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Canção da tese

I

Refração
Auroras difusas pontuais

Dispersão
Num âmbar latente, mil cristais

Criam teu saldão

Sísifo: depois desse morro, outro jaz
Vales e cristas, planícies jamais

Se acomode e veja seu Império ao chão

Inspiração
Não parece ser, faz o parecer

Erre nos erros dos errantes banais
Promove na frente que eu arrumo atrás

Interjeição
Posso ignorar, consigo provar

Reverência às referências germinais
Exploro serras com grelhas de pombais

Por diversão
Legado do rei, o porquê já sei

Haltere de chumbo e o peso que traz
Ânfora de corvos, âncora no cais

Pois sim, pois não
Não venci ali, convenci aqui

No próprio opróbrio, vanguarda tanto faz
Em vácuos de plasma, outorga-se a paz



II

Sem desbrio
Tricordiano vil

Ao centro, bela vista
Imponente rente ao frio

Fé candil
Mirando entre os dipolos, sem desvio

Ser profundo, ou simplista
À mercê do juízo ardil

Ervilhei, sigilo enfim
Melhor assim

Conecto o mundo no meu posto de marfim
Relíquias do Medievo, notas secas de um confuso bandolim

Quem sentiu
Turvos pulsos de um caudaloso rio

Prudência, sapiência
Mesclam num ósculo sombrio

Concreto no quadril
Ligo os pontos desse Cosmos baldio



III

Manga com jiló, açafrão e mel
Compilando essa idiossincrasia de sabor

Vem do Leste, faça o teste, sinestésico fervor

Mar dentro do mar, céu além do céu
Vagando eternos fractais buscando o atrator

Ortodoxo, paradoxo, doce e gélido calor

Cinco elementos de construção
Vinte léguas de revelação
Sete emoções de desilusão
Duas dúzias de maturação

Tubo de visões, hipocampo ao léu
Venda seus segundos por sistemas em torpor

Bota a pilha, pega a fila, bate as asas do condor

Álcool em gel
Reflexão em capacetes rotineiros

Mão cruel
Presunção traz ignomínia sem pudor

Ode ao réu
Sem contagem de dez números inteiros

Fogaréu
Foque só no seu histórico clamor

Dono do hotel
Imprimi suas glórias de vapor

Não põe fogo no chapéu
Resta retribuir o favor
Caminhe sem temor

Rumor, louvor
Agora entendo o seu valor
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Lima, Giordano de Almeida, Alberto André Francisco, Prof. Fernanda Ledo Marciniuk.
I still carry many teaching experiences I had with you in my own lessons, in special con-
cerning the naturally smaller “distance” between a senior undergraduate student and his



juniors. Particularly, the monitors from “Introductory Economics” (IEMonit) were espe-
cially solicitous and helped to inspire my interest in teaching (even though I was rejected
in the selection process for period 2011/2, and even to this very day I didn’t receive
the feedback I was promised...): Jéssika Santiago, Max Villela, Daniel Pina, Lorenna
Vieira, João Negreiros, Luis Guilherme Batista, Letícia Raimundo, Nicolas Wulk, Lucas
Bispo, Camila Wahrendorff, Haigo Porto, Ana Júlia Monteiro, Débora Jacintho, Luana
Drumond, Samantha Vitena, Anna Paula, Thayana Tavares, Renata Motta.

Special thanks to Prof. Pedro Henrique Melo Albuquerque and my colleagues of
the class MMQD2 of period 2013/2, this was indeed a “prized package” that gathered
some of the best I have ever seen, and this class was the genesis to many elite researchers
in machine learning that later constituted the original core of LAMFO: Sarah Sabino,
Mariana Montenegro, Pedro Alexandre Barros, Thiago Raymon, Fábio Medina, Ludmilla
Müller, Leo Saracan, Daniel Pagotto, Daniel Carvalho, and Lucas Pinheiro. Without
exaggerating, this class really changed my academic path, I am forever grateful to all of
you.

I would like to thank my friends and colleagues from the Graduate Program in
Management at the University of Brasilia (PPGA/UnB) and from the classes I picked
from the Economics Department: Thiago Raymon, Leonardo Bosque, Sarah Sabino, Yuri
Maluf, Mariana Montenegro, Pedro Correia, João Gabriel Souza, Emmanuel Abreu, Luiz
Medeiros, Raphael Pereira, Gustavo Basso, Alexandre Leite, Jorge Barbosa, Monique
Azevedo, José Rômulo Vieira, Bruno Miranda, Marina Garcia, Leonardo Magno, Marcelo
Godinho, Wanderson Bittencourt, Paulo Sérgio Rosa, Raphael Brocchi, Daniel Tavares,
André Porfírio, Nathália Melo, Mário Salimon, Natasha Fogaça, Lana Montezano, Mar-
iana Rêgo, David Bouças, Pablo Pessôa, Alexander Dauzeley, Gustavo Alves, José Nil-
ton, Everton Verga, Sérgio Freitas, Isabela Ferraz, Ana Carolina Costa, Júnia Falqueto,
Manoel Fonseca, Silvia Onoyama, Ricardo Ken, Marilú Castro, Juliana Moro, Emília
Faria, Oscar Oliveira, Carolina Sgaraboto, Nazareno Marques, Alex Fabiane, Marcelo
Cardoso, Rodrigo Montalvão, Vivian Caroline, Ana Paula Lopes, Ladilucy Almond, Leo-
vanir Richter, Luis Fernando Pinto, Paulo Góes, Walter Faiad, Bruno Saboya, Alencar
Libâneo, Rafael Farias, Jéssica Traguetto, Hécio Almeida, Hannah Salmen, Bárbara de
Medeiros, Matheus Rabetti, Renata Telles, Tiago Rusin, Eduardo Lafetá, Cristiano Lúcio,
Leonel Cerqueira, Marcelo Finazzi, Amanda Paiva; André Maranhão, Saulo Benchimol,
Cauê Mello, Marcelo Cruz, Guilherme Paiva, Camila Pereira, Prof. Santiago Ravassi,
Edmar Rocha, Prof. Mauro Moraes Alves Patrão; Noël Olokodana; Diogo Picco, Vander-
son Delapedra, Felipe Vilhena, Laerte Takeuti, Andreia Barros, Iago Cotrim, Ludmilla
Mattos, André Veras, Fioravanti Mieto, Denise Oliveira, Érica Botelho, Diogo da Fon-
seca, Alex Rojas, Douglas München; Patrícia Rosvadoski, Newton Miranda Junior, Dayse
Carneiro, Bernardo Buta, Jeovan Assis, Isadora Lopes, Eloisa Torlig, Rommel Resende,
Oscar Rocha, João Maria de Oliveira, Alice Plakoudi, Eduardo Rubik, Gabriel de Deus,



Mayra Viana, Eduardo Leite, Luciana Cualheta, Jéssica Fernandes, Danilo Ramos, Bruno
Braga, Maricilene do Nascimento, Marilene de Oliveira, Marizaura Camões, Pedro An-
tero, Clarissa Melo. PPGA was a very friendly environment, the years I lived in there
showed me that even potentially fierce rivals could be friends that encourage each other
and make each other stronger. I made very good friends during the classes, presentations,
and conferences, I could learn from works I had no idea of the basics of the subject. The
relationship with my fellow researchers was the best possible, I always felt extremely re-
spected amongst my colleagues, and I also always treated everyone with due respect. I
could learn not only from colleagues from finance with a similar way of thinking from me
but also many scholars with quite different motivations and modus operandi, this certainly
made me a more complete academic researcher.

I would like to thank all students I taught in various disciplines at the under-
graduate level. Now there are really too many names, so I won’t cite everyone, just a
few that I recall right now: Maria Gabryella, Lívia Aragão, Letícia Mendonça, Marcela
Coutinho, Guilherme Falcão, Guilherme Urbano, Rodrigo Ferreira, Marcelo Alcântara,
Natália Amorim, Marina Barros, Pedro Ferreira, Paula Macedo, Salomão Ferretti, Marcelo
Babilônia, Cícera Monallysa, Monique Novais, Renata Patriota, Ana Karina, Luca Tor-
res, Lauro Pedreira; Alisson Cavalcante, Laíra Brito, Eduardo Dantas, Eduardo Bogosian,
Eduardo Fleury, Rubens Toledo, Átila Gomes, Verônica Mamede, Túlio de Paiva, Túlio
Vicente, Marcella Turon, Pedro Michel Sinimbu, Lean Nascimento, Isabela Nepomuceno,
Fernanda Pinheiro, Daniel Jatobá, Leandro Santiago, Marcos Mousinho, Vítor Neiva,
Victor Luciano, André Santana, Filipe Matos, Fernanda Lima, Bruno Godoy, Matheus
Gonçalves, Rodrigo Sampaio, Luiz Felipe Paulino, Luísa Cavalcante, Gustavo Fischer,
Yuri Cabral, Samantha Santana, Jacy Rodrigues, Joicy Keilly, Luiz Fernando Soares;
Matheus Kempa, Flávio Herval, Igor Martins, Matheus Périco, Gustavo Damasco, Gus-
tavo do Espírito Santo, Bernardo Ravanello, Luisa Bonfá, Rodrigo Matos, Thaís Testoni,
Thaís Luiza, Cristina Cavaletti, Cláudia Veloso, Ludmila Rocha, Rebecca Viana, Bár-
bara Braga, Pedro Paulo França, Camila Melo, Felipe Camargo, Sofia Porto, Abílio
Phellipi, Alex Iaccino, Ana Luísa Tomassini, Brenda Giordani, Fernanda Scafe, Matheus
Martins, Diego Tolentino, Thiago Amaral, Thiago Lima, Daniel Milazzo, Ivan Mello,
João Júlio, Guilherme Scattone; Jordane Reis, Michele Gasparoto, Camilla Zorzi, Is-
mael Santos, Raíssa Pires, Ludmila Boaventura, Thaís Santos, Álvaro Bragança, Thainá
Chavarry, Matheus Corrêa, Claudio Cavalcante, Bruna Martins, Bruna Nunes, João Vic-
tor Machado, Felipe da Rocha, Ycleda Oliveira, Pedro Guerra, Khalil Santarém, Vitor
Aragão, Luísa Versiani, Lucas Costa, Gustavo Buta, Felipe Henrique Alves, Eglay Moreno,
Brian Hebert, Felipe Jardim; Raquel Félix, Jéssika Siqueira, Karina Ferreira, Karine
Rangel, Leonardo Serikawa, João Vítor Alencar, Fernanda Amorim, João Vítor Borges,
Gabriel Benigno, Danielle Leite, Gabriela Cristina, Pablo Almeida, Carolina Rodrigues
Lopes, Alexandre Fantini, Maria Tereza Córdova, Gabriel Homem, David Eloi, Clenilson



Costa, Caroline Raposo, Amanda Pinheiro, Glauber Níkolas, Maria Raquel Vera, Thi-
ago Ramiris, Talyta Soyer, Marina Siqueira, Diego Souza, Caio Júlio César; Tallyrand
Jorcelino, Scarlett Rocha, Wilson Santiago, Moisés Có, João Vitor Soares, Helena Car-
taxo, Georgia Nasr, Luiza Rosendo, Vítor Lago, Carla Santana, Flávia Santana, Lorranna
Couto, Maciel Neri, Evandro Garcia, Carlos Alexandre dos Santos, Déborah Carvalho,
Ana Paula Lima, Paulo Braga, Marina Iwakiri, Matheus Marinho, Renan Kuba, Vítor
Capistrano, Luiz Pimenta; Bernardo Pereira, Fernanda Gabriele, Albert Dobbin, Maria
Júlia Gonçalves, Luis Batista, Elisa Silveira, Taian Cristal, Natalia Lustoza, Natasha
Veloso; Divaldo Antonio, Gustavo Andrino, Gabriel Fontes, Pedro Ido, Helena Kichel,
Fabiana Mariquito, Catharine Pedrosa, Mariana Galvão, Gabriela Almeida, Cristiano
Cardoso, Eduardo Freitas, Daniel Viegas, Davi Resende, Pedro Altomar. I always heard
that teaching was the best way to learn, but I never truly understood this until I had
to actually teach, after which I found this to be true. It is a true challenge to be at the
“other side”, all attention of the class focused and a little space for mistake. It has been
a wonderful experience ever since the first time I had to teach at the undergraduate level,
and it’s amazing how a same concept and class can provide the teacher quite different
experiences even after years. I already had a lot of students, among which a great number
helped me actively to become a better teacher; my gratitude goes to all of you (naturally
including those I didn’t cite here), I hope you could learn from me as much I have learned
from you, all of you provided me with opportunities to improve myself and inspired me
to become a better teacher.

My gratitude also goes to all assistants I had for my classes at the undergradu-
ate level: Marcellus Lopes, Noël Olokodana, Gleison Batista, Bárbara Braga, Matheus
Raposo, Fernanda Amorim, and Brenda Baumann.

I would like to thank my coauthors in scientific researches for the persistence
and patience during our academic partnerships: Jáder Martins, Igor do Nascimento,
Mariana Montenegro, Ana Julia Padula, João Victor Machado, Cayan Portela, Rafael de
Morais, Leonardo Bosque, Marcelo Félix, Pedro Alexandre Barros, Sarah Sabino, Matheus
Facure, Gustavo Monteiro, Fernanda Amorim, Matheus Kempa, Emmanuel de Abreu,
Luiz Medeiros. Your contributions will always be very kindly remembered, as they’re
forever bound into the results that we achieved together. All harshness and hurry aside,
putting up with me do have its payoffs...

I thank all students whom I advised in scientific projects and term papers: Hen-
rique Passos, Patrick Tatagiba, Mateus Rodrigues, Matheus Kempa, Marcela Coutinho,
Rafael Barros, and André Veras. The advising experience allowed me to be even further
on the “other side”, to see the learning process from the other perspective and to better
understand how to conduct well the aspirations of a motivated student.

I thank for the opportunities I had to evaluate the term papers of the following



students as a member of the examining committee: Marcelo Félix, Matheus Alves, Rômulo
Albernaz, Giovanna Rocha, Helberth Macau, Enrico Eduardo, Plínio de Sousa, Larissa
Thaís, Pedro Filgueiras, Alexandre Bernardes, and Túlio Cavallini. To judge can appear
easy, but to do so fairly can be demanding, I had opportunities to do so some times in my
life. I also thank the advisors that invited me to compose the examining committees, as
well as the students, who reacted in different ways, making me rethink about my criteria
after reviewing each work.

I arrived in Brazil when I was 5, without knowing a single word in Brazilian
Portuguese; the first months were really hard, although I probably never truly realized
the size of that challenge. I grew in an unknown environment filled with stares of perceived
weirdness, sometimes incomprehension, but at most times curiosity. I had some wonderful
teachers and colleagues, others not so wonderful, but equally important to my formation,
I keep all of them with nostalgia and great consideration. Jokes and immaturities aside,
today I’m grateful for it all and I am glad to be able to recall all of it with a laugh. I
dearly miss the vast majority of those moments (even the other minority is also really
worth to be remembered... actually they are the ones that make you truly understand
the value of the good stuff), they helped to define the person I am today. Being joyful or
painful, all those moments are definitely worth remembering.

At this point there are just so many names, I certainly forgot some important
ones. Still, even those I forgot to list here contributed to my life, please don’t mind if
you’re not here; hopefully, you can let me off the hook...

Let’s do this chronologically to make it easier.

2000: Gabriela, Camargo, Reginaldo, Eduardo, Maciel, Germano, Francisco, Sharon,
Paloma, Mateus, Érika, Ana Maria, Bruna, Rayanne, Rayana, Lucas, Vítor, Priscila
Maria, Rudne, Bianca; Raimundo, Iago, Itamar, Elói, Rico, Jadenilson, Tiago, Renan,
Nilton.

2001: Ronaldo, Joana, Douglas, Rafael, Gabriel, Priscilla, Pedro Henrique, Gabriela,
Jéssica; Roberto Arnaldo, Arenaldo, Any, Gustavo, Lucas Porto, Lucas França, Eric, Adri-
ano, Robertinelli, Samuel Pimenta, César, Marcos Cazú, Tiago Melo, Thiago Henrique,
Breno, Maurício Mettino , Paulo , Max, Raíssa, Jorge Sabino, Anderson Luque.

2002: Wendell, José Nilson, Caio, Danilo, Gabriela Roxanna, Gabriela Corrêa,
Rafael, Guilherme, Gisele, Kelly, Diego, Marcos Emmanuel, Christian, Patrícia, Rafaela,
Paulo, Horácio, Luciano, Rafael, Ernesto Tudor, Remy Nobre.

2003: Rômulo Paulino, Ítalo Almeida, Thiago Matos, João Vítor Pacheco, Victor,
Daniel Noble, Emmanuele, Alessandro, Alexandro, Andressa Holanda, Andressa Pom-
pas, Douglas Alves, Douglas Silva, Higor Santana, Marina, Raíssa Freire, Natália Maria,
Nathália Lamosa, Rafaela, Roberta, Taís Martins, Thaís Cabral, Roberta, Wendy, Luiz



Felipe Medeiros, Eike Lobato, André, Gabriel, Hugo, Marcus Vinícius, Paulo, Pâmella
Duarte, Kayo Eduardo, Reginaldo Sousa, Bárbara Virgínia, Kallycia Bose, Nathan Yohan,
Matheus Carvalho, Diego, Victor Hugo Mee, André Rabelo, João Carlos, Fernando Bento
Filho, João Ciriaco, Eustáquio Fortes.

2004: Jaqueline Azevedo, Isabela Cardoso, Jéssica Maria, Douglas Alves, Diógenes,
Diane Desirée, Roberto Arnaldo, Thiego Lorran, Tarik El-Harim, João Paulo Nogueira,
Ananda Jade, Bruna Macêdo, Hélio Veloso, Natan Rangel, Karolline Brito, Guilherme
Marques, Natália, Leandro Bertolazi, Marcos Fabrício, Michael Militão, Micael, Lu-
cas Façanha, Brayan Leandro, Thiago Oliveira, Ícaro, Rebeca Iviê, Débora Azevedo,
Stephany, Jorge Yuri, Radígia Mendes, Frederico C. Borges, Luiz Bastos, Kayke, Jean
Victor, Felipe Bispo, Samuel, Larissa Melo.

2005: Afonso Neri, Jéssica Ferreira, Thalita Barros, Felipe Godinho, Fernanda,
Taiane Pimenta, Lorena Argolo, Nayara, Yasmin Athanasio, Camilla, Breno, Vinícius Al-
buquerque, Samuel Pimenta, Mateus Porto, Marcos Assunção, Rangell Guerra, Estáudio
Calheiros, Késia Zaiden, Lucas Cavalcante, Gabriel, Matheus Olímpio, Thiago Matos,
Débora Azevedo, Agatha Cristinny, Cinthia Cortes, Kayo Eduardo, Nylla Cristina.

2006: Renato Ferreira, Eudóxia Alice, Taiane Pimenta, Afonso Neri, Débora
Azevedo, Débora Kelly, Marina Barbosa, Suellen, Samuel Pimenta, Ítalo, Ricardo Siqueira,
Guilherme Araújo, Marcelo Eduardo, Douglas Nunes, Madelaine, Pedro Vaz, Tainá Fer-
nandes, Fernanda Duarte, Anah Paula Bernardino, Roberto Arnaldo, Thaís Oliveira,
Rychard, Reginaldo Sousa, Thuany Danielle, Marcos Murilo, Dayanne, Gabriel Teodoro,
Gilmar, Graziela.

2007: Elias Barbosa Jr., Samuel Pimenta, Renato Ferreira, Pâmella, Larissa Melo,
Mariana Nascimento, Raíssa Rocha, Jônatas Cocentino, Juliana Silva, Luana Gomes,
Mayara Mariano, Marcos Moábio, Brayan Leandro, Anderson Barros, Rafael Roriz, Hugo,
Banpro Nunes (in memoriam), Lucas Cavalcante, Natã Terra, Madson Abitbol, Yasser El-
Harim, Thiago Linhares, Letícia Spezani, Úrsula Sangaleti, Fabíola, Christiane Mesquita,
Wanessa Lacerda, Gemine Costa, Fernanda Rollemberg, Jéssia Moreira, Luis Alberto
Rodrigues, Josiane, Gabriela Rodrigues, Carlos Trufini, Carlos Kairo Sarah Camargo,
Rian Gomes, Lucas Ogliari, Arthwilliams Gomes.

2008: Christian Maciel, João Zago, Rychard Oliveira, Anah Paula Bernardino,
Patrícia Leal, Melissa Trindade, Isabela Cardoso, Jéssica Dayane, Bárbara Virgínia, Fe-
lipe Pereira, Luma Mascarenhas, Jéssica Oliveira, Ana Seganfredo, Larissa Carvalho,
Ângelo Lenza, Thiago Resende, Juliano Sant’Anna, Matheus Veras, Victor Leitinho, Re-
nan Davidson, Elcimar Pereira, Suellen Maria, Thalita Barros, Daniella Sousa, Carolina
Mattos, Estáudio Calheiros, Marcus Carvalho, Victor Silvestre, Alan Alves, Andressa
Holanda, Fernanda Rollemberg, Gabriel Paiva, Luis Alberto Rodrigues, Victor Matheus;
“Gaúcho”, Ernani “Toscana”; Breno Custódio, Horicam Vítor, Taiane Abreu, Gabriela



Corassa, Matheus Cordeiro, Rafael Melo, Guilherme Lawall, Felipe Passos.

2009: Khiara Dias, Jéssica Ferreira, Gabriel Tamiozzo, Rodrigo Gonçalves, Thiago
Dias, Rafael Alves, Matheus Camelier, Alisson Vinci, Yago Sávio, Moisés Paiva, Felipe
Guilherme, Luiz Sampaio, Jônatas Cocentino, Fernando Fellows, Larissa Sousa, Bruna
Macêdo, Carine Bastos, Dállety Kathleen, João Wesley, Talita Mariáh, Renata Visoná,
Gabriella Andrade, Mateus Reis, Ariel Angel, Marina Barbosa, Thuany Danielle, Evelyne
Malta, Esther Birenbaum, Igor Martins, Ananda Gonçalves, Douglas Wallyson, Leonardo
Nascimento, Milena Coelho, Thaís Oliveira, Rafael Saldanha, Arthur Arrelaro, Helam
Sobrinho, Esdras Aristides, Isabela Mainieri, Victor Hugo Rosa, Narrara Santos.

2010: Wanderson Barbosa, Matheus Gonçalves, Christian Maciel, João Zago,
Sérgio Thadeu, Anieli Monteiro, Bruna Mendes, Bruna Lima, Ana Seganfredo, Letícia
Spezani, Gabriela Ferraz, André Rabelo, Vanessa Rodrigues, Nathália Zelaya, Dáletty,
Laíssa Verônica, Ana Cristina, Débora Azevedo, Marcus Carvalho, Diogo Queiroz, Kally-
cia Bose, Pâmella Duarte, Gemine Costa, Hiziane Ferreira, Fernando Aquino, Juliano
Sant’Anna, Felipe Henrique, Arthur Monteiro, João Paulo Szerwinski, Pedro Barcelos
Ariel Angel, Carlos Melo, Isabella Soares, Juliano Sant’Anna, Khiara Dias, Marina Bar-
bosa, Patrícia Leal, Samuel Pimenta, Tainá Fernandes, Thaís Oliveira, Bárbara Costa,
Marlos Chaves, Thomaz Gontigio, Roberta Madeiro, Bruna Guedes, Marcus Xavier,
Daniela Carvalho, Alexandre Lenza.

I thank all friends and colleagues from the Exatas prep school, which I attended be-
tween 2008 and 2010: Marília Morais, Caio Ninaut, Jennifer Cavalcante, Artur Koberlus,
Iohan Struck, Victor Camargo, Pedro Ubatan, Filipe Caldas, Ivy Caldas, Leandro Benetti,
Daniella Valentim, Brenda Natália, Mariana Ramalho, Natália Huang, Gisele Spindola,
Evelyn Dias, Tatiana Rodrigues, Isabela Resende, Érika Saman, Raquel C., Amanda
Queiroz, Felipe Nery, Sandy Gonçalves, Saulo Kaminski, Maria Elizabeth, Raquel M.,
Breno, Rita, Raíza, Geovana, Kira, Mariana S., Tâmara, Anderson Dogoby, Layanne,
Nudina, Isadora, Hércules, Gabriel C., Amanda M.C., Lucas Nicotti. The prep course
was a big part of my routine before the great entrance exam, for a quite long time I
thought contemporary colleagues as competitors or even “enemies” in a way. Life always
teaches you in the best manner, and I’m grateful for my failure in 2010/2, a defeat that
ultimately was a huge victory, for it has shown me that I has my true “competitor”;
instead of thinking of surpassing the others, the right way was to improve myself, do my
best, be humble and to always respect all others. It was a harsh lesson, but it was vital
for my personal maturation. However, even in my “competition era” I made really good
friends with whom I had nice experiences and a lot of fun. Although I was never a true
fan of the “stand-up comedy way of teaching” commonly seen in prep school classes, I
did incorporate a lot of this side in my own teaching style; even in the most serious of
occasions, a nice (and smart!) joke can help as much as the best possible conceptual



explanation.

I thank all drivers and colleagues that shared rides with me during the everyday
transportation to school: Hamilton, Leila, João Wesley, Loyanne, Débora, Gabriel Fer-
nandes, Ana Luísa, Joyce, Luan Gomes, Anderson Luan, Adriana, Lucas Silva, Jonathan,
Yasmim Aymé, Matheus, Nathália Zelaya, Natalia Marion, Sérgio Thadeu, Luiz, Viviane,
Daniella, Carlos Eduardo, Ricardo Vieira, João Rubens, Ezgui Savaş, Igor Costa, Roberta
Câmara, Aloma, Higor, Caio Augusto, Gabriel Rico, Eduarda Rollemberg, Bruno Mar-
tino, Bárbara Martino; Carlos Araújo, Vinícius Silveira, Talita Oliveira, Eglay Moreno,
Gabriel, José Paulo, Bruna Póvoa, Inácio Rodrigues, Thaynara, Leonardo, Thamires,
Samara, Carolina Faria, Bárbara Fernanda, Jéssica Ximenis, Jéssica Oliveira, Jade, Yasser
Abdallah, Williane Ferreira; Cristiane, Raimundo, Ailton, Adilson, Álvaro Pagé, Robson,
and Zezinho. Even though the musical taste ranged from bad to unbearable at most
times, the comes and goes were full of random and fun stories that I keep with great
affection; even the most ridiculously awful lyrics often awaken the nostalgia in me when
I come to listen to them again.

For the friends and colleagues at Wizard/Guará II, in which I spent two and a
half years learning French: Teachers Cláudia Lima, Ivana, Hugo, and Eduardo; João
“Luanda” Baldaia, Liszt Baldaia, Jade Petersen, Yuri, Ruth, Juliano, Marcelo, Eduardo,
Leonardo, Bruno, Thaynara. Most of our acquaintanceship was based on playing online
games, movies, and useless kid-matter conversations, but isn’t that also just a part of
life... Je suis aussi reconnaissant par tous ça, vous m’avez donné beaucoup de raisons par
me rappeller de ces experiences avec un sourire.

For the friends and colleagues from the Speedcubing world: Rafael Cinoto, Carlos
Alcântara, Caio Lafetá, Marília Lafetá, Gabriel Bucsan, Pedro Guimarães, Rinaldo Pitzer,
Alysson Dias, Ânia Gomes, Éder dos Santos, Rafael Sekia, João Pedro Batista, Wesley
Dias, Diego Meneghetti, Renan Cerpe, Marcella Queiroz, Yuri Vasconcelos, Igor Butter,
Pedro Roque, Fábio Bini, Israel Machado, Alaor Reis, and Arthur Arrelaro. Speedcubing
was important to develop some of my motor coordination, which was always one of my
main weaknesses, I especially thank Gabriel Tamiozzo for having taught me this “way to
stimulate cognitive reasoning in an entertained manner”, I’m kinda proud to have helped
spread this “addiction” at the school to fairly “pandemic” levels in 2009... I will probably
never find enough time to practice to the same “freakish levels” of high school, but I will
certainly carry this as a hobby, alongside all the memories associated with this activity.

I would like to thank many people that composed a part of my life in various
circumstances: Gabriel Túlio, Rafael Seixas, Artur, Renan, Alex, Felipe, Victor Squilli,
Vinícius Lino, Francisco, Leo, Mateus, Humberto Conrado, Santiago Maria, Jean Guil-
herme, Gabriel B., Luiz O., Bruno F., Moisés C., Adriano, Andrey, Eduardo, Carlos, Max,
Kaleb Kuya, Coach Marcos, Penha, Gabriel, Caio, Kim, Victor, Lucas, and Coach Capela;



Camila, Arthur, Matheus T., Wesley P., Paulo Marion, Robson, Rafael Ávila, Keoma,
Ulisses, Any, Thiago, Flávia, Chelsea, Juscelino, Marilda, Raimundo, Alexandre, Simão
Pedro, Vanair, Pedro Of., Lucimara, Luci, Rosângela, Antônio T. (in memoriam), Édio,
Rosilene, João Ricardo, Fábio, Lúcio, Carla, Cláudio, Lúcia, Rodolfo, Jéssica, Pietro,
Alessandra, Michelle, Larissa, Helliane, Naiara, Pedro, Arthur, Felipe, Fernanda, Marcela
, Alan Régis, Édipo Consoli , Rosângela, Gal, Elmo, Conceição, Francisca, Matias, Lau-
rindo Teixeira, Cida, Gleuton, “Bicho”, Kaynan, Maurício, Paula, Gabriel A., Gabriel
C., Brenda, and Kim; Suami, Felipe, Evandro, Evandro Jr., Jane, Edna, Luiz Ambrósio,
Ferreira, Vivinane, Victor Hugo, Max George, Tiago Correia, Roger, William, Rebecca,
Juan, John, Eric, Luiz Carlos, Adriano, Alessandra, Manuel Cruz e Sousa, Alessandra,
Marcus, Samantha, Yuri, Marilúcia, Byron (in memoriam), Derby, João Pedro, Glória,
Carolina, Diego, Thiago, Vladimir, Miriam, Valmir, Arivaldo, Mariângela, Gisela, Julita
K., Juçara, Vera, José Vaz, Edson, Nilza, Tiago M., Heloísa, and Lenita; Jorge Massabane
(in memoriam), Edna, Anderson, Norma, Esther, Milton, Luiz Carlos, Marcos P., Mar-
cos J., Marcos K., Magda, Aristos, Vanessa, Paulo, Robertson, Silvio, Elaine, Caio, Nair,
Benedito, Timóteo, Manuela, Augusto Flumm, Marcos Nezão, Teresa R., Ricardo, Lu-
ciana, J., J. Jr., Paulo Vianna, Herenice, Otaviano, Elizabeth, Tereza, Marisa, Jônatas,
Minami, Evaldo, Berenice, Marcus F., Ângela, Gilmar, Sueli, Lincoln, Priscilla, Isân-
gelo, Isandson, Marcos R., Cleide, Michelle, Andressa, Rubens G., Stella (in memoriam),
Wellington M., Uébio, Beto Burgos, Marta, Jonas, Romário, Inocêncio (in memoriam),
Márcia, Gildo, Mônica, Faustino, Cristiane, Thiago, Silas, Ari, Vera, Thierry, Vitória. A
man should never forget his origins, I had memorable moments with all of you, some joyful
and entertaining, some bitter and painful; nonetheless, regardless of the motivations or
the implications, those moments defined me, and for that I surely recall all of them with
great satisfaction.

As a scientist, I realized that science alone doesn’t make you a better person,
nor build a better world. The greatest scientific discoveries can bring forth the worst
calamities when combined with bad intentions. All systems converge to an equilibrium,
nature’s wisdom is far greater than men’s. What goes around comes around: cliche as it
might sound, understanding this is quite a shortcut to conquer a lot of things.

What good are technicality and precision if one achieves them after losing the
essence that defines his existence... Sometimes small things are the key to make a better
world. Desires tend to infinity, so they are unachievable by definition; perhaps “happiness”
is to have the courage to say “That’s enough” and learn to be grateful to all apparent
imperfections.

Be happy, and don’t lose yourself. That basically wraps it up for me. I can’t think
of anything better I could give to someone, so I hope this little “abstract” can make your
future better somehow.



Abstract

This thesis discusses the emergence of Big Data and machine learning and
their applications in various aspects of Business Administration, emphasizing the
methodological contributions of this inductive-based paradigm in finance and the
improvements of this approach over econometric tools and traditionally well estab-
lished methods of data analysis. The statistical foundations of machine learning
are introduced and the challenges of high-dimensionality in finance problems are
analyzed, including the practical implications of nonlinearity incorporation, reg-
ularization of the additional complexity level and forecasting for high-frequency
data. Finally, three empirical applications are proposed, concerning respectively on
volatility forecasting, portfolio allocation, and stock price direction prediction; in
those applications, different machine learning models are explored, and the insights
from the results were discussed in light of both the finance theory and the empirical
evidences.
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Resumo

A presente tese discute a emergência do Big Data e do aprendizado de
máquinas em vários aspectos da administração de empresas, enfatizando as con-
tribuições metodológicas deste paradigma baseado no raciocínio indutivo em fi-
nanças e os benefícios desta abordagem em relação a ferramentas econométricas e
métodos tradicionais de análise de dados. Os fundamentos estatísticos do apren-
dizado de máquina são introduzidos e os desafios da alta dimensionalidade em prob-
lemas financeiros são analisados, incluindo as implicações práticas da incorporação
de não-linearidades, a regularização do nível de complexidade adicional e a previsão
em dados de alta frequência. Finalmente, três aplicações empíricas foram propostas,
relativas, respectivamente, à previsão de volatilidade, à alocação de portfólio e à pre-
visão da direção do preço de ações; Nessas aplicações, diferentes modelos de apren-
dizado de máquina foram explorados, e os insights dos resultados foram discutidos
à luz da teoria financeira e das evidências empíricas.

Palavras-chave: Aprendizado de máquinas; Complexidade; Não-linearidade; Dilema
viés-variância; Finanças.
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1 Introduction: Big Data and machine learn-
ing in business administration

Mankind has always been searching for answers to explain the unknown and to
understand the purpose of his existence: throughout the history, people have been listing
unsolved questions and analyzing evidences collected from empirical observations, orga-
nizing and processing those “data” with both logic and intuition and ultimately using
them to make assumptions and formalize theories trying to explain the world and the
society, as well as the role of the individuals that compose them. Therefore, the concept
of taking data to propose solutions is not at all new. However, the development of tech-
nologies and the “speeding-up” of the everyday human routine led to an abundance of
data without precedents, which culminated in the so-called “Big Data era”.

Data has become “Big” in many different ways: data are increasingly “taller”,
as the number of observations stored in databases grows as more and more people get
connected to online services and social media; analogously, data are increasingly “fatter”,
as the number of features associated to each individual also grows due to the aforemen-
tioned integration of sources of information; finally, data are increasingly “faster”, as the
spreading of breaking news and oscillations of financial indicators can already trigger sig-
nificant social and economic implications faster than a person can even react to those
updates. Concerning the pillars that constitute what is Big Data, White (2012) defined
five dimensions: besides the volume of the data, the information come in a big variety
of forms and sources, are transmitted in a high velocity, have the potential to generate
business value, and come in uncertain degrees of quality and veracity.

The very existence of more abundant information in all those “dimensions” allows
scientific researchers from various knowledge fields to tackle existing problems from dif-
ferent perspectives, to propose new models based on variables that were previously not
available, to develop new analytical tools and methods of data analysis to cope with the
larger complexity in the data, as well as to pose new questions based on new insights
derived from the analysis of this “bigger data”. As pointed out by the work of Sivarajah
et al. (2017), there is an increasing interest of both scholars and market practitioners for
using Big Data Analytics as a tool to aid strategical decision-making, by boosting the
operational efficiency and assuring competitive advantages in the market. Furthermore,
the paper performed a systematic literature review mapping relevant publications about
the implementation of different types of Big Data solutions for organizations, discussing
their contributions – both academic and empirical – to the use of these novel technologies
in managing organizational resources.



Chapter 1. Introduction: Big Data and machine learning in business administration 30

While the availability of massive data opens up new possibilities for scientific
inquiries, the real challenge is to extract the relevant information out of the “pile of data”
and convert them to useful outputs to be used to knowledge construction, to propose
solutions to relevant problems, and to aid real-world decision-making. For instance, the
paper of Gandomi and Haider (2015) discussed the dominance of unstructured data over
structured ones, as the vast majority of data come in videos, audios, and texts that are
not “tidy”, thus demanding not only an initial work of cleaning the data but also a wide
set of statistical tools to extract non-spurious relationships and efficient computational
algorithms to analyze them in a feasible time.

Similarly, based on case studies and a systematic literature review, Wamba et al.
(2015) proposed a general categorization of the role of Big Data in generating business
value, summarized into five broad dimensions: 1) Transparency creation; 2) Experimen-
tation enabling to improve performance; 3) Population segmenting; 4) Full or partial
automation of human decision-making; and 5) Innovation of business models and ser-
vices. Moreover, the authors listed issues related to the business value enabled by the
presence and development of Big Data, indicating that the access to data and the intro-
duction of new techniques and technologies are the most debated issues in recent scientific
productions.

As discussed in Boyd and Crawford (2012)’s work, “With Big Data, comes Big
Responsability”. Alongside the abundance of data, the ethical implications of using them
also come into account, as well as the implications of the widespread integration between
different sources of information in the formation of a potential new digital divide defined
between the availability of big data and the scarcity of the agents who actually have
access to them. In this sense, Big Data presents itself as more than a series of technical
advancements, thus being a broader social phenomenon instead. Foster et al. (2016)’s
work also discuss the implications of data errors in the conclusion drawn by analyzing
them, emphasizing thus the importance of recognizing the limits of Big Data tools when
applied to real world problems, specially in social sciences. In this sense, the artificial
“intelligence” cannot fully replace the human intelligence, serving as a complement of it
instead.

The intersection of statistics, computation, and social sciences – often jointly
known as “data science” – has been consistently growing, and this trend is also seen in
various spheres of the organizational environment (CHEN; CHIANG; STOREY, 2012).
As pointed out by the paper of Sagiroglu and Sinanc (2013), the application of data
science to corporative problems can lead to advantages over competing firms but also
demands more sophisticated solutions for the storage and the analysis of the data, as well
as challenges about information privacy and business ethics. The work of Brynjolfsson
and McAfee (2011) also addresses the integration between data science and businesses,
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and in which sense nowadays organizations have a unprecedented opportunity to accu-
rately measure the profiles of their customers and make experiments using those data with
machine learning algorithms to make innovations over existing technologies and improve
their services and relationship with their clients.

About the emergence novel technologies and the escalating complexity of the in-
teractions between the data, Wang et al. (2018)’s paper briefly describes the evolution
of technology and the gradual paradigm shift of its role in the society, conceptualizing
the idea of a “parallel society” – also called Society 5.0 – as a subsequent step of the
“network society” and a transition to a “Cyber-Physical Social System”, in which the
social connections would be managed by knowledge automation.

Concerning the automation of tasks and the potential replacement of human work-
ers by machines or automatons, the book of Brynjolfsson and McAfee (2014) argue that
the technologies that arose in the past decades is already enough to actually execute many
tasks as good as a human would do, and pointed the implications of this trend to the
economy and social welfare. As estimated by Frey and Osborne (2017)’s research, in the
next years the technologies that will become available can make nearly half of the jobs
in the United States to be automated; other works like Frey et al. (2016) and Bosch,
Pagés and Ripani (2018) reached similar conclusions, reporting estimated percentages of
automation as high as 85% for developing countries with less diversified economies like
Ethiopia and Guatemala. Indeed, the results are consistent with the findings of Arntz,
Gregory and Zierahn (2016), which analyzed the automation risk for 21 OECD countries
and reported that workers with larger educational levels and jobs that demand higher
technical qualifications were less prone to automation, although many occupations and
the labor market itself would likely to undergo deep transformations with the presence of
robots and automatons performing not only repetitive and non-cognitive tasks, but also
showing the potential to “learn” new knowledge and provide analytical insights based on
the experience gained from the received data.

Regarding the limits of “artificial intelligence” in scientific discoveries and the
role of human researchers in a “algorithmic era”, Titiunik (2015)’s work states that the
availability of a larger volume of data alone is not able to induce a paradigm shift in causal
inference inquiries; instead, the previously established theoretical background is essential
to make sense into the results “mined” from the Big Data, as well as adequately-planned
research designs to draw valid conclusions out of the empirical evidences. As affirmed by
the author: “There are no algorithmic or automatic shortcuts to scientific discovery. In
fact, the need for critical thinking will be stronger the more we become inundated with
ever-larger amounts of new information”.

In this sense, the rise of “Big Data” and the prominence of machine learning meth-
ods have the potential to reshape the modus operandi of the scientific research itself. As
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pointed out in the paper of Gelman et al. (2011), while the deductive approach focuses
on testing a previously established theoretical framework, the inductive approach focuses
on updating those theories after observing potentially new patterns from the data. Given
the flexibility of machine learning techniques regarding assumptions like the functional
form of the models and data distribution, they fall into the second category and aim
to extract patterns from the massive volume of “Big” data available that might have
gone unnoticed under a more restrictive model structure. The paper of George, Haas
and Pentland (2014) discuss the implications of using the patterns extracted from the
“big data” to explore causal relationships, reaffirming the validity of using the inductive
paradigm to complement existing theoretical constructs – built with under a deductive
approach – through the empirical experiments. Moreover, the authors emphasized that
the presence of many sources of unstructured data opens a very wide spectrum of plau-
sible interpretations and subsequent causal explanations between the variables, arguing
that this plurality reinforces the importance of both previously established theories and
evidences collected from new observations that test the theoretical assumptions in the
empirical realm.

Therefore, the inductive approach can identify patterns that can ultimately be
used to improve gaps that the deductive theories fail to explain, consequently allowing to
build better theories that will then be retested with new data, and so on. The influences
of the boosting of computational power in statistical findings and causal inferences are
discussed in Efron and Hastie (2016)’s research, which stated that the use of inductive
tools – such as machine learning algorithms – in scientific inquiry represent not only a
paradigm shift towards a broader way to solve the proposed research question but also
an analytical framework that allows breaking assumptions that do not necessarily hold
in real-world data, and potentially “discover” recurrent patterns and stylized facts whose
causal explanations go beyond the scope of existing theories.

Concerning the use of Big Data to generate value for firms and organizations,
Günther et al. (2017)’s job argue that while breakthrough advancements have taken place
in the last few years in data mining and business intelligence solutions, the organizations
have not yet adapted themselves to those transformations in various levels of analysis not
limited to the debate of the interactions between human and artificial intelligences, but
also regarding organizational business models, access control of the data and the trade-off
between value generation and negative social externalities. The authors then proposed
an integrated model for value realization with big data influenced by the portability
(possibility of transferring and applying data) and the interconnectivity (possibility of
integrating many data sources into a common structured framework). Indeed, machine
learning algorithms can be applied to a wide scope within business administration, not
only in the sense of solving problems efficiently and providing support for decision-making,
but also as a mechanism to deal with challenges that arise with Big Data by adapting
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to them, transforming the organizational environment and actively building competitive
advantage, as summarized in the sections below:

1.1 Big Data and machine learning in public administration
As stated by the work of Lavertu (2016), public administration is rapidly trans-

forming as a consequence of the speeding-up and scaling-up of data collection and analysis,
which the author calls a “Big Data revolution” that brought alongside it both opportuni-
ties of improvement and risks for the management and evaluation of public programs and
policies, as the intensified dissemination of high granularity data allowed external actors
– often with little project-specific expertise – to influence the policy evaluation process,
which can, in turn, deviate the priority of active government actions into costly and non-
efficient decisions. Analyzing recent data from primary and secondary education from the
United States, the study concluded that the improvement of governance is essential to
cope with the rapidly increasing use of Big Data in public organizations.

Chen and Hsieh (2014)’s paper also pointed out that Big Data represents one of
the most prominent challenges for governments in the digital era, analyzing its poten-
tial to promote efficient utilization of information and communication technologies, as
well as improving online public services, ideally towards personalization according to the
profile of the receiving citizen. Besides, the study made a case study of a Big Data im-
plementation initiative in Taiwan summarizing the key challenges in data management,
emphasizing the need of a solid, stakeholder-focused and performance-oriented governance
structure, as well as the assurance of digital privacy and security. Practical applications
include Marzagão (2015), which developed an app that uses natural language processing
to classify products purchased by the Brazilian government into classes taking the prod-
ucts’ description as input data, intending to reduce misclassification and subsequent bad
spending of the public budget.

A common challenge in public policy evaluation is to estimate the so-called “treat-
ment effect” of a government intervention in those who actually received it, and compare
this effect to its counterfactual – what would the outcomes be if those same observa-
tions had not received the treatment, such as a social assistance or a healthcare program.
Regarding this kind of problems, the report of Athey (2015) pointed out that methods
of supervised machine learning can be useful to analyze not only the relationship of the
outcomes with features held cœteris paribus when the intervention takes place, but also
the variation of the causal effects on different settings of those features. The same author,
in Athey et al. (2019), also proposed a similar method for estimating the counterfactual
values of outcomes for the treatment group for a panel data setting.

A synthesis of the value of Big Data and machine learning for governments – and
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how this value can be propagated for businesses and scholars – can be found in the work
Kim, Trimi and Chung (2014), which discussed the possibility of converting both struc-
tures databases and unstructured data into projects and solutions that may lead to better
wealth distribution, enhance the operational efficiency and the budget transparency, or
even boost the engagement of citizens on the country’s economic performance and na-
tional security. A similar debate can be found in Desouza and Jacob (2017)’s paper,
which drew insights about decision-making in public administration based on interviews
performed to public sector Chief Information Officers from federal, state and local levels
of the United States regarding the planning, the execution, and the implementation of
public sector Big Data projects. A broad discussion of the use of Big Data in the public
sector, as well as its potential benefits and costs, is present in Maciejewski (2017)’s work,
which presented cases and feasible applications in policy design and in public internal
management.

1.2 Big Data and machine learning in marketing
Erevelles, Fukawa and Swayne (2016)’s paper analyzed the transformation of mar-

keting with Big Data, from its collection and storage to its conversion into patterns and
consumer insights, and finally being actively used to boost organizational capabilities and
generate competitive impacts. Furthermore, basing the analysis on resource-based the-
ory, the authors argued that in the digital era, firms tend to benefit more from inductive
reasoning than from deductive reasoning, such that Big Data and radical innovation like
the adoption of machine learning can be used to create value and competitive advantage.
Finally, the paper concludes that one of the core factors to truly make the most of Big
Data is the creative intensity, in the sense of converting the available technologies to so-
lutions that meet the demands of this new era. Ethical implications of the usage of Big
Data – such as privacy incursions in recommender systems and invasive marketing – are
discussed in works like Boyd and Crawford (2012).

The research of Glass and Callahan (2014) discussed the implications of Big Data
and digital marketing in corporate strategies and organizational competitiveness, ana-
lyzing case studies and listing future trends in marketing management considering the
multiple sources through which a potential customer may interact with an organization
brand with the emergence of Big Data, new technologies and overlapping social networks.
Indeed, machine learning models can provide valuable inputs for research agendas such as
neuromarketing: the use of neuroimaging in marketing and business can be seen in works
like Ariely and Berns (2010), while machine learning methods like convolutional neural
networks have already achieved solid advancements in image recognition and pattern ex-
traction; in this sense, a joint analysis of a customer’s visual activity and its purchase
profile can aid corporate managers in issues such as product placement, publicity planning,
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and personalized marketing campaigns.

The abundance of geospatial data and the prospects of using them in manage-
ment are debated in Karimi (2014)’s article, exploring technical issues in geospatial data
collection and innovative solutions such as geo-crowdsourcing, as well as applications in
business analytics and social media management. A branch named geomarketing com-
bine the geospatial dimension in to the models, allowing to build decision support systems
that may help a manager to geographically allocate franchises in a way that maximizes
the potential economic payoff taking into account features such as overall income level
and consumption patterns, aiming a more directed impact over a target public that is
compatible to the goals of the organization. Recent applications that combined machine
learning methods with geospatial analysis in management sciences include Oliveira (2016)
and Padula et al. (2017).

1.3 Big Data and machine learning in logistics and supply chain
management
The paper by Waller and Fawcett (2013) examined the bridges between supply

chain management with data science, predictive analytics, and Big Data, reinforcing the
increasing popularity of this intersection and listing a set of desirable quantitative skills
and theoretical background to not only tackle challenging research questions, but also be-
ing able to convert them into intelligible courses of action for managers and implementable
tools to improve management performance. The study also listed potential applications of
Big Data in logistics regarding issues like inventory management, determination of opti-
mal routes, and sentiment analysis; moreover, the authors exemplified research questions
relevant to supply chain management grounded on many classic management theories,
such as contingency theory, agency theory, and institutional theory.

As stated in Wang et al. (2016a)’s article, machine learning can provide deeper
insights concerning market trends and consumption patterns, being applicable as well to
efficiently manage maintenance cycles and minimize costs in operations management. The
authors indicated that Big Data Analytics can be not only descriptive or predictive, but
also prescriptive in the sense of being able to impact different capability levels of supply
chain management, such as the process efficiency and processing speed. A compendium
of techniques to collect, disseminate and analyze Big Data in logistics and supply chain
management was listed and defined as a set of strategic assets that can be integrated
across different business activities.

Gunasekaran et al. (2017)’s paper investigated the impact of the assimilation of
Big Data and predictive analytics on supply chain and organizational performances based
on a resource-based view: “assimilation” of said Big Data tools were defined as a poste-
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rior step of acceptance and routinization, influenced by the resources – sharing and the
connectivity of tha information. The results showed a positive cycle between Big Data
Analytics acceptance and the resources, mediated by the commitment of the top manage-
ment, an effect that spreads positively to supply chain and organizational performances.
An application can be seen in the work of Zhong et al. (2015), in which authors pro-
posed a data warehouse of data enabled by radio frequency identification, coupled with
a dimensionality reduction framework, to determine spatio-temporal logistic paths whose
efficiencies are quantitatively measurable; the authors then discussed the potential usage
of this “holistic Big Data approach” in the planning and scheduling of a firm’s logistic
operations, as well as many managerial implications of its implementation.

1.4 Big Data and machine learning in human resources manage-
ment
Bearing in mind the relevance of extracting knowledge from Human Resource

data, Ranjan, Goyal and Ahson (2008)’s work address the importance of data mining
methods and techniques in Human Resource Management Systems, and in which ex-
tent those methods can determine the company’s competitive position and organizational
culture. The authors presented many potential applications of machine learning in find-
ing measurable patterns for human resources management, including: classification of
best résumés in recruiting processes, identification of employees with top performance or
higher probability of leaving, identification of groups of attrition, predicting the behavior
or attitude of the workers, finding the best designation of tasks to a group of employees,
amongst many others. Therefore, the paper shows that data from human resources are
still under-explored, whilst the application of data mining algorithms have the poten-
tial to not only improve the quality of the decision-making process, but also convert the
data into increased performance, satisfaction at work, and competitive advantage for the
organization.

In light of the development of technologies and the potential of jobs automation,
the research of Davenport (2014) analyzed the transformations on the relationship between
the workers and those technologies, as well as a broader discussion concerning the nature
of the jobs and the role of organizations in this new era. A similar discussion can be
found in Veloso et al. (2018)’s manuscript, which analyzed the perceptions of Brazilian
management students about pressure from new technologies on their career perspectives,
as well as the adoption of new technologies (such as social networks) on learning and
working environments. The paper concluded that the incorporation of new technologies
induce a heterogeneous perception depending on the nature of the work and the tasks
involved, with professionals on operational positions feeling more pressured than ones in
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management positions, emphasizing thus the lesser risks of automation for tasks that are
intensive in cognition and latent factors such as charisma, sensibility, and leadership.

Hecklau et al. (2016)’s work also investigates the effects of technologies of Industry
4.0 in redefining competences demanded by organizations and the need for new strategic
approaches for human resource management. Specifically for manufacturing companies,
the automation trend for simpler and more repetitive tasks projects an increase of more
complex workspaces, thus demanding higher levels of technical qualification of the em-
ployees; in this sense, the paper presents the challenge of tuning the workers’ qualifications
to make them able to execute more sophisticated processes and to ensure the retention
of jobs in a rapidly changing labor market. Recent studies that analyzed the shifting of
jobs towards competencies that are less likely to be automated include Bosch, Pagés and
Ripani (2018) and Albuquerque et al. (2019).

1.5 Big Data and machine learning in business innovation
Viewing the Big Data era as a interlacement of connections between machines in

a growing collaborative community, the study of Lee, Kao and Yang (2014) discussed
the need of innovation and transformation in traditional manufacturing services, espe-
cially concerning the development of scalable computational tools to manage the massive
information that flow in and to convert the data into assets that help to manage uncer-
tainties and provide more robust decisions. The authors classified automation-centered
manufacturing system and service innovations are “inevitable trends and challenges for
manufacturing industries”, thus being key elements for productivity and transparency
for organizations immersed in this new reality. Gobble (2013)’s paper made a similar
diagnosis, emphasizing the rapid acceleration of data volume over an already frenetic
pace.

The work of Huda et al. (2018) addressed the swift evolution of information and
communication technology in recent years and the use of Big Data and digital devices
like tablets and smartphones in educational applications, for both teachers and students,
encouraging a design thinking for innovative ways of virtual learning; moreover, the au-
thors indicated a promising research agenda concerning the possibility of integrate Big
Data concepts and methods into online learning, allowing the personalizing of pedagogical
strategies for each student based on their Internet behavior and preferences, which can
be achieved using machine learning algorithms like clustering, natural language process-
ing and sentiment analysis to potentially enhance the students’ performance and overall
development.

As discussed in Carayannis, Sindakis and Walter (2015)’s research, the configura-
tion of the business models is a key feature that define corporate strategies, as well as their
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understanding and implementation, both within an organization and between them in the
market. In this sense, business model innovation can induce effects such as governance
efficacy organizational sustainability. In this sense, the investigations reported by Sorescu
(2017) pointed out the prominence of business model innovation over product innovation
in the Big Data era, as seen from the practical experience of many successful startups
over the recent years, addressing the ways in which organizations can leverage highly
connected information networks – regarding both internal and external data sources –
to innovate over their business models; in special, a business model innovation does not
necessarily have to be radical or disruptive, even it actually manages to generate a high
amount of value.

Similarly, the study Schüritz and Satzger (2016) proposed a framework of “data-
driven business model” focused on Big Data and Analytics and the ways an organization
can transform itself to get inserted into this new paradigm. The paper states that the
integration of Big Data into the organizational decision-making process opens up a wide
range of transformation prospects for business models. instead of restraining into mere
tools to solve specific problems. The study identified five different patterns in which Big
data can modify the business model, and based on a sample of 115 cases of companies
that publicly stated the usage of Big Data Analytics solutions, the paper concluded that a
“New Data-Infused business model” provides an innovative architecture with a potential
driving force for not only value creation, but also value capturing and value proposition.
Whilst this new paradigm is still scarce in corporate environments, the study reinforces
the potential of Big Data and the necessity of going beyond of simply collecting the data,
but also being able to identify opportunities of using them and actually converting the
models and algorithms into feasible revenue boosts for the company.

1.6 Big Data and machine learning in finance
Forecasting is a relevant issue in finance. Along many years of empirical verifica-

tion, numerous scientific works have identified some patterns that occur consistently with
financial data, patterns commonly known as “stylized facts”, as summarized in works
like (CONT, 2001). Those stylized facts show that financial time series exhibit, amongst
other behaviors, non-stationarity of the prices over time, non-constant conditional vari-
ance, clustering volatility (i.e.: Periods of high volatility tend to also be followed by
high volatility, and the same for low volatility periods), data not following a Gaussian
distribution, etc. Therefore, the search for better forecasting tools for financial data has
remained a prominent research agenda, yielding a high number of scientific productions
proposing many different approaches for obtaining the best prediction based on a given
sample data. Machine learning techniques fall in as one of those approaches: its use
has been consistently increasing over the recent years, motivated not only by the good



Chapter 1. Introduction: Big Data and machine learning in business administration 39

out-of-sample forecasting performance but also representing an emergent paradigm with
potential to bring new critical reflections over many well-established results in financial
theory.

For instance, one of the most well-known postulates in finance is the efficient
markets hypothesis, introduced by Fama (1970)’s paper, which states basically that the
price levels of financial assets tend to the equilibrium in which there is no optimal trading
strategy that can systematically beat the market; the market eventually converges to the
equilibrium price level that may incorporate the information of past data (“weak-form”),
all publicly available data (“semi-strong-form”) or even the inside information (“strong-
form”). Nonetheless, studies like Gerlein et al. (2016) and Ramakrishnan et al. (2017)
present empirical evidence that the use of machine learning techniques in financial trading
decisions can yield out-of-sample predictions capable of “beating the market” for a wide
set of market segments and training periods.

In special, one key feature of this class of models is their ability to introduce a
high degree of nonlinearities into the explanatory variables. For instance, a widely used
algorithm called “Support Vector Machines” (introduced by Cortes and Vapnik (1995)’s
research) can cope with nonlinear interactions by means of a Kernel function, which
can actually map the original data into an infinite-dimensional feature space with a small
number of parameters.1 The advantages of nonlinear relationships for financial forecasting
is discussed in the work of Hsu et al. (2016) and will be further and accordingly explored
in posterior sections.

The article Varian (2014) categorized data analysis in econometrics into four main
steps: prediction, summarization, estimation, and hypothesis testing – and argued that
while traditional econometric tools focus on the economic significance of the statistical
estimates, aiming to identify potential causality relationships, machine learning meth-
ods provide better ways to predict and to generalize. In this sense, the development of
the computational power can aid economists and social scientists in general to extract
knowledge from non-intuitive relationships that may not appear when considering models
structures that are easy to interpret; in fact, the paper presented a simple example show-
ing that even simple machine learning models like the decision trees are able to easily
introduce nonlinearities that models like logistic regression fail to capture.

Nevertheless, a major setback in introducing nonlinearities is to keep them un-
der control, as they tend to significantly boost the model’s complexity, both in terms
of theoretical implications and computational power needed to actually perform the cal-
culations. Nonlinear interactions, besides often being difficult to interpret, may bring
alongside them, apart from a potential better explanatory power, a big amount of noisy
information – i.e., a increase in complexity that is not compensated by better forecasts or
1 For technical details, see Schölkopf and Smola (2002)’s book.
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theoretical insights, but instead “pollutes” the model by filling it with potentially useless
data.

Bearing in mind this setback, the presence of regularization is essential to cope
with the complexity levels that come along with high dimensionality and nonlinear inter-
actions, especially in financial applications, in which the data-generating processes tend
to be highly chaotic. While it is important to introduce new sources of potentially useful
information by boosting the model’s complexity, being able to filter those information,
discard the noises and maintain only the “good” information is a big and relevant chal-
lenge. Works like the one from Massara, Matteo and Aste (2016) discuss the importance
of scalability and information filtering in light of the advent of the “Big Data Era”, in
which the boost of data availability and abundance leads to the need to efficiently use
those data and filter out the redundant ones.

Finally, this thesis addresses the implications of a high dimensionality not only
“by columns”, in form of nonlinear decision functions, by “by rows” as well, which would
be translated into the use of high frequency data in financial applications. While this ap-
proach is not particularly new, combining machine learning and regularization methods
with the analysis of the behavior of financial time series in smaller time frequencies can
reveal patterns that would not emerge in low frequency data, allowing a further under-
standing of the complexity, the degree of “chaos” and potential predictability of financial
phenomena.

