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Abstract 

The Caldas Novas dome (Goiaas state, central Brazil) lies in the southern 
segment of the Neoproterozoic Brasilia belt (center of the Tocantins Province) 
between the Goias magmatic arc and the margin of the ancient Sao Francisco 
plate. The core of the dome comprises rocks of the Meso-Neoproterozoic 
Paranoa group (passive margin psamitic-pelitic sediments and subgreenschist 
facies) covered by a nappe of the Neoproterozoic Araxa group (backarc basin 
pelitic-psamitic sediments and volcanics of greenschist facies, bitotite zone). 
Hot underground waters that emerge along fractures in the Paranoa quartzite 
and wells in the Araxa schist have made the Caldas Novas dome an 
international tourist attraction. A recent detailed structural analysis 

demonstrates that the dome area was affected by a D₁D₃ Brasiliano cycle 
progressive deformation in the — 750-600 Ma interval (published U-Pb and 

Sm-Nd data). During event D₁, a pervasive layer- parallel foliation developed 
coeval the regional metamorphism. Event D₂ (intense F₂ isoclinal folding) was 
responsible for the emplacement of the nappe. D₁ and D₂ record a regime of 
simple shear (top-to-SE relative regional movement) due to a WNW-ESE 

subhorizontal compression (a 1). Event D₃ records a WSW-ENE compression, 
during which the dome rose as a large-scale F₃ fold, possibly associated with a 
duplex structure at depth. During the dome’s uplift, the layers slid back and 
down in all directions, giving way to gravity-slide folds and an extensional 
crenulation cleavage. A set of brittle fractures and quartz veins constitutes the 

record of a late-stage D₄ event important for understanding the thermal water 
reservoir. 
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1. Introduction 
 

The Caldas Novas dome (Goiás state, central Brazil) is a structural 

window in the central part of the Neoproterozoic Tocantins Province, a N-S-

trending, double-verging orogen between the Amazon and Sao Francisco 

cratons, bounded by the Parana and Parnaiba Phanerozoic basins (Fig. 1a). 

According to a summary in D’el-Rey Silva and Barros Neto (2002), the 

Araguaia and Brasilia belts reflect the collision of the Sao Francisco and 

Amazon ancient plates ca. 650-600 Ma ago (Brasiliano cycle), whereas the 

Paraguay belt records a 550-500 Ma old inversion of a rift opened in the former 

Amazon plate and filled 600-550 Ma ago. The Brasilia belt, in which there is 

also evidence of a 800-700 Ma old tectonic event, actually comprises the Goias 

mag matic arc and internal and external zones (MA, IZ, and EZ; Fig. 1b). 

Around the parallel of the federal district (Fig. 1b), the Brasilia belt trends 

NE in its northern segment and SE in its southern segment. The bend is 

roughly coincident with the Pirineus shear zone, a nearly E-W- striking zone of 

high strain that affects rocks of the MA, IZ, and EZ up to the federal district. 

Farther east, the EZ is in contact with the Meso-Neoproterozoic sedimentary 

cover of the Sao Francisco craton (Marini et al., 1984; Fuck et al., 1993; 1994). 

Polyphase Neoproterozoic deformation in the MA, IZ, and EZ is largely 

characterized by frontal ramps and E-verging thrusts and folds. The 

easternmost remnants of two major nappes that displaced higher metamorphic 

grade rocks of the IZ onto the lower metamorphic grade rocks of the EZ are 

found up to the surroundings of Brasilia (Fig. 1b). The Araxa, Passos, 

Luminarias, and Socorro-Guaxupe nappes constitute the main tectonic features 

of the southern end of the belt (Fig. 2). 



 

Fig. 1. (a) Simplified map displaying the major lithotectonic units of Brazil and highlighting the Tocantins Province 

between the Sao Francisco and Amazon cratons. (b) Simplified geological map of the central part of the Province, 

based on Marini et al.  Marini et al. (1984), Fuck et al. (1993, 1994), and Pimentel et al. (1999, 2000). Vectors for 

maximum horizontal compression (o1) are according to a vast inventory of lithostructural data (D’el-Rey Silva and 

Barros Neto, 2002). Direction for D₃ shortening is based on this paper and Seer and Dardenne (2000). 

 

Although the Caldas Novas dome is well known for its thermal waters, 

few international publications (e.g. Drake, 1980; Troger et al., 1999) discuss its 

geology, and the most comprehensive general and recent study of the dome, 

which remains unpublished, does not address a structural analysis (Campos et 

al., 2000). Since 1999, a Brasilia University-Technical University of Berlin 

research program has provided additional information on the regional 

hydrology. Further data on the geology and water chemistry appear in technical 

reports sponsored by DNPM (a federal office) and local companies (e.g. UHE- 

Corumba, Geocaldas, Geocenter). 

In this article, we summarize the results of a structural analysis carried 

out in the Caldas Novas dome area in October-December 2000. We provide a 

structural database relevant for understanding the regional geology and 

underground reservoirs of hot water. All data are integrated into a model that 

accounts for the tectonic evolution of the dome and the physical-chemical 



characteristics of the hot water reservoirs. Our results, combined with the 

results of previous and independent structural analyses, geological mapping, 

and age determination shed light on the critical difference between the two 

segments of the Brasilia belt, a challenge for any interpretation of the tectonic 

evolution of Tocantins Province. 

2. Tectonic setting 
 

2.1 The magmatic arc (MA), internal zone (IZ,) and external zone 
(EZ) 
 

The MA, originally characterized by Pimentel and Fuck (1992), consists 

of tonalitic orthogneiss, granites, and volcanic-sedimentary sequences 

(Lacerda Filho et al., 1999), but it remains poorly known in the north (Pimentel 

et al., 2000). The IZ includes, in its northern segment, an Archean-

Paleoproterozoic continental block of gneiss, tonalite, and greenstone-type 

volcanic-sedimentary sequences affected by polycyclic tectonism (Queiroz, 

2000); three mafic-ultramafic layered intrusions metamorphosed to the 

granulite facies (plus metavolcano- sedimentary sequences to the west, not 

distinguished in Fig. 1b) and narrow tectonic slices of Paleoproterozoic 

basement rocks to the east; and a strip of metasediments that comprises, from 

S to N, rocks of the Araxa, Paranoa, and Serra da Mesa groups (Fig. 1b; D’el-

Rey Silva and Barros Neto, 2002). In the south, the IZ includes the backarc 

basin-like Araxa group, which mainly comprises amphibolite-greenschist facies 

metasediments and basic metavolcanics (e.g. Brod et al., 1991) and a 

longitudinal belt of Neoproterozoic granulites. The eastern boundary of the IZ is 

a contractional frontal ramp that dips less than 30° to the west and places high-

P rocks in sharp contact with the Araxa nappe, as well as with low greenschist 

facies and strongly shortened passive margin-like metasediments of the EZ 

(Fig. 1b). 



