Ramsubramaniam, N., Harris, S. D., & Marten, M. R. (2014). The phosphoproteome of Aspergillus nidulans reveals functional association with cellular processes involved in morphology and secretion. *Proteomics*, 14(21–22), 2454–2459. https://doi.org/10.1002/pmic.201400063
- Rappleye, C. A., & Goldman, W. E. (2006). Defining virulence genes in the dimorphic fungi. *Annual Review of Microbiology*, 60(1), 281–303. https://doi.org/10.1146/annurev.micro.59.030804.121055
- Reinders, J., & Sickmann, A. (2005). State-of-the-art in phosphoproteomics. *Proteomics*, 5(16), 4052–4061. https://doi.org/10.1002/pmic.200401289
- Restrepo, a, McEwen, J. G., & Castañeda, E. (2001). The habitat of Paracoccidioides brasiliensis: how far from solving the riddle? *Medical Mycology : Official Publication of the International Society for Human and Animal Mycology, 39*(3), 233–241. https://doi.org/10.1080/714031028
- Rezende, T. C. V, Borges, C. L., Magalhães, A. D., de Sousa, M. V., Ricart, C. A. O., Bailão, A. M., & Soares, C. M. A. (2011). A quantitative view of the morphological phases of Paracoccidioides brasiliensis using proteomics. *Journal of Proteomics*, 75(2), 572–587. https://doi.org/10.1016/j.jprot.2011.08.020
- Ricci G1, Mota FT, Wakamatsu A, Serafim RC, Borra RC, F. M. (2004). Canine paracoccidioidomycosis. *Med Mycol.*, 42(4), 379–383.
- Riquelme, M. (2013). Tip growth in filamentous fungi: a road trip to the apex. *Annual Review of Microbiology*, 67(June), 587–609. https://doi.org/10.1146/annurev-micro-092412-155652

- Rooney, P. J., & Klein, B. S. (2002). Linking fungal morphogenesis with virulence. *Cellular Microbiology*, 4(3), 127–137.
- Rosenshine, I., Duronio, V., & Finlay, B. B. (1992). Tyrosine Protein Kinase Inhibitors Block Invasin-Promoted Bacterial Uptake by Epithelial Cells. *Infect Immun.*, (June), 2211–2217.
- RP., M. (1994). The gamut of clinical manifestations. *Boca Raton: CRC Press*, 233–258.
- S, B., & Pina A, Felonato M, Costa TA, Frank de Araújo E, Feriotti C, Bazan SB, Keller AC, Leite KR, C. V. (2013). TNF-α and CD8+ T cells mediate the beneficial effects of nitric oxide synthase-2 deficiency in pulmonary paracoccidioidomycosis. *PLoS Negl Trop Dis.*, 7(8).
- SA, C., & Peraçoli MT, Mendes RP, Marcondes-Machado J, Fecchio D, Marques SA, S. A. (2003). Effect of cytokines on the in vitro fungicidal activity of monocytes from paracoccidioidomycosis patients. *Microbes Infect.*, 5(2), 107–113.
- Salgado-Salazar, C., Jones, L. R., Restrepo, Á., & McEwen, J. G. (2010). The human fungal pathogen Paracoccidioides brasiliensis (Onygenales: Ajellomycetaceae) is a complex of two species: phylogenetic evidence from five mitochondrial markers. *Cladistics*, 26(6), 613–624. https://doi.org/10.1111/j.1096-0031.2010.00307.x
- San-Blas, G. (1982). The cell wall of fungal human pathogens: its possible role in hostparasite relationships. *Mycopathologia*, 79(3), 159–184. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/6755258
- San-Blas, G., & Niño-Vega, G. (2008). Paracoccidioides brasiliensis: Chemical and molecular tools for research on cell walls, antifungals, diagnosis, taxonomy. *Mycopathologia*, 165(4–5), 183–195. https://doi.org/10.1007/s11046-007-9040-9
- San-Blas, G., & San-Blas, F. (1977). Paracoccidioides brasiliensis: cell wall structure and virulence. A review. Mycopathologia, 62(2), 77–86. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/340954
- Santana, Lidiane Aparecida da Penha, M. H. V., Tomazett, P. K., Santo-silva, L. K., Góes, A. M., Schrank, A., & Célia Maria de Almeida Soares, M. P. (2012). Distinct chitinases are expressed during various growth phases of the human pathogen Paracoccidioides brasiliensis. *Mem Inst Oswaldo Cruz*, 107(3), 310–316.
- Santos, W. A. dos, Silva, B. M. da, Passos, E. D., Zandonade, E., & Falqueto, A. (2003). Association between smoking and paracoccidioidomycosis: a case-control study in the State of Espírito Santo, Brazil. *Caderno Saúde Pública*, 19(1), 245– 253.
- Schneiter, R., Carter, A. T., Hernando, Y., Zellnig, G., Schweizer, L. M., & Schweizer, M. (2000). The importance of the five phosphoribosyl-pyrophosphate synthetase (Prs) gene products of Saccharomyces cerevisiae in the maintenance of cell integrity and the subcellular localization of Prs1p. *Microbiology*, *146*(12), 3269– 3278. https://doi.org/10.1099/00221287-146-12-3269
- Schwartz, D., & Gygi, S. P. (2005). An iterative statistical approach to the identification of protein phosphorylation motifs from large-scale data sets. *Nature Biotechnology*, *23*(11), 1391–1398. https://doi.org/10.1038/nbt1146
- Selvan, L. D. N., Renuse, S., Kaviyil, J. E., Sharma, J., Pinto, S. M., Yelamanchi, S. D., ... Harsha, H. C. (2014). Phosphoproteome of Cryptococcus neoformans. *Journal* of Proteomics, 97, 287–295. https://doi.org/10.1016/j.jprot.2013.06.029
- Shankar, J., Restrepo, A., Clemons, K. V., & Stevens, D. A. (2011). Hormones and the resistance of women to paracoccidioidomycosis. *Clinical Microbiology Reviews*, 24(2), 296–313. https://doi.org/10.1128/CMR.00062-10
- Shikanai-yasuda, M. A., Mendes, R. P., Colombo, A. L., Queiroz-telles, F. De, Satie,

A., Kono, G., ... Bagagli, E. (2017). Consensus Brazilian guidelines for the clinical management of paracoccidioidomycosis. *Rev Soc Bras Med Trop*, *50*(June), 715–740. https://doi.org/10.1590/0037-8682-0230-2017

- Shikanai-Yasuda, M. A., Telles Filho, F. de Q., Mendes, R. P., Colombo, A. L., & Moretti, M. L. (2006). [Guidelines in paracoccidioidomycosis]. *Revista Da Sociedade Brasileira de Medicina Tropical*, 39(3), 297–310. https://doi.org/10.1590/S0037-86822006000300017
- Silva, S. S., Paes, H. C., Soares, C. M. A., Fernandes, L., & Felipe, M. S. S. (2008). Insights into the pathobiology of Paracoccidioides brasiliensis from transcriptome analysis - Advances and perspectives. *Mycopathologia*, 165(4–5), 249–258. https://doi.org/10.1007/s11046-007-9071-2
- Simões, L. B., Marques, S. A., & Bagagli, E. (2004). Distribution of paracoccidioidomycosis: Determination of ecologic correlates through spatial analyses. *Medical Mycology*, 42(6), 517–523. https://doi.org/10.1080/13693780310001656795
- SJ, O., & Mamoni RL, Musatti CC, Papaiordanou PM, B. M. (2002). Cytokines and lymphocyte proliferation in juvenile and adult forms of paracoccidioidomycosis: comparison with infected and non-infected controls. *Microbes Infect.*, 4(2), 139– 144.
- Smith, J. A., & Kauffman, C. A. (2012). Pulmonary fungal infections. *Respirology*, *17*(6), 913–926. https://doi.org/10.1111/j.1440-1843.2012.02150.x
- Su, H.-C., Hutchison, C. A., Giddings, M. C., Hutchison III, C. A., Giddings, M. C., Hutchison, C. A., ... Hutchison III, C. A. (2007). Mapping phosphoproteins in Mycoplasma genitalium and Mycoplasma pneumoniae. *BMC Microbiology*, 7(1), 63. https://doi.org/10.1186/1471-2180-7-63
- Su, Z., Li, H., Li, Y., & Ni, F. (2007). Inhibition of the Pathogenically Related Morphologic Transition in Candida albicans by Disrupting Cdc42 Binding to Its Effectors. *Chemistry and Biology*, 14(11), 1273–1282. https://doi.org/10.1016/j.chembiol.2007.10.008
- Tavares, A. H. F. P., Silva, S. S., Dantas, A., Campos, E. G., Andrade, R. V., Maranhão, A. Q., ... Felipe, M. S. S. (2007). Early transcriptional response of Paracoccidioides brasiliensis upon internalization by murine macrophages. *Microbes and Infection*, 9(5), 583–590. https://doi.org/10.1016/j.micinf.2007.01.024
- Tavares, A. H., Fernandes, L., Bocca, A. L., Silva-Pereira, I., & Felipe, M. S. (2015). Transcriptomic reprogramming of genus Paracoccidioides in dimorphism and host niches. *Fungal Genetics and Biology*, 81, 98–109. https://doi.org/10.1016/j.fgb.2014.01.008
- Tavares, A. H., Silva, S. S., Bernardes, V. V., Maranhão, A. Q., Kyaw, C. M., Poças-Fonseca, M., & Silva-Pereira, I. (2005). Virulence insights from the Paracoccidioides brasiliensis transcriptome. *Genetics and Molecular Research : GMR*, 4(2), 372–389. https://doi.org/Pb11 [pii]
- Taylor, J. W., Jacobson, D. J., Kroken, S., Kasuga, T., Geiser, D. M., Hibbett, D. S., & Fisher, M. C. (2000). Phylogenetic species recognition and species concepts in fungi. *Fungal Genetics and Biology : FG & B*, 31(1), 21–32. https://doi.org/10.1006/fgbi.2000.1228
- Team, R. C. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
- Teixeira, M. D. M., Theodoro, R. C., Oliveira, F. F. M. De, Machado, G. C., Hahn, R. C., Bagagli, E., ... Felipe, M. S. S. (2013). *Paracoccidioides lutzii* sp. nov.:

biological and clinical implications. *Medical Mycology*, (June 2013), 1–10. https://doi.org/10.3109/13693786.2013.794311

- Teixeira, M. M., Theodoro, R. C., de Carvalho, M. J. A., Fernandes, L., Paes, H. C., Hahn, R. C., ... Felipe, M. S. S. (2009). Phylogenetic analysis reveals a high level of speciation in the Paracoccidioides genus. *Molecular Phylogenetics and Evolution*, 52(2), 273–283. https://doi.org/10.1016/j.ympev.2009.04.005
- Teixeira, M. M., Theodoro, R. C., Nino-Vega, G., Bagagli, E., & Felipe, M. S. S. (2014). Paracoccidioides species complex: ecology, phylogeny, sexual reproduction, and virulence. *PLoS Pathogens*, 10(10), e1004397. https://doi.org/10.1371/journal.ppat.1004397
- Terçarioli, G. R., Bagagli, E., Reis, G. M., Theodoro, R. C., Bosco, S. D. M. G., Macoris, S. A. da G., & Richini-Pereira, V. B. (2007). Ecological study of Paracoccidioides brasiliensis in soil: growth ability, conidia production and molecular detection. *BMC Microbiology*, 7(1), 92. https://doi.org/10.1186/1471-2180-7-92
- Theodoro, R. C., De Moraes Gimenes Bosco, S., Araújo, J. P., Candeias, J. M. G., Da Graça Macoris, S. A., Trinca, L. A., & Bagagli, E. (2008). Dimorphism, thermal tolerance, virulence and heat shock protein 70 transcription in different isolates of Paracoccidioides brasiliensis. *Mycopathologia*, 165(6), 355–365. https://doi.org/10.1007/s11046-008-9091-6
- Theodoro, R. C., Teixeira, M. de M., Felipe, M. S. S., Paduan, K. dos S., Ribolla, P. M., San-Blas, G., & Bagagli, E. (2012). Genus Paracoccidioides: Species recognition and biogeographic aspects. *PLoS ONE*, 7(5). https://doi.org/10.1371/journal.pone.0037694
- Theodoro RC, Candeias JM, Araújo JP Jr, Bosco Sde M, Macoris SA, Padula LO, Franco M, B. E. (2005). Molecular detection of Paracoccidioides brasiliensis in soil. *Med Mycol.*, 43(8), 725–729.
- Thewes, S., Kretschmar, M., Park, H., Schaller, M., Filler, S. G., & Hube, B. (2007). In vivo and ex vivo comparative transcriptional profiling of invasive and noninvasive Candida albicans isolates identifies genes associated with tissue invasion. *Molecular Microbiology*, 63(6), 1606–1628. https://doi.org/10.1111/j.1365-2958.2007.05614.x
- Thingholm, T. E., Jensen, O. N., & Larsen, M. R. (2009). Analytical strategies for phosphoproteomics. *Proteomics*, 9(6), 1451–1468. https://doi.org/10.1002/pmic.200800454
- Tobón, a M., Agudelo, C. a, Osorio, M. L., Alvarez, D. L., Arango, M., Cano, L. E., & Restrepo, a. (2003). Residual pulmonary abnormalities in adult patients with chronic paracoccidioidomycosis: prolonged follow-up after itraconazole therapy. *Clinical Infectious Diseases : An Official Publication of the Infectious Diseases Society of America*, 37(7), 898–904. https://doi.org/10.1086/377538
- Tuder RM, el Ibrahim R, Godoy CE, D. B. T. (1985). Pathology of the human pulmonary paracoccidioidomycosis. *Mycopathologia.*, 92(3), 179–188.
- Turissini, D. A., Gomez, O. M., Teixeira, M. M., McEwen, J. G., & Matute, D. R. (2017). Species boundaries in the human pathogen Paracoccidioides. *Fungal Genetics and Biology*, 106(April), 9–25. https://doi.org/10.1016/j.fgb.2017.05.007
- Valle ACF, Aprigliano FF, Moreira JS, W. B. (1995). Clinical and endoscopic findings in the mucosae of the upper respiratory and digestive tracts in post-treatment follow-up of paracoccidioidomycosis patients. *Rev Inst Med Trop São Paulo.*, 37(5), 407–413.
- VandenBerg, A. L., Ibrahim, A. S., Edwards, J. E., Toenjes, K. A., & Johnson, D. I.

