
Hindawi Publishing Corporation
International Journal of Reconfigurable Computing
Volume 2012, Article ID 201378, 19 pages
doi:10.1155/2012/201378

Research Article

A Protein Sequence Analysis Hardware Accelerator
Based on Divergences

Juan Fernando Eusse,1 Nahri Moreano,2 Alba Cristina Magalhaes Alves de Melo,3

and Ricardo Pezzuol Jacobi4

1 Electrical Engineering Department, University of Brasilia, Brasilia, DF 70910-900, Brazil
2 School of Computing, Federal University of Mato Grosso do Sul, Campo Grande, MS 79070-900, Brazil
3 Computer Science Department, University of Brasilia, Brasilia, DF 70910-900, Brazil
4 UnB Gama School, University of Brasilia, Gama, DF 72405-610, Brazil

Correspondence should be addressed to Ricardo Pezzuol Jacobi, jacobi@unb.br

Received 27 September 2011; Accepted 26 December 2011

Academic Editor: Khaled Benkrid

Copyright © 2012 Juan Fernando Eusse et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The Viterbi algorithm is one of the most used dynamic programming algorithms for protein comparison and identification, based
on hidden markov Models (HMMs). Most of the works in the literature focus on the implementation of hardware accelerators
that act as a prefilter stage in the comparison process. This stage discards poorly aligned sequences with a low similarity score and
forwards sequences with good similarity scores to software, where they are reprocessed to generate the sequence alignment. In
order to reduce the software reprocessing time, this work proposes a hardware accelerator for the Viterbi algorithm which includes
the concept of divergence, in which the region of interest of the dynamic programming matrices is delimited. We obtained gains
of up to 182x when compared to unaccelerated software. The performance measurement methodology adopted in this work takes
into account not only the acceleration achieved by the hardware but also the reprocessing software stage required to generate the
alignment.

1. Introduction

Protein sequence comparison and analysis is a repetitive
task in the field of molecular biology, as is needed by
biologists to predict or determine the function, structure,
and evolutional characteristics of newly discovered protein
sequences. During the last decade, technological advances
had made possible the identification of a vast number of new
proteins that have been introduced to the existing protein
databases [1, 2]. With the exponential growth of these
databases, the execution times of the protein comparison
algorithms also grew exponentially [3], and the necessity to
accelerate the existing software rose in order to speed up
research.

The HMMER 2.3.2 program suite [4] is one of the most
used programs for sequence comparison. HMMER takes
multiple sequence alignments of similar protein sequences
grouped into protein families and builds hidden Markov
models (HMMs) [5] of them. This is done to estimate

statistically the evolutionary relations that exist between
different members of the protein family, and to ease the
identification of new family members with a similar struc-
ture or function. HMMER then takes unclassified input
sequences and compares them against the generated HMMs
of protein families (profile HMM) via the Viterbi algorithm
(see Section 2), to generate both a similarity score and an
alignment for the input (query) sequences.

As the Viterbi routine is the most time consuming part
of the HMMER programs, multiple attempts to optimize
and accelerate it have been made. MPI-HMMER [6] explores
parallel execution in a cluster as well as software optimiza-
tions via the Intel-SSE2 instruction set. Other approaches
like SledgeHMMER [7] and “HMMER on the Sun Grid” [8]
provide web-based search interfaces to either an optimized
version of HMMER running on a web server or the Sun
Grid, respectively. Other approaches such as ClawHMMER
[9] and GPU-HMMER [10] implement GPU parallelization

2 International Journal of Reconfigurable Computing

of the Viterbi algorithm, while achieving a better cost/benefit
relation than the cluster approach.

Studies have also shown that most of the processing
time of the HMMER software is spent into processing poor
scoring (nonsignificant) sequences [11], and most authors
have found useful to apply a first-phase filter in order to
discard poor scoring sequences prior to full processing. Some
works apply heuristics [12], but the mainstream focuses on
the use of FPGA-based accelerators [3, 11, 13–16] as a first-
phase filter. The filter retrieves the sequence’s similarity score
and, if it is acceptable, instructs the software to reprocess the
sequence in order to generate the corresponding alignment.

Our work proposes further acceleration of the algorithm
by using the concept of divergence in which full reprocessing
of the sequence after the FPGA accelerator is not needed,
since the alignment only appears in specific parts of both the
profile HMM model and the sequence. The proposed accel-
erator outputs the similarity score and the limits of the area
of the dynamic programming (DP) matrices that contains
the optimal alignment. The software then calculates only that
small area of the DP matrices for the Viterbi algorithm and
returns the same alignment as the unaccelerated software.

The main contributions of this work are threefold. First,
we propose the Plan7-Viterbi divergence algorithm, which
calculates the area in the Plan7-Viterbi dynamic program-
ming matrices that contains the sequence-profile alignment.
Second, we propose an architecture that implements this
algorithm in hardware. Our architecture not only is able
to generate the score for a query sequence when compared
to a given profile HMM but also generates the divergence
algorithm coefficients in hardware, which helps to speed up
the subsequent alignment generation process by software. To
the best of our knowledge, there is no software adaptation of
the divergence algorithm to the Viterbi-Plan7 algorithm nor
a hardware implementation of that adaptation. Finally, we
propose a new measurement strategy that takes into account
not only the architecture’s throughput but also reprocessing
times. This strategy helps us to give a more realistic measure
of the achieved gains when including a hardware accelerator
into the HMMER programs.

This work is organized as follows. In Section 2 we clarify
some of the concepts of protein sequences, protein families,
and profile HMMs. In Section 3 we present the related work
in FPGA-based HMMER accelerators. Section 4 introduces
the concept of divergences and their use in the acceleration
of the Viterbi algorithm. Section 5 shows the proposed
hardware architecture. Section 6 presents the metrics used
to analyze the performance of the system. In Section 7
we show implementation and performance results, and we
compare them with the existing works. Finally, in Section 8
we summarize the results and suggest future works.

2. Protein Sequence Comparison

2.1. Protein Sequences, Protein Families, and Profile HMMs.
Proteins are basic elements that are present in every living
organism. They may have several important functions
such as catalyzing chemical reactions and signaling if

a gene must be expressed, among others. Essentially, a
protein is a chain of amino acids. In the nature, there
are 20 different amino acids, represented by the alphabet
Σ = {A,C,D,E,F,G,H , I ,K ,L,M,N ,P,Q,R, S,T ,V ,W ,Y}
[17].

A protein family is defined to be a set of proteins
that have similar function, have similar 2D/3D structure,
or have a common evolutionary history [17]. Therefore, a
newly sequenced protein is often compared to several known
protein families, in search of similarities. This comparison
usually aligns the protein sequence to the representation
of a protein family. This representation can be a profile, a
consensus sequence, or a signature [18]. In this paper, we
will only deal with profile representations, which are based
on multiple sequence alignments.

Given a multiple-sequence alignment, a profile specifies,
for each column, the frequency that each amino acid appears
in the column. If a sequence-profile comparison results in
high similarity, the protein sequence is usually identified
to be a member of the family. This identification is a very
important step towards determining the function and/or
structure of a protein sequence.

One of the most accepted probabilistic models to do
sequence-profile comparisons is based on hidden Markov
models (HMMs). It is called profile HMM because it
groups the evolutionary statistics for all the family members,
therefore “profiling” it. A profile HMM models the common
similarities among all the sequences in a protein family
as discrete states; each one corresponding to an evolution-
ary possibility such as amino acid insertions, deletions,
or matches between them. The traditional profile HMM
architecture proposed by Durbin et al. [5] consisted of insert
(I), delete (D), and match (M) states.

The HMMER suite [4], is a widely used software imple-
mentation of profile HMMs for biological sequence analysis,
composed of several programs. In particular, the program
hmmsearch searches a sequence database for matches to an
HMM, while the program hmmpfam searches an HMM
database for matches to a query sequence.

HMMER uses a modified HMM architecture that in
addition to the traditional M, I, and D states includes
flanking states that enable the algorithm to produce global
or local alignments, with respect to the model or to the
sequence, and also multiple-hit alignments [4, 5]. The Plan7
architecture used by HMMER is shown in Figure 1. Usually,
there is one match state for each consensus column in the
multiple alignment. Each M state aligns to (emits) a single
residue, with a probability score that is determined by the
frequency in which the residues have been observed in the
corresponding column of the multiple alignment. Therefore,
each M state has 20 probabilities for scoring the 20 amino
acids.

The insertion (I) and deletion (D) states model gapped
alignments, that is, alignments including residue insertions
and deletions. Each I state also has 20 probabilities for
scoring the 20 amino acids. The group of M, I, and D
states corresponding to the same position in the multiple
alignment is called a node of the HMM. Beside the emission

International Journal of Reconfigurable Computing 3

BS

TE

N

C

J

Main states

Flanking states

M1 M2 M3 M4

I1 I2 I3

D2 D3

Figure 1: Plan7 architecture used by HMMER [3].

