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Abstract
Background: Due to its origin, peanut has a very narrow genetic background. Wild relatives can
be a source of genetic variability for cultivated peanut. In this study, the transcriptome of the wild
species Arachis stenosperma accession V10309 was analyzed.

Results: ESTs were produced from four cDNA libraries of RNAs extracted from leaves and roots
of A. stenosperma. Randomly selected cDNA clones were sequenced to generate 8,785 ESTs, of
which 6,264 (71.3%) had high quality, with 3,500 clusters: 963 contigs and 2537 singlets. Only 55.9%
matched homologous sequences of known genes. ESTs were classified into 23 different categories
according to putative protein functions. Numerous sequences related to disease resistance,
drought tolerance and human health were identified. Two hundred and six microsatellites were
found and markers have been developed for 188 of these. The microsatellite profile was analyzed
and compared to other transcribed and genomic sequence data.

Conclusion: This is, to date, the first report on the analysis of transcriptome of a wild relative of
peanut. The ESTs produced in this study are a valuable resource for gene discovery, the
characterization of new wild alleles, and for marker development. The ESTs were released in the
[GenBank:EH041934 to EH048197].

Background
Peanut or groundnut (Arachis hypogaea L.) is the fourth
most important oil seed in the world, cultivated mainly in
tropical, subtropical and warm temperate climates [1]. It
is an important crop for both human and animal food. Its
yields are reduced around the world by diseases including

fungal leaf-spots caused by Cercospora arachidicola [Hori]
and Phaseoisariopsis personata [Berk. & MA Curtis], the rust
Puccinia arachidis [Speg.], groundnut rosette disease, and
root-knot nematodes (Meloidogyne ssp.), the later causing
losses of up to 12% in United States and India [2]. High
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salinity and drought are also important reducers of yield
in many parts of the world.

Wild relatives are an important source of genes for resist-
ances to biotic and abiotic stresses that affect crop species.
The genus Arachis arose in South America and its approx-
imately 80 species have adapted to a wide range of envi-
ronments. The cultigen A. hypogaea probably arose from a
single or few events of hybridization involving AA and BB
genome species. The hybrid underwent spontaneous
duplication of chromosomes to produce the allotetra-
ploid A. hypogaea with genome type AABB [3]. This differ-
ence in ploidy rendered peanut sexually isolated, giving
this species a very narrow genetic basis [4,5].

Due to this sexual isolation, the introgression of wild
genes is only possible through complex crosses or genetic
transformation. To date, there is only one case of success-
ful introgression of genes from wild species into A.
hypogaea to produce commercial cultivars of peanut [3].
This was through the use of a synthetic allotetraploid (also
called a synthetic amphidiploid, or amphiploid), created
by crosses between wild Arachis species. Although the wild
species used were non-ancestral, the crosses, in some
ways, approximate a re-synthesis of the species A.
hypogaea. Genetic transformation of peanut, although dif-
ficult, has also been accomplished by a number of tech-
niques [6-10].

For improvement of the peanut crop, there is a need to
both identify novel genes with potential agronomic inter-
est and to either develop molecular markers associated
with such genes for use in marker assisted selection, or to
use genes in genetic transformation. EST sequencing
projects have been contributing to gene discovery and
marker development as well as shedding light on the com-
plexities of gene expression patterns and functions of tran-
scripts [11-13].

A few projects on the generation of ESTs from A. hypogaea
have recently been accomplished, using different tissues
and conditions: plants subjected to Aspergillus parasiticus
infection and drought stress [14], late leaf spot [15] and
unstressed tissues [16]. However, at present a total of
roughly 25,000 Arachis ESTs are available in Genbank, all
derived from cultivated peanut A. hypogaea and none from
wild species of Arachis.

Arachis stenosperma is a wild diploid species which
presents a number of disease resistances. Plants of this
species form fertile hybrids with A. duranensis [17] (the AA
genome donor of peanut [18,19], and is therefore a
potential AA genome donor for synthetic allotetraploids.
It is also a parent for the population from which was
derived the only SSR-based map of Arachis [17].