In light of the relevance of the discussed topics, this thesis analyzed the rela-
tionships between the use of machine learning methods in finance, the importance of
introducing new orders of complexity into the predictive models and being able to keep
them under control. Specifically, applications and the potential advantages of the use
of nonlinear interaction between the predictors and high frequency data in finance stud-
ies are presented; the mathematical foundations behind the bias-variance dilemma and
insights from chaos theory and econophysics are also discussed. A broad discussion con-
cerning the statistical implications of complexity and a literature review of recent works
who dealt with high dimensionality in financial applications are displayed in chapter 2.
Moreover, three applications are proposed in chapters 3, 4 and 5, concerning respectively:
1) volatility forecasting for traditional currencies and cryptocurrencies and their behavior
in low and high frequencies; 2) the effects of noise filtering in portfolio selection; and 3)
the impacts of feature selection in stock price prediction. For each application, the the-
oretical background were discussed based on the specialized literature and the methods
applied on the empirical analysis were separately structured.
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2 Complexity, regularization and machine
learning: Challenges of high dimensional-
ity in finance

2.1 Nonlinearities and machine learning in financial applications
Machine learning models are characterized to be “inductive” in a sense that they

are flexible to the data collected in the sample, yielding decision functions based on the
patterns that the data show, instead of fixing functional forms (like a linear or quadratic
one) or assuming presuppositions about the distribution of the data. So, instead of
assuming that the financial data are normally distributed or homoscedastic, which are
premises empirically shown to be not true, and force the data to a fixed framework knowing
that the results may be distorted due to the incompatibility of the assumptions, machine
learning techniques does not demand such kind of assumptions besides assuming that
the sample taken is representative – a postulate which, if violated, would provide invalid
estimates even in traditional econometrics. For a compendium of the use of machine
learning models for financial data and evidences their empirical desirability, see Sewell
(2017).

In a recent paper, Nakano, Takahashi and Takahashi (2018) built trading strategies
for bitcoin – a notoriously volatile asset – using predictions of its price level based on a
deep artificial neural network approach and tested their profitability for different sets of
transaction cost, measured by the magnitude of the bid-ask spread. The authors used a
seven-layer neural network with rectified linear unit (ReLU) as activation function and
managed to surpass the buy-and-hold strategy in terms of profitability between December
2017 and February 2018, a period in which the prices bitcoin suffered severe drawbacks.
These results show that, under certain circumstances, the increment in predicting power
brought by machine learning techniques can be strong enough to not only outperform the
market but generate economic profits by exploring the oscillations of the market, thus
displaying positive evidences toward the application of this class of methods.

One of the key features of machine learning methods, and pointed by many scien-
tific works as one of the main sources of forecasting power boost over traditional econo-
metric models (KANAS, 2005; CONRAD; LAMLA, 2010; CHAO; SHEN; ZHAO, 2011;
BURNS; MOOSA, 2015), is the introduction of nonlinearity into the data-generating pro-
cess and into the explanatory variables themselves. More often than not, the relationships
between the specified variables and the effects they induce occur in a nonlinear way, which
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makes the use of linear models in these contexts generate potentially biased results that
can decisively hinder the decision-making process (MAMA, 2017). As discussed in the
paper of Han et al. (2017), even though linear functional forms bring alongside many
mathematical conveniences and the practicality of being easily interpretable, escalating
the data into a high-dimension level can allow the researcher to better understand and
explore underlying functional relationships across different dimensions of interactions that
would simply be ignored analyzing the data only linearly.

Similarly, Brock (2018a)’s work broach the subject of introducing high-dimensionality
into financial data analysis summarizing methods of financial time series analysis that are
able to detect patterns that reflect into deterministic chaos behavior in the low dimen-
sional realm, including machine learning applications. The study concludes that the
identification of nonlinear interactions can substantially improve short-run forecasting for
time series and that the majority of the conventional statistical methods fail to consider
those interactions, thus arguing in favor of the use of the former approach over the latter
ones.

The study of Brock (2018b) makes the link between the fields of economics and
finance with concepts of the theory of complex dynamics, viewing the financial market
as a broader complex system than the deterministic chaos patterns that emerge in low
dimensions. The author postulate that the attractor set to which the dynamics of the
financial markets converges is not a single point, but rather a spectrum of hidden states
with no limit steady state. Furthermore, the evidences of the complex dynamics still
hold even when eliminating sources of stochastic exogenous shocks. Bringing this idea
in view of the financial theory, it implies the existence of a “dynamic equilibrium” in
which the “equilibrium” traditionally defined in finance theory (for instance, in CAPM
and Efficient Markets Hypothesis) is one of the many “equilibria” to which the complex
system converges and the one that emerges when considering low dimensionality data
and linear functional forms. Conversely, when introducing high dimensionality into the
explanatory variables and the data-generating process’ functional form – for example,
by using nonlinear predictors – the additional information may point towards underlying
“equilibria points” in the short-run, which can help to understand and ultimately leads
to the equilibrium defined in the “linear world”.

Buonocore et al. (2016)’s paper present two key elements that define the complexity
of financial time series: the multi-scaling property – which refers to the dynamics of the
series over the time; and the structure of cross-dependence between time series – which
are reflexes of the interactions among the various financial assets and economic agents.
In a financial context, one can view those two complexity elements as systematic risk
and idiosyncratic risk, respectively, precisely the two sources of risk that drives the whole
motivation for the risk diversification via portfolio allocation, as discussed by the Modern



Chapter 2. Complexity, regularization and machine learning: Challenges of high dimensionality in
finance 43

Portfolio Theory.

It is well known that the systematic risk cannot be diversified. So, in terms of
risk management and portfolio selection, the main issue is to pick assets with minimal
idiosyncratic risk, which in turn, naturally, demands a good estimation for the cross-
interaction between the assets available in the market, namely the covariance between
them.

The non-stationarity of financial time series is a stylized fact well known by schol-
ars and market practitioners, and this property has relevant implications in forecasting
and identifying patterns in financial analysis. Specifically concerning portfolio selection,
the non-stationary behavior of stock prices can induce major drawbacks when using the
standard linear Pearson correlation estimator when calculating the covariances matrix.
Livan, Inoue and Scalas (2012) provides empirical evidences of the limitations of the tra-
ditional linear approach established in Markowitz (1952), pointing out that the linear
estimator fails to accurately capture the market’s dynamics over time, an issue that is
not efficiently solved by simply using a longer historical series.

The heterogeneity of financial time series correlation structures patterns induced
by the stylized facts have motivated many papers that analyze its implication in financial
markets; the different correlation structures over time and their evolution over time were
analyzed in many financial applications, such as mapping the states of a financial market
(MÜNNIX et al., 2012).

In light of evidences that not all noisy information of the covariance matrix is
due to their non-stationarity behavior (MARTINS, 2007), methods like Support Vector
Machines (GUPTA; MEHLAWAT; MITTAL, 2012), Gaussian processes (PARK et al.,
2016) and deep learning (HEATON; POLSON; WITTE, 2017) have been discussed in the
literature, showing that the introduction of nonlinearities can provide a better display
of the complex cross-interactions between the variables and generate better predictions
and strategies for the financial markets. For an overview of the applications of machine
learning techniques in portfolio management contexts, see Pareek and Thakkar (2015).

Musmeci, Aste and Matteo (2016) incorporate a metric of persistence in the corre-
lation structure between financial assets, and argue that such persistence can be useful to
anticipate market volatility variations and quickly adapt to them. Testing for daily prices
of US and UK stocks between 1997 and 2013, the correlation structure persistence model
yielding better forecasts than predictors based exclusively on past volatility. Moreover,
the paper discusses the effect of the “curse of dimensionality” that arises in financial data
when a large number of assets is considered, an issue that traditional econometric methods
often fail to deal with. In this regard, Hsu et al. (2016) argues in favor of the use of non-
parametric approaches and machine learning methods in traditional financial economics
problems, given their better empirical predictive power, as well as providing a broader
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view well-established research topics in the finance agenda beyond classic econometrics.

2.2 The drawbacks of complexity: Hoeffding’s inequality and reg-
ularization
Thus, to allow a certain degree of in-sample error is not necessarily a bad thing,

since the main goal is to make generalizations based on a representative sample taken
from the population. To effectively make the in-sample error to be zero is not a difficult
task; however, in doing so, one would be implicitly assuming that the patterns observed
in that particular sample would occur for future out-of-sample data not observed yet. In
this way, the algorithm would be simply memorizing the past data – not only the actually
relevant information but also the noisy information particular to that specific sample –
which in turn can hinder its predictive power.

The work of Wolpert and Macready (1997) presents a result concerning search and
optimization, suggestively called “no free lunch theorem” by the data science community,
which states that, in statistical inference, the aggregate cost-benefit relationship of all
candidate solution methods (i.e.: The joint factor of each method’s computational cost
and solution performance) is equal for all problems to be potentially solved. This implies
the non-existence of a globally superior learning algorithm that dominates over the others
for every application – in other words, there is no “best” model that suits well every
application; instead, there is the right method for the right application. In this sense, not
all “nonlinearities” are equal, as shown in many empirical applications: for example, in
Henrique et al. (2016)’s paper on portfolio allocation using Support Vector Regression,
the inverse multiquadric Kernel function yielded the best results, while in Yaohao and
Albuquerque (2019) this function yielded overall poor results for exchange rate prediction.

Thus, since different “clans” of nonlinearities produce different results, it is natural
to think that the introduction of nonlinearities, per se, does not necessarily mean that
the predictive performance will go up. While considering nonlinear interactions allow to
capture a whole new class of patterns that may be informative to the empirical inference,
the introduction of noisy and uninformative data may actually jeopardize the generalizing
ability of the proposed models. Rising up the dimensionality of the model may be useful,
but doing so unmanneredly can fill that high dimensionality with noises that compromise
the model’s quality and usefulness. Therefore, in the same way that the introduction of
nonlinearities is a relevant issue to be tackled, being able to keep the additional complexity
of the model under control is equally fundamental.

But how can one find the optimal middle ground between a model that fits well
enough to the in-sample data with high components of nonlinearity and a model not exces-
sively noisy? In other words, to what extent the additional complexity brought alongside
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a high dimensionality model does more good than harm and how can the researcher ac-
tively control it? A result called Hoeffding’s inequality (HOEFFDING, 1963) provide a
possible answer to those questions:

Hoeffding’s inequality is basically an exponential version of the more well known
Chebyshev’s inequality, which provides an upper bound for the probability of a random
variable 𝑋 with arbitrary distribution to have a certain distance to its mean. 1. Similarly,
Hoeffding’s inequality provides the probability for the distance between the in-sample
error 𝐸𝑖𝑛 and the out-of-sample error 𝐸𝑜𝑢𝑡 to be less or equal than a user-specified margin
𝜀 > 0: its expression is given as:

P(|𝐸𝑖𝑛(𝑔) − 𝐸𝑜𝑢𝑡(𝑔)| > 𝜀) ≤ 2 · M · 𝑒−2·𝜀2·𝑛 (2.1)

where 𝑛 is the sample size and M is a measure of complexity of the model, measurable
by the Vapnik-Chervonenkis dimension of the model (VAPNIK; LEVIN; CUN, 1994),
which basically expresses the learning capability of a statistical learning algorithm – i.e.:
the space of functions that a learning method can produce as a decision function for the
input data. Evidently, the broader this set of “attainable functions” to be potentially
learned, the bigger will be the model’s capacity to yield good predictions for out-of-
sample data. However, a big space of functions also means additional complexity to be
considered; therefore, in a scenario in which a “simpler” function would suffice, considering
more complex functions to be the potential optimal solution would be a weakness, since
it would be simply adding more noise and unnecessary complexity, thus hindering the
generalization ability of the model.

Besides providing a probabilistic upper bound for the generalization error of a
model’s decision function, Hoeffding’s inequality formalizes the trade-off between capacity
and complexity for the construction of a good algorithm for generalizations. A good model
for this purpose is one that lies on the optimal middle ground between describing well
the data taken from the sample, as well as deriving patterns for future and yet unseen
data that are not way too complex, since the past data is filled not only with useful
information but also an intrinsic component of noise, such that merely “memorizing” the
past data tend to be not enough to cover satisfactorily future predictions. In statistics,
this trade-off is also known as the bias-variance dilemma.

Consider ℋ a set of “candidate functions” from which one function will be selected
by the learning algorithm as the best predictor for future data. The comprehensiveness
of ℋ will determine the model’s overall complexity (one of the possible measures is the
Vapnik-Chervonekis dimension). Assuming that in-sample data is composed by 𝑛 ob-
servations of 𝑝 variables 𝑥1,𝑥2, ...,𝑥𝑛, the in-sample error associated to each function
1 Algebraically, Chebyshev’s inequality states that for any random variable 𝑋 with finite expected

value 𝜇 and variance 𝜎2, it is valid that P(|𝑋 − 𝜇| ≥ 𝑘 · 𝜎) ≤ 1
𝑘2 , for any real number 𝑘 > 0.
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ℎ(.) ∈ ℋ can be easily obtained, while the out-of-sample error depends on future data 𝒳 .
Assuming a classification problem, those components can be defined as:

𝐸𝑖𝑛(ℎ(𝑥𝑖)) = 1
𝑛

𝑛∑︁
𝑖=1

1(ℎ(𝑥𝑖) ̸= 𝑓(𝑥𝑖)) (2.2)

𝐸𝑜𝑢𝑡(ℎ(𝑥𝑖)) = P(ℎ(𝒳 ) ̸= 𝑓(𝒳 )) (2.3)

where 1(.) is the indicator function. For a regression problem, the in-sample error may be
defined in many ways, such as the Mean Absolute Error (MAE) and Root Mean Square
Error (RMSE):

MAE = 1
𝑛

𝑛∑︁
𝑖=1

|ℎ(𝑥𝑖) − 𝑓(𝑥𝑖)| (2.4)

RMSE =
⎯⎸⎸⎷ 1
𝑛

𝑛∑︁
𝑖=1

(ℎ(𝑥𝑖) − 𝑓(𝑥𝑖))2 (2.5)

While 𝐸𝑖𝑛 can be effectively reduced to zero without major challenges, doing so
tend to be harmful to generalization purposes, since the researcher would be basically
“hoping” for the future data to be equal to the sample taken. On the other hand, the
generalization error 𝐸𝑜𝑢𝑡 depends on the allocation between in-sample bias and out-of-
sample variance (complexity). After algebraical manipulations of the expression 2.1, the
upper bound for 𝐸𝑜𝑢𝑡 can be expressed as:

𝐸𝑜𝑢𝑡(ℎ(𝑥𝑖)) ≤ 𝐸𝑖𝑛(ℎ(𝑥𝑖)) +

⎯⎸⎸⎷ 1
2 · 𝑛

𝑙𝑜𝑔

(︃
2 · M
𝛿

)︃
≤ 𝐸𝑖𝑛(ℎ(𝑥𝑖)) + Ω (2.6)

where 𝛿 = 2 ·M ·𝑒−2·𝜀2·𝑛 is a constant and Ω represents the penalization for the complexity
of the model. Note that there are two sources that raise the upper bound for generalization
error 𝐸𝑜𝑢𝑡: A model does not generalize well if the sample data are not well described or
if the model is way too complex to fit well for unseen data. From a purely mathematical
point of view, the problem of a decision function’s excessive complexity can be seen in the
behavior of the deviation between the Lagrange polynomials interpolations (WARING,
1779) and the actual function it is interpolating: the approximation error grows larger for
higher degrees of said polynomial – a problem named “Runge’s phenomenon” (RUNGE,
1901).

Machine learning methods, while being flexible to the characteristics of the data,
bring alongside a negative feature called overfitting. As the name implies, overfitting
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occurs when the predicting algorithm ends up in describing too well the in-sample data
incorporating not only the relevant data-generating process but the noises specific to that
particular sample as well.

A simple example, illustrated by figure 1, can evidence the problems with the two
extrema that jeopardize generalizations. Linear regression, although being a model with
very low complexity (asymptotic behavior of the decision function in very simple), clearly
does not fit well to the data, resulting in a model with low 𝐸𝑜𝑢𝑡, but high 𝐸𝑖𝑛; on the
other hand, the degree 15 polynomial regression shown in the sub-figure on the right fit
very well into the in-sample data, but it follows along the noises of that sample, and ends
up not approximating well the true population function intended to predict.

Figure 1 – Underfitting vs overfitting (SCIKIT-LEARN, 2017)

Since machine learning methods are capable to cope with high degrees of complex-
ity – especially in terms of introducing nonlinear interactions between the explanatory
variables – methods that deal with the excessive complexity are needed for the models
to not over-fit. Such techniques are known as regularization methods. In machine learn-
ing, typically the data is split between training and test sets so that the algorithms are
forced to be subjected to new data to check whether they indeed “learned” the relevant
patterns using data from the training set. However, there are many other regularization
techniques designed to control the model’s variance. Specifically in finance, many papers
use regularized models and often achieve equal or even better forecasting performance
with a less complex model. As states in “Occam’s razor” principle, a simpler explanation
with same explanatory power tend to be the best one.

Gu, Kelly and Xiu (2018) applied various machine learning methods – namely
principal components regression (PCR), partial least squares (PLS), generalized linear
models (GLM), boosted regression trees, random forests and artificial neural networks –
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and compared them to simple and penalized (ridge regression, LASSO and elastic net)
linear models to measure the risk premium of financial assets using data of nearly 30000
financial assets from New York Stock Exchange and NASDAQ. Using monthly data from
1957 to 2016, the authors fitted regularized models modifying their objective functions –
instead of optimizing only the loss function, many versions of penalty terms for complexity
were added. The results presented empirical evidences favoring machine learning models
in terms of providing a more accurate description of the price oscillation patterns of the
analyzed assets in comparison to traditional statistical methods; the authors credit the
predictive performance gain to the introduction of nonlinear predictor interactions from
those methods, which are not considered by commonly used econometric approaches.
Moreover, the authors reported that all models converged to a similar set of “essential
predictors” composed mainly by variations in the assets’ liquidity and volatility, arguing
in favor of parsimonious models over complex ones. The use of regularization managed
to successfully shrink the model’s variance without curtailing the predictive performance
in the same proportion of the penalizations. In particular, in this paper’s application,
the “deep” architecture neural network showed worse results than “shallower” networks,
possibly due to the high levels of noise present in financial data, and also showing that,
in certain circumstances, a simpler and more regularized model may actually perform
better. This topic will be further explored later alongside the discussion on the potential
contributions of Random Matrix Theory to finance.

Feng, Polson and Xu (2018) propose a nonlinear feature extraction to map the
most informative components that explain the patterns of financial assets over time,
treating the sorting of securities as an activation function of a deep neural network. Us-
ing return data of US stock market asset between 1975 and 2017, the authors show that
the well-known Fama-French models with three (FAMA; FRENCH, 1992) and five fac-
tors (FAMA; FRENCH, 2015) are actually particular cases of the proposed deep learning
approach; those factors were compared the “deep factors”, with the deep learning cases
slightly outperforming the 3-factor case, but showing higher mean square error than the
5-factor case, while ordinary least square showed high levels of out-of-sample error, again
evidencing the importance of controlling the ideal level of complexity added to the pre-
dictive model.

Barfuss et al. (2016) emphasize the need for parsimonious models by using infor-
mation filtering networks, building sparse-structure models that showed similar predictive
performances but much smaller computational processing time in comparison to a state-
of-art sparse graphical model baseline. Similarly, Torun, Akansu and Avellaneda (2011)
discuss the eigenfiltering of measurement noise for hedged portfolios, showing that em-
pirically estimated financial correlation matrices contain high levels of intrinsic noise and
propose several methods for filtering it in risk engineering applications.
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In a financial context, Ban, Karoui and Lim (2016) discuss the effects of performance-
based regularization in portfolio optimization for mean-variance and mean-conditional
Value-at-Risk problems, showing evidences of its superiority towards traditional opti-
mization and regularization methods in terms of diminishing the estimation error and
shrinking the model’s overall complexity.

Concerning the effects of high dimensionality in finance, Kozak, Nagel and San-
tosh (2017) tested many well established asset pricing factor models (including CAPM
and Fama-French 5-factor model) introducing nonlinear interactions between 50 anomaly
characteristics and 80 financial ratios up to the third power (i.e.: all cross-interactions
between the features of first, second and third degrees were included as predictors, total-
ing models with 1375 and 3400 candidate factors, respectively). In order to shrink the
complexity of the model’s high dimensionality, the authors applied dimensionality reduc-
tion and regularization techniques considering ℓ1 and ℓ2 penalties to increase the model’s
sparsity. The results showed that a very small number of principal components are able
to capture almost all of the out-of-sample explanatory power, resulting in a much more
parsimonious and easy to interpret model; moreover, the introduction of additional regu-
larized principal components does not hinder the model’s sparsity, but does not improve
predictive performance either.

2.3 High frequency financial data and forecasting
In financial time series analysis, usually the standard periodicity of the data is the

daily frequency for common applications such as stock market prediction and volatility es-
timation. Nonetheless, in recent years the literature has been moving towards increasingly
higher time frequencies or even a volume based paradigm so that the daily data is used as
a low frequency baseline to which the higher frequency data are compared. Easley, Prado
and O’Hara (2012), for instance, discuss the emergence of a “volume-orientated paradigm”
for financial analysis, which focuses on developing forecasts and trading strategies con-
sidering a high frequency data horizon. Given the sharp increase in worldwide financial
transaction flows, scholars and financial market agents tend to progressively shift to the
“volume clock” – based on the number and volume of financial transactions –, instead of
the traditional “time clock”, which follows the chronological flow and sets the minimum
variation interval to a fixed amount of time. Hence, the traditional baseline daily fre-
quency is increasingly less capable of coping with the number of transactions in a single
time period, emphasizing the relevance of a high frequency trading paradigm for nowadays
finance.

In addition to being strongly influenced by recent events or the availability of
market information, as discussed by Reboredo, Matías and Garcia-Rubio (2012), high
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frequency data boost the dimensionality that a researcher will be dealing with. For
example, while a sample with daily data for a quarter of a year yield only 90 observations, a
small number considering its splitting into in-sample and out-sample subsets, as the usual
procedure for fitting machine learning algorithms. However, by taking hourly data, the
sample for the same time periods would have 2160 observations, a number large enough
to evoke many asymptotic theory results, such as convergence to a Gaussian distribution.

Furthermore, analyzing the high frequency data can reveal nuances that may pass
by unnoticed by taking a smaller time frequency. For example, the impacts of news may
cause fluctuations to the price level of a financial asset but be fully incorporated within
a day, such that the daily variation (and consequently, the log-return) would not capture
such oscillation. Using a candlestick chart, one could notice the relative volatility level
induced by the exogenous shock to that specific day, albeit still prone to miss potentially
relevant details. Using intraday data, however, would allow the researcher to observe the
details of the price adjustment dynamics, which may lead to the identification of under-
lying patterns arising from the additional information incorporated by the model. For a
discussion about the informational gain of high frequency trading and the construction
of trading strategies using those kinds of data, see Gomber and Haferkorn (2015).

Due to the importance of fresh news, regarding assets price, (ANDERSEN; BOLLER-
SLEV, 1998) explained that financial series present an extremely volatility behavior since
they incorporate expectations and reactions of economic agents in the face of events.
Currently, market asset volatility forecast and estimation are highly relevant in the com-
position of derivatives prices, in the portfolio risk analysis and in the investment risk
analysis itself. So, the development of methods that help decision making arouses great
interest among investors.

Camargo, Queiros and Anteneodo (2013) made a segmentation analysis of the
trading volume and the price oscillations with minute frequency data for the 30 compa-
nies indexed at the Dow Jones Industrial Average during the second semester of 2004. The
study identified a slow decay in the autocorrelation function between these two factors,
suggesting a persistence over time that a linear estimator is not capable of incorporate.
Moreover, the authors indicate that the volatility of price tends to be higher than the
trading volume for a given time span, which implies that the market’s adjustment dy-
namics tend to be faster than investors can assimilate them. On the other hand, the
trading frequency in financial transactions has been increasing over the past years, which
motivates a high frequency paradigm for financial forecasting and trading strategies, as
described by Easley, Prado and O’Hara (2012).

Aloud et al. (2013), using tick-by-tick market data of the Euro/US Dollar currency
pair between 2007 and 2009, also present empirical evidences of high correlation between
the intraday price volatility and the trading volume; moreover, the paper concludes that
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the trade volume and numbers of closing/opening positions are shown to be scale-invariant
to the price variation threshold. This finding motivates the analysis on the effects that
large price variations bring upon the covariance structure of the financial assets, and
whether the traditional linear estimator suffers from it. Therefore, we also verify the
inconsistency of linear covariance estimation in high temporal frequencies, as well as the
effects of introducing nonlinear interactions in the portfolio’s overall profitability.

Back to the expression of Hoeffding’s inequality, it was mentioned that the gener-
alization error can be defined as the aggregation of the in-sample error and the model’s
complexity. It basically states that the best model is one that makes the most of the
information present in the training sample, without exploiting it with an excessively com-
plex decision function. Thus, since the incorporation of high frequency data can provide
ulterior information over low frequency data, it is expected that that information come
alongside a component of noisy and non-informative features, which may pollute the in-
tended analysis if the predictive algorithms were to over-fit for the training sample, being
specifically harmful to forecastings in the traditional low frequency data horizon. For
example, a researcher can be interested in estimate financial volatility for daily frequency
and decide to use intraday data for a source of additional information, following the idea
of Heterogeneous Autoregressive models (HAR), as introduced by Corsi (2009). The ad-
ditional information provided by intraday can theoretically improve the accuracy of the
forecasts, and indeed it does empirically, as shown in works like Wang et al. (2016b) and
Tian, Yang and Chen (2017). However, since the HAR model uses aggregate intraday
volatility as an independent variable to estimate the daily realized volatility, articles like
Audrino and Knaus (2016) point out that the gains of HAR models over well-established
models like GARCH and its extensions arise from the fact that HAR’s structure shrinks
off part of the complexity of financial information carried on over time, especially in view
of the stylized fact of their non-stationary behavior. In this way, the aggregation of time
frequencies contributes positively to the model’s predictive power due to the specification
of a more parsimonious model – a smaller degree of complexity to be penalized, viewing
from the Hoeffding’s inequality – using intraday information which, theoretically accord-
ing to the efficient market hypothesis, would be fully incorporated in the daily data. This
represents a gain in a way of diminishing the model’s overall complexity while being able
to approximate long memory dependence, hence lowering the out-of-sample generalization
error.

Works like Audrino and Knaus (2016) pushes this idea further, by performing
LASSO regularization in the HAR model to further eliminate its complexity. The study
concludes that the predictive performance of HAR with LASSO is statistically equal to
its non-regularized counterpart, whilst being more parsimonious and converging to the
traditional lag structure of HAR if the latter is indeed the true model. Audrino, Huang
and Okhrin (2016) shows similar results, discussing the limitations of the traditional HAR
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specification, which fixes a lag structure of (1,5,22) for the daily volatility (corresponding
to lags for the previous day, five working days in a week and twenty-two working days in
a month). The conclusions show that peaks of instability into the financial market makes
the HAR lag structure not adequate, while the adaptive LASSO framework allows the
model to “learn” the best specification to avoid biased estimates or overfitting.

Moreover, the regression framework called Mixed-Data Sampling (MIDAS), devel-
oped originally by Ghysels, Santa-Clara and Valkanov (2004), also explores this idea: the
basic specification for this kind of models involve a predictor measured in a higher time
frequency than the dependent variable. In this way, the MIDAS approach works as an
alternative formulation for state space models, which works on the idea of updating the
forecasts based not only on past information but also on the arrival of new observed out-
comes. Bai, Ghysels and Wright (2013) showed in their work that the MIDAS regression
specification is a general case for the Kalman filter (KALMAN, 1960) when considering
mixed frequency data between independent and target variables; the main difference is
that Kalman Filter is estimated through a system of equations, while MIDAS reduces the
structure down to a single equation. Golosnoy, Gribisch and Liesenfeld (2012) developed
a Conditional Autoregressive Wishart model to estimate the covariance matrix for five
assets listed in the New York Stock Exchange, reporting that the model managed to cap-
ture long-run oscillations the time-dependence structure by incorporating both MIDAS
and HAR methods into the estimators.

Marsilli (2014) discusses the potential setbacks of combining different time fre-
quencies using the MIDAS model: while the aggregation of high frequency data can allow
one to extract more information out of the sampled data, the choosing of the predicting
variables remains obscure and have a decisive influence on the resulting estimates. This
author applied dimensionality reduction techniques into MIDAS and proposed two vari-
able selection criteria, namely by a LASSO-penalizing MIDAS and by Bayesian stochastic
search. The results showed that the methods managed to successfully identify key infor-
mative predictors for forecasting US economic growth rate mixing low (monthly) and
high frequency (daily) data. The idea of using high frequency data to model long-run
persistence appears also in Bollerslev, Patton and Quaedvlieg (2016), which proposes to
incorporate the variation of the magnitude of the volatility measurement errors over time,
adding a bandwidth of variation for the estimated parameters.
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3 The best of two worlds: Forecasting high
frequency volatility for cryptocurrencies
and traditional currencies with Support
Vector Regression

Abstract
This paper provides an evaluation of the predictive performance of the volatility of three
cryptocurrencies and three currencies with recognized stores of value using daily and
hourly frequency data. We combined the traditional GARCH model with the Machine
Learning approach to volatility estimation, estimating the mean and volatility equations
using Support Vector Regression (SVR) and comparing to GARCH family models. Fur-
thermore, the models’ predictive ability was evaluated using Diebold-Mariano test and
Hansen’s Model Confidence Set. The analysis was reiterated for both low and high fre-
quency data. Results showed that SVR-GARCH models managed to outperform GARCH,
EGARCH and GJR-GARCH models with Normal, Student’s 𝑡 and Skewed Student’s 𝑡
distributions. For all variables and both time frequencies, the SVR-GARCH model ex-
hibited statistical significance towards its superiority over GARCH and its extensions.1

3.1 Introduction
Some controversy among financial economists lean on the highest precision on

volatility estimation. Merton (1980) and Nelson (1992) noticed that the volatility forecast-
ing doesn’t need a huge amount of historical data, instead, a short period of observation
is enough to make such analysis (ANDERSEN et al., 1999).

It was also observed that, with an arbitrarily short span of data, it is possible to
get an accurate volatility estimation (POON; GRANGER, 2003). For this reason, the
progress of volatility studies are related to the use of higher frequency data. Regarding
that, this work provides an evaluation of the predictive performance of the volatility
of three cryptocurrencies and three traditional currency pairs, using daily and hourly
frequency data.

In order to estimate volatility, researchers most use the GARCH model. How-
ever, nowadays the Support Vector Regression (SVR) emerged as a strong and robust
1 Published in Expert Systems with Applications, v. 97, p. 177–192, 2018
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method, capable of covering multivariate and dynamic characteristic of financial series.
This method is rooted in the Structural Risk Minimization (SRM) process, which aims
to estimate the nonlinear data generating process trough a risk minimization and a reg-
ularization term to achieve the minimal unknown populational risk.

In this context, we proposed the application of this study using the cryptocurrency
market. These new assets have a new combination of characteristics that makes them so
unique in operation and transaction, been unable to relate completely with others markets
for several reasons: first, compared to the commodities market, they do not have a great
historical background and no future market to be the benchmark, but despite that, we
were able to achieve an interesting result in the volatility forecast. Second, the use of
cryptocash is different from the traditional cash; such that even if a country adopt it as
an official digital currency, the transactions were designed to be done directly between
economic agents without the need of an intermediary institution, monetary control or
accountability system. Third, the cryptocurrencies value and distribution is based on a
P2P-network, it has no physical representation to handle it, only a string is necessary,
which is called a wallet, and its password, that is used to send and receive cryptocurrencies.
For those reasons it is important to do a specific research in the cryptocurrencies market,
using traditional and novel methodologies to create a model capable of understand the
unique characteristics and dynamics provided by this new asset.

This research presents a combination of SVR approach with a GARCH model
(SVR-GARCH) and tested it against several traditional GARCH models and well known
extensions. Furthermore, the machine learning based model was tested for both cryp-
tocurrencies and traditional currencies, in order to check whether this approach yields
significant boosts in predicting ability, as well as investigating potential similarities and
differences between cryptocash and traditional money. Moreover, we replicated the tests
for low and high data periodicities and for different time periods, in order to verify whether
SVR-GARCH model’s predictive performance is satisfactory over the whole time exten-
sion of the series, using Diebold and Mariano (1995) test for predictive accuracy and
Hansen, Lunde and Nason (2011) Model Confidence Set.

This paper’s contributions consists in joining two emerging research agendas in
finance; the study of cryptocurrencies and the use of machine learning forecasting tech-
niques: while numerous papers presented applications of machine learning based models
in various research agendas in finance, works that link this approach to cryptocurrencies
remain scarce. Specifically, cryptocurrencies’ volatility levels are usually much higher
than traditional currencies (YERMACK, 2013), making prediction associated to this seg-
ment a potentially even more challenging task than to commonly addressed variables,
such as stocks indexes or exchange rates. Therefore, we compared a machine learning
based model to well established models in financial econometrics for both traditional and
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cryptocurrencies, and verify the relative performance of the machine learning paradigm
in both “worlds”.

This paper is structured as follows: Section 2 presents key features of cryptocur-
rencies, discussing their relevance in finance and comparing them to traditional currencies.
Section 3 describes the theoretical background of volatility estimating methods in high
frequency data, as well as the benchmark models and the methodology used to estimate
volatility in this paper. Section 4 addresses the empirical analysis of the daily and hourly
volatility estimation using bitcoin, ethereum and dash prices (in US dollars) and the
spot exchange rate between US Dollar and Euro, British Pound and Japanese Yen be-
tween January 4th 2016 and July 31th 2017. Section 5 presents the forecasting results
and discuss their implication in view of the financial theory. Finally, Section 6 presents
conclusions and remarks, showing limitations to this approach and recommendations to
future researches.

3.2 Theoretical background

3.2.1 Cryptocurrencies

Ferguson (2008) presents a brief chronology of the evolution of the concept of
“wealth”: in the medieval era, wealth was associated to having the means to conquer and
pillage, so that it was regarded as a consequence of power; with the rise of mercantilism
and capitalism afterwards, wealth began to be interpreted as the possession of material
goods (such as precious metals) and the means to generate production and trade it for
more material goods; thus, money was increasingly viewed as the cause of power. As
the capitalist system consolidated in the western society, the main indicator of wealth
became the possession of money, since its high liquidity allows it to be converted into any
other asset. Nowadays, the hard core of the world’s wealth is concentrated in financial
assets rather than real assets: at this stage, a successful businessman’s fortune is mainly
evaluated based on his company’s stock value, instead of his yacht or his luxurious car.

While a consolidate model is still in discussion, in 2009 a new kind of asset appeared
in the market, the bitcoin, leading the world to analyze this newcomer and try to figure
out its place and dynamics, and whether the rise of cryptocurrencies can change the
concept of “wealth” once more. Recent works like Vigna and Casey (2016) argue that
the new ideas and technologies that come alongside with cryptocurrencies, such as the
blockchain and the decentralization of money, have the potential to lead the world into
a “new economy”: while a “revolution” on the foundations of social life is unlikely to
occur, the introduction of decentralized cybermoney tend to push the traditional ways of
economic transactions even further into the digital realm, nerfing the cost of global scale
transactions, which in turn provides viability for individuals to work for companies in
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different countries, and makes even well-established companies to adapt their corporate
strategies into this new reality.

Bitcoin wasn’t the first digital currency: e-Gold (G&SR, 1998), eCash (CHAUM,
1983), Beenz (COHEN, 1998) and Flooz (LEVITAN, 1999) were previous attempts of a
purely virtual way to make transactions, with e-gold being the most successful among
them. Created by Gold & Silver Reserve Inc. in 1996, e-Gold was an anonymous ser-
vice that allowed the possibility to make instant transfers of value – ownership of gold
and other precious metals – to other e-gold accounts (G&SR, 2006a), transaction flows
reached a peak of U$2 billion per year envolving over a million users (G&SR, 2006b).
E-Gold attracted great attention, but with the possibility of user-anonymity, cybercrim-
inals, money-launderers and other kinds of criminals developed interests for that service
and a series of prosecutions occurred against it. In 2008, the CEO of Gold & Silver was
sentenced and all e-Gold’s accounts were frozen, the company had to close a few months
later and the end of e-Gold was declared. Other digital currencies had a similar end, by
similar causes, but an alternative would be born sooner.

Satoshi Nakamoto (NAKAMOTO, 2008) proposed bitcoin in order to be an easy
way to make transactions over the Internet, which works globally, faster, independent from
an institution to operate it and limited to 21 million units, such that only the deflation is
expected to occur (DARLINGTON, 2014), a feature that may be used as a vanish point for
citizens “running away” from economies that suffer great levels of inflation (VASQUEZ,
2017). Bitcoin represented a breakthrough over the previously cited digital currencies for
solving cryptographic problems like the “Trusted Third Party” (TTP) (ANDRYCHOW-
ICZ et al., 2014) and the “Double-spending” (ROSENFELD, 2014). Thus, bitcoin would
solve the failure points of older attempts, giving the market a much more solid solution
to the market aspirations for digital currencies.

Bitcoin is based on a peer-to-peer ledger that is governed by mathematical restric-
tions, this ledger only allows real transactions to be written in it. Every new transactions
go to a pool of “unconfirmed transactions”, while miners take these transactions and write
them into the longest chain of verified blocks. Every new block linked to the block of a
mined transaction is called a “confirmation”; the suggested number of confirmations is
6 (COMMUNITY, 2017). If a criminal intends to fake 6 confirmations, it will cost him
more then half a million dollars in bitcoins reward for mining the block (as of November
2017), apart from the huge computation power required to this. So, the faking process
would not yield economic gains for transactions lower than this “faking cost”. Moreover,
the attempt of writing fake transactions must outdo the computational power of half the
miners to write the longest blockchain, which is impracticable both economically and
computationally. In fact, since its inception, bitcoin never registered a single falsification
with more than 1 confirmation. Every transaction and the agents involved are regis-
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tered, any change over the bitcoin data nullify its uses in future transactions. Until now
the average number of transactions registered are 288,155 per day (COINDESK, 2017a;
BLOCKCHAIN, 2017a), a growth of 40% compared to the same period of 2016, in which
registered around 205,246 transactions per day.

Many key concepts of bitcoin are relatively new to financial theory: bitcoin has no
association with any authority, has no physical representation, is infinitely divisible and
is built using the most sophisticated mathematics and computation techniques. For those
reasons, cryptocurrencies can give fear to any specialist that is not used to this kind of
“money” and is widely astonishing to the market world. Different from the traditional
currencies that operate in the market, the bitcoins and other cryptocurrencies that follow
similar logic don’t have their value based on any country economy or in some physical
and tangible asset, like the gold-dollar parity under the Bretton Woods system. Instead,
the conception of value has it origin in the security of the algorithm, traceability of the
transactions and the precedence of each bitcoin. Also, the exact number of circulating
bitcoins in the market is known, so this asset’s money supply is constant, providing a
incentive for bitcoin owners to simply keep them still without trading them for goods
or services, which in fact happen at a high proportion; unlike in traditional centralized
currencies, in which the boost on money supply would affect the relative value of banknotes
(KRISTOUFEK, 2015).

Due its nature, bitcoins assume a dual feature as a medium of exchange and as
an asset of investment. Authors like Polasik et al. (2015) found both characteristics in
bitcoins evident in different time windows and various market investors’ profiles; others
such as Evans (2014) and Segendorf (2014) discuss about bitcoin’s appliance, although
there are still some critics about how this asset will deal with legal matters and taxes,
as pointed by Polasik et al. (2015). Evans (2014) present the concern with the bitcoin’s
volatility and in what extent it would affect the payments transactions made with it, and
states that the market would stabilize with time or upon the formation of big wallets that
would assume the role as value guarantee. According to Segendorf (2014), the analysis of
bitcoin’s volatility is based on the market reality and the risk that bitcoin present if used
as an official digital currency, the security of information and transactions still discussed
as an apprehension topic in contrast with the Swedish case as an example of functionality,
making bitcoin’s implications in the financial market a issue of interest for investors and
scholars alike.

The debate about bitcoin’s taxonomy has by itself aroused great academic interest.
While the exponential increase of bitcoin’s prices resembles a bubble behavior, it might not
be purely related to speculative aspects, as indicated by recent academic studies: Gandal
and Halaburda (2014) state that the inclusion of bitcoin into a diversified portfolio signif-
icantly increases its risk-adjusted returns, due to both bitcoin’s high average returns and
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low correlation with other financial assets. Bouri et al. (2016) present evidences that indi-
cate that bitcoin can be indeed used as a hedge to market specific risk. Dyhrberg (2016a)
analyzes the volatility of bitcoin in comparison to US Dollar and Gold - traditionally
regarded as “safe” value reserves - using GARCH (1,1) and EGARCH (1,1). The paper
concluded that bitcoin bears significant similarities to both assets, specially concerning
hedging capabilities and volatility reaction to news, suggesting that bitcoin can be a useful
tool for portfolio management, risk analysis and market sentiment analysis. As evidence
of the recent acknowledgment of the hedge propriety of bitcoin, economic agents already
invested a total of 19 billion dollars in the cryptocurrency until March of 2017, suggesting
an increase of the usage, popularization and trust in the bitcoin (COINDESK, 2017b;
BLOCKCHAIN, 2017b).Dyhrberg (2016a) also points out that the bitcoin reactions may
be quicker than gold and Dollar, thus substantiating the analysis of both high and low
data frequencies in this paper. The author replicates the study using TGARCH(1,1) and
find similar conclusions (DYHRBERG, 2016b).

The other financial line of bitcoin studies is the speculation factor that comes
with the high volatility, making the arbitrage possible to investors. Yermack (2013) for
example criticizes the bitcoin as a currency and a hedge asset, pointing the obstacles to
make it a functional digital currency, since its value and liquidity don’t behave as other
real currencies do, pointing out the bitcoin’s speculative potential due its limited amount
available in the market. Another supporter is the speculative characteristic is Kristoufek
(2015): while the author recognizes the similarities between bitcoin and traditional cur-
rencies, bitcoin is shown to have a more dynamic and unstable value over time that drives
its nature to be a speculative asset more than a currency.

When it comes to comprehending the market and the economic agents involved,
bitcoin uses are still very restricted to some countries and activities. Usually, the one’s
that are open to this new asset are technological or innovation centers, which are able
to understand the potential and advantages of the cryptomoney. Estonia, United Sates,
Denmark, Sweden, South Korea, Netherlands, Finland, Canada, United Kingdom and
Australia are ten countries friendly to the uses of bitcoin. The main application of cryp-
tocurrencies in those countries was on the on-line marketing, known as e-commerce, in
exchange for products and services. However, due the increase of bitcoin’s market value,
its exchange nature has been relatively put aside.

The asset flexibility in transactions (since there are few regularizations of this new
market) and the high level of the cryptography gives the coin enough trust to be used
instead of cash, like in Denmark. Even with the importance and its uses, the worldwide
acceptance is still far from happening and the impact over the cryptocurrency dynamics
in the present is inevitable. Yet, there is not enough literature review that discusses or
presents efficient methodologies to estimate the new bitcoin market behavior around the
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world. Some authors already conducted studies about this new market, (YERMACK,
2013; XIONG; BAO; HU, 2014; DYHRBERG, 2016a; BOURI; AZZI; DYHRBERG,
2016), but they are still restricted to the unknown aspects of the behavior and/or ac-
ceptance of bitcoin.

Bitcoin is not the only cryptocurrency, as other types of digital currency were
created, called altcoins. Therefore, in addition to bitcoin, we chose another two rele-
vant cryptocurrencies, ethereum and dashcoin, using market cap and price as criteria, to
proceed with the same volatility analysis with the SVR models

Ethereum is a branch from the original bitcoin project, so it inherits his principal
concepts, but ethereum was not designed to be a rival of bitcoin, it actually used bitcoin
principles to produce more technology by including “smart contracts”, creating a new
world of possibilities, like implementing a voting system without any third party to trust,
with his virtual machine an a programmable system this coins has not only promise for
a revolution in the cash system but a revolution in any contractual system. Ethereum
runs with no chance of censorship, fraud, third party interference or downtime, since it
functions precisely as programmed (KIM, 2016) .

Since Ethereum’s “smart contracts” are built with a part of an enforcing mech-
anism, they are considered more flexible. The major difference of Ethereum from other
cryptocurrency is that it automatically enforce the clauses of an agreement if one of the
participants disrespect it. It is important to mention that all the counter-party risks can-
not be mitigated with these contracts and that it is complex to enforce it in certain cases
(BALTA et al., ) .

Another important cryptocurrency is Dash, which comes from Digital Cash. It
deals with instant transactions and is characterized as a privacy-centric digital currency
cryptography, ensuring total anonymity. Also, by using a two tier network, Dash improves
bitcoin system. In addition, Dash apply an anonymity technology that precludes the
acknowledgment of who made the block chain, which is a similar for bitcoins. This
technology uses a protocol mix utilizing an innovative decentralized network of servers,
this advance in the system is known as Masternodes. This provide a more trustworthy
system. (KIM, 2016).

3.2.2 Cryptocurrencies and traditional currencies

The classic definition of “money” requires an asset to be usable as a medium of
exchange, a unit of account and a store of value. Researches like Urquhart (2016) indicate
that cryptocurrencies such as bitcoin still present informational inefficiency, even though
it has been showing a trend towards efficiency. Thus, separating the volatility analysis
of bitcoin prices considering different time horizons may provide a better understanding
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Figure 2 – Cryptocurrencies daily volatility
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Figure 3 – Exchange rates daily volatility
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Figure 4 – Cryptocurrencies hourly volatility
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Figure 5 – Exchange rates hourly volatility

regarding this finding. Additionally, studies like Yermack (2013) and Dowd (2014) states
that cryptocurrencies are susceptible to speculative bubbles that can mine its fundamental
value, and their behavior characterizes them as a speculative investment rather than a
currency.

On the other hand, according to authors like Lo and Wang (2014), cryptocurrencies
like bitcoin has satisfied all three functions of money, emphasizing the similarities between
virtual and real coins. Based on this argument and the discussion regarding the proportion
of their fundamentalist value in relation to the speculative component, it is relevant to
analyze the dynamics of their volatility over time. Dyhrberg (2016a) also argues that
bitcoin can be classified as an asset between a “pure medium of exchange”, like US
Dollar, and a “pure store of value”, like gold. While bitcoin is not a currency per se, it
combines advantages of both Gold and Dollar and has the potential of being an important
instrument in financial markets and portfolio management.

The reason for choosing cryptocurrencies is centered in the innovative and potential
that these assets have in the current global economy. The method of machine learning
itself has already presented good results in diverse situations, cases and problems, since
it is possible to find a pattern and estimate decision guide lines, but for cryptocurrencies
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there is the differential of unknown and unimaginable future. Cryptocurrencies bring
along themselves not only potentially profitable assets, but also new concepts that differ
greatly from the traditional monetary economy, like direct transaction, intangible value
base, absence of a central institution to assure its store of value, as well as propelling
advances in security and information storage at global scale.

As seen in the worldwide spillover effects of financial crisis in late 1990s (BELKE;
SETZER, 2004), high levels of volatility can bring over a herd behavior and financial con-
tagion that can lead to unpredictable and large turnovers in the financial market. Thus,
analyzing whether the volatility patterns of cryptocurrencies behave similarly with tra-
ditional currencies can be a important framework to better understand cryptocurrencies’
role in nowadays finance and investigate whether there are evidences that the “virtual
world” currencies are ready to merge into the “real world”.

Furthermore, issues concerning the heterogeneity among different cryptocurren-
cies such as the potential influence on the operating system of different cryptocurrencies
on their market behavior or volatility level remains unexplored in the finance literature.
Indeed, we observed that the volatility patterns of the three major cryptocurrencies we
picked (bitcoin, Ethereum and Dash) differ significantly among themselves in both daily
and hourly time frequencies, as seen in figures 2 to 5. The overall volatility levels of cryp-
tocurrencies is much higher than the exchange rates, in both daily and hourly frequencies;
the only notable peak of volatility in traditional currencies is the dollar-pound quotation
in mid-2016, coinciding with the “Brexit” referendum. Over the whole analyzed perior,
the volatility levels of bitcoin was significantly higher than the three exchange rates (in
they were plotted at the same scale, the exchange rates volatility would resemble a straight
line), but at the same time significantly lower than the other cryptocurrencies. The het-
erogeneity between different cryptocurrencies motivated the inclusion of the volatility
estimation of different cryptocurrencies so that the predictive performance of both tradi-
tional econometric models and the machine learning approach can be observed in different
cryptocurrencies, generating further evidences of their quality in various contexts.

Since the cryptocurrencies market, notably bitcoin, operates without a supervising
organization or entity to ensure it’s value or conduct the transactions, as we see in stock
exchanges institutions, the economic agents may find difficult to predict this asset, since
there is no history or methodology established in the academic or business environment.
The construction of a machine, capable to forecast the risk variable, interpreted as volatil-
ity, represents an improvement in the studies and business operation using this kind of
currency. Furthermore, it may be the first step in the construction of pricing models for
the cryptocurrencies and possibles derivatives of it. Therefore, the application of machine
learning methods seems very attractive to capture underlying patterns regarding those
issues, thus providing a more comprehensive and accurate view of this new agenda.
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Analyzing the present techniques and concepts used in the scientific literature
for cryptocurrencies estimation, there are few studies that use the Machine Learning
approach in forecasting its volatility, even with well known methodologies such as the
GARCH model (LI; WANG, 2016). In special, most applications of machine learning
methods in finance compare predictive performance based on error metrics like direc-
tional accuracy, mean squared error and mean absolute error, instead of using a statis-
tical test as criteria: this procedure is recurrent in papers that apply state-of-art ma-
chine learning methods in finance, as seen in Evans, Pappas and Xhafa (2013), Sermpi-
nis et al. (2015) and Shen, Chao and Zhao (2015) . Concerning the superiority of the
SVR model over GARCH, many recent works (GAVRISHCHAKA; GANGULI, 2003;
GAVRISHCHAKA; BANERJEE, 2006; CHEN; JEONG; HÄRDLE, 2008; PREMAN-
ODE; TOUMAZOU, 2013; SANTAMARÍA-BONFIL; FRAUSTO-SOLÍS; VÁZQUEZ-
RODARTE, 2015) present favorable evidences towards SVR’s superiority, but without
enunciating it based on a stronger statistical criteria. Bearing in mind those issues re-
lated to financial aspects of cryptocurrencies, this paper combined the machine learning
approach with volatility forecasting, splitting the analysis into datasets of high and low
frequencies and evaluating the predictive performance of the models using hypothesis tests
in order to check in what extent SVR’s superiority really holds.

3.3 Method

3.3.1 Volatility estimation

Within the field of financial study, the learning and analysis of financial time series
has risen much interest among researchers until today. Technology advance allowed the
expansion of financial market and, consequently, of trading operations, which increased
the availability of information, quantity of transactions carried out during the day and,
mainly, the track of real time assets prices. Regarding financial series analysis, volatility
forecasting bears a huge importance, as it has decisive impacts on risk management and
derivatives pricing. One of the main stylized facts of this literature states that financial
series’ conditional variance is typically non-constant. According to Deboeck (1994), Abu-
Mostafa and Atiya (1996) and Cao and Tay (2003) these series presents dynamisms and
the distribution also shows great variations over time, without exhibiting an apparent and
constant pattern in its’ disposal. In the financial time series analysis, one can divide the
data according to their frequency over time: (1) monthly frequency are usually classified
as low frequency. They present a more extensive analysis on macroeconomic variables
and analysis of resource allocation and on investment evaluation (EASLEY; PRADO;
O’HARA, 2012); (2) data with appearance in minutes or seconds are commonly classified
as high frequency. They are strongly influenced by recent events or the availability of
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market information, as discussed by Reboredo, Matías and Garcia-Rubio (2012); (3) daily
frequency data is the usual periodicity for financial data analysis, such as stock market
prediction and volatility estimation, but in recent years, the literature has been moving
towards increasingly higher time frequencies or even a volume based paradigm, so that
the daily data is used as a low frequency baseline to which the higher frequency data are
compared (EASLEY; PRADO; O’HARA, 2012). In this paper, we considered daily data
as low frequency and used the hourly periodicity as high frequency.

Due to the importance of fresh news, regarding assets price, Andersen and Boller-
slev (1998) explain that financial series present an extremely volatility behavior since they
incorporate expectations and reactions of economic agents in the face of events. Currently,
market asset volatility forecast and estimation are highly relevant in the composition of
derivatives prices, in the portfolio risk analysis and in the investment risk analysis itself.
So, the development of methods that help decision making arouses great interest among
investors.

Particularly, the high frequency data analysis has caught the attention of many
scholars and financial market agents, given the sharp increase in worldwide financial
transaction flows, which makes high frequency trading a relevant paradigm for nowadays
finance, as discussed in Easley, Prado and O’Hara (2012). With respect to volatility esti-
mation, studies like Li and Wang (2016) indicate that exchange rates and cryptocurren-
cies’ intra-day volatility tend to be very high, motivating its analysis using high frequency
data, as seen in Çelik and Ergin (2014) and Baruník and Křehlík (2016).

The standard model used by the academy for volatility estimation is the GARCH
model (BOLLERSLEV, 1986), which was derived from the ARCH model (ENGLE, 1982).
The GARCH model main advantage is its ability to generalize an ARCH(∞), making it
a parsimonious and efficient model to deal with many typical behaviors of financial time
series volatility, as highlighted by Marcucci et al. (2005). Furthermore, this model is
broadly studied and used by financial analysts, for instance Hansen and Lunde (2005)
compared 330 ARCH-type models in terms of their ability to describe the conditional
variance using Diebold-Mariano (DIEBOLD; MARIANO, 1995) predictive accuracy test
and found no evidence that a GARCH(1,1) was outperformed by more sophisticated
models in their exchange rates analysis, but they concluded that GARCH(1,1) was inferior
to models that can accommodate a leverage effect in the stock’s market analysis.

Recently, other techniques to predict volatility have been discussed, a strong and
consistent method used is the Support Vector Regression (SVR), which covers the non-
linearity and dynamic characteristic of the financial series. Gavrishchaka and Ganguli
(2003), Gavrishchaka and Banerjee (2006) and Chen, Jeong and Härdle (2008) have al-
ready presented empirical results regarding the efficiency and superior predictability of
volatility using SVR when compared to the GARCH benchmark and other techniques,
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such as neural networks and technical analysis (BARUNÍK; KŘEHLÍK, 2016).

In the last years, there has been a great interest in using traditional methodologies,
such as the GARCH model and new ones, like SVR and neural networks, to estimate
new assets volatility in the stock or commodities market. As pointed out in Hsu et al.
(2016), the machine learning approach has been consistently outperforming traditional
econometric models in many research fields inside the finance literature, making such
class of methods hugely popular in recent works.

3.3.2 GARCH models

Given 𝑃𝑡 the observed price at time 𝑡 = 1, . . . , 𝑇 , the GARCH(1,1) (Generalized
Auto-regressive Conditional Heteroskedasticity) model can be summarized as follows:

𝑟𝑡 = 𝜇𝑡 + 𝜖𝑡 (3.1)

where 𝑟𝑡 = 𝑙𝑜𝑔( 𝑃𝑡

𝑃𝑡−1
) is the log return and 𝜖𝑡 is a stochastic term with zero mean. The

mean equation of the return in equation 3.1 is defined by an AR(1) model:

𝜇𝑡 = 𝛾0 + 𝛾1𝑟𝑡−1 (3.2)

and the volatility equation is given by:

ℎ𝑡 = 𝛼0 + 𝛼1𝜖
2
𝑡−1 + 𝛽1ℎ𝑡−1 (3.3)

such that V(𝜖𝑡) = ℎ𝑡.

Since the actual volatility is not directly obtained, an ex-post proxy volatility is
needed to estimate the volatility through SVR. Following Chen, Härdle and Jeong (2010)
and Bezerra and Albuquerque (2017), we defined the proxy volatility as:

ℎ̃𝑡 = (𝑟𝑡 − 𝑟)2 (3.4)

where 𝑟 =
𝑇∑︀

𝑡=1
𝑟𝑡

𝑁
is the arithmetic mean of the log returns over the 𝑁 periods of the

in-sample data.

The GARCH (1,1) is one of the main models regarding volatility estimation in fi-
nance, given its easy estimation, low number of parameters and ability to capture volatil-
ity clusters and conditional variance’s non-constant behavior, (HANSEN; LUNDE, 2005).
Through a visual analysis of the volatility graphs displayed in figures 2 to 5, the cryp-
tocurrencies volatilities exhibit a clustering behavior in both low and high frequencies,
similarly to the traditional currencies exchange rate pattern, in a much higher magnitude
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nevertheless, such that we can conclude that the volatility clustering stylized fact seems
to hold for the dataset we analyzed, which in turn justifies the use of GARCH models to
estimate their volatility.

Even when 𝜖𝑡 is assumed to be normally distributed, GARCH presents a fat-tailed
behavior in comparison to the Gaussian distribution, even though still not quite incorpo-
rating the financial data’s stylized facts (CONT, 2001). Thus, it is common to assume
that 𝜖𝑡 follows non-Gaussian distributions, in order to fit better to the financial data. In
this paper, we estimated the GARCH (1,1) assuming three conditional distributions for
𝜖𝑡: Normal, Student’s 𝑡 and Skewed Student’s 𝑡. Despite the fact that literature proposed
a wide variety of distributions to be assumed in the GARCH model, authors like Sun and
Zhou (2014) argue that the Student’s 𝑡 is enough to give a good fit to the financial data’s
heavy tail behavior, while innovations concerning GARCH conditional distributions does
not seem robust.

As discussed by studies like Awartani and Corradi (2005), the asymmetric volatil-
ity (also known as the “leverage effect”) is a well know stylized fact in financial markets:
typically, a negative shock in 𝑡 tend to make a higher impact on the volatility at 𝑡 + 1
than positive shocks. Thus, even though the literature presented many positive evidences
towards GARCH (1,1) model over a great number of conditional heteroskedasticity mod-
els (HANSEN; LUNDE, 2005), studies like Awartani and Corradi (2005),Wang (2009)
and Laurent, Rombouts and Violante (2012) present evidences that GARCH extensions
that incorporate the effects of asymmetry in financial series’ volatility, such as EGARCH
and GJR-GARCH, yielded smaller out-of-sample prediction errors in comparison to the
standard GARCH. Thus, we incorporated EGARCH (1,1) and GJR-GARCH (1,1) as
benchmarks as well.

The volatility equation for EGARCH (1,1) (NELSON, 1991) is given by:

log(ℎ𝑡) = 𝛼0 + 𝑔(𝑧𝑡−1) + 𝛽1 log(ℎ𝑡−1) (3.5)

where 𝜖𝑡 = ℎ𝑡𝑧𝑡 and 𝑔(𝑧𝑡) = 𝛼1𝑧𝑡 + 𝛾[|𝑧𝑡| − E(|𝑧𝑡|)] and 𝑧𝑡 ∼ 𝑁(0, 1). And the volatility
equation of GJR-GARCH (1,1) (GLOSTEN; JAGANNATHAN; RUNKLE, 1993) is given
by:

ℎ𝑡 = 𝛼0 + (𝛼1 + 𝛾1𝐼𝑡−1)𝜖2
𝑡−1 + 𝛽1ℎ𝑡−1

𝐼𝑡 =

⎧⎪⎨⎪⎩0, 𝜖𝑡 ≥ 0,

1, 𝜖𝑡 < 0.
(3.6)
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3.3.3 Support Vector Regression

Despite its popularity, GARCH (1,1) still considers linear functional forms in its
estimation, which motivates the introduction of nonlinear structural forms. That is one of
the main contributions of machine learning and kernel methods, as many studies showed
(LI; SUOHAI, 2013; SHEN; CHAO; ZHAO, 2015) that the introduction of nonlinear in-
teractions can significantly boost the explanatory power and the forecasting ability of
many models applied to financial contexts, including volatility estimation (CHEN; HÄR-
DLE; JEONG, 2010; PREMANODE; TOUMAZOU, 2013; SANTAMARÍA-BONFIL;
FRAUSTO-SOLÍS; VÁZQUEZ-RODARTE, 2015). Regarding high frequency forecast-
ing, that issue is also noted (SANTOS; COSTA; COELHO, 2007).

Therefore, we used Support Vector Regression to estimate of the GARCH’s mean
and volatility equations – described in equations 3.2 and 3.3. Instead of using a standard
linear regression, we introduced nonlinearities, in order to provide a better fit to the data.
Concerning the high volatility of bitcoin data – specially in high frequency transactions -
this approach seems particularly attractive.

