
DISSERTAÇÃODEMESTRADO

FRACTIONAL SUPER-RESOLUTION OF
VOXELIZED POINT CLOUDS

Tomás Malheiros Borges

Brasília, janeiro de 2021

UNIVERSIDADE DE BRASÍLIA

FACULDADE DE TECNOLOGIA

UNIVERSIDADEDE BRASÍLIA
Faculdade de Tecnologia

DISSERTAÇÃO DE MESTRADO

FRACTIONAL SUPER-RESOLUTION OF
VOXELIZED POINT CLOUDS

Tomás Malheiros Borges

Dissertação deMestrado submetida ao Departamento de Engenharia

Elétrica como requisito parcial para obtenção

do grau deMestre em Engenharia Elétrica

Banca Examinadora

Prof. Ricardo Lopes de Queiroz, Ph.D., PPGEE /
UnB
Orientador

Profa. Mylène Christine Queiroz de Farias, Ph.D.,
PPGEE/UnB
Examinador Interno

Prof. EduardoAntônio Barros da Silva, Ph.D., UFRJ
Examinador Externo

FICHA CATALOGRÁFICA

BORGES, TOMÁSMALHEIROS

FRACTIONAL SUPER-RESOLUTIONOF VOXELIZED POINTCLOUDS [Distrito Federal] 2021.

xvi, 77 p., 210 x 297 mm (ENE/FT/UnB, Mestre, Engenharia Elétrica, 2021).

Dissertação deMestrado - Universidade de Brasília, Faculdade de Tecnologia.

Departamento de Engenharia Elétrica
1. point cloud 2. super-resolution

3. quality assessment 4. compression

I. ENE/FT/UnB II. Título (série)

REFERÊNCIA BIBLIOGRÁFICA

BORGES, T. M. (2021). FRACTIONAL SUPER-RESOLUTIONOF VOXELIZED POINT CLOUDS.

Dissertação deMestrado, Publicação: PPGENE.DM-759/20, Departamento de Engenharia Elétrica,

Universidade de Brasília, Brasília, DF, 77 p.

CESSÃO DE DIREITOS

AUTOR: Tomás Malheiros Borges

TÍTULO: FRACTIONAL SUPER-RESOLUTIONOF VOXELIZED POINTCLOUDS.

GRAU:Mestre em Engenharia Elétrica ANO: 2021

É concedida à Universidade de Brasília permissão para reproduzir cópias desta Dissertação de Mestrado e

para emprestar ou vender tais cópias somentepara propósitos acadêmicos e científicos. Oautor reserva outros

direitos de publicação e nenhuma parte dessaDissertação deMestrado pode ser reproduzida sem autorização

por escrito do autor.

Tomás Malheiros Borges

Depto. de Engenharia Elétrica (ENE) - FT

Universidade de Brasília (UnB)

Campus Darcy Ribeiro

CEP 70919-970 - Brasília - DF - Brasil

Q:What is the difference between aMaster of Engineering and a large pizza?

A: A large pizza can feed a family of four.

ACKNOWLEDGMENTS

Throughout the writing of this work, I have received a great deal of support and assistance.

I would first like to thank my advisor, Professor Ricardo Queiroz, whose expertise was in-

valuable in formulating the research questions and methodology. Your insightful feedback

pushed me to sharpen my thinking and brought my work to a higher level.

I would like to acknowledge my colleagues from the DIVP group for their collaboration. I

would particularly like to thank ProfessorDiogo Garcia for providingmewith the necessary

tools for the development of this work, and Professor Tiago Fonseca for the comprehensive

support, especially during the subjective evaluations.

In addition, I would like to thank my girlfriend, Rafaella, and my parents for their un-

conditional support. Without them, I could not have completed this thesis.

Finally, I would like to acknowledge the support of my friends, who provided stimulating

discussions aswell as happydistractions to restmymind outside ofmy research. Particularly,

I would like to thank Ronaldo and Gabriel for their kind support.

TomásMalheiros Borges

Work partially supported by CNPq/CAPES under grant 88882.384244/2019-01.

ABSTRACT

We present a method to super-resolve voxelized point clouds downsampled by a fractional fac-
tor, using a lookup-table (LUT) constructed from self-similarities from their own downsampled
neighbourhoods. Given a downsampled point cloud geometry𝑉𝑑, and its corresponding fractional
downsampling factor 𝑠, 1 < 𝑠 ≤ 2, the proposed method determines the set of positions that may
have generated𝑉𝑑, and estimateswhich of these positionswere indeed occupied (super-resolution).
Assuming that the geometry of a point cloud is approximately self-similar at different scales, a LUT
relating downsampled neighbourhood configurationswith children occupancy configurations can
be estimated by further downsampling the input point cloud, and by taking into account the ir-
regular children distribution derived from fractional downsampling. For completeness, we also
interpolate texture by averaging colors from adjacent neighbour voxels. Extensive tests over dif-
ferent datasets are presented, and interesting results were obtained. We further present a direct
application to improve point cloud compression using MPEG’s G-PCC codec.

RESUMO

Neste trabalho, apresentamos ummétodo para super-resolver nuvens de pontos por um fator fra-
cionário, utilizando um dicionário construído a partir de auto-similaridades presentes na versão
subamostrada. Dada a geometria de uma nuvem de pontos subamostrada 𝑉𝑑, juntamente com
o correspondente fator de subamostragem 𝑠, 1 < 𝑠 ≤ 2, o método proposto determina o con-
junto de pontos que podem ter gerado 𝑉𝑑 e estima quais desses pontos, de fato, existem em 𝑉
(super-resolução). Considerando que a geometria de uma nuvem de pontos é aproximadamente
auto-similar em diferentes escalas de subamostragem, cria-se um dicionário relacionando a confi-
guração de ocupação da vizinhança com a ocupação de nós-filhos. O dicionário é obtido a partir
de nova subamostragem da geometria de entrada utilizando o mesmo fator 𝑠. Desta forma, leva-
se em conta as irregularidades da subamostragem por fatores fracionários no desenvolvimento da
super-resolução. A textura da nuvem de pontos é interpolada utilizando a média ponderada das
cores de vizinhos adjacentes. Diversos conteúdos de diferentes fontes foram testados e resultados
interessantes foram obtidos. Adicionalmente, apresentamos uma aplicação direta do método de
super-resolução para melhorar a compressão de nuvens de pontos utilizando o codificador G-PCC
doMPEG.

CONTENTS

1 INTRODUCTION . 1

1.1 BACKGROUND & MOTIVATION ... 1

1.2 PROBLEM STATEMENT ... 2

1.3 OBJECTIVES ... 2

1.4 MANUSCRIPT PRESENTATION.. 2

2 LITERATURE REVIEW . 3

2.1 POINT CLOUDS .. 3

2.1.1 Definition ... 3

2.1.2 Applications and Acquisition ... 4

2.2 VOLUME VISUALIZATION ... 6

2.2.1 Virtual Camera ... 7

2.2.2 Color Spaces ... 8

2.2.3 Point Cloud Rendering ... 9

2.3 POINT CLOUD COMPRESSION .. 12

2.3.1 Video-based Point Cloud Compression... 13

2.3.2 Geometry-based Point Cloud Compression ... 16

2.4 POINT CLOUD QUALITY ASSESSMENT ... 21

2.4.1 Point-based Metrics ... 22

2.4.2 Projection-based Metrics... 25

2.5 POINT CLOUD PROCESSING ... 29

2.5.1 Downsampling... 29

2.5.2 Upsampling... 33

2.5.3 Smoothing .. 34

2.5.4 Morphological Transformations .. 35

3 METHODOLOGY . 37

3.1 THE RELEVANCE OF FRACTIONAL RESAMPLING .. 37

3.2 NEAREST NEIGHBOR INTERPOLATION UPSAMPLING 38

3.3 TOWARDS SUPER-RESOLUTION OF VOXELIZED POINT CLOUDS 40

3.3.1 Smoothed Nearest Neighbor Interpolation Upsampling 40

3.3.2 Carving the Nearest Neighbor Interpolation Upsampling Using Normal

Vectors ... 40

3.3.3 Score-based Upsampling .. 41

3.4 FRACTIONAL SUPER-RESOLUTION OF VOXELIZED POINT CLOUDS 42

3.5 SUBJECTIVE QUALITY ASSESSMENT APPLICATION 48

3.5.1 Web-based Renderer ... 48

vii

4 RESULTS AND DISCUSSION . 50

4.1 EVALUATION FRAMEWORK ... 50

4.2 DATASETS AND TEST CONDITIONS ... 50

4.3 ASSESSING THE QUALITY OF THE PROPOSED SUPER-RESOLUTION METHOD 54

4.4 USING SUPER-RESOLUTION FOR INTERPOLATIVE COMPRESSION 64

5 CONCLUSIONS . 68

5.1 FUTURE WORK ... 68

REFERENCES . 69

LIST OF FIGURES

2.1 The Stanford Bunny .. 3
2.2 Examples of different point cloud contents according toMPEG’s classification 4
2.3 Acquisition examples ... 5
2.4 The volume visualization pipeline... 6
2.5 The virtual camera parameters ... 8
2.6 The formation of 2D images considering different positions of the center of pro-

jection ... 8
2.7 Point rendering by splatting... 10
2.8 Fixed-size splat rendering of longdress .. 11
2.9 Illustration of the fish scale effect on splat rendering ... 11
2.10 Different rendering results for the three primitives available in the MPEG ren-

derer, using the same point size for a close-up view... 12
2.11 Point cloud frame components used in V-PCC ... 14
2.12 TMC2 encoding/decoding schemes .. 15
2.13 Point cloud reconstruction pipeline from TMC2 .. 16
2.15 Octree analysis illustration .. 17
2.14 TMC13 encoding/decoding schemes... 18
2.16 Illustration of RAHT in a 2 × 2 × 2 block ... 19
2.17 Forward and inverse predlift scheme ... 20
2.18 Evolution of the LoDs .. 21
2.19 Point-based metrics illustration .. 23
2.20 The six camera positions used to get axis-aligned projections 26
2.21 Information content model used in VIF... 28
2.22 One-dimensional analysis of the grid downsampling for integer values of 𝑠 30
2.23 One-dimensional analysis of the grid downsampling for fractional values of 𝑠 31
2.24 Downsampling at exact octree levels .. 32
2.25 Downsampling using Poisson disk sampling ... 32
2.26 Down- and upsampling representations ... 33
2.27 Laplacian smoothing illustration .. 35
2.28 Basic morphological operations .. 35

3.1 The eight types of parent-children conditions found for 1 < 𝑠 < 2 39
3.2 Normal carving illustration ... 41
3.3 Illustration of the score-basedmethodmodeling the parent voxel as a divisible nu-

cleus ... 42
3.4 Illustration of the inputs utilized in the proposed SRmethod 43
3.5 Illustration of the neighbors used in theWAAN calculation 45
3.6 Illustration of the renderer application .. 49

ix

4.1 Representative viewpoints of some test models ... 53
4.2 Comparisonof thedensity variationwith thedownsampling factor betweendense

and sparse point clouds... 55
4.3 Point-based metrics for the point clouds representing human figures 56
4.4 Point-based metrics for the point clouds representing objects 57
4.5 Texture comparison for upsampling .. 58
4.6 Projected-based metrics for the point clouds representing human figures.............. 59
4.7 Projected-based metrics for the point clouds representing objects 60
4.8 Behavior of point-to-point measurements for arco_valentino 61
4.9 Viewpoint projections for some of the point clouds with human figures 62
4.10 Viewpoint projections for some of the point clouds with objects 63
4.11 Point-based metrics for the interpolative compression application in the 8i_vox10

group .. 65
4.12 Projection-based metrics for the interpolative compression application in the 8i_

vox10 group .. 66
4.13 Subjective comparison for interpolative compression using soldier 67

LIST OF TABLES

3.1 Summary of point cloud resampling strategies found in the literature. 37
3.2 Gathering data from the input point cloud... 43
3.3 Illustration of the dictionary used in the proposed SRmethod 44

4.1 Summary of information of the point clouds representing human figures 51
4.2 Summary of information of the point clouds representing objects 52

xi

NOTATION AND DEFINITIONS

Relevant Equations

𝑉 = {v(𝑘)}, with v(𝑘) = (𝑥𝑘, 𝑦𝑘, 𝑧𝑘) Definitionof the list of occupied voxels.
𝑉𝑑 = unique(round(𝑉 /𝑠)) Definition of the grid downsampling.

Symbols

𝑉 The geometry of a point cloud, a list of 3D positions, i.e. occupied voxels.
𝐶 List of colors associated with the occupied voxels from𝑉 .
𝑁 List of normal vectors associated with the occupied voxels from𝑉 .
v(𝑘) Vector representing an occupied voxel from𝑉
𝑠 Scale factor used in the downsampling and upsampling methods.
V(𝑘), C(𝑘) The sets containing the positions and the colors of the child nodes from

v(𝑘), respectively.
𝜑𝑀 (𝑘) Theneighborhood configurationof anoccupied voxelv(𝑘). It is an (𝑀 3−

1) binary number indicating the occupancy of neighbors around an𝑀 ×
𝑀 ×𝑀 neighborhood. When the subscript is omitted,𝑀 = 3.

𝜎 (v𝑑 (𝑘)) The child occupancy state of parent voxel v𝑑 (𝑘). It is a ⌈𝑠⌉3 binary number
indicating which, of all possible children inV𝑢 (𝑘), are actually occupied.

𝜌𝜑 The density measure, calculated as the average neighborhood occupancy-
rate of adjacent voxels to an occupied voxel in a 3 × 3 × 3 neighborhood.

Subscripts

𝑑 Indicative of downsampling.
𝑑2 Indicative of downsampling from a previously downsampled input.
𝑢 Indicative of NNI upsampling.
𝑒 Indicative of upsampling by simple expansion.
𝑠𝑟 Indicative of the proposed super-resolution method.
𝐿𝑆 Indicative of usage of the Laplacian smoothing.
O Used to indicate the original point cloud in the point-base metrics calcu-

lations.
D Used to indicate the distorted point cloud in the point-base metrics calcu-

lations.

xii

Definitions

𝐿1 distance Also known as city block distance, orManhattan distance, it is the sum of
lengths of the projections of the line segment between the points onto the
coordinate axes. For vectors a = (𝑎1, 𝑎2, 𝑎3) and b = (𝑏1, 𝑏2, 𝑏3)

‖a − b‖1 =
3∑︁
𝑖=1

|𝑎𝑖 − 𝑏𝑖 |.

D1metric Point-to-point metric. In this work, we calculate the final D1metric as the
maximum between𝐷1O and𝐷1D . Where the first measurement relates to
the omission of correct points in the degraded version and the second one
with the excess of incorrect points.

D2 metric Point-to-plane metric. Accounts for the perceived surface distortions. It
is the D1 metric projected along the normal direction of each evaluated
point.

octree A tree data structure in which each internal node has exactly eight chil-
dren.

pixel Picture element.
predlift The combination of the Predicting and the Lifting Transforms used in

TMC13.
trisoup Surface approximation method used in TMC13.
voxel Volume element.

Acronyms

2D Two-dimensions
3D Three-dimensions
6DoF Six Degrees of Freedom
AC Alternating Current, represents coefficients with non-zero frequency
bpov Bits per occupied voxel
CfP Call for Proposals for Point Cloud Compression
CIE International Commission on Illumination (Commission Internationale

d’Éclairage)
CMY Cyan, Magenta and Yellow color space
CMYK Cyan, Magenta, Yellow, and Black color space
CRT Cathode Ray Tube
DC Direct Current, represents coefficients with zero frequency
DCM Direct CodingMode
EWA Elliptical Weighted Average

fps Frames per second
G-PCC Geometry-based Point Cloud Compression
GPS Global Positioning System
GPU Graphics Processing Unit
GSM Gaussian Scale Mixture
GSP Graph Signal Processing
GTV Graph Total Variation
HDTV High Definition Television
HEVC High Efficiency Video Encoding
HSV Hue, Saturation, and Value color space
HVS Human Visual System
LIDAR Light Detection And Ranging sensor
LoD Level of Detail
L-PCC LIDAR Point Cloud Compression
LR Low-resolution
LS Laplacian Smoothing
MLS Moving Least Squares
MPEG Moving Pictures Expert Group
MSE Mean-Squared Error
MSSIM Mean SSIM
MVUB Microsoft Voxelized Upper Body
NNI Nearest Neighbor Interpolation
PCC Point Cloud Compression
PCL Point Cloud Library
PMSE ProjectedMSE
PPSNR Projected PSNR
PSNR Peak Signal-to-Noise Ratio
PSSIM Projected SSIM
PVIFP Projected VIFP
QoE Quality of Experience
RAHT Region-Adaptive Hierarchical Transform
RBF Radial basis function
RGB Red, Blue and Green color space
S-PCC Surface Point Cloud Compression
SR Super-resolution
SSIM Structural Similarity Index Measure
TMC13 Test Model Categories 1 and 3
TMC2 Test Model Category 2
UPM Universidad Politécnica de Madrid
VIF Visual Information Fidelity
VIFP VIF in the pixel domain

V-PCC Video-based Point Cloud Compression
VR Virtual Reality
VVC Versatile Video Coding
XR Extended Reality
YCbCr Luma, Chrominance blue, and Chrominance red color space
YUV Luma, Chrominance blue, and Chrominance red color space, following

the BT.709 HDTV standard

1 INTRODUCTION

1.1 BACKGROUND & MOTIVATION

Advancements in technologies for scanning 3D objects and scenes have increased the demand
for immersive content in the past few years. A type of volumetric data acquired through these
scanning sensors are called point clouds, which typically have thousands up to billions of points.
Each data sample, or point, contains a 3D coordinate indicating the presence of the scanned 3D
volume’s hull at that location associated with some attribute, like color, reflectance, etc. A wide
range of applications use point clouds. For instance, they are used in cultural heritage to preserve
a digital copy of buildings or artworks and in immersive media applications, like Extended Reality
(XR) and free-viewpoint video, also known as 6 Degrees of Freedom Video (6DoF). Holograms
based on point clouds are even considered the new form of video in the next years [1].

Envisioning the increase of interest for immersive content and the new challenges proposed
for this kind of data, the Moving Pictures Expert Group (MPEG) presented a new project in its
Roadmap [2] to develop a standard for Coded Representation for Immersive Media (MPEG-I).
In 2017,MPEG issued a Call for Proposals (CfP) for Point CloudCompression (PCC) [3], which
reinforced the scientific community interest in point clouds. More specifically, voxelized, i.e., quan-
tized, point clouds were addressed for real-time application. In this context, MPEG has proposed
two approaches for PCC.TheVideo-based PointCloudCompression (V-PCC) approach converts
the 3D structures into 2D projections and leverages the existent video encoders to compress point
clouds. The Geometry-based Point Cloud Compression (G-PCC) approach, on the other hand,
works directly in 3D using data structures like octrees and texture transforms to compress point
clouds.

As the amount of data needed to represent a 3D scenewith complex geometry, specularity prop-
erties, and colors, is enormous, tools and techniques that may help mitigate the storage problem
and help existing codecs are desired. Super-resolution (SR), the process of taking a low-resolution
(LR) version of data and increase its resolution using some interpolation method, is a well-studied
field in Image Processing. However, it is still incipient in PCC since 2D techniques are not easily
transferrable to 3D data. SR can be used in several applications such as improved rendering, in-
terpolative compression [4], and context generation for compression [5]. Therefore, developing
a method for point cloud SR is a subject of interest for the scientific community. However, the
problem of assessing the quality of the SRmethod remains with unclear answers. Point cloud ob-
jective assessment metrics are still trailing, and, although the majority of the existent metrics were
developed to capture compression artifacts, they do not have a strong correlation with subjective
metrics [6]. Thus, not only creating a super-resolutionmethod is challenging enough, but properly
evaluating its quality is still an open problem.

1

1.2 PROBLEM STATEMENT

Super-resolving point clouds is not trivial, although useful. Few works were done in this field,
especially considering the SRof voxelizedpoint clouds and their color attributes. Resamplingpoint
clouds using fractional scale factors may be useful because it allows for greater control than using
only integer factors. Fractional downsampling is used, for example, in the G-PCC as a means to
achieve lossy geometry. However, there is nodiscussion about the theoryof fractional resamplingof
voxelized point clouds in the literature. Visual assessment of SRmethods is also necessary, however
challenging.

1.3 OBJECTIVES

The objectives of this work are:

1. To review the literature needed to understand the fundamental challenges of working with
point clouds, the current state-of-art of PCC, and the tools needed to study point cloud pro-
cessing. To present a discussion about the theory and properties of fractional resampling of
voxelized point clouds.

2. To propose a new SRmethod for voxelized point clouds and with an application in PCC.

3. To propose a framework to assess the quality SRmethods over voxelized point clouds.

1.4 MANUSCRIPT PRESENTATION

In Chapter 2, the concepts required to explain the proposed method are briefly presented.
Then, inChapter 3, themethodology of thework is presented, andwe proposed an SRmethod for
voxelized point clouds using fractional scale factors. Also in this Chapter, we present a point cloud
renderer application that could be used for subjective quality assessment. In Chapter 4, a frame-
work to evaluate themethod’s quality is presented, alongwith the obtained results and discussions,
and with a PCC application. Finally, in Chapter 5, conclusions and suggestions for future works
are presented.

2

2 LITERATURE REVIEW

“Dear reader, if thou art bored with this wearisome method

of calculation, take pity on me who had to go through with at

least seventy repetitions of it, at a very great loss of time.”

—Johannes Kepler, Astronomia Nova, 1609

2.1 POINT CLOUDS

2.1.1 Definition

Volumetric data consists of samples representing the value of some property of the data at a
3D location (𝑥, 𝑦, 𝑧) [7]. These samples are referred to as voxels (volume element), and the prop-
erties associated with them are called attributes. Those attributes can indicate a variety of things.
They can simply differentiate background from the presence of an object in space or can assume
more complex roles like density, heat, pressure, color, among other properties, or a combination of
themdepending on the application. When volumetric data is acquired using a 3D surface scanning
over complex object surfaces, a scattered 3D point set, also called a point cloud is obtained [8]. An
example of a 3D captured object in its point cloud format is shown in Figure 2.1.

Figure 2.1: The Stanford Bunny. One of the most commonly used 3D models in computer graphics, which was cap-
tured using a range scanner [9], [10].