Here we report the partial sequences, database compari-
sons and functional categorization of 8,785 randomly col-
lected cDNA clones of A. stenosperma and their use for the
development of 107 microsatellite markers. These data
will be useful for those searching for novel genes from
wild Arachis.

Results
cDNA libraries construction, sequencing and ESTs analysis
Four cDNA libraries were constructed, one from bulked
root samples collected at 2, 6 and 10 days after inocula-
tion with Meloidogyne arenaria race 1, one from roots inoc-
ulated with Bradyrhizobium japonicus, another from non -
inoculated and a fourth from healthy leaves. From the ini-
tial plating, the libraries were estimated to contain 107

pfu/mL (plaque- forming units) (non-inoculated roots)
and 108 pfu/mL (inoculated roots) and 109 pfu/mL
(healthy leaves). The insert size of 48 randomly picked
clones ranged from c. 400 to 1500 bp, with an average of
c. 550 bp. From the 8,785 clones, 2,520 were discarded by
the trimming procedure. Forty three (0.5%) clones repre-
sented ribosomal sequences, 1,033 (11.8%) had sequence
slippage, and 1,444 (16.5%) were too small or had too
low quality to be incorporated into the analysis. The
6,265 (71.3%) cleaned reads were assembled in 3,500
clusters, being 963 contigs and 2,537 singletons [Gen-
Bank:EH041934 to EH048197]. Of the 3,500 clusters ana-
lysed, 44.1% did not match genes of known functions.
Table 1 summarizes this data. The most abundant reads
and their Blast homologies are described in Table 2. From
these 3,500 unique sequences only 502 are similar to the
A. hypogaea ESTs already deposited in GenBank (Blastn <e-

30). Only 161 code for proteins that are similar to those
already described for Arachis (Blastx value <e-10).

The annotation of the A. hypogaea ESTs was based on
sequence homology. Each EST set inherited the annota-
tion form the best match found in BlastX alignment
against protein databases at NCBI. On the basis of the
KOG (Clusters of Eukaryotic Orthologous Groups of Pro-
teins), the EST sequences in the cDNA libraries were fur-
ther functionally classified by sorting into 23 putative
functional groups (Figure 1).

Protein sequences derived from hypothetical translations
of the 3,500 unique sequences are homologous to many
classes of proteins. Automatic classification revealed, the
main groups of ESTs are related to: cellular processes and
signaling, especially those related to post-translational
modifications, protein turnover and chaperones (30.6%
of all reads); information storage and processing, includ-
ing various protein kinases (29.3%), and metabolism and
energy conversion and sugar, water and ion transporters
(21.5%). One drawback of functional classification is the
crude approach since the assignments are based on several
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sets of known proteins and a large percentage of ESTs
(7.8%) remained unclassified.

More specifically, sequences of agronomical and medical
interest were also found. Sequence contigs related to stress
induced genes were numerous and included resistance
gene-analogues (RGAs, 35 contigs), pathogenesis-related
(PR) proteins (26 contigs), lectins (20 contigs), drought-
induced proteins (13 contigs), heat-shock proteins (11
contigs) and aluminium-induced proteins (eight contigs).
In addition, there are ESTs whose derived proteins are of
potential importance to human health. For instance,
homologs to genes encoding allergenicity-related proteins
(32 contigs), enzymes involved in the synthesis of isofla-
vonoids: phenylalanine ammonia-lyase (two contigs),
resveratrol synthase and stilbene synthase (15 contigs);
oxysterol-binding protein (one contig) and tumor sup-
pressor protein (three) were found. Other sequences of
interest were related to nodulation (30 contigs) and
homologous to retroelements (nine contigs).

