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RESUMO 
 

A relação entre comportamento mecânico e hidráulico de meios porosos é objeto de estudo da 

geotecnia. Ferramentas numéricas são amplamente utilizadas para a solução de problemas 

que envolvem esses fenômenos. Há aplicação desse tipo de estudo na geomecânica de 

reservatórios de petróleo, que trata especificamente do comportamento hidromecânico das 

rochas-reservatório e dos fluidos em seu interior. Os modelos numéricos usualmente 

empregados na simulação de reservatórios adotam hipóteses simplificadoras que, geralmente, 

não implicam perdas na representatividade do modelo. Há casos, porém, em que as condições 

do problema exigem o desenvolvimento dessas hipóteses. O objetivo desta pesquisa foi 

definir uma formulação hidromecânica acoplada para análise do problema de compactação 

em reservatórios de petróleo considerando compressibilidade do fluido e dos sólidos. 

Conceitos de engenharia de reservatórios ajudaram a definir tendências de comportamento 

dos reservatórios. Estratégias de acoplamento e aspectos relacionados a modelos numéricos 

foram discutidos. Assim, a formulação foi definida, com solução detalhada das equações de 

equilíbrio e de conservação de massa. Essa formulação foi implementada no programa de 

elementos finitos ALLFINE e testada para casos de adensamento unidimensional e 

bidimensional. Foram feitas análises de sensibilidade para parâmetros mecânicos 

(compressibilidade do fluido e dos sólidos) e hidráulicos (variação da permeabilidade 

combinada com compressibilidade do fluido). As análises mostraram que para um fluido 

mais compressível, a poropressão é significativamente afetada, com retardo em sua 

dissipação durante o adensamento. Além disso, observou-se que tensões elevadas ampliam os 

efeitos da compressibilidade do fluido. Isso é extremamente relevante na geomecânica de 

reservatórios, considerando o nível de tensão a que os reservatórios, geralmente, estão 

submetidos. A compressibilidade dos sólidos também foi avaliada, mostrando-se importante 

para níveis de tensão elevados, com variação significativa do coeficiente de Biot. As análises 

para permeabilidade mostraram que sua variação não sofre influência da compressibilidade 

do fluido. Esses efeitos puderam ser separados, com definição da zona de influência de cada. 

Observou-se, ainda, a formação de regiões com baixa permeabilidade em camadas que 

adensaram mais rapidamente, alterando o fluxo. A formulação proposta é adequada para 

descrever os parâmetros estudados. Os efeitos de compressibilidade do fluido e dos sólidos 

foram simulados e analisados, oferecendo resultados significativos. 

PALAVRAS-CHAVE : geomecânica de reservatórios, reservatórios de petróleo, 

acoplamento hidromecânico, compressibilidade do fluido, compressibilidade dos sólidos. 
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ABSTRACT 
 

The mechanical and hydraulic behavior of porous media is studied in geotechnics. The 

solution of many geotechnical problems is performed using numerical modeling. This type of 

tool can be applied in reservoir geomechanics simulation, which comprises hydro-mechanical 

behavior analyses. The numerical model representation of reservoirs is usually simplified 

and, in certain cases, simplifications do not imply on losses in results and behavior 

prediction. However, some situations require more comprehensive approaches, with 

development of previously neglected conditions. The main objective of this research is to 

define a formulation for fully coupled hydro-mechanical analyses for compaction in 

petroleum reservoirs considering fluid and solids compressibility valid. This model can also 

be used for general application in geotechnics. Throughout this research, the concepts of 

reservoir engineering presented helped defining behavior tendencies of reservoirs. Also, 

coupling strategies and specific features for the numerical model were discussed. Then, the 

formulation was defined with a detailed description of equilibrium and mass conservation 

equations solution. This formulation was implemented in Finite Element program ALLFINE 

and tested for one and two-dimensional consolidation cases, with sensitivity analyses for 

mechanical (fluids and solids compressibility) and hydraulic parameters (permeability and its 

combined effect with fluid compressibility). Fluid compressibility analyses reveal that this 

consideration affects fluid pressure responses significantly, with a delay in fluid pressure 

dissipation during consolidation process. Also, high stress levels magnify fluid 

compressibility effects. This is extremely relevant for reservoir engineering, considering the 

stress level to which reservoirs are usually subjected. Solids compressibility is also evaluated. 

Values of Biot’s coefficient change significantly when high stress levels are imposed, 

highlighting the importance of considering solids compressibility in these cases. Permeability 

analyses showed that permeability variation is not influenced by fluid compressibility. These 

effects can be separated, being possible to define their influence range. Another effect is the 

formation of low-permeability zones for layers the consolidation process occurs faster, 

altering fluid flow. The proposed formulation is adequate to describe the studied parameters. 

The effects of fluid and solids compressibility could be simulated and thoroughly analyzed in 

this research, providing remarkable results for reservoir geomechanics simulation. 

 

KEYWORDS : reservoir geomechanics, petroleum reservoirs, hydro-mechanical coupling, 

fluid compressibility, solids compressibility. 
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1 INTRODUCTION 

1.1 THEME CONTEXTUALIZATION AND MOTIVATION 

Peculiar features characterize a petroleum reservoir. The fluids within this porous 

medium, oil, water and gases, create behavior conditions quite unique, which stimulate 

researches related to petroleum reservoirs. 

In reservoir geomechanics, there are many study fields in order to better understand 

physical properties and behavior of a petroleum reservoir. Some of them are (Samier & De 

Gennaro, 2007; Pereira, 2007): 

• Geological storage and petroleum production fluid reinjection; 

• Tide effects analysis in mechanical properties of a reservoir; 

• Constitutive modeling for reservoir rocks; 

• Fault reactivation; 

• Compaction and subsidence. 

In reservoir geomechanics, compaction is the gradual closing of reservoir rock pores 

due to an increase in effective stress, consequence of fluid pressure decrease during oil 

production. Subsidence corresponds to the collapse of superficial zones above the reservoir 

which has suffered compaction. 

When the first oil fields started to being monitored, data of surface displacements have 

been registered, indicating that during oil production some kind of phenomenon took place 

and induced surface subsidence. There are registered data of known petroleum fields in which 

the displacements reached 4,3 m. This magnitude of displacements may damage equipments 

used during oil production process, altering their performance. 

These displacements may also affect oil recovery rates. The pore volume reduction may 

influence oil recovery in two ways. Depending on how pore closing occurs, oil can be 

trapped within the voids of the reservoir rock, decreasing recovery rate. Another possibility is 

that the oil is forced out of the pores, increasing oil production rate. 

Considering the presented issues, engineers and technicians have realized the need of 

modeling and simulation in order to perform prediction analyses for petroleum reservoirs. 

However, representing a complex medium such as petroleum reservoirs may be 

difficult. The stress state of the rock, the fluid pressure, the peculiarities of the fluids within 

the rock, all this influence the responses obtained with reservoir simulation. Representing all 

these variables and parameters may be difficult and the evolution of the type of performed 
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analyses for petroleum reservoirs led researchers to developing more accurate prediction 

methods. 

Numerical modeling may be an important ally in reservoir geomechanics. Studies of 

behavior prediction may help increase productivity of a reservoir, therefore being of great 

interest of the petroleum industry. 

In many cases, numerical modeling for reservoir geomechanics is restricted. There are 

many features involved in the studied problems, such as number of phases within the 

reservoir, pressure and temperature conditions, specific properties of the fluids and the rock 

(e.g., compressibility). The reproduction of all these variables is difficult and it may limit the 

possibilities of numerical simulations. 

Many simplifying hypotheses are made in typical reservoir geomechanics studies, such 

as considering the fluids within the reservoir incompressible. There are fluids in a petroleum 

reservoir which have a considerable level of compressibility, such as oil and gases. Therefore, 

considering these fluids incompressible may neglect hydro-mechanical effects which 

influence directly porous medium physical behavior. 

1.2 RESEARCH OBJECTIVES 

The main objective of this research is to define a fully coupled hydro-mechanical 

formulation considering fluid and solids compressibility valid. The proposed numerical 

model can be employed in compaction problems for petroleum reservoirs and it can also be 

used for general purpose applications in geotechnics, especially consolidation problems. 

The intention with this study is to verify the influence of fluid and solids 

compressibility and gradual void closure with fluid flow on the porous medium physical 

behavior. Some simplifying hypotheses are made in this research, such as considering the 

porous medium totally saturated with one type of fluid and in isothermal condition. 

The fluid compressibility mentioned as one of the main topics of study in this 

dissertation refers only to liquid fluids, not being related to gases theory. The focus of this 

research is to study the effect of liquid fluids compressibility in porous media physical 

behavior. Therefore, the simulations performed in this study consider only one liquid fluid 

within the porous medium. 

The specific objectives of this research are: 

• To implement the proposed mathematical formulation in the finite element program 

ALLFINE (Farias, 1993; Cordão Neto, 2005); 
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• To validate and calibrate this formulation through sensitivity analyses for mechanical and 

hydraulic parameters; 

• To verify the fluid compressibility (liquid) influence in physical behavior of porous 

media; 

• To verify the solids compressibility influence in physical behavior of porous media; 

• To compare the results of simulations performed with linear elastic model and modified 

Cam-clay during the sensitivity analyses; 

It is also important to highlight that the numerical model proposed and implemented in 

ALLFINE is the first step for future improvement of the software. In further research, this 

program will be enabled to simulate behavior of multiphase petroleum reservoirs with 

geomechanical and hydraulic coupling. 

1.3 OUTLINE OF THE DISSERTATION 

This dissertation is divided in 7 chapters: 

• Chapter 1 – a brief introduction is presented, with the contextualization of the studied 

problem and the main objectives of this research. 

 

• Chapter 2 – it contains a review of the concepts required for the development of this 

research, with an overview of researches concerning reservoir geomechanics, description 

of petroleum and reservoir features and physical properties. Then, the compaction is 

defined and discussed. 

 

• Chapter 3 – the formulation of the problem is introduced. The detailed deduction of this 

formulation is presented, with all assumptions and established conditions described. 

Then, a brief description of the constitutive models employed in the simulations is made. 

 

• Chapter 4 – two specific topics are covered in this chapter, coupling strategies and 

description of the program used for the implementation of the formulation and 

simulations. 

 

• Chapter 5 – tests for the mechanical parameters fluid and solids compressibility are 

performed for the proposed formulation, with simulation of two different cases. A 
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sensitivity analysis of these parameters is made in order to evaluate the degree of 

influence of each parameter in the hydro-mechanical behavior of porous media. 

 

• Chapter 6 – tests for a hydraulic parameter, permeability, are performed. A permeability 

function is established based on void ratio changes of the porous medium and a sensitivity 

analysis is made for incompressible and compressible fluids with two different 

constitutive models, linear elastic and modified Cam-clay. 

 

• Chapter 7 – a discussion with the conclusions over the reported topics through this 

research is presented, including the main results and suggestions for further research. 
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2 LITERATURE REVIEW 

The study of reservoir geomechanics is related to different application fields. In this 

dissertation, the main goal is the study of compaction problems. 

Compaction is defined as the gradual closing or collapse of the pores of the reservoir 

rock due to fluid pressure decrease and effective stress increase during oil production. 

The volume changes of the reservoir with the compaction process can induce 

displacements of the surface, known as subsidence. These concepts are thoroughly explained 

in section 2.5. 

Being the compaction a major concern in reservoir geomechanics, several studies have 

been made in order to clarify these problems. Therewith, the understanding of specific 

features of petroleum and the reservoirs becomes essential. 

This chapter contains the main concepts related to reservoir engineering, with a review 

of studies made in this area. Then, features regarding petroleum generation process, 

petroleum reservoir and its physical properties are discussed. Finally, compaction and 

subsidence problems are presented, with their features, their triggering mechanisms and the 

cases reported in literature. 

2.1 RESEARCH AND ADVANCES IN RESERVOIR GEOMECHANICS 

The first studies of compaction and subsidence performed in reservoir geomechanics 

were related to magnitude estimation of surface displacements. According to Geertsma 

(1973), there have been published some papers with information concerning the causes of 

surface subsidence. Some researches relating reservoir compaction and surface subsidence 

were performed, as well as studies to determine mechanical and hydraulic changes which 

may influence these phenomena. 

Settari (2002) defines compaction and the conditions for its occurrence, definitive for 

evaluating oil field exploitation viability. When these mechanisms are known, it is possible to 

estimate the oil reserves in a field, optimizing oil production. In this paper, it is also pointed 

out the importance of studies of coupled hydro-mechanical approaches in compaction 

analysis, making this type of technology used in large scale. 

Representing the rock, the fluids and the surroundings of the reservoir is necessary in 

order to evaluate reservoir physical behavior and its productivity. However, there are many 

factors involved in assembling an adequate model. 

Specific features of the fluids, such as its compressibility, viscosity, phase changes and 

gases release with pressure decrease, may be difficult to represent. These difficulties could be 
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related to computational limitations or even partial understanding of the physics of the 

problem. Either way, accurate models of petroleum reservoirs are difficult to be made and 

numerical analysis is not as representative as it should be. 

Many authors highlight the importance of focusing on researches which could make 

possible a more appropriate representation of petroleum reservoirs. This would allow more 

precise predictions based on numerical modeling, with responses of recovery rate and surface 

displacements closer to the observed in oil fields. 

A proper way of representing mechanical and hydraulic phenomena in porous media is 

defining a coupled hydro-mechanical formulation. Thus, it is possible to visualize the 

responses in terms of displacements of the rock matrix and fluid pressure. This allows a better 

understanding of the problem, being possible to portray the stress-strain state and the fluid 

flow through and out of the reservoir (Settari & Walters, 2001; Dean et al., 2006; Samier & 

De Gennaro, 2007). 

However, a fully coupled approach may be quite difficult to perform in terms of 

computational cost required to it. Therefore, other analysis options, such as iterative solving 

of the equilibrium and the flow equations, can be employed as alternative (Settari & Walters, 

2001). The results may not be as accurate as in a fully coupled approach, but are useful as 

response estimates. More information on coupling strategies is reported in chapter 4. 

Another significant aspect in numerical simulation of petroleum reservoirs are the 

constitutive models. There should be specific and appropriate models for the reservoir rock, 

in terms of stress-strain responses, for the fluids, in terms of compressibility, and for the 

fluid-rock interaction, in terms of saturation and permeability. Settari & Walters (2001) 

highlight the importance of defining the constitutive models adequately, making comparison 

of the rock behavior with a non-linear elastic model and an elastoplastic model (Drucker-

Prager failure criterion). 

In parallel, many studies in order to clarify the aspects involved during compaction and 

subsidence of a petroleum reservoir have been developed (Pastor, 2001; Falcão, 2002; Wan, 

2002; Dung, 2007; Pereira, 2007; Gomes, 2009). Authors have identified and studied many 

variables which may affect the mechanical and the hydraulic behavior of a reservoir during 

oil production. The mechanisms which could trigger compaction and subsidence have been 

discussed thoroughly. Many simulations have been performed as an attempt of refining the 

available numerical models in different softwares. Results from this type of research are still 

being collected and reported in literature, providing basis for the growth and development of 

new reservoir geomechanics studies. 
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Computational difficulties are nowadays the most significant barrier for numerical 

modeling in reservoir geomechanics, especially in compaction and subsidence simulation. 

Scientists and engineers study different options to develop accurate numerical simulation of 

petroleum reservoir for compaction and subsidence problems. The mechanical and the 

hydraulic aspects of the problem are considered, with its coupling taken into account. 

For representing an oil reservoir, the usual approach is based on biphase models. The 

formulation for this type of problem is complex due to the various factors which interfere in 

reservoir physical behavior (oil, water and gas flow, interaction among phases, pressure 

interference in fluid responses). 

Considering the difficulties inherent to this type of study, many simplifications are 

made in the formulations proposed for solution of these problems. The fluids within the 

porous medium, including oil, are considered incompressible. There are few researches in 

reservoir geomechanics in which the assumption of a significant compressibility of the fluid 

is made. Also, the compressibility of the solids is not taken into consideration in most 

researches. 

The study made by Jha (2005) presents some results of oil compressibility 

consideration in reservoir simulation, comparing model responses for different 

compressibility values. However, it is not the focus of his work and the consideration is not 

thoroughly explored. 

The study proposed in this research is an attempt of making the compaction problem 

more generalized, including specific properties of the oil and the porous medium in the 

coupled hydro-mechanical formulation. 

Considering fluid (liquids) and solids compressibility in a coupled hydro-mechanical 

analysis may alter the predicted oil recovery rate of a reservoir and its estimated 

displacements. This could contribute to a better understanding of the reservoir physical 

behavior during oil production, being this the main goal of this study. 

Taking into account the research context of reservoir geomechanics studies nowadays, 

it is important to define some concepts related to this area. Therefore, in the following 

sections, petroleum generation process, physical properties of reservoirs and specific topics 

regarding compaction and subsidence problems are presented. 

2.2 PETROLEUM GENERATION PROCESS 

Petroleum is derived from the sedimentary basins formation, with the settling of layers 

of organic and inorganic matter in seabed or lakes. Under proper conditions of temperature 
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and pressure, the organics decompose and form a mixture of hydrocarbons known as 

petroleum. Due to its sedimentary origin, petroleum is usually found in reservoir rocks such 

as sandstones, limestones and shales. 

Considering its process of generation, one can deduce that petroleum is composed of 

different organic chemicals, with small and large molecules. It is typical to have hydrocarbon 

gas (natural gas) or liquid (crude oil) depending on pressure and temperature conditions to 

which the reservoir is subjected. Larger-chained hydrocarbons form heavier fractions of 

petroleum and smaller chains, lighter fractions.  

A review of the behavior of petroleum organic compounds may be important to 

characterize this fluid (McCain Jr., 1933), defining properties like compressibility, viscosity 

and volatility, which influence flow through the reservoir directly. 

In a petroleum reservoir, there are pressure and temperature conditions to which the 

fluids are subjected. During petroleum production, the oil suffers pressure and temperature 

changes when going from the reservoir to the production well and later to the surface. 

Therewith, tendencies of behavior of the fluid may be established, as illustrated in Figure 2.1. 

In Figure 2.1 (a) and (b), the expansion of the liquid may be observed, only by the pressure 

decrease effect. In Figure 2.1 (b) and (c), there is vaporization of the liquid and in Figure 2.1 

(c) and (d), more expansion takes place, in this case, for both fluid phases. Finally, in Figure 

2.1 (e), there is temperature decrease, which has effects on fluids volume. 

The vaporization observed at a certain pressure level is justified by the bubble-point 

pressure concept, explained in details in section 2.3.1. 

 

     

(a) (b) (c) (d) (e) 

Figure 2.1 – Changes of pressure and temperature during petroleum recovery process 
(modified Rosa et al., 2006). 

The behavior of the fluid in certain pressure conditions highlights the great influence 

compressibility can have, justifying once more the proposed study. Again, it is important to 

liquid liquid
liquid

gas

liquid

gas gas

liquid
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highlight that this research comprises only the behavior of compressible liquid fluids, with no 

mention to gas phase. 

2.3 PETROLEUM RESERVOIRS 

Petroleum generation process is characterized by the layering of sediments create a 

geological formation quite porous, with decomposed organic matter (petroleum) intertwined 

with the rock. This is known as source rock (Dake, 1978). 

Specific features of petroleum, such as the density of its compounds, may induce the 

crude oil and the natural gases to migrate from the profound zones where the source rock is 

located to much shallower depths. The migration of petroleum is interrupted when a very low 

permeability zone is reached. Therewith, petroleum is trapped by cap rocks in porous zones 

of the rock matrix, the reservoir rocks. 

It is important to highlight that given the formation process of a reservoir, there are oil, 

gases and water in it, constituting the three-phased fluid system studied in reservoir 

geomechanics. 

Many aspects influence petroleum generation, inducing a great variability in the 

process. So reservoir fluid composition may differ, being some only composed by gas, other 

exclusively by oil. Defining the fluids in a reservoir allows the evaluation of proper 

numerical modeling to be employed and, at a later stage, the adequate techniques for 

petroleum exploitation. 

For that reason, there is a classification system for petroleum reservoirs, presented in 

the following section. In sequence, it is made a description of petroleum recovery processes. 

2.3.1 CATEGORIES OF PETROLEUM RESERVOIRS 

The variability in petroleum reservoir generation processes makes each reservoir 

unique, with different properties. Thus, it is essential to classify the different types of 

reservoirs. Categorizing helps on the definition of the requirements for performing numerical 

analysis. The fluids in the reservoirs, its different phases and coexistence reflect on the 

modeling and, therefore, this classification is necessary. Thus, each reservoir category may be 

described with proper physical models. 

A petroleum reservoir may be assorted in different ways, depending on many variables, 

such as (Ahmed, 2001): 

• The composition of the hydrocarbon mixture in the reservoir; 

• The initial conditions of pressure and temperature; 
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• Pressure and temperature of the surface production. 

Considering the fluids in a reservoir as a multicomponent system and also the pressure 

and the temperature conditions by which they may be influenced, it is convenient to express 

this system in a phase diagram, as shown in Figure 2.2. The fluids within a reservoir may be 

characterized with this pressure-temperature diagram (p-T diagram), which relates pressure 

and temperature conditions of these fluids. Therewith, the coexistence of phases and 

particular conditions of the fluids are defined. 

 

Figure 2.2 - Pressure-temperature diagram for a multicomponent system  
(modified Ahmed, 2001). 

 

Consequently, petroleum reservoirs may be grouped into categories given their phase 

composition. The temperature to which the reservoir is subjected reflects on this 

classification. If such temperature is lower than the critical temperature of the hydrocarbon 

fluid (Critical point - Figure 2.2), it is an oil reservoir. If such temperature is greater than the 

critical temperature of the hydrocarbon fluid, it is a gas reservoir (Ahmed, 2001). 

