
Estudos biofísicos e in vivo de moléculas ligantes de 

nucleossomo 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BRASÍLIA-DF 

2020 

 



 

 

UNIVERSIDADE DE BRASÍLIA 

 

 

 

 

Estudos biofísicos e in vivo de moléculas ligantes de nucleossomo 

 

 

 

KAIAN AMORIM TELES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BRASÍLIA-DF 

2020 

 



 

 

KAIAN AMORIM TELES 

 

 

 

 

Estudos biofísicos e in vivo de moléculas ligantes de nucleossomo 

 

 

 

Tese de doutorado apresentada à Universidade 

de Brasília como parte das exigências do 

Programa de Pós-Graduação em Patologia 

Molecular, para a obtenção do título de Doutor.  

 

 

Prof. Dr. Guilherme Martins Santos 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BRASÍLIA-DF 

2020 

 

  



 

 

KAIAN AMORIM TELES 

 

 

 

 

Estudos biofísicos e in vivo de moléculas ligantes de nucleossomo 

 

Tese de doutorado apresentada à Universidade 

de Brasília como parte das exigências do 

Programa de Pós-Graduação em Patologia 

Molecular, para a obtenção do título de Doutor.  

 

 

Aprovada   em    de         

 

 Prof. Dr. Francisco de Assis Rocha Neves – UnB 

 

 

Prof. Dra. Angélica Amorim Amato – UnB 

 

 

Prof. Dra. Andreza Fabro de Bem – UnB 

 

 

Prof. Dra. Ana Carolina Migliorini Figueira – LNBio 

 

 

Prof. Dr. Guilherme Martins Santos – UnB 

 

 

 

 

 

 

BRASÍLIA-DF 

2020 



 

 

               

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Trabalho desenvolvido no Laboratório de Farmacologia Molecular, Universidade de 

Brasília, sob a orientação do Prof. Guilherme Martins Santos  

 

    Este trabalho teve o apoio financeiro da FAP-DF e do CNPq. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Aos meus pais, Ricardo e Ana Maria, pelo amor, carinho e fé que sempre tiveram em mim, 

sem vocês essa conquista não aconteceria. 

 

 

 

 

 À minha esposa Bruna, que sempre me ajudou a sonhar mais alto e me ajudou a crescer 

muito mais do que pensei que conseguiria. 

 

 

 

 

 

 

Às criaturas pequenas da minha vida Caio e Alice, que nessas páginas tenha algo que ajude a 

fazer o mundo de vocês pouco melhor. 



 

 

AGRADECIMENTOS 

 

Ao meu orientador, Guilherme Santos que me mostrou os caminhos dessa profissão que 

tanto amo e foi muito mais que um orientador para mim. Agradeço também sua familía, 

Daniela, Clara e Caio, por terem me recebido tão bem  em sua casa e ter me feito sentir parte 

da família. 

Aos meus colegas do meu grupo de pesquisa, Vinícius Fernandes e Natália Montenegro, 

que são cientístas incríveis, além de grandes amigos, espero trabalhar com vocês em mais mil 

projetos. 

Aos ex participantes do meu grupo de pesquisa, Bel, Manu, Camyla, e Wanessa, aprendi 

muito com todas vocês. 

Aos professores, Hugo van Ingen e Alexandre Gingras, por terem aberto as portas de 

seus laboratórios para mim, me porporcionando grandes aprendizados além grandes 

experiências de vida. 

Ao professor César Grisólia e seu aluno Diego Souza, por todo os ensinamentos e ajuda 

com os experimentos em animais. 

Ao professor Werner Treptow, por toda a ajuda com os trabalhos in silico. 

À Amandda, Marielly e Bruna pela ajuda com os experimentos de citometria de fluxo. 

À Rilva, que e sempre me ajdou com tudo que precisei. 

À Simone e Isadora, por todas as breves conversas que tivemos. 

Aos meus colegas de FarMol, Alessandra, Daniela, Hanna, Mariella, as Caróis, Délia, 

Louise, Paloma, Natália, Karla, Paulo, Luma e todos do FarMol por dividirem tantos momentos 

comigo.  

Ao professor Francisco Neves, por conversas que me ajudaram a trilhar meu caminho. 

Às professoras, Angélia Amato, Fátima Borin e Djane Braz por deixarem sempre suas 

portas abertas para mim, me dando espaço para tirar dúvidas e me ajudaram a crescer, além de 

serem grande companhias para cafés. 

À todos os professores do FarMol, Marie Tagashi, Luiz Simeone, Ingrid Metzger, 

Michella Soares, Flora Milton e Carine Roiter pelos ensinamentos e por ajudar a criar um 

ambiente de trabalho amistoso. 

Ao professor Carlos Pantoja por ter sido um grande orientador adotivo. 

Aos meus colegas de Shisha e viagens, Natália, Isadora, Djane, Henrique, Sid, Simoni, 

Manuel, Marcela, Cínthia,  e Luís por todas boas conversas e risadas. 

Aos meus bichos, Sherlock, Canjica e Preguiça por toda a companhia. 



 

 

À minha esposa, Bruna Bertulucci, que sempre me apoiou e me estimulou a buscar meus 

sonhos. Eu te amo! 

Aos meus irmãos, Alice e Marco,  que me fizeram buscar sempre mais. 

Aos meus pais, que sempre me apioaram nessa jornada, nunca faltando amor e carinho. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“It's the questions we can't answer that teach us the most. They teach us how to think. If you 

give a man an answer, all he gains is a little fact. But give him a question and he'll look for 

his own answers” 

(Patrick Rothfuss) 



 

 

 

PREFACE 

 

 This work explores the results that I obtained during my PhD. Herein, I will present the 

results of the three projects I worked, (i) Biophyisical and in vivo characterization of 

Nucleosome Binding Peptides (NBPeps), (ii) Understanding the role of lipids on chromatin, 

and (iii) Investigation of peptide derived from H4 tail in phase separation. Firstly, I make a 

general review the many aspects of chromatin and its dynamics, followed by introduction, 

materials and methods, results, and discussions of the projects. (i) Part I comprises the in vitro, 

cell based and in vivo approach used to understand the role of NBPeps. This work suggests that 

chromatin can be modified by NBPeps, highlighting the importance of the nucleosome surface 

as a new pharmacological target and pharmacological tool. (ii) In part II, I review the current 

literature about lipids prevalence in the cell nucleus and the potential role of these molecules 

on chromatin. In this opinion type review, it is proposed new roles for lipids on chromatin. (iii) 

In part III, I explore findings that I obtained while investigating the role of NBPeps on the 

nucleosome, that suggested that one of the NBPeps, H4pep, could phase separate. 

It is also presented at the end of this thesis, a paper that I was able to publish during my PhD 

period unrelated to my main projects, that originated during my Postgraduate education, titled 

Cyclophosphamide administration routine in autoimmune rheumatic diseases: a review.  



 

 

RESUMO 

 

 

A modulação da cromatina é feita em grande parte por Moléculas Ligantes de Nucleossomo 

(NBMs) que atuam interagindo com a superfície do nucleossomo, alterando a arquitetura da 

cromatina. Portanto, foi avaliado se Peptídeos Ligantes de Nucleossomo (NBPeps) seriam 

capazes de interagir com a superfície do nucleossomo diretamente e modular a cromatina, 

induzindo desfechos fenotípicos na célula. Para entender como NBPeps afetam a estrutura do 

nucleossomo, foram realizados diversos ensaios bioquímicos, que indicaram que NBPeps 

diferentes afetam de forma específica a estrutura do complexo, apesar de sítios de ligação 

semelhantes. Ensaios realizados em cultura de células mostraram que os NBPeps são captados 

por células Hela através de mecanismo ativo e apresentam toxicidade seletiva para células Hela, 

quando comparadas com células CCD10595K. Usando zebrafish (Danio rerio) como modelo 

animal demonstramos que NBPeps podem atingir o ambiente nuclear em eritrócitos de 

zebrafish adultos, além disso,penetram diferentes tecidos diferente da larva do peixe e induzem 

alterações fenotípicas em embriões, causando alterações no desenvolvimento, inibindo a 

produção de melanócitos, alterando a taxa de eclosão, e apresentam uma baixa taxa de 

letalidade. Nós concluímos que NBPeps causam desfechos fenotípicos em embriões de 

zebrafish, apesar de ter o sítio de ligação semelhante. Nossos resultados sugerem que NBPeps 

podem ter funções terapêuticas importantes. 

Também foi feita uma revisão sobre os impactos de lipídios no ambiente nuclear com ênfase 

na modulação da cromatina, foi discutindo o possível papel do nucleossomo como reservatório 

de lipídeos no núcleo e seu papel na modulação da cromatina. 

Além disso, foi investigado a capacidade de um NBPeps (H4pep) em induzir separação de fase 

in vitro. Foi feito ensaio de gota, mostrando que H4pep precisa de DNA para criar a separação 

de fase, também foi demonstrado que o complexo DNA:H4pep em altas concentrações pode 

alterar o estado de separação de fase, criando uma separação do tipo gel-liquida. Realizando o 

ensaio de resistência ao sal, foi demonstrado que H4pep separa de fase em condições 

fisiológicas de sal. A relevância biológica desses dados ainda não foi determinada. 

 

 

Palavras-chave: Peptídeos, Nucleossomo, Cromatina, Lipídios, Separação de Fase. 

  



 

 

 

ABSTRACT 

 

 

 

The modulation of chromatin is known to be orchestrated by Nucleosome Binding Molecules 

(NBMs), which would act on the nucleosome surface to modulate chromatin architecture. Herein, 

we evaluated if Nucleosome Binding Peptides (NBPeps) would be able to occupy the nucleosome 

surface directly, thereby modulating chromatin status and influencing phenotypic outcomes. To 

understand how the nucleosome structure is affected by NBPeps, we performed biochemical 

assays indicating that NBPeps present differential actions on the nucleosome structure despite 

binding to similar target regions on the nucleosome. Cell-based assays showed that NBPeps are 

uptake by HeLa cells by an active mechanism and have selective toxicity for HeLa cells when 

compared to CCD10595K cells. Using Zebrafish models we demonstrated that NBPeps penetrated 

different tissues, showing specific effects on cell physiology and phenotypic outcome, altering the 

development of zebrafish embryos, inhibiting the development of melanocytes, changing hatching 

patterns and inducing death at a small rate. Moreover, analysis in adult zebrafish showed that 

NBPeps can reach the nuclear environment of erythrocytes in vivo. We concluded that NBPeps 

present specific phenotypic outcomes in zebrafish embryos despite having a similar binding 

sites. Taken together, our data suggests that NBPeps might have important therapeutic 

implications. 

Herein, we also reviewed the impacts of lipids on the nuclear environment, discussing the potential 

role of nucleosome as a reservoir of lipids in the nucleus and, also emphasizing the lipids as a 

modulator of chromatin architecture. 

Finally, we investigated the capacity of a NBPep (H4pep) in creating phase separation in vitro. 

Droplet assay shows that H4pep requires DNA to crate phase separation, also that the complex 

DNA:H4pep at high concentrations can change phase creating a gel-liquid phase separation. Salt 

resistance assay shows that H4pep creates phase separation at a physiological concentration of 

NaCl. The relevance biological relevance of this data is yet to be determined. 

 

Keywords: Peptides, Nucleosome, Chromatin, Lipids, Phase Separation. 



