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ABSTRACT 

 

Phytocystatins are cysteine-protease inhibitors found in plants, in which they take 

part in various physiological processes such as storage protein deposition, seed 

germination and leaf senescence. The expression of phytocystatins in plants has 

an important role in abiotic stress tolerance and resistance to herbivory by 

insects, which makes such proteins valuable study targets due to 

biotechnological applications in culture improvement. In this work, biophysical 

techniques were employed to characterize phytocystatins from organisms of 

economic relevance, like Hevea brasiliensis (rubber tree), Theobroma cacao 

(cocoa tree), Humulus lupulus (hop) and Cannabis sativa (cannabis). The 

proteins were obtained through heterologous expression in E. coli Lemo21 (DE3), 

cultivated in auto-inducing medium ZYM-5052, and purified by immobilized Ni2+ 

ion affinity chromatography followed by size exclusion chromatography S-75. 

Thermal stability was monitored by circular dichroism measurements in unfolding 

assays at different pHs, and protein oligomerization was studied by analytical 

ultracentrifugation. Protein crystallization screenings were performed with the 

mosquito® robot and the crystallization conditions were manually refined prior to 

sending the crystals for the collection of X-ray diffraction data at LNLS. Thermal 

denaturation assays showed that the proteins exhibited high melting 

temperatures ranging from 61 °C to 84 °C and unfolding ΔG25’s higher than 4 

kcal/mol in the studied pHs, indicating moderate to high thermal stability. In the 

experimental conditions (20 °C and pH 7.6), dimeric conformations of most of the 

proteins seemed to be favored, though monomers and tetramers were also 

observed. The crystal structure of a phytocystatin from hop was solved from 

crystals of orthorhombic space groups P 2 21 21 and C 2 2 21 at maximum 

resolutions of 1.80 Å and 1.68 Å, respectively, and the crystal structure of a 

cannabis phytocystatin was solved at a 3.6 Å resolution from a hexagonal P 65 2 

2 space group crystal. The three structures presented domain swapped dimers, 

where the main differences to the phytocystatin structure with the highest identity 

deposited in the PDB are the angle and the distance between the lobes of the 

dimers. 

Keywords: phytocystatins, crystallography, domain-swapping, analytical 

ultracentrifugation, circular dichroism, protein stability.  



 
 

RESUMO 

 

Fitocistatinas são inibidores de cisteíno-proteases encontrados em plantas, onde 

participam de vários processos fisiológicos, dos quais se destacam a deposição 

de proteínas de armazenamento, germinação de sementes e senescência de 

folhas. A expressão de fitocistatinas em plantas tem um papel importante na 

tolerância a fatores de estresse abióticos e resistência a herbivoria por insetos, 

o que torna essas proteínas valiosos alvos de estudo, devido a aplicações 

biotecnológicas no melhoramento de culturas. Neste trabalho, técnicas biofísicas 

foram empregadas para caracterizar fitocistatinas de organismos 

economicamente relevantes, como Hevea brasiliensis (seringueira), Theobroma 

cacao (cacaueiro), Humulus lupulus (lúpulo) e Cannabis sativa (cannabis). As 

proteínas foram obtidas por expressão heteróloga em E. coli Lemo21 (DE3), 

cultivadas em meio auto-indutor ZYM-5052, e purificadas por cromatografia de 

afinidade ao níquel (Ni2+) seguida de cromatografia de exclusão molecular S-75. 

A estabilidade térmica foi monitorada por dicroísmo circular em ensaios de 

desnaturação térmica em diferentes pHs, e a oligomerização das proteínas foi 

estudada por ultracentrifugação analítica. Screenings de cristalização das 

proteínas foram realizados com o robô mosquito®, as condições de cristalização 

foram refinadas manualmente e os cristais foram submetidos à coleta de dados 

de difração de raios-X no LNLS. Ensaios de desnaturação térmica mostraram 

que as proteínas apresentam elevadas temperaturas de desdobramento (Tm), 

indo de 61 °C a 84 °C, e ΔG25’s resultantes do desdobramento acima de 4 

kcal/mol em todos os pHs estudados, indicando estabilidade térmica de 

moderada a alta. Nas condições experimentais (20°C e pH 7,6), conformações 

diméricas da maioria das proteínas foram favorecidas, embora monômeros e 

tetrâmeros também tenham sido observados. A estrutura cristalina de uma 

fitocistatina do lúpulo foi resolvida a partir de cristais dos grupos espaciais 

ortorrômbicos P 2 21 21 e C 2 2 21 a resoluções máximas de 1,80 Å e 1,68 Å, 

respectivamente, e a estrutura cristalina de uma fitocistatina da cannabis foi 

resolvida a 3,6 Å a partir de um cristal do grupo espacial hexagonal P 65 2 2. As 

três estruturas apresentaram dímeros domain-swapped, onde a principal 

diferença em relação à estrutura de fitocistatina de maior identidade depositada 

no PDB são o ângulo e a distância entre os lobos do dímero. 



 
 

Palavras-chave: fitocistatinas, cristalografia, domain-swapping, 

ultracentrifugação analítica, dicroísmo circular, estabilidade de proteínas.  
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 1. INTRODUCTION 

 

 One of the most essential characteristics of life is the ability of living beings 

to orchestrate pathways to overcome time barriers. A clear example comes from 

the tridimensional folding of proteins. The structure of a protein is directly related 

with its activity, and when being synthetized the protein must assume its correct 

conformation from a vast number of possibilities. If proteins were to randomly 

assume each possible conformation until its correct fold was reached, the amount 

of time taken would be insurmountable. This was illustrated in a thought 

experiment by Cyrus Levinthal in 1969: considering a simplified model of a protein 

composed of 150 residues, the amount of conformations the protein would have 

to sample would be around 10300. Even if the protein changed conformations in 

picoseconds, this process would take longer than the age of the universe. Then 

how do proteins achieve a correct fold? Proteins are finely and naturally crafted 

to be able to overcome these time limitations by establishing local interactions 

that guide the folding of the peptide during the synthesis. A group of proteins is 

of utmost importance to assure that reactions or processes like the 

aforementioned occur in an ideal time frame: the enzymes. 

 

 1.1. PROTEASES  

 

 Proteases or peptidases are enzymes that catalyze the hydrolysis of 

peptide bonds in proteins. The catalysis is achieved by using a molecule to 

perform a nucleophilic attack to the carbon of the carboxyl group of a peptide 

bond. 

 According to the residue or molecule involved in the catalysis, proteases 

may be classified as cysteine, serine, threonine, glutamic, aspartic, metallo or 

asparagine proteases. As it suggests, cysteine, serine and threonine proteases 

receive these names as these residues are activated in the catalytic triad of the 

enzyme to perform the nucleophilic attack. Aspartic, glutamic and 

metalloproteases on the other hand use these residues, or a metal in the case of 

metalloproteases, to turn a water molecule nucleophilic. Asparagine proteases 

constitute the exception to the catalysis by hydrolysis performed by the other 
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proteases, as they cleave themselves by using an asparagine residue as the 

nucleophile to perform an elimination reaction, not requiring a water molecule 

(RAWLINGS et al., 2011). 

 Due to their activity, proteases are able to modify and degrade proteins, 

playing a role in several physiological processes such as digestion, programmed 

cell death, zymogen activation, defense against pathogens, blood coagulation, 

etc. Aside from its physiological importance, many proteases are used in the 

industry for being an inexpensive alternative to hydrolyzing peptide bonds, being 

used as detergent additives, meat tenderizers, to coagulate milk in cheese 

production, etc (SUMANTHA et al., 2016). 

 Like other enzymes, the activity rate of proteases is regulated not only by 

environmental factors, such as pH and temperature, but also by a series of 

mechanisms that affect the amount of available proteases. These include, among 

others, gene regulation, protein degradation, covalent modifications and 

interaction with protein inhibitors. 

 

 1.2 THE CYSTATIN SUPERFAMILY 

 

 The cystatin superfamily comprises proteins that share a conserved 

tridimensional fold and often act as cysteine-protease inhibitors, even though 

cystatins that do not show any inhibitory activity have already been identified 

(BROWN & DZIEGIELEWSKA, 1997). Members of this superfamily are found in 

a variety of eukaryotic organisms, bacteria and archaea (KORDIŠ & TURK, 

2009). 

 The conserved tridimensional structure is composed by an amino-terminal 

alpha-helix surrounded by five antiparallel beta-strands, as well as two loops 

which are responsible for the inhibition activity of these molecules (Figure 1) 

(TURK et al., 2008). The first inhibitory loop presents the highly conserved 

sequence comprised of QxVxG, while the second loop usually has a proline 

residue followed by a tryptophan. A glycine residue in the flexible amino-terminal 

end is also essential for the protein inhibition (TURK & BODE, 1991).  
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Figure 1. Conserved tridimensional cystatin structure elements represented by 

oryzacystatin-I (PDB code 1EQK) (NAGATA et al., 2000). The β strands and inhibitory 

loops are numerated according to the conventions. 

 

 Cystatins that are able to inhibit proteases bind competitively in a 

reversible process to papain-like or legumain-like cysteine-proteases, acting like 

a pseudo-substrate. In the case of papain-like proteases, this binding occurs with 

the introduction of both inhibitory loops and part of the N-terminal region in the 

active site of the target protease, as shown, for instance, in the structure of the 

tarocystatin-papain complex (Figure 2) or the stefin B-papain complex (STUBBS 

et al., 1990). 
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Figure 2. Inhibition of papain by tarocystatin (PDB code 3IMA). Papain is represented 

as the orange surface, while the purple cartoon represents tarocystatin. Residues 

essential to the protein inhibition are showed as sticks. 

  

 1.2.1 Phytocystatins  

 

 Regarded as another ramification in the superfamily, plant cystatins, also 

called phytocystatins, are identified by the consensus sequence [LVI]-[AGT]-

[RKE]-[FY]-[AS]-[VI]-X-[EDQV]-[HYFQ]-N present in the amino-terminal region of 

the alpha-helix and usually by the absence of disulfide bonds or cysteine residues 

(MARGIS et al., 1998). Physiologically, phytocystatins take part in a variety of 

endogenous processes, such as programmed cell senescence (CARDOSO et 

al., 2015), nodulation (YUAN et al., 2016), seed germination (DIAZ-MENDOZA 

et al., 2016) and storage protein deposition (MUNGER et al., 2015).  

 Furthermore, these proteins act in the line of defense of plants, inhibiting 

proteases secreted by fungi and bacteria, as well as digestive proteases present 

in the midgut of herbivorous arthropods and insects, partaking in a coevolutionary 

process with their targets from other organisms (RYAN, 1990; MARTINEZ, 2016). 

 In solution, some cystatins are able to auto-associate, constituting various 

oligomers and eventually amyloid fibers (SANDERS et al., 2004). Some of these 

oligomers may display domain-swap, a structural feature in which secondary 

elements of a monomer take the place of the same structures in other monomer 
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of the protein. In this state, phytocystatins are unable to inhibit cysteine 

proteases, due to a change in the structure of the first inhibitory loop, as seen in 

the structure of the canecystatin-1 (VALADARES et al., 2013). 

 

 1.3. DOMAIN SWAPPING 

 

 One of the key characteristics of some phytocystatins is their ability to 

oligomerize into domain-swapped dimers. The term “domain-swapping” was first 

introduced by Bennett et al. in 1994 after studying the crystal structure of both 

monomeric and dimeric diphtheria toxin (DT). They noticed that the dimeric 

structure of DT strongly resembled two adjacent monomers, in which the same 

domains were present. However, the receptor binding domain of each monomer 

within the dimeric structure seemed to have switched places with its identical 

counterpart from the other molecule (Figure 3). This way, although some of the 

intramolecular interactions became intermolecular, the same interactions from 

the monomeric structure were present in the dimer (BENNETT et al., 1994). 

