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Abstract

The main goal of this study is to find the most effective set of parameters for the Simplified Generalized Simulated
Annealing algorithm, SGSA, when applied to distinct cost function as well as to find a possible correlation between
the values of these parameters sets and some topological characteristics of the hypersurface of the respective cost
function. The SGSA algorithm is an extended and simplified derivative of the GSA algorithm, a Markovian stochastic
process based on Tsallis statistics that has been used in many classes of problems, in particular, in biological
molecular systems optimization. In all but one of the studied cost functions, the global minimum was found in 100% of
the 50 runs. For these functions the best visiting parameter, qV, belongs to the interval [1.2, 1.7]. Also, the
temperature decaying parameter, qT, should be increased when better precision is required. Moreover, the similarity
in the locus of optimal parameter sets observed in some functions indicates that possibly one could extract
topological information about the cost functions from these sets.
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Introduction

A large number of problems in physics, chemistry

and biology have as central point the minimization of an ap-

propriate energy function for finding the global minimum

of a particular target function. The protein folding and the

ligand-receptor docking problems are two examples of

challenges in the molecular biology field where the devel-

opment of efficient and robust global optimization algo-

rithms play a central role in order to find the conformational

geometry associated to the global minimum of the molecu-

lar free energy hypersurface. Biological macromolecules

and biomolecular complexes present a very complex free

energy landscape with thousands of local minima. This fact

dramatically increases the probability of an optimization

process to be trapped in local minima and consequently

turns the global minimum determination into a very diffi-

cult task. To cope with this problem one should choose a

powerful optimization algorithm and understand it deeply

to obtain a robust and efficient optimization protocol. This

work investigates a simplified and extended version of the

GSA, Generalized Simulated Annealing, algorithm of opti-

mization (Tsallis and Stariolo, 1995; 1996), called SGSA

(i.e., Simplified GSA), with the main objective of under-

standing the role of the SGSA parameters in its perfor-

mance in order to guide their choices in future biomolecular

optimization studies.

The GSA algorithm or Tsallis machine is a

Markovian stochastic process, based on Tsallis statistics

(Tsallis, 1988; Curado and Tsallis, 1992), that has been

used in many classes of problems, like physics and chemis-

try (Dorfman et al., 2001; Ellis et al., 2000; Mundim et al.,

2001; Gutterres et al., 1999; Xiang et al., 1997; Zhaoxian

and Dang, 2003), and in particular in molecular systems op-

timization and protein folding problems (Andricioaei and

Straub, 1996; Hansmann, 1997; Moret et al., 1998; Moret

et al., 2001; Moret et al., 2002; Mundim and Tsallis, 1996).
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The GSA is a generalization of the Simulated An-

nealing algorithm, SA (Kirkpatrick et al., 1983), also

known as Boltzmann machine because it is based on

Boltzmann-Gibbs statistics, and of the Fast Simulated An-

nealing algorithm, FSA (Szu and Hartley, 1987), or

Cauchy machine, based on Cauchy-Lorentz probabilistic

distribution.

The simulated annealing algorithms family depends

on a visiting function that determines how the domain of the

function is searched, and on an acceptance function that

says if a result of higher “energy” should be accepted or re-

jected.

In the original SA, the visiting function was simply a

random variable choice, due to the binary nature of the vari-

ables. The acceptance function,
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E k T tB( )
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where kB is the Boltzmann constant, gives the Boltzmann-

Gibbs distribution nature of the movement of the reference

point. In problems with more complex domains, the

Boltzmann-Gibbs probability distribution function is also

used as a visiting function. It was demonstrated (Geman

and Geman, 1984) that in this case the maximum tempera-

ture decaying ratio should be T(t) = T0 / log (1 + t), where

the “time” t is the iteration step, to guarantee the theoretical

convergence of the algorithm.

The FSA algorithm uses as its visiting function a

Cauchy-Lorentz probability distribution function:
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where x is the variable of interest, and maintains the same

acceptance function of the SA algorithm. Szu and Hartley

proved that in this case T could decay with the inverse of the

computing step, Tc(t) = T0 / (1 + t), because even in rela-

tively low temperatures long range jumps are still possible,

which made the annealing faster than in the SA algorithm.