 

 

 

TABLE OF CONTENTS 

Contents 

AGRADECIMENTOS ................................................................................................................................................ 7 

PREFACE .................................................................................................................................................................. 10 

RESUMO.................................................................................................................................................................... 11 

ABSTRACT ................................................................................................................................................................. I 

CHAPTER I ............................................................................................................................................................... 18 

1. GENERAL INTRODUCTION ............................................................................................................................. 18 

1.1. THE NUCLEOSOME AND THE CHROMATIN .......................................................................................................... 18 

1.2. CHROMATIN DYNAMICS ................................................................................................................................... 20 

2. PART I - NBPEPS ................................................................................................................................................. 22 

2.1. NUCLEOSOME BINDING PROTEINS .......................................................................................................... 22 

2.2. THE ACIDIC PATCH AND NBPEPS ...................................................................................................................... 28 

3. AIMS PART I (NBPEPS) ..................................................................................................................................... 33 

3.1. PRIMARY AIM ............................................................................................................................................... 33 

3.2. SECONDARY AIMS ...................................................................................................................................... 33 

4. METHODS ............................................................................................................................................................. 34 

5. RESULTS AND DISCUSSION (NBPEPS) ......................................................................................................... 38 

5.1. NBPEPS SECONDARY STRUCTURE CHARACTERIZATION .................................................................................... 38 

5.2. GMIP1 BINDING TO THE NUCLEOSOME IN VITRO ............................................................................................... 39 

5.3 NBPEPS BINDING TO THE NUCLEOSOME ............................................................................................................. 40 

5.4. NBPEPS INDUCE PRECIPITATION OF THE NUCLEOSOME IN VITRO ...................................................................... 42 

5.5. NBPEPS UPTAKE BY CELLS ............................................................................................................................... 43 

5.6. NBPEPS INDUCE CYTOTOXICITY IN A SPECIFIC MANNER ................................................................................... 44 

5.7. NBPEPS CAN PENETRATE CELL NUCLEUS IN VIVO .............................................................................................. 45 

5.8. NBPEPS PENETRATED DIFFERENT TISSUES OF THE ZEBRAFISH LARVAE ............................................................ 46 

5.9. NBPEPS INDUCES ABNORMALITIES IN ZEBRAFISH EMBRYOS DEVELOPMENT .................................................... 47 

6. CONCLUSION ...................................................................................................................................................... 52 

7. REFERENCES ...................................................................................................................................................... 53 

CHAPTER II ............................................................................................................................................................. 60 

8. INTRODUCTION PART II - LIPIDS ................................................................................................................. 60 

8.1. LIPIDS IN THE NUCLEUS ............................................................................................................................ 60 

8.2. LIPIDS, DNA, AND CHROMATIN ............................................................................................................... 62 

9. AIMS PART II - LIPIDS ...................................................................................................................................... 64 

9.1. PRIMARY AIMS ............................................................................................................................................. 64 

9.2. SECONDARY AIMS ...................................................................................................................................... 64 

10. METHODS ........................................................................................................................................................... 65 

11. RESULTS AND DISCUSSION (LIPIDS) ......................................................................................................... 66 

11.1. LIPIDS IN THE NUCLEAR ENVIRONMENT: LIPIDS AND CHROMATIN ................................................................... 66 

12. CONCLUDING REMARKS .............................................................................................................................. 69 



 

 

 

13. REFERENCES .................................................................................................................................................... 70 

CHAPTER III ............................................................................................................................................................ 74 

14. INTRODUCTION PART III - PHASE SEPARATION .................................................................................. 74 

14.1 PHASE SEPARATION ......................................................................................................................................... 74 

14.2 HISTONE LIKE MOTIFS ...................................................................................................................................... 76 

15.AIMS PART III – PHASE SEPARATION ........................................................................................................ 77 

15.1. PRIMARY AIMS ........................................................................................................................................... 77 

15.2. SECONDARY AIMS .................................................................................................................................... 77 

16.METHODS ............................................................................................................................................................ 78 

17. RESULTS AND DISCUSSION .......................................................................................................................... 79 

17.1 H4PEP IS DEPENDENT ON DNA TO THE FORMATION OF PHASE SEPARATION .................................................... 79 

17.2 KINETICS OF PHASE SEPARATION OF H4PEP ..................................................................................................... 80 

17.3. SALT-RESISTANCE ASSAY ............................................................................................................................... 82 

18. CONCLUSION .................................................................................................................................................... 84 

19. REFERENCES .................................................................................................................................................... 85 

20. APPENDIX A ....................................................................................................................................................... 89 

21. APPENDIX B ....................................................................................................................................................... 98 

21. APPENDIX C ..................................................................................................................................................... 104 

 

 

  



 

 

 

LIST OF FIGURES  

Figure 1: Side and front view of the first high-resolution crystal structure of the nucleosome. .. 18 

Figure 2: Chromatin compaction schematics ................................................................................ 20 
Figure 3: Chromatin phase separation and compaction ................................................................ 21 
Figure 4: Chromatin regulation by phase separation. ................................................................... 22 
Figure 5: Acidic patch is a docking hub for NBPs. ...................................................................... 28 
Figure 6: Kinetics of drug receptor for the nucleosome. .............................................................. 29 

Figure 7: Mode of binding of RCC1 and GMIP1 design.............................................................. 31 
Figure 8: Circular dichroism of NBPeps for determination of secondary structure. .................... 38 
Figure 9: NMR: HQSC spectra of [C13,N15]H2A-H2B dimers (black) and with GMIP1 (red). 39 
Figure 10: NBPeps interaction assay. ........................................................................................... 41 
Figure 11: GMIP1 binding assay with nucleosome. ..................................................................... 42 

Figure 12: Nucleosome precipitation assay with NBPeps. ........................................................... 43 
Figure 13: NBPeps cell penetration. ............................................................................................. 44 

Figure 14: Cytotoxicity evaluation of NBPeps. ............................................................................ 45 
Figure 15: NBPeps distribution in vivo. ....................................................................................... 46 

Figure 16: NBPeps distribution in zebrafish larvae. ..................................................................... 47 
Figure 17: Fish Embryo Toxicity (FET) with NBPeps. ................................................................ 50 

Figure 18: Distribution of lipids in the nucleus. ........................................................................... 62 
Figure 19: Lipidic profile of nuclear compartments in liver, thymus, and embryonic cells. ........ 67 
Figure 20: Hypothetical role of lipids on chromatin. .................................................................... 69 

Figure 21: Phase separation and its physical states. ..................................................................... 75 
Figure 22: Visualization chamber for droplet assay. .................................................................... 79 

Figure 23: Droplet assays.............................................................................................................. 80 

Figure 24: Effects overtime of phase separation induced by H4pep. ........................................... 81 

Figure 25: Salt-resistance assay of H4pep whit DNA. ................................................................. 82 

 

 

  



 

 

 

LIST OF TABLES 

Table 1: List of all NBPeps used in this work. ............................................................................. 30 

Table 2: Fish Embryo Toxicity assay. .......................................................................................... 48 
 

  



 

 

 

 

LIST OF ABBREVIATIONS 

ALS Amyotrophic Lateral Sclerosis 

ASH2L  Histone lysine methyltransferase complex subunit 

ATP Adenosine Triphosphate 

AUC Analytical Ultra Centrifugation 

CCAN Constitutive Centromere Associated Network 

CD Circular Dichroism 

CENP-A Centromere protein A 

CENP-C Centromere protein C 

CENP-N Centromere Protein N  

Chd1 Chromodomain-helicase-DNA-binding protein 1 

cLD cytoplasmatic Lipids Droplets 

COMPASS Complex of Proteins Associated with Set1 

Cryo-EM Cryogenic Electron Microscopy 

DIC Differential interference contrast 

DNA Deoxyribonucleic acid 

DMEM Dulbecco's Modified Eagle Medium 

DNMT DNA methyltransferase 

Dot1L Disruptor of Telomeric Silencing 1-Like 

DUB Deubiquitinating enzymes 

EDTA Ethylenediaminetetraacetic acid 

EPA Eicosapentaenoic Acid 

FACT Facilitates Chromatin Transcription 

FET Fish Embryo Toxicity 

FTD Frontotemporal Dementia 

GCN4 General control protein GCN4 

GMIP1 Genetic Modified Inducible Peptide 1 

HAT Histone Acetyl Transferase 

HDAC Histone deacetylases 

HDACi Histone deacetylases inhibitor 

HGPS Hutchison-Gilford Progeria Syndrome  

HMGN2 High Mobility Group Nucleosomal 2  

HO Histone Octamers 

HP1α  Heterochromatin protein 1 alpha 

HSQC Heteronuclear Single Quantum Coherence 

IDRs Intrinsically disordered regions 

IL-33 Interleukin-33  



 

 

 

iMEF immortalized murine embryonic fibroblasts 

INO80 Inositol-requiring 80 

ISWI Imitation SWI 

KSHV Kaposi's Sarcoma Herpesvirus  

LANA Latency Associated Nuclear Antigen  

LC-MS Liquid Chromatography Mass Spectotmetry 

LEDGF Lens epithelium–derived growth factor p75 splice variant 

LLPS Liquid Liquid Phase Separation 

MBM Minimum Binding Motif 

MLL1 Mixed linage leukemia 

MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

NBP Nucleosome Binding Proteins 

NBPeps Nucleosome Binding Peptides 

nLD nuclear Lipids Droplets 

NMR Nuclear Magnetic Resonance 

NOE Nuclear Overhauser Effect 

OTC4 Octamer-binding transcription factor 4 

PEG Polyethylene Glycol 

PPAR-γ  Peroxisome proliferator-activated receptor gamma 

PTM Post Translational Modification 

RbBP5 Retinoblastoma-binding protein 5 

RCC1 Regulator of Chromosome Condensation 1  

RNA Ribonucleic acid 

RNAPII  RNA polymerase II 

RSC Remodeling the Structure of Chromatin)  

SAGA Spt-Ada-Gcn5 acetyltransferase 

SAXS Small Angle X-ray Scattering 

Set2 SET domain-containing protein 2  

SG Stress Granules 

SIR 3  Silent Information Regulator 3  

Snf2 Transcription regulatory protein SNF2 

Snf5 SWI/SNF chromatin-remodeling complex subunit SNF5 

SOX11 SRY-box transcription factor 11 

SOX2 Sex determining region Y 

SWI/SNF Switch/Sucrose Non-Fermentable 

TAMRA 5-(and-6)-Carboxytetramethylrhodamine 

TBE Tris Boric Acid EDTA 

  



18 

 

 

 

CHAPTER I  

1. GENERAL INTRODUCTION   

   

 Even before the discovery of the DNA in 1868 (reviewed in (Dahm 2005) and further with 

its structure determination by Watson and Crick in 1953 (Watson and Crick 1953), the life code 

was of great interest for scientists, to the point today several fields of science are dedicated to 

understanding it, making a crucial knowledge field on modern life. Consequential progress has 

been made and our understanding of how the DNA works inside a cell has improved significantly. 

For instance, it is known that in eukaryotic cells, the DNA is tightly packed inside the nucleus, and 

this packing forms a hierarchical structure that is finely regulated. 

  

1.1. The nucleosome and the chromatin 

 The nucleosome is the first structure in the hierarchy that organizes the DNA inside the 

cell nucleus. It is composed of DNA and a disk-shaped octamer of proteins known as histones 

(H2A, H2A, H3, and H4), that works as a scaffold for the DNA to wrap around making 1.7 

turns, as seen in Figure 1 (Luger, Mader et al. 1997).  

 

             

Figure 1: Side and front view of the first high-resolution crystal structure of the nucleosome. 
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Figure 1: Side and front view of the first high-resolution crystal structure of the nucleosome. 

In brown and turquoise, 146 bp of DNA wrapping around the octamer of canonical histones; 

H2A in yellow; H2B in red; H3 in blue and H4 in green. Adapted from (Luger, Mader et al. 

1997) 

 

 This unit is repeated several times, connected by linker DNA, and forming the second 

hierarchical structure of DNA packing in the nucleus, the chromatin (Figure 2). This structure can 

assume different conformations, the first is said to be the beads-on-a-string, or euchromatin. 

Internucleosomal interactions can occur creating the compacted chromatin, or heterochromatin, 

also known as the 30 nm fiber. These interactions induce more compacted states going through 

chromonema, chromatid and finally, during mitosis the chromatin can compact even further 

forming chromosomes (reviewed in (Bickmore and van Steensel 2013) (Woodcock 2006). 

 The compaction and relaxation of chromatin are vital for the regulation of a myriad of 

cellular processes, given that when the chromatin is compacted, the access of the basal 

transcriptional machinery is blocked, silencing gene expression; when is relaxed, DNA is exposed, 

allowing the basal transcriptional machinery to interact with the genetic material. For these reasons 

the chromatin is considered to be the first major transcriptional barrier (Bintu, Ishibashi et al. 

