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Hardware acceleration in high performance computer systems has a particular interest for many engineering and scientific
applications in which a large number of arithmetic operations and transcendental functions must be computed. In this paper
a hardware architecture for computing direct kinematics of robot manipulators with 5 degrees of freedom (5 D.o.f) using floating-
point arithmetic is presented for 32, 43, and 64 bit-width representations and it is implemented in Field Programmable Gate Arrays
(FPGAs). The proposed architecture has been developed using several floating-point libraries for arithmetic and transcendental
functions operators, allowing the designer to select (pre-synthesis) a suitable bit-width representation according to the accuracy
and dynamic range, as well as the area, elapsed time and power consumption requirements of the application. Synthesis results
demonstrate the effectiveness and high performance of the implemented cores on commercial FPGAs. Simulation results have
been addressed in order to compute the Mean Square Error (MSE), using the Matlab as statistical estimator, validating the
correct behavior of the implemented cores. Additionally, the processing time of the hardware architecture was compared with the
same formulation implemented in software, using the PowerPC (FPGA embedded processor), demonstrating that the hardware

architecture speeds-up by factor of 1298 the software implementation.

1. Introduction

Currently, there exists a real demand in many robotics
applications for higher operational speeds, and the solutions
improving performance would have clear benefits in terms of
manufacturing efficiency, precision, and processing time. In
general, a fully operational robotic system running in real-
time requires the repeated execution of a variety of complex
algorithms, which involve the use of several transcendental
functions and arithmetic operations. Most of these algo-
rithms, if not all, need to be computed within milliseconds
(ms) or microseconds (us) in order to keep several real-time
constraints. Such algorithms require massive computing
power that surpasses the capabilities of many sequential
computers [1].

A classical but important problem in the robotic ma-
nipulator is the direct kinematics. The direct kinematics
allows the Cartesian location of the end effector to be
calculated from measured values of the joint angles [2]. This

mathematical formulation frequently needs a large num-
ber of arithmetic and trigonometric computations that
must ideally be performed in a floating point, because of
precision requirement [2]. Design and implementation of
floating-point arithmetic operations in FPGAs has a relevant
importance in a variety of scientific applications (such as
robotics) due to the large dynamic range for representing
real numbers, which permits suitable representation of both
very small and large numbers in a fixed bit-width with
proper precision. Additionally, the software implementations
of direct kinematics computations are very expensive in
processing time due to the sequential behavior of general
purpose processors (GPPs).

Floating-point-based algorithms for arithmetic opera-
tors are commonly implemented on software and exe-
cuted in microprocessors. Typically this solution requires
to pay a performance penalty given that the conventional
approaches require to perform the data transfer between
the ALU (Arithmetic Logic Unit) and the program and



the instruction memories. This problem, well known as von
Neumann bottleneck, has been partially overcome by using
multicores microprocessors reducing the execution time.
Recently, Graphic Processor Units (GPUs) have been used
for implementing complex algorithms taking advantage of
the parallel floating-point units and increasing in this way
their throughput in execution time. Although the GPU-
based implementations achieves a noticeable speed-up, it
is important to point out the following aspects: (a) the
GPU-based solution presents bandwidth bottlenecks when
all the source data are accessed from global memory or when
simultaneous accesses from different threads to memory
have to be addressed, (b) GPUs are not tailored for specific
applications and commonly are difficult to fine-tune for
executing only the operations required by an algorithm,
and (c) these integrated circuits operate at high frequencies
leading to large power consumption. This is a drawback for
embedded system applications.

Due to the high capacity of parallel processing, FPGAs
are now being used to accelerate processes such as digital
signal processing, image processing, robotics, encryption and
decryption, and communication protocol decoding [3, 4].
Robot tasks with higher operational speeds are one of
the applications that require high processing capabilities.
Therefore, the FPGA implementation of direct kinematics
can be an important solution in order to achieve several real-
time constraints.

There are two important aspects that must be consid-
ered when parallel processing computations using floating-
point operators are implemented in FPGA: (a) the tradeoff
between the need of reasonable accuracy and the cost of logic
area and (b) the choice of a suitable format such that dynamic
range is large enough to guarantee that saturation will not
occur for a general-purpose application.

