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Abstract: The present study applies a geophysical approach to the Federal district of Brazil, a
challenging hydrogeologic setting that requires improved investigation to enhance groundwater
prospecting to meet the rising water demand. The geophysical characterization of a complex hard-
rock aquifer sub-system was conducted using direct current (DC) electrical resistivity tomography
(ERT) integrated with surface geological information. With a total of twenty-seven ERT profiles, the
resistivity acquisition was carried out using a dipole-dipole array of electrodes with an inter-electrode
spacing of 10 m. Based on resistivity ranges, the interpretation of the inverted resistivity values
indicated a ground profile consisting of upper dry soil, saprolite, weathered, and fresh bedrock.
Along with this layered subsurface stratigraphy, the approach allowed us to map the presence of
significant hydrogeological features sharp contrasting anomalies that may suggest structural controls
separating high-resistivity (≥7000 Ω m) and low-resistivity (<7000 Ω m) conducting zones in the
uppermost 10 m of the ground. The assumed impacts of these features on groundwater development
are discussed in light of the Brasilia aquifer settings.

Keywords: dipole-dipole; fractures; saprolite; pumping well; Federal district of Brazil

1. Introduction

Most urban aquifers are increasingly stressed due to unplanned growths of the
metropolitan areas. This situation applies to the Federal District (FD) of Brazil, where
the surrounding areas and agricultural activities are growing. The ongoing expansion has
directly affected the availability of water as the city will reach an estimated population of
3.4 million in 2025, resulting in rising water demands [1,2].

In the past, both surface and groundwater were used to supply the city. Since 1997,
the Brasilia Environmental Sanitation Company (CAESB) has developed the supply sys-
tem of São Sebastião city exclusively from groundwater abstraction from pumping wells.
Until 2016, this system was mainly based on groundwater, with a small portion resourced
from surface catchments. The aquifers are intensively used to supply water for rural areas
(e.g., human supply and animal), industry (potting, beer and soft drink industries, refrig-
erators, among others), services (gas stations and workshops) and institutions (schools,
universities, and sports clubs). A small portion (approximately 15%) of this supply comes
from the fractured aquifer through pumping wells [3].

This water supply system underperforms in many regions (e.g., Sobradinho II, Con-
dominiums of Greater Colorado, and São Sebastião) where aquifers are over-yielded as
the extraction rate reaches the annual recharge rate. To promote the system sustainability,
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there are other potential areas where groundwater can be explored. The use of groundwa-
ter has numerous advantages (regarding the surface water) including the provision of a
smaller area of protection, shorter distance between water sources and consumption centers,
the possibility of gradual implantation, lower cost of treatment, and smaller evaporation
losses. On the other hand, there are some disadvantages as the irregularity in the spatial
distribution of reservoirs, high energy expenditure, and very slow renewability.

The FD was planned on a hard-rock aquifer that has a complex groundwater flow
system. Based on hydrogeological characteristics such as hydraulic conductivity (permeabil-
ity), this aquifer is divided into domains, systems, and subsystems. Initially, groundwater
prospecting seeks to locate suitable areas having groundwater reservoirs inferred by discon-
tinuities, fractures, lineaments, and fissures, which are attributed to the presence of highly
productive aquifers [4]. However, such natural geological settings represent challenging
hydrological characteristics for groundwater prospecting. In particular, the presence of
fractures as well as the intrinsic properties and physical environment of the site can play
essential roles [5]. For such complex hydrogeological conditions, geophysical prospecting
techniques, particularly DC-ERT, can be applied to deduce high-yielding weathered and
fractured zones that may represent potential groundwater traps.

The ERT technique has been widely used to investigate many sites around the world
for various purposes, including bedrock detection, geological mapping, and groundwater
exploration [6–10]. Recent case studies of hard rock aquifers in Brazil have highlighted the
significance of regional structures, hydrogeology, and petrophysical properties of the site in
groundwater development [2,11–14]. Geological structures determine the aquifer geometry
and the hydrogeological properties [15,16]. In addition, the groundwater compartmen-
talization inferred from the basement uplift or subsidence thought faults may increase or
decrease the saturated thickness and therefore the groundwater reserves [14].