 

 

Figure 3. Monomer (PDB code 1MDT) (A) and domain swapped dimer (PDB code 

1DDT) (B) of DT (BENNETT & EISENBERG, 1994; BENNET et al, 1994). Each 

monomer is showed in a single color. The same interactions in the monomeric structure 

are also present in each lobe of the dimer  
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 The mechanism of domain swapping involves favoring the partial unfold of 

monomers, by pre-denaturing conditions or mutations, and the subsequent 

interaction of these open monomers (Figure 4). A hinge loop in the interdomain 

interface connects the swapped domain to its native monomer and assumes a 

different conformation when the protein undergoes oligomerization, at times 

forming new interactions not present in the monomer. Bennett et al. also coined 

two terms: the closed interface and the open interface. Closed interfaces 

correspond to the interdomain interfaces present in the closed monomer (red 

region in Figure 4A). On the other hand, the open interface occurs only between 

domains of the open monomers in the domain swapped oligomer (red region in 

Figure 4C) (BENNETT et al., 1995). 

 

 
Figure 4. The domain swapping mechanism. (A) Closed monomer of a common cystatin, 

which may open due to pre-denaturing conditions (B), and assembled into a domain-

swapped dimer with another open monomer (C). In (A) the red region represents the 

closed interface, while in (C) it represents the open interface. Image adapted from 

Valadares et al., 2013. 

 

 Domain swapping may have had a role in the evolution of some oligomers. 

Since domain swapped dimers maintain the structure of its composing 

monomers, it could serve as a shortcut for the formation of an initial interaction 

surface between the two proteins while still maintaining the activity of each 

monomer, avoiding the necessity of several random mutations which could 

negatively affect the protein activity (BENNETT & EISENBERG, 2004). 

 Although the underlying reasons for the formation of domain swapped 

phytocystatin dimers in plants are currently under research, this phenomenon is 

of utmost importance for various physiological processes, since one of the 

inhibitory loops of the monomer is also a hinge loop. As the protein dimerizes, 
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the closed interface becomes open, which, consequently, give rise to new 

interactions of the inhibitory loop with the other molecule. The constraints 

imposed by these new interactions compromise the inhibitory activity of the 

phytocystatin, as the conformation of the first inhibitory loop changes and it 

cannot interact with the protease the same way as the monomer (VALADARES 

et al., 2013). 

 

 1.4. SOURCE ORGANISMS 

 

 The proteins selected for the present studies were chosen based on the 

economic relevance of the source organisms to Brazil and other countries, as 

well as on their sequence homology (Figure 5). The analyzed proteins and their 

sources are: Late (Hevea brasiliensis), Theo (Theobroma cacao), Hop1 

(Humulus lupulus), Hop5 (Humulus lupulus) and Hemp1 (Cannabis sativa). 

 

 

Figure 5. Sequence alignment of the proteins in this study. The consensus sequence 

that characterizes phytocystatins is shaded in green, while the conserved amino acids 

that take part in the protein inhibition are shaded in yellow 

 

 1.4.1. Rubber Tree (Hevea brasiliensis) 

 

 A member of the Euphorbiaceae family, Hevea brasiliensis, commonly 

known as rubber tree, is a species native to northern South America, although it 

is currently found in other tropical and subtropical countries. Its economic value 

comes primarily from the use of the latex extracted from the tree as a material for 

natural rubber production, but the tree can also be sawn for its wood, and the oils 
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contained in its seeds can be used in the production of soap and paints (BOER 

et al., 2000). 

 Since the 20th century, Brazil has been suffering a huge impact in the latex 

production due to the pathogenic fungus Microcyclus ulei, responsible for leaf 

blight in rubber tree crops in all of South America (GASPAROTTO et al., 1990). 

As a consequence, only countries whose rubber productions are not hampered 

by this disease, such as the ones located in South and Southeast Asia, are able 

to export rubber worldwide. Despite that, according to data from the Food and 

Agriculture Organization of the United Nations (FAO) regarding 2016, Brazil 

produced 189,377 tons of rubber, ranking as the twelfth biggest natural rubber 

producer in the world. 

  Efforts are being dedicated to protect new cultures from these fungi, 

especially cultures in places still not affected by these plagues, due to the 

devastating aftermath of these pathogenic agents. 

 

 1.4.2. Cocoa Tree (Theobroma cacao) 

 

 Among the selected organisms, Theobroma cacao (cocoa tree) is one of 

the most beloved worldwide. A member of the Malvaceae family and native to 

South America, its economic relevance comes from the use of its beans in the 

confection of innumerous delicacies and dishes, the most famous one being the 

chocolate. 

 Similarly to rubber trees, cocoa production in Brazil is also significantly 

hampered by a pathogenic fungus, namely, Moniliophthora perniciosa, which is 

responsible for witches’ broom disease in cocoa trees (PEREIRA et al., 1996). 

The mechanism of infection involves surpassing the line of defense provided by 

phytocystatins by favoring their dimerization by modifications in the pH, 

consequently inactivating them (FREITAS et al., 2015). Moreover, recent studies 

have also shown that cocoa bean yield in Brazil may be severely affected by 

droughts such as the ones caused by El Niño-Southern Oscillations (GATEAU-

REY et al., 2018). Nevertheless, cocoa trees are still of economic importance for 

the country: according to data from FAO for 2016, Brazil was the sixth biggest 

cocoa producer in the world (213,843 tons of cocoa beans produced). 
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 1.4.3. Hop (Humulus lupulus) 

 

 Hop (humulus lupulus), a member of the Cannabaceae family, is best 

known for its use in beer brewing. As the basis of beer production consists of the 

fermentation of cereal starch, which is somewhat insipid, the flavor of beer is 

dependent on additive agents. Furthermore, the low alcohol concentration of beer 

leads to a shorter shelf-life when compared to other alcoholic beverages. The use 

of hop becomes handy as the plant adds a distinctive bitter taste while also 

bestowing antibacterial properties to the brew, delaying the spoilage of the 

product (BEHRE, 1999). 

 According to data from the Barth-Haas group for the year of 2017 (The 

Barth Reports 2017/2018), Brazil produced around 14 million kiloliters of beer, 

ranking as the third biggest beer producer in the world, losing only to China and 

the USA. 

 

 1.4.4. Cannabis (Cannabis sativa) 

 

 Another member of the Cannabaceae family, cannabis (Cannabis sativa) 

is surrounded by controversy. Despite its cultivation and/or use being illegal in 

several countries, cannabis is valued for the many psychoactive compounds 

found in the plant, known as cannabinoids, which are used for recreational and 

medicinal purposes. 

 Cannabinoids are being heavily researched as their use is evaluated as a 

complementary alternative medicine to neurodegenerative disorders such as 

Alzheimer’s disease, multiple sclerosis and Parkinson’s disease (RUSSO, 2018). 

Furthermore, the use of medicinal cannabis is starting to take the place of some 

prescription drugs among cannabis users in the USA, due to the lower cost, fewer 

side effects and better effectiveness (KRUGER & KRUGER, 2019). 

 It is rather difficult to define quantitatively the production of cannabis 

worldwide as in many countries its cultivation is still illegal and therefore lacks 

any effective regularization or market study. However, according to data from the 

World Drug Report, published by the United Nations Office on Drugs and Crime 

regarding 2016, cannabis had around 192 million users, earning the status of the 

world’s most commonly used drug that year. 
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 1.5. PHYTOCYSTATINS AND BIOTECHNOLOGY 

 

 Phytocystatins have been intensively studied not only for its physiological 

importance to plants but also for its possible biotechnological application as 

putative substitutes to pesticides in the protection of cultures against pests, and 

also in resistance improvement to abiotic stress factors, such as drought, 

temperature and wounds (KUNERT et al., 2015; HWANG et al., 2010). 

 Due to the low availability of the source organisms and the complexity of 

isolating proteins directly from the plants, the use of heterologous expression 

systems presents itself as a more viable option to obtain the recombinant 

proteins, both economically and time-wise. In the present work, the genes that 

code for the target proteins were used to transform competent Escherichia coli 

cells which in turn were used in large scale expression assays. 
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 2. JUSTIFICATION 

 

 The ever increasing demand for agricultural products and their derivatives 

renders it necessary to increase their yield through the use of genetic 

manipulations. When improving a culture, one should always have in mind the 

improvement of its resistance to both biotic and abiotic stress factors, as crops 

are susceptible to pests and changing weather conditions, such as the ones 

caused by global warming, which have already caused great losses in the 

soybean production in the USA (MOURTZINIS et al., 2015). 

 The resolution of different phytocystatins structures is fundamental to the 

understanding of their mechanisms of action, especially regarding the effect of 

amino acid variability in the interaction of the protein with their substrates and to 

their structural stability. Therefore, techniques to create organisms which are 

more resistant to plagues and abiotic stress factors may be developed aimed at 

specific goals. 

 In this context, the present work aims at providing a base for the use and 

development, by genetic recombination, of phytocystatins with structural stability 

and that are more suitable to endure environmental stresses and microorganism 

attacks. 
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 3. GOALS 

 

 3.1. GENERAL GOALS 

 

 Express and characterize biophysically the phytocystatins Late (Hevea 

brasiliensis), Theo (Theobroma cacao), Hop1 (Humulus lupulus), Hop5 (Humulus 

lupulus) and Hemp1 (Cannabis sativa) and solve their structures by X-ray 

diffraction. 

 

 3.2. SPECIFIC GOALS 

 

 Express the proteins using a heterologous expression system (E. coli) 

 Purify the proteins by immobilized metal affinity and size exclusion 

chromatography 

 Study their thermal stability by circular dichroism assays  

 Identify oligomer populations found in the purified samples 

 Identify and refine the conditions that favor the formation of protein crystals 

 Collect X-ray diffraction data from the crystals 

 Solve the structures using the molecular replacement method 

 Analyze the solved structures 
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 4. METHODOLOGY 

 

 4.1. E. COLI LEMO21 (DE3) TRANSFORMATION 

 

 The genes that codify the target proteins (Late, Theo, Hop1, Hop5 and 

Hemp1) were cloned in pET-24a vectors by the company GenOne 

Biotechnologies and provided by Prof. Dr. Valadares. These vectors were chosen 

for allowing the expression of the proteins with a C-terminal histidine tail 

(containing the residues LEHHHHHH). Approximately 200 ng of the plasmid were 

added to 100 μL of E. coli Lemo21 (DE3) competent cell containing 100 mM 

CaCl2 and 15 % v/v glycerol. The cells were incubated in ice for 40 min and were 

afterward brought to a thermal shock at 42 °C for 90 s. Then, the cells were 

supplemented with 900 μL of LB medium (1 % w/v peptone, 0.5 % w/v yeast 

extract and 1 % w/v NaCl) and incubated at 37 °C under agitation (220 rpm) for 

1 h. Subsequently, 500 μL of this culture were added to Petri dishes prepared 

with agar 2 % w/v LB medium, 100 μg/mL kanamycin and 34 μg/mL 

chloramphenicol. Transformed cells were selected considering the resistance of 

the Lemo21 (DE3) strains and the vector pET-24a to chloramphenicol and to 

kanamycin, respectively. 

 

 4.2. GENE EXPRESSION 

 

 4.2.1. Gene expression in LB medium 

 

 An isolated colony with the transformed strains was inoculated in 

approximately 5 mL of LB medium supplemented with 100 μg/mL kanamycin and 

34 μg/mL chloramphenicol and was incubated under agitation (220 rpm) at 37 °C 

for 15 h. Then, 1 mL of this culture was inoculated in 25 mL of LB medium 

containing 100 μg/mL kanamycin and 34 μg/mL chloramphenicol and kept under 

agitation (220 rpm) at 37 °C. When the 600 nm optical density of the culture 

reached 0.8, the expression was induced by isopropyl β-D-1-

thiogalactopyranoside (IPTG) at a concentration of 0.5 mM. The expression 

assay lasted until 6 h after the induction. 
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 The expression and solubility of the recombinant proteins were confirmed 

by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

assays. The separating gel was prepared with 15 % w/v polyacrylamide (14.5 % 

acrylamide and 0.5 % bis-acrylamide), 250 mM Tris-HCl pH 8.8, 0.3 % w/v SDS, 

0.1 % w/v ammonium persulfate (APS) and 3 μL tetramethylethylenediamine 

(TEMED). The stacking gel was prepared with 5 % w/v polyacrylamide (4.85 % 

acrylamide and 0.15 % bis-acrylamide), 140 mM Tris-HCl pH 6.8, 0.3 % w/v SDS, 

0.1 % w/v APS and 3 μL TEMED. 