Current advances in VLSI technology raised the den-
sity integration fast enough for allowing the designers to
develop directly in hardware several algorithms commonly
implemented on software, thus, obtaining an expressive
processing speed-up [5]. Moreover, computation of direct
kinematics has high parallelization capabilities, and then, the
performance can be improved by implementing it on FPGAs.
In this way, a hardware architecture of direct kinematics
taking advantage of these features could be useful in robotics
applications that require high-speed movements.

In this paper, an FPGA implementation for computing
the direct kinematics of a spheric robot with five degrees of
freedom (5 D.o.f) is described. The hardware architecture
considers a floating-point arithmetic, parameterizable by bit-
width, allowing the designer to choose a suitable format
according to the available hardware resources, accuracy and
dynamic range requirements. The main contributions of
this work can be summarized as follows: (a) the proposed
architecture makes use of several floating-point arithmetic
and trigonometric libraries, allowing the performance to
be improved in comparison with previous works imple-
mentations, in which the floating-point operations are
executed in software using DSPs, GPUs, or CPUs (see
Section 2), (b) this work presents an error analysis for
different bit-width representations (32, 43, and 64 bits),
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allowing the designer to analyze the tradeoff between the
bit-width representation, which directly affects the cost in
logic area and the accuracy requirements. Comparison of
the processing time between the hardware architecture and
a software implementation, using a PowerPC embedded
microprocessor, is also presented, (c) the proposed hardware
architecture has been developed taking into account a
resource constrained methodology, allowing the arithmetic
and trigonometric units to be scheduled between different
states in order to achieve the lowest execution time according
to the available hardware resources.

Section 2 presents the related works covering hardware
implementations of direct and inverse kinematics. Section 3
describes the direct kinematics mathematical formulation.
Section 4 describes the IEEE-754 standard for the floating-
point number representation and a tradeoff analysis of
the FPGA implementation of the floating-point operators
required by the direct kinematics. Section 5 presents the
FPGA implementations and, before concluding, Section 6
presents the synthesis and simulation results.

2. Related Works

Several previous works have presented hardware architec-
tures for implementing only the servo control loop of robotic
manipulators, being in these cases the direct and inverse
kinematics computed on software [6-9]. In [6, 7] a hardware
structure for controlling a SCARA robotic manipulator
is developed, relieving the computational cost of general
purpose microprocessor by implementing on FPGAs the
servo control loop of the robot manipulator.

In [8, 9] a hardware-software codesign for controlling an
articulated robot arm is presented, using a NIOS processor
for implementing the inverse kinematics. In the same
context, in [10] the case study is a neural controller for 3
D.o.f parallel robot for milling. This controller is based on
neural model of the inverse dynamics of the manipulator,
trained on data collected with the use of a computed torque
stabilizing controller, and the authors propose that good
candidates for hardware implementation are those fragments
of an algorithm that can be calculated using only fixed-
point operations, due to the fact that they require less
FPGA resources and, therefore, are faster whenever are
compared with floating-point modules. The other parts of
the algorithm (including those working with floating-point)
are good candidates to be implemented in an embedded
processor. Additionally, [11] proposes hardware solutions
based on an ARM processor and fixed-point FPGA modules
for computing the trigonometric and square root functions
of inverse kinematics. They are based on existing pipeline
arithmetic circuits, which employ the CORDIC (Coordinate
Rotation Digital Computer) algorithm.

Taking into account previous works, the hardware/soft-
ware codesign is a very applied approach. In this direction,
[12] implements the direct and inverse kinematics of a
multifinger hand system, computing the floating-point arith-
metic and trigonometric operations (for instance inverse
kinematics) using a high-speed DSP processor and several



International Journal of Reconfigurable Computing

hardware peripherals (PWM controllers and interfaces for
data communication), connected among them throughout
a NIOS embedded processor. On the other hand, [13]
shows the implementation of the direct kinematic and
force feedback algorithm using both CORDIC (for fixed-
point) and Xilinx arithmetic library. This work has measured
the error of the direct kinematics with respect to a PC
implementation, in which numerical analysis shows that
Cartesian position error is always below 0.1 mm and the error
in orientation is less than 0.001 deg. Although a 32 bit fixed-
point data representation is used, details about the same (for
example, bit number for fractional part) are not described.