 

Fig. 2. Simplified geological map of the southern segment of the Brasilia belt (based on Valeriano et al., 2000, with 

addition of D₃ shortening direction). The Araxa, Passos, and Luminarias nappes displaced rocks of the IZ to the ESE 
onto the EZ during D₁-D₂ and were lately shortened in the ENE direction (the D₃-related Araxa and Passos synforms 
and intervening antiforms). Emplacement of the Socorro-Guaxupe nappe system onto the Passos and Luminarias 
nappes followed in time and occurred in the same overall ENE direction. 

The EZ comprises, from N to S, Archean/Paleoproter- ozoic basement 

rocks and Meso-Neoproterozoic, sub-greenschist to amphibolite facies 

metasediments and metavolcanics. The younger rocks include the Mesopro- 

terozoic rift basin-like Aral group (metasiliciclastics and metavolcanics), which 

correlates with the Serra da Mesa group; the passive margin-like Meso-

Neoproterozoic 

Paranoa and Canastra groups (metasiliciclastic and metacarbonate 

sediments; calc-schist, metapelite, and quartzite) and the Neoproterozoic Ibia 



and Vazante groups (respectively, siliciclastics and fine-grained silici- clastics 

and metacarbonates); and the Bambui group (siliciclastic and carbonate 

metasediments), which rests on the Paranoa group along the eastern margin of 

the EZ and stretches over the Sao Francisco craton. 

2.2 Surrounding the Caldas Novas dome 
 

The area surrounding the Caldas Novas dome displays north-trending 

tectonic slices of a frame of Brasiliano cycle frontal ramps and intervening 

lateral ramps (Fig. 3). Data in Lacerda Filho et al. (1999), Fischel et al. (1998, 

1999a-c) and Pimentel et al. (1999, 2000) indicate a general lithostratigraphy 

consisting of a Paleoprotreozoic crystalline basement (gneiss, orthogneiss, and 

the Silvania metavolcano-sedimentary sequence); a Meso-Neoproterozoic 

cover that includes the Paranoa, Canastra, and Ibia groups; and a large set of 

Neoproterozoic rocks that includes metasediments of the Araxa and Ibia 

groups, metavolcano-sedimentary sequences termed Rio Veríssimo and 

Marata, orthogneiss of the Goias MA, granulitic rocks akin to the Anapolis- 

Itaucu complex that occurs outside the area to the north of Leopoldo de 

Bulhoes, and the Ipameri, Aragoiania, and Rio Piracanjuba granite suites. 

The area also includes elongated bodies of (mylonitic) granitic intrusions 

syntectonically emplaced in the Araxa supracrustals (Pimentel et al., 2000; not 

individualized in Fig. 3). They comprise the subvolcanic Marata granites (, 794 

Ma old, U-Pb data) derived from the Paleopro- terozoic continental crust, as 

well as 700-780 Ma old (Rb-Sr data) granites, which display strongly and 

slightly peraluminous signatures, respectively. The former also occurs in the 

Marata area, east of Pires do Rio (Fig. 9 in Pimentel et al., 1999), and has an 

Sm-Nd composition with tdm model ages in the 1.73-2.5 Ga interval, similar to 

that of the Araxa metasediments. The latter are Sesmaria- and Tambu-type 

granites, with main outcrop areas east of Ipameri along the Araxa-Ibia contact 

(Fig. 10 in Pimentel et al., 1999). These granites derive from Neoproterozoic 

juvenile material with Sm- Nd model ages of 1.1-1.0 Ga, equivalent to that 

found in the adjacent Goias MA (Pimentel et al., 2000). 



The Caldas Novas dome area is particularly important because it lies in 

the southern part of a granulite belt that includes (Fig. 1b), three M-Um 

intrusions (granulitized ca. 780 Ma ago) and the Anapolis-Itaucu complex 

extending south of Ipameri (east of Caldas Novas). Granulites of this complex 

derive from supracrustals and granites, are aged ca. 603 ± 31 and 633 ± 28 Ma, 

according to U-Pb data in garnets and zircons (Fig. 1b; Fischel et al., 1999a,b; 

Fischel, 2002) and occur tectonically intercalated within lower metamorphic 

grade rocks of the ca. 750 Ma old Araxa nappe. According to these authors, 

both high- and low-grade rocks display similar Sm-Nd isotopic signatures. To 

provide a mechanism to explain the uplift of the granulites of the IZ and their 

field relationship with the lower-grade metasediments of the nappe and the EZ, 

D’el-Rey Silva et al. (1996, 1997) and D’el-Rey Silva (2002a) have shown that 

the contraction of the EZ post-nappe emplacement must have occurred through 

the mechanism of underthrusting, with the upper crust accompanying the 

wetward ductile flow of the ancient Sao Francisco plate. 



 

Fig. 3. Simplified geological map of the southern segment of the Brasilia belt in the surroundings of the Caldas Novas 

dome (inside the study area, Fig. 4) based on Lacerda Filho et al. (1999), Fischel et al. (1998, 1999a-c) and Pimentel et 

al. (2000). The subdivision and the vertical succession of the Neoproterozoic rocks are informal and do not imply any 

relative age relationship. 

 



3. Summary geology of the Caldas Novas dome area 
 

3.1 Summary lithostratigraphy 
 

The Caldas Novas dome is a — 20 X 12 km elliptic structure, with its 

longer axis trending NNW (Fig. 4). The study area includes Proterozoic 

tectonites of the Paranoa and Araxa groups. The former occupies the core of 

the dome, whereas the latter surrounds it and spreads in all directions. 

Undeformed conglomerates of a local body (Fig. 4) have been assigned to the 

Cretaceous Areado group (Campos et al., 2000). 

In the study area, the Paranoa group is a psamo-pelitic sequence 

comprising four lithostratigraphic units found in normal contact (Campos et al., 

2000). The basal unit consists of commonly white, wavy rippled, cross-stratified 

orthoquartzite that is silicified and crops out along the internal border of the 

dome but is partially covered by younger laterite (omitted in Fig. 4) in the central 

part. 

Five drill holes along an E-W cross-section prove the continuity of the 

quartzite, at least at depths of up to 100 m. Moreover, gravity data indicate a 

negative anomaly (Haraly, 1978, 1980) that indicates that the Paranoa group 

(lighter material) extends to 1000 m deep underneath the dome. Above, the 

basal orthoquartzite passes to a unit of brown to red, argillaceous, immature, 

and commonly laminated quartzite; then to intercalated layers of quartzite and 

metasiltstone (a metarhythmite unit); and finally to an upper unit of 

metasiltstone, metamudstone, and argillous metasiltstone. 

The Araxa group consists mainly of schists or layered sequences of mica 

schist, quartzite, siltic schist, metapelite, pelitic metasiltstone, or metasiltstone. 

The thicknesses of these layers may vary within dm- to m- or even dam-scales. 