Although the previous research has advanced in geophysical techniques, their appli-
cability in fine hydrogeological characterization of fractured aquifers may vary depending
on the specifics field conditions. Therefore, further research to improve the understanding
of fractured aquifers and optimize the geophysical investigation is required. The study
aims to identify particular areas in which the groundwater use is viable to supplement
public supply in the FD, considering the high risks of shortages as recently observed in the
prolonged drought period of 2017. To achieve this goal, the paper presents a case study in
the FD of Brazil, where ERT was utilized to identify the most suitable (productive) locations
for drilling new pumping wells.

2. Materials and Methods
2.1. Study Area

Within the FD, the investigation was conducted in areas with the integrated supply
system (Descoberto/Santa Maria—Torto system/Sobradinho Taguatinga) and in other
areas located outside the integrated system (e.g., Descoberto and Santa Maria—Torto
reservoirs) (Figure 1). According to the Köppen classification, the climate of the FD falls
between the Tropical (Aw) and Tropical types of Altitude (Cwa and Cwb). Its striking
feature is the existence of two well-established periods, defined as rainy in summer and
dry in winter. The rainy period extends from October to April, while the dry period
extends from May to September [17,18]. Water demand per capita varies—depending
on the socioeconomic aspects of the administrative regions. In general, the demand as
follows: (i) from 120 to 125 L per inhabitant and day (L/i·d) in rural areas with low human
occupation density; (ii) from 126 to 140 (L/i·d): rural regions with small urban centers
as headquarters of agricultural colonies; (iii) from 141 to 155 L/i·d in Planaltina and its
expansion areas; (iv) from 156 to 180 L/i·d in Ceilândia; (v) from 181 to 220 L/i·d in
Taguatinga and Águas Claras; (vi) from 121 to 275 L/i·d in Asas Sul and North of Brasília
and (vii) from 276 to 472 L/i·d: Lago Sul de Brasília see details in Figure 1.
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Figure 1. (A) Location of Brazil on South American map, (B) Location of Federal District (FD) on 
map of Brazil and (C) Administrative units of FD based on per capita water demand (source: [3]). 

The geology of the FD is characterized by metamorphic rocks, covered by thick reg-
olith. Within this geological setting, three large groups of aquifers are discriminated and 
classified as different groundwater domains, including the Intergranular (unconfined or 
porous) Domain, the Fractured Domain, and the Fissured-Karst Domain. The domains 
were subdivided into systems and subsystems by [17] and details can be assessed at [5]. 
This aquifer classification is presented in Figure 2, details are given in Tables 1 and 2. The 
flow rates from pumping wells range from zero (dry wells) to more than 100 m3/h. The 
average flow in all aquifers (fractured and fissured-karst) is around 8000 L/h. This varia-
bility is a function of the different aquifer yielding, which depends on lithology and frac-
turing, soil type, and relief. In general, the more sand or quartzite content the rocks consist of, 
the greater is the potential of fractured and fissured-karst aquifers [17]. 

Figure 1. (A) Location of Brazil on South American map, (B) Location of Federal District (FD) on
map of Brazil and (C) Administrative units of FD based on per capita water demand (source: [3]).

The geology of the FD is characterized by metamorphic rocks, covered by thick
regolith. Within this geological setting, three large groups of aquifers are discriminated and
classified as different groundwater domains, including the Intergranular (unconfined or
porous) Domain, the Fractured Domain, and the Fissured-Karst Domain. The domains were
subdivided into systems and subsystems by [17] and details can be assessed at [5]. This
aquifer classification is presented in Figure 2, details are given in Tables 1 and 2. The flow
rates from pumping wells range from zero (dry wells) to more than 100 m3/h. The average
flow in all aquifers (fractured and fissured-karst) is around 8000 L/h. This variability is
a function of the different aquifer yielding, which depends on lithology and fracturing,
soil type, and relief. In general, the more sand or quartzite content the rocks consist of, the
greater is the potential of fractured and fissured-karst aquifers [17].