BS

TE

N

C

J

0

0

0

I1 I2 I3

M1 M2 M3 M4

D2 D3

−1

−1 −1

−1 −1 −1

−1

−2 −2 −2

−2

−2

−3 −3
−3

−3 −3 −3−3 −3 −3
−3

−3

−3−3

−4 −4

−∞
−∞ −∞

Figure 2: A profile HMM with 4 nodes and the transition scores.

probabilities, there are transition probabilities associated to
each transition from one state to another.

2.2. Viterbi Algorithm. Given a HMM modeling a protein
family and a query sequence, HMMER computes the proba-
bility that the sequence belongs to the family, as a similarity
score, and generates the resulting alignment if the score is
sufficiently good. To do so, it implements a well-known DP
algorithm called the Viterbi algorithm [19]. This algorithm
calculates a set of score matrices (corresponding to states M,
I, and D) and vectors (corresponding to states N, B, E, C,
and J) by means of a set of recurrence equations. As a result,
it finds the best (most probable) alignment and its score for
the query sequence with the given model.

Equations (1) show the Viterbi algorithm recurrence
relations for aligning a sequence of length n to a profile
HMM with k nodes. In these equations, M(i, j) is the score
of the best path aligning the subsequence s1 . . . si to the
submodel up to state Mj and I(i, j) and D(i, j) are defined
similarly. The emission probability of the amino acid si
at state1 is denoted by em(state1,si), while tr(state1,state2)
represents the transition cost from state1 to state2. The
similarity score of the best alignment is given by C(n) + tr(C,
T).

Plan7-Viterbi algorithm recurrence equations, for a
profile HMM with k nodes and sequence s of length n are
as follows;

M(i, 0) = I(i, 0) = D(i, 0) = −∞ ∀1 ≤ i ≤ n,

M
(
0, j
) = I

(
0, j
) = D

(
0, j
) = −∞ ∀0 ≤ j ≤ k,

M
(
i, j
) = em

(
Mj , si

)

+ max

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

M
(
i− 1, j − 1

)
+ tr

(
Mj−1,Mj

)

I
(
i− 1, j − 1

)
+ tr

(
I j−1,Mj

)

D
(
i− 1, j − 1

)
+ tr

(
Dj−1,Mj

)

B(i− 1) + tr
(
B,Mj

)

∀1 ≤ i ≤ n,

I
(
i, j
) = em

(
I j , si

)

+ max

⎧
⎪⎨

⎪⎩

M
(
i− 1, j

)
+ tr

(
Mj , I j

)

I
(
i− 1, j

)
+ tr

(
I j , I j

)

∀1 ≤ j ≤ k,

D
(
i, j
) = max

⎧
⎪⎨

⎪⎩

M
(
i, j − 1

)
+ tr

(
Mj−1,Dj

)

D
(
i, j − 1

)
+ tr

(
Dj−1,Dj

)
,

N(0) = 0,

N(i) = N(i− 1) + tr(N ,N), ∀1 ≤ i ≤ n,

B(0) = tr(N ,B),

B(i) = max

⎧
⎨

⎩

N(i) + tr(N ,B)

J(i) + tr(J ,B)

∀1 ≤ i ≤ n,

E(i)=max
1≤ j≤k

(
M
(
i, j
)

+tr
(
Mj ,E

))
∀1 ≤ j ≤ k,

J(0) = −∞,

J(i) = max

⎧
⎨

⎩

J(i− 1) + tr(J , J)

E(i) + tr(E, J)
∀1 ≤ i ≤ n,

C(0) = −∞,

C(i) = max

⎧
⎨

⎩

C(i− 1) + tr(C,C)

E(i) + tr(E,C)
∀1 ≤ i ≤ n.

similarity score = C(n) + tr(C,T).

(1)

Figure 2 illustrates a profile HMM with 4 nodes repre-
senting a multiple-sequence alignment. The transition scores
are shown in the figure, labeling the state transitions. The
emission scores for the M and I states are shown in Table 1.

Table 2 shows the score matrices and vectors computed
by the Viterbi algorithm, while aligning the query sequence
ACYDE to the profile HMM given in Figure 2. The best
alignment has the similarity score of 25 and corresponds to

4 International Journal of Reconfigurable Computing

Table 1: Emission scores of amino acids for match and insert states of profile HMM of Figure 2.

State A C D E F, I, L, M, V, W G, K, P, S H, Q, R, T Y

M1 7 −1 −1 1 −1 2 1 −1

M2 −1 9 −1 1 −1 2 1 −1

M3 −1 −1 8 2 −1 2 1 −1

M4 −1 −1 3 9 −1 2 1 −1

I1 −1 −1 0 1 −1 0 1 2

I2 −1 −1 0 1 −1 0 1 2

I3 −1 −1 0 1 −1 0 1 2

Table 2: Score matrices and vectors of the Viterbi algorithm for the comparison of the sequence ACYDE against the profile HMM of Figure 2.

N B M I D E J C

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

— 0 0 −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞
A −1 −1 −∞ −5 −4 −4 −4 −∞ −∞ −∞ −∞ −∞ −∞ −∞ 1 −1 −3 2 −∞ 2

C −2 −2 −∞ −4 13 −1 −3 −∞ 1 −8 −8 −8 −∞ −∞ −8 9 7 10 −∞ 10

Y −3 −3 −∞ −5 −3 11 7 −∞ 1 12 2 −4 −∞ −∞ −9 −7 7 8 −∞ 9

D −4 −4 −∞ −6 −3 17 13 −∞ −1 10 8 6 −∞ −∞ −10 −7 13 14 −∞ 14

E −5 −5 −∞ −5 −3 9 25 −∞ −2 9 15 24 −∞ −∞ −9 −7 5 25 −∞ 25

the path (S,-) → (N,-) → (B,-) → (M1,A) → (M2,C) →
(I2,Y) → (M3,D) → (M4,E) → (E,-) → (C,-) → (T,-).

3. Related Work

The function that implements the Viterbi algorithm in the
HMMER suite is the most time consuming of the hmmsearch
and hmmpfam programs of the suite. Therefore, most
works [3, 11, 13–16, 20] focus on accelerating its execution
by proposing a pre-filter phase which only calculates the
similarity score for the algorithm. Then, if the similarity score
is good, the entire query sequence is reprocessed to produce
the alignment.

In general, FPGA-based accelerators for the Viterbi
algorithm are composed of processing elements (PEs),
connected together in a systolic array to exploit parallelism
by eliminating the J state of the Plan7 Viterbi algorithm
(Section 2.2). Usually, each node in the profile HMM is
implemented by one PE. However, since the typical profile
HMMs contain more than 600 nodes, even the recent
FPGAs cannot accommodate this huge number of processing
elements. For this reason, the entire sequence processing is
divided into several passes [3, 11, 13, 14].

First-in first-out memories are included inside the FPGA
implementation to store the necessary intermediary data
between passes. Transition and emission probabilities for all
the passes of the HMM are preloaded into block memories
inside the FPGA to hide model turn around (transition
probabilities reloading) when switching between passes.
These memory requirements impose restrictions on the
maximum PE number that can fit into the device, the
maximum HMM size, and the maximum sequence size.

Benkrid et al. [13] propose an array of 90 PEs, capable
of comparing a 1024 element sequence with a profile

HMM containing 1440 nodes. They eliminate the J state
dependencies in order to exploit the dynamic programming
parallelism and calculate one cell element per clock cycle in
each PE, reporting a maximum performance of 9 GCUPS
(giga cell updates per second). Their systolic array was
synthesized into a Virtex 2 Pro FPGA with a 100 MHz clock
frequency.

Maddimsetty et al. [11] enhance accuracy by reducing the
precision error induced by the elimination of the J state and
proposes a two-pass architecture to detect and correct false
negatives. Based on technology assumptions, they report an
estimated maximum size of 50 PEs at an estimated clock
frequency of 200 MHz and supposing a performance of 5 to
20 GCUPS.

Jacob et al. [3] divide the PE into 4 pipeline stages,
in order to increase the maximum clock frequency up to
180 MHz and the throughput up to 10 GCUPS. Their work
also eliminates the J state. The proposed architecture was
implemented in a Xilinx Virtex 2 6000 and supports up to
68 PEs, a HMM with maximum length of 544 nodes, and a
maximum sequence size of 1024 amino acids.

In Derrien and Quinton [16], a methodology to imple-
ment a pipeline inside the PE is outlined, based on the
mathematical representation of the algorithm. Then a design
space exploration is made for a Xilinx Spartan 3 4000, with
maximum PE clock frequency of 66 MHz and a maximum
performance of about 1.3 GCUPS.