2012). 
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Figure 2: Chromatin compaction schematics 

 Figure 2: Chromatin compaction schematics. Going from free DNA through the mitotic 

chromosome and their respective sizes in thickness. Adapted from (Ou, Phan et al. 2017) 

 

 

1.2. Chromatin Dynamics 

 The compaction of chromatin, is a major component for gene expression regulation, thus 

there are a plethora of manners that it can be regulated. The most well-characterized aspect of the 

compaction and relaxation phenomenon is the histone H4 tail interaction, in this case, 

internucleosomal interactions can occur, mediated by the N-terminus region of the H4 histone that 

binds to an acidic region of the neighboring nucleosome, known as acidic patch (Luger, Mader et 

al. 1997). The histone H4 tail was confirmed by Dorigo et al. to be the only histone tail to be 

necessary to induce compaction in the chromatin (Dorigo, Schalch et al. 2003). But this interaction 

can be modified by Post Translational Modifications (PTMs), that are mediated by enzymes such 

as Histone Acetyl Transferase (HAT), which deposits an acetyl group in the lysine 16 of the H4 

histone, neutralizing the net charge of this amino acid, thus preventing the interaction with the 

acidic patch of the neighbor nucleosome, hence inducing the relaxed state in the chromatin. The 
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enzyme Histone Deacetylase (HDAC) can undo this process, promoting the compaction of 

chromatin (Marmorstein and Roth 2001). Furthermore, HDAC inhibitors (HDACi) are a class of 

drugs, that are used to treat a myriad of diseases, from neurological disorders, such as T-cell 

lymphoma, multiple myeloma, epilepsy, bipolar disorders and migraine (Eckschlager, Plch et al. 

2017), and recently has been proposed as a potential treatment for the COVID-19 infection 

(Gordon, Jang et al. 2020). 

 Another factors that induce chromatin compaction is the presence of mono or divalent 

cations. Using AUC (Analytical Ultra Centrifugation) technique, Korolev and collaborators 

showed that the higher the cation charge, fewer ions were necessary to induce condensation of the 

chromatin, with the best being Mg 2+. This happens due to neutralization of residual charges in the 

DNA, facilitating the internucleosomal interaction (Lundberg, Berezhnoy et al. 2010).  

 The histone H1 is a non-canonical histone that is not part of the histone octamer and binds 

to the chromatin. It was thought to bind to the dyad region of the nucleosome (entry and exit points 

of the DNA in the nucleosome), acting as a clamp, inducing chromatin compaction (Robinson, An 

et al. 2008, Song, Chen et al. 2014). However, it was revealed a new mechanism of compaction 

mediated by this histone. Using SAXS (Small Angle X-ray Scattering) and fluorescent microscopy 

techniques, it was showed that this protein induces a phase separation when bounded to the 

chromatin, potentially shielding the separated phase from other molecules and inducing 

compaction, as seen in Figure 3 (Larson, Elnatan et al. 2017, Strom, Emelyanov et al. 2017). 

 

 

Figure 3: Chromatin phase separation and compaction 

Figure 3: Chromatin phase separation and compaction. Histone HP1a recognize PTMs in histones 

and binds inducing a compacted and phase separation in the chromatin, preventing other molecules 
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to interact with it. Adapted from (Strom, Emelyanov et al. 2017). 

 

Further studies in the role of phase separation and chromatin dynamics revealed that in 

fact, reconstituted chromatin undergo histone tail-driven liquid-liquid phase separation, also that 

linker DNA lengths and histone H1 play an important role in the formation of droplets, impacting 

over some relevant characteristics. Furthermore, it was revealed that acetylation by p300, 

antagonizes the formation of phase separation, indeed, in the presence of highly acetylated 

chromatin, the formation of a different phase-separated environment that is immiscible with the 

non-acetylated chromatin happens, Figure 4 shows a model of how chromatin dynamics are 

dictated by phase separation. These recent studies are revealing a whole new mechanics for 

chromatin regulation that are highly dependent on the phase separation phenomenon. 

   

 

Figure 4: Chromatin regulation by phase separation. 

Figure 4: Chromatin regulation by phase separation. A model for chromatin dynamics regulated 

by distinct membranelles subdomains. Adapted from (Gibson, Doolittle et al. 2019) 

 

2. PART I - NBPeps 

2.1. Nucleosome Binding Proteins  

 One of the main forms of chromatin remodeling and regulation is mediated by NBPs 

(Nucleosome Binding Proteins). Several of these proteins have been identified, some with the 

detailed mechanism of action and atomic levels resolution of interaction with the nucleosome 

surface, here I summarized some NBPeps that have been identified interacting with the 

nucleosome, I briefly describe how it interacts, and what function of the NBPs over the chromatin. 

 In 2010, Song Tan and collaborators obtained the first structure of a full length protein 

bounded to the nucleosome solved by x-ray cystography. They were able to obtain the protein 
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RCC1 (Regulator of Chromosome Condensation 1) with the structure with the resolution at 2.9 Å, 

providing an atomic overview of how this interaction happens. They observed that the RCC1 

interacts in two distinct regions of the nucleosome, one in the acidic patch located in the histones 

H2A and H2B and other making contact with the nucleosomal DNA (Makde, England et al. 2010). 

 Four years later the same group determined the structure of the domain responsible for 

ubiquitination in PRC1 (Polycomb Repressive Complex 1). They showed that this protein binds 

mostly to the nucleosomal DNA and a small negative zone, near the acidic patch (McGinty, 

Henrici et al. 2014). 

 Another major contribution to the field was the structure of the peptide Latency Associated 

Nuclear Antigen (LANA) present in infections by Kaposi's Sarcoma Herpesvirus (KSHV). This 

peptide is 23 amino acids long and is associated with the latency period of the disease (Ballestas, 

Chatis et al. 1999). At the resolution of 2.9 Å it was possible to visualize that this peptide binds to 

the acidic patch of the nucleosome in a hairpin manner (Barbera, Chodaparambil et al. 2006). 

 To acquire good structural data in large macromolecular structures like the nucleosome, is 

always challenging. Frequently, large molecules cannot be crystallized or analyzed by NMR 

(Nuclear Magnetic Resonance) (Nogales and Scheres 2015). In 1997 the first protein structure was 

solved using Cryo-EM, which opened a new era for the resolution of large macromolecular 

complexes (Böttcher, Wynne et al. 1997). Kurumizaka and collaborators accomplished the 

astounding feature of determining how RNAPII (RNA polymerase II) interacts with the 

nucleosome and even how it can surpass the complex, using Cryo-EM (Kujirai, Ehara et al. 2018). 

They showed that RNAPII pause at specific regions of the DNA and that RNAPII gradually tears 

DNA from the histone surface while preserving the histone octamer. 

An important discovery about how viruses can integrate their genome into the host was 

elucidated by Costa and colleagues, they used foamy virus intasome engaged with a nucleosome, 

analysis with Cryo-EM and Förster resonance energy transfer measurements to show that the 

retroviral integrase twist and slide nucleosomal DNA by approximately two base pairs, lifting from 

histones H2A/H2B to allow engage with the intasome (Wilson, Renault et al. 2019). 

In 2011 a peptide from the SIR3 (Silent Information Regulator 3 ) was co-crystalized with 

the nucleosome, and differently from all others proteins or peptides that have been observed to that 

date, did not interact with the acidic patch region or surrounding residues, but mostly with histone 

H3 (Armache, Garlick et al. 2011). 
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 The SAGA (Spt-Ada-Gcn5 acetyltransferase) contains a DUB (Deubiquitinating enzymes)  

module, it is responsible for the regulation and deubequitintion of H2B, involved in a myriad of 

gene regulation processes (Bonnet, Devys et al. 2014). In 2016 Wolberger and collaborators, using 

X-ray crystallography, revealed the mode of interaction of this complex with the nucleosome. They 

showed that interactions occur mostly at the acidic patch and are involved in the different stages 

of histones disassembling (Morgan, Haj-Yahya et al. 2016). 

 The protein CENP-C (Centromere protein C) has its function in the assembly of 

kinetochore proteins, mitosis, and the segregation of chromosomes. In 2013 the mode of 

interaction between a peptide from this protein and the nucleosome was determined using Nuclear 

Magnetic Resonance (NMR) and X-ray crystallography. They observed that the CENP-C peptide 

interacts with the N-terminus of a H3 histone variant, known as CENP-A (Centromere protein A) 

that further binds to the acidic patch (Kato, Jiang et al. 2013). More insights about how kinetochore 

works was revealed by Bradford and collaborators, they showed that nucleosome containing 

CENP-A bound to CCAN (Constitutive Centromere Associated Network) from Saccharomyces 

cerevisiae, indicating the mechanism of CENP-A nucleosome recognition by CCAN and its role 

as a platform for assembly of the outer kinetochore to link centromeres in the mitotic spindle 

formation during chromosome segregation (Yan, Yang et al. 2019). Using the same technique, 

Musacchio and collaborators investigated the mode of interaction of the protein Centromere 

Protein N (CENP-N) with the non-canonical histone variant CENP-A, previously mentioned. They 

revealed that CENP-N interacts largely with 15bp of nucleosomal DNA, preventing further NBPs 

to bind to the region and also a new binding motif identified in CENP-A (Pentakota, Zhou et al. 

2017).  

 In a very elegant work, Ingen and collaborators determined the binding epitopes of a 

peptide from the High Mobility Group Nucleosomal 2 (HMGN2) using methyl-based NMR 

analysis. They showed that the interaction was similar to the RCC1, with one binding site 

interacting with the acidic patch, and other to the DNA (Kato, van Ingen et al. 2011). 

 The Interleukin-33 (IL-33) is a protein that can act as a cytokine, when in the extracellular 

environment, and as a nuclear receptor when intracellular (Pichery, Mirey et al. 2012, Fu, Hung et 

al. 2016). A peptide from this protein was also observed by NMR to bind to the nucleosome in a 

similar manner to LANA, making contacts exclusively with the acidic patch (Roussel, Erard et al. 

2008). 
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 The LEDGF (Lens epithelium–derived growth factor p75 splice variant) is a NBP with 

antiapoptotic properties known to direct human immunodeficiency virus into active transcription 

units (Daugaard, Baude et al. 2012). In 2020, the domains PWWP (proline, tryptophan, tryptophan, 

proline) was obtained with  methylated nucleosome, showing the cooperative interaction between 

the multivalent binding of the reader domains to the methylated histone tail from H3 and to both 

gyres of nucleosomal DNA (Wang, Farnung et al. 2020). 

 There are several histone chaperons with important function into chromatin remodeling 

and nucleosome assembly/disassembly, FACT (Facilitates Chromatin Transcription) is one of 

these chaperones, playing important roles during gene transcription, DNA replication and, DNA 

repair. In 2019, Luger and collaborators, using Cryo-EM and biochemical assays revealed the 

mechanism by which FACT operates, showing that FACT engages with nucleosomal DNA and 

several histones with PTMs, demonstrating that a complex of FACT-H2A/H2B is formed, which 

can interact with H3/H4, allowing the assembly/disassembly process (Liu, Zhou et al. 2020). 

 Several NBPs require specifics PTMs to properly interacts with the nucleosome, the protein 

Dot1L (Disruptor of Telomeric Silencing 1-Like) requires histone a monoubiquitination in the 

H2B lysine 120 (H2BK120Ub) to be able to methylate the lysine 79 of histone H3 (H3K79m), 

showing a histone crosstalk phenomenon. Using cryo-EM, the group led by Valencia-Sánchez 

provided structural and functional data as well as the correlation between aberrant H3K79m and 

leukemia, suggesting the modulation of Dot1L as a therapeutic target for this disease (Valencia-

Sanchez, De Ioannes et al. 2019). 

Mutations in the Set2 (SET domain-containing protein 2 ) enzymes are related to cancer 

progression, these methyltransferase enzymes, recognizes H3K36me and H2B-Ub nucleosome, in 

2019 their mode of interaction was determined by Cryo-EM, showing mostly contacts with histone 

H3, H2A C-terminal and unwrapped DNA, Intriguingly it was revealed that the interfaces that can 

be targeted with small molecules for the future development of cancer therapies (Bilokapic and 

Halic 2019). 

Acting in the same region, the COMPASS (Complex of Proteins Associated with Set1) 

complex, is formed by six proteins with important methyltransferase activity, in 2019, a group led 

by Wolberg and colleagues solved the structure of COMPASS bound to ubiquitinated nucleosome 

using Cryo-EM, their work revealed a long-standing mystery of how H2B-Ub is recognized by 

COMPASS and provided the first trans-nucleosome histone reveled crosstalk mechanism 
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(Worden, Zhang et al. 2020).  

