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COVID-19 is spreading worldwide at disturbing rates, overwhelming global healthcare.

Mounting death cases due to disease complications highlight the necessity of

describing efficient drug therapy strategies for severe patients. COVID-19 severity

associates with hypercoagulation and exacerbated inflammation, both influenced by

ACE2 downregulation and cytokine storm occurrence. In this review, we discuss

the applicability of the anticoagulant heparin and the anti-inflammatory corticosteroid

dexamethasone for managing severe COVID-19 patients. The upregulated inflammation

and blood clotting may be mitigated by administrating heparin and its derivatives.

Heparin enhances the anticoagulant property of anti-thrombin (AT) and may be

useful in conjunction with fibrinolytic drugs for severe COVID-19 patients. Besides,

heparin can also modulate immune responses, alleviating TNF-α-mediated inflammation,

impairing IL-6 production and secretion, and binding to complement proteins and

leukotriene B4 (LTB4). Moreover, heparin may present anti-SARS-CoV-2 potential

once it can impact viral infectivity and alter SARS-CoV-2 Spike protein architecture.

Another feasible approach is the administration of the glucocorticoid dexamethasone.

Although glucocorticoid’s administration for viral infection managing is controversial,

there is increasing evidence demonstrating that dexamethasone treatment is capable

of drastically diminishing the death rate of patients presenting with Acute Respiratory

Distress Syndrome (ARDS) that required invasive mechanical ventilation. Importantly,

dexamethasone may be detrimental by impairing viral clearance and inducing

hyperglycemia and sodium retention, hence possibly being deleterious for diabetics

and hypertensive patients, two major COVID-19 risk groups. Therefore, while heparin’s

multitarget capacity shows to be strongly beneficial for severe COVID-19 patients,

dexamethasone should be carefully administered taking into consideration underlying

medical conditions and COVID-19 disease severity. Therefore, we suggest that the

multitarget impact of heparin as an anti-viral, antithrombotic and anti-inflammatory drug
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in the early stage of the COVID-19 could significantly reduce the need for dexamethasone

treatment in the initial phase of this disease. If the standard treatment of heparins

fails on protecting against severe illness, dexamethasone must be applied as a potent

anti-inflammatory shutting-down the uncontrolled and exacerbated inflammation.

Keywords: COVID-19, heparin, dexamethasone, anticoagulant, corticosteroid

INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2), the etiological agent of coronavirus disease (COVID-19), is
rapidly spreading worldwide, being the cause of death of more
than two million individuals globally in March of 2021 [World
Health Organization (WHO), 2020]. Severe COVID-19 occurs
due to complications, mostly affecting the lungs (1), heart (2),
and kidney (3), impact more frequently the elderly and patients
with certain comorbidities, like heart disease and hypertension,
and usually correlates with intensive care unit (ICU) admission,
mechanical ventilation requirement, and death (4). The elevated
numbers of ill and deceased patients due to COVID-19 place it as
a healthcare emergency and highlight the urgency of establishing
effective drug therapy strategies for pandemics management.

Severe COVID-19 patients tend to show elevated circulating
amounts of the proinflammatory mediators Interleukin-6 (IL-6),
IL-8, IL-1β, and Monocyte Chemoattractant Protein-1 (MCP-
1) (5). Even though plasma concentrations of IL-6, IL-8, and
tumor necrosis factor-α (TNF-α) in severe COVID-19 patients
may be lower than subjects affected by septic shock and
similar to levels found in other patients in a critical state
(6), the inflamed phenotype correlates with poor COVID-19
prognosis and is generated by cytokine storm, a condition
characterized by macrophage activation syndrome, lymphopenia
and organ mononuclear cell infiltration (7). Besides, SARS-CoV-
2 infection leads to endothelial damage (8) and downregulation
of its cell entry receptor ACE2 (9), further intensifying
inflammatory responses and impacting coagulation processes.
In this context, severely ill patients may benefit from anti-
inflammatory therapies, including dexamethasone.

The hypercoagulable state characteristic of COVID-19
severity is illustrated by the consistently elevated D-dimer
levels (10), disseminated intravascular coagulation (DIC),
and subsequent consumption coagulopathy (11) displayed by
affected individuals. These alterations explain the increased risk
of developing life-threatening complications, such as pulmonary
embolism (PE) (12) and myocardial infarction (13), by this
group. Thus, administrating the anticoagulant drug heparin may
also be useful for improving outcomes in severe cases.