Oliver et al. [14] implement the typical PE array without
taking into account the J state when calculating the score.
They obtain an array of 72 PEs working at a clock rate of
74 MHz, and an estimated performance of 3.95 GCUPS.

In [20] a special functional unit is introduced to detect
when the J state feedback loop is taken. Then a control
unit updates the value for state B and instructs the PEs to

International Journal of Reconfigurable Computing 5

recalculate the inaccurate values. The implementation was
made in a Xilinx Virtex 5 110-T FPGA with a maximum of
25 PEs and operating at 130 MHz. The reported performance
is 3.2 GCUPS. No maximum HMM length or pass number is
reported in the paper.

Takagi and Maruyama [21] developed a similar solution
for processing the feedback loop. The alignment is calculated
speculatively in parallel, and, when the feedback loop is
taken, the alignment is recalculated from the beginning
using the feedback score. With a Xilinx XC4VLX160 they
could implement 100 PEs for profiles not exceeding 2048
nodes, reaching speedups up to 360 when compared to
an Intel Core 2 Duo, 3.16 Ghz, and 4 GB RAM, when no
recalculation occurs, and with a corresponding speed-up
reduction otherwise.

Walters et al. [15] implement a complete Plan7-Viterbi
algorithm in hardware, by exploiting the inherent parallelism
in processing different sequences against the same HMM at
the same time. Their PE is slightly more complex than those
of other works as it includes the J state in the score calculation
process. They include hardware acceleration into a cluster
of computers, in order to further enhance the speedup. The
implementation was made in a Xilinx Spartan 3 1500 board
with a maximum of 10 PEs per node and a maximum profile
HMM length of 256. The maximum clock speed for each PE
is 70 MHz, and the complete system yields a performance of
700 MCUPS per cluster node, in a cluster comprised of 10
worker nodes. As any of the other analyzed works, its only
output is the sequence score, and for the trace back, a com-
plete reprocessing of the sequence has to be done in software.

Like all the designs discussed in this section, our design
does not calculate the alignment in hardware, providing the
score as output. Nevertheless, unlike the previous FPGA
proposals, our design also provides information that can
be used by the software to significantly reduce the number
of cells contained in the DP matrices that need to be
recalculated. Therefore, beside the score, our design outputs
also the divergence algorithm information that will be
used by the software to determine a region in the DP
matrices where the actual alignment occurs. In this way, the
software reprocessing time can be reduced, and better overall
speedups can be attained.

Our work also proposes the use of a more accurate
performance measurement that includes not only the time
spent calculating the sequence score and divergence but also
the time spent while reprocessing the sequences of interest,
which gives a clearer idea of the real gain achieved when
integrating the accelerator to HMMER.

4. Plan7-Viterbi Divergence Algorithm

The divergence concept was first introduced by Batista et al.
[22], and it was included into an exact variation of the Smith-
Waterman algorithm for pairwise local alignment of DNA
sequences. Their goal was to obtain the alignment of huge
biological sequences, handling the quadratic space, and time
complexity of the Smith-Waterman algorithm. Therefore,
they used parallel processing in a cluster of processors

to reduce execution time and exploited the divergence
concept to reduce memory requirements. Initially, the whole
similarity matrix is calculated in linear space. This phase
of the algorithm outputs the highest similarity score and
the coordinates in the similarity matrix that define the
area that contains the optimal alignment. These coordinates
were called superior and inferior divergences. To obtain the
alignment itself using limited memory space, they recalculate
the similarity matrix, but this time only the cells inside the
limited area need to be computed and stored.

A direct adaptation of the original divergence concept
to the Plan7-Viterbi algorithm is not possible because the
recurrence relations of the Smith-Waterman and Plan7-
Viterbi are totally distinct. The Smith-Waterman algorithm
with affine gap calculates three DP matrices (E, F, D), but
the inferior and superior divergence could be inferred from
only one matrix (D) [22]. In the Plan7-Viterbi algorithm
(Section 2.2), the inferior and superior divergence informa-
tion depend on matrices M, I, D and vectors C, E. For this
reason, we had to generate entirely new recurrence relations
for divergence calculation. This resulted in a new algorithm,
which we called the Plan7-Viterbi divergence algorithm.
The recurrence equations for the M State of the proposed
algorithm are shown in (3) and (4).

Also, the Smith-Waterman divergence algorithm pro-
vides a band in the DP matrix, where the alignment occurs,
which is limited by the superior and inferior divergences
[22]. We observed that the alignment region could be
further limited if the initial and final rows are provided, in
addition to the superior and inferior divergence information.
Therefore, we also extended the divergence concept to
provide a polygon that encapsulates the alignment, instead of
two parallel lines, as it was defined in the Smith-Waterman
divergence algorithm [22]. In the following paragraphs, we
describe the Plan7-Viterbi divergence algorithm.

Given the DP matrices of the Viterbi algorithm, the limits
of the best alignment are expressed by its initial and final
rows and superior and inferior divergences (IR, FR, SD, and
ID, resp.). The initial and final rows indicate the row of the
matrices where the alignment starts and ends (initial and
final element of the sequence involved in the alignment).
The superior and inferior divergences represent how far the
alignment departs from the main diagonal, in up and down
directions, respectively. The main diagonal has divergence
0, the diagonal immediately above it has divergence −1,
the next one −2, and so on. Analogously, the diagonals
below the main diagonal have divergences +1, +2, and so
on. These divergences are calculated as the difference i − j
between the row (i) and column (j) coordinates of the matrix
cell. Figure 3 shows the main ideas behind the Plan7-Viterbi
divergence algorithm.

Given a profile HMM with k nodes and a query sequence
of length n, the figure shows the DP matrices M, I, D
(represented as only one matrix, for clarity) of the Viterbi
algorithm. The best alignment of the sequence to the HMM
is a path (shown in a thick line) along the cells of the
matrices. The initial and final rows of the alignment are
3 and 7, respectively, while the alignment superior and
inferior divergences are −3 and 0, respectively. These limits

6 International Journal of Reconfigurable Computing

HMM nodes

A
lig

n
m

en
t

in
it

ia
l r

ow
(3

)

A
lig

n
m

en
t

fi
n

al
 r

ow
(7

)
Se

qu
en

ce

DP matrices
Alignment

inferior
divergence

(0)

Alignment
superior

Alignment
region

Alignment

1 2

1

2 −∞−∞ −∞ −∞ −∞
−∞

−∞
−∞

−∞
−∞

−∞
−∞

−∞
−∞

...

n
divergence

(−3)

· · · k

Figure 3: Divergence concept: alignment limits, initialized cells
(with −∞), and alignment region, for a HMM with k nodes and
a sequence of length n.

determine what we define as the alignment region (AR),
shown in shadow in the figure.

The AR contains the cells of the score matrices M, I,
and D that must be computed in order to obtain the best
alignment. The other Viterbi algorithm DP vectors are also
limited by IR and FR, as well. The alignment limits are
calculated precisely, leaving no space to error, in a sense that
computing only the cells inside the AR will produce the same
best alignment as the unbounded (not limited to the AR)
computation of the whole matrices.

The Plan7-Viterbi Divergence Algorithm (Plan7-Viterbi-
DA) works in two main phases. The first phase is inserted
into a simplified version of the Viterbi algorithm which
eliminates data dependencies induced by the J state. In this
phase, we compute the similarity score of the best alignment
of the sequence against the profile HMM, but we do not
obtain the alignment itself. We also calculate the limits of the
alignment, while computing the similarity score. These limits
are computed as new DP matrices and vectors, by means of
a new set of recurrence equations. The alignment limits IR,
SD, and ID are computed for the M, I, D, E, and C states. The
FR limit is computed only for the C state.

The Viterbi algorithm in (1) has the recurrence equation
(2) for the M state score computation:

M
(
i, j
) = em

(
Mj , si

)

+ max

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

M
(
i− 1, j − 1

)
+ tr

(
Mj−1,Mj

)

I
(
i− 1, j − 1

)
+ tr

(
I j−1,Mj

)

D
(
i− 1, j − 1

)
+ tr

(
Dj−1,Mj

)

B(i− 1) + tr
(
Bi−1,Mj

)
.

(2)

Let SelM assume the values 0, 1, 2 or 3, depending on
the result of the maximum operator in (2). If the argument
selected by the maximum operator is the first, second, third,

or fourth one, then SelM will assume the value 0, 1, 2, or
3, respectively. Then, the alignment limits IR, SD, and ID,
concerning the score matrix M, are defined by the recurrence
equations in (6).

