

UNIVERSIDADE DE BRASÍLIA INSTITUTO DE CIÊNCIAS BIOLÓGICAS PROGRAMA DE PÓS-GRADUAÇÃO EM BIOLOGIA ANIMAL

DESENVOLVIMENTO DE NANOPARTÍCULAS DE QUITOSANA CONTENDO O PEPTÍDEO CITOLÍTICO MELITINA PARA O TRATAMENTO *IN VITRO* E *IN VIVO* DE CÉLULAS TUMORAIS DE MAMA

KELLIANE ALMEIDA DE MEDEIROS

Orientador: Luciano Paulino da Silva

Brasília – DF

Julho, 2015

UNIVERSIDADE DE BRASÍLIA INSTITUTO DE CIÊNCIAS BIOLÓGICAS PROGRAMA DE PÓS-GRADUAÇÃO EM BIOLOGIA ANIMAL

DESENVOLVIMENTO DE NANOPARTÍCULAS DE QUITOSANA CONTENDO O PEPTÍDEO CITOLÍTICO MELITINA PARA O TRATAMENTO *IN VITRO* E *IN VIVO* DE CÉLULAS TUMORAIS DE MAMA

KELLIANE ALMEIDA DE MEDEIROS

Tese de doutorado submetida ao Programa de Pós-Graduação em Biologia Animal da Universidade de Brasília, como parte integrante dos requisitos para a obtenção do título de Doutora em Biologia Animal.

Orientador: Luciano Paulino da Silva

Brasília – DF

Julho, 2015

AGRADECIMENTOS

Agradeço ao maior dentre todos, àquele que me da graça, me faz ser forte, determinada, ousada, perseverante e vencedora. A tí JESUS toda honra e glóría!

Ao meu esposo Rodrígo, meu fiel companheiro que esteve ao meu lado por toda essa jornada e creio que estará para sempre. "Assím, eles já não são dois, mas sím uma só carne. Portanto, o que Deus uniu, ninguém separa. (Mateus 19:6)".

Ao meu príncipe, filho amado Miguel, meu presente de Deus. Gerado e nascido durante esse trabalho. Com você sinto que sou mais forte frente às dificuldades e me torno uma pessoa melhor a cada dia.

Aos meus país, que são pessoas de valores raros e de coração grandioso, que juntos e com muito amor se sacrificaram para que eu conseguisse estudar e vencer. Quero ser semelhante a eles e irei honrá-los por toda minha vida.

À minha querida família (irmã, sobrinhas, enteada) que me apoiam e com jubilo narram minha história.

Ao meu orientador Luciano Paulino, que é um homem de grande coração, inteligência e sabedoria. Agradeço por toda orientação, compreensão e amizade. Foi um prazer passar esses sete anos sendo sua orientanda. Aos amigos de longa data, que me cederam ombros, ouvidos, palavras e sorrisos. Principalmente à Sandra, que muito me auxiliou cuidando do meu filho durante a escrita deste.

Aos amigos do Laboratório de Espectrometria de Massa (LEM e Nanobiotec), por me auxiliar no uso de equipamentos, tirar dúvidas, ajuda com a coleta de abelhas, assim como por compartilhamos conhecimentos, momentos, histórias, vitórias e risadas. Com vocês eu passava maior parte do meu dia e aprendi muito como pessoa e profissional. Já sinto muita falta...

À Dra. Graziella, mulher maravilhosa, prospera e abençoada, que me ensínou anos atrás sobre os ensaíos antítumorais e hoje acompanha meu trabalho e vida como uma amíga.

À Dra. Marcella pelo constante alto astral, compreensão, amízade, ensínamentos e colaboração nos testes *ín vívo*.

Ao Dr. Sacha por sua disponibilidade e colaboração na utilização do microtomógrafo.

Ao Dr. Ricardo Bentes, do Laboratório de Morfologia e Morfogênese da Universidade de Brasilia, que com sua colaboração me proporcionou a realização dos testes antitumorais *in vitro* e *in vivo*. Também agradeço a todos os integrantes desse laboratório, os quais sempre me receberam bem, principalmente a Dona Zélia, a qual foi muito prestativa.

À Dr. Sônia Freitas e ao Laboratório de Biofísica da Universidade de Brasilia, por abrir as portas e permitir o uso do DLS/Zeta.

Ao Laboratório de Bioimagem da Embrapa Cenargen, onde pude realizar as análises histopatológicas.

Ao Laboratório Sabin de Análises Clínicas, que por colaboração realizou as análises hematológicas e bioquímicas dos animais utilizados nesse.

Às agências CAPES e CNPq que em momentos distintos fomentaram minha bolsa e financiaram este estudo.

RESUMO

O câncer de mama é considerado o tipo de câncer que tem maior incidência em mulheres nos países em desenvolvimento. O tratamento mais comum para os cânceres é com quimioterápicos isoladamente ou em associação a outros procedimentos, que têm revelado diversos efeitos colaterais adversos ao organismo. Por isso, novas formas de tratamento são necessárias. Biomoléculas encontradas em animais tem se revelado alternativas aos quimioterápicos. Dentre as biomoléculas, o peptídeo melitina é citotóxico e não seletivo devendo, assim, ser aprisionado em nanossistemas utilizando polímeros e, ainda, ser direcionada a célula-alvo, por meio de moléculas como peptídeos. Dentre os polímeros, a quitosana (QS) é utilizada por ser biocompatível e biodegradável. A QS, quando na presença de ânions como o tripolifosfato de sódio (TPP), forma nanopartículas espontaneamente pelo método de geleificação iônica. As nanopartículas de QS têm tendência à aglomeração, assim é necessária a adição de copolímeros como o polietilenoglicol (PEG). O presente estudo teve como objetivo desenvolver nanopartículas de QS e PEG com peptídeo direcionador visando à liberação sustentada in vitro e in vivo de melitina a células tumorais de mama. Assim, foi extraída a melitina da peconha de Apis mellifera e sintetizados peptídeos direcionadores. Esses peptídeos foram associados em nanopartículas, que foram testadas in vitro e in vivo. Todas as nanopartículas foram polidispersas e aumentavam de tamanho de acordo com o aumento nas concentrações de TPP e PEG. Nos testes in vitro, notou-se que a melitina livre foi citotóxica, enquanto os dois peptídeos direcionadores não foram citotóxicos. Apenas as nanopartículas formuladas com 2 mg/mL de TPP foram tóxicas apenas quando continham melitina associada. Em outra abordagem experimental, a melitina foi substituída nas nanopartículas pela peconha da abelha parcialmente hidrolisada e um novo peptídeo presente nesta. Foi observado que a peçonha perde a citotoxicidade com a hidrólise parcial. Assim, foram escolhidas as formulações com 2 mg/mL de TPP e 13,3 mg/mL de PEG 2000 homogeneizados em ultraturrax para os testes in vivo. As análises in vivo tiveram início com a comparação do implante de células ectópico (flanco) em relação ao ortotópico (4ª mama). Não foram observadas células neoplásicas nos órgãos analisados em nenhum tipo de implante e o ortotópico foi escolhido por formar único e uniforme tumor, o que facilita o tratamento intratumoral. As análises in vivo seguiram com o implante ortotópico na 3ª mama, o qual apresentou desenvolvimento diferente, mais agressivo, o que levou muitos animais a óbito. Houve metástase na forma de pólipos, ao longo do peritônio dos animais, mas não foram observadas células neoplásicas nos órgãos analisados. Os animais tratados com melitina livre e nanopartícula contendo melitina (completa) não apresentaram pólipos. Todos os animais apresentaram alterações hematológicas e os animais que receberam os tratamentos com melitina e completa apresentaram alterações bioquímicas. Ainda houve alterações histopatológicas evidenciando dano no fígado em todos os grupos, hemólise em alguns órgãos no tratamento com melitina livre e maior regressão de células neoplásicas no tratamento com melitina em relação ao tratamento com nanopartícula. A atuação imediata da melitina livre na inibição tumoral, em relação às nanopartículas completa, também foi confirmada com a maior expressão de proteínas antitumorais. Contudo o tratamento com nanopartículas de quitosana contendo melitina foi menos agressivo para o organismo, por não causar hemólise, e foi ativo sobre células neoplásicas de mama.

Palavra-chave: Tumor de mama; melitina; nanopartícula de quitosana; in vitro e in vivo.

ABSTRACT

Breast cancer is considered the cancer that has a higher incidence in women in developing countries. The most common treatment for cancers is with chemotherapy alone or associated with other treatments, which has revealed many adverse side-effects in the body. Therefore, new treatments are needed. Biomolecules found in animals has proven alternatives to chemotherapy. Among biomolecules, the melittin peptide is cytotoxic and not selective, should be entrapped in nanosystems using polymers and, also, be directed to targets using molecules, such as peptides. Among the polymers, the chitosan (QS) is used to be biocompatible and biodegradable. QS, in the presence of anions such as sodium tripolyphosphate (TPP), form spontaneously nanoparticles by ionic gelation method. The QS nanoparticles tend to agglomerate, so it is necessary to add copolymers such as polyethylene glycol (PEG). This study aimed to develop nanoparticles with PEG and QS and driver peptide at sustained release in vitro and in vivo of melittin to breast tumor cells. So, it was extracted melittin from the venom of Apis mellifera and synthesized driving peptides. These peptides were associated in nanoparticles, which were tested in vitro and in vivo. All nanoparticles were polydisperse increased in size and in accordance with the increase in TPP and PEG concentrations. In *in vitro* tests, it was noted that the free melittin was cytotoxic, whereas both driving peptides were not cytotoxic. The nanoparticles formulated with 2 mg/mL of TPP were toxic only when were associated melittin. In another experimental approach, melittin was replaced in nanoparticles by the partially hydrolyzed bee venom and a new peptide present in this venom. It was observed that the venom loses cytotoxicity when partially hydrolyzed. Thus, the formulations were selected with 2 mg/mL of TPP and 13.3 mg/mL PEG 2000 homogenized in the ultraturrax for in vivo tests. The in vivo tests were started by the comparison of the ectopic cells implant (flank) over the orthotopic (4th breast). Neoplastic cells were not observed in organs examined on either type of implant and orthotopic was chosen to form unique and uniform tumor, which facilitates the intratumoral treatment. In vivo analyses followed with orthotopic implantation in the 3rd breast, which presented different development, more aggressive, leading many animals to dye. There were metastasis in the form of polyps along the peritoneum of the animals, but not observed cancer cells in analyzed organs. The animals treated with free nanoparticles containing melittin and melittin (complete) showed no polyps. All animals showed hematological changes and the animals that received the treatments with melittin and complete had biochemical changes. All the animal groups still showed histopathological changes associated with damages in the liver, hemolysis in some organs in the treatment with free melittin and enhanced regression of neoplastic cells on the treatment with melittin when compared treatment with the nanoparticle. Immediate action of free melittin in tumor inhibition, compared to the full nanoparticles was confirmed with the highest expression of antitumor proteins. However, the treatment with chitosan nanoparticles containing melittin was less aggressive to the body, does not cause hemolysis, and was active on neoplastic breast cells.

Keyword: breast tumor; melittin; chitosan nanoparticle; in vitro and in vivo.

LISTA DE FIGURAS

Figura 1: Representação de glândula mamária.

Figura 2: Representação de nanopartícula de quitosana.

Figura 3: Representação esquemática da metodologia seguida no presente estudo.

Figura 4: Cromatograma e espectro de massa da peçonha de Apis mellifera.

Figura 5: Espectro MS/MS da melitina $[M + H]^+ = 2845,9$ obtida de *Apis mellifera*.

Figura 6: Cromatograma e espectro de massa da peçonha de *Apis mellifera* hidrolisada parcialmente.

Figura 7: Espectro MS/MS do íon $[M + H]^+ = 1995,1$ referente ao peptídeo mais abundante na peçonha de *Apis mellifera* hidrolisada parcialmente.

Figura 8: Cromatograma e espectro de massa do peptídeo direcionador 1 sintetizado manualmente.

Figura 9: Espectro MS/MS do ion $[M + H]^+ = 2425,3$ referente ao peptídeo direcionador 1 sintetizado manualmente.

Figura 10: Cromatograma e espectro de massa da peçonha do peptídeo direcionador 2 (RGD) sintetizado manualmente.

Figura 11: Distribuição em diâmetro hidrodinâmico pelo volume das soluções isoladas utilizadas na formulação das partículas por espalhamento de luz dinâmico.

Figura 12: Distribuição em diâmetro hidrodinâmico pelo volume das partículas formuladas com 1 mg/mL de TPP.

Figura 13: Distribuição em diâmetro hidrodinâmico pelo volume de partículas produzidas com 1,5 mg/mL de TPP e dois tipos de PEG (2000 e 5000 Da) em duas concentrações cada (3,3 e 6,6 mg/mL), por espalhamento de luz dinâmico.

Figura 14: Distribuição em diâmetro hidrodinâmico pelo volume das partículas produzidas com 13,3 mg/mL de PEG 2000 por espalhamento de luz dinâmico. **A)** Partículas ressuspendidas em água; **B)** Partículas ressuspendidas em PBS.

Figura 15: Distribuição em diâmetro hidrodinâmico pelo volume das partículas vazias produzidas com quantidades variadas de TPP (1, 2 e 4 mg/mL) por espalhamento de luz dinâmico dispersas por ultraturrax.

Figura 16: Distribuição em diâmetro hidrodinâmico pelo volume de partículas produzidas com RGD como peptídeo direcionador (Pepdirecionador2) por espalhamento de luz dinâmico.

Figura 17: Morfologia das partículas completa (QS, TPP, PEG, Pepdirecionador2 e melitina), obtidas por microscópio de força atômica operada em modo dinâmico.

Figura 18: Espectros obtidos das partículas por espectroscopia Raman.

Figura 19: Curva de calibração do peptídeo direcionador e melitina.

Figura 20: Porcentagem de células vivas (viabilidade) das linhagens tumorais de mama humano (MCF-7) e de mama murina (4T1) após tratamento com diferentes concentrações de melitina e Pepdirecionador1 livres.

Figura 21: Porcentagem de células tumorais de mama humano (MCF-7) e de mama murina (4T1) vivas. Tratadas com partículas produzidas com 1 mg/mL, 2 mg/mL e 4 mg/mL de TPP.

Figura 22: Porcentagem de células tumorais de mama humano (MCF-7), tumoral de mama murina (4T1) e não tumoral de fibroblasto (NIH3T3) vivas. Tratadas partículas produzidas com 6,7 mg/mL e 13,3 mg/mL de PEG 2000.

Figura 23: Porcentagem de células vivas (viabilidade) das linhagens tumorais de mama humano (MCF-7), mama murina (4T1) e não tumoral (NIH3T3) tratadas com diferentes concentrações do Pepdirecionador2 (RGD) livre e partículas.

Figura 24: Porcentagem de células tumorais de mama humana (MCF-7), murina (4T1) e não tumoral de fibroblasto (NIH3T3) vivas tratadas com peptídeo abundante da peçonha de abelha parcialmente hidrolisada e a peçonha de abelha parcialmente hidrolisada.

Figura 25: Ilustração murina evidenciando a disposição das mamas.

Figura 26: Peso em gramas (g) de murinas fêmeas Balb/c implantadas com de 1×10^5 células da linhagem tumoral murina 4T1.

Figura 27: Imagem fotográfica de tumores desenvolvidos em camundongos fêmeas Balb/c após 20 dias do implante ortotópico na 4ª mama e ectópico no flanco.

Figura 28: Volume tumoral em camundongos fêmeas Balb/c após 12, 15 e 20 dias do implante de 1×10^5 células da linhagem tumoral murina 4T1.

Figura 29: Imagem obtida por Micro-CT a 50 kV do tumor implantado na 4^a mama (ortotópico) murinas Balb/c fêmea..

Figura 30: Imagem obtida por Micro-CT a 50 kV do tumor implantado no flanco direito (Ectópico) murinas Balb/c fêmea.

Figura 31: Fotomicrografías de tumor desenvolvido após 20 dias do implante de células de mama 4T1 em camundongos Balb/c.

Figura 32: Fotomicrografias de pulmão, figado, rim e baço após 20 dias do implante de células de mama 4T1 em camundongos Balb/c.

Figura 33: Número de animais vivos após implante tumoral da linhagem murina 4T1.

Figura 34: Peso em gramas (g) de murinas fêmeas Balb/c implantadas com de 1×10^5 células da linhagem tumoral murina 4T1.

Figura 35: Imagens fotográficas de tumores desenvolvidos na 3^{a} mama em murinas fêmeas Balb/c após 23 dias do implante de 1×10^{5} células da linhagem tumoral murina 4T1.

Figura 36: Volume tumoral em camundongos fêmeas Balb/c após o implante de 1×10^5 células da linhagem tumoral murina 4T1.

Figura 37: Imagem obtida por Micro-CT a 70 kV do tumor implantado na 3^a mama murina Balb/c fêmea.

Figura 38: Imagem obtida por Micro-CT a 70 kV do tumor implantado na 3^a mama murina Balb/c fêmea.

Figura 39: Fotomicrografias de tumor desenvolvido após 23 dias do implante de células de mama 4T1 em camundongos Balb/c.

Figura 40: Fotomicrografias de pulmão, figado, rim e baço após 23 dias do implante de células de mama 4T1 em camundongos Balb/c.

Figura 41: Diagrama mostrando a quantidade de sequências proteicas em tumores entre os grupos que receberam os tratamentos.

LISTA DE TABELAS

Tabela 1: Incidência dos tipos de câncer mais frequente no Brasil.

Tabela 2: Reagentes usados no desenvolvimento das partículas e suas concentrações.

Tabela 3: Potencial Zeta de partículas em água e estabilidade coloidal considerada (ASTM, 1985).

Tabela 4: Dados das estruturas presentes nas soluções isoladas utilizadas na formulação das partículas.

Tabela 5: Partículas TPP 1-1. Dados de DLS e Zeta.

Tabela 6: Partículas TPP 1,5-1 variando os tipos e as concentrações de PEG. Dados obtidos por DLS e Zeta.

 Tabela
 7: Dados hematológicos de camundongos Balb/c fêmea com carcinoma mamário.

Tabela 8: Resultados da contagem global (%) de leucócitos em camundongos Balb/c fêmea com carcinoma mamário.

Tabela 9: Análise bioquímica obtida a partir do plasma sanguíneo em camundongos Balb/c fêmea com carcinoma mamário.

LISTA DE ABREVIATURAS

ACN (acetonitrila).

ADH (álcool desidrogenase).

ALT (alanina aminotransferase).

BSA (albumina sérica bovina).

CEMIB (Centro Multidisciplinar para Investigação Biológica).

Completa (QS, peptídeo direcionador, melitina, TPP e PEG).

Cont (controle).

DCM (diclorometano).

DDS (sistemas de distribuição de drogas).

DTT (ditiotritol).

DIPEA (N, N'-diisopropiletilamina).

DLS (espalhamento de luz dinâmico).

DMF (*N*, *N*-dimetilformamida).

DMEM (Dulbecco's modified eagle medium).

DMSO (dimetilsulfóxido).

EE (eficiência de encapsulamento).

EPR (aumento da permeabilidade e retenção).

Fmoc (fluorenilmetiloxicarbonila).

MALDI (Matrix-Assisted Laser Desorption Ionization).

Meio de congelamento (DMEM, 20% soro fetal, 1% antibiótico, 1% de DMSO).

Meio de cultura (DMEM completo, tamponado com bicarbonato de sódio, acrescido de

10% de soro fetal bovino e 1% do antibiótico ampicilina-streptomicina).

Mel (melitina).

MCF7 (linhagem tumoral de mama humano).

MFA (microscopia de força atômica).

MS/MS (espectrometria de massa in tandem).

MTT (brometo de [3(4,5-dimetiltiazol-2-il)-2,5-difeniltetrazolium).

NIH3T3 (linhagem murina não tumoral de fibroblasto).

PBS (tampão fosfato salina).

PdI (indice de polidispersividade).

PEG (polietilenoglicol).

Pepdirecionador1 (LGASWHRPDKCCLGYQKRPLP).

Pepdirecionador2 (RGD).

PET (Tomografia por emissão de pósitrons).

Potencial Zeta (carga de superfície).

QS (quitosana).

QSApis (QS, TPP, PEG e peçonha da abelha parcialmente hidrolisada).

QSDegra (QS, TPP, PEG e peptídeo da abelha derivado da melitina).

QSMel (QS, melitina, TPP e PEG).

QSPep (QS, peptídeo direcionador, TPP e PEG).

RE (retículo endoplasmático).

RP-HPLC (cromatografia líquida de alta eficiência em fase reversa).

Solvente A (solução aquosa de TFA a 0,1% em volume).

Solvente B (TFA em ACN a 0,1% em volume).

TBTU (hexafluorofosfato de 2-(1-H-benzotriazol-1-il)-1, 1, 3, 3-tetrametilurônio).

TFA (ácido trifluoroacético).

TOF (time-of-flight).

Tripsina-EDTA (tripsina, 0,25% (1×) com EDTA 4Na).

TPP (tripolifosfato de sódio).

U.A. (unidades arbitrárias de absorbância).

UFLC (cromatografia liquida ultra rápida).

Vazia (QS, TPP e PEG).

4T1 (linhagem tumoral de mama murina).

SUMÁRIO

Agradecimentos	3
Resumo	6
Abstract	7
Lista de figuras	8
Lista de tabelas	11
Lista de abreviaturas	12
Sumário	14
1. INTRODUÇÃO	16
1.1 Câncer	16
1.2 Carcinoma mamário	17
1.3 Tratamento tumoral	19
1.4 Inovação no tratamento tumoral: nanoterapia	20
1.5 Características de nanossistemas e desenvolvimento de	22
nanopartículas	
1.6 Nanopartículas a base de quitosana	25
1.7 Peptídeos como ativos antitumorais e direcionadores	27
2. JUSTIFICATIVA	32
3. OBJETIVOS	34
3.1 Objetivo geral	34
3.2 Objetivos específicos	34
4. METODOLOGIA	36
4.1 Extração de melitina	38
4.2 Síntese do peptídeo direcionador	38
4.3 Purificação dos peptídeos	40
4.4 Confirmação da identidade molecular	41
4.5 Quantificação dos peptídeos	42
4.6 Produção das partículas	43
4.7 Eficiência de encapsulamento (EE)	44
4.8 Caracterização das partículas	45
4.9 Tratamentos in vitro	46
4.9.1 Linhagens de células	46
4.9.2 Tratamento das células	48
4.9.3 Efeito citotóxico in vitro avaliado pelo método MTT	49
4.10 Teste in vivo	50
4.10.1 Manutenção dos camundongos e indução do tumor	50
4.10.2 Experimento piloto	50
4.10.3 Análise da atividade antitumoral dos tratamentos	51
4.10.4 Monitoramento do desenvolvimento do tumor	52
4.10.5 Análises clínicas	53

4.10.6 Análises toxicológicas	53
4.10.7 Análises hematológicas e bioquímicas	54
4.10.8 Análises proteômicas dos tumores	55
4.11 Análise estatística	57
5. RESULTADOS	58
5.1 Obtenção dos peptídeos	58
5.2 Otimização da produção das partículas	67
5.3 Eficiência de encapsulamento	77
5.4 Teste <i>in vitro</i> : viabilidade celular	78
5.5 Teste in vivo	86
5.5.1 Teste piloto	86
5.5.1.1 Estratégia experimental do teste	86
5.5.1.2 Observações comportamentais e peso dos animais teste	86
5.5.1.3 Desenvolvimento tumoral nos animais teste	87
5.5.1.4 Análises hitopatológicas de órgãos e tumores dos animais teste	92
5.5.2 Análise da atividade antitumoral dos tratamentos	95
5.5.2.1 Estratégia do experimento	95
5.5.2.2 Comportamento, sobrevida e peso dos animais	95
5.5.2.3 Desenvolvimento tumoral nos animais do experimento	97
5.5.2.4 Análises hitopatológicas de órgãos e tumores dos animais do	102
experimento	
5.5.2.5 Análises hematológicas e bioquímicas	106
5.6 Análises proteômica dos tumores	108
6. DISCUSSÃO	110
7. CONCLUSÕES	125
8. REFERÊNCIAS BIBLIOGRÁFICAS	128
ANEXO	134
APÊNDICE 1	135
APÊNDICE 2	138
APÊNDICE 3	148
APÊNDICE 4	158

1.INTRODUCÃO

1.1 Câncer

No organismo as células sadias realizam ciclos nos quais elas repousam, dividem, diferenciam ou morrem. Alterações em uma célula por causas externas (ambientais) e/ou internas (genética/epigenética) podem romper este equilíbrio fazendo com a célula se divida mais vigorosamente e, consequentemente multiplique desordenadamente formando tumores, conhecidos como câncer. Estas células podem ter origem epitelial, denominado carcinoma, ou origem conjuntiva, denominado sarcomas e, ainda, podem invadir tecidos adjacentes, processo denominado metástase.

Assim, o câncer é uma dos maiores responsáveis por causas de morte por doença no mundo, sendo a segunda maior causa em países desenvolvidos (Instituto Nacional de Câncer, 2014). A incidência desse conjunto de doenças vem aumentando a cada ano e ainda é um problema de saúde pública mundial, segundo a Organização Mundial da Saúde (OMS, 2012). São estimados 21,4 milhões de novos casos desta doença no mundo em 2030 com 13,2 milhões de mortes. Atualmente, são estimados para 2014/2015, 576 mil novos casos de câncer no Brasil sendo 57 mil casos de câncer de mama (Tabela 1), com risco de 56 mulheres com a doença a cada 100 mil, em valores absolutos (Instituto Nacional de Câncer, 2014).

Entre os diversos tipos de câncer, o câncer de mama é o mais incidente entre as mulheres do mundo, representando 25% dos casos. Ainda, esta é a maior causa de morte por câncer nas mulheres nos países em desenvolvimento e a segunda maior causa de morte, após o câncer de pulmão, nas mulheres nos países desenvolvidos. Isso poderia ser minimizado com a prevenção da doença e o diagnóstico precose, porém esse é dificultado por variações causadas pelas características genéticas de cada individuo e, também, por fatores de risco, como principalmente o envelhecimento, o uso de drogas, o sobrepeso, a predisposição genética e a vida reprodutiva da mulher (anticoncepcionais orais, menopausa tardia, terapia de reposição hormonal) (Instituto Nacional de Câncer, 2014).

Tabela 1: Incidência dos tipos de câncer mais frequente no Brasil, exceto pele não melanoma, para o ano 2014/2015, segundo o Instituto Nacional de Câncer (2014).

Localização primária	casos	%			Localização primária	casos	%
Próstata	68.800	22,8%	Homens	Mulheres	Mama Feminina	57.120	20,8%
Traqueia, Brônguio e Pulmão	16.400	5,4%			Cólon e Reto	17.530	6,4%
Cólon e Reto	15.070	5,0%			Colo do Útero	15.590	5,7%
Estômago	12.870	4,3%			Traqueia, Brônquio e Pulmão	10.930	4,0%
Cavidade Oral	11.280	3,7%			Glândula Tireoide	8.050	2,9%
Esôfago	8.010	2.6%			Estômago	7.520	2.7%
Laringe	6.870	2,3%			Corpo do Útero	5.900	2,2%
Bexiga	6.750	2,2%			Ovário	5.680	2,1%
Leucemias	5.050	1.7%			Linfoma não Hodgkin	4.850	1.8%
Sistema Nervoso Central	4.960	1,6%			Leucemias	4.320	1,6%

Números absolutos, arredondados para 10 ou múltiplos de 10. Retirada do website do Instituto Nacional do Câncer.

1.2 Carcinoma mamário

A mama é formada por duas partes principais, sendo uma de sustentação, chamada de estroma, a qual é composta por tecidos conjuntivo e adiposo, e outra parte secretora, chamada de parênquima, composta por lóbulos e ductos. Os ductos são estruturas condutoras ramificadas que acabam em ductos terminais associados a uma estrutura secretora chamada de ácinos. Nesse local, onde ductos e ácinos se associam é onde ocorre a maioria dos cânceres de mama. Assim, o câncer de mama é um tipo de adenocarcinoma, que pode ter início em diferentes componentes dos ductos, como nas células epiteliais secretoras, as luminais, nas células contráteis, as mioepiteliais ou nas células que separam o estroma do parênquima, as basais (Figura 1) (DIMRI, BAND & BAND, 2005).

Figura 1: Representação da glândula mamária. Adaptado de DIMRI, BAND & BAND, (2005).

A heterogeneidade nesse tipo de carcinoma faz com que pouco se saiba a respeito das fases iniciais da doença, porém sabe-se que ocorre hiperplasia ductal *in situ*, a qual invade o estroma e segue com a metástase para órgãos (DIMRI, BAND & BAND, 2005). Assim, muitos estudos buscam ampliar o entendimento desse carcinoma e para isso são utilizadas células de mama murinas (*in vitro*) e os camundongos (*in vivo*), uma vez que estes animais possuem células epiteliais de mama semelhantes às células de mama em humanos (PARMAR & CUNHA, 2004).

Os estudos *in vitro* são apropriados em testes iniciais com novas terapias antitumorais. Já os estudos *in vivo* são utilizados quando se busca entender o desenvolvimento do tumor e metástase, bem como entender a resposta do tumor a terapias antitumorais em seu ambiente natural (DEROSE *et al.* 2013).

Nesses estudos antitumorais geralmente são utilizadas células imortalizadas, as quais são fáceis de multiplicar, acompanhar e compreender seus mecanismos moleculares (DEROSE *et al.* 2013). Dentre as células imortalizadas de mama, a linhagem 4T1 tem sido muito utilizada, por apresentar características e desenvolvimento

semelhante a um modelo de tumor em humano (CARNEIRO, 2011). As células 4T1 foram isoladas, inicialmente, de tumor espontâneo formado na 4^a mama murinas Balb/c. Assim, essas células apresentam como característica de grande interesse a capacidade de desenvolver tumores, isso após crescerem *in vitro* e serem implantadas ortopicamente (diretamente na mama) em animais Balb/c. Ainda, as células 4T1 desenvolvem metástase em ossos, pulmão, fígado e cérebro, semelhante à metástase de mama em humanos (TAO *et al.* 2008; PULOSKI *et al.* 2000).

O implante ortotópico de células de mama é mais utilizado em estudos *in vivo*, visando o desenvolvimento das mesmas no local de origem, para que sejam influenciadas por moléculas locais e tenham melhor desenvolvimento em tumores e metástase (SHAN, SORG & DEWHIRST, 2003). Entretanto, a região da mama algumas vezes dificulta o acompanhamento do desenvolvimento e do tratamento tumoral, assim, o implante das células tumorais pode ser ectópico (outras regiões), no qual torna-se mais fácil localizar e analisar o tumor, mesmo que por imagens (DEWARD, KOMORI & LAGASSE, 2014).

1.3 Tratamento tumoral

O diagnóstico do câncer de mama em mulheres geralmente ocorre em estágios avançados da doença, apesar disso, nos últimos cinco anos a sobrevida de mulheres após tratamentos convencionais (mastectomia, radioterapia, quimioterapia), em países desenvolvidos, tem sido de 85% e, em países em desenvolvimento, tem sido entre 50 e 60% (Instituto Nacional de Câncer, 2014). Porém, dentre estas alternativas para o tratamento de câncer a quimioterapia é a mais utilizada, a qual resulta em vários efeitos colaterais adversos no paciente devido à toxicidade em células sadias pela não seletividade dos quimioterápicos. Devido a essa não seletividade e, ainda, à rápida eliminação dos quimioterápicos pelo organismo, é necessário o uso de doses altas, o que torna esse tratamento ainda mais tóxico (GU *et al.* 2007). Além disso, estes tratamentos são de custo alto para o governo brasileiro, que têm um gasto anual estimado em 1,2 bilhões de reais (ALVES *et al.* 2004), o qual está crescendo 450% anualmente (Instituto Nacional de Câncer, 2014).

Assim, é necessária a busca por novas formas de tratamentos, que aumentem a qualidade de vida dos pacientes, que sejam mais eficazes sobre as células cancerosas e menos tóxicos às sadias, que tenham maior tempo de permanência no organismo e consequentemente utilizem doses menores e, ainda, que sejam direcionadas ao tumor e tenham custo terapêutico menor (GU *et al.* 2007). Muitas dessas características estão sendo reveladas em estudos antitumorais utilizando abordagens de nanoterapia.

1.4 Inovação no tratamento antitumoral: Nanoterapia

Estudos em busca de novas terapias antitumorais menos tóxicas ao organismo e mais eficazes são de suma importância para ciência e tecnologia aplicada à saúde humana e animal. Muitos ativos com potencial antitumoral sequer alcançam o local do tumor por sofrer processos de hidrólise, desnaturação, retirada da circulação por fagócitos e/ou retenção em órgãos indesejados.

Assim, é necessário que os ativos antitumorais sejam associados em sistemas de distribuição de drogas (DDS), que permitam a sua liberação sustentada no organismo. Há vários tipos de DDS como os lipossomas, nanopartículas poliméricas, micelas, partículas metálicas, nanotubos e dendrímeros (TORCHILIN, 2014). Os ativos podem se associar a esses nanossistemas de modo que fiquem dispersos em uma matriz polimérica, caracterizando um sistema monolítico (nanoesfera), ou fiquem separados

por barreiras e formem um reservatório, caracterizando um sistema reservatório (nanocápsula) (JOANITTI & SILVA, 2014).

Atualmente, muitas pesquisas focam no desenvolvimento de nanoterapias, nas quais nanossistemas carregam, transportam e liberam ativos antitumorais aumentando a eficiência terapêutica. Isto, pois muitos nanossistemas podem permitir que tanto ativos hidrofílicos como hidrofóbicos tenham aumento da meia vida na circulação, permitir a degradação e liberação progressiva do mesmo, e consequentemente promoverem, a diminuição de doses e da toxicidade e, ainda em alguns casos, possibilitar o direcionamento a alvo específico (SILVA *et al.* 2003, TORCHILIN, 2007).

Já são comercializados e utilizados em tratamentos antitumorais alguns nanoterápicos que apresentam vantagens quando comparados ao quimioterápico livre, o qual geralmente necessita de solventes orgânicos para dissolvê-lo, apresenta baixa solubilidade e é retido em órgãos indesejados, que o torna de baixa disponibilidade. Assim, quando o quimioterápico está contido em um nanossistema ele pode apresentar maior eficácia terapêutica, por aumentar sua solubilidade e disponibilidade, como observado nos nanoterápicos Doxil, Myocet e Caelyx, os quais são lipossomas contendo o quimioterápico doxorrubicina; e, ainda, o quimioterápico pode se tornar menos tóxico sistemicamente por não necessitar de solventes orgânicos para dissolução quando são contidos nesses nanossistemas, como observado no nanoterápico Abraxane, que é um tipo de nanopartícula contendo o quimioterápico paclitaxel (MOUSA & BHARALI, 2011).

Apesar destes avanços, continua a busca por novos nanoterápicos, que sejam menos tóxicos para o organismo, mais biodegradáveis, sejam de produção simples e de custo baixo (TORCHILIN, 2007) e, ainda, que favoreça a associação de ativos que apresentam baixa solubilidade e baixa biodisponibilidade (TORCHILIN, 2014). Além

disso, a maioria dos quimioterápicos convencionais possui carga positiva, que são reconhecidas por componentes aniônicos superexpressos na membrana das células cancerosas (proteoglicanas, glicoproteinas, fosfatidilserina e fosfolipídeos), os quais fazem o efluxo dos quimioterápicos, tornando-se um mecanismo de resistência a estes, com isso, também, é necessária a utilização de novos ativos (HONARY & ZAIR, 2013).

1.5 Características de nanossistemas e desenvolvimento de nanopartículas

O aprisionamento de ativos antitumorais em nanossistemas torna-os mais eficazes em função das propriedades fisicoquímicas, como tamanho e a carga de superfície, dos nanossitemas, as quais podem ser manipuladas de acordo com as concentrações dos componentes presentes nesses sistemas (CHENG *et al.* 2007).

O tamanho dos nanossistemas deve variar considerando o local do tratamento, uma vez que a biodistribuição destes varia de acordo com o órgão (CHENG *et al.* 2007). Quando os nanossistemas apresentam tamanho inferior a 10 nm são retidos nos rins e quando são maiores que 200 nm são retidos no baço e figado, por exemplo. O tamanho também pode influenciar no tempo de permanência do nanossistema na circulação e no acúmulo em tumores (SOLARO *et al.* 2010).

Outra propriedade dos nanossistemas, a carga de superfície, também conhecida como potencial Zeta, interfere na biocompatibilidade e farmacocinética desses sistemas e, ainda na biodisponibilidade pelo reconhecimento e retirada destes por fagócitos, uma vez que nanossistemas que possuem carga negativa são facilmente reconhecidos (HONARY & ZAIR, 2013). Assim, nanossistemas com carga positiva são geralmente mais estáveis, por não serem capturados por fagócitos e assim permanecerem mais tempo na circulação; biocompatíveis, por não desencadearem respostas imunogênicas; e, também, são mais ativos sobre tumores, os quais são carregados negativamente e

favorece ligações iônicas com sistemas que possuem carga positiva (BERTRAND *et al.* 2014).

Além das propriedades físicoquímicas dos nanossistemas, o ambiente e estrutura tumoral também favorecem a maior eficácia dos ativos quando estão associados. Assim, como o pH extracelular de tumores é baixo, isso favorece o aumento do potencial Zeta nas nanossistemas, pela formação de cátions, e consequentemente, maior captura pela membrana das células tumorais. Outra característica dos tumores, que favorece a captura de nanossistemas e uma entrega passiva dos mesmos, é o chamado aumento da permeabilidade e retenção (EPR) (TORCHILIN, 2014). Com o EPR os tumores apresentarem maior permeabilidade vascular, com fenestras entre 200 a 2000 nm, e arquitetura anormal dos vazos sanguíneos, devido ao seu crescimento desorganizado. Assim, os tumores são mais permeáveis do que tecidos normais, o que favorece a entrada dos nanossistemas nos tumores e, ainda, como não há drenagem linfática nesses, uma vez que esse sistema é defeituoso em tumores, então é favorecido, ainda mais, o acúmulo dos nanossistemas no local (BERTRAND *et al.* 2014).

Assim, as características do tumor e as propriedades fisicoquímicas dos nanossistemas possibilitam que estes últimos sejam entregues passivamente, pelo processo de retenção dos nanossistemas no tecido tumoral ou, que sejam entregues ativamente, utilizando direcionadores acoplados aos nanossistemas para moléculas expressas em células tumorais (SINHA *et al.* 2014).

A via de administração mais utilizada para entrega dos nanossistemas tem sido intravenosa, porém a escolha da via deve ser bem avaliada, uma vez que essa atua na biodistribuição dos nanossistemas (SOLARO *et al.* 2010). Atualmente, a via de administração intratumoral tem se revelado atraente, pois nessa via a concentração dos nanossistemas na região tumoral é muito maior, quando comparado à entrega passiva.

Assim, necessita de menores dosagens dos ativos e, consequentemente, promove menor toxicidade. Porém essa forma de entrega só é possível em tumores de fácil acesso, como os expostos (SINHA *et al.* 2014).

Dentre os nanossistemas, as nanopartículas poliméricas são partículas coloidais com tamanho entre 10 e 1000 nm (RAO & GECKELER, 2011). Estas nanopartículas apresentam maior permeabilidade e retenção em tumores sólidos, sendo estas características favoráveis ao aumento da concentração do ativo antitumoral devido à biodegradabilidade dos polímeros que as compõem (SINHA *et al.* 2014). Outra vantagem das nanopartículas é que esses utilizam polímeros que são, na maioria das vezes, naturais como a quitosana (QS), queratina, colágeno e elastina. Os polímeros naturais são gerados como resíduos secundários, a partir do processamento de plantas, animais e microorganismos (JOANITTI & SILVA, 2014). Assim, esses são de baixo valor econômico, são encontrados em abundância na natureza e o reaproveitamento destes para o desenvolvimento de nanossitemas torna-os sustentável.