In [14] a hardware implementation of inverse kinematics
and a servo controller for a robot manipulator are proposed,
allowing the FPGA to compute the high complex com-
putations, such as the transcendental functions, as well as
exploring the parallel capabilities of the inverse kinematics.
As previous approaches, all hardware embedded operations
are performed in fixed-point.

In [15] a generic controller for a multiple-axis motion
system (that can be applied to a manipulator) is imple-
mented, which includes several modules such as velocity
profile generator, interpolation calculator, inverse kinematics
calculator, PID controller, among others. In this case, the
trigonometric operations (such as sin, cos, arc tang and arc
cosine) have been also implemented by using lookup tables
and a fixed-point arithmetic representation.

Additionally, [16] shows the direct and inverse kine-
matics computation of a 6 D.o.f space manipulator using
an ARM processor and FPGA coprocessor. Additionally,
it considers the hardware implementation of a pipelined
CORDIC library in an FPGA device (using fixed-point
representation). The experiment shows that the absolute
accuracy of the end-effector is less than 3 mm error. In
[17] an optimized inverse kinematics approach is proposed
for controlling an arm of a virtual human, in which an
FPGA device is used for accelerating the computations. In
order to improve the performance, a floating to fixed point
conversion is performed; however, it imposes a limitation on
the dynamic range of the operations.

In summary, almost all previous works describe a
hardware-software codesign for implementing the direct and
inverse kinematics, in which critical parts are developed
in hardware accelerators, developed in FPGAs. On the
other hand, these previous works do not consider explicitly
floating-point arithmetic for performing the computations
using appropriated arithmetic libraries for FPGA, and this
can become very important as required by several engi-
neering applications such as robotic manipulators, in which
high accuracy and a large dynamic range are important
requirements, apart from attending both good performance
and low cost in logic area. In this context, taking the impor-
tance and dramatical growth of embedded application for
automation, control, and robotics areas [18], the full hard-
ware implementation of a kinematics is very important to be
researched, in terms of comparing the cost, performance and
precision with respective software implementations, specially
developed over FPGA embedded processors. Additionally,
most of the previous works do not show the error analysis

comparing both hardware and software results of the same
kinematics, and only few ones measure the error of the
direct/inverse kinematics (for instance, [13, 16]) using only
fixed-point representation.

3. Background

3.1. Direct Kinematics. A robot manipulator can be
described as a series of links, which connect the end effector
to the base, with each link connected to the next by an
actuated joint. Attaching a coordinate frame to each link,
the relationship between two links can be described with
a homogeneous transformation matrix—an A matrix.
Therefore, a sequence of these A matrices relates the based
to the hand of the manipulator (see (1)) [2].

KTy = AAy- - - Ay An (1)

Thus, the direct kinematics problem is summarized by
finding a homogeneous matrix transformation T that relates
the end effector pose (position and orientation) to the based
coordinate frame, knowing the angles and displacement
between the links and the geometric parameters of the
manipulator [2].