Inflammatory and coagulation processes interplay intimately
in many ways, including through Tissue Factor (TF), thrombin-
dependent PAR activation, Toll-like Receptors (TLRs), and
complement system (14). Elevated levels of COVID-19
proinflammatory markers, such as IL-6 and IL-8, also enhance
the risk of thrombosis (15). High levels of IL-6 disrupt the
procoagulant-anticoagulant balance by increasing the expression
of clotting factors and diminishing the levels of thrombogenesis
inhibitors (16). IL-8 also impacts hemostasis, significantly

changing fibrin and thrombin amounts, and activating platelets
(17). Once the intensity of inflammatory responses and
clotting processes influence the prognosis of severe COVID-19
patients, investigating the effectiveness of anti-inflammatory
and anticoagulant drugs may be crucial in decreasing morbidity
and mortality caused by the COVID-19 pandemics. In this
review, we discuss the use of the anticoagulant heparin and the
anti-inflammatory dexamethasone as promising tools for the
management of severe COVID−19 patients.

ANTICOAGULANT HEPARIN

The emerging association between thromboembolic events and
COVID-19 raised new insights about the physiopathology
of the pandemic disease. Countless therapeutic targets
were proposed through the knowledge of unbalanced
procoagulant/anticoagulant factors that leads to the impairment
of endogenous antithrombotic activity during SARS-CoV-2
infection (18–20). The great hypothesis was regarding the
administration of anticoagulant drugs that could restore
hemodynamic homeostasis and protect against the observed
coagulopathy. Based on that, the study of frequently used
anticoagulant drugs, especially heparin, increased worldwide
and preliminary data suggest promising performance in
clinical medicine.

Heparin is a polysaccharide originally isolated from
mammalian animal tissue in 1916 (21). Thereafter the discovery,
increasing research about the molecule chemical structure and
mechanism of action brought new derivatives that improved
the efficacy of antithrombotic activity and decreased side effects
associated with the unfractionated heparin (UFH) form (22). The
UFHwas associated with an increased risk for thrombocytopenia
and osteoporosis, causing a greater need for monitoring patients
during the therapy (23, 24). Thereby, the development of low-
molecular-weight heparin (LMWH) reached new perspectives
and is currently the anticoagulant of choice for the treatment
and prevention of coagulopathies.

Both UFH and LMWH have the ability of binding to
anti-thrombin (AT) glycoprotein, enhancing AT inactivation of
potent enzymes in the coagulation pathway, such as Factor
Xa and Factor IIa (Thrombin). The heparin dependence of
AT to prevent blood clot formation makes the drug an
indirect antithrombotic agent and the absence of intrinsic
fibrinolytic activity impairs thrombi breakdown when they
are already shaped (25, 26). Besides, heparins also present
an interesting immune-modulatory activity (27). One of the
proposed mechanisms is the inhibition of different inflammatory
responses mediated through necrosis factor-α (TNF-α), a potent
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pro-inflammatory cytokine (28, 29). As a result, the quick
and efficient actions of heparin make the drug promising
against inflammation, in addition to its anticoagulant properties.
Thereby, different reports have been exploring this potential
against SARS-CoV-2 infection, in which both inflammatory and
coagulation disruption can lead to a complication during the
disease progression.

Reports have shown that COVID-19 patients presented
increased levels of procoagulation biomarkers and severe
immune dysfunction that can lead to disseminated intravascular
coagulation (DIC), increased risk for venous thromboembolism
(VTE), and organ failure, which reflects in a high hospital
mortality rate of 1:31 with a confidence interval (CI) of 95% (30–
32). Using an animal model, the increased deposition of collagen,
fibrin, and von Willebrand factor was linked to augmented
thrombi formation and endothelialits establishment during
COVID-19 (33). Moreover, the appearance of neurological
alterations caused by cerebral venous thrombosis was also
reported (34, 35). In this context, early anticoagulant treatment
was applied and it was observed a decrease of D dimer levels,
mechanical ventilation urgency, and a decrease of 24.2% in the
mortality rate of patients presenting sepsis-induced coagulopathy
(30, 32, 36, 37). The use of a high dose of UFH, such as
5,000U, showed important protection against sepsis-induced
VTE, a complication that presents a major impact on a patient’s
prognosis (32). Besides, ongoing clinical trials have been focusing
on inhalational heparin treatment for hospitalized patients
with or without mechanical ventilation urgency, especially
due to several reports that addressed the protective role of
nebulized UFH against intrapulmonary fibrin deposition and
lung injury (38, 39). The use of this administration route
can directly deliver the UFH to the lung microenvironment,
being a potential mechanism to soften local hypercoagulation
and hyperinflammation, preventing systemic harmful effects of
anticoagulant treatment. The above-mentioned and the main
in-progress clinical trials are summarized in Table 1.

