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The non-selective muscarinic receptor antagonist scopolamine (SCP) induces memory
deficits in both animals and humans. However, few studies have assessed the effects
of amnesic agents on memory functions of marmosets – a small-bodied neotropical
primate that is becoming increasingly used as a translational model for several
neuropathologies. Here we assessed the effects of an acute SCP administration
(0.03 mg/kg, sc) on the behavior of adult marmoset monkeys in two tasks. In the
spontaneous object-location (SOL) recognition task, two identical neutral stimuli were
explored on the sample trial, after which preferential exploration of the displaced versus
the stationary object was analyzed on the test trial. In the fear-motivated behavior (FMB)
procedure, the same subjects were submitted to an initial baseline trial, followed by an
exposure period to a snake model and lastly a post-exposure trial. All trials and inter-
trial intervals lasted 10 min for both tests. Results showed that on the SOL test trial, the
saline group explored the displaced object significantly longer than its identical stationary
counterpart, whereas SCP-treated marmosets explored both objects equivalently. In the
FMB test, the saline group – but not the SCP-treated animals – spent significantly less
time where the stimulus had been specifically encountered and more time being vigilant
of their surroundings, compared to pre-exposure levels. Drug-related effects on general
activity, overall exploration (SOL task) and behavioral response to the aversive stimulus
(FMB task) were not observed. SCP thus impaired the marmosets’ short-term ability to
detect changes associated with the spatial location of ethologically irrelevant (SOL task)
and relevant stimuli (FMB task). Similar results have been reported in other animal
species. Marmosets may thus help reduce the translational gap between pre-clinical
studies and memory-associated human pathologies.

Keywords: marmoset, object location, recognition, snake, fear memory, scopolamine

INTRODUCTION

Over the years central cholinergic signaling has become increasingly implicated in different
learning and memory processes (Hasselmo and Sarter, 2011). In fact, the loss of specific basal
forebrain cholinergic input to the cortex is one of the pathogenic hallmarks of Alzheimer’s dementia
(Bartus, 2000), with a concomitant decline in cortical choline acetyltransferase (ChAT) activity
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also being correlated with cognitive dysfunction in different
human pathologies (e.g., dementias, Parkinson disease, brain
damage; Candy et al., 1983). In rodents and non-human primates
(NHPs), the use of excitotoxic (e.g., rodents: Baxter and Bucci,
2013; marmosets: Ridley et al., 1986; macaques: Aigner et al.,
1991a) and more specific immunotoxic lesions (e.g., rodents:
Easton et al., 2011; marmosets: Ridley et al., 1999; macaques:
Turchi et al., 2005) of basal forebrain cholinergic projections
to the cortex disrupted several learning and memory processes.
When using this approach, the degree of the impairment can
vary significantly according to the specificity and extent of
the lesion and the type of cognitive task being assessed, with
the possible involvement of non-cholinergic afferents. However,
recent optogenetic-based studies have provided compelling
evidence in mice for a causal role of basal forebrain cholinergic
activity during visual discrimination tasks (Pinto et al., 2013).

The acetylcholine (ACh) muscarinic receptor blocker
scopolamine (SCP) is also reported to disrupt memory processes
in humans (Ebert and Kirch, 1998), whereas restoration of
transmitter functioning reverses this effect (i.e., cholinesterase
inhibitors; Roman and Rogers, 2004). There is also now
substantial evidence for its participation in memory-related
task performance of both rodents and NHPs (Klinkenberg and
Blokland, 2010; Robinson et al., 2011; Baxter and Bucci, 2013),
yielding similar results as those seen in lesion studies (Robinson
et al., 2011). In fact, SCP has become a frequently used pre-
clinical pharmacological tool to assess memory (dys)function
(Klinkenberg and Blokland, 2010).