Existem vários métodos descritos na literatura para o desenvolvimento de nanopartículas poliméricas. Muitos destes métodos utilizam solventes orgânicos, que alteram a conformação dos ativos, outros podem oferecer rendimento de associação do ativo baixo, outros requerem temperaturas ou pH muito altos ou baixos, os quais podem inativar os ativos (SILVA *et al.* 2003). Então, deve-se buscar um método que além de simples e de custo baixo, que seja mais eficaz, que garanta a estabilidade do ativo e não seja tóxico.

A técnica de geleificação iônica desenvolvida por CALVO *et al.* (1997), é muito utilizada por conter estas características desejadas e, ainda, por garantir uma maior associação do ativo, medida pela eficiência de encapsulamento (EE) do ativo, e sua liberação sustentada (GARCIA-FUENTES & ALONSO, 2012). Nesta técnica ocorre a

formação espontânea de nanopartículas pela adição de um ânion a um cátion e tem sido utilizada, principalmente, para a associação de proteínas e peptídeos. REIS *et al.* (2006), por meio dessa técnica, associaram insulina e calcitonina de forma rápida, simples, atóxica, sem adição de solventes orgânicos, e eficaz pela formação espontânea de partículas (até 1000 nm) de QS e do poliânion tripolifosfato de sódio (TPP).

O TPP tem sido o ânion mais utilizado por pesquisadores por meio dessa técnica, pois apresenta carga aniônica elevada, que interage fortemente com cargas positivas de muitos polímeros, incluindo a QS e, ainda, por ser seguro e liberado para formulações farmacêuticas em algumas concentrações. Em geral, este ânion é citotóxico em células sadias de fibroblasto quando testado isolado e em concentrações acima de 1 mg/mL (PALMEIRA-DE-OLIVEIRA *et al.* 2011). Assim, o TPP deve ser utilizado em uma concentração apropriada para a produção de nanopartículas, de modo que se associe completamente ao cátion estruturante da nanopartícula e não apresente citotoxicidade expressiva.

1.6 Nanopartículas a base de quitosana

Dentre os cátions utilizados na formulação de nanopartículas pelo método de geleificação iônica, QS é a mais utilizada. A QS é um biopolímero natural, derivado da desacetilação da quitina extraída da carapaça de crsutáceos. É considerada hidrofílica por possuir grupamentos aminas dependentes do pH para ficaram protonadas e carregadas positivamente. Assim, este biopolímero é apropriado para a associação e transporte de ativos, uma vez que a liberação deles pode ser facilmente controlada pelo meio em que estão, já que a estrutura da QS é pH-dependente (JAIN, 2000; GAN & WANG, 2007). Ainda, a taxa de associação, determina pela EE, pode ser determinada pelo grau de desacetilação e a massa molecular da QS, sendo que quando utilizadas QSs

com massa molecular média e alta geralmente há uma maior EE e uma liberação do ativo mais prolongada (GAN & WANG, 2007).

Além das características fisicoquímicas, a QS possui outras características benéficas, que a torna de grande uso no desenvolvimento de nanopartículas, como biocompatibilidade, biodegradabilidade, hidrossolubilidade, propriedades bioadesivas (as quais facilitam a passagem por barreiras epiteliais), aprovação regulamentada e tempo de prateleira alto quando liofilizadas. Entretanto, pode, ainda, ser citotóxica em concentração alta em algumas linhagens celulares possibilitando até mesmo efeitos sinergísticos com os agentes ativos (GARCIA-FUENTES & ALONSO, 2012).

Apesar dos benefícios, as nanopartículas de QS apresentam baixa estabilidade, quando em suspensão, e elevado potencial de aglomeração, os quais podem variar de acordo com os tipos e concentrações dos componentes na formulação. A aglomeração, assim como o tamanho das nanopartículas, pode ser maior com a maior concentração do TPP bem como com maior massa molecular da QS, segundo RAMPINO *et al.* (2013).

Assim, na maioria das formulações de QS é necessária a adição de outro componente que diminua o potencial de aglomeração e promova o aumento da estabilidade. Isso é possível, por exemplo, com a adição do copolímero poli (etileno glicol) (PEG), que é um surfactante hidrofílico não iônico (Figura 2). Esse recobre a nanopartícula fazendo com que diminua a carga de superfície e aumente o tamanho da mesma, porém retarda a liberação do ativo em condições fisiológicas, mas não altera a eficiência de encapsulamento da nanopartícula (ZHANG *et al.* 2007).

Figura 2: Representação de nanopartícula de quitosana (QS) e tripolifosfato de sódio (TPP). Recoberta com poli (etileno glicol) (PEG).

A ação do PEG sobre as características fisicoquímicas das nanopartículas tornaas mais biocompatíveis, possibilitando evadirem de macrófagos, com isso permanecer mais tempo na circulação e, consequentemente, ter menor acúmulo em órgãos (PREGO *et al.* 2006; TORCHILIN, 2007). Ainda, o recobrimento da nanopartícula com o PEG favorece a liberação do ativo em condições de pH baixo, que ocorre em tumores, tornando com isso a nanopartícula um tanto seletiva a esses locais (JIN & YE, 2013)

Nanopartículas formuladas com o método de geleificação iônica utilizando QS, TPP e PEG são promissoras para desenvolvimento de terapias antitumorais. No entanto, é necessária a busca por outros ativos que atuem como quimioterápicos. Estudos atuais têm revelado a eficiência de novas biomoléculas, principalmente peptídeos extraídos de plantas e animais como uma alternativa aos quimioterápicos convencionais (HOSKIN & RAMAMOORTHY, 2008).

1.7 Peptídeos como ativos antitumorais e direcionadores

Muitos peptídeos naturais encontrados e isolados de animais, plantas, bactérias e fungos são membranoativos, ou seja, apresentam a capacidade de interagir e eventualmente desestabilizar e até mesmo lisar membranas biológicas. Peptídeos membranoativos geralmente são catiônicos e de natureza anfifílica, ou seja, possuem regiões hidrofílicas com resíduos polares positivamente carregados e regiões hidrofóbicas (LEITE *et al.* 2005; ZASLOFF, 2002). Deste modo, interagem com regiões carregadas negativamente das membranas de bactérias e de células cancerosas, por meio de interação eletrostática seguida de inserção na bicamada lipídica e de lise e morte celular (HOSKIN & RAMAMOORTHY, 2008). Assim, estes peptídeos tem se revelado potenciais moléculas antitumorais, uma vez células cancerosas são menos propensas a desenvolver resistência a ativos que formam poros na membrana (PAN *et al.* 2011).

Alguns peptídeos têm atividade antitumoral descrita na literatura, como os BMAP-28 e lactoferricina B, que são de origem bovina; catelecidinas, de origem humana; HNP-1 (α -defensina) e LL-37, também de origem humana; cecropina, encontrado em insetos; magainina, encontrada em anfíbios; e o polipeptídeo citolítico melitina, que é originário da peçonha de abelhas (SHAI, 2002; HOSKIN & RAMAMOORTHY, 2008).

A melitina é o componente mais abundante (~50%) e mais tóxico da peçonha da abelha-europeia *Apis mellifera*. Este peptídeo catiônico possui massa molecular de 2850 Da e uma cadeia constituída por 26 resíduos de aminoácidos, sendo a porção N-terminal hidrofóbica e a porção C-terminal hidrofílica (ORSOLIK *et al.* 2003). Apresenta atividade citolítica contra células de mamíferos, causando hemólise de 100% mesmo em baixas concentrações, como 10 μ g/mL (BANKS & SHIPOLINI, 2013). Assim, a melitina inibe o crescimento tanto de células tumorais quanto de não tumorais (HOSKIN & RAMAMOORTHY, 2008).

A ação e efeito da melitina sobre células vêm sendo estudada e descrita na literatura. Sabe-se que ela atua sobre membranas celulares formando poros, pela interação dos resíduos de aminoácidos com a bicamada lipídica e levando à inserção do peptídeo na membrana, à desestabilização da mesma e, consequentemente, causando a morte celular (ORŠOLIĆ, 2013; HOSKIN & RAMAMOORTHY, 2008). Assim, essa interação com membranas lipídicas torna a melitina citotóxica para todos as células acarretando em uma toxicidade geral para o organismo se utilizada intravenosamente (PAN *et al.* 2011).

Além da ação sobre as membranas celulares a melitina, também, atua sobre diversas outras vias, quando utilizada em tratamento antitumoral *in vivo*, como na indução da apoptose por ativação de caspases, alteração do potencial mitocondrial com produção de espécies reativas de oxigênio (EROS) e liberação de citocromo c, interrupção da invasão e proliferação celular pela ligação à calmodulina e inibição da atividade enzimática da matriz contendo metaloproteinases (HEINEN & VEIGA, 2011). Ainda tem efeito antiinflamatório inibindo o NF- κ B; inibe também o fator de crescimento epidermal (EGF), interferindo na proliferação celular (JEONG *et al.* 2014); além disso estimula enzimas e inibe proteínas, como as proteínas G (ORŠOLIĆ, 2013). Assim, o tratamento com melitina induz a expressão e inibição de diferentes moléculas, as quais podem ser observadas e melhor compreendidas por meio de análises protêomicas.

A melitina é muito promissora nos estudos antitumorais, porém, devido à sua inespecificidade e rápida degradação pelo organismo, esta molécula deve estar contida em estrutura/sistema, no qual permaneça protegida de fagócitos, do contato com células normais e seja liberada em tecido específico ou em células-alvo (MISRA *et al.* 2015; PAN *et al.* 2011). Isso é possível por meio de abordagens de base nanobiotecnológica, que permitam a associação da melitina em nanossistemas.

MISRA *et al.* (2015) desenvolveram sistemas particulados de lipídeos (lipossoma) associados a melitina e de polímero (nanopartícula de poliestireno)

associado a melitina. Estes autores observaram que ambas as formulações apresentaram atividade semelhante à melitina livre quando *in vitro*, as quais diminuíram a viabilidade de células tumorais de mama humano. Já quando em condições semelhantes à administração sistêmica *in vivo*, as nanopartículas contendo a melitina foram mais estáveis, retendo a melitina por mais tempo. Os autores, PAN *et al.* (2011) também associaram a melitina em nanopartículas de perfluorocarbono e mostraram sua maior eficácia antitumoral. Assim a melitina associada em nanopartículas é promissora para estudos antitumorais.

Os nanossitemas podem, ainda, ser acoplados a moléculas direcionadoras para que sejam entregues a alvos específicos. Algumas moléculas já foram reveladas como direcionadoras de agentes ativos a alvos específicos visando ao diagnóstico ou à terapia de tumores. Dentre essas moléculas, algumas foram conjugadas na superfície de nanopartículas para torná-las seletivas e até eficazes no direcionamento a células tumorais, como peptídeos, anticorpos, hormônios, ácido fólico e oligonucleotídeos (YOO & PARK, 2004). Destas, os peptídeos têm sido bastante estudados e utilizados por serem biocompatíveis, de tamanho pequeno, que possibilita penetrar no tumor, de fácil síntese e modificação (ZHANG *et al.* 2012).

Dessa forma, os direcionadores peptídicos atuam em geral como antagonistas de moléculas superexpressas ou somente expressas em tumores (JIN & YE, 2013). O primeiro peptídeo direcionador utilizado, que ainda é muito utilizado até hoje, foi o RGD, o qual é antagonista de integrinas. Essas são um grupo de receptores diferentemente expressos em tumores que favorecem a proliferação celular por meio da ligação com componentes da matriz extracelular (DESGROSELLIER & CHERESH, 2010). Outro grupo muito expresso em tumores são os receptores de quimiocina, as quais têm função pró-inflamatória. Deste grupo o receptor CXCR4 é superexpresso em

células tumorais de mama sendo, assim, um alvo em potencial para o tratamento dessas células. O receptor CXCR4 já revelou elevada interação com o peptídeo derivado da região N-terminal de uma proteína viral (vMIP-II), assim esse peptídeo atua como antagonista e pode ser usado como direcionador para esses receptores (ZHOU *et al.* 2000).

Diante do exposto, por meio da nanobiotecnologia é possível utilizar novas moléculas contra células tumorais. Dentre estas moléculas a melitina é promissora por ser muito potente e tóxica contra células. Por isso, esta pode ser associada e direcionada a alvos específicos tornando-se, assim, uma nova forma de tratamento para tumores diminuindo os efeitos adversos causados pelos tratamentos convencionais.

2. JUSTIFICATIVA

O câncer é um grupo de doenças que tiveram sua incidência aumentada nos últimos anos e que ocasionam anualmente número de óbitos espressivos em todo mundo. Deste grupo, o câncer de mama é o mais frequente em mulheres de países em desenvolvimento e os tratamentos convencionais muitas vezes são agressivos para o organismo, causando efeitos colaterais adversos. Por isso têm-se aumentando os estudos e a busca por alternativas para o tratamento desta doença.

Moléculas extraídas de plantas e animais tem se revelado alternativas para o tratamento de doenças. Dentre as moléculas encontradas em animais com potencial atividade antitumoral a melitina, que é um peptídeo isolado da peçonha de abelha *Apis mellifera*, é altamente citotóxica. Esse peptídeo atua inibindo a proliferação tumoral por diversas vias, porém devido a um de seus mecanismos de ação envolver atividade desestabilizadora inespecífica sobre membranas biológicas, pode ser potencialmente tóxico também sobre células sadias.

O desenvolvimento de formulações nas quais a melitina seja associada e direcionada até os tumores é possível por meio de abordagens nanobiotecnológicas, nas quais se pode desenvolver nanopartículas biocompatíveis e biodegradáveis que protejam as células sadias da atividade citolítica da melitina, assim como proteja esse peptídeo de ser eliminado do organismo precocemente.

As nanopartículas produzidas utilizando quitosana, além de possuir biocompatibilidade e biodegradabilidade é, também, de baixo custo e pode ser considerada sustentável por ser obtida a partir do aproveitamento da carapaça de crustáceos, que é um subproduto da cadeia produtiva animal. Ainda, o desenvolvimento

de nanopartículas de quitosana contendo melitina é inovador, uma vez que não foi descrito na literatura.

Essas nanopartículas podem, ainda, ser acopladas a uma molécula direcionadora como peptídeos, que são pequenos e de simples produção e manipulação. Estes peptídeos podem atuar como antagonista de receptores superexpressos ou expressos exclusivamente em tumores e, desta forma, as nanopartículas são levadas à células alvo.

Assim, visando a uma nova estratégia terapêutica, os efeitos do tratamento em tumores de mama utilizando a melitina, assim como a melitina associada em nanopartículas, podem ser investigados sobre a linhagem tumoral 4T1 *in vitro* e *in vivo*, uma vez que o tumor desenvolvido por 4T1 possui características semelhantes ao carcinoma humano.

3. OBJETIVOS

3.1 OBJETIVO GERAL

Desenvolver um sistema particulado à base de quitosana acoplado a um peptídeo direcionador visando à liberação sustentada *in vitro* e *in vivo* do peptídeo citolítico melitina a células tumorais de mama.

3.2 OBJETIVOS ESPECÍFICOS

- Obtenção dos peptídeos:
 - Extrair a peçonha de abelhas Apis mellifera;

 Sintetizar quimicamente dois peptídeos direcionadores com especificidade para células tumorais de mama;

 Purificar, averiguar pureza e quantificar a melitina isolada da peçonha e os peptídeos direcionadores sintetizados;

- Desenvolvimento de nanopartículas:
 - Aprisionar a melitina em sistemas particulados à base de quitosana;

- Testar concentrações variadas dos componentes formadores dos sistemas particulados;

 Avaliar a eficiência de encapsulamento, diâmetro hidrodinâmico, índice de polidispesividade, estabilidade e carga de superfície dos sistemas particulados desenvolvidos;

• Teste *in vitro*:

- Testar a atividade *in vitro* dos sistemas particulados e dos peptídeos livres sobre a viabilidade celular de duas linhagens tumorais de mama e uma não tumoral;

• Teste *in vivo*:

- Desenvolver tumor em camundongos Balb/c fêmeas com implante da linhagem tumoral 4T1;

- Testar a atividade *in vivo* do sistema particulado e da melitina livre por meio de aplicação intratumoral;

 Acompanhar o desenvolvimento e o tratamento do tumor por meio de análises clínicas e microtomografia;

 Analisar as possíveis alterações morfológicas por avaliações histopatológicas dos órgãos;

- Analisar as possíveis alterações de bioquímicas em avaliações do sangue;

- Analisar os possíveis efeitos dos tratamentos nos tumores por meio de avaliação proteômica utilizando cromatografia líquida acoplada à espectrometria de massa.

4. METODOLOGIA

O presente estudo foi realizado em diversas etapas (Figura 3). Este teve início com a extração da peçonha de abelhas *Apis mellifera* para obtenção do peptídeo melitina e com a síntese química dos peptídeos direcionadores. Os peptídeos foram purificados por cromatografia líquida de alta eficiência em fase reversa, tiveram pureza e identidades (sequências) confirmadas por espectrometria de massa e foram quantificados por meio de espectrofotometria.

Em seguida, a melitina foi associada em nanopartículas de QS com variadas concentrações de TPP e PEG. Todas as nanopartículas foram caracterizadas por espalhamento de luz dinâmico (DLS), potencial Zeta de superfície e eficiência de encapsulamento por meio de cromatografia (UFLC) e, ainda, foram avaliadas em testes de viabilidade celular por MTT *in vitro*, sobre células de câncer de mama e células normais. Assim, foram escolhidas nanopartículas produzidas com 2 mg/mL de TPP e PEG 2000 Da (13,3 mg/mL) para os testes seguintes. Estas nanopartículas escolhidas foram, também, caracterizadas quanto à morfologia e organização química por meio de microscopia de força atômica (MFA) e espectroscopia Raman, respectivamente.

Concomitantemente à extração e purificação da melitina em uma das etapas, ocorreu a hidrólise parcial da peçonha da abelha, o que possibilitou o aparecimento de um novo peptídeo (fragmento da região C-terminal da melitina) que era mais abundante que a própria melitina na peçonha. Este peptídeo, assim como a peçonha parcialmente hidrolisada também foram encapsulados e testados *in vitro* para fins de comparação.

Em seguida teve início as etapas *in vivo*, na qual primeiramente foi realizado um teste piloto. Nesse teste foram implantadas células de câncer de mama (4T1) ortotopicamente ou ectopicamente em camundongos Balb/c fêmeas. O desenvolvimento
tumoral foi acompanhado por avaliações clínicas e microtomografia (microCT) e, após, a eutanásia dos animais, os tumores e órgãos (fígado, baço, pulmão e rins) foram dissecados para análises histológicas.

Na segunda etapa dos testes *in vivo* todos os animais receberam implante tumoral ortotópico e tratamentos. Essa etapa foi realizada conforme a primeira, porém na eutanásia além dos órgãos e tumores, também, foi coletado sangue para análises.

Por fim, foram realizadas as análises histopatológicas dos diferentes órgãos e tumores e proteômicas (MSE) dos tumores dos animais submetidos aos diferentes tratamentos.

Figura 3. Representação esquemática do desenho experimental seguido no presente estudo, na qual as setas indicam as etapas subsequentes.

4.1 Extração de melitina

Foram coletadas cerca de 300 abelhas *Apis mellifera* a partir de uma colmeia de apicultura familiar no Sítio Mato de Dentro no Município de Mimoso- GO, as quais foram imediatamente congeladas. Para extrair a peçonha, as abelhas foram retiradas do congelador e mantidas em gelo durante a retirada das glândulas que foram transferidas para uma solução de acetonitrila (ACN) e água 1:1 (v:v; aproximadamente 300 µL por glândula) também mantida em gelo. As glândulas foram pressionadas levemente contra a parede de tubos tipo Falcon e, em seguida, foram retiradas da solução e adicionada outra solução para repetir o procedimento durante uma etapa de re-extração. Por fim, as soluções foram reunidas e liofilizadas para posterior separação cromatográfica dos componentes moleculares.

4.2 Síntese do peptídeo direcionador

Foram sisntetizados dois peptídeos para atuarem como possíveis direcionadores das nanopartículas a células tumorais de mama. O primeiro peptídeo direcionador sintetizado (Pepdirecionador-1) é um fragmento da região N-terminal de uma quimiocina viral (resíduos 1-21 de vMIP-II), a qual é descrita na literatura como antagonista de receptores CXCR4, que são superexpressos em tumores de mama (ZHOU *et al.* 2000). O Pepdirecionador-1 possui massa molecular de $[M+H]^+ = 2425.3$ e sequência de resíduos de aminoácidos LGASWHRPDKCCLGYQKRPLP. Este foi sintetizado manualmente em suporte sólido pela estratégia Fmoc (9fluorenilmetiloxicarbonila)/t-butila (CHAN & WHITE, 2000). Foi utilizada a resina HPro-2 CITrt com grau de substituição de 0,66 mmol/g como suporte para síntese deste peptídeo.

A desproteção do grupo Fmoc utilizando uma solução de piperidina a 25% (em volume) em *N*,*N*-dimetilformamida (DMF) iniciou a síntese. O grupo Fmoc protege o grupamento funcional amina da resina e ele é lábil à base (CHAN & WHITE, 2000). A resina foi tratada com a solução duas vezes sob agitação por 15 minutos cada e, em seguida, lavada com DMF e isopropanol (2-propanol) alternadamente três vezes.

Dando continuidade à síntese, o segundo derivado de Fmoc-aminoácido foi acoplado sendo adicionado de acordo com sua massa molecular, em um excesso molar de seis vezes. Foram adicionados 227,55 mg (0,6 mmol) de hexafluorofosfato de 2-(1-H-benzotriazol-1-il)-1, 1, 3, 3-tetrametilurônio (TBTU), 2,0 mL de DMF e 190 μ L (1,2 mmol) de DIPEA e, por fim, deixado sob agitação pendular durante 90 min.

Repetiram-se as etapas de desproteção do grupamento Fmoc e acoplamento dos derivados de aminoácido (Fmoc-AA-OH) sucessivamente até a desproteção do último resíduo de aminoácido. Após cada uma destas etapas a resina foi lavada com DMF e 2-propanol alternadamente por três vezes.

A confirmação do sucesso de cada uma das etapas foi realizada com o teste de Kaiser (ninhidrina), o qual detecta a presença de aminas livres na cadeia polipeptídica. Neste teste foi obtido um resultado de coloração azul após a etapa de desproteção, quando o grupo protetor Fmoc tinha sido removido, e de coloração amarelada após a etapa de acoplamento, quando havia a ligação peptídica entre o derivado de aminoácido adicionado e o grupamento N-terminal da cadeia em formação (KAISER, *et al.* 1970).

Concluída a síntese, foi realizada a desproteção das cadeias laterais reativas e a clivagem da ligação peptidil-resina, que foi conduzida adicionando-se ácido trifluoroacético (TFA): metilsulfanilbenzeno:água:1,2-etanoditiol:triisopropilsilano (89,0:5,0:2,5:2,5:1,0; v:v:v:v) e fenol cristalino (50-100 mg, massa não determinada

exatamente). O processo de clivagem durou 90 minutos, e em seguida, borbulhou-se nitrogênio dentro do tubo de reação para remover o TFA.

Finalmente, o peptídeo foi lavado com éter diisopropílico gelado em nitrogênio líquido, o qual precipita e retira o excesso de produtos de reação dos grupamentos protetores com os de sequestradores de carbocátions. O peptídeo sintetizado foi extraído sucessivamente com água e com água e solução aquosa de ACN 1:1 (v:v) e recolhido sob filtração através de um funil com placa porosa. As amostras obtidas foram imediatamente congeladas em nitrogênio líquido e liofilizadas para a obtenção do peptídeo bruto.

Como o Pepdirecionador1 foi de difícil e onerosa síntese e purificação, um outro peptídeo foi posteriormente sintetizado para ser utilizado como possível direcionador das nanopartículas. Assim, o segundo peptídeo sintetizado foi denominado Pepdirecionador2, o qual possui sequência de resíduos de aminoácidos RGD-NH₂ e massa molecular de $[M+H]^+ = 346,1$. Esse peptídeo já vem sido descrito na literatura como potencial direcionador por atuar como antagonista de algumas integrinas ($\alpha_v\beta_3$ e $\alpha_v\beta_5$) superexpressas em tumores (LI & CHO, 2012). O pepdirecionador2 foi sintetizado seguindo as mesmas etapas descritas acima na síntese do Pepdirecionador1, porém foi utilizada a resina Rink amide, MBHA.

4.3 Purificação dos peptídeos

A peçonha extraída das abelhas foi ressuspendida em água tipo I (Milli-Q) e purificada por meio de cromatografia líquida de alta eficiência em fase reversa (RP-HPLC, Shimadzu) utilizando uma coluna semipreparativa LC551109 (NST, C_{18} , 10 × 250 mm, 300 Å, São Paulo, Brasil). A coluna foi inicialmente lavada com solução de TFA 0,1% em ACN (solvente B) e posteriormente equilibrada com solução aquosa de TFA 0,1% em água (solvente A). Em seguida, foram aplicados 500 μ L da amostra ressuspendida no HPLC (1 mg/mL). Já para a purificação do Pepdirecionador1 bruto resultante da síntese foi utilizada uma coluna semipreparativa 218TP510 (Vydac, C₁₈, 10 × 250 mm, 300 Å, Hesperia, EUA). A fração contendo este peptídeo teve que ser recromatografada em coluna analítica 218TP54 (Vydac, C₁₈, 4 × 250 mm, 300 Å, Hesperia, EUA), sob condições semelhantes, para obtenção de grau de pureza satisfatório. O Pepdirecionador2 foi purificado diretamente na coluna analítica descrita.

As purificações foram realizadas utilizando gradiente linear, variando a concentração do solvente B de 5 a 95% durante 60 min, após cinco minutos de condição isocrática com 5% (em volume) de solvente B. O fluxo durante a eluição foi de 2,5 mL/min e 1,0 mL/min em coluna semipreparativa e analítica, respectivamente. Foi realizado o monitoramento a 216 nm e 280 nm à temperatura ambiente. As frações foram coletadas manualmente em tubos ou microtubos de polipropileno e liofilizadas.

4.4 Confirmação da identidade molecular

As frações obtidas foram ressuspendidas em água ultrapura e misturadas a uma matriz de ácido α -ciano-4-hidroxicinâmico (5 mg), que foi dissolvida em ACN (250 μ L), água (200 μ L) e solução aquosa de TFA a 3% (50 μ L), na proporção de 1:3 (v:v). Em seguida, foram aplicadas em uma placa do tipo MTP maciça (384 poços) e deixadas secar a temperatura ambiente.

A identidade e pureza dos componentes moleculares presentes nas frações obtidas nas separações cromatográficas foram confirmadas utilizando um espectrômetro de massa MALDI-TOF/TOF UltraFlex III (Bruker, Daltonics, Alemanha), equipado com laser *SmartBeam*, controlado pelo software FlexControl 3.0 e com análise de dados utilizando o software FlexAnalysis 3.3 (Bruker Daltonics).

As massas moleculares foram determinadas por MS em modo de operação refletido – positivo e as sequências peptídicas confirmadas por meio de interpretação de espectros MS/MS em modo de operação LIFTTM. Houve calibração externa com mistura de peptídeos de acordo com a especificação do fabricante (*Peptide Calibration Standard I*, Bruker Daltonics, Alemanha). Os espectros de massa foram adquiridos com 200-1000 disparos de laser a uma frequência de 100 Hz e detecção de massa na faixa de m/z 1000 a 4000.

4.5 Quantificação dos peptídeos

A quantificação, para determinar a concentração da melitina e do primeiro peptídeo direcionador sintetizado, foi realizada pela absorbância de luz do resíduo de triptofano seguindo a lei de Lambert-Beer:

A = a.b.c

onde "A" é a absorbância a 280 nm; "a" é o coeficiente de extinção molar, obtido na literatura (Expasy) (5550 L/mol[/]cm); "b" é o caminho óptico (1 cm); e "c" é a concentração desejada (mol/L).

Já para quantificar a concentração dos peptídeos direcionadores, os quais não apresentam resíduo de triptofano na estrutura primária, seguiu-se o método descrito por MURPHY E KIES (1960). Neste método, a absorbância da solução diluída foi medida nos comprimentos de 205, 215 e 225 nm, sendo a concentração final determinada pela equação abaixo, na qual (*d*) representa o fator de diluição:

 $X = (A_{215} - A_{225}) \times 144$ $Y = (A_{205}) \times 31$ $[\mu g/mL] = d \times (X + Y) / 2$

4.6 Produção das partículas

Partículas poliméricas foram produzidas utilizando a técnica de geleificação iônica (CALVO *et al.* 1997). Foi preparada uma solução de ácido acético a 0,1 mol/L (570 µL de ácido acético para 100 mL de água Milli-Q), chamada de solução 1. Para preparação da solução 2 foram dissolvidos 40 mg de quitosana (QS) de média massa molecular (Chitosan from shrimp shells, \geq 75% deacetylated-Sigma Aldrich) em 10 mL da solução 1, durante 90 minutos sob agitação magnética, sendo esta filtrada após este período (filtro-Millex GV, poro 0,22 µm). Na preparação da solução 3 foram utilizadas concentrações variadas de sal de pentassódio de [óxido(fosfonatooxi)fosforil] fosfato (TPP, Sigma-Aldrich) dissolvidos em 10 mL de água Milli-Q. Partículas que continham 1; 1,5; 2 ou 4 mg/mL de TPP foram denominadas TPP1-1, TPP1,5-1, TPP2-1 e TPP4-1, respectivamente. Polietilenoglicol éter monometílico (PEG) 2000 ou 5000 Da (Sigma-Aldrich) foi adicionado a todas as formulações em diferentes quantidades (3,3; 6,7 ou 13,3 mg/mL).

Para a formulação das partículas, foi transferido para um béquer um volume de 1 mL da solução 2 filtrada; melitina para uma concentração final de 30 µg/mL; 0,5 mL da solução 3 adicionada com pipetador automático de forma lenta e constante sob agitação magnética; 3 µg/mL do peptídeo direcionador; e PEG. As soluções foram adicionadas na respectiva ordem, com intervalo de um minuto entre cada uma e permaneceram em agitação constante por mais 5 minutos após a adição do PEG. As partículas foram denominadas Vazia (ausência de melitina e peptídeo direcionador), QSPep (ausência de melitina), QSMel (ausência do peptídeo direcionador), ou completa (todos os componentes presentes) (Tabela 2). Outras partículas foram produzidas contendo QS, TPP, PEG e como agente ativo foi utilizada a peçonha da abelha parcialmente hidrolisada ou o peptídeo mais abundante presente nesta, o qual é um fragmento da

região C-terminal da melitina (TTGLPALISWIKRKRQQ). Estas partículas foram denominados QSApis e QSDegra, respectivamente. Todas as partículas produzidas foram ultrafiltradas em Amicon Ultra-0.5 mL (10 kDa, Millipore) utilizando centrifuga com rotação 4000 g por 10 minutos e em temperatura ambiente, para retirar os componentes não estruturados (livres).

Posteriormente, as partículas produzidas com variadas concentrações de TPP foram homogeneizadas por ultraturrax em três velocidades (V3= 14.600, V4=16.900 e V5=19.200 rpm) para fins de modulação de diâmetro das estruturas e antes da realização das caracterizações e testes de atividade.

Tabela 2. Reagentes utilizados no desenvolvimento das partículas e suas concentrações.

Partículas	Solução QS (4 mg/mL)	Solução TPP (variada)	PEG (variado)	Melitina (0,03mg/mL)	Peptídeo direcionador (0,003 mg/mL)
Vazia	Х	Х	Х		
QSPep	Х	Х	Х		Х
QSMel	Х	Х	Х	Х	
Completa	Х	Х	Х	Х	Х

QS = Quitosana; TPP = tripolifosfato de sódio; PEG = poli (etileno glicol); Reagente presente = X

4.7 Eficiência de encapsulamento (EE)

Para verificar o aprisionamento da melitina e do peptídeo direcionador nas partículas foi utilizada cromatografia líquida ultra rápida em fase reversa (RP-UFLC, Shimadzu), na qual foi aplicado o filtrado da solução de partículas, após esta ser centrifugada em ultrafiltro tipo amicon, como descrito no item 4.6. As concentrações destes peptídeos livres foram determinadas com base nos cálculos de integração da área da fração obtida utilizando o programa Origin 8.0, por meio de uma curva padrão de concentrações conhecidas. O cálculo da eficiência de encapsulamento (EE) foi:

 $EE = (total do peptídeo - peptídeo livre) \times 100$

4.8 Caracterização das partículas

Foi determinado o diâmetro hidrodinâmico e o índice de polidispersividade (PdI) das partículas por espalhamento de luz dinâmico (DLS) e, também, foram determinadas as cargas de superfície das partículas por meio de potencial Zeta de superfície. A carga foi obtida por medidas de potencial Zeta considerando a estabilidade dos colóides de acordo com ASTM (1985) (Tabela 3). Foi utilizada uma cubeta de poliestireno descartável no equipamento Zetasizer Nano ZS (Malvern, Reino Unido) nos modos de análise geral e modo automático. O espalhamento de luz foi detectado em um ângulo de 173°, a 25°C, com água como dispersante.

 Tabela 3: Potencial Zeta de partículas em água e estabilidade coloidal considerada (ASTM, 1985).

Potencial Zeta (mV)	Estabilidade do colóide
0 a ± 5	Rápida coagulação
$\pm 10 a \pm 30$	Instável
\pm 30 a \pm 40	Moderada
$\pm 40 a \pm 60$	Boa
Mais de ± 61	Excelente

A morfologia das partículas selecionadas para a realização dos estudos foi analisada por microscopia de força atômica (MFA) em equipamento SPM-9600 (Shimadzu, Japão). Estas foram depositadas sobre lâmina recém clivada de mica muscovita, a qual foi montada em um suporte metálico por meio de fita dupla-face após ser acrescentado 1 μ L das soluções de partículas diluídas 100× e deixado secar em temperatura ambiente. Foram obtidas imagens com resolução de 512 × 512 linhas por modo de operação dinâmico e aquisição em topografía e fase utilizando escâner de dimensão máxima de 125 μ m × 125 μ m de varredura, em áreas de varredura de 50 μ m × 50 μ m e 25 μ m × 25 μ m. Foi utilizada ponteira de silício cônica acoplada a cantilever de formato retangular com constante de mola de aproximadamente 42 N/m e operando a uma frequência de ressonância de aproximadamente 250 kHz. As imagens contendo as partículas foram processadas com correção de plano pelo software SPM-9600 off-line que acompanha o microscópio.

Já as informações químicas das partículas, buscando verificar a distribuição dos componentes na estrutura das mesmas, foram obtidas por microscópio confocal Raman Alpha 300 RA (WITec, Alemanha) acoplado com laser 785 nm (X TRA II laser diodo T-Optica Photonics) e potência 400 mW. Os espectros foram adquiridos com 50 acumulações de 0,6 segundos utilizando o programa computacional Control Four e os dados foram analisados utilizando o programa computacional Project Four.

4.9 Tratamentos in vitro

4.9.1 Linhagens de células

Foram utilizadas as linhagens tumorais de mama 4T1 e MCF-7 murina e humana, respectivamente, ambas de origem epitelial. Como controle foi utilizada a linhagem não tumoral murina de fibroblasto (NIH3T3), de origem conjuntiva. Todas as linhagens foram mantidas no Laboratório de Morfologia e Morfogênese, Instituto de Biologia, Universidade de Brasília.

As células foram descongeladas e transferidas para frascos contendo 3 mL de meio de cultura (DMEM completo, tamponado com bicarbonato de sódio, acrescido de 10% de soro fetal bovino e 1% do antibiótico ampicilina - estreptomicina) em tubos tipo Falcon de 15 mL. Os tubos foram centrifugados a 750 g por três minutos, o sobrenadante foi descartado e o precipitado ressuspendido em 1 mL de meio de cultura. Este foi transferido para um frasco pequeno de cultura de células, que continha 5 mL de meio, e incubados em estufa a 37°C e 5% de CO₂ durante 24 horas.

Após 24 horas do descongelamento, o meio de cultura do frasco contendo as células foi descartado e mais 5 mL de meio foram adicionados ao frasco para fornecer nutrientes e permitir o crescimento das células. As células foram observadas em microscópio de luz invertido antes de cada troca de meio de cultura e após o tratamento, visando a observar os aspectos morfológicos, crescimento celular e a possível presença de contaminantes.

Para evitar confluência alta (densidade de células elevada) nos frascos, a cada 72 horas o meio de cultura era descartado e 3 mL da solução de tripsina-EDTA (Tripsina, 0,25% (1×) com EDTA tetrassódico) era adicionada ao frasco para remover a camada de células, que estavam aderidas ao fundo da placa. O frasco foi levado para estufa a 37° C e 5% de CO₂ por 3 minutos, e em seguida, leves batidas foram dadas no frasco para desprender as células, que foram analisadas ao microscópio de luz invertido para confirmar a remoção. Para neutralizar a ação da tripsina sobre as células foram adicionados 3 mL de meio de cultura, uma vez que esta se liga à albumina presente no meio. O conteúdo do frasco foi transferido para um tubo plástico de 15 mL e centrifugado a 750 g por 3 minutos. O sobrenadante foi descartado e o precipitado ressuspendido em 1 mL de meio de cultura, do qual 200 µL foram transferidos para o frasco, que continha 5 mL de meio de cultura novo. O frasco contendo as células foi incubado em estufa a 37° C e 5% de CO₂.

O restante da suspensão de células foi utilizado para o congelamento e armazenamento. Assim, as células foram centrifugadas a 750 g por 3 minutos, o sobrenadante foi descartado e o precipitado foi ressuspendido em meio de congelamento (DMEM, soro fetal, antibiótico, de dimetilsulfóxido - DMSO, 78:20:1:1, v:v:v:v). A suspensão celular foi transferida para criotubos, os quais foram mantidos a -80°C por 24 horas e, em seguida, estocados imersos em nitrogênio líquido.

4.9.2 Tratamento das células

As células foram retiradas da estufa, tripsinizadas e ressuspendidas em 1 mL de meio de cultura. Um volume de 10 μ L desta suspensão foi misturado a 50-60 μ L, da solução de azul de tripan (0,4%, p/v, em PBS: 50 mmol/L fosfato de potássio; 150 mmol/L NaCl; pH 7,2) para determinar o número de células. Foram depositados 10 μ L desta mistura em uma câmara de Neubauer, onde as células presentes nos quatro quadrantes maiores laterais foram contadas utilizando microscópio de luz invertido. O número de células foi determinado pela fórmula:

Número de células/mL = Número de células contadas \times fator de diluição $\times 10^4$ Número de quadrantes contados

A quantidade de células obtidas no cálculo foi dividida pelo número de células padronizado para todas as linhagens (8×10^3). Desta forma obteve-se a quantidade de células em volume, as quais eram acrescidas de meio de cultura. Da mistura do meio de cultura contendo células, foram transferidos 200 µL para cada poço da placa de 96 poços, que foi incubada em estufa a 37°C e 5% de CO₂.

Após 24 horas de plaqueamento, as células foram observadas no microscópio de luz invertido para verificar a morfologia e a distribuição das mesmas na placa. Em seguida, o meio de cultura foi substituído por outro meio de cultura contendo o tratamento. Soluções dos tipos de partículas descritas no item 4.6 e concentrações seriadas da melitina e do peptídeo direcionador (0, 4, 8, 16, 32, 64 μ g/mL) dissolvidas no meio de cultura foram adicionadas às células. O controle foi composto por meio de cultura e água Milli-Q no mesmo volume da maior concentração dos tratamentos. A placa foi incubada em estufa a 37°C e 5% de CO₂ por 24 horas.