The Support Vector Regression (SVR) (VAPNIK, 1995; DRUCKER et al., 1997)
is a regression model that aims to find a decision function which is the best approxima-
tion of a set of observations, bearing in mind the middle ground between a good power of
generalization and an overall stable behavior, in order to make good out-of-sample infer-
ences. Associated with these two desirable features, there are two corresponding problems
in regression models, constituting the so called “bias-variance dilemma”. To perform the
regularization of the decision function, two parameters are added: a band of tolerance 𝛿2,
to avoid over-fitting; and a penalty 𝐶 to the objective function, for points that lie outside
this confidence interval for an amount 𝜉 > 0.

Therefore, the predicted values 𝑓(xi), such that |𝑦𝑖−𝑓(xi)| ≤ 𝛿 and 𝑓(.) is the SVR
decision function, are considered to be statistically equal to 𝑦. The SVR defined from
the addition of these two parameters is known as 𝜀-SVR. The loss function implied in the
construction of the 𝜀-SVR is the 𝜀-insensitive loss function (VAPNIK, 1995), 𝐿𝜀[𝑦𝑖, 𝑓(xi)],
given by:

𝐿𝜀[𝑦𝑖, 𝑓(xi)] =

⎧⎪⎨⎪⎩|𝑦𝑖 − 𝑓(xi)| − 𝛿, |𝑦𝑖 − 𝑓(xi)| > 𝛿,

0, |𝑦𝑖 − 𝑓(xi)| ≤ 𝛿.
(3.7)

It is worth noting that the 𝜀-insensitive loss function is not the only possible way to
define penalties for SVR; extensions that include different penalty structures includes the
𝜈-SVR (CHANG; LIN, 2002). The 𝜀-SVR formulation was chosen for this paper because
2 𝜀 is the usual symbol used in SVR models for the confidence band. In this paper, we changed 𝜀 to 𝛿

to avoid ambiguities with the GARCH model error term 𝜖
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it is the most commonly used form in the finance forecasting literature, and requires lesser
computational time to perform the optimization.

In order to introduce nonlinear interactions in the regression estimation, a mapping
𝜙 is applied, such that the objective function to be optimized for 𝜀-SVR is formulated as
follows:

Minimize : 1
2w⊤w + 𝐶𝜉⊤1 + 𝐶𝜉*⊤1

Subject to : Φw + 𝑤0 − y ≤ 𝛿1 + 𝜉

y − Φw − 𝑤0 ≤ 𝛿1 + 𝜉*

with : 𝜉, 𝜉* ≥ 0 (3.8)

where Φ is a 𝑇 × 𝑞 matrix created by the Feature Space, i.e., the original explanatory
variables X(𝑇 ×𝑝) is mapped through the 𝜙(x) function, w is a vector of parameters to be
estimated, 𝐶 and 𝛿 are hyper-parameters and 𝜉, 𝜉* are slack variables in the Quadratic
Programming Problem.

In other words, w(𝑞×1) is the vector of the angular coefficients of the decision
hyperplane in R𝑞; 𝑤0 ∈ R is the linear coefficient (intercept) of the decision hyperplane
in R𝑞; Φ(𝑇 ×𝑞) is the augmented matrix of observations, after the original data being
transformed by 𝜙; y(𝑇 ×1) is the vector that provides the dependent variable values of the
observed points; 𝐶 ∈ R is the cost of error; 𝛿 > 0 is the tolerance band that defines the
confidence interval for which there is no penalty; 𝜉*

(𝑇 ×1) is the vector concerning points
above the tolerance band; and 𝜉(𝑇 ×1) is the vector concerning points below the tolerance
band.

After some algebraic manipulations, it can be shown that the decision function of
𝜀-SVR can be written as:

𝑓(xi) = w⊤𝜙(x) − 𝑤0 =
𝑇∑︁

𝑡=1
𝜅(xi,xj)(𝜆*

𝑗 − 𝜆𝑗) − 𝑤0 (3.9)

where 𝜅(xi,xj) = 𝜙(xi) · 𝜙(xj) ∈ R, 𝑖, 𝑗 = 1, 2, 3 . . . , 𝑇 is the kernel function. Since 𝜙
transforms the original data to a higher dimension, which can even be infinite, the use
of the kernel function prevents the need to explicitly compute the functional form of
𝜙(x); instead, 𝜅 computes the inner product of 𝜙, a term that appears in SVR’s dual
formulation (DRUCKER et al., 1997). This is known as the kernel trick. In this paper,
we used the Gaussian Kernel as 𝜅, whose expression is given by:

𝜅(xi,xj) = 𝑒𝑥𝑝

(︃
−||xi − xj||2

2𝜎2

)︃
, 𝜎 > 0 (3.10)
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The Gaussian Kernel is the most widely used Kernel in machine learning literature.
It enjoys huge popularity in various knowledge fields since this function is able to induce
an infinite dimensional feature space while depending on only one scattering parameter
𝜎.

3.3.4 SVR-GARCH

The SVR-GARCH is the joining result of the GARCH model structure and the
nonlinearities introduced by the kernel function via SVR. Santamaría-Bonfil, Frausto-Solís
and Vázquez-Rodarte (2015) presented empirical evidences that SVR-GARCH managed
to outperform standard GARCH’s predictions, showing better ability to approximate the
nonlinear behavior of financial data and stylized facts, such as heavy tails and volatility
clusters. The specification of SVR-GARCH (1,1) is the same of the conventional GARCH
(1,1), but the mean and volatility equations were estimated via SVR, such that:

𝑟𝑡 = 𝑓𝑚(𝑟𝑡−1) + 𝜖𝑡 (3.11)

ℎ𝑡 = 𝑓𝑣(ℎ𝑡−1, 𝜖
2
𝑡−1) (3.12)

where 𝑓𝑚(.) is the SVR decision function for the mean equation 3.1, and 𝑓𝑣(.) is the SVR
decision function for the volatility equation 3.3.

Depending of which parameters 𝛿, 𝐶 and 𝜎 are set to the SVR formulation, a
different decision function is obtained. In order to decide the “better” combination of
parameters, we did a grid search for those three parameters for both mean and volatility
equations, and evaluated the Root Mean Square Error (RMSE) of each decision function.
The model is first estimated with a subset of the data (known as training dataset) and
then the estimated model is used to forecast both mean and volatility in another sub-
set (validation dataset). The combination that minimizes the RMSE for the validation
dataset was chosen as the best one. This combination of parameters was applied to yield
the forecasts of the out-of-sample data, known as the test set. The search intervals for
each parameter of the SVR-GARCH are displayed in Table 1.

Parameter Search interval
𝛿 [0.05, 0.1, . . . , 0.95, 1]
𝐶 [0.5, 1, . . . , 4.5, 5]
𝜎 [0.05, 0.1, . . . , 1.95, 2]

Table 1 – Search intervals used for the parameters’ training
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3.4 Empirical analysis
For the empirical test, we used data between January 4th 2016 and July 31st 2017

of three cryptocurrencies: bitcoin, ethereum and dash market price (in US dollars); and
three traditional currencies: euro, british pound and japanese yen (in US dollars). The
data was collected from Altcoin Charts (http://alt19.com) and Forex Historical Data
(http://fxhistoricaldata.com). Since FOREX data are not available for weekends, we
collected only the weekdays in all variables to assure that the models were fitted in the
same days. We used the daily basis for low frequency analysis (411 observations) and the
hour periodicity for high frequency estimation (9742 observations).

Both databases were partitioned into three mutually exclusive datasets: training
set, validation set and test set. The purpose of this segmentation is to allow the machine
learning algorithm to test its predictive performance on data that were not priorly used,
in order to better evaluate the real explanatory power of the found decision function
when dealing with new data. The training and validation sets constitute the in-sample
data for GARCH models and the test set constitute the out-of-sample data in which the
predictions were made. The horizon of the forecasts was one step ahead (one day for low
frequency and one hour for high frequency data).

For low frequency data, we allocated 10 months for training (January 2016 to
October 2016 - 216 days), 4 months for validation (November 2016 to February 2017 - 84
days) and 5 months for test (March 2017 to July 2017 - 119 days).

In order to verify the robustness of SVR-GARCH model’s predictive performance
over time, we split the high frequency dataset with a moving window over the whole
period, defining smaller time periods with 9 months each. In each period, we allocated
the first 5 months for training, the next 2 months for validation and the last 2 months for
test. For the following time intervals, the time periods were shifted two months forward
until the end of the dataset extension, totaling six time periods of hourly data. Inside the
subsets, we did not apply rolling windows for the estimations.

Therefore, the time periods for high frequency data were defined as follows:

∙ Period 1: January 4th 2016 to September 30th 2016.

∙ Period 2: March 1st 2016 to November 30th 2016.

∙ Period 3: May 2nd 2016 to January 31st 2017.

∙ Period 4: July 1st 2016 to March 31st 2017.

∙ Period 5: September 1st 2016 to May 31st 2017.

∙ Period 6: November 1st 2016 to July 31st 2017.

http://alt19.com
http://fxhistoricaldata.com
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Firstly, the optimization of the SVR algorithm was applied to each training set,
by performing a grid search for each one of the associated parameters for both mean and
volatility equations in low and high frequencies. The search ranges for the parameters 𝛿,
𝐶 and 𝜎 are listed in Table 1.

Based on each combination of parameters applied to the training set, the accuracy
of each optimal obtained decision function was checked for the validation set using the
error metric RMSE, defined as:

𝑅𝑀𝑆𝐸 =

⎯⎸⎸⎸⎷ 𝑇∑︀
𝑡=1

(ℎ̃𝑡 − ̂︀ℎ𝑡)2

𝑇
(3.13)

where ℎ̃𝑡 is the proxy volatility as defined in 3.4 and ℎ̃𝑡 is the predicted volatility.

Each decision function obtained in the training set was fed with data from the
validation set to compute the prediction of the dependent variable for these data. This
forecast was then confronted with the actual values observed in the validation set, then
the RMSE between predicted and observed values was calculated. Repeating the process
for every parameter combination, the optimal combination is the one that minimizes the
RMSE associated with its prediction. For the GARCH models, the training and validation
sets were jointly used as in-sample data to estimate the respective coefficients.

Subsequently, the optimal parameters were applied to fit the model for the test set,
and then compared with the results generated by GARCH models, obtaining the one-step
ahead volatility estimation for the time periods of each test set, totaling seven sets of
forecasts (one for daily data and six for hourly data). For this step, we considered the
error metrics RMSE, defined in equation 3.13; and MAE (mean absolute error), whose
expression is given by:

𝑀𝐴𝐸 =

𝑇∑︀
𝑡=1

|ℎ̃𝑡 − ̂︀ℎ𝑡|

𝑇
(3.14)

Finally, in order to check the statistical significance of SVR-GARCH’s superiority
over GARCH models, we applied Diebold and Mariano (1995) predictive accuracy test
for the nine GARCH models in both low and high frequencies, using SVR-GARCH as
benchmark. Additionally, we applied the Model Confidence Test (HANSEN; LUNDE;
NASON, 2011) for each set of forecasts to further investigate whether the machine learning
based approach yielded significantly better results. The description of both tests are
displayed in appendices A and B.
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Training set: January 4th 2016 to October 31st 2016
Validation set: November 1st 2016 to February 28th 2017

Test set: March 1st 2017 to July 31st 2017

Model Bitcoin Ethereum Dash
RMSE MAE RMSE MAE RMSE MAE

Normal GARCH (1,1) 0.11262520 0.11025030 0.26447120 0.24894240 0.19964301 0.16836890
Student’s 𝑡 GARCH (1,1) 0.15802830 0.15560480 0.33843840 0.33294630 0.20517540 0.18140470
Skewed Student’s 𝑡 GARCH (1,1) 0.15603930 0.15356490 0.60801570 0.59901870 0.20540960 0.18172430
Normal EGARCH (1,1) 0.14851058 0.06021389 0.24741551 0.12332978 0.18845499 0.10440545
Student’s 𝑡 EGARCH (1,1) 0.15294444 0.13761023 0.29789732 0.27103321 0.19264046 0.11003185
Skewed Student’s 𝑡 EGARCH (1,1) 0.15437027 0.13844548 0.86978330 0.83615954 0.19297362 0.11041533
Normal GJR-GARCH (1,1) 0.15878742 0.06073869 0.24829644 0.18500229 0.18631002 0.10449338
Student’s 𝑡 GJR-GARCH (1,1) 0.15060326 0.13426739 0.29438251 0.26876020 0.19277590 0.11011040
Skewed Student’s 𝑡 GJR-GARCH (1,1) 0.14354459 0.17748075 0.61748915 0.58003697 0.19363469 0.11046644
SVR-GARCH (1,1) 0.03133926 0.01315455 0.20422370 0.08627904 0.15282070 0.04538759

Model Euro British Pound Japanese Yen
RMSE MAE RMSE MAE RMSE MAE

Normal GARCH (1,1) 0.01163661 0.01162828 0.00936268 0.00936006 0.01028482 0.01028177
Student’s 𝑡 GARCH (1,1) 0.02416139 0.02374070 0.01008274 0.01007267 0.01103492 0.01102153
Skewed Student’s 𝑡 GARCH (1,1) 0.02411368 0.02369469 0.01009985 0.01008939 0.01098031 0.01096716
Normal EGARCH (1,1) 0.00557848 0.00473396 0.00688289 0.00539079 0.00724395 0.00592201
Student’s 𝑡 EGARCH (1,1) 0.00556659 0.00467683 0.00691821 0.00542716 0.00745208 0.00608476
Skewed Student’s 𝑡 EGARCH (1,1) 0.00585727 0.00498910 0.00691028 0.00541879 0.00766734 0.00631347
Normal GJR-GARCH (1,1) 0.00580383 0.00499980 0.00680241 0.00537477 0.00716407 0.00590922
Student’s 𝑡 GJR-GARCH (1,1) 0.00580788 0.00500314 0.00674019 0.00531741 0.00715457 0.00589986
Skewed Student’s 𝑡 GJR-GARCH (1,1) 0.00580250 0.00498450 0.00675847 0.00533939 0.00715230 0.00589715
SVR-GARCH (1,1) 0.00030316 0.00011757 0.00023233 0.00008382 0.00022602 0.00014921
The Hansen, Lunde and Nason (2011)’s superior set models are highlighted in gray

Table 2 – Forecasting performance for low frequency test set data

Training set: January 4th 2016 to May 31st 2016
Validation set: June 1st 2016 to July 31st 2016

Test set: August 1st 2016 to September 30th 2016

Model Bitcoin Ethereum Dash
RMSE MAE RMSE MAE RMSE MAE

Normal GARCH (1,1) 0.00759729 0.00569709 0.01080670 0.00972066 0.01514854 0.01404126
Student’s 𝑡 GARCH (1,1) 0.00817163 0.00600172 0.01155509 0.00999820 0.01446214 0.01363025
Skewed Student’s 𝑡 GARCH (1,1) 0.00797165 0.00580175 0.01156629 0.01000044 0.01442460 0.01359423
Normal EGARCH (1,1) 0.00660961 0.00546262 0.01066027 0.00972147 0.01490163 0.01395768
Student’s 𝑡 EGARCH (1,1) 0.00560289 0.00486634 0.01124901 0.00997496 0.01427962 0.01358828
Skewed Student’s 𝑡 EGARCH (1,1) 0.00563103 0.00487856 0.01125544 0.00998051 0.01428608 0.01358456
Normal GJR-GARCH (1,1) 0.00774527 0.00570928 0.01082471 0.00968486 0.01529941 0.01407232
Student’s 𝑡 GJR-GARCH (1,1) 0.00564167 0.00491907 0.01158647 0.00998025 0.01457111 0.01367225
Skewed Student’s 𝑡 GJR-GARCH (1,1) 0.00555230 0.00483404 0.01159366 0.00998519 0.01456874 0.01366403
SVR-GARCH (1,1) 0.00059805 0.00026484 0.00068952 0.00021251 0.00092300 0.00020908

Model Euro British Pound Japanese Yen
RMSE MAE RMSE MAE RMSE MAE

Normal GARCH (1,1) 0.00082456 0.00082383 0.00118071 0.00118059 0.00132147 0.00131698
Student’s 𝑡 GARCH (1,1) 0.00080980 0.00080745 0.00130299 0.00129675 0.00138082 0.00136957
Skewed Student’s 𝑡 GARCH (1,1) 0.00089016 0.00088014 0.00126084 0.00125772 0.00129791 0.00128906
Normal EGARCH (1,1) 0.00081491 0.00081073 0.00119775 0.00119498 0.00132418 0.00130711
Student’s 𝑡 EGARCH (1,1) 0.00089333 0.00081018 0.00130253 0.00123891 0.00134704 0.00133007
Skewed Student’s 𝑡 EGARCH (1,1) 0.00089234 0.00081048 0.00130001 0.00123844 0.00134781 0.00133081
Normal GJR-GARCH (1,1) 0.00084235 0.00083376 0.00124946 0.00123813 0.00137471 0.00135760
Student’s 𝑡 GJR-GARCH (1,1) 0.00077467 0.00076647 0.00119304 0.00118418 0.00125635 0.00124371
Skewed Student’s 𝑡 GJR-GARCH (1,1) 0.00077294 0.00076013 0.00128225 0.00127839 0.00131223 0.00130378
SVR-GARCH (1,1) 0.00024853 0.00009478 0.00072465 0.00050004 0.00005872 0.00002306
The Hansen, Lunde and Nason (2011)’s superior set models are highlighted in gray

Table 3 – Forecasting performance for high frequency test set data: Period 1
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Training set: March 1st 2016 to July 31st 2016
Validation set: August 1st 2016 to September 30th 2016

Test set: October 1st 2016 to November 30th 2016

Model Bitcoin Ethereum Dash
RMSE MAE RMSE MAE RMSE MAE

Normal GARCH (1,1) 0.00460814 0.00440171 0.00775727 0.00770857 0.01163329 0.01151671
Student’s 𝑡 GARCH (1,1) 0.00479175 0.00467229 0.00782142 0.00765811 0.01191285 0.01171240
Skewed Student’s 𝑡 GARCH (1,1) 0.00414653 0.00392619 0.00780785 0.00764424 0.01191912 0.01171801
Normal EGARCH (1,1) 0.00449658 0.00436728 0.00782352 0.00775327 0.01162451 0.01149187
Student’s 𝑡 EGARCH (1,1) 0.00430255 0.00418052 0.00770778 0.00758103 0.01190195 0.01170119
Skewed Student’s 𝑡 EGARCH (1,1) 0.00431631 0.00419205 0.00770736 0.00758063 0.01191014 0.01170721
Normal GJR-GARCH (1,1) 0.00465698 0.00438188 0.00483759 0.00371794 0.01165126 0.01152582
Student’s 𝑡 GJR-GARCH (1,1) 0.00441468 0.00422006 0.00762143 0.00748573 0.01193339 0.01171407
Skewed Student’s 𝑡 GJR-GARCH (1,1) 0.00441076 0.00421270 0.00779723 0.00763222 0.01194239 0.01172274
SVR-GARCH (1,1) 0.00077868 0.00020442 0.00177067 0.00056101 0.00307538 0.00127483

Model Euro British Pound Japanese Yen
RMSE MAE RMSE MAE RMSE MAE

Normal GARCH (1,1) 0.00111576 0.00101530 0.00161297 0.00155571 0.00174503 0.00147923
Student’s 𝑡 GARCH (1,1) 0.00120193 0.00106713 0.00167885 0.00162099 0.00153819 0.00141659
Skewed Student’s 𝑡 GARCH (1,1) 0.00115309 0.00103867 0.00169058 0.00162774 0.00154086 0.00142141
Normal EGARCH (1,1) 0.00109249 0.00102655 0.00157519 0.00153497 0.00149050 0.00139378
Student’s 𝑡 EGARCH (1,1) 0.00115206 0.00107847 0.00199462 0.00171057 0.00152148 0.00141757
Skewed Student’s 𝑡 EGARCH (1,1) 0.00115383 0.00108003 0.00199594 0.00171036 0.00152152 0.00141599
Normal GJR-GARCH (1,1) 0.00114574 0.00104284 0.00013351 0.00000491 0.00154525 0.00139834
Student’s 𝑡 GJR-GARCH (1,1) 0.00117087 0.00108371 0.00165860 0.00159177 0.00159770 0.00145711
Skewed Student’s 𝑡 GJR-GARCH (1,1) 0.00114196 0.00105452 0.00164845 0.00159493 0.00007137 0.00008873
SVR-GARCH (1,1) 0.00050881 0.00015161 0.00011788 0.00002368 0.00010146 0.00005867
The Hansen, Lunde and Nason (2011)’s superior set models are highlighted in gray

Table 4 – Forecasting performance for high frequency test set data: Period 2

Training set: May 1st 2016 to September 30th 2016
Validation set: October 1st 2016 to November 30th 2016

Test set: December 1st 2016 to January 31st 2017

Model Bitcoin Ethereum Dash
RMSE MAE RMSE MAE RMSE MAE

Normal GARCH (1,1) 0.00913742 0.00749972 0.01270315 0.01127455 0.01415568 0.01325402
Student’s 𝑡 GARCH (1,1) 0.00925140 0.00722405 0.01294731 0.01139057 0.01564308 0.01437991
Skewed Student’s 𝑡 GARCH (1,1) 0.00925199 0.00722519 0.01294729 0.01138956 0.01564466 0.01437814
Normal EGARCH (1,1) 0.00955980 0.00785587 0.01294379 0.01147051 0.01340430 0.01302949
Student’s 𝑡 EGARCH (1,1) 0.01113715 0.00888592 0.01284171 0.01138972 0.01519257 0.01426543
Skewed Student’s 𝑡 EGARCH (1,1) 0.01119126 0.00892786 0.01284247 0.01139012 0.01538706 0.01444303
Normal GJR-GARCH (1,1) 0.00869412 0.00727078 0.01277006 0.01130760 0.01392639 0.01348153
Student’s 𝑡 GJR-GARCH (1,1) 0.00931768 0.00722120 0.01299166 0.01139946 0.01539582 0.01413736
Skewed Student’s 𝑡 GJR-GARCH (1,1) 0.00932389 0.00722400 0.01299131 0.01139830 0.01544307 0.01416606
SVR-GARCH (1,1) 0.00042599 0.00008641 0.00050119 0.00030067 0.00076065 0.00020646

Model Euro British Pound Japanese Yen
RMSE MAE RMSE MAE RMSE MAE

Normal GARCH (1,1) 0.00133953 0.00131835 0.00151323 0.00148351 0.00161222 0.00158059
Student’s 𝑡 GARCH (1,1) 0.00136766 0.00129345 0.00157570 0.00156285 0.00159663 0.00156250
Skewed Student’s 𝑡 GARCH (1,1) 0.00154868 0.00146029 0.00162702 0.00160678 0.00157617 0.00154267
Normal EGARCH (1,1) 0.00134860 0.00132980 0.00158497 0.00144133 0.00159121 0.00155684
Student’s 𝑡 EGARCH (1,1) 0.00153668 0.00144513 0.00157096 0.00150291 0.00162717 0.00159317
Skewed Student’s 𝑡 EGARCH (1,1) 0.00156194 0.00146674 0.00156715 0.00149893 0.00163267 0.00159789
Normal GJR-GARCH (1,1) 0.00134752 0.00133283 0.00154829 0.00149573 0.00163351 0.00159968
Student’s 𝑡 GJR-GARCH (1,1) 0.00135133 0.00131171 0.00155834 0.00154596 0.00160787 0.00156749
Skewed Student’s 𝑡 GJR-GARCH (1,1) 0.00135251 0.00130687 0.00155696 0.00153681 0.00157856 0.00153916
SVR-GARCH (1,1) 0.00070290 0.00020679 0.00080172 0.00022069 0.00062456 0.00022606
The Hansen, Lunde and Nason (2011)’s superior set models are highlighted in gray

Table 5 – Forecasting performance for high frequency test set data: Period 3
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Training set: July 1st 2016 to November 30th 2016
Validation set: December 1st 2016 to January 31st 2017

Test set: February 1st 2017 to March 31st 2017

Model Bitcoin Ethereum Dash
RMSE MAE RMSE MAE RMSE MAE

Normal GARCH (1,1) 0.01028286 0.00902283 0.01793080 0.01505344 0.02825603 0.02666399
Student’s 𝑡 GARCH (1,1) 0.01032863 0.00883706 0.01710276 0.01338831 0.02649039 0.02170007
Skewed Student’s 𝑡 GARCH (1,1) 0.01033805 0.00884552 0.01710271 0.01338835 0.02649035 0.02170456
Normal EGARCH (1,1) 0.01016503 0.00900445 0.01862030 0.01599543 0.02905840 0.02581053
Student’s 𝑡 EGARCH (1,1) 0.01036353 0.00897735 0.01890077 0.01521900 0.03421714 0.02878764
Skewed Student’s 𝑡 EGARCH (1,1) 0.01045986 0.00898360 0.01890052 0.01521885 0.03429000 0.02884370
Normal GJR-GARCH (1,1) 0.01034703 0.00900930 0.01960318 0.01560942 0.02827459 0.02584707
Student’s 𝑡 GJR-GARCH (1,1) 0.01084610 0.00903140 0.01749649 0.01346106 0.02661699 0.02150698
Skewed Student’s 𝑡 GJR-GARCH (1,1) 0.01106700 0.00915978 0.01749658 0.01346125 0.02661630 0.02150540
SVR-GARCH (1,1) 0.00063104 0.00017862 0.00252631 0.00099954 0.00597564 0.00120334

Model Euro British Pound Japanese Yen
RMSE MAE RMSE MAE RMSE MAE

Normal GARCH (1,1) 0.00092297 0.00091336 0.00114754 0.00114037 0.00116164 0.00115678
Student’s 𝑡 GARCH (1,1) 0.00096412 0.00095584 0.00133873 0.00133610 0.00116044 0.00114760
Skewed Student’s 𝑡 GARCH (1,1) 0.00090031 0.00089295 0.00117397 0.00116803 0.00116685 0.00115889
Normal EGARCH (1,1) 0.00089818 0.00088116 0.00116322 0.00111639 0.00114097 0.00113461
Student’s 𝑡 EGARCH (1,1) 0.00094176 0.00092113 0.00131765 0.00127703 0.00114329 0.00113341
Skewed Student’s 𝑡 EGARCH (1,1) 0.00094128 0.00092054 0.00131757 0.00127717 0.00114347 0.00113358
Normal GJR-GARCH (1,1) 0.00096640 0.00095289 0.00117486 0.00115431 0.00117479 0.00116757
Student’s 𝑡 GJR-GARCH (1,1) 0.00088538 0.00087678 0.00125185 0.00124700 0.00113320 0.00112218
Skewed Student’s 𝑡 GJR-GARCH (1,1) 0.00093148 0.00092358 0.00120794 0.00120456 0.00110560 0.00109304
SVR-GARCH (1,1) 0.00002209 0.00001039 0.00043386 0.00014066 0.00041692 0.00016176
The Hansen, Lunde and Nason (2011)’s superior set models are highlighted in gray

Table 6 – Forecasting performance for high frequency test set data: Period 4

Training set: September 1st 2016 to January 31st 2017
Validation set: February 1st 2017 to March 31st 2017

Test set: April 1st 2017 to May 31st 2017

Model Bitcoin Ethereum Dash
RMSE MAE RMSE MAE RMSE MAE

Normal GARCH (1,1) 0.01140054 0.00964473 0.01968106 0.01760813 0.02057793 0.01910974
Student’s 𝑡 GARCH (1,1) 0.01148559 0.00971204 0.01873198 0.01621085 0.02052849 0.01852332
Skewed Student’s 𝑡 GARCH (1,1) 0.01148641 0.00971607 0.01872158 0.01622386 0.02049204 0.01850511
Normal EGARCH (1,1) 0.01166953 0.00979897 0.01852513 0.01699511 0.02003365 0.01874298
Student’s 𝑡 EGARCH (1,1) 0.01137208 0.00976844 0.01990472 0.01741331 0.02128344 0.01936220
Skewed Student’s 𝑡 EGARCH (1,1) 0.01139669 0.00978829 0.01970050 0.01726016 0.02127683 0.01935668
Normal GJR-GARCH (1,1) 0.01176680 0.00973092 0.01984240 0.01763048 0.02076537 0.01916559
Student’s 𝑡 GJR-GARCH (1,1) 0.01174897 0.00977212 0.01873072 0.01608512 0.02041031 0.01828486
Skewed Student’s 𝑡 GJR-GARCH (1,1) 0.01177109 0.00978936 0.01871247 0.01609221 0.02039492 0.01827536
SVR-GARCH (1,1) 0.00050642 0.00021148 0.00173549 0.00124855 0.00157584 0.00118765

Model Euro British Pound Japanese Yen
RMSE MAE RMSE MAE RMSE MAE

Normal GARCH (1,1) 0.00103368 0.00089070 0.00092294 0.00090855 0.00113294 0.00112792
Student’s 𝑡 GARCH (1,1) 0.00092145 0.00087629 0.00090351 0.00089595 0.00110693 0.00108632
Skewed Student’s 𝑡 GARCH (1,1) 0.00099263 0.00097098 0.00093310 0.00092156 0.00114681 0.00112563
Normal EGARCH (1,1) 0.00145672 0.00090461 0.00091872 0.00089352 0.00111866 0.00110740
Student’s 𝑡 EGARCH (1,1) 0.00107954 0.00087316 0.00098508 0.00094400 0.00111971 0.00111020
Skewed Student’s 𝑡 EGARCH (1,1) 0.00108103 0.00872119 0.00098502 0.00094325 0.00111423 0.00110502
Normal GJR-GARCH (1,1) 0.00093251 0.00089027 0.00091505 0.00090916 0.00115428 0.00113325
Student’s 𝑡 GJR-GARCH (1,1) 0.00091850 0.00089133 0.00091570 0.00089692 0.00072788 0.00040702
Skewed Student’s 𝑡 GJR-GARCH (1,1) 0.00091459 0.00089133 0.00091284 0.00089180 0.00110604 0.00109003
SVR-GARCH (1,1) 0.00008139 0.00000166 0.00018515 0.00008813 0.00050841 0.00013768
The Hansen, Lunde and Nason (2011)’s superior set models are highlighted in gray

Table 7 – Forecasting performance for high frequency test set data: Period 5
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Training set: November 1st 2016 to March 31st 2017
Validation set: April 1st 2017 to May 31st 2017

Test set: June 1st 2017 to July 31st 2017

Model Bitcoin Ethereum Dash
RMSE MAE RMSE MAE RMSE MAE

Normal GARCH (1,1) 0.01341529 0.01289053 0.02267557 0.02171070 0.01540930 0.01384991
Student’s 𝑡 GARCH (1,1) 0.01418239 0.01304112 0.02367832 0.02093723 0.02074012 0.01945195
Skewed Student’s 𝑡 GARCH (1,1) 0.01416461 0.01302035 0.02366414 0.02091874 0.02088385 0.01954755
Normal EGARCH (1,1) 0.01323332 0.01278953 0.02251908 0.02172502 0.02110245 0.02097898
Student’s 𝑡 EGARCH (1,1) 0.01423269 0.01304949 0.02552701 0.02223959 0.01993591 0.01909908
Skewed Student’s 𝑡 EGARCH (1,1) 0.01449978 0.01328147 0.02565733 0.02230468 0.02025959 0.01937293
Normal GJR-GARCH (1,1) 0.01359696 0.01288202 0.02281586 0.02170132 0.02119260 0.02107908
Student’s 𝑡 GJR-GARCH (1,1) 0.01443705 0.01306728 0.02374665 0.02080738 0.02046007 0.01938376
Skewed Student’s 𝑡 GJR-GARCH (1,1) 0.01463602 0.01322887 0.02386151 0.02088308 0.02082588 0.01968665
SVR-GARCH (1,1) 0.00058801 0.00020410 0.00193367 0.00066853 0.00259729 0.00053860

Model Euro British Pound Japanese Yen
RMSE MAE RMSE MAE RMSE MAE

Normal GARCH (1,1) 0.00090206 0.00089563 0.00113611 0.00111291 0.00101607 0.00101388
Student’s 𝑡 GARCH (1,1) 0.00085591 0.00083969 0.00114517 0.00111681 0.00106887 0.00105437
Skewed Student’s 𝑡 GARCH (1,1) 0.00087847 0.00086434 0.00109577 0.00106716 0.00108514 0.00107198
Normal EGARCH (1,1) 0.00102635 0.00089134 0.00121050 0.00110969 0.00103235 0.00102242
Student’s 𝑡 EGARCH (1,1) 0.00099420 0.00093139 0.00087107 0.00117713 0.00104719 0.00102476
Skewed Student’s 𝑡 EGARCH (1,1) 0.00099030 0.00092624 0.00088244 0.00118472 0.00104756 0.00102427
Normal GJR-GARCH (1,1) 0.00093917 0.00091280 0.00123846 0.00000336 0.00102764 0.00102210
Student’s 𝑡 GJR-GARCH (1,1) 0.00087293 0.00085482 0.00014394 0.00108982 0.00101661 0.00100684
Skewed Student’s 𝑡 GJR-GARCH (1,1) 0.00084019 0.00082184 0.00115170 0.00111520 0.00100928 0.00099567
SVR-GARCH (1,1) 0.00003128 0.00001030 0.00060816 0.00003409 0.00036032 0.00001103
The Hansen, Lunde and Nason (2011)’s superior set models are highlighted in gray

Table 8 – Forecasting performance for high frequency test set data: Period 6

Model Bitcoin Ethereum Dash
Test statistic P-value Test statistic P-value Test statistic P-value

Normal GARCH (1,1) 3.1076 0.001006* 2.4027 0.008867* 1.3705 0.086480
Student’s 𝑡 GARCH (1,1) 3.5682 0.000194* 5.7427 1.56E-07* 1.4245 0.078380
Skewed Student’s 𝑡 GARCH (1,1) 3.5106 0.000230* 8.8443 2.21E-16* 1.4316 0.077370
Normal EGARCH (1,1) 2.4695 0.007483* 2.1036 0.018791 1.7968 0.037465
Student’s 𝑡 EGARCH (1,1) 3.1232 0.001136* 2.8926 0.002275* 2.2311 0.013787
Skewed Student’s 𝑡 EGARCH (1,1) 3.4270 0.000430* 19.6920 2.21E-16* 2.2586 0.012871
Normal GJR-GARCH (1,1) 2.5124 0.006672* 1.5564 0.061071 1.6434 0.051486
Student’s 𝑡 GJR-GARCH (1,1) 2.8048 0.002945* 2.7916 0.003064* 2.2425 0.013481
Skewed Student’s 𝑡 GJR-GARCH (1,1) 4.5249 0.000007* 14.2278 2.21E-16* 2.2909 0.011872

Model Period 4 Period 5 Period 6
Test statistic P-value Test statistic P-value Test statistic P-value

Normal GARCH (1,1) 3.2808 0.000550* 3.2708 0.000692* 3.2790 0.000674*

Student’s 𝑡 GARCH (1,1) 2.7967 0.003069* 2.2321 0.013690 5.7872 2.67E-08*

Skewed Student’s 𝑡 GARCH (1,1) 2.7077 0.003667* 3.6659 0.000181* 1.7026 0.003977*

Normal EGARCH (1,1) 2.4996 0.006918* 3.2151 0.000849* 3.3026 0.000634*

Student’s 𝑡 EGARCH (1,1) 2.4279 0.008354* 3.2834 0.000682* 3.5453 0.000289*

Skewed Student’s 𝑡 EGARCH (1,1) 3.2622 0.000720* 3.2699 0.000715* 3.8388 0.000126*

Normal GJR-GARCH (1,1) 3.2095 0.000863* 3.1958 0.000898* 3.2832 0.000685*

Student’s 𝑡 GJR-GARCH (1,1) 3.2195 0.000834* 3.1372 0.001087* 3.2660 0.000713*

Skewed Student’s 𝑡 GJR-GARCH (1,1) 3.1933 0.000992* 3.1671 0.000980* 3.2615 0.000725*

* denote statistical significance at 1% level

Table 9 – Diebold-Mariano test statistic and p-value for low frequency data
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Model Period 1 Period 2 Period 3
Test statistic P-value Test statistic P-value Test statistic P-value

Normal GARCH (1,1) 2.0473 0.020400 2.5388 0.005635* 2.8350 0.002338*

Student’s 𝑡 GARCH (1,1) 2.6767 0.009817* 2.7224 0.003295* 2.2863 0.011220
Skewed Student’s 𝑡 GARCH (1,1) 2.4195 0.012017 2.2822 0.011341 2.9503 0.001624*

Normal EGARCH (1,1) 1.9534 0.025525 3.7374 0.000094* 5.3781 4.69E-08*

Student’s 𝑡 EGARCH (1,1) 1.4983 0.067175 3.7529 0.000093* 7.7801 8.99E-15*

Skewed Student’s 𝑡 EGARCH (1,1) 1.4592 0.072446 3.8885 0.000054* 7.8593 4.97E-15*

Normal GJR-GARCH (1,1) 2.2098 0.013661 3.4254 0.000312* 2.7161 0.003361*

Student’s 𝑡 GJR-GARCH (1,1) 1.5683 0.058559 2.9747 0.001501* 3.6485 0.000147*

Skewed Student’s 𝑡 GJR-GARCH (1,1) 1.4026 0.080523 3.0699 0.001099* 3.6576 0.000132*

Model Period 4 Period 5 Period 6
Test statistic P-value Test statistic P-value Test statistic P-value

Normal GARCH (1,1) 2.9716 0.001516* 5.1006 2.02E-07* 2.9249 0.001761*

Student’s 𝑡 GARCH (1,1) 2.9823 0.001464* 4.1741 0.000016* 3.5042 0.000239*

Skewed Student’s 𝑡 GARCH (1,1) 2.9883 0.001436* 4.1763 0.000016* 3.4895 0.000252*

Normal EGARCH (1,1) 2.8469 0.002253* 5.4736 2.77E-08* 2.2613 0.011977
Student’s 𝑡 EGARCH (1,1) 2.5737 0.005106* 5.0936 2.09E-07* 4.7987 9.16E-07*

Skewed Student’s 𝑡 EGARCH (1,1) 2.4634 0.006963* 5.1527 1.54E-07* 5.4796 2.68E-08*

Normal GJR-GARCH (1,1) 2.9632 0.001562* 5.5041 2.34E-08* 3.1871 0.000745*

Student’s 𝑡 GJR-GARCH (1,1) 3.1437 0.000867* 5.4798 2.68E-08* 5.0355 2.81E-07*

Skewed Student’s 𝑡 GJR-GARCH (1,1) 3.2937 0.000510* 5.5261 2.08E-08* 5.4944 2.47E-08*

* denote statistical significance at 1% level

Table 10 – Diebold-Mariano test statistic and p-value for high frequency data: Bitcoin

Model Period 1 Period 2 Period 3
Test statistic P-value Test statistic P-value Test statistic P-value

Normal GARCH (1,1) 2.4904 0.006455* 5.1662 1.43E-07* 2.2184 0.013390
Student’s 𝑡 GARCH (1,1) 3.1436 0.000859* 5.2612 8.70E-08* 2.4427 0.007375*

Skewed Student’s 𝑡 GARCH (1,1) 3.1527 0.000831* 5.2353 9.97E-08* 2.4426 0.007376*

Normal EGARCH (1,1) 2.4252 0.007731* 5.6387 1.11E-08* 2.8385 0.002313*

Student’s 𝑡 EGARCH (1,1) 3.6946 0.000116* 4.7779 0.000001* 2.5150 0.006032*

Skewed Student’s 𝑡 EGARCH (1,1) 3.7096 0.000114* 4.7754 0.00000*1 2.5169 0.000624*

Normal GJR-GARCH (1,1) 2.4415 0.007392* 2.3807 0.008736* 2.3923 0.008468*

Student’s 𝑡 GJR-GARCH (1,1) 3.8997 0.000051* 5.1359 1.69E-07* 2.8706 0.002094*

Skewed Student’s 𝑡 GJR-GARCH (1,1) 3.9118 0.000049* 5.2056 1.17E-07* 2.8692 0.002881*

Model Period 4 Period 5 Period 6
Test statistic P-value Test statistic P-value Test statistic P-value

Normal GARCH (1,1) 2.0124 0.022220 2.9990 0.001387* 4.2444 0.000012*

Student’s 𝑡 GARCH (1,1) 1.6976 0.044941 2.3534 0.009394* 4.7414 0.000001*

Skewed Student’s 𝑡 GARCH (1,1) 1.6328 0.051418 2.3480 0.009531* 4.7334 0.000001*

Normal EGARCH (1,1) 2.9144 0.001825* 1.7739 0.038192 4.1469 0.000018*

Student’s 𝑡 EGARCH (1,1) 2.5334 0.005725* 3.2161 0.000637* 6.0355 1.10E-09*

Skewed Student’s 𝑡 EGARCH (1,1) 2.5332 0.005734* 2.8446 0.002271* 6.0151 1.25E-09*

Normal GJR-GARCH (1,1) 3.2028 0.000716* 2.9896 0.001436* 4.3739 0.000006*

Student’s 𝑡 GJR-GARCH (1,1) 2.7264 0.003250* 2.2146 0.002027* 4.8830 6.05E-07*

Skewed Student’s 𝑡 GJR-GARCH (1,1) 2.3974 0.008356* 2.5355 0.005691* 5.0172 3.09E-07*

* denote statistical significance at 1% level

Table 11 – Diebold-Mariano test statistic and p-value for high frequency data: Ethereum
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Model Period 1 Period 2 Period 3
Test statistic P-value Test statistic P-value Test statistic P-value

Normal GARCH (1,1) 2.7245 0.003273* 4.2093 0.000014* 2.2012 0.013980
Student’s 𝑡 GARCH (1,1) 2.3434 0.009646* 3.9008 0.000051* 3.2967 0.000506*

Skewed Student’s 𝑡 GARCH (1,1) 2.3229 0.010190 4.5353 0.000003* 3.2975 0.000505*

Normal EGARCH (1,1) 2.0813 0.018825 4.0735 0.000025* 4.2449 0.000012*

Student’s 𝑡 EGARCH (1,1) 2.0574 0.019944 5.2817 7.81E-08* 4.8814 6.13E-07*

Skewed Student’s 𝑡 EGARCH (1,1) 2.0735 0.019238 5.3128 6.61E-08* 5.3664 4.99E-08*

Normal GJR-GARCH (1,1) 2.9399 0.001677* 4.1774 0.000016* 1.7125 0.043657
Student’s 𝑡 GJR-GARCH (1,1) 2.3527 0.009408* 5.3468 5.51E-08* 4.8508 7.13E-07*

Skewed Student’s 𝑡 GJR-GARCH (1,1) 2.3424 0.009671* 5.3854 4.48E-08* 4.9205 5.04E-07*

Model Period 4 Period 5 Period 6
Test statistic P-value Test statistic P-value Test statistic P-value

Normal GARCH (1,1) 3.0978 0.001001* 4.1358 0.000019* 1.8299 0.033780
Student’s 𝑡 GARCH (1,1) 2.4952 0.006373* 4.0277 0.000030* 2.3599 0.009234*

Skewed Student’s 𝑡 GARCH (1,1) 2.4955 0.006368* 3.9982 0.000034* 2.5752 0.005079*

Normal EGARCH (1,1) 3.3524 0.001825* 1.7739 0.038198 4.3126 0.000008*

Student’s 𝑡 EGARCH (1,1) 6.0762 8.65E-10* 4.9447 4.45E-07* 5.4134 3.85E-08*

Skewed Student’s 𝑡 EGARCH (1,1) 6.1052 7.26E-10* 4.9337 4.70E-07* 4.6512 0.000002*

Normal GJR-GARCH (1,1) 3.2028 0.000701* 2.9896 0.001438* 9.0311 2.21E-16*

Student’s 𝑡 GJR-GARCH (1,1) 2.4603 0.007026* 3.2242 0.000652* 5.4175 3.76E-08*

Skewed Student’s 𝑡 GJR-GARCH (1,1) 2.4598 0.007039* 3.2027 0.000702* 6.1086 7.12E-10*

* denote statistical significance at 1% level

Table 12 – Diebold-Mariano test statistic and p-value for high frequency data: Dashcoin

Model Period 1 Period 2 Period 3
Test statistic P-value Test statistic P-value Test statistic P-value

Normal GARCH (1,1) 3.1210 0.000926* 3.5607 0.000193* 4.1963 0.000015*

Student’s 𝑡 GARCH (1,1) 3.0174 0.001306* 3.7950 0.000078* 4.3448 0.000008*

Skewed Student’s 𝑡 GARCH (1,1) 3.3358 0.000441* 3.4473 0.000295* 5.9567 1.78E-09*

Normal EGARCH (1,1) 2.7713 0.002846* 2.7242 0.003278* 5.7828 4.93E-09*

Student’s 𝑡 EGARCH (1,1) 2.4172 0.007903* 4.7246 0.000001* 5.7665 5.39E-09*

Skewed Student’s 𝑡 EGARCH (1,1) 2.4548 0.007126* 4.7798 0.000001* 5.9810 1.54E-09*

Normal GJR-GARCH (1,1) 4.3344 0.000008* 3.4908 0.000251* 5.8684 2.99E-09*

Student’s 𝑡 GJR-GARCH (1,1) 3.6091 0.000161* 4.9291 4.81E-07* 5.6071 1.33E-08*

Skewed Student’s 𝑡 GJR-GARCH (1,1) 3.4175 0.000328* 4.0377 0.000029* 5.4033 4.09E-08*

Model Period 4 Period 5 Period 6
Test statistic P-value Test statistic P-value Test statistic P-value

Normal GARCH (1,1) 2.6110 0.004586* 5.3216 6.31E-08* 5.8903 2.61E-09*

Student’s 𝑡 GARCH (1,1) 2.7509 0.003024* 5.2231 1.06E-07* 4.9646 4.03E-07*

Skewed Student’s 𝑡 GARCH (1,1) 2.4682 0.006871* 6.3077 2.10E-10* 5.4034 4.06E-08*

Normal EGARCH (1,1) 1.9437 0.026193 1.6794 0.046682 3.8213 0.000073*

Student’s 𝑡 EGARCH (1,1) 3.9026 0.000051* 2.5272 0.005817* 6.7386 1.33E-11*

Skewed Student’s 𝑡 EGARCH (1,1) 3.8718 0.000057* 2.5005 0.006282* 6.4515 8.51E-11*

Normal GJR-GARCH (1,1) 5.4734 2.71E-08* 2.5198 0.005956* 7.2867 3.16E-13*

Student’s 𝑡 GJR-GARCH (1,1) 1.3995 0.080991 1.8606 0.031547 3.7447 0.000095*

Skewed Student’s 𝑡 GJR-GARCH (1,1) 3.7595 0.000089* 2.0243 0.021617 1.9203 0.027554
* denote statistical significance at 1% level

Table 13 – Diebold-Mariano test statistic and p-value for high frequency data: Euro
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Model Period 1 Period 2 Period 3
Test statistic P-value Test statistic P-value Test statistic P-value

Normal GARCH (1,1) 4.3898 0.000006* 3.2182 0.000665* 4.7147 0.000001*

Student’s 𝑡 GARCH (1,1) 6.0130 1.25E-09* 3.6054 0.000163* 5.3017 7.06E-08*

Skewed Student’s 𝑡 GARCH (1,1) 5.4384 3.34E-08* 3.6730 0.000126* 5.7849 4.85E-09*

Normal EGARCH (1,1) 3.6958 0.000115* 3.8564 0.000061* 2.5158 0.006016*

Student’s 𝑡 EGARCH (1,1) 4.1089 0.000021* 2.5209 0.005935* 4.4156 0.000005*

Skewed Student’s 𝑡 EGARCH (1,1) 4.0913 0.000023* 2.5102 0.006119* 4.3022 0.000009*

Normal GJR-GARCH (1,1) 5.9356 1.97E-09* 1.6499 0.049632 4.8843 6.04E-07*

Student’s 𝑡 GJR-GARCH (1,1) 3.4149 0.000331* 2.4856 0.006546* 5.8732 2.91E-09*

Skewed Student’s 𝑡 GJR-GARCH (1,1) 7.6605 2.06E-14* 2.2931 0.011028 5.6831 8.67E-09*

Model Period 4 Period 5 Period 6
Test statistic P-value Test statistic P-value Test statistic P-value

Normal GARCH (1,1) 3.4275 0.000316* 5.5846 1.50E-08* 2.2302 0.012970
Student’s 𝑡 GARCH (1,1) 4.0127 0.000032* 5.2628 8.63E-08* 2.2913 0.011110
Skewed Student’s 𝑡 GARCH (1,1) 3.7121 0.000108* 5.7619 5.49E-09* 1.9615 0.025043
Normal EGARCH (1,1) 2.7495 0.002953* 4.7792 0.000001* 2.3605 0.009221*

Student’s 𝑡 EGARCH (1,1) 8.6976 2.21E-16* 6.9767 2.71E-12* 1.2961 0.097612
Skewed Student’s 𝑡 EGARCH (1,1) 8.7316 2.21E-16* 6.8923 4.79E-12* 1.3113 0.095034
Normal GJR-GARCH (1,1) 4.4363 0.000005* 5.2254 1.05E-07* 1.1832 0.118517
Student’s 𝑡 GJR-GARCH (1,1) 8.3219 2.21E-16* 4.9438 4.47E-07* 2.1657 0.012863
Skewed Student’s 𝑡 GJR-GARCH (1,1) 6.2295 3.45E-10* 4.7118 0.000001* 2.6445 0.004153*

* denote statistical significance at 1% level

Table 14 – Diebold-Mariano test statistic and p-value for high frequency data: British Pound

Model Period 1 Period 2 Period 3
Test statistic P-value Test statistic P-value Test statistic P-value

Normal GARCH (1,1) 4.9330 4.69E-07* 3.5532 0.000199* 2.7268 0.003254*

Student’s 𝑡 GARCH (1,1) 5.6116 1.28E-08* 3.0526 0.001163* 2.5908 0.004857*

Skewed Student’s 𝑡 GARCH (1,1) 4.6434 1.93E-06* 3.0732 0.001087* 2.4158 0.000794*

Normal EGARCH (1,1) 6.2383 3.17E-10* 3.3271 0.000454* 2.0245 0.021597
Student’s 𝑡 EGARCH (1,1) 7.2093 5.29E-13* 3.8657 0.000059* 3.1253 0.000914*

Skewed Student’s 𝑡 EGARCH (1,1) 7.2378 4.33E-13* 3.8422 0.000065* 3.2885 0.000521*

Normal GJR-GARCH (1,1) 8.5345 2.21E-16* 3.3737 0.003853* 3.3127 0.000479*

Student’s 𝑡 GJR-GARCH (1,1) 3.3764 0.000098* 5.2041 1.18E-07* 2.5059 0.006187*

Skewed Student’s 𝑡 GJR-GARCH (1,1) 6.0879 7.94E-10* 1.0219 0.153517 1.6333 0.051369

Model Period 4 Period 5 Period 6
Test statistic P-value Test statistic P-value Test statistic P-value

Normal GARCH (1,1) 4.7986 9.17E-07* 2.9258 0.001756* 3.5971 0.000168*

Student’s 𝑡 GARCH (1,1) 4.8939 5.73E-07* 2.7229 0.003290* 4.2148 0.000014*

Skewed Student’s 𝑡 GARCH (1,1) 4.9584 4.15E-07* 3.0272 0.001265* 4.4181 0.000006*

Normal EGARCH (1,1) 4.9784 3.76E-07* 1.6405 0.050607 3.9924 0.000035*

Student’s 𝑡 EGARCH (1,1) 5.0017 3.34E-07* 1.6904 0.045638 4.3206 0.000008*

Skewed Student’s 𝑡 EGARCH (1,1) 5.0091 3.22E-07* 1.4656 0.071532 4.2961 0.000016*

Normal GJR-GARCH (1,1) 6.6291 2.72E-11* 3.0451 0.001193* 3.9831 0.000036*

Student’s 𝑡 GJR-GARCH (1,1) 4.5513 0.000003* 1.9769 0.024166 3.3566 0.000409*

Skewed Student’s 𝑡 GJR-GARCH (1,1) 3.2319 0.000634* 1.1124 0.133183 2.9392 0.001685*

* denote statistical significance at 1% level

Table 15 – Diebold-Mariano test statistic and p-value for high frequency data: Japanese Yen
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3.5 Results and discussion
The results were widely favorable towards SVR-GARCH model. As shown in

tables 2 to 8, both RMSE and MAE of SVR-GARCH were lower than Normal, Student’s
𝑡 and Skewed Student’s 𝑡 distributions GARCHs, EGARCHs and GJR-GARCHs for all
exchange rates and cryptocurrencies, in both low frequency and high frequency datasets.
Similarly, the Diebold-Mariano test and Hansen’s superior model sets also present strong
evidences that the SVR models significantly outperforms the traditional GARCH models.

As shown in tables 9 to 15, at the usual 95% confidence level only 19 out of 420
models failed to reject the null hypothesis, indicating that SVR models performed much
better than the other models during all data range in both time frequencies for all assets
– even at the 99% confidence level, SVR-GARCH showed predictive superiority in 319
out of 420 models: 42 out of 60 models for low frequency and for 277 out of 360 models
for high frequency data.

As for Hansen, Lunde and Nason (2011)’s model confidence set procedure, the
SVR-GARCH model was in the set of superior models for all assets and all time periods
– in fact, almost all SSMs (35 out of 42 sets) were composed only by the SVR-GARCH
model, which provide further evidences the better performance of the machine learning
approach. Overall, the SSMs generated by the MCS tests contained a small number of
models due to the relatively small size of the initial set ℳ0 (10 models). In addition, SVR-
GARCH’s RMSE and MAE were in general significantly lower than all other benchmark
models, making it “superior” to the rest by a wide margin in many cases.

Overall, the forecasting errors of both GARCH and SVR models were higher for the
cryptocurrencies than for the traditional currencies in both daily and hourly frequencies,
an expected outcome given the big difference in the volatility levels for those kinds of
asset.

For the low frequency dataset, the error metrics were generally higher than the
high frequency one. This result is consistent with the findings in the literature: as seen
in Xie and Li (2010), the RMSE for the volatility forecasting tend to decrease as the
frequency increases, a behavior that was also identified for virtual currencies. As shown
by the Diebold-Mariano test p-values and Hansen’s superior model sets, the SVR models
seemed to outperform GARCH models less emphatically for the cryptocurrencies than for
the exchange rates for the daily volatility, whilst for the hourly volatility the superiority
evidences were stronger for cryptocurrencies and milder for traditional currencies. This
suggests a higher intraday volatility fluctuation in exchange rates than for cryptocur-
rencies, which can be associated to the huge liquidity of the foreign exchange market in
comparison to the incipient acceptability of bitcoin, ethereum and dash.

The good predictive performance of the SVR based models can be linked to the
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nonlinearities that the Kernel function bring forth, inducing an infinite-dimensional fea-
ture space with a small number of parameters and incorporating nonlinear interactions
that traditional linear models fail to capture. For assets with much higher volatility lev-
els, like cryptocurrencies, the evidences of SVR’s better predictive power are still very
strong, suggesting the robustness of machine learning techniques in forecasting financial
time series.

Analyzing the error metrics, the Diebold-Mariano test p-values and the composi-
tion of the set of superior models, the GJR-GARCH models seemed to perform slightly
better than GARCH and EGARCH. Concerning the conditional distribution of 𝜖𝑡, the
Normal, Student’s 𝑡 and skewed Student’s 𝑡 distributions yielded overall similar results.

The results reveal that SVR models presented a significantly lower value for both
RMSE and MAE error metrics in comparison to all nine GARCH models. The results
are similar to the findings of Hsu et al. (2016), in which the authors conclude, based on
various experiments, that machine learning techniques demonstrate superior predictive
power than traditional econometric models. The results of this paper present evidences
of such superiority not only for the exchange rates’ volatility estimation, but also for the
cryptocurrencies, a segment not explored by Hsu et al. (2016) and still not frequently
studied in the finance literature.

Nonetheless, it was possible to see that cryptocurrencies have higher overall volatil-
ity than real world currencies. This result bring forth the discussion of whether cryptocur-
rencies can be treated as traditional currencies, specially concerning the debate regarding
their fundamental or speculative nature, as discussed by Dowd (2014). The absence of a
central monetary authority, while being the main feature of cryptocurrencies, is also one
of the main sources of criticism, since a big share of their value is based on their notoriety
and circulation on web, which creates a speculative profile for this kind of asset and a
potential bubble. Authors like Baek and Elbeck (2015) expected that the increase in bit-
coin’s usage would make its volatility drop and exhibit a more investment-like behavior
rather than a speculative tool. However, this did not happen, since bitcoin’s market cap
has been increasing all along, but its volatility is also going up, as seen in figure 2. Thus,
the higher volatility levels showed by cryptocurrencies suggests a more cautious look over
cryptocurrencies, and presents a possible evidence that they cannot yet be considered
as “trusted currencies”, mainly because their lack of maturity upon the store of value
function.

3.6 Conclusion and remarks
This paper evaluated SVR-GARCH’s predictive performance of daily and hourly

volatiilty of three cryptocurrencies and three exchange rate pairs. The GARCH model was
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combined with machine learning approach, such that the mean and volatility equations
were estimated using Support Vector Regression. Furthermore, we compared the models’
predictive ability with Diebold-Mariano test and Hansen’s Model Confidence Set. The
results show that SVR-GARCH models managed to outperform all nine GARCH bench-
marks – GARCHs, EGARCHs and GJR-GARCHs with Normal, Student’s 𝑡 and Skewed
Student’s 𝑡 distributions – as seen by the value of error metrics RMSE and MAE, the
Diebold-Mariano test p-values and the composition of the set of superior models.

The findings of this paper have the potential to aid scholars and market practi-
tioners with an overview of the cryptocurrencies market features, discussing similarities
and differences of their volatility patterns in comparison to real world currencies, present-
ing the extents in which the incorporation of a machine learning based technique yields
better forecasting power for volatility over the GARCH benchmarks. The outcome of
this research is a tool capable of estimating the risk for the cryptocurrencies in the future
and can be used as a risk management for portfolios, as proposed by Dyhrberg (2016a).
Furthermore, a more accurate model for volatility forecast in cryptocurrencies can be of
interest for companies that accept them, as well as potential investors and traders of this
market segment. More precise volatility predictions for cryptocurrencies can represent
a measure of short-term risk to better evaluate the attractiveness of this kind of assets
over alternative risky investments, potentially leading to better portfolio allocations, and
guidance to investment decisions or corporate strategies.

Future researches are encouraged to replicate this study for other financial assets’
volatility estimation, as well as to consider other distributions for the GARCH models’
error term - such as Generalized Pareto Distribution (MCNEIL; FREY, 2000) - and other
well known models for volatility estimation, such as TGARCH (ZAKOIAN, 1994) and
APARCH (DING; GRANGER; ENGLE, 1993). Also, the inclusion of SVR estimation
to other volatility models apart from GARCH (1,1) can further contribute to better
volatility predictions and may be an attractive and relevant issue in future developments
in the finance literature.

Bearing in mind the huge popularity and prominence of Machine Learning methods
many scientific fields, finance included, testing for different extensions of SVR – like Chang
and Lin (2002)’s 𝜈-SVR – is also quite desirable. The use of different Kernel functions or
mixture models, as seen in Bezerra and Albuquerque (2017), can also be incorporated to
the SVR models. Finally, replications with different time periods and frequencies (e.g.:
even higher frequency data, by minutes or even seconds) can contribute further for this
research agenda.
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Appendix A. Predictive Accuracy Test
Diebold and Mariano (1995)’s predictive accuracy test compares the loss differen-

tial between the forecasting errors of two sets relative to the observed values. We used
SVR-GARCH model as benchmark, so we defined 𝑑𝑡 as the excess error of SVR-GARCH
model over the other GARCH models:

𝑑𝑡 = [𝑔(𝑒𝑆𝑉 𝑅,𝑡) − 𝑔(𝑒𝐺𝐴𝑅𝐶𝐻,𝑡)] (3.15)

where 𝑒𝑖,𝑡 = ℎ̃𝑡 − ̂︀ℎ𝑖,𝑡 is the forecast error of the i-th model at time 𝑡 and 𝑔(.) is a loss
function, which we defined as the squared error 𝑔(𝑒𝑖,𝑡) = 𝑒2

𝑖,𝑡.