Point cloud data, thus, comprise a list𝑉 containing 𝐾 occupied voxels. For the applications
of this work, the main attribute considered is a list 𝐶 of surface colors, and sometimes a list 𝑁 of
surface normals. The following notation is used:

𝑉 = {v(𝑘)}, with v(𝑘) = (𝑥𝑘, 𝑦𝑘, 𝑧𝑘), (2.1)

𝐶 = {c(𝑘)}, with c(𝑘) = (𝑅𝑘, 𝐺𝑘, 𝐵𝑘), (2.2)

𝑁 = {n(𝑘)}, withn(𝑘) = (𝑛𝑥𝑘 , 𝑛𝑦𝑘 , 𝑛𝑧𝑘), (2.3)

3

for 𝑘 = 1, 2, . . . , 𝐾 . Notice that, although𝑉 does not need to be sorted in any particular order, the
attributes 𝐶 and 𝑁 must be sorted in the same order as𝑉 .

For efficient processing, point clouds are usually quantized in a cubic grid. Thus, henceforth
we narrow the voxel definition to a quantized volume element. For example, in an integer-defined
3D grid, a voxel will be any of the 1 × 1 × 1 cubes forming the grid. This quantization process is
known as voxelization, and point clouds quantized in this way are called voxelized point clouds.

2.1.2 Applications and Acquisition

Point cloud data may be generated analytically. Nevertheless, a broader range of applications
is found when data is obtained by sampling real-world 3D scenes. Such point clouds can be easily
acquired. They are versatile, capable of representing any kind of 3D structures (even non-manifold
ones). Also, their data structure’s simplicity allows for real-time processing and rendering at a rel-
atively low computational cost. Applications include cultural heritage, 3D free-viewpoint video,
real-time immersive telepresence, mobile mapping, and autonomous navigation [11], [12]. A divi-
sionof thepoint clouddatasetswasproposedby theMPEGdependingon the existence of temporal
information, inorder to address compression strategies differently. Three categorieswereproposed:
static, dynamic, and dynamically acquired point clouds [3], as exemplified in Figure 2.2.

(a) (b) (c)

Figure 2.2: Examples of different point cloud contents according to MPEG’s classification. (a) Category 1: Static
Objects and Scenes, a cultural heritage content of Statue_Klimt [13]. (b) Category2: Dynamic Objects, one frame of
basketball_player [14]. (c) Category 3: Dynamic Acquisition, toolbooth. Overhead view of the entire point cloud on
the top, and a close-up view of the marked location on the bottom [15].

Static point clouds are datasets with no temporal variation. They are created by capturing static
objects such as buildings’ interiors and facades, or cultural heritage, to preserve these structures as
digital copies, which can be used inmuseums [13], [16], [17]. Also, since scanning technologies can
be very precise, with finer than 1 cm of geometric precision [12], those point clouds can capture
intricate details suited for industrial assemblies and 3D printing applications [18], [19]. Dynamic

4

point clouds comprise the data where there ismovement, or temporal information, in the captured
3D volume. They are employed in real-time applications for immersivemedia like telepresence and
virtual reality (VR)with interactive parallax [20]–[25]. For offline applications, iso-surfacing tech-
niques may be applied to generate a polygon mesh to improve rendering quality. Polygon meshes
created from point clouds are used in the replay technology of sports broadcasts to generate 3D
free-viewpoint videos [26]. Lastly, dynamically acquired point clouds convey temporal informa-
tion about the captured 3D scene surroundings, and it is the sensor position itself that changeswith
time. These are mainly used in autonomous navigation systems based on large-scale 3D dynamic
maps [15], [27]–[29].

Figure 2.3: Acquisition examples. (a) Range scanner of Michelangelo’s David [30]. (b) A volumetric studio [31]. (c)
An example of a Mobile Mapping System (MMS) used to acquire Category 3 point clouds [27].

Static and dynamic point clouds are captured either by active, passive, or a combination of both
acquisitionmethods. Passive acquisitionmethods are the ones in which the sensors do not directly
give a 3D position of the sampled data. Imagematching, photogrammetry, and space triangulation
are required to infer the distance between object and sensor. The passive acquisition is usuallymade
with an array of RGB cameras [32]–[35]. In studios set up to capture high-quality point clouds,
called volumetric studios [23], besides passive RGB cameras, active sensors, i.e., infrared depth
cameras, or range scanners, together with structured light source illumination are used. Figure
2.3(a) shows a range scanners capturing David’s face, while in Figure 2.3(b) a volumetric studio
is depicted. For dynamically acquired point clouds, usually light detection and ranging (LIDAR)
sensors on top of vehicles are used, as shown in Figure 2.3(c). By combining azimuth and elevation
information from the emitted laser beamwith information about the range and the intensity from
the returned reflections, one arrives at relative point locations. Adding to these relative locations,

5

the GPS, and the inertial measurement unit (IMU) information from the vehicle, it is possible to
convert the relative positions into absolute ones, tied to a geographic coordinate system [12].

2.2 VOLUME VISUALIZATION

Ourdepthperception comes frombothmonocular andbinocular cues. Binocular vision allows
for stereopsis, or stereo vision, which is the visual brain’s ability to register a sense of 3D from visual
inputs coming from both eyes [36], [37]. In stereo vision, each eye sees a slightly different version
of the scene, which is projected to the retinas as 2D images, and then the brain extrapolates depth.
Monocular vision perceives depth by information outside the 3D volume itself. It uses cues such
as motion, perspective, lighting, shading, and depth of field [37]. Thus, to visualize volumetric
data, we first need to find a way to project a 3D volume into a 2D screen. Then, to give the depth
perception, we need to add some depth cues to the scene.

VolumeVisualization is the field ofComputer Science that targets this problem. Itsmain role is
to create images that convey various insights about the input volumetric data [8]. Possible solutions
vary depending on user/application requirements and computational restrains. Nonetheless, all
such solutions follow the same conceptual framework called the volume visualization pipeline [8],
[38], as depicted in Figure 2.4.

Real-world

3D scene

Raw sampled data

Enriched

sampled data

Voxel space

Raw ana-

lytical data

Enriched

analytical data

Geometric Surface

Final image

(pixel space)

Sampling

Filter

Map

Direct

Rendering

Modeling

Filter

Map

Surface

Rendering

Map

iso-surfacing

voxelization

Figure 2.4: The Volume Visualization Pipeline

First, raw volumetric data is acquired. It may be by sampling 3D data, as described in Section
2.1, or by modeling analytical data. Then, there is a filter step to enhance data, where operations
such as selecting only a subset of the imported dataset, outlier removal, coordinate transformation,

6

filtering, resampling, or quantization are performed. The next step is tomap abstract data to visual
representation. This may be done in the voxel (discrete) space or using interpolations and connec-
tivity information to create a geometric surface representation, i.e., polygon mesh. Transforming
from voxels to geometric surface is possible using iso-surfacing algorithms. The inverse transforma-
tion is also possible by voxelizing the geometry surface in discrete andquantized points. Sometimes,
although rarely, analytical data is directly mapped to the voxel space. The final process is the ren-
dering step, in which the mapped 3D data is rendered, or “drawn” into the 2D screen, together
with the user-specified viewing parameters such as viewpoint and lighting [8]. There are many
rendering algorithms, and they are usually divided amongst direct and indirect methods. Direct
rendering methods render the volumetric data directly from voxels to pixels, while indirect meth-
ods, like surface rendering, require an additional interpolation method. Indirect methods usually
have better-perceived quality, especially when few volumetric samples are available. However, there
is an added computational cost and storage. For real-time applications, direct methods can provide
a faster and more straightforward, albeit less accurate, implementation [8].

In the following Sections, some aspects of point cloud visualization are discussed. The goal is
to present the compromises that have to be made in order to render a point cloud. We focus on
rendering strategies considering quality assessment purposes for real-time applications.

2.2.1 Virtual Camera

Before imaging themapped volumetric data, a virtual cameramust be set up in order to provide
both a point of view and the necessary parameters for projecting the 3D volume in a 2D plane. A
virtual camera is specified by its extrinsic and intrinsic parameters. The eye 𝑒, and center 𝑐 positions,
and a vector u indicating the camera’s up axis are the extrinsic parameters, which express where the
camera is, where it is pointing at, and its up direction, respectively. Intrinsic parameters specify how
the camera operates, thus defining the focal length 𝑧near, the field-of-view angle 𝜙fov, the aspect ratio
𝑤/ℎ, and the distance of the far clipping plane 𝑧far. These parameters define the view volume in a
pyramid frustum shape, also called the view frustum, as depicted in Figure 2.5. Only objects inside
this volume can be “seen” by the camera.

The virtual camera works similarly to a real camera by capturing a perspective projection in
which all light rays coming from the 3D scene converge at a common point. The image is formed
on a planar surface between the center of projection and the 3D scene. In perspective projections,
objects further away from the view plane appear smaller, an effect called foreshortening. Although
this is the more natural perspective configuration, sometimes foreshortening is not desirable, espe-
cially when some form of distance measurement needs to be performed in the projected image. By
setting the center of projection to infinity, light rays coming from the scene become parallel, and
the view volume from Figure 2.5 becomes a rectangular parallelepiped. This projection configu-
ration is called parallel or orthographic, and it is useful when it is required for equal 3D distances
to appear as equal 2D distances on the view plane [8]. Figure 2.6 depicts the differences in the
projection formation, considering perspective and orthographic configurations.

7

Figure 2.5: The virtual camera parameters [8].

Figure 2.6: The formation of 2D images considering different positions of the center of projection.

By allowing interactive changes in some of the camera parameters (eye, center, up, and field-of-
view), some monocular depth perception cues are triggered, giving the user an immersive experi-
ence.

2.2.2 Color Spaces

In order to convey color for point cloud data, it is necessary to specify the color space in which
this attribute was stored. Color spaces are multidimensional spaces in which each dimension rep-
resents the different components of color or channels [39]. Each space was designed either because
of similarities with the human vision or because they are more suited for some specific application.

The red, green, and blue (RGB) space is based on the tri-chromatic nature of the human vi-
sual system (HVS). The RGB’s primary colors were standardized by the International Commis-
sion on Illumination (CIE, for its French name, Commission Internationale d’Éclairage) using
wavelengths: 700.0nm for red, 546.1nm for green, and 435.8nm for blue [40]. RGB is usually
the system chosen for storage or display of color in hardware-oriented applications, as is the case
for videomonitors and cameras. Its origin is related directly to the three-electron-gun (one red, one

8

green, and one blue) organization of colored cathode ray tube (CRT) displays [7]. This still holds,
nowadays, as modern display subpixels and sensors are usually RGB. RGB is an additive system,
whichmeans that every color is represented as amix of its primary colors in different amounts. Usu-
ally, components are in the range [0, 1] when represented by floating-point numbers, or [0, 255]
when 8-bit depth integer representation is used [8]. The absence of all colors means the absence of
light, thus, representing black. Equal amounts of the three colors determine gray shades, and the
maximum amount of all colors determines white.

The cyan, magenta, yellow, and black (CMYK) space, differently from RGB, is a subtractive
space developed for printing devices that deposit pigment in white paper. In subtractive systems,
the absence of the color components represents white (the paper color), while equal amounts of
CMY leads to an imperfect black. In order to work around this issue and save ink for printers, a
black pigment component was added to the system.

Another popular color space that shares similarities with the human vision system is the hue,
saturation, and value (HSV) color space. Hue distinguishes between different colors of different
wavelengths; saturation canbe seen as howmuch the hue is dilutedwithwhite, and value represents
the brightness, or luminance, of a given color [8]. HSV is natural and approximately perceptually
uniform; therefore, the quantization of this space can produce a compact and complete collection
of colors [39].

Finally, there are the chrominance-based color spaces. These spaces are orthogonal and use sta-
tistical independent components. Because the eye has more spatial acuity for luminance than for
color, the chrominance components can be further compressed without perceptual loss in quality,
which makes these color spaces suited for image compression [40], [41].In YUV, a chrominance-
based space that is used in TV standards, Y represents luma (a luminance approximation that uses
gamma-corrected component in its calculation), which can be comparable to the regular black-
and-whiteTV signal, and the lower frequency chroma channels (chrominance blueU, and chromi-
nance red V), which convey color to the signal [40]. It is also the color space of choice commonly
used in color metrics methods for point cloud assessment [3]. The conversion fromRGB to YUV
following the BT.709 standard for HDTV [42] is the one used whenever the YUV color space is
mentioned in this work:


𝑌

𝑈

𝑉


=


0.2126 0.7152 0.0722

−0.1146 −0.3854 0.5000
0.5000 −0.4542 −0.0458



𝑅

𝐺

𝐵


+


0
0.5
0.5.


(2.4)

2.2.3 Point Cloud Rendering

The canonical methods for rendering point clouds are the direct ones. In contrast, surface ren-
dering methods result from some 3D reconstruction algorithm and require prior assumptions on
topology and sampling [43], as expressed in Figure 2.4. When rendering for quality assessment
purposes, we usually search for methods that allow for a one-to-one voxel-pixel correspondence.

9

Also, methods that add little to no distortion to the original mapped data are preferred, such that
rendering artifacts do not interfere with the assessment. In this context, the two main strategies
utilized for point cloud rendering are point-based rendering and voxel-based rendering.

A simple and effective technique for rendering 3D scattered points representing surfaces is splat
rendering. Splats are surface elements or surfels; the basic idea behind them is that if we can assume
a surface to be almost flat in a neighborhood of radius 𝑅𝑘 around every point v(𝑘), then the surface
can be interpolated in that region by a 2D radial basis function (RBF) [8]. Another way to view
splatting is by projecting each 3D point in the image plane and associating the projection with a
footprint function [35].

RBF

(a)

RBF

(b)

Figure 2.7: Point rendering by splatting. The naïve splatting approach in (a) comparedwith the EWA splatting scheme
in (b) [35].

The simplest solution for splat rendering is using a constant 2D RBF, which can be imple-
mented using point primitives. Each 3D point is projected to the image plane, assigning the color
of the point to the closest pixel(s) forming the footprint function, as depicted in Figure 2.7(a). In
voxelized point clouds, it is possible to align the 3D voxel grid with the 2D pixel grid to get one-to-
one voxel-pixel correspondence using this rendering method.

A popular implementation of splat rendering utilizes 2D Gaussian RBF, performing an Ellip-
tical Weighted Average (EWA) filtering [44] in the resulting 2D image, as shown in Figure 2.7(b).
This approach is capable of generating high-quality images [45]. However, the added filtering step
is equivalent to a resampling process [35], which may not be desirable for quality assessment pur-
poses.

In splat rendering, each point is associatedwith a 2Dbillboard, which in computer graphics is a
2D-shaped texture object; usually, a square or circle, that always appear parallel to the viewplane for
better visibility [46]. The splat size is defined by the user, and typically, the point cloud’s intrinsic
resolution value is chosen, i.e., themean distance of every voxel and its nearest neighbor considering
real-world resolution. Most commonly, this size is fixed, representing a constant number of pixels
in the projected image regardless of the zoom level, as is the case for several commercial renderers
[47]–[49]. However, holes appear in close-up projection when using fixed-size splats, giving the
impression of a sparser point cloud. If a larger splat size is used, the sparsity problem is solved for

10

zoomed-in viewpoints but deforms the point cloudwhen the camera is set far away from the scene.
Figure 2.8 illustrates the fixed-size splat rendering problem.

(a) (b)

Figure 2.8: Fixed-size splat rendering of longdress [50]. In (a), the point size was set to generate a watertight represen-
tation for the point cloud on the left, resulting in a sparse point cloud when zoomed-in the right. In (b), the point size
was defined for the zoomed-in point cloud of the right, resulting in a deformed point cloud when zoomed out in the
left.

A simple solution to this problem is to automatically update the splat size every time the user
performs a zoom command. One example of such a rendering solution was used in the work of
Alexiou et. al, where a web-based renderer was created for subjective quality assessment tests [6].
Since the billboards utilized in splat rendering are always parallel to the view plane, the splats be-
comemisaligned when the camera is rotated, giving a fish scale effect on the rendered image due to
the superposition of neighboring splats, as shown in Figure 2.9. This was worked around in [6] by
limiting the maximum allowed zoom level, such that the end-user could not perceive this effect.

Figure 2.9: Illustration of the fish scale effect on splat rendering. Since billboards are always aligned parallel to the view
plane, they get superposed when the camera is rotated. This creates the fish scale effect, and, if the point size is not big
enough, it also creates holes.

The other approach for point cloud rendering is to do voxel-based rendering using 3D primi-
tives available in geometric shaders of modern Graphics Processing Units (GPUs). This way, cubes
are placed in occupied positions, and are sized by the voxel grid, allowing for rotation without fish
scale effect or holes.

Voxel-based rendering, in its turn, has a somewhat limited capability to model complex geom-
etry. Meaning that excessive upsampling of the underlying volumetric representation is required
to increase geometric detail. In general, the overhead of volume samples for large data sets and

11

Figure 2.10: Different rendering results for the three primitives available in the MPEG renderer [51], using the same
point size for a close-up view. In (a), cubes are used as primitives. In (b), adaptive-size circles are used as primitives. In
(c), fixed-sized points are used as primitives.

high-resolution establishes boundaries to their practical use [43].

A voxel-based rendered was proposed by Technicolor, and it is used as the default renderer for
PCC visualization in MPEG [51]. Besides the option for voxel-based rendering, this renderer can
also perform splat rendering using either adaptive or fixed-size circles primitives, as shown in Figure
2.10. Notice that for axis-aligned projections at the same zoom level, both voxel-based and naïve
splatting rendering methods yield the same results with the desired one-to-one voxel-pixel corre-
spondence.

Those renderers were developed for quality assessment tests in mind. Features that could im-
prove the rendered image quality but change input data were left out, like scene relighting, which
could cast realistic shadows but would change the original colors. Modern voxel-based renderers
under development employ imaging improving features that can generate high-quality rendered
images [52], [53].

This Section presents a shallow introduction to a complex subject. However, it provides cru-
cial insights about some of the choices and trade-offs that must be done for different point cloud
rendering applications. It is important to remember those compromises, especially when dealing
with quality assessment.

2.3 POINT CLOUD COMPRESSION

Point cloud representation had its first appearance in 1985 [54] when it was proposed to use
points as a way to display curved surfaces [35]. However, only when 3D capturing technologies
becamemore accessible and reliable that point clouds experienced their renaissance. One of the first
available and widespread devices for capturing point clouds was Microsoft’s Kinect [55], which
was launched in 2010. In 2011, an open project for 2D/3D image and point cloud processing
library called Point Cloud Library (PCL) was launched [56], which gathered tools for processing

12

point clouds and some initial compression techniques. Due to the ease of capturing 3D scenes
brought byKinect, some studieswere published, and, in 2013,MPEG started discussing immersive
telepresence applications using point clouds [57], [58]. A few years later, in 2016,MPEG collected
requirements [59], and in the next year, studies for PCC were started with the CfP [3].

In the CfP, MPEG proposed to tackle the different datasets with different strategies. Datasets
were divided into three categories, each with its own compression strategy: category 1 contain-
ing static point clouds was studied by the name of Surface Point Cloud Compression (S-PCC);
category 2, with dynamic point clouds, was assigned to Video-based Point Cloud Compression
(V-PCC); and category 3, comprising of dynamically acquired point clouds, was assigned to LI-
DAR Point Cloud Compression (L-PCC). After noticing similarities between the compression
approaches used in categories 1 and 2, S-PCC and L-PCC were merged into the Geometry-based
Point Cloud Compression (G-PCC) [12], [60].

Later in 2017,MPEG issued two reference software to benchmarkperformance and to compare
new methods and proposals. Test Model Category 2 (TMC2) [61] and Test Model Categories 1
and 3 (TMC13) [62], were developed for V-PCC and G-PCC, respectively. Those models have
seen significant advancements in the last years, and the PCC standard is due to be ready in late
2020, according toMPEG’s schedule [2].

In the next Sections, the functioning of V-PCC and G-PCC is briefly explained.

2.3.1 Video-based Point Cloud Compression

The compression of 2D videos is a mature and well-developed field. For instance, the High-
Efficiency Video Encoding (HEVC) standard has impressive compression rates targeted at 300–
1000:1 [63], and its successor the Versatile Video Coding (VVC) standard should have 30%–50%
better compression rates for the same perceptual quality [64]. Therefore, if 3D dynamic volumes
could be transformed into a 2D video, one could use the high performance and widespread avail-
ability of video codecs to encode point clouds. The proposed solution introduced by V-PCC for
this problem is to divide the point cloud into 3D surface segments, decompose and project these
segments into a set of 2D frames, then compress all the generated data using a standard image/video
coder.

Coding Principles

V-PCC’s biggest challenge is to perform compression-efficient 2D projections that allow for
3D reconstruction. The idea is to use connected 3D surface regions, called 3D patches, which are
independently projected and further combined into a mosaic-like image. Independently projected
regions reduce projection issues, such as self-occlusions and hidden surfaces [60]. The 3D patches
are created based on the geometry of the input point cloud frame. Projections formed by different
point cloud components are required to guarantee a proper reconstruction of the 3Ddata from the

13

2D video at the decoder side. Thus, the projected 2D patches are decomposed into an occupancy
map (a binary image indicating which parts of the mosaic-like image should be used), far and near
components for geometry (to indicate depth), and the corresponding attributes components [61],
as depicted in Figure 2.11. Since the creation and positioning of patches is not straightforward,
a set of instructions and parameters are associated with each patch is also required. This auxiliary
information is called the atlasmetadata. All the generated data is processed for highly efficient video
compression. Finally, the different bitstreams are multiplexed and then sent to the video encoder.

Figure 2.11: Point cloud frame components used in V-PCC.

Codec Architecture

InFigure 2.12 the encoding/decoding schemes fromTMC2arepresented. Inorder to create the
3D patches, first, each point’s normal vector is estimated [65]. Then, normal vectors are quantized
in the six orthographic projection directions (±𝑥,±𝑦,±𝑧). Assuming a smooth local surface, this
quantization process is further refined using neighboring normal directions. Points are classified by
their normal (or projection) direction, and finally clustered following their classification and using
a connected components algorithm [61].

Since the projections are orthogonal and axis-aligned, two of the three coordinates of each voxel
are preserved in their pixel projection. The third coordinate is determined using the geometry im-
ages, containing depth information of each voxel. To avoid multiple points projected in the same
pixel, the use of far and near geometry images, among other strategies, are employed [61].

