UNIVERSIDADE DE BRASÍLIA FACULDADE DE CIÊNCIAS DA SAÚDE PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS FARMACÊUTICAS

THAIS DE ARAUJO MARQUES FERREIRA

SÍNTESE E AVALIAÇÃO FARMACOLÓGICA DE NOVOS LIGANTES PPAR PLANEJADOS A PARTIR DO CARDANOL

Brasília

2014

THAIS DE ARAUJO MARQUES FERREIRA

SÍNTESE E AVALIAÇÃO FARMACOLÓGICA DE NOVOS LIGANTES PPAR PLANEJADOS A PARTIR DO CARDANOL

Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Ciências Farmacêuticas da Faculdade de Saúde, Universidade de Brasília, como requisito parcial à obtenção do título de Mestre em Ciências Farmacêuticas.

Orientador: Dr. Luiz Antonio Soares Romeiro

BRASÍLIA 2014 Autorizo a reprodução e divulgação apenas do resumo deste trabalho, por qualquer meio convencional ou eletrônico, para fins de ensino, estudo ou pesquisa, desde que citada a fonte.

Catalogação da Publicação

Ficha Catalográfica

THAIS DE ARAUJO MARQUES FERREIRA

SÍNTESE E AVALIAÇÃO FARMACOLÓGICA DE NOVOS LIGANTES PPAR PLANEJADOS A PARTIR DO CARDANOL

Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Ciências da Saúde, Universidade de Brasília, como requisito parcial à obtenção do título de Mestre em Ciências Farmacêuticas.

Aprovado em 8 de agosto de 2014.

Banca Examinadora

Prof. Dr. Luiz Antonio Soares Romeiro - Universidade de Brasília – UnB

Profa. Dra. Maria Laura Bolognesi - Alma Mater Studiorum Università di Bologna – UNIBO

Profa. Dra. Marie Togashi - Universidade de Brasília – UnB

Profa. Dra. Angélica Amorim Amato - Universidade de Brasília – UnB

Essa dissertação é dedicada a meus pais, Ana Marta, Ronan e André, incentivadores do meu futuro, e a meu irmão Matheus, melhor amigo de todas as horas.

AGRADECIMENTOS

À Deus, pela constante presença, pelas bençãos a mim concedidas e pela realização de mais um sonho.

Aos meus pais, Ana Marta, Ronan e André, palavras não são suficientes para expressar minha gratidão por todo o apoio, estímulo e amor incondicional.

A meu irmão, Matheus, pelos momentos de força, descontração e amizade.

Ao Prof. Dr. Luiz Romeiro pela paciência, orientação, discussões teóricas, pelas oportunidades engrandecedoras e por todo o aprendizado. Obrigado por me ajudar a trilhar o caminho da Química Medicinal.

Aos meus amigos do LADETER pelo incentivo, convivência e companheirismo.

Aos meus amigos da universidade e a meus irmãos filhos de outros pais, Lígia, Rodrigo, Thaís, Jordana e Letícia por estarem sempre presentes, pelos momentos de lazer, pelo incentivo e amor transmitidos.

À Prof. Dra. Silvia Alcanfor e Margareth Amaral dos Santos Marques da Central Analítica da Universidade Católica de Brasília (UCB) pela realização dos espectros no Infra-vermelho (IV) e pesagem das amostras.

Ao Prof. Dr. Edilberto Silveira e Msc. Patrícia Nascimento do Centro Nordestino de Aplicação e Uso de Ressonância Magnética Nuclear (CENAUREMN) da Universidade Federal do Ceará pela concessão dos espectros de RMN ¹H e RMN ¹³C.

À Prof. Dra. Carolyn Cummins e Lilia Magomedova do Nuclear Hormone Receptors in Human Health and Disease da Universidade de Toronto (UofT) pela realização dos ensaios farmacológicos.

À Coordenação de Aperfeiçoamento de Pessoas de Nível Superior (Capes) pela concessão de bolsa de estudos.

Ao CNPq (Br, #473389/2009-6 e 490203/2012-4) pelo apoio financeiro.

À banca examinadora por aceitar o convite, e desde já pelas críticas e contribuições no enriquecimento do trabalho.

RESUMO

FERREIRA, Thais de Araujo Marques Ferreira. Síntese e Avaliação
Farmacológica de Novos Ligantes PPAR Planejados a Partir do Cardanol.
Brasília, 2014. Dissertação (Mestrado em Ciências Farmacêuticas) –
Faculdade de Ciências da Saúde. Universidade de Brasília, Brasília, 2014.

Os receptores ativados por proliferadores peroxissomais, PPARa e PPARy, atuam como fatores de transcrição, regulando processos metabólicos envolvidos na dislipidemia e diabetes. Uma vez que as atuais terapias medicamentosas destinadas a este fim apresentam limitações, a busca por novos ligantes PPAR tem sido alvo de intensas pesquisas. No âmbito de uma linha de pesquisa que visa a utilização de lipídeos fenólicos do LCC no planejamento racional de novos ligantes, descrevemos o planejamento, a síntese e a avaliação farmacológica de novos ligantes PPAR obtidos a partir do cardanol. A estratégia sintética levou à obtenção de dois intermediários e dezenove derivados em rendimentos que variaram de 62% a 99%. Os resultados farmacológicos referentes à ativação de PPARα, PPARβ/δ e PPARγ evidenciaram a capacidade dos ligantes atuarem como ativadores de transcrição, com EC₅₀ variando de 0,20 µM a 42,70 µM. Os ésteres derivados, LDT15 (24, EC₅₀ 3,45 µM) e LDT480 (32, 3,90 µM), apresentaram melhor perfil transcricional em PPARα com atividade de agonistas parciais. Considerando a atividade como agonistas totais frente à PPARy destacaram-se os derivados β-oxácido LDT477 (34, EC₅₀ 14,0 μM) e o diéster LDT480 (32, 21,0 µM). LDT480 (32) também foi considerado o composto mais ativo para PPARβ/δ, sendo caracterizado como um "pan-agonista". Os referidos derivados levaram à expressão de genes relacionados à captação (FABP1 e CD36) e oxidação (FgF1, PDK4 e CPT1) de ácidos graxos em hepatócitos primários, e foram considerados indutores de adipogênese em células 3T3-L1. Estudos em osteoblastos, sobre a cascata inflamatória, bem como na modulação de secretases e avaliação farmacológica in vivo dos melhores compostos compreendem às perspectivas deste trabalho para validação do planejamento estrutural visando a obtenção de agonistas duais PPARα/y.

Palavras-chave: Diabetes; PPAR; LCC; Cardanol.

ABSTRACT

FERREIRA, Thais de Araujo Marques Ferreira. **Synthesis and Pharmacological Evaluation of New PPAR Ligands Designed From Cardanol**. Brasília, 2014. Dissertação (Mestrado em Ciências Farmacêuticas) – Faculdade de Ciências da Saúde. Universidade de Brasília, Brasília, 2014.

The peroxisome proliferator activated receptors, PPARα and PPAR gamma, act as transcription factors, regulating metabolic processes involved in dyslipidemia and diabetes. Once the current drug therapies have limitations, the search for new PPAR ligands has been the subject of intense research. In the scope of a research program aiming to use the CNSL phenolic lipids, we describe the design, synthesis and pharmacological evaluation of novel PPAR ligands obtained from cardanol. The synthetic strategy led to obtaining two intermediate nineteen derivatives in yields ranging from 62% to 99%. The pharmacological results concerning the activation of PPAR α , PPAR β / δ and PPAR showed the ability of the ligands to acting as activators of transcription, with EC₅₀ ranging from 0.20 μ M to 42.70 μ M. The ester derivatives, LDT15 (24, EC₅₀ 3.45 μ M) and LDT480 (32, EC₅₀ 3.90 μM), showed better PPARα transcriptional profile with partial agonist activity. Considering the activity as full agonists front PPAR highlights were derived β -oxyacid LDT477 (**34**, EC₅₀ 14,0 μ M) and the diester LDT480 (32, 21,0 µM). LDT480 (32) was also considered the most active compound for PPAR β / δ , being characterized as a "pan-agonist." The derivatives led to the expression of genes related to uptake (FABP1 and CD36) and oxidation (FgF1, PDK4 e CPT1) of fatty acids in primary hepatocytes, and were considered inducers of adipogenesis in 3T3-L1 cells. Studies in osteoblasts on the inflammatory cascade, as well as the modulation of secretases, and in vivo pharmacological evaluation of lead compounds are the perspectives of this work to validate the structural design aimed to obtaining dual agonists of PPAR α/γ .

Keywords: Diabetes; PPAR; CNSL; Cardanol.

LISTA DE FIGURAS

Figura 1:	Estrutura molecular do pan-agonista, bezafibrato (1).	22
Figura 2:	Domínios funcionais da estrutura molecular dos	23
	Receptores Nucleares, incluindo região amino terminal,	
	DBD, hinge, LBD e região carbóxi-terminal.	
Figura 3:	llustração do mecanismo de ativação da expressão	24
	gênica pelo PPAR e seus efeitos regulatórios de	
	transcrição.	
Figura 4:	Cascata de ativação do receptor de insulina.	26
Figura 5:	Estrutura molecular das tiazolidinadionas, agonistas	27
	sintéticos PPARγ.	
Figura 6:	Estrutura molecular dos compostos constituintes da	29
	classe de medicamentos fibratos, agonistas sintéticos	
	PPARα.	
Figura 7:	Constituintes do Líquido da Casca da Castanha de	32
	Caju: ácidos anacárdicos (9), cardanóis (10), cardóis	
	(11) e metilcardóis (12).	
Figura 8:	Possibilidades de modificação na estrutura do cardanol	33
	(10).	
Figura 9:	Estrutura molecular de agonistas sintéticos duais	34
	ΡΡΑRα/γ.	
Figura 10:	Numeração e legendas empregadas no assinalamento	45
	de sinais em RMN ¹ H e RMN ¹³ C.	
Figura 11:	Derivados-alvo sintetizados a partir do cardanol	64
	monoinsaturado (10)	
Figura 12:	Atividade transcricional em PPAR α dos compostos da	80
	série pentadecila a 50,0 μM em células HEK293. Sendo	
	os veículos, EtOH e DMSO, e o controle positivo,	
	GW7647 a 10,0 nM. Resposta do veículo evidenciada	
	pela linha tracejada.	
Figura 13:	Estrutura molecular do controle positivo GW7647,	80

ativador de PPARα.

- Figura 14: Atividade luciferase dos compostos LDT15 (24), LDT16 81 (25), LDT408 (26) e LDT409 (27) comparadas atráves de curva dose-resposta, em relação ao controle GW7647.
- Figura 15: Atividade transcricional em PPARα dos compostos da 82 série octila testados a 50,0 μM em células HEK293. Sendo os veículos, EtOH e DMSO, e GW7647 a 10,0 nM como controle positivo. Resposta do veículo evidenciada pela linha tracejada.
- Figura 16: Atividade luciferase dos compostos LDT477 (34) e 83 LDT480 (32) comparadas atráves de curva doseresposta, em relação ao controle GW7647.
- Figura 17: Atividade transcricional em PPARβ/δ dos compostos da 84 série pentadecila em células HEK293. Sendo os veículos, EtOH e DMSO, e GW0742 a 25,0 nM (controle positivo). Resposta do veículo evidenciada pela linha tracejada.
- Figura 18: Atividade transcricional em PPARβ/δ dos compostos da 84 série octila, em células HEK293. Sendo os veículos, EtOH e DMSO, e e GW0742 a 25,0 nM (controle positivo). Resposta do veículo evidenciada pela linha tracejada.
- **Figura 19:** Estrutura molecular do controle positivo GW0742, 85 ativador de PPARβ.
- Figura 20: Atividade transcricional em PPARγ dos compostos da 85 série pentadecila testados a concentração de 50,0 μM em células HEK293. Sendo os veículos, etanol e DMSO, e rosiglitazona (2) a 50,0 nM (controle positivo). Resposta do veículo evidenciada pela linha tracejada.
- Figura 21: Atividade luciferase dos compostos LDT15 (24), LDT16 86
 (25) e LDT408 (26) comparadas atráves de curva doseresposta, em relação ao controle rosiglitazona (2).

- Figura 22: Atividade transcricional em PPARγ dos compostos da 87 série octila a 50,0 μM em células HEK293. Sendo os veículos, EtOH e DMSO, e rosiglitazona a 50,0 nM (controle positivo). Resposta do veículo evidenciada pela linha tracejada.
- Figura 23:Atividade luciferase dos compostos LDT477 e LDT48088em PPARγ comparadas atráves de curva dose-resposta
com o controle, rosiglitazona.
- Figura 24: Efeito dos derivados LDTs testados a 50,0 μM sobre 90 hepatócitos primários, em relação ao controle 50,0 μM de WY14643, sendo o veículo EtOH. Avaliação da expressão de genes envolvidos na oxidação de ácidos graxos, FgF1, PDK4 e CPT1, bem como genes responsáveis pela captação de ácidos graxos, FABP1 e CD36.
- Figura 25: Efeito dos derivados LDTs a 25,0 μM sobre a 93 adipogênese de pré-adipóctios 3T3-L1, em relação ao controle 25,0 μM de rosiglitazona (2), sendo os veículos, EtOH e DMSO. Avaliação da expressão de marcadores de adipogênese, Ap2, LPL, CD36 e adiponectina.
- Figura 26: Efeito do LDT15, LDT16, LDT408, LDT409, LDT297, 95 LDT477 e LDT481 sobre a adipogênese de préadipóctios 3T3-L1. Dois dias após confluência, células 3T3-L1 foram induzidas a se diferenciarem em adipócitos, cultivadas por 8 dias, tratadas com diferentes ligantes ou veículo, DMSO e EtOH. Na sequência, coradas com óleo vermelho O e observadas por microscopia.

LISTA DE ESQUEMAS

Esquema 1:	Planejamento racional de ligantes agonistas PPAR.	39
Esquema 2:	Planejamento sintético dos derivados-alvo.	42

LISTA DE TABELAS

- Tabela 1:Condiçõesreacionais,característicasquímicas,72rendimentos e ponto de fusão dos derivados da sériepentadecila.
- Tabela 2:Condiçõesreacionais,característicasquímicas,74rendimentos e ponto de fusão dos derivados LDT71,LDT72, LDT80 e LDT482, da série octila.
- Tabela 3: Condições reacionais, características químicas, 77 rendimentos e ponto de fusão dos derivados LDT296 (28), LDT297 (29), LDT298 (30), LDT299 (31) e LDT480 (32), da série octila.
- Tabela 4: Condições reacionais, características químicas, 79 rendimentos e ponto de fusão dos derivados LDT476 (33), LDT477 (34), LDT478 (35), LDT479 (36) e LDT481 (37), da série octila.
- Tabela 5: Valores de EC₅₀ para os compostos LDT15, LDT16, 81 LDT408 e LDT409, da série pentadecila, e do controle positivo GW7647, no PPARα.
- Tabela 6:Valores de EC₅₀ para os compostos LDT477 e LDT48083da série octila e do controle positivo GW7647, noPPARα.
- Tabela 7:Valores de EC₅₀ para os compostos LDT15, LDT16 e86LDT408 da série pentadecila e do controle positivo
rosiglitazona, no PPARγ.
- Tabela 8:Valores de EC₅₀ para os compostos LDT477 e LDT48088da série octila e do controle positivo rosiglitazona, noPPARγ.
- **Tabela 9:**Perfil de atividade e valores de EC₅₀ para os derivados-89alvo ativos em PPAR.
- Tabela 10:Perfil de atividade dos derivados-alvo na expressão de92genes em hepatócitos primários.

Tabela 11:Perfil de atividade dos derivados-alvo na diferenciação95de adipócitos.

LISTA DE ABREVIATURAS E SIGLAS

βA - Beta amilóide

- AF-1 Função de ativação 1
- AF-2 Função de ativação 2
- AG- Ácidos graxos
- ALH Aceptor de Ligação de Hidrogênio
- aP2 Proteína de ligação de ácidos graxos
- ApoE Apolipoproteína E
- Arg288/ R Arginina 288
- CD36 Grupamento de diferenciação 36
- CPT1 Carnitina palmitoil transferase-1
- C-terminal Carbóxi terminal
- d dupleto
- DA Doença de Alzheimer
- DBD Domínio de ligação ao DNA
- DCM Diclorometano
- dd duplo dubleto
- DLH Doador de Ligação de Hidrogênio
- DMSO Dimetilsulfóxido
- DNA Ácido Desoxirribonucleico
- FDA Food and Drug Administration
- FABP1 Proteína de ligação a ácidos graxos-1
- Fgf21- Fator de crescimento de fibroblastos-21
- GSK3β Glicogênio sintase-quinase 3β
- H323- Histidina 323
- H449 Histidina 449
- HDL Lipoproteína de Alta Densidade
- EC₅₀ Concentração da droga requerida para adquirir 50% do efeito máximo
- EtOH Etanol
- IDE Enzima que Degrada Insulina
- IKK IKB quinase
- IRS-1 Substrato de Receptor de Insulina 1

- IRS-2 Substrato de Receptor de Insulina 2
- IV Infravermelho
- J-Constante de acoplamento
- JNK- c-jun N-terminal quinase
- LBD Domínio de Ligalão ao Ligante
- LCC Líquido da casca da Castanha do Caju
- LDL Lipoproteína de Baixa Densidade
- LPL Lipoproteína lipase
- m multipleto
- MO Micro-ondas
- N- terminal Amino terminal
- PDK4 Piruvato desidrogenase quinase-4
- PPA Proteína Precursora de Amilóide
- PPAR Receptor Ativado por Proliferadores Peroxissomais
- PPAR α Receptor Ativado por Proliferadores Peroxissomais Alfa
- PPAR β/δ Receptor Ativado por Proliferadores Peroxissomais Beta/Delta
- PPAR y Receptor Ativado por Proliferadores Peroxissomais Gama
- PPER Elementos Responsivos ao PPAR
- RMN¹H Ressonância magnética nuclear de hidrogênio 1
- RMN ¹³C Ressonância magnética nuclear de carbono 13
- **RN** Receptor Nuclear
- RXR Receptor retinóide X
- s simpleto
- sl simpleto largo
- t tripleto
- TG Triglicerídeos
- TR Receptor do hormônio da Tireóide
- TZD Tiazolidinadionas
- UV Ultravioleta
- VLDL Lipoproteína de muito baixa densidade
- Y473 Tirosina 473

SUMÁRIO

1 INTRODUÇÃO	20
1.1 RECEPTORES ATIVADOS POR PROLIFERADORES PEROXISSOMAIS	3
	21
1.2 PPAR: ORGANIZAÇÃO MOLECULAR E MECANISMO DE ATIVAÇÃO	23
1.3 PPAR COMO ALVO TERAPÊUTICO	25
1.3.1 PPAR no diabetes	25
1.3.2 Dislipidemia e Obesidade	28
1.3.3 Doença de Alzheimer	29
1.4 LIPÍDEOS FENÓLICOS DE Anacardium occidentale	31
1.5 NOVOS LIGANTES PPAR	33
2 OBJETIVOS	37
2.1 OBJETIVO GERAL	37
2.1.1 Objetivos Específicos	37
3 PLANEJAMENTO ESTRUTURAL	39
4 ESTRATÉGIA SINTÉTICA	41
5 PARTE EXPERIMENTAL	44
5.1 GENERALIDADES, MATERIAIS E MÉTODOS	44
5.2 METODOLOGIA SINTÉTICA E CARACTERIZAÇÃO DOS COMPOST	OS
	46
5.2.1 Obtenção da Mistura de Cardanóis (10) a Partir do LCC Técnico	46
5.2.2 Obtenção do Derivado 3-Pentadecilfenol (LDT10, 18)	46
5.2.3 Obtenção do Derivado Acetato de 3-Pentadecilfenila (LDT12, 19)	47
5.2.4 Obtenção do Derivado 1-Metóxi-3-pentadecilbenzeno (LDT27, 20)	48
5.2.5 Obtenção do Derivado 3-(8-Hidróxioctil)fenol (LDT71, 22)	49
5.2.6 Obtenção do Derivado 8-(3-Metóxifenil)octan-1-ol (LDT72, 23)	50
5.2.7 Obtenção dos Derivados β-oxaéster LDT15 (24) e LDT296 (28)	51
5.2.8 Obtenção dos Derivados α,α-Dimetilésteres LDT408 (26) e LDT4	176
(33)	53
5.2.9 Síntese dos Derivados Ácidos LDT298 (30), LDT478 (35) e LDT80 (38)
	55
5.2.10 Síntese dos Derivados β-oxácidos LDT16 (25), LDT409 (27), LDT2	297
(29), LDT299 (31), LDT477 (34) e LDT479 (36)	57

5.2.11 Obtenção dos Éster derivados LDT480 (32), LDT481 (37)) E LDT482
(39)	61
5.3 AVALIAÇÃO FARMACOLÓGICA	64
5.3.1 Ensaio de gene repórter – Luciferase:	65
5.3.2 Ensaio em hepatócitos primários:	65
5.3.3 Ensaio de diferenciação de adipócitos	66
6 RESULTADOS E DISCUSSÃO	69
6.1 SÍNTESE E CARACTERIZAÇÃO DOS COMPOSTOS	69
6.1.1 Série 3-Pentadecilfenol	69
6.1.2 Série 8-(3-hidróxifenil)octan-1-ol	72
6.2 AVALIAÇÃO FARMACOLÓGICA	79
6.2.1 Ensaio de gene reporter: Luciferase	79
6.2.1.1 PPARα	79
6.2.1.2 PPARβ/δ	83
6.2.1.3 PPARγ	85
6.2.2 Ensaio em hepatócitos primários	90
6.2.3 Ensaio de diferenciação de adipócitos	92
7 CONCLUSÕES E PERSPECTIVAS	97
8 REFERÊNCIAS BIBLIOGRÁFICAS	100
ANEXOS	107

Os receptores ativados por proliferadores peroxissomais (PPARs), membros da família de Receptores Nucleares (RN), em contato com ligantes são regulados atuando como fatores de transcrição por meio da regulação da expressão de genes. Os PPARs dividem-se em três subtipos PPARα, PPARβ/δ e PPARγ, os quais possuem distribuição e ações diferentes nos tecidos, especificidade quanto ao ligante, distintas funções fisiológicas, mas que juntos coordenam o metabolismo energético (AMATO, 2008; ANDRADE, 2008; GRYGIEL-GÓRNIAK, 2014; LIBERATO, 2009; LIN, et al., 2009; PIRAT, et al., 2012).

Os fibratos, agonistas sintéticos PPARα, controlam o metabolismo lipídico, através da redução dos níveis de triglicerídeos e aumento dos níveis de colesterol HDL (CHEN et al., 2014; MANORIA et al., 2013; SAHEBKAR et al., 2014). Por sua vez, as tiazolidinadionas, agonistas PPARγ, agem sensibilizando os receptores celulares à ação da insulina e reduzindo os níveis de glicose no plasma. Embora apresentem efeitos favoráveis, a síntese de novos ligantes com ação mediada por PPAR tem sido alvo de intensas pesquisas, uma vez que essas terapias medicamentosas apresentam limitações, devido a quadros de toxicidade hepática e renal, problemas cardiovasculares, ganho de peso, dentre outros efeitos adversos (AMATO, 2008; ANDRADE, 2008; MANSOUR, 2014).

A combinação dos efeitos anti-lipidêmicos de PPAR α e anti-diabéticos de PPAR γ apresenta potencial benefício para o tratamento da síndrome metabólica, diabetes tipo 2, hiperglicemia, dislipidemia aterogênica, e até mesmo em doenças relacionadas ao diabetes, cujo mecanismo permanece obscuro, como na doença de Alzheimer. Diferentes mecanismos demonstram a associação entre diabetes tipo 2 e doença de Alzheimer, seja por resistência quanto à ação da insulina, ou indução da formação de peptideo β amilóide no cérebro (BORTOLINI et al., 2013; MANSOUR, 2014; NENOV et al., 2014; XU et al., 2014).

No âmbito de uma linha de pesquisas que visa a utilização terapêutica de lipídeos fenólicos não-isoprenoides de *Anacardium occidentale*, este trabalho descreve o planejamento e a síntese de novos ligantes PPAR planejados a partir do cardanol, derivado do líquido da casca de castanha de caju (LCC). A longa cadeia alquílica do cardanol possui características relevantes para o reconhecimento

hidrofóbico por resíduos complementares nos sítios de reconhecimento molecular bem como no desenvolvimento de novas funcionalidades por meio de interconversão de grupos funcionais (RODRIGUES et al., 2006; VASAPOLLO et al., 2011).

1.1 RECEPTORES ATIVADOS POR PROLIFERADORES PEROXISSOMAIS

Membros da família de Receptores Nucleares, os PPARs foram identificados em 1990 com a primeira clonagem em roedores, possuindo um dos maiores sítios de ligação e estando vinculados à regulação de diversos processos metabólicos, como por exemplo, a regulação da homeostase da glicose, e da inflamação, divisão e diferenciação celular e depuração de toxinas (AMATO, 2008; ANDRADE, 2008; LIBERATO, 2009; TAVARES et al., 2007; PIRAT, et al., 2012).