Recurrence equations for the alignment limits IR, SD,
and ID, concerning the score matrix M, for 1 ≤ i ≤ n and
1 ≤ j ≤ k:

IRM
(
i, j
) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

IRM
(
i− 1, j − 1

)
, if SelM = 0

IRI
(
i− 1, j − 1

)
, if SelM = 1

IRD
(
i− 1, j − 1

)
, if SelM = 2

i, if SelM = 3,

SDM
(
i, j
) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

SDM
(
i− 1, j − 1

)
, if SelM = 0

min
(
i− j, SDI

(
i− 1, j − 1

))
, if SelM = 1

min
(
i− j, SDD

(
i− 1, j − 1

))
, if SelM = 2

i− j, if SelM = 3,

IDM
(
i, j
) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

IDM
(
i− 1, j − 1

)
, if SelM = 0

max
(
i− j, IDI

(
i− 1, j − 1

))
, if SelM = 1

max
(
i− j, IDD

(
i− 1, j − 1

))
, if SelM = 2

i− j, if SelM = 3.
(3)

The alignment limits IR, SD, and ID, related to the score
matrices I and D and vector E, are defined analogously,
based on the value of SelI , SelD, and SelE, determined
by the result of the maximum operator of the Viterbi
algorithm recurrence equation for the I, D, and E states,
respectively. Given the recurrence equation for the C state’s
score computation in the Viterbi algorithm in (1), let SelC
assume the values 0 or 1, depending on the result of the
maximum operator in this equation. Equation (4) shows the
recurrence equations that define the alignment limits IR, FR,
SD, and ID, concerning the C score vector.

The first phase of the Plan7-Viterbi-DA was thought to
be implemented in hardware because its implementation
in software would increase the memory requirements and
processing time as it introduces new DP matrices. Besides,
the Divergence values computation does not create new
data dependencies inside the Viterbi algorithm and can be
performed in parallel to the similarity score calculation.

The second phase of the Plan7-Viterbi-DA uses the
output data coming from the first one (similarity score
and divergence values). If the alignment’s similarity score
is significant enough, then the second phase generates the
alignment. To do this the software executes the Viterbi
algorithm again for that sequence.

Nevertheless, it is not necessary to compute the whole DP
matrices of the Viterbi algorithm, as we use the alignment
limits produced by the first phase in order to calculate
only the cells inside the AR of the DP matrices, thus
saving memory space and execution time. Figure 4 illustrates

International Journal of Reconfigurable Computing 7

Divergence algorithm

Phase 1

Alignment
score and

limits
computation

(In hardware) (In software)
Alignment

limits

HMMs

Sequences Alignment

Phase 2
Alignment

score1 Alignment
score2

Alignment
generation

(only if score1
significant)

Figure 4: Phases of the Plan7-Viterbi-DA.

the high-level structure of the Plan7-Viterbi-DA and the
interaction between its two phases.

Recurrence equations for the alignment limits IR, FR, SD,
and ID, concerning the C score vector, for 1 ≤ i ≤ n :

IRC(i) =
⎧
⎨

⎩

IRC(i− 1), if SelC = 0

IRE(i), if SelC = 1,

FRC(i) =
⎧
⎨

⎩

FRC(i− 1), if SelC = 0

i, if SelC = 1,

SDC(i) =
⎧
⎨

⎩

SDC(i− 1), if SelC = 0

SDE(i), if SelC = 1,

IDC(i) =
⎧
⎨

⎩

IDC(i− 1), if SelC = 0

IDE(i), if SelC = 1.

(4)

The Plan7-Viterbi-DA’s second phase is implemented in
software as a modification inside HMMER’s Viterbi function
used by the hmmpfam and hmmsearch programs. In this
function, we need to initialize with −∞ only the cells
immediately above, to the left and to the right of the AR, as
shown in Figure 3. The main loops are also modified in order
to calculate only the cells inside the AR, using the alignment
limits IR, FR, SD, and ID.

In the next section we propose a hardware implementa-
tion of the first phase of Plan7-Viterbi-DA.

5. HMMER-ViTDiV Architecture

The proposed architecture, called HMMER-ViTDiV, consists
of an array of interconnected processing elements (PEs)
that implements a simplified version of the Viterbi algo-
rithm, including the necessary modifications to calculate the
Plan7-Viterbi-DA presented in Section 4. The architecture is
designed to be integrated to the system as a pre-filter stage
that returns the similarity score and the alignment limits for a
query sequence with a specific profile HMM. If the similarity
score for the query sequence is significant enough, then the
software uses the alignment limits calculated for the sequence
inside the architecture and generates the alignment using
the Plan7-Viterbi-DA. Each PE calculates the score for the
j column of the DP matrices of the Viterbi algorithm and the
alignment limits for the same column. Figure 5 shows the DP
matrices antidiagonals and their relationship with each one
of the PEs when the number of profile HMM nodes is equal

Sequence
element

Profile HMM node (DP matrix column)

I

I

I

I

I I I

I I

I

I

I

I

II

I

I

I

II

Se
qu

en
ce

 e
le

m
en

t
(D

P
 m

at
ri

x
ro

w
)

1

2

3

4

5

6

1 2 3 4 5j

Similarity
score

i

PE1 PE2 PE3 PE4 PE5

Figure 5: PE to DP matrices correspondence when the HMM
number of nodes is less or equal to the number of PEs.

to the number of implemented PEs inside the architecture. In
the figure, the arrows show the DP matrices anti-diagonals,
cells marked with I correspond to idle PEs, and shaded cells
correspond to DP cells that are being calculated by their
corresponding PE. The systolic array is filled gradually as the
sequence elements are inserted until there are no idle PEs
left, and then, when sequence elements are exiting, it empties
until there are no more DP cells to calculate.

Since the size of commercial FPGAs is currently limited,
today we cannot implement a system with a number of PEs
that is equal to one of the largest profile HMM in sequence
databases (2295) [2]. We implemented a system that divides
the computation into various passes, each one computing a
band of size N of the DP matrices, where N is the maximum
number of PEs that fits into the target FPGA. In each pass the
entire sequence is fed across the array of PEs and the scores
are calculated for the current band. Then the output of the
last PE of the array is stored inside FIFOs, as it is the input to
the next pass and will be consumed by the first PE. Figure 6
presents the concept of band division and multiple passes.

As shown in Figure 6, in each pass the PE acts as a
different node of the profile HMM and has to be loaded with
the corresponding transition and emission probabilities that
are required by the calculations. Also, we note that the system
does not have to wait for the entire sequence to be out of the
array in one pass to start the next pass, and the PEs can be in
different passes at a given time.

Two RAM memories per PE are included inside the
architecture to store and provide the transition and emission
probabilities for all passes. Two special sequence elements
are included in the design to ease the identification of the
end of a pass (@) and the end of the sequence processing
(∗). A controller is implemented inside each PE to identify
these two characters, increment or clear the pass number, and
signal the transition and emission RAM memories as their
address offset depends directly on the pass number.

8 International Journal of Reconfigurable Computing

profile HMM node (DP matrix column)
Se

qu
en

ce
 e

le
m

en
t

(D
P

 m
at

ri
x

ro
w

)

In
te

rm
ed

ia
te

sc

or
es

Sequence
elements First pass Second pass Third pass

profile HMM node (DP matrix column) profile HMM node (DP matrix column)

In
te

rm
ed

ia
te

sc

or
es

Sequence
elements

Sequence
elements

Id
le

 P
E

s

1

2

3

4

5

6

7

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Output
score

j

PE1 PE2 PE3 PE4 PE5 PE1 PE2 PE3 PE4 PE5 PE1 PE2 PE3 PE4 PE5

i

−∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞
−∞
−∞
−∞
−∞
−∞
−∞
−∞

FIFO FIFO

Total profile HMM nodes: 13
Computation passes (bands): 3

Figure 6: PE to DP matrices correspondence for HMMs with more nodes than the number of PEs (band division and multiple passes).

Emission
RAM

Transition
RAM

Emission
RAM

Transition
RAM

reg bank
TransitionTransition
reg bank

Transition
reg bank

In
pu

ts

Pass
Score stage Score stage Score stage

Control signals Control signals Control signals
Divergence stage Divergence stage Divergence stage

PE 1 PE 2
Intermediate result FIFOs (score and divergences)

B vector
unit

C vector
unit

O
u

tp
u

ts

Emission
RAM

Transition
RAM

PE n

Figure 7: Block diagram of the accelerator architecture.

An input multiplexer had to be included to choose
between initialization data for the first pass and intermediate
data coming from the FIFOs for the other passes.

A transition register bank had also to be included to store
the 9 transition probabilities used concurrently by the PE.
This bank is loaded in 5 clock cycles by a small controller
inside the transition block RAM memory. Figure 7 shows a
general diagram of the architecture.

As illustrated in Figure 7, the PE consists of a score stage
which calculates the M, I, D, and E scores and a Plan7-
Viterbi divergence stage which calculates the alignment limits
for the current sequence. Additional modules are included
for the B and C score vector calculations which were placed
outside the PE array in order to have an easily modifiable and
homogeneous design.

