UNIVERSIDADE DE BRASÍLIA FACULDADE DE MEDICINA PROGRAMA DE PÓS-GRADUAÇÃO EM PATOLOGIA MOLECULAR

Fontes preferenciais e mecanismos moleculares envolvidos na homeostase de ferro em Paracoccidioides spp.

Tese de Doutorado

Candidata: Elisa Flávia Luiz Cardoso Bailão Orientadora: Dra. Célia Maria de Almeida Soares

BRASÍLIA - 2014

UNIVERSIDADE DE BRASÍLIA FACULDADE DE MEDICINA PROGRAMA DE PÓS-GRADUAÇÃO EM PATOLOGIA MOLECULAR

Fontes preferenciais e mecanismos moleculares envolvidos na homeostase de ferro em *Paracoccidioides* spp.

Tese apresentada ao Programa de Pós Graduação em Patologia Molecular, da Faculdade de Medicina, da Universidade de Brasília, como requisito parcial para obtenção do título de Doutor em Patologia Molecular

CANDIDATA: Elisa Flávia Luiz Cardoso Bailão. ORIENTADORA: Prof^a. Dr^a. Célia Maria de Almeida Soares.

> BRASÍLIA - DF JANEIRO - 2014

Ficha catalográfica elaborada pela Biblioteca Central da Universidade de Brasília. Acervo 1013855.

Bailão, Elisa Flávia Luiz Cardoso. Fontes preferenciais e mecanismos moleculares envolvidos na homeostase de ferro em Paracoccidioides spp. / Elisa Flávia Luiz Cardoso Bailão. -- 2014. xiii, 191 f. : il. ; 30 cm.
Tese (doutorado) - Universidade de Brasília, Faculdade de Medicina, Programa de Pós-Graduação em Patologia Molecular, 2014. Inclui bibliografia. Orientação: Célia Maria de Almeida Soares.
1. Paracoccidioides brasiliensis. 2. Ferro - Metabolismo.
3. Hemoglobina. I. Soares, Célia Maria de Almeida. II. Título. TRABALHO REALIZADO NO LABORATÓRIO DE BIOLOGIA MOLECULAR, DO DEPARTAMENTO DE BIOQUÍMICA E BIOLOGIA MOLECULAR, DO INSTITUTO DE CIÊNCIAS BIOLÓGICAS DA UNIVERSIDADE FEDERAL DE GOIÁS.

APOIO FINANCEIRO: CAPES/ CNPq/ FINEP/ FAPEG.

BANCA EXAMINADORA

TITULARES

Profa. Dra. Célia Maria de Almeida Soares – Presidente da banca Instituto de Ciências Biológicas, Universidade Federal de Goiás

Prof. Dr. Leonardo Nimrichter Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de Janeiro

Prof. Dr. Wagner Fontes Instituto de Ciências Biológicas, Universidade de Brasília

Prof. Dr. Guilherme Martins Santos Faculdade de Ciências da Saúde, Universidade de Brasília

Prof. Dr. Carlos André Ornelas Ricart Instituto de Ciências Biológicas, Universidade de Brasília

SUPLENTE

Profa. Dra. Luciana Casaletti Instituto de Ciências Biológicas, Universidade Federal de Goiás

O saber a gente aprende com os mestres e os livros. A sabedoria se aprende é com a vida e com os humildes.

Cora Coralina

O início da sabedoria é a admissão da própria ignorância. Todo o meu saber consiste em saber que nada sei.

Sócrates

Aos meus grandes amores e incentivadores...

À Deus, o único conhecedor de todas as minhas angústias, medos e anseios. Nos momentos mais difíceis, o Senhor me carregou nos braços... Obrigada por ser meu companheiro diário...

Ao meu pai, Jeovah, por ter me ensinado valores tão escassos nos dias atuais: respeito e hierarquia. Obrigada por ter contribuído com a formação do meu caráter e pelo seu amor tão peculiar.

À minha mãe, Viviam, por tentar me ensinar todos os dias a ser paciente e perseverante. Mãe, você é meu modelo de dedicação ao trabalho e à família e de amor incondicional. Obrigada pelas orações e pelo abraço acolhedor. Eu realmente não teria chegado até aqui sem você...

Ao meu esposo, Leonardo, por alegrar meus dias e me animar a continuar a caminhada. Você me ajuda a cada dia a vencer meus limites e a enfrentar meus medos. Obrigada por ter aceitado dividir uma vida comigo...

AGRADECIMENTOS

À minha orientadora, Célia, por não medir esforços para captar recursos para dar subsídios à formação de seus alunos. Obrigada pelas oportunidades concedidas e pela confiança.

Ao meu co-orientador do exterior, Dr. Kosman, e sua equipe de trabalho (Yun Hee, Ryan e Changyi) pela oportunidade de fazer parte do grupo por quatro meses. Foi um momento de muito crescimento profissional e pessoal. Muito obrigada pela acolhida e pelos ensinamentos.

Aos órgãos financiadores de pesquisa, CNPq, FINEP, FAPEG e, em especial à CAPES, pelas bolsas concedidas durante o doutorado (Bolsa de Doutorado no Brasil e Bolsa de Doutorado Sanduíche no Exterior).

Aos professores do Laboratório de Biologia Molecular, Maristela Pereira, Silvia Salem-Izaac, Alexandre Bailão, Clayton Borges e Juliana Parente, pelas ricas contribuições para minha formação. As oportunidades de discussão científica foram valiosas. Alexandre, obrigada pelo apoio nos momentos em que mais precisei...

Às professoras Maria José Mendes-Giannini e Ana Marisa Almeida e toda a equipe de trabalho do Laboratório de Micologia Clínica da Unesp de Araraquara pela acolhida e pela importante contribuição para o início dos experimentos com fontes de ferro do hospedeiro.

A todos os meus colaboradores, pelas valiosas contribuições experimentais e durante a escrita dos artigos.

A todos os professores da Universidade de Brasília que enriqueceram minha formação profissional. E aos funcionários desta Instituição, Jaqueline, Dênis Bonfim e EdilaineMelo, pelo esforço em ajudar e em desburocratizar o sistema.

Aos professores da banca por terem gentilmente aceitado o convite para contribuir com a finalização do meu Doutorado.

Às minhas amigas e companheiras de bancada, Mirelle Silva-Bailão e Patrícia Lima, pela força durante a jornada. A ajuda, o carinho e o apoio de vocês foram essenciais para a conclusão de mais essa etapa. Patrícia, obrigada por tornar meus dias mais leves e divertidos. Mirelle, obrigada por me ensinar a ser mais serena e centrada. Teria sido muito penoso chegar até aqui sem vocês... Às minhas amigas, Mariana Tomazett, Luciana Casaletti e Lilian Baeza, por tornarem os dias no Laboratório mais alegres. Obrigada pelos momentos de descontração e pelos abraços fortalecedores.

Aos queridos colegas Marielle Silva, Juliana de Curcio e Lucas Nojosa pelos dias compartilhados no Laboratório. O sorriso e o carinho de vocês tornaram os dias menos penosos.

A todos os colegas do Laboratório de Biologia Molecular pela convivência diária. E a todos os alunos egressos pelas boas lembranças e os ensinamentos deixados.

A todos aqueles da Universidade Estadual de Goiás que contribuíram com apoio e paciência durante essa caminhada.

A todos os meus familiares e amigos pelo incentivo constante e pela força. Sempre quando mais precisei, vocês estiveram do meu lado e eu estive presente em suas orações. Obrigada pelo amor e carinho. Eu não teria conseguido conquistar coisa alguma sem minha família...

SUMÁRIO

LISTA DE ABREVIATURAS	Х
RESUMO	XII
ABSTRACT	XIII

Capítulo 1 – Aspectos gerais

I.	INTRODUÇÃO	15
	I.1. O fungo Paracoccidioides spp	15
	I.2. A paracoccidioidomicose	21
	I.3. O micronutriente ferro	24
II.	JUSTIFICATIVA	28
III	. OBJETIVOS	30
	III.1. Objetivo geral	30
	III.2. Objetivos específicos	30

Capítulo 2 – Fontes preferenciais de ferro do hospedeiro

I.	INTRODUÇÃO	32
II.	ARTIGO SUBMETIDO PARA A REVISTA PLOS NEGLECTED TROPICAL	
	DISEASES	37
III.	DISCUSSÃO	124

Capítulo 3 – Homeostase de ferro

I.	INTRODUÇÃO	129
II.	ARTIGO PUBLICADO NA REVISTA FRONTIERS IN MICROBIOLOGY	133
III.	ARTIGO PUBLICADO NA REVISTA CURRENT FUNGAL INFECTION	
	REPORTS	153

IV. RESULTADOS AINDA NÃO PUBLICADOS	164
V. MATERIAIS E MÉTODOS DOS RESULTADOS AINDA NÃO PUBLICADOS	169
V.1. Isolado do fungo e condições de cultivo	169
V.2. Ensaio qualitativo de atividade de redutase férrica em meio sólido	169
V.3. Análise de transcritos por qRT-PCR em tempo real	169
V.4. Ensaios de captação de ⁵⁹ Fe	170
VI. DISCUSSÃO	171

Capítulo 4 – Considerações finais

I.	CONSIDERAÇÕES FINAIS	175
II.	PERSPECTIVAS	177
III	. REFERÊNCIAS BIBLIOGRÁFICAS	178

LISTA DE ABREVIATURAS

- aRNA ácido ribonucleico (RNA) antisentido;
- ATMT transformação mediada por Agrobacterium tumefaciens;
- BHI infuso de cérebro e coração;
- BPS ácido dissulfônico da batofenantrolina;
- EBP proteína de ligação a estrogênio;
- EDTA ácido etilenodiamino tetra-acético;
- EROs espécies reativas de oxigênio;
- GPI glicosilfosfatidilinositol;
- MCF família de carreadores mitocondriais;
- MMcM meio McVeigh-Morton modificado;
- mRNA ácido ribonucleico (RNA) mensageiro;

nanoUPLC- MS^E – cromatografia líquida de alta performance em nano-escala acoplada à espectrometria de massas com aquisições de dados independentes;

- Pb01 linhagem 01 de Paracoccidioides spp.;
- Pb18 linhagem 18 de Paracoccidioides spp.;
- Pb339 linhagem 339 de Paracoccidioides spp.;
- PCM paracoccidioidomicose;
- PS2 espécie filogenética 2;
- PS3 espécie filogenética 3;
- PS4 espécie filogenética 4;
- PtII composto contendo Pt²⁺;

qRT-PCR – reação em cadeia da polimerase (PCR) quantitativa (q) utilizando a enzima transcritase reversa (RT);

S1-espécie 1;

- SC meio sintético completo;
- Zn-PPIX protoporfirina IX ligada a zinco;

RESUMO

Paracoccidioides spp. é um fungo termodimórfico, causador da paracoccidioidomicose (PCM), uma doença endêmica da América Latina. Atualmente o gênero Paracoccidioides é considerado um grupo filogenético, contendo duas espécies distintas: P. brasiliensis e P. lutzii. Porém, todos os isolados identificados até o momento são capazes de causar a PCM. O ferro é um micronutriente essencial para todos os eucariotos, pois participa como cofator de diversas vias metabólicas. Porém, dentro do hospedeiro, a quantidade de ferro disponível para captação pelo patógeno é limitada. As fontes de ferro do hospedeiro preferenciais de Paracoccidioides spp. e os mecanismos moleculares utilizados pelo fungo para captar ferro ainda não foram investigados. Neste trabalho, foi constatado um robusto crescimento de Paracoccidioides spp. na presença de hemina ou hemoglobina, corroborado pela capacidade do fungo de internalizar uma protoporfirina e de lisar hemácias. Análises transcricionais e proteômicas apontaram para a indução de possíveis receptores de hemoglobina na presença desta fonte de ferro e para a possível internalização de toda a molécula de hemoglobina pelo fungo. Um desses possíveis receptores, Rbt5, foi caracterizado neste trabalho. Rbt5 é uma proteína GPI-ancorada presente na superfície de Paracoccidioides sp., capaz de se ligar à hemina, protoporfirina e hemoglobina e apresenta propriedades antigênicas. Uma linhagem silenciada para o gene rbt5 foi obtida através de RNA antisentido e de transformação mediada por Agrobacterium tumefaciens. Esta linhagem apresentou menor sobrevivência dentro de macrófagos e em baço de camundongo, indicando que Rbt5 pode ser importante para o estabelecimento da infecção por Paracoccidioides spp. Além disso, a via redutiva de captação de ferro foi investigada neste fungo. Análises in silico apontaram que Paracoccidioides spp. possa utilizar redutases férricas, ferroxidases e transportadores de ferro e zinco para captar ferro livre ou ligado a certas moléculas, como a transferrina. Os genes codificantes para essas moléculas possivelmente envolvidas com a captação de ferro foram ativados na ausência desse metal, o que aponta para a importância dessa via em condições de privação de ferro. Genes envolvidos com a homeostase intracelular de ferro também foram investigados neste trabalho e apresentaram-se regulados pelo metal. A atividade de redutase férrica foi demonstrada para Paracoccidioides sp., porém ensaios de captação com ⁵⁹Fe apontaram que a via redutiva só é funcional em condições de privação do metal e que as redutases férricas de Paracoccidioides spp. não são fortemente afetadas por platina. Moléculas de superfície envolvidas com a captação de ferro pelo fungo podem ser importantes alvos de vacinas e/ou de drogas antifúngicas. Dessa forma, este trabalho pode contribuir para o desenvolvimento de terapias alternativas para o tratamento da PCM.

ABSTRACT

Paracoccidioides spp. is a thermodimorphic fungus, which causes paracoccidioidomycosis (PCM), an endemic disease in Latin America. Currently, the Paracoccidioides genus is considered a phylogenetic group containing two distinct species: P. brasiliensis and P. lutzii. However, all isolates identified to date are able to cause PCM. Iron is an essential micronutrient for all eukaryotes, since it participates as a cofactor in several metabolic pathways. However, the amount of available iron inside the host is limited to the pathogen. The host iron sources that are used by Paracoccidioides spp. and the molecular mechanisms used by the fungus to acquire iron has not been investigated. In this study, a robust growth of Paracoccidioides spp. in the presence of hemin or hemoglobin was observed. This fact was supported by the ability of the fungus to internalize protoporphyrin rings and to lyse erythrocytes. Transcriptional and proteomic analysis indicated the induction of possible hemoglobin receptors in the presence of hemoglobin and the possibility of internalization of the entire molecule by the fungus. One of these potential receptors, Rbt5, was characterized in this work. Rbt5 is a GPI-anchored protein, present at the Paracoccidioides sp. cell surface. The protein is able to bind hemin, hemoglobin and protoporphyrin and presents antigenic properties. A Paracoccidioides sp.rbt5knockdown strain was obtained in this work using antisense RNA and Agrobacterium tumefaciens-mediated transformation. This strain showed lower survival inside macrophages and in mouse spleen, indicating that Rbt5 may be important for the establishment of Paracoccidioides spp. infection. Furthermore, the reductive iron uptake pathway was investigated in this fungus. In silico analysis pointed that Paracoccidioides spp. could use ferric reductases, ferroxidases and zinc and iron transporters to uptake free iron or iron bound to certain molecules, such as transferrin. The genes encoding those molecules possibly involved in iron uptake were activated in the absence of the metal, which points to the importance of this pathway in conditions of iron deprivation. Genes involved in intracellular iron homeostasis were also investigated in this work and presented regulation by the metal. A ferric reductase activity was demonstrated for *Paracoccidioides* sp.; however, ⁵⁹Fe uptake assays showed that the reductive pathway is functional only in conditions of iron deprivation and that the Paracoccidioides spp. ferric reductases are not strongly affected by platinum. Surface molecules involved in iron uptake by the fungus may be important targets for vaccines and/or antifungal drugs. Thus, this work can contribute to the development of alternative therapies for PCM treatment.

Capítulo 1

Aspectos gerais

I. INTRODUÇÃO

I.1. O fungo Paracoccidioides spp.

Os fungos dimórficos são caracterizados pela mudança de uma fase filamentosa multicelular para uma unicelular, quando infectam os tecidos do hospedeiro. Essa é uma propriedade genética intrínseca de fungos como *Histoplasma capsulatum, Blastomyces dermatitidis, Coccidioides immitis, Coccidioides posadassi, Sporothrix schenckii, Penicillium marneffei* e *Paracoccidioides spp.* (RAPPLEYE; GOLDMAN, 2006). A patogenicidade dos mesmos parece estar relacionada ao dimorfismo, pelo fato de linhagens incapazes de transitar morfologicamente não serem virulentas (MARESCA; KOBAYASHI, 2000). Em contrapartida, a transição morfológica não parece prejudicar a perpetuação destes organismos, uma vez que eles podem sobreviver no solo como saprobiotas e crescer como micélio. Em *Paracoccidioides spp.* esse dimorfismo está fortemente associado à mudança de temperatura sofrida pelo fungo ao penetrar o hospedeiro (SAN-BLAS; NINO-VEGA; ITURRIAGA, 2002) e por esse motivo ele é classificado como um fungo termodimórfico. Dessa maneira, as duas fases deste fungo podem ser cultivadas *in vitro* apenas variando-se a temperatura de 36 °C, quando o fungo tem um aspecto de levedura, para temperaturas inferiores a 28 °C, quando se tem a fase miceliana (BAGAGLI et al., 2006).

Comparações filogenéticas de dermatófitos e fungos dimórficos baseadas na subunidade ribossomal 28S classificaram *Paracoccidioides spp.* como pertencente ao reino Fungi, filo Ascomycota, classe Plectomyceto, ordem Onygenales, família Onygenaceae, juntamente com *B. dermatitidis* e *H. capsulatum* (LECLERC; PHILIPPE; GUEHO, 1994; SAN-BLAS; NIÑO-VEGA, 2008). *Paracoccidioides brasiliensis* era considerada espécie única de seu gênero até 2006. Com a popularização da sistemática molecular, foi proposta a existência de pelo menos quatro diferentes clados: S1 (espécie 1, com 38 isolados), PS2 (espécie filogenética 2, com 6 isolados), PS3 (espécie filogenética 3, com 21 isolados) (MATUTE et al., 2006) e PS4 (espécie filogenética 4, com 5 isolados identificados até o momento) (BOCCA et al., 2013). S1 é a espécie melhor distribuída geograficamente, ocorrendo no Brasil, Argentina, Paraguai, Uruguai, Peru e Venezuela. PS2 ocorre no Brasil e na Venezuela. PS3 é um grupo geograficamente restrito à Colômbia (MATUTE et al., 2006; THEODORO et al., 2012) (Figura 1). PS4 foi descrita recentemente e contém isolados clínicos provenientes da Venezuela, porém ainda é pouco caracterizada (BOCCA et al., 2013). Análises filogenéticas posteriores revelaram que a linhagem 01 de *Paracoccidioides* spp. (*Pb*01) distancia-se dos quatro clados descritos anteriormente, sugerindo que *Pb*01 seja uma nova espécie

do gênero *Paracoccidioides* (CARRERO et al., 2008). Com o estudo de mais isolados de *P. brasiliensis* foi identificado um grupo com 17 isolados similares genotipicamente, incluindo *Pb*01, que se distanciam do grupo S1/PS2/PS3/PS4 (BOCCA et al., 2013), reforçando que o grupo "semelhante a *Pb*01" refere-se a uma nova espécie. Esta espécie foi denominada *Paracoccidioides lutzii*, em homenagem a Adolfo Lutz, o primeiro a isolar e descrever este fungo em 1908 (TEIXEIRA et al., 2009; TEIXEIRA et al., 2013b). Considera-se que *P. lutzii* seja endêmico da região Centro-Oeste brasileira, mais especificamente dos Estados de Goiás e Mato Grosso (TEIXEIRA et al., 2009). Porém, isolados provenientes de Rondônia foram recentemente classificados como *P. lutzii* baseado em *loci* genealógicos (TEIXEIRA et al., 2013b) (Figura 1).

Figura 1. Distribuição geográfica de *Paracoccidioides* **spp.** S1 ocorre no Brasil, Argentina, Paraguai, Uruguai, Peru e Venezuela. PS2 e *P. lutzii* ocorrem no Brasil principalmente. E PS3 é um grupo geograficamente restrito à Colômbia. *Lacazia loboi* (*L. loboi*) é uma espécie irmã de *Paracoccidioides* spp., fonte de estudo do trabalho de onde a imagem foi extraída (THEODORO et al., 2012).

Elisa Flávia Luiz Cardoso Bailão

Ainda não há um consenso se S1, PS2, PS3 são variantes geográficas de uma mesma espécie ou se são espécies distintas (THEODORO et al., 2012). Por meio de análises filogenéticas, sugerese que S1/PS2/PS3, juntamente com *P. lutzii*, são isolados reprodutivamente na natureza (MATUTE et al., 2006; TEIXEIRA et al., 2009). O isolamento reprodutivo ou genético é o primeiro passo na divergência de espécies fúngicas (TAYLOR et al., 2000). Dessa forma, a busca por diferenças entre as espécies do gênero *Paracoccidioides* é crescente, visto que isso pode influenciar no diagnóstico e no tratamento da paracoccidioidomicose (PCM), micose sistêmica causada por esse gênero.

Morfologicamente, as espécies do gênero *Paracoccidioides* são bastante similares. Macroscopicamente, a fase de levedura de *Paracoccidioides* spp. é caracterizada por colônias rugosas, amareladas e de aspecto cerebriforme (Figura 2A). Microscopicamente, são visualizadas células esféricas ou ovais de 2-30 µm de diâmetro, multinucleadas, apresentando paredes espessas e birrefringentes, aparentemente duplas, e citoplasma contendo vacúolos de lipídeos (Figura 2B). O diagnóstico histológico da PCM baseia-se no achado de estruturas fúngicas com formato de "roda de leme" que refletem células-mães em brotamento multipolar envolvidas por células-filhas periféricas (RESTREPO, 1978). Já a fase miceliana, apresenta-se macroscopicamente como colônias pequenas, irregulares, esbranquiçadas ou acastanhadas (Figura 2C). Microscopicamente, as hifas são finas (1-3 µm), hialinas e septadas, apresentando conídios uninucleados terminais ou intercalares (QUEIROZ-TELLES, 1994) (Figura 2D). A única característica morfológica potencialmente capaz de distinguir *P. brasiliensis* de *P. lutzii* é a forma e o tamanho do conídio. Esta última espécie parece possuir conídios muito longos em comparação com os conídios de *P. brasiliensis* (TEIXEIRA et al., 2009; THEODORO et al., 2012; TEIXEIRA et al., 2013b).

Figura 2. Aspecto morfológico de Paracoccidioides spp. A. Macroscopicamente, a fase de levedura de *Paracoccidioides* spp. é caracterizada por colônias rugosas, amareladas e de aspecto cerebriforme. **B.** Microscopicamente, as células leveduriformes são esféricas ou ovais, multinucleadas, com aspecto de roda de leme. **C.** Macroscopicamente, a fase miceliana apresenta-se como colônias pequenas, irregulares, esbranquiçadas ou acastanhadas. **D.** Microscopicamente, as hifas são finas, hialinas e septadas, apresentando conídios uninucleados terminais ou intercalares. Adaptado de Bocca e colaboradores (2013) e de foto disponível *online* (<u>http://www.parasitologiaclinica.ufsc.br/index.php/info/conteudo/doencas/micoses/</u>).

Genomicamente, diferentes linhagens de *P. brasiliensis* são mais semelhantes entre si do que estas em relação a *P. lutzii*. Os genomas de *Pb*18 (S1) e de *Pb*03 (PS2) possuem cerca de 30 Mb cada um e o genoma de *Pb*01, representando *P. lutzii*, possui cerca de 33 Mb. A similaridade de sequências é maior entre *Pb*18 e *Pb*03 (~96%) do que entre esses e *Pb*01 (~90%). Os transposons representam 8-9% dos genomas de *Pb*18 e *Pb*03 e 16% do genoma de *Pb*01 (DESJARDINS et al., 2011). O número total de genes, por sua vez, não é capaz de diferenciar entre as duas espécies, variando de 7.610 para *Pb*03 a 8.130 para *Pb*01 (DESJARDINS et al., 2011).

Por outro lado, um estudo proteômico comparativo apontou que não há diferenças bem marcadas entre as duas espécies do Gênero Paracoccidioides, mas sim entre diferentes isolados dos quatro grupos filogenéticos: P. brasiliensisS1, PS2, PS3 e P. lutzii (PIGOSSO et al., 2013). A βoxidação demonstrou ser bastante induzida em Pb339, representante do grupo S1, indicando que a oxidação de ácidos graxos seja importante para fornecer acetil-CoA para o metabolismo central de carbono deste grupo filogenético. As estratégias metabólicas mais induzidas em Pb2, representante de PS2, são a via das pentoses-fosfato e a degradação de aminoácidos, que também podem alimentar o metabolismo central de carbono do fungo. PbEpm83, representante de PS3, parece utilizar preferencialmente carboidratos para as rotas aeróbicas de produção de energia. Pb01, representando P. lutzii, parece utilizar um metabolismo mais anaeróbico para a produção de energia a partir de carboidratos. Isso foi proposto a partir da observação da alta produção de enzimas envolvidas com a glicólise e a fermentação alcoólica e o alto nível de etanol nesta linhagem (PIGOSSO et al., 2013). Mais isolados do Gênero Paracoccidioides precisam ser investigados para o desenvolvimento de marcadores bioquímicos capazes de distinguir entre os quatro grupos do complexo Paracoccidioides. Dessa maneira, a análise de polimorfismos de nucleotídeo único (SNPs) é a forma mais utilizada ainda para distinguir entre os diferentes grupos do complexo Paracoccidioides (THEODORO et al., 2012).

Os nichos ecológicos de *Paracoccidioides* spp. ainda não estão completamente esclarecidos, porém sugere-se que o fungo tenha pelo menos dois. O primeiro corresponde ao seu estado filamentoso, em que o fungo vive saprobioticamente na natureza, já tendo sido isolado de solo, de água e de plantas (RESTREPO; MCEWEN; CASTANEDA, 2001). O segundo refere-se à sua associação com animais homeotérmicos, inclusive o homem, em sua fase de levedura, podendo levar à doença. Devido ao pequeno número de isolamentos de *Paracoccidioides* spp. do solo, acredita-se que este ambiente não seja o hábitat permanente do patógeno, vivendo ele tempo variável neste local. Presume-se que o fungo *Paracoccidioides* spp. ocorra normalmente em ambientes úmidos, próximos a rios, onde possa ser protegido por representantes de espécies aquáticas como moluscos, anfíbios, peixes e artrópodes. Estes reservatórios aquáticos estariam fornecendo ao parasito nutrientes, umidade, competição biológica limitada e temperatura apropriada para a sobrevivência do fungo no meio ambiente. A infecção natural do fungo em alguns animais silvestres, como tatus (*Dasypus novemcinctus, Dasypus septemcinctus* e *Cabassous centralis*), e animais domésticos, como cachorros (*Canis familiares*), já foi reportada. Entretanto, estes

organismos são considerados hospedeiros acidentais e não reservas naturais do fungo, pois os mesmos podem ser acometidos pela doença (CONTI-DIAZ, 2007).

Estudos de genômica funcional em *Paracoccidioides* spp. são relativamente recentes porque pouco se sabe sobre sistemas de recombinação homóloga no fungo e um estágio sexual de *Paracoccidioides* spp. não é bem caracterizado. O primeiro estudo que sugeriu a existência de um ciclo sexual em *Paracoccidioides* spp. foi publicado em 2005, quando se identificou possíveis proteínas envolvidas com o tipo de acasalamento (Mat-1 e Mat-2) em análises transcritômicas (FERNANDES et al., 2005). Posteriormente, foram identificados no genoma de *Paracoccidioides* spp. vários genes possivelmente envolvidos com desenvolvimento sexual, meiose e esporulação, altamente conservados em relação a outros fungos dimórficos (DESJARDINS et al., 2011). Recentemente, a primeira evidência da formação inicial de ascocarpos, estruturas derivadas da reprodução sexuada, de *Paracoccidioides* spp.*in vitro* foi publicada. Porém não foi observada a produção de cleistotécio ou ascos mesmo após um ano de co-cultivo de isolados de tipos reprodutivos opostos (TEIXEIRA et al., 2013a).Caso o ciclo sexual de *Paracoccidioides* spp. exista naturalmente, sugere-se que ele ocorra durante a fase saprofítica, miceliana, do fungo (TEIXEIRA et al., 2013a).

Dessa forma, essa carência de dados compromete o desenvolvimento de técnicas eficientes de genética clássica para o trabalho com *Paracoccidioides* spp. Então, as estratégias mais utilizadas para modular a expressão de genes alvo em *Paracoccidioides* spp. são a tecnologia do RNA antisentido (aRNA) e a transformação mediada por *Agrobacterium tumefaciens* (ATMT) (ALMEIDA et al., 2009; RUIZ et al., 2011; TORRES et al., 2013). O princípio básico da tecnologia do aRNA envolve a degradação de um RNA mensageiro (mRNA) específico pela formação de um RNA dupla fita (RAMACHANDRAN; IGNACIMUTHU, 2013). Dessa forma, é inserido no genoma do fungo um oligonucleotídeo capaz de gerar um RNA complementar ao RNA de estudo para silenciar a expressão do gene de interesse. A forma mais eficiente de fazer a inserção desse oligonucleotídeo, já demonstrada para *Paracoccidioides* spp., é a ATMT. A ATMT é uma técnica de mutagênese insercional baseada nas propriedades naturais de infecção da bactéria fitopatogênica *A. tumefaciens*. Essa bactéria é capaz de transferir randomicamente seu DNA para o genoma do hospedeiro (WOOD et al., 2001).

I.2. A paracoccidioidomicose

Paracoccidioides spp. alcança o hospedeiro usualmente através da via respiratória, por inalação de propágulos de micélio, como conídios. Nos pulmões, com o aumento da temperatura para em torno de 36 °C, esses propágulos convertem-se para a fase de levedura, de onde podem se disseminar para diferentes órgãos e tecidos, pelas vias hematogênica e/ou linfática (FRANCO, 1987). Essa mudança brusca no momento da infecção requer um ajuste rápido e coordenado por parte do fungo para manter a sobrevivência dele e para capacitá-lo a invadir o hospedeiro. As mudanças morfogenéticas em fungos dimórficos são reversíveis, sendo consideradas uma forma de adaptação oportunista às condições do hospedeiro. Além disso, a conversão para a forma de levedura é um requisito para a progressão da infecção (SAN-BLAS; NINO-VEGA; ITURRIAGA, 2002; SAN-BLAS; NIÑO-VEGA, 2008).

A susceptibilidade do hospedeiro a Paracoccidioides spp. está relacionada tanto a fatores do fungo, principalmente à virulência do isolado e à quantidade de inóculo, quanto do próprio hospedeiro (FRANCO, 1987). Já foi demonstrado que o hormônio sexual feminino 17β-estradiol inibe seletivamente a transição de micélio para levedura em Paracoccidioides spp. (RESTREPO et al., 1984). Foi observada também a participação deste hormônio na resistência de fêmeas de rato ao desenvolvimento inicial da PCM (ARISTIZABAL et al., 2002). Uma proteína de ligação a estrogênio (EBP) de massa molecular de 60 kDa foi identificada no citosol tanto das células leveduriformes quanto da fase miceliana do fungo, sugerindo que ao entrar em contato com o hormônio, forma-se um complexo proteína-ligante, que inibe a conversão morfológica e, portanto, o estabelecimento e a disseminação da doença (STOVER et al., 1986; CLEMONS; FELDMAN; STEVENS, 1989). As análises do perfil transcricional de Paracoccidioides spp. detectaram uma expressão preferencial do gene que codifica para a EBP na fase patogênica (FELIPE et al., 2005). Essas evidências permitem afirmar uma resistência inata de fêmeas à PCM, demonstrada pela taxa de 10 a 15 homens para 1 mulher que são acometidos pela PCM. Esta prevalência não é observado na infância, onde a infecção e a doença distribuem-se uniformemente entre ambos os sexos (SHIKANAI-YASUDA et al., 2006).

A PCM é uma micose sistêmica, endêmica da América Latina, distribuída do México à Argentina (RESTREPO; MCEWEN; CASTANEDA, 2001). Dentro da região endêmica, estima-se

que 10% da população esteja infectada com o fungo, porém a maioria dela não apresenta a forma ativa da doença (BRUMMER; CASTANEDA; RESTREPO, 1993). Se esta estimativa estiver correta, a prevalência dessa infecção fúngica é comparável a da doença de Chagas na América Latina (MARTINEZ, 2010). Em um estudo de detecção do antígeno paracoccidioidina por reação intradérmica, revelou-se que a PCM infecção é mais comumente observada em trabalhadores rurais e fazendeiros entre 30 e 40 anos de idade (RESTREPO-MORENO, 1994). Acredita-se que o trabalho com solo e plantações em área rural é fator ocupacional predisponente para a aquisição da PCM (FRANCO, 1987). A PCM é raramente observada em crianças e adultos jovens (3 e 10% dos casos relatados, respectivamente) e é mais frequentemente diagnosticada em homens adultos entre 30 e 60 anos de idade (BRUMMER; CASTANEDA; RESTREPO, 1993).

Por não ser uma doença de notificação compulsória, o impacto da PCM nas áreas endêmicas é de difícil quantificação e, talvez por isso, possua baixa visibilidade como um problema de saúde pública, o que enquadra a PCM na lista de doenças negligenciadas (MARTINEZ, 2010). Porém, apenas o Hospital Universitário da Faculdade de Medicina de Ribeirão Preto recebe, aproximadamente, 40 novos casos da doença por ano (MARTINEZ, 2010). Estima-se que sejam 3.360 novos casos por ano em todo o Brasil (MARTINEZ, 2010)e que a taxa de mortalidade seja de 5 a 27% dentro da população infectada (BROWN et al., 2012). O Brasil é o país com maior número de casos da doença (80%), seguido pela Venezuela e pela Colômbia (BRUMMER; CASTANEDA; RESTREPO, 1993). No Brasil, a PCM representa 51,2% das causas de morte entre as micoses sistêmicas, seguida por criptococose, candidose e histoplasmose. Com relação à idade e sexo, 53,4% dos pacientes portadores da PCM possuem 30-59 anos e 87,9% são do sexo masculino. Os Estados brasileiros mais atingidos são São Paulo, Minas Gerais, Rio de Janeiro, Paraná e Rio Grande do Sul (PRADO et al., 2009).

Alguns casos autóctones já foram diagnosticados na Europa, nos Estados Unidos da América e na Ásia (JOSEPH; MARE; IRVING, 1966; CHIKAMORI et al., 1984; AJELLO; POLONELLI, 1985). Estes relatos possibilitaram a determinação de um período assintomático da PCM (PCM infecção), que é em média 15,3 anos, que ocorre após o contato do paciente com a área endêmica até a manifestação da doença (BRUMMER; CASTANEDA; RESTREPO, 1993). O longo período de latência, característico da PCM, dificulta o processo de determinação precisa do sítio onde a infecção ocorreu (BORELLI, 1972). O controle da infecção depende da resposta imune celular do tipo Th1, caracterizado pela síntese de citocinas que ativam macrófagos e linfócitos T

CD4⁺ e CD8⁺, resultando na formação de granulomas compactos. Estas estruturas tentam controlar a replicação e a disseminação do fungo, porém células leveduriformes quiescentes, porém viáveis, podem persistir no interior do granuloma (SHIKANAI-YASUDA et al., 2006). A reativação endógena pode ocorrer dependendo de fatores genéticos e hormonais do próprio hospedeiro, como debilidade por outras patologias, alcoolismo crônico, má nutrição, fumo, imunossupressão e presença/ausência de estrogênio (RESTREPO-MORENO, 2003). Se a infecção não for controlada, a PCM doença se manifesta no paciente.

As formas clínicas da PCM são classificadas em: aguda ou subaguda (juvenil) e crônica ou adulta (FRANCO, 1987). A forma aguda da micose corresponde a 5% dos casos (BOCCA et al., 2013), afeta principalmente crianças e jovens e é a forma mais grave e com pior prognóstico. Seu quadro clínico caracteriza-se por um desenvolvimento rápido e por marcante envolvimento de órgãos como figado, baço, gânglios linfáticos e medula óssea. Nesta forma, a PCM conduz à perda gradual de resposta imune celular e induz à produção de altos títulos de anticorpos específicos (BRUMMER; CASTANEDA; RESTREPO, 1993). A forma crônica ou adulta representa mais de 90% dos casos, sendo a maioria dos pacientes constituída por homens adultos entre 30 e 60 anos de idade, que trabalharam em áreas de agricultura (BOCCA et al., 2013). Ao contrário da forma aguda, o quadro clínico apresenta um desenvolvimento lento com comprometimento pulmonar evidente (BRUMMER; CASTANEDA; RESTREPO, 1993). Em aproximadamente 25% dos casos, o pulmão é o único órgão afetado - forma unifocal. Muitas vezes, com o desenvolvimento silencioso da doença, o paciente busca auxílio médico somente quando apresenta sintomas de comprometimento extrapulmonar. Nestes casos se constatam o envolvimento de outros órgãos, como pele, mucosas das vias aéreas superiores, trato digestivo e linfonodos - forma multifocal (LONDERO; RAMOS; MATTE, 1986; BRUMMER; CASTANEDA; RESTREPO, 1993). A forma crônica apresenta notável tendência à disseminação, sendo pouco frequente os quadros onde há somente comprometimento pulmonar (RESTREPO; CANO; TABARES, 1983). O comprometimento do sistema nervoso central é descrito em 6-25% dos pacientes, afetando o córtex, o cerebelo, o cérebro ou todas as regiões (BOCCA et al., 2013). A PCM requer tratamento prolongado, comumente por mais de um ano, com derivados de sulfonas, anfotericina B, azóis ou terbinafina (MARTINEZ, 2010; BOCCA et al., 2013). Recidivas, complicações e sequelas podem acontecer em até 20% dos pacientes. O comprometimento pulmonar pode levar à fibrose e, consequentemente, à insuficiência respiratória (MARTINEZ, 2010).

Todas as espécies do gênero Paracoccidioides identificadas até hoje podem causar PCM. Porém várias peculiaridades regionais, ainda não explicadas, já foram relatadas para as manifestações clínicas, o diagnóstico, e o tratamento da doença (TEIXEIRA et al., 2013b). Já foi reportado que no Estado de Goiás existe a presença frequente de uma forma linfática-abdominal da doença, não usual em outras áreas endêmicas (BARBOSA; DAHER; DE OLIVEIRA, 1968). Isso pode ocorrer pela maior frequência de P. lutzii em Goiás (TEIXEIRA et al., 2013b). Essa hipótese pode ser corroborada por outro estudo que demonstrou que isolados de P. lutzii, diferentemente de isolados de P. brasiliensis, causaram peritonite progressiva intensa, seguida de rápida disseminação para baço, fígado, gânglios linfáticos e mesentério intestinal em camundongos (MOLINARI-MADLUM; FELIPE; SOARES, 1999). Além disso, para o diagnóstico da PCM, é comum utilizar testes sorológicos com o antígeno padrão Gp43, purificado da linhagem Pb339 do grupo filogenético S1 de P. brasiliensis. Porém, esses testes apresentam uma alta taxa de falso negativo quando são utilizados soros de pacientes da região Centro-Norte do Brasil (BATISTA et al., 2010). A utilização de Gp43 de um isolado do grupo filogenético PS3 (Epm83) apresentou resultados semelhantes com soros de pacientes da região Centro-Oeste do Brasil (MACHADO et al., 2013). Com relação ao tratamento da PCM, já foi observado que pacientes infectados com isolados de P. lutzii respondem melhor à terapia com a droga trimetoprim-sulfametoxazol do que pacientes infectados com isolados de P. brasiliensis (HAHN et al., 2003). Esses dados reforçam a importância do estudo de diferentes isolados de Paracoccidioides spp. para aperfeiçoar o diagnóstico e o tratamento da PCM, favorecendo uma melhoria da qualidade de vida do paciente.

I.3. O micronutriente ferro

O ferro, o quarto elemento mais abundante da crosta terrestre, é um íon metálico que se apresenta sob dois estados de valência: Fe^{3+} (estado férrico) ou Fe^{2+} (estado ferroso) (MIETHKE, 2013). Na presença de oxigênio molecular, o ferro é estável como Fe^{3+} e, assim, Fe^{2+} auto-oxida espontaneamente. Dessa forma, o estado férrico é a forma predominante do ferro no ambiente. Porém, Fe^{3+} liga-se tão avidamente aos seus ligantes que torna esses complexos inertes quimicamente (KOSMAN, 2003). Por isso, Fe^{2+} é a forma mais utilizada como parte de grupos prostéticos, como ferro mono e dinuclear, grupo Fe-S e heme (KOSMAN, 2013). Esses grupos prostéticos têm alto potencial óxido-redutor e fazem parte de enzimas envolvidas em uma série de processos biológicos (**Figura 3**), como biossíntese de DNA e de vitaminas, biossíntese e

degradação de aminoácidos, assimilação de nitrogênio, respiração celular, detoxificação de radicais livres, dentre outros (CANESSA; LARRONDO, 2013; KOSMAN, 2013). Como muito desses processos estão envolvidos com o metabolismo de energia, o ferro é essencial para quase todos os organismos descritos. Porém eles enfrentam dificuldades para captar este micronutriente pela insolubilidade do Fe³⁺ em água em pH neutro e pela competição com os organismos que ocupam o mesmo nicho (KOSMAN, 2013). A maioria dos micro-organismos vivem em condições em que a concentração de ferro solúvel é menor que 10⁻⁹ M, que é o caso de ambientes aeróbicos, não ácidos ou no interior do hospedeiro eucarioto, no caso de micro-organismos patogênicos (MIETHKE, 2013).

Figura 3. Processos biológicos que contam com a participação do ferro. Várias enzimas, representadas pelas formas geométricas, utilizam ferro como cofator e participam de diversas vias metabólicas. Adaptado de Kosman (2013).

Os fungos utilizam principalmente duas vias para captar o micronutriente ferro. Uma delas envolve a captação de sideróforos ou grupo heme mediada por receptores (KOSMAN, 2013). Sideróforos são pequenas moléculas que atuam como quelantes de Fe³⁺ de alta afinidade (HAAS;

EISENDLE; TURGEON, 2008). E o grupo heme é um anel orgânico heterocíclico, chamado de protoporfirina IX, covalentemente ligado a um átomo de Fe^{2+} (HAMEL et al., 2009). Quando o Fe^{2+} do grupo heme auto-oxida, o complexo porfirina- Fe^{3+} passa a ser chamado de hemina, com concomitante produção de ânions superóxido (Figura 4) (PARROW; FLEMING; MINNICK, 2013). A outra estratégia usada por fungos é chamada de via redutiva de assimilação de ferro por envolver a redução do Fe^{3+} para aumentar sua solubilidade. Este passo é seguido pela oxidação e internalização simultâneas do íon (KOSMAN, 2013).

Figura 4. Síntese do grupo heme e da hemina a partir da protoporfirina IX. A adição de Fe²⁺ ao anel de protoporfirina IX, pela enzima ferroquelatase, forma o grupo heme. Quando esta molécula sofre autooxidação, ânion superóxido é liberado e a hemina é formada. Adaptado de imagens disponíveis *online* (http://www.rpi.edu/dept/bcbp/molbiochem/MBWeb/mb2/part1/heme.htm e http://www.rsc.org/ej/PP/2013/ c2pp25247c/c2pp25247c-f1.gif).

A aquisição de ferro pelos fungos deve ser estritamente regulada porque ainda não foi descrito um mecanismo de excreção desse micronutriente nesses micro-organismos (KAPLAN; KAPLAN, 2009) e o ferro em excesso é tóxico, já que participa das reações de Fenton, gerando espécies reativas de oxigênio (EROs), como radicais hidroxil (PROUSEK, 2007). Esses radicais podem degradar polissacarídeos, causar rupturas nas fitas de DNA, inativar enzimas e iniciar a peroxidação de lipídeos (MCCORD, 1996). Quando o ferro está em excesso dentro da célula fúngica, genes codificantes para proteínas envolvidas com mecanismos de captação de ferro têm sua expressão reprimida; enquanto que genes que participam da estocagem intracelular de ferro têm

Elisa Flávia Luiz Cardoso Bailão

sua expressão aumentada. Contrariamente, quando o ferro está limitado, a expressão de genes que participam da captação de ferro e da mobilização de ferro dos estoques está ativada; enquanto que a expressão de genes codificantes para várias enzimas não essenciais que usam ferro como cofator, como por exemplo componentes da via de biossíntese de grupo heme, é reprimida (JUNG; KRONSTAD, 2008; VERGARA; THIELE, 2008; HAAS, 2012).

A competição por ferro entre o patógeno e o hospedeiro é um aspecto fundamental da virulência de fungos (JUNG et al., 2008). Para reduzir a quantidade acessível aos microorganismos, o ferro do hospedeiro não está disponível no sangue, em fluidos extracelulares ou no interior da célula, estando predominantemente ligado a proteínas ligantes de ferro de alta afinidade, como a transferrina (soro), a hemoglobina (sangue), a lactoferrina (muco) e a ferritina (meio intracelular) (BULLEN et al., 2005; KORNITZER, 2009). Esse mecanismo de sequestro de micronutrientes, descrito como "imunidade nutricional", é visto como uma resistência natural a infecções (WEINBERG, 1975). Dessa forma, micro-organismos patogênicos têm desenvolvido mecanismos para acessar o ferro ligado a proteínas do hospedeiro. Porém pouco se sabe sobre as preferências de fungos patogênicos por fontes de ferro do hospedeiro e sobre as estratégias utilizadas pelos fungos para obter esse ferro e, dessa forma, estabelecer a infecção.

II. JUSTIFICATIVA

As infecções fúngicas contribuem significativamente para a mortalidade e a morbidade humanas. Estima-se que um milhão e meio de pessoas morram a cada ano vítimas de infeções fúngicas. Apesar disso, o investimento em pesquisa e em tratamento de doenças fúngicas é pequeno quando comparado com o investimento em outras doenças infecciosas (BROWN et al., 2012). A situação piora quando se trata de micoses endêmicas de países em desenvolvimento. A paracoccidioidomicose (PCM), por exemplo, é uma micose sistêmica, endêmica da América Latina, enquadrada na lista de doenças negligenciadas por possuir baixa visibilidade como um problema de saúde pública (MARTINEZ, 2010). Por não ser uma doença de notificação compulsória, o impacto da PCM para a saúde pública é de difícil quantificação (MARTINEZ, 2010), mas estima-se que sejam 4.000 infecções por ano no Brasil e a taxa de mortalidade seja de 5 a 27% dentro da população infectada (BROWN et al., 2012).

Paracoccidioides spp., causador da PCM, é um fungo termodimórfico que pode infectar o hospedeiro através de propágulos aéreos. Após a transição de micélio para levedura nos pulmões do hospedeiro, o fungo pode se disseminar para diversos órgãos e tecidos através das vias hematogênica e linfática (FRANCO, 1987; BORGES-WALMSLEY et al., 2002). A incubação de *Paracoccidioides* sp. com sangue humano não leva a um aumento na expressão de genes envolvidos com a aquisição de ferro pelo fungo, sugerindo que essa condição não é ferro limitante para o micro-organismo (BAILÃO et al., 2006). Nos tecidos do hospedeiro, como nos pulmões, o fungo pode ser internalizado pelos macrófagos (BRUMMER et al., 1989; VOLTAN et al., 2013). Já foi demonstrado que macrófagos não ativados são permissivos para multiplicação intracelular de *Paracoccidioides* sp. (BRUMMER et al., 1989; MOSCARDI-BACCHI; BRUMMER; STEVENS, 1994) e que a disponibilidade de ferro dentro de monócitos é requerida para a sobrevivência desse fungo (DIAS-MELICIO et al., 2006). Porém, as fontes de ferro do hospedeiro preferenciais de *Paracoccidioides* spp. e os mecanismos moleculares utilizados pelo fungo para captar ferro ainda não foram investigados.

O tratamento disponível para a PCM é longo e pode incluir diversos efeitos colaterais e resistência do patógeno à medicação utilizada. Por isso, deve ser considerado o risco de abandono do tratamento pelo paciente, seguido de recaídas, sequelas e fibrose tecidual, o que pode comprometer a qualidade de vida do indivíduo (BOCCA et al., 2013). Dessa forma, existe uma grande demanda para o desenvolvimento de terapias alternativas menos longas, que sobreponham à

resistência do fungo e que sejam mais seguras para o paciente (BOCCA et al., 2013). Drogas ou vacinas podem ser desenvolvidas contra proteínas fúngicas de superfície envolvidas com a captação de ferro dentro do hospedeiro na tentativa de bloquear a captação desse micronutriente e, então, a proliferação do fungo. Além disso, essas proteínas podem servir de rotas para a introdução de agentes antifúngicos nas células fúngicas (KRONSTAD; CADIEUX; JUNG, 2013). Dessa forma, as proteínas de superfície envolvidas com a ligação ao grupo heme ou com a captação de ferro pela via redutiva podem servir como importantes alvos para o desenvolvimento de vacinas, para o bloqueio da proliferação de *Paracoccidioides* spp. dentro dos fagócitos, ou para a introdução de agentes antifúngicos, através de uma estratégia do tipo "cavalo de Tróia", nas células fúngicas.

III. OBJETIVOS

III.1. Objetivo geral

Determinar as fontes de ferro do hospedeiro preferenciais de *Paracoccidioides* spp. e propor um mecanismo de captação de ferro pela via redutiva e de homeostase intracelular desse micronutriente neste fungo.

III.2. Objetivos específicos

Para alcançar o objetivo geral do trabalho, alguns objetivos específicos foram delineados:

- Avaliar o crescimento de *Paracoccidioides* spp. na presença de transferrina, hemoglobina, ferritina e lactoferrina;
- Verificar a indução ou a repressão de transcritos evolvidos com a captação de uma das fontes de ferro preferenciais, por meio de RT-PCR quantitativa (qRT-PCR) em tempo real;
- Identificar as proteínas que são induzidas ou reprimidas durante o crescimento do fungo na presença da fonte de ferro do hospedeiro preferencial por cromatografia líquida de alta performance em nano-escala acoplada à espectrometria de massas com aquisições de dados independentes (nanoUPLC-MS^E);
- Propor um modelo para a captação e homeostase de ferro em *Paracoccidioides* spp., baseado em busca de homologia *in silico*;
- Verificar se as células leveduriformes de *Paracoccidioides* spp. produzem redutases férricas funcionais, por ensaio qualitativo em meio sólido;
- Verificar a indução ou a repressão de transcritos envolvidos com a homeostase de ferro em *Paracoccidioides* spp. em diferentes concentrações de ferro e tempos de incubação do fungo;
- Avaliar a taxa de captação de ferro radioativo (⁵⁹Fe) em *Paracoccidioides* spp.

Capítulo 2

Fontes prefer<mark>enciais de ferro do hospedeiro</mark>

I. INTRODUÇÃO

O organismo de um adulto sadio possui cerca de 40-50 mg/kg de ferro (ALVAREZ; FERNANDEZ-RUIZ; AGUADO, 2013). A absorção deste elemento acontece no duodeno proximal, mediante a redução de Fe³⁺ por redutases férricas presentes na borda apical dos enterócitos. Após a redução, a internalização é feita por um transportador de metal divalente chamado Dmt1 ou Nramp2. Neste momento, o ferro pode ser estocado, usado em processos celulares ou deixar a célula pela ferroportina, um transportador da membrana basolateral (CASSAT; SKAAR, 2013). O ferro exportado do enterócito é liberado no plasma e liga-se à transferrina, facilitando o transporte para as células alvo e impedindo a produção de radicais livres catalisados por ferro. Quando a transferrina atinge sua célula alvo, a internalização ocorre por endocitose mediada por receptor. A acidificação do endossomo facilita a liberação do ferro que é utilizado em diversos processos biológicos, dentre eles a biossíntese de hemoglobina, ou, quando em excesso, é estocado pela ferritina (**Figura 5**) (CASSAT; SKAAR, 2013).

Figura 5. Homeostase de ferro em humanos. A. O ferro da dieta é incialmente reduzido para ser transportado por DMT1 para dentro do enterócito. O Fe²⁺ pode ser utilizado para diversos processos biológicos, ou pode ser estocado pela ferritina, ou ainda deixar a célula pela ferroportina (FPN). O ferro extracelular liga-se à transferrina (Holo TF) para ser transportado a outras células. B. Precursores eritróides adquirem ferro da transferrina mediado por um receptor (TFR) via endocitose. O ferro é transportado para o citoplasma pela DMT1 e pode seguir para a mitocôndria, onde será utilizado em reações de biossíntese do grupo heme. **C.** Macrófagos adquirem ferro através do receptor de transferrina (TFR) ou da reciclagem de eritrócitos senescentes. A heme oxigenasse catalisa a degradação do grupo heme a ferro, monóxido de

carbono (CO) e biliverdina (BLV). Posteriormente, o ferro é transportado pela DMT1 para o citoplasma, onde pode ser utilizado para diversos processos celulares, ou estocado na ferritina, ou ainda pode sair da célula pela ferroportina (FPN). Adaptado de Cassat e Skaar (2013).

Menos de 10% da necessidade diária de ferro é obtida pela absorção intestinal. O restante é obtido pela reciclagem do ferro da hemoglobina (HENTZE et al., 2010). Cada eritrócito pode conter 280 milhões de moléculas de hemoglobina, resultando em uma capacidade de ferro de mais de um bilhão de átomos por célula (CASSAT; SKAAR, 2013). A hemoglobina em eritrócitos senescentes é reciclada por macrófagos do sistema reticuloendotelial, principalmente do baço (HENTZE et al., 2010). A enzima heme oxigenase libera ferro e monóxido de carbono do anel de protoporfirina, resultando na produção de biliverdina. O ferro liberado volta para a transferrina no plasma ou é estocado pela ferritina (**Figura 5**) (CASSAT; SKAAR, 2013).

A maior parte do ferro no organismo humano está ligado à hemoglobina (65%) ou à mioglobina (10%) ou faz parte do grupo prostético de diversas enzimas, como catalase, peroxidase ou citocromos (5%). Os 20% restantes do total de ferro do corpo humano encontra-se como reserva intracelular, ligado a proteínas como a ferritina, circula no plasma sanguíneo ligado à transferrina (menos de 1%) ou é excretado em fluidos corporais, como no leite, ligado à lactoferrina. Dessa forma, as concentrações de ferro livre em condições fisiológicas são extremamente reduzidas, na faixa de 10⁻¹⁸ M (ALVAREZ; FERNANDEZ-RUIZ; AGUADO, 2013). Para tentar superar essa "imunidade nutricional" imposta pelo hospedeiro (WEINBERG, 1975), muitos micro-organismos desenvolveram mecanismos para utilizar as proteínas ligantes de ferro de alta afinidade (hemoglobina, ferritina, transferrina e lactoferrina) para adquirir esse micronutriente do hospedeiro.

Como explicitado, as fontes de ferro do hospedeiro mais comuns são a hemoglobina e a ferritina. A hemoglobina é uma proteína globular compacta de aproximadamente 64 kDa, composta por quatro subunidades (2 α e 2 β). Cada uma delas possui um grupo prostético heme, protoporfirina IX ligada a um átomo de Fe²⁺, que se liga reversivelmente ao oxigênio(MARENGO-ROWE, 2006) e, por isso, é utilizada para transportar essa molécula dos pulmões para os tecidos periféricos. Nesses locais, o CO₂, que é abundante, é captado pelas hemácias e metabolizado pela anidrase carbônica a ácido carbônico e H⁺. A diminuição do pH favorece a liberação do O₂ do grupo heme. Em contraste, nos pulmões a taxa de CO₂ é mais baixa e o pH é mais alto, favorecendo a ligação do O₂ à hemoglobina (THOM et al., 2013). Já a ferritina é uma proteína formada por 24 subunidades (pesadas, H, e leves, L) e possui cerca de 450 kDa. Essa estrutura proteica possui uma

grande cavidade que comporta até 4500 íons Fe³⁺(WANG; PANTOPOULOS, 2011). A ferritina tem um papel importante na manutenção da homeostase intracelular de ferro, capturando este metal livre no citoplasma e evitando, assim, as reações de Fenton (TORTI; TORTI, 2002).Apesar de a maioria da ferritina humana ser intracelular, níveis baixos (20-300 µg/l) podem ser encontrados circulando no sangue, mas a função dessa ferritina ainda é desconhecida (HARRISON; ADAMS, 2002).

A transferrina constitui um grupo de glicoproteínas monoméricas de aproximadamente 80 kDa, que se ligam fortemente e reversivelmente a dois íons Fe^{3+} (BOU-ABDALLAH: TERPSTRA, 2012). Um dos membros desse grupo é a própria transferrina humana, que transporta ferro de sítios de absorção para sítios de utilização e estocagem desse micronutriente pelo plasma sanguíneo (FLETCHER; HUEHNS, 1968), porém ela encontra-se apenas 30% saturada com ferro, já que ela pode se ligar a até 40 diferentes ions metálicos (BOU-ABDALLAH; TERPSTRA, 2012). Outro membro desse grupo é a lactoferrina, que está presente em fluidos corporais como leite, saliva e lágrimas, além de ser liberada por neutrófilos durante a degranulação (GONZALEZ-CHAVEZ; AREVALO-GALLEGOS; RASCON-CRUZ, 2009). Apesar de ser uma proteína transportadora de ferro, a lactoferrina é raramente utilizada por micro-organismos como fonte desse micronutriente por possuir atividade antimicrobiana. Essa atividade pode estar associada a dois mecanismos. O primeiro seria a ligação da lactoferrina ao ferro com alta afinidade, o que impediria o microorganismo de captar o metal ligado à proteína, promovendo o sequestro de ferro em sítios de infecção. O segundo mecanismo seria a interação de aminoácidos carregados positivamente da lactoferrina com moléculas aniônicas da superfície de micro-organismos, o que poderia causar lise celular (GONZALEZ-CHAVEZ; AREVALO-GALLEGOS; RASCON-CRUZ, 2009). A atividade antifúngica de lactoferrina já foi demonstrada para C. albicans (KIRKPATRICK et al., 1971; BELLAMY et al., 1993; TAKAKURA et al., 2003) e Aspergillus fumigatus (ZAREMBER et al., 2007).