Em humanos, os PPARs dividem-se em três subtipos que possuem distribuição e ações diferentes nos tecidos, especificidade quanto ao ligante, distintas funções fisiológicas, mas que juntos coordenam o metabolismo energético. Neste sentido temos PPARα ou NR1C1, membro 1 do grupo C da sub-família 1 dos RN, codificado por genes localizados no cromossomo 22; PPARβ/δ ou NR1C2, codificado por genes localizados no cromossomo 6, e PPARγ ou NR1C3, codificado por genes localizados no cromossomo 3 (AMATO, 2008; ANDRADE, 2008; GRYGIEL-GÓRNIAK, 2014; LIBERATO, 2009; LIN, et al., 2009; PIRAT, et al., 2012; SAHEBKAR et al., 2014).

Os PPARα são amplamente expressos em tecidos metabolicamente ativos, como no fígado, tecido adiposo, rins, cérebro, coração e músculo esquelético, e reconhecem ácidos graxos endógenos tanto saturados quanto insaturados. O papel principal dos PPARα é captar e oxidar ácidos graxos, modulando a cascata inflamatória, além de participar do metabolismo de lipoproteínas, diminuindo triglicerídeos e aumentando c-HDL (colesterol-HDL) (ANDRADE, 2008; GRYGIEL-GÓRNIAK, 2014; LIN et al., 2009; WERNER et al. 2014; ZAWARE, 2011). Os fibratos, agonistas sintéticos PPARα, são utilizados como hipolipemiantes, reduzindo as taxas de colesterol e triglicerídeos na circulação sanguínea (CHEN & YANG, 2014; PIRAT, et al., 2012).

Os PPARy são encontrados em abundância nos adipócitos, estando presentes em níveis menores no baço, em células endoteliais, musculatura lisa e

macrófagos. Estes atuam na regulação e diferenciação de adipócitos, na homeostase da glicose, no balanço energético, na sensibilização dos receptores a ação da insulina, metabolismo lipídico e na regulação de processos inflamatórios e cardiovasculares (ANDRADE, 2008; GRYGIEL-GÓRNIAK, 2014; LIN et al., 2009; PIRAT, et al., 2012).

O gene relacionado ao PPARy dá origem a três isoformas: o PPARy1 amplamente expresso no coração, pâncreas, rins, baço, intestino delgado e em uma variedade de tecidos; o PPARy2 presente principalmente no tecido adiposo e PPARy3 expresso restritamente nos macrófagos e no intestino grosso (GRYGIEL-GÓRNIAK, 2014; TAVARES et al., 2007; TYAGI et al., 2011).

O PPARγ possui como ligantes endógenos ácidos graxos poliinsaturados, ácido nitrooléico, o derivado de prostaglandina 15d-PGJ₂, enquanto as tiazolidinadionas representam os ligantes sintéticos, regulando o metabolismo da glicose e sensibilizando os tecidos insulino-resistentes (CHOI et al., 2011; GRYGIEL-GÓRNIAK, 2014; JIA et al., 2014; LIBERATO, 2009).

Por sua vez, os PPAR β/δ, subtipo menos elucidado, podem ser encontrados na maioria dos tecidos, incluindo tecido adiposo, fígado, rim, intestino, músculo esquelético e coração, e atuam na oxidação de ácidos graxos, regulação do metabolismo de lipídeos e do colesterol, na regulação dos níveis de glicose, proliferação e diferenciação celular e na regulação de processos inflamatórios. Seus ligantes endógenos são ácidos graxos de cadeia longa (AMATO, 2008; ANDRADE, 2008; GRYGIEL-GÓRNIAK, 2014; LIN et al., 2009; PIRAT et al., 2012).

O bezafibrato (**1**) (Figura **1**), correspondente da classe dos fibratos, é caracterizado com um pan-agonista, tendo a capacidade de ativar os três subtipos, PPAR $\alpha/\beta/\gamma$ (CHEN et al., 2014; GRYGIEL-GÓRNIAK, 2014; ZHONG et al., 2011).

NH Bezafibrato

Fonte: Próprio autor.

1.2 PPAR: ORGANIZAÇÃO MOLECULAR E MECANISMO DE ATIVAÇÃO

Todos os 48 componentes da família de RN, que compreendem os receptores do hormônio da tireóide (TRs), vitamina D, PPAR e receptor do ácido retinóico (RXR), possuem organização molecular comum, sendo constituídos por um domínio Amino-terminal, um domínio central de ligação com o DNA ou DNA *Binding Domain* (DBD), um domínio curto de conexão denominado dobradiça ou *hinge*, um domínio de ligação ao ligante ou *Ligand Binding Domain* (LBD), e por fim, o domínio Carboxiterminal (Figura **2**) (AMATO, 2008; MANSOUR, 2014; NASCIMENTO, 2009; SPEECKAERT et al., 2014).

Figura 2: Domínios funcionais da estrutura molecular dos Receptores Nucleares, incluindo região amino terminal, DBD, hinge, LBD e região carbóxi-terminal.

Fonte: Próprio autor.

O domínio *N*-terminal é constituído de sequências variadas de aminoácidos, sendo a região menos conservada dos receptores, com função de transativação independente de ligantes, domínio AF1, que permite a interação do receptor com coativadores e outros fatores de transcrição. O DBD, região mais conservada do receptor, tem como função principal o reconhecimento de sequências específicas do DNA, chamadas de elementos responsivos ao PPAR (PPER), com sequência hexanucleotídica consenso AGGTCA, e ativação de genes. O *hinge* ou região de dobradiça possui um papel flexível, servindo de elo entre o domínio central e o domínio *C*-terminal. O LBD é responsável pela interação do receptor com o ligante e pela ativação ligante-induzida. Por fim, o domínio AF2 envolvido na interação transcricional com co-ativadores e correpressores (AMATO, 2008; ANDRADE, 2008; LIBERATO, 2009; MANSOUR, 2014; NASCIMENTO, 2009; SPEECKAERT et al., 2014).

A ativação da expressão gênica (Figura **3**) pelo PPAR dá-se no momento da interação do ligante agonista com o domínio LBD do PPAR no núcleo celular. Na sequência, ocorre a formação do heterodímero constituído de PPAR e receptor do

ácido 9-*cis*retinóico X, RXR. A expressão do gene alvo é regulada pela ligação do heterodímero PPAR-RXR à extremidade 3' e 5' do elementos responsivos ao PPAR (PPRE) e repetições de sequências consenso AGGTCA separadas por nucleotídeos localizados em sítios regulatórios de cada gene. Os receptores sofrem alteração conformacional, permitindo o desligamento de proteínas co-repressoras e o ancoramento de proteínas co-ativadores, dando ínicio a ativação da maquinaria de transcrição de genes (AMATO, 2008; LIBERATO, 2009; MCMULLEN et al., 2014; NASCIMENTO, 2009; PESSANHA, 2007; PIRAT, et al., 2012).

Figura 3: Ilustração do mecanismo de ativação da expressão gênica pelo PPAR e seus efeitos regulatórios de transcrição.

Fonte: Adaptado de WAGNER, 2010.

Na forma não ligada, quando o ligante não está interagindo com o PPAR, a transcrição gênica é reprimida. O heterodímero PPAR-RXR conectado aos PPRE encontra-se em sua forma inativa e pode ser visualizado no citoplasma e no núcleo celular, ligado a proteínas co-repressoras, que recrutam desacetilases de histonas responsáveis pela inativação da transcrição gênica. As desacetilases condensam a estrutura da cromatina no local da interação entre o receptor e os PPRE, impedindo a ativação da maquinaria basal. Na interação com o ligante, os receptores sofrem alteração conformacional permitindo o desligamento das proteínas co-repressoras e

o ancoramento de proteínas co-ativadoras com atividade de acetilases de histonas, responsáveis por modificar a estrutura da cromatina, ativando a transcrição gênica (AMATO, 2008; LIBERATO, 2009; NASCIMENTO, 2009).

1.3 PPAR COMO ALVO TERAPÊUTICO

1.3.1 PPAR no diabetes

A insulina é um hormônio sintetizado no pâncreas pelas células β das ilhotas de Langerhans. Este hormônio é responsável pela manutenção dos níveis de glicose plasmática por meio da inibição da gliconeogênese no fígado, formação de glicose proveniente de carboidratos, e pela estimulação da captação de glicose pelos tecidos insulino-sensíveis, fígado, tecido adiposo, músculo esquelético e músculo cardíaco. A insulina também controla o metabolismo de lipídeos e proteínas, proliferação celular, divisão celular, dentre outras funções celulares vitais para o pleno funcionamento do organismo (ANDRADE, 2008; CARVALHO-FILHO et al., 2007; GOLAN, 2009; PRAMOJANEE et al., 2014).

Na presença de metabolismo anormal de lipídeos, carboidratos e/ou proteínas tem-se o diabetes, que pode ser desencadeado pela produção insuficiente ou anormal de insulina pelas células β ou por fatores extrapancreáticos, como a resistência dos receptores celulares à ação da insulina, levando a hiperglicemia sustentada (GOLAN, 2009; MAHENDRA & BISHT, 2011; SANTO et al., 2012).

O receptor de insulina (Figura 4) é composto por duas subunidades α e duas subunidades β , ligadas por ligações dissulfeto. Para que a atividade intrínseca da insulina ocorra, esta precisa ser reconhecida pela subunidade α de seu receptor contido na célula alvo, modificando assim a estrutura conformacional da subunidade β , permitindo sua autofosforilação em tirosina quinase. O mecanismo da insulina na via de sinalização requer a fosforilação de resíduos de tirosina em substratos protéicos 1 ou 2 do receptor de insulina (IRS-1 e IRS-2) para que se tenha a ação positiva do hormônio, envolvido em ações metabólicas e no crescimento (CARVALHO-FILHO et al., 2007; GOLAN, 2009; PRAMOJANEE et al., 2014; WAKAYAMA et al., 2014).

Defeitos na via de sinalização da insulina ocasionam intolerância à glicose, implicando em compensação metabólica pelas células β, que aumentam a síntese

de insulina, levando o indivíduo a apresentar hiperinsulinemia permanente. Além do acúmulo de glicose, a elevação de triglicerídeos e ácidos graxos, inflamação crônica e fatores genéticos também resultam em resistência (JOHNSON & OLEFSKY, 2013; SILVA et al., 2010).

A Associação Americana de Diabetes (ADA) classifica o diabetes em quatro tipos com distintas etiologias. O diabetes tipo 1, diabetes tipo 2, diabetes gestacional e "outros tipos de diabetes", estando incluídos como causa do diabetes, defeitos genéticos nas células β e doenças no pâncreas (DIVINS, 2009).

O diabetes tipo 2, que segundo Chen e colaboradores (2014) afeta cerca de 90-95% dos diabéticos, é caracterizado pela redução da utilização da insulina pelo fígado e tecidos periféricos, devido à tolerância dos receptores a ação da insulina, apresentando o indivíduo produção normal, elevada ou deprimida deste hormônio. O indivíduo doente acaba apresentando hiperglicemia persistente, ocasionada pela insuficiência relativa de insulina, e com o avanço da doença podem ser vistos poliúria, perda de peso e complicações secundárias, por exemplo, nefropatias diabéticas, síndrome hiperosmótica, retinopatia, aterosclerose e problemas

cardiovasculares (CHEN; LIN & SHIH, 2014; GOLAN, 2009; MAHENDRA & BISHT, 2011; SANTO et al., 2012).

O diabetes já é considerado uma epidemia mundial, sendo estimado pela Federação Internacional de Diabetes (IDF) que aproximadamente 366 milhões de pessoas no mundo possuiam o diagnóstico de diabetes tipo 2 em 2011, e até 2030, 552 milhões de pessoas serão afetadas por essa desordem metabólica (FREITAS & GARCIA, 2012; MANORIA et al., 2013; PATEL; BUTTERS & ARNETT, 2014).

A ativação de PPARγ aumenta a sensibilidade à insulina, onde há duas hipóteses. Na primeira, a ativação de PPARγ no tecido adiposo reduz a lipólise e aumenta a lipogênese nos adipócitos, através da diminuição dos níveis séricos de ácidos graxos e triglicerídeos, que são transferidos da corrente sanguínea para o tecido adiposo. Considerando a segunda hipótese, genes específicos induzem o metabolismo da glicose e o aumento da sinalização celular (ANDRADE, 2008; GAMA, 2010; TAVARES et al., 2007).

Figura 5: Estrutura molecular das tiazolidinadionas, agonistas sintéticos PPARy.

Fonte: Próprio autor.

As tiazolidinadionas (TZD) agem sensibilizando os receptores celulares à ação da insulina e reduzindo os níveis de glicose no plasma através da regulação da transcrição gênica pela interação seletiva com PPARγ. Esta classe de fármacos composta pela rosiglitazona (2), pioglitazona (3) e troglitazona (4) (Figura 5), possui efeito direto nos adipócitos, fígado, macrofágos, músculo esquelético e sistema nervoso central. Embora sejam excelentes antidiabéticos, as TZDS possuem utilização clínica restrita, devido a efeitos adversos severos que incluem retenção de líquidos, ganho ponderal, hemodiluição, perda de massa óssea e falência cardíaca

em 15% dos pacientes (AMATO, 2008; DIVINS, 2009; HAN et al., 2014; JIA et al., 2014; LIBERATO, 2009; PIRAT, et al., 2012).

1.3.2 Dislipidemia e Obesidade

Caracterizada por hipertrigliceridemia, redução dos níveis de colesterol HDL e elevação de LDL, a dislipidemia é uma desordem, que juntamente a obesidade, é considerada fator de risco a comorbidades, como aterosclerose, problemas cardiovasculares e diabetes (MANORIA et al., 2013; PADMANABHAN & ARUMUGAM, 2014; SAHEBKAR et al., 2014).

A resistência dos receptores celulares quanto à ação da insulina é considerada a principal e mais comum causa para o desenvolvimento de dislipidemia em pacientes com diabetes tipo 2. Adicionalmente, a dislipidemia é considerada o maior fator de risco para predisposição de diabetes tipo 2, demonstrando que o metabolismo de lipídeos e da glicose estão intimamente interligados (MANORIA et al., 2013; MANSOUR, 2014).

O aumento dos níveis de ácidos graxos na circulação sanguínea proveniente da resistência insulínica nos adipócitos, resulta em defeitos no transporte e na interação intracelular dos AG com proteínas. Tem-se um acúmulo de AG no fígado, que estimula a secreção de VLDL, resultando em hipertrigliceridemia, a anormalidade lipídica inicial da dislipidemia. Por sua vez, o excesso de lipídeos na dislipidemia é responsável por alterar a via de sinalização da insulina, quando o tecido adiposo torna-se incapaz de armazenar toda a quantidade de lipídeos que são armazenados em outros orgãos, como no músculo e no fígado, induzindo insulino-resistência, que ocorre na obesidade. Além do excesso de lípideos na obesidade, tem-se o aumento de ácidos graxos livres e saturados, que ativam mecanismos pró-inflamatórios, induzindo a ativação de genes envolvidos no mecanismo de resistência à insulina (JOHNSON & OLEFSKY, 2013; MANORIA et al., 2013.

Agonistas PPARγ promovem a redução de ácidos graxos livres no tecido adiposo e no fígado, por estimularem sua deposição, reduzindo lipotoxicidade e inflamação no fígado, ilhotas de Langerhans, rins e macrófagos. A ativação de PPARγ também aumenta a proliferação e diferenciação de adipócitos, onde adipócitos menores são mais sensíveis à insulina (APRILE et al., 2014; BORTOLINI et al., 2013; HOME, 2011).

Nos últimos 30 anos, os fribratos (Figura **6**), agonistas sintéticos PPARα, comprendem os medicamentos mais utilizados para o tratamento de dislipidemia, controlando o metabolismo lipídico, atráves da redução dos níveis de TGs e aumento dos níveis de c-HDL. No entanto, o uso dessa classe de medicamentos é limitada, devido a quadros de toxicidade hepática e renal, miopatia e colelitíase, dentre outros efeitos adversos (CHEN et al., 2014; MANORIA et al., 2013; SAHEBKAR et al., 2014).

Figura 6: Estrutura molecular dos compostos constituintes da classe de medicamentos fibratos, agonistas sintéticos PPARα.

1.3.3 Doença de Alzheimer

A DA (Doença de Alzheimer) constitui a forma mais comum de demência, com mais de 35,6 milhões de pacientes afetados no mundo. Considerada uma doença neurodegenerativa e idade associada, a DA é caracterizada pelo acúmulo e deposição de placas de peptídeo β amilóide extracelular, formação de emaranhados neurofibrilares, inflamação crônica do cérebro, bem como, por acumulação intraneuronal de proteína tau, resultando em perda da memória progressiva e declínio cognitivo com severa atrofia neuronal (AICARDI, 2013; CHEN & ZHONG, 2013; CORREIA et al., 2012; HIEKE et al., 2010).

De acordo com a hipótese amilóide, a amiloidogênese é um processo complexo que resulta na formação de diferentes espécies amilóides. Oligomêros de peptídeo βA e fibrilas amilóides formadas por espécies hidrofóbicas de βA42, estão relacionadas à patogênese da DA e à toxicidade sináptica. Oligomêros solúveis βA ligam-se às sinapses e ativam vias de sinalização que resultam em hiperfosforilação da proteína tau, estresse oxidativo, perda e deterioração das sinapses (HIEKE et al., 2010; XU et al., 2014).

Diferentes mecanismos demonstram a associação entre diabetes tipo 2 e doença de Alzheimer, seja por resistência quanto a ação da insulina, ou indução da formação de peptideo β amilóide no cérebro, ocasionado por hiperinsulinemia, ambos apresentando o diabetes tipo 2 como um fator de risco para DA. De acordo com Correia e colaboradores (2012), em estudo realizado pela Mayo Clinic em pacientes com DA, 80% dos pacientes apresentaram quadro de diabetes tipo 2 ou níveis de glicose elevados no sangue (BARTL et al., 2013; CHEN & ZHONG, 2013; CORREIA et al., 2012; NENOV et al., 2014; XU et al., 2014).

Devido as similaridades entre o diabetes tipo 2 e a DA, incluindo epidemiologia, manifestações clínicas, alterações patológicas e mecanismos fisiopatológicos, alguns autores atribuiram o termo "diabetes tipo 3" a resistência insulínica ocasionada no cérebro, refletindo a disfunção ocasionada pela resistência e a deficiência de insulina visualizadas na DA (CHEN & ZHONG, 2013; CORREIA et al., 2012).

A resistência à insulina aumenta a deposição cerebral de proteina tau. Após a fosforilação dos resíduos de tirosina em IRS (Figura **4**, Pág. 26), mecanismos intracelulares são sinalizados, ativando a fosfatidilinositol 3-quinase (PI3K), responsável pela ativação de mediadores que regulam os efeitos metabólicos da insulina, sendo um deles, glicogênio sintetase quinase 3 (GSK3). A ativação de GSK-3 β , facilita a atividade da β -secretase na formação do peptídeo β -amilóide e induz a hiperfosforilação de proteína tau, resultando em emaranhados neurofibrilares. Por outro mecanismo, a insulina é degradada pela Enzima que Degrada Insulina (IDE), também responsável pela degradação do peptideo β -amilóide, ou seja, em casos de hiperinsulinemia tem-se a redução da degradação de β -amilóide (BARTL et al., 2013; LEON et al., 2011; PRAMOJANEE et al., 2014; WAKAYAMA et al., 2014).

O maior fator de risco genético para a DA esporádica é a variação alélica na apolipoproteína E (ApoE). Lipoprotéina que promove a degradação proteolítica de formas soluvéis de peptídeo β -amilóide, e que possui sua expressão transcripcional regulada por PPARy. A administração de agonistas PPARy reduz a transcrição das variações alélicas de ApoE, resultando em diminuição dos nivéis de β -amilóide, além de promover benefícios cognitivos em modelos animais, sendo esse mecanismo dependente da ApoE (CRAMER, et al. 2012).

A DA não apresenta tratamento terapêutico efetivo. Nenov (2014), Xu (2014), Mannelli (2014) e seus colaboradores propuseram PPARγ como um importante alvo terapêutico para o tratamento da DA em pacientes com concomitante desregulação dos níveis de insulina. Já que em modelos animais e em pacientes com DA inicial foram detectados benefícios cognitivos e nas memórias quando tratados com o agonista PPARγ rosiglitazona.

PPARy possui efeitos anti-inflamatórios e anti-estresse oxidativo por ocasionar o aumento de reguladores mitocondriais, permitindo a modulação da plasticidade sináptica no hipocampo, minimizando a neuroinflamação e contribuindo para a remoção de peptídeo β A. Além disso, PPARy possui atividade inibitória de y-secretase. Como relatado anteriormente, a agregação de peptídeo β A42 é responsável pela formação dos oligômeros encontrados na DA. Peptídeo β A42 é um fragmento proteolítico resultante da clivagem sequencial da proteína precursora amilóide (PPA) pelas aspartil proteases, β -secretase e y-secretase. A inibição de y-secretase tem sido vista como um dos alvos mais promissores para o tratamento da DA (HIEKE et al., 2010; HIEKE et al., 2011; XU et al., 2014).

1.4 LIPÍDEOS FENÓLICOS DE Anacardium occidentale

Metabólitos secundários obtidos através de plantas vêm sendo intensamente utilizados para o desenvolvimento de novos fármacos. A presença de um grupo polar, uma região de ligação e uma calda hidrofófica são três dos elementos essenciais, segundo Grygiel-Górniak (2014), para ativação de PPAR. Elementos esses que podem ser encontrados nos lípideos fenólicos isolados do líquido da casca da castanha de caju (LCC), que apresentam grupo fenólico, cadeia alifática de 15 carbonos e diferentes graus de insaturação, permitindo diversos tipos de modificação molecular (BALACHANDRAN et al., 2013; RODRIGUES et al., 2006; VASAPOLLO et al., 2011).

O cajueiro, *Anacardium occidentale*, amplamente encontrado por todo o Nordeste brasileiro, tem sido descrito há anos como importante fonte medicinal. A árvore é composta por um pedúnculo floral, pseudofruto, e por um fruto, chamado de castanha de caju. Por sua vez, a casca da castanha de caju compreende o mesocarpo esponjoso alveolado repleto de um líquido escuro, cáustico e inflamável, denominado de líquido da casca da castanha do caju, onde na parte interna da casca está à parte comestível do fruto, a amêndoa (BALACHANDRAN et al., 2013; MAZZETTO & LOMONACO, 2009).

O LCC é obtido durante o beneficiamento das amêndoas, representando 25% do peso da castanha, e é usado para fins medicinais e industriais. Este líquido é rico em lipídeos fenólicos não-isoprenoides (Figura 7) que podem ser extraídos de diversas maneiras por extração com solvente ou obtido a partir do beneficiamento da castanha como LCC técnico (BALACHANDRAN et al., 2013; RODRIGUES et al., 2006; VASAPOLLO et al., 2011).

Figura 7: Constituintes do Líquido da Casca da Castanha de Caju: ácidos anacárdicos (9), cardanóis (10), cardóis (11) e metilcardóis (12).

Na extração por solvente as castanhas são fragmentadas em pedaços e adicionadas em aparelho Soxlet, onde há o processo de extração contínua a quente com etanol. O líquido natural obtido contém misturas de ácidos anacárdicos (9) (60-65%), cardanóis (10) (10%), cardóis (11) (15-20%) e traços de metilcardóis (12)

(LADETER, 2010; LIMA et al., 2008; MAZZETTO; LOMONACO, 2009; RODRIGUES et al., 2006).

O LCC técnico é composto principalmente por cardanóis (60-65%), pela descarboxilação dos ácidos anacárdicos submetido a altas temperaturas sendo convertido em cardanóis (**10**), cardóis (**11**) (15-20%), material polimérico (10%), e traços de metilcardóis (**12**) (BALACHANDRAN et al., 2013; MAZZETTO & LOMONACO, 2009; RODRIGUES et al., 2006; VASAPOLLO et al., 2011).

A longa cadeia alquílica do cardanol (**10**) (Figura **8**) possui características relevantes para o reconhecimento hidrofóbico por resíduos complementares nos sítios de reconhecimento molecular bem como no desenvolvimento de novas funcionalidades por meio de interconversão de grupos funcionais. O grupo fenol reativo oferece versatilidade sintética, e, por fim, o anel aromático, permite interações π - π , tornando o cardanol um importante precursor quimíco (BALACHANDRAN et al., 2013; RODRIGUES et al., 2006; VASAPOLLO et al., 2011).

Fonte: Próprio autor.

1.5 NOVOS LIGANTES PPAR

Desde o surgimento das TZDs vários compostos moduladores seletivos de PPARγ foram criados e registrados no FDA (*Food and Drug Administration*), mas descontinuados por também ocasionarem efeitos desfavoráveis (GILARDI et al., 2014; PIRAT, et al., 2012). Assim como relatado por Amato (2008), acredita-se que agonistas parciais sejam mais seguros e efetivos que os que levam à ativação completa e não seletiva, como no caso das TZDs. Por sua vez Choi e colaboradores (2011) apontam que os efeitos desfavoráveis das TZDs estão relacionados ao agonismo clássico.

Os trabalhos desenvolvidos por Usui (2006), Zaware (2011), Gilardi (2014) e seus colaboradores discorreram sobre a importância de ligantes *duais* PPARα/γ para diminuir a concentração de triglicerídeos e aumentar os níveis de HDL em modelos animais de resistência à insulina. A combinação dos efeitos antilipidêmicos de PPARα e antidiabéticos de PPARγ apresenta potencial benefício para o tratamento da síndrome metabólica, diabetes tipo 2, hiperglicemia, dislipidemia aterogênica, e até mesmo em doenças relacionadas ao diabetes, cujo mecanismo permanece obscuro, como na doença de Alzheimer. É plausível que agonistas duais apresentem benefício terapêutico em relação aos efeitos adversos observados em compostos agonistas de PPARα e PPARα e PPARγ, uma vez que apresentaram atividade parcial (BORTOLINI et al., 2013; MANSOUR, 2014).