5.1. Score Stage. This stage calculates the scores for the M, I,
D, and E states of the simplified Viterbi algorithm (without
the J state). Each PE represents an individual HMM node,
and calculates the scores as each element of the sequence

passes through. The PE’s inputs are the scores calculated
for the current element in a previous HMM node, and the
PE’s outputs are the scores for the current sequence element
in the current node. The score stage of the PE uses (a)
16-bit saturated adders which detect and avoid overflow or
underflow errors by saturating the result either to 32767
or to −32768 and (b) modified maximum units which not
only return the maximum of its inputs but also the index of
which of them was chosen. Finally, the score stage consists
also of 8 16-bit registers used to store the data required by
the DP algorithm to calculate the next cell of the matrix.
Figure 8 shows the operator diagram of the score stage. The
4-input maximum unit was implemented in parallel in order
to reduce the critical path of the system and thus increase the
operating frequency.

5.2. Plan7-Viterbi Divergence Stage. This stage calculates the
alignment limits for the current query sequence element.
The stage inputs are the previous node alignment limits for
the current query sequence element, and the outputs are

International Journal of Reconfigurable Computing 9

M(i, j − 1) tr(Mj − 1,Mj)

B(i)
I(i, j − 1)

D(i, j − 1)

E (i, j − 1)

tr(I j − 1,Mj)

tr(Dj − 1,Mj)

tr(Mj− 1,Dj)

tr(Dj − 1,Dj)

M(i− 1, j)

I (i− 1, j)

D (i− 1, j)

E (i− 1, j)

+

+

+

+

+

+

+

+

+

+

+

M
ax

M
ax

M
ax

M
ax

tr(Mj,E)

SelM

Sel I

SelD

SelE

tr(B,Mj)

tr(Mj , Ij)
tr(Ij, Ij)

B(i− 1)

Figure 8: Score stage for the architecture’s PE.

the calculated alignment limits for the current element. The
outputs depend directly on the score stage of the PE and
are controlled by the SelM , SelI , SelD, and SelE signals. The
divergence stage also requires the current sequence element
index, in order to calculate the alignment limits. Figure 9
shows the Plan7-Viterbi-DA implementation for the M and
E states.

Figures 10 and 11 show the Plan7-Viterbi-DA imple-
mentation for the I and D states, respectively. The Base J
parameter is the position of the PE in the systolic array,
and the #PE parameter is the total number of PEs in
the current system implementation. These parameters are
used to initialize the divergence stage registers according to
the current pass and ensure that the limits are calculated
correctly. The divergence stage is composed of (a) 2 input
maximum and minimum operators, (b) 4 and 2 input
multiplexers, in which the selection lines are connected to
the control signals coming from the score stage, and (c) 16-
bit registers, which serve as temporal storage for the DP data
that is needed to calculate the current divergence DP cell.

5.3. B and C Score Vector Calculation Units. The B score
Vector calculation unit is in charge of feeding the PE array
with the B score values. This module is placed left of the
first PE, and it is connected to the B(i−1) input of it. It
has to be initialized for the first iteration with the tr(N,B)
transition probability for the current profile HMM by the
control software. For other iterations, it adds the tr(N,N)
probability to the previous values and feeds the output to the

first PE. As discussed in Sections 2 and 4, the Plan7-Viterbi-
DA does not generate modifications to the B calculation unit.
Figure 12 shows its hardware implementation.

The C calculation unit is in charge of consuming the E
output provided by the last PE of the array and generating
the output similarity score for the current element of the
query sequence (the score for the best alignment up to this
sequence element). Since the Plan7-Viterbi-DA introduces
the calculation of the limits for the best alignment in this
state of the Viterbi algorithm, the score stage of the C unit
also delivers the control signal (SelC) for the multiplexers of
the divergence stage. Figure 13 shows the C state calculation
unit, including the score and divergence stages.

6. Proposed Performance Measurement

In order to assess the proposed architecture’s performance
we used two approaches. The first uses the cell updates per
second (CUPS) metric, which is utilized by the majority
of the previous works [3, 11, 13–16, 20] and measures the
quantity of DP matrix cells that the proposed architecture is
capable of calculating in one second. We chose this metric
in order to compare the performance of our system to the
other proposed accelerators. The weakness of the CUPS
approach is that it does not consider the reprocessing time
and therefore the alignment generation for unaccelerated
software, providing an unrealistic measure of the achieved
acceleration when integrating the hardware to HMMER.

10 International Journal of Reconfigurable Computing

P
E

B
as

ej

Pass

M
ax

M
ax

M
in

M
in

M
u

x
M

u
x

M
u

x
M

u
x

M
u

x
M

u
x

+ −
i

i−

i− j

i− j

i−i− j

i−i

i

− j

i−i− j

i−i−i− j

i−i−i−i− j

IDM(i, j − 1)

IDI (i, j − 1)

IDD(i, j − 1)

IDE(i, j − 1)

SDM

SDI

SDD

SDE

(i, j − 1)

(i, j − 1)

(i, j − 1)

(i, j − 1)

IRM(i, j − 1)

IRI (i, j − 1)

IRD(i, j − 1)

IRE(i, j − 1)

SelM

SelE

SelM

SelE

SelM

SelE

i out

IDM(i− 1, j)

IDE (i− 1, j)

SDM(i− 1, j)

SDE (i− 1, j)

IRM(i− 1, j)

IRE (i− 1, j)

×

Figure 9: Divergence calculating stage for M and E states.

The second approach measures the execution times of
the unaccelerated software when executing a predefined set
of sequence comparisons. Then compares it to the execution
time of the accelerated system when executing the same set
of experiments, to obtain the real gain when integrating a
hardware accelerator and the Plan7-Viterbi-DA.

Let St be the total number of query sequences in the test
set, Pt the total number of profile HMMs in the test set, ts(i, j)
the time the unaccelerated hmmsearch takes to compare the

query sequence Si to the profile HMM Pj , trep(i, j) the time
the Plan7-Viterbi-DA takes to reprocess the significant query
sequence Si and the profile HMM Pj , tcon(i, j) the time spent
in communication and control tasks inside the accelerated
system, and th(i, j) the time the hardware accelerator takes to
execute the comparison between the query sequence Si and
the profile HMM Pj .

Then (5), (6), and (7) show the total time spent by
unaccelerated HMMER (Tss), the total time spent by the

International Journal of Reconfigurable Computing 11

IDM(i− 1, j)

IDI (i− 1, j)
IDI (i− 1, j)

SDM(i− 1, j)

SDI (i− 1, j)
SDI (i− 1, j)

IRM(i− 1, j)

IR I (i− 1, j)
IR I (i− 1, j)

M
ax

M
ax

M
in

M
in

M
u

x

M
u

x
M

u
x

i−i− j

i−i− j

i−i− j

i−i− j

SelI

SelI

SelI

Figure 10: I state divergence calculating stage.

accelerated system (Tsa), and the achieved performance gains
(G). The times ts(i, j), th(i, j), trep(i, j), and tcon(i, j) are obtained
directly from HMMER, the implemented accelerator, and
the software implementing the Plan7-Viterbi-DA and will be
shown in the following sections:

Tss ←−
St∑

i=1

Pt∑

j=1

ts(i, j), (5)

Tsa ←−
St∑

i=1

Pt∑

j=1

(
th(i, j) + trep(i, j) + tcon(i, j)

)
, (6)

G←− Tss

Tsa
. (7)

7. Experimental Results

The proposed architecture not only enhances software
execution by applying a pre-filter to the HMMER software
but also provides a means to limit the area of the DP
matrices that needs to be reprocessed, by software, in the
case of significant sequences. Because of this, the speedup
of the solution must be measured by taking into account
the performance achieved by the hardware pre-filter as well
as the saved software processing time by only recalculating
the scores inside the alignment region. Execution time is
measured separately for the hardware by measuring its
real throughput rate (including loading time and interpass
delays) and for software by computing the savings when
calculating the scores and the alignment of the divergence-
limited region of the DP matrices (Figure 3).

Experimental tests were conducted over all the 10340
profile HMMs for the PFam-A protein database [2]. Searches
were made using 4 sets of 2000 randomly sampled protein
sequences from the UniProtKB/SwissProt protein database
[1] and only significantly scoring sequences were considered
to be reprocessed in software. To find out which sequences
from the sequence set were significant, we utilized a user-
defined threshold and relaxed it to include the greatest
possible number of sequences [11]. The experiments were
done several times to guarantee the repeatability of them and
the stability of the obtained data.

7.1. Implementation and Synthesis Results. The complete
system was implemented in VHDL and mapped to an Altera
Stratix II EP2S180F1508C3 device. Several configurations
were explored to maximize the number of HMM nodes,
the number of PEs, and the maximum sequence length.
In order to do design space exploration, we developed a
parameterizable VHDL code, in which we can modify the PE
word size, the number of PEs of the array, and the size of the
memories.