Scopolamine administration, for example, can consistently
impair NHPs in delayed nonmatching-to-sample tasks (DNMS)
of visual recognition memory (e.g., Ridley et al., 1984b,a; Aigner
et al., 1991b). Although this task exploits their spontaneous
preference for novelty over familiarity, it requires pre-training
the monkey to learn response-reward associations and the
nonmatching to sample rule. Rodents, on the other hand, are
typically assessed in a simpler procedure requiring no prior
training or response reinforcement – the one-trial spontaneous
object recognition task and its several close variations (Dere
et al., 2007). Granted that this procedure also exploits their
novelty preference, its basis is the spontaneous explorative
behavior displayed during a choice trial that occurs after an
initial familiarization period. When treated with SCP, rodents
become unable to recognize familiar objects (reviewed in Dere
et al., 2007) or their associated spatial locations (Murai et al.,
2007; Pitsikas, 2007; Barker and Warburton, 2009; Schäble et al.,
2012). Originally tested in rats by Ennaceur and Delacour (1988),
spontaneous recognition tasks have since been extended to other
animals (e.g., mice: Dere et al., 2005; dogs: Callahan et al., 2000;
pigs: Kornum et al., 2007), but to the best of our knowledge
still remain to be assessed in NHPs. The ability to recognize
whether an object has been encountered in the past is an
important element of our declarative memory and a function
that becomes impaired, for example, in patients with Alzheimer’s
disease (Purdy et al., 2002) or who have sustained brain injury
(Reed and Squire, 1997).

Cholinergic signaling also seems to play an important
modulatory role on fear memories, a type of associative learning

that has a high adaptive function against real and potential
threats (Tinsley et al., 2004). For instance, during contextual
conditioning, a neutral spatial location will come to evoke
fear-related behaviors after being associated with an inherently
fearful stimulus (Maren et al., 2013). In rodents, fear-conditioned
stimuli increased central ACh release (Acquas et al., 1996),
whereas SCP-treated animals performed poorly in conditioning
tasks (reviewed in Robinson et al., 2011; Wilson and Fadel,
2017). Research on fear memory in NHPs, however, has focused
mainly on elucidating the neuronal circuits involved in specific
behavioral tasks (fear-potentiated startle: Antoniadis et al.,
2009; passive avoidance: Machado et al., 2009; cue-conditioning:
Agustín-Pavón et al., 2012). As fear memory processes seem
to be altered in several psychopathologies (i.e., posttraumatic
stress disorder and schizophrenia; Maren et al., 2013), as well
as Alzheimer’s disease and other related dementias (Hoefer
et al., 2008), new pharmacological-based studies in NHPs may
contribute to our current understanding on the neurochemical
aspects of learned fear.

The present experiments were thus designed to assess – in
both the presence and absence of an acute SCP administration –
the behavioral response of adult marmoset monkeys in a
spatial recognition memory task and a fear-motivated learning
procedure. The marmoset is a small-bodied, diurnal and arboreal
neotropical primate. Compared to most NHPs they have a rapid
reproductive turnover, shorter life-span, are easily captured and
handled, readily adapt to captive conditions and have lower
husbandry costs (reviewed in Barros and Tomaz, 2002). These
characteristics, along with the recent sequencing of the common
marmoset’s genome (Callithrix jacchus; reviewed in Ward and
Vallender, 2012) and development of transgenic individuals
(Sasaki et al., 2009) are making these simians an increasingly used
translational model of several neuropathologies (‘t Hart et al.,
2012). In fact, their small lissencephalic brains still retain a large
brain-to-body ratio, a well-defined temporal lobe, functional
divisions and connectivity of cortical areas, and structure-specific
adult neurogenesis similar to those of other anthropoids (e.g.,
macaques; Stephan et al., 1980; Newman et al., 2009; Burman
et al., 2011; Marlatt et al., 2011). Normal adults display the same
cytochemical organization of basal forebrain cholinergic neurons
of other NHPs and humans, which differs significantly from that
of rats (Geula et al., 1993; Wu et al., 2000). Aged marmosets also
develop cortical deposits of the beta-amyloid protein typically
seen in Alzheimer’s dementia patients (Maclean et al., 2000;
Geula et al., 2002). Marmosets are capable of performing a
variety of memory-related tasks, yet only a few studies have
assessed the effects of amnesic agents in marmosets (Ridley et al.,
1984b,a; Carey et al., 1992; Harder et al., 1998; Spinelli et al.,
2006).

In the first experiment, we used the murine-based one-
trial spontaneous object-location (SOL) task (Ennaceur et al.,
1997), while in the second experiment contextual fear learning
was induced by a snake-related stimulus. Marmosets are highly
visually oriented (Forster, 1995), readily attend to spatial
cues in their environment (Gaudio and Snowdon, 2008) and
react fearfully in response to snakes and related stimuli
(Barros et al., 2002).
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MATERIALS AND METHODS

Ethics Statement
This study was carried out in accordance with the
recommendations of the Brazilian regulations for the scientific
use of laboratory animals (Lei Arouca 11.794/2008), as well as
the CONCEA/Brazil and NIH/USA guidelines for care and use
of laboratory animals. All the procedures herein were approved
by the Animal Ethics Committee of the University of Brasilia
(no. 33002/2013).