To create themosaic-like imageofFigure 2.11, patches are combined in an iterative process called
packing, which aims to fit, in a Tetris-like manner, all the independent 2D patches in a𝑊 ×𝐻 im-
age. TMC2 seeks matches between patches of different frames and tries to insert matched patches
at similar locations to generate a temporally consistent packing. It, then, fills in the unused spaces
(image padding) of the geometry and of the attribute images for higher compression efficiency.

Outside the encoding loop, the reconstructed geometry may optionally be smoothed as a post-
processing step. Since the geometry reconstruction might not be perfect, a recoloring step is per-

14

Fi
gu
re
2.
12
:T

M
C
2
en
co
di
ng

(a
)a
nd

de
co
di
ng

(b
)s
ch
em

es
[6
1]
.

15

Figure 2.13: Point cloud reconstruction pipeline from TMC2 [61].

formed to adequate the color attribute. The atlas information stream is entropy coded. Finally,
all the separate bitstreams are multiplexed into the output compressed binary file at the end of the
process.

At the decoder side, the input compressed binary file is demultiplexed into geometry, attribute,
occupancy map and auxiliary information, which are then used to reconstruct the point cloud
following the pipeline showed in Figure 2.13

2.3.2 Geometry-based Point Cloud Compression

Differently fromV-PCC, theG-PCCapproach for compressionof point clouds is directly done
in 3D. By avoiding 2D projections, which require a certain density for the patch segmentation to
work, this approach broadens the range of targeted input point clouds datasets. Since G-PCCwas
originated from the union of L-PCC and S-PCC, it inherited different configurations that the user
can choose from to better suit the coder to the input data.

Coding Principles

In G-PCC, datasets are expected to have complex geometry and often exhibit irregular point
sampling. As a result, geometry is first processed and compressed, followed by attribute compres-
sion. Geometry is represented in an efficient data structure manner, then entropy encoded. At-
tributes are subband decomposed using wavelet-based transforms, then quantized, and entropy
encoded. The two bitstreams constitute the compressed point cloud. As G-PCC was planned
to deal with vast point sets, functionalities for partially encoding/decoding and support for paral-
lelized coding are required. G-PCC was originally expected to be used with datasets without tem-
poral information. At the current point of development, it does not include any tools for temporal
prediction; only intra-frame prediction is used.

16

Codec Architecture

The encoding/decoding scheme used in TMC13 is depicted in Figure 2.14. Since G-PCC is ag-
nostic to the input data coordinate representation, there is a coordinate transformation, followed
by a voxelization pre-processing step before the geometry coding. Input coordinates are trans-
formed such that all points of the input data lie in a bounding cube [0, 2𝑑)3, for some non-negative
integer parameter 𝑑. Voxels are then represented by coordinates representing the center of any of
the unit cubes [𝑖 −0.5, 𝑖 +0.5) × [𝑗 −0.5, 𝑗 +0.5) × [𝑘−0.5, 𝑘 +0.5), for 𝑖, 𝑗 , 𝑘 integers between
0 and 2𝑑 − 1 [62]. All points from the original set that lie within a voxel’s boundary are mapped
to that voxel. This mapping step may result in multiple points with the same position—duplicate
points. Usually, duplicate points are consolidated into one, and their attributes are averaged.

This pre-processing step conforms data into TMC13 format, allowing for efficient 3D repre-
sentation. Usually, only about 1%of the voxels of the bounding cube are occupied. The octree [66],
a hierarchical-tree data structure that has been shown effective to code sparse 3D objects [67], [68],
is the data structure chosen for representing 3D points in TMC13. After the coordinate transfor-
mation and voxelization processes, building the octree is straightforward, as illustrated in Figure
2.15.

(a) (b)

Figure 2.15: Octree analysis illustration. Graphic representation(a), and the correspondent tree representation (b).

The root node is the 2𝑑 × 2𝑑 × 2𝑑 bounding cube, which is divided into eight sub-volumes,
or octants, with 1/8 of the volume of its parent. Those octants containing points are marked as 1
and further divided; otherwise, they are marked as 0, and the division stops. At each node division,
eight child nodes are generated, represented by a 1-byte word, an octet, in the tree. Thus, each
octree level refines the coordinates of the points within a sub-volume by using one bit for each
component, at a total cost of eight bits per refinement [62]. The subdivision of occupied nodes is
recursively repeated until the octants reach the smallest volume element, a 1×1×1 cubic voxel. The
maximum possible number of subdivision levels is defined by the parameter 𝑑, the octree depth,
and it is related to the point cloud’s sampling resolution.

For lossless geometry compression, all the octets of the tree are used. In dense areas of the
tree, octets are entropy coded considering the correlation with neighboring octets [60], while iso-
lated points are coded using the Direct Coding Mode (DCM) [69]. For lossy geometry, currently,

17

Fi
gu
re
2.
14
:T

M
C
13

en
co
di
ng

(a
)a
nd

de
co
di
ng

(b
)s
ch
em

es
[6
2]
.

18

TMC13 offers two possibilities: either by just pruning the octree from the root to an arbitrary
level or by combining the octree pruning with a surface approximation. A surface reconstruction
approximation from the entire octree is made using a series of triangles in a mesh-like structure,
but without the connectivity information relating the triangles, this method is called trisoup (from
triangle soup) [70]. The octree is pruned at a user-defined level, then the reconstructed geometry
from trisoup consists of refining theprunedoctreewith the intersections of themesh surface and the
quantization grid, thusmaintaining a voxelized geometry. When trisoup is enabled, amixture of oc-
tree, segment indicator, and vertex position information are sent into the geometry bitstream [60].

An attribute transfer procedure (or recoloring) to determine the attribute values for the newly
reconstructed geometry is done prior to the attribute encoding. Currently in TMC13, attributes
can be coded using one of the three available transforms: Region-AdaptiveHierarchical Transform
(RAHT) [67], Predicting Transform [71], and Lifting Transform [72].

• RAHT: The RAHT is a hierarchical orthogonal subband transform [73]. It is a variation of
the Haar transform, which uses adaptive weights to consider different regions with empty or
occupied voxels; in order words, it takes the data’s sparsity into account.

To implement theRAHT,onemust follow thebackwardorder of the octree scan (from leaves
to root), combining voxels into larger cubes until reaching the bounding cube. Occupied
voxels are assigned with weight 𝑤 = 1, and empty ones with 𝑤 = 0. Same branch voxels
have their attributes combined through a linear transformation (Eq. 6, [67]), which roughly
takes the weighted average and the weighted average difference of each voxel pair, generating
one low- and one high-pass transformed coefficients, respectively. High-pass coefficients are
ready to bequantized and encoded. On the other hand, the low-pass ones are promoted to the
next level, and their weights are updated to the sum of the generating voxels weights. Further
recombination with other low-pass coefficients is performed hierarchically and recursively.
When occupied voxels are paired with empty ones, their attributes are directly promoted to
the next level, but their weights do not change. Thus, densely populated regions get more
importance than sparser ones in the transform. After reaching the root, the DC and all high

Figure 2.16: Illustration of RAHT in a 2 × 2 × 2 block [60].

19

pass coefficients are quantized, and entropy coded [74]. Figure 2.16 illustrates the RAHT
implementation for a 2 × 2 × 2 block. Notice that differently from the octree, at each level,
the RAHT is performed in only one dimension; thus, one level of the octree corresponds to
three levels of the RAHT.

TMC13 allows for a transform domain prediction of RAHT [75], [76]. In this approach,
the RAHT octree traversal order is reversed (starting from the root and going to the leaves).
Then, a step of attribute inter-depth upsampling is introduced to obtain a local prediction.
This prediction is applied to AC coefficients so that only DC and prediction residual co-
efficients need to be encoded. The prediction of attributes is made by a weighted average of
neighboring nodes. This prediction formulation ofRAHT reported gains up around to 30%
over RAHTwithout prediction [60].

• Predicting & Lifting Transforms: The Predicting and the LiftingTransforms follow a lifting
scheme for subband decomposition [77]. In fact, the Lifting Transform is built on top of the
Predicting Transform, such that both transforms are commonly referred to as predlift. The
difference is that when using only the Predicting Transform, there is no update operator,
which is commonly used for reducing the aliasing effects of the prediction step. The predlift
forward and inverse scheme is depicted in Figure 2.17.

Figure 2.17: Forward and inverse predlift scheme [72].

The predlift transform relies on a Level of Details (LoD) representation, that distributes the
input points into sets of refinements (𝑅), which are created according to a set of 𝐿1 (Man-
hattan) distances specified by the user [60], [62], such that LoDℓ =

⋃ℓ
𝑖=0 𝑅𝑖 , as depicted in

Figure 2.18

Let 𝐿ℓ be the set of attributes associated with LoDℓ , and 𝐻ℓ the set of attributes associated
with 𝑅ℓ . Thus, by the definition of LoD, 𝐿ℓ =

⋃ℓ
𝑖=0 𝐻𝑖 . The split operator takes 𝐿ℓ as an

input and generates a low-resolution output 𝐿ℓ−1, and a high-resolution output 𝐻ℓ−1. The
merge operator does the inverse, taking 𝐿ℓ and 𝐻ℓ as inputs, and returning 𝐿ℓ+1. The pre-
diction operator predicts the high-resolution attributes of the points in 𝑅ℓ , by using inter-

20

Figure 2.18: Evolution of the LoDs [72].

polation based on the inverse-distance weighted average of the 𝑘-nearest neighbors of 𝑅ℓ in
LoDℓ−1 [72]. Finally, when the Lifting Transform is used, an update operator and adaptive
quantization are introduced. Each point is associated with an influence weight based on its
impact in the encoding process (points in lower LoDs have higher weights). The value of
the low-resolution attributes is then updated using the prediction residuals, the distance be-
tween the predicted points and their neighbors, and their corresponding weights. Adaptive
quantization is achieved by multiplying transformed coefficients by the square root of their
respective weights.

2.4 POINT CLOUD QUALITY ASSESSMENT

Whendealingwith lossy compression, it is necessary tomeasure the reconstructed point cloud’s
visual fidelity. Quality assessment metrics allow for monitoring and improving the Quality of Ex-
perience (QoE) offered to users, which, in turn, guides the design and optimization of compression
codecs and processing tools. Metrics are divided into subjective and objective, based on how the
assessment is made. Subjective metrics are appraised for setting the ground truth about the per-
ceived quality of a degraded model since they directly reflect the end-users’ opinion. Nevertheless,
subjective testing is highly time and money-consuming. Objective metrics, on the other hand, are
designed to provide a quick and cheap prediction of subjective metrics. Usually, some form of dis-
tance (geometric or statistical) measure between the original and distorted content is employed to
try to get a highly correlated prediction of the perceived subjective visual fidelity.

As discussed in Section 2.2, point clouds cannot be directly visualized; they must be rendered
first, which implies that choices about the rendering algorithm must be made. This makes point
cloud quality assessment especially challenging. Even the considered “ground truth” method is
subjected to open questions like whether the renderer should barely change data or adapt it to re-
flect the intended application better. Objectivemetrics get evenmore challenging sincemost of the
availablemetrics are not highly correlatedwith subjective scores [6]. Moreover, this correlationmay
vary depending on how the subjective assessment wasmade [78]. For these reasons, in this workwe

21

chose to focus on the point-based objectivemetrics, which are used in the standard tests ofMPEG,
available through the dmetric1 software (version 0.13.4) [79]. In addition to the MPEG standard
metrics, we will also consider some projection-based metrics [80], which relate to the widespread
image quality assessment metrics, a more explored field that can bring good insights to QoE.

2.4.1 Point-based Metrics

The objective metrics used in MPEG’s PCC evaluation procedure are full-reference quality
metrics, which means that the original point cloud is used in its entirety in the comparison. They
are computed symmetrically, first considering the original point cloud O as the reference, and then
considering the degraded version D as the reference. The metrics are calculated by some form
of distance between every point in D and its nearest neighbor in O, considering the individual
degradation contribution of each point and averaging them to arrive at an overall metric.

The way the error is calculated defines the name of the metric. Errors between points define
the point-to-point metric, point-to-plane uses the projected error between points and the refer-
ence’s normal directions, and errors between colors define the end-to-end color metrics. Usually,
Euclidean distance is used, but the Hausdorff distance is also available. The Hausdorff distance
measures how far two subsets of a metric space are from each other. In other words, it is the great-
est of all distances from a point in one set to the closest point in the other set [81].

For all point-based metrics, we need to find, for each query voxel vO (𝑘) in𝑉O of the original
point cloud O, the correspondent nearest neighbor vD (𝑘O) in𝑉D of the degraded point cloudD,

vD (𝑘O) = argmin
∀vO (𝑘)∈𝑉O

‖vO (𝑘) − vD (𝑖)‖, (2.5)

and symmetrically,
vO (𝑘D) = argmin

∀vD (𝑘)∈𝑉D

‖vD (𝑘) − vO (𝑖)‖, (2.6)

which is performed using a nearest neighbor search algorithm. Figure 2.19(a) illustrates the nearest
neighbor search.

Since no attribute is evaluated in the point-to-pointmetric, neighboring pointswithin the same
distance are discarded, and only the first found neighbor is used. However, when considering at-
tributes, as is the case of point-to-plane and point-based color metrics, neighboring points within
the same distance need to be included, as their attribute values may differ.

2.4.1.1 Point-to-point metric (D1)

Point-to-pointmetrics were first introduced in order tomeasure data acquired by LIDAR scan-
ners [82]. It is a simple and fast method, and it does not require any additional information but
both point clouds geometries. In the dmetric software, it is referred to as the D1 metric.

1http://mpegx.int-evry.fr/software/MPEG/PCC/mpeg-pcc-dmetric.git.

22

http://mpegx.int-evry.fr/software/MPEG/PCC/mpeg-pcc-dmetric.git

Figure 2.19: Point-based metrics illustration. In (a), the nearest neighbor search was performed to find the 12 nearest
neighbors of the query point depicted with a red star in the researched point cloud. The first nearest neighbor is
identified with a magenta triangle. In (b), the point-to-point and the point-to-plane errors between the query point
and its nearest neighbor are graphically represented.

Using O as reference, we compute the error vectors ®𝐸O (𝑘) between every point in𝑉O and its
correspondent nearest neighbor in𝑉D , which were found using (2.5),

®𝐸O (𝑘) = vO (𝑘) − vD (𝑘O). (2.7)

To compute the mean-squared error (MSE), we average the squared norm of each error vector for
all 𝐾O points,

D1MSE
O =

1
𝐾O

𝐾O∑︁
𝑘=1

‖ ®𝐸O (𝑘)‖2. (2.8)

Figure 2.19(b), illustrates the graphic representation of the error of (2.7).

The error calculated by (2.8) estimates the degradation of D using just the subset of voxels
{vD (𝑘O)}, the nearest neighbors of O in D. When D1MSE

O = 0, it means that D contains all the
points of O, in other words𝑉D ⊃ 𝑉O. Notice, however, that Equation (2.8) does not necessarily
consider all the elements in𝑉D . We need to take the symmetrical error using the point cloudD as
reference to consider its entirety of points,

®𝐸D (𝑘) = vD (𝑘) − vO (𝑘D), (2.9)

D1MSE
D =

1
𝐾D

𝐾D∑︁
𝑘=1

‖ ®𝐸D (𝑘)‖2. (2.10)

In turn, when D1MSE
D = 0, it means that all the points of D are contained in O, or𝑉D ⊂ 𝑉O.

Hence, (2.8) and (2.10) are complementary. In order to arrive at the final MSEmeasure, either the
maximum or the average of the two errors must be calculated [82]–[84]. At the current version of
the dmetric software, the maximum error is used, such that,

D1MSE
= max

(
D1MSE

O , D1MSE
D

)
. (2.11)

23

2.4.1.2 Point-to-plane metric (D2)

Although the D1metric captures the differences between the points, it fails to account that the
points in a point cloud represent a surface. For that matter, the point-to-planemetric was included
in dmetric and is referred to as the D2 metric. Using O as reference, the metric is calculated by
projecting, i.e., taking the dot product, of each error vector ®𝐸O (𝑘) along the normal direction of
its nearest neighbor in D, nD (𝑘O), as illustrated in Figure 2.19(b). Symmetrically, when D is the
reference, we project each ®𝐸D (𝑘) along the normal direction of its nearest neighbor in O, nO (𝑘D).
This way, larger penalties are imposed on errors thatmove further away from the local plane surface
[84], which creates a perceived rugged surface; and smaller penalties are imposed for errors that
move perpendicular to the local plane, which does not change the perceived surface smoothness.

The D2 metric is evaluated as follows:

D2MSE
= max




1
𝐾O

𝐾O∑︁
𝑘=1

(
®𝐸O (𝑘) · nD (𝑘O)

)2
,

1
𝐾D

𝐾D∑︁
𝑘=1

(
®𝐸D (𝑘) · nO (𝑘D)

)2

. (2.12)

When normal vectors 𝑁O = {nO (𝑘)} are not available in O, they need to be estimated for the
D2 calculations. That is done by assuming that the point cloud surface can be locally modeled by a
plane [65]. Estimation of the normal vectors 𝑁D = {nD (𝑘)} inD is not carried out the same way,
however, since they are likely to be biased due to geometric distortions. Instead, normals from O
are transferred to the voxels inD using their nearest neighbors [84].

The peak signal-to-noise ratios (PSNR) in dB for both D1 and D2metrics is given by:

PSNRD1 = 10 log10

(
𝑝2𝑔

D1MSE

)
. (2.13)

PSNRD2 = 10 log10

(
𝑝2𝑔

D2MSE

)
. (2.14)

For the point clouds defined in theCTCdataset, the peak value 𝑝 𝑔 is a constant defined inTable
2 of [85]. As a rule of thumb, 𝑝 𝑔 is the length of the bounding cube’s diagonal containing the point
cloud for contents in Categories 1 and 2. For Category 3, the intrinsic resolution is used, which in
the dmetric is defined as the maximum distance between neighboring voxels in the original point
cloud.

2.4.1.3 End-to-end color metrics

After finding a point-to-point correspondence using (2.6) and (2.5), texture (or color) metrics
for point clouds are calculated the same way MSE is performed in images. Colors are first con-
verted to YUV space following the BT.709 standard, as shown in (2.4), then theMSE is calculated

24

separately for each channel,

MSEY = max




1
𝐾O

𝐾O∑︁
𝑘=1

(
YO (𝑘) − YD (𝑘O)

)2
,

1
𝐾D

𝐾D∑︁
𝑘=1

(
YD (𝑘) − YO (𝑘D)

)2
, (2.15)

MSEU = max




1
𝐾O

𝐾O∑︁
𝑘=1

(
UO (𝑘) −UD (𝑘O)

)2
,

1
𝐾D

𝐾D∑︁
𝑘=1

(
UD (𝑘) −UO (𝑘D)

)2
, (2.16)

MSEV = max




1
𝐾O

𝐾O∑︁
𝑘=1

(
VO (𝑘) − VD (𝑘O)

)2
,

1
𝐾D

𝐾D∑︁
𝑘=1

(
VD (𝑘) − VO (𝑘D)

)2
. (2.17)

It is worth noting that neighboring points within the same distance have their colors averaged for
the MSE computation.

Color PSNR is calculated by

PSNRY = 10 log10

(
𝑝2𝑐

MSEY

)
, (2.18)

PSNRU = 10 log10

(
𝑝2𝑐

MSEU

)
, (2.19)

PSNRV = 10 log10

(
𝑝2𝑐

MSEV

)
. (2.20)

Where 𝑝𝑐 = 1 when considering a floating-point representation, or 𝑝𝑐 = 255 when considering an
8-bit color depth integer representation.

A common method for considering all the color components together was proposed by Ohm
et. al for the comparison of video coding standards [86], and it has been used for point cloud
assessment studies [6], [80]. It consists of using the weighted average of each PSNR channel, such
that the luma and the chroma measurements can be gathered in a single value:

PSNRYUV =

6 PSNRY +PSNRU +PSNRV

8
. (2.21)

2.4.2 Projection-based Metrics

As considered in the volume visualization pipeline of Figure 2.4, point clouds are in fact con-
sumed as 2D projections, and therefore it makes sense to evaluate its quality using 2D projections.
This approachwasfirst used in [87], where the renderedpoint cloudsweremappedontoplanar sur-
faces, then 2D image quality assessment metrics were used to evaluate compression performance.
Projection-based metrics are interesting because they provide a quality metric that considers the
point cloud as a whole, differently from the point-based metrics that consider the geometry and
the attributes separately. Also, for applications with a well-defined rendering methodology and
well-known usages (i.e., which viewpoints are more important, the most used camera settings for

25

visualization, etc.), projection-based metrics can be fine-tuned to mimic those specific conditions
to better approximate the human subjective perception of the contents. In studies considering
subjective quality assessment, for example, the same rendering technique is applied for subjective
and projection-based metrics [6]. Likewise, in such studies, it is preferred to use a large number
of viewpoints to capture as much visual information as possible [80], since the aliasing present in
unaligned-axis projections will also be present in the subjective assessment.

For amore generic application, however, a rendering approach that requires the least processing
of the voxels in the projections is preferred. Thismeans using only the six axis-aligned orthographic
projections. This way, it is possible to have a one-to-one correspondence between voxels and pix-
els. As a result, the camera parameters are set to acquire projections that are perfectly aligned with
the bounding cube containing the point cloud. This ensures that a point cloud of depth 10, for
example, will have six bitmap images of 1024-by-1024 pixels, as illustrated by Figure 2.20. As point
clouds are inherently sparse, most of the volume of the bounding cube is empty. Hence, most of
the pixels of the projected bitmaps do not belong to the effective part of the content (i.e., back-
ground color), so it is important to choose a value of background color to least interfere with the
calculations. Moreover, it has been found that excluding part of the background pixels improves
the accuracy of the metric prediction [88]. This way, image quality metrics are applied to the six
pairs of projections, and the total score is computed as the average of themetrics. In thiswork, three
different 2Dmetrics were selected: theMSE/PSNR,which is based on pixels differences and relates
with the point-basedmetrics of the last Section; Structural Similarity IndexMeasure (SSIM),which
searches for similarities in patches rather then pixel-wise; and theVisual Information Fidelity (VIF)
measure, which is an information theory approach to model how image information is perceived
in the HVS [89].

5 6

23

41

Figure 2.20: The six camera positions used to get axis-aligned projections.