The Diebold-Mariano test evaluates the null hypothesis

𝐻0 : E [𝑑𝑡] ≥ 0, ∀ 𝑡 = 1, 2, ..., 𝑇 (3.16)

where 𝑇 is the number of time periods in the test sets (thus, the number of forecasts
generated). The null hypothesis states that SVR-GARCH models have equal or worse
accuracy than GARCH models, while its rejection provides evidence of superiority over
them.

Appendix B. Model Confidence Set
Hansen, Lunde and Nason (2011)’s Model Confidence Set (MCS) provides, at a

given significance level 𝛼, a subset of “superior models” from an initial set ℳ0 containing
all 𝑚 tested models. The superior set models (SSM) is obtained by recursively removing
the worst model in ℳ0 evaluating the null hypothesis of equal predictive ability for the
𝑖-th model in ℳ0, 𝑖 = 1, 2, ...,𝑚, given by:

𝐻0 : E
[︃

𝑚−1∑︀
𝑗=1

𝑇∑︀
𝑡=1

𝑔(𝑒𝑖,𝑡) − 𝑔(𝑒𝑗,𝑡)
]︃

= 0, 𝑖 = 1, 2, ...,𝑚 (3.17)

with 𝑇 , 𝑔(.) and 𝑒𝑖,𝑡 as previously defined for the Diebold-Mariano test.

The MCS procedure basically tests whether the models in the initial set ℳ0 have
equal predictive power (null hypothesis); a block bootstrap procedure is used to compute
the distribution under 𝐻0. If 𝐻0 is not rejected, then ℳ0 is itself the superior set of
models SSM. On the other hand, if 𝐻0 is rejected, then at least one model “differs sig-
nificantly” from the others in terms of predictive quality, so that one of the 𝑚 models
in ℳ0 is chosen as the worst model and eliminated from ℳ0, filtering it into a subset
ℳ* containing “better models”. The elimination rule removes the model with the worst
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relative performance in comparison to the average across all other models, measured by
the test statistic:

𝑡𝑖 =

1
𝑚− 1

𝑚−1∑︁
𝑗=1

𝑇∑︁
𝑡=1

𝑔(𝑒𝑖,𝑡) − 𝑔(𝑒𝑗,𝑡)⎯⎸⎸⎸⎷̂︀V
⎛⎝ 1
𝑚− 1

𝑚−1∑︁
𝑗=1

𝑇∑︁
𝑡=1

𝑔(𝑒𝑖,𝑡) − 𝑔(𝑒𝑗,𝑡)
⎞⎠

(3.18)

The routine is applied recursively, eliminating one model at a time. Each time the
equal predictive ability null hypothesis is rejected, ℳ* is updated, eliminating the worst
models. When 𝐻0 ceases to be rejected, the current ℳ* is the SSM containing only the
“superior models” at the significance level 𝛼.
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4 Between Nonlinearities, Complexity, and
Noises: An Application on Portfolio Se-
lection Using Kernel Principal Component
Analysis

Abstract
This paper discusses the effects of introducing nonlinear interactions and noise-filtering
to the covariance matrix used in Markowitz’s portfolio allocation model, evaluating the
technique’s performances for daily data from seven financial markets between January
2000 and August 2018. We estimated the covariance matrix by applying Kernel func-
tions, and applied filtering following the theoretical distribution of the eigenvalues based
on the Random Matrix Theory. The results were compared with the traditional linear
Pearson estimator and robust estimation methods for covariance matrices. The results
showed that noise-filtering yielded portfolios with significantly larger risk-adjusted prof-
itability than its non-filtered counterpart for almost half of the tested cases. Moreover,
we analyzed the improvements and setbacks of the nonlinear approaches over linear ones,
discussing in which circumstances the additional complexity of nonlinear features seemed
to predominantly add more noise or predictive performance.1

4.1 Introduction
Finance can be defined as the research field that studies the management of

value—for an arbitrary investor that operates inside the financial market, the value of
the assets that he/she chose can be measured in terms of how profitable or risky they are.
While individuals tend to pursue potentially larger return rates, often the most profitable
options bring along higher levels of uncertainty as well, so that the risk–return relation-
ship induces a trade-off over the preferences of the economic agents, making them seek
a combination of assets that offer maximum profitability, as well as minimum risk—an
efficient allocation of the resources that generate the most payoff/reward/value.

As pointed out in Miller (1999), one of the main milestones in the history of finance
was the mean-variance model of Nobel Prize laureate Harry Markowitz, a work regarded
as the genesis of the so-called “Modern Portfolio Theory”, in which the optimal portfolio
1 Published in Entropy, v. 21, n. 4, p. 376, 2019
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choice was presented as the solution of a simple, constrained optimization problem. Fur-
thermore, Markowitz (1952)’s model shows the circumstances in which the levels of risk
can be diminished through diversification, as well as the limits of this artifice, represented
by a risk that investors can do nothing about and therefore must take when investing in
the financial market.

While the relevance of Markowitz (1952)’s work is unanimously praised, the best
way to estimate its inputs—a vector of expected returns and a covariance matrix—is far
from reaching a consensus. While the standard estimators are easy to obtain, recent
works like Pavlidis, Paya and Peel (2015) and Hsu et al. (2016) argue in favor of the in-
troduction of nonlinear features to boost the predictive power for financial variables over
traditional parametric econometric methods, and in which existing novel approaches, such
as machine-learning methods, can contribute to better forecasting performances. Addi-
tionally, many studies globally have found empirical evidence from real-world financial
data that the underlying patterns of financial covariance matrices seem to follow some
stylized facts regarding the big proportion of “noise” in comparison to actually useful in-
formation, implying that the complexity of the portfolio choice problem could be largely
reduced, possibly leading to more parsimonious models that provide better forecasts.

This paper focused on those questions, investigating whether the use of a nonlinear
and nonparametric covariance matrix or the application of noise-filtering techniques can
indeed help a financial investor to build better portfolios in terms of cumulative return
and risk-adjusted measures, namely Sharpe and Sortino ratios. Moreover, we analyzed
various robust methods for estimating the covariance matrix, and whether nonlinearities
and noise-filtering managed to bring improvements to the portfolios’ performance, which
can be useful to the construction of portfolio-building strategies for financial investors.
We tested different markets and compared the results, and discussed to which extent
the portfolio allocation was done better using Kernel functions and “clean” covariance
matrices.

The paper is structured as follows: Section 4.2 presents the foundations of risk di-
versification via portfolios, discussing the issues regarding high dimensionality in financial
data, motivating the use of high-frequency data, as well as nonlinear predictors, regular-
ization techniques, and the Random Matrix Theory. Section 4.3 describes the Markowitz
(1952) portfolio selection model, robust estimators for the covariance matrix, and the
Principal Component Analysis for both linear and Kernel covariance matrices. Section
4.4 provides details on the empirical analysis and describes the collected data and chosen
time periods, as well as the performance metrics and statistical tests for the evaluation
of the portfolio allocations. Section 4.5 presents the performance of the obtained port-
folios and discusses their implication in view of the financial theory. Finally, Section
4.6 presents the paper’s conclusions, potential limitations to the proposed methods, and
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recommendations for future developments.

4.2 Theoretical Background
4.2.1 Portfolio Selection and Risk Management

In financial contexts, “risk” refers to the likelihood of an investment yielding a
different return from the expected one (DAMODARAN, 2012); thus, in a broad sense,
risk does not necessarily only have regard to unfavorable outcomes (downside risk), but
rather includes upside risk as well. Any flotation from the expected value of the return
of a financial asset is viewed as a source of uncertainty, or “volatility”, as it is more often
called in finance.

A rational investor would seek to optimize his interests at all times, which can
be expressed in terms of maximization of his expected return and minimization of his
risk. Given that future returns are a random variable, there are many possible measures
for its volatility; however, the most common measure for risk is the variance operator
(second moment), as used in Markowitz (1952)’s Modern Portfolio Theory seminal work,
while expected return is measured by the first moment. This is equivalent to assuming
that all financial agents follow a mean-variance preference, which is grounded in the
microeconomic theory and has implications in the derivation of many important models
in finance and asset pricing, such as the CAPM model (SHARPE, 1964; LINTNER, 1965;
MOSSIN, 1966), for instance.

The assumption of rationality implies that an “efficient” portfolio allocation is a
choice of weights 𝑤 in regard to how much assets you should buy which are available in
the market, such that the investor cannot increase his expected return without taking
more risk—or, alternatively, how you can decrease his portfolio volatility without taking
a lower level of expected return. The curve of the possible efficient portfolio allocations in
the risk versus the expected return graph is known as an “efficient frontier”. As shown in
Markowitz (1952), in order to achieve an efficient portfolio, the investor should diversify
his/her choices, picking the assets with the minimal association (measured by covariances),
such that the joint risks of the picked assets tend to cancel each other.

Therefore, for a set of assets with identical values for expected return 𝜇 and vari-
ance 𝜎2, choosing a convex combination of many of them will yield a portfolio with a
volatility value smaller than 𝜎2, unless all chosen assets have perfect correlation. Such
effects of diversification can be seen statistically from the variance of the sum of 𝑝 ran-
dom variables: V[𝑤1𝑋1 + 𝑤2𝑋2 + ... + 𝑤𝑝𝑋𝑝] =

𝑝∑︀
𝑖=1

𝑝∑︀
𝑗=1

𝑤𝑖𝑤𝑗𝑐𝑜𝑣(𝑋𝑖, 𝑋𝑗); since
𝑝∑︀

𝑖=1
𝑤𝑖 = 1

(negative-valued weights represent a short selling), the volatility of a generic portfolio
𝑤1𝑥1 + 𝑤2𝑥2 + ...+ 𝑤𝑝𝑥𝑝 with same-risk assets will always diminish with diversification.



Chapter 4. Between Nonlinearities, Complexity, and Noises: An Application on Portfolio Selection
Using Kernel Principal Component Analysis 86

The component of risk which can be diversified, corresponding to the joint volatility
between the chosen assets, is known as “idiosyncratic risk”, while the non-diversifiable
component of risk, which represents the uncertainties associated to the financial market
itself, is known as “systematic risk” or “market risk”. The idiosyncratic risk is specific to a
company, industry, market, economy, or country, meaning it can be eliminated by simply
investing in different assets (diversification) that will not all be affected in the same way
by market events. On the other hand, the market risk is associated with factors that affect
all assets’ companies, such as macroeconomic indicators and political scenarios; thus not
being specific to a particular company or industry and which cannot be eliminated or
reduced through diversification.

Although there are many influential portfolio selection models that arose after
Markowitz’s classic work, such as the Treynor-Black model (TREYNOR; BLACK, 1973),
the Black-Litterman model (BLACK; LITTERMAN, 1992), as well as advances in the
so-called “Post-Modern Portfolio Theory” (ROM; FERGUSON, 1994; GALLOPPO et
al., 2010) and machine-learning techniques (ZHANG; ZHANG; XIAO, 2009; HUANG,
2012; MARCELINO; HENRIQUE; ALBUQUERQUE, 2015), Markowitz (1952) remains
as one of the most influential works in finance and is still widely used as a benchmark
for alternative portfolio selection models, due to its mathematical simplicity (uses only a
vector of expected returns and a covariance matrix as inputs) and easiness of interpreta-
tion. Therefore, we used this model as a baseline to explore the potential improvements
that arise with the introduction of nonlinear interactions and covariance matrix filtering
through the Random Matrix Theory.

4.2.2 Nonlinearities and Machine Learning in Financial Applications

Buonocore et al. (2016) presents two key elements that define the complexity of
financial time-series: the multi-scaling property, which refers to the dynamics of the series
over time; and the structure of cross-dependence between time-series, which are reflexes
of the interactions among the various financial assets and economic agents. In a financial
context, one can view those two complexity elements as systematic risk and idiosyncratic
risk, respectively, precisely being the two sources of risk that drive the whole motivation for
risk diversification via portfolio allocation, as discussed by the Modern Portfolio Theory.

It is well-known that systematic risk cannot be diversified. So, in terms of risk
management and portfolio selection, the main issue is to pick assets with minimal idiosyn-
cratic risk, which in turn, naturally, demands a good estimation for the cross-interaction
between the assets available in the market, namely the covariance between them.

The non-stationarity of financial time-series is a stylized fact which is well-known
by scholars and market practitioners, and this property has relevant implications in fore-
casting and identifying patterns in financial analysis. Specifically concerning portfolio
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selection, the non-stationary behavior of stock prices can induce major drawbacks when
using the standard linear Pearson correlation estimator in calculating the covariances ma-
trix. Livan, Inoue and Scalas (2012) provides empirical evidence of the limitations of the
traditional linear approach established in Markowitz (1952), pointing out that the linear
estimator fails to accurately capture the market’s dynamics over time, an issue that is not
efficiently solved by simply using a longer historical series. The sensitivity of Markowitz
(1952)’s model to its inputs is also discussed in Chen and Zhou (2018), which incor-
porates the third and fourth moments (skewness and kurtosis) as additional sources of
uncertainty over the variance. Using multi-objective particle swarm optimization, robust
efficient portfolios were obtained and shown to improve the expected return in compar-
ison to the traditional mean-variance approach. The relative attractiveness of different
robust efficient solutions to different market settings (bullish, steady, and bearish) was
also discussed.

Concerning the Dynamical Behavior of Financial Systems, Bonanno, Valenti and
Spagnolo (2006) proposed a generalization of the Heston model (HESTON, 1993), which
is defined by two coupled stochastic differential equations (SDEs) representing the log of
the price levels and the volatility of financial stocks, and provided a solution for option
pricing that incorporated improvements over the classical Black-Scholes model (BLACK;
SCHOLES, 1973) regarding financial stylized facts, such as the skewness of the returns
and the excess kurtosis. The extension proposed by Bonanno, Valenti and Spagnolo (2006)
was the introduction of a random walk with cubic nonlinearity to replace the log-price
SDE of Heston’s model. Furthermore, the authors analyzed the statistical properties
of escape time as a measure of the stabilizing effect of the noise in the market dynam-
ics. Applying this extended model, Spagnolo and Valenti (2008) tested for daily data
of 1071 stocks traded at the New York Stock Exchange between 1987 and 1998, finding
out that the nonlinear Heston model approximates the probability density distribution on
escape times better than the basic geometric Brownian motion model and two well-known
volatility models, namely GARCH (BOLLERSLEV, 1986) and the original Heston model
(HESTON, 1993). In this way, the introduction of a nonlinear term allowed for a better
understanding of a measure of market instability, capturing embedded relationships that
linear estimators fail to consider. Similarly, linear estimators for covariance ignore po-
tential associations in higher dimensionality interactions, such that even assets with zero
covariance may actually have a very heavy dependence on nonlinear domains.

As discussed in Kühn and Neu (2008), the states of a market can be viewed as
attractors resulting from the dynamics of nonlinear interactions between the financial
variables, such that the introduction of nonlinearities also has potential implications for
financial applications, such as risk management and derivatives pricing. For instance,
Valenti, Fazio and Spagnolo (2018) pointed out that volatility is a monotonic indicator
of financial risk, while many large oscillations in a financial market (both upwards and
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downwards) are preceded by long periods of relatively small levels of volatility in the
assets’ returns (the so-called “volatility clustering”). In this sense, the authors proposed
the mean first hitting time (defined as the average time until a stock return undergoes a
large variation—positive or negative—for the first time) as an indicator of price stability.
In contrast with volatility, this measure of stability displays nonmonotonic behavior that
exhibits a pattern resembling the Noise Enhanced Stability (NES) phenomenon, observed
in a broad class of systems (AGUDOV; DUBKOV; SPAGNOLO, 2003; DUBKOV; AGU-
DOV; SPAGNOLO, 2004; FIASCONARO; SPAGNOLO; BOCCALETTI, 2005). There-
fore, using the conventional volatility as a measure of risk can lead to its underestimation,
which in turn can lead to bad allocations of resources or bad financial managerial deci-
sions.

In light of evidence that not all noisy information of the covariance matrix is due
to their non-stationarity behavior (MARTINS, 2007), many machine-learning methods,
such as the Support Vector Machines (GUPTA; MEHLAWAT; MITTAL, 2012), Gaus-
sian processes (PARK et al., 2016), and deep learning (HEATON; POLSON; WITTE,
2017) methods have been discussed in the literature, showing that the introduction of
nonlinearities can provide a better display of the complex cross-interactions between the
variables and generate better predictions and strategies for the financial markets. Sim-
ilarly, Almahdi and Yang (2017) proposed a portfolio trading algorithm using recurrent
reinforcement learning, using the expected maximum drawdown as a downside risk mea-
sure and testing for different sets of transaction costs. The authors also proposed an
adaptive rebalancing extension, reported to have a quicker reaction to transaction cost
variations and which managed to outperform hedge fund benchmarks.

Paiva et al. (2018) proposed a fusion approach of a Support Vector Machine and
the mean-variance optimization for portfolio selection, testing for data from the Brazilian
market and analyzing the effects of brokerage and transactions costs. Petropoulos et al.
(2017) applied five machine learning algorithms (Support Vector Machine, Random For-
est, Deep Artificial Neural Networks, Bayesian Autoregressive Trees, and Naïve Bayes) to
build a model for FOREX portfolio management, combining the aforementioned methods
in a stacked generalization system. Testing for data from 2001 to 2015 of ten currency
pairs, the authors reported the superiority of machine learning models in terms of out-
of-sample profitability. Moreover, the paper discussed potential correlations between the
individual machine learning models, providing insights concerning their combination to
boost the overall predictive power. Chen et al. (2009) generalized the idea of diversifying
for individual assets for investment and proposed a framework to construct portfolios of
investment strategies instead. The authors used genetic algorithms to find the optimal al-
location of capital into different strategies. For an overview of the applications of machine
learning techniques in portfolio management contexts, see Pareek and Thakkar (2015).
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Regarding portfolio selection, Chicheportiche and Bouchaud (2015) developed a
nested factor multivariate model to model the nonlinear interactions in stock returns, as
well as the well-known stylized facts and empirically detected copula structures. Test-
ing for the S&P 500 index for three time periods (before, during, and after the financial
crisis), the paper showed that the optimal portfolio constructed by the developed model
showed a significantly lower out-of-sample risk than the one built using linear Principal
Component Analysis, whilst the in-sample risk is practically the same; thus being positive
evidence towards the introduction of nonlinearities in portfolio selection and asset allo-
cation models. Montenegro and Albuquerque (2017) applied a local Gaussian correlation
to model the nonlinear dependence structure of the dynamic relationship between the
assets. Using a subset of companies from the S&P 500 Index between 1992 and 2015,
the portfolio generated by the nonlinear approach managed to outperform the Markowitz
(1952) model in more than 60% of the validation bootstrap samples. In regard to the
effects of dimensionality reduction on the performance of portfolios generated from mean-
variance optimization, Tayalı and Tolun (2018) applied Non-negative Matrix Factorization
(NMF) and Non-negative Principal Components Analysis (NPCA) for data from three
indexes of the Istanbul Stock Market. Optimal portfolios were constructed based on
Markowitz (1952)’s mean-variance model. Performing backtesting for 300 tangency port-
folios (maximum Sharpe Ratio), the authors showed that the portfolios’ efficiency was
improved in both NMF and NPCA approaches over the unreduced covariance matrix.

Musmeci, Aste and Matteo (2016) incorporated a metric of persistence in the
correlation structure between financial assets, and argued that such persistence can be
useful for the anticipation of market volatility variations and that they could quickly
adapt to them. Testing for daily prices of US and UK stocks between 1997 and 2013,
the correlation structure persistence model yielded better forecasts than predictors based
exclusively on past volatility. Moreover, the paper discusses the effect of the “curse of
dimensionality” that arises in financial data when a large number of assets is considered,
an issue that traditional econometric methods often fail to deal with. In this regard,
Hsu et al. (2016) argues in favor of the use of nonparametric approaches and machine
learning methods in traditional financial economics problems, given their better empirical
predictive power, as well as providing a broader view of well-established research topics
in the finance agenda beyond classic econometrics.

4.2.3 Regularization, Noise Filtering, and Random Matrix Theory

A major setback in introducing nonlinearities is keeping them under control, as
they tend to significantly boost the model’s complexity, both in terms of theoretical impli-
cations and computational power needed to actually perform the calculations. Nonlinear
interactions, besides often being difficult to interpret and apart from a potentially better
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explanatory power, may bring alongside them a large amount of noisy information, such
as an increase in complexity that is not compensated by better forecasts or theoretical
insights, but instead which “pollutes” the model by filling it with potentially useless data.

Bearing in mind this setback, the presence of regularization is essential to cope
with the complexity levels that come along with high dimensionality and nonlinear inter-
actions, especially in financial applications in which the data-generating processes tend
to be highly chaotic. While it is important to introduce new sources of potentially useful
information by boosting the model’s complexity, being able to filter that information, dis-
card the noises, and maintain only the “good” information is a big and relevant challenge.
Studies like Massara, Matteo and Aste (2016) discuss the importance of scalability and
information filtering in light of the advent of the “Big Data Era”, in which the boost of
data availability and abundance led to the need to efficiently use those data and filter out
the redundant ones.

Barfuss et al. (2016) emphasized the need for parsimonious models by using infor-
mation filtering networks, and building sparse-structure models that showed similar pre-
dictive performances but much smaller computational processing time in comparison to a
state-of-the-art sparse graphical model baseline. Similarly, Torun, Akansu and Avellaneda
(2011) discussed the eigenfiltering of measurement noise for hedged portfolios, showing
that empirically estimated financial correlation matrices contain high levels of intrinsic
noise, and proposed several methods for filtering it in risk engineering applications.

In financial contexts, Ban, Karoui and Lim (2016) discussed the effects of performance-
based regularization in portfolio optimization for mean-variance and mean-conditional
Value-at-Risk problems, showing evidence for its superiority towards traditional opti-
mization and regularization methods in terms of diminishing the estimation error and
shrinking the model’s overall complexity.

Concerning the effects of high dimensionality in finance, Kozak, Nagel and Santosh
(2017) tested many well-established asset pricing factor models (including CAPM and the
Fama-French five-factor model) introducing nonlinear interactions between 50 anomaly
characteristics and 80 financial ratios up to the third power (i.e., all cross-interactions
between the features of first, second, and third degrees were included as predictors, to-
taling to models with 1375 and 3400 candidate factors, respectively). In order to shrink
the complexity of the model’s high dimensionality, the authors applied dimensionality
reduction and regularization techniques considering ℓ1 and ℓ2 penalties to increase the
model’s sparsity. The results showed that a very small number of principal components
were able to capture almost all of the out-of-sample explanatory powers, resulting in a
much more parsimonious and easy-to-interpret model; moreover, the introduction of an
additional regularized principal component was shown to not hinder the model’s sparsity,
but also to not improve predictive performance either.



Chapter 4. Between Nonlinearities, Complexity, and Noises: An Application on Portfolio Selection
Using Kernel Principal Component Analysis 91

Depending on the “noisiness” of the data, the estimation of the covariances can
be severely hindered, potentially leading to bad portfolio allocation decisions—if the co-
variances are overestimated, the investor could give up less risky asset combinations, or
accept a lesser expected profitability; if the covariances are underestimated, the investor
would be bearing a higher risk than the level he was willing to accept, and his portfolio
choice could be non-optimal in terms of risk and return. Livan, Inoue and Scalas (2012)
discussed the impacts of measurement noises on correlation estimates and the desirability
of filtering and regularization techniques to diminish the noises in empirically observed
correlation matrices.

A popular approach for the noise elimination of financial correlation matrices is the
Random Matrix Theory, which studies the properties of matrix-form random variables—in
particular, the density and behavior of eigenvalues. Its applications cover many of the
fields of knowledge of recent years, such as statistical physics, dynamic systems, optimal
control, and multivariate analysis.

Regarding applications in quantitative finance, Laloux et al. (1999) compared the
empirical eigenvalues density of major stock market data with their theoretical prediction,
assuming that the covariance matrix was random following a Wishart distribution (If
a vector of random matrix variables follows a multivariate Gaussian distribution, then
its Sample covariance matrix will follow a Wishart distribution (EDELMAN, 1988)).The
results showed that over 94% of the eigenvalues fell within the theoretical bounds (defined
in Edelman (1988)), implying that less than 6% of the eigenvalues contain actually useful
information; moreover, the largest eigenvalue is significantly higher than the theoretical
upper bound, which is evidence that the covariance matrix estimated via Markowitz is
composed of few very informative principal components and many low-valued eigenvalues
dominated by noise. Nobi et al. (2013) tested for the daily data of 20 global financial
indexes from 2006 to 2011 and also found out that most eigenvalues fell into the theoretical
range, suggesting a high presence of noises and few eigenvectors with very highly relevant
information; particularly, this effect was even more prominent during a financial crisis.
Although studies like Alaoui (2015) found a larger percentage of informative eigenvalues,
the reported results show that the wide majority of principal components is still dominated
by noisy information.

Plerou et al. (2002) found similar results, concluding that the top eigenvalues
of the covariance matrices were stable in time and the distribution of their eigenvector
components displayed systematic deviations from the Random Matrix Theory predicted
thresholds. Furthermore, the paper pointed out that the top eigenvalues corresponded to
an influence common to all stocks, representing the market’s systematic risk, and their
respective eigenvectors showed a prominent presence of central business sectors.

Sensoy, Yuksel and Erturk (2013) tested 87 benchmark financial indexes between
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2009 and 2012, and also observed that the largest eigenvalue was more than 14 times
larger than the Random Matrix Theory theoretical upper bound, while only less than
7% of the eigenvalues were larger than this threshold. Moreover, the paper identifies
“central” elements that define the “global financial market” and analyzes the effects of
the 2008 financial crisis in its volatility and correlation levels, concluding that the global
market’s dependence level generally increased after the crisis, thus making diversification
less effective. Many other studies identified similar patterns in different financial markets
and different time periods (REN; ZHOU, 2014; SHARMA; BANERJEE, 2015), evidencing
the high levels of noise in correlation matrices and the relevance of filtering such noise for
financial analysis. The effects of the covariance matrix cleaning using Random Matrix
Theory in an emerging market was discussed in Eterovic and Eterovic (2013), which
analyzed 83 stocks from the Chilean financial market between 2000 and 2011 and found
out that the efficiency of portfolios generated using Markowitz (1952)’s model were largely
improved.

Analogously, Eterovic (2016) analyzed the effects of covariance matrix filtering
through the Random Matrix Theory using data from the stocks of the FTSE 100 In-
dex between 2000 and 2012, confirming the distribution pattern of the eigenvalues of
the covariance matrix, with the majority of principal components inside the bounds of
the Marčenko-Pastur distribution, while the top eigenvalue was much larger than the
remaining ones; in particular, the discrepancy of the top eigenvalue was even larger dur-
ing the Crisis period. Moreover, Eterovic (2016) also found out that the performance
improvement of the portfolios generated by a filtered covariance matrix filtering over a
non-filtered one was strongly significant, evidencing the ability of the filtered covariance
matrix to adapt to sudden volatility peaks.

Bouchaud and Potters (2009) summarized the potential applications of the Ran-
dom Matrix Theory in financial problems, focusing on the cleaning of financial correlation
matrices and the asymptotic behavior of its eigenvalues, whose density was enunciated in
Marčenko and Pastur (1967)—and especially the largest one, which was described by the
Tracy-Widom distribution (TRACY; WIDOM, 2002). The paper presents an empirical
application using daily data of US stocks between 1993 and 2008, observing the correlation
matrix of the 500 most liquid stocks in a sliding window of 1000 days with an interval
of 100 days each, yielding 26 sample eigenvalue distributions. On average, the largest
eigenvalue represents 21% of the sum of all eigenvalues. This is a stylized fact regarding
the spectral properties of financial correlation matrices, as discussed in Akemann, Baik
and Francesco (2011). Similar results were found in Conlon, Ruskin and Crane (2007),
which analyzes the effects of “cleaning” the covariance matrix on better predictions of
the risk of a portfolio, which may aid the investors to pick the best combination of hedge
funds to avoid risk.
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In financial applications, the covariance matrix is also important in multi-stage
optimization problems, whose dimensionality often grows exponentially as the number of
stages, financial assets or risk factor increase, thus demanding approximations using sim-
ulated scenarios to circumvent the curse of dimensionality (WAN; PEKNY; REKLAITIS,
2006). In this framework, an important requirement for the simulated scenarios is the
absence of arbitrage opportunities, a condition which can be incorporated through resam-
pling or increasing the number of scenarios (CONSIGLIO; CAROLLO; ZENIOS, 2016).
Alternatively, (GEYER; HANKE; WEISSENSTEINER, 2014) defined three classes for
arbitrage propensity and suggested a transformation on the covariance matrix’s Cholesky
decomposition that avoids the possibility of arbitrage in scenarios where it could theoreti-
cally exist. In this way, the application of the Random Matrix Theory on this method can
improve the simulated scenarios in stochastic optimization problems, and consequently
improve the quality of risk measurement and asset allocation decision-making.

Burda et al. (2004) provided a mathematical derivation of the relationship between
the sample correlation matrix calculated using the conventional Pearson estimates with its
population counterpart, discussing how the dependency structure of the spectral moments
can be applied to filter out the noisy eigenvalues of the correlation matrix’s spectrum. In
fact, a reasonable choice of a 500 × 500 covariance matrix (like using the S&P 500 data
for portfolio selection) induces a very high level of noise in addition to the signal that
comes from the eigenvalues of the population covariance matrix; Laloux et al. (2000) used
daily data of the S&P 500 between 1991 and 1996, and found out that the covariance
matrix estimated by the classical Markowitz model highly underestimates the portfolio
risks for a second time period (approximately three times lower than the actual values), a
difference that is significantly lower for a cleaned correlation matrix, evidencing the high
level of noise and the instability of the market dependency structure over time.

In view of the importance of controlling the complexity introduced alongside non-
linearities, in this paper we sought to verify whether the stylized behavior of the top
eigenvalues persists after introducing nonlinearities into the covariance matrix, as well as
the effect of cleaning the matrix’s noises in the portfolio profitability and consistency over
time, in order to obtain insights regarding the cost–benefit relationship between using
higher degrees of nonlinearity to estimate the covariance between financial assets and the
out-of-sample performance of the resulting portfolios.

4.3 Method
4.3.1 Mean-Variance Portfolio Optimization

Let 𝑎1, 𝑎2, ..., 𝑎𝑝 be the 𝑝 available financial assets and 𝑟𝑎𝑖
be the return vector of

the 𝑖-th asset 𝑎𝑖, where the expected return vector and the covariance matrix are defined,
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respectively, as 𝜇 = (𝜇1, 𝜇2, ..., 𝜇𝑝) = (E[𝑟𝑎1 ],E[𝑟𝑎2 ], ...,E[𝑟𝑎𝑝 ]) and Σ = (𝜎𝑖𝑗), 𝑖, 𝑗 =
1, 2, ..., 𝑝, with 𝜎𝑖𝑗 = 𝑐𝑜𝑣(𝑟𝑎𝑖

, 𝑟𝑎𝑗
). Markowitz (1952)’s mean-variance portfolio optimiza-

tion is basically a quadratic programming constrained optimization problem whose opti-
mal solution 𝑤 = (𝑤1, 𝑤2, ..., 𝑤𝑝)𝑇 ,

𝑝∑︀
𝑖=1

𝑤𝑖 = 1 represents the weights allocated to each
one of the 𝑝 assets, such that the portfolio 𝒫 = 𝑤1𝑎1 + 𝑤2𝑎2 + ... + 𝑤𝑝𝑎𝑝. Algebraically,
the expected return and the variance of the resulting portfolio 𝒫 are:

E[𝒫 ] =
𝑝∑︀

𝑖=1
𝑤𝑖E[𝑟𝑎𝑖

] = 𝜇𝑇𝑤 ∈ R

V[𝒫 ] =
𝑝∑︀

𝑖=1

𝑝∑︀
𝑗=1

𝑤𝑖𝑤𝑗𝑐𝑜𝑣(𝑟𝑎𝑖
, 𝑟𝑎𝑗

) = 𝑤𝑇 Σ𝑤 ≥ 0

With the non-allowance of a short selling constraint, the quadratic optimization
problem is defined as:

Minimize : 1
2𝑤

𝑇 Σ𝑤
Subject to : 𝜇𝑇𝑤 = 𝑅,𝑤𝑇 1 = 1,𝑤 > 0

(4.1)

which yields the weights that give away the less risky portfolio that provides an expected
return equal to 𝑅; therefore, the portfolio 𝒫 that lies on the efficient frontier for E[𝒫 ] = 𝑅.
The dual form of this problem has an analogous interpretation—instead of minimizing the
risk at a given level of expected return, it maximizes the expected return given a certain
level of tolerated risk.

Markowitz (1952)’s model is very intuitive, easy to interpret, and enjoys huge pop-
ularity to this very day, making it one of the main baseline models for portfolio selection.
Moreover, it has only two inputs which are fairly easy to be estimated. Nevertheless, there
are many different ways of doing so, which was the motivation of many studies to tackle
this question, proposing alternative ways to estimate those inputs to find potentially bet-
ter portfolios. The famous Black and Litterman (1992) model, for example, proposes a
way to estimate the expected returns vector based on the combination of market equi-
librium and the expectations of the investors operating in that market. In this paper,
we focus on alternative ways to estimate the covariance matrix, and whether features
like nonlinearities (Kernel functions) and noise filtering (Random Matrix Theory) can
generate more profitable portfolio allocations.

4.3.2 Covariance Matrices

While Pearson’s covariance estimator is consistent, studies like Huo, Kim and Kim
(2012) pointed out that the estimates can be heavily influenced by outliers, which in turn
leads to potentially suboptimal portfolio allocations. In this regard, the authors analyzed
the effect of introducing robust estimation of covariance matrices, with the results of
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the empirical experiments showing that the use of robust covariance matrices generated
portfolios with larger profitabilities. Zhu, Welsch et al. (2018) found similar results,
proposing a high-dimensional covariance estimator less prone to outliers and leading to
more well-diversified portfolios, often with a higher alpha.

Bearing in mind the aforementioned findings of the literature, we tested KPCA
and the noise filtering to many robust covariance estimators as well, in order to further
investigate the effectiveness of nonlinearities introduction and the elimination of noisy
eigenvalues to the portfolio’s performance. Furthermore, we intended to check the relative
effects of said improvements to Pearson and robust covariance matrices, and whether
robust estimators remained superior under such conditions.

In addition to the Pearson covariance matrix Σ = 1
𝑇

𝑝∑︀
𝑖=1
𝑥𝑖𝑥

𝑇
𝑖 , where 𝑥𝑖 is the re-

turn vector (centered in zero) of the 𝑖-th asset and 𝑇 is the number of in-sample time
periods, in this paper we considered four robust covariance estimators: the minimum co-
variance determinant (henceforth MCD) method (ROUSSEEUW, 1984), as estimated by
the FASTMCD algorithm (ROUSSEEUW; DRIESSEN, 1999); the Reweighted MCD, fol-
lowing (HUBERT; DRIESSEN, 2004)’s algorithm; and the Orthogonalized Gnanadesikan-
Kettenring (henceforth OGK) pairwise estimator (GNANADESIKAN; KETTENRING,
1972), following the algorithm of (MARONNA; ZAMAR, 2002).

The MCD method aims to find observations whose sample covariance has a mini-
mum determinant, thus being less sensitive to non-persistent extreme events, such as an
abrupt oscillation of price levels that briefly come back to normal. Cator and Lopuhaä
(2012) demonstrated some statistical properties of this estimator, such as consistency and
asymptotic convergence to the Gaussian distribution. The reweighted MCD estimator fol-
lows a similar idea, assigning weights to each observation and computing the covariance
estimates based on the observations within a confidence interval, making the estimates
even less sensitive to outliers and noisy datasets, as well as boosting the finite-sample
efficiency of the estimator, as discussed in Croux and Haesbroeck (1999). Finally, the
OGK approach takes univariate robust estimators of location and scale, constructing a
covariance matrix based on those estimates and replacing the eigenvalues of that matrix
with “robust variances”, which are updated sequentially by weights based on a confidence
interval cutoff.

4.3.3 Principal Component Analysis

Principal component analysis (henceforth PCA) is a technique for dimensionality
reduction introduced by (PEARSON, 1901) which seeks to extract the important infor-
mation from the data and to express this information as a set of new orthogonal variables
called principal components, given that the independent variables of a dataset are gener-
ally correlated in some way. Each of these principal components is a linear combination
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of the set of variables in which the coefficients show the importance of the variable to the
component. By definition, the sum of all eigenvalues is equal to the total variance, as
they represent an amount of observed information; therefore, each eigenvalue represents
the variation explained of the 𝑖-th principal component 𝑃𝐶𝑖, such that their values reflect
the proportion of information maintained in the respective eigenvector, and thus are used
to determine how many factors should be retained.

In a scenario with 𝑝 independent variables, if it is assumed that the eigenvalues’
distribution is uniform, then each eigenvalue would contribute to 1

𝑝
of the model’s overall

explanatory power. Therefore, taking a number 𝑘 < 𝑝 of principal components that are
able to explain more than 𝑘

𝑝
of the total variance can be regarded as a “gain” in terms of

useful information retaining and noise elimination. In the portfolio selection context, Kim
and Jeong (2005) used PCA to decompose the correlation matrix of 135 stocks traded
on the New York Stock Exchange (NYSE). Typically, the largest eigenvalue is considered
to represent a market-wide effect that influences all stocks (DRIESSEN; MELENBERG;
NIJMAN, 2003; PéRIGNON; SMITH; VILLA, 2007; BILLIO et al., 2012; ZHENG et al.,
2012).

Consider Σ as a covariance matrix associated with the random vector 𝑋 =
[𝑋1, 𝑋2..., 𝑋𝑝] with eigenvalues 𝜆1 ≥ 𝜆2... ≥ 𝜆𝑝 ≥ 0, where the rotation of the axis in
R𝑝 yields the linear combinations:

𝑌1 = 𝑞𝑇
1𝑋 = 𝑞11𝑋1 + 𝑞12𝑋2 + ...+ 𝑞1𝑝𝑋𝑝

𝑌2 = 𝑞𝑇
2𝑋 = 𝑞21𝑋2 + 𝑞22𝑋2 + ...+ 𝑞2𝑝𝑋𝑝

...

𝑌𝑝 = 𝑞𝑇
𝑝𝑋 = 𝑞𝑝1𝑋1 + 𝑞𝑝2𝑋2 + ...+ 𝑞𝑝𝑝𝑋𝑝

or

𝑌 = 𝑄𝑇𝑋

where 𝑄𝑖 are the eigenvectors from Σ. Thus, the first principal component 𝑌1 is the
projection in the direction in which the variance of the projection is maximized. So, we
obtained 𝑌1, 𝑌2...𝑌𝑝 orthonormal vectors with maximum variability.

To obtain the associated eigenvectors, we solved for det(Σ − 𝜆𝐼) = 0 to ob-
tain the diagonal matrix composed by the eigenvalues. The variance of the 𝑖𝑡ℎ princi-
pal component of Σ is equal to its i-th eigenvalue 𝜆𝑖. By construction, the principal
component are pairwise orthogonal—that is, the covariance between the eigenvectors is
𝑐𝑜𝑣(𝑄𝑖𝑋, 𝑄𝑗𝑋) = 0, 𝑖 ̸= 𝑗. Algebraically, the 𝑖-th principal component 𝑌𝑖 can be ob-
tained by solving the following expression for 𝑎𝑖 (BENGTSSON; HOLST, 2002):

max
𝑞𝑖

{︃
𝑞𝑖
∑︀𝑝

𝑖=1 𝑞𝑖

𝑞𝑇
𝑖 𝑞𝑖

𝑐𝑜𝑣(𝑌𝑖, 𝑌𝑗) = 0,∀ 0 < 𝑗 < 𝑖

}︃
(4.2)
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In the field of dimensionality reduction, the interest in entropy, the entropy-based
distance metric, has been investigated, where (JENSSEN, 2010) developed kernel entropy
component analysis (KECA) for data transformation and dimensionality reduction, an
extension of PCA mixture entropy and n dimensionality decomposition. (SHEKAR et
al., 2011) shows that by using kernel entropy component analysis in an application on
face recognition algorithm based on Renyi entropy component, certain eigenvalues and
the corresponding eigenvectors will contribute more to the entropy estimate than others,
since the terms depend on different eigenvalues and eigenvectors.

4.3.4 Kernel Principal Component Analysis and Random Matrix Theory

Let 𝑋 be a 𝑇 × 𝑝 matrix, 𝑇 being the observations, 𝑝 the variables, and Σ the
covariance matrix 𝑝× 𝑝. The spectral decomposition of Σ is given by:

𝜆𝑄 = Σ𝑄

being 𝜆 ≥ 0 the eigenvalues and 𝑄 the eigenvectors.

If the values of matrix 𝑋 are random normalized values generated by a Gaussian
distribution, then if 𝑇 → ∞ and 𝑝 → ∞ where Ψ = 𝑇

𝑝
≥ 1 the eigenvalues of matrix Σ

result in the following probability density function (CONLON; RUSKIN; CRANE, 2007):

𝑝(𝜆) = Ψ
2𝜋

√︁
(𝜆𝑚𝑎𝑥 − 𝜆)(𝜆− 𝜆𝑚𝑖𝑛)

𝜆
(4.3)

where 𝜆𝑚𝑎𝑥 and 𝜆𝑚𝑖𝑛 are the bound given by:

𝜆𝑚𝑎𝑥
𝑚𝑖𝑛 =

⎛⎝1 + 1
Ψ ± 2

√︃
1
Ψ

⎞⎠ (4.4)

This result basically states that the eigenvalues of a purely random matrix based
on distribution (4.3) tend to fall inside the theoretical boundaries; thus, eigenvalues larger
than the upper bound are expected to contain useful information concerning an arbitrary
matrix, whilst the noisy information is dispersed into the other eigenvalues, whose behav-
ior is similar to the eigenvalues of a matrix with no information whatsoever.

There are many applications of the Random Matrix Theory (RMT) in the financial
context. (BAI; SHI, 2011) used RMT to reduce the noise into data before to model
the covariance matrix of assets on Asset Pricing Theory Models by using the Bayesian
approach. The posteriori distribution was adjusted by Wishart Distribution using MCMC
methods.

The procedures proposed by RMT for dispersion matrices noise filter in a finances
context require careful use. The reasons are due to the “stylized facts” present in this
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type of data as logarithmic transformations in the attempt for symmetric distributions of
returns and the presence of extreme values. The work of (FRAHM; JAEKEL, 2005) deals
with these problems and uses Tyler’s robust M-estimator (TYLER, 1983) to estimate the
dispersion matrix to then identify the non-random part with the relevant information via
RMT using (MARČENKO; PASTUR, 1967) bounds.

The covariance matrix Σ can be factored as:

Σ = 𝑄Λ𝑄−1 (4.5)

where Λ is a diagonal matrix composed by 𝑝 eigenvalues 𝜆𝑖 ≥ 0, 𝑖 = 1, 2, ..., 𝑝 and each
one of the 𝑝 columns of 𝑄, 𝑞𝑖, 𝑖 = 1, 2, ..., 𝑝, are the eigenvectors associated with the i-th
eigenvector 𝜆𝑖. The idea is to perform the decomposition of Σ following Equation (4.5) and
to filter out the eigenvalues which fall inside the boundaries postulated in Equation (4.4)
and reconstruct Σ by multiplying back the filtered eigenvalue matrix to the eigenvector
matrices, and then using the filtered matrix as input to Markowitz (1952)’s model.

Eigenvalues smaller than the upper bound of Equation (4.4) were considered as
“noisy eigenvalues”, while eigenvalues larger than the upper bound were considered “non-
noisy”. For the eigenvalue matrix filtering, we maintained all non-noisy eigenvalues and
replaced all the remaining noisy ones by their average in order to preserve the stability
(positive-definitiveness) and keep a fixed sum for the matrix’s trace, following Sharifi et
al. (2004) and Conlon, Ruskin and Crane (2007).

For eigenvalue matrix filtering, we maintained all non-noisy eigenvalues in Λ and
replaced all the remaining noisy ones 𝜆𝑛𝑜𝑖𝑠𝑒

𝑖 by their average (�̄�𝑛𝑜𝑖𝑠𝑒
𝑖 ):

�̄�𝑛𝑜𝑖𝑠𝑒
𝑖 =

Ω∈𝑛𝑜𝑖𝑠𝑒∑︁
𝑖=1

𝜆𝑛𝑜𝑖𝑠𝑒
𝑖

#Ω ∈ 𝑛𝑜𝑖𝑠𝑒

After the filtering process, we multiplied back the filtered eigenvalue matrix to
yield the “clean” covariance matrix:

Σ* = 𝑄Λ*𝑄−1 (4.6)

where Λ* is a diagonal matrix composed of the cleaned eigenvalues.

The nonlinear estimation of the covariance matrix was achieved by means of a
Kernel function, defined as:

𝜅(𝑥𝑖,𝑥𝑗) = 𝜙𝑇 (𝑥𝑖) · 𝜙(𝑥𝑗) ∈ R, 𝑖, 𝑗 = 1, 2, ..., 𝑝 (4.7)

where 𝜙 : R𝑝 ⇒ R𝑞, 𝑝 < 𝑞 transforms the original data to a higher dimension, which
can even be infinite, and the use of the kernel function prevents the need to explicitly



Chapter 4. Between Nonlinearities, Complexity, and Noises: An Application on Portfolio Selection
Using Kernel Principal Component Analysis 99

compute the functional form of 𝜙(𝑥); instead, 𝜅 computes the inner product of 𝜙. This is
known as the kernel trick. The use of the Kernel function can circumvent the problem of
high dimensionality induced by 𝜙(𝑥) without the need to explicitly compute its functional
form; instead, all nonlinear interactions between the original variables are synthesized in
a real scalar. Since the inner product is a similarity measure in Hilbert spaces, the Kernel
function can be seen as a way to measure the “margin” between the classes in high (or
even infinite) dimensional spaces.

The following application of the Kernel function to the linearly estimated covari-
ance matrix:

Σ = 1
𝑇

𝑝∑︁
𝑖=1
𝑥𝑖𝑥

𝑇
𝑖 (4.8)

allows one to introduce a high number of nonlinear interactions in the original data and
transform Σ into a Kernel covariance matrix:

Σ𝜅 = 1
𝑇

𝑝∑︁
𝑖=1

𝜙(𝑥𝑖)𝜙𝑇 (𝑥𝑖) (4.9)

In this paper, we tested the polynomial and Gaussian Kernels as 𝜅. Both Kernels
are widely used functions in the machine learning literature. The polynomial Kernel:

𝜅(𝑥𝑖,𝑥𝑗) = [(𝑥𝑖 · 𝑥𝑗) + 𝑑]𝑞, 𝑑 ∈ R, 𝑞 ∈ N+ (4.10)

has a concise functional form, and is able to incorporate all cross-interactions between
the explanatory variables that generate monomials with a degree less than or equal to a
predefined 𝑞. This paper considered polynomial Kernels of degrees 2, 3, and 4 (𝑞 = 2, 3, 4).
Note that the polynomial Kernel with 𝑞 = 1 and 𝑑 = 0 precisely yields the Pearson linear
covariance matrix, so the polynomial Kernel covariance matrix is indeed a more general
case of the former.

The Gaussian Kernel is the generalization of the polynomial Kernel for 𝑞 → ∞,
and is one of the most widely used Kernels in machine learning literature. It enjoys huge
popularity in various knowledge fields since this function is able to induce an infinite
dimensional feature space while depending on only one scattering parameter 𝜎. The
expression of the Gaussian Kernel is given by:

𝜅(𝑥𝑖,𝑥𝑗) = exp
(︃

−
𝑥𝑖 − 𝑥2

𝑗

2𝜎2

)︃
, 𝜎 > 0 (4.11)

The Kernel Principal Component Analysis (henceforth KPCA) is an extension of
the linear PCA applied to the Kernel covariance matrix. Basically, the diagonalization
problem returns linear combinations from the Kernel function’s feature space R𝑞, instead
of the original input space R𝑝 with the original variables. By performing the spectral
decomposition in the Kernel covariance matrix:

Σ𝜅(𝑝𝑥𝑝) = 𝑄Λ𝜅𝑄
−1 (4.12)
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and extracting the largest eigenvalues of the Kernel covariance eigenvalue matrix Λ𝜅, we
obtained the filtered Kernel covariance eigenvalue matrix Λ*

𝜅, which was then used to
reconstruct the filtered Kernel covariance matrix:

Σ*
𝜅(𝑝𝑥𝑝)

= 𝑄Λ*
𝜅𝑄

−1 (4.13)

Finally, Σ*
𝜅 was used as an input for the Markowitz portfolio optimization model,

and the resultant portfolio’s profitability was compared to the portfolio generated by the
linear covariance matrix and other aforementioned robust estimation methods, as well
as their filtered counterparts. The analysis was reiterated for data from seven different
markets, and the results are discussed in Section 4.5.

The pseudocode of our proposed approach is displayed as follows:

1. Estimate Σ for training set data;

2. Perform spectral decomposition of Σ: Σ = 𝑄Λ𝑄−1;

3. From the eigenvalues matrix Λ, identify the noisy eigenvalues 𝜆𝑛𝑜𝑖𝑠𝑒
𝑖 based on the

Random Matrix Theory upper bound;

4. Replace all noisy by their average: �̄�𝑛𝑜𝑖𝑠𝑒
𝑖 to obtain the filtered eigenvalue matrix

Λ*;

5. Build the filtered covariance matrix 𝑄Λ*𝑄−1;

6. Use the filtered covariance matrix as input for Markowitz model and get the optimal
portfolio weights from in-sample data;

7. Apply the in-sample optimal portfolio weights for out-of-sample data and obtain
performance measures.

The above procedure was repeated for all seven datasets (NASDAQ 100, CAC 40,
DAX-30, FTSE 100, NIKKEI 225, IBOVESPA, SSE 180). For Step 1 (estimation method
of the covariance matrix), we applied eight different methods, namely: linear (Pearson),
minimum covariance determinant (MCD), reweighted minimum covariance determinant
(RMCD), Orthogonalized Gnanadesikan-Kettenring (OGK), Polynomial Kernel functions
of degree 2 (K_POLY2), degree 3 (K_POLY3) and degree 4 (K_POLY4), and the Gaus-
sian Kernel function (K_GAUSS).

4.4 Empirical Analysis
4.4.1 Performance Measures

The trade-off between risk and return has long been well-known in the finance
literature, where higher expected return generally implies a greater level of risk, which
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motivates the importance of considering risk-adjusted measures of performance. There-
fore, it is not sufficient to view a portfolio’s attractiveness only in terms of the cumulative
returns that it offers, but instead, whether the return compensates for the level of risk
that the allocation exposes the investor to. The Sharpe ratio (SHARPE, 1966) provides
a simple way to do so.

Let 𝒫 be a portfolio composed by a linear combination between assets whose
expected return vector is 𝑟, considering 𝑤 as the weight vector of 𝒫 and 𝑟𝑓𝑡 as the risk-
free rate at time 𝑡. Defining the mean excess return over the risk-free asset of 𝒫 along
the 𝑁 out-of-sample time periods as:

�̄�𝒫 = 1
𝑁

𝑁∑︁
𝑡=1
𝑤𝑇

𝑡 𝑟𝑡 − 𝑟𝑓𝑡 (4.14)

and defining the sample standard deviation of portfolio 𝒫 as:

𝜎𝒫 =

⎯⎸⎸⎷ 1
𝑁 − 1

𝑁∑︁
𝑡=1

(𝑤𝑇
𝑡 𝑟𝑡 − 𝑟𝑓𝑡 − �̄�𝒫)2 (4.15)

The Sharpe ratio of portfolio 𝒫 is given by:

𝑆ℎ𝑅𝒫 = �̄�

𝜎𝒫
(4.16)

While the Sharpe ratio gives a risk-adjusted performance measure for a portfo-
lio and allows direct comparison between different allocations, it has the limitation of
considering both the upside and the downside risks. That is, the uncertainty of profits
is penalized in the Sharpe ratio expression, even though it is positive for an investor.
Therefore, as discussed in works like Patton and Sheppard (2015) and Farago and Tédon-
gap (2018), the decomposition of risk in “good variance” and “bad variance” can provide
better asset allocation and volatility estimation, thus leading to better investment and
risk management decisions. Therefore, instead of using the conventional standard devi-
ation, which considers both methods of variance, Sortino and Price (1994) proposed an
alternative performance measure that became known as the Sortino ratio, which balances
the mean excess return only by the downside deviation. The Sortino ratio for portfolio 𝒫
is given by:

𝑆𝑜𝑅𝒫 = �̄�

𝜎−
𝒫

(4.17)

where 𝜎−
𝒫 is the downside deviation:

𝜎−
𝒫 =

⎯⎸⎸⎷ 1
𝑁 − 1

𝑁∑︁
𝑡=1

𝑚𝑖𝑛(0, (𝑤𝑇
𝑡 𝑟𝑡 − 𝑟𝑓𝑡 − �̄�𝒫)2) (4.18)

Note that the downside deviation represents the standard deviation of negative
portfolio returns, thus measuring only the “bad" side of volatility; for periods that the
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portfolio yields a better return than the mean excess return over the risk-free asset, this
upside deviation is not accounted for by the Sortino ratio.

Furthermore, we tested the statistical significance of the covariance matrix filtering
improvement on the portfolio’s performance. That is, instead of just comparing the values
of the ratios, we tested to which extent the superiority of the noise-filtering approach was
statistically significant. For each model and each analyzed market, we compared the
Sharpe and Sortino ratios of the non-filtered covariance matrices with their respective
filtered counterparts using Student’s 𝑡 tests. The null and alternative hypothesis are
defined as follows: ⎧⎪⎨⎪⎩𝐻0 : 𝑆ℎ𝑅𝑛𝑜𝑛−𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 = 𝑆ℎ𝑅𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑

𝐻𝐴 : 𝑆ℎ𝑅𝑛𝑜𝑛−𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 < 𝑆ℎ𝑅𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑

(4.19)

⎧⎪⎨⎪⎩𝐻0 : 𝑆𝑜𝑅𝑛𝑜𝑛−𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 = 𝑆𝑜𝑅𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑

𝐻𝐴 : 𝑆𝑜𝑅𝑛𝑜𝑛−𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 < 𝑆𝑜𝑅𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑

(4.20)

Rejection of both null hypotheses implies that the Sharpe/Sortino ratio of the
portfolio generated using the filtered covariance matrix is statistically larger than the
portfolio yielded by the non-filtered matrix. The p-values for the hypothesis tests are
displayed in tables 16 to 22.

4.4.2 Data

For the empirical application, we used data from seven markets—namely, the
United States, United Kingdom, France, Germany, Japan, China, and Brazil; the chosen
financial indexes representing each market were, respectively, NASDAQ-100, FTSE 100,
CAC 40, DAX-30, NIKKEI 225, SSE 180 and Bovespa. We collected the daily return
of the financial assets that composed those indexes during all time periods between 1
January 2000 and 16 August 2018, totaling 4858 observations for each asset. The data
was collected from the Bloomberg terminal. The daily excess market return over the
risk-free rate was collected from Kenneth R. French’s data library.

