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Resumo

Seja G um grupo finito admitindo um automorfismo coprimo φ com exatamente

m pontos fixos. Ao longo dos anos, estudou-se a influência do subgrupo dos

pontos fixos de φ sobre a estrutura de G. Por exemplo, o célebre teorema de

Thompson [29] garante que, quando a ordem de φ é um primo p e m = 1,

então G é nilpotente; em [11] Higman prova que existe uma cota superior para

a classe de nilpotência de G que depende só de p. O objetivo do presente texto

é discorrer sobre resultados similares, mas concernindo o comprimento derivado

de um grupo solúvel em vez da classe de nilpotência.

As condições sobre a ordem de φ são essenciais em muitos resultados. En-

tretanto, em [27], Shalev encontra uma substituta conveniente para as hipóteses

sobre a ordem de φ: conhecer o posto de G. Nesse contexto, Shalev prova que se

G é um grupo finito de posto r que admite um automorfismo φ com m pontos

fixos, então existe um subgrupo característico solúvel H de G tal que o índice

[G : H] é limitado superiormente por uma função de m e r apenas. Além disso,

se φ é coprimo, isto é, se (|φ|, |G|) = 1 , o comprimento derivado dl(H) também é

limitado superiormente por uma função de m e r apenas. O autor pergunta se a

cota para dl(H) poderia depender apenas de r e se a condição de coprimalidade

na ordem de φ poderia ser derrubada.

Em [17], Khukhro responde a primeira questão, mostrando que a cota em

dl(H) pode ser tomada dependendo só de r. Por fim, em [16], Jaikin-Zapirain

derruba a hipótese de coprimalidade sobre a ordem de φ.

Palavras-chave: Grupos Finitos, Automorfismos, Posto de um Grupo Finito,

Anéis de Lie.



Abstract

Let G be a finite group admitting an automorphism φ with exactly m fixed

points. For years, the influence of the fixed point subgroup of φ over the structure

of G has been studied. For instance, a celebrated theorem of Thompson [29]

ensures that, whenever the order of φ is a prime p andm = 1, thenG is nilpotent;

in [11] Higman proves that there exists an upper bound for the nilpotency class of

G depending only on p. The goal of the present text is to discuss similar results,

but concerning the derived length of a soluble group instead of the nilpotency

class.

The conditions on the order of φ are essential in many results. However, in

[27], Shalev finds a convenient substitute to the hypotheses on the order of φ:

to know the rank of G. In this context, Shalev proves that if G is a finite group

of rank r admitting an automorphism φ with m fixed points, then there exists a

characteristic soluble subgroup H of G such that the index [G : H] is bounded

from above by a function of m and r only. Moreover, when φ is coprime, i.e.,

when (|φ|, |G|) = 1, it is also possible to bound the derived length dl(H) from

above by a function of m and r only. The author asks whether the bound on

dl(H) could depend only on r and the coprimality condition on |φ| could be

dropped.

Later, in [17], Khukhro answers the first question, showing that the bound on

dl(H) can be taken depending on r only. Lastly, in [16], Jaikin-Zapirain drops

the coprimality hypothesis on the order of φ.

Keywords: Finite Groups, Automorphisms, Rank of a Finite Group, Lie Rings.
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Chapter 1

Introduction

Let G be finite group admitting an automorphism φ. It is a well-known fact that

certain properties of φ and of the subgroup CG(φ) of the elements of G fixed

by φ reflect on properties of G itself. For instance, E. Khukhro’s book contains

a survey on results of the following type (see, for example, Theorems 8.1, 12.1,

13.1 and 14.1 of [18]): if the order of φ is pm and the order of CG(φ) is pn, then

G has a subgroup of index bounded in terms of p,m and n that is nilpotent (or

soluble, depending on the result) of class (or derived length) bounded in terms

of p,m and n.

We will say that an automorphism φ is regular provided that CG(φ) = 1.

When φ is regular and of order 2, we can conclude that G is abelian, and in

general if |φ| = p a prime, a celebrated theorem of J. Thompson ([29]) ensures

that G is nilpotent. Moreover G. Higman, in [11], proves that the class of G is

bounded above by a function of p only. This combination of Thompson’s and

Higman’s results is maybe the most well-known example of a result connect-

ing properties of an automorphism φ of a group G and its fixed points with

consequences on the structure of G itself.

In general, it is also possible to answer questions linking the properties of an

automorphism φ of a finite group G to the solubility of G or its subgroups. To

that extent, let G be a finite group admitting an automorphism φ with exactlym

fixed points. In case φ is regular, P. Rowley proves in [26] that G is soluble, using

the classification of finite simple groups (CFSG), in analogy with Thompson’s

result but without the primality condition.

Now following Thompson and Higman’s results, we want to impose restric-

tions on the orders of φ and its centralizer CG(φ) and try to derive information

i



1. INTRODUCTION ii

concerning solubility of G. Given a finite soluble group G admitting an auto-

morphism φ, we ask whether it is possible to find a function that bounds the

derived length of G depending only on the order of φ and on the number of its

fixed points. In 1962, this question started to be answered affirmatively by J.

Alperin, whose advisor was Higman himself. In [1], Alperin solves the following

particular case of our problem: Let p be a prime and n be an integer. Let G

be a finite soluble group admitting an automorphism φ of order p and leaving

exactly pn elements of G fixed. Then, the derived length of G is bounded above

by a function of p and n only.

The formulation of Alperin’s theorem is interesting because we have almost

the same conditions as in the problem solved by Thompson and Higman, but in

the case where |CG(φ)| = pn. Alperin’s proof relies on the use of some Lie ring

associated to the group G, following Higman’s ideas.

Naturally, the next generalization of such a result consists in allowing φ to

have order any power of p, say pm. Shalev, in [28], proves that if G is a finite

p-group admitting an automorphism of order pm with exactly pn fixed points,

then the derived length of G is bounded by some function of p,m and n only.

Now, we want to make a comment on one of the main ideas behind the proofs

in Alperin’s and Shalev’s articles mentioned above. It is a known fact that, if G

is a p-group admitting an automorphism φ with order pm with pk fixed points,

then G can be generated by kpm elements. The proof is achieved combining for

example Corollary 2.7 of [18] and Burnside’s Basis Theorem 2.1.6. In both [1]

and [28], the orders of φ and CG(φ) are used to bound the number of generators

of some characteristic subgroups of a p-group G, and that bound is essential for

many arguments in both papers. We call the minimal integer r such that every

subgroup of a group G can be r-generated the rank of G, denoted by rk(G) .

The remark above shows that an hypothesis on the rank of G may replace the

one on the order of φ.

In another result published in the same year, that is the main result of this
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thesis, Shalev modifies the statement of the theorem in the following way. This

is the main theorem of [27].

Theorem (Shalev, 1993). Let G be a finite group of rank r admitting an au-

tomorphism φ with m fixed points. Then G has a characteristic soluble subgroup

H of (m, r)-bounded index. Moreover, if (|φ|, |G|) = 1, then the derived length

of H is (m, r)-bounded.

The condition (|φ|, |G|) = 1 means that the g.c.d between |φ| and |G| is

1, and when this happens we call the φ a coprime automorphism . Here, it is

interesting to observe that the coprimality between the orders of the group and

the automorphism allows him to avoid specifying the order of φ. Besides that,

the result appears in a more general form, because here G is any finite group

and Shalev finds a soluble characteristic subgroup H of bounded index. His

proof is based, among other things, on CFSG to prove the existence of H and

on the use of a class of Lie rings associated to uniform p-groups (see Section 4.2

for details) to bound the derived length of H. Such Lie rings, when they are

soluble, interact very well with the solubility of the associated group.

Also, in [27], Shalev says not to know yet whether the coprimality hypothesis

can be dropped in his statement. The subsequent investigations focused on this

coprimality dependence and on the following question: is it possible to bound

the derived length of H by a function of r only?

In 1996, E. Khukhro [17] approaches the problem solved by Shalev using

only group-theoretic methods, and succeeds in finding a bound which depends

only on the rank of G. This is another main result of this dissertation, and is

the main theorem of [17].

Theorem (Khukhro, 1996). If a finite group of rank r admits an automor-

phism of coprime order with exactly m fixed points, then the group has a sol-

uble characteristic subgroup of (m, r)-bounded index whose derived length is r-

bounded.
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His proof follows the same general ideas used by Shalev with some more

technical group-theoretic arguments. After Khukhro’s result, one question still

remains unanswered: is it really necessary to have the coprimality condition on

the automorphism φ?

This question was submitted to the Kourovka Notebook 1995 edition as

Problem 13.56, with the following formulation: “Let G be a finite p-group of rank

r and φ an automorphism of G having exactly m fixed points. Is the derived

length of G bounded by a function of m and r only?" In 2002, A. Jaikin-Zapirain

enhanced, in [16], Shalev’s results concerning the uniform Lie ring introduced in

[28], by finding correspondences between subgroups of a uniform group G and

ideals of the associated Lie ring, besides obtaining other results on uniform Lie

rings. Then, using ideas from both [27] and [17], Jaikin-Zapirain managed to

prove the theorem in its greatest generality, without the coprimality hypothesis

between the orders of φ and G. He also posed new problems, related to the

previous ones. We will give some highlights of the result in [16] at the end of

the dissertation.

Finally, some words on the structure of this text. It is self-contained enough

for a reader with basic algebraic knowledge to understand all of the results. After

the introduction, which is Chapter 1, the second chapter collects some definitions

and basic results used within the text. Chapter 3 is devoted to the theory of Lie

rings, in particular the theory of associating a Lie ring to a group, in Section

3.3, and in Section 3.4 we prove a useful result concerning solubility of some

graded Lie rings, due to Shalev. In Chapter 4, we discuss the theory of powerful

p-groups, a fundamental tool in the proof of the main theorems. Chapter 5

concerns a way to construct from scratch a family of finite simple groups, the

so-called finite simple groups of Lie type, and ends with a full characterization

of their automorphisms. The last chapter, Chapter 6 is devoted to proving the

main results, from Shalev’s, Khukhro’s and Jaikin’s papers, namely Theorems

6.0.2, 6.5.1 and 6.6.7. It also contains the conjectures Jaikin posed at that time.



Chapter 2

Preliminaries

In this chapter, for the sake of completeness, we include various results that

will be referred to along the text and are considered of more elementary con-

tent. References for the results are also given. Some theorems, as the Sylow,

correspondence and the isomorphism theorems, will be assumed known by the

reader.

When G is a finite group we are going to denote by |G| the order of G. If φ

is an automorphism of G and x ∈ G, we will denote both by xφ and φ(x) the

image of x through φ depending on the context. Along the text other notations

will be introduced as necessary.

2.1 Basic Properties in Groups and Rings

In this section we give some definitions that will be used along the dissertation,

in order to make the text more organized and self-contained. If H and K are

subgroups of a group G, we denote by [H,K] the subgroup generated by the

commutators [h, k] with h ∈ H and k ∈ K.

Definition 2.1.1. Let G be a group. We define the lower central series for

G recursively, as follows. Put γ1(G) = G and define, for i ≥ 2, γn(G) =

[γn−1(G), G]. We say that G is nilpotent of class c when c is the smallest integer

such that γc+1(G) = 1.

Definition 2.1.2. Let G be a group. We define the derived series for G as

follows. Make G(0) = G and, for n ≥ 1, define G(n) = [G(n−1), G(n−1)]. If d is

the smallest integer such that G(d) = 1, we say G is soluble of derived length d

and denote by dl(G) = d.

1
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Another common definition for solubility on groups is the following. Assume

that G admits a series of subgroups

G = G0 . G1 . · · · . Gd = 1

where all quotients Gi/Gi+1 are abelian. Then G is soluble of derived length at

most d.

Let π be a set of prime numbers. We say that a natural number n is a π-

number whenever the prime factors of n are all contained in π, and we say that

n is a π′-number whenever n is coprime with every element of π. We say that a

finite group G is a π-group or a π′-group if |G| is a π-number or a π′-number,

respectively.

Definition 2.1.3. We denote, as usual, by Op′(G) the largest normal p′-subgroup

of G. Also, we define Op′p(G) as the preimage, in G, of the largest normal p-

subgroup of G/Op′(G).

The subgroup Op′(G), and also Op′p(G), can be defined in a different way.

The first subgroup can also be defined as the subgroup

〈K |K / G andK is a p′-group〉,

while the second one may be defined as the full preimage in G of the following

subgroup of G/Op′(G)〈
KOp′(G)

Op′(G)

∣∣∣∣∣ KOp′(G)

Op′(G)
/

G

Op′(G)
is a p-group

〉
.

These definitions make it clear that both Op′(G) and Op′p(G) are characteristic

subgroups of G.

Definition 2.1.4. Given a finite group G, we define the Fitting subgroup Fit(G)

as the subgroup generated by all normal nilpotent subgroups of G.

In particular, a theorem of Fitting states that Fit(G) is also nilpotent, [24,

Theorem 10.22]. We denote by π(G) the set of primes dividing the order of
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a finite group G. It is possible to prove that Fit(G) =
∏

p∈π(G)

Op(G) and that

Fit(G) = ∩p∈π(G)Op′p(G).

We say that a proper subgroup M of a group G is maximal if, whenever

there exists a subgroup H of G satisfying M ≤ H ≤ G, then H = M or H = G.

Definition 2.1.5. If G is any finite group, we define the Frattini subgroup Φ(G)

of G as the intersection of all maximal subgroups of G.

Again, Φ(G) is a characteristic subgroup of G. It is proved in [7, Theorem

5.1.1] that, whenever x ∈ Φ(G) and T is a subset of G then G = 〈T, x〉 implies

〈T 〉. This is equivalent to say that the elements of Φ(G) are irrelevant for the

generation of the group G. They are sometimes called non-generators for G.

We say that a group G is a p-group whenever all elements of G have or-

der a power of p. In the special case when G is a finite p-group, the Frattini

subgroup has even more properties, as stated below in the so-called Burnside’s

Basis Theorem.

Theorem 2.1.6. Let G be a p-group. Then, the quotient G/Φ(G) is an elemen-

tary abelian p-group. If we assume further that the set {x1Φ(G), . . . , xnΦ(G)}

is a basis for G/Φ(G) as a vector space, then the group G cannot be generated

by less that n elements, and also G = 〈x1, . . . , xn〉.

Now, let G be a finite group. Let C be the set containing all generating sets

for G. That means that for any T ∈ C, 〈T 〉 = G. In this sense, we define d(G)

as the following invariant of G:

d(G) = min{|T | |T ∈ C}.

Intuitively, d(G) represents the smallest cardinality of a generating set for G.

There is another invariant associated to G, which we call the rank of G. It is

defined by

rk(G) = sup{d(H) |H ≤ G}.
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This second invariant represents the smallest cardinality such that every sub-

group H of G can be generated by a set of that cardinality.

Next we give the remaining definitions.

Definition 2.1.7. A non-empty set R is called a ring if R can be endowed with

two operations, addition and multiplication, such that the following axioms hold,

for all x, y, z ∈ R.

(i) (R,+) is an abelian group.

(ii) x(y + z) = xy + xz.

(iii) (x+ y)z = xz + yz.

If, moreover, there exists an element 1R of R such that 1Rx = x1R = x for any

x ∈ R, then we say that R is a ring with unit. When the identity (xy)z = x(yz)

also holds in R, we say that R is an associative ring. If the identity xy = yx

holds in R, we say that R is a commutative ring.

As examples of rings we have Z,Q, and R with usual operations, all com-

mutative with unit. The set of square matrices Mn(R) is an example of a ring

with unit which is non-commutative, with addition componentwise and multi-

plication given by the matrix product. A subring S of R is a subset S ⊆ R for

which the ring axioms hold. We say that a subring I ⊆ R is a left ideal of R

provided the product ri belongs to I for every r ∈ R and i ∈ I. Right ideals are

defined in an analogous way, and when I is both a left and right ideal of R, we

call it a bilateral ideal.

An endomorphism of a group A is a homomorphism of A into itself. Let A

be an abelian group and consider G = EndZ(A) to be the set of endomorphisms

of A. We can endow G with the structure of a ring. Given φ, ψ in G, define

the sum φ + ψ as (φ + ψ)(x) = φ(x) + ψ(x) for every x in A, this operation

being clearly commutative. The neutral element is the endomorphism mapping

A to 0, the opposite of φ is the map −φ : x 7→ −φ(x). The multiplication
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is the composition of functions in G. Multiplication is right distributive with

respect to the addition because every element of G is a homomorphism, and the

definition of addition makes it left distributive. This is an associative ring with

unit being the identity map of A.

Definition 2.1.8. Let R be an associative ring with unit 1R, but not necessarily

commutative. A left R-module is an additive group M with an operation R ×

M → M mapping (r,m) to rm, for r ∈ R and m ∈ M , provided the following

axioms hold for all r, s ∈ R and m,n ∈M :

(i) r(m+ n) = rm+ rn.

(ii) (r + s)m = rm+ sn.

(iii) 1Rm = m.

(iv) (rs)m = r(sm).

Right R-modules are defined in a similar way.

A subgroup N of the R-module M will be called a submodule of M provided

N is itself an R-module. Every ring R is naturally a left and right R-module;

R-submodules of the left-R module R are exactly the left ideals of R. Abelian

groups are Z-modules, vector spaces over the field K are K-modules.

Let R be an associative commutative ring with 1. Consider M and N to

be both left R-modules, even though this definition is also possible in case the

modules are not both left modules, but any combination of left and right. We

next construct another left R-module from M and N . Define the tensor product

M ⊗R N of M and N over R, as the set of all finite formal sums
∑

mi ⊗ ni,

mi ∈ M , ni ∈ N , subject to the following identifications, for all m,m′ ∈ M ,

n, n′ ∈ N and r ∈ R.

(i) rm⊗ n = m⊗ rn = r(m⊗ n).

(ii) (m+m′)⊗ n = m⊗ n+m′ ⊗ n.

(iii) m⊗ (n+ n′) = m⊗ n+m⊗ n′.
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For more information on modules and tensor products, we refer to [6, Chapter

10].

2.2 Automorphisms

Here we collect useful results concerning automorphisms of finite groups. An

automorphism φ of a group G is a bijection from G to itself which satisfies

φ(xy) = φ(x)φ(y), for every x and y in G. References are also given.

Lemma 2.2.1. Let P be a p-group admitting a p′-automorphism φ. Then φ

acts trivially on P if and only if φ acts trivially on P/φ(P ).

The proof of this result can be found in [7, Theorem 5.1.4].

If φ is an automorphism of G, then we are going to call a subgroup N of G

φ-invariant whenever Nφ = {φ(n) |n ∈ N} equals N . We denote by CG(φ) the

subgroup {x ∈ G |xφ = x} . We call this subgroup the centralizer of φ in G,

sometimes called the fixed point subgroup of φ. We also define centralizers for

subsets of G. If M is any subset of G, then CG(M) = {x ∈ G | [x,M ] = 1} is

the subgroup consisting of the elements of G that commute with every element

of M . The next result can be found in Chapter VIII, Theorem 10.14 of [14]

Lemma 2.2.2. Let G be a finite group admitting an automorphism φ and a

normal φ-invariant subgroup N . Then φ induces an automorphism φ̄ of G/N

such that |CG/N(φ̄)| ≤ |CG(φ)|.

Now, if the order of the automorphism is coprime with the order of G, even

more can be said. The following is Theorem 2.11 in [18].

Lemma 2.2.3. Let G be a finite group admitting a coprime automorphism φ

and a normal φ-invariant subgroup N . If φ̄ denotes the automorphism induced

by φ on G/N , then CG/N(φ̄) = CG(φ)N/N .
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Given a group G and A a group of automorphisms of G, we can define the

commutator subgroup between G and A as follows: given x ∈ G and φ ∈ A, we

denote [x, φ] = x−1xφ. Thus the group [G,A] is the subgroup of G generated by

all elements of the form [x, φ], where x ∈ G and φ ∈ A. The next theorem is

Theorem 5.2.3 in [7].

Lemma 2.2.4. Let A be a p′-automorphism of an abelian p-group G. Then

G = CG(A)× [G,A].



Chapter 3

Lie Rings

Definitions and first properties of Lie rings are given in Section 3.1. In Section

3.2, we discuss a method of embedding a given Lie ring L into another Lie

ring with stronger structure, and in Section 3.3 we discuss the process of, given

a group G, constructing a Lie ring L(G) which reflects some properties of G.

Finally, in Section 3.4, we give a proof of a result related to solubility of graded

Lie rings.

3.1 Definitions and First Properties

We begin this section with the definition of a Lie ring.

Definition 3.1.1. A Lie ring L is a ring, with multiplication usually denoted

by brackets [x, y], for x, y ∈ L, in which the following identities hold, for all

x, y, z ∈ L.

(i) [x, x] = 0 (anticommutativity)

(ii) [[x, y], z] + [[y, z], x] + [[z, x], y] = 0. (Jacobi identity)

Let R be a commutative associative ring with 1. If, moreover, L is a left R-

module subject to the relations [rx, y] = [x, ry] = r[x, y] for every x, y ∈ L and

r ∈ R, then we call L a Lie R-ring and R is said to be the ground ring of L. In

case that R is a field, we call L a Lie R-algebra.

Non-trivial Lie rings do not have unit. Indeed, assume L is a Lie ring with

unit 1. Then we have that [1, 1] = 1, but anticommutativity also says that

[1, 1] = 0. So, as 1 = 0 and [1, x] = x, replacing 1 by 0 we get that x = [1, x] =

[0, x] = 0, for all x ∈ L. So, non-trivial Lie rings do not have a unit.

8
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A consequence of anticommutativity is that [x, y] = −[y, x] for all x, y ∈ L.

In fact, we may just use the distributive law in [x+ y, x+ y] = 0 to prove it.

Lie rings are not associative in general. In fact, given x, y and z ∈ L, suppose

we had [[x, y], z] = [x, [y, z]] = −[[y, z], x]. Jacobi identity then would give that

[[z, x], y] = 0 for all x, y, z ∈ L, and this is not true in general. For example, if

we consider the Lie algebra over C given by L = 〈a, b | [a, b] = b〉, then [a, b, a] is

not zero.

Here, we give a few examples of Lie rings. Every Lie ring is a Lie Z-ring and

R3, endowed with the cross product, is an example of Lie R−algebra. The set of

all n×nmatrices over a fieldK forms a Lie algebra with the usual componentwise

addition and the Lie product given by [x, y] = xy − yx, for all matrices x, y.

In what follows, we focus on the structure of a Lie ring L. A Lie subring

H of L is a subset of L closed under all operations, and if L is a Lie R-ring,

then H must also be a R-submodule. A homomorphism of Lie R-rings is a

homomorphism of R-modules that preserves the Lie bracket, and isomorphisms

and automorphisms are defined in the usual way. An ideal I ⊆ L is a subring of

L for which [x, y] belongs to I, for every x in I and y in L. As [x, y] = −[y, x],

the entry corresponding to the element of I may be either the first or the second.

Given subsets A,B ⊆ L, we define [A,B] to be the additive subgroup 〈[a, b] | a ∈

A, b ∈ B〉, generated by all commutators [a, b] with a ∈ A and b ∈ B.

Assume that L is generated, as a Lie ring, by a set of elements X = {xi | i ∈

I}. A We will say that a Lie commutator w is simple if the brackets involved in

the expression of w all accumulate on the left, and we will write [x1, · · · , xk] =

[· · · [[x1, x2], x3], · · · , xk]. For example, the commutator [[x1, x2], [x3, x4]] is not

simple, but [[[x1, x2], x3], x4] is simple. Bilinearity of the Lie product shows that

any commutator w of elements in L can be written as a linear combination

of commutators in the elements of X, with the brackets occurring in the same

positions they occurred in w. In this sense, we define the weight of a commutator

w, with respect to X, as follows: commutators of weight 1 are just elements of
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X, and if w and v are commutators of weights n1 and n2, respectively, then

the commutator [w, v] will have weight n1 + n2. We would like to remark that,

depending on the entry set, an element can have more than one weight. For

example, with respect to X = {a, b}, [a, b] has weight 2, but with respect to

Y = {[a, b]}, its weight is just one.

As it was remarked above, the brackets in a commutator may appear any-

where along it, and calculations may become cumbersome if we take these posi-

tions into consideration. Our first result states that we can always “ignore” the

bracketing places in a Lie commutator and consider only simple ones, by paying

the price of substituting an initial commutator with a Z-linear combination of

others.

Lemma 3.1.2. Let w be a Lie commutator in the elements x1, . . . , xk of L.

(i) w is a Z-linear combination of simple commutators in the elements x1, . . . , xk.

(ii) We can choose a fixed element xt ∈ {x1, · · · , xn} present in w so that the

simple commutators in item (i) all begin with xt.

Proof. The proof of the first part will proceed by induction on the weight s

of the commutator w. If s is 1 or 2, then the commutator w is itself simple.

Let s > 1; in this case w = [w1, w2], where w1 and w2 are commutators of

smaller weights. By the inductive hypothesis we may assume that both w1 and

w2 are Z-linear combinations of simple commutators, and by distributive laws

we have that w is a Z-linear combination of commutators with the structure

[[·, · · · , ·], [·, · · · , ·]]. Then we apply induction on the weight of w2. If the weight

is 1, then w = [w1, w2] is simple, otherwise we may assume that w2 = [w21, w22]

and we have

w = [w1, [w21, w22]] = [[w1, w21], w22]− [[w1, w22], w21]

by the Jacobi identity. On the right, the initial segments [w1, w21] and [w1, w22]

are linear combinations of simple commutators, by induction on the weight.