The most frequent clones sequenced had BLASTx hits to:
auxin-repressed protein-like protein (115 reads), Arah8
allergen (69 reads), type 2 metallothionein (60 reads),
PR10 protein (56 reads) and cytokinin oxidase-like pro-
tein (44 reads) (Table 2).

Analysis of microsatellites and development of markers
Out of the 3,500 contig and singleton sequences analysed,
206 (5.9%) had microsatellites. Most of these are di- or

tri- nucleotide motifs, being 119 (3.4%) and 79 (2.3%)
respectively. The vast majority of the microsatellites (191/
206) are short, with 6–10 motif repetitions. Of the di-
nucleotide motifs most are TC or AT (102/119). An anal-
ysis of A. hypogaea clustered transcripts from Genbank
gave similar results, except with slightly higher percent-
ages of microsatellite containing sequences (6.8%) and
tri-nucleotide repeats (3.4%). In order to compare the
microsatellite compositions of non-coding and tran-
scribed genomic sequences in Arachis we also analyzed
1,530 clustered A. duranensis genome survey sequences
(GSSs) from GenBank. A. duranensis is a wild species with
an AA genome quite closely related to A. stenosperma.
From these sequences, 118 (7.7%) contained microsatel-
lites, and again the vast majority are di- or tri- nucleotide
motifs, being 86 (5.6%) and 27 (1.8%) respectively. As
with the EST data, most di-nucleotide microsatellites are
TC or AT (70/86). However, there are also some distinct
contrasts in the profiles of microsatellites in ESTs com-
pared to genome survey sequences. Di-nucleotide micros-
atellites of all repeat lengths are more common in genome
survey sequences than in ESTs, but tri-nucleotide micros-
atellites are somewhat more common in the ESTs than the
genome survey sequences (Figure 2A and 2B).

From the EST data described in this work, a total of 188
microsatellite markers have been developed and charac-
terized for polymorphism, 81 of these were already pub-
lished in Moretzsohn et al. [17]. From the 107 new ones
published here, 84 have been characterized, of these 21

Table 2: Homologies of the most abundantly expressed RNAs as determined by ESTs redundancy