The Simplified Generalized Simulated Annealing al-

gorithm, SGSA, is an extended and simplified derivative of

the GSA algorithm, with a reduced computational cost and

the capacity to deal successfully with finite domain prob-

lems such as grid based receptor-ligand docking methodol-

ogies (Meng et al., 1992; Luty et al., 1995; Garrett et al.,

1998).

Material and Methods

Given a cost function, the simulated annealing family

of algorithms works as follow:

1. From an initial set of values of the parameters of the

given cost function, generally randomly chosen, an initial

“energy”, Eref, of the system is evaluated and an initial

“temperature” T = T0 is selected;

2. a random perturbation is generated into the param-

eters of the cost function using the visiting function, and the

new “energy” of the system, Enew, is then calculated;

3. if ∆E = Enew - Eref ≤ 0, the new point is better or at

least of the same quality as the previous one, the new set of

values of the parameters of the function become the refer-

ence set;

4. if ∆E > 0, the new point is worse than the reference

point but still could be accepted depending upon the accep-

tance probability function and a random number, as defined

in the Metropolis criteria (Metropolis et al., 1953);

5. the “temperature” T is decreased, according to a

temperature decaying function;

6. step 2 thru step 5 are repeated during a giving num-

ber of steps or until some other stopping criteria becomes

satisfied.

The GSA algorithm

The GSA algorithm uses for the acceptance probabil-

ity function in the cases where E(xt+1) > E(xt), the expres-

sion
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where qA (1.0 < qA < 3.0) is the acceptance parameter.

The visiting function depends on the Tsallis probabil-

ity density function:
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where D is the dimension of the cost function, and qV

(1.0 < qV < 3.0) is the visiting parameter. From the proba-

bility distribution function, G(∆xt),

G x g x dxt q
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−∞
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to which a randomly chosen value is attributed, a perturba-

tion ∆xt is determined in every iteration

x x x x G xt t t t t+
−= + =1

1∆ ∆ ∆, ( ) (6)

with the temperature decaying in Equation 4 controlled by
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where qV = 2 is the FSA temperature decaying case.

Generally Equation 5 has no analytic solution and

Equation 6 must be resolved numerically by means of the

inversion of a power series (Moret at al., 1996, 1998).

Usually T t T tq qA V
( ) ( )= , but there is no specific rea-

son that enforces that.

The idea of generalized in the algorithm comes from

the fact that in the parameters limit (qA; qV) = (1; 1) repro-

duces the SA or Boltzmann machine; and (qA; qV) = (1; 2)

reproduces the FSA or Cauchy machine.

As x was D-dimensional, ∆xti
for every dimension

was originally determined using products of sine and co-

sine functions, that introduces an artifact in the visiting

function. Moret (1996) suggested the application of g xqV
( )

independently in every dimension. In any case, two prob-

lems arise: the computational cost of the calculus of the in-

verse of the integral of Equation 5; and second, ∆xt

computed in this way is not limited and when the domain is

finite it must be normalized.

To cope with these problems, two main simplifica-

tions are used in the SGSA. The first is to make, for every

dimension xi,

∆x g ri q iV
∝ ( ) (8)

with ri randomly chosen, greatly reducing the computa-

tional cost, because there is no power series to invert. The

second is to make D = 0, that guarantees 0 ≤ g qV
≤ 1, in order

to maintain xi always inside a given domain. In this case,
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A lower value of qV in the g rq iV
( ) gives a more global

profile for the visiting function, where long jumps have a

greater probability of occurring when compared to the

probability given by greater qV values. On the other hand, a

greater value of qV gives a more local visiting function pro-

file, with high short jump probability and a very fast de-

creasing of the long jump probability.

Another difference from traditional GSA was the in-

troduction of an additional temperature decaying parame-

ter, qT, in place of qV in Equation 7, to maintain better and

more independent control over the annealing process. A

larger value of qT causes a very fast TqT
decaying with two

possible effects: either the convergence to the global mini-

mum is very fast or the algorithm is trapped in a local mini-

mum.