Since the weights of w21 and w22 are less than that of w2, induction on the
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weight of the second factor of the commutator finishes the proof of (i).

For the second part, fix a ∈ {x1, · · · , xk} and consider

w = [xi1 , · · · , xil , a, xil+1
, · · · , xis ].

We argue by induction on l, where l is the length of the initial segment preceding

a in w. If l = 1, replace [xi1 , a] by −[a, xi1 ]. We may assume then that l > 1.

We may also assume that a is the rightmost element inside the commutator,

because w is simple and the Lie bracket is multilinear. Then, we may write

[xi1 , · · · , xil−1
, xil , a] = [[xi1 , · · · , xil−1

, a], xil ]+ [[xi1 , · · · , xil−1
], [xil , a]], by Jacobi

identity. On the first bracket of the right side of the equation, we apply the

induction hypothesis; on the last, we regard [a, xil ] as a new variable, apply the

induction hypothesis and write [[xi1 , · · · , xil−1
], [a, xil ]] as a Z-linear combina-

tion of simple commutators starting with [a, xil ]. As the summands are simple

commutators starting with [a, xil ], the result is proved.

We end this section defining the notions of nilpotency and solubility for Lie

rings. Many of the definitions and ideas work in the same way as that they work

for groups.

Definition 3.1.3. We define recursively the terms of the lower central series of

a Lie ring L by γ1(L) = L and γi(L) = [L, γi−1(L)], for i ≥ 2.

It is straightforward to see that every γi(L) is an ideal of L. By Lemma

3.1.2, γi(L) is spanned by the simple commutators of weight i in the elements

of L, and every commutator of length ≥ i is contained in γi(L). Also, if L is

generated by a set M , then γi(L) is generated just by the simple commutators

of weight i in the elements of M .

Definition 3.1.4. A Lie ring L is said to be nilpotent of class c if γc(L) 6= 0

and γc+1(L) = 0, or, equivalently, if the identity [x1, · · · , xc+1] = 0 holds in L,

but we have [x1, · · · , xc] 6= 0 for some choice of elements xi.

In view of the observations made above, if L = 〈M〉 as a Lie ring, then L is

nilpotent of class c if and only if [m1, · · · ,mc+1] = 0 for any mi ∈M .
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Definition 3.1.5. The terms of the derived series of a Lie ring L are defined

recursively by L(0) = L and L(i) = [L(i−1), L(i−1)], for i ≥ 1.

We define the δ-commutator recursively as δ1(x1, x2) = [x1, x2] and, for n ≥

2, δn(x1, . . . , x2n) = [δn−1(x1, . . . , x2n−1), δn−1(x2n−1+1, . . . , x2n)]. Then we have

the following definition.

Definition 3.1.6. A Lie ring L is said to be soluble of derived length d if L(d) =

0 and L(d−1) 6= 0 or, equivalently, if the identity δd(x1, · · · , x2d) = 0 holds in L

and δd−1(x1, · · · , x2d−1) 6= 0 for some choice of elements xi of L.

Again, each term of the derived series is an ideal of L. One could also

define a soluble Lie ring as a ring having a series of ideals, ranging from L to

0, whose quotients are all abelian, i.e, the commutator [x, y] equals 0 for any

x, y in the factor. We remark here that, unlike nilpotency, if L = 〈M〉, then it

may not be sufficient to verify δd(x1, · · · , x2d) = 0 only on the elements forM to

guarantee the solubility of L. For example, in a 2-generated Lie ring L = 〈x, y〉,

the identity δ2 ≡ 0 holds for the generators: every possible δ2 commutator has

a subcommutator [x, x] or [y, y], and the ones that do not have will include

two subcommutators of the form [x, y]. However, there are 2-generated Lie

rings which are not soluble, for instance L = 〈( 0 1
0 0 ) , ( 0 0

1 0 )〉, with Lie bracket

[A,B] = AB − BA and over a field of characteristic different from 2. Here,

L(2) = L, so L is not soluble.

Nilpotent Lie rings are certainly soluble, since the γ-series is a series of ideals

with abelian quotients that ranges from L to 0. The converse may not be true,

and the simplest example is the non-abelian 2-dimensional Lie algebra over an

arbitrary field L = 〈a, b | [a, b] = b〉. Indeed, L(2) = 〈b〉 and L(3) = 0, but

γi(L) = γ2(L) = 〈b〉 for every i ≥ 2. Observe that many results about nilpotent

and soluble Lie rings can be proved in the same way as their analogues for group

theory are obtained.
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3.2 Extending the Ground Ring

Let us start with the following definition.

Definition 3.2.1. Let A be an additively written abelian group. A Lie ring L

is said to be A-graded if the additive group of L is the direct sum L = ⊕g∈ALg
of the additive subgroups Lg, g ∈ A, such that [Lg, Lh] ⊆ Lg+h for every g, h

in A. More generally, if we consider just a subset S of an abelian group A, we

can define an S-grading in the same way, but now demanding that the product

[Lg, Lh] be zero if g + h does not belong to S.

We now turn our attention to automorphisms. Let φ be an automorphism of

finite order n of a Lie C-algebra L. As φ is invertible, none of the eigenvalues of

this automorphism are equal to zero. The Jordan normal matrix of φ is diagonal,

since for any Jordan block of size greater than 1 we have
α 1

. . .


n

=


αn nαn−1

. . .

 ,

and this cannot be the identity matrix since α 6= 0 . Thus all Jordan blocks have

size 1 × 1 and L decomposes into the direct sum of eigenspaces L = ⊕n−1
i=0 Li,

where Li = {l ∈ L | lφ = ωil}, for a fixed n-th primitive root of unity ω. The fact

that this sum is direct follows from the fact that a Lie C-algebra is a vector space

over C, and the standard arguments from Linear Algebra apply here. For any

x ∈ Li, y ∈ Lj we have [x, y]φ = [xφ, yφ] = [ωix, ωjy] = ωi+j[x, y], in such a way

that [Li, Lj] ⊆ Li+j, where i+j is read modulo n. The direct sum decomposition

of L above gives rise to a Z/nZ-grading.

As it has been said before, a finite order automorphism φ of a Lie C-algebra

L gives rise to a natural decomposition of L into eigenspaces and therefore gives

rise to a natural grading of the Lie algebra too. The reason why that construction

was possible is that every possible eigenvalue of φ lies in the field over which L

is defined. It is clear that, if we replace C by R, then the same construction may
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not be possible, depending on the eigenvalues of the automorphism φ. What we

want to do here is to construct gradings as the one considered above, and also

to avoid the problem of not being able to find every eigenvalue of the considered

automorphism inside the initial ground ring of L.

With this purpose in mind, we discuss the process of extending the ground

ring of a Lie ring L. If R ⊆ K are commutative associative rings with 1, and L

is a Lie R-ring, then the process of extending the ground ring of R consists in

considering the R-module L = L ⊗R K, which is a Lie K-ring with respect to

the Lie multiplication

[l1 ⊗ k1, l2 ⊗ k2] = [l1, l2]⊗ k1k2, l1, l2 ∈ L, k1, k2 ∈ K. (3.2.1)

This Lie bracket inherits bilinearity, anticommutativity and the Jacobi identity

from the one of L. Of course, L is also a Lie R-ring, and we can identify L with

the R-subring L⊗R R = L⊗ 1 = {l ⊗ 1 | l ∈ L} of L. Also, in view of equation

(3.2.1), it is straightforward to see that, for any subsets A,B of L, we have

[A⊗R K,B ⊗R K] = [A,B]⊗R K.

Also, if I is an ideal of L, then I ⊗R K will be an ideal of L.

The process of extending the ground ring also behaves well when we consider

automorphisms. If G is a group of automorphisms of L, then G can also be

regarded as a group of automorphisms of the Lie K-ring L, via the action (l ⊗

k)φ = lφ ⊗ k, for every l ∈ L, k ∈ K, φ ∈ G.

For instance, consider a Lie Z-ring L, admitting an automorphism φ of finite

order n. Then, the previous construction shows that φ induces an automorphism

of the same order on L̃ = L ⊗Z Z[ω], where ω denotes a primitive n-th root

of unity. As in the discussion of the previous section, we can define additive

subgroups of L̃ via
iL̃ = {l ∈ L̃ | lφ = ωil}.

Each subgroup iL̃ is called a φ-component of L̃.

This construction plays an important role in the theory of Lie rings: if we

consider a Lie ring L admitting an automorphism φ of finite order, then we can
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extend Z by a n-th primitive root of unity ω and embed L into the tensorized

Lie ring L̃ = L ⊗Z Z[ω]. Now, every eigenvalue of φ belongs to the new and

larger ground ring Z[ω], allowing us to diagonalize φ as we did in the remark

after the definition of grading. We will give applications of this construction in

the following sections.

3.3 Associated Lie Rings

The Hall-Witt identity

[x, y−1, z]y[y, z−1, x]z[z, x−1, y]x = 1

holds in groups and resembles a lot the Jacobi identity described above, which is

an identity in Lie rings. Also, the usual commutator formulas for elements in a

group G, [ab, c] = [a, c]b[a, b] and [a, bc] = [a, b][a, c]b, are similar to the distribu-

tive laws. It is natural to try to construct a Lie ring whose addition is based

on group multiplication and whose Lie product derives from the commutator

operation in the group. Since Lie rings are linear, they may be easier structures

to study; an automorphism of a Lie algebra, for example, can be regarded as

a linear transformation and has eigenvalues in an extension of the base field.

In this sense, it would be of interest to associate to a group G a Lie ring L

which inherits some properties of G and to make the association in such a way

that information about G can be derived back from properties of L. A Lie ring

method for studying groups consists in translating conditions about the group

G into the Lie ring language, then obtaining results on Lie rings, and finally

translating the conclusions back into the group language, to deduce information

about the group. We introduce here the so-called method of the associated Lie

ring.

Definition 3.3.1. A series of a group G

G = K1 ≥ K2 ≥ · · · ≥ Kc ≥ Kc+1 = 1

is said to be strongly central if [Ki, Kj] ≤ Ki+j for all i, j = 1, 2, . . . , c. It is
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understood that Ks = 1 whenever s > c.

Next, we wish to give some examples of strongly central series for a group

G. The most natural one to consider is the lower central series {γi(G)}. Also,

we have a series defined inductively by λ1(G) = G and

λi(G) = [G, λi−1(G)](λi−1(G))p,

called lower central p-series and associated to a finite p-group G. This is the

fastest descending central series whose factors have exponent p. Some other

classes of p-groups may admit other kinds of strongly central series, according

to their particularities, as will be explored in Section 4.2.

Let us explore the Definition 3.3.1 a little. For i = 1, we see that [G,Kj] ≤

Kj+1 ≤ Kj, thus giving normality to each term of the series. Also, a straight-

forward inductive argument shows that γi(G) is contained in Ki for every i.

In particular, if G admits a finite strongly central series of length c, then G is

nilpotent of class at most c; the converse also holds since the lower central series

is strongly central. Moreover, since [Ki−1, G] ≤ Ki, every factor group Ki−1/Ki

is contained in the center of G/Ki, justifying the adjective central. It follows

that each factor of the series is an abelian group.

Now we are in position to define the Lie ring associated to a strongly central

series.

Definition 3.3.2. The additive group of the associated Lie ring L(G), associ-

ated to the strongly central series {Ki} of G, is the direct sum

L(G) = ⊕∞i=1Ki/Ki+1.

For each i ∈ N the direct summand Ki/Ki+1 is called the homogeneous compo-

nent of L(G) of weight i. The elements xKi+1 of Ki/Ki+1 are called homoge-

neous elements of weight i. We are going to denote homogeneous elements by

x̄ = xKi+1. The Lie bracket is defined for the homogeneous elements as follows

[x̄, ȳ] = [xKi+1, yKj+1] := [x, y]Ki+j+1,
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where xKi+1 and yKj+1 are the images of the elements x ∈ Ki and y ∈ Kj in

the factor groups Ki/Ki+1 and Kj/Kj+1, respectively. The Lie bracket is then

extended to L(G) by linearity. Notice here that we may have [xKi+1, yKj+1] = 0

in L(G) even if [x, y] 6= 1 in G: we only need [x, y] ∈ Ki+j+1.

The next result shows that Definition 3.3.2 in fact endows L(G) with a Lie

ring structure.

Proposition 3.3.3. Definition 3.3.2 defines a Lie ring structure on L(G).

Proof. Remark that Ki+j centralizes G modulo Ki+j+1, as was observed before.

Wherever we will use this remark in what follows, we signal it with an ∗. Given

x, y ∈ Ki\Ki+1, we denote by x̄ = xKi+1, ȳ = yKi+1, define x̄ + ȳ = xyKi+1

and extend this operation by linearity to the whole L(G). Consider x̄ and ȳ as

before and z ∈ Kj\Kj+1, write z̄ = zKj+1. We have

[x̄+ ȳ, z̄] = [xy, z]Ki+j+1

= [x, z]y[y, z]Ki+j+1

= [x, z][y, z]Ki+j+1 (because of ∗,)

= [x̄, z̄] + [ȳ, z̄].

This proves the bracket to be linear in the first entry, and linearity in the second

entry also follows from a similar argument.

We are going to verify now that the Lie bracket in L(G) is well-defined, and it

is sufficient to verify this claim just for homogeneous elements, since the defined

bracket defined is bilinear. Consider xKi+1 = x′Ki+1, yKj+1 = y′Kj+1. Then

x′ = xg1 and y′ = yg2, where g1 ∈ Ki+1 and g2 ∈ Kj+1.

[x′, y′] = [x′, y′]Ki+j+1

= [xg1, yg2]Ki+j+1

= [x, yg2]g1 [g1, yg2]Ki+j+1

= [x, yg2][g1, yg2]Ki+j+1 (because of ∗,)

= [x, yg2]Ki+j+1, (as [g1, yg2] ∈ Ki+j+1,)

= [x, g2][x, y]g2Ki+j+1

= [x, y]Ki+j+1 = [x̄, ȳ]
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since [x, g2] ∈ Ki+j+1 and using ∗ again.

As the bracket is bilinear, we will prove anticommutativity and the Jacobi

identity just for homogeneous elements. As for the anticommutativity, take any

x ∈ Ki and see that [x̄, x̄] = [x, x]Ki+1 = 1Ki+1 = 0̄. Now, we prove that the

Jacobi identity holds in L(G). Consider here x ∈ Ki\Ki+1, y ∈ Kj\Kj+1 and

z ∈ Kl\Kl+1 and x̄, ȳ and z̄ their usual images on the associated Lie ring. As a

consequence of the Hall-Witt identity we have:

[x, y−1, z]y[y, z−1, x]z[z, x−1, y]xKi+j+l+1 = Ki+j+l+1.

Then, as Ki+j+l centralizes G modulo Ki+j+l+1, the conjugations in the equation

above are trivial. In this sense, it follows that

[x, y−1, z][y, z−1, x][z, x−1, y]Ki+j+l+1 = Ki+j+l+1. (3.3.1)

which equals 0̄ in L(G).

Since we are using additive notation in L(G), x−1 = −x̄. Now, translating

the left side of (3.3.1) in the language of L(G) we get

[x̄,−ȳ, z̄] + [ȳ,−z̄, x̄] + [z̄,−x̄, ȳ] = −([x̄, ȳ, z̄] + [ȳ, z̄, x̄] + [z̄, x̄, ȳ]) = 0̄,

and the Jacobi identity holds, completing the proof.

It is important to say that two non-isomorphic groups may have isomorphic

associated Lie rings. For instance, let D = 〈r, s | r4 = s2 = (rs)2〉, the dihedral

group of order 8, and Q = 〈a, b | aba = b, bab = a〉, the quaternion group of order

8. Consider the Lie rings associated to the lower central series of D and Q. Both

Lie rings are vector spaces of dimension 3 over F2. Now, for the former, we have

L(D) = D/D′ ⊕D′/D′′ = 〈rD′, sD′〉/⊕ 〈r2D′′〉〉,

with

[rD′, sD′] = r2D′′, [rD′, r2D′′] = 0, [rD′, s2D′′] = 0,

while for the latter

L(Q) = Q/Q′ ⊕Q′/Q′′ = 〈aQ′, bQ′〉/⊕ 〈a2D′′〉〉,
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with

[aD′, bD′] = a2D′′, [aD′, a2D′′] = 0, [bD′, a2D′′] = 0,

which are clearly isomorphic as Lie algebras.

The structure of G strongly influences that of L(G), as the associated Lie

ring inherits properties related to nilpotency and solubility from G. In some

cases, L(G) will also have the same order as G, and that is the content of the

next proposition.

Proposition 3.3.4. If G is nilpotent of class c, then L(G) is also nilpotent of

class at most c. Also, if the derived lengt of G is d, then L(G) is soluble of

derived length at most d. If G is also finite, then |L(G)| = |G|.

Proof. The definition of multiplication in L(G) implies that if some commutator

identity is satisfied by G, then this identity is also satisfied by the homogeneous

elements of L(G). As the nilpotency and solubility identities are multilinear,

this implies that the nilpotency class and the derived length of L(G) do not

exceed the nilpotency class and derived length of G, respectively.

For the last part, it is is enough to notice that

|L(G)| =
s∏
i=1

|Ki : Ki+1| = |G|,

by Lagrange’s theorem, since G = K1 ≥ · · · ≥ Ks+1 = 1.

We remark that it may be possible for L(G) to have nilpotency class strictly

smaller than the one of G. Consider, for instance, G = D × C, where D =

〈a, b | a4 = b2 = (ab)2 = 1〉 is the dihedral group of order 8 and C = 〈c〉 is

a cyclic group of order 2. Take the strongly central series given by K1 = G,

K2 = 〈a2〉 × 〈c〉 = D′ × C, K3 = 〈a2〉 = D′, K4 = 1. The associated Lie ring

L(G) is abelian, since [K1, K1] ≤ K3 and K2 and K3 are both central in G, while

G has nilpotency class 2.

It is also important to remark that, when we consider the Lie ring associated

to the γ-series of a group G, then both G and L(G) have the same nilpotency
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class. Assume that G has class c. Since we know that the class of L(G) does

not exceed the class of G, it suffices to show that there exists a Lie commutator

of weight c− 1 in L(G) which is nonzero. Such a commutator w certainly exists

in G, as G has class c. So, if we consider the image of w in L(G), w = wγc(G),

this cannot be zero, because otherwise we would have w = 1 in G too.

Next, we want to produce a map from Aut(G) to Aut(L(G)) by considering

the action of φ ∈ Aut(G) in each of the factors Ki/Ki+1.

Proposition 3.3.5. If in the strongly central series G = K1 ≥ · · · ≥ Ks+1 = 1

every term Ki is φ-invariant, then the automorphism φ of G induces an auto-

morphism of the Lie ring L(G) by its action on the factor groups Ki/Ki+1. If,

moreover, G is finite and the order of φ is coprime to the order of G, then φ

acts faithfully on L(G) and |CL(G)(φ)| = |CG(φ)|.

Proof. Let us denote by φ the automorphism induced by φ on each factor

Ki/Ki+1 of the series. For homogeneous elements x̄ = xKi+1 in Ki/Ki+1 and

ȳ = yKj+1 in Kj/Kj+1, we have

[x̄, ȳ]φ = [x, y]φKi+j+1 = [xφ, yφ]Ki+j+1 = [x̄φ, x̄φ].

Extending the action of the induced automorphism φ to L(G) from the abelian

groups Ki/Ki+1 by linearity yields an automorphism of the associated Lie ring.

Suppose now that (|φ|, |G|) = 1. In the sense of Lemma 2.2.3, we have

that the number of fixed points of the induced automorphism on each quotient

satisfies

|CKi/Ki+1
(φ)| = |CKi

(φ)Ki+1/Ki+1| = |CKi
(φ)/CKi

(φ) ∩Ki+1|.

As CKi
(φ) = CG(φ) ∩ Ki and CKi

(φ) ∩ Ki+1 = CG(φ) ∩ Ki ∩ Ki+1 = CG(φ) ∩

Ki+1, we obtain |CKi/Ki+1
(φ)| = [CG(φ) ∩ Ki : CG(φ) ∩ Ki+1]. The number of

fixed points of φ in L(G) equals the product of |CKi/Ki+1
(φ)| for each factor

group Ki/Ki+1, and this product clearly yields |CG(φ)|, again by the Lagrange

Theorem.

It is important to say that a non-trivial automorphism φ of G may induce
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a trivial automorphism of L(G), inner automorphisms figuring as examples. In

general, it may not be true that the induced automorphism will have the same

order as φ, and the number of fixed points might even increase. For a non-trivial

example, consider Q = 〈a, b | aba = b, bab = a〉, the quaternion group again. The

map a 7→ b, b 7→ a extends to an automorphism φ of Q which fixes elementwise

the subgroup 〈a2〉 = Q′. The induced automorphism on the Lie ring associated

to the γ-series fixes the element abQ′, because (ab)φQ′ = baQ′ = abQ′, as Q/Q′

is abelian. Hence, as φ acts trivially on Q′/Q′′, the induced automorphism has 4

fixed points, instead of just 2, and it is non-trivial on L(Q). That explains why

the previous result is important: it allows L(G) to inherit properties related to

centralizers of automorphisms in G, under suitable conditions.

3.4 Solubility of Graded Lie Rings

Let us start with the following result on complex numbers.

Definition 3.4.1. Let S be a subset of complex numbers. A linear ordering <

on S will be called good if there are no x, y ∈ S such that xy ∈ S and x < xy < y.

Lemma 3.4.2. The complex numbers admit a good ordering.

Proof. We first claim that the unit circle S1 = {z ∈ C, | |z| = 1} admits a good

ordering. Indeed, given z = eθi, z′ = eθ
′i, with 0 ≤ θ, θ′ < 2π, define z < z′ if

θ < θ′. Then, zz′ > z, z′ if θ + θ′ < 2π and zz′ < z, z′ otherwise, so < is a good

ordering.

Now, if x, y ∈ C, we say that x > y provided that the argument of x is

greater than the argument of y, and we make 0 the smallest element in C. The

argument above shows that “>” is indeed a good ordering.

In general, a group does not need to admit a good ordering. For example, the

Klein 4-group G = C2 × C2 does not admit a good ordering. Indeed, regardless

of the order considered, we can always name the non-trivial elements of G a, ab
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and b, in increasing order. So, no order in G is good. The reason behind this

is that every group that can be faithfully represented into C∗ admits a good

ordering.

The following result appears as Proposition 2.4 in [27]. The proof is inspired

by Kreknin’s method as it appears in [19].

Proposition 3.4.3. Let L be an S-graded Lie ring, where S is a finite set of

complex numbers not including 1. Then L is soluble. Moreover, if |S| = d, then

dl(L) ≤ 2d−1 − 1.

Proof. Choose a good ordering on S, and label the elements of S such that

x1 < x2 < · · · < xd. Then L = ⊕di=1Lxi , and we are going to denote Lxi = Li

for the sake of simplicity. For 1 ≤ k ≤ d let Hk be the subring generated by

Lk+1, · · · , Ld. Note that Hd = 0. We claim that

(i) L(2k−1) ∩ Lk ⊆ Hk, and

(ii) L(2k−1) ⊆ Hk,

both for 1 ≤ k ≤ d. We prove (i) and (ii) simultaneously, by induction on k. In

the case k = 1, we have to show that L′ ⊆ H1, and it is sufficient to show that

[Li, Lj] ⊆ H1, for every i, j. If the product xixj 6= x1, certainly [Li, Lj] ⊆ H1,

so we must consider the case xixj = x1. Since 1 /∈ S, then none of the numbers

xi, xj can equal x1. In this case, both i, j ≥ 2, and [Li, Lj] ⊆ H1, completing

the proof in this case.

Suppose now k > 1. The induction hypothesis for (ii) yields

L(2k−1−1) ⊆ Hk−1

so that

[L(2k−1−1), L(2k−1−1)] = L(2k−1) ⊆ (Hk−1)′.

To prove (i), it is sufficient to show that (Hk−1)′ ∩ Lk ⊆ Hk.

Let a, b ∈ Hk−1 be homogeneous elements with h = [a, b] ∈ Lk. We have to

show that h ∈ Hk. We may assume that b = [b1, · · · , bm], where m ≥ 1 and bi ∈
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Lni
for some n1, · · · , nm ≥ k. Then, h can be written as a Z-linear combination

of simple commutators of the form [a, bσ(1), · · · , bσ(m)] for permutations σ ∈ Sm,

by Lemma 3.1.2(ii). It therefore suffices to show that all these elements lie in

Hk. We may assume that σ is the identity permutation, as the type of the

permutation σ ∈ Sm will not interfere in the proof, and consider the element

y = [c, bm], where c = [a, b1, · · · , bm−1]. Suppose c ∈ Li and bm ∈ Lj, so that

j = nm. Recall here that h belongs to Lk, and as a is a homogeneous element,

in particular y ∈ Lk, and then xixj = xk. We know that j ≥ k, and since xi 6= 1

we have j > k. It is also clear that i 6= k, for the same reason, and we claim

that i > k. For otherwise, if i < k, then we would have xi < xk = xixj < xj,

contradicting the assumption that < is a good ordering. Then, y ∈ [Li, Lj] ⊆ Hk

and in particular h ∈ Hk. This proves (i).