Pressure is also used to categorize petroleum reservoir. For such, some importance may 

be given to the bubble-point curve (Figure 2.2). In certain pressures, the gas which could be 

within the reservoir is completely dissolved in the crude oil. Therefore, it does not compose a 

continuous and movable phase. During the process of petroleum exploitation, pressure 

decreases in the reservoir and bubbles start to arise gradually in the oil. The pressure limit for 

the appearance of a gas phase (bubbles) in the reservoir is the bubble-point. The bubble-point 

pressure is a parameter used for classifying reservoirs in three categories: 

• Undersaturated reservoir: the initial reservoir pressure is greater than the bubble-point 

pressure; 

• Saturated reservoir: the initial reservoir pressure is equal to the bubble-point pressure; 
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• Gas-cap reservoir: the initial reservoir pressure is lower than the bubble-point pressure – 

there are two distinct, continuous and movable phases in the reservoir – gaseous phase 

and oil phase. 

The development of appropriate numerical models for representation of multiphase 

reservoirs is possible with the understanding of the conditions of pressure and temperature of 

a reservoir. 

Even though not very common in practice, the formulation developed and tested in this 

research is specific for a monophase reservoir (oil saturated reservoir, e.g.) in isothermal 

conditions. 

2.4 PHYSICAL PROPERTIES OF A PETROLEUM RESERVOIR 

In reservoir geomechanics, researches related to oil and natural gas production are 

developed. Maximizing the recovery rate is the main goal: greater production means quicker 

financial response. Therefore, studies regarding physical aspects of phenomena in oil and gas 

reservoirs are important. It is necessary to improve numerical modeling of reservoirs in order 

to predict reservoir behavior due to changes in stress-strain state. 

Foremost, characteristics of the reservoir must be established, not only for the reservoir 

rock itself, but also for the fluid and the fluid-rock interaction. 

There are some characteristics of fluid-rock interaction which must be considered in 

cases of a multiphase flow. For that reason, there are some specific features regarding 

multiphase reservoirs which will not be described in this review, taking into account this 

research focus, a monophase, oil-saturated reservoir. In the following section, the main 

aspects regarding reservoir features are presented. 

2.4.1 DENSITY AND VISCOSITY 

The fluids within the rock and the reservoir itself must be characterized to their 

behavior be properly represented in numerical models. The density is a basic feature 

commonly described for fluid and rock matrix. 

The density is defined as the ratio of mass to volume. Specifically for the solid 

particles, for the rock matrix, this ratio is: 

s
s

s

M

V
ρ =  (2.1) 

where: sρ  is the density of the solid particles, Ms is the mass of solids and Vs is the volume of 

solids. 
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The specific gravity Gs is a dimensionless variable also used to express the density of 

solid particles. It is a normalized value of solids density relative to water density. 

 s
s

w

G
ρ
ρ

=  (2.2) 

where: Gs is the specific gravity, sρ  is the density of the solid particles and wρ  is the density 

of the water. 

 

For a fluid within the rock, the density is defined as: 

f
f

f

M

V
ρ =  (2.3) 

where: 
fρ  is the density of the fluid, Mf is the mass of fluid and Vf is the volume of fluid. 

 

There are cases in which the rock is saturated with only one fluid. When this happens, 

the volume of fluid corresponds to the pore volume of the reservoir. 

It is important to highlight that the density of the fluid varies progressively with 

changes of pressure, determining the compressibility of the fluid. In general, the pressure 

variation rate is not significant and the density changes might be neglected in modeling. 

However, in some particular cases, like in petroleum reservoirs, the effects of pressure 

changes are greatly noticed and must be taken into account. The density of liquid fluids varies 

with pressure like expressed in Eq. (2.4) (Peaceman, 1977; Rosa et al, 2006): 

f f fd C dpρ ρ=
 

(2.4) 

where: 
fd ρ  is the differential of the density of the fluid, Cf is the fluid compressibility and 

dp is the differential of pressure. 

 

Another feature quite important in cases of oil reservoir analysis is the viscosity of the 

fluid. This property represents the resistance of the fluid to a shearing force. As well as the 

density, the viscosity of a fluid also depends on the pressure to which it is subjected. The 

temperature of the fluids influences its viscosity as well, decreasing as temperature increases 

(Fredlund & Radharjo, 1993). 

 In reservoir engineering, there are several empirical methods proposed for oil 

viscosity estimative. Usually, these methods determine a correlation between the oil viscosity 

and the API gravity of the crude oil. The API gravity is a parameter to compare the oil 

density to water density, given by the following expression: 
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where: µis the dynamic viscosity of the fluid and T is the reservoir temperature, in ºF. 

2.4.2 POROSITY 

In order to understand the behavior of the reservoir rock, porosity is one of the first 

features which should be defined. It refers to the reservoir volume that is empty or filled by 

fluids, particularly the pores of the solid matrix. There are two distinct types of porosity – the 

absolute and the effective porosity (Ahmed, 2001). 

The absolute porosity is attributed to all voids of the rock, presented in Figure 2.3. The 

effective porosity, however, it is related to the interconnected pores, as shown in Figure 2.4 

(b). This represents the preferential paths through which fluids can run. 

 

Figure 2.3 - Absolute porosity of a rock (Iglesias, 2009). 

 

 

(a) 

 

(b) 

Figure 2.4 – (a) Non-interconnected pores of a rock; (b) Interconnected pores of a rock 
(Iglesias, 2009). 
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2.4.3 ROCK COMPRESSIBILITY 

A quite relevant property is the compressibility of the rock. The reservoir rock is 

subjected to a stress state and fluid pressure, which adjust throughout petroleum recovery 

process. These variations may induce volume changes in the grains (solids), in the pores or 

even in the whole reservoir rock. The ratio between volume variation and stress/pressure 

changes defines rock compressibility. 

There are three categories of compressibility which can be distinguished in rocks (Rosa 

et al, 2006): 

• Compressibility of the rock matrix: it takes into account the fractional variation of the 

volume of solids of the rock with pressure changes; 

• Pore compressibility: it takes into account the fractional variation of the volume of the 

pores (voids) of the rock with pressure changes; 

• Total compressibility of the rock: it takes into account the fractional variation of the total 

volume of the rock (solids and voids) with pressure changes. 

In reservoir geomechanics, the most significant volume changes are those observed in 

the pores of the rock. This phenomenon characterizes the effective compressibility of the 

reservoir, described in Eq. (2.8). 

0

1
efC

p

φ
φ

∆=
∆

 (2.8) 

where: Cef is the effective compressibility of the rock, 0φ is the initial porosity of the rock, φ∆  

is the porosity variation and p∆  is the pressure variation. 

 

For reservoir geomechanics, this definition (Eq. (2.8)) is particularly important. Most of 

commercial softwares for reservoir geomechanics simulation use this equation to describe the 

porosity changes in terms of compressibility. 

Pore compressibility may be quite significant in shallow unconsolidated reservoirs, 

with values of 6,89 x 10-4/kPa being measured, for instance, in the Bolivar Coast fields in 

Venezuela. It is essential to consider the effects of pore compressibility in cases like this 

(Dake, 1978). 

2.4.4 WETTABILITY 

As already mentioned, petroleum is stored in highly porous layers, the reservoir rocks. 

The main features of the rock and the fluid-rock interaction must be specified in order to have 

the information required for reservoir modeling. 
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An important characteristic is wettability. This property concerns the contact angle 

between the solid matrix (surface) and the fluid. Intermolecular forces which connect the 

compounds of each petroleum liquid phase – crude oil and water – influence the fluid-rock 

interaction. In crude oil, fairly small intermolecular forces between hydrocarbon molecules 

make the oil-rock adherence minimum. Therewith, the contact angle of oil with the reservoir 

rock is null, distinguishing it as the non-wetting phase. The water phase found in the 

reservoir, on the other hand, adheres completely to the solid matrix, characterizing the 

wetting phase (Ahmed, 2001), as shown in Figure 2.5. 

 

 

 

Figure 2.5 – Water wettability (from internet). 

 

2.4.5 PERMEABILITY AND SATURATION 

Given the distinct fluids that may be within the pores of a petroleum reservoir, it is 

important to establish some aspects regarding permeability. 

Permeability is defined as the measure of transmissibility of a fluid in a porous 

medium. This measure may vary depending on the type of fluid, its viscosity and density. 

Therefore, in the same medium, the flow of different fluids occurs in different rates. This is 

particularly important for petroleum reservoirs in which, in general, there is more than one 

phase of fluid. 

There are three categories of permeability which can be determined in a given medium: 

absolute permeability, effective permeability and relative permeability. 

The absolute permeability of the reservoir rock is determined with an inert fluid, 

usually nitrogen or hydrogen gases, which saturates completely the intertwined pores. 

The effective permeability is a specific measure for the petroleum composing fluids. 

Therefore, the effective permeability of the oil, water and gas are determined for the reservoir 

rock. Finally, the relative permeability is a normalized ratio between the effective 

permeability for each fluid and the absolute permeability (Eqs. (2.9), (2.10) and (2.11)). 
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where: kro, krw, krg are the relative permeabilities of the oil, water and gases, respectively, ko, 

kw e kg are the effective permeabilities of the oil, water and gases and k is the absolute 

permeability. 

 

The distribution of the different fluids in the pores of the rock is important to define 

flow occurrence in a reservoir. Therefore, concepts regarding saturation are important and 

should be stated. 

The degree of saturation of a sample is related to the volume of fluid within the rock. 

The saturation may be established for the different fluids which compose petroleum – oil, gas 

and water – and this reflects directly on reservoir behavior. 
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where: So, Sw and Sg are the degrees of saturation for the oil, the water and the gases in the 

reservoir, respectively; Vo, Vw, Vg and Vv are the oil volume, the water volume, the gas 

volume and the pore volume of the reservoir, respectively. 

 

In order to flow being established through the reservoir, there is a minimum volume of 

fluid necessary. For this reason, defining the degree of saturation of each fluid within the rock 

is essential to understand how fluid flow occurs in the reservoir. There are three limit values 

which delineate what happens to each fluid, depending on its degree of saturation in a 

petroleum reservoir. For the oil phase, the following limits should be taken into account 

(Ahmed, 2001): 
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• Residual oil saturation: it is related to a volume of oil impossible to be removed from the 

pores of the reservoir rock; 

• Critical oil saturation: it is the minimum degree of saturation required to the occurrence of 

oil flow; 

• Movable oil saturation: it refers to any value of degree of saturation greater than the 

critical saturation. Therefore, in this case, the volume of oil in the reservoir is always 

more than the necessary to establish flow through the rock. 

There are some important phenomena dependent on the degree of saturation of the 

water and gases in the reservoir. It is necessary to define for those phases these two concepts 

(Ahmed, 2001): 

• Critical water saturation: this refers to the minimum water saturation at which the water 

phase remains immobile. This remaining water in the reservoir is also known as connate 

water, as shown in Figure 2.6; 

 

Figure 2.6 - Connate water in an oil reservoir (Iglesias, 2009). 

 

• Critical gas saturation: when a multiphase reservoir is subjected to high pressure (greater 

than the bubble-point pressure), the gases remain dissolved in the oil. Therefore, the gas 

does not form visible bubbles. When reservoir pressure declines above the bubble-point 

pressure, bubbles start to appear, but still do not form a movable phase. The critical gas 

saturation limit is reached when above it, gas begins to move, as illustrated in Figure 2.7. 

 

 

Figure 2.7 – Petroleum despressurization – movable gaseous phase formation  
(Iglesias, 2009). 
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The definition of the degree of saturation of the fluids in a reservoir is more significant 

for multiphase reservoir analysis. However, the critical gas saturation definition may be 

useful in order to visualize the compressibility of petroleum composing fluids. 

The basic concepts presented in this section are necessary to understand the behavior of 

a petroleum reservoir, making possible a more adequate numerical representation of this type 

of medium. 

2.5 GEOMECHANICAL IN RESERVOIRS: COMPACTION AND 

SUBSIDENCE 

The maximum productivity of a petroleum reservoir is the main goal in reservoir 

geomechanics. The process of oil recovery from a petroleum reservoir implies in fluid 

withdrawal from the rock, which causes fluid pressure decrease. This alters the stress-strain 

state of the rock and fluids within and these variations guide the production process. 

In reservoir geomechanics, many studies can be made in order to comprehend the 

physical behavior of the reservoir rock and the fluids within (Samier & De Gennaro, 2007; 

Pereira, 2007). The proper understanding of the reservoir behavior may help in future 

performance prediction. Therefore, the study of phenomena which may influence petroleum 

recovery rate is of great importance. 

In this section, some aspects regarding petroleum driving mechanisms and production 

processes are discussed, followed by a specific analysis of influence of the compaction and 

subsidence in petroleum recovery. 

2.5.1 PETROLEUM DRIVING MECHANISMS 

The process of petroleum recovery is greatly influenced by driving mechanisms of the 

fluids within the petroleum reservoir. These driving mechanisms are established due to 

energy provided to the reservoir, which controls flow mechanisms that ensure oil recovery. 

For a multiphase reservoir, there are basically six driving mechanisms necessary for oil 

recovery (Ahmed & McKinney, 2005): 

• Rock and liquid expansion drive; 

• Depletion drive; 

• Gas cap drive; 

• Water drive; 

• Gravity drainage drive; 

• Combination drive. 
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In the rock and liquid expansion drive mechanism, when oil recovery is initiated, with 

fluid pressure decrease, the fluids within the reservoir and the reservoir rock itself tend to 

expand due to their individual compressibility (sections 2.4.1 and 2.4.3). This causes 

reduction in pore volume, forcing the fluids out of the reservoir to the wellbore. 

The depletion drive mechanism is significant for undersaturated reservoirs. During the 

production process, pressure declines in the reservoir. When the bubble-point pressure is 

reached (section 2.3.1), gas bubbles are liberated within pore spaces of the rock. The bubbles 

gradually expand and force oil out of the pores. This mechanism takes place until critical gas 

saturation is reached. When this happens, free gas begins to flow toward the wellbore and 

vertically, forming a secondary gas cap. 

In a multiphase reservoir with a gas cap, the existent gases within the reservoir expand 

with pressure decrease and this also forces fluids out of the pores rocks, characterizing gas 

cap drive mechanism (Figure 2.8). This mechanism may be associated to dissolved gas 

liberation, like mentioned in depletion drive mechanism (Ahmed & McKinney, 2005). 

  

Figure 2.8 – Gas cap drive mechanism – (a) initial condition of the reservoir; (b) gas cap 
expansion and oil production (Ahmed & McKinney, 2005). 

In some cases, there is an aquifer underneath the reservoir. When fluids are extracted, 

water from the aquifer fills in the pores of the reservoir (Figure 2.9). Thus, during production 

process, it is not established a significant pressure decrease within the reservoir and oil 

withdrawal is much less productive. In some situations, it is also initiated water production, a 

non-profitable situation. The ideal is to minimize water and gas production, so oil recovery is 

maximized. 

 

Figure 2.9 – Water from aquifer filling oil reservoir (Ahmed & McKinney, 2005). 
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The gravity drainage drive mechanism is a result of the difference in densities of the 

fluids in a reservoir. With petroleum formation process and natural migration within the 

reservoir, the fluids are mixed. After a period of time, the fluids tend to separate, the more 

dense fluid settling to the bottom of the reservoir, the water. In this way, the fluids have been 

separated as a result of gravitational forces action. Considering the period involved in 

petroleum formation and migration processes, followed by the large time with no flow 

processes within the reservoir, i.e. before production, this system of fluids is assumed to be in 

equilibrium. It may be established then that the contacts between fluids are horizontal, as 

illustrated in Figure 2.10. 

 

Figure 2.10 – Initial fluids distribution in an oil reservoir (Ahmed & McKinney, 2005). 

 

The fluid segregation observed in this type of reservoir may contribute substantially to 

oil production. The fluids are separated in zones and this facilitates their recovery. 

Finally, the combined drive mechanisms are the most commonly observed during oil 

production. The combinations of different drive mechanisms usually present are: 

• Depletion drive and water drive; 

• Depletion drive with gas cap drive and water drive. 

It is important to highlight the special role of gravity drainage drive mechanism, which 

enhances oil recovery in most cases. 

The understanding of the physical behavior of the reservoir and the drive mechanisms 

of the fluids within is essential in order to predict reservoir behavior and production 

performance. 

2.5.2 PETROLEUM PRODUCTION PROCESSES 

Once a zone with petroleum is located, it is fundamental to study the initial conditions 

of pressure and temperature of the reservoir. Thus, it can be possible to define the appropriate 

method of petroleum recovery. It is necessary to study the aspects which may influence 

petroleum production in order to evaluate the profitability of the project. Different techniques 
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may be applied and, consequently, the appropriate one is chosen not only by physical aspects, 

but so by financial aspects (Chen et al, 2006). 

Petroleum recovery is made by drilling a well in the surface (land, seabed or bottom of 

lakes) to the reservoir. After this, there are three types of recovery processes which can be 

applied (Dake, 1978). 

The primary recovery takes place due to a pressure gradient between the reservoir and 

the well. Considering that the reservoir is under greater pressure than the well, the difference 

of pressure between them makes the fluids flow from the reservoir to the well, characterizing 

primary recovery. During this process, the internal pressure of the reservoir decreases and, 

consequently, the effective stress on the reservoir increases. This makes pore volume 

decrease, inducing the oil flow out of the reservoir. Another important aspect to consider is 

the fluid expansion given the decrease of pressure inside the reservoir. This also helps the 

extraction of crude oil and water from the reservoir (Rosa et al., 2006). 

During the continuous process of petroleum production, a stage of balance between the 

pressure in the well and in the reservoir is reached. When this is observed, it is required the 

development of a different method of petroleum recovery. Auxiliary methods might be 

needed to increase recovery rates if petroleum production becomes not sufficient in terms of 

financial response. 

The secondary and the tertiary petroleum recovery processes are based on the idea of 

increasing natural energy of the reservoir with fluid injection (Dake, 1978). This procedure 

forces petroleum to flow out of the reservoir, continuing its production and increasing 

recovery rate. The secondary and tertiary recovery procedures are methods which follow 

primary recovery. 

Secondary recovery refers to procedures of water flooding and water steam injection in 

the reservoir. This makes the gradient of pressure sufficient to induce oil flow out of the 

reservoir, increasing its recovery rate. 

Tertiary recovery process corresponds to procedures to recover residual oil within the 

reservoir, therefore being the last method employed to recover fluids from the reservoir. The 

type of injected fluids in this recovery process, carbonic gas, polymers or surfactants, is 

reactive to the water or the oil in the reservoir, triggering chemical and thermal effects. 

Changes in water viscosity or in oil miscibility can take place, affecting positively petroleum 

recovery rate. This type of recovery is used only when the secondary recovery is not possible 

(Dake, 1978). 
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The injection of other fluids could influence the simulation results for fluid pressure 

estimative. Therefore, in order to isolate the effects of fluid and solids compressibility, only 

primary recovery is considered in this research. Thus, the evaluation of compressibility 

effects on model responses is more accurately registered. 

2.5.3 COMPACTION AND SUBSIDENCE 

During the oil production, fluid pressure declines, inducing effective stress increase in 

the reservoir. With the load of overburdens, sideburdens and underburdens layers and 

pressure changes, processes of strain and rock matrix properties changing are observed. A 

gradual closing or collapse of the pores of the reservoir rock is established, characterizing the 

phenomenon known as compaction (Lewis et al, 2003; Pereira, 2007; Gomes, 2009). 

Volume reduction caused in compaction may induce surface displacements above the 

reservoir rock. This particular phenomenon is known as subsidence. Both compaction and 

subsidence are illustrated in Figure 2.11. 

 

Figure 2.11 - Compaction and subsidence in a petroleum reservoir (Pereira, 2007). 

 

The fluid pressure decrease during oil recovery is the cause of compaction and 

subsidence mechanisms. Depending on how pore closing takes place, oil might be trapped in 

the voids of the rock, making oil recovery rate decline. 

On the other hand, these phenomena may also enhance oil recovery through a process 

named compaction drive. During oil production, the stress-strain state changes induce 

collapse of the pores of the reservoir rock. This pore volume reduction forces fluids out of the 

voids of the rock. This process of pore closing increases the oil production rate, 

characterizing the compaction drive mechanism (Gomes, 2009). 

Compaction and subsidence occurrence is determined by the depth and the mechanical 

properties of the reservoir rock, the geometry of its burdens and the contrast between 

mechanical properties of the reservoir rock and its surroundings. 

SUBSIDENCE

COMPACTION
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In some cases, there are no significant losses in oil recovery specifically due to 

compaction and subsidence. Then subsidence may be admissible if it does not imply on great 

damage to the surface. However, other cases can induce different phenomena in the reservoir, 

such as fault reactivation, fracture propagation and damage to the production well (Gomes, 

2009). 

Some cases of compaction and subsidence are reported in literature and are briefly 

described in this section. 

2.5.3.1  BOLIVAR COAST (VENEZUELA) 

In this region, three oil fields have been affected by subsidence after three years 

production has started. Landmarks were installed in 1939 and periodic measures have been 

made in order to check subsidence evolution in the area. 

With a maximum displacement of the surface of 4,3 m in 1978, there was need of 

construction of dikes to prevent flooding of some areas. However, there were still some 

regions with inundation and the vegetation became submersed in all field extension. There 

have been reported damages in tubes and wells of the oil production area. 

Even though many losses have been reported in Bolivar coast, oil production has been 

enhanced due to reservoir compaction. Primary recovery was the main production technique 

employed in this region and a compaction drive mechanism has been established, 

contributing to a greater oil production rate. 

To avoid more structural damage in the platforms, water injection has been 

implemented, maintaining fluid pressure within the reservoirs and preventing from more 

subsidence. 

2.5.3.2  EKOFISK FIELD (NORWAY - NORTH SEA) 

This reservoir, located in the Norwegian sector of the North Sea, started to have 

subsidence registries in 1984. The measure displacement in 1989 was approximately 4,3 m, 

with predictions of 6,1 m for 2011. Studies in the area have proved that compaction 

mechanism was responsible for the surface displacements, as a result of fluid pressure decline 

during oil production (Lewis et al, 2003). The subsidence may be easily seen in Figure 2.12. 
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Figure 2.12 - Subsidence in Ekofisk field (Pereira, 2007). 

