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Many rational aspects of some fields of physics, including those related to the process of discovery, may be better
understood using methodological tools typical of the philosophical analysis of science. Throughout this paper we
shall use the heuristic tradition of Descartes’ analytical (or discovery) method for a rational reconstruction of Gibbs’
thermodynamics, or thermodynamics of potentials, seeking to emphasize the potentialities of the representational
character of science. Our contention is that Descartes’s method of discovery illuminates the intellectual itinerary
of the construction of the thermodynamics of potentials.
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1. Introduction

In general, we can say that the goal of science is to
produce adequate and satisfactory explanations for phe-
nomena that strike us. The ”adequate” and ”satisfac-
tory” qualifications refer to those explanations that obey
testable and falsifiable universal laws, constructed from
a given set of initial conditions. However, the phenomena
to be explained do not always correspond to something
never observed before - for example, the discovery of the
magnetic effects generated by electric currents (1823),
which brought about an authentic ”scientific race.” Sci-
entific curiosity may focus on already established ex-
perimental laws, seeking universal rules from which the
former could be inferred; Even universal laws or theo-
ries can become the target of the theoretical scientist, in
search of principles or theories with ever richer content
and a higher degree of universality [1, pp.190-192]. It
is in this context that we defend the idea that Gibbs’s
work - by reformulating Clausius’s thermodynamics as
the thermodynamics of potentials - expresses this quest.

*Correspondence email address: cassio@unb.br.

To carry out this work, Gibbs used skills that involve
a reflection on scientific activity itself - and, to a certain
extent, belongs more to the field of the philosophy of
science or epistemology. The demarcation line between
science and the philosophy of science is far from clear
and indisputable, but the reflection on scientific activity,
although equally performed by scientists, is the prime
object of the philosophy of science or epistemology. Thus,
the reformulation of thermodynamics developed by Gibbs
constitutes an excellent example of a theory elaborated
according to a heuristic tradition that we identify with
Descartes’ method of analysis, to which he also refers as
a method of construction or discovery.

From this perspective, discovery becomes amenable to
rational reconstruction, since a theoretical construction
like Gibbs, carried out according to the method of anal-
ysis, is also a discovery. However, this perception was
contradicted or ignored by the prevailing philosophy of
science during the first half of the 20th century, logical
positivism. In fact, the interest in the thermodynamics
of potentials transcends the frontiers of physics, also be-
coming an object of study in epistemology. To explore
this issue, which we believe to be valuable to scientists
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and not just philosophers, it is necessary to introduce a
series of concepts proper to epistemology. This will be
the goal of section 2. In section 3, the heuristic tradition
of Descartes’s analytical method will be presented, seek-
ing to provide a framework for the discussion of Gibbs’s
thermodynamics, which will be the subject of section 4.

2. The context of discovery in science

One of the leading philosophers of science in the 20th

century and one of the most fervent advocates of logical
positivism (also known as neopositivism or logical em-
piricism) was Hans Reichenbach (1891-1953), for whom
rational reconstruction - the object under consideration
in epistemology - corresponds to a “form in which think-
ing processes are communicated to others persons instead
of the form in which they are subjectively performed” [2,
p.6]. As such, he established that epistemology is inter-
ested in logic and not the psychology of these processes.
Following this demarcation of terrains, he introduces
the distinction between the context of discovery and the
context of justification - just a few years after the publica-
tion of Popper’s “The Logic of Scientific Discovery” [3]-,
placing discoveries (in science) as the result of merely
psychological processes and, therefore, outside the scope
of interest of logic [2, p.30]. This corresponds to the claim
that science, especially physics, does not discuss how the
author came to a specific solution, but how he justifies it.
In the case of Newtonian mechanics, this would be to say
that epistemology does not investigate how the author
conceived his expression of force, but how, once incorpo-
rated into the system, that vector quantity resulted in
the particular laws of motion that were experimentally
verified. Many articles - especially by classic authors,
Gibbs among them - explores this process.

In addition to Reichenbach and Popper, Hempel [4](im-
plicitly), Feigh [5], Salmon [6] and others shared this
view about the scope and limits of this distinction, which
is a reflection of the understanding of philosophy as
the philosophy of language, whose normative evaluation
of propositions, that is, its justification, should be car-
ried out logically, leaving aside other criteria, such as
the methodological criterion. Specifically on this topic,
Hoyningen-Huene identifies five versions of the distinc-
tion between the context of discovery and the context of
justification, of which the third is the fact that discovery
is described empirically, and justification, logically [7].
According to the reductionism of logical positivism, there-
fore, discovery is very often described according to its
insights through images or analogies that reproduce the
psychological states or processes of the scientist’s mind,
as in the paradigmatic discovery of benzene’s ring struc-
ture by Kekulé [8].

The logical demarcation of the justification context is
not characteristic nor exclusive to the logical empiricism
of the 20th century. Even before, many authors shared the
view that there is neither logic nor method to discovery.

This is the case, for example, of the British philosopher
and science historian William Whewell. A follower of
Hume and a contemporary of the great discoveries in
the field of thermodynamics and electromagnetism in the
19th century, he saw that the deductive method could not
be separated from the inductive method because “deduc-
tion is a necessary part of induction. Deduction justifies
by calculation what induction had happily guessed” [9, p.
115]. For him, discovery was not merely the product of
the combination of particular facts, but of their union
through the act of thinking, to formulate a more gen-
eral concept, that combines them [9, p.72]. This act of
thinking, however, could not be ordered according to a
method. The general concept supplied by the mind is in-
vented and can be associated with other facts or concepts
on the same level, from which more general concepts or
principles are induced, like climbing a ladder in which the
ascension to the next rung is done through a movement
of induction [9, p.114]. The inductive movement is not
justified in and of itself, but in the deductive demonstra-
tion, which shows, as in a downward movement, the most
general principles of particular facts. If invention cannot
be justified in this way, it cannot be called an invention.
It is in this sense that deduction is a necessary part of
induction.

Although Whewell presents the scientific method as
being predominantly an inductive method - it should
start with data provided by rigorous scientific experimen-
tation, it is justified, in the strictest sense, only through
its complementary deductive movement. Discovery re-
mains, as it were, outside the space of demonstration,
of logic, pushed aside as a psychological phenomenon.
Furthermore, the logical entity of induction is insufficient,
a fact which, given the relationship between induction
and discovery, casts this last concept even further away
from the terrain of justification.

From this angle, two paths can be followed to try to
reintroduce discovery, albeit only partially, in the terrain
of justification. In the first path, it is necessary to recog-
nize a certain independence of induction in relation to
deduction as a method of demonstration to remove dis-
covery from the labyrinth of psychology, which amounts
to giving it certain powers of evidence and logic. This
path, however, is strenuous and the result is not free of
problems, as testified by Carnap’s work on probability
and inductive logic. The second path is not new and
will be revisited here. In the 17th century, Descartes
rigorously formulated it, disconnecting induction and dis-
covery, the latter being understood by him as the result
of a method: analysis.

3. Descartes’ method of discovery

There is a chronological distance of more than two cen-
turies between Descartes and Gibbs. Even so, their meth-
ods to approach scientific problems bring them extremely
close to each other. Without fear of exaggeration, Descartes
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can be identified as the main thinker behind the new
image of the modern world, both political and scien-
tific. The substantial dualism between the cogito and
the masses in motion is the pillar of these two worlds
(the socio-political and the natural). Descartes ushered
in modernity not only ontologically, but also epistemo-
logically and methodologically [10]. Taking geometry as
a model for the organization of knowledge, Descartes
created the transcendental problem with the postulation
that, from knowledge to being, the consequence is good.
Thus, he stated that our knowledge of the outside world
is always an intellectual or theoretical knowledge, which
uses ideas and concepts to represent the outside world
and to uphold the pretense of verisimilitude. Knowledge
must therefore be submitted to empirical testing after
its internal consistency has been assessed.