Still regarding the roles of NBPs in methylation of histones, the structure of the complex 

MLL1 (Mixed linage leukemia) with the nucleosome was obtained by Cryo-EM, showing that the 

subunit RbBP5 (Retinoblastoma-binding protein 5) and ASH2L (histone lysine methyltransferase 

complex subunit) make large interactions with the nucleosome dyad, nucleosomal DNA and the 

N-terminus tail from histone H4, shedding light on how the MLL1 complex engages chromatin 

and the tri-methylation activity of the complex (Park, Ayoub et al. 2019). 

 ATP dependent remodeling of the chromatin is made by a diverse family of proteins that 

have an ATP-ase domain. Using Cryo-EM, the interaction motifs of several of these proteins have 

been identified. Chd1 (Chromodomain-helicase-DNA-binding protein 1) is part of this important 

family of proteins and works as an organizing nucleosome over codding regions (Ocampo, Chereji 

et al. 2016). The binding mode of this protein to the nucleosome was shown to be mostly with 

linker DNA and histone H3, induce unraveling of DNA and reorientation of H3 tail 

(Sundaramoorthy, Hughes et al. 2018). 

 The INO80 (inositol-requiring 80), a chromatin remodeler, that is ATP  dependent, is 

composed by multi-subunits. It was previously thought the H4 tail played a major role in regulating 

some of its units (van Attikum and Gasser 2005). However, Zhang and collaborators, using Cryo-

EM, showed a new mode of binding involving nucleosomal DNA and H3 as well as the fact that 

the H3 tail instead is responsible for this regulation (Ayala, Willhoft et al. 2018).  

 The SWI/SNF (Switch/Sucrose Non-Fermentable) is a chromatin remodeling complex and 

has important roles in transcription and DNA-damage repairs, this complex can hydrolase ATP 

and evict or slide histone octamers, creating exposed DNA regions for other proteins, such as 

transcriptional factors. In 2020 He and collaborators, using Cryo-EM, were able to obtain near-

atomic resolution of this complex from Saccharomyces cerevisiae bound to the nucleosome, giving 

valuable insights about how this complex works. They showed the protein Snf5 (SWI/SNF 

chromatin-remodeling complex subunit SNF5) interacts with the acidic patch, functioning as an 

anchor for the whole complex during active DNA translocation (Han, Reyes et al. 2020). 

Furthermore, domains of this complex, such as Snf2 (Transcription regulatory protein SNF2) and 

ISWI (imitation SWI) where elucidated a year before the whole complex resolution, showing 

interactions with nucleosomal DNA and strikingly similar binding epitopes, suggesting a 

conserved mechanism for chromatin remodeling (Li, Xia et al. 2019, Yan, Wu et al. 2019). In a 
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similar manner, the RSC (Remodeling the Structure of Chromatin) from e Saccharomyces 

cerevisiae, which is part of the SWI/SNF family was elucidated by Cryo-EM in 2019 by Nogales 

and collaborators, their findings shed light on the structural insights into the conserved assembly 

process for members of SWI/SNF family of remodelers, showing how RSC selects, engages and 

remodel nucleosomes (Patel, Moore et al. 2019). 

 Recently the structure of two pioneers transcriptional factors SOX2 (Sex determining 

region Y) and SOX11 (SRY-box transcription factor 11) was solved using Cryo-EM, Cramer and 

collaborators showed that the transcriptional factors can bind and distort superhelical DNA at the 

position +2 , facilitating the detachment of terminal nucleosomal DNA from the histone octamer. 

Furthermore, upon SOX-factor binding, can lead to a repositioning of the N-terminal tail from 

histone H4, including the lysine 16, which has an important role in the regulation of chromatin 

compaction via the interaction with the acidic patch from the neighbor nucleosome, suggesting 

that SOX2 and SOX11 prevent the formation of higher-order chromatin, thereby facilitating 

nucleosome remodeling and subsequent transcription (Dodonova, Zhu et al. 2020). 

 With the exception of the ATP dependent remodeling family of proteins identified 

interacting with the nucleosome, RNAPII, and the SOX family, the majority of NBPs focus on the 

acidic patch as their binding site, as seen in Figure 5.  
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Figure 5: Acidic patch is a docking hub for NBPs. 

  

Figure 5: Acidic patch is a docking hub for NBPs.  Overall charge view of the nucleosome, in 

blue positive and red negative. The acidic patch is highlighted and NBPs are overlaid. Adapted 

from (Cabral, Machado et al. 2016) 

  

2.2. The acidic patch and NBPeps 

 As addressed in the previous section, the acidic patch can work as a docking hub for several 

NBPs, thus having an important role in gene regulation. This idiosyncratic region in the 

nucleosome surface is composed of 8 acidic amino acids between the histones H2A and H2B (E56, 

E61, E64, D90, E91, E92 of H2A and E102, E110 of H2B). 

 In 2014, in an attempt to displace LANA from the acidic patch and treat the latency aspect 

associated with KSVH, a group led by Keye, screened over 350,000 small molecules and all failed 

to do it. The authors concluded with the suggestion that more complex molecules, such as peptides, 
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might be a better option to displace the LANA from the nucleosome (Beauchemin, Moerke et al. 

2014). 

 Due to the regulatory nature of the acidic patch, and the findings of Beachemin et al., Dr. 

Santos suggested that the nucleosome surface, and in specific the acidic patch, could be a potential 

pharmacological target using peptides for it (Silva, de Oliveira et al. 2015). In Dr. Santos’s paper, 

it is theorized that the binding of Nucleosome Binding Peptides (NBPeps) can induce specific 

outcomes in the chromatin and modulate cell function, as seen in Figure 6. In a similar manner of 

other epidrugs, NBPeps would modulate the chromatin architecture in a non-specific way. 

However, in this case changes would be direct to the chromatin, and not mediating chromatin 

remodeler enzymes. Furthermore, occupying the binding site for several NBPs can prevent the 

binding of several of these proteins, thus modulating chromatin architecture. 

 

 

Figure 6: Kinetics of drug receptor for the nucleosome. 

Figure 6: Kinetics of drug receptor for the nucleosome. The nucleosome and LANA peptide from 

Protein Data Bank (PDB) 1ZLA) are represented. H3 in green; H4 in blue; H2A in yellow; H2B 

in wheat; DNA in gray; acidic patch in red. The dynamic equilibrium between the nucleosome and 

NBPep, resulting in two states, bound or unbound to the nucleosome. Adapted from (Silva, de 

Oliveira et al. 2015). 

 

 In a novel work led by Dr. Luger, they developed binuclear ruthenium compounds that 

bind to the acidic patch, inducing aberrant chromatin condensation and alterations in the cell’s 

cycle, with potential applications in drug development and as tools for chromatin research (Davey, 

Adhireksan et al. 2017). It demonstrated that chromatin can in fact be modulated by exogenous 
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molecules. 

 For the development of this work, four NBPeps were used, with GMIP1(Genetic Modified 

Inducible Peptide 1) being designed in silico and LANA, HMGN2pep, and H4pep based on the 

MBM (Minimum Binding Motif ) of these proteins that were already known to bind to the 

nucleosome, generating new peptides. Table 1 shows the sequence and mode of creation of these 

peptides. 

 

Table 1: List of all NBPeps used in this work, the amino acid sequence, and method of resolution 

alone and in complex with the nucleosome. 

 

Table 1: List of all NBPeps used in this work. 

NBPep Sequence Atomic Coordinates 

Single  Complex 

H4pep RGKGGKGLGKGGAKRHRKVLR online server (I-

tasser) based on 

(Yang and Arya 

2011) 

Molecular 

Docking based 

on (Yang and 

Arya 2011) 

HMGN2pep DEPQRRSARLSAKPAPPKPEPKPK

K 

NMR (Kato, 

van Ingen et al. 

2011) 

NMR (Kato, 

van Ingen et al. 

2011) 

LANA PGMRLRSGRSTGAP X-ray (PDB 

code 1ZLA 

(Barbera, 

Chodaparambil 

et al. 2006)) 

X-ray 

cristallography 

(PDB code 

1ZLA (Barbera, 

Chodaparambil 

et al. 2006) 

GMIP1 RTIIAAALSERSISGEGRR Kvfinder 

(Makde, 

England et al. 

2010) (Oliveira, 

Molecular 

Docking 
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Ferraz et al. 

2014) 

 

 The design of GMIP1 was based on the mode of interaction of RCC1 using the software 

KVFinder (Oliveira, Ferraz et al. 2014). It was simulated the mode of interaction of four proteins, 

RCC1 having the best fit (Teles, Fernandes et al. 2020). The binding mode of this protein, as 

previously stated, consists of one-part binding to the acidic patch and other to the DNA. The MBM 

of these two regions were connected by a three-alanine bridge, as seen in Figure 7. 

 

 

Figure 7: Mode of binding of RCC1 and GMIP1 design. 

Figure 7: Mode of binding of RCC1 and GMIP1 design. The MBM of RCC1 with the two regions 

of interaction with the nucleosome highlighted and the triple alanine bridge region connecting the 

two distinct regions. Images extracted and modeled using PDB (3MVD) from (Makde, England et 

al. 2010) and PyMol software. 

 

 

 In this work, I performed in vitro, cell-based assays, and in vivo assays in order to very if 

NBPeps (Nucleosome Binding Peptides) designed by Dr. Santos’ group have therapeutic potential 
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purposes and if targeting the nucleosome in order to module cell phenotypes is a feasible option 

to module cell phsyiology. The atomistic characterization of how NBPeps would affect the 

nucleosome was done by Fernandes. V, using in silico strategies at LBTC.  
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3. AIMS PART I (NBPeps) 

 

3.1. PRIMARY AIM 

 This work’s goal is to understand how NBPeps that present distinct nucleosome binding 

sites affect the nucleosome and chromatin structure, thereby modulating chromatin status and 

influencing phenotypic outcomes. 

 

3.2. SECONDARY AIMS 

• Verify NBPeps binding to the nucleosome in vitro; 

• Verify cellular uptake of NBPeps; 

• Verify the toxicity of NBPeps in different cell lineages; 

• Verify the toxicity of NBPeps in zebrafish embryos; 

• Verify the distribution of NBPeps in tissues of zebrafish larvae; 

• Verify if NBPeps can reach the nucleus of cells in vivo.  

 

  

 

 

 

 

 

 

 

 

  



34 

 

 

4. METHODS 

 

NBPeps: All Peptides were bought from Biomatik with 95%> purity and diluted in MiliQ H2O. 

Fluorescent peptides were bought with TAMRA -(559/583nm) in the N-terminus. The 

concentration was determined by spectrophotometric method as described in (Murphy and Kies 

1960). All peptides are described in Table 1. 

 

In vitro nucleosome reconstitution: Histone octamers (HO) were purified from chicken 

erythrocyte nuclei as described in Huynh, V. A. T., P. J. J. Robinson, and D. Rhodes, 2005. 601 

DNA Widom with 167 base pairs (bp) was used to reconstitute mononucleosomes, using the slow 

salt dialysis method as described in (Huynh, Robinson et al. 2005).  

The analyses of the reconstitution were verified by electrophoresis in native bis-acrylamide gels 

(6%). 

 

Mononucleosome precipitation: Freshly reconstituted mononucleosomes (115nM 

mononucleosome, Tris 10mM pH 7.4, EDTA 1.5mM NaCl 15mM) were incubated with the 

specified concentration of NBPeps for 30 minutes at room temperature. The samples were 

centrifuged (Sigma centrifuge-2K15) at 15493 x g for 20 minutes at 25 °C. The supernatant was 

transferred to another microcentrifuge tube and the pellet was resuspended in the same buffer as 

the mononucleosome. The samples were analyzed by electrophoresis in native 6% bis-acrylamide 

gel carried out with 0.5× TBE buffer at 15 mA. Densitometry was performed using ImageJ 

(National Institute of Health, Bethesda, MD, USA) version 1.49.  

DNA binding assay: Widom 601 DNA fragments containing 167bp (30nM DNA, 10mM Tris pH 

7.4, 135mM NaCl) were incubated with specified concentrations of GMIP1 for 2 hours at 37 ◦C 

and 100 RPM. The analysis was done in 0.8% agarose gel in TBE 0.5X. Samples were loaded with 

30% glycerol, to avoid interaction caused by phenol blue and GMIP1. 