Subjects and Housing Conditions
Nine adult black tufted-ear marmosets were used (Callithrix
penicillata; 5 males and 4 females), weighing 344 ± 16 g
(mean ± SEM; range: 285–460 g) at the beginning of the study.
Although the females’ estrous cycle was not controlled, none were
currently breeding or recently had infants. All subjects were pair-
housed at the Primate Center of the University of Brasilia under
natural light, temperature and humidity conditions in standard
home-cages of a same colony room. Not all cage-mates were
included in the present study due to other ongoing experiments.
The colony room consisted of two parallel rows of 12 cages each
(2 m × 1 m × 2 m; W × L × H), separated by a common
wire-mesh enclosed central corridor. A roof covered this central
corridor and two-thirds of each home-cage. These were provided
with a nest-box, ropes, wood perches, a feeding tray for fresh food
and a PVC tube for dry chow. Fresh food was provided daily at
07:30 h, consisting of a mixture of pieces of fruits and vegetables.
Boiled eggs, nuts and/or cooked chicken breast were given several
times a week, also at 07:30 h. Unconsumed items were removed
at 17:30 h. Water and chow were available ad libitum. Housing
and maintenance conditions complied with the regulations of
the Brazilian Institute of Environment and Renewable Natural
Resources (IBAMA).

Apparatus and Experimental Set-up
Testing was conducted in a rectangular open-field (OF) arena
(Figure 1: 130 cm × 75 cm × 40 cm; W × L × H) suspended
1 m from the floor. Three of its walls were made of aluminum,
whereas the fourth was of 4 mm transparent glass. The top
consisted of the same glass material and the bottom was made
of 2.5 cm2 wire-mesh. A guillotine-type door on one of the
aluminum walls served as the subjects’ entry/exit point. With the
exception of the glass wall and top, the apparatus was painted
white to enhance video-tracking. It was also divided into five
quadrants (Figure 1): four corner sections of equal dimensions
(32.5 cm × 37.5 cm each; W × L) and a larger central zone
(65 cm× 75 cm; W× L).

The OF arena was set-up in a test-room located approximately
50 m from the colony facility. The marmosets were transported
to and from the test-room in an aluminum transportation cage
(35 cm × 20 cm × 23 cm; W × L × H) that attached directly to
the arena’s door. The apparatus was monitored via a closed-circuit
system with two digital cameras (model C920, Logitech, Brazil):
one was mounted 1.5 m above the arena and the other was placed
1.5 m in front of its glass wall. Both cameras were connected to a

FIGURE 1 | Top-view schematic representation of the marmoset open field
apparatus, indicating the subjects’ entry/exit point (arrow) via the
guillotine-type door, the four corner sections where stimuli could be placed
during specific trials of the procedure (O), and the larger central zone.

same laptop located in an observation-room adjacent to the test-
room. Visual spatial cues were provided by various extra-field
items in the test-room.

Drug
Scopolamine hydrobromide (SCP; 0.03 mg/kg; Sigma–Aldrich,
United States) was dissolved in phosphate-buffered saline, the
latter also being used as vehicle control (SAL). Both substances
were injected subcutaneously in a volume of 1.0 mL/kg.
The dose and injection-test interval (see Procedure below)
were based on previous reports using systemic administrations
in marmosets, whereby an inverted U-shaped function was
verified (Ridley et al., 1984b: 0.03–1.0 mg/kg; Ridley et al.,
1984a: 0.03–0.06 mg/kg; Carey et al., 1992: 0.01–0.04 mg/kg;
Harder et al., 1998: 0.06 mg/kg; Spinelli et al., 2006: 0.01–
0.06 mg/kg). In these studies, lower doses ranging from 0.02 to
0.06 mg/kg impaired performance in the object discrimination,
position discrimination, visuospatial conditional, five-choice
serial reaction time and concurrent delayed match-to-position
tasks. On the other hand, SCP given at 0.05 or 1.0 mg/kg induced
behavioral agitation in marmosets and thus may confound its
specific memory effects at higher doses. Based on these studies,
we chose to use 0.03 mg/kg as it may selectively disrupt memory,
but not other behaviors.