 The cells were resuspended in 4 mL of standard buffer (150 mM NaCl and 

75 mM tris pH 7.6) and lysed by sonication for 80 s in 10 s pulses of 20 J, with 30 

s intervals. The lysate was centrifuged at 17 400 ∙g and 4 °C for 30 min. The 

samples were then supplemented with Laemmli buffer (2 % w/v SDS, 2 mM 2-

mercaptoethanol, 0.01 % w/v bromophenol blue, 40 % v/v glycerol and 40 mM 

Tris-HCl pH 6.8) and heated at 95 °C for 10 min. 

 The electrophoresis was performed using an EPS301 electrophoresis 

power supply (Amersham Pharmacia Biotech) and running buffer containing 

25 mM Tris, 192 mM glycine, 0.1 % w/v SDS at pH≈8.3. The applied current and 

electric tension were limited to 35 mA and 220 V, respectively. The gels were 

stained with Coomassie Blue (0.1 % w/v Coomassie brilliant blue R-250, 50 % 

v/v methanol and 10 % v/v acetic acid) and destained with 20 % v/v acetic acid. 

 Higher amounts of soluble protein were obtained inoculating the isolated 

colony with the transformed strains in 500 mL of LB medium. After that, the 

culture was centrifuged at 4 340 ∙g and 4 °C for 15 min and the resulting pellet 

was stored at -4 °C for posterior protein purification. 

 

 4.2.2. Gene expression in auto-induction medium (ZYM-5052) 

 

 An isolated colony containing the transformed strains was inoculated in 

approximately 5 mL of LB medium supplied with 100 μg/mL kanamycin and 

34 μg/mL chloramphenicol and was incubated under agitation (220 rpm) at 37 °C 

for 15 hours. Then, 1 mL of this culture was inoculated in 25 mL of auto-induction 

medium ZYM-5052 containing 100 μg/mL kanamycin and 34 μg/mL 

chloramphenicol. The ZYM-5052 medium was prepared as described by Studier 

(2005), using 100 μM FeCl3 as trace metal. The cultures were incubated under 
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agitation at 37 °C and 220 rpm for 8 to 12 hours. The cultures were centrifuged 

at 4 °C and 4 340 ∙g for 15 min, the supernatant was discarded and the remaining 

cell pellet was frozen at -4 °C. The same SDS-PAGE procedure detailed in 

section 4.2.1 was followed for the analysis of the protein expressed in ZYM-5052 

medium. 

 Due to the super-expression indicated by SDS-PAGE of all five proteins in 

their soluble forms, the assay was repeated inoculating 500 ml of ZYM-5052 

medium. The obtained cell pellets were stored at -4 °C for posterior protein 

purification. 

 

4.3. PROTEIN PURIFICATION 

 

 4.3.1. Immobilized metal affinity chromatography (IMAC) 

 

 The pellets obtained in the large scale expression assays were 

resuspended in 45 mL of standard buffer and lysed by 25 min of sonication with 

output control of 3 and duty cycle of 30 %. The lysate was centrifuged at 17 400 ∙g 

at 4 °C for 30 min in order to isolate the soluble fraction present in the 

supernatant. The supernatant was filtered through nitrocellulose membranes with 

pore sizes of 0.45 μm and supplemented with 15 mM imidazole. 

 The chromatography was performed using a 1 mL HisTrap™ HP (GE 

Healthcare) Ni2+ column connected to an ÄKTA Prime (GE Healthcare) 

equipment. The filtered samples applied into the column and the fractions were 

eluted at different concentrations of elution buffer (300 mM NaCl, 75 mM Tris pH 

8.0 and 500 mM imidazole) and consequently, different concentrations of 

imidazole, in order to remove contaminants that interacted unspecifically with the 

resin. The target proteins were eluted at 500 mM imidazole. The light absorption 

at 280 nm of the eluted samples was monitored and the corresponding peaks 

were collected for SDS-PAGE analysis. 

 

 4.3.2. Size exclusion chromatography (SEC)  

 

 The samples obtained by IMAC were further purified by size exclusion 

chromatography. The samples were injected and eluted in a Superdex™ 75 
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Increase 10/300 GL (GE Healthcare) column previously equilibrated in standard 

buffer at a flow rate of 0.3 mL/min using an ÄKTA Purifier (GE Healthcare). 

Samples corresponding to the different absorption peaks seen in the 

chromatogram were collected for SDS-PAGE analysis. 

 

4.4. THERMAL STABILITY ANALYSIS BY CIRCULAR 

DICHROISM (CD) 

 

 The thermal stability of the proteins was evaluated by circular dichroism 

(CD) spectroscopy using the Jasco J-815 spectropolarimeter (JASCO Inc.) and 

a Peltier heating system. Samples were prepared in different buffer solutions 

(2 mM sodium acetate pH 4.0, 2 mM Tris-HCl pH 7.0 and 2 mM glycine pH 9.5), 

in the concentrations of 0.080 mg/mL for Late, 0.091 mg/mL for Hop1, 0.071 

mg/mL for Hop5 and 0.096 mg/mL for Hemp1. Thermal unfolding curves and Far-

UV CD (195 to 260 nm) spectra were recorded from 25 °C to 95 °C at a rate of 

approximately 0.2 °C/min using a 1 mm quartz cuvette. The unfolding curves 

were recorded at 218 nm for Late, Hop1 and Hop5, and at 220 nm for Hemp1. 

For each Far-UV CD spectrum, three consecutive spectra were measured and 

their mean values were recorded. The displayed spectra and unfolding curves 

were smoothed with the Savitzky–Golay method using ORIGINPRO 8. The mean 

ellipticities were converted to molar ellipticity prior to data analysis according to 

equation 1: 

[𝜃] =
𝜃 ∗ 𝑀𝑅𝑊

10 ∗ 𝐿 ∗ 𝐶
                                                          (𝟏) 

where MRW is the mean residue weight in g/mol, θ is the measured ellipticity in 

mdeg, L is the optical length of the cuvette in cm and C is the protein 

concentration in mg/mL. 

 An estimate of the proteins’ melting temperatures (Tm), i.e. the temperature 

in which only half of the molecules is folded, was obtained by the sigmoidal fit of 

the unfolding curves performed by ORIGINPRO 8 using the Biphasic Dose 

Response function. The thermodynamic parameters were estimated from the 

unfolding curves taking into account the unfolding fractions of proteins (𝑓𝑈) and 

Van’t Hoff approximation, as following. 
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𝑓𝑈 =
𝑦𝑁 − [𝜃]

𝑦𝑁 − 𝑦𝑈
                                                            (𝟐) 

where 𝑦𝑁 and 𝑦𝑈 represent the characteristic values of [𝜃] of the folded and 

unfolded states, respectively. The equilibrium constant (Keq) for the thermal 

unfolding was then calculated from: 

𝐾𝑒𝑞 =
[𝑈]

[𝑁]
=

𝑓𝑈

1 − 𝑓𝑈
                                                      (𝟑) 

 Then, the unfolding enthalpy (ΔH) and entropy (ΔS) variations were 

estimated and the Gibbs free energy was calculated following a plot of R∙lnKeq 

(where R is the universal gas constant) against the temperature (T) for each curve 

and using equation 4: 

∆𝐺 = −𝑅 ∗ 𝑇 ∗ ln 𝐾𝑒𝑞 = ∆𝐻 − 𝑇∆𝑆                                         (𝟒) 

 

 4.5. OLIGOMERIC PROFILE CHARACTERIZATION 

 

 4.5.1. Native polyacrylamide gel electrophoresis 

 

 Native PAGE gels were prepared according to the protocol described in 

section 4.2.1. for SDS-PAGE 15 % gels, with the exception of the use of SDS, 

which was replaced by distilled water. Late samples obtained from SEC were 

supplemented with native page sample buffer (62.5 mM Tris-HCl pH 6.8, 40 % 

v/v glycerol and 0.01 % w/v bromophenol blue) prior to the run. The 

electrophoresis procedure was executed using an EPS301 electrophoresis 

power supply (Amersham Pharmacia Biotech) inside a refrigerated 4 °C 

chamber, using a pH 7.5 running buffer (25 mM Tris and 192 mM glycine). The 

current and electric tension applied to the gel were limited to 35 mA and 220 V, 

respectively. The gel was stained in Coomassie Blue and destained in 20 % v/v 

acetic acid. 

 

 4.5.2. Analytical ultracentrifugation assays 

 

 Sedimentation velocity assays of the proteins were performed at 20 °C and 

42 000 rpm (for putative dimer samples) and 45 000 rpm (for putative monomer 

samples) in a ProteomeLab XL-A (Beckman Coulter) analytical ultracentrifuge, 
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using an AN-60 Ti (Beckman Coulter) rotor. The protein samples purified by IMAC 

followed by SEC at concentrations corresponding to approximately 0.4, 0.75 and 

1.0 OD280nm were analyzed in aluminum cells with double sample channels and 

quartz windows. The absorbance of the sample at 280 nm was measured as a 

function of the radial distance do the rotation axis in intervals of 5 min. 

The SEDFIT 15.01b software was employed to perform sedimentation 

data fittings of Lamm’s equation based on the continuous distribution of 

sedimentation coefficients c(s), using values estimated by the SEDNTERP 2 

software for the proteins’ partial specific volume (vbar), buffer density (ρ) and 

buffer viscosity (η), leaving the frictional ratio (f/f0) as the parameter to be 

determined by the program. The contribution of each species to the measured 

signal was determined by the area below the c(s) curves. 

 

 4.6. CRYSTALLOGRAPHY 

 

 4.6.1. Crystallization assays 

 

 Crystallization assays were performed by vapor diffusion through the 

hanging drop method. Using the pipetting robot mosquito® HTS (TTP Labtech) 

and 96-well plates, volumes of 100 nL to 200 nL of pure protein (after SEC) in 

different concentrations were mixed to 100 nL to 200 nL of solutions from the 

sparse matrix crystallization screening kits Crystal Screen (Hampton Research), 

JBScreen JCSG++ (Jena Bioscience) and JBScreen PACT++ (Jena Bioscience) 

to a final volume of 300 nL or 400 nL per droplet (JANCARIK & KIM, 1991). For 

each crystallization solution, the screening was performed with 3 different protein 

concentrations. After the appearance of microcrystals in a specific crystallization 

condition, its refinement was carried out varying the pH and concentration of its 

components in sitting drop crystallization assays in 24-well plates in order to 

obtain crystals suitable for X-ray diffraction. 
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 4.6.2. Crystal diffraction and structure resolution 

 

 X-ray diffraction data of putative protein crystals were collected in the MX2 

beamline of the Laboratório Nacional de Luz Síncrotron (LNLS) in Campinas, São 

Paulo.  

 The XDS software (KABSCH, 2010) was employed to process the 

diffraction images, including defining the background of the images, indexing and 

integrating the diffraction spots, scaling the reflections intensities and assigning 

space groups to the crystals. 5 % of the indexed reflections were flagged to be 

left out of the structure refinement steps in order to be used as the Rfree reflection 

set, an unbiased indicator of the refinement quality, and prevent data overfitting 

(BRÜNGER, 1992). 

 The number of protein molecules in the asymmetric unity of each crystal 

was estimated from the calculation of their Matthews coefficient, inputting the unit 

cell parameters, space group and protein molecular weight for each crystal in the 

MATTHEWS_COEF software of the CCP4 7.0 (WINN et al., 2011) software suite. 