The joint coordinate frames have to be assigned by
using a rational convention, associated to a zero position
(where all joint variables are set to zero). So, it is assumed
that for the assignment of coordinate frames to each link
the manipulator has to be moved to its zero position. The
zero position of the manipulator is the position where all
joint variables are zero. This procedure may be useful to
check if the zero positions of the model constructed are the
same as those used by the controller, avoiding the need of
introducing constant deviations to the joint variables (joint
positions). Subsequently the z-axis of each joint should be
made coincident with the joint axis. This convention is used
by many authors and in many robot controllers [2, 19].
For a prismatic joint, the direction of the z-axis is in the
direction of motion, and its sense is away from the joint.
For a revolute joint, the sense of the z-axis is towards the
positive direction of rotation around the z-axis. The positive
direction of rotation of each joint can be easily found by
moving the robot and reading the joint positions on the
robot controller display. According to the [2, 19], the base
coordinate frame (robot reference) may be assigned with axes
parallel to the world coordinate frame. The origin of the base
frame is coincident with the origin of joint 1 (first joint).
This assumes that the axis of the first joint is normal to
the x — y plane. This location for the base frame coincides
with many manufacturers’ defined base frame. Afterwards
coordinate frames are attached to the link at its distal joint
(joint farthest from the base). A frame is internal to the link
it is attached to (there is no movements relative to it), and
the succeeding link moves relative to it. Thus, coordinate
frame i is at joint i + 1, that is, the joint that connects
link i to link i + 1. The origin of the frame is placed as
following: if the joint axes of a link intersect, then the
origin of the frame attached to the link is placed at the
joint axes intersection; if the joint axes are parallel or do
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not intersect, then the frame origin is placed at the distal
joint; subsequently, if a frame origin is described relative to
another coordinate frame by using more than one direction,
then it must be moved to make use of only one direction
if possible. Thus, the frame origins will be described using
the minimum number of link parameters. The x-axis or
the y-axis have their direction according to the convention
used to parameterize the transformations between links.
At this point the homogeneous transformations between
joints must have already been determined. The other axis
(x or y) can be determined using the right-hand rule.
A coordinate frame can be attached to the end of the
final link, within the end-effector or tool, or it may be
necessary to locate this coordinate frame at the tool plate
and have a separate hand transformation. The z-axis of the
frame is in the same direction as the z-axis of the frame
assigned to the last joint (n — 1). The end-effector or tool
frame location and orientation is defined according to the
controller conventions. The homogeneous transformations
between joints follow the Denavit-Hartemberg convention
(D-H), making two consecutive links related through 4 basic
transformations that only depend on the link geometry [2].
The transformations are:

F1GuURE 1: Five degrees of freedom Robot Manipulator.

. . s Y4
(1) a rotation about the z,_; axis by the angle between

links (6,,),

(2) a translation along the z,-; axis of the distance
between the links (d,,), e ) m | R

|

(3) a translation along the x, axis (rotated x,—; axis) of i
the length of the link (I,), X5 ds p !

/ z3! Origins
coinc¢ide

(4) arotation about the x, axis of the twist angle (a,,).

A, = R(z,0,)T(0,0,d,)T(L,,0,0)R(x, a,). ) ”

On, du, l,, and a, represent the D-H parameters of
the link n. Identifying these parameters, the A matrix that
relates two consecutive links can be obtained. Multiplying the
sequence of the A matrices (see (1)) a homogeneous matrix
transformation T is obtained, solving the direct kinematics
problem.

d;

3.2. Direct kinematics for a Spherical Robot Manipulator.
The robot described in this paper has a spherical topology
with 5 degrees of freedom, with two rotational joints in
the base followed by a prismatic joint and two rotational
joints located in manipulator hand. The first three joints are
responsible for the wrist position and the two last ones are
responsible for the hand or tool orientation. Figure 1 shows
the proposed robot topology.

Figure 2 shows the assigned coordinate frame to each link
following the convention D-H for the manipulator depicted
in Figure 1. Table 1 presents the D-H parameters.

Table 1 can be used for computing the matrix that relates
two consecutive axis frames of the robot, and finally, by
multiplying the sequence of the A matrices, a homogeneous
matrix transformation 7T is obtained. The matrix T can be
formulated as shown in Equation (3), where the entries FIGURE 2: Assignment of coordinate frames.

dy

—>)0
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FiGURE 3: IEEE-754 format.

TaBLE 1: Denavit-Hartenberg parameter of robot manipulator.

Joint Angle Displacement Length Twist
variable 0, dyu I, o,
6, 6, d; (106 mm) 0 90
0, 6, + 90 d, (130 mm) L, (0mm) -90
ds 0 ds 0 0
0, 0, 0 0 90
0s 0s ds (0 mm) 0 0

of T follow a notation that represents, for example, y, as
the projection of the y axis of the last coordinate frame in
the x axis of the base frame, and p, is the x component of the
origin coordinates of the last frame represented in the base
frame.

Xx Yx Zx Px

X z
O Yy Zy Py . (3)
Xz Yz Zz Pz

0 0 0 1
By using the D-H notation, the matrix T is summarized

by the (4) to (15). In these equations the notation C; =
cos(6;) and S; = sin(H;) was used.