We split the datasets into two mutually exclusive subsets: we allocated the ob-
servations between 1 January 2000 and 3 November 2015 (85% of the whole dataset,
4131 observations) for the training (in-sample) subset and the observations between 4
November 2015 and 16 August 2018 (the remaining 15%, 727 observations) for the test
(out-of-sample) subset. For each financial market and each covariance matrix method, we
estimated the optimal portfolio for the training subset and applied the optimal weights
for the test subset data. The cumulative return of the portfolio in the out-of-sample
periods, their Sharpe and Sortino ratios, information regarding the non-noisy eigenvalues
and p-values of tests (4.19) and (4.20) are displayed in Tables 16 to 22.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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4.5 Results and Discussion
The cumulative returns and risk-adjusted performance metrics are presented in

Tables 16–22, as well as information regarding the non-noisy eigenvalues and the p-values
of the hypothesis tests. Figures 6–12 show the improvement of filtered covariance matrices
over their non-filtered counterparts for each market and estimation method. The results
are summarized as follows:
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Covariance Method CR (%) Sharpe Sortino 𝜆* 𝜆*
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(%) 𝜆𝑡𝑜𝑝 𝜆𝑡𝑜𝑝

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(%) 𝑝𝑆ℎ𝑎𝑟𝑝𝑒 𝑝𝑆𝑜𝑟𝑡𝑖𝑛𝑜

matrix ratio ratio

Non-filtered

Pearson 22.3297 0.3252 0.4439
MCD 19.1094 0.2713 0.3690

RMCD 18.6733 0.2632 0.3574
OGK 21.2332 0.3037 0.4138

K_POLY2 28.7582 0.3808 0.5144
K_POLY3 28.7561 0.3884 0.5253
K_POLY4 29.7912 0.4108 0.5561
K_GAUSS 13.7226 0.1703 0.2304

Filtered

Pearson 18.9984 0.2834 0.3847 5 45.38% 20.0680 33.33% 0.9432 0.9874
MCD 23.9648 0.3595 0.4924 5 51.1% 24.6837 40.99% 0.0004 < 10−4

RMCD 23.4073 0.3459 0.4730 5 51.19% 24.6470 40.93% 0.0011 < 10−4

OGK 23.6193 0.3512 0.4809 5 49.53% 23.7152 39.39% 0.0382 0.0061
K_POLY2 15.831 0.2218 0.3015 5 38.24% 16.1131 26.76% > 0.9999 > 0.9999
K_POLY3 16.7263 0.2496 0.3389 5 26.23% 9.2748 15.4% > 0.9999 > 0.9999
K_POLY4 16.186 0.2417 0.3283 5 19.29% 5.7377 9.53% > 0.9999 > 0.9999
K_GAUSS 21.823 0.2496 0.3435 5 67.89% 24.9393 41.42% 0.0015 < 10−4

Table 16 – Summary results for assets of NASDAQ-100 Index: CR is the cumulative
return of the optimal portfolio in the out-of-sample period; 𝜆* is the number of non-
noisy eigenvalues of the respective covariance matrix; 𝜆*

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(%) is the percentage of
variance explained by the non-noisy eigenvalues; 𝜆𝑡𝑜𝑝 is the value of the top eigenvalue;
𝜆𝑡𝑜𝑝

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(%) is the percentage of variance that the top eigenvalue is responsible for; 𝑝𝑆ℎ𝑎𝑟𝑝𝑒

is the p-value of the hypothesis test 4.19; and 𝑝𝑆𝑜𝑟𝑡𝑖𝑛𝑜 is the p-value of the hypothesis test
4.20.
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Figure 6 – Cumulative return improvement of noise-filtered covariance matrices over non-
filtered ones for assets of NASDAQ-100 Index during the out-of-sample period.
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Covariance Method CR (%) Sharpe Sortino 𝜆* 𝜆*
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(%) 𝜆𝑡𝑜𝑝 𝜆𝑡𝑜𝑝

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(%) 𝑝𝑆ℎ𝑎𝑟𝑝𝑒 𝑝𝑆𝑜𝑟𝑡𝑖𝑛𝑜

matrix ratio ratio

Non-filtered

Pearson -16.8525 -0.2443 -0.3236
MCD -23.9938 -0.3252 -0.4203

RMCD -24.2595 -0.3272 -0.4223
OGK -23.5119 -0.3223 -0.4178

K_POLY2 -2.4443 -0.0377 -0.0483
K_POLY3 -3.0975 -0.0453 -0.0575
K_POLY4 -3.1496 -0.0462 -0.0583
K_GAUSS -5.4357 -0.0772 -0.1022

Filtered

Pearson -15.1099 -0.2246 -0.2986 6 52.52% 22.7137 38.24% 0.0222 0.0051
MCD -22.5761 -0.3148 -0.4096 6 55.87% 25.6111 43.12% 0.1547 0.1491

RMCD -22.8926 -0.3178 -0.4131 6 56.27% 25.8719 43.55% 0.1813 0.1852
OGK -22.3237 -0.3142 -0.4104 6 55.15% 25.2449 42.5% 0.2137 0.2326

K_POLY2 -13.825 -0.2029 -0.2711 5 47.84% 21.2488 35.77% > 0.9999 > 0.9999
K_POLY3 -12.2619 -0.1812 -0.2413 7 38.27% 13.3597 22.49% > 0.9999 > 0.9999
K_POLY4 -10.2092 -0.1539 -0.2028 9 33.23% 8.6809 14.61% > 0.9999 > 0.9999
K_GAUSS 6.9977 0.0657 0.0908 7 75.37% 25.9374 43.66% < 10−4 < 10−4

Table 17 – Summary results for assets of FTSE 100 Index: CR is the cumulative return of
the optimal portfolio in the out-of-sample period; 𝜆* is the number of non-noisy eigenval-
ues of the respective covariance matrix; 𝜆*

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(%) is the percentage of variance explained
by the non-noisy eigenvalues; 𝜆𝑡𝑜𝑝 is the value of the top eigenvalue; 𝜆𝑡𝑜𝑝

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(%) is the
percentage of variance that the top eigenvalue is responsible for; 𝑝𝑆ℎ𝑎𝑟𝑝𝑒 is the p-value of
the hypothesis test 4.19; and 𝑝𝑆𝑜𝑟𝑡𝑖𝑛𝑜 is the p-value of the hypothesis test 4.20.
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Figure 7 – Cumulative return improvement of noise-filtered covariance matrices over non-
filtered ones for assets of FTSE 100 Index during the out-of-sample period.
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Covariance Method CR (%) Sharpe Sortino 𝜆* 𝜆*
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(%) 𝜆𝑡𝑜𝑝 𝜆𝑡𝑜𝑝

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(%) 𝑝𝑆ℎ𝑎𝑟𝑝𝑒 𝑝𝑆𝑜𝑟𝑡𝑖𝑛𝑜

matrix ratio ratio

Non-filtered

Pearson 16.2333 0.2015 0.2882
MCD 17.2074 0.2182 0.3117

RMCD 17.4111 0.2216 0.3165
OGK 17.6784 0.2264 0.3235

K_POLY2 11.8756 0.1423 0.1963
K_POLY3 10.6055 0.1311 0.1793
K_POLY4 9.5146 0.1188 0.1614
K_GAUSS 12.3998 0.1348 0.1928

Filtered

Pearson 17.4651 0.2238 0.3199 3 56.82% 14.1697 48.52% 0.0147 0.0010
MCD 18.9068 0.2475 0.3533 2 58.57% 15.9837 54.73% 0.0022 < 10−4

RMCD 19.0796 0.2504 0.3575 2 58.38% 15.9013 54.45% 0.0019 < 10−4

OGK 18.6063 0.2423 0.3461 2 56.89% 15.4144 52.78% 0.0578 0.0126
K_POLY2 16.5982 0.2076 0.2969 3 51.5% 12.5296 42.9% < 10−4 < 10−4

K_POLY3 17.8811 0.2289 0.3274 4 42.31% 8.6342 29.57% < 10−4 < 10−4

K_POLY4 17.7003 0.2333 0.3311 4 33.88% 6.1270 20.98% < 10−4 < 10−4

K_GAUSS 11.5206 0.1228 0.1757 4 78.74% 16.0889 55.09% 0.8828 0.9549

Table 18 – Summary results for assets of CAC 40 Index: CR is the cumulative return of the
optimal portfolio in the out-of-sample period; 𝜆* is the number of non-noisy eigenvalues
of the respective covariance matrix; 𝜆*

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(%) is the percentage of variance explained
by the non-noisy eigenvalues; 𝜆𝑡𝑜𝑝 is the value of the top eigenvalue; 𝜆𝑡𝑜𝑝

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(%) is the
percentage of variance that the top eigenvalue is responsible for; 𝑝𝑆ℎ𝑎𝑟𝑝𝑒 is the p-value of
the hypothesis test 4.19; and 𝑝𝑆𝑜𝑟𝑡𝑖𝑛𝑜 is the p-value of the hypothesis test 4.20.
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Figure 8 – Cumulative return improvement of noise-filtered covariance matrices over non-
filtered ones for assets of CAC 40 Index during the out-of-sample period.
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Covariance Method CR (%) Sharpe Sortino 𝜆* 𝜆*
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(%) 𝜆𝑡𝑜𝑝 𝜆𝑡𝑜𝑝

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(%) 𝑝𝑆ℎ𝑎𝑟𝑝𝑒 𝑝𝑆𝑜𝑟𝑡𝑖𝑛𝑜

matrix ratio ratio

Non-filtered

Pearson 6.3447 0.0772 0.1027
MCD -1.5643 -0.0315 -0.0414

RMCD -0.378 -0.0161 -0.0212
OGK 5.3011 0.0615 0.0815

K_POLY2 -4.6104 -0.0733 -0.0949
K_POLY3 -0.6555 -0.0204 -0.0265
K_POLY4 1.7874 0.0131 0.0171
K_GAUSS -10.2399 -0.1311 -0.1720

Filtered

Pearson 10.2332 0.1346 0.1796 3 55.24% 11.0402 46.1% 0.0014 < 10−4

MCD 7.0445 0.0866 0.1149 2 58.39% 12.8292 53.57% < 10−4 < 10−4

RMCD 7.5928 0.0942 0.1254 2 58.88% 12.9601 54.11% < 10−4 < 10−4

OGK 9.8916 0.1286 0.1715 2 56.32% 12.3346 51.5% 0.0003 < 10−4

K_POLY2 4.3642 0.0484 0.0640 2 46.78% 9.9835 41.69% < 10−4 < 10−4

K_POLY3 6.7303 0.0830 0.1099 3 38.77% 6.9275 28.93% < 10−4 < 10−4

K_POLY4 9.7678 0.1297 0.1717 4 35.17% 5.0114 20.93% < 10−4 < 10−4

K_GAUSS -18.5834 -0.2365 -0.3050 2 71.04% 13.7234 57.3% > 0.9999 > 0.9999

Table 19 – Summary results for assets of DAX-30 Index: CR is the cumulative return of the
optimal portfolio in the out-of-sample period; 𝜆* is the number of non-noisy eigenvalues
of the respective covariance matrix; 𝜆*

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(%) is the percentage of variance explained
by the non-noisy eigenvalues; 𝜆𝑡𝑜𝑝 is the value of the top eigenvalue; 𝜆𝑡𝑜𝑝

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(%) is the
percentage of variance that the top eigenvalue is responsible for; 𝑝𝑆ℎ𝑎𝑟𝑝𝑒 is the p-value of
the hypothesis test 4.19; and 𝑝𝑆𝑜𝑟𝑡𝑖𝑛𝑜 is the p-value of the hypothesis test 4.20.
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Figure 9 – Cumulative return improvement of noise-filtered covariance matrices over non-
filtered ones for assets of the DAX-30 Index during the out-of-sample period.
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Covariance Method CR (%) Sharpe Sortino 𝜆* 𝜆*
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(%) 𝜆𝑡𝑜𝑝 𝜆𝑡𝑜𝑝

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(%) 𝑝𝑆ℎ𝑎𝑟𝑝𝑒 𝑝𝑆𝑜𝑟𝑡𝑖𝑛𝑜

matrix ratio ratio

Non-filtered

Pearson 19.0365 0.2104 0.2976
MCD 17.9163 0.1979 0.2791

RMCD 18.3996 0.1983 0.2803
OGK 17.833 0.1951 0.2757

K_POLY2 8.5753 0.0959 0.1325
K_POLY3 10.6699 0.1233 0.1700
K_POLY4 13.1313 0.1553 0.2145
K_GAUSS 14.5078 0.1586 0.2236

Filtered

Pearson 19.4964 0.2231 0.3161 12 54.88% 57.4396 39.38% 0.1347 0.0540
MCD 18.266 0.2025 0.2855 11 57.24% 63.4158 43.48% 0.3498 0.2938

RMCD 19.0273 0.2119 0.2987 12 58.83% 65.3846 44.83% 0.1235 0.0591
OGK 19.0061 0.2142 0.3023 11 56.5% 62.0915 42.57% 0.0501 0.0111

K_POLY2 15.1032 0.1637 0.2314 11 47.71% 49.6729 34.06% < 10−4 < 10−4

K_POLY3 16.8414 0.1890 0.2661 13 35.62% 30.0585 20.61% < 10−4 < 10−4

K_POLY4 18.2374 0.2090 0.2943 14 27.44% 18.6121 12.76% < 10−4 < 10−4

K_GAUSS 12.6904 0.1385 0.1953 15 72.24% 42.7789 29.33% 0.9570 0.9923

Table 20 – Summary results for assets of NIKKEI 225 Index: CR is the cumulative
return of the optimal portfolio in the out-of-sample period; 𝜆* is the number of non-
noisy eigenvalues of the respective covariance matrix; 𝜆*

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(%) is the percentage of
variance explained by the non-noisy eigenvalues; 𝜆𝑡𝑜𝑝 is the value of the top eigenvalue;
𝜆𝑡𝑜𝑝

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(%) is the percentage of variance that the top eigenvalue is responsible for; 𝑝𝑆ℎ𝑎𝑟𝑝𝑒

is the p-value of the hypothesis test 4.19; and 𝑝𝑆𝑜𝑟𝑡𝑖𝑛𝑜 is the p-value of the hypothesis test
4.20.
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Figure 10 – Cumulative return improvement of noise-filtered covariance matrices over
non-filtered ones for assets of the NIKKEI 225 Index during the out-of-sample period.
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Covariance Method CR (%) Sharpe Sortino 𝜆* 𝜆*
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(%) 𝜆𝑡𝑜𝑝 𝜆𝑡𝑜𝑝

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(%) 𝑝𝑆ℎ𝑎𝑟𝑝𝑒 𝑝𝑆𝑜𝑟𝑡𝑖𝑛𝑜

matrix ratio ratio

Non-filtered

Pearson -24.4861 -0.2945 -0.3765
MCD -18.4543 -0.2139 -0.2762

RMCD -20.8369 -0.2393 -0.3073
OGK -22.9376 -0.2617 -0.3364

K_POLY2 -36.7953 -0.3531 -0.4459
K_POLY3 -35.2879 -0.3460 -0.4335
K_POLY4 -34.3716 -0.3422 -0.4258
K_GAUSS -33.6337 -0.3735 -0.4744

Filtered

Pearson -21.0991 -0.2587 -0.3308 11 50.96% 56.5957 38.99% 0.0011 < 10−4

MCD -25.1805 -0.2913 -0.3724 11 49.85% 54.7101 37.69% > 0.9999 > 0.9999
RMCD -20.685 -0.2379 -0.3053 11 50.78% 56.5502 38.96% 0.4543 0.4344
OGK -21.7307 -0.2520 -0.3235 11 48.66% 52.5361 36.2% 0.2154 0.1482

K_POLY2 -26.5935 -0.3140 -0.3978 12 41.25% 42.7236 29.44% 0.0007 < 10−4

K_POLY3 -28.6612 -0.3292 -0.4140 13 28.83% 24.2135 16.68% 0.0870 0.0565
K_POLY4 -28.9269 -0.3338 -0.4186 12 20.18% 14.1161 9.73% 0.2469 0.2801
K_GAUSS -38.4531 -0.4102 -0.5175 12 69.52% 60.1106 41.42% 0.9986 0.9998

Table 21 – Summary results for assets of SSE 180 Index: CR is the cumulative return of the
optimal portfolio in the out-of-sample period; 𝜆* is the number of non-noisy eigenvalues
of the respective covariance matrix; 𝜆*

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(%) is the percentage of variance explained
by the non-noisy eigenvalues; 𝜆𝑡𝑜𝑝 is the value of the top eigenvalue; 𝜆𝑡𝑜𝑝

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(%) is the
percentage of variance that the top eigenvalue is responsible for; 𝑝𝑆ℎ𝑎𝑟𝑝𝑒 is the p-value of
the hypothesis test 4.19; and 𝑝𝑆𝑜𝑟𝑡𝑖𝑛𝑜 is the p-value of the hypothesis test 4.20.
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Figure 11 – Cumulative return improvement of noise-filtered covariance matrices over
non-filtered ones for assets of SSE 180 Index during the out-of-sample period.
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Covariance Method CR (%) Sharpe Sortino 𝜆* 𝜆*
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(%) 𝜆𝑡𝑜𝑝 𝜆𝑡𝑜𝑝

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(%) 𝑝𝑆ℎ𝑎𝑟𝑝𝑒 𝑝𝑆𝑜𝑟𝑡𝑖𝑛𝑜

matrix ratio ratio

Non-filtered

Pearson 9.3348 0.0636 0.0871
MCD 3.4975 0.0206 0.0280

RMCD 1.8602 0.0079 0.0107
OGK 3.0337 0.0167 0.0227

K_POLY2 15.2198 0.1127 0.1521
K_POLY3 16.2334 0.1184 0.1594
K_POLY4 16.6977 0.1194 0.1605
K_GAUSS 32.0362 0.1934 0.2657

Filtered

Pearson -3.5439 -0.0334 -0.0453 2 58.59% 13.5231 54.46% > 0.9999 > 0.9999
MCD -3.8358 -0.0364 -0.0492 2 55.01% 12.5411 50.51% 0.9994 > 0.9999

RMCD -1.6626 -0.0191 -0.0258 2 54.11% 12.2963 49.52% 0.9329 0.9787
OGK -4.5348 -0.0412 -0.0557 2 54.81% 12.5097 50.38% 0.9994 > 0.9999

K_POLY2 3.7777 0.0217 0.0296 2 47.88% 10.6994 43.09% > 0.9999 > 0.9999
K_POLY3 -4.0389 -0.0370 -0.0499 4 43.39% 7.3663 29.67% > 0.9999 > 0.9999
K_POLY4 -9.6085 -0.0809 -0.1087 4 35.63% 5.2703 21.23% > 0.9999 > 0.9999
K_GAUSS 31.7689 0.1916 0.2631 2 77.51% 16.0176 64.51% 0.5383 0.5568

Table 22 – Summary results for assets of Bovespa Index: CR is the cumulative return of the
optimal portfolio in the out-of-sample period; 𝜆* is the number of non-noisy eigenvalues
of the respective covariance matrix; 𝜆*

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(%) is the percentage of variance explained
by the non-noisy eigenvalues; 𝜆𝑡𝑜𝑝 is the value of the top eigenvalue; 𝜆𝑡𝑜𝑝

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(%) is the
percentage of variance that the top eigenvalue is responsible for; 𝑝𝑆ℎ𝑎𝑟𝑝𝑒 is the p-value of
the hypothesis test 4.19; and 𝑝𝑆𝑜𝑟𝑡𝑖𝑛𝑜 is the p-value of the hypothesis test 4.20.
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Figure 12 – Cumulative return improvement of noise-filtered covariance matrices over
non-filtered ones for assets of Bovespa 100 Index during the out-of-sample period.

For the non-filtered covariance matrices, the overall performance of the linear
Pearson estimates was better than robust estimation methods in most markets, although
it was outperformed by all three robust methods (MCD, RMCD, and OGK) for the
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CAC and SSE indexes. In comparison to the nonlinear covariance matrices induced by
the application of Kernel functions, the linear approaches performed better in four out
of the seven analyzed markets (CAC, DAX, NIKKEI, and SSE), although in the other
three markets the nonlinear models performed better by a fairly large margin. Between
the robust estimators, the performance results were similar, slightly favoring the OGK
approach. Amongst the nonlinear models, the Gaussian Kernel generally performed worse
than the polynomial Kernels—an expected result, as the Gaussian Kernel incorporates
polynomial interactions that effectively tends to infinity-degree, which naturally inserts a
large amount of noisy information; the only market where the Gaussian Kernel performed
notably better was the Brazilian one, which is considered to be an “emerging economy”
and a less efficient market compared to the United States or Europe; even though Brazil
is the leading market in Latin America, this market’s liquidity, transaction flows, and
informational efficiency are quite smaller compared to major financial markets (For a
broad discussion about the dynamics of financial markets of emerging economies, see
Karolyi (2015)). Therefore, it is to be expected that such a market contains more levels
of “noise”, such that a function that incorporates a wider range of nonlinear interactions
tend to perform better.

As for the filtered covariance matrices, the Pearson estimator and the robust es-
timators showed similar results, with no major overall differences in profitability or risk-
adjusted measures—Pearson performed worst than MCD, RMCD, and OGK for NAS-
DAQ and better for FTSE and DAX. In comparison to MCD and OGK, the RMCD
showed slightly better performance. Similarly to the non-filtered cases, the polynomial
Kernels yielded generally better portfolios in most markets. Concerning the Gaussian
Kernel, even though its filtered covariance matrix performed particularly well for FTSE
and Bovespa, it showed very bad results for the German and Chinese markets, suggesting
that an excessive introduction of nonlinearities may bring along more costs than im-
provements. Nevertheless, during the out-of-sample periods, the British and Brazilian
markets underwent exogenous events—namely the effects of the “Brexit” referendum for
the United Kingdom and the advancements of the “Car Wash” (Lava Jato) operation,
which led to events like the prison of Eduardo Cunha (former President of the Chamber of
Deputies) in October 2016; and Luis Inácio da Silva (former President of Brazil) in April
2018—that may have affected their respective systematic levels of risk and profitability,
potentially compromising the market as a whole. In this sense, the fact that the Gaussian
Kernel-filtered covariance matrices in those markets performed better than the polyno-
mial Kernels is evidence that the additional levels of “complexity” in those markets may
demand the introduction of more complex nonlinear interactions to make good portfolio
allocations. These results are also consistent with the finding of Sandoval-Jr, Bortoluzzo
and Venezuela (2014), which pointed out that covariance matrix cleaning may actually
lead to the worst portfolio performances in periods of high volatility.
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Regarding the principal components of the covariance matrices and the dominance
of the top eigenvalue discussed by the literature, the results showed that for all models and
markets, the first eigenvalue of the covariance matrix was much bigger than the theoretical
bound 𝜆𝑚𝑎𝑥, which is consistent with the stylized facts discussed in Section 4.2. Moreover,
for the vast majority of the cases (44 out of 54), the single top eigenvalue 𝜆𝑡𝑜𝑝 contained
more than 25% of all the variance. This result is consistent with the finding of previous
similar works stated in the literature review section (Sensoy, Yuksel and Erturk (2013) and
others): the fact that a single principal component concentrated over 25% of the informa-
tion is evidence that it captures the systematic risk, the very slice of the risk which cannot
be diversified—in other words, the share of the risk that persists, regardless of the weight
allocation. The results persisted for the eigenvalues above the upper bound of Equation
(4.4): in more than half of the cases (31 out of 54), the “non-noisy” eigenvalues repre-
sented more than half of the total variance. The concentration of information in non-noisy
eigenvalues in polynomial Kernels was weaker than the linear covariance matrices, while
for the Gaussian Kernel the percentage of variance retained was even larger—around 70%
of the total variance for all seven markets.

Finally, the columns 𝑝𝑆ℎ𝑎𝑟𝑝𝑒 and 𝑝𝑆𝑜𝑟𝑡𝑖𝑛𝑜 show the statistical significance of the
improvement of Sharpe and Sortino ratios brought about by the introduction of noise
filtering based on the Random Matrix Theory. The results indicate that, while in some
cases the noise filtering worked very well, in other cases it actually worsened the portfo-
lio’s performances. Therefore, there is evidence that better portfolios can be achieved by
eliminating the “noisy eigenvalues”, but the upper bound given by Equation (4.4) may
be classifying actually informative principal components as “noise”. Especially concern-
ing Kernel covariance matrices, the effects of the eigenvalues cleaning seemed unstable,
working well in some cases and very bad in others, suggesting that the dynamics of the
eigenvalues in nonlinear covariance matrices follow a different dynamic than linear ones,
and the information that is considered to be “noise” for linear estimates can actually be
informative in nonlinear domains. At the usual 95% confidence level, evidences of statis-
tical superiority of filtered covariance matrices was present in 25 out of 54 cases for the
Sharpe ratio (rejection of null hypothesis in (4.19)) and 26 out of 54 for the Sortino ratio
(rejection of null hypothesis in (4.20)). The markets in which more models showed signif-
icant improvement using the Random Matrix Theory were the French and the German;
on the other hand, again, for a less efficient financial market like the Brazilian one, the
elimination of noisy eigenvalues yielded the worst performances (the profitability of all
portfolios actually dropped), again consistent with the finding of Sandoval-Jr, Bortoluzzo
and Venezuela (2014).
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4.6 Conclusions
In this paper, the effectiveness of introducing nonlinear interactions to the co-

variance matrix estimation and its noise filtering using the Random Matrix Theory was
tested with daily data from seven different financial markets. We tested eight estimators
for the covariance matrix and evaluated the statistical significance of the noise-filtering
improvement on portfolio performance. While the cleaning of noisy eigenvalues did not
show significant improvements in every analyzed market, the out-of-sample Sharpe and
Sortino ratios of the portfolios were significantly improved for almost half of all tested
cases. The findings of this paper can potentially aid the investment decision for scholars
and financial market participants, as well as providing both theoretical and empirical
tools for the construction of more profitable and less risky trading strategies, as well as
exploring potential weaknesses of traditional linear methods of covariance estimation.

We also tested the introduction of different degrees of nonlinearities to the covari-
ance matrices by means of Kernel functions, with varied results: while in some cases, the
Kernel approach managed to get better results, for others the addition yielded a much
worse performance, indicating that the use of Kernels represent a high boost of the mod-
els’ complexity levels, which are not always compensated by better asset allocations, even
when part of the said additional complexity is filtered out. This implies that the noise
introduced by nonlinear features can surpass the additional predictive power which they
aggregate to the Markowitz model. To further investigate this result, future developments
include testing other Kernel functions besides the polynomial and the Gaussian to inves-
tigate whether alternative frameworks of nonlinear dependence can show better results.
For instance, the results shown by different classes of Kernel functions (GENTON, 2001)
may fit better into the financial markets’ stylized facts and reveal underlying patterns
based on the Kernel’s definition. Tuning the hyperparameters for each Kernel can also
influence the model’s performance decisively.

Although the past performance of a financial asset does not determine its future
performance, in this paper we kept in the dataset only the assets that composed of the
seven financial indexes during the whole period between 2000 and 2018, thus not consid-
ering the possible survivorship bias in the choice of the assets which can affect the model’s
implications (BROWN; GOETZMANN; ROSS, 1992). As for future advancements, the
difference between the “surviving” assets from the others can be analyzed as well. Other
potential improvements include the replication of the analysis for other financial indexes
or markets and other time periods, incorporation of transaction costs, and comparison
with other portfolio selection models apart from Markowitz’s.

This paper focused on the introduction on nonlinear interactions to the covari-
ance matrix estimation. Thus, a limitation was the choice of the filtering methods, as
the replacement procedure that we adopted was not the only one that the literature on
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the Random Matrix Theory recommends. Alternative filtering methods documented by
studies like Guhr and Kälber (2003) and Daly, Crane and Ruskin (2008), such as expo-
nential weighting and Krzanowski stability maximization, may allow for better modeling
of underlying patterns of financial covariance structures and also lead to better portfolio
allocations, such that the application of those methods and comparison to our proposed
methods can be a subject of future research in this agenda.
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5 Does all learning lead to the efficiency?
Deep neural networks, feature selection
and technical analysis indicators in stock
price direction forecasting

Abstract
This paper analyzes the performance of deep neural network models to predict the stock
price movement of financial assets based on technical analysis indicators used as explana-
tory variables in the recent Literature and specialized trading websites. We applied three
feature selection methods to shrink the feature set and seeking to eliminate redundant
information from similar indicators. Using daily data from assets that compose seven
market indexes around the world between 2008 and 2019, we tested neural networks with
different settings of hidden layers and dropout rate, comparing various classification met-
rics, profitability and transaction costs levels to yield economic gain. The results indicated
that the out-of-sample accuracy rate of the prediction converged to two values – besides
the 50% value that represents the market efficiency, a “strange attractor” of 65% also
was achieved consistently. On the other hand, the profitability of the strategies did not
manage to significantly outperform the Buy-and-Hold strategy, even showing fairly large
negative values for some hyperparameter combinations.

5.1 Introduction
Financial variables are hard to predict; over the decades, many scholars and mar-

ket practitioners found many empirical evidences and stylized facts concerning the unpre-
dictability of financial variables, ranging to stock prices to exchange rates. The efficient
market hypothesis – which states that no economic agent can consistently yield higher
returns than the market – remains as one of the most important theoretical results in fi-
nance. However, on the other side, numerous studies had been trying to analyze potential
market inefficiencies and to predict the future trends of financial variables, such that the
forecasting of the price and/or the directional movement of a stock price is still a largely
debated and studied topic in finance.

Concerning this line of research, a wide variety of models have been tested and
retested, and an equally wide variety of variables have been listed as potential sources
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of useful information to accurately make those predictions. However, while the number
of reported significant variables increases, the models become increasingly complex and
harder to interpret in an intuitive and economically consistent way. In the philosophy of
science, the “Occam’s Razor” principle states that simpler solutions are superior to more
complex ones, as parsimony itself is a desirable feature. The same principle appears in
computer science and data analysis as “garbage in, garbage out” – that is, if a researcher
feeds an analytical tool with bad data and/or useless information, the output is expected
to be just as bad.

In terms of the generalization power of a model, the same reasoning can be applied:
a good predictive model is one that describes well enough the observed data and is simple
enough – that is, has a small level of complexity or noise. Therefore, the addition of
a large amount of non-informative explanatory variables, even when able to provide a
smaller in-sample error, boosts the level of noise in the model, making it actually worse
for forecasting using future observations, as expressed in Hoeffding’s inequality (equation
2.1).

Besides providing a probabilistic upper bound for the generalization error 𝐸𝑜𝑢𝑡 of a
model’s decision function, Hoeffding’s inequality formalizes the trade-off between capacity
and complexity for the construction of a good algorithm for generalizations. A good model
for this purpose is one that lies on the optimal middle ground between describing well
the data taken from the sample (a small in-sample error 𝐸𝑖𝑛), as well as deriving patterns
for future and yet unseen data that are not way too complex, since the past data is
filled not only with useful information but also an intrinsic component of noise, such that
merely “memorizing” the past data tend to be not enough to cover satisfactorily future
predictions. In statistics, this trade-off is also known as the “bias-variance dilemma”.

The statistical challenges of high dimensionality and noisy independent variables
are also addressed in Fan and Li (2006), which categorised feature selection problems
under the “penalized likelihood” framework, which in turn expresses the main idea of
Hoeffding’s inequality: a good set of features is one that has good overall fitness and lim-
ited complexity, and adding non-informative variables would boost the latter in a larger
magnitude than the former. Furthermore, Fan and Lv (2010) point out the computational
setbacks when dealing with high dimensional data, in special non-concave penalized like-
lihood functions like the ones seen in neural networks – the backpropagation algorithm,
for instance, converge to a local minimum for the loss function, and to actually find the
global minimum can be very costly.

Specifically in finance, the advancements in this knowledge field have lead to an
“overflow” of potential informative independent variables, as studies from the scientific
literature use more and more different variables to explain a phenomenon or to predict a
certain financial variable. In the scope of asset pricing, a big number of different factors
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were proposed by the recent literature, leading to a proliferation of candidate factors,
dubbed as a “factor zoo” by Cochrane (2011). Similarly, there is also a large number
of variables listed by the literature for the stock price prediction, for indicators of both
fundamentalist and technical analysis. Moreover, an also big number of technical analysis
indicators are used by investors and market practitioners but not considered by the recent
scientific literature in finance, making the variety of technical analysis indicators used for
predictive means a “factor zoo” of its own. Therefore, this work intends to identify the
components of said “zoo” and test the predictive performance of the features that compose
it in light of machine learning techniques, as well as analyzing potential improvements of
feature selection methods in selecting the most informative indicators and discarding the
noisy or redundant ones.

5.2 Theoretical background

5.2.1 Factor zoo and feature selection in finance

Concerning the “factor zoo” in asset pricing models, Harvey, Liu and Zhu (2016)
discussed the evolution of proposed models for the asset pricing problem, which evolved
from a small number of factors to an extensive set of variables, listing 316 factors used by
the specialized literature to model the cross-section of expected financial returns. How-
ever, the authors argued that most factors actually do not bring significant improvements
on the models’ performance, evidencing the presence of many non-informative and redun-
dant variables that add more noise than explanatory power into the models. Furthermore,
testing for the factors’ significance using t-tests, Harvey, Liu and Zhu (2016) concluded
that the high number of non-significant factors may likely indicate that a high number
of research findings reported in financial economics papers actually do not hold, favoring
instead classic and more parsimonious models.

Analyzing the effects of high dimensionality in finance, Kozak, Nagel and San-
tosh (2017) tested the effects of introducing nonlinear interactions between 130 factors
up to degree-3 polynomials, subsequently applying dimensionality reduction techniques
considering ℓ1 and ℓ2 regularizations to increase the model’s sparsity. The results showed
that a very small number of principal components are able to capture almost all of the
out-of-sample explanatory power, while most principal components are non-informative;
moreover, the introduction of additional regularized principal components does not hinder
the model’s sparsity, but does not improve predictive performance either.

Similar results were found in Hwang and Rubesam (2018) tested linear models
from a set of 83 factors from the asset pricing literature “factor zoo”, using a Bayesian
estimation for seemingly unrelated regression models to search the best models. The
authors tested for United States stocks from 1980 to 2016 and found out that only 10
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factors were selected by the proposed method in some analyzed period, with only 5 to
6 showing actual significance on explaining the assets returns, although some selected
factors in certain periods are not included in traditional factor models like Fama and
French (1992), Fama and French (1996) and Fama and French (2015). Additionally, the
study showed that the only factor that was consistently selected throughout the periods
was the excess market return, which is consistent with the findings of Laloux et al. (1999),
Nobi et al. (2013) and Sensoy, Yuksel and Erturk (2013), who found out that the market
systematic risk is responsible for the largest eigenvalue of financial covariance matrices
in many different financial markets and time periods, and that this top eigenvalue is
significantly larger than the remaining ones, and that the vast majority of eigenvalues
accounts for noisy information, falling into the theoretical bounds of a purely random
Wishart covariance matrix.

Feng, Giglio and Xiu (2017) proposed a Two-Pass Regression approach with Dou-
ble Selection LASSO with Monte Carlo simulations, incorporating the existence of model-
selection mistakes that lead to an omitted variable bias to the models’ coefficients esti-
mation. Using 99 risk factors as inputs and testing for data between 1980 and 2016 for
companies listed in NYSE, AMEX and NASDAQ with positive book equity, the authors
reported that most recent proposed factors are statistically “redundant” or “useless”,
while relatively few were shown to be statistically “useful”. Furthermore, the significance
of the variables selected by the proposed method was shown to be more stable than the
standard LASSO model.

Other applications of feature selection in financial contexts include Salcedo-Sanz
et al. (2004), who proposed a feature selection method based on simulated annealing and
Walsh analysis, coped with a classification Support Vector Machine, to predict insolvency
for Spanish insurance companies. From a set of candidate variables with 21 accounting
ratios, the proposed method generated subsets displaying the least noisy and redundant
indicators. Similarly, Creamer (2012) proposed a trading algorithm for high frequency
data of EURO STOXX 50 and DAX index Futures, applying machine learning techniques
like boosting and bagging. The paper incorporated a big number of technical indicators,
trading rules, and liquidity indicators, and the empirical analysis showed that whole set of
variables, although containing indicators with a high degree of redundancy, yielded mod-
els’ with smaller overall error rates. To predict the stock price direction of a Brazilian firm,
Oliveira, Nobre and Zárate (2013) considered 46 variable distributed into macroeconomic
variables, firm fundamentalist indexes, historical prices, and technical analysis indicators.
The authors applied a filter feature selection method with correlation criterion, reducing
the variable set to 18 features and applying them to a shallow ANN with one hidden layer,
which yielded an out-of-sample accuracy rate of 87.5%.
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5.2.2 Nonlinearity and machine learning in financial forecasting

Machine learning methods became a widely studied topic over the recent years
due to their overall flexibility to the observed data, absence of restrictive assumptions
of distribution and functional forms; instead, the basic premise is to “learn from the
data” and identify potential non-intuitive patterns that contribute to better forecastings.
One of the main features of machine learning methods is the insertion of nonlinearities,
allowing the modeling of high degrees of nonlinearity in a reduced number of functions
and hyperparameters. For instance, a neural network is essentially a linear regression with
“chunks” of nonlinearity; a classification support vector machine is a linear separator in
a feature space with an arbitrarily high dimension, depending on the Kernel function
applied.

Mullainathan and Spiess (2017) discussed the connections between machine learn-
ing methods and econometrics, showing that both generalized linear methods – like
LASSO and ridge regression – and machine learning algorithms like random forest, K-
nearest neighbors and neural networks can be represented as a particular case of minimiz-
ing the in-sample loss with a complexity restriction, analogous to the framework stated
in Hoeffding’s inequality. In this sense, the insertion of irrelevant variables as inputs for
machine learning models can potentially be even more harmful to the model’s predicting
performance.

While the presence of nonlinear interaction variables can reveal additional patterns
and joint significances between the original variables, it also augments the “zoo size” even
more, making the presence of a non-informative feature more problematic due to the
possible spreading of its noisy effect to other useful factors: for instance, taking a set of
𝑛 variables, the number of cross-interactions of degree 2 of those variables would yield
𝑛 +

(︁
𝑛
2

)︁
variables, and 𝑛 + 𝑛(𝑛 − 1) +

(︁
𝑛
3

)︁
variables more of degree 3, and so on. While

the number of potentially useful regressors already leads to a high level of noise and high
proneness of overfitting, taking the analysis to nonlinear relationships may hinder the
model’s overall predictive power even further.

In traditional econometrics, using highly correlated variables leads to the well-
known problem of multicollinearity, which leads to larger standard errors on the estimates
and interfering on the model’s inference, making it less robust, as well as increasing
the chances on inaccuracies on the numerical optimization of the computer algorithm.
In machine learning models the effects are similar, as the model tends to overfit and
make inaccurate predictions for new data. This can be seen in Guresen, Kayakutlu
and Daim (2011), in which ANNs and ensemble models were tested to predict the daily
NASDAQ Index using a sample of 182 days between 2008 and 2009. The authors tested
a hybrid neural network that introduced new input variables constructed from GARCH
and EGARCH models, and the results of these methods were shown to be worse than the



Chapter 5. Does all learning lead to the efficiency? Deep neural networks, feature selection and
technical analysis indicators in stock price direction forecasting 120

conventional multilayer perceptron, indicating that the added features introduced more
noise than actual explanatory power.

Conversely, as discussed in Guyon and Elisseeff (2003), even highly correlated
variables (positively or negatively) does not necessarily imply in the absence of variable
complementarity, since there may be nonlinear dependencies that are actually informa-
tive. In this sense, since machine learning methods rely heavily on nonlinear interactions,
an apparently redundant variable subset, although can make the model more prone to
overfitting and making inaccurate predictions, can actually yield good predictions that
when applied to a linear model.

When dealing with a high number of variables, a common approach to extract the
most relevant information out of the feature set is to apply Principal Component Analysis
(PCA) to take linear combinations that account for the largest proportions of explained
variance. However, while PCA is a practical way, the principal components do not have
an immediate implication in real life, unlike feature selection methods which take vari-
ables “as a whole”, maintaining their respective economic and financial interpretations.
Furthermore, PCA forces the principal components to be orthogonal – that is, linearly
non-correlated. Thus, when nonlinear relationships of the candidate variables are being
accounted, the original interpretability suffers an additional loss, for it may be unnatural
to imagine the intuition of a polynomial or exponential version of a variable with clear
economic meaning. In this sense, in this paper we opted to take subsets of individual
variables instead of combinations of features, given that the principal components them-
selves are already hard to interpret, and using them as inputs to a nonlinear predictive
model like ANN would further hinder the model’s interpretability.

Moghaddam, Moghaddam and Esfandyari (2016) applied ANN to forecast the
daily NASDAQ stock exchange rate with data from January 2015 to June 2015 using
past prices and the day of the week as input variables. Fenghua et al. (2014) applied a
SVM combined with singular spectrum analysis to predict the daily closing price of the
SSE Composite Index from 2009 to 2013. Nayak, Pai and Pai (2016) applied Boosted
Decision Tree, Logistic Regression and SVM to predict the Indian stock market trend
using historic prices and market sentiment measured by posts on Twitter.

Qiu, Song and Akagi (2016) emphasized the theoretical capacity of neural networks
to approximate any nonlinear continuous function, reiterating that the nonlinear behav-
ior of financial series is one of the main challenges of forecasting stock market returns.
ANNs were applied to predict the return of the Nikkei 225 Index using macroeconomic
variables like monetary base, interest rates, trade flow and industrial production as in-
puts. Genetic algorithms and simulated annealing were combined with neural networks
to improve the prediction accuracy and to overcome the local convergence problem of the
backpropagation algorithm.
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The improvements of nonlinearity in financial applications are also discussed in Gu,
Kelly and Xiu (2018), who applied various machine learning methods – namely principal
components regression, partial least squares, generalized linear models, boosted regression
trees, random forests and artificial neural networks – and compared them to simple and
penalized (ridge regression, LASSO and elastic net) linear models to measure the risk
premium of financial assets using data of nearly 30000 financial assets from NYSE and
NASDAQ between 1957 and 2016. The results presented empirical evidences favoring
machine learning models in terms of providing a more accurate description of the price
oscillation patterns of the analyzed assets in comparison to traditional statistical methods;
the authors credited the predictive performance gain to the introduction of nonlinear
predictor interactions from those methods, which are not considered by commonly used
econometric approaches. Moreover, the authors reported that all models converged to a
similar set of “essential predictors” composed mainly by variations in the assets’ liquidity
and volatility.

5.2.3 Technical analysis indicators and machine learning in stock price pre-
dictions

Technical analysis indicators are commonly used tools in investment evaluation,
financial trading and portfolio selection. As detailed in table 23, there is a lengthy list
of technical indicators used in the literature as variables to predict a stock’s price move-
ment; however, at the same time, many indicators are highly correlated, with some of
them actually being defined by simple mathematical operations or combinations between
other technical indicators which are also candidate criteria for the investor’s decision. For
example, the Stochastic D% indicator is simply an arithmetic mean of the Stochastic K%
indicator for the last 𝑛 periods, with Stochastic D% itself calculated using the maximum
and minimum prices over the last 𝑛 periods, which are themselves used as separate indica-
tors; both the Momentum (MOM) and the Rate of Change (ROC) describe the variation
of the closing price relative from 𝑛 periods before, and the only difference between them
is that the former states the difference in absolute variation, while the later gives away
the percentage variation.

Given the high degree of “overlapping” between technical analysis indicators, a
previous feature selection filtering which variables are most relevant to predict a stock
movement is an important issue to avoid prediction problems arising from redundant
variables like multicollinearity and overfitting. Therefore, this paper aimed to observe
the improvements in out-of-sample prediction application of feature selection methods for
the prediction of the stock price direction. Besides, we evaluated the effect of feature
selection in machine learning models, providing insights about the best combination of
machine learning model and feature selection method, as well as the emergence of chaotic
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behavior of machine learning methods.

The application of technical analysis on stock markets was analyzed in Nazário
et al. (2017)’s literature review, in which 85 papers published between 1959 and 2016
were classified in terms of the chosen markets, methodologies, consideration of risk and
transaction costs, operational tools, among other categories. The analysis showed that
artificial neural networks are a widely used tool in this literature, mainly due to their
consistency for small-range data; in special, the popularity of this technique increased in
the last years covered by the analysis, which coincided with the overall interest in machine
learning applications in finance.

Given the popularity and empirical effectiveness of machine learning models in fi-
nancial forecasting, this class of models has been actively being applied to the prediction
of the financial stock prices. As shown in an extensive review by Henrique, Sobreiro and
Kimura (2019), who mapped 57 papers published in high-impact journals, the application
of machine learning techniques to the prediction of financial stock prices is still a highly
debated research topic in the recent literature, both regarding the forecasting of the mar-
ket movement direction (a classification problem) and the magnitude of the movement
itself (a regression problem). More specifically, the paper indicated that the input vari-
ables considered by the models are basically divided into fundamentalist and technical
indicators, with the most prominent machine learning methods applied to financial mar-
ket predictions being Artificial Neural Networks and Support Vector Machines, as well
as their respective extensions. Therefore, we tested different setting of ANN models to
verify the predictive ability of the models and to analyze the effects of the pre-application
of feature selection methods.

Henrique, Sobreiro and Kimura (2018) used five technical analysis indicators to
predict stock price from Brazilian, American and Chinese financial markets using Support
Vector Regression (SVR) for high frequency data, using the Random Walk as the bench-
mark. The paper argues in favor of the predictive power of the SVR models, especially
in periods of lower market volatility.

Costa et al. (2015) tested the performance of trading strategies in comparison
to the buy-and-hold strategy based on technical analysis indicators for 198 stocks of the
Brazilian market, and analyzed their respective predictability for the market trends under
various circumstances of transaction costs. The paper reports that the proposed strategies
obtained returns larger than the invested value, but have reduced predictive power for
the stocks’ future prices.

Żbikowski (2015) applied a volume weighted extension of a classification SVM to
predict the stock price direction for 20 US stocks between 2003 and 2013 using 7 technical
analysis indicators. The paper also tested a feature selection method based on Fisher Score
ranking, and although the application of this procedure has reached a better performance
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of trading strategies, the author advised caution and recommended additional researches
regarding the effectiveness of other feature selection methods. Specifically, in this paper
we further investigated the effects of feature selection before applying a machine learning
technique for a much larger initial set of indicators which included all 7 indicators used
in Żbikowski (2015).

Zhu et al. (2015) performed a similar analysis for two Chinese stock exchange
indexes between 1991 and 2013. Comparing trading range break, fixed-length moving
average and variable moving average rules, the study’s empirical results showed that the
former outperformed the others in terms of profitability; specifically, short-term moving
average rules worked better than long-term ones. Moreover, White’s Reality Check test
indicated that the best trading signals from variable moving average and trading range
break outperformed the buy-and-hold strategy in a scenario without transactions costs;
when they are taken into account, however, there were no statistical evidences towards
the superiority of the technical analysis trading rules.

Alhashel, Almudhaf and Hansz (2018) tested 22 technical analysis trading rules for
indexes from 1995 to 2015 of nine financial markets in Asia, namely China, Hong Kong,
Indonesia, Japan, Malaysia, Philippines, Singapore, Taiwan, and Thailand. Controlling
for transaction costs and strategy risk, the results found evidences of market inefficiency
in four of the analyzed markets, implying the existence of predictive power of technical
analysis indicators on those markets; on the other five markets, though, the profitability
did not outperform the market gains.

Nakano, Takahashi and Takahashi (2018) proposed trading strategies using intra-
day bitcoin price data applying ANNs for the prediction of the returns. Technical analysis
indicators and historical return data were used as input variables, and both shallow and
deep network architectures were tested. Even considering the effect of transaction costs,
the risk-adjusted profitability of the proposed method was reported to be significantly
greater than the buy-and-hold strategy, especially during a period when bitcoin prices
suffered a large drawback.

Weng, Ahmed and Megahed (2017) combined online data information collected
from “knowledge bases” Google and Wikipedia with traditional time-series and financial
technical analysis indicators to build a trading expert system that operates on a daily
periodicity. Machine learning techniques (decision trees, ANN and SVM) were used as
the predictive tool of the proposed system. Even though the sample consisted of only one
company, the paper reported an 85% directional accuracy for the predictions and claimed
improvement over the results of similar works in the literature.

Patel et al. (2015b) proposed a two-stage fusion model between ANN, Random
Forest and Support Vector Regression (SVR) to predict the value of two Indian stock
market indexes (NIFTY 50 and BSE SENSEX), with the first stage estimating the pa-
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rameters used in the second stage. Using data from 2003 to 2012 and 10 technical analysis
indicators as independent variables, the authors reported that the two-stage procedure
led to a diminishment of the overall out-of-sample prediction error levels in comparison to
single step versions of the adopted machine learning models. Among the machine learning
models applied individually, ANN and SVR exhibited superior overall performance than
Random Forest, while the ANN-SVR hybrid yielded the lowest error metrics between the
tested combinations.

The “factor zoo” of technical analysis indicators is displayed in table 23: in this
table are listed technical analysis indicators used as independent variables in papers pub-
lished in high impact journals over the last 20 years (1999-2018) that applied machine
learning models in the forecasting of the value or the direction of stock prices of finan-
cial market indexes. On the “trader side”, four specialized websites that offer finan-
cial services and technical analysis softwares (Fidelity Investments, Trading Technologies,
StockCharts, and TradingView) were analyzed and indicators documented in their respec-
tive websites that were not used in any of the academic researchers were listed in table
24.
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Variable References
Simple Moving Average Thawornwong, Enke and Dagli (2003), Chang and Fan (2008), Chang et al. (2009), Huang and Tsai (2009)

Yu et al. (2009), Vanstone and Finnie (2010), Kara, Boyacioglu and Baykan (2011), Chang et al. (2012)
Creamer (2012), Oliveira, Nobre and Zárate (2013), Chen, Cheng and Tsai (2014), Patel et al. (2015a)
Patel et al. (2015b), Chiang et al. (2016), Novak and Velušček (2016), Weng, Ahmed and Megahed (2017)
Alhashel, Almudhaf and Hansz (2018), Henrique, Sobreiro and Kimura (2018)

Weighted Moving Average Kara, Boyacioglu and Baykan (2011), Patel et al. (2015a), Patel et al. (2015b), Novak and Velušček (2016)
Alhashel, Almudhaf and Hansz (2018), Henrique, Sobreiro and Kimura (2018)

Exponential Moving Average
Tay and Cao (2001), Ang and Quek (2006), Yu et al. (2009), Vanstone and Finnie (2010)
Creamer (2012), Ticknor (2013), Novak and Velušček (2016), Chen et al. (2017)
Weng, Ahmed and Megahed (2017), Nakano, Takahashi and Takahashi (2018), Alhashel, Almudhaf and Hansz (2018)

Momentum
Kim and Han (2000), Kim (2003), Yu et al. (2009), Kara, Boyacioglu and Baykan (2011), Creamer (2012)
Oliveira, Nobre and Zárate (2013), Chen, Cheng and Tsai (2014), Patel et al. (2015a), Patel et al. (2015b)
Chiang et al. (2016), Novak and Velušček (2016), Weng, Ahmed and Megahed (2017)

Stochastic K%

Kim and Han (2000), Kim (2003), Thawornwong, Enke and Dagli (2003), Kwon and Moon (2007), Chang et al. (2009)
Huang and Tsai (2009), Yu et al. (2009), Vanstone and Finnie (2010), Kara, Boyacioglu and Baykan (2011)
Chang et al. (2012), Ticknor (2013), Oliveira, Nobre and Zárate (2013), Chen et al. (2014)
Patel et al. (2015a), Patel et al. (2015b)
Nakano, Takahashi and Takahashi (2018), Alhashel, Almudhaf and Hansz (2018)

Stochastic D%
Kim and Han (2000), Kim (2003), Kwon and Moon (2007), Chang and Fan (2008)
Chang et al. (2009), Huang and Tsai (2009), Yu et al. (2009), Kara, Boyacioglu and Baykan (2011)
Chang et al. (2012), Ticknor (2013), Oliveira, Nobre and Zárate (2013), Chen et al. (2014)
Patel et al. (2015a), Patel et al. (2015b), Nakano, Takahashi and Takahashi (2018)

Slow Stochastic D% Kim and Han (2000), Kim (2003), Yu et al. (2009)

Relative Strength Index

Kim and Han (2000), Kim (2003), Thawornwong, Enke and Dagli (2003), Armano, Marchesi and Murru (2005)
Kwon and Moon (2007), Chang and Fan (2008), Chang et al. (2009), Huang and Tsai (2009)
Yu et al. (2009), Vanstone and Finnie (2010), Kara, Boyacioglu and Baykan (2011), Rodríguez-González et al. (2011)
Chang et al. (2012), Creamer (2012), Ticknor (2013), Oliveira, Nobre and Zárate (2013)
Chen, Cheng and Tsai (2014), Patel et al. (2015a), Patel et al. (2015b), Novak and Velušček (2016)
Weng, Ahmed and Megahed (2017), Nakano, Takahashi and Takahashi (2018), Alhashel, Almudhaf and Hansz (2018)
Henrique, Sobreiro and Kimura (2018)

Moving Average Convergence-Divergence

Tay and Cao (2001), Thawornwong, Enke and Dagli (2003), Armano, Marchesi and Murru (2005), Kwon and Moon (2007)
Chang and Fan (2008), Chang et al. (2009), Huang and Tsai (2009), Yu et al. (2009)
Vanstone and Finnie (2010), Kara, Boyacioglu and Baykan (2011), Chang et al. (2012), Creamer (2012)
Oliveira, Nobre and Zárate (2013), Chen, Cheng and Tsai (2014), Chen et al. (2014), Patel et al. (2015a)
Patel et al. (2015b), Chiang et al. (2016), Nakano, Takahashi and Takahashi (2018), Alhashel, Almudhaf and Hansz (2018)

William’s R%
Kim and Han (2000), Kim (2003), Chang et al. (2009), Huang and Tsai (2009)
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Kara, Boyacioglu and Baykan (2011), Chang et al. (2012), Ticknor (2013), Oliveira, Nobre and Zárate (2013)
Chen, Cheng and Tsai (2014), Patel et al. (2015a), Patel et al. (2015b), Alhashel, Almudhaf and Hansz (2018)

Accumulation/Distribution Oscillator
Kim and Han (2000), Kim (2003), Yu et al. (2009), Kara, Boyacioglu and Baykan (2011)
Patel et al. (2015a), Patel et al. (2015b), Alhashel, Almudhaf and Hansz (2018), Henrique, Sobreiro and Kimura (2018)

Commodity Channel Index
Kim and Han (2000), Kim (2003), Yu et al. (2009), Kara, Boyacioglu and Baykan (2011)
Patel et al. (2015a), Patel et al. (2015b), Novak and Velušček (2016), Alhashel, Almudhaf and Hansz (2018)

Rate of Change
Kim and Han (2000), Tay and Cao (2001), Kim (2003), Armano, Marchesi and Murru (2005)
Chang et al. (2009), Yu et al. (2009), Creamer (2012), Novak and Velušček (2016), Weng, Ahmed and Megahed (2017)
Alhashel, Almudhaf and Hansz (2018)

Disparity Kim and Han (2000), Kim (2003), Yu et al. (2009), Weng, Ahmed and Megahed (2017)
Price Oscillator Kim and Han (2000), Kim (2003), Yu et al. (2009)
Psychological line Chang and Fan (2008), Huang and Tsai (2009), Chen, Cheng and Tsai (2014)
Directional Indicator Up Huang and Tsai (2009)
Directional Indicator Down Huang and Tsai (2009)
Bias Chang and Fan (2008), Chang et al. (2009), Huang and Tsai (2009), Chen, Cheng and Tsai (2014), Chang et al. (2012)
Volume Ratio Huang and Tsai (2009)
A Ratio Huang and Tsai (2009)
B Ratio Huang and Tsai (2009)
Average True Range Vanstone and Finnie (2010), Henrique, Sobreiro and Kimura (2018)
Bollinger Band Upper Creamer (2012), Oliveira, Nobre and Zárate (2013), Alhashel, Almudhaf and Hansz (2018)
Bollinger Band Lower Creamer (2012), Oliveira, Nobre and Zárate (2013), Alhashel, Almudhaf and Hansz (2018)
Directional Movement Indicator Alhashel, Almudhaf and Hansz (2018)
Keltner Channel Upper Band Alhashel, Almudhaf and Hansz (2018)
Keltner Channel Lower Band Alhashel, Almudhaf and Hansz (2018)
Triangular Moving Average Alhashel, Almudhaf and Hansz (2018)
Moving Average Envelope Upper Alhashel, Almudhaf and Hansz (2018)
Moving Average Envelope Lower Alhashel, Almudhaf and Hansz (2018)
Rex Oscillator Alhashel, Almudhaf and Hansz (2018)
Negative Volume Index Creamer (2012)
Positive Volume Index Creamer (2012)
Volume Adjusted Moving Average Chavarnakul and Enke (2009)
Highest Price ratio Vanstone and Finnie (2010)
Lowest Price ratio Vanstone and Finnie (2010)
Opening price Oliveira, Nobre and Zárate (2013)
Closing price Oliveira, Nobre and Zárate (2013)
Minimum price Oliveira, Nobre and Zárate (2013)
Minimum price Oliveira, Nobre and Zárate (2013)
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Volume Chang et al. (2009), Oliveira, Nobre and Zárate (2013), Novak and Velušček (2016)
Volume Momentum Chiang et al. (2016)
Moving Price Level Percentage Chiang et al. (2016)
Percent Price Oscillator Chiang et al. (2016)
Parabolic Stop and Reverse Novak and Velušček (2016), Alhashel, Almudhaf and Hansz (2018)
On Balance Volume Tay and Cao (2001), Creamer (2012), Oliveira, Nobre and Zárate (2013), Nakano, Takahashi and Takahashi (2018)
Average Directional Movement Index Vanstone and Finnie (2010)
Volatility Tay and Cao (2001)
Money Flow Index Thawornwong, Enke and Dagli (2003)
Variance Ratio Yu et al. (2009)
Linear Regression Slope Yu et al. (2009)

Table 23 – Technical analysis indicators used in recent financial prediction studies that applied machine learning models
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Variable References
Acceleration Band Up Trading Technologies (2019)
Acceleration Band Down Trading Technologies (2019)
Accumulation/Distribution Index Trading Technologies (2019), Fidelity Investments (2019)
Money Flow Multiplier StockCharts (2019)
Accumulation Distribution Line StockCharts (2019), TradingView (2019)
Absolute Price Oscillator Trading Technologies (2019), Fidelity Investments (2019)
Aroon Indicator Positive Trading Technologies (2019), StockCharts (2019)

Fidelity Investments (2019), TradingView (2019)
Aroon Indicator Negative Trading Technologies (2019), StockCharts (2019)

Fidelity Investments (2019), TradingView (2019)
Aroon Oscillator Trading Technologies (2019), StockCharts (2019)
Average True Range Percent Fidelity Investments (2019)
Average Volume Fidelity Investments (2019)
Bollinger Band Width StockCharts (2019), Fidelity Investments (2019)

TradingView (2019)
Bollinger Band %B StockCharts (2019), Fidelity Investments (2019)

TradingView (2019)
Band Width Trading Technologies (2019)
Chaikin Money Flow StockCharts (2019), Fidelity Investments (2019)

TradingView (2019)
Chaikin Oscillator StockCharts (2019), TradingView (2019)
Chaikin Volatility Fidelity Investments (2019)
Chande Momentum Oscillator Trading Technologies (2019), Fidelity Investments (2019)
Chandelier Exit Long StockCharts (2019)
Chandelier Exit Short StockCharts (2019)
Choppiness Index TradingView (2019)
Coppock Curve StockCharts (2019)
Detrended Price Oscillator StockCharts (2019), Fidelity Investments (2019)

TradingView (2019)
Donchian channel Cavendish Astrophysics (2011), TradingView (2019)
Double Exponential Moving Average Trading Technologies (2019)
Double Smoothed Stochastic Fidelity Investments (2019)
Ease of Movement StockCharts (2019), TradingView (2019)
Force Index StockCharts (2019), TradingView (2019)
Hull Moving Average Fidelity Investments (2019)
Kaufman’s Adaptive Moving Average StockCharts (2019)
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Linear Regression Intercept Trading Technologies (2019), StockCharts (2019)
Fidelity Investments (2019)

MACD Histogram StockCharts (2019)
Mass Index StockCharts (2019)
Raw Money Flow Fidelity Investments (2019)
Midpoint Trading Technologies (2019)
Midprice Trading Technologies (2019)
Normalized Average True Range Trading Technologies (2019)
Typical Price Fidelity Investments (2019)
Standard Support 1 Fidelity Investments (2019)
Standard Support 2 Fidelity Investments (2019)
Standard Resistance 1 Fidelity Investments (2019)
Standard Resistance 2 Fidelity Investments (2019)
Fibonacci Support 1 Fidelity Investments (2019)
Fibonacci Support 2 Fidelity Investments (2019)
Fibonacci Resistance 1 Fidelity Investments (2019)
Fibonacci Resistance 2 Fidelity Investments (2019)
Demark Pivot Point Fidelity Investments (2019)
Demark Support Fidelity Investments (2019)
Demark Resistance Fidelity Investments (2019)
Price Channel Upper Trading Technologies (2019), StockCharts (2019)
Price Channel Lower Trading Technologies (2019), StockCharts (2019)
PPO Histogram StockCharts (2019)
Percentage Volume Oscillator StockCharts (2019)
PVO Histogram StockCharts (2019)
Price Volume Trend Trading Technologies (2019), TradingView (2019)
Pring’s Know Sure Thing Oscillator StockCharts (2019), TradingView (2019)
Pring’s Special K StockCharts (2019)
Relative Vigor Index Fidelity Investments (2019)
Standard Error Fidelity Investments (2019)
Stochastic RSI Fidelity Investments (2019), TradingView (2019)
Triple Exponential Moving Average Trading Technologies (2019)
Triple Exponential Moving Average Oscillator Trading Technologies (2019), StockCharts (2019)

TradingView (2019)
True Strength Index StockCharts (2019)
Typical Price Fidelity Investments (2019)
Ulcer Index StockCharts (2019)
Ultimate Oscillator Trading Technologies (2019), StockCharts (2019)
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Fidelity Investments (2019), TradingView (2019)
Volume Oscillator Fidelity Investments (2019)
Volume Price Trend Cavendish Astrophysics (2011)
Volume Weighted Average Price Trading Technologies (2019), StockCharts (2019)

TradingView (2019)
Vortex Indicator Positive StockCharts (2019)
Vortex Indicator Negative StockCharts (2019)
Welles Wilder’s Smoothing Average Trading Technologies (2019)

Table 24 – Technical analysis indicators not used in recent financial studies
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5.3 Method

5.3.1 Logistic Regression and Artificial Neural Networks

The most well-known classification algorithm is the logistic regression (also known
as the “logit model”), which is basically a linear regression model for the log-odds of the
probability of success of a Bernoulli experiment 𝑝(𝑥) conditioned to a vector of observed
independent variables 𝑥(𝑘𝑥1), such that:

𝑙𝑜𝑔

(︃
𝑝𝑖(𝑥)

1 − 𝑝𝑖(𝑥)

)︃
= 𝛽0 + 𝛽1𝑥1,𝑖 + · · · + 𝛽𝑘𝑥𝑘,𝑖 (5.1)

which can be rewritten as:

𝑝𝑖(𝑥) = 1
1 + 𝑒−(𝛽0+𝛽1𝑥1,𝑖+···+𝛽𝑘𝑥𝑘,𝑖)

= 𝑒𝛽0+𝛽1𝑥1,𝑖+···+𝛽𝑘𝑥𝑘,𝑖

1 + 𝑒𝛽0+𝛽1𝑥1,𝑖+···+𝛽𝑘𝑥𝑘,𝑖
(5.2)

where 𝜎(𝑥) = 1
1+𝑒−𝑥 is known as the sigmoid function (or standard logistic function)

In summary, the logistic regression is a linear regression whose output is “squashed”
into the range [0, 1] through the sigmoid function. Given that the log-odd can be inter-
preted as the ratio between the probability of success and the probability of failure of
the Bernoulli experiment, usually the cutoff 𝑝𝑖(𝑥) = 0.5 is used as a classifying rule for
binary dependent variables, with the prediction being “class 1” if 𝑝𝑖(𝑥) > 0.5 and “class
0” if otherwise.

While being simple and providing an easy interpretation, the logistic regression
has, by construction, an assumption of linearity, which makes a major limitation of this
model. Over recent years, many other nonparametric models showed better empirical per-
formance in classification tasks, hence becoming increasingly popular among researchers
due to their flexibility, notably in financial contexts: as discussed in Hsu et al. (2016),
machine learning methods were shown to consistently outperform traditional economet-
rics models in a various range of applications, including problems in finance such as stock
market prediction, portfolio analysis, asset pricing, and risk management. One of the
most used machine learning methods are Artificial Neural Networks (ANN) as well as
their many extensions, such as deep networks, recurrent networks, convolutional net-
works, among others. Their applications range from image processing, text translating
to chromosome mapping and financial forecasting; specifically in finance, references that
used ANNs were briefly summarized in section 5.2.