As if this were not enough, the adoption of geometry
as the model for the organization of knowledge has a
boundless heuristic potential. At the beginning of La
Géométrie [11], Descartes introduces a reference system
in accordance with which a unity is established to teach
how to add, subtract, divide, multiply and take the square
root of segments of straight lines, whose results are once
again segments of straight lines, and not rectangles or
solids, as was traditionally done (in the case of multipli-
cation), and therefore limited to three dimensions. This
stratagem allowed him to expand the space from three to
n dimensions, and so he transformed the Euclidean geo-
metric space, which was supposed to represent physical
space, into a purely intellectual space of n dimensions.
With this simple idea, he created a reference system with
unity, built on the intersections of the straight lines of
Thales’s theorem, which is a theorem of proportions of
parallel straight lines cut by transversal straight lines,
for any angle. In other words, it is a system of rules to
operate with segments and produce segments, convert-
ing geometric problems into algebraic problems and vice
versa.

Here we have the origin of one of the most powerful
tools to create ideas and solve scientific problems: the
representation of a problem can be made in different lan-
guages, maintaining the same informational content; and
the adoption of a specific representation can significantly
simplify the solution to a problem. With Descartes’s
reference system and his rules for the conversion of geo-
metric figures into algebraic equations, the same problem
can be represented in different ways depending on the
adopted reference system, and it is possible to ensure the
transition from one system to the other through rules
without any loss of informational content. Even more
relevantly, the solution to a problem may be simpler
in a given representation than in another. Effectively,
an essential part of solving a problem is to represent it
adequately.

The first problem solved by Descartes in Geometry,
after establishing his method of constructing algebraic
equations of geometric problems, is attributed to Pappus,

the so-called Pappus‘s four line loci problem. In fact, this
problem had been elaborated by Euclid and taken up
by Apollonius, but neither one nor the other resolved it
satisfactorily. Pappus then provides a solution for the
simplest cases, these of four and five lines. For larger
numbers of lines, the problem remains either by the in-
trinsic complexity or by the constraint imposed by the
purely geometric conception of the problem involving, in
its formulation, the comparison between figures: rectan-
gle with square (four line loci problem), rectangle with
rectangle (five line loci problem) and parallelepiped with
parallelepiped (six line loci problem). The comparison
is made employing the areas or volumes of the figures
– and always area with area and volume with volume
–, which correspond, respectively, to products of two or
three straight lines [11, pp. 304-311]. For products with
more terms, the old geometry was not able to attribute
a meaning1.

By using algebraic representation, Descartes not only
determines the solution curves for the original problems
but extends the comparison for products with more than
three straight lines. In the movement toward solution,
the first step is to consider the problem solved, naming
all the lines that seem necessary for the construction,
also those that are unknown. In particular, there are two
segments formed by the straight lines and extensions that
Descartes calls x and y. Since the angles between the lines
are given, they can all be expressed as a function of x
and y. The second step is to take expressions to the same
straight line and equate them, assembling equations. The
idea is to continue with this procedure until you find an
equation where the unknown data is just x and y. This
infinite amount of points form a locus, which can and
must be traced, according to Descartes.

This final equation is the solution of the problem in
algebraic language, incomprehensible, therefore, to the
old geometers. To make it understandable, it must be
translated in terms of straight lines, conic sections, and
other curves that can be accurately drawn (certainty).
The end result can be summarized as follows:

When the number of lines does not exceed
five, and the lines do not intersect at right
angles, he argues that the locus will be de-
scribed by a quadratic equation and can thus
be found using a ruler and a compass. When
the number of lines is between five (inter-
secting at right angles) and nine lines, the
equation becomes either a cubic or a quartic
equation and can thus be found using conic
sections. For problems with nine lines inter-
secting at right angles, or up to thirteen lines
intersecting at non-right angles, the answer is
an equation of the fifth or sixth degree which

1We purposely avoided describing Pappus’s problem because, al-
though it involves only straight lines, clear enunciation of it requires
a series of details, which certainly needs much more space.
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can be constructed with curves more complex
than the conic sections [12, p.8].

Descartes’s method of translating to algebra allows
him to solve and generalize geometric problems at hand.
It is a new and powerful way of thinking about the old
geometrical problems. However, due to this novelty, the
algebraic equation solution of the problem had to be
expressed entirely in geometric terms, the mathematical
language known at that time together with the theory
of proportions, which restricted the legitimacy of the
method to the curves that could be traced precisely to the
resources of the time [12, p. 24]. As this requirement was
loosened, a fact related to the very development of algebra
and the birth of Calculus, the program put forward
by Descartes in La Géométrie, to combine geometry
and algebra to solve any geometrical problem, became a
reality. With these ideas, Descartes changed two thousand
years of history.

It is equally interesting to realize that this is the one
thing that makes Gibbs replace the representation by
cycles with the representation by potentials in thermo-
dynamics, employing the resources of the diagrammatic
and geometric representation to finally arrive at the
formulation of algebraic potentials. Going further, we
can conclude that the construction of the representa-
tion of thermodynamics, from cycles to potentials, is a
process that simulates the analytical method defended
by Descartes as the method of discovery which in fact
consists in a method to construct representations [13].

It is worthwhile, for the moment, to make some consid-
erations about Cartesian analysis. Even though Descartes
applied this method in his scientific works, such as La
Géométrie, La Dioptrique and Les Météores (which follow
the Discours de la Méthode, which served as an intro-
duction to them), it can be argued that Descartes does
not present analysis and synthesis as parts of the sci-
entific method anywhere as clearly and succinctly as in
the response to the second objection in Les Méditations
Métaphysiques. On the other hand, Whewell removed
the issue of discovery from the context of induction and
deduction and introduced it in the context of analysis
and synthesis. For Descartes, both analysis and synthesis
possess the quality of justification, which in Whewell
lies only in the deductive movement. Through them it is
possible to demonstrate, but in a different way. The first
one uses invention, while the second one uses composition
(construction) or exposure [14, p.177]. However, order
characterizes both modes of demonstration. It is a logical
order, since the propositions that come after rely solely
on those that come before, and those that come before
cannot depend on anything that comes after. It is in this
sense that analysis and synthesis are structured methods
according to a logical order.

There is a disparity between the Latin original and the
French translation authorized by Descartes, and made
by Clerselier, which has been detected and analyzed
by several reviewers. This is not the proper place to

dwell on this interesting question, but it is necessary to
understand both texts harmonically and, to this end,
we choose to follow Loparic’s interpretation [15] as the
most convincing one. With this in mind, the original text
says that “analysis shows the true way by which a thing
was methodically discovered and derived, as if a priori”
- here the conjunction “as if ” suggests that analysis is
not a priori, but simply simulates an a priori procedure,
and the French text adds that discovery comes to be
through a procedure that goes from the effects to the
causes, assuming the solution to the problem is a given.
In mathematics, this consists in assuming the unknown
factor as given or the theorem to be proven as true. This
clarification concerning the term a priori is essential, since
for medieval thinkers an argument is a priori if it goes
from cause to effect, from principle to consequence, while
an argument is a posteriori if it connects the effects to the
causes, the consequences to the principles, in apparent
disagreement with the Cartesian texts.

The Latin text then mentions that “synthesis, on the
other hand, works in the opposite direction, retracing
the path, so to speak, a posteriori (although the proof
itself is, in this case, often more a priori than in the
other), clearly demonstrating what is contained in its
conclusions”, here the adverb a posteriori indicates that
the synthesis starts with the conclusion reached by the
analysis, while the a priori in parentheses indicates that
the proof in the synthesis occurs through a process that
goes from cause to effect, as the French translation makes
clear Loparic explains “the typical usage of synthesis is
not to ‘examine’ what follows from the causes, but to
start with known causes to prove (a priori) the existence
of this or that effect” [15, pp.148-149].