Acredita-se que os fungos possam utilizar três estratégias para captar ferro do hospedeiro. (1) A via redutiva de assimilação de ferro. Esta via conta com redutases férricas de membrana, que estão acopladas a um mecanismo de oxidação-permeação. Esse sistema já foi descrito para *Saccharomyces cerevisiae* (STEARMAN et al., 1996; SINGH et al., 2006), *Candida albicans* (MORRISSEY; WILLIAMS; CASHMORE, 1996; ZIEGLER et al., 2011) e *Cryptococcus neoformans* (JACOBSON; GOODNER; NYHUS, 1998). Em *C. albicans* e em *C. neoformans* essa via tem um importante papel durante a captação de ferro da transferrina (KNIGHT et al., 2005;
Elisa Flávia Luíz Cardoso Bailão

JUNG et al., 2008). (2) A captação de biomoléculas utilizando receptores de superfície. Os sideróforos, quelantes de ferro de baixo peso molecular, são reconhecidos por receptores na superfície do fungo e internalizados. Alguns fungos são capazes de produzir, secretar e captar seus próprios sideróforos, como é o caso de A. fumigatus (CHARLANG et al., 1981) e Histoplasma capsulatum (HOWARD et al., 2000). Outros fungos, porém, são capazes apenas de captar sideróforos produzidos por outros organismos (xenosideróforos), como por exemplo, S. cerevisiae (FROISSARD et al., 2007) e C. neoformans (JACOBSON; PETRO, 1987). Além disso, sugere-se que alguns fungos consigam internalizar a hemoglobina após a ligação a um receptor de superfície e liberar o ferro intracelularmente, como por exemplo, C. albicans (WEISSMAN et al., 2008) e C. neoformans (HU et al., 2013). (3) A acidificação do meio circundante. A acidificação torna o ferro mais solúvel e disponível no meio para a captação, como já sugerido para Neurospora crassa (HOWARD, 1999). Além disso, alguns fungos podem utilizar a associação dessas estratégias para conseguir captar o ferro do hospedeiro. Um exemplo disso seria a captação de ferritina por C. albicans, que utilizaria a adesina e invasina Als3 como receptora desta molécula do hospedeiro. A liberação do ferro da ferritina seria extracelular, promovida pela acidificação do ambiente, e a captação desse micronutriente seria facilitada pela via redutiva (ALMEIDA et al., 2008).

Um dos mecanismos de aquisição de ferro de moléculas do hospedeiro melhor descrito é a captação de hemoglobina por *C. albicans*. Já foi demonstrada atividade hemolítica para este fungo (MANNS; MOSSER; BUCKLEY, 1994), o que liberaria a hemoglobina de dentro das hemácias do hospedeiro e esta proteína seria reconhecida na superfície do fungo por uma família de receptores de membrana (WEISSMAN; KORNITZER, 2004). Das cinco proteínas já descritas pertencentes a essa família, todas contêm domínio CFEM (caracterizado por uma sequência de oito resíduos de cisteína espaçados) e apenas uma não é ancorada por glicosilfosfatidilinositol (GPI) (ALMEIDA; WILSON; HUBE, 2009). Após a ligação da hemoglobina nos receptores de membrana, esse complexo seria internalizado em vesículas endocíticas (WEISSMAN et al., 2008). Dentro do vacúolo, o grupo heme seria degradado por uma heme oxigenase, *Ca*Hmx1, em α -biliverdina (PENDRAK et al., 2004), o que possivelmente liberaria o Fe²⁺ para ser utilizado pelo fungo.

A hemoglobina parece representar uma importante fonte de ferro do hospedeiro também para *C. neoformans*, devido ao robusto crescimento do fungo na presença do grupo heme como única fonte de ferro (JUNG et al., 2008). Recentemente foi sugerido que a proteína Cig1 está presente na superfície de *C. neoformans* participando da captação do grupo heme (CADIEUX et al., 2013). Cig1 possivelmente atua como um hemóforo, proteína extracelular de ligação ao grupo

heme, facilitando o acesso a essa molécula (KRONSTAD; CADIEUX; JUNG, 2013). Após a ligação do grupo heme a Cig1, a via de endocítica seria ativada, permitindo a internalização dessa fonte de ferro do hospedeiro (HU et al., 2013), como sugerido para *C. albicans* (WEISSMAN et al., 2008).

As informações sobre os mecanismos de captação de ferro por fungos patogênicos vêm se acumulando rapidamente. O estudo desses mecanismos vem revelando conexões entre moléculas da superfície dos fungos e a aquisição de fontes de ferro do hospedeiro vertebrado (KRONSTAD; CADIEUX; JUNG, 2013). Porém ainda não se sabe sobre as fontes de ferro preferenciais de Paracoccidioides spp. e quais moléculas de superfície o fungo pode utilizar durante os mecanismos de captação desse micronutriente no hospedeiro. O que já se sabe é que a disponibilidade de ferro dentro de monócitos é requerida para a sobrevivência de Paracoccidioides sp. neste ambiente, uma vez que o efeito da cloroquina sobre o fungo é revertido por FeNTA. A cloroquina é uma droga com propriedade básica, que interfere com o metabolismo celular de ferro, dependente de um pH ácido, diminuindo a disponibilidade desse micronutriente para a sobrevivência de Paracoccidioides sp. E FeNTA é um composto de ferro solúvel em pH neutro a alcalino, que seria utilizado pelo fungo, revertendo o efeito da cloroquina (DIAS-MELICIO et al., 2006). Além disso, já foi demonstrado que genes envolvidos com a captação de ferro em Paracoccidioides sp. não são regulados positivamente durante a incubação do fungo com sangue humano, sugerindo que essa condição não é ferro limitante para o fungo (BAILÃO et al., 2006), o que sugere que Paracoccidioides sp. possa utilizar hemoglobina como fonte de ferro.

Elisa Flávia Luiz Cardoso Bailão

II. ARTIGO SUBMETIDO PARA A REVISTA PLOS NEGLECTED TROPICAL DISEASES

PLOS Neglected Tropical Diseases HEMOGLOBIN UPTAKE BY Paracoccidioides spp. IS RECEPTOR-MEDIATED --Manuscript Draft--

Manuscript Number:	
Full Title:	HEMOGLOBIN UPTAKE BY Paracoccidioides spp. IS RECEPTOR-MEDIATED
Short Title:	HEMOGLOBIN UPTAKE BY Paracoccidioides spp.
Article Type:	Research Article
Keywords:	iron physiology; Rbt5; proteome; antisense RNA technology; Agrobacterium tumefaciens-mediated transformation
Corresponding Author:	Celia Maria de Almeida Soares, PhD Instituto de Ciências Biológicas, Universidade Federal de Goiás Goiânia, Goiás BRAZIL
Corresponding Author Secondary Information:	
Corresponding Author's Institution:	Instituto de Ciências Biológicas, Universidade Federal de Goiás
Corresponding Author's Secondary Institution:	
First Author:	Elisa Flávia Luiz Cardoso Bailão
First Author Secondary Information:	
Order of Authors:	Elisa Flávia Luiz Cardoso Bailão
	Juliana Alves Parente
	Laurine Lacerda Pigosso
	Kelly Pacheco de Castro
	Fernanda Lopes Fonseca
	Mirelle Garcia Silva-Bailão
	Sônia Nair Báo
	Alexandre Melo Bailão
	Marcio L. Rodrigues
	Orville Hernandez
	Juan G. McEwen
	Celia Maria de Almeida Soares, PhD
Order of Authors Secondary Information:	
Abstract:	Iron is essential for the proliferation of fungal pathogens during infection. The availability of iron is limited due to its association with host proteins. Fungal pathogens have evolved different mechanisms to acquire iron from host; however, little is known regarding how Paracoccidioides species incorporate and metabolize this ion. In this work, iron sources of the host that are used by Paracoccidioides spp. were investigated. Robust fungal growth in the presence of the iron-containing molecules hemin and hemoglobin was observed. Paracoccidioides spp. presented hemolytic activity and the ability to internalize a protoporphyrin ring. Using real-time PCR and nanoUPLC-MSE proteomic approaches, fungal growth in the presence of hemoglobin was shown to result in the positive regulation of transcripts that encode putative hemoglobin receptors, in association with the induction of proteins that are required for amino acid metabolism and vacuolar protein degradation. In fact, one hemoglobin receptor ortholog, Rbt5, was identified as a surface GPI-anchored protein that recognized hemin, protoporphyrin and hemoglobin in vitro. Antisense RNA technology and Agrobacterium tumefaciens-mediated transformation were used in this work to

	generate mitotically stable Pbrbt5 mutants. The knockdown strain presented diminished survival inside macrophages and in mouse spleen when compared with the parental strain, which suggested that Rbt5 could act as a virulence regulator that facilitates the host iron acquisition by Paracoccidioides sp. In summary, our data indicate that Paracoccidioides spp. can use hemoglobin as an iron source most likely through receptor-mediated pathways that might be relevant for pathogenic mechanisms.
Suggested Reviewers:	William E Goldman University of North Carolina at Chapel Hill goldman@med.unc.edu
	Joshua D Nosanchuk Yeshiva University josh.nosanchuk@einstein.yu.edu
	Jon Woods University of Wisconsin-Madison jpwoods@wisc.edu
	Hubertus Haas Innsbruck Medical University hubertus.haas@i-med.ac.at
Opposed Reviewers:	

То

Peter Hotez Editor-in-Chief PLOS Neglected Tropical Diseases

Goiânia, December 16th, 2013.

It is our pleasure to submit our article entitled "Hemoglobin uptake by *Paracoccidioides* spp. is receptor-mediated" to the *PLOS Neglected Tropical Diseases* editorial board.

This manuscript has been submitted to PLOS Pathogens in December 9th (manuscript number: PPATHOGENS-D-13-03181). According to the editor Aaron Mitchell, specifically, they had a panel of six editors who read the manuscript and discussed it. The next comments they sent to us: "We were in agreement that the study addresses an important question, and the data are extensive and solid". They were concerned that the main findings are confirmatory of what is known in other fungal pathogens, and thus the novelty of the conclusions is limited. "Several editors suggested that PLOS Neglected Tropical Diseases might be a good journal for this study, since *Paracoccidioides* clear fits into their portfolio. The journal staff may be able to assist you in transferring your manuscript files. Please contact them at plospathogens@plos.org if you wish to pursue that option."

The genus *Paracoccidioides* comprises human thermal dimorphic fungi, causing paracoccidioidomycosis (PCM), an important mycosis in Latin America. This manuscript focuses in this dimorphic fungus, which causes a disease that commonly presents a respiratory chronic manifestation and eventually disseminated lesions. The disease is

considered the most prevalent systemic fungal infection in Brazil and is present in Latin American countries from Mexico to Argentina.

Adaptation to environmental conditions is key to fungal survival during infection of human hosts. Iron is essential for proliferation of fungal pathogens during infection. The availability of iron is limited due to its association to host proteins. Fungal pathogens have evolved different mechanisms to acquire iron from host, but little is known about how *Paracoccidioides* species incorporate and metabolize this ion.

Studies had demonstrated that iron availability is required for *Paracoccidioides* spp. survival. In this way, host's iron sources used by *Paracoccidioides* spp. were investigated in this work. Robust fungal growth in presence of hemin and hemoglobin was observed. *Paracoccidioides* spp. presented hemolytic activity and ability to internalize a protoporphyrin ring. Using real time PCR and nanoUPLC-MS^E proteomic approaches, it was demonstrated that fungal growth in presence of hemoglobin resulted in positive regulation of transcripts encoding predictable hemoglobin receptors, in association with the induction of proteins required for amino acid metabolism and vacuolar protein degradation. In fact, we identified a hemoglobin receptor orthologue, Rbt5, a surface, GPI-anchored protein that recognized hemin, protoporphyrin and hemoglobin *in vitro*.

Functional genomic studies in *Paracoccidioides* spp. have been relatively recent because little is known regarding homologous recombination in this fungus and because the *Paracoccidioides* spp. sexual stage has not been well characterized. This paucity of data compromises the development of efficient classical genetic techniques. Thus, antisense RNA technology and *Agrobacterium tumefaciens*-mediated transformation were used to generate mitotically stable *Pbrbt5* mutants. The knockdown strain presented diminished survival inside macrophages and in mouse spleen when compared with the parental strain, suggesting that Rbt5 could participate in the establishment of *Paracoccidioides* spp. infection. In summary, our data indicate that *Paracoccidioides* spp. can use hemoglobin as an iron source probably through a receptor-mediated pathway that might be relevant for pathogenic mechanisms.

We strongly believe that this study is relevant to further characterizations of the genus *Paracoccidioides* pathobiology, still considered an agent of a neglected disease,

since systems for iron uptake play a major role in adaptation to host niches and are essential factors for the fungal survival and virulence in the mammalian host.

This article is part of our work on identification and characterization of molecules associated to the fungus host interaction as we had described in some recent publications. We believe that this article represents a great contribution for those involved in this area.

We hope to hear from you soon

Sincerely,

Célia Maria de Almeida Soares Laboratório de Biologia Molecular Instituto de Ciências Biológicas Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil. Tel/Fax:55-62-5211110 E-mail: cmasoares@gmail.com

1	LIEMOCI ODIN LIDTAVE DV Daugaaagidigidas and IS DECEDTOD MEDIATED
1	HEMOGLOBIN OPTAKE BY Paracocciaioiaes spp. is RECEPTOR-MEDIATED
2	122
3	Elisa Flávia Luiz Cardoso Bailão ^{1,2,3} , Juliana Alves Parente ¹ , Laurine Lacerda Pigosso ¹ ,
4	Kelly Pacheco de Castro ¹ , Fernanda Lopes Fonseca ⁴ , Mirelle Garcia Silva-Bailão ^{1,3} ,
5	Sônia Nair Báo ⁵ , Alexandre Melo Bailão ¹ , Marcio L. Rodrigues ^{4,6} , Orville Hernandez ^{7,8} ,
6	Juan G. McEwen ^{7,9} and Célia Maria de Almeida Soares ^{1#} .
7	
8	¹ Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de
9	Goiás, Goiânia, Goiás, Brazil;
10	² Unidade Universitária de Iporá, Universidade Estadual de Goiás, Iporá, Goiás, Brazil;
11	³ Programa de Pós Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de
12	Brasília, Brasília, Distrito Federal, Brazil;
13	⁴ Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro,
14	Brazil;
15	⁵ Laboratório de Microscopia Eletrônica, Universidade de Brasília, Distrito Federal, Brazil;
16	⁶ Fundação Oswaldo Cruz – Fiocruz, Centro de Desenvolvimento Tecnológico em Saúde
17	(CDTS), Rio de Janeiro, Brazil;
18	⁷ Unidad de Biología Celular y Molecular, Corporación para Investigaciones Biológicas (CIB),
19	Medellín, Colombia;
20	⁸ Facultad de Ciencias de la Salud, Institución Universitaria Colegio Mayor de Antioquia,
21	Medellín, Colombia;
22	⁹ Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.
23 24	
25	[#] Corresponding author:
26	Célia Maria de Almeida Soares
27	Laboratório de Biologia Molecular
28	Instituto de Ciências Biológicas II
29	Campus Samambaia
30	Universidade Federal de Goiás
31	74690-900
32	Goiânia, GO - Brazil
33	E-mail: cmasoares@gmail.com; Tel./fax: +55 62 3521 1110.
34	
35	Keywords: iron physiology; Rbt5; proteome; antisense RNA technology;

Agrobacterium tumefaciens-mediated transformation.

37 Abstract

Iron is essential for the proliferation of fungal pathogens during infection. The 38 availability of iron is limited due to its association with host proteins. Fungal pathogens 39 have evolved different mechanisms to acquire iron from host; however, little is known 40 regarding how Paracoccidioides species incorporate and metabolize this ion. In this 41 42 work, iron sources of the host that are used by *Paracoccidioides* spp. were investigated. Robust fungal growth in the presence of the iron-containing molecules hemin and 43 hemoglobin was observed. Paracoccidioides spp. presented hemolytic activity and the 44 ability to internalize a protoporphyrin ring. Using real-time PCR and nanoUPLC-MS^E 45 proteomic approaches, fungal growth in the presence of hemoglobin was shown to 46 result in the positive regulation of transcripts that encode putative hemoglobin 47 48 receptors, in association with the induction of proteins that are required for amino acid 49 metabolism and vacuolar protein degradation. In fact, one hemoglobin receptor ortholog, Rbt5, was identified as a surface GPI-anchored protein that recognized hemin, 50 protoporphyrin and hemoglobin in vitro. Antisense RNA technology and 51 52 Agrobacterium tumefaciens-mediated transformation were used in this work to generate mitotically stable *Pbrbt5* mutants. The knockdown strain presented diminished survival 53 inside macrophages and in mouse spleen when compared with the parental strain, which 54 suggested that Rbt5 could act as a virulence regulator that facilitates the host iron 55 56 acquisition by Paracoccidioides sp. In summary, our data indicate that Paracoccidioides spp. can use hemoglobin as an iron source most likely through 57 receptor-mediated pathways that might be relevant for pathogenic mechanisms. 58

59

60 Author summary

61 Fungal infections contribute substantially to human morbidity and mortality. During infectious processes, fungi have evolved mechanisms to obtain iron from high-62 affinity iron-binding proteins. In the current study, we demonstrated that hemoglobin is 63 the preferential host iron source for the thermodimorphic fungus *Paracoccidioides* spp. 64 65 To acquire hemoglobin, the fungus presents hemolytic activity and the ability to internalize protoporphyrin rings. A putative hemoglobin receptor, Rbt5, was 66 67 demonstrated to be GPI-anchored at the yeast cell surface. Rbt5 was able to bind to hemin, protoporphyrin and hemoglobin in vitro. When rbt5 expression was inhibited, 68

69 the survival of *Paracoccidioides* sp. inside macrophages and the fungal burden in

70 mouse spleen diminished, which indicated that Rbt5 could participate in the

establishment of the fungus inside the host. Drugs or vaccines could be developed

against *Paracoccidioides* sp. Rbt5 to disturb iron uptake of this micronutrient and, thus,

the proliferation of the fungus. Moreover, this protein could be used in routes to

74 introduce antifungal agents into fungal cells.

75

76 Introduction

Iron is an essential micronutrient for almost all organisms, including fungi.
Because iron is a transition element, iron can participate as a cofactor in a series of
biological processes, such as respiration and amino acid metabolism, as well as DNA
and sterol biosynthesis [1]. However, at high levels, iron can be toxic, generating
reactive oxygen species (ROS). The regulation of iron acquisition in fungi is one of the
most critical steps in maintaining iron homeostasis because this regulation has not been
described as possessing a regulated mechanism of iron egress [2].

Although microbial iron acquisition is an important virulence mechanism, the 84 mammal host actively regulates intracellular and systemic iron levels as a mechanism to 85 contain microbial infection and persistence. One strategy to protect the body against 86 iron-dependent ROS cascades and to keep iron away from microorganisms is to tightly 87 bind the metal to many proteins, including hemoglobin, ferritin, transferrin and 88 lactoferrin [3]. In human blood, 66% of the total circulating body iron is bound to 89 hemoglobin. Each hemoglobin molecule possesses four heme groups, and each heme 90 group contains one ferrous ion (Fe^{2+}) [4]. Iron that is bound to the glycoprotein 91 transferrin, which presents two ferric ion (Fe³⁺) high affinity binding sites, circulates in 92 93 mammalian plasma [5]. Lactoferrin is present in body fluids, such as serum, milk, saliva and tears [6]. Additionally, similar to transferrin, lactoferrin possesses two Fe³⁺ binding 94 95 sites [7]. Lactoferrin functions as a defense molecule due to its ability to sequester iron [8]. Although these proteins are important in sequestering extracellular iron, ferritin is 96 primarily an intracellular iron storage protein [9] and is composed of 24 subunits that 97 are composed of approximately 4500 Fe^{3+} ions [10]. 98

99 Most microorganisms can acquire iron from the host by utilizing high-affinity 100 iron-binding proteins. Preferences for specific host iron sources and strategies to gain 101 iron that is linked to host proteins are under study. It has been revealed, for example, 102 that *Staphylococcus aureus* preferentially uses iron from heme rather than from 103 transferrin during early infection [11]. However, thus far, there is a scarcity of data from 104 pathogenic fungi. It has been suggested that *Cryptococcus neoformans* preferentially 105 uses transferrin as the host iron source through a reductive iron uptake system because Cft1 (Cryptococcus Fe Transporter) is required for transferrin utilization and is essential 106 107 for full virulence [12]. Histoplasma capsulatum seems to preferentially use transferrin as the host iron source but also uses hemin and ferritin [13,14]. Candida albicans can 108 109 also mediate iron acquisition from transferrin [15]. Moreover, the Als3 (Agglutinin-like 110 sequence) protein functions as a receptor at the surface of *C. albicans* hyphae, which 111 could support iron acquisition from ferritin [16].

112 The strategy for iron acquisition from hemoglobin by C. albicans is the best characterized. C. albicans presents hemolytic activity and utilizes hemin and 113 114 hemoglobin as iron sources [17-20]. For erythrocyte lyses, C. albicans most likely possesses a hemolytic factor that is attached to the fungal cell surface [21]. After 115 hemoglobin release, surface receptors, e.g., Rbt5 (Repressed by Tup1), Rbt51, 116 Wap1/Csa1 (Candida Surface Antigen), Csa2 and Pga7 (Predicted GPI-Anchored), 117 118 could function in the uptake of hemoglobin [19]. Those receptors possess a CFEM domain, which is characterized by a sequence of eight spaced cysteine residues [22]. It 119 120 has been demonstrated that *rbt5* and *wap1* are transcriptionally activated during low iron conditions (10 μ M) in comparison with high iron conditions (100 μ M), which 121 122 indicates that these encoding proteins are important in high-affinity iron uptake pathways [23]. Rbt5, which is a glycosylphosphatidylinositol (GPI)-anchored protein, 123 appears to have a central role in hemin/hemoglobin uptake because the *rbt5* deletion 124 125 impaired C. albicans growth in the presence of hemin and hemoglobin as iron sources [19]. However, rbt5 deletion did not affect C. albicans virulence in a mouse model of 126 127 systemic infection or during rabbit corneal infection [24], which indicates that other 128 compensatory mechanisms could act in the absence of Rbt5 [19]. It is suggested that 129 after hemoglobin binds to Rbt5, the host iron source is internalized by endocytosis into vacuoles [20]. 130

Recently, it has been proposed that the C. neoformans mannoprotein cytokine-131 inducing glycoprotein (Cig1) acts as a hemophore at the cell surface, which sequesters 132 heme for internalization via a receptor that has not yet been described [25]. After heme 133 134 binding, the molecule is most likely internalized via endocytosis with the participation 135 of the ESCRT pathway [26], as described for C. albicans [20]. In C. neoformans, the deletion of vps23, which is an ESCRT-I component, resulted in a growth defect on 136 heme and reduced susceptibility to non-iron metalloporphyrins, which have heme-137 uptake dependent toxicity, indicating that the endocytosis pathway is important for 138 139 hemoglobin utilization by this fungus [26].

140 In the host, macrophages play an important role in maintaining adequate levels 141 of plasma iron. Those cells phagocyte aged or damaged erythrocytes and internally 142 recycle iron from senescent erythrocytes [5]. Macrophages are the first host defense 143 cells that interact with *Paracoccidioides* spp. [27], which is a complex of two suggested 144 species (P. brasiliensis and P. lutzii) of thermodimorphic fungi [28]. Here, this complex is designated as Paracoccidioides. All strains of Paracoccidioides that have been 145 146 described thus far are causative agents of paracoccidioidomycosis (PCM) [28], which is a systemic mycosis [29]. Non-activated macrophages are permissive to intracellular 147 Paracoccidioides multiplication, functioning as a protected environment against 148 complement systems, antibodies and innate immune components and thus leading to 149 150 fungal dissemination from the lungs to other tissues [30,31]. Possible strategies that are used by Paracoccidioides to survive inside macrophages include (i) the downregulation 151 152 of macrophage genes that are involved in the inflammatory response and in the activation against pathogens [32,33], (ii) the inhibition of phagosome-endosome fusion 153 154 [34] and (iii) the detoxification of ROS that are produced by the phagocyte NADPH oxidase system [35]. Moreover, iron availability inside monocytes is required for 155 Paracoccidioides survival because the effect of chloroquine on fungal survival is 156 157 reversed by FeNTA, which is an iron compound that is soluble in the neutral to alkaline pH range [36]. 158

The host iron sources that are used by *Paracoccidioides* have not been established to date. In this work, we demonstrate that *Paracoccidioides* can use hemoglobin as an iron source through a receptor-mediated pathway during infection. This observation unravels new mechanisms by which *Paracoccidioides* species might interfere with the physiology of host tissues. 164

165 **Results**

166 Hemoglobin and heme group uptake by Paracoccidioides

The *Paracoccidioides* strains *Pb*01 and *Pb*18 were grown in the absence of iron 167 (by adding 50 µM BPS, an iron chelator), or in the presence of different iron sources, 168 after 36 h of iron scarcity to deplete intracellular iron storage (Figure 1). The host iron 169 sources that were tested in this work included hemoglobin, ferritin, transferrin and 170 lactoferrin. An inorganic iron source, ferrous ammonium sulfate, was also used. In all 171 conditions, 50 µM BPS was added to verify that the chelator itself does not interfere 172 173 with *Paracoccidioides* growth. Although some subtle differences were observed in the 174 growth profiles, Pb01 and Pb18 were able to grow efficiently in the presence of different host iron sources, primarily hemoglobin and ferritin for both strains, and 175 176 transferrin primarily for the Pb01 strain. In iron-depleted medium, Paracoccidioides grew poorly. Notably, both Pb01 and Pb18 presented a robust growth in the presence of 177 178 hemoglobin or hemin as sole iron sources (Figure 1), which suggested that the 179 increased growth in the presence of hemoglobin was not only due to the amino acid portion but also due to the heme group. These results indicate that hemoglobin could 180 181 represent an important iron source for *Paracoccidioides* in the host environment.

The robust growth in the presence of hemoglobin and hemin led us to investigate 182 183 the ability of *Paracoccidioides* to internalize protoporphyrin rings. For this assay, the 184 fungus was incubated for 2 hours in the presence or absence of 20 µM zincprotoporphyrin IX (Zn-PPIX). The protoporphyrin ring is intrinsically fluorescent, but 185 186 iron is an efficient quencher of this fluorescence. Consequently, the heme group is not 187 fluorescent, but Zn-PPIX is [37]. Both Pb01 and Pb18 presented the ability to 188 internalize the protoporphyrin ring because the fluorescence was observed only in fungi that were cultivated with Zn-PPIX (Figure 2). This observation suggests that, to acquire 189 190 iron from heme, Paracoccidioides may internalize the entire molecule to release the 191 iron intracellularly, instead of promoting the iron extraction outside before taking this 192 ion up into cells.

193 To use hemoglobin as an effective iron source, microorganisms can lyse host 194 erythrocytes to expose the intracellular hemoglobin. The hemolytic ability of

- 195 *Paracoccidioides* was assessed by incubating the fungus for 2 hours after iron starvation
- 196 with sheep erythrocytes. Both Pb01 and Pb18 demonstrated the ability to lyse
- 197 erythrocytes compared with phosphate buffered saline solution (PBS), which was used
- 198 as a negative control (Figure 3). Sterile water was used as a positive control. This result
- 199 suggests that *Paracoccidioides* produces a hemolytic factor that can be secreted or that
- 200 is associated with the fungus surface.

Transcriptional analysis of *Paracoccidioides* genes that encode putative receptors for hemoglobin uptake

203

In silico searches in the Paracoccidioides genome database

204 (http://www.broadinstitute.org/annotation/genome/paracoccidioides_brasiliensis/MultiH ome.html) were performed to verify whether the *Pb*01 and *Pb*18 genomes contain genes 205 206 that encode hemoglobin receptors that are orthologous to genes in the C. albicans 207 hemoglobin receptor gene family [19]. The Pb01 genome presents three putative 208 hemoglobin receptors that are orthologous to C. albicans Rbt5, Wap1/Csa1 and Csa2, 209 respectively. However, Pb18 presents only one ortholog to C. albicans Wap1/Csa1. 210 Additionally, Pb03, which is the other Paracoccidioides strain that has its genome 211 published, presents two orthologs, one to C. albicans Rbt51 and the other one to C. 212 albicans Csa2, as suggested by the *in silico* analysis (Table S1). All four putative identified proteins are predicted to have a CFEM domain, which presents eight spaced 213 214 cysteine residues [22]. These *in silico* analyses suggest that *Paracoccidioides* could 215 uptake hemoglobin through a receptor-mediated process.

216 To analyze the expression of Pb01 genes that encode putative hemoglobin receptors, real-time qRT-PCRs were performed with the transcripts that encode the 217 218 Pb01 proteins Rbt5, Wap1/Csa1 and Csa2 in different iron supplementation conditions. As depicted in Figure 4, the expression of *Pb*01 putative hemoglobin receptors were 219 regulated at the transcriptional level. Pb01 rbt5 was strongly activated after 120 min in 220 221 the presence of 10 μ M inorganic iron or 10 μ M hemoglobin, in comparison with the no 222 iron addition condition. This result suggests that Pb01 Rbt5 may participate in an iron acquisition pathway that is involved in hemoglobin iron uptake. The Pb01 csa2 223 transcript presented the same profile, which suggests that Pb01 Csa2 may also work in 224 225 hemoglobin binding/uptake. The Pbwap1/csa1 transcript was activated after 30 min of

incubation in the presence of $10 \,\mu\text{M}$ hemoglobin, which suggests that *Pb*01 Wap1/Csa1 might be involved in earlier stages of hemoglobin acquisition.

228

Paracoccidioides proteins were induced or repressed in the presence of hemoglobin

A nanoUPLC-MS^E-based proteomics approach was employed to identify Pb01229 230 proteins that were induced or repressed in the presence of 10 µM hemoglobin as the iron 231 source compared with 10 µM ferrous ammonium sulfate, which was used as an 232 inorganic iron source. In total, 282 proteins were positively or negatively regulated. In 233 this group, 159 proteins were induced (Table S2) and 123 proteins were repressed 234 (Table S3) in the presence of hemoglobin, compared with proteins that were produced 235 in the presence of inorganic iron. The false positive rates of protein identification in the presence of hemoglobin and in the presence of inorganic iron were 0.58% and 0.30%, 236 respectively. In total, 75.42% and 76.87% of the peptides that were obtained in the 237 presence of hemoglobin and in the presence of inorganic iron, respectively, were 238 identified in a 5 ppm error range (Figure S1). The resulting peptide data that were 239 240 generated by the PLGS process are shown in Figure S2. Some proteins that were 241 induced or repressed in the presence of hemoglobin are depicted in Tables 1 and 2, respectively. Many proteins that were detected are involved in amino acid, nitrogen and 242 243 sulfur metabolism (Tables 1 and 2). Proteins that are involved in alanine, lysine, tryptophan or aspartate and glutamate metabolism, as well as those proteins that are 244 245 involved in arginine, cysteine, histidine, serine or threonine biosynthesis, were upregulated in the presence of hemoglobin (Table 1). In contrast, proteins that are 246 247 involved in asparagine or phenylalanine degradation were down regulated in the 248 presence of hemoglobin (Table 2). This result suggests that the fungus could use 249 hemoglobin not only as iron source, as demonstrated by the induction of proteins that 250 are involved with the iron-sulfur cluster assembly, such as cysteine desulfurase (**Table** 1), but also as nitrogen and sulfur sources because many proteins that are involved in 251 amino acid metabolism were upregulated in the presence of hemoglobin. This 252 observation reinforces the notion that Paracoccidioides internalizes the entire 253 254 hemoglobin molecule instead of promoting the iron release extracellularly. This 255 internalization could occur by endocytosis because proteins that are involved with 256 lysosomal and vacuolar protein degradation, including carboxypeptidase Y and a 257 vacuolar protease A ortholog, were upregulated (Table 1). Among the induced proteins, it is important to highlight the *Pb*01 Csa2 detection only in presence of hemoglobin 258

- (Table 1), which corroborates the hypothesis that hemoglobin uptake by *Paracoccidioides* is receptor-mediated. Among the repressed proteins, those proteins
 that are involved with porphyrin biosynthesis, including uroporphyrinogen
 decarboxylase and a glutamate-1-semialdehyde 2,1-aminomutase ortholog, were
- detected only in the presence of inorganic iron (**Table 2**), which reinforces the
- 264 hypothesis that hemoglobin is efficiently used by the fungus.

265 Paracoccidioides Rbt5 is a GPI-anchored cell wall protein

266 We continued our studies with the Pb01 ortholog of Rbt5, the best-characterized hemoglobin receptor in C. albicans [20]. As described above, Pb01 rbt5 was also the 267 268 transcript that was most efficiently regulated in the presence of hemoglobin. To investigate this result further, a recombinant GST-tagged *Pb*01 Rbt5 protein, which was 269 270 42.5 kDa, was produced in Escherichia coli and purified using the GST tag. After purification, the GST tag was removed after thrombin digestion, and the resultant 271 272 protein presented a molecular mass of 22 kDa (Figure S3A). Polyclonal antibodies 273 were raised against the recombinant protein in rabbit. To verify the reactivity of the 274 obtained antibody against the recombinant protein, Western blots were performed 275 (Figures S3B and S3C). Only a 22 kDa immunoreactive species was obtained in the 276 Western blot analysis after GST tag cleavage (Figure S3B, lane 3).

277 In silico analysis identified a predicted signal peptide and a putative GPI anchor 278 in the *Pb*01 Rbt5 ortholog, which was similar to *C. albicans* Rbt5 (Figure S4), 279 suggesting that this protein could localize at the Paracoccidioides cell surface. In this way, the GPI-anchored proteins of the Pb01 cell wall were extracted using HF-pyridine. 280 281 A Western blot assay was performed using anti-*Pb*01 Rbt5 polyclonal antibodies 282 against the GPI-anchored protein extract, and a single immunoreactive 60 kDa species 283 was identified in this fraction (Figure 5A, lane 2). The mass shift from 22 kDa to 60 284 kDa suggests post-translational modifications (PTMs) of the native protein, which is in 285 agreement with the occurrence of glycosylation [38].

To confirm the cell wall localization, an immunocytochemical analysis of *Pb*01 yeast cells using anti-*Pb*01 Rbt5 polyclonal antibodies was prepared for analysis using transmission electron microscopy (**Figure 5B, panels 2 and 3**). Rbt5 was abundantly detected on the *Pb*01 yeast cell wall. Some gold particles were observed in the cytoplasm, which is consistent with intracellular synthesis for further surface export. The control sample was free of label when incubated with the rabbit preimmune serum

292 (Figure 5B, panel 1).

255

293 Paracoccidioides Rbt5 binds heme-containing molecules

The fact that *Pb*01 Rbt5 is homologous to *C. albicans* Rbt5 (Figure S4) suggests 294 295 that Pb01 Rbt5 may participate in hemoglobin uptake in Paracoccidioides. In this way, 296 the protein's ability to interact with the heme group was investigated. Affinity assays 297 were performed using the recombinant *Pb*01 Rbt5 and a hemin-agarose resin (Figure 298 6A). A specific ability to interact with hemin was demonstrated by *Pb*01 Rbt5 (Figure 6A, lane 1). Enolase, which is also present at the Pb01 yeast surface [39], was used as a 299 300 negative control in this assay. As expected, enolase was not able to bind hemin. For this 301 reason, the purified protein was not linked to the hemin-agarose resin (Figure 6A, lane 302 2).

303 To confirm the ability of Rbt5 to recognize heme-containing molecules, Pb01 304 yeast cells were submitted to binding assays for further flow cytometry analyses. 305 Background fluorescence levels were determined using yeast cells alone (Figure 6B, 306 **black lines**). Positive controls were composed of systems where Pb01 cells were 307 incubated with polyclonal antibodies raised against PbRbt5, followed by incubation 308 with a fluorescent secondary antibody (Figure 6B, red lines). For the determination of 309 binding activities, Pb01 yeast cells were incubated with protoporphyrin or hemoglobin before or after exposure to the anti-PbRbt5 antibodies, followed by incubation with the 310 311 secondary antibody (Figure 6B, green and blue lines, respectively). When yeast cells were incubated with protoporphyrin or hemoglobin before exposure to primary and 312 313 secondary antibodies, fluorescence intensities were at background levels, suggesting 314 that the heme-containing proteins blocked surface sites that are also recognized by the anti-*Pb*Rbt5 antibodies (Figure 6B). When the cells were exposed to protoporphyrin or 315 to hemoglobin after incubation with the antibodies, the fluorescence levels were similar 316 317 to those levels that were obtained in systems where incubation with the hemecontaining proteins was omitted. These results suggest a high-affinity binding between 318 319 Rbt5 and heme-containing molecules, which corroborates the hypothesis that Rbt5 could act as a hemoglobin receptor at the fungus cell surface. 320

321 Paracoccidioides rbt5 knockdown decreases survival inside the host

To verify whether Rbt5 deficiency could influence the ability of the fungus to 322 323 acquire heme groups or to survive inside the host, an antisense-RNA (aRNA) strategy 324 was applied (Figure 7A). For this analysis, *Pb*339 was used because the *Agrobacterium* 325 *tumefaciens*-mediated transformation (ATMT) of this strain has been standardized [40]. 326 The knockdown strategy was demonstrated to be efficient because the quantification of rbt5 transcripts in two isolates of knockdown strain (Pbrbt5-aRNA) was 60% lower 327 than in the wild type strain (*Pb*Wt) (Figure 7B). The strain that was transformed with 328 the empty vector (*Pb*Wt+EV) showed a similar level of *rbt5* transcripts compared with 329 330 *Pb*Wt (Figure 7B). Because of its higher stability, the *Pbrbt5*-aRNA 1 isolate was 331 selected for the next experiments. The results with *Pb*Wt and *Pb*Wt+EV strains (Figure 332 7C) were similar to those results that are described in Figure 6B. In contrast, 333 fluorescence intensities were all at background levels when the *Pb*rbt5-aRNA strain was 334 assessed. These results suggest that Rbt5 in the Pb339 strain also has an affinity for 335 hemoglobin, which possibly exerts the function of a heme-binding receptor.

336 Despite the efficiency of the knockdown strategy, the *Pbrbt5*-aRNA strain 337 demonstrated an identical ability to grow in the presence of hemoglobin as the iron 338 source as than the other strains (**Figure S5**), which suggests that either a low amount of 339 Rbt5 at the cell surface is sufficient to allow hemoglobin acquisition or that the other 340 putative hemoglobin receptors could compensate for the Rbt5 deficiency. The identical 341 growth ability of all three strains was also observed in media without iron and with 342 ferrous ammonium sulfate as an inorganic iron source (**Figure S5**).

343 To test the ability of *Paracoccidioides* mutant strains to survive inside the host, 344 two strategies were employed. First, Pbrbt5-aRNA and PbWt+EV were co-cultivated 345 with macrophages. PbWt was used as a control. After 24 h, macrophages were first 346 washed with PBS to remove the weakly bounded yeast cells and then were lysed with distilled water. Lysates were plated on BHI solid medium to recover the internalized 347 348 fungi. After 10 days, the colony forming units (CFUs) were counted, and the Pbrbt5aRNA presented approximately 98% reduction in the number of CFUs in comparison 349 350 with *Pb*Wt and *Pb*Wt+EV (Figure 8A). The second strategy included a murine model of infection. Mice were inoculated intraperitoneally with PbWt, PbWt+EV and Pbrbt5-351 352 aRNA, independently. After 2 weeks of infection, the mice were sacrificed, and the spleens were removed. The organs were macerated, and the homogenized sample was 353 plated on BHI agar for CFU determination. The number of CFUs after the infection 354

with the *Pbrbt5*-aRNA strain was approximately 6 times lower than the CFUs that were observed after the infection with *Pb*Wt or with *Pb*Wt+EV (**Figure 8B**). These results indicate that the *rbt5* knockdown could reduce the virulence of the fungi and/or increase the stimulation of the host defense cells to kill the fungus.

To verify whether PbRbt5 had antigenic properties, sera of five PCM patients were used in immunoblot assays against the recombinant protein. All sera presented strong reactivity against the recombinant Pb01 Rbt5 that was immobilized in the nitrocellulose membrane (**Figure 8C, lanes 1-5**). No cross-reactivity was observed with control sera of patients who were not diagnosed with PCM (**Figure 8C, lanes 6-10**). This result suggests that Pb01 Rbt5 is an antigenic protein that is produced by *Paracoccidioides* during human infection.

366

367 Discussion

368 Because pathogenic fungi face iron deprivation in the host, these 369 microorganisms have evolved different mechanisms to acquire iron from the host's 370 iron-binding proteins [41]. C. albicans, for example, can use transferrin, ferritin and hemoglobin as host iron sources [15,16,19,20]. It has been demonstrated in 371 372 Paracoccidioides that genes that are involved in iron acquisition are not upregulated 373 during the incubation of the fungus with human blood, which suggests that this 374 condition is not iron-limiting for this fungus [42]. This observation, coupled with the 375 Paracoccidioides preference for heme iron in culture, suggests heme iron scavenging 376 during infection.

377 In this study, we observed that *Paracoccidioides* presented the ability to internalize a zinc-bound protoporphyrin ring. Moreover, the fungus could promote 378 379 erythrocyte lysis. A hemolysin-like protein (XP_002797334) has been evidenced in a 380 mycelium to yeast transition cDNA library [43], which indicates that Paracoccidioides 381 could access the intracellular heme in the host by producing a hemolytic factor that can 382 be secreted or associated with the fungus surface. The ability to internalize the zinc-383 bound protoporphyrin ring has been demonstrated for C. albicans, but not for C. 384 glabrata [37]. The absence of protoporphyrin internalization by C. glabrata is most 385 likely because heme receptors are not present in this fungus, as suggested by the fact

12

that genes that encode these receptors have not been identified in the *C. glabrata*genome [37]. In contrast, a hemoglobin-receptor gene family that is composed of the
genes *rbt5*, *rbt51*, *wap1/csa1*, *csa2* and *pga7* has been identified in *C. albicans* [19]. To
access the heme group inside the erythrocytes, *C. albicans* also produces a hemolytic
factor that is able to promote the lysis of erythrocytes [17].

391 By performing an *in silico* analysis, iron-related genes were identified in the Paracoccidioides genome, which were composed of rbt5, wap1/csa1 and csa2, that 392 393 were orthologous to C. albicans genes that encode hemoglobin receptors [19], providing further evidence that Paracoccidioides has the ability to use hemoglobin in its regular 394 395 metabolic pathways. In C. albicans, the transcripts rbt5 and wap1 are activated during 396 low iron condition compared with high iron abundance conditions [23], which 397 corroborates the hypothesis that these transcripts are involved in an iron acquisition 398 mechanism, more specifically, in hemoglobin uptake. Similar results were obtained with 399 Paracoccidioides. The rbt5, wap1/csa1 and csa2 transcripts were also induced when the fungus *Pb*01 was cultivated in a low iron condition compared with high iron abundance 400 401 condition. Moreover, these transcripts were induced in a low-inorganic iron condition or in the presence of hemoglobin compared with the fungus growth in conditions with no 402 403 addition of iron. These results suggest that the proteins that are encoded by the analyzed 404 transcripts could be involved in hemoglobin utilization in *Pb*01.

405 The proteomic analysis of the Pb01 strain demonstrated that Csa2 was detected 406 only in the presence of hemoglobin, which suggests that its uptake by Paracoccidioides 407 is receptor-mediated, as described for C. albicans [19] and C. neoformans [25]. Among 408 the three Pb01 hemoglobin-receptor orthologs, Csa2 is the only one that was not 409 predicted to have a GPI-anchor (Table S1). Because no specific protocol to purify GPI-410 surface proteins has been used for proteomic analyses, no additional hemoglobinbinding proteins than Csa2 were identified in this proteome. The Pb01 proteome in the 411 412 presence of hemoglobin demonstrated that proteins that are involved in amino acid, nitrogen and sulfur metabolism and in iron-sulfur cluster assembly were induced in 413 414 comparison with the fungus that was cultivated in presence of inorganic iron. Moreover, 415 proteins that are involved in porphyrin biosynthesis were detected only when the fungus 416 was cultivated in the presence of inorganic iron. These results suggest that the fungus 417 could use hemoglobin as an efficient source of nitrogen, sulfur, iron and porphyrin, internalizing the entire hemoglobin molecule. This internalization hypothesis is 418

corroborated by the fact that proteins that are involved with lysosomal and vacuolar
protein degradation were also induced in the presence of hemoglobin. Similar
mechanisms have been suggested for *C. albicans* and *C. neoformans*. In *C. albicans*,
hemoglobin is taken up by endocytosis after Rbt5/51 binding [20]. In *C. neoformans*,
Cig1, a recently described extracellular mannoprotein that functions as a receptor or
hemophore at the cell surface [25] potentially helps the fungus to take up heme before
iron release, perhaps by endocytosis [26].

426 *Pb01 rbt5* presented a high level of transcriptional regulation in the presence of hemoglobin, as observed in this work. In this way, Pb01 Rbt5 was investigated and 427 428 demonstrated characteristics that were similar to C. albicans Rbt5, such as the presence 429 of a CFEM domain [9] and a GPI anchor [44]. Pb01 Rbt5 was identified in the cell wall 430 extract, which was enriched with GPI proteins that was obtained as previously described 431 [45], and was visualized at the Pb01 yeast surface. These results indicate that Pb01432 Rbt5 is anchored at the fungal surface through a GPI anchor. To function as a hemoglobin receptor, a protein must be able to bind heme. Pb01 Rbt5 heme group-433 434 binding ability was demonstrated using batch ligand affinity chromatography, with a hemin-resin and the Pb01 Rbt5 recombinant protein. Moreover, flow cytometry assays 435 using the whole Pb01 yeast cells and the anti-Rbt5 antibodies, which were raised 436 against the Pb01 Rbt5 recombinant protein, in the presence of protoporphyrin and 437 438 hemoglobin also demonstrated the Pb01 Rbt5 affinity for these two heme-containing molecules. In C. neoformans, the Cig1 heme-binding ability was detected using 439 440 spectrophotometric titration and isothermal titration calorimetry (ITC) assays with recombinant Cig1-GST protein purified from E. coli [25]. These results demonstrated 441 that Pb01 Rbt5 is able to bind hemin, protoporphyrin and hemoglobin, which 442 corroborates the hypothesis that Pb01 Rbt5 could function as a heme group receptor, 443 444 which could help in the acquisition of iron from host sources.

Functional genomic studies in *Paracoccidioides* are recent because little is
known regarding the fungi's life cycle. For instance, mechanisms of homologous
recombination or haploid segregation in *Paracoccidioides* cells remain obscure. This
paucity of data compromises the development of efficient classical genetic techniques
[46]. Thus, to modulate the expression of target genes in *Paracoccidioides*, antisense
RNA (aRNA) technology is applicable by *A. tumefaciens*-mediated transformation
(ATMT) [40,46,47]. In this work, *Paracoccidioides rbt5* knockdown strains were

generated using the same methodologies. Reductions in gene and protein expression in 452 Pbrbt5-aRNA strains were demonstrated by qRT-PCR and flow cytometry assays, 453 454 respectively, in comparison with the control strains (wild type and empty vector 455 transformed strains). Despite the knockdown of *Pb*Rbt5, no growth difference was 456 observed in the presence of inorganic iron or hemoglobin sources. In contrast, in C. albicans, a *Arbt5* mutant strain presented reduced growth in the presence of hemin and 457 458 hemoglobin as iron sources [19]. These results suggest that other hemoglobin receptors could function at the Paracoccidioides surface; this possibility is the focus of future 459 460 studies in our laboratory.

461 Paracoccidioides is a thermodimorphic fungus that can infect the host by 462 airborne propagules. After the mycelium-yeast transition in the host lungs, the fungus 463 can disseminate to different organs and tissues through the hematogenous or lymphatic pathways [48,49]. In the host tissues, including the lungs, the fungus can be internalized 464 465 by macrophages [30,34]. One of the functions of the macrophages is to recycle senescent red cell iron, primarily in the spleen. Hemoglobin-derived heme is catabolized 466 467 and the heme iron is released by a hemoxygenase inside macrophages [5]. In this way, Paracoccidioides has at least two different opportunities to be exposed to the heme 468 group: during (i) fungal dissemination by the hematogenous route or (ii) infection of 469 macrophages. Because it has been suggested that monocyte intracellular iron 470 471 availability is required for Paracoccidioides survival [36], the ability of the rbt5 472 knockdown strain to survive inside macrophages was investigated. The *rbt5* knockdown 473 strain presented decreased survival inside macrophages in comparison with control 474 strains, which indicates that Rbt5 could be a virulence factor and/or could affect 475 macrophage stimulation to kill the internalized yeast cells. In addition, the fungal 476 burden in mouse spleen that was infected with the rbt5 knockdown strain was lower 477 than the fungal burden of the mice that were infected with the control strains, indicating 478 that Rbt5 could be important for infection establishment and/or maintenance by 479 Paracoccidioides. In contrast, the rbt5 deletion did not affect C. albicans virulence in 480 animal models of infection [24], which indicates that other compensatory mechanisms 481 could act in the absence of Rbt5 in this fungus [19]. The ability of Rbt5 to function as 482 an antigen in *Paracoccidioides* was demonstrated by *Pb*01 Rbt5 recombinant protein recognition using sera of five PCM patients in immunoblot assays. Similar results were 483 484 obtained for C. albicans because Rbt5 and Csa1 were found among 33 antigens that

were recognized by sera from convalescent candidemia patients [50]. These results
reinforce that Rbt5 could act in the host-pathogen interface.

487 Fungal surface proteins that are involved in iron uptake might be attractive targets for vaccines or drugs that block microbial proliferation. Moreover, these proteins 488 could be considered as routes to introduce antifungal agents into fungal cells [51]. In 489 that way, iron acquisition mechanisms could be important targets to prevent or treat 490 fungal diseases. This study constitutes evidence that Paracoccidioides could acquire 491 492 heme groups through a receptor-mediated mechanism. In that way, Rbt5 may be a good target for developing vaccines, for blocking Paracoccidioides proliferation inside 493 494 phagocytes, or for using a Trojan horse strategy for introducing antifungal agents into yeast cells. 495

496

497 Materials and Methods

498 Ethics statement

All animals were treated in accordance with the guidelines provided by the
Ethics Committee on Animal Use from Universidade Federal de Goiás based on the
International Guiding Principles for Biomedical Research Involving Animals
(http://www.cioms.ch/images/stories/CIOMS/guidelines/1985_texts_of_guidelines.htm)

503 , and were approved by this committee (131/2008).

504 Strains and growth conditions

505 Paracoccidioides strains Pb01 (ATCC MYA-826; Paracoccidioides lutzii) [28], Pb18 (ATCC 32069; Paracoccidioides brasiliensis, phylogenetic species S1) and 506 507 Pb339 (ATCC 200273; Paracoccidioides brasiliensis, phylogenetic species S1) [52] 508 were used in this work. The fungus was maintained in brain heart infusion (BHI) 509 medium, which was supplemented with 4% (w/v) glucose at 36 $^{\circ}$ C to cultivate the yeast 510 form. For growth assays, *Paracoccidioides* yeast cells were incubated in chemically 511 defined MMcM medium [53] with no iron addition for 36 h at 36 °C under rotation to deplete intracellular iron reserves. Cells were collected and washed twice with 512 513 phosphate buffered saline solution 1X (1X PBS; 1.4 mM KH₂PO₄, 8 mM Na₂HPO₄, 140 514 mM NaCl, 2.7 mM KCl; pH 7.3). Cell suspensions were serially diluted and spotted on

- 515 plates with MMcM medium, which contained 50 µM of bathophenanthroline disulfonic
- acid (BPS) that was supplemented or not (no iron condition) with different iron sources:
- 517 30 μ M inorganic iron [Fe(NH₄)₂(SO₄)₂], 30 μ M hemoglobin, 120 μ M hemin, 30 μ g/ml
- ferritin, $30 \,\mu\text{M}$ transferrin or $3 \,\mu\text{M}$ lactoferrin. All host iron sources were purchased
- 519 from Sigma-Aldrich, St. Louis, MO, USA.

520 Fluorescence microscopy

Paracoccidioides yeast cells, which were maintained in MMcM medium for 36 521 522 h, were incubated on the same medium, which was supplemented or not with 20 μ M zinc protoporphyrin IX (zinc-PPIX) (Sigma-Aldrich, St. Louis, MO, USA) for 2 h at 36 523 524 °C under rotation. Cells were collected, washed twice with 1X PBS and observed by live fluorescence microscopy using an Axio Scope A1 microscope with a 40x objective 525 and the software AxioVision (Carl Zeiss AG, Germany). The Zeiss filter set 05 was 526 527 used to detect intrinsic zinc-PPIX fluorescence. The fluorescence background was determined in the absence of zinc-PPIX in the MMcM medium. 528

529 Hemolytic activity of Paracoccidioides

The hemolytic activity of Paracoccidioides was evaluated as described 530 previously [17], with modifications. Briefly, the fungus was cultivated in non-iron 531 addition MMcM medium for 36 h at 36 °C under rotation. After this period, the yeast 532 cells were harvested and washed twice with 1X PBS. Then, 10^7 cells were incubated 533 534 with 10⁸ sheep erythrocytes (Newprov Ltda, Pinhais, Paraná, Brazil) for 2 h, at 36 °C in 5% CO₂. As negative or positive controls, respectively, erythrocytes were incubated 535 536 with 1X PBS or water. After incubation, the cells were resuspended by gentle pipetting, 537 and then pelleted by brief centrifugation. The optical densities of the supernatants were determined using an ELISA plate reader at 405 nm. The experiment was performed in 538 539 triplicate, and the average of the optical density was obtained for each condition. The average optical density of each condition was used to calculate the relative hemolysis of 540 541 the experimental conditions or the negative control against the positive control. The 542 relative hemolysis data were plotted in a bar graph. Student's t-test was applied to 543 compare the experimental values to the negative control values.

544 In silico analysis of Paracoccidioides putative hemoglobin receptors

The amino acid sequences of putative members of the *Paracoccidioides*hemoglobin receptor family were obtained from the Dimorphic Fungal Database of the
Broad Institute site at

- 548 (<u>http://www.broadinstitute.org/annotation/genome/dimorph_collab//MultiHome.html</u>)
- based on a homology search. The sequences for Pb01 Rbt5, Wap1 and Csa2 have been
- submitted to GenBank with the following respective accession numbers:
- 551 XP_002793022, XP_002795519 and XP_002797192. For *Pb*18 Wap1, the accession
- number is EEH49284. And for *Pb*03 Rbt51 and Csa2, the accession numbers are,
- respectively, EEH22388 and EEH19315. SMART (<u>http://smart.embl-heidelberg.de/</u>),
- 554 SignalP 4.1 Server (<u>http://www.cbs.dtu.dk/services/SignalP/</u>) and big-PI Fungal
- 555 Predictor (<u>http://mendel.imp.ac.at/gpi/fungi_server.html</u>) protein analysis tools were
- used to search for conserved domains, signal peptides and GPI modification sites,
- 557 respectively, in *Paracoccidioides* and *C. albicans* sequences. The amino acid sequences
- of *Paracoccidioides* and *C. albicans* orthologs were aligned using the CLUSTALX2
- 559 program [54].

560 **RNA extraction and quantitative real time PCR (qRT-PCR)**

Pb01 yeast cells were incubated in non-iron addition MMcM medium or in 561 562 MMcM medium that was supplemented with different iron sources: 10 or 100 µM inorganic iron or 10 µM hemoglobin. Cells were harvested after 30, 60 or 120 min of 563 incubation, and total RNA was extracted using TRIzol (TRI Reagent[®], Sigma-Aldrich, 564 St. Louis, MO, USA) and mechanical cell rupture (Mini-BeadbeaterTM - Biospec 565 Products Inc., Bartlesville, OK). After *in vitro* reverse transcription (SuperScriptTM III 566 First-Strand Synthesis SuperMix; InvitrogenTM, Life Technologies), the cDNAs were 567 568 submitted to a qRT-PCR reaction, which was performed using SYBR Green PCR Master Mix (Applied Biosystems, Foster City, CA) in a StepOnePlusTM Real-Time PCR 569 570 System (Applied Biosystems Inc.). The expression values were calculated using the transcript that encoded alpha tubulin (XM_002796593) as the endogenous control as 571 previously reported [55]. The primer pairs for qRT-PCR were designed such that one 572 primer in each pair spanned an intron, which prevented genomic DNA amplification. 573 574 The sequences of the oligonucleotide primers that were used were as follows: *rbt5-S*, 5'- ATATCCCACCTTGCGCTTTGA -3'; rbt5-AS, 5'-575 576 GGGCAGCAACGTCGCAAGA -3'; wap1-S, 5'- AAGTCTGTGATAGTGCTGGAG -

577 3'; *wap1*-AS, 5'- AGGGGGGTTCAGGGAGAGGA -3'; *csa2*-S, 5'-

578 GCAAAATTAAAGAATCTCTCACG -3'; csa2-AS, 5'-

579 ATGAAACGGCAAATCCCACCA-3'; alpha-tubulin-S, 5'-

580 ACAGTGCTTGGGAACTATACC -3'; alpha-tubulin-AS, 5'-

581 GGGACATATTTGCCACTGCC -3'. The annealing temperature for all primers was 62

⁵⁸² °C. The qRT-PCR reaction was performed in triplicate for each cDNA sample, and a

melting curve analysis was performed to confirm single PCR products. The relative

standard curve was generated using a pool of cDNAs from all the conditions that were
used, which was serially diluted 1:5 to 1:625. Relative expression levels of transcripts of

586 interest were calculated using the standard curve method for relative quantification [56].