The Matthews coefficient, i.e. the crystal volume per unit of protein molecular 

weight, is empirically shown to assume specific value ranges. Therefore, we are 

able to estimate the macromolecular content of the unit cell by calculating the 

integer amount of molecules in the asymmetric unit that give rise to the most 

probable Matthews coefficient values (MATTHEWS, 1968; KANTARDJIEFF & 

RUPP, 2013). 

Molecular replacement (MR) was employed with PHASER (MCCOY et al., 

2007) of the CCP4 software suite to retrieve phase information using a cowpea 

(Vigna unguiculata) cystatin with around 70 % sequence identity as a search 

model (PDB code 4TX4) (JÚNIOR et al., 2017). The structure refinement was 

performed in cycles, using PHENIX 1.13 (ADAMS et al., 2010) for reciprocal 

space refinements and then COOT 0.8.9 for real space refinements. In the first 

refinement cycle of each structure, PHENIX was employed to perform a simulated 

annealing as a means to remove search model biases.  
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 5. RESULTS AND DISCUSSION 

 

 5.1. PROTEIN EXPRESSION IN E. COLI LEMO 21 (DE3) 

 

 The initial expression assays focused on the proteins Late, a phytocystatin 

from Hevea brasiliensis, and Theo, a phytocystatin from Theobroma cacao, using 

LB medium as described in the methodology. As showed in the Figure 6, the 

production of Late and Theo was qualitatively low when expressed in LB medium. 

In contrast, both proteins were super-expressed in an auto-inducing medium, 

namely, the medium ZYM-5052 (STUDIER, 2005) (Figures 7 and 8). These 

results were expected since it was well documented by Busso et al. (2008) that 

the protein yield when using auto-inducing media is higher in comparison to LB 

medium. Due to the early success in the expression assays and the 

unpredictability of protein crystallization, one of the core techniques in this study, 

we decided to include 4 other proteins in our studies: Hop1, Hop3 and Hop5, 

phytocystatins from Humulus lupulus, and Hemp1, a phytocystatin from Cannabis 

sativa. Figures 7 to 10 indicate that all target proteins, with the exception of Hop3, 

were successfully expressed in the auto-inducing medium ZYM-5052. 

Furthermore, a comparison of the lysate with the lysis supernatant shows that 

these proteins were produced in their soluble forms, rendering renaturation steps 

after the protein purification unnecessary. As a means of standardizing, all 

subsequent expression assays were performed for 10 hours at 37 °C and 220 

rpm using the auto-inducing medium ZYM-5052. 
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Figure 6. Electrophoretic profile in SDS-PAGE 15 % of the expression and solubility of 

Late (intense band around 14.4 kDa in lanes 2 to 5) and Theo (intense band around 14.4 

kDa in lanes 6 to 9) in LB medium. 1- Molecular weight marker; 2- Lysate after 4 h of 

Late expression; 3- Lysis supernatant after 4 h of Late expression; 4- Lysate after 6 h of 

Late expression; 5- Lysis supernatant after 6 h of Late expression; 6- Lysate after 4 h of 

Theo expression; 7- Lysis supernatant after 4 h of Theo expression; 8- Lysate after 6 h 

of Theo expression; 9- Lysis supernatant after 6 h of Theo expression. 

 

 

Figure 7. Electrophoretic profile in SDS-PAGE 15 % of the expression and solubility of 

Late (intense band around 14.4 kDa) in auto-inducing medium ZYM-5052. The molecular 

weight of Late is 12.3 kDa. 1- Molecular weight marker; 2- Lysate after 7 h of expression; 

3- Lysis supernatant after 7 h of expression; 4- Lysate after 8 h of expression; 5- Lysis 

supernatant after 8 h of expression; 6- Lysate after 9 h of expression; 7- Lysis 

supernatant after 9 h of expression; 8- Lysate after 10 h of expression; 9- Lysis 

supernatant after 10 h of expression. 
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Figure 8. Electrophoretic profile in SDS-PAGE 15 % of the expression and solubility of 

Theo (intense band around 14.4 kDa) in auto-inducing medium ZYM-5052. The 

molecular weight of Theo is 12.5 kDa. 1- Molecular weight marker; 2- Lysate after 10 h 

of expression; 3- Lysis supernatant after 10 h of expression; 4- Lysate after 12 h of 

expression; 5- Lysis supernatant after 12 h of expression. 

 

 
Figure 9. Electrophoretic profile in SDS-PAGE 15 % of the expression and solubility of 

Hop1 (intense band around 14.4 kDa in lanes 2 and 3), Hop3 and Hop5 (intense band 

bellow 14.4 kDa in lanes 6 and 7) in auto-inducing medium ZYM-5052. 1- Molecular 

weight marker; 2- Lysate after 10 h of Hop1 expression; 3- Lysis supernatant after 10 h 

of Hop1 expression; 4- Lysate after 10 h of Hop3 expression; 5- Lysis supernatant after 

10 h of Hop3 expression; 6- Lysate after 10 h of Hop5 expression; 7- Lysis supernatant 

after 10 h of Hop5 expression. 
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Figure 10. Electrophoretic profile in SDS-PAGE 15 % of the expression and solubility of 

Hemp1 (intense band around 14.4 kDa) in auto-inducing medium ZYM-5052. 1- 

Molecular weight marker; 2- Lysate after 10 h of expression; 3- Lysis supernatant after 

10 h of expression. 
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 5.2. PROTEIN PURIFICATION 

 

 All proteins were purified by immobilized metal affinity chromatography 

(IMAC) followed by size exclusion chromatography (SEC). The IMAC 

chromatograms are showed in Figures 11 (Late), 14 (Theo), 17 (Hop1), 20 

(Hop5) and 23 (Hemp1). In each IMAC, 2 pellets obtained from 500 mL of culture 

from the expression assays were resuspended in 45 mL of standard buffer each 

and injected in the HiTrap columns which were then washed with 50 mM 

imidazole to remove contaminants prior to the protein elution with 500 mM 

imidazole. 

 Size exclusion chromatography was then employed to improve the purity 

of samples collected from IMAC. In Figures 12 (Late), 15 (Theo), 18 (Hop1), 21 

(Hop5) and 24 (Hemp1) representative SEC chromatograms are showed. 

 The collected purification samples are seen in the SDS-PAGE 15 % gels 

from Figures 13 (Late), 16 (Theo), 19 (Hop1), 22 (Hop5) and 25 (Hemp1). The 

SDS-PAGE revealed that at portion of all proteins was eluted in the flow through 

and in the column washing with 50 mM imidazole; nevertheless, most of the 

protein was eluted only at 500 mM imidazole. Late and Hop1 presented a 

qualitative purity after size exclusion chromatography, while Hemp1 and Hop5 

exhibited only a small contaminant band in the vicinity of the 25.0 kDa molecular 

weight marker. The presence of several contaminants in the purified Theo 

samples rendered the realization of circular dichroism assays impossible and had 

a negative impact on the protein crystallization. 

 All purified proteins were eluted in more than one peak in the size 

exclusion chromatography, suggesting the presence of different protein 

oligomers formed by self-association, as already described for other 

phytocystatins (VALADARES et al., 2013) 



38 
 

 
Figure 11. IMAC chromatogram of Late. The flow through is indicated by 1. The column 

was washed with 50 mM imidazole (peak 2) prior to protein elution with 500 mM 

imidazole (peak 3). 

 

 
Figure 12. Superposition of two size exclusion chromatograms of Late samples. The 

500 μL samples injected in the Superdex 75 Increase 10/300 column (GE) were 

previously purified by IMAC, as shown in Figure 11. 
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Figure 13. Electrophoretic profile in SDS-PAGE 15 % of the purification of Late. 1- 

Molecular weight marker; 2- Cell lysis supernatant; 3- Flow through; 4- Fraction eluted 

with 50 mM imidazole in the IMAC; 5- Fraction eluted with 500 mM imidazole in the IMAC; 

6- SEC peak 1; 7-SEC peak 2. 

 

 
Figure 14. IMAC chromatogram of Theo. The flow through is indicated by 1. The column 

was washed with 50 mM imidazole (peak 2) prior to protein elution with 500 mM 

imidazole (peak 3). 
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Figure 15. Superposition of two size exclusion chromatograms of Theo samples. The 

500 μL samples injected in the Superdex 75 Increase 10/300 column (GE) were 

previously purified by IMAC, as shown in Figure 14. 

 

 
Figure 16. Electrophoretic profile in SDS-PAGE 15 % of the purification samples of 

Theo. A. IMAC samples: 1- Molecular weight marker; 2- Flow through; 3- Fraction eluted 

with 50 mM imidazole; 4- Fraction eluted with 500 mM imidazole. B. SEC samples: 1- 

Molecular weight marker; 2- Base of peak 1; 3- Peak 1; 4- Peak 2; 5- Base of peak 2. 
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Figure 17. IMAC chromatogram of Hop1. The flow through is indicated by 1. The column 

was washed with 50 mM imidazole (peak 2) prior to protein elution with 500 mM 

imidazole (peak 3). 

 

 
Figure 18. Superposition of two size exclusion chromatograms of Hop1 samples. The 

500 μL samples injected in the Superdex 75 Increase 10/300 column (GE) were 

previously purified by IMAC, as shown in Figure 17. 
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Figure 19. Electrophoretic profile in SDS-PAGE 15 % of the purification samples of 

Hop1. 1- Molecular weight marker; 2- Cell lysis supernatant; 3- Flow through; 4- Fraction 

eluted with 50 mM imidazole in the IMAC; 5- Fraction eluted with 500 mM imidazole in 

the IMAC; 6- SEC fraction eluted at 8.9 mL; 7- SEC fraction eluted at 9.5 mL; 8- SEC 

fraction eluted at 10.2 mL; 9- SEC peak 1; 10- SEC peak 2. 

 

 
Figure 20. IMAC chromatogram of Hop5. The flow through is indicated by 1. The column 

was washed with 50 mM imidazole (peak 2) prior to protein elution with 500 mM 

imidazole (peak 3). 
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Figure 21. Superposition of two size exclusion chromatograms of Hop5 samples. The 

500 μL samples injected in the Superdex 75 Increase 10/300 column (GE) were 

previously purified by IMAC, as shown in Figure 20. 

 

 
Figure 22. Electrophoretic profile in SDS-PAGE 15 % of the purification samples of 

Hop5. 1- Molecular weight marker; 2- Cell lysis supernatant; 3- Flow through; 4- Fraction 

eluted with 50 mM imidazole in the IMAC; 5- Fraction eluted with 500 mM imidazole in 

the IMAC; 6- SEC peak 1; 7- SEC peak 2; 8- SEC peak 3; 9- SEC peak 4. 
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Figure 23. IMAC chromatogram of Hemp1. The flow through is indicated by 1. The 

column was washed with 50 mM imidazole (peak 2) prior to protein elution with 500 mM 

imidazole (peak 3). 

 

 
Figure 24. Superposition of two size exclusion chromatograms of Hemp1 samples. The 

500 μL samples injected in the Superdex 75 Increase 10/300 column (GE) were 

previously purified by IMAC, as shown in Figure 23. 
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Figure 25. Electrophoretic profile in SDS-PAGE 15 % of the purification samples of 
Hemp1. 1- Molecular weight marker; 2- Cell lysis supernatant; 3- Flow through; 4- 
Fraction eluted with 50 mM imidazole in the IMAC; 5- Fraction eluted with 500 mM 
imidazole in the IMAC; 6- SEC peak 1; 7- SEC peak 2; 8- SEC peak 3. 
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 5.3. OLIGOMERIC PROFILE CHARACTERIZATION 

 

 5.3.1. Native PAGE 

 

 Purified Late samples (after IMAC and SEC), with homogeneity indicated 

by SDS-PAGE (Figure 13) were analyzed in a native 15 % polyacrylamide gel 

as a means of observing possible oligomeric populations. The samples were 

incubated at different concentrations of NaCl, in order to investigate a possible 

dynamic equilibrium between the oligomeric populations. The gel, presented in 

Figure 26, shows that all samples comprise at least 3 defined oligomeric states 

and that the ionic strength bestowed by the salt had no effect in the equilibrium 

of such states. 