As methods, therefore, analysis and synthesis have
different attributes, which allow the first to be charac-
terized as a procedure of discovery and the second as an
exposition of already acquired truths. Analysis precedes
synthesis, although the latter may be presented sepa-
rately, outside the context of discovery, as in Euclidean
geometry. This possibility of isolating synthesis has noth-
ing to do with a supposed need for analysis to logically
complement synthesis, as we can see occurring between
induction and deduction in Whewell. In Descartes, anal-
ysis and synthesis are independent ways to demonstrate,
a relation that was not so explicit even in the Discourse
on the Method, as emphasized by Battisti:

So far, following the example of the Greek
geometricians, the Cartesian method was gen-
erally composed of two complementary stages,
even if sometimes linked together or even pre-
sented separately (especially in mathematics).
In this case, analysis presents itself as self-
sufficient even when demonstrative. However,
this characteristic is not absolutely new or
unexpected. First, because this phenomenon
occurred within the history of mathematics,
to the extent that synthesis became indepen-
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dent from analysis, albeit not as a method
of discovery, but especially with the advent
of algebra, through which analysis no longer
needed the assurance given by synthesis (i.e.,
from its demonstrative part, keeping only its
constructive part). Secondly, given the impor-
tance attributed to discovery, Descartes has
always considered the analytical step as criti-
cal, reserving the reorganization of the steps
or the exposition of the problem’s solution for
synthesis, along with the proof of some of the
relationships that made it possible. [16, p.350]

The decomposition of the scientific method into two
movements, the inductive and the deductive, as Whewell
prefers to put it, where the first one is only demon-
strated in the second, is not juxtaposed to Descartes’s
conception in Les Méditations. The reason for this is that
analysis is not directly associated to induction, not even
for Whewell, for whom “geometric deduction (and deduc-
tion in general)is called synthesis, because we introduce,
at successive steps, the results of the new principles. But
in reasoning on the relations of space, we sometimes go
on separating truths in their component truths, and these
in other component truths, and so on. And this is geo-
metric analysis” [9, p.12]. Here, synthesis and deduction
are synonymous, both for Whewell and Descartes, but
Whewell’s analysis does not involve the upward move-
ment inherent to induction, while deduction descends
on the same ladder, whose top was established through
induction in a single leap [9, p.114]. It is, in a single
term, inventive, but not demonstrative, and therefore it
remains limited to the scope of psychology, outside the
space of the method.

According to Whewell‘s categories, Cartesian analysis
is a combination, of ascending induction, which gives it
an a priori character, and classical analysis performed
a posteriori, inferring the cause from the effects. The
incorporation of induction gives it an inventive character,
while the classical analysis gives it a methodological
character and, as such, a certain justification power,
which should not be understood as inferior in comparison
with deduction, but as different, of another nature.

Descartes is far from to be original in the character-
ization and use of methods of analysis and synthesis.
In fact, both methods refer back to classical antiquity.
Hintikka, in a celebrated work, reconstructs the methods
from the “Collections” book of Pappus and in the light
of other classic works of antiquity. To obtain a similar-
ity to Descartes descriptions, it is enough to observe
how Hintikka summarized the method of analysis in this
context:

Analysis is a method Greek geometers used
in looking for proofs of theorems and for con-
structions to solve problems. In both cases,
analysis consists in assuming what was being
sought for, in inquiring where it comes from,

and in proceeding further till one reaches
something already known. The analysis is
followed by a synthesis in which the desired
theorem or construction is established step
by step in the usual manner by retracing the
stages of the analysis in the reverse order
[...] This concept is one of the rare avenues
through which instances of non-trivial modes
of logical inference have found their way into
the awareness of earlier philosophers of sci-
ence, logic, and mathematics” [17, pp. 1-2].

He also adds that geometrical analysis was not only
one of the starting-points of Descartes’ analytical geom-
etry; it was also one of the inspirations of his general
methodological ideas, as we are advocating.

The use Descartes makes of the method of analysis
is extensive, covering such different subjects as episte-
mology, mathematics, physics, metaphysics and theology.
Two examples are sufficient to evaluate the operation of
this method. The first is taken from the Second Med-
itation, in which the philosopher tackles the problem
of finding one thing that is certain and unquestionable.
The search for the answer starts by recognizing, first of
all, the conceptual foundation of the problem to then
establish a method, the method of doubt, which enables
the operationalization of the analysis and casts a doubt
on all see, remember and feel; all these impressions may
be fictions of the mind. As such, the very existence of
the senses and the body is put in check. The question of
existence, in this case, plays a central role in the method,
because it represents the radicalization of doubt, faced
with which the answer to the problem appears intuitively:

But I was persuaded that there was nothing
in all the world, that there was no heaven,
no earth, that there were no minds, nor any
bodies: was I not then likewise persuaded
that I did not exist? Not at all; of a surety I
myself did exist since I persuaded myself of
something … - we must come to the definite
conclusion that this proposition: I am, I exist,
is necessarily true each time that I pronounce
it, or that I mentally conceive it. [14, p.12]

Here, doubt, extended to existence itself, allows us to
determine with certainty something which no doubt can
affect, which is the fact of existence made evident by the
act of thinking, even if wrongly. Since it could not be
otherwise, the solution to the problem follows the general
model of rationality formalized by Descartes, in which
a foundation composed of concepts and propositions
is organized by a method, understood as a system of
inference with rules and criteria through which other
propositions are evaluated regarding their accuracy; that
is, one considers whether other propositions also belong
to the foundation of the system of knowledge and, wheter
this, foundation be expanded [18]
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The decision whether a given proposition should belong
to the foundation of a system of knowledge; consists
in the solution to the proposed problem. In this sense,
deciding is solving the problem. However, the system of
inference with rules and criteria, as mentioned above,
is not able per se to generate such a decision. In this
case, the method of doubt alone does not make the
proposition “I exist” clear. The system of inference must
be embedded in a greater logical structure, like a routine
in a computer program. One must not forget that the
routine is also a program, but a program with a limited
scope in relation to the logical structure. The latter
is the one capable of providing a conclusive decision
on a proposition, revealing whether it belongs or not
to the system. The two of synthesis and analysis, as
conceived by Descartes, are the logical structures to which
routines should be added. The term “method”, therefore,
specifies both the greater algorithm for the solution to
the problem (synthetic or analytic) and the algorithm
that acts as a heuristic resource and operationalizes the
decision method. However, for a matter of didactic, we
shall avoid using the term “method” in this second sense,
preferring the term “intermediate idea”.

In this case, the systematic doubt take on the role
of a thought experiment, in which the use of the ma-
lignant genius -which can deceive men in relation to all
the impressions of the external world - promotes its radi-
calization. In this situation we can see that Descartes’s
epistemology is an epistemology with a subject, i.e, the
Cartesian theory of knowledge implies (in a privileged
way) a rational and conscious subject. This condition
(the malignant genius) acts as the intermediate idea that
allows us to connect the foundation to the first certainty
of knowledge - “I am, I exist” -, thus solving the problem.
It is clear that the systematic doubt will fail to provide
the solution to the problem if not associated with a foun-
dation, which can be identified or added to a hypothesis
that enables the resolution. This logical order, which
comprises a particular algorithm, is the one that classic
rationalism often calls the method of analysis [19]. There
are, therefore, two meanings the term “method” can
have. The first one, more general, refers to synthetically
or analytically operationalized decidability; the second
one, more particular, since it focuses on the proposed
problem, is the algorithm or routine, that operationalizes
the analysis. Here, the method of the systematic doubt
operationalizes the method of analysis with the aid of
the malignant genius hypothesis.