4.9.3 Efeito citotóxico in vitro avaliado pelo método MTT

Para verificar a atividade das partículas, da melitina e do peptídeo direcionador sobre as linhagens celulares foi utilizado o método colorimétrico MTT (MOSMANN, 1983). Neste teste, as enzimas mitocondriais, como a succinato desidrogenase, catalisam a redução do substrato MTT (brometo de [3(4,5-dimetiltiazol-2-il)-2,5difeniltetrazolium) por meio do FADH₂ produzindo formazan, que é um produto de coloração azulada. Desta forma a viabilidade celular está diretamente relacionada à quantificação da produção de formazan pelas células.

Assim, após 24 horas do tratamento, o meio de cultura foi retirado dos poços e adicionados 150 μ L de solução de MTT a cada poço (15 μ L de MTT a uma concentração de 5 mg/mL diluído em 135 μ L de meio DMEM completo). Em seguida, a placa permaneceu incubada em estufa durante 3 horas e, após este tempo, a solução de MTT foi substituída por DMSO. Apenas 100 μ L de DMSO foram colocados em cada poço das placas e levemente resuspendido, visando à solubilização do formazan formado.

A quantificação do formazan foi realizada por meio de leitura em espectrofotômetro conjugado a uma leitora de microplacas (BioRad 3550-UV), no qual mediu-se a absorbância da solução presente nos poços no comprimento de onda de 595 nm.

Finalmente, foi obtida a média das triplicatas experimentais para determinar a viabilidade celular em porcentagem. Para isso foi utilizada a seguinte equação, na qual A é absorbância, B é o branco e C é o controle:

Viabilidade celular $\% = (\underline{A} - \underline{B}) \times 100$

4.10 Teste in vivo

4.10.1 Manutenção dos camundongos e indução do tumor

Camundongos Balb/c fêmeas adultas (n= 40) foram comprados do Centro Multidisciplinar para Investigação Biológica (CEMIB) da Unicamp, Campinas-SP. Os animais foram mantidos em biotério com controle de temperatura e ciclo claro/escuro 12/12 horas e receberam água e ração *ad libitum* de acordo com as recomendações do Comitê de Ética. Os experimentos com os animais foram aprovados pelo Comitê de Ética no Uso Animal do Instituto de Ciências Biológicas da Universidade de Brasília, UnBDOC nº. 131758/2012 (Anexo).

Para o transplante tumoral foram utilizadas células da linhagem 4T1, a qual é originária de tumor de mama em camundongos Balb/c fêmeas. As células foram descongeladas 12 dias antes do início do experimento, o qual corresponde ao dia do transplante, e foram mantidas conforme descrito no item 4.9.1 No primeiro dia do experimento, os animais foram anestesiados com solução contendo 20 μ L de ketamina (15 mg/kg), 12 μ L de xilasina (5 mg/kg) e 68 μ L de água, por via intraperitoneal. Em seguida, foram injetadas 50 μ L da suspensão de células, 1 × 10⁵ em DMEM sem SFB, com auxílio de seringa BD ultra fine 0,5 mL, com agulha de 8 mm. Ao longo do experimento, o comportamento dos animais e o desenvolvimento do tumor foram monitorados.

4.10.2 Experimento piloto

Foram utilizados 10 camundongos com 8 semanas de idade para a realização do teste piloto. Estes camundongos foram divididos em dois grupos de 5 animais para análise da possível diferença no desenvolvimento do tumor com implantação de 1×10^5

células 4T1 por via ortotópica, diretamente na penúltima glândula mamária esquerda dos camundongos (4ª mama-inguinal), e ectópica, no flanco direito.

Os camundongos foram monitorados quanto ao comportamento e desenvolvimento do tumor durante 20 dias, quando foram anestesiados e, em seguida, sacrificados por deslocamento cervical. Estes tiveram o tumor, o fígado, os pulmões, os rins e o baço dissecados por meio de instrumentos cirúrgicos, colocados em paraformaldeído 4% por 2 horas e, imediatamente, transferidos para álcool 70% para análises histopatológicas.

4.10.3 Análise da atividade antitumoral dos tratamentos

Após o experimento piloto com os 10 animais, os outros 30 camundongos restantes, que estavam com 15 semanas de idade, receberam o implante de 1×10^5 células 4T1 ortópicamente. Porém estes receberam implante diretamente na terceira glândula mamária esquerda dos camundongos (3ª mama-toráxica), a qual fica localizada acima da 4ª mama, sendo que ambas possuem histologia e morfologia semelhantes. A escolha da 3ª mama como local do implante de células, para continuação do estudo e análise dos tratamentos, ocorreu durante o experimento piloto, no qual as análises do desenvolvimento tumoral foram prejudicadas devido a localização da perna do animal ser na mesma direção da 4ª mama.

Como foi autorizado pelo comitê de ética apenas esse número de animais, então foi utilizado os dados de animais sadios, os quais foram adiquiridos anteriormente no mesmo local e mantido em condições semelhantes aos desse estudo. Os animais sadios foram monitorados e analisados pelo colaborador, o qual auxiliou nessa etapa do estudo, e os dados foram utilizados para comparação com os animais tratados nesse. Assim os 30 animais foram separados em grupos para análise da atividade antitumoral da melitina e das partículas produzidas. Assim, todos os animais receberam o transplante tumoral e foram separados em 5 grupos de 6 animais de acordo com os tratamentos recebidos, sendo eles o grupo Controle (Cont), Melitina (Mel), QSPep, QSMel e Completa. Os animais foram anestesiados e receberam 50 µL da solução contendo 2 mg/kg de melitina livre ou associada, enquanto os controles receberam o mesmo volume de água Milli-Q. O tratamento teve início quando os animais apresentaram tumor palpável e foi realizado, por administração intratumoral, a cada dois dias totalizando quatro doses. Durante 24 dias os animais foram monitorados e, em seguida, sacrificados para análises, conforme descrito no item 4.10.2. Porém, parte do figado, do baço, um rim, um pulmão e um fragmento de tumor foram imediatamente congelados no freezer -80°C para análise proteômica e, ainda, o sangue foi coletado para análises bioquímicas e hematológicas descritas adiante.

4.10.4 Monitoramento do desenvolvimento do tumor

O desenvolvimento dos tumores nos animais, tanto do teste piloto quanto do experimento, foi acompanhado e monitorado por meio de medição do volume tumoral, seguindo a fórmula V = (comprimento × (largura)²)/2, utilizando paquímetro milimetrado digital (CARNEIRO, 2011). Este acompanhamento só foi possível após surgimento de tumor clínico palpável, assim as medições tiveram inicio após uma semana do transplante para o teste piloto e nos dias de tratamento para o experimento. O acompanhamento do tumor também foi realizado por meio de microtomografia computadorizada (Micro-CT – Skyscan 1076, Bélgica) a 50 kV no teste piloto e posteriormente a 70 kV no experimento com os tratamentos, 100 μ A, filtro Al 0,5 mm, 12,56 pixel e, em seguida a reconstrução das imagens foi realizada utilizando o software

Nrecon (Skyscan, Bélgica) e a visualização utilizando o software DataViewer. Estas análises ocorreram após os animais terem sido anestesiados e realizadas as medições dos tumores com o paquímetro. Os tumores foram acompanhados tridimensionalmente no dia do transplante tumoral, após uma semana do transplante e no dia do sacrifício.

4.10.5 Análises clínicas

Para verificar as possíveis alterações comportamentais e clínicas, os animais tanto do teste piloto quanto do experimento, tiveram a taxa de sobrevida, o peso corporal e alterações no comportamento usual monitorados ao longo do experimento. Os animais foram observados diariamente e registrados os dias em que houve mortes para construção de uma curva da taxa de sobrevida.

Os animais foram pesados em balança analítica (Mettler PJ 3600 Delta Range[®]) no dia do implante tumoral, no dia do surgimento do tumor palpável e duas vezes por semana até o vigésimo dia, o qual corresponde ao último dia do teste piloto. Já no experimento dos possíveis efeitos dos nanossistemas e controles, o peso dos animais foi monitorado no dia implante, no dia do surgimento do tumor e uma vez por semana até o vigésimo terceiro dia, o qual corresponde ao último dia.

4.10.6 Análises toxicológicas

Os órgãos e tumor retirados dos animais, tanto do teste piloto quanto do experimento, conforme descrito no item 4.10.2, foram desidratados com passagens em etanol 80%, 90% e 100% por uma hora cada. Em seguida, esses foram diafanizados em solução de etanol 100% e xileno (1:1,v:v) e três banhos em xileno por 40 minutos cada. Após estes passos, os órgãos seguiram para dois passos de impregnação com parafina purificada (Proquímica) a 56°C em estufa por uma hora cada passo. Por fim, os órgãos

foram posicionados em formas metálicas $(3 \times 3 \text{ cm})$ e despejado sobre eles parafina líquida para formação de blocos após solidificação a temperatura ambiente.

Os blocos foram desenformados e levados para ser seccionamento em micrótomo (Leica RM2125RT, Alemanha). Foram obtidas secções com 5 µm de espessura, as quais foram distendidas em etanol 30% e em banho-maria (37°C) e, em seguida, foram coletadas com lâminas de vidro, que foram mantidas em estufa (37°C) por 24 horas.

As lâminas contendo os cortes foram retiradas da estufa e submetidas à coloração com hematoxilina e eosina (H&E) por 1 e 2 minutos, respectivamente, a temperatura ambiente. Após esse procedimento, foi passado verniz vitral (Acrilex) na parte superior da lâmina e, em seguida, colocado lamínula retangular sobre a lâmina. As lâminas montadas foram deixadas em estufa para secar por mais 24 horas para serem analisadas.

As análises das secções histológicas foram realizadas em microscópio de luz Axiophot (Zeiss, Alemanha). Os cortes de tecidos foram fotomicrografados com auxílio de uma câmera fotográfica, MC 80 DX (Zeiss, Alemanha), acoplada ao microscópio. Foi utilizado as objetivas de 10, 20 e 40.

4.10.7 Análises hematológicas e bioquímicas

No último dia do experimento, logo após os animais serem anestesiados e antes de serem sacrificados, foram coletados 1000 µL de sangue de cada animal por punção cardíaca. A metade do volume sangue foi colocada em um minitubo que continha anticoagulante EDTA (ácido etilenodiaminotetracético bipotássico, 10%). O sangue foi homogeneizado por inversão do minitubo e armazenado a 4°C para análise hematológica. A outra metade do volume de sangue foi colocada em um minitubo que

continha um gel separador de soro sanguíneo. Este foi centrifugado, em centrifuga Mikro 220 R (Hettich Zentrifugen, Reino unido) a 4ºC com velocidade de rotação de 2432 g por 10 minutos e armazenado a 4ºC para análises bioquímicas.

Foram realizadas análises de sangue dos animais pelo Laboratório Sabin de Análises Clínicas. Neste laboratório os aparelhos foram calibrados para dosagens em animais de pequeno porte (camundongos) e, assim, foi obtido hemograma completo, dosagens de creatinina pelo método Colorimétrico (Jaffe) e alanina aminotransferase (ALT) pelo método Cinético otimizado para UV.

4.10.8 Análises proteômicas dos tumores

Os tumores de um animal de cada grupo - tratamento (controle, melitina e nanopartícula completa) foram retirados do freezer -80°C e transferidos para um microtubo cada, no qual adicionou-se 60 μ L de bicarbonato de amônio 50 mM e 10 μ L de ACN, para melhorar a solubilização das amostras. Após 1 hora, os tubos foram centrifugados rapidamente em mini spin e 1 μ L do sobrenadante foi utilizado para quantificação de proteínas em espectrofotômetro NanoDrop 2000 (Thermo Scientific, EUA) para se obter uma concentração de 1 μ g/ μ L final da amostra.

Assim, 50 μ L de uma solução contendo 1 μ g/ μ L de proteínas na amostra foram transferidos para outro microtubo, no qual foram adicionados 10 μ L de bicarbonato de amônio 50 mM. Foram adicionados 25 μ L de RapiGest (Waters, EUA) (0,2% v/v), a amostra foi submetida a vórtex e incubada em banho seco a 80°C por 15 min. A amostra foi rapidamente centrifugada e foi adicionado a esta 2,5 μ L de ditiotreitol (DTT) 100 mM, para em seguida a solução ser submetida a vórtex e incubada a 60°C durante 30 min. Em seguida a solução contendo a amostra foi centrifugada e adicionados 2,5 μ L de iodoacetamida a 300 mM, submetida a vórtex e incubadas no escuro, à temperatura

ambiente, por 30 min. Posteriormente, 10 μ L de tripsina foram adicionados (preparada com 400 μ L de bicarbonato de amônio 50 mM e 20 μ g de tripsina) e a amostra foi rapidamente agitada em vórtex e levada para o banho seco a 37°C overnight.

No dia seguinte, o RapiGest foi hidrolizado com a adição de 10 μ L de uma solução de TFA a 5%, seguido por agitação em vórtex e incubação em banho seco a 37°C por 90 min. A amostra foi centrifugada a 16,87 g a 6°C por 30 min, e o sobrenadante foi transferido para um vial, no qual foram adicionados 5 μ L de 1 pmol/ μ L de álcool desidrogenase (ADH com 1 mL de ACN 3% e ácido fórmico 0,1%), 85 μ L de ACN 3% e solução de ácido fórmico a 0,1%. A concentração final de proteínas hidrolisadas foi de 250 ng/ μ L, e a de ADH foi de 25 fmol/ μ L. O volume final foi de 200 μ L.

A separação dos peptídeos hidrolisados pela tripsina foi realizada em um sistema nano ACQUITYTM (Waters Corp, EUA) utilizando coluna de fase reversa Symmetry C_{18} 5 µm, 5 mm × 300 µm acoplada a pré-coluna nano Ease TM BEH130 C_{18} 1,7 µm, 100 µm × 100 mm. A coluna foi equilibrada antes de cada amostra ser aplicada utilizando o solvente A (0,1% de ácido fórmico em água). As amostras foram inicialmente transferidas para a pré-coluna, utilizando uma solução de ácido fórmico a 0,1% com fluxo baixo (5 µL/min) por 2 minutos. O gradiente utilizado foi de 3-40% da fase móvel de solução B (0,1% de ácido fórmico em ACN) por 200 minutos com fluxo de 600 nL/min seguido por lavagem de 10 minutos com 85% de fase móvel B. A temperatura da coluna foi mantida a 35°C.

Os peptídeos presentes nas amostras seguiram para análise em espectrômetro de massa do tipo TOF SYNAPT G2 HDMS (Waters, Manchester, Reino Unido), utilizando modo de íon positivo (nanoESI +), em seguida, os dados foram processados e pesquisados utilizando o Software Protein Lynx global Server (PLGs) versão 2.5

(Waters, Manchester, Reino Unido). Os dados foram analisados qualitativamente, onde foram comparadas as proteínas expressas entre grupos assim como as exclusivas de cada grupo, sendo essas verificadas quanto à função e localização celular.

4.11 Análise estatística

A partir dos resultados obtidos foram utilizadas as médias e erros padrão da média para elaboração de gráficos no programa computacional Origin 8.0 (Microcal). Em seguida, os tratamentos foram comparados com os controles pelo teste de Schefeé, utilizando o programa computacional Statview. Os valores de P < 0,05 foram considerados significativos estatisticamente.

5. RESULTADOS

5.1 Obtenção dos peptídeos

Os peptídeos, melitina e os direcionadores, após serem isolados e sintetizados, respectivamente, foram purificados por meio de RP-HPLC para obter-se um produto final com grau de pureza satisfatório (> 95%). A pureza e as massas moleculares dos peptídeos foram verificadas por espectrometria de massa MALDI-TOF/TOF, assim como suas identidades (sequências) confirmadas por MS/MS, com exceção do Pepdirecionador2 (RGD), devido à dificuldade de fragmentação no instrumento utilizado por ser muito pequeno e por esse motivo foi identificado apenas pela massa molecular. Nos espectros MS/MS foram apresentados, como código de uma letra, os resíduos de aminoácidos para a série y e, também foram assinalados os íons da série b, a qual foi incompleta para a melitina e completa para os demais.

A peçonha de abelhas *Apis mellifera* foi submetida à separação cromatográfica (RP-HPLC) utilizando coluna semipreparativa. A melitina eluiu próximo a 50% de concentração de ACN. Foi detectada sua massa molecular de $[M+H]^+ = 2845,9$ e também a dupla carga de $[M+2H]^+ = 1422,9$ utilizando espectrometria de massa MALDI-TOF (Figura 4). A sequência completa da melitina isolada do veneno de abelhas (GIGAVLKVLTTGLPALISWIKRKRQQ) foi confirmada por experimento de MS/MS (Figura 5). O rendimento de melitina por abelha foi de, aproximadamente, 140 µg.

Figura 4: A) Cromatograma da peçonha de *Apis mellifera* com o pico correspondente à fração contendo o peptídeo melitina marcado por *. A amostra foi fracionada à temperatura ambiente em coluna semipreparativa e equilibrada com água contendo 0,1% TFA (em volume). O gradiente utilizado foi linear de ACN (5 a 95% em 60 min) em fluxo de 2,5 mL/min. Monitoramento realizado nos comprimentos de onda de 216 nm (preto) e 280 nm (vermelho). **B)** Espectro de massa obtido em MALDI-TOF/TOF modo refletido e positivo, adquiridos com duzentos disparos de laser a uma frequência de 100 Hz e detecção de massa na faixa de m/z 1000 a 3500. Massa molecular representada por $[M+H]^+$ e dupla carga por $[M+2H]^+$.

Figura 5: Espectro MS/MS da melitina $[M + H]^+ = 2845,9$ obtida de *Apis mellifera*. A confirmação da sequência está representada na parte superior do espectro por código de uma letra dos resíduos de aminoácidos para a série *y*. Foram representadas as massas das séries *b* e *y*, sendo a *b* incompleta.

Uma amostra da peçonha, que foi extraída em temperatura ambiente, sofreu hidrólise parcial em função das condições de extração e foram observadas diferenças no cromatograma resultante da purificação em relação àquele obtido a partir da peçonha fracionada anteriormente. A fração correspondente à melitina foi menos abundante nesta amostra, quando comparada às outras com extração realizada em gelo, e eluiu próximo a 65%. Diferentemente de outras amostras, nas quais a melitina é o peptídeo mais abundante, nessa amostra a fração mais abundante foi de um peptídeo correspondente a um fragmento da região C-terminal da melitina (TTGLPALISWIKRKRQQ), que eluiu próximo a 50% de ACN. Este peptídeo possui massa molecular $[M+H]^+ = 1995,1$ (Figura 6), e sua sequência foi confirmada por MS/MS nas séries *y* e *b* (Figura 7).

Figura 6: A) Cromatograma da peçonha de *Apis mellifera* hidrolisada parcialmente com o pico referente à fração contendo o peptídeo melitina marcado por * e o pico referente à fração contendo o peptídeo mais abundante marcado por #. A amostra foi fracionada à temperatura ambiente em coluna semipreparativa e equilibrada com água contendo 0,1% TFA (em volume). O gradiente utilizado foi linear de ACN (5 a 95% em 60 min) e fluxo de 2,5 mL/min. Monitoramento realizado nos comprimentos de onda de 216 nm (preto) e 280 nm (vermelho). B) Espectro de massa obtido em MALDI-TOF/TOF modo refletido e positivo, adquiridos com duzentos disparos de laser a uma frequência de 100 Hz e detecção de massa na faixa de m/z 1000 a 3500. Massa molecular representada por $[M+H]^+$.

Figura 7: Espectro MS/MS do íon $[M + H]^+ = 1995,1$ referente ao peptídeo mais abundante na peçonha de *Apis mellifera* hidrolisada parcialmente. A confirmação da sequência está representada na parte superior do espectro por código de uma letra dos resíduos de aminoácidos para a série y. Foram representadas as massas das séries b e y.

O Pepdirecionador1 precisou ser submetido a um segundo passo de purificação em coluna analítica em fase reversa, uma vez que em coluna semipreparativa não se obteve o produto puro. Este apresentou massa molecular $[M+H]^+ = 2425,3$ (Figura 8) e a sequência foi confirmada por MS/MS (Figura 9).

Figura 8: Peptídeo direcionador sintetizado manualmente. **A)** Cromatograma do peptídeo sintético bruto com o produto de interesse representado por *. A amostra foi fracionada à temperatura ambiente em coluna semipreparativa e equilibrada com água contendo 0,1% TFA (em volume). O gradiente utilizado foi linear de ACN (5 a 95% em 60 min) e fluxo de 2,5 mL/min. Monitoramento realizado nos comprimentos de onda de 216 nm (preto) e 280 nm (vermelho). **B)** Cromatograma analítico do peptídeo recromatografado. A amostra foi fracionada à temperatura ambiente em coluna analítica Vydac C₁₈ 218TP54 (250 × 4,6 mm) e equilibrada com água contendo 0,1% (em volume) TFA. O gradiente utilizado foi linear de ACN (5 a 95% em 85 min) e fluxo de 1 mL/min. **C)** Espectro de massa obtido em MALDI-TOF/TOF modo refletido e positivo, adquiridos com duzentos disparos de laser a uma frequência de 100 Hz e detecção de massa na faixa de m/z 1000 a 3500. Massa molecular representada por [M+H]⁺.

Figura 9: Espectro MS/MS do íon $[M + H]^+ = 2425,3$ referente ao peptídeo direcionador sintetizado manualmente. A confirmação da sequência está representada na parte superior do espectro por código de uma letra dos resíduos de aminoácidos para a série y. Foram representadas as massas das séries b e y.

Já a purificação do Pepdirecionador2 foi realizada em coluna analítica, sendo que a fração eluiu imediatamente após o pico de injeção, com 5% de ACN, e apresentou $[M+H]^+ = 346,1$. A pureza foi confirmada por Maldi, sendo também mostrado picos de matriz no espectro (Figura 10).

Figura 10: Peptídeo direcionador RGD sintetizado manualmente. **A)** Cromatograma do peptídeo sintético bruto com o produto de interesse representado por *. A amostra foi fracionada à temperatura ambiente em coluna analítica e equilibrada com água contendo 0,1% (em volume) TFA. O gradiente utilizado foi linear de ACN (5 a 95% em 70 min) e fluxo de 1 mL/min. **B)** Espectro de massa obtido em MALDI-TOF/TOF modo refletido e positivo, adquiridos com duzentos disparos de laser a uma frequência de 100 Hz e detecção de massa na faixa de m/z 250 a 400. Massa molecular representada por $[M+H]^+$.

5.2 Otimização da produção das partículas

Para observar as possíveis variações de tamanho e carga de superficie, assim como a citotoxicidade das partículas de QS, formulações foram produzidas com variações na concentração de TPP e, posteriormente, no tipo e concentração de PEG.

Assim, foi realizada a medida do diâmetro hidrodinâmico e do potencial Zeta de estruturas presentes nas soluções isoladas utilizadas na formulação das partículas para comparar com as partículas produzidas nas concentrações de TPP 1, 2 e 4 mg/mL, cada uma com o PEG 2000 nas concentrações 3,3 e 6,7 mg/mL. Todas as soluções apresentaram estruturas polidispersas (Tabela 4). Verificou-se estruturas com diâmetros próximos a 0 nm nas soluções de QS, nas soluções de PEG 2000 3,3 mg/mL e PEG 2000 6,7 mg/mL. Estruturas com diâmetros hidrodinâmicos na faixa de 100 e acima de 1000 nm foram detectadas na solução de melitina e do peptídeo direcionador. Estruturas de 100 a 1000 nm foram detectadas na solução de TPP1-1 e estruturas de 5000 a 10000 nm foram detectadas na soluções de TPP2-1. Já na solução de TPP 4-1 houve estruturas detectadas de 50 a 1000 nm. Assim, mesmo sem formular estruturas essas soluções apresentam estruturas detectáveis por DLS (Figura 11).

Soluções	Concentração (mg/mL)	PdI	Potencial Zeta (mV)
QS	4	1	6,72
PEG 2000	3,3	0,32	-6,59
PEG 2000	6,7	0,33	9,85
Melitina	0,03	1	-4,52
PepDirecionador	0,003	0,78	3,25
TPP 1-1	1	0,70	-14,5
TPP 2-1	2	0,38	-2,81
TPP 4-1	4	0.44	-15.1

 Tabela 4: Dados das estruturas presentes nas soluções isoladas utilizadas na formulação das partículas. Obtidas por DLS e Zeta.

Quitosana (QS). Peptídeo extraído da peçonha de abelha *Apis mellifera* (melitina). Peptídeo sintetizado (PepDirecionador). Tipolifosfato de sódio (TPP).

Figura 11: Distribuição em diâmetro hidrodinâmico pelo volume das soluções isoladas utilizadas na formulação das partículas por espalhamento de luz dinâmico. Solução de QS (4 mg/mL) em ácido acético (5,7 μ L/mL); Pepdirecionador1 e melitina em água (30 e 3 μ g/mL); TPP 1-1 (1 mg/mL); TPP 2-1 (2 mg/mL); TPP 4-1 (4 mg/mL) em água.

Não houve detecção com coeficiente de correlação apropriado nas medidas de DLS/Zeta para as partículas de QS estruturadas com TPP 2-1 e 4-1, pois provavelmente formaram aglomerados e ficaram muito grandes. Assim, quando analisadas as partículas formuladas com TPP 1-1 e comparada-as com as soluções dos componentes livres da formulação (mostrados acima), pode-se notar que não havia presença desses últimos confirmando que a filtragem em Amicon retira os componentes livres e não estruturados, porém forma uma suspensão com aspecto gelatinoso. Ainda analisando as partículas formuladas com TPP 1-1, pode-se notar a formação de estruturas polidispersas. Todas as vazias, para essa concentração de TPP, tiveram estabilidade coloidal considerada boa e as completas foram consideradas de estabilidade coloidal excelente (Tabela 5).

Tipo	Concentração PEG (mg/mL)	PdI	Potencial Zeta (mV)
Vazia	3,3	0,58	51,7
Vazia	6,7	0,95	53
Completa	3,3	0,82	89,8
Completa	6,7	0,52	79,5

Tabela 5: Partículas TPP 1-1 (contendo 1 mg/mL de tripolifosfato de sódio) com PEG 2000 Da. Dados obtidos por DLS e Zeta.

Vazia (QS, TPP e PEG). Completa (QS, TPP, Peptídeo direcionador, melitina e PEG).

Essas partículas, com TPP 1-1, apresentaram população mais frequente abaixo de 100 nm nas nanopartículas vazias com 3,3 mg/mL de PEG 2000, nas vazias com 6,7 mg/mL de PEG 2000 e nas completas com 3,3 mg/mL de PEG 2000. Já as nanopartículas completas com 6,7 mg/mL de PEG 2000 apresentaram população mais frequente em 500 nm (Figura 12).

Figura 12: Distribuição em diâmetro hidrodinâmico pelo volume das partículas formuladas com 1 mg/mL de TPP. Vazias (QS, TPP e 3,3 ou 6,7 mg/mL de PEG 2000) e completa (QS, TPP, Pepdirecionador1, melitina e 3,3 ou 6,7 mg/mL de PEG 2000) por espalhamento de luz dinâmico.

Como as nanopartículas contendo 1 mg/mL de TPP apresentaram, em maior frequência em volume, partículas muito pequenas e nas demais concentrações formaram partículas muito grandes, então foram produzidas novas nanopartículas com 1,5 mg/mL de TPP para análise dos possíveis efeitos dos tipos e quantidades de PEG. Assim, foi variado o tipo de PEG (2000 e 5000 Da) e, adicionalmente, a concentração destes (3,3 e 6,7 mg/mL). Observou-se que com o aumento na concentração de PEG houve um pouco de aumento no tamanho das nanopartículas em ambos os tipos de PEG (Figura 13).

Figura 13: Distribuição em diâmetro hidrodinâmico pelo volume de partículas por espalhamento de luz dinâmico. Partículas completas (QS, TPP, Pepdirecionador1, melitina e PEG) produzidas com 1,5 mg/mL de TPP e dois tipos de PEG (2000 e 5000 Da) em duas concentrações cada (3,3 e 6,6 mg/mL).

Todas as nanopartículas com TPP 1,5-1, também, foram polidispersas. Porém as nanopartículas formuladas com PEG 2000 tiveram estabilidade coloidal considerada de excelente a moderada, enquanto as nanopartículas formuladas com o PEG 5000 tiveram a estabilidade coloidal considerada instável de acordo com o potencial Zeta (Tabela 6).

PEG (Da)	Concentração PEG (mg/mL)	PdI	Potencial Zeta (mV)		
2000	3,3	0,57	65,9		
2000	6,7	0,56	30,1		
5000	3,3	0,69	22,3		
5000	6,7	1	26,4		

Tabela 6: Partículas TPP 1,5-1 (contendo 1,5 mg/mL de tripolifosfato de sódio) variando os tipos de PEG (2000 e 5000 Da) e as concentrações (3,3 e 6,7 mg/mL). Dados obtidos por DLS e Zeta.

Com base nos resultados descritos acima foram escolhidas as partículas formuladas com PEG 2000 para os demais testes, uma vez que este possibilita um menor PdI e maior estabilidade coloidal.

Uma vez escolhidos o tipo e a concentração de PEG a serem utilizados e logo em seguida as concentrações de TPP empregadas na formulação das partículas, estas foram testadas sobre linhagens celulares in vitro (descritas posteriormente no item 5.4) e pode-se observar que as partículas vazias formuladas com 6,7 mg/mL de PEG ainda foram um pouco citotóxicas sobre a linhagem não tumoral, e assim foi desenvolvida uma nova formulação de partículas com maior concentração de PEG 2000 (13,3 mg/mL) visando à possibilidade de aumentar a biocompatibilidade e, com isso, diminuir a citotoxicidade. Estas partículas foram ressuspendidas em água, assim como todas as anteriores, e também em tampão fosfato salina (PBS) para análise. Com o aumento da concentração de PEG, o diâmetro hidrodinâmico aumentou um pouco, mas continuaram com valores próximos aos produzidos anteriormente com 6,7 mg/mL de PEG, sendo que o PdI das partículas contendo todos os componentes (completas) foi de 0,47 e o potencial Zeta de 20,6 mV. Porém, na presença do PBS as partículas foram desestruturadas, pela provável dissociação iônica entre a QS e o TPP, conforme indicado pelo diâmetro hidrodinâmico muito pequeno (Figura 14). Nessas o PdI foi de 0,24 (completas) e o potencial Zeta de 6,26 mV.

Figura 14: Distribuição de diâmetro hidrodinâmico pelo volume das partículas produzidas com 13,3 mg/mL de PEG 2000 por espalhamento de luz dinâmico. QS com TPP e PEG (vazia); QS com TPP, PEG e Pepdirecionador1 (QSPep); QS com TPP, PEG e melitina (QSMel); QS com TPP, PEG, Pepdirecionador1e melitina (completa). A) Partículas ressuspendidas em água; B) Partículas ressuspendidas em PBS.

Todas as partículas produzidas por essa técnica formaram material de aspecto gelatinoso, difícil de manter em suspensão e apresentaram diâmetro hidrodinâmico e PdI geralmente altos, por isso foram realizados testes de homogeneização/reorganização em ultraturrax utilizando partículas vazias com quantidades variadas de TPP. Estas formulações foram submetidas a três velocidades de homogeneização (V3, V4 e V5) por um minuto e, em seguida, realizada a determinação do diâmetro hidrodinâmico por DLS (Figura 15). Observou-se que as partículas com TPP2-1 na velocidade 4 do
ultraturrax apresentaram o diâmetro hidrodinâmico reduzido para 150 nm, em média, (PdI=1) e distribuição unimodal, enquanto as outras ficaram maiores ou bimodais em distribuição. As partículas com TPP 2-1 foram escolhidas para os testes seguintes, uma vez que apresentaram maior estabilidade coloidal, distribuição unimodal e diâmetro hidrodinâmico em torno de 150 nm quando as partículas vazias foram homogeneizadas por ultraturrax.

Figura 15: Distribuição em diâmetro hidrodinâmico pelo volume das partículas vazias produzidas com quantidades variadas de TPP (1, 2 e 4 mg/mL) por espalhamento de luz dinâmico. Dispersas por ultraturrax nas velocidades V3=14.600, V4=16.900 e V5=19.200 rpm. As partículas TPP2-1 e todas as TPP4-1 (com ou sem ultraturrax) não apresentaram leitura detectável.

Assim, após as concentrações dos componentes das partículas serem definidas (13,3 mg/mL de PEG 2000 e TPP 2-1), foram produzidas partículas com o outro peptídeo direcionador (Pepdirecionador2), de sequência RGD, pois o primeiro testado era de síntese e purificação difícil e onerosa, e ainda, não foi ativo sinergisticamente sobre as linhagens de mama (mostradas adiante no item 5.4). As partículas (vazia, QSPep, QSMel e Completa) apresentaram maior PdI, de 0,8 a 1, maior frequência de partículas completas com diâmetro hidrodinâmico em volume na faixa de 600 nm

(Figura 16), porém com maior estabilidade coloidal indicada pelo potencial Zeta de 55 a 67 mV, com esse peptídeo.

Figura 16: Distribuição em diâmetro hidrodinâmico pelo volume de partículas produzidas com RGD como peptídeo direcionador (Pepdirecionador2) por espalhamento de luz dinâmico. QS com TPP e PEG (vazia); QS com TPP, PEG e Pepdirecionador2 (QSPep); QS com TPP, PEG e melitina (QSMel); QS com TPP, PEG, Pepdirecionador2 e melitina (completa). Todas foram homogeneizadas em ultraturrax a 16.900 rpm.

Essas formulações de partículas produzidas com o Pepdirecionador2 foram selecionadas para os demais experimentos, incluindo os tratamentos *in vivo*. Desta forma elas tiveram a morfologia avaliada por microscopia de força atômica em modo dinâmico e notou-se que apresentavam formato aproximadamente esférico. Também foi notada heterogeneidade nos tamanhos e a presença de poucos aglomerados, uma vez que a amostra foi bastante diluída (Figura 17).

Figura 17: Morfologia das partículas completa (QS, melitina, TPP, PEG e Pepdirecionador2) formuladas com 2 mg/mL de TPP (diluição 100×), obtidas por microscopia de força atômica operada em modo dinâmico. Pequeno aglomerado indicado no quadrado branco.

Após analisada a morfologia das partículas, estas formulações tiveram a disposição dos componentes na sua estrutura investigada por espectroscopia Raman. Para isso, três tipos de partículas foram produzidas e comparadas sendo que a primeira continha QS e TPP, a segunda continha QS, TPP e PEG (vazia) e a terceira continha QS, TPP, PEG, melitina e peptídeo direcionador RGD (completa).

Foram observados muitos picos e bandas exclusivas no espectro das partículas contendo QS e TPP, como as 400, 457, 530, 811 e 900 a 1040 cm⁻¹, sendo a banda em 400 cm⁻¹ correspondente aos anéis aromáticos da QS, a banda em 811 cm⁻¹ ao grupo C-O-C e a banda em 900 cm⁻¹ à ligação da QS com o ácido acético. Como essas bandas não aparecem quando se acrescentou o PEG, fica confirmado que este polímero recobre a partícula e, ainda na adição dele surge uma nova banda em 582 cm⁻¹. As partículas vazia e completa apresentaram espectros Raman parecidos, mas surgiu a banda em 884 cm⁻¹, a qual corresponde ao sinal do resíduo de triptofano presente na melitina e desapareceu a banda em 1367 cm⁻¹, que corresponde à ligação C-N presente no PEG, ambos nas partículas completa. Acredita-se, com isso, que a melitina não estava

somente internalizada na partícula, mas sim dispersa na matriz polimérica (interior e superfície), caracterizando um sistema monolítico, enquanto a banda do PEG pode ter desaparecido pela ligação com o Pepdirecionador2, o qual não apresentou nenhuma banda exclusiva, pois não contém nenhum anel aromático na sua estrutura e por isso foi dificultada a obtenção de espectro específico (Figura 18).

Figura 18: Espectros obtidos das partículas por espectroscopia Raman. **A)** QS e TPP; **B)** Vazia (QS, TPP, PEG) e **C)** Completa (QS, TPP, PEG, Pepirecionador2 e melitina). Seta vermelha indica bandas diferentes entre espectro B e C.

5.3 Eficiência de encapsulamento (EE)

As quantidades de peptídeo direcionador e de melitina que não foram associados (livres) durante a formulação das partículas podem ser verificadas pela EE. Nesta abordagem, utilizando cromatografia líquida ultrarrápida (UFLC) foi determinada a área da fração obtida, a qual era integrada a uma curva de calibração utilizando concentrações conhecidas do peptídeo direcionador e da melitina (Figura 19). Observou-se uma EE de 100% da melitina em todas as partículas produzidas, enquanto o peptídeo direcionador foi aprisionado 50%, em média, de acordo com a interpolação com os dados da curva.

Figura 19: Curva de calibração obtida a partir de dados cromatográficos colocados em função da reta definida mostrando a variação da concentração dos peptídeos. **A)** Peptídeo direcionador; **B)** Melitina obtida da peçonha de *Apis mellifera*.

5.4 Teste *in vitro*: viabilidade celular

A melitina e o Pepdirecionador1 livre foram testados quanto à possível atividade citotóxica sobre as linhagens tumorais de mama humana (MCF7) e de mama murina (4T1). Estas linhagens foram submetidas à incubação por 24 horas com melitina ou o peptídeo direcionador nas concentrações de 0, 4, 8, 16, 32, 64 µg/mL. Observou-se redução de aproximadamente 100% da viabilidade celular da linhagem 4T1 e aproximadamente 90% da linhagem MCF-7 quando tratadas com todas as concentrações de melitina testadas. Já quando tratadas com o peptídeo direcionador nenhuma das linhagens teve diminuição significativa da viabilidade celular para todas as concentrações testadas (Figura 20).

Figura 20: Viabilidade das linhagens tumorais de mama humana (MCF-7) e de mama murina (4T1) após tratamento com diferentes concentrações de melitina e Pepdirecionador1 livres (0, 4, 8, 16, 32 e 64 μ g/mL) Por 24 horas. A) Células tratadas com peptídeo direcionador e B) Tratadas com melitina. O símbolo * representa diferenças significativas entre as demais concentrações e o controle (0 μ g/mL) (P < 0,05).

B

Após analisados os efeitos citotóxicos dos peptídeos livres, foram também analisados os efeitos citotóxicos das partículas produzidas contendo ou não os peptídeos sobre as mesmas linhagens tumorais de mama. O Pepdirecionador1 e a melitina livre também foram testados no mesmo ensaio como grupos controle, na concentração de 3 µg/mL e 30 µg/mL, respectivamente, a qual é equivalente a destes encapsuladosaprisionados. Desta forma ambos os peptídeos foram novamente testados para poder comparar o efeito de quando estão livres ou encapsulados.

A melitina livre novamente foi muita ativa, diminuindo a viabilidade celular da linhagem MCF-7 para 5% e de 4T1 para 3% em média, enquanto o peptídeo direcionador foi pouco ativo para a linhagem MCF-7 diminuindo a viabilidade para 88% em média e não diminuiu significativamente a viabilidade da linhagem 4T1. Todas as partículas formuladas com TPP1-1 e TPP4-1, contendo ou não os peptídeos, foram citotóxicas para as duas linhagens celulares diminuindo significativamente a viabilidade para menos de 30%. Já as partículas com TPP2-1 foram citotóxicas diminuindo a viabilidade celular apenas quando continham melitina na formulação (Figura 21).