To prove (ii), consider M = L(2k−1) as an S-graded Lie ring. Apply (ii) for

M with k − 1 to obtain

M (2k−1−1) ⊂ 〈M ∩ Lk, · · · ,M ∩ Ld〉 ⊂ 〈M ∩ Lk, Hk〉.

Now, condition (i) for L and k yields M ∩ Lk ⊆ Hk. Therefore

M (2k−1−1) ⊆ Hk.

Since L(2k−1) = M (2k−1−1), the result follows.

An automorphism of a finite rank Lie ring is called semisimple if it can be

represented by a diagonal matrix over some suitable integral extension of the

integers. In this sense, consider the following corollary.

Corollary 3.4.4. Let L be an r-generated Lie ring of finite which admits a

fixed-point-free semisimple automorphism φ. Then L is soluble, with derived

length at most 2r−1 − 1.

Proof. We may just consider the grading induced by the set S of eigenvalues of

φ, on a suitable extension L = L⊗Z R of L, where R is an integral extension of

Z containing all eigenvalues of φ. We regard S as a subset of C. Since φ acts

fixed-point-freely on L, 1 /∈ S. Also, the number of distinct eigenvalues of φ is
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no greater than r, because φ can be represented as an r × r matrix over C. We

can apply Proposition 3.4.3 to L, and this ensures that L ⊆ L has the desired

properties.

This result ends our general discussion about Lie rings.



Chapter 4

Powerful p-groups

This section is devoted to the study of a class of p-groups that generalize in some

sense abelian groups, the so called powerful p-groups. They were formally intro-

duced in [20], but the authors of this paper say that this concept was foreseen

by many other authors in previous years. The reason for this anticipation of re-

sults may be the fact that, as it will be illustrated by Theorem 4.1.15, powerful

p-groups arise quite naturally in the general theory of p-groups. When we deal

with certain classes of p-groups, powerful p-groups also happen often as impor-

tant subgroups, and this fact illustrates their great importance and generality.

We are going to see that, besides sharing various linear properties with abelian

groups, the powerful p-groups also are very useful to bound the derived length

of an arbitrary p-group, as showed in Theorem 4.1.15. The results in this section

are all proved for the case where p is an odd prime, for the sake of simplicity,

despite being true also in the case p = 2. Some proofs apply to both cases and

some others have to be slightly modified in order to hold in the case of the even

prime. The omitted proofs can all be found in Section 4 of [20]. All groups

considered in this chapter are finite p-groups.

4.1 General Properties

We say that a p-group G is powerful when G/Gp is abelian, if p is odd, and

G/G4 is abelian, when p = 2. The reason for requiring the quotient over G4 to

be abelian on the latter case, and not over G2, is that G/G2 has exponent 2 and

thus is abelian, regardless of the group G we are considering. Note that this

definition is equivalent to saying that G′ ≤ Gp, in the odd case, and G′ ≤ G4,

25
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in the even one, because G/Gp or G/G4 abelian implies that, for every x, y ∈ G

the commutator [x, y] belongs to Gp or to G4, respectively. This means that the

subgroup generated by the commutators, G′, is contained in Gp or G4, according

to the case. There is a similar notion involving a subgroup H of G: we say that

H is powerfully embedded in G when [G,H] ≤ Hp, and we are going to write

H p.eG for short. Then, G is powerful if and only if it is powerfully embedded

in itself, and a powerfully embedded subgroup H of G must be normal and

powerful, since [G,H] ≤ Hp ≤ H and [H,H] ≤ [H,G] ≤ Hp.

First of all, we consider some non-trivial examples of powerful p-groups,

besides the abelian ones. The quaternion group Q = 〈r, s | r2 = s2, rs = r−1〉

is an example of a 2-group that is not powerful, as Q4 = 1 and Q′ = 〈z〉

has order 2. But if we consider the direct product G = Q × C8 of Q and

C8 = 〈t | t8 = 1〉 and the quotient over the subgroup K = 〈(z, t4)〉, we obtain

that G = G/K is powerful, as G′ = 〈(z, 1)〉 = 〈(1, t4) = G
4. As a by-product,

this shows that the property of being powerful is not inherited by subgroups,

since G admits as a subgroup one copy of Q. Also, for p odd we have that the

group H = 〈r, s | rp2 = sp = 1, rs = rp+1〉, isomorphic to Cp2 o Cp, is powerful.

Here, H ′ = 〈[r, s]〉 = 〈rp〉 = Hp.

Even though this feature does not pass to subgroups, it is clear that being

powerful is a property that passes to quotients and direct products. Let us

start with a criterion to verify whether a normal subgroup K of G is powerfully

embedded in G.

Lemma 4.1.1. Let K be a normal subgroup of G. Then K is powerfully em-

bedded in G whenever [K,G] ≤ Kp[K,G,G].

Proof. Note that both Kp and [K,G,G] are normal in G. Taking the commuta-

tor subgroup with G we get that [K,G,G] ≤ [Kp, G][K,G,G,G]. In particular,

we have

[K,G] ≤ Kp[K,G,G] ≤ Kp[Kp, G][K,G,G,G] ≤ Kp[K,G,G,G],

since Kp is normal in G. This shows that [K,G] ≤ Kp[K,G,G,G]. By repeating
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the same argument we have that [K,G] ≤ Kp[K,G, · · · , G︸ ︷︷ ︸
s

] for any s ≥ 2. We

conclude that [K,G] ≤ Kp, as G is nilpotent.

The lemma above says that we may prove that a normal subgroup K is

powerfully embedded in G by proving that the image of K modulo [K,G,G] is

powerfully embedded in the quotient G/[K,G,G] without loss of generality.

Lemma 4.1.2. IfM and N are normal subgroups of G such that [M,N,G,G] =

1, then [Mp, N ] ≤ [M,N ]p.

Proof. Applying the standard commutator identity [ab, c] = [a, c]b[b, c] several

times, we have

[mp, n] =[mp−1, n]m[m,n] = ([mp−2, n]m[m,n])m[m,n] = · · ·

=(· · · (([m,n]m[m,n])m[m,n])m · · · [m,n])m[m,n],

for any m ∈M and n ∈ N .

Since all commutators starting with [m,n] and having weight greater than

or equal to 4 vanish and [M,N,G] ≤ Z(G), in the identity above, we can collect

the remaining commutators to get

[mp, n] = [m,n]p[m,n,m](
p
2) ∈ [M,N ]p, (4.1.1)

as p is odd. By working in the quotient G/[M,N ]p, we need to show that

[Mp, N ] = 1. In view of Lemma 4.1.1 we know that [mp, n] = 1 for any m ∈ M

and n ∈ N . This means that mp ∈ CG(N), and, in particular, that Mp ≤

CG(N). Thus [Mp, N ] = 1, as required.

Despite the property of being powerful is not inherited by subgroups in gen-

eral, the next result shows that many subgroups actually do inherit this property.

Lemma 4.1.3. Let G be a finite p-group and M and N subgroups of G. If

M p.eG and N p.e.G, then Mp p.e.G, [M,N ] p.e.G and MN p.e.G.

Proof. As for Mp, we need to show that [Mp, G] ≤ (Mp)p. In view of Lemma

4.1.1, we may assume that [Mp, G,G] = 1 and prove that the image of Mp
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is powerfully embedded in the quotient G/[Mp, G,G]. Since [M,G] ≤ Mp, it

follows that [M,G,G,G] ≤ [Mp, G,G] = 1. It follows from Lemma 4.1.2 that

[Mp, G] ≤ [M,G]p ≤ (Mp)p.

Next, we consider the case of [M,N ] and assume that [M,N,G,G] = 1. We

know that [M,N,G] ≤ [M, [N,G]][M,G,N ], by the Three Subgroup Lemma.

As the subgroups M and N are powerfully embedded in G, we have

[M, [N,G]][M,G,N ] ≤ [M,Np][Mp, N ] ≤ [M,N ]p,

where the last inclusion holds because of Lemma 4.1.2. This yields [M,N,G] ≤

[M,N ]p, as desired.

In order to show thatMN p.e.G, let us observe that [MN,G] = [M,G][N,G],

since both M and N are normal in G. As both subgroups M and N are power-

fully embedded in G, we have [M,G][N,G] ≤MpNp ≤ (MN)p. This completes

the proof.

As an application of Lemma 4.1.3, we get the following corollary.

Corollary 4.1.4. Let G be a powerful p-group. Then the subgroups γi(G), G(i),

Gpi are powerfully embedded in G. Moreover, the Frattini subgroup Φ(G) = Gp

is powerfully embedded in G too.

Proof. The assertion about γi(G), G(i) and Gpi follows from Lemma 4.1.3. More-

over, since [G,G] ≤ Gp and Φ(G) = [G,G]Gp = Gp, the last assertion holds in

the case when p is odd (note that, when p = 2, G4 ≤ G2 = Φ(G)), and the proof

is complete.

One of the properties that powerful p-groups share with abelian groups is

the content of the following proposition.

Proposition 4.1.5. Let G be a powerful p-group with p odd. Then, for every

i ≥ 1, we have Gpi = {xpi |x ∈ G}.

Proof. The proof will be by induction on i. Assume i = 1, we argue by induction

on |G|. First of all, note that the factor group G = G/(Gp)p is nilpotent of class
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at most 2, since [G,G,G] ≤ [Gp, G], where we use that G is powerful, and

[Gp, G] ≤ (Gp)p, as Gp p.e.G. Hence, for every u, v ∈ G, (uv)p = upvp[v, u](
p
2).

As [G,G] is central in G and
(
p

2

)
=
p(p− 1)

2
with p ≥ 3, then

upvp = (uv)p([u, v]
p−1
2 )p = (uv[u, v]

p−1
2 )p.

Thus the result holds in G, which means that for every u ∈ Gp there exists v ∈ G

such that u = vpw, for some w ∈ (Gp)p. Put H = 〈v,Gp〉. Since H ≤ 〈v,Φ(G)〉,

the subgroup H must be proper, otherwise G would be cyclic and the result is

trivial in this case. Then, by induction, we get u = vpw = tp for some t in H.

Since u ∈ Hp, this concludes the proof in the case i = 1.

Now, Corollary 4.1.4 shows that Gpi is itself a powerful p-group, for every

i ≥ 1. Assuming i > 1, we have

Gpi = 〈xpi |x ∈ G〉

= 〈(xpi−1

)p |x ∈ G〉 = (Gpi−1

)p (by inductive hypothesis)

= {gp | g ∈ Gpi−1} (by the case i = 1)

= {(xpi−1

)p |x ∈ G} (by inductive hypothesis)

= {xpi |x ∈ G}

as desired.

Corollary 4.1.6. Let G be a powerful p-group, with p odd. Then, for every

i, j ≥ 0 we have (Gpi)p
j

= Gpi+j

.

Proof. We have

(Gpi)p
j

= {hpj |h ∈ Gpi} (because Gpi is powerful, by Corollary 4.1.4,)

= {(gpi)pj | g ∈ G} (by Proposition 4.1.5,)

= {gpi+j | g ∈ G}

= Gpi+j

(by Proposition 4.1.5.)

In [28], Shalev shows that commutators and p-powers have a nice interaction

in powerful p-groups, as it is stated in the following lemma.
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Lemma 4.1.7. If N,M are normal subgroups of G and are powerfully embedded

in G, then [Npi ,Mpj ] = [N,M ]p
i+j

, for all i, j ≥ 0.

Proof. First we show that [Np,M ] = [N,M ]p and then prove the lemma by

induction on i + j. We claim that [xp, y] ≡ [x, y]p (mod [N,M ]p
2

) for all

x ∈ N, y ∈ M . Let K = 〈[x, y], x〉. We know, by the Hall-Petrescu identity

(appendix A in [5]), that

[x, y]p = (x−1xy)p = x−p(xy)pc
(p
2)

2 · · · c
( p
p−1)
p−1 cp = [xp, y]c

(p
2)

2 · · · c
( p
p−1)
p−1 cp,

where ci ∈ γi(〈x−1, xy〉) and for 2 ≤ i ≤ p. Since K = 〈x−1, xy〉, the equality

above shows that [xp, y] ≡ [x, y]p (modH), where H = (K ′)pγp(K). Let us show

that H ≤ [N,M ]p
2

.

Note that, as bothM and N are normal subgroups of G, we can regard [x, y]

as an element of M or N , according to our necessity. Consider the subgroup

γp(K) = 〈[c1, · · · , cs], s ≥ p, cj ∈ {x, [x, y]}〉. In order to consider the non-

trivial commutators that generate γp(K), we may assume that c1 6= c2 in any

commutator of the form w = [c1, · · · , cs], and certainly [c1, c2] ∈ [N,M,N ].

Thus any commutator of the form [c1, · · · , cs] belongs to [N,M,N,s−2N ] ≤

[N,M,N,p−2 , N ], as s− 2 ≥ p− 2, and we get γp(K) ≤ [N,M,p−1N ]. We also

have (K ′)p ≤ [N,M,N ]p by using a similar idea. Lemma 4.1.4 tells us that

[N,M ] p.e.G, thus [N,M ] p.e.N too. It follows that

[N,M,p−1N ] ≤ [N,M,N,N ] (since p is odd and then p− 1 ≥ 2,)

≤ [[N,M ]p, N ] (because [N,M ] p.e.N ,)

≤ ([N,M ]p)p (because [N,M ]p p.e.N ,)

= [N,M ]p
2

(because [N,M ] is powerful.)

We also have

[N,M,N ]p ≤ ([N,M ]p)p = [N,M ]p
2

.

This shows that H = (K ′)pγp(K) ≤ [N,M ]p
2

, establishing the congruence

[xp, y] ≡ [x, y]p (mod [N,M ]p
2

). Applying this congruence, we get that

[Np,M ][N,M ]p
2

= [N,M ]p[N,M ]p
2

= [N,M ]p (∗).
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In particular, we have [Np,M ] ≤ [N,M ]p. As [N,M ]p is also powerful, we know

that its Frattini subgroup equals ([N,M ]p)p = [N,M ]p
2

. The equality in (∗)

guarantees that [Np,M ] equals [N,M ]p modulo Φ([N,M ]p), which gives us the

required equality [Np,M ] = [N,M ]p.

The general case will follow by induction on i+j. Note that the case i+j = 1

has just been proved, since the argument with i = 0 and j = 1 is symmetric to

the previous one. Suppose that i+j > 1 and that the result holds for i+j−1. We

can assume that i ≥ 1, otherwise we exchange the roles of N and M . Observe

that

[Npi ,Mpj ] = [(Npi−1

)p,Mpj ]

= [Npi−1

,Mpj ]p (by the case i+ j = 1,)

= ([N,M ]p
i+j−1

)p (by the inductive hypothesis,)

= [N,M ]p
i+j

(as [N,M ] is powerful.)

This completes the proof.

As immediate corollaries of the previous lemma, we get the following results.

Corollary 4.1.8. If G is powerful, then, for every i, j ≥ 0, we have

(i) (Gpi)(j) = (G(j))p
i2j

(ii) γj(Gpi) = γj(G)p
ij

(iii) (Gpi)(j) ≤ Gpi2
j+2j−1

Proof. Items (i) and (ii) follow directly from Lemma 4.1.7. The inclusion G(j) ≤

Gp2
j−1

can be proved by induction on j, and this inclusion combined with (i)

and Corollary 4.1.6 gives (iii).

If G is a p-group of exponent pe, we call the series G > Gp > · · · > Gpe = 1

the agemo series of G. Note that all inclusions are proper, since Gpi+1

is a

subgroup of (Gpi)p ≤ Φ(Gpi). This series does not need to be central in general,

but when G is powerful, the following holds.
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Corollary 4.1.9. If G is a powerful group of exponent pe, then the series

G . Gp . · · · . Gpe−1

. 1

is central. In particular, dl(G) ≤ e.

Proof. The commutator [Gpi , Gpj ] equals [G,G]p
i+j

. Since [G,G] ≤ Gp we have

[G,G]p
i+j ≤ (Gp)p

i+j

= Gpi+j+1

.

In view of Corollary 4.1.9, the factors of the agemo series all have exponent p

and are elementary abelian. The next proposition gives information about how

the ranks of these elementary abelian factors behave.

Proposition 4.1.10. If G is a powerful p-group, then the following inequalities

hold

pd = [G : Gp] ≥ [Gp : Gp2 ] ≥ · · · ≥ [Gpe−1

: Gpe ], (4.1.2)

where d = d(G) and pe = exp(G).

Proof. Consider the function fi : Gpi/Gpi+1 → Gpi+1

/Gpi+2

, given by x 7→ xp.

Here we use the same bar notation to denote elements in both quotients. First

of all, it is a well defined function because if x, y ∈ Gpi and xGpi+1

= yGpi+1

,

then xy−1 ∈ Gpi+1

and the Hall-Petrescu formula applied to this product gives

(xy−1)p = xpy−pc
(p
2)

2 · · · c
( p
p−1)
p−1 cp,

which implies

xpy−p = (xy−1)p(c
(p
2)

2 · · · c
( p
p−1)
p−1 cp)

−1,

where each ci is an element of γi(〈x, y−1〉). As xy−1 ∈ Gpi+1

, (xy−1)p ∈ Gpi+2

.

We also know that [Gpi , Gpi ] = (G′)p
2i ≤ Gp2i+1

for every i ≥ 1, which shows

that each ci belongs to Gp2i . As a consequence, xpy−p ∈ Gpi+2

and we have

xp ≡ yp (modGpi+2

). The fact that fi is a homomorphism also follows from

the calculation above. The surjectivity of fi follows from the fact that Gpi+1

is exactly equal to the set of p-th powers of the elements in Gpi . Moreover, as

Φ(G) = Gp, we get pd = [G : Gp]. This completes the proof.
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We include the following important result here because of its strength and for

the sake of completeness, even though it will not be needed in this dissertation.

It states one of the most important features of powerful p-groups, and is Theorem

1.12 of [20].

Theorem 4.1.11. Suppose that G is a powerful p-group generated by d ele-

ments. Then every subgroup of G can be generated by d elements.

Our main result of this section justifies why powerful p-groups play an important

role in the study of finite p-groups. We want to show that every finite p-group

G with rank rk(G) = r has a powerful characteristic subgroup V , such that the

index of V in G is bounded by a function of p and r and the derived length of

G/V is bounded by a function of r only.

In order to do so, we need some preparatory work. Given a finite p-group

G and a positive integer r, let us denote by V (G, r) the intersection of the

kernels of all homomorphisms from G into GLr(Fp). Since the image of any

homomorphism of a p-group G into GLr(Fp) is a p-group, and every p-subgroup

of GLr(Fp) is conjugate to a subgroup of the lower uni-triangular group Ur(Fp),

that is a Sylow p-subgroup of GLr(Fp), we could equally well define V (G, r) as

the intersection of all the kernels of homomorphisms of G into Ur(Fp). Note that

if an element g of G belongs to V (G, r), then g acts trivially on every factor of

G which is elementary abelian. This happens since the rank of G equals r, and

every elementary abelian quotient of G is at most r-generated.

For r ∈ N, we consider here λ(r) = dlog2(r)e. The proof of the following

lemma can be found in [5, Lemma 2.11]. We are going to use it in the proof of

Theorem 4.1.15.
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Lemma 4.1.12.

(i) The group Ur(Fp) has a series of normal subgroups of length λ(r) such that

every factor is elementary abelian.

(ii) If G is a finite p-group, then G/V (G, r) has a series with these properties

and length at most λ(r).

The following lemma is useful in proofs via contradiction, as it gives necessary

conditions that hold in subgroups of a group that are not powerfully embedded.

Lemma 4.1.13. Let G be a finite p-group, p an odd prime. If N and V are

normal subgroups of G such that N ≤ V and N is not powerfully embedded in

V , then there exists a normal subgroup J of G such that

Np ≤ J < Np[N, V ], and [Np[N, V ] : J ] = p.

Proof. As [N, V ] 6≤ Np, Np < Np[N, V ]. Since N and V are normal in G, so are

Np and [N, V ]. Now, G is a p-group, so induction on |G| shows that there exists a

subgroup J normal in G such that Np ≤ J < Np[N, V ] and [Np[N, V ] : J ] = p.

Proposition 4.1.14. Let G be a finite p-group, where p is odd, and let r be

a positive integer. Put V = V (G, r). If N / G, d(N) ≤ r and N ≤ V , then

N p.e. V .

Proof. The proof is by induction on |N |. Suppose that [N, V ] 6≤ Np. Factoring

out G by J as in Lemma 4.1.13, we may assume that Np = 1 and [N, V ] has

order p. Since N is not powerfully embedded in V , we cannot have [N, V ] = N ,

otherwise Np ≤ [N, V ]; therefore [N, V ] must be a proper subgroup of N . Now,

G is a p-group, so there exists a normal subgroupM of G with [N, V ] ≤M < N

and [N : M ] = p. As N ≤ V , we have [N,N ] ≤ [N, V ], and so N/[N, V ] is

elementary abelian. The same observation holds for M/[N, V ], because Mp ≤

Np = 1 and [M,M ] ≤ [N, V ]. Taking into account that [N : M ] = p, we have

d(M/[N, V ]) = d(N/[N, V ]) − 1 ≤ r − 1. Since [N, V ] is cyclic, it follows that

d(M) ≤ r. Hence, M satisfies the hypothesis of the proposition and, by the
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inductive hypothesis, we obtain that [M,V ] ≤ Mp = 1. Thus, being M central

in V , it is also central in N , and as N/M is cyclic it follows that N is abelian.

Then N is an Fp-vector space of dimension at most r, so the conjugation action

of V on N must be trivial, giving [N, V ] = 1, in contradiction to our initial

hypothesis.

Finally, we are ready to deal with the proof of the main result of this section.

Theorem 4.1.15. Let G be a finite p-group of rank r. Then G has a powerful

characteristic subgroup V of index at most prλ(r), if p is odd. Moreover, the

derived length of G/V is at most λ(r).

Proof. Put V = V (G, r). Taking N = V in Proposition 4.1.14, we get that

N is powerfully embedded in itself, hence it is powerful. By Lemma 4.1.12,

there exists a series of normal subgroups running from G to V , of length λ(r),

with each factor elementary abelian. This fact yields that dl(G/V ) is at most

λ(r). Also, since G has rank r, each of these factors has order at most pr, so

[G : V ] ≤ prλ(r).

The previous result will be very useful in an certain kind of context. Indeed,

for example, if we have certain conditions on a p-group P of rank r and want

to bound its derived length, then assuming that the hypothesis on P can be

inherited by its characteristic subgroups, we can work with V (G, r) instead of P

with the additional property of being powerful, since the derived length of G/V

is already bounded in terms of r only.

4.2 Uniform Groups

In this section we will introduce a particular subclass of powerful p-groups, the

so-called uniform groups. In order to do it, we begin with the following result

illustrating a specific phenomenon for powerful finite p-groups, of given exponent

and rank.
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Lemma 4.2.1. Let G be a powerful p-group with exponent pe and rank r. Then,

G admits a series of characteristic subgroups

G ≥ Gpi1 ≥ Gpi2 ≥ · · · ≥ Gpis = 1,

(where i0 = 0) such that every factor Ml = Gpil/Gpil+1 , l = 0, . . . , s − 1, with

exponent pkl satisfies

[Ml : Mp
l ] = [Mp

l : Mp2

l ] = · · · = [Mpkl−1

l : Mpkl
l ].

Proof. Consider

G ≥ Gp ≥ · · · ≥ Gpe−1 ≥ 1

the agemo series of G. As the orders of the factors are non-increasing by Propo-

sition 4.1.10, let i1 be the first index such that Gpi1/Gpi1+1

is non-isomorphic to

G/Gp. Then, the claimed series will begin with G and will be followed by Gpi1 ,

as the quotient G/Gpi1 satisfies the conditions of the statement, by construction.

We find i2 as the index such that Gpi2/Gpi2+1

is non-isomorphic to Gpi1/Gpi1+1

,

and Gpi2 will be the next term in the series we want to construct. Notice that

the agemo series of G/Gpi1 produces quotients having rank r, while on Gpi1/Gpi2

the agemo quotients have rank at most r−1. This construction produces indices

0 < i1 < · · · < is = e such that the sections Ml all satisfy the conditions of the

statement, for l = 0, . . . , s− 1. Also, we have s ≤ r.

In view of Proposition 4.1.10 and Lemma 4.2.1, we see that an arbitrary

powerful p-group can be “divided” into sections where the inequalities of equation

(4.1.2) all become equalities. This property inspires the following definition.

Definition 4.2.2. Let G be a powerful finite p-group of exponent pe. We say

that G is uniformly powerful, or uniform for short, if we have

[G : Gp] = [Gp : Gp2 ] = · · · = [Gpe−1

: Gpe ].

Since the inequalities in Proposition 4.1.2 all become equalities, the operation

of taking pj-th powers yields an isomorphism from the factor Gpi/Gpi+1

to the

factor Gpi+j

/Gpi+j+1

, as long as i+ j+1 ≤ e. Also, if d(G) = d and exp(G) = pe,
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then every quotient Gpi/Gpi+1

is isomorphic to Cp × · · · × Cp︸ ︷︷ ︸
d

, where 0 ≤ i ≤

e− 1. In particular, the order of G equals pde.

The next result is strictly about uniform p-groups.