Fonte: Próprio autor.

Compostos agonistas duplos PPARα/γ (Figura 9) foram desenvolvidos, mas não foram aprovados pelo FDA devido aos mesmos efeitos adversos das TZDs. Ragaglitazar (13) e naveglitazar (14) contribuiram para o aumento dos casos de câncer na bexiga e hiperplasia. Por sua vez, tesaglitazar (15) apresentou riscos de toxicidade hepática e renal, enquanto muraglitazar (16) elevou o risco

cardiovascular, durante o uso clínico, e desta forma foram descontinuados (GILARDI et al., 2014; GRYGIEL-GÓRNIAK, 2014; PIRAT, et al., 2012; SILVA et al., 2010; WERNER et al. 2014). No entanto, aleglitazar (**17**), atualmente em estudos de fase III, demonstrou efeitos benéficos no metabolismo lipídico e na redução dos níveis de glicose plasmática, mas segundo Sahebkar e colaboradores (2014), os estudos foram interrompidos devido a presença de fraturas ósseas, problemas cardiácos e gastrointestinais.

O diabetes tipo 2 e suas complicações secundárias configuram-se como problemas de saúde pública. O desenvolvimento de fármacos anti-diabéticos buscando a melhora da resistência insulínica, assim como da hiperlipidemia é necessário. As vantagens terapêuticas de agonistas duais PPARα/γ merecem destaque, apesar dos agonistas tesaglitazar e muraglitazar haverem sido descontinuados (PARK et al., 2013). Há mais de 40 anos, fármacos com ação mediada por PPAR vêm sendo utilizados para o controle glicêmico e na homeostase de lípideos. A partir das informações sobre os mecanismos de ação ora estabelecidos, a segurança terapêutica destas classes de fármacos pode ser modificada (BORTOLINI et al., 2013; GILARDI et al., 2014).

Desta maneira, a síntese de novos ligantes com ação mediada por PPAR tem sido alvo de intensas pesquisas, uma vez que as atuais terapias medicamentosas apresentam limitações. Em adição, o desenvolvimento de novos ligantes é essencial visando maior conhecimento a respeito do papel fisiológico destes receptores, seus mecanismos e características farmacodinâmicas (AMATO, 2008; ANDRADE, 2008; CHEN & YANG, 2014; CHOI et al., 2011).

2.1 OBJETIVO GERAL

No âmbito de uma linha de pesquisa que visa o desenvolvimento de novos ligantes com ação mediada por PPAR, o presente estudo teve como objetivo a síntese e avaliação farmacológica de novos ligantes duais PPARα/γ, planejados a partir da mistura de cardanóis (**10**).

2.1.1 Objetivos Específicos

Compreendem os objetivos específicos:

- A síntese e a caracterização dos intermediários e produtos finais;
- A avaliação do perfil farmacológico dos compostos-alvo quanto à ativação transcricional do PPAR em modelos experimentais *in vitro*;
- A avaliação do perfil farmacológico dos compostos-alvo quanto à expressão de genes envolvidos na captação e oxidação de ácidos graxos;
- A avaliação do perfil farmacológico dos compostos-alvo quanto à expressão de genes envolvidos na diferenciação de adipócitos.

Planejamento

3.PLANEJAMENTO ESTRUTURAL

Os derivados-alvo foram planejados a partir da simplificação molecular do composto líder desenvolvido por Lin e colaboradores (2009), de forma a gerar novos padrões moleculares com arcabouço estrutural complementar aos resíduos de aminoácidos dos receptores PPARα/γ (Esquema 1). Neste sentido, foram planejados dois padrões moleculares: i. no qual há presença da subunidade alfaariloxicarboxilíca visando interação com a tríade de aminoácidos H449, Y473 e H323, bem como modulação da subunidade pentadecila; ii. onde a cadeia lateral dos derivados planejados contém oito grupos metilenos, comprimento em torno de 19 Å, apresentando maior flexibilidade conformacional que o derivado proposto por Lin e colaboradores, bem como a substituição da arilcetona terminal por ácido carboxílico, visando interação íon-íon com o resíduo Arg288.

Fonte: Próprio autor.

fon-Dipolo

R288

Estratégia Sintética

A rota sintética para a obtenção dos derivados-alvo compreendeu a exploração de procedimentos sintéticos clássicos de interconversão de grupos funcionais, por exemplo, *O*-alquilação, ozonólise, adição nucleofílica, oxidação, hidrólise alcalina e condensação com reagentes contendo hidrogênios ativados, sob condições experimentais à temperatura ambiente, sob refluxo e radiação micro-ondas.

Neste sentido, o planejamento sintético iniciaria com a hidrogenação catalítica do cardanol monoinsaturado utilizando Pd/C em etanol visando o derivado saturado LDT10 (**18**). Em seguida LDT10 (**18**) seria submetido a reações de metilação com iodeto de metila na presença de K₂CO₃ para obtenção do derivado LDT27 (**20**), e acetilação com anidrido acético e ácido fosfórico em forno MO visando a obtenção do derivado LDT12 (**19**). Por fim, reação de *O*-alquilação com o 2-haloéster correspondente na presença de K₂CO₃ em acetona forneceria os derivados betaoxaésteres. Os ésteres-derivados seriam submetidos à hidrólise alcalina com hidróxido de lítio conduzindo aos respectivos ácidos carboxílicos, finalizando a série 1.

Na série 2, a mistura de cardanóis (**10**) seria acetilada e submetida à ozonólise em banho acetona/gelo seco e o intermediário ozonídeo secundário, não isolado, seria reduzido com hidreto metálico, levando ao derivado diidroxilado LDT71 (**22**). Por sua vez, o LDT71 (**22**) seria submetido à reação de metilação na presença de iodeto de metila, conduzido ao derivado metilado (**23**), seguido de oxidação com reagente de Jones, e posteriormente reação de esterificação com iodeto de etila, originando o derivado. Para outros derivados, LDT71 (**22**) seria submetido à reação de *O*-alquilação regioespecífica com os 2-haloésteres na presença de K₂CO₃ em acetona, sob refluxo, levando aos derivados betaoxaésteres. Estes serão submetidos à reação de oxidação aos carbometóxiácidos correspondentes, os quais sob hidrólise com hidróxido alcalino fornecerão os derivados diácidos. Por sua vez, os carbometóxiácidos também serão submetidos à reação de esterificação com iodeto de etila, fornecendo os derivados diésteres, finalizando a série. O planejamento para ambas as sérires está delineado no Esquema **2**.

Esquema 2: Planejamento sintético dos derivados-alvo.

a. H2, Pd/C, EtOH; b. O3/O2, AcOEt, -78°C; c. BrYCO2Et, K2CO3, Acn; d. Jones, Acn; e. LiOH, THF-H2OI f. DIAD, Ph3P, 4-HOPh(CH2)2CO2Et; g) i. SOCl2, ArX, CdX2, Mg

Fonte: Próprio autor.

A caracterização das estruturas de intermediários e produtos finais dar-se a partir da obtenção e análise de espectros de ressonância magnética nuclear de hidrogênio e carbono-13, realizados no Centro Nordestino de Aplicação e Uso da Ressonância Magnética Nuclear (CENAUREMN) da Universidade Federal do Ceará; e espectros no infravermelho realizados na Central Analítica da Universidade Católica de Brasília.

A avaliação da atividade farmacológica seria realizada a partir de ensaio de gene repórter, mensurada em unidades relativas a luciferase, estudo em hepatócitos primários e estudo de diferenciação de adipócitos em colaboração com a Universidade de Toronto.

Parte Experimental

5.PARTE EXPERIMENTAL

5.1 GENERALIDADES, MATERIAIS E MÉTODOS

O planejamento e a síntese dos derivados-alvo foram realizados na Universidade Católica de Brasília no Laboratório de Desenvolvimento de Estratégias Terapêuticas (LADETER).

Os reagentes e solventes químicos utilizados neste trabalho foram adquiridos das indústrias Sigma-Aldrich[®] (EUA) e Tedia[®] (EUA). Os solventes acetonitrila (MeCN), anidrido acético e diclorometano (DCM) foram previamente secos com hidreto de cálcio e destilados antes do uso.

As reações de substituição nucleofílica (S_N2) foram realizadas em forno microondas doméstico Brastemp[®] modelo BMK38ABHNA JetDefrost com capacidade de 38 L e potência de 900 W.

As reações e purificações foram monitoradas por meio de cromatografia em camada delgada (ccd), utilizando cromatofolhas (5,0 x 1,5 cm) de sílica Kieselgel 60 F254 em alumínio com espessura de 0,25 mm (SILICYCLE[®]) e visualizadas através de lâmpada de UV (254-366 nm), que permitiu o cálculo do fator de retenção (RF). Para a purificação dos compostos foi utilizada cromatografia em coluna com gel de sílica G60 (70-230 mesh) SILICYCLE[®].

Os solventes foram evaporados à pressão reduzida utilizando evaporador rotatório Tecnal® TE-211, conectado a sistema de vácuo com pressão variando entre 10 e 0,1 mmHg.

Os espectros na região do infravermelho (IV) foram obtidos em Espectrofotômetro Perkin Elmer modelo Spectrum BX, empregando pastilhas de brometo de potássio (KBr) ou na forma de filme líquido em placa de cloreto de sódio (NaCl) da Central Analítica da Universidade Católica de Brasília – UCB. Os valores para as absorções ($v_{máx}$) são referidos em números de ondas utilizando como unidade o centímetro recíproco (cm⁻¹).

As análises por ressonância magnética nuclear de hidrogênio (RMN ¹H) e carbono-13 (RMN ¹³C) foram realizadas no Centro Nordestino de Aplicação e Uso da Ressonância Magnética Nuclear (CENAUREMN) da Universidade Federal do Ceará (Figura **10**), e os espectros obtidos a 300 MHz e 75 MHz ou a 500 MHz e 125 MHz

respectivamente, verificados em aparelho Bruker Avance DRX300 e DRX500. Para a realização dos testes, as amostras foram solubilizadas em CDCl₃, tendo tetrametilsilano (TMS) como referência interna. Os valores de deslocamento químico (δ) são referidos em parte por milhão (ppm) em relação ao TMS e as constantes de acoplamento (J) em Hertz (Hz). As áreas dos sinais foram obtidas por integração eletrônica e suas multiplicidades descritas como: simpleto (s); simpleto largo (sl); dupleto (d); duplo dupleto (dd); tripleto (t) e multipleto (m).

Figura 10: Numeração e legendas empregadas no assinalamento de sinais em RMN ¹H e RMN ¹³C. **Ressonância Magnética Nuclear de Hidrogênio - RMN** ¹H

Fonte: Próprio autor.

A avaliação da ação farmacológica dos compostos foi realizada na Universidade de Toronto, por meio de ensaio de gene repórter, em que se visualizou a capacidade de emissão de luz luciferase, indicativa da indução da transcrição gênica mediada por PPAR, ensaio em hepatócitos primários e ensaio de diferenciação de adipócitos, determinando a atividade dos possíveis ligantes agonistas de PPAR na captação e oxidação de ácidos graxos, bem como na adipogênese.

5.2.1 Obtenção da Mistura de Cardanóis (10) a Partir do LCC Técnico

n = 2

O cardanol monoinsaturado (**10**) (MM = 302,494 gmol⁻¹) foi purificada a partir de destilado do LCC técnico fornecido pela RESIBRAS, por meio de coluna cromatográfica em gel de sílica, eluída com mistura de hexanos, em rendimento de 90% em relação à massa total aplicada.

5.2.2 Obtenção do Derivado 3-Pentadecilfenol (LDT10, 18)

Em um frasco de hidrogenação foram adicionados 10,00 g de cardanol monoinsaturado (**10**) (33,058 mmol) e etanol (30,0 mL). À solução foram adicionados 0,22 g de catalisador paládio (Pd/C) e a mistura submetida à hidrogenação catalítica sob pressão de 60 psi em reator Paar, à temperatura ambiente durante 3 horas. A a mistura foi filtrada em funil sinterizado, para retirada do catalisador, e o solvente foi evaporado à pressão reduzida. Após purificação em coluna cromatográfica eluída com mistura hexano/diclorometano (1:1), o derivado saturado, LDT 10 (**18**), foi fornecido.

3-Pentadecilfenol (LDT10, 18)

Sólido branco Rendimento (90%) Rf: 0,35 (DCM50%:Hex50%) Ponto de fusão: 44-45°C Fórmula molecular: C21H36O IV (KBr) v_{máx} cm⁻¹: 3337 (v OH); 2916 (v_{as CH2}); 2848 (v_{s CH2}); 1592, 1458 (v c=c).

RMN ¹H (500 MHz, CDCl₃): δ 0,92 (t, J = 6,8, 3H, 15); 1,29-1,33 (m, 24H, 3-14); 1,60-1,62 (m, 2H, 2); 2,58 (t, J = 7,5 Hz, 2H, 1); 6,68 (d, J = 9,9 Hz, 2H, 2' e 4'); 6,78 (d, J = 7,4 Hz, 1H, 6'); 7,16 (t, J = 7,8 Hz, 1H, 5').

RMN ¹³C (125 MHz, CDCl₃): δ 14,3 (<u>C</u>H₃, 15); 22,9 (<u>C</u>H₂, 14); 29,6-29,9 (<u>C</u>H₂, 3-12); 31,5 (<u>C</u>H₂, 2); 32,2 (<u>C</u>H₂, 13); 36,0 (<u>C</u>H₂, 1); 112,7 (Ar<u>C</u>H, 2'); 115,6 (Ar<u>C</u>H, 4'); 121,2 (Ar<u>C</u>H, 6'); 129,6 (Ar<u>C</u>H, 5'); 145,2 (Ar<u>C</u>, 1'); 155,6 (Ar<u>C</u>O, 3').

5.2.3 Obtenção do Derivado Acetato de 3-Pentadecilfenila (LDT12, 19)

Em um erlenmeyer (100,0 mL) foram adicionados 2,00 g (6,568 mmol) de cardanol saturado (**18**), 1,22 mL de anidrido acético (13,0 mmol) e ácido fosfórico (2 gotas). A mistura foi submetida à reação de acetilação em forno micro-ondas doméstico, à potência de 450 W, durante 3 minutos (3 x 1'). Em seguida, a mistura foi extraída com acetato de etila (3 x 10,0 mL) e as frações orgânicas reunidas foram lavadas com solução salina saturada (10,0 mL) e seca sob sulfato de sódio anidro. Após evaporação do solvente à pressão reduzida, a mistura foi purificada por cromatografia em coluna contendo sílica em gel, eluída com mistura de hexano e diclorometano, fornecendo o acetato de cardanolila (LDT12, **19**).

Acetato de 3-Pentadecilfenila (LDT12, 19)

`C₁₅H₃₁

Sólido branco Rendimento (91%) Rf: 0,70 (DCM50%:Hex50%) Ponto de fusão: 46-48°C Fórmula molecular: C23H38O2

IV (KBr) vmáx cm⁻¹: 2917 (v снз); 2850 (v сн2); 1630 (v с=0); 1364, 1325, 1308 (v с=с); 1165 (v снз); 1148 (v с-о).

RMN ¹H (300 MHz, CDCl₃): δ 0,89 (t, J = 6,8 Hz, 3H, 15); 1,26-1,31 (m, 27H, 3-14); 1,59-1,64 (m, 2H, 2); 2,60 (m, 5H, ArOCOC<u>H</u>₃, e 1); 6,72 (d, J = 8,1 Hz, 1H, 4'); 6,79 (s, 1H, 2'); 7,63 (d, 1H, J = 8,1 Hz, 5').

RMN ¹³C (75 MHz, CDCl₃): δ 14,3 (<u>C</u>H₃, 15); 22,9 (<u>C</u>H₂, 14); 26,6 (ArOCO<u>C</u>H₃); 29,4-29,9 (<u>C</u>H₂, 3-12); 30,8 (<u>C</u>H₂, 2); 32,1 (<u>C</u>H₂, 13); 36,4 (<u>C</u>H₂, 1); 118,0 (Ar<u>C</u>H, 4'); 119,7 (Ar<u>C</u>H, 6'); 130,8 (Ar<u>C</u>H, 5'); 153,2 (Ar<u>C</u>, 1'); 162,8 (Ar<u>C</u>O, 3'); 204,0 (ArO<u>C</u>OCH₃).

5.2.4 Obtenção do Derivado 1-Metóxi-3-pentadecilbenzeno (LDT27, 20)

A um balão (100,0 mL) foram adicionados 1,00 g de LDT10 (**18**) (3,283 mmol), 0,90 g de carbonato de potássio (6,567 mmol), 0,52 mL de iodeto de metila (8,209 mmol) e acetona (25,0 mL). O sistema reacional foi submetido a refluxo, sob agitação magnética, por 24 horas. Na sequência, a acetona foi evaporada à pressão reduzida, o resíduo extraído com éter (3 x 10,0 mL) e as frações orgânicas reunidas lavadas com solução de ácido clorídrico 10% (30,0 mL), solução salina saturada (30,0 mL) e seca sob sulfato de sódio anidro. O solvente foi evaporado à pressão reduzida e o resíduo purificado em coluna de gel de sílica eluída com mistura hexano-diclorometano (1:1), fornecendo o derivado LDT27 (**20**).

1-Metóxi-3-pentadecilbenzeno (LDT27, 20)

Líquido incolor Rendimento (78%) R_f: 0,95 (DCM) Fórmula molecular: C₂₃H₄₁O

IV (KBr) v_{máx} cm⁻¹: 2923 (v_s cH₂); 2852 (v_s cH₂); 1601, 1584, 1488, 1465 (v c=c), 1259 (v_{as Arc-O-CH3}), 1047 (v_s c-o).

RMN ¹H (300 MHz, CDCl₃): δ 0,91 (t, J = 6,5, 3H, 15); 1,28-1,32 (m, 24H, 3-14); 1,60-1,65 (m, 2H, 2); 2,60 (t, J = 7,8 Hz, 2H, 1); 3,82 (sl, 3H, ArOC<u>H</u>₃); 6,77 (m, 3H, 2', 4' e 6'); 7,22 (m, 1H, 5').

RMN ¹³C (75 MHz, CDCl₃): δ 14,3 (<u>C</u>H₃, 15); 22,9 (<u>C</u>H₂, 14); 29,6-29,9 (<u>C</u>H₂, 3-12); 31,6 (<u>C</u>H₂, 2); 32,2 (<u>C</u>H₂, 13); 36,3 (<u>C</u>H₂, 1); 55,3 (ArO<u>C</u>H₃); 111,0 (Ar<u>C</u>H, 4'); 114,4 (Ar<u>C</u>H, 2'); 121,0 (Ar<u>C</u>H, 6'); 129,3 (Ar<u>C</u>H, 5'); 144,8 (Ar<u>C</u>, 1'); 159,8 (Ar<u>C</u>O, 3').

5.2.5 Obtenção do Derivado 3-(8-Hidróxioctil)fenol (LDT71, 22)

Em um erlenmeyer (125,0 mL) foram adicionados 12,00 g de cardanol monoinsaturado (**10**) (39,406 mmol), anidrido acético destilado (12,0 mL) e ácido fosfórico (12 gotas). A mistura foi submetida à reação de acetilação em forno de micro-ondas doméstico, à potência de 450 W, durante 3 mim (3 x 1'). Na sequência, o resíduo foi extraído com acetato de etila (3 x 15,0 mL) e as frações orgânicas reunidas lavadas com solução de bicarbonato de sódio 5% (20,0 mL), solução de ácido clorídrico 10% (20,0 mL), solução salina saturada (20,0 mL) e seca sob sulfato de sódio anidro. Após evaporação do solvente à pressão reduzida, a mistura reacional foi purificada por cromatografia em coluna de gel de sílica, eluída com diclorometano, fornecendo o composto desejado em rendimento de 73%.

Em um balão para ozonólise (250,0 mL) foram adicionados 10,00 g de cardanol monoacetilado (**21**) (33,058 mmol), diclorometano (20,0 mL) e metanol (20,0 mL). O balão foi adaptado ao ozonizador com fluxo de ozônio por 80 minutos, sob banho de gelo seco/acetona. Na sequência, o ozonídeo secundário, de coloração alaranjada e aspecto translúcido, foi submetido à redução com borohidreto de sódio, onde foram utilizados dois béqueres de 600,0 mL, nos quais foram acrescentados 5,00 g do intermediário ozonídeo (14,427 mmol), 60,0 mL de metanol e 5,90 g de hidreto de boro e sódio (158,704 mmol), sob banho de gelo seco/acetona. Ao final da adição do hidreto de boro e sódio a reação permaneceu seis horas, sob agitação magnética. Em seguida, a mistura foi acidificada com ácido

clorídrico concentrado a pH 3,0 e o resíduo extraído com acetato de etila (3 x 30,0 mL) e as frações orgânicas reunidas lavadas com solução salina saturada (30,0 mL) e seca sob sulfato de sódio. Após a evaporação do solvente, o produto foi purificado em coluna com gel de sílica, eluída com diclorometano, clorofórmio e posteriormente, clorofórmio e etanol, levando ao derivado diidroxilado (LDT71, **22**).

3-(8-Hidróxioctil)fenol (LDT71, 22)

Líquido Incolor Rendimento (79%) Rf: 0,33 (CLF: EtOH 30%) Fórmula molecular: C14H22O2

IV (KBr) v_{máx} cm⁻¹: 3351 (v он); 2929 (v_{as CH2}); 2855 (v_{s CH2}); 1589, 1456 (v_{C=C}).

RMN ¹H (300 MHz, CDCl₃): δ 1,30 (s, 8H, 3-6); 1,53-1,59 (m, 4H, 2 e 7); 2,54 (t, J = 7,6 Hz, 2H, 8); 3,66 (t, J = 6,6 Hz, 2H, 8); 6,65 (dd, J = 8,1 Hz, J = 2,5 Hz, 1H, 4'); 6,67 (sl, 1H, 2'); 6,71 (d, J = 7,6 Hz, 1H, 6'); 7,19 (dd, J = 7,8 Hz, 1H, 5').

RMN ¹³C (75 MHz, CDCl₃): δ 25,8 (<u>C</u>H₂, 6); 29,2 (<u>C</u>H₂, 5); 29,4 (<u>C</u>H₂, 4); 29,5 (<u>C</u>H₂, 3); 31,3 (<u>C</u>H₂, 2); 32,7 (<u>C</u>H₂, 7); 35,9 (<u>C</u>H₂, 1); 63,2 (<u>C</u>H₂OH, 8); 112,8 (Ar<u>C</u>H, 4'); 115,6 (Ar<u>C</u>H, 2'); 120,8 (Ar<u>C</u>H, 6'); 129,5 (Ar<u>C</u>H, 5'); 144,9 (Ar<u>C</u>, 1'); 156,0(Ar<u>C</u>O, 3').

5.2.6 Obtenção do Derivado 8-(3-Metóxifenil)octan-1-ol (LDT72, 23)

Em um balão (100,0 mL) foram adicionados 1,00 g de LDT71 (22) (3,782 mmol), 1,04 g de carbonato de potássio (7,565 mmol), 0,60 mL de iodeto de metila (9,456 mmol) e acetona (25,0 mL). A mistura foi submetida a refluxo sob agitação magnética, durante 24 horas. Na sequência, a acetona foi evaporada à pressão reduzida, e o resíduo extraído com acetato de etila (3 x 10,0 mL). As frações orgânicas reunidas foram lavadas com solução de ácido clorídrico 10% (30,0 mL), solução salina saturada (30,0 mL) e seca sob sulfato de sódio anidro. O solvente foi

evaporado à pressão reduzida e o resíduo purificado em coluna de gel de sílica eluída com mistura hexano-diclorometano (1:1), originando o derivado LDT72 (23).

8-(3-Metóxifenil)octan-1-ol (LDT72, 23)

Líquido incolor Rendimento (80%) Rf: 0,40 (DCM) Fórmula Molecular: C₁₅H₂₄O₂

(m. m.), 1602, 1464, 1260, 1061 (m. m.), 776

IV (KBr) v_{máx} cm⁻¹: 3351 (v_{OH}); 2929 (v_{as CH2}); 1602, 1464, 1260, 1051 (v_{C=C}), 776 (v_{as ArC-O-CH3}), 695 (v_{s C-O}).

RMN ¹H (300 MHz, CDCl₃): δ 1,33 (m, 8H, 3-6); 1,54-1,58 (m, 2H, 7); 1,60-1,63 (m, 2H, 2); 2,59 (t, *J* = 6,0 Hz, 2H, 1); 3,64 (t, *J* = 6,0 Hz, 2H, 8); 3,81 (s, 3H, ArOC<u>H</u>₃); 6,72-6,79 (m, 3H, 2',4' e 6'); 7,18-7,21 (m, 1H, 5').