Figura 21: Viabilidade de células tumorais de mama humana (MCF-7) e de mama murina (4T1). Tratadas com 30 µg/mL de melitina (Melit); 3 µg/mL de Pepdirecionador1 (Pep); QS com TPP e PEG (vazia); QS com TPP, PEG e Pepdirecionador1 (QSPep); QS com TPP, PEG e melitina (QSMel); QS com TPP, PEG, Pepdirecionador1 e melitina (completa). Por 24 horas. A) Partículas produzidas com 1 mg/mL de TPP; B) 2 mg/mL de TPP; e C) 4 mg/mL de TPP. O símbolo * representa diferenças significativas entre as demais concentrações e o controle (0 µg/mL) (P < 0.05).

Como as partículas com TPP2-1 mostraram atividade citotóxica sobre as linhagens tumorais de mama apenas quando na presença da melitina, então estas foram novamente produzidas para testá-las sobre as mesmas linhagens tumorais e a linhagem de fibroblasto não tumoral (NIH3T3). Neste ensaio as concentrações do PEG 2000, utilizadas na produção das partículas, foram variadas (6,7 mg/mL e 13,3 mg/mL) para testar alguma possível modulação na atividade citotóxica (Figura 22). Todas as partículas foram ativas sobre as linhagens de mama apenas quando havia melitina na formulação. O mesmo foi observado sobre a linhagem não tumoral NIH3T3 quando na concentração de 13,3 mg/mL, porém quando na concentração de 6,7 mg/mL de PEG todas as partículas apresentaram citotoxicidade. Assim, foram selecionadas as partículas com TPP2-1 e 13,3 mg/mL de PEG 2000 para os experimentos *in vivo*.

Figura 22: Viabilidade de células tumorais de mama humana (MCF-7), tumoral de mama murina (4T1) e não tumoral de fibroblasto (NIH3T3). Células tratadas com 30 µg/mL de melitina (Melit); 3 µg/mL de Pepdirecionador1 (Pep); QS, TPP e PEG (vazia); QS, TPP, PEG e Pepdirecionador1 (QSPep); QS, TPP, PEG e melitina (QSMel); QS, TPP, PEG, Pepdirecionador1 e melitina (completa) por 24 horas. A) Partículas produzidas com 6,7 mg/mL de PEG 2000 **B)** Partículas produzidas com 13,3 mg/mL de PEG 2000. O símbolo * representa diferenças significativas entre as demais concentrações e o controle (0 µg/mL) (P < 0,05).

Uma vez otimizadas as concentrações dos constituintes na formulação das partículas, o Pepdirecionador1 também foi substituído para o Pepdirecionador2 (RGD), pois o primeiro foi de difícil síntese e purificação e, ainda, não revelou seletividade

pelas linhagens de mama testadas. Então foi sintetizado o peptídeo RGD para ser testado e atuar como direcionador. Esse peptídeo foi de fácil e rápida síntese e purificação, porém também não apresentou atividade citotóxica para as linhagens de mama, 4T1 e MCF-7, e nem sobre a linhagem não tumoral de fibroblasto, NIH3T3, quando testadas in vitro (Figura 23).

Figura 23: Viabilidade das linhagens tumorais de mama humana (MCF-7), mama murina (4T1) e não tumoral (NIH3T3) após tratamento em 24 horas. A) Tratadas com diferentes concentrações do Pepdirecionador2 (RGD) livre $(0, 4, 8, 16, 32 \text{ e} 64 \mu \text{g/mL})$. B) tratadas com 30 μg/mL de melitina (Melit); 3 μg/mL de Pepdirecionador2 (Pep); QS, TPP e PEG (vazia); QS, TPP, PEG e Pepdirecionador2 (QSPep); QS, TPP, PEG e melitina (QSMel); QS, TPP, PEG, e Pepdirecionador2 e melitina (completa).

B

Adicionalmente, foi realizado um experimento para investigar se a peçonha de abelha parcialmente hidrolisada e o peptídeo mais abundante desta peçonha, o qual é um fragmento previamente descrito da melitina, teriam atividade citotóxica semelhante ao da melitina e deste modo constituírem outra possível abordagem experimental. Sendo assim, a peçonha total e o peptídeo derivado da melitina purificado foram encapsulados, sob as condições anteriormente selecionadas, produzindo novas partículas. Observou-se que o peptídeo, livre ou encapsulado, não foi ativo em MCF-7 e NIH3T3, porém estimulou o crescimento de 4T1. Já a peçonha de abelha livre, tanto com 30 µg/mL como com 100 µg/mL, diminuíram de 30 a 50 % da viabilidade das linhagens testadas. Desta forma, a peçonha associada não foi ativa sobre as linhagens testadas como a melitina purificada, a qual continuou como princípio ativo para os experimentos seguintes (Figura 24).

Figura 24: Viabilidade de células tumorais de mama humano (MCF-7), de mama murina (4T1) e não tumoral de fibroblasto (NIH3T3). Células tratadas com peptídeo abundante da peçonha de abelha parcialmente hidrolisada (Degra); o peptídeo encapsulado (QSDegra); 30 µg/mL da peçonha de abelha parcialmente hidrolisada (Apis30); 100 µg/mL da peçonha de abelha parcialmente hidrolisada (Apis100); e peçonha de abelha parcialmente hidrolisada associada (QSApis) por 24 horas. O símbolo * representa diferenças significativas entre as demais concentrações e o controle (0 µg/mL) (P < 0.05).

5.5 Teste in vivo

5.5.1 Teste piloto

5.5.1.1 Estratégia experimental do teste

Foi realizado um teste piloto para comparar a melhor localização do implante de células tumorais (4T1) bem como do desenvolvimento tumoral, de modo que no experimento seguinte, com os tratamentos intratumorais, a análise da atividade antitumoral de cada um desses tratamentos não tivesse interferências. Assim, os animais foram separados em dois grupos, sendo que um grupo recebeu implante ortotópico, na 4^a mama, e o outro grupo recebeu implante ectópico, no flanco (Figura 25).

Figura 23: Ilustração murina evidenciando a disposição das mamas e localização do implante tumoral. (Adaptado de http://www.informatics.jax.org/greenbook/index.shtm)

5.5.1.2 Observações comportamentais e peso dos animais teste

Os animais foram observados diariamente e pode-se observar que, embora todos os animais tenham desenvolvido tumor, não ocorreram alterações comportamentais e nem fisiológicas nos mesmos. Os animais tiveram, também, o peso corporal monitorado no primeiro dia, que equivale ao dia do implante tumoral, e duas vezes por semana após surgimento do tumor palpável. Os pesos dos animais implantados ortotópicamente ou ectópicamente não apresentou diferença estatisticamente significativa (Figura 26).

Figura 24: Peso em gramas (g) de murinas fêmeas Balb/c implantadas com de 1×10^5 células da linhagem tumoral murina 4T1. Dia 0 corresponde ao implante tumoral, dia 12 ao surgimento do tumor palpável e dia 20 ao último dia e eutanásia. Implante ortotópico na 4^a mama (Orto) e implante ectópico no flanco direito (Ecto).

5.5.1.3 Desenvolvimento tumoral nos animais teste

O surgimento do tumor macroscópico palpável foi percebido em todos os animais após 12 dias do implante tumoral. Em nenhum animal foi percebida a presença de tumores secundários em outros órgãos. Nos animais que receberam o implante ortotópico foi desenvolvido um tumor único localizado no local de aplicação do implante das células na mama, o qual ficou bem delimitado como se estivesse circunscrito por uma cápsula de tecido, assim como ocorre no tumor de mama humano. Já nos animais que receberam o implante ectópico, o tumor ficou pleiomórfico, com bordas indefinidas e apresentando mais de um tumor, porém na mesma região do implante (Figura 27).

Figura 27: Imagem fotográfica de tumores desenvolvidos em camundongos fêmeas Balb/c após 20 dias do implante de 1×10^5 células da linhagem tumoral murina 4T1. **1^a linha**) Animais que receberam implante ortotópico na 4^a mama. **2^a linha**) Animais que receberam implante ectópico no flanco. Setas brancas indicam a localização do tumor.

O tumor se manteve crescendo até o vigésimo dia, no qual os animais foram sacrificados para análises dos órgãos e tumor. Foi observado que tanto os animais que receberam o implante ortotópico quanto o ectópico tiveram o volume tumoral aumentado entre o 12° dia e o 20° dia (Figura 28). Porém, apesar desta tendência de crescimento, não houve diferença significativa entre os dias 12 e 20 para cada implante e nem entre os dois tipos de implante, considerando P < 0,05.

Figura 28: Volume tumoral em camundongos fêmeas Balb/c após 12, 15 e 20 dias do implante de 1×10^5 células da linhagem tumoral murina 4T1. Implante ortotópico na 4^a mama (Orto) e implante ectópico no flanco direito (Ecto).

O acompanhamento do tamanho e determinação do volume tumoral também foi realizado por Micro-CT. Porém foi observado que as imagens só mostram o tumor externamente, não sendo possível obter detalhes da estrutura interna. Ainda, a análise do tumor foi dificultada pela presença de artefatos gerados pelo espalhamento de luz no tecido ósseo da perna, a qual estava ao lado do tumor. Devido aos artefatos gerados, não foi possível mensurar o volume tumoral de todos os animais por esse método. Essa dificuldade na análise pode ter ocorrido pelo implante tumoral ter sido na 4ª mama, a qual fica ao lado da perna do animal, assim como pela tensão aplicada pelo equipamento durante a aquisição.

Neste método o volume tumoral não é preciso tanto quanto utilizando o paquímetro, o qual delimita as bordas do tumor e por isso tem mais exatidão. O animal 4, que recebeu implante ortotópico, apresentou volume tumoral 246,81 mm³ quando medido por Micro-CT enquanto com o paquímetro o volume foi de 165,39 mm³, o mesmo foi observado para o animal 3 que recebeu implante ectópico, o volume por

Micro-CT foi 103,57 mm³ e no paquímetro foi 47,76 mm³, sendo essas medidas obtidas no último dia do teste (Figura 29 e 30).

Figura 29: Imagens obtidas por Micro-CT a 50 kV, reconstruídas por Nrecon e visualizadas no DataViewer do tumor implantado na 4^a mama murina em Balb/c fêmea. Seta indica a localização do tumor. **A)** Corte da região do tumor; **B)** Passando-se uma reta (linha vermelha) sobre o tumor e obtendo medidas de comprimento e largura; **C)** Tumor visto em eixo longitudinal; **D)** Tumor visto em eixo transversal.

Figura 30: Imagens obtidas por Micro-CT a 50 kV, reconstruídas por Nrecon e visualizadas no DataViewer do tumor implantado no flanco direito em murina Balb/c fêmea. Seta indica a localização do tumor. A) Corte da região do tumor; B) Tumor; C) Tumor visto em eixo longitudinal; D) Tumor visto em eixo transversal.

5.5.1.4 Análises hitopatológicas de órgãos e tumores dos animais teste

No 20° dia, que correspondeu ao último dia do teste piloto, os animais foram sacrificados e dissecados o tumor, pulmões, fígado, baço e rins de todos os animais para análises histopatológicas. Nestas análises foram comparados os tipos de implantes tumorais e, também, a possível ocorrência de metástase para os demais órgãos e tecidos adjacentes.

O desenvolvimento do tumor foi bem sucedido nos dois tipos de implante. Em ambos foi observado o crescimento tumoral, com presença de células neoplásicas, polimórficas e regiões de hemorragia com infiltrado inflamatório e necrose. Também foi observada a invasão tumoral para o tecido adiposo (Figura 31).

Figura 31: Fotomicrografías de tumor desenvolvido após 20 dias do implante de células de mama 4T1 em camundongos Balb/c. Polimorfísmo celular e necrose (retângulo) evidente na primeira linha. Células invadindo tecido adiposo na segunda linha. **A, C)** Implante ortotópico na 4^a mama. **B, D)** Implante ectópico no flanco. Coloração H&E.

Os órgãos analisados não sofreram invasão das células tumorais de mama (Figura 30). No pulmão foram observados focos de hemorragia e alvéolos característicos, com estrutura normal, nos animais com ambos os tipos de implantes (Figuras 32A e 32B). No fígado foram notados sinusóides e a tríade, composta por veia porta, artéria e ducto biliar normal, porém alguns hepatócitos sofreram deterioração nuclear em animais submetidos aos dois tipos de implantes (Figuras 32C e 32D). Nos rins os glomérulos apresentaram muitas células em ambos os tratamentos (Figura 32F e E). O baço também estava com características normais com polpa branca e polpa vermelha evidente (Figura 32H e G).

Assim, não houve diferenças histológicas expressivas entre o implante ortotópico e ectópico. Porém nas análises macroscópicas houve diferença na morfologia do tumor sendo que no implante ortotópico o tumor ficou localizado na própria mama, similar ao tumor de mama humano. Ainda, para os experimentos seguintes com os tratamentos, os quais foram intratumorais, este implante foi considerado ideal já que apresentou apenas um tumor bem delimitado e com dimensões semelhantes entre os animais, enquanto que no implante ectópico o tumor ficou disperso, o que dificultaria o tratamento, e com tamanhos variados entre os animais, o que exigiria um número maior de animais por grupo para uma investigação adequada. Porém, o implante na 4ª mama apresentou dificuldade para as análises de micro-CT, que foram interferidas pelo posicionamento da perna do animal, a qual estava na mesma direção da mama. Desse modo, foi escolhido o implante ortotópico para os experimentos seguintes, nos quais foi analisada a atividade antitumoral dos tratamentos. Entretanto foi escolhida a 3ª mama, a qual fica na mesma linha da 4ª mama, no final do tórax, entretanto com localização centralizada onde não sofre interferências quando analisada por micro-CT.

Figura 32: Fotomicrografias de pulmão, figado, rim e baço após 20 dias do implante de células de mama 4T1 em camundongos Balb/c. **A, C, E, G)** Implante ortotópico na 4^a mama. **B, D, F, H)** Implante ectópico no flanco. Área indicada pelo quadrado indica deterioração nuclear; área de hemorragia indica por seta grossa. Coloração H&E.

5.5.2 Análise da atividade antitumoral dos tratamentos

5.5.2.1 Estratégia do experimento

Para análise da possível atividade antitumoral *in vivo* da melitina e das partículas formuladas, os 30 animais foram separados em cinco grupos, com seis animais cada, os quais foram denominados de acordo com os tratamentos recebidos, sendo eles sem tratamento (Cont), tratados com melitina (Mel), tratados com a partícula com Pepdirecionador2 (QSPep), tratados com a partícula com a melitina (QSMel) e tratados com a partícula contendo todos os componentes (Completa). Todos os 30 animais receberam o transplante tumoral na 3^a mama, uma vez havia quatro tratamentos e mais o controle com água para serem testados. Porém os animais sem tumor (sadios), idênticos aos desse trabalho e nas mesmas condições, foram obtidos no mesmo local, meses anterior a esse estudo, e foram estudados por CARNEIRO (2011). Assim, os dados dos animais sadios foram utilizados para comparação com os animais deste trabalho.

Mesmo após 16 dias do implante tumoral, só foi percebido o desenvolvimento do tumor palpável em 12 animais, diferentemente do observado no teste piloto, no qual após 12 dias do implante tumoral todos os animais apresentaram tumor palpável. Dessa forma, os animais foram reorganizados em 3 grupos (Cont, Mel e Completa) com 4 animais cada.

5.5.2.2 Comportamento, sobrevida e peso dos animais

Apesar de terem sido observados tumores palpáveis em apenas alguns animais, os demais animais continuaram sendo observados e foi percebido que muitos também desenvolveram tumores internos. Isto, pois alguns animais que não apresentavam tumor palpável estavam com o abdômen inchado, enegrecido e vieram a óbito em poucos dias. Estes foram analisados e verificou-se que o tumor tinha proliferado pelo peritônio com presença de vários pólipos na região abdominal e, ainda havia hemorragia perceptível.

Também houve óbito de animais pertencentes aos grupos dos tratamentos. Após 16 dias do implante tumoral, ocorreu a morte de um animal no grupo Cont e um no grupo Completa e, em seguida, após 20 dias do implante tumoral ocorreram mais duas mortes de animais do grupo Completa. Já os quatro animais do grupo Mel permaneceram vivos até o final do experimento (Figura 33).

Figura 33: Número de animais vivos após implante tumoral da linhagem murina 4T1. Animais sem tratamento (Cont), tratados com o peptídeo melitina extraído da peçonha de *Apis mellifera* (Mel) e tratados com partículas contendo melitina (Completa– QS, melitina, TPP, Pepdirecionador2 e PEG. Tratamentos com 2 mg/mL de melitina.

Ao longo do experimento, os animais de todos os grupos apresentaram comportamento alterado, uma vez que estavam mais agressivos. Nos últimos dias de tratamento, alguns animais ficaram muito feridos devido a conflitos desencadeados por aumento notório de agressividade, com ocorrência de lesões em regiões da face, cauda e três animais, sendo um do grupo tratado com melitina e dois do grupo controle, com lesões oculares severas. Apesar disto, os animais não apresentaram alterações expressivas no peso ao longo dos dias após o implante tumoral. O peso dos animais se manteve entre 24 e 26 gramas no grupo Cont, 25 e 26 gramas no grupo Melitina e 25 gramas no grupo Completa, não havendo diferença significativa entre os mesmos (Figura 34).

Figura 34: Peso em gramas (g) de camundongos fêmeas Balb/c implantadas com 1×10^5 células da linhagem tumoral murina 4T1. Dia 0 corresponde ao implante tumoral, dia 16 ao surgimento do tumor palpável e dia 23 ao último dia e sacrifício. Animais sem tratamento (Cont, n=3), tratados com o peptídeo melitina isolado da peçonha de *Apis mellifera* (Mel, n=4) e tratados com partícula (Completa – QS, TPP, Pepdirecionador2, melitina, PEG, n=1).

5.5.2.3 Desenvolvimento tumoral nos animais do experimento

Todos os animais desenvolveram tumores pleiomórficos sendo que os animais do grupo Cont desenvolveram mais de um tumor, pólipos e tiveram o baço aumentado em volume. Os animais do grupo Mel não apresentaram pólipos, porém o tumor continuou expandindo mesmo com o tratamento, mas com aspecto edemaciado e com início de necrose no ápice, e ainda, a região em volta do tumor ficou de tonalidade amarelada. No tratamento com a formulação de nanopartículas Completa foram observados aspectos semelhantes ao tratamento com Mel, uma vez que também não ocorreram pólipos, mas sim o desenvolvimento de apenas um tumor sólido, o qual apresentou a provável formação de edema e ocorrência de necrose na região superficial (Figura 35).

Figura 35: Imagens fotográficas de tumores desenvolvidos na 3^a mama de camundongos fêmeas Balb/c após 23 dias do implante de 1×10^5 células da linhagem tumoral murina 4T1. Animais sem tratamento (Controle), tratados com o peptídeo melitina extraído da peçonha de *Apis mellifera* (Melitina) e tratados com partícula (Completa – QS, TPP, Pepdirecionador2, melitina, PEG). Tratamentos com 2 mg/mL de melitina. Seta branca indica o local do tumor.

Os tumores desenvolvidos na terceira mama foram medidos nos dia 16, 18, 21 e 23, que corresponderam aos dias de tratamento. Notou-se uma tendência de crescimento ao longo do tratamento principalmente nos tumores tratados com melitina e nanopartícula completa pela provável formação de edema. Apesar disso não houve diferença significativa (considerando P < 0,05), no volume dos tumores do mesmo grupo entre os dias 16 e 23, assim como também não houve diferença significativa entre os volumes dos tumores nos três grupos (Figura 36).

Figura 36: Volume tumoral em camundongos fêmeas Balb/c após 16, 18, 21 e 23 dias do implante de 1×10^5 células da linhagem tumoral murina 4T1. Animais sem tratamento (Controle), tratados com o peptídeo melitina extraído da peçonha de *Apis mellifera* (Melitina) e tratados com partícula Completa (QS, TPP, Pepdirecionador2, melitina, PEG). n=3, 4 e 1, respectivamente.

O desenvolvimento dos tumores também foi acompanhado por Micro-CT nos dias 16 e 23, após o implante tumoral. Não foi possível verificar a presença de pólipos no peritônio dos animais do grupo controle por essa técnica, para isso precisaria ser utilizado algum agente de contraste e, também, com o aumento da tensão para 70 kV não houve artefatos, como anteriormente reportado no teste piloto com 50 kV, mas perdeu-se informações dos tecidos moles. Por essa técnica foi possível calcular o volume tumoral, mas não foi tão eficaz quanto ao cálculo realizado pelas medidas obtidas com paquímetro, sendo que com este último, por exemplo, o volume tumoral do grupo Completa nos dias 16 e 23 foram 30,69 mm³ e 224,60 mm³ respectivamente, enquanto o volume medido por Micro-CT nesses mesmos dias foi de 141,98 mm³ e 624,58 mm³ (Figuras 37 e 38).

Figura 37: Imagens obtidas por Micro-CT a 70 kV, reconstruídas por Nrecon e visualizadas no DataViewer do tumor implantado na 3^a mama murina Balb/c fêmea após 16 dias do implante. Animal tratado com partículas completa (QS, PEG, Pepdirecionador2 e melitina). Seta indica a localização do tumor. **A)** Corte da região do tumor; **B)** Passando-se uma reta (linha vermelha) sobre o tumor e obtendo medidas de comprimento e largura; **C)** Tumor visto em eixo longitudinal; **D)** Tumor visto em eixo transversal.

Figura 38: Imagens obtidas por Micro-CT a 70 kV, reconstruídas por Nrecon e visualizadas no DataViewer do tumor implantado na 3^a mama murina Balb/c fêmea após 23 dias do implante. Animal tratado com partículas completa (QS, PEG, Pepdirecionador2 e melitina). Seta indica a localização do tumor. **A)** Corte da região do tumor; **B)** Passando-se uma reta (linha vermelha) sobre o tumor e obtendo medidas de comprimento e largura; **C)** Tumor visto em eixo longitudinal; **D)** Tumor visto em eixo transversal.

5.5.2.4 Análises hitopatológicas de órgãos e tumores dos animais do experimento

Após 23 dias do implante tumoral, os animais foram sacrificados e os tumores, assim como os pulmões, baço, fígado e rins foram dissecados para análises histopatológicas. Nestas análises, pode-se observar que os tumores dos animais pertencentes ao grupo Cont estavam bem desenvolvidos, com polimorfismo celular evidente, com invasão do tecido adiposo adjacente e o tecido muscular (Figura 39A e 39G). Ainda no controle, foram evidentes regiões centrais de necrose ocasionadas possivelmente por hipóxia e muitos infiltrados inflamatórios, sendo estes característicos de tumores com metástase (Figura 39D). Nos tumores tratados com Mel a diminuição de células neoplásicas foi evidente, com a eliminação dessas células da extremidade do tumor para a região central, e o aparecimento do tecido adiposo e muscular (Figura 39B e 39H) e, ainda, a presença de bastante infiltrado inflamatório e pouca necrose (Figura 39E). No tratamento com as nanopartículas Completa também houve diminuição de células neoplásicas com processo similar ao tratamento com Mel, com reaparecimento do tecido adiposo, muscular e presença de infiltrado inflamatório (Figura 39C, 39F e 391). Porém o tratamento com Completa foi menos ativo, ou até mais lento, em promover a diminuição de células neoplásicas quando comparado ao grupo Mel.

Figura 39: Fotomicrografias de tumores desenvolvidos após 23 dias do implante de células de mama 4T1 em camundongos Balb/c. Polimorfísmo celular na primeira linha. Seta preta indica necrose na segunda linha. Retângulo indica diminuição de células neoplásicas em E e F. Na terceira linha células invadindo tecido muscular em G, e diminuição de células neoplásicas em H e I. **A, D, G)** Sem tratamento (Cont). **B, E, H)** Tratado com o peptídeo melitina extraído da peçonha de *Apis mellifera* (Mel). **C, F, I)** Tratado com partícula (Completa – QS, TPP, Pepdirecionador2, melitina, PEG). Tratamentos com 2 mg/mL de melitina. Coloração H&E.

Apesar das análises macroscópicas terem revelado metástase para o peritônio e as análises microscópicas dos tumores também terem indicado metástase para os tecidos adjacentes ao parênquima da mama, não foi observada metástase das células tumorais da mama para os pulmões, fígado, rins ou baço.

Os pulmões dos animais de todos os grupos apresentaram as bordas do órgão, assim como os alvéolos com estruturas regulares (Figura 40A). Porém, havia muitas 103 células sanguíneas, caracterizando hemólise, nos tratados com melitina e, também, havia linfócitos, caracterizando processo inflamatório (Figura 40B). Já nos animais tratados com a formulação Completa houve apenas a presença do infiltrado inflamatório (Figura 40C).

Já nos figados dos animais de todos os grupos foi observaado algumas alterações que indicam danos no órgão. No grupo controle foram observadas regiões de deterioração nuclear em alguns hepatócitos e também, a presença de pigmentos escuros, provável aglomerados de ferritina (Figura 40D). No grupo melitina foram observadas as mesmas alterações presentes no grupo Cont, e mais, também, processos de vacuolização (Figura 40E). No grupo tratado com formulação Completa foram observadas alterações em toda área analisada com hipertrofização, núcleos picnóticos e vacuolização nos hepatócitos (Figura 40F).

Nos rins observou-se em todos os grupos a presença de glomérulos maiores do que o padrão de camundongos, com muitas células, em particular com muito linfócitos (Figura 40G e 40I). No grupo tratado com Mel, ainda pode-se observar presença de regiões características de hemólise (Figura 40H).

O baço de animais de todos os grupos apresentou a polpa branca e vermelha sem alterações (Figura 40J, 40K e 40L).

Assim, foram observados danos no fígado e glomérulos maiores nos rins em animais de todos os grupos e, ainda o tratamento com Mel causou hemólise evidente no pulmão, rins e baço, enquanto a formulação Completa não causou o mesmo efeito histopatológico.

Figura 40: Fotomicrografias de pulmão, figado, rim e baço após 23 dias do implante de células de mama 4T1 em camundongos Balb/c. **A, D, G, J)** Sem tratamento (Cont). **B, E, H, K)** Tratado com o peptídeo melitina extraído da peçonha de *Apis mellifera* (Mel). **C, F, I, L)** Tratado com partícula (Completa – QS, TPP, Pepdirecionador2, melitina, PEG). Seta grossa indica um infiltrado inflamatório; quadrado indica área de deterioração nuclear; seta fina indica vacuolização; circulo indica hemorragia; Coloração H&E.

5.5.2.5 Análises hematológicas e bioquímicas

Os dados hematológicos e bioquímicos obtidos nesse trabalho foram comparados aos dados citados na literatura por MIYASHIRO *et al.* (2010) e aos obtidos para o grupo sadio (controle negativo) por CARNEIRO (2011), sendo ambos utilizados como referência. Os animais sadios, os quais não tinham tumor e receberam tratamento com água, eram da mesma raça, estavam em condições ambientais e de manutenção idênticos aos tratados neste trabalho assim como com peso e idade (12 semanas) semelhantes.

Os resultados dos exames hematológicos dos grupos que receberam implante tumoral foram similares aos resultados das referências, com exceção do número de plaquetas que foi aproximadamente 45% menor nos grupos Cont e Mel, e 27% menor no grupo Completa em relação às referências, porém não houve diferença significativa entre os grupos (considerando P < 0,05), (Tabela 7).

mamano (media + SEM).							
	Cont	Mel	Completa	Sadio	Referência		
Hemácias (10 ⁶ /mm ³)	8,3 ± 0,5	8,1 ± 0,0	8,1	11,6 ± 2,2	7,3-10,5		
Hemoglobina (g/dL)	$13,3 \pm 0,7$	$12,8 \pm 0,0$	12,8	$15,4 \pm 0,4$	12,0-15,0		
Hematócrito (%)	$41,4 \pm 1,7$	$40,0 \pm 0,1$	39,4	$46,0 \pm 1,5$	35,0-50,0		
Plaquetas (10 ³ /mm ³)	277,0 ± 24,4	256,5 ± 84,2	331,0	454,6 ± 64,7	497,0		

Tabela 7: Dados hematológicos de camundongos Balb/c fêmea com carcinoma mamário (Média ± SEM).

Animais tratados com água (Cont), melitina (Mel) e formulação Completa (QS, melitina,TPP, PEG e Pepdirecionador2) por via intratumoral (2 mg/kg). Os valores do grupo sadio e referência foram obtidos na literatura. Os valores diferentes das referências estão destacados em negrito.

Os resultados para bastonetes, eosinófilos e basófilos de todos os grupos foram semelhantes às referências. Porém houve uma redução de aproximadamente 50% do número de leucócitos no grupo Mel em relação à referência, enquanto os outros grupos estavam com valores semelhantes à referência. Já os linfócitos foram diminuídos em 98%, aproximadamente, nos grupos Cont e Completa e 76% no grupo Mel. O contrário foi observado para o percentual de segmentados (neutrófilos), o qual foi aumentado em $6\times$, aproximadamente, em todos os grupos em relação à referência. Os monócitos apresentaram um aumento de 50%, aproximadamente, nos grupos Cont e Mel em relação ao grupo sadio; e o grupo Completa aumentou 6,5× em relação ao grupo sadio. Porém nenhum alteração foi considerada significativamente diferença (considerando P < 0,05), (Tabela 8).

	Cont	Mel	Completa	Sadio	Referência
Leucócitos ×10 ³ (/mm ³)	12,8 ± 29,0	6,2 ± 1,6	13,4	10,3 ± 0,3	12,0-13,0
Linfócitos (%)	$1,0 \pm 0,0$	16,2 ± 14,9	1,0	$79,3\pm9,1$	65,9-77,9
Bastonetes (%)	$0,\!0 \pm 0,\!0$	$0,0 \pm 0,0$	0,0	$1,0 \pm 1,0$	0,1-0,8
Segmentados (%)	94,0 ± 1,1	80,7 ± 14,2	86	17,3 ± 6,8	15,7-18,5
Eosinófilos (%)	$0,33 \pm 0,33$	$0,0 \pm 0,0$	0,0	$0,3 \pm 0,3$	2,0-2,7
Basófilos (%)	$0,0 \pm 0,0$	$0,0 \pm 0,0$	0,0	$0,0 \pm 0,0$	-
Monócitos (%)	4,6 ± 1,2	3,0 ± 0,8	13,0	$2,0 \pm 1,0$	1,0-1,1

Tabela 8: Resultados da contagem total e número relativo (%) de leucócitos em camundongos Balb/c fêmea com carcinoma mamário (Média \pm SEM).

Animais tratados com água (Cont), melitina (Mel) e formulação Completa (QS, TPP, Pepdirecionador2, melitina, PEG) por via intratumoral (2 mg/kg). Os valores do grupo sadio e referência foram obtidos na literatura. Os valores diferentes das referências estão destacados em negrito.

Por meio de análises do soro sanguíneo, podem-se verificar possíveis alterações no fígado e rins dos animais por meio de análises bioquímicas de ALT e creatinina, respectivamente. Os grupos Cont, Mel e Completa apresentaram valores de creatinina 50% abaixo dos valores das referências. Já na análise de ALT o grupo Mel apresentou valor 20% mais elevado do que as referências e o grupo Completa quase 50% maior do que as referências. Estas alterações não foram significativamente diferentes (considerando P < 0,05) (Tabela 9).

Tabela 9: Análise bioquímica obtida a partir do soro sanguíneo em camundongos Balb/c fêmea com carcinoma mamário (Média \pm SEM).

	Controle	Melitina	Completa	Sadio	Referência
Creatinina (mg/dL)	$0,0 \pm 0,0$	0,0 ± 0,0	0,07	0,13	0,13
ALT (U/L)	$31,0 \pm 8,1$	43,5 ± 16,7	65,0	35,0	35,0

Animais tratados com água (Cont), melitina (Mel) e formulação Completa (QS, melitina, TPP, Pepdirecionador2 e PEG) por via intratumoral (2 mg/kg). Os valores do grupo sadio e referência foram obtidos na literatura. Os valores diferentes das referências estão destacados em negrito.

5.6 Análises proteômica dos tumores

Foram identificadas 346 proteínas nas análises dos tumores das quais 38, 43 e 81 foram exclusivas dos grupos Cont, Mel e Completa, respectivamente. Os três grupos compartilharam 109 proteínas, 23 proteínas foram compartilhadas apenas pelos grupos controle e melitina, 20 proteínas foram compartilhadas apenas pelos grupos controle e completa, e 32 proteínas foram compartilhadas apenas pelos grupos completa e melitina (Figura 41 e Apêndice 1).

Das proteínas expressas no grupo controle 54% são de citoplasma, com função principal enzimática e transportadora de proteínas, enquanto os outros 48% foram distribuídos igualmente entre proteínas expressas no núcleo, mitocôndria e outros sítios

108
(secretadas, Golgi, sinapses, extracelulares, membranas). Das proteínas expressas no grupo tratado com melitina as de citoplasma, secretadas e membrana foram de igual modo expressas, totalizando 75%, com função principal de inibidor de proteases e sinalizadoras, enquanto os 25% restantes foram distribuídos entre proteínas nucleares e outras funções (mitocondriais, retículo endoplasmático, extracelulares). Já das proteínas expressas no grupo tratado com nanopartícula completa as proteínas de citoplasma e de núcleo foram igualmente expressas, totalizando 77%, com função relacionada ao desenvolvimento tumoral (transcrição, tradução, angiogênese, receptora de estrógeno) e outras antitumoral (influxo de cálcio, resposta inflamatória), enquanto os 23% restantes foram distribuídas entre outros locais (mitocondriais, secretadas, extracelulares, membranas) (Apêndice 2, 3 e 4).

Figura 41: Diagrama de Venn mostrando as proteínas detectadas em tumores entre os grupos que receberam os tratamentos Cont (água), Mel (2 mg/kg) e Completa (QS, TPP, Pepdirecionador2 RGD, melitina e PEG). O processo de separação dos peptídeos oriundos das proteínas utilizou coluna de fase reversa com gradiente de 3- 40% de fase móvel B por 200 minutos com fluxo de 600 nL/min a temperatura de 35°C. A identificação das proteínas foi possível por acoplamento a espectrômetro de massa utilizando modo de íon positivo.

6. DISCUSSÃO

Neste estudo, a melitina livre foi citotóxica, mesmo em baixas concentrações quando testada *in vitro*, e revelou atividade semelhante em células tumorais de mama e não tumorais necessitando. Por isso, ser associada em partículas para evitar degradação levando à inativação prematura e reconhecimento pelo sistema imunológico quando fossem testadas *in vivo*, e direcionada ao alvo específico, para evitar ou pelo menos minimizar a toxicidade em células não tumorais.

Para realizar o direcionamento da melitina foi escolhido inicialmente e sintetizado um peptídeo da região N-terminal de uma proteína codificada pelo herpesvírus. Este peptídeo interage com o receptor de quimiocina CXCR4, o qual é expresso apenas em algumas células tumorais de mama, como na MCF-7 funcionando, assim, como um provável antagonista deste receptor (ZHOU et al. 2000). Desta forma, a ligação do peptídeo com o receptor evitaria a polimerização da actina e consequente migração celular e metástase (ZHOU et al. 2000). No presente estudo, o peptídeo direcionador não foi ativo sobre a linhagem 4T1 por, talvez, esta linhagem celular apresentar pouca ou não apresentar expressão do receptor CXCR4, uma vez que é uma linhagem originária murina. Já sobre a linhagem MCF-7 o peptídeo diminuiu 20% da atividade celular, o que era esperado, pois há expressão do receptor nesta linhagem (MULLER et al. 2001). Porém, como esse peptídeo foi de síntese e purificação difícil e onerosa e, ainda, não apresentou atividade citotóxica contra a linhagem 4T1 o que potencializaria o efeito citotóxico em sinergismo com a melitina; foram, posteriormente, produzidas novas partículas contendo o peptídeo RGD para atuar como direcionador. Este peptídeo pode atuar como antagonista, inibindo o crescimento tumoral por ligação às integrinas, e por isso tem sido utilizado em estudos como direcionador (DESGROSELLIER & CHERESH, 2010).

A melitina foi associada pelo complexo formado pela interação entre QS e TPP por meio do método bem estabelecido de geleificação iônica o qual permitiu a estruturação de partículas que foram recobertas pelo peptídeo direcionador e PEG. Obteve-se associação de 100% para a melitina e aproximadamente 50%, em média, para o peptídeo direcionador. As altas EE são esperadas pelo método utilizado de geleificação iônico, no qual se obtêm taxas acima de 90%, segundo FAN et al. (2012). Ainda, a alta EE dos peptídeos podem ter sido favorecidas pela massa molecular média da QS selecionada (800 kDa), já a maior EE da melitina em relação ao peptídeo direcionador deve-se à maior interação, possivelmente eletrostática, com a QS na presença do poliânion (GAN & WANG, 2007). Esta EE não foi alterada com as variações de TPP e PEG, assim como foi observado por SHAH et al. (2009), que utilizaram o mesmo método de formação de partículas. Esse método, ainda, garante a estabilidade prolongada da nanopartícula em água, sem liberação do ativo. Isso foi observado por MEDEIROS, JOANITTI & SILVA (2014), os quais produziram nanopartículas semelhantes as produzidas neste trabalho (contendo QS,TPP e PEG) e não observaram liberação do peptídeo quando as nanopartículas estavam suspensas em água, durante 48 horas.

O TPP foi escolhido, dentre outros ânions que poderiam se ligar às aminas protonadas da QS, devido a ele ser apontado na literatura como não tóxico às células, em baixas concentrações, e formar as partículas na presença de QS de maneira rápida e espontânea. O TPP teve suas concentrações variadas, assim como posteriormente o PEG, isso visando à síntese de nanopartículas com tamanho entre 100 e 1000 nm, que fossem estáveis e citotóxicas apenas quando estivessem associadas à melitina Assim, foi observado que na variação de TPP o tamanho das partículas aumentava proporcionalmente com o aumento na quantidade do TPP e, ainda, que todas eram polidispersas e apresentavam aglomerados. Resultado semelhante foi encontrado por LIU & GAO (2009), que variaram a concentração de TPP de 0,25 a 2,5 mg/mL e observaram que a partir de 1,75 mg/mL as partículas aglomeravam e dificultavam a avaliação do diâmetro hidrodinâmico por DLS, assim como observado no presente estudo. Porém, com o aumento da concentração de TPP de 0,75 mg/mL chegando até 1,75 mg/mL, as partículas diminuíam de tamanho (280 para 210 nm), pois formavam mais ligações iônicas com a QS tornando as partículas mais compactas e, consequentemente, menores (LIU & GAO, 2009).

Todas as partículas formuladas neste trabalho apresentaram formato esférico e aglomerados, como foi observado pelas imagens obtidas por microscopia de força atômica. Devido à presença destes aglomerados e a formação de gelatina após ultrafiltragem em sistemas Amicon, testou-se homogeneizar a suspensão por agitação mecânica com ultraturrax e notou-se que este procedimento foi eficaz fazendo com que as partículas TPP2-1 diminuíssem o tamanho para cerca de 150 nm. Esta homogeneização no tamanho das partículas ocorreu devido à agitação desfazer a estrutura gelatinosa e os aglomerados formados, sem danificar expressivamente as partículas, uma vez que mesmo após este procedimento a EE dos peptídeos foi analisada e não foi observada liberação expressiva do ativo (melitina).