(2004). Cdc42p GTPase regulates the budded-to-hyphal-form transition and expression of hypha-specific transcripts in Candida albicans. *Eukaryotic Cell*, *3*(3), 724–734. https://doi.org/10.1128/EC.3.3.724-734.2004

- Vieira Gde D, & Alves Tda C, Lima SM, Camargo LM, S. C. (2014). Paracoccidioidomycosis in a western Brazilian Amazon State: clinicalepidemiologic profile and spatial distribution of the disease. *Rev Soc Bras Med Trop.*, 47(1), 63–68.
- Vieira Gde D, Alves Tda C, Lima SM, Camargo LM, S. C., Vieira, G. de D., Alves, T. da C., Lima, S. M. D. de, Camargo, L. M. A., & Sousa, C. M. de. (2014).
 Paracoccidioidomycosis in a western Brazilian Amazon State: clinical-epidemiologic profile and spatial distribution of the disease. *Rev Soc Bras Med Trop.*, 47(1), 63–68. https://doi.org/10.1590/0037-8682-0225-2013
- Villar LA, Salazar ME, R. A. (1988). Morphological study of a variant of Paracoccidioides brasiliensis that exists in the yeast form at room temperature. J Med Vet Mycol., 26(5), 269–276.
- Voltan, A. R., Cassia, J. D. E., Sardi, O., Soares, C. P., Machado, M. P., Marisa, A. N. A., ... Mendes-giannini, M. J. O. S. É. S. (2013). Early Endosome Antigen 1 (EEA1) decreases in macrophages infected with Paracoccidioides brasiliensis. *Med Mycol.*, 1(October 2013), 759–764. https://doi.org/10.3109/13693786.2013.777859
- Wheeler, R. T., & Diana Kombe, Sudeep D. Agarwala, G. R. F. (2008). Dynamic, Morphotype-Specific Candida albicans β-Glucan Exposure during Infection and Drug Treatment. *PLoS Pathog.*, 4(12).
- Willger, S. D., Liu, Z., Olarte, R. A., Adamo, M. E., Stajich, J. E., Myers, L. C., ... Hogan, D. A. (2015). Analysis of the Candida albicans phosphoproteome. *Eukaryotic Cell*, 14(5), 474–485. https://doi.org/10.1128/EC.00011-15
- Wilson-Grady, J. T., Villén, J., & Gygi, S. P. (2008). Phosphoproteome Analysis of Fission Yeast. *Journal of Proteome Research*, 7(3), 1088–1097. https://doi.org/10.1021/pr7006335
- Xie, Z., Liu, S., Zhang, Y., & Wang, Z. (2004). Roles of Rad23 protein in yeast nucleotide excision repair. *Nucleic Acids Research*, *32*(20), 5981–5990. https://doi.org/10.1093/nar/gkh934
- Xu, K.-P., & Yu, F.-S. X. (2007). Cross talk between c-Met and epidermal growth factor receptor during retinal pigment epithelial wound healing. *Investigative Ophthalmology & Visual Science*, 48(5), 2242–2248. https://doi.org/10.1167/iovs.06-0560
- Yamamoto, N., Bibby, K., Qian, J., Hospodsky, D., Rismani-yazdi, H., Nazaroff, W. W., & Peccia, J. (2012). Particle-size distributions and seasonal diversity of allergenic and pathogenic fungi in outdoor air. *The ISME Journal*, 6(10), 1801–1811. https://doi.org/10.1038/ismej.2012.30
- Zhang, Y. J., & Rubin, E. J. (2013). Feast or famine: The host-pathogen battle over amino acids. *Cellular Microbiology*, 15(7), 1079–1087. https://doi.org/10.1111/cmi.12140
- Zolnierowicz, S., & Bollen, M. (2000). Protein phosphorylation and protein phosphatasesDe Panne, Belgium, September 19–24, 1999. *The EMBO Journal*, *19*(4), 483–488. https://doi.org/10.1093/emboj/19.4.483

Anexo Contribuição em artigo

Proteomic analysis of *Paracoccidioides brasiliensis* during infection of alveolar macrophages primed or not by interferon gamma

Edilânia G. A. Chaves¹, Lilian C. Baeza^{1,2}, **Danielle S. Araújo¹**, Clayton L. Borges¹, Juliana A. Parente-Rocha¹, Milton A. P. de Oliveira³, Célia M. A. Soares^{1,*}

¹Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil,

²Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Cascavel, Brazil,

³Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil.

*Correspondence: Célia M. de Almeida Soares cmasoares@gmail.com

Contents lists availablenceDitec

BBA - Proteins and Proteomics

journal

www.elsevier.com/locate/bbap

Employing proteomic analysis to compare Paracoccidioides lutzii yeast and MARK myceliumark

cell wall proteins

Danielle Silva Araújo^a, Patrícia de Sousa Lima^{a,b}, Lilian Cristiane Baeza^a,

Ana Flávia Alves Parente^c, Alexandre Melo Bailão^a, Clayton Luiz Borges^a, Célia Maria de

Almeida Soares^{a,*}

^aLaboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970 Goiânia, Goiás, Brazil ^bLaboratório Interdisciplinar de Biologia, Universidade Estadual de Goiás, Itapuranga, Goiás, Brazil ^cLaboratório de Bioquímica e Química de Proteínas, Instituto de Biologia, Campus Universitário Darci Ribeiro, Brasília, DF, Brazil

ARTICLEINFO

Keywords: Cell wall proteins Paracoccidioides lutzii Mycelia Yeast cells Proteomics Paracoccidioidomycosis

ABSTRACT

Paracoccidioidomycosis is an important systemic mycosis caused by thermodimorphic fungi of the Paracoccidioides genus. During the infective process, the cell wall acts at the interface between the fungus and the host. In this way, the cell wall has a key role in growth, environment sensing and interaction, as well as morphogenesis of the fungus. Since the cell wall is absent in mammals, it may present molecules that are described as target sites for new antifungal drugs. Despite its importance, up to now few studies have been conducted employing proteomics in for the identification of cell wall proteins in Paracoccidioides spp. Here, a detailed proteomic approach, including cell wall-fractionation coupled to NanoUPLC-MS^E, was used to study and compare the cell wall fractions from Paracoccidioides lutzii mycelia and yeast cells. The analyzed samples consisted of cell wall proteins extracted by hot SDS followed by extraction by mild alkali. In summary, 512 proteins constituting different cell wall metabolism. Adhesins previously described in Paracoccidioides spp. such as enolase, glyceraldehyde-3-phosphate dehydrogenase were identified. Comparing the proteins in mycelium and yeast cells, we detected some that are common to both fungal phases, such as Ecm33, and some specific proteins, as glucanase Crf1. All of those proteins were described in the metabolism of cell wall. Our study provides an important elucidation of cell wall composition of fractions in Paracoccidioides, opening a way to understand the fungus cell wall architecture.

1. Introduction

During their life cycle, fungi have developed strategies to cope with environmental conditions such as changes in temperature and osmotic stress. Additionally they must subvert microbicide conditions they face when coming into contact with a host [1]. The cell wall is a key structure used by fungi to provide a protective barrier against adverse conditions imposed upon it, both environmentally and by host cells. During infection, the cell wall contributes directly to the host-parasite relationship, establishing initial contact between the fungus and the host cells. Processes such as adhesion, immune response, nutrient acquisition, virulence, host tissue damage, and morphogenesis give the cell wall relevance during the fungus' battle to establish disease in the host [2,3].

Although the composition of the cell wall varies between species of

fungi, it is basically composed of polysaccharides that include chitin and glucan, and a set of different proteins, often covered with carbohydrates and lipids [4–7]. Proteomic analyses of cell wall proteins of Candida albicans have categorized those molecules in four groups or fractions based on their linkage to cell wall components [8]. The first fraction contains proteins loosely associated by non-covalent and disulfide bounds with cell wall structure. These proteins are removed from the cell wall by treatment with denaturing and reducing agents at high temperature [9]. Proteins linked to the O-glycosyl side chains of β -1,3glucan (such as Pir digestion [11,12]. Alternatively, the isolation of GPIanchored proteins can be obtained by treating the cell wall with HFpyridine or trifluoromethanesulfonic acid (TMFS) [10,13,14].

The Paracoccidioides genus is composed of Paracoccidioides brasiliensis and Paracoccidioides lutzii species, which cause Paracoccidioidomycosis (PCM), a chronic granulomatous disease endemic in Latin America, [15–18]. Infection occurs by inhalation of infective propagules produced by mycelia in the soil that, upon reaching the lungs, differentiate into yeast cells due to the increase of body temperature (36–37 °C) [19].

Structurally, the cell wall of Paracoccidioides spp. is arranged in layers. Electron microscopy studies demonstrated that the mycelium cell wall has a layer with 80 to 150 nm thick, which consists of a microfibrillar network of β -1,3-glucan and in lesser amounts β -1,6-glucan that interconnect to chitin molecules located internally in the cell wall. In the yeast form, the cell wall has three layers 200 to 600 nm thick; two electron-dense zones and one electron-light zone alternating. The inner layer is formed by chitin and β glucan and the outer layer by α glucan. Proteins are also found in both mycelium and yeast cell walls interconnected in the polysaccharides network [2,20,21].

The repertoire of proteins that constitute the cell wall have low solubility, hydrophobic nature, and are highly glycosylated [10]. Another important aspect that should

* Corresponding author at: Laboratório de Biologia Molecular, Instituto de Ciências Biológicas II, Campus Samambaia, Universidade Federal de Goiás, 74690-900 Goiânia, Goiás, Brazil. E-mail address: celia@icb.ufg.br (C.M. de Almeida Soares).

http://dx.doi.org/10.1016/j.bbapap.2017.08.016

Received 25 January 2017; Received in revised form 17 August 2017; Accepted 21 August 2017 Available online 24 August 2017 1570-9639/ © 2017 Elsevier B.V. All rights reserved.

proteins) or by other covalent alkaline sensitive linkage compose the second fraction and are obtained upon mild alkaline treatment [10]. Fraction three is obtained by removing the β -1,3glucan layer of the cell wall, which releases mannoproteins indirectly attached to β -1,3glucan, via β -1,6-glucan, by a GPI anchor and other molecules anchored to β -1,3-glucan. This is achieved by cell wall treatment with glucanases. Finally, fraction four contains proteins attached to chitin by a glucanase resistant linkage and are extracted by exochitinase be highlighted is the fact that proteins of the cell wall are synthesized and adjusted according to the growing conditions, environmental factors and developmental stage [22–24]. All these factors together, determine that the identification of these proteins can be complex.

Nevertheless, the total number and functions of cell wall proteins are still poorly understood in the genus Paracoccidioides. Published work has focused on the identification of mycelium and yeast proteins of two

isolates of P. brasiliensis [25]. The authors identified cell wall associated proteins, extractable with DTT, specific to morphological phases, as well as sequences exclusive to the isolates. A proteomic approach using NanoUPLC-MS^E was used to map the cell wall proteins in another species, P. lutzii, Pb01. To extract proteins bound to the cell wall by non-covalent or disulfide bonds, SDS and reducing agents were used. Proteins bound by alkalilabile bonds were obtained by NaOH extraction. This work allowed the identification of proteins from Pb01 cell wall in both mycelium and yeast phases. By using subcellular fractionation and NanoUPLC-MS^E we identified proteins present in cell wall that belong to several functional categories. Some of those proteins have been previously characterized in the cell wall of Paracoccidioides sp., playing important roles in cell wall biogenesis and organization as well as in virulence, adhesion, colonization, survival in hostile environments and evasion of the immune system thereby, allowing the establishment of the disease [26–32]. Results demonstrated that in addition to expected proteins containing signals for secretion, other proteins previously identified only in the cytosol or cell organelles are present in the cell wall extracts. By comparing proteins detected in mycelium and yeast cells, some are present in the cell wall fractions of both, including proteins related to cellular transport, cell rescue and biogenesis of components. Proteins were identified in just one fungus phase, that could reflect differential gene expression. These data in conjunction with previously published data can provide an integrated view of the cell wall in the genus Paracoccidioides. 2. Material and methods

2.1. Paracoccidioides strains and growth conditions

Paracoccidioides lutzii isolate Pb01 (ATCC MYA-826), was used in all experiments of this work. The fungus was cultivated in Fava Netto's solid medium containing 1% (w/v) peptone, 0.5% (w/v) yeast extract,

0.3% (w/v) protease peptone, 0.5% (w/v) beef extract, 0.5% (w/v) NaCl, 4% (w/v) glucose and 1% (w/v) agar, pH 7.2 at 36 °C and 22 °C for 7 and 15 days, for yeast cells and mycelia respectively. The yeast cells and mycelia were inoculated in Fava Netto's liquid medium for performing experiments as detailed below.