 
Figure 26. Native 15 % polyacrylamide gel with Late samples. 1- Sample without NaCl; 

2- Sample with 300 mM NaCl; 3- Sample with 600 mM NaCl; 4- Sample with 900 mM 

NaCl. 

 

 5.3.2. Sedimentation Velocity Analytical Ultracentrifugation (SV-

AUC) 

 

 Sedimentation velocity analytical ultracentrifugation (SV-AUC) assays 

were conducted in order to characterize the oligomeric states of the purified 

protein samples. SV-AUC experiments were performed with purified proteins in 

different buffers according to the crystallization conditions analyzed. The buffer 

composition of each sample and the parameters predicted by SEDNTERP are 

displayed in Table 1. Each SV-AUC data set (300 scans) consisted of the 

measured light absorption at 280 nm (A280nm) as a function of the radial distance 

to the rotation axis. Representations of the sedimentation data with their best 
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Lamm equation fits are shown in Figures 27, 29, 31, 33, 35 and 37 while the 

continuous sedimentation coefficient distribution are showed in Figures 28, 30, 

32, 34, 36 and 38. The contribution of each molecular species to the total signal 

was calculated from the area of the peaks in the sedimentation coefficient 

distributions. All displayed sedimentation coefficients were adjusted to standard 

conditions, i.e. sedimentation coefficients of samples at 20 °C in water (s20,W). 

 

Table 1. Buffer composition and parameters used for SV-AUC fitting and analysis 

Protein (SEC 
peak) 

Vbar 
(mL/g) 

Buffer 
Tris 
(mM) 

NaCl 
(mM) 

ρ 
(g/mL) 

η 
(Poise) 

Late (1) 0.74093 A 75 300 1.0127 0.010532 

Theo (1) 0.73733 B 75 150 1.0066 0.01039 

Hop1 (1) 0.73871 A 75 300 1.0127 0.01053 

Hop5 (3) 0.74053 C 20 150 1.0050 0.01002 

Hop5 (4) 0.74053 A 75 300 1.0127 0.01053 

Hemp1 (2) 0.73530 A 75 300 1.0127 0.01053 

 

 The Late SV-AUC experiment was performed with samples eluted in the 

first SEC peak (Figure 12) in buffer A (300 mM NaCl and 75 mM Tris-HCl pH 7.6) 

and is data are represented in Figures 27 and 28. The best Lamm equation fit 

was obtained with a frictional ratio of 1.267 and rmsd of 0.006. The sedimentation 

coefficient distribution curve (Figure 28) shows two sedimentation peaks with 

sedimentation coefficients of 1.888 S and 2.584 S. The smaller peak (2.81 % of 

the signal) presented an estimated molecular mass of 18.3 kDa, while the major 

one (80.49 % of the signal) presented an estimated molecular mass of 29.3 kDa. 

These results suggest the presence of two different Late oligomers, possibly a 

combination of monomers (12.3 kDa) and dimers (24.6 kDa). The presence of 

multiple oligomeric forms of the protein, as seen in the native-PAGE gel (Figure 

26), may account for the inaccuracy in the determination of the molecular 

masses, as the frictional ratio is calculated as an average between all molecules. 
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Figure 27. Sedimentation profile of 0.79 mg/mL of Late in Buffer A, monitored by the 

absorbance at 280 nm as a function of the radial distance to the rotation axis. The 

residuals of the fit, an indicative of its quality, are shown below. 

 
Figure 28. Continuous distribution of the sedimentation coefficients c(s) of the Late 

sample. The distribution indicates the existence of two molecule populations: the first 

with sedimentation coefficient of 1.888 S and estimated molecular mass of 18.3 kDa, 

accounting for 2.81 % of the total; the second, with sedimentation coefficient of 2.584 S 

and estimated molecular mass of 29.3 kDa, composing 80.49 % of the total. 

 

Sedimentation data of Theo samples eluted in the first SEC peak (Figure 

15) in buffer B (150 mM NaCl and 75 mM Tris-HCl pH 7.6) are depicted in Figures 
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29 and 30. The best Lamm equation fit was obtained with a frictional ratio value 

of 1.369 and rmsd of 0.012. The sedimentation coefficient distribution presented 

in Figure 30 shows two peaks with sedimentation coefficients of 2.147 S and 

3.714 S. The major peak (89.82 % of the signal) corresponds to a molecular 

weight of 24.4 kDa, which is comparable to the mass of a dimer of Theo 

(25.0 kDa). The smaller peak (4.04 %) corresponds to an estimated molecular 

mass of 55.4 kDa, which could be associated to a contaminant or a tetramer of 

Theo (50.1 kDa). 

 

 
Figure 29. Sedimentation profile of 0.93 mg/mL of Theo in Buffer B, monitored by the 

absorbance at 280 nm as a function of the radial distance to the rotation axis. The 

residuals of the fit, an indicative of its quality, are shown below. 
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Figure 30. Continuous distribution of the sedimentation coefficients c(s) of the Theo 

sample. The distribution indicates the existence of two molecule populations: the first 

with sedimentation coefficient of 2.147 S and estimated molecular mass of 24.4 kDa, 

composing 89.82 % of the total; the second, with sedimentation coefficient of 3.714 S 

and estimated molecular mass of 55.4 kDa, composing 4.04 % of the total. 

 

 Hop1 SV-AUC data were collected from the samples of the first SEC peak 

(Figure 18) in buffer A (300 mM NaCl and 75 mM Tris-HCl pH 7.6) and its 

sedimentation profile is shown in Figure 31. The best Lamm equation fit was 

obtained with a frictional ratio of 1.384 and rmsd of 0.011. The sedimentation 

coefficient distribution curve (Figure 32) shows a single peak (93.88 % of the 

signal) of sedimentation coefficient 2.073 S and estimated molecular weight of 

23.7 kDa, suggesting the presence of Hop1 dimers (24.6 kDa). 
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Figure 31. Sedimentation profile of 0.65 mg/mL of Hop1 in buffer A, monitored by the 

absorbance at 280 nm as a function of the radial distance to the rotation axis. The 

residuals of the fit, an indicative of its quality, are shown below. 

 

 
Figure 32. Continuous distribution of the sedimentation coefficients c(s) of the Hop1 

sample. The distribution indicates the existence of a single molecule population, with 

sedimentation coefficient of 2.073 S and estimated molecular mass of 23.7 kDa, 

composing 93.88 % of the total. 
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 Hop5 was analyzed by SV-AUC using samples from the third and fourth 

SEC peaks (Figure 21) due to their high availability. Its sedimentation profiles 

are depicted in Figures 33 and 35, respectively. The best Lamm equation fits 

were obtained at frictional ratios of 1.367 and 1.325, with rmsd’s of 0.008 and 

0.007 for the third peak and fourth peaks, respectively. The sedimentation 

coefficient distribution curve for samples of the third SEC peak (Figure 34) 

showed a main sedimentation peak (33.66 % of the signal) with a sedimentation 

coefficient of 1.997 S and estimated molecular weight of 22.3 kDa, corresponding 

to dimers of Hop5 (22.0 kDa). Figure 36 presents the sedimentation coefficient 

distribution curve for samples of the fourth SEC peak, which shows two 

sedimentation peaks with sedimentation coefficients of 1.352 S and 2.809 S, 

respectively. The first and main peak (81.98 %) has an estimated molecular 

weight of 11.8 kDa, corresponding to monomers of Hop5 (11.0 kDa). The second 

and smaller peak (2.74 %) presented an estimated molecular weight of 35.4 kDa, 

which could be explained by monomers of Hop5 associated into trimers (32.9 

kDa), as a result of the protein concentration increase during sedimentation. 

Thus, we concluded that the third SEC peak is formed by dimers of Hop5, while 

the fourth peak is formed by monomers. 

 
Figure 33. Sedimentation profile of 0.84 mg/mL of Hop5 in buffer C collected from the 

third SEC peak, monitored by the absorbance at 280 nm as a function of the radial 

distance to the rotation axis. The residuals of the fit, an indicative of its quality, are shown 

below. 
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Figure 34. Continuous distribution of the sedimentation coefficients c(s) of the Hop5 

sample from the third SEC peak. The distribution indicates the existence of a single 

molecule population, with sedimentation coefficient of 1.997 S and estimated molecular 

mass of 22.3 kDa, composing 33.66 % of the total. 

 
Figure 35. Sedimentation profile of 0.41 mg/mL of Hop5 in buffer A collected from the 

fourth SEC peak, monitored by the absorbance at 280 nm as a function of the radial 

distance to the rotation axis. The residuals of the fit, an indicative of its quality, are shown 

below. 
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Figure 36. Continuous distribution of the sedimentation coefficients c(s) of the Hop5 

sample from the fourth peak. The distribution indicates the existence of two molecule 

populations: the first with sedimentation coefficient of 1.352 S and estimated molecular 

mass of 11.8 kDa, composing 81.98 % of the total; the second, with sedimentation 

coefficient of 2.809 S and estimated molecular mass of 35.4 kDa, composing 2.74 % of 

the total. 

 

 For Hemp1, samples eluted in buffer A (300 mM Nacl and 75 mM Tris-HCl 

pH 7.6) from the second SEC peak (Figure 24) were analyzed by SV-AUC as 

depicted in Figure 37. The best Lamm equation fit was obtained at a frictional 

ratio of 1.380, with an rmsd of 0.006. The sedimentation coefficient distribution 

curve (Figure 38) shows three peaks with sedimentation coefficients of 1.857 S, 

3.240 S and 5.117. The estimated molecular mass for the species of the smaller 

first peak (2.63 %) was 19.6 kDa, probably associated to a contaminant, also 

seen in the Coomassie Blue stained SDS-PAGE gel (Figure 25), or a dimer of 

Hemp1 (24.7 kDa). The second peak has the most abundant species (80.24 %), 

with an estimated molecular mass of 45.1 kDa corresponding to a tetramer of 

Hemp1 (49.4 kDa). The third peak, with 5.60 % of the total signal, presented an 

estimated molecular mass of 89.5 kDa, probably associated to a contaminant or 

even Hemp1 multimers, as cystatin multimers are widely documented 

(SANDERS et al., 2004). 
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Figure 37. Sedimentation profile of 1.43 mg/mL of Hemp1 in buffer A collected from the 

second SEC peak, monitored by the absorbance at 280 nm as a function of the radial 

distance to the rotation axis. The residuals of the fit, an indicative of its quality, are shown 

below. 

 
Figure 38. Continuous distribution of the sedimentation coefficients c(s) of the Hemp1 

sample from the second SEC peak. The distribution indicates the existence of three 

molecule populations: the first, with sedimentation coefficient of 1.857 S and estimated 

molecular mass of 19.6 kDa, composing 2.63 % of the total; the second, with 

sedimentation coefficient of 3.240 S and estimated molecular mass of 45.1 kDa, 

composing 80.24 % of the total; the third, with sedimentation coefficient of 5.117 and 

molecular mass of 89.5 kDa, composing 5.60 % of the signal. 
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 All SV-AUC parameters calculated through the data fitting are presented 

in Table 2. All analyzed proteins presented similar frictional ratios which might be 

related to their conserved sequence and folding (TURK et al., 2008). The SV-

AUC and SEC data indicate that these phytocystatins adopt different oligomeric 

states in solution, with Theo and Hop1 presenting themselves mostly as dimers, 

Hop5 as both monomers and dimers and Hemp1 as tetramers. These results are 

in agreement with the literature, where phytocystatins are described as being 

monomeric (NAGATA et al., 2000), dimeric or tetrameric (VALADARES et al., 

2013). The imprecision in estimating the species’ molecular weight in the more 

heterogeneous samples occurs because the frictional ratio, an essential 

parameter to the mass calculation, is fitted by SEDFIT as a weight-average 

between all molecules in solution. Thus, molecules with different frictional ratio in 

the solution may shift the value of the estimated molecular mass of all 

sedimentation peaks (CHATON et al., 2015). 

 

 

Table 2. Analytical ultracentrifugation parameters obtained from the sedimentation data 

fitting for each phytocystatin sample. 