# of reads Blast homology Genbank Accession number Best e-value

115 auxin-repressed protein-like protein (Manihot esculenta) gb|AAX84677.1 6e-34

69 Ara h 8 allergen (Arachis hypogaea) gb|AAQ91847.1| 6e-72

60 type 2 metallothionein (Vigna angularis) dbj|BAD18379.1| 1e-16

56 PR10 protein (Arachis hypogaea) gb|AAU81922.1| 3e-68

44 cytokinin oxidase-like protein (Arabidopsis thaliana) emb|CAB79732.1 1e-120

39 alcohol dehydrogenase 1; ADH1 (Lotus corniculatus) gb|AAO72531.1| 1e-114

38 metallothionein-like protein (Arachis hypogaea) gb|AAO92264.1 1e-25

34 proline-rich protein precursor (Phaseolus vulgaris) gb|AAA91037.1 6e-05

29 ripening related protein (Glycine max) gb|AAD50376.1 5e-52

25 hypothetical protein (Nicotiana tabacum) dbj|BAD83567.1 1e-38

Table 1: Summary of the Arachis stenosperma V10309 EST libraries

Total number of reads: 8785 clones

Accepted sequences 6265 (71.4%)
Number of clusters 3500
Number of contigs 963
Number of singletons 2537
Redundancy (%) 59.1
Homology (% of ESTs) to known sequences 55.9
Unknown 44.1
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Functional classifications and comparative analysis of the ESTs of A. stenosperma rootsFigure 1
Functional classifications and comparative analysis of the ESTs of A. stenosperma roots. The ESTs were classified on the basis of 
their biological functions by alignment to proteins of the Genbank. Bars with vertical stripes represent frequency of sequences 
with homology with genes involved in cellular processes and signaling, black bars, information storage and processing, bars with 
horizontal stripes, metabolism, white bars, poorly characterized ESTs and grey bar, non-conclusively classified ESTs (that 
showed homology with at least two categories, so they were grouped separately).
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Microsatellite distribution in ESTs from A. stenosperma V10309 and Genome Survey Sequences from A. duranensisFigure 2
Microsatellite distribution in ESTs from A. stenosperma V10309 and Genome Survey Sequences from A. duranensis. SSRs were 
sorted according to motif type and number of repeats. Y axis is percentage of total sequences and X axis is the number of 
repeats for (A) Di-nucleotide microsatellites and (B) Tri-nucleotide microsatellites.
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were polymorphic for the AA population, and four for cul-
tivated peanut. Primer sequences, microsatellite types,
polymorphism, homologies and linkage groups assigned
to the markers are available in Additional File 1.

Discussion
The most significant stresses of the peanut crop are path-
ogens and drought. Together with food safety (low levels
of aflatoxins and allergenic compounds) they represent
the most important targets for crop improvement.
Because of the low genetic diversity in the peanut crop,
wild relatives are an important source of novel genes.
Geographically, A. stenosperma is the most widely spread
Arachis species and, in consequence, has been selected in
diverse environments ranging from savannah to coastal
dunes. It is sexually compatible with the most probable
AA genome donor of cultivated peanut (A. duranensis),
and therefore is an excellent genome donor candidate for
gene introgression. In addition, the species shows signs
that it has itself been subject to selection for cultivation
traits by South American natives [4]. Therefore, it is a very
promising source of new genes for improving cultivated
peanut. More specifically, the accession A. stenosperma
V10309 is very resistant to root-knot nematode, leaf spots
and rust fungi (data not shown). For these reasons, A. sten-
osperma V10309 was chosen as the model for this EST
project. In this work, a number of clones of agronomic
and medical importance were found, and new microsatel-
lite markers were developed and characterized.

Health-associated genes
Resveratrol-synthase and stilbene synthase are two
enzymes involved in the production of resveratrol, a nat-
urally occurring plant compound associated with defense
mechanisms against biotic and abiotic stresses [20].
Results from various research studies on edible peanuts
have shown that, in humans, resveratrol may protect
against atherosclerosis by preventing the oxidation (or
breakdown) of the LDL cholesterol in the blood and thus
the deposition of cholesterol in the walls of arteries lead-
ing to heart disease [21]. It has also been shown to be
linked to the suppression of the development of carci-
noma cell lines [22]. Chalcone synthase and phenyla-
lanine ammonia-lyase are two key related enzymes
involved in the biosyntheses of phytoalexin isoflavonoids
in legumes [23]. Isoflavonoids are a class of flavonoids
that have estrogen-like activity and which lower serum
LDL cholesterol and raise HDL cholesterol, thus having
important implications in human health [24]. Oxysterol-
binding proteins comprise a large conserved family of
cytosolic proteins in eukaryotes. They have been proposed
to have a receptor-like role in regulating cholesterol syn-
thesis, being therefore important in the cholesterol
metabolism of the human body [25].

In contrast to the potential health benefits of resveratrol
and stilbene synthases, allergens in peanut seeds are a
major problem. Unexpectedly, the allergen AraH 8 was
the second most abundant EST, with 69 occurrences. So
far, nine potentially important allergens of peanut have
been identified (AraH1 to AraH8 and peanut oleosin)
[26]. AraH8 has been described relatively recently; it was
deposited in the NCBI in February 2005 from A. hypogaea,
with a single entry. AraH8 has sequence homology to sev-
eral pathogenesis-related proteins and may itself be a PR
protein. Studies show that allergy to this protein is heavily
correlated to allergy to birch pollen [27]. Interestingly,
this seemed to be the only allergen expressed abundantly
in the roots of A. stenosperma.