2.2. Isolation and purification of cell wall proteins (CWP) of P. lutzii

The protocol used for CWP extraction was based on literature data for C. albicans with some modifications [10]. Briefly, a total of 30 g of cells in 1800 mL of Fava Netto's liquid medium was incubated at 36 °C and 22 °C for 72 h (early-log phase growth). The cells were collected by centrifugation at 1200 ×g for 10 min, and washed 5 times with 40 mL of lysis buffer (10 mM Tris-HCl, 2 mM CaCl₂, pH 8.5, 1 mM PMSF). The cells were resuspended in 5 mL of 10 mM Tris-HCl, pH 8.0 with 1 mM PMSF and liquid nitrogen was added to the samples to keep the cells frozen. The cells were disrupted by maceration with mortar and pestle in the presence of liquid nitrogen until a very fine powder was obtained. The fine powder was resuspended in ice-cold lysis buffer then disrupted using glass beads and a beater apparatus (BioSepc, Oklahoma, USA) in 5 cycles of 30 s while on ice. This procedure was carried out, until complete disruption of the fungal cells, which was after verified by microscopy. After, the cells disruption a total of 8 g prepared from the cell wall was obtained. To reduce putative cytoplasmic contaminant proteins, the cell wall fraction was washed five times with 40 mL of icecold water and another five times with 40 mL each of the following icecold solutions: 5% (w/v) NaCl, 2% (w/v) NaCl, 1% (w/v) NaCl with 1 mM PMSF. The cell wall proteins were extracted by boiling with SDS extraction buffer [50 mM Tris-HCl, pH 7. 8, 100 mM EDTA, 2% (w/v) SDS, 10 mM DTT] for 10 min with 5 mL of extraction buffer added for each wet gram of cell walls. The material was centrifuged at 1200 ×g for 10 min and this step was performed twice. The supernatant constitutes the first fraction termed fraction 1 (F1). F1 was washed five times in 20 mL of ultrapure water and 50 mM ammonium bicarbonate, pH 8.5 by centrifugation using a 10-kDa molecular weight cut off in ultracel regenerated membrane (Amicon Ultra centrifugal filter, Millipore, Bedford, MA, USA). Subsequently, the material was concentrated to a final volume of 1 mL. To obtain alkaline sensitive proteins (Fraction 2- F2), the pellet from F1 was subjected to alkaline treatment. The pellet was subjected to washing steps with 40 mL each as follows: five times with icecold water and then further 10 further times with icecold 0.1 M sodium acetate, pH 5.5, 1 mM PMSF. This fraction was extracted with 30 mM NaOH overnight at 4

D.S. Araújo et al.

Fig. 1. Proteins in fractions 1 and 2, of yeast cells and mycelium. (A), (B) Total of identified proteins in yeast (diagrams in light gray) and mycelium (diagrams in dark gray) in the cell wall fractions 1 (F1) and 2 (F2), also including those proteins negative for secretion pathways (classical or not). (C) Potential glycosylation sites using the programs NetNGlyc or

°C: we added 4 mL of extraction solution NaOH for each wet gram of cell wall. Subsequently protein glycosylation was removed using the recombinant enzyme Nglycosidase F (Roche Applied Science). A total of 3 units of the enzyme was added to 300 µg of F2 fractions in solution [125 mM sodium phosphate, 25 mM EDTA, 1% nonidet P40 (w/v), 1% βmercaptoethanol (v/v), 1% SDS (w/v)]. The mixture was incubated at 37 °C for 16 h and the reaction was guenched by boiling the mixture for 5 min. The sample was washed in the following sequence: 3 times with 20 mL of ultrapure water; once with 50 mM NH4HCO3 ammonium bicarbonate, pH 8.5. Both protein extracts (F1 and F2) were quantified using the Bradford method [33]. The concentration of proteins obtained for both yeast and mycelia of F1 was about 0.8 μ g/ μ L, and for F2, yeast and mycelia it was about 0.6 μ g/ μ L. Samples were obtained in biological triplicates. More details are depicted in Supplementary Fig. 1.

2.3. Tryptic digestion and sample preparation for analysis by NanoLC-MS/

MS

Protein extracts were concentrated to a final volume of 50 µL and subjected to digestion with trypsin [34,35]. To 300 µg of protein extract, 150 µL of RapiGEST[™] 0.2% (v/v) (Waters, USA) was added and the sample was vortexed and incubated at 80 °C for 15 min. Later, a reduction stage was carried out by addition of 5 µL of 100 mM dithiothreitol (DTT) and samples were incubated at 60 °C for 30 min. After,

NetOGlyc. (D) Predicting secretion in accordance to the SignalP and SecretomeP programs.

5 μ L of a 300 mM iodoacetamide solution was added, and samples were incubated in the dark at room temperature for 30 min. Then, 60 μ L of trypsin (Promega, Madison, WI, USA), prepared with 50 mM ammonium bicarbonate to 50 ng/µL, was added. The sample was digested at 37 °C for 16 h. RapiGEST™ precipitation was performed by adding 60 µL of a 5% (v/v) trifluoroacetic acid (TFA) solution, followed by incubation at 37 °C for 90 min. The samples were centrifuged at 13,000 ×g at 6 °C for 30 min. The supernatant was dried in a vacuum concentrator.

2.4. Data acquisition by NanoUPLC-MS^E

To allow quantification of peptides, Rabbit Phosphorylase B (Waters) was added to a final concentration of 200 fmol μL⁻¹ as an internal standard. The tryptic peptides were separated by NanoUPLCMS^E on a nanoAcquity™ UPLC system (Waters Corporation, Manchester, UK) [36–39]. The first-dimension chromatography was carried out on an XBridge BEH130 C18 NanoEase column (5 μm, 300 μm × 50 mm;

Waters, USA) that allows the fractioning of the peptides. The first-dimension solvents were A: ammonium formiate (20 mM NH₄HCO₃, pH 10.0) and

B: acetonitrile (100% ACN). The system was run at 2 μ L min⁻¹ with an initial condition of 3% solvent B. The peptide mixture was fractionated ten times (F1–F10) by different solvent B concentrations ramps [8.7, 11.4, 13.2, 14.7, 16, 17.4, 18.9, 20.7, 23.4 and 65% of acetonitrile/0.1% (v/v) formic acid]. Second dimension chromatography was carried out by eluting each peptide fraction from the trapping column and separating them on a NanoAcquity UPLC column BEH 130 C18 (1.7 μm, 100 μm × 100 mm; Waters, USA). For the second dimension solvent A was H₂O and 0.1% (v/v) formic acid pH 2.4, and solvent B was ACN and 0.1% (v/v) formic acid, pH 2.4. The column was operated at 0.9 µL min⁻¹ at 35 °C. To increase the mass accuracy, precursor ion [Glu]¹-Fibrinopeptide B (GFP; Sigma) [([M + 2H]²⁺ = 785.8486)] at 200 fmol μ L⁻¹ solution was delivered through the reference sprayer of the NanoLockSpray source and the MS/MS fragment ions of GFP were used to obtain the final instrument calibration. All samples were analyzed in three replicates. For spectrum processing and database searching, the Protein Lynx Global Server v.2.4 (PLGS) was used. The PLGS uses the following

Fig. 2. Comparison of proteins in cell wall of P. lutzii mycelia and yeast cells. (A), Venn diagram shows the number of proteins exclusive or overlapping in yeast (diagrams in light gray) and mycelia (diagrams in dark gray). (B), Functional classification of differentially expressed and common cell wall proteins of yeast and mycelium.

strategy for peptide identification: first, only completely cleaved tryptic peptides are used for identification (PepFrag1). The second pass of the database algorithm (PepFrag2) is designed to identify peptide modifications and nonspecific cleavage products of proteins that were positively identified in the first pass. The mass error tolerance for peptide identification was under 50 ppm. Protein identifications were obtained by searching against the Paracoccidioides spp. genome database (http://www. broadinstitute.org/annotation/genome/paracoccidioi des brasiliensis/ MultiHome.html) together with reverse sequences. The parameters for protein identification included: the detection of at least 2 fragment ions per peptide: 5 fragments per protein: the determination of at least 1 peptide per protein; carbamidomethylation of cysteine as a fixed modification; phosphorylation of serine, threonine and tyrosine, and oxidation of methionine were considered as variable modifications; maximum protein mass (600 kDa); one missed cleavage site was allowed for trypsin; (maximum false positive ratio (FDR) of 4% was allowed [40]. The protein and peptides tables generated by PLGS were merged and the dynamic range of the experiment, peptides detection type, and mass accuracy were determined for each condition, as previously described [35,38].

2.5. Bioinformatics tools

The identified proteins were submitted to in silico analysis. The proteins sequences were examined for the presence of a signal peptide using the SignalP (http://www.cbs.dtu.dk/services/SignalP/). SecretomeP (http://www.cbs.dtu.dk/services/SecretomeP/) was used to identify non-classical protein secretion signals. Using the NetNGlyc

(http://www.cbs.dtu.dk/services/NetNGlyc) and NetOGlyc (http:// www.cbs.dtu.dk/services/NetOGlyc/) programs, proteins glycosylation sites could be determined. In addition, the big-PI program (http:// mendel.imp.ac.at/gpi/fungi_server.html) was used, to search for proteins GPI-anchoring sites.

3. Results and discussion

3.1. Isolation and identification of cell wall proteins

Proteins from yeast and mycelia were obtained by cell wall fractionation according to the type of interactions that they establish with cell wall components, as cited before. The fractionation was performed in steps that allowed the extraction of proteins by a SDS- boiling treatment to release proteins associated with the cell wall through noncovalent interactions or disulfide bridges. A second step included using an alkaline solution, to extract an enriched fraction of alkalisensitive proteins or proteins that were attached to cell wall by covalent bonds (Fig. S1).

To assess the extract's quality, proteins were subjected to SDS-PAGE and silver stained as depicted in Fig. S2. Fractions F1 and F2 presented visible amount of proteins (Fig. S2A and B). To check the purity of the cell wall extract, the supernatant from the last wash (1% NaCl) was collected and subjected to SDS-PAGE (Fig. S2C). There were no visible cytoplasmic contaminants in the cell wall fraction.

The protein extracts were analyzed using nanoscale liquid chromatography coupled with tandem mass spectrometry, NanoUPLC-MS^E. The false positive rate obtained was 0% for F1, both yeast cells and mycelia, while it was 0.31 and 0.21% for corresponded to fraction F2 in yeast and mycelia, respectively (data not show). The experiments identified 3002 and 1525 identified peptides in fractions F1 in yeast and mycelium F1 fractions, respectively, while 3465 and 2732 identified peptides were identified in yeast and mycelium F2 fractions, respectively (data not show). Figs. S3–S7 showed the dynamic range of the experiments, peptide detection type, and mass accuracy determined for each condition.

Following proteomics global analysis, some filters were applied to the data. Proteins were admitted with one or more peptides found in the three replicates. Following those criteria, a total of 1401 proteins were identified. Fig. 1A and B depict the number of identified proteins as

Table 1

Common proteins in F1 and/or F2 of yeast cells and mycelia of Paracoccidioides lutzii identified by NanoUPLC-MS^E.