While the big variety of ANN extensions differ in functional forms and complexi-
ties, in essence, an ANN is but a recursive application of linear models and “chunks” of
nonlinearity. Algebraically, while a linear regression model can be expressed as 𝑦 = 𝑋𝑤,
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with 𝑌 being a vector of dependent variables, 𝑋 a matrix of observed independent vari-
ables and 𝑤 a vector of parameters, an ANN can be generally expressed as:

𝑦 = 𝜓ℓ(...𝜓2(𝜓1(𝑋𝑊1)𝑊2)...𝑊ℓ)𝑤 (5.3)

where 𝜓(.) are activation functions – where the nonlinearity is introduced – and ℓ is the
number of hidden layers.

In other words, an ANN is simply a sequence of linear regressions, and the linear
regression itself is actually an ANN with one hidden layer, with ℓ = 1 and 𝜓(𝑥) = 𝑥.
Similarly, the previously discussed logistic regression is also an ANN with ℓ = 1 and 𝜓(𝑥)
equal to the logistic function 𝜎(𝑥) = 1

1+𝑒−𝑥 , which is one of the most popular activation
functions in ANN applications.

Instead of using only one hidden layer, an ANN can be specified with an arbitrary
degree of “deepness” by stacking more layers, which allows the algorithm to learn more
abstract knowledge representations. For instance, in image recognition, the first layers
focus on simpler tasks like identifying the contrast of the pixels to preliminary define
the contours of the objects in the image; as the inputs go deeper into the layers, more
complex patterns like edges and lines are learned, and in the deepest layers the neurons
specialize in identifying actual objects, such as eyes and ears (GOODFELLOW et al.,
2016). In financial applications, the same reasoning is valid, as discussed by Heaton,
Polson and Witte (2016): by using an ANN with more hidden layers, the algorithm
becomes able to learn stylized facts from financial data such as volatility clustering and
the leverage effect; in factor models, an ANN generalizes cross-interactions between the
factor as a hierarchical nonlinear factor model. Regarding technical analysis indicators, it
is expected for ANNs to learn the trading rules that derive from them – for instance, a buy
or sell signal arising from the crossing of a short-term and a long-term moving average,
as summarized in the MACD indicator. Moreover, a deep ANN can theoretically provide
a joint analysis for different indicators that may give away different actions for investors
– for example, if some indicators give a buy signal while others give a sell signal, a deep
ANN is able to consider more abstract market dynamics that each indicator is modeling
and their joint effect on the investor’s ultimate decision.

Nonetheless, a deeper network structure, while allowing the algorithm to learn
more complex structures, also makes it more prone to overfitting – that is, the ANN
may simply “memorize” the in-sample data alongside with the noisy information specific
to those observations, making it worse for generalizations. When dealing with financial
data, this issue is particularly relevant, as pointed out in Heaton, Polson and Witte
(2017). In this sense, in the literature of financial applications, there is no consensus
concerning the effects of introducing additional hidden layers in ANNs on the model’s



Chapter 5. Does all learning lead to the efficiency? Deep neural networks, feature selection and
technical analysis indicators in stock price direction forecasting 133

out-of-sample predictive performance. For example, in Nakano, Takahashi and Takahashi
(2018)’s experiments on the profitability of trading strategies for bitcoin, deeper ANNs
yielded better results, indicating that more levels of interaction between the variables can
help to reveal more complex patterns in the data. On the other hand, in Gu, Kelly and
Xiu (2018)’s application on risk premia of US Stocks assets, neural networks with different
numbers of hidden layers were tested, and the deep architecture neural networks showed
worse results than shallower networks, evidencing also the possibility of overfitting when
dealing with data with high levels of noise. Therefore, in this paper we tested for ANNs
with different numbers of hidden layers and analyzed the effects of previously applying
feature selection methods in the original set of technical analysis indicators.

5.3.2 Regularization and Dropout

Dropout, introduced by Srivastava et al. (2014), is a regularization method com-
monly used in neural network applications to avoid overfitting in the training process.
In each iteration, instead of computing every possible parameter throughout the network
in the backpropagation, each neuron is activated with a probability 1 − 𝑝, with 𝑝 being
the dropout rate. The motivation of doing so is to force the neural network to learn
from a broader range of “paths” instead of attributing higher weights to interactions be-
tween specific neurons, consequently ignoring other possible interactions. In this sense,
dropout can be regarded as an indirect form of feature selection for nonlinear interactions
of the original variables, making the ANN converge to a set of weights that are larger for
important interactions and closer to zero for irrelevant ones.

In each training epoch, the dropout randomly assigns a percentage of features as
zero, such that no further interactions will be derived from the zeroed neurons. The
mechanism avoids the excessive exploitation of a previously neuron path, thus decreasing
the chance of memorizing a path that conveniently yielded a smaller rate of error. When
one neuron of this path is removed, the network will be forced to consider other potential
paths that minimize the in-sample error, thus allowing it to learn other potentially useful
patterns for predicting using out-of-sample data.

While dropout is already a well-known procedure in recent machine learning stud-
ies, its use as a regularization tool is still scarce in the financial applications: while this
technique was employed in Heaton, Polson and Witte (2017) for the construction of “deep
portfolios”, specifically concerning applications that used technical analysis indicators and
ANNs to stock prices prediction, dropout was not applied in any of the papers analyzed in
review papers Nazário et al. (2017) and Henrique, Sobreiro and Kimura (2019). Bearing
in mind the large number of features present in our application, an additional mecha-
nism to control overfitting and the ANNs’complexity is desirable in terms of predicting
effectiveness. Therefore, in this paper we applied this method and verified whether this
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technique managed to further improve the predictive performance of both the original
feature set and the refined set after applying feature selection.

5.3.3 Feature selection methods

The survey paper of Chandrashekar and Sahin (2014) classified feature selection
methods in three broad categories: filter methods, in which the features are ranked ac-
cording to their respective conditional dependencies to the class labels; wrapper methods,
where an algorithm searches for the feature subset with the best predictive performance in
a validation dataset; and embedded methods, in which the feature selection occurs simul-
taneously with the training process without splitting the dataset. Concerning the category
of filter methods, Chandrashekar and Sahin (2014) point out that approaches like feature
ranking by criteria like covariance and mutual information tend to ignore inter-feature
dependencies, notably highly nonlinear ones; moreover, the authors report that there is
no ideal method indicated by the literature regarding the choice of the size of the filtered
feature set. As shown in the experiments of John, Kohavi and Pfleger (1994), the subsets
yielded from wrapper selection models generated more parsimonious classification deci-
sion trees in comparison to filter selection models; additionally, in this paper we applied
ANNs, a method whose main differentials are precisely the introduction of nonlinearities
and the learning of abstract dependency structures between the input features. Hence, we
did not consider filter feature selection methods and tested only wrapper and embedded
methods instead. Additionally, Chandrashekar and Sahin (2014) subclassified wrapper
methods in sequential selection algorithms and heuristic search algorithms. In this sense,
we tested three feature selection methods, described in the following subsections:

5.3.3.1 Sequential Forward Floating Selection (SFFS)

The Sequential Forward Floating Selection (SFFS) algorithm, proposed by Pudil,
Novovičová and Kittler (1994), is a sequential selection algorithm that combines a forward
wrapper selection method (Sequential Feature Selection – SFS) with a backward one
(Sequential Backward Selection – SBS). The SFS starts with an empty set of features and
adds recursively the variable that gives away the highest improvement in the classification
performance until the refined subset reaches an user-defined size parameter 𝑑. SBS works
in a similar way, starting from the full set of all variables and removes features that give
away the lowest decrease in prediction performance.

As both SFS and SBS are greedy approaches, variable subsets that present a high
improvement when jointly considered can be missed by these algorithms. SFFS, on the
other hand, adds more flexibility to the basic SFS by adding a step to exclude already
included features instead of keeping them permanently. Thus, the SFFS alternates a
forward step from SFS with a backward step in which previously added features are ex-
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cluded while a new best feature subset is obtained through the exclusion. The superiority
of SFFS over SFS is discussed in Reunanen (2003), who compared both frameworks for
datasets with classification tasks from various knowledge fields collected from the UCI
Machine Learning Repository.

Concerning stock direction prediction, Lee (2009) applied the SFFS algorithm to
perform wrapper feature selection on a set of 29 variables composed by financial indexes,
currency quotations, and commodities futures to predict the NASDAQ index direction;
the selected feature subset was then fitted into a classification SVM and a standard ANN.
Moreover, the study compared the effectiveness of other filter feature selection methods
based on three criteria, namely information gain, symmetrical uncertainty and correlation,
and SFFS was the algorithm that yielded the highest improvements over its full feature
set counterpart for both models. The steps of the SFFS algorithm can be summarized as
below:

<D> = 0
<performance_best> = 0
WHILE (D < K):

EXECUTE <1-step SFS>
KEEP <performance_forward>
D = D + 1
IF (performance_forward > performance_best)

performance_best = performance_forward
<performance_backward> = INFINITY
WHILE (performance_backward > performance_best)

EXECUTE <1-step SBS>
D = D - 1
KEEP <performance_backward>

IF (performance_backward > performance_best)
performance_best = performance_backward

ELSE
UNDO <1-step SBS>
D = D + 1

END

5.3.3.2 Tournament screening (TS)

The tournament screening (TS) algorithm, proposed by Chen and Chen (2009), is
a heuristic search algorithm which generates candidate features based on the best features
of mutually exclusive subsets. The variables are recursively split into smaller groups and a
“tournament” takes place inside each subset, which the features that “survive” the contests
being classified as the best ones. Therefore, the main idea of the tournament screening is
analogous from a genetic algorithm, in which the “strongest” offsprings crossover amongst
themselves while the weakest are gradually eliminated (CHANDRASHEKAR; SAHIN,
2014).
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In the TS algorithm, the set of original variables are randomly subdivided into
disjoint subsets, and inside each subset, a verification model is fitted and the variable with
the least contribution or statistical significance is excluded from the group. The remaining
variables from all subsets are aggregated and attributed again to new mutually exclusive
subsets, repeating the process of recursive elimination until the number of remaining
is reduced to a user-specified number. As pointed out by Alves (2014) and Saavedra
(2015), the tournament screening is a good alternative for parametric models of high
dimensionality, in special when the number of features is so high to the point where the
number of degrees of freedom is not sufficient for the joint estimation of all parameters
specified in the model. In those cases, the application of tournament screening allows the
parameters to be estimated within each subgroup, assuming that the null parameters will
ultimately be estimated as non-influential values inside those subgroups.

The pseudocode for the TS algorithm is displayed below:

WHILE length(feature_set) > K:
SPLIT <feature_set> into P mutually exclusive subsets

FOR i in <1 to P>
WHILE length(feature_subset) > length(feature_set)/P:

REMOVE <least_significant_feature>
UPDATE <feature_subset>

END

5.3.3.3 Least Absolute Shrinkage and Selection Operator (LASSO)

Least Absolute Shrinkage and Selection Operator (LASSO) (TIBSHIRANI, 1996)
is a regularization method in which a penalty term is added to the likelihood function
optimized in linear regression. The unconstrained OLS estimates �̂� = (X𝑇 X)−1X𝑇 y can
be vulnerable to high variance, which in turn can affect inference negatively. Thus, a
penalty term for the magnitude of the coefficients can control the variance. Similarly to
ridge regression, in which the penalty term is the ℓ2 norm for the 𝛽 parameters, in LASSO
the penalty is the ℓ1 norm. The main difference is that the LASSO can yield a set of
sparse solutions for the betas, making LASSO an embedded feature selection method, as
the algorithm training process is done at the same time as the feature selection.

The coefficients of the LASSO regression are the solutions of the following con-
strained optimization problem:

𝛽(𝜆) = argmin
𝛽

{︂ 1
𝑁

(𝑦 −𝑋𝛽)𝑇 (𝑦 −𝑋𝛽)
}︂
, subject to

𝑝∑︁
𝑗=1

|𝛽𝑗| < 𝑡 (5.4)

which is equivalent to:



Chapter 5. Does all learning lead to the efficiency? Deep neural networks, feature selection and
technical analysis indicators in stock price direction forecasting 137

𝛽(𝜆) = argmin
𝛽

{︂ 1
𝑁

(𝑦 −𝑋𝛽)𝑇 (𝑦 −𝑋𝛽) + 𝜆||𝛽||1
}︂

(5.5)

where 𝜆 is a free regularization parameter that controls the degree of shrinkage of the
betas. Therefore, sufficiently large values for 𝜆 will effectively force some betas to be
zero, producing a sparse solution for the LASSO estimator. In general, the optimal 𝜆
that minimizes the out-of-sample error is found by manually tuning through K-fold cross-
validation.

For classification problems, the ℓ1-regularization is analogously introduced to the
likelihood function optimized in logistic regression, which leads to the LASSO logistic
regression, whose coefficients are obtained solving the following optimization problem:

^𝛽(𝜆) = argmin
𝛽

{︃
1
𝑁

𝑁∑︁
𝑖=1

𝜌(𝛽)(𝑋𝑖, 𝑌𝑖) + 𝜆||𝛽||1
}︃

(5.6)

where 𝜌(𝛽)(𝑋𝑖, 𝑌𝑖) = −𝑦
{︃

𝑘∑︀
𝑗=0

𝛽𝑗𝑥
(𝑗) + 𝑙𝑜𝑔

[︃
1 + 𝑒𝑥𝑝

(︃
𝑘∑︀

𝑗=0
𝛽𝑗𝑥

(𝑗)
)︃]︃}︃

is the likelihood func-

tion optimized to obtain the beta coefficients in equation 5.2.

5.4 Empirical analysis
We collected daily data between January 1st, 2008 and March 1st, 2019 from

firms that composed financial market indexes from seven markets, namely: United States
(S&P 100 Index), United Kingdom (FTSE 100 Index), France (CAC 40 Index), Germany
(DAX-30 Index), Japan (Top 50 assets from NIKKEI 225 Index), China (Top 50 assets
from SSE 180 Index) and Brazil (Bovespa Index). The independent variables are the
technical analysis indicators listed on tables 23 and 24 for period 𝑡, and the dependent
variable is the price direction movement between periods 𝑡 and 𝑡+ 1.

Given the high number of technical indicators listed in tables 23, which are vari-
ables already used by the scientific community, the feature selection methods described in
section 5.3.3 were applied and their respective predictive performances were tested. The
same procedure was reiterated considering the indicators listed in both tables 23 and 24
to verify which indicators not yet used in academic researches can potentially boost the
models’ explanatory power.

The collected datasets were split into four sequential and mutually exclusive sub-
sets: the first two subsets, composed by observations between January 1st, 2008 and
December 31th, 2010, were used for training and validation of the feature selection algo-
rithms (with training-testing proportion of 75% to 25%), while the data from January 1st,
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2011 to March 1st, 2019 were applied to the training and validation of the ANN models
(also with training-testing proportion of 75% to 25%). For the wrapper feature selection
methods, logistic regressions were fitted in the first training set with the candidate fea-
tures and perform additions/removals based on its performance on the first validation set,
using the accuracy as the evaluation metric.

For the LASSO the procedure was similar: the hyperparameter 𝜆 was tuned by 10-
fold cross-validation in the first training set with a grid-search for the 𝜆 hyperparameter,
and the value for 𝜆 that minimizes the classification error (measured by the binomial
deviance) is considered to the best hyperparameter and this value of 𝜆 was used to fit
the model in the validation set, and the variables for which the LASSO estimates for this
model are non-zero were considered as the variable subset yielded by the feature selection.

After reaching a refined variable subset from SFFS, TS, and LASSO, the selected
variables were applied in the second training dataset to fit the Deep Neural Networks;
different numbers of hidden layers and dropout rates were tested to further analyze the
effects of deep network architectures and degree of regularization. The optimal weights
obtained in this step were finally applied in the second validation set to verify the out-of-
sample predictive performance of the models, which were measured not only by accuracy
but also by precision, recall, and F-Score. We tested neural networks with 3, 5, and
7 hidden layers, with the Sigmoid function as the activation function for all cases; we
tested two parameter values for Dropout (0 and 0.3). For the training of the networks we
used the Adam optimization algorithm (KINGMA; BA, 2014), 400 training epochs and
mini-batches of size 128 for all cases. All tests were replicated for both tables 23 and 24
(Literature + Market) and only for table 23 (Literature only).

As shown in Henrique, Sobreiro and Kimura (2019), the vast majority of studies
that applied machine learning methods in stock price direction prediction uses accuracy for
performance measurement; however, this metric does not take into account the proportion
between true positives and false positives (Type I Error) nor the proportion between
true positives and false negatives (Type II Error), making the accuracy rate potentially
misleading, especially when the classes are unbalanced.
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Accuracy, precision, recall, and F-Score are given, respectively, by:

Accuracy = 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁

Precision = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Recall = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁

F − Score =
(︃ 1

Precision + 1
Recall

2

)︃−1

(5.7)

where 𝑇𝑃 is the number of true positives, 𝐹𝑃 is the number of false positives, 𝑇𝑁 is the
number of true negatives and 𝐹𝑁 is the number of false negatives, with the positive class
being associated to an increase in the stock’s price between 𝑡 and 𝑡− 1 and the negative
class being assigned upon a price decrease.

Precision is a metric that penalizes the Type I Error – in this case, stocks whose
prices dropped when a rise was predicted; while recall yields lower values with the presence
of the Type II Error – stocks that gained value but were classified as not worth buying.
Therefore, the precision can be an indicator of potential interest for investors with a
high degree of risk aversion, which prioritizes avoiding bad investment choices; on the
other hand, the recall gives an indication of how many potentially profitable investment
opportunities are being missed, which is proportionally more costly for investors with a
higher appetite for risk. Finally, the F-Score – which is the harmonic mean of precision
and recall – gives a conservative middle-ground between the two types of error, in the
sense of yielding a high value only if both precision and recall are high, being sensible to
low values from both indicators.

In a scenario where all predictions are correct, all four metrics would exhibit a
perfect score of 1; however, in a realistic mixed scenario between misclassifications from
both classes (i.e., both uptrends predicted as price drops and downtrends predicted as
price rises), the traditionally more used accuracy rate can be misleading, especially if the
predictions are heavily unbalanced (concentrated in one of the two classes). In those cases,
observing also the precision and the recall can reveal more details about the real quality
of the predictions, as well as providing a quick overview about the model’s propensity to
tend itself to Type I or Type II Errors. Finally, the F-Score provides a practical way to
see the average consistency of the model to both error types, which in this application
would represent bad resource allocations, both when buying an overly expansive asset
and when selling a holding asset for a price too small.
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5.5 Results and discussion

5.5.1 Feature selection of technical analysis indicators

Concerning the “factor zoo” of technical analysis indicators described in tables 23
and 24, the first step was to apply feature selection methods detailed in section 5.3.3
(SFFS, TS, and LASSO) for the first set of training-testing periods (using data between
2008 and 2010). In a scenario where all technical analysis indicators are equally relevant
in terms of predictive power, one could expect that, on average, all columns were picked a
similar number of times, such that, conversely, a non-uniform distribution on the incidence
of specific indicators being more frequently chosen can be an indication of importance.
In this sense, the number of time that each indicator – from both Literature researches
and services used by investors to operate in the Markets – was picked by any of the three
feature selection methods was aggregated across all seven analyzed financial markets, and
the distribution of times chosen and its histogram are displayed, respectively, in table 25
and figure 13.

Technical Analysis indicators Number of
times chosen

DPO 21
HULL, MFM 16
ADO, APO, BIAS, DEMA, VOLAT 15
MOM, NVI, RVI, VOLR 14
ADX, BB_BW, BWW, DMI, DSS, FORCE, MQO_BETA 13
ADL, ATRP, DIU, MASS, MQO_STD, NATR, ULTOSC 12
AVOL, BRATIO, CCI, CHOSC, CVOL, EMV, HPR, PSK, PSY,
REX, RMF, ROC, STOCH_D, VAMA, VMOM

11

AR_NEG, AR_POS, CHOPPINESS, CMO, MQO_ALPHA,
MQO_PRED, PVOH, RSI, VARR, VOLUME, VOOSC

10

ARATIO, CLOSE, COPP, DID, KAMA, KST, LPR, MACDH,
MIDPOINT, MPP, OBV, OSCP, PVI, PVOI, STOCH_K

9

AD, ATR, CMF, DS1, NVOI, PERC_B, PVT, TP, TSI 8
AR_OSC, DISP, EMA, FR2, KC_L, KC_M, MAE_UP, PPOH,
SS1, STOCH_D_SLOW, VPT

7

AB_DOWN, BB_LOW, DONCHIAN, FS1, FS2, KC_U,
MAE_LOW, MFI, PC_DOWN, SAR, TRIX, WILL_R

6

BB_UP, CHAND_SHORT, DR1, FR1, MIDPRICE, OPEN, PVO,
SR1, SR2, SS2, TRIMA, VWAP

5

AB_UP, CHAND_LONG, MACD, PD1, PPO, ULCER 4
MAXX, MINN, TEMA 3
PC_UP, SMA, WWS 2
WMA 1

Table 25 – Distribution of the number of times that each technical analysis indicator
(Literature + Market) was chosen by the feature selection methods throughout the seven
markets
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Figure 13 – Histogram of the number of times that each technical analysis indicator
(Literature + Market) was chosen by the feature selection methods throughout the seven
markets. The dashed vertical line indicates the average value considering all indicators.

As seen in table 25, the empirical distribution presented a fairly assymetrical
behavior, with indicators like DPO (Detrended Price Oscillator), HULL (Hull Moving
Average) and MFM (Money Flow Multiplier) being chosen 16 times or more, while indi-
cators widely used in scientific researches like SMA (Simple Moving Average) and WMA
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(Weighted Moving Average) were picked in a very small number of occasions. Analo-
gously, figure 13 shows that out of the 68 technical analysis indicators that were chosen
more times than the average of all 125 columns in tables 23 and 24, 38 belong to the
“market side”, whilst only 30 were already being considered by academic papers. Given
that many technical analysis indicators bear similar ways of calculation, formulae that
combined more sources of information seemed to have been prioritized over “simpler”
indicators – for instance, the Hull Moving Average is a combination of Weighted Moving
Averages, and the feature selection methods, by identifying this combination as infor-
mative, probably interpreted the simpler WMA as a redundant source of information.
Similar results were found using only the indicators from table 23, as shown below in
table 26 and figure 14.

Technical Analysis indicators Number of
times chosen

ADO 16
BIAS, DIU, MACD, VOLR, VOLUME 14
CCI, DID, LPR, NVI, STOCH_K, WILL_R 13
REX, VARR 12
ARATIO, DISP, DMI, STOCH_D 11
HPR, MPP, PPO, PSY, ROC, WMA 10
MOM, MQO_BETA, OSCP, SAR, VOLAT 9
BRATIO, MFI, OBV, PVI 8
MAE_LOW 7
RSI, STOCH_D_SLOW, VAMA, VMOM 6
ATR, BB_UP, CLOSE, SMA 5
BB_LOW, KC_L, MAE_UP, MAXX, MINN 4
EMA, OPEN 3
KC_U, TRIMA 2

Table 26 – Distribution of the number of times that each technical analysis indicator (Only
Literature) was chosen by the feature selection methods throughout the seven markets
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Figure 14 – Histogram of the number of times that each technical analysis indicator (Only
Literature) was chosen by the feature selection methods throughout the seven markets.
The dashed vertical line indicates the average value considering all indicators.

Indeed, out of the 51 technical analysis indicators used in recent scientific arti-
cles, 29 were picked more than the average, also exhibiting an assymetrical behavior in
which some columns like ADO (Accumulation/Distribution Oscillator), BIAS (Bias), DIU
(Directional Indicator Up) and MACD (Moving Average Convergence-Divergence) were
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picked a high amount of times, while “simpler” indicators like EMA (Exponential Moving
Average) and OPEN (Opening price of the day) were less picked. Just like the observed
pattern for “Literature + Market”, combinations of simpler indicators were identified as
“informative”, while the constitutes of those indicators were regarded as “redundant” –
indeed, BIAS is a combination of CLOSE (Closing price) and SMA, and MACD is a
difference of EMAs, all of those were chosen as separate features a small number of times
in comparison.
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5.5.2 Predictive performance

Technical Analysis Feature selection Hidden Dropout Accuracy Precision Recall F-Score
indicators method layers

Literature + market
(Tables 23 and 24)

None

3 0 0.6524764 0.6573566 0.7035890 0.6796875
0.3 0.6449702 0.6686443 0.6393739 0.6536816

5 0 0.5076644 0.5327298 0.4924761 0.5118127
0.3 0.6224303 0.6233794 0.7061238 0.6621767

7 0 0.6515065 0.6549773 0.7078941 0.6804084
0.3 0.6486179 0.6598852 0.6799308 0.6697580

SFFS

3 0 0.5174057 0.5258766 0.8037740 0.6357850
0.3 0.5119658 0.5262834 0.6880180 0.5963799

5 0 0.6519704 0.6663876 0.6726080 0.6694834
0.3 0.6496510 0.6562239 0.6961455 0.6755955

7 0 0.5173635 0.5284836 0.7330812 0.6141918
0.3 0.6361777 0.6360414 0.7147340 0.6730955

TS

3 0 0.6514854 0.6757145 0.6440412 0.6594978
0.3 0.6505366 0.6707498 0.6543414 0.6624440

5 0 0.5150020 0.5263863 0.7432606 0.6163008
0.3 0.5126616 0.5252839 0.7276495 0.6101243

7 0 0.6460455 0.6692685 0.6416673 0.6551774
0.3 0.6523078 0.6562663 0.7066468 0.6805254

LASSO

3 0 0.6424821 0.6491427 0.6915587 0.6696797
0.3 0.5061252 0.5232283 0.6484670 0.5791545

5 0 0.6459612 0.6574620 0.6772753 0.6672216
0.3 0.6487655 0.6399399 0.7540034 0.6923049

7 0 0.5113965 0.5260547 0.6827875 0.5942605
0.3 0.5149177 0.5264787 0.7391969 0.6149623

Literature
(Table 23)

None

3 0 0.6508529 0.6647337 0.6733725 0.6690252
0.3 0.6525819 0.6646358 0.6803331 0.6723929

5 0 0.6163156 0.6251363 0.6690271 0.6463374
0.3 0.5185443 0.5401176 0.5471152 0.5435938

7 0 0.6490607 0.6648727 0.6660497 0.6654607
0.3 0.6536572 0.6719018 0.6627102 0.6672743

SFFS

3 0 0.5164780 0.5266530 0.7640219 0.6235101
0.3 0.5160141 0.5274044 0.7356160 0.6143481

5 0 0.6460877 0.6491994 0.7063249 0.6765584
0.3 0.6457081 0.6352064 0.7609238 0.6924049

7 0 0.5109537 0.5306907 0.5774523 0.5530849
0.3 0.4945495 0.5267014 0.3500040 0.4205463

TS

3 0 0.6480064 0.6601885 0.6765511 0.6682696
0.3 0.6481751 0.6404305 0.7493764 0.6906333

5 0 0.5127248 0.5261047 0.7070894 0.6033163
0.3 0.5063361 0.5266191 0.5735093 0.5490649

7 0 0.6487022 0.6655754 0.6625493 0.6640589
0.3 0.6499251 0.6506592 0.7168665 0.6821602

LASSO

3 0 0.6072701 0.5951537 0.7836566 0.6765196
0.3 0.4759525 0.5240475 1.0000000 0.6877049

5 0 0.6489763 0.6731808 0.6417076 0.6570675
0.3 0.6514644 0.6774084 0.6394142 0.6578631

7 0 0.5159508 0.5247721 0.8084413 0.6364284
0.3 0.5133363 0.5280423 0.6716424 0.5912480

Table 27 – Out-of-sample prediction results for assets of S&P 100 Index



Chapter 5. Does all learning lead to the efficiency? Deep neural networks, feature selection and
technical analysis indicators in stock price direction forecasting 146

Technical Analysis Feature selection Hidden Dropout Accuracy Precision Recall F-Score
indicators method layers

Literature + market
(Tables 23 and 24)

None

3 0 0.6162575 0.6066809 0.5946578 0.6006092
0.3 0.6315475 0.6349206 0.5662235 0.5986076

5 0 0.5077346 0.4928381 0.4997538 0.4962718
0.3 0.5120946 0.4979596 0.6758986 0.5734426

7 0 0.6258138 0.6238178 0.5764402 0.5991939
0.3 0.6330407 0.6502732 0.5273264 0.5823817

SFFS

3 0 0.5050469 0.4905748 0.5221566 0.5058732
0.3 0.5068984 0.4931436 0.5843181 0.5348732

5 0 0.6388939 0.6357815 0.5988429 0.6167596
0.3 0.6295765 0.6551001 0.4996307 0.5668994

7 0 0.5109001 0.4915166 0.2317824 0.3150146
0.3 0.5147823 0.0000000 0.0000000 0.0000000

TS

3 0 0.6364451 0.6401927 0.5725012 0.6044577
0.3 0.6305322 0.6763100 0.4575332 0.5458150

5 0 0.5163352 0.5012938 0.6200148 0.5543694
0.3 0.5131697 0.4983803 0.5113245 0.5047694

7 0 0.6195425 0.6062258 0.6160758 0.6111111
0.3 0.6365048 0.6395126 0.5749631 0.6055224

LASSO

3 0 0.5141253 0.4992046 0.4249138 0.4590731
0.3 0.5147823 0.0000000 0.0000000 0.0000000

5 0 0.6233053 0.6112131 0.6145987 0.6129012
0.3 0.6362659 0.6570414 0.5237568 0.5828767

7 0 0.5051663 0.4936167 0.7662482 0.6004340
0.3 0.5096458 0.4965688 0.7660020 0.6025368

Literature
(Table 23)

None

3 0 0.6371618 0.6164866 0.6674052 0.6409362
0.3 0.6342949 0.6404605 0.5615460 0.5984128

5 0 0.5144837 0.4998095 0.8072378 0.6173688
0.3 0.5147823 0.0000000 0.0000000 0.0000000

7 0 0.6275458 0.6184739 0.6065977 0.6124783
0.3 0.6334588 0.6667226 0.4890448 0.5642264

SFFS

3 0 0.5164546 0.5023380 0.3702610 0.4263039
0.3 0.5071373 0.4953502 0.8392418 0.6229898

5 0 0.6132115 0.6061582 0.5791482 0.5923455
0.3 0.5147823 0.0000000 0.0000000 0.0000000

7 0 0.5152004 0.5004026 0.5354505 0.5173337
0.3 0.5147823 0.0000000 0.0000000 0.0000000

TS

3 0 0.6158992 0.6073557 0.5894879 0.5982885
0.3 0.5147823 0.0000000 0.0000000 0.0000000

5 0 0.5074359 0.4946180 0.6957164 0.5781801
0.3 0.5147823 0.0000000 0.0000000 0.0000000

7 0 0.6382966 0.6187414 0.6632201 0.6402091
0.3 0.6233053 0.6525097 0.4784589 0.5520915

LASSO

3 0 0.5198590 0.5040075 0.6579271 0.5707726
0.3 0.5147823 0.0000000 0.0000000 0.0000000

5 0 0.6312489 0.6178675 0.6291236 0.6234447
0.3 0.6295765 0.6605949 0.4865830 0.5603913

7 0 0.5144239 0.4995264 0.3894633 0.4376816
0.3 0.5147823 0.0000000 0.0000000 0.0000000

Table 28 – Out-of-sample prediction results for assets of FTSE 100 Index
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Technical Analysis Feature selection Hidden Dropout Accuracy Precision Recall F-Score
indicators method layers

Literature + market
(Tables 23 and 24)

None

3 0 0.6159981 0.6602177 0.5153374 0.5788497
0.3 0.6350894 0.6575272 0.5998112 0.6273445

5 0 0.5122040 0.5208290 0.5929684 0.5545625
0.3 0.5173997 0.5220854 0.6805097 0.5908625

7 0 0.6110440 0.6303402 0.5814063 0.6048852
0.3 0.6381102 0.6700410 0.5778669 0.6205499

SFFS

3 0 0.5019333 0.5217554 0.3282209 0.4029548
0.3 0.5111165 0.5154540 0.7555451 0.6128230

5 0 0.6448768 0.6659852 0.6149127 0.6394307
0.3 0.6398018 0.6839333 0.5514394 0.6105813

7 0 0.5141373 0.5198174 0.6715432 0.5860187
0.3 0.5084582 0.5144361 0.7147239 0.5982619

TS

3 0 0.6406477 0.6720196 0.5825861 0.6241153
0.3 0.6349686 0.6880989 0.5252478 0.5957447

5 0 0.5154664 0.5219653 0.6392166 0.5746712
0.3 0.5138956 0.5171533 0.7647475 0.6170395

7 0 0.6050024 0.6250968 0.5712600 0.5969671
0.3 0.6214355 0.6896670 0.4740444 0.5618795

LASSO

3 0 0.5196955 0.5276435 0.5922605 0.5580878
0.3 0.5024166 0.5202977 0.3629070 0.4275785

5 0 0.6220396 0.6345128 0.6177442 0.6260163
0.3 0.6224021 0.6873107 0.4818311 0.5665141

7 0 0.5151039 0.5182660 0.7531855 0.6140233
0.3 0.5119623 0.5155785 0.7770175 0.6198588

Literature
(Table 23)

None

3 0 0.6449976 0.6488777 0.6684757 0.6585309
0.3 0.6367811 0.6932246 0.5214724 0.5952060

5 0 0.5039874 0.5208008 0.3928740 0.4478816
0.3 0.5070082 0.5187293 0.5162813 0.5175024

7 0 0.6377477 0.6458824 0.6477112 0.6467955
0.3 0.6428226 0.6926082 0.5438886 0.6093048

SFFS

3 0 0.5108748 0.5186934 0.6219915 0.5656652
0.3 0.5105123 0.5148814 0.7633318 0.6149606

5 0 0.6071774 0.6521739 0.4990562 0.5654324
0.3 0.4879169 0.0000000 0.0000000 0.0000000

7 0 0.5159497 0.5169789 0.8334120 0.6381210
0.3 0.5068874 0.5165997 0.5764512 0.5448868

TS

3 0 0.6152731 0.6502281 0.5382256 0.5889491
0.3 0.4879169 0.0000000 0.0000000 0.0000000

5 0 0.5152247 0.5173579 0.7947145 0.6267213
0.3 0.4879169 0.0000000 0.0000000 0.0000000

7 0 0.6414936 0.6324234 0.7161397 0.6716831
0.3 0.4879169 0.0000000 0.0000000 0.0000000

LASSO

3 0 0.5172789 0.5204925 0.7281737 0.6070621
0.3 0.4879169 0.0000000 0.0000000 0.0000000

5 0 0.6384727 0.6559059 0.6184521 0.6366286
0.3 0.4879169 0.0000000 0.0000000 0.0000000

7 0 0.4879169 0.0000000 0.0000000 0.0000000
0.3 0.4879169 0.0000000 0.0000000 0.0000000

Table 29 – Out-of-sample prediction results for assets of CAC 40 Index
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Technical Analysis Feature selection Hidden Dropout Accuracy Precision Recall F-Score
indicators method layers

Literature + market
(Tables 23 and 24)

None

3 0 0.5005141 0.5314402 0.5070150 0.5189403
0.3 0.5318766 0.5351831 0.9051766 0.6726586

5 0 0.5349614 0.5347896 0.9593614 0.6867532
0.3 0.5326478 0.5331205 0.9695210 0.6879506

7 0 0.4969152 0.5426357 0.3386551 0.4170390
0.3 0.5269923 0.5334907 0.8746976 0.6627566

SFFS

3 0 0.5254499 0.5361465 0.7929366 0.6397346
0.3 0.5339332 0.5348327 0.9433962 0.6826536

5 0 0.5311054 0.5576649 0.5684567 0.5630091
0.3 0.5354756 0.5378567 0.8935656 0.6715143

7 0 0.4871465 0.5286169 0.3217223 0.4000000
0.3 0.4925450 0.5275311 0.4310595 0.4744409

TS

3 0 0.5156812 0.5419532 0.5718433 0.5564972
0.3 0.5365039 0.5369955 0.9269473 0.6800355

5 0 0.5295630 0.5315411 0.9661345 0.6857830
0.3 0.5336761 0.5360502 0.9100145 0.6746772

7 0 0.5275064 0.5332752 0.8877600 0.6663036
0.3 0.5385604 0.5393291 0.9022738 0.6751131

LASSO

3 0 0.5329049 0.5328774 0.9801645 0.6904072
0.3 0.5341902 0.5336323 0.9787131 0.6906794

5 0 0.5251928 0.5369375 0.7735849 0.6338949
0.3 0.5264781 0.5341012 0.8524432 0.6567275

7 0 0.5336761 0.5355038 0.9230769 0.6777975
0.3 0.5359897 0.5356172 0.9530723 0.6858139

Literature
(Table 23)

None

3 0 0.5380463 0.5736900 0.5084664 0.5391126
0.3 0.5385604 0.5393519 0.9017900 0.6749955

5 0 0.5290488 0.5330706 0.9163038 0.6740214
0.3 0.4922879 0.5260181 0.4499274 0.4850065

7 0 0.5311054 0.5347639 0.9042090 0.6720604
0.3 0.5388175 0.5388778 0.9153362 0.6783793

SFFS

3 0 0.5218509 0.5299566 0.8858249 0.6631655
0.3 0.5331620 0.5423272 0.7779390 0.6391097

5 0 0.5287918 0.5603715 0.5253991 0.5423221
0.3 0.5413882 0.5395804 0.9332366 0.6838001

7 0 0.5326478 0.5332089 0.9671021 0.6874140
0.3 0.5313625 0.5313625 1.0000000 0.6939735

TS

3 0 0.5262211 0.5335731 0.8611514 0.6588932
0.3 0.5267352 0.5352684 0.8297049 0.6507304

5 0 0.5341902 0.5346750 0.9511369 0.6845404
0.3 0.5313625 0.5313625 1.0000000 0.6939735

7 0 0.5352185 0.5358626 0.9361393 0.6815780
0.3 0.5313625 0.5313625 1.0000000 0.6939735

LASSO

3 0 0.5329049 0.5355518 0.9109821 0.6745477
0.3 0.5313625 0.5313625 1.0000000 0.6939735

5 0 0.5357326 0.5359405 0.9414611 0.6830467
0.3 0.5313625 0.5313625 1.0000000 0.6939735

7 0 0.5262211 0.5320917 0.8984035 0.6683462
0.3 0.5313625 0.5313625 1.0000000 0.6939735

Table 30 – Out-of-sample prediction results for assets of DAX-30 Index
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Technical Analysis Feature selection Hidden Dropout Accuracy Precision Recall F-Score
indicators method layers

Literature + market
(Tables 23 and 24)

None

3 0 0.6383089 0.6300209 0.5741144 0.6007699
0.3 0.6301287 0.6151356 0.5869210 0.6006972

5 0 0.4898609 0.4779222 0.8247956 0.6051781
0.3 0.5171137 0.4922451 0.5938238 0.5382842

7 0 0.6343049 0.6009793 0.6800182 0.6380603
0.3 0.6288371 0.6075448 0.6128974 0.6102093

SFFS

3 0 0.5025186 0.4781142 0.5406903 0.5074805
0.3 0.5126362 0.4855894 0.4743869 0.4799228

5 0 0.6374909 0.6140166 0.6334242 0.6235694
0.3 0.6377492 0.6191700 0.6125341 0.6158342

7 0 0.4921428 0.4778641 0.7705722 0.5899040
0.3 0.5833297 0.5606447 0.5592189 0.5599309

TS

3 0 0.6416240 0.6242368 0.6128974 0.6185151
0.3 0.6365006 0.6348923 0.5486830 0.5886480

5 0 0.4956301 0.4783010 0.7057221 0.5701706
0.3 0.5140569 0.4873412 0.4842870 0.4858093

7 0 0.6273303 0.6047526 0.6171662 0.6108963
0.3 0.6334008 0.6052476 0.6515895 0.6275642

LASSO

3 0 0.5044130 0.4778847 0.4916440 0.4846667
0.3 0.4877083 0.4767217 0.8267938 0.6047500

5 0 0.6288802 0.6062222 0.6194369 0.6127583
0.3 0.6358548 0.6103234 0.6411444 0.6253544

7 0 0.5045421 0.4791841 0.5206176 0.4990423
0.3 0.5102252 0.4799913 0.3987284 0.4356023

Literature
(Table 23)

None

3 0 0.6332716 0.6050059 0.6520436 0.6276447
0.3 0.6413226 0.6268586 0.6011807 0.6137512

5 0 0.4760839 0.4741583 0.9657584 0.6360401
0.3 0.5259827 0.0000000 0.0000000 0.0000000

7 0 0.6340466 0.6029026 0.6678474 0.6337154
0.3 0.6410643 0.6306579 0.5859219 0.6074674

SFFS

3 0 0.5091058 0.4835488 0.5232516 0.5026173
0.3 0.4930469 0.4764861 0.7039964 0.5683176

5 0 0.6247901 0.6213387 0.5336966 0.5741926
0.3 0.6333577 0.6000803 0.6791099 0.6371538

7 0 0.5118181 0.4866010 0.5425976 0.5130760
0.3 0.5259827 0.0000000 0.0000000 0.0000000

TS

3 0 0.6223361 0.6015611 0.6019982 0.6017796
0.3 0.5259827 0.0000000 0.0000000 0.0000000

5 0 0.5051449 0.4832919 0.6357856 0.5491488
0.3 0.5259827 0.0000000 0.0000000 0.0000000

7 0 0.6392130 0.6233815 0.6034514 0.6132546
0.3 0.6313342 0.5936042 0.7047230 0.6444085

LASSO

3 0 0.5017006 0.4783709 0.5664850 0.5187126
0.3 0.5259827 0.0000000 0.0000000 0.0000000

5 0 0.6370603 0.6432697 0.5260672 0.5787948
0.3 0.6330133 0.5936699 0.7155313 0.6489292

7 0 0.5139278 0.4845815 0.3996367 0.4380289
0.3 0.5259827 0.0000000 0.0000000 0.0000000

Table 31 – Out-of-sample prediction results for top 50 assets of NIKKEI 225 Index
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Technical Analysis Feature selection Hidden Dropout Accuracy Precision Recall F-Score
indicators method layers

Literature + market
(Tables 23 and 24)

None

3 0 0.6277843 0.6695116 0.4116018 0.5097933
0.3 0.6315537 0.6120755 0.5910217 0.6013644

5 0 0.5275170 0.4954357 0.2610407 0.3419244
0.3 0.5153862 0.4845361 0.4795219 0.4820160

7 0 0.6331300 0.6710526 0.4311325 0.5249800
0.3 0.6275786 0.6094493 0.5790701 0.5938714

SFFS

3 0 0.5287506 0.4975482 0.2218336 0.3068548
0.3 0.5290247 0.4988098 0.3359569 0.4014980

5 0 0.6434789 0.6582713 0.5028422 0.5701537
0.3 0.6412172 0.6328866 0.5643492 0.5966561

7 0 0.5301898 0.5007448 0.2939805 0.3704656
0.3 0.5377973 0.5118541 0.3681679 0.4282808

TS

3 0 0.6384072 0.6467864 0.5089637 0.5696574
0.3 0.6331985 0.6179828 0.5760093 0.5962583

5 0 0.5348503 0.5161855 0.1719866 0.2580081
0.3 0.5307381 0.5025473 0.2012826 0.2874389

7 0 0.6164759 0.5874223 0.6194432 0.6030079
0.3 0.6303201 0.6701461 0.4210756 0.5171858

LASSO

3 0 0.5192927 0.4844354 0.3470340 0.4043818
0.3 0.5298472 0.5001391 0.2620609 0.3439174

5 0 0.6247687 0.5889145 0.6689987 0.6264074
0.3 0.6349119 0.6715116 0.4376913 0.5299568

7 0 0.5264889 0.4922027 0.2208133 0.3048596
0.3 0.5348503 0.5131020 0.2111937 0.2992256

Literature
(Table 23)

None

3 0 0.6377904 0.6589992 0.4760239 0.5527630
0.3 0.6438215 0.6523252 0.5193121 0.5782683

5 0 0.5336851 0.5127860 0.1665938 0.2514851
0.3 0.5332054 0.5068644 0.2690570 0.3515186

7 0 0.6345693 0.6267617 0.5509401 0.5864102
0.3 0.6294976 0.6629339 0.4314240 0.5226912

SFFS

3 0 0.5319032 0.5053100 0.2149832 0.3016360
0.3 0.5334795 0.5109489 0.1836467 0.2701833

5 0 0.6227126 0.6177083 0.5185833 0.5638222
0.3 0.6318278 0.6787515 0.4120391 0.5127880

7 0 0.5205264 0.4870017 0.3686052 0.4196117
0.3 0.5336166 0.5069307 0.2984988 0.3757453

TS

3 0 0.6239463 0.6152685 0.5344702 0.5720303
0.3 0.6445754 0.6550065 0.5158140 0.5771363

5 0 0.5254609 0.4917733 0.2744498 0.3522919
0.3 0.5339593 0.5072602 0.3105961 0.3852830

7 0 0.6397094 0.6143427 0.6280426 0.6211171
0.3 0.6421081 0.6560655 0.5021134 0.5688573

LASSO

3 0 0.5347817 0.5115763 0.2350969 0.3221490
0.3 0.5297786 0.0000000 0.0000000 0.0000000

5 0 0.6126379 0.5707100 0.7111208 0.6332252
0.3 0.6361456 0.6584967 0.4699023 0.5484392

7 0 0.5303954 0.5014254 0.2307244 0.3160311
0.3 0.5297786 0.0000000 0.0000000 0.0000000

Table 32 – Out-of-sample prediction results for top 50 assets of SSE 180 Index
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Technical Analysis Feature selection Hidden Dropout Accuracy Precision Recall F-Score
indicators method layers

Literature + market
(Tables 23 and 24)

None

3 0 0.6286628 0.6151003 0.6408627 0.6277173
0.3 0.6420676 0.6247080 0.6694589 0.6463097

5 0 0.5035511 0.4917489 0.4848835 0.4882920
0.3 0.5150275 0.5063420 0.2882727 0.3673845

7 0 0.6327548 0.6170329 0.6543424 0.6351402
0.3 0.6391515 0.6126515 0.7105719 0.6579886

SFFS

3 0 0.5097597 0.4973416 0.3332370 0.3990775
0.3 0.5124877 0.5013039 0.3886963 0.4378762

5 0 0.6335074 0.6208535 0.6415367 0.6310257
0.3 0.6415032 0.6264641 0.6591566 0.6423947

7 0 0.5146042 0.5151376 0.1081263 0.1787363
0.3 0.5155919 0.5102329 0.2088388 0.2963722

TS

3 0 0.6399981 0.6254592 0.6556904 0.6402181
0.3 0.6443723 0.6252105 0.6790872 0.6510361

5 0 0.5128169 0.5024146 0.2804737 0.3599852
0.3 0.5114999 0.0000000 0.0000000 0.0000000

7 0 0.6303090 0.6140303 0.6548238 0.6337713
0.3 0.6421147 0.6198533 0.6914115 0.6536799

LASSO

3 0 0.5099948 0.4977578 0.3419988 0.4054332
0.3 0.5114999 0.0000000 0.0000000 0.0000000

5 0 0.6311086 0.6040763 0.7105719 0.6530107
0.3 0.6429143 0.6236064 0.6786058 0.6499447

7 0 0.5103711 0.4980347 0.2927980 0.3687849
0.3 0.5109826 0.4993266 0.3926439 0.4396055

Literature
(Table 23)

None

3 0 0.6313908 0.6147475 0.6574235 0.6353697
0.3 0.6387752 0.6358707 0.6096669 0.6224931

5 0 0.5090071 0.4966587 0.3792605 0.4300923
0.3 0.5114999 0.0000000 0.0000000 0.0000000

7 0 0.6426791 0.6352439 0.6306567 0.6329420
0.3 0.6434787 0.6242253 0.6787984 0.6503690

SFFS

3 0 0.5105592 0.4967469 0.1470248 0.2268945
0.3 0.5114999 0.0000000 0.0000000 0.0000000

5 0 0.6264992 0.6107036 0.6493356 0.6294274
0.3 0.6424439 0.6212121 0.6868862 0.6524005

7 0 0.5091012 0.4973368 0.4585018 0.4771304
0.3 0.5114999 0.0000000 0.0000000 0.0000000

TS

3 0 0.6331781 0.6153160 0.6645484 0.6389853
0.3 0.6336485 0.5966218 0.7720008 0.6730745

5 0 0.5023752 0.4911140 0.5161756 0.5033330
0.3 0.5114999 0.0000000 0.0000000 0.0000000

7 0 0.6316731 0.6067697 0.6990179 0.6496354
0.3 0.6359061 0.6004863 0.7609282 0.6712532

LASSO

3 0 0.5154979 0.5083975 0.2477373 0.3331391
0.3 0.5114999 0.0000000 0.0000000 0.0000000

5 0 0.6421617 0.6210774 0.6860196 0.6519352
0.3 0.6430083 0.6211438 0.6901598 0.6538356

7 0 0.5105122 0.4985938 0.3584633 0.4170728
0.3 0.5114999 0.0000000 0.0000000 0.0000000

Table 33 – Out-of-sample prediction results for assets of Bovespa Index

As shown in tables 27 to 33, the predictive performance for all seven markets
and all 48 combinations of hyperparameters in each market (Literature + Market/Only
literature, technical analysis indicators chosen by feature selection, number of hidden
layers and dropout rate), were basically around two key values: the accuracy of all cases
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were concentrated around 50% and 65%. The first value is consistent with the scenario
postulated by the Efficient Markets Hypothesis in its weak form, which implies that no
strategy can sistematically beat the Random Walk simply using past data; indeed, a fairly
large proportion of the results estimated in this study converged to this state, regardless of
the deepness of the neural networks, the filtering of potentially more informative technical
analysis indicators and different settings of regularization. In this sense, the emergence
of accuracy rates close to 50% is a sign that financial markets do tend indeed towards the
equilibrium in which on average there’s no significant abnormal gains over the market. In
special, all results for the German market (table 30) gravitated around 50% of accuracy

However, on the other hand, parallel to the theoretically intuitive accuracy of 50%,
many cases converged to a kind of “strange attractor” of 65% of accuracy, which is, in
turn, a measure that argues favorably towards the existence of profit margins above the
market level. For all cases in which the accuracy rate did not lie at the surroundings of
50%, they converges systematically to 65%; computational experiments made using more
training epochs showed that those cases do indeed reach a species of “stationary state” in
65%. This pattern appeared in all analyzed markets (except for the German one) and for
both sources of information (technical analysis indicators from Literature + Market or
only from Literature). Those two scenarios were observed for all feature selection methods
(including the “None” case, in which all columns were used for the training procedures).

Moreover, the emergence of the 65% accuracy value did not seem to have a clearly
distinguishable pattern amongst its occurrences: regarding the number of hidden layers in
the networks, it can be seen that a 65% accuracy tend to jointly appear for the cases with
3 and 7 hidden layers, or only for the case with 5 hidden layers, with few exceptions for the
case with 3 hidden layers but without dropout. This implies that the empirical behavior
of cases with 3 and 7 hidden layers bear similarities, but potentially large differences in
comparison to the case with 5 hidden layers. This finding can be further analyzed in
other financial applications of deep neural networks to better understand the potentially
chaotic behavior of the number of hidden layers in this knowledge field.

The effect of the dropout regularization in the neural networks also was pretty
heterogeneous: in comparison to the case without dropout, turning off 30% of the neurons
at each training epoch seemed to make a small effect (sometimes positive and sometimes
negative) in the out-of-sample accuracy rates, while in some cases the performance metrics
had a notable worsening with the presence of dropout, especially for the case with 3 hidden
layers. In this sense, the effectiveness of dropout as a regularization tool appeared more
evident for deeper networks, being potentially useful to control the complexity of the
models when the number of hidden layers grow; on the other hand, in shallower network
structures this mechanism can actually hinder the classification quality and lead to sub-
optimal financial decision making.
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Concerning the other classification metrics, on average they were close to the
accuracy rate, as the predictions were approximately balanced for the majority of hyper-
parameter combinations. Throughout the 336 combinations across the seven markets, in
40 the predictions yielded only one class – 33 cases that predicted that the prices would
only drop, and 7 cases predicting that the prices would only rise. In a “only drop” case,
the precision and recall would be zero, as no predictions were made for the “positive
class”; similarly, in a “only rise” case, the recall would be equal to one, as a false negative
would not exist since no predictions were made towards the “negative class”.