Protein (SEC peak) f/f0 c(s) peak s20,W (S) MM (kDa) Signal % 

Late (1) 1.267 
1 1.888 18.3 2.81 

2 2.584 29.3 80.49 

Theo (1) 1.369 
1 2.147 24.4 89.82 

2 3.714 55.4 4.04 

Hop1 (1) 1.384 1 2.073 23.7 93.88 

Hop5 (3) 1.367 1 1.997 22.3 33.66 

Hop5 (4) 1.325 
1 1.352 11.8 81.98 

2 2.809 35.4 2.74 

Hemp1 (2)   1.380 

1 1.857 19.6 2.63 

2 3.240 45.1 80.24 

3 5.117 89.5 5.60 
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 5.4. THERMAL DENATURATION ASSAYS 

 

 The effect of the temperature in the structure of Late, Hop1, Hop5 and 

Hemp1 can be observed in the thermal unfolding curves as following. The molar 

ellipticity measured at 218 nm for Late, Hop5 and Hop1, and at 222 nm for Hemp1 

(Figures 39, 43, 47 and 51, respectively) showed standard two-states transitions 

from native to unfolded states, where the proteins kept their monitored secondary 

structures until the temperature reached around 72-75 °C for Late, 72-75 °C for 

Hop1, 58-63 °C for Hop5 and 49-62 °C for Hemp1, depending on the pH. The 

dichroic signal of the proteins decreased as a function of the temperature 

increase, presenting a disordered structure profile at around 95 °C. CD spectra 

obtained in the unfolding assays showed that the proteins presented seemingly 

unaltered secondary structures in the studied pHs until 74 °C for Late, 65 °C for 

Hop1, 55 °C for Hop5 and 45-65 °C for Hemp1 (Figures 40-42, 44-46, 48-50 and 

52-54, respectively), with pronounced negative bands in 208 nm, 218 nm and 

222 nm. However, in temperatures above these values, the signal intensity in 

these negative bands decreases and shifted to 200 nm, which is associated with 

disordered structures. After the denaturation assays, the samples were cooled 

back to 25 °C and a spectra was collected, indicated by the dashed lines (Figures 

40-42, 44-46, 48-50 and 52-54), showing that Late, Hop1 and Hop5 presented a 

refolding profile with similar secondary structure to the native one. Despite not 

showing a conformation similar to the one in the beginning of the assay, the 

change in Hemp1’s renaturation secondary structure profile may be attributed to 

a change in its oligomeric state. This is supported by the fact that the Hemp1 

samples were the only ones comprising of protein tetramers, as shown by AUC 

(Table 2), and that its final spectra resemble the ones obtained for the other 

studied proteins, which consisted only on protein dimers. 

 



58 
 

 
Figure 39. Late’s thermal unfolding curves at different pHs. The vertical arrows point to 

the curves’ estimated Tm values which are 80.8 °C, 83.6 °C and 85.4 °C for pHs 4.0, 7.0 

and 9.5, respectively. 

 
 

 
Figure 40. Far-UV circular dichroism spectra of Late at pH 4.0, measured under thermal 

denaturation (25 to 95°C) in intervals of 10 °C. The dashed line indicates the spectrum 

measured after the protein’s temperature returned to 25 °C. 
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Figure 41. Far-UV circular dichroism spectra of Late at pH 7.0, measured under thermal 

denaturation (25 to 95 °C) in intervals of 10 °C. The dashed line indicates the spectrum 

measured after the protein’s temperature returned to 25 °C. 

 

 
Figure 42. Far-UV circular dichroism spectra of Late at pH 9.5, measured under thermal 

denaturation (25 to 95 °C) in intervals of 10 °C. The dashed line indicates the spectrum 

measured after the protein’s temperature returned to 25 °C. 
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Figure 43. Thermal unfolding curves of Hop1 at different pHs. The vertical arrows point 

to the curves’ calculated Tm values which are 82.3 °C, 84.8 °C and 83.7 °C for pHs 4.0, 

7.0 and 9.5, respectively. 

 
Figure 44. Far-UV circular dichroism spectra of Hop1 at pH 4.0, measured under thermal 

denaturation (25 to 95 °C) in intervals of 10 °C. The dashed line indicates the spectrum 

measured after the protein’s temperature returned to 25 °C. 
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Figure 45. Far-UV circular dichroism spectra of Hop1 at pH 7.0, measured under thermal 

denaturation (25 to 95 °C) in intervals of 10 °C. The dashed line indicates the spectrum 

measured after the protein’s temperature returned to 25 °C. 

 

 
Figure 46. Far-UV circular dichroism spectra of Hop1 at pH 9.5, measured under thermal 

denaturation (25 to 95 °C) in intervals of 10 °C. The dashed line indicates the spectrum 

measured after the protein’s temperature returned to 25 °C. 
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Figure 47. Thermal unfolding curves of Hop5 at different pHs. The vertical arrows point 

to the curves’ calculated Tm values which are 65.8 °C, 70.2 °C and 72.4 °C for pHs 4.0, 

7.0 and 9.5, respectively. 

 

 
Figure 48. Far-UV circular dichroism spectra of Hop5 at pH 4.0, measured under thermal 

denaturation (25 to 95 °C) in intervals of 10 °C. The dashed line indicates the spectrum 

measured after the protein’s temperature returned to 25 °C. 
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Figure 49. Far-UV circular dichroism spectra of Hop5 at pH 7.0, measured under thermal 

denaturation (25 to 95 °C) in intervals of 10 °C. The dashed line indicates the spectrum 

measured after the protein’s temperature returned to 25 °C. 

 

 
Figure 50. Far-UV circular dichroism spectra of Hop5 at pH 9.5, measured under thermal 
denaturation (25 to 95 °C) in intervals of 10 °C. The dashed line indicates the spectrum 
measured after the protein’s temperature returned to 25 °C. 
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Figure 51. Thermal unfolding curves of Hemp1 at different pHs. The vertical arrows point 

to the curves’ calculated Tm values which are 60.6 °C, 71.2 °C and 71.4 °C for pHs 4.0, 

7.0 and 9.5, respectively. 

 
Figure 52. Far-UV circular dichroism spectra of Hemp1 at pH 4.0, measured under 

thermal denaturation (25 to 95 °C) in intervals of 10 °C. The dashed line indicates the 

spectrum measured after the protein’s temperature returned to 25 °C. 
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Figure 53. Far-UV circular dichroism spectra of Hemp1 at pH 7.0, measured under 

thermal denaturation (25 to 95 °C) in intervals of 10 °C. The dashed line indicates the 

spectrum measured after the protein’s temperature returned to 25 °C. 

 

 
Figure 54. Far-UV circular dichroism spectra of Hemp1 at pH 9.5, measured under 

thermal denaturation (25 to 95 °C) in intervals of 10 °C. The dashed line indicates the 

spectrum measured after the protein’s temperature returned to 25 °C. 
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 The curves were normalized in order to estimate the proteins’ unfolding 

thermodynamic parameters and Tm values through the Gibbs free energy 

equation (Equation 4). The parameters estimated as described in the 

methodology are presented in Table 3. A positive value of the unfolding’s Gibbs 

free energy indicates that it’s an endergonic process, with higher values meaning 

higher thermal stability. The Gibbs free energy calculation depends on an 

enthalpy variation, in this case mostly related to the proteins’ non-covalent 

interactions, and the entropy variation, caused by a change in the hydration and 

degrees of freedom of the proteins’ residues. All studied proteins presented 

decreased thermal stability in acidic pHs in comparison to neutral and basic pHs, 

as indicated by the unfolding standard Gibbs free energy (ΔG25) values, with their 

minimum values found in pH 4.0. However, even in acidic pHs the proteins 

presented moderate to high thermostability as shown by the ΔG25 higher than 4 

kcal/mol. Hop1 showed little ΔG25 variation when analyzed in different pHs (from 

12.48 kcal/mol at pH 4.0 to 14.28 kcal/mol at pH 7.0) while Hemp1, despite its 

sequence similarity to Hop1, presented the highest ΔG25 variation, from 4.87 

kcal/mol at pH 4.0 to 12.20 kcal/mol at pH 9.5. Late’s unfolding thermodynamic 

parameters were not calculated as the protein did not unfold completely in the 

experiment’s temperature range and Theo was not analyzed by circular dichroism 

due to the presence of impurities in the obtained samples. 

 

Table 3. Thermodynamic parameters for the unfolding of Hop1, Hop5 and Hemp1. The 

melting temperatures estimated by the sigmoidal fit of the curves is indicated in 

parenthesis. 

Protein pH 
Tm (curve fit) 

(°C) 

ΔG25 

(kcal/mol) 

ΔS 

(cal/mol*K) 

ΔH 

(kcal/mol) 

Hop1 

4.0 82.3 (84.3) 12.48 217.65 77.34 

7.0 84.8 (85.4) 14.28 239.02 85.51 

9.5 83.7 (84.4) 13.47 229.65 81.90 

Hop5 

4.0 65.8 (67.0) 9.08 222.26 75.31 

7.0 70.2 (69.9) 11.72 258.95 88.88 

9.5 72.4 (72.5) 12.18 257.04 88.78 

Hemp1 
4.0 60.6 (65.3) 4.87 137.06 45.72 

7.0 71.2 (70.9) 9.47 204.75 70.49 
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9.5 71.3 (71.6) 12.20 263.37 90.68 

 

 

 The dichroic spectra of Late, Hop1 and Hop5 exhibited a more intense 

signal at 218 nm, which is associated with the contribution of beta sheets to the 

signal, result that confirms the predominance of beta sheets in cystatins (TURK 

et al., 2008), while Hemp1’s most intense signal was at 222 nm, wavelength 

associated with the contribution of alpha helixes to the signal. In general, 

phytocystatins are considered thermostable, as seen for TcCYS3 and TcCYS4 

(Theobroma cacao cystatins), which present 100 % of their inhibitory activity after 

being heated at 80 °C for 10 minutes (FREITAS et al., 2015) or for VuCys1 and 

VuCys2 (Vigna unguiculata cystatins), whose CD spectra only showed altered 

signals when the proteins were incubated at temperatures higher than 80°C 

(JÚNIOR et al., 2017). Despite showing similar amino acid contents, as shown in 

the sequence alignment (Figure 5), the difference in the thermal stability between 

the studied proteins may arise from the position in which these residues are 

found. According to the thermal denaturation curves (Figures 39, 43, 47 and 51), 

all studied proteins are more stable at basic pHs than at acidic pHs as indicated 

by the Tm’s and the unfolding standard Gibbs free energies which were higher 

than 12 kcal/mol for Hop1, Hop5 and Hemp1 at pH 9.5 in contrast to values as 

low as 9.08 kcal/mol for Hop5 and 4.87 kcal/mol for Hemp1 at pH 4.0. Charged 

and non-polar residues are responsible to the maintenance of the protein 

structure, due to intramolecular interactions and the hydrophobic effect. As a 

consequence, pH has a direct effect in the protein stability, as the charge of some 

sidechains may be altered according to the environment pH. At pH 4.0, the 

glutamic acid residues (pKa = 4.3) are not completely ionized. As such residues 

become deprotonated, acquiring negative charge, the protein structure is 

stabilized via electrostatic interactions with positively charged residues. At pH 

7.0, we speculate that the charge loss by the histidine residues (pKa = 6.0) 

through deprotonation further increases the conformational stability due to the 

increase in the protein’s hydrophobicity. Similarly, at pH 9.5, more histidine 

residues present no liquid charge, contributing to the structure stabilization 

through the hydrophobic effect. 
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 5.5. CRYSTALLOGRAPHY 

 

 5.5.1. Protein Crystallization 

 

 The mosquito® HTS robot (TTP Labtech) was employed to perform 

automated crystallization screenings with Theo, Late, Hop1, Hop5 and Hemp1 by 

the hanging drop method, using solutions from the crystallization kits Crystal 

Screen (Hampton Research), MembFac (Hampton Research), JBScreen 

JCSG++ (Jena Bioscience) and JBScreen PACT++ (Jena Bioscience). 