ID ^a	Annotation ^b	Cell wall fraction yeast ^c	Cell wall fraction mycelia ^d	SignalP/ SecretomeP ^e	NetOglyc ^f	NetNglyc ^g	Biological process ^h
RAAG 08620	ort, transport facilities and transport route	s 1 2	1 0	Signal P	_		
FAAG_08020	ADP ATP carrier protein	1,2	1,2	Signal P	-	-	Nucleotide/nucleoside/ nucleobase transport
PAAG_01265	Cytochrome b5	2	2	Secretome P	+	+	Electron transport
PAAG_03161	GTP binding protein ypt5	2	2	Signal P	+	-	Vacuolar/lysosomal transport
PAAG_05680	NTF2 and RRM domain-containing protein	1	1	Secretome P	+	+	Nuclear transport
PAAG_07564	Outer mitochondrial membrane protein porin	1,2	1,2	Secretome P	-	-	Channel/pore class transport
PAAG_04276	Phosphatidylinositol transporter	1,2	2	Secretome P	+	-	Lipid/fatty acid transport
PAAG_07175	Vacuolar sorting-associated protein	2	1	Secretome P	+	-	Vacuolar/lysosomal transport
PAAG_06228	Translocation protein SEC62	1	2	Secretome P	+	-	Protein transport
Cellular communi	cation/signal transduction mechanism						
PAAG_02973	Diploid state maintenance protein chpA	1	1	Secretome P	+	-	Cellular signalling
PAAG_02458	GTP binding protein ypt7	2	1,2	Secretome P	-	-	Small GTPase mediated signal transduction
Cell rescue, defen	se and virulence PAAG_03735						
Chape	rone protein dnaJ	1,2	2	Secretome P	+	-	Stress response
PAAG_03292	Cytochrome c peroxidase	2	1,2	Secretome P	+	-	Oxidative stress response
PAAG_07775	Heat shock protein SSB1	1,2	1,2	Secretome P	+	-	Stress response
PAAG_02116	Hsp70	2	2	Signal P	+	+	Stress response
PAAG_01262	hsp70 like protein	1,2	1,2	Signal P	+	-	Stress response
PAAG_02725	Superoxide dismutase 2	1,2	2	Secretome P	+	-	Superoxide metabolism
Biogenesis of cell	ular components PAAG_02990						
Beta g	ucosidase	2	1,2	Signal P	+	+	Cell wall
PAAG_07670	Cell wall protein ECM33 precursor*	2	1,2	Signal P	+	+	Cell wall
PAAG_04829	Extracellular matrix protein*	1	1,2	Signal P	+	+	Cell wall

^a Identification of proteins in the Paracoccidioides genome database

(http://www.broadinstitute.org/annotation/genome/paracoccidioides_brasiliensis/MultiHome.html) using the ProteinLynx Global Server (PLGS) version 3.0 (Waters

Corporation. Manchester. UK).

^b Proteins annotation from Paracoccidioides genome database or by homology from NCBI database (http://www.ncbi.nlm.nih.gov/).

Cell wall fraction yeast obtained by SDS and DTT (fraction 1), NaOH (fraction 2).

d Cell wall fraction mycelia obtained by SDS and DTT (fraction 1), NaOH (fraction 2).

e Prediction according SignalP 4.0 secretion, the corresponding number for the D-score must equal or exceed the value of 0.340 (D-

 $score \ge 0.340) (340) (http://www.cbs.dtu.dk/ services/SignalP/); or prediction according Secretome P 2.0, the corresponding number for the corresponding number$

SecP-score must equal or exceed the value of 0.5 (SecP score \geq 0.5) (http://www.cbs.dtu. dk/services/SecretomeP/). ^f Prediction secretion

according NetOGlyc 4.0, the corresponding number for the discriminant score must equal or exceed the value of 0.5 (score \geq 0.5)

(http://www.cbs.dtu.dk/

services/NetOGlyc/). ^g Prediction secretion according NetNGlyc 1.0, the corresponding number for the discriminant score must equal or exceed the value of 0.5 (score ≥ 0.5) (http://www.cbs.dtu.dk/

services/NetNGlyc/). h Biological process of differentially expressed proteins from MIPS (http://pedant.helmholtz-

muenchen.de/pedant3htmlview/pedant3view?Method=analysis&Db=p3_r48325_Par_

brasi_Pb01) and Uniprot database (http://www.uniprot.org/).

* GPI-anchored protein prediction according big-PI (http://mendel.imp.ac.at/gpi/fungi_server.html).

follows: 306 (F1 yeast), 379 (F1 mycelium), 272 (F2 yeast), 444 (F2 mycelium). In synthesis, 685 and 716 proteins were identified in fractions F1 and F2, respectively (Supplemental Tables 1–4). Potential sites for N-glycosylation and O-glycosylation were predicted using the respective tools NetNGlyc and NetOGlyc, for all identified proteins in fractions F1 and F2, of mycelia and yeast cells (Fig. 1C). Fig. 1C demonstrates that of three hundred and six proteins listed in F1 fraction of yeast cells, 90% harbored potential O-glycosylation sites. Moreover, 40% also exhibited N-glycosylation sites. In the F1 fraction of mycelia, many proteins presented sites for O- and N- glycosylation, totaling 86% and 40% of proteins, respectively. Regarding the F2 fraction of yeast cells, 272 proteins were identified and of those, 81% presented sites for O- glycosylation and 36% for N- glycosylation. In the mycelium F2 fraction, among 444 identified proteins 86% and 41% presented sites for O- and N- glycosylation, respectively. The in silico analysis of the identified proteins revealed probable secretion pathways in accordance with the SignalP and SecretomeP (Fig. 1 D). Of special note, among 306 proteins in the F1 fraction of yeast cells, 61% presented a potential signal for a classical or nonclassical secretion pathway. In the F1 fraction of mycelia, 187 proteins were putatively secreted by classical or non-classical secretion pathways, corresponding to 49.6% of the identified proteins in this
Table 2

Veast cells stage-specific proteins of Paracoccidioides Jutzii identified by NanoLIPI C-MSE

ID ^a	Annotation ^b	Cell wall fraction yeast ^c	SignalP/ SecretomeP ^d	NetOglyc ^e	NetNglyc ^f	Biological process [®]		
Cellular transport, transport facilities and transport routes								
PAAG_00782	Small COPII coat GTPase sar1	2	Signal P	-	-	Cellular export and secretion		
PAAG_03054	G2/M phase checkpoint control protein Sum2	1	Secretome P	+	+	Cellular import		
PAAG_04159	Phosphatidylinositol transporter	1	Secretome P	+	-	Cellular transport		
PAAG_06249	Transport protein SEC31	1	Secretome P	+	+	ER to Golgi transport		
PAAG_00326	Heavy metal ion transporter	1	Secretome P	+	-	Heavy metal ion transport (Cu+, Fe3+, etc.)		
PAAG_01796	Vacuolar sorting receptor	1	Signal P	+	+	Vacuolar/lysosomal transport		
PAAG_01602	Ras like GTP binding protein	2	Secretome P	+	-	Vesicle fusion		
PAAG_08252	Clathrin light chain	1	Secretome P	+	-	Vesicular transport (Golgi network, etc.)		
Cellular communication/signal transduction mechanism PAAG_03579 cAMP independent regulatory protein								
pac2		1	Secretome P	+	+	Cellular signalling		
Cell rescue, defense and virulence								
PAAG_02364	Thioredoxin	1	Secretome P	+	+	Oxidative stress response		
PAAG_06282	DnaJ domain protein	1	Secretome P	+	-	Stress response		
PAAG_03334	Peptidyl prolyl cis trans isomerase D	1	Secretome P	+	+	Stress response		
Biogenesis of cellular components								
PAAG_07373	Glucan synthesis regulatory protein	1	Secretome P	+	-	Cell wall		
PAAG_04857	Beta glucosidase	2	Signal P	+	-	Cell wall		
PAAG_05798	Golgi to endosome transporter	1	Secretome P	+	+	Cytoskeleton/structural proteins		

Identification of proteins in the Paracoccidioides genome database

(http://www.broadinstitute.org/annotation/genome/paracoccidioides brasiliensis/MultiHome.html) using the ProteinLynx Global Server (PLGS) version 3.0 (Waters Corporation. Manchester. UK).

Proteins annotation from Paracoccidioides genome database or by homology from NCBI database (http://www.ncbi.nlm.nih.gov/).

Cell wall fraction veast obtained by SDS and DTT (fraction 1). NaOH (fraction 2).

^d Prediction according SignalP 4.0 secretion, the corresponding number for the D-score must equal or exceed the value of 0.340 (D-score > 0.340) (http://www.cbs.dtu.dk/ services/SignalP/)); or prediction according Secretome P 2.0, the corresponding number for the SecP-score must equal or exceed the value of 0.5 (SecP score ≥ 0.5) (http://www.cbs.dtu. dk/services/SecretomeP/). ^e Prediction secretion according NetOGlyc 4.0, the corresponding number for the discriminant score must equal or exceed the value of 0.5 (score ≥ 0.5) (http://www.cbs.dtu.dk/

services/NetOGlyc/). ¹ Prediction secretion according NetNGlyc 1.0, the corresponding number for the discriminant score must equal or exceed the value of 0.5 (score ≥ 0.5) (http://www.cbs.dtu.dk/ services/NetNGlyc/).

^g Biological process of differentially expressed proteins from MIPS (http://pedant.helmholtz-muenchen.de/pedant3htmlview/pedant3view?Method=analysis&Db=p3_r48325_Par_ fraction. Regarding the F2 fraction of yeast cells, 106 proteins were predicted to be secreted, constituting 38.5% of

the total. From the F2 fraction of mycelia, 193 proteins were putatively secreted, corresponding to 43% of the identified proteins in this fraction. In synthesis, the percentage of predicted secreted proteins in the analyzed fractions, mycelium and yeast cells, ranged from 38.5% to 61%.

3.2. Functional classification of proteins in cell wall of yeast cells and mycelia

Each protein was assigned to a specific functional group based on FUNCAT annotations. Supplementary Table 1 depicts the proteins in the F1 of yeast cells. The most abundant functional groups are involved in metabolism, energy production, and protein synthesis, as demonstrated in Supplementary Fig. 8A. The F1 mycelium proteins were also classified according to

functional category, as depicted in Supplementary Table 2. The profile of functional categories, presented in Supplementary Fig. 8A indicates a very similar pattern when comparing to yeast cells.

Tables S3 and S4 list the proteins present in the F2 of yeast and mycelia, respectively. The number of identified proteins was 272 and 444 for yeast and mycelia, respectively. For both samples, the functional category of metabolism and energy were predominant as depicted in Supplementary Fig. 8B. Of relevance, the category of cellular

brasi_Pb01) and Uniprot database (http://www.uniprot.org/).

transport was present among the identified functional classes. When comparing the proteins involved with carbohydrate metabolism in mycelium and yeast samples in F1/F2, it became evident that mycelium presents a higher number of proteins than the yeast. Our results are similar to those found for Pb3 and Pb18 in which proteins related to carbohydrate metabolism

were more expressed in mycelium. According to the study, it is supposed that mycelium need an extra energy for cell wall biosynthesis/remodeling [25].

3.3. Non-predicted cell wall proteins

Among the 1401 identified proteins in the F1 and F2 for both mycelia and yeast cells, 52% do not match when SignalP (classical secretion signal) or SecretomeP (nonclassical secretion signal) were employed. Despite the absence of those signals, that could direct the proteins to the fungal surface, some atypical cell wall proteins (Tables S1–S4) were previously described in fungal cell wall, making clear the classification of those proteins at the cell wall. Among those proteins, enolase is present in fractions F1 and F2 from both, yeast and mycelia, and play role in pathogenesis and virulence of Paracoccidioides spp. [30,31]. Immunocytochemistry studies have demonstrated the localization of enolase at Paracoccidioides spp. cell surface, where it is able to recruiting plasminogen, activating the fibrinolytic system of plasmin which in turn degrades the extracellular matrix of the host and potentially promotes spread of the pathogen [30]. In addition, other atypical cell wall protein, formamidase, here identified, was detected in Paracoccidioides yeast and mycelium cell wall by immunomicroscopy; the protein can be related to resistance to acidic environments (Tables S2–S3) [41]. Additional metabolism related proteins, atypical cell wall proteins, such as malate synthase present in fraction F2 of mycelia, have already been described in Paracoccidioides cell wall. Malate synthase is an important adherence molecule binding to host extracellular matrix components such as fibronectin and type I and type IV collagen [42] (Table S4).

Additionally, studies often use different protocols to isolate cell wall proteins, and in almost all of them, some intracellular proteins were associated with this structure. Thus, some authors have suggested that those proteins, atypical cell wall proteins, perform dual or multiple roles depending on location [22,43]. Corroborating this result, a recent comparative study of the cell wall-associated proteins in yeast and mycelium of P. brasiliensis described known intracellular proteins associated with the cell wall [25]. Those proteins without signals for secretion, also highlight the importance of extracellular vesicles for the trans-cell wall transport of molecules to the extracellular space [44]. Cell wall-bound vesicles are described in diverse organism such as

Cryptococcus neoformans [45], Histoplasma capsulatum, C. albicans, Candida parapsilosis, Sporothrix schenckii, Saccharomyces cerevisiae [46] and P. brasiliensis [47]. Proteins that make up those are signal transduction regulators, heat shock proteins, chaperones, vesicle formation proteins, cell wall regulation molecules, cell growth proteins, sugar metabolism-related proteins, among others [44,47]. In addition, it has been inferred by some authors that those proteins may simply associate with the cell wall as a result of their release to the external environment due to the cell lysis process [48,49,50]. Another alternative explanation relates to the fact that as the cell wall is an elastic structure, it can stretch and shrink rapidly in response to osmotic changes of the environment, and consequently proteins in transit to the extracellular medium, may become attached to the cell wall [51].

Table 3

Mycelia stage specific proteins of Paracoccidioides lutzii identified by NanoUPLC-MS^E.