Slightly or unweathered schist commonly exhibits a greyish green color, and the 

schist layers display a basic mineralogy of chlorite, biotite, muscovite, and 

quartz combined in variable percentages across the area. Feldspars may occur 

in the matrix, but no feldspar grain was found in the field, even with the aid of a 

hand lens. Nevertheless, cm-size flakes of white mica are relatively common 



(e.g. outcrops 2, 68, 72). In several outcrops closer to the contact with the 

Paranoa rocks around the dome (e.g. 33, 37, 38, 39, 50, 57, 66, 67, 70), the 

bottom of the group consists of biotite-quartz schist, biotite-quartzite, and 

chlorite-biotite-schist that forms a continuous layer resistant to erosion. Small 

bodies of ultramafic rocks also have been identified regionally within the Araxa 

group (Drake, 1980), as well as in the SW corner of the study area (omitted in 

Fig. 4 Campos et al., 2000). 

 

Fig. 4. (a) Simplified geological map of the studied area displaying some of the main D₁-D₂ foliation and lineation data. 

All overburden has been omitted. Main towns are Caldas Novas, Esplanada, and Rio Quente. The approximate limits of 

a major tourist park (Pousada) are also shown. Location of the roads is approximate between two successive outcrops, 



particularly those far from one another. Line AB stands for the cross section in Fig. 12. Lower hemisphere stereograms 

(Schmidt-Lambert net) of structural data are in b-e. 

 

3.2 Underground Waters 
 

Thermal waters have been noted in the region of Caldas Novas since the 

beginning of the eighteenth century (Oriente, 1982). The first site was found 

along a stream that started in a fracture zone and cross-cut quartzites of the 

western flank of the dome and passed into Pousada park. From here, the 

stream turns into the Rio Quente, which flows through Esplanada (Fig. 4) with a 

rate of 1.4 m3/s of water as hot as 38 °C but becomes colder to the west. 

According to Zschocke (2000), there are three kinds of underground water 

reservoirs surrounding Caldas Novas: (1) the Paranoa aquifer whose thermal 

waters (> 51 °C) flow from open fractures in the low greenschist metamorphic 

facies quartzites, (2) the Araxa aquifer whose thermal waters (> 41 °C) have 

been explored from the Araxa schists; and (3) a porous aquifer consisting of 

cold waters (24 °C) in the lateritic cover. 

Since the early 1970s, Caldas Novas has been a tourist site, benefiting 

from the activities of the numerous hotels and private clubs established in the 

city with pools of thermal waters from more than 400 boreholes made in the 

Araxa schist. Tourism currently also spreads into localities to the west of the 

dome and has caused a new wave of civil construction and tourism jobs. The 

intensive exploration of the thermal waters has driven DNPM toward more 

restrictive control in an attempt to avoid misuse of the underground resources. 

3.3 Summary of deformation events and associated structures 
 

The area displays clear evidence of a progressive (Brasiliano cycle) 

evolution during three ductile to ductile-brittle deformation events (D₁-D₃) that 

affect the primary layering (S₀), defined by the intercalation of beds of different 

composition and easily recognizable at different scales in Paranoa and Araxa 

metasediments. The inventory of structures includes folds, such as F₂ and F₃, 

three axial-plane foliations (S₁-S₃), fold axes (B2 and B3), and lineations such as 

the intersections of S₂ with S₀ and S₁ and stretching and striae lineation (L2, Lx, 



and Le). The Araxa schists also display two extensional crenulation cleavages 

(c0 and d0). Approximately five sets of brittle fractures (S4) have been 

recognized, some of which may host cm- to dm-thick quartz veins. 

Events D₁ and D₂ record a progressive simple shear along frontal ramps 

and imply a relative top-to-ESE displacement along surfaces subparallel to S₀ 

that gently dip to the NW. The D₁ event developed the pervasive layering-

parallel S₁ foliation, but metamorphism is more intense in the Araxa rocks 

(biotite zone, greenschist facies) than in the Paranoa rocks (subgreenschist 

facies). The D₂ event is responsible for the placement of higher metamorphic 

grade Araxa rocks as a nappe on the lower-grade Paranoa group. The Araxa 

group displays many isoclinal to tight F₂ folds of cm- to dm-scale, whereas 

Paranoa rocks exhibit F₂ folds that are dm- to m-scale and commonly isoclinal 

to tight. Further slip resulted in the development of the c0 extensional 

crenulation cleavage, which records progressive displacement within Araxa 

schists with systematic top-down to various directions between NE and SE. The 

D₃ event developed a major, NNW-SSE-trending, double-plunging F₃ antiform 

(i.e. the dome itself) that also affected the nappe. 

4. Main tectonic structures 
 

4.1 D₁ event of deformation 
 

Event D₁ mostly developed the S₁ foliation and probably the F₁ folds as 

well. Drake (1980) assumes that such folds occur, though they are hard to find 

and impossible to measure because they were so severely flattened that no 

hinge can be recognized. In areas where deformation records a progressive 

inter- and intralayer flow, as in Caldas Novas, F₁ folds may not develop; 

therefore, F₁ should be recognized as just those folds that are actually refolded 

by F₂ folds or cross cut by S₂ foliation. 

Foliation S₁ is penetrative and subparallel to the primary bedding. In the 

Araxa rocks, S₁ is commonly a mylonitic structure that consists of a cm-scale S 

-C pair in the schists or a mineral foliation in relatively coarser-grained silici- 



clastic layers. The S-C mylonitic structure also may be identified in some 

intercalated quartzite layers. Almost everywhere, the S-C asymmetry indicates 

a top-to-ESE relative movement. The intersection lineation may be safely 

measured only locally, due to the S and C planes in S₁ (LiS-C); therefore, it has 

not been treated statistically. The Araxa schist commonly displays cm-thick and 

dm-long plate-like quartz veins subparallel to the S or C foliations of the pair S-

C = S₁. Such plates are useful for identification of F₂ folds, foliations c! and d0, 

and Le striae lineation. In the Paranoa rocks, S₁ is more commonly a mineral 

foliation defined by fine-grained white mica and flattened quartz in quartz-rich 

layers or very fine-grained mica (sericite) in phyllites or layers with greater 

clayey components. The stereogram for S₁/S₀ (Fig. 4b) shows not only a clear 

dispersion along the center of the diagram, but also a girdle that reflects the 

influence of the F₂ and F₃ folds. Despite all this deformation, the maximum 

concentration of poles still records gentle dips to the W or WNW. 

4.2 D₂ event of deformation 
 

Event D₂ developed the F₂ folds, the axial plane S₂ foliation, the 

penetrative L2 lineation, and the B2 fold axis. The stretching lineation (Lx) and 

extensional crenulation cleavage (c0) relate to both D₁ and D₂ events. Foliation 

S₂ (commonly a mineral foliation or, more locally, a slaty cleavage) is less 

prominent than S₁ but is also penetrative. Fine-grained flakes of sericite and 

chlorite (less muscovite) and flattened crystals of quartz define S₂ in Araxa 

rocks, whereas sericite and flattened quartz do so in Paranoa rocks. The slaty 

cleavage consists of closely spaced planes of partition and is more common in 

fine-grained Paranoa rocks, even quartzites. The mineralogy and small grain 

size of micas along S₂ indicate that D₂ is associated with a low greenschist 

facies metamorphism. 