Stress and Defense-related genes
Although the plants were kept in the greenhouse, in near-
optimum conditions, sequences with hits to genes
responsive to biotic and abiotic stresses were found in all
four libraries. Similarly, defense-related sequences were
previously found in a number of other EST projects with
non-inoculated tissue of different species [28,29].

RGAs
One mechanism of plant defense, mediated by specific
resistance genes, involves the recognition of pathogens by
the plant. Among the cellular events that characterize this
type of resistance are oxidative burst, cell wall strengthen-
ing, induction of defense gene expression, and rapid cell
death at the site of the infection [30]. Resistance genes are
often organized in clusters, and consequently RGAs have
been shown to be genetically linked to known R-genes, or
indeed to be fragments of the known R-genes themselves
[31-34].

The first published study on RGAs of Arachis was by Berti-
oli et al. [35] who isolated 78 complete contigs from A.
hypogaea and four wild relatives, including A. stenosperma
V10309, used here. Recently, Yuksel et al. [36] isolated
234 RGAs from A. hypogaea. In the ESTs produced in this
study 35 non-redundant sequences had significant
homology to A. thaliana NBS containing genes.

Auxin-repressed protein
The plant hormone auxin regulates various growth and
developmental processes including lateral root formation,
apical dominance, tropism and differentiation of vascular
tissue [37]. A number of genes have been classified as
auxin-response genes, with their expression levels increas-
ing within minutes of auxin application, independent on
the de novo protein synthesis [38,39]. However, to date,
auxin-repressed protein (ARP) genes and their role in
plant growth and development are relatively understud-
ied. So far, three orthologs of ARP have been isolated and
described: SAR5 – isolated from strawberry receptacles
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and positively correlated with fruit maturation, PsDRM1-
dormancy related protein from pea and RpARP- isolated
from the legume tree Robinia pseudoacacia (black locust)
which is negatively related to hypocotyl elongation [40].
Although its biological function has not yet been clarified,
RpARP was found to be expressed in various developmen-
tal stages and tissues and to play an important role in bio-
logical processes that are characteristic under non-
growing or stress conditions [40]. In this study, a clone
encoding an amino acid sequence with homology to the
auxin repressed protein domain (pfam05564.4) was the
most expressed sequence in A. stenosperma roots (Table 2).
The clone's top BLASTx hit was to an auxin repressed pro-
tein homolog from Manihot esculenta.

Metallothionein
The third most abundant transcript found here had
homology to type 2 metallothionein of Vigna angularis.
Metallothioneins are low molecular (6–7 kD), Cys-rich,
metal-binding proteins that have a role in protection
against the effects of reactive oxygen species (ROS) by act-
ing as antioxidants as they are potent scavengers of
hydroxyl radicals [41,42]. Reactive oxygen species (ROS)
may accumulate after the hypersensitive response occurs
due to the specific recognition of a pathogen by a plant
disease resistance gene and is associated with rapid ion
fluxes and protein phosphorylation. ROS may directly
repel invading pathogens or serve as signaling molecules
that activate defense response [43]. However, ROS result-
ing from biotic and abiotic stresses can cause cellular
damage and need to be detoxified by complex enzymatic
and non-enzymatic mechanisms [44].

PR Proteins
The reaction between the pathogen elicitor and the R-gene
is the first step for an oxidative burst and Systemic
Acquired Resistance (SAR). SAR, by its turn, activates gene
expression mediated by the master regulator proteinNPR1
(Nonexpressor of pathogenesis-related (PR) genes). NPR1
not only directly induces the PR genes but also prepares
the cell for secretion of the PR proteins by first making
more secretory machinery components [45]. PR (patho-
genesis-related) proteins are soluble proteins encoded by
a plant host when under attack by a pathogen. They were
first described for tobacco [46] and are classified from PR1
to PR10 according to their mobility upon electrophoresis
gel. In this work the fourth most found sequences had
homology to a PR10 from peanut (Table 2).