For the current implementation, we obtained a max-
imum frequency of 67 MHz after constraining the design
time requirements in the Quartus II tool to optimize the
synthesis for speed instead of area. Further works will
include pipelining the PE to achieve better performance
in terms of clock frequency. Table 3 shows the synthesized
configurations and their resource utilization.

7.2. Unaccelerated HMMER Performance. To measure the
hmmsearch performance in a typical work environment

12 International Journal of Reconfigurable Computing

IDM(i, j − 1)

IDD(i, j − 1)

SDM

SDD

(i, j − 1)

(i, j − 1)

IRM(i, j − 1)

IRD(i, j − 1)

M
ax

M
ax

M
in

M
in

M
u

x

M
u

x
M

u
x

i−i−i− j

i−i−i− j

i−i−i− j

i−i−i− j

SelD

SelD

SelD

IDD (i− 1, j)

SDD (i− 1, j)

IRD (i− 1, j)

Figure 11: D state divergence calculating stage.

tr(N ,B)
Load

B(i)tr(N ,N)

+

Figure 12: B score vector calculation unit (see Section 2).

tr(C ,C)
+

+
tr(E,C)

Score stage

Divergence stage

M
ax

M
u

x

M
u

x
M

u
x

M
u

x

E(i, k)

IDE(i, k) SDE(i

i

, k)

IRE(i, k)

IDC out SDC out

FRC outIRC out

SelC

SelC SelC

SelCSelC

Cout

Figure 13: C vector calculation unit.

International Journal of Reconfigurable Computing 13

Table 3: Area and performance synthesis results.

NO. of
PEs

Max.
passes

Max. HMM
nodes

Max. sequence
size

Combinational
ALUs

Dedicated
registers

Memory bits % Logic
Max. clock frequency

(MHz)

25 25 625 8192 31738 18252 2609152 25 71

50 25 1250 8192 59750 35294 3121152 49 71

75 25 1875 8192 93132 52520 3663152 75 69

85 27 2295 8192 103940 59285 5230592 84 67

h
m
m
se
ar
ch

ex
ec

u
ti

on
 t

im
es

 (
s)

Total execution time

execution time

Estimated execution times
(regression results)

TraceBack routine
execution time

hmmsearch execution times versus DP cells

Plan 7-Viterbi routine

sequence elements (DP cells)

80

70

60

50

40

30

20

10

0

−10
0 2 4 6 8 10 12 14 16 ×108

profileHMM node number ∗

Figure 14: Unaccelerated hmmsearch performance for the test set.

we used a platform composed of an Intel Centrino Duo
processor running at 1.8 GHz, 4 GB of RAM memory, and
a 250 GB hard drive. HMMER was compiled to optimize
execution time inside a Kubuntu Linux distribution. We also
modified the hmmsearch program in order to obtain the
execution times only for the Viterbi algorithm, as it was our
main target for acceleration.

The characterization of HMMER was done by executing
the entire set of tests (4 sets of 2000 randomly sampled
sequences compared against 10340 profile HMMs) in the
modified hmmsearch program. This was done to obtain an
exact measure of the execution times of the unaccelerated
software and to make its characterization when executing in
our test platform. Figure 14 shows the obtained results for
the experiments.

The line with triangular markers represents the total
execution time of the hmmsearch program including the
alignment generation times, the line with circular markers
represents the execution time only for the Viterbi algorithm,
the line with square markers represents the time consumed
by the program when generating the alignments, and the
line with the plus sign markers corresponds to the expected
execution times obtained via the characterization expression
shown in (8).

Let li be the number of amino acids in sequence Si and
let mj be the number of nodes in the profile HMM Pj . Then
the time to make the comparison between the profile HMM
and the query sequence (ts(i, j)) was found to be accurately
represented by (8) which was found by making a least-
squares regression on the data plotted in the circle-marked
line of Figure 14:

ts(i, j) ←− −1.3684∗ 10−18
(
mjli

)2
+ 4.3208∗ 10−8

∗
(
mjli

)
− 0.1160.

(8)

Even though we ran our tests with all the profile HMMs
in the PFam-A database [2], we chose to show results only for
6 representative profile HMMs that include the smallest and
the largest of the database, due to space limitations. Table 4
shows the estimated execution time obtained with (8) and its
error percentage when compared to the actually measured
execution times. We can calculate the number of average cell
updates per second (CUPS) as the total number of elements
of the entire data set sequences times the number of nodes
of the profiles in the set divided by the complete execution
time of the processing. We obtained a performance of 23.157
mega-CUPS for HMMER executing on the test platform.

7.3. Hardware Performance. We formulated an equation for
performance prediction of the proposed accelerator, taking
into account the possible delays, including systolic array data
filling and consuming, profile HMM probabilities loading
into RAM memories, and probability reloading delays when
switching between passes. In order to validate the equation’s
results, we developed a test bench to execute all the test sets.
I/O data transmission delays from/to the PC host were not
considered into the formula due to the fact that, in platforms
such as the XD2000i [23], data transmission rates are well
above the maximum required for the system (130 MBps).

Let mi be the number of nodes of the current HMM,
Sj the size of the current query sequence being processed,
n the number of PEs in hardware, f the maximum system
frequency, Thw the throughput of the system (measured in
CUPS), and th(i, j) the time the accelerator takes to process
one sequence set. Then Thw and th(i, j) are fully described
by (9) and (10), where 25n�mi/n	 are the number of cycles
spent loading the current HMM into memory, n are the array
filling number of cycles, (Sj + 6)�mi/n	 are the cycles spent
while processing the current sequence, 3 are the cycles spent
loading the special transitions, and S jmi are number of cells

14 International Journal of Reconfigurable Computing

Table 4: Modified hmmsearch performance results.

Sequence set elements
Number of HMM

nodes
Measured time (total)

Measured time
(Viterbi only)

Estimated time
(Viterbi only)

Error (%)

687406

788 23.40 23.28 22.871 1.75

10 0.40 0.35 0.1810 48.2

226 6.55 6.47 6.5635 1.42

337 9.85 9.8 9.8199 0.2

2295 74.49 64.09 64.6425 0.8

901 26.32 26.25 26.1199 0.4

697407

788 24.34 23.48 23.2158 1.12

10 0.47 0.41 0.1853 54.1

226 6.68 6.66 6.6602 0.003

337 9.88 9.83 9.9634 1.35

2295 78.87 62.89 65.5334 4.2

901 27.55 25.96 26.4938 2.05

700218

788 24.40 23.37 23.3082 0.264

10 0.42 0.38 0.1865 50.92

226 6.76 6.72 6.6873 0.486

337 10.26 9.84 10.0037 1.663

2295 81.23 62.25 65.7849 5.678

901 27.41 26.33 26.5989 1.021

712734

788 25.42 24.03 23.7193 1.293

10 0.42 0.37 0.1919 48.13

226 6.82 6.77 6.8083 0.565

337 10.09 10.01 10.1832 1.730

2295 81.07 63.81 66.8985 4.840

901 27.46 26.82 27.0665 0.919
∗

Execution times are all expressed in seconds.

that the unaccelerated algorithm will have to calculate to
process the current sequence with the current HMM:

Thw

=
∑#Seqs

i=1

∑#HMMs
j=1 Simj

∑#HMMs
j=1

[(∑#Seqs
i=1 (Si + 6)

⌈
mj/n

⌉)
+ 25n

⌈
mj/n

⌉
+ n− 2

]

∗ f ,
(9)

th(i, j) =
(Si + 6)

⌈
mj/n

⌉
+ 25n

⌈
mj/n

⌉
+ n− 2

f
. (10)

We made the performance evaluation for the 4 proposed
systolic PE arrays (25, 50, 75, and 85 PEs) and found out that
the two characteristics that greatly influence the performance
of the array are the quantity of PEs implemented in the
array and the number of nodes of the profile HMM we are
comparing the sequences against.

Table 5 shows the obtained performances for all the array
variations when executing the comparisons for our 4 sets of
sequences against the 6 profile HMM subsets. The best result
for each case is shown in bold. From the table we can see
that performance increases significantly with the number of

implemented PEs. Also we can observe that the system has
better performance for profile HMMs whose node number
is an exact multiple of the array node number. This is due to
the fact that, when a PE does not correspond to a node inside
the profile HMM, its transition and emission probabilities
are set to minus infinity in order to stop that PE to modify
the previously calculated result and only forward that result,
thus wasting a clock cycle and affecting performance.

Figures 15 and 16 show the variations in the accelerator
performance with the implemented PE number and the
profile HMM node number, as seen from the experimental
results.

From Figure 16 we can see that, as the performance
varies according with profile HMM node number, there is an
envelope curve around the performance data which shows
the maximum and minimum performances of the array
when varying the number of the HMM nodes.