The F₂ folds are cm- to dm-scale in outcrops of Araxa schists and up to 

10 m scale in the Paranoa rocks. They are commonly tight to isoclinal, gently to 

moderately inclined, or even recumbent, and often evolve into sheath folds (Fig. 

5a and b). The latter are key features to decipher the tectonics in the area, in 

that they keep a constant orientation and clearly define a generally down-dip 



stretching direction Lx with a strong striae lineation (Le). Although the F₂ 

sheaths are observed directly in the mica schists (e.g. Fig. 5b, outcrops 25, 45), 

they are more commonly seen in Araxa schists that contain large amounts of 

S₁-parallel plate-like quartz veins. In some localities, the quartz plates are 

remnants of thin quartzite layers commonly encountered in the Araxa 

metasediments (e.g. Fig. 5). The plates of quartz also may display a strong 

striae lineation parallel to the axis of the F₂ sheath, a few centimeters apart 

(e.g. outcrops 25, 35, 45). This evidence justifies the interpretation that the 

striae indicate slip along the stretching direction; therefore, Lx and Le data could 

be included in a single stereogram (Fig. 4d). 

 

Fig. 5. (a) Isoclinal F₂ folds affecting Araxa siltic schist (outcrop 22, W of the dome, Fig. 4) in which primary layering (S₀) 
is defined by intercalation of cm-thick layers and is parallel to a penetrative schistosity (S₁). The rectangle area is in the 

detail (b) and displays two dm-size elliptic structures defining the tubes of F₂ sheaths, the one to the right developed in 

the mica schist. Axes of F₂ folds (arrows) are parallel to the tube axis (attitudes are shown) and down-dip on the S₁ 
planes. 

 

The F₂ sheaths are also found in Paranoa rocks at a dm- to m-scale (e.g. 

outcrops 26, 53,54). The stereogram for S₂ and AP2 (Fig. 4c) is similar to that 

 



for S₁//S₀, which indicates that such planes are nearly parallel in the field 

because the F₂ folds are frequently isoclinal. In areas where this situation is 

common, the term Lx applies because it is impossible to distinguish whether 

tectonic slip took place during D₁, D₂, or both events. The distinction is clear 

where actual F₂ sheath folds are observed, but the striae observed on a plate of 

quartz likely developed progressively and probably record the net slip from both 

events. 

Both B2 and L2 both plunge to a fan of directions that includes three main 

populations (Fig. 4e). The first is the same for Lx (Fig. 4d) because of the F₂ 

sheathing process. The second (and smallest) population indicates axes that 

plunge shallowly to the SW, according to the few F₂ folds preserved in their 

original trend. The third and largest population indicates plunges of B2 and L2 to 

the N-NNW or S-SSE, which result from the incomplete rotation of B2 from the 

SW (original trend) to the direction of maximum stretching (WNW). Thus, the 

mean lineation vector (326°/ 13°; Fig. 4e) differs slightly from the average Lx 

(296°/12°; Fig. 4d). 



 

Fig. 6. (a) Same map as in of Fig. 4 displaying the main foliation (S₁/S₀) and the two extensional 

crenulation cleavages (c0, d0) that affect S₀//S₁ in the study area. Lower hemisphere stereograms 

(Schmidt-Lambert net) of structural data are in b-g. 

 



The S₁ data from Fig. 4a are plotted on a map (Fig. 6a) with the other 

main foliation in the area (c0, d0), whereas other data for brittle fracturing and 

quartz veining are plotted in Fig. 6b-g. The extensional crenulation cleavage c0 

is common in the Araxa mylonitic schists, both inside and outside the study 

area, such as in outcrops along the road to Ipameri and to the east of the 

Corumba River (Fig. 3). Foliation c0 consists of subparallel, discontinuous, 

slightly curved surfaces (not rarely anastomosed) that strike at a high angle with 

the direction of Lx and dip gently to moderately to the east (Fig. 6b). The c0 

planes affect the S-C foliation and make it a sigmoidal-shaped feature, which 

suggests top- down to easterly directions (Fig. 7). The discontinuous nature of 

c0 is a key feature that distinguishes it from d0 planes. Discontinuity occurs 

because c0 surfaces start and die along planes (foliation c) close to one 

another, which resembles the c0 structure described by Lister and Snoke (1984) 

for progressive extension during the evolution of SC mylonites in general. 

Planes of c0 formed during D₁ and D₂; they are observed displacing F₂ folds in 

the Araxa schists (Fig. 7). 

 

Fig. 7. The syn-Dx/D₂ extensional crenulation cleavage (c
0
) affects the Araxa mylonitic schist and is observed 

everywhere in the area. It affects a typical S-C pair ( = S₁ foliation) or even F₂ folds in several dam- to hm- scale 
outcrops W and E of the dome. Photograph taken in outcrop 35. Arrows 1 and 2 indicate foliation c

0
 displacing quartz 

veins that had been affected by F₂ folds. 

 

4.3 D₃ event of deformation 
 

The structures described in this section (S₃, F₃, and d0) relate to the uplift 

of the Caldas Novas dome. This event not only modified the dip of D₁-D₂ 

structures around the NNW-SSE-trending axis of the dome, but also moved the 



layers down, mainly to the E and W directions, but also to the NE, NW, SW, and 

SE. 

Foliation S₃ is a spaced or crenulation cleavage, generally marked by 

very fine-grained sericite, that commonly occurs as the axial planar cleavage of 

F₃ folds. These folds are open to tight, steeply inclined to upright, and 

subhorizontal to gently plunging and indicate a WSW-ENE shortening during 

D₃. This interpretation, justified by the constant and consistent orientation of 

both S₃//AP3 and the fold axis B3 (Fig. 6d and e) is positively tested against 

other data from the regional geology. The F₃ folds display varied style, scale, 

and vergence due to two basic processes that may be attributed to their 

formation: a late-D₂ progressive slip along S₀ -S₁ and S₂ planes (continuation of 

the D₁ -D₂ inter- and intralayer shearing) and gravity sliding. 