It is important to emphasize the importance of indicating
LMWH and UFH for both prophylaxis and early treatment,
once these drugs are not able to promote fibrinolysis of pre-
existing thrombi formed in the tissue. Aware of this fact, the
combination of heparin and fibrinolytic drugs could be effective
for the treatment of severe cases, once thrombolysis also presents
clinical benefits against severe pulmonary embolism (40).

Beyond the expected effects of heparins on preventing
clots formation through indirect inhibition of the coagulation
pathway, other properties provided by these drugs can be the
key for the positive data about their efficacy compared to single-
target drugs. The exacerbated inflammation that is also found
in severe COVID-19 cases is mediated especially through the
uncontrolled production of pro-inflammatory cytokines such as
interleukin-6 (IL-6), interleukin-8, monocyte chemoattractant
protein-1 (MCP-1), and TNF-α in the cytokine release syndrome
(41, 42). Research has been emphasizing how targeting TNF-
α is important for a better prognosis against COVID-19-
induced cytokine dysfunction, once its blockade can reduce
both inflammatory and prothrombotic biomarkers (43). In this
context, reports have shown that both LMWH and UFH soften

TNF-α-induced inflammatory responses, such as the proper IL-6
and IL-8 production (28, 44, 45). This effect may occur through
UFH inhibition of the nuclear transcription factor-κB (NF-κB)
binding to the DNA, which is a crucial process for a broad
range of cytokines signaling pathways (44). Besides, a non-
anticoagulant fraction of enoxaparin was reported as a partial
inhibitor of IL-6 release, indicating that the signalization range
assigned to this cytokine may be mitigated in the presence of
LMWH (46). Indeed, a retrospective review has demonstrated
that treating COVID-19 cases with LMWH decreases IL-6
overproduction, thus being an important therapeutic choice to
be considered, once inflammation and coagulopathies are closely
related (37). Studies have also discussed that disturbances on
the pro-inflammatory agents that compound the complement
cascade may be modulated during COVID-19 illness (47, 48). It
was demonstrated that the complement system plays a role in the
SARS-CoV-2-induced endothelial damage in rhesus macaques
(33). Thereby, it is important to highlight that UFH and LMWH
also bind to complement proteins and reduce the classical
cascade activity, thus being instigators of anti-inflammatory
responses either through this pathway (49, 50).

Eicosanoid lipid mediators have been identified as important
agents during the virus-induced inflammatory process of
respiratory airways (51), as observed in Influenza (52) and
acute severe respiratory syncytial virus bronchiolitis infection
(53). Human bronchial epithelial cells and resident leukocytes
of the lung are important sources of leukotriene B4 (LTB4),
a potent pro-inflammatory mediator that is closely related
to neutrophil activation (54). A recent review highlighted
the association between SARS-CoV-2-induced endoplasmic
reticulum stress to eicosanoid pathway activation, which could
augment the proinflammatory storm linked to COVID-19 (55).
In this context, previous reports have shown that heparin is
capable of inhibiting LBT4 signalization, thus softening the
inflammatory response assigned to this molecule (56). Besides,
hyperventilation-induced bronchoconstriction was attenuated
through inhibition of eicosanoids production by heparin
in the animal model (57). Considering COVID-19-induced
multi-organ damage through hyperinflammation, the countless
immunomodulatory effects of heparin beyond anti-coagulant
properties improve its potential against this pandemic disease.