2.2. R3/Q3 Aquifer Sub-System

In the main water supply to the FD, some of these sub-systems have major con-
tributions following further exploration for optimized productivity. Such aquifers are
represented by the Canastra System F/Q/M sub-system and the Paranoá System R3/Q3
sub-system. The F/Q/M sub-system has intensively been used for water supply to São
Sebastião, in which more than 90% comes from a battery of pumping wells located in the
urban perimeter. Thus, the alternative option to supplement the water supply based on
groundwater exploitation is limited to sub-system R3/Q3. This aquifer has the following
characteristics that make it an attractive option for supplying urban areas: (i) it has an
average flow (12,000 L/h) 0.5-fold higher than the average flow of the aquifers in the region;
(ii) a low incidence of dry or very low flow rates wells; (iii) it occurs in a large area with
a wide range of geographical distribution; (iv) it occupies the favorable localities suitable
for the natural aquifer recharge as well as for aquifer artificial recharge projects and (v) it
has good quality groundwater [3]. This aquifer sub-system has very high local relative
hydrogeological importance, with a high occurrence of wells with flow rates that can be
higher than 20,000 L/h. The distribution area of this sub-system is a factor that increases
its local importance, occupying about 25% of the territory of the Federal District. Figure 3
presents the conceptual groundwater flow model and recharge mechanisms of the aquifer
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sub-systems. This is important because groundwater flow paths in the fissured/pore
aquifer widely vary over several depth magnitudes. These types of circulation conditions
usually occur in fault zones and in such areas vertical groundwater flow is actually more
important than lateral flow [19].
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Table 1. Classification of the Federal District aquifers based on flow rates, lithology, and soil type [18].

Domain System Sub-System Flow Rate (m3/h) Lithology/Soil Type

Unconfined

System P1 <0.8 Sandy latosols and Quartzarenic Neosols
System P2

<0.5
Clayey oxisols

System P3 Plinthic and argillaceous

System P4 <0.3 Cambisol and Litholic Neosol

Fractured

Paranoa

S/A 12.5 Metasiltite
A 4.5 Slates

R3/Q3 12.0 Sandy quartzites and metarhythmites
R4 6.5 Clayey meta-rhythmites

Canastra F 7.5 Micaceous phyllites
Bambui Topo 6.0 Silitos and Arcoses

Araxa - 3.5 Mica shales

Fissured-Karstic
Paranoa PPC 9.0 Metasiltites and marble lenses
Canastra F/Q/M 33.0 Calciphyllites, quartzite and marbles

Bumbui Base 9.0 Silite and micritic limestone lenses
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Table 2. Hydrogeological characteristics of the R3/Q3 aquifer sub-system. 24-h pumping test data of
27 deep pumping wells.

Units
R3 Q3

Maximum Minimum Average Maximum Minimum Average

T(m2/s) 7.8 × 10−4 1.2 × 10−4 4.9 × 10−4 1.4 × 10−3 1.4 × 10−4 4.0 × 10−4

K(m/s) 4.8 × 10−6 5.3 × 10−7 2.8 × 10−6 1.6 × 10−3 1.2 × 10−6 4.6 × 10−6

S 1.7 × 10−1 2 × 10−2 1.0 × 10−1 1.6 × 10−1 4.5 × 10−3 1.5 × 10−1

Q(m3/h) 48 0.0 12.5 42 0.0 12.4
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The investigation was conducted on 27 different sites in the FD, which has initially
been mapped with the aquifer sub-system-R3/Q3 of Brazil. The aquifer sub-system in-
cludes the Serra do Paranã (formerly Q2), Serra da Meia Noite (former R3) and Ribeirão
Contagem (former Q3) of the Paranoá Group (Figure 4). The inclusion of three lithological
units in a single aquifer sub-system is justified, as the types are dominantly sandy and have
petrographic features that are quite similar in their hydrogeological characteristics, hydro-
dynamic parameters, the statistical distribution of average flow rates, and well typologies
(Figure 4). The presence of quartzite makes the aquifer highly discontinuous, and it also
keeps the fractures open because of the brittle behavior. In this way, the wells, that intercept
rocks of different formations, would have a large number of water inlets, with fractures
dispersed throughout the perforated section, in addition to significant inter-connectivity of
the fractures [20].
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aquifer system of Brasilia.