RMN ¹³C (75 MHz, CDCl₃): δ 25,9 (<u>C</u>H₂, 5); 29,6 (<u>C</u>H₂, 5); 29,4 (<u>C</u>H₂, 4); 29,5 (<u>C</u>H₂, 3); 31,5 (<u>C</u>H₂, 2); 32,9 (<u>C</u>H₂, 7); 36,2 (<u>C</u>H₂, 1); 55,3 (ArO<u>C</u>H₃); 63,2 (<u>C</u>H₂, 8); 110,9 (Ar<u>C</u>H, 2'); 114,4 (Ar<u>C</u>H, 4'); 121,1 (Ar<u>C</u>H, 6'); 129,3 (Ar<u>C</u>H, 5'); 144,7 (Ar<u>C</u>, 1'); 159,7 (Ar<u>C</u>O, 3').

5.2.7 Obtenção dos Derivados β-oxaéster LDT15 (24) e LDT296 (28).

A um balão (125,0 mL) foram adicionados os fenóis **18** (1,36 g; 4,485 mmol) ou **22** (1,00 g; 4,497 mmol), carbonato de potássio (2,00 eq) e acetona (50,0 mL). A mistura permaneceu sob agitação magnética durante 60 minutos, e então, foi adicionado 2-bromoacetato de etila (1,25 eq). A reação prosseguiu sob agitação magnética, à temperatura ambiente por 24 horas. Após redução do volume de solvente à pressão reduzida, a mistura foi extraída com acetato de etila (2 x 30,0

mL) e as frações orgânicas reunidas foram lavadas com solução de ácido clorídrico 10% (30,0 mL), solução salina saturada (20,0 mL) e seca sob sulfato de sódio anidro. O solvente foi evaporado a pressão reduzida e os resíduos purificados em coluna de gel de sílica, eluída com mistura clorofórmio-diclorometano (2:1), originando os éster-derivados LDT15 (24) e LDT296 (28).

2-(3-Pentadecilfenóxi)acetato de etila (LDT15, 24)

Sólido branco Rendimento (90%) R_f: 0,5 (Hex: AcOEt 40%) Ponto de fusão: 30-31°C Fórmula molecular: C₂₅H₄₂O₃

IV (KBr) v_{máx} cm⁻¹: 2918 (v_{s CH2}); 2850 (v_{s CH2}); 1753 (v_{C=O}); 1612, 1586, 1490, 1466 (v_{C=C}), 1242 (v_{as O-C(O)-C}); 1096 (v_{s C-O-C}).

RMN ¹H (500 MHz, CDCl₃): δ 0,89 (t, J = 6,8 Hz, 3H, 15); 1,27-1,29 (m, 24H, 3-14); 1,31 (t, J = 7,0 Hz, 3H, ArOCH₂CO₂CH₂CH₃); 1,57-1,62 (m, 2H, 2); 2,58 (t, J = 7,5 Hz, 2H, 1); 4,28 (q, J = 7,0 Hz, 2H, ArOCH₂CO₂CH₂CH₃); 4,61 (s, 2H, ArOCH₂CO₂CH₃); 6,71 (dd, J = 8,1 Hz, J = 2,5 Hz, 1H, 4'); 6,76 (sl, 1H, 2'); 6,81 (d, J = 7,6 Hz, 1H, 6'); 7,19 (dd, J = 7,8 Hz, 1H, 5').

RMN ¹³C (125 MHz, CDCl₃): δ 14,3 (ArOCH₂CO₂CH₂CH₃); 14,4 (CH₃, 15); 22,9 (CH₂, 14); 29,5-29,9 (CH₂, 3-12); 31,5 (CH₂, 2); 32,1 (CH₂, 13); 36,2 (CH₂, 1); 61,5 (ArOCH₂CO₂CH₂CH₃); 65,6 (ArOCH₂CO₂CH₂CH₃); 111,6 (ArCH, 4'); 115,3 (ArCH, 2'); 122,1 (ArCH, 6'); 129,4 (ArCH, 5'); 145,0 (ArC, 1'); 158,0 (ArCO, 3'); 169,3 (ArOCH₂CO₂CH₂CH₃).

2-(3-(8-Hidróxioctil)fenóxi)acetato de etila (LDT296, 28)

Líquido amarelo Rendimento (62%) Rf: 0,55 (CLF:EtOH 40%) Fórmula molecular: C18H28O4 IV (KBr) v_{máx} cm⁻¹: 3421 (v он); 2929 (v_{as CH2}); 2855 (v_{s CH2}); 1761 (v_{C=0}); 1596, 1458, (v_{C=C}), 1205 (v_{as O-C(O)-C}); 1093 (v_{s C-O-C}).

RMN ¹H (300 MHz, CDCl₃): δ 1,27-1,32 (m, 3H, ArOCH₂CO₂CH₂CH₃; 8H, 3-6); 1,53-1,59 (m, 4H, 2 e 7); 2,57 (t, *J* = 7,5 Hz, 2H, 8); 3,63 (t, *J* = 6,6 Hz, 2H, 1); 4,27 (q, *J* = 7,1 Hz, 2H, ArOCH₂CO₂CH₂CH₃); 4,61 (s, 2H, ArOCH₂CO₂CH₃); 6,71 (dd, *J* = 8,1 Hz, *J* = 2,5 Hz, 1H, 4'); 6,76 (sl, 1H, 2'); 6,81 (d, *J* = 7,6 Hz, 1H, 6'); 7,19 (dd, *J* = 7,8 Hz, 1H, 5').

RMN ¹³C (75 MHz, CDCl₃): δ 14,3 (ArOCH₂CO₂CH₂CH₃); 25,9 (CH₂, 3); 29,3 (CH₂, 6); 29,5 (CH₂, 5); 29,6 (CH₂, 4); 31,4 (CH₂, 7); 33,0 (CH₂, 2); 36,1 (CH₂, 8); 61,5 (ArOCH₂CO₂CH₂CH₃); 63,2 (CH₂OH, 1); 65,7 (ArOCH₂CO₂CH₂CH₃); 111,6 (ArCH, 4'); 115,3 (ArCH, 2'); 122,1 (ArCH, 6'); 129,4 (ArCH, 5'); 144,9 (ArC, 1'); 158,1 (ArCO, 3'); 169,3 (ArOCH₂CO₂CH₂CH₃).

5.2.8 Obtenção dos Derivados α , α -Dimetilésteres LDT408 (26) e LDT476 (33).

A um balão (125,0 mL) foram adicionados os fenóis **18** (0,90 g; 2,968 mmol) ou **22** (1,20 g; 5,397 mmol), carbonato de potássio (2,00 eq), iodeto de potássio (1,00 eq) e acetonitrila (6,0 mL). A mistura permaneceu sob agitação magnética durante 60 minutos, e então, foi adicionado α-bromoisobutirato de etila (3,00 eq). A reação prosseguiu sob agitação magnética, em refluxo à 85°C por 24 horas. Após redução do volume de solvente à pressão reduzida, a mistura foi extraída com éter (2 x 25,0 mL) e as frações orgânicas reunidas foram lavadas com solução de ácido clorídrico 10% (30,0 mL), solução salina saturada (20,0 mL) e seca sob sulfato de sódio. O solvente foi evaporado à pressão reduzida e os resíduos purificados em coluna de gel de sílica eluída com mistura diclorometano-clorofórmio (1:1), fornecendo os derivados LDT408 (**26**) e LDT476 (**33**).

2-Metil-2-(3-Pentadecilfenóxi)Propanoato de etila (LDT408, 26)

Líquido amarelo Rendimento (92%) Rf: 0,75 (CLF:EtOH 40%) Fórmula molecular: C₂₇H₄₆O₃

IV (KBr) v_{máx} cm⁻¹: 2925 (v_s cH₂); 2854 (v_s cH₂); 1735 (v_{C=O}); 1602, 1466 (v_{C=C}), 1142 (v_{as} o-c(o)-c); 1025 (v_s c-o-c).

RMN ¹H (300 MHz, CDCl₃): δ 0,89 (t, J = 6,4 Hz 3H, 15); 1,23-1,27 (m, 27H, ArOC(CH₃)₂CO₂CH₂CH₂CH₃, 3-14); 1,56-1,60 (m, 8H, ArOC(CH₃)₂CO₂CH₂CH₃ e 2); 2,55 (t, J = 7,7 Hz, 2H, 1); 4,24 (q, J = 7,1 Hz, 2H, ArOC(CH₃)₂CO₂CH₂CH₃); 6,65 (dd, J = 8,0 Hz, J = 1,7 Hz, 1H, 4'); 6,70 (d, J = 1,5 Hz, 1H, 2'); 6,81 (d, J = 7,5 Hz, 1H, 6'); 7,13 (dd, J = 7,8 Hz, 1H, 5').

RMN ¹³C (75 MHz, CDCl₃): δ 14,3 (ArOC(CH₃)₂CO₂CH₂CH₃); 14,3 (CH₃, 15); 22,9 (Ar/<u>C</u>H₂, 14); 25,6 (ArOC(CH₃)₂CO₂CH₂CH₃); 29,5-29,9 (CH₂, 3-12); 31,5 (CH₂, 2); 32,1 (CH₂, 13); 36,1 (CH₂, 1); 61,5 (ArOC(CH₃)₂CO₂CH₂CH₃); 79,1 (ArO<u>C</u>(CH₃)₂CO₂CH₂CH₃); 116,3 (Ar<u>C</u>H, 4'); 119,6 (Ar<u>C</u>H, 2'); 122,5 (Ar<u>C</u>H, 6'); 128,9 (Ar<u>C</u>H, 5'); 144,7 (Ar<u>C</u>, 1'); 155,6 (Ar<u>C</u>O, 3'); 174,6 (ArOC(CH₃)₂CO₂CH₂CH₃).

2-(3-(8-Hidróxioctil)fenóxi)-2-metilpropanoato de etila (LDT476, 33)

Líquido Incolor Rendimento (65%) Rf: 0,88 (CLF:EtOH 40%) Fórmula Molecular: C₂₀H₃₂O₄

IV (KBr) v_{máx} cm⁻¹: 3421 (v_{OH}); 2929 (v_{as CH2}); 2855 (v_{s CH2}); 1734 (v_{C=O}); 1602,1583, 1485, 1466 (v_{C=C}), 1179 (v_{as O-C(O)-C}); 1023 (v_{s C-O-C}).

RMN ¹H (300 MHz, CDCl₃): δ 1,21-1,29 (m, 4H, ArOC(CH₃)₂CO₂CH₂CH₂G; 9H, 2-6); 1,42-1,52 (m, 11H, ArOC(CH₃)₂CO₂CH₂CH₃, 7); 2,53 (t, *J* = 7,5 Hz, 2H, 8); 3,61 (t, *J* = 6,6 Hz, 2H, 1); 4,22 (q, *J* = 7,1 Hz, 2H, ArOC(CH₃)₂CO₂CH₂CH₃); 6,62 (dd, *J* = 8,1 Hz, J = 2,4 Hz, 1H, 4'); 6,67 (sl, 1H, 2'); 6,79 (d, J = 7,5 Hz, 1H, 6'); 7,10 (dd, J = 7,8 Hz, 1H, 5').

RMN ¹³C (75 MHz, CDCl₃): δ 14,2 (ArOC(CH₃)₂CO₂CH₂<u>C</u>H₃); 25,5 (ArOC(<u>C</u>H₃)₂CO₂CH₂CH₃); 25,8 (<u>C</u>H₂, 3); 29,2 (<u>C</u>H₂, 6); 29,4 (<u>C</u>H₂, 5); 29,5 (<u>C</u>H₂, 4); 31,3 (<u>C</u>H₂, 7); 32,9 (<u>C</u>H₂, 2); 36,0 (<u>C</u>H₂, 8); 61,5 (ArOC(CH₃)₂CO₂<u>C</u>H₂CH₃); 63,0 (<u>C</u>H₂OH, 1); 79,1 (ArO<u>C</u>(CH₃)₂CO₂CH₂CH₃); 116,3 (Ar<u>C</u>H, 4'); 119,5 (Ar<u>C</u>H, 2'); 122,4 (Ar<u>C</u>H, 6'); 128,9 (Ar<u>C</u>H, 5'); 144,3 (Ar<u>C</u>, 1'); 155,5 (Ar<u>C</u>O, 3'); 174,6 (ArOC(CH₃)₂<u>C</u>O₂CH₂CH₃).

5.2.9 Síntese dos Derivados Ácidos LDT298 (30), LDT478 (35) e LDT80 (38).

Em um balão (50,0 mL) foram adicionados os hidroxiésteres **28** (0,46 g; 1,491 mmol) ou **33** (0,60 g; 1,783 mmol) ou **23** (0,50 g; 2,115 mmol) e acetona (20,0 mL). Sob banho de gelo, foi adicionado, gota a gota, reagente de Jones até permanância de coloração castanha por cinco minutos, indicando o fim da reação. O excesso do reagente de Jones foi desativado pela adição de álcool isopropílico (1,0 mL) e a mistura extraída com clorofórmio (2 x 10,0 mL). As frações reunidas foram lavadas com solução salina saturada (10,0 mL) e seca sob sulfato de sódio anidro. Após evaporação do solvente à pressão reduzida, os resíduos foram purificados em coluna de gel sílica eluída com diclorometano e posteriormente, diclorometano e clorofórmio, levando aos derivado-alvos.

Ácido 8-(3-[2-Etóxi-2-oxoetóxi]fenil)octanóico (LDT298, 30)

Líquido Incolor Rendimento (83%) R_f: 0,55 (CLF:EtOH 40%) Fórmula molecular: C₁₈H₂₆O₅ IV (KBr) v_{máx} cm⁻¹: 2930 (v_{as} cH₂); 2857 (v_s cH₂); 1760 (v_{C=O}); 1735 (v_{C=O}); 1603, 1457 (v_{C=C}), 1204 (v_{as} O-C(O)-OH); 1093 (v_s c-O-C).

RMN ¹H (300 MHz, CDCl₃): δ 1,27-1,33 (m, 9H, ArOCH₂CO₂CH₂CH₃, 4-6); 1,60-1,62 (m, 4H, 3 e 7); 2,34 (t, *J* = 7,5 Hz, 2H, 2); 2,57 (t, *J* = 7,6 Hz, 2H, 8); 4,28 (q, *J* = 7,1 Hz, 2H, ArOCH₂CO₂CH₂CH₃); 4,61 (s, 2H, ArOCH₂CO₂CH₃); 6,72 (dd, *J* = 8,1 Hz, *J* = 2,0 Hz,1 H, 4'); 6,75 (sl, 1 H, 2'); 6,77 (dl, *J* = 7,5 Hz, 1H, 6'); 7,19 (t, *J* = 7,8 Hz, 1H, 5').

RMN ¹³C (75 MHz, CDCl₃): δ 14,3 (ArOCH₂CO₂CH₂CH₃); 24,8 (CH₂, 3); 29,1 (CH₂, 5); 29,2 (CH₂, 4); 29,2 (CH₂, 6); 31,3 (CH₂, 7); 34,2 (CH₂, 2); 36,0 (CH₂, 8); 61,5 (ArOCH₂CO₂CH₂CH₃); 65,6 (ArOCH₂CO₂CH₂CH₃); 111,7 (ArCH, 4'); 115,3 (ArCH, 2'); 122,1 (ArCH, 6'); 129,4 (ArCH, 5'); 144,8 (ArC, 1'); 158,0 (ArCO, 3'); 169,3 (ArOCH₂CO₂CH₂CH₃); 179,9 (COOH, 1).

Ácido 8-(3-((1-Etóxi-2-metil-1-oxopropan-2-il)óxi)fenil)octanóico (LDT478, 35)

Líquido incolor Rendimento (80%) Rf: 0,68 (CLF:EtOH 40%)

Fórmula Molecular: C₂₀H₃₀O₅

IV (KBr) v_{máx} cm⁻¹: 2931 (v_{as CH2}); 2856 (v_{s CH2}); 1734 (v_{C=O}); 1709 (v_{C=O}); 1602, 1458 (v_{C=C}), 1142 (v_{as O-C(O)-OH}); 1024 (v_{s C-O-C}).

RMN ¹H (300 MHz, CDCl₃): δ 1,25 (t, J = 7,1 Hz, 3H, ArOC(CH₃)₂CO₂CH₂CH₂C_{H₃}); 1,32 (m, 6H, 4-6); 1,55-1,64 (m, 11H, ArOC(CH₃)₂CO₂CH₂CH₃, 3 e 7); 2,34 (t, J = 7,5 Hz, 2H, 2); 2,53 (t, J = 7,6 Hz, 2H, 8); 4,23 (q, J = 7,1 Hz, 2H, ArOC(CH₃)₂CO₂CH₂CH₃); 6,63 (dd, J = 6,0 Hz, J = 1,9 Hz,1 H, 4'); 6,68 (sl, 1 H, 2'); 6,80 (dl, J = 7,6 Hz, 1H, 6'); 7,12 (t, J = 7,8 Hz, 1H, 5').

RMN ¹³C (75 MHz, CDCl₃): δ 14,2 $(ArOC(CH_3)_2CO_2CH_2CH_3);$ 24,8 (ArOC(<u>C</u>H₃)₂CO₂CH₂CH₃); 25,6 (<u>C</u>H₂, 3); 29,1 (<u>C</u>H₂, 4); 29,2 (<u>C</u>H₂, 6); 31,3 (<u>C</u>H₂, 7); 34,2 (CH₂, 2); 36,0 (CH₂, 61,5 $(ArOC(CH_3)_2CO_2CH_2CH_3);$ 8); 79,1 (ArO<u>C</u>(CH₃)₂CO₂CH₂CH₃); 116,3 (Ar<u>C</u>H, 4'); 119,5 (Ar<u>C</u>H, 2'); 122,4 (Ar<u>C</u>H, 6'); 128,9 (Ar<u>C</u>H, 5'); 144,3 (Ar<u>C</u>, 1'); 155,5 (Ar<u>C</u>O, 3'); 174,6 (ArOC(CH₃)₂<u>C</u>O₂CH₂CH₃); 180,0 (<u>C</u>OOH, 1).

Ácido 8-(3-Metóxifenil)octanóico (LDT80, 38)

Sólido branco Rendimento (96%) Rf: 0,68 (CLF: EtOH 30%) Ponto de fusão: 46-48°C Fórmula Molecular: C15H22O3

IV (KBr) v_{máx} cm⁻¹: 2927 (v_{as CH2}); 1708 (v c=o); 1595, 1459 (v c=c); 1272 (v_{as ArC-O-CH3}), 1038 (v_{as O-C(O)-OH}).

RMN ¹H (300 MHz, CDCl₃): 1,21-1,33 (m, 9H, ArOC<u>H</u>₃; 4-6); 1,60-1,62 (m, 4H, 3 e 7); 2,30-2,36 (m, 2H, 2); 2,57 (t, *J* = 7,7 Hz, 2H, 8); 6,71-6,73 (m, 1H, 4'); 6,76 (d, *J* = 7,7 Hz, 1H, 2'); 7,16-7,20 (m, 1H, 5').

RMN ¹³C (75 MHz, CDCl₃): δ 18,4 (<u>C</u>H₂, 3); 22,6 (<u>C</u>H₂, 4); 24,9 (<u>C</u>H₂, 6); 29,2 (<u>C</u>H₂, 5); 31,3 (<u>C</u>H₂, 7); 34,1 (<u>C</u>H₂, 2); 36,2 (<u>C</u>H₂, 8); 55,3 (ArO<u>C</u>H₃); 111,0 (Ar<u>C</u>H, 4'); 114,4 (Ar<u>C</u>H, 2'); 121,0 (Ar<u>C</u>H, 6'); 129,3 (Ar<u>C</u>H, 5'); 144,6 (Ar<u>C</u>, 1'); 159,7 (Ar<u>C</u>O, 3'); 179,0 (<u>C</u>OOH, 1).

5.2.10 Síntese dos Derivados β-oxácidos LDT16 (25), LDT409 (27), LDT297 (29), LDT299 (31), LDT477 (34) e LDT479 (36).

A um balão (50,0 mL) foram individualmente adicionados os derivados **24** (0,25 g; 0,640 mmol) ou **26** (0,50 g; 1,194 mmol) ou **28** (0,20 g; 0,648 mmol) ou **30** (0,22 g; 0,678 mmol) ou **33** (0,30 g; 0,891 mmol) ou **35** (0,26 g; 0,821 mmol), hidróxido de lítio (4,00 eq), solubilizados em água destilada (2,0 mL), catalisador de

transferência de fase Aliquat® (3 gotas) e tetraidrofurano (4,0 mL). O sistema reacional foi colocado sob agitação magnética por quatro horas. Para os derivados dimetilados, o sistema reacional foi colocado sob agitação magnética em refluxo à 80°C, por 4 horas. Na sequência, a mistura foi acidificada com ácido clorídrico concentrado até pH 1,0 e extraída com acetato de etila (3 x 10,0 mL). As frações orgânicas reunidas foram lavadas com solução salina saturada (10,0 mL) e seca com sulfato de sódio anidro. O solvente foi evaporado à pressão reduzida e os produtos obtidos foram purificados em coluna de gel de sílica, eluída com diclorometano, fornecendo os derivados-alvo.

Ácido 2-(3-Pentadecilfenóxi)acético (LDT16, 25)

Sólido branco Rendimento (90%) R_f: 0,58 (Hex: AcOEt 40%) Ponto de fusão: 77-79°C Fórmula molecular: C₂₃H₃₈O₃

IV (KBr) v_{máx} cm⁻¹: 2956 (v_{as CH2}); 2849 (v_{s CH2}); 1733 (v_{C=O}); 1611, 1577, 1470, 1458 (v_{C=C}), 1273 (v_{as O-C(O)-H}).

RMN ¹H (500 MHz, CDCl₃): 0,89 (t, J = 6,4 Hz, 3H, 15); 1,29-1,32 (m, 24H, 3-14); 1,61-1,60 (m, 2H, 2); 2,57 (t, J = 7,5 Hz, 2H, 1); 4,66 (s, 2H, ArOC<u>H</u>₂CO₂H); 6,71 (dd, J = 8,1 Hz, J = 2,5 Hz, 1H, 4'); 6,77 (sl, 1H, 2'); 6,83 (d, J = 7,6 Hz, 1H, 6'); 7,19 (dd, J = 7,8 Hz, 1H, 5').

RMN ¹³C (125 MHz, CDCl₃): δ 14,3 (<u>C</u>H₃, 15); 22,9 (<u>C</u>H₂, 14); 29,2-29,8 (<u>C</u>H₂, 2-12); 31,8 (<u>C</u>H₂, 2); 32,1 (<u>C</u>H₂, 13); 36,2 (<u>C</u>H₂, 1); 65,1 (ArO<u>C</u>H₂CO₂H); 111,6 (Ar<u>C</u>H, 4'); 115,3 (Ar<u>C</u>H, 2'); 122,4 (Ar<u>C</u>H, 6'); 129,5 (Ar<u>C</u>H, 5'); 145,2 (Ar<u>C</u>, 1'); 157,7 (Ar<u>C</u>O, 3'); 173,2 (ArOCH₂<u>C</u>O₂H).

Ácido 2-Metil-2-(3-pentadecilfenóxi)propanóico (LDT409, 27)

HO O C₁₅H₃₁

Sólido Branco Rendimento (90%) Rf: 0,66 (CLF:EtOH 40%) Ponto de fusão: 46-48°C Fórmula molecular: C25H42O3 IV (KBr) v_{máx} cm⁻¹: 2920 (v_{as CH2}); 2850 (v_{s CH2}); 1702 (v_{C=O}); 1611, 1583, 1488, 1469 (v_{C=C}), 1166 (v_{as O-C(O)-H}).

RMN ¹H (300 MHz, CDCl₃): 0,90 (t, J = 6,4 Hz, 3H, 15); 1,27 (m, 24H, CH₂, 3-14); 1,62 (m, 8H, ArOC(C<u>H</u>₃)₂CO₂H e 2); 2,57 (t, J = 7,7 Hz, 2H, 1); 6,73-6,77 (m, 1H, 4'); 6,70 (sl, 1H, 2'); 6,89 (d, J = 7,6 Hz, 1H, 6'); 7,17 (t, J = 7,8 Hz, 1H, 5').

RMN ¹³C (75 MHz, CDCl₃): δ 14,3 (<u>C</u>H₃, 15); 22,9 (<u>C</u>H₂, 14); 25,3 (ArOC(<u>C</u>H₃)₃CO₂H); 29,5-29,9 (<u>C</u>H₂, 3-13); 31,5 (<u>C</u>H₂, 2); 32,1 (<u>C</u>H₂, 13); 36,0 (<u>C</u>H₂, 1); 79,6 (ArO<u>C</u>(CH₃)₂CO₂H); 117,6 (Ar<u>C</u>H, 4'); 121,0 (Ar<u>C</u>H, 2'); 123,6 (Ar<u>C</u>H, 6'); 129,1 (Ar<u>C</u>H, 5'); 144,8 (Ar<u>C</u>, 1'); 154,7 (Ar<u>C</u>O, 3'); 179,2 (ArOC(CH₃)₂<u>C</u>O₂H).

Ácido 2-(3-(8-Hidróxictil)fenóxi)acético (LDT297, 29)

Sólido Branco Rendimento (78%) R_f: 0,33 (CLF:EtOH 40%) Ponto de fusão: 85-87°C Fórmula molecular: C₁₆H₂₄O₄

IV (KBr) vmáx cm⁻¹: 3462 (voн); 2918 (vas cH2); 2852 (vs cH2); 1740 (vc=o); 1612, 1585, 1492, 1458 (vc=c), 1227 (vas o-c(o)-oн); 1094 (vs c-o-c).