The other example is taken from La dioptrique. In
the search for an explanation of the nature of light that
would also allow for a reproduction of the refraction phe-
nomenon, Descartes uses the tennis balls model to try
to understand how and why the ball deviates from an
extension of the line of incidence when it passes from
air to water. With this model, he understands that the
deviation at the interface between the two media is the
result of a change in the speed of the ball, which decreases

when going from the air to the water. In comparison with
the angle of incidence, therefore, the angle of refraction
increases. However, what is observed in the case of Snell’s
Law, which describes the light refraction phenomenon,
is that the angle of refraction decreases. Descartes con-
cludes, therefore, that light is

[...] nothing else but a certain movement or an
action, received in a very subtle material that
fills the pores of other bodies; and you should
consider that, as a ball loses much more of its
agitation in falling against a soft body than
against one that is hard, and as it rolls less
easily on a carpet than on a totally smooth
table, so the action of this subtle material
can be much more impeded by the particles
of air, which, being soft and badly joined,
do not offer it very much resistance, than by
those of water, which offer it much more; and
still more by those of water than by those
of glass of crystal. So that, the harder and
firmer are the small particles of a transparent
body, the more easily do they allow the light
to pass: for this light does not have to drive
any of them out of their places, as a ball must
expel those of water, in order to find passage
among them. [11, pp.107-108]

Given Descartes’ enormous prestige, the assertion that
the speed of light is greater in water and crystal than in
air was challenged by few, one of them being Pierre de
Fermat, who brought his solution of the problem to the
public with the principle of least time, just after the death
of the other [20]. Biographical details aside, Descartes
represents the problem as a dynamics of shocks, with the
experimental laws of collisions between hard spheres and
means with different consistencies. The intermediate idea
is description of the nature of the propagation of light,
namely a subtle matter whose agitation and propagation
is higher in more consistent (harder) means, which, when
transferred to the context of the dynamics of shocks,
makes possible the solution of the problem, that is, the
inference of the Snell’s Law. We see, therefore, that the
basis of knowledge is composed of the dynamics of shocks,
which Descartes himself had developed;and the model of
the nature of the propagation of light in the context of
dynamics of shocks is the intermediate idea that makes
the method of analysis operative, given the discovery
of the law of refraction 2. Schematically, in the present
example, the knowledge base (shocks dynamics) plus the
intermediate idea (the model of the propagation of light)
constitutes the method of analysis, whose associated
operation is a discovery, justified precisely by the method
of analysis. This discovery is amenable to a rational
reconstruction, not through deductive logic, much less an
inductive process, but through the method of analysis.
2A more detailed study of the heuristics of representation in the
optics of Descartes and Fermat can be found in [21].
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In both this and the previous example, the starting
point is assumed as a given of the problem or, to use a
more proper terminology for mathematics, the value of
the unknown that solves the problem is assumed as given:
the problem is soluble. In the second example, given the
basis of knowledge, this stratagem allows the tennis ball
model of light, as moving matter. The requirement for
this was Cartesian metaphysics, for which the universe is
reducible to extensive matter in motion. In each case, the
choice of an adequate representation - with the addition
of an intermediate idea - operationalizes this structure
as a method, the method of analysis, that allows us
to discover or to invent the solution to the proposed
problem.

This is Descartes’s method of discovery. As such, dis-
covery becomes the logical outcome of a method? No, the
intervention of a psychological element is still necessary.
There are no recipes to determine the most appropri-
ate representation nor the intermediate idea, which are
central and indispensable parts of this inventive move-
ment. In Descartes, what happens is that this element
is reduced to its minimal expression, one in which the
intuition of discovery becomes evident thanks to the
construction of a representation, through the method of
analysis, in which discovery becomes intuitive, without
the need of other evidence but one’s own intuition.

The solution, therefore, becomes part of the system
of knowledge as one more given. According to the struc-
ture of the Cartesian method, however, intuition can be
taken as a hypothesis and tested in accordance with its
consequences, logically completing, the upward analyti-
cal movement with the downward synthetic movement.
In the latter, consequences are also deducted from the
hypothesis with the aid of concrete models, with other
propositions being potentially obtained in addition to
those that led to discovery. One movement, however,
does not always follow the other in that order in time.
Lagrange’s works on mechanics provide a unique exam-
ple of the complementarity and independence of the two
movements. A little over twenty years before the publica-
tion of Mécanique Analytique [22], Lagrange had already
deducted the equations of motion for a range of situa-
tions, including fluids, from the principle of least action,
understood as a technique for solving problems and not
as a metaphysical principle. However, it is only in Mé-
canique Analytique that he incorporates the principle of
least action from the law of balance - which originally
belongs to the context of statics - changing it to the prin-
ciple of virtual velocities according to D’Alembert. The
methodological movement is ascending. The empirical
foundation is represented concisely in the principle of
virtual velocities and, with the help of some hypotheses
and differential calculus, this principle is integrated.

Inspired by the work of Lagrange, Hamilton performs
a similar task in Optics. The first problem he faced was
to determine the focal mirror for a system of rays, that
is, to find a mirror that reflects a given bundle of rays to

a single point or focus. The law of reflection, generalized
to a beam in space, is represented by a linear form whose
difference coefficients depend on the cosines of the angles
of incidence and reflection. As the reflected rays converge
to a focus, the cosines of the angles of this part are
definable functions once the coordinates of the mirror are
known. Thus, the problem is restricted to the incident
part of the system, and the condition for the solution
is that the incident beam is cut perpendicularly by a
series of surfaces, with any of these being the locus of
the mirror which reflects the beam to a single point.
However, this condition is equivalent to saying that the
linear form corresponding to the incident part is an exact
differential, which can therefore be integrated, providing
the analytical expression of the series of surfaces.

The sum of the distances from one of these surfaces
to the mirror and from it to the focus is therefore the
same for all rays of the beam, defining every surface -
considering a fixed mirror - as a static value for the sum
of distances. After satisfying the indicated conditions,
therefore, a variational principle related to the distance
traveled by the light can be inferred. Hamilton notes
that the subtraction between the distances traveled by
the incident ray, measured from one of the perpendicular
surfaces, and the reflected ray is also constant. For this
reason, he gives these surfaces the name of surfaces of
constant action, analogously with Mechanics, although
his argument does not rely on any - corpuscular or un-
dulatory - metaphysical statement regarding the nature
of light.

Since the surfaces characterize a constant action, the
associated variational principle can be equivalently ex-
pressed in terms of the representative function of the
surface and no longer by the distances traveled by the
rays. In this sense, instead of describing the geometric
properties of the beam, the system is also characterized
by the function of the series of surfaces. Hamilton calls
this function a characteristic, since all the properties of
the system can be deducted from it using the variational
method, which translates into a set of differential equa-
tions involving the characteristic function and properties
of the system. This movement, it should be noted, is
descending, going from principle to empirical foundation.
Subsequently, he exposes the deep affinity between the
method developed for Geometric Optics and Lagrange’s
Mechanics, establishing the Lagrangian and Hamiltonian
functions as characteristic functions in Mechanics 3.

4. Gibbs’ thermodynamics

In physics, there are few and rarely intentional examples
of the application of Descartes’ method of analysis. One

3This is a summary of the first six sections of “Theory of systems
of rays” (Transactions of the Royal Irish Academy, v. 15, 1828, p.
69-174), where Hamilton applies his method to reflection optics.
For Refraction and the relationship with Analytical Mechanics,
see [23].
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of these, however, is the construction of Gibbs’ thermody-
namics, also known as the thermodynamic of potentials.
Before Gibbs, the science of heat could be called the
thermodynamics of cycles, because in it Carnot’s cycle
- which reproduces the operation of a reversible (ideal)
machine - reveals itself both as the heuristic instrument
enabling the formulation of the law of conservation of
energy and the concept of entropy, and as a model from
which the relations between thermodynamic quantities
are deducted in the form of empirically testable laws 4. As
an indispensable resource for the thermodynamic of cy-
cles, which simplifies the first law to d

′
Q = d

′
W 5 (where

Q indicates the heat exchanged and W the mechanical
work performed), the operation of thermal machines and
thermodynamic phenomena are represented in pressure
by volume diagrams (PxV), which make it possible to
extract the amount of work by means of the geometric
properties of the area circumscribed by the cycle. This
is how Clapeyron proceeded to deduce the equation that
bears his name and which relates the pressure variation to
the temperature variation for substances in state changes,
as did Maxwell to establish his homonymous relations.

Further details about the characterization of classical
thermodynamics - historically from Carnot to Clausius,
including part of Maxwell’s research - as the thermody-
namics of cycles are in reference [25]. For the present
study, it is enough to know that the qualification “of
cycles” corresponds to the fact that the diagrammatic
representation is the central resource for the investigation
and solution of problems in this historical stage of science
of the heat. Hence, the thermodynamics of cycles can
also be called diagrammatic thermodynamics, because
the empirical basis is often represented in this way, and
the properties of the pressure-by-volume diagram (PxV),
are often used to address and solve problems.