X = (=C15Cy — §184)C5 — C1G1Ss, (4)
%y = (=8515:C4 + C184)Cs — §15,S5, (5)

x; = C,C4Cs — 8585, (6)

yx = —(=C18:C4 — 8184)S5 — C1C,Cs, (7)
Yy = —(=815:C4 + C184)S5 — $1C,Cs, (8)
Yz = —CCySs — §,Cs, 9)

Ze = —C185:84 + §1Cy, (10)

2y = ~818:84 — CiCa, (11)

z; = G384, (12)

px = —Ci1Cads — C1S:L + S1ds, (13)

5
py = —81C2d3 — 518212 — C]dz, (14)
Pz = —52d3+12C2+d1. (15)

It can be observed in the (4) to (15) that some
intermediate computations are found in two equations.
For example, the intermediate computation (C;C,Cy —
C15,S4) is presented in the (4) and (7). In this way, the
intermediate computation should be computed only once,
saving processing time.

Although parameter I, is equal to zero, it will be taken
into account for future calibration purposes.

4. Description and Analysis of
the Floating-Point Operators

4.1. 1IEEE-754 Format. The IEEE-754 format [20] is a
floating-point number representation characterized by three
components: a sign S, a biased exponent E with E,, bit-width
and a mantissa M with M,, bit-width as shown in Figure 3.
A zero sign bit denotes a positive number and a one sign bit
denotes a negative number. A constant (bias) is added to the
exponent in order to make the exponent’s range nonnegative
and the mantissa represents the magnitude of the number.
The standard also includes extensive recommendations for
advanced exception handling, additional operations (such
as trigonometric functions), and expression evaluation for
achieving reproducible results.

This standard allows the user to work not only with the
32-bit single precision and 64-bit double precision, but also
with a suitable precision according to the application. This
is suitable for supporting variable precision floating-point
operations [21].

4.2. An Architectural Approach for Floating-Point Operators.
As stated in (4) to (15), the direct kinematics computation of
the spherical robot described above requires the computation
of add/sub and multiplication arithmetic operators, as well
as the sine and cosine transcendental functions. Previous
works covering hardware implementations of floating-point
transcendental functions on FPGAs are based on CORDIC
algorithms using simple and double precision formats [22—
24]. In [25] a HOTBM method for computing trigonometric
functions in FPGAs is presented, achieving a reduced
area and high performance without sacrificing accuracy.
However, these works have not received enough attention on
the cost in area associated with the precision level, as well as,
their respective error analysis.

In this work, the Taylor series expansion has been
implemented on FPGAs for computing, in an integrated
approach, the sine, cosine, and arctangent functions, using
a floating-point arithmetic based on the IEEE-754 standard.
Our previous results point out that the Taylor expansion
approach has a lower execution time and a lower cost
in logic area than the CORDIC-based solution. However,
the CORDIC algorithm presents a better performance in
terms of precision [26-28]. As will be explained below, this
work focuses on solving the resource and timing constrains



(see Section 4); therefore, the choice of using a Tay-
lor expansion approach for computing the floating-point
trigonometric operators can be justified. This work considers
accuracy as a design criterion and provides an error analysis
associated to the bit-width representation and the area cost,
as well as, an error analysis associated to the number of
iterations of the Taylor series. These results are useful for
choosing a suitable format for representing real numbers
according to general-purpose applications.
The Taylor series of sine, cosine and arctangent functions,
around 0 are given, respectively, as
3

5 7

. X X X

51n(x)=x—§+§—ﬁ+---, (16)
x2 x4 x6

cosb) =1-Grt g gt (D
x3 xS x7

arctan(x) = x 3 5 7 (18)

The factors 1/n! and 1/n are precomputed and stored
in a ROM avoiding additional operations. Before the first
iteration, the x?> term is computed and stored. In each
iteration one floating-point addition of the accumulated
approximation with the ith term is necessary. Additionally,
for computing the ith term two floating-point multipli-
cations are needed: (1) for computing either x*x*~! or
x?x*0=1 for sine/arctangent or cosine, respectively, and (2)
for computing either 1/(2i + 1)!x?*! for sine, 1/(2i + 1)x%"!
for arctangent and 1/(2i)!x* for cosine.