Lemma 4.2.3. Let G be a uniform p-group of exponent pe. Then xp
i ∈ Gpj

implies x ∈ Gpj−i

for all 0 ≤ i < j ≤ e

Proof. Choose s such that x ∈ Gps\Gps+1

. It follows then that xp
i

belongs to

Gps+i\Gps+i+1

as long as s + i < e. If s + i < e, we have both xp
i ∈ Gpj and

xp
i

/∈ Gps+i+1

, whence Gps+i+1

< Gpj and thus s+ i+ 1 > j, giving s ≥ j − i. It

is clear that x ∈ Gps ≤ Gpj−i

, as required. If s + i ≥ e, then s + i ≥ j, whence

again s ≥ j − i and x ∈ Gps ≤ Gpj−i

, as required.

A natural question that arises, concerning Lemma 4.2.3, is the following:

what would be an example of a powerful p-group that does not satisfy the

statement of the lemma? We can answer with the group G = 〈x, y |xp2 = yp =

1, [x, y] = xp〉. It is an example of a powerful p-group that is not uniform and

for which the previous lemma fails to hold. Indeed, in G we have Gp = 〈xp〉 and

G/Gp ∼= Cp × Cp, while Gp2 = 1 and Gp/Gp2 ∼= Cp. Taking the element y of

G, for instance, we have that yp ∈ Gp2 , but y does not belong to Gp, because

otherwise y would be a power of x and G would be cyclic, by Theorem 2.1.6.

In the last paragraph of the previous chapter, we discussed a method con-

cerning problems related to solubility in a p-group P of rank r that reduces the

study to the class of powerful p-groups, by dealing with the subgroup V (r, P )

instead of P . In view of Lemma 4.2.1, we can reduce the problem even further,

to the class of uniform groups, since bounding the derived length of each uni-

form section of V (P, r) amounts to a bound for the derived length of V (P, r)

itself. Our main goal in this chapter is to bound the derived length of each

uniform section of a powerful p-group using a special class of Lie rings that can

be associated to uniform groups.
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4.3 The Associated Lie Ring

Let us describe the construction of a finite Lie ring (or rather a collection of Lie

rings) associated to a uniform p-group. Following [7, §1.2], we say that a finite

abelian p-group G is homocyclic if G is isomorphic to a direct product of one or

more pairwise isomorphic cyclic groups. In this case, if G = Cpi × · · · × Cpi︸ ︷︷ ︸
d

, we

say that G is of type (pi, · · · , pi︸ ︷︷ ︸
d

).

Proposition 4.3.1. Let G be a uniform group of exponent pe with d(G) = d.

Denote by L the quotient Gpi/Gp2i, for a fixed i, 0 < i ≤ e. Then we have:

(i) If i ≤ e/2, the quotient Gpi/Gp2i is a homocyclic group with exponent pi

and d generators.

(ii) The map x 7→ xp
i

induces a well defined epimorphism q : Gpi/Gp2i →

Gp2i/Gp3i. If, moreover, i ≤ e/3, then q is in fact an isomorphism.

(iii) The commutator operation in G, which in this proposition will be denoted

by (x, y) = x−1y−1xy, induces a well defined function c, mapping a pair

of elements xGp2i , yGp2i of Gpi/Gp2i to the element (x, y)Gp3i of Gp2i/Gp3i.

Using additive notation in the respective abelian groups, this function is in

fact bilinear.

(iv) Suppose i ≤ e/4 and regard L as an additive group. If we equip L with the

bilinear operation defined as follows:

[x, y] = q−1(c(x, y)),

for every x, y in L, then L has the structure of a Lie Z/piZ-ring. Moreover,

the quotient ring L/pL is commutative.

Proof. By Corollary 4.1.8, we know that [Gpi , Gpi ] = (G′)p
2i ≤ (Gp)p

2i ≤ Gp2i+1 ≤

Gp2i , since G is powerful. Thus Gpi/Gp2i is abelian. Since here we are assuming

i ≤ e/2, the construction of such a quotient gives us exp(L) = pi. Moreover,
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since G is uniform, all quotients of the series G . Gp . · · · . Gpe−1

. 1 are ele-

mentary abelian of rank d, being isomorphic to the quotient G/Φ(G). Then,

the factor Gpi/Gp2i has order pid. As G/Gp = 〈ā1, · · · , ād〉, and as Gp/Gp2 =

〈b̄1, · · · , b̄d〉, we have that Gp = 〈b1, · · · , bd〉Gp2 and G = 〈a1, · · · , ad〉Gp, giving

G = 〈a1, · · · , ad〉〈b1, · · · , bd〉Gp2 . As we can certainly write the bi in terms

of the aj, by Theorem 2.1.6, it follows that G = 〈a1, · · · , ad〉Gp2 , and the

quotient G/Gp2 has d generators. In particular, as Gps is uniform for any

0 ≤ s ≤ e, replacing G wiht Gps in this argument shows that if s < t, then

Gps/Gpt is d-generated. In particular, Gpi/Gp2i is also d-generated. Since it is

abelian of exponent pi, d-generated and of order pid, it must be homocyclic, i.e.,

Gpi/Gp2i ∼= Cpi × · · · × Cpi︸ ︷︷ ︸
d

. This proves (i).

Now, item (ii) follows by the Hall-Petrescu identity [5, Appendix A], using

exactly the same argument used in the proof of Proposition 4.1.10. If i ≤

e/3 then Gpi/Gp2i and Gp2i/Gp3i have the same order, and so q is actually an

isomorphism. We would like to point out that c maps the pair of elements

x̄ = xGp2i and ȳ = yGp2i of Gpi/Gp2i into the element c(x̄, ȳ) = (x, y)Gp3i ,

and that (x, y) actually belongs to Gp2i , since (x, y) belongs to [Gpi , Gpi ], which

equals [G,G]p
2i

by Lemma 4.1.8, and [G,G]p
2i

is a subgroup of Gp2i .

The first part of (iii) also follows by Hall-Petrescu formula. Observe that

the section Gpi/Gp3i has class at most 2, since γ3(Gpi) = γ3(G)p
3i ≤ Gp3i by

Corollary 4.1.8. Therefore the section Gpi/Gp3i satisfies (x, yz) = (x, y)(x, z) and

this yields bilinearity of the function c. The bilinearity of [ , ] follows from the

previous argument and the fact that q is an isomorphism, since i ≤ e/4 implies

i < e/3. To prove that [ , ] satisfies the Jacobi identity, note that Gpi/Gp4i

has class at most 3, and the Hall-Witt identity becomes exactly (x,−y, z) +

(y,−z, x) + (z,−x, y) = 1 in this section. Applying the isomorphism q−1 to

both sides of this equation gives exactly the Jacobi identity. The fact that L is

a Lie Z/piZ-ring follows from the fact that L is an abelian group of exponent

pi, and this proves the first part of (iv).
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If we still assume that i ≤ e/4, we know by item (ii) that q is an isomorphism.

We are going to denote by sp
−i

the unique image of s ∈ Gp2i/Gp3i under q−1.

Thus taking x̄ and ȳ for some x, y ∈ Gpi in L we have

[x̄, ȳ] = q−1(c(x̄, ȳ)) = ((x, y)Gp3i)p
−i

.

Finally, take g, h ∈ Gpi . Since G is powerful, then [Gpi , Gpi ] = [G,G]p
2i ≤

Gp2i+1

, and so (g, h) ∈ Gp2i+1

. As Gp2i+1

= (Gp2i)p, we have (g, h) = sp , s ∈ Gp2i .

Now given ḡ and h̄, the images of g and h in L, we get that

[ḡ, h̄] = q−1((g, h)Gp3i) = q−1(spGp3i) = q−1(p · s̃) = p · q−1(s̃) = ps̃p
−i

,

where s̃ denotes the image of s in Gp2i/Gp3i . Then, since [L,L] ⊆ pL, the proof

is complete.

A finitely generated free Lie Z/piZ-ring L with the property that L/pL is

commutative is said to be powerful. It is important to remark that L in Proposi-

tion 4.3.1 reflects an important property of a powerful p-group G, that is having

the quotient G/Gp abelian. Also, any choice of i ≤ e/4 in the previous propo-

sition would give a powerful Lie ring associated to G. So, Proposition 4.3.1

constructs a family of Lie rings rather than just one in case e ≥ 4.

Our final goal in this section is to clarify the connection between the derived

length of the Lie ring L and the derived length of G. Then, more than one Lie

ring can be associated to G via Proposition 4.3.1. In what follows, G will denote

a uniform group of exponent pe and Li its Lie rings. We give a series of lemmas

concerning inclusions of some adequate subgroups of G that culminate in the

desired result about the derived length.

Lemma 4.3.2. If L(j)
i = 0, then (Gpi)(j) ≤ Gpi2

j+i

.

Proof. Set L = Li and, for s ≥ 0, let Hs ≥ Gp2i be the subgroup of G satisfying

L(s) = Hs/G
p2i . The definition of the Lie product in L yields Hpi

s = H
′

s−1G
p3i ≥

H ′s−1. Let us show by induction on s that Hpi2
s−i

s ≥ H
(s)
0 . Observe that for s = 0

the claim is obvious. Assuming the claim holds for s − 1 and using Corollary
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4.1.8(i), we obtain

(Hs)
pi2

s−i ≥ (H ′s−1)p
i2s−2i

= (Hpi2
s−1−i

s−1 )′ ≥ (H
(s−1)
0 )′ = H

(s)
0

as required. Now, H0 = Gpi , and Hj = Gp2i , since L(j) = 0. Hence Gpi2
j+i

=

Hpi2
j−i

j ≥ (Gpi)(j), proving the lemma.

Lemma 4.3.3. Suppose L(j)
i = 0, where i2j + i ≤ e. Then G(j) ≤ Gpi.

Proof. By Lemma 4.3.2, (Gpi)(j) ≤ Gpi2
j+i

. Applying Lemma 4.1.8(i) we have

(Gpi)(j) = (G(j))p
i2j

and so we obtain (G(j))p
i2j ≤ Gpi2

j+i

. Lemma 4.2.3 now

yields G(j) ≤ Gpi .

We can now prove the main result of this section. Recall that G is a uniform

group of exponent pe, with associated Lie ring Li.

Theorem 4.3.4. Suppose L(j)
i = 0, where i = be/(2j + 1)c. Then the derived

length of G is at most 2j + 1.

Proof. The conditions of Lemma 4.3.3 are satisfied, so G(j) ≤ Gpi . By Corollary

4.1.8(ii), (Gpi)(j+1) ≤ Gpi2
j+1+2j+1−1

. Note that, since 2j ≥ 1, then i2j+1 + 2j+1−

1 ≥ (i + 1)(2j + 1) − 1 ≥ e, by the choice of i. Hence, (Gpi)(j+1) = 1, so

G(2j+1) = (G(j))(j+1) ≤ (Gpi)(j+1) = 1, and this completes the proof.

There is no parallel result relating the derived length of the more familiar Lie

ring
⊕

γn(G)/γn+1(G) to that of G. This is why the latter Lie ring is not an

adequate tool when dealing with questions related to the solubility of uniform

p-groups.

At this point, it is important to make some remarks about the method used

above to construct the Lie rings Li. First of all, in order to endow one of the

Li with a Lie ring structure, one needed to choose 1 ≤ i ≤ e/4, where pe

denotes the exponent of G, otherwise Li would be a trivial Lie ring. If no such

i can be chosen, then we would have e = 1, 2 or 3. In these cases, we would

have dl(G) = 1, 2 or 3, respectively, since the agemo series of G is central, by

Corollary 4.1.9.
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Now, suppose e ≥ 4. Assume that, whenever a Lie ring Li is soluble, its

derived length is di. In this case, we need i and di to satisfy i2di + i ≤ e in order

to apply Theorem 4.3.4. Then, if the inequality holds for some pair i and di,

the derived length of G is bounded by 2di + 1. But, in case i2di + i ≤ e does not

hold for any i = 1, . . . , e it is also possible to bound dl(G) in terms of one of the

di. Indeed, assume that for a uniform group G and its associated Lie rings the

inequality i2di + i > e holds whenever Li is soluble of length di. In particular, if

L1 is soluble, we have 2d1 + 1 > e. By Corollary 4.1.9, we know that the derived

length of G does not exceed e. The inequality 2d1 +1 > e says that dl(G) cannot

exceed 2d1 + 1. In any case, the derived length of G can be bounded in terms of

the derived lengths of its associated Lie rings Li, in case any of the Li is soluble.



Chapter 5

Simple Groups of Lie Type

In this chapter we are going to discuss, in an expository way, the construction

of some families of finite simple groups, the so-called simple groups of Lie type.

The approach that we follow is due to Claude Chevalley, who conceived a way to

construct such groups as automorphism groups of Lie algebras. Other authors

made adaptations to this method and were able to construct the remaining

simple groups of Lie type. So, apart from the cyclic, alternating and sporadic

groups, this chapter gives the main tools and ideas which led to the discovery

of the said simple groups over the years. We would like to stress that there is

a more fruitful approach, by way of algebraic geometry. However, the one we

give here is sufficient for deriving the basic properties of those groups and also

to study their automorphisms, which is our main goal.

We begin this chapter giving a survey on the fundamental results about

systems of roots and Weyl groups that are used throughout it. Then, we consider

the problem of classifying finite dimensional Lie algebras over C, which inspires

the construction of some “versions” of the same Lie algebras, but this time defined

over finite fields. An appropriate basis and structural constants are given. After

that we define the so-called Chevalley groups, describe many of their properties

and describe and find a normal form for their automorphisms. A remark on

the remaining finite simple groups, the so-called “twisted" simple groups, and

on their automorphism groups is made at the end of the chapter. The main

reference for this chapter is the book [4].

43
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5.1 Systems of Roots

Let V = Rl, for some integer l, and let the canonical inner product of V be

denoted by ( , ). Here, given a non-zero vector r ∈ V , we are going to denote

by wr the reflection of V through the hyperplane orthogonal to r. Since V has

finite dimension, we can construct an orthogonal basis B for V containing r, in

such a way that, given s ∈ V , we can write s as a linear combination of vectors

in B, where the coefficient of r is given by (r, s)/(r, r). Writing s wiht respect

to this basis, as wr acts trivially on the orthogonal complement of r, it simply

changes the sign of the coefficient of r in this expression. We can thus write

wr(s) = s− 2(r, s)

(r, r)
r. (5.1.1)

We now define the main object of this section.

Definition 5.1.1. A subset Φ of V is called a system of roots, or root system,

in V if the following axioms are satisfied:

(i) Φ is a finite set of non-zero vectors.

(ii) Φ spans V .

(iii) If r, s ∈ Φ, then wr(s) ∈ Φ.

(iv) If r, s ∈ Φ, then 2(r, s)/(r, r) is an integer.

(v) If r ∈ Φ, then the only multiples of r ∈ Φ belonging to Φ are r itself and

−r.

Let Φ be a root system, and denote by W = W (Φ) the group generated by

the reflections wr for all r ∈ Φ. Axiom (iii) of Definition 5.1.1 ensures that

W leaves Φ invariant, and since Φ is finite W is a finite group of orthogonal

transformations of V . Because Φ spans V , W operates faithfully on the root

system. We call W the Weyl group of Φ. An example of a system of roots is the

set of vectors {(1, 0), (0, 1), (−1, 0), (0,−1, ), (1, 1), (−1, 1), (−1,−1), (1,−1)},
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consisting of the vertices and midpoints of a square centered in the origin of R2.

Its corresponding Weyl group is isomorphic to D4.

Even though Φ spans V , it is not a linearly independent set, as −r = wr(r)

belongs to Φ whenever r does. It can be proved that Φ contains a linearly inde-

pendent set Π that spans V and such that every root in Φ is a linear combination

of vectors in Π with all coefficients either non-negative or non-positive integers,

as in [4, Proposition 2.1.2]. We are going to call Π a fundamental system of

roots. In the previous example, a = (1, 0) and b = (−1, 1) form Π.

We are going to endow V with a linear order relation, intending to divide Φ

in two halves, and this division will be largely used. Let V + be a subset of V

satisfying the conditions:

(i) If v ∈ V + and λ > 0, then λv ∈ V +.

(ii) If v1, v2 ∈ V +, then v1 + v2 ∈ V +.

(iii) For each v ∈ V , exactly one of the conditions holds: v ∈ V +,−v ∈ V +, v =

0.

Such a subset V + can be obtained, for example, if we take it to be one of the

open semispaces defined by a hyperplane of V .

We now introduce the order relation � by defining v1 � v2 if and only if

v1− v2 ∈ V + for some fixed choice of V +. This is a total order in V compatible

with addition and scalar multiplication by positive elements of R. A subset of

Φ is called a positive system of roots if it has the form Φ ∩ V + for some total

ordering of V ; we denote it by Φ+. Now, as −r belongs to Φ whenever r does,

� divides Φ in two parts of equal cardinality, Φ+ and Φ − Φ+, which we will

denote by Φ−. The roots in Φ+ will be called positive roots and the remainder

negative roots.

Now we can state the results about systems of roots and Weyl groups that

we need. The proofs can be found in [4, Propositions 2.1.2-2.1.6 and 2.1.8].
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Proposition 5.1.2. Let Φ be a system of roots. The following holds.

(i) Every positive system of roots in Φ contains just one fundamental system,

and each fundamental system is contained in some positive system of roots.

(ii) Let r ∈ Π, where Π is a fundamental system of roots. Then wr transforms

r into −r but every other positive root into a positive root.

(iii) Each root in Φ is a linear combination of roots in Π with integer coeffi-

cients, all non-negative or all non-positive.

(iv) Every root in Φ is the image of some root in Π under the action of some

element w of W .

(v) W is generated by the fundamental reflections wr for r ∈ Π.

We remark here that the roots contained in Π are called fundamental roots,

and the reflections associated to them are called fundamental reflections. Item

(ii) of Proposition 5.1.2 above together with item (iii) in Definition 5.1.1 have

strong implications on the possible values of (ri, rj), i 6= j, ri, rj ∈ Π, which will

be explored later. Items (i) and (iii) of Proposition 5.1.2 imply the following

useful fact: if Π is a fundamental system, take the positive system Φ+ associated

to Π. Since every root in Φ can be written as
l∑

i=1

λiri with integer λi by (iii), it

is possible to choose a total ordering such that roots with λi ≥ 0 for all i belong

to V +, and the ones such that λi ≤ 0 for all i belong to V −. In this sense,

Φ+ is determined completely by Π, and we can easily certify whether a root r

is positive or negative just knowing the sign of one of its coefficients, when r

is written in the basis Π. Item (iv) shows the importance of the fundamental

system of roots, since every root is the image of some fundamental one. Finally,

(v) gives a good set of generators for W , which will be explored in the next

results.

Next, we want to shed some light on what can be said about the Weyl group

associated to a given root system. Our intent is to give presentations ofW as an
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abstract group; the proofs of the results can be found in [4, Theorems 2.4.1 and

2.4.3]. Let Φ be a root system and associate to it a fundamental system Π and

its Weyl group W . Take r, s ∈ Π and denote by mrs the order of the rotation

wrws. Note that mrr = 1 for each r ∈ Π.

Theorem 5.1.3. W can be defined, as an abstract group, by the following pre-

sentations

(i) W = 〈wr |w2
r = 1, wrwswr = wwr(s), r, s ∈ Π〉.

(ii) W = 〈wr | (wrws)mrs = 1, r, s ∈ Π〉.

The first presentation uses the action ofW on Φ to construct the conjugation

action inside the group. The second one emphasizes the role of the integers mrs

in the structure of W . Note that, since wr, ws ∈ Π are reflections of V , and

since W is a finite group, their product is a finite order rotation. The angle of

this rotation is twice the angle between r and s, which needs to be a rational

multiple of π. This kind of observation can be used to classify systems of roots.

The possible systems of roots occurring in a 2-dimensional Euclidean space are

described on the next proposition, up to isomorphism. Information is also given

by the table. An isomorphism between systems of roots Φ and Ψ is a bijection

α : Φ → Ψ such that the transformations αwrα−1 and wα(r) are the same, for

each r in Φ.

Table 5.1: Isomorphism Classes of Root Systems
Isomorphism class of Φ A1 × A1 A2 B2 G2

Angle between generators π�2
2π�3

3π�4
5π�6

Order of Φ 4 6 8 12
Isomorphism class of W C2 × C2 D3 D4 D6

Proposition 5.1.4. If Φ is a 2-dimensional root system, then it is isomorphic

to one of the following systems: A1 × A1, A2, B2, G2.
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5.2 Simple Lie Algebras Over C

The simple groups we are about to introduce appear as automorphism groups of

finite dimensional Lie algebras over finite fields, constructed using finite dimen-

sional simple Lie algebras over C. It is natural that some material on simple Lie

algebras over C is necessary to understand the groups. Each of the said algebras

has associated to it a root system and a Weyl group, to which the results of the

previous section apply and become a fruitful way to study such algebras. The

discussion of this section follows mainly Humphreys’ book [13]. Throughout

this section, L will denote a finite dimensional simple Lie algebra over C, whose

dimension is greater than 1.

We begin this discussion introducing the notion of the adjoint representation

of a Lie algebra. Consider the map ad : L → End(L) mapping each x ∈ L

to ad(x), the endomorphism of L sending y to [x, y]. Since L is simple, it

has no non-trivial ideals by definition, and as ad is a Lie homomorphism, L is

isomorphic to its image in End(L) under the adjoint representation. In this

sense, the elements of L can be viewed as matrices over C that naturally act on

L itself. Introduce a bilinear form ( , ) in L by way of (x, y) = tr (adx · ady).

This map, which we call the Killing form of L, is a symmetric bilinear form.

Simplicity of L implies that the only x ∈ L such that (x, y) = 0 for all y ∈ L is

x = 0. We will say that ( , ) is non-degenerate, and the proof for this fact can

be found in [13, Theorem 5.1].

A Cartan subalgebra H of L is a nilpotent subalgebra of L that equals NL(H)

= {x ∈ L | [x, h] ∈ H, for all h ∈ H}. It can be proved that Cartan subalgebras

are all conjugate under some automorphism of L, and that they are abelian

when L is simple [13, Corollary 16.4]. We define the rank of L as the dimension

of H over C.

If we identify L with adL, we have that H is an algebra of commuting endo-

morphisms of L, thus it is possible to choose a basis for L that simultaneously
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diagonalizes the elements of H, by Theorem 8 of Section 6.5 in [12]. In other

words, L can be written as the direct sum of subspaces

Lr = {x ∈ L | [x, h] = r(h)x for all h ∈ H},

indexed by linear maps r from H to C; we call such a decomposition a Cartan

decomposition. Note that L0 is simply CL(H), which equals H, since CL(H) ⊆

NL(H) = H. Also, the aforementioned subspaces are all one-dimensional, if

non-zero, by [13, Proposition 8.4]. The set of non-zero r ∈ H∗ for which Lr 6= 0

is denoted by Φ, and the remarkable fact here is that it forms a root system

inside H∗, by [13, Propositions 8.4 and 8.5]. Non-degeneracy of the Killing form

is inherited by its restriction to H, as in [13, Corollary 8.2]. This makes it

possible to identify H with H∗ and to find a basis {tr | r ∈ Φ} for H (remember

that Φ spans H∗) such that (tr, h) = r(h), for every h ∈ H, and thus there is no

harm in identifying Φ with the set of the tr in H such that Lr 6= 0, and saying

that Φ is a system of roots in H.

We want to summarize some important properties about this decomposition

in the next theorem.

Theorem 5.2.1. (i) If r, s, r + s ∈ Φ, then [Lr,Ls] = Lr+s. If r + s /∈ Φ, Ls
and Lr commute.

(ii) L is generated, as a Lie algebra, by the root spaces Lr, r ∈ Φ.

(iii) Let r, s ∈ Φ, r 6= ±s. Let p, q be the largest integers for which s− pr and

s + qr are also roots. Then, for every −p ≤ i ≤ r, s + ir is also a root.

Moreover, p− q = 2(r, s)/(s, s), and we call this number Ars for short.

Now, let

L = H⊕Lr1 ⊕ · · · ⊕ Lrk

be a Cartan decomposition of L. It can be shown that, if we choose any subset

of Φ which is a basis for H, then each root in Φ is a linear combination of the

roots in this subset with rational coefficients. Also, (r, s) is rational for every
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pair of roots. If we denote by HR the set of all elements of H that are on the

R-span of Φ, then HR is a real vector space, with the same dimension as the

complex dimension of H. Also, the Killing form induces an inner product in

HR and so HR can be regarded as an Euclidean space. In particular, we define

the length of an element x ∈ HR by ||x|| =
√

(x, x) and, as usual, the angle θ

between x, y ∈ HR by (x, y) = ||x|| ||y||cos(θ), 0 ≤ θ < π.

We now want to turn attention again, as at the end of the previous section,

to the root systems associated to the Cartan decomposition, especially to the

strong restrictions of Axiom (iv) of Definition 5.1.1. In this sense, if r and s are

roots, we list on the table below the possible values for Ars = 2(r, s)/(r, r), the

angle θ between them and the ratio between their lengths, assuming ||r|| ≥ ||s||.

All values obtained in the table follow from the fact that ArsAsr = 4 cos2(θ) is

an integer, since Ars also is, for every r, s ∈ Φ.

2(r, s)/(r, r) 2(r, s)/(s, s) θ ||r||2/||s||2

0 0 π/2 undetermined

1 1 π/3 1

-1 -1 2π/3 1

1 2 π/4 2

-1 -2 3π/4 2

1 3 π/6 3

-1 -3 5π/6 3

We are going to call a root system Φ irreducible if it cannot be partitioned

into two proper subsets Φ1 and Φ2 such that every root in one is orthogonal to

every root in the other. If a Lie algebra L is simple, then [13, Theorem 14.1]

shows that its associated root system is irreducible, and [13, Theorem 14.2]

states that, if two simple Lie algebras have isomorphic root systems, then they

are isomorphic. In this way, classifying every possible root system amounts to

classifying the simple Lie algebras of finite dimension over C.