On the other hand, in potential thermodynamics, the
description of thermodynamic systems through functions
emphasizes the analytical aspect of this approach, whose
explanatory power is based on the mathematical prop-
erties of the energy function, which foster alternative
and equivalent representations of the system through the
Legendre transformations [13, chap. 5] and where the
integrability of the linear forms of multiple potentials
reproduces the so-called Maxwell relations.

A apparent gulf seems to separate the cycle and poten-
tial versions of thermodynamics. However, the potential
approach is heuristically dependent on the cycle approach,
at least in Gibbs’ formulation. By heuristically depen-
dent, we mean more than a conceptual dependence, in
the sense that the inherent concepts of thermodynam-
ics were initially proposed and subsequently made clear
through the representation by cycles, as is the case with
the concepts of equilibrium, reversibility, absolute tem-

4More details on Carnot’s cycle can be found in [24].
5The notation d

′ is used here to emphasize that Q and W are not
state functions, therefore, in a mathematical language d′ is not an
exact differential.

perature, energy, and entropy. The heuristic dependence
is manifested in the fact that potential thermodynamics
is formulated based on an analytical understanding of the
diagrammatic representation peculiar to the thermody-
namics of cycles. This understanding is analogous to that
of Descartes‘s, which led him to establish a simple and
direct line of communication (translation rules) between
Euclidean geometry and algebra. In thermodynamics,
this path is established by Gibbs and visible in the first
two articles he wrote on the subject.

There are three articles in which Gibbs builds his
version of thermodynamics: in the first two, the goal
was to find the most appropriate way to represent ther-
modynamic systems possessing the peculiarity of being
macroscopic and completely described by two indepen-
dent variables, chosen from a set of five. In the first of
these articles, “Graphical Methods in the Thermodynam-
ics of Fluids” (April-May 1873), Gibbs analyzes and ex-
tends the properties of the diagrammatic representation,
a fundamental tool in the thermodynamics of the time.
The starting point is the usual PxV diagram. Looking
at this through the first law, i.e., dU = d

′
Q − d

′
W , with

d
′
Q = TdS, for reversible processes, and d

′
W = PdV ,

the variables V, −P and −W may be replaced respec-
tively by S, T and Q without the equations changing
as a whole. The first remains unchanged, while the sec-
ond is transformed into the third and the third into the
second. This symmetry suggests that this diagram can
be transformed into a temperature by entropy diagram,
without changing its physical and geometrical properties,
namely, the amount of heat used is equal to the mechan-
ical work performed, the latter being determined by the
area circumscribed by the cycle [26, p.9]. This reasoning
by symmetry allowed him to introduce the TxS diagram
as a tool for the analysis of thermodynamic processes,
which implies simplifications for the study of phenomena,
such as the one represented by the sequence of processes
performed by the Carnot machine.

Greater attention, however, is dedicated to another
diagram, SxV, whose x-axis represents the entropy values
and the y-axis the volume values of great relevance in the
representation of processes in which two or three phases
of a substance coexist. In such cases, all processes are
such that temperature and pressure remain constant, as
a condition of the coexistence of different phases, with
only the entropy and the volume of the parts changing.
In a PxV graph, these processes are represented by a
segment of a straight horizontal line, while in a SxT
graph they are represented by a segment of a straight
vertical line. This is the advantage of this diagram: it is
more convenient to study the properties of substances,
while the other two are more suitable to determine the
work or the heat released in certain cases. The reason
for the greater convenience of the SxV diagram for the
study of phase changes is that the two variables chosen,
entropy and volume, are extensive and not intensive, i.e.,
they are both proportional to the amount of substance,
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while pressure and temperature are not. The quantity of
the substance in each state, therefore, is detected and
expressed by the diagram [26, p.xv]. There is, however,
a price to pay for the availability of more information.
With a little bit of mathematics, it is possible to make
explicit that such diagrams have a work scale factor that
is given by − d2U

dV ds, which means that this is not provided
directly by the area between the curve representing the
thermodynamic process and the volume axis, unlike what
happens in the PxV and TxS diagrams, which have a
constant scale factor equal to one. When the processes
constitute a cycle, work and heat, which in PxV and
TxS were given by the circumscribed area due to the fact
that the first law, here reduced to d

′
Q = d

′
W , acquires

the form −( d2U
dV dS dV dS). With the aid of the identities

P = − dU
dV and T = dU

dS , which Gibbs already knew, the
scaling factor is also written dP

dS and − dT
dV [26, pp. 20-23].

As noted, the greater convenience of the SxV diagram
in relation to the other two rests on the extensive nature
of the volume and entropy values. In the case of a state
change, as heat is exchanged with the environment, por-
tions of the substance pass from one state to another,
and those states coexist until the substance is completely
converted. The extensive nature of these quantities allows
for an exact tracking of the evolution of portions of the
substance in each state through volume and entropy. In
addition, representations through the mentioned quanti-
ties are equivalent to focusing attention on the substance
and its characteristics, as transition curves and coexis-
tence phases [26, p.24]. Just as in the thermodynamics of
cycles, the diagram remains indispensable, but the cycles
cease to be the method for the extraction of information
from the physical system. This is directly available in the
diagram, as in the case in which the region between the
points where the substance is completely in the solid, liq-
uid and gaseous state corresponds to a domain of volume
and entropy values in which the three states coexist.

Interpreting this articles by Gibbs as the first step
toward a theory of potential thermodynamics [13, chap.
5], the knowledge of greatest relevance displayed here is
not a new law or principle, but a way of representing
thermodynamic systems, that includes the phase change
phenomena. A historical fact confirms this judgment.
In 1863, Thomas Andrews presented his experimental
results about the coexistence conditions of solid, liquid
and gaseous states and of the critical state, in some
substances. According to Klein [27, pp.6-7], Andrews’s
discovery, which revealed an unexpected general property
of matter, captured Gibbs’ attention, especially since
it addressed an issue not yet theoretically analyzed by
the community. With his attention on this, Gibbs’ first
concern was to develop an adequate representation of
substances in phase changes.

With this representation, processes can be described in
terms of entropy and volume variations, but in this way
and in accordance with the first law (dU = TdS − PdV ),
the energy variation, another extensive quantity, can be

seen as the combination of the variation of the other
two extensive quantities. Gibbs‘s merit is that this view
allows for an interpretation of the first law combined with
the second law restricted to reversible processes (d′

Q =
dS/T ) as an exact differential of an energy function U =
U(S, V ). Immediately, the SxV diagrams acquire a very
precise meaning: they are the equivalent to projections
of the process in the surface U = U(S, V ) on the plane.
In other words, the empirical foundation contained in
the first law, written as above, is also represented by a
surface that represents the energy of the system, since
the differential form is exact.

The diagrams representing the substance in two di-
mensions make place, therefore, for surfaces, which incor-
porate the former representation as projection planes. In
this sense, they constitute a richer and more comprehen-
sive representation than the two-dimensional diagram.
This change in the representation space cannot be found
in the work “Graphical Methods in the Thermodynamics
of Fluids” (1873), although it is announced:

The possibility of treating the thermodynam-
ics of fluids by such graphical methods as
have been described evidently arises from the
fact that the state of the body considered, like
the position of a point in a plane, is capable
of two and only two independent variations.
It is, perhaps, worthy of notice, that when
the diagram is only used to demonstrate or il-
lustrate general theorems, it is not necessary,
although it may be convenient, to assume any
particular method of forming the diagram; it
is enough to suppose the different stages of
the body to be represented continuously by
points upon a sheet. [26, p.32].

Change is the subject of Gibbs’ second article, “A
Method of Geometrical Representation of the Thermody-
namic Properties of Substances by Means of Surfaces”,
exemplified by the fact that the

[...] properties of a fluid are determined by
the relations which exist between the volume,
pressure, temperature, energy, and entropy of
a given mass of the fluid in a state of thermo-
dynamic equilibrium [...] But all the relations
existing between these five quantities for any
substance may be deduced from the single
relation existing for that substance between
the volume, energy, and entropy [28, p.33].