587 Student's t-test was applied in the statistical analyses.

588 Sample preparation, nanoUPLC-MS^E acquisition and protein classification

Pb01 yeast cells were cultivated in MMcM medium with 10 µM inorganic iron 589 $[Fe(NH_4)_2(SO_4)_2]$ or with 10 μ M bovine hemoglobin (H2500-Sigma-Aldrich, St. Louis, 590 MO, USA) at 36 °C under constant agitation. After 48 h, the cells were harvested, and 591 592 the cell rupture was performed as described above, in the presence of Tris-Ca buffer 593 (Tris-HCl 20 mM, pH 8.8; CaCl2 2 mM) with 1% proteases inhibitor (Protease Inhibitor mix 100x, Amersham). The mixtures were centrifuged at 12,000 g at 4 °C for 10 min. 594 595 The supernatant was collected and centrifuged again at the same conditions for 20 min. Then, the protein extracts were washed twice with 50 mM NH₄HCO₃ buffer and 596 597 concentrated using a 10 kDa molecular weight cut-off in an Ultracel regenerated membrane (Amicon Ultra centrifugal filter, Millipore, Bedford, MA, USA). The 598 599 proteins extracts concentration were determined using the Bradford assay [57]. These 600 extracts were prepared as previously described [58] for analyses using nano-scale ultra-601 performance liquid chromatography combined with mass spectrometry with dataindependent acquisitions (nanoUPLC-MS^E). In this way, the trypsin-digested peptides 602 were separated using a nanoACQUITYTM UPLC System (Waters Corporation, 603 Manchester, UK). The MS data that were obtained via nanoUPLC-MS^E were processed 604 and examined using the ProteinLynx Global Server (PLGS) version 2.5 (Waters 605 Corporation, Manchester, UK). Protein identification and quantification level analyses 606 607 were performed as described previously [59]. The observed intensity measurements 608 were normalized with the identified peptides of the digested internal standard rabbit 609 phosphorylase. For protein identification, the Paracoccidioides genome database was 610 used. Protein tables that were generated by PLGS were merged using the FBAT

- software [60], and the dynamic range of the experiment was calculated using the
- 612 MassPivot software (kindly provided by Dr. Andre M. Murad) by setting the minimum
- repeat rate for each protein in all replicates to 2 as described previously [59]. Proteins
- were considered regulated when p < 0.05 (determined by PLGS) and when the fold
- change between protein quantification in the presence of hemoglobin x presence of
- 616 inorganic iron was \pm 0.2. Proteins were classified according to MIPS functional
- 617 categorization (<u>http://mips.helmholtz-muenchen.de/proj/funcatDB/</u>) with the help of the
- 618 online tools UniProt (<u>http://www.uniprot.org/</u>), PEDANT (<u>http://pedant.helmholtz-</u>
- 620 <u>asi_Pb01</u>) and KEGG (<u>http://www.genome.jp/kegg/</u>). Graphics that indicated the quality
- of the proteomic data were generated using the Spotfire software
- 622 (<u>http://spotfire.tibco.com/</u>).

623 Expression and purification of recombinant Rbt5

624 Oligonucleotide primers were designed to amplify the 585 bp complete coding 625 region of Rbt5: rbt5-S, 5'- GGTGTCGACCAGCTCCCTAATATCCCAC -3'; rbt5-AS, 626 5'- GGT<u>GCGGCCGC</u>GACATAATTTACAGGTAAGC -3' (underlined regions 627 correspond to *Not*I and *Sal*I restriction sites, respectively). The PCR product was 628 subcloned into the NotI/SalI sites of pGEX-4T-3 (GE Healthcare). The DNA was 629 sequenced on both strands and was used to transform the E. coli C41 (DE3). The 630 transformed cells were grown at 37 °C, and protein expression was induced by the addition of 1 mM isopropyl β -D- thiogalactopyranoside (IPTG) for 5 h. The bacterial 631 632 extract was centrifuged at 2,700 g and was resuspended in 1X PBS. The fusion protein 633 Rbt5 was expressed in the soluble form in the heterologous system and was purified by 634 affinity chromatography under non-denaturing conditions using glutathionesepharose 635 4B resin (GE Healthcare). Subsequently, the fusion protein was cleaved by the addition of thrombin protease (50 U/ml). The purity and size of the recombinant protein were 636 evaluated by resuspending the protein in SDS-loading buffer [50 mM Tris-HCl, pH 6.8; 637 100 mM dithiothreitol, 2% (w/v) SDS; 0.1% (w/v) bromophenol blue; 10% (v/v) 638 glycerol], followed by boiling for 5 min, and running the purified molecule on a 12% 639 sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and finally, 640 641 staining with Coomassie blue.

642 Antibody production

The purified Rbt5 was used to generate a specific rabbit polyclonal serum.
Rabbit preimmune serum was obtained and stored at -20 °C. The purified recombinant
protein (300 μg) was injected into rabbit with Freund's adjuvant three times at 10-day
intervals. The obtained serum was sampled and stored at -20 °C.

647 Cell wall protein extractions and enzymatic treatments

648 Yeast cells were frozen in liquid nitrogen and disrupted by using a mortar and 649 pestle. This procedure was performed until the cells completely ruptured, which was 650 verified by optical microscopic analysis. The ground material was lyophilized, weighed, 651 and resuspended in 25 µl Tris buffer (50 mM Tris-HCl, pH 7.8) for each milligram of 652 dry weight as described previously [61]. The supernatant was separated from the cell wall fraction by centrifugation at 10,000 g for 10 min at 4 °C. To remove proteins that 653 654 were not covalently linked and intracellular contaminants, the isolated cell wall fraction was washed extensively with 1 M NaCl, was boiled three times in SDS-extraction 655 656 buffer (50 mM Tris-HCl, pH 7.8, 2% [w/v] SDS, 100 mM Na-EDTA, 40 mM β-657 mercaptoethanol) and pelleted by centrifugation at 10,000 g for 10 min [62]. The 658 washed pellet containing the cell wall enriched fraction was washed six times with 659 water, lyophilized, and weighed. The cell wall fraction, which was prepared as 660 described above, was treated with hydrofluoric acid-pyridine (HF-pyridine) (10 µl for each milligram of dry weight of cell walls) for 4 h at 0 °C [45,63]. After centrifugation, 661 662 the supernatant that contained the HF-pyridine extracted proteins was collected, and HF-pyridine was removed by precipitating the supernatant in 9 volumes of methanol 663 664 buffer (50% v/v methanol, 50 mM Tris-HCl, pH 7.8) at 0 °C for 2 h. The pellet was 665 washed three times in methanol buffer and resuspended in approximately 10 times the 666 pellet volume in SDS-loading buffer, as described previously [63].

667 Western blotting analysis

Twenty micrograms of protein samples were loaded onto a 12% SDS-PAGE gel
and were separated by electrophoresis. Proteins were transferred from gels to
nitrocellulose membrane at 30 V for 16 h in buffer that contained 25 mM Tris-HCl pH
8.8, 190 mM glycine and 20% (v/v) methanol. Membranes were stained with Ponceau
red to confirm complete protein transfer. Next, each membrane was submerged in
blocking buffer [1X PBS, 5% (w/v) non-fat dried milk, 0.1% (v/v) Tween-20] for 2 h.
Membranes were washed with wash buffer [1X PBS, 0.1% (v/v) Tween-20] and

675 incubated with primary antibody, which was used at a 1/3,000 (v/v) ratio of antibody to 676 buffer, for 2 h at room temperature. This step was followed by three 15 min washes 677 with the buffer that was mentioned above. Membranes were incubated with the 678 conjugated secondary antibody [anti-rabbit immunoglobulin G coupled to alkaline 679 phosphatase (Sigma-Aldrich, St. Louis, MO, USA)] in a 1/5,000 (v/v) ratio and 680 developed with 5-bromo-4-chloro-3-indolylphosphate-nitroblue tetrazolium (BCIP-681 NBT). Reactions were also performed with sera from patients with PCM, sera from control individuals (all diluted 1:100) and with 1 µg of purified recombinant Rbt5. After 682 683 incubation with peroxidase conjugate anti-human IgG (diluted 1:1000), the reaction was developed with hydrogen peroxide and diaminobenzidine (Sigma-Aldrich, St. Louis, 684 685 MO, USA) as the chromogenic reagent.

686 Transmission electron microscopy of *Paracoccidioides* yeast cells and

687 immunocytochemistry of Rbt5

688 For the ultrastructural and immunocytochemistry studies, the protocols that were 689 previously described by Lima and colleagues [64] were employed. Transmission 690 electron microscopy was performed using thin sections from Pb01 yeast that were fixed 691 in 2% (v/v) glutaraldehyde, 2% (w/v) paraformaldehyde and 3% (w/v) sucrose in 0.1 M 692 sodium cacodylate buffer pH 7.2. The samples were post-fixed in a solution that contained 1% (w/v) osmium tetroxide, 0.8% (w/v) potassium ferricyanide and 5 mM 693 694 CaCl₂ in sodium cacodylate buffer, pH 7.2. The material was embedded in Spurr resin (Electron Microscopy Sciences, Washington, PA). Ultrathin sections were stained with 695 696 3% (w/v) uranyl acetate and lead citrate. For immunolabeling, the cells were fixed in a 697 mixture that contained 4% (w/v) paraformaldehyde, 0.5% (v/v) glutaraldehyde and 698 0.2% (w/v) picric acid in 0.1 M sodium cacodylate buffer at pH 7.2 for 24 h at 4 °C. 699 Free aldehyde groups were quenched with 50 mM ammonium chloride for 1 h. Block 700 staining was performed in a solution containing 2% (w/v) uranyl acetate in 15% (v/v) 701 acetone. After dehydration, samples were embedded in LR Gold resin (Electron 702 Microscopy Sciences, Washington, PA.). For ultrastructural immunocytochemistry 703 studies, the ultrathin sections were incubated for 1 h with the polyclonal antibody raised 704 against the recombinant Pb01 Rbt5, which was diluted 1:100, and for 1 h at room 705 temperature with the labeled secondary antibody anti-rabbit IgG Au-conjugated (10 nm 706 average particle size; 1:20 dilution; Electron Microscopy Sciences, Washington, PA). 707 The nickel grids were stained as described above and observed using a Jeol 1011

transmission electron microscope (Jeol, Tokyo, Japan). Controls were incubated with a
rabbit preimmune serum, which was diluted 1:100, followed by incubation with the
labeled secondary antibody.

711 Hemin-agarose binding assay

712 The recombinant proteins Rbt5 and Enolase, which were previously obtained in 713 our laboratory [39], were incubated, independently, with a hemin-agarose resin (Sigma-Aldrich, St. Louis, MO, USA) for 1 h at 4 °C. The resin was washed three times with 714 715 cold 1X PBS, resuspended in SDS-loading buffer and boiled for 5 min to elute proteins 716 that were bound to the resin. The samples were submitted to SDS-PAGE, and the 717 proteins were transferred to nitrocellulose membranes as cited above. For Western blot analyses, the primary antibodies anti-Rbt5 and anti-Enolase were used at 1/3,000 and 718 1/40,000 (v/v) ratios, respectively, and developed with BCIP-NBT, as cited above. 719 Enolase was used as a negative control in this experiment. 720

721 Flow cytometry

722 Rbt5 binding affinities for hemoglobin and protoporphyrin were evaluated by flow cytometry. Yeast cells of Paracoccidioides [strains Pb01, Pb339 (PbWt), Pbrbt5-723 aRNA and *Pb*Wt+EV were cultivated as described above, washed with 1X PBS and 724 725 blocked for 1 h at room temperature in 1X PBS, which was supplement with 1% bovine 726 serum albumin (PBS-BSA). Fungal cells were then separated in two groups: the first 727 group was initially treated with 20 µM protoporphyrin or 10 µM hemoglobin and further 728 incubated with the anti-Rbt5 antibodies and an Alexa Fluor 488-labeled anti-rabbit IgG 729 $(10 \,\mu\text{g/ml})$. The second group was sequentially incubated with primary and secondary 730 antibodies as described above. The cells were then treated with 20 µM protoporphyrin 731 or with 10 µM hemoglobin. All incubations were performed for 30 min at 37 °C, 732 followed by washing with 1X PBS. Control cells were not exposed to hemoglobin or to protoporphyrin. Fluorescence levels of yeast cells were analyzed using a FACSCalibur 733 734 (BD Biosciences) flow cytometer, and the data were processed using the FACS Express 735 software.

736 Construction of *P. brasiliensis* Rbt5 antisense-RNA strain

The antisense-RNA (aRNA) strategy was used as described previously [47,65].
Briefly, DNA from wild-type *Pb*339 (*Pb*Wt) exponentially growing yeast cells was

obtained after cell rupture as described above. Platinum Taq DNA Polymerase High

740 Fidelity (Invitrogen, USA) and the oligonucleotides asrbt5-S, 5' -

741 CCGCTCGAGCGGTCTCGGAAACGACGGGTGC - 3' and asrbt5-AS, 5' -

742 GGCGCCCCGCAAGATTTCTCAACGCAAG - 3' were employed to amplify aRNA

from *Pb*Wt *rbt5* DNA. Plasmid construction for aRNA gene repression and *A*.

- 744 *tumefaciens*-mediated transformation (ATMT) of *Pb*Wt was performed as previously
- described [46,66]. The amplified *rbt5*-aRNA fragments were inserted into the pCR35
- plasmid, which was flanked by the calcium-binding protein promoter region (P-*cbp-1*)
- from *H. capsulatum* and by the cat-B termination region (T-*cat-B*) of *Aspergillus*
- *fumigatus* [67]. The pUR5750 plasmid was used as a parental binary vector to harbor
- the aRNA cassette within the transfer DNA (T-DNA). The constructed binary vectors

vere introduced into A. tumefaciens LBA1100 ultracompetent cells by electroporation

- [68] and were isolated by kanamycin selection (100 mg/ml). The A. tumefaciens cells
- that were positive for pUR5750 transformation were used to perform the ATMT of
- 753 Paracoccidioides yeast cells. The hygromycin (Hyg)-resistance gene, hph, from E. coli
- vas used as a selection mark and was flanked by the glyceraldehyde-3-phosphate
- dehydrogenase promoter region (P-*gapdh*) and the trpC termination region (T-*trpC*)
- from Aspergillus nidulans. The selection of transformants (Pbrbt5-aRNA) was
- performed in BHI solid media with Hyg B (75 μ g/ml Hyg) during 15 days of incubation
- at 36 °C. Randomly selected Hyg resistant transformants were tested for mitotic
- stability by subculturing the fungus three times in Hyg 75 μ g/ml and three more times in
- Hyg 150 μ g/ml. *Paracoccidioides* yeast cells were also transformed with the empty
- parental vector pUR5750 (PbWt+EV) as a control during the assays that were
- performed in this study. The investigation of rbt5 gene expression was performed by
- 763 qRT-PCR after consecutive subculturing.

764 Macrophage infection

Macrophages from the cell line J774 A.1 (BCRJ Cell Bank, Rio de Janeiro, accession number 0121), which were maintained in RPMI medium (RPMI 1640, Vitrocell, Brazil) that was supplemented with 10% (v/v) fetal bovine serum (FBS) at 37 °C in 5% CO₂, were used in this assay. In total, $1x10^6$ macrophages were seeded into each well of a 24-well tissue culture plate, and 100 U/ml of murine IFN- γ (PeproTech, Rocky Hill, New Jersey, USA) was added for 24 h at 37 °C in 5% CO₂ for macrophage activation as described previously [69]. Prior to co-cultivation, *Paracoccidioides* yeast

cells (PbWt, Pbrbt5-aRNA and PbWt+EV) were cultivated in BHI liquid medium for 772 72 h at 36 °C. For infection, 2.5x10⁶ Paracoccidioides yeast cells for each strain were 773 added to the macrophages independently. The cells were co-cultivated for 24 h at 37 °C 774 775 in 5% CO₂ to allow fungal internalization. Infected macrophages were first washed 776 three times with 1X PBS, and then macrophages were lysed with distilled water. 777 Dilutions of the lysates were plated in BHI medium, which was supplemented with 5% 778 (v/v) fetal bovine serum (FBS), at 36 °C. Colony forming units (CFUs) were counted after growth for 10 days. CFUs were expressed as the mean value \pm the standard error 779 780 of the mean (SEM) from triplicates, and statistical analyses were performed using Student's t-test. 781

782 **BALB/c mice infection**

783 For the mouse infection experiment, PbWt, Pbrbt5-aRNA and PbWt+EV were cultivated for 48 h in BHI medium, which was supplemented with 4% glucose. Thirty-784 day-old male BALB/c mice (n = 4) were inoculated intraperitoneally with 10^7 yeast 785 786 cells of each strain independently, as previously described [42]. After 2 weeks of 787 infection, mouse spleens were removed and were homogenized using a grinder in 3 mL 788 of sterile 0.9% (w/v) NaCl. In total, 50 μ l of the homogenized sample was plated on 789 BHI agar, which was supplemented with 4% (v/v) fetal calf serum and 4% (w/v) 790 glucose. The plates were prepared in triplicates for each organ of each animal and were 791 incubated at 36 °C. After 15 days, the CFUs for each organ that was infected with each strain were determined by counting, and a mean for each condition was obtained. The 792 793 data were expressed as the mean value \pm the SEM from quadruplicates, and statistical 794 analyses were performed using Student's t-test.

795

796 Acknowledgments

We would like to thank Dr. Andre M. Murad for generously providing the MassPivotproteome analyzing software.

799

800 **References**

- 801 1. Schrettl M, Haas H (2011) Iron homeostasis--Achilles' heel of *Aspergillus fumigatus*?
 802 Curr Opin Microbiol 14: 400-405.
- 803 2. Kaplan CD, Kaplan J (2009) Iron acquisition and transcriptional regulation. Chem
 804 Rev 109: 4536-4552.
- 3. Nevitt T (2011) War-Fe-re: iron at the core of fungal virulence and host immunity.
 Biometals 24: 547-558.
- 4. Ramakrishna G, Rooke TW, Cooper LT (2003) Iron and peripheral arterial disease:
- revisiting the iron hypothesis in a different light. Vasc Med 8: 203-210.
- 5. Hentze MW, Muckenthaler MU, Galy B, Camaschella C (2010) Two to tango:
 regulation of Mammalian iron metabolism. Cell 142: 24-38.
- 6. Vorland LH, Ulvatne H, Andersen J, Haukland HH, Rekdal O, et al. (1999)
 Antibacterial effects of lactoferricin B. Scand J Infect Dis 31: 179-184.
- 7. Jolles J, Mazurier J, Boutigue MH, Spik G, Montreuil J, et al. (1976) The N-terminal
- sequence of human lactotransferrin: its close homology with the amino-terminal
 regions of other transferrins. FEBS Lett 69: 27-31.
- 816 8. Schaible UE, Kaufmann SH (2004) Iron and microbial infection. Nat Rev Microbiol
 817 2: 946-953.
- 9. Almeida RS, Wilson D, Hube B (2009) *Candida albicans* iron acquisition within the
 host. FEMS Yeast Res 9: 1000-1012.
- 10. Harrison PM, Ford GC, Smith JM, White JL (1991) The location of exon
 boundaries in the multimeric iron-storage protein ferritin. Biol Met 4: 95-99.
- 822 11. Skaar EP, Humayun M, Bae T, DeBord KL, Schneewind O (2004) Iron-source
 823 preference of *Staphylococcus aureus* infections. Science 305: 1626-1628.
- 12. Jung WH, Sham A, Lian T, Singh A, Kosman DJ, et al. (2008) Iron source
 preference and regulation of iron uptake in *Cryptococcus neoformans*. PLoS Pathog
 4: e45.
- 13. Timmerman MM, Woods JP (2001) Potential role for extracellular glutathione-
- dependent ferric reductase in utilization of environmental and host ferric compounds
 by *Histoplasma capsulatum*. Infect Immun 69: 7671-7678.
- 14. Newman SL, Smulian AG (2013) Iron uptake and virulence in *Histoplasma capsulatum*. Curr Opin Microbiol.
- 832 15. Knight SA, Vilaire G, Lesuisse E, Dancis A (2005) Iron acquisition from transferrin
 833 by *Candida albicans* depends on the reductive pathway. Infect Immun 73: 5482834 5492.
- 16. Almeida RS, Brunke S, Albrecht A, Thewes S, Laue M, et al. (2008) The hyphalassociated adhesin and invasin Als3 of *Candida albicans* mediates iron acquisition
- from host ferritin. PLoS Pathog 4: e1000217.
- 838 17. Manns JM, Mosser DM, Buckley HR (1994) Production of a hemolytic factor by
 839 *Candida albicans*. Infect Immun 62: 5154-5156.
- 18. Santos R, Buisson N, Knight S, Dancis A, Camadro JM, et al. (2003) Haemin
- uptake and use as an iron source by *Candida albicans*: role of *Ca*HMX1-encoded
 haem oxygenase. Microbiology 149: 579-588.
- 843 19. Weissman Z, Kornitzer D (2004) A family of *Candida* cell surface haem-binding
 844 proteins involved in haemin and haemoglobin-iron utilization. Mol Microbiol 53:
 845 1209-1220.
- 20. Weissman Z, Shemer R, Conibear E, Kornitzer D (2008) An endocytic mechanism
- for haemoglobin-iron acquisition in *Candida albicans*. Mol Microbiol 69: 201-217.

21. Watanabe T, Takano M, Murakami M, Tanaka H, Matsuhisa A, et al. (1999) 848 Characterization of a haemolytic factor from Candida albicans. Microbiology 145 (849 850 Pt 3): 689-694. 22. Kulkarni RD, Kelkar HS, Dean RA (2003) An eight-cysteine-containing CFEM 851 domain unique to a group of fungal membrane proteins. Trends Biochem Sci 28: 118-852 853 121. 23. Lan CY, Rodarte G, Murillo LA, Jones T, Davis RW, et al. (2004) Regulatory 854 networks affected by iron availability in Candida albicans. Mol Microbiol 53: 1451-855 856 1469. 857 24. Braun BR, Head WS, Wang MX, Johnson AD (2000) Identification and characterization of TUP1-regulated genes in Candida albicans. Genetics 156: 31-44. 858 859 25. Cadieux B, Lian T, Hu G, Wang J, Biondo C, et al. (2013) The Mannoprotein Cig1 supports iron acquisition from heme and virulence in the pathogenic fungus 860 861 Cryptococcus neoformans. J Infect Dis 207: 1339-1347. 862 26. Hu G, Caza M, Cadieux B, Chan V, Liu V, et al. (2013) Cryptococcus neoformans requires the ESCRT protein Vps23 for iron acquisition from heme, for capsule 863 formation, and for virulence. Infect Immun 81: 292-302. 864 865 27. Loures FV, Pina A, Felonato M, Araujo EF, Leite KR, et al. (2010) Toll-like 866 receptor 4 signaling leads to severe fungal infection associated with enhanced proinflammatory immunity and impaired expansion of regulatory T cells. Infect 867 868 Immun 78: 1078-1088. 869 28. Teixeira MM, Theodoro RC, Oliveira FF, Machado GC, Hahn RC, et al. (2013) Paracoccidioides lutzii sp. nov.: biological and clinical implications. Med Mycol. 870 29. Brummer E, Castaneda E, Restrepo A (1993) Paracoccidioidomycosis: an update. 871 872 Clin Microbiol Rev 6: 89-117. 30. Brummer E, Hanson LH, Restrepo A, Stevens DA (1989) Intracellular 873 874 multiplication of Paracoccidioides brasiliensis in macrophages: killing and 875 restriction of multiplication by activated macrophages. Infect Immun 57: 2289-2294. 876 31. Moscardi-Bacchi M, Brummer E, Stevens DA (1994) Support of Paracoccidioides 877 brasiliensis multiplication by human monocytes or macrophages: inhibition by 878 activated phagocytes. J Med Microbiol 40: 159-164. 32. Soares DA, de Andrade RV, Silva SS, Bocca AL, Soares Felipe SM, et al. (2010) 879 Extracellular Paracoccidioides brasiliensis phospholipase B involvement in alveolar 880 881 macrophage interaction. BMC Microbiol 10: 241. 33. Silva SS, Tavares AH, Passos-Silva DG, Fachin AL, Teixeira SM, et al. (2008) 882 883 Transcriptional response of murine macrophages upon infection with opsonized 884 Paracoccidioides brasiliensis yeast cells. Microbes Infect 10: 12-20. 885 34. Voltan AR, Sardi JD, Soares CP, Pelajo Machado M, Fusco Almeida AM, et al. (2013) Early Endosome Antigen 1 (EEA1) decreases in macrophages infected with 886 887 Paracoccidioides brasiliensis. Med Mycol 35. Tavares AH, Silva SS, Dantas A, Campos EG, Andrade RV, et al. (2007) Early 888 889 transcriptional response of Paracoccidioides brasiliensis upon internalization by 890 murine macrophages. Microbes Infect 9: 583-590. 891 36. Dias-Melicio LA, Moreira AP, Calvi SA, Soares AM (2006) Chloroquine inhibits Paracoccidioides brasiliensis survival within human monocytes by limiting the 892 893 availability of intracellular iron. Microbiol Immunol 50: 307-314. 894 37. Nevitt T, Thiele DJ (2011) Host iron withholding demands siderophore utilization 895 for *Candida glabrata* to survive macrophage killing. PLoS Pathog 7: e1001322. 38. Seo J, Lee KJ (2004) Post-translational modifications and their biological functions: 896 897 proteomic analysis and systematic approaches. J Biochem Mol Biol 37: 35-44.

898 39. Nogueira SV, Fonseca FL, Rodrigues ML, Mundodi V, Abi-Chacra EA, et al. 899 (2010) Paracoccidioides brasiliensis enolase is a surface protein that binds 900 plasminogen and mediates interaction of yeast forms with host cells. Infect Immun 901 78: 4040-4050. 902 40. Torres I, Hernandez O, Tamayo D, Munoz JF, Leitao NP, Jr., et al. (2013) Inhibition 903 of *Pb*GP43 expression may suggest that gp43 is a virulence factor in 904 Paracoccidioides brasiliensis. PLoS One 8: e68434. 905 41. Nairz M, Schroll A, Sonnweber T, Weiss G (2010) The struggle for iron - a metal at 906 the host-pathogen interface. Cell Microbiol 12: 1691-1702. 907 42. Bailão AM, Schrank A, Borges CL, Dutra V, Molinari-Madlum EEWI, et al. (2006) 908 Differential gene expression by Paracoccidioides brasiliensis in host interaction 909 conditions: representational difference analysis identifies candidate genes associated with fungal pathogenesis. Microbes Infect 8: 2686-2697. 910 911 43. Bastos KP, Bailao AM, Borges CL, Faria FP, Felipe MS, et al. (2007) The 912 transcriptome analysis of early morphogenesis in Paracoccidioides brasiliensis mycelium reveals novel and induced genes potentially associated to the dimorphic 913 process. BMC Microbiol 7: 29. 914 44. De Groot PW, Hellingwerf KJ, Klis FM (2003) Genome-wide identification of 915 916 fungal GPI proteins. Yeast 20: 781-796. 45. de Groot PW, de Boer AD, Cunningham J, Dekker HL, de Jong L, et al. (2004) 917 Proteomic analysis of Candida albicans cell walls reveals covalently bound 918 919 carbohydrate-active enzymes and adhesins. Eukaryot Cell 3: 955-965. 920 46. Almeida AJ, Cunha C, Carmona JA, Sampaio-Marques B, Carvalho A, et al. (2009) Cdc42p controls yeast-cell shape and virulence of Paracoccidioides brasiliensis. 921 922 Fungal Genet Biol 46: 919-926. 47. Ruiz OH, Gonzalez A, Almeida AJ, Tamayo D, Garcia AM, et al. (2011) 923 924 Alternative oxidase mediates pathogen resistance in Paracoccidioides brasiliensis 925 infection. PLoS Negl Trop Dis 5: e1353. 926 48. Franco M (1987) Host-parasite relationships in paracoccidioidomycosis. J Med Vet 927 Mycol 25: 5-18. 928 49. Borges-Walmsley MI, Chen D, Shu X, Walmsley AR (2002) The pathobiology of Paracoccidioides brasiliensis. Trends Microbiol 10: 80-87. 929 50. Mochon AB, Jin Y, Kayala MA, Wingard JR, Clancy CJ, et al. (2010) Serological 930 931 profiling of a *Candida albicans* protein microarray reveals permanent host-pathogen 932 interplay and stage-specific responses during candidemia. PLoS Pathog 6: e1000827. 933 51. Kronstad JW, Cadieux B, Jung WH (2013) Pathogenic yeasts deploy cell surface 934 receptors to acquire iron in vertebrate hosts. PLoS Pathog 9: e1003498. 935 52. Carrero LL, Nino-Vega G, Teixeira MM, Carvalho MJ, Soares CM, et al. (2008) 936 New Paracoccidioides brasiliensis isolate reveals unexpected genomic variability in 937 this human pathogen. Fungal Genet Biol 45: 605-612. 53. Restrepo A, Jimenez BE (1980) Growth of Paracoccidioides brasiliensis yeast 938 939 phase in a chemically defined culture medium. J Clin Microbiol 12: 279-281. 940 54. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, et al. (2007) 941 Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948. 55. Bailão AM, Nogueira SV, Rondon Caixeta Bonfim SM, de Castro KP, de Fatima da 942 943 Silva J, et al. (2012) Comparative transcriptome analysis of Paracoccidioides 944 brasiliensis during in vitro adhesion to type I collagen and fibronectin: identification 945 of potential adhesins. Res Microbiol 163: 182-191.
- 56. Bookout AL, Cummins CL, Mangelsdorf DJ, Pesola JM, Kramer MF (2006) High-946 947 throughput real-time quantitative reverse transcription PCR. Curr Protoc Mol Biol 948 Chapter 15: Unit 15 18. 57. Bradford MM (1976) A rapid and sensitive method for the quantitation of 949 microgram quantities of protein utilizing the principle of protein-dye binding. Anal 950 951 Biochem 72: 248-254. 58. Murad AM, Souza GH, Garcia JS, Rech EL (2011) Detection and expression 952 953 analysis of recombinant proteins in plant-derived complex mixtures using 954 nanoUPLC-MS(E). J Sep Sci 34: 2618-2630. 955 59. Murad AM, Rech EL (2012) NanoUPLC-MSE proteomic data assessment of soybean seeds using the Uniprot database. BMC Biotechnol 12: 82. 956 957 60. Laird NM, Horvath S, Xu X (2000) Implementing a unified approach to familybased tests of association. Genet Epidemiol 19 Suppl 1: S36-42. 958 959 61. Damveld RA, Arentshorst M, VanKuyk PA, Klis FM, van den Hondel CA, et al. 960 (2005) Characterisation of CwpA, a putative glycosylphosphatidylinositol-anchored 961 cell wall mannoprotein in the filamentous fungus Aspergillus niger. Fungal Genet Biol 42: 873-885. 962 963 62. Montijn RC, van Rinsum J, van Schagen FA, Klis FM (1994) Glucomannoproteins 964 in the cell wall of *Saccharomyces cerevisiae* contain a novel type of carbohydrate side chain. J Biol Chem 269: 19338-19342. 965 966 63. Castro NdS, Barbosa MS, Maia ZA, Báo SN, Felipe MSS, et al. (2008) 967 Characterization of *Paracoccidioides brasiliensis Pb*Dfg5p, a cell-wall protein implicated in filamentous growth. Yeast 25: 141-154. 968 969 64. Lima PS, Bailão EFLC, Silva MG, Castro NS, Báo SN, et al. (2012) 970 Characterization of the *Paracoccidioides* beta-1,3-glucanosyltransferase family. 971 FEMS Yeast Res 12: 685-702. 972 65. Menino JF, Almeida AJ, Rodrigues F (2012) Gene knockdown in Paracoccidioides 973 brasiliensis using antisense RNA. Methods Mol Biol 845: 187-198. 974 66. Almeida AJ, Carmona JA, Cunha C, Carvalho A, Rappleye CA, et al. (2007) 975 Towards a molecular genetic system for the pathogenic fungus Paracoccidioides 976 brasiliensis. Fungal Genet Biol 44: 1387-1398. 977 67. Rappleye CA, Engle JT, Goldman WE (2004) RNA interference in Histoplasma 978 capsulatum demonstrates a role for alpha-(1,3)-glucan in virulence. Mol Microbiol 979 53: 153-165. 68. den Dulk-Ras A, Hooykaas PJ (1995) Electroporation of Agrobacterium 980 981 tumefaciens. Methods Mol Biol 55: 63-72. 982 69. Youseff BH, Holbrook ED, Smolnycki KA, Rappleye CA (2012) Extracellular 983 superoxide dismutase protects Histoplasma yeast cells from host-derived oxidative 984 stress. PLoS Pathog 8: e1002713. 70. Li GZ, Vissers JP, Silva JC, Golick D, Gorenstein MV, et al. (2009) Database 985 searching and accounting of multiplexed precursor and product ion spectra from the 986 987 data independent analysis of simple and complex peptide mixtures. Proteomics 9: 988 1696-1719.
- 989
- 990
- 991

Figure legends 992

Figure 1. Effect of different iron sources on the growth of *Paracoccidioides* veast 993

994 cells. Pb01 and Pb18 cell cultures were collected after 36 h of iron scarcity, washed and ten-fold serial dilutions of cell suspensions (10^4 to 10 cells) were spotted on MMcM

995

- plates, which were supplemented with 50 µM BPS, an iron chelator. As indicated, 996
- different iron sources were added or not (no iron condition): 30 µM inorganic iron, 30 997
- 998 μ M hemoglobin, 120 μ M hemin, 30 μ g/ μ l ferritin, 30 μ M transferrin or 3 μ M
- 999 lactoferrin.
- Figure 2. Paracoccidioides can internalize protoporphyrin rings. Iron deprived Pb01 1000

and Pb18 yeast cells were incubated in MMcM with (+) or without (-) 20 μ M zinc 1001

protoporphyrin IX (Zn-PPIX) for 2 h. After this period, the cells were washed twice and 1002

observed by bright field microscopy (left panel of each strain) and by live fluorescence 1003

- microscopy (right panel of each strain). 1004
- Figure 3. Hemolysis of sheep erythrocytes in the presence of *Paracoccidioides* yeast 1005

cells. Pb01 and $Pb18 \ 10^7$ yeast cell suspensions were incubated with 10^8 sheep 1006

erythrocytes for 2 h at 36 °C in 5% CO₂. As a negative or positive control, respectively, 1007

1008 erythrocytes were incubated with phosphate buffered saline solution (PBS) or sterile

- water. The optical densities of the supernatants were determined with an ELISA plate 1009
- 1010 reader at 405 nm. The experiment was performed in triplicate, and the average optical
- density of each condition was used to calculate the relative hemolysis of the 1011
- 1012 experimental conditions or the negative control with respect to the positive control. The
- data are plotted as the mean + standard deviation. *: statistically significant difference 1013

1014 in comparison with PBS values according to Student's t-test.

Figure 4. Expression of genes that are putatively related to hemoglobin uptake. 1015

1016 *Pb*01 yeast cells were recovered from MMcM medium, which was supplemented or not

(no iron addition condition) with different iron sources (10 μ M and 100 μ M inorganic 1017

1018 iron and 10 µM hemoglobin) for 30, 60 and 120 min. After RNA extraction and cDNA

- synthesis, levels of *Pb*01 *rbt5*, *wap1* and *csa2* transcripts were quantified by qRT-PCR. 1019
- 1020 The expression values were calculated using alpha tubulin as the endogenous control.
- 1021 The values that were plotted on the bar graph were normalized against the expression
- 1022 data that were obtained from the no iron addition condition (fold change). The data are

expressed as the mean \pm SD of the triplicates. *statistically significant data as determined by Student's t-test (p < 0.05).

1025 Figure 5. Paracoccidioides Rbt5 is a GPI-anchored protein localized in the yeast cell wall. A. Cell wall fraction of Pb01 yeast cells was obtained and analyzed by 1026 Western blot using polyclonal antibodies raised against the recombinant protein Rbt5. 1027 1028 Proteins that were obtained from the cell wall (lane 1) were extracted by HF-pyridine digestion and analyzed (lane 2). Molecular weight markers are indicated at the right side 1029 of the panel. **B.** Immunoelectron microscopic detection of Rbt5 in *Pb*01 yeast cells by 1030 post embedding methods. (1) Negative control exposed to the rabbit preimmune serum. 1031 (2 and 3) Gold particles are observed at the fungus cell wall (arrow) and in the 1032 cytoplasm (double arrowheads). Bars: $1 \mu m$ (1 and 2) and 0.5 μm (3). v: vacuoles. m: 1033

1034 mitochondria. w: cell wall.

Figure 6. Paracoccidioides Rbt5 binds heme-containing molecules. A. Recombinant 1035 proteins Rbt5 (lane 1) and Enolase (lane2), which was used as a negative control, were 1036 1037 incubated with hemin-agarose resin. After 1 h, the resin was boiled with sample buffer, 1038 and the proteins were submitted to SDS-PAGE and Western blot analysis. A single 22 kDa immunoreactive species is present in lane 1, which corresponds to the Rbt5 1039 1040 recombinant protein. Enolase did not present an ability to bind hemin and, thus, was not purified with the resin. **B.** Upper and lower panels represent systems where 1041 1042 protoporphyrin or hemoglobin Rbt5 recognition was assessed, respectively. The sequential steps of incubation in each system are indicated on the bottom of each panel. 1043 1044 *Pb*01 denotes the background fluorescence of fungal cells alone; *Pb*01 + anti-Rbt5 1045 represents systems where fungal cells were sequentially incubated with primary and 1046 secondary antibodies; *Pb*01 + protoporphyrin/hemoglobin + anti-Rbt5 is representative 1047 of systems that included the blocking of yeast cells with heme-containing molecules before exposure to antibodies; and Pb01 + anti-Rbt5 + protoporphyrin/hemoglobin 1048 represents systems that included the blocking of yeast cells with heme-containing 1049 molecules after exposure to antibodies. 1050

1051 Figure 7. Paracoccidioides Rbt5 knock down via an antisense-RNA (aRNA)

1052 strategy. A. Schematic representation of the T-DNA cassette that was used in this work

- 1053 to perform the Agrobacterium tumefaciens-mediated transformation (ATMT) of Pb339
- 1054 (*Pb*Wt). *Pbrbt5*-aRNA was cloned in the pUR5750 binary vector under the control of

1055 the Histoplasma capsulatum cbp-1 gene promoter region (P-cbp-1) and the Aspergillus fumigatus cat-B gene termination region (T-cat-B). The selection marker that was used 1056 in this work was the Escherichia coli hygromycin-resistance gene hph. In the cassette, 1057 this gene is flanked by the glyceraldehyde-3-phosphate dehydrogenase promoter region 1058 (P-gapdh) and by the trpC termination region (T-trpC) from Aspergillus nidulans. B. 1059 After the selection of mitotic stable isolates, a qRT-PCR was performed to analyze the 1060 silencing level of the gene in isolates that were transformed with Pbrbt5-aRNA. As 1061 controls, *rbt5* transcript level from *Pb*Wt and *Pb*Wt transformed with the empty vector 1062 1063 (*Pb*Wt+EV) were also quantified. Alpha tubulin was used as the endogenous control. 1064 The data are represented as the means \pm SD from triplicate determinations. *: 1065 statistically significant data as determined by Student's t-test (p < 0.05) in comparison with the data that were obtained from PbWt+EV strain. C. Effect of Pbrbt5 deletion on 1066 1067 the interaction of Paracoccidioides with heme-containing molecules. Hemoglobin prevents *Pb*Wt and *Pb*Wt+EV cells to be recognized by the anti-Rbt5 antibodies. 1068 1069 However, Pbrbt5-aRNA cells are poorly recognized by the antibody that was raised against Rbt5, which is a process that was not affected by the previous or subsequent 1070 1071 exposure of yeast cells to hemoglobin.

Figure 8. Paracoccidioides Rbt5 shows virulent and antigenic properties. A. To test 1072 the ability to infect macrophages, PbWt, Pbrbt5-aRNA or PbWt+EV strains were co-1073 cultivated with macrophages for 24 h. After this period, infected macrophages were 1074 lysed, and lysates were plated on BHI medium to recover the fungi. The data are 1075 presented as a bar graph of the means + SEM from triplicates. *: statistically significant 1076 data as determined by Student's t-test (p < 0.05) in comparison with the data that were 1077 obtained from the *Pb*Wt+EV strain. **B.** A murine model of infection was also used. 1078 Mice were infected intraperitoneally with PbWt, Pbrbt5-aRNA or PbWt+EV strains. 1079 After 2 weeks of infection, mice were sacrificed, the spleens were removed and samples 1080 1081 of the homogenate were plated on BHI medium. After 15 days, the CFUs were counted to determine the fungal burden for each strain. The data are presented as a bar graph of 1082 1083 the means \pm SEM from quadruplicates. *: statistically significant data as determined by 1084 Student's t-test (p < 0.05) in comparison with the data that were obtained from the 1085 PbWt+EV strain. C. Reaction of the recombinant Pb01 Rbt5 with sera of five PCM patients (lanes 1-5) or with control sera (lanes 6-10). After reacting with the anti-human 1086

- 1087 IgG peroxidase coupled antibody, the reaction was developed using hydrogen peroxide
- 1088 and diaminobenzidine.

Accession number ^a	Protein description	Score AVG	Peptides AVG	Fold change (Hb:Fe)	E.C. number	Subclassification	Filter ^b
METABOLISM							
Amino acid metabolismo							
PAAG_02163	acetyl-/propionyl-coenzyme A carboxylase alpha chain	249.65	16.33	***	6.4.1.3	Valine and isoleucine degradation	1
PAAG_07036	methylmalonate-semialdehyde dehydrogenase	279.14	14.83	1.60	1.2.1.27	Valine, leucine and isoleucine degradation	2
PAAG_00221	acetolactate synthase	260.71	10.20	1.55	2.2.1.6	Valine, leucine and isoleucine biosynthesis	2
PAAG_06416	conserved hypothetical protein (alanine racemase)	169.27	4.00	***	5.1.1.1	Alanine metabolism	1
PAAG_08065	aspartate-semialdehyde dehydrogenase	501.59	5.80	3.35	1.2.1.11	Amino acid biosynthesis	2
PAAG_03138	alanine-glyoxylate aminotransferase	381.01	7.33	1.40	2.6.1.44	Amino acid metabolism	2
PAAG_06217	acetylornithine aminotransferase	313.28	11.25	1.72	2.6.1.11	Arginine biosynthesis	1
PAAG_06506	aspartate aminotransferase	253.11	6.50	1.42	2.6.1.1	Aspartate and glutamate metabolism	1
PAAG_06835	cystathionine gamma-lyase	257.79	7.00	***	4.4.1.1	Cysteine biosynthesis	1

1089 Table 1. Some *Paracoccidioides Pb*01 proteins that were induced in the presence of hemoglobin as detected by nanoUPLC- MS^{E} .

PAAG_07813	cysteine synthase	310.64	7.33	***	4.2.1.22	Cysteine biosynthesis	2
PAAG_05392	betaine aldehyde dehydrogenase	913.69	8.67	1.68	1.2.1.8	Glycine biosynthesis	2
PAAG_01568	glycine dehydrogenase	193.28	16.00	***	1.4.4.2	Glycine degradation	2
PAAG_05406	histidine biosynthesis trifunctional protein	196.65	14.00	***	3.5.4.19; 3.6.1.31; 1.1.1.23	Histidine biosynthesis	1
PAAG_00285	imidazole glycerol phosphate synthase hisHF	175.08	19.00	***	2.4.2; 4.1.3	Histidine biosynthesis	1
PAAG_09095	ATP phosphoribosyltransferase	1303.26	4.67	1.79	2.4.2.17	Histidine biosynthesis	2
PAAG_04099	methylcrotonoyl-CoA carboxylase subunit alpha	179.63	10.00	***	6.4.1.4	Leucine degradation	1
PAAG_06387	homoisocitrate dehydrogenase	431.93	8.00	1.84	1.1.1.87	Lysine biosynthesis	2
PAAG_02693	saccharopine dehydrogenase	241.77	12.67	1.43	1.5.1.10	Lysine metabolism	1
PAAG_07626	cobalamin-independent synthase	1296.09	25.33	2.92	2.1.1.14	Methionine biosynthesis	2
PAAG_06996	G-protein comlpex beta subunit CpcB	1162.11	11.33	2.32	N.A.	Regulation of amino acid metabolism	2
PAAG_03613	phosphoserine aminotransferase	265.03	8.67	4.35	2.6.1.52	Serine biosynthesis	2
PAAG_07760	threonine synthase	171.92	8.00	***	4.2.3.1	Threonine biosynthesis	1
PAAG_08668	anthranilate synthase component 2	242.62	11.50	***	4.1.3.27	Tryptophan biosynthesis	1

	PAAG_05005	anthranilate synthase component 1	186.39	14.00	1.38	4.1.3.27	Tryptophan biosynthesis	2
	PAAG_02644	kynurenine-oxoglutarate transaminase	179.07	6.00	***	2.6.1.7	Tryptophan degradation	2
	PAAG_08164	homogentisate 1,2-dioxygenase	323.07	8.25	1.68	1.13.11.5	Tyrosine degradation	1
Nitroge	n, sulfur and seler	nium metabolism						
	PAAG_00468	4-aminobutyrate aminotransferase	1947.94	10.50	1.86	2.6.1.19	Nitrogen utilization	2
	PAAG_03333	formamidase	14545.80	19.33	1.22	3.5.1.49	Nitrogen compound metabolic process	2
	PAAG_05929	sulfate adenylyltransferase	303.58	9.20	2.39	2.7.7.4	Sulfur metabolism	2
PROTE	CIN FATE (folding	g, modification, destination)						
Protein/	/peptide degradat	ion						
	PAAG_02907	conserved hypothetical protein (ankyrin repeat protein)	288.17	6.00	***	N.A.	Cytoplasmic and nuclear protein degradation	1
	PAAG_03512	carboxypeptidase Y	496.47	6.33	1.23	3.4.16.5	Lysosomal and vacuolar protein degradation	2
	PAAG_01966	hypothetical protein (vacuolar protease A)	299.75	3.33	1.25	3.4.23.25	Lysosomal and vacuolar protein degradation	2

CELLULAR TRANSPORT, TRANSPORT FACILITIES AND TRANSPORT ROUTES

Transported compounds

PAAG_01051	conserved hypothetical protein (<i>Pb</i> 01 Csa2)	151.83	6.00	***	N.A.	Hemoglobin receptor	1
INTERACTION WITH	THE ENVIRONMENT						
Homeostasis							
PAAG_05851	cysteine desulfurase	160.27	7.00	***	2.8.1.7	Iron-sulfur cluster assembly	1
PAAG_05850	conserved hypothetical protein (cysteine desulfurase)	395.45	10.25	1.65	2.8.1.7	Iron-sulfur cluster assembly	1

1090 ^aInformation that was obtained from the *Paracoccidioides* Database (<u>http://www.broadinstitute.org/annotation/genome/paracoccidioides</u> brasiliensis/MultiHome.html)

1091 ^bfilter 1 – proteins that were derived from PepFrag2; filter 2 – proteins that were derived from PepFrag1, as determined by PLGS and cited by Murad and Rech (2012).

1092 ***: proteins that were identified only in the presence of hemoglobin;

1093 N.A.: not applicable.

Accession number	Protein description	Score AVG	Peptides AVG	Fold change (Hb:Fe)	E.C. number	Subclassification	Filter
METABOLISM							
Amino acid metabolism							
PAAG_01206	L-asparaginase	197.88	5.00	***	3.5.1.1	Asparagine degradation	1
PAAG_01365	choline dehydrogenase	206.25	13.00	***	1.1.99.1	Glycine biosynthesis	1
PAAG_02935	glycine cleavage system H protein	404.32	4.33	0.66	N.A.	Glycine degradation	2
PAAG_04102	isovaleryl-CoA dehydrogenase	330.74	7.00	***	1.3.8.4	Leucine degradation	2
PAAG_01974	mitochondrial methylglutaconyl-CoA hydratase	223.92	6.00	***	4.2.1.18	Leucine degradation	1
PAAG_03569	1,2-dihydroxy-3-keto-5- methylthiopentene dioxygenase	175.60	6.00	***	1.13.11.54	Methionine biosynthesis	1
PAAG_08166	4-hydroxyphenylpyruvate dioxygenase	203.44	3.00	***	1.13.11.27	Tyrosine and phenylalanine degradation	1
PAAG_00014	dihydroxy-acid dehydratase	312.52	10.83	0.73	4.2.1.9	Valine and isoleucine biosynthesis	2
PAAG_02554	3-hydroxyisobutyryl-CoA hydrolase	402.87	9.75	0.58	3.1.2.4	Valine degradation	2
PAAG_01194	2-oxoisovalerate dehydrogenase	219.86	6.00	***	1.2.4.4	Valine, leucine and isoleucine	2

1094 Table 2. Some *Paracoccidioides Pb*01 proteins that were repressed in the presence of hemoglobin as detected by nanoUPLC-MS^E.

	subunit beta					degradation	
PAAG_06096	phospho-2-dehydro-3-deoxyheptonate aldolase	1370.44	9.67	0.66	2.5.1.54	Phenyalanine, tyrosine and tryptophan biosynthesis	2
PAAG_07659	chorismate synthase	193.84	3.50	0.61	4.2.3.5	Phenyalanine, tyrosine and tryptophan biosynthesis	2
Nitrogen, sulfur and sele	enium metabolism						
PAAG_04525	glutamine synthetase	156.10	9.00	***	6.3.1.2	Nitrogen metabolism	1
PAAG_07689	NADP-specific glutamate dehydrogenase	2006.41	19.83	0.75	1.4.1.4	Nitrogen metabolism	2
Secondary metabolism							
PAAG_00799	uroporphyrinogen decarboxylase	362.04	8.67	***	4.1.1.37	Porphyrin biosynthesis	2
PAAG_06925	conserved hypothetical protein (glutamate-1-semialdehyde 2,1- aminomutase)	322.93	7.00	***	5.4.3.8	Porphyrin biosynthesis	2

1095 ^aInformation that was obtained from the *Paracoccidioides* Database (<u>http://www.broadinstitute.org/annotation/genome/paracoccidioides</u> brasiliensis/MultiHome.html)

1096 ^bfilter 1 – proteins that were derived from PepFrag2; filter 2 – proteins that were derived from PepFrag1, as determined by PLGS and cited by Murad and Rech (2012).

1097 ***: proteins that were identified only in the presence of inorganic iron;

1098 N.A.: not applicable.

1099 Supporting Figure legends

1100 Figure S1. Peptide error level that was obtained via the nanoUPLC-MS^E approach.

1101 The peptide and protein tables from PLGS were analyzed using the Spotfire software,

1102 which generated the ppm error graphics. These graphics indicate the number of peptides

1103 in a 15 ppm error range that were either obtained in the presence of 10 μ M hemoglobin

1104 or obtained in the presence of $10 \mu M$ inorganic iron.

1105 Figure S2. Peptide detection type that was used by the PLGS software. PLGS

software uses an iterative search strategy for peptide identification as described

1107 previously [70]. During the first iteration (PepFrag1), only completely cleaved tryptic

1108 peptides are used for identification. The second pass of the database algorithm

1109 (PepFrag2) is designed to identify peptide modifications and nonspecific cleavage

- 1110 products to proteins that were positively identified in the first pass. VarMod: variable
- 1111 modifications. InSource: fragmentation that occurred on ionization source.
- 1112 MissedCleavage: missed cleavage performed by trypsin. NeutralLoss H₂O and NH₃
- 1113 correspond to water and ammonia precursor losses. The Spotfire software was used to
- 1114 generate the graphics.

1115 Figure S3. Expression and purification of the *Pb*01 recombinant Rbt5 and the

generation of a rabbit polyclonal antibody. A. SDS-PAGE analysis of *Pb*01

1117 recombinant Rbt5. E. coli cells harboring the pGEX-4T-3-Rbt5 plasmid were grown to

an OD_{600} of 0.8 and harvested before (lane 1) or after (lane 2) incubation with IPTG.

1119 The cells were lysed by sonication, the recombinant protein was purified (lane 3) and

the fusion protein (glutathione S-transferase, GST) was cleaved by thrombin digestion

1121 (lane 4). Electrophoresis was performed on 10% SDS–PAGE, and the proteins were

stained by Coomassie blue R-250. **B and C**. Western blot analysis of the recombinant

1123 Rbt5. The proteins that were obtained were screened using the rabbit polyclonal

antibody anti-rRbt5 (B) or the rabbit preimmune serum (C). In B and C: E. coli C41

1125 (DE3) that were transformed with the PGEX-4T-3-Rbt5 construct protein extract (lane

1); the affinity-isolated recombinant GST-Rbt5 (lane 2); the recombinant fusion protein

1127 cleaved with thrombin (lane 3). The reaction was developed using BCIP-NBT. Arrows

indicate the deduced molecular mass of the proteins. Molecular markers are indicated at

the left side of the panels.

- 1130 Figure S4. *Pb*01 Rbt5 and *Candida* Rbt5 alignment. The amino acid sequences of the
- 1131 orthologs were aligned using the software ClustalX2. Asterisks: amino acid identity.
- 1132 Dots: conserved substitutions. In bold: signal peptide predicted by SignalP 4.1 Server.
- 1133 Grey box: CFEM domain that was predicted by the SMART online tool. In italic:
- 1134 cysteine residues inside the CFEM domain. Black border rectangle: omega-site that was
- 1135 predicted by the big-PI Fungal Predictor online tool.
- 1136 Figure S5. Paracoccidioides rbt5 knock down did not affect fungus growth under
- 1137 **different iron availability conditions.** *Pb*339 (*Pb*Wt), the *rbt5* knock down strain
- 1138 (*Pb*rbt5-aRNA) and the *Pb*339 strain that was transformed with the pUR5750 empty
- 1139 vector (*Pb*Wt+EV) were collected after 36 h of iron scarcity, washed, and ten-fold serial
- dilutions of cell suspensions (10^5 to 10^2 cells) were spotted on MMcM plates that were
- 1141 supplemented with 50 μ M BPS, which is an iron chelator. As indicated, 30 μ M
- 1142 inorganic iron or 30 μ M hemoglobin were added or not (no iron condition).

Β

С

Figure 8

С

Inorganic iron

CaRbt5 Pb01Rbt5	MLALSLLSIVSIASA AGVTAIPEGDNPYTIFPSVAKTASINGFADRIYDQLPECAKECVK A -MQFSHALIALVAASLANA QLPN IPPCALSCLV IPPCALSCLV IPCALSCLV IPCAL	50 32
<i>Ca</i> Rbt5 <i>Pb</i> 01Rbt5	QSTSSTPCP-YWDTGCLCVMPQFAGAVGNCVAKNCKGKEVGSVESLATSICSSAGVWEPY1DALGNDGCSQLTDFECHCKKPELPGKITPCVEKSCDVAAQSSVSNLVIKQCSSAG8:: *. * * * * *::.* : ** *.****.******	L19 37
<i>Ca</i> Rbt5 <i>Pb</i> 01Rbt5	WMIPSSVSDALAKAADAAAETTAESTTAESTAAETTKAEETSAKETTAAETSKAAESSAP1VPIKLPPIGGGGTTTSDPSVPTTKPTGKPTTTSPSYPTTNPSEGPTVSRIP1:***:*.**:***:***	L79 L38
<i>Ca</i> Rbt5 <i>Pb</i> 01Rbt5	AETSKAEETSKAAETTKAEESSVAQSSSSAADVASVSVEAANAGNMPAVAIGGVIAAVAA 2 SGTGSKPVPTSTPTTSRPAEFEGAGSNLNANIGGVAAALLAVAA 1 : *:: *::. * . * *. ***	239 182
<i>Ca</i> Rbt5 <i>Pb</i> 01Rbt5	LF 241 YL 184 :	

Orf ^a	Gene name	Amino acids number ^a	Signal peptide ^b	Transmembrane domain ^c	CFEM domain ^c	GPI-anchored (predicted) ^d
PAAG_05158	Rbt5	184	Yes	0	1	Yes
PAAG_02225	Csa1/ Wap1	453	No	0	1	Yes
PAAG_01051	Csa2	456	Yes	7	1	No
PADG_05363	Csa1/ Wap1	289	Yes	0	1	Yes
PABG_04599	Rbt51	184	Yes	0	1	Yes
PABG_01634	Csa2	475	No	5	1	No
^a Information		obtained	from	Paracocc	idioides	Database

Supp. Table 1. Predicted members of the hemoglobin-receptor gene family in *Paracoccidioides* genus.

(http://www.broadinstitute.org/annotation/genome/paracoccidioides_brasiliensis/MultiHome.html). Accession numbers: PAAG refers to *Pb*01, PADG refers to *Pb*18 and PABG refers to *Pb*03.

^bIn silico signal peptide prediction was performed with the online software SignalP 4.1 Server (<u>http://www.cbs.dtu.dk/services/SignalP/</u>).

^c*In silico* protein analysis was performed with the online software SMART (<u>http://smart.embl-</u>heidelberg.de/smart/set mode.cgi?NORMAL=1).

^dGPI-anchor prediction was performed using the online software big-PI Fungal Predictor (http://mendel.imp.ac.at/gpi/fungi server.html).

Accession number ^a	Protein description	Score AVG	Peptides AVG	Fold change (Hb:Fe)	E.C. number	Subclassification	Filter ^b
METABOLISM							
Amino acid metabolism							
PAAG_02163	acetyl-/propionyl-coenzyme A carboxylase alpha chain	249.65	16.33	***	6.4.1.3	Valine and isoleucine degradation	1
PAAG_07036	methylmalonate-semialdehyde dehydrogenase	279.14	14.83	1.60	1.2.1.27	Valine, leucine and isoleucine degradation	2
PAAG_00221	acetolactate synthase	260.71	10.20	1.55	2.2.1.6	Valine, leucine and isoleucine biosynthesis	2
PAAG_06416	conserved hypothetical protein (alanine racemase)	169.27	4.00	***	5.1.1.1	Alanine metabolism	1
PAAG_08065	aspartate-semialdehyde dehydrogenase	501.59	5.80	3.35	1.2.1.11	Amino acid biosynthesis	2
PAAG_03138	alanine-glyoxylate aminotransferase	381.01	7.33	1.40	2.6.1.44	Amino acid metabolism	2
PAAG_06217	acetylornithine aminotransferase	313.28	11.25	1.72	2.6.1.11	Arginine biosynthesis	1
PAAG_06506	aspartate aminotransferase	253.11	6.50	1.42	2.6.1.1	Aspartate and glutamate metabolism	1
PAAG_06835	cystathionine gamma-lyase	257.79	7.00	* * *	4.4.1.1	Cysteine biosynthesis	1
PAAG_07813	cysteine synthase	310.64	7.33	***	4.2.1.22	Cysteine biosynthesis	2

Supp. Table 2. Paracoccidioides Pb01 proteins induced in presence of hemoglobin.