Nucleosome binding assay: Freshly reconstituted mononucleosomes (115nM mononucleosome, 

Tris 10mM pH 7.4, EDTA 1.5mM NaCl 15mM) were incubated with the specified concentration 

of fluorescent NBPeps for 120 minutes at room temperature. Then samples were analyzed by 

electrophoresis in native 6% bis-acrylamide gel carried out with 0.5× TBE buffer at 15 mA. Gels 
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were analyzed using Amersham Imager 600 (GE) with the RGB laser kit detection for 520nm, to 

visualize the peptide, following incubation in ethidium bromide bath and analyzed with UV for 

ethidium bromide detection. For Kd determination, band densitometry was performed in the gel 

reveled with 520nm laser, using ImageJ (National Institute of Health, Bethesda, MD, USA) version 

1.49, followed by analysis in Prism 6 Graphpad software using Binding - saturation binding to 

total and non-specific template. 

 

MTT: For MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays, 8000 

Hela cells or ccd10595k cells were plated in 96-well culture plates and maintained at 37◦C and 5% 

CO2 in DMEM medium with 10% fetal bovine serum, penicillin (100U/mL) and streptomycin 

(100ug/mL) for 24 hours. Next, wells were washed 3 times with PBS 1X and filled with 100uL of 

DMEM medium as described above containing the specified amount of NBPeps and incubated for 

24 hours in the same conditions. The MTT at 5mg/mL was added to the wells (10uL) and incubated 

for 4 hours at 37◦C and 5% CO2. The wells were drained, and the formazan crystals were 

solubilized in 100uL of acidic isopropanol solution (52uL of HCl 37% to 12 mL of isopropanol) 

and agitated for 30 minutes at room temperature. Absorbance at 570nm was determined with a 

plate spectrophotometer (DTX 800 Multimode Detector - Beckman Coulter) at 570 nm.  

 

Flow cytometry: 70.000 Hela cells were plated in 12-wells culture plates for 16 hours and 

maintained at 37◦C and 5% CO2 in DMEM medium with 10% fetal bovine serum, penicillin 

(100U/mL) and streptomycin (100ug/mL). Prior to treatment with NBPeps, cells were incubated 

for 1 hour at 37 or 4 ◦C. Next, cells were washed with 1X PBS and filled with DMEM medium 

with the specified amount of fluorescent NBPeps and incubated at 37 or 4 ◦C for 1 or 3 hours. 

Wells were washed three times with ice cold 1X PBS and filled with 500uL 1X PBS, cells were 

harvested with a cell scraper and analyzed by flow cytometry on FACSCalibur (BD biosciences). 

Hela cells were gated to isolate the main population of living cells from cell debris. Data analysis 

was done using flowjo 8.7 software.  

 

Zebrafish husbandry and embryo collection: Zebrafish (Danio rerio) were raised in an aquatic 

facility (ZebTec - Tecniplast, Italy) with a photoperiod cycle of 12:12 h (light:dark) at the 

University of Brasilia (Brazil). The water parameters were: temperature was maintained at 27.0 ± 
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1 °C, conductivity at 650 ± 100 μS/cm, pH at 7.0 ± 0.5 and dissolved oxygen≥95% 

saturation. Zebrafish embryos were collected immediately after natural mating, rinsed in water, 

and checked under a stereomicroscope (Stereoscopic Zoom Microscope – Stemi 2000, Zeiss, 

Germany). The unfertilized eggs and those showing cleavage irregularities or injuries were 

discarded (OECD 2013). 

 

Fish embryo toxicity (FET): FET was adapted from Morash et al (Morash, Douglas et al. 2011). 

Briefly, Zebrafish embryos at 4, 28 and 52 hours post fertilization (hpf) were used to evaluate the 

toxicity of NBPeps in 96-well plates. Each peptide was tested at 0.1, 1, 10 and 100uM in 100uL 

of water from the aquarium system; pH in all conditions was tested using pH strips (92120 – 

MACHEREY-NAGEL). Embryos were stored at 27 ◦C with 14 hours light 10 hours dark cycle 

and evaluated Stemi 508 (Carl Zeiss) microscope with 1 and 24 hours of treatment. Embryos were 

assessed for pigmentation, development, hatching and lethality. 10 embryos were used for each 

condition, if the control group showed any alteration, the plate was discarded, alterations >10% 

were considered significant and were documented using Axiocam Erc 5s (Carl Zeiss) and ZEN 

software (Carl Zeiss). 

 

Fluorescence fish embryo: Zebrafish larvae with 80 hpf were incubated with fluorescent NBPeps 

with specified concentration for 3 hours in 100uL in a 96-plate, larvae were washed 3 times in 

100mL to remove the excess of NBPep, imaging was done using Axioskop 2 (Carl Zeiss) with 

HBO 100 lamps, Axiocam Erc 5s (Carl Zeiss) and ZEN software (Carl Zeiss) with appropriate 

laser filter for TAMRA (filter 4).  

 

Fluorescence blood smear: Adults Zebrafish at 2 years old were injected in the abdomen with 

50uL, 1mM of fluorescent NBPeps, and kept protected from light at 27 ◦C for 18 hours. Blood was 

extracted from the fins using a pipet tip and heparin 250 IU to make the blood smear in a 

microscope slide. Images were acquired with Axioskop 2 (Carl Zeiss) with HBO 100 lamps, 

Axiocam Erc 5s (Carl Zeiss) and ZEN software (Carl Zeiss) with appropriate laser filter for 

TAMRA (filter 4).  
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NMR: All NMR experiments were carried out on a Bruker advance III HD 600MHz. NMR spectra 

were processed in Bruker TopSpin (Delaglio, Grzesiek et al. 1995) and analyzed using Sparky 

(Lee, Tonelli et al. 2015). Dimer samples of [C13,N15]H2A-H2B at 100uM in 5%D2O/95%H2O; 

25mM NaPi + 100mM NaCl pH6.2 + 0,01% NaN3 + 1mM 2-Mercaptoethano + PIC (complete 

EDTA-free Protease Inhibitor Cocktail (Roche)) were titrated against GMIP1 using 600MHz 

Lamour frequency at 308K. HSQC spectra were measured for free [C13,N15]H2A-H2B and after 

the addition of GMIP1 at 308K. Titration consisting of 4 points in the range of 1:4.3 molar ratio 

([C13,N15]H2A-H2B:GMIP1) was performed. 

 

Circular dichroism: Measurement of secondary structure of NBPeps was performed in Jasco j-

815 spectropolarimeter in a 0,1cm quartz cuvette in the range of 190-250nm. Samples were diluted 

in MiliQ water in the concentration of 0.125mg/mL for GMIP1, LANA, HMGN2pep and H4pep 

at 0.107mg/mL at 25 ◦C. Data were plotted using BestSel data base (available at: 

http://bestsel.elte.hu/). 
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5. RESULTS AND DISCUSSION (NBPeps) 

 

5.1. NBPeps secondary structure characterization 

 All NBPeps, except for GMIP1, have been well characterized structurally (Luger, Mader 

et al. 1997, Barbera, Chodaparambil et al. 2006, Kato, van Ingen et al. 2011). Despite GMIP1 

being based in the structure of RCC1, the triple alanine bridge connecting the two epitopes created 

a new structure. For this reason, I performed CD (Circular Dichroism) analysis, as seen in Figure 

8. 

                
Figure 8: Circular dichroism of NBPeps for determination of secondary structure. 

 

Figure 8: Circular dichroism of NBPeps for determination of secondary structure. All NBPeps 

show low ellipticity above 210 and negative bands near 195nm, characterizing predominance of 

random coil structure. 

 

 All NBPeps that were developed have no well-defined secondary structure, result which is 

in agreement with NMR experiments based on the absence of medium or long-range NOEs 

(Nuclear Overhauser Effect) and random coil 13C chemical shifts for GMIP1 (unpublished data). 
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5.2. GMIP1 binding to the nucleosome in vitro 

 

 All NBPeps used, with exception of GMIP1, have their mode of interaction with the 

nucleosome surface already established at an atomic level, with two distinct modes of binding, (i), 

LANA and H4pep, that binds exclusively to the acidic patch, and (ii) HMGN2pep and GMIP1 that 

interacts with nucleosomal DNA and the acidic patch as well. To confirm the epitope of GMIP1, 

I performed NRM experiments, using isotope labeled dimers of H2A/H2B from Xenopus Laevis, 

as seen in Figure 9a. the binding of GMIP1 should induce changes in the electromagnetic 

environment of specifics residues in the NRM spectra, causing a shift in the peaks, that was not 

observed in the dimers even in a molar excess of 4.3 times, also GMIP1 interacted with DNA  at 

a Kd of 50μM or weaker, which is probably in the range of non-specific binding of a charged 

peptide to DNA, Figure 9b. 

 

 
Figure 9: NMR: HQSC spectra of [C13,N15]H2A-H2B dimers (black) and with GMIP1 (red). 

Figure 9: NMR: HSQC spectra of [C13,N15]H2A-H2B dimers (black) and with GMIP1 (red). a) 

Nucleosomal DNA binding to GMIP1: b) Titration of GMIP1 on the DNA widom 601 (167 bp) 

analyzed in agarose gel 0,8% in TBE 0.5X. The assay was performed at least 3 times, and the 

representative gel was presented. 
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 We aimed to create a novel NBPep that could bind to and present specificity for the 

nucleosome, with high dependence to DNA, that in future projects could be engineered to 

recognize specific sequences, in a similar manner that was done for transcriptional factors (Desai, 

Rodionov et al. 2009), giving more specificity to NBPeps with multiple contact sites. However, 

the biochemical data shows that GMIP1 has low nucleosome binding affinity. It is important to 

emphasize that all experiments performed were done with the Widom 601 DNA sequence, which 

is an artificial sequence with high specificity to the octamer.  

 

5.3 NBPeps binding to the nucleosome 

 

 Despite most of the NBPeps having its sequences directly derived from NBPs, I wanted to 

evaluate if it would bind to the nucleosome in vitro. In this experiment, I reconstitute nucleosome 

in vitro, with histones from chicken erythrocytes and DNA Widom 601 with 167bp and incubated 

with the Tagged NBPeps, following analysis in polyacrylamide gel, the gel was then revealed at 

510nm so I could visualize the fluorescence from the peptides, the gel was then stained with 

ethidium bromide and revealed, to show nucleosomal DNA, the bands from the NBPep and the 

nucleosome were compared to verify if they were at the same height. Peptides were also titrated 

against a fixed amount of nucleosome, its intensity used to determine the Kd of each NBPep, as 

seen in Figure 10. 
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Figure 10: NBPeps interaction assay. 

Figure 10:  NBPeps interaction assay. a) Nucleosome binding assay with fluorescent NBPeps, 

nucleosome is incubated with LANA at 0, 10, 20, 30, 40, 50 60, 70 80,90 u M, with HMGN2pep 

at 0, 20, 40, 60, 80 u M or with H4pep at 0, 200, 400, 600, 800, 1000, 1200, 1400, 1600 nM. It 

was then analyzed in acrylamide gel, following by detection of the fluorescent NBPep and 

subsequently detection of DNA. b) Densitometry of NBPeps bands Kd is represented by a vertical 

line in the densitometry graphs. These assays were performed at least 3 times, and the 

representative gel was presented. 

 

The NBPeps testes showed a clear band for the peptides at the same height as the 

nucleosome, furthermore, all presented a dose-response behavior, this data suggests that the 

NBPeps are binding to the nucleosome in vitro with a Kd of 0.6, 8 and 35uM for H4pep, LANA 
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and HGMN2pep respectively, GMIP1 induced nucleosome aggregation even at low concentration, 

as seen in Figure 11, which difficulted to determine the binding affinity constant. HMGN2pep 

promoted an electrophoretic mobility shift, suggesting that it is binding at more than one site on 

the nucleosome surface, further investigations will be needed to explore this finding. 

 

                   

Figure 11: GMIP1 binding assay with nucleosome. 

Figure 11: GMIP1 binding assay with nucleosome a) GMIP1 incubated with nucleosome at 0, 50, 

100 and 150uM, gel on the left staining with EtBr, to the right gel visualizing the tagged peptide. 

The assay was performed at least 3 times, and the representative gel was presented. 