RMN ¹H (500 MHz, MeOD): δ 1,32 (m, 8H, 3-6); 1,50 (m, 2H, 2); 1,52 (m, 2H, 7); 2,56 (t, J = 7,5 Hz, 2H, 8); 3,53 (t, J = 6,5 Hz, 2H, 1); 4,59 (s, 2H, ArOC<u>H</u>₂CO₂H); 6,71 (d, J = 7,8 Hz, 1H, 4'); 6,75 (sl, 1H, 2'); 6,78 (d, J = 7,8 Hz, 1H, 6'); 7,15 (dd, J = 7,8 Hz, 1H, 5').

RMN ¹³C (125 MHz, MeOD): δ 27,0 (<u>C</u>H₂, 3); 30,4 (<u>C</u>H₂, 6); 30,6 (<u>C</u>H₂, 4); 30,7 (<u>C</u>H₂, 5); 32,6 (<u>C</u>H₂, 7); 33,7 (<u>C</u>H₂, 2); 37,0 (<u>C</u>H₂, 8); 63,1 (CH₂OH, 1); 65,9 (ArO<u>C</u>H₂CO₂H); 112,7 (Ar<u>C</u>H, 4'); 116,0 (Ar<u>C</u>H, 2'); 122,8 (Ar<u>C</u>H, 6'); 130,4 (Ar<u>C</u>H, 5'); 145,8 (Ar<u>C</u>, 1'); 159,5 (Ar<u>C</u>O, 3'); 172,9 (ArOCH₂<u>C</u>O₂H).

Ácido 8-(3-Carboximetóxifenil)octanóico (LDT299, **31**)

Sólido Branco Rendimento (95%) Rf: 0,35 (CLF:EtOH 40%) Ponto de fusão: 99-101°C Fórmula molecular: C₁₈H₂₆O₅

IV (KBr) v_{máx} cm⁻¹: 2926 (v_{as CH2}); 2853 (v_{s CH2}); 1735 (v_{C=0}); 1707 (v_{C=0}); 1611, 1578, 1458, 1421 (v_{C=C}), 1272 (v_{as O-C(O)-OH}); 1099 (v_{s C-O-C}).

RMN ¹H (500 MHz, MeOD): δ 1,32 (m, 6H, 4-6); 1,58-1,59 (m, 4H, 3 e 7); 2,26 (t, J = 7,5 Hz, 2H, 2); 3,56 (t, J = 7,5 Hz, 2H, 8); 4,61 (s, 2H, ArOC<u>H</u>₂CO₂H); 6,71 (d, J = 8,1 Hz, 1 H, 6'); 6,75 (sl, 1H, 2'); 6,78 (d, J = 7,5 Hz, 1H, 6'); 7,15 (t, J = 7,8 Hz, 1H, 5').

RMN ¹³C (125 MHz, MeOD): δ 26,1 (<u>C</u>H₂, 3); 30,3 (<u>C</u>H₂, 6); 30,6 (<u>C</u>H₂, 4); 30,7 (<u>C</u>H₂, 5); 32,5 (<u>C</u>H₂, 7); 33,7 (<u>C</u>H₂, 2); 37,0 (<u>C</u>H₂, 8); 65,9 (ArO<u>C</u>H₂CO₂H); 112,8 (Ar<u>C</u>H, 4'); 116,0 (Ar<u>C</u>H, 2'); 122,8 (Ar<u>C</u>H, 6'); 130,4 (Ar<u>C</u>H, 5'); 145,8 (Ar<u>C</u>, 1'); 159,5 (Ar<u>C</u>O, 3'); 172,9 (ArOCH₂<u>C</u>O₂H); 177,8 (<u>C</u>OOH, 1).

Ácido 2-[3-(8-Hidróxioctil)fenóxi]-2-metilpropanóico (LDT477, 34)

Líquido Incolor Rendimento (99%) Rf: 0,51 (CLF:EtOH 40%) Fórmula Molecular: C₁₈H₂₈O₄

IV (KBr) v_{máx} cm⁻¹: 2928 (v_{as CH2}); 2856 (v_{s CH2}); 1719 (v_{C=O}); 1603, 1485, 1466 (v_{C=C}), 1152 (v_{as O-C(O)-OH}); 1010 (v_{s C-O-C}).

RMN ¹H (300 MHz, CDCl₃): δ 1,24-1,30 (m, 11H, 2-6); 1,60-1,65 (m, 12H, ArOC(C<u>H</u>₃)₂CO₂H, 7); 2,54 (t, *J* = 8,0 Hz, 2H, 8); 3,60-3,66 (m, 2H, 1); 6,69 (dd, *J* = 8,0 Hz, *J* = 2,3 Hz, 1H, 4'); 6,75 (sl, 1H, 2'); 6,85 (d, *J* = 7,6 Hz, 1H, 6'); 7,15 (d, *J* = 4,6 Hz, 1H, 5').

RMN ¹³C (75 MHz, CDCl₃): δ 25,4 (ArOC(<u>C</u>H₃)₂CO₂H); 25,9 (<u>C</u>H₂, 3); 29,3 (<u>C</u>H₂, 6); 29,4 (<u>C</u>H₂, 4); 29,6 (<u>C</u>H₂, 5); 31,4 (<u>C</u>H₂, 7); 32,6 (<u>C</u>H₂, 2); 36,0 (<u>C</u>H₂, 8); 63,1 (<u>C</u>H₂OH, 1); 79,4 (ArO<u>C</u>(CH₃)₂CO₂H); 117,4 (Ar<u>C</u>H, 4'); 120,6 (Ar<u>C</u>H, 2'); 123,2 (Ar<u>C</u>H, 6'); 129,1 (Ar<u>C</u>H, 5'); 144,5 (Ar<u>C</u>, 1'); 155,6 (Ar<u>C</u>O, 3'); 177,8 (ArOC(CH₃)₂<u>C</u>O₂H).

Ácido 8-{3-[2-Carbóxipropan-2-il)oxi]fenil}octanóico (LDT479, 36)

Líquido Amarelo Rendimento (82%) Rf: 0,88 (CLF:EtOH 40%) Fórmula Molecular: C₁₈H₂₆O₅

IV (KBr) v_{máx} cm⁻¹: 2931 (v_{as CH2}); 2856 (v_{s CH2}); 1710 (v_{C=O}); 1604, 1584, 1485, 1466 (v_{C=C}), 1154 (v_{as O-C(O)-OH}); 1009 (v_{s C-O-C}).

RMN ¹H (300 MHz, CDCl₃): δ 1,23-1,28 (m, 6H, 4-6); 1,59-1,61 (m, 10H, ArOC(C<u>H</u>₃)₂CO₂H, 3, 7); 2,35 (t, *J* = 7,3 Hz, 2H, 2); 2,55 (t, *J* = 7,6 Hz, 2H, 8); 6,74 (d, *J* = 7,2 Hz, 1 H, 6'); 6,85 (s, 1H, 2'); 7,16 (d, *J* = 7,6 Hz, 1H, 6'); 7,18 (d, *J* = 7,8 Hz, 1H, 5').

RMN ¹³C (75 MHz, CDCl₃): δ 24,8 (ArOC(<u>C</u>H₃)₂CO₂H); 25,3 (<u>C</u>H₂, 3); 28,7 (<u>C</u>H₂, 5); 28,9 (<u>C</u>H₂, 4); 28,9 (<u>C</u>H₂, 6); 31,2 (<u>C</u>H₂, 7); 34,2 (<u>C</u>H₂, 2); 35,9 (<u>C</u>H₂, 8); 79,3 (ArO<u>C</u>(CH₃)₂CO₂H); 117,6 (Ar<u>C</u>H, 4'); 120,3 (Ar<u>C</u>H, 2'); 123,3 (Ar<u>C</u>H, 6'); 129,1 (Ar<u>C</u>H, 5'); 144,5 (Ar<u>C</u>, 1'); 154,9 (Ar<u>C</u>O, 3'); 179,5 (ArOC(CH₃)₂<u>C</u>O₂H); 180,5 (<u>C</u>OOH, 1).

5.2.11 Obtenção dos Éster Derivados LDT480 (32), LDT481 (37) E LDT482 (39).

$$\label{eq:rescaled} \begin{split} R &= OCH_2CO_2CH_2CH_3 \mbox{(LDT298)};\\ OC(CH_3)_2CO_2CH_2CH_3 \mbox{(LDT478) ou}\\ OCH_3 \mbox{(LDT80)} \end{split}$$

$$\label{eq:cost} \begin{split} \mathsf{R} &= \mathsf{OCH}_2\mathsf{CO}_2\mathsf{CH}_2\mathsf{CH}_3 \ (\mathsf{LDT480});\\ \mathsf{OC}(\mathsf{CH}_3)_2\mathsf{CO}_2\mathsf{CH}_2\mathsf{CH}_3 \ (\mathsf{LDT481}) \ \mathsf{ou}\\ \mathsf{OCH}_3 \ (\mathsf{LDT482}) \end{split}$$

Em um balão (50,0 mL) foram individualmente adicionados os ácidos **30** (0,10 g; 0,310 mmol) ou **35** (0,17 g; 0,485 mmol) ou **38** (0,10 g; 0,399 mmol), carbonato de potássio (2,00 eq) e acetona (10,0 mL). A mistura permaneceu sob agitação magnética durante 20 minutos, e então, foram acrescentados 2,00 eq de iodeto de etila. A reação permaneceu sob refluxo à 65°C por mais 16 horas. Após redução do volume do solvente à pressão reduzida, a mistura foi extraída com acetato de etila (3 x 10,0 mL) e as fases orgânicas reunidas lavadas com solução de ácido clorídrico

10% (20,0 mL), solução salina saturada (10,0 mL) e seca com sulfato de sódio anidro. O solvente foi evaporado à pressão reduzida e os produtos obtidos foram purificados em coluna de gel de sílica, eluída com diclorometano, clorofórmio e posteriormente clorofórmio e etanol, fornecendo os derivados éster.

8-(3-(2-Etóxi-2-oxoetóxi)fenil)octanoato de Etila (LDT480, 32)

Líquido Incolor Rendimento (98%) Rf: 0,88 (CLF:EtOH 40%) Fórmula Molecular: C₂₀H₃₀O₅

IV (KBr) v_{máx} cm⁻¹: 2931 (v_{as CH2}); 2856 (v_{s CH2}); 1762 (v_{C=0}); 1735 (v_{C=0}); 1603, 1586, 1486, 1448 (v_{C=C}), 1201 (v_{as O-C(O)-O-C}); 1094 (v_{s C-O-C}).

RMN ¹H (300 MHz, CDCl₃): δ 1,22-1,31 (m, 12H, ArOCH₂CO₂CH₂CH₂C, Ar/CO₂CH₂CH₃, 4-6); 1,58-1,63 (m, 4H, 3 e 7); 2,27 (t, *J* = 7,5 Hz, 2H, 2); 2,56 (t, *J* = 7,7 Hz, 2H, 8); 4,11 (q, *J* = 7,1 Hz, 2H, ArOCH₂CO₂CH₂CH₃); 4,26 (q, *J* = 7,1 Hz, 2H, Ar/CO₂CH₂CH₃); 4,60 (s, 2H, ArOCH₂CO₂CH₃); 6,69 (dd, *J* = 6,5 Hz, *J* = 2,3 Hz,1 H, 4'); 6,74 (sl, 1 H, 2'); 6,80 (dl, *J* = 7,6 Hz, 1H, 6'); 7,17 (t, *J* = 7,8 Hz, 1H, 5').

RMN ¹³C (75 MHz, CDCl₃): δ 14,3 (ArOCH₂CO₂CH₂<u>C</u>H₃); 14,4 (Ar/CO₂CH₂<u>C</u>H₃); 25,1 (<u>C</u>H₂, 3); 29,2 (<u>C</u>H₂, 5); 29,2 (<u>C</u>H₂, 4); 29,2 (<u>C</u>H₂, 6); 31,3 (<u>C</u>H₂, 7); 34,5 (<u>C</u>H₂, 2); 36,0 (<u>C</u>H₂, 8); 60,3 (CO₂<u>C</u>H₂CH₃); 61,4 (ArOCH₂CO₂<u>C</u>H₂CH₃); 65,6 (ArO<u>C</u>H₂CO₂CH₂CH₃); 111,6 (Ar<u>C</u>H, 4'); 115,2 (Ar<u>C</u>H, 2'); 122,1 (Ar<u>C</u>H, 6'); 129,4 (Ar<u>C</u>H, 5'); 144,8 (Ar<u>C</u>, 1'); 158,0 (Ar<u>C</u>O, 3'); 169,2 (ArOCH₂<u>C</u>O₂CH₂CH₃); 174,0 (<u>C</u>O₂CH₂CH₃).

8-(3-((1-Etóxi-2-metil-1-oxopropan-2-il)óxi)fenil)octanoato de etila (LDT481, 37)

Sólido Branco Rendimento (79%) Rf: 0,83 (CLF:EtOH 40%) Ponto de fusão: 39-42°C Fórmula Molecular: C₂₂H₃₄O₅ IV (KBr) v_{máx} cm⁻¹: 2926 (v_{as CH2}); 2856 (v_{s CH2}); 1710 (v_{C=O}); 1600, 1527, 1493, 1468 (v_{C=C}), 1272 (v_{as O-C(O)-O-C}); 1193 (v_{s C-O-C}).

RMN ¹H (300 MHz, CDCl₃): δ 1,22-1,30 (m, 12H, ArOC(CH₃)₂CO₂CH₂C<u>H₂C, Ar/CO₂CH₂CH₃, 4-6); 1,58 (m, 11H, ArOC(CH₃)₂CO₂CH₂CH₃, 3 e 7); 2,27 (t, *J* = 7,5 Hz, 2H, 2); 2,53 (t, *J* = 7,6 Hz, 2H, 8); 4,11 (q, *J* = 7,1 Hz, 2H, ArOCH₂CO₂C<u>H₂CH₃); 4,22 (q, *J* = 7,1 Hz, 2H, CO₂C<u>H₂CH₃); 6,63 (dd, *J* = 6,1 Hz, *J* = 2,0 Hz,1 H, 4'); 6,67 (sl, 1 H, 2'); 6,79 (dl, *J* = 7,6 Hz, 1H, 6'); 7,11 (t, *J* = 7,8 Hz, 1H, 5').</u></u></u>

RMN ¹³C (75 MHz, CDCl₃): δ 14,2 (ArOC(CH₃)₂CO₂CH₂<u>C</u>H₃); 14,4 (Ar/CO₂CH₂<u>C</u>H₃); 25,1 (<u>C</u>H₂, 3); 29,2 (<u>C</u>H₂, 5); 29,2 (<u>C</u>H₂, 4); 29,3 (<u>C</u>H₂, 6); 31,4 (<u>C</u>H₂, 7); 34,5 (<u>C</u>H₂, 2); 36,0 (<u>C</u>H₂, 8); 60,3 (CO₂<u>C</u>H₂CH₃); 61,5 (ArOC(CH₃)₂CO₂<u>C</u>H₂CH₃); 79,1 (ArO<u>C</u>(CH₃)₂CO₂CH₂CH₃); 116,2 (Ar<u>C</u>H, 4'); 119,5 (Ar<u>C</u>H, 2'); 122,4 (Ar<u>C</u>H, 6'); 128,9 (Ar<u>C</u>H, 5'); 144,3 (Ar<u>C</u>, 1'); 155,6 (Ar<u>C</u>O, 3'); 174,0 (ArOC(CH₃)₂<u>C</u>O₂CH₂CH₃); 174,6 (<u>C</u>O₂CH₂CH₃).

8-(3-Metóxifenil) octanoato de etila (LDT482, 39)

Líquido Incolor Rendimento (90%) Rf: 0,91 (CLF: EtOH 30%) Fórmula Molecular: C₁₇H₂₆O₃

IV (KBr) v_{máx} cm⁻¹: 2931 (v_{as CH2}); 1735 (v_{C=O}); 1599, 1463 (v_{C=C}); 1261 (v_{as ArC-O-CH3}), 1166 (v_{s C-O-C}).

RMN ¹H (300 MHz, CDCl₃): δ 1,26 (t, J = 7,1 Hz, 3H, CO₂CH₂C<u>H</u>₃); 1,28-1,34 (m, 6H, 4-6); 1,63-1,66 (m, 4H, 3 e 7); 2,29 (t, J = 7,5 Hz, 2H, 2); 2,58 (t, J = 7,7 Hz, 2H, 8); 3,80 (s, 3H, ArOC<u>H</u>3); 4,13 (q, J = 7,1 Hz, 2H, CO₂C<u>H</u>₂CH₃); 6,73 (dd, J = 10,5 Hz, J = 2,3 Hz,1 H, 4'); 6,75 (sl, 1 H, 2'); 6,79 (dl, J = 7,6 Hz, 1H, 6'); 7,17 (t, J = 7,8 Hz, 1H, 5').

RMN ¹³C (75 MHz, CDCl₃): δ 14,4 (CO₂CH₂<u>C</u>H₃); 25,0 (<u>C</u>H₂, 3); 25,1 (<u>C</u>H₂, 4); 29,2 (<u>C</u>H₂, 5); 29,3 (<u>C</u>H₂, 6); 31,5 (<u>C</u>H₂, 7); 34,5 (<u>C</u>H₂, 2); 36,2 (<u>C</u>H₂, 8); 55,3 (ArO<u>C</u>H₃); 60,3 (CO₂<u>C</u>H₂CH₃); 111,0 (Ar<u>C</u>H, 4'); 114,4 (Ar<u>C</u>H, 2'); 121,0 (Ar<u>C</u>H, 6'); 129,3 (Ar<u>C</u>H, 5'); 144,6 (Ar<u>C</u>, 1'); 159,8 (Ar<u>C</u>O, 3'); 174,0 (<u>C</u>O₂CH₂CH₃).

Figura 11: Derivados-alvo sintetizados a partir do cardanol monoinsaturado (10)

5.3 AVALIAÇÃO FARMACOLÓGICA

Uma vez sintetizados e caracterizados por métodos espectroscópicos, todos os derivados e produtos finais (**18 - 39**) foram submetidos a ensaios farmacológicos de gene repórter, em hepatócitos primários e na diferenciação de adipócitos.

5.3.1 Ensaio de gene repórter – Luciferase:

O ensaio de gene repórter é um método amplamente utilizado para se estudar a expressão de genes, atividade de receptores celulares, permitindo avaliar o efeito de uma sequência sobre o nível de transcrição do gene regulado. Dentre os genes repórter amplamente utilizados encontra-se a luciferase. Na presença de ATP, magnésio e oxigênio e mediante a ação da enzima luciferase presente no lisado celular, ocorre uma reação de oxidação do substrato luminescente luciferina, em oxiluciferina, com emissão de um flash de luz, mensurada por um luminômetro que fornece resultados em unidades relativas a atividade luciferase. A emissão total de luz é proporcional a atividade luciferase do composto (LIN & BARBOSA, 2002).

Células HEK293 foram transfectadas usando fosfato de cálcio, em meio de cultura contendo 10% de carvão tratado com soro fetal bovino, em placa de 96 poços. Para os ensaios de gene repórter foram utilizados os plasmídeos de expressão GAL4-hPPARα, GAL4-hPPARβ/δ e GAL4-hPPARγ. A quantidade total de DNA de plasmídeo (150 ng/poço) incluiu, 50 ng de reporter de luciferase, 20 ng pCMX-β-galactosidase, 15 ng de GAL4-domínio de ligação ao ligante (LBD) da proteína de fusão do receptor, e pGEM para preenchimento do plasmídeo. Os compostos para teste foram adicionados a 50 µM no mesmo meio de 6 a 8 horas pós-transfecção. Para PPARα, foi utilizado como controle 10,0 nM de GW7647, por sua vez, em PPARβ/δ o controle utilizado foi 25,0 nM GW0742, por fim, em PPARγ utilizou-se 50 nM de rosiglitazona. As células foram colhidas 14 a 16 horas mais tarde e ensaiadas para a atividade de luciferase e β -galactosidase, sendo os valores da luciferase normalizados para a eficiência da transfecção utilizando βgalactosidase e expressos como unidades relativas de luciferase (RLU). Todos os experimentos foram realizados em triplicata e repetidos por pelo menos três vezes. Ao final, curva dose resposta foi confeccionada por meio do programa GraphPad Prism 6 atráves dos valores de EC₅₀ obtidos para cada composto.

5.3.2 Ensaio em hepatócitos primários:

Classicamente, a ativação do PPARα conduz a uma cascata de expressão de genes envolvidos no aumento da captação intracelular de ácidos graxos e na oxidação de AG no fígado. Neste sentido, a ativação de PPARα no fígado aumenta a expressão do grupamento de diferenciação 36 (CD36), uma proteína transportadora de ácidos graxos, e da proteína de ligação a ácidos graxos-1 (FABP1), contribuindo para a captação de ácidos graxos. Piruvato desidrogenase quinase-4 (PDK4), proteína carnitina palmitoil transferase (CPT1) e fator de crescimento de fibroblastos-21 (Fgf21), um hormônio relacionado à sensibilização a insulina e redução de ganho de peso, também são genes envolvidos na oxidação de AG induzidos por PPARα. Para análise do efeitos regulatórios dos derivados LDTs sobre genes envolvidos na regulação de ácidos graxos, ensaio em hepatócitos primários de camundongos foi realizado.

Hepatócitos primários de camundongos foram isolados por perfusão de colagenase, as células foram cultivadas em placas revestidas com colagéno de tipo I, em concentração de 0,5x10⁻⁶ células por poço, durante 2 horas em meio contendo 10% de carvão tratado com soro fetal bovino, penicilina/estreptomicina e 10 nM de insulina. Em seguida, foi adicionado meio de cultura M199, contendo 5% de carvão tratado com soro fetal bovino, penicilina/estreptomicina, e 1 nM de insulina. Tratamentos com os ligantes, a 50 µM, foram realizados no dia seguinte, em meio M199 sem soro fetal bovino. As células foram colhidas 6 horas mais tarde, para a extração de RNA e realização de qPCR para análise da expressão de genes: CD36, FABP1, PDK4, CPT1 e Fgf21.

5.3.3 Ensaio de diferenciação de adipócitos

3T3-L1 é uma linhagem celular utilizada como modelo *in vitro* para a diferenciação de adipócitos. Adipogênese é o processo de diferenciação de células precursoras em adipócitos. Dentre os PPAR, PPARγ é o maior regulador de adipogênese, por ser amplamente expresso no tecido adiposo e regular genes transcricionais e marcadores da diferenciação de adipócitos, incluindo, proteína de ligação de ácidos graxos (aP2), lipoproteína lipase (LPL), a qual hidrolisa triglicerídeos circulantes, e CD36, transportador de ácidos graxos. Adipócitos maduros secretam proteínas, conhecidas como adiponectina, resistina e leptina, que modulam várias funções no metabolismo de lípideos e da glicose (APRILE et al., 2014; DAVE et al., 2012; HUANG et al., 2014; PADMANABHAN & ARUMUGAM, 2014).

Células 3T3-L1 foram cultivadas em placas de 24 poços para cultura de células, mantidas em meio Dulbecco modificado por Eagle suplementado com 10% de soro fetal de vitelo, até sua confluência. Dois dias depois, a diferenciação de adipócitos foi induzida pelo tratamento das células com meio de diferenciação celular contendo 100µg/mL de isobutilmetilxantina, 1µM de dexametasona e 5 µg/mL de insulina. Com o início da diferenciação, as células foram tratadas com 25 µM do ligante, do controle positivo, rosiglitazona, ou do veículo. Em todo o período de cultivo, totalizando 8 dias, as células foram submetidas a tratamento com ligantes ou com o veículo. A adipogênese foi avaliada pela expressão de proteínas adipocitárias, aP2, LPL, CD36 e adiponectina, por meio de qPCR e pela coloração com o corante de lipídeos neutros óleo vermelho O dos melhores compostos.

Resultados e Discussão

6.1 SÍNTESE E CARACTERIZAÇÃO DOS COMPOSTOS

O planejamento sintético visanso a obtenção dos derivados-alvo compreendeu a exploração de procedimentos sintéticos clássicos de interconversão de grupos funcionais, por exemplo, *O*-alquilação, hidrogenação, ozonólise, oxidação e hidrólise alcalina, em condições experimentais à temperatura ambiente, sob refluxo e radiação micro-ondas.

6.1.1 Série 3-Pentadecilfenol

A síntese dos derivados planejados a partir do cardanol saturado, LDT10 (**18**), (série Pentadecilfenol) foi iniciada a partir da hidrogenação catalítica do cardanol monoinsaturado, levando ao derivado saturado **18** como um sólido branco em rendimento de 90%. Além da mudança de estado físico e ponto de fusão compatível com a literatura (44-45°C), o cardanol saturado foi caracterizado por CCD com uma única mancha (Rf 0,35 DCM_{50%}:Hex_{50%}). A análise espectroscópica para o derivado saturado **18** foram identificados sinais característicos em 0,92 ppm e 14,3 ppm em seus espectro de RMN ¹H (s, CDCl₃; 300 MHz; Anexo **1**, Pág. 108) e RMN ¹³C (CDCl₃; 125 MHz; Anexo **2**, Pág. 109), respectivamente, referente ao grupo metila. Os sinais na região de aromáticos entre 6,68 ppm e 7,16 ppm em RMN ¹H reforçam a presença do anel aromático, assim como os sinais entre 1,29 ppm e 1,60 ppm estão relacionados à cadeia alquílica saturada. A presença de absorção intensa em 3337 cm⁻¹ no infravermelho (Anexo **3**, Pág. 110), referente à deformação do grupo hidroxila (vo_H) corroborou a caracterização do derivado LDT10.