PAAG_05392	betaine aldehyde dehydrogenase	913.69	8.67	1.68	1.2.1.8	Glicine biosynthesis	2
PAAG_01568	glycine dehydrogenase	193.28	16.00	***	1.4.4.2	Glycine degradation	2
PAAG_05406	histidine biosynthesis trifunctional protein	196.65	14.00	***	3.5.4.19; 3.6.1.31; 1.1.1.23	Histidine biosynthesis	1
PAAG_00285	imidazole glycerol phosphate synthase hisHF	175.08	19.00	***	2.4.2; 4.1.3	Histidine biosynthesis	1
PAAG_09095	ATP phosphoribosyltransferase	1303.26	4.67	1.79	2.4.2.17	Histidine biosynthesis	2
PAAG_04099	methylcrotonoyl-CoA carboxylase subunit alpha	179.63	10.00	***	6.4.1.4	Leucine degradation	1
PAAG_06387	homoisocitrate dehydrogenase	431.93	8.00	1.84	1.1.1.87	Lysine biosynthesis	2
PAAG_02693	saccharopine dehydrogenase	241.77	12.67	1.43	1.5.1.10	Lysine metabolism	1
PAAG_07626	Cobalamin-independent synthase	1296.09	25.33	2.92	2.1.1.14	Methionine biosynthesis	2
PAAG_06996	G-protein comlpex beta subunit CpcB	1162.11	11.33	2.32	N.A.	Regulation of amino acid metabolism	2
PAAG_03613	phosphoserine aminotransferase	265.03	8.67	4.35	2.6.1.52	Serine biosynthesis	2
PAAG_07760	threonine synthase	171.92	8.00	***	4.2.3.1	Threonine biosynthesis	1
PAAG_08668	anthranilate synthase component 2	242.62	11.50	***	4.1.3.27	Tryptophan biosynthesis	1
PAAG_05005	anthranilate synthase component 1	186.39	14.00	1.38	4.1.3.27	Tryptophan biosynthesis	2
PAAG_02644	kynurenine-oxoglutarate transaminase	179.07	6.00	***	2.6.1.7	Tryptophan degradation	2

	PAAG_08164	homogentisate 1,2-dioxygenase	323.07	8.25	1.68	1.13.11.5	Tyrosine degradation	1
Nitroge	en, sulfur and sel	enium metabolism						
	PAAG_00468	4-aminobutyrate aminotransferase	1947.94	10.50	1.86	2.6.1.19	Nitrogen utilization	2
	PAAG_03333	formamidase	14545.80	19.33	1.22	3.5.1.49	Nitrogen compound metabolic process	2
	PAAG_05929	sulfate adenylyltransferase	303.58	9.20	2.39	2.7.7.4	Sulfur metabolism	2
Nucleot	tide/nucleoside/n	ucleobase metabolism						
	PAAG_05018	allantoate amidohydrolase	261.39	8.00	***	3.5.3.9	Purine metabolism	2
	PAAG_01751	conserved hypothetical protein (cytidine deaminase)	423.39	7.00	***	3.5.4.5	Pyrimidine metabolism	2
C-comp	oound and carbo	hydrate metabolism						
	PAAG_00050	pyruvate dehydrogenase protein X component	1118.49	11.50	1.93	N.A.	Acetyl-CoA biosynthesis	2
	PAAG_03330	dihydrolipoyl dehydrogenase	2921.00	20.33	1.26	1.8.1.4	Acetyl-CoA biosynthesis	2
	PAAG_01931	phosphoacetylglucosamine mutase	185.26	6.00	***	5.4.2.3	Chitin biosynthetic process	2
	PAAG_06057	conserved hypothetical protein (aldose 1-epimerase)	280.05	4.00	***	5.1.3.3	Hexose metabolism	2
	PAAG_03243	conserved hypothetical protein (aldose 1-epimerase)	627.33	6.83	1.28	5.1.3.3	Hexose metabolism	2
	PAAG_01347	actin cytoskeleton protein (VIP1)	390.56	10.00	2.18	2.7.4.21; 2.7.4.24	Inositol phosphate biosynthesis	1

PAAG_04550	2-methylcitrate synthase	5518.20	20.17	4.53	2.3.3.5	Methylcitrate cycle	2
PAAG_04290	neutral alpha-glucosidase AB	218.88	13.33	1.35	3.2.1.20	Polysaccharide metabolism	1
PAAG_00435	(R)-benzylsuccinyl-CoA dehydrogenase	274.05	10.50	2.23	1.3.8.3	Toluene degradation	1
PAAG_06817	UTP-glucose-1-phosphate uridylyltransferase	445.48	14.67	***	2.7.7.9	UDP-glucose metabolic process	2
PAAG_02011	phosphoglucomutase	505.72	23.17	1.52	5.4.2.2	UDP-glucose metabolic process	2
Lipid, fatty acid and iso	oprenoid metabolism						
PAAG_07786	acetyl-CoA acetyltransferase	1409.07	7.83	1.73	2.3.1.9	Ergosterol biosynthesis	2
PAAG_03689	3-ketoacyl-CoA thiolase B	232.09	9.67	***	2.3.1.16	Fatty acid beta-oxidation	1
PAAG_05690	esterase D	227.18	7.00	***	3.1.1.1	Fatty acid biosynthesis	1
PAAG_07631	short chain dehydrogenase/reductase family protein	240.97	8.00	***	1.1.1.100	Fatty acid biosynthesis	2
PAAG_04811	2-hydroxyacyl-CoA lyase	236.87	10.50	***	4.1	Fatty acid metabolism	2
PAAG_06953	short chain dehydrogenase/reductase family	303.51	5.00	1.22	1.1.1.300	Glycolipid metabolism	2
PAAG_03960	isopentenyl-diphosphate Delta- isomerase	196.53	8.00	***	5.3.3.2	Isoprenoid metabolism	1
PAAG_06215	hydroxymethylglutaryl-CoA lyase	735.72	7.17	1.35	4.1.3.4	Lipid metabolic process	2

Metabolism of vitamins, cofactors and prosthetic groups

	PAAG_02352	molybdopterin binding domain- containing protein	167.28	6.00	***	N.A.	Molybdenum cofactor biosynthesis	1
	PAAG_08856	nicotinate-nucleotide pyrophosphorylase	147.96	2.00	***	2.4.2.19	De novo NAD biosynthesis	1
Secon	dary metabolism							
	PAAG_01244	beta-lactamase family protein	511.77	7.67	2.16	3.5.2.6	Beta-lactam degradation	2
	PAAG_04478	dienelactone hydrolase family protein	512.91	7.20	1.77	3.1.1.45	Secondary metabolites biosynthesis	2
	PAAG_04443	spermidine synthase	410.25	6.33	1.27	2.5.1.16	Amines metabolism	2
ENEF	RGY							
Glyco	lysis and glucone	ogenesis						
	PAAG_08203	phosphoenolpyruvate carboxykinase	163.90	8.00	***	4.1.1.49	Gluconeogenesis	1
	PAAG_06380	pyruvate kinase	1155.19	18.33	2.14	2.7.1.40	Glycolysis	2
	PAAG_00771	enolase	41257.25	25.67	***	4.2.1.11	Glycolysis/ Gluconeogenesis	2
Pento	se-phosphate patl	hway						
	PAAG_01178	6-phosphogluconate dehydrogenase	1134.90	14.33	1.70	1.1.1.44	Oxidative branch	2
	PAAG_04444	transketolase	1685.75	23.67	1.40	2.2.1.1	Non-oxidative branch	2
Trica	rboxylic-acid cycl	e						
	PAAG_07729	isocitrate dehydrogenase subunit 2	184.77	6.00	***	1.1.1.41	TCA cycle	1

PAAG_027322-oxoglutarate dehydrogenase E1276.4518.251.621.2.4.2TCA cyclePAAG_08915dihydrolipoamide succinyltransferase749.8813.331.272.3.1.61TCA cyclePAAG_00417succinyl-CoA ligase subunit alpha430.446.331.266.2.1.5TCA cycleElectron transport and membrane-associated energy conservationPAAG_02297cytochrome b-c1 complex subunit Rieske155.753.00***1.10.2.2Electron transport chainPAAG_04931electron transfer flavoprotein subunit beta389.967.00***N.A.Electron transport chainPAAG_02382quinone oxidoreductase307.888.001.731.6.5.3Electron transport chainPAAG_06796conserved hypothetical protein (cytochrome c oxidase subunit)1238.586.501.201.9.3.1Electron transport chainFermentationPAAG_02050pyruvate decarboxylase209.431.6.172.754.1.1.1Alcoholic fermentationPAAG_02050pyruvate decarboxylase209.4316.172.754.1.1.1Alcoholic fermentation	AAG_01725	succinate dehydrogenase flavoprotein subunit	223.67	8.50	***	1.3.5.1	TCA cycle	2
PAAG_08915dihydrolipoamide succinyltransferase749.8813.331.272.3.1.61TCA cyclePAAG_00417succinyl-CoA ligase subunit alpha430.446.331.266.2.1.5TCA cycleElectron transport and ===================================	AAG_02732	2-oxoglutarate dehydrogenase E1	276.45	18.25	1.62	1.2.4.2	TCA cycle	1
PAAG_00417succinyl-CoA ligase subunit alpha430.446.331.266.2.1.5TCA cycleElectron transport and membrane-associated energy conservation155.753.00***1.10.2.2Electron transport chainPAAG_02297cytochrome b-c1 complex subunit Rieske155.753.00***N.A.Electron transport chainPAAG_04931electron transfer flavoprotein subunit beta280.227.00***N.A.Electron transport chainPAAG_02382quinone oxidoreductase307.888.001.731.6.5.3Electron transport chainPAAG_026796conserved hypothetical protein (cytochrome c oxidase subunit)1238.586.501.201.9.3.1Electron transport chainRespirationsubgrga11475.528.331.30N.A.Aerobic respirationPAAG_02050pyruvate decarboxylase209.4316.172.754.1.1.1Alcoholic fermentation	AAG_08915	dihydrolipoamide succinyltransferase	749.88	13.33	1.27	2.3.1.61	TCA cycle	2
Electron transport and membrane-associated energy conservationPAAG_02297cytochrome b-c1 complex subunit Rieske155.753.00***1.10.2.2Electron transport chainPAAG_04931electron transfer flavoprotein subunit beta389.967.00***N.A.Electron transport chainPAAG_08088cytochrome b-c1 complex subunit 2280.227.00***N.A.Electron transport chainPAAG_02382quinone oxidoreductase307.888.001.731.6.5.3Electron transport chainPAAG_06796conserved hypothetical protein (cytochrome c oxidase subunit)1238.586.501.201.9.3.1Electron transport chainRespirationPAAG_03309suaprga11475.528.331.30N.A.Aerobic respirationPAAG_02050pyruvate decarboxylase209.4316.172.754.1.1.1Alcoholic fermentationPAAG_02050pyruvate decarboxylase209.4316.172.754.1.1.1Alcoholic fermentation	AAG_00417	succinyl-CoA ligase subunit alpha	430.44	6.33	1.26	6.2.1.5	TCA cycle	2
PAAG_02297cytochrome b-c1 complex subunit Rieske155.753.00***1.10.2.2Electron transport chainPAAG_04931electron transfer flavoprotein subunit beta389.967.00***N.A.Electron transport chainPAAG_08088cytochrome b-c1 complex subunit 2280.227.00***N.A.Electron transport chainPAAG_02382quinone oxidoreductase307.888.001.731.6.5.3Electron transport chainPAAG_06796conserved hypothetical protein (cytochrome c oxidase subunit)1238.586.501.201.9.3.1Electron transport chainRespirationPAAG_03309suaprga11475.528.331.30N.A.Aerobic respirationFermentationPAAG_02050pyruvate decarboxylase2099.4316.172.754.1.1.1Alcoholic fermentationPAAG_05050pyruvate decarboxylase2099.4316.172.754.1.1.1Alcoholic fermentation	transport and r	nembrane-associated energy conservat	tion					
PAAG_04931electron transfer flavoprotein subunit beta389.967.00***N.A.Electron transport chainPAAG_08088cytochrome b-c1 complex subunit 2280.227.00***N.A.Electron transport chainPAAG_02382quinone oxidoreductase307.888.001.731.6.5.3Electron transport chainPAAG_06796conserved hypothetical protein (cytochrome c oxidase subunit)1238.586.501.201.9.3.1Electron transport chainRespirationPAAG_03309suaprga11475.528.331.30N.A.Aerobic respirationFermentationPAAG_02050pyruvate decarboxylase2099.4316.172.754.1.1.1Alcoholic fermentation	AAG_02297	cytochrome b-c1 complex subunit Rieske	155.75	3.00	***	1.10.2.2	Electron transport chain	1
PAAG_08088cytochrome b-c1 complex subunit 2280.227.00***N.A.Electron transport chainPAAG_02382quinone oxidoreductase307.888.001.731.6.5.3Electron transport chainPAAG_06796conserved hypothetical protein (cytochrome c oxidase subunit)1238.586.501.201.9.3.1Electron transport chainRespirationPAAG_03309suaprga11475.528.331.30N.A.Aerobic respirationFermentationPAAG_02050pyruvate decarboxylase2099.4316.172.754.1.1.1Alcoholic fermentation	AAG_04931	electron transfer flavoprotein subunit beta	389.96	7.00	***	N.A.	Electron transport chain	2
PAAG_02382quinone oxidoreductase307.888.001.731.6.5.3Electron transport chainPAAG_06796conserved hypothetical protein (cytochrome c oxidase subunit)1238.586.501.201.9.3.1Electron transport chainRespirationPAAG_03309suaprgal1475.528.331.30N.A.Aerobic respirationFermentationPAAG_02050pyruvate decarboxylase2099.4316.172.754.1.1.1Alcoholic fermentationPAAG_02050pyruvate decarboxylase5638.2923.502.161.2.1.3Alcoholic fermentation	AAG_08088	cytochrome b-c1 complex subunit 2	280.22	7.00	***	N.A.	Electron transport chain	2
PAAG_06796conserved hypothetical protein (cytochrome c oxidase subunit)1238.586.501.201.9.3.1Electron transport chainRespirationPAAG_03309suaprga11475.528.331.30N.A.Aerobic respirationFermentationPAAG_02050pyruvate decarboxylase2099.4316.172.754.1.1.1Alcoholic fermentation	AAG_02382	quinone oxidoreductase	307.88	8.00	1.73	1.6.5.3	Electron transport chain	1
RespirationPAAG_03309suaprgal1475.528.331.30N.A.Aerobic respirationFermentationPAAG_02050pyruvate decarboxylase2099.4316.172.754.1.1.1Alcoholic fermentationPAAG_05240aldebude debudrogenese5638 2923 502.161.2.1.3Alcoholic fermentation	AAG_06796	conserved hypothetical protein (cytochrome c oxidase subunit)	1238.58	6.50	1.20	1.9.3.1	Electron transport chain	2
PAAG_03309 suaprgal 1475.52 8.33 1.30 N.A. Aerobic respiration Fermentation PAAG_02050 pyruvate decarboxylase 2099.43 16.17 2.75 4.1.1.1 Alcoholic fermentation PAAG_02050 pyruvate decarboxylase 2638.29 23.50 2.16 1.2.1.3 Alcoholic fermentation	on							
Fermentation PAAG_02050 pyruvate decarboxylase 2099.43 16.17 2.75 4.1.1.1 Alcoholic fermentation PAAG_05240 aldebude debudrogenese 5638 20 23 50 2.16 1.2.1.3 Alcoholic fermentation	AAG_03309	suaprgal	1475.52	8.33	1.30	N.A.	Aerobic respiration	2
PAAG_02050pyruvate decarboxylase2099.4316.172.754.1.1.1Alcoholic fermentationPAAG_05249aldebude debudrogenese5638.2923.502.161.2.1.3Alcoholic fermentation	tion							
PAAC 05240 aldobudo dobudrogonase 5628 20 22 50 2 16 1 2 1 2 Alcoholic formentation	AAG_02050	pyruvate decarboxylase	2099.43	16.17	2.75	4.1.1.1	Alcoholic fermentation	2
TARG_05249 aldenyde denydrogenase 5058.29 25.50 2.10 1.2.1.5 Alconolic lefinentation	AAG_05249	aldehyde dehydrogenase	5638.29	23.50	2.16	1.2.1.3	Alcoholic fermentation	2
17		AAG_01725 AAG_02732 AAG_08915 AAG_00417 ransport and r AAG_02297 AAG_04931 AAG_08088 AAG_02382 AAG_02382 AAG_06796 on AAG_03309 tion AAG_02050 AAG_05249	AAG_01725succinate dehydrogenase flavoprotein subunitAAG_027322-oxoglutarate dehydrogenase E1AAG_08915dihydrolipoamide succinyltransferaseAAG_00417succinyl-CoA ligase subunit alpharansport and membrane-associated energy conservationAAG_02297cytochrome b-c1 complex subunit RieskeAAG_04931electron transfer flavoprotein subunit betaAAG_02382quinone oxidoreductaseAAG_06796conserved hypothetical protein (cytochrome c oxidase subunit)MAG_03309suaprga1tionaldehyde dehydrogenase	AAG_01725succinate dehydrogenase flavoprotein subunit223.67AAG_027322-oxoglutarate dehydrogenase E1276.45AAG_08915dihydrolipoamide succinyltransferase749.88AAG_00417succinyl-CoA ligase subunit alpha430.44ransport and membrane-associated energy conservation430.44AAG_02297cytochrome b-c1 complex subunit Beta389.96AAG_04931electron transfer flavoprotein subunit beta389.96AAG_02382quinone oxidoreductase307.88AAG_06796conserved hypothetical protein (cytochrome c oxidase subunit)1238.58AAG_03309suaprga11475.52tion4AG_02050pyruvate decarboxylase2099.43AAG_05249aldehyde dehydrogenase5638.29	AAG_01725succinate dehydrogenase flavoprotein subunit223.678.50AAG_027322-oxoglutarate dehydrogenase E1276.4518.25AAG_08915dihydrolipoamide succinyltransferase749.8813.33AAG_00417succinyl-CoA ligase subunit alpha430.446.33ransport and membrane-associated energy conservation430.446.33AAG_02297cytochrome b-c1 complex subunit Rieske155.753.00AAG_04931electron transfer flavoprotein subunit beta389.967.00AAG_08088cytochrome b-c1 complex subunit 2280.227.00AAG_02382quinone oxidoreductase307.888.00AAG_06796conserved hypothetical protein (cytochrome c oxidase subunit)1238.586.50mAAG_03309suaprga11475.528.33tionAAG_025249aldehyde dehydrogenase5638.2923.50	AAG_01725succinate dehydrogenase flavoprotein subunit223.67 8.50 ***AAG_027322-oxoglutarate dehydrogenase E1276.45 18.25 1.62 AAG_08915dihydrolipoamide succinyltransferase749.88 13.33 1.27 AAG_00417succinyl-CoA ligase subunit alpha 430.44 6.33 1.26 ransport and membrane-associated energy conservation 430.44 6.33 1.26 rAAG_02297cytochrome b-c1 complex subunit Rieske 155.75 3.00 ***AAG_04931electron transfer flavoprotein subunit beta 389.96 7.00 ***AAG_02382quinone oxidoreductase 307.88 8.00 1.73 AAG_06796conserved hypothetical protein (cytochrome c oxidase subunit) 1238.58 6.50 1.20 rnAAG_03309suaprga1 1475.52 8.33 1.30 AAG_02050pyruvate decarboxylase 2099.43 16.17 2.75 AAG_05249aldehyde dehydrogenase 5638.29 23.50 2.16	AAG_01725 succinate dehydrogenase flavoprotein subunit 223.67 8.50 *** 1.3.5.1 AAG_02732 2-oxoglutarate dehydrogenase E1 276.45 18.25 1.62 1.2.4.2 AAG_08915 dihydrolipoamide succinyltransferase 749.88 13.33 1.27 2.3.1.61 AAG_00417 succinyl-CoA ligase subunit alpha 430.44 6.33 1.26 6.2.1.5 ransport and membrane-associated energy conservation succinyl-CoA ligase subunit alpha 430.44 6.33 1.26 6.2.1.5 AAG_02297 cytochrome b-c1 complex subunit Beta 155.75 3.00 *** 1.10.2.2 AAG_04931 electron transfer flavoprotein subunit beta 389.96 7.00 *** N.A. AAG_02382 quinone oxidoreductase 307.88 8.00 1.73 1.65.3 AAG_06796 conserved hypothetical protein (cytochrome c oxidase subunit) 1238.58 6.50 1.20 1.9.3.1 rm suaprga1 1475.52 8.33 1.30 N.A. AAG_02309 suaprga1 1475.52 8.33 1.30 N.A. MAG_02050	AAG_01725succinate dehydrogenase flavoprotein subunit223.678.50***1.3.5.1TCA cycleAAG_027322-oxoglutarate dehydrogenase E1276.4518.251.621.2.4.2TCA cycleAAG_08915dihydrolipoamide succinyltransferase749.8813.331.272.3.1.61TCA cycleAAG_00471succinyl-CoA ligase subunit alpha430.446.331.266.2.1.5TCA cycleransport and membrane-associated energy conservationAAG_02297cytochrome b-c1 complex subunit Rieske155.753.00***1.10.2.2Electron transport chain betaAAG_04931electron transfer flavoprotein subunit beta389.967.00***N.A.Electron transport chainAAG_052382quinone oxidoreductase307.888.001.731.6.5.3Electron transport chainAAG_05309suaprga11475.528.331.30N.A.Aerobic respirationAAG_02050pyruvate decarboxylase2099.4316.172.754.1.1.1Alcoholic fermentationAAG_05249aldehyde dehydrogenase5638.292.3.502.161.2.1.3Alcoholic fermentation

Energy conservation and regeneration

	PAAG_08082	plasma membrane ATPase	207.96	5.00	***	3.6.3.6	ATP biosynthesis	2
	PAAG_05576	ATP synthase gamma chain	1480.68	7.80	2.03	3.6.3.14	ATP biosynthesis	2
	PAAG_04820	ATPase alpha subunit	5155.57	21.50	1.92	3.6.3.14	ATP biosynthesis	2
	PAAG_08037	ATP synthase subunit beta	8785.14	29.33	1.22	3.6.3.14	ATP biosynthesis	2
CELL	A RESCUE, DEFE	ENSE AND VIRULENCE						
Stress	response							
	PAAG_02116	Hsp70	385.88	16.50	1.35	N.A.	Heat shock response	2
	PAAG_08152	3',5'-bisphosphate nucleotidase	155.76	7.00	***	3.1.3.7	Hyperosmotic salinity response	1
	PAAG_06947	gamma-glutamyltranspeptidase	204.85	12.00	***	2.3.2.2	Nitrogen starvation response	2
	PAAG_00997	actin-interacting protein	178.28	12.00	***	N.A.	Osmotic stress response	1
	PAAG_07020	thioredoxin reductase	340.22	7.00	***	1.8.1.9	Oxidative stress response	2
	PAAG_05061	AhpC/TSA family protein	763.03	4.67	***	N.A.	Oxidative stress response	2
	PAAG_09083	TCTP family protein	3094.32	6.83	1.72	N.A.	Oxidative stress response	2
	PAAG_03931	glutathione S-transferase Gst3	1064.17	13.00	1.49	2.5.1.18	Oxidative stress response	2
CELL	CYCLE AND D	NA PROCESSING						
DNA j	processing							
	PAAG_04389	mating-type switching protein swi10	224.32	6.00	***	N.A.	DNA repair	1

	PAAG_07099	histone H3.3	1397.91	3.00	***	N.A.	DNA repair	2
	PAAG_01596	chromatin remodeling complex subunit (Arp5)	176.87	13.00	***	N.A.	DNA repair	1
	PAAG_00773	DNA damage checkpoint protein rad24	1991.61	9.83	3.90	N.A.	DNA repair	2
	PAAG_06751	DNA damage checkpoint protein rad24	3506.98	13.00	2.51	N.A.	DNA repair	2
	PAAG_00923	proliferating cell nuclear antigen	1264.29	9.00	1.60	N.A.	DNA synthesis and replication	2
	PAAG_07098	histone H4.1	1662.13	5.00	***	N.A.	Nucleosome assembly	2
	PAAG_00126	histone H4.2	1685.65	5.33	***	N.A.	Nucleosome assembly	2
Cell cy	vcle							
	PAAG_05518	cell division cycle protein	368.50	18.00	***	N.A.	Cell cycle	2
TRAN	SCRIPTION							
RNA s	synthesis							
	PAAG_08471	histone H2A.Z	184.61	4.00	***	N.A.	Transcription regulation	2
	PAAG_01710	polymerase II polypeptide D	245.71	4.00	***	2.7.7.6	Transcription	1
PROT	EIN SYNTHESIS							
Riboso	ome biogenesis							
	PAAG_01433	40S ribosomal protein S14	707.87	5.33	1.25	N.A.	Translation	2

PAAG_09043	40S ribosomal protein S2	1159.36	7.83	1.60	N.A.	Translation	2	
PAAG_07847	40S ribosomal protein S26	1787.39	1.60	1.35	N.A.	Translation	2	
PAAG_03828	40S ribosomal protein S9	1081.01	7.00	1.27	N.A.	Translation	2	
PAAG_01052	60S ribosomal protein L10-B	671.85	5.80	1.43	N.A.	Translation	2	
PAAG_06320	60S ribosomal protein L13	3696.57	8.50	1.26	N.A.	Translation	2	
PAAG_00969	60S ribosomal protein L15	3234.57	6.33	1.28	N.A.	Translation	2	
PAAG_01834	60S ribosomal protein L16	912.15	8.50	1.22	N.A.	Translation	2	
PAAG_05379	60S ribosomal protein L17	2959.17	5.33	1.38	N.A.	Translation	2	
PAAG_00430	60S ribosomal protein L2	2042.63	7.17	1.36	N.A.	Translation	2	
PAAG_07385	60S ribosomal protein L23a	1911.74	4.67	1.20	N.A.	Translation	2	
PAAG_00765	60S ribosomal protein L36	2645.63	6.33	1.28	N.A.	Translation	2	
PAAG_07550	60S ribosomal protein L44	1230.65	3.00	***	N.A.	Translation	2	
PAAG_06487	60S ribosomal protein L7-C	2051.46	9.50	1.25	N.A.	Translation	2	
PAAG_04998	60S ribosomal protein L8-B	2603.35	12.83	1.28	N.A.	Translation	2	
PAAG_00347	60S ribosomal protein L9-B	476.25	5.00	***	N.A.	Translation	2	
PAAG_06743	ribosomal protein L23e	795.79	5.00	***	N.A.	Translation	2	
PAAG_05051	conserved hypothetical protein (ribosomal protein S17)	188.74	6.00	***	N.A.	Translation	1	
	PAAG_01001	hypothetical protein (40S ribosomal protein S29)	217.83	3.67	1.28	N.A.	Translation	2
---------	--------------------	---	---------	-------	------	---------	-----------------------------	---
Transl	ation							
	PAAG_02921	elongation factor Tu	234.53	13.00	***	N.A.	Translation	2
	PAAG_06084	eukaryotic translation initiation factor 3 subunit B	162.02	10.00	***	N.A.	Translation initiation	1
	PAAG_03556	elongation factor 1-gamma 1	223.88	8.00	***	N.A.	Translation elongation	1
	PAAG_00594	elongation factor 2	187.27	15.33	***	N.A.	Translation elongation	1
	PAAG_01665	PKHD-type hydroxylase TPA1	156.35	7.00	***	1.14.11	Translation termination	1
PROT	EIN FATE (foldi	ing, modification, destination)						
Protein	n folding and sta	bilization						
	PAAG_06168	peptidyl-prolyl cis-trans isomerase cypE	805.88	5.17	1.36	5.2.1.8	Protein folding	2
	PAAG_06255	mitochondrial co-chaperone GrpE	1865.43	8.20	1.35	N.A.	Protein folding	2
	PAAG_05226	Hsp90 binding co-chaperone (Sba1)	3452.01	7.67	1.26	N.A.	Protein folding	2
	PAAG_07409	conserved hypothetical protein (prefoldin subunit 6)	330.41	4.00	***	N.A.	Protein folding	2
Proteiı	n targeting, sorti	ng and translocation						
	PAAG_01854	hypothetical protein (nuclear transport factor 2)	621.37	1.50	***	N.A.	Protein import into nucleus	2

Protein modif	ication							
PAAG	6_04195	ubiquitin-conjugating enzyme	250.71	1.00	* * *	N.A.	Ubiquitination	1
Protein/peptid	le degradat	ion						
PAAG	G_02907	conserved hypothetical protein (ankyrin repeat protein)	288.17	6.00	***	N.A.	Cytoplasmic and nuclear protein degradation	1
PAAG	G_03512	carboxypeptidase Y	496.47	6.33	1.23	3.4.16.5	Lysossomal and vacuolar protein degradation	2
PAAG	G_01966	hypothetical protein (vacuolar protease A)	299.75	3.33	1.25	3.4.23.25	Lysossomal and vacuolar protein degradation	2
PROTEIN W	TH BIND	ING FUNCTION OR COFACTOR R	EQUIREMI	ENT				
Nucleic acid b	inding							
PAAG	G_05905	conserved hypothetical protein (dsDNA-binding protein PDCD5)	240.98	3.00	***	N.A.	DNA binding	1
PAAG	6_04913	conserved hypothetical protein (RNP domain-containing protein)	2396.12	9.83	1.43	N.A.	DNA binding	2
Structural pro	otein bindir	ıg						
PAAG	6_00004	actin binding protein	570.45	12.83	2.01	N.A.	Actin filament binding	2
PAAG	G_01764	actin binding protein	288.22	9.00	1.58	N.A.	Actin filament binding	1
Metal binding								
PAAG	6_03314	RING finger domain-containing	157.32	4.00	***	N.A.	Zinc binding	1

	protein						
PAAG_009	D76 LiPid Depleted family member	195.69	5.00	***	N.A.	Iron binding	1
Nucleotide/nucleos	ide/nucleobase binding						
PAAG_050	523 conserved hypothetical protein (protein kinase)	208.36	9.00	***	N.A.	ATP binding	2
CELLULAR TRA	NSPORT, TRANSPORT FACILITIES A	ND TRANSPO	ORT ROUT	ſES			
Transported comp	ounds						
PAAG_042	phosphatidylinositol transporter	1310.76	10.83	1.65	N.A.	Golgi protein transport	2
PAAG_010	conserved hypothetical protein (<i>Pb</i> 01 Csa2)	151.83	6.00	***	N.A.	Hemoglobin receptor	1
INTERACTION W	VITH THE ENVIRONMENT						
Homeostasis							
PAAG_058	cysteine desulfurase	160.27	7.00	***	2.8.1.7	Iron-sulfur cluster assembly	1
PAAG_058	350 conserved hypothetical protein (cysteine desulfurase)	395.45	10.25	1.65	2.8.1.7	Iron-sulfur cluster assembly	1
BIOGENESIS OF	CELLULAR COMPONENTS						
Cell wall							
PAAG_076	cell wall protein ECM33 precursor	347.01	6.67	***	N.A.	Cell wall organization	2
PAAG_050	1,3-beta-glucanosyltransferase gel4	159.84	10.00	***	2.4.1	Cell wall organization	1
PAAG_057	conserved hypothetical protein (acid	456.10	7.50	1.92	3.1.3.2	Anchored to membrane	2

phosphatase)

UNCLASSIFIED PROTEINS

PAAG_08235	predicted protein	393.54	5.00	***	N.A.	N.A.	1
PAAG_07397	conserved hypothetical protein	185.29	5.00	***	N.A.	N.A.	1
PAAG_07322	predicted protein	268.59	2.00	***	N.A.	N.A.	1
PAAG_06963	hypothetical protein	244.60	1.00	***	N.A.	N.A.	1
PAAG_05977	predicted protein	216.15	4.00	***	N.A.	N.A.	2
PAAG_05578	predicted protein	451.29	6.00	***	N.A.	N.A.	2
PAAG_02285	predicted protein	195.50	4.00	***	N.A.	N.A.	1
PAAG_01245	predicted protein	306.96	2.00	***	N.A.	N.A.	1
PAAG_00798	predicted protein	257.69	6.00	***	N.A.	N.A.	1
PAAG_00324	conserved hypothetical protein	241.69	7.00	***	N.A.	N.A.	1
PAAG_00250	conserved hypothetical protein	357.98	1.00	***	N.A.	N.A.	1
PAAG_00090	conserved hypothetical protein	335.29	6.00	***	N.A.	N.A.	2
PAAG_01045	conserved hypothetical protein	375.12	3.67	4.01	N.A.	N.A.	2
PAAG_03066	conserved hypothetical protein (putative cyclase)	982.37	7.83	1.88	N.A.	N.A.	2
PAAG_03701	BAR domain-containing protein	628.35	9.00	1.60	N.A.	N.A.	2

^aInformation obtained from *Paracoccidioides* Database (<u>http://www.broadinstitute.org/annotation/genome/paracoccidioides_brasiliensis/MultiHome.html</u>) ^bfilter 1 – proteins derived from PepFrag2; filter 2 – proteins derived from PepFrag1, as determined by PLGS and cited by Murad and Rech (2012). ***: proteins identified just in presence of hemoglobin;

N.A.: not applicable.

Accession number	Protein description	Score AVG	Peptides AVG	Fold change (Hb:Fe)	E.C. number	Subclassification	Filter
METABOLISM							
Amino acid metabolis	m						
PAAG_01206	L-asparaginase	197.88	5.00	***	3.5.1.1	Asparagine degradation	1
PAAG_01365	choline dehydrogenase	206.25	13.00	***	1.1.99.1	Glycine biosynthesis	1
PAAG_02935	glycine cleavage system H protein	404.32	4.33	0.66	N.A.	Glycine degradation	2
PAAG_04102	isovaleryl-CoA dehydrogenase	330.74	7.00	***	1.3.8.4	Leucine degradation	2
PAAG_01974	mitochondrial methylglutaconyl- CoA hydratase	223.92	6.00	***	4.2.1.18	Leucine degradation	1
PAAG_03569	1,2-dihydroxy-3-keto-5- methylthiopentene dioxygenase	175.60	6.00	***	1.13.11.54	Methionine biosynthesis	1
PAAG_08166	4-hydroxyphenylpyruvate dioxygenase	203.44	3.00	***	1.13.11.27	Tyrosine and phenylalanine degradation	1
PAAG_00014	dihydroxy-acid dehydratase	312.52	10.83	0.73	4.2.1.9	Valine and isoleucine biosynthesis	2
PAAG_02554	3-hydroxyisobutyryl-CoA hydrolase	402.87	9.75	0.58	3.1.2.4	Valine degradation	2
PAAG_01194	2-oxoisovalerate dehydrogenase subunit beta	219.86	6.00	***	1.2.4.4	Valine, leucine and isoleucine degradation	2

Supp. Table 3. Paracoccidioides Pb01 proteins repressed in presence of hemoglobin.

PAAG_06096	phospho-2-dehydro-3- deoxyheptonate aldolase	1370.44	9.67	0.66	2.5.1.54	Phenyalanine, tyrosine and tryptophan biosynthesis	2
PAAG_07659	chorismate synthase	193.84	3.50	0.61	4.2.3.5	Phenyalanine, tyrosine and tryptophan biosynthesis	2
Nitrogen, sulfur and sel	enium metabolism						
PAAG_04525	glutamine synthetase	156.10	9.00	***	6.3.1.2	Nitrogen metabolism	1
PAAG_07689	NADP-specific glutamate dehydrogenase	2006.41	19.83	0.75	1.4.1.4	Nitrogen metabolism	2
Nucleotide/nucleoside/n	ucleobase metabolism						
PAAG_04297	thymidylate kinase	359.06	5.00	***	2.7.4.9	Pyrimidine biosynthesis	2
PAAG_02336	conserved hypothetical protein (NUDIX hydrolase)	238.53	8.00	***	3.6.1	Nucleoside diphosphate metabolism	1
C-compound and carbo	hydrate metabolism						
PAAG_01534	pyruvate dehydrogenase E1 component subunit beta	289.61	5.83	0.74	1.2.4.1	Acetyl-CoA biosynthesis	2
PAAG_05761	4-carboxymuconolactone decarboxylase family protein	231.12	2.00	***	4.1.1.44	Aromatic hydrocarbons catabolism	1
PAAG_05572	conserved hypothetical protein (endo-1,3(4)-beta-glucanase)	504.06	4.67	***	3.2.1.39	Carbohydrate metabolism	2
PAAG_06473	mannitol-1-phosphate 5- dehydrogenase	3302.60	16.33	0.78	1.1.1.17	Fructose and mannose metabolism	2
PAAG_03776	inositol-3-phosphate synthase	1569.78	15.33	0.79	5.5.1.4	Inostiol biosynthesis	2

	PAAG_04181	sorbitol utilization protein SOU2	662.02	4.83	0.54	N.A.	Sorbitol metabolism	2
Lipid	, fatty acid and is	oprenoid metabolism						
	PAAG_06329	3-hydroxybutyryl-CoA dehydrogenase	427.12	8.00	***	1.1.1.157	Fatty acid metabolism	2
	PAAG_05837	palmitoyl-protein thioesterase	280.07	15.00	***	3.1.2.22	Fatty acid elongation	2
	PAAG_02664	3-ketoacyl-CoA thiolase	2491.03	11.17	0.80	2.3.1.16	Fatty acid metabolism	2
	PAAG_06309	enoyl-CoA hydratase	2395.39	11.50	0.70	4.2.1.17	Fatty acid metabolism	2
	PAAG_01928	peroxisomal dehydratase	370.76	8.75	0.37	N.A.	Fatty acid metabolism	2
Meta	bolism of vitamin	s, cofactors and prosthetic groups						
	PAAG_01324	folic acid synthesis protein	351.68	10.80	0.77	4.1.2.25; 2.7.6.3; 2.5.1.15	Folic acid biosynthesis	2
	PAAG_07321	pyridoxine biosynthesis protein PDX1	2963.57	12.50	0.75	4	Pyridoxine biosynthesis	2
Secon	ıdary metabolism							
	PAAG_08820	conserved hypothetical protein (tyrosinase)	205.13	8.75	0.79	1.14.18.1	Melanin biosynthesis	1
	PAAG_04888	4-coumarate-CoA ligase	190.87	9.00	***	6.2.1.12	Phenylpropanoids biosynthesis	1
	PAAG_00799	uroporphyrinogen decarboxylase	362.04	8.67	***	4.1.1.37	Porphyrin biosynthesis	2
	PAAG_06925	conserved hypothetical protein (glutamate-1-semialdehyde 2,1-	322.93	7.00	***	5.4.3.8	Porphyrin biosynthesis	2

aminomutase)

ENERGY

Glycolysis and gluconeogenesis

	PAAG_08468	glyceraldehyde-3-phosphate dehydrogenase	22116.30	24.67	0.58	1.2.1.12	Glycolysis/ Gluconeogenesis	2
Trica	rboxylic-acid cyc	le						
	PAAG_00053	malate dehydrogenase	29621.08	24.50	0.77	1.1.1.37	TCA cycle	2
Elect	ron transport and	d membrane-associated energy cons	ervation					
	PAAG_06268	cytochrome c	585.65	3.80	0.70	N.A.	Electron transport chain	2
	PAAG_02699	hypothetical protein (ubiquinol- cytochrome c reductase subunit 6)	1636.99	2.67	0.79	N.A.	Electron transport chain	2
	PAAG_07921	conserved hypothetical protein (putative cytochrome c oxidase subunit vib protein)	1384.39	2.60	0.63	N.A.	Electron transport chain	2
Ferm	entation							
	PAAG_08911	alcohol dehydrogenase	315.73	9.00	***	1.1.1.1	Alcoholic fermentation	2
	PAAG_04541	alcohol dehydrogenase	3967.62	12.67	0.80	1.1.1.1	Alcoholic fermentation	2
	PAAG_00403	alcohol dehydrogenase	14799.24	21.67	0.59	1.1.1.1	Alcoholic fermentation	2
Energ	gy conservation a	nd regeneration						
	PAAG_05605	ATP synthase delta chain	1667.22	5.33	0.80	3.6.3.14	ATP biosynthesis	2

	PAAG_02019	conserved hypothetical protein (mitochondrial F1F0 ATP synthase subunit Atp14)	1075.80	3.00	0.54	3.6.3.14	ATP biosynthesis	2
CEL	L RESCUE, DEF	FENSE AND VIRULENCE						
Stres	s response							
	PAAG_02725	superoxide dismutase	508.63	5.00	***	1.15.1.1	Oxidative stress response	2
	PAAG_03292	cytochrome c peroxidase	371.91	7.83	0.70	1.11.1.5	Oxidative stress response	2
	PAAG_01454	catalase	781.72	5.20	0.37	1.11.1.6	Oxidative stress response	2
	PAAG_00293	quinone oxidoreductase	232.23	4.00	***	1.6.5.5	Oxidative stress response	1
CEL	L CYCLE AND	DNA PROCESSING						
DNA	processing							
	PAAG_08918	late histone H2B.L4	3411.59	5.00	0.67	N.A.	Nucleosome assembly	2
	PAAG_08917	histone H2a	1669.12	4.83	0.59	N.A.	Nucleosome assembly	2
	PAAG_00427	conserved hypothetical protein (DNA repair and transcription factor Ada)	152.88	5.00	***	N.A.	DNA repair	1
Cell	cycle							
	PAAG_02186	nuclear segregation protein Bfr1	398.41	11.00	0.73	N.A.	Mitosis regulation	2
	PAAG_03054	conserved hypothetical protein (G2/M phase checkpoint control protein Sum2)	202.86	7.75	0.74	N.A.	Mitosis regulation	1

PAAG_01298	M protein repeat protein	185.34	27.00	***	N.A.	Mitotic spindle assembly checkpoint	2
TRANSCRIPTION							
RNA synthesis							
PAAG_08382	Lamina-associated polypeptide 2	389.94	7.00	***	N.A.	Transcription regulation	2
PAAG_04496	nascent polypeptide-associated complex subunit beta	1549.00	6.33	0.54	N.A.	Transcription regulation	2
PAAG_01597	predicted protein (bZIP transcription factor)	1032.22	6.00	***	N.A.	Transcription regulation	2
PAAG_02467	conserved hypothetical protein (transcription initiation factor TFIID subunit 14)	821.26	5.50	***	N.A.	Transcription initiation	2
RNA processing							
PAAG_04662	cleavage and polyadenylation specificity factor subunit 5	269.70	3.00	***	N.A.	mRNA processing	1
PROTEIN SYNTHES	IS						
Ribosome biogenesis							
PAAG_05017	40S ribosomal protein S10-A	525.66	3.00	***	N.A.	Translation	2
PAAG_08634	40S ribosomal protein S12	449.23	6.17	0.72	N.A.	Translation	2
PAAG_05704	40S ribosomal protein S13-1	1500.97	7.40	0.79	N.A.	Translation	2
PAAG_04690	40S ribosomal protein S15	7159.23	3.67	0.72	N.A.	Translation	2

	PAAG_05778	40S ribosomal protein S19	2639.44	5.83	0.64	N.A.	Translation	2
	PAAG_03322	40S ribosomal protein S20	831.39	3.00	0.70	N.A.	Translation	2
	PAAG_05805	40S ribosomal protein S21	3021.22	4.20	0.77	N.A.	Translation	2
	PAAG_06882	40S ribosomal protein S24	854.62	5.20	0.67	N.A.	Translation	2
	PAAG_01785	40S ribosomal protein S3	2242.64	12.83	0.80	N.A.	Translation	2
	PAAG_07707	60S ribosomal protein L10a	318.92	9.50	***	N.A.	Translation	1
	PAAG_04425	60S ribosomal protein L22	3250.68	6.60	0.73	N.A.	Translation	2
	PAAG_05233	60S ribosomal protein L26	1240.01	6.00	***	N.A.	Translation	2
	PAAG_01050	cytosolic large ribosomal subunit protein L30	920.25	4.20	0.72	N.A.	Translation	2
	PAAG_09096	hypothetical protein (40S ribosomal protein S28)	4232.84	3.17	0.74	N.A.	Translation	2
Tran	slation							
	PAAG_02024	elongation factor 1-alpha	346.65	4.00	***	N.A.	Translation elongation	2
	PAAG_00241	eukaryotic translation initiation factor 5A	289.07	3.00	***	N.A.	Translation initiation	2
	PAAG_00240	eukaryotic translation initiation factor 5A	538.18	6.67	0.78	N.A.	Translation initiation	2
	PAAG_06623	translation initiation factor 4B	207.36	8.67	0.56	N.A.	Translation initiation	1
	PAAG_00772	hypothetical protein (eukaryotic translation initiation factor 3	182.70	1.00	* * *	N.A.	Translation initiation	1

	subunit J)						
PAAG_05882	translation factor SUI1	907.08	3.50	***	N.A.	Translation regulation	2
Aminoacyl-tRNA-syn	thethases						
PAAG_08172	lysyl-tRNA synthetase	150.31	10.00	***	6.1.1.6	Aminoacyl-tRNA biosynthesis	1
PROTEIN FATE (fol	ding, modification, destination)						
Protein folding and st	abilization						
PAAG_00739	peptidyl-prolyl cis-trans isomerase B	8036.89	11.00	0.80	5.2.1.8	Protein folding	2
PAAG_07775	heat shock protein SSB1	1838.43	14.33	0.79	N.A.	Protein folding	2
PAAG_01778	peptidyl-prolyl cis-trans isomerase H	1794.67	5.33	0.73	5.2.1.8	Protein folding	2
Protein targeting, sort	ing and translocation						
PAAG_07890	vacuolar-sorting protein snf7	206.78	4.00	***	N.A.	Protein targeting to vacuole	1
Protein modification							
PAAG_03038	ubiquitin-like modifier SUMO	730.49	3.00	***	N.A.	Protein sumoylation	2
Assembly of protein c	omplexes						
PAAG_01735	hypothetical protein (cytochrome c oxidase copper chaperone Cox17)	2250.75	2.50	***	N.A.	Respiratory chain complex IV assembly	2
PAAG_07543	conserved hypothetical protein (tubulin-specific chaperone Rbl2)	678.88	2.80	0.66	N.A.	Tubulin complex assembly	2

Protein/peptide degradation

PAAG_04282	UBX domain-containing protein	197.43	9.00	***	N.A.	Proteasomal degradation	1
PAAG_07500	Xaa-Pro aminopeptidase	179.14	6.00	***	3.4.11.9	Cytoplasmic and nuclear protein degradation	2
PAAG_04168	aqualysin-1	1117.37	7.33	0.80	3.4.21.111	Proteolysis	2
PAAG_00664	aspartyl aminopeptidase	969.00	14.83	0.76	3.4.11.21	Proteolysis	2
PAAG_01095	proline iminopeptidase	310.95	4.50	0.75	3.4.11.5	Proteolysis	1
PAAG_05466	xaa-Pro dipeptidase	xaa-Pro dipeptidase 380.68 5.75 0.74 3.4.13.9		3.4.13.9	Proteolysis	2	
PROTEIN WITH BINDING FUNCTION OR COFACTOR REQUIREMENT							
Nucleic acid binding							
PAAG_03823	conserved hypothetical protein (RRM domain-containing protein)	178.55	3.00	***	N.A.	RNA binding	1
PAAG_05720	conserved hypothetical protein (SAP domain-containing protein)	thetical protein 877.35 5.80 0.80 N.A.		N.A.	Nucleic acid binding	2	
CELLULAR TRANSF	PORT, TRANSPORT FACILITIES	AND TRAN	SPORT R	DUTES			
Transported compoun	ds						
PAAG_00109	mitochondrial intermembrane space translocase subunit Tim	854.31	4.00	***	N.A.	Protein transport	2

PAAG_07386	conserved hypothetical protein (import inner membrane	384.76	1.00	***	N.A.	Protein transport	2

translocase subunit TIM)

Transport routes							
PAAG_06233	vesicular-fusion protein SEC17	161.40	5.00	***	N.A.	ER to Golgi transport	1
PAAG_08252	clathrin light chain	354.63	2.20	0.70	N.A.	Vesicular transport	2
PAAG_04651	GTP-binding nuclear protein GSP1/Ran	853.14	2.17	0.39	N.A.	Nuclear transport	2
PAAG_02465	hypothetical protein (ran-specific GTPase-activating protein)	179.71	2.00	***	N.A.	Nuclear transport	1
CELLULAR COMM	UNICATION/SIGNAL TRANSDUC	CTION MEC	HANISM				
Cellular signalling							
PAAG_08247	calmodulin	5032.47	8.83	0.73	N.A.	Ca2+ mediated signal transduction	2
BIOGENESIS OF CE	ELLULAR COMPONENTS						
Cell wall							
PAAG_04235	hydrophobin	11190.10	5.33	0.79	N.A.	Cell wall organization	2
CELLULAR COMM	UNICATION/ SIGNAL TRANSDU	CTION MEC	CHANISM				
Transmembrane sign:	al transduction						
PAAG_02817	stomatin family protein	192.30	5.50	***	N.A.	Ion channel mediated signalling pathway	1
INTERACTION WIT	TH THE ENVIRONMENT						

Hom	eostasis							
	PAAG_02622	iron-binding protein iscA	209.72	6.00	***	N.A.	Iron-sulfur cluster assembly	1
	PAAG_02974	glutaredoxin domain-containing protein	181.12	3.00	***	N.A.	Cell redox homeostasis	1
SUB	CELLULAR LO	CALIZATION						
Nucl	eus							
	PAAG_08118	conserved hypothetical protein	212.37	6.00	***	N.A.	Lin1 family protein	2
UNC	LASSIFIED PRO	DTEINS						
	PAAG_02217	isochorismatase domain-containing protein	1462.05	5.20	0.69	N.A.	N.A.	2
	PAAG_09108	RPEL repeat protein	396.89	5.00	***	N.A.	N.A.	2
	PAAG_09001	conserved hypothetical protein	247.80	1.00	***	N.A.	N.A.	2
	PAAG_08409	hypothetical protein	2939.15	3.00	***	N.A.	N.A.	2
	PAAG_05403	predicted protein	255.76	6.00	***	N.A.	N.A.	1
	PAAG_04178	conserved hypothetical protein	178.05	2.00	***	N.A.	N.A.	1
	PAAG_02985	hypothetical protein	214.03	5.00	***	N.A.	N.A.	1
	PAAG_02839	hypothetical protein (HMG box protein)	342.55	8.00	***	N.A.	N.A.	2
	PAAG_02001	conserved hypothetical protein	880.54	4.00	***	N.A.	N.A.	2

PAAG_01567	conserved hypothetical protein	690.12	5.00	***	N.A.	N.A.	2
PAAG_00467	predicted protein	238.33	4.00	***	N.A.	N.A.	1
PAAG_00026	conserved hypothetical protein	328.98	6.00	***	N.A.	N.A.	1
PAAG_00233	conserved hypothetical protein (rhodanese domain-containing protein)	462.00	1.00	***	N.A.	N.A.	2
PAAG_08015	hypothetical protein	1113.98	1.00	0.80	N.A.	N.A.	2
PAAG_07772	conserved hypothetical protein	1321.21	7.50	0.74	N.A.	N.A.	2
PAAG_04083	conserved hypothetical protein (isochorismatase family hydrolase)	1368.58	3.67	0.69	N.A.	N.A.	2
PAAG_00297	conserved hypothetical protein (F1F0-ATP synthase regulatory factor Stf2)	561.22	4.25	0.59	N.A.	N.A.	2

^aInformation obtained from *Paracoccidioides* Database (<u>http://www.broadinstitute.org/annotation/genome/paracoccidioides_brasiliensis/MultiHome.html</u>) ^bfilter 1 – proteins derived from PepFrag2; filter 2 – proteins derived from PepFrag1, as determined by PLGS and cited by Murad and Rech (2012). ***: proteins identified just in presence of inorganic iron;

N.A.: not applicable.

III. DISCUSSÃO

Os macrófagos alveolares são as primeiras células de defesa que interagem com Paracoccidioides spp. A ativação desses fagócitos é fundamental para o controle do crescimento fúngico (LOURES et al., 2010). Já foi demonstrado que macrófagos residentes ou monócitos, não ativados por citocinas, são permissivos à multiplicação intracelular de Paracoccidioides spp. Nesse caso, essas células fagocíticas representariam um ambiente protetor contra o sistema complemento, anticorpos ou componentes da resposta imune inata para o fungo, permitindo a disseminação do micro-organismo para diferentes órgão e tecidos (BRUMMER et al., 1989; MOSCARDI-BACCHI; BRUMMER; STEVENS, 1994). Além disso, o fungo pode se disseminar pelo corpo humano através da via hematogênica (FRANCO, 1987). Dessa maneira, Paracoccidioides spp. tem pelo menos duas oportunidades de entrar em contato com a hemoglobina: (1) dentro dos macrófagos, que já foram apontados como células recicladoras de hemácias senescentes (HENTZE et al., 2010); (2) e durante a disseminação pelo sangue. É comum acontecer a lise intravascular de hemácias, principalmente senescentes. Neste momento, os micro-organismos têm que competir pela hemoglobina ou grupo heme livres com a haptoglobina e a hemopexina, glicoproteínas do hospedeiro capazes de se ligar, respectivamente, a essas moléculas que contêm ferro (HENTZE et al., 2010; CASSAT; SKAAR, 2013).

Dessa maneira, a hemoglobina e o grupo heme poderiam representar fontes de ferro importantes para *Paracoccidioides* spp. durante a infecção do hospedeiro. Além disso, já foi demonstrado que o sangue humano não é um ambiente ferro limitante para o fungo (BAILÃO et al., 2006), o que também sugere que o fungo pode utilizar hemoglobina ou grupo heme livres.Essa hipótese foi corroborada em ensaios de crescimento do fungo em meio BHI sólido suplementado com diferentes fontes de ferro (inorgânica e orgânicas). Pôde-se perceber um robusto crescimento do fungo na presença de hemoglobina e hemina. Além disso, o fungo foi capaz de internalizar o composto auto fluorescente protoporfirina IX ligada a zinco (Zn-PPIX). O anel de protoporfirina IX é intrinsicamente fluorescente, porém o ferro quela essa fluorescência, enquanto o zinco, não. Dessa forma, o composto Zn-PPIX é fluorescente e o grupo heme, não (NEVITT; THIELE, 2011). Porém, para conseguir acessar eficientemente a hemoglobina durante a infecção, *Paracoccidioides* spp. deveria apresentar potencial hemolítico. Esse potencial foi testado na presença de hemácias de carneiro. Foi demonstrado que as linhagens *Pb*18 e *Pb*01 são capazes de lisar as hemácias, reforçando a habilidade do fungo em usar essa fonte de ferro do hospedeiro.

Buscou-se no genoma do fungo por sequências homólogas às proteínas pertencentes à família de receptores de hemoglobina de *C. albicans* (WEISSMAN; KORNITZER, 2004). No genoma da linhagem *Pb*01 foram encontrados três ortólogos (Rbt5, Wap1/Csa1 e Csa2), em *Pb*18 foi encontrado apenas um ortólogo (Wap1/Csa1) e em *Pb*03 foram encontrados dois ortólogos (Rbt51 e Csa2), segundo análises *in silico*. Isso sugere que, assim como em *C. albicans* (WEISSMAN; KORNITZER, 2004) e em *C. neoformans* (CADIEUX et al., 2013), a aquisição de hemoglobina por *Paracoccidioides* spp. seja receptor-dependente. Em *C. albicans*, os transcritos *rbt5* e *wap1* são ativados em condição de baixa concentração de ferro (10 μ M), quando comparada com uma condição de alta concentração de ferro (100 μ M) (LAN et al., 2004). Isso pôde ser observado também para os transcritos *rbt5*, *wap1/csa1* e *csa2* de*Pb*01. Além disso, esses transcritos foram induzidos quando *Pb*01 foi cultivado em baixas concentrações de ferro (10 μ M) ou na presença de hemoglobina (10 μ M), quando comparado com o fungo cultivado em condições de não adição de ferro. Isso indica que as proteínas codificadas por esses transcritos são importantes durante a captação de ferro, inclusive da hemoglobina, por este fungo.

Em estudos proteômicos com a linhagem Pb01, Csa2 foi detectada apenas quando o fungo foi cultivado na presença de hemoglobina, sugerindo que Csa2 possa participar da aquisição dessa molécula pelo fungo. Rbt5 e Wap1/Csa1 não foram detectadas neste estudo, provavelmente porque essas proteínas são GPI-ancoradas e não foi utilizado nenhum procedimento para purificar especificamente as proteínas GPI-ancoradas à superfície do fungo. O proteoma de Pb01 na presença de hemoglobina também revelou que proteínas envolvidas com o metabolismo de aminoácidos, de nitrogênio e de enxofre e com a montagem de grupos Fe-S foram induzidas em comparação com o proteoma do fungo cultivado na presença de ferro inorgânico. Além disso, proteínas envolvidas com a biossíntese de porfirina foram detectadas exclusivamente quando o fungo foi cultivado na presença de ferro inorgânico. Esses resultados sugerem que Paracoccidioides spp. possa utilizar hemoglobina não só como fonte de ferro, mas também de nitrogênio, enxofre e porfirina, internalizando toda a molécula de hemoglobina e não somente o ferro. Essa hipótese pode ser corroborada pela identificação de proteínas envolvidas com a degradação proteica no lisossomo e no vacúolo apenas quando o fungo foi cultivado na presença de hemoglobina. Mecanismos similares já foram propostos para C. albicans e C. neoformans. Em C. albicans, Rbt5 ou Rbt51 liga-se à hemoglobina e o complexo é endocitado (WEISSMAN et al., 2008). Em C. neoformans, Cig1, uma manoproteína extracelular recentemente descrita, parece funcionar como um hemóforo ou receptor na superfície do fungo (CADIEUX et al., 2013), ajudando na captação de hemoglobina pelo fungo, provavelmente por endocitose (HU et al., 2013).

Como observado, *Pb*01 *rbt5* apresentou o maior nível de regulação na presença de hemoglobina. Por isso, a proteína Rbt5 foi investigada neste trabalho. Para isso, o transcrito codificante para *Pb*01 Rbt5 foi clonado em um vetor de expressão e a proteína recombinante foi produzida fusionada à GST em *Escherichia coli*. Após purificação em resina de afinidade por GST, esta proteína foi clivada e a Rbt5 recombinante foi obtida e utilizada para a produção de anticorpos policlonais em coelho.*Pb*01 Rbt5 demonstrou possuir características semelhantes à Rbt5 de *C. albicans*, como domínio CFEM (ALMEIDA; WILSON; HUBE, 2009) e âncora GPI (DE GROOT; HELLINGWERF; KLIS, 2003). Além disso, a proteína foi identificada na superfície de leveduras de *Pb*01, onde provavelmente se encontre GPI-ancorada. A capacidade da ligação da proteína recombinante a hemina, protoporfirina e hemoglobina também foi investigada, demonstrando que *Pb*01 Rbt5 é capaz de se ligar a todas essas moléculas. Esses dados reforçam que *Pb*01 Rbt5 deve participar da captação de hemoglobina em *Paracoccidioides* spp.