26

2.4.2.1 Projected MSE and PSNR

MSE is used for measuring the differences of pixels between a reference image and its distorted
version. More specifically, its scale-agnostic version, the PSNR, is widely used for evaluating the
degradation of compression artifacts of images. The MSE computation of an RGB image is anal-
ogous to the one presented in Section 2.4.1. The error vector’s squared norm in the RGB space
between each pixel in the reference image and its counterpart in the distorted image is computed.
Thus, to calculate the projectedMSE (PMSE) of a point cloud, we average theMSE of the six pairs
of𝑊𝑛𝑣 by 𝐻𝑛𝑣 images:

PMSE =

1
6

6∑︁
𝑛𝑣=1

©­«
1

𝑊𝑛𝑣𝐻𝑛𝑣

𝑊𝑛𝑣∑︁
𝑥=1

𝐻𝑛𝑣∑︁
𝑦=1

‖RGB𝑛𝑣ref(𝑥, 𝑦) −RGB𝑛𝑣dist(𝑥, 𝑦)‖
2ª®¬
. (2.22)

The projected PSNR (PPSNR), for 8-bit color depth images, is defined as,

PPSNR = 10 log10

(
2552

PMSE

)
. (2.23)

2.4.2.2 Projected SSIM

The SSIM assesses perceptual quality between reference and distorted images by comparing
local similarities on spatial patches, assuming that the HVS is highly adapted to extract structural
information from visual scenes. It was created from the perspective of image formation [90], so it
performs three comparisons (luminance, contrast, and structure) on each patch, and then averages
the comparisons over the whole image to arrive at an overall image quality, which is referred to as
the mean SSIM (MSSIM). As the SSIM was developed for grayscale images, we use it on the luma
channel Y only. Following the implementation of SSIM [91], in its default configuration, we have
that the index between signals 𝑥 and 𝑦, corresponding to 11-by-11 Gaussian windows with 𝜎 = 1.5
in each image is:

SSIM(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝐶1) (2𝜎𝑥𝑦 + 𝐶2)

(𝜇2𝑥 + 𝜇2𝑦 + 𝐶1) (𝜎 2𝑥 + 𝜎 2𝑦 + 𝐶2)
, (2.24)

where 𝜇 represents the mean, 𝜎 2 the variance, 𝐶1 = (0.01 · 255)2, and 𝐶2 = (0.03 · 255)2. The
MSSIM is, then, the average of the𝑀 patches over the entire images 𝑋 and𝑌 ,

MSSIM(𝑋 ,𝑌) = 1
𝑀

𝑀∑︁
𝑗=1

SSIM(𝑥𝑗 , 𝑦𝑗). (2.25)

Finally, the projected SSIM (PSSIM) is calculated as the average of theMSSIM for every viewpoint
projection pair,

PSSIM =

1
6

6∑︁
𝑛𝑣=1

MSSIM(𝑋𝑛𝑣 ,𝑌𝑛𝑣). (2.26)

27

2.4.2.3 Projected VIF

The information theory approach of VIF [92] measures the fidelity of a distorted image by cal-
culating the loss of image information to the distortion process and comparing it with its reference
counterpart. Thus, exploring the relationship between image information and visual quality. Fig-
ure 2.21 depicts a block diagram of the information content model used in VIF.

Natural

image source

(𝜎1)
C

Distortion

Channel

(𝑔, 𝜎𝑣)
D

HVS

Channel

(𝜎𝑛′)

HVS

Channel

(𝜎𝑛)

F

E

Figure 2.21: Information content model used in VIF [89].

The reference image is the output of a stochastic “natural” source, thus, modeled as a random
field C using Gaussian Scale Mixtures (GSM), which, after passing through the HVS channel, be-
comes E, the information processed by the brain. The information content of the reference image
is quantified as being the mutual information between C and E, 𝐼 (C; E). Ideally, this would rep-
resent the information that the brain could extract from the output of the HVS. The information
content of the distorted image is likewise quantified, but a distortion channelD is introduced be-
fore the HVS, such that it becomes the mutual information between C and F , 𝐼 (C;F). The VIF
measure is, then, calculated as the ratio of the sum of the distorted image information content over
the sum of the reference image reference content, across all subbands of the GSM [89], [93],

VIF =

∑
𝑗∈ subbands 𝐼 (C𝑗 ;F 𝑗 |𝑠𝑗)∑
𝑗∈ subbands 𝐼 (C𝑗 ; E𝑗 |𝑠𝑗)

. (2.27)

In this work, we use a computationally simpler multi-scale pixel implementation of VIF, the
pixel domain VIF (VIFP) [91]. Similar to the SSIM, the VIF was designed for grayscale images
only, so again it is applied only for the luma channel. The mutual information is calculated across
four subbands. For each subband 𝑗 ,𝑀𝑗 Gaussian windows are considered, such that

VIFP =

∑4
𝑗=1

∑𝑀𝑗

𝑖=1 log10
1+𝑔 (𝑖,𝑗)2𝜎1 (𝑖,𝑗)2
𝜎𝑣 (𝑖,𝑗)2+𝜎𝑛 (𝑖,𝑗)2∑4

𝑗=1
∑𝑀𝑗

𝑖= log10
1+𝜎1 (𝑖,𝑗)2
𝜎𝑛 (𝑖,𝑗)2

. (2.28)

The projected VIFP (PVIFP) is, then, the average of the VIFP calculated for projection pair,

PVIFP =

1
6

6∑︁
𝑛𝑣=1

VIFP𝑛𝑣 . (2.29)

28

2.5 POINT CLOUD PROCESSING

Point cloud processing is used in several applications. One way to achieve lossy geometry com-
pression, for example, is by downsampling the input point cloud, as done byTMC13 (Figure 2.14).
Some rendering applications require to downsample a point cloud when computer resources are
limited. Alternatively, when computer resources are not a problem, and high-perceived quality is
required, upsampling or super-resolving a point cloud couldbe of interest. When trying to improve
the perceived quality of point clouds, some techniques to smooth its geometry and/or attributes,
and to fill in holes may prove useful.

In this Section, the processing techniques utilized in this work are briefly explained.

2.5.1 Downsampling

The downsampling of point clouds can be approached in two ways: grid or set downsampling.
In grid downsampling, the decimation is done in the voxel grid, the bounding cube. The point
cloud is downsampled as a consequence of this process. In set downsampling, the decimation is
performed directly in the geometry set of points, not changing the voxel grid in the process.

2.5.1.1 Grid Downsampling

Grid downsampling makes sense for point clouds bound to a voxel-grid, i.e., voxelized point
clouds. To perform the downsampling, the point cloud geometry is firstly scaled and then re-
voxelized. This can be seen as a new subdivision of the cubic volume containing the point cloud
but with larger voxels. In the scaling step, all the original bounding cube’s voxels are grouped into
larger 𝑠-sided voxels. Equivalently, the point cloud geometry can be scaled by 1/𝑠, maintaining the
unitary volume of the voxel. The voxelization step is achieved by rounding each scaled coordinate
to the nearest integer value. Duplicate points, which may arise after the rounding step, are dealt
with the same way as in the voxelization process of Section 2.3.2. They are consolidated, and their
attributes averaged.

Using some auxiliary functions [94]:

sign(𝑥) =




1, 𝑥 ≥ 0

−1, 𝑥 < 0
, (2.30)

floor(𝑥) = ⌊𝑥⌋ = the greatest integer less then or equal to 𝑥, (2.31)

ceil(𝑥) = ⌈𝑥⌉ = the least integer greater then or equal to 𝑥, (2.32)

round(𝑥) = sign(𝑥) ⌊|𝑥 | + 0.5⌋ =
⌈ ⌊2𝑥⌋

2

⌉
, (2.33)

unique(𝑋) = the set containing only the unique vectors from 𝑋 . (2.34)

29

0 5 10 15

x

0

2

4

6

8

s = 2

s = 3

s = 4

(a)

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5

(b)

Figure 2.22: One-dimensional analysis of the grid downsampling for integer values of 𝑠.

The grid-downsampled geometry is defined as,

𝑉𝑑 = unique

(
round

(
1
𝑠
𝑉

))
, (2.35)

where the scalar multiplication and the round(·) function are applied on each vector component.

Analyzing the scaling function in one dimension, 𝑥𝑑 = round(𝑥/𝑠), for integer values of 𝑠 in
Figure 2.22(a), we notice that, except for boundary points, every 𝑠 values in 𝑥 are reduced to one
value in 𝑥𝑑. Or, equivalently, every value in 𝑥𝑑 maps 𝑠 values in 𝑥, as depicted in Figure 2.22(b),
where thedownsampling is represented as a hierarchical treewith 𝑥𝑑 representingparentnodes, and
𝑥 representing child nodes for 𝑠 = 2. Moreover, for integer values of 𝑠, the number of child nodes
is constant for all parent values. In 3D, this means that each parent voxel from the downsampled
bounding cube maps 𝑠3 children in the original bounding cube. This represents a pruning of the
original octree structure, in fact when 𝑠 = 2𝑛, 𝑛 = 1, 2, 3, . . . , the pruning occurs exactly2 at level
𝑑 − 𝑛. Figure 2.24 shows a point cloud rendered with different octree prunings.

For non-integer values of 𝑠, the number of children per parent node is not regular, it varies
depending on 𝑥𝑑, as depicted in Figure 2.23(a). In 3D, this means that each parent voxel from the
downsampled bounding cube maps up to 𝑠3 children in the original bounding cube. Specifically,
when {𝑠 ∈ ℚ | 1 < 𝑠 < 2}, the downsampling is only partial. There are parent nodes with
only one child (uniparous), and parent node with two children (multiparous), as shown in Figure
2.23(b). In this case, parent nodes may map 1, 2, 4, or 8 children depending on the combination
of uniparous and multiparous parents on each (𝑥𝑑, 𝑦𝑑, 𝑧𝑑) coordinates.

Briefly, the grid downsampling is a fastmethod representing a pruning of the octree structure at

2The term exactly is somewhat relaxed here since the round function adds an approximation that would not occur when 𝑛 levels
are removed from the octree. To get the strictly exact pruning equivalence, Equation (2.35) should be defined using the floor
function instead.

30

0 5 10 15

x

s = 1.25

s = 1.5

s = 1.75

0

2

4

6

8

10

12

(a)

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8

(b)

Figure 2.23: One-dimensional analysis of the grid downsampling for fractional values of 𝑠.

an exact or partial level. This octree pruning ensures that spatial correlation among occupied voxels
remains the same or even increases (due to the grouping of voxels), which is a desired property for
compression purposes. However, the quantization step of this method not only removes duplicate
points, but also causes a slight shift in the geometry. When comparing the expanded geometry, 𝑠·𝑉𝑑,
with𝑉 , for example, wewill findD1MSE

D > 0,meaning that even the remaining points in𝑉𝑑 cannot
be directly upsampled without error (shown in Figure 2.24). This fact makes super-resolving grid
downsampled point clouds more challenging.

2.5.1.2 Set Downsampling

In set downsampling, points are usually decimated using some distance-based criterion or even
random decimation. The advantage of these downsampling methods is that the points which re-
main do not need to be re-voxelized, meaning that they are correct points from the original point
cloud,D1MSE

D = 0, which is a desirable property for interpolation. However, thesemethods tend to
decrease the points’ spatial correlation, making the point cloud compression harder. This happens
because loads of points become isolated, and those points need more bits to be encoded compared
to grouped points.

Two examples of set downsampling used for point clouds are the LoD representation utilized
in TMC13 (Figure 2.18), and the Poisson disk sampling [95], where samples are at least distance
𝑟 apart from some user-supplied density parameter 𝑟 . Both cases require that distances from each
point to its neighbors to be calculated, which adds complexity and makes them slower than grid
downsampling. Figure 2.25 depicts the Poisson disk sampling applied for different values of 𝑟 ,
which were chosen in order to generate a similar number of points of the grid downsampling in
Figure 2.24. The voxels’ size was increased for illustration purposes, and the D1 metric was calcu-
lated for comparison between the methods. We also calculated the rate in bits per occupied voxel

31

(bpov) needed to create an octree representation for each case, to illustrate the diminishing of spa-
tial correlation.

Figure 2.24: Downsampling at exact octree levels. The original depth-10 point cloud followed by octree pruning with
depth 𝑑 = 9, 8, 7, and 6, which corresponds to a downsampling using 𝑠 = 21, 22, 23, and 24, respectively.

Figure 2.25: Downsampling using Poisson disk sampling. The minimum distance between samples at each model is
𝑟 =

√
2, 3, 3

√
3, and 7

√
2, respectively.

32

Figure 2.26: Down- and upsampling representations for 𝑠 = 2. (a) Child nodes surrounded by its parent-nodes. (b)
Parent nodes. (c) Expansion of𝑉𝑑 . (d) NNI upsampling.

2.5.2 Upsampling

Point cloud upsampling is the inverse operation of the downsampling process of Section 2.5.1.
It seeks to increase the number of voxels by trying to re-create points decimated during the down-
sampling process. In the grid downsampling case, this means first to expand the downsampled
geometry, i.e., 𝑠 ·𝑉𝑑, refine the expanded geometry and finally interpolate the missing points. For
the set downsampling, neither the expansion nor the refinement steps are necessary, and just the
interpolation step is needed.

Upsampling 3D points is a much harder problem than the downsampling one, and when con-
sidering specifically voxelized point clouds with texture information, there are few works about it.
When the upsampling technique achieves good results, it is usually referred to as super-resolution
(SR). The classic approach is to obtain a global function (or set of local functions) that approx-
imates𝑉𝑑 in the least-squares sense, then solve the minimization problem in order to interpolate
values between points [96]. Themoving least squares (MLS)method was used in a fewworks con-
sidering point sets [97]–[99], but no texture nor voxelized point clouds were considered. Another
approach is to use graph signal processing (GSP) to perform the interpolation. Dinesh et. al used
graph total variation (GTV) on surface normals to obtain interesting results for super-resolving the
geometry of point clouds [100]. The method was later improved [101], and voxelized point clouds
with texturewere considered, however, the SRmethodwas only applied toLRpoint clouds created
using Poisson disk sampling. Attempting a different strategy, Hamid-Cherif et. al [102] used local
similarities and estimate surface normals to super-resolve point sets, without considering voxelized
point clouds with texture information, however.

Whenvoxelizedpoint clouds are considered, the problembecomesmore constrained since there
is a finite number of possible values for the missing points. When considering grid downsampling
LR point clouds, the simplest way to perform the upsampling is by using the nearest neighbor
interpolation (NNI). Due to the way the downsampling is performed, the location of all possible
children fromeachparent node canbe inferred, thus,NNI is performedby setting all these children
as occupied. Figure 2.26 illustrates what happens to the original geometry as it is downsampled and
then upsampled using NNI.

Other image processing resampling methods (e.g., linear, or cubic interpolation) could also be

33

adapted for 3D points. However, the 3D problem for geometry upsampling deals with binary
data. Voxels are either empty or occupied, somethods that propose some kind of average cannot be
directly used with binary data. Garcia et. al [5] super-resolved grid downsampled LR point clouds
containing texture, using examples from full-resolution prior frames [103]. Later, three inter-frame
geometry SR methods were developed to provide context for coding point clouds sequences. In
Chapter 3, we expand one of these methods based on self-similarities of LR point clouds to work
for the intra-frame case and generalize it for non-exact octree downsamplings.

2.5.3 Smoothing

Smoothing techniques are useful to reduce high-frequency noise of point clouds. The Lapla-
cian smoothing (LS) [104] is an algorithm used to smooth meshes that can easily be adapted to
work on point clouds. The idea is to update the position of each occupied voxel by averaging the
positions of occupied neighbor voxels in a 3 × 3 × 3 neighborhood. Defining N3(𝑘) as the sub-
set containing all occupied voxels in a 3 × 3 × 3 neighborhood around voxel v(𝑘), the updated
coordinate is

v𝐿𝑆 (𝑘) = round

©­­­«
1

𝐾N + 1

©­­­«
v(𝑘) +

∑︁
∀ 𝑖:

v(𝑖)∈N3 (𝑘)

v(𝑖)
ª®®®¬
ª®®®¬
, (2.36)

where𝐾N is thenumber of occupiedneighbors in the searchedneighborhood. The color associated
with each voxel is interpolatedusing the inverse-distance, 𝛿−1, between the current voxel v𝐿𝑆 (𝑘) and
each of its neighbors inN3(𝑘),

c𝐿𝑆 (𝑘) =




c(𝑘) , if v(𝑘) = v𝐿𝑆 (𝑘),∑
∀ 𝑖:

v(𝑖)∈N3 (𝑘)

𝛿−1𝑖 c(𝑖)

∑
∀ 𝑖:

v(𝑖)∈N3 (𝑘)

𝛿−1𝑖
, otherwise.

(2.37)

After smoothing every voxel, duplicate points that eventually appear have their colors averaged,

𝐶𝐿𝑆 =
𝐾⋃
𝑘=1

round

©­­­«
1

𝐷 + 1

©­­­«
c𝐿𝑆 (𝑘) +

∑︁
∀ 𝑖:

v(𝑖)=v(𝑘)

c𝐿𝑆 (𝑖)
ª®®®¬
ª®®®¬
, (2.38)

where𝐷 indicates the number of duplicates of voxel v(𝑘). Then, duplicate points are consolidated,

𝑉𝐿𝑆 = unique

(
𝐾⋃
𝑘=1

v𝐿𝑆 (𝑘)
)
. (2.39)

An illustration of the LS is depicted in Figure 2.27.

34

Figure 2.27: Laplacian smoothing illustration. The voxel in the center of the 3 × 3 × 3 neighborhood in (a) gets its
position updated after the LS is applied in (b).

Amore general approach consists of taking any 3D kernel, instead of the 3× 3× 3 cube used in
the LS, and applying different weights to each neighboring voxel. The filtered voxel positionwould
then be the weighted average of the occupied voxels inside the kernel. This way, it is possible to
filter both geometry and color in the same fashion 2D kernel filtering is done in images. Notice,
however, that differently from 2D filtering, where the kernel is constant, the effective number of
voxels in the 3D kernel will vary depending on the neighborhood’s voxel occupancy.

2.5.4 Morphological Transformations

The last processing techniques covered in this work are themorphological transformations. 3D
morphological transformations are operations that change the geometry structure. Besides the in-
put geometry, the transformations require a structuring element, a 3D structure representing a
fixed voxel neighborhood. The basic morphological operators are erosion and dilation, then com-
binations of the two operators can be used to achieve different transformations.

The erosion operator compares each voxel’s neighborhood with the structuring element. Only
the voxels whose neighborhood fully intersects with the given 3D structure are kept. All the others
are removed (eroded).

The dilation operator does the opposite. It takes the union of each voxel’s neighborhood with
the structuring element. Thus, increasing the number of voxels, dilating the geometry. The
unique(·) function is again used to consolidate duplicate points. The newly created points’ color
is interpolated using the weighted average of its neighboring voxels’ colors. Figure 2.28 illustrates
the basic morphological operations using a 3 × 3 × 3 block as the structuring element.

(a) (b) (c) (d)

Figure 2.28: Basic morphological operations. (a) Input point cloud. (b) Structuring element. (c) Eroded geometry.
(d) Dilated geometry.

35

The closing operation is performedby first dilating the geometry, then eroding it using the same
structuring element. It is useful for filling in holes in the geometry of a point cloud. When filling
in holes caused by an upsampling method, this operation can be further improved by removing
added points that do not belong to the NNI geometry, i.e., points we are certain that do not exist
in the original point cloud.

36

3 METHODOLOGY

“Omnis cellula e cellula.”

—Rudolf Virchow, Cellular Pathology, 1860

3.1 THE RELEVANCE OF FRACTIONAL RESAMPLING

In this Chapter, we explore the different strategies developed during this work to super-resolve
point clouds. The premise was to develop an SR method for voxelized point clouds. Moreover,
since the state-of-the-art codec employed for this kind of point cloud (TMC13) utilizes the octree
to represent the geometry, we decided to focus only on LR versions that are efficiently represented
by this data structure. For this reason, we only considered grid downsampling since it maintains,
or even increases, the point’s spatial correlation in the LR point clouds. Table 3.1 summarizes the
upsampling techniques presented in Chapter 2. We can see that grid resampling was not much
explored. In fact, only Garcia et al. did it. Still, only the exact octree pruning resampling was
explored, and only for the inter-frame case.

Table 3.1: Summary of point cloud resampling strategies found in the literature.

Downsampling Proposed upsampling Voxelized Point Clouds Texture

Grid
𝑠 ∈ ℕ | 𝑠 = 2𝑛 Garcia et al. [5], [103] ✓ ✓

𝑠 ∈ ℚ − − −

Set

MLS: [97]–[99] ✗ ✗

GTV: [100], [101] ✓† ✓†

Local similarities: [102] ✗ ✗

† Partially.

Fractional resampling of voxelized point clouds, although utilized in TMC13, has never been
theoretically explored. Using fractional scale factors in point cloud downsampling allows for more
flexible octree pruning. By understanding the properties and irregularities of this kind of down-
sampling, we were able to propose the upsampling methods presented in this Chapter.

The basic idea explored for super-resolving voxelized point clouds is that there is a finite number
of possible children. Child voxels can only come from occupied parent voxels. Therefore, all the
presented methods share the same goal: find a way to choose which child nodes to keep (or to
remove) given theNNIupsampled geometry of an input point cloud. To this extent, first, wedefine
some concepts of the NNI upsampling, then those concepts are employed in the SR methods.
Finally, we present a web-based renderer, developed for a future subjective assessment test of the
proposed method.

37

3.2 NEAREST NEIGHBOR INTERPOLATION UPSAMPLING

In Section 2.5.2, we saw that the NNI upsampling is achieved by setting to occupied all pos-
sible children of each parent node. Here, we formalize how this operation is performed. All the
operations presented hereon assume that voxels can only have integer-valued components.

LetV𝑢 (𝑘) = {v𝑢 (𝑖)} be the set containing all possible child nodes from v𝑑 (𝑘), such that,

round(v𝑢 (𝑖)/𝑠) = v𝑑 (𝑘), (3.1)

for every 𝑖 = 1, 2, . . . , 𝑖max. Inversely,

v𝑢 (𝑖) = round(𝑠 · v𝑑 (𝑘)) + 𝜖(𝑖), (3.2)

where 𝜖(𝑖), {𝜖(𝑖) ∈ ℤ | |𝜖(𝑖) | ≤ ⌈𝑠⌉ − 1}, is needed to account for the information lost due
to the round function, and it can be found by reproducing the downsampling and checking the
parent-child mapping, as in Figures 2.22 and 2.23. Let also E(𝑘) = {𝜖(𝑖)} be the set containing all
possible rounding errors for parent node v𝑑 (𝑘), then we can rewrite (3.2) in matrix form as

V𝑢 (𝑘) = round(𝑠 · v𝑑 (𝑘)) + E(𝑘). (3.3)

For example, considering 𝑠 = 7/4 = 1.75,

𝑥 = [0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15],

𝑥𝑑 = [0 1 1 2 2 3 3 4 5 5 6 6 7 7 8 9],

round(𝑠 · 𝑥𝑑) = [0 2 2 4 4 5 5 7 9 9 11 11 12 12 14 16],

𝜖𝑥 = 𝑥 − round(𝑠 · 𝑥𝑑) = [0 -1 0 -1 0 0 1 0 -1 0 -1 0 0 1 0 -1].