The F₃ folds formed by inter- and intralayer shearing include (1) open to 

tight folds of 10 cm scale, upright or steeply inclined, east-verging, with 

crenulation-style that refold F₂ isoclinal folds (e.g. outcrop 02 for Araxa, 54 for 

Paranoa rocks); (2) gentle folds of 10 m- or greater scales found far from the 

dome, such as east of Caldas Novas, along the road leading to Ipameri; and (3) 

tight, 10 m scale folds that occur in outcrops 68 and 73 (Figs. 4a and 6a) and 

indicate a km-scale F₃ fold affecting the Araxa schist to the east of the dome, 

with a fold axis nearly N-S (to the east of PESCAN, Fig. 6). The western limb of 

the major F₃ fold east of PESCAN is affected by upright, 10 cm scale F₃ 

crenulations oriented similar to the larger fold, as seen in outcrops 68, 73, and 

74. Farther south, between the road to Marzagao and the dome (Fig. 6a), the 

Araxa layers that dip toward one another (see outcrops 62, 63, and 65 and their 

relationship to surrounding outcrops) suggest the existence of other km-scale F₃ 

folds. The same finding is valid south of the dome (outcrops 48 and 52). For all 

these folds (measured or deduced), the fold axis B3 plunges to the NNW or SSE 

(Fig. 6e). The F₃ folds, due to gravity sliding, appear on the western and 

eastern sides of the dome. Those on the western side include 10-100 m scale, 

WNW-verging folds (Figs. 8 and 9) that affect D₁ and D₂ structures and display 

vergence compatible with a top-to-the-WNW shear, in contrast to the sense 

implied by D₁ -D₃ structures in general. The fold shown in Fig. 8 lies closer to 



the dome and displays layers that underwent intense brecciation during folding. 

Those on the eastern side include, among others, m-scale folds found in the 

Paredao outcrop. 

Foliation d0 is an extensional crenulation cleavage that extended D₁ -D₂ 

structures, according to mm- to cm-scale displacements, top-down to the south, 

east, or north (Fig. 6a). Foliation d0 does not occur to the west or northwest of 

the Caldas Novas dome (Fig. 6c), other than the specimen that dips to the S in 

outcrop 10 (Fig. 6a). As will be discussed subsequently, this is a key feature for 

understanding the origin of d0 and the dome. Foliations d0 and c0 look very 

similar, which suggests compatibility in the conditions of ductility and 

metamorphism that prevailed during their evolution. Nevertheless, there are key 

and subtle differences that distinguish extensional crenulation cleavages as d0 

or c0 in outcrops. Whereas c0 surfaces are typically sigmoidal shaped and their 

trace is only visible for few centimeters, foliation d0 is defined by more discrete 

and planar surfaces that are continuous for nearly 1 m or more (Fig. 10). In flat-

lying or 3D outcrops where both foliations occur (e.g. 36, 37, 38, 41, 47, 62, 75), 

their distinctive characteristics are evident, and d0 is always steeper than c0. 

 

Fig. 8. Sketch displaying information collected during a detailed observation along a nearly 80 m-long, 10 m-high, man-
made wall situated behind the tennis courts in Pousada park (outcrop 15). Basal metasiltstone layers topped by white 

phyllite dip gently to NW and display foliation S₁ (not shown) subparallel to S₀. A steeper mineral foliation S₂ (not 
shown) cross-cuts S₁//S₀ at low angle and dips westward. These rocks and structures are affected by a 10 m-scale and 
NW-verging F₃ fold in the SE part of the outcrop. The metasandstone layers were disrupted around the hinge of the fold, 
and the fragments underwent chaotic rotation to form a breccia. This fold indicates a top-to-the-WNW down-dip 

movement compatible with a m-scale, kink-style F₃ fold seen in the phyllite in the leftmost part of the outcrop. 

 



 

Fig. 9. Sketch of a hm-scale, W-verging F₃ fold observed in outcrop 7, NW of the dome, in the paved road to Morrinhos 
(Fig. 4). The limits of the road cut are drawn in the center of the figure. A succession of layers of metasiltstone, pelitic 

metasiltstone, and metapelite define the primary layering (S₀) that is affected by a layer-parallel foliation Si commonly 
marked by fine-grained white mica (biotite also occurs in the lowermost layer to the left), all affected by the S₂ foliation 
(mostly fine-grained white mica). The L2-1 intersection lineation is down-dip along the planes of S₁/S₀ and subparallel to 
the axis of several 10 cm-scale F₂ folds. Such planar and linear structures change dip or plunge either E or W along the 
respective limbs of the major folds, demonstrating that the larger structure is an F₃ fold. Fractures and quartz veins 
(omitted for simplicity) also occur but are less important. The entire structure indicates a top-to-W shear and, as in the 
fold in Fig. 8, fits the interpretation for a gravity slide during the Caldas Novas dome’s uplift. The metapelite layer is 
more intensively folded to accommodate more intense shortening in the core of the major synform. 

 

4.4 Brittle deformation: fractures and quartz veins 
 

Fractures/joints and quartz veins that occur throughout the area and 

cross-cut D₁-D₃ structures in all rock types have been labelled S4 (Fig. 6f and g) 

and interpreted as the record of a late event of brittle deformation (D₄). They are 

commonly sharp and well defined in outcrops of the Paranoa rocks but are 

more rare in outcrops of the Araxa rocks. The fractures are generally subvertical 

and statistically distributed in five main sets, v to w. Fractures v (the largest) and 

fractures z ~ y (the second largest) strike WNW and NNE, respectively, 

corresponding to directions subparallel and subperpendicular to the direction of 

Lx. Fractures x and w strike along intermediary directions between these two 

extremes and are nearly perpendicular to each other. Data in Fig. 6g define 

three main populations of quartz veins: Va, Vb, and Vc. The Va veins, which are 

subperpendicular to Lx, are generally thicker than Vbs, which are subparallel to 

the direction of Lx, and both are found everywhere. Veins Vc are parallel to the 

main population of S₃ and AP3 (Fig. 6d) and more common in Paranoa 

quartzites of the eastern limb of the dome (outcrops 70 and 71, Fig. 6a). Only 



two such veins were found in outcrops 47 and 49 of Araxa, close to the SE and 

SW borders of the dome, respectively. The vein in outcrop 49 is as thick as Va 

veins (maximum thickness = 25 cm). 

5. Tectonic evolution of the Caldas Novas dome 
 

5.1 Structural evolution 
 

The fact that S₁, S₀, and S₂ are subparallel, the ESE vergence of F₂ 

folds and their isoclinal style, the asymmetry ofS-C( = S₁), and the down-dip 

stretching lineation all indicate a D₁-D₂ progressive event of intra- and interlayer 

slip that corresponds to a regional rotational deformation (assumed as simple 

shear) along surfaces dipping at low angle to the WNW—in other words, a 

typical regime of frontal ramps. Therefore, D₁-D₂ maximum compression (S₁) in 

the area was subhorizontal and took place along the same direction of the 

mean stretching vector (296°). Nevertheless, though D₃ records a progressive 

shortening of the area, the attitude of D₃ structures implies that the shortening 

direction shifted to WSW-ENE. 

 

Fig. 10. Photograph taken in outcrop 2 (NE of the dome) to show the d
0
 = 053748° extensional crenulation cleavage 

affecting planes of S₁ = 340712° in the Araxa schist and implying a top-down to ENE slip. The outcrop is along a creek, 

a few meters away from the paved road. 