If r, s are distinct fundamental roots, we know that ArsAsr equals 0, 1, 2
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or 3, according to the previous table. We define the Dynkin diagram of Φ to

be a graph having l vertices, where l is the cardinality of Π, the i-th joined

to the j-th, with i 6= j, by AijAji edges. If a double or triple edge occurs,

we add an arrow pointing to the shorter of the two roots, and in this we call

this root short ; the longer root is called long. The Dynkin diagrams encode, in

this way, the rank of L, the angle between the fundamental roots, the Cartan

integers and which roots are short and long. There is a classification theorem

that establishes the possibilities for the Dynkin diagrams of irreducible root

systems, a complete discussion can be found in [13, Theorem 11.4]. Also, if two

simple Lie algebras admit the same Dynkin diagram, then their associated root

systems are isomorphic and, by the previous remark, so are the considered Lie

algebras. We classify all of the possibilities, then, based on the possible Dynkin

diagrams below. The names given to the Lie algebras are written before the

diagrams, and their Lie rank is the subscript after the name.

Theorem 5.2.2. Let Φ be an irreducible system of roots of rank l. Then its

Dynkin diagram, with l vertices in each case, is one of the following. Here, if

Φ is of types Al, Bl, Cl and Dl, then l is greater than or equal to 1, 2, 3 or 4

respectively.

Al

Bl

〉
Cl

〈
Dl

E6

E7

E8
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G2

〈
F4

〉
A question that arises naturally is if every possible Dynkin diagram presented is

realizable, and the answer is yes. This is the content of [13, Theorem 12.1]. With

all this theory set up, we can conclude that the only possible simple Lie algebras

of finite dimension over C are the ones associated with the said diagrams.

Finally, we want to end this section by exhibiting a choice of basis for L

where the structural constants are very well behaved and related to the Cartan

integers. This choice of basis is the starting point for all the work on simple

groups we are going to do in this chapter.

Consider

L = H⊕
∑
r∈Φ

Lr

to be a Cartan decomposition for L, and take the elements hr =
2r

(r, r)
in H,

the co-roots associated to the roots r ∈ Φ. By [13, Proposition 8.5(a)], for a

chosen er ∈ Lr, there is a unique e−r ∈ L−r such that [er, e−r] = hr, and we

will suppose e−r chosen in this way. The set {hr, r ∈ Π; er, r ∈ Φ} is a basis

for L, consisting of the fundamental co-roots hr together with the set of all root

vectors er. The result we want to quote can be found in [4, Theorem 4.2.1]. We

denote by p the greatest integer for which s− pr is a root.

Theorem 5.2.3. Let L be a simple algebra over C with Cartan decomposition as

above, and let hr and er be chosen as before. Then, the multiplication constants

of this Lie algebra are as follows

[hr, hs] = 0

[hr, es] = Arses

[er, e−r] = hr

[er, es] = 0, if r + s /∈ Φ

[er, es] = Nrser+s, if r + s ∈ Φ,
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where Nrs = ±(p+ 1).

Here, Nrs = (p + 1) or −(p + 1), but the possible different choices of signs do

not influence the isomorphism class of L. The multiplication constants of L are

all integers.

Such a choice of basis for L will be called a Chevalley basis. Given a choice of

Cartan subalgebra of L, the root spaces Lr are determined, as also is Φ. We may

then choose some fundamental system Π in Φ, and in this way the fundamental

co-roots hr are determined. Then, for each r ∈ Π we choose arbitrary nonzero

er ∈ Lr, and the remaining positive root vectors are determined via [er, es] =

Nrser+s within a choice of signal, since every root in Φ is a Z-linear combination

of the fundamental ones with all coefficients non-positive or non-negative. The

relation [er, e−r] = hr determines the rest of the basis vectors, then. In this sense,

one might wonder if every choice of Chevalley basis leads to structural constants

that at least have the same absolute value, and the answer to this question is

positive. The root system determines the absolute value of the multiplication

constants, and it does not matter which Cartan subalgebra of L we choose in

this process, as they all will have the same root system associated. In any case,

the constants are all integer numbers, and that is the fact we are going to need

in the future discussion.

5.2.1 Groups and Algebras over an Arbitrary Field

An endomorphism δ of L satisfying the following identity, for any x, y ∈ L

δ · [x, y] = [δ · x, y] + [x, δ · y]

is called a derivation of L. For example, the Jacobi identity turns the map adx

into a derivation of L, for any x ∈ L.

Lemma 5.2.4. Let L be a Lie algebra over a field of characteristic 0 and δ be

a derivation of L which is nilpotent, i.e., satisfies δn = 0 for some n. Then

exp δ = 1 + δ +
δ2

2!
+ · · ·+ δn−1

(n− 1)!
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is an automorphism of L.

The proof of this result can be found in [4, Lemma 4.3.1], and this automorphism

is called the exponential of δ. Now, let L be a simple Lie algebra over C with

Cartan decomposition

L = H⊕
∑
r∈Φ

Lr

and Chevalley basis {hr, r ∈ Π; er, r ∈ Φ}. The map ad er is a derivation of L,

and this derivation is in fact nilpotent. For we have

ad er · H = Lr, (ad er)2 · H = 0,

ad er · Lr = 0,

ad er · L−r ⊆ H, (ad er)3 · L−r = 0.

Also, (ad er)q+1 · Ls = 0 if r, s are linearly independent roots, since (q + 1)r + s

is not a root. Thus, (ad er · L)n = 0 for sufficiently large values of n.

Let ζ ∈ C. Then ad (ζer) = ζad er is also a nilpotent derivation of L, thus

exp (ad (ζer)) is an automorphism of L, by Lemma 5.2.4. We write

xr(ζ) = exp (ad (ζer)).

We now consider the effect of xr(ζ) on the Chevalley basis. We have

xr(ζ) · er = er,

xr(ζ) · e−r = e−r + ζhr − ζ2er,

xr(ζ) · hr = hr − 2ζer.

(5.2.2)

Also, if r 6= ±s,

xr(ζ) · hs = hs − Asrζer,

xr(ζ) · es = es +Nrsζer+s +
1

2!
NrsNr,r+sζ

2e2r+s + · · ·+

+
1

q!
NrsNr,r+s · · ·Nr,(q−1)r+sζ

qeqr+s.

(5.2.4)

We write

Mr,s,i =
1

i!
NrsNr,r+s · · ·Nr,(i−1)r+s,
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for short. Then, using the fact that Nrs = ±(p+ 1) we see that

Mr,s,i = ±(p+ 1)(p+ 2) · · · (p+ i)

i!
= ±

(
p+ i

i

)
is an integer, with Mr,s,0 = 1. Thus, the automorphism xr(ζ) transforms each

element of the Chevalley basis into a linear combination of basis elements with

coefficients being non-negative integral powers of ζ with integer coefficients. This

property enables us to define automorphisms of this type over an arbitrary field.

Let L be a simple Lie algebra over C, with the usual Chevalley basis. We

denote by LZ the subalgebra of elements of L with integer coefficients with

respect to the Chevalley basis. LZ is a subalgebra of L by Theorem 5.2.3. Now,

let K be any field. We form the tensor product of the additive group of K with

the additive group of LZ and define

LK = K ⊗ LZ.

Then LK is an additive abelian group. Let 1K be the unit element of K. Define

ēr := 1K ⊗ er and h̄r := 1K ⊗ hr. Then LK is a vector space over K with basis

B = {h̄r, r ∈ Π; ēr, r ∈ Φ}. We define a Lie multiplication on the elements of B

by

[1K ⊗ x, 1K ⊗ y] = 1K ⊗ [x, y],

for all x, y in B, and extend it by linearity to the whole LK . Then we have the

following result.

Proposition 5.2.5. The previous construction turns LK into a Lie algebra

over K. The multiplication constants of LK with respect to the basis {h̄r, r ∈

Π; ēr, r ∈ Φ} are the same as the ones for L with respect to {hr, r ∈ Π; er, r ∈ Φ}

interpreted as elements of the prime subfield of K.

We do not need to give a proof, since Theorem 5.2.3 guarantees that the structure

constants are all in Z.
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5.3 Chevalley Groups

Now, we are going to translate the definition of the automorphisms xr(ζ), con-

sidered above, for L into the new context of LK . In this sense, if Ar(ζ) is the

matrix of xr(ζ) with respect to the Chevalley basis of L, then every entry of the

matrix has the form aζ i, where a is an integer and i ≥ 0. In a similar way, let

t ∈ K and Ār(t) be the matrix obtained from Ar(ζ) replacing a with ā, its image

in the prime subfield of K, i.e., its image modulo p, where p is the characteristic

of K, and ζ by t. We now define x̄r(t) to be the endomorphism of LK given by

the matrix Ār(t) with respect to the basis {h̄r, r ∈ Π; ēr, r ∈ Φ}. Then, we have

the following result, whose proof can be found in [4, Proposition 4.4.2].

Proposition 5.3.1. The x̄r(t), as defined above, are automorphisms of LK, for

each r ∈ Φ and t ∈ K.

Since we are going to work with the x̄r(t) from now on, we may drop the

bars in the notations of both automorphisms and Chevalley basis of LK . We

shall now define the Chevalley groups. The Chevalley group of type L over the

field K, denoted by L(K), is defined to be the group of automorphisms of the

Lie algebra LK generated by the xr(t), for all r ∈ Φ and t ∈ K. The generators

of L(K) operate on the Chevalley basis according to the formulae in equations

(5.2.2) and (5.2.4). Also, a crucial result is given by [4, Proposition 4.4.3], which

attests the independence of the isomorphism class of L(K) from the choice of

the Chevalley basis. We state it here.

Proposition 5.3.2. The group L(K) is determined up to isomorphism by the

simple Lie algebra L over C and the field K.

5.3.1 Chevalley’s Commutator Formula

In this section, we are going to derive a formula, due to Chevalley, which ex-

presses the commutator between two group elements of G = L(K) in terms of
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the generators xr(t) of G. The proof can be found in [4], Section 5.2, and will

be omitted here. However, a sketch containing the main ideas will be included.

We first need a lemma, whose proof is in [4, Lemma 5.1.1].

Lemma 5.3.3. Let L be a simple Lie algebra over C. Let y be an element of L

such that ad y is nilpotent and let θ be an automorphism of L. Then

θ · exp (ad y) · θ−1 = exp (ad θy).

Theorem 5.3.4. Let G = L(K) be a Chevalley group over an arbitrary field,

r, s be linearly independent roots of L and t, u be elements of K. Then, the

commutator between xr(t) and xs(u) can be written in the following way, in

terms of the generators of G

[xs(u), xr(t)] =
∏
i,j>0

xir+js(Cijrs(−t)iuj),

where the product is taken over all pairs of positive integers i, j for which ir+ js

is a root, in order of increasing i+ j. Each constant Cijrs is one of ±1,±2,±3.

Sketch of the Proof. We work the proof out considering the field K to be C at

first. It is important to note that, when we take two distinct elements, r, s

from the fundamental system Π, the root system spanned by them has rank

two by construction and hence is isomorphic to one of the systems listed in

Proposition 5.1.4. Also, as each element of G is an endomorphism of LK having

finite order, we can apply Lemma 5.3.3 to the conjugation operation in the

group. Analyzing each of the possible classes of root systems, together with

the possible choices of linearly independent vectors in each one, it is possible to

rewrite each conjugation as a product of some specific endomorphisms of LK ,

each of them indexed by a root in the span of r, s, and thus the result holds if

K = C. Now, take any er from the Chevalley basis and consider its images under

[xs(u), xr(t)] and
∏
i,j>0

xir+js(Cijrs(−t)iuj). The images are linear combinations

of elements of the Chevalley basis, and comparing each coefficient gives rise to

some polynomials in Z[u, t], where the coefficients are the integers Cijrs. Hence,

the validity of the commutator formula if K = C is equivalent to the vanishing
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of certain polynomials, with integer entries. To pass from C to an arbitrary

field K, we may just consider the corresponding polynomials when we read their

coefficients on the prime subfield of K; the vanishing of those over C imply that

they are identically zero over K too, and thus the formula holds in any case.

5.3.2 The subgroups of G

Consider G = L(K). We are now in condition to define certain important

subgroups ofG. First of all, let us remark that, for fixed r and arbitrary t, u ∈ K,

we have

xr(t)xr(u) = exp (t ad er) exp (u ad er) = exp ((t+ u) ad er) = xr(t+ u),

since exp (t ad er) and exp (u ad er) commute.

Definition 5.3.5. Let Xr be the subgroup of G generated by the xr(t), t ∈ K.

There is an epimorphism fromXr onto the additive group ofK, and if we take

xr(t) mapping to zero, then analyzing the action of each xr(t) on the Chevalley

basis we conclude that t must be zero too. Hence, each of the subgroups Xr

is isomorphic to the additive group of K, and we will call it the root subgroup

associated to the root r ∈ Φ. Let us define the subgroups U and V of G as

follows:

Definition 5.3.6.
U = 〈Xr | r ∈ Φ+〉,

V = 〈Xr | r ∈ Φ−〉.

If we consider xr(t) and xs(u), both indexed by positive roots, the commutator

formula ensures that the product xr(t)xs(u) equals

xs(u)xr(t)
∏
i,j>0

xir+js(Cijrs(−t)iuj),

the product taken over roots which are also positive. In this way, we see that

the product of two generators of U , for example, can be written as the product
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of the elements xr(t) with positive r. This shows that U ∩ V = 1, because the

elements of U are products of the xr with r positive, while the elements of V

are products of the xr with r negative.

We shall, in the next result, use the commutator formula to investigate the

structure of U and V ; in particular we obtain a normal form for the elements of

these subgroups. The proof can be found in [4, Theorem 5.3.3].

Theorem 5.3.7. Let G = L(K) be a Chevalley group, U be the subgroup of G

generated by the root subgroups Xr with r ∈ Φ+. Then each element of U is

expressible uniquely in the form ∏
ri∈Φ+

xri(ti),

where the product is taken over all positive roots in increasing order with respect

to �, as defined in Section 5.1.

A similar result is valid for V , but in terms of negative roots. The above

theorem allows us to evaluate the order of both subgroups. Let |Φ+| = n and

|K| = pb. Since each element of U , for example, is expressible uniquely in the

form mentioned above, then |U | equals the order of K raised to the n-th power,

giving |U | = pnb. Actually, more can be said about U and V , as the next result

attests.

Theorem 5.3.8. Let G be a Chevalley group of type L over K. Then U and V

are Sylow p-subgroups of G.

A lot of theory must be constructed in order to prove this result, and the proof

can be deduced from the result in [4, Theorem 9.4.10].

Now, we turn our attention to the relation between generators of the form

xr(t), x−r(u), since Theorem 5.3.4 considers so far the case where the roots

are linearly independent. In this sense, we intend to investigate on the next

discussion the subgroups 〈Xr, X−r〉, generated by root subgroups corresponding

to opposite roots. We take r to be a fixed root of the root system Φ unless

otherwise stated.
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First of all, we are going to invoke a general fact about special linear groups

and a good set of generators for them. The proof can be found in [4, Lemma

6.1.1].

Lemma 5.3.9. Let K be an arbitrary field. Then the group SL2(K) is generated

by the elements 1 t

0 1

 ,

1 0

t 1

 ,

as t runs through K.

We can now state the main result of this section. Its proof can be found in

[4, Theorem 6.3.1].

Theorem 5.3.10. Let K be any field. Then there is a homomorphism φr from

SL2(K) onto the subgroup 〈Xr, X−r〉 of G = L(K) under which

1 t

0 1

 7→ xr(t),

1 0

t 1

 7→ x−r(t).

Moreover, if it is not faithful, the kernel of this homomorphism equals 〈−I〉, I

being the identity matrix of SL2(K).

We consider next the images under φr of the diagonal matricesλ 0

0 λ−1


in SL2(K) and the monomial matrix 0 1

−1 0

 .

The images of these matrices will play an important rôle in the sequel, but first

we need to understand how they act on the Chevalley basis of LK .

Proposition 5.3.11. Let

hr(λ) = φr

λ 0

0 λ−1

 .
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Then hr(λ) operates on the Chevalley basis of LK in the following manner:

hr(λ) · hs = hs, s ∈ Π

hr(λ) · es = λArses, s ∈ Φ
.

Moreover, if

nr = φr

 0 1

−1 0

 ,

then nr operates on the Chevalley basis as follows
nr · hs = hwr(s),

nr · es = ηr,sewr(s), where ηr,s = ±1.
.

The constants ηr,s satisfy some equalities, but they will not be essential in the

sequel of this text, so they will be omitted. The above equations can be found

in [4, Proposition 6.4.3]. The proof of Proposition 5.3.11 above can be found in

[4, Propositions 6.4.1 and 6.4.2].

We shall also need some properties of the elements

nr(t) = φr

 0 t

−t−1 0

 ,

which are stated in the following lemma.

Lemma 5.3.12.

(i) nr(1) = nr ,

(ii) nr(−1) = n−1
r ,

(iii) nr(t) = xr(t)x−r(−t−1)xr(t),

(iv) hr(t) = nr(t)nr(−1).

Proof. These results follow from the corresponding relations in SL2(K) using

the homomorphism φr.

Now, we are in position to define two new subgroups of G that play important

rôles on the structure of the group. For that we allow r to be an arbitrary root

of Φ and make the following definition.
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Definition 5.3.13. Let H be the subgroup of G generated by the elements hr(λ)

for all r ∈ Φ, 0 6= λ ∈ K.

Now, hr(λ) operates on the Chevalley basis of LK by the rules given in Propo-

sition 5.3.11. This shows that each element hr(λ) of H is an automorphism of

LK which operates trivially on HK , the corresponding of the Cartan subalgebra

of L in LK , and transforms each root vector es into λArses. The coefficients

arising in this way define naturally a map from H to K∗, which we shall explore

now.

Let P = ZΦ, the set of all linear combinations of elements of Φ with integer

coefficients. P is the additive group generated by the roots of L. It is a free

abelian group of rank l and has a basis consisting of the set of fundamental

roots Π = {p1, . . . , pl}. A homomorphism from the additive group of P into the

multiplicative group K∗ of non-zero elements of K is called a K-character of P .

Now, a K-character of P is uniquely determined by its values on the funda-

mental roots. If we map each r ∈ Π to tr ∈ K∗, then the map taking
∑
r∈Π

λrr to∏
r∈Π

tλrr is a K-character of P . Thus, if a map from Π into K∗ can be extended

to a K-character of P , this extension is uniquely determined.

Take χ1, χ2 to be K-characters of P . The K-characters of P form a mul-

tiplicative group, with multiplication given by χ1χ2(a) = χ1(a)χ2(a), a ∈ P.

Moreover, each K-character χ of P gives rise to an automorphism h(χ) of LK
defined by h(χ) · hs = hs, h(χ) · es = χ(s)es.

The automorphisms of LK of the form h(χ) form a subgroup of the full

automorphism group of LK , which we call Ĥ. Note that multiplication in Ĥ is

given by h(χ1) ·h(χ2) = h(χ1χ2), and thus the map χ 7→ h(χ) is an isomorphism

between the group of K-characters of P and Ĥ. This isomorphism allows us to

compute the order of Ĥ by computing the number of different K-characters of

P , which is equal to the number of maps from Π to K∗, since P is free abelian

with free basis Π. The order of Ĥ is precisely (q − 1)l, and Ĥ is the direct
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product of l copies of the cyclic group Cpb−1.

Now, as H is the subgroup of G generated by the hr(λ), for all r ∈ Φ, λ ∈ K∗,

it is a subgroup of Ĥ, and every element of H therefore has the form h(χ) for

some character χ. One further information that we are going to need is the

exact value of the index of H in Ĥ. The ideas for calculating these values can

be found in [4], Sections 7.1 and 8.6. Since the characters that generate H all

depend on the elements of some root system and K∗, it is expected that the

values of the indices also depend somehow on the same structures. We remind

the reader here that |K| = q and |Π| = l. For our purposes, we will just list the

values of the indices on the table below. Here, ( , ) denotes the gcd between two

integers.

Table 5.2: Index of H in Ĥ, in each case.
Class of L Al Bl Cl D2k+1 D2k

[Ĥ : H] (l + 1, q − 1) (2, q − 1) (2, q − 1) (4, q − 1) (2, q − 1)2

Class of L G2 F4 E6 E7 E8

[Ĥ : H] 1 1 (3, q − 1) (2, q − 1) 1

Now, we proceed to describe the relation between H and the subgroups U

and V . Note first that H normalizes each root subgroup Xr. Recall here that

since H is a finite group, every element of H has finite order.

Lemma 5.3.14. H normalizes U and V in G.

Proof. We know that

h(χ)xr(t)h(χ)−1 = h(χ) exp ad(ter)h(χ)−1 = exp ad(h(χ)·ter) = exp ad(χ(r)ter),

by Lemma 5.3.3. Thus h(χ)xr(t)h(χ)−1 = xr(χ(r)t), whence h(χ)Xrh(χ)−1 =

Xr. It follows that Ĥ, and in particular H, normalizes U and V .

As a consequence, UH is a subgroup of G, and a natural question to ask is

whether this subgroup contains or not root subgroups associated with negative

roots. It is the content of the following lemma, whose proof can be found in [4,

Lemma 7.1.2].

Lemma 5.3.15. If U, V and H are as defined before, then UH ∩ V = 1.
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As expected, a similar argument shows that V H∩U = 1. In particular, we have

H ∩ V = H ∩ U = 1. Observe that the same results apply when H is replaced

by Ĥ. Now, Dedekind modular law implies

Corollary 5.3.16. UH ∩ V H = H.

Next, let us focus our attention on another subgroup of G.

Definition 5.3.17. Let N be the subgroup of G generated by H and the elements

nr, for all r ∈ Φ.

In order to investigate the properties of N , we begin by understanding how the

nr act on the root subgroups.

Lemma 5.3.18. Let r, s ∈ Φ. Then

nr · xs(t) · n−1
r = xwr(s)(ηr,st), and nrXsn

−1
r = Xwr(s).

Proof. Using Lemma 5.3.3 and Proposition 5.3.11, we have that

nr · xs(t) · n−1
r =nr · exp ad(tes) · n−1

r = exp ad (nr · tes)

= exp ad(ηr,stewr(s)) = xwr(s)(ηr,st).

The group N acts on the Xr via nrXsn
−1
r = Xwr(s), in a way that resembles the

action of the Weyl group W (Φ), and the subgroup H of N acts fixing each root

subgroup, as we proved before. The most important result concerning N is the

one we shall now quote, and it translates the intuition behind this idea. The

proof can be found in [4, Theorem 7.2.2].

Theorem 5.3.19. There is a homomorphism from N onto W with kernel H

under which nr → wr for all r ∈ Φ. Thus H is a normal subgroup of N and

N/H is isomorphic to W . If n ∈ N, h(χ) ∈ H, we have

nh(χ)n−1 = h(χ′),

where χ′(r) = χ(w−1(r)), w being the image of n under the above homomor-

phism.
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We are going to call the homomorphism of Theorem 5.3.19 the natural homo-

morphism of N onto W . We end this exposition of the first properties of the

subgroups U, V,H and N with a corollary of the previous theorem [4, Corollary

7.2.4].

Corollary 5.3.20. U ∩N = 1 and UH ∩N = H.

We are now in position to produce a decomposition of G where these sub-

groups will play important roles, and a lot of information about G will be derived

from it.

5.3.3 The Bruhat Decomposition and (B,N)-pairs

We begin this subsection defining the general concept of a (B,N)-pair in a group.

This concept was originally introduced by J. Tits in [31], and it is useful not

only for deriving properties about Chevalley groups, but also for the “twisted”

groups we are going to define later. We are going to work with double cosets of

the form BnB.

Definition 5.3.21. A pair of subgroups B and N of a group G is called a

(B,N)-pair if the following axioms are satisfied:

(BN1) G is generated by B and N .

(BN2) B ∩N is a normal subgroup of N .

(BN3) The group W = N/B ∩N is generated by a set of elements wi, i ∈ I, such

that w2
i = 1.

(BN4) If ni ∈ N maps to wi under the natural homomorphism of N into W and

if n is any element of N , then

BniB ·BnB ⊆ BninB ∪BnB.

(BN5) If ni is as above, then niBni 6= B.
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We would like to give examples of groups admitting (B,N)-pairs. Let

G = GLn(K), where K is a finite field and n ≥ 2 is a natural number. The

construction made here is also valid if we consider, instead of GLn(K), the

groups PGLn(K), SLn(K) or PSLn(K) with suitable adaptations. We claim

that G = GLn(K), admits a (B,N)-pair. Let V = 〈e1, . . . , en〉 be the subjacent

K-vector space on which G acts. The subgroup B ≤ G is the subgroup of upper

triangular matrices, which is a Sylow p-subgroup of G. Let N be the subgroup

consisting of matrices with exactly one nonzero entry in each row and column.

Then, N acts on the set of lines {〈e1〉, . . . , 〈en〉} as the symmetric group of de-

gree n, and the kernel of this representation is precisely the diagonal subgroup

of G, B ∩N . Then, Axioms (BN2) and (BN3) are verified.