 Despite the wide range of protein and buffer concentrations used in the 

screening assays, no crystallization solution favored the appearance of Theo 

crystals, possibly due to the considerable amount of contaminants in the purified 

samples, as one can see in Figure 16. 

 Late crystals grew in 20 % w/v polyethylene glycol 6000 (PEG 6000), 

100 mM sodium citrate pH 4.0, 1 M lithium chloride and ≈12.4 mg/mL Late 

(Figure 55A) from the second SEC peak (Figure 12). We performed then manual 

condition refinement assays using the sitting drop method, by variating the 

concentration of PEG 6000 and the solution pH. Crystals like the ones seen in 

Figure 55B, were seen in most of the plate, especially when concentration of 

PEG 6000 was between 16 % and 20 %. 

 The crystallization screenings produced Hop1 crystals in two different 

conditions, the first, comprising 30 % w/v PEG 4000, 100 mM sodium acetate 

trihydrate pH 4.6, 200 mM ammonium acetate (Figure 56A) and the second 

comprising 30 % w/v PEG 8000, 100 mM sodium cacodylate pH 6.5 and 200 mM 

sodium acetate trihydrate (Figure 56B) with ≈11 mg/mL Hop1 from the first SEC 

peak (Figure 18). We were not able to reproduce any of the Hop1 crystals in 

manual refinement assays. Nevertheless, the Hop1 crystals obtained through the 

automated screening were suitable for X-ray diffraction. 

 Hop5 crystallized in a larger amount of conditions in the automated 

screening. Using ≈12.35 mg/mL Hop5 from the third SEC peak (Figure 21), the 

protein crystallized in a few conditions from the Crystal Screen and JBscreen 

JCSG++ kits and several conditions from the JBScreen PACT++ kit, including 

one comprising 20 % w/v PEG 3350, 100 mM BIS-TRIS propane pH 8.5, 200 mM 

sodium sulfate (Figure 57A) and another comprising 20 % w/v PEG 3350, 100 
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mM BIS-TRIS propane pH 8.5, 200 mM potassium sodium tartrate (Figure 57B). 

The conditions that gave rise to the most promising crystals were selected to be 

refined manually, but unfortunately we weren’t able to reproduce the crystals in 

sitting drop assays. 

 Hemp1 crystals were obtained in the automated screenings using 

≈13 mg/mL Hemp1 from the third SEC peak (Figure 24) in various conditions 

from the crystallization kits, including a condition comprising 20 % w/v PEG 3350 

and 200 mM di-ammonium citrate pH 5.0 (Figure 58A), which was refined in 

manual sitting drops assays (Figure 58B). All crystals appeared in a time frame 

of 15 min to 24 hours, and although easily reproduced in manual refinement 

assays, most of them didn’t diffract the synchrotron light with enough intensity for 

the collection of a useful x-ray diffraction data set. 

 

 
Figure 55. Late crystals obtained in the crystallization condition containing 20 % w/v 

PEG 6000, 100 mM sodium citrate pH 4.0, 1 M lithium chloride and ≈12.4 mg/mL Late. 

A. Automated screening (hanging drop). B. Manual refinement (sitting drop). 
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Figure 56. Hop1 crystals obtained in the automated screening (hanging drop) after three 

weeks using ≈11 mg/mL Hop1. A. 20 % w/v PEG 4000, 100 mM sodium acetate 

trihydrate pH 4.6 and 200 mM ammonium acetate. B. 30 % w/v PEG 8000, 100 mM 

sodium cacodylate pH 6.5 and 200 mM sodium acetate trihydrate. 

 

 
Figure 57. Hop5 crystals seen 1 week after the automated screening (hanging drop) 

made with the crystallization kit JBScreen PACT++ and ≈12.35 mg/mL Hop5. A. 

Crystallization condition containing 20 % w/v PEG 3350, 100 mM BIS-TRIS propane pH 

8.5, 200 mM sodium sulfate. B. Crystallization condition containing 20 % w/v PEG 3350, 

100 mM BIS-TRIS propane pH 8.5, 200 mM potassium sodium tartrate. 
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Figure 58. Hemp1 crystals obtained in the crystallization condition 20 % w/v PEG 3350, 

200 mM di-ammonium citrate pH 5.0 with ≈12.9 mg/mL Hemp1. The crystals appeared 

15 min after the beginning of the assay. A. Automated screening (hanging drop). B. 

Manual refinement (sitting drop). 

 

 5.5.2. X-Ray Diffraction and Crystal Structure Resolution 

 

 The crystals obtained in the crystallization assays were taken to LNLS in 

Campinas, São Paulo, for X-ray diffraction experiments. The data were collected 

in the MX2 beamline with the Pilatus M2 Detector and X-rays with a wavelength 

of 1.45 Å. Each collected image consisted in the X-ray diffraction pattern obtained 

when rotating the diffracting crystal by small amounts. Although dozens of 

crystals were tested in the beamline, most of them did not present appropriate 

diffraction. These observed diffraction patterns did not present visible spots, i.e. 

areas in the detector where the constructive interference of the diffracted waves 

results in an intense signal, indicating that the crystals did not have appropriate 

dimensions or that their crystal packing were not sufficiently ordered. 

Nonetheless, two data sets of Hop1 and one data set of Hemp1 were collected 

and solved. 

 Both Hop1 data sets were collected from crystals grown in 30 % w/v 

PEG 8000, 100 mM sodium cacodylate pH 6.5 and 200 mM sodium acetate 

trihydrate (Figure 56). One of the data sets, comprising 1800 images, was 

recorded with a distance to the detector of 12 cm, with a beam exposure time of 

4 s, while rotating the crystal 0.2° per image. The other data set, comprising 3600 
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images, was recorded with a distance to the detector of 14 cm, with a beam 

exposure time of 1 s, while rotating the crystal 0.1° for each image.  

The Hemp1 data set was collected from a crystal grown in 18 % w/v 

PEG 3350 and 200 mM di-ammonium citrate pH 5.2 (Figure 58). 720 images 

were collected, with a detector distance of 35 cm, and an exposure time of 10 s 

per image, while rotating the crystal 0.5° per image. 

 XDS readily determined that the two analyzed Hop1 crystals belong to the 

orthorhombic space groups C 2 2 21 and P 2 21 21 and the high resolution cutoff 

of their diffraction data were 1.68 Å and 1.80 Å, respectively. Meanwhile, the 

Hemp1 crystal space group estimates by XDS were inconclusive. Therefore, it 

was only determined during the phasing step, using the PHASER software of the 

CCP4 package and the data processed by XDS in each one of the most probable 

space groups. Following this laborious step, the hexagonal space group P 65 2 2 

was assigned to the Hemp1 crystal and its diffraction data resolution was 3.6 Å. 

The programs ZANUDA (LEBEDEV & ISUPOV, 2012) and POINTLESS (CCP4) 

were used to assure the correct assignment of the space groups. 

 The high resolution data cutoff was defined taking into consideration the 

values of the completeness, diffraction intensity to noise ratio and the Pearson’s 

correlation coefficient, which was shown to be a reliable data and processing 

quality indicator (KARPLUS & DIEDERICHS, 2012). 

 The PHASER software of CCP4 was employed to retrieve the phase 

information of the data sets and to solve the tridimensional structures using the 

crystal structure of 4TX4 (JÚNIOR et al., 2017), a phytocystatin from cowpea 

(Vigna unguiculata), as a search model. Prior to the phasing, the 4TX4 structure, 

which shares an identity of over 70% with both Hop1 and Hemp1, was prepared 

by the CHAINSAW software of the CCP4. The quality of the solutions provided 

by PHASER was estimated by the electron density map and the values of the 

translational function Z-score (TFZ) and log-likelihood gain (LLG) generated by 

the solution. 

 The data collection and refinement statistics for both Hop1 data sets are 

presented in Table 4. Hemp1 data is not shown as its structure is still undergoing 

refinement. In crystallographic structures, regions with higher flexibility such as 

exposed sidechains and glycine loops generate less defined electron density 

maps. This becomes a major concern when considering the Hemp1 data set due 
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to the high amount of solvent in its structure and its low resolution, which renders 

its refinement a challenging task. 

 

Table 4. Data collection and refinement statistics for two Hop1 data sets. Statistics for 

the highest resolution shell are shown in parentheses. 

Space group C 2 2 21 P 2 21 21 

Resolution range (Å) 28.99 - 1.68 (1.74 - 1.68) 25.78 - 1.80 (1.86 - 1.80) 

Unit cell dimensions a, 
b, c (Å) 

42.55 63.28 72.38 28.92 43.82 56.83 

Total reflections 138709 (10633) 83639 (5203) 

Unique reflections 11170 (1011) 6715 (506) 

Multiplicity 12.4 (10.5) 12.5 (10.3) 

Completeness (%) 97.44 (89.62) 93.49 (69.05) 

Rmeas 0.08523 (1.643) 0.08546 (3.074) 

Mean I/σ(I) 20.72 (1.42) 17.13 (0.67) 

CC1/2 0.999 (0.554) 0.999 (0.312) 

Reflections used in 
refinement 

11166 (1010) 6665 (473) 

Reflections used for R-
free 

557 (50) 335 (25) 

Rwork 0.1911 (0.3086) 0.2200 (0.4087) 

Rfree 0.2092 (0.3072) 0.2666 (0.4311) 

Number of protein 
atoms 

651 627 

Number of solvent 
atoms 

70 14 

Protein residues 80 79 

RMS (bonds) 0.008 0.007 

RMS (angles) 1.22 1.10 

Ramachandran favored 
(%) 

98.72 97.40 

Ramachandran allowed 
(%) 

1.28 2.60 

Rotamer outliers (%) 0.00 0.00 

Clashscore 2.23 1.61 

Average B-factor 32.04 46.85 

Number of TLS groups 3 3 

 

 

 5.5.3. Crystal Packing 
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 5.5.3.1. Hop1 

 

 A crystal lattice analysis of the two different orthorhombic Hop1 crystals 

revealed a series of potentially relevant contact interfaces between symmetry 

related protein subunits. In the C 2 2 21 and P 2 21 21 crystals, 13 and 14 of such 

interfaces were identified, respectively. In both structures, domain-swapped 

dimers are formed by symmetry related molecules. 

 The amount of solvent in the unit cell of each crystal was estimated by 

calculating their Matthews coefficients, as described in the methodology. The unit 

cell of the Hop1 C 2 2 21 crystal presented 37.88 % of solvent while the unit cell 

of the Hop1 P 2 21 21 crystal presented only 15.96 % of solvent, showing that 

despite containing the same protein and crystallizing in the same condition and 

droplet, the space group and unity cell parameters difference led to changes in 

the crystal packing. 

 In both Hop1 crystal lattices, common interactions between symmetry 

related subunits were observed. The most prominent involves extensive contacts 

between the helixes and the loop connecting the helix to the β2 strand (Figure 

59). In each Hop1 symmetry mate, Arg24 of one of the subunits hydrogen bonds 

Asp28 of the other subunit while Leu37 is in close contact with its identical 

counterpart. 

In order to compare these contacts, the two subunits responsible for this 

helix interface were extracted from each crystal form and a superposition was 

performed between the two different space groups, resulting in an rmsd of 1.03 Å. 

The PYMOL script “angle_between_helices” was employed to calculate the angle 

between the interacting helixes using four different methods. The calculated 

angles for the C 2 2 21 space group ranged from 50° to 61°, while for the P 2 21 21 

space group, the values ranged from 47° to 58°. The superposition of the 

structures and the comparison of the angles between the helices shows that this 

interaction is very similar in both crystal lattices. 



75 
 

 
Figure 59. Similarities between interacting helixes in the crystal lattice from Hop1 

crystals of different space groups. The subunits of the C 2 2 21 space group are 

represented in orange and dark green, while the subunits of the P 2 21 21 space group 

are represented in purple and light green. Some of the interacting residues are shown 

as sticks, and Leu37 is represented as spheres. 