Ainda, para verificar possíveis alterações no tamanho e estabilidade das partículas, foram testados os PEG 2000 nas concentrações de 3,3 mg/mL, 6,7 mg/mL e 13,3 mg/mL e o PEG 5000 nas duas primeiras concentrações. Notou-se que as partículas aumentaram de tamanho de acordo com o aumento da concentração do PEG. SHAH *et al.* (2009) também observaram partículas maiores com o aumento da

concentração de PEG e relatam que isto é devido a ligações intermoleculares entre os grupamentos amina da QS com os grupamentos hidroxila do PEG que possuem cargas positivas e negativas, respectivamente. Adicionalmente, utilizando o PEG de maior massa molecular formou-se partículas com menor carga de superfície em módulo, consideradas instáveis, e com maior PdI. O mesmo foi observado por ZHANG *et al.* (2007), o qual relata que quanto maior a massa molecular do PEG, maior é a taxa de recobrimento da nanopartícula e consequentemente, menor a carga de superfície em módulo. Então foi escolhido o PEG 2000, que apresentou nanopartículas com PdI de 0,5 e potencial Zeta de 30 mV.

As nanopartículas foram todas dispersas em água para continuação do estudo, uma vez que em PBS as nanopartículas foram dissociadas, desfazendo as ligações iônicas entre a QS e o TPP, pela provável competição iônica dos sais presentes nesse tampão com a carga positiva da QS e a carga negativa do TPP. Ainda, as partículas produzidas com esse técnica possuem pH 5, aproximadamente, e, segundo FAN et al. (2012), quando aumenta o pH de nanopartículas, de QS e TPP de 4.7 para 8, a protonação da aminas da QS vai de 100 para 0 % e, com isso, a QS perde a capacidade de fazer ligações iônicas.

Após a caracterização e aperfeiçoamento da produção das partículas com base na morfologia, no tamanho e na carga de superfície das partículas com as variações de TPP e PEG, as atividades destes sistemas foram testadas sobre linhagens celulares. Partículas vazias, contendo QS e TPP, não devem ser ativas contra linhagens celulares (LIU & GAO, 2009). Porém, foi observado que todas as partículas, inclusive as vazias, produzidas com TPP 1-1 e 4-1 foram tóxicas para as linhagens de tumor de mama MCF-7 e 4T1, enquanto as partículas formuladas com TPP2-1 foram tóxicas apenas quando contendo o ativo melitina. Com isso, nota-se que deve haver uma proporção ideal entre a quantidade de TPP e QS, a qual foi definida para o presente estudo como 2 mg/mL de TPP. A adição de baixas concentrações de TPP permite a presença de aminas livres da QS, as quais podem ser atraídas pela carga negativa da superfície celular da linhagem tumoral e ter atividade direta sobre ela. Já a adição de uma concentração muito alta de TPP faz com que o excesso deste composto aniônico seja tóxico para as células, como foi observado por OLIVEIRA *et al.* (2011), que avaliaram o efeito do TPP sobre células sadias de fibroblasto e notaram que quanto maior sua concentração menor era a viabilidade celular.

Há poucos relatos na literatura que comparem o efeito do TPP na viabilidade celular. Geralmente compara-se a eficiência de encapsulamento e tamanho da partícula, que são dependentes da presença deste ânion. O efeito da atividade tumoral relacionado ao tipo e a quantidade de PEG também não é descrito na literatura. De acordo com ZHANG *et al.* (2007), a diferença no tipo de PEG, um com massa 2000 Da e outro 5000 Da, não altera a citotoxicidade da partícula, porém o aumento da quantidade de PEG reduziu a citotoxicidade em células HeLa. Resultados semelhantes foram observados no presente estudo principalmente sobre a linhagem não tumoral de fibroblastos NIH3T3, quando a quantidade de PEG 2000 foi aumentada de 6,7 mg/mL para 13,3 mg/mL. Isto deve ter ocorrido devido a um maior recobrimento das partículas com o aumento da concentração de PEG e, consequentemente, maior proteção da melitina e de cargas expostas dificultando, assim o contato destes com a célula.

Neste estudo, o peptídeo RGD livre e as partículas contendo-o não interferiram na viabilidade celular das linhagens tumorais de mama e nem da não tumoral quando testado *in vitro*. Apesar das integrinas serem expressas em todo o organismo, por serem receptores envolvidos na adesão celular, o RGD tem maior afinidade pelas do tipo $\alpha_v\beta_3$ e $\alpha_v\beta_5$, que são altamente expressas na angiogênese tumoral (LI & CHO, 2012). Porém, a linhagem 4T1 superexpressa as integrinas do tipo α_6 (WANG *et al.* 2011), podendo ser essa uma causa para a não atividade desse peptídeo observado *in vitro*. Outro motivo da inatividade do peptídeo RGD pode ter sido por este estar isolado e linear, sendo que outros estudos mostram o RGD ciclico inserido sinteticamente a uma sequência polipeptídica maior, a polímeros e a estes mais um ativo antitumoral; mas todos apresentaram direcionamento às integrinas. De fato, imagens de tomografía por emissão de pósitrons (PET) em camundongos Balb/c revelaram que a estrutura sintética Cu-NOTA-RGD-Bombesina teve maior acúmulo e atividade no tumor do que quando o Cu-NOTA-RGD isolados mais o Cu-NOTA-Bombesina isolado, os quais tiveram maior acumulo renal e intestinal, respectivamente (LIU *et al.* 2009). Outro motivo, ainda, pode ser a baixa concentração deste peptídeo, o qual pode não ter efeito ou até mesmo ter efeito antagonista em baixas concentrações como relatado na literatura, onde antagonistas de integrina em baixas concentrações atuaram como agonistas de integrina (DESGROSELLIER & CHERESH, 2010).

Durante o presente estudo, em um dos experimentos também ocorreu a hidrólise parcial da peçonha de abelha por proteinases endógenas e com isto um outro peptídeo, fragmento da melitina, tornou-se o mais abundante desta peçonha. Este peptídeo, assim como a peçonha total, também foram associados para testar seus possíveis efeitos contra as linhagens celulares. Apesar do peptídeo corresponder a um fragmento da melitina (Cterminal), ele não alterou a viabilidade das linhagens celulares nem livre e nem encapsulado, provavelmente devido a este ser uma região C-terminal da melitina. Porém a região N-terminal da melitina que é responsável por sua estrutura em alfa-hélice e sua atividade citotóxica (DEGRADO *et al.* 1982; Yang *et al.* 2001).

Já a peçonha bruta livre diminuiu de 30 a 50% das viabilidade das linhagens testadas e quase não teve atividade quando associada. Isto também pode ter ocorrido

devido ao tratamento ter sido por apenas 24 horas e este não ter sido tempo suficiente para o total efeito sobre as células *in vitro*, assim como foi mostrado por IP *et al.* (2008), que somente após 48 horas de tratamento com a peçonha da abelha sobre a linhagem celular MCF-7 relataram que houve morte celular por apoptose após ativação da cascata de caspases e liberação do citocromo c. Além disso, a principal causa da baixa atividade da peçonha pode ter sido pela hidrólise parcial da melitina contida na peçonha, a qual é reconhecida como o principal componente e, consequentemente, a principal responsável pela toxicidade da peçonha de abelha *Apis mellifera* e confirmaram que a melitina é o principal componente da peçonha com atividade antitumoral, quando testados sobre a linhagem tumoral de mama MCF-7.

No estudo *in vitro* foi observada EE da melitina de 100 % pela técnica de geleificação iônica. As partículas de QS desenvolvidas foram otimizadas utilizando o peptídeo RGD como direcionador, 2 mg/mL de TPP e 13,3 mg/mL de PEG 2000. Esta formulação apresentou citotoxicidade relevante contra linhagens tumorais e não tumoral necessitando então de uma segunda parte do estudo com as análises *in vivo* visando à verificação da possível eficácia das partículas sobre as células tumorais, à desejável baixa toxicidade sistêmica no organismo e ao direcionamento ou pelo menos retenção das partículas no tumor.

Assim, as análises *in vivo* tiveram início com um teste piloto, no qual camundongos Balb/c fêmeas receberam implante de células tumorais de mama 4T1, sendo que cinco receberam o implante ortotópico, na quarta mama, e os outros cinco receberam implante ectópico no flanco. Todos os animais desenvolveram tumor clínico palpável com 12 dias após o implante. O mesmo tempo foi observado por CARNEIRO (2011), a qual também induziu tumor na 4^a mama. A reprodutividade desse tipo de

implante se dá pois essa linhagem celular foi originária e melhorada de tumor na 4^a mama em Balb/c fêmea e, desta forma o implante é fácil, bem sucedido, e as células proliferam rapidamente em outros animais da mesma espécie após duas semanas do implante tumoral (PULASKI & ROSENBERG, 2000).

As análises histopatológicas também foram semelhantes entre os dois tipos de implantes, nos quais o tumor foi invasivo para o tecido adiposo e muscular, como o observado por CARNEIRO *et al.* (2010), mas não teve metástase para os outros órgãos analisados, apesar de apresentar algumas alterações. A metástase pela linhagem 4T1 para órgãos como pulmões, fígado, linfonodos e ossos, está associada com áreas de necrose e inflamação segundo TAO *et al.* (2008), sendo estas observadas nesse estudo, principalmente regiões de inflamação. Porém, apesar desta linhagem desenvolver espontaneamente metástase, assim como o tumor de mama em humanos, isso ocorre após cinco semanas do implante tumoral e nesse estudo os órgãos foram analisados apenas duas semanas após o implante tumoral, indicando que o desenvolvimento tumoral estava progredindo para possível ocorrência de metástases.

Já quanto ao volume tumoral, o implante ortotópico apresentou uma maior tendência de crescimento quando comparado ao ectópico, isso, pois o primeiro se desenvolve no seu microambiente próprio, o qual sofre influências como a de hormônios, peptídeos e de fatores de crescimento específicos (CARNEIRO *et al.* 2010). Ainda o tumor do implante ortotópico apresentou características morfológicas que mimetizam melhor o desenvolvimento tumoral de mama humano. Desta forma, o implante ortotópico foi mais indicado para o estudo.

Apesar das vantagens citadas sobre o implante ortotópico na 4ª mama (inguinal), a localização desta mama prejudicou as análises por Micro-CT por ser na mesma direção da perna do animal, a qual gerava artefatos pelo espalhamento de luz no tecido ósseo e assim impossibilitava a visualização e medida do tumor. Por isso, posteriormente modificou-se a localização do implante tumoral bem como a tensão aplicada na aquisição das imagens foi aumentada. Na maior tensão houve diminuição de artefatos, porém perderam-se mais informações dos tecidos moles, os quais eram de maior interesse pela presença dos tumores. Com isso a utilização do Micro-CT nesse estudo não foi eficaz na identificação de tumores internos, pela ausência de contraste, assim como não foi eficaz para medida dos tumores de mama.

Assim, o experimento dos tratamentos teve continuidade com o implante tumoral na 3^{a} mama (torácica). Porém o desenvolvimento tumoral com implante na 3^{a} mama foi diferente do desenvolvimento tumoral com implante na 4^{a} mama. No implante na 3^{a} mama o desenvolvimento tumoral não foi uniforme entre os animais, sendo que metade não apresentou tumor palpável mesmo após 16 dias do implante. MATHENGE *et al.* (2014) observou, após o implante de 7×10^{3} células 4T1 na 3^{a} mama, tumor palpável entre o 10° e 16° dia, o volume tumoral no 20° dia variou de 6 a 8 mm e alguns animais desenvolveram tumor palpável tardio, sendo estes resultados semelhantes aos descritos nesse estudo.

O tumor gerou metástases em forma de pólipos no peritônio da maioria dos animais, o que não é frequente acontecer, somente quando o tumor primário está maior que 5 mm (PULASKI & ROSENBERG, 2000), como os observados. Esse desenvolvimento tumoral mais agressivo fez com que os animais apresentassem comportamento diferenciado (irritabilidade e agressividade) levando até mesmo à morte de alguns animais avaliados. Isto se deu, provavelmente, à 3^a mama ser mais responsiva aos hormônios e a fatores de crescimento do que a 4^a mama. Porém, em nenhum dos animais dos grupos tratados com melitina e com formulação completa, a qual tem como princípio ativo a melitina, foi observado metástase, possivelmente, pois esse peptídeo atua inibindo importantes vias de sinalização em câncer de mama e suprime a mobilidade celular induzida pelo fator de crescimento (JEONG *et al.* 2014). Estudos realizados por ORŠOLIĆ *et al.* (2003) obtiveram resultados semelhantes, nos quais os animais que receberam tratamento intratumoral com veneno de abelha não desenvolveram pólipos, diminuiram o volume tumoral e ainda não ocorreram mortes nesse grupo.

Quando comparado o volume tumoral notou-se que os tumores de todos os grupos continuaram crescendo mesmo com os tratamentos e que os tumores dos animais tratados com melitina e formulação completa, ambas com 2 mg/kg a cada dois dias no total de quatro doses, tiveram uma tendência maior de crescimento do que o controle, sendo este fato diferente do observado na literatura, na qual os tratamentos diminuíram o volume tumoral, em tratamentos com aplicação intratumoral. ZANG *et al.* (2013), testou o efeito de cecropina, um peptídeo catiônico isolado de insetos, assim como a melitina, sobre tumor desenvolvido na 4ª mama pela linhagem 4T1 em animais Balb/c, e notou diminuição do tumor em relação ao controle. SOMAN *et al* (2009), também observaram regressão dos tumores tratados com nanopartículas de perfluorocarbono contendo melitina (2,5 mg/kg a cada três dias no total de cinco doses) quando comparado ao controle. Nanopartículas produzidas por PAN *et al.* (2011), também de perfluorocarbono, foram mais ativas sobre a linhagem de melanoma, B16F10, reduziram o volume tumoral quando aplicadas intravenosamente (8,5 mg/mL).

Essa tendência de crescimento nos tumores dos grupos melitina e completa pode ter ocorrido pela formação de edema e não necessariamente de massa tumoral sólida. A atividade antitumoral dos tratamentos pode ser comprovada com as imagens histológicas dos tumores, nas quais houve muitos infiltrados inflamatórios e necrose tumoral nos grupos melitina e completa. Ainda houve diminuição representativa de células neoplásicas, evidenciada com o reaparecimento de células adiposas e células musculares, principalmente nos animais tratados com melitina livre.

Assim, a diminuição de células neoplásicas do tratamento com a melitina livre foi maior do que da mesma molécula associada em nanopartículas de QS. Isso se deve ao fato da melitina, a qual é o componente da nanopartícula que tem a atividade antitumoral, estar associada e desta forma ser liberada progressivamente sobre o tumor promovendo uma atividade mais lenta em relação à molécula livre (MEDEIROS, JOANITTI & SILVA). Assim, corrobora os resultados do teste *in vitro* discutidos anteriormente, nos quais a melitina livre era mais ativa do que quando associada. SOMAN *et al.* (2009) analisou os efeitos de melitina livre e associada *in vitro* sobre a linhagem B16F10 e percebeu que este peptídeo livre foi mais ativo que o encapsulado diminuindo em quase 100% a viabilidade celular quando livre, enquanto o encapsulado diminuiu apenas 60% da viabilidade celular na mesma concentração. Desta forma, para que a nanopartícula tenha atividade igual à melitina livre deve-se aumentar a concentração deste peptídeo na nanopartícula, como o apresentado no estudo de HUANG *et al.* (2013), no qual foi utilizado 20 mg/Kg de melitina nas partículas e estas não foram tóxicas para o organismo.

Nas análises histológicas dos órgãos também se observou regressão dos infiltrados inflamatórios nos animais tratados com melitina livre e formulação de partícula completa em relação ao controle. Porém, nos animais tratados com melitina livre houve intensa presença de células vermelhas, principalmente no pulmão e rim mostrando com isso que, apesar da aplicação intratumoral, a melitina livre foi tóxica sobre outros órgãos mesmo utilizando-a na concentração de 2 mg/Kg, que é bem menor do que a indicada como dose letal (3-4 mg/Kg). Testes de hemólise realizado por SOMAN *et al.* (2009) e por HUANG *et al.* (2013) revelaram que a melitina livre é

hemolítica em relação à associada por eles em diferentes polímeros. No mesmo estudo de SOMAN *et al.* (2009) mostrou que quando a melitina era injetada na circulação sanguínea ela se acumula rapidamente no pulmão, baço e fígado, sendo eliminada em menos de 50 minutos, enquanto o encapsulado foi eliminado apenas após 330 minutos em análises da biodistribuição da melitina (1 mg/Kg).

As alterações no figado foram causadas pelo tumor, uma vez que essas alterações foram evidenciadas em todos os grupos através de análises histológicas. Porém as alterações no figado foram ainda maiores nos grupos tratados com melitina e com nanopartícula completa, de acordo com as análises bioquímicas de ALT, a qual foi aumentada nos grupos melitina e completa e apresentou nível normal no grupo controle. Já sobre o rim não teve alteração na análise bioquímica de creatinina, assim as poucas alterações observadas, em todos os grupos, nas células deste órgão pela análise histológica se devem ao tumor e não aos tratamentos. SOMAN *et al.* (2009) perceberam, no tratamento utilizando nanopartícula contendo melitina, valores de creatinina normal e de enzimas hepáticas aumentandas, assim como observado no presente trabalho.

Nas análises hematológicas foram observados alterações nos segmentados em todos os grupos experimentais, a qual foi causada possivelmente pela presença do próprio tumor. Os monócitos também foram aumentados em todos os grupos devido ao tumor, como uma resposta imunológica a algo exógeno quando comparados a animais sadios e à referência. Já as plaquetas e os linfócitos foram diminuídos em todos os grupos, sendo isto comumente observado quando um organismo encontra-se em estresse causado por tumores (MOCHALOVA *et al.* 2014), enquanto os leucócitos foram diminuídos apenas no grupo tratado com melitina, por provável toxicidade aos animais desse grupo pelo peptídeo.

As alterações observadas acima, também foram confirmadas pela análise proteômica dos tumores. Nesta abordagem, os animais do grupo controle, que não receberam os tratamentos, continuaram o processo de proliferação celular e metástase expressando muitas proteínas relacionadas a estes. Segundo ORŠOLIĆ (2013), os tumores em proliferação celular expressam, dentre várias proteínas, principalmente moléculas de adesão celular, proteases, fatores de angiogênese, fatores de crescimento e citocinas.

Proteínas diferentes, a maioria delas relacionadas a efeitos antitumorais, foram expressas no tratamento com melitina. A utilização deste peptídeo sobre diversos tumores já foi descrita na literatura e comprovado seu efeito no controle da apoptose, crescimento e ciclo celular, uma vez que este peptídeo atua inibindo algumas vias como aquelas relacionadas aos fatores de crescimento, caspases, influxo de cálcio, sinalização celular e proteinases (ORŠOLIĆ, 2013). Neste trabalho, 45 proteínas foram encontradas expressas apenas no tumor que recebeu tratamento com melitina. Estas proteínas corroboram o efeito citotóxico da melitina por diversas vias, uma vez que foram expressas nesse estudo proteínas que atuam na diferenciação e ciclo celular com o influxo de cálcio pela célula, como a S100 e a Reticulocalbina-1, proteínas que são expressas apenas quando há dano na membrana celular, evidenciando seu efeito hemolítico, como a LDH e citocromo c, proteínas que transmitem sinais do meio extracelular para o intracelular, como as proteínas G (ORŠOLIĆ, 2013; SOMAN *et al.* 2009).

Enquanto no tratamento com melitina foram expressas mais proteínas com efeito antitumoral do que as com efeito pró-tumoral, evidenciando uma maior e mais rápida atividade da melitina livre na regressão tumoral; no tratamento com as nanopartículas completa, a expressão de proteínas tumorais e antitumorais foi similar qualitativamente, evidenciando um possível início de resposta antitumoral. Neste último tratamento foram expressas proteínas relacionadas ao desenvolvimento tumoral como a queratina, receptora de estrógeno; proteína heat shock, envolvida com a proliferação celular; citocina quitinase, envolvida no processo de inflamação e remodelação do tecido; proteínas ribossomais relacionadas à tradução; assim como foram expressas proteínas antitumorais como aquelas produtoras de espécies reativas de oxigênio e citocromo c, as quais ativam as caspases e levam à apoptose (IP *et al.* 2008; SOMAN *et al.* 2009).

Dentre as análises das proteínas expressas exclusivamente nos tratamentos ou no controle não foi expressa nenhuma integrina, apesar deste grupo de proteínas serem superexpressos em tumores principalmente as α 6 β 4 e α v β 3 em tumores de mama e por isso serem alvos para entrega seletiva de ativos antitumorais, segundo a literatura (DESGROSELLIER & CHERESH, 2010). Uma observação a ser destacada é que este pode ser mais um motivo para a menor atividade das nanopartículas contendo melitina (Completa) comparada à melitina livre nos tratamentos *in vivo*, uma vez que o RGD presente nas nanopartículas poderia ter atuado como antagonista sobre as integrinas e aumentar a atividade e seletividade destas sobre o tumor, caso expressas. SOMAN *et al.* (2009), observou que nanopartículas com um antagonista de integrina tiveram a mesma atividade no crescimento tumoral *in vivo* que partículas na ausência do antagonista. Assim, o RGD aparentemente não teve atividade seletiva, além dos prováveis motivos anteriormente explicados, também pela ausência de integrinas expressas, sendo então possível a retirada deste peptídeo das nanopartículas sem que eventualmente tivessem alterações significativas nos efeitos antitumorais.

Todavia, ambos os tratamentos (melitina livre e nanoparticulada) foram ativos sobre as células tumorais diminuindo as células neoplásicas, observadas nas análises histopatológicas e, também, inibindo o desenvolvimento tumoral, observados nas análises de proteômica. Porém a nanopartícula completa revelou-se mais indicada para tratamento *in vivo*, quando comparada a melitina livre, uma vez que essa última foi hemolítica no rim e pulmão. Porém, para que a nanopartícula completa tenha maior atividade sobre as células tumorais, de modo que fique similar ao efeito da melitina livre, deve-se aumentar a concentração de melitina na nanopartícula ou mesmo a quantidade de formulação aplicada em estudos futuros.

7. CONCLUSÕES

- As partículas de QS produzidas com 1 mg/mL, 2 mg/mL ou 4 mg/mL de TPP foram polidispersas (PdI de 0,5 a 1). Apresentaram distribuição geralmente bimodal, com uma ocorrência de uma subpopulação de partículas com 100 nm e outra subpopulação de partículas com cerca de 1000 nm, quando contendo todos os componentes (completas). Estas partículas tiveram estabilidade coloidal considerada de moderada a excelente com (potencial Zeta de 20 a 60 mV);
- A eficiência de encapsulamento revelou uma associação de cerca de 100% para melitina e 50%, em média, para os peptídeos direcionadores. As partículas produzidas apresentaram formato esférico e com presença de aglomerados;
- A utilização de ultraturrax nas partículas produzidas diminuiu o tamanho das partículas e desfez a formação gelatinosa e os aglomerados sem liberar a melitina. Após a utilização deste procedimento foram obtidas partículas com 150 nm nas formulações com 2 mg/mL de TPP;
- A alteração do tipo de PEG e o aumento da concentração deste e de TPP leva ao aumento no tamanho das partículas. Foram escolhidas as partículas com 2 mg/mL de TPP e 13,3 mg/mL de PEG 2000 para o decorrer dos estudo;
- A partícula desenvolvida e otimizada tem possivelmente todos os componentes dispersos na matriz e superfície;
- As partículas foram testadas quanto aos seus efeitos sobre a viabilidade celular das linhagens 4T1 e MCF-7. Todas as partículas produzidas com 1 mg/mL e 4 mg/mL de TPP foram tóxicas *in vitro* sobre as duas linhagens, enquanto que as produzidas com 2 mg/mL de TPP foram tóxicas apenas quando formuladas com o ativo melitina;

- O aumento da concentração de PEG nas partículas reduz a citotoxicidade *in vitro* na linhagem não tumoral NIH3T3;
- A peçonha da abelha parcialmente hidrolisada e o peptídeo mais abundante presente nesta peçonha não são ativos *in vitro* contra as linhagens celulares testadas assim como a melitina intacta demonstrou;
- O implante ortotópico é mais indicado do que o implante ectópico, pois além de se desenvolver sobre a influência do seu microambiente natural, ainda desenvolve tumor único e morfologicamente uniforme entre os animais;
- Nem o implante ectópico e nem o ortotópico na 4^a mama gera metástase para órgãos e nem forma pólipos após 20 dias do implante tumoral;
- O implante na 3^a mama gera metástase na forma de pólipos ao longo do peritônio precocemente levando à alterações clínicas e até mesmo à morte dos animais. Adicionalmente, não se desenvolve uniformemente e nem gera tumor clínico palpável em todos os animais após duas semanas do implante tumoral, por isso a análise da eficácia do tratamento é dificultada;
- A medida do volume tumoral é mais precisa utilizando o paquímetro ao Micro-CT nas condições investigadas no presente estudo;
- O uso da Micro-CT para acompanhamento do desenvolvimento tumoral gerou menos artefatos com tensão de 70 kV do que 50 kV, porém informações dos tecidos onde se encontravam os tumores foram comprometidas, sendo necessário a utilização de contraste;
- Os tratamentos com melitina e nanopartícula completa *in vivo* não diminuíram o volume tumoral, pois causaram edema, mas apresentaram regressão das células neoplásicas de acordo com análises histológicas;

- Os tratamentos com melitina e nanopartícula completa aumentaram os níveis de ALT no sangue dos animais por provável dano hepático;
- Os números absolutos de plaquetas e relativos de linfócitos diminuíram em todos os grupos como consequência do tumor, enquanto o número de leucócitos totais diminuiu apenas no grupo tratado com melitina;
- Os números de monócitos e segmentados aumentaram em todos os grupos também possivelmente como consequência do tumor;
- O tratamento com 2 mg/Kg de melitina livre aparentemente possibilitou a diminuição da presença de células neoplásicas no tumor, mas causou hemólise nos pulmões e rins, porém não acarretou na morte de nenhum animal;
- Proteínas relacionadas à progressão tumoral foram expressas nos tumores animais do grupo controle; poucas proteínas relacionadas a progressão tumoral e muitas antitumorais e, ainda, relacionadas a danos na membrana nos tumores do grupo tratado com melitina; e proteínas tumorais e antitumorais em expressão similar nos tumores do grupo tratado com nanopartícula completa;
- O tratamento com nanopartícula completa apresentou menor, ou mais lenta, diminuição na quantidade de células neoplásicas presentes no tumor do que com a melitina livre, mas não foi hemolítico sobre os órgãos avaliados;
- O tratamento com nanopartícula completa mostrou atividade antitumoral semelhante à melitina livre e, ainda, não causou hemólise em órgãos, sendo por isso, promissora para o tratamento antitumoral de mama, porém é necessário mais estudos para melhor entendimento desta nanopartícula;
- Quatro doses do tratamento não foram suficientes para eliminação do tumor, sendo necessárias doses adicionais ou maior concentração de melitina na formulação de partículas completa.

8. REFERÊNCIAS BIBLIOGRÁFICAS

ALVES, C. H. B. S.; KUPERMAN, H., DICHTCHEKENIAN, V.; DAMIANI, D.; MANNA, T. D.; CRISTÓFANI, L. M.; ODONE, V.; SETIAN, N. 2004. Growth and puberty after treatment for acute lymphoblastic leukemia. **Rev. Hosp. Clin.** v. 59 (2), p. 67-70.

BANKS, B. E. C. & SHIPOLINI, R. A. 2013. Venoms of the Hymenoptera: Biochemical, Pharmacological and Behavioural Aspects. p. 330-403.

BERTRAND, N.; WU, J.; XU, X.; KAMALY, N.; FAROKHZAD, O. C. 2014. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. **Adv Drug Deliv Rev**. v. 66, p. 2-25.

BODEK, G.; RAHMAN, N. A.; ZALESKA, M.; SOLIYMANI, R.; LANKINEN, H.; HANSE, W.; HUHTANIEMI, I.; ZIECIK, A. J. 2003. A novel approach of targeted ablation of mammary carcinoma cells through luteinizing hormone receptors using Hecate-CG β conjugate. **Breast Cancer Research and Treatment**. v. 79, p. 1-10.

CALVO, P. C.; REMUNNAN-LOPEZ, J. L.; VILA-JATO, M. J. ALONSO. 1997. Novel hydrophilic chitosan–polyethylene oxide nanoparticles as protein carriers. **J. Appl. Polym. Sci.** v. 63, p. 125-132.

CARNEIRO, M. L. B. 2011. Efeitos biológicos de citrato de ródio livre e de sua associação a nanopartículas magnéticas e a magnetolipossomas em células de carcinoma mamário: estudos *in vitro* e *in vivo*. Tese de doutorado. p 1-139. Brasília-DF.

CARNEIRO, M. L. B.; JOANITTI, G. A.; LONGO, J. P. F.; PEIXOTO, R. C. A.; BAO, S. N. 2010. Microscopy features of mice cancer models induced by tumor cell transplantation and chemical agents. **Microscopy: Science, Technology, Applications and Education**. p. 946-952.

CHAN, W. C.; WHITE, P. D. 2000. Fmoc solid phase peptide synthesis a practical approach. Ed. Oxford. Nova Iorque.

CHENG, J; TEPLYA, B. A.; SHERIFIA, I.; SUNGA, J.; LUTHERA, G.; GUA, F. X.; LEVY-NISSENBAUMA, E.; RADOVIC-MORENO, A. F.; LANGERA, R.; FAROKHZAD, O. C. 2007. Formulation of functionalized PLGA–PEG nanoparticles for in vivo targeted drug delivery. **Biomaterials**. v. 28, p. 869-876.

CHO, H. J.; JEONGA, Y. J.; PARKA, K.K.; PARKA, Y. Y.; CHUNGC, I. K.; LEED, K. G.; YEOD, J. H.; HAND, S. M.; BAEB, Y. S.; CHANG, Y. C. 2010. Bee venom suppresses PMA-mediated MMP-9 gene activation via JNK/p38 and NF-B-dependent mechanisms. J. Ethnopharmacology. v.127, p. 662-668.

DEGRADO, W. F.; MUSSO, G. F.; LIEBER, M.; KAISER, E. T.; KÉZDY, F. J. 1982. Kinectics and mechanism of hemolysis induced by melittin and by a synthetic melittin analogue. **J. Biophys.** v.37, p. 329-338.

DEROSE, Y. S.; GLIGORICH2, K. M.; WANG, G.; GEORGELAS, A.; BOWMAN, P.; COURDY, S. J.; WELM, A. L.; AND WELM, B. E. 2013. Patientderived Models of Human Breast Cancer: Protocols for *In vitro* and *In vivo* Applications in Tumor Biology and Translational Medicine. **NIH-Curr Protoc Pharmacol.** p. 1-52.

DESGROSELLIER, J. S. & CHERESH, D. A. 2010. Integrins in cancer: biological implications and therapeutic opportunities. **Nature Reviews Cancer.** v. 10, p. 9-22.

DEWARD, A. D.; KOMORI, J.; LAGASSE, E. 2014. Ectopic transplantation sites for cell-based therapy. **Organ Transplant**. v.2, p. 169-74.

DIMRI, G.; BAND, H.; BAND, V. 2005. Mammary epithelial cell transformation: insights from cell culture and mouse models. **Breast Cancer Res**. v. 7(4), p. 171-179.

FAN, W.; YAN, W.; XU, Z. NI, H. 2012. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. **Colloids and Surfaces B: Biointerfaces.** v. 90, p. 21-27.

FUENTES, M. G.; ALONSO, M. J. 2012. Chitosan-based drug nanocarriers: Where do we stand?. J. Contr. Release. v. 161, p. 496-504.

GAN, Q.; WANG, T. 2007. Chitosan nanoparticle as protein delivery carrier-Systematic examination of fabrication conditions for efficient loading and release. **Colloids Surf., B.** v.59, p. 24-34.

GARCIA-FUENTES, M. & ALONSO, M. J. 2012. Chitosan-based drug nanocarriers: where do we stand?. J Control Release. v. 161(2), p. 496-504.

GU, F. X.; KARNIK, R.; WANG, A. Z.; ALEXIS, F.; LEVY-NISSENBAUM, E.; HONG, S.; LANGER, R. S.; FAROKHZAD, O. C. 2007. Targeted nanoparticles for cancer therapy. **Nano Today**, v. 2 (3), p. 14-21.

HEINEN, T. E.; VEIGA, A. B. G. Arthropod venoms and cancer. 2011. Toxicon. v. 57, p. 497-511.

HONARY, S. & ZAHIR, F. 2013. Effect of Zeta Potential on the Properties of Nano-Drug Delivery Systems - A Review. **Trop J Pharm Res**. v. 12 (2), p. 255-264.

HOSKIN D. W. & RAMAMOORTHY, A. 2008. Studies on anticancer activities of antimicrobial peptides. **Biochimica et Biophysica Acta**. v. 1778, p. 357-375.

HUANG, C.; JIN, H.; QIAN, Y.; QI, S.; LUO, H.; LUO, Q.; ZHANG, Z. 2013. Hybrid Melittin Cytolytic Peptide-Driven Ultrasmall Lipid Nanoparticles Block Melanoma Growth in Vivo. **ACS Nano**. v. 7 (7), p. 5791-5800.

Instituto Nacional de Câncer. INCA. Ministério da Saúde. 1996 – 2012. Disponível em: http://www.inca.gov.br/conteudo_view.asp?id=322 . Acesso em: 18/03/2013.

IP, S;, LIAO, S.; LIN, S. Y.; LIN, J. P.; YANG, J. S.; LIN, M. L.; CHEN, G. W.; LU, W. F.; LIN, M. W.; HAN, S. M.; CHUNG, J. G. 2008. The role of mitochondria in bee venom-induced apoptosis in human breast cancer MCF7 cells. In vivo. v. 22 (2), p. 237-246.

JEONG, Y.; CHOI, Y.; SHIN, J.; CHO, H.; KANG, J.; PARK, K.; CHOE, J.; BAE, Y.; HAN,S.; KIM, C.; CHANG, H.; CHANG, Y. 2014. Melittin suppresses EGF-induced cell motility and invasion by inhibiting PI3K/Akt/mTOR signaling pathway in breast cancer cells. **Food and Chem Toxicol**. p. 1-8.

JIN, S. & YE1, K. 2013. Targeted Drug Delivery for Breast Cancer Treatment. Anti-Cancer Drug Discovery. v. 8, p. 143-153.

JOANITTI, G. A & SILVA, L. P. 2013. The Emerging Potential of Byproducts as Platforms for Drug Delivery Systems. **Curr Drug Targets**. v. 15, p. 478-485.

KAISER, E.; COLESCOTT, R. L.; BOSSINGER C. D.; P. I. COOK. 1970. Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. **Anal. Biochem**. v. 34 (2), p. 595-598.

KLOCEK, G. 2008. Melittin Interaction with Sulfated Sugars and Cell Membranes. Dissertação de mestrado. p. 1-133. Basel.

LEITE, J. R. S. A.; SILVA, L. P.; RODRIGUES, M. I. S.; PRATES, M. V.; BRAND, G. D.; LACAVA, B. M.; AZEVEDO, R. B.; BOCCA, A. L.; ALBUQUERQUE, S.; BLOCH JR, C. 2005. Phylloseptins: a novel class of antibacterial and anti-protozoan peptides from the *Phyllomedusa* genus. **Peptides**. v. 26, p. 565-573.

LI, Z. J. & CHO, C. N. Peptides as targeting probes against tumor vasculature for diagnosis and drug delivery. 2012. Journal of Translational Medicine. v. 10 (1).

LIU, H.; GAO, C. 2009. Preparation and properties of ionically cross-linked chitosan nanoparticles. **Polym. Adv. Technol.** v. 20, p. 613-619.

LIU, Z.; LI, Z.; CAO, Q.; LIU, S.; WANG, F.; CHEN. X. Small-Animal PET of Tumors with ⁶⁴Cu-Labeled RGD-Bombesin Heterodimer. 2009. **The journal of nuclear medicine**. v. 50 (7), p. 1168-1177.

MATHENGE, E. G.; DEAN, C. A.; CLEMENTS, D.; VAGHAR-KASHANI, A.; PHOTOPOULOS, S.; COYLE, K. C.; GIACOMANTONIO, M.; MALUETH, B.;

NUNOKAWA, A.; JORDAN, J.; LEWIS, J. D.; GUJAR, S. A.; MARCATO, P.; LEE, P. W. K.; GIACOMANTONIO, C. A. 2014. Core needle biopsy of breast cancer tumors increases distant metastases in a mouse model. **Neoplasia**. v. 16, n. 11, p. 950-960.

MEDEIROS, K. A.; JOANITTI, G. A.; SILVA, L. P. 2014. Chitosan nanoparticles for dermaseptin peptide delivery toward tumor cells in vitro. **Anti-Cancer Drugs**. v. 25 (3), p 323-331.

MIYASHIRO, S. I.; MASSIRONI, S. M. G.; MORI, C. M. C.; MAIORKA, P. C. 2010. Caracterização fenotípica do camundongo BALB/c mutante anêmico. Anais da semana científica Benjamim Eurico Malucelli. p. 149-150.

MISRA, S. K.; YE, M.; KIM, S.; PAN, D. 2015. Defined Nanoscale Chemistry Influences Delivery of Peptido-Toxins for Cancer Therapy. **PLoS One**. v. 10 (6), p. 1-20.

MOCHALOVA, A. E.; KORYAGIN, A. S.; SALOMATINA, E. V.; DYDYKINA, V. N.; ZOTOVA, YU. D.; SMIRNOVE, L. A. 2014. Anticancer Activity of Multicomponent Nanostructured System Gold Nanoparticles-Apitoxin-Chitosan. Journal of Nanotechnology in Diagnosis and Treatment. v. 2 (1), p.11-16.

MOUSA, S. A. & AND BHARALI, D. J. 2011. Nanotechnology-Based Detection and Targeted Therapy in Cancer: Nano-Bio Paradigms and Applications. **Cancer**.v.3, p. 2888-2903.

MULLER, A. M.; HOMEY, B.; SOTO, H.; GE, N.; CATRON, D.; BUCHANAN, M. E.; MCCLANAHAN, T.; MURPHY, E.; YUAN, W.; WAGNER, S. N.; BARRERAK, J. L.; MOHARK, A.; STEGUIK, E. V.; ZLOTNIK, A. 2001. Involvement of chemokine receptors inbreast cancer metastasis. **Nature.** v. 410, p. 50-56.

MURPHY, J. B. & KIES, M. W. (1960) Note on spectrophotometric determination of proteins in dilute solutions. **Biochim. Biophys**. Acta 45, p.382-384.

OLIVEIRA, R. P.; OLIVEIRA, A. P.; GASPAR, C.; SILVESTRE, S.; MARTINEZ, J. O.; AMARALD, M. H.; BREITENFELD, L. 2011. Sodium Tripolyphosphate: An excipient with intrinsic in vitro anti-Candida Activity. Int. J. Pharma. v. 421, p. 130-134.

ORSOLIK, N. 2013. Possible Molecular Targets of Bee Venom in the Treatment of Cancer: Application and Perspectives. Forum on Immunopathological Diseases and Therapeutics. v. 4 (3–4), p. 275-315.

PALMEIRA-DE-OLIVEIRA, R.; PALMEIRA-DE-OLIVEIRAA, A.; GASPAR, C.; SILVESTRE, S.; MARTINEZ-DE-OLIVEIRAA, J; AMARALD, M. H.; BREITENFELD, L. 2011. Sodium Tripolyphosphate: An excipient with intrinsic in vitro anti-Candida Activity. **International Journal of Pharmaceutics**. v. 421, p. 130-134.

PAN, H.; SOMAN, N. R.; SCHLESINGER, P. H.; LANZA, G. M; WICKLINE, S. A. 2011. Cytolytic peptide nanoparticles ('NanoBees') for cancer therapy. *Nanomed Nanobiotechnol*. v. 3, p. 318–327.