This relationship consists in the differential expression
of the first law dU = TdS − PdV , with the coefficients
T = (∂U

∂S )V and P = −( ∂U
∂V )S , which is equivalent to

interpreting energy as a function of entropy and volume,
i.e., as a surface in the configuration space of rectangular
coordinates energy, entropy and volume. Arranging V,
W, U respectively as the X, Y, Z axes, the temperature
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given by the energy derivative in relation to entropy,
while the volume remains constant (T = ( ∂U

∂S )V ) corre-
sponds to the slope or tangent of the surface U(S,V) in
the direction S at each point or state of the fluid, while
the pressure corresponds to the tangent of the surface in
the direction V, also for each point. This means that the
tangent plane at each point of the surface is defined by
a temperature and pressure value. In this sense, if one
knows the surface U(S,V), the other properties of the
substance are obtained by derivation, namely, tempera-
ture and pressure, which are the state equations of the
system. This is different than how James Thomson pro-
ceeded when he represented substances by the surfaces
T(P,V), from which, however, the state equations of the
system cannot be directly inferred, by derivation. The
conclusion is categorical:

It is evident, however, that the relationship
between the volume, pressure and tempera-
ture affords a less complete knowledge of the
properties of the body than the relationship
between volume, entropy, and energy. [28,
p.34].

The yellow plane (Figure 1) is tangent to the surface
U(S,V) at the point P. With the state equations of tem-
perature and pressure, given in the previous paragraph,
these quantities resemble the vectors generating the tan-
gent plane, therefore, directly derived from the expression
of energy. On the other hand, when the analytical form of
the energy is not yet known, with the values of the tem-
perature and pressure pair obtained by the experiment,
planes can be overlapped in such a way as to form the
envelope of the surface U(S,V). This is the idea behind
the Gibbs-Duhem relationship: from the empirical basis
represented by the values of temperature and pressure,
we infer the expression of energy. [29, p.47]

Consequently, the representation of an object has an
influence on its understanding. In one of these, more
information needs to be added to the representation, in

Figure 1: Gibbs‘ diagrammatic representation

the form of additional equations, so that the five proper-
ties of the system can be determined. In the other, the
representation contains all the information pertaining to
the properties, with two of these being derived directly
from the algebraic expression of the surface. The simpli-
fication operated by Gibbs is based on the compression
and the logical order with which the extensive (V,S, U)
and intensive (T, P) properties are arranged. It is this
logical relationship that provides more completeness to
the representation using the volume, entropy and energy
coordinates.

This mode of representation can also be applied to
cases in which different portions of a body are in different
states, always assuming that the whole is in thermody-
namic equilibrium. At this point, however, it is necessary
to introduce a distinction: the thermodynamic surface
must be divided in two parts, one of which represents
the homogenous states, called primitive surface, and the
other the heterogeneous states, called derived surface.
The previous designation follows from the fact that, given
the first surface, the second one, the derivative, is imme-
diately formed. The derived surfaces are constructed by
tangent planes, and the values of the extensive quantities
of the parts are summed together to compose the values
of the whole, while the values of the intensive quantities
are simply shared. Thus, the whole has the same temper-
ature and pressure values as in equilibrium. The state, for
example, in which the body is partly solid, partly liquid
and partly vapor, is represented by a triangular plane
on the primitive surface, which, as previously stated,
represents only homogeneous states. As such,

[...] The position of the point determined by
the volume, entropy, and energy of such a
compound will be that of the center of grav-
ity of masses proportioned to the masses of
solid, liquid, and vapor placed at the three
points of the primitive surface which repre-
sent respectively the states of complete solid-
ity, complete liquidity, and complete vapor-
ization, each at the temperature and pressure
of the compound [26, p.36].

Since the temperature and pressure pair defines the
plane tangent to a point on the primitive surface, the
three points on the primitive surface and the compound
states determined by the center of gravity belong to a
common tangent plane. The points mentioned, which
represent homogeneous states, constitute the vertices of
a triangle that corresponds to the derived surface for the
substance composed of three physical states. The points
on the derived triangle all have identical temperature and
pressure, and the extensive properties are determined
there by the weighted average of the vertex values of
each one, relative to the partial masses in each physical
state: VT otal = ( MsolVsol+Mliq.Vliq.+MvapVvap

MsolMliqMvap
), where Vsol,

Vliq and Vvap are the values of the volume in the vertices
referring to the states of complete solidity, complete
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liquidity and complete vaporization. The same is valid
for entropy and energy.

As Gibbs himself pointed out, the SxV diagram is
more appropriate to represent phase change phenomena,
but the arrangement of the isobaric isotherms on it was
not clear, a flaw that can be overcome through the rep-
resentation by primitive and derivative surfaces. In this
sense, the intellectual path taken by Gibbs to get to
the thermodynamics of potentials begins with the appre-
ciation of the cycles and its geometric support, which
is the diagrammatic representation of thermodynamic
phenomena. However, Gibbs expands the possibilities
of representation, highlighting the potentialities of the
PxV, SxT and SxV graphs. The latter, as previously
mentioned, is the most convenient for the representation
of phase change phenomena, with no more need to resort
to cycles. Of these, only the representative diagrammatic
substrate remains. Next, Gibbs develops the idea, which
is latent in the graph method, of the representation of
the energy of surface substances, as emphasized above.

With surface representation, Gibbs is also able to char-
acterize the critical points mathematically in a formal
and broad way compared to the more intuitive way that
came from the analysis of the isotherms in the vicinity
of the critical point in the Andrews diagram, thus pro-
viding a theory for this new phenomena [26, p. 46]. This
characterization is made through the resources that the
geometric representation itself offers, such as the notion
of normal curvature, contact order and tangent planes
[26, p. 44-46]. A similar reading of Gibbs’ second article
will be improved in a paper still to be published, which
aims, among other things, to detail how geometry was
used to equate this problem mathematically and how
this representative element resulted in a greater heuristic
power of the Gibbs theory in comparison with that in
force before him. It is precisely this aspect that leads us
to understand Gibbs’ thermodynamics, both in geometric
and algebraic representation, as something more than a
mere systematization of the thermodynamics before him.

There are physical reasons, implicit in this work by
Gibbs that authorize us to make additional statements
about U = U(S, V ). The first of these is linked to the
fact that the temperature is measured on a positively
defined absolute scale. Since T = ( ∂U

∂S )V is the slope
of the tangent line to the curve described by energy
in relation to entropy, at constant volume, it can be
said that, since T > 0, U (S, V) as a growing monotonic
function of S. Moreover, the principle of minimum energy
is equivalent to stating that energy is a convex function of
the entropy, its convexity being directly connected to the
line tangent to the curve described by the function. The
second assertion is related to the fact that the specific
heat at constant volume (Cv) - expressed by (∂2U

∂S2 )V =
( ∂T

∂S )V = T
CV

- is always positive, in agreement with the
condition of convexity of the function, which implies
( ∂2U

∂S2 )V ≥ 0.

The notion of convexity used by Gibbs, especially
in his second paper, is more intuitive and comes from
Archimedean static, corresponding to the generalization
that if a plane figure lies on one side of a line, its centroid
lies on the same side of the line. Gibbs would have carried
this notion to surfaces, but not to identify regions of con-
vexity. As a physicist, his goals go beyond mathematics
or pure geometry. He seeks to characterize the states
of a substance in thermodynamic equilibrium as stable,
metastable, neutral and unstable. And because of the
strong intuitive connection between these two notions,
in Physics, it is easy to read convexity where Gibbs is
strictly speaking of stability. In fact, it may be that he
understands them as synonyms. If he did it, we do not
know, but we know that a contemporary of him did it.