Procedure
All subjects were initially submitted, during three consecutive
days, to a daily habituation session that mimicked the general
procedure of the subsequent behavioral tasks (see below).
Accordingly, each habituation session consisted of an initial
10 min trial, followed by a 10 min inter-trial interval and then
a second 10 min trial. The marmoset was given access to the OF
apparatus during these two trials of each session, while during the
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FIGURE 2 | Marmosets’ performance on the one-trial Spontaneous
Object-Location (SOL) Recognition Task. An acute saline (SAL; n = 4) or
scopolamine (SCP, 0.03 mg/kg SCP; n = 5) administration was given
subcutaneously 20 min before the task. The sample and test trials lasted
10 min and were held at 10 min intervals. (A) Time spent in seconds exploring
the stationary and displaced objects on the test trial; (B) Object discrimination
ratio calculated for the test trial; (C) Time spent in seconds exploring both
objects on the sample and test trials; and (D) Total distance traveled in meters
during the sample and test trials. All data are represented as mean + SEM.
∗p < 0.05 vs. the stationary object of the SAL group, ∗∗p < 0.05 vs.
zero-value chance level in the SAL group.

inter-trial interval they were placed in a different holding arena
(60 cm × 60 cm × 40 cm; W × L × H) located in the same test-
room. The marmosets were transferred between these locations
using the transportation cage that attached directly to either
arena. The three daily habituation sessions were to familiarize the
marmosets with the apparatus and general testing procedure, and
thereby no treatment was given and the OF remained empty.

The subjects were then randomly assigned to an experimental
group (SCP: n = 5 or SAL vehicle: n = 4) and individually
submitted to the same behavioral tasks described below. On both
tasks, the specific location of the objects within the apparatus
varied randomly between subjects. The apparatus and objects
used were also thoroughly cleaned with a 70% ethanol solution
after every trial. All trials were held between 14:00 and 17:00 h.

Spontaneous Object-Location Recognition Task
Based on the murine SOL task (Ennaceur et al., 1997), the
marmosets were submitted to a two-trial procedure consisting
of an initial 10 min sample trial that was followed, after a
10 min inter-trial interval, by a 10 min test trial. On the sample
trial, two identical copies of a small stainless steel bowl (9 cm

diameter x 5 cm height) were randomly placed at the center of
different corner quadrants of the apparatus and the marmoset
was allowed to freely explore the entire arena for 10 min. The
objects had not been previously seen by the marmosets, had no
apparent ethological significance and could not be displaced by
the subjects. After the 10 min retention interval, held in the
separate holding arena described above, the subject was again
released in the OF for the 10 min test trial. On this trial, two
identical copies of the same stainless steel bowl were placed
in the arena: one in the same location it had been during the
preceding sample trial (stationary object) and the other one in
a new position randomly chosen between the previously two
unused corner sections (displaced object). The marmoset was
again allowed to freely explore the entire arena for 10 min and
then returned to its home-cage.

Each subject received its respective treatment 20 min before
the start of the SOL task. Systemically administered SCP exerts
significant effects on central neuronal function 30 min post-
injection (Ebert et al., 2001) and only pre-training SCP treatment
has been found to impair SOL recognition memory in rodents
(Barker and Warburton, 2009).

Fear-Motivated Behavior (FMB) Test
After a 2-week interval, the same two groups of marmosets were
submitted to a three-trial procedure. First, a 10 min baseline pre-
exposure trial was held in the OF arena in the absence of any
stimulus. After a 10 min inter-trial interval held in the same
holding arena, the subject was again released in the apparatus for
a 10 min snake exposure trial. For this, a coiled and motionless
red-black-white rubber snake model (120 cm long× 2 cm girth)
was placed in one of the corner quadrants of the apparatus. As
a general preference for any of the corner sections of the OF
arena was not observed during the initial baseline trial, the snake
model was randomly placed in any one of these locations. The
subjects were all snake-naive and unable to displaced this aversive
stimulus, which in turn could be seen from any point in the arena.
After a second 10 min inter-trial interval held in the holding
arena, the marmoset was placed for the third time in the OF
apparatus for a 10 min post-exposure trial, in the absence of any
stimulus, and thereafter returned to its home-cage.

Each subject received its respective treatment immediately
before the start of the initial baseline trial. A snake model was
used as an aversive stimulus since NHPs invariably regard them
as a potential threatening stimulus (Isbell, 2006). Both feral
(Teixeira et al., 2016) and captive marmosets (Barros et al., 2002)
promptly react to snakes and related stimuli.