7.4. Reprocessing Stage Performance (with Plan7-Viterbi-DA).
When aligning different sequences with profile HMMs it
is unlikely to find two alignments that are equal. Due to
this fact, we cannot predict beforehand what will be the
performance of the reprocessing stage as the divergence
limits for every alignment are likely to be different. To make

International Journal of Reconfigurable Computing 15

Table 5: Hardware performance results.

Sequence set
elements

Number of HMM
nodes

25 PEs 50 PEs 75 PEs 85 PEs

Thw

(GCUPS)
th (sec)

Thw

(GCUPS)
th (sec)

Thw

(GCUPS)
th (sec)

Thw

(GCUPS)
th (sec)

687406

788 1.7468 0.3101 3.4903 0.1552 4.9293 0.1068 5.4203 0.0971

10 0.7093 0.0097 0.7086 0.0097 0.6880 0.0097 0.6877 0.0097

226 1.6031 0.0969 3.2033 0.0485 3.8876 0.0388 5.1815 0.0291

337 1.7075 0.1357 3.4118 0.0679 4.6377 0.0485 5.7949 0.0388

2295 1.7695 0.8915 3.5358 0.4462 5.0942 0.3010 5.8468 0.2622

901 1.7274 0.3586 3.3607 0.1843 4.7691 0.1262 5.6341 0.1068

697407

788 1.7468 0.3146 3.4904 0.1574 4.9295 0.1083 5.4205 0.0985

10 0.7093 0.0098 0.7086 0.0098 0.6880 0.0099 0.6877 0.0099

226 1.6031 0.0983 3.2033 0.0492 3.8878 0.0394 5.1817 0.0296

337 1.7075 0.1376 3.4119 0.0689 4.6379 0.0492 5.7952 0.0394

2295 1.7695 0.9045 3.5359 0.4527 5.0944 0.3053 5.8471 0.2660

901 1.7274 0.3638 3.3608 0.1870 4.7693 0.1280 5.6344 0.1084

700218

788 1.7468 0.3159 3.4905 0.1581 4.9296 0.1088 5.4206 0.0989

10 0.7093 0.0099 0.7086 0.0099 0.6880 0.0099 0.6877 0.0099

226 1.6031 0.0987 3.2034 0.0494 3.8878 0.0396 5.1818 0.0297

337 1.7075 0.1382 3.4120 0.0692 4.6379 0.0494 5.7953 0.0396

2295 1.7695 0.9081 3.5359 0.4545 5.0945 0.3066 5.8472 0.2671

901 1.7274 0.3652 3.3608 0.1877 4.7693 0.1286 5.6345 0.1088

712734

788 1.7468 0.3215 3.4906 0.1609 4.9298 0.1107 5.4209 0.1007

10 0.7093 0.0100 0.7086 0.0101 0.6880 0.0101 0.6878 0.0101

226 1.6031 0.1005 3.2035 0.0503 3.8880 0.0403 5.1821 0.0302

337 1.7075 0.1407 3.4121 0.0704 4.6382 0.0503 5.7956 0.0403

2295 1.7695 0.9244 3.5360 0.4626 5.0947 0.3120 5.8475 0.2719

901 1.7274 0.3718 3.3609 0.1911 4.7696 0.1308 5.6348 0.1108

A
cc

el
er

at
or

 p
er

fo
rm

an
ce

 (
G

C
U

P
S)

Number of implemented PEs

Profile HMM with

Performance versus PE number

10 nodes
226 nodes
337 nodes

788 nodes
901 nodes
2295 nodes

6

5

4

3

2

1

0
20 30 40 50 60 70 80 90

Figure 15: Performance versus number of PEs relation.

A
cc

el
er

at
or

 p
er

fo
rm

an
ce

 (
G

C
U

P
S)

ProfileHMM node number

Array with

Accelerator performance versus ProfileHMM node number

25 PEs
50 PEs

75 PEs
85 PEs

6

5

4

3

2

1

0
0 500 1000 1500 2000 2500

Figure 16: Performance versus number of HMM nodes envelope
curves.

16 International Journal of Reconfigurable Computing

Table 6: Second-stage performance estimations.

Sequence set elements Number of HMM nodes
Entire sequence set
processing time in

unaccelerated HMMER (sec)

Significant sequences
reprocessing time with

prefilter and unaccelerated
HMMER (sec)

Divergence accelerated
significant sequences

reprocessing time (sec)

687406

788 23.40 0.234 0.0515

10 0.40 0.004 0.0009

226 6.55 0.0655 0.0144

337 9.85 0.0985 0.0217

2295 74.49 0.7449 0.1639

901 26.32 0.2632 0.0579

697407

788 24.34 0.2434 0.0535

10 0.47 0.0047 0.001

226 6.68 0.0668 0.0147

337 9.88 0.0988 0.0217

2295 78.87 0.7887 0.1735

901 27.55 0.2755 0.0606

700218

788 24.40 0.244 0.0537

10 0.42 0.0042 0.0009

226 6.76 0.0676 0.0149

337 10.26 0.1026 0.0226

2295 81.23 0.8123 0.1787

901 27.41 0.2741 0.0603

712734

788 25.42 0.2542 0.0559

10 0.42 0.0042 0.0009

226 6.82 0.0682 0.015

337 10.09 0.1009 0.0222

2295 81.07 0.8107 0.1784

901 27.46 0.2746 0.0604

an estimate of the performance of the second stage, we made
a study in which we executed the comparison of the 20 top
profile HMMs from the PFam-A [2] database with our 4 sets
of query sequences to obtain both the similarity score and
the divergence data for them. Then we built a graph plotting
the similarity score threshold and the number of sequences
with a similarity score greater than the threshold. From this
graph we learned that less than 1% of the sequences were
considered significant, even relaxing the threshold to include
very bad alignments. With this information, we plotted the
percentage of the DP matrices that the second stage of
the system will have to reprocess in order to find out the
worst case situation and make our estimations based on it.
From Figure 17 we can see that, for the experimental data
considered, in the worst case the divergence region only
corresponds to 22% of the DP matrices.

To obtain the second-stage performance estimations for
HMMER (trep(i, j) in (6)), we obtained the percentage of
significant sequences (ps), multiplied it by the worst case
percentage of the DP matrices that the second stage has
to reprocess in order to generate the alignment (pc), and
then we multiplied it by the time the program hmmsearch
takes to do the whole query sequence (Si) comparison with
a profile HMM (Pj). Equation (8) shows the expression

used to estimate the performance for the second stage.
Table 6 presents the obtained results and also shows the
comparison between the times the second stage will spend
reprocessing the significant sequences with and without
the Plan7-Viterbi-DA. As shown in Table 6, we obtained a
performance gain up to 5 times only in the reprocessing
stage.

t(reg(i, j)) = t ∗ ps ∗ pc (11)

7.5. Total System Performance. In Section 6, we proposed
two approaches to evaluate the performance for the system.
For the first approach based in CUPS, we obtained a
maximum system performance of up to 5.8 GCUPS when
implementing a system composed by 85 PEs. This gives
us a maximum gain of 254 times over the performance of
unaccelerated HMMER software. For the second approach,
as we obtained the individual processing times for every
stage of the execution, we can determine the overall system
performance by applying (6) to the results obtained in
Tables 5 and 6. When including the Plan7-Viterbi divergence
reprocessing stage, we got a maximum gain of up to
182 times the unaccelerated software, which still means a
significant gain when comparing to unaccelerated HMMER.
Table 7 presents the total execution time of the system and

International Journal of Reconfigurable Computing 17

Table 7: Total system performance and obtained performance gains.

Sequence set
elements

Number of HMM
nodes

Prefilter hardware
execution time (sec)

Divergence
second-stage

execution time (sec)
Total time (tsa(i, j))

Unaccelerated
HMMER execution

time (sec)

Obtained
gain

687406

788 0.0971 0.0515 0.1486 23.40 157.4697

10 0.0097 0.0009 0.0106 0.40 37.7358

226 0.0291 0.0144 0.0435 6.55 150.5747

337 0.0388 0.0217 0.0605 9.85 162.8099

2295 0.2622 0.1639 0.4261 74.49 174.8181

901 0.1068 0.0579 0.1647 26.32 159.8057

697407

788 0.0985 0.0535 0.152 24.34 160.1316

10 0.0099 0.001 0.0109 0.47 43.1193

226 0.0296 0.0147 0.0443 6.68 150.7901

337 0.0394 0.0217 0.0611 9.88 161.7021

2295 0.2660 0.1735 0.4395 78.87 179.4539

901 0.1084 0.0606 0.169 27.55 163.0178

700218

788 0.0989 0.0537 0.1526 24.40 159.8952

10 0.0099 0.0009 0.0108 0.42 38.8889

226 0.0297 0.0149 0.0446 6.76 151.5695

337 0.0396 0.0226 0.0622 10.26 164.9518

2295 0.2671 0.1787 0.4458 81.23 182.2118

901 0.1088 0.0603 0.1691 27.41 162.0934

712734

788 0.1007 0.0559 0.1566 25.42 162.3244

10 0.0101 0.0009 0.011 0.42 38.1818

226 0.0302 0.015 0.0452 6.82 150.885

337 0.0403 0.0222 0.0625 10.09 161.44

2295 0.2719 0.1784 0.4503 81.07 180.0355

901 0.1108 0.0604 0.1712 27.46 160.3972

Significant sequences/1000
DP matrices percentage needing to be reprocessed

Similarity score threshold

25

20

15

10

5

0
−2 −1 0 1 2 3 4 ×105

Figure 17: Number of significant sequences and DP percentage that is required to reprocess in software versus similarity score threshold.