Para investigar o papel funcional de *Pb*01 Rbt5, uma linhagem silenciada para o gene codificante desta proteína foi construída. O silenciamento foi realizado utilizando a tecnologia de RNA antisentido (aRNA) juntamente com a transformação mediada por *A. tumefasciens* (ATMT), como já descrito (ALMEIDA et al., 2009; RUIZ et al., 2011; TORRES et al., 2013). O silenciamento tanto a nível transcricional quanto a nível proteico foi demonstrado neste trabalhando utilizando PCR quantitativa em tempo real e citometria de fluxo, respectivamente. As linhagens controle utilizadas foram a selvagem e a transformada com o vetor vazio. Apesar de ter sido demonstrada a eficiência do silenciamento, não houve redução do crescimento da linhagem silenciada na presença de hemoglobina. Contrariamente, em *C. albicans* a linhagem mutante *Δrbt5* apresenta crescimento reduzido na presença de hemoglobina e hemina como fontes de ferro (WEISSMAN; KORNITZER, 2004). Esse resultado indica que baixos níveis de Rbt5 na superfície de *Paracoccidioides* spp. já seja suficiente para captar a hemoglobina ou que outros possíveis receptores de hemoglobina de *Paracoccidioides* spp. possam atuar na superfície do fungo para captar esta fonte de ferro, o que será alvo de futuros estudos em nosso laboratório.

Já foi demonstrado que o elemento ferro é importante para a sobrevivência de *Paracoccidioides* sp. dentro de monócitos (DIAS-MELICIO et al., 2006). Dessa forma, foi investigada a capacidade de a linhagem do fungo silenciada para *rbt5* sobreviver dentro de macrófagos. Foi observada uma menor sobrevida da linhagem silenciada, quando comparada às linhagens controle, dentro dos macrófagos. Além disso, a capacidade da linhagem silenciada de sobreviver dentro do tecido do hospedeiro após a infecção foi investigada utilizando um modelo murino. Foi observada uma menor carga fúngica da linhagem silenciada, em comparação às

linhagens controle, no baço de camundongos. Esses resultados indicam que Rbt5 pode atuar como um fator de virulência, contribuindo para o estabelecimento ou a manutenção da infecção, ou que esta proteína interfere na estimulação da resposta imunológica dos macrófagos para matar as células fúngicas internalizadas. Contrariamente, em *C. albicans* a deleção de *rbt5* não afetou a virulência do fungo em modelos animais de infecção (BRAUN et al., 2000), sugerindo que mecanismos compensatórios podem atuar nesse fungo na ausência de Rbt5 (WEISSMAN; KORNITZER, 2004).A habilidade de Rbt5 em atuar como um antígeno na superfície de *Paracoccidioides* spp. também foi investigada neste trabalho. Foi demonstrado que o soro de pacientes com PCM foi capaz de reconhecer a proteína recombinante Rbt5 de *Pb*01. Resultados similares foram obtidos com receptores de hemoglobina de *C. albicans*, uma vez que Rbt5 e Csa1 foram encontradas entre 33 antígenos reconhecidos por soro de pacientes convalescentes de candidemia (MOCHON et al., 2010). Esses resultados reforçam que Rbt5 pode atuar na interface entre o parasito e o hospedeiro.

Proteínas da superficie de fungos que atuam na captação de ferro podem ser alvos interessantes para o desenvolvimento de vacinas e de fármacos que bloqueiem a internalização do micronutriente e, portanto, a proliferação do micro-organismo. Além disso, essas proteínas podem servir de rota para a introdução de drogas antifúngicas dentro das células dos micro-organismos (KRONSTAD; CADIEUX; JUNG, 2013). Neste trabalho, foi demonstrado que *Paracoccidioides* spp. pode captar o grupo heme, provavelmente através de mecanismos dependentes de receptor. Dessa maneira, Rbt5 pode ser um importante alvo para o desenvolvimento de vacinas ou de fármacos bloqueadores da proliferação do patógeno, ou ainda, servir como rota para introdução de drogas antifúngicas em um estratégia do tipo cavalo de Tróia.

Capítulo 3

Homeostase de ferro

I. INTRODUÇÃO

Assim como a captação de grupo heme mediada por receptor, a captação de ferro pela via redutiva é importante para a aquisição desse micronutriente em fungos, tanto patogênicos, como *C. albicans* (KNIGHT et al., 2002) e *C. neoformans* (JUNG; DO, 2013), quanto não patogênicos, como *S. cerevisiae* (KOSMAN, 2003). O Fe³⁺ é geralmente insolúvel em pH fisiológico, na presença de oxigênio. Dessa forma, a redução deste íon para Fe²⁺ é essencial para a aquisição deste micronutriente pelos micro-organismos (KOSMAN, 2003). Após essa redução, Fe²⁺ é internalizado por uma permease dependente de uma ferro-oxidase, permitindo a internalização de Fe³⁺ (KOSMAN, 2013).

O Fe³⁺é reduzido normalmente por uma enzima de membrana da família Fre, que contém heme e flavina em sua estrutura (KOSMAN, 2013) e que possui domínios de redutase férrica e de ligação a NAD e/ou FAD, responsáveis pela doação de elétrons (ALMEIDA; WILSON; HUBE, 2009). Alguns fungos, como *H. capsulatum*, utilizam uma redutase férrica dependente de glutationa secretada (Ggt1). Esta redutase pode utilizar sideróforos e proteínas ligantes de Fe³⁺ como substratos, sendo sua atividade enzimática mais robusta sob condições de depleção de ferro, o que é consistente com o sistema de captação de ferro de alta afinidade (ZARNOWSKI et al., 2008; TIMMERMAN et al., 2001). Além da enzima de superfície, *C. neoformans* utiliza um composto secretado chamado de ácido 3-hidroxiantranílico e a melanina para promover a redução do ferro (NYHUS; WILBORN; JACOBSON, 1997). Essa primeira etapa da via redutiva é considerada importante porque permite a aquisição de ferro a partir de uma grande variedade de compostos, como sais orgânicos e inorgânicos, sideróforos carregados com Fe³⁺ e proteínas do hospedeiro ligantes de Fe³⁺, utilizando-se apenas um sistema de aquisição de ferro de alta afinidade (DE LUCA; WOOD, 2000; SUTAK et al., 2008).

O Fe²⁺ produzido pela enzima Fre é geralmente oxidado a Fe³⁺ por uma multicobre oxidase da família Fet. Já foi proposto que algumas lacases de basidiomicetos podem funcionar também como ferroxidases (LIU; TEWARI; WILLIAMSON, 1999; LARRONDO et al., 2003; LARRONDO et al., 2004), mas a participação dessas moléculas na captação de ferro ainda não foi caracterizada (CANESSA; LARRONDO, 2013). A ferroxidase mais estudada é a Fet3 de *S. cerevisiae*, uma proteína altamente glicosilada que possui um domínio transmembrana e quatro sítios de ligação a cobre (HASSETT; YUAN; KOSMAN, 1998). A reação catalisada por essa enzima ocorre em um destes sítios, onde o ferro é oxidado e o oxigênio molecular é reduzido a duas moléculas de água ($4Fe^{2+} + 4H^+ + O_2 \rightarrow 4Fe^{3+} + 2H_2O$) (KOSMAN, 2003). Esse passo de oxidação, que parece ser redundante, é considerado necessário para conceder a especificidade de transportar apenas ferro por esse mecanismo (IBRAHIM; SPELLBERG; EDWARDS, 2008). O Fe³⁺ produzido pela ferroxidase é canalizado para uma permease de ferro de alta afinidade da família Ftr, não sendo liberado no meio antes da internalização (KWOK; SEVERANCE; KOSMAN, 2006). Esse mecanismo pode auxiliar no controle do influxo de ferro, já que ainda não foi identificado um sistema regulado de excreção de ferro (KAPLAN; KAPLAN, 2009). Apenas o ferro produzido pela Fet é substrato para a Ftr (STEARMAN et al., 1996), uma proteína contendo sete domínios transmembrana (SEVERANCE; CHAKRABORTY; KOSMAN, 2004). O processamento e a localização corretos de Fet e Ftr são interdependentes. Fet3 produzida em uma célula mutada para *ftr1 (\Delta ftr1)* é retida em um compartimento citoplasmático em sua forma inativa, sem adição de cobre a sua estrutura. Ftr1 produzida em uma célula $\Delta fet3$ também não atinge a membrana plasmática (KOSMAN, 2003). Esses dados sugerem que essas proteínas formam um heterodímero ou uma ultraestrutura, em que cada oligômero é importante para a maturação e o tráfico corretos do complexo para a membrana plasmática (KOSMAN, 2003; ZIEGLER et al., 2011).

Homólogos de Fet e Ftr podem ser encontrados nos genomas de muitos fungos, como *S. cerevisiae* (SINGH et al., 2006), *C. albicans* (ZIEGLER et al., 2011), *C. neoformans* (JUNG et al., 2008) e *A. fumigatus* (SCHRETTL et al., 2004), e de algas, como *Chlamydomonas reinhardtii* (TERZULLI; KOSMAN, 2010). Porém alguns fungos não possuem homólogos para essas proteínas, como é o caso de *Aspergillus nidulans* (HAAS; EISENDLE; TURGEON, 2008) e *Coccidioides immitis* (HOEGGER et al., 2006). Os organismos estudados até agora que não possuem homólogos para *fet*, também não possuem homólogos para *fit* (HOEGGER et al., 2006). Os fungos que não possuem uma via redutiva de assimilação de ferro funcional devem utilizar sideróforos para captar o ferro extracelular (EISENDLE et al., 2003; HAAS; EISENDLE; TURGEON, 2008). Sistemas de transporte de ferro de baixa afinidade só foram identificadas até agora em *S. cerevisiae*. As permeases envolvidas neste processo, como Fet4 e Smf1, transportam, além de Fe²⁺, outros metais, como cobre e zinco (HAAS; EISENDLE; TURGEON, 2008).

Como o excesso de ferro é tóxico, por gerar EROs, os micro-organismos desenvolveram várias estratégias para controlar não apenas a entrada de ferro, mas também sua utilização e estocagem (XU et al., 2012). A mitocôndria é particularmente importante para a homeostase e o metabolismo de ferro por ser uma das maiores consumidoras do metal na célula e, por isso, ela contém a maquinaria necessária para transporte desse íon (RICHARDSON et al., 2010; GILLE;

REICHMANN, 2011). *S. cerevisiae* possui as proteínas Mrs3 e Mrs4 pertencentes à família de carreadores mitocondriais (MCF) e que estão envolvidas com a captação de ferro para o interior da mitocôndria (FROSCHAUER; SCHWEYEN; WIESENBERGER, 2009). Os membros dessa família geralmente estão localizados na membrana mitocondrial interna, regulando a troca de substratos entre o citosol e a matriz mitocondrial. As proteínas da MCF possuem uma estrutura com três repetições sequenciais, cada uma contendo duas regiões transmembrana (ROBINSON; KUNJI, 2006). Foi demonstrado que a superexpressão de Mrs3/4 estimula a formação de heme e a maturação de proteínas contendo grupos Fe/S; e que a deleção de *mrs3/4* leva à inibição desses eventos celulares (MUHLENHOFF et al., 2003). Dessa forma, Mrs3 e Mrs4 são importantes para a homeostase intracelular de ferro e para a biossíntese de grupos heme e Fe-S (MUHLENHOFF et al., 2003; LI; KAPLAN, 2004). Homólogos dessas proteínas já foram identificados em *C. neoformans*(JACOBSON; TROY; NYHUS, 2005) e em *C. albicans* (XU et al., 2012) e também estão envolvidos com o transporte de ferro pela mitocôndria.

Outras proteínas também participam da homeostase de ferro mitocondrial, uma delas é a Yfh1, homóloga da proteína humana frataxina (PANDOLFO; PASTORE, 2009). A função de Yfh1 e seus ortólogos ainda é tema de debate na comunidade científica. Quatro hipóteses são mais aceitas (RICHARDSON et al., 2010). (1) A proteína funcionaria como um estoque mitocondrial de ferro não reativo, semelhante à ferritina, impedindo a formação de EROs, que inativariam proteínas contendo grupos Fe-S (ADAMEC et al., 2000; MORENO-CERMENO et al., 2010). (2) A Yfh1 poderia atuar como uma chaperona de ferro, doando este elemento para vias de biossíntese de grupos heme e Fe-S (MUHLENHOFF et al., 2002; PARK et al., 2003). (3) Ou ainda a proteína atuaria como um sensor mitocondrial de ferro, regulando a quantidade de grupos Fe-S formados pela disponibilidade de aceptores desse cofator (ADINOLFI et al., 2009; MORENO-CERMENO et al., 2010). (4) Além disso, já foi proposto que a frataxina, ortóloga de Yfh1, permitiria uma substituição metabólica da síntese de grupos Fe-S pela síntese do cofator heme e vice-versa, dependente do nível de expressão de enzimas envolvidas com essas vias anabólicas (Isu e ferroquelatase, respectivamente) (RICHARDSON et al., 2010). Todas essas hipóteses apontam para a importância da Yfh1 e de suas ortólogas na regulação do metabolismo intracelular de ferro (MORENO-CERMENO et al., 2010; RICHARDSON et al., 2010).

Outra forma de manter a homeostase intracelular de ferro é mantendo-o dentro do vacúolo, permitindo a estocagem e a detoxificação do metal. O ferro é provavelmente estocado em sua forma férrica (Fe³⁺) como polifosfato (HAAS; EISENDLE; TURGEON, 2008). Os organismos controlam

rigidamente a concentração de ferro citosólico por meio da regulação da captação e da estocagem (VAN HO; WARD; KAPLAN, 2002). Em *S. cerevisiae*, Ccc1p é um transportador de Fe²⁺/Mn²⁺ vacuolar, envolvido na transferência desses metais do citosol para o vacúolo, desempenhando um importante papel na estocagem de ferro e manganês (LI et al., 2001). O efluxo de ferro de dentro do vacúolo é realizado por Smf3, parálogo de Smf1, e por um complexo proteico formado por Fet5 e Fth1, similar ao complexo Fet3-Ftr1 da membrana plasmática (URBANOWSKI; PIPER, 1999; PORTNOY; LIU; CULOTTA, 2000). A redutase férrica Fre6, localizada na membrana do vacúolo, fornece Fe²⁺ para esses dois sistemas de efluxo vacuolares (SINGH; KAUR; KOSMAN, 2007). Alguns fungos, como *A. nidulans* e *Schizosaccharomyces pombe*, não possuem ortólogos para Fet5 e Fth1, o que sugere que esses organismos não utilizam esse sistema de estocagem de ferro, podendo utilizar sideróforos intracelulares para essa função (HAAS; EISENDLE; TURGEON, 2008).

Pouco se sabe sobre sistemas de captação e homeostase de ferro em *Paracoccidioides* spp. A atividade de uma redutase férrica extracelular dependente de glutationa já foi reportado para este fungo(ZARNOWSKI; WOODS, 2005).Além disso, já foi sugerido que o fungo utilize um transportador de ferro e zinco (Zrt) para captar o ferro extracelular, após a redução do metal por uma enzima da família Fre (BAILÃO et al., 2006; BAILÃO et al., 2007). Esses trabalhos sugerem que *Paracoccidioides* spp. possua uma via redutiva funcional para a captação do ferro extracelular, porém mais estudos precisam ser realizados para se entender melhor os mecanismos moleculares envolvidos com a aquisição e a homeostase deste metal.

Elisa Flávia Luiz Cardoso Bailão

II. ARTIGO PUBLICADO NA REVISTA FRONTIERS IN MICROBIOLOGY

Mirelle Garcia Silva¹, Augusto Schrank², Elisa Flávia L.C. Bailão¹, Alexandre Melo Bailão¹, Clayton Luiz Borges¹, Charley Christian Staats², Juliana Alves Parente', Maristela Pereira¹, Silvia Maria Salem-Izacc¹, Maria José Soares Mendes-Giannini³, Rosely Maria Zancopé Oliveira⁴, Lívia Kmetzsch Rosa e Silva², Joshua D. Nosanchuk⁵,6, Marilene Henning Vainstein² and Célia Maria de Almeida Soares¹*

¹ Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil

- ² Laboratório de Biologia Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- ³ Faculdade de Ciências Farmacêuticas, Universidade Estadual Júlio de Mesquista Filho, Araraquara, São Paulo, Brazil
- ⁴ Laboratório de Micologia, Instituto de Pesquisa Evandro Chagas, Fundação Oswaldo Cruz, Rio De Janeiro, Brazil
- ⁵ Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA

⁶ Department Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA

Edited by:

James A. Fraser, University of Queensland, Australia

Reviewed by:

James A. Fraser, University of Queensland, Australia Dennis J. Thiele, Duke University School of Medicine, USA

*Correspondence:

Célia Maria de Almeida Soares, Laboratório de Biologia Molecular, Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, ICB II, Campus II, 74690-900 Goiânia, Goiás, Brazil. e-mail: celia@icb.ufg.br Iron, copper, and zinc are essential for all living organisms. Moreover, the homeostasis of these metals is vital to microorganisms during pathogenic interactions with a host. Most pathogens have developed specific mechanisms for the uptake of micronutrients from their hosts in order to counteract the low availability of essential ions in infected tissues. We report here an analysis of genes potentially involved in iron, copper, and zinc uptake and homeostasis in the fungal pathogens Paracoccidioides brasiliensis, Cryptococcus neoformans var. grubii, and Cryptococcus gattii. Although prior studies have identified certain aspects of metal regulation in Cryptococcus species, little is known regarding the regulation of these elements in *P. brasiliensis*. We also present amino acid sequences analyses of deduced proteins in order to examine possible conserved domains. The genomic data reveals, for the first time, genes associated to iron, copper, and zinc assimilation and homeostasis in P. brasiliensis. Furthermore, analyses of the three fungal species identified homologs to genes associated with high-affinity uptake systems, vacuolar and mitochondrial iron storage, copper uptake and reduction, and zinc assimilation. However, homologs to genes involved in siderophore production were only found in P. brasiliensis. Interestingly, in silico analysis of the genomes of P. brasiliensis Pb01, Pb03, and Pb18 revealed significant differences in the presence and/or number of genes involved in metal homeostasis, such as in genes related to iron reduction and oxidation. The broad analyses of the genomes of P. brasiliensis, C. neoformans var. grubii, and C. gattii for genes involved in metal homeostasis provide important groundwork for numerous interesting future areas of investigation that are required in order to validate and explore the function of the identified genes and gene pathways.

Keywords: micronutrient homeostasis, pathogenic fungi, infection

INTRODUCTION

A sufficient supply of iron, copper and zinc is essential for all living and proliferating organisms. In infectious diseases, iron, copper and zinc metabolism are important for both the host and the pathogen, and complex responses in each occur to maintain adequate resources of these elements to preserve homeostasis. Iron, in the form of heme and iron–sulfur clusters, is essential as a cofactor of various enzymes, oxygen carriers, and electron-transfer systems involved in vital cellular functions ranging from respiration to DNA replication (Schaible and Kaufmann, 2004). Copper is a redoxactive metal ion essential for most aerobic organisms, which also serves as a catalytic and structural cofactor for enzymes involved in energy generation, iron acquisition, oxygen transport, and cellular metabolism, among other processes (Kim et al., 2008). Zinc is also a crucial metal, since it is at the catalytic center of numerous enzymes and plays important roles in the functionality of a wide variety of

proteins (Van Ho et al., 2002). Mammalian hosts and microbes have developed sophisticated strategies to acquire these metals, even under conditions in which their availability is limited. One of the strategies developed by mammalian hosts to prevent microbial infections is to limit the availability of iron (Weinberg, 2009). Recently, it has been demonstrated that zinc deprivation is a host defense mechanism utilized by macrophages during *Histoplasma capsulatum* infection (Winters et al., 2010). In addition, the binding of copper to calgranulin C in human neutrophils could be a mechanism of antimicrobial action (Moroz et al., 2003). In order to counteract these and other host responses, microorganisms employ a range of uptake mechanisms for the targeted acquisition of iron, copper and zinc.

Ferric iron is generally insoluble at physiological pH in the presence of oxygen. Thus, the common mechanisms of iron-assimilation include the reduction of ferric (Fe^{3+}) to ferrous (Fe^{2+}),

and solubilization of Fe³⁺ by binding siderophores (Kornitzer, 2009). The reductive system in fungi is regulated by three different mechanisms. First, a low-affinity iron reductase that functions in iron-rich environments generates Fe²⁺, which is transported into the cell by a non-specific low-affinity iron permease. Second, a regulated high-affinity ferric reductase operates in low iron conditions, such as those present in a mammalian host. The produced Fe²⁺ is further oxidized to Fe³⁺ by a membrane multi-copper-oxidase before being transported across the cell membrane by a high-affinity iron permease. The third mechanism is a non-enzymatic reduction, such as that promoted by 3-hydroxyanthranilic acid (3HAA), which is known to maintain a reduced environment to facilitate the release and sustain the presence of Fe²⁺ at the fungal membrane until transport occurs (Howard, 1999).

Ferric iron uptake mediated by siderophores is considered a non-reductive high-affinity mechanism by which microorganisms acquire iron. Siderophores are low-molecular weight ($M_r < 1500$), ferric iron-specific chelators (Neilands, 1993). Microorganisms produce siderophores as scavenging agents in low iron concentration environments in order to supply iron to the cell through the solubilization of extracellular ferric iron. Siderophores are also produced intracellularly for iron storage in most fungi (Matzanke et al., 1987). Siderophores can be classified into three main groups depending on the chemical nature of the moieties donating the oxygen ligands for Fe³⁺: catechols, carboxylates and hydroxamates (Miethke and Marahiel, 2007). With the exception of the carboxylate rhizoferrin produced by zygomycetes, the other known fungal siderophores are all hydroxamates (Van der Helm and Winkelmann, 1994). Fungal hydroxamates are derived from the non-proteinogenic amino acid ornithine and can be grouped into four structural families: rhodotorulic acid, ferrichromes, coprogens and fusarinines. Siderophores are named based on their iron-charged forms, existing in the iron-free form of the ligand called desferri-siderophore. Not all fungi produce siderophores. For example, Saccharomyces cerevisiae is not a siderophore producer (Neilands et al., 1987). Similarly, Cryptococcus species and Candida albicans are also unable to produce siderophores. However, these pathogenic fungi can utilize iron bound to siderophores secreted by other species (bacteria and fungi), the xenosiderophores (Howard, 1999). After siderophores are synthesized, they can be utilized intracellularly or secreted to the extracellular medium to solubilize ferric iron. For secreted siderophores, the captured metal of the siderophore-iron complex may be utilized either by reductive iron assimilatory systems or by internalization of the whole complex by specific transporters. In fungi, the uptake of siderophore-iron chelates is accomplished by transporters of the siderophore-iron transporter (SIT) subfamily, previously designated as family 16 of the major facilitator superfamily (MFS; Pao et al., 1998). These transporters are integral membrane proteins, with 12-14 predicted transmembrane domains, that mediate the import of siderophores in a highly regulated process (Philpott, 2006).

Several homeostatic mechanisms that ensure the maintenance of copper at a sufficient concentration for cell growth have been identified. Copper homeostasis in fungi is maintained by the transcriptional regulation of genes involved in copper acquisition, mobilization and sequestration and also at the posttranslational level (Gross et al., 2000). In *S. cerevisiae* copper is reduced from Cu (II) to Cu (I) by cell surface metalloreductases (Hassett and Kosman, 1995; Georgatsou et al., 1997) and uptake is mediated by Ctr1p and Ctr3p, two high-affinity transporters. Both *ctr1* and *ctr3* genes are regulated at the transcriptional level in response to copper availability, being induced by copper deprivation (Dancis et al., 1994a; Pena et al., 2000). The vacuolar copper transporter Ctr2p is also involved in the intracellular copper homeostasis, since it provides copper via mobilization of intracellular copper stores (Rees et al., 2004).

Zinc homeostasis is maintained by posttranslational and transcriptional homeostatic regulatory mechanisms (Lyons et al., 2000; Eide, 2003). Unlike iron and copper, zinc is taken up as divalent cation. Once inside the cell, zinc is neither oxidized nor reduced (Berg and Shi, 1996). In S. cerevisiae the uptake of zinc is mediated by two separate systems. One system has a high-affinity for this metal and is active in zinc-limited conditions (Zhao and Eide, 1996a). The second system has a lower affinity for zinc and is not highly regulated by zinc concentrations (Zhao and Eide, 1996b). The expression of the high-affinity zinc transporter Zrt1p and the low-affinity zinc transporter Zrt2p is regulated by the transcription factor Zap1p, which plays a central role in zinc homeostasis (Zhao and Eide, 1997). The zinc transporter activity is also posttranslationally regulated. High levels of extracellular zinc trigger the inactivation of Zrt1p through endocytosis of the protein and its subsequent degradation in the vacuole (Gitan et al., 1998).

This paper focuses on the metabolism of iron, copper and zinc in the fungal pathogens Paracoccidioides brasiliensis, Cryptococcus neoformans var. grubii, and Cryptococcus gattii. Low iron conditions have been associated with the susceptibility of P. brasiliensis, the etiological agent of paracoccidioidomycosis (PCM), to the antimicrobial action of monocytes (Dias-Melicio et al., 2005). Major phenotypic changes in C. neoformans, the etiological agent of cryptococcosis, are regulated by iron availability. For example, low iron concentrations result in the induction of capsule enlargement and the repression of laccase (Jung and Kronstad, 2008). Although iron regulation is well described in Cryptococcus species (Jung et al., 2008), iron associated processes are poorly understood in P. brasiliensis. Further, there is limited information on the impact of copper and zinc in *P. brasiliensis*, as well as the impact of zinc in Cryptococcus species. In this paper we performed in silico analyses of genes related to iron, copper and zinc metabolism in P. brasiliensis, C. neoformans var. grubii and C. gattii. We also compared the obtained information with data available from S. cerevisiae, which represents the most deeply studied model fungus, and other fungi.

MATERIALS AND METHODS

Sequences of genes related to iron, copper and zinc uptake, as well as to siderophore biosynthesis and uptake were used in the search of orthologs of *P. brasiliensis* and *Cryptococcus* species genomes. The *P. brasiliensis* database¹ includes the genomes of three isolates (*Pb*01, *Pb*03, and *Pb*18) and the cryptococcal database includes genomes of *C. neoformans* var. *grubii*² and *C. gattii*³. The sequences used in

¹http://www.broadinstitute.org/annotation/genome/paracoccidioides_brasiliensis/ MultiHome.html

²http://www.broadinstitute.org/annotation/genome/cryptococcus_neoformans/ MultiHome.html

³http://www.broadinstitute.org/annotation/genome/cryptococcus_neoformans_b/ MultiHome.html

the *in silico* analysis were obtained from the NCBI databank⁴, and they are primarily from *S. cerevisiae*, but also include genes from other fungi, such as *Aspergillus fumigatus*, *Aspergillus nidulans*, *C. albicans* and *H. capsulatum*. The search by orthologs was based on sequence similarity by using the BLAST tool. The expectation value adopted in the databases search was *E*-value $\leq 10^{-5}$.

The deduced amino acid sequences of the orthologs found in *P. brasiliensis* isolates and *Cryptococcus* species were analyzed. Searches for conserved domains and signal peptides in the orthologs proteins were performed using the Conserved Domain Database at NCBI⁵ and the online software SMART⁶. Predictions of putative transmembrane segments were made using the TopPred⁷ server and SMART software. Amino acid sequences alignment were performed using the ClustalX2 (Larkin et al., 2007).

RESULTS AND DISCUSSION IRON

Uptake of iron at the cell surface by the reductive system

To better understand how P. brasiliensis could acquire iron by the reductive system, in silico analyses were performed utilizing S. cerevisiae⁸ and C. albicans⁹ sequences. The data showed that Pb01 contains four metalloreductase (Frep) homologs, Pb03 five homologs, and Pb18 three homologs (Table 1). The genes encoding metalloreductases were fre1, fre3, fre5, fre7 and frp1. Also, Pb01 and Pb03 have two homologs each of the ferroxidase Fetp and Pb18 has one. The reductive uptake system was first described in S. cerevisiae (Lesuisse et al., 1987). The enzymatic reduction step in S. cerevisiae is catalyzed by members of the FRE family of metalloreductases. The products of the *fre* genes are not specific for iron reduction, since they can also promote copper reduction. S. cerevisiae Fre1p and Fre2p are required for growth on media with low concentrations of ferric iron salts. Fre3p and Fre4p catalyze uptake of iron from siderophores and Fre7p is under the control of the copperdependent transcription factor Mac1p (Philpott and Protchenko, 2008). The expression of C. albicans ferric reductase Frp1p is upregulated by alkaline pH and iron-limited conditions (Liang et al., 2009). Future studies are required to dissect the roles of the different P. brasiliensis reductases, especially in in vivo conditions.

Homologs for iron permeases (Ftrp and Fthp) were not found in *P. brasiliensis* genomes, corroborating the hypothesis that iron is transported by the zinc permeases, as previously suggested by transcriptional analyses (Bailão et al., 2006, 2007; Costa et al., 2007). However, in the present *in silico* analysis, we identified five zinc transporters (**Table 1**). These permeases could be coupled with one or more of the ferroxidases homologs (Fet5p, Fet31p and Fet33p) identified in the *P. brasiliensis* genome database. In *S. cerevisiae*, reduced iron is taken up through a high-affinity transport complex that consists of Fet3p, a multi-copper ferroxidase, and Ftr1p, a permease. Independent studies have demonstrated that Fet3p produced by *S. cerevisiae* $\Delta ftr1$ mutant cells is retained in a cytoplasmic compartment in a copper-free, inactive form. Correspondingly, Ftr1p produced by *S. cerevisiae* $\Delta fet3$ mutant cells fails to reach the plasma membrane (Stearman et al., 1996). These observations are in agreement with a model in which the two proteins form a heterodimer or higher order structure for correct maturation and trafficking to the plasma membrane (Kosman, 2003).

The *P. brasiliensis* genomes analysis revealed the presence of a *ggt1* homolog. This gene is presumably responsible for the glutathione (GSH)-dependent iron reduction activity previously identified in functional studies (Zarnowski and Woods, 2005). The proposed mechanism comprises secretion of a glutathione-dependent ferric reductase (GSH–FeR), named Ggt1p, that purportedly utilizes siderophores and Fe³⁺-binding proteins as substrates, enhancing the enzymatic activity under iron-limiting conditions, which is consistent with the function of a high-affinity uptake system, as described in *H. capsulatum* (Timmerman and Woods, 2001).

Homologs of permease genes involved in low-affinity iron reductive systems, such as *smf*, were not detected in our analysis. Hence, the low-affinity permease utilized by P. brasiliensis to acquire iron could be one of the zinc permeases, as suggested (Table 1). Despite the absence of iron permease fth1 gene homologs, P. brasiliensis has one ccc1 gene homolog that could drive iron vacuolar transport. P. brasiliensis also has homologs of the mitochondrial iron transporters genes mrs3 and mrs4 and the mitochondrial iron chaperone Yfh1p, suggesting mitochondrial iron homeostasis in this pathogen (Table 1). Since mitochondria are major users of iron, it follows that they should contain machinery required for its transport. Mrs3p and Mrs4p are homologous and functionally redundant proteins found in the inner mitochondrial membrane of S. cerevisiae, which are involved in transport under iron-limiting conditions (Foury and Roganti, 2002). Yfh1p, a homolog of human frataxin, is also involved in mitochondrial iron homeostasis (Babcock et al., 1997). While Mrs3p and Mrs4p mediate iron delivery from the outside to the inside of mitochondria, the frataxin homolog facilitates the use of iron within this organelle, functioning as a mitochondrial matrix iron chaperone (Zhang et al., 2006; Froschauer et al., 2009).

Cryptococcal genomic databases analysis revealed both S. cerevisiae and C. albicans homologs for proteins related to iron metabolism (Table 1). Remarkably, the C. neoformans var. grubii database contains four metalloreductase homologs, while the C. gattii genome has three similar homologs. The reason for the multiplicity of metalloreductases isoenzymes is not clear, although it is speculated that some sets of genes are expressed under specific conditions for iron acquisition (Kornitzer, 2009). Concerning the ferroxidases, C. neoformans var. grubii has three homologs and C. gatti contains one. Both genomes possess two iron permeases homologs, whose presence is supported by prior functional analyses (Jung et al., 2008). Two iron permeases, gene orthologs of S. cerevisiae ftr1, have been identified in C. neoformans, namely Cft1p and Cft2p (Jung et al., 2008). The expression of the *cft1* gene is down-regulated at high iron concentrations, suggesting that its product functions as a high-affinity iron permease. The role of cft2 is still unclear, although it supposedly encodes a low-affinity iron permease or a vacuolar permease that could transport stored iron to the cytoplasm, similar to what occurs in S. cerevisiae with the iron permease Fth1p. One of the iron permeases here identified is probably a Fth1p homolog, which

⁴http://www.ncbi.nlm.nih.gov/guide/

⁵http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi

⁶http://smart.embl-heidelberg.de/

⁷http://mobyle.pasteur.fr/cgi-bin/portal.py?form=toppred

⁸http://www.yeastgenome.org/

⁹http://www.candidagenome.org/

Gene	Organism/accession number	Predicted function	Orthologs in <i>Pb</i> 01, 03 and 18 (accession numbers) [†]	<i>E</i> -value*	Orthologs in <i>Cryptococcus</i> species (accession numbers) ⁺	<i>E</i> -value*
fre1	<i>S. cerevisiae</i> NP_013315	Metalloreductase	PAAG_05370.1 PABG_06003.1	e-22 e-19	Not identified	_
fre3	<i>S. cerevisiae</i> NP_015026	Metalloreductase	PAAG_02079.1 PABG_02329.1 PADG_00813.1	e-35 e-35 e-35	Not identified	-
fre5	<i>S. cerevisiae</i> NP_015029	Metalloreductase	PABG_07812.1	e-26	Not identified	-
fre7	<i>S. cerevisiae</i> NP_014489	Metalloreductase	PAAG_06164.1 PABG_06497.1 PADG_07957.1	0.0 0.0 0.0	CNAG_00876.2 CNBG_6082.2	e-37 e-37
fre8	<i>S. cerevisiae</i> NP_013148	Metalloreductase	Not identified	-	CNAG_07334.2 CNBG_2116.2	e-10 e-07
fre10	<i>C. albicans</i> XP_711543	Metalloreductase	Not identified	-	CNAG_06821.2 CNBG_5888.2	e-34 e-27
cfl4	<i>C. albicans</i> XP_715639	Metalloreductase	Not identified	-	CNAG_06524.2	e-32
frp1	C. albicans	Metalloreductase	PAAG_04493.1	e-26	Not identified	-
	XP_713315		PABG_04278.1	e-26		
			PADG_04652.1	e-26		
fet3	<i>S. cerevisiae</i> NP_013774	Ferroxidase	Not identified	_	CNAG_06241.2	0.0
fet5	<i>S. cerevisiae</i> NP_116612	Ferroxidase	PABG_05667.1 PADG_05994.1	e-40 e-37	CNAG_07865.2 CNBG_4942.2	0.0 0.0
fet31	<i>C. albicans</i> XP_711263	Ferroxidase	PAAG_06004.1	e-39	CNAG_02958.2	0.0
fet33	C. albicans	Ferroxidase	PAAG_00163.1	e-33	Not identified	-
	XP_711265		PABG_05183.1	e-33		
ftr1/ftr2	<i>C. albicans</i> XP_715020/ XP_715031	Iron permease	Not identified	_	CNAG_06242.2 CNBG_3602.2	0.0 0.0
smf1	S. cerevisiae	Low-affinity	Not identified	-	CNAG_05640.2	0.0
	NP_014519	permease			CNBG_6162.2	0.0
fth1	C. albicans	Vacuolar	Not identified	-	CNAG_02959.2	0.0
	XP_723298	transporter			CNBG_4943.2	0.0
ccc1	S. cerevisiae	Vacuolar	PAAG_07762.1	e-31	CNAG_05154.2	e-23
	NP_013321	transporter	PABG_00362.1	e-31	CNBG_4540.2	e-18
			PADG_02775.1	e-31		
mrs3/ mrs4	<i>S. cerevisiae</i> NP_012402/ NP_012978	Mitochondrial iron transporter	PAAG_05053.1 PABG_04509.1 PADG_04903.1	0.0 0.0 0.0	CNAG_02522.2 CNBG_4218.2	0.0 0.0
yfh1	<i>S. cerevisiae</i> NP_010163	Mitochondrial matrix iron chaperone	PAAG_02608.1 PABG_03095.1 PADG_01626.1	e-15 e-09 e-16	CNAG_05011.2 CNBG_4670.2	e-18 e-18

Table 1 | Orthologs to genes related to iron, copper and zinc uptake by reductive systems in *P. brasiliensis* and *Cryptococcus* species.

(Continued)

Table 1 | Continued

Gene	Organism/accession number	Predicted function	Orthologs in <i>Pb</i> 01, 03 and 18 (accession numbers)†	<i>E</i> -value*	Orthologs in <i>Cryptococcus</i> species (accession numbers) [†]	<i>E</i> -value*
ggt1	<i>H. capsulatum</i> EGC49121	Secreted glutathione- dependent ferric reductase	PAAG_06130.1 PABG_06527.1 PADG_07986.1	0.0 0.0 0.0	CNAG_02888.2 CNBG_3537.2	0.0 0.0
mac1	<i>S. cerevisiae</i> NP_013734	Copper metalloregulatory transcription factor	PAAG_08210.1 PABG_07429.1	e-5 e-5	CNAG_07724.2 CNBG_2252.2	e-7 e-7
ctr3	<i>S. cerevisiae</i> NP_013515	High-affinity copper transporter of the plasma membrane	PAAG_05251.1 PABG_07607.1 PADG_05084.1	e-22 e-21 e-21	CNAG_00979.2 CNBG_0560.2	e-14 e-14
ctr1	<i>S. cerevisiae</i> NP_015449	High-affinity copper transporter of the plasma membrane	Not identified	_	Not identified	-
ctr2	<i>S. cerevisiae</i> NP_012045	Putative low-affinity copper transporter of the vacuolar membrane	PABG_01536.1 PADG_04146.1	e-14 e-14	CNAG_01872.2	e-13
atx1	<i>S. cerevisiae</i> NP_14140	Cytosolic copper metallochaperone	PAAG_00326.1 PABG_06615.1 PADG_02352.1	e-12 e-12 e-12	CNAG_02434.2 CNBG_4136.2	e-10 e-11
ccc2	<i>S. cerevisiae</i> NP_010556	Cu ²⁺ transporting P-type ATPase	PAAG_07053.1 PABG_03057.1 PADG_01582.1	0.0 0.0 0.0	CNAG_06415.2 CNBG_5045.2	0.0 0.0
cup1	<i>S. cerevisiae</i> NP_011920	Metallothionein	Not identified	-	Not identified	_
cup2	<i>S. cerevisiae</i> NP_011922	Metallothionein	Not identified	-	Not identified	_
sod1	<i>S. cerevisiae</i> NP_012638	Cytosolic superoxide dismutase	PAAG_04164.1 PABG_03954.1 PADG_07418.1	0.0 0.0 0.0	CNAG_01019.2 CNBG_0599.2	0.0 0.0
sod2	<i>S. cerevisiae</i> NP_011872	Mitochondrial superoxide dismutase	PAAG_02725.1 PABG_03204.1 PADG_01755.1	0.0 0.0 0.0	CNAG_04388.2 CNBG_2661.2	0.0 0.0
zrť1	<i>S. cerevisiae</i> NP_011259	High-affinity zinc transporter of the plasma membrane	PAAG_08727.1 PABG_07725.1 PADG_08567.1	0.0 0.0	CNAG_03398.2 CNBG_2209.2	e-40 e-41
zrt2	<i>S. cerevisiae</i> NP_013231	Low-affinity zinc transporter of the plasma membrane	PAAG_03419.1 PABG_05498.1 PADG_06417.1	e-27 e-26 e-28	CNAG_00895.2	0.0

(Continued)

Table 1 | Continued

Gene	Organism/accession number	Predicted function	Orthologs in <i>Pb</i> 01, 03 and 18 (accession numbers) [†]	<i>E</i> -value*	Orthologs in <i>Cryptococcus</i> species (accession numbers)†	<i>E</i> -value*
zrc1	<i>S. cerevisiae</i> NP_013970	Vacuolar membrane zinc transporter	PAAG_00702.1	e-41	Not identified	-
cot1	S. cerevisiae	Vacuolar	PAAG_07885.1	e-44	CNAG_02806.2	e-40
	NP_014961	membrane zinc transporter	PABG_07467.1 PADG_08196.1	0.0 0.0	CNBG_3460.2	e-37
zrt3	<i>S. cerevisiae</i> NP_012746	Vacuolar membrane zinc transporter	PAAG_09074.1 PABG_04697.1 PADG_05322.1	e-23 e-22 e-23	Not identified	-
msc2	<i>S. cerevisiae</i> NP_010491	Cation diffusion facilitator protein of the endoplasmic reticulum and nucleus	PABG_07115.1 PADG_06381.1	e-40 e-40	CNAG_05394.2 CNBG_4458.2	e-23 e-24
zap1	<i>S. cerevisiae</i> NP_012479	Zinc-regulated transcription factor	PAAG_03645.1 PABG_03305.1 PADG_01870.1	e-20 e-18 e-24	CNAG_05392.2 CNBG_4460.2	e-40 e-28

*Similarities with E-values < 10⁻⁵ were considered significant.

*Accession numbers: PAAG refers to Pb01; PABG refers to Pb03; PADG refers to Pb18; CNAG refers to C. neoformans var. grubii and CNBG refers to C. gattii.

is likely involved in vacuolar iron uptake. Moreover, we could identify iron transporter ccc1 gene homologs in the genome, suggesting that a vacuolar iron homeostasis system exists in Cryptococcus. Data mining revealed one homolog of the low-affinity gene smf family, confirming the presence of both high and low-affinity iron reductase systems, as described (Jacobson et al., 1998). The presence of mitochondrial mrs3, mrs4 and yfh1 gene homologs in C. neoformans var. grubii supports a mechanism for iron homeostasis (Nyhus and Jacobson, 1999; Jacobson et al., 2005). Additionally, our in silico analyses demonstrated that cryptococcal reductive systems are closely related to that of S. cerevisiae (Table 1). Although no activity for the enzyme glutathione-dependent ferric reductase had been reported in Cryptococcus, both genomes contain ggt1 homologs suggesting the presence of a GSH-FeR system. A comparative analysis of iron uptake by reductive systems in P. brasiliensis, C. neoformans var. grubii and C. gattii is depicted in Figure 1.

Conserved domains in proteins related to the reductive iron metabolism

Amino acid sequence analyses of orthologs proteins found in the *P. brasiliensis* isolates and *Cryptococcus* species may support the assumption of conserved functions. Searching for conserved domains in all the analyzed sequences (**Table A1** in Appendix) revealed that most of the *P. brasiliensis* and *Cryptococcus* deduced proteins codified by the genes related to reductive iron metabolism contain conserved domains related to specific functions. Regarding to metalloreductases, the presence of a ferric reductase domain and a FAD- and/or a NAD-binding domain can be essential for functional enzymatic activity, since they are responsible for electron donation, as described in other organisms (De Luca and Wood, 2000). A schematic diagram presenting the cited motifs in a metalloreductase Frep is shown in **Figure 2**. An HPFT*XX*S motif is believed to be a site for FAD-binding and a glycine-rich motif and a cysteine–glycine couple are thought to be involved in NADPH binding (Shatwell et al., 1996). As well, copper-oxidase domains are required for ferroxidase activity. *S. cerevisiae* Fet3p is a multi-copper-oxidase and, like other copper proteins, possesses three distinct types of Cu²⁺-binding sites. Oxidation of Fe²⁺ occurs at the type 1 copper site followed by the reduction of molecular oxygen to $2H_2O$ at the other two copper sites (Hassett et al., 1998; Kosman, 2003). The ferroxidases in the *P. brasiliensis* isolates and *Cryptococcus* species present such domain, suggesting they are functional proteins.

Siderophore production

Culture supernatants of P. brasiliensis grown in media with low iron concentrations display higher iron binding capacity when compared with culture supernatants from iron-rich media (Arango and Restrepo, 1988), which has suggested that siderophores are involved in iron acquisition in this fungus. Furthermore, in silico analysis of P. brasiliensis structural genomes indicates that this fungus can potentially produce siderophores. The three sequenced P. brasiliensis genomes show sequences that potentially encode all the necessary enzymes for siderophore synthesis: sidA, sidF, sidC and sidD (A. fumigatus orthologs), as shown in Table 2 and Figure 1. This biosynthetic pathway may lead to the production of hydroxamate-type siderophores. The first committed step in siderophore biosynthesis is the N5-hydroxylation of ornithine catalyzed by ornithine-N5-oxygenase. The sid1 gene of Ustilago maydis, the etiologic agent of corn smut, was the first characterized fungal ornithine-N⁵-oxygenase-encoding gene (Mei et al., 1993).

Orthologs of *sid1* have been identified in *A. fumigatus (sidA)* and *H. capsulatum (sid1)*. In the latter, disruption of *sid1* causes poor growth under low iron conditions and loss of siderophore production, suggesting an important role of siderophore production in

iron-limiting conditions (Schrettl et al., 2004; Hwang et al., 2008). The formation of the hydroxamate group consists of the transfer of an acyl group from acyl-coenzyme A to N^5 -hydroxyornithine. Different acyl group usage results in the production of distinct

FIGURE 2 | Domains found in a Frep related to iron reductive uptake in *P*. *brasiliensis* isolates and *Cryptococcus* species. The found domains are: ferric reductase domain (black boxes), FAD-binding domain (dark gray boxes) and NAD-binding domain (light gray boxes). The length of each protein, in amino acids, is shown on the right. Accession numbers: *Sc* (NP_014489), *Pb*01 (PAAG_06164.1), *Pb*03 (PABG_06497.1), *Pb*18 (PADG_07957.1), *Cn* (CNAG_00876.2) and *Cg* (CNBG_6082.2).

siderophores. Acetyl is used for rhodotorulic acid and ferrichrome synthesis, while anhydromevalonyl is utilized in the fusarinines and coprogens pathway (Haas et al., 2008). A. fumigatus sidF encodes an N⁵-hydroxyornithine: cis anhydromevalonyl coenzyme A-N5-transacylase involved in the synthesis of fusarinine and triacetylfusarinine (Schrettl et al., 2007). The sidF ortholog of H. capsulatum, sid3 gene, is transcriptionally induced under iron restricted conditions (Hwang et al., 2008). Hydroxamates are covalently linked via peptide (rhodotorulic acid, ferrichromes, coprogens) or ester bonds (fusarinines, coprogens) carried out by non-ribosomal peptide synthetases (NRPSs; Finking and Marahiel, 2004). In A. fumigatus, sidC and sidD encode two NRPSs involved in ferricrocin (intracellular siderophore) and triacetylfusarinine C (TAFC) biosynthesis, respectively. Some siderophores additionally require acetylation at the N2-amino group, such as coprogen and TAFC. For example, sidG deletion in A. fumigatus results in the abrogation of the TAFC siderophore production (Schrettl et al., 2007). Given that our in silico analysis of P. brasiliensis identified sequences capable of coding for SidAp, SidFp, SidCp and SidDp, it is reasonable to hypothesize that P. brasiliensis may be able to synthesize both extracellular and intracellular siderophores.

Although *Cryptococcus* species have been described as unable to produce siderophores (Jacobson and Petro, 1987), *in silico* analysis of *C. neoformans* var. *grubii* and *C. gattii* structural genomes indicates the presence of *sidD* and *sidG* genes, which are also involved in other metabolic pathways in fungi. However, *sidA* and *sidF* genes were not found, and these genes are essential, especially since they act early in the pathway for siderophores production (**Table 2**; **Figure 1**). It will be interesting to examine if *sidA* and *sidF* have other functions and how siderophore-associated iron uptake was replaced to account for this loss.

Conserved domains in proteins related to siderophore biosynthesis

As described above, the third siderophore biosynthetic step is performed by NRPSs. These enzymes have a modular structure where one module, the catalytic unit, is composed of an adenylation domain (A) for substrate specificity and activation, a peptidyl carrier (PCP) domain that binds a 4'phosphopantetheine cofactor for attachment of the activated substrate, and a condensation (C) domain for bond formation (Finking and Marahiel, 2004). As *Cryptococcus* species are not siderophore producers, NRPSs domains analysis was performed only with SidCp ortholog found in *P. brasiliensis* genomes. These analyses revealed that, as in *A. fumigatus*, the three domains essential for NRPS function are present in SidCp from the three *P. brasiliensis* isolates examined (**Figure 3A**). Domains found in other siderophore biosynthesis related proteins are shown in **Table A2** in Appendix.

Siderophore uptake

The presence of orthologs for appropriate siderophore genes and the fact that the iron binding capacity of medium from low iron cultures of P. brasiliensis is greater than that of iron-replete medium (Arango and Restrepo, 1988) supports our hypothesis that P. brasiliensis produces and captures siderophores from the extracellular environment. Therefore, we have categorized putative P. brasiliensis siderophore transporters by sequence homology analysis (Table 2; Figure 1). Searches of the P. brasiliensis genomes revealed that all three isolates contain the S. cerevisiae gene homolog SIT sit1. S. cerevisiae can utilize siderophore-bound iron either by the reductive iron-assimilation system or by membrane transporters. In the latter case, the uptake is mediated by four transporters that differ in substrate specificity: Sit1p/Arn3p, Arn1p, Taf1p/Arn2p, Enb1p/Arn4p (Lesuisse et al., 1998; Heymann et al., 1999, 2000; Yun et al., 2000a,b). Sit1p/Arn3p recognizes ferrioxamines, coprogen, and ferrichromes lacking anhydromevalonic acid. Additionally, P. brasiliensis isolates possess the A. nidulans SIT gene homologs, mirB, and mirC (Table 2; Figure 1). Heterologs expression assays of A. nidulans mir genes in a S. cerevisiae mutant strain unable to uptake siderophores have demonstrated that MirBp transports native TAFC, a hydroxamate siderophore. The growth of P. brasiliensis is stimulated by coprogen B and dimerum acid (DA), a derivative of rhodotorulic acid from Blastomyces dermatitidis, suggesting that P. brasiliensis can use hydroxamate compounds as iron sources (Castaneda et al., 1988).

The siderophore transporter Sit1p/Arn3p and the transporters of the SIT-family (mirA, mirB and mirC) were found in C. neoformans var. grubii and C. gattii (Table 2; Figure 1). The homolog gene sit1/arn3 was previously identified in C. neoformans var. neoformans using SAGE employed to examine the transcriptome under ironlimiting and iron-replete conditions (Lian et al., 2005). Mutants defective in sit1 had increased melanin production and elevated transcript levels for the laccase gene, lac1. The melanin phenotype may be caused by changes in iron homeostasis or membrane trafficking, perhaps leading to altered copper loading of laccase in the cell wall. Studies with mutants lacking sit1/arn3 in C. neoformans var. grubii and C. neoformans var. neoformans have demonstrated that the gene sit1 is required for siderophore utilization (ferrioxamine B) and growth in low iron-environments (Tangen et al., 2007). An overview of the siderophore biosynthesis and uptake in *P. brasiliensis* and *Cryptococcus* species is shown in **Figure 1**.

Analysis of transmembrane domains in siderophore–iron transporters

Amino acid sequences of siderophore transporter orthologs found in *P. brasiliensis* isolates and *Cryptococcus* species were analyzed in the TopPred server to predict their transmembrane domain topologies. **Figure 3B** presents the transmembrane segments of Sit1p in *S. cerevisiae, P. brasiliensis* isolates, *C. neoformans* var. *grubii* and *C. gattii.*

Gene	Organism/ accession number	Predicted function	Orthologs in <i>Pb</i> 01, 03 and 18 (accession numbers) [†]	<i>E</i> -value*	Orthologs in <i>Cryptococcus</i> species (accession numbers)†	<i>E</i> -value*
sidA	A. fumigatus	Ornithine-N⁵-	PAAG_01682.1	0.0	Not identified	-
	XP_755103	monooxygenase	PABG_03730.1	0.0		
			PADG_00097.1	0.0		
sidF	A. fumigatus	N⁵-transacylases	PAAG_01680.1	0.0	Not identified	-
	XM_743567		PABG_03728.1	0.0		
			PADG_00100.1	0.0		
sidC	A. fumigatus	Non-ribosomal	PAAG_08527.1	0.0	Not identified	-
	XP_753088	peptide synthetase	PABG_04670.1	0.0		
			PADG_05295.1	0.0		
sidD	A. fumigatus	Non-ribosomal	PAAG_01679.1	0.0	CNAG_03588.2	e-40
	XP_748662	peptide synthetase	PABG_03726.1	0.0	CNBG_2041.2	e-41
			PADG_00102.1	0.0		
sidG	A. fumigatus	N ² -transacetylase	Not identified	-	CNAG_04355.2	2e-5
	XP_748685				CNBG_2703.2	e-6
sit1/arn3	S. cerevisiae	Siderophore	PAAG_06516.1	0.0	CNAG_00815.2	0.0
	NP_010849	transporter	PABG_02063.1	0.0	CNBG_1123.2	0.0
			PADG_00462.1	0.0		
mirA	A. nidulans	Siderophore	Not identified	-	CNAG_02083.2	0.0
	AY027565	transporter			CNBG_5232.2	0.0
mirB	A. nidulans	Siderophore	PAAG_01685.1	0.0	CNAG_07751.2	0.0
	XP_681809	transporter	PABG_03732.1	0.0	CNBG_2036.2	0.0
			PADG_00095.1	0.0		
mirC	A. nidulans	Siderophore	PAAG_02233.1	0.0	CNAG_07519.2	0.0
	AY135152	transporter	PABG_04747.1	0.0	CNBG_1087.2	e-44
			PADG_05373.1	0.0		

Table 2 Orthologs to genes related to siderophore biosynthesis and to iron uptake by the non-reductive siderophore transport system in
P. brasiliensis and Cryptococcus species.

*Similarities with E-values < 10⁻⁵ were considered significant.

[†]Accession numbers: PAAG refers to Pb01; PABG refers to Pb03; PADG refers to Pb18; CNAG refers to C. neoformans var. grubii and CNBG refers to C. gattii.

The number of segments varies between 12 and 15. Identical topology was found in Sit1p from *P. brasiliensis* isolates *Pb*03 and *Pb*18, whereas *Pb*01 has a different topology. Transmembrane domains were also identified in all the other siderophore transporters, as shown in **Table A2** in Appendix. These transporters also contain a MFS1 domain, which indicates that they belong to the MFS of transporters.

Iron source preferences

Several fungal pathogens utilize heme or hemoglobin as sources of iron (Foster, 2002; Jung et al., 2008). *C. albicans* expresses surface receptors for hemoglobin and hemolytic factors (Manns et al., 1994). Interestingly, heme–iron utilization in *C. albicans* is facilitated by Rbt5p, an extracellular glycosylphophatidylinositol (GPI)-anchored

hemoglobin-binding protein (Weissman et al., 2008). Although there is no experimental evidence regarding the utilization of iron from the heme group by *P. brasiliensis*, there are genes that show similarity with Hmx-1p (Pendrak et al., 2004), and exhibit a heme oxygenase domain (PAAG_06626.1 in *Pb*01; PABG_02644.1 in *Pb*03; PADG_01082.1 in *Pb*18) in each of the *P. brasiliensis* isolates. These genes are annotated as conserved hypothetical or as predicted proteins. *C. neoformans* var. *grubii* is also able to utilize heme and hemoglobin as iron sources, but the mechanism(s) of heme utilization by this fungus are still unclear (Jung et al., 2008).

Transferrin has also been shown to be an iron source for both *C. albicans* and *C. neoformans* var. *grubii*. These fungi employ high-affinity permeases to acquire iron from transferrin in mammalian

hosts through the reductive system (Knight et al., 2005; Jung et al., 2008). In the *P. brasiliensis* genome databases, genes were found (PAAG_04670.1; PABG_00038.1; PADG02428.1, respectively for isolates *Pb*01, *Pb*03 and *Pb*18) with high similarity to Cft1p, a permease from *C. neoformans* var. *grubii* required for iron utilization from transferrin (Jung et al., 2008).

COPPER

Copper uptake by the reductive system

Little is known about copper metabolism in P. brasiliensis. However, our in silico analyses of the S. cerevisiae copper metabolism-related genes in comparison to P. brasiliensis genomic databases revealed genes related to the copper reduction metalloreductase, fre. Copper transport is well described in S. cerevisiae where it is reduced from Cu (II) to Cu (I) by several cell surface metalloreductases encoded by several fre genes. These metalloreductases are regulated by iron and copper availability, mediated by the transcriptional factor Mac1p (Jungmann et al., 1993). Homologs of the copper metalloregulatory transcription factor gene (mac1) are present in both Pb01 and Pb03 genomes, but not in Pb18. Additionally, the high-affinity copper transport (Ctr3p) was found in all three isolate genomes. In S. cerevisiae, after reduction, copper is transported by the highaffinity copper transporter comprised by Ctr3p and Ctr1p, which are functionally redundant, although they have distinct amino acid sequences. Ctr3p is an integral membrane protein that assembles as a trimer to form a competent copper uptake permease at the plasma membrane. S. cerevisiae Ctr1p is localized at the plasma membrane and exists as an oligomer in vivo. These two high-affinity copper transport proteins are induced by copper deprivation and repressed by copper excess (Dancis et al., 1994a; Pena et al., 2000). In our in silico analyses, genes for the high-affinity copper transporter of the plasma membrane (ctr1) were not found, suggesting that highaffinity copper transport is performed only by the Ctr3p protein.

Genes related to metallochaperone (atx1), Cu²⁺ transporting P-type ATPase (ccc2) and superoxide dismutases (sod1 and sod2; Table 1) were also found in P. brasiliensis genomes. In the cell, copper is transported by Atx1p, a cytosolic copper metallochaperone protein, that transports Cu (I) to Ccc2p, a transporting P-type ATPase containing a cytoplasmic region containing two distinct soluble metal-binding domains that interact with Atx1p (Banci et al., 2007). Ccc2p mediates the export of copper from the cytosol and distributes it to cupric proteins (Yuan et al., 1997). S. cerevisiae also has a detoxification pathway formed by Cup1p and Cup2p, metallothioneins (Table 1), that protect against copper poisoning (Hamer et al., 1985). An alternative copper transport system is mediated by Ctr2p, a vacuolar membrane protein of S. cerevisiae, that mobilizes vacuolar copper stores to cytosolic copper chaperones (Rees et al., 2004). Homologs of the low-affinity copper transporter of the vacuolar membrane (Ctr2p) are in Pb03 and Pb18, but not in Pb01. Additionally, the metallothioneins (encoded by cup1 and cup2 genes) were not identified in *P. brasiliensis* isolates *Pb*01, *Pb*03 and *Pb*18.