PARMAR, H. & CUNHA, G. R. 2004. Epithelial-stromal interactions in the mouse and human mammary gland in vivo. **Endocrine-Related Cancer**. v. 11, p. 437-458.

PEPPAS. L. B.; BLANCHETTE, J. O. 2009. Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deliv. Rev. v. 61 (4), p. 364.

PULASKI, B. A. & ROSENBERG, S. O. 2000. Mouse 4T1 breast tumor model-Tumor immunology. u. 20.2, p. 1-16.

PREGO, C.; TORRES, D.; FERNANDEZ-MEGIA, E.; NOVOA-CARBALLAL, R.; QUIÑOÁ, E.; ALONSO, M. J. 2006. Chitosan–PEG nanocapsules as new carriers for oral peptide delivery: Effect of chitosan pegylation degree. J. Contr. Release. v. 111 (3), p. 299-308.

RAMPINO, A.; BORGOGNA, M.; BLASI, P.; BELLICHA, B.; CESÀRO, A. 2013. Chitosan nanoparticles: Preparation, size evolution and stability. **Int J Pharmaceut**. v. 455(1-2), p. 219-228.

RAO, J. P. & GECKELER, A, K. 2011. Polymer nanoparticles: Preparation techniques and size-control parameters. **Progress in Polymer Science**. v. 36 (7), p. 887-913.

REIS, C. P.; NEUFELD, R. J.; RIBEIRO P. A. J.; VEIGA, F. 2006. Nanoencapsulation I. Methods for preparation of drug-loaded Polymeric nanoparticles. **Nanomedicine**. v. 2, p. 8-21.

SILVA, C.; RIBEIRO, A.; FERREIRA, D.; VEIGA, F. 2003. Administração oral de peptídeos e proteínas: II. Aplicação de métodos de microencapsulação. **Rev. Bras. de Ciên.** Farm. v. 39 (1), p.1-20.

SINHA, R; KIM, G. J.; NIE, S.; SHIN, D. M. 2006. Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. **Mol Cancer Ther**. v. 5, p.1909-1917.

SHAI, Y. 2002. Mode of actino of membrane active antimicrobial peptides. **Biopolymers.** v. 66, p. 236-48.

SHAH, S.; PAL, A.; KAUSHIK, V. K.; DEVI, S. 2009. Preparation and characterization of venlafaxine hydrochloride-loaded chitosan nanoparticles and *in vitro* release of drug. J. Appl. Polym. Sci. v. 112 (5), p. 2876-2887.

SHAN, S.; SORG, B.; DEWHIRST. M. W. 2003. A novel rodent mammary window of orthotopic breast cancer for intravital microscopy. **Microvascular Research**. v. 65, p. 109-117.

SOLARO, R.; CHIELLINI, F.; BATTISTI, A. 2010. Targeted Delivery of Protein Drugs by Nanocarriers. Materials. v. 3, p. 1928-1980.

SOMAN, N. R.; BALDWIN, S. L.; HU, G.; MARSH, J. N.; LANZA, G. M.; HEUSER, J. E.; ARBEIT, J. M.; WICKLINE, S. A.; SCHLESINGER, P. H. 2009. Molecularly targeted nanocarriers deliver the cytolytic peptide melittin specifically to tumor cells in mice, reducing tumor growth. J. Clin. Invest. v.119 (9), p. 2830-2842.

TAO, K.; FANG, M.; JOSEPH ALROY, J.; SAHAGIAN, G. G. 2008. Imagable 4T1 model for the study of late stage breast câncer. **BMC Cancer**. v.8 (228), p. 1-20.

TORCHILIN, V. P. 2007. Targeted Pharmaceutical Nanocarriers for Cancer Therapy and Imaging. **AAPS Journal.** v.9 (2), p. 128-147.

TORCHILIN, V. P. 2014. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. **Nat Rev Drug Discov**, v.13 (11), p. 813-827.

WANG, Y.; SHENOUDA, S., BARANWAL, S.; RATHINAM, R.; JAIN, P.; BAO, L.; HAZARI, S.; DASH, S.; ALAHARI, S. K. 2011. Integrin subunits alpha5 and alpha6 regulate cell cycle by modulating the chk1 and Rb/E2F pathways to affect breast cancer metastasis. **Molecular Cancer**. v.10 (84), p. 1-11.

WEI, H.; BOWEN, R.; ZHANG, X. 1998. Isoflavone genistein inhibits the initiation and promotion of two stage skin carcinogenesis in mice. **Carcinogenesis.** v.19 (8), p. 1509-1514.

YANG, L.; HARROUN, T. A.; WEISS, T. M.; DING, L.; HUANG, H. W. Barrel-Stave Model or Toroidal Model? A Case Study on Melittin Pores. **Biophysical Journal**. 81, p. 1475-1485.

YOO, H. S.; PARK, T. G. 2004. Folate-receptor-targeted delivery of doxorubicin nano-aggregates stabilized by doxorubicin–PEG–folate conjugate. J. Contr. Release. v. 100 (2), p. 247-256.

ZANG, G.; THOMAS, A.; LIU, Z.; CHEN, D.; LING, H.; ZHOU, L.; ZHANG, F.; SIU, L.; ZHENG, X. 2013. Preventing breast cancer growth by cationic cecropin B. **Biol** syst. v.2 (3), p. 1-7.

ZASLOFF, M. 2002. Antimicrobial peptides of multicellular organisms. Nature. v. 415, p. 389-395.

ZHANG, X.; EDEN, H. S.; CHEN, X. 2012. Peptides in cancer nanomedicine: Drug carriers, targeting ligands and protease substrates. **Journal of Controlled Release**. v. 159, p. 2-13.

ZHANG, X.; PAN, S. R.; HU, H. M.; WU, G. F.; FENG, M.; ZHANG, W.; LUO, X. 2007. Poly(ethylene glycol)-block-polyethylenimine copolymers as carriers for gene delivery: Effects of PEG molecular weight and PEGylation degree. J. Biomed. Mater. Res., Part A. v. 84A (3), p. 795-804.

ZHOU, N.; LUO, Z.; LUO, J.; HALL, J. W.; HUANG, Z. 2000. A novel peptide antagonist of cxcr4 derived from the n-terminus of viral chemokine vMIP-II. **Biochemistry.** v. 39, p. 3782-3787.

ANEXO

Une Une Une Vice-Coordenador da CEUA	Declaramos que o projeto intitulado "INVESTIGAÇÃO DOS EFEITOS FARMACOLÓGICOS IN VITRO, IN SITU E IN V DE COMPOSTOS BIOATIVOS LIVRES OU ENCAPSULADOS EM NANOSSISTEMAS DE LIBERAÇÃO SUSTENTADA.", UNBDOC 131758/2012, sob responsabilidade do pesquisador Luciano Paulino da Silva foi avaliado e aprovado pela Comissã Ética no Uso Animal (CEUA) do Instituto de Ciências Biológicas da Universidade de Brasília.	DECLARAÇÃO	Universidade de Bras Instituto de Ciências Bio Comitê de Ética no Uso	
---	---	------------	---	--

APÊNDICE 1

Códigos Uniprot das proteínas expressas em tumores de animais tratados com melitina (Mel), nanopartícula completa (Comp) e com água (Cont).

Nos 3 grupos	Cont	Mel	Comp	Cont&Mel	Cont&Comp	Mel&Comp
P00330	Q9DCD0	P07246	P48962	P05063	P46660	P01966
P00331	P05201	P07758	P51881	P09813	Q9JM76	P48036
P38113	Q8VD66	P22599	Q8JZQ2	P84078	P24452	Q00623
P02070	O88312	Q00896	P10107	P61205	P45591	O08997
Q9CQV8	Q8BSL7	Q00897	O35639	Q61176	P08113	P97450
P62259	Q06185	Q00898	P07356	P16015	Q3U0V1	Q9D6P8
P68510	P19536	Q3UUE9	Q9WV32	P98078	Q61696	P62204
P61982	P62897	P06728	P56480	P29391	P17879	O35887
O70456	Q8K3G9	Q01339	Q6PFX2	P49945	P16627	Q4VAA2
P68254	P97426	Q5HZK1	Q8C3W1	P51859	P16045	Q9D8B3
P63101	P97425	Q3TKY6	Q8VDY9	P27546	P19246	Q61599
P31786	Q99LC5	Q62426	P14211	Q99K51	P08553	P06467
P62737	P06745	Q9Z188	P47754	P32848	Q61233	P07901
Q8BFZ3	P10649	Q9D8Y0	Q8VHW2	O88569	O08709	P11679
P60710	P15626	Q9D9S1	Q8BGU5	Q7TMM9	P47955	P52480
P68033	P19639	Q07133	Q99K99	Q9CWF2	Q99020	Q3THE2
P63260	Q80W21	P49710	Q91WD4	Q9ERD7	P63325	P28667
P63268	O35660	P07310	P63038	P68372	P14131	Q9CQ65
P68134	P43275	P01676	O35744	Q9D6F9	P19324	Q9CQ19
P07724	P70349	P00342	089053	Q922F4	P55821	Q9CY58
P05064	Q6PGH2	P16045	P12787	P99024		P56812
P01887	P07310	Q9CPU0	Q99LT0	P17751		P15331
Q91XV3	P52480	P19973	P57776	P61961		P35700
Q64433	P53657	P51885	Q9CXU9			P62858
P18760	Q61792	Q9CXI5	P48024			P14069
P31001	Q9QXA5	P05977	Q9WUA5			P31725
P10126	P04247	P24369	P26883			P07759
P62631	Q9JK37	Q61171	Q91WJ8			P20801
P17182	Q8CI51	O08807	P56959			Q62393
P21550	O70250	Q9D0J8	P38647			Q9CYZ2
P17183	P09041	Q05186	P68433			Q921I1
P16858	Q3UHE1	P97492	P84228			Q9CR68
Q99PT1	Q91ZV7	Q8BG05	P84244			
P20029	P62908	P97352	P02301			
P15864	Q60864	Q9DAH1	Q9Z2X1			
P43277	Q8K1H1	Q9EQU5	Q8VEK3			
P43274	Q01853	P10711	Q3TEA8			

Q8CGP6	Q9CR51	P63028	Q62386		
Q8CGP7		Q717B2	P05784		
P22752		P62075	P19001		
Q6GSS7		Q6IRU2	Q6IFX2		
Q64522		Q5NCF2	Q6IFZ6		
Q64523		Q922B6	Q922U2		
Q8BFU2		P07309	Q8BGZ7		
Q8R1M2		Q8R317	Q9DCV7		
Q3THW5			Q6NSQ7		
P27661			P08249		
P0C0S6			Q9D187		
P70696			P26041		
Q64475			Q8CI43		
Q6ZWY9			Q60605		
P10853			Q62425		
Q64478			P09405		
Q8CGP1			Q80WK2		
P10854			P29341		
Q8CGP2			P60335		
Q64525			P17225		
Q64524			Q9CWJ9		
Q9D2U9			P26043		
Q8CGP0			O89086		
P62806			Q8VE92		
P01942			Q8C7Q4		
P02088			Q9WV02		
P02089			Q00915		
P02104			Q9CXW4		
P61979			P35979		
P11499			P14869		
P17156			P62264		
P63017			P25444		
Q61033			P62082		
Q61029			P27005		
P06151			D3YXK2		
P26645			Q9EQU5		
P15532			Q9JJU8		
Q01768			P61957		
P08551			Q9Z172		
Q61937			P68368		
P27773			Q9JJZ2		
Q922R8			P61089		
P70296			Q9CWR1		
Q9DBJ1			Q9JKB3		

P09411			
P17742			
P99029			
P62962			
P97371			
P26350			
P62823			
P62984			
P99027			
P62983			
Q61207			
P08228			
P54227			
Q9WVA4			
P68369			
P05213			
P68373			
P05214			
P10639			
P40142			
P58771			
P58774			
P21107			
P0CG49			
P0CG50			
P20152			
P62960			
Q62523			

APÊNDICE 2

Proteínas expressam nos tumores de animais do grupo controle (sem tratamento).

protein.Entry	protein.Accession	protein.Description	protein.score	protein.avgMass	protein.fmolOnColumn
P00330	ADH1_YEAST	ALCOHOL DEHYDROGENASE I (EC 1111)	7836,243	37156,0869	250
P00331	ADH2_YEAST	ALCOHOL DEHYDROGENASE II (EC 1111)	2644,951	37064,8422	
P38113	ADH5_YEAST	ALCOHOL DEHYDROGENASE V (EC 1111)	468,6569	38228,2734	2,6522
P02070	HBB_BOVIN	HEMOGLOBIN BETA CHAIN	3989,652	16012,4288	
		14-3-3 protein beta/alpha OSMus musculus GNYwhab PE1			
Q9CQV8	1433B_MOUSE	SV3	1878,64	28202,51	63,3217
		14-3-3 protein epsilon OSMus musculus GNYwhae PE1			
P62259	1433E_MOUSE	SV1	1672,631	29348,0013	17,6439
P68510	1433F_MOUSE	14-3-3 protein eta OSMus musculus GNYwhah PE1 SV2	1702,933	28385,8238	8,4797
		14-3-3 protein gamma OSMus musculus GNYwhag PE1			
P61982	1433G_MOUSE	SV2	1849,43	28476,6771	23,3842
O70456	1433S_MOUSE	14-3-3 protein sigma OSMus musculus GNSfn PE1 SV2	1609,638	27822,1088	
P68254	1433T_MOUSE	14-3-3 protein theta OSMus musculus GNYwhaq PE1 SV1	1685,397	28068,38	54,8526
		14-3-3 protein zeta/delta OSMus musculus GNYwhaz PE1			
P63101	1433Z_MOUSE	SV1	2040,92	27945,2293	62,7607
		6-phosphogluconate dehydrogenase decarboxylating			
Q9DCD0	6PGD_MOUSE	OSMus musculus GNPgd PE1 SV3	477,9323	53769,4163	36,1643
		Aspartate aminotransferase cytoplasmic OSMus musculus			
P05201	AATC_MOUSE	GNGot1 PE1 SV3	734,6887	46537,7433	62,5396
		Abhydrolase domain-containing protein 4 OSMus musculus			
Q8VD66	ABHD4_MOUSE	GNAbhd4 PE2 SV1	516,0399	39034,6418	6,9362
P31786	ACBP_MOUSE	Acyl-CoA-binding protein OSMus musculus GNDbi PE1 SV2	3389,499	10000,4556	408,1079
		Actin aortic smooth muscle OSMus musculus GNActa2 PE1			
P62737	ACTA_MOUSE	SV1	12518,39	42415,1441	
		Beta-actin-like protein 2 OSMus musculus GNActbl2 PE1			
Q8BFZ3	ACTBL_MOUSE	SV1	5975,471	42352,3849	168,8973

P60710	ACTB_MOUSE	Actin cytoplasmic 1 OSMus musculus GNActb PE1 SV1	18887,65	42084,921	750,5875
		Actin alpha cardiac muscle 1 OSMus musculus GNActc1			
P68033	ACTC_MOUSE	PE1 SV1	12519,87	42367,1533	
P63260	ACTG_MOUSE	Actin cytoplasmic 2 OSMus musculus GNActg1 PE1 SV1	18869,26	42141,0286	
P63268	ACTH_MOUSE	Actin gamma-enteric smooth muscle OSMus musculus GNActg2 PE1 SV1	12512,81	42283,0683	
P68134	ACTS_MOUSE	Actin alpha skeletal muscle OSMus musculus GNActa1 PE1 SV1	12655,04	42399,2193	483,0768
O88312	AGR2_MOUSE	Anterior gradient protein 2 homolog OSMus musculus GNAgr2 PE2 SV1	293,0243	19978,0253	3,6435
P46660	AINX MOUSE	Alpha-internexin OSMus musculus GNIna PE1 SV3	306,7609	55556,6822	8,0274
P07724	ALBU MOUSE	Serum albumin OSMus musculus GNAlb PE1 SV3	18974,91	70780,9954	2021,157
P05064	ALDOA_MOUSE	Fructose-bisphosphate aldolase A OSMus musculus GNAldoa PE1 SV2	21745,4	39820,0639	1514,807
P05063	ALDOC_MOUSE	Fructose-bisphosphate aldolase C OSMus musculus GNAldoc PE1 SV4	1061,602	39801,0141	2,7036
P09813	APOA2_MOUSE	Apolipoprotein A-II OSMus musculus GNApoa2 PE1 SV2	1112,764	11367,1753	69,5988
P84078	ARF1_MOUSE	ADP-ribosylation factor 1 OSMus musculus GNArf1 PE1 SV2	513,3099	20754,8264	
Q8BSL7	ARF2_MOUSE	ADP-ribosylation factor 2 OSMus musculus GNArf2 PE1 SV2	407,8038	20803,8692	
P61205	ARF3_MOUSE	ADP-ribosylation factor 3 OSMus musculus GNArf3 PE2 SV2	727,5499	20658,8222	39,9868
Q61176	ARGI1_MOUSE	Arginase-1 OSMus musculus GNArg1 PE1 SV1	2646,861	34981,9374	84,9361
Q9JM76	ARPC3_MOUSE	Actin-related protein 2/3 complex subunit 3 OSMus musculus GNArpc3 PE1 SV3	398,6773	20756,7759	36,5824
Q06185	ATP5I_MOUSE	ATP synthase subunit e mitochondrial OSMus musculus GNAtp5i PE1 SV2	793,2416	8235,6175	28,8693
P01887	B2MG_MOUSE	Beta-2-microglobulin OSMus musculus GNB2m PE1 SV2	2055,567	13895,0445	60,0697
Q91XV3	BASP1_MOUSE	Brain acid soluble protein 1 OSMus musculus GNBasp1 PE1 SV3	1404,203	22086,6137	63,3021
P16015	CAH3_MOUSE	Carbonic anhydrase 3 OSMus musculus GNCa3 PE1 SV3	12242,8	29656,37	807,3624
P24452	CAPG_MOUSE	Macrophage-capping protein OSMus musculus GNCapg PE1 SV2	291,4417	39530,5043	60,3554

004400		10 kDa heat shock protein mitochondrial OSMus musculus	47450.05	10000 7101	000 0000
Q64433	CH10_MOUSE	GNHspe1 PE1 SV2	17153,85	10962,7194	330,2022
P18760	COF1_MOUSE	Cofilin-1 OSMus musculus GNCfl1 PE1 SV3	2786,745	18791,6224	121,473
P45591	COF2_MOUSE	Cofilin-2 OSMus musculus GNCfl2 PE1 SV1	524,0018	18825,639	10,7374
D10526	COVER MOUSE	Cytochrome c oxidase subunit 5B mitochondrial OSMus	925 1927	14102 0692	199 5462
F 19530			504,0004	14102,9002	100,0402
P62897		Cytochrome c somatic OSIMus musculus GNCycs PE1 SV2	564,0891	11/21,4839	41,3428
P98078	DAB2_MOUSE	Disabled homolog 2 OSMus musculus GNDab2 PE1 SV2	304,9016	82485,9569	40,5923
P31001	DESM_MOUSE	Desmin OSMus musculus GNDes PE1 SV3	1165,437	53555,8842	56,8133
Q8K3G9	DP13B_MOUSE	DCC-interacting protein 13-beta OSMus musculus GNAppl2 PE2 SV1	282,1241	74433,9715	258,7428
P97426	ECP1 MOUSE	Eosinophil cationic protein 1 OSMus musculus GNEar1 PE2 SV1	1375,289	17876,1014	
		Eosinophil cationic protein 2 OSMus musculus GNEar2 PE2	,	, -	
P97425	ECP2 MOUSE	SV1	4167,817	18200,512	177,4398
P10126	EE1A1 MOUSE	Elongation factor 1-alpha 1 OSMus musculus GNEef1a1 PE1 SV3	3797 483	50461 9982	339 7592
		Elongation factor 1-alpha 2 OSMus musculus GNEef1a2	0101,100	00101,0002	000,1002
P62631	EF1A2_MOUSE	PE1 SV1	3320,215	50802,3168	
P17182	ENOA_MOUSE	Alpha-enolase OSMus musculus GNEno1 PE1 SV3	6987,681	47488,9641	471,3553
P21550	ENOB_MOUSE	Beta-enolase OSMus musculus GNEno3 PE1 SV3	9019,932	47373,0269	451,707
P17183	ENOG_MOUSE	Gamma-enolase OSMus musculus GNEno2 PE1 SV2	1446,319	47644,7985	
P08113	ENPL_MOUSE	Endoplasmin OSMus musculus GNHsp90b1 PE1 SV2	330,4912	92765,9785	27,2927
		Electron transfer flavoprotein subunit alpha mitochondrial			
Q99LC5	ETFA_MOUSE	OSMus musculus GNEtfa PE1 SV2	414,7361	35357,5472	16,0726
P29391	FRIL1_MOUSE	Ferritin light chain 1 OSMus musculus GNFtI1 PE1 SV2	5037,655	20860,4381	112,0953
P49945	FRIL2_MOUSE	Ferritin light chain 2 OSMus musculus GNFtl2 PE2 SV2	1001,822	20900,6783	
031101/1		Far upstream element-binding protein 2 OSMus musculus	07/ 0827	77230 6036	122 7008
030001		Giveraldebyde 3 phosphate debydrogenase OSMus	974,9027	11239,0930	122,7090
P16858	G3P_MOUSE	musculus GNGapdh PE1 SV2	8687,777	36100,1451	382,8354
		Glucose-6-phosphate isomerase OSMus musculus GNGpi			
P06745	G6PI_MOUSE	PE1 SV4	425,9593	62999,0852	64,196
Q99PT1	GDIR1_MOUSE	Rho GDP-dissociation inhibitor 1 OSMus musculus	989,5563	23465,4599	64,2369

		GNArhgdia PE1 SV3			
P20029	GRP78_MOUSE	78 kDa glucose-regulated protein OSMus musculus GNHspa5 PE1 SV3	1308,408	72538,1752	70,7043
P10649	GSTM1_MOUSE	Glutathione S-transferase Mu 1 OSMus musculus GNGstm1 PE1 SV2	841,0425	26086,091	40,0909
P15626	GSTM2_MOUSE	Glutathione S-transferase Mu 2 OSMus musculus GNGstm2 PE1 SV2	700,9901	25890,8058	19,4903
P19639	GSTM4_MOUSE	Glutathione S-transferase Mu 3 OSMus musculus GNGstm3 PE1 SV2	710,9645	25933,7194	
Q80W21	GSTM7_MOUSE	Glutathione S-transferase Mu 7 OSMus musculus GNGstm7 PE1 SV1	609,0139	25883,7171	
O35660	GSTM6_MOUSE	PE2 SV3	607,2567	25779,4801	
P43275	H11_MOUSE	Histone H11 OSMus musculus GNHist1h1a PE1 SV2	572,1784	21785,1396	51,1441
P15864	H12_MOUSE	Histone H12 OSMus musculus GNHist1h1c PE1 SV2	1169,109	21266,6702	86,9671
P43277	H13_MOUSE	Histone H13 OSMus musculus GNHist1h1d PE1 SV2	1169,109	22099,5393	
P43274	H14_MOUSE	Histone H14 OSMus musculus GNHist1h1e PE1 SV2	1169,109	21977,3291	
Q8CGP5	H2A1F_MOUSE	Histone H2A type 1-F OSMus musculus GNHist1h2af PE1 SV3	4359,667	14161,5463	
Q8CGP6	H2A1H_MOUSE	Histone H2A type 1-H OSMus musculus GNHist1h2ah PE1 SV3	4359,667	13950,2822	216,3626
Q8CGP7	H2A1K_MOUSE	Histone H2A type 1-K OSMus musculus GNHist1h2ak PE1 SV3	4359,667	14149,5353	
P22752	H2A1_MOUSE	Histone H2A type 1 OSMus musculus GNHist1h2ab PE1 SV3	4359,667	14135,5084	
Q6GSS7	H2A2A_MOUSE	Histone H2A type 2-A OSMus musculus GNHist2h2aa1 PE1 SV3	4359,667	14095,5078	
Q64522	H2A2B_MOUSE	Histone H2A type 2-B OSMus musculus GNHist2h2ab PE1 SV3	3514,369	14013,3593	
Q64523	H2A2C_MOUSE	Histone H2A type 2-C OSMus musculus GNHist2h2ac PE1 SV3	4359,667	13988,3928	
Q8BFU2	H2A3_MOUSE	Histone H2A type 3 OSMus musculus GNHist3h2a PE1 SV3	4359,667	14121,4815	
Q8R1M2	H2AJ_MOUSE	Histone H2AJ OSMus musculus GNH2afj PE1 SV1	4359,667	14045,4643	
Q3THW5	H2AV_MOUSE	Histone H2AV OSMus musculus GNH2afv PE1 SV3	3608,222	13508,6993	

P27661	H2AX_MOUSE	Histone H2AX OSMus musculus GNH2afx PE1 SV2	4359,667	15142,6137	
P0C0S6	H2AZ_MOUSE	Histone H2AZ OSMus musculus GNH2afz PE1 SV2	3608,222	13552,7525	
		Histone H2B type 1-A OSMus musculus GNHist1h2ba PE1			
P70696	H2B1A_MOUSE	SV3	1207,931	14294,6601	
		Histone H2B type 1-B OSMus musculus GNHist1h2bb PE1			
Q64475	H2B1B_MOUSE	SV3	1299,62	13952,1883	108,0432
		Histone H2B type 1-C/E/G OSMus musculus GNHist1h2bc			
Q6ZWY9	H2B1C_MOUSE	PE1 SV3	1299,62	13906,1627	
		Histone H2B type 1-F/J/L OSMus musculus GNHist1h2bf			
P10853	H2B1F_MOUSE	PE1 SV2	1299,62	13936,1889	
		Histone H2B type 1-H OSMus musculus GNHist1h2bh PE1			
Q64478	H2B1H_MOUSE	SV3	1299,62	13920,1896	
		Histone H2B type 1-K OSMus musculus GNHist1h2bk PE1			
Q8CGP1	H2B1K_MOUSE	SV3	1299,62	13920,1895	
		Histone H2B type 1-M OSMus musculus GNHist1h2bm PE1			
P10854	H2B1M_MOUSE	SV2	1299,62	13936,189	
		Histone H2B type 1-P OSMus musculus GNHist1h2bp PE1			
Q8CGP2	H2B1P_MOUSE	SV3	1299,62	13992,2965	
		Histone H2B type 2-B OSMus musculus GNHist2h2bb PE1			
Q64525	H2B2B_MOUSE	SV3	1299,62	13920,1896	
		Histone H2B type 2-E OSMus musculus GNHist2h2be PE1			
Q64524	H2B2E_MOUSE	SV3	1207,931	13993,2843	
		Histone H2B type 3-A OSMus musculus GNHist3h2ba PE1			
Q9D2U9	H2B3A_MOUSE	SV3	1207,931	13994,2287	
		Histone H2B type 3-B OSMus musculus GNHist3h2bb PE1			
Q8CGP0	H2B3B_MOUSE	SV3	1207,931	13908,1352	
P62806	H4_MOUSE	Histone H4 OSMus musculus GNHist1h4a PE1 SV2	1734,805	11367,3627	98,1774
		Hemoglobin subunit alpha OSMus musculus GNHba PE1			
P01942	HBA_MOUSE	SV2	39321,29	15143,2057	6763,444
		Hemoglobin subunit beta-1 OSMus musculus GNHbb-b1			
P02088	HBB1_MOUSE	PE1 SV2	49375,61	15956,2278	1162,771
		Hemoglobin subunit beta-2 OSMus musculus GNHbb-b2			
P02089	HBB2_MOUSE	PE1 SV2	29301,46	15994,2962	638,9725
		Hemoglobin subunit epsilon-Y2 OSMus musculus GNHbb-y			
P02104	HBE_MOUSE	PE1 SV2	3999,984	16194,6489	3,0767

		Hanatama derived growth faster OSMus musculus CNHdaf			
P51859	HDGF MOUSE	PE1 SV2	1473,218	26384,7251	69,6213
		Histidine triad nucleotide-binding protein 1 OSMus musculus	-, -		,
P70349	HINT1_MOUSE	GNHint1 PE1 SV3	2048,544	13892,9516	243,2603
		Hematological and neurological expressed 1-like protein			
Q6PGH2	HN1L_MOUSE	OSMus musculus GNHn1I PE1 SV1	790,2634	20078,1474	58,8052
		Heterogeneous nuclear ribonucleoprotein K OSMus			
P61979	HNRPK_MOUSE	musculus GNHnrnpk PE1 SV1	1428,02	51266,3981	185,3795
		Heat shock 70 kDa protein 1A OSMus musculus GNHspa1a			
Q61696	HS71A_MOUSE	PE1 SV2	371,4623	70369,3039	3,0795
		Heat shock 70 kDa protein 1B OSMus musculus GNHspa1b			
P17879	HS71B_MOUSE	PE1 SV3	371,4623	70466,4206	
		Heat shock 70 kDa protein 1-like OSMus musculus			
P16627	HS71L_MOUSE	GNHspa1I PE2 SV4	656,9323	71043,4621	5,7782
D44400		Heat shock protein HSP 90-beta OSMus musculus	005 4000	00000 4400	00.0010
P11499	HS90B_MOUSE	GNHsp90ab1 PE1 SV3	695,1308	83629,4409	83,9812
D47450		Heat shock-related 70 kDa protein 2 OSMus musculus	747 4700	00004 0407	0.4400
P17150	HSP/2_MOUSE	GNHSpaz PET SVZ	/1/,1/29	69931,8127	6,4406
D62017			1640 477	71102 2100	00.00
P03017		GINTISPER PET SVI	1049,477	71103,2199	92,90
D01804		musculus PE4 SV1	201 4306	12/10 7780	11 2603
P01004		Creating kingge Miture OCMus museulus CNCkm DE1 CV/1	291,4300	12419,7709	1455 512
P07310		Creatine kinase M-type OSMus musculus GNCKII PET SVT	13303,41	43277,0979	1400,013
P52480	KPYM_MOUSE	Pyruvate kinase PKM OSMus musculus GNPkm PE1 SV4	3112,38	58425,1329	301,9137
P53657	KPYR_MOUSE	Pyruvate kinase PKLR OSMus musculus GNPklr PE2 SV1	521,1216	62656,8337	7,1983
		Lamina-associated polypeptide 2 isoforms alpha/zeta			
Q61033	LAP2A_MOUSE	OSMus musculus GNTmpo PE1 SV4	502,6383	75864,4691	77,0919
		Lamina-associated polypeptide 2 isoforms			
0.04000		beta/delta/epsilon/gamma OSMus musculus GN I mpo PE1			
Q61029	LAP2B_MOUSE	SV4	453,6353	50430,8142	
001700		LIM and SH3 domain protein 1 OSMus musculus GNLasp1	0004 000	20400 5254	00 7400
Q01/92	LASPT_MOUSE		2034,926	30400,5351	60,7463
D06151		L-lactate denydrogenase A chain USIVius musculus GNLdha	2020 247	26946 6742	152 0747
PU0151			2929,317	30840,0743	153,8747
P16045	LEG1_MOUSE	Galectin-1 OSMus musculus GNLgals1 PE1 SV3	961,6241	15213,9454	59,0819

		U6 snRNA-associated Sm-like protein LSm4 OSMus			
Q9QXA5	LSM4_MOUSE	musculus GNLsm4 PE2 SV1	406,366	15250,4153	5,8243
		Microtubule-associated protein 4 OSMus musculus GNMap4			
P27546	MAP4_MOUSE	PE1 SV3	342,6467	118009,4834	69,5623
		Myristoylated alanine-rich C-kinase substrate OSMus			
P26645	MARCS_MOUSE	musculus GNMarcks PE1 SV2	1190,579	29719,3469	99,3557
		Macrophage migration inhibitory factor OSMus musculus			
P34884	MIF_MOUSE	GNMit PE1 SV2	789,7459	12678,3304	21,1868
P04247	MYG_MOUSE	Myoglobin OSMus musculus GNMb PE1 SV3	846,9223	17127,7172	115,9091
Q9JK37	MYOZ1_MOUSE	Myozenin-1 OSMus musculus GNMyoz1 PE1 SV1	359,9081	31457,3544	4,6685
		Nucleoside diphosphate kinase A OSMus musculus			
P15532	NDKA_MOUSE	GNNme1 PE1 SV1	1017,949	17323,8548	4,7549
		Nucleoside diphosphate kinase B OSMus musculus			
Q01768	NDKB_MOUSE	GNNme2 PE1 SV1	1418,89	17479,1273	106,8167
		Neurofilament heavy polypeptide OSMus musculus GNNefh			
P19246	NFH_MOUSE	PE1 SV3	296,9719	117284,4654	8,207
		Neurofilament light polypeptide OSMus musculus GNNefl			
P08551	NFL_MOUSE	PE1 SV5	323,8713	61566,5452	4,1979
DAAFEA		Neurofilament medium polypeptide OSMus musculus	040 5004	00000 0575	40.0004
P08553	NFM_MOUSE	GNNetm PE1 SV4	312,5364	96032,2575	12,8604
Q61937	NPM_MOUSE	Nucleophosmin OSMus musculus GNNpm1 PE1 SV1	334,4417	32734,172	67,1628
		Protein disulfide-isomerase A3 OSMus musculus GNPdia3			
P27773	PDIA3_MOUSE	PE1 SV2	750,5115	57142,5301	127,7743
		Protein disulfide-isomerase A6 OSMus musculus GNPdia6			
Q922R8	PDIA6_MOUSE	PE1 SV3	364,876	48506,5159	77,8433
000154		PDZ and LIM domain protein 5 OSMus musculus GNPdlim5	040 5000	04575 5405	54 0074
Q8C151	PDLI5_MOUSE	PE1 SV4	319,5222	64575,5485	54,0871
D70000		Phosphatidylethanolamine-binding protein 1 OSMus	1000 100	04004 5044	400.4504
P70296	PEBP1_MOUSE	Musculus GNPepp1 PE1 SV3	4966,496	21004,5041	132,1521
			0000 774	00040.0504	4.40,0000
MADR1	PGAMT_MOUSE	PETSV3	3982,771	28948,0581	140,0009
070250		Phosphoglycerate mutase 2 OSMus musculus GNPgam2	2000 404	20001 2011	72 4422
070250		PEI 3V3	3980,401	29001,2011	73,1133
P00/11	PCK1 MOUSE		2010 611	11056 6516	101 2021
FU9411	FOR I_WOUSE	374	2010,011	44900,0010	191,3831
		Phosphoglycerate kinase 2 OSMus musculus GNPgk2 PE1			
--------	-------------	---	----------	-------------	----------
P09041	PGK2_MOUSE	SV4	417,2387	45259,1433	3,8203
Q3UHE1	PITM3_MOUSE	Membrane-associated phosphatidylinositol transfer protein 3 OSMus musculus GNPitpnm3 PE2 SV2	579,3954	107564,0566	42,2944
Q91ZV7	PLDX1_MOUSE	Plexin domain-containing protein 1 OSMus musculus GNPlxdc1 PE1 SV2	432,4383	56157,4307	26,2693
Q61233	PLSL MOUSE	Plastin-2 OSMus musculus GNLcp1 PE1 SV4	661,7098	70787,5453	62,6677
Q99K51	PLST MOUSE	Plastin-3 OSMus musculus GNPIs3 PE1 SV3	337,1259	71264,1962	10,3793
P17742	PPIA_MOUSE	Peptidyl-prolyl cis-trans isomerase A OSMus musculus GNPpia PE1 SV2	10740,34	18145,413	505,3294
P99029	PRDX5_MOUSE	Peroxiredoxin-5 mitochondrial OSMus musculus GNPrdx5 PE1 SV2	2346,685	22245,5586	112,7291
O08709	PRDX6_MOUSE	Peroxiredoxin-6 OSMus musculus GNPrdx6 PE1 SV3	873,2369	24986,7025	65,2857
P62962	PROF1_MOUSE	Profilin-1 OSMus musculus GNPfn1 PE1 SV2	5195,091	15131,2915	222,8998
P32848	PRVA_MOUSE	Parvalbumin alpha OSMus musculus GNPvalb PE1 SV3	63515,96	11930,5491	2834,794
P97371	PSME1_MOUSE	Proteasome activator complex subunit 1 OSMus musculus GNPsme1 PE2 SV2	1964,124	28847,0133	112,8726
P26350	PTMA_MOUSE	Prothymosin alpha OSMus musculus GNPtma PE1 SV2	3403,621	12254,105	124,6184
P62823	RAB3C_MOUSE	Ras-related protein Rab-3C OSMus musculus GNRab3c PE1 SV1	290,8806	26104,2095	41,7518
P62984	RL40_MOUSE	Ubiquitin-60S ribosomal protein L40 OSMus musculus GNUba52 PE1 SV2	12250,36	15018,392	807,9807
P47955	RLA1_MOUSE	60S acidic ribosomal protein P1 OSMus musculus GNRplp1 PE2 SV1	2710,634	11590,9386	160,1771
P99027	RLA2_MOUSE	60S acidic ribosomal protein P2 OSMus musculus GNRplp2 PE1 SV3	2897,931	11650,9266	110,0091
O88569	ROA2_MOUSE	Heterogeneous nuclear ribonucleoproteins A2/B1 OSMus musculus GNHnrnpa2b1 PE1 SV2	1490,558	37460,7459	84,4747
Q99020	ROAA_MOUSE	Heterogeneous nuclear ribonucleoprotein A/B OSMus musculus GNHnrnpab PE1 SV1	764,6378	30947,3359	55,4478
P63325	RS10_MOUSE	40S ribosomal protein S10 OSMus musculus GNRps10 PE1 SV1	1004,828	18915,7924	88,5883
P14131	RS16_MOUSE	40S ribosomal protein S16 OSMus musculus GNRps16 PE2 SV4	1025,23	16561,3591	45,5281
P62983	RS27A_MOUSE	Ubiquitin-40S ribosomal protein S27a OSMus musculus	12250,36	18298,9807	