Another approach that is being widely discussed is the
antiviral potential provided by heparins. Previous to the COVID-
19 pandemic, the antiviral activity of the current drug was
observed in different experimental models and viruses, such as
Human Immunodeficiency Virus (HIV) and Herpes Simplex
Virus (HSV) (58, 59). This antiviral effect of heparins may
be related to the direct competition for binding to the cell
glycoprotein receptors or through softening harmful effects
caused by the infection, as already demonstrated for Zika Virus
(ZIKV) (60). Growing shreds of evidence suggest that heparin
also presents an antiviral effect against SARS-CoV-2. A report
has shown that the cellular invasion capability of the virus can
be affected in the presence of heparins (61). In this study, it
was noticed that heparan sulfate (HS) derivatives, such as UFH
and LMWH, at feasible concentrations for clinical application,
induces conformational alteration of the SARS-CoV-2 Spike
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TABLE 1 | Studies on heparin therapy for COVID-19.

Author, year, study design,

country

Number of

patients

Treatment Patient characteristics Results

Ranuci et al., 2020; Prospective

cohort; Italy

16 Use of an intensive

thromboprophylaxis protocol with

LMWH, antithrombin and clopidogrel

Comorbidities: 5% - obesity (BMI >

30 kg/m2 ); 20% diabetes; 16% CDV

56.3% with progression toward

normal coagulation profile, after

increased thromboprophylaxis at

day 14

Tang et al., 2020; Retrospective

cohort; China

449 Use of UFH or LMWH

thromboprophylaxis

Comorbidities: 40% hypertension;

21% diabetes and 9.1% CDV

A 20% reduction in mortality was

observed when patients with

D-dimer exceeding 3.0µg/mL

and were treated with heparin

Zhang et al., 2020;

Retrospective cohort; China

143 LMWH prophylaxis Age: 63 y; Comorbidities: obesity:

24.9 kg/m2 - 35.8%; 39.2%

hypertension; 18.2% diabetes

8.8% DVT (all the hospital)

Middeldorp et al., 2020;

Retrospective cohort;

Netherlands

198 Standard and doubled LMWH

prophylaxis

Age: 61 y; BMI: 27 kg/m2 GW: PE 6.6%, 13% DVT ICU: PE

15%, 32% DVT

Llitjos et al., 2020; Retrospective

cohort; France

26 ICU 31% LMWH prophylactic, 69%

therapeutic

Age: 68 y; Comorbities:

Hypertension: 85%

Helms et al., 2020; Multicentric

prospective cohort; France

150 ICU 70% LMWH prophylactic, 30%

therapeutic

Age: 63 y; Comorbiditie: Diabetes:

22.1%

16.7% PE; 2.6% ATE

Fauvel et al., 2020; Muticentric

retrospective cohort; France

1,240 non-ICU 8.4% LMWH prophylatic; 11% UFH

prophylatic

Age: 64 y; Comorbidities: 45.4%

hypertension; 21.7% diabetes;

8.3% VTE

Lodigiani et al., Retrospective

cohort; Italy

327 40.7% LMWH prophylatic; 22.6%

UFH prophylatic

Age: 68 y; Comorbidities: 29.8%

BMI>30 kg/m2; 44.3% hypertension;

18% diabetes

6.4% VTE

Klok et al., 2020; Retrospective

cohort; Netherlands

184 ICU Nadroparin (2,850 IUod* increased in

some to 5,700 IUbd)

Age: 64 y; Comorbidity: obesity 31%VTE

Van Haren et al., 2020;

Prospective cohort; Australia,

UK, Argentina, Brazil, and Egypt

712 Inhaled nebulized UFH (and standard

care dose 25,000 IU)

Age: 18 y and older with no

immediate requirement for

mechanical ventilation

Van Haren et al., 2020;

Prospective cohort; Australia,

Ireland, USA, Spain, and the UK

202 ICU Nebulized UFH (25,000 IU) Age: 18y and older presenting

hypoxemia and acute pulmonary

opacity

ATE, arterial thromboembolic events; DVT, deep vein thrombosis; ICU, intensive care unit; MWH, lowmolecular weight heparin; PE, pulmonary embolism; VTE, venous thromboembolism;

UEDVT, upper extremity deep vein thrombosis.