 

Due to the compaction and subsidence problem in this reservoir, oil production has 

reduced significantly and water injection procedures have been started in the area. This has 

induced a great increase in oil production rate. 

This procedure has controlled quite well the depletion mechanism in the reservoir. 

However, compaction has still taken place in the region at constant rates. It has been stated 

that the injected water reacted to the rock, causing its weakening and consequent compaction 

(Pereira, 2007). 

2.5.3.3  VALHALL FIELD (NORWAY - NORTH SEA) 

This is an offshore petroleum field with highly porous reservoir rocks, located in the 

norwegian sector of the North Sea, 190 km far from the coast. This field was discovered in 

1975 and its exploitation began in 1981 (Pereira, 2007). 

After three years of oil production, the measured values of pressure within the reservoir 

were lower than the expected given numerical predictions, suggesting that a specific 

phenomenon should be taking place in this field. In fact, in 1986, satellites images registered 

subsidence in this region, attesting the occurrence of the compaction mechanism. 

Numerical modeling studies and computational analysis based on data field revealed 

that 70% of the petroleum production in this area was due to compaction drive mechanism. 

2.5.3.4  WILMINGTON FIELD (UNITED STATES) 

In this field, located in California, United States, subsidence has been documented four 

years after the start of the oil production process. Large horizontal displacements have taken 

place in the region (approximately 3,7 m), causing damages to an industrial area in the Long 

Beach port (Lewis et al, 2003). The subsidence control has been achieved with water 

injection technique (Pastor, 2001). 
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2.5.3.5  SOUTH BELRIDGE FIELD (UNITED STATES) 

This petroleum field is a composition of an unconsolidated sandstone reservoir (122 to 

183 m thick) and highly compressible adjacent formations (305 m thick), located in 

California, United States. 

Compaction and subsidence phenomena started to be taken into account when field 

operators realized that some wells had their casing damaged. Besides that, horizontal fissures 

in the surface over the reservoir were registered, parallel to maximum horizontal stresses 

direction, attesting that compaction and subsidence mechanisms have taken place (Pereira, 

2007). 

 

Observing the registered cases of compaction and subsidence and given the properties 

of the reservoir rock and the fluids related to compaction and subsidence mechanisms, it may 

be inferred that stress-strain changes and fluid flow are greatly relevant for reservoir analyses. 

Therefore, it is important to state that performing analyses with both hydraulic and 

mechanical approaches is the most adequate. Thus, physical phenomena involved in the 

recovery process are appropriately represented. 

Coupling strategies for these phenomena should be taken into account, in order to 

properly represent the reservoir in numerical modeling. 

2.6 SUMMARY 

In this chapter, basic concepts of reservoir engineering have been presented. Firstly, 

aspects regarding specific research of reservoir engineering are discussed, highlighting the 

importance of studying compaction and subsidence mechanisms. 

Later, the understanding of petroleum formation process helps in determining some 

properties which delineate reservoir behavior. Therewith, it is possible to classify petroleum 

reservoir, defining the type of formation by verifying the conditions of the fluids within. 

Then, some aspects of reservoir rock and petroleum properties are established. This is 

of paramount importance, given the necessity of defining properties and parameters for 

posterior numerical modeling. 

Finally, petroleum reservoir phenomena are discussed, with the definition of petroleum 

driving mechanisms, petroleum production processes and specific features of compaction and 

subsidence. 

All concepts discussed in this chapter were important in the definition of the numerical 

modeling procedures performed in this research. 
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3 FORMULATION 

The solution of many engineering problems is only possible when representative 

models are established and their numerical modeling is performed. Different approaches are 

required in order to represent physical phenomena. Specifically for geotechnics, the 

mechanical and the hydraulic behavior of a porous media are completely interrelated. 

In this chapter, some aspects regarding possible coupling strategies for the solution of 

hydro-mechanical problems are presented. Then the studied phenomena are outlined, with 

definition of the mechanical and the hydraulic approaches assumed in this research. 

3.1 DESCRIPTION OF THE MECHANICAL AND THE HYDRAULIC 

BEHAVIOR EQUATIONS 

Models which represent physical processes in porous media more commonly take into 

account the mechanical behavior and the hydraulic behavior, delineated by equilibrium and 

fluid mass conservation equations. Therewith, the coupled hydro-mechanical approach is 

important, being adequate to describe the physical phenomena studied in reservoir 

geomechanics (Samier et al, 2003). 

However, in some cases, there is also some influence of specific characteristics of the 

porous media. Porosity variation of the solid matrix may be observed given the changes in 

stress-strain state. Coupled analysis then may be enhanced by taking into account the effects 

of porosity variation. This can be done by considering the solids mass conservation. 

Considering these equations, the compaction and the subsidence phenomena can have 

their solutions determined by numerical modeling. It allows prediction of changes in stress-

strain state, representing more appropriately what occurs in a petroleum reservoir. Therefore, 

it is possible to evaluate petroleum production rates with higher precision. 

The representative mathematical formulation for these problems is solved with a spatial 

discretization with the finite element method (FEM) and a time discretization with the finite 

difference method (FDM). The proposed formulation has been specially developed for 

studies of monophase reservoirs (only for liquid fluids), even though it can be applied in 

cases with similar features. 

The solution of the problem is divided into four parts for better understanding of the 

reader. Firstly, it is presented the spatial solution of the equilibrium equation. Then, the mass 

conservation equation is solved in space as well. These solutions are gathered as a system of 

equations. Finally, the solution in time is performed for this system of equations. 
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3.2 SPATIAL SOLUTION OF THE EQUILIBRIUM EQUATION 

The equilibrium equation for a petroleum reservoir in the established conditions can be 

described using indicial notation as: 

0ij
i

j

b
x

σ∂
+ =

∂
 (3.1) 

where: ijσ is the stress tensor, bi are the body forces vector and xj is correspondent to the 
coordinate system. 

 

Eq. (3.1) can also be written as: 
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The subsequent description of deduction of the spatial solution of the equilibrium 

equation is made in matrix notation. Also, the stress and the strain tensors are treated as 

vectors, following the law of conservation of linear momentum. 

The Principle of Virtual Work is employed to solve the equilibrium equation in space. 

The work due to stress corresponds to the internal work and the work due to body forces and 

boundary superficial stresses corresponds to the external work. Considering Ω as domain and 

Γas boundary of the analyzed problem, we have: 

{ } { } { } { } { } { }* * * 0
T T T

d u b d u dδε σ δ δ τ
Ω Ω Γ

Ω − Ω − Γ =∫ ∫ ∫ɺɺ ɺ  (3.5) 

where: { }*δε are virtual strains compatible to displacements{ }*uδ , {b} are the body forces 

(in the domain), { }τ  are the boundary superficial stresses and { }xɺ  is the time derivative of 

the variable x. 

By definition: 

{ } [ ]{ }* *u N u=  (3.6) 

{ } [ ]{ }* *B uε =  (3.7)
 

where: { }*u
 

and { }*ε
 

are virtual displacements and strains, respectively, [N] is the 

displacements interpolation matrix, [B] is the displacement-strain matrix and { }u
 
is the 

displacement vector in the domain. 
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The stress-strain relation for this problem is based on the definition of the generalized 

effective stress, given as: 

{ } { }' epd D dσ ε =    (3.8) 

where: epD    is the elastoplastic constitutive matrix and { }dε
 
is the strain vector. 

 

The constitutive matrix depends on which model is going to be applied for the proposed 

study. Different models can be chosen and in section 3.7 aspects regarding constitutive 

modeling are described. 

There are circumstances in which the stress state of the porous medium may be affected 

by rock crystals or solids compressibility (Li et al, 1999). This compressibility can be 

considered in the formulation with the Biot parameter ( bα ), defined by the following 

expression: 

{ } { }
1

9

T ep

b
s

m D m

k
α

  = −  (3.9) 

where: sk  is the bulk modulus of solids or rock crystals. 

 

For isotropic, homogeneous and linear elastic media, the Biot parameter is defined as

1bα = . This suggests that the compressibility of the solid matrix does not interfere in the 

porous medium behavior in these conditions. However, this parameter value may vary for 

other constitutive models, such as elastoplastic. Thus, the consideration of solids 

compressibility is important to accurately reproduce solid matrix phenomenon. 

With the solids compressibility consideration, the general expression for the effective 

stress principle is defined, as Eq. (3.10): 

{ } { } { }'
b m pσ σ α= −  (3.10) 

where: { }'σ  is the effective stress vector, { }σ  is the total stress vector, bα  is the Biot 

parameter, { } { }1 1 1 0 0 0
T

m =
 
for a 3D analysis and p  is the fluid pressure (for a 

saturated analysis). 

 

With the substitution of Eqs. (3.6), (3.7) and (3.10) into Eq. (3.5), the spatially-solved 

equilibrium equation may be written as: 
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[ ] [ ][ ] { } [ ] { } { } [ ] { } [ ] { }T T T TP
bB D B d u B m N d p N b d N dα τ

Ω Ω Ω Γ

   
 Ω + Ω = Ω+ Γ    

   
∫ ∫ ∫ ∫ɺɺ ɺ ɺ  (3.11) 

where: PN    is the fluid pressure interpolation matrix. 

The matrixes that represent the solved equilibrium equation are assembled and may be 

written as: 

[ ]{ } [ ]{ } { }K u C p F+ = ɺɺ ɺ  (3.12) 

 

where: 

[ ] [ ] [ ][ ]T
K B D B d

Ω

= Ω∫ , stiffness matrix, (3n x 3n), [F][L]-1; 

{ }uɺ , nodal displacement rate vector, (3n x 1), [L][T]-1; 

[ ] [ ] { }T P
bC B m N dα

Ω

 = Ω ∫ , solids-fluid coupling matrix, (3n x m), [L]-2; 

{ }pɺ ,
 
nodal fluid water pressure rate vector, (m x 1), [F][L] -2[T] -1;

 
{ } [ ] { } [ ] { }T T
F N b d N dτ

Ω Γ

= Ω + Γ∫ ∫ɺɺ ɺ , external forces rate vector, (3n x 1), [F][T]-1. 

 

The dimension of the matrixes and vectors corresponds to three-dimensional element 

analyses, with n nodes in which the displacements are calculated (3n degrees of freedom for 

displacements) and m nodes in which the fluid pressure is calculated (m degrees of freedom 

for fluid pressure). 

3.3 SPATIAL SOLUTION OF THE MASS CONSERVATION 

EQUATION 

The mass conservation law description involves both liquid and solid phases. 

Compaction and subsidence problems, by its physics, are hydro-mechanical and, therefore, 

changes in the solid matrix of the reservoir reflect directly in storage and flow of fluids. 

Besides, solids mass variation should also be considered, given its effect in reservoir 

displacements. 

Regarding this consideration, in a given control volume, the real velocity to which the 

fluid is subjected depends on fluid velocity due to percolation (Darcy’s law) and also depends 
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on the velocity of the solids (Li et al, 1999, Schrefler & Scotta, 2001). The real velocity can 

be expressed in indicial notation as: 

f
i

i i

w
U u

θ
= +ɺ ɺ  (3.13) 

where: iUɺ is the real fluid velocity vector, iuɺ is the velocity of the solids vector and fiw is the 

fluid velocity due to percolation vector. 

 

The real fluid velocity assumption implies on taking into account the effects of porosity 

changes in the porous medium. The velocity of the solids iuɺ is related to the displacements in 

the reservoir. Thus, it may be inferred that there is no need of expanding the porosity term in 

the proposed formulation. This is the same approach used by Cordão Neto (2005). 

It is important to define the expression for the volumetric fluid content, which is 

associated with porosity as shown in Eq. (3.14): 

fnSθ =  (3.14) 

where: θ  is the volumetric fluid content of the medium, n is the porosity of the medium and S 
f is the degree of saturation of the medium. 

 

In reservoir engineering, it is common to use the symbol φ  to make reference to 

medium porosity. So, in this formulation, the porosity is represented as φ . 

The fluid mass conservation equation is presented in Eq. (3.15). The density changes 

due to fluid compressibility during the flow and the real fluid velocity are considered in this 

formulation. Once more, it is emphasized that only liquids fluid are taken into account in the 

formulation. 

( ) ( ) 0f f
i

i

U
t x

θρ θρ∂ ∂+ =
∂ ∂

ɺ  (3.15) 

where: θ  is the volumetric water content, fρ  is the fluid density and 
iUɺ  is the real fluid 

velocity. 

 

When expanding the terms of the fluid mass conservation equation, it should be taken 

into account that the porosity must not be derivate. With this, only the changes in the degree 

of saturation are considered. The formulation for fluid mass conservation is finally shown in 

Eq. (3.16): 
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0
ff f f f

f f f f f fi
i i i

i i i

wS S
S S u S U U

t t x x x

ρ ρφ ρ φ φ ρ φ ρ φ
θ

 ∂ ∂ ∂ ∂ ∂+ + + + + = ∂ ∂ ∂ ∂ ∂ 

ɺ ɺɺ  (3.16) 

where: θ  is the volumetric fluid content, fρ  is the fluid density, φ  is the porosity of the 

medium, S f is the degree of saturation, iuɺ  is the solids velocity, 
f

iw is the fluid velocity due 

to percolation (Darcy’s law) and  
iUɺ  is the real fluid velocity. 

 

The solids mass conservation equation may be presented as (Li et al, 1999, Schrefler & 

Scotta, 2001): 

( ) ( )1 1 0s s
i

i

u
t x

φ ρ φ ρ∂ ∂
   − + − =   ∂ ∂

ɺ  (3.17) 

where: φ  is the material porosity, sρ  is the solids density and iuɺ  is the solids velocity vector. 

 

Considering the complete mass conservation requires both fluid and solids mass 

balance (Li et al, 1999, Schrefler & Scotta, 2001). In order to set this, it is necessary to 

establish a way of analyzing fluids and solids mass conservation together. 

It is possible to balance the volume of solids and the volume of fluid within a finite 

element, in a total element volume approach. For that reason, in order to assemble a single 

mass conservation equation, fluid and solids mass conservation equations are converted into 

volume (Li et al, 1999). 

Analyzing the fluids mass conservation equation with a volume approach is possible 

when dividing it by f fSρ , as shown: 

 

( ) ( ) ( )
( )

( )
0

f f ff f ff f f f f
ir r i i i

f f f f f f f f f ff f f
i i i i

S S US S u w US S

t t x x x xS S S S SS S

φ ρ φφ φ ρ ρ φρ ρ φ ρ
ρ ρ ρ ρ ρρ φ

∂ ∂∂ ∂ ∂ ∂+ + + + + =
∂ ∂ ∂ ∂ ∂ ∂

ɺ ɺɺ ɺ
 (3.18) 

where: θ  is the volumetric fluid content, fρ  is the fluid density, S f is the degree of 

saturation, φ  is the porosity of the medium, iuɺ  is the solids velocity, 
f

iw is the fluid velocity 

due to percolation (Darcy’s law) and  
iUɺ  is the real fluid velocity. 

 

The solids mass conservation equation is converted to a volume approach when divided 

by sρ . Assuming this and expanding this equation, we have: 
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( ) ( ) ( )1 1
1 0

s s
i

is s
i i

u
u

t x x

φ φρ ρφ
ρ ρ
− −∂∂ ∂+ − + =

∂ ∂ ∂
ɺ

ɺ  (3.19) 

where: φ  is the porosity of the rock, sρ  is the solids density and iuɺ  is the solids velocity. 

 

Assembling both fluid and solids mass conservation equations (Eqs. (3.18) and (3.19)) 

and substituting Eq. (3.14), we have: 

 

( ) ( ) ( )1 1
1

0

s s
i

is s
i i

f ff f f f f f f
i i i i

f f f f f f f f f f f f
i i i i

u
u

t x x

u w U US S

S t S t S x S x S x S x

φ φρ ρφ
ρ ρ

θ ρ φθ ρ ρ φ θρ θρ ρ
ρ ρ ρ ρ θ ρ ρ

− −∂∂ ∂+ − + +
∂ ∂ ∂

∂ ∂∂ ∂ ∂ ∂+ + + + + =
∂ ∂ ∂ ∂ ∂ ∂

ɺ
ɺ

ɺ ɺɺ ɺ

 (3.20) 

 

There are laws which define the variation of the density of liquid fluids (Peaceman, 

1977; Rosa et al., 2006) and the density of solids (Li et al., 1999). They are expressed in Eqs. 

(3.21) and (3.22), respectively. 

1f

f
f

d
dp

k

ρ
ρ

=  (3.21) 

where: fρ  is the fluid density,
fk  is the bulk modulus of the fluid and p  is the fluid 

pressure. 

 

( ) ( ) ( ) ,
1

1
s R

b
b i is

s

D Dp
u

Dt k Dt

φ α φρ α
ρ

 − −
= − − 
  

ɺ  (3.22) 

where: sρ  is the solids density, sk  is the bulk modulus of rock crystals, bα is the Biot 

parameter, φ  is the porosity of the rock and Rp  is the pressure of the fluids. 

 

This pressure of the fluids Rp  is used in cases in which there are two fluid phases 

within the porous medium, gas and liquid. In these situations, the pressure of the fluids may 

be defined by the following expression. 
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( )1R g
s sp p pχ χ= + −  (3.23) 

where: Rp  is the pressure of the fluids, sχ is a parameter related to the degree of saturation of 

the liquid phase (for a porous medium fully saturated with liquid, 1sχ = ) and gp is the gas 

pressure. 

 

 For this particular study, the medium is assumed to be fully saturated with liquid. 

Therefore, 1sχ =  and, with this, Rp p= . 

The degree of saturation is: 

f
f S

dS dp
p

∂=
∂

 (3.24) 

where: S f is the degree of saturation and p  is the fluid pressure. 

 

 As defined previously, it is made the assumption of a fully liquid saturated medium. 

Therefore, there is no variation of the degree of saturation and it may be established that

1rS =  and 0rdS dp= . 

 Substituting the Eqs. (3.21), (3.22) and (3.23) and knowing that 1fS =  and, therefore, 

Rp p= and 0fdS dp= , in Eq. (3.20), we have: 

 

( ) ( ) ( ) ( )1 1

0

f
b b i i i i

i b
s s i i i f i i

i

f i

u u u wp p p
u

k t k x x x k t x x

U p

k x

α φ α φ φα φ φ

φ

− − ∂ ∂ ∂ ∂∂ ∂ ∂+ − − + − + + +
∂ ∂ ∂ ∂ ∂ ∂ ∂

∂+ =
∂

ɺ ɺ ɺ
ɺ

ɺ
 (3.25) 

 

Putting the similar terms together, we have: 

( ) ( )
0

f
b b i i i

i b
s f s f i i i

U u wp p
u

k k t k k x x x

α φ α φ φφ α
   − − ∂ ∂∂ ∂+ + + + + =   

∂ ∂ ∂ ∂      

ɺ ɺ
ɺ  (3.26) 
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The spatial solution for the mass conservation equation via FEM can be made with the 

weighted residual method. More specifically, Galerkin method is employed in this particular 

situation (Zienkiewicz, 1977). Using this method, one can proceed with the solution of Eq. 

(3.26): 

( ) ( ) ( )
0

f
T b bP i i i

i bj
s f s f i i i

U u wp p
N u d

k k t k k x x x

α φ α φ φφ α
Ω

    − − ∂ ∂∂ ∂ + + + + + Ω =    ∂ ∂ ∂ ∂        
∫

ɺ ɺ
ɺ  (3.27) 

 

Eq. (3.27) may be represented in matrix notation as: 

( ) ( ) { } { } { } { }. . . 0
T b bP f

b
s f s f

Up
N u p u w d

k k t k k

φα φ α φφ α
Ω

   − −∂    + + + ∇ + ∇ + ∇ Ω =   ∂       
∫

ɺ

ɺ ɺ  (3.28) 

 

Considering the following mathematical identity: 

( ) ( )f g fg f g∇⋅ = ∇⋅ −∇⋅  (3.29) 

 

For the highlighted term of Eq. (3.28), we have: 

{ } { }( ) ( ){ }T T TP f P f P fN w d N w d N w d
Ω Ω Ω

     ∇ ⋅ Ω = ∇ ⋅ Ω − ∇ ⋅ Ω     ∫ ∫ ∫  (3.30) 

 

The highlighted term of Eq. (3.30) should be treated with the divergence theorem. 

Therefore, we have: 

{ } { } { }T TP f P fN w d N w n d
Ω Γ

    ∇ ⋅ Ω = ⋅ Γ     ∫ ∫  (3.31) 

where: { }n is normal vector, Ω is the domain and Γ is the boundary of the studied problem. 

 

The boundary of the problem can be divided into two parts. In the first one (1Γ ), 

essential boundary conditions are prescribed. In the second one (2Γ ), natural boundary 

conditions are prescribed. 

 

{ } { } { } { } { } { }
1 2

T T TP f P f P fN w n d N w n d N w n d
Γ Γ Γ

     ⋅ Γ = ⋅ Γ + ⋅ Γ     ∫ ∫ ∫  (3.32) 
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For this mass conservation equation term, the boundary conditions are: 

• 1Γ : prescribed values of pore pressure 

p p=  (3.33) 

• 2Γ : prescribed values of fluid discharge 

{ }{ }Tfw n q=ɺ  (3.34) 

 

In 1Γ , pore pressures are considered null and, therefore, so is velocity. In 2Γ , there is a 

prescribed value for fluid discharge (q). Thus for this term (Eq. (3.31)): 

{ }{ }
2

T TTP f PN w n d N qd
Γ Γ

   Γ = Γ   ∫ ∫ɺ  (3.35) 

 

For the fluid mass conservation equation solution, some relations must be taken into 

account (Peaceman, 1977). The fluid velocity due to percolation (Darcy’s law) (Eq. (3.36)) is 

given as: 

{ } [ ] { }( )f fK
w p g yρ

µ
= − ∇ − ∇ɺ  (3.36) 

where: [K] is the intrinsic permeability tensor, µ  is the dynamic viscosity of the fluid, {g} is 

the gravity vector and y is the direction coincident with gravity direction in the coordinate 

system used. 

