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Simulation data are presented for identifying and analysing the
dynamic properties of the rainbow metamaterials as presented in
the articles “Rainbow metamaterials for broadband multi-
frequency vibration attenuation: numerical analysis and experi-
mental validation” (Meng et al., 2019 [1]) and “Optimal design of
rainbow elastic metamaterials” (Meng et al., 2019 [2]). In this data
article, the frequency response functions and mode shapes of the
rainbow metamaterials are numerically calculated by Finite
Element models set up in Ansys Mechanical APDL. Harmonic
analysis was performed to figure out the receptance function
values of the rainbow metamaterials within the frequency regime
0e500 Hz. Modal analysis was applied to estimate the mode
shapes, which could be used to explain the critical peaks and dips
in the receptance function curve. Source files of Finite Element
models are provided in the data. The Finite Element simulation is
not only an effective alternative way to estimate the dynamic
properties of the rainbow metamaterials, the mode shape analysis,
which is unlikely to be achieved with the analytical model, pro-
vides direct insights into the underlying vibration mechanism of
the rainbow metamaterials.
© 2019 The Author(s). Published by Elsevier Inc. This is an open
access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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Specifications Table

Subject Mechanical Engineering
Specific subject area Finite element simulation of metamaterials
Type of data Table

Graph
Figure
Ansys file

How data were acquired Numerical simulation
Data format Raw and analyzed
Parameters for data collection The Finite Element simulation models of the rainbow metamaterial are set up in Ansys

Mechanical APDL. The rainbow metamaterial beam has free boundary conditions.
Receptance functions and vibration mode shapes within the frequency range 1e500 Hz
are simulated.

Description of data collection The receptance functions of the rainbow metamaterial beam are solved out by
conducting harmonic analysis. The metamaterial beam is assumed to be excited by a
force F ¼ 1 N in z-direction at one end. The mode shapes are obtained with the
employment of modal analysis. Critical peaks and dips in the receptance function curve
is explained with the mode shapes.

Data source location University of Nottingham, Nottingham, UK
Data accessibility Raw simulation data files are with the article.
Related research article H. Meng, D. Chronopoulos, A.T. Fabro, W. Elmadih, I. Maskery. Rainbow metamaterials

for broadband multi-frequency vibration attenuation: Numerical analysis and
experimental validation. Journal of Sound and Vibration. https://doi.org/10.1016/j.jsv.
2019.115005
H. Meng, D. Chronopoulos, A.T. Fabro, I. Maskery, Y. Chen. Optimal design of rainbow
elastic metamaterials. International Journal of Mechanical Sciences. https://doi.org/10.
1016/j.ijmecsci.2019.105185.

Value of the Data
� The data allows the prediction of frequency response functions and modal shapes of the rainbow metamaterials with

Finite Element simulation method in Ansys Mechanical APDL
� The numerical simulation data could not only act as an alternative method of modelling the rainbow metamaterial, the

modal shapes can reveal the underlying vibration attenuation mechanism that cannot be given out by the presented
analytical model [1,2], which would aid readers to fully understand the rainbow metamaterials.

� The numerical simulation data can be easily reproduced by researchers in the areas of metamaterials or Finite Element
modelling, hence serve as a workbench for the analysis and design of rainbow metamaterials.
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1. Data

This article gives the numerical simulation data of dynamic properties of rainbow metamaterials
(i.e. resonating elastic metamaterials composed of a P-shaped beams and parallel plate insertions as
backbone structures along with the spatially varying cantilever-mass resonators as shown in Fig. 1).
The rainbow metamaterial can exhibit single or multifrequency bandgaps depending on whether the
two sets of resonators attached to different side walls are symmetric [1,2].

The receptance functions and mode shapes of the rainbowmetamaterial are numerically calculated
by Finite Element (FE) models set up in Ansys Mechanical APDL. The receptance function values of the
rainbow metamaterial are obtained as shown in Fig. 3.

Typical mode shapes of the rainbowmetamaterials with corresponding natural frequencies equal to
the critical peak and dip frequencies marked in the receptance function curve of Fig. 3 are plotted in
Fig. 4(a)-(h) respectively.

Raw simulation data for the receptance functions and mode shapes are shared respectively as
supplemental files “FRFcal.db” and “Modeshape cal.db”.
2. Experimental design, materials, and methods

In the FE model, the modelling assumptions are as follows: the P-shaped beam and parallel plate
insertions are modelled by Shell181 element, the cantilever beams Beam188 element, and the
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Fig. 1. Schematic diagram of the rainbow metamaterial.

Fig. 2. FE model of the rainbow metamaterial beam set up in Ansys.
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spatially varying mass21 element. All the boundaries of the rainbow metamaterial beam are
unconstrained.

For the receptance function simulation, a load force F ¼ 1 N in Z-direction is exerted on one end of
the beam as shown in Fig. 2. Harmonic analysis is subsequently conducted with the ‘full’ method,
which solves the simultaneous equation of motion directly. Receptance functions of the metamaterial
beam within the frequency range 0e500 Hz are consequently obtained with ratios of predicted dis-
placements at the other end of the beam and the exciting force. With regard tomode shape simulation,
Fig. 3. Receptance function values of the rainbow metamaterial calculated by the presented FE model. The ratios of mass of res-
onators m1i and m2iði¼ 1;2; :::;mÞ to that of backbone structure mr are also plotted in the subfigure.



Fig. 4. Mode shapes of the rainbow metamaterial with natural frequencies equal to the critical frequencies marked in Fig. 3.
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Table 1
Physical parameters of the calculated rainbowmetamaterial.

Parameter Value

density 930 kg/m3

Flexural modulus 1.8 GPa
Loss factor 0.03

Table 2
Geometrical parameters of the calculated rainbow metamaterial beam.

Parameters Value

Backbone structure Height 10 mm
Width 51 mm
Side wall thickness 2 mm
Backplate thickness 5 mm
Plate insertion thickness 2 mm
Distance between plate insertion 15 mm
Number of segments m ¼ 17

Cantilever beam Height hs1 ¼ 1:4 mm; hs2 ¼ 2:3 mm
Width bs1 ¼ 1:9 mm; bs2 ¼ 2:3 mm
Length ls1 ¼ ls2 ¼ 21:2 mm
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modal analysis is carried out with ‘Block Lanczos’ method. The physical parameters and geometrical
parameters of the rainbow metamaterial are listed in Tables 1 and 2.

The obtainedmode shapes could explain the critical points in receptance function curve, which also
reveals the vibration mechanism of the rainbowmetamaterial. As can be seen from Fig. 4(a), (e), (f) and
(h), vibration of the rainbow metamaterial at frequenciesf2, f3, f4and f7 is subjected to mode shapes
with dramatically deformed resonators and undeformed backbone structure, namely, the vibration of
backbone structure is suppressed at these frequencies, dips therefore appear in the receptance curve as
shown in Fig. 3. By contrast, obvious deflection of the backbone structure as well as the resonators
could be seen from the mode shapes with natural frequencies f1, f5, f6 and f8, which means the
backbone structure vibrates dramatically as the resonators at these frequencies, peaks thus can be seen
from Fig. 3 at corresponding frequencies.
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Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2019.104772.
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