Hydrogeological conditions widely vary over the space, thus favoring the existence
of unconfined or confined conditions and very anisotropic hydrodynamic characteristics.
Table 2 shows the distribution of the values of transmissivity (T), hydraulic conductivity (K),
and coefficient of storage (S), calculated from the pumping tests conducted on twenty-seven
pumping wells pumped for a period of 24 h. Results obtained using the Moench method in
the AquiferTest software for fractured aquifers [3]. The high-water potential of this aquifer
sub-system is brought by the great flow of springs. In this way, the R3/Q3 sub-system is
considered the only groundwater source that still has exploitable reserves or availability of
water resources capable of contributing effectively to supplement public water supply in
the event of extreme scarcities.

2.3. Electrical Resistivity Tomography (ERT)

The measurement of subsurface electrical resistivity of the geological material, using
different electrode arrays, has generally been adopted to identify ground layers distribu-
tions or to identify features whose dimensions and depths vary between meters up to a
few kilometers. Recently, automatic systems have emerged for data collection that can
speed up measurement and interpretation processes. At the same time, a greater capacity
for calculations by computers has allowed, in recent years, the obtaining of images in two
or three dimensions of the real distribution of resistivity of the subsurface. The electrical
resistivity measuring devices commonly consist of a system of four electrodes, two of which
are used to send an electric current to the ground. Wenner arrangements, polo-polo, polo-
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dipole, dipole-dipole, Wenner-Schlumberger, and gradients are typical electrode arrays
whose selection depends on the research objective of the investigation. Each arrangement
has a common characteristic such as resolution (dipole-dipole and pole-dipole), depth of
investigation (pole-pole), and signal-to-noise ratio (Wenner and Wenner-Schlumberger).

For example, in groundwater prospecting applications, the dipole-dipole array is more
effective among others [21]. In this array, transmitters are distanced from the receivers
at a fixed distance for each investigation level, i.e., the depth and the investigated level,
the distance between the transmitter and the receivers. The measurements are carried out
at various levels of investigation (n), where n = 1, 2, 3, 4, 3, ... is the point of intersection
between a line that starts from the center of the current electrodes and another part of the
center of the potential electrodes. The result is an electrical resistivity data set obtained
in n depths forming a section. This grid reflects the subsurface behavior in response to
electrical currents inputs, which is a function of the mineralogical composition of the rock,
pore water content, and pore-water electrical conductivity etc.

2.4. Data Acquisition and Processing

The SYSCAL System was used; it is sensitive to ambient noise during field acquisition.
Two configurations prevented the high quality data acquisition itself: the presence of a wire
fence barbed with concrete stakes and subsurface streetlights. In the first case, some elec-
trodes showed very high contact resistance, and in the second, many electrodes appeared
to be open. In some cases, when faced with a problem of ambient noise during acquisition,
the penetration of the electrode into the soil can be increased where the volume of moisture
with a saline solution would increase. However, in other cases, the problem cannot be
avoided, and the section should be carried out in the most appropriate (alternative) place.

The software RES2DINV was used for the data processing workflow adopted after [5].
The data acquisition of the geophysical data was conducted along twenty-seven profiles
(Figure 2); each one was approximately 350 m in length. In the field, the electrical resistivity
data were collected with the electric roll-along technique, using the dipole-dipole (DD)
arrangement, with a spacing of 10 m between the electrodes. The data acquisition protocol
with the multi-electrode cables was elaborated in the software ELECTRE II, version 05.06.00,
(IRIS Instruments) for acquisitions with 36 electrodes.