 

 

5.4. NBPeps induce precipitation of the nucleosome in vitro 

 In order to observe if the fluorescent tag had the impact of the binding of NBPeps to the 

nucleosome and acquire more information about nucleosome interaction with NBPeps, I 

performed nucleosome precipitation assay. NBPeps were incubated at different concentrations 

with freshly reconstituted nucleosomes and samples were centrifuged. The supernatant was 

transferred to another micro-centrifuge tube, the pellet was resuspended and analyzed in 

polyacrylamide gel, as seen in Figure 12.  
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Figure 12: Nucleosome precipitation assay with NBPeps. 

Figure 12: Nucleosome precipitation assay with NBPeps. Nucleosome without NBPeps stays in 

the supernatant (SN). The addition of 50uM GMIP1, 10uM LANA, 10uM HMGN2pep or 500nM 

H4pep induce precipitation and Pellet (P) formation. Non-centrifuged (NC) samples were used as 

control. Densitometry analysis allows a better quantification, with H4pep having the greatest 

impact. 

 

 It was observed that the nucleosome does not precipitate without NBPeps, although all 

peptides testes induced precipitation at different rates, suggesting binding to the acidic patch and 

charge neutralization (de Frutos, Raspaud et al. 2001). Notable, H4pep induced precipitation at 

500 nM, corroborating to the data from the previous binding assay with fluorescent tagged NBPep. 

 

 

5.5. NBPeps uptake by cells 

 In order to bind to the nucleosome, NBPeps must first penetrate the cell to reach the 

nucleus, one of the issues to use peptides as drugs is that peptides have very low permeability 

(Shaji and Patole 2008), although there is a class of peptide, known as CPP (Cell Penetrating 

Peptides) that can cross the cell wall (Prochiantz 2000). CPPs have an overall positive charge and 
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vary between 5-30 amino acids (Derakhshankhah and Jafari 2018). All NBPeps designed by Dr. 

Santos’ group have these characteristics (see Table 3). Using fluorescent tagged NBPep, I 

performed flow cytometry analysis in order to quantify and analyze if NBPeps can penetrate cells, 

and if this is done by passive or active mechanism. See Figure 13. 

 

Figure 13: NBPeps cell penetration. 

Figure 13:  NBPeps cell penetration. Flow cytometry profile of Hela cells uptake of fluorescent 

NBPeps (TAMRA), in histogram view with 1 or 3 hours exposure and at 37 or 4˚C. The assay was 

performed at least 3 times, and the histogram was presented. 

 

 

 All NBPeps tested penetrated Hela cells, with GMIP1 having the highest uptake. Also 

by varying the temperature and incubating the cells at 4˚C the active mechanisms of endocytosis  

in the cell are inhibited (Fernando, Kandel et al. 2010). With the exception of H4pep, all NBPeps 

are uptake by active mechanisms, with H4pep penetrating both actively and passively.  

 

5.6. NBPeps induce cytotoxicity in a specific manner 

 In order to verify the cytotoxicity of NBPeps, I performed MTT (3-(4,5-dimethylthiazol-

2-yl)-2,5-diphenyltetrazolium bromide) analysis in Hela and ccd10595k cells. These two types of 

cells vary significantly, with Hela being an immortalized cell from an aggressive cervical cancer 

and ccd10595k a primary culture from fibroblasts (Rahbari, Sheahan et al. 2009). As seen in Figure 
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14, NBPeps have highly distinct cytotoxicity over these two cell lineages. 

 

Figure 14: Cytotoxicity evaluation of NBPeps. 

Figure 14: Cytotoxicity evaluation of NBPeps. Relative cell viability compared to control over 24 

hours exposure to NBPeps in HeLa and CCD 10595K. HeLa cells showed a greater decreased in 

cell viability than CCD 10595k for every NBPep tested with the exception of GMIP1. Data is 

shown as mean ± SD.  * represent significant statistical difference (one-way ANOVA test) between 

the control and treated groups with  = p < 0.05 and n = 2. 

 

 For Hela cells, all NBPeps, with the exception of GMIP1 and LANA, showed cytotoxic 

effects, with a decrease in cell viability greater than 30%. When tested in ccd10595k there were a 

reduction in cell viability only for H4pep and HGMN2pep, with all other having little to no effect 

over cell viability. Testing NBPeps in other cell types might help elucidate if cytotoxicity is more 

prevalent in oncogenic cell lineages or not. 

 

5.7. NBPeps can penetrate cell nucleus in vivo 

 For NBPeps to bind to the nucleosome in vivo, it is required to penetrate the cell and reach 

the nucleus. I evaluated the capability of NBPeps to reach the nucleus in vivo using Zebrafish 

(Danio rerio) as a model. The cellular uptake analysis described in section 4.4. could lead to false 

positives because the NBPeps could be accumulating in the cell membrane or in the cytoplasm. 

Therefore, I injected adult zebrafish with fluorescent tagged NBPeps, harvested the blood, 

performed a blood smear, and observed under the fluorescent microscope as seen in Figure 15. 
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Figure 15: NBPeps distribution in vivo. 

Figure 15: NBPeps distribution in vivo. Injection of florescent NBPeps accumulate in the nucleus 

erythrocytes of adult zebrafish. At the left panel, HBO field, at right panel, visualization using 520 

nm laser. The assay was performed at least 3 times, and the representative picture was presented. 

 

 

 It is possible to distinguish very clearly the accumulation of NBPeps in the nucleus, 

analyzing the formation of a thin halo (cytoplasmic content) around the concentrated red nucleus. 

This data suggests that NBPeps can reach and accumulate in the nuclear environment in vivo. 

 

5.8. NBPeps penetrated different tissues of the zebrafish larvae 

 NBPeps were designed to bind to every cell with a nucleus, therefore I investigated how 

NBPeps would be distributed over zebrafish larvae, as seen in Figure 16. 
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Figure 16: NBPeps distribution in zebrafish larvae. 

Figure 16: NBPeps distribution in zebrafish larvae with 80hpf. Fluorescent NBPeps incubated for 

3h distributes heterogeneously over zebrafish larvae. At the left panel, HBO field, at right panel, 

visualization using 520 nm laser. The assay was performed at least 3 times, and the representative 

picture was presented. 

 

  

 The accumulation of NBPeps at the zebrafish larvae penetrated different tissues of the 

larvae. This result is in agreement with the cell uptake analysis and the blood smear, suggesting 

that NBPeps can penetrate cells. 

 

5.9. NBPeps induces abnormalities in Zebrafish embryos development 

 To better understand the effects in vivo of NBPeps, I conducted a modified Fish Embryo 

Toxicity (FET) assay (Morash, Douglas et al. 2011). In my analysis, Zebrafish embryos were 

incubated with crescent concentrations of NBPeps reaching up to 100uM for 24 hours, at different 

stages of development, and evaluated for morphological modifications with 1 hour and 24 hours 

of exposure, see Table 2. 
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Table 2: Fish Embryo Toxicity assay. Zebrafish embryos at 4, 28 and 52hpf were exposed to 

NBPeps for 24 hours. The embryos were evaluated for alterations in the development with 1 hour 

and 24 hours of exposure. H4pep was the only NBPep that induce embryos mortality with 1hour 

exposure. 

Table 2: Fish Embryo Toxicity assay. 
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 The outcome of embryo exposure to the NBPeps was highly dependent on the stage of 

development, with the first 28 hours having a higher impact. The hatching rate of zebrafish was 

largely affected by NBPeps, with GMIP1 having the most pronounced effect, GMIP1 also created 

defects in the pigmentation in 26% of the embryos and had no impact over mortality. Intriguingly 

LANA induced delay in the development of 100% on the embryos when they were exposed for 

24h with 4hpf and at later stages of development, however, LANA caused no delay in the hatching 

processes. HMGN2pep affected 16% of the embryos in the development of melanocytes and had 

a low death rate when compared to H4pep, which was the only one that showed acute toxicity ( 

death with 1houre exposure), also inducing 100% mortality with 24hours of expousere for embryos 

with 4hpf. This data suggests that NBPeps overall have little toxicity to this animal model, see 

Figure 17, with increased mortality only at the early stages of development, corroborating the data 

of MTT in ccd10595 cells. 
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Figure 17: Fish Embryo Toxicity (FET) with NBPeps. 

Figure 17: Fish Embryo Toxicity (FET) with NBPeps. Zebrafish embryos at 4, 28 and 52 hours 

post fertilization (hpf) were incubated with NBPeps or vehicle for 24h. Images are representative 

of three separate experiments. 

 

  

 The mechanism of how these effects are happening remains unclear, but it is remarkably 



51 

 

 

interesting to observe that despite the similar binding region of these NBPeps, the effect in vivo 

remains distinct. 

 These results are not enough to provide a direct correlation between NBPeps binding sites 

and phenotypic outcomes. Furthermore, only H4pep presented high specificity, with the other three 

being non-specific nucleosomal interactors, raising the question of whether the NBPeps are not 

interacting with other chromatin machinery. In fact, Kim and collaborators showed that the tail of 

histone H4 can be used as a molecular tool to maintain the active state of p53 target genes via 

interaction with HDAC1 as a novel anticancer therapy (Heo, Kim et al. 2013). Here, I suggest that 

H4pep could affect tumoral cells, instead of acting only at the modulation of p53 activity, but 

thought direct nucleosome binding, since it showed higher affinity for the nucleosome 
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6. CONCLUSION 

 

In conclusion, it was observed that NBPeps can affect the nucleosome structure in multiple 

ways, despite having a similar target, NBPeps had different effects over cell physiology, which 

might be due to the non-specificty in targeting the nucleosome surface. However, further 

experimentation should be performed to be able to correlate the effects of NBPeps binding sites 

with the physiological outcome. Despite the pioneering work done here, not all aspects that cover 

the modulation of chromatin via NBPeps were elucidated. 

Nevertheless, considering that there are several pharmacological agents, such as DNA 

intercalators, with great relevance to the clinical practice, the fact that NBPeps are not specific 

would not preclude their potential as therapeutic agents. Taken all together, I believe that NBPeps 

open novel opportunities to design hybrid molecules with higher specificity to regulate a plethora 

of cellular disorders. 
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CHAPTER II 

8. INTRODUCTION PART II - LIPIDS 

 

 Lipids, along with proteins, nucleic acids, and carbohydrates are macromolecules with a 

myriad of functions in biological systems. Due to its great diversity on structure and function, 

lipids received the broad definition of “biological substances that are generally hydrophobic in 

nature and in many cases soluble in organic solvents (Cammack, Atwood et al. 2008)”. This 

definition covers a large range of structurally distinct molecules, such as fatty acids, phospholipids, 

steroids, sphingolipids, terpenes, and others, with very distinct functions (Berry 2004, Fahy, 

Subramaniam et al. 2009, Subramaniam, Fahy et al. 2011). For example, phospholipids are 

molecules with two hydrophobic tails and a hydrophilic head, this enables phospholipids to form 

bilayered membranes, which cause them to be the most prevalent component in cell membranes 

in eukaryotes and procaryotes, also phospholipids can be used as a tool for drug delivery (Li, Wang 

et al. 2015). On the other hand, steroids are recognizable by their steroidal rings, which are 

composed of three cyclo-hexanes and a cyclo-pentane, they have important functions in cell 

signaling, with sex hormones being one example, also, steroids are an important component of 

cellular membranes, modulating membrane permeability (IUPAC-IUBMB 1998). For the purpose 

of this work I will focus on lipids present in the nucleus of Eukaryotes with a focus on the 

chromatin. 

 

8.1. LIPIDS IN THE NUCLEUS 

 

 It was thought that the nuclear environment was composed mainly of DNA, RNA, histones, 

and other proteins (Albi and Viola Magni 2004). However, in 1939 the first evidence of lipids in 

the nucleus was shown by Stoneburg. Using rabbits and rats, he was able to determine the 

concentration of several lipids chemo-types in the nucleus (Stoneburg 1939). Later the evidence 

for phospholipids in the nuclei of liver cells was demonstrated (Chayen and Gahan 1958). In 1999, 

Donnelley and collaborators established there is a relationship between nuclear lipids content and 

cell cycle regulation in plants, giving new insights about the role of lipids in the nucleus (Donnelly, 

Bonetta et al. 1999). These processes were later shown in detail in animal cells using LC-MS 

techniques (Atilla-Gokcumen, Muro et al. 2014).  
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 It is also known that lipids in the nucleus can associate with proteins and form distinct 

structures such as lipids microdomains. These domains harbor several enzymes related to lipids 

biosynthesis, metabolism and can be a platform for the transcriptional process (Cascianelli, Villani 

et al. 2008). Further functions of lipids in the nucleus have been observed, such as ligands of 

nuclear receptors, thus regulating gene expression (Warner, Huang et al. 2017).  