Figure 4 shows the proposed architecture for the Taylor
series expansion. This approach was achieved using only
one FPrulipliers an FPagd/sub, a Finite State Machine (FSM),
and three ROMs for storing the precomputed 1/n! and 1/n
factors. The op signal chooses between a sin, cos or atan
functions. The FSM synchronizes the FPruipliers FPadd/sub
units and alternates the op*~ signal. At the first iteration,
the factor x? is computed and stored in a register and fed
back to the FSM. Afterward, the precomputed coefficients
are selected in order to compute the current term either
x*"=1/(2n — 1)! for sine, x*"~!/(2n — 1) for arctangent
or x**/2n! for cosine. The add/sub unit computes and
accumulates both the addition or subtraction operations.
After N iterations, the ready signal indicates a valid output.

Table 2 shows the Mean Square Error (MSE) results of
the arithmetic and transcendental functions architectures
for different bit-width representations (24, 32, 43, and 64
bits), using the Matlab results as statistical estimators. The
Taylor architecture uses 5 nonzero powers (5 terms of the
series expansion). As expected, the best results were achieved
using the double precision format (64 bits); however, one can
expect a large cost in logic area.

Table 3 presents the MSE and latency in clock cycles for
the Taylor series expansion, using a simple precision format
(32 bits). It can be observed that the smaller error achieved by
the FPryior core is over E~12, for five powers (x!! polynomial
degree). With more than five powers in the series expansion,
the error due to the Runge’s phenomenon is increased [29]
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TaBLE 2: MSE of the floating-point operators.

FP-Core 24(6,17)  32(8,23)  43(11,31) 64(11,52)
Add/sub 227E-7 276E-11 3.24E-15 1.26E-17
Multiplier 953E-4 153E-7 149E-11 5.87E-16
Taylor sin/cos 6.31E—9 8.80E—-9 6.26E—-9 1.94E - 16
Taylor atan 0.073 0.0014 0.015 0.015

TasLE 3: MSE and Latency of the FPr,,- architecture.

sin(x) cos(x) atan(x) Elapsed time
Powers
[-n/27/2)  [-n/2m/2] [-100 100]  clock cycles
2 1.59E - 03 3,52E—-02 0.00137 11
3 1.56E - 06 5,58E — 05 0.00136 15
4 7.01E—-13 3.62E — 11 0.00136 19
5 3.13E—-15 1.15E—-14 0.00136 23
6 2.13E—-14 591E - 15 0.00136 27

TaBLE 4: Synthesis results. Virtex2 XC2VP30.

Bit-width Slices LUTs Mult18 x 18 Freq
(Exp, Man)  (13696)  (27392) (136) (MHz)
32(8,23) 10528 20017 48 54.83
43(11, 31) 14589 27807 48 48.31
64(11,52) 34031 64687 180 39.51
TABLE 5: Synthesis results. Virtex5 XC5VLX110T.
Bit-width Slices LUTs DSP48Es Freq
(Exp, Man)  (69120) (69120) (64) (MHz)
32(8,23) 4051 14457 24 83.61
43(11, 31) 5349 19262 48 66.22
64(11,52) 7901 98755 111 63.93

when using polynomial interpolation with polynomials of
high degree.

5. The FPGA Implementations

The FPGA implementation of the direct kinematics is car-
ried out using Time-Constrained Scheduling (TC) [30], as
showed in Figure 5. In fact, the circuit explicitly implements
(4) to (15). To do that, some strategies can be used in order
to allocate the respective hardware resources, achieving a
previously defined cost function, which can represent time
or/and resource restrictions. Time constrained and resource
constrained scheduling algorithms are well-known tech-
niques for leading with obtaining a suitable time execution
and allocating the available hardware resources (for instance,
arithmetic operators). For achieving the circuit depicted
in Figure 5 (from (4) to (15)), only resource restrictions
were imposed, where 4 multipliers and two add/sub units
were used, apart from 8 trigonometric units. With the
proposed scheduling the lowest time execution was tried to
be accomplished. In contrast, a time constrained schedul-
ing would need more arithmetic units for accomplishing
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FiGURE 4: IEEE-754 format.

a predefined restriction in execution time. Anyway, this
kind of algorithms does not guarantee an optimal solution
[30].