Behavioral Analyses
We used the AnyMaze software (Stoelting Co., United States) to
record and analyze the marmosets’ behavioral response during
each experimental trial. Via the top-view camera, the software
automatically tracked the animals’ total distance traveled and the
time spent in each quadrant of the apparatus. In addition, using
the same program and the side-view camera, an experienced
observer with a 95% intra-rater reliability manually scored the
time that the marmoset spent: (1) exploring each object during
the SOL task; (2) visually inspecting the snake stimulus during
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FIGURE 3 | Mean time (+SEM; in seconds) spent visually inspecting the
snake model (A) and emitting tsik–tsik alarm vocalizations (B) by the saline
(SAL; n = 4) and SCP (0.03 mg/kg SCP; n = 5) treated marmosets during the
10 min snake-exposure trial of the Fear-Motivated Behavior (FMB) procedure.

the FMB task; (3) emitting the alarm/mobbing-associated tsik-
tsik calls during the FMB task; and (4) being vigilant during the
FMB task. Exploration in the SOL task was defined as physical
contact with one of the objects using the hands, feet, nose, mouth,
or tongue, as well as all episodes of head cocks (side-to-side head
movements), direct gazes (fast orientation of the eyes and head
toward the object) and visual monitoring the object (continuous
slow sweeping movements of the head). Visual inspection of
the snake model included head cocks, direct gazes and visual
monitoring of this object, whereas vigilance was defined as
visual monitoring directed at the environment. Marmosets are
highly visually oriented in their response to surrounding stimuli
(Forster, 1995).

For the SOL task, all subjects were included in the analyses
below as they met our pre-established criterion of exploring
each object for at least 5 s during the sample trial. Recognition
memory was operationally defined as a higher exploration of the
displaced versus stationary object on the test trial (e.g., Dere et al.,
2007), considering that captive marmosets preferably explore
novel items in their environment (Forster, 1995). However, to
account for individual variations in overall exploration levels, the
following discrimination ratio was calculated based on Ennaceur
et al. (1997): [time spent exploring the displaced object – time
spent exploring the stationary object]/[time spent exploring both
objects]. A ratio of ≈ 0.0 indicates that the two objects were
explored almost equally (chance level), whereas a ratio >0.0
demonstrates that the displaced object was explored more than

the stationary item. For the FMB procedure, we assessed the
subjects’ fear-induced place-avoidance response by comparing
the time spent in the snake-paired section of the OF arena before
and after the exposure trial (pre- x post-exposure trial).

Statistical Analyses
Data from males and females in each group were pooled
together as the small sample size precluded any meaningful
gender comparisons. For the SOL task, the time spent exploring
the displaced versus stationary object on the test trial, as
well as total exploration and distance traveled on the sample
versus test trial, were analyzed using a mixed-design two-way
analysis of variance (ANOVA), with ‘treatment group’ as the
independent factor and ‘object’/‘trial’ as the repeated measure
variable. In addition, the discrimination ratios were compared
to (zero value) chance-level performance via one-sample t-test.
For the FMB task, an independent t-test was used for between-
group comparisons regarding the visual inspection of the snake
model and tsik–tsik vocalizations during the exposure trial.
Dwell time in snake-paired quadrant, vigilance, distance traveled,
and time spent in each corner section of the OF arena were
analyzed via a mixed-design two-way ANOVA, with ‘treatment
group’ as the independent factor and ‘trial’/’section’ as the
repeated measure variable. Whenever significant effects were
obtained in the ANOVA analyses, subsequent comparisons were
performed using Tukey’s test. Significance level for all tests was
set at p ≤ 0.05.

RESULTS

On the SOL test trial, the displaced object was explored for
a significantly longer time than the stationary one, albeit only
in the SAL-treated group (object effect: F1,7 = 5.12, p = 0.05;
treatment effect: F1,7 = 2.41, p = 0.17; interaction: F1,7 = 5.98,
p = 0.04; Figure 2A). The COC-treated animals explored both
objects equivalently on the test trial. The SAL-treated marmosets
explored the displaced object significantly above chance level on
the test trial (t3 = 8.97, p = 0.003), while the SCP group did
not (t4 = –0.47, p = 0.67; Figure 2B). This response was not
significantly influenced by either a trial or treatment effect on the
marmosets’ overall exploration of the objects or by the level of
locomotion, as both parameters remained constant between the
sample and test trials (object exploration – trial effect: F1,7 = 0.07,
p = 0.80; treatment effect: F1,7 = 3.44, p = 0.11; interaction:
F1,7 = 0.001, p= 0.97; distance traveled – trial effect: F1,7 = 0.11,
p = 0.75; treatment effect: F1,7 = 0.86, p = 0.39; interaction:
F1,7 = 0.30, p= 0.60; Figures 2C,D).