 

The interpretation of WSW-ENE shortening during D₃ is strongly 

supported because the direction of Lx (D₁-D₂ stretching lineation) is the same 

on the western and eastern sides of the Caldas Novas dome. If, for example, 



the dome was formed initially as a consequence of WNW-ESE regional ductile 

flow and underwent rotation to its present NNW-SSE position (whether due to 

different intensities of the flow itself or the slip along WNW-ESE-striking lateral 

ramps north of the dome, as in Fig. 3), these processes would also affect Lx 

and the trace of S₀/1 and S₂, so the dome would appear as a rotated 

porphyroblast-like structure in regional maps (similar to the Itabaiana dome in 

the Sergipano belt, NE Brazil; D’el-Rey Silva, 1992; 1995a,b; D’el-Rey Silva 

and McClay, 1995). The complete lack of evidence of such rotation indicates 

that the final position of the Caldas Novas dome is the same as that in which it 

was formed. 

Relative to D₄, it is notable that veins Vc display orientation and 

distribution compatible with the uplift of the dome. However, fracture planes 

labelled v are usually open, subvertical, strike parallel to the subhorizontal 

regional compression (S₁), dip parallel to the subvertical internal compression 

(S₁i), and host veins (Vb) that are subparallel to Lx. In addition, Va veins are 

hosted along fractures that are subperpendicular to Lx and, by playing the role 

of T fractures, are expected to develop in the same shearing regime. As shown 

in Fig. 6g, Va veins are concentrated in two populations of planes with similar 

strike but different dips (subvertically or steeply) to the ESE, which may be the 

result of the progressive emplacement and rotation of veins along T fractures. 

Finally, the parallel relationship between Vc veins and S₃//AP3 match the 

direction of extension expected for the limbs of the dome during gravity-induced 

slides. 

5.2 The Caldas Novas dome as a D₃ structure 
 

On the basis of the unequivocal evidence found in the Paredao outcrop, 

it can be safely stated that the Caldas Novas dome formed during a D₃ 

deformation. The outcrop is continuous along a 3 m wide stream that flows 

down to the east in a cascade created by the rounded hinges of east-verging, 

steeply inclined, < 5 m scale F₃ asymmetric antiforms (Fig. 11a-d). These 

hinges affect Paranoa quartzite layers that display the S₁//S₀ foliation, as well 

as several ~ 1m scale F₂ isoclinal folds that refold around the F₃ hinges (Fig. 



11e). The isoclinal style of the F₂ folds and the maintenance of their original 

vergence to the ESE demonstrate that the dome is a major F₃ antiform, not a 

large F₂ fold. Moreover, the vergence of the < 5 m scale F₃ folds supports their 

interpretation as gravity sliding structures related to the dome’s uprise. If they 

were parasitic folds in the E-dipping limb of a major antiform, they would verge 

to the west. 

Because of the gravity slide, foliation d0 developed to extend the matter, 

whereas several F₃ folds developed to shorten it during the way down. The F₃ 

folds on the western side of the dome verge west; some may attain a scale of 

300 m or more (Fig. 9), whereas others may imply the development of a 

collapse breccia (Fig. 8). The F₃ folds within the Araxa schists of the eastern 

border of the dome are hm scale but verge east, and their eastern limbs (closer 

to the dome) are associated with small-scale intense crenulation that may 

compensate for the amount of extension implied by d0 foliation, which is very 

intense in outcrops of Araxa schists in the same area (e.g. outcrops 47, 41, 75; 

Fig. 6a). 

The uplift of the dome modified the attitude of the D₁ —D₂ anisotropy 

(S₀//S₁//S₂) in such a way that the original dip, mostly to the NW, turned in all 

directions. However, despite this obvious effect, the strike of the stretching 

lineation was maintained across the area (Fig. 4a), and the plunge of Lx 

changed from 296° to the opposite direction (116°; Fig. 4d) with no significant 

variations to the S or N. A similar situation is observed for L2 and LS-C. In some 

outcrops along the western and eastern margins of the dome, the lines are 

down-dip and parallel to the regional Lx (e.g. 09, 17, and 40 to the W; 45 and 66 

to the E). Together, these data indicate that the direction of stretching is 

coincident with the horizontal axis of rotation of the layers during uplift of the 

dome. Moreover, in outcrops along the northern (57, 59, 60) and southern (12; 

Fig. 4a) margins of the dome, L2 and LS-C are parallel to Lx but display much 

lower rake and even become parallel to the strike of S₀//S₁//S₂. This situation is 

expected due to the tilt of S₀//S₁//S₂ planes and may be attained even with a 

small modification of their angle of dip. 



5.3 Is the Caldas Novas dome a D₃ structure? 
 

Together with the F₃ folds and foliation S₃, plus the similar conditions of 

ductility for d0 and c0 (which reflects great D₂-D₃ metamorphic compatibility), the 

heterogeneous distribution of d0 in the area demonstrates that the dome is a D₃ 

structure formed in a progressive event following D₂. The fact that d0 is 

characteristically absent on the western side of the dome works strongly 

against other possible interpretations. 

Foliation d0 might be interpreted as a D₂ structure that affected c0 planes 

during progressive deformation. However, if this was the case, d0 would be 

found everywhere in the area, and the uplift of the dome would affect d0 in all of 

its quadrants (as happened with c0). The dome also might be interpreted as a 

much younger structure (e.g. Cretaceous) due to a magma intrusion. In this 

case, the lack of a reasonable argument for d0 as a syn-D₂ structure would lead 

to the interpretation that d0 is a Cretaceous structure. Again, there is no reason 

for d0 be absent along the west side of the dome; in addition, the similar 

conditions of ductility for c0 and d0 would require a warming up of the dome 

area in the Cretaceous. An igneous intrusion beneath the site of the dome 

could provide heat for such event, but it remains hard to accept that the Araxa 

rocks could be heated more intensively than the Paranoa rocks that lie closer to 

the hypothetical intrusion. Even accepting this, we also would have to accept 

that heat propagated heterogeneously upward and did not affect the Araxa 

rocks west of the dome. In addition to this negative coincidence, two other 

points work against the idea that the dome is due to a younger igneous 

intrusion: (1) Why would such a dome have to be elliptical? (2) Why would its 

longer axis have to trend exactly NNW, not in any other position? The elliptical 

shape and the trend of the Caldas Novas dome’s longer axis both support D₃ 

evolution in the Brasiliano cycle and fit within the characteristics of a D₃ regional 

event existing in the southern segment of the Brasilia fold belt. The last 

possibility against the Brasiliano cycle D₃ evolution of the dome is even harder 

to accept, in that it considers d0 as a Brasiliano D₂ structure and the uplift of the 

dome as due to a Cretaceous intrusion. If this happened, during event D₂ 

foliation d0 did not form in a particular area, and the younger intrusion took 



place exactly at a point capable to make the area coincident with the west side 

of the dome. 