The control of the overall architecture was achieved by a
Finite State Machine (FSM), and the overall architecture was
described in VHDL using the Xilinx ISE 10.1 development
tool, making use of the floating-point arithmetic units. Eight
cores for computing transcendental functions were required:
four for computing the sin function and the other four
for computation the cos function. The necessary addition
and subtraction operations were achieved by applying the
FPaad/sub and FPruiiplier cores presented in [28] (see Sec-
tion 3). For computing the sin and cos functions, a Taylor
series expansion was implemented, using a FP,dd/sub and a
FPruttiplier cores, with a similar architecture to the presented
n [26]. The FPrylorcos and FPrylorsin Were achieved using
10 and 11 nonzero powers for cosine and sine respectively
and an elapsed time of 23 clock cycles for cosine and 26 for
sine.

It can be noticed that the orientation and position results
are calculated from the following steps: in step 3 the x, and
¥z, In step 4 the parameter p;, in step 5 the z, and py, in step
6 the p, parameter is computed, in step 7 the z, and z,, in
step 10 the x, and yy, and finally in step 11 the x, and y, (see
Figure 5).

In order to compare the performance of the proposed
architecture, the direct kinematics was also implemented
in software using a C code language running on an FPGA
embedded PowerPC processor, using the Xilinx Platform
Studio development tool. This approach allows the designer
for having a just comparison between both hardware and
software developments, which are running in the same
environment (namely, the same FPGA with the same clock).
To do that, two hardware peripherals were added to the PLB
bus of the PowerPC processor: the first one for counting
the clock cycles and the second one for accomplishing a
RS-232 serial communication to a Matlab environment.
The counter is used for measuring the processing time in
software by means of enable and stop ports (both addressed
by the PLB bus), which are controlled by specific software
instructions. Figure 6 shows the connection between the
PowerPC processor and the hardware peripherals.

6. Results

6.1. Synthesis Results. Synthesis results are shown in Table 4
for the Xilinx Virtex2 family (chip xc2vp30) using the ISE
10.1 development tool. It can be observed that the cost and
performance of the architecture are presented in Figure 5
for different bit-width (exponent and mantissa), including
both the simple precision and double precision (IEEE-754
standard). As expected, large bit-width representations are
more expensive in terms of area if compared with small
bit-width representations. Additionally, the performance is
better when using small bit-widths.

It can be seen that the 43 and 64 bit-widths repre-
sentations exceeded the hardware resources available in the
specific Virtex2 FPGA (see Table 4). However, it is important
to take into account that the xc2vp30 is not the largest
device of the Xilinx Virtex2 FPGA family. Modern FPGAs
devices have a large number of configurable logic blocks
(CLB), dedicated DSP blocks, among other facilities which
are suitable for mapping complex algorithms directly in
hardware. Table 5 shows the cost in logic area of the same
architecture using a Virtex5 FPGA (chip xc5vIx110t). It is
important to take into account that the Virtex5 FPGA family
uses embedded DSP48Es blocks, which considers 18 x 25 bits
multipliers. It can be observed that the operational frequency
has been increased; however the double precision represen-
tations exceed the available number of LUTs. However, as
will be explained below, simulation results point out that
the single precision format (32 bits) achieves similar error
results to large bit-width representations. Therefore, one can
conclude that the 32 bit implementation is suitable in terms
of hardware resources consumption and error associated for
computing the direct kinematics of a 5 D.o.f spheric robot.

6.2. Simulation Results. The implemented direct kinematics
hardware architecture (see Figure 5) was simulated using the
ModelSim 6.3 g simulator tool. A simulation environment to
validate the architecture behavior was developed in Matlab.
This developed tool created the floating-point test vectors
for different bit-widths. The binary floating-point results
were analyzed in the simulator environment in order to
calculate the Mean Square Error (MSE) of the implemented



International Journal of Reconfigurable Computing

w

o) @ 2. 9 a

2 5 5 2 4

& J,ff E S 0 9] o

T e O
vl 3 .

v < £

g £ El = |E

S Sl lall e

7 dag
@M
X
OINN
X [
DN
X
VINN
X
5
Ip

R A
> b

= =

¢ daig

VI
aqm

A

¥ daig
X
]
X

g

p
el
H

@©

g dag

9 dn1g

L dag

g dayg

6 da1g

FIGURE 5: Hardware architecture for computing the direct kinematics using FSM.
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TasLE 6: MSE for different bit-width representation.