5.5.3 Profitability of strategies and transaction costs

Besides the classification metrics discussed in the previous sections, we evaluated
the profitability of the strategies based on the predictions made by the deep learning
models and the maximum value for the transaction cost in the respective market for the
machine learning algorithms to be able to break-even (𝑇𝐶0) and to beat the Buy-and-Hold
strategy (𝑇𝐶𝐵𝐻). The profitability of the Buy-and-Hold was computed as the average
profitability of buying all assets of the respective market at the first day of the out-of-
sample testing period and selling them at the last day of this period – which is equivalent
to the gains of the uniform ( 1

𝑁
) portfolio during this period. The results are displayed in

tables 34 to 40.
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Technical Analysis Feature selection Hidden Dropout Strategy Number of 𝑇𝐶0 𝑇𝐶𝐵𝐻

indicators method layers profitability transactions

Literature + market
(Tables 23 and 24)

None

3 0 76.3370 91 0.7891382 0.4918951
0.3 84.7517 96 0.8742593 0.5695643

5 0 -26.2018 125 -0.4878055 -0.9810900
0.3 0.2977 213 -0.1306670 -0.3258851

7 0 73.7097 89 0.8543226 0.5109819
0.3 84.1676 94 0.8464601 0.5594070

SFFS

3 0 -33.8689 60 -0.7833762 -1.1259025
0.3 -93.9103 127 -0.7350088 -0.9510824

5 0 71.9673 98 0.7003559 0.4224501
0.3 73.8737 87 0.7715379 0.4649007

7 0 -91.4242 72 -1.3960984 -1.6452585
0.3 17.7903 210 -0.0991440 -0.3066543

TS

3 0 78.5373 96 0.7697605 0.4994064
0.3 80.4771 89 0.9240393 0.6027553

5 0 -86.9147 73 -1.3871419 -1.7970031
0.3 -42.7049 105 -0.4539531 -0.6951643

7 0 83.7943 99 0.8832354 0.5832598
0.3 77.6707 94 0.8058476 0.5031705

LASSO

3 0 61.9372 219 0.2759900 0.1193453
0.3 -53.5714 91 -0.6422659 -1.0093393

5 0 79.2360 94 0.8422404 0.5369936
0.3 65.0487 85 0.8121663 0.4136248

7 0 -43.1031 132 -0.3601209 -0.5558035
0.3 -31.4264 66 -0.6612784 -1.0125791

Literature
(Table 23)

None

3 0 76.9507 92 0.7869704 0.5008944
0.3 72.1548 93 0.7377142 0.4497348

5 0 -6.3772 223 -0.0623490 -0.2078810
0.3 -18.8899 123 -0.1465315 -0.4879969

7 0 77.3609 90 0.8154493 0.5065409
0.3 75.7934 93 0.7555012 0.4781839

SFFS

3 0 -86.7935 90 -1.5201857 -2.0062484
0.3 -87.8024 71 -1.3302887 -1.6687141

5 0 76.9180 94 0.8084604 0.5005134
0.3 60.8778 91 0.6999339 0.3442414

7 0 -35.1803 155 -0.5275478 -1.1137675
0.3 -1.5872 76 0.0849567 -0.6821820

TS

3 0 71.1070 89 0.7297645 0.4288793
0.3 59.3654 86 0.7342274 0.3477410

5 0 -43.1454 111 -0.4110883 -0.6155696
0.3 -26.8233 70 -0.4755861 -0.8923210

7 0 85.1358 91 0.8732660 0.5883143
0.3 58.7055 93 0.6590593 0.3095681

LASSO

3 0 -26.4434 195 -0.1963877 -0.3705473
0.3 -130.7093 1 -130.7092565 -160.3766018

5 0 79.8481 89 0.8421356 0.5438817
0.3 77.9161 93 0.7701583 0.4981121

7 0 -111.1510 89 -1.4438992 -1.7723011
0.3 -20.1832 71 -0.1628726 -0.9002705

Buy-and-Hold strategy profitability over the out-of-sample period: 31.04701

Table 34 – Trading profitability and transaction costs of machine learning algorithms for
assets of S&P 100 Index
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Technical Analysis Feature selection Hidden Dropout Strategy Number of 𝑇𝐶0 𝑇𝐶𝐵𝐻

indicators method layers profitability transactions

Literature + market
(Tables 23 and 24)

None

3 0 -1231.6579 204 -6.6718986 -2.5560575
0.3 -876.1521 197 -4.9394700 -0.7267911

5 0 -679.8966 222 -3.4837835 0.2314074
0.3 -342.2837 180 -2.1448187 2.4721083

7 0 -818.2142 198 -4.2889865 -0.4163683
0.3 -1022.4958 191 -6.1411641 -1.6068589

SFFS

3 0 -728.0858 221 -3.7490086 0.0032730
0.3 -483.8384 200 -2.6855331 1.3802731

5 0 -1001.1223 197 -5.6457115 -1.4699595
0.3 -977.1600 186 -5.9200385 -1.4305391

7 0 -872.9466 148 -5.6816792 -0.8380714
0.3 0.0000 0 0.0000000 0.0000000

TS

3 0 -905.6980 197 -4.8306573 -0.8758480
0.3 -953.5090 182 -5.9360502 -1.2925984

5 0 -795.1669 213 -4.1427479 -0.2757212
0.3 -294.7987 203 -1.7610705 2.4298399

7 0 -1010.0929 206 -5.0971707 -1.3522417
0.3 -1093.3283 198 -6.0597130 -1.9353257

LASSO

3 0 -720.3165 209 -4.0450618 -0.0097593
0.3 0.0000 0 0.0000000 0.0000000

5 0 -558.4443 202 -2.8833892 0.9546062
0.3 -1102.4661 190 -6.3286272 -2.0084098

7 0 -1068.2750 158 -8.1302902 -2.5532919
0.3 -486.8248 152 -4.0796212 1.9143410

Literature
(Table 23)

None

3 0 -880.1103 200 -4.5685387 -0.7427110
0.3 -958.1202 194 -5.4884712 -1.2621897

5 0 -1089.2449 135 -8.6373622 -2.9405701
0.3 0.0000 0 0.0000000 0.0000000

7 0 -951.0772 205 -5.1854940 -0.9388410
0.3 -1067.3949 187 -6.1045717 -1.7920286

SFFS

3 0 -772.5879 203 -3.8355957 -0.1945503
0.3 -1114.6619 122 -10.7339345 -3.6361880

5 0 -630.8446 205 -3.5275533 0.6870135
0.3 0.0000 0 0.0000000 0.0000000

7 0 -261.1525 209 -1.4958135 2.3081992
0.3 0.0000 0 0.0000000 0.0000000

TS

3 0 -759.3180 205 -3.6857697 -0.0713111
0.3 0.0000 0 0.0000000 0.0000000

5 0 -376.9710 182 -2.2109191 2.3533864
0.3 0.0000 0 0.0000000 0.0000000

7 0 -1007.0923 198 -5.4493672 -1.4586016
0.3 -1064.7026 182 -6.7676923 -1.9861086

LASSO

3 0 -846.9454 183 -4.9279140 -0.8298481
0.3 0.0000 0 0.0000000 0.0000000

5 0 -1138.4845 203 -6.0562728 -2.0636931
0.3 -1013.1588 186 -5.8574347 -1.4905412

7 0 -274.0323 206 -1.4215544 2.5372880
0.3 0.0000 0 0.0000000 0.0000000

Buy-and-Hold strategy profitability over the out-of-sample period: −34.75736

Table 35 – Trading profitability and transaction costs of machine learning algorithms for
assets of FTSE 100 Index
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Technical Analysis Feature selection Hidden Dropout Strategy Number of 𝑇𝐶0 𝑇𝐶𝐵𝐻

indicators method layers profitability transactions

Literature + market
(Tables 23 and 24)

None

3 0 30.9116 88 0.3521103 0.2785103
0.3 19.7555 80 0.2499292 0.1836907

5 0 -17.9450 128 -0.1484100 -0.2002564
0.3 -11.6289 73 -0.2260126 -0.3462042

7 0 30.9218 101 0.2948034 0.2257045
0.3 31.4456 83 0.4129977 0.3582687

SFFS

3 0 -6.6505 93 -0.1185191 -0.2590703
0.3 -9.4849 55 -1.0847313 -0.9257653

5 0 22.9734 82 0.2824456 0.2045268
0.3 28.5655 90 0.3412015 0.2763016

7 0 -21.7477 109 -0.2165141 -0.2839465
0.3 5.6222 72 0.0772116 -0.0297049

TS

3 0 28.8666 94 0.3341805 0.2667978
0.3 26.2245 82 0.4768511 0.4215231

5 0 -11.0071 99 -0.1324484 -0.2043627
0.3 0.3697 42 -0.4944846 -0.5041867

7 0 32.5566 96 0.3535969 0.2933230
0.3 31.1308 77 0.3667134 0.3063833

LASSO

3 0 -0.8673 120 0.0043756 -0.0613975
0.3 -0.8773 72 -0.0132984 -0.1185589

5 0 24.0689 100 0.2615305 0.1867346
0.3 37.7236 78 0.4752711 0.4129187

7 0 -7.6266 63 -0.2898908 -0.3378850
0.3 -9.6566 50 -1.1598411 -1.0225893

Literature
(Table 23)

None

3 0 23.7956 84 0.2935277 0.2220890
0.3 19.3818 87 0.2240489 0.1636593

5 0 2.7511 99 0.0322629 -0.0640133
0.3 5.6516 72 0.0830590 -0.0321532

7 0 29.1989 92 0.3373511 0.2611744
0.3 31.7185 88 0.5304779 0.4733908

SFFS

3 0 -8.7979 97 -0.0866904 -0.1614548
0.3 -0.8606 40 -0.7441883 -0.7401627

5 0 23.4107 92 0.2448115 0.1647427
0.3 0.0000 0 0.0000000 0.0000000

7 0 -23.2653 75 -0.4770168 -0.5796258
0.3 -9.5067 86 -0.1387403 -0.2203134

TS

3 0 28.9731 106 0.2853326 0.2142251
0.3 0.0000 0 0.0000000 0.0000000

5 0 -9.2055 58 -0.5575514 -0.5791151
0.3 0.0000 0 0.0000000 0.0000000

7 0 20.1151 80 0.2549876 0.1755498
0.3 0.0000 0 0.0000000 0.0000000

LASSO

3 0 -4.3156 74 -0.0990696 -0.1910703
0.3 0.0000 0 0.0000000 0.0000000

5 0 27.1119 87 0.3367944 0.2611685
0.3 0.0000 0 0.0000000 0.0000000

7 0 0.0000 0 0.0000000 0.0000000
0.3 0.0000 0 0.0000000 0.0000000

Buy-and-Hold strategy profitability over the out-of-sample period: 7.426471

Table 36 – Trading profitability and transaction costs of machine learning algorithms for
assets of CAC 40 Index
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Technical Analysis Feature selection Hidden Dropout Strategy Number of 𝑇𝐶0 𝑇𝐶𝐵𝐻

indicators method layers profitability transactions

Literature + market
(Tables 23 and 24)

None

3 0 -7.0142 108 -0.0999890 0.3064287
0.3 -95.3067 30 -51.1154396 -51.0662157

5 0 -111.6834 19 -55.6554314 -56.4373914
0.3 -118.0445 15 -50.0377091 -49.1479528

7 0 -57.8716 116 -0.5213857 -0.1559433
0.3 -58.3453 28 -50.3453524 -50.3112660

SFFS

3 0 -116.7232 26 -53.7583144 -53.6025854
0.3 -116.6538 14 -57.9246314 -59.4331524

5 0 5.3684 107 0.0982206 0.5336711
0.3 -74.4657 13 -25.3718634 -31.0785939

7 0 -50.3786 119 -0.4876987 -0.1002714
0.3 -57.6454 88 -0.6801124 -0.2187701

TS

3 0 -32.4863 114 -0.2170124 0.3989707
0.3 -47.2818 28 -56.1255015 -58.3279360

5 0 -101.1019 9 -75.3873487 -80.9304147
0.3 -128.2447 15 -79.7961146 -91.0733620

7 0 -37.3058 31 -48.4516385 -48.0509990
0.3 -69.3260 28 -29.4667014 -35.9161621

LASSO

3 0 -118.7176 13 -31.7819511 -41.8065806
0.3 -117.4401 13 -50.3404434 -49.7330953

5 0 -24.7099 81 -0.0299535 0.4779868
0.3 -57.4242 22 -51.2784063 -51.4561059

7 0 -109.0390 15 -79.5897300 -90.8774624
0.3 -116.5046 11 -59.4268786 -62.0856623

Literature
(Table 23)

None

3 0 21.9347 101 0.0947670 0.4276121
0.3 -52.9348 12 -29.9100951 -37.5991318

5 0 -119.4156 42 -2.6834940 -2.8865724
0.3 -49.0859 91 -0.5618605 -0.1290446

7 0 -66.6646 29 -57.8594311 -60.1799083
0.3 -81.8274 19 -38.8543589 -45.0517977

SFFS

3 0 -124.6436 39 -45.9953938 -43.6830513
0.3 -45.0745 71 -40.0923523 -36.5127900

5 0 -12.4590 115 -0.1727223 0.1668287
0.3 -80.3769 16 -53.0410738 -55.4448798

7 0 -126.0814 18 -37.6227743 -33.7698585
0.3 -129.2861 1 -129.2861294 -91.7557131

TS

3 0 -75.2838 26 -26.9383323 -32.0525803
0.3 -71.8876 29 -50.4763194 -50.5510155

5 0 -103.2904 17 -70.8163214 -80.5473919
0.3 -129.2861 1 -129.2861294 -91.7557131

7 0 -65.2524 17 -40.2059036 -47.0944709
0.3 -129.2861 1 -129.2861294 -91.7557131

LASSO

3 0 -108.2516 35 -4.9690958 -5.7337564
0.3 -129.2861 1 -129.2861294 -91.7557131

5 0 -119.3640 27 -36.5592164 -41.9525921
0.3 -129.2861 1 -129.2861294 -91.7557131

7 0 -91.3948 43 -43.9058699 -41.1566724
0.3 -129.2861 1 -129.2861294 -91.7557131

Buy-and-Hold strategy profitability over the out-of-sample period: 13.75618

Table 37 – Trading profitability and transaction costs of machine learning algorithms for
assets of DAX-30 Index
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Technical Analysis Feature selection Hidden Dropout Strategy Number of 𝑇𝐶0 𝑇𝐶𝐵𝐻

indicators method layers profitability transactions

Literature + market
(Tables 23 and 24)

None

3 0 7803.1598 89 77.4127800 64.7076600
0.3 7920.0890 93 88.3608673 74.6872453

5 0 -5529.4543 51 -738.2236987 -904.1374660
0.3 -2406.1468 151 -19.3880018 -28.6744652

7 0 6946.7547 90 70.3862924 56.6876955
0.3 7288.4576 97 74.6892982 61.4661992

SFFS

3 0 -4673.4202 92 -82.4101343 -106.5526008
0.3 -2840.2886 138 -23.0337944 -33.5978173

5 0 7205.2919 93 69.5090016 56.9625919
0.3 7393.7619 87 84.1624914 69.9723735

7 0 -6433.7873 43 -5087.6461443 -6156.3638849
0.3 1778.6500 191 9.6339904 1.7947592

TS

3 0 7240.3170 91 70.0058116 57.5585390
0.3 8157.9939 78 94.5646009 80.0575743

5 0 -4951.7845 79 -629.9660252 -832.6242100
0.3 -2842.2710 137 -21.3855507 -30.9577642

7 0 7431.5764 92 79.4053043 65.0827782
0.3 6658.2396 90 68.4016866 54.5935461

LASSO

3 0 -2633.1845 128 -24.4690302 -36.4269438
0.3 -5750.1541 53 -320.4699880 -423.5817771

5 0 7685.6084 98 80.9512954 67.6100672
0.3 7178.1310 92 71.1044992 58.2038033

7 0 -3598.0590 134 -35.1086230 -48.4995211
0.3 -4307.3004 84 -49.9346334 -63.9898179

Literature
(Table 23)

None

3 0 6986.1535 81 91.9816215 74.8566646
0.3 7116.7184 92 69.7707914 57.0395886

5 0 -7329.1988 9 -4835.3665192 -5758.0627798
0.3 0.0000 0 0.0000000 0.0000000

7 0 7727.0345 87 83.7075398 69.7626794
0.3 7345.8764 84 72.4738603 59.9154228

SFFS

3 0 -2425.7614 128 -18.3464355 -29.3510175
0.3 -3759.1445 66 -136.4005100 -189.0367370

5 0 7066.3257 92 72.9686253 59.8742364
0.3 6722.3498 93 66.8265308 53.3423158

7 0 -3214.7343 142 -24.9785228 -35.0148337
0.3 0.0000 0 0.0000000 0.0000000

TS

3 0 6952.5557 96 69.0497759 56.3109355
0.3 0.0000 0 0.0000000 0.0000000

5 0 -4545.8384 132 -38.3434449 -48.6162344
0.3 0.0000 0 0.0000000 0.0000000

7 0 7665.0296 83 84.9334961 71.1548347
0.3 6415.0398 89 70.5765688 56.1770296

LASSO

3 0 -6435.8059 89 -107.3741112 -127.7128895
0.3 0.0000 0 0.0000000 0.0000000

5 0 8380.3421 83 94.5106991 80.9789519
0.3 5719.4074 85 60.6517800 46.9317639

7 0 633.1867 122 7.3991011 -5.8053118
0.3 0.0000 0 0.0000000 0.0000000

Buy-and-Hold strategy profitability over the out-of-sample period: 1396.319

Table 38 – Trading profitability and transaction costs of machine learning algorithms for
the top 50 assets of NIKKEI 225 Index
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Technical Analysis Feature selection Hidden Dropout Strategy Number of 𝑇𝐶0 𝑇𝐶𝐵𝐻

indicators method layers profitability transactions

Literature + market
(Tables 23 and 24)

None

3 0 19.2356 82 0.1900204 0.0866386
0.3 23.8928 106 0.2329831 0.1130022

5 0 -21.5139 65 -0.7373031 -0.7669122
0.3 -22.6591 131 -0.5747013 -0.5208803

7 0 22.2560 84 0.2135017 0.0969307
0.3 24.8313 106 0.2217887 0.1097081

SFFS

3 0 -0.9213 58 -0.1404246 -0.2672765
0.3 9.0263 100 -0.1058450 -0.1382983

5 0 23.2658 101 0.1868674 0.0908159
0.3 22.9580 91 0.2302031 0.1035160

7 0 4.1075 85 0.0357258 -0.0897997
0.3 7.7811 117 0.0648242 -0.0461792

TS

3 0 22.9278 92 0.2105049 0.1522983
0.3 24.3774 99 0.2448870 0.2033140

5 0 2.1913 57 0.0881151 -0.2479354
0.3 -1.1676 87 0.3269734 -2.7080266

7 0 25.3481 102 0.2036009 0.1042573
0.3 23.9257 86 0.2117859 0.1226671

LASSO

3 0 -17.9146 114 -0.1225102 -0.1958190
0.3 3.2801 74 0.0421035 -0.1180722

5 0 19.5945 110 0.1595301 0.0603898
0.3 20.0520 89 0.1776603 0.0747069

7 0 1.8168 74 -0.0242922 -0.1168795
0.3 3.5199 66 0.0481258 -0.1276575

Literature
(Table 23)

None

3 0 41.0052 92 0.3647555 0.2543023
0.3 24.1797 99 0.1969891 0.1000813

5 0 3.1839 66 0.0227622 -0.1108847
0.3 5.4558 84 0.0528086 -0.0788057

7 0 24.6735 96 0.2549562 0.1234270
0.3 15.8630 84 0.1565041 0.0598267

SFFS

3 0 -25.7442 94 -0.2258416 -0.3397011
0.3 -0.8207 60 0.0592871 -0.9790217

5 0 25.1208 96 0.2581941 0.1699558
0.3 22.1315 82 0.2281864 0.1447917

7 0 2.1438 118 -0.4112234 -0.3753212
0.3 -8.4498 73 -0.3854948 -1.0176167

TS

3 0 13.3439 97 0.1403865 -0.0104126
0.3 23.2204 101 0.2099201 0.0990272

5 0 -12.8620 100 -0.0965009 -0.1810188
0.3 -14.9783 82 -0.3454633 -0.6642436

7 0 21.6362 106 0.1904325 0.0784067
0.3 25.4432 101 0.1980456 0.1064507

LASSO

3 0 -15.3891 83 -0.2678970 -0.5097560
0.3 0.0000 0 0.0000000 0.0000000

5 0 25.7859 97 -0.1525371 -0.1433821
0.3 17.3476 91 0.1547676 0.0472092

7 0 -28.9513 92 -0.2296458 -0.3321763
0.3 0.0000 0 0.0000000 0.0000000

Buy-and-Hold strategy profitability over the out-of-sample period: 13.25879

Table 39 – Trading profitability and transaction costs of machine learning algorithms for
the top 50 assets of SSE 180 Index
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Technical Analysis Feature selection Hidden Dropout Strategy Number of 𝑇𝐶0 𝑇𝐶𝐵𝐻

indicators method layers profitability transactions

Literature + market
(Tables 23 and 24)

None

3 0 35.6638 95 0.3841626 0.2829234
0.3 39.0711 88 0.4365381 0.3410273

5 0 -4.8916 122 -0.2552616 -0.6701513
0.3 2.5210 83 0.0390550 -0.3591370

7 0 32.5512 86 0.3893776 0.2914716
0.3 34.9669 89 0.1855161 -0.2500637

SFFS

3 0 -2.5505 116 -0.0255353 -0.0989577
0.3 -2.6532 94 -0.0343513 -0.2762063

5 0 37.1818 86 0.4339078 0.3332228
0.3 37.4408 95 0.3885276 0.3011276

7 0 -1.2046 58 -0.0498450 -0.2126345
0.3 -0.3102 77 -0.0128684 -0.1337480

TS

3 0 37.2284 81 0.4705147 0.3657402
0.3 38.9214 89 0.4267857 0.3356638

5 0 -3.0324 110 -0.0308629 -0.1212120
0.3 0.0000 0 0.0000000 0.0000000

7 0 32.4841 86 0.3875390 0.2822118
0.3 37.9563 93 0.4033439 0.3105081

LASSO

3 0 -5.4923 108 -0.0915193 -0.2472650
0.3 0.0000 0 0.0000000 0.0000000

5 0 32.5362 84 0.3538346 0.1858880
0.3 37.1518 90 0.4047782 0.3146568

7 0 -4.4870 103 -0.0410895 -0.1209700
0.3 -0.5910 91 -0.0162708 -0.1006414

Literature
(Table 23)

None

3 0 35.7799 84 0.3985859 0.2526929
0.3 36.8370 90 0.4015542 0.3110039

5 0 2.5242 141 0.0171953 -0.0463309
0.3 0.0000 0 0.0000000 0.0000000

7 0 39.6499 82 0.4834228 0.3831606
0.3 38.0610 96 0.3865356 0.3029205

SFFS

3 0 -3.8389 76 -0.0422650 -0.1778699
0.3 0.0000 0 0.0000000 0.0000000

5 0 31.2168 89 0.3721600 0.2775215
0.3 39.3754 89 0.4322248 0.3377194

7 0 -2.5622 113 -0.0459913 -0.1641081
0.3 0.0000 0 0.0000000 0.0000000

TS

3 0 36.0714 88 0.4155866 0.3142577
0.3 31.2031 85 0.3155642 0.1067525

5 0 -8.7033 117 -0.0796327 -0.1517418
0.3 0.0000 0 0.0000000 0.0000000

7 0 30.6606 89 0.3504062 0.2434762
0.3 33.2796 89 0.3827255 0.2793077

LASSO

3 0 -1.2243 112 -0.0179711 -0.1001453
0.3 0.0000 0 0.0000000 0.0000000

5 0 38.2578 82 0.4765427 0.3721895
0.3 37.5638 93 0.3970523 0.3105506

7 0 -1.7949 128 -0.0134817 -0.0870844
0.3 0.0000 0 0.0000000 0.0000000

Buy-and-Hold strategy profitability over the out-of-sample period: 8.71314

Table 40 – Trading profitability and transaction costs of machine learning algorithms for
assets of Bovespa Index

While the predictive performance was “split” into the big cases of 50% accuracy
and 65% accuracy, the actual profitability of the machine learning bases strategies were
more homogeneous: basically the profitability oscillated between the value of the Buy-
and-Hold strategy, albeit with a big variance, and consistently negatively concentrated
– i.e.: the models did not manage to yield profits much larger than the average market
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level, while they did manage to register fairly high levels of loss, especially for the British
and the German markets. Even some cases with 65% out-of-sample accuracy ended up
with non-profitable strategies.

Especially when considering the existence of transaction costs, the profitability of
the strategies become even less desirable: in many cases a small profit is attainable using
a big number of operations, thus demanding the transaction costs 𝑇𝐶0 and 𝑇𝐶𝐵𝐻 to be
proportionally smaller for the strategy to become actually worth executing to generate
some gain. Besides, many strategies had negative profitability to start with, such that
the transaction cost would also have to be negative for those strategies to be worthwhile.
Therefore, on average, the economic gains of the strategies yielded from machine learning
techniques tested in this paper were statistically close to zero, reinforcing the implications
of the Efficient Market Hypothesis.

The profits of the strategies were especially bad for the British market, where even
the Buy-and-Hold gain was negative, possibly due to the period of relative political and
economical instability forthcoming the events of the Brexit referendum in the recent years.
For the cases in which the algorithm predicted only one class (the “only rise” and “only
drop” cases), the profitability were simply zero (in this case the investor never entered the
market, with the number of transactions equal to zero) or a single negative value (in this
case the investor only bought the asset on day one and predicted that this price would go
up all the way to the last day, in which he would still be expecting a price boost, so this
investor only operated once, which was buying the asset on the first day).

Again, the effect of the number of hidden layers is not clear; in terms of profitabil-
ity the same pattern of similarity between the cases with 3 and 7 hidden layers persist;
the results differs from the reports of Nakano, Takahashi and Takahashi (2018), in which
deeper neural networks yielded strategies with better profitability. The effect of dropout
also seems heterogeneous across different hyperparameters and markets. Concerning the
choice of candidate features, the “None” case (no feature selection method) showed fairly
good profitability when considering only technical analysis indicators from the “Literature
side”, while for the larger indicator set composed by both Literature and Market experi-
ences, the application of feature selection algorithms yielded a slight overall improvement
for some cases.

5.6 Conclusion
This paper analyzed the performance of deep neural network algorithms to predict

the stock price movement based on technical analysis indicators taken from recent scien-
tific articles and from specialized trading websites. Using daily data from financial assets
that compose seven market indexes around the world between 2008 and 2019, we tested
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different setting of hyperparameters, namely number of hidden layers in each neural net-
work and dropout rate, we applied three feature selection methods (Sequential Forward
Floating Selection, Tournament Screening and LASSO) on the feature set of technical
analysis indicators, using their filtered counterparts to be used as explanatory variables
in the training process.

The results indicated that the out-of-sample accuracy rate of the prediction con-
verged to two values – besides the 50% value that represents the market efficiency, a
“strange attractor” of 65% also was achieved consistently. Nonetheless, when applying
the prediction into a real trading experiment, the profitability of the strategies did not
manage to significantly outperform the Buy-and-Hold strategy, while showing more con-
sistent losses in markets that presented higher levels of volatility during the testing period.

The findings of this paper can be of potential interest for scholars for future in-
quiries in similar lines of research, as many technical analysis indicators that were most
picked by feature selection methods were not considered by authors in recent applications
on stock price prediction, being used instead by investors on their real-world trading. In
this sense, some indicators composed by the combination of other indicators can be used
instead of their constitute counterparts, which can diminish the levels of redundant infor-
mation taken into account for the models and potentially yield better predictive results
and asset allocations. Moreover, the values for the maximum transaction cost levels for
an investor to reach some economic gain or to outperform the Buy-and-Hold strategy
can be used to analyze the overall attractiveness of different financial markets, with an
investor potentially willing to operate in markets in which the transaction costs are lower
than the thresholds found in this paper.

The combinations of hyperparameters considered in this paper are not exhaus-
tive, as many improvements and additional cases could be executed. For instance, the
only activation function that we applied was the Sigmoid function, while there are many
other candidate functions such as the Hyperbolic Tangent and the ReLU (Rectified Lin-
ear Unit), both very popular in neural network applications. As discussed in Yaohao and
Albuquerque (2019), the choice of the function that define the structure of non-linear inter-
actions of the data have a decisive impact on the results, such that we recommend further
investigations about the implications of different activation functions in the application of
this paper. Other potential improvements include using more training epochs and testing
for more values of number of hidden layers other than 3, 5, and 7, as well as testing
other cases for the dropout rate of the networks and other feature selection methods,
and further analyze the sensibility of the models to alterations in those hyperparameters.
Finally, replications of this study considering other time periods and financial assets are
also potential future developments, as well as the use of rolling windows to re-calibrate the
models with a larger periodicity and to further investigate whether the strategies’ prof-
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itability can be better in a smaller period, and in which extent the gains can be higher
when using a dynamic model to incorporate sudden changes over the historic pattern.
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APPENDIX A – Source codes in R

A.1 Application 1
dados<−read . csv ( f i l e . choose ( ) )

l i b r a r y ( data . t ab l e )
l i b r a r y ( dplyr )
l i b r a r y ( l u b r i d a t e )
l i b r a r y ( rugarch )
l i b r a r y ( t s e r i e s )
l i b r a r y ( kern lab )
l i b r a r y ( f o r each )
l i b r a r y ( d o P a r a l l e l )
l i b r a r y (doSNOW)
l i b r a r y ( f o r e c a s t )
l i b r a r y (MCS)
l i b r a r y ( h igh f requency )

### LOAD WORKSPACE
load ( " b i t c o i n lowf req 1 . RData " )

l og ( dados [ 4 ] )
p r i c e s <−(dados [ 4 ] ) ^T
head ( p r i c e s )
n <− l ength ( p r i c e s )
l o g r e t <− l og ( p r i c e s [ −1]/ p r i c e s [−n ] ) ## t r a i n i n g pe r i od s
l o g r e t [ 3 ]
p r i c e s [ 3 : 4 ]
prov<−l ag ( l o g r e t )
l o g r e t l a g <−c ( )

f o r ( i in 1 : l ength ( l o g r e t ) )
{

l o g r e t l a g [ i +1]<− l o g r e t [ i ]
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}
l o g r e t l a g <−l o g r e t l a g [− l ength ( l o g r e t l a g ) ]
l o g r e t r e a l <−l o g r e t [ −1]
l o g r e t l a g r e a l <−l o g r e t l a g [ −1]

mediaols<−lm( l o g r e t r e a l ~ l o g r e t l a g r e a l ) # f i t mean equat ion by
OLS

h_proxy<−( l og r e t −mean( l o g r e t ) ) ^2 ## proxy v o l a t i l i t y
h_proxy[−c (1 , 2 ) ] ## remove i n i t i a l NAs

vo l a t o l s <−lm( h_proxy[−c (1 , 2 ) ]~ a_t[− l ength ( a_t ) ]+h_proxy[−c (1 ,
l ength ( h_proxy ) ) ] ) # var iance equat ion by OLS

f i t t e d ( v o l a t o l s )
r e s i d v o l a t o l d <−r e s i d ( v o l a t o l s )

rmse<−f unc t i on ( a ) { sq r t (mean( a^2) ) } # RMSE
mae<−f unc t i on ( a ) {mean( abs ( a ) ) } # MAE
nmse<−f unc t i on ( a ) {(mean( a^2) ) /( var ( a ) * l ength ( a ) ) } # NMSE

rmse ( r e s i d ( v o l a t o l s ) )
mae( r e s i d ( v o l a t o l s ) )
nmse ( r e s i d ( v o l a t o l s ) )

# GARCH(1 ,1 ) benchmark

gspec . ru <− ugarchspec (mean . model=l i s t ( armaOrder=c (0 , 0 ) ) ,
d i s t r i b u t i o n =" s s td " ) # d i s t r i b u t i o n changes to ’norm ’ , ’ std ’
and ’ sstd ’

g f i t . ru <− u g a r c h f i t ( gspec . ru , l o g r e t r e a l )
c o e f ( g f i t . ru )
r e s i d u a l s ( g f i t . ru )
p l o t ( g f i t . ru@fit$s igma , type=’ l ’ )

# e r r o r met r i c s
rmse ( g f i t . ru@fit$s igma−h_proxy[−c (1 ) ] )
mae( g f i t . ru@fit$s igma−h_proxy[−c (1 ) ] )
nmse ( g f i t . ru@fit$s igma−h_proxy[−c (1 ) ] )
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provv<−g f i t . ru@fit$s igma−h_proxy[−c (1 ) ]
(sum( provv ^2)/ l ength ( provv ) ) /(sum ( ( g f i t . ru@fit$s igma−mean(

h_proxy[−c (1 ) ] ) ) ^2) /( l ength ( provv ) −1) )

###### SVR−GARCH ######

Kernelgauss<−f unc t i on (x , y ) #Gaussian Kernel
{

res<−exp(−sigma *(sum ( ( x−y ) ^2) ) )
re turn ( r e s )

}
c l a s s ( Kerne lgauss ) <− " k e rne l "

base<−matrix ( nrow=length ( l o g r e t r e a l ) , nco l =3)
f o r ( i in 1 : l ength ( l o g r e t r e a l ) )
{

base [ i ,1 ]= i
base [ i ,2 ]= l o g r e t r e a l [ i ]
base [ i ,3 ]= l o g r e t l a g r e a l [ i ]

}
head ( base )

zz<−read . csv ( f i l e . choose ( ) ) ## v a l i d a t i o n s e t
head ( zz )
l i n e s v a l i d a <−zz [ , 1 ]
base [ l i n e s v a l i d a [ 3 ] ]
base [ l i n e s v a l i d a [ 3 4 1 0 ] , ]

t a i l ( l i n e s v a l i d a )

baseva l ida <−matrix ( nrow=length ( l i n e s v a l i d a ) , nco l =3)
f o r ( i in 1 : l ength ( l i n e s v a l i d a ) )
{

baseva l ida [ i ,]<−base [ l i n e s v a l i d a [ i ] , ]
}
t a i l ( ba s eva l ida )

zzz<−read . csv ( f i l e . choose ( ) ) ## t e s t s e t
head ( zzz )
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l i n e s t e s t a <−zzz [ , 1 ]
base [ l i n e s t e s t a [ 3 ] ]
base [ l i n e s t e s t a [ 3 4 1 0 ] , ]

t a i l ( l i n e s t e s t a )

base te s ta <−matrix ( nrow=length ( l i n e s t e s t a ) , nco l =3)
f o r ( i in 1 : l ength ( l i n e s t e s t a ) )
{

ba s e t e s t a [ i ,]<−base [ l i n e s t e s t a [ i ] , ]
}
t a i l ( ba s e t e s t a )

zzzz<−read . csv ( f i l e . choose ( ) ) ## t r a i n i n g s e t
head ( zzzz )
l i n e s t r e i n a <−zzzz [ , 1 ]
base [ l i n e s t r e i n a [ 3 ] ]
base [ l i n e s t r e i n a [ 3 4 1 0 ] , ]

t a i l ( l i n e s t r e i n a )

base t r e ina <−matrix ( nrow=length ( l i n e s t r e i n a ) , nco l =3)
f o r ( i in 1 : l ength ( l i n e s t r e i n a ) )
{

ba s e t r e i na [ i ,]<−base [ l i n e s t r e i n a [ i ] , ]
}
t a i l ( ba s e t r e i na )

t a i l ( ba s e t r e i na [−c (8486 :8504) , ] )

# hyperparameter g r id
ep s i l onpo l <−seq ( 0 . 0 5 , 1 , by=0.05)
Cpol<−seq ( 0 . 5 , 5 , by=0.5)
sigmapol<−seq ( 0 . 0 5 , 2 , by=0.05)
parametropol<−as . data . frame ( expand . g r id ( e p s i l o n=eps i l onpo l ,C=

Cpol , sigma=sigmapol ) ) # a l l combinat ions
performacepol<−as . data . frame ( rep ( 0 . 0 , nrow ( parametropol ) ) ) #

r e c e i v e s RMSEs from parameters app l i ed to v a l i d a t i o n s e t
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## SVR−GARCH mean equat ion

acurac i a <−f o r each ( i =(1:nrow ( parametropol ) ) , . packages="kern lab " ,
. combine=’ rbind ’ ) %dopar%

{
eps i l on <−parametropol [ i , 1 ]
C<−parametropol [ i , 2 ]
sigma<−parametropol [ i , 3 ]
Kernelgauss<−f unc t i on (x , y )
{

res<−exp(−sigma *(sum ( ( x−y ) ^2) ) )
re turn ( r e s )

}
c l a s s ( Kerne lgauss ) <− " k e rne l "

svm <− ksvm( ba s e t r e i na [ , 3 ] , b a s e t r e i na [ , 2 ] , e p s i l o n=eps i l on ,C=C,
ke rne l =" rb fdot " , s c a l ed=T)

# pred i c t ed va lue s f o r each combination app l i ed to v a l i d a t i o n
s e t

ypred<−p r ed i c t (svm , va l idacao [ , 2 ] )
CXP<−as . data . frame ( as . numeric ( ypred ) )
# RMSE of p r e d i c t i o n in v a l i d a t i o n s e t
CXP$observado<−baseva l ida [ , 2 ]
CXP$desvio<−CXP[ ,1 ] −CXP[ , 2 ]
CXP$desvioquad<−(CXP[ ,1 ] −CXP[ , 2 ] ) ^2

# keep each RMSE
per formacepo l [ i ,1]<− s q r t (mean( CXP$desvioquad ) )
p r i n t ( per formacepo l )

}

which ( per formacepo l==min ( per formacepo l ) ) # pick sma l l e r RMSE
per formacepo l [ which ( per formacepo l==min ( per formacepo l ) ) , 1 ] # i t s

va lue
parametropol [ which ( per formacepo l==min ( per formacepo l ) ) , ] # and

i t s parameters

## f i t mean equat ion with best parameters
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bestmediasvr <− ksvm( base [ , 3 ] , base [ , 2 ] , e p s i l o n =0.85 ,C=0.5 , kpar=
l i s t ( sigma =0.645497224367902) , k e rne l =" rb fdot " , s c a l ed=T)

res idmediasvr <−(p r ed i c t ( bestmediasvr , base [ , 2 ] )−base [ , 2 ] )

## v o l a t i l i t y equat ion :

h_svr<−h_proxy [ −1]
h_svr_lag<−h_svr [ −1]

f o r ( i in 1 : l ength ( h_svr ) )
{

h_svr_lag [ i +1]<−h_svr [ i ]
}
h_svr_lag<−h_svr_lag[− l ength ( h_svr_lag ) ]
h_svr_real<−h_svr [ −1] ## a f t e r l o s i n g 2 pe r i od s
h_svr_lag_real<−h_svr_lag [ −1]

res idmediasvr_lag<−r e s idmed ia sv r
f o r ( i in 1 : l ength ( r e s idmed ia svr ) )
{

res idmediasvr_lag [ i +1]<−r e s idmed ia svr [ i ]
}
res idmediasvr_lag_rea l<−res idmediasvr_lag [ −1]

base2<−matrix ( nrow=length ( r e s idmed ia svr ) , nco l =4)
f o r ( i in 1 : l ength ( r e s idmed ia svr ) )
{

base2 [ i ,1 ]= i
base2 [ i ,2 ]= res idmediasvr_lag_rea l [ i ]
base2 [ i ,3 ]= h_svr_lag_real [ i ]
base2 [ i ,4 ]= h_svr_real [ i ]

}
head ( base2 )
base2<−base2 [ −719 , ]
t a i l ( base2 )

per formacepol2<−as . data . frame ( rep ( 0 . 0 , nrow ( parametropol ) ) ) #
r e c e i v e s RMSEs from parameters app l i ed to v a l i d a t i o n s e t
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acurac ia2 <−f o r each ( i =(1:nrow ( parametropol ) ) , . packages="kern lab
" , . combine=’ rbind ’ ) %dopar%

{
eps i l on <−parametropol [ i , 1 ]
C<−parametropol [ i , 2 ]
cc<−parametropol [ i , 3 ]
Kernelgauss<−f unc t i on (x , y )
{

res<−exp(−sigma *(sum ( ( x−y ) ^2) ) )
re turn ( r e s )

}
c l a s s ( Kerne lgauss ) <− " k e rne l "

# analogous to mean equat ion
svm <− ksvm( c ( tre inamento2 [ , 2 ] , tre inamento2 [ , 3 ] ) , tre inamento2

[ , 4 ] , e p s i l o n=eps i l on ,C=C, ke rne l =" rb fdot " , s c a l ed=T)

ypred<−p r ed i c t (svm , va l idacao2 [ , 4 ] )
CXP<−as . data . frame ( as . numeric ( ypred ) )
CXP$observado<−va l idacao2 [ , 4 ]
CXP$desvio<−CXP[ ,1 ] −CXP[ , 2 ]
CXP$desvioquad<−(CXP[ ,1 ] −CXP[ , 2 ] ) ^2

per formacepol2 [ i ,1]<− s q r t (mean( CXP$desvioquad ) )
p r i n t ( per formacepol2 )

}

which ( per formacepol2==min( per formacepol2 ) ) # analogous to mean
equat ion

per formacepol2 [ which ( per formacepol2==min( per formacepol2 ) ) , 1 ]
parametropol [ which ( per formacepol2==min( per formacepol2 ) ) , ]

## f i t v o l a t i l i t y equat ion with best parameters
b e s t v o l a t s v r <− ksvm( c ( t e s t e 2 [ , 2 ] , t e s t e 2 [ , 3 ] ) , t e s t e 2 [ , 4 ] , e p s i l o n

=0.1 ,C=5,kpar=l i s t ( sigma =0.30151134457776) , k e rne l =" rb fdot " ,
s c a l ed=T)

r e s i d v o l a t s v r <−(p r ed i c t ( bestmediasvr , t e s t e 2 [ , 4 ] )−t e s t e 2 [ , 4 ] )

# RESULTS GARCH
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rmse ( g f i t . ru@fit$s igma−h_proxy[−c (1 ) ] )
mae( g f i t . ru@fit$s igma−h_proxy[−c (1 ) ] )
nmse ( g f i t . ru@fit$s igma−h_proxy[−c (1 ) ] )

# RESULTS SVR−GARCH
rmse ( r e s i d v o l a t s v r )
mae( r e s i d v o l a t s v r )
nmse ( r e s i d v o l a t s v r )

## DIEBOLD−MARIANO TEST
res idodoc <−as . vec to r ( r e s i d u a l s ( g f i t . ru ) )
res idodorya <−g f i t . ru@fit$s igma−h_proxy[−c (1 ) ]

dm. t e s t ( res idodorya , r e s i d v o l a t s v r , h=1, power=2) # two−t a i l e d

## MODEL CONFIDENCE SET

SSM_b_1 <− MCSprocedure ( Loss = btc_res_1 , alpha = 0 .05 , B =
10000 , s t a t i s t i c = "Tmax" , k = 2)

#### Procedure i s analogous f o r a l l t r a in ing −va l i da t i on −t e s t
windows us ing high f requency data .

A.2 Application 2
l i b r a r y ( data . t ab l e )
l i b r a r y ( dplyr )
l i b r a r y ( b i t64 )
l i b r a r y ( s t r i n g r )
l i b r a r y ( r eadx l )
l i b r a r y ( reshape2 )
l i b r a r y ( kn i t r )
l i b r a r y ( ggp lot2 )
l i b r a r y ( p ly r )
l i b r a r y ( gp l o t s )
l i b r a r y ( l u b r i d a t e )
l i b r a r y ( t c l t k )
l i b r a r y ( goog l e sh e e t s )
l i b r a r y ( gsheet )
l i b r a r y ( c o r r p l o t )
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l i b r a r y ( xtab l e )
l i b r a r y ( t i d y v e r s e )
l i b r a r y ( magr i t t r )
l i b r a r y ( RnavGraphImageData )
l i b r a r y ( dplyr )
l i b r a r y ( e1071 )
l i b r a r y ( kern lab )
l i b r a r y ( quadprog )
l i b r a r y ( Per formanceAnalyt ics )

########### IMPORTING DATA
rm( l i s t = l s ( ) ) ; gc ( )
arquivo1 <− " data/BOLSAS2 . x l sx "
p l a n i l h a s 1 <− r eadx l : : exce l_shee t s ( arquivo1 )

arquivo2 <− " data/BOLSAS2 − Copy . x l sx "
p l a n i l h a s 2 <− r eadx l : : exce l_shee t s ( arquivo2 )

arquivo <− bind_rows ( data . frame ( p l a n i l h a = p lan i l ha s1 , arquivo =
arquivo1 ) ,

data . frame ( p l a n i l h a = p lan i l ha s2 , arquivo =
arquivo2 ) )

arquivo <− arquivo %>%
f i l t e r ( ! g r ep l ( " shee t | l a b e l | i n d i c e s " , p l an i lha , i gno r e . case = T)

) %>%
mutate ( i n d i c e = i f e l s e ( p l a n i l h a=="B r a s i l " , "IBOV" ,
i f e l s e ( p l a n i l h a=="China_shanghai " , "SZSMEC" ,
i f e l s e ( p l a n i l h a=="Franca " , "CAC" ,
i f e l s e ( p l a n i l h a=="Alemanha " , "SPX" ,
i f e l s e ( p l a n i l h a=="Japao " , "NKY" ,
i f e l s e ( p l a n i l h a=="Holanda " , "AEX" ,
i f e l s e ( p l a n i l h a=="UK" , "UKX" , "NDX" ) ) ) ) ) ) ) )

base_indice <− read_excel ( " data/BOLSAS2 − Copy . x l sx " ,
shee t = "INDICES " )
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names ( base_indice ) [ 1 ] <− "DT"

detach ( package : p ly r )
j <− 2
f o r ( j in ( 1 : nrow ( arquivo ) ) [−c (1 , 3 , 5 ) ] ) {

i <− a rqu ivo$p l an i l ha [ j ]
base <− read_excel ( arqu ivo$arqu ivo [ j ] ,

shee t = i )

names ( base ) [ 1 ] <− "DT"
names ( base ) <− gsub ( " ( . * ) \\ s .*\\ sEquity " , " \ \ 1 " , names ( base ) )

base_indice_temp <− base_indice

names ( base_indice_temp ) [ grep ( a rqu ivo$ ind i c e [ j ] ,
names ( base_indice_temp ) ) ] <− " r "

base_indice_temp <− base_indice_temp %>% s e l e c t (DT, r )

base <− base %>%
l e f t _ j o i n ( base_indice_temp ,

by = "DT" )

nomes_colunas_transform <− s e t d i f f ( names ( base ) , "DT" )
setDT ( base ) [ , ( nomes_colunas_transform ) := lapp ly ( . SD,

func t i on (x )
as . numeric
( gsub
( " , " , " . " , x
) ) ) ,

. SDcols=nomes_colunas_transform ]

### r i s k f r e e a s s e t
base_rf <− readRDS ( " data/ r f . rds " )
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base_rf <− base_rf %>%
mutate (DT = as . POSIXct (DT, format="%Y−%m−%d " ) ,

RFe = treasury_10 ) %>%
s e l e c t (DT, RFe)

base <− base %>%
l e f t _ j o i n ( base_rf ,

by = "DT" ) %>% as . data . t ab l e ( )

base [ ,RF:= i f e l s e ( i s . na (RFe) ,
l ag (RFe) ,
RFe) ]

base <− base %>%
s e l e c t (−RFe)

### c o r r e c t non−e x i s t a n t dates

base <− base %>%
gather ( key = " var " , va lue = " va l o r " ,−DT) %>% data . t ab l e ( )

base <− base [ order ( var ,DT) ]
base [ , ra := log ( va l o r )−l ag ( l og ( va l o r ) ) , by="var " ]
base [ ,m:=mean( ra , na . rm=T) , by = " var " ]
base [ , v:=sd ( ra , na . rm=T) , by = " var " ]
base [ , value_z :=( ra−m) /v ]

base <−base %>% f i l t e r ( ! i s . na ( ra ) ) %>%
s e l e c t (−value_z ,− valor ,−m,−v ) %>%
spread ( key = var , va lue = ra ) %>%
f i l t e r ( ! i s . na (DT) ) %>%
as . data . t ab l e ( )

dados_fa l tantes <− t ( base [ , l app ly ( . SD, func t i on (x ) sum( i s . na (
x ) ) ) ] )



APPENDIX A. Source codes in R 175

dados_fa l tantes <− cbind ( data . t ab l e ( dados_fa l tantes ) ,
rownames ( dados_fa l tantes ) ) %>% data .

t ab l e ( )
dados_fa l tantes <− dados_fa l tantes [ order (V1) ]

## l e s s than 10% of miss ing−va lues
vars_sem_na <− dados_faltantes$V2 [ dados_faltantes$V1 <(nrow (

base ) /10) ]
l ength ( vars_sem_na )

saveRDS( base , paste0 ( " data // g l oba l //" , gsub ( "\\ s " , "_NOVO_" , i ) , " .
rds " ) )

rm( base )
}

############

## Markowitz e f f i c i e n t f r o n t i e r ; no short−s e l l i n g a l lowed
e f f . f r o n t i e r <− f unc t i on ( covar iance , vec_mean , shor t ="no " , max .

a l l o c a t i o n=NULL,
r i s k . premium . up=.5 , r i s k . increment

=.005){
n <− nco l ( covar iance )
# Equal i ty c o n s t r a i n t
Amat <− matrix (1 , nrow=n)
bvec <− 1
meq <− 1

# Update Amat and bvec
i f ( shor t=="no " ) {

Amat <− cbind (1 , d iag (n) )
bvec <− c ( bvec , rep (0 , n ) )

}

# Calcu la te number o f l oops
loops <− r i s k . premium . up / r i s k . increment + 1
loop <− 1
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e f f <− matrix ( nrow=loops , nco l=n+3)
colnames ( e f f ) <− c ( names (vec_mean) , " Std . Dev " , "Exp . Return " , "

sharpe " )
i <− 0
# So lv ing quadrat i c opt im iza t i on problem , ge t s p o r t f o l i o with

g r e a t e s t Sharpe r a t i o
f o r ( i in seq ( from=0, to=r i s k . premium . up , by=r i s k . increment ) ) {

dvec <− vec_mean * i
s o l <− s o l v e .QP( covar iance , dvec=dvec , Amat=Amat , bvec=bvec ,

meq=meq)
e f f [ loop , " Std . Dev " ] <− s q r t (sum( s o l $ s o l u t i o n *colSums ( (

covar iance * s o l $ s o l u t i o n ) ) ) )
e f f [ loop , " Exp . Return " ] <− as . numeric ( s o l $ s o l u t i o n %*%

vec_mean)
e f f [ loop , " sharpe " ] <− e f f [ loop , " Exp . Return " ] / e f f [ loop , " Std

. Dev " ]
e f f [ loop , 1 : n ] <− s o l $ s o l u t i o n
loop <− loop+1

}

return ( as . data . frame ( e f f ) )
}

### Finding optimal p o r t f o l i o f o r each d i f f e r e n t covar iance
matrix

vec_parms <− NULL
arqu ivos <− l i s t . f i l e s ( path = " data/ g l oba l " , f u l l . names = T)
nomes_arquivos <− gsub ( " . rds " , " " , l i s t . f i l e s ( path = " data/ g l oba l

" ) , f i x e d = T)
arqu ivos <− l i s t . f i l e s ( path = "C:/ Users /b05652877465/Desktop/

KERNEL PCA/ROBUST/dados " , f u l l . names = T)
nomes_arquivos <− gsub ( " . rds " , " " , l i s t . f i l e s ( path = "C:/ Users /

b05652877465/Desktop/KERNEL PCA/ROBUST/dados " ) , f i x e d = T)
i <− 4

n_in_sample <− 100/15
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f o r ( i in 1 : l ength ( nomes_arquivos ) ) {
base <− readRDS( arqu ivos [ i ] )
data_in_sample <− rev ( base$DT ) [ trunc ( nrow ( base ) /n_in_sample ) ]
var_modelo <− s e t d i f f ( names ( base ) , "DT" )
dados_in_sample <− base %>%

f i l t e r (DT<=data_in_sample )

dados_out_of_sample <− base %>%
f i l t e r (DT>data_in_sample )

RF_mean <− mean( dados_out_of_sample$RF , na . rm=T)

### PEARSON −−−−

mpearson <− cor ( dados_in_sample %>% s e l e c t ( var_modelo ) )
covar i ance <− var ( dados_in_sample %>% s e l e c t ( var_modelo ) )
vec_mean <− colMeans ( dados_in_sample %>% s e l e c t ( var_modelo ) )

# Run e f f i c i e n t f r o n t i e r
e f f <− e f f . f r o n t i e r ( covar iance , vec_mean , shor t ="no " , max .

a l l o c a t i o n=NULL,
r i s k . premium . up=1, r i s k . increment =.1)

# Optimal p o r t f o l i o = l a r g e s t Sharpe r a t i o
e f f . opt imal . po int <− e f f %>% f i l t e r ( sharpe==max( e f f $ s h a r p e ) )

# Checking r e s u l t s
wm <− e f f . opt imal . po int %>% s e l e c t ( var_modelo )

A <− as . matrix ( data . matrix ( dados_out_of_sample %>% s e l e c t (
var_modelo ) ) ,

nco l = nco l ( dados_out_of_sample ) ) %*% t ( as .
matrix ( round (wm, 1 0 ) ) )

dados_out_of_sample <− dados_out_of_sample %>%
mutate ( r s = cumsum( r ) )

q <− 1
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### Risk Free
RF_mean <− mean( dados_out_of_sample$RF , na . rm=T)

# Market
auto_cov_sp <− ac f ( dados_out_of_sample$r , l ag =1) $ac f [ 2 ]
n_q_sp <− q ^(1/2) *(1 + (2* auto_cov_sp )/(1− auto_cov_sp ) *(1 −

(1−auto_cov_sp^q ) /(q*(1−auto_cov_sp ) ) ) ) ^(−1/2)

sr_sp <− (mean( dados_out_of_sample$rs )−RF_mean) / sd (
dados_out_of_sample$rs )

sr_sp_month <− n_q_sp* sr_sp

# P o r t f o l i o
auto_cov_out <− ac f (A, l ag =1) $ac f [ 2 ]
n_q <− q ^(1/2) *(1 + (2* auto_cov_out ) /(1− auto_cov_out ) *(1 −

(1−auto_cov_out^q ) /(q*(1−auto_cov_out ) ) ) ) ^(−1/2)
s r <− (mean(A)−RF_mean) / sd (A)

# Sharpe r a t i o
sr_month <− n_q* s r

sr_month_0 <− sr_month
VIID_q <− (n_q^2) *(1+1/2*( s r ^2) )
VGMM_add <− i f e l s e ( q==1,0,q*( s r ) ^2*(sum((1− ( 1 : ( q−1) ) /q ) ^2) ) )
VGMM_q <− VIID_q + VGMM_add

sd_sr_q <− (VGMM_q/nrow ( dados_out_of_sample ) ) ^(1/2)

# Sor t ino r a t i o

so r <− n_q*(mean(A)−RF_mean) / DownsideDeviation (A,MAR = RF_mean
)

sor_sp <− (mean( dados_out_of_sample$rs )−RF_mean) /
DownsideDeviation ( dados_out_of_sample$rs ,MAR = RF_mean)
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VIID_q2 <− (n_q^2) *(1+1/2*( so r ^2) )
VGMM_add2 <− i f e l s e ( q==1,0,q*( so r ) ^2*(sum((1− ( 1 : ( q−1) ) /q ) ^2) )

)
VGMM_q2 <− VIID_q2 + VGMM_add2

sd_sr_q2 <− (VGMM_q2/nrow ( dados_out_of_sample ) ) ^(1/2)

# Saving r e s u l t s
vec_parms_temp <− data . frame ( data = nomes_arquivos [ i ] ,

cov_method = " Pearson " ,
i n i t i a l _ i n = min ( dados_in_sample$DT ) ,
end_in = max( dados_in_sample$DT ) ,
i n i t i a l _ o u t = min ( dados_out_of_sample$DT ) ,
end_out = max( dados_out_of_sample$DT ) ,
N_in = nrow ( dados_in_sample ) ,
N_out = nrow ( dados_out_of_sample ) ,
X = length ( var_modelo ) ,
X_pos_n = length ( which (wm>0.00) ) ,
X_pos_valid_n = length ( which (wm>0.01) ) ,
X_pos_valid_sum = paste0 ( round (sum(wm[ ( which (wm>0.01) ) ] )

*100 ,2) , "%") ,
w_max = paste0 ( round (max(wm[ ( which (wm>0.01) ) ] ) *100 ,2)

, "%") ,
w_min = paste0 ( round (min (wm[ ( which (wm>0.01) ) ] ) *100 ,2)

, "%") ,
r_ f i n a l = paste0 ( round (cumsum(A) [ nrow ( dados_out_of_sample

) ]*100 , 4 ) , "%") ,
Q = NA,
lamda_max = NA,
eigen_up = NA,
eigen_v_up = NA,
eigen_max = NA,
eigen_v_max = NA,
st_dev=sd (A) ,
down_dev=DownsideDeviation (A,MAR = RF_mean) ,
sharpe_rat io = sr_month ,
p_sharp_ratio_sp = 1−pnorm( sr_month−sr_sp_month , 0 , sd_sr_q

) ,
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p_sharp_ratio_0 = 1−pnorm( sr_month , 0 , sd_sr_q ) ,
rmt_improvement = NA ,
s o r t i no_ra t i o = sor ,
p_sort_ratio_sp = 1−pnorm( sor−sor_sp , 0 , sd_sr_q2 ) ,
p_sort_ratio_0 = 1−pnorm( sor , 0 , sd_sr_q2 ) ,
auto_cov_ar1 = auto_cov_out ,
p_sharp_ratio_rmt = NA,
p_sort_ratio_rmt = NA)

vec_parms <− rbind ( vec_parms , vec_parms_temp )

### PEARSON RMT −−−−
Q <− nrow ( dados_in_sample ) /( l ength ( var_modelo ) )

## Singu la r va lue decomposit ion o f covar iance matrix
e igen0 <− e i gen ( mpearson )
lamda_max <− (1 + 1/Q + (1/Q) ^ .5 )

g1 <− e i g en0$va lue s [ e igen0$va lues>=lamda_max ]
g2 <− e i g en0$va lue s [ e igen0$va lues <lamda_max ]
e igen1<− diag ( c ( g1 , rep (mean( e i g en0$va lue s ) , l ength ( g2 ) ) ) )
cor1 <− e i g en0$ve c t o r s %*% eigen1 %*% t ( e i g en0$ve c t o r s )
covariance_rmt <− cor1

# Convert to c o r r e l a t i o n
f o r ( i i in 1 : nco l ( cor1 ) ) {

f o r ( j j in 1 : nrow ( cor1 ) ) {
covariance_rmt [ i i , j j ] <− cor1 [ i i , j j ] * ( covar iance [ i i , i i ]*

covar i ance [ j j , j j ] ) ^ .5
}

}

# E f f i c i e n t f r o n t i e r
e f f <− e f f . f r o n t i e r ( covariance_rmt , vec_mean , shor t ="no " , max .

a l l o c a t i o n=NULL,
r i s k . premium . up=1, r i s k . increment =.1)

# Optimal p o r t f o l i o
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e f f . opt imal . po int <− e f f %>% f i l t e r ( sharpe==max( e f f $ s h a r p e ) )

# Checking
wm <− e f f . opt imal . po int %>% s e l e c t ( var_modelo )

B <− as . matrix ( data . matrix ( dados_out_of_sample %>% s e l e c t (
var_modelo ) ) ,

nco l = nco l ( dados_out_of_sample ) ) %*%
t ( as . matrix ( round (wm, 1 0 ) ) )

# P o r t f o l i o
auto_cov_out <− ac f (B, l ag =1) $ac f [ 2 ]
n_q <− q ^(1/2) *(1 + (2* auto_cov_out ) /(1− auto_cov_out ) *(1 −

(1−auto_cov_out^q ) /(q*(1−auto_cov_out ) ) ) ) ^(−1/2)

# Sharpe r a t i o
s r <− (mean(B)−RF_mean) / sd (B)
sr_month <− n_q* s r
VIID_q <− (n_q^2) *(1+1/2*( s r ^2) )
VGMM_add <− i f e l s e ( q==1,0,q*( s r ) ^2*(sum((1− ( 1 : ( q−1) ) /q ) ^2) ) )
VGMM_q <− VIID_q + VGMM_add

sd_sr_q <− (VGMM_q/nrow ( dados_out_of_sample ) ) ^(1/2)

# Sor t ino r a t i o
so r <− n_q*(mean(B)−RF_mean) / DownsideDeviation (B,MAR = RF_mean

)
sor_sp <− (mean( dados_out_of_sample$rs )−RF_mean) /

DownsideDeviation ( dados_out_of_sample$rs ,MAR = RF_mean)

VIID_q2 <− (n_q^2) *(1+1/2*( so r ^2) )
VGMM_add2 <− i f e l s e ( q==1,0,q*( so r ) ^2*(sum((1− ( 1 : ( q−1) ) /q ) ^2) )

)
VGMM_q2 <− VIID_q2 + VGMM_add2

sd_sr_q2 <− (VGMM_q2/nrow ( dados_out_of_sample ) ) ^(1/2)
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vec_parms_temp <− data . frame ( data = nomes_arquivos [ i ] ,
cov_method = " Pearson RMT" ,
i n i t i a l _ i n = min ( dados_in_sample$DT ) ,
end_in = max( dados_in_sample$DT ) ,
i n i t i a l _ o u t = min ( dados_out_of_sample$DT ) ,
end_out = max( dados_out_of_sample$DT ) ,
N_in = nrow ( dados_in_sample ) ,
N_out = nrow ( dados_out_of_sample ) ,
X = length ( var_modelo ) ,
X_pos_n = length ( which (wm>0.00) ) ,
X_pos_valid_n = length ( which (wm>0.01) ) ,
X_pos_valid_sum = paste0 ( round (sum(wm[ ( which (wm>0.01) ) ] )

*100 ,2) , "%") ,
w_max = paste0 ( round (max(wm[ ( which (wm>0.01) ) ] ) *100 ,2) , "%") ,
w_min = paste0 ( round (min (wm[ ( which (wm>0.01) ) ] ) *100 ,2) , "%") ,
r_ f i n a l = paste0 ( round (cumsum(B) [ nrow ( dados_out_of_sample )

]*100 , 4 ) , "%") ,
Q = Q,
lamda_max = lamda_max ,
eigen_up = paste0 ( l ength ( g1 ) , " ( " , round ( l ength ( g1 ) /( nco l (

dados_in_sample ) − 1) *100 ,2) ,"%) " ) ,
eigen_v_up = paste0 ( round (sum( g1 ) /(sum( g1 )+sum( g2 ) ) *100 ,2)

, "%") ,
eigen_max = g1 [ 1 ] / lamda_max ,
eigen_v_max = paste0 ( round (sum( g1 [ 1 ] ) /(sum( g1 )+sum( g2 ) )

*100 ,2) , "%") ,
st_dev=sd (B) ,
down_dev=DownsideDeviation (B,MAR = RF_mean) ,
sharpe_rat io = sr_month ,
p_sharp_ratio_sp = 1−pnorm( sr_month−sr_sp_month , 0 , sd_sr_q ) ,
p_sharp_ratio_0 = 1−pnorm( sr_month , 0 , sd_sr_q ) ,
rmt_improvement =((mean(B−A)+1)^(252) −1)*100 ,
s o r t i no_ra t i o = sor ,
p_sort_ratio_sp = 1−pnorm( sor−sor_sp , 0 , sd_sr_q2 ) ,
p_sort_ratio_0 = 1−pnorm( sor , 0 , sd_sr_q2 ) ,
auto_cov_ar1 = auto_cov_out ,
p_sharp_ratio_rmt = 1−pnorm( sr_month−sr_month_0 , 0 , sd_sr_q )

,
p_sort_ratio_rmt = 1−pnorm( sor−sor_sp , 0 , sd_sr_q2 ) )
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vec_parms <− rbind ( vec_parms , vec_parms_temp )

## saving r e s u l t s
dados_out_of_sample$pearson <− cumsum(A)
dados_out_of_sample$RMT <− cumsum(B)

#### Procedure i s analogous f o r robust covar iance e s t imato r s and
Kernel covar iance matr ices , as we l l as t h e i r r e s p e c t i v e

counte rpar t s c l eaned by RMT

A.3 Application 3

l i b r a r y ( t i d y v e r s e )
l i b r a r y ( f o r e c a s t )
l i b r a r y ( quantmod )
l i b r a r y ( QuantTools )
l i b r a r y (TTR)
l i b r a r y ( keras )
l i b r a r y ( xtab l e )

### Data c o l l e c t i o n

# vecto r o f a s s e t s
vec <− c ( "AAPL" , "ABBV" , "ABT" , "ACN" , "AGN" , "AIG" , "ALL" , "AMGN" , "

AMZN" , "AXP" , "BA" , "BAC" , " BIIB " , "BK" , "BKNG" , "BLK" , "BMY" , "BRK.B
" , "C" , "CAT" , "CELG" , "CHTR" , "COST" , "CL" , "CMCSA" , "COF" , "COP" , "
CSCO" , "CVS" , "CVX" , "DHR" , " DIS " , "DUK" , "DWDP" , "EMR" , "EXC" , "F" , "
FB" , "FDX" , "FOX" , "FOXA" , "GD" , "GE" , "GILD" , "GM" , "GOOG" , "GOOGL" , "
GS" , "HAL" , "HD" , "HON" , " IBM" , " INTC" , " JNJ " , "JPM" , "KHC" , "KMI" , "KO
" , "LLY" , "LMT" , "LOW" , "MA" , "MCD" , "MDLZ" , "MDT" , "MET" , "MMM" , "MO
" , "MRK" , "MS" , "MSFT" , "NEE" , "NFLX" , "NKE" , "NVDA" , "ORCL" , "OXY" , "
PEP" , "PFE" , "PG" , "PM" , "PYPL" , "QCOM" , "RTN" , "SBUX" , "SLB" , "SO" , "
SPG" , "T" , "TGT" , "TXN" , "UNH" , "UNP" , "UPS" , "USB" , "UTX" , "V" , "VZ" , "
WBA" , "WFC" , "WMT" , "XOM" )

f o r ( e s s e in 1 : l ength ( vec ) ) {
dados <− getSymbols ( as . cha rac t e r ( vec [ e s s e ] ) , from =

’2008 −01 −01 ’ , to = ’2019−03−01 ’)



APPENDIX A. Source codes in R 184

QQQ <− get ( as . cha rac t e r ( vec [ e s s e ] ) )
}

l i s t a <− l i s t ( )

## TA i n d i c a t o r s

f o r ( j in 1 : l ength ( vec ) ) {
QQQ <− get ( vec [ j ] )
QQQ <− QQQ %>% na . omit ( )

fechamento <− QQQ[ , 4 ]
c l o s e <− QQQ[ , 4 ]
high <− QQQ[ , 2 ]
low <− QQQ[ , 3 ]
open <− QQQ[ , 1 ]
volume <− QQQ[ , 5 ]

volume [ volume==0] <− mean( volume )

#############################

YYY <− as . xt s ( l ead ( as . vec to r ( s i gn ( d i f f ( c l o s e ) ) ) ) , order . by =
index ( c l o s e ) )