*5,700 IUod for patients >100 kg.

protein which is a central molecule for the host’s cell invasion.
Another preprint demonstrated that UFH was also capable
of affecting SARS-CoV-2 entry to the host cell, impacting its
infectivity parameters (62). Moreover, an in vitro comparative
analysis found that UFH presented a higher antiviral potential
against SARS-CoV-2, suggesting that it could be more beneficial
than LMWH (63, 64). It was also noticed an important role
of cellular HS binding to SARS-CoV-2 that promotes S protein
conformational change and binding to the ACE-2 receptor,
suggesting that HS could be a coreceptor for the viral invasion
(65). In this context, UFHwas also reported as a blocking agent of
this interaction between cellular HS molecule with SARS-CoV-2,
reinforcing its antiviral activity.

Although antiviral evidence of both LMWH and UFH against
SARS-CoV-2 are still preliminary, the other protective activities
against COVID-19 complications are clear. The ideal therapeutic
approach for treating such complex diseases is also using a multi-
target molecule that restores different SARS-CoV-2-affected
pathways. The anticoagulant, anti-inflammatory, and potential
antiviral effects provided by heparins increase the perspectives

of using these medications for creating a better prognosis
for COVID-19 affected individuals (Figure 1). Considering the
findings that the antiviral effect of UFH could be stronger
than LMWH, the dose of choice must be decided carefully,
once UFH presents a higher risk for bleeding than LMWH.
Avoiding the increased risk, the most suitable dose for both
UFH and LMWH is the standard care, which can be adjusted
according to the body mass index (BMI) and kidney function
(66). Besides, risk factors for bleeding must be considered before
prescribing the anticoagulant drug as prophylaxis. Moreover,
nebulized UFH is a great possibility to improve the performance
of the current drug by directing the effect to the most required
site and reducing risks for unwanted impact on systemic
coagulation pathways.

CORTICOSTEROID DEXAMETHASONE

Based on available clinical data, around 20% of SARS-CoV-2-
infected patients developed Acute Respiratory Distress Syndrome
(ARDS), characterized by pulmonary pathological alterations as
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FIGURE 1 | Therapeutic Effects of Heparin in COVID-19. Lung infection by SARS-CoV-2 can trigger a systemic inflammatory process, which is also associated with

an increased occurrence of procoagulant factors found in severe cases of COVID-19. Low molecular weight Heparin (LMWH) shows effects in 3 main ways: 1.

Antiviral effect: the entrance of SARS-CoV-2 in the endothelial and epithelial cells depends on its interaction with the cell surface heparan sulfate; thus, the binding of

heparin to the viral spike protein can inhibit this interaction, decreasing viral cell invasion. Heparin has shown its antiviral effect on other viruses such as HIV (competing

for the receptor) and ZIKV (indirect action, abrogating the viral-induced cytotoxic effect). 2. Anticoagulant effect: the uncontrolled blood clot formation can be

controlled by the anticoagulant function inherent to heparin, mediated by the interaction of heparin and anti-thrombin-3 glycoprotein (AT3), potentiating the AT3

inactivation of thrombin, an essential factor for the formation of thrombi. 3. Anti-inflammatory effect: heparin has widely known anti-inflammatory effects, mainly

canceling pro-inflammatory mediators, such as TNF-α, IL-6, and LTB4, which leads to decreased migration and activation of immune cells, preventing against the

systemic inflammatory response. ACE2, Angiotensin-converting enzyme 2; APC, activated protein C; AT3, Antithrombin-III; CK, creatine kinase; CRP, C-reactive

protein; ESR, erythrocyte sedimentation rate; HS, heparan sulfate; IL, interleukin; LDH, lactate dehydrogenase; PAI-1, Plasminogen activator inhibitor 1, TF, Tissue

factor, TFPI, Tissue factor pathway inhibitor; TNF, Tumor necrosis factor; VII, Factor VII.

elevated dead space and decreased oxygenation (67–69). The
massive release of proinflammatory cytokines and chemokines
(5), coagulopathy and microvascular thrombosis (5, 10), hyaline
membrane formation (68, 70), and intravascular DNA neutrophil
extracellular traps (NETs) (71) are currently described as
contributing factors for the diffuse alveolar damage commonly
displayed in COVID-19 associated ARDS.