 

There are some expressions which define some variables of the mass conservation 

equation. Those are: 

Pp N p =    (3.37) 

Pu N u =    (3.38) 

( ){ } { }. P PN p B p   ∇ =     (3.39) 

where: PN    is the fluid pressure interpolation matrix and PB    is equivalent to the 

derivatives of fluid pressure shape function. 

 

Taking into account all the considerations already mentioned, the spatial solution for 

the mass conservation equation via FEM (using Galerkin method) is: 
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( ) { } { } [ ] { }

( ) { } { } { } [ ] { }

[ ] { }( )
2

.

T T TbP P P
b

s f

f
T TbP P P P

s f

T TP f P

N N d p N m B d u
k k

w K
N u u B d B B d p

k k

K
B g y d N qd

α φ φ α

α φ φ
φ µ

ρ
µ

Ω Ω

Ω Ω

Ω Γ

    −
     + Ω + Ω +         

      

   −          + + Ω + Ω =          
   

 
   ∇ Ω − Γ    

 

∫ ∫

∫ ∫

∫ ∫

ɺ ɺ

ɺ ɺ
 (3.40) 

 

The matrixes that represent the solved mass conservation equation are assembled and 

may be written as:
 

[ ]{ } [ ]{ } [ ]{ } { }M p L u R p Q+ + =ɺ ɺ  (3.41) 

where: 

[ ] ( )T bP P

s f

M N N d
k k

α φ φ
Ω

 −
   = + Ω    

  
∫ , mass matrix, (m x m), [M]-1[L] 4[T] 2; 

{ }pɺ ,
 
nodal fluid pressure rate vector, (m x 1), [M][L]-1[T] -3;

 
[ ] { } [ ]T TP

bL N m B dα
Ω

 = Ω ∫ , fluid-solids coupling matrix, (m x 3n), [L]2; 

{ }uɺ , nodal displacements rate vector, (3n x 1), [L][T]-1; 

[ ] ( ){ } { } { } [ ]f
T TbP P P P

s f

w K
R N u u B d B B d

k k

α φ φ
φ µ

Ω Ω

  −         = + + Ω + Ω         
  

∫ ∫ɺ ɺ , flow matrix, (m 

x m), [M]-1[L] 4[T]; 

{ }p ,
 
nodal fluid pressure vector, (m x 1), [M][L]-1[T] -2;

 

{ } [ ] { }( )
2

.
T TP P

f

K
Q B g y d N qdρ

µΩ Γ

 
   = ∇ Ω − Γ    

 
∫ ∫ , external discharges vector, (m x 1), 

[L] 3[T] -1. 

 

The term with fluid bulk modulus (kf), correspondent to fluid compressibility, 

represents pore compressibility in this case, considering the medium is fully saturated. 

Analogously, the term with solids bulk modulus (ks) also appears in the formulation, being 

representative of the solid matrix compressibility. Together, these two terms express the total 
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compressibility of the medium. It is interesting to highlight that in the deduction of this 

formulation, these terms have naturally been gathered, as seen in mass and flow matrixes. 

3.4 EQUATION SYSTEM 

The spatial solution of equilibrium and mass conservation equations may be put 

together in order to assemble a system of equations. This system permits the time solution of 

the problem at a later stage. Considering both Eqs. (3.12) and (3.41), we have: 

[ ]
{ }
{ }

[ ] [ ]
[ ] [ ]

{ }
{ }

{ }
{ }

0 0

0

u u FK C

R L Mp p Q

            + =       
             

ɺɺ

ɺ
 (3.42) 

 

Then, with this, the system of equations may be expressed by: 

[ ]{ } [ ]{ } { }W x Y x Z+ =ɺ  (3.43) 

where: 

{ } { }
{ }
u

x
p

  =  
  

 (3.44) 

{ } { }
{ }
u

x
p

  =  
  

ɺ

ɺ

ɺ

 (3.45)
 

{ } { }
{ }
F

Z
Q

  =  
  

ɺ

 (3.46)
 

 

3.5 TIME SOLUTION FOR THE EQUATION SYSTEM 

The proposed formulation has its solution established not only spatially, but also in 

time. For this, the equation system correspondent to the spatial solution of the problem is 

solved in time. With this methodology, even though the solution is stationary, it is equivalent 

to the transient problem. 

Firstly, a vector of unknowns { }x  is evaluated in time for a t∆ time interval. This vector 

is considered to have linear variation, as shown in Eq. (3.47): 

{ } ( ){ } { }1
t t t t t

x x xα α α
+ ∆ +∆

= − +  (3.47) 

where: α is the controlling parameter for the integration scheme and { }
t

x  and { }
t t

x
+∆  are the 

vector of unknowns at the initial time stage and the calculated time stage, respectively. 
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The time derivative for the vector of unknowns can be defined as: 

{ } { } { }
t t t

t t

x x
x

t
+ ∆

+ ∆

−
=

∆
ɺ  (3.48) 

 

Thus, Eq. (3.43) is evaluated at t tα+ ∆ time stage (Eq. (3.49)): 

[ ] { } [ ] { } { }
t t t t t t t t t t

W x Y x Zα α α α α+ ∆ + ∆ + ∆ + ∆ + ∆
+ =ɺ  (3.49) 

 

So, substituting Eqs. (3.47) and (3.48) in Eq. (3.49), the solution of the problem is 

obtained in terms of the increment of the vector of unknowns, { }x∆ : 

[ ] [ ] { } { } [ ] { }
t t t t t t t t t

t W Y x t Z t W xα α α αα
+ ∆ + ∆ + ∆ + ∆

 ∆ + ∆ = ∆ − ∆   (3.50) 

where: 

[ ] { }( ) ( ){ } { }( )1
t t t t t t t

W W x W x xα α α α
+ ∆ + ∆ + ∆

   = = − +   
 (3.51) 

[ ] { }( ) ( ){ } { }( )1
t t t t t t t

Y Y x Y x xα α α α
+ ∆ + ∆ + ∆

   = = − +   
 (3.52)

 

{ } { }( ){ } ( ){ } { }( ){ }1
t t t t t t t

Z Z x Z x xα α α α
+ ∆ + ∆ + ∆

= = − +  (3.53)
 

 

In equations (3.51), (3.52) and (3.53), matrixes [W] and [Y] and vector {Z} have their 

average evaluated between t  and t t+ ∆ . Vector { }
t t

x α+ ∆  is unknown at t t+ ∆ , being 

necessary appropriate techniques for the problem solution. 

3.6 ASPECTS REGARDING ADVECTIVE FLUX 

Observing the proposed formulation, it can be noticed that certain terms in the flow 

matrix [R] (Eq. (3.41)) use solids and fluid velocity. These terms characterize advective flux, 

the macroscopic movement of fluid or particles through a porous medium in time. 

The solution of problems with advective flux can be made with the Finite Differences 

Method (FDM). Different solution approaches can be performed, using the derivative form of 

the equation terms. 

The equation solution is made in a specific domain, which is discretized in time in this 

particular studied case. The time derivatives are based on this, with the reference value being 

calculated with advanced, delayed or centered derivatives. 

Different methods of problem solution with FDM can be performed. The main concern 

in these is numerical instability. Thus, different approaches have been developed in order to 
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solve this issue, such as differences in advance for time and delay for space method (Eq. 

(3.54)), Euler method (Eq. (3.55)), Lax method (Eq. (3.56)) and Lax-Wendroff method (Eq. 

(3.57)). 

 

( )1
1

n n n n
k k k kCc c c c+

−−−=  (3.54) 

 

( )1 1

1

2
n n n
k k kc c c+ −= +  (3.55) 

 

( ) ( )1
1 1 1 1

1 C

2 2
n n n n n
k k k k kc c c c c+

+ − + −= + − −  (3.56) 

 

( ) ( )
2

1
1 1 1 1

C
  2

2 2
n n n n n n n
k k k k k k k

C
c c c c c c c+

+ − + −= − − + − +  (3.57) 

 

where: c is the concentration (for contaminant transportation evaluation), n is the evaluated 

time stage, k is the evaluated space and C is the Courant number, defined as C v∆t ∆x= . 

 

The presented equations refer to contaminant transportation problems, being calculated 

in terms of concentration. However, these expressions can be used for other advective flux 

problems, such as the studied in this research. 

The differences in advance for time and delay for space method has an associated error 

of the order of dx. All other mentioned methods have their solutions completely stable when 

the ratio between physical and numerical distances of transportation is equal 1. This ratio is 

known as Courant number (C). This number is in all expressions which define these methods 

solutions and it is exclusively used for guaranteeing numerical stability of each method (Jesus 

& Cavalcante, 2011). 

Another important information is related to the Lax and Lax-Wendroff methods. These 

methods have in their formulation a second-order term. This kind of term represents diffusive 

behavior during transportation. Therefore, these methods do not solve only advective flux 

problems. This could influence responses, causing a diffusion phenomenon non-

correspondent to advective flux. In Lax-Wendroff, oscillations can be also observed. In 

general, this oscillation occurs in a certain way that the effect of diffusion is compensated. 

Jesus & Cavalcante (2011) show differences in advance and Lax-Wendroff methods as 

approaches for the solution of advective flux problems. In Figure 3.1 and Figure 3.2, their 
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results are presented, where the numerical instability is clearly registered, with dissipation of 

contaminant concentration in a simulation which should represent only the advective 

phenomenon. Also, the diffusion and oscillations characteristics for Lax-Wendroff can be 

noticed. 

 

Figure 3.1 - Results of advective flux simulation in two different soils – Differences in 
advance method (Jesus & Cavalcante, 2011). 

 

Figure 3.2 - Results of advective flux simulation in two different soils – Lax-Wendroff 
method (Jesus & Cavalcante, 2011). 

 

Another possible approach for the solution of advective flux equations is using finite 

element method (FEM). Some solutions are discussed in Dhawan et al. (2011) and Nonaka & 

Nakayama (1998), both suggesting the use of interpolating functions to perform the solutions. 

However, their computational cost may difficult their application. 

Considering these aspects, the method of discretization in time presented for the 

formulation complies with the expected results. The small effects of instability observed do 

not interfere in the problem solution. 
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3.7 CONSTITUTIVE MODELS 

Performing any stress-strain analyses requires the understanding of the material 

performance. In order to represent the behavior of the material, it is necessary to use models 

which can reproduce the specific characteristics of the material. These are known as 

constitutive models. 

 Constitutive models are employed in mechanical behavior analyses of geologic 

materials. There are different models used to reproduce the stress-strain relations of a 

material. In this research, two different models are applied, linear elastic and modified Cam-

clay. The modified Cam-clay is described in this section. 

These models were chosen to represent the studied porous media, the reservoir rocks. 

The phenomena reproduced in this study via numerical analysis are compaction and 

subsidence. 

In these processes, the rock is subjected to compression stress paths. Therefore, there is 

need of constitutive models which can be adequate to capture the specificities of this kind of 

stress. The modified Cam-clay model is believed to be appropriated for the referred 

circumstance. 

3.7.1 MODIFIED CAM-CLAY 

Constitutive modeling was enhanced in the 1960s by Roscoe and collaborators in 

Cambridge University. The critical state models were the suggested approach to complement 

the theory of plasticity for soils. With this, many concepts were put together in the same 

theory: 

• Relationship between void ratio and effective stress; 

• Plastic strain occurrence on different stress paths, shear and compression included; 

• Soil critical state; 

• Failure criterion and 

• Softening and hardening. 

These concepts are united in the Cam-clay model, an elastoplastic model of soil 

behavior, developed to describe the mechanical responses of a saturated, normally 

consolidated clay, Cambridge clay, during triaxial tests (undrained and drained). 

The physical basis of this model is well-founded and, nowadays, with the appropriate 

parameters, Cam-clay model is generalized for different types of soils and rocks. 

Any material which Cam-clay model represents only reaches critical state after passing 

through successive states of yielding, during which the material hardens. The continuous 
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yielding eventually leads the material to the critical state, in which there is no occurrence of 

volumetric strains, as previously stated (Britto & Gunn, 1987). 

The shape of the yield surface depends on the material. Different shapes could be 

assumed, but specifically for the modified Cam-clay, it is established an elliptical surface. 

This shape of surface is deducted by hypotheses regarding the plastic work dissipation. 

The expression which describes the yielding locus for the modified Cam-clay model is: 

( ) 2 2 2 2
0 0', , ' ' ' 'F p q p M p M p p q= − +  (3.58) 

where: F is the yielding function, p’ is the effective mean stress, q is the deviator stress, p’0 is 

the preconsolidation stress and M is the inclination of the projection of the CSL. 

 

The yielding surface is represented in Figure 3.3 with all three axes (p’, q and ν ). The 

projections of the yielding surface and the critical state line are represented in Figure 3.4 and 

Figure 3.5, respectively. 

 

Figure 3.3 - Yielding surface for modified Cam-clay model (Callari et al., 1998). 

 

 

Figure 3.4 - Yielding locus for modified Cam-clay model: projection of the yielding surface 
(plane p’ versus q). 
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Figure 3.5 - Yielding locus for modified Cam-clay model: projection of the yielding surface 
(plane ν  versus ln p’). 

The modified Cam-clay model is said to have an associated flow. In practical terms, 

this means the plastic potential surface and the yielding surface have the same shape and they 

are coincident. Therefore, the plastic flow vector, which is normal to the plastic potential 

surface, follows the derivate of the plastic potential function (same direction of the yielding 

function derivate). 

The plastic potential function is described by Eq. (3.59): 

( ) 2 2 2 2
0 0', , ' ' ' 'G F p q p M p M p p q= = − +  (3.59) 

where: G is the plastic potential function, F is the yielding function, p’ is the effective mean 

stress, q is the deviator stress, p’0 is the preconsolidation stress and M is the inclination of the 

projection line of the CSL. 

Defining a constitutive model requires an appropriate hardening law. The hardening 

effect makes the yielding surface expand, making it adequate to the imposed new stress state. 

With the internal variables of stress and strain, it is possible to define the stress-strain state 

conditions to which the material is subjected in present time and how they should evolve. 

This permits the maintenance of the yielding surface format adequately, with changes only in 

these internal variables. 

When considering a case of volumetric compression, followed by decompression in an 

isotropic loading, it is fair to say that the expected behavior of the soil sample is portrayed by 

the represented in Figure 3.6. 

ν

ln(p')p'o

κ1

1

λ
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Figure 3.6 - Consolidation behavior in ν  - ln p’ space (modified Desai & Siriwardane, 1984). 

 

During decompression (from B to D), the stress-strain relation is elastic and during 

compression (from A to B), there are elastic and plastic strains. The strains, represented by 

void ratio variation, and the stress may have its relation expressed by Eqs. (3.60) and (3.61). 

0

'

'

dp
de

p
λ= −  (3.60) 

where: de is the void ratio increment, λ  is the inclination of the compression segment, dp’ is 

the increment of effective mean stress and p’0 is the preconsolidation stress. 

0

'

'
e dp

de
p

κ= −  (3.61) 

where: dee is the elastic component of the incremental void ratio and κ is the inclination of 

the decompression segment. 

Defining the volumetric strain of a soil sample, we have: 

01
v

de
d

e
ε = −

+
 (3.62) 

where: vdε  is the volumetric strain component, de is the void ratio increment and e0 is the 

initial void ratio. 

Substituting Eqs. (3.60) and (3.61) on Eq. (3.62), the volumetric plastic strain may be 

defined as: 

ν

Plastic

Elastic
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0

0

( ) '

1 1 1 '

p e
p
v

o o o

de de de dp
d

e e e p

λ κε − −= − = − =
+ + +

 (3.63) 

where: p
vdε  is the volumetric strain component in plastic strains and dep is the plastic 

component of the incremental void ratio. 

Defining the hardening law in this case may be simple when considering the internal 

variables of stress and strain as p0 and p
vε , respectively. Therefore, the hardening modulus 

may be defined, as shown in Eq. (3.64). 

0
0

1
H= '

( )

e
p

λ κ
+
−

 (3.64) 

where: H is the hardening modulus, e0 is the initial void ratio, λ  is the inclination of the 

compression segment, κ  is the inclination of the decompression segment and p’0 is the 

preconsolidation stress. 

Finally, the plastic strain potential of the studied porous medium soil may be defined. 

Eq. (3.65) represents the flow rule: 

{ }P G
dε χ

σ
∂ =  ∂ 

 (3.65) 

where: Pdε  is the plastic strain increment, χ is the plastic multiplier and 
G

σ
∂ 

 ∂ 
 is the 

projection of the vector normal to the potential plastic surface in stress space. 

A basic hypothesis in Plasticity Theory is strain additive decomposition, defined as: 

{ } { } { }e pd d dε ε ε= +  (3.66) 

where: { }edε  is the elastic strain vector increment and { }pdε  is the plastic strain vector 

increment. 

Thus, the total strain can be written as: 

{ } { }e G
d C dε σ χ

σ
∂  = +    ∂ 

 (3.67) 

where: { }dε  is the strain vector increment. 

Rearranging this expression, isolating the stress increment term, we have: 
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{ } { }e G
d D dσ ε χ

σ
 ∂  = −     ∂  

 (3.68) 

where: eD    is the elastic stress-strain constitutive matrix, with 
1e eD C

−
   =    . 

The stress increment expression, Eq. (3.68), has two unknowns, { }dσ  and χ . The 

solution of this problem is only possible with another equation. Defining the consistency 

condition for the yielding locus is essential in this case. According to plasticity theory, the 

yielding surface is the physical limit for any stress state, which means no conditions allow the 

porous medium to reach a stress state beyond this limit. This can be expressed as: 

( )0', , ' 0F p q p ≤  (3.69) 

where: F is the yielding function. 

Finally, the constitutive matrix for the modified Cam-clay model can be expressed as: 

1 0 ' ' '1
0 2(1 ) 9(1 2 )(1 ) ' ' '

'' '

ep

o o
p p

o v d

f g f g

p p q p
D

f g f ge p p pf g g
p q q qp p q

κ
ν ν

ε ε

 ∂ ∂ ∂ ∂  
  ∂ ∂ ∂ ∂  −   = +    + − ∂ ∂ ∂ ∂+    ∂ ∂  ∂ ∂ ∂ +    ∂ ∂ ∂ ∂   ∂ ∂ ∂∂ ∂  

 (3.70) 

 

3.8 SUMMARY 

In this chapter, there is a detailed description of the equations proposed in this study. 

Assuming that the compressibility of the fluid influences the phenomena which take place in 

porous media requires a formulation considering changes in fluid density. This makes the 

model much more comprehensive and it may help solving cases in which the fluid 

compressibility is significant. 

The spatial solution of both equilibrium and mass conservation equations are presented, 

followed by the assembling of the equation system, characterizing the coupled approach. 

Then, a time solution is made for the system of equations. 

Some considerations regarding non linearity in the equilibrium and the flux analyses 

are discussed. The advective flux term determined in the formulation is also debated, in order 

to evaluate possible numerical instabilities which may take place when proceeding with the 

equation solution.  

Finally, the mechanical constitutive models utilized in the simulations of this 

dissertation are presented, including a justification of their usage. 
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4 COUPLING STRATEGIES AND DESCRIPTION OF 

ALLFINE 

The proposal of this dissertation is the solution of a coupled hydro-mechanical 

formulation with the consideration of fluid compressibility. This problem is solved via Finite 

Element Method (FEM), with the implementation of the equations on the FE software 

ALLFINE (Farias, 1993; Cordão Neto, 2005). 

In this chapter, a brief discussion over coupling strategies is presented, followed by 

some aspects concerning ALLFINE (Farias, 1993; Cordão Neto, 2005). 

4.1 COUPLING STRATEGIES 

The solution of many engineering problems is only possible when representative 

models are established and their numerical modeling is performed. Different approaches are 

required in order to represent physical phenomena. In geotechnics and geomechanics, the 

mechanical and the hydraulic behavior of a porous media are completely interrelated. 

Considering the need of representing simultaneously the observed phenomena, it is 

appropriate to define an adequate manner to physically describe this kind of problem. This 

may be established with coupled or mixed formulations. 

A coupled formulation can be valid in cases in which there are multiple domains with 

no possible solution separated from the other. In this type of formulation, it is also observed 

that the set of dependent variables cannot be explicitly eliminated from the partial differential 

equations. 

On the other hand, a mixed formulation is applicable to a single domain in which 

equations and boundary conditions describing the physical phenomenon contain a number of 

dependent variables which could be reduced by elimination, still maintaining a soluble 

problem (Jha, 2005). 

Therefore, a more accurate way of achieving appropriate results in geotechnics and in 

reservoir geomechanics is possible with coupled analyses. Considering the mechanical and 

the hydraulic behavior of a reservoir, it can be observed that stress-strain state is affected by 

fluid pressures and vice-versa. Thus, it is intuitive the understanding of the importance of a 

coupled analysis, which is a more precise manner of describing how mechanical and 

hydraulic behavior are connected (Samier et al, 2003). 

In this section, some aspects regarding possible coupling strategies for the solution of 

hydro-mechanical problems are presented. 
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Coupled analysis may be performed in different ways, depending on each particular 

case. There are scenarios which require a refined degree of coupling, more appropriate for 

that specific phenomena representation (Jha, 2005). There are four levels of coupling 

methods which lead to different strategies of problem solutions, going from a completely 

separated solution of the equations to a fully coupled approach (Settari & Walters, 2001): 

• Decoupled; 

• Partially coupled approach – explicit coupling; 

• Partially coupled approach – iterative coupling; 

• Fully coupled. 