		GNRps27a PE1 SV2			
		40S ribosomal protein S3 OSMus musculus GNRps3 PE1			
P62908	RS3_MOUSE	SV1	737,8049	26848,3703	29,4729
Q61207	SAP_MOUSE	Prosaposin OSMus musculus GNPsap PE1 SV2	1506,523	63336,6218	294,1003
P19324	SERPH_MOUSE	Serpin H1 OSMus musculus GNSerpinh1 PE1 SV3	751,2156	46649,7061	35,1624
		Superoxide dismutase [Cu-Zn] OSMus musculus GNSod1			
P08228	SODC_MOUSE	PE1 SV2	12932,66	16116,7319	463,3428
		Stress-induced-phosphoprotein 1 OSMus musculus			
Q60864	STIP1_MOUSE	GNStip1 PE1 SV1	368,6319	63220,3612	37,0877
P55821	STMN2_MOUSE	Stathmin-2 OSMus musculus GNStmn2 PE1 SV1	1013,494	20944,1271	
P54227	STMN1_MOUSE	Stathmin OSMus musculus GNStmn1 PE1 SV2	1620,456	17274,4889	118,2281
Q9WVA4	TAGL2_MOUSE	Transgelin-2 OSMus musculus GNTagln2 PE1 SV4	916,2001	22569,525	59,841
		Tubulin alpha-1A chain OSMus musculus GNTuba1a PE1			
P68369	TBA1A_MOUSE	SV1	2618,614	50831,8489	118,6607
505040		Tubulin alpha-1B chain OSMus musculus GNTuba1b PE1			
P05213	TBA1B_MOUSE	SV2	2618,614	50847,8482	
060070		Tubulin alpha-1C chain OSMus musculus GNTuba1c PE1	0574 040		
P68373	TBATC_MOUSE	SVI Tubulin alaba 2 abain OCMua muasulus CNTuba2a DE1	2574,313	50605,5731	
D05214	TRA3 MOUSE		324 774	50655 7631	
F 0JZ 14		Tubulin beta-24 chain OSMus musculus GNTubb2a PE1	524,774	50055,7051	
07TMM9	TBB2A MOUSE	SV1	1390 626	50313 1871	
Q, THING		Tubulin beta-2B chain OSMus musculus GNTubb2b PE1	1000,020	00010,1011	
Q9CWF2	TBB2B MOUSE	SV1	1390,626	50417,2855	
Q9ERD7	TBB3 MOUSE	Tubulin beta-3 chain OSMus musculus GNTubb3 PE1 SV1	690,2842	50882,8787	
-	-	Tubulin beta-4B chain OSMus musculus GNTubb4b PE1	,	,	
P68372	TBB4B_MOUSE	SV1	1458,543	50295,2243	16,3214
		Tubulin beta-4A chain OSMus musculus GNTubb4a PE1			
Q9D6F9	TBB4A_MOUSE	SV3	1364,074	50049,9889	
Q922F4	TBB6_MOUSE	Tubulin beta-6 chain OSMus musculus GNTubb6 PE1 SV1	541,2765	50554,594	19,9045
P99024	TBB5_MOUSE	Tubulin beta-5 chain OSMus musculus GNTubb5 PE1 SV1	1776,108	50135,0275	212,8653
		Tudor domain-containing protein 7 OSMus musculus			
Q8K1H1	TDRD7_MOUSE	GNTdrd7 PE1 SV1	287,2477	123740,6719	265,7179
Q01853	TERA_MOUSE	Transitional endoplasmic reticulum ATPase OSMus	391,924	90018,0975	60,4633

		musculus GNVcp PE1 SV4			
P10639	THIO_MOUSE	Thioredoxin OSMus musculus GNTxn PE1 SV3	2772,292	12023,5334	168,3895
P40142	TKT_MOUSE	Transketolase OSMus musculus GNTkt PE1 SV1	328,0548	68326,7258	69,4288
		Triosephosphate isomerase OSMus musculus GNTpi1 PE1			
P17751	TPIS_MOUSE	SV4	1964,314	32713,908	147,4455
P58771	TPM1_MOUSE	Tropomyosin alpha-1 chain OSMus musculus GNTpm1 PE1 SV1	892,0875	32738,615	58,6237
P58774	TPM2_MOUSE	Tropomyosin beta chain OSMus musculus GNTpm2 PE1 SV1	913,2988	32952,7875	5,8169
P21107	TPM3_MOUSE	Tropomyosin alpha-3 chain OSMus musculus GNTpm3 PE1 SV3	945,9264	33052,1034	63,323
Q9CQN1	TRAP1_MOUSE	Heat shock protein 75 kDa mitochondrial OSMus musculus GNTrap1 PE1 SV1	439,3028	80557,1723	21,6508
P0CG49	UBB_MOUSE	Polyubiquitin-B OSMus musculus GNUbb PE2 SV1	12250,36	34368,5505	
P0CG50	UBC_MOUSE	Polyubiquitin-C OSMus musculus GNUbc PE1 SV2	12250,36	82666,2363	
P61961	UFM1_MOUSE	Ubiquitin-fold modifier 1 OSMus musculus GNUfm1 PE1 SV1	2612,927	9175,6006	103,3455
Q9CR51	VATG1_MOUSE	V-type proton ATPase subunit G 1 OSMus musculus GNAtp6v1g1 PE2 SV3	388,2831	13840,4428	41,2187
P20152	VIME_MOUSE	Vimentin OSMus musculus GNVim PE1 SV3	5000,394	53745,7619	232,1703
P62960	YBOX1_MOUSE	Nuclease-sensitive element-binding protein 1 OSMus musculus GNYbx1 PE1 SV3	299,3497	35729,9942	24,2803
Q62523	ZYX_MOUSE	Zyxin OSMus musculus GNZyx PE1 SV2	550,4149	61880,2371	105,1297

APÊNDICE 3

Proteínas expressam nos tumores de animais que receberam tratamento com Melitina.

protein.Entry	protein.Accession	protein.Description	protein.score	protein.avgMass	protein.fmolOnColumn
P00330	ADH1_YEAST	ALCOHOL DEHYDROGENASE I (EC 1111)	18822,33	37156,0869	250
P00331	ADH2_YEAST	ALCOHOL DEHYDROGENASE II (EC 1111)	4284,589	37064,8422	0,612
P07246	ADH3_YEAST	ALCOHOL DEHYDROGENASE III PRECURSOR (EC	380,7333	40775,6407	
P38113	ADH5_YEAST	ALCOHOL DEHYDROGENASE V (EC 1111)	498,5042	38228,2734	
P02070	HBB_BOVIN	HEMOGLOBIN BETA CHAIN	8967,717	16012,4288	0,5597
P01966	HBA_BOVIN	HEMOGLOBIN ALPHA CHAIN	1138,125	15053,194	0,4785
		14-3-3 protein beta/alpha OSMus musculus GNYwhab PE1			
Q9CQV8	1433B_MOUSE	SV3	1804,512	28202,51	1,5321
P62259	1433E_MOUSE	14-3-3 protein epsilon OSMus musculus GNYwhae PE1 SV1	1759,02	29348,0013	1,8885
P68510	1433F_MOUSE	14-3-3 protein eta OSMus musculus GNYwhah PE1 SV2	1820,028	28385,8238	1,8377
P61982	1433G_MOUSE	14-3-3 protein gamma OSMus musculus GNYwhag PE1 SV2	1715,847	28476,6771	
O70456	1433S_MOUSE	14-3-3 protein sigma OSMus musculus GNSfn PE1 SV2	1747,554	27822,1088	21,4516
P68254	1433T_MOUSE	14-3-3 protein theta OSMus musculus GNYwhaq PE1 SV1	1771,612	28068,38	0,8852
		14-3-3 protein zeta/delta OSMus musculus GNYwhaz PE1			
P63101	1433Z_MOUSE	SV1	2335,234	27945,2293	7,0575
D07759		Alpha-1-antitrypsin 1-1 OSMus musculus GNSerpina1a PE1	402 1125	46176 7025	
P07756	ATATT_WOUSE	SV4 Alaba 1 antitrumain 1 2 OSMua muagulua CNSarnina1h DE1	403,1135	40170,7025	
P22599	A1AT2 MOUSE	SV2	403,1135	46148,7538	
		Alpha-1-antitrypsin 1-3 OSMus musculus GNSerpina1c PE1	,	,	
Q00896	A1AT3_MOUSE	SV2	403,1135	45997,3889	23,6706
		Alpha-1-antitrypsin 1-4 OSMus musculus GNSerpina1d PE2			
Q00897	A1AT4_MOUSE	SV1	263,8263	46172,4708	
	 <u>-</u> .	Alpha-1-antitrypsin 1-5 OSMus musculus GNSerpina1e PE1			
Q00898	A1AT5_MOUSE	SV1	312,0779	46123,5003	

P31786	ACBP_MOUSE	Acyl-CoA-binding protein OSMus musculus GNDbi PE1 SV2	8821,217	10000,4556	235,9332
		Actin aortic smooth muscle OSMus musculus GNActa2 PE1			
P62737	ACTA_MOUSE	SV1	6131,132	42415,1441	
000570		Beta-actin-like protein 2 OSMus musculus GNActbl2 PE1	0504.050	10050 0010	04 0007
Q8BFZ3	ACTBL_MOUSE	SV1	2584,656	42352,3849	81,0927
P60710	ACTB_MOUSE	Actin cytoplasmic 1 OSMus musculus GNActb PE1 SV1	8893,942	42084,921	131,305
P68033	ACTC MOUSE	Actin alpha cardiac muscle 1 OSMus musculus GNActc1 PE1	6131 132	42367 1533	
P63260	ACTG MOUSE	Actin cytoplasmic 2 OSMus musculus GNActo1 PE1 SV1	8893 942	42141 0286	
1 00200	<u>//010_</u> M000E	Actin gamma-enteric smooth muscle OSMus musculus	0000,012	12111,0200	
P63268	ACTH_MOUSE	GNActg2 PE1 SV1	6131,132	42283,0683	1,0232
		Actin alpha skeletal muscle OSMus musculus GNActa1 PE1			
P68134	ACTS_MOUSE	SV1	6131,132	42399,2193	
P07724	ALBU_MOUSE	Serum albumin OSMus musculus GNAlb PE1 SV3	19565,13	70780,9954	1283,735
		Fructose-bisphosphate aldolase A OSMus musculus			
P05064	ALDOA_MOUSE	GNAldoa PE1 SV2	3689,754	39820,0639	33,3307
DOFORO		Fructose-bisphosphate aldolase C OSMus musculus	461 262	20201 0141	0 7296
P05005	ALDUC_MOUSE	GINAIUUC PET 5V4	401,303	39601,0141	0,7300
Q300E9	ANKUB_MOUSE	Appendia AF OSMus musculus GNATIKUDT PEZ SVT	235,1038	22353,795	23,3051
P48036	ANXA5_MOUSE	Annexin A5 OSINIUS MUSCUIUS GIVANX85 PET SV1	264,2052	35810,5177	3,9453
Q00623	APOA1_MOUSE	Apolipoprotein A-I OSMus musculus GNApoa1 PE1 SV2	4000,795	30615,5559	29,1903
P09813	APOA2_MOUSE	Apolipoprotein A-II OSMus musculus GNApoa2 PE1 SV2	4232,24	11367,1753	48,6161
P06728	APOA4_MOUSE	Apolipoprotein A-IV OSMus musculus GNApoa4 PE1 SV3	1004,353	45029,1261	18,1291
Q01339	APOH_MOUSE	Beta-2-glycoprotein 1 OSMus musculus GNApoh PE1 SV1	304,8224	39953,1553	3,2319
P84078	ARF1_MOUSE	ADP-ribosylation factor 1 OSMus musculus GNArf1 PE1 SV2	260,4508	20754,8264	2,6876
P61205	ARF3_MOUSE	ADP-ribosylation factor 3 OSMus musculus GNArf3 PE2 SV2	232,7313	20658,8222	
Q61176	ARGI1_MOUSE	Arginase-1 OSMus musculus GNArg1 PE1 SV1	2187,126	34981,9374	23,3862
		Copper transport protein ATOX1 OSMus musculus GNAtox1			
O08997	ATOX1_MOUSE	PE1 SV1	5759,195	7512,4755	25,3113
D07450		ATP synthase-coupling factor 6 mitochondrial OSMus	2411 052	12406 450	21.006
D01007		Pate 2 microalebulin OSMue museulus OND2m DE1 CV/2	3411,033	12490,409	21,000
FU100/		Brain acid coluble protein 1 OSMus musculus CNPace1 PE1	304,7450	13893,0445	15,4351
Q91XV3	BASP1_MOUSE	SV3	2646,892	22086,6137	18,7567

P16015	CAH3_MOUSE	Carbonic anhydrase 3 OSMus musculus GNCa3 PE1 SV3	3269,404	29656,37	39,0439
		Calmodulin-like protein 3 OSMus musculus GNCalml3 PE2			
Q9D6P8	CALL3_MOUSE	SV1	2944,864	16701,4807	0,5861
P62204	CALM_MOUSE	Calmodulin OSMus musculus GNCalm1 PE1 SV2	11089,08	16837,6523	145,5435
O35887	CALU_MOUSE	Calumenin OSMus musculus GNCalu PE1 SV1	2410,678	37179,8122	18,4845
Q4VAA2	CDV3_MOUSE	Protein CDV3 OSMus musculus GNCdv3 PE1 SV2	969,6644	29729,0589	7,3667
Q5HZK1	CEP44_MOUSE	Centrosomal protein of 44 kDa OSMus musculus GNCep44 PE2 SV1	271,85	43893,5457	4,2635
Q64433	CH10_MOUSE	10 kDa heat shock protein mitochondrial OSMus musculus GNHspe1 PE1 SV2	6703,484	10962,7194	42,4388
Q9D8B3	CHM4B_MOUSE	Charged multivesicular body protein 4b OSMus musculus GNChmp4b PE1 SV2	595,0099	24936,1916	17,698
P18760	COF1_MOUSE	Cofilin-1 OSMus musculus GNCfl1 PE1 SV3	6004,506	18791,6224	19,2119
Q62426	CYTB_MOUSE	Cystatin-B OSMus musculus GNCstb PE1 SV1	845,6104	11161,6371	22,2632
P98078	DAB2_MOUSE	Disabled homolog 2 OSMus musculus GNDab2 PE1 SV2	326,1313	82485,9569	9,5263
P31001	DESM_MOUSE	Desmin OSMus musculus GNDes PE1 SV3	549,5405	53555,8842	1,6804
Q9Z188	DYR1B_MOUSE	Dual specificity tyrosine-phosphorylation-regulated kinase 1B OSMus musculus GNDyrk1b PE1 SV3	318,9305	69816,2766	178,1198
P10126	EF1A1_MOUSE	Elongation factor 1-alpha 1 OSMus musculus GNEef1a1 PE1 SV3	1378,853	50461,9982	29,5334
P62631	EF1A2_MOUSE	Elongation factor 1-alpha 2 OSMus musculus GNEef1a2 PE1 SV1	463,9978	50802,3168	
Q9D8Y0	EFHD2_MOUSE	EF-hand domain-containing protein D2 OSMus musculus GNEfhd2 PE1 SV1	1791,237	26791,2713	14,5127
P17182	ENOA_MOUSE	Alpha-enolase OSMus musculus GNEno1 PE1 SV3	2989,02	47488,9641	75,5772
P21550	ENOB_MOUSE	Beta-enolase OSMus musculus GNEno3 PE1 SV3	1903,508	47373,0269	17,9966
P17183	ENOG_MOUSE	Gamma-enolase OSMus musculus GNEno2 PE1 SV2	1695,732	47644,7985	0,7492
Q9D9S1	EVG1_MOUSE	UPF0193 protein EVG1 homolog OSMus musculus PE2 SV1	477,0117	24969,5538	5,2339
P29391	FRIL1_MOUSE	Ferritin light chain 1 OSMus musculus GNFtl1 PE1 SV2	2478,003	20860,4381	40,6645
P49945	FRIL2_MOUSE	Ferritin light chain 2 OSMus musculus GNFtl2 PE2 SV2	1545,865	20900,6783	
P16858	G3P_MOUSE	Glyceraldehyde-3-phosphate dehydrogenase OSMus musculus GNGapdh PE1 SV2	1150,866	36100,1451	24,2979
Q99PT1	GDIR1_MOUSE	Rho GDP-dissociation inhibitor 1 OSMus musculus GNArhgdia PE1 SV3	1604,074	23465,4599	15,7569

061599	GDIR2 MOUSE	Rho GDP-dissociation inhibitor 2 OSMus musculus	2425 876	22008 0387	64 9658
Q01000		78 kDa alucose-regulated protein OSMus musculus	2423,010	22300,3307	04,0000
P20029	GRP78_MOUSE	GNHspa5 PE1 SV3	563,6725	72538,1752	15,7029
P15864	H12 MOUSE	Histone H12 OSMus musculus GNHist1h1c PE1 SV2	833,4509	21266,6702	
P43277	H13_MOUSE	Histone H13 OSMus musculus GNHist1h1d PE1 SV2	833,4509	22099,5393	
P43274	H14 MOUSE	Histone H14 OSMus musculus GNHist1h1e PE1 SV2	943,1397	21977,3291	12,8495
Q07133	H1T MOUSE	Histone H1t OSMus musculus GNHist1h1t PE1 SV4	827,795	21540,3588	
Q8CGP5	H2A1F_MOUSE	Histone H2A type 1-F OSMus musculus GNHist1h2af PE1 SV3	11101,77	14161,5463	
Q8CGP6	H2A1H_MOUSE	Histone H2A type 1-H OSMus musculus GNHist1h2ah PE1 SV3	11101,77	13950,2822	90,8805
Q8CGP7	H2A1K_MOUSE	Histone H2A type 1-K OSMus musculus GNHist1h2ak PE1 SV3	11101,77	14149,5353	
P22752	H2A1_MOUSE	Histone H2A type 1 OSMus musculus GNHist1h2ab PE1 SV3	11101,77	14135,5084	
Q6GSS7	H2A2A_MOUSE	Histone H2A type 2-A OSMus musculus GNHist2h2aa1 PE1 SV3	11101,77	14095,5078	
Q64522	H2A2B_MOUSE	Histone H2A type 2-B OSMus musculus GNHist2h2ab PE1 SV3	10043,78	14013,3593	
Q64523	H2A2C_MOUSE	Histone H2A type 2-C OSMus musculus GNHist2h2ac PE1 SV3	11101,77	13988,3928	
Q8BFU2	H2A3_MOUSE	Histone H2A type 3 OSMus musculus GNHist3h2a PE1 SV3	11101,77	14121,4815	
Q8R1M2	H2AJ_MOUSE	Histone H2AJ OSMus musculus GNH2afj PE1 SV1	11101,77	14045,4643	
Q3THW5	H2AV_MOUSE	Histone H2AV OSMus musculus GNH2afv PE1 SV3	3046,154	13508,6993	
P27661	H2AX_MOUSE	Histone H2AX OSMus musculus GNH2afx PE1 SV2	11101,77	15142,6137	
P0C0S6	H2AZ_MOUSE	Histone H2AZ OSMus musculus GNH2afz PE1 SV2	3046,154	13552,7525	
P70696	H2B1A_MOUSE	Histone H2B type 1-A OSMus musculus GNHist1h2ba PE1 SV3	1582,081	14294,6601	
Q64475	H2B1B_MOUSE	Histone H2B type 1-B OSMus musculus GNHist1h2bb PE1 SV3	1582,081	13952,1883	16,9364
Q6ZWY9	H2B1C_MOUSE	Histone H2B type 1-C/E/G OSMus musculus GNHist1h2bc PE1 SV3	1582,081	13906,1627	
P10853	H2B1F_MOUSE	Histone H2B type 1-F/J/L OSMus musculus GNHist1h2bf	1582,081	13936,1889	

		PE1 SV2			
Q64478	H2B1H_MOUSE	Histone H2B type 1-H OSMus musculus GNHist1h2bh PE1 SV3	1582,081	13920,1896	
Q8CGP1	H2B1K_MOUSE	Histone H2B type 1-K OSMus musculus GNHist1h2bk PE1 SV3	1582,081	13920,1895	
P10854	H2B1M_MOUSE	Histone H2B type 1-M OSMus musculus GNHist1h2bm PE1 SV2	1582,081	13936,189	
Q8CGP2	H2B1P_MOUSE	Histone H2B type 1-P OSMus musculus GNHist1h2bp PE1 SV3	1582,081	13992,2965	
Q64525	H2B2B_MOUSE	Histone H2B type 2-B OSMus musculus GNHist2h2bb PE1 SV3	1582,081	13920,1896	
Q64524	H2B2E_MOUSE	Histone H2B type 2-E OSMus musculus GNHist2h2be PE1 SV3	1582,081	13993,2843	
Q9D2U9	H2B3A_MOUSE	Histone H2B type 3-A OSMus musculus GNHist3h2ba PE1 SV3	1582,081	13994,2287	
Q8CGP0	H2B3B_MOUSE	Histone H2B type 3-B OSMus musculus GNHist3h2bb PE1 SV3	1582,081	13908,1352	
P62806	H4_MOUSE	Histone H4 OSMus musculus GNHist1h4a PE1 SV2	9030,715	11367,3627	63,0043
P06467	HBAZ_MOUSE	Hemoglobin subunit zeta OSMus musculus GNHbz PE2 SV2	1232,076	16350,9764	2,1325
P01942	HBA_MOUSE	Hemoglobin subunit alpha OSMus musculus GNHba PE1 SV2	34430,11	15143,2057	988,3729
P02088	HBB1_MOUSE	Hemoglobin subunit beta-1 OSMus musculus GNHbb-b1 PE1 SV2	51273,91	15956,2278	320,4165
P02089	HBB2_MOUSE	Hemoglobin subunit beta-2 OSMus musculus GNHbb-b2 PE1 SV2	36028,91	15994,2962	116,2853
P02104	HBE_MOUSE	Hemoglobin subunit epsilon-Y2 OSMus musculus GNHbb-y PE1 SV2	8933,675	16194,6489	
P49710	HCLS1_MOUSE	Hematopoietic lineage cell-specific protein OSMus musculus GNHcls1 PE1 SV2	398,136	54298,3064	5,424
P51859	HDGF_MOUSE	Hepatoma-derived growth factor OSMus musculus GNHdgf PE1 SV2	441,3179	26384,7251	10,5246
P61979	HNRPK_MOUSE	Heterogeneous nuclear ribonucleoprotein K OSMus musculus GNHnrnpk PE1 SV1	4554,609	51266,3981	62,9303
P07901	HS90A_MOUSE	Heat shock protein HSP 90-alpha OSMus musculus GNHsp90aa1 PE1 SV4	491,3025	85194,1163	2,0269

D44400		Heat shock protein HSP 90-beta OSMus musculus	1005 075	00000 4400	44 7705
P11499	HS90B_MOUSE	GNHsp90ab1 PE1 SV3	1035,675	83629,4409	11,7795
P17156	HSP72_MOUSE	GNHspa2 PE1 SV2	234,2339	69931,8127	
		Heat shock cognate 71 kDa protein OSMus musculus			
P63017	HSP7C_MOUSE	GNHspa8 PE1 SV1	965,2188	71103,2199	13,9444
P51125	ICAL_MOUSE	Calpastatin OSMus musculus GNCast PE1 SV2	226,9849	85153,8548	7,3446
		Keratin type II cytoskeletal 8 OSMus musculus GNKrt8 PE1			
P11679	K2C8_MOUSE	SV4	358,2227	54565,4475	9,101
P07310	KCRM_MOUSE	Creatine kinase M-type OSMus musculus GNCkm PE1 SV1	2953,36	43277,0979	32,0897
P52480	KPYM_MOUSE	Pyruvate kinase PKM OSMus musculus GNPkm PE1 SV4	2416,237	58425,1329	32,9931
P01676	KV6A2 MOUSE	Ig kappa chain V-VI region XRPC 24 OSMus musculus PE1	243 3525	11700 1170	1 6860
101070		Lamina-associated polypentide 2 isoforms alpha/zeta OSMus	240,0020	11700,1179	1,0003
Q61033	LAP2A_MOUSE	musculus GNTmpo PE1 SV4	667,6154	75864,4691	13,6753
		Lamina-associated polypeptide 2 isoforms			
		beta/delta/epsilon/gamma OSMus musculus GNTmpo PE1			
Q61029	LAP2B_MOUSE	SV4	733,8051	50430,8142	2,0602
P06151	LDHA MOUSE	L-lactate denydrogenase A chain OSMus musculus GNLdha PE1 SV3	866.8839	36846.6743	13,7627
		L-lactate dehydrogenase C chain OSMus musculus GNLdhc			-, -
P00342	LDHC_MOUSE	PE1 SV2	247,7999	36259,9846	16,5953
P16045	LEG1_MOUSE	Galectin-1 OSMus musculus GNLgals1 PE1 SV3	1216,457	15213,9454	20,1907
Q9CPU0	LGUL_MOUSE	Lactoylglutathione lyase OSMus musculus GNGIo1 PE1 SV3	275,9293	20983,6677	5,2454
		Lymphocyte-specific protein 1 OSMus musculus GNLsp1			
P19973	LSP1_MOUSE	PE1 SV2	553,3981	36829,8976	7,601
P51885	LUM_MOUSE	Lumican OSMus musculus GNLum PE1 SV2	466,0645	38671,1083	6,599
000015	MANE MOUSE	Mesencephalic astrocyte-derived neurotrophic factor OSMus	204 0702	20927 9061	2 0240
QUAND	WANF_WOUSE	Microtubule associated protein 4 OSMus musculus CNMan4	294,9703	20037,0001	2,0240
P27546	MAP4_MOUSE	PE1 SV3	258,2727	118009,4834	8,7277
		Myristoylated alanine-rich C-kinase substrate OSMus			
P26645	MARCS_MOUSE	musculus GNMarcks PE1 SV2	4323,134	29719,3469	31,6088
0.071150		Myosin regulatory light chain 12B OSMus musculus			
Q3THE2	ML12B_MOUSE	GNMy1120 PE1 SV2	457,4684	19837,2315	8,8881

		MARCKS-related protein OSMus musculus GNMarcksl1 PE1			
P28667	MRP_MOUSE	SV2	2035,45	20223,4609	11,2655
Q9CQ65	MTAP MOUSE	S-methyl-5'-thioadenosine phosphorylase OSMus musculus GNMtap PF1 SV1	972,7052	31642.065	10.9834
		Myosin light chain 1/3 skeletal muscle isoform OSMus	0.2,.002	0.0.2,000	
P05977	MYL1_MOUSE	musculus GNMyl1 PE1 SV2	1017,473	20710,5822	13,0868
		Myosin regulatory light polypeptide 9 OSMus musculus			
Q9CQ19	MYL9_MOUSE	GNMyl9 PE1 SV3	340,1075	19912,2878	
		Nucleoside diphosphate kinase A OSMus musculus			
P15532	NDKA_MOUSE	GNNme1 PE1 SV1	1228,399	17323,8548	8,6926
		Nucleoside diphosphate kinase B OSMus musculus			
Q01768	NDKB_MOUSE	GNNme2 PE1 SV1	1215,274	17479,1273	
		Neurofilament light polypeptide OSMus musculus GNNefl			
P08551	NFL_MOUSE	PE1 SV5	250,115	61566,5452	0,8378
Q61937	NPM_MOUSE	Nucleophosmin OSMus musculus GNNpm1 PE1 SV1	342,9248	32734,172	9,7584
		Plasminogen activator inhibitor 1 RNA-binding protein			
Q9CY58	PAIRB_MOUSE	OSMus musculus GNSerbp1 PE1 SV2	662,4502	44830,1859	11,5213
		Programmed cell death protein 5 OSMus musculus GNPdcd5			
P56812	PDCD5_MOUSE	PE1 SV3	4174,745	14275,1168	21,5085
		Protein disulfide-isomerase A3 OSMus musculus GNPdia3			
P27773	PDIA3_MOUSE	PE1 SV2	473,3026	57142,5301	18,1853
		Protein disulfide-isomerase A6 OSMus musculus GNPdia6			
Q922R8	PDIA6_MOUSE	PE1 SV3	555,2343	48506,5159	9,5687
5-000		Phosphatidylethanolamine-binding protein 1 OSMus			
P70296	PEBP1_MOUSE	musculus GNPebp1 PE1 SV3	3408,144	21004,5041	29,469
P15331	PERI_MOUSE	Peripherin OSMus musculus GNPrph PE1 SV2	480,2061	54383,7071	0,6907
		Phosphoglycerate mutase 1 OSMus musculus GNPgam1			
Q9DBJ1	PGAM1_MOUSE	PE1 SV3	616,0097	28948,0581	12,3761
		Phosphoglycerate kinase 1 OSMus musculus GNPgk1 PE1			
P09411	PGK1_MOUSE	SV4	781,5206	44956,6516	18,2552
Q99K51	PLST_MOUSE	Plastin-3 OSMus musculus GNPIs3 PE1 SV3	251,6091	71264,1962	3,3947
		Peptidyl-prolyl cis-trans isomerase A OSMus musculus			
P17742	PPIA_MOUSE	GNPpia PE1 SV2	14624,68	18145,413	81,8468
		Peptidyl-prolyl cis-trans isomerase B OSMus musculus			
P24369	PPIB_MOUSE	GNPpib PE1 SV2	224,801	23713,5186	40,2467

P35700	PRDX1_MOUSE	Peroxiredoxin-1 OSMus musculus GNPrdx1 PE1 SV1	437,4565	22408,5715	6,4872
Q61171	PRDX2_MOUSE	Peroxiredoxin-2 OSMus musculus GNPrdx2 PE1 SV3	234,8951	21952,7164	2,9647
O08807	PRDX4_MOUSE	Peroxiredoxin-4 OSMus musculus GNPrdx4 PE1 SV1	369,3354	31284,5875	9,0942
		Peroxiredoxin-5 mitochondrial OSMus musculus GNPrdx5			
P99029	PRDX5_MOUSE	PE1 SV2	1106,016	22245,5586	9,884
P62962	PROF1_MOUSE	Profilin-1 OSMus musculus GNPfn1 PE1 SV2	3265,816	15131,2915	33,2754
P32848	PRVA_MOUSE	Parvalbumin alpha OSMus musculus GNPvalb PE1 SV3	56158,31	11930,5491	365,5387
P97371	PSME1_MOUSE	Proteasome activator complex subunit 1 OSMus musculus GNPsme1 PE2 SV2	1870,031	28847,0133	38,9474
P26350	PTMA_MOUSE	Prothymosin alpha OSMus musculus GNPtma PE1 SV2	17849,88	12254,105	110,225
Q9D0J8	PTMS_MOUSE	Parathymosin OSMus musculus GNPtms PE1 SV3	272,3011	11429,7945	2,3729
Q05186	RCN1_MOUSE	Reticulocalbin-1 OSMus musculus GNRcn1 PE1 SV1	468,66	38113,1188	6,2676
P97492	RGS14_MOUSE	Regulator of G-protein signaling 14 OSMus musculus GNRgs14 PE1 SV2	500,9156	60427,1219	35,7631
P62984	RL40_MOUSE	Ubiquitin-60S ribosomal protein L40 OSMus musculus GNUba52 PE1 SV2	13733,72	15018,392	164,302
P99027	RLA2_MOUSE	60S acidic ribosomal protein P2 OSMus musculus GNRplp2 PE1 SV3	32643,79	11650,9266	113,4312
O88569	ROA2_MOUSE	Heterogeneous nuclear ribonucleoproteins A2/B1 OSMus musculus GNHnrnpa2b1 PE1 SV2	615,8006	37460,7459	8,6905
Q8BG05	ROA3_MOUSE	Heterogeneous nuclear ribonucleoprotein A3 OSMus musculus GNHnrnpa3 PE1 SV1	466,0117	39884,1003	5,8896
P62983	RS27A_MOUSE	Ubiquitin-40S ribosomal protein S27a OSMus musculus GNRps27a PE1 SV2	13733,72	18298,9807	
P62858	RS28_MOUSE	40S ribosomal protein S28 OSMus musculus GNRps28 PE2 SV1	6602,699	7899,0535	34,815
P14069	S10A6_MOUSE	Protein S100-A6 OSMus musculus GNS100a6 PE1 SV3	3990,326	10108,6486	63,9974
P31725	S10A9_MOUSE	Protein S100-A9 OSMus musculus GNS100a9 PE1 SV3	9195,569	13222,9499	74,9516
P97352	S10AD_MOUSE	Protein S100-A13 OSMus musculus GNS100a13 PE1 SV1	1313,31	11157,8139	5,8742
Q61207	SAP_MOUSE	Prosaposin OSMus musculus GNPsap PE1 SV2	4974,148	63336,6218	235,3557
Q9DAH1	SCP2D_MOUSE	SCP2 sterol-binding domain-containing protein 1 OSMus musculus GNScp2d1 PE2 SV2	264,5826	17429,3013	15,9732
Q9EQU5	SET MOUSE	Protein SET OSMus musculus GNSet PE1 SV1	406,059	33377,8052	9,7571
P08228	SODC_MOUSE	Superoxide dismutase [Cu-Zn] OSMus musculus GNSod1	13606,23	16116,7319	95,171
	· —				

		PE1 SV2			
		Serine protease inhibitor A3K OSMus musculus			
P07759	SPA3K_MOUSE	GNSerpina3k PE1 SV2	1172,652	47054,0438	16,1053
P54227	STMN1_MOUSE	Stathmin OSMus musculus GNStmn1 PE1 SV2	2473,162	17274,4889	28,4395
Q9WVA4	TAGL2_MOUSE	Transgelin-2 OSMus musculus GNTagIn2 PE1 SV4	3913,44	22569,525	31,9361
		Tubulin alpha-1A chain OSMus musculus GNTuba1a PE1			
P68369	TBA1A_MOUSE	SV1	474,3041	50831,8489	
		Tubulin alpha-1B chain OSMus musculus GNTuba1b PE1			
P05213	TBA1B_MOUSE	SV2	474,3041	50847,8482	
		Tubulin alpha-1C chain OSMus musculus GNTuba1c PE1			
P68373	TBA1C_MOUSE	SV1	474,3041	50605,5731	19,2109
P05214	TBA3_MOUSE	Tubulin alpha-3 chain OSMus musculus GNTuba3a PE1 SV1	319,1871	50655,7631	
540544		Transcription elongation factor A protein 1 OSMus musculus			0.4004
P10711	ICEA1_MOUSE	GNIceal PE1 SV2	389,1046	34344,6753	3,1201
Deadaa	TOTO MOULOE	I ranslationally-controlled tumor protein OSMus musculus	1100 001	40570.054	00 5504
P63028	TCTP_MOUSE	GNIPTIPETSVI	1129,331	19578,254	20,5524
071782		GNTdpoz2 PE2 SV2	215 2032	10033 0105	0 6001
D10620		Thiorodoxin OSMus musculus CNTxn DE1 SV2	11946 47	12022 5224	42 2544
F10039		Mitochondrial import inner membrane translocase subunit	11040,47	12023,5554	45,5544
P62075	TIM13 MOUSE	Tim13 OSMus musculus GNTimm13 PE1 SV1	512 4286	10690 0329	11 2774
P40142	TKT MOUSE	Transketolase OSMus musculus CNTkt PE1 SV1	254 8232	68326 7258	7 6267
1 40 142		Troponin C skeletal muscle OSMus musculus GNTnnc2 PE1	204,0202	00520,7250	7,0207
P20801	TNNC2 MOUSE	SV2	1297,871	18168,1232	0,7801
Q62393	TPD52 MOUSE	Tumor protein D52 OSMus musculus GNTpd52 PE1 SV2	4740,582	24371,0488	24,4799
Q9CYZ2	TPD54 MOUSE	Tumor protein D54 OSMus musculus GNTpd52l2 PE1 SV1	586,181	24100.9946	13,3689
		Triosephosphate isomerase OSMus musculus GNTpi1 PE1		,	-,
P17751	TPIS_MOUSE	SV4	2644,032	32713,908	13,7963
		Tropomyosin alpha-1 chain OSMus musculus GNTpm1 PE1			
P58771	TPM1_MOUSE	SV1	2448,983	32738,615	29,5856
		Tropomyosin beta chain OSMus musculus GNTpm2 PE1			
P58774	TPM2_MOUSE	SV1	1569,742	32952,7875	2,2135
		Tropomyosin alpha-3 chain OSMus musculus GNTpm3 PE1			
P21107	TPM3_MOUSE	SV3	2422,344	33052,1034	28,2922

		Tropomyosin alpha-4 chain OSMus musculus GNTpm4 PE2			
Q6IRU2	TPM4_MOUSE	SV3	3785,265	28583,7863	38,6224
		Trafficking protein particle complex subunit 1 OSMus			
Q5NCF2	TPPC1_MOUSE	musculus GNTrappc1 PE1 SV1	261,4843	16997,6405	0,9144
		E3 ubiquitin-protein ligase TRAF7 OSMus musculus GNTraf7			
Q922B6	TRAF7_MOUSE	PE2 SV1	279,9175	68285,7408	3,1286
Q921I1	TRFE_MOUSE	Serotransferrin OSMus musculus GNTf PE1 SV1	849,3167	78928,332	19,7243
P07309	TTHY_MOUSE	Transthyretin OSMus musculus GNTtr PE1 SV1	611,2457	15891,9651	15,5789
P0CG49	UBB_MOUSE	Polyubiquitin-B OSMus musculus GNUbb PE2 SV1	13733,72	34368,5505	
P0CG50	UBC_MOUSE	Polyubiquitin-C OSMus musculus GNUbc PE1 SV2	13733,72	82666,2363	
Q8R317	UBQL1_MOUSE	Ubiquilin-1 OSMus musculus GNUbqln1 PE1 SV1	306,6608	61976,6136	9,0349
		Cytochrome b-c1 complex subunit Rieske mitochondrial			
Q9CR68	UCRI_MOUSE	OSMus musculus GNUqcrfs1 PE1 SV1	2223,077	29657,7285	24,0445
P61961	UFM1_MOUSE	Ubiquitin-fold modifier 1 OSMus musculus GNUfm1 PE1 SV1	737,3285	9175,6006	9,8911
P20152	VIME_MOUSE	Vimentin OSMus musculus GNVim PE1 SV3	8019,135	53745,7619	125,8475
		Nuclease-sensitive element-binding protein 1 OSMus			
P62960	YBOX1_MOUSE	musculus GNYbx1 PE1 SV3	529,311	35729,9942	4,0799
Q62523	ZYX_MOUSE	Zyxin OSMus musculus GNZyx PE1 SV2	535,8696	61880,2371	9,2577

APÊNDICE 4

protein.score protein.avgMass protein.fmolOnColumn protein.Entry protein.Accession protein.Description ALCOHOL DEHYDROGENASE I (EC 1111) P00330 12106,65 37156,0869 250 ADH1 YEAST ADH2 YEAST ALCOHOL DEHYDROGENASE II (EC 1111) P00331 2635,294 37064,8422 0,7303 ADH5 YEAST ALCOHOL DEHYDROGENASE V (EC 1111) P38113 285,8285 38228,2734 P02070 HBB BOVIN HEMOGLOBIN BETA CHAIN 9552,8 16012.4288 12,9449 P01966 HEMOGLOBIN ALPHA CHAIN HBA BOVIN 1009.33 15053,194 14-3-3 protein beta/alpha OSMus musculus GNYwhab PE1 Q9CQV8 1433B MOUSE SV3 1776.635 28202.51 7.1357 P62259 1433E MOUSE 14-3-3 protein epsilon OSMus musculus GNYwhae PE1 SV1 1385,539 29348,0013 18,7396 P68510 1433F MOUSE 14-3-3 protein eta OSMus musculus GNYwhah PE1 SV2 1592,017 28385,8238 1,109 14-3-3 protein gamma OSMus musculus GNYwhag PE1 SV2 P61982 1433G MOUSE 9,1377 1620,123 28476,6771 14-3-3 protein sigma OSMus musculus GNSfn PE1 SV2 O70456 1433S MOUSE 1202,389 27822,1088 3,6388 14-3-3 protein theta OSMus musculus GNYwhag PE1 SV1 P68254 1433T MOUSE 1567,311 28068.38 0,3657 14-3-3 protein zeta/delta OSMus musculus GNYwhaz PE1 P63101 1433Z MOUSE SV1 1975,818 27945,2293 30,9753 P31786 ACBP MOUSE Acyl-CoA-binding protein OSMus musculus GNDbi PE1 SV2 1738,88 10000,4556 169,2457 Actin aortic smooth muscle OSMus musculus GNActa2 PE1 P62737 ACTA MOUSE 12300,16 SV1 42415,1441 Beta-actin-like protein 2 OSMus musculus GNActbl2 PE1 Q8BFZ3 ACTBL MOUSE SV1 4743,364 42352.3849 197,5781 ACTB MOUSE 19632,81 P60710 Actin cytoplasmic 1 OSMus musculus GNActb PE1 SV1 42084,921 508,8404 Actin alpha cardiac muscle 1 OSMus musculus GNActc1 PE1 ACTC MOUSE P68033 SV1 12350,13 42367,1533 151.5961 Actin cytoplasmic 2 OSMus musculus GNActg1 PE1 SV1 P63260 ACTG MOUSE 19632.81 42141.0286 Actin gamma-enteric smooth muscle OSMus musculus P63268 ACTH MOUSE GNActg2 PE1 SV1 12297,36 42283,0683 Actin alpha skeletal muscle OSMus musculus GNActa1 PE1 42399,2193 P68134 ACTS MOUSE 12350,13

Proteínas expressam nos tumores de animais que receberam tratamento com nanopartícula contendo melitina (completa).