Cytokinin oxidase-like protein
The fifth most abundant transcripts found here, with 44
clones, had homology to Arabidopsis thaliana cytokinin
oxidase (Table 2). Cytokinins are essential hormones for
plant growth and development. The modulation of cyto-
kinin levels is performed by the irreversible degradation

of cytokinins catalyzed by cytokinin-oxydase, [47]. Cyto-
kinin oxydase gene expression has been found to be
induced in maize under drought and heat stresses in order
to control plant growth under these conditions [47].

Nodulation-related genes
Nitrogen assimilation is an important process controlling
plant growth and development. The assimilation of inor-
ganic nitrogen into carbon skeletons has marked effects
on plant productivity, biomass, and crop yield. Inorganic
nitrogen is assimilated into the amino acids glutamine,
glutamate, asparagine, and aspartate, which serve as
important nitrogen carriers in plants. The enzymes
involved in the biosynthesis of these nitrogen-carrying
aminoacids are glutamine synthetase (GS), glutamate syn-
thase (GOGAT), glutamate dehydrogenase (GDH), aspar-
tate aminotransferase (AAT), and asparagine synthetase
(AS) [48]. Each of these enzymes is encoded by a gene
family wherein individual members encode distinct
isoenzymes that are differentially regulated by environ-
mental stimuli, metabolic control, developmental con-
trol, and tissue/cell-type specificity [48]. ESTs with
homologies to all of these enzymes were found in this
study. In addition, homologues to symbiosis specific
genes such as ENOD40, Nodulin 35, Nodulin MtN21 and
nodulation receptor kinases were also found.

Microsatellites
Molecular markers are useful for genetic map construc-
tion, marker-assisted selection in breeding programs,
studies of crop evolution, phylogenetic relationships and
cultivar protection. For peanut, little variation has been
observed with molecular markers, in spite of its consider-
able phenotypic variability (reviewed by Dwivedi et al.,
49.). Microsatellite markers have been useful markers in
plant genetic research, but they are expensive and labour-
intensive to produce. Data-mining microsatellite markers
from EST data can be a cost effective option. In the EST
sequences published here, 206 microsatellites were
found, from which 164 microsatellite markers have been
developed and characterized. Almost all microsatellites
had low repeat number of di- and tri-nucleotide motifs.
Of the di-nucleotide repeats, by far the most common
were TC and AT repeats.

In Arachis, certain microsatellite types are more polymor-
phic than others. Dinucleotide repeats are more polymor-
phic than trinucleotide repeats, AG/TC repeats are more
polymorphic than AC/TG repeats, and, for cultivated
germplasm, longer microsatellites (15 or more motif
repeats) are more polymorphic [17]. The vast majority of
microsatellites in ESTs are low repeat number, and accord-
ingly the microsatellite markers developed from these
ESTs have low polymorphism in cultivated germplasm
(see Additional File 1). Our analysis of microsatellites
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present in the ESTs and in GSSs shows that longer TC
repeats are very rare in both transcribed and non-tran-
scribed DNA, being present in c. 0.1% of ESTs, and c. 0.2%
of genome survey sequences (Figure 2A and 2B). This
leads us to believe that unless very large numbers of
sequences are produced, the use of microsatellite enrich-
ment strategies [17,50,51] will be the most productive
way for cultivated germplasm marker development. In
contrast, for wild germplasm the EST microsatellite mark-
ers had good levels of polymorphism and have the advan-
tage of being genic. As previously observed, EST
microsatellite markers have much potential for work with
wild alleles, and for the construction of gene-rich maps
[13].

Conclusion
EST databases provide a great deal of information on the
complexities of gene expression patterns, the functions of
transcripts and are useful for the development of molecu-
lar markers. In this study, EST analysis of the wild relative
of peanut, A. stenosperma showed that this species has a
considerable number of genes related to human health,
plant defense, hormone response, all which could be
potentially useful for introgression in the cultivated spe-
cies. To conclude, ESTs produced in this study are a valu-
able resource for gene discovery, the characterization of
new wild alleles, and for marker development.