Now, since every matrix in G can be written as a product of an upper tri-

angular and a lower triangular matrices, to verify that B and N generate G we

may just prove that 〈B,N〉 contains the lower triangular matrices. Consider the

matrix mσ ∈ G which is the identity matrix with rows permuted by a permuta-

tion σ ∈ Sn. Then, if a ∈ G is any matrix, the product mσa is just the matrix a

with rows permuted by σ, and a similar effect on the columns can be obtained

by multiplying matrices of the form mσ on the right. This shows that, by mul-

tiplying a suitable upper triangular matrix both on left and right by matrices

mσ, the result obtained can be any lower triangular matrix, thus showing that

G = 〈B,N〉.

To verify Axiom (BN4) we have to show that

BniB ·BnB ⊆ BninB ∪BnB,

where ni maps to a generator of N/B ∩ N ∼= Sn under the homomorphism

constructed above and n is any element of N . This inclusion can be rewritten as

niBn ⊆ BninB ∪ BnB. We verify, with no loss of generality, what happens in

case ni maps to the transposition (12), in which case ni is a matrix represented
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by 

0 ∗

∗ 0

∗
. . .

∗


,

where the blank spaces are zeroes and the ∗ marks can be any element of K.

Multiplying niBn ⊆ BninB ∪ BnB on the right by n−1, we can rewrite this

inclusion as niB ⊆ BninBn
−1 ∪ BnBn−1. This last inclusion is equivalent to

proving that any matrix in niB can be reduced to the identity matrix or to ni

via left multiplication by elements of B and right multiplication by elements of

nBn−1. It turns out that we will only need to use elementary matrices from B

and nBn−1.

Recall here that matrices in B are upper triangular. For example, the matrix

a with 1’s on the main diagonal and on position (1, 2) and zeros everywhere else

belongs to B, and left multiplication by a transforms any matrix m in another,

where the first row equals the sum of the first and second rows of m. This

process is known as pivoting, and this idea shows that multiplying on the left

by elements of B allows us to add a multiple of a row to any other higher row.

Then, since a typical element of niB has the form

0 ∗ ∗ . . . ∗

∗ ∗ ∗ . . . ∗

∗ . . . ∗
. . . ...

∗


,

by pivoting upwards we can reduce this matrix to

0 ∗

∗ ∗

∗
. . .

∗


.

In case the (2,2) entry above equals zero, we reduced the matrix to ni. Then,
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we may assume that the entries (1,2), (2,1) and (2,2) are nonzero.

Now, let us use right multiplication by nBn−1. To avoid confusion, we are

only going to use the elements of nBn−1 ∩GL2(K), where GL2(K) is identified

with the subgroup

{g ∈ G |g (〈e1, e2〉) = 〈e1, e2〉 g(ei) = ei, i > 2}.

It follows that nBn−1∩GL2(K) is the stabilizer of the line spanned by either e1

or e2, whichever appears first in the list n(e1), . . . , n(en). This means that the

matrices of nBn−1∩GL2(K) will have the following form: they consist of a 2×2

block which is either upper or lower triangular, followed by an (n− 2)× (n− 2)

block with 1’s on the main diagonal and zeroes everywhere else.

Looking at the elementary matrices of nBn−1∩GL2(K), when the 2×2 block

is upper triangular, the column operation we get is to add a multiple of the first

column to the second column, and when the 2× 2 block is lower triangular, we

can add a multiple of the second column to the first. In the first case, we use

the (2,1)-entry to transform the (2,2)-entry in zero, reducing the matrix to ni.

In the second case, we use the (2,2)-entry to clear the (2,1)-entry and reduce

the matrix to the identity. In each case, (BN4) is verified.

Finally, (BN5) is straightforward to verify, because any matrix of niBni has

the form 

∗ 0 ∗ . . . ∗

∗ ∗ ∗ . . . ∗

∗ . . . ∗
. . . ...

∗


,

which does not belong to B, the subgroup of upper triangular matrices.

The construction above would also be true, as we remarked, if instead of

GLn(K) we considered the groups PGLn(K), SLn(K) or PSLn(K).

Our first result is to show that Chevalley groups in fact admit (B,N)-pairs.
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Proposition 5.3.22. The Chevalley group G = L(K) has a (B,N)-pair.

Proof. We are going to consider as B the subgroup UH and as N the subgroup

with the same name from the previous section. Axioms (BN2) and (BN3) are

clearly satisfied, as a consequence of Theorem 5.3.19. Now, G is generated by

the root subgroups Xr. If s is not a positive root, contained in B, then there is

an element w ∈ W and an r ∈ Π such that w(r) = s, by Proposition 5.1.2(iv). If

n ∈ N maps into w via the natural homomorphism, then nXrn
−1 = Xw(r) = Xs,

proving that B and N in fact generate G, verifying (BN1). Also, since the nr are

mapped into the fundamental reflections inW , nrXrn
−1
r = X−r is not contained

in B, and (BN5) holds. The proof of axiom (BN4) is more technical and can be

found in [4, Corollary 8.1.6]. Therefore, G has a (B,N)-pair.

We now derive some consequences of the axioms for a (B,N)-pair. The next

results hold for arbitrary groups admitting (B,N)-pairs, not just in the context

of Chevalley groups. The only result that uses the properties of Chevalley groups

is item (iii) of Theorem 5.3.25. The proof of the next result can be found in [4,

Proposition 8.2.2].

Theorem 5.3.23. Let G be a group with a (B,N)-pair. Then

(i) G = BNB.

(ii) For each subset J of I, let WJ be the subgroup of W generated by the

elements wi for i ∈ J and NJ be the full inverse image of WJ under the

natural homomorphism. Then PJ = BNJB is a subgroup of G.

It is evident from Theorem 5.3.23 that every double coset BgB contains an

element from N . We now consider the question of whether two elements of N

lie in the same double coset.

Proposition 5.3.24. Let G be a group with a (B,N)-pair. Let n, n′ be elements

of N . Then BnB = Bn′B if and only if n and n′ map to the same element of W

under the natural homomorphism of N into W . Thus, there is a natural 1-to-1

correspondence between double cosets of B in G and elements of W .
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The proof of this result can be found in [4, Proposition 8.2.3]. The axioms

of (B,N)-pairs, the property that the fundamental reflections generate W and

induction on the least number of fundamental reflections whose product equals

n are used in the proof of the result.

Now, let us explore a little more the subgroups PJ defined in Theorem 5.3.23.

We will say that a subgroup of G is parabolic if it contains some conjugate gBg−1

of B. The subgroups PJ are examples of parabolic subgroups of G, and in the

next result we find exactly which subgroups of G are parabolic.

Theorem 5.3.25. Let G be a group with a (B,N)-pair. Then the following

hold

(i) The subgroups PJ , J ⊆ I are the only subgroups of G containing B.

(ii) Each PJ is equal to its own normalizer; moreover distinct subgroups PJ

and PK cannot be conjugate in G, for J,K ⊆ I.

(iii) If G is a Chevalley group with associated fundamental system of roots Π,

the minimal parabolic subgroups have the form P{r} = B ∪ BnrB, for any

r ∈ Π.

The proofs can be found in [4], Theorems 8.1.4, 8.3.2 and 8.3.3, respectively.

Now, we apply the theory just described to understand better the structure of

Chevalley groups, in search of a normal form for the elements of G.

Let G be, as usual, the Chevalley group L(K). Since G admits a (B,N)-

pair, every element of G can be written in the form b1nb2, where b1, b2 ∈ B and

n ∈ N , but this expression is not unique. What we will do now is to search

for an expression such that every element of G can be written uniquely in that

form. For this sake, take w a fixed element of W and consider the following

subsets of Φ+

Ψ1 = {r ∈ Φ+ |w(r) ∈ Φ+},

Ψ2 = {r ∈ Φ+ |w(r) ∈ Φ−}.
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Then Ψ1,Ψ2 are disjoint subsets whose union is Φ+. We define

U+
w =

∏
r∈Ψ1

Xr

U−w =
∏
r∈Ψ2

Xr,

where the products are taken over the roots in increasing order. It is important

to note that, if r, s ∈ Ψk, k = 1, 2, then the linear combinations ir+ js that are

also roots all belong to the same Ψk. The commutator formula ensures that U+
w

and U−w both are subgroups of G. We also have U = U+
wU

−
w and U+

w ∩ U−w = 1.

Now we can describe the required canonical form for elements of G.

Theorem 5.3.26. For each w ∈ W choose a coset representative nw ∈ N which

maps to w under the natural homomorphism. Then each element g of G is

expressible in just one way in the form

g = bnwu,

where b ∈ B and u ∈ U−w .

Proof. We are going to show that nwU+
w n
−1
w ⊆ U . By Lemma 5.3.18 we have

nrXsn
−1
r = Xwr(s),

for all r, s ∈ Φ. Let w = wr1wr2 · · ·wrk be an expression of w as a product of

reflections. Then nw and nr1nr2 · · ·nrk both have image w under the natural

homomorphism, hence

nw = hnr1nr2 · · ·nrk

for some h ∈ H. Thus

nwXsn
−1
w = hnr1nr2 · · ·nrkXsn

−1
rk
· · ·n−1

r2
n−1
r1
h−1 = hXw(s)h

−1 = Xw(s),

again by Lemma 5.3.18. It follows that

nwU
+
w n
−1
w = nw ·

∏
s∈Ψ1

Xs · n−1
w ⊆ U. (5.3.1)

Of course one can also prove nwU−w n
−1
w ⊆ V using the same ideas. Now, consider
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the double coset BnwB. We have

BnwB =BnwHU = BnwHU
+
wU

−
w

=BHnwU
+
wU

−
w ⊆ BUnwU

−
w = BnwU

−
w .

But clearly BnwU−w ⊆ BnwB, so we have equality. Since every element g of G

lies in some double coset, g can be expressed in the desired form.

The proof for unicity can be found in [4, Theorem 8.4.3].

It is important to say that this decomposition allows us to compute the order

of Chevalley groups, but this computation depends on knowing the minimal

length of each w ∈ W written in terms of the fundamental reflections. Also, this

canonical form can be used to prove the following useful result.

Corollary 5.3.27. G ∩ Ĥ = H.

We end this section quoting a result, Theorem 11.1.1 in [4], stating that our

Chevalley groups are indeed simple. Remember here that the quotient N/H is

generated by a set of involutions wi indexed by some set I.

Theorem 5.3.28. Let G be a group admitting a (B,N)-pair satisfying the fol-

lowing conditions:

(i) G = G′,

(ii) B is soluble,

(iii) The intersection of all conjugates of B in G is trivial,

(iv) The set I cannot be decomposed into two non-empty complementary subsets

J,K such that wj commutes with wk for all j ∈ J , k ∈ K.

Then G is simple.

In some sense, groups with (B,N)-pairs have some tendency to be simple, this

being the case with the Chevalley groups defined so far, except for the cases

A1(F2), A1(F3), B2(F2) and G2(F2). The proof of this result can be found in [4,

Theorem 11.1.2].



5.3. CHEVALLEY GROUPS 73

5.3.4 Automorphisms of Chevalley Groups

At this point, we can finally start discussing automorphisms of finite simple

groups of Lie type, which was our main goal since the beginning of the chapter.

In general, we do not have a standard presentation for finite simple groups of

Lie type, but the next proposition gives sufficient conditions for a bijective map

of G onto itself to be an automorphism. The proof of the following result is the

content of Section 12.1 in [4].

Proposition 5.3.29. Let G = L(K) be a Chevalley group. A bijective map of

G onto itself is an isomorphism provided it preserves the following relations

R1. xr(t1)xr(t2) = xr(t1 + t2)

R2. [xs(u), xr(t)] =
∏
i,j>0

xir+js(Cijrs(−t)iuj)

R3. hr(t1)hr(t2) = hr(t1t2), t1, t2 6= 0,

where hr(t) = nr(t)nr(−1) and nr(t) = xr(t)x−r(−t−1)xr(t).

We want to describe some particular kinds of automorphisms now.

Diagonal Automorphisms. It was shown in Section 5.3.2 that G is nor-

malized by Ĥ in the group of all automorphisms of LK . Thus, if h(χ) ∈ Ĥ,

conjugation by h(χ) induces an automorphism of G. If h(χ) belongs to Ĥ but

not to H, then this automorphism is called a diagonal automorphism.

Field Automorphisms In our case, K is always assumed to be a finite field.

If |K| = pb, then the group of field automorphisms of K has order b, is cyclic

and generated by the automorphism x 7→ xp, x ∈ K. If f is an automorphism

of the field K, then the map

xr(t) 7→ xr(f(t)), r ∈ Φ, t ∈ K

can be extended to an isomorphism of G. To verify this fact, we just apply

Proposition 5.3.29: relation R1 is preserved trivially, the fact that the Cijrs all

belong to the prime field ofK, fixed by f , ensuresR2 is preserved and, since hr(t)
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can be written in terms of xr(t), x−r(−t−1) and xr(−1), thenR3 is also preserved.

The automorphisms obtained in this way are called field automorphisms of G.

Graph Automorphisms Automorphisms of this type arise from symme-

tries of the Dynkin diagram. A symmetry of the Dynkin diagram of L is an auto-

morphism of it as a graph, not considering the arrow present in some diagrams,

as in the cases B2, G2 and F4. The non-trivial symmetries of the connected

Dynkin diagrams are indicated in the figure below.

An

Dn

E6

D4

B2

〉
G2

〈
F4

〉
However, there are some conditions under which the quoted symmetries give rise

to automorphisms of G, and this is the content of the three following proposi-

tions. The proofs can be found in [4], Propositions 12.2.3, 12.3.3 and 12.4.1,

respectively.

Proposition 5.3.30. Suppose L is a simple Lie algebra whose roots all have the

same length, and let r → r̄ be a map of Φ into itself arising from a symmetry

of the Dynkin diagram of L. Then there exist numbers γr = ±1 such that the

map xr(t) → xr̄(γrt) can be extended to an automorphism of G. The γr can be

chosen so that γr = 1 if r ∈ Π or −r ∈ Π.
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Automorphisms arising in this way have order 2 when L = Al for l ≥ 2, Dl

for l ≥ 4 and E6(K). We also obtain automorphisms of order 3 of D4(K).

Proposition 5.3.31. Suppose G is a Chevalley group of type B2(K) or F4(K),

where K is a finite field of characteristic 2. For each root r ∈ Φ define λ(r) to

be 1 if r is a short root and 2 if r is long. Then the map

xr(t)→ xr̄(t
λ(r̄)), r ∈ Φ, t ∈ K,

can be extended to an automorphism of G.

Proposition 5.3.32. Let G = G2(K), where K is a finite field of characteristic

3. For each root r ∈ Φ define λ(r) to be 1 if r is short and 3 if r is long. Then,

the structure constants Nr,s of G2 can be chosen in such a way that

xr(t)→ xr̄(t
λ(r̄)) r ∈ Φ, t ∈ K

can be extended to an automorphism of G.

The proofs of Propositions 5.3.31 and 5.3.32 follow the same steps, the second

one being more technical since the structure constants of L have to be chosen

in a specific way in order to make relation R2 hold. We point out that the

conditions in the previous two propositions may seem artificial, but in the proof

of the next theorem we are going to see that perfect fields of characteristic 2 and

3 arise naturally in the construction of the automorphisms of a Chevalley group.

Computation shows that automorphisms of the two last types above described

have order 2b.

Let us move finally to the main result of this chapter. The automorphisms

described so far, the diagonal, field and graph automorphisms, together with

the inner ones, are sufficient to generate the whole automorphism group of G =

L(K). The main argument of the proof consists in “deconstructing” an arbitrary

automorphism of G, making it fix each time more elements or specific subgroups

of G, until it reaches the identity. The proof of this result is due do R. Steinberg.

Theorem 5.3.33. Let G = L(K) when L is simple and K = GF (q), where
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q = pb. Let θ be an automorphism of G. Then, there exist inner, diagonal,

graph and field automorphisms i, d, g, f of G such that θ = idgf .

Proof. We know that U and V are Sylow p-subgroups of G, by Theorem 5.3.8,

and any two Sylow p-subgroups of G are conjugate. Now θ(U) is also a Sylow

p-subgroup of G, so it is G-conjugate to U . Thus there exists an inner auto-

morphism i1 of G such that θ(U) = i1(U). Let θ1 = i−1
1 θ. Then θ1(U) = U

and, as θ1(V ) is G-conjugate to U , being a Sylow p-subgroup of G, there exists

an element x ∈ G such that θ1(V ) = x−1Ux. However, x can be written in the

form x = bnwu, where b ∈ B = UH, nw ∈ N , u ∈ U−w , as in Theorem 5.3.26.

Since b normalizes U by Lemma 5.3.14 we have

θ1(V ) = u−1n−1
w Unwu.

Now U ∩ V = 1, and so θ1(U) ∩ θ1(V ) = 1. Hence U ∩ u−1n−1
w Unwu = 1, and

it follows that nwUn−1
w ∩ U and n−1

w Unw ∩ U both equal 1. By Lemma 5.3.18,

this implies that w transforms every positive root into a negative one, because

otherwise we would have nwUn−1
w ∩ U 6= 1. Therefore,

nwUn
−1
w = V,

and it follows that θ1(V ) = u−1V u. Let i2 be the inner automorphism of G

taking x ∈ G to u−1xu. Thus, if θ2 = i−1
2 θ1, then θ2(U) = U and θ2(V ) = V .

We have that NG(U) = UH, by [4, Theorem 8.5.2(iii)], and similarly we

have NG(V ) = V H. Since U and V are θ2-invariant, their normalizers also

are, and also is UH ∩ V H = H, by Corollary 5.3.16. Since θ2 leaves B =

UH invariant, it permutes the minimal parabolic subgroups containing B. By

Theorem 5.3.25(iii), these have the form

P{r} = B ∪BnrB, r ∈ Π.

We are going to show that P{r} ∩ V = X−r. We have

P{r} = B ∪BnrB

= (B ∪BnrB)n−1
r ,
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since B ∪BnrB is a subgroup of G containing nr, and

(B ∪BnrB)n−1
r =Bn−1

r ∪BnrBn−1
r

=Bn−1
r ∪BX−r.

Consider the subset Bn−1
r ∩V . If we take w as before, then nwUn−1

w = V . Then

we have

Bn−1
r ∩ V = Bn−1

r ∩ nwUn−1
w

⊆ (Bn−1
r nw ∩ nwU)n−1

w

⊂ (Bn−1
r nwB ∩BnwB)n−1

w .

However, Bn−1
r nwB ∩ BnwB = ∅ by Theorem 5.3.24, since the double coset

representatives clearly map into different elements of W . Thus Bn−1
r ∩ V = ∅

also. Hence

P{r} ∩ V = BX−r ∩ V = (B ∩ V )X−r = X−r,

using Dedekind modular laws and since B ∩ V = 1, by Lemma 5.3.15.

Now θ2 maps V into itself and permutes the subgroups P{r} for the funda-

mental roots r ∈ Π. Thus θ2 permutes the subgroups X−r for r ∈ Π. In a

similar way, it is also possible to show that θ2 permutes the subgroups Xr for

r ∈ Π. However, if r, s are distinct fundamental roots, the commutator formula,

Theorem 5.3.4, implies that [Xr, X−s] = 1, since r− s is not a root, whereas we

also know that the commutator [Xr, X−r] 6= 1. Thus, if r, s ∈ Π, [Xr, X−s] = 1

if and only if r 6= s. Since this relation is preserved by θ2 we have, for r ∈ Π,

θ2(Xr) = Xρ(r)

θ2(X−r) = X−ρ(r),

where ρ is a permutation of Π.

Let θ2 · xr(1) = xρ(r)(tr), and let χ be the K-character of P defined by

χ(ρ(r)) = tr with r ∈ Π. Let d be the diagonal automorphism of G mapping

x ∈ G to h(χ)xh(χ)−1. Then we have

θ2 · xr(1) = d · xρ(r)(1).
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Let θ3 = d−1θ2. Then

θ3 · xr(1) = xρ(r)(1).

We shall show that

θ3 · x−r(1) = x−ρ(r)(1).

Let θ3 · x−r(1) = x−ρ(r)(λ). We prove that λ = 1 using the homomorphism

from SL2(K) into 〈Xr, X−r〉, defined in Theorem 5.3.10. We have1 1

0 1

 1 0

−1 1

1 1

0 1

 =

 1 0

−1 1

1 1

0 1

 1 0

−1 1


and it follows that

xr(1)x−r(−1)xr(1) = x−r(−1)xr(1)x−r(−1).

Applying θ3, and remembering that xs(t)−1 = xs(−t) we obtain

xρ(r)(1)x−ρ(r)(−λ)xρ(r)(1) = x−ρ(r)(−λ)xρ(r)(1)x−ρ(r)(−λ).

However 1 1

0 1

 1 0

−λ 1

1 1

0 1

 =

1− λ 2− λ

−λ 1− λ

 ,

and  1 0

−λ 1

1 1

0 1

 1 0

−λ 1

 =

 1− λ 1

λ2 − 2λ 1− λ


and since the kernel of the homomorphism SL2(K) → 〈Xr, X−r〉 contains only

I2 and possibly −I2, we have λ = 1 by comparing the above matrices, regardless

of the field K. Thus
θ3 · xr(1) = xρ(r)(1),

θ3 · x−r(1) = x−ρ(r)(1)

and it follows that

θ3(nr) = θ3(xr(1)x−r(−1)xr(1)) = nρ(r).

We show now that the permutation ρ induces a symmetry of the Dynkin

diagram. Since θ3(H) = H and θ3(nrns) = nρ(r)nρ(s), the order of the coset



5.3. CHEVALLEY GROUPS 79

nrnsH is the same as the order of nρ(r)nρ(s)H in the group N/H. Using the

isomorphism between N/H and W , the order of wrws is the same as the order

of wρ(r)wρ(s) in W . If we recall that this order, which we called mrs, is related

to the angle θ between r and s via θ = 2π/mrs, and that the number of bonds

joining r and s is precisely 4 cos2(θ), this implies that the number of edges joining

the roots r and s is the same as the number of bonds that joins ρ(r) and ρ(s).

Hence ρ is a symmetry of the Dynkin diagram, not regarding the direction of

the arrow on cases B2, G2 and F4.

We prove next that there is a graph automorphism g of G such that g(Xr) =

Xρ(r) for all r ∈ Π. By Theorems 5.3.30, 5.3.31 and 5.3.32, this happens in the

case where every root has the same length, but it only happens provided K has

characteristic 2 if L = B2 or F4 or K has characteristic 3 if L = G2. Also, ρ

cannot be the identity in any of the previous cases.

Suppose ρ is the nontrivial symmetry of the Dynkin diagram of L, where

L = B2 or F4. In each case, there exist roots a and b that are interchanged by ρ

such that the roots that are linear combinations of a and b form a root system of

type B2. Indeed, the case L = B2 is straightforward to see, and in case L = F4,

we take a and b to be the roots connected by a double edge and consider the root

system generated by them; its Dynkin diagram consists precisely of the Dynkin

diagram of type F4, removing the nodes that do not correspond to a and b and

all edges inciding on those. In any case, the roots that are linear combinations

of a and b are

±a,±b,±(a+ b),±(2a+ b).

We now use equation (5.1.1) to compute the images of some roots through

elements of the Weyl group. We have that nbXan
−1
b = Xwb(a) = Xa+b. Applying

θ3 we have naXbn
−1
a = θ3(Xa+b). Since naXbn

−1
a = X2a+b, we have θ3(Xa+b) =

X2a+b. However, [X2a+b, Xb] = 1, and applying θ−1
3 , we obtain [Xa+b, Xa] = 1.

But

[xa+b(1), xa(1)] = x2a+b(−Na,a+b).
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Thus Na,a+b = 0 in this case, and as Na,a+b = ±2, K has characteristic 2.

Now suppose L = G2 and ρ is the nontrivial symmetry of the Dynkin diagram

of L. Then ρ interchanges the fundamental roots a and b of L and the other

roots of Φ are

±a,±b,±(a+ b),±(2a+ b),±(3a+ b),±(3a+ 2b).

Now nbXan
−1
b = Xa+b, and so applying θ3 we have naXbn

−1
a = θ3(Xa+b).

Thus θ3(Xa+b) = X3a+b. Also, naXa+bn
−1
a = X2a+b and, applying θ3, we get

θ3(X2a+b) = nbX3a+bn
−1
b = X3a+2b. Now [X3a+2b, Xb] = 1. Applying θ−1

3 gives

[X2a+b, Xa] = 1. But

[x2a+b(1), xa(1)] = x3a+b(−Na,2a+b).

Again, Na,2a+b must be zero, but since Na,2a+b = ±3 in this case, we conclude

that K has characteristic 3.

Thus in each case there is a graph automorphism g of G such that g(Xr) =

Xρ(r) for every r ∈ Π. Let θ4 = g−1θ3. Then θ4(Xr) = Xr and θ4(X−r) = X−r

for all r in Π. Also, if we consider the possible actions of g, as in Theorems

5.3.30, 5.3.31 and 5.3.32, it is clear that θ4 also fixes xr(1) and x−r(1), fixing

also nr for all r ∈ Π. It follows that θ4 fixes each Xr, r ∈ Φ. For, if r = w(s),

w ∈ W and s ∈ Π, via Proposition 5.1.2(v), and w = wr1 · · ·wrk , then

Xr = nr1 · · ·nrkXsn
−1
rk
· · ·n−1

r1
,

and θ4(Xr) = Xr.

Let r, s ∈ Π be fundamental roots which are joined in the Dynkin diagram.