YYY[ which (YYY==0) ] <− −1
#############################
N <− 10
AB_UP <− TTR: :SMA( QQQ[ , 3 ] * (1 − 4*(QQQ[ ,2] −QQQ[ , 3 ] ) / (QQQ

[ , 2 ] + QQQ[ , 3 ] ) ) ,
order = N)

#############################
AB_DOWN <− TTR: :SMA( high * (1 + 4*( high−low ) / ( high + low )

) ,
order = N)

#############################
AD <− TTR: : chaikinAD (HLC = QQQ[ , 2 : 4 ] , volume = QQQ[ , 5 ] )
#############################
MFM = (( c l o s e − low ) − ( high − c l o s e ) ) / ( ( high − low ) )
#############################
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MFV = MFM * volume

ADL <− 0
f o r ( i in 2 : dim(QQQ) [ 1 ] ) { ADL[ i ] <− ADL[ i −1] + MFV[ i ] }

ADL <− as . xt s (ADL, order . by = index ( c l o s e ) )

#############################
ADX <− TTR: :ADX(HLC = QQQ[ , 2 : 4 ] , n = 14) [ , 4 ]
#############################
CHOSC <− TTR: :EMA(ADL, n = 3) − TTR: :EMA(ADL, n = 10)
#############################
ADO <− ( high − d i f f ( c l o s e ) ) /( high − low )
#############################
n_fast = 10
n_slow = 20

APO <− TTR: :EMA( c l o s e , n = n_fast ) − TTR: :EMA( c l o s e , n =
n_slow )

#############################
AR_POS <− TTR: : aroon (HL = QQQ[ , 2 : 3 ] , n = 25) [ , 1 ]
AR_NEG <− TTR: : aroon (HL = QQQ[ , 2 : 3 ] , n = 25) [ , 2 ]
AR_OSC <− TTR: : aroon (HL = QQQ[ , 2 : 3 ] , n = 25) [ , 3 ]
#############################
ATR <− TTR: :ATR(HLC = QQQ[ , 2 : 4 ] , n = 14 ,maType = TTR: :SMA) [ , 2 ]
#############################
ATRP <− ATR/ c l o s e *100
#############################
# Average Volume
AVOL = TTR: :SMA( volume , N)
#############################
BB_LOW <− TTR: : BBands (HLC = QQQ[ , 2 : 4 ] , n = 20 , maType = TTR: :

SMA, sd = 2) [ , 1 ]
BB_UP <− TTR: : BBands (HLC = QQQ[ , 2 : 4 ] , n = 20 , maType = TTR: :

SMA, sd = 2) [ , 3 ]
BB_BW <− (BB_UP−BB_LOW) /TTR: : BBands (HLC = QQQ[ , 2 : 4 ] , n = 20 ,

maType = TTR: :SMA, sd = 2) [ , 2 ] * 1 0 0
#############################
bww <− f unc t i on ( c l o s e , n ) {
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r e s <− ( c l o s e − TTR: :SMA( c l o s e , n ) ) ^2
r e s <− TTR: :SMA( res , n )
re turn ( r e s )

}

BWW <− bww( c l o s e , n = 10)
#############################
vo la t <− f unc t i on ( c l o s e , n ) {

r e s <− c l o s e
f o r ( i in (n) : l ength ( r e s ) ) {

r e s [ i ] <− ( sd ( c l o s e [ ( i−n+1) : i ] ) )
}
r e s [ 1 : ( n−1) ] <− NA
return ( r e s )

}

VOLAT <− vo la t ( c l o s e , n = 10)
#############################
perc_b <− f unc t i on ( c l o s e , n ) {

r e s <− c l o s e
f o r ( i in (n) : l ength ( r e s ) ) {

r e s [ i ] <− ( sd ( c l o s e [ ( i−n+1) : i ] ) )
}

low <− TTR: :SMA( c l o s e , n ) − 2* vo la t (TTR: :SMA( c l o s e , n ) , n )
high <− TTR: :SMA( c l o s e , n ) + 2* vo la t (TTR: :SMA( c l o s e , n ) , n )
r e s <− ( c l o s e −low ) /( high−low )
re turn ( r e s )

}

PERC_B <− perc_b ( c l o s e , n = 20)
#############################
CCI <− TTR: : CCI(HLC = QQQ[ , 2 : 4 ] , n = 20 , maType = TTR: :SMA, c

= 0 .015 )
#############################
CMF <− TTR: :CMF(HLC = QQQ[ , 2 : 4 ] , volume = QQQ[ , 5 ] , n = 20)
#############################
cvo l <− f unc t i on ( high , low , n) {

prov <− TTR: :EMA( high−low , n)
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r e s <− high
f o r ( i in 11 : l ength ( r e s ) ) {

r e s [ i ] <− ( as . numeric ( prov [ i ] ) − as . numeric ( prov [ i−n ] ) ) / as
. numeric ( prov [ i −10])

}
r e s [ 1 : 1 0 ] <− NA
return ( r e s )

}

CVOL <− cvo l ( high , low , n = 5)
#############################
CMO <− TTR: :CMO( c l o s e , n = 20)
#############################
maxx <− f unc t i on ( c l o s e , n ) {

r e s <− c l o s e
f o r ( i in (n+1) : l ength ( r e s ) ) {

r e s [ i ] <− max( c l o s e [ ( i−n) : ( i −1) ] )
}
r e s [ 1 : n ] <− NA
return ( r e s )

}

MAXX <− maxx( c l o s e , n = 10)
#############################
minn <− f unc t i on ( c l o s e , n ) {

r e s <− c l o s e
f o r ( i in (n+1) : l ength ( r e s ) ) {

r e s [ i ] <− min( c l o s e [ ( i−n) : ( i −1) ] )
}
r e s [ 1 : n ] <− NA
return ( r e s )

}

MINN <− minn ( c l o s e , n = 10)
#############################
CHAND_LONG <− maxx( c l o s e , n = 22) − 3*TTR: :ATR(HLC = QQQ[ , 2 : 4 ] ,

n = 22 ,maType = TTR: :SMA) [ , 2 ]
CHAND_SHORT <− maxx( c l o s e , n = 22) + 3*TTR: :ATR(HLC = QQQ

[ , 2 : 4 ] , n = 22 ,maType = TTR: :SMA) [ , 2 ]
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#############################
roc <− f unc t i on ( c l o s e , n ) {

r e s <− c l o s e
f o r ( i in (n+1) : l ength ( r e s ) ) {

r e s [ i ] <− ( as . numeric ( c l o s e [ i ] ) ) /( as . numeric ( c l o s e [ i−n ] ) )
*100

}
r e s [ 1 : n ] <− NA
return ( r e s )

}

ROC <− roc ( c l o s e , n = 10)
#############################
COPP <− as . xt s (TTR: :WMA(( roc ( c l o s e , n = 14) + roc ( c l o s e , n =

11) ) , n = 10) , order . by = index ( c l o s e ) )
#############################
DPO <− TTR: :DPO( c l o s e , n = 20 , maType = TTR: :SMA)
#############################
PDM = d i f f ( high )
NDM = c ( )
f o r ( i in 1 : ( l ength ( low ) − 1) ) {

NDM[ i ] = as . numeric ( low [ i ] ) − as . numeric ( low [ i +1] )
}

WPDM = c (NA,NA)

f o r ( i in 3 : l ength (PDM) ) {
WPDM[ i ] = PDM[ i −1] − mean(PDM[ 1 : i −1] , na . rm=TRUE) + as .

numeric ( PDM[ i ] )
}

WNDM = c (NA,NA)

f o r ( i in 3 : l ength (PDM) ) {
WNDM[ i ] = NDM[ i −1] − mean(NDM[ 1 : i −1] , na . rm=TRUE) + as .

numeric ( NDM[ i ] )
}

c lose_low <− c ( )
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high_close <− c ( )
high_low <− c ( )

f o r ( i in 2 : nrow (QQQ) ) {
high_low <− high − low
high_close [ i ] <− as . numeric ( high [ i ] ) − as . numeric ( c l o s e [ i

−1] )
c lose_low [ i ] <− as . numeric ( c l o s e [ i −1] ) − as . numeric ( low [

i ] )
}

t r = data . frame (High_menos_Low = high_low ,
High_menos_Close_1 = high_close ,
Close_1_menos_Low = close_low )

TR = apply ( tr , 1 , max , na . rm = TRUE)

WTR = c (NA,NA)
f o r ( i in 3 : l ength (TR) ) {

WTR[ i ] = TR[ i −1] − mean(TR[ 1 : i −1] , na . rm=TRUE) + as . numeric (
TR[ i ] )

}

PDI = ( WPDM / WTR ) * 100
NDI = ( WNDM / WTR ) * 100
DD = abs (PDI − NDI)
DMI = ( DD / (PDI + NDI) ) * 100

DMI <− as . xt s (DMI, order . by = index ( c l o s e ) )
#############################
DONCHIAN <− TTR: : DonchianChannel (QQQ[ , 2 : 3 ] , n = 10) [ , 2 ]
#############################
DEMA = 2 * ( TTR: :EMA( c l o s e , N) − TTR: :EMA( TTR: :EMA( c l o s e , N

) , N ) )
#############################
minimos = c ( )
maximos = c ( )
f o r ( i in 1 : l ength ( low ) ) {
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minimos [ i ] = min ( low [ 1 : i ] )
maximos [ i ] = max( high [ 1 : i ] )

}

close_menos_min = c ( )
high_menos_min = c ( )

f o r ( i in 1 : l ength ( low ) ) {
close_menos_min [ i ] = c l o s e [ i ] − minimos [ i ]
high_menos_min [ i ] = maximos [ i ] − minimos [ i ]

}

DSS = as . xt s ( (TTR: :EMA( TTR: :EMA( close_menos_min ) ) / TTR: :
EMA( TTR: :EMA( high_menos_min ) ) ) * 100

, order . by = index ( c l o s e ) )
#############################
hl_tm1 = NA
f o r ( i in 2 : l ength ( high ) ) hl_tm1 [ i ] = high [ i −1] + low [ i −1]

prov = ( ( high − low ) /2 − hl_tm1/2 ) / ( ( volume /100000000) /
( high−low ) )

prov [ which ( prov %>% i s . na ( ) ) ] <− 0
prov [ which ( prov %>% i s . i n f i n i t e ( ) ) ] <− max( volume )

EMV = TTR: :SMA( prov , n = 14)
#############################
EMA <− TTR: :EMA( c l o s e , n = 10)
#############################
FORCE = TTR: :EMA( d i f f ( c l o s e ) *volume , n=13)
#############################
h u l l <− f unc t i on ( c l o s e , n ) {

prov1 <− TTR: :WMA( c l o s e , n = round (n/2) )
prov2 <− TTR: :WMA( c l o s e , n = n)
r e s <− as . xt s ( (TTR: :EMA( TTR: :EMA( close_menos_min ) ) / TTR

: :EMA( TTR: :EMA( high_menos_min ) ) ) * 100
, order . by = index ( c l o s e ) )

re turn ( r e s )
}
HULL <− h u l l ( c l o s e , n = 20)
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#############################
n1 = 10 ; nf = 2 ; ns = 30

change <− abs ( d i f f ( c l o s e , l ag = 10) )
vovovo <− d i f f ( c l o s e )
ER <− c l o s e
f o r ( i in 11 : l ength (ER) ) {

ER[ i ] <− as . numeric ( change [ i ] ) /(sum( abs ( vovovo [ ( i −9) : i ] ) ) )
}

SC <− (ER* (2/( nf +1) − 2/( ns+1) ) + (2/( ns+1) ) ) ^2

KAMA <− TTR: :SMA( c l o s e , n = 10)
f o r ( i in 11 : l ength (KAMA) ) {

KAMA[ i ] <− as . numeric (KAMA[ i −1]) + SC[ i ] * ( as . numeric ( c l o s e [ i
] ) − as . numeric (KAMA[ i −1]) )

}
#############################
KC_M = TTR: :EMA( high + low + c l o s e / 3 , n = 20)

KC_L = KC_M − 2* (TTR: :ATR (QQQ[ , 2 : 4 ] , n = 10) $atr )
KC_U = KC_M + 2* (TTR: :ATR (QQQ[ , 2 : 4 ] , n = 10) $atr )
#############################
mqo <− f unc t i on ( c l o s e , n ) {

prov <− c l o s e
r e s1 <− c l o s e
r e s2 <− c l o s e
r e s3 <− c l o s e
r e s4 <− c l o s e
f o r ( i in (n+1) : l ength ( prov ) ) {

base <− prov [ ( i−n) : ( i −1) ]
model l <− lm( formula = base~ index ( base ) )
r e s1 [ i ] <− m o d e l l $ c o e f f i c i e n t s [ 1 ]
r e s2 [ i ] <− m o d e l l $ c o e f f i c i e n t s [ 2 ]
r e s3 [ i ] <− p r ed i c t ( modell , c l o s e [ i ] ) [ 1 ]
r e s4 [ i ] <− summary( model l ) $ c o e f f i c i e n t s [ 2 , 2 ]

}
r e s1 [ 1 : n ] <− r e s2 [ 1 : n ] <− r e s3 [ 1 : n ] <− r e s4 [ 1 : n ] <− NA
re s <− cbind ( res1 , res2 , res3 , r e s4 )
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r e turn ( r e s )
}

ppp <− mqo( c l o s e , 10)

MQO_ALPHA <− ppp [ , 1 ]
MQO_BETA <− ppp [ , 2 ]
MQO_PRED <− ppp [ , 3 ]
MQO_STD <− ppp [ , 4 ]
#############################
MACD <− TTR: :MACD( c l o s e , nFast = 12 , nSlow = 26 , maType = TTR

: :EMA, nSig = 9) [ , 1 ]
#############################
MACDH <− TTR: :MACD( c l o s e , nFast = 12 , nSlow = 26 , maType = TTR

: :EMA, nSig = 9) [ , 2 ]
#############################
MAE_UP = TTR: :SMA( c l o s e ) + TTR: :SMA( c l o s e ) /4
MAE_LOW = TTR: :SMA( c l o s e ) − TTR: :SMA( c l o s e ) /4
#############################
mass <− f unc t i on ( high , low , n) {

prov <− TTR: :EMA( high−low , n) / TTR: :EMA(TTR: :EMA( high−low ,
n) , n )

r e s <− high
f o r ( i in (3* (n−1)+24) : l ength ( r e s ) ) {

r e s [ i ] <− sum( prov [ ( i −24) : i ] )
}
r e s [ 1 : ( 3 * ( n−1)+23) ] <− NA
return ( r e s )

}

MASS <− mass ( high , low , n = 9)
#############################
RMF <− ( high+low+c l o s e ) /3*volume
#############################
MFI <− TTR: : MFI(HLC = QQQ[ , 2 : 4 ] , volume = QQQ[ , 5 ] , n = 14)
#############################
MIDPOINT <− (MAXX − MINN) /2
#############################
MIDPRICE <− (maxx( high , n = 10) − minn ( low , n = 10) ) /2
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#############################
MOM <− momentum( c l o s e , n = 10)
#############################
nvi <− f unc t i on ( c l o s e , volume ) {

r e s <− c l o s e
r e s [ 1 ] <− 1000
f o r ( i in 2 : l ength ( r e s ) ) {

i f ( as . numeric ( volume [ i ] ) < as . numeric ( volume [ i −1]) ) {
r e s [ i ] <− as . numeric ( r e s [ i −1]) + ( as . numeric ( c l o s e [ i ] ) −

as . numeric ( c l o s e [ i −1]) ) /
as . numeric ( c l o s e [ i −1]) * as . numeric ( r e s [ i −1])

}
e l s e {

r e s [ i ] <− r e s [ i −1]
}

}
re turn ( r e s )

}

NVI <− nvi ( c l o s e , volume )
#############################
NATR <− ATR/ c l o s e *100
#############################
OBV <− TTR: :OBV( c l o s e , volume )
#############################
SAR <− TTR: : SAR(HL = QQQ[ , 2 : 3 ] , a c c e l = c ( 0 . 0 2 , 0 . 2 ) )
#############################
TP <− ( high + low + c l o s e ) /3
SS1 <− 2*TP − high
SS2 <− TP − ( high − low )
SR1 <− 2*TP − low
SR2 <− TP + ( high − low )
#############################
FS1 <− TP − ( 0 . 382 * ( high − low ) )
FS2 <− TP − ( 0 . 618 * ( high − low ) )
FR1 <− TP + (0 .382 * ( high − low ) )
FR2 <− TP + (0 .618 * ( high − low ) )
#############################
ddd <− c l o s e



APPENDIX A. Source codes in R 194

f o r ( i in 1 : l ength (ddd) ) {
i f ( c l o s e [ i ] == open [ i ] ) {

ddd [ i ] <− high [ i ] + low [ i ] + 2* c l o s e [ i ]
}
e l s e i f ( c l o s e [ i ] > open [ i ] ) {

ddd [ i ] <− 2* high [ i ] + low [ i ] + c l o s e [ i ]
}
e l s e {

ddd [ i ] <− high [ i ] + 2* low [ i ] + c l o s e [ i ]
}

}

PD1 <− ddd/4
DS1 <− (ddd/2) − high
DR1 <− (ddd/2) − low
#############################
pc_up <− f unc t i on ( high , n) {

r e s <− high
f o r ( i in n : l ength ( r e s ) ) {

r e s [ i ] <− max( high [ ( i−n+1) : i ] )
}
r e s [ 1 : ( n−1) ] <− NA
return ( r e s )

}

PC_UP <− pc_up( high , n = 20)
#############################
pc_down <− f unc t i on ( low , n) {

r e s <− low
f o r ( i in n : l ength ( r e s ) ) {

r e s [ i ] <− min( low [ ( i−n+1) : i ] )
}
r e s [ 1 : ( n−1) ] <− NA
return ( r e s )

}

PC_DOWN <− pc_down( low , n = 20)
#############################
chopp <− f unc t i on ( high , low , n) {
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prov1 <− TTR: :ATR(HLC = QQQ[ , 2 : 4 ] , n , maType = TTR: :SMA) [ , 2 ]
prov2 <− pc_up( high , n) − pc_down( low , n)

r e s <− c l o s e
r e s [ 1 : ( n−1) ] <− NA
f o r ( i in n : l ength ( r e s ) ) {

r e s [ i ] <− ( log10 (sum( prov1 [ ( i−n+1) : i ] )+n) ) /prov2 [ i ]
}
re turn ( r e s )

}

CHOPPINESS <− chopp ( high , low , n = 14)
#############################
ppo <− f unc t i on ( c l o s e , n fas t , nslow ) {

r e s <− (EMA( c l o s e , n f a s t ) − EMA( c l o s e , nslow ) ) /EMA( c lo s e ,
nslow ) * 100

return ( r e s )
}

PPO <− ppo ( c l o s e , n f a s t = 12 , nslow = 26)
#############################
PPOH <− PPO − EMA(PPO, n = 9)
#############################
pvo <− f unc t i on ( volume , n fas t , nslow ) {

r e s <− (EMA( volume , n f a s t ) − EMA( volume , nslow ) ) /EMA( volume ,
nslow ) * 100

return ( r e s )
}

PVO <− pvo ( volume , n f a s t = 12 , nslow = 26)
#############################
PVOH <− PVO − EMA(PVO, n = 9)
#############################
pvi <− f unc t i on ( c l o s e , volume ) {

r e s <− c l o s e
r e s [ 1 ] <− 1000
f o r ( i in 2 : l ength ( r e s ) ) {

i f ( as . numeric ( volume [ i ] )>as . numeric ( volume [ i −1]) ) {
r e s [ i ] <− as . numeric ( r e s [ i −1]) + ( as . numeric ( c l o s e [ i ] ) −
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as . numeric ( c l o s e [ i −1]) ) /
as . numeric ( c l o s e [ i −1]) * as . numeric ( r e s [ i −1])

}
e l s e {

r e s [ i ] <− r e s [ i −1]
}

}
re turn ( r e s )

}

PVI <− pvi ( c l o s e , volume )
#############################
pvt <− f unc t i on ( c l o s e , volume ) {

r e s <− c l o s e
r e s [ 1 ] <− 0
f o r ( i in 2 : l ength ( r e s ) ) {

r e s [ i ] <− as . numeric ( r e s [ i −1]) + ( ( as . numeric ( c l o s e [ i ] ) −
as . numeric ( c l o s e [ i −1]) ) /

as . numeric ( c l o s e [ i −1])
* as . numeric (

volume [ i ] ) )
}
re turn ( r e s )

}

PVT <− pvt ( c l o s e , volume )
#############################
KST <− TTR: :SMA( roc ( c l o s e , n = 10) ,n = 10) + 2*(TTR: :SMA( roc (

c l o s e , n = 15) ,n = 10) ) +
3*(TTR: :SMA( roc ( c l o s e , n = 20) ,n = 10) ) + 4*(TTR: :SMA( roc (

c l o s e , n = 30) ,n = 15) )
#############################
PSK <− TTR: :SMA( roc ( c l o s e , n = 10) ,n = 10) + 2*(TTR: :SMA( roc (

c l o s e , n = 15) ,n = 10) ) +
3*(TTR: :SMA( roc ( c l o s e , n = 20) ,n = 10) ) + 4*(TTR: :SMA( roc (

c l o s e , n = 30) ,n = 15) ) +
TTR: :SMA( roc ( c l o s e , n = 40) ,n = 50) + 2*(TTR: :SMA( roc ( c l o s e ,

n = 65) ,n = 65) ) +
3*(TTR: :SMA( roc ( c l o s e , n = 75) ,n = 75) ) + 4*(TTR: :SMA( roc (
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c l o s e , n = 100) ,n = 100) ) +
TTR: :SMA( roc ( c l o s e , n = 195) ,n = 130) + 2*(TTR: :SMA( roc (

c l o s e , n = 265) ,n = 130) ) +
3*(TTR: :SMA( roc ( c l o s e , n = 390) ,n = 130) ) + 4*(TTR: :SMA( roc (

c l o s e , n = 530) ,n = 195) )
#############################
RSI <− RSI ( c l o s e , n = 10 , maType = TTR: :SMA)
#############################
pp1 <− TTR: :SMA( ( ( c l o s e −open ) + 2*( d i f f ( c l o s e )−d i f f ( open ) ) +

2*( d i f f ( c l o s e , l ag = 2)−d i f f ( open , l ag = 2) )
+ ( d i f f ( c l o s e , l ag = 3)−d i f f ( open , l ag =
3) ) ) /6 , n = 12)

pp2 <− TTR: :SMA( ( ( high−low ) + 2*( d i f f ( high )−d i f f ( low ) ) +
2*( d i f f ( high , l ag = 2)−d i f f ( low , l ag = 2) ) +

( d i f f ( high , l ag = 3)−d i f f ( low , l ag = 3) ) )
/6 , n = 12)

RVI <− pp1/pp2
#############################
SMA <− TTR: :SMA( c l o s e , n = 10)
#############################
s t o c h r s i <− f unc t i on ( c l o s e , n ) {

prov <− RSI ( c l o s e , n = 10 , maType = TTR: :SMA)
r e s <− c l o s e
r e s [ 1 : n ] <− NA
f o r ( i in (n+1) : l ength ( r e s ) ) {

r e s [ i ] <− ( prov [ i ] − min( prov [ ( i−n) : ( i −1) ] ) ) /(max( prov [ ( i−
n) : ( i −1) ] ) − min( prov [ ( i−n) : ( i −1) ] ) )

}
re turn ( r e s )

}

STRSI <− s t o c h r s i ( c l o s e , n = 10)
#############################
STOCH_K<− s toch ( c l o s e , nFastK = 10 , nSlowD = 3 , nFastD = 3)

[ , 1 ]
#############################
STOCH_D<− s toch ( c l o s e , nFastK = 10 , nSlowD = 3 , nFastD = 3)

[ , 2 ]
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#############################
STOCH_D_SLOW<− s toch ( c l o s e , nFastK = 10 , nSlowD = 3 , nFastD =

3) [ , 3 ]
#############################
TEMA <− (3*EMA( c lo s e , n = 10) ) −

(3*EMA(EMA( c lo s e , n = 10) , n = 10) ) +
(3*EMA(EMA(EMA( c lo s e , n = 10) , n = 10) , n = 10) )

#############################
TRIMA <− SMA( c l o s e , n = round ((10+1) /2) )
#############################
TRIX <− TRIX( c l o s e , n = 15 , maType = TTR: :EMA) [ , 1 ]
#############################
TSI <− (EMA(EMA( d i f f ( c l o s e ) ,n = 25) ,n = 13) ) /(EMA(EMA( abs ( d i f f

( c l o s e ) ) ,n = 25) ,n = 13) )
#############################
TP <− ( high + low + c l o s e ) /3
#############################
u l c e r <− f unc t i on ( c l o s e , n ) {

prov <− c l o s e
prov [ 1 : n ] <− NA
f o r ( i in (n+1) : l ength ( prov ) ) {

prov [ i ] <− ( as . numeric ( c l o s e [ i ] ) − as . numeric (max( c l o s e [ ( i
−n+1) : i ] ) ) ) /

as . numeric (max( c l o s e [ ( i−n+1) : i ] ) ) * 100
}
r e s <− s q r t (SMA( prov ^2 ,n) )
re turn ( r e s )

}

ULCER <− u l c e r ( c l o s e , n = 14)
#############################
ULTOSC <− u l t i m a t e O s c i l l a t o r (QQQ[ , 2 : 4 ] , n = c (7 ,14 ,28 ) , wts =

c (4 , 2 , 1 ) )
#############################
vama <− f unc t i on ( c l o s e , volume , n) {

avo l <− SMA( volume , n)
prov <− (3* volume ) /(2* avo l ) * c l o s e
re turn (SMA( prov , n) )

}
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VAMA <− vama( c l o s e , volume , n = 10)
#############################
vwap <− f unc t i on ( volume , n) {

propro <− TP*volume
r e s <− volume
r e s [ 1 : ( n−1) ] <− NA
f o r ( i in n : l ength ( r e s ) ) {

r e s [ i ] <− (sum( propro [ ( i−n+1) : i ] ) ) /(sum( volume [ ( i−n+1) : i ] )
)

}
re turn ( r e s )

}

VWAP <− vwap( volume , n = 15)
#############################
vol_osc <− f unc t i on ( volume , n_fast , n_slow ) {

return ( (SMA( volume , n_fast ) − SMA( volume , n_slow ) ) /SMA(
volume , n_slow ) *100)

}

VOOSC <− vol_osc ( volume , n_fast = 14 , n_slow = 28)
#############################
vpt <− f unc t i on ( volume , c l o s e ) {

r e s <− volume
r e s [ 1 ] <− 0
f o r ( i in 2 : l ength ( r e s ) ) {

r e s [ i ] <− as . numeric ( r e s [ i −1]) + as . numeric ( volume [ i ] ) *
( ( as . numeric ( c l o s e [ i ] ) − as . numeric ( c l o s e [ i −1]) ) / as .

numeric ( c l o s e [ i −1]) )
}
r e s [ 1 ] <− NA
return ( r e s )

}

VPT <− vpt ( volume , c l o s e )
#############################
pvoi <− f unc t i on ( high , low , n) {

prov <− abs ( high − d i f f ( low ) )
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t r <− TTR: :ATR(HLC = QQQ[ , 2 : 4 ] , n = 14 , maType = TTR: :SMA)
[ , 1 ]

r e s <− high
f o r ( i in (n+2) : l ength ( r e s ) ) {

r e s [ i ] <− (sum( prov [ ( i−n) : ( i −1) ] ) ) /(sum( t r [ ( i−n) : ( i −1) ] ) )
}
r e s [ 1 : ( n+1) ] <− NA
return ( r e s )

}

nvoi <− f unc t i on ( high , low , n) {
prov <− abs ( low − d i f f ( high ) )
t r <− TTR: :ATR(HLC = QQQ[ , 2 : 4 ] , n = 14 , maType = TTR: :SMA)

[ , 1 ]
r e s <− high
f o r ( i in (n+2) : l ength ( r e s ) ) {

r e s [ i ] <− (sum( prov [ ( i−n) : ( i −1) ] ) ) /(sum( t r [ ( i−n) : ( i −1) ] ) )
}
r e s [ 1 : ( n+1) ] <− NA
return ( r e s )

}

PVOI <− pvoi ( high , low , n = 14)
NVOI <− nvoi ( high , low , n = 14)
#############################
WILL_R <− WPR(QQQ[ , 2 : 4 ] , n = 10)
#############################
WMA <− WMA( c lo s e , n = 10 , wts = 1 : 10 )
#############################
wws <− f unc t i on ( c l o s e , n ) {

r e s <− c l o s e
r e s [ 1 : ( n−1) ] <− NA
re s [ n ] <− SMA( c l o s e , n ) [ n ]
f o r ( i in (n+1) : l ength ( r e s ) ) {

r e s [ i ] <− as . numeric ( r e s [ ( i −1) ] ) + ( c l o s e [ i ] − as . numeric (
r e s [ ( i −1) ] ) ) /n

}
return ( r e s )

}
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WWS <− wws( c l o s e , n = 10)
#############################
DISP <− fechamento /(SMA(x = fechamento , n = 9) )
#############################
n_fast <− 12
n_slow <− 24

OSCP <− (SMA(x = fechamento , n = n_fast )−SMA(x = fechamento , n
= n_slow ) ) /SMA(x = fechamento , n = n_fast )

#############################
indic_up <− f unc t i on (x , n ) {

i n d i c <− x
f o r ( i in 2 : l ength ( i n d i c ) ) {

i n d i c [ i ] <− s i gn ( as . numeric ( x [ i ] )−as . numeric ( x [ i −1]) )
}
i n d i c [ 1 ] <− NA

re s <− x
f o r ( i in (n+1) : l ength ( r e s ) ) {

r e s [ i ] <− l ength ( which ( i n d i c [ ( i−n+1) : ( i ) ]=="1") )
}
r e s [ 1 : n ] <− NA

return ( r e s )
}

PSY <− f unc t i on (x , n ) {
re turn ( ( indic_up (x , n) ) /n*100)

}

PSY <− PSY( fechamento , n = 10)
#############################
DIU <− f unc t i on ( c l o s e , high , low , n) {

numm <− c l o s e
f o r ( i in (n+1) : l ength ( c l o s e ) ) {

numm[ i ] <− sum( d i f f ( high ) [ ( i−n+1) : i ] )
}
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numm[ 1 : n ] <− NA

prov <− cbind ( as . numeric ( high − low ) ,
c (NA, as . numeric ( high [ −1]) − as . numeric (

fechamento [− l ength ( fechamento ) ] ) ) ,
c (NA, as . numeric ( as . numeric ( fechamento [− l ength (

fechamento ) ] ) − low [ −1]) ) )

prov2 <− as . xt s ( apply ( prov , 1 ,max) , order . by = index ( c l o s e ) )

r e s <− numm/prov2
return ( r e s *100)

}

DIU <− DIU( c l o s e , high , low , n=10)
#############################
DID <− f unc t i on ( c l o s e , high , low , n) {

numm <− c l o s e
f o r ( i in (n+1) : l ength ( c l o s e ) ) {

numm[ i ] <− sum( d i f f ( low ) [ ( i−n+1) : i ] )
}
numm[ 1 : n ] <− NA

prov <− cbind ( as . numeric ( high − low ) ,
c (NA, as . numeric ( high [ −1]) − as . numeric (

fechamento [− l ength ( fechamento ) ] ) ) ,
c (NA, as . numeric ( as . numeric ( fechamento [− l ength (

fechamento ) ] ) − low [ −1]) ) )

prov2 <− as . xt s ( apply ( prov , 1 ,max) , order . by = index ( c l o s e ) )

r e s <− numm/prov2
return ( r e s *100)

}

DID <− DID( c l o s e , high , low , n=10)
#############################
BIAS <− ( c l o s e − SMA( c l o s e , n=5) ) /SMA( c l o s e , n=5)*100
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#############################
vol_rat io <− f unc t i on ( c l o s e , volume , n) {

i n d i c <− c l o s e
f o r ( i in 2 : l ength ( i n d i c ) ) {

i n d i c [ i ] <− s i gn ( as . numeric ( c l o s e [ i ] )−as . numeric ( c l o s e [ i
−1]) )

}
i n d i c [ 1 ] <− NA

res1 <− vec to r (mode = " numeric " , l ength = length ( c l o s e ) )
f o r ( i in 2 : l ength ( r e s1 ) ) {

i f ( i n d i c [ i ] >0){
r e s1 [ i ] <− volume [ i ]

}
e l s e {

r e s1 [ i ] <− 0
}

}
r e s1 [ 1 ] <− NA

res2 <− vec to r (mode = " numeric " , l ength = length ( c l o s e ) )
f o r ( i in 2 : l ength ( r e s2 ) ) {

i f ( i n d i c [ i ]<=0){
r e s2 [ i ] <− volume [ i ]

}
e l s e {

r e s2 [ i ] <− 0
}

}
r e s2 [ 1 ] <− NA

re s <− c l o s e

f o r ( i in (n+1) : l ength ( c l o s e ) ) {
i f ( as . numeric (sum( re s2 [ ( i−n+1) : i ] ) − sum( volume [ ( i−n+1) : i

] ) ) == 0) {
r e s [ i ] <− 0

}
e l s e {
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r e s [ i ] <− as . numeric ( ( sum( re s1 [ ( i−n+1) : i ] ) − sum( volume
[ ( i−n+1) : i ] ) ) ) /

as . numeric (sum( re s2 [ ( i−n+1) : i ] ) − sum( volume [ ( i−n+1) : i
] ) )

}
}
r e s [ 1 : n ] <− NA

return ( r e s )
}

VOLR <− vo l_rat io ( c l o s e , volume , n = 3)
#############################
a_rat io <− f unc t i on ( open , high , low , n) {

prov1 <− high−open
prov2 <− open−low

r e s <− low
f o r ( i in (n) : l ength ( r e s ) ) {

r e s [ i ] <− (sum( prov1 [ ( i−n+1) : i ] ) ) /(sum( prov2 [ ( i−n+1) : i ] ) )
}
r e s [ 1 : ( n−1) ] <− NA

return ( r e s )
}

ARATIO <− a_rat io ( open , high , low , n = 10)
#############################
b_ratio <− f unc t i on ( c l o s e , high , low , n) {

prov1 <− high−c l o s e
prov2 <− c l o s e −low

r e s <− c l o s e
f o r ( i in (n) : l ength ( r e s ) ) {

r e s [ i ] <− (sum( prov1 [ ( i−n+1) : i ] ) ) /(sum( prov2 [ ( i−n+1) : i ] ) )
}
r e s [ 1 : ( n−1) ] <− NA

return ( r e s )
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}

BRATIO <− b_ratio ( c l o s e , high , low , n = 10)
#############################
REX <− SMA(3* c l o s e − ( low + open + high ) , n=20)
#############################
hpr <− f unc t i on ( c l o s e , n ) {

r e s <− c l o s e
f o r ( i in n : l ength ( c l o s e ) ) {

r e s [ i ] <− r e s [ i ] /max( c l o s e [ ( i−n+1) : i ] )
}
r e s [ 1 : ( n−1) ] <− NA
return ( r e s )

}

HPR <− hpr ( c l o s e , n=10)
#############################
l p r <− f unc t i on ( c l o s e , n ) {

r e s <− c l o s e
f o r ( i in n : l ength ( c l o s e ) ) {

r e s [ i ] <− min( c l o s e [ ( i−n+1) : i ] ) / r e s [ i ]
}
r e s [ 1 : ( n−1) ] <− NA
return ( r e s )

}

LPR <− l p r ( c l o s e , n=10)
#############################
vmom <− f unc t i on ( volume , n) {

r e s <− volume
f o r ( i in (n+1) : l ength ( r e s ) ) {

r e s [ i ] <− as . numeric ( volume [ i ] )−as . numeric ( volume [ i−n ] )
}
r e s [ 1 : n ] <− NA
return ( r e s )

}

VMOM <− vmom( volume , n = 10)
#############################
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mpp <− f unc t i on ( c l o s e , n ) {
r e s <− c l o s e
f o r ( i in n : l ength ( c l o s e ) ) {

r e s [ i ] <− ( c l o s e [ i ] − min( c l o s e [ ( i−n+1) : i ] ) ) /(max( c l o s e [ ( i
−n+1) : i ] ) − min( c l o s e [ ( i−n+1) : i ] ) )

}
r e s [ 1 : ( n−1) ] <− NA
return ( r e s )

}

MPP <− mpp( c l o s e , n = 10)
#############################
var_rat io <− f unc t i on ( c l o s e , n ) {

r e s <− c l o s e
f o r ( i in (2*n) : l ength ( r e s ) ) {

r e s [ i ] <− ( ( sd ( c l o s e [ ( i−n+1) : i ] ) ) ^2) / ( ( sd ( c l o s e [ ( i−n−n+1)
: ( i−n) ] ) ) ^2)

}
r e s [ 1 : ( 2 * n−1) ] <− NA
return ( r e s )

}
VARR <− var_rat io ( c l o s e , n = 10)
#############################
EMA <− TTR: :EMA( c l o s e , n = 10)
#############################
ATIVO <− j
#############################

BASIS <− cbind (ATIVO, AB_UP,AB_DOWN, AD, MFM, ADL, ADX, CHOSC,
ADO, APO, AR_POS, AR_NEG, AR_OSC, ATR, ATRP, AVOL, BB_UP,

BB_LOW, BB_BW, BWW, VOLAT, PERC_B, CCI , CMF, CVOL, CMO,
MAXX, MINN, CHAND_LONG, CHAND_SHORT, ROC, COPP, DPO, DMI,
DONCHIAN, DEMA, DSS , EMA, EMV, FORCE, HULL, KAMA, KC_U,
KC_M, KC_L, MQO_ALPHA, MQO_BETA, MQO_PRED, MQO_STD, MACD,
MACDH, open , c l o s e , volume , MAE_UP, MAE_LOW, MASS, RMF, MFI
, MIDPOINT, MIDPRICE, MOM, NVI , NATR, OBV, SAR, TP, SS1 ,
SS2 , SR1 , SR2 , FS1 , FS2 , FR1, FR2, PD1, DS1 , DR1, PC_UP,
PC_DOWN, CHOPPINESS, PPO, PPOH, PVO, PVOH, PVI , PVT, KST,
PSK, RSI , RVI , SMA, STRSI , STOCH_D, STOCH_K, STOCH_D_SLOW,
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TEMA, TRIMA, TRIX, TSI , ULCER, ULTOSC, VAMA, VWAP, VOOSC,
VPT, PVOI, NVOI, WILL_R, WMA, WWS, DISP , OSCP, PSY, DIU,
DID, BIAS , VOLR, ARATIO, BRATIO, REX, HPR, LPR, VMOM, MPP,
VARR, YYY)

colnames (BASIS) <− c ( "ATIVO" , "AB_UP" , "AB_DOWN" , "AD" , "MFM" , "ADL
" , "ADX" , "CHOSC" , "ADO" , "APO" , "AR_POS" , "AR_NEG" , "AR_OSC" , "ATR
" , "ATRP" , "AVOL" , "BB_UP" , "BB_LOW" , "BB_BW" , "BWW" , "VOLAT" , "
PERC_B" , " CCI " , "CMF" , "CVOL" , "CMO" , "MAXX" , "MINN" , "CHAND_LONG
" , "CHAND_SHORT" , "ROC" , "COPP" , "DPO" , "DMI" , "DONCHIAN" , "DEMA
" , "DSS" , "EMA" , "EMV" , "FORCE" , "HULL" , "KAMA" , "KC_U" , "KC_M" , "
KC_L" , "MQO_ALPHA" , "MQO_BETA" , "MQO_PRED" , "MQO_STD" , "MACD" , "
MACDH" , "OPEN" , "CLOSE" , "VOLUME" , "MAE_UP" , "MAE_LOW" , "MASS" , "
RMF" , "MFI" , "MIDPOINT" , "MIDPRICE" , "MOM" , " NVI " , "NATR" , "OBV" , "
SAR" , "TP" , " SS1 " , " SS2 " , " SR1 " , " SR2 " , " FS1 " , " FS2 " , "FR1" , "FR2" , "
PD1" , " DS1 " , "DR1" , "PC_UP" , "PC_DOWN" , "CHOPPINESS" , "PPO" , "PPOH
" , "PVO" , "PVOH" , " PVI " , "PVT" , "KST" , "PSK" , " RSI " , " RVI " , "SMA" , "
STRSI " , "STOCH_D" , "STOCH_K" , "STOCH_D_SLOW" , "TEMA" , "TRIMA" , "
TRIX" , " TSI " , "ULCER" , "ULTOSC" , "VAMA" , "VWAP" , "VOOSC" , "VPT" , "
PVOI" , "NVOI" , "WILL_R" , "WMA" , "WWS" , " DISP " , "OSCP" , "PSY" , "DIU
" , "DID" , " BIAS " , "VOLR" , "ARATIO" , "BRATIO" , "REX" , "HPR" , "LPR" , "

VMOM" , "MPP" , "VARR" , "YYY" )

l i s t a [ [ j ] ] <− BASIS %>% na . omit ( )
p r i n t ( j )
wr i t e . csv2 (BASIS , f i l e = paste0 ( vec [ j ] , " . csv " ) )

}

base_completa <− do . c a l l ( rbind , l i s t a )

save ( base_completa , f i l e = " basecompleta_USA . RData " )
wr i t e . csv2 ( base_completa , f i l e = " basecompleta_USA . csv " )

### Deep neura l networks

# S p l i t data in to t r a i n i n g and t e s t subse t s
col_Y <− which ( colnames ( base_completa ) == "YYY" )

t re ino_id <− seq_len ( f l o o r (0 . 75* nrow ( base_completa ) ) )
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t e s t e_id <− ( l ength ( t re ino_id ) + 1 : nrow ( base_completa ) )

medias <− apply (X = base_completa [ t r e ino_id , − col_Y ] , MARGIN
= 2 , mean)

de sv i o s <− apply (X = base_completa [ t r e ino_id , − col_Y ] , MARGIN
= 2 , sd )

x_test <− l i s t ( )
f o r ( i in 1 : l ength ( medias ) ) {

x_test [ [ i ] ] <− ( base_completa [− t r e ino_id , − col_Y ] [ , i ] −
medias [ i ] ) / de sv i o s [ i ]

}

x_test <− data . frame ( x_test )
names ( x_test ) <− colnames ( base_completa ) [−col_Y ]

x_train <− base_completa [ t r e ino_id , − col_Y ] %>% s c a l e ( )

colunas_nan1 <− which ( apply ( rbind ( x_train , x_test ) , 2 ,
f unc t i on (x ) i s . nan (x ) %>% sum () )

> 0 )

x_train <− x_train [ , − which ( colnames ( x_train ) %in% names (
colunas_nan1 ) ) ]

x_test <− x_test [ , − which ( colnames ( x_test ) %in% names (
colunas_nan1 ) ) ]

x_test <− as . matrix ( x_test )

y_train <− i f e l s e ( base_completa [ tre ino_id , col_Y ] == 1 , 1 , 0)
%>%

as . matrix ( ) %>%
to_ca t ego r i c a l ( y_train , num_classes = 2)

y_test <− i f e l s e ( base_completa [− tre ino_id , col_Y ] == 1 , 1 , 0)
%>%

as . matrix ( ) %>%
to_ca t ego r i c a l ( y_train , num_classes = 2)

preco_puro <− base_completa [ − tre ino_id , "CLOSE" ]
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r e s u l t a d o s <− l i s t ( )

co lunas <− l i s t ( )

# Columns picked by f e a t u r e s e l e c t i o n methods
co lunas$todas <− colnames ( x_train )
co lunas$todas <− s e t d i f f ( co lunas$todas , names ( colunas_nan1 ) )

colunas$todas_tab1 <− c ( "SMA" , "WMA" , "EMA" , "MOM" , "STOCH_K" , "
STOCH_D" , "STOCH_D_SLOW" , " RSI " , "MACD" , "WILL_R" , "ADO" , " CCI " , "
ROC" , " DISP " , "OSCP" , "PSY" , "DIU" , "DID" , " BIAS " , "VOLR" , "ARATIO" , "
BRATIO" , "ATR" , "BB_UP" , "BB_LOW" , "DMI" , "KC_U" , "KC_L" , "TRIMA" , "
MAE_UP" , "MAE_LOW" , "REX" , "NVI " , " PVI " , "VAMA" , "HPR" , "LPR" , "MAXX
" , "MINN" , "VMOM" , "MPP" , "PPO" , "SAR" , "OBV" , "VOLAT" , "MFI" , "VARR
" , "MQO_BETA" , "OPEN" , "CLOSE" , "VOLUME" )

colunas$todas_tab1 <− s e t d i f f ( colunas$todas_tab1 , names (
colunas_nan1 ) )

c o l una s $ l a s s o <− c ( "MFM" , "ADL" , "ADX" , "CHOSC" , "ADO" , "APO" , "AR_NEG
" , "ATRP" , "AVOL" , "BB_BW" , "BWW" , "PERC_B" , " CCI " , "CMF" , "CVOL" , "
ROC" , "COPP" , "DPO" , "DMI" , "DEMA" , "DSS " , "EMV" , "FORCE" , "HULL" , "
MQO_ALPHA" , "MQO_BETA" , "MQO_STD" , "CLOSE" , "VOLUME" , "RMF" , "MOM
" , "NVI " , "NATR" , "OBV" , " DS1 " , "DR1" , "CHOPPINESS" , "PVO" , "PVOH" , "
PSK" , " RSI " , " RVI " , " STRSI " , "STOCH_D" , "STOCH_K" , "STOCH_D_SLOW" , "
TSI " , "ULTOSC" , "VAMA" , "PVOI" , "PSY" , "DIU" , " BIAS " , "VOLR" , "BRATIO
" , "REX" , "HPR" , "VMOM" , "MPP" , "VARR" )

co l una s $ l a s s o <− s e t d i f f ( co lunas$ l a s so , names ( colunas_nan1 ) )

co lunas$ lasso_tab1 <− c ( "SMA" , "WMA" , "MOM" , "STOCH_K" , "STOCH_D" , "
STOCH_D_SLOW" , " RSI " , "MACD" , "WILL_R" , " CCI " , "ROC" , " DISP " , "OSCP
" , "PSY" , "DIU" , "DID" , " BIAS " , "VOLR" , "ARATIO" , "BRATIO" , "BB_UP" , "
DMI" , "REX" , "NVI " , " PVI " , "HPR" , "LPR" , "VMOM" , "MPP" , "PPO" , "SAR" , "
OBV" , "VOLAT" , "MFI" , "VARR" , "MQO_BETA" , "OPEN" , "CLOSE" , "VOLUME" )

co lunas$ lasso_tab1 <− s e t d i f f ( co lunas$ lasso_tab1 , names (
colunas_nan1 ) )

co lunas$ s t epw i s e <− c ( "DPO" , "MFM" , " BIAS " , "AR_POS" , " STRSI " , "DID
" , "ROC" , "MOM" , "ARATIO" , "PPOH" , "VMOM" , "EMV" , "PVOH" , "DMI" , " RVI
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" , " SS1 " , "MQO_PRED" , "AB_DOWN" , "CHAND_SHORT" , "APO" , "VARR" , "FR1
" , "ATRP" , "NATR" , "ULTOSC" , "DEMA" , "STOCH_D" , "DONCHIAN" , "KST" , "

CMO" , "RMF" , "OSCP" , "CHAND_LONG" , "PSK" , "MIDPOINT" , "AB_UP" , "ADX
" , "VAMA" , "BB_UP" , "TRIMA" , "MASS" , "EMA" , " DS1 " , "PVOI" , "KAMA" , "
CCI " , "PERC_B" , "OBV" , " TSI " , "HULL" )

co lunas$ s t epw i s e <− s e t d i f f ( co lunas$s tepwise , names ( colunas_nan1
) )

co lunas$stepwise_tab1 <− c ( "WILL_R" , "LPR" , "REX" , "ARATIO" , "ADO" , "
STOCH_D_SLOW" , "STOCH_K" , "VARR" , "BB_UP" , "TRIMA" , "MINN" , "MPP" , "
DMI" , "WMA" , "VAMA" , " CCI " , " RSI " , "KC_U" , "MACD" )

co lunas$stepwise_tab1 <− s e t d i f f ( co lunas$stepwise_tab1 , names (
colunas_nan1 ) )

co luna s$ to rne i o <− c ( "WWS" , "MFM" , "KC_M" , "FR2" , "VOLR" , "LPR" , " NVI
" , "STOCH_K" , " STRSI " , "TRIX" , " RSI " , "ULTOSC" , "NATR" , "DIU" , "CLOSE
" , "ATR" , "ATRP" , "MPP" , "OSCP" , "FR1" , "VOLAT" , "NVOI" , " DISP " , "
AB_UP" , "HULL" , "AR_OSC" , "ADL" , "DID" , "OBV" , " SS2 " , "BB_BW" , "VMOM
" , " SS1 " , "DONCHIAN" , "PVOI" , "MQO_PRED" , "PPOH" , "TP" , "KC_L" , "KC_U
" , "CHOSC" , "CHOPPINESS" , "VOLUME" , "DPO" , "ADO" , "CVOL" , "MAE_UP" , "
PVI " , "HPR" , " DS1 " )

co luna s$ to rne i o <− s e t d i f f ( co lunas$ to rne io , names ( colunas_nan1 ) )

co lunas$torne io_tab1 <− c ( "MAE_LOW" , "DIU" , "SMA" , "STOCH_K" , "
BB_LOW" , "WMA" , "BRATIO" , "CLOSE" , "WILL_R" , " CCI " , "LPR" , "VOLR" , "
DID" , " BIAS " , "PPO" , " DISP " , "HPR" , "OBV" , "SAR" , "NVI " )

co lunas$torne io_tab1 <− s e t d i f f ( co lunas$torne io_tab1 , names (
colunas_nan1 ) )

r e s u l t a d o s <− l i s t ( )
#### ======== CENARIO 1 ========== #####
ind i c ado r e s <− l i s t ( )
f o r ( i in 1 : l ength ( co lunas ) ) {

co lunas_se l <− which ( colnames ( x_train ) %in% co lunas [ [ i ] ] )

f o r ( k in c ( ’ sigmoid ’ ) ) {
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f o r ( j in c ( 0 , 0 . 3 ) ) {

model <− keras_model_sequentia l ( )

# Def ines the network ’ s a r c h i t e c t u r e
model %>%

layer_dense ( un i t s = 15 , a c t i v a t i o n = k , input_shape =
length ( co lunas [ [ i ] ] ) ) %>%

layer_dropout ( ra t e = j ) %>%
layer_dense ( un i t s = 15 , a c t i v a t i o n = k) %>%
layer_dropout ( ra t e = j ) %>%
layer_dense ( un i t s = 15 , a c t i v a t i o n = k) %>%
layer_dropout ( ra t e = j ) %>%
layer_dense ( un i t s = 15 , a c t i v a t i o n = k) %>%
layer_dropout ( ra t e = j ) %>%
layer_dense ( un i t s = 2 , a c t i v a t i o n = ’ sigmoid ’ )

# Loss func t i on and opt imiza t i on method
model %>%

compile (
l o s s = ’ ca t ego r i ca l_c ro s s en t ropy ’ ,
opt imize r = optimizer_rmsprop ( ) ,
met r i c s = c ( ’ accuracy ’ )

)

# Trains the model
h i s t o r y <− model %>% f i t (

x_train [ , co lunas_se l ] , y_train ,
epochs = 400 , batch_size = 128 ,
v a l i d a t i o n _ s p l i t = 0 .2

)

r e s u l t a d o s [ [ l ength ( r e s u l t a d o s ) + 1 ] ] <− data . frame (
Var i ab l e s = names ( co lunas [ i ] ) ,

Hidden_layers = 3 ,
Dropout = j ,
Act ivat ion = k ,
Accuracy_in = hi s to ry$met r i c s$va l_acc [ [ 4 0 0 ] ] ,
Accuracy_out = model %>%
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eva luate ( x_test [ , co lunas_se l ] , y_test ) %>%
. $acc

)

i nd i c ado r e s [ [ l ength ( i nd i c ado r e s ) + 1 ] ] <− data . frame (
y_teste = y_test ,
p r ed i t o s = p r e d i c t _ c l a s s e s ( model , x_test [ , co lunas_se l

] ) , preco_close = preco_puro )

}
}

}

tabela_1_base1_br <− do . c a l l ( rbind , r e s u l t a d o s )
i nd i c ado r e s 1 <− i nd i c ado r e s
save ( ind i cadore s1 , f i l e = " conf_price_3lay . RData " )
wr i t e . csv ( tabela_1_base1_USA , f i l e = " tabela_1_base1_USA . csv " ,

row . names = F)
save ( tabela_1_base1_br , f i l e = ’ tabela_1_base1_USA . RData ’ )

##### −−−−−−−−−−−−−−−−−−−− Fim Cenario 1 : −−−−−−−−−−−−−−−−−−−−−
######

## Procedure i s analogous f o r networks with 5 and 7 hidden
l a y e r s

re su l t_base1 <− rbind ( tabela_1_base1_br ,
tabela_2_base1_br ,
tabela_3_base1_br )

wr i t e . csv ( resu lt_base1 , f i l e = " resu l t_base123 . csv " , row . names =
F)

save ( resu lt_base1 , f i l e = ’ resu l t_base123 . RData ’ )

### c l a s s i f i c a t i o n eva lua t i on metr i c s

mega_lista <− c ( ind i cadore s1 , ind i cadore s2 , i nd i c ado r e s 3 )

acc <− c ( )
p r e c i s i o n <− c ( )
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r e c a l l <− c ( )
f_score <− c ( )

f o r ( i in 1 : l ength ( mega_lista ) ) {
p1 <− ( ( mega_lista [ [ i ] ] $y_teste .1*2+ mega_lista [ [ i ] ] $y_teste . 2 )

−2)*(−1)
p2 <− mega_lista [ [ i ] ] $p r ed i t o s
t1 <− t ab l e (p1 , p2 )
i f ( nco l ( t1 )==2){

acc <− c ( acc , sum( diag ( t1 ) ) /sum( t1 ) )
pp1 <− t1 [ 2 , 2 ] / ( t1 [2 ,2 ]+ t1 [ 1 , 2 ] )
p r e c i s i o n <− c ( p r e c i s i on , pp1 )
pp2 <− t1 [ 2 , 2 ] / ( t1 [2 ,2 ]+ t1 [ 2 , 1 ] )
r e c a l l <− c ( r e c a l l , pp2 )
f_score <− c ( f_score , ( ( ( 1/ pp1 ) +(1/pp2 ) ) /2) ^(−1) )

}
e l s e {

i f ( unique ( p2 )==0){
acc <− c ( acc , sum( diag ( t1 ) ) /sum( t1 ) )
p r e c i s i o n <− c ( p r e c i s i on , 0)
r e c a l l <− c ( r e c a l l , 0)
f_score <− c ( f_score , 0)

}
i f ( unique ( p2 )==1){

acc <− c ( acc , sum( diag ( t1 ) ) /sum( t1 ) )
pp1 <− t1 [ 2 , 1 ] / ( t1 [2 ,1 ]+ t1 [ 1 , 1 ] )
p r e c i s i o n <− c ( p r e c i s i on , pp1 )
pp2 <− 1
r e c a l l <− c ( r e c a l l , 1)
f_score <− c ( f_score , ( ( ( 1/ pp1 ) +(1/pp2 ) ) /2) ^(−1) )

}
}

}

r e su l t_a l l_met r i c s <− cbind ( resu lt_base1 , acc , p r e c i s i on , r e c a l l ,
f_score )

p r i n t ( r e su l t_a l l_met r i c s )
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wr i t e . csv2 ( r e su l t_a l l_met r i c s , " metrics_USA . csv " )

### Strategy p r o f i t a b i l i t i e s and t r an sa c t i on c o s t s

mega_lista <− c ( ind i cadore s1 , ind i cadore s2 , i nd i c ado r e s 3 )

t r a n s a c t i o n s <− c ( )
ganho <− c ( )
TC_zero <− c ( )
TC_BH <− c ( )
BandH_macro <− as . numeric ( )

f o r ( ind in 1 : l ength ( mega_lista ) ) {
donde <− mega_lista [ [ ind ] ]
donde$preco_close <− base_completa2$CLOSE [ ( nrow ( base_completa2

)−(nrow ( donde ) −1) ) : nrow ( base_completa2 ) ]
donde$at ivo <− base_completa2$ATIVO [ ( nrow ( base_completa2 )−(

nrow ( donde ) −1) ) : nrow ( base_completa2 ) ]

t ransact ions_micro <− c ( )
ganho_micro <− c ( )
TC_zero_micro <− c ( )
TC_BH_micro <− c ( )
BandH_micro <− c ( )

f o r (nom in 1 : l ength ( unique ( donde$ativo ) ) ) {
t e s t e <− donde [ donde$ativo==unique ( donde$at ivo ) [ nom ] , ]
BandH <− as . numeric ( t e s t e $p r e co_c l o s e [ nrow ( t e s t e ) ] ) − as .

numeric ( t e s t e $p r e co_c l o s e [ 1 ] )

acao <− c ( i f e l s e ( t e s t e $ p r e d i t o s [1]==1 , " compra " , " mantem " ) )
f o r ( i in 1 : ( nrow ( t e s t e ) −2) ) {

i f ( t e s t e [ [ " p r e d i t o s " ] ] [ i +1] − t e s t e [ [ " p r e d i t o s " ] ] [ i ]
== 1 ) {

acao [ i +1] <− " compra "
} e l s e i f ( t e s t e [ [ " p r e d i t o s " ] ] [ i +1] − t e s t e [ [ " p r e d i t o s

" ] ] [ i ] == −1 ) {
acao [ i +1] <− " vende "

} e l s e {
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acao [ i +1] <− "mantem"
}

}

# Number o f ope ra t i on s
t ransact ions_micro <− c ( transact ions_micro , sum( acao %in% c

( ’ vende ’ , ’ compra ’ ) ) )

# P r o f i t a b i l i t y under each model
mod_op <− data . frame ( Acao = acao ,

Fator = i f e l s e ( acao == " compra " , −1 ,
i f e l s e ( acao == " vende " ,

1 , 0) ) ,
Preco = t e s t e [ [ " preco_c lose " ] ] [ 1 :

l ength ( t e s t e [ [ " preco_close " ] ] ) −1] )

ganho_micro <− c ( ganho_micro , sum(mod_op [ [ " Preco " ] ] * mod_op
[ [ " Fator " ] ] ) )

TC_zero_micro <− c ( TC_zero_micro , (sum(mod_op [ [ " Preco " ] ] *
mod_op [ [ " Fator " ] ] ) ) /(sum( acao %in% c ( ’ vende ’ , ’ compra ’ ) ) ) )

TC_BH_micro <− c (TC_BH_micro , (sum(mod_op [ [ " Preco " ] ] *
mod_op [ [ " Fator " ] ] ) − BandH) /(sum( acao %in% c ( ’ vende ’ , ’
compra ’ ) ) ) )

BandH_micro <− c (BandH_micro , BandH)
}

t r a n s a c t i o n s <− c ( t r an sac t i on s , mean( transact ions_micro ) )
ganho <− c ( ganho , mean( ganho_micro ) )
TC_zero <− c (TC_zero , mean( TC_zero_micro ) )
TC_BH <− c (TC_BH, mean(TC_BH_micro) )
BandH_macro <− mean(BandH_micro )

}

r e s u l t _ s t r a t e g i e s <− cbind ( resu l t_base1 [ , 1 : 3 ] , ganho , t r an sac t i on s
, TC_zero ,TC_BH)

resu l t_strateg i e s$TC_zero [ which ( i s . nan ( resu l t_st rateg i e s$TC_zero
) ) ] <− 0
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result_strategies$TC_BH [ which ( i s . nan ( result_strategies$TC_BH ) ) ]
<− 0

result_strategies$TC_BH [ which ( i s . i n f i n i t e (
result_strategies$TC_BH ) ) ] <− 0

p r i n t ( r e s u l t _ s t r a t e g i e s )

wr i t e . csv2 ( r e s u l t _ s t r a t e g i e s , " strategies_USA . csv " )

#### Procedure i s analogous f o r a l l o ther markets
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