Almost ten years after the publication of Gibbs’s sec-
ond paper, Paul Saurel, investigating the critical states
of a binary system, finds that conditions similar to those
mentioned in two paragraphs above, but which combine
energy with the masses of the subsystems, are verified,
declaring then that “thus at every point which corre-
sponds to a phase in stable equilibrium the G (Gibbs
potential) curve is convex toward the m (mass) axis” [30,
p.630]. The reason for this ambiguity is the absence of a
rigorous and comprehensive formalization of convexity.
As Wighman draws attention, like Saurel, Gibbs was also
ambiguous in using these notions. This, however, was
not for less, since a mathematical theorem combining
convex functions with their convex conjugates, essential
for the description of the system by different potentials,
appeared only in 1948 [31, p. xxix]. Therefore, it is not
surprising that the condition of convexity applied to
energy, as found in Wighman, namely

U [aS1 + (1 − a)S2, aV1 + (1 − a)V2] ≤ aU(S1, V1)
+(1 − a)U(S2, V2) (1)

onde S0 ≤ S1, S2 < ∞ e 0 ≤ a ≤ 1, is not present in
the works of Gibbs [31, p.xi].

There is an equivalent definition of convexity, which
requires the differentiability of the function. This defini-
tion can be applied to energy according to the version of
Gibbs’ second paper [32, p. 71], because there the differ-
entiability of energy in relation to entropy and volume is
assumed [26, p.33]. With this, the geometric property of
the convexity is again recognized in the energy function.

In his next article, “On the equilibrium of heteroge-
neous substances”, this geometric property is still implicit
in the enunciation of the criterion of equilibrium and
stability, which is the principle from which all other in-
formation about the system can be synthetically derived.
Assuming the convexity of surface, energy is subject to
Legendre’s transformations, from which the other ther-
modynamic potentials are obtained. Therefore, ascending
to the convexity of energy not only allows us to reach
the (variational) principle of the theory, which is the
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criterion of equilibrium and stability, but also to estab-
lish that this is also valid for other potentials, which
are no longer described in terms of independent vari-
ables (volume and entropy), but as pairs, such as volume-
temperature, pressure-entropy and pressure-temperature.

That Gibbs‘s intention was to formulate a thermody-
namics based on a principle of equilibrium and stability
(∂U ≥ 0 or ∂S ≤ 0) is clear in a brief article summarizing
the main points of “On the equilibrium of heterogeneous
substances”. There he recognizes that his inspiration was
the Static, conceiving the potentials as a kind of force-
function of the system [33, p. 441-442]. But to achieve
the principles, he had to discover them by means of an
auxiliary construction, the representation of the empiri-
cal basis by surface in UxSxV configuration space, which
simulates Descartes‘s method of analysis.

The representation by surfaces is the heuristic instru-
ment that favors the transition from the formalism of
cycles to the formalism of potentials in thermodynamics,
which is not presented explicitly in Gibbs’ most famous
work, “On the Equilibrium of Heterogeneous Substances”,
whose first part came out in 1875. In this work, surfaces
are presented algebraically by the functions U for en-
ergy or S for entropy the graphical element no longer
appears, that are not just any function, but subject to
the conditions that Gibbs calls equilibrium and stability
criteria, which are variational principles. The criterion
referring to energy assumes that the U function (con-
vex) is differentiable and increasing in relation to the
entropy (concave function). However, such assumptions
also ensure that the U function is subject to the Legendre
transformations, which enable the information related
to the energy of the system to be written in other ways,
all of them equivalent. These are the other thermody-
namic potentials, Helmholtz free energy, enthalpy, and
Gibbs free energy. The integrability of the differentials
of these potentials gives rise to the so-called Maxwell
relations [29, pp.55-65 and 85-92].

The thermodynamics of potentials adapts and general-
izes the phenomenology of phase transitions to chemical
reactions, in which the homogeneous compounds of a
heterogeneous substance react, forming new compounds.
The idea is the same as changing physical states. The
substance is composed of homogeneous components. The
reaction between them causes portions of one to disap-
pear and others to emerge. Thus energy is no longer a
function of only two variables, as in the change of state
of homogeneous substances. If there are two reactive sub-
stances, the energy of the system is a function of the type
U = U(S, V, m1, m2) - where m1 and m2 are the masses
of the reactants - which is a hypersurface in a space with
five dimensions. The visualization is obviously impracti-
cal, which explains, in part, the difficulty of perceiving
the geometric aspect, now applied to hypersurfaces, as
the heuristic model of the thermochemistry of potentials

6. Therefore, the thermodynamics of potentials, in ad-
dition to being more logically coherent than Clausius’s
thermodynamics, is also more prosperous, since in its for-
malism it contains the new discipline of thermochemistry.
Such prosperity is witnessed by Maxwell when he states
that “Professor Gibbs has made a most important contri-
bution to science by giving us a mathematical expression
for the stability of any given phase (A) of matter with
respect to any other phase (B)” [35, p.821]

Descartes‘s method of discovery illuminates the intellec-
tual itinerary of the construction of the thermodynamics
of potentials. We are not saying that Gibbs drew directly
from Descartes; the influence is indirect, but it is an ex-
traordinary example of the application of the analytical
method. In fact, Gibbs is concerned first of all with ade-
quately representing the processes during through which
different states of matter coexist. This is the problem
for which he seeks a solution, in addition to that of the
critical points discovered by Thomas Andrews. This last
aspect was studied elsewhere [36, p.119-121].

That is why he explores the properties of the SxV
diagram - which as a heuristic resource is similar to that
employed by scientists until Clausius. The diagrammatic
representation P x V operates the calculation of the
mechanical work performed during a thermodynamic
process through the area under the curve; in the S x V
diagram, this calculation is difficult because the scale
factor is no longer the unit. There does not seem to be
any advantages in adopting it.

Here, then, comes into play the genius of Gibbs, who
identifies an intermediate idea, playing a role similar
to that played in the examples of Descartes. The SxV
diagram associated with the first law - restricted to
reversible processes - suggests that if the differential
dU = TdS − PdV is exact, the one described in the
diagram is interpreted as a projection of processes (lines)
that occur on a surface U(S,V). The intermediate idea
is precisely that the differential form is exact, that it
be integrable. However, diagrammatic (two-dimensional)
representation becomes a geometric (three-dimensional)
representation with the aggregation of elements that
make it more prosperous as a language and, therefore,
give it more significant heuristic power. In fact, while in
the diagrammatic representation the problems are ap-
proached with the help of the properties of the curves
on the graph and the area under the curve (mechanical
work) in the geometric representation, tangent planes,
tangent lines, concavity, curvature and contact order are
used besides the properties of the curves on the surface
to characterize, translate and solve the problems of heat
science. The possibilities are much more significant.

This is a new formalism that can not be reduced to
a mere systematization, which is commonly understood
as an act of organizing something according to a system

6More details on the thermodynamics of cycles and potentials can
be found in [23], which, as a thesis on the history and philosophy
of thermodynamics, is a further development of [34].
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or reason. In the present case, it would be a matter of
disposing general laws and particular conditions in order
to proceed with deductive or inductive arguments [37, p.
173-7]. If so, Gibbs would frame the problems in terms
of the two fundamental laws and other conditions. But
he does not even name them for that purpose. As we
have observed, he does so with a geometric language,
absent in classical formulation. This is the point. What
Gibbs discovered was that thermodynamics could be put
into a geometric language, and this discovery was made
according to a method similar to Descartes’ method of
analysis.

To sum up, Gibbs’ work begins with the apprecia-
tion of the elements representing the thermodynamics
of cycles, the diagrams. This perception already seems
to us to be valuable in itself, since - starting especially
with William Thomson and Clausius - the diagrams are
shifted to the periphery of theory, as auxiliary or even
ad hoc hypotheses. At the core are the two fundamental
laws, isolated and independent of any representative as-
pect. However, the problems that Gibbs had before his
eyes demanded more of the thermodynamic magnitudes,
especially energy. The principle of energy conservation,
although fundamental to the development of science, pro-
vides a trivial geometric intuition, compared to what
occurs in the thermodynamics of potentials. This first
step by Gibbs reveals his intention to bring a representa-
tive element back to the nucleus of the theory.