Then r + s ∈ Φ. Here, since θ4 fixes the root subgroups, then θ4 induces a map

from K to itself, for each root in Φ. Let

θ4 · xr(t) = xr(f(t)),

θ4 · xs(t) = xs(g(t)),

θ4 · xr+s(t) = xr+s(h(t)).

Since

[xs(u), xr(t)] = xr+s(−Nr,stu) · · · ,
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we have, on applying θ4,

[xs(g(u)), xr(f(t))] = xr+s(h(−Nr,stu)) · · · .

But

[xs(g(u)), xr(f(t))] = xr+s(−Nr,sf(t)g(u)) · · · ,

and so h(−Nr,stu) = −Nr,sf(t)g(u). Now, Nr,s = ±1, giving h(tu) = f(t)g(u)

for all t, u ∈ K. As f(1) = g(1) = 1, we have that h(t) = f(t)g(1) = f(t)

and h(u) = f(1)g(u) = g(u), for all t, u ∈ K. Hence, f(t) = g(t) = h(t) for

all t ∈ K. We also have f(tu) = f(t)f(u), for all t, u ∈ K. If we consider

xr(t+ u) = xr(t)xr(u) and apply θ4, we obtain

xr(f(t+ u)) = xr(f(t))xr(f(u)) = xr(f(t) + f(u)),

and then f is additive. Since f is a bijection from K to K fixing both 0 and 1,

additive and multiplicative, then f is a field automorphism of K, and it can be

extended to an automorphism f of G. Let θ5 = f−1θ4. then

θ5 · xr(t) = xr(t)

for every generator xr(t) of G, and hence θ5 must be the identity of G. Now

θ5 = f−1g−1d−1i−1
2 i−1

1 θ = 1.

Therefore θ = i1i2dgf and the theorem is proved.

We note here that the automorphism d of the proof may or may not be

in Ĥ\H. If the former case happens, then it is a diagonal automorphism in

the sense we defined it. If the latter occurs, then the product i1i2d is an inner

automorphism of G, since d would also be, in this case. We also note that the

proof that the function f satisfies f(t1)f(t2) = f(t1t2) breaks down in the case

L = A1, since we cannot choose two distinct fundamental roots. It is possible

to give an alternative argument to cover this case too, and the theorem is valid

anyway.

We end this section with the following remark. The CFSG claims that a

finite non-abelian simple group is isomorphic to an alternating group An, n ≥ 5, a
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sporadic group or a simple group of Lie type. We have constructed by now almost

every family of simple groups of Lie type apart from the so-called twisted simple

groups. The twisted groups are obtained as subgroups of certain Chevalley

groups G = L(K), specifically for those such that the Dynkin diagram of L

admits a non-trivial symmetry. The vast majority of the results proved for the

non-twisted simple groups also hold for the twisted ones, with the appropriate

modifications on the statements. They also admit a normal form similar to the

one in Theorem 5.3.26, and their automorphism group also admits a normal

form similar to the one in Theorem 5.3.33. The only difference is that the

automorphisms of twisted simple groups decompose in the product of inner,

diagonal and field automorphisms, the graph automorphism is always trivial.



Chapter 6

Main Results

The main goal of this chapter is to prove the two main resuts in Shalev’s paper

[27] and the main result of Khukhro in [17], which contains an improvement of

Shalev’s bound on the derived length. In Section 6.1, we deal with the proof of

the following result.

Theorem 6.0.1 (Shalev). Let G be a finite group of rank r admitting an au-

tomorphism with m fixed points. Then G has a characteristic soluble subgroup

H whose index is (m, r)-bounded.

The remainder of the chapter will be devoted to the proof of the following

theorem.

Theorem 6.0.2 (Shalev). Let G be a finite soluble group of rank r admitting

a coprime automorphism φ. If |Cφ(G)| = m, then the derived length of G is

(m, r)-bounded.

In Section 6.2 we begin an approach that reduces the proof of Theorem 6.0.2

to the class of p-groups. We use the ideas of Section 4.2 and some new ones in

Section 6.3 to bound the derived length of some Lie rings associated to G by a

function that depends only on the rank of G, in the case where φ is regular. In

Section 6.4 we deal with the case where φ has few fixed points, and we bound

the derived length with a function depending on the rank of G and the number

of fixed points of φ.

83
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6.1 First Part of the Main Theorem

The purpose of this section is to prove Theorem 6.0.1. We start with a result

concerning the factor-group Out(G) = Aut(G)/Inn(G) when G is a finite simple

group of Lie type. Here, the Lie rank of G = L(K) is the rank of the root system

associated to L.

Theorem 6.1.1. Let G = L(K) be a finite simple group of Lie type, with Lie

rank l, over the field with pb elements. Then the order of Out(G) is (b, l)-

bounded.

Proof. Invoking Theorem 5.3.33, we know that the inner, diagonal, graph and

field automorphisms of G are sufficient to generate every automorphism of G,

both in the twisted and untwisted cases. Furthermore, if I, F denote the sub-

groups of inner and field automorphisms respectively, and if D,Γ denote the

sets (Γ possibly consisting only of the identity map, as in some untwisted and

all twisted cases) of diagonal and graph automorphisms of G respectively, then

Aut(G) equals the product IDΓF . Since G is simple, I ∼= G, and the group of

outer automorphisms has order |Aut(G)|/|G| = |IDΓF |/|G|. But we also know

that |IDΓF | ≤ |I||D||Γ||F |, hence |Out(G)| ≤ |D||Γ||F |.

Here, |F | = b. The order of Γ is 2 in case G = Al(G), l ≥ 2, Dl, l ≥ 5, E6(K);

it is 2b in case G = B2(K), F4(K) or G2(K), and 6 in case G = D4(K), since the

symmetries of the Dynkin diagram of L = D4 form the dihedral group of order

6. It remains then to bound the order of D in terms of l and b. Remember that

D consists precisely of diagonal automorphisms induced by elements of Ĥ that

are not contained in H, since G ∩ Ĥ = H by Corollary 5.3.27. Also, Ĥ is an

abelian group, since it is isomorphic to the group of K-characters of P = ZΦ.

Then, if we take fixed representatives of right cosets modulo H, they will be

enough to produce the elements of D, since the elements of H induce inner

automorphisms, and not diagonal ones. So, we only need to consider a set of

coset representatives of H in Ĥ to compute the upper bound for the order of
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Aut(G). We need to consider the possible values for [Ĥ : H], and these indices

are listed in Table 5.2, at page 63. They are clearly bounded by max{l + 1, 4},

and then |D| is l-bounded. This completes the proof of the result.

We also need the following two results, both due to B. Hartley.

Theorem 6.1.2. Let G be a finite non-abelian simple group admitting an auto-

morphism of order n with at most k fixed points. Then |G| is (n, k)-bounded.

The result above is Theorem A’ in [9] which gives a bound on the order of

a finite simple group that depends on the order and number of fixed points of

an automorphism, resembling the well-known Brauer-Fowler Theorem in [2]. In

sharp contrast to this theorem, which is proved using character theory and does

not depend on the CFSG, Hartley’s result relies heavily on the classification, and

at a certain point he even has to invoke specific calculations made for particular

families of simple groups.

We remark that Hartley’s approach is different from the one given in this

chapter, since in [9] he studies finite simple groups as subgroups of certain al-

gebraic groups. Namely, the finite simple groups of Lie type are subgroups of

the centralizer of a Frobenius automorphism on a connected reductive algebraic

group over an algebraically closed field. In [9] he does not deal with inner auto-

morphisms, but he does so in [10]. In some sense, part of his proof is essentially

a survey on similar results due to various authors, and he completes the proof

with the cases not covered before. Then, using some algebraic geometry and

properties of the Frobenius automorphism, he manages to prove the result.

The second result of B. Hartley is as follows.

Lemma 6.1.3. Let S = L(K) be a simple group of Lie type, where K =

GF (q), q = pb and let l be the Lie rank of S. Suppose S admits an automorphism

φ with m fixed points. Then, the order of S is (b,m, l)-bounded.
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Proof. We know, by Theorem 6.1.1, that the order of Out(S) is (b, l)-bounded.

In particular, φe ∈ S, which we identify with Inn(S), for some e which is (b, l)-

bounded. Then, 〈φe〉 ⊆ CS(φ). As |CS(φ)| = m, φem = 1, hence the order of φ

is (b,m, l)-bounded. By Theorem 6.1.2, there is a bound to the order of a simple

group admitting an automorphism of a given order with a given number of fixed

points, depending on both values. Thus the order of S is (b,m, l)-bounded, as

desired.

We are now ready to prove Theorem 6.0.1.

Proof. We want to show that, if G is a finite group of rank r admitting an auto-

morphism φ with m fixed points, then G has a characteristic soluble subgroup

of (m, r)-bounded index.

When we haveH charK charG, the factor groupK/H is called a characteris-

tic section of G. LetM be a characteristic section of G which is characteristically

simple. We can suppose that M is non-abelian. Indeed, if every nontrivial char-

acteristically simple characteristic section were abelian, since G is finite we can

consider a series of characteristic subgroups

1 = G0 charG1 char . . . charGk = G

with no characteristic subgroup of G strictly contained between Gi and Gi+1, for

i = 0, . . . , k−1. Then, the factors of this series are characteristically simple, and

thus abelian, by assumption. Then this would be a soluble series for G. Also,

G itself is a characteristic section, so there is always a nontrivial characteristic

section of G.

Since M is characteristically simple, by [25, Theorem 8.10] it is the direct

product of isomorphic simple groups Si, 1 ≤ i ≤ k, and as rk(G) = r, we have

k ≤ r. Now, the automorphism φ acts on the section M with at most m fixed

points, by Lemma 2.2.2. Let i ≥ 1 be the minimal integer such that Sφ
i

1 = S1.

Then K := S1 × Sφ1 × · · · × S
φi−1

1 is an φ-invariant subgroup of M . Note that,

if s ∈ CS1(φ
i), then s→ ssφ · · · sφi−1

is an injective map from CS1(φ
i) to CK(φ).



6.1. FIRST PART OF THE MAIN THEOREM 87

Hence, |CS1(φ
i)| ≤ |CK(φ)| ≤ m. We conclude that S1 is a simple group of rank

at most r admitting an automorphism with at most m fixed points.

Applying the classification of finite simple groups, if S1 is sporadic, |S1| is

bounded. If S1
∼= An is alternating, n ≥ 5, then we can construct an elementary

abelian 3-subgroup of S1, generated by disjoint 3-cycles. This subgroup has

rank equal to the integer part of n/3, and as this number is bounded by above

by r, n is r-bounded. Again, |S1| is bounded, but this time by a function of r

only, namely (3r + 2)!/2. It remains to tackle the case where S1 is of Lie type.

Suppose L has root system of rank l, K = GF (q), q = pb for some b. Since

rk(S1) ≤ r and the root subgroups Xr are isomorphic to the additive group of

the field K, of rank b, then b ≤ r.

Also, l is bounded in terms of r. To see this, just consider the subgroup H

of G. H is a subgroup of Ĥ, and Ĥ is the group of homomorphisms from ZΦ

into K∗. ZΦ is the free group with basis Π, of cardinality l, and hence Ĥ is

isomorphic to the direct product of l copies of the cyclic group of order pb − 1.

The index of H in Ĥ is presented on Table 5.2, page 63, for each isomorphism

class of L. We see that this index is 1, 2, 3 or 4 according to each case, except

when L is of type Al. So, in the cases apart from L = Al, the fact that [Ĥ : H]

equals 1,2,3 or 4 forces the rank of H to be at least l − 2. In this case, l is

bounded by a function of r only. For the case L = Al, the Weyl group N/H

is isomorphic to Sl+1, and as G has rank ≤ r, Sl+1 also has rank ≤ r. So,

considering a subgroup of Sl+1 generated by mutually disjoint 3-cycles, which is

elementary abelian of rank equal to the integer part of (l + 1)/3, we see that in

this case l is also bounded by a function of r only.

We also know that the order of S1 is (b,m, l)-bounded, by Lemma 6.1.3. It

is possible to conclude that, in either case, |S1| is (m, r)-bounded. It follows

that |M | is (m, r)-bounded also, for any non-abelian characteristic section of G

which is characteristically simple. Note also that this bound is uniform for every

such section.
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Given such a sectionM , consider CG(M). As G/CG(M) embeds in Aut(M),

the index of CG(M) is (m, r)-bounded. Since G is r-generated, its number of

subgroups of index ≤ i is bounded in terms of r and i only. Therefore, the

number of possibilities for CG(M) is (m, r)-bounded. Let H := ∩CG(M) where

M ranges over all characteristic sections of G which are non-abelian and charac-

teristically simple. The above discussion shows that [G : H] is (m, r)-bounded.

Finally, since every characteristic section of H which is characteristically simple

is abelian, by construction, then H must be soluble.

We would like to point out the quantity of tools and background that are

involved in the proof of Theorem 6.0.1. The great generality of this theorem is

what justifies the use of so many results.

6.2 Reduction Argument

Here, our purpose is to reduce Theorem 6.0.2 to the case where G is a finite p-

group. First, we consider the case where the automorphism φ is fixed-point-free.

The following result, which is a consequence of the classification of finite simple

groups, ensures that under this condition G is soluble. This proof we discuss

here is due to Peter Rowley [26].

Theorem 6.2.1. Let G be a finite group admitting a fixed-point-free automor-

phism φ. Then G is soluble.

We give an idea of the proof. Rowley begins with a minimal counterexample

G to the theorem, that happens to be a finite non-abelian simple group. Here,

G admits an abelian group of automorphisms, say 〈φ〉. Since φ leaves a unique

Sylow p-subgroup P of G invariant, if P is cyclic, then the fact that φ acts

regularly on P together with the abelianity of Aut(P ) implies that G has a

normal p-complement. Using this result, the author of [26] rules out the cases

where G is sporadic, since there is always a prime to the first power diving the
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orders of such groups. Using Bertrand’s Postulate [22, p. 367], that ensures

the existence of a prime number between n/2 and n, for any natural number

n, he deals with the case of the alternating groups. For the case where G is

simple of Lie type, Rowley makes G and its automorphism group both act over

the “building" associated to G. He previously proves that this action has only

one fixed point, but constructs a pair of fixed points for such an action, hence

getting a contradiction. This completes his proof. This shows that, in the case

where φ is regular, we do not need to assume in the statement of Theorem 6.0.2

the further condition of solubility on G. We would like to end this comment

on Rowley’s paper by giving an example of the so-called “building” associated

to a group that is mentioned in the previous paragraph. First of all, we define

a simplicial complex with vertex set V as a collection ∆ of finite subsets of V ,

called simplices, such that each singleton {v} is a simplex and every subset of

a simplex A is again a simplex. Let L consist of exactly l linearly independent

vectors on Rl, where l ≥ 1. Then the convex hull C of L is an analogue of

a tetrahedron, but with dimension l. This geometric structure is a simplicial

complex, with vertex set being the set of vectors L. Another example of a

simplicial complex is the power set of a non-empty set K, where the vertices are

just the singletons of K.

Let W be a group, possibly infinite, generated by a subset S consisting of

elements of order 2. If W admits a presentation of the form

〈S | (st)m(s,t) = 1〉,

where there is one relation for each pair s, t ∈ S with m(s, t) <∞, we call W a

Coxeter group, following Tits [30]. For example, the symmetric groups Sn have

such a presentation, where S is the set of involutions {(12), (23), . . . , (n− 1, n)}

and the m((ij), (kl)) equal 1, 2 or 3 depending on the values i, j, k, l. Also,

dihedral groups, including the infinite dihedral group D∞ = 〈r, s | r2 = s2 =

1〉, are examples of Coxeter groups. Throughout the book [3] one can find

many examples of such groups, arising from different areas of group theory; the

classification of all finite Coxeter groups may be found in [3, p. 5]. We are going

to call a pair (W,S) consisting of a Coxeter group and its set of generating
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involutions a Coxeter system.

Define a special subgroup T of W as a subgroup generated by some subset

S ′ of S, T = 〈S ′〉. A special coset of W will be, then, a coset w〈S ′〉 with w in

W and S ′ ⊇ S. We are going to define a partially ordered set, poset for short,

as follows. Consider Σ(W,S) = {special cosets of W}, ordered by the opposite

of the inclusion relation, which we are going to denote by ≤. This means that

A ≤ B if and only if A ⊇ B as subsets of W . The singletons are the greatest

elements inside Σ(W,S) and W itself is the smallest one. The poset Σ(W,S)

is called a Coxeter complex. The use of the word complex here is due to the

fact that such posets are indeed simplicial complexes, according to [3, Theorem

III.1]. We give the lattice of the Coxeter complex associated to the Coxeter

group S3 = 〈r, s | r2 = s2 = (rs)3 = 1〉. Note that here, (rs)3 = 1 implies

srs = rsr. Also, the {r} on the first layer also connects with the {1, r} on the

second one.

{1}{r}

{1, r}

{s}

{1, s}

{sr}

{s, sr}

{rsr}

{sr, srs}

{rs}

{rs, rsr}

{r}

{rs, r} {1, r}

W

Figure 6.1: Lattice of the poset Σ(S3, {r, s})

The approach of this example is totally group-theoretic, but a geometric

approach is also possible. For example, if we consider inside R3 the set of

hyperplanes {xi = xj, | i 6= j ∈ {1, 2, 3}}, and consider sij to be the reflection

through the hyperplane xi = xj, then the reflection group generated by all the

sij is isomorphic to S3. The three hyperplanes considered above divide R3 in

a geometric structure that can be proved to be isomorphic, in the simplicial

complex sense, to Σ(S3, {r, s}). Also, since S3 acts on the just given dissecation

of the euclidean space, it is also possible to prove that S3 acts on its Coxeter

complex via left translation on the cosets, in the usual way, and that these two

actions are compatible with the aforementioned isomorphism. Point-stabilizers

of certain subsets of ∆ are the special subgroups of S3, and one can obtain the

special cosets by considering the compatible actions of S3 on both Σ(S3, {r, s})

and the geometric structure formed in R3. Note that this idea makes it possible
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to add some geometric structure to group-theoretic objects, such as the Coxeter

complex Σ(S3, {r, s}).

We can finally give the definition of a building. We call a simplicial complex

∆ a building provided that ∆ is the union of subcomplexes Σ, called apartments,

satisfying the following:

(B0) Each Σ is a Coxeter complex Σ(W,S) associated to some Coxeter group

W generated by a set of involutions S;

(B1) For any two simplices A and B in ∆, there is an apartment Σ containing

both of them;

(B2) If Σ and Σ′ are two apartments containing A and B, then there is an

isomorphsim of simplicial complexes Σ→ Σ′ fixing A and B pointwise.

If G is a group admitting a (B,N)-pair, according to Definition 5.3.21, a

remarkable example of building is the set

{gP | g ∈ G,P is a parabolic subgroup of G},

partialy ordered by the opposite of the inclusion relation. The proof that such

a poset is a building can be found in [3, Theorem V.3]. We want to remind that

when a group admits a (B,N)-pair, the subgroup B ∩ N is normal in N and

the quotient N/B ∩ N is generated by a set of involutions, cf. axiom (BN3)

in Definition 5.3.21. So, there is a natural Coxeter group associated to groups

having a (B,N)-pair, which is used to construct such buildings. In this case, G

acts in a very nice way on ∆, and Rowley explores this action in his argument.

We turn back to our goal, and the next part of the discussion holds regardless

of the number of fixed points of φ. Here on, we assume that G is always soluble.

Now, fix a prime p dividing |G|. If we set P = Op′p(G)/Op′(G), then P is by

construction the largest normal p-subgroup of G/Op′(G). Since P is normal in

G/Op′(G), the group G acts by conjugation on P , and hence on P/Φ(P ). Then,

as P/Φ(P ) is an Fp-vector space of dimension at most r, G being of rank r,

we get a representation of G into GL(r, p). The next proposition states which
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subgroup of G is the kernel of this representation.

Proposition 6.2.2. Let G and P be as above. Then the kernel of the action of

G on P/Φ(P ) is precisely Op′p(G).

Proof. The kernel K of the considered action certainly contains Op′p(G), and

is also a normal subgroup of G. Hence, there are two possibilities: either K =

Op′p(G), or there exists an element x of G contained in K with order coprime

to p, since K/Op′(G) cannot be a p-subgroup of G/Op′(G), as Op′p(G)/Op′(G) is

the largest normal one. Now, by Lemma 2.2.1, xmust act trivially on P , because

it centralizes P/Φ(P ). However, [8, Lemma 1.2.3], ensures that in this situation

the automorphism induced by x is non-trivial. This completes the proof.

Proposition 6.2.2 will be used in combination with the next theorem, which

is due to M.F. Newman, [21].

Theorem 6.2.3. Let G be a soluble completely reducible subgroup of the linear

group GL(n, p). Then, the derived length of G is bounded above by a function ρ

of n only, given by ρ(n) = 5 log9(n/8) + 8.

Since Newman’s proof is very technical, we give just an idea of it. The proof

uses a triple inductive argument. The author finds bounds for the derived length

of soluble subgroups of permutation and linear groups. He even gives a different

bound for the case when this subgroup is completely reducible, in the linear

case. Newman’s proof argues by induction on n, where n denotes, according to

the case, either the degree of G or the dimension of the vector space over which

G acts. Also, the bounds are best possible: Newman constructs groups of the

given types with derived length equal to the given bound.

Let G be a soluble permutation group. In this case, we can have either that

G is isomorphic to a subgroup of a wreath product W wrK, where both W and

K are soluble permutation groups of well-behaved degrees, or that G has order

pk and admits a minimal normal subgroup A such that G/A is an irreducible
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linear group of degree k. In both cases, the result follows by induction and by

the relations stated in [21, Lemma 1].

In the case where G is a soluble completely reducible linear group with degree

n, we also have two possible situations. First, G may admit a normal subgroup

N which is isomorphic to a direct product of completely reducible soluble linear

groups of degree m. In this case, the factor group G/N is a soluble permutation

group of degree n/m and the result follows by induction. In the second case,

Newman considers the series of subgroups G ≥ F = Fit(G) ≥ Z = Z(G) ≥ 1,

where Fit(G) denotes the Fitting subgroup of G. In this case, F/Z is an abelian

group of order dividing n2 and G/F is a subgroup of a linear group. The result

also follows by induction.

Finally, let G be a soluble linear group acting on a vector space V . Newman’s

strategy is to consider a certain series of subspaces of V and let G act on each of

the quotient spaces, which have lower degrees in each case. A careful analysis of

every possible decomposition shows that in all cases G has n-bounded derived

length.

One of the difficulties of this proof is illustrated by the fact that, when G is

a completely reducible linear group, the factor-group G/N is permutational, for

example. This fact explains why Newman needs to consider a triple inductive

argument, since the reductions made on his work for a class of groups lead

to factor-groups which do not belong necessarily to the same class. Another

important fact to point out is that the functions that he considers as bounds for

the derived length all behave well with respect to the addition, so the technique

consists in bounding dl(N) + dl(G/N) in each case.

Now, combining Proposition 6.2.2 with Theorem 6.2.3, we get that the factor

group G/Op′p(G) has derived length at most 5log9(r/8) + 8. It is a remarkable

fact that this bound does not depend on p, since we are considering a factor group

whose construction is based on some prime p. The following sections will be de-

voted to prove that the factor group Op′p(G)/Op′(G) has (m, r)-bounded derived
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length, and we assume for now that this result is true. Let π(G) = {p1, . . . , ps}.

The map taking x ∈ G into (xOp′1
, . . . , xOp′s) is an injective homomorphism, with

kernel ∩p∈π(G)Op′(G) = 1. Then, we have that G is isomorphic to a subgroup

of the direct product G/Op′1
× · · · × G/Op′s , which is soluble of (m, r)-bounded

derived length. This completes the proof of the fact that G has (m, r)-bounded

derived length, and so in Theorem 6.0.2 we may assume that G is a p-group.

6.3 The Regular Case

Next, we are going to bound the derived length of P = Op′p(G)/Op′(G) by a

function not depending on p, but only on m and r. This work will amount to a

final bound on the derived length of G itself.

In view of the reduction argument considered above, we want to prove the

following result.

Theorem 6.3.1. Let P be a finite p-group of rank r admitting a regular p′-

automorphism φ. Then, the derived length of P is bounded above by a function

depending on r only.

In what follows, we are going to give the steps of the proof of Theorem 6.3.1.

From Theorem 4.1.15, it follows that P admits a powerful characteristic sub-

group V = V (P, r) such that the derived length of P/V is at most dlog2 re.

Since φ induces a regular automorphism of V and dl(P/V ) is r-bounded, we can

reduce Theorem 6.3.1 to the case where P is powerful.

Now, in view of Lemma 4.2.1, we may find a series of characteristic subgroups

1 = Pt ≤ · · · ≤ P0 = P such that each factor group Mi = Pi−1/Pi is uniform,

for i = 1, . . . , t. The fact that Pi and Pi+1 are both characteristic ensures that φ

induces an automorphism of the quotient Mi, which we are going to denote by

φi. Lemma 2.2.2 tells us that each φi is again fixed-point-free.

Since each section Mi is uniform, we may consider one member of the family
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of uniform Lie rings associated to Mi, following Proposition 4.3.1, and call it

Lji . In case it is not possible to construct a Lie ring as in that proposition, we

know, by the remarks at the end of Chapter 4, that the exponent of Mi does

not exceed p3 and dl(Mi) ≤ 3. At this point, we wish to bound the derived

length of each uniform section of P with a function of r only. In particular we

can consider just the cases where exp(Mi) ≥ 4 and it is possible to associate a

Lie ring to Mi.