For better deployment of the geophysical prospecting, the field activities were carried
out during the dry season and moisture in the soil was increased by pouring salt solution at
each electrode, thus helping to minimize the absorption of electric current in the soil. The
data were acquired with SYSCAL Pro 72 equipment (manufactured by IRIS Instruments),
consisting of an interleaved acquisition module in multi-electrode cables. Thirty-six stain-
less steel electrodes were used to inject current and measure the electric potential generated
by the current flow in the subsurface. ERT data were processed in a similar approach
adopted by [22]. The filtering and topographical correction on the dataset were performed
in the PROSYS II software (IRIS Instruments). In order to determine the effective depth,
the pseudo-sections of electrical resistivity were inverted using the computer program
RES2DINV (Geotomo Software). In our case, the resistivity values near the ground are high;
therefore, narrower model cells were used in the RES2DINV program, where the width
of model blocks was kept half of the electrode spacing for optimum result. The 2D model
was then developed, which divides the subsurface into a series of blocks to determine the
resistivity; its product is apparent resistivity pseudo-sections that fit with the field data,
using an inversion process based on the variation of the least square method. The results
obtained were presented in the form of 2D resistivity sections. The DC resistivity data
processing workflow is shown in Figure 5.
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3. Results and Discussion
3.1. Analysis of ERT Data and Overview of the Findings

In the first stage of ERT data processing, the apparent and calculated resistivity along
twenty-two profiles were analyzed. Linear regression is developed and the correction
coefficient is calculated. In Figure 6 it can be seen that all the profiles show a value of ‘r’
greater than 0.9, which is acceptable accuracy. For some of the profiles, odd data points
were trimmed to achieve this level of accuracy. However, five of the acquired profiles
showed r-value < 0.9 and therefore these were removed from the analysis.

Following this initial stage, inverted ERT anomalies were correlated to the hydrogeo-
logical features inferred from the available information of the groundwater flow system
R3/Q3. Then, the hydrogeological meaning of each feature with the groundwater develop-
ment was highlighted. The correlation of inverted resistivity values with the lithological
log of the nearby pumping wells reveals a three-layered subsurface stratigraphy as dry
topsoil, saprolite, and quartzite (Q3) and at some places, Meta-rithmite clayey and sandy
(R3) formations are also found. Along with layered stratigraphy, the numerous features of
hydrogeological significance have been delineated on some of the inverted cross-sections as
resistivity anomalies. These structures are recommended for future detailed investigations
that may include the application of integrated geophysical techniques followed by geotech-
nical investigations and then finally the installation of pumping wells at the site. These
features have been documented in numerous previous studies [8,10,23–30]. A common
contour interval and respective color scale are chosen for all the resistivity inversion models.
A detailed description of these features is provided below.

3.2. Resistivity Inversion Models and Geological Features

In the hard rock aquifers (plutonic and metamorphic), the groundwater development
(presence and movement) is related to the secondary permeability in the rock matrix, created
by weathering of the fresh bedrock. The tectonics of the region has nothing to do with the
creation of this permeability [31]. These weathered portions of the bedrock can be detected
on the inverted resistivity cross-section as a relatively low resistivity anomaly compared with
the underlying fresh bedrock. Almost all ERT profiles mark the presence of this weathered
profile with different thickness, degrees of weathering, and moisture contents (Figures 7–12).
These sections are considered important features for groundwater development.
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At the centers of the 2D profiles, as seen in Figure 8A–D, sharp contrasting anomalies
may suggest structural features separating very high resistivity of the order of ≥7000 Ω
m and low resistivity <7000 Ω m conducting zone from bottom depth ~10 m till close to
the surface. It marks the position of the fault, high resistive material, and the recharge’s
pathway. It is interesting to note that on profiles shown in Figure 7A–D, increasing trends
in the resistivity of the bedrock are observed. This may be associated with the rock breaking
by fissuring and lineaments. Therefore, the center of this bedrock might have become
boulders as described by [28]. This indicates highly weathered moisture saturated and
quartzite of sub-system R3/Q3.



Appl. Sci. 2022, 12, 2509 11 of 19Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 23 
 

 
Figure 8. 2D resistivity models (A–D) in the region of Brasilia using the dipole-dipole array. 