Now, if we take the parent node v𝑑 = (3, 4, 6), we have

V𝑢
���
v𝑑=(3,4,6)

= (5, 7, 11) +




(0, 0, −1)
(0, 0, 0)
(1, 0, −1)
(1, 0, 0)



=




(5, 7, 10)
(5, 7, 11)
(6, 7, 10)
(6, 7, 11)



. (3.4)

Therefore, the NNI upsampled geometry is defined as

𝑉𝑢 =
𝐾⋃
𝑘=1

V𝑢 (𝑘). (3.5)

The colors from the children inV𝑢 (𝑘) are defined in the subset C𝑢 (𝑘) = {c𝑢 (𝑖)}, such that,

c𝑢 (𝑖) = c𝑑 (𝑘), ∀𝑖, and, (3.6)

𝐶𝑢 =
𝐾⋃
𝑘=1

C𝑢 (𝑘). (3.7)

38

xyz multiparous

xy uniparous
z multiparous

x uniparous
yz multiparous

xz uniparous
y multiparous

y uniparous
xz multiparous

yz uniparous
x multiparous

z uniparous
xy multiparous

xyz uniparous

y

z x

Figure 3.1: The eight types of parent-children conditions found for 1 < 𝑠 < 2. Each parent voxel is classified as such
before performing the NNI upsampling.

As we saw on Section 2.5.1.1, the number of children, 𝑖max, depends on the scale factor 𝑠, the
number of uniparous1 components 𝑎, and the number of multiparous components 𝑏, such that,

𝑖max = (⌈𝑠⌉ − 1)𝑎 ⌈𝑠⌉𝑏 . (3.8)

So it is useful to label parent voxels according to the capacity to map descendants from their po-
sition’s components. We can divide𝑉𝑑 into eight subsets, {𝑉𝑑,𝑗 }, depending on the label of each
parent voxel, as follows:

0: all components are uniparous,
(⌈𝑠⌉ − 1)3 children;

1: only 𝑥 component is multiparous,
(⌈𝑠⌉ − 1)2⌈𝑠⌉ children;

2: only 𝑦 component is multiparous,
(⌈𝑠⌉ − 1)2⌈𝑠⌉ children;

3: only 𝑧 component is multiparous,
(⌈𝑠⌉ − 1)2⌈𝑠⌉ children;

4: only 𝑥 component is uniparous,
(⌈𝑠⌉ − 1) ⌈𝑠⌉2 children;

5: only 𝑦 component is uniparous,
(⌈𝑠⌉ − 1) ⌈𝑠⌉2 children;

6: only 𝑧 component is uniparous,
(⌈𝑠⌉ − 1) ⌈𝑠⌉2 children;

7: all components ar multiparous,
⌈𝑠⌉3 children.

This allows us to treat each case separately, which facilitates other upsamplingmethods. Figure
3.1, shows the eight possible types of parenthood for {𝑠 ∈ ℚ | 1 < 𝑠 < 2}.

1Here we extend the meaning of uniparous to indicate parents with fewer children then the multiparous ones.

39

3.3 TOWARDS SUPER-RESOLUTION OF VOXELIZED POINT CLOUDS

In this Section, we present three attempts to generate a better upsampling geometry from the
NNI results. In the first method, we improve the NNI upsampling by smoothing its geometry,
reducing the aliasing effect. The second method consists of removing points from the NNI up-
sampling using the normal vectors calculated in𝑉𝑑. The last one is a score-based approach that
utilizes the parent neighborhood to decide which children from the NNI upsampling to be kept.

3.3.1 Smoothed Nearest Neighbor Interpolation Upsampling

Asdiscussed in Section 2.5.3, point cloud smoothing techniques can be used to reduce the alias-
ing effects from the NNI upsampling. This approach is straightforward; one needs to apply low-
pass filtering in the NNI upsampled point cloud. However, filtering operations require adjusting
the filter parameters to the data. This tweaking of the filters is usually done manually, and it has
proved to be hard to find constant parameters that would minimize the output error for different
input point clouds.

For the geometry, several 3D-kernelswere tested, and the best resultswere foundusing a 3×3×3
block kernel with equal weights for all voxels, which is equivalent to the geometry from the LS, as
in (2.36). Regarding the color, slightly better gains were observed when comparing 𝐶𝐿𝑆 with the
color obtained by filtering 𝐶𝑢 using only the six neighbors sharing a face with the current voxel,
3D a cross-shaped kernel weighted by the inverse distance between neighbor voxels and the center
voxel. However, using 𝐶𝐿𝑆 is a good option due to its lower complexity.

3.3.2 Carving the Nearest Neighbor Interpolation Upsampling Using Normal Vectors

This method aims to remove child nodes from the NNI upsampling that grow in the approx-
imate direction of the parent node’s normal vector. This way, we try to flatten the local surface
perpendicular to the parent node’s normal direction.

First, we need to calculate the normal vector of each point in𝑉𝑑, which is done using Hoppe’s
algorithm considering the 12 nearest neighbors [65]. Then, the normal vectors are quantized in 26
directions. Those are the directions linking the center of the current voxel with the center of each
of its 26 neighbors in a 3 × 3 × 3 neighborhood. We define a child node’s growth vector as the
unit vector between the parent and the child node’s centers. Here, we visualize child nodes as the
subdivision of the parent node into eight sub-nodes, such that parent and child nodes are in the
same scale (like in Figure 3.3(a)). Finally, we take the dot product of each child node’s growth vector
with the quantized normal vector. The child node with the maximum dot product is removed. If
the same value is observed for different children, then all of those are removed. Figure 3.2 illustrates
the method.

This approach is problematic because normal vectors calculated from𝑉𝑑 are biased. They can-

40

(a) (b)

Figure 3.2: Normal carving illustration. In (a), we can see one of the child node’s growth vector in blue and the quan-
tized normal vector from the parent node in red. In (b), the resulting carved geometry is presented.

not give accurate information about the details of the point cloud. This can be illustrated by look-
ing at a rock on a mountain slope. When we are close to the rock, we can differentiate the normal
directions for the points representing its shape. When we are away from the mountain, the per-
ceived normal from the rock becomes a single direction representing the mountain slope instead
of the rock shape [84]. Thus we cannot use downsampled normals to assess information about
the details of the original geometry. Another problem is that this method assumes that at least one
child node must always be removed, which is not always true and may cause holes in the carved
geometry.

3.3.3 Score-based Upsampling

This method uses the information from the parent node’s neighbors (uncle nodes) to create a
score for each child node from the NNI upsampling. Then, child nodes that have a score under a
certain threshold are removed. A similar idea is used in TMC13’s intra-prediction [62]. However,
the score calculation is different.

Theheuristic is that childnodes shouldonly appearnext tooccupieduncle nodes. Nevertheless,
choosing each uncle node’s contribution amount to the final child score and the threshold value
for which child nodes should be occupied is hard. The first approach we tried was to model the
parent voxel as a nucleus that could be divided into smaller particles depending on the forces exerted
by neighboring voxels. Occupied neighboring voxels exert a pulling force, while empty ones exert
a repelling force, and the force magnitude is proportional to the inverse distance. Considering a
3 × 3 × 3 neighborhood, there are 26 possible force directions (Figure 3.3(a)). Thus, first, we take
the resultant force acting on the nucleus, then we project this force on each of the growth vectors
indicating possible child nodes. If a projection has a zero or a positive value in a given growth
direction, it indicates that a particle from the nucleus is attracted to that direction. Thus, a child
node should exist there. Figure 3.3(b) illustrates the selected children using this score-based SR
method. In practice, however, we found that the threshold value should be adaptive. By providing
the information about the number of children each parent node should have (using information
from the original point cloud), we found out that this method could provide educated guesses

41

(a) (b)

Figure 3.3: Illustration of the score-based method modeling the parent voxel as a divisible nucleus. In (a), the 26
directions, and the 8 growth directions are depicted. In (b), the resulting force in red and the chosen children are
shown.

about the children’s occupancy. Still, we could not find a way to adaptively update each parent’s
threshold value without using extra information.

The second approach was simpler than the previous. Only neighbors sharing a face with the
parent node in a 3 × 3 × 3 neighborhood were used. In this model, uncle nodes have different
weights depending on the child node been evaluated. Occupied uncle nodes sharing a face with
the current child have weight 2, and the further away uncle nodes have weight 1. Empty nodes
were not considered this time. For a child node to be set as occupied, a score of at least 6 should be
observed.

These approaches led to results comparable to the smoothed NNI upsampling when looking
at objective point-basedmetrics. However, the score-based SRmethods developed are perceptually
worse than the NNI upsampling because of the appearance of holes in the point cloud.

3.4 FRACTIONAL SUPER-RESOLUTION OF VOXELIZED POINT CLOUDS

A method for super-resolving voxelized point clouds using neighborhood inheritance from
other frames was proposed by Garcia et. al proposed [5]. The idea was to super-resolve the cur-
rent frame, using a dictionary of child nodes based on the neighborhood configuration from pre-
vious non-downsampled frames. We took this method, whichworked only for the inter-frame case
with exact level downsampling, and adapted it for the intra-frame case, also considering fractional
downsampling.

Wedefine theneighborhood state of a voxel𝜑𝑀 (v(𝑘)) as an (𝑀 3−1)-binarynumber indicating
the occupancy of neighbor voxels inside an𝑀 ×𝑀 ×𝑀 cube. Similarly, the child occupancy state
of a parent voxel 𝜎 (v𝑑 (𝑘)), is a ⌈𝑠⌉3-binary number indicatingwhichof the child voxels inV𝑢 (𝑘) are
indeed occupied. The proposedmethod assumes that there are self-similarities at different scales of
a point cloud geometry. We take the input point cloud geometry𝑉𝑑 and its correspondent down-

42

Figure 3.4: Illustration of the inputs utilized in the proposed SR method. By performing yet another downsampling
in the input geometry𝑉𝑑 , we can “learn on-the-fly” how to super-resolve from𝑉𝑑2 to𝑉𝑑 . Then, we use this knowledge
to super-resolve from𝑉𝑑 back to𝑉 .

sampling factor 𝑠. Then, yet another downsampling is performed in the input geometry to generate
𝑉𝑑2 , as depicted in Figure 3.4. Using the input’s parent voxels, we can check the relation of parent
neighborhood occupancy stateswith child occupancy states and build a table, as illustrated inTable
3.2.

Table 3.2: Gathering data from the input point cloud.

Parent neighborhood state Child occupancy state

𝜑𝑀 (v𝑑2 (1)) 𝜎 (v𝑑2 (1))
𝜑𝑀 (v𝑑2 (2)) 𝜎 (v𝑑2 (2))

...
...

𝜑𝑀 (v𝑑2 (𝐾)) 𝜎 (v𝑑2 (𝐾))

To create the𝑚-th entry of the dictionary,𝑚 = 0, 1, . . . , 2𝑀
3−1 − 1, we estimate the most likely

child occupancy state for each possible value of 𝜑𝑀 (𝑚), i.e.,

�̄� (𝑚) = 𝐸{𝜎 (v𝑑2 (𝑘)) | 𝜑𝑀 (𝑚)}. (3.9)

Neighborhood states not present in the input data are associated with fully occupied child states.
The resulting dictionary represents a look-up-table (LUT), as illustrated in Table 3.3. Therefore,
to super-resolve the input geometry, we compute its neighborhood states 𝜑𝑀 (v𝑑 (𝑘)) and associate
each value with the correspondent child occupancy using the LUT, i.e.,

𝜎 (v𝑑 (𝑘)) = �̄� (𝑚) | 𝜑𝑀 (𝑚) = 𝜑𝑀 (v𝑑 (𝑘)). (3.10)

Since the LUT is indexed by the neighborhood states, there is no need to store 𝜑𝑀 (𝑚) in the LUT,
so �̄� (𝑚) = LUT(𝑚), and we can rewrite (3.10) as

𝜎 (v𝑑 (𝑘)) = LUT
(
𝜑𝑀 (v𝑑 (𝑘))

)
. (3.11)

43

Thus, the set of super-resolved children from v𝑑 (𝑘) is

V𝑠𝑟 (𝑘) = V𝑢 (𝑘 | 𝜎 (v𝑑 (𝑘))). (3.12)

And finally, the super-resolved geometry,

𝑉𝑠𝑟 =
𝐾⋃
𝑘=1

V𝑠𝑟 (𝑘). (3.13)

Table 3.3: Illustration of the dictionary used in the proposed SRmethod.

𝑚 𝜑𝑀 �̄�

0 0000000 . . . 0000 1111 1111

1 0000000 . . . 0001 0000 1100

...
...

...

2𝑀
3−1 − 1 1111111 . . . 1111 1111 1111

While the aforementioned outlines the basic ideas of the method’s operation, some constraints
must be defined, and some additional steps are introduced to improve the reconstructed geometry
and to allow for fractional SR.

To get a symmetric neighborhood around a voxel, the neighborhood size,𝑀 , must be an odd
number. As𝑀 increases by a single step, from 3 to 5, the number of dictionary entries surges from
226 to 2124. Thismakes using large values of𝑀 impractical, not only because it takesmore compu-
tational effort to find a bigger neighborhood but also because building an effective dictionary with
somany entries from a single frame is not possible. Considering that most of the entries would not
be found in the data, the output geometry would be approximately equal to the NNI upsampling.
This happens because the dictionary entries become overly specific. For this reason, we fixed the
neighborhood size to its minimum, 𝑀 = 3. To simplify notation, we drop the subscript of 𝜑
hereon.

The scale factor 𝑠 must also be constrained because the dictionary’s large size imposes memory
restrictions. Each extra bit in �̄� (𝑚)means 226 additional bits to represent the dictionary. Moreover,
as 𝑠 increases, the number ofmeaningful entries in the dictionary decreases, since there is notmuch
information in the lower levels of the geometry, as it is effectively becoming a single cube. Thus, we
decided to constrain the values of 𝑠, {𝑠 ∈ ℚ | 1 < 𝑠 ≤ 2}. Inside this interval, we can profit from
partial downsampling and super-resolve a full octree level. If 𝑠 > 2 is required, the SRmethod can
still be used, by performing 𝑡 = ⌈log2(𝑠)⌉ nested SRs with a new scale factor 𝑠′ ≈ 𝑡

√
𝑠, where the

approximation sign is needed since 𝑠′ must be a fractional number.

A classification step is added before the LUT creation and before super-resolving the point
cloud to ensure that the downsampling irregularities are taken into account. This way, seven dif-
ferent LUTs are created, each of them considering only labeled voxels with the specific parenthood
conditions of Figure 3.1. Observing that parent voxels in classification 0 can be directly upsampled
without error.

44

Finally, to improve the LUT quality using a single frame, we explore the fact that grid down-
sampling produces different results depending on the point cloud’s position inside the bounding
cube. Thus, we apply incremental shifts,Δ𝑏:𝑒, to the input geometry as ameans of increasing input
data to populate the dictionary better. We defineΔ𝑏:𝑒, as the set containing all the the points inside
the cube [𝑏, 𝑒]3. For example, when 𝑏 = 0 and 𝑒 = 1,Δ0:1 defines eight incremental displacements,

Δ0:1 = {(0, 0, 0), (0, 0, 1), (0, 1, 0), . . . , (1, 1, 1)}.
Experimentally, we found out that using these incremental shifts can considerably improve the
super-resolved geometry. Using Δ−1:1, for example, improved the D1 metric of the super-resolved
geometry at an average of about 2dB when comparing with SR without the displacements. How-
ever, larger displacements improved the geometry only marginally, and at a greater cost of time. If
speed is a concern, then usingΔ0:1 still improves the output at about 1.5dB on average, while being
considerably faster thanΔ−1:1.

To super-resolve texture, we borrow the color prediction idea used in TMC13 [62]. In the
transform domain prediction of RAHT [75], the estimated color for each occupied child node is
the average the parent node’s color with the colors of the uncle nodes that share an edge with that
child node, weighted by the inverse distance between each involved parent node and the current
child node being estimated. We refer to this method as the weighted average of adjacent neighbors
(WAAN). A variable weight, dependent on 𝑠, was introduced in the WAAN to take into account
the fact that the parent color should be more important as the scale factor decreases. An example
of the neighbors considered to estimate a child node’s color is illustrated in Figure 3.5.

Thus, C𝑠𝑟 (𝑘) = {c𝑠𝑟 (𝑖)} is the set containing the respective colors ofV𝑠𝑟 (𝑘) of a given parent
v𝑑 (𝑘), such that each of the super-resolved colors is:

c𝑠𝑟 (𝑖) =
c𝑑 (𝑘) + 𝜁

∑
ℓ
𝛿−1
ℓ
c𝑑 (ℓ)

1 + 𝜁 ∑
ℓ
𝛿−1
ℓ

, (3.14)

where 𝜁 = 𝛿1𝑠/8, and ℓ represents the index of the occupied neighbors that share a face with v𝑠𝑟 (𝑖),
like illustrated in Figure 3.5(c).

7

8

3 5

10
4 6

1

2

(a) (b) (c)

Figure 3.5: Illustration of the neighbors used in the WAAN calculation. In (a), all the neighbors that must be con-
sidered in the 3 × 3 × 3 are shown. In (b), only the uncle nodes sharing a face with the highlighted child node are
depicted. In (c), the illustration of how the distances are calculated. Only uncle nodes from the topwere shown to ease
representation, but the three uncle nodes from the bottom should also be considered in the calculation.

45

We synthesize the SRmethod using the following pseudo-code algorithms.

Algorithm 1: Intra-frame geometry SR by LUT
Input:𝑉𝑑, 𝐶𝑑, 𝑠

Output:𝑉𝑠𝑟 , 𝐶𝑠𝑟

1 Build
{
LUT𝑗

(
𝜑
)}
, using𝑉𝑑 and 𝑠 as inputs, for the seven parenthood conditions; // Algorithm 2

2 for (𝑘 = 1; 𝑘 ≤ 𝐾 ; 𝑘 = 𝑘 + 1) do
3 𝑗 = 4℘(𝑥𝑘) + 2℘(𝑦𝑘) + ℘(𝑧𝑘); // ℘(𝑥𝑘) is 1 if 𝑥𝑘 is multiparous, and 0 otherwise

/* j=0 -> 1 child, xyz are uniparous */

/* j=1 -> 2 children, yz coordinates are uniparous */

/* j=2 -> 2 children, xz coordinates are uniparous */

/* j=3 -> 2 children, xy coordinates are uniparous */

/* j=4 -> 4 children, only x coordinate is uniparous */

/* j=5 -> 4 children, only y coordinate is uniparous */

/* j=6 -> 4 children, only z coordinate is uniparous */

/* j=7 -> 8 children, xyz are multiparous */

4 if (𝑗 = 0) then
5 V𝑠𝑟 (𝑘) = round(𝑠 · v𝑑 (𝑘));
6 C𝑠𝑟 (𝑘) = c𝑑 (𝑘);
7 else

8 Get 𝜑(v𝑑 (𝑘));
9 𝜎 (v𝑑 (𝑘)) = LUT𝑗

(
𝜑(v𝑑 (𝑘))

)
;

10 V𝑠𝑟 (𝑘) = V𝑢 (𝑘 | 𝜎 (v𝑑 (𝑘)));
11 for (𝑖 = 1; 𝑖 ≤ 𝑖max | V𝑠𝑟 (𝑘); 𝑖 = 𝑖 + 1) do
12 𝜁 = 𝛿1 𝑠/8;

13 c𝑠𝑟 (𝑖) =
c𝑑 (𝑘)+𝜁

∑
ℓ
𝛿−1
𝑙
c𝑑 (𝑙)

1+𝜁 ∑
𝑙
𝛿−1
𝑙

; // ℓ is such that v𝑑 (ℓ) shares a face with v𝑠𝑟 (𝑖)

14 C𝑠𝑟 (𝑘) = {C𝑠𝑟 (𝑘); c𝑠𝑟 (𝑖)};

15 𝑉𝑠𝑟 =
⋃𝐾
𝑘=1V𝑠𝑟 (𝑘);

16 𝐶𝑠𝑟 =
⋃𝐾
𝑘=1 C𝑠𝑟 (𝑘);

46

Algorithm 2: LUT build-up
Input:𝑉𝑑, 𝑠

Output:
{
LUT𝑗

(
𝜑
)}
, are sets of lists linking a neighborhood state, 𝜑, to a child state, 𝜎 , classified

by 𝑗 | 1 ≤ 𝑗 ≤ 7, representing each parenthood condition

1 for (𝑚 = 0; 𝑚 ≤ 226 − 1; 𝑚 = 𝑚 + 1) do
/* initialize each LUT with maximum children occupancy for each parenthood condition */

2 LUT1(𝑚) = 0001 0001; // 2 children, yz coordinates are uniparous

3 LUT2(𝑚) = 0000 0101; // 2 children, xz coordinates are uniparous

4 LUT3(𝑚) = 0000 0011; // 2 children, xy coordinates are uniparous

5 LUT4(𝑚) = 0000 1111; // 4 children, only x coordinate is uniparous

6 LUT5(𝑚) = 1100 1100; // 4 children, only y coordinate is uniparous

7 LUT6(𝑚) = 0101 0101; // 4 children, only z coordinate is uniparous

8 LUT7(𝑚) = 1111 1111; // 8 children, xyz are multiparous

9 for (𝑖 = 1; 𝑖 ≤ length(Δ𝑏:𝑒); 𝑖 = 𝑖 + 1) do
10 𝑉 (𝑖)

𝑑
=𝑉𝑑 + Δ𝑏:𝑒 (𝑖) = {v(𝑖)

𝑑
(𝑘)};

11 𝑉 (𝑖)
𝑑2

= unique

(
round(𝑉 (𝑖)

𝑑
/𝑠)

)
= {v(𝑖)

𝑑2
(�̂�)};

12 for (�̂� = 1; �̂� ≤ �̂�𝑖 ; �̂� = �̂� + 1) do
13 𝑗 = 4℘(𝑥�̂�) + 2℘(𝑦�̂�) + ℘(𝑧�̂�); // ℘(𝑥𝑘) is 1 if 𝑥𝑘 is multiparous, and 0 otherwise

14 Get 𝜑
(
v(𝑖)
𝑑2

(�̂�)
)
;

15 Get 𝜎
(
v(𝑖)
𝑑2

(�̂�)
)
; // this is done by comparing which points of 𝑉 (𝑖)

𝑢 exist in 𝑉 (𝑖)
𝑑

16 table𝑗 =

[
table𝑗 ; 𝜑

(
v(𝑖)
𝑑2

(�̂�)
)
, 𝜎

(
v(𝑖)
𝑑2

(�̂�)
)]

; // gathering data for each condition

17 for (𝑗 = 1; 𝑗 ≤ 7; 𝑗 = 𝑗 + 1) do
18 for (𝑚 = 0; 𝑚 ≤ 226 − 1; 𝑚 = 𝑚 + 1) do
19 if (∃𝑚 ∈ table𝑗 [1]) then
20 LUT𝑗 (𝑚) = 𝐸{table𝑗 [2] | table𝑗 [1] = 𝑚};

47

3.5 SUBJECTIVE QUALITY ASSESSMENT APPLICATION

As briefly discussed in Section 2.4, evaluating distortion on point clouds is not straightforward,
andobjectivemetricsmay, sometimes, lead tomisleading results. In light of these issues, weplanned
to assess distortions introduced by the SRmethods in a subjective evaluation using the renderer de-
veloped in collaborationwith the École Polytechnique Féderale de Lausanne (EPFL) [6]. However,
the experimentwas not carried out due to the restrictions on lab access imposed by theCOVID-19.
Although an internet-based crowdsourcing experiment was an option, as we waited for the pan-
demic situation to improve, the time set for experiment completion became an issue, and we opted
not to proceed with the subjective evaluation. Nonetheless, in the following Section, we present
the developed renderer, which is ready to be used in a future subjective assessment evaluation.