To describe the processes of change and coexistence
of different phases, Gibbs uses the SxV diagram. This
diagram, which supports a vast set of thermodynamic
phenomena with zero energy variation - TdS = PdV -
forms the basis of Gibbs’ system of knowledge, similar
to the dynamics of shocks in the problem of the nature
of light, for Descartes. For him, the base was associated
with the intermediate idea of the model of light, which
provided the characterization of light as an oscillating
matter whose velocity increases in the passage to denser
means. From this idea he derived the law of refraction.
For Gibbs, the intermediate idea associated with the base
is the first law - restricted to reversible processes - leading
to a geometric thermodynamics capable of solving the
problem of representing the transition of states of matter
and the characterization of critical points. Therefore,
the method of analysis is the instrument to discover or
construct solutions.

One consequence of the application of Descartes’ sci-
entific method is the expansion of the knowledge base.
Once a proposition is justified, it becomes part of that
basis. In the present case, the accuracy of the linear form
adds to energy the geometric properties inherent to the
surface U = U (S, V). Therefore, it should be noted
that the geometrization of energy occurs through the
intervention of the intermediate idea which extends the
knowledge basis from diagrammatic thermodynamics, to
geometric thermodynamics.

However, there is an essential difference between the
two versions as regards the representative element. In
the first version, the physical quantities involved, includ-
ing energy and entropy, are extrinsically diagrammatic.
Their relative values are collected empirically and then
graphically implemented. In the second version, they are
intrinsically geometric.

It is true that their values can be obtained by experi-
ment and that the surface U = U −(S, V ) is subsequently
formed as in the previous version, but energy and en-
tropy have the property of being convex and concave,
respectively, as we have argued before. It is a fusion of
physics and geometry, not a mere juxtaposition.

This fusion between physics and geometry is what au-
thorizes the variational formulation of principles related
to energy and entropy. These principles are not formally
present in Gibbs’s second article, only in the third - “On
the Equilibrium of Heterogeneous Substances”(1878).

When using the geometric formulation to solve the
problem of homogeneous substances in equilibrium, the
problem of heterogeneous substances immediately arose,
requiring the incorporation of the masses of the different
components. For example, for a heterogeneous substance,
composed of two homogeneous ones, the differential equiv-
alent to the first law is written dU = TdS − PdV +
µ1dm1 + µ2dm2. The indices 1 and 2 refer to each of the
homogeneous masses.

As in “A Method of Geometrical Representation of the
Thermodynamic Properties of Substances by Means of
Surfaces”, the solution is also constructed following the
method of analysis, but the basis is now the thermody-
namics of the homogeneous substances. The intermediate
idea is to identify the differential referring to the first law
as an exact linear form, which leads to the interpretation
of energy as a hypersurface U = U(S, V, m1, m2) and to
the recognition of µ = ( ∂U

∂m )S,V , as the chemical poten-
tial of each homogeneous substance. In this context, the
geometric language (convexity and tangent planes) is no
longer very useful, since the visualization of these struc-
tures in hyperspace is not feasible. The best thing now
is to translate these properties into algebraic language.

This is why the principle of equilibrium and stability
appears explicitly in “On the Equilibrium of Heteroge-
neous Substances” (1878), reflecting the convex nature of
energy and entropy and other thermodynamic potentials
(Helmholtz potential, enthalpy, and Gibbs potential).
They mirror the enveloping of the information contained
in the energy function by tangent hyperlines or tangent
hyperplanes by the implicit use of the Legendre transfor-
mation.

The mentioned potentials are also subject to the same
variational principle. The hypergeometric character of the
thermodynamics of heterogeneous substances requires
that it be represented algebraically. The solutions im-
plemented by Gibbs go through the appreciation of the
representative aspect. At first, the valorization of the
diagrams leads to a geometrically represented thermody-
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namics, which later, has to be amplified so that it can
be generalized to heterogeneous substances. This bring
about the thermodynamics of potentials, algebraically
represented.

The way one moves from one representation to the
other - which is equivalent to solving the problem pro-
posed in each case - is through the analytic method. Here
it is not the geometry or the algebra of the theory, but
that which leads to geometrization and algebrization
from a knowledge base, as already mentioned. Gibbs
operates with Descartes’ method of analysis in this way,
solving problems by constructing representations with
these capabilities. In this sense, it can be said that one
representation has more heuristic power than another,
insofar as its language is more productive and adapted
to explain more natural phenomena. In the case of het-
erogeneous substances, the new algebraic language is
capable of encompassing phenomena hitherto outside the
semantic reach of thermodynamics, thus giving rise to a
new field of knowledge: thermochemistry.

We believe that we have performed a rational recon-
struction of Gibbs’s findings through Descartes’ method
of analysis. These discoveries are identified with the solu-
tion of problems, placed on a lower (representative) level
than that of the solution, in the ladder that goes from the
diagrammatic representation to the algebraic, through
the geometric one. Success in this endeavor consists in
the recognition that the representative element forms an
integral part of these solutions, making them viable. On
the other hand, we agree that the thermodynamics of
potentials can be understood as a rational reconstruc-
tion of classical thermodynamics, in Carnap’s terms, for
whom:

By rational reconstruction is meant here the
searching of new definitions for old concepts.
The old concepts did not ordinarily originate
by way of deliberate formulation but in more
or less unreflected and spontaneous develop-
ment. The new definitions should be superior
to the old in clarity and exactness, and, above
all, should fit into a systematic structure of
concepts [38, p.v].

In this perspective, the concepts of energy and en-
tropy - defined in the contexts of the first and second
laws - would pass to the context of the principle of equi-
librium and stability, acquiring, with this contextual
transfer, the multi-representation by other potential con-
cepts, the connaturality with the phase transitions , the
characterization of critical points and the description of
heterogeneous substances. The gains with the new defini-
tions would not be so much in clarity and accuracy, but
in strengthening the logical cohesion of the systematic
structure of concepts.

It is faced with this panorama opened by Lagrange’s
analytical mechanics, extended to optics by Hamilton
and to thermodynamics by Gibbs, that Duhem proposes

a rational and empirically testable method for physics,
which surpasses the mechanistic method. In this context,
Duhem advocates the unification of physics based on an
abstract method, which is the proper method of poten-
tial thermodynamics, where empirical laws are deduced
from a potential function subject to a variational prin-
ciple. In the opposite direction, the potentials - that is,
the principles of the theory - can be obtained from the
empirical basis represented by the state equations with
the aid of the Gibbs-Duhem equation, by integration.
The capacity to ascend in this way to the principles of
manifest theory, at the same time as the are logically
bound to the empirical foundation, and the control of
theory by experience as a result of this bond - others
would appeal to the idea of falsification - an intrinsic
feature of scientific knowledge [13, chap. 5], [10, p. 215].

5. Conclusions

The construction of the thermodynamics of potentials
was accomplished by Gibbs through a process in which
the representation of the energy of a homogeneous sub-
stance in the most adequate configuration space, that
of U × S × V , is followed, for physical and mathemati-
cal reasons, by the enunciation of the equilibrium and
stability criterion, the highest principle and the conclu-
sion of the analytical movement. In this context, the
ascent to the aforementioned principle would be greatly
hampered were it not for the adequate representation of
the thermodynamic systems, which incorporated at the
same time a sufficiently versatile operability: geometric
representation. Thus, Gibbs’s first article, the one which
seemed less interesting because it brought less novelties
and no predictions, acquires a special relevance. It is
as if Gibbs were looking for the best way to represent
phase transition phenomena before solving the problem of
constructing a thermodynamics that incorporated them.
And in finding it, the solution becomes intuitive.

Descartes’s method of analysis may not consist in a
method of logical justification, but it presents itself as
an authentic method of discovery in which the invention
or construction of an adequate representation of the pro-
posed problem - within which a specific method operates
- with an intermediate idea allows us to ascend to the
highest principle, the starting point for logical deductions.
Even though analysis does not possess the logical force of
synthesis, according to the Cartesian model it authorizes
us to speak of rational reconstruction in science. We be-
lieve that we have presented such a reconstruction in the
case of Gibbs’ thermodynamics, while illustrating some
of the reasons that led Duhem to see in thermodynamics,
according to this formalism, the center around which
physics should unify, replacing mechanicism .
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