At the centers of the 2D profiles, as seen in Figure 8A–D, sharp contrasting anomalies 
may suggest structural features separating very high resistivity of the order of ≥7000 Ω m 
and low resistivity <7000 Ω m conducting zone from bottom depth ~10 m till close to the 
surface. It marks the position of the fault, high resistive material, and the recharge’s path-
way. It is interesting to note that on profiles shown in Figures 7A–D, increasing trends in 
the resistivity of the bedrock are observed. This may be associated with the rock breaking 
by fissuring and lineaments. Therefore, the center of this bedrock might have become 
boulders as described by [28]. This indicates highly weathered moisture saturated and 
quartzite of sub-system R3/Q3. 
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Fault mapping is key to understanding groundwater flow in hard-rock aquifers [32–34].
It is worth noting that faults can be seen in Figure 7A–D, Figure 8B,D, Figure 9A,D and
Figure 10B,D. On ERT profiles, the faults are identified as sharp vertical boundaries found
between two layers with distinct differences in resistivities. On some of the profiles (BR02,
BR03, BR04), the strata above bedrock show resistivity ranging from <10 to >1000 Ω
m as seen in Figure 7B–D. The prominent graben-like structures can be seen on some
resistivity profiles, which were created by the faults (Figures 7A, 8B and 9D) in quartzite
hard-rock. These structures have also been reported in previous studies on Brazilian aquifer
systems [2,33,34]. A similar approach for delineation of faults has been adopted by [8].
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The fractured zone’s shape and position in quartzite are delineated based on resistivity
contrast on the 2D resistivity models as shown in Figures 7B and 8A,D. At the top, the
fractured zones show variations in resistivity values related to the degree of weathering
and thus are hydrologically potential sites for groundwater development in the areas. The
comparatively low resistivity range (2000 to >10,000 Ω m) of ridge-like structures might be
related to the coarse-grained material composition and having high permeability can favor
rainfall infiltration and may act as aquifer recharge zones.
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The depth and topography are important features for groundwater flow. In dual-
porosity rocks, the base flow occurs primarily in fractures, while intergrain porosity plays
an important role in water storage. The circulation of water in dual-porosity rocks is
often very complex and is the subject of controversy in Groundwater Hydrology. This
applies in particular to hydrogeochemistry and tracer study due to the possible diffusion
exchange between the water flowing in the crevices and the stagnant water contained in
the micropores of the rock matrix. More about the circulation of groundwater in double
(or triple) porosity systems can be found, among others, in the previous works [33,34]. In
comparison with the geological sequence of the studied area (comprising topsoil, saprolite
and quartzite—Figure 4), the 2D resistivity cross-sections show the three-layered stratig-
raphy as well as the presence of soil contents in the strata as low resistivity anomalies
(Figure 11B). The model shows the bedrock at shallow depth (20 m) and 350 m lateral
distance along the profile. This information aids groundwater exploration in the area.
With the available geological information, it is difficult to separate the geology of bedrock
whether it is a quartzite of Q3 unit or sandy or clayey Metarrithmite of R3. However, onsite
field investigations and communications with the experts working on the area are the sole



Appl. Sci. 2022, 12, 2509 14 of 19

criteria for the attribution of these rock units. Another important aspect of the bedrock
topographic variation is the development of compartmentalized aquifers and its effect on
groundwater yielding. In this study, the formation of graben-like structures may indicate
this compartmentalization (Figure 7).
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The secondary porosity created by the network of joints, fault planes, and bedding
planes may form the aquifer system in the area in quartzite rocks [5]. This system may
be identified on the inverted resistivity sections, where a relatively low resistivity zone
(<100 Ω m) exists (Figures 9B, 10A,B and 11B,D). These deeper low resistivity anomalies may
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present a potential site for groundwater development. Along with sufficient recharge, the
exploitation of the groundwater from these deeper levels is important for the sustainability
of the aquifer. Another possible explanation of this low resistivity deep anomaly would be
the presence of a high clay proportion, which is created by the weathering of bedrock as
explained above. Another possibility is the presence of sandy and clayey rocks of the R3
sub-system. However, in the present study, it is difficult to make this segregation because
of the unavailability of the required information.
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4. Discussion