Methods
cDNA libraries construction
Arachis stenosperma seeds were germinated in sterile soil.
Materials for RNA extraction were collected from three-
month old plants: healthy leaves, healthy roots, roots
inoculated with 2 mL of a suspension of 108 cells of
Bradyrhizobium japonicus, and roots inoculated with
10.000 juveniles (J2) Meloidogyne arenaria (Neal) Chit-
wood race 1. Collected materials were immediately frozen
in liquid nitrogen for RNA extraction.

Total RNA was isolated from plant materials using Trizol
Reagent (Invitrogen, Carlsbad, CA, USA), according to the
manufacture's instructions. The quantity and quality of
total RNA was evaluated by spectrophotometry (OD260/
280) and formaldehyde-1% agarose gel electrophoresis.
Poly (A)+ RNA was extracted from 1 mg of total RNA using
the Oligotex Spin Column (Qiagen Inc., Valencia, CA,
USA) according to the manufacture's protocol.

Full-length cDNA libraries were constructed using the
SMART cDNA synthesis kit in ëTriplEx2 (Clontech, Palo
Alto, CA, USA). The resulting cDNA was packed into ë
phages using the Gigapack III Gold packaging kit (Strata-
gene, La Jolla, CA, USA). The pTriplEx2 phagemid clones
in Escherichia coli were obtained using the mass in-vivo
excision protocol according to the manufacture's instruc-

tions (Clontech, USA). The white clones grown on screen-
ing LB medium (Amp/IPTG/X-Gal) were recovered by
random colony selection.

Sequencing and ESTs analysis
Plasmid DNA was isolated from the selected colonies
using the alkaline-lysis method and the cDNA inserts
sequenced from the 5'-end using specifically designed
primer PT2F2 5'-GCGCCATTGTGTTGGTACCC-3'.
Sequencing reactions were performed with Big-Dye Ter-
minator Cycle Sequencing Kit, version 3.1 (Applied Bio-
systems, CA, USA) or DYEnamic ET Terminator Cycle
Sequencing Kit (Amersham Pharmacia Biotech) using the
Applied Biosystems automated DNA sequencers 3100
and 377.

Base calling and quality assignment of individual bases
were done through the use of Phred [52]. Ribosomal,
poly(A) tails, low-quality sequences and vector and
adapter regions were removed as described by Telles and
da Silva [53] with minor adaptations. The resulting sets of
cleaned sequences were assembled into clusters of over-
lapping sequences using the CAP3 assembler [54], with
individual base quality and default parameters. Assem-
bled sequences were submitted for comparison against
the GenBank database using BLASTx [55] available from
the NCBI (National Center for Biotechnology Information)
[56]. Putative functions of the ESTs were classified accord-
ing to the Clusters of Orthologous Groups of proteins –
KOG [57]. Resistance Gene Analogues (RGAs) were iden-
tified in the EST bank by using a BLASTx search against a
local database of Arabidopsis NBS encoding genes [58].

Analysis of microsatellites and development of markers
Microsatellite primers were developed using the module
of softwares described by Martins et al. [59]. For the anal-
ysis, we considered microsatellites with di-, tri-, tetra-,
penta- and hexa- nucleotide motifs with six or more motif
repetitions. For comparison, microsatellites were also
analyzed from clustered A. hypogaea transcripts, and A.
duranensis genome survey sequences (GSSs) submitted by
Steven J Knapp to Genbank.

Polymorphism was screened for in the progenitors of a
diploid mapping population by PCR. The progenitors of
this population are A. duranensis K7988 and A. steno-
sperma V10309 [17], both deposited in the Embrapa
Genetic Resources and Biotechnology Germplasm Bank.
Markers polymorphic for the diploid population were
genotyped and map positions determined. For screening
for polymorphism in the cultivated peanut, 16 accessions
with representatives from all the six botanical varieties
were used.
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