During the initial baseline trial of the FMB task, held in the
absence of the snake stimulus, all marmosets spent a comparable
amount of time in the four corner quadrants of the OF arena (SAL
group – section 1: 72± 18, section 2: 77± 19, section 3: 71± 13,
section 4: 80 ± 9; SCP group – section 1: 69± 19, section 2:
78 ± 21, section 3: 74 ± 22, section 4: 78 ± 18; mean ± SEM
in seconds; quadrant effect: F3,21 = 0.09, p = 0.85; treatment
effect: F1,7 = 0.01, p = 0.99; interaction: F3,21 = 0.02, p = 0.97).
On the conditioning trial, now in the presence of the snake
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FIGURE 4 | Marmosets’ behavioral response in the FMB procedure. An acute saline (SAL; n = 4) or SCP (0.03 mg/kg SCP; n = 5) administration was given
subcutaneous immediately before the pre-exposure trial. All trials lasted 10 min and were held at 10 min intervals. Time spent in seconds (A) in the snake-paired
quadrant of the open-field apparatus and (B) vigilant of the surroundings, before (pre-exposure trial) and after (post-exposure trial) being exposed to the snake
model. (C) Total distance traveled in meters during each of the three trials of the procedure. All data are represented as mean + SEM. ∗p < 0.05 vs. the
pre-exposure trial of the SAL group, ∗∗p < 0.05 SCP vs. SAL group.

model, the two groups also spent a similar amount of time
visually inspecting the aversive stimulus (t7 = –0.36, p = 0.73;
Figure 3A) and emitting tsik-tsik alarm calls (t7= –0.22, p= 0.84;
Figure 3B). However, after being confronted with the aversive
stimulus, the SAL-treated marmosets spent significantly less time
in the snake-paired quadrant of the OF apparatus compared
to the levels seen prior to its exposure (baseline × test trial),
whereas the SCP group spent a similar amount of time in this
section on both trials (trial effect: F1,7 = 5.80, p= 0.04; treatment
effect: F1,7 = 0.75, p = 0.41; interaction: F1,7 = 5.92, p = 0.04;
Figure 4A). The SAL-treated marmosets were also found to be
significantly more vigilant following the snake exposure, relative
to the pre-confrontation levels of the baseline trial. Vigilance
recorded in the SCP group remained unaltered between the
baseline and test trials (trial effect: F1,7 = 17.68, p = 0.004;
treatment effect: F1,7 = 4.07, p = 0.08; interaction: F1,7 = 14.05,
p = 0.007; Figure 4B). Finally, the total distance traveled by the
SCP-treated animals was significantly greater than that of the
SAL group (F1,7 = 21.94, p = 0.002), however no between-trial
effect (F2,14 = 1.28, p = 0.30) or trial-treatment interaction were
observed (F2,14 = 0.83, p= 0.43; Figure 4C).

DISCUSSION

SCP-Induced Effects on the
Spontaneous Spatial Recognition
Memory
Our results showed that the nonselective muscarinic ACh
receptor antagonist SCP impaired the marmosets’ ability to
detect changes in the spatial location of ethologically irrelevant
stimuli in the environment. When assessed on the murine-based
one-trial SOL recognition task (Ennaceur et al., 1997), SAL-
treated animals explored the displaced object significantly longer
than its identical stationary counterpart (i.e., exploration time
and discrimination ratio). Captive callitrichids seem to readily
respond to environmental change, particularly when spatial cues
are involved (Gaudio and Snowdon, 2008) – an aspect possibly

related to their use of highly seasonal habitats (Stevenson and
Rylands, 1988). The exploratory preference for the displaced
object in this group seems unlikely to be due to changes in object-
related motivation or perception, or even overall activity, as total
exploration and locomotor activity remained unaltered between
the sample and test trials.