In order to describe these different coupling strategies, the formulation proposed in this 

research, already discretized in space and in time and written in matrix form is used as basis, 

as shown: 

[ ]
{ }
{ }

[ ] [ ]
[ ] [ ]

{ }
{ }

{ }
{ }

0 0

0

u u FK C

R L Mp p Q

           + =       
            

ɺɺ

ɺ
 (4.1) 

where: [ ]R

 

is the flow matrix, [ ]K
 
is the stiffness matrix, [ ]C

 
is the solids-fluid coupling 

matrix, [ ]L
 
is the fluid-solids coupling matrix, [ ]M

 

is the mass matrix, { }u
 
is the

 
nodal 

displacements vector, { }p
 
is the

 
nodal fluid pressure vector, { }uɺ

 
is the nodal displacements 

rate vector, { }pɺ
 
is the

 
nodal fluid pressure rate vector, { }Fɺ

 
is the external forces rate vector 

and { }Q

 

is the external discharges vector (chapter 3). 

 

A different approach for this equation is required for each of coupling level. It is 

necessary to identify the impact the type of coupling may have on the simulation. This 

definition is essential, considering that the main challenges related to coupling strategies are 

computational efficiency, numerical solution convergence and code combination for the 

solution of equilibrium and flow equations (Jha, 2005; Gomes, 2009). A more sophisticated 

coupled analysis should only be made when its advantages are greater than its difficulties. 

The different levels of coupling strategies are presented in sections 4.1.1, 4.1.2, 4.1.3 

and 4.1.4, following the classification proposed by Settari & Walters (2001). 
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4.1.1 DECOUPLED APPROACH 

The main characteristic observed in this type of approach is that the equilibrium 

equation is solved separated from the flow equation. Considering the solution like this, the 

stress changes have no effect in flow and vice-versa, characterizing the type of coupling 

known as one-way. Firstly, the flow equation is solved and then, its solution is applied in the 

equilibrium equation, providing geomechanical responses of the analyzed medium. A scheme 

representing this is portrayed in Figure 4.1. 

 

Figure 4.1 - Solution algorithm for a decoupled approach of hydro-mechanical problems. 

 

In some cases, the flow part is aware of the mechanical part of the problem if new or 

updated permeability and porosity data is incorporated into the flow equation. On the other 

hand, the mechanical part may be aware of the flow part if pressure loads are applied on the 

nodes of the mechanical grid as boundary terms (Jha, 2005). 

In mathematical terms, the decoupled approach may be represented by considering only 

flow and then only stress equations (Settari & Walters, 2001). The first is represented by 

assuming that { } 0u =  and { }p  is known (imposed as external load), meaning no stress 

changes during reservoir simulation. Thus, Eq. (4.1) may be rewritten as: 

[ ]{ } { } [ ]{ }1n n
M p Q R p

+ = −ɺ  (4.2) 

where: n corresponds to each time step. 
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In Eq. (4.2), the value of { } 1n
p

+
ɺ  is achieved. So, in order to define { } 1n

u
+

ɺ , the top half of 

Eq. (4.1) may be decoupled and rewritten as: 

[ ]{ } { } [ ]{ }1 1n n
K u F C p

+ += −ɺɺ ɺ  (4.3) 

 

This type of approach represents great simplification of the studied physical phenomena 

and may not be the most appropriate to reservoir modeling. Decoupled models are usually 

employed only on predictions of reservoir geomechanical responses (Pereira, 2007). 

4.1.2 PARTIALLY COUPLED APPROACH – EXPLICIT COUPLING 

The partially coupled approach takes into account the importance of the coupled hydro-

mechanical analysis of a porous media, considering that both flow and equilibrium equations 

should be solved with some connection between them. This is a method in which flow and 

equilibrium equations are solved separately, but with updates of the results (displacements 

and fluid pressures) in each mathematical statement. This type of coupling is known as two-

way coupling, with the variable update working in both equations. There are two categories 

of partial coupling, explicit, described in this section and iterative, described in section 4.1.3. 

The explicit coupling approach is a special case of the iteratively coupling. The main 

difference between them is that, in this particular case, flow responses are not affected by the 

geomechanical responses at a same time step. The flow analysis is performed firstly. The 

results of this analysis are input for the stress analysis. The stress analysis results are used to 

compute porosity and permeability explicitly and also in the solution of the flow equation for 

the following time step. It is important to highlight that the coupling terms are lagged one 

time step behind and there is no specific coupling variable (Jha, 2005), characterizing the 

partial coupling of this kind of approach. A scheme representing this type of coupling is 

shown in Figure 4.2. 

In mathematical terms, this approach consists of lagging the coupling terms one time 

step behind (Settari & Walters, 2001). Firstly, the flow equation is solved: 

[ ]{ } { } [ ]{ } [ ]{ }1n n n
M p Q R p L u

+ = − −ɺ ɺ  (4.4) 

 

When the flow solution { } 1n
p

+
ɺ is applied in the stress equation, it can be expressed by: 

[ ]{ } { } [ ]{ }1 1n n
K u F C p

+ += −ɺɺ ɺ  (4.5) 
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Figure 4.2 - Solution algorithm for an explicit coupling approach of hydro-mechanical 
problems. 

 

4.1.3 PARTIALLY COUPLED APPROACH – ITERATIVE COUPLING 

In iterative coupling, flow and geomechanical variables are computed separately and 

sequentially. During the solution procedure, many iterations are performed at each time step 

until the desired degree of convergence is achieved (Jha, 2005). 

Firstly, the flow equation solution is executed and its results (fluid pressure) are applied 

in the mechanical part of the problem. Once this is solved, the displacements are used in the 

update of values of porosity and permeability. When this iteration is finished, the next one 

begins with the new values of porosity and permeability, allowing a new solution for the flow 

equation and for the equilibrium equation at that time step, likewise. This process continues 

until the solution of the equations converges. Then, the procedure is repeated to the next time 

step (Pereira, 2007). This approach differs from explicit coupling in the number of iterations 

in a same time step. A scheme representing this type of coupling is portrayed in Figure 4.3. 
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Figure 4.3 - Solution algorithm for an iterative coupling approach of hydro-mechanical 
problems. 

 

Mathematically, this approach consists of the repeated solution of the flow and the 

stress equations (ν  iterations) in a time step n according to these expressions: 

[ ]{ } { } [ ]{ } [ ]{ }1 n
M p Q R p L u

ν ν+ = − −ɺ ɺ  (4.6) 

[ ]{ } { } [ ]{ }1 1
K u F C p

ν ν+ += −ɺɺ ɺ  (4.7) 

 

It is fair to say that when the iteration converges, { } { } 1v n
p p

+=  and { } { } 1v n
u u

+=ɺ ɺ , the 

solution is identical to the fully coupled system. Another great advantage of this method is 

that convergence criteria are easily controlled due to the separated solution of equations. 

Also, there is the possibility of applying different numerical methods for flow and 

equilibrium equations solution (Pereira, 2007). 

The iterative coupling approach is adequate for representing physical phenomena in 

primary recovery simulation in an oil reservoir. In this type of problem, the stress state of the 

n – time step
p – fluid pressure
k – permeability;

– porosity
u – displacements

– strains
– stress

*φ

ε
σ

n=0

Solution:
p, k and___

Convergence?

n=n+1
Newton-Raphson

iterations

YES

NO

*φ

Solution:u,__and___

Convergence?

Updating __

Coupling
iterations

YES NO

*φ

ε σ



 

53 
 

media is influenced only by dissipation of fluid pressure. No external loading is applied 

during the process. Therewith, the model accuracy is not decreased by using the iterative 

coupling approach. 

However, for traditional geotechnics application, the level of coupling may influence 

more the results of the simulation. In cases where load is applied, as in consolidation 

problems, solving the equations separately does not represent adequately the physics of the 

phenomenon. The undrained condition of the problem at early stages is not well represented 

with an iterative coupling approach. A fully coupled model is the most appropriate for this 

type of modeling in terms of portraying the problem, providing greater accuracy to the 

simulations. 

This discussion of coupling approaches takes into consideration media subjected to 

isothermal conditions. When considering the influence of temperature in the analyses, it is 

required further explanation regarding the coupling level of the problem. 

4.1.4 FULLY COUPLED APPROACH 

From all types of coupling approaches, this is the most refined in terms of general 

representation of the physical phenomena occurring in porous media. 

The solution of the flow and the equilibrium equations are performed simultaneously. 

With this, the flow is affected by the stress and the strain by porosity, and, consequently, 

permeability, proving this kind of solution to being internally consistent (Tran et al, 2005). 

Other advantages are the possibility of taking into account the effects of anisotropy and non-

linearity of materials (Samier et al, 2003) and the unconditional convergence property for 

implicit time integration (Jha, 2005). 

The disadvantages of this coupling approach are computational cost and consumption 

of time and the specific application of the same numerical solution method (e.g., Finite 

Element Method) for both equations (Settari & Walters, 2001; Pereira, 2007). A scheme 

representing this type of coupling is shown in Figure 4.4. 

The fully coupled approach is used in the formulation proposed in this research, as 

shown in chapter 3. This type of coupling allows the performance of more accurate 

simulations for traditional geotechnics and it may also improve reservoir geomechanical 

analyses. 
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Figure 4.4 - Solution algorithm for a fully coupled approach of hydro-mechanical problems. 

 

4.2 DESCRIPTION OF ALLFINE 

ALLFINE (Farias, 1993) was a Finite Element program for geotechnical analyses, 

originally developed for three-dimensional equilibrium problems and plane-strain 

consolidation problems in saturated conditions. The solution of the hydro-mechanical 

behavior of porous media is made with a fully coupled approach. Computational cost and 

consumption of time are managed with some features incorporated in the program. The 

simulation options of this program included: 

• Drained and undrained analyses; 

• Embankment construction simulations; 

• Excavation simulations; 

• Choice of different constitutive relations, including several elastoplastic models, such as: 

� Linear elastic; 

� Non-linear elastic; 

� Critical State – continuously plastic; 

� Critical State – elastoplastic; 

� Non-linear elastic for resilient sand; 

� Non-linear elastic for resilient clay; 

� Elastic-perfectly plastic (Drucker-Prager failure criterion); 

� Modified Cam-clay; 
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� Tij-clay; 

� Tij-sand. 

• Collapse settlement analysis; 

• Different integration algorithms for stress-strain relation; 

• Different solution schemes for non-linear equation systems. 

Cordão Neto (2005) added new features to the program, making it suitable for 

unsaturated conditions. The following options were added to ALLFINE: 

• Three-dimensional analysis of unconfined flow in unsaturated media; 

• Three-dimensional analysis of consolidation problems in unsaturated condition; 

• Choice of an elastoplastic model used for unsaturated soils, the Barcelona Basic Model 

(Alonso et al., 1990); 

• Hydraulic behavior constitutive models. 

It is important to highlight that ALLFINE is essentially a processing software. There is 

need of complementary softwares for pre-processing data and for post-processing the results. 

Considering the intention of studying compaction and subsidence problems in 

petroleum reservoirs, which are essentially consolidation analysis, there is need of ensuring 

the suitability of ALLFINE for performing these simulations. The consolidation analyses for 

saturated and unsaturated conditions were thoroughly discussed and tested by Cordão Neto 

(2005). The possible analysis conditions for both versions of the program were validated by 

Farias (1993) and Cordão Neto (2005).  

The latest version of ALLFINE was used as basis for implementation of the proposed 

formulation (chapter 3). The constitutive models used in this research were already in the 

program (linear elastic and modified Cam-clay). 

4.3 SUMMARY 

In this chapter, coupling strategies were described, with the definition of their main 

features, the differences among them and the advantages and disadvantages of each. 

Then, the FE program ALLFINE (Farias, 1993; Cordão Neto, 2005) was presented. The 

main analyses this software performs are listed, followed by the program functioning. The 

need of pre and post-processing complementary is highlighted, with description of the 

necessary procedures to adequately perform the simulations. 

This program is used as basis for the implementation of the coupled hydro-mechanical 

formulation proposed in chapter 3, with fluid and solids compressibility consideration. 
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5 SENSITIVITY ANALYSIS FOR MECHANICAL 

PARAMETERS 

The Finite Element program ALLFINE was improved with the implementation of the 

formulation proposed in this research (chapter 3). Being this formulation new to the software, 

tests had to be performed in order to verify the validity and to calibrate the proposed 

numerical model. 

Therefore, this formulation was tried with the simulation of two different cases in order 

to evaluate the influence of mechanical and hydraulic parameters of porous media. In this 

chapter, only the analyses performed for the mechanical parameters are presented. In the 

following chapter, the formulation tests for hydraulic parameters are presented and analyzed. 

Firstly, there have been performed one-dimensional consolidation simulations in a 

laterally confined column of soil, based on the simulations made by Farias (1993) and Cordão 

Neto (2005). The results are compared with the analytical solution of the conventional 

Terzaghi’s problem. 

The second case is a two-dimensional consolidation problem, with the behavior 

analysis of a porous medium subjected to an uniform load, infinite in one direction and with 

delimited extension on the other, again based on simulations performed by Farias (1993) and 

Cordão Neto (2005). The results are compared with the analytical solution of the 

conventional Biot problem (Biot, 1940). 

For the first case, the compressibility of the fluid and the soil were varied to control 

their influence in porous medium responses. For the second case, only the compressibility of 

the fluid was changed, making possible the evaluation of its influence in the physical 

behavior of the porous medium. 

The results here presented are sensitivity analyses of these parameters, contributing to a 

better understand of their significance on hydro-mechanical behavior of the porous medium 

in each simulated situation. 

The simulations are performed for two different constitutive models for the solid 

matrix, linear elastic and modified Cam-clay. Each one of these models requires specific 

mechanical parameters, which are adequately described on its corresponding sections 

throughout this chapter. 
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5.1 ONE-DIMENSIONAL CONSOLIDATION PROBLEM 

This first case consists of a laterally confined column of soil, 1 meter high and 

supporting an uniform load, as illustrated in Figure 5.1. 

 

Figure 5.1 - One-dimensional consolidation problem (modified Cordão Neto, 2005). 

 

The soil column is discretized in 10 three-dimensional 8-noded elements (Figure 5.2), 

making up a mesh with a total of 44 nodes. The division of the soil column is not uniform, 

each element with a different height, as shown in Figure 5.1. 

 

Figure 5.2 - 8-noded 3D element. 

 

The soil sample is assumed to be totally saturated and the fluid flow is restricted in the 

laterals of the column, but it can occur at the top surface. 

The studied problem is a consolidation analysis. The applied load is transferred to the 

fluid within the sample, configuring an instantaneous increase in fluid pressure. Gradually, 

over time, the fluid pressure dissipates, as it may be observed in the results. 

The performed analyses are compared to the solution as preview by Terzaghi. 

Simplifying assumptions were made by Terzaghi in his proposal of analysis for the one-

dimensional consolidation problem, some of which were: 
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• Linear elastic model; 

• Incompressible fluid. 

In the first analysis, using the linear elastic model, the results may be thoroughly 

compared. On the other hand, when the other models are used, the results are not equivalent 

to Tergazhi’s proposal. Even though it is not appropriate to make a comparison based on the 

analytical solution, these are the reference values for the proposed problem, so they are used 

to evaluate the results. 

The sensitivity analyses here presented reveal how the hydro-mechanical behavior of 

porous media is influenced by the compressibility of the fluid and the solids for different 

mechanical constitutive models. 

5.1.1 SENSITIVITY ANALYSIS FOR THE FLUID COMPRESSIBILITY 

The simulations performed to evaluate the influence of the fluid compressibility in the 

hydro-mechanical behavior of porous media were divided in two parts: 

• Verification of the influence of fluid compressibility in fluid pressure results; 

• Verification of the influence of stress state in fluid pressure results for the same 

fluid compressibility value. 

Firstly, for a 100 kPa load, the values of compressibility of the fluid were varied, as 

presented in Table 5.1. In these analyses, the compressibility of the solids was kept constant 

and its value is also shown in Table 5.1. The results of these analyses are presented for time 

factors T=0; 0,2; 0,5; 0,8. 

It is important to highlight that in the formulation (chapter 3), the influence of the fluid 

pressure in the fluid and solids density is measured with the bulk modulus. This modulus 

corresponds to the inverse of the compressibility. 

 

Table 5.1 -  Parameters for simulation of fluid compressibility influence. 

Fluid bulk modulus (kf) 1,0x1012 kPa 
3,7x106 kPa 
1,0x104 kPa 
1,0x103 kPa 
5,0x102 kPa 

Solids bulk modulus (ks) 1,0x1015 kPa 

 

Then, in order to verify the influence of the stress state in fluid pressure results for the 

same fluid compressibility value, the simulations were performed for two different loads, 100 
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kPa and 10000 kPa. The compressibility of the fluid was kept constant through the tests (kf = 

1,0x105 kPa) and the results were evaluated to time factors T=0,05; 0,5; 0,8. 

It is important to state the time factors presented in these results correspond to those 

calculated with the premises of classic consolidation theory - Terzaghi’s approach. The time 

factor is calculated with the following expression: 

2
v

d

c t
T

h
=  (5.1) 

where: T is the time factor, cv is the coefficient of consolidation [L2T-1], t is elapsed time [T] 

and hd is the largest measured height to a draining surface [L]. 

 

v
f v

k
c

mγ
=  (5.2) 

where: cv is the coefficient of consolidation [L2T-1], k is the permeability [LT-1], fγ  is the fluid 

unit weight [ML-2T-2] and mv is the coefficient of volume compressibility [L2T2M-1]. 
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where: mv is the coefficient of volume compressibility [L2T2M-1], E is the Young modulus 

[ML -2T-2] and ν is the Poisson coefficient. 

 

The values for time factor are kept constant for each set of simulations, allowing the 

comparison of results at the same stage of analysis. 

5.1.1.1  LINEAR ELASTIC MODEL RESPONSES 

The analyses performed with this model use the parameters shown in Table 5.2, besides 

others previously defined in Table 5.1. The value of Young modulus of the soil for the stress 

level influence analysis was established 100 times greater for the 10000 kPa load. This was 

made in order to prevent the soil sample from suffering large straining rates during the 

simulations, considering the objective of evaluating only the fluid compressibility effect. 

 

Table 5.2 - Parameters for one-dimensional consolidation problem (linear elastic model). 

Young modulus (E) For 1 0 0σ∆ = kPa 25000 kPa 

 For 1 0 0 0 0σ∆ = kPa 2500000 kPa 

Poisson coefficient (ν ) 0,31 
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Initial void ratio ( e0) 0,90 

Density of the solids (sρ ) 2,65 kg/m³ 

Permeability (k) 1,0x10-6 m/s 

Density of the fluid ( fρ ) 1,00 kg/m³ 

 

Firstly, a comparison between the analytical solution and the simulation results is made, 

as shown in Figure 5.3. This comparison is made only for the linear elastic model and 

incompressible fluid (kf = 1,0x1012 kPa) in order to reproduce the same conditions to which 

the conventional Terzaghi problem is solved. 

The results achieved with the simulation for incompressible fluid are very similar to the 

analytical solution. This shows the adequacy of the formulation for the proposed simulations. 

Some difference can be noticed only for the first time factor, T=0. This is expected, since this 

result represents full load transference for the fluid at the initial time stage of the 

consolidation analysis. The numerical model responses are not adequate to the analytical 

solution due to its boundary conditions, which force the porous medium results to go softly 

from 0 to 100 kPa, while the analytical solution shows an abrupt change on fluid pressure 

values. 

 

Figure 5.3 - Comparison between simulation results and analytical solution for an 
incompressible fluid case. 
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It is important to highlight that the results for lower layers of the porous medium 

(y=0m) should become constant, being perpendicular to the x-axis. This is not noted in the 

presented results due to little discretization of the domain to these lower layers. With more 

analysis points, this tendency would certainly be observed. 

Then, the influence of fluid compressibility in the hydro-mechanical behavior of the 

porous medium is evaluated with the results of fluid pressure. The evolution of the fluid 

pressure during the simulation of the consolidation process is monitored for specific time 

factors (T=0; 0,2; 0,5 e 0,8). They are presented in Figure 5.4. 

 

 

Figure 5.4 - Results of fluid pressure for 100 kPa load in soil column 
(fluid compressibility analysis – linear elastic model). 

 

For time factor T=0, the first analyzed stage of the simulations, the curves of fluid 

pressure are overlap, regardless the fluid compressibility. This occurs due to the short elapsed 

time of the phenomenon. In an initial moment, the imposed load goes directly to the fluid, 

making the values of fluid pressure equal. 

In the following stages, the responses start to change. For greater values of kf (lower 

compressibility), the values of fluid pressure are much closer to the responses correspondent 

to an incompressible fluid, as expected. 

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0 10 20 30 40 50 60 70 80 90 100

y 
(m

)

Fluid pressure (kPa)

T=0 - analytical solution T=0,2 - analytical solution T=0,5 - analytical solution T=0,8 - analytical solution

T=0 - kf=3,7x10^6 kPa T=0,2 - kf=3,7x10^6 kPa T=0,5 - kf=3,7x10^6 kPa T=0,8 - kf=3,7x10^6 kPa

T=0 - kf=1,0x10^4 kPa T=0,2 - kf=1,0x10^4 kPa T=0,5 - kf=1,0x10^4 kPa T=0,8 - kf=1,0x10^4 kPa

T=0 - kf=1,0x10^3 kPa T=0,2 - kf=1,0x10^3 kPa T=0,5 - kf=1,0x10^3 kPa T=0,8 - kf=1,0x10^3 kPa

T=0 - kf=5,0x10^2 kPa T=0,2 - kf=5,0x10^2 kPa T=0,5 - kf=5,0x10^2 kPa T=0,8 - kf=5,0x10^2 kPa



 

62 
 

As fluid compressibility is increased (lower fluid bulk modulus), the fluid pressure 

dissipation through time is much slower. As already said, initially the imposed load goes 

directly to the fluid. Over time, this stress is transferred to the solid matrix, which strains 

(pore closing). For a fully saturated sample, such as the analyzed in this case, the void 

volume changes represent fluid volume variation within the porous medium. 

If the fluid is considered incompressible, there are no changes in the volume of fluid 

and the strains of the solid matrix imply fluid flow. However, if the compressibility of the 

fluid is significant, the volume of fluid varies over time. This means the pore closing causes 

fluid compression, resulting in mass storage within the porous medium. 