ID ^a	Annotation ^b	Cell wall fraction mycelia ^c	SignalP/ SecretomeP ^d	NetOglyc ^e	NetNglyc ^f	Biological process ^g
PAAG_01614	ransport facilities and transport routes Sugar transporter	2	Secretome P	-	-	
PAAG_04988	UDP N acetylglucosamine transporter	1	Secretome P	+	+	C-compound and carbohydrate transport C-compound and carbohydrate transport
PAAG_06563	Succinate fumarate mitochondrial transport	2	Secretome P	+	+	C-compound and carbohydrate transport
PAAG_00136	Annexin	2	Secretome P	+	_	Cellular export and secretion
PAAG_04328	Endosomal cargo receptor Erp3	2	Signal P	-	-	Cellular export and secretion
PAAG_01111	Apolipoprotein O	1	Secretome P	-	-	Lipid transport
PAAG_03452	Carnitine acyl carnitine Carrier	1	Secretome P	+	+	Lipid/fatty acid transport
PAAG_03418	Mitochondrial precursor proteins import	1	Secretome P	+	+	Mitochondrial transport
PAAG_03644	Mitochondrial import receptor subunit tom	1,2	Secretome P	-	-	Mitochondrial transport
PAAG 00929	Transport protein sec61	1	Secretome P	+	-	Protein transport
PAAG 01473	Outer membrane protein	2	Secretome P	+	+	Transport routes
PAAG 04674	Translocation protein SEC66	2	Secretome P	+	-	Transport routes
PAAG 09048	Syntaxin family protein	2	Secretome P	+	-	Vesicle fusion
PAAG_03900	GTP-binding protein YPT52	2	Secretome P	+	-	Vesicular transport (Golgi network, etc.)
Cellular communi	cation/signal transduction mechanism					
PAAG 06815	Tricalbin 3	1	Secretome P	+	+	Ca2+ mediated signal transduction
PAAG 02757	Serine threonine protein kinase cot 1	1	Secretome P	+	-	Cellular signalling
PAAG_07734	Adenylyl cyclase associated protein	2	Secretome P	+	-	Cellular signalling
PAAG 07740	Conserved hypothetical protein	2	Secretome P	+	+	GTPase activator (GAP)
Cell rescue, defer	ise and virulence					
PAAG 04338	Interferon induced GTP binding protein Ma	2	Secretome P	+	+	Defense related proteins
PAAG 01454	Peroxisomal catalase	1,2	Secretome P	+	-	Oxidative stress response
PAAG 07444	Chaperone protein dnaK	2	Secretome P	+	+	Stress response
PAAG 07534	Chaperone protein dnaJ 3	1,2	Signal P	+	-	Stress response
Biogenesis of ce	ll Jar components	,	0			
PAAG 00898	Conserved hypothetical protein*	1	Secretome P	+	+	Cell wall
- PAAG_06779	Cell wall glucanase Litr2*	12	Secretome P	+	+	Cell wall
PAAG 04524	Mannan ondo 1.6 alpha mannosidaso	1	Signal D			
FAAG_04554		1	Signal F	Ŧ	т	
		4.2	Circuit D			Callerall
PAAG_04665	IUSI	1,2	Signal P	+	-	Cell wall
PAAG_04290	Neutral alpha_glucosidase AB	2	Signal P	+	-	
PAAG_05245	1,3 Beta giucanosyltransferase gel2*	1,2	Signal P	+	+	
PAAG_01139	Extracellular cell wall glucanase Crf1*	1,2	Signal P	+	-	Cell wall
PAAG_03849	Chitinase	2	Secretome P	+	+	Chitin anabolism

^a Identification of proteins in the Paracoccidioides genome database

(http://www.broadinstitute.org/annotation/genome/paracoccidioides_brasiliensis/MultiHome.html) using the ProteinLynx Global Server (PLGS) version 3.0 (Waters

Corporation. Manchester. UK).

Proteins annotation from Paracoccidioides genome database or by homology from NCBI database (http://www.ncbi.nlm.nih.gov/);

Cell wall fraction mycelia obtained by SDS and DTT (fraction 1), NaOH (fraction 2).

^d Prediction according SignalP 4.0 secretion, the corresponding number for the D-score must equal or exceed the value of 0.340 (D-score ≥ 0.340) (340) (http://www.cbs.dtu.dk/ services/SignalP/); or prediction according Secretome P 2.0, the corresponding number for the SecP-score must equal or exceed the value of 0.5 (SecP score ≥ 0.5) (http://www.cbs.dtu. dk/services/SecretomeP/). ^e Prediction secretion according NetOGlyc 4.0, the corresponding number for the discriminant score must equal or exceed the value of 0.5 (score ≥ 0.5) (http://www.cbs.dtu.dk/

services/NetOGlyc/). ¹Prediction secretion according NetNGlyc 1.0, the corresponding number for the discriminant score must equal or exceed the value of 0.5 (score > 0.5) (http://www.cbs.dtu.dk/ services/NetNGlyc/). ^g Biological process of differentially expressed proteins from MIPS (http://pedant.helmholtz-

muenchen.de/pedant3htmlview/pedant3view?Method=analysis&Db=p3_r48325_Par_

brasi_Pb01) and Uniprot database (http://www.uniprot.org/).

*GPI-anchored protein prediction according big-PI (http://mendel.imp.ac.at/gpi/fungi_server.html).

3.4. Proteins secreted by classical and non-classical routes in yeast cells and mycelia

Despite other pathways, as cited above, different from the classical and non-classical routes, we considered for further analysis just proteins that were putatively secreted according to SignalP and SecretomeP. The adopted criteria were based on studies demonstrating that many proteins bound to fungal cell wall, are characterized by having a classical signal peptide and of O- and N-glycosylation sites [5,22,52]. Also, we have included in our selection criteria proteins secreted by non-classical routes; proteins with values of SecPscore ≥0.5 were grouped in routes of non-classical secretion [53], once it has been described in Paracoccidioides spp. that most of the secreted proteins encoded in their genomes are predicted to be non-classically secreted [47,54]. The proteins secreted by non-classical routes could reach the cell wall in extracellular vesicles, widely described in fungi as a protein transfer mechanism to the cell outside [55].

In this way, we analyzed proteins secreted by classical or nonclassical pathways in both fractions F1 and F2. Among the 1401 identified proteins, 244 from yeast cells and 268 from mycelia, corresponding to F1 and/or F2, were considered for further analysis as depicted in Fig. 2A. In addition, those proteins were classified into functional categories according to their biological processes, obtained using Pedant on MIPS (http://pedant.gsf.de/pedant3htmlview/

pedant3view?Method=analysis&Db=p3_r48325_Par_lut

zi) and the Uniprot database (http://www.uniprot.org/), as depicted in Fig. 2B for yeast and mycelia. Among the functional categories in this selection of proteins, the most abundant detected in fractions of both yeast and mycelia were metabolism and energy, followed by proteins synthesis and unclassified proteins. It is worth noting the detection of similar numbers of proteins in the fractions F1 and/or F2 from yeast and mycelia, as depicted in Fig. 2A. Also, the functional categorization of those proteins in F1 and/or F2 from yeast cells and mycelia presented very similar numbers, as depicted in Fig. 2B.

Table S5 depicts the proteins in yeast cells, putatively secreted by classical or non-classical pathways, present in both fractions F1 and F2. Enzymes related to several metabolic routes, such as the TCA cycle and methylcitrate cycle were present in addition to a high number of proteins belonging to protein synthesis. Table S6 depicts the proteins in mycelia presenting classical or non-classical secretion, present in both fractions F1 and F2. Cell metabolism and energy in addition to protein synthesis predominate in the fractions from mycelia. Another important consideration is that 127 proteins were found in both fractions, F1 and F2 (Tables S5 and S6). This result is consistent with other studies of cell wall proteome. It has been reported that one unique protein can be found throughout the cell wall, both in the outer and internal fractions [56]. Thus, we can suppose that those proteins can bind the cell wall by different types of linkages, and in this way can be obtained by different treatments.

Among the proteins identified in fractions of yeast and mycelia some related to metabolism and energy such as glyceraldehyde-3phosphate dehydrogenase (GAPDH) were identified, that presented signal for cell wall localization (Tables S5–S6). Although unexpected, such a protein had been described in the cell wall of Neisseria meningitidis, presumably facilitating colonization and invasion of host tissues by direct interaction with host proteins [57]. In P. lutzii, GAPDH is located in the cell wall, where it can bind laminin, collagen I and fibronectin, playing a role in the fungal adhesion [27]. Fructose 1,6bisphosphate aldolase, present in yeast F1, had been already been described in studies in Paracoccidioides cell wall as binding plasminogen and activating it to plasmin, therefore representing a potential virulence factor (Table S5) [58]. Corroborating our results, studies have shown that C. albicans presents eight plasminogen binding proteins including fructose-1,6-bisphosphate aldolase [59]. In N meningitidis studies demonstrated that fructose-1,6bisphosphate aldolase might have a function related to adherence to host cells [60].

Again corroborating our findings, elongation factor 1 alpha, here identified in the cell wall of yeast and mycelia in both F1 and F2 (Table S5–S6), is also located in the cell wall of S. cerevisiae and C. albicans [22,56,61]. Moreover, translation elongation factors have been described on the cell surface of other organisms, such as Mycobacterium leprae, C. albicans and Staphylococcus aureus [62–64]. In an attempt to explain their location on the cell surface, it was proposed that elongation factors could be related to the adhesion process in tobacco cell walls [65]. Additionally the Leishmania elongation-factor 1α is capable of activating multiple protein tyrosine phosphatases in the host which will downregulate interferon-y signalling $(INF-\gamma)$, impeding the effective expression of microbicide activity performed by macrophages, including TNF- α and nitric oxide (NO) production [66,67]. Additionally, regarding the cell cycle category, histones H2 and H3 were found in mycelium and yeast cells wall (Table S5–S6). Although those proteins are commonly associated with DNA, they were found on the cell surface of H. capsulatum [68]. Immunization of mice against H2B reduced the fungal burden, decreased pulmonary inflammation and prolonged mouse survival against histoplasmosis [68].

161

3.5. Common proteins in the cell wall of yeast cells and mycelia

Initially, we searched for proteins present in both, yeast cells and mycelia in F1 and F2. We believe that those proteins represent common processes for both fungal phases. Proteins numbering 135 were present in the fractions F1 and/or F2 of both phases, as depicted in Fig. 2A. We focused our analysis of common cell wall proteins on yeast and mycelia by analyzing functional categories that could be related to transport, cell communication, virulence and biogenesis of cellular components, as depicted in Table 1. We detected proteins related to cell rescue, defense and virulence, such as cytochrome c peroxidase, chaperone protein DnaJ and superoxide dismutase FeeMn family – SOD2. Cytochrome c peroxidase increases in yeast cells upon oxidative [69], and nitrosative stresses [70] in P. lutzii. Knock down of the gene encoding that protein results in increased sensitivity to oxidative and nitrosative agents [70,71] as well as decreased survival of P. brasiliensis in macrophages and in a murine model of infection [71], characterizing the protein as a virulence factor in this fungus. The mitochondrial chaperone DnaJ is localized at the P. brasiliensis cell surface, presenting an inferred function of adhesion [72]. Hsp70 has been described in cell wall of C. albicans [56,73–75], corroborating our finding. HSPs had also been associated with the maintenance of cell wall in Aspergillus fumigatus [75]. The heat shock protein SSB1, was also identified in the secretome of P. lutzii in mycelia and yeast cells [54]. In the group of proteins related to biogenesis of cellular components, we detected an extracellular matrix protein, a predicted structural GPI-anchored molecule that can be related to cell wall biosynthesis and remodeling. In addition, the identified proteins in this group include Ecm33, a GPIlinked cell wall protein important for cell wall integrity and architecture in C. albicans [76,77]. The absence of this protein from C. albicans affects the fungus morphology promoting an aberrant cell wall structure [76,77]. Beta glucosidase (PAAG 02990) here identified in F1 and/or F2 of yeast and mycelia may be involved in the remodeling of the fungal cell wall (Table 1).

3.6. Differentially expressed cell wall proteins in yeast and mycelia

One hundred and nine proteins were detected just in F1/F2 of yeast cells and 133 proteins were detected just in mycelia, (Fig. 2A). The biological processes according to GO classification are described in Fig. 2B. Specific proteins in fractions F1 and F2 of yeast cells were encompassed by categories of cellular transport (7% - 8 proteins), cellular communication (1% - 1 protein), cell rescue, defense and virulence (3% - 3 proteins) and biosynthesis of cellular components (3% - 3 proteins) as depicted in Fig. 2B and Table 2. The category of cell rescue, defense and virulence includes thioredoxin, (Table 2), a key protein for dealing with the antioxidant arsenal during oxidative stress, allowing the neutralization of H₂O₂ [69]. Proteins such as peptidylprolyl cis-trans isomerase D and thioredoxin described here were also exclusive to the yeast cells wall in Pb03 and Pb18 [25]. It was also possible to identify a beta glucosidase, most likely involved in remodeling and organization of the cell wall. The clathrin light chain here identified is required for trafficking of enzymes for cell wall synthesis/remodeling. In Schizosaccharomyces pombe, clathrin light chain is necessary for the origin of vesicles that transport some proteins to the cell surface such as β-glucan synthases and exoglucanases, both required for cell wall synthesis and remodeling [78].