 

Fig. 11. The Paredao outcrop. (a) Cascade created by the hinge of m-scale F₃ folds. The white line marks the hinge of a 

major antiform in the foreground, and the arrow in the background points to a white tape laid down in the field around 

another F₃ hinge. Three other F₃ antiforms occur in between. The scale applies to the foreground. The hinge of the 

antiform (marked by the white tape) is seen in more detail in (b) and (c). (d) A closer view of the hinge of the main 

antiform. The F₂ folds systematically bend around the F₃ folds as depicted in (e). The envelope surface for the F₃ folds 

provides the original dip of the dome’s eastern limb (around 20°). 

 

The absence of d0 in the western limb of the dome can be explained 

because during D₃, that limb remained in a position similar to that it had during 

D₂, as well as under compression due to the progressive regional ductile flow 

that counterbalanced the gravity effect and made it difficult for d0 to develop 

there. Simultaneously, as the eastern limb rotated from a dip-to-WNW to a dip-

to-E, it entered a zone more protected from the regional flow, so the gravity 

effect could act freely. Therefore, d0 is abundant there. The extension to the N 



and S implied by d0 fits in and reinforces this interpretation. The isolated 

occurrence of foliation d0 in outcrop 10 (NW of the dome, Fig. 6a), which implies 

it extended to the S, may be attributed to the growth of the rolling hinge of the 

large F₃ folds seen in outcrop 7 (Fig. 9) located to the N. If this possibility is 

proven, it lends additional support to the interpretation that the gravity-induced 

folds are D₃ structures. 

5.4 A model for D₃ evolution and underground thermal waters 
 

Any model about the evolution of the Caldas Novas dome should take 

into account the possibility that the Paranoa quartzite actually extends down 

nearly 1000 m and should provide an explanation for this abnormal thickness. 

The 1000 m of quartzites could be due to deposition of voluminous siliciclastics 

in a particularly deeper depocenter, the site of the future Caldas Novas dome, 

as is the case for the Itabaiana gneiss dome of the Sergipano belt, where the 

basal quartzite formation is less than 50 m thick regionally but attains a 

thickness of 700 m around the dome as a consequence of a kind of half-graben 

associated with the hanging wall of a system of extensional listric faults (D’el-

Rey Silva, 1992, 1995a; D’el-Rey Silva and McClay, 1995). The evolution of 

such a fault system led to the initial uprise of the dome during the sedimentation 

and volcanism of the precursor basin, and the incipient Itabaiana dome thus 

received a crown of carbonates covering the quartzites. 

 

Fig. 12. Photograph taken in outcrop 2 (NE of the dome) to show the d
0
 = 053748° extensional crenulation cleavage 

affecting planes of S₁ = 340712° in the Araxa schist and implying a top-down to ENE slip. The outcrop is along a creek, 

a few meters away from the paved road. 

 



In contrast, the Caldas Novas dome area displays no lithostratigraphic 

information that might detail the possible tectonic evolution of the sedimentation 

in that part of the Brasilia belt; therefore, sedimentary control over the abnormal 

thickness cannot be demonstrated or ruled out. Nevertheless, a tectonic 

explanation for the abnormal thickness may be easily envisaged with the aid of 

out-of-sequence thrusts (Butler, 1987; McClay, 1992) and a D₃ duplex structure 

or antiformal stack (Boyer and Elliott, 1982) hidden in the core of the F₃ fold 

that corresponds to the dome (Fig. 12). However, because the study area lacks 

even a simple control over the regional thickness of the Paranoa group, this 

model is just one of several plausible ideas that vary according to the regional 

thickness. 

The structural model for the Caldas Novas dome (Fig. 12c) agrees with 

the physical parameters required for the 50 °C hot springs, such as those 

shown near Pousada park (Fig. 6). A model for the evolution of the 

underground reservoir considers that meteoric waters would infiltrate regionally 

into the Paranoa group and percolate until they reached the bottom of the 

quartzite layers in the core of the dome, where they would attain the highest 

temperatures and then migrate quickly upward through a net of brittle structures 

that could combine planes of S₃ spaced cleavage and D₄ fractures. The model 

accounts for the nature and inventory of the D₃ and D₄ structures mapped at 

surface but cannot attain a higher degree of complexity until a very detailed 

geophysical survey combining, for example, seismic reflection, induced 

polarization, and hydrologic modelling provides additional information. 

Researchers working recently in Caldas Novas (e.g. Troger et al., 1999; 

Campos et al., 2000; Zschocke, 2000) agree that the uprise of thermal waters 

through different geological units in a complex hydraulic manner, controlled by 

the structural features observed in the area, leads to reservoirs with different 

chemical characteristics and temperatures. 

It is possible that a younger magmatic rock (e.g. Cretaceous) was placed 

in the core of the D₃ dome (Fig. 12c), which enhanced the mechanical porosity 

by reopening at least part of the Brasiliano cycle D₃-D₄ brittle structures and 

facilitating the underground flow of waters. This hypothetical intrusion also 



could be the source of at least part of the heat required to warm up the waters. 

Again, only a very detailed geophysical study could provide reliable information 

about whether such an intrusion exists or not. The results of recent 

geochemical and isotope studies (Zschocke, 2000; U. Trogger, pers. comm.) 

indicate no contribution from a magmatic intrusion for the composition of 

thermal waters in the Caldas Novas area.  

6. Implications for understanding the Brasilia belt and 
Tocantins province 
 

The structural and tectonic analyses of the Caldas Novas area suggest 

the following: 

1. The D₁-D₃ (D₄) evolution described may be bracketed in the ~ 

750-600 Ma interval, according to the age of syntectonic granitic intrusions 

located to the NW and E of Ipameri, as well as of granulite facies 

metamorphism near the study area; 

2. The D₁ -D₂ tectonics of frontal ramps with S₁ oriented to the 

WNW-ESE in the Caldas Novas area is the same that has been 

demonstrated in Ipameri, as well as in other parts of both the southern and 

northern segments of the belt along the magmatic arc-continental plate 

margin or closer to the Sao Francisco craton (Fig. 1b; D’el-Rey Silva and 

Barros Neto, 2002). Thus, despite the bend of the Brasilia belt, there is a 

strong coincidence in the WNW-ESE direction of the regional stretching 

lineation and maximum horizontal compression (S₁) for D₁-D₂ in both the 

northern and southern segments of the belt; 

The Caldas Novas dome is a D₃ antiformal structure, implying a WSW-

ENE-trending shortening, remarkably coincident with the direction of shortening 

in the F₃ folds that affect the D₁-D₂ Araxa, Passos and Luminarias nappes in 

the southern segment of the belt (Fig. 2; Seer, 1999; Seer et al., 1999; Seer 

and Dardenne, 2000; Valeriano et al., 2000); 