Consistently manifested by ARDS patients, pulmonary
hyaline membrane formation impairs gas exchange, limits
surfactant action, favors lung fibrosis, and induces lung
microvascular thrombi (72, 73). Other factors that cope with
thrombosis initiation and inflammation during ARDS onset are
intravascular DNA neutrophil extracellular traps (NETs) and
NETosis (71, 74). In addition to neutrophilia, the risk factors

associated with the establishment of ARDS in COVID-19 patients
were older age, organ dysfunction, and coagulopathies (75).
The management of the cytokine and chemokine storm during
COVID-19 represents a crucial and controversial point (76),
considering that the use of systemic anti-inflammatory drugs
can either inhibit the tissue damage or curb the cell-mediated
immunity (77, 78).

Glucocorticoids (GCs) are steroid hormones derived from
cholesterol metabolism. Both endogenous and synthetic forms
of GCs share the same lipophilic chemical structure that allows
the molecule to exert a broad range of endocrine effects
in the organism (79). Currently, the synthetic GCs, such as
dexamethasone, suffered alterations that significantly improved
specificity, bioavailability, and potency, leading to a higher

Frontiers in Medicine | www.frontiersin.org 5 April 2021 | Volume 8 | Article 615333

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Braz-de-Melo et al. Heparin and Dexamethasone as Treatments for COVID-19

efficacy compared to the endogenous signaling pathway (80). The
known immunosuppressive potential of dexamethasone made
this anti-inflammatory molecule the first-line therapy for a great
number of inflammatory diseases, such as autoimmune disorders
and respiratory infections (81).

Dexamethasone mechanisms of action are characterized by
exclusive binding to the classical cytosolic GC receptor (cGCR),
which provides the majority of anti-inflammatory effects (82).
The drug can reduce the inflammatory process by controlling
the transcription of many pro-inflammatory genes that encode
cytokines, cell adhesion molecules, and receptors related to
inflammation (83). Dexamethasone is associated with decreased
capillaries permeability, in addition to reduced neutrophil and
lymphocyte migration into the inflammatory sites (84–86). An
important advantage of the current drug is its extended half-
life in the organism, which may decrease the time required for
therapy compared to alternative GCs (74). The dose of choice is
based on the desired effect, once low doses are associated with
anti-inflammatory modulation and higher doses are associated
with the immunosuppressive activity (87).

As previously discussed, endogenous GCs are central for
metabolic homeostasis and systemic inflammatory events during
tissue repair and pathogens elimination (88). Due to this fact,
long-term exogenous intake of synthetic GCs can provide adverse
effects, such as extreme shut down of inflammatory responses,
leading to a higher susceptibility to secondary infections
establishment (87, 89). Besides, GCs play a role in glucose
metabolism through alterations of insulin signaling, leading ta
reduced uptake and increased concentration of plasmatic glucose
levels (90). This intervention in the metabolism gives rise to
insulin resistance (IR) conditions caused by supra-physiologic or
prolonged synthetic GCs medication, which can evolve to type-2
diabetes (T2D) and other metabolic disorders (91, 92). For this
reason, synthetic GCs medication needs to be handled carefully,
avoiding complications rather than therapeutic effects.

At first, it was not clear whether patients diagnosed with
COVID-19 could take advantage of the use of dexamethasone,
especially taking into account the above-mentioned points
(93). Reports have shown that dexamethasone medication
against influenza-induced pneumonia, SARS-CoV-1, andMiddle
East respiratory syndrome coronavirus (MERS-CoV) presented
harmful effects that could negatively impact the disease
prognosis (94–97). However, specifically in patients who develop
ARDS during COVID-19, dexamethasone treatment showed
to be effective in down-regulating systemic and pulmonary
inflammation, restoring tissue homeostasis by accelerating
resolution of diffuse alveolar damage, leading to protection
against extrapulmonary organ dysfunction (98, 99). Besides,
experimental and clinical studies have demonstrated that GR-
α expression in myeloid cells of bronchoalveolar lavage is
associated with significant protection against severe COVID-19
symptoms, especially through reduction of NETosis and lung
neutrophilic inflammation (100). Of note, when lung damage has
already occurred, the case fatality rate of COVID-19 is high (101).
If dexamethasone could alleviate the clinical progression at this
stage, then the therapy may decrease the cases of severe illness
and therefore lower the case fatality rate of COVID-19 (102). A

comparative scenario of COVID-19 progression in the presence
and absence of dexamethasone was summarized (Figure 2).