Specifically for the used parameters and imposed conditions in the performed 

simulations, it can be noticed that from a specific value of fluid bulk modulus (kf = 3,7x106 

kPa), the fluid pressure starts to be influenced. 

There are few studies related to the fluid compressibility subjected in literature. There 

are some results of comparison of the evolution of fluid pressure over time using different 

fluid compressibility values in the research proposed by Jha (2005). 

The tendency of behavior of the porous medium in terms of fluid pressure presented by 

Jha (2005) is similar to the results achieved in these simulations, with the same delay of fluid 

pressure dissipation here observed. 

To illustrate how the stress state of the sample evolves, the stress paths for this 

simulation are shown in Figure 5.5, for the incompressible fluid (kf = 1,0x1012 kPa) and in 

Figure 5.6 for the fluid with highest compressibility in this case (kf = 5,0x102 kPa). 

 

(a) (b) 

Figure 5.5 - Stress paths for 100 kPa load simulation (kf = 1,0x1012 kPa - lin. elastic model). 
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(a) (b) 

Figure 5.6 - Stress paths for 100 kPa load simulation (kf = 5,0x102 kPa - linear elastic model). 
 

As expected, effective stress increases over time, as fluid pressure dissipates, as shown 

in Figure 5.5 (a) and Figure 5.6 (a). Also, it can be noticed that if the simulation was made to 

a longer period of time, the effective stress sample would tend to reach the same value of the 

total stress. This can be seen in Figure 5.5 (b) and Figure 5.6 (b). At that stage, fluid pressure 

would have dissipated completely. These behavior tendencies are similar for incompressible 

and compressible fluid simulations. 

A complementary analysis is made with the evaluation of changes in fluid density for 

different values of load, presented in Figure 5.7. 

 

Figure 5.7 - Changes in fluid density for different values of fluid compressibility. 

 

The value of fluid density increases for greater values of fluid compressibility (lower 

kf), as expected. However, kf =5,0x102 kPa is the limit value for the bulk modulus of the fluid 

for simulations with the used parameters, even though it does not represent a real fluid bulk 

modulus value. 
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In the formulation proposed in this research, as fluid bulk modulus increases, the values 

of the mass matrix increase greatly, with large storage of fluid mass. In these cases, flow does 

not take place. The solution of the system of equations becomes numerically unstable and it 

may not be representative for the study. 

The following analysis was performed in order to evaluate the degree of influence of 

the stress state in fluid pressure results for the same fluid compressibility value. The results 

were taken only for time factors T=0,05; 0,5; 0,8 and they are shown in Figure 5.8. 

 

Figure 5.8 - Fluid compressibility influence in results of fluid pressure for different stress 
levels (linear elastic model). 

 

Fluid compressibility does not influence the responses for a 100 kPa load. The results 

for this simulation are similar to the analytic response of the one-dimensional consolidation 

problem proposed by Terzaghi. There is no delay in dissipation of fluid pressure provoked by 

the effect of fluid compressibility during the consolidation of this sample. 
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On the other hand, for a 10000 kPa load, the fluid compressibility has a large influence 

in fluid pressure results, with values 10% greater than the predicted in cases where the effect 

of fluid compressibility is not significant. In this case, the effect of fluid compressibility is 

remarkable. The delay in dissipation of fluid pressure in the consolidation of the sample is 

clear. So, it may be stated that greater loads increase the effect of fluid compressibility, with 

consequent higher values of fluid pressure. 

This analysis is extremely important for reservoir geomechanics. Oil reservoirs are 

often located at great depths, being subjected to high stress levels. In these cases, the 

compressibility of the fluid is proven to be significant. The expected values of fluid pressure 

are largely increased by considering the fluid compressibility influence. 

5.1.1.2  MODIFIED CAM-CLAY MODEL RESPONSES 

The analyses performed with this model use the parameters shown in Table 5.3. Other 

parameters required for the simulations are defined later, given the necessity of varying them 

to the sensitivity analysis. 

 

Table 5.3 - Parameters of modified Cam-clay model for one-dimensional consolidation 
problem (fluid compressibility sensitivity analysis). 

M 1 

p0 For 1 0 0σ∆ = kPa 50 kPa 

For 1 0 0 0 0σ∆ = kPa 5000 kPa 

Overconsolidation ratio (OCR) 0,20 

λ  For 1 0 0σ∆ = kPa 0,00500 

For 1 0 0 0 0σ∆ = kPa 0, 13720 

κ  For 1 0 0σ∆ = kPa 0,00050 

For 1 0 0 0 0σ∆ = kPa 0,01372 

Initial void ratio ( e0) 0,90 

Poisson coefficient (ν ) 0,31 

Solids density (sρ ) 2,65 kg/m³ 

Fluid density ( fρ ) 1,00 kg/m³ 

Permeability (k) 1,0x10-6 m/s 

 

In the first analysis, the influence of fluid compressibility in the hydro-mechanical 

behavior of the porous medium is evaluated with the results of fluid pressure. The evolution 
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of the fluid pressure during the simulation of the consolidation process is monitored for 

specific time factors (T=0; 0,2; 0,5 e 0,8). They are presented in Figure 5.9. 

 

Figure 5.9 - Results of fluid pressure for 100 kPa load in soil column 
(fluid compressibility analysis – modified Cam-clay model). 

 

The interpretation of these results is similar to the achieved with the linear elastic 

model. The tendency of behavior is the same in both cases. For the time factor T=0, all curves 

are overlap, indicating the immediate transmission of the load to the fluid at this first stage. 

Gradually, over time, fluid pressure starts to dissipate with the transference of the 

pressure of the fluid to stress to the solid matrix. Depending on the influence of fluid 

compressibility, this process of dissipation may occur more rapidly (low fluid compressibility 

influence) or quicker (great fluid compressibility influence). 

For values greater than 3,7x106 kPa for fluid bulk modulus, it may be observed that the 

fluid pressure dissipation is much slower. This process is explained by the variation of fluid 

volume due to its compressibility, as explained before. The delay of fluid pressure dissipation 

is shown in Figure 5.9. 
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Another important analysis is related to the significant differences observed between 

the analytical solution, with a linear elastic constitutive model, and the responses achieved 

with the modified Cam-clay model. 

It can be noticed that there is significant difference between the results of fluid pressure 

when using these two constitutive models. This can be explained by premises of stress-strain 

relation of each model. 

In the linear elastic model, stress and strain have a linear relation. On the other hand, in 

the modified Cam-clay model, the stress-strain relation is non-linear for plastic strains. Thus, 

the predictions of expected strains for a porous medium differ depending on which model is 

applied during the simulations. 

In cases in which the Young modulus for the elastoplastic model is obtained by a secant 

going from the origin to the point of maximum stress, as shown in Figure 5.10, this 

interpretation can be easily made. 

 

Figure 5.10 - Comparison between elastoplastic and linear elastic models. 

 

Comparing the points A and B in Figure 5.10, it can be observed that for the same 

stress value, the strains achieved with the linear elastic model are greater than with the 

elastoplastic model. The differences between values of strain for a same stress value may be 

verified until the stress-strain curves for both models meet, at point C. 

In a coupled hydro-mechanical phenomenon such as the simulated, the behavior of the 

solid matrix influences directly the hydraulic responses of the medium. Therewith, one can 

infer that with an elastoplastic model, like modified Cam-clay, the transference of fluid 

pressure to the solid matrix will occur in a different manner than the expected for the linear 

elastic model. 
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Again, to illustrate how the stress state of the sample evolves, the stress paths for this 

simulation are shown in Figure 5.11, for the incompressible fluid (kf = 1,0x1012 kPa) and in 

Figure 5.12 for the fluid with highest compressibility in this case (kf = 5,0x102 kPa). 

 

(a) (b) 

Figure 5.11 - Stress paths for 100 kPa load simulation (kf = 1,0x1012 kPa – modified Cam-
clay model). 

 

(a) (b) 

Figure 5.12 - Stress paths for 100 kPa load simulation (kf = 5,0x102 kPa – mod. Cam-clay 
model). 

 

In this case, effective stress also increases over time with fluid pressure dissipation 

(Figure 5.11 (a) and Figure 5.12 (a)). For that reason, it is observed the same behavior 

tendency of the soil sample in these simulations as the ones performed with the linear elastic 

model. The effective stress tends to reach the total stress value after a longer period of time, 

with complete dissipation of fluid pressure. This tendency can be seen in Figure 5.11 (b) and 

Figure 5.12 (b). Again, the results are similar for incompressible and compressible fluid 

simulations. 
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Finally, a complementary analysis is presented, in order to show the effects of stress 

level in fluid pressure results for the same value of fluid bulk modulus. The comparison 

between the consolidation process of the soil column for two different loads, 100 kPa and 

10000 kPa, is shown in Figure 5.13 for time factors T=0,05; 0,5; 0,8. 

For a 100 kPa load, the simulation results tend to be proximate to the analytical 

solution, even though the used constitutive model does not represent the conditions fixed by 

Terzaghi. 

At time factor T=0,05, the values of fluid pressure follow the same tendency of the 

analytical solution, regardless the stress level. Due to simulation short elapsed time, this stage 

still represents an undrained load situation, with almost no fluid pressure dissipation. 

For the following time factors, it may be noticed that fluid pressure dissipates faster for 

a 10000 kPa, the opposite of the observed with the linear elastic model. 

 

 

Figure 5.13 - Fluid compressibility influence in results of fluid pressure for different stress 
levels (modified Cam-clay model). 
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The modified Cam-clay model captures the stress and strain changes of the porous 

medium more accurately than the linear elastic model and, for this reason, it adequately 

represents pore closing for a 10000 kPa load simulations. These volume changes may 

influence the fluid behavior, inducing fluid flow. It can be observed in this simulation that the 

10000 kPa load induced flow, making the values of fluid pressure lower. The effect of fluid 

compressibility, even though it is proved to affect the hydro-mechanical behavior of the 

porous medium at this stress level, could not compensate this flow induction. 

Specifically in terms of reservoir geomechanics, this phenomenon is named compaction 

drive. As mentioned in chapter 2, the compaction drive mechanism is the increase in oil flow 

out of the reservoir due to pore volume changes. This explains the observed decrease in fluid 

pressure for a higher stress level. The fluid compressibility effect could not be observed and 

analyzed for these simulation conditions. 

5.1.2 SENSITIVITY ANALYSIS FOR THE SOLIDS COMPRESSIBILITY  

Similarly to the performed analyses for the fluid compressibility, the influence of the 

solids compressibility in the hydro-mechanical behavior of porous media is evaluated. The 

simulations were also divided in two parts: 

• Verification of the influence of solids compressibility; 

• Verification of the influence of stress state in fluid pressure results for the same 

solids compressibility value. 

Again, for a 100 kPa load, the values of compressibility of the solids were varied, as 

shown in Table 5.4. Based on the achieved results, it has been demonstrated the need for 

making this simulation also for a 10000 kPa load. Thus, the effects of solids compressibility 

may be clearly observed. For this analysis, the parameters are shown in Table 5.5. 

The chosen values for solids compressibility were selected based on the fixed value of 

fluid compressibility. It is admitted that fluid compressibility could not be greater than solids 

compressibility, so the chosen values should fulfill this requirement. The solids bulk modulus 

values are in Table 5.4 and Table 5.5, for 100 kPa and 10000 kPa simulations, respectively. 

Another determinant aspect for the choice of the fluid compressibility was the analyses 

already performed. It was proved that for similar conditions of stress state, a value of fluid 

compressibility of 1x105 kPa did not influence the results of fluid pressure in comparison to 

the responses for an incompressible fluid (section 5.1.1). 
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The values of solids bulk modulus vary from the simulation with a 100 kPa load to the 

10000 kPa load. These values were carefully chosen to avoid any numerical instabilities of 

the model which could interfere on the results of the simulations. 

Table 5.4 -  Parameters for simulation of solids compressibility influence (100 kPa load). 

Solids bulk modulus (ks)  5,0x107 kPa 
1,0x107 kPa 
5,0x106 kPa 
1,0x106 kPa 

Fluid bulk modulus (kf) 1,0x105 kPa 

 

Table 5.5 -  Parameters for simulation of solids compressibility influence (10000 kPa load). 

Solids bulk modulus (ks)  1,0x1010 kPa 
1,0x109 kPa 
1,0x108 kPa 
5,0x107 kPa 

Fluid bulk modulus (kf) 1,0x105 kPa 

 

In order to verify the influence of stress state in fluid pressure results for a solids 

compressibility specific value, a comparison between results of the simulations for a 100 kPa 

and 10000 kPa was made. The compressibility of the solids was kept constant through the 

tests (ks = 5x107 kPa) and the results were evaluated to time factors T=0,05; 0,5; 0,8. 

It is important to state the time factors presented in these results correspond to those 

calculated with the premises of classic consolidation theory (section 5.1.1). They are kept 

constant for all simulations, permitting a comparison of results at the same stage of analysis. 

5.1.2.1  LINEAR ELASTIC MODEL RESPONSES 

The used parameters are the same of fluid compressibility simulations with the linear 

elastic model. The model parameters are shown in Table 5.2. 

The influence of solids compressibility is evaluated with the results of fluid pressure in 

the first analysis. The evolution of the fluid pressure during the simulation of the 

consolidation process is monitored for specific time factors (T=0; 0,2; 0,5 e 0,8). The results 

for a 100 kPa and 10000 kPa loads are presented in Figure 5.14 and Figure 5.15, respectively. 
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Figure 5.14 - Results of fluid pressure for 100 kPa load in soil column 
(solids compressibility analysis – linear elastic model). 
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Figure 5.15 - Results of fluid pressure for 10000 kPa load in soil column 
(solids compressibility analysis – linear elastic model). 
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pressure, as observed in Figure 5.14 and Figure 5.15. However, it is fair to say that the solids 

compressibility effect is not expressive, considering that the difference between the 

incompressible and compressible conditions are not very significant. 

A relevant aspect is the relation between solids and fluid compressibility. In the 

performed simulations, the fluid bulk modulus is fixed at 1,0x105 kPa.  When the value of 

solids bulk modulus is lowered, getting closer to 1,0x105 kPa, solids and fluid bulk modulus 

have the same magnitude. Thus, the effects of fluid compressibility are diminished or not as 

significant. This means the effect of increase in fluid pressure due to fluid compressibility 

(section 5.1.1) is annulled, making the values of fluid pressure lower than the expected for 

this fluid compressibility in this stress level. 

In order to complement the studies of stress state on the soil sample, the stress paths for 

these simulations are shown in Figure 5.16 and Figure 5.17 for the incompressible solids (ks = 

1,0x1015 kPa) and in Figure 5.18 and Figure 5.19 for the solids with highest compressibility 

(ks = 1,0x106 kPa and ks = 5,0x107 kPa), for a 100 kPa and 10000 kPa, respectively. 

(a) (b) 

Figure 5.16 - Stress paths for 100 kPa load simulation (ks = 1,0x1015 kPa - lin. elastic model). 
 

(a) (b) 

Figure 5.17 - Stress paths for 10000 kPa load simul. (ks = 1,0x1015 kPa - lin. elast. model). 
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(a) (b) 

Figure 5.18 - Stress paths for 100 kPa load simul. (ks = 1,0x106 kPa - linear elastic model). 
 

(a) (b) 

Figure 5.19 - Stress paths for 10000 kPa load simulation (ks = 5,0x107 kPa - lin. elast. model). 
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compressibility does not influence significantly the fluid pressure responses of the model. 

Therefore, one can conclude that this fluid behaves as an incompressible fluid for this load. 

On the other hand, for a 10000 kPa load, the same value of fluid compressibility influences 

significantly fluid pressure responses. For a higher load, the same fluid can be referred to as 

being compressible. This should be considered when analyzing the responses the model 

provides. This effect can be seen when comparing Figure 5.14 and Figure 5.15. The values of 

fluid pressure for a 10000 kPa load are proportionally higher than for the 100 kPa simulation 

and this effect is associated with fluid compressibility. 

Then, the following analysis was performed in order to evaluate the degree of influence 

of the stress state in fluid pressure results for the same solids compressibility value. Based on 

the previous analyses, the limit value of solids bulk modulus is 5,0x107 kPa, so the analysis 

was performed for this value. The results were taken only for time factors T=0,05; 0,5; 0,8 

and they are shown in Figure 5.20. 

 

Figure 5.20 - Solids compressibility influence in results of fluid pressure for different stress 
levels (linear elastic model). 
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influence porous medium behavior. The results for this simulation are similar to the analytic 

response of the one-dimensional consolidation problem proposed by Terzaghi, regardless the 

stress level or the solids compressibility. 

Thus, one possible interpretation is that the compressibility of the solid matrix is not so 

significant in the physical behavior of the porous media. The solids compressibility 

consideration could be neglected without major losses in terms of representativeness of the 

numerical model. 

5.1.2.2  MODIFIED CAM-CLAY MODEL RESPONSES 

The analyses performed with this model use the parameters shown in Table 5.6. Other 

parameters required for the simulations are defined later, given the necessity of varying them 

to the sensitivity analysis. 

 

Table 5.6 - Parameters of modified Cam-clay model for one-dimensional consolidation 
problem (solids compressibility sensitivity analysis). 

M 1 

p0 For 1 0 0σ∆ = kPa 50 kPa 

For 1 0 0 0 0σ∆ = kPa 5000 kPa 

Overconsolidation ratio (OCR)  0,20 

λ  For 1 0 0σ∆ = kPa 0,0050 

For 1 0 0 0 0σ∆ = kPa 0,0030 

κ  For 1 0 0σ∆ = kPa 0,0005 

For 1 0 0 0 0σ∆ = kPa 0,0003 

Initial void ratio ( e0) 0,90 

Poisson coefficient (ν ) 0,31 

Density of the solids (sρ ) 2,65 kg/m³ 

Density of the fluid ( fρ ) 1,00 kg/m³ 

Permeability (k) 1,0x10-6 m/s 

 

In the first set of performed simulations, it was tested the influence of solids 

compressibility in the responses for the one-dimensional consolidation case. The evolution of 

the fluid pressure during the simulation of the consolidation process is monitored for specific 

time factors (T=0; 0,2; 0,5 e 0,8). The results for a 100 kPa load and 10000 kPa are presented 

in Figure 5.21 and Figure 5.22, respectively. 
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The results for both loads show the same tendency of behavior of the medium already 

analyzed for the linear elastic model. For the first analyzed time factor (T=0), it can be 

observed some numerical instability, as already mentioned. For this first time stage, it is 

expected that the total imposed load goes directly to the fluid due to the short elapsed time. 

Therefore, the values of fluid pressure, regardless the solids compressibility, are equal at T=0 

and the curves should have been overlap. 

 

 

 

Figure 5.21 - Results of fluid pressure for 100 kPa load in soil column 
(solids compressibility analysis – modified Cam-clay model). 
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Figure 5.22 - Results of fluid pressure for 10000 kPa load in soil column 
(solids compressibility analysis – modified Cam-clay model). 
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the fluid pressure results are significantly affected by the constitutive model employed. The 

modified Cam-clay model simulation results may portray the effects of solids compressibility 

in a more realistic way, representing the porous medium response more effectively. 

Another important aspect is the relation between solids and fluid compressibility. In the 

performed simulations, the fluid bulk modulus is fixed at 1,0x105 kPa.  When the value of 

solids bulk modulus is lowered, getting closer to 1,0x105 kPa, the effects of fluid 

compressibility are diminished or not as significant. This means the effect of increase in fluid 

pressure due to fluid compressibility (section 5.1.1) is annulled, making the values of fluid 

pressure lower than the expected for this fluid compressibility in this stress level. 

The evolution of stress in the sample is represented by the stress paths for these 

simulations, shown in Figure 5.23 and Figure 5.24 for the incompressible solids (ks = 

1,0x1015 kPa) and in Figure 5.25 and Figure 5.26 for the solids with highest compressibility 

(ks = 1,0x106 kPa and ks = 5,0x107 kPa), for a 100 kPa and 10000 kPa, respectively. 

(a) (b) 

Figure 5.23 - Stress paths for 100 kPa load sim. (ks = 1,0x1015 kPa - mod. Cam-clay model). 
 

(a) (b) 

Figure 5.24 - Stress paths for 10000 kPa load simulation (ks = 1,0x1015 kPa - mod. Cam-clay 
model). 
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(a) (b) 

Figure 5.25 - Stress paths for 100 kPa load simul. (ks = 1,0x106 kPa - mod. Cam-clay model). 
 

(a) (b) 

Figure 5.26 - Stress paths for 10000 kPa load simulation (ks = 5,0x107 kPa - mod. Cam-clay 
model). 
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responses. For a higher load, the same fluid behaves as a compressible fluid. This should be 

considered when analyzing the responses the model provides. This effect can be seen when 

comparing Figure 5.21 and Figure 5.22. The values of fluid pressure for a 10000 kPa load are 

proportionally higher than for the 100 kPa simulation. 

The following analysis is used to evaluate the influence of the stress state in fluid 

pressure results for the same solids compressibility value. Based on previous analyses, the 

limit value of solids bulk modulus is 5,0x107 kPa for the stress level used in these 

simulations. Values of solids bulk modulus lower than this can induce numerical instability. 

This influences fluid pressure responses, making the evaluation not appropriate for 

comparison of results achieved with the model. The results were taken only for time factors 

T=0,05; 0,5; 0,8 and they are shown in Figure 5.27. 

 

Figure 5.27 - Solids compressibility influence in results of fluid pressure for different stress 
levels (modified Cam-clay model). 
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kPa load. This loading induces pore closing and, consequently, fluid flow. Considering this, 

the solids compressibility does not influence the observed results. 

A complementary analysis was made with the results in order to verify the effect of 

consideration of solids compressibility. This effect could be measured by the Biot parameter, 

already defined in chapter 3 and expressed by the Eq. (5.4): 

{ } { }
1

9

T ep

b
s

m D m

k
α

  = −  (5.4) 

where: { } { }1 1 1 0 0 0
T

m =
 
for a 3D analysis, [Dep] is the constitutive matrix and sk  is 

the solids bulk modulus. 