3.5.1 Web-based Renderer

We developed an interactive renderer in JavaScript using the three.js library [105], which has
built-in support for loading point cloud in both PLY and PCD file formats. The loaded geometry
is converted to the Points class, which displays voxels using point primitives for the 2D RBF. By
default, point primitives are squares, and the user may change its shape by importing a custom
RBF geometry using an image file. The PointsMaterial class defines the color, which is loaded
by the input point cloud file, and the size of the points, which can be configured to be either fixed
or adaptive. Point size information needs to be calculated, andwe opted to use off-line calculations
to reduce the computation overhead of the rendering software. So to render a point cloud in our
software, the usermust input a PLY or PCD file containing the geometry and the color of the desired
point cloud, and a JSON configuration file.

A renderer application in three.js requires a virtual scene, a camera, and a renderer with an
associated canvas (a projection plane). We start by creating a virtual scene with the point cloud
model placed in the middle. The background color can be set by the user in the configuration file.
For assessment purposes, we chose a mid-gray value. The scene is captured using an orthographic
camera. To enable interactivity and provide 3D depth cues, we opted to use a camera with track-
ball control, enabling the user to change the camera parameters using mouse movements. Those
changes are updated at a fast rate (over 30fps in a wide variety of devices and up to 60fps on high-
end ones), ensuring smooth transitions of viewpoints for a better immersive experience. The image
captured by the camera is rendered to a canvas using a WebGLRenderer object. The canvas dimen-
sions can be either specified using the configuration file or adaptive to the window size. A snapshot
from the application is shown in Figure 3.6.

There are someoptions to define the initial point size value. Since the splats are always parallel to
the viewplane, one-to-one representation fromvoxels to pixel leads to holes in the perceived surface
when the camera is rotated (Figure 2.9.) To enable watertight surfaces from different viewpoints,
increasing the point size is necessary. Point size can be assigned either globally, using the intrinsic
resolution, or locally, using each point’s nearest neighbor distance. The initial point size is then

48

Figure 3.6: Illustration of the renderer application. For nearly equal stimuli, a pair comparison approach is employed
using a ternary voting system.

adjusted based on the camera zoom parameter. An additional scaling factor is provided as a global
compensating quantity to be adjusted depending on the sparsity of themodel and the desired visual
results [6].

The software can also record the user’s interactivity information to see which viewpoints are
most relevant in each content. This feature is useful for providing weights to the projection-based
metric’s averages, using the time spent at each viewpoint to increase its importance in the calcula-
tion.

49

4 RESULTS AND DISCUSSION

4.1 EVALUATION FRAMEWORK

The presented SR methods from the previous Chapter were all attempts to improve the NNI
upsampling. Thus, considering that, as far as we know, at the time of this writing, there are no
other methods to super-resolve grid downsampled voxelized point clouds in the literature, we de-
cided that the best way to assess the quality of the proposedLUT-based SRmethodwas to compare
it with the NNI upsampling. To mitigate the aliasing effects from the base approach, we also con-
sidered the smoothed NNI upsampling.

We start by presenting the chosen datasets and test conditions. Then the results are presented
and discussed. In the final Section of this Chapter, we present a direct application for the LUT-
based SRmethod for PCC.

4.2 DATASETS AND TEST CONDITIONS

Considering that the proposed SR method was developed with intra-prediction in mind, we
focused on category 1 contents (static objects and scenes) with less than 4million voxels, due to the
current version of the code’s memory restrictions.

The proposed method can be largely affected by the point cloud capturing and voxelization
processes due to its statistical nature. For example, if the capturing process adds a thick layer of hid-
den points to the point cloud, its appearance may not change, but it can significantly impact the
neighborhood statistics and, consequently, the creation of the LUT. To perform the experiment,
we prioritize point clouds from the CTC [85] which are originally voxelized, avoiding biases intro-
duced in the voxelization process. Nonetheless, there are just a few of those point clouds, so we also
needed to add point clouds that required a pre-processing voxelization step.

To reduce the number of comparisons and to obtain a more representative result, we clustered
the point clouds sharing the same source, voxel depth, and density into groups, whenever possible.

In order to evaluate the sparsity of a point cloud, we define the densitymeasure 𝜌𝜑 as the average
neighborhoodoccupancy-rate of adjacent voxels to anoccupied voxel. Thisway, a value of 𝜌𝜑 = 0.5
indicates that each voxel of the point cloud has, on average, 13 occupied neighbors of the 26 in
the 3 × 3 × 3 neighborhood. Empirically, we found out that point clouds in which 𝜌𝜑 ≥ 0.3
presented projections with a one-to-one relationship between rendered pixels and voxels without
holes (watertight projections). This represents an average of about 8 neighbors per occupied voxel.
We consider point clouds in this situation to be dense. If, however, 0 < 𝜌𝜑 < 0.3 the point cloud is
considered sparse. If 𝜌𝜑 = 0 for a given neighborhood size𝑀 , but 𝜌𝜑 > 0 for a neighborhood size

50

Table 4.1: Summary of information of the point clouds representing human figures.

Content Source Voxelization Voxel depth # voxels 𝜌𝜑

Group: 8i_vox10 8i

longdress ✗ 10-bit 857,966 0.429

loot ✗ 10-bit 805,285 0.428

redandblack ✗ 10-bit 757,691 0.433

soldier ✗ 10-bit 1,089,091 0.432

Group: 8i_vox12 8i

boxer ✗ 12-bit 3,493,085 0.031

longdress12 ✗ 12-bit 3,096,122 0.027

loot12 ✗ 12-bit 3,017,285 0.029

redandblack12 ✗ 12-bit 2,770,567 0.025

thaidancer 8i ✗ 12-bit 3,130,215 0.332

Group: owlii Owlii

basketball_player ✗ 11-bit 2,925,514 0.452

dancer ✗ 11-bit 2,592,758 0.445

queen Technicolor ✗ 10-bit 1,000,993 0.524

Group:MVUB Microsoft

andrew9 ✗ 9-bit 279,664 0.547

david9 ✗ 9-bit 330,797 0.542

phil9 ✗ 9-bit 370,798 0.543

ricardo9 ✗ 9-bit 214,656 0.550

sarah9 ✗ 9-bit 302,437 0.538

𝑀 ′
> 𝑀 , then the point cloud is considered regularly-spaced dense, and it is possible to reduce an

initially assumed sparse point cloud into a dense one at a smaller resolution. This typically occurs
either after an inefficient voxelization process, or when the upsampling by simple expansion is done
in an LR point cloud, such as in the lossy octree configuration used in the TMC13 codec [62].

Tables 4.1 and 4.2 summarize information about the chosen contents, while Figure 4.1 depicts
representatives viewpoints form each group.

Point clouds representing human figures were captured with more recent technology and in a
controlled environment, ensuring a better quality to them. The 8i_vox10 group [50] is comprised
of longdress (longdress_vox10_1300), loot (loot_vox10_1200), redandblack (redandblack_vox10_
1550), and soldier (soldier_vox10_0690). The 8i_vox12 group [106] is comprised of boxer (boxer_
viewdep_vox12), longdress12 (longdress_viewdep_vox12), loot12 (loot_viewdep_vox12), and red-

andblack12 (redandblack_viewdep_vox12); soldier_viewdep_vox12 was not used because it sur-
passes the voxel cap. Thaidancer (Thaidancer_viewdep_vox12) [106], although sharing the same
source of the rest of the 8i_vox12 group, has different characteristics from the others, as can be ob-

51

Table 4.2: Summary of information of the point clouds representing objects.

Content Source Voxelization Voxel depth # voxels 𝜌𝜑

head MPEG ✓ 9-bit 938,112 0.532

biplane ScanLAB ✓ 10-bit 1,181,016 0.567

statue_klimt MPEG ✓ 10-bit 483,068 0.209

arco_valentino UPM ✗ 12-bit 1,481,746 0.025

facade_09 MPEG ✓ 11-bit 1,560,786 0.165

house MPEG ✓ 10-bit 3,638,139 0.247

served by its density, and for that it was separated. The owlii group [14] contains basketball_player
(basketball_player_vox11_00000200) and dancer (dancer_vox11_00000001). A synthetic human
figure is represented in queen (queen_frame_0200) from Technicolor. The Microsoft Voxelized
Upper Body (MVUB) group [107] contains the first frame of each of the sequences of andrew9,
david9, phil9, ricardo9, and sarah9. Contents from 8i_vox10, 8i_vox12, thaidancer, owlii, and
queen can be found in theMPEG repository1, whileMVUB can be found in the JPEGPleno repos-
itory2.

On the other hand, point clouds representing objects were captured using older technologies,
and most of them were originally meshes that needed to be voxelized. Many point clouds in this
category have more than 4 million occupied voxels, so we had to downsample some of them to
reach the point cap. This was the case for head, whose original version found in the MPEG1

(Head_00039_vox12) has over 13million points, and house (House_without_roof_00057_vox12)
which originally has over 4 million points. Although under the point cap, other point clouds
were extremely sparse, but not quite regularly-space dense, 𝜌𝜑 ' 0. Because of that, downsam-
pling those point clouds with a factor 𝑠 = 2 would decimate less than 1% of the original points,
making SR unjustified. In these cases, we reduced the bit depth to increase density. This was
done for statue_klimt (Statue_Klimt_vox12) and facade_09 (Facade_00009_vox20), which can
also be found in the MPEG repository1. Arco_valentino was originally a mesh captured by the
Universidad Politécnica de Madrid (UPM), but a voxelized version can be found in the MPEG
repository1 (Arco_Valentino_Dense_vox12), and this was used without modifications. Lastly, bi-
plane (1x1_Biplane_Combined_000) is also originally amesh found in the JPEGPleno repository2,
which needed to be voxelized for our purposes.

1https://mpegfs.int-evry.fr/mpegcontent/
2http://plenodb.jpeg.org/

52

https://mpegfs.int-evry.fr/mpegcontent/
http://plenodb.jpeg.org/

(a) longdress (b) boxer (c) thaidancer (d) basketball_player (e) queen

(f) ricardo9 (g) head (h) statue_klimt (i) biplane

(j) arco_valentino (k) facade_09 (l) house

Figure 4.1: Representative viewpoints of some of the testmodels. Human figures are represented from (a) to (f), whilst
objects are represented from (g) to (l).

53

4.3 ASSESSING THE QUALITY OF THE PROPOSED SUPER-RESOLUTION METHOD

Ten LR versions of each input point cloud were created by varying the scale factor 𝑠 in the in-
terval [1.1, 2]. Then, for each LRpoint cloud, we created anNNI upsampling version, a smoothed
NNIupsampling versionusing theLS (NNI+LS), and anSRversionusing the algorithmofSection
3.4 (LUT). To assess each version’s quality, we chose to use six metrics since point clouds assess-
ment metrics are rather specific in the type of distortion they can capture. Point-based metrics are
useful for capturing how close the two sets of compared points are. For that, we chose PSNRD1

(2.13), PSNRD2 (2.14), and PSNRY (2.18), which is referred to as Luma end-to-end PSNR.

Projection-based metrics are, in general, better to capture the visual fidelity of the distorted
content. PPSNR (2.23), PSSIM (2.26), and PVIFP (2.29) were chosen for the projection-based
assessment. Those metrics, however, are dependent on the selected rendering method. Intending
to isolate the SR distortions, and since no subjective assessment was performed, we chose not to
increase the point size in the renderer configurations. The idea was not to add further rendering
distortions that could change the upsampling methods’ intrinsic distortions. Thus, to get the pro-
jections, points were rendered as unit-sized cubes. Only six projection viewswere used (the six faces
of the bounding cube containing the point cloud) to avoid aliasing of the other view angles. In this
way, each visible voxel is projected into a single pixel so that in a 10-bit point cloud, there are six
image projections of 1024× 1024 pixels. The background color was set to a mid-gray value, and to
make the metrics more sensitive, we only considered the rectangular region formed by the union
between the foregrounds of the reference and the distorted projections.

The density measure 𝜌𝜑 is a good predictor of the proposed method’s performance. Analyzing
what happens with 𝜌𝜑 of a point cloud at different scales, we can illustrate its prediction property.
In Figure 4.2, we use as an example a sparse and a dense point clouds to illustrate the density behav-
ior with the downsampling. The sparse point cloud represented by longdress12 has a steep slope in
its density curve for 1 ≤ 𝑠 ≤ 2, indicating significant changes in the geometry structure occurwhen
the downsampling is performed. The point cloud’s original sparsity quickly vanishes as 𝑠 increases,
misleading the LUT formation from a denser point cloud. When operating in point clouds with
flatter density slopes, as in longdress, the geometry structures of the downsampled versions aremore
similar to the original point cloud, so the algorithm has better chances of making the right choices
about child occupancy.

Figures 4.3 and 4.4, depict the point-basedmetrics assessment for the humanfigures and for the
objectsmodels, respectively. Looking atD1 andD2metrics on the first two columns of the graphics
fromboth figures, we can see that the LUTmethod achieved superior results in every case for lower
values of 𝑠. Noticing that, in such cases, there are less points that need to be super-resolved, than for
larger values of 𝑠. For dense point clouds (𝜌𝜑 ≥ 0.3), the LUTmethod was better than both NNI
and NNI+LS, by about 5dB and 2dB, respectively, for all values of 𝑠. In sparser models, however,
the gain was smaller, and in some cases, the NNI+LS method was virtually tied or better than the
LUT, notably for higher values of 𝑠. Remember that, to super-resolve𝑉𝑑 with a factor of 𝑠, we need
to downsample𝑉𝑑 by 𝑠 once more to build the LUT (Algorithm 2). Thus, we expect the geometry

54

Density variation with downsampling

Downsampling factor [s]
1 1.5 2 2.5 3 3.5 4

0

0.2

0.4

0.6

longdress12
longdress

Figure 4.2: Comparison of the density variationwith the downsampling factor between dense and sparse point clouds.

structure to be maintained somewhat unchanged by a downsampling factor of 𝑠2. By comparing
how 𝜌𝜑 changes with 𝑠 in sparse and dense point clouds, we can see that it was expected for the
LUTmethod to struggle when employed to super-resolve the former kind of content.

In the dense sets queen,MVUB, head, and biplane, LUT gains over the NNI+LS were not as
significant as the others. All those sets have some form of bias in their geometry, like holes, spu-
rious points, and thick hidden layers, which have proved detrimental to the LUT method. One
interesting thing to notice is how consistent the geometrymetrics were in the group sets (8i_vox10,
8i_vox12, owlii, andMVUB), indicating that the capturing and processing methods are more rele-
vant than the contents themselves for any of the upsampling methods.

The point-based texture assessment in the third column of graphics from Figures 4.3 and 4.4
also showed better results for the LUTmethod in almost every case. It is important to acknowledge
that PSNR𝑌 has a dependence on the geometry quality [108], so part of the gains in color is indeed
related to the gains in the geometryquality. Thedegradationof texture in sparse sets in theNNI+LS
method is somewhat interesting. The texture changes more abruptly among neighboring voxels in
sparse point clouds than in dense ones. Thus, averaging neighboring textures in the former case is
more prone to cause errors.

Differently from what happened with the geometry, the standard deviations of texture metrics
in the group sets were quite prominent. This happened because there is a greater dependence on
the content when upsampling color. For example, observe the difference in the texture of the shirt
patterns displayed in Figure 4.5. Nonetheless, the trend is well captured by themean in those cases.

Figures 4.6 and 4.7 show the projection-basedmetrics assessment for human figures and for ob-
jectsmodels, respectively. In the first columnof graphics, we can see that thePPSNRresults showed
a good correlation with the point-based results, with the LUTmethod being the best overall. This
was expected since all of those are distance-based metrics, and they rely on a similar calculation
method. The low values of PPSNR observed, particularly for sparse point clouds, occur because
of the way we chose to render the projections. The majority of errors made by NNI upsampling-
related methods are usually of excess nature, i.e., they add more points than necessary in their at-

55

D1 Geometry PSNR D2 Geometry PSNR Luma end-to-end PSNR

1 1.2 1.4 1.6 1.8 2
75

80

85

P
S

N
R

 [
d

B
]

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2
80

82

84

86

88

P
S

N
R

 [
d

B
]

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2

40

45

50

55

60

P
S

N
R

 [
d

B
]

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2

80

85

90

P
S

N
R

 [
d

B
]

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2
80

85

90

P
S

N
R

 [
d

B
]

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2
35

40

45

P
S

N
R

 [
d

B
]

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2
70

75

80

85

P
S

N
R

 [
d

B
]

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2
75

80

85

90

P
S

N
R

 [
d

B
]

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2

40

45

50
P

S
N

R
 [

d
B

]
NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2
65

70

75

80

P
S

N
R

 [
d

B
]

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2

70

75

80

85

P
S

N
R

 [
d

B
]

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2

34

36

38

40

42

P
S

N
R

 [
d

B
]

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2
60

65

70

P
S

N
R

 [
d

B
]

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2

65

70

75

P
S

N
R

 [
d

B
]

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2
30

35

40

45

50

P
S

N
R

 [
d

B
]

NNI
NNI+LS
LUT

Downsample factor [s] Downsample factor [s] Downsample factor [s]

1 1.2 1.4 1.6 1.8 2
65

70

75

80

P
S

N
R

 [
d

B
]

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2

70

75

80

P
S

N
R

 [
d

B
]

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2
30

35

40

45

50

P
S

N
R

 [
d

B
]

NNI
NNI+LS
LUT

Figure 4.3: Point-based metrics for the point clouds representing human figures.

56

1 1.2 1.4 1.6 1.8 2
65

70

75

P
S

N
R

 [
d

B
]

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2

70

75

80

P
S

N
R

 [
d

B
]

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2
20

22

24

26

P
S

N
R

 [
d

B
]

NNI
NNI+LS
LUT

D1 Geometry PSNR D2 Geometry PSNR Luma end-to-end PSNR

Downsample factor [s] Downsample factor [s] Downsample factor [s]

1 1.2 1.4 1.6 1.8 2
60

65

70

P
S

N
R

 [
d

B
]

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2

65

70

75

P
S

N
R

 [
d

B
]

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2
26

28

30

32

P
S

N
R

 [
d

B
]

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2
64

66

68

70

72

P
S

N
R

 [
d

B
]

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2
68

70

72

74

76

P
S

N
R

 [
d

B
]

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2

30

32

34

36

P
S

N
R

 [
d

B
]

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2

76

78

80

82

P
S

N
R

 [
d

B
]

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2
80

82

84

86

88

P
S

N
R

 [
d

B
]

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2

30

35

40
P

S
N

R
 [

d
B

]
NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2
70

72

74

76

78

P
S

N
R

 [
d

B
]

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2

75

80

85

P
S

N
R

 [
d

B
]

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2
30

35

40

P
S

N
R

 [
d

B
]

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2
70

75

80

P
S

N
R

 [
d

B
]

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2

75

80

85

P
S

N
R

 [
d

B
]

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2
30

35

40

P
S

N
R

 [
d

B
]

NNI
NNI+LS
LUT

Figure 4.4: Point-based metrics for the point clouds representing objects.

57

(a) (b)

Figure 4.5: Texture comparison for upsampling. In both cases, we have the original point cloud on the left side, fol-
lowed by the LUT SR version for 𝑠 = 1.5 on the right side. The pattern in andrew9’s shirt in (a) is more challenging to
be upsampled than the one in ricardo9’s shirt in (b). Sowe expect higher PSNR𝑌 values for ricardo9 than for andrew9.

tempts to recreate the original point cloud. In sparse point clouds, those errors are more apparent,
reducing the absolute level of the PPSNR. If a different rendering approach was used, probably
higher values were to be observed.

Results fromPVIFP andPSSIMdonot share a high correlationwith point-basedmetrics, how-
ever. Those metrics assess visual fidelity using aspects more related to the HVS than the PPSNR.
Their results add a different perspective to each method’s performance, which is greatly depen-
dent on the rendering choice. PVIFP results, on the second column of graphics in Figures 4.6 and
4.7, were more dependent on each content. In the human figures set, the LUT and the NNI+LS
methods outperformed theNNI upsampling, with the former having better results at lower values
of 𝑠, and the latter gaining for higher downsampling factors. The NNI upsampling method was
usually rated as the best method for the objects set, with a preference for the NNI+LS version at
higher values of 𝑠. PSSIM results, on the third column, although not as strongly correlated with
the point-based metrics as the PPSNR, showed a slight preference for the LUTmethod, especially
for the human figures.