Faced with the complex scenario of severely ill patients
with COVID-19, diverse protocols employing complementary
treatments (94) have been developed, some of them using
GCs for the treatment of hospitalized patients with COVID-19
(103). Members of the WHO and the Chinese Thoracic Society
have conflicting opinions regarding the use of corticosteroids
in COVID-19 (104). According to the WHO guidelines,
dexamethasone should only be used under clinical trial
conditions (105). Russell and colleagues concluded that there
is no reason to expect that individuals with COVID-19 will
benefit from corticosteroid treatment, based on the increased
mortality and risk of secondary infection in influenza, impaired
clearance of SARS-CoV, and MERS-CoV (93). However, the
high potential of dexamethasone for cytokine storm mitigation
brought proposals to overcome the impairment of viral clearance
and increased risk of developing secondary infections, and the
main in-progress clinical trials are summarized in Table 2.

The preliminary results of a large randomized, controlled,
open-label trial conducted in the United Kingdom are in
favor of dexamethasone use. In this trial, Dexamethasone arm
constituted 2,104 patients receiving 6mg dexamethasone (oral
or intravenous) once daily for up to 10 days and 4,321 patients
receiving standard care. Dexamethasone reduced mortality
by 35% in patients receiving invasive mechanical ventilation.
Besides, the prospective meta-analysis from the WHO Rapid
Evidence Appraisal for COVID-19 Therapies (REACT)Working
Group recommended the independent use of corticosteroids in
patients with COVID-19. An important correlation between the
administration of systemic GCs and reduced mortality was found
among critically ill patients with COVID-19 (106). Selvaraj et al.
reported that short-term use of dexamethasone by hospitalized
patients with COVID-19 was well tolerated and increased the
patients’ prognosis (107).

Although dexamethasone promising performance for severe
COVID-19, there are still concerns regarding this anti-
inflammatory drug prescription for indiscriminately cases.
Until now, the available data suggests a beneficial role of
dexamethasone treatment on hospitalized patients, especially
for those who received intensive oxygen therapy (108, 109). A
possible explanation can be based on the association between
hyperinflammation and the development of pulmonary damage,
increasing urgency for ICU. The excessive inflammation needs
to be handled by a strong anti-inflammatory treatment, which
could be accessed by dexamethasone therapy. In the absence
of an unbalanced inflammatory process as in the early stage
of the disease, dexamethasone treatment might disturb the
development of the host’s natural immunity and abrogate anti-
viral response, which could lead to a delayed viral clearance.

Besides the previously discussed impairment of viral clearance
when applied in the early stage of the disease (95), the
increasing risk of secondary infections associated with high
doses of systemic GCs was noticed (87, 89). A report regarding
Strongyloides hyperinfection, a neglected nematode disease,
brought the current concern about dexamethasone application
without concomitant vermifuge use (110).
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FIGURE 2 | Differential progression of COVID-19 in the presence and absence of dexamethasone. In the absence of an anti-inflammatory treatment,

COVID-19-induced lung dysfunction is triggered by hyperactivation of alveolar macrophages infected by SARS-CoV-2 and immune cells (Monocytes, Granulocytes,

Macrophages, Neutrophils) recruitment to the lung surroundings, which leads to the massive secretion of inflammatory mediators (TNF, IL-17, IL-6, IL-1b, IL-18) in the

cytokine storm release. The persistence of the inflammatory process gives rise to the increased fibroblasts and myofibroblast invasion throughout the scar tissue

formation, loss of natural pulmonary surfactant, and increased alveolar fluid. Dexamethasone administration may benefit through the impairment of cytokine storm

occurrence and leukocyte lung infiltration, which decreases tissue fibrosis and alveolar fluid accumulation. However, this glucocorticoid is associated with

immunosuppression, augmented blood pressure, and glycemia as major side effects. Thereby, it may be detrimental for some groups, including non-severe COVID-19

cases, diabetics, and hypertensive subjects.

TABLE 2 | Studies on dexamethasone for COVID-19.