 

 Another contact between symmetry mates in the Hop1 C 2 2 21 crystal 

involves residues of different secondary structure elements such as β2 to β4 

strands and residues close to the first inhibitory loop (Figure 60). These contacts 

consist mainly of a salt bridge between Glu61 and Lys42, a hydrogen bond 

between Asn45 and the main chain carboxyl group of Asp94 and a hydrogen 

bond between Lys47 and the main chain of Leu92. In addition, a C-terminal Pro96 

residue is also in close contact to Val43, contributing to this interface. 
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Figure 60. Interaction between Hop1 symmetry mates in the space group C 2 2 21 

involving residues close to the first inhibitory loop. Residues containing polar atoms in 

close contact are represented as sticks, and hydrogen bonds are shown as yellow 

dashes. 

 

 It is also noteworthy in the C 2 2 21 crystal that the acidic group of Asp64 

is in the vicinity of the side chain nitrogen of Trp80 (Figure 61). This tryptophan 

is part of the second inhibitory loop and this interaction may influence its 

conformation inside the crystal lattice. 

 
Figure 61. The packing of Trp80 in the C 2 2 21 Hop1 crystal. Trp80 and Asp64 are 

labeled and shown as sticks, and transparent spheres delimit their van der Waals radius. 
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 In contrast, in the space group P 2 21 21, Trp80 is tightly packed between 

Met81 of the same Hop1 molecule and the C-terminal Pro96 of a symmetry mate 

(Figure 62). Additionally, a relevant intramolecular interaction comprises the side 

chain nitrogen atom of Trp80 in a polar contact with the carboxyl oxygen atom of 

Ser52, a residue of the open interface. 

 
Figure 62. The packing of Trp80 in the P 2 21 21 Hop1 crystal. Ser52, Trp80 and Met81 

are labeled and shown as sticks, and transparent spheres delimit their van der Waals 

radius. A symmetry mate is colored in salmon and Pro96 is labeled. 

 

  5.5.3.2. Hemp1 

 

The Hemp1 crystal structure is still undergoing refinement, therefore a 

thorough analysis involving its side chains will be presented posteriorly. However, 

it is possible to study its crystal packing at this stage. An analysis of the Matthews 

coefficient of the Hemp1 crystal showed a much higher solvent content compared 

to the Hop1 crystals (68.66 %). Unlike Hop1, the Hemp1 structure presents a 

domain swapped dimer in its asymmetric unit. In the crystal packing, each 

domain-swapped dimer contacts only three other domain swapped dimers, 

leading to the formation of large solvent channels in the lattice (Figure 63). This 

contrasts with the orthorhombic structures of Hop1 in C 2 2 21 and in P 2 21 21 in 

which the domain-swapped dimers contact 8 and 11 other domain swapped 

dimers, respectively. This combination of high solvent content and the peculiar 
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arrangement of the domain-swapped dimers forming large solvent channels 

might explain the low resolution of the collected Hemp1 data sets. 

 

 
Figure 63. Solvent channels in the Hemp1 P 65 2 2 crystal packing. The colors represent 

different Hemp1 dimers in the crystal lattice. (B) shows (A) after a 90° rotation. 

 

 5.5.4. Crystal Structure 

 

 Hop1 was solved in two different orthorhombic space groups, C 2 2 21 and 

P 2 21 21 at resolutions of 1.68 Å and 1.80 Å, respectively. In the C 2 2 21 structure 

the observed electron density comprised amino acids 18 to 97, while in the 

P 2 21 21 structure the electron density allowed a fit of amino acids 19 to 97. As 
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disclosed in the last sections, Hop1 presents itself as dimers in solution. In 

agreement, domain swapped dimers are observed in the crystal lattices of both 

space groups (Figure 64). The lobes of the Hop1 dimers present a small 

inclination towards each other, where the helices present angles ranging from 

46° to 60° for the C 2 2 21 structure and 47° to 62° for the P 2 21 21, depending 

on the method used to measure the angle. The region of the first inhibitory loop, 

which corresponds to the hinge loop of the protein, and its electron density are 

shown in Figure 65. 

 

 
Figure 64. Hop1 structure solved from the C 2 2 21 crystal. Each subunit of the dimer is 

showed in a different color, and the arrows inside the helices show the axis fit made by 

PYMOL to calculate the angle between them. 
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Figure 65. 2Fo-Fc electron density map for the first inhibitory loop of Hop1 from the 

structure in the C 2 2 21 space group. The electron density is showed only for the 

conserved residues QVVSG, contoured at 1.0 σ. These residues are presented as sticks 

and the protein is depicted in cartoon. 

 

 The orthorhombic Hop1 structures share many similarities regarding their 

secondary structure elements. The superposition of both structures was 

generated with PYMOL leading to an rmsd of 0.77 Å (Figure 66). 

 

 
Figure 66. Superposition of Hop1 crystal structures. The C 2 2 21 structure is shown in 

orange while the P 2 21 21 structure is shown in dark green. The superposition yields an 

rmsd of 0.77 Å. 
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 In both Hop1 structures the main chain carboxyl group of Ser52 hydrogen 

bonds the nitrogen of a tryptophan in the same chain (Figure 67). The striking 

difference is that in the C 2 2 21 structure Ser52 contacts Trp76, while in the 

P 2 21 21 structure Ser52 contacts Trp80. This interaction may contribute to the 

rotamer changes between the tryptophan residues in the structures of different 

space groups. 

 

 
Figure 67. Rotamers of Trp76 and Trp80 in the C 2 2 21 (A) and P 2 21 21 (B) Hop1 

structures. The tryptophan residues and Ser52 are represented as sticks, and the 

hydrogen bonds are shown as yellow dashes. 

 

 Like in other phytocystatins, an extensive hydrophobic core is formed 

between the α helix and the β sheet, including at least seven helix side chains 

and seven β sheet side chains. Curiously, only two polar contacts are observed 

between residues in this region, both involving the hydroxyl oxygen of Tyr25, the 

first with the main carbonyl of Lys84 and the second with the main chain nitrogen 

atom of Thr46. Residues in that region present a high degree of conservation, 

such as the ones located in the consensus sequence in the α helix that identifies 

phytocystatins [LVI]-[AGT]-[RKE]-[FY]-[AS]-[VI]-X-[EDQV]-[HYFQ]-N. In Hop1, 

this sequence is LARYAVDEHN, where the side chain of the residues in bold 

participate in this hydrophobic interface.  

 A recurrent feature in the tridimensional structure of phytocystatins is the 

presence of two consecutive β bulges in the β2 strand. A β bulge might be 

described as an alteration of the hydrogen bond pattern in a β strand due the 

insertion of an additional residue. In the case of phytocystatins, these β bulges 

contribute to alleviate the torsional strain caused by the curvature of the 
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antiparallel β sheet (RICHARDSON et al., 1978). This feature allows all the 

regular main chain hydrogen bonds of the β3 strand and also that the β sheet 

curves around the helix, in an arrangement in which all odd residues from the β3 

strand are hydrogen bonding with residues from the β2 strand. In the Hop1 

structure, Glu41 and Lys42 form the first β bulge while Val44 and Asn45 form the 

second one (Figure 68). 

 
Figure 68. β bulges in the Hop1 C 2 2 21 structure. The residues that compose the β 

bulges are labeled and their side chains are represented as sticks. 

 

 Hop1 may be analyzed in parallel to the structure of a cowpea 

phytocystatin (PDB code 4TX4), the phytocystatin with the highest sequence 

identity whose crystal structure is available and was used as the search model 

for the molecular replacement (Figure 69A). The crystal structure 4TX4 

comprises a domain swapped dimer, as expected for dimeric phytocystatins, with 

the particularity that the two lobes are positioned closer to each other than in any 

other phytocystatin deposited in the PDB, allowing direct interactions between 

side chains of both lobes. This effectively increases the amount of residues that 

contribute to the open interface, a phenomenon unique to this phytocystatin 

(JÚNIOR et al., 2017). The angle between the helices measured by PYMOL 

ranged from 72° to 85° in contrast to the maximum value of 62° to the Hop1. A 

superposition was performed between one of the lobes of the 4TX4 domain 

swapped dimer and a lobe of the C 2 2 21 Hop1 structure. Though this lobe may 
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be finely aligned, the structures start to diverge in the region of the first inhibitory 

loop, leading to a displacement between the second lobes (Figure 69B). An 

analysis of the main chain dihedral angles showed that this abrupt difference 

between the 4TX4 and the Hop1 structure happens in the vicinity of Thr46, next 

to the second β bulge. 

 

 
Figure 69. Similarities between Hop1 and a cowpea phytocystatin (PBD code 4TX4). A. 

Sequence alignment. The outline residues are present in both sequences B. 4TX4 

crystal structure superposed with the C 2 2 21 Hop1 structure. 4TX4 is showed in red, 

while Hop1 is showed in orange. The lobes on the left were aligned with PYMOL, and 

due to the different angles between the lobes of these two phytocystatins, the lobes on 

the right are displaced in relation to each other. 

 

 As previously stated, currently the structural analysis of the Hemp1 can 

only be done at a superficial level. Nevertheless, the structure presents a domain 

swapped dimer, with each lobe further apart than in the Hop1 or 4TX4 structures, 

leaving plenty of space for solvent molecules (Figure 70). In addition, the lobes 
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have a pronounced inclination, corresponding to angles from 68° to 77°. It is 

noteworthy that although the Hemp1 structure diverges significantly from the 

solved Hop1 structures, the difference between the sequence of these two 

proteins is only of 10 amino acids (Figure 5) 

 

 
Figure 70. Hemp1 structure solved from a hexagonal P 65 2 2 crystal. Each color 

represents a single subunit. 
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 6. CONCLUSIONS 

 

 In conclusion, the expression of the studied phytocystatins in the E. coli 

heterologous system using auto inducing medium ZYM-5052 was a success, 

especially when compared to results obtained using LB medium. 

 With the exception of Theo, the use of immobilized ion metal affinity 

chromatography followed by size exclusion chromatography sufficed to produce 

samples suitable for circular dichroism, analytical ultracentrifugation, and protein 

crystallization assays. 

 Ultracentrifugation assays revealed that the studied phytocystatins are 

mostly dimeric in solution, although Hop5 showed a considerable amount of 

monomers and Hemp1 presented tetramers. Assays to disclose the effects of pH, 

temperature and ionic strength on the oligomer dynamics are to be performed. 

 The studied phytocystatins presented moderate thermal stability, as 

indicated by the Gibbs free energy higher than 4 kcal/mol after the unfolding 

process in all studied pHs. All proteins showed more stability in neutral and basic 

pHs than acidic pHs and Hemp1 might have changed its oligomeric state when 

heated. 

 The crystallization assays gave rise to a wide variety of crystals from Late, 

Hop1, Hop5 and Hemp1, although many of them weren’t suitable for X-ray 

diffraction. 

 The crystal structure of Hop1 in the two orthorhombic space groups 

C 2 2 21 and P 2 21 21 was solved at 1.68 Å and 1.80 Å, respectively. The protein 

is tightly packed in the crystal as showed by the amount of contacts a subunit 

makes with its symmetry mates. The protein crystallized as a domain-swapped 

dimer, where β bulges may be observed. 

The Hemp1 crystal structure solved from a hexagonal space group P 65 2 

2 crystal at a 3.6 Å resolution is undergoing refinement due to the challenges 

imposed by the resolution and amount of solvent in the crystal lattice. Like Hop1, 

Hemp1 also presented domain-swapped dimers, however, the dimer lobes are 

further apart. 

During the course of this study the methodology to express, purify, 

characterize biophysically and crystallize phytocystatins was stablished in the 

Molecular Biophysics Laboratory of the University of Brasília, paving the way for 
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the study of other cystatins of interest. The biophysical and structural data 

obtained will contribute to a better understanding of the structural determinants 

of domain swapping in phytocystatins, shedding a light on the regulation of the 

activity of these protease inhibitors with potential biotechnological applications. 
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