The proteins identified just in the F1/F2 fractions of mycelia were mainly related to cellular transport (10% -14 proteins), cellular communication (3% - 4 proteins), cell rescue, defense and virulence (3% - 4 proteins) and biosynthesis of cellular components (6% - 8 proteins) as depicted in Fig. 2B and Table 3. Some proteins related to cell rescue, such as DnaK and DnaJ, were identified only in mycelium cell wall. The chaperone DnaK is a major protein folding factor under stress conditions [79,80]. Loss of DnaK reduces the ability of Staphylococcus aureus to make biofilms and its adherence to eukaryotic cells [81]. Studies have provided evidence that the chaperone DnaK is localized at the surface of Mycobacterium tuberculosis [82], corroborating our analysis. Members of DnaJ are localized in the cell wall of Paracoccidioides [72]. In addition, GPI-anchored proteins involved in cell wall remodeling, were identified only in mycelia F1 and F2, as following: cell wall glucanase Utr2, extracellular cell wall glucanase Crf1, β -1,3 glucanosyltransferase gel2, mannan endo 1,6-alpha mannosidase DCW1 and a

putative GPI-anchored protein with unknown function (Table 3). Utr2 and Crf1 are transglycosylases members of the CRH family [83], that play role in linking chitin to β -glucans, both in vivo and in vitro [84–86].

Transglycosylases catalyze the cleavage of the β -(1,4) linkages of the donor chitin donor molecule and bind its reducing end in a sugar acceptor molecule by a β -(1,4) glycosidic bond [86,87]. In C. albicans a null mutant for UTR2 presents defects in filamentation, reduction in adherence, and loss of virulence [87,88]. In S. cerevisiae, the impairment of retrograde trafficking of proteins [89,90], affects cell wall integrity, since this impairment results in activation of the calcineurin signalling pathway [91], enhancing the expression of Chr11 and Utr2 transglycosylases. It was suggested that Utr2 plays role in cell wall remodeling and partially compensates for the cell wall defects when there is impaired retrograde trafficking [91].

The cell wall glucanase Crf1 belongs to glycosyl hydrolase family 16 and plays a role in cell wall organization since its homologue in S. cerevisiae (Crhl) has a transglycosidase activity that is involved in the crosslinking between polymers of chitin and β-1,6 glucan [85,92]. Proteins members of the glucanosyltransferase family operate in cleavage and joining of β -1,3-glucans to shorten or lengthen glucan polymers [93,94]. In this study, only the Gel2p was found (Table 3). Gel2p presents functional similarity with GAS/Phr and is member of the glycoside hydrolase family 72. Gel2p participates in cell wall integrity and maintenance in P. lutzii since it was able to restore the lack of Gas1p activity in a S. cerevisiae Gas1p mutant as indicated by complementation studies. Furthermore, Gel2p is associated mainly with the cell wall [32]. The protein DCW1 participates in Neurospora crassa cell wall biogenesis, incorporating glycoproteins into the cell wall. dcw1 mutants released large amounts of protein into the medium, including well-characterized cell wall proteins [95]. In C. albicans DCW1p is required for growth [96]. Dcw1p of S. cerevisiae is homologous to PbDfg5p of P. lutzii, a GPI β-glucan which can be related to interactions of P. lutzii with colonizing host tissues [97]. Proteins associated with cell wall remodeling, such as TOS1, were here described here [98]. Mutants for this protein, presents decreased levels of glycogen storage and susceptibility to the action of β-1,3glucanase [43,99]. Neutral alpha glucosidase AB and chitinase were here found here in mycelia (Table 3). Chitinase cht3, member of the glycosyl hydrolase 18 family, is associated with the degradation of wall carbohydrates of the primary septum between mother and daughter cells [100,101]. Consistent with our results, Cht3 expression is higher in hyphae compared to yeast cells in C. albicans [102].

4. Conclusion

Sequential fractionation associated with a proteomic approach allowed the characterization of cell wall proteins of P. lutzii, which include proteins associated with the wall through non-covalent or disulfide bonds (F1) and proteins bound to the cell wall by alkali-labile bonds (F2). A high percentage of proteins without a classic signal peptide were identified, which is consistent with data in the literature. Proteins from both fractions, F1 and F2, were related to several biological processes, some of them classically related to the cell wall. When compared the proteins composition in mycelium and yeast, 135 proteins were common, such as Ecm33, beta glucosidase, protein DnaJ and superoxide dismutase. The total of 242 differentially expressed cell wall proteins in yeast and mycelia were identified. The specific proteins in yeast cells were composed by categories of cellular transport, cellular communication, cell rescue, defense and virulence and biosynthesis of cellular components. In mycelia, several proteins involved with carbohydrate metabolism were found such as GPI-anchored proteins. To our knowledge, up to now, this is the first work that describes, at the proteomic level, proteins in fractions of the cell wall in yeast cells and mycelia in the genus Paracoccidioides. Those proteins could be particularly valuable to search new specific targets for antifungal drugs.

Supplementary data to this article can be found online at http://dx. doi.org/10.1016/j.bbapap.2017.08.016.

Transparency document

The http://dx.doi.org/10.1016/j.bbapap.2017.08.016 associated with this article can be found, in online version.

Acknowldegments

This work at Universidade Federal de Goiás was supported by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado de Goiás (FAPEG), grant numbers 407855/2013-0 and 465771/2014-9, respectively. This work is part of the National Institute of Science and Technology of the Strategies of Host-Pathogen Interaction (HPI).

References

- S.J. Free, Fungal cell wall organization and biosynthesis, Adv. Genet. 81 (2013) 33–82, http://dx.doi.org/10.1016/B978-0-12-407677-8.00002-6.
- [2] G. San-Blas, F. San-Blas, Paracoccidioides brasiliensis: cell wall structure and virulence. A review, Mycopathologia 62 (1977) 77–86 http://www.ncbi.nlm.nih.gov/ pubmed/340954.
- [3] C.J. Heilmann, A.G. Sorgo, A.R. Siliakus, H.L. Dekker, S. Brul, C.G. Koster, L.J. de Koning, F.M. Klis, Hyphal induction in the human fungal pathogen Candida albicans reveals a characteristic wall protein profile, Microbiology 157 (2011) 2297–2307, http://dx.doi.org/10.1099/mic.0.049395-0.
- [4] F.M. Klis, P. De Groot, K. Hellingwerf, Molecular organization of the cell wall of Candida albicans, Med. Mycol. 39 (2001) 1–8, http://dx.doi.org/10.1080/mmy.39. 1.1.8-0.
- [5] P.W.J. De Groot, A.F. Ram, F.M. Klis, Features and functions of covalently linked proteins in fungal cell walls, Fungal Genet. Biol. 42 (2005) 657–675, http://dx. doi.org/10.1016/j.fgb.2005.04.002.
- [6] W.L. Chaffin, Candida albicans cell wall proteins, Microbiol. Mol. Biol. Rev. 72 (2008) 495–544, http://dx.doi.org/10.1128/MMBR.00032-07.
- X. Xie, P.N. Lipke, On the evolution of fungal and yeast cell walls, Yeast 27 (2010) 479– 488, http://dx.doi.org/10.1002/yea.1787.
- [8] P.W.J. de Groot, A.D. de Boer, J. Cunningham, H.L. Dekker, L. de Jong, K.J. Hellingwerf, C. de Koster, F.M. Klis, Proteomic analysis of Candida albicans cell walls reveals covalently bound carbohydrate-active enzymes and adhesins, Eukaryot. Cell 3 (2004) 955–965, http://dx.doi.org/10.1128/EC.3.4.955-965. 2004.
- J. Karkowska-Kuleta, A. Kozik, Cell wall proteome of pathogenic fungi, Acta Biochim. Pol. 62 (2015) 339–351, http://dx.doi.org/10.18388/abp.2015_1032.
- [10] A. Pitarch, C. Nombela, C. Gil, Cell wall fractionation for yeast and fungal proteomics, Methods Mol. Biol. 425 (2008) 217–239, http://dx.doi.org/10.1007/9781-60327-210-0_19.
- [11] M. Pittet, A. Conzelmann, Biosynthesis and function of GPI proteins in the yeast Saccharomyces cerevisiae, Biochim. Biophys. Acta 1771 (2007) 405–420, http://dx. doi.org/10.1016/j.bbalip.2006.05.015.
- [12] J. Ruiz-Herrera, M. Victoria Elorza, E. Valentín, R. Sentandreu, Molecular organization of the cell wall of Candida albicans and its relation to pathogenicity, FEMS Yeast Res. 6 (2006) 14–29, http://dx.doi.org/10.1111/j.1567-1364.2005. 00017.x.
- [13] M. Bernard, J.P. Latgé, Aspergillus fumigatus cell wall: composition and biosynthesis, Med. Mycol. 39 (Suppl. 1) (2001) 9–17, http://dx.doi.org/10.1128/mBio. 00260-10.Updated.
- [14] A. Maddi, S.M. Bowman, S.J. Free, Trifluoromethanesulfonic acid-based proteomic analysis of cell wall and secreted proteins of the ascomycetous fungi Neurospora crassa and Candida albicans, Fungal Genet. Biol. 46 (2009) 768–781, http://dx.doi. org/10.1016/j.fgb.2009.06.005.
- [15] E. Brummer, E. Castaneda, A. Restrepo, Paracoccidioidomycosis: an update, Clin. Microbiol. Rev. 6 (1993) 89–117 http://www.ncbi.nlm.nih.gov/pubmed/ 8472249.
- [16] L.L. Carrero, G. Niño-Vega, M.M. Teixeira, M.J.A. Carvalho, C.M.A. Soares, M. Pereira, R.S.A. Jesuino, J.G. McEwen, L. Mendoza, J.W. Taylor, M.S. Felipe, G. San-Blas, New Paracoccidioides brasiliensis isolate reveals unexpected genomic variability in this human pathogen, Fungal Genet. Biol. 45 (2008) 605–612, http://dx.doi.org/10.1016/j.fgb.2008.02.002.
- M.M. Teixeira, R.C. Theodoro, M.J.A. de Carvalho, L. Fernandes, H.C. Paes, R.C. Hahn, L. Mendoza, E. Bagagli, G. San-Blas, M.S.S. Felipe, Phylogenetic analysis reveals a high level of speciation in the Paracoccidioides genus, Mol.
 Phylogenet. Evol. 52 (2009) 273–283, http://dx.doi.org/10.1016/j.ympev.2009.
 04.005.
- [18] D.R. Matute, J.G. McEwen, R. Puccia, B.A. Montes, G. San-Blas, E. Bagagli, J.T. Rauscher, A. Restrepo, F. Morais, G. Niño-Vega, J.W. Taylor, Cryptic speciation and recombination in the fungus Paracoccidioides brasiliensis as revealed by gene genealogies, Mol. Biol. Evol. 23 (2006) 65–73, http://dx.doi.org/10.1093/ molbev/msj008.