The results presented above generally agree with previous studies, which were carried
out in different regions of Brazil, focusing on various groundwater regimes that highlight
the role of litho-stratigraphy and hydrogeological features on the aquifer systems, which
includes their geometries as well as hydrogeological characteristics [11–17]. The effects
of porosity, permeability, and faults (acting as a barrier slowing water flow or connectors
between aquifers) on the transmissivity are evaluated [35]. In addition to the role of faults
causing structural aquifer compartmentalization, they may affect the volume of the aquifer
by reducing or increasing its thickness as documented by [4,14]. Similarly, the significance
of these hydrogeological features delineated on inverted resistivity cross-sections from an
aquifer system of Brasilia is highlighted.

The geophysical results in Figures 7–12 shows overlapping layers (soil and rock), vari-
ations in soil and saprolite thickness, and a vertical anomaly position. Most of the profiles
were taken in areas along the lineament, where significant geoelectric anomalies were found.
The complexity of the hard rock aquifer is evident from the structural and spatial variability
of its fracture networks and weathering [36]. The following are the detailed discussions on
groundwater exploration features marked on the inverted resistivity sections.

The weathering processes have changed the properties of the bedrock, increasing
the porosity and secondary permeability leading to the development of fractures. The
fluid circulation is supported by the fractures prior to weathering. Another aspect is the
precipitation, which may affect the structures of interest either positively or negatively [37].
The weathered profile is present on all profiles, which indicates the degree of weathering in
the metamorphic basement aquifer. Along with groundwater development, the depth of
weathered rocks has a prominent effect on many earth surface processes such as routing
water and nutrients. The bedrock stored water can be used by plants in case of drought
conditions through their roots penetration. The bedrock drainage can also influence the
area’s stream flows, their water quality, and also maintain base flow, especially in dry
seasons. In this way, a direct nexus between the surface-groundwater can be seen. This
connection is very important in any groundwater vulnerability assessment study. Another
important influence is based on the extent of alteration in landscape evolution through
the development of pore-water pressure related to the water circulation, which is an im-
portant trigger for shallow clayey landslides in the Federal District as documented by [5].
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These aspects of weathering the bedrock are explained in detail by [38]. The presence of
faults/discontinuities at the base of the weathering profile can also affect the hydraulic
conductivity and have a major influence on the groundwater flow systems by affecting
their hydraulic conductivity [36]. These fractures and fissures can also be developed by
the expansion of minerals during the weathering process [39]. Depending on their form
and material properties, these can be considered groundwater flow channels as conduits,
barriers, or a combined conduit-barrier system and storage sites. The hydraulic fault be-
havior to transverse flow changed in case of acting as a barrier in the presence of clay-like
materials (alteration of primary minerals) accumulation into fault cores. In contrast, the
weathered or damaged zones improved the hydrodynamic properties of the aquifer rather
than the fresh bedrocks, and they can also concentrate the water and improve its channel-
ization along faults and fissures and improve discharge at the well [37,40]. On the one side,
such a fault can provide a good source of groundwater where the source is connected to
a deeper conducting zone with appreciable resistivity in contrast with the surrounding
quartzite rock. On the other side, the fault can also act as a groundwater flow barrier
as explained by [41]. The delineated graben-like structures created by faulting may be
associated with the reservoir compartmentalization (fluid/pressure compartments created
by sealed boundaries) as described by [2]. Therefore, these hydrogeological features are the
potential site for groundwater development. These heterogeneous hydrogeological settings
can also (i) influence the nitrate contamination transport and its fate by biogeochemical
mechanisms [26], and (ii) increase the vulnerability of aquifers from surficial contaminates.
These structures may outcrop at the ground and provide a pathway for contaminant trans-
port. Therefore, the potential sites for groundwater can also increase the vulnerability of
the underlying aquifer.