Results and Discussion

With the objective of understanding the role of the

SGSA parameters sets, (qV, qA, qT), in the algorithm perfor-

mance, the optimization procedure using six two-

dimensional functions as case studies is investigated. The

choice of two-dimensional functions permits the compari-

son between the locus of the best SGSA parameters for a

particular function and its topology. The six functions stud-

ies are: Ackley (Solomatine, 1995), Figure 1(a); log-trigo-

nometric (Kvasnicka and Pospíchal, 1997), Figure 1(b);

Lavor (Lavor, 2001), Figure 1(c); Schwefel (Schwefel,

1981), Figure 1(d); Goldstein-Price (Solomatine, 1995),

Figure 1(e); and De Jong F5 function (De Jong, 1975), Fig-

ure 1(f).

The Ackley and log-trigonometric functions have in

common a unique and deep global minimum with several

local minima around it. Lavor and Schwefel functions have

both a smooth profile with an almost undistinguishable

global minimum, because many of the local minima basins

are very similar to the global minimum basin. The

Goldstein-Price function seems at first an easy objective

function, but presents a scale problem with a difference of

many magnitude orders between the domain and the func-

tion hypersurface. Finally, the De Jong F5 function is, as

could be easily seen, a nightmare for optimization algo-

rithms, many deep and small minima basins with minimum

values close to the global minimum.

The approach adopted in this study was an exhaustive

search for the best parameters set, (qV, qA, qT), for the SGSA

algorithm. Using a stop criteria of 2,500,000 steps, the pa-

rameters were scanned using a 0.1 step in the intervals 1.1 ≤
qV ≤ 2.9, 1.1 ≤ qA ≤ 2.9, 1.1 ≤ qT ≤ 3.5, with initial “tempera-

tures” T Tq qA V
( ) ( )0 0 1= = . The entire process was repeated

50 times for every parameter set with different random ini-

tial conditions for each execution.

In Table 1 are shown some of the performance data in

terms of mean number of cycles in 50 runs, with two differ-

ent RMSD (Root Mean Square Deviation) limits, from the

exact global minimum solution, for every function studied.

The success index presented in the RMSD/Success column

shows that for all functions except the De Jong F5 function,

the algorithm was able to find the global minimum in all

runs for a reasonable number of parameters sets (see cases

after the success index). In the De Jong F5 function, in no

more than 50% of the runs the algorithm was successful for

a particular parameter set. These unsatisfactory results indi-

cate that some work still must be done to improve the algo-

rithm.

From the “Best case” columns it can be seen that the

visiting parameter, qV, belongs to the interval [1.2, 1.7]. An

interval a bit larger, [1.1, 1.8], holds almost all good param-

eter set intervals (see the “Good cases intervals” columns in

Table 1). In the same sense, the temperature decaying pa-

rameter, qT, varies in a larger interval [1.2, 2.4], while the
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good cases intervals are in the interval [1.1, 2.5]. It should

be noted that when higher precision is required a greater qT

should be used in most of the cases, which increases the

ability of the algorithm to act as a local search engine.

It was observed that the acceptance parameter, qA,

was almost ineffective, indicating that probably the initial

acceptance temperature,TqA
, should be increased independ-

ently ofTqV
. Another non-exclusive option to cope with this

ineffectiveness is the use of negative values for qA, as had

been pointed out by Tsallis and Stariolo (1996).

In Figure 2 shows the profile of the SGSA parameters

qV and qT for the best qA value (see the “Best case” columns

in Table 1), that achieve 100% success in 50 runs (for the

De Jong F5 function a success index of more than 20% is

used) for each studied function. Some degree of similarity

in the profile of optimal parameter sets observed in the

functions of Ackley and log-trigonometric, and Lavor and

Schwefel (Figure 2), could also be observed in the hyper-

surface of the respective functions (Figure 1), indicating

that possibly one could extract topological information

about the cost function from these optimal parameter sets.

If some information from a cost function hypersurface is

known, an a priori SGSA parameters set range could be

chosen. In a case where the function hypersurface is com-
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pletely unknown, some insight about it could be obtained

by means of an exhaustive search in the parameters space.

The results obtained are useful in indicating a direc-

tion for the use of this algorithm in problems like protein

folding or ligand-protein docking, reducing significantly

the number of algorithm parameter choices as well as giv-

ing hints about the effect of parameters on the behavior of

the algorithm. With these results some improvements were

already achieved in studies in progress using the SGSA al-

gorithm in the ligand-protein docking studies in progress,

which will be published elsewhere.
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Table 1 - Performance data of the SGSA algorithm for the selected two-dimension functions.