 

For isotropic, homogeneous and linear elastic media, the Biot parameter is defined as 

1bα = . This suggests that the compressibility of the solid matrix does not interfere in the 

porous medium behavior in these conditions. 

However, this parameter is used in the formulation proposed in this dissertation and it 

influences all matrixes of the solution of the mass conservation equation. Therefore, defining 

the degree of influence of this parameter in the results may be the basis for evaluating the 

necessity of calculating Biot parameter for each simulation. 

For the same simulations already performed, the results of the Biot parameter for 

different values of solids bulk modulus are shown in Figure 5.28, for a 100 kPa load, and in 

Figure 5.29, for a 10000 kPa load. 

The values of Biot parameter (bα ) presented in these graphics are for simulations with 

the linear elastic model (alpha LE) and with the modified Cam-clay model (alpha CC). 

The value of bα  is constant for all stages of time for simulations with the linear elastic 

model. On the other hand, the values of bα for modified Cam-clay model simulations change 

over time. Defining a specific value adequate for representing each simulation could not be 

truly representative, so it has been established that the minimum and maximum values of bα  

would be plotted in the graphics. Also, an average value of bα  was determined for each 

modified Cam-clay simulation, with its calculation weighted by the frequency of occurrence 

of each value of bα . The values of bα were then used in the definition of the curve of average 

values of bα for the modified Cam-clay model (alpha CC average). 
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Figure 5.28 - Changes in Biot parameter for a 100 kPa load. 

 

Figure 5.29 - Changes in Biot parameter for a 10000 kPa load. 

 

It can be noticed from both graphics that the value of bα  is not significantly altered for 

values of solids bulk modulus higher than 1x107 kPa for a 100 kPa load and 1x109 kPa for a 

10000 kPa. For values lower than that, the values of bα  start to vary more noticeably. 

Considering that this parameter represents the effect of solids compressibility on the 

sample, it is fair to say that the verification of influence of the stress state of a sample in Biot 

parameter reveals its importance to evaluate porous media physical behavior. 

In real cases, the values of solids bulk modulus for most soils and rocks are around 

these limits, with 4x107 kPa for quartz crystals (Figure 5.28 and Figure 5.29), for instance 

(Richardson et al., 2002). Therewith, it may be remarked that the solids compressibility does 

not influence the responses of the porous medium significantly for lower loads (100 kPa). 
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This type of analysis permits to infer that this effect of solids compressibility could be 

neglected in these cases, simplifying the performed simulations. 

However, for greater loads (10000 kPa), bα  varies considerably for real values of 

solids bulk modulus. Considering solids compressibility may be important in cases such as 

petroleum reservoir simulations, in which the level of stress imposed to the porous medium is 

higher. 

5.2 TWO-DIMENSIONAL CONSOLIDATION PROBLEM 

The second case is a two-dimensional consolidation problem. An infinitely deep layer 

of soil is analyzed in a plane-strain situation, with x, z as the in-plane axes. 

The porous medium hydro-mechanical behavior is analyzed with the application of an 

uniform load, infinite in one direction (y) and limited on the other (from x = – b to x = b), as 

shown in Figure 5.30. The soil is considered totally saturated and it is subjected to a geostatic 

initial stress state. Also, the fluid is assumed to escape freely at the surface. This case is also 

based on simulations performed by Farias (1993) and Cordão Neto (2005). 

The studied domain is discretized in 200 three-dimensional 8-noded elements (Figure 

5.2), making up a mesh with a total of 462 nodes. The division of the domain follows an 

exponential distribution in both directions (x and y). The configuration of the finite element 

mesh is shown in Figure 5.30. 

 

Figure 5.30 - Two-dimensional consolidation problem (modified Cordão Neto, 2005). 

The formulation implemented on ALLFINE is tested for this case in terms of fluid 

compressibility sensitivity. The validation of the proposed formulation is done by the 
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comparison of the results achieved with ALLFINE and the analytical solution for the 

problem. 

When the fluid bulk modulus is large enough (comparing to solids bulk modulus), the 

fluid is considered incompressible. So, using values for these parameters correspondent to the 

condition of incompressibility, the results should match the analytical solution of the 

problem, proposed by Biot (1940). 

These results are presented in terms of normalized displacements. This normalization is 

made by dividing the surface displacements results by winf (Eq. (3.1)), correspondent to the 

initial uniform displacement the surface would suffer if the load extended from x = − ∞  to 

x = ∞ . 

inf
4

apl
w

π
=  (5.5) 

where: winf  is the initial uniform displacement, p is the load and l is the double of the 

extension in which the load is applied (l=2b). 

 

In Equation (5.5), a is defined as: 

( )( )
( )

1 2 1
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a

E

ν ν
ν

− +
=

−
 (5.6) 

where: E is the Young modulus and ν is the Poisson coefficient. 

 

For other conditions, such as fluid compressibility consideration, the values of 

displacements are not normalized. The initial uniform displacement (winf) is calculated for a 

linear elastic model response, with incompressible fluid. Therefore, using the normalization 

procedure for compressible fluids does not have any physical for the proposed sensitivity 

analysis. 

Again, the time factors for which the results are presented correspond to those based on 

classic consolidation theory (section 5.1.1). The value of the time factor is maintained 

constant for all simulations, permitting a comparison of results at the same stage of analysis. 

The presented results permit an evaluation of the hydro-mechanical behavior of the 

porous medium in a consolidation analysis, verifying the applicability of the enhanced 

version of ALLFINE, with the compressibility hypothesis considered. 

5.2.1 SENSITIVITY ANALYSIS FOR THE FLUID COMPRESSIBILITY 

The analyses performed for these tests of fluid compressibility are for a two-

dimensional consolidation condition. They are divided in two parts: 
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• Validation of the proposed formulation; 

• Comparison of results for different fluid bulk modulus values. 

The formulation is tested with the responses obtained with the simulation of a case in 

which the fluid is incompressible (kf =1,0x1012 kPa). The results of these simulations are 

compared to the analytical solution of this problem. 

The tests are made for both linear elastic and modified Cam-clay models. When the 

linear elastic model simulations are performed, the mechanical parameters used are the same 

as the established for the analytical solution of the problem. In this case, the results are 

expected to being similar to the analytical response. 

However, for the modified Cam-clay model, the mechanical parameters are not the 

same as the used for an analytical solution, given the differences between an elastoplastic and 

an elastic model. Furthermore, it is not likely that the results achieved when using the 

modified Cam-clay model are close to the analytical response. Also, the value of 

displacement for x=0 for the last evaluated time stage is expected to match the linear elastic 

response. This is used for calibration of the modified Cam-clay model. 

The results are presented for five different time factor values, T=1/8, 2/8, 3/8, 4/8 and 

5/8, in terms of vertical displacements. Again, these time factors refer to the analytical 

solution of Terzaghi’s consolidation problem analysis. These time factors are only employed 

in order to facilitate the visualization of the results for each simulation over time. 

5.2.1.1  LINEAR ELASTIC MODEL RESPONSES 

Firstly, the simulation for the validation of the formulation was performed for the 

studied case with a linear elastic model. For an incompressible fluid (kf =1,0x1012 kPa), the 

results achieved with ALLFINE are presented in Figure 5.31. It is important to state that the 

presented results are the values of displacements for each time stage (T=1/8 to 5/8) with 

deduction of the values of displacement for the initial time stage (T=0). The values of 

displacement to the initial time stage correspond to an undrained behavior of the soil, not 

being representative of the consolidation phenomenon. The results have been normalized by 

the initial uniform displacement winf (Eq. (3.1)). 

The parameters required for the calculation of the initial uniform displacement are 

related in Table 5.7 and the parameters used for the simulation are disposed in Table 5.8. 
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Table 5.7 - Parameters for calculating the initial uniform displacement winf. 

a 0,0001 kPa-1 

Load (p) 100 kPa 

Extension of application of the load (b) 1,68 m 

l (l=2b)  3,36 m 

 

Table 5.8 - Parameters for two-dimensional consolidation problem (linear elastic model). 

Young modulus (E) 10000 kPa 

Poisson coefficient (ν ) 0 

Initial void ratio ( e0) 0,90 

Density of the solids (sρ ) 2,65 kg/m³ 

Solids bulk modulus (ks) 1,0x1015 kPa 

Density of the fluid ( fρ ) 1,00 kg/m³ 

Fluid bulk modulus (kf) 1,0x1012 kPa 
3,7x106 kPa 
1,0x103 kPa 
5,0x102 kPa 

Permeability (k) 1,0x10-6 m/s 

 

 

Figure 5.31 - Comparison between analytical solution and results of simulation with 
ALLFINE for a two-dimensional consolidation problem (linear elastic model). 

-4

-3,5

-3

-2,5

-2

-1,5

-1

-0,5

0

0 1 2 3 4 5 6

N
o

rm
a

liz
e

d 
di

sp
la

ce
m

e
nt

s

x (m)
T=1/8 - analytical solution T=1/8 - kf=1x10^12 kPa

T=2/8 - analytical solution T=2/8 - kf=1x10^12 kPa

T=3/8 - analytical solution T=3/8 - kf=1x10^12 kPa

T=4/8 - analytical solution T=4/8 - kf=1x10^12 kPa

T=5/8 - analytical solution T=5/8 - kf=1x10^12 kPa



 

89 
 

 

It may be noticed that the responses achieved with ALLFINE are satisfyingly close to 

the analytical solution for the problem, with minimum error associated to the numerical 

solution. 

The difference between the responses of analytical solution and simulation may be 

explained by considerations made in the numerical modeling. In this case, the domain of the 

problem is finite, limited in all directions, x, y and z, differently than the conditions of the 

analytical solution, which preview an infinite semi-space. This induces the simulations results 

to values not so close to the analytical solution as they could be. 

Also, the discretization made on the domain of the numerical solution requires 

boundary conditions which contribute to the noticed difference between the model results and 

the analytic response of the problem. 

After validating the proposed formulation for the two-dimensional consolidation case, 

the simulations are performed for different values of fluid bulk modulus, in order to evaluate 

the effects of fluid compressibility in results of vertical displacement in the porous medium. 

These values of displacement are not normalized, but the displacement referent to the 

undrained loading condition (initial stage, T=0) is deducted. 

The results of the simulations are shown in Figure 5.32. The values of fluid bulk 

modulus employed in the simulations are presented in Table 5.8. 

 

Figure 5.32 - Results of displacements for different fluid bulk modulus (linear elastic model). 
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The values for fluid bulk modulus can be increased from the totally incompressible 

condition (kf =1,0x1012 kPa) to the value already stated as limit for the fluid compressibility 

starts to influence the porous medium physical behavior. It can be noticed that for this limit 

value, the results achieved with ALLFINE simulations do not differ significantly from the 

analytical response. 

When fluid compressibility is increased over this limit value (kf decrease), it can be 

noticed the results of vertical displacements are influenced. The surface displacements 

decrease for fluids with higher compressibility, considering the same time factor. 

This could be interpreted as the effect of fluid pressure increasing already remarked in 

one-dimensional consolidation analysis (section 5.1). Instantaneously after load application, 

the fluid receives the entire load, increasing fluid pressure to a maximum value. Over time, 

the fluid pressure tends to dissipate, as load is gradually transferred to solid matrix. This 

stress transference is more expressive with incompressible fluids. 

However, in a case in which the fluid compressibility is significant, the transference of 

stress from the fluid to the solid matrix is delayed. The initial increase of fluid pressure 

makes the fluid have its volume reduced. Thus, fluid pressure increases more than with 

incompressible fluids, justifying the higher values of fluid pressure registered for 

compressible fluid during a consolidation process. 

This delay in fluid pressure dissipation makes the effective stress to which the porous 

medium is subjected lower (fluid pressure is higher). Therewith, one can deduce that the 

stress-strain relations of the porous medium are affected. For lower stress, the strain rate of 

the soil is lower as well, justifying the decrease in the values of vertical displacement as fluid 

compressibility is increased. 

5.2.1.2  MODIFIED CAM-CLAY MODEL RESPONSES 

Firstly, the simulation for the validation of the formulation was performed for the 

studied case with the modified Cam-clay model. For an incompressible fluid (kf =1,0x1012 

kPa), the results achieved with ALLFINE are shown in Figure 5.33. 

Differently than the results presented for the linear elastic model, the values of 

displacement in this graphic have no deduction of the values of displacement to the initial 

time stage. This consideration might seem inadequate, given the physical significance of the 

initial time displacements, given in an undrained condition of loading which does not 

represent the consolidation phenomenon. For that reason, the results of the simulation are 

compared with the analytical solution also with no discount of this initial stage 
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displacements. This consideration is made in order to better adjust the modified Cam-clay 

model parameters (Table 5.9), calibrating it properly, permitting the responses to being 

adequate to represent the studied phenomenon. 

 

Table 5.9 - Parameters for two-dimensional consolidation problem 
(modified Cam-clay model). 

M 1 

p0 (for 1 0 0σ∆ = kPa) 50 kPa 

Overconsolidation ratio (OCR) 0,20 

λ  0,050 

κ  0,005 

Initial void ratio ( e0) 0,90 

Poisson coefficient (ν ) 0 

Density of the solids (sρ ) 2,65 kg/m³ 

Density of the fluid ( fρ ) 1,00 kg/m³ 

Permeability (k) 1,0x10-6 m/s 

 

 

Figure 5.33 - Comparison between analytical solution and results of simulation with 
ALLFINE for a two-dimensional consolidation problem (modified Cam-clay model). 
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The results of the numerical solution of the problem with the modified Cam-clay model 

and its analytical solution are shown in Figure 5.33. The calibration of modified Cam-clay 

model parameters was based on the values of displacement for the final stage of analysis 

(T=5/8). The results achieved with the numerical solution should match adequately the 

expected displacements with the analytical solution. 

For more advanced time stages (T=3/8; 4/8; 5/8), the accordance of the numerical and 

analytical solution results is satisfying. Again, any difference observed between these 

responses may be explained by considerations made for performing numerical simulation, 

such as defining a finite domain for the analysis or even the mesh used for element 

discretization. 

However, for the first time stages (T=1/8; 2/8), the responses do not adequately match 

the behavior previewed by the analytical solution. This could be explained by different 

characteristics of the constitutive models. 

As explained before (section 5.1.1), the stress-strain relation is linear for a linear elastic 

model and it is non-linear for an elastoplastic model, such as modified Cam-clay. 

In cases in which the Young modulus for the elastoplastic model is obtained by a secant 

going from the origin to the point of maximum stress, this interpretation can be easily made. 

For a same stress value, the strains achieved with the linear elastic model are greater than 

with the elastoplastic model. The differences between values of strain for a same stress value 

may be verified until the stress-strain curves for both models meet (Figure 5.10). 

This interpretation for the difference on stress-strain relation between these models 

justifies the observed behavior in this case. For the first time stages, the effective stress to 

which the solid matrix is subjected is not sufficient to reach the point when both linear and 

elastoplastic model stress-strain curves meet, explaining the differences between the 

responses. 

In the second analysis made for this set of simulation, the influence of fluid 

compressibility is evaluated. The comparison of vertical displacements results for different 

fluid bulk moduli using the modified Cam-clay model reveal the same tendency of behavior 

observed in linear elastic simulations. Porous media which the fluid within is significantly 

compressible are more likely to present lower strain rates, given the increase of fluid pressure 

already verified with other analysis (section 5.1.1). Thus, the displacements observed in the 

porous medium are lower when the fluid within is compressible than in situation in which the 

fluid may be considered incompressible. This can be observed in Figure 5.34. 
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Figure 5.34 - Results of displacements for different fluid bulk modulus 
(modified Cam-clay model). 

 

The results achieved with linear elastic and modified Cam-clay models show that the 

influence of the compressibility of the fluid is minimum for this case. In standard 

geotechnical problems, such as this example, this kind of approach is not relevant. The level 

of stress and strains porous media suffer is not in the same magnitude order as the reservoir 

geomechanics problems. Thus, the results are not much influenced by the consideration of 

fluid compressibility. 

5.3 SUMMARY 

In this chapter, aspects regarding the mechanical parameters of the studied phenomenon 

have been discussed. The influence of fluid and solids compressibility on a porous medium 

has been analyzed with the simulation of one-dimensional and two-dimensional consolidation 

cases for the linear elastic and modified Cam-clay models. 

Firstly, the adequacy of the formulation proposed in this dissertation was tested, with 

comparison of the results of the simulation, considering fluid and solids incompressible, to 

the analytical solution of each problem. 

The next procedure was to evaluate the degree of influence of fluid compressibility. 

This was verified with the variation of fluid bulk modulus in each case, with same conditions 

of load, permeability, fluid and solids density and void ratio of the porous medium. This 

analysis was performed for both one-dimensional and two-dimensional consolidation cases. 
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The influence of fluid compressibility is quite significant. The results for the one-

dimensional case show that when the fluid is more compressible, the tendency is to observe a 

delay in fluid pressure dissipation. This is explained by the volume changes the fluid suffers 

when load is applied in the soil (or rock). 

In the two-dimensional case, it was possible to observe less displacement of the soil 

surface when the fluid is more compressible. This is explained by the reduction of effective 

stress (due to fluid pressure increase). Consequently, the soil straining observed is much less 

significant, resulting in less vertical displacement. 

In order to evaluate the influence of stress level (different loading conditions) in the 

results of fluid pressure, simulations were performed in order to compare the response for a 

same value of fluid bulk modulus. This analysis was made only for the one-dimensional 

consolidation problem. 

For the linear elastic model, the results show that for a higher level of stress, the fluid 

compressibility is more significant. The analyses of petroleum reservoirs are greatly 

influenced by this aspect, given the high levels of stress to which the reservoir may subjected 

at great depths. 

For the modified Cam-clay model, however, fluid pressure dissipates faster for a 10000 

kPa, the opposite of the expected behavior in these analyses. 

This can be explained by the specific features of this constitutive model. The volume 

changes of the porous medium are better captured with this model. Therewith, two possible 

phenomena can occur. The fluid within the porous medium can be trapped in the voids or 

fluid flow can be induced. In the simulations results, it can be observed that the 10000 kPa 

load induced flow, making the values of fluid pressure lower. 

Specifically for reservoir geomechanics, this phenomenon is characterized as 

compaction drive mechanism, when oil flow is induced due to pore volume changes. This 

explains the observed decrease in fluid pressure for a higher stress level. 

Then, the simulations for sensitivity analysis for solids compressibility were performed, 

only for the one-dimensional consolidation case. 

The simulations were made for two different loads, 100 kPa and 10000 kPa, in order to 

compare and verify if there could be noticed any behavior tendency differences between 

them. A comparison of the influence of stress level was also performed and finally, values of 

Biot’s coefficient ( bα ) were verified. 



 

95 
 

These results showed that the influence of solids compressibility is not significant for 

the numerical solution of the problem. This effect could be neglected without great 

interference in model response. 

Biot’s coefficient ( bα ) may vary significantly for lower solids bulk modulus values. 

When comparing the real values of solids bulk modulus to the performed simulations, 

depending on the stress level to which the porous medium is subjected, the values of bα  may 

be much lower than 1. In terms of physical behavior of the medium, this could represent the 

solid matrix compressibility influences more the results for higher levels of stress. 

An interesting aspect of these analyses was the verification of the difference of results 

achieved when performing the simulations with linear elastic or modified Cam-clay models, 

either for fluid and solids compressibility. 

The comparison of the results show there is some difference for initial time stages of 

the simulation. Over time, this difference decreases until it is practically null. This can be 

explained by the difference in concept between linear elastic and elastoplastic models. 

A linear elastic model has a linear stress-strain relation, as an elastoplastic model has a 

non-linear stress-strain relation. Thus, for certain stress levels, the straining for the linear 

elastic model is higher than for the elastoplastic model. However, for a determined value of 

stress, the curves which represent each model behavior meet, indicating that the value of 

strain for that level of stress is the same for both models. 

The analyses reported in this chapter were essential to visualize the behavior of a 

porous medium in a consolidation case, a similar situation to the compaction of oil reservoirs. 

The conclusions here presented help understanding the influence of fluid compressibility in 

soils and rocks behavior, facilitating the comprehension of certain aspects of the involved 

phenomena. 

The numerical tool developed, validated and calibrated so far shows great potential of 

enhancing the quality of numerical simulation of petroleum reservoirs. 
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6 SENSITIVITY ANALYSIS FOR HYDRAULIC 

PARAMETERS 

Similarly to the performed simulations presented in chapter 5, aspects regarding 

hydraulic parameters, specifically permeability, are discussed in this part of the research. 

For the evaluation of permeability features during the simulation of soil consolidation 

(or reservoir compaction, in reservoir geomechanics), the study case is the same used in the 

one-dimensional analysis in chapter 5. It is a laterally confined column of soil during 

consolidation process. 

The permeability is defined as function of void ratio of the porous medium, and the 

simulations are performed for three different configurations of this function. Also, the fluid 

compressibility is varied for the simulations, in order to being verified the combined effect of 

compressibility and permeability changes. 

These analyses are repeated for linear elastic and modified Cam-clay models for the 

solid matrix. The specific parameters of each are adequately described on its corresponding 

sections throughout this chapter. 

6.1 ONE-DIMENSIONAL CONSOLIDATION PROBLEM 

This case is the same already presented in chapter 5 (section 5.1). It consists of a 

laterally confined column of soil, 1 meter high and supporting an uniform load of a 10000 

kPa. The soil is assumed to be totally saturated and fluid flow is laterally restricted, but it can 

occur at the top surface. The discretization is made in three-dimensional 8-noded elements. 

6.2 PERMEABILITY FUNCTIONS 

In some cases, the permeability of a porous medium is considered constant during 

consolidation. However, due to the mechanical and hydraulic phenomena which take place, 

one can deduce this is not an accurate assumption. The solid matrix suffers stress changes and 

straining during this process, implying on pore closing. 