18 International Journal of Reconfigurable Computing

Table 8: Related work and comparison with our solution.

Reference
Number of

PEs
Max. number of

HMM nodes
Max. sequence

size

Complete
Plan7-Viterbi

algorithm
Clock (MHz)

Performance
(GCUPS)

Gain FPGA

[3] 68 544 1024 N 180 10 190 Xilinx Virtex II 6000

[13] 90 1440 1024 N 100 9 247 Xilinx 2VP100

[11] 50 — — N 200 5 to 20 — Not Synthesized

[14] 72 1440 8192 N 74 3.95 195 XC2V6000

[15] 10 256 — Y 70 7 300 XC3S1500

[16] 50 — — N 66 1.3 50 Xilinx Spartan 3 4000

[20] 25 — — Y 130 3.2 56.8 Xilinx Virtex 5 110-T

Our work 85 2295 8192 N 67 5.8
254

(182∗)
Altera Stratix II

EP2S180F1508C3
∗

Including significant sequences reprocessing times.

shows the obtained performance gains. The table presents a
summary of the execution time for each individual part of
the system and calculates the performance gains with respect
to the unaccelerated HMMER by applying (6).

Table 8 shows a brief comparison of this work with
the ones found in the literature. We support longest test
sequences and bigger profiles when compared with most
works. As we include the divergence stage, we have to pay
an area penalty, which limit the maximum number of PEs
when compared with [13] and can affect the performance
of the system. Nevertheless, we obtain additional gains
from the divergence, a fact that justify the area overhead.
Our architecture performs worse than complete Viterbi
implementations such as the one presented in [15], but these
cases are uncommon, and even if we relax the threshold for
a sequence to be considered significant, the inclusion of the
accelerator yields significant speedup.

8. Conclusions

In this paper, we introduced the Plan7-Viterbi-DA that
enables the implementation of a hardware accelerator for the
hmmsearch and hmmpfam programs of the HMMER suite.
We proposed an accelerator architecture which acts as a pre-
filtering phase and uses the Plan7-Viterbi-DA to avoid the
full reprocessing of the sequence in software. We also intro-
duced a more accurate performance measurement strategy
when evaluating HMMER hardware accelerators, which not
only includes the time spent on the pre-filtering phase or the
hardware throughput but also includes reprocessing times
for the significant sequences found in the process.

We implemented our accelerator in VHDL, obtaining
performance gains of up to 182 times the performance
of the HMMER software. We also made a comparison of
the present work with those found in the literature and
found that, despite the increased area, we managed to fit
a considerable amount of PEs inside the FPGA, which are
capable of comparing query sequences with even the largest
profile HMM present in the PFam-A database.

For future works we intend to adapt the Plan7-Viterbi-
DA to a complete version of the Plan7-Viterbi algorithm

(including the J state) and make a pipelined version of the
PE architecture, in order to further increase the performance
gains achieved when integrating the array with the HMMER
software.

Acknowledgments

The authors would like to acknowledge the CNPq, the
National Microelectronics Program (PNM), the FINEP, the
Brazilian Millennium Institute (NAMITEC), the CAPES, and
the Fundect-MS for funding this work.

References

[1] The Universal Protein Resource—UniProt, June 2009, http://
www.uniprot.org/.

[2] Sanger’s Institute PFAM Protein Sequence Database, May
2009, http://pfam.sanger.ac.uk/.

[3] A. C. Jacob, J. M. Lancaster, J. D. Buhler, and R. D. Chamber-
lain, “Preliminary results in accelerating profile HMM search
on FPGAs,” in Proceedings of the 21st International Parallel and
Distributed Processing Symposium, (IPDPS ’07), Long Beach,
Calif, USA, March 2007.

[4] “HMMER: biosequence analysis using profile hidden Markov
models,” 2006, http://hmmer.janelia.org/.

[5] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison, Biological
Sequence Analysis Probabilistic Models of Proteins and Nucleic
Acids, Cambridge University Press, New York, NY, USA, 2008.

[6] R. Darole, J. P. Walters, and V. Chaudhary, “Improving MPI-
HMMER’s scalability with parallel I/O,” Tech. Rep. 2008-11,
Department of Computer Science and Engineering, University
of Buffalo, Buffalo, NY, USA, 2008.

[7] G. Chukkapalli, C. Guda, and S. Subramaniam, “SledgeHM-
MER: a web server for batch searching the Pfam database,”
Nucleic Acids Research, vol. 32, supplement 2, pp. W542–
W544, 2004.

[8] “HMMER on the sun grid project,” July 2009, http://www.psc
.edu/general/software/packages/hmmer/.

[9] D. R. Horn, M. Houston, and P. Hanrahan, “ClawHMMER: a
streaming HMMer-search implementation,” in Proceedings of
the ACM/IEEE Supercomputing Conference, (SC ’05), Novem-
ber 2005.

[10] GPU-HMMER, July 2009, http://www.mpihmmer.org/user-
guideGPUHMMER.htm.

International Journal of Reconfigurable Computing 19

[11] R. P. Maddimsetty, J. Buhler, R. D. Chamberlain, M. A.
Franklin, and B. Harris, “Accelerator design for protein
sequence HMM search,” in Proceedings of the 20th Annual
International Conference on Supercomputing (ICS ’06), pp.
288–296, New York, NY, USA, July 2006.

[12] “BLAST: Basic Local Alignment Search Tool,” September 2009,
http://blast.ncbi.nlm.nih.gov/.

[13] K. Benkrid, P. Velentzas, and S. Kasap, “A high performance
reconfigurable core for motif searching using profile HMM,”
in Procedings of the NASA/ESA Conference on Adaptive Hard-
ware and Systems (AHS ’08), pp. 285–292, Noordwijk, The
Netherlands, June 2008.

[14] T. F. Oliver, B. Schmidt, Y. Jakop, and D. L. Maskell,
“High speed biological sequence analysis with hidden Markov
models on reconfigurable platforms,” IEEE Transactions on
Information Technology in Biomedicine, vol. 13, no. 5, pp. 740–
746, 2009.

[15] J. P. Walters, X. Meng, V. Chaudhary et al., “MPI-HMMER-
boost: distributed FPGA acceleration,” Journal of VLSI Signal
Processing Systems, vol. 48, no. 3, pp. 223–238, 2007.

[16] S. Derrien and P. Quinton, “Parallelizing HMMER for hard-
ware acceleration on FPGAs,” in Proceedings of the Interna-
tional Conference on Application-specific Systems, Architectures
and Processors (ASAP ’07), pp. 10–17, Montreal, Canada, July
2007.

[17] L. Hunter, Artificial Intelligence and Molecular Biology, MIT
Press, 1st edition, 1993.

[18] D. Gusfield, Algorithms on Strings, Trees and Sequences: Com-
puter Science and Computational Biology, Cambridge Univer-
sity Press, 1997.

[19] L. R. Rabiner, “A tutorial on hidden Markov models and
selected applications in speech recognition,” Proceedings of the
IEEE, vol. 77, no. 2, pp. 257–286, 1989.

[20] Y. Sun, P. Li, G. Gu et al., “HMMer acceleration using systolic
array based reconfigurable architecture,” in Proceedings of the
ACM/SIGDA International Symposium on Field Programmable
Gate Arrays (FPGA ’09), p. 282, New York, NY, USA, May 2009.

[21] T. Takagi and T. Maruyama, “Accelerating hmmer search using
FPGA,” in Proceedings of the19th International Conference on
Field Programmable Logic and Applications (FPL ’09), pp. 332–
337, Prague Czech Republic, September 2009.

[22] R. B. Batista, A. Boukerche, and A. C. M. A. de Melo, “A
parallel strategy for biological sequence alignment in restricted
memory space,” Journal of Parallel and Distributed Computing,
vol. 68, no. 4, pp. 548–561, 2008.

[23] XtremeData Inc., July 2009, http://www.xtremedata.com/.