Function RMSD1/ success Best case Good cases intervals6

Mean cycle3 qV qA qT Limit4 Mean cycle5 qV qA qT

(actual minimum) (success / cases)2 (min. / max.) (mean min. potential) (cases) (min. / max.)

Ackley 10-6 1630.0 1.5 1.4 2.4 < 5000 3626.9 1.3-1.7 1.1-2.9 2.1-2.5

(0.0) (100%/348) (654/2742) (0.00000281) (132) (309/136799)

10-3 446.7 1.4 1.2 2.2 < 800 660.8 1.3-1.6 1.1-2.6 1.8-2.4

(100%/2687) (145/990) (0.00028682) (117) (118/12312)

Log-

trigonometric

10-6 1008.7 1.2 1.3 1.7 < 5000 2736.8 1.1-1.5 1.1-2.8 1.3-2.1

(100%/1281) (390/3450) (-21.60551500) (324) (242/49812)

(-21.772042) 10-3 624.3 1.2 1.2 1.4 < 1000 851.5 1.1-1.5 1.1-1.9 1.2-1.8

(100%/2120) (320/1250) (-9.67091560) (120) (90/5356)

Lavor 10-5 17202.9 1.7 1.1 2.1 < 40000 32357.0 1.5-1.8 1.1-2.5 1.9-2.1

(-0.8223661) (100%/1370) (1379/176394) (-0.08223661) (48) (601/1147572)

10-2 264.9 1.4 1.3 1.6 < 500 421.6 1.1-1.8 1.1-2.1 1.3-1.9

(100%/2856) (66/933) (-0.08170597) (177) (11/5811)

Schwefel 10-3 3001.3 1.4 1.1 2.0 < 6000 680.1 1.2-1.6 1.1-2.5 1.8-2.2

(-837.96577) (100%/1832) (92/10626) (-837.96577) (108) (92/96094)

10-2 732.3 1.3 1.3 2.0 < 1200 1043.8 1.2-1.5 1.1-2.4 1.6-2.0

(100%/2096) (72/8441) (-837.965760) (99) (72/8441)

Goldstein-Price 10-4 3228.9 1.3 1.1 1.5 < 10000 7154.4 1.1-1.6 1.1-2.9 1.3-1.6

(100%/675) (422/9302) (3.00000360) (184) (120/210872)

(3.0) 10-2 252.8 1.2 2.1 1.2 < 400 67.0 1.1-2.7 1.1-2.9 1.1-2.3

(100%/1849) (48/782) (3.03205290) (138) (13/6066)

De Jong F5 10-3 521480.6 7 1.4 1.4 1.4 30%8 512468.2 1.1-1.5 1.2-2.7 1.1-1.8

(0.0) (20%/1140) (10586/2084571) (1.0918 x 10-18) (12) (1683/2481019)

(36%/18)

10-2 153853.4 7 1.4 1.6 1.4 40%8 266739.8 1.1-1.7 1.1-2.9 1.1-1.7

(20%/1143) (1287/1486847) (7.4837 x 10-14) (58) (184/2481019)

(50%/25)

1. Maximum Root Mean Square Deviation of the function parameters from the exact global minimum solution values. This value is used as success crite-

rion in the optimization process.

2. Minimum SGSA percentage of success in the 50 runs for a particular (qV, qA, qT) set to be counted and the number of sets that met this requirement.

3. Mean number of cycles where the global minimum was reached among the 50 runs for the best (qV, qA, qT) set case and the minimum/maximum number

of cycles among them.

4. The cases represent the number of parameter sets for which the global minimum was reached in a mean number of cycles lower than the chosen limit for

every function.

5. Mean number of cycles where the global minimum was reached among the 50 runs for the cases of the previous column and the minimum/maximum

number of cycles among them.

6. One must note that the parameters intervals are independent of one another.

7. In the De Jong F5 function case, the parameter set considered to have the better success index is represented on the additional line.

8. In the De Jong F5 function case, the limit is determined in function of the success index.
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