3. Such a D₃ event is regionally absent in the northern segment of 



the belt. The single well-documented example of WSW-ENE D₃ shortening in 

the northern segment of the belt is a local phenomena and related to the 

escape of the rocks to the SSE during formation of D₂ sheath folds that 

control emerald ore shoots in the mining district of Campos Verdes in the MA 

(Fig. 1b; Barros Neto, 2000; D’el-Rey Silva and Barros Neto, 2002; D’el-Rey 

Silva, 2002b); 

4. The age of D₃ deformation in the southern segment of the belt 

must be close to 600 Ma (Pimentel et al., 1999 for the Ipameri area; Seer, 

1999; Valeriano et al., 2000 for the southernmost part of the belt; Seer 

(1999) for the structural analysis), which fits the age of opening of the rift-like 

basin precursor of the Paraguay belt (Alvarenga and Trompette, 1992; 

Pimentel et al., 1996; Alvarenga et al., 2000); and 

5. The direction of D₃ shortening fits with the movement of the 

Socorro-Guaxupe nappe that evolved in the 620-510 Ma interval and 

displaced high-P basement rocks onto the F₃ regional folds that affect the 

Araxa, Passos and Luminárias nappes (Fig. 2; Valeriano et al., 2000). 

We have avoided correlating the WSW-ENE direction of shortening (D₃) 

with a particular stress field because the likelihood that the NNW-SSE trend of 

the Caldas Novas dome (the F₃ antiform) records the same position in which it 

formed originally does not suggest a straightforward similarity between the 

direction of shortening and the direction of maximum compressive stress. In 

addition, the Caldas Novas dome F₃ antiform did not form in the same NE-SW 

trend of the nonrotated F₂ folds in the study area, which does not authorize a 

denial that the WSW-ENE D₃ shortening could be due to the same WNW-ESE 

subhorizontal stress field (sj) active since the Dj-D₂  events. However, to 

correlate the WSW-ENE shortening with the WNW-ESE-trending S₁, the three 

following hypotheses should be considered: (1) D₃ shortening is due to different 

velocities of the WNW-ESE flow along the planes of S₀/Si/S₂, (2) D₃ shortening 

was due to S₂, and (3) The rocks in the study area (and in the Araxa, Passos, 

and Luminarias nappes) underwent D₃ shortening due to WNW-ESE flow that 

took place in the basement. 



Hypothesis 1 seems quite unlikely because the basement crops out as a 

dorsal between the F₃ synforms that affect the Passos and Luminarias D₁ -D₂  

nappes (Fig. 2), which indicates that nappe emplacement involved the 

crystalline basement of the Sao Francisco craton, at least south of the Caldas 

Novas dome, and the whole vertical column of the DJ -D₂  nappes underwent 

D₃ shortening. If not involved in the nappes, then the basement marks the hinge 

of an intervening antiform between two F₃ synforms, or it crops out because of 

erosion. The first case requires a D₃ detachment within the basement, which is 

most reasonable because D₃ is a regional event. In the second case, the D₃ 

detachment lies along the basement-cover interface, and it would have had to 

jump exactly the narrow site of the basement between two F₃ synforms. 

Hypothesis 2 also is hard to accept because S₂ alone would have to shorten a 

thicker pile of rocks after D₁ -D₂. Folds due to S₂ must form simultaneously with 

folds due to S₁, not afterwards. Hypothesis 3 implies that the D₁-D₂ regional 

flow continued solely in the basement during D₃, without a detachment between 

two crustal levels. In addition, the WNW -ESE flow in the crystalline basement 

would have to be contemporaneous with D₃ in the upper level. To date, ductile 

flow in the basement during D₁-D₂ does not indicate that the basement was part 

of the D₁-D₂ nappes. Furthermore, if Hypotheses 1-3 are true, why is a regional 

WSW-ENE D₃ shortening regionally absent in the northern segment of the belt? 

Therefore, most likely D₃ event involved the basement, and the 

maximum compression responsible for the D₃ structures was not the same as 

that responsible for D₁-D₂ events. It sounds interesting to interpret another 

maximum compression (e.g. σ₁ _3) as parallel to the direction of D₃ shortening. 

Nevertheless, despite its existence, the younger field σ ₁_3 does not require that 

the older one became inactive in the late stage of the evolution of the southern 

part of the belt. If so, which tectonic scenario could account for coexisting stress 

fields, and why should the effects of the WSW-ENE field overcome the effects 

of the WNW-ESE one? Instead of competing with S₁, the younger maximum 

compression σ₁ _3 may have added to the effect of S₂ during D₃ and facilitated 

the WSW-ENE shortening. Of great relevance is that the southern segment of 

the Brasilia belt displays clear evidence for a regional event of WSW-ENE 

shortening that affected both basement and cover and was active for 



approximately 100 Ma, progressively overprinting D₁-D₂ structures that formed 

across the belt as a consequence of a WNW-ESE-driven tectonic transport 

during ~ 750-600 Ma. These two distinct events, their characteristics, and the 

preceding questions all demand a comprehensive tectonic analysis of the 

Tocantins Province that is beyond the scope of this paper. 

7. Conclusions 
 

The Caldas Novas dome is an elliptic structural window with a ~ 20 km 

long maximum axis trending NNW, cored by subgreenschist facies rocks of the 

Meso-Neoproterozoic Paranoa group and mantled by a nappe of greenschist 

facies (biotite zone) rocks of the Neoproterozoic Araxa group. These rocks 

underwent three (D₁-D₃) events of mainly ductile progressive deformation in the 

ca.750-600 Ma interval and indicate typical tectonics of frontal ramps. A set of 

brittle fractures and veins characterizes the youngest event recorded in the 

area. Both D₁ and D₂ record an event of regional simple shear along surfaces 

that dip gently to the NW, with a top-to-SE relative displacement and a 

maximum subhorizontal compression (S₁) oriented 290-300°/110-120°. The 

Araxa rocks experienced more severe metamorphism than did the Paranoa 

rocks during D₁ and were emplaced as a nappe during D₂. Event D₃ implies 

additional shortening and records a WSW-ENE-driven compression, during 

which the dome started to rise as a large- scale F₃ fold, possibly associated 

with a duplex structure at depth. Continuous with the uplift of the dome, the 

layers slid down, giving way to gravity-slide D₃ structures, such as extensional 

crenulation cleavage, folds, and tectonic breccia heterogeneously distributed 

across the area. The underground reservoir likely is fed by meteoric waters that 

percolate through the Paranoa group, attain temperatures of more than 50 °C at 

a depth of 1000 m, and travel quickly upward through a mechanical porosity 

consisting of a net of D₃ and D₄ planar brittle structures. Detailed geophysical 

work could provide additional information. The D₁-D₂ structural and tectonic 

evolution of the Caldas Novas dome area is similar to several other areas of the 

whole Brasilia belt and took place in the ~ 750-620 Ma interval. Moreover, the 

dome itself demonstrates the importance of the 620-510 Ma old D₃ event of 



WSW-ENE shortening that is evident across the southern segment of the 

Brasilia belt and virtually absent in the northern one. 
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