Although not a unanimous consensus among all the six assessedmetrics, we can see a preference
for the LUT method, notably for denser point clouds. It should be pointed out that there is no
perfect metric, and each of them should be seen as a fidelity assessment from a different point of
view and considering different aspects. Withal, the current standard metrics for evaluating and
guiding the evolution of compression and processing of point clouds are the point-based ones.
Furthermore, seeing that the optimization of the point-based metrics guided the development of
the proposed SR method, it is fair to say that the LUT method outperformed the alternatives by
the presented results.

Be that as it may, we should underline that the current choice of using the maximum error as
the final metric, i.e., D1MSE

= max(D1MSE
O , D1MSE

D) from (2.11), can lead to misleading results. As
illustrated in Figures 2.24 and 2.25, the D1MSE

O measurement relates to errors by the omission of
correct points, incorrect by missing, whilst the D1MSE

D measurement relates to errors by the excess
of points, incorrect by addition. Shifts in the degraded geometry can be viewed as a combination of
the two errors, a correct point is missed, while an extra incorrect point is added. When developing
SRmethods, wehad to constantly checkbothmeasurements to seewhether themethodwas adding

58

PPSNR PVIFP PSSIM

Downsample factor [s] Downsample factor [s] Downsample factor [s]

1 1.2 1.4 1.6 1.8 2
25

30

35

40

45

P
S

N
R

 [
d

B
]

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2
0.6

0.7

0.8

0.9

1

V
IF

P

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2
0.85

0.9

0.95

1

S
S

IM

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2
15

20

25

30

P
S

N
R

 [
d

B
]

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2
0

0.5

1

V
IF

P

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2
0.4

0.6

0.8

1

S
S

IM

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2
30

35

40

45

P
S

N
R

 [
d

B
]

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2

0.8

0.85

0.9

0.95

1

V
IF

P

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2
0.94

0.96

0.98

1

S
S

IM

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2

35

40

45

P
S

N
R

 [
d

B
]

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2

0.8

0.85

0.9

0.95

1

V
IF

P

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2

0.96

0.97

0.98

0.99

1
S

S
IM

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2
30

35

40

P
S

N
R

 [
d

B
]

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2
0.7

0.8

0.9

1

V
IF

P

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2
0.92

0.94

0.96

0.98

1

S
S

IM

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2
25

30

35

P
S

N
R

 [
d

B
]

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2
0.6

0.7

0.8

0.9

1

V
IF

P

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2
0.85

0.9

0.95

1

S
S

IM

NNI
NNI+LS
LUT

Figure 4.6: Projected-based metrics for the point clouds representing human figures.

59

PPSNR PVIFP PSSIM

Downsample factor [s] Downsample factor [s] Downsample factor [s]

1 1.2 1.4 1.6 1.8 2

24

26

28

30

P
S

N
R

 [
d

B
]

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2

0.4

0.5

0.6

0.7

0.8

V
IF

P

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2

0.7

0.8

0.9

1

S
S

IM

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2
20

25

30

P
S

N
R

 [
d

B
]

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2

0.4

0.5

0.6

0.7

0.8

V
IF

P

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2

0.8

0.85

0.9

0.95

S
S

IM

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2

20

22

24

26

P
S

N
R

 [
d

B
]

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2

0.4

0.5

0.6

0.7

0.8

V
IF

P

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2
0.6

0.7

0.8

0.9

S
S

IM

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2

20

22

24

26

P
S

N
R

 [
d

B
]

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2
0

0.5

1

V
IF

P

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2
0.7

0.8

0.9

1
S

S
IM

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2
18

20

22

24

26

P
S

N
R

 [
d

B
]

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2
0.2

0.4

0.6

0.8

V
IF

P

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2
0.6

0.7

0.8

0.9

S
S

IM

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2
22

24

26

28

30

P
S

N
R

 [
d

B
]

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2
0.2

0.4

0.6

0.8

V
IF

P

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2

0.8

0.85

0.9

0.95

S
S

IM

NNI
NNI+LS
LUT

Figure 4.7: Projected-based metrics for the point clouds representing objects.

60

or removing too many points. When only one of these measurements is taken as the final metric,
there is an underlying assumption that both measurements have the same behavior through all the
distortion channel.

This problem can be illustrated by looking at the twomeasurements of the D1MSE metric from
arco_valentino, Figure 4.8. We can see that the maximum error (excess error) for both NNI and
NNI+LS methods is virtually the same, although omission errors are quite different. Using only
the maximum error completely discards this information, and both methods are rated as having
the same result, as depicted in Figure 4.4. If we consider the average value as the final D1 metric,
the bottom right graphic of Figure 4.8, the results from the point-to-point metric become much
more correlated to what was observed for arco_valentino in the PVIFP and PSSIMmetrics.

1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5
NNI

Downsample factor [s]

M
SE

1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5
LUT

Downsample factor [s]

M
SE

1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5
NNI+LS

Downsample factor [s]

M
SE

1 1.2 1.4 1.6 1.8 2

70

72

74

76

D1 Geometry PSNR

Downsample factor [s]

P
SN

R
 [

d
B

]

Excess
Omission
Average

Excess
Omission
Average

Excess
Omission
Average

NNI
NNI+LS
LUT

Figure 4.8: Behavior of point-to-point measurements for arco_valentino. Considering both error measurements, or
perhaps their average value, can give a better understanding of the distortions present in each upsampling method,
which is more accurate than only considering the maximum value. The three first plots show the behavior of the
omission (D1MSE

O), excess (D1MSE
D), and averageMSE for theNNI, NNI+LS, and LUTmethods, respectively. The last

plot shows how the final PSNRD1 metric would be if the average MSE was considered.

Although this will not happen for every case, which is even illustrated by the unchanged be-
havior of the LUT curve in Figure 4.8, we believe that using both values of the point-based error
measurements in the final metric may improve the metric correlation with subjective evaluation.

Viewpoints used in the projection-based metrics assessment for some of the point clouds are
shown in Figures 4.9 and 4.10 for visual comparison. The full range of results for all tested point
clouds can be found online3.

3http://www.gitlab.com/tomasborges/fractional-sr-vox-point-clouds

61

http://www.gitlab.com/tomasborges/fractional-sr-vox-point-clouds

boxer
Ground truth

LR, s = 1.1 NNI NNI+LS LUT

queen
Ground truth

LR, s = 1.3 NNI NNI+LS LUT

phil9
Ground truth

LR, s = 1.5 NNI NNI+LS LUT

dancer
Ground truth

LR, s = 1.7 NNI NNI+LS LUT

thaidancer
Ground truth

LR, s = 1.9 NNI NNI+LS LUT

redandblack
Ground truth

LR, s = 2 NNI NNI+LS LUT

Figure 4.9: Viewpoint projections for some of the point clouds with human figures.

62

house
Ground truth

LR, s = 1.1 NNI NNI+LS LUT

head
Ground truth

LR, s = 1.2 NNI NNI+LS LUT

facade_09
Ground truth

LR, s = 1.4 NNI NNI+LS LUT

biplane
Ground truth

LR, s = 1.6 NNI NNI+LS LUT

statue_klimt
Ground truth

LR, s = 1.8 NNI NNI+LS LUT

arco_valentino
Ground truth

LR, s = 2 NNI NNI+LS LUT

Figure 4.10: Viewpoint projections for some of the point clouds with objects.

63

4.4 USING SUPER-RESOLUTION FOR INTERPOLATIVE COMPRESSION

The good performance of the LUTmethod observed in the last Section can be applied towards
compression, be that for context generation or for interpolative compression. As we saw in Section
2.3.2, in the TMC13 codec, lossy geometry can be achieved either by just using a pruned octree or,
when the trisoupmethod is enabled, bybuilding a surface interpolationon topof theprunedoctree.
Thus, a direct application for interpolative compression can bemade by super-resolving the output
of G-PCC’s pruned octree with our method at the decoder side. The approach is similar to what
the trisoup does to improve the pruned octree geometry, but since it does not require the original
point cloud, it can be done after the decoding step, avoiding sending extra bits for the segment
indicators and vertex positions to refine the point cloud resolution. This approach’s downside is
that the recolorization step cannot be performedwith the decoded point cloud as the original color
information is not present. So we expect the texture from the trisoupmethod to be better, albeit at
a higher bit-rate.

In TMC13, when lossy geometry is performed using only the pruned octree, the decompressed
point cloud is upsampled at the decoder side without any interpolation. Only expansion is per-
formed,𝑉𝑒 =𝑉𝑑 · 𝑠. If our SRmethod is used at the decoder instead of the simple expansion, we can
improve distortion results without changing the compression rate. The experiment was performed
for longdress, loot, redandblack, and soldier comparing both octree and trisoup geometry encoders
rate versus distortion plots (G-PCC version 8.0). For all cases, the color attributes were compressed
using the RAHT encoder [67] with quantization steps determined by the MPEG protocol in the
CTC [85]. For the first two lower rate points, where 𝑠 = 8, and 𝑠 = 4, we used the proposed algo-
rithm in three (2×2×2) and two (2×2) steps, respectively, since at the current version of the code,
the proposed method is limited to super-resolving a maximum scale factor of 𝑠 = 2. In the last
four rate points 𝑠 = 2, 𝑠 = 4/3, 𝑠 = 8/7, and 𝑠 = 16/15, the algorithm was applied just once. Even
though our focus is not on color, our luma results are still very competitive, while the geometry eas-
ily outperforms the alternatives in all cases. The best results are achieved when 𝑠 is inside the [1, 2]
interval. Results are depicted in Figure 4.11. When considering projection-based metrics, Figure
4.12, we also obtained superior results. In Figure 4.13, projections from soldier were gathered. It is
remarkable to see the improvements in geometry delivered by the proposedmethod in dense point
clouds. The absence of holes when compared to the trisoup, and the refined edges when compared
to the pruned octree make for a much better output geometry.

64

0 1 2
Tota l bpov

50

60

70

80

P
S

N
R

 [
d

B
]

D1 Geometry PSNR

octree
tris oup
octree+LUT

0 1 2
Tota l bpov

60

70

80

P
S

N
R

 [
d

B
]

D2 Geometry PSNR

octree
tris oup
octree+LUT

0 1 2
Tota l bpov

20

30

40

P
S

N
R

 [
d

B
]

Luma end-to-end PSNR

octree
tris oup
octree+LUT

soldier

0 1 2
Tota l bpov

50

60

70

80

P
S

N
R

 [
d

B
]

D1 Geometry PSNR

octree
tris oup
octree+LUT

0 1 2
Tota l bpov

60

70

80

P
S

N
R

 [
d

B
]

D2 Geometry PSNR

octree
tris oup
octree+LUT

0 1 2 3
Tota l bpov

20

30

40
P

S
N

R
 [

d
B

]
Luma end-to-end PSNR

octree
tris oup
octree+LUT

redandblack

0 1
Tota l bpov

50

60

70

80

P
S

N
R

 [
d

B
]

D1 Geometry PSNR

octree
tris oup
octree+LUT

0 1
Tota l bpov

60

70

80

P
S

N
R

 [
d

B
]

D2 Geometry PSNR

octree
tris oup
octree+LUT

0 1 2
Tota l bpov

20

30

40

P
S

N
R

 [
d

B
]

Luma end-to-end PSNR

octree
tris oup
octree+LUT

loot

0 1 2 3
Tota l bpov

50

60

70

80

P
S

N
R

 [
d

B
]

D1 Geometry PSNR

octree
tris oup
octree+LUT

0 1 2 3
Tota l bpov

60

70

80

P
S

N
R

 [
d

B
]

D2 Geometry PSNR

octree
tris oup
octree+LUT

0 1 2 3 4
Tota l bpov

20

30

40

P
S

N
R

 [
d

B
]

Luma end-to-end PSNR

octree
tris oup
octree+LUT

longdress

Figure 4.11: Point-based metrics for the interpolative compression application in the 8i_vox10 group.

65

soldier

redandblack

loot

longdress

0 1 2 3 4
Tota l bpov

20

30

40

P
S

N
R

 [
d

B
]

PPSNR

octree
tris oup
octree+LUT

0 1 2 3 4
Tota l bpov

0.6

0.8

1

S
S

IM

PSSIM

octree
tris oup
octree+LUT

0 1 2 3 4
Tota l bpov

0

0.5

1

V
IF

P

PVIFP

octree
tris oup
octree+LUT

0 1 2
Tota l bpov

20

30

40

50

P
S

N
R

 [
d

B
]

PPSNR

octree
tris oup
octree+LUT

0 1 2
Tota l bpov

0.8

0.9

1

S
S

IM

PSSIM

octree
tris oup
octree+LUT

0 1 2
Tota l bpov

0

0.5

1

V
IF

P

PVIFP

octree
tris oup
octree+LUT

0 1 2 3
Tota l bpov

20

30

40

P
S

N
R

 [
d

B
]

PPSNR

octree
tris oup
octree+LUT

0 1 2 3
Tota l bpov

0.8

0.9

1

S
S

IM

PSSIM

octree
tris oup
octree+LUT

0 1 2 3
Tota l bpov

0

0.5

1
V

IF
P

PVIFP

octree
tris oup
octree+LUT

0 1 2
Tota l bpov

20

30

40

P
S

N
R

 [
d

B
]

PPSNR

octree
tris oup
octree+LUT

0 1 2
Tota l bpov

0.8

0.9

1

S
S

IM

PSSIM

octree
tris oup
octree+LUT

0 1 2
Tota l bpov

0

0.5

1

V
IF

P

PVIFP

octree
tris oup
octree+LUT

Figure 4.12: Projection-based metrics for the interpolative compression application in the 8i_vox10 group.

66

original

Figure 4.13: Subjective comparison for interpolative compression using soldier. We compare geometry and color dis-
tortions for the octree, trisoup, and the proposed interpolative compression application at around the same bit-rate.
The texture was compressed using the RAHT encoder.

67

5 CONCLUSIONS

A new method was presented for super-resolving intra-frame voxelized point clouds, in which
self-similarities of different scales of a point cloud are used to define which of the possible child
nodes should be occupied. The SR was performed in fractional downsampled LR point clouds,
which can be efficiently represented by the octree structure. Thus, making the proposed method
suitable to be used with current state-of-the-art coders.

As no other form of super-resolving intra-frame voxelized point clouds was encountered in the
literature, we developed a framework to assess the method’s performance. Extensive results show
that the proposed method yields lower distortion results when compared to the NNI upsampling
and to the NNI upsampling followed by smoothing methods. Furthermore, the method in PCC
has shown interesting and competitive results. Although only static point-clouds were used, the
proposed method can be easily extended to dynamic ones, with probably even better results [5], as
more frames are available to create the LUT.

Moreover, we presented a discussion about techniques to perform fractional resampling of vox-
elizedpoint clouds,which, although alreadyused in somePCCapplications (e.g., TMC13), has not
yet been properly presented in the literature.

The bulk of thework in this thesis has been submitted to a journal in July 2020 and is still under
revision.

5.1 FUTURE WORK

Future work may focus on robustness against bias in the point cloud geometry and improve-
ments in the super-resolution of sparse point clouds Additionally, a subjective evaluation of the
method should be performed. We also plan to improve the super-resolution of texture attributes.

68

REFERENCES

[1] P. A. Chou. (2018, Jun.) Holograms are the next video. ACM Multimedia Systems
Conference. Invited Keynote talk. Accessed: 10-09-2020. [Online]. Available: http:
//www.mmsys2019.org/downloads/slides/slides-chou.pdf

[2] MPEG, “MPEG Strategic Standardisation Roadmap,” ISO/IEC JTC 1/SC 29/WG 11,
Geneva, CH, Tech. Rep. N16316, Jun. 2016.

[3] 3DG, “MPEG3DGandRequirements: Call for proposals for point cloud compression v2,”
ISO/IEC MPEG JTC1/SC29/WG11, Hobart, AU, Approved WG 11 document N16763,
April 2017.

[4] B. Zeng and A. Venetsanopoulos, “A JPEG-based interpolative image coding scheme,” in
IEEE International Conference on Acoustics Speech and Signal Processing. IEEE, 1993.

[5] D. C. Garcia, T. A. Fonseca, R. U. Ferreira, and R. L. de Queiroz, “Geometry coding for
dynamic voxelized point clouds using octrees and multiple contexts,” IEEE Transactions on

Image Processing, vol. 29, pp. 313–322, 2019.

[6] E. Alexiou, I. Viola, T. M. Borges, T. A. Fonseca, R. L. de Queiroz, and T. Ebrahimi, “A
comprehensive study of the rate-distortion performance in MPEG point cloud compres-
sion,” APSIPA Transactions on Signal and Information Processing, vol. 8, 2019.

[7] A. B. Tucker, Ed., Computer science handbook, 2nd ed. Chapman &Hall/CRC, 2004.

[8] A. C. Telea,Data Visualization, 2nd ed. Taylor & Francis Ltd., 2014.

[9] M. Levoy. (2014) The Stanford 3D Scanning Repository. Stanford University Computer
Graphics Laboratory. Accessed: 15-10-2020. [Online]. Available: http://graphics.stanford.
edu/data/3Dscanrep/

[10] G. Turk andM. Levoy, “Zippered polygonmeshes from range images,” in Proceedings of the
21st annual conference on Computer graphics and interactive techniques - SIGGRAPH '94.
ACM Press, 1994.

[11] C. Tulvan, R. Mekuria, Z. Li, and S. Laserre, “Use Cases for Point Cloud Compression
(PCC),” ISO/IEC MPEG JTC 1/SC 29/WG 11, Geneva, CH, Tech. Rep. N16331, Jun.
2016.

[12] S. Schwarz,M.Preda, V.Baroncini,M.Budagavi, P.Cesar, P.A.Chou,R.A.Cohen,M.Kri-
vokuća, S. Lasserre, Z. Li, J. Llach, K. Mammou, R. Mekuria, O. Nakagami, E. Siahaan,
A. Tabatabai, A.M. Tourapis, and V. Zakharchenko, “EmergingMPEG standards for point
cloud compression,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems,
vol. 9, no. 1, pp. 133–148, 2019.

69

http://www.mmsys2019.org/downloads/slides/slides-chou.pdf
http://www.mmsys2019.org/downloads/slides/slides-chou.pdf
http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/

[13] C. Tulvan andM. Preda, “Point cloud compression for cultural objects,” ISO/IECMPEG
JTC1/SC29/WG11, Geneva, CH, Document m37240, Oct. 2015.

[14] Y. Xu, Y. Lu, and Z. Wen, “Owlii Dynamic Human Textured Mesh Sequence Dataset,”
ISO/IECMPEG JTC1/SC29/WG11, Macau, China, Tech. Rep. m41658, Oct. 2017.

[15] R. Cohen, H. Ochimizu, D. Tian, and A. Vetro, “Mobile Mapping System Point Cloud
Data fromMitsubishi Electric,” ISO/IECMPEG JTC1/SC29/WG11, Hobart, AU, Input
Contribution m40495, Apr. 2017.

[16] P. Alliez, F. Forge, L. De Luca, M. Pierrot-Deseilligny, and M. Preda. (2017) Culture 3D
Cloud: A Cloud Computing Platform for 3D Scanning, Documentation, Preservation
and Dissemination of Cultural Heritage. Accessed: 15-10-2020. [Online]. Available:
http://c3dc.fr/

[17] M. Shaw and W. T. and. Scanlab projects. ScanLAB Projects. Accessed: 15-10-2020.
[Online]. Available: https://scanlabprojects.co.uk/work/

[18] L. Geosystems. (2019) 3 reasons you should be using point clouds. Leica Geosys-
tems. Accessed: 02-09-2020. [Online]. Available: https://www.youtube.com/watch?v=
dlXF3CX0o2Y

[19] FARO. 3d solutions for advanced product design. FARO. Accessed: 02-09-2020. [Online].
Available: https://3ddesign.faro.com/us/product-development/research-development/

[20] A. Collet, M. Chuang, P. Sweeney, D. Gillett, D. Evseev, D. Calabrese, H. Hoppe, A. Kirk,
and S. Sullivan, “High-quality streamable free-viewpoint video,” ACM Transactions on

Graphics, vol. 34, no. 4, pp. 1–13, jul 2015.

[21] A. Kipman. (2016) Ted2016: It’s a phenomenal time to be human. Microsoft HoloLens.
Accessed: 02-09-2020. [Online]. Available: https://blogs.windows.com/devices/2016/03/
25/ted2016-its-a-phenomenal-time-to-be-human/

[22] S.Orts-Escolano,C.Rhemann, S. Fanello,W.Chang,A.Kowdle, Y.Degtyarev,D.Kim, P. L.
Davidson, S. Khamis, M. Dou, V. Tankovich, C. Loop, Q. Cai, P. A. Chou, S. Mennicken,
J. Valentin, V. Pradeep, S. Wang, S. B. Kang, P. Kohli, Y. Lutchyn, C. Keskin, and S. Izadi,
“Holoportation: Virtual 3D teleportation in real-time,” oct 2016.

[23] 8i. Real human holograms for augmented, virtual and mixed reality. 8i. Accessed:
15-10-2020. [Online]. Available: https://www.8i.com/

[24] R. Mekuria, K. Blom, and P. Cesar, “Design, implementation, and evaluation of a point
cloud codec for tele-immersive video,” IEEE Transactions on Circuits and Systems for Video

Technology, vol. 27, no. 4, pp. 828–842, apr 2017.

[25] R. Pagés, K. Amplianitis, D. Monaghan, J. Ondřej, and A. Smolić, “Affordable content cre-
ation for free-viewpoint video andVR/AR applications,” Journal of Visual Communication

and Image Representation, vol. 53, pp. 192–201, may 2018.

70

http://c3dc.fr/
https://scanlabprojects.co.uk/work/
https://www.youtube.com/watch?v=dlXF3CX0o2Y
https://www.youtube.com/watch?v=dlXF3CX0o2Y
https://3ddesign.faro.com/us/product-development/research-development/
https://blogs.windows.com/devices/2016/03/25/ted2016-its-a-phenomenal-time-to-be-human/
https://blogs.windows.com/devices/2016/03/25/ted2016-its-a-phenomenal-time-to-be-human/
https://www.8i.com/

[26] Intel. Intel true view. Intel Corporation. Accessed: 15-09-2020. [Online]. Available:
https://www.intel.com.br/content/www/br/pt/sports/technology/true-view.html

[27] Mitsubishi. Mobile Mapping Systems (MMS: High precision gps mobile mea-
suring equipament. Mitsubishi. Accessed: 15-10-2020. [Online]. Available: http:
//www.mitsubishielectric.com/bu/mms/

[28] D. Flynn, S. Lasserre, and G. Martin-Cocher, “PCC Cat3 test sequences from Black-
Berry|QNX,” ISO/IECMPEG JTC1/SC29/WG11, Ljubljana, Slovenia, Input Document
m23647, Jul. 2018.