The observed reduction in pore volume influences permeability and these two soil 

characteristics may be related by the following expression: 

exp( )

exp( )

Be
k A

BC
=  (6.1) 

where: k is the porous medium permeability, e is the void ratio, A, B and C are the function 

parameters. 
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Initially, the permeability sensitivity analysis would be performed for the one-

dimensional consolidation case for a 100 kPa load. However, the results achieved with both 

linear elastic and modified Cam-clay models showed that the variation in void ratio values 

was too small. 

Given the importance of more significant void ratio changes for permeability analysis, 

the simulations were performed for a 10000 kPa load. Even though the void ratio variation 

was not as expressive in these simulations, the results were more visible, making the analysis 

of the phenomenon clearer. 

For this study, three different permeability functions were defined for the simulations 

with the calibration of parameters A, B and C. In literature, references to adequate parameters 

for permeability functions are rarely reported. For this reason, a methodology of calibration 

for these functions was developed in this study. 

The parameter A corresponds to the initial permeability value (k0) for the porous 

medium. The parameter C is equivalent to a reference void ratio value and, specifically, in 

this case, it corresponds to initial void ratio value (e0). The parameter B was calibrated 

considering the void ratio variation range. With this parameter, the function reaches constant 

values of permeability (function k1), values 10 times lower than the initial (function k2) or 

values 100 times lower than the initial (function k3) when the porous medium reaches the 

smallest final void ratio for the simulations (0,876). The values of each parameter are 

presented in Table 6.1 and its corresponding permeability functions are shown in Figure 6.1. 

 

 

Figure 6.1 - Permeability functions. 
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Table 6.1 - Calibration parameters for the permeability function. 

A  1,0x10-6 

B For function k1  0,0 

 For function k2  95,8 

 For function k3  191,9 

C  0,90 

 

These permeability functions are used in simulations with incompressible (kf =1x1012 

kPa) and compressible fluids (kf =1x105 kPa), for linear elastic and modified Cam-clay 

models. Thus, the effect of fluid compressibility with permeability variation is evaluated. 

With different permeability functions, any evidence of interference in the physical behavior 

of the porous medium should be remarked in the proposed simulations. The results are 

presented in sections 6.3 and 6.4. 

6.3 LINEAR ELASTIC MODEL RESPONSES 

The analyses performed with this model use the parameters shown in Table 6.2. The 

values of permeability vary according to the permeability functions defined in section 6.2. 

 

Table 6.2 - Parameters of linear elastic model for one-dimensional consolidation problem. 

Young modulus (E) 2500000 kPa 

Poisson coefficient (ν ) 0,31 

Initial void ratio ( e0) 0,90 

Density of the solids ( sρ ) 2,65 kg/m³ 

Solids bulk modulus (ks) 1,0x1015 kPa 

Density of the fluid ( fρ ) 1,00 kg/m³ 

 

For the linear elastic model analyses, the final void ratio is 0,895, regardless the 

permeability function used. The volume change is small, but the effects of permeability 

variation can be noticed in fluid pressure results. The evolution of the fluid pressure during 

the simulation of the consolidation process is monitored for specific time factors (T=0; 0,2; 

0,5 e 0,8). The results for incompressible and compressible fluid analysis are presented in 

sections 6.3.1 and 6.3.2, respectively. 
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6.3.1 INCOMPRESSIBLE FLUID 

The simulations with incompressible fluid (kf =1x1012 kPa) were performed for the 

three permeability functions, k1, k2 and k3. The fluid pressure results for each time factor 

(T=0; 0,2; 0,5 e 0,8) are presented in Figure 6.2, Figure 6.3, Figure 6.4 and Figure 6.5. 

 

 

 

Figure 6.2 - Results of fluid pressure for linear elastic model - incompressible fluid (T=0). 

 

 

 

Figure 6.3 - Results of fluid pressure for linear elastic model - incompressible fluid (T=0,2). 
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Figure 6.4 - Results of fluid pressure for linear elastic model - incompressible fluid (T=0,5). 

 

Figure 6.5 - Results of fluid pressure for linear elastic model - incompressible fluid (T=0,8). 
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mechanical behavior results with this constitutive model are not as accurate as the results 

achieved with an elastoplastic model. The analyses with the modified Cam-clay allow a better 

understanding of permeability function influence in porous medium behavior. They are 

presented in section 6.4. 

In order to complement this analysis, the void ratio and permeability profiles for 

functions k2 and k3 of this soil sample are shown in Figure 6.6, Figure 6.7 and Figure 6.8, 

respectively. 

 

Figure 6.6 - Void ratio profile (incompressible fluid - linear elastic model). 

 

 

Figure 6.7 - Permeability profile for function k2 (incompressible fluid - linear elastic model). 
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Figure 6.8 - Permeability profile for function k3 (incompressible fluid - linear elastic model). 

 

6.3.2 COMPRESSIBLE FLUID 

The simulations with compressible fluid (kf =1x105 kPa) were performed for the three 

permeability functions, k1, k2 and k3. The fluid pressure results for each time factor (T=0; 0,2; 

0,5 e 0,8) are presented in Figure 6.9, Figure 6.10, Figure 6.11 and Figure 6.12. 

 

 

 

Figure 6.9 - Results of fluid pressure for linear elastic model - compressible fluid (T=0). 
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Figure 6.10 - Results of fluid pressure for linear elastic model - compressible fluid (T=0,2). 

 

Figure 6.11 - Results of fluid pressure for linear elastic model - compressible fluid (T=0,5). 

 

Figure 6.12 - Results of fluid pressure for linear elastic model - compressible fluid (T=0,8). 

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

y 
(m

)

Fluid pressure (kPa)

T=0,2 - k1 T=0,2 - k2 T=0,2 - k3

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

y 
(m

)

Fluid pressure (kPa)

T=0,5 - k1 T=0,5 - k2 T=0,5 - k3

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

y 
(m

)

Fluid pressure (kPa)

T=0,8 - k1 T=0,8 - k2 T=0,8 - k3



 

104 
 

The results for simulations with the compressible fluid follow the same behavior 

tendency of the incompressible fluid analysis. In the first time stage, the fluid pressure is 

equal for all permeability functions. Then, in the following time stages, fluid pressure 

dissipates faster for constant permeability (k1 function) and slower for the function which 

reaches a permeability value 100 times lower than the initial value (k3 function). 

In comparison to the results achieved with incompressible fluid permeability analyses 

simulations, it is fair to state that the difference between the values of pressure for both types 

of fluids is related to its compressibility, not being associated to the permeability functions. 

The analysis of the fluid pressure curves over time format shows fluid flow tendency is 

the same (the shape of the curves is maintained), regardless fluid compressibility. 

In order to complement this analysis, the void ratio and permeability profiles for 

functions k2 and k3 of this soil sample are shown in Figure 6.13, in Figure 6.14 and Figure 

6.15, respectively. 

 

Figure 6.13 - Void ratio profile (compressible fluid - linear elastic model). 

 

Figure 6.14 - Permeability profile for function k2 (compressible fluid - linear elastic model). 
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Figure 6.15 - Permeability profile for function k3 (compressible fluid - linear elastic model). 

6.4 MODIFIED CAM-CLAY MODEL RESPONSES 

The analyses performed with this model use the parameters shown in Table 6.3. The 

values of permeability vary according to the permeability functions defined in section 6.2. 

 

Table 6.3 - Parameters of modified Cam-clay model for one-dimensional consolidation 
problem (permeability analysis). 

M 1 
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Overconsolidation ratio (OCR) 0,20 
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κ  0,0003 

Initial void ratio ( e0) 0,90 

Poisson coefficient (ν ) 0,31 

Density of the solids ( sρ ) 2,65 kg/m³ 

Solids bulk modulus (ks) 1,0x1015 kPa 

Density of the fluid ( fρ ) 1,00 kg/m³ 

 

The values of final void ratio for the modified Cam-clay model analyses are presented 

in Table 6.4. There were no differences between final void ratio values for incompressible 

and compressible fluids. The volume change is small, but the effects of permeability variation 

can be noticed in fluid pressure results due to the chosen permeability functions. The 

evolution of the fluid pressure during the simulation of the consolidation process is monitored 
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for specific time factors (T=0; 0,2; 0,5 e 0,8). The results for incompressible and 

compressible fluid analysis are presented in sections 6.4.1 and 6.4.2, respectively. 

 

Table 6.4 - Final void ratio values for modified Cam-clay model simulations. 

Permeability Final void ratio 

k1 function 0,876 

k2 function 0,877 

k3 function 0,877 

6.4.1 INCOMPRESSIBLE FLUID 

The simulations with incompressible fluid (kf =1x1012 kPa) were performed for the 

three permeability functions, k1, k2 and k3. The fluid pressure results for each time factor 

(T=0; 0,2; 0,5 e 0,8) are presented in Figure 6.16, Figure 6.17, Figure 6.18 and Figure 6.19. 

 

Figure 6.16 - Results of fluid pressure for modified Cam-clay model - incomp. fluid (T=0). 

 

Figure 6.17 - Results of fluid pressure for modified Cam-clay model - incomp. fluid (T=0,2). 

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

y 
(m

)

Fluid pressure (kPa)

T=0 - k1 T=0 - k2 T=0 - k3

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

y 
(m

)

Fluid pressure (kPa)

T=0,2 - k1 T=0,2 - k2 T=0,2 - k3



 

107 
 

 

Figure 6.18 - Results of fluid pressure for modified Cam-clay model - incomp. fluid (T=0,5). 

 

Figure 6.19 - Results of fluid pressure for modified Cam-clay model - incomp. fluid (T=0,8). 
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Analyzing the shape of the curves, it can be noticed that for permeability function k3, 

fluid pressure is high for the lower layers of the soil sample and it decreases abruptly for the 

superficial layers (surface at 1 m). 

During the process, the superficial layers consolidate first, having their pores closed, 

forming a low-permeability zone. The observed pore closing influences more drastically 

permeability values for permeability function k3 for these simulations. This causes fluid flow 

decrease, making the values of fluid pressure higher in other layers of the sample. 

The effect of pores closing in superficial layers is explained by the use of modified 

Cam-clay model. This model represents the strains a porous medium suffers due to applied 

stress more adequately than the linear elastic model. Thus, the void ratio of the soil is 

appropriately calculated and updated during the simulations and the effect of pore closing 

during the consolidation process is better represented. 

In order to complement this analysis, the void ratio and permeability profiles for 

functions k2 and k3 of this soil sample are shown in Figure 6.20, Figure 6.21 and Figure 6.22, 

respectively. 

 

 

Figure 6.20 - Void ratio profile (incompressible fluid - modified Cam-clay model). 
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Figure 6.21 - Permeability profile for function k2 (incomp. fluid - modified Cam-clay model). 

 

Figure 6.22 - Permeability profile for function k3 (incomp. fluid - modified Cam-clay model). 
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Figure 6.23 - Void ratio and permeability changes with stress increase. 

 

With these conclusions, one can deduce the need for an appropriate permeability 

function, with adequate parameters to represent the pore volume changes over time. The 

porous medium permeability influences directly fluid pressure and flow, representing an 

important aspect of numerical modeling. 

6.4.2 COMPRESSIBLE FLUID 

The simulations with compressible fluid (kf =1x105 kPa) were performed for the three 

permeability functions, k1, k2 and k3. The fluid pressure results for each time factor (T=0; 0,2; 

0,5 e 0,8) are presented in Figure 6.24, Figure 6.25, Figure 6.26 and Figure 6.27. 

 

 

Figure 6.24 - Results of fluid pressure for modified Cam-clay model - comp. fluid (T=0). 
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Figure 6.25 - Results of fluid pressure for modified Cam-clay model - comp. fluid (T=0,2). 

 

Figure 6.26 - Results of fluid pressure for modified Cam-clay model - comp. fluid (T=0,5). 

 

Figure 6.27 - Results of fluid pressure for modified Cam-clay model - comp. fluid (T=0,8). 
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As observed in the linear elastic analysis, the results of the simulations with the 

compressible fluid follow the same behavior tendency of the incompressible fluid. For the 

first time stage, the fluid pressure is equal for all permeability functions. Then, for the 

following time stages, fluid pressure dissipates faster for the constant permeability function 

(k1 function) and slower for the function which reaches a permeability value 100 times lower 

than the initial value (k3 function). 

Again, it is fair to state that the only difference between the values of pressure for both 

types of fluids is related to its compressibility, not being associated to the permeability 

functions. 

Thus, by analyzing the format of the fluid pressure curves over time, it can be inferred 

that the fluid flow tendency is the same (the shape of the curves is maintained), regardless the 

fluid compressibility. 

The effect of fluid pressure increase and abrupt decrease for the permeability function 

k3 is again observed. It can be explained by features of modified Cam-clay model. The 

superficial layers of the porous medium suffer consolidation first. Thus, this process creates a 

low-permeability zone at the surface of the sample, making difficult fluid flow through this 

region. Therefore, fluid pressure within the porous medium increases, as observed for the 

results of all time stages for permeability function k3 curves. 

In order to complement the analyses of influence of fluid compressibility in the 

permeability of the soil sample, the void ratio and permeability profiles are shown in Figure 

6.28, in Figure 6.29 and Figure 6.30, respectively. 

 

Figure 6.28 - Void ratio profile (compressible fluid - modified Cam-clay model). 
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Figure 6.29 - Permeability profile for function k2 (comp. fluid - modified Cam-clay model). 

 

Figure 6.30 - Permeability profile for function k3 (comp. fluid - modified Cam-clay model). 
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Considering this, in Figure 6.31, Figure 6.32 and Figure 6.33, the results of the 

simulations are plotted again, allowing the comparison between incompressible and 

compressible fluid results and results for different permeability functions (k2 and k3). The 

plotted values of fluid pressure correspond to the results of the simulations performed with 

the linear elastic model. 

 

 

Figure 6.31 - Comparison between results of incompressible and compressible fluid 
simulation for different permeability functions (T=0,2). 

 

 

Figure 6.32 - Comparison between results of incompressible and compressible fluid 
simulation for different permeability functions (T=0,5). 
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Figure 6.33 - Comparison between results of incompressible and compressible fluid 
simulation for different permeability functions (T=0,8). 

 

Analyzing the results for all three time stages, it is possible to observe two distinct 

zones, A and B. The first zone, indicated by A in the graphs, refers to the difference in fluid 

pressure values associated to the fluid compressibility. The results of the curves that 

delimitate zone A in the graphs are governed by the same permeability function (k2). 

Therewith, zone A corresponds only to the fluid compressibility effect. 

The second zone, indicated by B in the graphs, refers to the difference of fluid pressure 

values due to permeability changes. The curves that delimitate zone B correspond to results 

of simulations made with the same fluid bulk modulus value. However, they are governed by 

different permeability functions, k2 and k3. Thus, zone B corresponds only to the permeability 

effect. 

With this approach of results presentation, one can conclude the influence limit of each 

parameter effect, allowing a more accurate analysis of the causes for fluid pressure increase 

in porous media during consolidation. 

6.6 SUMMARY 

The objective of this chapter was to evaluate the effects of permeability variation in 

fluid pressure dissipation during a consolidation process. Furthermore, the combined effect of 

permeability changes and fluid compressibility was analyzed. This allowed a better 

understanding of the hydraulic behavior of porous media. 
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The analyses performed for permeability influence evaluation proved that there is need 

of developing appropriate permeability functions for porous media studies. The pore volume 

changes influence directly fluid percolation through the porous medium, evidencing that the 

different permeability functions may alter significantly the responses achieved with the 

proposed numerical model. 

On the other hand, fluid compressibility does not alter percolation through the porous 

medium. The fluid flow takes place with the same tendency observed in incompressible fluid 

simulations. However, the effect of fluid pressure dissipation delay is still registered. 

An interesting result was noticed in modified Cam-clay analyses. For the simulations 

made with permeability function k3, it could be observed that fluid pressure values were high 

for lower layers of the soil sample. On the other hand, fluid pressure for superficial layers 

was extremely low, causing an abrupt change in fluid pressure curve format, as observed in 

the correspondent graphs. This is explained by the consolidation process in this porous 

medium. The modified Cam-clay model reproduced the pore closing effect more accurately 

than the linear elastic model. Thus, the applied load which starts the consolidation process of 

this soil sample reproduced significant changes in void ratio for the superficial layers of the 

sample first. Therefore, a low-permeability zone which prevented fluid pressure dissipation 

for lower layers (fluid flow out of the sample) was formed. 

These analyses highlighted the importance of studying permeability functions for 

porous medium, in order to better represent its hydraulic behavior. 

Finally, the results of incompressible and compressible fluid simulations were 

compared for two different permeability functions. This allowed the division of zones of 

causes for fluid pressure delay in dissipation, one correspondent only to fluid compressibility 

influence, other to permeability decrease influence. 
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7 CONCLUSIONS 

The main objective of this research was to define a numerical model for coupled hydro-

mechanical analyses for compaction and subsidence problems in petroleum reservoirs 

considering fluid compressibility valid. 

Compaction during primary recovery simulation in an oil reservoir is a problem of 

dissipation of fluid pressure, with no external loading applied. This kind of problem is 

adequately reproduced with formulation which uses the iterative coupling strategy. In terms 

of physical behavior of the porous medium, the level of coupling of this kind of problem is 

not so strong and the application of the iterative coupling strategy would not imply on 

numerical model accuracy loss. 

On the other hand, the application in traditional geotechnics of the same type of 

formulation requires a stronger coupling strategy. In cases such as consolidation in soil 

samples, where load is applied, the level of coupling may influence more the results of the 

simulation. The separate solution of the equations which describe the problem does not 

represent adequately the physics of the phenomenon. A fully coupled model is the most 

appropriate for representing the case, providing greater accuracy to the simulations. 

Considering these analyses, the formulation proposed in this research is based on a 

fully coupled approach. Therewith, it can be applied not only in reservoir geomechanics 

simulations, but also in consolidation analyses in geotechnics. This formulation has been 

tested with parametric analyses related to mechanical and hydraulic behavior in porous 

media. 

There have been performed sensitivity analyses for fluid compressibility. Results show 

that considering this affects fluid pressure responses significantly. It is important to highlight 

that defining if a certain value of fluid bulk modulus is equivalent to a compressible fluid 

property depends on the stress level to which this fluid subjected. High stress levels magnify 

the effects of fluid compressibility. This is extremely relevant for reservoir geomechanics 

considering the stress level reservoirs are usually subjected. 

Important results have been achieved when performing simulations with the modified 

Cam-clay model. This constitutive model allowed the reproduction of the compaction drive 

mechanism. Values of fluid pressure reduced for high levels of stress due to this effect. 

The consideration of fluid compressibility influences greatly the results of fluid 

pressure in numerical modeling for this type of problem. Therefore, one can deduce that this 
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assumption may improve reservoir simulations, providing more accurate results of 

geomechanical and hydraulic responses. 

Besides this, solids compressibility has been tested. The sensitivity analyses for this 

parameter have revealed that the effect of considering it does not influence fluid pressure 

results significantly when the simulations are performed for low stress levels (100 kPa). 

Therefore, in these conditions, solids compressibility could be neglected in numerical models 

with no losses in model response adequacy. 

However, for high stress levels (10000 kPa), Biot’s coefficient is largely influenced. 

This reflects on analyses performed with the modified Cam-clay model. This effect could be 

associated to specific features of this constitutive model, not only to solids compressibility. 

Nevertheless, considering the solids compressibility effect may be significant for reservoir 

simulations. Values of Biot’s coefficient suffer significant changes for typical solids bulk 

modulus (quartz crystals - 4x107 kPa), indicating the importance of taking into account solids 

compressibility effects when high stress levels are imposed to the porous medium. 

Finally, the influence of permeability changes and the combined effect of permeability 

variation and fluid compressibility have been analyzed. It is important to state that the effect 

of permeability changes is not influenced by fluid compressibility. The two effects, 

permeability changes and fluid compressibility, can be separately analyzed. Thus, it is 

possible to define to which point the fluid pressure increase is related only to permeability 

changes or to fluid compressibility. In the presented results, there were defined zones of 

permeability changes influence and fluid compressibility influence. This type of analysis is 

extremely significant in practical terms, facilitating the understanding of degree of influence 

for each parameter. 

Another interesting result is related to the modified Cam-clay model. The consolidation 

process is characterized by pore closing and fluid flow in a porous medium. Depending on 

the load this medium is subjected, the superficial layers of the sample can consolidate first, 

forming a low-permeability zone. This zone stops fluid flow, making fluid pressure increase 

within the porous medium. 

This analysis can be extremely relevant for reservoir geomechanics application of the 

model. Fluid flow may be disturbed or even interrupted by this low-permeability zone, 

decreasing oil production rate. 

In an overall analysis, the proposed formulation is adequate to describe the parameters 

studied during this research. However, there are some limitations. This formulation is 
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exclusively for isothermal media and its application is limited to simulations of saturated 

porous media, only for liquid fluids (regardless its compressibility). 

These assumptions were made in order to restrict the simulations to analyses with fluid 

compressibility influence consideration. Therefore, the simplifications proposed may prevent 

a full representation of the problem, but are sufficient to allow the evaluation of the specific 

mentioned effects. 

7.1 RECOMMENDATIONS FOR FURTHER RESEARCH 

Some aspects have not been studied during this research and these are suggested as 

themes for future work. This proposal includes some themes which are beyond the scope of 

this dissertation and difficulties encountered in performing some tasks during the 

development of this research. There are recommendations for further research in other areas 

which could contribute to improve the results with the model proposed in this dissertation. 

These suggestions are: 

• To enhance reservoir modeling considering other phases, such as gaseous phase and 

water phase; 

• To consider the effects of temperature in reservoir simulation; 

• To consider the effects of gas compressibility; 

• To develop a formulation appropriate to represent chemical interaction among phases; 

• To simulate a real case of petroleum reservoir, comparing simulation and field responses; 

• To employ different constitutive model in reservoir simulation, such as subloading model; 

• To develop appropriate constitutive models for permeability, emphasizing the relation 

between void ratio and transmissibility of fluids; 

• To improve numerical simulation with ALLFINE by implementing subroutines for the 

non-linearity problems in flux for this proposed formulation. 
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