 Another form of lipid organization in the nucleus is the formation of nuclear Lipids 

Droplets (nLD). Formed mostly by neutral lipids, they appear as small dots under the light 

microscope that can be stained with Sudan red. Initially, the formation of nLD was thought to be 

due to the entrapment of cLD (Cytoplasmatic Lipids Droplets), with this phenomenon occurring 

randomly or as a reservoir for other lipids in the nucleus (Layerenza, Gonzalez et al. 2013). 

However it was observed that nLD were more frequent in hepatocytes, which do not present high 

levels of cLD (Sołtysik, Ohsaki et al. 2019), to further raise doubt in this issue, adrenocortical 

cells, that are rich in cLD do not present abundance of nLD (Ohsaki, Kawai et al. 2016).  However, 

recent studies in rats and yeast, showed that nLD have a regulatory function in phosphatidylcholine 

synthesis, nevertheless the mechanism by which the formation of nLD occurs remains elusive 

(Romanauska and Kohler 2018, Sołtysik, Ohsaki et al. 2019).  

 Lipids also have important roles in the regulation of proteins that compose the nuclear 

envelope. Farnesylation and geranylgeranylation are covalent reactions that add the lipids into 

cysteines, these reactions are responsible for anchoring many small GTPases in at the plasma 

membrane, for example (Young, Fong et al. 2005). Lamins are the most abundant type of proteins 

in the nucleus (Schwanhausser, Busse et al. 2011), it has been identified that disruption of the 

normal processing of the lamin A farnesylation is involved in several diseases, such as Atypical 

Werner’s Syndrome and Hutchison-Gilford Progeria Syndrome (HGPS) (De Sandre-Giovannoli, 

Bernard et al. 2003, Eriksson, Brown et al. 2003, Burke and Stewart 2013, Zhdanov, Schirmer et 

al. 2016), highlighting the importance of proper lipid processing in the nuclear environment, 

Figure 18 shows the main compositions of some nuclear compartments and the targets of lipids as 

PTMs. 
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Figure 18: Distribution of lipids in the nucleus. 

Figure 18: Distribution of lipids in the nucleus. A nucleus highlighting the major lipids found in 

the nucleoplasm, nuclear membrane (left), and chromatin fibers (right). Lipid moieties found to be 

present in PTMs in core histones. Lipid types and lipid chromatin modifications are listed above. 

(Adapted from :(Zhdanov, Schirmer et al. 2016)) 

 

  

8.2. LIPIDS, DNA, AND CHROMATIN 

   

 Phospholipids, as said in previous sections, are a major component of cellular membranes, 

however, their function in the cell is not limited to structural functions, also they are important 

components in chromosomes, chromatin, and nuclear matrix (Martelli, Capitani et al. 1999, 

Struchkov and Strazhevskaya 2000). The first evidence of lipids interacting with DNA was shown 

by Kuzin and colleagues, using rat thymus and livers, they isolated DNA bound to lipids (Belyaev, 

Strazhevskaya et al. 1974). Further studies characterized the lipid bound DNA in two categories, 

(i) loosely bound lipids and (ii) tightly bound lipids. The fraction (i) received this name because 
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lipids were easily washed from DNA with 35% ethanol, and composed ~60% of all lipids bound 

to DNA. The fraction (ii)  was treated with DNase 1 for one hour and extracted with methanol 

chloroform2:1 solution treatment. The two pools of lipids extracted from DNA had a different 

quantitative composition of neutral lipids and specifics fatty acids, with this quantitation being 

highly dependent on cell type and cell cycle (Struchkov, Strazhevskaya et al. 2002). 

The first evidence of lipids bound to the chromatin was shown by Erickson and 

collaborators (Erickson, Davison et al. 1975). Using labeled cholesterol, they identified bound to 

the chromatin. Nine years later, it was shown that this binding was trough one or more proteins 

and not trough the DNA (Regenass-Klotz and Heiniger 1984). In 2017, Dr. Santos’ group 

published a paper showing that the cholesterol assists in the 10 and 30 nm chromatin formation 

and induces folding of long chromatin fibers as a result of direct interaction of the cholesterol to 

six nucleosomal binding sites (Silva, Fernandes et al. 2017). There are other small lipid molecules 

are present in the nucleus (Zaina et al., 2005), raising questions about other lipids and their 

interaction with the chromatin.  

Lipids have been identified regulating chromatin machinery, such as the case of EPA 

(eicosapentaenoic acid), that showed inhibitory activities over DNMT (DNA methyltransferase) 

and HDAC1. In hepatocarcinoma cells, EPA binds to PPAR-γ (Peroxisome proliferator-activated 

receptor gamma) causing the downregulation of HDAC1 and DNMT, thus showing promissory 

effects in tumor suppression (Ceccarelli, Ronchetti et al. 2020). 

 Since de discovery that Hp1α induces chromatin compaction by phase separation (Larson, 

Elnatan et al. 2017, Strom, Emelyanov et al. 2017), and further experiments showing that histone 

tails and its acetylation status are also regulating phase separation (Gibson, Doolittle et al. 2019), 

the idea of droplets out of solution, like oil de-mixing in water, might have important regulatory 

functions over the chromatin. Despite increasing knowledge about lipids in the nucleus and 

chromatin, the role of this class of ubiquitous molecules remains unclear at the chromatin level. In 

this work we review data about lipids in the nucleus and suggest that other lipids, not only 

cholesterol, may have regulatory functions at the chromatin level. 
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9. AIMS PART II - LIPIDS 

 

9.1. PRIMARY AIMS 

 Review the key impacts of lipids on the nuclear environment, emphasizing its role on 

chromatin architecture. 

 

9.2. SECONDARY AIMS 

• Identify the lipids in the nuclear environment; 

• Discuss the potential roles of nuclear lipids on chromatin architecture. 
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10. METHODS 

Lipidic profile of nuclear compartments in liver, thymus, and embryonic cells: For this work 

I reviewed the literature for Lipids AND Chromatin; Lipids AND Nucleus; Lipids AND Nuclear 

Environment. I then selected relevant papers for the subject and compiled the usable data. Papers 

using similar methodologies and cell types were used. Data of lipidic content in cells is expressed 

in relation to protein:lipid or protein:tissue. Thymus and liver were selected due to the abundance 

of good data available. Normalization was done using the most prevalent lipid-chemotype as 100% 

and others in relationship to it using Graphad Prism6 software.  
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11. RESULTS AND DISCUSSION (Lipids) 

 In our review entitled "Fat nucleosome: Role of lipids on chromatin" and published at 

Progress Lipid Research in 2018, see appendix B (Fernandes, Teles et al. 2018), we looked at 

lipids as a new modulator for the chromatin, evaluating the lipid content at different nuclear 

environment and cellular types, lipids involved in gene expression, lipids with potential to form 

complexes with the nucleosome and clinical outcomes of lipids and chromatin interaction. 

 

11.1. Lipids in the nuclear environment: lipids and chromatin 

  The nuclear environment varies significantly among cell types, especially during cell 

cycle, making the analysis of lipids in the nuclear environment a difficult task (Kolomiytseva, 

Kulagina et al. 2002, Zhdanov, Schirmer et al. 2016). Nonetheless we were able to compile data 

from several studies determining the concentration of lipids in the nuclear environment, as seen in 

Figure 19. We also compared different nuclear compartments of iMEF (immortalized murine 

embryonic fibroblasts), which were thoroughly analyzed by ESI-MS and provided outstanding 

data (Tribble, Ivanova et al. 2016). 
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Figure 19: Lipidic profile of nuclear compartments in liver, thymus, and embryonic cells. 

Figure 19: Lipidic profile of nuclear compartments in liver, thymus, and embryonic cells. a) The 

concentration of lipid is expressed in relation to protein:tissue, normalized in percentage related to 

the highest lipid concentration, from liver and thymus cells. b) Nucleus of iMEF cells, includes 

data from whole nuclear environment, including chromatin and nuclear membrane.  

 

 With the available literature, it was possible to compare three distinct nuclear environments 
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of two distinct tissues (Fig 19 a). Although phospholipids are a major component of all nuclear 

environments, there are many differences in the lipidic composition, such as the difference in 

cardiolipin in the thymus and liver chromatin. This suggests that lipid distribution in the nucleus 

is cell dependent and specific roles of these lipids at the chromatin still to be elucidated. Also, in 

Figure 19 b, it is possible to observe that the content of phospholipids in iMEF (immortalized 

murine embryonic fibroblasts) cells do not vary considerably among the whole cell, the nucleus 

and the nuclear envelope. Following the trend in liver and thymus cells, phosphatidylcholine is the 

most abundant phospholipid overall. 
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12. CONCLUDING REMARKS  

 It is known a great deal about how chromatin is modulated by NBPs, however, the 

understanding about other types of molecules, for example the lipids, is not as clear. New insights 

about the role of cholesterol interaction with nucleosome suggest a new function for lipids as 

modulators of chromatin (Silva, Fernandes et al. 2017). In silico studies conducted by Fernandes, 

V. shows that the nucleosome surface has several binding sites for lipids, with low affinity 

(unpublished data). This might suggest that the nucleosome surface may work as a reservoir of 

lipids overall and that it might influence the final chromatin status. 

  Summarizing some of the new insights from our review, we created a cartoon illustrating 

new functions that lipids may have over the nucleosome, as seen in Figure 20.  

             

Figure 20: Hypothetical role of lipids on chromatin. 

Figure 20: Hypothetical role of lipids on chromatin. Heterochromatin formation is the condensed 

state of chromatin, which can be induced by HP1α (heterochromatin protein 1 alpha) and lipids, 

potently through phase-separation process. The nuclear environment is represented in different 

colors, where internucleosomal interaction (three lipid-bound nucleosomes) is favored in a phase-

separated compartment. 
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CHAPTER III 

14. INTRODUCTION PART III - PHASE SEPARATION 

   

The mechanism of phase separation seems to be present in a diverse range of the gene 

regulation machinery, such as enhancer activity and eRNA production (Hnisz, Shrinivas et al. 

2017), the interaction of transcriptional factors OCT4 (octamer-binding transcription factor 4) and 

GCN4 (General control protein GCN4) with Mediator and p300 (Boija, Klein et al. 2018), how 

Polycomb Repressive Complex 1 (PRC1) and HP1α regulates chromatin compaction (Larson, 

Elnatan et al. 2017, Strom, Emelyanov et al. 2017, Plys, Davis et al. 2019), this suggests that phase 

separation is a common feature in chromatin regulation. 

 

14.1 Phase separation 

 The eukaryotic cell is organized in compartments, such is the nuclear membrane, that 

works as a physical barrier helping organize the nuclear content, selecting molecules that can enter 

or exit the nuclear environment, thus regulating cellular function. There are several other 

membrane-bound organelles, such as lysosomes, mitochondria, endoplasmic reticulum and others. 

Nevertheless, some organelles  are not dependent on a membrane delimiting its volume, these are 

known as membranelles organelles, nucleolus, nuclear speckles, SGs (Stress Granules), processing 

bodies and the centriole are some examples (Uversky 2017). Despite the discovery of these 

membranelles organelles several years ago, how they form, their physical proprieties and their 

contribution to biological functions remained elusive (Boeynaems, Alberti et al. 2018). 

 The first description that membraneless organelles are formed by phase separation was 

revealed in 2009 by Brangwynne and collaborators, they showed that of P granules have liquid-

like properties, describing that P granules are dynamic, with fusion and fission events, in a similar 

fashion to oil droplets in water (Brangwynne, Eckmann et al. 2009).  Despite that being the first 

evidence of phase separation in cells, the phenomena have been already observed in vitro. In 1991, 

researchers had observed that high concentrations of  Haemoglobin can create a binary-liquid 

phase separation, however, the biological relevance of these results remained unclear (Broide, 

Berland et al. 1991). 