In the case of the existence of prominent geological discontinuities and fracture net-
works, the groundwater flow leads to the compartmentalization of the aquifer system.
This geologic compartmentalization is further enhanced by the hydraulic containment
created by the well’s pumping. The hydrological models created from ERT inversion results
show the three geological layers: the saprolite, which is mostly unsaturated during the dry
season, the fissured layer, which provides most of the flow to the pumping wells, and the
fresh bedrock. In the case of the depletion of the water table in the dry season created by
intense pumping, the geological discontinuities may act as a barrier to flow and divide the
aquifer into different compartments. As a result, the discharge at the nearby well decreases.
It also causes variable groundwater chemistry [37].

In short, the delineated features can affect the hydrodynamics of the FD aquifer in
various ways. The presence of quartzite bedrock topography and degree of weathering
can affect the hydrodynamic characteristics of the site. One important feature is the brittle
nature of the quartzite, which leads to opening of the fractures and thus creates a conducive
environment for groundwater development. The open fractures can provide pathways
for the aquifer recharge as well as increase the production of the installed wells. The
presence of quartzite rocks is another peculiar hydrological feature of the FD aquifers and
are delineated on ERT profiles. The presence of a thick soil layer and vegetation can hold
the rainfall water, providing a conducive condition for the aquifer recharge. Almost all
ERT profiles have a top-soil layer, however, its thickness and resistivity range significantly
vary in the investigated areas. Like topsoil, the thick saprolite can also be seen on all
profiles. This layer has quite variable resistivity values—mainly related to the degree of
saturation or presence of high clayey proportions. On some of the profiles, the saprolite
(high porosity, low permeability) layer is found to be very thick, which means it can
store large volumes of groundwater and allows pumping the water from the underlain
weathered zone (high permeability), which will significantly enhance the pumping life
of the well. This thicker profile layer is also documented in a study conducted on nearby
areas by [5]. Along with the role in groundwater prospecting, these structures of interest
have a connection with the landslide hazards of the areas. The extremely heterogeneous
geological conditions (with layers of various permeability) lead to the exfiltration of water
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stored temporarily in the clayey formation, which may create perched aquifer conditions.
Because of this permeability contrast, excessive pore-water pressure may develop, leading
to slope instability in the region [22].

Based on the discussion above, the present study was able to highlight how key
hydrologic processes are affected by the subsurface structures delineated on ERT cross-
sections (e.g., depth to bedrock, weathered bedrock, and the topography of bedrock). As
this field-work is based in a tropical Brazilian aquifer, the outcomes will inform current
water resource management efforts accomplished by the local and regional authorities.

5. Conclusions and Recommendations

The main goal of the study is to investigate the hydrogeological characteristics of
the aquifer sub-system-R3/Q3 of the Federal District of Brazil to improve groundwater
extraction and pumping-well planning with the aid of ERT geophysical method. The
study delineates the key hydrological drivers that modulate subsurface water storage and
regulate groundwater development in the subsurface, which influences the hydrology
in many ways. These include saprolite, fractured and fresh bedrocks, and their depths
and topographies. On the inverted resistivity tomographs, site stratigraphy and other
numerous structures are delineated, which have a direct influence on the hydrodynamics
of the aquifer.

This study is significant because it provides a description of the aquifer sub-system of
the area based on ERT profiles. The approach provides a promising framework for investi-
gating and extracting groundwater in regions underlain by quartzite hard rock aquifers.
Overall, the study strengthens the idea that geophysical methods can aid groundwater
exploration in challenging geological settings. Therefore, this approach is recommended
to be carried out on similar quartzite aquifers, which would ensure that the use of ERT
inverted resistivity profiles accompanied with the geological information optimizes both
position and productions of pumping wells. As this field-work is based in a tropical
Brazilian aquifer, the outcomes will inform current water resource management efforts
accomplished by the local and regional authorities.

In addition to groundwater prospecting, the use of ERT method also allowed us to
identify geological structures and permeability contrast in connection with the landslide
hazards of the area, which presents a further strength of our approach. For future work,
coupled numerical modelling informed by geophysical, geological, hydrological, and mete-
orological data should be considered for a more accurate estimation of wells’ production
combined with landslide stability assessment.
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