- [19] G. San-Blas, G. Niño-Vega, T. Iturriaga, Paracoccidioides brasiliensis and paracoccidioidomycosis: molecular approaches to morphogenesis, diagnosis, epidemiology, taxonomy and genetics, Med. Mycol. 40 (2002) 225–242, http://dx.doi. org/10.1080/714031110.
- [20] L.M. Carbonell, J. Rodriguez, Mycelial phase of Paracoccidioides brasiliensis and Blastomyces dermatitidis: an electron microscope study, J. Bacteriol. 96 (1968) 533– 543 http://www.ncbi.nlm.nih.gov/pubmed/5674059 (accessed August 3, 2016).
- [21] G. San-Blas, The cell wall of fungal human pathogens: its possible role in hostparasite relationships, Mycopathologia 79 (1982) 159–184 http://www.ncbi.nlm. nih.gov/pubmed/6755258.
- [22] L. Castillo, E. Calvo, A.I. Martínez, J. Ruiz-Herrera, E. Valentín, J.A. Lopez, R. Sentandreu, A study of the Candida albicans cell wall proteome, Proteomics 8 (2008) 3871–3881, http://dx.doi.org/10.1002/pmic.200800110.
- [23] J.P. Latgé, The cell wall: a carbohydrate armour for the fungal cell, Mol. Microbiol. 66 (2007) 279–290, http://dx.doi.org/10.1111/j.1365-2958.2007.05872.x.
- [24] G.P. Moran, D.C. Coleman, D.J. Sullivan, Comparative genomics and the evolution of pathogenicity in human pathogenic fungi, Eukaryot. Cell 10 (2011) 34–42, http://dx.doi.org/10.1128/EC.00242-10.
- [25] L.V.G. Longo, J.P.C. da Cunha, T.J.P. Sobreira, R. Puccia, Proteome of cell wallextracts from pathogenic Paracoccidioides brasiliensis: comparison among morphological phases, isolates, and reported fungal extracellular vesicle proteins, EuPA Open Proteom. 3 (2014) 216–228, http://dx.doi.org/10.1016/j.euprot. 2014.03.003.
- [26] C.L. Borges, M. Pereira, M.S.S. Felipe, F.P. de Faria, F.J. Gomez, G.S. Deepe, C.M. a Soares, The antigenic and catalytically active formamidase of Paracoccidioides brasiliensis: protein characterization, cDNA and gene cloning, heterologous expression and functional analysis of the recombinant protein, Microbes Infect. 7 (2005) 66–77, http://dx.doi.org/10.1016/j.micinf.2004.09.011.
- [27] S.M. Barbosa, S.N. Báo, P.F. Andreotti, F.P. De Faria, M.S.S. Felipe, L.D.S. Feitosa, M.J.S. Mendes-Giannini, C.M.D.A. Soares, Glyceraldehyde-3-phosphate dehydrogenase of Paracoccidioides brasiliensis is a cell surface protein involved in fungal adhesion to extracellular matrix proteins and interaction with cells, Infect. Immun.
 - 74 (2006) 382–389, http://dx.doi.org/10.1128/IAI.74.1.382.
- [28] L.A. Pereira, S.N. Báo, M.S. Barbosa, J.L.M. Da Silva, M.S.S. Felipe, J.M. De Santana, M.J.S. Mendes-Giannini, C.M. De Almeida Soares, Analysis of the Paracoccidioides brasiliensis triosephosphate isomerase suggests the potential for adhesin function, FEMS Yeast Res. 7 (2007) 1381–1388, http://dx.doi.org/10. 1111/j.1567-1364.2007.00292.x.
- [29] N.D.S. Castro, K.P. de Castro, I. Orlandi, L.D.S. Feitosa, L.K. Rosa e Silva, M.H. Vainstein, S.N. Báo, M. Vai, C.M.D.A. Soares, Characterization and functional analysis of the beta-1,3-glucanosyltransferase 3 of the human pathogenic fungus Paracoccidioides brasiliensis, FEMS Yeast Res. 9 (2009) 103–114, http://dx.doi.org/ 10.1111/j.1567-1364.2008.00463.x.
- [30] S.V. Nogueira, F.L. Fonseca, M.L. Rodrigues, V. Mundodi, E.A. Abi-Chacra, M.S. Winters, J.F. Alderete, C.M. De Almeida Soares, Paracoccidioides brasiliensis enolase is a surface protein that binds plasminogen and mediates interaction of yeast forms with host cells, Infect. Immun. 78 (2010) 4040–4050, http://dx.doi. org/10.1128/IAI.00221-10.
- [31] A.M. Bailão, S.V. Nogueira, S.M. Rondon Caixeta Bonfim, K.P. De Castro, J. De Fátima da Silva, M.J.S. Mendes Giannini, M. Pereira, C.M. De Almeida Soares, Comparative transcriptome analysis of Paracoccidioides brasiliensis during in vitro adhesion to type I collagen and fibronectin: identification of potential adhesins, Res. Microbiol. 163 (2012) 182–191, http://dx.doi.org/10.1016/j.resmic.2012. 01.004.
- [32] P. De Sousa Lima, E.F.L.C. Bailão, M.G. Silva, N.D.S. Castro, S.N. Báo, I. Orlandi, M. Vai, C.M. De Almeida Soares, Characterization of the Paracoccidioides beta-1,3glucanosyltransferase family, FEMS Yeast Res. 12 (2012) 685–702, http://dx.doi. org/10.1111/j.1567-1364.2012.00819.x.
- [33] M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72 (1976) 248–254, http://dx.doi.org/10.1016/0003-2697(76)90527-3.
- [34] A. Murad, Characterisation and quantitation expression analysis of recombinant proteins in plant complex mixtures using nanoUPLC mass spectrometry, Protoc. Exch. (2011) 1–17, http://dx.doi.org/10.1038/protex.2011.216.
- [35] A.M. Murad, E.L. Rech, NanoUPLC-MSE proteomic data assessment of soybean seeds using the Uniprot database, BMC Biotechnol. 12 (2012) 82, http://dx.doi. org/10.1186/1472-6750-12-82.
- [36] J.C. Silva, R. Denny, C. Dorschel, M.V. Gorenstein, G. Li, K. Richardson, D. Wall, S.J. Geromanos, Simultaneous qualitative and quantitative analysis of the Escherichia coli proteome, Mol. Cell. Proteomics 5 (2006) 589–607, http://dx.doi. org/10.1074/mcp.M500321-MCP200.
- [37] J.C. Silva, Absolute quantification of proteins by LCMSE: a virtue of parallel ms acquisition, Mol. Cell. Proteomics 5 (2005) 144–156, http://dx.doi.org/10.1074/ mcp.M500230-MCP200.

- [38] P. de S. Lima, L. Casaletti, A.M. Baila, A.T. Ribeiro, Transcriptional and proteomic responses to carbon starvation in Paracoccidioides, PLoS Negl. Trop. Dis. 8 (2014), http://dx.doi.org/10.1371/journal.pntd.0002855.
- [39] M.R. Schenauer, G.C. Flynn, A.M. Goetze, Identification and quantification of host cell protein impurities in biotherapeutics using mass spectrometry, Anal. Biochem. 428 (2012) 150–157, http://dx.doi.org/10.1016/j.ab.2012.05.018.
- [40] G.-Z. Li, J.P.C. Vissers, J.C. Silva, D. Golick, M.V. Gorenstein, S.J. Geromanos, Database searching and accounting of multiplexed precursor and product ion spectra from the data independent analysis of simple and complex peptide mixtures, Proteomics 9 (2009) 1696–1719, http://dx.doi.org/10.1002/pmic. 200800564.
- [41] C.L. Borges, J.A. Parente, M.S. Barbosa, J.M. Santa, S.N. Báo, M.V. de Sousa, C.M. de Almeida Soares, Detection of a homotetrameric structure and proteinprotein interactions of Paracoccidioides brasiliensis formamidase lead to new functional insights, FEMS Yeast Res. 10 (2010) 104–113, http://dx.doi.org/10.1111/j.1567-1364.2009.00594.x.
- [42] B.R. da Silva Neto, J. de Fátima da Silva, M.J.S. Mendes-Giannini, H.L. Lenzi, C.M. de Almeida Soares, M. Pereira, The malate synthase of Paracoccidioides brasiliensis is a linked surface protein that behaves as an anchorless adhesin, BMC Microbiol. 9 (2009) 272, http://dx.doi.org/10.1186/1471-2180-9-272.
- [43] A. Gil-Bona, C.M. Parra-Giraldo, M.L. Hernáez, J.A. Reales-Calderon, N.V. Solis, S.G. Filler, L. Monteoliva, C. Gil, Candida albicans cell shaving uncovers new proteins involved in cell wall integrity, yeast to hypha transition, stress response and hostpathogen interaction, J. Proteome 127 (2015) 340–351, http://dx.doi. org/10.1016/j.jprot.2015.06.006.
- [44] M.L. Rodrigues, L. Nimrichter, D.L. Oliveira, J.D. Nosanchuk, A. Casadevall, Vesicular trans-cell wall transport in fungi: a mechanism for the delivery of virulence-associated macromolecules, Lipid Insights 2 (2008) 27–40, http://dx. doi.org/10.1038/jid.2014.371.
- [45] M.L. Rodrigues, E.S. Nakayasu, D.L. Oliveira, L. Nimrichter, J.D. Nosanchuk, I.C. Almeida, A. Casadevall, Extracellular vesicles produced by Cryptococcus neoformans contain protein components associated with virulence, Eukaryot. Cell 7 (2008) 58–67, http://dx.doi.org/10.1128/EC.00370-07.
- [46] P.C. Albuquerque, E.S. Nakayasu, M.L. Rodrigues, S. Frases, A. Casadevall, R.M. Zancope-Oliveira, I.C. Almeida, J.D. Nosanchuk, Vesicular transport in Histoplasma capsulatum: an effective mechanism for trans-cell wall transfer of proteins and lipids in ascomycetes, Cell. Microbiol. 10 (2008) 1695–1710, http:// dx.doi.org/10.1111/j.1462-5822.2008.01160.x.
- [47] M.C. Vallejo, E.S. Nakayasu, A.L. Matsuo, T.J.P. Sobreira, L.V.G. Longo, L. Ganiko, I.C. Almeida, R. Puccia, Vesicle and vesicle-free extracellular proteome of Paracoccidioides brasiliensis: comparative analysis with other pathogenic fungi, J. Proteome Res. 11 (2012) 1676–1685. http://dx.doi.org/10.1021/or2008725.
- [48] P. Eroles, M. Sentandreu, M.V. Elorza, R. Sentandreu, The highly immunogenic enolase and Hsp70p are adventitious Candida albicans cell wall proteins, Microbiology 143 (Pt 2) (1997) 313–320, http://dx.doi.org/10.1099/00221287143-2-313.
- [49] C.L. Madinger, S.S. Sharma, B.P. Anton, L.G. Fields, M.L. Cushing, J. Canovas, C.H. Taron, J.S. Benner, The effect of carbon source on the secretome of Kluyveromyces lactis, Proteomics 9 (2009) 4744–4754, http://dx.doi.org/10.1002/ pmic.200800915.
- [50] A.J. Phillips, I. Sudbery, M. Ramsdale, Apoptosis induced by environmental stresses and amphotericin B in Candida albicans, Proc. Natl. Acad. Sci. U. S. A. 100 (2003) 14327–14332, http://dx.doi.org/10.1073/pnas.2332326100.
- [51] F.M. Klis, C.G. de Koster, S. Brul, A mass spectrometric view of the fungal wall proteome, Future Microbiol 6 (2011) 941–951, http://dx.doi.org/10.2217/fmb. 11.72.
- [52] P.W.J. De Groot, E.A. Kraneveld, Y.Y. Qing, H.L. Dekker, U. Groß, W. Crielaard, C.G. De Koster, O. Bader, F.M. Klis, M. Weig, The cell wall of the human pathogen Candida glabrata: differential incorporation of novel adhesin-like wall proteins, Eukaryot. Cell 7 (2008) 1951–1964, http://dx.doi.org/10.1128/EC.00284-08.
- [53] J.D. Bendtsen, L. Kiemer, A. Fausbøll, S. Brunak, Non-classical protein secretion in bacteria, BMC Microbiol. 5 (2005) 58, http://dx.doi.org/10.1186/1471-21805-58.
- [54] S.S. Weber, A.F.A. Parente, C.L. Borges, J.A. Parente, A.M. Bailão, C.M. de Almeida Soares, Analysis of the secretomes of Paracoccidioides mycelia and yeast cells, PLoS One 7 (2012), http://dx.doi.org/10.1371/journal.pone.0052470.
- [55] L. Nimrichter, M.M. de Souza, M. Del Poeta, J.D. Nosanchuk, L. Joffe, P.D.M. Tavares, M.L. Rodrigues, Extracellular vesicle-associated transitory cell wall components and their impact on the interaction of fungi with host cells, Front. Microbiol. 7 (2016) 1034, http://dx.doi.org/10.3389/fmicb.2016.01034.
- [56] A. Pitarch, Sequential fractionation and two-dimensional gel analysis unravels the complexity of the dimorphic fungus Candida albicans cell wall proteome, Mol. Cell. Proteomics 1 (2002) 967–982, http://dx.doi.org/10.1074/mcp.M200062MCP200.
- [57] S.A. Tunio, N.J. Oldfield, D.A.A. Ala'Aldeen, K.G. Wooldridge, D.P.J. Turner, The role of glyceraldehyde 3-phosphate dehydrogenase (GapA-1) in Neisseria meningitidis adherence to human cells, BMC Microbiol. 10 (2010) 280, http://dx.doi. org/10.1186/1471-2180-10-280.

- [58] E.G.A. Chaves, S.S. Weber, S.N. Báo, L.A. Pereira, A.M. Bailão, C.L. Borges, C.M. de A. Soares, Analysis of Paracoccidioides secreted proteins reveals fructose 1,6bisphosphate aldolase as a plasminogen-binding protein, BMC Microbiol. 15 (2015) 53, http://dx.doi.org/10.1186/s12866-015-0393-9.
- [59] J.D. Crowe, I.K. Sievwright, G.C. Auld, N.R. Moore, N.A.R. Gow, N.A. Booth, Candida albicans binds human plasminogen: identification of eight plasminogenbinding proteins, Mol. Microbiol. 47 (2003) 1637–1651, http://dx.doi.org/10. 1046/j.1365-2958.2003.03390.x.
- [60] S.A. Tunio, N.J. Oldfield, A. Berry, D.A.A. Ala'Aldeen, K.G. Wooldridge, D.P.J. Turner, The moonlighting protein fructose-1, 6-bisphosphate aldolase of Neisseria meningitidis: surface localization and role in host cell adhesion, Mol. Microbiol. 76 (2010) 605–615, http://dx.doi.org/10.1111/j.1365-2958.2010.07098.x.
- [61] C. Nombela, C. Gil, W.L. Chaffin, Non-conventional protein secretion in yeast, Trends Microbiol. 14 (2006) 15–21, http://dx.doi.org/10.1016/j.tim.2005.11.009.
- [62] M. Angela, D.M. Marques, S. Mahapatra, D. Nandan, T. Dick, E. Nunes, P. Joseph, M. Cristina, V. Pessolani, Bacterial and host-derived cationic proteins bind α 2laminins and enhance Mycobacterium leprae attachment to human Schwann cells, Microbes Infect. (2000) 1407–1417, http://dx.doi.org/10.1016/S1286-4579(00) 01294-6.
- [63] V. Maneu, A.M. Cervera, J.P. Martínez, D. Gozalbo, Molecular cloning and characterization of a Candida albicans gene (EFB1) coding for the elongation factor EF-

1 beta, FEMS Microbiol. Lett. 145 (1996) 157–162 http://www.ncbi.nlm.nih.gov/pubmed/8961551.