 Recent studies have shown that multivalency of adhesive domains and/or linear motifs is a 

common feature among proteins that can phase separate (Boke, Ruer et al. 2016, Jain, Wheeler et 



75 

 

 

al. 2016, Boeynaems, Alberti et al. 2018). The multivalency can explain phase separation in three 

distinct mechanisms: (i) folded proteins with well-defined interaction surfaces; (ii) folded domains 

connected by flexible linkers; and (iii) IDRs ( intrinsically disordered regions), that are sections of 

the proteins that do not adopt secondary or tertiary structure, are dynamic, heterogeneous and have 

repetitive amino acids in their sequence (Mitrea and Kriwacki 2016), IDRs can create short 

interaction motifs, all these criteria can happen in alone or in combination to form a phase 

separated environment (Boeynaems, Alberti et al. 2018). 

 The formation of phase separation can happen in distinct phases, it can form a LLPS 

(Liquid-Liquid Phase separation), a hydro gel like phase separation or the formation of solids 

states, the physical state of the environment is extremely relevant for the function of this 

organelles, see Figure 21.  

  

  

          

 

Figure 21: Phase separation and its physical states. 

 

Figure 21: Phase separation and its physical states. (a) Three kinds of phase separated environment 



76 

 

 

and their respective molecular arrangement. (b) Different proteins can create 3 distinct types of 

phase separation in vitro. Adapted from (Patel, Lee et al. 2015, Boeynaems, Alberti et al. 2018) 

  

 When the formation of the phase separated environment occurs, it creates an enriched 

region with specifics molecules that is shielded from the other molecules, this can be especially 

useful for virus, in fact, that is the strategy that adopted by the rabies virus, which creates a Negri 

body, that is, a LLPS inside the cell cytoplasm,  that works as a viral factory and can shield itself 

from the undesired cellular machinery (Nikolic, Le Bars et al. 2017). In fact, several diseases have 

been linked to the phase separation phenomenon such as ALS (Amyotrophic Lateral Sclerosis) 

and FTD (Frontotemporal Dementia) (Alberti and Dormann 2019). Mutation in RNA binding 

proteins cause them to accumulate in membraneless organelles known as SGs, that further can 

evolve to pathological RNA-binding protein aggregates, these aggregates are found post mortem 

in the brains of patients with  ALS and FTD (Liu-Yesucevitz, Bilgutay et al. 2010, Dewey, Cenik 

et al. 2011, Alami, Smith et al. 2014, Gopal, Nirschl et al. 2017, Mackenzie, Nicholson et al. 2017). 

 

14.2 Histone like motifs 

Histones like motifs are lysine rich sequences that are present in the tails of histones H2A 

and H4 (Yarychkivska, Shahabuddin et al. 2018), this motif is also found in other chromatin acting 

proteins, such as p53, HsfB1, Sall1-4, DNMT1 and are related to acetylation processes (Gu and 

Roeder 1997, Bharti, Von Koskull-Doring et al. 2004, Koyama and Kurumizaka 2018, 

Yarychkivska, Shahabuddin et al. 2018). The lysin rich sequences are a target for several 

epigenetic writers such as HAT class of enzymes (Legube and Trouche 2003), and are known to 

regulate these proteins (Bharti, Von Koskull-Doring et al. 2004, Du, Song et al. 2010).  

Furthermore, IDRs, are found in histone like motifs (Mitrea and Kriwacki 2016). 

Data acquired during the experiments with NBPeps and nucleosome precipitation, see 

Figure 12,  was intriguing, the band resulting from the complex, nucleosome and H4pep appears 

smeared, which is unusual for the interaction with a small peptide, therefore giving that the 

nucleosome is largely regulated by phase separation, I investigate if the NBPep, H4pep have the 

propriety of phase separation. 
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15.AIMS PART III – PHASE SEPARATION 

  

15.1. PRIMARY AIMS 

The goal of this study is to investigate in vitro the role o a nucleosome binding peptide 

derived from H4 tail  (H4pep) in the phase separation phenomenon. 

 

15.2. SECONDARY AIMS 

• Investigate if DNA is required for the formation of phase separation 

• Investigate the  type of phase separation involved in H4pep:DNA interaction 

• Investigate the time dependency in the phase separation phenomenon H4pep:DNA 

complex 
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16.METHODS 

DNA widom 601: DNA containing the Widom 601 sequence with 167bp was obtained using 

plasmid donated from Dr. Rhodes. The plasmids were transformed in competent cells using heat 

shock technique, as described in (Froger and Hall 2007). Cells were grown in media containing 

ampicillin and further the plasmid was extracted using Maxprep (Laboratory of Molecular 

Pharmacology protocols). Further 1mg of plasmid was digesting 5U/ug of DNA using the 

restriction enzyme AVAI (New England Biolabs) overnight at 37 degrees Celsius, the reaction 

was stopped by adding EDTA to the final concentration of 10mM. The 167bp DNA was isolated 

from the rest of plasmid by using 30% PEG (polyethylene glycol) 4000, 1,5M NaCl, incubating 

with the DNA, the DNA was centrifuged (Sigma centrifuge-2K15) at 15493 x g for 10 minutes at 

25 °C, the supernatant was transferred to another microcentrifuge tube and the pellet was 

resuspended in the MiliQ water and both were analyzed in 1% agarose gel, the processes was 

repeated until no DNA fragment was found in the supernatant. The purified DNA was then cleaned 

using phenol/chloroform method and then quantified using Nanovue (GE) to the final 

concentration adjusted for 1ug/uL. 

Droplet assay: Specified amounts of selected NBPeps were incubated with DNA Widom 601 with 

167bp for the specified amount of time in LLPS buffer (25mM HEPES pH 7.5, 150mM NaCl, and 

1mM DTT). Droplets were mounted in a visualization chamber with silanized glass (see Results 

and Discussion. 

Droplet aging assay:  Specified amount of H4pep was incubated with DNA Widom 601 with 

167bp for the specified amount of time in LLPS buffer (25mM HEPES pH 7.5, 150mM NaCl, and 

1mM DTT). Droplets were mounted in a visualization chamber with silanized glass (see Results 

and Discussion) and observed under a DIC (Differential interference contrast) microscope. 

Salt resistance assay: Droplets were prepared by mixing to a final concentration of H4pep of 

30uM with 0.1ug/uL of DNA Widom 601 with 167bp in LLPS buffer with specified amounts of 

NaCl. Samples were incubated for 10 minutes at room temperature and visualized under a DIC 

microscope. 
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17. RESULTS AND DISCUSSION 

 

 As said previously, the investigation of phase separation in the context of H4pep started 

with the results obtained in the nucleosome precipitation assay, described in chapter one, I then 

proceeded to investigate if H4pep could induce phase separation and what were the requirements 

for it. Using the methodology described in (Alberti, Saha et al. 2018) and (Wang, Zhang et al. 

2018) which contains methods to analyze phase separation in the context of macromolecules. 

Therefore I performed droplet assays under DIC (Differential interference contrast) microscope, 

in order to avoid evaporation and to diminish the issues with focal points, a visualization chamber 

assembled, as described in (Alberti, Saha et al. 2018), also, all the glassware were silanized using 

the methods described in (Szkop, Kliszcz et al. 2018).  

 

 

Figure 22: Visualization chamber for droplet assay. 

Figure 22: Visualization chamber for droplet assay. Droplets of 10uL were pipetted in the 

silanized glass surface and spacers were placed using 3M tape followed by another silanized glass, 

trapping the droplet and preventing evaporation. Adapted from (Alberti, Saha et al. 2018). 

 

17.1 H4pep is dependent on DNA to the formation of phase separation 

 I performed the droplet assays with H4pep and LANA, which have shown no band 

smearing in the assay of nucleosome precipitation, as a control. First, I screened to see if the H4pep 

would phase separate by itself, however, at concentrations of 90uM no effect was observed, LANA 

showed similar effects. Several proteins that phase separate requires biding partners to create the 

microenvironment, therefore I decided to investigate if DNA could have any effect over the 

phenomenon. DNA it is known to bind to the histone H4 tail (Sinha and Shogren-Knaak 2010), as 
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said previously, the H4pep is directly derived from the histone H4 tail, also the data showed in 

chapter one, strongly suggests that DNA can bind to the H4pep avidly. Hence when DNA was 

added at 0.1ug/uL, at 30uM of H4pep, it was possible to observe the formation of spherical 

droplets, suggesting the formation of phase separation, at higher concentrations of H4pep, it was 

observed the formation of precipitates, see Figure 23. 

 

 

Figure 23: Droplet assays. 

Figure 23: Droplet assays. H4pep was screened to determine the optimal concentration for the 

formation of phase separation and the required binding partners, LANA was used as a control. 

Images are representative of three separate experiments. 

   

17.2 Kinetics of phase separation of H4pep 

 The kinetics of phase separation have important biological relevance, for example, age-

related neurodegenerative diseases are linked to aberrant phase transitions in neurons and other 

diseases (Murakami, Qamar et al. 2015, Alberti and Hyman 2016). Therefore, I decided to 
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investigate the impact that time has on the formation of the phase separation driven by H4pep and 

DNA, see Figure 24. 

  

  

 

Figure 24: Effects overtime of phase separation induced by H4pep. 

Figure 24: Effects overtime of phase separation induced by H4pep. H4pep at 100uM incubated at 

room temperature with 0.1ug of DNA Widom 167bp. At the t0 its possible to see only precipitated 

that further transforms in to gel like phase separation.  

 

The results suggest that at high concentrations the H4pep can exit the precipitated state, 

seen as small black dots under the microscope and form a hydrogel like structure over time, despite 

the viscosity was not measure, its possible to speculate, due to the lack of fluidity observed, and 

the lack of fusion and  fission events. 
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17.3. Salt-resistance assay 

 The phase separation phenomenon happen due to interactions between the multivalent 

surfaces, changing the ionic strength of the medium can disrupt these interactions, resulting in the 

disassemble of the LLPS and for gel or solids phase separations remains partially dissolved 

(Alberti, Saha et al. 2018, Wang, Zhang et al. 2018). Therefore, I challenged the solution of H4pep 

and DNA to different salt concentrations in order to characterize the physical state of the phase 

separation, see Figure 25. 

 

 

Figure 25: Salt-resistance assay of H4pep whit DNA. 

Figure 25: Salt-resistance assay of H4pep whit DNA. Increments in NaCl concentration cause 

precipitates to form round droplets around physiological salt concentrations, at higher salt 

concentrations the droplets disappear, suggesting the formation of LLPS. Images are representative 

of three separate experiments. 

 

  It’s possible to observe that at low concentrations of NaCl ( from 0 to 100) the formation 

of precipitates happen, when increasing salt concentration tend to diminish, at 150mM of NaCl 

(physiological conditions) it is also observed the formation of round droplets and the disappearance 

of the black dots that are the results of precipitation, at 200mM of NaCl droplets show greater 

roundness, a characteristic of LLPS, when the salt concentration reaches 300mM, no droplets nor 
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precipitated are observed. This result suggested that the phase separation of H4pep + DNA is 

liquid. However, experiments such as FRAP are necessary to confirm, along with events of fusion 

and fission events that ware not observed. 

 The full characterization of the events related to phase separation requires several others 

techniques that were not performed in this work, it is not clear in what state the phase separation 

of H4pep+DNA if is a LLPS or the formation of hydro-gels, despite the salt resistance assays 

strongly suggesting that is liquid, the droplets did not show any fluidity, also, it was tested only 

one synthetic DNA sequence, it would be interesting to evaluate different sequences and kinds of 

DNA. The experiments were not done with the nucleosome as well, investigate if H4pep can 

induce phase separation at the nucleosomal and/or chromatin level would yield important data. 

Furthermore, since the H4pep is a histone binding motif, it would be interesting to verify the effects 

of acetylation in this processes, and also to conduct analysis in others proteins that have histone 

binding motifs such as HsfB1, Sall1-4, DNMT1 and especially p53, due to its critical role in cancer 

progression.  
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18. CONCLUSION 

 The data presented here suggest that the binding of H4pep to DNA induce phase separation 

under physiological conditions in vitro. Further studies will be important to clarify the 

phenomenon in vivo and whether may impact chromatin dynamics and transcriptional outcome. 

Also, it will be important to verify whether the H4pep interaction to the nucleosomal DNA in the 

context of chromatin may induce the formation of phase separation in vivo and in vitro. 
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