In silico analysis (**Table 1**) revealed that *Cryptococcus* species have orthologs encoding ferric/cupric reductases, suggesting that the copper reduction process is similar to that described for *S. cerevisiae*. Homologs of the high-affinity copper transporter *ctr3* gene and copper metalloregulatory transcription factor gene (*mac1*) have previously been identified (Waterman et al., 2007). Also, proteins with similarity to the cytosolic copper metallochaperone (*atx1* gene), the Cu²⁺ transporting P-type ATPase (*ccc2* gene) and the cytosolic and mitochondrial superoxide dismutases (*sod1* and *sod2* genes) have also identified, suggesting that copper distribution in *Cryptococcus* species occurs as described in *S. cerevisiae*. A homolog of the *ctr2* gene was identified only in *C. neoformans* var. *grubii*. Recently it was demonstrated that Ctr2p links copper homeostasis to polysaccharide capsule production in *C. neoformans*. The lack of this protein resulted in increased phagocytosis by murine macro-

phage, sensitivity to copper starvation and defects in polysaccharide capsule formation and melanization (Chun and Madhani, 2010). The gene *ctr1* for the high-affinity copper transporter of the plasma membrane and the genes *cup1* and *cup2* for metallothioneins were not found in *Cryptococcus* species. These analyses suggest that the high-affinity copper transport in cryptococcal cells is primarily performed by the protein encoded by *ctr3*.

Analysis of conserved motifs present in copper transporters

Searches for conserved domains revealed the presence of Mets and MXXXM motifs in the Ctr3p of the P. brasiliensis isolates and the Cryptococcus species (Figure 4). Studies in yeast and mammalian cells have revealed that proteins of the CTR family are integral membrane proteins containing three membrane-spanning domains, with high protein sequence homology (Dancis et al., 1994a; Lee et al., 2002). With the exception of S. cerevisiae Ctr3p, all CTR family members are rich in methionine residues within the amino-terminal portion (Labbe et al., 1999). These residues are arranged as MXXM and/or MXM, called Mets motifs, and it has been suggested that they could be involved in extracellular copper binding (Dancis et al., 1994b). It has been demonstrated that these clustered methionine residues together with an MXXXM motif in the transmembrane domain of CTR family members are important for copper uptake (Puig et al., 2002). In P. brasiliensis the MXXXM motif is found within the third transmembrane segment. The Ctr3p of Cryptococcus species contains only two predicted transmembrane domains instead of the three transmembrane segments described for other fungi. In C. neoformans var. grubii and C. gattii, the MXXXM motif is within the second transmembrane domain. Conserved domains were also found in amino acid sequences of other proteins involved in copper metabolism (Table A1 in Appendix), suggesting that the orthologs found in P. brasiliensis and Cryptococcus may have activities that are similar to genes with established functions in other fungi.

ZINC

Zinc uptake

Comparisons to the *S. cerevisiae* genes related to zinc metabolism performed in *P. brasiliensis* genomes are presented in **Table 1**. Analyses demonstrate that *P. brasiliensis* has homologs to zinc trans-

porters described in S. cerevisiae that are localized in the plasmatic, vacuolar and endoplasmic reticulum membranes. Importantly, five genes encoding to transporters of the ZIP family, with homology to S. cerevisiae Zrt1p or Zrt2p, are in the P. brasiliensis genomic database. In S. cerevisiae, zinc is transported by proteins belonging to the ZIP family, which is composed by a zinc high-affinity transporter protein encoded by the zrt1 gene and a low-affinity transporter encoded by the zrt2 gene (Gaither and Eide, 2001). We have previously identified homologs of zinc transporters by transcriptional analysis of P. brasiliensis yeast cells after incubation in human blood and plasma (Bailão et al., 2006, 2007). Interestingly, P. brasiliensis isolate Pb01 has two vacuolar membrane zinc transporters, encoded by the zrc1 and cot1 genes, whereas isolates Pb03 and Pb18 contain only the cot1 homolog. Intracellularly, zinc is in vacuoles in association with the vacuolar membrane proteins Zrc1p and Cot1p, members of the cation diffusion facilitator (CDF) family (MacDiarmid et al., 2002). A homolog of the transcription factor Zap1p is also present in the three P. brasiliensis isolates. The expression of the genes associated with zinc homeostasis is positively regulated in S. cerevisiae by the transcription factor Zap1p, which regulates the expression of zrt1, zrt2, zrt3, fet4, and zcr1 under zinc limiting conditions (Wu et al., 2008). Therefore, zinc assimilation in *P. brasiliensis* may be similar to that of *S. cerevisiae*.

Similarly, zinc homeostasis in Cryptococcus species is poorly studied. In silico analysis was performed by comparing S. cerevisiae genes related to zinc metabolism in genomic cryptococcal databases (Table 1). The results show that C. neoformans var. grubii and C. gattii have Zrt1p and Zrt2p zinc transporters homologs. These proteins putatively internalize zinc into the cell. Further, homologs of the vacuolar transporter Cot1p and the CDF Msc2p are present. Cot1p is presumably in the vacuolar membrane and should be related to zinc storage in this compartment. Msc2p, an endoplasmic reticulum membrane zinc transporter, could be related to zinc transport to this organelle. The protein encoded by msc2 (CDF) is responsible for zinc homeostasis in the endoplasmic reticulum in S. cerevisiae (Ellis et al., 2004). A homolog of the transcription factor Zap1p is also present in *Cryptococcus*. Since homologs to the vacuolar membrane zinc transporter gene zrt3 were not identified, the zrc1 and cot1 genes, encoding vacuolar membrane zinc transporters

P. brasiliensis isolates and *Cryptococcus* species. Ctr3p from *P. brasiliensis* isolates contains three putative transmembrane domains (TMD1-3, shown in black) while Ctr3p from *Cryptococcus* species presents only two TMDs. All species contain putative copper binding motifs (Mets motifs) arranged as

MXXM and/or MXM. MXXXM motif in TMD3 in *P brasiliensis* isolates and TMD2 in *Cryptococcus* species are represented in white characters. The length of each protein, in amino acids, is shown on the right. Accession numbers: *Pb*01 (PAAG_05251.1), *Pb*03 (PABG_07607.1), *Pb*18 (PADG_05084.1), *Cn* (CNAG_00979.2) and *Cg* (CNBG_0560.2).

Zrt1p Pb03 ------ MLGTYSHFTTLLLRRDEQENS----- 21 Pb18 ------ MGTYSHFTTLLLRRDEQENS------ 20 -----MLGTSSRLTTLLVRRDEQTNS----- 21 Pb01--MSNVTTPWWKOWDPSEVTLADKTPDDVWKTC----- 31 SC MTTYRSILVYCVALTIVGLVHGHTTGEEEHDHD-----HDHQSEAVETDAAATDLHAG 53 Cn -MTVRSIFVYFVAFAVVGFVRGQIIAEEEHDHDHHHDHHHDHDHDHDHDDDAVVTDAATHDAHAG 59 Cg . . -----PGACATGNEYDGHLNLRLSAVFVILIGSSIGALFPVWARPGRTNASKGRRVDVP 75 Pb0.3-----PGACATGNEYDGHLNLRLSAVFVILIGSSIGALFPVWARPGRTNASKGRRVDVP 74 Pb18 ----PGACATGNEYDGHLNLRLSAVFVILIGSSIGALFPVWARPRRANASKGRRVDVP 75 Pb01 ----VLOGVYFGGNEYNGNLGARISSVFVILFVSTFFTMFPLIS-----T-KVKRLRIP 80 SC HTHAHSSSDCWVTELONYDLSLHIAAVFVMMVASAIGVFLPVILG-----KLGSRNKLF 107 Cn HTHAHSSSGCGVTELONYNLALHIAAVFVMLVASALGVFLPVILG-----KLGPRNKLF 113 Cg Pb03 PWAFFVAKYFGSGVIVATAFIHLLAPAHEALS-NPCL--TGPVTEYPWVEGIMLMTIVLL 132 PWAFFVAKYFGSGVIVATAFIHLLAPAHEALS-NPCL--TGPVTEYPWVEGIMLMTIVLL 131 Pb18PWAFFVAKYFGSGVIVATAFIHLLAPAHEALS-NPCL--TGPVTEYPWVEGVMLMTIVLL 132 Pb01LYVYLFAKYFGSGVIVATAFIHLMDPAYGAIGGTTCVGOTGNWGLYSWCPAIMLTSLTFT 140 SC GSVFFVLKYFGSGIIISLAFVHLLIHAFFNLT-SECV---GNLEYESAAPAIAMATVIVV 163 Cn GSLFSILKYFGSGIIISLAFVHLLIHAFFNLT-SACV---GDMDYESVAPAIAMATVIVV 169 Cg : . *****: * : **: **: * . : . *: * .: : :: . . FFIELMAMRYARFGEADIAKELENGAWDMGHGHSHDNGHSNGKILAPNHTHTHTHDHDSV 192 Pb03 FFIELMAMRYARFGEADIAKELENGAWDMGHGHSHDHGHSNGKILAPNHTHTHTHDHDSV 191 Pb18 FFIELMAMRYARFGEADIAKELENGAWDLGHGHSHDHGHSNGKILAPTHTHNHTNDHDSV 192 Pb01FLTDLFSS-----VWVER-----KYGLSHDHTHDEIKDTVVRNTAAVSSENDNE 184 SC WLVDFLGSR-------YITRONSYVPECDRNISAALCSSSEPLGERK 203 Cn WLVDFFGSR-------YIARQNSCLPEGDRNITAASSSYPVSQGEKK 209 Cq :: :::. . : . NSDVNTNIPGEDHLGHARHHLTDAVSKKNCHSFVGKTAADSKNHGPSDHIHGHMSLVEDY 252 Pb03 NSDVNTNFPGENHLGHARHHLTDAVSKKNCHSFVGKTAADSKNHGPPDHTHGHMSLVEDY 251 Pb18 Pb01NSDVNTHMPGEDHLGHVRHHHTDAVSKKNCHSLVGKTAADSKNHSPPDRPHGHMALVEDY 252 NGTANGSHDTKN--GVEYYEDSDATS-----MDVVQSF 215 SC KDDISTPMTELACCGPKNLEITNFDG-----AA 231 Cn IDGISTPMTELACCGPNKSKVTPFDG-----AA 237 Cq . : SAQLTSIFILEFCIIFHSVFTCLTLAVAGKEFITLYIVLVFHQTFEGLGLGARIATVPWP312SAQLTSIFILEFCIIFHSVFTCLTLAVAGKEFITLYIVLVFHQTFEGLGLGARIATVPWP311SAQLTSIFILEFCIIFHSVFTCLTLAVAGKEFITLYIVLVFHQTFEGLGLGARIATVPWP312QAQFYAFLILEFCVIFHSVMICINLGSVGDEFSSLYPVLVFHQSFEGLGIGARLSAIEFP275 Ph03 Pb18 *Pb*01 SC KTAHWNVQLLEYCVIFHSIMICVSLGAMGTGFNTTFAALVFHQLFEGLGLGARIAMLIWP 291 Cn KTAHWNVQLLEYGVIFHSIMIGVSLGAMGTGFNTTFAALVFHQLFEGLGLGARIAMLVWP 297 Cq . : Pb03 G--SKRLTPYILAIAFGLSTPVAIAIGLGVHETYPPESQTSLIVNGVFDSISAGILIYTA 370 G--SKRLTPYILAIAFGLSTPVAIAIGLGVHETYPPESQTSLIVNGVFDSISAGILIYTA 369 Pb18 G--SKRLTPYILAIAFGLSTPIAIAIGLGIHETYPPESQTSLIVNGVFDSISAGILIYTA 370 Pb01R--SKRWWPWALCVAYGLTTPICVAIGLGVRTRYVSGSYTALVISGVLDAISAGILLYTG 333 SC AGISSAIKKWSMCLAYALATPVGIAIGIGVHESVNMNGRAILLSTGILDSISAGILLYCG Сп 351 PGVSSTIKKWAMCLAYALVTPVGIAIGIGVHESINMNGRAILLSTGILDSISAGILLYGG 357 Cq * . LVELMAHEFMFSTTMRRASIRTVLAAFALLCLGAALMALLGKWA 414 Ph03 LVELMAHEFMFSTTMRRASIRTVLAAFALLCLGAALMALLGKWA 413 Pb18 LVELMAHEFMFSTTMRRASIRTVLAAFALLCLGAALMALLGKWA 414 Pb01 LVELLARDFIFNP-QRTKDLRELSFNVICTLFGAGIMALIGKWA 376 SC LCQLLYREWVVGE-MRDASTSKIIVALVSLFLGLFAMSFIGKWI 394 Сп LCQLLYREWVVGD-MRDASTGEIIVALVSLFLGLFAMSFIGKWI 400 Ca * :*: ::::: * . : . :* *:::***

FIGURE 5 | Alignment of amino acid sequences of Zrt1p from *S. cerevisiae*, *P. brasiliensis* isolates and *Cryptococcus* species. The predicted

transmembrane domains are shown in gray boxes. The black boxes inside the transmembrane segment contain conserved histidine-serine and glycine residues. The histidines found in the amino-terminal region of Zrt1p from

Cryptococcus species and in the loop between transmembrane domains III and IV in *P. brasiliensis* and *S. cerevisiae* are boxed. Asterisks indicate amino acid identity and dots represent conserved substitutions. Accession numbers: *Pb*03 (PABG_07725.1), *Pb*18 (PADG_08567.1), *Pb*01 (PAAG_08727.1), *Sc* (NP_011259), *Cn* (CNAG_03398.2) and *Cg* (CNBG_2209.2).

could be responsible for the zinc transport to this organelle. This analysis suggests that *C. neoformans* var. *grubii* and *C. gattii* could obtain zinc via routes similar to that described for *S. cerevisiae*.

Analysis of conserved regions in the high-affinity zinc transporter (Zrt1p) in P. brasiliensis isolates and Cryptococcus species

Alignment of Zrt1p amino acid sequence from S. cerevisiae, P. brasiliensis isolates and Cryptococcus species revealed some conserved features (Figure 5). Concerning the predicted transmembrane domain number, all P. brasiliensis isolates contain eight predicted domains, while both C. neoformans var. grubii and C. gattii have nine. Proteins belonging to the ZIP family are predicted to have from five to eight transmembrane domains and they vary in size from 233 to 477 amino acid residues. The variations in the aminoterminal portion are usually responsible for the differences in size. The transmembrane domain IV has the most conserved portions of ZIP family proteins, with conserved histidine and glycine residues. The histidine residue and the adjacent polar residue, usually a serine, within the transmembrane domain are predicted to comprise part of a heavy metal-binding site in the center of the membrane (Eng et al., 1998). The amino acid sequence of S. cerevisiae Zrt1p presents a number of histidine residues in a large loop between the transmembrane segments III and IV, which is a putative metal ion binding site (Zhao and Eide, 1996a). The histidine-serine and glycine residues are conserved within the fourth transmembrane region in P. brasiliensis and within the fifth transmembrane region in Cryptococcus. Regarding the histi-

REFERENCES

- Arango, R., and Restrepo, A. (1988). Growth and production of iron chelants by *Paracoccidioides brasiliensis* mycelial and yeast forms. *J. Med. Vet. Mycol.* 26, 113–118.
- Babcock, M., de Silva, D., Oaks, R., Davis-Kaplan, S., Jiralerspong, S., Montermini, L., Pandolfo, M., and Kaplan, J. (1997). Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin. *Science* 276, 1709–1712.
- Bailão, A. M., Schrank, A., Borges, C. L., Dutra, V., Molinari-Madlum, E. E. W. I., Felipe, M. S. S., Mendes-Giannini, M. J. S., Martins, W. S., Pereira, M., and Soares, C. M. A. (2006). Differential gene expression by *Paracoccidioides brasiliensis* in host interaction conditions: representational difference analysis identifies candidate genes associated with fungal pathogenesis. *Microbes Infect.* 8, 2686–2697.
- Bailão, A. M., Shrank, A., Borges, C. L., Parente, J. A., Dutra, V., Felipe, M. S., Fiuza, R. B., Pereira, M., and Soares, C. M.A. (2007). The transcriptional profile of *Paracoccidioides brasiliensis* yeast cells is influenced by human plasma. *FEMS Immunol. Med. Microbiol.* 51, 43–57.
- Banci, L., Bertini, I., Chasapis, C. T., Rosato, A., and Tenori, L. (2007).

Interaction of the two soluble metalbinding domains of yeast Ccc2 with copper(I)-Atx1. *Biochem. Biophys. Res. Commun.* 364, 645–649.

- Berg, J. M., and Shi, Y. (1996). The galvanization of biology: a growing appreciation for the roles of zinc. *Science* 271, 1081–1085.
- Castaneda, E., Brummer, E., Perlman, A. M., McEwen, J. G., and Stevens, D. A. (1988). A culture medium for *Paracoccidioides brasiliensis* with high plating efficiency, and the effect of siderophores. *J. Med. Vet. Mycol.* 26, 351–358.
- Chun, C. D., and Madhani, H. D. (2010). Ctr2 links copper homeostasis to polysaccharide capsule formation and phagocytosis inhibition in the human fungal pathogen *Cryptococcus* neoformans. PLoS ONE 5, e12503. doi: 10.1371/journal.pone.0012503
- Costa, M., Borges, C. L., Bailao, A. M., Meirelles, G. V., Mendonca, Y. A., Dantas, S. F., de Faria, F. P., Felipe, M. S., Molinari-Madlum, E. E., Mendes-Giannini, M. J., Fiuza, R. B., Martins, W. S., Pereira, M., and Soares, C. M. (2007). Transcriptome profiling of *Paracoccidioides brasiliensis* yeastphase cells recovered from infected mice brings new insights into fungal response upon host interaction. *Microbiology* 153, 4194–4207.

dine rich region, it is conserved between transmembrane domains III and IV in *P. brasiliensis* isolates, whereas are conserved at the amino-terminal portion in *Cryptococcus* species, as occurs in other members of the ZIP family (Eng et al., 1998). Conserved domains are also found in amino acid sequences of other proteins involved in zinc metabolism that were identified in the search for orthologs (**Table A1** in Appendix).

CONCLUSION

As we have described, microorganisms are extremely well equipped to exploit host metal sources during growth and infection. *Cryptococcus* species demonstrate remarkable flexibility in gaining access to and utilizing iron, the most investigated micronutrient in this organism. Our laboratories have begun to elucidate the mechanisms for the uptake and metabolism of micronutrients such as iron, copper and zinc in *P. brasiliensis*. Studies on individual genes and pathways are revealing unique features of micronutrients metabolism in this fungus. The application of systems biology approaches that incorporates genomic and proteomic data will further generate hypotheses about the common and specific responses to micronutrient deprivation in both pathogenic fungi and potentially lead to the development of novel therapeutics exploiting their metal requirements.

ACKNOWLEDGMENT

This work at laboratories was supported by grants from MCT/ FINEP/Rede GENOPROT Grant number 01.07.0552.00.

- Dancis, A., Haile, D., Yuan, D. S., and Klausner, R. D. (1994a). The Saccharomyces cerevisiae copper transport protein (Ctr1p). Biochemical characterization, regulation by copper, and physiologic role in copper uptake. J. Biol. Chem. 269, 25660–25667.
- Dancis, A., Yuan, D. S., Haile, D., Askwith, C., Eide, D., Moehle, C., Kaplan, J., and Klausner, R. D. (1994b). Molecular characterization of a copper transport protein in *S. cerevisiae*: an unexpected role for copper in iron transport. *Cell* 76, 393–402.
- De Luca, N. G., and Wood, P. M. (2000). Iron uptake by fungi: contrasted mechanisms with internal or external reduction. *Adv. Microb. Physiol.* 43, 39–74.
- Dias-Melicio, L. A., Calvi, S. A., Peracoli, M. T., and Soares, A. M. (2005). Inhibitory effect of deferoxamine on *Paracoccidioides brasiliensis* survival in human monocytes: reversal by holotransferrin not by apotransferrin. *Rev. Inst. Med. Trop. Sao Paulo* 47, 263–266.
- Eide, D. J. (2003). Multiple regulatory mechanisms maintain zinc homeostasis in *Saccharomyces cerevisiae*. J. Nutr. 133, 15328–15358.
- Ellis, C. D., Wang, F., MacDiarmid, C. W., Clark, S., Lyons, T., and Eide, D.

J. (2004). Zinc and the Msc2 zinc transporter protein are required for endoplasmic reticulum function. *J. Cell Biol.* 166, 325–335.

- Eng, B. H., Guerinot, M. L., Eide, D., and Saier, M. H. Jr. (1998). Sequence analyses and phylogenetic characterization of the ZIP family of metal ion transport proteins. J. Membr. Biol. 166, 1–7.
- Finking, R., and Marahiel, M. A. (2004). Biosynthesis of nonribosomal peptides. Annu. Rev. Microbiol. 58, 453–488.
- Foster, L. A. (2002). Utilization and cell-surface binding of hemin by *Histoplasma capsulatum. Can. J. Microbiol.* 48, 437–442.
- Foury, F., and Roganti, T. (2002). Deletion of the mitochondrial carrier genes MRS3 and MRS4 suppresses mitochondrial iron accumulation in a yeast frataxin-deficient strain. *J. Biol. Chem.* 277, 24475–24483.
- Froschauer, E. M., Schweyen, R. J., and Wiesenberger, G. (2009). The yeast mitochondrial carrier proteins Mrs3p/ Mrs4p mediate iron transport across the inner mitochondrial membrane. *Biochim. Biophys. Acta* 1788, 1044–1050.
- Gaither, L. A., and Eide, D. J. (2001). Eukaryotic zinc transporters and their regulation. *Biometals* 14, 251–270.

- Georgatsou, E., Mavrogiannis, L. A., Fragiadakis, G.S., and Alexandraki, D. (1997). The yeast Fre1p/Fre2p cupric reductases facilitate copper uptake and are regulated by the coppermodulated Mac1p activator. J. Biol. Chem. 272, 13786–13792.
- Gitan, R. S., Luo, H., Rodgers, J., Broderius, M., and Eide, D. (1998). Zinc-induced inactivation of the yeast ZRT1 zinc transporter occurs through endocytosis and vacuolar degradation. J. Biol. Chem. 273, 28617–28624.
- Gross, C., Kelleher, M., Iyer, V. R., Brown, P. O., and Winge, D. R. (2000). Identification of the copper regulon in *Saccharomyces cerevisiae* by DNA microarrays. *J. Biol. Chem.* 275, 32310–32316.
- Haas, H., Eisendle, M., and Turgeon, B. G. (2008). Siderophores in fungal physiology and virulence. *Annu. Rev. Phytopathol.* 46, 149–187.
- Hamer, D. H., Thiele, D. J., and Lemontt, J. E. (1985). Function and autoregulation of yeast copperthionein. *Science* 228, 685–690.
- Hassett, R., and Kosman, D. J. (1995). Evidence for Cu(II) reduction as a component of copper uptake by *Saccharomyces cerevisiae. J. Biol. Chem.* 270, 128–134.
- Hassett, R. F., Yuan, D. S., and Kosman, D. J. (1998). Spectral and kinetic properties of the Fet3 protein from *Saccharomyces cerevisiae*, a multinuclear copper ferroxidase enzyme. J. *Biol. Chem.* 273, 23274–23282.
- Heymann, P., Ernst, J. F., and Winkelmann, G. (1999). Identification of a fungal triacetylfusarinine C siderophore transport gene (TAF1) in *Saccharomyces cerevisiae* as a member of the major facilitator superfamily. *Biometals* 12, 301–306.
- Heymann, P, Ernst, J. F, and Winkelmann, G. (2000). A gene of the major facilitator superfamily encodes a transporter for enterobactin (Enb1p) in *Saccharomyces cerevisiae. Biometals* 13, 65–72.
- Howard, D. H. (1999). Acquisition, transport, and storage of iron by pathogenic fungi. *Clin. Microbiol. Rev.* 12, 394–404.
- Hwang, L. H., Mayfield, J. A., Rine, J., and Sil, A. (2008). *Histoplasma* requires SID1, a member of an iron-regulated siderophore gene cluster, for host colonization. *PLoS Pathog.* 4, e1000044. doi: 10.1371/journal.ppat.1000044
- Jacobson, E. S., Goodner, A. P., and Nyhus, K. J. (1998). Ferrous iron uptake in Cryptococcus neoformans. Infect. Immun. 66, 4169–4175.
- Jacobson, E. S., and Petro, M. J. (1987). Extracellular iron chelation in Cryptococcus neoformans. J. Med. Vet. Mycol. 25, 415–418.

- Jacobson, E. S., Troy, A. J., and Nyhus, K. J. (2005). Mitochondrial functioning of constitutive iron uptake mutations in *Cryptococcus neoformans*. *Mycopathologia* 159, 1–6.
- Jung, W. H., and Kronstad, J. W. (2008). Iron and fungal pathogenesis: a case study with *Cryptococcus neoformans*. *Cell. Microbiol.* 10, 277–284.
- Jung, W. H., Sham, A., Lian, T., Singh, A., Kosman, D. J., and Kronstad, J. W. (2008). Iron source preference and regulation of iron uptake in *Cryptococcus* neoformans. PLoS Pathog. 4, e45. doi: 10.1371/journal.ppat.0040045
- Jungmann, J., Reins, H. A., Lee, J., Romeo, A., Hassett, R., Kosman, D., and Jentsch, S. (1993). MAC1, a nuclear regulatory protein related to Cu-dependent transcription factors is involved in Cu/Fe utilization and stress resistance in yeast. *EMBO J.* 12, 5051–5056.
- Kim, B. E., Nevitt, T., and Thiele, D. J. (2008). Mechanisms for copper acquisition, distribution and regulation. *Nat. Chem. Biol.* 4, 176–185.
- Knight, S. A., Vilaire, G., Lesuisse, E., and Dancis, A. (2005). Iron acquisition from transferrin by *Candida albicans* depends on the reductive pathway. *Infect. Immun.* 73, 5482–5492.
- Kornitzer, D. (2009). Fungal mechanisms for host iron acquisition. *Curr. Opin. Microbiol.* 12, 377–383.
- Kosman, D. J. (2003). Molecular mechanisms of iron uptake in fungi. *Mol. Microbiol.* 47, 1185–1197.
- Labbe, S., Pena, M. M., Fernandes, A. R., and Thiele, D. J. (1999). A copper-sensing transcription factor regulates iron uptake genes in *Schizosaccharomyces pombe. J. Biol. Chem.* 274, 36252–36260.
- Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., and Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. *Bioinformatics* 23,2947–2948.
- Lee, J., Pena, M. M., Nose, Y., and Thiele, D. J. (2002). Biochemical characterization of the human copper transporter Ctr1. J. Biol. Chem. 277, 4380–4387.
- Lesuisse, E., Raguzzi, F., and Crichton, R. R. (1987). Iron uptake by the yeast *Saccharomyces cerevisiae*: involvement of a reduction step. *J. Gen. Microbiol.* 133, 3229–3236.
- Lesuisse, E., Simon-Casteras, M., and Labbe, P. (1998). Siderophoremediated iron uptake in *Saccharomyces cerevisiae*: the SIT1 gene encodes a ferrioxamine B permease that belongs to the major facilitator superfamily. *Microbiology* 144(Pt 12), 3455–3462.
- Lian, T., Simmer, M. I., D'Souza, C. A., Steen, B. R., Zuyderduyn, S. D., Jones,

S. J., Marra, M. A., and Kronstad, J. W. (2005). Iron-regulated transcription and capsule formation in the fungal pathogen *Cryptococcus neoformans. Mol. Microbiol.* 55, 1452–1472.

- Liang, Y., Gui, L., Wei, D. S., Zheng, W., Xing, L. J., and Li, M. C. (2009). *Candida albicans* ferric reductase FRP1 is regulated by direct interaction with Rim101p transcription factor. *FEMS Yeast Res.* 9, 270–277.
- Lyons, T. J., Gasch, A. P., Gaither, L. A., Botstein, D., Brown, P. O., and Eide, D. J. (2000). Genome-wide characterization of the Zap1p zinc-responsive regulon in yeast. *Proc. Natl. Acad. Sci.* U.S.A. 97, 7957–7962.
- MacDiarmid, C. W., Milanick, M. A., and Eide, D. J. (2002). Biochemical properties of vacuolar zinc transport systems of *Saccharomyces cerevisiae*. J. Biol. Chem. 277, 39187–39194.
- Manns, J. M., Mosser, D. M., and Buckley, H. R. (1994). Production of a hemolytic factor by *Candida albicans. Infect. Immun.* 62, 5154–5156.
- Matzanke, B. F., Bill, E., Trautwein, A. X., and Winkelmann, G. (1987). Role of siderophores in iron storage in spores of *Neurospora crassa* and *Aspergillus* ochraceus. J. Bacteriol. 169, 5873–5876.
- Mei, B., Budde, A. D., and Leong, S. A. (1993). sid1, a gene initiating siderophore biosynthesis in Ustilago maydis: molecular characterization, regulation by iron, and role in phytopathogenicity. Proc. Natl. Acad. Sci. U.S.A. 90, 903–907.
- Miethke, M., and Marahiel, M. A. (2007). Siderophore-based iron acquisition and pathogen control. *Microbiol. Mol. Biol. Rev.* 71, 413–451.
- Moroz, O. V., Antson, A. A., Grist, S. J., Maitland, N. J., Dodson, G. G., Wilson, K. S., Lukanidin, E., and Bronstein, I. B. (2003). Structure of the human S100A12-copper complex: implications for host-parasite defence. *Acta Crystallogr. D Biol. Crystallogr.* 59, 859–867.
- Neilands, J. B. (1993). Siderophores. Arch. Biochem. Biophys. 302, 1–3.
- Neilands, J. B., Konopka, K., Schwyn, B., Coy, M., Francis, R. T., Paw, B. H., and Bagg, A. (1987). "Comparative biochemistry of microbial iron assimilation," in *Iron Transport in Microbes, Plants and Animals*, eds G. Winkelmann, D. Van der Helm, and J. B. Neilands (New York: VCH Publishers), 3–34.
- Nyhus, K. J., and Jacobson, E. S. (1999). Genetic and physiologic characterization of ferric/cupric reductase constitutive mutants of *Cryptococcus neoformans. Infect. Immun.* 67, 2357–2365.
- Pao, S. S., Paulsen, I. T., and Saier, M. H. Jr. (1998). Major facilitator superfamily. *Microbiol. Mol. Biol. Rev.* 62, 1–34.

- Pena, M. M., Puig, S., and Thiele, D. J. (2000). Characterization of the *Saccharomyces cerevisiae* high affinity copper transporter Ctr3. J. Biol. Chem. 275, 33244–33251.
- Pendrak, M. L., Chao, M. P., Yan, S. S., and Roberts, D. D. (2004). Heme oxygenase in *Candida albicans* is regulated by hemoglobin and is necessary for metabolism of exogenous heme and hemoglobin to alpha-biliverdin. *J. Biol. Chem.* 279, 3426–3433.
- Philpott, C. C. (2006). Iron uptake in fungi: a system for every source. *Biochim. Biophys. Acta* 1763, 636–645.
- Philpott, C. C., and Protchenko, O. (2008). Response to iron deprivation in Saccharomyces cerevisiae. Eukaryot. Cell 7, 20–27.
- Puig, S., Lee, J., Lau, M., and Thiele, D. J. (2002). Biochemical and genetic analyses of yeast and human high affinity copper transporters suggest a conserved mechanism for copper uptake. J. Biol. Chem. 277, 26021–26030.
- Rees, E. M., Lee, J., and Thiele, D. J. (2004). Mobilization of intracellular copper stores by the ctr2 vacuolar copper transporter. *J. Biol. Chem.* 279, 54221–54229.
- Schaible, U. E., and Kaufmann, S. H. (2004). Iron and microbial infection. *Nat. Rev. Microbiol.* 2, 946–953.
- Schrettl, M., Bignell, E., Kragl, C., Joechl, C., Rogers, T., Arst, H. N. Jr., Haynes, K., and Haas, H. (2004). Siderophore biosynthesis but not reductive iron assimilation is essential for *Aspergillus fumigatus* virulence. *J. Exp. Med.* 200, 1213–1219.
- Schrettl, M., Bignell, E., Kragl, C., Sabiha, Y., Loss, O., Eisendle, M., Wallner, A., Arst, H. N. Jr., Haynes, K., and Haas, H. (2007). Distinct roles for intra- and extracellular siderophores during *Aspergillus fumigatus* infection. *PLoS Pathog.* 3, 1195–1207. doi: 10.1371/ journal.ppat.0030128
- Shatwell, K. P., Dancis, A., Cross, A. R., Klausner, R. D., and Segal, A. W. (1996). The FRE1 ferric reductase of *Saccharomyces cerevisiae* is a cytochrome bsimilar to that of NADPH oxidase. *J. Biol. Chem.* 271, 14240–14244.
- Stearman, R., Yuan, D. S., Yamaguchi-Iwai, Y., Klausner, R. D., and Dancis, A. (1996). A permease-oxidase complex involved in high-affinity iron uptake in yeast. *Science* 271, 1552–1557.
- Tangen, K. L., Jung, W. H., Sham, A. P., Lian, T., and Kronstad, J. W. (2007). The iron- and cAMP-regulated gene SIT1 influences ferrioxamine B utilization, melanization and cell wall structure in *Cryptococcus neoformans*. *Microbiology* 153, 29–41.
- Timmerman, M. M., and Woods, J. P. (2001). Potential role for extracellular glutathione-dependent ferric

reductase in utilization of environmental and host ferric compounds by *Histoplasma capsulatum*. *Infect*. *Immun*. 69, 7671–7678.

- Van der Helm, D., and Winkelmann, G. (1994). "Hydroxamates and polycarbonates as iron transport agents (siderophores) in fungi," in *Metal Ions in Fungi*, eds G. Winkelmann and D. R. Winge (New York: Marcel Dekker), 39–148.
- Van Ho, A., Ward, D. M., and Kaplan, J. (2002). Transition metal transport in yeast. *Annu. Rev. Microbiol.* 56, 237–261.
- Waterman, S. R., Hacham, M., Hu, G., Zhu, X., Park, Y. D., Shin, S., Panepinto, J., Valyi-Nagy, T., Beam, C., Husain, S., Singh, N., and Williamson, P. R. (2007). Role of a CUF1/CTR4 copper regulatory axis in the virulence of *Cryptococcus neoformans. J. Clin. Invest.* 117, 794–802.
- Weinberg, E. D. (2009). Iron availability and infection. *Biochim. Biophys. Acta* 1790, 600–605.
- Weissman, Z., Shemer, R., Conibear, E., and Kornitzer, D. (2008). An endocytic mechanism for haemoglobin-iron acquisition in *Candida albicans. Mol. Microbiol.* 69, 201–217.

- Winters, M. S., Chan, Q., Caruso, J. A., and Deepe, G. S. Jr. (2010). Metallomic analysis of macrophages infected with *Histoplasma capsulatum* reveals a fundamental role for zinc in host defenses. *J. Infect. Dis.* 202, 1136–1145.
- Wu, C. Y., Bird, A. J., Chung, L. M., Newton, M.A., Winge, D. R., and Eide, D. J. (2008). Differential control of Zap1-regulated genes in response to zinc deficiency in *Saccharomyces cerevisiae. BMC Genomics* 9, 370. doi: 10.1186/1471-2164-9-370
- Yuan, D. S., Dancis, A., and Klausner, R. D. (1997). Restriction of copper export in *Saccharomyces cerevisiae* to a late Golgi or post-Golgi compartment in the secretory pathway. *J. Biol. Chem.* 272, 25787–25793.
- Yun, C. W., Ferea, T., Rashford, J., Ardon, O., Brown, P. O., Botstein, D., Kaplan, J., and Philpott, C. C. (2000a). Desferrioxamine-mediated iron uptake in *Saccharomyces cerevisiae*. Evidence for two pathways of iron uptake. *J. Biol. Chem.* 275, 10709–10715.
- Yun, C. W., Tiedeman, J. S., Moore, R. E., and Philpott, C. C. (2000b). Siderophoreiron uptake in *Saccharomyces cerevisiae*. Identification of ferrichrome and fusarinine transporters. *J. Biol. Chem.* 275, 16354–16359.

- Zarnowski, R., and Woods, J. P. (2005). Glutathione-dependent extracellular ferric reductase activities in dimorphic zoopathogenic fungi. *Microbiology* 151, 2233–2240.
- Zhang, Y., Lyver, E. R., Knight, S. A., Pain, D., Lesuisse, E., and Dancis, A. (2006). Mrs3p, Mrs4p, and frataxin provide iron for Fe-S cluster synthesis in mitochondria. *J. Biol. Chem.* 281, 22493–22502.
- Zhao, H., and Eide, D. (1996a). The yeast ZRT1 gene encodes the zinc transporter protein of a high-affinity uptake system induced by zinc limitation. *Proc. Natl. Acad. Sci. U.S.A.* 93, 2454–2458.
- Zhao, H., and Eide, D. (1996b). The ZRT2 gene encodes the low affinity zinc transporter in *Saccharomyces cerevisiae. J. Biol. Chem.* 271, 23203–23210.
- Zhao, H., and Eide, D. J. (1997). Zap1p, a metalloregulatory protein involved in zinc-responsive transcriptional regulation in *Saccharomyces cerevisiae*. *Mol. Cell. Biol.* 17, 5044–5052.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.

Received: 20 August 2010; accepted: 03 March 2011; published online: 21 March 2011.

Citation: Silva MG, Schrank A, Bailão EFLC, Bailão AM, Borges CL, Staats CC, Parente JA, Pereira M, Salem-Izacc SM, Mendes-Giannini MJS, Oliveira RMZ, Rosa e Silva LK, Nosanchuk JD, Vainstein MH and Soares CMA (2011) The homeostasis of iron, copper, and zinc in Paracoccidioides brasiliensis, Cryptococcus gattii: a comparative analysis. Front. Microbio. 2:49. doi: 10.3389/fmicb.2011.00049

This article was submitted to Frontiers in Mycology, a specialty of Frontiers in Microbiology.

Copyright © 2011 Silva, Schrank, Bailão, Bailão, Borges, Staats, Parente, Pereira, Salem-Izacc, Mendes-Giannini, Oliveira, Rosa e Silva, Nosanchuk, Vainstein and Soares. This is an open-access article subject to an exclusive license agreement between the authors and Frontiers Media SA, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

APPENDIX

Table A1 | Conserved domains in proteins involved in iron, copper and zinc uptake by reductive systems in *P. brasiliensis* isolates and *Cryptococcus* species.

Gene product	Predicted function	Organism/accession number [†]	Conserved domains*	Transmembrane domains*	Signal peptide*
Fre1	Metalloreductase	P. brasiliensis 01/PAAG_05370.1	Ferric reductase domain	7	Yes
		P. brasiliensis 03/PABG_06003.1	FAD-binding domain	6	No
			NAD-binding domain		
Fre3	Metalloreductase	P. brasiliensis 01/PAAG_02079.1	Ferric reductase domain	6	Yes
		P. brasiliensis 03/PABG_02329.1	FAD-binding domain	6	Yes
		P. brasiliensis 18/PADG_00813.1	NAD-binding domain	6	Yes
Fre5	Metalloreductase	P. brasiliensis 03/PABG_07812.1	Ferric reductase domain	6	No
			FAD-binding domain		
			NAD-binding domain		
Fre7	Metalloreductase	P. brasiliensis 01/PAAG_06164.1		8	No
		P. brasiliensis 03/PABG_06497.1	Ferric reductase domain	8	No
		P. brasiliensis 18/PADG_07957.1	FAD-binding domain	8	No
		C. neoformans/CNAG_00876.2	NAD-binding domain	7	No
		C. gattii/CNBG_6082.2		8	No
Fre8	Metalloreductase	C. neoformans/CNAG_07334.2	Ferric reductase domain	6	No
			FAD-binding domain		
		C. gattii/CNBG_2116.2	NAD-binding domain	6	No
Fre10	Metalloreductase	C. neoformans/CNAG_06821.2	Ferric reductase domain	4	No
			FAD-binding domain		
		C. gattii/CNBG_5888.2	NAD-binding domain	4	No
Cfl4	Metalloreductase	C. neoformans/CNAG_06524.2	Ferric reductase domain	5	No
			FAD-binding domain		
			NAD-binding domain		
Frp1	Metalloreductase	P. brasiliensis 01/PAAG_04493.1	Ferric reductase domain	5	No
		P. brasiliensis 03/PABG_04278.1	FAD-binding domain	6	No
		P. brasiliensis 18/PADG_04652.1	NAD-binding domain	5	No
Fet3	Ferroxidase	C. neoformans CNAG_06241.2	Copper-oxidase domain	1	Yes
Fet5	Ferroxidase	P. brasiliensis 03/PABG_05667.1	Copper-oxidase domain	-	No
		P. brasiliensis 18/PADG_05994.1		-	No
		C. neoformans/CNAG_07865.2		1	Yes
		C. gattii/CNBG_4942.2		1	Yes
Fet31	Ferroxidase	P. brasiliensis 01/PAAG_06004.1	Copper-oxidase domain	1	No
		C. neoformans/CNAG_02958.2		-	Yes
Fet33	Ferroxidase	P. brasiliensis 01/PAAG_00163.1	Copper-oxidase domain	-	No
		P. brasiliensis 03/PABG_05183.1		-	Yes
Ftr1/Ftr2	Iron permease	C. neoformans/CNAG_06242.2	FTR1 domain	7	Yes
		C. gattii/CNBG_3602.2		6	Yes
Fth1	Iron permease	C. neoformans/CNAG_02959.2	FTR1 domain	7	Yes
		<i>C. gattii/</i> CNBG_4943.2		7	Yes

(Continued)

Table A1 | Continued

Gene product	Predicted function	Organism/accession number [†]	Conserved domains*	Transmembrane domains*	Signal peptide*
Smf1	Low-affinity Permease	C. neoformans/CNAG_05640.2	Nramp domain	11	No
		C. gattii/CNBG_6162.2		11	No
Ccc1	Vacuolar transporter	P. brasiliensis 01/PAAG_07762.1	DUF125 domain	4	No
		P. brasiliensis 03/PABG_00362.1		4	No
		P. brasiliensis 18/PADG_02775.1		4	No
		C. neoformans/CNAG_05154.2		4	No
		C. gattii/CNBG_4540.2		4	No
Mrs3/Mrs4	Mitochondrial iron	P. brasiliensis 01/PAAG_05053.1	Mitochodrial carrier	_	No
	transporter	P. brasiliensis 03/PABG_04509.1	domain	_	No
		P. brasiliensis 18/PADG_04903.1		_	No
		C. neoformans/CNAG_02522.2		_	No
		C. gattii/CNBG_4218.2		_	No
Yfh1	Mitochondrial matrix iron	P. brasiliensis 01/PAAG_02608.1	Frataxin domain	_	No
	chaperone	P. brasiliensis 03/PABG_03095.1		-	No
		P. brasiliensis 18/PADG_01626.1		-	No
		C. neoformans/CNAG_05011.2		-	No
		C. gattii/CNBG_4670.2		-	No
Ggt1	Secreted glutathione-	P. brasiliensis 01/PAAG_06130.1	Gamma-	1	Yes
	dependent ferric reductase	P. brasiliensis 03/PABG_06527.1	glutamyltranspeptidase	1	Yes
		P. brasiliensis 18/PADG_07986.1	domain	1	Yes
		C. neoformans/CNAG_02888.2		-	No
		C. gattii/CNBG_3537.2		-	No
Mac1	Copper metalloregulatory	P. brasiliensis 01/PAAG_08210.1	Copper fist domain	-	No
	transcription factor	P. brasiliensis 03/PABG_07429.1		_	No
		C. neoformans/CNAG_07724.2		_	No
		C. gattii/CNBG_2252.2		-	No
Ctr3	High-affinity copper	P. brasiliensis 01/PAAG_05251.1	Ctr domain	3	No
	transporter of the plasma	P. brasiliensis 03/PABG_07607.1		3	No
	membrane	P. brasiliensis 18/PADG_05084.1		3	No
		C. neoformans/CNAG_00979.2		2	No
		C. gattii/CNBG_0560.2		2	No
Ctr2	Putative low-affinity copper	P. brasiliensis 03/PABG_01536.1	Ctr domain	3	No
	transporter of the vacuolar	P. brasiliensis 18/PADG_04146.1		3	No
	membrane	C. neoformans/CNAG_01872.2		3	No
Atx1	Cytosolic copper	P. brasiliensis 01/PAAG_00326.1	HMA domain	_	No
	metallochaperone	P. brasiliensis 03/PABG_06615.1		_	No
		P. brasiliensis 18/PADG_02352.1		_	No
		C. neoformans/CNAG_02434.2		_	No
		C. gattii/CNBG_4136.2		_	No
Ccc2	Cu ²⁺ transporting P-type	P. brasiliensis 01/PAAG_07053.1		7	No
	ATPase	P. brasiliensis 03/PABG_03057.1	HMA domain	8	No

(Continued)

Table A1 | Continued

Gene product	Predicted function	Organism/accession number [†]	Conserved domains*	Transmembrane domains*	Signal peptide*
		P. brasiliensis 18/PADG_01582.1	Hydrolase domain	8	No
		C. neoformans/CNAG_06415.2	E1-E2 ATPase domain	8	No
		C. gattii/CNBG_5045.2		8	No
Sod1	Cytosolic superoxide	P. brasiliensis 01/PAAG_04164.1	SOD domain	-	No
	dismutase	P. brasiliensis 03/PABG_03954.1		-	No
		P. brasiliensis 18/PADG_07418.1		-	No
		C. neoformans/CNAG_01019.2		-	No
		C. gattii/CNBG_0599.2		-	No
Sod2	Mitochondrial superoxide	P. brasiliensis 01/PAAG_02725.1	SOD N-terminal domain	-	No
	dismutase	P. brasiliensis 03/PABG_03204.1	SOD C-terminal domain	_	No
		P. brasiliensis 18/PADG_01755.1		_	No
		C. neoformans/CNAG_04388.2		_	No
		C. gattii/CNBG_2661.2		-	No
Zrt1	High-affinity zinc	P. brasiliensis 01/PAAG_08727.1	Zip domain	8	No
	transporter of the plasma	P. brasiliensis 03/PABG_07725.1		8	No
	membrane	P. brasiliensis 18/PADG_08567.1		8	No
		C. neoformans/CNAG_03398.2		9	Yes
		C. gattii/CNBG_2209.2		9	Yes
Zrt2	Low-affinity zinc	P. brasiliensis 01/PAAG_03419.1	Zip domain	8	Yes
	transporter of the plasma	P. brasiliensis 03/PABG_05498.1		7	No
	membrane	P. brasiliensis 18/PADG_06417.1		8	Yes
		C. neoformans/CNAG_00895.2		8	Yes
Zrc1	Vacuolar membrane zinc transporter	P. brasiliensis 01/PAAG_00702.1	Cation efflux domain	6	Yes
Cot1	Vacuolar membrane zinc transporter	P. brasiliensis 01/PAAG_07885.1	Cation efflux domain	5	Yes
		P. brasiliensis 03/PABG_07467.1		4	No
		P. brasiliensis 18/PADG_08196.1		5	Yes
		C. neoformans/CNAG_02806.2		6	Yes
		C. gattii/CNBG_3460.2		4	Yes
Zrt3	Vacuolar membrane zinc	P. brasiliensis 01/PAAG_09074.1	Zip domain	6	No
	transporter	P. brasiliensis 03/PABG_04697.1		6	No
		P. brasiliensis 18/PADG_05322.1		6	No
Msc2	Cation diffusion facilitator	P. brasiliensis 03/PABG_07115.1	Cation efflux domain	10	No
	protein of the endoplasmic	P. brasiliensis 18/PADG_06381.1		10	No
	reticulum and nucleus	C. neoformans/CNAG_05394.2		11	No
		C. gattii/CNBG_4458.2		10	No
Zap1	Zinc-regulated	P. brasiliensis 01/PAAG_03645.1	Zinc finger C ₂ H ₂ domain	-	No
	transcription factor	P. brasiliensis 03/PABG_03305.1	L L	-	No
		P. brasiliensis 18/PADG_01870.1		-	No
		C. neoformans/CNAG_05392.2		_	No
		C. gattii/CNBG_4460.2		_	No

*Amino acid sequence analysis was performed using the online software SMART.

[†]Accession numbers: PAAG refers to Pb01; PABG refers to Pb03; PADG refers to Pb18; CNAG refers to C. neoformans var. grubii and CNBG refers to C. gattii.

Gene product	Predicted function	Organism/accession number ^t	Conserved domains*	Transmembrane domains*	Signal peptide*
SidA	Ornithine-N⁵-	P. brasiliensis 01/PAAG_01682.1	Pyr_redox_2 domain	_	No
	monooxygenase	P. brasiliensis 03/PABG_03730.1		_	No
		P. brasiliensis 18/PADG_00097.1		-	No
SidF	N⁵-transacylases	P. brasiliensis 01/PAAG_01680.1	AlcB domain	_	No
		P. brasiliensis 03/PABG_03728.1		_	No
		P. brasiliensis 18/PADG_00100.1		-	No
SidC	Non-ribosomal	P. brasiliensis 01/PAAG_08527.1	Adenylation domain	-	No
	peptide synthetase	P. brasiliensis 03/PABG_04670.1	Peptidyl carrier domain	-	No
		P. brasiliensis 18/PADG_05295.1	Condensation domain	_	No
SidD	Non-ribosomal	P. brasiliensis 01/PAAG_01679.1	Adenylation domain	_	Yes
	peptide synthetase	P. brasiliensis 03/PABG_03726.1	Peptidyl carrier domain	-	No
		P. brasiliensis 18/PADG_00102.1		-	No
		C. neoformans/CNAG_03588.2	Condensation domain	_	No
		C. gattii/CNBG_2041.2		-	No
SidG	N²-transacetylase	C. neoformans/CNAG_04355.2	MYND-type zinc finger domains	-	No
		C. gattii/CNBG_2703.2	Acetyltransferase domain	_	No
Sit1/Arn3	Siderophore	P. brasiliensis 01/PAAG_06516.1	MFS1 domain	12	No
	transporter	P. brasiliensis 03/PABG_02063.1		14	No
		P. brasiliensis 18/PADG_00462.1		14	No
		C. neoformans/CNAG_00815.2		13	No
		C. gattii/CNBG_1123.2		13	No
MirA	Siderophore	C. neoformans/CNAG_02083.2	MFS1 domain	12	No
	transporter	C. gattii/CNBG_5232.2		11	No
MirB	Siderophore	P. brasiliensis 01/PAAG_01685.1	MFS1 domain	14	No
	transporter	P. brasiliensis 03/PABG_03732.1		14	No
		P. brasiliensis 18/PADG_00095.1		14	No
		C. neoformans/CNAG_07751.2		14	No
		<i>C. gattii/</i> CNBG_2036.2		14	No
MirC	Siderophore	P. brasiliensis 01/PAAG_02233.1	MFS1 domain	8	No
	transporter	P. brasiliensis 03/PABG_04747.1		12	No
		P. brasiliensis 18/PADG_05373.1		12	No
		C. neoformans/CNAG_07519.2		10	No
		C. gattii/CNBG_1087.2		14	Yes

Table A2 | Conserved domains in proteins related to siderophore biosynthesis and to iron uptake by the non-reductive siderophore transport system in *P. brasiliensis* isolates and *Cryptococcus* species.

*Amino acid sequence analysis was performed using the online software SMART.

[†]Accession numbers: PAAG refers to Pb01; PABG refers to Pb03; PADG refers to Pb18; CNAG refers to C. neoformans var. grubii and CNBG refers to C. gattii.

Elísa Flávía Luíz Cardoso Baílão

III. ARTIGO PUBLICADO NA REVISTA CURRENT FUNGAL INFECTION REPORTS

GENOMICS AND PATHOGENESIS (S SHOHAM, SECTION EDITOR)

Metal Acquisition and Homeostasis in Fungi

Elisa Flávia Luiz Cardoso Bailão ·

Ana Flávia Alves Parente · Juliana Alves Parente · Mirelle Garcia Silva-Bailão · Kelly Pacheco de Castro · Lívia Kmetzsch · Charley Christian Staats · Augusto Schrank · Marilene Henning Vainstein · Clayton Luiz Borges · Alexandre Melo Bailão · Célia Maria de Almeida Soares

© Springer Science+Business Media, LLC 2012

Abstract Transition metals, particularly iron, zinc and copper, have multiple biological roles and are essential elements in biological processes. Among other micronutrients, these metals are frequently available to cells in only limited amounts, thus organisms have evolved highly regulated mechanisms to cope and to compete with their scarcity. The homeostasis of such metals within the animal hosts requires the integration of multiple signals producing depleted environments that restrict the growth of microorganisms, acting as a barrier to infection. As the hosts sequester the necessary transition metals from invading pathogens, some, as is the case of fungi, have evolved elaborate mechanisms to allow their survival and development to establish infection. Metalloregulatory factors allow fungal cells to sense and to adapt to the scarce metal availability in the environment, such as in host tissues. Here we review recent advances in the identification and function of molecules that drive the acquisition and homeostasis of iron, copper and zinc in pathogenic fungi.

E. F. L. C. Bailão · A. F. A. Parente · J. A. Parente ·
M. G. Silva-Bailão · K. P. de Castro · C. L. Borges ·
A. M. Bailão · C. M. de Almeida Soares (⊠)
Laboratório de Biologia Molecular, Instituto de Ciências
Biológicas II, Campus Samambaia,
Universidade Federal de Goiás,
74690-900, Goiânia, Goiás, Brazil
e-mail: cmasoares@gmail.com

E. F. L. C. Bailão Unidade Universitária de Iporá, Universidade Estadual de Goiás, Iporá, Goiás, Brazil

L. Kmetzsch · C. C. Staats · A. Schrank · M. H. Vainstein Laboratório de Biologia Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil

Published online: 22 September 2012

Keywords Iron · Copper · Zinc · Fungal pathogens

Introduction

Metals such as iron, copper and zinc have numerous biological roles and play a central role at the host–pathogen interface. Mammalian and microbial cells have an essential demand for these metals, which act as both structural and catalytic cofactors for proteins, and are therefore required for biological processes. During infection, the competing demands for these nutrients culminate in a struggle for metal acquisition/utilization at the microbe–host interface [1•, 2•]. In the complex interactions between pathogens and their mammalian hosts, metal homeostasis plays an essential role in both virulence and host defense [3, 4].

Iron and copper participate in several oxidation-reduction reactions because of their ability to lose and gain electrons. This same property permits iron and copper to generate reactive oxygen species (ROS) [5, 6]. Zinc is also an essential cofactor of many enzymes, but in excess, may be toxic to cells [7]. For metal balance, cells usually regulate uptake, storage and consumption. Our understanding of the mechanisms involved in metal excretion is incomplete. This review summarizes the current knowledge regarding the most studied metals that contribute to virulence of fungal pathogens: iron, copper and zinc. We focus on the fungal pathogens Candida albicans, Histoplasma capsulatum, Aspergillus fumigatus, Cryptococcus neoformans and Paracoccidioides. Specifically we discuss the struggle for control of transition metals during infection, the molecular mechanisms involved in iron, copper and zinc uptake and the regulation of metal homeostasis in those pathogens. Additionally we review the preferential host iron sources

and fungal genes related to iron acquisition/homeostasis directly involved in infection.

Host Metal Homeostasis During Infectious Processes

Among metals involved in fungal infection, the functions of iron are well characterized. Hosts have evolved mechanisms to efficiently acquire iron and at the same time decrease its availability to pathogens [2•]. Physiological conditions that lead to metal overload contribute to increased infections. For example, administration of exogenous iron results in exacerbation of cryptococcosis [8] and increases in free iron also results in higher fungal load in mouse tissues infected with Paracoccidioides [9]. At the interface between iron and immunity, macrophages appear as a cellular factory that manage metal homeostasis [3]. Upon infection, the iron efflux from macrophages is suppressed resulting in 70 % reduction in plasma iron, thus restricting the amount of the metal available to extracellular pathogens. Infected macrophages, conversely, restrict the amount of iron available to intracellular microbes by pumping out iron via the ferroportin transporter route. Mutation-impaired ferroportin function compromises the ability of macrophages to clear pathogens [10].

Lactoferrin is produced by neutrophils and epithelial cells to chelate iron in extracellular compartments resulting in impairment of proliferation of fungal invaders [11]. Induction of ferritin production to facilitate withholding of intracellular iron diminishes the amount of the metal available to intracellular pathogens [2•, 12]. Iron also influences immune functions mediated by macrophages, and cytokines affect systemic iron homeostasis and cellular iron efflux [13]. Reduced iron levels have been found in macrophages activated by exposure to interferon gamma (IFN- γ) or granulocyte macrophage colony-stimulating factor (GM-CSF) [14]. Transferrin can be used by pathogens as an iron source in host tissues. To counteract this process IFN- γ decreases the expression of transferrin receptor in macrophages. Moreover, the production of the cellular iron storage molecule ferritin can be regulated by proinflammatory signals [15]. So, in the complex host-pathogen interaction, the control of iron homeostasis is a battlefield where the host must withdraw the micronutrient from microbes and at the same time uses iron to elaborate an efficient oxidative burst, since this metal is required for generation of ROS.

Since copper is essential, it is not unexpected that both humans and pathogens share the requirement for acquiring sufficient levels of copper [6]. In response to fungal infection, macrophages phagocytose the fungal cells and initiate cellular events that culminate in the oxidative burst [6]. Studies suggest that fungal pathogens must obtain copper to develop an efficient survival mechanism in host tissues, since genes related to copper acquisition/homeostasis are upregulated during infection [16, 17]. *C. neoformans* fights the host defenses to acquire copper, which promotes melanin synthesis, a virulence factor for this fungus [18]. The dependence of fungi upon copper for survival under the host conditions can be related to their response to ROS generation by the host since superoxide dismutase is a copperdependent enzyme.

Zinc levels are modulated during infectious processes. During inflammation, the liver sequesters zinc, likely limiting zinc bioavailability to pathogenic microbes [19]. Neutrophils display an antimicrobial mechanism based on competition for zinc. This zinc-chelating system, found in neutrophil cytoplasm and abscess fluid, exerts fungistatic activity based on the calcium- and zinc-binding protein calprotectin [20]. Abscess fluid inhibits the growth of several fungi and the addition of zinc results in fungal growth in this fluid [7], reinforcing the view that zinc sequestration is a strategy used by the host to combat fungal infections. A metallomic study has demonstrated that GM-CSF-activated macrophages reduce intracellular zinc concentrations upon *H. capsulatum* infection in order to kill the pathogen [14].