		SV/1			
00.1700		AFC2 like protoin 2 OSMus mussulus CNAfc2l2 DF1 CV/1	240.2626	00040 0001	40.0004
	AFG32_MOUSE	AFG3-like protein 2 OSivius musculus GNAig3i2 PET SVT	349,3626	90040,9801	42,2931
P46660	AINX_MOUSE	Alpha-Internexin OSMus musculus GNIna PE1 SV3	291,3659	55556,6822	3,634
P07724	ALBU_MOUSE	Serum albumin OSMus musculus GNAlb PE1 SV3	15563,93	70780,9954	770,3068
		Fructose-bisphosphate aldolase A OSMus musculus			
P05064	ALDOA_MOUSE	GNAIdoa PE1 SV2	1614,613	39820,0639	39,4613
P10107	ANXA1_MOUSE	Annexin A1 OSMus musculus GNAnxa1 PE1 SV2	2762,727	39024,4288	43,1054
P07356	ANXA2_MOUSE	Annexin A2 OSMus musculus GNAnxa2 PE1 SV2	1149,126	38966,3331	34,738
P48036	ANXA5_MOUSE	Annexin A5 OSMus musculus GNAnxa5 PE1 SV1	619,761	35810,5177	28,6383
Q00623	APOA1_MOUSE	Apolipoprotein A-I OSMus musculus GNApoa1 PE1 SV2	1311,272	30615,5559	32,5806
		Actin-related protein 2/3 complex subunit 1B OSMus			
Q9WV32	ARC1B_MOUSE	musculus GNArpc1b PE2 SV4	552,0383	41876,1034	14,7735
		Copper transport protein ATOX1 OSMus musculus GNAtox1			
O08997	ATOX1_MOUSE	PE1 SV1	5704,845	7512,4755	31,8118
		ATP synthase-coupling factor 6 mitochondrial OSMus			
P97450	ATP5J_MOUSE	musculus GNAtp5j PE1 SV1	1684,657	12496,459	45,6288
		ATP synthase subunit beta mitochondrial OSMus musculus			
P56480	ATPB_MOUSE	GNAtp5b PE1 SV2	612,7684	56300,5934	17,6589
P01887	B2MG_MOUSE	Beta-2-microglobulin OSMus musculus GNB2m PE1 SV2	818,1463	13895,0445	23,1257
		Brain acid soluble protein 1 OSMus musculus GNBasp1 PE1			
Q91XV3	BASP1_MOUSE	SV3	2050,187	22086,6137	38,2399
		Calmodulin-like protein 3 OSMus musculus GNCalml3 PE2			
Q9D6P8	CALL3_MOUSE	SV1	1890,217	16701,4807	0,9142
P62204	CALM_MOUSE	Calmodulin OSMus musculus GNCalm1 PE1 SV2	11645,71	16837,6523	216,9534
P14211	CALR_MOUSE	Calreticulin OSMus musculus GNCalr PE1 SV1	644,3495	48168,6034	35,2652
O35887	CALU_MOUSE	Calumenin OSMus musculus GNCalu PE1 SV1	1239,346	37179,8122	36,95
		Macrophage-capping protein OSMus musculus GNCapg PE1			
P24452	CAPG_MOUSE	SV2	453,2906	39530,5043	14,0187
		10 kDa heat shock protein mitochondrial OSMus musculus			
Q64433	CH10_MOUSE	GNHspe1 PE1 SV2	9923,002	10962,7194	84,6263
		60 kDa heat shock protein mitochondrial OSMus musculus			
P63038	CH60_MOUSE	GNHspd1 PE1 SV1	442,5697	61129,6537	21,2399
		Charged multivesicular body protein 4b OSMus musculus			
Q9D8B3	CHM4B_MOUSE	GNChmp4b PE1 SV2	723,8305	24936,1916	20,9932

P18760	COF1_MOUSE	Cofilin-1 OSMus musculus GNCfl1 PE1 SV3	1985,496	18791,6224	37,4603
P45591	COF2_MOUSE	Cofilin-2 OSMus musculus GNCfl2 PE1 SV1	601,2551	18825,639	
O89053	COR1A_MOUSE	Coronin-1A OSMus musculus GNCoro1a PE1 SV5	546,6141	51685,3871	22,3501
		Cytochrome c oxidase subunit 5A mitochondrial OSMus			
P12787	COX5A_MOUSE	musculus GNCox5a PE1 SV2	1279,727	16333,5379	26,6005
P31001	DESM_MOUSE	Desmin OSMus musculus GNDes PE1 SV3	2163,143	53555,8842	35,3557
		Elongation factor 1-alpha 1 OSMus musculus GNEef1a1 PE1			
P10126	EF1A1_MOUSE		5574,759	50461,9982	167,7608
D60604		Elongation factor 1-alpha 2 OSMus musculus GNEef1a2 PE1	1701.070	50000 0460	0.0000
P02031	EFTAZ_MOUSE	SVI	1721,079	50802,3168	0,9208
0902119	FIE1B MOUSE	GNEif1b PE2 SV2	954 9641	12939 6782	9 1754
0.00/100		Eukarvotic translation initiation factor 1 OSMus musculus	001,0011	12000,0102	0,1101
P48024	EIF1 MOUSE	GNEif1 PE2 SV2	954,9641	12862,5547	
P17182	ENOA MOUSE	Alpha-enolase OSMus musculus GNEno1 PE1 SV3	4329,375	47488,9641	120,9688
P21550	ENOB MOUSE	Beta-enolase OSMus musculus GNEno3 PE1 SV3	1168,433	47373,0269	
P17183	ENOG MOUSE	Gamma-enolase OSMus musculus GNEno2 PE1 SV2	1395,753	47644,7985	3,3445
P08113	ENPL_MOUSE	Endoplasmin OSMus musculus GNHsp90b1 PE1 SV2	437,0438	92765,9785	25,6194
		Peptidyl-prolyl cis-trans isomerase FKBP1A OSMus			
P26883	FKB1A_MOUSE	musculus GNFkbp1a PE1 SV2	1778,201	11980,6685	38,6875
		Far upstream element-binding protein 2 OSMus musculus			
Q3U0V1	FUBP2_MOUSE	GNKhsrp PE1 SV2	811,926	77239,6936	38,7926
P56959	FUS_MOUSE	RNA-binding protein FUS OSMus musculus GNFus PE2 SV1	761,4438	52905,2714	24,2729
D40050		Glyceraldehyde-3-phosphate dehydrogenase OSMus	0000 000	00400 4454	404 0040
P16858	G3P_MOUSE	musculus GNGapon PE1 SV2	3399,989	36100,1451	104,2646
000PT1		RNO GDP-dissociation inhibitor 1 USIVius musculus	857 0844	23465 4500	10 3245
QUUE		Pho CDP-dissociation inhibitor 2 OSMus musculus	037,0044	23403,4399	19,5245
Q61599	GDIR2 MOUSE	GNArhadib PF1 SV3	1612.061	22908,9387	31,0606
		78 kDa glucose-regulated protein OSMus musculus	,		0.,0000
P20029	GRP78_MOUSE	GNHspa5 PE1 SV3	2388,435	72538,1752	41,7484
P15864	H12_MOUSE	Histone H12 OSMus musculus GNHist1h1c PE1 SV2	796,3087	21266,6702	28,3178
P43277	H13_MOUSE	Histone H13 OSMus musculus GNHist1h1d PE1 SV2	796,3087	22099,5393	
P43274	H14_MOUSE	Histone H14 OSMus musculus GNHist1h1e PE1 SV2	629,1548	21977,3291	

		Histone H2A type 1-F OSMus musculus GNHist1h2af PE1			
Q8CGP5	H2A1F_MOUSE	SV3	20699,57	14161,5463	
		Histone H2A type 1-H OSMus musculus GNHist1h2ah PE1			
Q8CGP6	H2A1H_MOUSE	SV3	20699,57	13950,2822	298,4073
		Histone H2A type 1-K OSMus musculus GNHist1h2ak PE1			
Q8CGP7	H2A1K_MOUSE		20699,57	14149,5353	
D22752		Histone H2A type 1 OSMus musculus GNHist1h2ab PE1	20600 57	14125 5094	
F 221 J2		Histope H2A type 2 A OSMus musculus GNHist2b2aa1 DE1	20099,37	14155,5004	
066557	H2A2A MOUSE	SV/3	20699 57	14095 5078	
00001	112/12/1 <u></u> 10000E	Histone H2A type 2-B OSMus musculus GNHist2h2ab PE1	20000,01	14000,0070	
Q64522	H2A2B MOUSE	SV3	20482,37	14013,3593	
		Histone H2A type 2-C OSMus musculus GNHist2h2ac PE1	, -	,	
Q64523	H2A2C_MOUSE	SV3	20699,57	13988,3928	
Q8BFU2	H2A3_MOUSE	Histone H2A type 3 OSMus musculus GNHist3h2a PE1 SV3	20699,57	14121,4815	
Q8R1M2	H2AJ_MOUSE	Histone H2AJ OSMus musculus GNH2afj PE1 SV1	20699,57	14045,4643	
Q3THW5	H2AV_MOUSE	Histone H2AV OSMus musculus GNH2afv PE1 SV3	5105,807	13508,6993	
P27661	H2AX_MOUSE	Histone H2AX OSMus musculus GNH2afx PE1 SV2	20699,57	15142,6137	
P0C0S6	H2AZ MOUSE	Histone H2AZ OSMus musculus GNH2afz PE1 SV2	5105,807	13552,7525	
		Histone H2B type 1-A OSMus musculus GNHist1h2ba PE1			
P70696	H2B1A_MOUSE	SV3	3423,266	14294,6601	41,193
		Histone H2B type 1-B OSMus musculus GNHist1h2bb PE1			
Q64475	H2B1B_MOUSE	SV3	3686,473	13952,1883	55,3143
		Histone H2B type 1-C/E/G OSMus musculus GNHist1h2bc			
Q6ZWY9	H2B1C_MOUSE	PE1 SV3	3686,473	13906,1627	
D40050		Histone H2B type 1-F/J/L OSMus musculus GNHist1h2bf	0000 470	40000 4000	
P10853	H2BTF_MOUSE	PET SV2	3686,473	13936,1889	
064478	H2B1H MOUSE		3686 473	13020 1806	
Q04470		Histone H2B type 1-K OSMus musculus CNHist1b2bk PE1	5000,475	13920,1090	
Q8CGP1	H2B1K MOUSE	SV3	3686.473	13920,1895	
		Histone H2B type 1-M OSMus musculus GNHist1h2bm PE1			
P10854	H2B1M_MOUSE	SV2	3686,473	13936,189	
		Histone H2B type 1-P OSMus musculus GNHist1h2bp PE1			
Q8CGP2	H2B1P_MOUSE	SV3	3686,473	13992,2965	

_		Histone H2B type 2-B OSMus musculus GNHist2h2bb PE1			
Q64525	H2B2B_MOUSE	SV3	3686,473	13920,1896	
Q64524	H2B2E_MOUSE	Histone H2B type 2-E OSMus musculus GNHist2h2be PE1 SV3	3431,937	13993,2843	
Q9D2U9	H2B3A_MOUSE	Histone H2B type 3-A OSMus musculus GNHist3h2ba PE1 SV3	3431,937	13994,2287	
Q8CGP0	H2B3B_MOUSE	Histone H2B type 3-B OSMus musculus GNHist3h2bb PE1 SV3	3431,937	13908,1352	
P68433	H31_MOUSE	Histone H31 OSMus musculus GNHist1h3a PE1 SV2	4886,36	15520,1338	71,6806
P84228	H32_MOUSE	Histone H32 OSMus musculus GNHist1h3b PE1 SV2	4886,36	15446,0617	
P84244	H33_MOUSE	Histone H33 OSMus musculus GNH3f3a PE1 SV2	4886,36	15385,942	
P02301	H3C_MOUSE	Histone H33C OSMus musculus GNH3f3c PE3 SV3	4886,36	15372,9402	
P62806	H4_MOUSE	Histone H4 OSMus musculus GNHist1h4a PE1 SV2	27306,83	11367,3627	331,1166
P06467	HBAZ_MOUSE	Hemoglobin subunit zeta OSMus musculus GNHbz PE2 SV2	1043,761	16350,9764	1,0192
P01942	HBA_MOUSE	Hemoglobin subunit alpha OSMus musculus GNHba PE1 SV2	33455,44	15143,2057	1093,861
P02088	HBB1_MOUSE	Hemoglobin subunit beta-1 OSMus musculus GNHbb-b1 PE1 SV2	57422,2	15956,2278	543,2877
P02089	HBB2_MOUSE	Hemoglobin subunit beta-2 OSMus musculus GNHbb-b2 PE1 SV2	48228,46	15994,2962	185,3053
P02104	HBE_MOUSE	Hemoglobin subunit epsilon-Y2 OSMus musculus GNHbb-y PE1 SV2	10117,02	16194,6489	46,6848
O35737	HNRH1_MOUSE	Heterogeneous nuclear ribonucleoprotein H OSMus musculus GNHnrnph1 PE1 SV3	420,96	49489,6103	5,0445
P61979	HNRPK_MOUSE	Heterogeneous nuclear ribonucleoprotein K OSMus musculus GNHnrnpk PE1 SV1	7509,325	51266,3981	139,918
Q9Z2X1	HNRPF_MOUSE	Heterogeneous nuclear ribonucleoprotein F OSMus musculus GNHnrnpf PE1 SV3	465,3045	46078,04	17,7354
Q8VEK3	HNRPU_MOUSE	Heterogeneous nuclear ribonucleoprotein U OSMus musculus GNHnrnpu PE1 SV1	854,2899	88729,9672	46,525
Q61696	HS71A_MOUSE	Heat shock 70 kDa protein 1A OSMus musculus GNHspa1a PE1 SV2	572,9532	70369,3039	1,9686
P17879	HS71B_MOUSE	Heat shock 70 kDa protein 1B OSMus musculus GNHspa1b PE1 SV3	572,9532	70466,4206	
P16627	HS71L_MOUSE	Heat shock 70 kDa protein 1-like OSMus musculus	1354,98	71043,4621	4,2801

		GNHspa11 PE2 SV4			
		Heat shock protein HSP 90-alpha OSMus musculus			
P07901	HS90A_MOUSE	GNHsp90aa1 PE1 SV4	800,258	85194,1163	17,2403
		Heat shock protein HSP 90-beta OSMus musculus			
P11499	HS90B_MOUSE	GNHsp90ab1 PE1 SV3	2525,646	83629,4409	130,9302
545450		Heat shock-related 70 kDa protein 2 OSMus musculus			
P1/156	HSP/2_MOUSE	GNHspa2 PE1 SV2	1/41,4/	69931,8127	6,6886
D00047		Heat shock cognate /1 kDa protein OSMus musculus	0.470.050	74400 0400	40.0504
P63017	HSP/C_MOUSE	GNHSpa8 PE1 SV1	2476,058	71103,2199	49,8521
D05704		Keratin type I cytoskeletal 18 OSMus musculus GNKrt18 PE1	4507.007	47500 4754	20.2540
P05784	KICI8_MOUSE	SV5 Karatia tura Lautaakalata 40 OOMua muaaukua ONK440 DE4	1527,967	47538,1754	39,3512
D10001	KICIO MOUSE	Keralin type i cyloskeletar 19 OSMus musculus GNKIT 19 PE i	227 6224	11511 0606	0 2042
P 19001	KICI9_MOUSE	SVI Koratin tuna Lautaakalatal 42 OSMua muaaulua ONKrt42 DE1	237,0231	44041,0020	0,2943
	K1C42 MOUSE		440 7173	50481 2462	0.0314
	K1042_W003L	Keratin type II cytoskeletal 1b OSMus musculus CNKrt77	449,7175	50401,2402	9,0314
	K2C1B MOUSE	PE1 SV1	643 3538	61416 8652	1 0758
		Keratin type II cytoskeletal 5 OSMus musculus GNKrt5 PE1	040,0000	01410,0002	1,0700
Q922U2	K2C5 MOUSE	SV1	330,6461	61998,8306	1,3375
		Keratin type II cytoskeletal 75 OSMus musculus GNKrt75		0.000,0000	.,
Q8BGZ7	K2C75 MOUSE	PE1 SV1	333,6435	59972,6494	109,0724
	-	Keratin type II cytoskeletal 7 OSMus musculus GNKrt7 PE1	,	,	,
Q9DCV7	K2C7_MOUSE	SV1	627,045	50708,8726	1,0232
	_	Keratin type II cytoskeletal 8 OSMus musculus GNKrt8 PE1			
P11679	K2C8_MOUSE	SV4	5075,263	54565,4475	75,93
P52480	KPYM MOUSE	Pyruvate kinase PKM OSMus musculus GNPkm PE1 SV4	3310,815	58425,1329	69,2024
		Lamina-associated polypeptide 2 isoforms alpha/zeta OSMus			
Q61033	LAP2A_MOUSE	musculus GNTmpo PE1 SV4	580,0559	75864,4691	9,6245
		Lamina-associated polypeptide 2 isoforms			
		beta/delta/epsilon/gamma OSMus musculus GNTmpo PE1			
Q61029	LAP2B_MOUSE	SV4	602,6372	50430,8142	35,1398
		L-lactate dehydrogenase A chain OSMus musculus GNLdha			
P06151	LDHA_MOUSE	PE1 SV3	1069,329	36846,6743	36,278
P16045	LEG1_MOUSE	Galectin-1 OSMus musculus GNLgals1 PE1 SV3	2745,717	15213,9454	80,9185
P26645	MARCS_MOUSE	Myristoylated alanine-rich C-kinase substrate OSMus	5578,514	29719,3469	58,6921

		musculus GNMarcks PE1 SV2			
		Malata debydrogonace mitochondrial OSMus musculus			
P08249	MDHM_MOUSE	GNMdh2 PE1 SV3	698,0023	36075,5954	35,5392
		Myosin regulatory light chain 12B OSMus musculus			
Q3THE2	ML12B_MOUSE	GNMyI12b PE1 SV2	1636,865	19837,2315	35,9217
		MARCKS-related protein OSMus musculus GNMarcksl1 PE1			
P28667	MRP_MOUSE	SV2	3796,299	20223,4609	23,3279
		S-methyl-5'-thioadenosine phosphorylase OSMus musculus			
Q9CQ65	MTAP_MOUSE	GNMtap PE1 SV1	942,6099	31642,065	32,0437
Q8CI43	MYL6B_MOUSE	Myosin light chain 6B OSMus musculus GNMyl6b PE2 SV1	1019,482	22864,9979	
Q9CQ19	MYL9_MOUSE	Myosin regulatory light polypeptide 9 OSMus musculus GNMyl9 PE1 SV3	907,1876	19912,2878	
		Myosin light polypeptide 6 OSMus musculus GNMyl6 PE1			
Q60605	MYL6_MOUSE	SV3	1801,486	17104,133	33,9584
		Nucleoside diphosphate kinase A OSMus musculus			
P15532	NDKA_MOUSE	GNNme1 PE1 SV1	1513,764	17323,8548	8,1939
		Nucleoside diphosphate kinase B OSMus musculus			
Q01768	NDKB_MOUSE	GNNme2 PE1 SV1	1497,016	17479,1273	23,1788
		Cytochrome c oxidase subunit NDUFA4 OSMus musculus			
Q62425	NDUA4_MOUSE	GNNduta4 PE1 SV2	1984,126	9326,8102	17,6688
D10010		Neurofilament heavy polypeptide OSMus musculus GNNeth	005 00 40	447004 4054	0.0050
P19246	NFH_MOUSE	PET 5V3 Neurofilement light pelunentide OCMus museulus CNNsfl	235,2849	117284,4654	0,6956
D09551	NEL MOUSE		205 6772	61566 5452	2 0016
F00001	NFL_WOUSE	PET 3V3	295,0772	01500,5452	3,9010
P08553	NEM MOUSE	GNNefm PE1 SV4	262 961	96032 2575	4 6851
061937	NPM_MOUSE	Nucleonhosmin OSMus musculus GNNnm1 PE1 SV1	3685 268	32734 172	83 7069
D00405		Nucleolin OSMus musculus CNNcl PE1 SV2	1214 056	76781 1787	53 7/1
1 03403		Programmed cell death protein 5 OSMus musculus GNPdcd5	1214,000	70701,1707	55,7 + 1
P56812	PDCD5 MOUSE	PE1 SV3	475.5745	14275,1168	7,4617
		Protein disulfide-isomerase A3 OSMus musculus GNPdia3		,	.,
P27773	PDIA3 MOUSE	PE1 SV2	1573,611	57142,5301	36,6551
	_	Protein disulfide-isomerase A6 OSMus musculus GNPdia6			
Q922R8	PDIA6_MOUSE	PE1 SV3	696,818	48506,5159	28,6019
P70296	PEBP1_MOUSE	Phosphatidylethanolamine-binding protein 1 OSMus	1805,349	21004,5041	46,3477

		musculus GNPebp1 PE1 SV3			
P15331	PERI MOUSE	Peripherin OSMus musculus GNPrph PE1 SV2	2067,997	54383,7071	2,5821
Q9DBJ1	PGAM1 MOUSE	Phosphoglycerate mutase 1 OSMus musculus GNPgam1 PE1 SV3	1000,121	28948,0581	29,1678
P09411	PGK1_MOUSE	Phosphoglycerate kinase 1 OSMus musculus GNPgk1 PE1 SV4	641,3016	44956,6516	30,0464
P17742	PPIA_MOUSE	Peptidyl-prolyl cis-trans isomerase A OSMus musculus GNPpia PE1 SV2	17774,81	18145,413	227,8005
P35700	PRDX1_MOUSE	Peroxiredoxin-1 OSMus musculus GNPrdx1 PE1 SV1	1676,046	22408,5715	44,1745
P99029	PRDX5_MOUSE	Peroxiredoxin-5 mitochondrial OSMus musculus GNPrdx5 PE1 SV2	1940,785	22245,5586	29,7559
O08709	PRDX6_MOUSE	Peroxiredoxin-6 OSMus musculus GNPrdx6 PE1 SV3	1576,4	24986,7025	29,1078
P62962	PROF1_MOUSE	Profilin-1 OSMus musculus GNPfn1 PE1 SV2	3631,403	15131,2915	59,3065
P97371	PSME1_MOUSE	Proteasome activator complex subunit 1 OSMus musculus GNPsme1 PE2 SV2	1737,146	28847,0133	61,4326
P17225	PTBP1_MOUSE	Polypyrimidine tract-binding protein 1 OSMus musculus GNPtbp1 PE1 SV2	595,9523	56710,272	19,9282
P26350	PTMA_MOUSE	Prothymosin alpha OSMus musculus GNPtma PE1 SV2	9293,485	12254,105	126,0643
O89086	RBM3_MOUSE	Putative RNA-binding protein 3 OSMus musculus GNRbm3 PE2 SV1	5422,845	16604,7176	73,0605
Q8VE92	RBM4B_MOUSE	RNA-binding protein 4B OSMus musculus GNRbm4b PE1 SV1	286,6828	40339,5277	1,4299
Q8C7Q4	RBM4_MOUSE	RNA-binding protein 4 OSMus musculus GNRbm4 PE1 SV1	335,5413	40509,6534	4,5421
Q00915	RET1_MOUSE	Retinol-binding protein 1 OSMus musculus GNRbp1 PE2 SV2	1126,132	16020,189	20,1418
Q9CXW4	RL11_MOUSE	60S ribosomal protein L11 OSMus musculus GNRpl11 PE1 SV4	526,6347	20484,4612	18,7093
P62984	RL40_MOUSE	Ubiquitin-60S ribosomal protein L40 OSMus musculus GNUba52 PE1 SV2	29659,05	15018,392	
P47955	RLA1_MOUSE	60S acidic ribosomal protein P1 OSMus musculus GNRplp1 PE2 SV1	3728,373	11590,9386	43,8816
P99027	RLA2_MOUSE	60S acidic ribosomal protein P2 OSMus musculus GNRplp2 PE1 SV3	56779,9	11650,9266	331,9603
P63325	RS10_MOUSE	40S ribosomal protein S10 OSMus musculus GNRps10 PE1 SV1	774,8552	18915,7924	16,8301

		40S ribosomal protein S14 OSMus musculus GNRps14 PE2			
P62264	RS14_MOUSE	SV3	1798,927	16446,7716	21,6868
P14131	RS16 MOUSE	40S ribosomal protein S16 OSMus musculus GNRps16 PE2	1968 778	16561 3591	21 5871
		Ubiguitin-40S ribosomal protein S27a OSMus musculus	1000,110	10001,0001	21,0071
P62983	RS27A_MOUSE	GNRps27a PE1 SV2	29659,05	18298,9807	
		40S ribosomal protein S28 OSMus musculus GNRps28 PE2			
P62858	RS28_MOUSE	SV1	4623,556	7899,0535	64,2809
		40S ribosomal protein S2 OSMus musculus GNRps2 PE2			
P25444	RS2_MOUSE	SV3	571,5103	31521,4097	12,5847
P14069	S10A6_MOUSE	Protein S100-A6 OSMus musculus GNS100a6 PE1 SV3	4792,975	10108,6486	153,859
P27005	S10A8_MOUSE	Protein S100-A8 OSMus musculus GNS100a8 PE1 SV3	7119,516	10352,6271	801,6882
P31725	S10A9_MOUSE	Protein S100-A9 OSMus musculus GNS100a9 PE1 SV3	5301,452	13222,9499	217,646
Q61207	SAP MOUSE	Prosaposin OSMus musculus GNPsap PE1 SV2	2251,351	63336,6218	216,1965
P42208	SEPT2 MOUSE	Septin-2 OSMus musculus GNSept2 PE1 SV2	456,7007	41757,6538	8,9619
P19324	SERPH MOUSE	Serpin H1 OSMus musculus GNSerpinh1 PE1 SV3	434,9005	46649,7061	40,6517
Q9EQU5	SET_MOUSE	Protein SET OSMus musculus GNSet PE1 SV1	2164,126	33377,8052	80,807
		Superoxide dismutase [Cu-Zn] OSMus musculus GNSod1			
P08228	SODC_MOUSE	PE1 SV2	9219,606	16116,7319	95,1713
P55821	STMN2_MOUSE	Stathmin-2 OSMus musculus GNStmn2 PE1 SV1	439,4309	20944,1271	3,4033
P54227	STMN1_MOUSE	Stathmin OSMus musculus GNStmn1 PE1 SV2	1635,07	17274,4889	27,6263
		Small ubiquitin-related modifier 2 OSMus musculus			
P61957	SUMO2_MOUSE	GNSumo2 PE1 SV1	2383,007	10929,2598	70,475
		Small ubiquitin-related modifier 3 OSMus musculus			
Q9Z172	SUMO3_MOUSE	GNSumo3 PE1 SV1	2383,007	12604,0306	
Q9WVA4	TAGL2_MOUSE	Transgelin-2 OSMus musculus GNTagln2 PE1 SV4	1216,572	22569,525	36,1479
		Tubulin alpha-1A chain OSMus musculus GNTuba1a PE1			
P68369	TBA1A_MOUSE	SV1	6780,729	50831,8489	239,0542
505040		Tubulin alpha-1B chain OSMus musculus GNTuba1b PE1	0700 700	500 / 7 0 / 00	
P05213	TBATB_MOUSE		6780,729	50847,8482	
060272		Tubulin alpha-1C chain OSMus musculus GN Tuba1c PE1	6760 107	E060E E721	
F 003/3	TBATC_WOUSE	Tubulin alpha 44 chain OSMus musculus GNTuba4a PE1	0700,107	50005,5751	
P68368	TBA4A_MOUSE	SV1	768,6204	50678,6378	51,6908

P05214	TBA3_MOUSE	Tubulin alpha-3 chain OSMus musculus GNTuba3a PE1 SV1	3206,509	50655,7631	
Q9JJZ2	TBA8_MOUSE	Tubulin alpha-8 chain OSMus musculus GNTuba8 PE1 SV1	705,1536	50747,7275	30,226
		Tubulin beta-2A chain OSMus musculus GNTubb2a PE1			
Q7TMM9	TBB2A_MOUSE	SV1	2392,505	50313,1871	0,2669
		Tubulin beta-2B chain OSMus musculus GNTubb2b PE1			
Q9CWF2	TBB2B_MOUSE	SV1	2392,505	50417,2855	
Q9ERD7	TBB3_MOUSE	Tubulin beta-3 chain OSMus musculus GNTubb3 PE1 SV1	2718,939	50882,8787	3,3542
		Tubulin beta-4B chain OSMus musculus GNTubb4b PE1			
P68372	TBB4B_MOUSE	SV1	749,1279	50295,2243	
000050		Tubulin beta-4A chain OSMus musculus GNTubb4a PE1	077 4700	50040 0000	
	TBB4A_MOUSE		677,1722	50049,9889	
Q922F4	TBB6_MOUSE	Tubulin beta-6 chain OSMus musculus GNTubb6 PE1 SV1	408,9295	50554,594	
P99024	TBB5_MOUSE	Tubulin beta-5 chain OSMus musculus GNTubb5 PE1 SV1	3351,288	50135,0275	152,9618
P10639	THIO_MOUSE	Thioredoxin OSMus musculus GNTxn PE1 SV3	3492,076	12023,5334	75,0781
P40142	TKT_MOUSE	Transketolase OSMus musculus GNTkt PE1 SV1	1150,13	68326,7258	30,4472
		Troponin C skeletal muscle OSMus musculus GNTnnc2 PE1			
P20801	TNNC2_MOUSE	SV2	621,4576	18168,1232	
Q62393	TPD52_MOUSE	Tumor protein D52 OSMus musculus GNTpd52 PE1 SV2	754,5137	24371,0488	25,9807
		Tropomyosin alpha-1 chain OSMus musculus GNTpm1 PE1			
P58771	TPM1_MOUSE	SV1	664,6116	32738,615	44,2843
D = 0 = 1		Tropomyosin beta chain OSMus musculus GNTpm2 PE1			
P58774	TPM2_MOUSE	SV1	543,6428	32952,7875	
D04407		Tropomyosin alpha-3 chain OSMus musculus GNTpm3 PE1	040.0074	22050 4024	00 4507
P21107	TPM3_MOUSE		613,9674	33052,1034	22,4527
Q92111	TRFE_MOUSE	Serotransferrin OSMus musculus GNTFPE1 SV1	372,6103	78928,332	19,1917
P0CG49	UBB_MOUSE	Polyubiquitin-B OSMus musculus GNUbb PE2 SV1	29659,05	34368,5505	
P0CG50	UBC_MOUSE	Polyubiquitin-C OSMus musculus GNUbc PE1 SV2	29667,33	82666,2363	767,024
		Ubiquitin-conjugating enzyme E2 N OSMus musculus			
P61089	UBE2N_MOUSE	GNUbe2n PE1 SV1	1295,817	17195,8637	25,8954
000000	LIODI MOLIOF	Cytochrome b-c1 complex subunit Rieske mitochondrial	000 4545	00057 7005	04 0400
Q9CR68		OSMus musculus GNUqcrfs1 PE1 SV1	896,4545	29657,7285	21,0126
P20152	VIME_MOUSE	Vimentin OSMus musculus GNVim PE1 SV3	20696,75	53745,7619	333,6006
D		Nuclease-sensitive element-binding protein 1 OSMus			
P62960	YBOX1_MOUSE	musculus GNYbx1 PE1 SV3	729,5592	35729,9942	25,0306

Q62523	ZYX_MOUSE	Zyxin OSMus musculus GNZyx PE1 SV2	666,5427	61880,2371	27,7765
		BEN domain-containing protein 6 OSMus musculus			
Q6PFX2	BEND6_MOUSE	GNBend6 PE2 SV1	279,8423	31502,3364	2,3519
		Uncharacterized protein C4orf19 homolog OSMus musculus			
Q99K99	CD019_MOUSE	PE1 SV2	312,9244	34380,1362	67,0244
		Elongation factor 1-delta OSMus musculus GNEef1d PE1			
P57776	EF1D_MOUSE	SV3	225,3734	31409,0867	19,7846
Q6NSQ7	LTV1_MOUSE	Protein LTV1 homolog OSMus musculus GNLtv1 PE2 SV2	285,7442	54313,2339	18,5554
		Mitotic spindle-associated MMXD complex subunit MIP18			
Q9D187	MIP18_MOUSE	OSMus musculus GNFam96b PE2 SV1	244,0512	17783,0209	2,0991
		Organic solute transporter subunit beta OSMus musculus			
Q80WK2	OSTB_MOUSE	GNSIc51b PE1 SV1	337,5559	14683,6669	8,777
505050		60S ribosomal protein L12 OSMus musculus GNRpl12 PE1			
P35979	RL12_MOUSE	SV2	261,4018	1/9/8,61/2	11,7644
		SH3 domain-binding glutamic acid-rich-like protein OSMus	000 0000	40007 0004	0.0000
091108	SH3L1_MOUSE	musculus GNSn3bgri PE3 SV1	306,6896	12927,2991	8,2669
		WD repeat-containing protein 73 OSMus musculus GNVVdr73	007 7070	44404 0044	7 0007
QUVRI	WDR73_WOUSE	PEZ SVI	231,1213	41494,2211	7,0037
D49062		ADP/ATP translocase TOSIVIUS Musculus GINSIC2584 PET	250 5090	22126 2762	10.026
F40902	ADTI_WOUSE	ADD/ATD translooped 2 OSMus museulus CNSIc25c5 DE1	330,3089	33130,3703	10,030
D51881	ADT2 MOUSE	ADF/ATF translocase 2 OSIVIUS MUSCUlus GINGICZGAS FET	321 085	33163 3063	
025620	ANYA2 MOUSE	Appovin A2 OSMup muppulup CNApyo2 DE1 SV/4	249 6640	26559 1699	10 2015
035039	ANAS_WOUSE	Artine related protoin 2/2 complex subunit 2 OSMus musculus	240,0049	30330,1000	10,2015
	APPC3 MOUSE	CNArpe3 DE1 SV3	302 6005	20756 7750	3 5536
Q911110	ARFC3_WOUSE	Uncharacterized protein C1orf108 homolog OSMus musculus	392,0005	20750,7759	3,0000
0803\\/1	CA108 MOUSE	DE2 SV1	382 0175	35/32 5163	3 0810
QUUSIVI		Caspase activity and apontosis inhibitor 1 OSMus musculus	302,9175	33432,3103	5,0015
	CAAP1 MOUSE	GNCaan1 PE1 SV2	261 3994	38347 5743	1 3938
QUIDIO		F-actin-capping protein subunit alpha-2 OSMus musculus	201,0004	00047,0740	1,0000
P47754	CAZA2 MOUSE	GNCapza2 PF1 SV3	375 5891	33141 1307	10 4166
		Voltage-dependent calcium channel gamma-8 subunit	010,0001		10,1100
Q8VHW2	CCG8 MOUSE	OSMus musculus GNCacng8 PE1 SV1	250,6254	43859,121	5.005
Q8BGU5	CCNY MOUSE	Cvclin-Y OSMus musculus GNCcnv PE1 SV1	372,4003	39916.9403	8,9147
Q4VAA2	CDV3 MOUSE	Protein CDV3 OSMus musculus GNCdv3 PE1 SV2	380 1838	29729 0589	7 6704
S. 1070 L	<u> </u>		000,1000	20120,0000	1,0104

[
		UPF0415 protein C7orf25 homolog OSMus musculus PE2	070 0004	40770 0040	0 7004
Q91WD4	CG025_MOUSE		279,9231	46773,2848	9,7961
035744	CHIL3_MOUSE	Chitinase-like protein 3 OSMus musculus GNChil3 PE1 SV2	277,4735	44806,4856	5,7401
0.0710.00		Peptidyl-prolyl cis-trans isomerase CWC27 homolog OSMus			
Q31KY6	CWC27_MOUSE	musculus GNCwc27 PE2 SV1	299,4258	53/16,/454	6,4924
		Protein dpy-30 homolog OSMus musculus GNDpy30 PE1	004.0500	44040 0707	17.000
Q99L10	DPY30_MOUSE	SV1	681,3526	11212,6707	17,323
Q9WUA5	EPM2A_MOUSE	Laforin OSMus musculus GNEpm2a PE1 SV2	391,3034	37480,3527	22,0087
		Far upstream element-binding protein 1 OSMus musculus			
Q91WJ8	FUBP1_MOUSE	GNFubp1 PE1 SV1	228,3625	68713,7443	22,3643
		Stress-70 protein mitochondrial OSMus musculus GNHspa9			
P38647	GRP75_MOUSE	PE1 SV3	225,3118	73751,4466	28,0104
007510		Heterochromatin protein 1-binding protein 3 OSMus			
Q3TEA8	HP1B3_MOUSE	musculus GNHp1bp3 PE1 SV1	365,3107	61098,7324	11,4504
Q62386	IL17_MOUSE	Interleukin-17A OSMus musculus GNII17a PE2 SV1	248,3102	17838,3633	21,4519
P26041	MOES_MOUSE	Moesin OSMus musculus GNMsn PE1 SV3	300,0619	67883,1429	16,9943
		Polyadenylate-binding protein 1 OSMus musculus GNPabpc1			
P29341	PABP1_MOUSE	PE1 SV2	253,4491	70903,084	32,4839
		Plasminogen activator inhibitor 1 RNA-binding protein			
Q9CY58	PAIRB_MOUSE	OSMus musculus GNSerbp1 PE1 SV2	380,8048	44830,1859	28,4964
		Poly(rC)-binding protein 1 OSMus musculus GNPcbp1 PE1			
P60335	PCBP1_MOUSE	SV1	305,1672	38020,0019	9,7654
Q61233	PLSL_MOUSE	Plastin-2 OSMus musculus GNLcp1 PE1 SV4	253,8744	70787,5453	29,3393
		PR domain zinc finger protein 8 OSMus musculus GNPrdm8			
Q8BZ97	PRDM8_MOUSE	PE2 SV1	230,2876	71814,365	3,4729
		Bifunctional purine biosynthesis protein PURH OSMus			
Q9CWJ9	PUR9_MOUSE	musculus GNAtic PE1 SV2	316,4301	64739,5694	11,2228
P26043	RADI_MOUSE	Radixin OSMus musculus GNRdx PE1 SV3	233,7444	68658,9349	2,4111
		RNA-binding motif protein X chromosome OSMus musculus			
Q9WV02	RBMX_MOUSE	GNRbmx PE1 SV1	264,4095	42300,9163	16,0084
		60S acidic ribosomal protein P0 OSMus musculus GNRplp0			
P14869	RLA0_MOUSE	PE1 SV3	288,0129	34390,5154	7,91
		Heterogeneous nuclear ribonucleoprotein A/B OSMus			
Q99020	ROAA_MOUSE	musculus GNHnrnpab PE1 SV1	273,4784	30947,3359	19,8725
P62082	RS7_MOUSE	40S ribosomal protein S7 OSMus musculus GNRps7 PE2	398,6635	22126,8754	3,7111

		SV1			
		Scaffold attachment factor B1 OSMus musculus GNSafb PE1			
D3YXK2	SAFB1_MOUSE	SV2	359,0075	105625,901	16,8874
		Serine protease inhibitor A3K OSMus musculus			
P07759	SPA3K_MOUSE	GNSerpina3k PE1 SV2	257,6008	47054,0438	5,5318
Q9CYZ2	TPD54_MOUSE	Tumor protein D54 OSMus musculus GNTpd52l2 PE1 SV1	244,9976	24100,9946	3,9538
Q9JKB3	YBOX3_MOUSE	Y-box-binding protein 3 OSMus musculus GNYbx3 PE1 SV2	267,0504	38813,634	3,9231