De posse do referido derivado **18**, este foi submetido à reação de acetilação com anidrido acético utilizando catálise de ácido fosfórico, sob radiação micro-ondas em forno doméstico. Após purificação em coluna cromatográfica eluída com mistura hexano/diclorometano, foi obtido o derivado acetilado LDT12 (**19**), como um sólido branco, caracterizado em CCD como uma única mancha (Rf 0,70 DCM_{50%}:Hex_{50%}), em rendimento de 91%. Este composto apresentou em seu espectro de RMN ¹H (s, CDCl₃; 300 MHz; Anexo **4**, Pág. 111) simpleto em 2,60 ppm referente aos

hidrogênios da metila do grupo acetila. Por sua vez, o carbono carbonílico foi evidenciado por sinal em 204,0 ppm em RMN ¹³C (CDCl₃; 75 MHz; Anexo **5**, Pág. 112). A presença de absorção intensa em 1630 cm⁻¹ no infravermelho (Anexo **6**, Pág. 113), referente à deformação da carbonila conjugada (vc=0), contribuiu, adicionalmente, para caracterizar o referido derivado.

Na sequência, o LDT10 (**18**) foi submetido à reação de metilação com iodeto de metila na presença de carbonato de potássio em acetona, sob refluxo, conduzindo ao derivado metilado LDT27 (**20**). Houve mudança do estado físico, obtendo-se um líquido incolor em rendimento de 78%, caracterizado como uma única mancha em CCD (Rf 0,95 DCM). Na análise espectroscópica, o derivado apresentou deslocamentos químicos pertinentes ao grupo metoxila como um simpleto em 3,82 ppm, em seu espectro de RMN ¹H (CDCl₃; 300 MHz; Anexo **7**, Pág. 114), o qual foi confirmado pelo assinalamento em 55,3 ppm em seu espectro de RMN ¹³C (CDCl₃; 75 MHz; Anexo **8**, Pág. 115). A presença de absorção intensa em 1047 cm⁻¹ no infravermelho (Anexo **9**, Pág. 116), referente à deformação axial simétrica CO, corroborou para caracterização do derivado metoxilado.

Partindo novamente de LDT10 (18), este foi submetido à reação de Oalquilação com 2-bromacetato de etila na presença de carbonato de potássio em acetona, à temperatura ambiente, levando ao derivado beta-oxaéster LDT15 (24), obtido como um sólido branco, caracterizado em CCD como uma única mancha (Rf 0,5 Hex: AcOEt 40%), em rendimento de 90%. Este composto apresentou sinal característicos para hidrogênios alfa-metilênicos à carbonila do grupo éster como um simpleto em 4,28 ppm, em seu espectro de RMN ¹H (CDCl₃; 500 MHz; Anexo **10**, Pág. 117), a qual foi confirmada pelo assinalamento em 65,6 ppm em seu espectro de RMN ¹³C (CDCI₃; 125 MHz; Anexo **11**, Pág. 118), enquanto que o sinal relativo ao carbono carbonílico foi evidenciado em 169,3 ppm. A subunidade etila do grupo carbetóxi foi caracterizada em RMN ¹H (CDCl₃; 500 MHz) pela presença de tripleto em 1,31 ppm (7,0 Hz) e quarteto em 4,28 ppm (7,0 Hz), referentes à metila e ao metileno, corroborados pelos respectivos deslocamentos químicos em 14,3 ppm e 61,5 ppm em RMN ¹³C (CDCl₃; 125 MHz). A presença de absorções intensas em 1753 cm⁻¹ e em 1096 cm⁻¹ no infravermelho (Anexo **12**, Pág. 119), referentes à deformação da carbonila ($v_{C=O}$) e deformação axial assimétrica C-O-C, contribuíram, adicionalmente para caracterização do éster derivado.

Uma vez obtido o derivado LDT15 (24), a próxima etapa da rota sintética planejada consistiu na hidrólise do grupo éster com hidróxido de lítio em mistura de THF/água na presença de catalisador de transferência de fase Aliquat®, visando homogeneizar a mistura reacional. Após 4 horas de reação e purificação foi obtido o ácido carboxílico correspondente, LDT16 (25), com um sólido banco em rendimento de 90% e caracterizado como uma única mancha em CCD (Rf 0,58 Hex: AcOEt 40%). O derivado apresentou deslocamentos químicos pertinentes à unidade alfametilênica ao ácido em 4,66 ppm RMN ¹H (CDCl₃; 500 MHz; Anexo 13, Pág. 120) e 65,1 ppm RMN ¹³C (CDCl₃; 125 MHz; Anexo 14, Pág. 121). Adicionalmente, a conversão foi confirmada pela presença de sinal em 173,2 ppm, relativo ao carbono carbonílico no espectro de RMN de ¹³C, referentes ao grupo etoxila. A análise do espectro no infravermelho (Anexo 15, Pág. 122) apresentou deslocamento da absorção intensa em 1733 cm⁻¹ referente ao grupo carbonila do beta-oxácido, caracterizando o derivado LDT16 (25).

Para a síntese do análogos dos derivados LDT15 e LDT16, o fenol LDT10 (18) foi submetido à reação de O-alquilação com α -bromoisobutirato de etila na presença de carbonato de potássio e iodeto de potássio em acetonitrila, sob refluxo, levando ao derivado beta-oxaéster LDT408 (26), obtido como um líquido amarelo em rendimento de 92% e caracterizado em CCD como uma única mancha (Rf 0,75 CLF:EtOH 40%). Os grupos metila da subunidade alfa-carbonila foram caracterizados por RMN ¹³C pelo deslocamento em 25,6 ppm bem como seu carbono terciário em 79,1 ppm. Os sinais referentes a esta subunidade no espectro de hidrogênio foram identificados na faixa de 1,56-1,60 ppm juntamente com os hidrogênios do carbono 2. 26 ainda apresentou sinais característicos para a subunidade etila do grupo carbetóxi caracterizada em RMN ¹H (CDCl₃; 300 MHz; Anexo 16, Pág. 123) pela presença quarteto em 4,24 ppm (7,1 Hz), referente ao metileno, corroborado pelo respectivo deslocamento guímico em 61,5 ppm em RMN ¹³C (CDCl₃; 75 MHz; Anexo **17**, Pág. 124). O grupo carbonila foi identificado por sinal em 174,6 ppm. A presença de absorções intensas em 1735 cm⁻¹ e em 1025 cm⁻¹ no infravermelho (Anexo 18, Pág. 125), referentes à deformação da carbonila (vc=o) e deformação axial assimétrica C-O-C, corroboraram para caracterização do derivado.

De posse do derivado LDT408 (**26**), finalizando a série pentadecila, este, foi submetido à reação de hidrólise do grupo éster com hidróxido de lítio. Após 4 horas

de reação, sob refluxo à 80°C, e purificação, o ácido carboxílico correspondente foi obtido, LDT409 (**27**), em rendimento de 90%, como um sólido branco e caracterizado com uma única mancha em CCD (Rf 0,66 CLF:EtOH 40%). O derivado apresentou deslocamento químico em 179,2 ppm relativo ao carbono carbonílico no espectro de RMN de ¹³C (CDCl₃; 75 MHz; Anexo **20**, Pág. 127) e a ausência dos sinais em 4,24 ppm (s, RMN ¹H, CDCl₃; 300 MHz; Anexo **19**, Pág. 126) e 61,5 ppm RMN ¹³C, referentes ao grupo metileno da etoxila. A análise do espectro no infravermelho (Anexo **21**, Pág. 128) apresenta deslocamento da absorção intensa em 1702 cm⁻¹ referente ao grupo carbonila do beta-oxácido, caracterizando o derivado LDT409 (**20**).

Um resumo das condições reacionais, características químicas, rendimentos e ponto de fusão dos derivados da série pentadecila, LDT10 (**18**), LDT12 (**19**), LDT27 (**20**), LDT15 (**24**), LDT16 (**25**), LDT408 (**26**) e LDT409 (**27**), estão ilustrados na Tabela **1**.

 Tabela 1: Condições reacionais, características químicas, rendimentos e ponto de fusão dos derivados da série pentadecila.

Composto	Α	W	Rend. (%)	p.f. (°C)
LDT10 (18)	Н		90	44-45
LDT12 (19)	CH₃CO		91	46-48
LDT27 (20)	CH_3		78	*
LDT15 (24)	CH ₂	OEt	90	30-31
LDT16 (25)	CH ₂	Н	90	77-79
LDT408 (26)	C(CH ₃) ₂	OEt	92	*
LDT409 (27)	C(CH ₃) ₂	Н	90	46-48
* Obtido como u	m líquido			

* Obtido como um ilquido Fonte: Próprio autor.

6.1.2 Série 8-(3-Hidróxifenil)octan-1-ol

Considerando a série octila, esta foi planejada a partir do derivado 3-(8hidróxioctil)fenol (LDT71, 22), o qual pode ser obtido a partir da reação de ozonólise
da mistura de cardanóis (10). Neste sentido, o cardanol monoinsaturado (13) foi submetido à reação de acetilação com anidrido acético catalisado por gotas de ácido fosfórico, utilizando forno de radiação micro-ondas doméstico. Após purificação, foi obtido acetilcardanol monoinsaturado (21) em rendimento de 73%. 21 foi submetido à reação de ozonólise em aparelho gerador de ozônio com fluxo contínuo de 5 g/mL por um período de 80 minutos, utilizando banho de gelo seco/acetona (~ - 70°C), visando evitar a formação de produtos laterais em face do alto poder oxidante do ozônio. O consumo do material de partida foi avaliado por CCD e ao término da reação foi adicionado o agente redutor NaBH4, visando a redução do intermediário ozonídeo bem como do grupo acetato ao respectivo diidróxiderivado LDT71 (22) em rendimento de 79%, caracterizado como uma única mancha em CCD (Rf 0,33 CLF:EtOH 30%). Na análise espectroscópica, 22 apresentou tripleto característico referente ao metileno adjacente ao grupo hidroxila em 3,66 ppm (t, RMN ¹H, CDCl₃; 300 MHz; Anexo 22, Pág. 129), corroborado pelo sinal em 63,2 ppm (RMN ¹³C (CDCl₃; 75 MHz; Anexo 23, Pág. 130). Os sinais na região de aromáticos entre 6,65 ppm e 7,19 ppm em RMN ¹H reforçam a presença do anel aromático, assim como os sinais entre 1,30 ppm e 2,54 ppm estão relacionados aos carbonos 1 a 7 da cadeia alquílica. A presença de absorção intensa em 3351 cm⁻¹ no infravermelho (Anexo 24, Pág. 131), referente à deformação (VOH) contribui para caracterização do derivado dihidroxilado LDT71 (22).

De posse do LDT71 (22), este foi submetido à reação de metilação com iodeto de metila na presença de carbonato de potássio em acetona, à 65°C por 24 horas, conduzindo ao derivado metilado LDT72 (23), obtido de forma regioespecífica como líquido incolor em rendimento de 80% e caracterizado como uma única mancha em CCD (Rf 0,40 DCM). 23 apresentou sinais característicos para hidrogênios da unidade metilênica como um simpleto em 3,81 ppm em seu espectro de RMN ¹H (CDCl₃; 300 MHz; Anexo 25, Pág. 132), a qual foi confirmada pelo assinalamento em 55,3 ppm em seu espectro de RMN ¹³C (CDCl₃; 75 MHz; Anexo 26, Pág. 133). A presença das absorções intensas em 776 cm⁻¹ e em 695 cm⁻¹ no espectro no infravermelho (Anexo 27, Pág. 134), referente a deformação axial assimétrica (vcocH3) e a deformação simétrica (vc-o), corroboraram a caracterização do derivado LDT72 (23).

Na sequência, o derivado metilado LDT72 (23) foi submetido à reação de oxidação com reagente de Jones em acetona, sob banho de gelo, conduzindo ao derivado ácido LDT80 (38), obtido como um sólido branco em rendimento de 96% e caracterizado em CCD (Rf 0,68 CLF:EtOH 30%). A caracterização de 38, por meio dos espectros RMN ¹H (Anexo 28, Pág. 135) RMN ¹³C (Anexo 29, Pág. 136), revelou a ausência dos sinais em 3,64 ppm e 63, 2 ppm correspondente ao metileno C8, com evidência de sinal em 179,0 ppm relativo ao carbono carboxílico no espectro de RMN de ¹³C (CDCl₃; 75 MHz). Dados do espectro no infravermelho (Anexo 30, Pág. 137) apresentaram deslocamento de absorção intensa em 1708 cm⁻¹ referente ao grupo carbonila, corroborando a estrutura do derivado LDT80 (38).

Por sua vez, o derivado LDT80 (**38**) foi submetido à reação de esterificação com iodeto de etila na presença de carbonato de potássio em acetona, sob refluxo, conduzindo ao derivado éster LDT482 (**39**), em rendimento de 90%, como um líquido, caracterizado em CCD pela presença de uma única mancha (Rf 0,91 CLF:EtOH 30%). A presença de sinal característico pertinente ao grupo etoxila em 4,13 ppm (RMN ¹H, CDCl₃; 300 MHz; Anexo **31**, Pág. 138) e em 60,3 ppm em seu espectro de RMN ¹³C (CDCl₃; 75 MHz; Anexo **32**, Pág. 139) contribuiram à caracterização do derivado. Adicionalmente, a análise do espectro no infravermelho (Anexo **33**, Pág. 140) com a presença de deslocamento de absorção intensa em 1735 cm⁻¹ referente ao estiramento da carbonila do grupo éster.

Um resumo dos procedimentos para obtenção dos derivados LDT71 (22), LDT72 (23), LDT80 (38) e LDT482 (39), estão ilustrados na Tabela 2.

 Tabela 2:
 Condições reacionais, características químicas, rendimentos e ponto de fusão dos derivados LDT71, LDT72, LDT80 e LDT482, da série octila.

Composto	Α	Y	Z	Rend. (%)	р.f. (°С)
LDT71 (22)	Н	CH ₂	OH	79	*
LDT72 (23)	CH₃	CH ₂	ОН	80	*
LDT80 (38)	CH₃	CO	OH	96	46-48
LDT482 (39)	CH₃	CO	Oet	90	*

* Obtido como um líquido

Fonte: Próprio autor.

Partindo de LDT71 (**22**), este foi submetido a nova reação de O-alquilação regioespecífica, uma vez que o ataque preferencial ocorre na hidroxila ativada pelo anel, com 2-bromacetato de etila na presença de carbonato de potássio em acetona, à temperatura ambiente, levando ao derivado beta-oxaéster LDT296 (**28**), obtido como um líquido em rendimento de 62%, caracterizado em CCD como uma única mancha (Rf 0,55 CLF:EtOH 40%). Este composto apresentou sinais característicos para hidrogênios da unidade metilênica alfa-carbonila como um simpleto em 4,61 ppm em seu espectro de RMN ¹H (CDCl₃; 300 MHz; Anexo **34**, Pág. 141), a qual foi confirmada pelo assinalamento em 65,7 ppm em seu espectro de RMN ¹³C (CDCl₃; 75 MHz; Anexo **35**, Pág. 142), enquanto que o sinal relativo ao carbono carbonílico de éster foi evidenciado em 169,3 ppm. O grupo etoxila foi evidenciado como tripleto em 1,31 ppm e quarteto 4,28 ppm e seus respectivos sinais no espectro de carbono 13 em 14,3 ppm e 61,5 ppm. A presença das absorções intensas em 1761 cm⁻¹ e em 1205 cm⁻¹ no espectro no infravermelho (Anexo **36**, Pág. 143) referentes aos estiramentos do grupo éster corroboram a caracterização do derivado LDT296 (**28**).

De posse do derivado LDT296 (**28**), este foi submetido à reação de hidrólise do grupo éster com hidróxido de lítio em mistura de THF/água na presença de catalisador de transferência de fase Aliquat[®]. Após 4 horas, foi obtido o ácido carboxílico correspondente (LDT297, **29**), em rendimento de 78%, na forma de um sólido branco e caracterizado em CCD como uma única mancha (Rf 0,33 CLF:EtOH 40%). O derivado apresentou deslocamentos químicos pertinentes ao metileno alfa à ao ácido carboxílico em 4,59 ppm (RMN ¹H, MeOD; 500 MHz; Anexo **37**, Pág. 144) e 65,9 ppm RMN ¹³C (MeOD; 75 MHz; Anexo **38**, Pág. 145), confirmando a manutenção da estrutura após hidrólise, bem como a presença de sinal em 172,9 ppm relativo ao carbono carboxílico no espectro de RMN de ¹³C. A ausência dos sinais em 4,27 ppm (s, RMN ¹H) e 61,5 ppm RMN ¹³C (MeOD; 125 MHz), referentes ao grupo etoxila corroboram a caracterização do derivado LDT297. A análise do espectro no infravermelho (Anexo **39**, Pág. 146) apresenta deslocamento da absorção intensa em 1740 cm⁻¹ referente ao grupo carbonila do beta-oxácido, caracterizando o derivado LDT297 (**29**).

Prosseguindo com o planejamento sintético, o éster-derivado LDT296 (28) foi submetido à reação de oxidação com reagente de Jones em acetona, sob banho de gelo, levando ao carbometóxiácido LDT298 (30) em rendimento de 83%, obtido como um líquido incolor e caracterizado em CCD como uma única mancha (Rf 0,55

CLF:EtOH 40%). A caracterização de **30** por RMN, revelou a ausência dos sinais correspondentes ao grupo metileno no carbono 8, em 3,66 ppm e em 63,2 ppm (Anexo **40**, Pág. 147), onde foi identificado o sinal em 179,8 ppm relativo ao carbono carboxílico no espectro de RMN de ¹³C (Anexo **41**, Pág. 148). Dados do espectro no infravermelho (Anexo **42**, Pág. 149) apresenta deslocamentos da absorções intensas em 1735 cm⁻¹ e 1760 cm⁻¹ referentes aos grupos carbonilas do 3-carbetóxiácido corroborando a estrutura do derivado LDT298 (**30**).

O ácido LDT298 (**30**) foi submetido ao mesmo protocolo de hidrólise realizado para os derivados LDT15, LDT408 e LDT296, originando o diácido LDT299 (**31**) na forma de um sólido branco em rendimento de 95%, caracterizado como uma única mancha em CCD (Rf 0,35% CLF:EtOH 40%). O diácido foi caracterizado por RMN pela presença de simpleto em 4,61 ppm confirmado pelo sinal em 65,9 ppm referente ao metileno alfa. A ausência dos sinais em 4,28 ppm (q, RMN ¹H; Anexo **43**, Pág. 150) e 61,5 ppm RMN ¹³C (MeOD; 125 MHz; Anexo **44**, Pág. 151), referentes ao grupo etoxila bem como a presença de dois sinais em 172,9 ppm e 177,8 ppm confirmam a presença de duas carboxilas na caracterização do derivado LDT299. O espectro no infravermelho (Anexo **45**, Pág. 152) revelou absorções características às deformações dos grupos carbonila em 1735 cm⁻¹ e 1707 cm⁻¹, caracterizando o diácido LDT299 (**31**).

De maneira a obter-se o derivado diéster, o composto LDT298 (**30**) foi submetido à reação de esterificação com iodeto de etila na presença de carbonato de potássio em acetona, por duas horas à 65°C, fornecendo LDT480 (**32**) na foram de um líquido incolor em rendimento de 98%, caracterizado em CCD como uma única mancha (Rf 0,88 CLF:EtOH 40%). O derivado apresentou deslocamentos químicos pertinentes aos metilenos dos grupos etoxila em 4,11 e 4,26 ppm (RMN ¹H, CDCl₃; 300 MHz; Anexo **46**, Pág. 153) e em 60,3 e 61,4 ppm em seu espectro de RMN ¹³C (CDCl₃; 75 MHz; Anexo **47**, Pág. 154). Análise do espectro no infravermelho (Anexo **48**, Pág. 155) apresenta deslocamentos de absorção intensa em 1762 e 1735 cm⁻¹ referentes aos estiramentos dos grupos ésteres, caracterizando o derivado LDT480 (**32**).

Um resumo das condições reacionais e características químicas dos derivados LDT296 (28), LDT297 (29), LDT298 (30), LDT299 (31) E LDT480 (32) estão ilustrados na Tabela 3.

Tabela 3: Condições reacionais, características químicas, rendimentos e ponto de fusão dos derivados LDT296 (28), LDT297 (29), LDT298 (30), LDT299 (31) e LDT480 (32), da série octila.

Composto	W	Y	Z	Rend. (%)	p.f. (°C)
LDT296 (28)	OEt	CH ₂	OH	62	*
LDT297 (29)	ОН	CH ₂	ОН	78	85-87
LDT298 (30)	OEt	CO	ОН	83	*
LDT299 (31)	OH	CO	OH	95	99-101
LDT480 (32)	OEt	CO	OEt	98	*

* Obtido como um líquido

Fonte: Próprio autor.

Dando ínico aos derivados com a presença do grupo *gem*-dimetil no carbono alfacarbonilados, o LDT71 (**22**) foi submetido ao mesmo protocolo de *O*-alquilação regioespecífica, seguindo metodologia para obtenção do LDT296 (**28**), utilizando como reagente α-bromoisobutirato de etila. O derivado éster LDT476 (**33**) foi obtido como um líquido incolor em rendimento de 90% e caracterizado como uma única mancha em CCD (Rf 0,88 CLF:EtOH 40%). Na análise espectroscópica as metilas geminadas foram caracterizadas pelos sinais em RMN de carbono 13 em 25,5 ppm, onde o carbono terciário alfa à carbonila foi identificado em 79,1 ppm no mesmo espectro. Adicionalmente, os deslocamentos químicos pertinentes ao metileno do grupo etoxila em 4,22 ppm (RMN ¹H; Anexo **49**, Pág. 155) e em 61,5 ppm (RMN ¹³C; Anexo **50**, Pág. 157) corfirmam a presença do éster. O carbono carbonílico foi assinalado por presença de sinal característico em 174,6 ppm em seu espectro de RMN ¹³C. Adicionalmente, a presença de banda de absorção em 1734 cm⁻¹ (Anexo **51**, Pág. 158) referente a carbonila, corroborou para caracterização do LDT476 (**33**).

Assim como na rota sintética empregada para a série metileno não substituída empregando LDT296 (**28**), LDT476 (**33**) foi submetido à reação de hidrólise do grupo éster com hidróxido de lítio, originando o derivado ácido LDT477 (**34**), na forma de um líquido incolor em rendimento de 99% e caracterizado em CCD como uma única mancha (Rf 0,51 CLF:EtOH 40%). **34** foi caracterizado pela manutenção do carbono alfa contendo as *gem*-metilas, o qual foi confirmado por presença de sinal em 79,4 ppm em seu espectro de RMN ¹³C (75 MHz, CDCl₃; Anexo **53**, Pág. 160), bem como

pela presença de sinal em 177,8 ppm relativo ao carbono carboxílico no espectro de RMN de ¹³C. A ausência dos sinais em 4,22 ppm (RMN ¹H; Anexo **52**, Pág. 159) e 61,5 ppm RMN ¹³C, referentes ao metileno do grupo etoxila corroboram a caracterização do derivado LDT477 (**34**). A Análise do espectro no infravermelho (Anexo **54**, Pág. 161) apresenta deslocamento da absorção intensa em 1719 cm⁻¹ referente ao grupo carbonila do beta-oxácido, caracterizando o derivado LDT477.

Dando prosseguimento, o éster-derivado LDT476 (**33**) foi submetido à reação de oxidação com reagente de Jones levando ao carbometoxiácido LDT478 (**35**), obtido como um líquido incolor em rendimento de 80%, caracterizado como uma única mancha em CCD (Rf 0,68 CLF:EtOH 40%). A caracterização do derivado por meio de espectro RMN ¹H (300 MHz, CDCl₃; Anexo **55**, Pág. 162), revelou a ausência de sinal correspondente ao metileno em C8 com deslocamento químico em 3,60 ppm e em 63,1 ppm RMN ¹³C (CDCl₃; 75 MHz; Anexo **56**, Pág. 163). Adicionalmente, a presença de sinal em 180,0 ppm relativo ao carbono carboxílico no espectro de RMN ¹³C, identifica o novo grupo funcional. Dados do espectro no infravermelho (Anexo **57**, Pág. 164) apresentam deslocamentos da absorções intensas em 1734 cm⁻¹ e 1709 cm⁻¹ referentes aos grupos carbonilas do LDT478, corroborando a caracterização do composto **35**.

Por sua vez, o ácido LDT478 (**35**) foi submetido ao protocolo de hidrólise, originando o diácido LDT479 (**36**), na forma de um líquido amarelo em rendimento de 82%, evidenciado como uma única mancha em CCD (Rf 0,88 CLF:EtOH 40%). **36** foi caracterizado pela presença dos sinais em 180,5 ppm e 179,5 ppm RMN ^{de} carbono 13 pernitentes aos grupos carboxílicos. A ausência dos sinais em 4,23 ppm (RMN ¹H, CDCl₃; 300 MHz; Anexo **58**, Pág. 165) e 61,5 ppm RMN ¹³C (Anexo **59**, Pág. 166) referentes ao grupo metileno do grupo etoxila corroboram a caracterização do derivado LDT479 (**36**). O espectro no infravermelho (Anexo **60**, Pág. 167) revelou absorção característica às deformações dos grupos carbonila em 1710 cm⁻¹, caracterizando o diácido LDT479.