Author, year, study design,

country

Number of

patients

Treatment Patient characteristics Results

Selvaraj et al., Cases series; USA 23 Dexamethasone: 4mg Age: 60 y; Comorbidities: 38.09%

hypertension; 61.9% diabetes; BMI:

28.68 kg/m2

CS prevented the progression of

hypoxic respiratory failure in

moderate to severely ill patients

Recovery Group 2020;

Multicentric; Controlled,

open-label trial; UK

6,425 Dexamethasone (6mg once daily

- 10 days)

Age: 66.1 y; Comorbidities: 24%

diabetes; 27% CDV; 21% chronic

lung 56% having at coexisting illness

In the dexamethasone group, the

incidence of death was lower

than that in the usual care group

among pts receiving IMV

Tomazini et al., 2020;

Multicentric, randomized,

open-label, clinical trial; Brazil

299 Dexamethasone (10mg – 5 days) Age: 61 y: Comorbidities: 60.3%

hypertension; 37.8% diabetes; 30.5%

obesity

The use of standard care

compared with standard care

alone resulted in a significant

increase in the number of

ventilator-free days over 28 days.

AKI, acute kidney injury; ARDS, acute respiratory distress syndrome; CDV, cardiovascular diseases; CS, corticosteroids; ICU, intensive care unit; IMV, invasive mechanic ventilation;

MTP, methylprednisolone; NIV, non-invasive ventilation; Pts, patients; UK, United Kingdom; USA, United States America; y, years.

Besides that, GCs modulation of glucose metabolism leads to
intensive care on diabetic patients during the treatment (92). As
discussed worldwide, diabetes is a major risk factor for severe
COVID-19 and dexamethasone treatment in these individuals

could be associated with the development of hyperglycemic
condition (111–113). The increased concentration of glucose
levels in the bloodstream could be associated with a poor
prognosis of the disease, considering the recent discovery about
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SARS-CoV-2 dependency of glucose for viral replication in vitro
(114). With increasing glucose concentration, the viral load
increased concomitantly, favoring the infection and the severity
of the disease (114). Besides, hypertensive patients, who are
also at risk for COVID-19 severity, should be at constant
monitoring during dexamethasone treatment, once GCs-induced
hypertension is frequently observed (115). High dexamethasone
doses are associated with increased sodium retention, which
leads to the elevation of blood pressure, in addition to chemical
alteration of peripheral nerves homeostasis (87, 116, 117).
This effect could lead to complications rather than COVID-
19 treatment, increasing the associated mortality risks of the
affected individuals.

CONCLUSION

Severe cases of COVID-19 are marked by intense inflammation
and the presence of thrombotic events. Exacerbated
inflammation that mediates the characteristic cytokine storm
observed in the severe COVID-19, and the blood clots in the
lungs that can compromise oxygenation, lead to worsening
clinical outcomes of SARS-CoV-2 infection. Several recent
reports have demonstrated a beneficial effect of the use of
heparin/low molecular weight heparin and corticosteroids, such
as dexamethasone, on mortality in COVID-19.

The advantageous and successful effect of heparin underlying
treatment of COVID-19 patients could be explained not only by
its anticoagulant properties but also due to its non-anticoagulant
mechanisms, which include anti-viral and anti-inflammatory
actions such as (I) decrease of SARS-CoV-2 host cell entry, (II)
inhibition of pro-inflammatory cytokines and chemokines, (III)
inhibition of vascular permeability and leukocyte migration.

Despite the controversial role of corticosteroids in treating
severe infectious diseases, several clinical studies have provided

increasing evidence that dexamethasone could function widely
as an available treatment for the most severely ill patients
with COVID-19. However, many clinically important questions
remain open, and determination of optimal initiation period,
dosing, and duration of the dexamethasone treatment might
be considered to avoid serious adverse effects during COVID-
19 management.

While UFH or LMWH are indicated as prophylactic
agents for the initial phase of the disease, which could
impair clots formation in addition to abrogate viral cell
entry, dexamethasone must be prescribed only for severe
cases, when the disease reaches a highly inflammatory state.
Taking this into account, we suggest that the multitarget
impact of heparin as an anti-viral, antithrombotic and
anti-inflammatory drug in the early stage of the COVID-
19 could significantly reduce the need for dexamethasone
treatment in the initial phase of this disease. If the
standard treatment of heparins fails on protecting against
severe illness, dexamethasone must be applied as a potent
anti-inflammatory shutting-down the uncontrolled and
exacerbated inflammation.

Overall, the association of anti-coagulant heparin
and the corticosteroid dexamethasone could be a very
effective and promising therapeutic tool in avoiding
COVID-19 complications when used for severely
ill patients.
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