On the other hand, SCP-treated animals explored both
objects equivalently during the test trial. To the best of our
knowledge, NHPs have not yet been assessed in SOL tasks.
The performance of rodents, however, is generally impaired
following both systemic administrations (Murai et al., 2007;
Pitsikas, 2007; Schäble et al., 2012) and local infusions of SCP
into the perirhinal and medial prefrontal cortices (Barker and
Warburton, 2009), as well as after selective immunotoxic lesions
of central cholinergic systems (medial septum/vertical limb of
the diagonal band; Easton et al., 2011). It is important to note
as well that the SCP-treated marmosets explored both objects as
much as the SAL group explored the displaced item. This was also
the case when rodents were systemically administered the same
antagonist (Schäble et al., 2012). As SCP was given 20 min prior to
the sample trial, this treatment may have impaired the acquisition
of relevant task-related information and thereby this group later
perceived both objects as being novel rather than familiar. In rats,
muscarinic blockade impaired the initial encoding phase of SOL,
whilst sparing information retrieval (Barker and Warburton,
2009). This phase-dependent effect was also consistently shown
in both rodents (e.g., Barker and Warburton, 2009) and NHPs
(e.g., Aigner et al., 1991b) assessed in spontaneous and reinforced
visual recognition tasks, respectively, as well as in healthy human
volunteers (e.g., Atri et al., 2004). However, McTighe et al. (2010)
found that direct damage to the perirhinal cortex led rodents
to treat novel objects as familiar stimuli. Therefore, different
factors may influence recognition memory processes, including
the specific brain area involved, neurochemical mediator, task
demands and animal model. Alternatively, the current SCP
treatment may have impaired attentional and/or perceptual
processes that are also required for the task (Voytko, 1996), yet
this does not seem to be the case in our marmosets. Total object
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exploration remained constant from the sample to the test trial,
with no significant between-group differences being observed as
well. Furthermore, we did not observe drug-induced changes in
general locomotor activity. Although SCP has been shown to
induce hyperactivity (Day et al., 1991), others reported a decrease
(Besheer et al., 2001) or even a lack of effect (Schäble et al., 2012),
leading to the suggestion that methodological aspects contribute
significantly to the observed outcome (e.g., dose, behavioral task,
administration route, gender; Klinkenberg and Blokland, 2010).

With the growing use of the several close variants of the
spontaneous recognition memory task in rodents (Ameen-
Ali et al., 2015), our results may have important prospective
implications for the development of a preclinical cross-species
procedure to assess specific memory functions. However, more
comprehensive studies in marmosets are warranted, given that
in rodents, for example, not all types of spontaneous recognition
memories are affected by central cholinergic activity. Rats
with selective immunotoxic lesions of specific basal forebrain
cholinergic projections to the hippocampus were unable to
recognize simple spatial representations (Easton et al., 2011),
although other types of spatial memory tasks and more
complex episodic-like memories remained intact with the lack
of basal ACh input to the hippocampus or temporal/frontal
cortex (Baxter et al., 1995; Easton et al., 2011). In marmosets,
immunotoxic lesions of specific ACh neurons within the basal
forebrain (Ridley et al., 1999) caused similar mnemonic deficits as
those induced by ablation/excitotoxic damage to their respective
target areas (Ridley et al., 1995; Barefoot et al., 2002) or even
by SCP treatment (Harder et al., 1998), thus indicating that it
may act more in terms of maintaining the proper functionality
of their projection sites. If so, this rising signaling pathway
probably affects long-term information encoding of different
memory types, depending on its target structure (Harder et al.,
1998). It is important to note that significant differences between
rats and NHPs have been reported in terms of the cytochemical
organization of basal forebrain cholinergic neurons, although
the latter corresponded to that of humans (Geula et al., 1993).
Therefore, it would be interesting to evaluate the effects of specific
lesions on spontaneous recognition tasks in marmosets, as only
visual discrimination and conditional learning tasks have been
assessed. Pharmacological blockade of muscarinic receptors has
consistently resulted in deficits in visual discrimination tasks of
DNMS (reviewed in Robinson et al., 2011), similar to our current
results in a spontaneous spatial recognition task. M1 receptor
agonism was shown to enhance the cognitive performance and/or
reverse SCP-induced deficits in these tasks (Rupniak et al., 1989;
Carey et al., 1992; Harries et al., 1998; Lange et al., 2015).

SCP-Induced Effects on FMBs
We also demonstrated that the SCP-induced blockade of
cholinergic neurotransmission disrupted the marmosets’ ability
to associate a predator-related stimulus with the specific spatial
context in which it was encountered. On one hand, after a single
brief encounter with the aversive stimulus, SAL-treated animals
spent significantly less time in the specific snake-paired section of
the OF arena, but more time being vigilant of their surroundings
compared to pre-exposure levels. Concurrent changes in general