Por fim, o composto LDT478 (**35**) foi submetido à reação de esterificação com iodeto de etila, fornecendo o diéster LDT481 (**37**) em rendimento de 79%, na forma de sólido branco e caracterizado em CCD como uma única mancha (Rf 0,83 CLF:EtOH 40%). O derivado apresentou deslocamentos químicos pertinentes aos grupos etoxila em 4,11 e 4,22 ppm (RMN ¹H, CDCl₃; 300 MHz; Anexo **61**, Pág. 168) bem como sinais em 60,3 e 61,5 ppm em seu espectro de RMN ¹³C (CDCl₃; 75 MHz;

Anexo **62**, Pág. 169). A análise do espectro no infravermelho (Anexo **63**, Pág. 170) apresenta deslocamento de absorção intensa em 1710 cm⁻¹ referente aos estiramentos dos grupos ésteres, caracterizando o derivado **37**. Um resumo das condições reacionais e características químicas dos derivados LDT476 (**33**), LDT477 (**34**), LDT478 (**35**), LDT479 (**36**) e LDT481 (**37**) estão ilustrados na Tabela **4**.

Tabela 4: Condições reacionais, características químicas, rendimentos e ponto de fusão dos derivados LDT476 (33), LDT477 (34), LDT478 (35), LDT479 (36) e LDT481 (37), da série octila.

* Obtido como um líquido Fonte: Próprio autor.

6.2 AVALIAÇÃO FARMACOLÓGICA

6.2.1 Ensaio de gene repórter: Luciferase

Uma vez sintetizados e caracterizados por métodos espectroscópicos, os derivados foram submetidos a ensaio farmacológico de gene repórter em células do rim embrionário humano HEK293 e avaliados quanto à atividade luciferase, em diferentes concentrações, para PPAR α , PPAR β/δ e PPAR γ . Os ensaios foram realizados no Nuclear Hormone Receptors in Human Health and Disease da Universidade de Toronto.

6.2.1.1 PPARα

Inicialmente, os compostos foram avaliados quanto a atividade agonista em PPARα a 50,0 μM por meio de ensaio com GAL4-hPPARα, utilizando como controle

GW7647 à 10,0 nM, sendo os veículos etanol (EtOH) e dimetilsulfóxido (DMSO) (Figura **12**).

Na série pentadecila os resultados demonstraram que os derivados LDT15 (24) e LDT16 (25) obtiveram respectivos perfis superior e similar ao controle GW7647 (Figura 13), induzindo a atividade transcricional do receptor. Por sua vez, LDT408 (26) e o LDT409 (27) foram considerados ativadores fracos com atividade de transcrição em PPARα duas vezes acima do veículo.

Figura 13: Estrutura molecular do controle positivo GW7647, ativador de PPARa.

Fonte: Próprio autor.

Os derivados LDT15 (24), LDT16 (25), LDT408 (26) e LDT409 (27) demonstraram atividade transcricional no receptor alfa, e desta maneira, foram submetidos a nova avaliação em diferentes concentrações, 10,0 nM a 100,0 µM, para determinação da potência individual e confecção da curva dose-resposta (Figura 14).

Figura 14: Atividade luciferase dos compostos LDT15 (24), LDT16 (25), LDT408 (26) e LDT409 (27) comparadas atráves de curva dose-resposta, em relação ao controle GW7647.

Os valores de EC₅₀ variaram de 0,20 μ M a 8,91 μ M (Tabela 5) e todos os derivados demonstraram atividade parcial quando comparados ao agonista total GW7647 (EC₅₀ 6,50 nM) (Figura 14). LDT15 (24) ativou PPAR α de forma parcial, com EC₅₀ 3,45 μ M, sendo considerado o composto mais ativo neste ensaio. Apesar do perfil agonista demonstrado pelo LDT16 (25), este revelou-se tóxico as células, que se tornaram pequenas e murchas.

Tabela 5: Valores de EC₅₀ para os compostos LDT15, LDT16, LDT408 e LDT409, da série pentadecila, e do controle positivo GW7647, no PPAR α .

		\sim	\sim
Composto	Α	W	EC ₅₀
LDT15 (24)	CH ₂	OEt	3,45 µM
LDT16 (25)	CH ₂	ОН	0,93 µM
LDT408 (26)	C(CH ₃) ₂	Oet	8,91 µM
LDT409 (27)	C(CH ₃) ₂	OH	0,20 µM
GW7647			6,50 nM

Fonte: Próprio autor.

Na série octila (Figura **15**), para a identificação dos compostos agonistas, os derivados-alvo foram avaliados quanto à atividade luciferase em GAL4-hPPAR α a 50,0 µM. Tanto o LDT72 (**23**), quanto o LDT482 (**39**) foram ativos frente ao receptor α , com atividade de transcrição duas vezes acima do veículo utilizado (Figura **15 A**). LDT296 (**28**) demonstrou atividade de transcrição no receptor α , duas vezes acima

do veículo e LDT298 (**30**) foi ativo três vezes acima do veículo etanol. Por sua vez, LDT480 (**32**) foi considerado o melhor ativador da série B com atividade de transcrição superior a do controle GW7647 (Figura **15 B**). Por fim, com exceção de LDT476 (**33**), todos os compostos da serie C demonstraram perfil de ativação em PPARα quando testados a 50,0 µM (Figura **15 C**). Em destaque, LDT477 (**34**) e LDT480 (**32**) foram considerados os compostos mais ativos nesse ensaio.

Figura 15: Atividade transcricional em PPARα dos compostos da série octila testados a 50,0 μM em células HEK293. Sendo os veículos, EtOH e DMSO, e GW7647 a 10,0 nM como controle positivo. Resposta do veículo evidenciada pela linha tracejada.

Para determinar a potência individual dos compostos mais ativos em PPARα, LDT477 (**34**) e LDT480 (**32**), análise de curva dose-resposta foi realizada (Figura **16**).

Figura 16: Atividade luciferase dos compostos LDT477 (34) e LDT480 (32) comparadas atráves de curva dose-resposta, em relação ao controle GW7647.

Quando comparados ao agonista total GW7647, **34** e **32** demonstaram atividade parcial, com valores de EC₅₀ de 20,0 μ M e 3,9 μ M, respectivamente (Tabela **6**).

Tabela 6: Valores de EC_{50} para os compostos LDT477 e LDT480 da série octila e do controle positivo GW7647, no PPAR α .

Fonte: Próprio autor.

6.2.1.2 PPARβ/δ

Para o receptor β/δ (Figura **17**), os compostos da série pentadecila foram testados a 50,0 μ M, tendo como controle GW0742 a 25,0 nM, utilizando como veículos, EtOH e DMSO. O derivado LDT15 (**24**) foi considerado fraco ativador do

receptor β, e apesar da indução da transcrição mediada pelo LDT16 (**25**), este se mantenve tóxico para as células.

Na série octila (Figura **18**), o derivado LDT298 (**30**) demonstrou atividade transcricional no receptor β/δ a 50,0 μ M, duas vezes acima da atividade demonstrada pelo veículo etanol. Por sua vez, o diéster LDT480 (**32**) obteve perfil de ativação superior ao controle positivo (GW0742, 25,0 nM) (Figura **19**).

Figura 18: Atividade transcricional em PPARβ/δ dos compostos da série octila, em células HEK293. Sendo os veículos, EtOH e DMSO, e e GW0742 a 25,0 nM (controle positivo). Resposta do veículo evidenciada pela linha tracejada.

Fonte: Próprio autor.

Figura 19: Estrutura molecular do controle positivo GW0742, ativador de PPAR_β.

Fonte: Próprio autor.

6.2.1.3 PPARy

Inicialmente, os compostos foram avaliados quanto à atividade agonista em PPARγ a 50,0 μM por meio de ensaio com GAL4-PPARγ, utilizando como controle o agonista tiazolidinadiônico rosiglitazona (**2**) a 50,0 nM, sendo os veículos EtOH e DMSO (Figura **20**).

Figura 20: Atividade transcricional em PPARγ dos compostos da série pentadecila testados a concentração de 50,0 μM em células HEK293. Sendo os veículos, etanol e DMSO, e rosiglitazona (**2**) a 50,0 nM (controle positivo). Resposta do veículo evidenciada pela linha tracejada.

Na série pentadecila (Figura **20**), os resultados demonstraram que os derivados LDT15 (**24**) e LDT16 (**25**) foram ativadores de transcrição no receptor γ em relação ao veículo etanol e ao controle. Por sua vez, LDT408 (**26**) foi considerado fraco ativador com perfil de ativação duas vezes acima do veículo, evidenciado pela linha tracejada. Para determinação das potências individuais dos compostos ativadores de PPARγ, os derivados LDT15 (**24**), LDT16 (**25**) e LDT408 (**26**) foram submetidos a nova avaliação em diferentes concentrações, 10,0 nM a 100,0 μM, e curva dose-resposta foi confeccionada (Figura **21**).

O LDT15 (**24**) ativou PPAR γ de forma concentração dependente, com EC₅₀ 42,0 μ M (Tabela **7**), caracterizando-o como um agonista parcial (Figura **21**) em contraste com a ativação do receptor pelo controle agonista, rosiglitazona, com EC₅₀ 48,0 nM. Apesar do perfil agonista total com EC₅₀ 3,65 μ M, LDT16 (**25**) revelou-se tóxico às células. Por fim, o LDT408 (**26**) demonstrou atividade parcial no receptor γ .