Bit-width axis X y z p
X 3.61E — 12 1.44E — 11 1.75E — 14 5.42E - 06

32(8,23) y 9.08E - 13 3.55E - 12 1.06E — 14 1.33E - 06
z 1.44E — 11 3.63E — 12 4.46E — 12 2.07E — 10
x 3.63E — 12 1.45E - 11 1.62E — 14 5.44E — 06

43(11, 31) y 8.88E — 13 3.58E - 12 3.28E - 16 1.34E - 06
z 1.45E - 11 3.64E — 12 4.45E - 12 7.07E — 11
x 3.63E — 12 1.45E - 11 1.62E — 14 5.44E — 06

64(11, 52) y 8.88E — 13 3.58E - 12 3.29E - 16 1.34E — 06
z 1.45E - 11 3.64E — 12 4.45E - 12 7.07E — 11

Clk

FPGA

FiGUrE 6: FPGA Architecture for Software Implementation.

TABLE 7: Latency for each variable.

Stage Variable Latency
Xz5 Yz 43

4 - 46

5 Zo» Py 49

6 by 52

7 Z 2, 55

10 Xe> Vs 64

11 Xy Yy 67

architecture, for which the set of Matlab results in double
precision arithmetic were used as a statistical estimator.

For computing the MSE of the hardware architecture, 100
input values were used. The input ranges were —90° to 90°
for the angles 6, 64, and 85, —35° to 20° for the angle 0,, and
160 mm to 760 mm for the D3 parameter.

Table 6 shows the MSE for different bit-width repre-
sentations. Notice that the magnitude order of MSE does
not have significant changes. Simulations using a bit-width
representation smaller than a 32 bit-width representation
did not present satisfactory results, due to saturation in the
floating-point operators.

The software implementation (see Figure 6) was vali-
dated using a simulation environment developed in Matlab
and the serial RS232 interface for sending the input values
and receiving the output values (position, orientation, and
time processing in clock cycles). The aim of this simulation
is to compare the processing time of the direct kinematics
between software and hardware approaches and not to
compare the error in the computations.

The elapsed time using the hardware architecture for
each variable and each step is shown in Table 7. The
overall direct kinematics is computed in 67 clock cycles.
According to synthesis results, the maximum operational
frequency is around 54 MHz for a single precision format,
thus, all the computations are performed in 1.24 ps. The
software implementation has a processing time of 1.61036 ms
for all computations of the direct kinematics in floating-
point using a single precision. For comparison purposes
we have only used the obtained operational frequency
on the VirtexII FPGA family (54 MHz) due to the fact
that this device has a PowerPC embedded processor. It
can be observed that the hardware architecture is over
1298 times faster than the software implementation, which
means a considerable speed-up in the processing time
of the direct kinematics. These elapsed time results can
be dependent on the operation scheduling used in the
architecture.

7. Conclusion

An FPGA implementation of the direct kinematics of a
spherical robot manipulator using floating-point units was
presented. The proposed architecture was designed using a
Time-Constrained Scheduling, using 8 cores for computing
transcendental functions (sine and cosine), and sharing 4
multiplier floating-point cores and 2 addition/subtraction
floating-point cores for computing the arithmetical oper-
ations. Synthesis results show that the proposed hardware
architecture for direct kinematics of robots is feasible in
modern FPGAs families, in which there are plenty of logic
elements available.

The overall computations were successfully performed
and were validated using the Matlab results as a statistical
estimator. The computation time to implement the direct
kinematics in hardware is over 1.24 us, whereas the same
formulation implemented in software using a PowerPC
processor needs 1.61 ms, obtaining a considerable speed-up
in the processing time.

As future works, a hardware architecture for computing
the inverse kinematics of the proposed robot manipulator
will be implemented using the floating-point cores currently
developed, such as division, square root, and arctangent
functions. In addition, we intend to perform a performance
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comparison of the proposed hardware architecture with a
multicore embedded processor approach.
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