Molecular Mechanisms of Iron, Copper and Zinc Uptake

Iron uptake mechanisms are highly regulated in fungi since excess iron is toxic and iron excretion systems have not yet been described in fungi [21]. Fungi have evolved different mechanisms for iron acquisition [21]. A low-affinity iron uptake system characterized only in Saccharomyces cerevisiae involves permeases that transport not only iron, but also other metals. In the reductive high-affinity ferrous uptake, ferrireductases reduce ferric iron (Fe³⁺) to its soluble ferrous form (Fe²⁺). Fe²⁺ is then reoxidized by plasma membrane ferroxidases and Fe³⁺ is promptly internalized by a highaffinity permease [5]. Another high-affinity mechanism for iron uptake is mediated by siderophores, small molecules with high affinity for Fe³⁺, that allow specific recognition and uptake of iron at the cell surface [22]. Most fungi produce and secrete hydroxamate-type siderophores under low-iron growth conditions [23]. Some fungi, such as C. neoformans, do not produce siderophores, but can transport molecules produced by other organisms (xenosiderophores) [24].

The *C. albicans* genome contains genes that encode 18 putative ferrireductases and five ferroxidase homologues [1•, 25]. The ferroxidase Fet34 localizes to the plasma membrane and possibly associates with the permease Ftr1 early in the secretory pathway, promoting the high-affinity iron uptake [26•]. *C. albicans* produces a siderophore transporter [27] that displays broad substrate specificity, transporting various hydroxamate-type siderophores [28].

Under iron-limiting conditions, *H. capsulatum* produces three different reductants: a secreted glutathione dependent γ -glutamyltransferase (Ggt1) [29], non-enzymatic reductants with low molecular weight, and cell surface ferric reducing agents [30]. The *H. capsulatum* genome contains genes that encode seven putative ferrireductases [31]. Although a high-affinity acquisition mechanism has not been described for *H. capsulatum*, genomic analysis of the strain G186AR revealed genes coding iron permease (ftr1) and ferroxidase (Fet3) homologues [32]. *H. capsulatum* is also able to produce multiple hydroxamate siderophores under conditions of low iron availability [33]. In addition, *H. capsulatum* can utilize xenosiderophores [34].

In *A. fumigatus*, the ferrireductase FreB has been characterized. After reduction, iron is internalized by the ferroxidase-permease complex FetC–FtrA [35]. *A. fumigatus* synthesizes three types of siderophores, two of which are responsible for iron storage [36–38]. The iron-loaded side-rophore is internalized by specific transporters [39] and the ester bonds of triacetylfusarinine C are then hydrolyzed by an esterase [40]. The cleavage products (fusarinines) are excreted, and the free iron can either be used in cell metabolism or bind to intracellular siderophore desferri-ferricrocin for storage [37, 38, 41•].

Uptake of iron is probably mediated by two large groups of transporters in C. neoformans: high- and low-affinity systems [42]. Cft1 is a high-affinity iron permease associated with the reductive system. On the other hand cft2 possibly encodes for a low-affinity uptake system, since no clear iron-related phenotypes could be detected in cft2 null mutants [43]. Cfo1 and Cfo2 ferroxidases have also been described in C. neoformans [44]. Cfo1 is required for highaffinity and reductive iron transport, since mutants lacking the coding gene show reduced growth under low iron conditions and cannot use ferric iron for growth. Moreover, under low iron conditions, Cfo1 expression is increased and localized mainly in the cell surface [44]. Studies have shown the inability of Cryptococcus species to produce siderophores. This is supported by genomic analysis, which has revealed the absence of genes involved in steps of siderophore biosynthesis [24, 45]. Despite the inability to synthesize siderophores, Cryptococcus species are presumably able to transport xenosiderophores [43].

Molecular mechanisms for reductive iron uptake in the genus *Paracoccidioides* are coming to light. In silico analysis has revealed that the genome of this fungus contains genes that encode redundant ferrireductase homologues [45]. Experiments have demonstrated a significant increase in the expression of genes coding the ferrireductases *fre3*, *fre7*, *frp1* and *ggt1* upon iron restriction (Fig. 1a). *Paracoccidioides* has glutathione-dependent ferrireductase activity [46], an aspect that is corroborated by the presence of a *ggt1* homologue in the fungus genome [45]. Since iron

Fig. 1 Expression profile of *Paracoccidioides* (Pb01) genes during iron, copper and zinc starvation. Pb01 yeast cells were incubated in chemically defined medium containing different concentrations of iron, copper or zinc. Cells were harvested and total RNA was extracted using Trizol and mechanical cell rupture. After in vitro reverse transcription, the cDNAs were submitted to quantitative RT-PCR. The expression values were calculated using the transcripts alpha tubulin or 134 as endogenous controls [9, 82]. Data are presented as fold change relative to experimental controls. a Expression of ferrireductases encoding transcripts fre3, fre7, frp1, and ggt1 evaluated in yeast cells in medium containing 3.5 µM iron (experimental control) or no iron for 3 h, 15 h and 24 h. b Expression of copper transporter encoding transcript ctr3 evaluated in yeast cells in medium containing 50 µM copper (experimental control) or under conditions of copper starvation produced by adding the copper chelator bathocuproine disulphonate (BCS) for 3 h, 6 h and 24 h. c Expression level of zinc transporters encoding transcripts zrt1 and zrt2 evaluated in yeast cells in medium containing 30 µM zinc (experimental control) or under conditions of zinc depletion produced by adding the zinc chelator N.N.N.N-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) at different pH values (4.5, 7.0 and 9.0) for 6 h. Data are presented as means \pm SD from triplicate determinations. * $p \le 0.05$, t test, in relation to the data obtained from the experimental controls

permease homologues were not detected in the *Paracoccidioides* genome, it has been proposed that a zinc permease could function additionally as an iron permease to acquire this metal [45]. The importance of iron acquisition by siderophores in the *Paracoccidioides* genus have been noted and studies on siderophore production and uptake are in progress. The major evidence of iron capture by siderophores is supported by the stimulation of fungal growth in the presence of coprogen B and dimerum acid [47]. In silico analysis ha revealed the presence of genes putatively involved in hydroxamate-type siderophore biosynthesis and transport [45]. Corroborating these data, it has been demonstrated by chrome azurol S assays that *Paracoccidioides* is a hydroxamate producer (Silva et al., personal communication).

In fungi, copper and iron homeostasis must be intrinsically linked since iron uptake requires ferroxidases, which are members of the multicopper oxidase family. Copper is first reduced by plasma membrane ferrireductases and then Cu^{1+} is internalized via a high-affinity permease [48]. In *C. albicans*, the ferrireductase cfl1/fre1 is transcriptionally regulated in response to both iron and copper availability [49], indicating that this ferrireductase is also important in copper uptake. Furthermore, the mutant for the *ctr1* copper transporter displays deficient growth in medium low in copper and iron indicating that in *C. albicans* iron and copper homeostasis are linked [50].

As observed for iron, copper plays fundamental roles in several aspects of *C. neoformans* biology. For instance, the production of melanin pigment is dependent on a copper oxidase [51] and the copper-containing ferroxidases are necessary for iron uptake [44]. Copper is probably reduced in *C. neoformans* by the same enzymes that reduce iron at the cell surface [52]. Two copper transporters have been described in *C. neoformans*. The *ctr1* null mutant shows reduced growth in copper-depleted medium. Ctr4, by contrast, is not essential for cryptococcal development in low-copper medium. However, mutant cells lacking both *ctr1* and *ctr4* transporters display severe growth defects in copper-deprived environments [53•].

The *Paracoccidioides* genome contains genes that encode redundant ferrireductases [45] as cited above, suggesting that these enzymes could function as iron and copper reductases. Furthermore a high-affinity copper transporter, *ctr3*, is present at increased levels during copper shortage (Fig. 1b), reinforcing the view that Ctr3 could be involved in copper uptake in *Paracoccidioides* [45].

The zinc uptake system in most fungi comprises just high-affinity and low-affinity permeases belonging to the ZIP family [54, 55], since this metal does not need to be reduced before internalization. Eight genes encoding proteins of the ZIP family of zinc transporters have been described in *A. fumigatus* [56]. Expression of *zrfA*, *zrfB* and *zrfC* is regulated by both zinc and pH [56, 57]. ZrfA and ZrfB function under acidic, zinc-limiting conditions. It seems that ZrfB is a high-affinity zinc permease, since a *zrfB* transcript was downregulated under high zinc conditions [58]. ZrfC participates in zinc uptake in a neutral or alkaline, zinc-poor environment [56]. Aspf2 putatively contributes to zinc uptake as a zinc-binding protein localized in the fungal periplasm [56].

Paracoccidioides possesses two zinc permease homologues (*zrt1* and *zrt2*), indicating a specific zinc uptake system [45]. The transcriptional response of *zrt* homologues to zinc starvation has been demonstrated by quantitative RT-PCR (Fig. 1c). The *zrt2* transcript, but not *zrt1* transcript, is highly expressed at neutral to alkaline pH during zinc depletion (Fig. 1c), as observed to *A. fumigatus* ZrfC.

Host Iron Sources

A high proportion of circulating iron in humans exists as heme in hemoglobin and hemin, iron-containing porphyrins. *C. albicans* shows hemolytic activity, and membrane proteins capable of binding hemin/hemoglobin have been identified [1•]. *C. albicans* Rbt5, a glycosylphosphatidylinositolanchored protein, is the major hemoglobin receptor [59]. *hmx1* encodes an intracellular heme oxygenase that breaks down iron-protoporphyrin IX to α -biliverdin and is required for heme-iron utilization [60]. In silico analysis has revealed that *Paracoccidioides* genome contains genes that encode *hmx1* and *rbt5* homologues, suggesting effective hemoglobin iron acquisition by this fungus [45].

Intracellular iron in humans is bound to ferritin. *C. albicans* hyphae are able to obtain iron from ferritin using Als3 protein as a receptor. Als3 is a multifunctional protein since it can also function as an adhesin and an invasin [1•]. Transferrin is a glycoprotein that transports iron in serum. *C. albicans* is able to take up iron from transferrin by the reductive pathway using the ferrous permease Ftr1 and ferrireductase Fre10 [61]. In *H. capsulatum*, ferrireductase activity is higher in the presence of hemin and transferrin, suggesting that this fungus uses the ferrireductases to obtain iron during infection [34]. *Paracoccidioides* is likely to be able to take up iron from transferrin since the fungus has five genes encoding ferrireductases in the genome [45].

Regulation of Iron, Copper and Zinc Homeostasis in Pathogenic Fungi

Fungi have evolved sophisticated control mechanisms for maintenance of optimal levels of iron, copper and zinc. These mechanisms include the regulation of genes involved in metal ion uptake, utilization and storage. In fungi, metal ion homeostasis is mainly achieved by transcriptional regulation of gene expression. A group of iron-responsive GATA-type transcription factors mediates repression of iron acquisition genes in response to iron sufficiency [62]. These regulators have a cysteine-rich central domain located between two zinc fingers, which directly interact with iron [63].

A range of genes and regulators involved in the response of *C. albicans* to iron starvation have been described [64]. During iron sufficiency, the GATA-type regulator Sful downregulates expression of *arn1* and *hap43* genes encoding a siderophore transporter and a transcription factor, respectively [64, 65]. Under iron-limited conditions, the Cap2 protein represses the expression of Sfu1, activating genes of iron uptake pathways [66•]. Sef1 and Rim101 were also identified as positive regulators of iron acquisition in *C. albicans* [67, 68].

A GATA-type factor, Sre1, has been described in *H. capsulatum*. Sre1 acts as a negative regulator of siderophore biosynthesis genes in response to iron excess [69]. Sre1 also regulates cellular processes other than iron acquisition, such as optimal filamentous growth [70]. The same occurs with the Sre1 homologue SreB in *Blastomyces dermatitidis*. SreB regulates siderophore biosynthesis and also governs phase transition and cell growth at 22 °C in *B. dermatitidis* [71].

During iron sufficiency, high-affinity iron uptake systems (reductive pathway and siderophore production) are repressed by SreA in *A. fumigatus* [72]. During iron starvation, the *A. fumigatus* bZIP-type regulator HapX represses iron-dependent pathways, such as respiration, TCA cycle and heme biosynthesis, to save iron, and activates iron uptake by siderophores [73•]. Thus the transcription factors SreA and HapX act in opposite ways within the cell depending on the environmental iron status. During iron excess, SreA is activated and represses HapX expression, while during iron paucity, HapX represses the expression of SreA. In *A. fumigatus* the transcription factor AcuM stimulates iron acquisition via HapX induction and SreA repression [74].

C. neoformans Cirl possesses a cysteine-rich domain, but unlike other fungal GATA-type iron regulators, it has only a zinc finger motif [75]. Cir1 is a global transcription factor which senses iron levels and regulates positively and negatively the transcriptional response [75, 76]. The expression of C. neoformans virulence attributes, such as capsule formation, growth at host temperature and melanin production, are also controlled by Cir1 [75]. A post-translational mechanism for the control of the amount of Cirl suggests that under conditions of iron starvation Cirl protein levels decrease. In contrast, iron availability promotes Cir1 stabilization and consequent repression of iron acquisition genes [77]. The transcriptional response to iron in C. neoformans is also regulated by HapX. As well as Cir1, HapX has both a positive and negative influence in the regulation of gene expression. However, unlike Cir1, HapX plays a modest role during infection and probably is important during environmental iron acquisition [78].

Proteomic analysis has revealed that during iron starvation the metabolic status of the pathogenic fungus *Paracoccidioides* is altered. Glycolysis is upregulated while ironconsuming pathways, such as tricarboxylic and glyoxylate cycles, are repressed. It has been demonstrated that under iron-limited conditions the transcript level of the HapX increases [9]. However, the regulatory mechanisms that orchestrate the global changes in response to iron availability in this fungus have not been described and are the subject of current investigation.

Regulatory mechanisms that respond to copper availability among pathogenic fungi have been best studied in *C. neoformans*. The copper-dependent transcription factor, Cuf1, has a cysteine-rich sequence, which contains a putative copper binding motif [79]. Under conditions of copper limitation, Cuf1 induces the expression of the copper transporter encoding genes *ctr1* and *ctr4*. During copper excess, the metallothionein (copper binding and detoxifying protein) genes *cmt1* and *cmt2* are induced by Cuf1 [53•]. A copper-dependent transcriptional regulator, Mac1, found in *C. albicans*, is transcriptionally autoregulated and activates the expression of *ctr1* and *fre7* genes during copper paucity [80].

Although regulation of copper homeostasis has not yet been described in *Paracoccidioides*, studies have revealed that the high-affinity copper transporter, Ctr3, is upregulated under infection conditions [16, 81] and is also a potential adhesin [82]. Analysis of genes potentially involved in copper regulation has demonstrated the presence of a copper metalloregulatory transcription factor, Mac1, in *Paracoccidioides* [45], thus prompting further investigation.

As for copper, the regulation of zinc homeostasis in pathogenic fungi is poorly understood. A zinc-responsive transcription factor has been described in *C. albicans* [83]. The Zap1/Csr1 factor induces expression of the plasma membrane zinc transporters, Zrt1 and Zrt2, and is also involved in the control of efficient hyphae and biofilm matrix formation and production of quorum sensing molecules [83–86].

In *A. fumigatus* the expression of zrfA and zrfB is induced by the ZafA zinc-responsive transcriptional activator under zinc-limited conditions [87]. However, under neutral zinc-limited conditions, the expression of these transporters is repressed by the transcriptional regulator PacC [57]. Additionally, the expression of zrfCis upregulated by ZafA under zinc-limited conditions regardless of the environmental pH and downregulated by PacC under acidic growth conditions [56].

Although zinc metabolism regulation is not well understood in *Paracoccidioides* and *Cryptococcus* pathogens, a homologue of Zap1 zinc-regulated transcription factor has been found in their genomes [45]. Studies focusing on this potential transcriptional regulator are in progress.

Virulence

Despite the close correlation between metal availability and virulence, the fungal genes related to iron acquisition/homeostasis directly involved in host infection are poorly described [88, 89]. Table 1 lists metal acquisition/homeostasis genes and provides information on their role in virulence. In *C. albicans*, mutants lacking the iron permease coding gene *ftr1* lose virulence [90]. The involvement of genes related to siderophore uptake in virulence was not observed [27, 28]. Moreover virulence attenuation was observed in *C. albicans* mutants lacking the iron-responsive transcriptional regulators *hap43*, *aft2*, *sef1* and *cap2* and the heme oxygenase coding gene *hmx1* [65, 66•, 91, 92, 93•], indicating that all these genes are important during *C. albicans* infection.

Table 1 Roles of genes involved in metal homeostasis and virulence of pathogenic fungi

Gene	Protein function	Role in virulence	Reference
Candida	albicans		
ftr1	High-affinity iron permease	The $ftr1\Delta$ mutatation results in complete loss of the capacity to damage epithelial cells in vitro. Moreover mutants lacking $ftr1$ are avirulent in mice infected with <i>C. albicans</i> during the early stationary phase	[90]
hap43	Transcriptional regulator	Deletion of $hap43$ attenuates the virulence of <i>C. albicans</i> in a mouse model of disseminated infection	[65]
cap2	Transcriptional regulator	The $cap2\Delta$ mutant shows delayed virulence in a mouse model of <i>C</i> , <i>albicans</i> infection	[66•]
aft2	Transcriptional regulator	The $aft2\Delta/aft2\Delta$ strain shows attenuated virulence in mice with disseminated infection	[91]
hmx1	Heme oxygenase	The homozygous mutant $hmx1\Delta/hmx1\Delta$ shows reduced virulence in mice with disseminated infection	[93•]
sefl	Transcriptional regulator	The <i>sef1</i> Δ mutant shows significantly decreased virulence compared to wild-type strain in BALB/c mice with disseminated infection	[92]
Aspergill	US		
sidA	Involved in siderophore biosynthesis	The $sidA\Delta$ mutant shows completely attenuated virulence in mice	[37, 94]
sidD	Involved in siderophore biosynthesis	The <i>sidD</i> Δ mutant shows severely attenuated virulence in neutropenic mice	[95]
sidF	Involved in siderophore biosynthesis	The $sidF\Delta$ mutant shows attenuated virulence in neutropenic mice infected intranasally	[95]
hapX	Transcriptional regulator	The $hapX\Delta$ mutant shows attenuated virulence in immunosuppressed mice	[73•]
acuM	Transcriptional regulator	The $acuM\Delta$ mutant shows attenuated virulence in neutropenic mice with disseminated infection and invasive pulmonary aspergillosis, resulting in significantly delayed mortality	[74]
zafA	Transcriptional regulator	The $zafA\Delta$ mutant shows reduced virulence in immunosuppressed mice infected intranasally	[87]
pacC	Transcriptional regulator	The Aspergillus nidulans $pacC\Delta$ mutant shows attenuated virulence in immunosuppressed mice	[99]
Histoplas	sma capsulatum		
sid1	Involved in siderophore biosynthesis	The $sid1\Delta$ strain shows a significant defect in pulmonary colonization compared to wild-type cells in mice infected intranasally	[31]
Cryptoco	ccus neoformans		
cft1	High-affinity iron permease	The $cft1\Delta$ mutant shows attenuated virulence and reduced fungal burden	[43]
cfo1	Ferroxidase	The $cfol\Delta$ mutant shows significantly attenuated virulence in mice	[44]
cir1	Transcriptional regulator	The $cirl \Delta$ mutant is avirulent in mice	[75]
ctr4	Copper transporter	The <i>ctr4</i> Δ null mutant shows reduced spread to tissues and is completely avirulent in infected mice	[79]
ctr1	Copper transporter	$ctr1\Delta$ mutant presented reduced melanization, reduced capsule and enhanced phagocytosis index	[97]
clc	Chloride channel	The <i>clc-A</i> mutant shows attenuated virulence in a mouse cryptococcosis model, since <i>clc-A</i> plays a role in capsule and laccase expression, important virulence factors	[98]
<i>ccc2</i>	Copper transporter	<i>ccc2</i> mutation results in absence of melanization, an important virulence factor	[18]
cufl	Transcriptional regulator	The deletion of <i>cuf1</i> results in attenuated virulence in a mouse model of cryptococcosis	[79]

In Aspergillus, mutants lacking genes involved in siderophore biosynthesis (*sid*) have pointed to the relevance of this iron uptake pathway to virulence. *sidA* deletion in *A*. *fumigatus* abolishes siderophore biosynthesis and completely attenuates virulence [37, 94]. A similar effect was observed in mutants lacking the *sidA* homologue, *sid1*, in *H. capsulatum* [31]. Genes related to fusarinine C and triacetylfusarinine C production, *sidD* and *sidF*, significantly affect *A. fumigatus* virulence [95]. Furthermore, the deletion of the transcriptional regulators *hapX* and *acuM* causes significant attenuation of virulence in a murine model of infection [73•, 74].

The role of iron acquisition in *Cryptococcus* virulence has been extensively studied in recent years. Almost all *C. neoformans* genes involved in iron homeostasis that have been analyzed are related to cryptococcal virulence, as evaluated in murine models of cryptococcosis using null gene mutants [44, 75–78]. When considering the iron permeases Cft1 and Cft2, virulence attenuation and reduced fungal burden are observed in the *cft1* gene null mutant and in the *cft1/cft2* double mutant, but not in the *cft2* knockout strain [76]. The ferroxidase Cfo1 also plays a role in virulence, since null mutants are also attenuated in virulence [44]. In addition, *C. neoformans cir1* null mutants are completely avirulent in murine models of cryptococcosis, which is consistent with the hypocapsular phenotype and its reduced ability to proliferate at 37 °C [75].

Regarding copper, a pivotal biological role of this metal has been already described for C. neoformans, since two proteins involved in virulence, Cu/Zn-Sod1 and laccase, require copper as a cofactor for activity [51, 96]. The ctr4 gene is expressed during infection and is directly associated with virulence, since null mutants show reduced spread to tissues and are completely avirulent in infected mice [79]. The *ctr1* gene also is associated with virulence, as mutants show reduced melanization, a reduced capsule, and an enhanced phagocytosis index [97]. Moreover, C. neoformans strains with mutation in genes encoding copper distribution transporters, such as the *clc* chloride channel and the *ccc2* secretory transporter, show reduced virulence or reduced expression of virulence factors [18, 98]. Furthermore, in a mouse model of cryptococcosis, transcriptional regulator cufl null mutants display disruption of several virulencelinked characteristics, such as reduced laccase activity, severe growth defects in low-copper medium, and reduced virulence [79]. Cufl is required for infection of the brain but not of the lung in mouse models of cryptococcosis, suggesting that copper is limiting in neurological infections [79].

Studies investigating the role of zinc during pathogenesis are sparse. Investigations are restricted to the importance of zinc-responsive transcription factors during pathogenesis, such as *zafA*. In *A. fumigatus*, ZafA regulates zinc homeostasis, and mutants lacking this gene show reduced virulence in mice [87]. A similar result was found for the pH-responsive transcriptional factor *pac*C, that plays an essential role in pulmonary infection by *A. fumigatus* [56, 99].

Conclusions

Iron, copper and zinc acquisition is a critical determinant in fungal pathogenesis. To circumvent metal sequestration by the host during infection, pathogenic fungi have evolved mechanisms of metal acquisition. Understanding of the roles of iron, copper and zinc in fungal pathogenicity has advanced in recent years. As discussed above, fungi demonstrate remarkable flexibility in gaining access to and utilizing the transition metals iron, copper and zinc. The sophisticated acquisition and regulation of homeostasis of these metals are surely an efficient weapon facilitating fungal survival within the human host, and represent an important component of virulence.

Acknowledgments Work at Universidade Federal de Goiás and Universidade Federal do Rio Grande do Sul was supported by grants from Financiadora de Estudos e Projetos (FINEP- 01.07.0552.00) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-558923/2009-7 and 478591/2010-1). E.F.L.C.B. and M.G.S.B. are supported by doctoral fellowships from Fundação Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). A.F.A.P. and L.K. are supported by postdoctoral fellowships from CAPES. We apologize to colleagues whose work we were not able to cite due to space limitations.

Disclosure E.F. Bailão: grants from Capes, CNPq and FINEP; A.F.A. Parente: grants from CNPq, CAPES and FINEP; J.A. Parente: none; M. Garcia Silva-Bailão: grant from CAPES; K. Castro: grants from FINEP and CNPq; L. Kmetzsch: grants from CAPES, CNPq and FINEP; C. Staats: grants from CNPq and FINEP; A. Schrank: grants from CNPq and FINEP; M. Vainstein: grants from CNPq and FINEP; C. Borges: grants from CNPq and FINEP; A. Bailão: grant from CNPq; C.M. Soares: grants from FINEP and CNPq.

References

Papers of particular interest, published recently, have been highlighted as:

- · Of importance
- 1. Almeida RS, Wilson D, Hube B. Candida albicans iron acquisition within the host. FEMS Yeast Res. 2009;9:1000–12. *This article reviews the iron sources used by* C. albicans *during infection in the human host, that are xenosiderophores, hemoglobin, transferrin and ferritin.*
- Nairz M, Schroll A, Sonnweber T, Weiss G. The struggle for iron

 a metal at the host-pathogen interface. Cell Microbiol. 2010;12:1691–702. This article reviews the iron functions at the host-pathogen interface since mammalian and microbial cells have an essential demand for the metal. Microbial iron acquisition pathways are attractive targets for the development of new anti-microbial drugs.

- 3. Theurl I, Fritsche G, Ludwiczek S, et al. The macrophage: a cellular factory at the interphase between iron and immunity for the control of infections. Biometals. 2005;18:359–67.
- Ibrahim AS, Gebermariam T, Fu Y, et al. The iron chelator deferasirox protects mice from mucormycosis through iron starvation. J Clin Invest. 2007;117:2649–57.
- Kaplan CD, Kaplan J. Iron acquisition and transcriptional regulation. Chem Rev. 2009;109:4536–52.
- Kim BE, Nevitt T, Thiele DJ. Mechanisms for copper acquisition, distribution and regulation. Nat Chem Biol. 2008;4:176–85.
- 7. Lulloff SJ, Hahn BL, Sohnle PG. Fungal susceptibility to zinc deprivation. J Lab Clin Med. 2004;144:208–14.
- Barluzzi R, Saleppico S, Nocentini A, et al. Iron overload exacerbates experimental meningoencephalitis by Cryptococcus neoformans. J Neuroimmunol. 2002;132:140–6.
- 9. Parente AF, Bailão AM, Borges CL, et al. Proteomic analysis reveals that iron availability alters the metabolic status of the pathogenic fungus Paracoccidioides brasiliensis. PLoS One. 2011;6:e22810.
- Nevitt T. War-Fe-re: iron at the core of fungal virulence and host immunity. Biometals. 2011;24:547–58.
- 11. Al-Sheikh H. Effect of lactoferrin and iron on the growth of human pathogenic Candida species. Pak J Biol Sci. 2009;12:91–4.
- Weinberg ED. Iron loading and disease surveillance. Emerg Infect Dis. 1999;5:346–52.
- 13. Weiss G. Modification of iron regulation by the inflammatory response. Best Pract Res Clin Haematol. 2005;18:183–201.
- Winters MS, Chan Q, Caruso JA, Deepe Jr GS. Metallomic analysis of macrophages infected with Histoplasma capsulatum reveals a fundamental role for zinc in host defenses. J Infect Dis. 2010;202:1136–45.
- Byrd TF, Horwitz MA. Regulation of transferrin receptor expression and ferritin content in human mononuclear phagocytes. Coordinate upregulation by iron transferrin and downregulation by interferon gamma. J Clin Invest. 1993;91:969–76.
- Bailão AM, Schrank A, Borges CL, et al. Differential gene expression by Paracoccidioides brasiliensis in host interaction conditions: representational difference analysis identifies candidate genes associated with fungal pathogenesis. Microbes Infect. 2006;8:2686–97.
- Samanovic MI, Ding C, Thiele DJ, Darwin KH. Copper in microbial pathogenesis: meddling with the metal. Cell Host Microbe. 2012;11:106–15.
- Walton FJ, Idnurm A, Heitman J. Novel gene functions required for melanization of the human pathogen Cryptococcus neoformans. Mol Microbiol. 2005;57:1381–96.
- Beisel WR. Herman Award Lecture, 1995: infection-induced malnutrition – from cholera to cytokines. Am J Clin Nutr. 1995;62:813–9.
- Sohnle PG, Collins-Lech C, Wiessner JH. The zinc-reversible antimicrobial activity of neutrophil lysates and abscess fluid supernatants. J Infect Dis. 1991;164:137–42.
- Haas H, Eisendle M, Turgeon BG. Siderophores in fungal physiology and virulence. Annu Rev Phytopathol. 2008;46:149–87.
- 22. Harrington JM, Crumbliss AL. The redox hypothesis in siderophore-mediated iron uptake. Biometals. 2009;22:679–89.
- 23. Renshaw JC, Robson GD, Trinci APJ, et al. Fungal siderophores: structures, functions and applications. Mycol Res. 2002;106:1123–42.
- Jacobson ES, Petro MJ. Extracellular iron chelation in Cryptococcus neoformans. J Med Vet Mycol. 1987;25:415–8.
- 25. Jeeves RE, Mason RP, Woodacre A, Cashmore AM. Ferric reductase genes involved in high-affinity iron uptake are differentially regulated in yeast and hyphae of Candida albicans. Yeast. 2011;28:629–44.
- 26. •Ziegler L, Terzulli A, Gaur R, et al. Functional characterization of the ferroxidase, permease high-affinity iron transport complex from Candida albicans. Mol Microbiol. 2011;81:473–85. *This*

article demonstrates that Fe trafficking in C. albicans involves a complex Fet34-Ftr1 using S. cerevisiae as host for the functional expression of the C. albicans Fe-uptake proteins.

- Heymann P, Gerads M, Schaller M, et al. The siderophore iron transporter of Candida albicans (Sit1p/Arn1p) mediates uptake of ferrichrome-type siderophores and is required for epithelial invasion. Infect Immun. 2002;70:5246–55.
- Hu CJ, Bai C, Zheng XD, et al. Characterization and functional analysis of the siderophore-iron transporter CaArn1p in Candida albicans. J Biol Chem. 2002;277:30598–605.
- Zarnowski R, Cooper KG, Brunold LS, et al. Histoplasma capsulatum secreted gamma-glutamyltransferase reduces iron by generating an efficient ferric reductant. Mol Microbiol. 2008;70:352–68.
- Timmerman MM, Woods JP. Ferric reduction is a potential iron acquisition mechanism for Histoplasma capsulatum. Infect Immun. 1999;67:6403–8.
- Hwang LH, Mayfield JA, Rine J, Sil A. Histoplasma requires SID1, a member of an iron-regulated siderophore gene cluster, for host colonization. PLoS Pathog. 2008;4:e1000044.
- Hilty J, George Smulian A, Newman SL. Histoplasma capsulatum utilizes siderophores for intracellular iron acquisition in macrophages. Med Mycol. 2011;49:633–42.
- Howard DH, Rafie R, Tiwari A, Faull KF. Hydroxamate siderophores of Histoplasma capsulatum. Infect Immun. 2000;68:2338–43.
- 34. Timmerman MM, Woods JP. Potential role for extracellular glutathione-dependent ferric reductase in utilization of environmental and host ferric compounds by Histoplasma capsulatum. Infect Immun. 2001;69:7671–8.
- Blatzer M, Binder U, Haas H. The metalloreductase FreB is involved in adaptation of Aspergillus fumigatus to iron starvation. Fungal Genet Biol. 2011;48:1027–33.
- Charlang G, Ng B, Horowitz NH, Horowitz RM. Cellular and extracellular siderophores of Aspergillus nidulans and Penicillium chrysogenum. Mol Cell Biol. 1981;1:94–100.
- Schrettl M, Bignell E, Kragl C, et al. Siderophore biosynthesis but not reductive iron assimilation is essential for Aspergillus fumigatus virulence. J Exp Med. 2004;200:1213–9.
- Eisendle M, Schrettl M, Kragl C, et al. The intracellular siderophore ferricrocin is involved in iron storage, oxidative-stress resistance, germination, and sexual development in Aspergillus nidulans. Eukaryot Cell. 2006;5:1596–603.
- Haas H. Molecular genetics of fungal siderophore biosynthesis and uptake: the role of siderophores in iron uptake and storage. Appl Microbiol Biotechnol. 2003;62:316–30.
- Kragl C, Schrettl M, Abt B, et al. EstB-mediated hydrolysis of the siderophore triacetylfusarinine C optimizes iron uptake of Aspergillus fumigatus. Eukaryot Cell. 2007;6:1278–85.
- 41. Haas H. Iron a key nexus in the virulence of Aspergillus fumigatus. Front Microbiol. 2012;3:28. This article reviews iron homeostasis and its participation in virulence in Aspergillus genus. The knowledge of the iron handling between host and fungus might improve therapy and diagnosis of fungal infections.
- Jacobson ES, Goodner AP, Nyhus KJ. Ferrous iron uptake in Cryptococcus neoformans. Infect Immun. 1998;66:4169–75.
- Jung WH, Kronstad JW. Iron and fungal pathogenesis: a case study with Cryptococcus neoformans. Cell Microbiol. 2008;10:277–84.
- Jung WH, Hu G, Kuo W, Kronstad JW. Role of ferroxidases in iron uptake and virulence of Cryptococcus neoformans. Eukaryot Cell. 2009;8:1511–20.
- 45. Silva MG, Schrank A, Bailão EF, et al. The homeostasis of iron, copper, and zinc in Paracoccidioides brasiliensis, Cryptococcus neoformans var. grubii, and Cryptococcus gattii: a comparative analysis. Front Microbiol. 2011;2:49.
- Zarnowski R, Woods JP. Glutathione-dependent extracellular ferric reductase activities in dimorphic zoopathogenic fungi. Microbiology. 2005;151:2233–40.

- 47. Castaneda E, Brummer E, Perlman AM, et al. A culture medium for Paracoccidioides brasiliensis with high plating efficiency, and the effect of siderophores. J Med Vet Mycol. 1988;26:351–8.
- Knight SA, Labbe S, Kwon LF, et al. A widespread transposable element masks expression of a yeast copper transport gene. Genes Dev. 1996;10:1917–29.
- 49. Hammacott JE, Williams PH, Cashmore AM. Candida albicans CFL1 encodes a functional ferric reductase activity that can rescue a Saccharomyces cerevisiae fre1 mutant. Microbiology. 2000;146 (Pt 4):869–76.
- Marvin ME, Williams PH, Cashmore AM. The Candida albicans CTR1 gene encodes a functional copper transporter. Microbiology. 2003;149:1461–74.
- Williamson PR. Biochemical and molecular characterization of the diphenol oxidase of Cryptococcus neoformans: identification as a laccase. J Bacteriol. 1994;176:656–64.
- Nyhus KJ, Jacobson ES. Genetic and physiologic characterization of ferric/cupric reductase constitutive mutants of Cryptococcus neoformans. Infect Immun. 1999;67:2357–65.
- 53. Ding C, Yin J, Tovar EM, et al. The copper regulon of the human fungal pathogen Cryptococcus neoformans H99. Mol Microbiol. 2011;81:1560–76. This article describes a new C. neoformans Cu transporter, Ctr1, and some targets of the metalloregulatory transcription factor Cuf1.
- Zhao H, Eide D. The ZRT2 gene encodes the low affinity zinc transporter in Saccharomyces cerevisiae. J Biol Chem. 1996;271:23203–10.
- 55. Zhao H, Eide D. The yeast ZRT1 gene encodes the zinc transporter protein of a high-affinity uptake system induced by zinc limitation. Proc Natl Acad Sci U S A. 1996;93:2454–8.
- 56. Amich J, Vicentefranqueira R, Leal F, Calera JA. Aspergillus fumigatus survival in alkaline and extreme zinc-limiting environments relies on the induction of a zinc homeostasis system encoded by the zrfC and aspf2 genes. Eukaryot Cell. 2009;9:424–37.
- Amich J, Leal F, Calera JA. Repression of the acid ZrfA/ZrfB zincuptake system of Aspergillus fumigatus mediated by PacC under neutral, zinc-limiting conditions. Int Microbiol. 2009;12:39–47.
- 58. Vicentefranqueira R, Moreno MA, Leal F, Calera JA. The zrfA and zrfB genes of Aspergillus fumigatus encode the zinc transporter proteins of a zinc uptake system induced in an acid, zinc-depleted environment. Eukaryot Cell. 2005;4:837–48.
- Weissman Z, Kornitzer D. A family of Candida cell surface haembinding proteins involved in haemin and haemoglobin-iron utilization. Mol Microbiol. 2004;53:1209–20.
- Santos R, Buisson N, Knight S, et al. Haemin uptake and use as an iron source by Candida albicans: role of CaHMX1-encoded haem oxygenase. Microbiology. 2003;149:579–88.
- Knight SA, Vilaire G, Lesuisse E, Dancis A. Iron acquisition from transferrin by Candida albicans depends on the reductive pathway. Infect Immun. 2005;73:5482–92.
- 62. Rutherford JC, Bird AJ. Metal-responsive transcription factors that regulate iron, zinc, and copper homeostasis in eukaryotic cells. Eukaryot Cell. 2004;3:1–13.
- 63. Scazzocchio C. The fungal GATA factors. Curr Opin Microbiol. 2000;3:126–31.
- Lan CY, Rodarte G, Murillo LA, et al. Regulatory networks affected by iron availability in Candida albicans. Mol Microbiol. 2004;53:1451–69.
- 65. Hsu PC, Yang CY, Lan CY. Candida albicans Hap43 is a repressor induced under low-iron conditions and is essential for ironresponsive transcriptional regulation and virulence. Eukaryot Cell. 2011;10:207–25.
- 66. Singh RP, Prasad HK, Sinha I, et al. Cap2-HAP complex is a critical transcriptional regulator that has dual but contrasting roles in regulation of iron homeostasis in Candida albicans. J Biol

Chem. 2011;286:25154–70. This article describes the roles performed by Cap2 under iron limiting conditions: activation of genes in iron uptake pathways and repression of iron-utilizing and ironstorage genes.

- Homann OR, Dea J, Noble SM, Johnson AD. A phenotypic profile of the Candida albicans regulatory network. PLoS Genet. 2009;5: e1000783.
- Baek YU, Li M, Davis DA. Candida albicans ferric reductases are differentially regulated in response to distinct forms of iron limitation by the Rim101 and CBF transcription factors. Eukaryot Cell. 2008;7:1168–79.
- 69. Chao LY, Marletta MA, Rine J. Sre1, an iron-modulated GATA DNA-binding protein of iron-uptake genes in the fungal pathogen Histoplasma capsulatum. Biochemistry. 2008;47:7274–83.
- Hwang LH, Seth E, Gilmore SA, Sil A. SRE1 regulates irondependent and -independent pathways in the fungal pathogen Histoplasma capsulatum. Eukaryot Cell. 2012;11:16–25.
- 71. Gauthier GM, Sullivan TD, Gallardo SS, et al. SREB, a GATA transcription factor that directs disparate fates in Blastomyces dermatitidis including morphogenesis and siderophore biosynthesis. PLoS Pathog. 2010;6:e1000846.
- Schrettl M, Kim HS, Eisendle M, et al. SreA-mediated iron regulation in Aspergillus fumigatus. Mol Microbiol. 2008;70:27–43.
- 73. Schrettl M, Beckmann N, Varga J, et al. HapX-mediated adaption to iron starvation is crucial for virulence of Aspergillus fumigatus. PLoS Pathog. 2010;6:e1001124. *This article describes the functions of transcriptional regulator HapX of* A. fumigatus, which is important to fungus adaptation in iron starvation conditions and is crucial for virulence in a murine model of infection.
- Liu H, Gravelat FN, Chiang LY, et al. Aspergillus fumigatus AcuM regulates both iron acquisition and gluconeogenesis. Mol Microbiol. 2010;78:1038–54.
- Jung WH, Sham A, White R, Kronstad JW. Iron regulation of the major virulence factors in the AIDS-associated pathogen Cryptococcus neoformans. PLoS Biol. 2006;4:e410.
- Jung WH, Sham A, Lian T, et al. Iron source preference and regulation of iron uptake in Cryptococcus neoformans. PLoS Pathog. 2008;4:e45.
- Jung WH, Kronstad JW. Iron influences the abundance of the iron regulatory protein Cir1 in the fungal pathogen Cryptococcus neoformans. FEBS Lett. 2011;585:3342–7.
- Jung WH, Saikia S, Hu G, et al. HapX positively and negatively regulates the transcriptional response to iron deprivation in Cryptococcus neoformans. PLoS Pathog. 2010;6:e1001209.
- Waterman SR, Hacham M, Hu G, et al. Role of a CUF1/CTR4 copper regulatory axis in the virulence of Cryptococcus neoformans. J Clin Invest. 2007;117:794–802.
- Woodacre A, Mason RP, Jeeves RE, Cashmore AM. Copperdependent transcriptional regulation by Candida albicans Mac1p. Microbiology. 2008;154:1502–12.
- Dantas SF, Vieira de Rezende TC, Bailão AM, et al. Identification and characterization of antigenic proteins potentially expressed during the infectious process of Paracoccidioides brasiliensis. Microbes Infect. 2009;11:895–903.
- Bailão AM, Nogueira SV. Rondon Caixeta Bonfim SM, et al. Comparative transcriptome analysis of Paracoccidioides brasiliensis during in vitro adhesion to type I collagen and fibronectin: identification of potential adhesins. Res Microbiol. 2012;163:182–91.
- Kim MJ, Kil M, Jung JH, Kim J. Roles of zinc-responsive transcription factor Csr1 in filamentous growth of the pathogenic yeast Candida albicans. J Microbiol Biotechnol. 2008;18:242–7.
- Nobile CJ, Nett JE, Hernday AD, et al. Biofilm matrix regulation by Candida albicans Zap1. PLoS Biol. 2009;7:e1000133.
- 85. Finkel JS, Xu W, Huang D, et al. Portrait of Candida albicans adherence regulators. PLoS Pathog. 2012;8:e1002525.

- Ganguly S, Bishop AC, Xu W, et al. Zap1 control of cell-cell signaling in Candida albicans biofilms. Eukaryot Cell. 2011;10:1448–54.
- Moreno MA, Ibrahim-Granet O, Vicentefranqueira R, et al. The regulation of zinc homeostasis by the ZafA transcriptional activator is essential for Aspergillus fumigatus virulence. Mol Microbiol. 2007;64:1182–97.
- Kehl-Fie TE, Skaar EP. Nutritional immunity beyond iron: a role for manganese and zinc. Curr Opin Chem Biol. 2010;14:218–24.
- Weinberg ED. Iron availability and infection. Biochim Biophys Acta. 2009;1790:600–5.
- Ramanan N, Wang Y. A high-affinity iron permease essential for Candida albicans virulence. Science. 2000;288:1062–4.
- Liang Y, Wei D, Wang H, et al. Role of Candida albicans Aft2p transcription factor in ferric reductase activity, morphogenesis and virulence. Microbiology. 2010;156:2912–9.
- 92. Chen C, Pande K, French SD, et al. An iron homeostasis regulatory circuit with reciprocal roles in Candida albicans commensalism and pathogenesis. Cell Host Microbe. 2011;10:118–35.
- 93. Navarathna DH, Roberts DD. Candida albicans heme oxygenase and its product CO contribute to pathogenesis of candidemia and alter systemic chemokine and cytokine expression. Free Radic Biol Med. 2010;49:1561–73. This article describes the heme oxygenase Hmx1 as a virulence factor in C. albicans. The authors observed that

mutants lacking hmx1 gene were not affected during initial kidney colonization, but Hmx1 absence clearly affects infection progression.

- 94. Hissen AH, Wan AN, Warwas ML, et al. The Aspergillus fumigatus siderophore biosynthetic gene sidA, encoding Lornithine N5-oxygenase, is required for virulence. Infect Immun. 2005;73:5493–503.
- Schrettl M, Bignell E, Kragl C, et al. Distinct roles for intra- and extracellular siderophores during Aspergillus fumigatus infection. PLoS Pathog. 2007;3:1195–207.
- Cox GM, Harrison TS, McDade HC, et al. Superoxide dismutase influences the virulence of Cryptococcus neoformans by affecting growth within macrophages. Infect Immun. 2003;71:173–80.
- Chun CD, Madhani HD. Ctr2 links copper homeostasis to polysaccharide capsule formation and phagocytosis inhibition in the human fungal pathogen Cryptococcus neoformans. PloS One. 2010;5.
- Zhu X, Williamson PR. A CLC-type chloride channel gene is required for laccase activity and virulence in Cryptococcus neoformans. Mol Microbiol. 2003;50:1271–81.
- Bignell E, Negrete-Urtasun S, Calcagno AM, et al. The Aspergillus pH-responsive transcription factor PacC regulates virulence. Mol Microbiol. 2005;55:1072–84.

Elísa Flávía Luíz Cardoso Baílão

IV. RESULTADOS AINDA NÃO PUBLICADOS

Análises do genoma revelaram que *Paracoccidioides* spp. possui vários homólogos de redutases férricas (SILVA et al., 2011). Para avaliar se as enzimas codificadas por esses genes identificados *in silico* são funcionais em *Paracoccidioides* spp., foi realizado um ensaio qualitativo em fase sólida com a linhagem *Pb*01. O fungo apresentou atividade extracelular de redutase férrica, a qual se mostrou visivelmente maior na presença do quelante de ferro ácido etilenodiamino tetra-acético (EDTA) (**Figura 1**), indicando que *Paracoccidioides* sp. pode possuir uma via redutiva ativa.

Figura 1. Atividade de redutase férrica de células leveduriformes de *Paracoccidioides* sp. Colônias de células leveduriformes de *Pb*01 foram crescidas sobre membranas de náilon e estas foram dispostas na superfície de meio sólido MMcM suplementado com Fe^{3+} na presença ou na ausência de EDTA, usado como quelante de ferro. Após 6 ou 15 h de incubação a 36 °C, as membranas foram retiradas e reveladas com um tampão contendo ácido dissulfônico da batofenantrolina (BPS). As membranas ficam coradas de vermelho quando há a formação de um complexo BPS-Fe²⁺, indicando que houve atividade de redutase férrica extracelular, que converteu Fe^{3+} presente no meio de cultura em Fe^{2+} que se ligou ao BPS.

Para avaliar possíveis estratégias que *Paracoccidioides* sp. utiliza para manter a homeostase de ferro durante a privação do metal, foram realizadas análises quantitativas da expressão de genes possivelmente envolvidos com esses mecanismos, por RT-PCR em tempo real. Os dados obtidos do

164

fungo cultivado em meio MMcM sem adição do metal foram comparados aos dados obtidos do fungo cultivado em meio MMcM com adição de 3,5 μ M de ferro [meio mínimo padrão, segundo Restrepo e Jimenez (1980)]. Os genes transportadores de zinco e ferro, Zrt1 e Zrt2 (SILVA et al., 2011), são induzidos em 15 h e 24 h, respectivamente, de privação de ferro (**Figura 2, painel A**). Entre as ferroxidases, o gene *lacIV*, tem um aumento de expressão em 24 h na ausência do metal (**Figura 2, painel B**), assim como *zrt2*. Os dados sugerem que a expressão dos genes analisados é regulada por ferro.

Com relação aos mecanismos de homeostase intracelular de ferro, foi observada uma diminuição significativa da expressão do gene *ccc1*, envolvido com a captação do metal para dentro do vacúolo, a partir de 3 h na ausência do metal (Figura 2, painel C). O gene *mrs3/4* apresentou um aumento de expressão a partir de 15 h na ausência do metal, enquanto a expressão de *yfh1* não parece ser fortemente regulada nas condições testadas em *Paracoccidioides* sp. (Figura 2, painel C). Esses dados sugerem que a expressão dos genes *ccc1* e *mrs3/4* é também regulada por ferro.

Figura 2. Cinética de expressão dos genes possivelmente envolvidos com a captação de ferro pela via redutiva e com a homeostase intracelular desse metal em *Paracoccidioides* sp. Células leveduriformes de

*Pb*01 foram incubadas em MMcM sem adição de ferro (teste) ou com 3,5 μM de ferro (controle experimental) por 3, 15 e 24 h. O RNA total das células submetidas a essas diferentes condições de cultivo foi obtido. Após as síntese dos cDNAs, foram avaliados os níveis de expressão de genes possivelmente codificantes para transportadores de ferro e zinco (painel A), ferroxidases (painel B), transportador de Fe²⁺/Mn²⁺ vacuolar (*ccc1*), transportador de ferro da membrana mitocondrial interna (*mrs3/4*) e regulador da homeostase mitocondrial de ferro (*yfh1*) (painel C). Os valores da expressão dos genes para a condição teste foram normalizados contra a condição controle (expressão relativa). A expressão dos genes analisados foi normalizada contra a expressão do gene *α-tubulina* (controle endógeno) nas mesmas condições. Os dados representados no gráfico expressam a média ± o desvio padrão das triplicatas. *Amostras com aumento ou diminuição estatisticamente significativa (p < 0,05) com relação ao seu respectivo controle experimental, pelo teste t de Student.

Para avaliar a taxa de captação de ferro por *Paracoccidioides* spp., ensaios com ferro radioativo (⁵⁹Fe) foram realizados. Para isso, células leveduriformes das linhagens *Pb*01 e *Pb*18 foram incubadas em meio SC suplementado ou não com 200 μ M do quelante de ferro ácido dissulfônico da batofenantrolina (BPS), ou com 10 μ M de FeCl₃. Essas células foram coletadas independentemente e submetidas ao ensaio de captação de ⁵⁹Fe na presença ou não do agente redutor ácido ascórbico. Na presença deste composto, avalia-se a taxa de transporte de Fe²⁺, uma vez que o metal já encontra-se em sua forma reduzida. Já na ausência de ácido ascórbico, avalia-se a taxa de captação de ferro, o que requer tanto redutases férricas quanto transportadores (EIDE et al., 1992).

Foi observado que células, tanto de *Pb*01 quanto de *Pb*18, cultivadas na presença de BPS apresentaram uma taxa de captação de Fe^{2+} superior à taxa de captação do fungo cultivado nas outras condições. Em *Pb*18, a captação de Fe^{2+} apresentou-se claramente ferro-dependente em relação às condições de cultivo do fungo. As células cultivadas em meio suplementado com 10 μ M de ferro apresentaram uma taxa de captação de Fe^{2+} menor do que a taxa observada para as células cultivadas em meio SC sem suplementação de ferro (~ 0,08 μ M de ferro), e menor ainda do que a taxa observada para células cultivadas na presença de 200 μ M de BPS (**Figura 3**).

Quando ácido ascórbico não foi adicionado e a taxa de captação de ferro dependente de redutase férrica foi avaliada, apenas leveduras de Pb18 cultivadas na presença de BPS apresentaram captação de ferro (Figura 3). Esses dados sugerem que o sistema de redutases férricas, apesar de existente em Pb01, pode ser pouco eficiente nesta linhagem. Já para Pb18, os dados sugerem que o

```
Elísa Flávía Luíz Cardoso Baílão
```

sistema de redutase férrica acoplado a um transportador de ferro só está ativo em condições limitantes do metal.

Figura 3. A taxa de captação de ferro por *Paracoccidioides* spp. é dependente das condições de cultivo do fungo e da forma do metal disponível no meio. As linhagens *Pb*01 e *Pb*18 foram cultivadas em meio SC suplementado ou não com 200 μ M de BPS ou com 10 μ M de FeCl₃ por 24 h. Após esse período, as células foram coletadas, lavadas e incubadas na presença de ⁵⁹Fe,com adição (+) ou não (-) de ácido ascórbico, por 60 min. Posteriormente, as células foram novamente coletadas e lavadas, e submetidas a um contador de radiação γ para determinação da velocidade de captação de⁵⁹Fe. Os dados estão apresentados como a média <u>+</u> o desvio padrão das triplicatas ou quadruplicatas. *Amostras com aumento ou diminuição estatisticamente significativa (p < 0,05) com relação às células cultivadas em meio SC, pelo teste t de Student.

Como as células cultivadas na presença de BPS foram as que apresentaram maior taxa de captação de ferro, essa condição foi escolhida para dar continuidade a este estudo. Já foi reportado que compostos contendo Pt^{2+} inibem a atividade de algumas redutases férricas, mas não a captação de Fe²⁺ (já em sua forma reduzida) (EIDE et al., 1992). Para testar o efeito da adição de um composto contendo platina (PtII) sobre a captação de ferro por *Paracoccidioides* spp., células das linhagens *Pb*01 e *Pb*18 cultivadas na presença de 200 μ M de BPS foram submetidas a diferentes

condições de captação de ferro: presença ou ausência de ácido ascórbico e presença ou ausência de PtII. Como esperado, a taxa de captação de Fe^{2+} na presença de ácido ascórbico não foi alterada pela adição de PtII em ambas as linhagens (**Figura 4**). Na ausência de ácido ascórbico, a linhagem *Pb*01 apresentou um ligeiro aumento na taxa de captação de ferro na presença de PtII (**Figura 4A**). Isso pode ter acontecido por mecanismos ainda não descritos de ativação enzimática ou de compensação ativados pela presença de PtII. Já a linhagem *Pb*18 apresentou uma pequena diminuição na taxa de captação de ferro na presença de PtII, o que sugere que o fungo possua algumas redutases férricas sensíveis à inibição por PtII (**Figura 4B**).

Figura 4. Efeito da adição de um composto de platina sobre a taxa de captação de ferro por *Paracoccidioides* spp. As linhagens *Pb*01 e *Pb*18 foram cultivadas em meio SC suplementado com 200 μ M de BPS por 24 h. Após esse período, as células foram coletadas, lavadas e incubadas na presença de ⁵⁹Fe, com adição (+) ou não (-) de ácido ascórbico e/ou de um composto de platina (PtII), por 60 min. Posteriormente, as células foram novamente coletadas e lavadas, e submetidas a um contador de radiação γ para determinação da velocidade de captação de ⁵⁹Fe em *Pb*01 (A) e em Pb18 (B). Os dados estão apresentados como a média <u>+</u> o desvio padrão das triplicatas ou quadruplicatas. *Amostras com aumento ou diminuição estatisticamente significativa (p < 0,05) com relação às células cultivadas na ausência de PtII, pelo teste t de Student.

Elisa Flávia Luíz Cardoso Bailão

V. MATERIAIS E MÉTODOS DOS RESULTADOS AINDA NÃO PUBLICADOS

V.1. Isolado do fungo e condições de cultivo

Foram utilizados os isolados*Pb*01 (ATCC MYA-826; *Paracoccidioides lutzii*)(TEIXEIRA et al., 2013) e *Pb*18 (ATCC 32069; *Paracoccidioides brasiliensis*, espécie filogenética S1) (CARRERO et al., 2008). Os fungos foram mantidos em meio BHI (infuso de cérebro e coração, Himedia[®], Bhaveshwar, Mumbai, India) suplementado com 4% de glicose, a 36 °C para crescimento da forma de levedura. Para os ensaios realizados neste trabalho foram utilizados também os meios quimicamente definidos McVeigh-Morton modificado (MMcM) (RESTREPO; JIMENEZ, 1980) e Sintético Completo (SC) (SHERMAN, 2002), suplementado ou não com 200 μ M de BPS ou com 10 μ M de FeCl₃.

V.2. Ensaio qualitativo de atividade de redutase férrica em meio sólido

As células leveduriformes de *Pb*01 foram crescidas sob filtros de Nylon colocados na superfície do meio BHI sólido. Estes suportes foram transferidos para placas com meio MMcM, contendo 300 μ M FeCl₃, com ou sem 1 mM de EDTA, como quelante de ferro. Estas placas foram incubadas a 36 °C por 6 h ou por 15 h. Os filtros foram removidos das placas, incubados por 5 min em papel Whatman3MM embebido em tampão citrato (citrato de sódio 50 mM, 5% glicose, pH 6,5) e, então, transferidos para um outro papel Whatman embebido em tampão citrato, contendo 1 mM FeCl₃ e 1 mM BPS. Após 5 min, colônias com atividade de redutase férrica pigmentam o filtro de vermelho, pela formação de um complexo BPS[Fe²⁺].

V.3. Análise de transcritos por qRT-PCR em tempo real

As células leveduriformes de *Pb*01 foram incubadas em MMcM sem adição de ferro e suplementado com baixa concentração de ferro inorgânico (3,5 μ M) por diferentes tempos. O RNA total das células foi extraído utilizando o reagente Trizol (InvitrogenTM, Life Technologies) e pérolas de vidro, sob vigorosa agitação. Os RNAs obtidos foram utilizados para síntese de cDNAs utilizando-se a enzima transcritase reversa *SuperScriptTM II* (InvitrogenTM, Life Technologies). Oligonucleotídeos específicos para as sequências codificantes para proteínas possivelmente envolvidas na homeostase de ferro foram construídos. Os níveis de expressão dos transcritos codificantes para essas proteínas foram obtidos por qRT-PCR em tempo real, utilizando-se *SYBR Green PCR master mix* (Applied Biosystems, Foster City, CA) no sistema *StepOnePlus*TM *Real-Time PCR* (Applied Biosystems Inc.). Os níveis de expressão relativa dos cDNAs utilizados foram

calculados utilizando-se o método de curva padrão para quantificação relativa (BOOKOUT et al., 2006). Os níveis de expressão dos genes de interesse foram normalizados utilizando os valores obtidos para α -tubulina (PAAG_01647) de *Paracoccidioides*. Para as análises estatísticas foi aplicado o teste t de Student, com p < 0,05.

V.4. Ensaios de captação de ⁵⁹Fe

Células das linhagens Pb01 e Pb18 foram cultivadas em meio BHI suplementado com 4% de glicose por 72 h a 36 °C. Após esse período, as células foram coletadas, lavadas e incubadas em meio SC suplementado ou não com 200 µM de BPS, ou com 10 µM de FeCl₃ por 24 h a 36 °C. Posteriormente, as células foram coletadas e lavadas uma vez com 1 mM de EDTA e duas vezes com tampão de captação (2% glicose AnalaR; 0,1 M tampão MES; 20 mM citrato de sódio; pH 6,0). Após as lavagens, as células foram incubadas em tampão de captação por 15 min a 36 °C e contadas na presença do corante Trypan Blue para a estimativa do número de células viáveis. Posteriormente, foi adicionado ao sistema de captação 5 µM de ⁵⁹Fe acompanhado ou não da adição de 20 mM de ácido ascórbico e/ou de 100 µM de Cl₄K₂Pt (PtII). Uma amostra foi imediatamente coletada e depositada em tampão Quench (37,5 mM ácido succínico; 62,5 mM Tris; 12,8 mM EDTA; pH 6,0) para servir como controle de aferição da radiação (tempo 0) e o restante do material foi incubado por 60 min. Após esse período, as células foram coletadas em tampão Quench, lavadas 3 vezes com esse mesmo tampão e levadas para a leitura em um contador de radiação y. A coleta das amostras foi feita em triplicata ou quadruplicata. Os dados obtidos foram plotados em gráficos de barras como a média das triplicatas ou quadruplicatas + o desvio padrão das mesmas. Para as análises estatísticas foi aplicado o teste t de Student, com p < 0.05.