Tabela 7: Valores de EC₅₀ para os compostos LDT15, LDT16 e LDT408 da série pentadecila e do controle positivo rosiglitazona, no PPAR γ .

		~~~~	~~~
Composto	Α	W	EC ₅₀
LDT15 (24)	CH ₂	OEt	42,7 µM
LDT16 (25)	CH ₂	OH	3,65 µM
LDT408 (26)	C(CH ₃ ) ₂	OEt	0,60 µM
Rosiglitazona (2)			48,7 nM
Fonte: Próprio autor.			

No planejamento estrutural, acreditava-se que a introdução do grupo ácido carboxilíco poderia levar ao aumento da potência dos compostos por interações polares com a tríade catálitica e com o aminoácido arginina 288. A introdução do grupo ácido nos derivados LDT16 (25) e LDT409 (27), quando comparados aos ésteres LDT15 (24) e LDT408 (26), acarretou em diminuição da ativdade nos

receptores. No entanto, para os derivados LDT297 (**29**), LDT477 (**34**) e LDT479 (**36**) aumentou significativamente a ativação de PPARγ.

Para a série octila, dentre os compostos avaliados á 50,0 μM (Figura 22), LDT296 (28), LDT297 (29) e o LDT298 (30) demonstraram atividade de transcrição em PPARγ duas vezes acima do veículo utilizado, por sua vez, LDT480 (32), obteve perfil de ativação superior ao controle rosiglitazona (Figura 22 B). Bem como os derivados LDT477 (34), LDT478 (35), LDT479 (36) e LDT481 (37) foram considerados ativadores de transcrição no receptor γ (Figura 22 C).







LDT477 (**34**) e o LDT480 (**32**) foram considerados como os mais ativos em PPAR $\gamma$  e para determinação de suas potências individuais, análise de curva dose-resposta foi realizada (Figura **23**). Quando comparados ao controle rosiglitazona (**2**), **34** e **32** demonstaram atividade de agonistas totais, com valores de EC₅₀ de 14,0 µM e 21,0 µM, respectivamente (Tabela **8**).

Figura 23: Atividade luciferase dos compostos LDT477 e LDT480 em PPARγ comparadas atráves de curva dose-resposta com o controle, rosiglitazona.





**Tabela 8:** Valores de EC₅₀ para os compostos LDT477 e LDT480 da série octila e do controle positivo rosiglitazona, no PPARγ.

W A O				~ [^]	z
Composto	Α	W	Y	Ζ	EC ₅₀
LDT477 (34)	C(CH ₃ ) ₂	ОН	$CH_2$	OH	14,4 µM
LDT480 (32)	CH ₂	OEt	СО	OEt	21,1 µM
Rosiglitazona (2)					48,7 nM

De modo geral, os derivados LDT15 (24), LDT16 (25), LDT408 (26), LDT409 (27), LDT480 (32) e LDT477 (34) apresentaram ativação de transcrição de PPARα (Tabela 9). Na série pentadecila, o derivado éster LDT15 (24), com grupo aceptor de ligação de hidrogênio, foi considerado o composto mais ativo, com atividade de agonista parcial quando comparado ao controle GW7647. Por sua vez, o diéster LDT480 (32) foi o maior indutor de transcrição de PPARα na série octila, apresentando perfil de agonista parcial. A ativação de transcrição de PPARβ/δ foi mediada após tratamento com os derivados LDT15 (24) e LDT298 (30), os quais apresentaram fraca atividade agonista. No entanto, os compostos LDT16 (25) e LDT480 (32) obtiveram bom perfil de ativação quando comparados aos veículos e ao controle GW0742. Por fim, a transcrição de PPARγ foi induzida pelos derivados LDT15 (24), LDT16 (25), LDT480 (32) e LDT 477 (34). Entre os os compostos da série octila destacaram-se LDT480 (32) e LDT477 (34) com atividade de agonistas totais quando comparados ao controle rosiglitazona.

Composto	PPARα (EC₅₀)	PPARβ (EC₅0)	PPARγ (EC₅₀)	Composto	ΡΡΑ <b>Rα</b> (EC₅₀)	ΡΡΑ <b>Rβ</b> (EC₅₀)	ΡΡΑ <b>Rγ</b> (EC₅0)
LDT10 (18)		**		LDT298 (30)		*	
LDT12 (19)		**		LDT299 (31)		**	
LDT27 (20)		**		LDT480 (32)	3,90 µM	*	21,1 µM
LDT71 (22)		**		LDT476 (33)		**	
LDT72 (23)		*		LDT477 (34)	20,7 µM	**	14,4 µM
LDT15 (24)	3,45 µM	*	42,7 µM	LDT478 (35)	*	**	*
LDT16 (25)	0,93 µM	*	3,65 µM	LDT479 (36)	*	**	*
LDT408 (26)	8,91 µM	**	0,60 M	LDT481 (37)	*	**	*
LDT409 (27)	0,20 µM	**	**	LDT80 (38)	*	**	**
LDT296 (28)	*	**	*	LDT482 (39)	*	**	**
LDT297 (29)	*	**	*				

**Tabela 9:** Perfil de atividade e valores de EC₅₀ para os derivados-alvo ativos em PPAR.

* Avaliação farmacológica em andamento.

** Sem atividade farmacológica em PPAR.

Fonte: Próprio autor.

Desta maneira, o derivado LDT480 (**32**) foi considerado um "pan-agonista", uma vez que obteve a capacidade de induzir a transcrição de ambos os subtipos de PPAR: PPARα, PPARβ/δ e PPARγ. No entanto, apesar do bom perfil de ativação demonstrado pelo LDT16 (**25**) induzindo a transcrição de ambos os subtipos, este alterou morfologicamente as células, que se tornaram pequenas e murchas, sendo necessário estudos complementares de citotoxicidade.

### 6.2.2 Ensaio em hepatócitos primários

Tratamento de hepatócitos primários com 50,0 μM dos compostos LDT15 (24), LDT16 (25), LDT297 (29), LDT477 (34), LDT479 (36) e LDT481 (37) resultou na supra-regulação da expressão de Fgf21 (Figura 24 A), hormônio com potentes propriedades anti-diabéticas por promover a sensisibilização à insulina e oxidação de ácidos graxos. A expressão de CPT-1 (Figura 24 B), uma enzima limitadora de velocidade na β-oxidação, também foi aumentada após o tratamento com a maioria dos ligantes quando comparado ao veículo e ao controle 50,0 μM de WY14643, com excessão dos derivados LDT71 (22), LDT72 (23), LDT296 (28) e LDT298 (30). A expressão de PDK4 (Figura 24 C), enzima que permite a utilização preferencial de ácidos graxos como fonte de energia, ao invés da glicose, foi supra-regulada pelos derivados LDT15 (24), LDT16 (25), LDT408 (26), LDT297 (29), LDT476 (33), LDT477 (34), LDT479 (36) e LDT481 (37).

Por fim, o tratamento com LDT15, LDT16, LDT408, LDT297, LDT476, LDT477, LDT479 e LDT481 aumentou significativamente a expressão de genes importantes, envolvidos na captação de ácidos graxos, FABP1 e CD36 (Figura **24 D e E**).

**Figura 24:** Efeito dos derivados LDTs testados a 50,0 μM sobre hepatócitos primários, em relação ao controle 50,0 μM de WY14643, sendo o veículo EtOH. Avaliação da expressão de genes envolvidos na oxidação de ácidos graxos, FgF1, PDK4 e CPT1, bem como genes responsáveis pela captação de ácidos graxos, FABP1 e CD36.





Apesar da atividade agonista parcial demonstrada pelos derivados nos ensaios de gene repórter no PPAR $\alpha$ , quando comparados ao controle GW7647, nos hepatócitos primários foi vista eficácia similar ao controle WY14643, na ativação de genes alvo do receptor  $\alpha$ . Novamente, LDT16 (**25**) se destacou por sua atividade agonista total em PPAR $\alpha$ , mas este se manteve tóxico às células.

Os resultados em hepatócitos primários sugerem a capacidade dos compostos, LDT15 (24), LDT16 (25), LDT408 (26), LDT409 (27), LDT297 (29), LDT476 (33), LDT477 (34), LDT479 (36) e LDT481 (37), em promover a oxidação e captação de ácidos graxos no fígado, reduzindo as taxas de lipídeos circulantes. Estes são efeitos benéficos de agonistas PPARα, usados para corrigir distúrbios metabólicos, como na dislipidemia e no diabetes tipo 2 (Tabela 10).

Composto	Atividade	Composto	Atividade	
LDT71 (22)	**	LDT480 (32)	**	
LDT72 (23)	**	LDT476 (33)	Ativo	
LDT15 (24)	Ativo	LDT477 (34)	Ativo	
LDT16 (25)	Ativo	LDT478 (35)	**	
LDT408 (26)	Ativo	LDT479 (36)	Ativo	
LDT409 (27)	Ativo	LDT481 (37)	Ativo	
LDT296 (28)	**	LDT80 (38)	**	
LDT297 (29)	Ativo	LDT482 (39)	**	
LDT298 (30)	**			

Tabela 10: Perfil de atividade dos derivados-alvo na expressão de genes em hepatócitos primários.

** Sem atividade farmacológica. Fonte: Próprio autor.

#### 6.2.3 Ensaio de diferenciação de adipócitos

Na sequência, visando acessar a capacidade dos derivados-alvo sob a ativação do PPARγ, foi realizado o ensaio de diferenciação de adipócitos utilizando pré-adipócitos provenientes do camundongo *Swiss*, 3T3 linhagem 1.

Células 3T3-L1 foram cultivadas e com o início da diferenciação, as células foram tratadas com 25,0 µM do ligante, do controle positivo, rosiglitazona, ou dos veículos, etanol e DMSO. As células 3T3-L1 foram lisadas para a avaliação da expressão de marcadores de adipogênese, Ap2, LPL e CD36, e expressão de adiponectina, um hormônio secretado pelos adipócitos maduros responsável por aumentar a sensibilidade em relação a insulina, estimular a captação de glicose pelo

músculo e minimizar a gliconeogênese no fígado. A expressão das proteínas desses marcadores adipogênicos foi mensurada por qPCR (Figura **24**), por meio de expressão de RNA.

Tratamento dos pré-adipócitos 3T3-L1 com 25,0 μM dos derivados-alvo resultou na regulação de PPARγ (Figura 25 A), receptor importante na diferenciação de adipócitos. Na série pentadecila, LDT15 (24), LDT408 (26) e LDT409 (27) aumentaram a expressão dos marcadores de diferenciação de adipócitos, indicando a indução da adipogênese (Figura 25 B, C e D). A expressão de adiponectina (Figura 25 E) foi induzida em um grau superior à rosiglitazona por LDT15 (24) e LDT409 (27). Por sua vez, LDT408 também aumentou significativamente a expressão de adiponectina quando comparado ao veículo. Considerando a série octila, o tratamento com LDT297 (29), LDT477 (34), LDT479 (36) e LDT481 (37) induziu adipogênese nas células 3T3-L1, resultando em aumento dos marcadores adipogênicos (Figura 25 B, 25 C e 25 D). A expressão de adiponectina também foi aumenta pelo tratamento com os mesmos ligantes (Figura 25 E).





93



Fonte: Próprio autor.

A avaliação da diferenciação de adipócitos com o corante de lipídeos óleo vermelho O (Figura **26**) demonstrou que os derivados LDT409 (**27**), LDT477 (**34**) e LDT481 (**37**) induzem o acúmulo intracelular de lípideos de forma comparável à rosiglitazona. Os derivados LDT15 (**24**) e LDT297 (**28**) são capazes de induzir a adipogênese em menor grau quando comparado ao controle, com células adipócitas maiores. Por sua vez, os compostos LDT16 (**25**) e LDT408 (**26**) induziram menor acúmulo intracelular de lipídeos, em relação as células 3T3-L1 tratadas com rosiglitazona.

**Figura 26:** Efeito do LDT15, LDT16, LDT408, LDT409, LDT297, LDT477 e LDT481 sobre a adipogênese de pré-adipóctios 3T3-L1. Dois dias após confluência, células 3T3-L1 foram induzidas a se diferenciarem em adipócitos, cultivadas por 8 dias, tratadas com diferentes ligantes ou veículo, DMSO e EtOH. Na sequência, coradas com óleo vermelho O e observadas por microscopia.



Fonte: MAGOMEDOVA, Lilia.

As TZDs, agonistas PPARy, induzem o aumento excessivo da diferenciação de adipócitos nas células 3T3-L1, aumentando a acumulação de lípideos e ocasionando ganho ponderal. De maneira geral, o efeito benéfico da ativação da diferenciação de adipócitos mediada por PPARy foi encontrado mostrando potente aumento nos níveis de marcadores adipocitários, bem como de adiponectina, após tratamento com os derivados LDT15 (24), LDT408 (26), LDT409 (27), LDT297 (29), LDT477 (34), LDT479 (36) e LDT481 (37), com taxa global de diferenciação de adipócitos inferior a da rosiglitazona, o que espera-se ser benéfico terapeuticamente, uma vez que haverá sensibilização a insulina, sem o ganho de peso indesejável ocasionado pelas TZDs (Tabela 11).

Composto	Atividade	Composto	Atividade				
LDT71 (22)	**	LDT297 (29)	Ativo				
LDT72 (23)	**	LDT480 (32)	**				
LDT15 (24)	Ativo	LDT476 (33)	**				
LDT16 (25)	**	LDT477 (34)	Ativo				
LDT408 (26)	Ativo	LDT479 (36)	Ativo				
LDT409 (27)	Ativo	LDT481 (37)	Ativo				
LDT296 (28)	**	LDT482 (39)	**				

Tabela 11: Perfil de atividade dos derivados-alvo na diferenciação de adipócitos.

** Sem atividade farmacológica. Fonte: Próprio autor.

Conclusões e Perspectivas

A metodologia sintética mostrou-se eficaz para a obtenção dos derivadosalvo, tendo o cardanol monoinsaturado como material de partida. Neste contexto, foram sintetizados 21 compostos, sendo 2 intermediários-chave, LDT10, **18** (90%) e LDT71, **22** (79%) e os compostos finais em rendimentos globais que variaram de 62% a 99%. A metodologia sintética empregada na obtenção dos compostos-alvos mostrou-se linear ao utilizar reações clássicas: acetilação, metilação, *O*-alquilação, hidrogenação catalítica, ozonólise, redução com hidretos metálicos, oxidação e hidrólise alcalina por meio de aquecimento convencional ou radiação micro-ondas. A utilização de métodos simples e eficientes para a obtenção das moléculas-alvo capazes de atuar sobre alvos biológicos está de acordo com os paradigmas e conceitos em Química Medicinal. A caracterização estrutural dos intermediários e compostos-alvo se deu por meio de métodos espectroscópicos de análise IV, RMN ¹H e RMN ¹³C.

A avaliação farmacológica por meio de ensaio de gene repórter, ensaio em hepatócitos primários e sob a diferenciação de adipócitos, foi capaz de evidenciar a atividade dos compostos sintetizados pela determinação da capacidade de ativar a transcrição dos receptores e pelo cálculo de EC₅₀ frente aos controles utilizados, bem como pela capacidade de alterar a expressão de genes.

Assim, os melhores ligantes desenvolvidos para PPAR $\alpha$  foram os compostos com a presença do grupo éster, aceptor de ligação de hidrogênio, LDT15 (**24**) e LDT480 (**32**), com EC₅₀ de 3,45 µM e 3,90 µM, respectivamente, configurando-os como agonistas parciais em relação a ativação da transcrição pelo controle GW7647 com EC₅₀ de 6,50 nM. Já para PPAR $\gamma$ , o derivado ácido LDT477 (**34**) e o diéster LDT480 (**32**) foram os compostos mais ativos com EC₅₀ de 14,0 µM e 21,0 µM, respectivamente, caracterizando os como agonistas totais em relação ao controle rosiglitazona, com EC₅₀ de 48,0 nM. Os referidos derivados foram capazes de aumentar a expressão de genes envolvidos na promoção da captação e na oxidação de ácidos graxos, assim como induzir a diferenciação de adipócitos.

Os resultados preliminares permitiram a validação do planejamento estrutural revelando a capacidade desses compostos em atuarem sobre PPARα e PPARγ,

fornecendo fundamentações para otimização molecular na busca de ligantes com melhor perfil.

Neste sentido, otimização dos rendimentos das reações, avaliação dos novos ligantes por ensaio de competição, estudos de modelagem molecular, ensaio de citotoxicidade, ensaios farmacológicos em osteoblastos, na cascata inflamatória, na modulação de secretases, bem como avaliação farmacológica *in vivo* dos melhores ligantes, constituem perspectivas do trabalho na validação do planejamento estrutural, bem como no estabelecimento da relação estrutura-atividade química de um possível agonista dual PPARα/γ.

# Referências Bibliográficas

AMATO, Angélica Amorim. Investigação da atividade farmacológica de Benzilideno- e Acridinilideno- Tiazolidinadionas e de Isoflavonas nos receptores alfa, beta/delta e gama ativados por Proliferadores Peroxissomais. 2008. Tese (Doutorado) - Departamento de Pós Graduação em Ciências da Saúde, Universidade de Brasília, Brasília, 2008.

AICARDI, Giorgio. New Hope from an Old Drug: Fighting Alzheimer's Disease with the Cancer Drug Bexarotene (Targretin)? **Mary Ann Liebert, Inc. publishers**, vol. 16, n. 6. Itália, 2013.

ANDRADE, Karine Figueiredo de. **Síntese e avaliação farmacológica de derivados fenóxi-acetoacetatos em receptores ativados por proliferadores peroxissomais e em receptores de hormônio tireoidiano.** 2008. Dissertação (Mestrado) – Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, 2008.

APRILE, M. et al. PPARG in Human Adipogenesis: Differential Contribution of Canonical Transcripts and Dominant Negative Isoforms. **Hindawi Publishing Corporation,** vol. 2014, n. ID 537865. Itália, mar. 2014.

BALACHANDRAN, Vijai Shankar et al. Recent advances in cardanol chemistry in a nutshell: from a nut to nanomaterials. **Chemical Society Reviews**, vol. 42, n. 2. Nova York, jan. 2013.

BARTL, Jasmin et al. Alzheimer's disease and type 2 diabetes: Two diseases, one common link? **The World Journal of Biological Psychiatry**, vol. 2013, n. 14. Alemanha, 2013.

BORTOLINI, Michele et al. Examining the safety of PPAR agonists - current trends and future prospects. **Informa Healthcare**, vol. 12, n. 1. Suíça, 2013.

CARVALHO-FILHO, Marco A. De et al. Cross-Talk das Vias de Sinalização de Insulina e Angiotensina II: Implicações com a Associação Entre Diabetes Mellitus e Hipertensão Arterial e Doença Cardiovascular. **Arquivos Brasileiros de Endocrinologia & Metabologia**, vol. 51, n. 2. São Paulo, mar. 2007.

CHEN, Wei et al. Novel PPAR Pan Agonist, ZBH Ameliorates Hyperlipidemia and Insulin Resistance in High Fat Diet Induced Hyperlipidemic Hamster. **Plos One**, vol. 9, n. 4. China, abril 2014.

CHEN, Mei-hsing; LIN, Cheng-hsiu & SHIH, Chun-ching. Antidiabetic and Antihyperlipidemic Effects of Clitocybe nuda on Glucose Transporter 4 and AMP-Activated Protein Kinase Phosphorylation in High-Fat-Fed Mice. **Hindawi Publishing**  **Corporation: Evidence-Based Complementary and Alternative Medicine,** vol. 2014. Taiwan, jan. 2014.

CHEN, Lihong & YANG, Guangrui. PPARs Integrate the Mammalian Clock and Energy Metabolism. **Hindawi Publishing Corporation: PPAR Research**, vol. 2014. Estados Unidos, fev. 2014.

CHEN, Zhichun & ZHONG, Chunjiu. Decoding Alzheimer's disease from perturbed cerebral glucose metabolism: Implications for diagnostic and therapeutic strategies. **Elsevier: Progress in Neurobiology**, vol. 2013, n.108. China, jul. 2013.

CHOI, Jang Hyun et al. Antidiabetic actions of a non-agonist PPARγ ligand blocking Cdk5-mediated phosphorylation. **Nature**, vol. 477, n. 81. Boston, set. 2011.

CHOI, Kangduk & KIM, Young-Bum. Molecular Mechanism of Insulin Resistance in Obesity and Type 2 Diabetes. **The Korean Journal of Internal Medicine.** Vol. 25, n. 2, 2010.

CORREIA, Sónia C. et al. Insulin signaling, glucose metabolism and mitochondria: Major players in Alzheimer's disease and diabetes interrelation. **Elsevier: Brain Research,** vol. 1441. Portugal, mar. 2012.

CRAMER, Paige E. et al. ApoE-Directed Therapeutics Rapidly Clear  $\beta$ -Amyloid and Reverse Deficits in AD Mouse Models. **Science**, vol. 335, n. 1503. Nova York, mar. 2012.

DAVE, Sandeep et al. Inhibition of Adipogenesis and Induction of Apoptosis and Lipolysis by Stem Bromelain in 3T3-L1 Adipocytes. **Plos One,** vol. 7, n. 1. India, jan. 2012.

DIVINS, Maria Josep. Información de mercado: Antidiabéticos orales. **Farmacia Profesional,** vol. 23, n. 6, dez. 2009.

**Diretrizes da Sociedade Brasileira de Diabetes-** [3.ed.]. – Itapevi, São Paulo, 2009.

FREITAS, Lúcia Rolim Santana De & GARCIA, Leila Posenato. Evolução da prevalência do diabetes e deste associado à hipertensão arterial no Brasil: análise da Pesquisa Nacional por Amostra de Domicílios, 1998, 2003 e 2008. **Epidemiologia e Serviços de Saúde:** Revista do Sistema Único de Saúde do Brasil, vol. 21, n. 1, mar. 2012.

GAMA, Ricardo Ribeiro. Efeitos de quimioprevenção dos ligantes do PPAR-? e dos ácidosgraxos poliinsaturados ômega-3 no processo de carcinogênese da viaaerodigestiva superior induzida pelo uso de 4-nitroquinolina-1-óxidoem

**camundongos Swiss**. 2010. Tese (Doutorado) – Universidade de São Paulo, São Paulo, 2010.

GILARDI, Federica et al. LT175 is a novel PPARα/γ ligand with potent insulin sensitizing effects and reduced adipogenic properties. **The American Society For Biochemistry And Molecular Biology,** vol. 10, n. 1074. Itália, jan. 2014.

GOLAN, David E.; ARAÚJO, Cláudia L. C. (Trad.); VOEUX, Patrícia L. (Trad). **Princípios de farmacologia:** a base fisiopatológica da farmacoterapia. 2ª. ed. Rio de Janeiro, RJ: Guanabara Koogan, 2009.

GRYGIEL-GÓRNIAK, Bogna. Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications – a review. **Nutrition Journal,** vol. 17, n. 13. Polônia, fev. 2014.

HAN, Joo-Hui et al. The Effects of Propionate and Valerate on Insulin Responsiveness for Glucose Uptake in 3T3-L1 Adipocytes and C2C12 Myotubes via G Protein-Coupled Receptor 41. **Plos One**, vol. 9, n. 4. Korea, abril 2014.

HUANG, Chi-Chang et al. Effect of Black Soybean Koji Extract on Glucose Utilization and Adipocyte Differentiation in 3T3-L1 Cells. **International Journal of Molecular Sciences**, vol. 15, n. 5. Taiwan, maio 2014.

HIEKE, Martina et al. Design, Synthesis, and Biological Evaluation of a Novel Class of γ-secretase Modulators with PPARγ Activity. **Journal of Medicinal Chemistry Article**, vol. 2010, n. 53. Alemanha, mar. 2010.

HIEKE, Martina et al. SAR studies of acidic dual γ-secretase/PPARγ modulators. **Elsevier: Bioorganic & Medicinal Chemistry**, vol. 2011, n. 19. Alemanha, ago. 2011.

HOME, Philip. Safety of PPAR Agonists. **Diabetes Care**, vol. 34, n. 2. Reino Unido, maio 2011.

International Diabetes Federation, 2014. Disponível em: <a href="http://www.idf.org/metabolic-syndrome">http://www.idf.org/metabolic-syndrome</a>. Acesso em: 19 abr. 2014.

JIA, Zhanjun et al. New Insights into the PPARγ Agonists for the Treatment of Diabetic Nephropathy. **Hindawi Publishing Corporation**, vol. 2014. China, jan. 2014.

JOHNSON, Andrew M.F. & OLEFSKY, Jerrold M. The Origins and Drivers of Insulin Resistance. **Cell**, vol. 152, n. 4. Califórnia, feb. 2013.

LADETER, Manual de procedimentos experimentais do Laboratório de Desenvolvimento de Estratégias Terapêuticas, Universidade Católica de Brasília, Brasília, 2010.

LEÓN, Rafael; GARCIA, Antonio G. & MARCO-CONTELLES, José. Recent Advances in the Multitarget-Directed Ligands Approach for theTreatment of Alzheimer's Disease. **Medicinal Research Reviews**, vol. 33, n. 1. Reino Unido, jan. 2013.

LIBERATO, Marcelo Vizoná. Ácidos graxos de cadeia média como ligantes da proteína PPARγ. 2009. Dissertação (Mestrado) - Departamento de Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, 2009.

LIMA, S.G. De et al. Effects of immature cashew nut-shell liquid (Anacardium occidentale) against oxidative damage in Saccharomyces cerevisiae and inhibition of acetylcholinesterase activity. **Genetics And Molecular Research**, vol. 7, n. 3. Piauí, set. 2008.

LIN, Chia-Hui et al. Design and Structural Analysis of Novel Pharmacophores for Potent and Selective Peroxisome Proliferator-activated Receptor γ Agonists. **Journal of Medicinal Chemistry**, vol. 52, n. 8, fev. 2009.

LIN, Chin Jia & BARBOSA, Angela Silva. Técnicas de Análise da Regulação da Transcrição Gênica e suas Aplicações na Endocrinologia Molecular. **Arquivos Brasileiros de Endocrinologia & Metabologia**, vol. 46, n. 4. São Paulo, ago. 2002.

MAHENDRA, Poonam & BISHT, Shradha. Diagnostic criteria in different population for diabetes mellitus. **Journal Of Pharmacy Research**, vol. 4, n. 4. India, mar. 2011.

MANNELLI, Lorenzo di Cesare et al. PPAR-γ Impairment Alters Peroxisome Functionality in Primary Astrocyte Cell Cultures. **Hindawi Publishing Corporation**, v. 2014, ID 546453. Itália, mar. 2014.

MANORIA, P.C. et al. The nuances of atherogenic dyslipidemia in diabetes: Focus on triglycerides and current management strategies. **Elsevier: Indian Heart Journal**, vol. 65, n. 6. India, dez. 2013.

MANSOUR, Mahmoud. Chapter Seven – The Roles of Peroxisome Proliferator Activated Receptors in the Metabolic Syndrome. **Elsevier: Progress in Molecular Biology and Translational Science,** vol. 121. Alabama, 2014.

MAZZETTO, Selma Elaine & LOMONACO, Diego. Óleo da castanha de caju: oportunidades e desafios no contexto do desenvolvimento e sustentabilidade industrial. **Química Nova**, vol. 32, n. 3. Fortaleza, abr. 2009.

MCMULLEN, Patrick D. et al. A map of the PPARα transcription regulatory network for primary human hepatocytes. **Elsevier: Chemico-Biological Interactions**, n. 209. Estados Unidos, 2014.

NASCIMENTO, A.S. Interação dos receptores nucleares com seus ligantes: Estudos estruturais do receptor de hormônio tireoidiano, do receptor de mineralocorticóide e do receptor ativado por proliferadores peroxissomais. 2009. Tese (Doutorado) – Instituto de Física de São Carlos, São Carlos, 2009.

NENOV, Miroslav N. et al. Cognitive Enhancing Treatment with a PPARγ Agonist Normalizes Dentate Granule Cell Presynaptic Function in Tg2576 APP Mice. **The Journal of Neuroscience**, vol. 3, n. 34. Texas, jan. 2014.

PADMANABHAN, Monika & ARUMUGAM, Geetha. Effect of Persea americana (avocado) fruit extract on the level of expression of adiponectin and PPAR-γ in rats subjected to experimental hyperlipidemia and obesity. **De Gruyter**, vol. 2014, n. ID 101515. India, 2014.

PARK, Min Hi et al. Potent Anti-Diabetic Effects of MHY908, a Newly Synthesized PPARα/γ Dual Agonist in db/db Mice. **Plos One**, vol. 8, n. 11. India, nov. 2013.

PATEL, Jessal J.; BUTTERS, Oliver R. & ARNETT, Timothy R. PPAR agonists stimulate adipogenesis at the expense of osteoblast differentiation while inhibiting osteoclast formation and activity. **Cell biochemistry and function,** vol. 2014. Londres, jan. 2014.

PESSANHA, Rutnéia de Paula. **Mecanismo de Ação do Receptor do Hormônio Tireoideano Beta 1:** Caracterização Molecular e Funcional da Região de Drobadiça e Influência do Receptor do Ácido 9-*cis* Retinóico. 2007. Tese (Doutorado) – Universidade de Brasília, Brasília, 2007.

PIRAT, Céline et al. Targeting Peroxisome Proliferator-Activated Receptors (PPARs): Development of Modulators. **Journal of Medicinal Chemistry**. França, 2012.

PRAMOJANEE, Sakarat T. et al. Possible roles of insulin signaling in osteoblasts. **Endocrine Research**, Tailândia, mar. 2014.

RODRIGUES, Francisco Helder A. et al. Antioxidant Activity of Cashew Nut Shell Liquid (CNSL) Derivatives on the Thermal Oxidation of Synthetic cis-1,4-Polyisoprene. **Journal Of The Brazilian Chemical Society**, vol. 17, n. 2. Fortaleza, 2006.

SAHEBKAR, Amirhossein; CHEW, Gerard T; WATTS, Gerald F. New peroxisome proliferatoractivated receptor agonists: potential treatments for atherogenic

dyslipidemia and non-alcoholic fatty liver disease. Informa Healthcare: Expert Opinion on Pharmacotherapy, vol. 4, n. 15. Austrália, 2014.

SANTO, Michelle Brandão do Espírito et al. Adesão dos portadores de diabetes mellitus ao tratamento farmacológico e não farmacológico na atenção primária à saúde. **Enfermagem Revista**, vol. 15, n. 1. Minas Gerais, abr. 2012.

SILVA, Carla; LOPES, Zélia & SOARES, J. A. Freire. Terapêutica não insulínica da Diabetes Mellitus: mais valias ... **Revista da Sociedade Portuguesa de Medicina Interna**, vol. 17, n. 2. Padre Américo, jun. 2010.

SPEECKAERT, Marijn M. et al. Peroxisome proliferator-activated receptor agonists in a battle against the aging kidney. **Elsevier: Ageing Research Reviews,** vol. 2014, n. 14. Belgium, fev. 2014.

TAVARES, Vladimir; HIRATA, Mario Hiroyuki & HIRATA, Rosario D. Crespo. Receptor Ativado por Proliferadores de Peroxissoma Gama (PPARγ): Estudo Molecular na Homeostase da Glicose, Metabolismo de Lipídeos e Abordagem Terapêutica. Arquivos Brasileiros de Endocrinologia & Metabologia, vol. 51, n. 4. São Paulo, fev. 2007.

TYAGI, Sandeep et al. The peroxisome proliferator-activated receptor: A family of nuclear receptors role in various diseases. **Journal of Advanced Pharmaceutical Technology & Research**, vol. 2, n. 4. India, dez. 2011.

USUI, Shinya et al. Identification of novel PPARa ligands by the structural modification of a PPARc ligand. **Science Direct: Bioorganic & Medicinal Chemistry Letters,** vol. 16, n. 12. Japão, abr. 2006.

VASAPOLLO, Giuseppe; MELE, Giuseppe & SOLE, Roberta Del. Cardanol- Based Materials as Natural Precursors for Olefin Metathesis. **Journal Molecules**, vol. 16, n. 8. Itália, ago. 2011.

XU, Shujun et al. Rosiglitazone Prevents Amyloid-β Oligomer-Induced Impairment of Synapse Formation and Plasticity via Increasing Dendrite and Spine Mitochondrial Number. **Journal of Alzheimer's disease**, vol. 2014, n. 39. China, 2014.

WAGNER, Eric R. et al. Therapeutic Implications of PPARγ in Human Osteosarcoma. **Hindawi Publishing Corporation**: PPAR Research, vol. 2010, nov. 2009.

WAKAYAMA, Sayori et al. Lipopolysaccharide impairs insulin sensitivity via activation of phosphoinositide 3-kinase in adipocytes. **Informa Healthcare: Immunopharmacology and Immunotoxicology.** Japão, fev. 2014.

WERNER C. M. et al. The dual PPAR- $\alpha/\gamma$  agonist aleglitazar increases number and function of endothelial progenitor cells: implications for vascular function and atherogenesis. **British Journal of Pharmacology**, doi: 10.1111/bph.12608. Alemanha, jan. 2014.

ZAWARE, Pandurang et al. Modulation of PPAR subtype selectivity. Part 2: Transforming PPARa/c dual agonist into a selective PPAR agonist through bioisosteric modification. **Science Direct: Journal Bioorganic & Medicinal Chemistry Letters**, vol. 21, n. 2. India, jan. 2011.

ZHONG, Xing et al. Bezafibrate enhances proliferation and differentiation of osteoblastic MC3T3-E1 cells via AMPK and eNOS activation. **Nature: Acta Pharmacologica Sinica,** China, v. 32, abr. 2011.

# ANEXOS



### ANEXO 1 – Espectro de RMN ¹H (500 MHz, CDCl₃): 3-Pentadecilfenol (LDT10, **18**)


190

180

### ANEXO 2 – Espectro de RMN ¹³C (125 MHz, CDCl₃): 3-Pentadecilfenol (LDT10, **18**)



ANEXO 3 – Espectro no infravermelho (cm⁻¹, KBr): 3-Pentadecilfenol (LDT10, **18**)













### ANEXO 7 – Espectro de RMN ¹H (300 MHz, CDCl₃): 1-Metóxi-3-pentadecilbenzeno (LDT27, **20**)





ANEXO 9 – Espectro no infravermelho (cm⁻¹, KBr): 1-Metóxi-3-pentadecilbenzeno (LDT27, **20**)





#### 



## ANEXO 12 – Espectro no infravermelho (cm⁻¹, KBr): 2-(3-Pentadecilfenóxi)acetato de etila (LDT15, 24)







### **ANEXO 15** – Espectro no infravermelho (cm⁻¹, KBr): Ácido 2-(3-Pentadecilfenóxi)acético (LDT16, **25**)





<u>----</u>р

190

# ANEXO 17 – Espectro de RMN ¹³C (75 MHz, CDCL₃): 2-Metil-2-(3-Pentadecilfenóxi)Propanoato de etila (LDT408, **26**)



ANEXO 18 – Espectro no infravermelho (cm⁻¹, KBr): 2-Metil-2-(3-Pentadecilfenóxi)Propanoato de etila (LDT408, **26**) **ANEXO 19** – Espectro de RMN ¹H (300 MHz, CDCL₃): Ácido 2-Metil-2-(3-Pentadecilfenóxi)propanóico (LDT409, **27**)







чт

### **ANEXO 20** – Espectro de RMN ¹³C (75 MHz, CDCL₃): Ácido 2-Metil-2-(3-Pentadecilfenóxi)propanóico (LDT409, **27**)



#### **ANEXO 21** – Espectro no infravermelho (cm⁻¹, KBr): Ácido 2-Metil-2-(3-Pentadecilfenóxi)propanóico (LDT409, **27**)



### ANEXO 22 – Espectro de RMN ¹H (300 MHz, CDCL₃): 3-(8-Hidróxioctil)fenol (LDT71, 22)



## ANEXO 23 – Espectro de RMN ¹³C (75 MHz, CDCL₃): 3-(8-Hidróxioctil)fenol (LDT71, 22)



### ANEXO 24 – Espectro no infravermelho (cm⁻¹, KBr): 3-(8-Hidróxioctil)fenol (LDT71, 22)



ANEXO 25 – Espectro de RMN ¹H (300 MHz, CDCL₃): 8-(3-Metóxifenil)octan-1-ol (LDT72, 23)







ANEXO 27 – Espectro no infravermelho (cm⁻¹, KBr): 8-(3-Metóxifenil)octan-1-ol (LDT72, 23)



#### ANEXO 28 – Espectro de RMN ¹H (300 MHz, CDCL₃): Ácido 8-(3-Metóxifenil)octanóico (LDT80, **38**)



#### ANEXO 29 – Espectro de RMN ¹³C (75 MHz, CDCL₃): Ácido 8-(3-Metóxifenil)octanóico (LDT80, **38**)



ANEXO 30 – Espectro no infravermelho (cm⁻¹, KBr): Ácido 8-(3-Metóxifenil)octanóico (LDT80, 38)



## ANEXO 31 – Espectro de RMN ¹H (300 MHz, CDCL₃): 8-(3-Metóxifenil)octanoato de etila (LDT482, **39**)



ANEXO 33 – Espectro no infravermelho (cm⁻¹, KBr): 8-(3-Metóxifenil)octanoato de etila (LDT482, **39**)







# ANEXO 34 – Espectro de RMN ¹H (300 MHz, CDCL₃): 2-(3-(8-Hidróxioctil)fenóxi)acetato de etila (LDT296, **28**)



### **ANEXO 35** – Espectro de RMN ¹³C (75 MHz, CDCL₃): 2-(3-(8-Hidróxioctil)fenóxi)acetato de etila (LDT296, **28**)





#### **ANEXO 37** – Espectro de RMN ¹H (500 MHz, MeOD): Ácido 2-(3-(8-Hidróxictil)fenóxi)acético (LDT297, **29**)


ANEXO 38 – Espectro de RMN ¹³C (125 MHz, MeOD): Ácido 2-(3-(8-Hidróxictil)fenóxi)acético (LDT297, **29**)



## **ANEXO 39** – Espectro no infravermelho (cm⁻¹, KBr): Ácido 2-(3-(8-Hidróxictil)fenóxi)acético (LDT297, **29**)



### **ANEXO 40** – Espectro de RMN ¹H (300 MHz, CDCL₃): Ácido 8-(3-Carboetoximetóxifenil)octanóico (LDT298, **30**)





**ANEXO 42** – Espectro no infravermelho (cm⁻¹, KBr): Ácido 8-(3-Carboetoximetóxifenil)octanóico (LDT298, **30**)



#### **ANEXO 43** – Espectro de RMN ¹H (500 MHz, MeOD): Ácido 8-(3-Carboximetóxifenil)octanóico (LDT299, **31**)



**ANEXO 44** – Espectro de RMN ¹³C (125 MHz, MeOD): Ácido 8-(3-Carboximetóxifenil)octanóico (LDT299, **31**)



### **ANEXO 45** – Espectro no infravermelho (cm⁻¹, KBr): Ácido 8-(3-Carboximetóxifenil)octanóico (LDT299, **31**)



**ANEXO 46** – Espectro de RMN ¹H (300 MHz, CDCL₃): 8-(3-(2-Etóxi-2-oxoetóxi)fenil)octanoato de etila (LDT480, **32**)



# ANEXO 47 – Espectro de RMN ¹³C (75 MHz, CDCL₃): 8-(3-(2-Etóxi-2-oxoetóxi)fenil)octanoato de etila (LDT480, **32**)



**ANEXO 48** – Espectro no infravermelho (cm⁻¹, KBr): 8-(3-(2-Etóxi-2-oxoetóxi)fenil)octanoato de etila (LDT480, **32**)





### ANEXO 50 – Espectro de RMN ¹³C (75 MHz, CDCL₃): 2-(3-(8-Hidróxioctil)fenóxi)-2-metilpropanoato de etila (LDT476, **33**)





#### **ANEXO 52** – Espectro de RMN ¹H (300 MHz, CDCL₃): Ácido 2-[3-(8-Hidróxioctil)fenóxi]-2-metilpropanóico (LDT477, **34**)







ANEXO 54 – Espectro no infravermelho (cm⁻¹, KBr): Ácido 2-[3-(8-Hidróxioctil)fenóxi]-2-metilpropanóico (LDT477, 34)





ANEXO 56 – Espectro de RMN ¹³C (75 MHz, CDCL₃): Ácido 8-(3-((1-Etóxi-2-metil-1-oxopropan-2-il)óxi)fenil)octanóico (LDT478, **35**)





**ANEXO 58** – Espectro de RMN ¹H (300 MHz, CDCL₃): Ácido 8-{3-[2-Carbóxipropan-2-il)oxi]fenil}octanóico (LDT479, **36**)









**ANEXO 60** – Espectro no infravermelho (cm⁻¹, KBr): Ácido 8-{3-[2-Carbóxipropan-2-il)oxi]fenil}octanóico (LDT479, **36**)





ANEXO 63 – Espectro no infravermelho (cm⁻¹, KBr): 8-(3-((1-Etóxi-2-metil-1-oxopropan-2-il)óxi)fenil)octanoato de etila (LDT481, **37**)