Given the associated Lie ring Lji , the automorphism φi induces a fixed-point-

free automorphism of Lji , which we also call φi. We know that the ranks of the

sections Mi decrease, starting with rk(M1) = r. So, we may assume that Mi,

the i-th uniform section of P , has rank ≤ r − (i− 1), thus giving that the rank

of Lji is not greater than r − i + 1. We want to apply Corollary 3.4.4 to the

current situation, so in order to fulfill the hypothesis of that corollary we still

need to show that φi is semisimple. This is the content of the following lemma.

Lemma 6.3.2. Let L be a Lie ring of order a power of p. If φi is a p′-

automorphism which acts nontrivially on L, then φi is semisimple.

Proof. Let pi be the additive exponent of L. Proposition 4.3.1 shows that L is a

Lie Z/piZ-ring. Regarding Z/piZ as the subgroup generated by a pi-th primitive

root of unit of C, let R be an extension of Z/piZ containing every eigenvalue of

φi. If N is the matricial representation of φi with entries in R, we can consider

its Jordan block representation. Finally, let |φi| = n, coprime to p and J be

the Jordan block of N associated with each eigenvalue β. As Jn is the identity

matrix, we obtain 
β 1 · · ·

. . . · · ·


n

=


βn nβ · · ·

. . . · · ·

 .

Also n is invertible in Z/piZ, so this matrix cannot be the identity matrix if β

is zero. Being n a unit in Z/piZ and β different from zero, the entry nβ on the

matrix cannot be zero, unless the Jordan block J has dimension 1. This proves
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that φi is semisimple.

Now, since φi is semisimple, it is possible to apply Corollary 3.4.4 to this situation

and we obtain that the derived length of Lji is not greater than 2r−i−1. Applying

Theorem 4.3.4 to Lji and Mi we obtain that dl(Mi) ≤ 2r−i+1 − 1.

In the series 1 = Pt ≤ · · · ≤ P0 = P , we know that t ≤ r. Denote by ri the

rank of Mi. Thus r = r1 ≥ r2 ≥ · · · ≥ rt. Then, we have

dl(P ) ≤ 2r1−1+2r2−1+· · ·+2rt−1 ≤ 2r−1+· · ·+22−1+2−1+1−1 = 2r+1−r−2.

We get the following result.

Proposition 6.3.3. A powerful p-group P of rank r admitting a regular coprime

automorphism φ has derived length given at most by 2r+1 − r − 2.

Applying the result above in combination with Theorem 4.1.15 we obtain that,

for an arbitrary p-group P of rank r admitting a regular p′-automorphism φ, the

derived length of P is at most

dlog2 re+ 2r+1 − r − 2. (6.3.1)

which is a function depending only on r. This completes the proof of Theorem

6.3.1.

We are now able to deal with the proof of Theorem 6.0.2 when φ is a regular

automorphism. Remember that we are trying to bound the derived length of

an arbitrary group G of rank r admitting a regular coprime automorphism. We

fixed a prime p dividing |G|, and showed that the soluble length of the factor

group G/Op′p(G) is bounded by a function of r only, namely 5 log9(r/8) + 8.

Now, since Op′p(G)/Op′(G) is a p-group of rank at most r, the derived length of

this factor group is at most dlog2 re+2r+1−r−2, thus yielding that the derived

length of G/Op′(G) is at most

f(r) = 5 log9(r/8) + 8 + dlog2 re+ 2r+1 − r − 2,

and this expression does not depend on p. This means that the s-th term of

the derived series of G, where s = df(r)e, is a subgroup of Op′(G), for every
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p ∈ π(G). Hence G(s) ≤ ∩p∈π(G)Op′(G) = 1, and so dl(G) ≤ df(r)e, completing

the proof of Theorem 6.0.2 in the case where φ is a regular automorphism.

6.4 The General Case

Let us begin with a uniform Lie ring L of additive exponent pi, admitting an

abelian p′-group of automorphisms A having exactly m > 1 fixed points. Then

by Lemma 2.2.4, the additive group of L can be written as L = CL(A)× [L,A].

The order of CL(A) is at least pi, otherwise every generator of L lies in [L,A],

since L is homocyclic of exponent pi. This implies that pi ≤ m and i ≤ logp(m) ≤

log2(m).

Now, remember that L/pL is commutative. Then we have that L1 ⊆ pL.

Also,

L(2) = [L(1), L(1)] ⊆ [pL, pL] = p2[L,L] ⊆ p3L.

Thus, by induction, we get the inclusion L(n) ⊆ p2n−1L. Since the additive

exponent of L is pi, when 2n − 1 ≥ i, or equivalently when n ≥ log2(i + 1),

we have L(n) ⊆ p2n−1L = 0. Combining n ≥ log2(i + 1) with the inequality

i ≤ log2(m), we get

Lemma 6.4.1. Let L be an uniform Lie ring, admitting a coprime automor-

phism φ with exactly m > 1 fixed points. Then dl(L) ≤ dlog2(log2(m) + 1)e.

Now, let P be a uniform p-group of rank r admitting a p′-automorphism φ

with m > 1 fixed points. Consider one of the associated uniform Lie rings L

and denote the automorphism induced by φ on L by φ̄. Since we do not know

exactly whether the induced automorphism φ̄ acts regularly or has nontrivial

fixed points, a combination of both Corollary 3.4.4 and Lemma 6.4.1 yields the

following bound for dl(L):

dl(L) ≤ max{2r−1 − 1, dlog2(log2(m+ 1))e}.
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Theorem 4.3.4 implies that

dl(P ) ≤ max{2r − 1, 2dlog2(log2(m+ 1))e+ 1}.

We are going to denote the maximum value defined above by g(m, r). Again,

this bound does not depend on p. Keeping track of the argument at the end of

the preceding section, we can state the following result.

Theorem 6.0.2. Let G be a finite group of rank r admitting a coprime auto-

morphism φ. If G is soluble and |CG(φ)| = m, then the derived length of G is

bounded by a function f(m, r) depending on m and r only.

Such a function f(m, r) can be explicitly determined, as follows

f(m, r) = 5dlog9(r/8)e+ 8 + dlog2(r)e+ rg(m, r).

Since the ranks of the uniform sections of a powerful p-group P are decreasing,

the last summand in the equation above can be replaced by

g(m, r) + · · ·+ g(m, 2) + g(m, 1).

This discussion completes the proof of Theorem 6.0.2.

6.5 An Improvement on the Bound

It was conjectured that in the statement of Theorem 6.0.2 one could remove the

dependence of the bound on the soluble length on parameter m. In the paper

[17], Evgeny Khukhro answers this question affirmatively, making a clever use

of centralizers in order to obtain the result. The result we are going to prove in

this section can be stated as follows.

Theorem 6.5.1 (Khukhro). Let G be a finite group of rank r, admitting an

automorphism φ of order coprime to the order of the group with exactly m fixed

points. Then G has a characteristic soluble subgroup H of (r,m)-bounded index

and whose derived length is r-bounded.
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In the same way as we did previously, we first reduce the proof to the case of

finite p-groups, then we consider the general case. The result from Section 6.3

will be useful.

We first deal with the proof of the following result.

Theorem 6.5.2. Let G be a finite p-group of rank r, admitting an automor-

phism φ of order coprime to p, and such that |CG(φ)| = m. Then G admits a

subgroup D of (m, r)-bounded index and r-bounded derived length.

In what follows, we give the steps of the proof. By Theorem 4.1.15, the group

G contains a powerful characteristic subgroup V , such that the derived length

of the factor-group G/V is bounded by dlog2(r)e. Therefore we can assume that

G is powerful from the outset, as we did in Section 6.3.

Moreover, by Lemma 4.2.1, we know that G can be divided in t ≤ r uni-

form characteristic sections. Let K be one of those sections, which has the form

Gpa/Gpa+b

and exponent pb. On this section, φ induces a coprime automorphism

as well. Denoting the induced automorphism also by φ, suppose that the expo-

nent of CK(φ) equals ps, for some s ≤ b. Then, ps ≤ m, since ps ≤ |CK(φ)| and

|CK(φ)| ≤ m via Lemma 2.2.2. Applying Lemma 4.2.3, we obtain that CK(φ)

is contained in the subgroup Kpb−s

, of exponent ps ≤ m. As this subgroup is

also uniform and has rank at most r, we have |Kpb−s | ≤ psr ≤ mr. By Lemma

2.2.2, we know that φ acts regularly on the section K/Kpb−s

. Then it follows

from Theorem 6.3.1 that this section has r-bounded derived length.

Note that the full inverse images of the subgroups K and Kpb−s

are charac-

teristic subgroups of G, namely Gpa and Gpa+b−s

. We have, then, constructed a

series (∗) of at most 2r characteristic subgroups of G, where factors of r-bounded

derived length alternate, in odd positions, with factors having (r,m)-bounded

order, in even positions. Now let D be the intersection of the centralizers of all

the even factors having (r,m)-bounded order; this will be the sought subgroup

of (r,m)-bounded index and r-bounded derived length.

First, we show that the index of D in G is (r,m)-bounded. For this purpose,
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let S be one of the even factors mentioned above. Its order is bounded in terms

of r and m, and G clearly normalizes S. The quotient G/CG(S) embeds in

Aut(S), which has (r,m)-bounded order also, thus the index of CG(S) is (r,m)-

bounded. We are intersecting all the centralizers CG(S) of even sections in order

to construct D, so the index of D in G is not greater than the product of the

indices [G : CG(S)], when S ranges over the even sections considered above. As

we have at most r such even sections, the index [G : D] is also (m, r)-bounded.

An explicit bound can be written, in this case, as follows

[G : D] ≤ ((mr)!)r.

Let us check now that D has r-bounded derived length. We intersect D

with the terms of the series constructed in (∗), obtaining a normal series in D.

Suppose that G ≥ Gpc ≥ Gpc+d

is the first segment of the quoted series; then

the first segment for the corresponding series of D will be D ≥ D ∩ Gpc ≥

D ∩Gpc+d

. We are going to use both factors D/D ∩Gpc and D ∩Gpc/D ∩Gpc+d

to illustrate that D has r-bounded derived length. Observe that D/D ∩ Gpc is

isomorphic to DGpc/Gpc , which is a subgroup of G/Gpc , a factor-group having

r-bounded derived length. The second factor, D ∩Gpc/D ∩Gpc+d

, is isomorphic

to (D ∩ Gpc)Gpc+d

/Gpc+d ≤ Gpc/Gpc+d

. Since D centralizes this section, (D ∩

Gpc)Gpc+d

/Gpc+d

is central in Gpc/Gpc+d

, hence abelian and having derived length

equal to 1. Since the rank of the uniform section G/Gpc+d

is at most r and

the rank of the following section decreases, we have that the soluble length of

D/D ∩ Gpc+d

is bounded by 2r − 1 + 1 = 2r. Repeating the same observation

for all sections, we obtain that

dl(D) ≤ 2r + 2r−1 + · · ·+ 2 = 2r+1 − 2.

This completes the proof of Theorem 6.5.2 when G is a finite p-group.

The reduction of the proof to the case of a finite p-group follows the same

steps as in the previous sections. First of all, fix a prime p ∈ π(G), con-

sider the quotient P = Op′p(G)/Op′(G), which is the largest normal p-subgroup

of rank at most r of G/Op′(G). Moreover, recall that that the factor group
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G/Op′p(G) is faithfully represented into GL(r, p), which is the automorphism

group of P/Φ(P ). We know, by Theorem 6.2.3, that each G/Op′p(G) has de-

rived length bounded by a function of r only, not depending on p. Now, the

factor group G/
⋂

p∈π(G)

Op′p(G) is isomorphic to a subgroup of the direct product

Πp∈π(G)G/Op′p(G). Since all the direct factors in this product have the same

r-bounded derived length, by Theorem 6.2.3, so does G/
⋂

p∈π(G)

Op′p(G).

It is clear that F = ∩p∈π(G)Op′p(G) is a nilpotent characteristic subgroup of

G. In fact, it coincides with the Fitting subgroup F (G).

Now, let q ∈ π(F ) and Sq be the Sylow q-subgroup of F . The fact that

Sq charF and F charG implies that φ induces an automorphism of Sq, with

|CSq(φ)| = mq ≤ m. Applying Theorem 6.5.2 to Sq, let us call Tq the subgroup

of (m, r)-bounded index and r-bounded derived length that can be constructed,

for each choice of q ∈ π(G). Then Tq has (r,mq)-bounded index and r-bounded

derived length. Set

T =
∏

q∈π(F )

Tq.

The index of T in F is (m, r)-bounded, since it equals the product of (mq, r)-

bounded indices, mq ≤ m and the function that bounds those indices is ((mr)!)r,

which is ascending in m.

It remains now to take the centralizer C = CG(F/T ) as a desired subgroup

of (r,m)-bounded index and r-bounded derived length. Since the order of F/T

is (m, r)-bounded, the index of C in G is also (m, r)-bounded, because G is the

normalizer of F/T . Now, in order to bound the derived length of C, we begin

by bounding the derived length of C/C ∩ F , which is isomorphic to CF/F and

has r-bounded derived length, since G/F also has. The group C ∩ F/C ∩ T is

isomorphic to (C ∩ F )T/T , which lies in the center of F/T and thus is abelian.

Finally, since T has r-bounded derived length, C∩T also does, and this completes

the proof of the general case.
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6.6 Jaikin-Zapirain’s contribution

In this last section we make some comments on Jaikin-Zapirain’s paper [16]

which answers the question raised by Shalev whether it was really necessary

to impose coprimality on the automorphism in Theorems 6.0.2 and 6.5.1. The

main result in [16] can be stated as follows.

Theorem 6.6.1. Let G be a finite group of rank r admitting an automorphism

with m fixed points. Then G has a characteristic soluble subgroup H, whose

index is (m, r)-bounded and whose derived length is r-bounded.

As in [27] and [17], the proof of Theorem 6.6.1 can be reduced to the case

where G is a uniform p-group, in the way we discussed in the previous section.

Also, Zapirain makes use again of the Lie ring introduced by Shalev in [28],

but in a different way. We first want to discuss his result on uniform Lie rings,

which leads to an analogous result in uniform groups. The statement below is

less general than Jaikin’s result and can be derived as a corollary of Theorem

2.1 in [16].

Theorem 6.6.2. Let L be a uniform Lie ring of rank r admitting an automor-

phism φ with m fixed points. Then there exists a function f = f(m, r) such that

L has a soluble subring H of index less than f and derived length at most 2r−1.

Above, the additive group of L is a Z/piZ-module. Theorem 6.6.2 says that

there exist numbers n = n(r,m) and d = d(r) such that (pnL)(d) = 0. Jaikin’s

proof is quite technical. In his paper, he considers a class of Lie rings that are

also Zp[φ, φ−1]-modules, where Zp denotes the ring of p-adic integers, [23, p. 26].

In his proof, he uses some machinery proved in a previous paper [15] by the same

author.

For the group-theoretic part of the proof of Theorem 6.6.1, the idea is to

improve the construction of Section 4.3. Let G be a uniform group of exponent

pn and write n = 4e+f , 0 ≤ f ≤ 3. We can assume n ≥ 4, otherwise G would be
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soluble of derived length ≤ 3. Set Gpi = Gi and consider L = Ge/G2e. For each

integer k = 0, 1, 2, let πk : Gke/G(k+1)e → G(k+1)e/G(k+2)e be the map taking

tG(k+1)e to tp
e

G(k+2)e, with t ∈ Gke. We know that these maps π0, π1 and π2 are

isomorphisms, from Proposition 4.1.2 and from the fact that G is uniform. For

a, b ∈ Ge, we define the Lie bracket on L as

[xG2e, yG2e] = π−1
1 ([a, b]G3e),

and the ring L, together with this operation, is indeed a uniform Lie ring, by

Proposition 4.3.1. Both the Lie bracket and the group commutator are going to

be denoted by [ , ]. Instead of constructing a family of Lie rings, as in [28], only

one Lie ring is considered here. Note that in Theorem 4.3.4, we need to take an

index i such that the associated Lie ring Gpi/Gp2i has derived length j and the

condition i(2j + 1) ≤ n is satisfied. Here, none of the restrictions are necessary.

We want to prove a result relating powerfully embedded subgroups of G with

ideals of L, but the following lemma is needed first.

Lemma 6.6.3. Let M and N be powerfully embedded subgroups of the p-group

G. Then MpNp = (MN)p.

Proof. The inclusion MpNp ≤ (MN)p always holds, so we only need to prove

the reverse inclusion. For this sake, take m ∈ M , n ∈ N and consider the

Hall-Petrescu identity applied in this case:

(mn)p = mpnpc
(p
2)

2 · · · c
( p
p−1)
p−1 cp.

Since N is powerfully embedded on G, each element ci above belongs to [N,G],

which is a subgroup of Np. Then, the product npc(
p
2)

2 · · · c
( p
p−1)
p−1 cp belongs to Np,

completing the proof.

The following lemma can be found in [16, Lemma 3.4].

Lemma 6.6.4. Let T be a powerfully embedded subgroup of G. Then the image

T = π0(TGe/Ge) is an ideal of L and [T , T ] = π0([T, T ]Ge/Ge).
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Proof. Since G is powerful, Ge is powerfully embedded in G and (TGe)
pe =

T p
e

Gpe

e , which equals T p
e

G2e. So, T = (TGe)
pe/G2e. Let us prove that it is an

ideal of L. Using that (TGe)
pe is powerfully embedded in G, we obtain that

[(TGe)
pe , Ge] = [TGe, G]p

2e

, by Lemma 4.1.7. Hence,

[T , L] = [TGe, G]p
2e

G2e/G2e ⊆ T .

Now we prove the second part of the lemma. We have that

[(TGe)
pe , (TGe)

pe ]G3e = [TGe, TGe]
p2eG3e, (by Lemma 4.1.7)

= ([T, T ][Ge, Ge])
p2eG3e

= [T, T ]p
2e

[Ge, Ge]
p2eG3e (by Lemma 6.6.3)

= [T, T ]p
2e

G3e (because [Ge, Ge]
p2e ≤ G4e)

= ([T, T ]Ge)
p2e (by Lemma 6.6.3).

Therefore, [T , T ] = ([T, T ]Ge)
pe/G2e = π0([T, T ]Ge/Ge).

As a consequence, we have

Corollary 6.6.5. Let T be a powerfully embedded subgroup of G. Then, T (d)
=

π0(T (d)Ge/Ge).

For each non-negative integer i, define Li = π0(Gi/Ge) = Gi+eG2e/G2e.

Then, by Lemma 6.6.4 we know that Li are ideals of L. The following lemma

is the main result connecting solubility in uniform Lie rings with solubility in

uniform groups.

Lemma 6.6.6. Let d be the derived length of Li as a Lie ring. Then the derived

length of Gi is at most d+ 2.

Proof. By Corollary 6.6.5, G(d)
i ≤ Ge. Then, using the previous inclusion and

Corollary 4.1.8,

G
(d+2)
i = [[G

(d)
i , G

(d)
i ], [G

(d)
i , G

(d)
i ]] ≤ [[Ge, Ge], [Ge, Ge]] ≤ (G(2))p

4e ≤ Gp4e+3

= 1.

We are now able to prove Jaikin’s main result of [16], which is a version of

Theorem 6.6.1 for finite p-groups. We state it below.



6.6. JAIKIN-ZAPIRAIN’S CONTRIBUTION 105

Theorem 6.6.7 (Jaikin-Zapirain). Let G be a finite p-group of rank r ad-

mitting an automorphism φ with m fixed points. Then G has a characteristic

soluble subgroup H, whose index is (m, r)-bounded and whose derived length is

r-bounded.

Proof. As before, we can assume G to be powerful from the outset, construct a

series of characteristic subgroups G0 = G ≥ G1 ≥ · · · ≥ Gt = 1 with t ≤ r and

such that each section Hi = Gi/Gi+1 is uniform, i = 0, . . . , t− 1. Here, each Hi

has rank ≤ r and |CHi
(φ)| ≤ m by Lemma 2.2.2.

By the above construction, we can associate to each Hi a uniform Lie ring

L(i) with rank ≤ r and such that the automorphism induced by φ on L(i) has

at most m fixed points. By Theorem 6.6.2, there are functions ti = ti(m, r)

and si = si(r) such that (ptiLi)
(si) = 0. Hence, by Lemma 6.6.6 we have

(Gpti
i )(si+2) ≤ Gi+1. Since G is powerful, each Gi also is. Repeated application

of Corollary 4.1.8 shows that we can find functions f = f(m, r) =
t−1∑
i=0

ti(m, r)

and g = g(r) = 2t +
t−1∑
i=1

si(r) ≤ 2r +
t−1∑
i=1

si(r) such that (Gpf )(g) = 1. Since G

has rank r and is powerful, the index of Gpf in G is at most pfr. This completes

the proof.

The end of the argument of the proof of Theorem 6.6.1 follows exactly the

same line as used in Section 6.5, so it will be omitted. The only difference is that,

in that section, we applied Theorem 6.5.2 to find subgroups of (m, r)-bounded

index of each Sylow p-subgroup of the Fitting subgroup, and here we apply

Jaikin’s Theorem 6.6.7 for that sake. The rest of the proof remains identical.

We end this text posing some conjectures raised by Jaikin in [16]. As a

particular case of the result of Section 6.4, we have that a p-group G of rank r

admitting a p′-automorphism φ with pm fixed points has (m, r)-bounded derived

length. This result suggests the following conjecture, which follows the same idea

of relaxing the hypothesis on the order of the automorphism.
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Conjecture 1: Let G be a finite p-group of rank r admitting an automorphism φ

with pm fixed points. Then the derived length of G is (m, r)-bounded. Moreover,

there are functions f = f(m, r) and d = d(r) such that G has a subgroup of

index at most pf and derived length at most d.

In [15], Jaikin proves that there are functions f = f(p,m, n) and h(m)

such that any finite p-group G with an automorphism φ of order pn, whose

centralizer has pm fixed points, has a subgroup of derived length ≤ h(m) and

index ≤ f(p,m, n). In this situation, the rank of G is also (p,m, n)-bounded.

Jaikin poses, then, the following conjecture

Conjecture 2: Let G be a finite p-group of rank r admitting a p-automorphism

φ with pm fixed points. Then there are functions f = f(p,m, r) and d = d(m)

such that G has a subgroup of index at most f and derived length at most d.
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Index of Notations

Symbol Meaning

| | order of a finite group

φ automorphism of a finite group

[H,K] the subgroup generated by commutators [h, k], h ∈ H and k ∈ K

γk(G) k-th term of lower central series of G

G(k) k-th term of derived series of G

π-number a number divisible only by the numbers in the set π

π′-number a number coprime to all the numbers in the set π

Op′(G) the largest normal p′-subgroup of G

Op′p(G) full inverse image of Op(G/Op′(G))

Fit(G) the Fitting subgroup of G

Φ(G) the Frattini subgroup of G

d(G) the minimal number of generators of G

rk(G) the rank of G

[G : H] the index of H in G

exp(G) the exponent of G

R a ring

Mn(K) square matrices of order n× n and entries in K

EndZ(A) endomorphisms of the abelian group A

CG(φ) the fixed point subgroup of the automorphism φ in G

CG(M) elements of G that centralize M ⊆ G simultaneously

NG(H) the normalizer of H in G

L(G) a Lie ring associated to a group G

γk(L) k-th term of lower central series of L

L(k) k-th term of derived series of L

Gn the subgroup of G generated by n-th powers

V (G, r) powerful characteristic subgroup of the p-group G, of rank r
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GLr(Fp) the group of invertible matrices over Fp
Ur(Fp) subgroup of GLr(Fp) consisting of lower unitriangular matrices

λ(r) the function dlog2(r)e

Φ a system of roots

wr the reflection through the hyperplane orthogonal to the vector r

W the Weyl group associated to a system of roots

Π a fundamental system of roots

� total order on a vector space V

V + subset of V consisting of vectors v such that v � 0

V − subset of V consisting of vectors v such that 0 � v

Φ+ a positive system of roots

Φ− a negative system of roots

Al, Bl, Cl, Dl isomorphism classes of simple C-Lie algebras

E6, E7, E8, F4, G2

H a Cartan subalgebra

Ars a Cartan integer related to the roots r and s, on this order

hr the co-root associated to the root r

exp the exponential map

ad the adjoint map

L(K) Chevalley group of type L over the field K

xr(t) exp (ad t · er)

Cijrs the coefficients appearing in Chevalley’s commutator formula

Xr the root subgroup associated to the root r

U the subgroup generated by Xr with r positive

V the subgroup generated by Xr with r negative

φr homomorphism from 〈Xr, X−r〉 to SL2(K)

hr(λ) image of
(
λ 0
0 λ−1

)
via φr

H the subgroup of G generated by the hr(λ)

ZΦ free abelian group with basis Φ

Ĥ the group of K-characters of ZΦ
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nr(λ) image of
(

0 λ
−λ−1 0

)
via φr

N the subgroup of G generated by the hr(λ) and nr

PJ the parabolic subgroup associated to the subset J ⊆ I

Out(G) the quotient Aut(G)/Inn(G)

I,D,Γ, F the set if inner, diagonal, graph and field automorphisms of L(G)

CFSG Classification of Finite Simple Groups

GF (q) the field with q = pb elements

Σ(W,S) the Coxeter complex associated to W and S
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