- [64] V.K. Singh, R.K. Jayaswal, B.J. Wilkinson, Cell wall-active antibiotic induced proteins of Staphylococcus aureus identified using a proteomic approach, FEMS Microbiol. Lett. 199 (2001) 79–84 http://www.ncbi.nlm.nih.gov/pubmed/ 11356571.
- [65] J. Zhu, B. Damsz, A.K. Kononowicz, R.A. Bressan, P.M. Hasegawaai, A higher plant extracellular vitronectin-like adhesion s related to the translational elongation factor-I a protein 1, Plant Cell 6 (1994) 393–404, http://dx.doi.org/10.1105/tpc. 6.3.393.
- [66] J.M. Silverman, J. Clos, E. Horakova, A.Y. Wang, M. Wiesgigl, I. Kelly, A. Lynn, W.R. Mcmaster, L.J. Foster, K. Megan, N.E. Reiner, Leishmania exosomes modulate innate and adaptive immune responses through effects on monocytes and dendritic cells, J. Immunol. 185 (2010) 5011–5022, http://dx.doi.org/10.4049/ jimmunol.1000541.
- [67] J.M. Silverman, N.E. Reiner, Leishmania exosomes deliver preemptive strikes to create an environment permissive for early infection, Front. Cell. Infect. Microbiol. 1 (2012) 1–8, http://dx.doi.org/10.3389/fcimb.2011.00026.
- [68] J.D. Nosanchuk, J.N. Steenbergen, L. Shi, G.S. Deepe, A. Casadevall, Antibodies to a cell surface histone-like protein protect against Histoplasma capsulatum, J. Clin. Invest. 112 (2003) 1164–1175, http://dx.doi.org/10.1172/JCI200319361.
- [69] D. de Arruda Grossklaus, A.M. Bailão, T.C. Vieira Rezende, C.L. Borges, M.A.P. de Oliveira, J.A. Parente, C.M. de Almeida Soares, Response to oxidative stress in Paracoccidioides yeast cells as determined by proteomic analysis, Microbes Infect. 15 (2013) 347–364, http://dx.doi.org/10.1016/j.micinf.2012.12.002.
- [70] A.F.A. Parente, P.E.C. Naves, L.L. Pigosso, L. Casaletti, J.G. McEwen, J.A. Parente-Rocha, C.M.A. Soares, The response of Paracoccidioides spp. to nitrosative stress, Microbes Infect. 17 (2015) 575–585, http://dx.doi.org/10.1016/j.micinf.2015.03. 012.
- [71] J.A. Parente-Rocha, A.F.A. Parente, L.C. Baeza, S.M.R.C. Bonfim, O. Hernandez, J.G. McEwen, A.M. Bailão, C.P. Taborda, C.L. Borges, C.M. De Almeida Soares, Macrophage interaction with Paracoccidioides brasiliensis yeast cells modulates fungal metabolism and generates a response to oxidative stress, PLoS One 10 (2015) 1–18, http://dx.doi.org/10.1371/journal.pone.0137619.
- [72] W.L. Batista, A.L. Matsuo, L. Ganiko, T.F. Barros, T.R. Veiga, E. Freymüller, R. Puccia, The PbMDJ1 gene belongs to a conserved MDJ1/LON locus in thermodimorphic pathogenic fungi and encodes a heat shock protein that localizes to both the mitochondria and cell wall of Paracoccidioides brasiliensis, Eukaryot. Cell 5 (2006) 379–390, http://dx.doi.org/10.1128/EC.5.2.379-390.2006.
- [73] R. Matthews, C. Wells, J.P. Burnie, Characterisation and cellular localisation of the immunodominant 47-Kda antigen of Candida albicans, J. Med. Microbiol. 27 (1988) 227–232.
- [74] J.L. López-Ribot, H.M. Alloush, B.J. Masten, W.L. Chaffin, Evidence for presence in the cell wall of Candida albicans of a protein related to the hsp70 family, Infect. Immun. 64 (1996) 3333–3340 http://www.ncbi.nlm.nih.gov/pubmed/8757872.
- [75] F. Lamoth, P.R. Juvvadi, J.R. Fortwendel, W.J. Steinbach, Heat shock protein 90 is required for conidiation and cell wall integrity in Aspergillus fumigatus, Eukaryot. Cell 11 (2012) 1324–1332, http://dx.doi.org/10.1128/EC.00032-12.
- [76] R. Martinez-Lopez, L. Monteoliva, R. Diez-Orejas, C. Nombela, C. Gil, The GPlanchored protein CaEcm33p is required for cell wall integrity, morphogenesis and virulence in Candida albicans, Microbiology 150 (2004) 3341–3354, http://dx.doi. org/10.1099/mic.0.27320-0.
- [77] R. Martinez-Lopez, H. Park, C.L. Myers, C. Gil, S.G. Filler, Candida albicans Ecm33p is important for normal cell wall architecture and interactions with host cells, Eukaryot. Cell 5 (2006) 140–147, http://dx.doi.org/10.1128/EC.5.1.140-147. 2006.
- [78] N. de León, M.R. Sharifmoghadam, M. Hoya, M.-Á. Curto, C. Doncel, M.H. Valdivieso, Regulation of cell wall synthesis by the clathrin light chain is essential for viability in

Schizosaccharomyces pombe, PLoS One 8 (2013) e71510, , http://dx.doi.org/10.1371/journal.pone.0071510.

[79] A.T. Large, M.D. Goldberg, P. a Lund, Chaperones and protein folding in the archaea, Biochem. Soc. Trans. 37 (2009) 46–51, http://dx.doi.org/10.1042/ BST0370046.

- [80] a Muga, F. Moro, Thermal adaptation of heat shock proteins, Curr. Protein Pept. Sci. 9 (2008) 552–566, http://dx.doi.org/10.2174/138920308786733903.
- [81] V.K. Singh, M. Syring, A. Singh, K. Singhal, A. Dalecki, T. Johansson, An insight into the significance of the DnaK heat shock system in Staphylococcus aureus, Int. J. Med. Microbiol. 302 (2012) 242–252, http://dx.doi.org/10.1016/j.ijmm.2012.05.001.
- [82] T.B.M. Hickey, L.M. Thorson, D.P. Speert, M. Daffé, R.W. Stokes, Mycobacterium tuberculosis Cpn60.2 and DnaK are located on the bacterial surface, where Cpn60.2 facilitates efficient bacterial association with macrophages, Infect. Immun. 77 (2009) 3389–3401, http://dx.doi.org/10.1128/IAI.00143-09.
- [83] G. Pardini, P.W.J. De Groot, A.T. Coste, M. Karababa, F.M. Klis, C.G. de Koster, D. Sanglard, The CRH family coding for cell wall glycosylphosphatidylinositol proteins with a predicted transglycosidase domain affects cell wall organization and virulence of Candida albicans, J. Biol. Chem. 281 (2006) 40399–40411, http:// dx.doi.org/10.1074/ibc.M606361200.
- [84] E. Cabib, Two novel techniques for determination of polysaccharide cross-links show that Crh1p and Crh2p attach chitin to both beta(1-6)- and beta(1-3)glucan in the Saccharomyces cerevisiae cell wall, Eukaryot. Cell 8 (2009) 1626–1636, http:// dx.doi.org/10.1128/EC.00228-09.
- [85] E. Cabib, N. Blanco, C. Grau, J.M. Rodríguez-Peña, J. Arroyo, Crh1p and Crh2p are required for the cross-linking of chitin to beta(1-6)glucan in the Saccharomyces cerevisiae cell wall, Mol. Microbiol. 63 (2007) 921–935, http://dx.doi.org/10. 1111/j.1365-2958.2006.05565.x.
- [86] E. Cabib, V. Farkas, O. Kosík, N. Blanco, J. Arroyo, P. McPhie, Assembly of the yeast cell wall: Crh1p and Crh2p act as transglycosylases in vivo and in vitro, J.
 Biol. Chem. 283 (2008) 29859–29872, http://dx.doi.org/10.1074/jbc.
 M804274200.
- [87] M. Mazáň, N. Blanco, K. Kováčová, Z. Firáková, P. Rehulka, V. Farkaš, J. Arroyo, A novel fluorescence assay and catalytic properties of Crh1 and Crh2 yeast cell wall transglycosylases, Biochem. J. 455 (2013) 307–318, http://dx.doi.org/10.1042/ BJ20130354.
- [88] C. Alberti-Segui, A.J. Morales, H. Xing, M.M. Kessler, D.A. Willins, K.G. Weinstock, G. Cottarel, K. Fechtel, B. Rogers, Identification of potential cell-surface proteins in Candida albicans and investigation of the role of a putative cell-surface glycosidase in adhesion and virulence, Yeast 21 (2004) 285–302, http://dx.doi.org/10.1002/ yea.1061.
- [89] E. Conibear, Vps51p mediates the association of the GARP (Vps52/53/54) complex with the late Golgi t-SNARE Tlg1p, Mol. Biol. Cell 14 (2003) 1610–1623, http://dx.doi.org/10.1091/mbc.E02-10-0654.
- [90] J.H. Stack, Vesicle-mediated protein transport: regulatory interactions between the Vps15 protein kinase and the Vps34 PtdIns 3-kinase essential for protein sorting to the vacuole in yeast, J. Cell Biol. 129 (1995) 321–334, http://dx.doi. org/10.1083/jcb.129.2.321.
- [91] Y. Liu, N.V. Solis, C.J. Heilmann, Q.T. Phan, A.P. Mitchell, F.M. Klis, S.G. Filler, Role of retrograde trafficking in stress response, host cell interactions, and virulence of Candida albicans, Eukaryot. Cell 13 (2014) 279–287, http://dx.doi.org/ 10.1128/EC.00295-13.
- [92] J.M. Rodriguez-Peña, C. Rodriguez, A. Alvarez, C. Nombela, J. Arroyo, Mechanisms for targeting of the Saccharomyces cerevisiae GPI-anchored cell wall protein Crh2p to polarised growth sites, J. Cell Sci. 115 (2002) 2549–2558 http:// www.ncbi.nlm.nih.gov/pubmed/12045225.
- [93] R. Hurtado-Guerrero, A.W. Schüttelkopf, I. Mouyna, A.F.M. Ibrahim, S. Shepherd, T. Fontaine, J.P. Latgé, D.M.F. van Aalten, Molecular mechanisms of yeast cell wall glucan remodeling, J. Biol. Chem. 284 (2009) 8461–8469, http://dx.doi.org/ 10.1074/jbc.M807990200.
- [94] I. Mouyna, T. Fontaine, M. Vai, M. Monod, W. a Fonzi, M. Diaquin, L. Popolo, R.P. Hartland, J. Latge, Play an active role in the biosynthesis of the fungal cell wall *, Biochemistry 275 (2000) 14882–14889.
- [95] A. Maddi, C. Fu, S.J. Free, The Neurospora crassa dfg5 and dcw1 genes encode α1,6mannanases that function in the incorporation of glycoproteins into the cell wall, PLoS One 7 (2012) e38872, http://dx.doi.org/10.1371/journal.pone. 0038872.
- [96] E. Spreghini, D.A. Davis, R. Subaran, M. Kim, A.P. Mitchell, Roles of Candida albicans Dfg5p and Dcw1p cell surface proteins in growth and hypha formation, Eukaryot. Cell 2 (2003) 746–755, http://dx.doi.org/10.1128/EC.2.4.746-755. 2003.
- [97] N. da Silva Castro, M.S. Barbosa, Z.A. Maia, S.N. Báo, M.S.S. Felipe, J.M. Santana, M.J. Soares Mendes-Giannini, M. Pereira, C.M. de Almeida Soares, Characterization of Paracoccidioides brasiliensis PbDfg5p, a cell-wall protein implicated in filamentous growth, Yeast 25 (2008) 141–154, http://dx.doi.org/10. 1002/yea.1574.
- [98] Q.Y. Yin, P.W.J. De Groot, H.L. Dekker, L. De Jong, F.M. Klis, C.G. De Koster, Comprehensive proteomic analysis of Saccharomyces cerevisiae cell walls: Identification of proteins covalently attached via glycosylphosphatidylinositol remnants or mild alkali-sensitive linkages, J. Biol. Chem. 280 (2005) 20894–20901, http://dx.doi.org/10.1074/jbc.M500334200.

- [99] K. Steczkiewicz, L. Knizewski, L. Rychlewski, K. Ginalski, TOS1 is circularly permuted 1,3-beta-glucanase, Cell Cycle 9 (2010) 201–204, http://dx.doi.org/10. 4161/cc.9.1.10510.
- [100] F.M. Klis, S. Brul, Adaptations of the secretome of Candida albicans in response to host-related environmental conditions, Eukaryot. Cell 14 (2015) EC.00142-15 http://dx.doi.org/10.1128/EC.00142-15.
- [101] C.J. Heilmann, A.G. Sorgo, S. Mohammadi, G.J. Sosinska, C.G. de Koster, S. Brul, L.J. de Koning, F.M. Klis, Surface stress induces a conserved cell wall stress response in the pathogenic fungus Candida albicans, Eukaryot. Cell 12 (2013) 254–264, http://dx.doi.org/10.1128/EC.00278-12.
- [102] S. Selvaggini, C.A. Munro, S. Paschoud, D. Sanglard, N.A.R. Gow, Independent regulation of chitin synthase and chitinase activity in Candida albicans and Saccharomyces cerevisiae, Microbiology 150 (2004) 921–928, http://dx.doi.org/ 10.1099/mic.0.26661-0.