[29] S. Chen, B. Liu, C. Feng, C. Vallespi-Gonzalez, andC.Wellington, “3d point cloud process-
ing and learning for autonomous driving.”

[30] M. Levoy. (1999) The Digital Michelangelo Project. Stanford University. Accessed:
15-10-2020. [Online]. Available: https://accademia.stanford.edu/mich/

[31] 8i. (2017, Sep.) Holo with ARKit is here, bringing volumetric human holograms
to the masses on the iPhone. 8i. Accessed: 15-10-2020. [Online]. Available: https:
//link.medium.com/fpSGbpvjDab

[32] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo cor-
respondence algorithms,” International Journal of Computer Vision, vol. 47, no. 1/3, pp.
7–42, 2002.

[33] H. Kim, I. Kitahara, K. Kogure, and K. Sohn, “A real-time 3d modeling system using mul-
tiple stereo cameras for free-viewpoint video generation,” in Lecture Notes in Computer Sci-

ence. Springer Berlin Heidelberg, 2006, pp. 237–249.

[34] C. Loop, C. Zhang, and Z. Zhang, “Real-time high-resolution sparse voxelization with ap-
plication to image-based modeling,” in Proceedings of the 5th High-Performance Graphics

Conference on - HPG '13. ACM Press, 2013.

[35] M.Gross andH. Pfister, Eds.,Point-BasedGraphics. MorganKaufmann Publishers, 2007.

[36] A. Parker, “Stereoscopic vision,” in Encyclopedia of Neuroscience. Elsevier, 2009, pp. 411–
417.

[37] Wikipedia contributors. (2020, Sep.) Depth perception. Online. Wikipedia, The Free
Encyclopedia. Accessed: 11-09-2020. [Online]. Available: https://en.wikipedia.org/w/
index.php?title=Depth_perception&oldid=976150693

[38] R. S. Laramee. (2019) Data visualization classes 2019. Computer Science Department at
Swansea University. Accessed on: 04-09-2020. [Online]. Available: http://www.youtube.
com/user/rslaramee/

[39] V. Castelli and L. D. Bergman, Eds., Image Databases. JohnWiley & Sons, 2001.

71

https://www.intel.com.br/content/www/br/pt/sports/technology/true-view.html
http://www.mitsubishielectric.com/bu/mms/
http://www.mitsubishielectric.com/bu/mms/
https://accademia.stanford.edu/mich/
https://link.medium.com/fpSGbpvjDab
https://link.medium.com/fpSGbpvjDab
https://en.wikipedia.org/w/index.php?title=Depth_perception&oldid=976150693
https://en.wikipedia.org/w/index.php?title=Depth_perception&oldid=976150693
http://www.youtube.com/user/rslaramee/
http://www.youtube.com/user/rslaramee/

[40] R. Szeliski, Computer Vision. Springer London, 2011.

[41] R. Gonzalez, Digital image processing, 3rd ed. Upper Saddle River, N.J: Prentice Hall,
2008.

[42] ITU-RBT.709-6, “Parameter values for the hdtv standards for production and international
programme exchange,” International Telecommunication Union, Recommendation, May
2015.

[43] M. Gross, “Getting to the Point...?” IEEE Computer Graphics and Applications, vol. 26,
no. 5, pp. 96–99, sep 2006.

[44] M. Zwicker, H. Pfister, J. van Baar, and M. Gross, “Surface splatting,” in Proceedings of the
28th annual conference on Computer graphics and interactive techniques - SIGGRAPH '01,
ser. SIGGRAPH ’01. New York, NY, USA: ACM Press, 2001, p. 371–378.

[45] M. Botsch, A. Hornung, M. Zwicker, and L. Kobbelt, “High-quality surface splatting on
today's GPUs,” in Proceedings Eurographics/IEEE VGTC Symposium Point-Based Graphics,

2005. IEEE, 2005, pp. 17–141.

[46] Wikibooks contributors. (2020, Apr.) Cg Programming/Unity/Billboards. Online. Wiki-
books, The Free Textbook Project. Accessed: 28-12-2020. [Online]. Available: https://en.
wikibooks.org/w/index.php?title=Cg_Programming/Unity/Billboards&oldid=3678770

[47] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, and G. Ranzuglia, “Mesh-
Lab: an Open-Source Mesh Processing Tool,” in Eurographics Italian Chapter Conference,
V. Scarano, R. D. Chiara, and U. Erra, Eds. The Eurographics Association, 2008.

[48] D. Girardeau. Cloudcompare: 3D point cloud and mesh processing software. open source
project. Accessed: 14-09-2020. [Online]. Available: https://www.cloudcompare.org/

[49] MATLAB. pcshow: Plot 3-d point cloud. MathWorkds. Accessed: 15-09-2020. [Online].
Available: https://www.mathworks.com/help/vision/ref/pcshow.html

[50] E. d’Eon, B. Harrison, T. Myers, and P. A. Chou, “8i Voxelized Full Bodies, version 2 – A
Voxelized Point Cloud Dataset,” ISO/IEC JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG),
Geneva, input document m40059/M74006, January 2017.

[51] C. Guede, J. Ricard, S. Lasserre, and J. Llach, “Technicolor point cloud renderer,” ISO/IEC
MPEG JTC 1/SC 29/WG 11, Paris, doc. m40229, July 2017.

[52] Nurulize. (2017) Atom view. Sony. Accessed: 15-09-2020. [Online]. Available: https:
//vimeo.com/user59248173

[53] Atomontage. (2018) Atomontage media. Atomontage. Accessed: 15-09-2020. [Online].
Available: https://www.atomontage.com/media

72

https://en.wikibooks.org/w/index.php?title=Cg_Programming/Unity/Billboards&oldid=3678770
https://en.wikibooks.org/w/index.php?title=Cg_Programming/Unity/Billboards&oldid=3678770
https://www.cloudcompare.org/
https://www.mathworks.com/help/vision/ref/pcshow.html
https://vimeo.com/user59248173
https://vimeo.com/user59248173
https://www.atomontage.com/media

[54] M. Levoy and T. Whitted, “The use of points as a display primitive,” Computer Science
Department, The University of North Carolina at Chapel Hill, Tech. Rep. 85-022, Jan.
1985.

[55] Wikipedia contributors. (2020, Sep.) Kinect. Online. Wikipedia, The Free Encyclopedia.
Accessed: 22-09-2020. [Online]. Available: https://en.wikipedia.org/w/index.php?title=
Kinect&oldid=979120984

[56] R. B. Rusu and S. Cousins, “3d is here: Point cloud library (PCL),” in 2011 IEEE Interna-

tional Conference on Robotics and Automation. IEEE, may 2011.

[57] R.Mekuria,M. Sanna, S. Asioli, E. Izquierdo, D. C. A. Bulterman, and P. Cesar, “A 3D tele-
immersion system based on live captured mesh geometry,” in Proceedings of the 4th ACM

Multimedia Systems Conference on -MMSys '13. ACM Press, 2013.

[58] P. Fechteler, R. Mekuria, P. Cesar, D. Monaghan, N. E. O'Connor, P. Daras, D. Alexiadis,
T. Zahariadis, A. Hilsmann, P. Eisert, S. V. Broeck, C. Stevens, J. Wall, M. Sanna, D. A.
Mauro, and F. Kuijk, “A framework for realistic 3d tele-immersion,” inProceedings of the 6th
International Conference on Computer Vision / Computer Graphics Collaboration Techniques

and Applications - MIRAGE '13. ACM Press, 2013.

[59] R. Mekuria, C. Tulvan, and Z. Li, “Requirements for point cloud compression,” ISO/IEC
MPEG JTC1/SC29/WG11, Geneva, CH,MPEGRequierements w16330, Feb. 2016.

[60] D.Graziosi, O.Nakagami, S. Kuma, A. Zaghetto, T. Suzuki, andA.Tabatabai, “Anoverview
of ongoing point cloud compression standardization activities: video-based (V-PCC) and
geometry-based (G-PCC),” APSIPA Transactions on Signal and Information Processing,
vol. 9, 2020.

[61] 3DG, “V-PCC Codec Description,” ISO/IEC MPEG JTC1/SC29/WG11, Geneva, CH,
ApprovedWG 11 document N18892, Oct. 2019.

[62] ——, “G-PCC codec description v5,” ISO/IECMPEG JTC1/SC29/WG11, Geneva, CH,
ApprovedWG 11 document N18891, Oct. 2019.

[63] G. Sullivan and J.-R. Ohm, “Meeting report of the 13th meeting of the joint col-
laborative team on video coding (jct-vc),” ITU-T SG16 WP3 and ISO/IEC MPEG
JTC1/SC29/WG11, Incheon, KR, Report JCTVC-M1000, Apr. 2013.

[64] Wikipedia contributors. (2020) Versatile VideoCoding.Wikipedia, The Free Encyclopedia.
Accessed: 22-09-2020. [Online]. Available: https://en.wikipedia.org/w/index.php?title=
Versatile_Video_Coding&oldid=979632884

[65] H.Hoppe,T.DeRose, T.Duchamp, J.McDonald, andW. Stuetzle, “Surface reconstruction
from unorganized points,” SIGGRAPHComput. Graph., vol. 26, no. 2, p. 71–78, Jul. 1992.

73

https://en.wikipedia.org/w/index.php?title=Kinect&oldid=979120984
https://en.wikipedia.org/w/index.php?title=Kinect&oldid=979120984
https://en.wikipedia.org/w/index.php?title=Versatile_Video_Coding&oldid=979632884
https://en.wikipedia.org/w/index.php?title=Versatile_Video_Coding&oldid=979632884

[66] D. Meagher, “Geometric modeling using octree encoding,” Computer Graphics and Image

Processing, vol. 19, no. 2, pp. 129–147, Jun 1982.

[67] R. L. deQueiroz and P. A. Chou, “Compression of 3Dpoint clouds using a region-adaptive
hierarchical transform,” IEEE Transactions on Image Processing, vol. 25, no. 8, pp. 3947–
3956, aug 2016.

[68] R.L. deQueiroz,D.C.Garcia, P.A.Chou, andD.A.Florencio, “Distance-basedprobability
model for octree coding,” IEEE Signal Processing Letters, vol. 25, 2018.

[69] S. Lasserre and D. Flynn, “[PCC] Inference of a mode using point location direct cod-
ing in TMC3,” ISO/IECMPEG JTC1/SC29/WG11, Gwangju, Korea, Input contribution
m42239, Jan. 2018.

[70] P. A. Chou, “Trisoup C++ reference code for TMC13,” ISO/IEC MPEG
JTC1/SC29/WG11, Ljubjana, Slovenia, Input Document m43786, Jul. 2018.

[71] 3DG, “PCC Test Model Category 3 v0,” ISO/IEC MPEG JTC1/SC29/WG11, Macau,
China, ApprovedWG 11 document w17249, Oct. 2017.

[72] K. Mammou, A. Tourapis, J. Kim, F. Robinet, V. Valentin, and Y. Su, “Lifting Scheme for
LossyAttribute Encoding inTMC1,” ISO/IECMPEGJTC1/SC29/WG11, SanDiego,US,
Input contribution m42640, Apr. 2018.

[73] G. P. Sandri, P. A. Chou, M. Krivokuca, and R. L. de Queiroz, “Integer alternative for the
region-adaptive hierarchical transform,” IEEE Signal Processing Letters, vol. 26, no. 9, pp.
1369–1372, sep 2019.

[74] G. Sandri, R. L. de Queiroz, and P. A. Chou, “Comments on "Compression of 3D Point
Clouds Using a Region-Adaptive Hierarchical Transform".”

[75] S. Lasserre and D. Flynn, “[G-PCC][new proposal] On an improvement of RAHT to ex-
ploit attribute correlation,” ISO/IECMPEG JTC1/SC29/WG11, Geneva, CH, Tech. Rep.
m47378, Mar. 2019.

[76] ——, “G-PCC CE13.18 report on upsampled transform domain prediction in RAHT,”
ISO/IECMPEG JTC1/SC29/WG11, Gothenburg, Sweden, Input documentm49380, Jul.
2019.

[77] W. Sweldens, “The Lifting Scheme: A Custom-Design Construction of Biorthogonal
Wavelets,” Applied and Computational Harmonic Analysis, vol. 3, no. 2, pp. 186–200, apr
1996.

[78] A. Javaheri, C. Brites, F. Pereira, and J. Ascenso, “Point cloud rendering after coding: Im-
pacts on subjective and objective quality.”

74

[79] D.Tian,H.Ochimizu,C. Feng,R.Cohen, andA.Vetro, “Updates and IntegrationofEvalu-
ationMetric Software for PCC,” ISO/IECMPEG JTC1/SC29/WG11, Hobart, AU, Input
Document m40522, Apr. 2017, 2017.

[80] E.M.Torlig, E.Alexiou,T.A. Fonseca,R.L. deQueiroz, andT.Ebrahimi, “Anovelmethod-
ology for quality assessment of voxelized point clouds,” inApplications ofDigital Image Pro-

cessing XLI, A. G. Tescher, Ed., vol. 10752, International Society for Optics and Photonics.
SPIE, 2018.

[81] Wikipedia contributors. (2020, Oct.) Hausdorff distance. Wikipedia, The Free Encyclo-
pedia. Accessed: 01-10-2020. [Online]. Available: https://en.wikipedia.org/w/index.php?
title=Hausdorff_distance&oldid=971025942

[82] D. Girardeau-Montaut, M. Roux, R. Marc, and G. Thibault, “Change detection on points
cloud data acquired with a ground laser scanner,” in Proceedings of the ISPRS Workshop

Laser scanning 2005, G. Vosselman and C. Brenner, Eds., vol. XXXVI-3/W19. En-
schede, the Netherlands: International Society for Photogrammetry and Remote Sensing,
Sep. 2005, pp. 30–35.

[83] D. Tian, H. Ochimizu, C. Feng, R. Cohen, and A. Vetro, “Evaluation Metrics for Point
Cloud Compression,” ISO/IECMPEG JTC1/SC29/WG11, Chengdu, China, Input Doc-
ument m39316, Oct. 2016.

[84] D. Tian, H. Ochimizu, C. Feng, R. Cohen, and A. Vetro, “Geometric distortion metrics
for point cloud compression,” in 2017 IEEE International Conference on Image Processing

(ICIP), Sep. 2017, pp. 3460–3464.

[85] 3DG, “Common test conditions for point cloud compression,” ISO/IEC MPEG
JTC1/SC29/WG11, Gothenburg, SE, ApprovedWG 11 document N18883, July 2019.

[86] J.-R. Ohm, G. J. Sullivan, H. Schwarz, T. K. Tan, and T. Wiegand, “Comparison of the
Coding Efficiency of Video Coding Standards—Including High Efficiency Video Coding
(HEVC),” IEEE Transactions on Circuits and Systems for Video Technology, vol. 22, no. 12,
pp. 1669–1684, dec 2012.

[87] R. L. deQueiroz and P. A. Chou, “Motion-compensated compression of dynamic voxelized
point clouds,” IEEE Transactions on Image Processing, vol. 26, no. 8, pp. 3886–3895, Aug
2017.

[88] E. Alexiou and T. Ebrahimi, “Exploiting user interactivity in quality assessment of point
cloud imaging,” in 2019 Eleventh International Conference on Quality ofMultimedia Expe-

rience (QoMEX). IEEE, jun 2019.

[89] T.-Y. Kuo, Y.-J. Wei, and K.-H. Wan, “Color Image Quality Assessment Based on VIF,”
in 2019 3rd International Conference on Imaging, Signal Processing and Communication

(ICISPC). IEEE, jul 2019.

75

https://en.wikipedia.org/w/index.php?title=Hausdorff_distance&oldid=971025942
https://en.wikipedia.org/w/index.php?title=Hausdorff_distance&oldid=971025942

[90] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. S. Simoncelli, “Image Quality Assessment:
From Error Visibility to Structural Similarity,” IEEE Transactions on Image Processing,
vol. 13, no. 4, pp. 600–612, apr 2004.

[91] LIVE – Laboratory for Image & Video Engineering. Image & Video Quality Assessment
Algorithms. The University of Texas at Austin. Accessed on: 28-10-2020. [Online].
Available: https://live.ece.utexas.edu/research/Quality/index_algorithms.htm

[92] H. R. Sheikh and A. C. Bovik, “Image information and visual quality,” IEEE Transactions

on Image Processing, vol. 15, no. 2, pp. 430–444, Feb 2006.

[93] H. R. Sheikh and A. C. Bovik. Image Information and Visual Quality. The University
of Texas at Austin. Accessed: 28-10-2020. [Online]. Available: https://live.ece.utexas.edu/
research/Quality/VIF.htm

[94] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics: A Foundation

for Computer Science. ADDISON WESLEY PUB CO INC, 1994. [Online]. Avail-
able: https://www.ebook.de/de/product/3236755/ronald_l_graham_donald_e_knuth_
oren_patashnik_concrete_mathematics_a_foundation_for_computer_science.html

[95] R. Bridson, “Fast Poisson disk sampling in arbitrary dimensions,” in ACM SIGGRAPH

2007 sketches on - SIGGRAPH '07. ACM Press, 2007.

[96] A. Nealen. (2004, May) An as-short-as-possible introduction to the least squares, weighted
least squares and moving least squares methods for scattered data approximation and
interpolation. [Online]. Available: http://www.nealen.de/projects/mls/asapmls.pdf

[97] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. T. Silva, “Computing and
rendering point set surfaces,” IEEE Transactions on Visualization and Computer Graphics,
vol. 9, no. 1, pp. 3–15, 2003.

[98] A. C. Öztireli, G. Guennebaud, and M. Gross, “Feature preserving point set surfaces based
on non-linear kernel regression,”Computer Graphics Forum, vol. 28, no. 2, pp. 493–501, apr
2009.

[99] H.Huang, S.Wu,M.Gong, D.Cohen-Or, U. Ascher, andH.R. Zhang, “Edge-aware point
set resampling,” ACMTrans. Graph., vol. 32, no. 1, Feb. 2013.

[100] C. Dinesh, G. Cheung, and I. V. Bajić, “3D point cloud super-resolution via graph total
variation on surface normals,” in IEEE InternationalConference on Image Processing (ICIP).
IEEE, sep 2019.

[101] C. Dinesh, G. Cheung, and I. V. Bajić, “Super-resolution of 3D color point clouds via fast
graph total variation,” in ICASSP 2020 - 2020 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), 2020, pp. 1983–1987.

76

https://live.ece.utexas.edu/research/Quality/index_algorithms.htm
https://live.ece.utexas.edu/research/Quality/VIF.htm
https://live.ece.utexas.edu/research/Quality/VIF.htm
https://www.ebook.de/de/product/3236755/ronald_l_graham_donald_e_knuth_oren_patashnik_concrete_mathematics_a_foundation_for_computer_science.html
https://www.ebook.de/de/product/3236755/ronald_l_graham_donald_e_knuth_oren_patashnik_concrete_mathematics_a_foundation_for_computer_science.html
http://www.nealen.de/projects/mls/asapmls.pdf

[102] A. Hamdi-Cherif, J. Digne, and R. Chaine, “Super-resolution of point set surfaces using
local similarities,” Computer Graphics Forum, vol. 37, no. 1, pp. 60–70, jun 2017.

[103] D. C. Garcia, T. A. Fonseca, and R. L. de Queiroz, “Example-based super-resolution for
point-cloud video,” in IEEE International Conference on Image Processing (ICIP). IEEE,
2018, pp. 2959–2963.

[104] A. B. Yutaka and E. B. Y. Ohtake, “A comparison of mesh smoothing methods,” in In Pro-
ceedings of the Israel-Korea BiNational Conference on Geometric Modeling and Computer

Graphics, 2003, pp. 83–87.

[105] R. Cabello. (2020) Three.js – JavaScript 3D library. Accessed: 07-12-2020. [Online].
Available: https://threejs.org/

[106] M. Krivokuća, P. A. Chou, and P. Savill, “8i Voxelized Surface Light Field (8iVSLF)
Dataset,” ISO/IEC JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG), Ljubljana, input doc-
ument m42914, July 2018.

[107] C. Loop, Q. Cai, S. Escolano, and P. Chou, “Microsoft voxelized upper bodies - a voxelized
point cloud dataset,” ISO/IEC JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG), input doc-
ument m38673/M72012, May 2016.

[108] P. A. Chou andM. Krivokuca, “Concerns about objective metrics for point cloud compres-
sion,” ISO/IEC MPEG JTC 1/SC 29/WG 11, Macau, Input document to AhG on Point
Cloud Compression m41809, October 2017.

77

https://threejs.org/

	Contents
	List of Figures
	List of Tables
	Notation and Definitions
	1 Introduction
	1.1 Background & Motivation
	1.2 Problem Statement
	1.3 Objectives
	1.4 Manuscript Presentation

	2 Literature Review
	2.1 Point Clouds
	2.1.1 Definition
	2.1.2 Applications and Acquisition

	2.2 Volume Visualization
	2.2.1 Virtual Camera
	2.2.2 Color Spaces
	2.2.3 Point Cloud Rendering

	2.3 Point Cloud Compression
	2.3.1 Video-based Point Cloud Compression
	2.3.2 Geometry-based Point Cloud Compression

	2.4 Point Cloud Quality Assessment
	2.4.1 Point-based Metrics
	2.4.2 Projection-based Metrics

	2.5 Point Cloud Processing
	2.5.1 Downsampling
	2.5.2 Upsampling
	2.5.3 Smoothing
	2.5.4 Morphological Transformations

	3 Methodology
	3.1 The Relevance of Fractional Resampling
	3.2 Nearest Neighbor Interpolation Upsampling
	3.3 Towards Super-Resolution of Voxelized Point Clouds
	3.3.1 Smoothed Nearest Neighbor Interpolation Upsampling
	3.3.2 Carving the Nearest Neighbor Interpolation Upsampling Using Normal Vectors
	3.3.3 Score-based Upsampling

	3.4 Fractional Super-Resolution of Voxelized Point Clouds
	3.5 Subjective Quality Assessment Application
	3.5.1 Web-based Renderer

	4 Results and Discussion
	4.1 Evaluation Framework
	4.2 Datasets and Test Conditions
	4.3 Assessing the Quality of the Proposed Super-Resolution Method
	4.4 Using Super-Resolution for Interpolative Compression

	5 Conclusions
	5.1 Future Work

	REFERENCES