VI. DISCUSSÃO

Dados *in silico* apontaram que *Paracoccidioides* spp. deve possuir um sistema de captação de ferro pela via redutiva, que seria composto por uma ou mais redutases férricas, uma ferroxidase e uma permease de ferro e zinco. Após atingir o interior da célula, o ferro teria dois destinos principais. (i) A mitocôndria, onde seria transportado por uma proteína homóloga a Mrs3/4 e suas concentrações seriam monitoradas pela proteína Yfh1, homóloga da frataxina humana. (ii) Ou o vacúolo, onde o excesso de ferro do citoplasma seria transportado pela proteína Ccc1 e estocado no interior desta organela. Além disso, essas análises apontaram que o fungo possui uma redutase férrica extracelular dependente de glutationa (Ggt1) (SILVA et al., 2011).

Neste trabalho, uma atividade de redutase férrica na superficie de *Paracoccidioides* sp. foi demonstrada. Além disso, a atividade de redutase férrica dependente de glutationa já foi comprovada no sobrenadante de cultura de leveduras de *Paracoccidioides* sp. na presença de Fe³⁺ e glutationa, como cofator (ZARNOWSKI; WOODS, 2005). A enzima responsável por essa atividade deve ser secretada e pode ajudar o fungo a obter ferro de sideróforos e outros substratos contendo Fe³⁺, como a transferrina, como já demostrado para *Histoplasma capsulatum* (TIMMERMAN; WOODS, 2001). Esses dados indicam que o sistema de redutase férrica não só existe em *Paracoccidioides* spp., como também é funcional. As redutases férricas deste fungo seriam reguladas por ferro, uma vez que o cultivo de *Paracoccidioides* sp. em meio de cultura sem adição de ferro aumenta a expressão dos genes codificantes dessas enzimas em duas a três vezes, em comparação ao fungo cultivado em meio padrão contendo ferro (BAILÃO et al., 2012).

As ferroxidases de *Paracoccidioides* spp. não possuem resíduos já descritos como essenciais para a atividade de ferroxidase (BONACCORSI DI PATTI et al., 2000) e são todas classificadas como lacases pelo banco de dados de lacases e multicobre oxidases disponível *online* (<u>http://www.lcced.uni-stuttgart.de/cgi-bin/LccED1.2/index.pl</u>) (SIRIM et al., 2011). Porém já foi reportada a atividade de ferroxidase para uma lacase de *C. Neoformans* (LIU; TEWARI; WILLIAMSON, 1999) e a existência de ferroxidases não convencionais já foi sugerida (LARRONDO et al., 2003; LARRONDO et al., 2004; CANESSA; LARRONDO, 2013). As ferroxidases de *Paracoccidioides* spp. devem atuar em parceria com permeases de zinco e ferro, já que esse fungo não apresenta em seu genoma homólogos de permeases de ferro de alta afinidade (SILVA et al., 2011). Este dado corrobora a hipótese de que Zrt1 e Zrt2 fariam a captação de ferro em *Paracoccidioides* spp. (BAILÃO et al., 2006; BAILÃO et al., 2007). A expressão dos genes

lacIV e *zrt2* parece ser coordenada e induzida pela escassez de ferro, sugerindo que as proteínas codificadas por esses genes possam atuar em conjunto para a captação desse metal em *Paracoccidioides* spp.

Um dos destinos metabólicos do ferro é a mitocôndria. Com a diminuição da disponibilidade desse micronutriente, foi observado um aumento da expressão do gene *mrs3/4* de *Paracoccidioides* sp., provavelmente porque o ferro é bastante importante para a atividade mitocondrial (FROSCHAUER; SCHWEYEN; WIESENBERGER, 2009) e precisa ser eficientemente captado para o interior da mitocôndria. Já foi demonstrado que a atividade de Mrs3 e Mrs4 é estimulada pela escassez de ferro em *S. cerevisiae* (FROSCHAUER; SCHWEYEN; WIESENBERGER, 2009). O outro principal destino intracelular do ferro é o vacúolo. A expressão do gene *ccc1* de *Paracoccidioides* sp. diminuiu durante a privação de ferro. Em *S. cerevisiae* já foi demonstrado que, durante a escassez desse metal, há uma diminuição no número de transcritos codificantes para Ccc1, prevenindo a estocagem de ferro e permitindo sua disponibilidade a processos ferro-dependentes (PUIG; ASKELAND; THIELE, 2005).

A taxa de captação de Fe^{2+} em *Paracoccidioides* spp. foi maior em leveduras cultivadas na presença do quelante de ferro BPS. Esse resultado indica que a privação de ferro enfrentada pelo fungo pode induzir à exposição de moléculas envolvidas com a captação do metal na superfície do micro-organismo, o que estimularia a captação de Fe^{2+} . O contrário deve acontecer quando o meio de cultura do fungo é suplementado com ferro, como demonstrada pela menor taxa de captação de Fe^{2+} de células cultivadas nessa condição. Quando a taxa de captação de ferro dependente de redutases férricas foi avaliada, a captação de ⁵⁹Fe foi detectada apenas em *Pb*18 cultivado na presença de BPS. Resultados similares já foram observados em *S. cerevisiae* (EIDE et al., 1992). O que foi surpreendente foi a não detecção da captação de ⁵⁹Fe dependente de redutases férricas em *Pb*01 cultivado na presença de BPS. O que se pode sugerir é que o sistema de redutases férricas de *Pb*01 não é eficiente, mas essa hipótese ainda precisa ser investigada.

Foi observada uma leve inibição da captação de ferro pela platina em Pb18 e um leve aumento da captação em Pb01. Contrariamente, em *S. cerevisiae* compostos contendo Pt^{2+} (PtII) inibem severamente a atividade de redutase férrica e, consequentemente, a captação de Fe³⁺(EIDE et al., 1992). Parece que essa inibição acontece preferencialmente sobre a enzima Fre1 (HASSETT; KOSMAN, 1995), a principal redutase férrica de *S. cerevisiae* (DANCIS et al., 1992). Apesar de *Paracoccidioides* spp. possuir homólogos para *fre1* (SILVA et al., 2011), não foi observada a expressão desse gene em *Pb*01 nas condições testadas neste trabalho (dados não mostrados), sugerindo que esse gene não é funcional em *Paracoccidioides* spp. Essa hipótese explicaria o pequeno efeito da PtII sobre a captação de Fe^{3+} neste fungo.

O micronutriente ferro é essencial para todos os eucariotos. Dessa maneira, desvendar os mecanismos e a cinética de captação desse metal em fungos patogênicos é de fundamental importância. Estratégias que inibam seletivamente a captação de ferro pelo patógeno podem ser utilizadas em terapias conjuntas com antifúngicos para eliminação do invasor (KRONSTAD; CADIEUX; JUNG, 2013). Mais estudos precisam ser realizados para definir melhor os mecanismos de captação de ferro em *Paracoccidioides* spp. para que moléculas envolvidas nesse sistema possam ser utilizadas como possíveis alvos de vacinas ou drogas antifúngicas.

Capítulo 4 Considerações finais

I. CONSIDERAÇÕES FINAIS

Paracoccidioides spp., um fungo termodimórfico, patogênico humano, é capaz de utilizar a hemoglobina ou grupos heme como fonte de ferro, como demonstrado por ensaios de crescimento em placa e com a utilização de uma protoporfirina auto-fluorescente. Porém o crescimento do fungo na presença de transferrina ou ferritina como fontes de ferro sugere que o fungo utilize várias estratégias para a captação desse micronutriente essencial durante a infecção. Já foi sugerido para outros fungos que a captação de transferrina é dependente da via redutiva. *Paracoccidioides* spp. parece apresentar uma via redutiva ativa, como demonstrado por ensaios de atividade de redutase férrica e de captação de ⁵⁹Fe, o que sugere que este fungo também possa utilizar o ferro da transferrina por essa via.

Para conseguir captar o ferro da hemoglobina, inicialmente, o fungo precisar romper as hemácias e, posteriormente, promover a internalização do metal. Foi demonstrado que o fungo produz um fator hemolítico através de ensaios *in vitro* utilizando hemácias de carneiro. Além disso, análises *in silico* apontaram a existência de uma família de receptores de superfície em *Paracoccidioides* spp. que poderia ser capaz de promover a ligação e a internalização da hemoglobina. Os genes codificantes para esses receptores de *Pb*01 foram investigados e demonstraram ser ativados em baixas concentrações de ferro e na presença de hemoglobina.

Quando o proteoma de *Pb*01 cultivado na presença de hemoglobina foi investigado e comparado ao proteoma do fungo cultivado na presença de ferro inorgânico, os resultados apontam que *Paracoccidioides* spp. possa utilizar hemoglobina não só como fonte de ferro, mas também de nitrogênio, enxofre e porfirina, internalizando toda a molécula de hemoglobina e não somente o ferro. Essa captação de hemoglobina seria independente da via redutiva, já que o ferro não seria liberado extracelularmente, e ocorreria por endocitose, como já foi descrito e sugerido para outros fungos.

Um dos possíveis receptores de hemoglobina de *Pb*01 foi investigado, Rbt5, e demonstrou ser uma proteína GPI ancorada na superfície do fungo, com capacidade de ligação à hemina, hemoglobina e protoporfirina e que pode atuar como antígeno de superfície. Uma linhagem silenciada para o gene codificante de Rbt5 foi eficientemente gerada e apresentou menor sobrevivência em modelos de infecção utilizando macrófagos e camundongos, indicando que Rbt5 pode ser um importante fator de virulência, contribuindo para o estabelecimento ou a manutenção da infecção, ou que esta proteína interfere na estimulação da resposta imunológica dos macrófagos

para matar as células fúngicas internalizadas. Como a linhagem silenciada apresentou crescimento similar à linhagem selvagem na presença de hemoglobina, outras moléculas devem atuar na superfície de *Paracoccidioides* spp. para captar essa molécula do hospedeiro, como já apontavam as análises *in silico*.

Apesar da via redutiva não parecer atuar na captação de hemoglobina, ela deve ser ativada também durante a infecção, já que ela pode ser importante para a captação de ferro de outras fontes do hospedeiro. Um modelo para a via redutiva de *Paracoccidioides* spp. foi sugerido. O fungo não apresenta algumas proteínas clássicas, como transportadores de alta afinidade e ferroxidases, porém essas moléculas podem ter tido suas funções substituídas por outras, como transportadores de ferro e zinco e ferroxidases não convencionais, cujos genes codificantes foram identificados *in silico* no genoma de *Paracoccidioides* spp.

As redutases férricas identificadas *in silico* em *Pb*01 foram investigadas e apresentaram-se funcionais e a expressão dos genes codificantes para essas enzimas parece ser regulada positivamente na ausência de ferro, indicando que elas participam de um sistema de captação de ferro de alta afinidade. Os genes codificantes para proteínas possivelmente envolvidas com a oxidação e o transporte de ferro para dentro da célula e para dentro da mitocôndria também têm sua expressão regulada positivamente na ausência de ferro. Contrariamente, a expressão do gene que codifica para um possível transportador de ferro vacuolar é regulada negativamente na ausência do metal, uma vez que não é necessário estocar ferro durante a escassez do mesmo.

A avaliação da taxa de captação de ⁵⁹Fe revelou que *Paracoccidioides* spp. capta Fe^{2+} , já em sua forma reduzida, mais eficientemente que Fe^{3+} e que a via redutiva só é ativada nesse fungo durante a privação do metal. Além disso, as redutases férricas desse fungo são pouco afetadas pela platina e não foi observada a expressão do gene *fre1* de *Pb*01 nas condições utilizadas neste trabalho, o que indica que as enzimas funcionais de *Paracoccidioides* spp. não são homólogas à Fre1 de *S. cerevisiae* e, portanto, não são sensíveis à platina.

Em conjunto, esses resultados sugerem que *Paracoccidioides* spp., assim como outros fungos estudados, apresentam várias estratégias para adquirir ferro. (i) Captação de hemoglobina mediada por receptores de superfície, como a Rbt5. (ii) Via redutiva, contendo redutases férricas, ferroxidases não convencionais e transportadores de ferro e zinco. E (iii) produção e captação de sideróforos (SILVA-BAILÃO et al., fase final de redação).

II. PERSPECTIVAS

As perspectivas que surgiram a partir dos resultados deste trabalho são:

- Estabelecer a taxa de redução de ferro em *Paracoccidioides* spp., utilizando um ensaio colorimétrico;
- Investigar a expressão de genes possivelmente envolvidos com a via redutiva em *Paracoccidioides* spp. nas mesmas condições utilizadas para a verificação da taxa de captação de ⁵⁹Fe, por RT-PCR em tempo real;
- Extrair peptídeos de superfície das leveduras de *Paracoccidioides* sp. por digestão com tripsina;
- Incubar as moléculas obtidas com uma resina de agarose ligada à hemina;
- Identificar peptídeos ligantes de hemina por cromatografia líquida de alta performance em nano-escala acoplada à espectrometria de massas com aquisições de dados independentes (nanoUPLC-MS^E);
- Selecionar uma proteína identificada por nanoUPLC-MS^E para produção da molécula recombinante e, posteriormente, de anticorpos policionais;
- Confirmar a localização da proteína selecionada na levedura utilizando os anticorpos policlonais produzidos e microscopia eletrônica de transmissão;
- Confirmar a ligação da proteína selecionada à hemina utilizando a proteína recombinante e a resina hemina-agarose;
- Investigar as possíveis funções da proteína selecionada construindo uma linhagem de *Paracoccidioides* sp. silenciada para o gene codificante dessa proteína utilizando a tecnologia do RNA antisentido e a transformação mediada por *Agrobacterium tumefaciens*.

III. REFERÊNCIAS BIBLIOGRÁFICAS

ADAMEC, J.; RUSNAK, F.; OWEN, W. G.; NAYLOR, S.; BENSON, L. M.; GACY, A. M.; ISAYA, G. Iron-dependent self-assembly of recombinant yeast frataxin: implications for Friedreich ataxia. **Am J Hum Genet** 67(3): 549-562, 2000.

ADINOLFI, S.; IANNUZZI, C.; PRISCHI, F.; PASTORE, C.; IAMETTI, S.; MARTIN, S. R.; BONOMI, F.; PASTORE, A. Bacterial frataxin CyaY is the gatekeeper of iron-sulfur cluster formation catalyzed by IscS. **Nat Struct Mol Biol** 16(4): 390-396, 2009.

AJELLO, L.; POLONELLI, L. Imported paracoccidioidomycosis: a public health problem in nonendemic areas. **Eur J Epidemiol** 1(3): 160-165, 1985.

ALMEIDA, A. J.; CUNHA, C.; CARMONA, J. A.; SAMPAIO-MARQUES, B.; CARVALHO, A.; MALAVAZI, I.; STEENSMA, H. Y.; JOHNSON, D. I.; LEAO, C.; LOGARINHO, E.; GOLDMAN, G. H.; CASTRO, A. G.; LUDOVICO, P.; RODRIGUES, F. Cdc42p controls yeast-cell shape and virulence of Paracoccidioides brasiliensis. **Fungal Genet Biol** 46(12): 919-926, 2009.

ALMEIDA, R. S.; BRUNKE, S.; ALBRECHT, A.; THEWES, S.; LAUE, M.; EDWARDS, J. E.; FILLER, S. G.; HUBE, B. The hyphal-associated adhesin and invasin Als3 of *Candida albicans* mediates iron acquisition from host ferritin. **PLoS Pathog** 4(11): e1000217, 2008.

ALMEIDA, R. S.; WILSON, D.; HUBE, B. *Candida albicans* iron acquisition within the host. **FEMS Yeast Res** 9(7): 1000-1012, 2009.

ALVAREZ, F.; FERNANDEZ-RUIZ, M.; AGUADO, J. M. Iron and invasive fungal infection. **Rev Iberoam Micol** 30(4): 217-225, 2013.

ARISTIZABAL, B. H.; CLEMONS, K. V.; COCK, A. M.; RESTREPO, A.; STEVENS, D. A. Experimental *Paracoccidioides brasiliensis* infection in mice: influence of the hormonal status of the host on tissue responses. **Med Mycol** 40(2): 169-178, 2002.

BAGAGLI, E.; BOSCO, S. M.; THEODORO, R. C.; FRANCO, M. Phylogenetic and evolutionary aspects of *Paracoccidioides brasiliensis* reveal a long coexistence with animal hosts that explain several biological features of the pathogen. **Infect Genet Evol** 6(5): 344-351, 2006.

BAILÃO, A. M.; SCHRANK, A.; BORGES, C. L.; DUTRA, V.; MOLINARI-MADLUM, E. E. W. I.; FELIPE, M. S. S.; MENDES-GIANNINI, M. J. S.; MARTINS, W. S.; PEREIRA, M.; SOARES, C. M. A. Differential gene expression by *Paracoccidioides brasiliensis* in host interaction conditions: representational difference analysis identifies candidate genes associated with fungal pathogenesis. **Microbes Infect** 8(12-13): 2686-2697, 2006.

BAILÃO, A. M.; SHRANK, A.; BORGES, C. L.; PARENTE, J. A.; DUTRA, V.; FELIPE, M. S.; FIUZA, R. B.; PEREIRA, M.; SOARES, C. M. A. The transcriptional profile of *Paracoccidioides*
brasiliensis yeast cells is influenced by human plasma. **FEMS Immunol Med Microbiol** 51(1): 43-57, 2007.

BAILÃO, E. F. L. C.; PARENTE, A. F.; PARENTE, J. A.; SILVA-BAILÃO, M. G.; CASTRO, K. P. D.; KMETZSCH, L.; STAATS, C. C.; SCHRANK, A.; VAINSTEIN, M. H.; BORGES, C. L.; BAILÃO, A. M.; SOARES, C. M. A. Metal acquisition and homeostasis in fungi. **Curr Fungal Infect Rep** 6: 257-266, 2012.

BARBOSA, W.; DAHER, R.; DE OLIVEIRA, A. R. Lymphatic abdominal form of South American blastomycosis. **Rev Inst Med Trop Sao Paulo** 10(1): 16-27, 1968.

BATISTA, J., JR.; DE CAMARGO, Z. P.; FERNANDES, G. F.; VICENTINI, A. P.; FONTES, C. J.; HAHN, R. C. Is the geographical origin of a *Paracoccidioides brasiliensis* isolate important for antigen production for regional diagnosis of paracoccidioidomycosis? **Mycoses** 53(2): 176-180, 2010.

BELLAMY, W.; WAKABAYASHI, H.; TAKASE, M.; KAWASE, K.; SHIMAMURA, S.; TOMITA, M. Killing of *Candida albicans* by lactoferricin B, a potent antimicrobial peptide derived from the N-terminal region of bovine lactoferrin. **Med Microbiol Immunol** 182(2): 97-105, 1993.

BOCCA, A. L.; AMARAL, A. C.; TEIXEIRA, M. M.; SATO, P.; SHIKANAI-YASUDA, M. A.; SOARES FELIPE, M. S. Paracoccidioidomycosis: eco-epidemiology, taxonomy and clinical and therapeutic issues. **Future Microbiol** 8(9): 1177-1191, 2013.

BONACCORSI DI PATTI, M. C.; FELICE, M. R.; CAMUTI, A. P.; LANIA, A.; MUSCI, G. The essential role of Glu-185 and Tyr-354 residues in the ferroxidase activity of *Saccharomyces cerevisiae* Fet3. **FEBS Lett** 472(2-3): 283-286, 2000.

BOOKOUT, A. L.; CUMMINS, C. L.; MANGELSDORF, D. J.; PESOLA, J. M.; KRAMER, M. F. High-throughput real-time quantitative reverse transcription PCR. **Curr Protoc Mol Biol** Chapter 15: Unit 15 18, 2006.

BORELLI, D. Some ecological aspects of paracoccidioidomycosis. In: _____. **Paracoccidioidomycosis**. Medellin: Pan Amer Hlth Org Scient Publ, 1972.59-64.

BORGES-WALMSLEY, M. I.; CHEN, D.; SHU, X.; WALMSLEY, A. R. The pathobiology of *Paracoccidioides brasiliensis*. **Trends Microbiol** 10(2): 80-87, 2002.

BOU-ABDALLAH, F.; TERPSTRA, T. R. The thermodynamic and binding properties of the transferrins as studied by isothermal titration calorimetry. **Biochim Biophys Acta** 1820(3): 318-325, 2012.

BRAUN, B. R.; HEAD, W. S.; WANG, M. X.; JOHNSON, A. D. Identification and characterization of TUP1-regulated genes in *Candida albicans*. **Genetics** 156(1): 31-44, 2000.

BROWN, G. D.; DENNING, D. W.; GOW, N. A.; LEVITZ, S. M.; NETEA, M. G.; WHITE, T. C. Hidden killers: human fungal infections. **Sci Transl Med** 4(165): 165rv113, 2012.

BRUMMER, E.; HANSON, L. H.; RESTREPO, A.; STEVENS, D. A. Intracellular multiplication of *Paracoccidioides brasiliensis* in macrophages: killing and restriction of multiplication by activated macrophages. **Infect Immun** 57(8): 2289-2294, 1989.

BRUMMER, E.; CASTANEDA, E.; RESTREPO, A. Paracoccidioidomycosis: an update. Clin Microbiol Rev 6(2): 89-117, 1993.

BULLEN, J. J.; ROGERS, H. J.; SPALDING, P. B.; WARD, C. G. Iron and infection: the heart of the matter. **FEMS Immunol Med Microbiol** 43(3): 325-330, 2005.

CADIEUX, B.; LIAN, T.; HU, G.; WANG, J.; BIONDO, C.; TETI, G.; LIU, V.; MURPHY, M. E.; CREAGH, A. L.; KRONSTAD, J. W. The Mannoprotein Cig1 supports iron acquisition from heme and virulence in the pathogenic fungus *Cryptococcus neoformans*. J Infect Dis 207(8): 1339-1347, 2013.

CANESSA, P.; LARRONDO, L. F. Environmental responses and the control of iron homeostasis in fungal systems. **Appl Microbiol Biotechnol** 97(3): 939-955, 2013.

CARRERO, L. L.; NINO-VEGA, G.; TEIXEIRA, M. M.; CARVALHO, M. J.; SOARES, C. M.; PEREIRA, M.; JESUINO, R. S.; MCEWEN, J. G.; MENDOZA, L.; TAYLOR, J. W.; FELIPE, M. S.; SAN-BLAS, G. New *Paracoccidioides brasiliensis* isolate reveals unexpected genomic variability in this human pathogen. **Fungal Genet Biol** 45(5): 605-612, 2008.

CASSAT, J. E.; SKAAR, E. P. Iron in infection and immunity. **Cell Host Microbe** 13(5): 509-519, 2013.

CHARLANG, G.; NG, B.; HOROWITZ, N. H.; HOROWITZ, R. M. Cellular and extracellular siderophores of *Aspergillus nidulans* and *Penicillium chrysogenum*. **Mol Cell Biol** 1(2): 94-100, 1981.

CHIKAMORI, T.; SAKA, S.; NAGANO, H.; SAEKI, S.; LACAZ CDA, S.; RODRIGUES, M. C.; CASSAGUERRA, C. M.; BRACCIALLI, M. L. Paracoccidioidomycosis in Japan. Report of a case. **Rev Inst Med Trop Sao Paulo** 26(5): 267-271, 1984.

CLEMONS, K. V.; FELDMAN, D.; STEVENS, D. A. Influence of oestradiol on protein expression and methionine utilization during morphogenesis of *Paracoccidioides brasiliensis*. J Gen Microbiol 135(6): 1607-1617, 1989.

CONTI-DIAZ, I. A. On the unknown ecological niche of *Paracoccidioides brasiliensis*: our hypothesis of 1989: present status and perspectives. **Rev Inst Med Trop Sao Paulo** 49(2): 131-134, 2007.

DANCIS, A.; ROMAN, D. G.; ANDERSON, G. J.; HINNEBUSCH, A. G.; KLAUSNER, R. D. Ferric reductase of *Saccharomyces cerevisiae*: molecular characterization, role in iron uptake, and transcriptional control by iron. **Proc Natl Acad Sci U S A** 89(9): 3869-3873, 1992.

DE GROOT, P. W.; HELLINGWERF, K. J.; KLIS, F. M. Genome-wide identification of fungal GPI proteins. **Yeast** 20(9): 781-796, 2003.

DE LUCA, N. G.; WOOD, P. M. Iron uptake by fungi: contrasted mechanisms with internal or external reduction. Adv Microb Physiol 43: 39-74, 2000.

DESJARDINS, C. A.; CHAMPION, M. D.; HOLDER, J. W.; MUSZEWSKA, A.; GOLDBERG, J.; BAILAO, A. M.; BRIGIDO, M. M.; FERREIRA, M. E.; GARCIA, A. M.; GRYNBERG, M.; GUJJA, S.; HEIMAN, D. I.; HENN, M. R.; KODIRA, C. D.; LEON-NARVAEZ, H.; LONGO, L. V.; MA, L. J.; MALAVAZI, I.; MATSUO, A. L.; MORAIS, F. V.; PEREIRA, M.; RODRIGUEZ-BRITO, S.; SAKTHIKUMAR, S.; SALEM-IZACC, S. M.; SYKES, S. M.; TEIXEIRA, M. M.; VALLEJO, M. C.; WALTER, M. E.; YANDAVA, C.; YOUNG, S.; ZENG, Q.; ZUCKER, J.; FELIPE, M. S.; GOLDMAN, G. H.; HAAS, B. J.; MCEWEN, J. G.; NINO-VEGA, G.; PUCCIA, R.; SAN-BLAS, G.; SOARES, C. M.; BIRREN, B. W.; CUOMO, C. A. Comparative genomic analysis of human fungal pathogens causing paracoccidioidomycosis. **PLoS Genet** 7(10): e1002345, 2011.

DIAS-MELICIO, L. A.; MOREIRA, A. P.; CALVI, S. A.; SOARES, A. M. Chloroquine inhibits *Paracoccidioides brasiliensis* survival within human monocytes by limiting the availability of intracellular iron. **Microbiol Immunol** 50(4): 307-314, 2006.

EIDE, D.; DAVIS-KAPLAN, S.; JORDAN, I.; SIPE, D.; KAPLAN, J. Regulation of iron uptake in *Saccharomyces cerevisiae*. The ferrireductase and Fe(II) transporter are regulated independently. **J Biol Chem** 267(29): 20774-20781, 1992.

EISENDLE, M.; OBEREGGER, H.; ZADRA, I.; HAAS, H. The siderophore system is essential for viability of *Aspergillus nidulans*: functional analysis of two genes encoding l-ornithine N 5-monooxygenase (sidA) and a non-ribosomal peptide synthetase (sidC). **Mol Microbiol** 49(2): 359-375, 2003.

FELIPE, M. S.; ANDRADE, R. V.; ARRAES, F. B.; NICOLA, A. M.; MARANHAO, A. Q.; TORRES, F. A.; SILVA-PEREIRA, I.; POCAS-FONSECA, M. J.; CAMPOS, E. G.; MORAES, L. M.; ANDRADE, P. A.; TAVARES, A. H.; SILVA, S. S.; KYAW, C. M.; SOUZA, D. P.; PEREIRA, M.; JESUINO, R. S.; ANDRADE, E. V.; PARENTE, J. A.; OLIVEIRA, G. S.; BARBOSA, M. S.; MARTINS, N. F.; FACHIN, A. L.; CARDOSO, R. S.; PASSOS, G. A.; ALMEIDA, N. F.; WALTER, M. E.; SOARES, C. M.; CARVALHO, M. J.; BRIGIDO, M. M. Transcriptional profiles of the human pathogenic fungus *Paracoccidioides brasiliensis* in mycelium and yeast cells. J Biol Chem 280(26): 24706-24714, 2005.

FERNANDES, L.; ARAUJO, M. A.; AMARAL, A.; REIS, V. C.; MARTINS, N. F.; FELIPE, M. S. Cell signaling pathways in *Paracoccidioides brasiliensis*--inferred from comparisons with other fungi. **Genet Mol Res** 4(2): 216-231, 2005.

FLETCHER, J.; HUEHNS, E. R. Function of transferrin. Nature 218(5148): 1211-1214, 1968.

FRANCO, M. Host-parasite relationships in paracoccidioidomycosis. J Med Vet Mycol 25(1): 5-18, 1987.

FROISSARD, M.; BELGAREH-TOUZE, N.; DIAS, M.; BUISSON, N.; CAMADRO, J. M.; HAGUENAUER-TSAPIS, R.; LESUISSE, E. Trafficking of siderophore transporters in *Saccharomyces cerevisiae* and intracellular fate of ferrioxamine B conjugates. **Traffic** 8(11): 1601-1616, 2007.

FROSCHAUER, E. M.; SCHWEYEN, R. J.; WIESENBERGER, G. The yeast mitochondrial carrier proteins Mrs3p/Mrs4p mediate iron transport across the inner mitochondrial membrane. **Biochim Biophys Acta** 1788(5): 1044-1050, 2009.

GILLE, G.; REICHMANN, H. Iron-dependent functions of mitochondria--relation to neurodegeneration. J Neural Transm 118(3): 349-359, 2011.

GONZALEZ-CHAVEZ, S. A.; AREVALO-GALLEGOS, S.; RASCON-CRUZ, Q. Lactoferrin: structure, function and applications. **Int J Antimicrob Agents** 33(4): 301 e301-308, 2009.

HAAS, H.; EISENDLE, M.; TURGEON, B. G. Siderophores in fungal physiology and virulence. Annu Rev Phytopathol 46: 149-187, 2008.

HAAS, H. Iron - A Key Nexus in the Virulence of *Aspergillus fumigatus*. Front Microbiol 3: 28, 2012.

HAHN, R. C.; MACEDO, A. M.; FONTES, C. J.; BATISTA, R. D.; SANTOS, N. L.; HAMDAN, J. S. Randomly amplified polymorphic DNA as a valuable tool for epidemiological studies of *Paracoccidioides brasiliensis*. J Clin Microbiol 41(7): 2849-2854, 2003.

HAMEL, P.; CORVEST, V.; GIEGE, P.; BONNARD, G. Biochemical requirements for the maturation of mitochondrial c-type cytochromes. **Biochim Biophys Acta** 1793(1): 125-138, 2009.

HARRISON, H.; ADAMS, P. C. Hemochromatosis. Common genes, uncommon illness? **Can Fam Physician** 48: 1326-1333, 2002.

HASSETT, R.; KOSMAN, D. J. Evidence for Cu(II) reduction as a component of copper uptake by *Saccharomyces cerevisiae*. J Biol Chem 270(1): 128-134, 1995.

HASSETT, R. F.; YUAN, D. S.; KOSMAN, D. J. Spectral and kinetic properties of the Fet3 protein from *Saccharomyces cerevisiae*, a multinuclear copper ferroxidase enzyme. **J Biol Chem** 273(36): 23274-23282, 1998.

HENTZE, M. W.; MUCKENTHALER, M. U.; GALY, B.; CAMASCHELLA, C. Two to tango: regulation of Mammalian iron metabolism. **Cell** 142(1): 24-38, 2010.

HOEGGER, P. J.; KILARU, S.; JAMES, T. Y.; THACKER, J. R.; KUES, U. Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences. **FEBS J** 273(10): 2308-2326, 2006.

HOWARD, D. H. Acquisition, transport, and storage of iron by pathogenic fungi. Clin Microbiol Rev 12(3): 394-404, 1999.

HOWARD, D. H.; RAFIE, R.; TIWARI, A.; FAULL, K. F. Hydroxamate siderophores of *Histoplasma capsulatum*. Infect Immun 68(4): 2338-2343, 2000.

HU, G.; CAZA, M.; CADIEUX, B.; CHAN, V.; LIU, V.; KRONSTAD, J. *Cryptococcus neoformans* requires the ESCRT protein Vps23 for iron acquisition from heme, for capsule formation, and for virulence. **Infect Immun** 81(1): 292-302, 2013.

IBRAHIM, A. S.; SPELLBERG, B.; EDWARDS, J., JR. Iron acquisition: a novel perspective on mucormycosis pathogenesis and treatment. **Curr Opin Infect Dis** 21(6): 620-625, 2008.

JACOBSON, E. S.; PETRO, M. J. Extracellular iron chelation in *Cryptococcus neoformans*. J Med Vet Mycol 25(6): 415-418, 1987.

JACOBSON, E. S.; GOODNER, A. P.; NYHUS, K. J. Ferrous iron uptake in Cryptococcus neoformans. **Infect Immun** 66(9): 4169-4175, 1998.

JACOBSON, E. S.; TROY, A. J.; NYHUS, K. J. Mitochondrial functioning of constitutive iron uptake mutations in *Cryptococcus neoformans*. **Mycopathologia** 159(1): 1-6, 2005.

JOSEPH, E. A.; MARE, A.; IRVING, W. R., JR. Oral South American blastomycosis in the United States of America. Report of a case. **Oral Surg Oral Med Oral Pathol** 21(6): 732-737, 1966.

JUNG, W. H.; KRONSTAD, J. W. Iron and fungal pathogenesis: a case study with *Cryptococcus neoformans*. Cell Microbiol 10(2): 277-284, 2008.

JUNG, W. H.; SHAM, A.; LIAN, T.; SINGH, A.; KOSMAN, D. J.; KRONSTAD, J. W. Iron source preference and regulation of iron uptake in *Cryptococcus neoformans*. **PLoS Pathog** 4(2): e45, 2008.

JUNG, W. H.; DO, E. Iron acquisition in the human fungal pathogen *Cryptococcus neoformans*. **Curr Opin Microbiol**2013.

KAPLAN, C. D.; KAPLAN, J. Iron acquisition and transcriptional regulation. Chem Rev 109(10): 4536-4552, 2009.

KIRKPATRICK, C. H.; GREEN, I.; RICH, R. R.; SCHADE, A. L. Inhibition of growth of *Candida albicans* by iron-unsaturated lactoferrin: relation to host-defense mechanisms in chronic mucocutaneous candidiasis. **J Infect Dis** 124(6): 539-544, 1971.

KNIGHT, S. A.; LESUISSE, E.; STEARMAN, R.; KLAUSNER, R. D.; DANCIS, A. Reductive iron uptake by *Candida albicans*: role of copper, iron and the TUP1 regulator. **Microbiology** 148(Pt 1): 29-40, 2002.

KNIGHT, S. A.; VILAIRE, G.; LESUISSE, E.; DANCIS, A. Iron acquisition from transferrin by *Candida albicans* depends on the reductive pathway. **Infect Immun** 73(9): 5482-5492, 2005.

KORNITZER, D. Fungal mechanisms for host iron acquisition. **Curr Opin Microbiol** 12(4): 377-383, 2009.

KOSMAN, D. J. Molecular mechanisms of iron uptake in fungi. **Mol Microbiol** 47(5): 1185-1197, 2003.

KOSMAN, D. J. Iron metabolism in aerobes: managing ferric iron hydrolysis and ferrous iron autoxidation. **Coord Chem Rev** 257(1): 210-217, 2013.

KRONSTAD, J. W.; CADIEUX, B.; JUNG, W. H. Pathogenic yeasts deploy cell surface receptors to acquire iron in vertebrate hosts. **PLoS Pathog** 9(8): e1003498, 2013.

KWOK, E. Y.; SEVERANCE, S.; KOSMAN, D. J. Evidence for iron channeling in the Fet3p-Ftr1p high-affinity iron uptake complex in the yeast plasma membrane. **Biochemistry** 45(20): 6317-6327, 2006.

LAN, C. Y.; RODARTE, G.; MURILLO, L. A.; JONES, T.; DAVIS, R. W.; DUNGAN, J.; NEWPORT, G.; AGABIAN, N. Regulatory networks affected by iron availability in *Candida albicans*. **Mol Microbiol** 53(5): 1451-1469, 2004.

LARRONDO, L. F.; SALAS, L.; MELO, F.; VICUNA, R.; CULLEN, D. A novel extracellular multicopper oxidase from *Phanerochaete chrysosporium* with ferroxidase activity. **Appl Environ Microbiol** 69(10): 6257-6263, 2003.

LARRONDO, L. F.; GONZALEZ, B.; CULLEN, D.; VICUNA, R. Characterization of a multicopper oxidase gene cluster in *Phanerochaete chrysosporium* and evidence of altered splicing of the mco transcripts. **Microbiology** 150(Pt 8): 2775-2783, 2004.

LECLERC, M. C.; PHILIPPE, H.; GUEHO, E. Phylogeny of dermatophytes and dimorphic fungi based on large subunit ribosomal RNA sequence comparisons. J Med Vet Mycol 32(5): 331-341, 1994.

LI, L.; CHEN, O. S.; MCVEY WARD, D.; KAPLAN, J. CCC1 is a transporter that mediates vacuolar iron storage in yeast. **J Biol Chem** 276(31): 29515-29519, 2001.

LI, L.; KAPLAN, J. A mitochondrial-vacuolar signaling pathway in yeast that affects iron and copper metabolism. **J Biol Chem** 279(32): 33653-33661, 2004.

LIU, L.; TEWARI, R. P.; WILLIAMSON, P. R. Laccase protects *Cryptococcus neoformans* from antifungal activity of alveolar macrophages. **Infect Immun** 67(11): 6034-6039, 1999.

LONDERO, A. T.; RAMOS, C. D.; MATTE, S. W. Actinomycotic mycetomas in Rio Grande do Sul--report of 4 cases. **Mem Inst Oswaldo Cruz** 81(1): 73-77, 1986.

LOURES, F. V.; PINA, A.; FELONATO, M.; ARAUJO, E. F.; LEITE, K. R.; CALICH, V. L. Tolllike receptor 4 signaling leads to severe fungal infection associated with enhanced proinflammatory immunity and impaired expansion of regulatory T cells. **Infect Immun** 78(3): 1078-1088, 2010.

MACHADO, G. C.; MORIS, D. V.; ARANTES, T. D.; SILVA, L. R.; THEODORO, R. C.; MENDES, R. P.; VICENTINI, A. P.; BAGAGLI, E. Cryptic species of *Paracoccidioides brasiliensis*: impact on paracoccidioidomycosis immunodiagnosis. **Mem Inst Oswaldo Cruz** 108(5): 637-643, 2013.

MANNS, J. M.; MOSSER, D. M.; BUCKLEY, H. R. Production of a hemolytic factor by *Candida albicans*. **Infect Immun** 62(11): 5154-5156, 1994.

MARENGO-ROWE, A. J. Structure-function relations of human hemoglobins. **Proc (Bayl Univ Med Cent)** 19(3): 239-245, 2006.

MARESCA, B.; KOBAYASHI, G. S. Dimorphism in *Histoplasma capsulatum* and *Blastomyces dermatitidis*. Contrib Microbiol 5: 201-216, 2000.

MARTINEZ, R. Paracoccidioidomycosis: the dimension of the problem of a neglected disease. **Rev** Soc Bras Med Trop 43(4): 480, 2010.

MATUTE, D. R.; MCEWEN, J. G.; PUCCIA, R.; MONTES, B. A.; SAN-BLAS, G.; BAGAGLI, E.; RAUSCHER, J. T.; RESTREPO, A.; MORAIS, F.; NINO-VEGA, G.; TAYLOR, J. W. Cryptic speciation and recombination in the fungus *Paracoccidioides brasiliensis* as revealed by gene genealogies. **Mol Biol Evol** 23(1): 65-73, 2006.

MCCORD, J. M. Effects of positive iron status at a cellular level. Nutr Rev 54(3): 85-88, 1996.

MIETHKE, M. Molecular strategies of microbial iron assimilation: from high-affinity complexes to cofactor assembly systems. **Metallomics** 5(1): 15-28, 2013.

MOCHON, A. B.; JIN, Y.; KAYALA, M. A.; WINGARD, J. R.; CLANCY, C. J.; NGUYEN, M. H.; FELGNER, P.; BALDI, P.; LIU, H. Serological profiling of a *Candida albicans* protein microarray reveals permanent host-pathogen interplay and stage-specific responses during candidemia. **PLoS Pathog** 6(3): e1000827, 2010.

MOLINARI-MADLUM, E. E.; FELIPE, M. S.; SOARES, C. M. Virulence of *Paracoccidioides brasiliensis* isolates can be correlated to groups defined by random amplified polymorphic DNA analysis. **Med Mycol** 37(4): 269-276, 1999.

MORENO-CERMENO, A.; OBIS, E.; BELLI, G.; CABISCOL, E.; ROS, J.; TAMARIT, J. Frataxin depletion in yeast triggers up-regulation of iron transport systems before affecting iron-sulfur enzyme activities. **J Biol Chem** 285(53): 41653-41664, 2010.

MORRISSEY, J. A.; WILLIAMS, P. H.; CASHMORE, A. M. *Candida albicans* has a cell-associated ferric-reductase activity which is regulated in response to levels of iron and copper. **Microbiology** 142 (Pt 3): 485-492, 1996.

MOSCARDI-BACCHI, M.; BRUMMER, E.; STEVENS, D. A. Support of *Paracoccidioides brasiliensis* multiplication by human monocytes or macrophages: inhibition by activated phagocytes. **J Med Microbiol** 40(3): 159-164, 1994.

MUHLENHOFF, U.; RICHHARDT, N.; RISTOW, M.; KISPAL, G.; LILL, R. The yeast frataxin homolog Yfh1p plays a specific role in the maturation of cellular Fe/S proteins. **Hum Mol Genet** 11(17): 2025-2036, 2002.

MUHLENHOFF, U.; STADLER, J. A.; RICHHARDT, N.; SEUBERT, A.; EICKHORST, T.; SCHWEYEN, R. J.; LILL, R.; WIESENBERGER, G. A specific role of the yeast mitochondrial carriers MRS3/4p in mitochondrial iron acquisition under iron-limiting conditions. **J Biol Chem** 278(42): 40612-40620, 2003.

NEVITT, T.; THIELE, D. J. Host iron withholding demands siderophore utilization for *Candida glabrata* to survive macrophage killing. **PLoS Pathog** 7(3): e1001322, 2011.

NYHUS, K. J.; WILBORN, A. T.; JACOBSON, E. S. Ferric iron reduction by *Cryptococcus neoformans*. Infect Immun 65(2): 434-438, 1997.

PANDOLFO, M.; PASTORE, A. The pathogenesis of Friedreich ataxia and the structure and function of frataxin. J Neurol 256 Suppl 1: 9-17, 2009.

PARK, S.; GAKH, O.; O'NEILL, H. A.; MANGRAVITA, A.; NICHOL, H.; FERREIRA, G. C.; ISAYA, G. Yeast frataxin sequentially chaperones and stores iron by coupling protein assembly with iron oxidation. **J Biol Chem** 278(33): 31340-31351, 2003.

PARROW, N. L.; FLEMING, R. E.; MINNICK, M. F. Sequestration and scavenging of iron in infection. **Infect Immun** 81(10): 3503-3514, 2013.

PENDRAK, M. L.; CHAO, M. P.; YAN, S. S.; ROBERTS, D. D. Heme oxygenase in *Candida albicans* is regulated by hemoglobin and is necessary for metabolism of exogenous heme and hemoglobin to alpha-biliverdin. **J Biol Chem** 279(5): 3426-3433, 2004.

PIGOSSO, L. L.; PARENTE, A. F.; COELHO, A. S.; SILVA, L. P.; BORGES, C. L.; BAILAO, A. M.; SOARES, C. M. Comparative proteomics in the genus *Paracoccidioides*. **Fungal Genet Biol**2013.

PORTNOY, M. E.; LIU, X. F.; CULOTTA, V. C. *Saccharomyces cerevisiae* expresses three functionally distinct homologues of the nramp family of metal transporters. **Mol Cell Biol** 20(21): 7893-7902, 2000.

PRADO, M.; SILVA, M. B.; LAURENTI, R.; TRAVASSOS, L. R.; TABORDA, C. P. Mortality due to systemic mycoses as a primary cause of death or in association with AIDS in Brazil: a review from 1996 to 2006. **Mem Inst Oswaldo Cruz** 104(3): 513-521, 2009.

PROUSEK, J. Fenton chemistry in biology and medicine. **Pure Appl. Chem.** 79(12): 2325-2338, 2007.

PUIG, S.; ASKELAND, E.; THIELE, D. J. Coordinated remodeling of cellular metabolism during iron deficiency through targeted mRNA degradation. **Cell** 120(1): 99-110, 2005.

QUEIROZ-TELLES, F. *Paracoccidioides brasiliensis* ultrastructural Findings. In: _____. **Paracoccidioidomycosis**. M. Franco, C. S. Lacaz, A. Restrepo-Moreno and G. Del Negro. London: CRC Press, 1994.27–44.

RAMACHANDRAN, P. V.; IGNACIMUTHU, S. RNA interference--a silent but an efficient therapeutic tool. **Appl Biochem Biotechnol** 169(6): 1774-1789, 2013.

RAPPLEYE, C. A.; GOLDMAN, W. E. Defining virulence genes in the dimorphic fungi. Annu Rev Microbiol 60: 281-303, 2006.

RESTREPO, A. Paracoccidioidomicosis. In: _____. Acta. Med. Colomb., 1978. 3, 33-36.

RESTREPO, A.; JIMENEZ, B. E. Growth of *Paracoccidioides brasiliensis* yeast phase in a chemically defined culture medium. J Clin Microbiol 12(2): 279-281, 1980.

RESTREPO, A.; CANO, L. E.; TABARES, A. M. A comparison of mycelial filtrate - and yeast lysate - paracoccidioidin in patients with paracoccidioidomycosis. **Mycopathologia** 84(1): 49-54, 1983.

RESTREPO, A.; SALAZAR, M. E.; CANO, L. E.; STOVER, E. P.; FELDMAN, D.; STEVENS, D. A. Estrogens inhibit mycelium-to-yeast transformation in the fungus *Paracoccidioides brasiliensis*: implications for resistance of females to paracoccidioidomycosis. **Infect Immun** 46(2): 346-353, 1984.

RESTREPO, A.; MCEWEN, J. G.; CASTANEDA, E. The habitat of *Paracoccidioides brasiliensis*: how far from solving the riddle? **Med Mycol** 39(3): 233-241, 2001.

RESTREPO-MORENO, A. Ecology of *Paracoccidioides brasiliensis*. In: _____. **Paracoccidioidomycosis**. M. Franco, C. S. Lacaz, A. Restrepo-Moreno and G. Del Negro. Boca Ratton: CRC Press

, 1994.121-130.

RESTREPO-MORENO, A. Paracoccidioidomycosis. In: _____. Clinical Mycology. W. E. Dismukes, P. G. Pappas and J. Sobel. New York: Oxford University Press, 2003.328–345.

RICHARDSON, D. R.; LANE, D. J.; BECKER, E. M.; HUANG, M. L.; WHITNALL, M.; SURYO RAHMANTO, Y.; SHEFTEL, A. D.; PONKA, P. Mitochondrial iron trafficking and the integration of iron metabolism between the mitochondrion and cytosol. **Proc Natl Acad Sci U S A** 107(24): 10775-10782, 2010.

ROBINSON, A. J.; KUNJI, E. R. Mitochondrial carriers in the cytoplasmic state have a common substrate binding site. **Proc Natl Acad Sci U S A** 103(8): 2617-2622, 2006.

RUIZ, O. H.; GONZALEZ, A.; ALMEIDA, A. J.; TAMAYO, D.; GARCIA, A. M.; RESTREPO, A.; MCEWEN, J. G. Alternative oxidase mediates pathogen resistance in *Paracoccidioides brasiliensis* infection. **PLoS Negl Trop Dis** 5(10): e1353, 2011.

SAN-BLAS, G.; NINO-VEGA, G.; ITURRIAGA, T. *Paracoccidioides brasiliensis* and paracoccidioidomycosis: molecular approaches to morphogenesis, diagnosis, epidemiology, taxonomy and genetics. **Med Mycol** 40(3): 225-242, 2002.

SAN-BLAS, G.; NIÑO-VEGA, G. *Paracoccidioides brasiliensis*: chemical and molecular tools for research on cell walls, antifungals, diagnosis, taxonomy. **Mycopathologia** 165(4-5): 183-195, 2008.

SCHRETTL, M.; BIGNELL, E.; KRAGL, C.; JOECHL, C.; ROGERS, T.; ARST, H. N., JR.; HAYNES, K.; HAAS, H. Siderophore biosynthesis but not reductive iron assimilation is essential for *Aspergillus fumigatus* virulence. **J Exp Med** 200(9): 1213-1219, 2004.

SEVERANCE, S.; CHAKRABORTY, S.; KOSMAN, D. J. The Ftr1p iron permease in the yeast plasma membrane: orientation, topology and structure-function relationships. **Biochem J** 380(Pt 2): 487-496, 2004.

SHERMAN, F. Getting started with yeast. Methods Enzymol 350: 3-41, 2002.

SHIKANAI-YASUDA, M. A.; TELLES FILHO FDE, Q.; MENDES, R. P.; COLOMBO, A. L.; MORETTI, M. L. Guidelines in paracoccidioidomycosis. **Rev Soc Bras Med Trop** 39(3): 297-310, 2006.

SILVA, M. G.; SCHRANK, A.; BAILÃO, E. F. L. C.; BAILÃO, A. M.; BORGES, C. L.; STAATS, C. C.; PARENTE, J. A.; PEREIRA, M.; SALEM-IZACC, S. M.; MENDES-GIANNINI, M. J.; OLIVEIRA, R. M.; SILVA, L. K.; NOSANCHUK, J. D.; VAINSTEIN, M. H.; DE ALMEIDA SOARES, C. M. The homeostasis of iron, copper, and zinc in *Paracoccidioides brasiliensis*, *Cryptococcus neoformans* var. *grubii*, and *Cryptococcus gattii*: a comparative analysis. **Front Microbiol** 2: 49, 2011.

SINGH, A.; SEVERANCE, S.; KAUR, N.; WILTSIE, W.; KOSMAN, D. J. Assembly, activation, and trafficking of the Fet3p.Ftr1p high affinity iron permease complex in *Saccharomyces cerevisiae*. **J Biol Chem** 281(19): 13355-13364, 2006.

SINGH, A.; KAUR, N.; KOSMAN, D. J. The metalloreductase Fre6p in Fe-efflux from the yeast vacuole. **J Biol Chem** 282(39): 28619-28626, 2007.

SIRIM, D.; WAGNER, F.; WANG, L.; SCHMID, R. D.; PLEISS, J. The Laccase Engineering Database: a classification and analysis system for laccases and related multicopper oxidases. **Database (Oxford)** 2011: bar006, 2011.

STEARMAN, R.; YUAN, D. S.; YAMAGUCHI-IWAI, Y.; KLAUSNER, R. D.; DANCIS, A. A permease-oxidase complex involved in high-affinity iron uptake in yeast. **Science** 271(5255): 1552-1557, 1996.

STOVER, E. P.; SCHAR, G.; CLEMONS, K. V.; STEVENS, D. A.; FELDMAN, D. Estradiolbinding proteins from mycelial and yeast-form cultures of *Paracoccidioides brasiliensis*. Infect Immun 51(1): 199-203, 1986.

SUTAK, R.; LESUISSE, E.; TACHEZY, J.; RICHARDSON, D. R. Crusade for iron: iron uptake in unicellular eukaryotes and its significance for virulence. **Trends Microbiol** 16(6): 261-268, 2008.

TAKAKURA, N.; WAKABAYASHI, H.; ISHIBASHI, H.; TERAGUCHI, S.; TAMURA, Y.; YAMAGUCHI, H.; ABE, S. Oral lactoferrin treatment of experimental oral candidiasis in mice. **Antimicrob Agents Chemother** 47(8): 2619-2623, 2003.

TAYLOR, J. W.; JACOBSON, D. J.; KROKEN, S.; KASUGA, T.; GEISER, D. M.; HIBBETT, D. S.; FISHER, M. C. Phylogenetic species recognition and species concepts in fungi. **Fungal Genet Biol** 31(1): 21-32, 2000.

TEIXEIRA, M. M.; THEODORO, R. C.; DE CARVALHO, M. J.; FERNANDES, L.; PAES, H. C.; HAHN, R. C.; MENDOZA, L.; BAGAGLI, E.; SAN-BLAS, G.; FELIPE, M. S. Phylogenetic analysis reveals a high level of speciation in the *Paracoccidioides* genus. **Mol Phylogenet Evol** 52(2): 273-283, 2009.

TEIXEIRA, M. M.; THEODORO, R. C.; DERENGOWSKI LDA, S.; NICOLA, A. M.; BAGAGLI, E.; FELIPE, M. S. Molecular and morphological data support the existence of a sexual cycle in species of the genus *Paracoccidioides*. **Eukaryot Cell** 12(3): 380-389, 2013a.

TEIXEIRA, M. M.; THEODORO, R. C.; OLIVEIRA, F. F.; MACHADO, G. C.; HAHN, R. C.; BAGAGLI, E.; SAN-BLAS, G.; FELIPE, M. S. *Paracoccidioides lutzii* sp. nov.: biological and clinical implications. **Med Mycol**2013b.

TERZULLI, A.; KOSMAN, D. J. Analysis of the high-affinity iron uptake system at the *Chlamydomonas reinhardtii* plasma membrane. **Eukaryot Cell** 9(5): 815-826, 2010.

THEODORO, R. C.; TEIXEIRA MDE, M.; FELIPE, M. S.; PADUAN KDOS, S.; RIBOLLA, P. M.; SAN-BLAS, G.; BAGAGLI, E. Genus *Paracoccidioides*: Species recognition and biogeographic aspects. **PLoS One** 7(5): e37694, 2012.

THOM, C. S.; DICKSON, C. F.; GELL, D. A.; WEISS, M. J. Hemoglobin variants: biochemical properties and clinical correlates. **Cold Spring Harb Perspect Med** 3(3): a011858, 2013.

TIMMERMAN, M. M.; WOODS, J. P. Potential role for extracellular glutathione-dependent ferric reductase in utilization of environmental and host ferric compounds by *Histoplasma capsulatum*. **Infect Immun** 69(12): 7671-7678, 2001.

TORRES, I.; HERNANDEZ, O.; TAMAYO, D.; MUNOZ, J. F.; LEITAO, N. P., JR.; GARCIA, A. M.; RESTREPO, A.; PUCCIA, R.; MCEWEN, J. G. Inhibition of *Pb*GP43 expression may suggest that gp43 is a virulence factor in *Paracoccidioides brasiliensis*. **PLoS One** 8(7): e68434, 2013.

TORTI, F. M.; TORTI, S. V. Regulation of ferritin genes and protein. **Blood** 99(10): 3505-3516, 2002.

URBANOWSKI, J. L.; PIPER, R. C. The iron transporter Fth1p forms a complex with the Fet5 iron oxidase and resides on the vacuolar membrane. **J Biol Chem** 274(53): 38061-38070, 1999.

VAN HO, A.; WARD, D. M.; KAPLAN, J. Transition metal transport in yeast. Annu Rev Microbiol 56: 237-261, 2002.

VERGARA, S. V.; THIELE, D. J. Post-transcriptional regulation of gene expression in response to iron deficiency: co-ordinated metabolic reprogramming by yeast mRNA-binding proteins. **Biochem Soc Trans** 36(Pt 5): 1088-1090, 2008.

VOLTAN, A. R.; SARDI, J. D.; SOARES, C. P.; PELAJO MACHADO, M.; FUSCO ALMEIDA, A. M.; MENDES-GIANNINI, M. J. Early Endosome Antigen 1 (EEA1) decreases in macrophages infected with *Paracoccidioides brasiliensis*. **Med Mycol** 2013.

WANG, J.; PANTOPOULOS, K. Regulation of cellular iron metabolism. **Biochem J** 434(3): 365-381, 2011.

WEINBERG, E. D. Nutritional immunity. Host's attempt to withold iron from microbial invaders. **Jama** 231(1): 39-41, 1975.

WEISSMAN, Z.; KORNITZER, D. A family of *Candida* cell surface haem-binding proteins involved in haemin and haemoglobin-iron utilization. **Mol Microbiol** 53(4): 1209-1220, 2004.

WEISSMAN, Z.; SHEMER, R.; CONIBEAR, E.; KORNITZER, D. An endocytic mechanism for haemoglobin-iron acquisition in *Candida albicans*. **Mol Microbiol** 69(1): 201-217, 2008.

WOOD, D. W.; SETUBAL, J. C.; KAUL, R.; MONKS, D. E.; KITAJIMA, J. P.; OKURA, V. K.; ZHOU, Y.; CHEN, L.; WOOD, G. E.; ALMEIDA, N. F., JR.; WOO, L.; CHEN, Y.; PAULSEN, I. T.; EISEN, J. A.; KARP, P. D.; BOVEE, D., SR.; CHAPMAN, P.; CLENDENNING, J.; DEATHERAGE, G.; GILLET, W.; GRANT, C.; KUTYAVIN, T.; LEVY, R.; LI, M. J.; MCCLELLAND, E.; PALMIERI, A.; RAYMOND, C.; ROUSE, G.; SAENPHIMMACHAK, C.; WU, Z.; ROMERO, P.; GORDON, D.; ZHANG, S.; YOO, H.; TAO, Y.; BIDDLE, P.; JUNG, M.; KRESPAN, W.; PERRY, M.; GORDON-KAMM, B.; LIAO, L.; KIM, S.; HENDRICK, C.; ZHAO, Z. Y.; DOLAN, M.; CHUMLEY, F.; TINGEY, S. V.; TOMB, J. F.; GORDON, M. P.; OLSON, M. V.; NESTER, E. W. The genome of the natural genetic engineer *Agrobacterium tumefaciens* C58. Science 294(5550): 2317-2323, 2001.

XU, N.; CHENG, X.; YU, Q.; ZHANG, B.; DING, X.; XING, L.; LI, M. Identification and functional characterization of mitochondrial carrier Mrs4 in *Candida albicans*. **FEMS Yeast Res** 12(7): 844-858, 2012.

ZAREMBER, K. A.; SUGUI, J. A.; CHANG, Y. C.; KWON-CHUNG, K. J.; GALLIN, J. I. Human polymorphonuclear leukocytes inhibit *Aspergillus fumigatus* conidial growth by lactoferrin-mediated iron depletion. **J Immunol** 178(10): 6367-6373, 2007.

ZARNOWSKI, R.; WOODS, J. P. Glutathione-dependent extracellular ferric reductase activities in dimorphic zoopathogenic fungi. **Microbiology** 151(Pt 7): 2233-2240, 2005.

ZIEGLER, L.; TERZULLI, A.; GAUR, R.; MCCARTHY, R.; KOSMAN, D. J. Functional characterization of the ferroxidase, permease high-affinity iron transport complex from *Candida albicans*. **Mol Microbiol** 81(2): 473-485, 2011.