activity were not observed. Snakes prey on marmosets (Teixeira
et al., 2016), and as a result even inanimate related stimuli
elicit a fear response in both feral and captive individuals (e.g.,
Barros et al., 2002). Le et al. (2013) have even argued that
snakes exerted a prominent role in the development of primate
neural structures, with minimal (Mineka et al., 1984) or no
prior contact (Vitale et al., 1991) leading to persistently strong
fearful reactions in NHPs. Exactly as we recorded in our subjects,
during an encounter feral marmosets typically emit tsik–tsik
alarm calls and visually inspect the snake; they never freeze
(Ferrari and Lopes Ferrari, 1990; Teixeira et al., 2016). However,
after the event, they act cautiously and avoid the interaction
site for up to several days (Bartecki and Heymann, 1987). This
indicates that: (1) our marmosets perceived the snake model as
an unconditioned threat (e.g., Clara et al., 2008); (2) their post-
encounter hypervigilance in the training context may be akin
to the behavioral response of rodents during contextual fear-
conditioning procedures using footshocks (freezing: reviewed
in Maren et al., 2013) or predators (risk assessment: Ribeiro-
Barbosa et al., 2005); and (3) subsequent avoidance of this specific
location seems to be in line with the fear-induced conditioned-
place-aversion (CPA) response seen in rodents (e.g., Zanoveli
et al., 2007) and in NHPs under natural settings (Bartecki
and Heymann, 1987; van Schaik and Mitrasetia, 1990; Isbell
and Etting, 2017). Neurobiological studies on FMBs in NHPs
is mostly focused on their unconditioned reaction to explicit
aversive stimuli (e.g., predator, conspecifics), yet fear learning
has been experimentally assessed using different paradigms,
such as fear-potentiated startle (e.g., Antoniadis et al., 2009),
cue-conditioning (Agustín-Pavón et al., 2012), observational
conditioning (e.g., Mineka et al., 1984) and passive avoidance
(e.g., Machado et al., 2009).

On the other hand, in the SCP-treated group, post-exposure
vigilance and dwell time in the snake-paired section of the
apparatus did not differ from the initial baseline levels of either
group. This seems unlikely to be due to a drug-induced effect
on their visual perception or behavioral response to the snake
model. During their encounter with this stimulus we recorded
similar levels of visual inspection and tsik–tsik alarm calls in both
groups. The SCP group did, nonetheless, spend more time in
motion than the SAL-treated animals. Although SCP may induce
hyperactivity, as mentioned above, the difference was already
present on the initial pre-exposure trial and as such may be a
drug-unrelated feature inherent to that group.

The role of cholinergic signaling in fear learning of NHPs
has yet to be fully addressed. Nonetheless, results from our
present study seem to indicate that muscarinic antagonism
may disrupt the encoding of conditioned fear responses for
a spatial context in marmosets. In rodents, systemic and
intra-hippocampal infusions of SCP selectively impaired the
acquisition of a conditioned freezing response for the training
context previously paired with an aversive footshock (recently
reviewed in Wilson and Fadel, 2017). Selective antagonism of
muscarinic M1 receptors (Soares et al., 2006) and pre-training
electrolytic lesions of central cholinergic projections to the
hippocampus yielded similar results (Maren and Fanselow, 1997).
Cholinergic blockade also disrupts fear learning measured in
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other behavioral tasks in rats (e.g., inhibitory avoidance;
reviewed in Robinson et al., 2011). However, the role of
muscarinic signaling on the retrieval of aversively motivated
behavior is still unclear (reviewed in Robinson et al., 2011;
Wilson and Fadel, 2017).

CONCLUSION

Our results indicate that the pharmacological blockade
of cholinergic neurotransmission with SCP impaired the
marmosets’ ability to detect changes associated with the spatial
location of ethologically irrelevant (SOL task) and relevant
stimuli (FMB task). However, at present, we are only able
to argue that cholinergic deficiency affects the way SOL
recognition and aversive learning are processed in the short-
term. Further studies are required to properly ascribe the role
of ACh on the different phases of the information processing
systems, their related brain circuits and the specific resultant
effects. Similar investigations using longer retention intervals
(>10 min), distinct objects/cues and gender comparisons will
also contribute with important complementary information
to our current understanding on normal and dysfunctional
learning and memory processing in NHPs and potentially in
humans. This novel approach, using a spontaneous (spatial)
recognition task, may prove useful in terms of providing a
means for a direct cross-species comparison between NHPs
and rodents. Compared to other simians, the marmosets’ small
body size, rapid reproductive turnover, shorter life-span, high
adaptability to captivity and lower husbandry costs (reviewed in
Barros and Tomaz, 2002), while still retaining a high anatomical
and neurochemical resemblance to their larger counterparts
(Stephan et al., 1980; Geula et al., 1993), makes them a unique

model for human neuropathologies. Marmosets may thus help
reduce the translational gap between pre-clinical studies and
memory-associated human pathologies.
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