Análise e Previsão dos

Recolhimentos Compulsórios Sobre Recursos à Vista

Dissertação de mestrado elaborada como parte dos requisitos necessários para obtenção do título de Mestre em Economia pela Universidade de Brasília.

Professora Orientadora: Maria Eduarda Tannuri-Pianto

Departamento de Economia Universidade de Brasília 2008

Aos meus pais

Paulo Neves Silveira

e

Sylvia Cora Ubatuba de Faria Moody Silveira

Agradecimentos

Agradeço à minha orientadora, a professora Maria Eduarda Tannuri-Pianto, pela atenção e dedicação apresentadas para este trabalho, feitos sempre com muita sabedoria.

Agradeço ao meu orientador técnico no Banco Central, o colega Euler Pereira Gonçalves de Mello. Seus comentários foram sempre valiosos.

Agradeço ao empenho dos demais membros da banca examinadora, os Doutores Aquiles Rocha de Farias e Mardílson Fernandes Queiroz. Suas sugestões contribuíram muito para o enriquecimento do trabalho.

Agradeço ao apoio do Banco Central do Brasil, no qual trabalho, por meio de seu programa de Pós-Graduação, que permitiu a minha dedicação ao curso de Mestrado em Economia da Universidade de Brasília.

Finalmente, agradeço à Chefia, à Consultoria de Estudos e Pesquisas e à Divisão de Operações Bancárias, do Departamento de Operações Bancárias e Sistemas de Pagamento do Banco Central do Brasil, pelo apoio dado a esta dissertação.

Sumário

Resumo	6
Abstract	7
Lista de Abreviaturas	8
Lista de Figuras	10
Lista de Tabelas	11
1. Introdução	13
2. Revisão Bibliográfica	14
3. Metodologia	17
3.1 VAR com Média Móvel e Variáveis Exógenas - VARMAX	20
3.2 Função de Verossimilhança	21
3.3 Estimativas Iniciais para as Regressões	23
3.4 Testes de Heteroscedasticidade	24
3.5 Modelo GARCH Multivariado	25
3.6 Previsão	27
3.7 Impulso	27
4. Dados	32
4.1 Informativos dos Recolhimentos Compulsórios	32
4.2 Variáveis Exógenas	34
4.3 Estatística Descritiva dos Dados	36
4.4 Agregados dos Bancos Pequenos	36
5. Resultados dos Agregados de Todos os Bancos	37
5.1 Testes de Raiz Unitária	37
5.2 Testes de Causalidade de Granger para as Variáveis Macro	38
5.3 Variáveis Macros como Exógenas – Determinação das Defasagens de seus	Efeitos 39
5.4 Número de Lags das Variáveis Endógenas e Eliminação de Cross e Autoco	orrelações .41
5.5 Novo Teste de Granger e Heteroscedasticidade nos Resíduos	42
5.6 Modelagem GARCH Multivariado	44
5.7 Análise Descritiva dos Resíduos	50
5.8 Previsão	51
5.9 Função de Resposta a Impulso	62
5.10 Cenários para as Variáveis Exógenas	68
5.11 Previsão das Variáveis Macroeconômicas	72

5.12 Robustez dos Parâmetros Regredid	os75
6. Resultados dos Agregados dos Bancos I	Pequenos84
6.1 Modelagem GARCH	86
7. Conclusões	92
8. Referências	93
APÊNDICE A – Principais Códigos	95
A.1 Modelo VARMAX-VGARCH	95
APÊNDICE B – Correlações (Cross e Aut	o) nos Resíduos ε104

Resumo

Essa dissertação aborda os Recolhimentos Compulsórios sobre Recursos à Vista no Brasil. Ela analisa e faz a previsão das cinco maiores séries temporais que compõem a base deste recolhimento. Um modelo VARMAX, com componentes autoregressivo, médias móveis e variáveis exógenas, é utilizado. A taxa de juros Selic, a taxa de Câmbio R\$/US\$, o volume de vendas no comércio, o consumo e a renda são as variáveis exógenas. Um modelo GARCH Multivariado BEKK diagonal é usado para tratar a heteroscedasticidade dos resíduos.

Abstract

This dissertation discusses the reserves requirements in Brazil. It analyses and forecasts the top five time series that form these requirements. A VARMAX model with autoregressives lags, moving averages and exogenous variables is used. The interest rate Selic, exchange rate BRL/USD, commerce sales, consumption and income are the exogenous variables. A BEKK diagonal Multivariate GARCH model is used to treat the errors heteroscedasticity.

Lista de Abreviaturas

AIC Critério de Informação de Akaike

AR Modelo Autoregressivo

ARCH Heteroscedasticidade Condicional Autoregressiva
ARIMA Modelo Autoregressivo Integrado com Média Móvel

ARMA Modelo Autoregressivo com Média Móvel

BCB Banco Central do Brasil

BIC Critério de Informação de Schwarz

Cosif Plano Contábil das Instituições do Sistema Financeiro Nacional

CPMF Contribuição Provisória sobre Movimentação Financeira

Deban Departamento de Operações Bancárias e Sistemas de Pagamento do

BCB

FED Banco Central dos EUA

GARCH Heteroscedasticidade Condicional Autoregressiva Generalizada

HQC Critério de Informação de Hannan-Quinn

IBGE Instituto Brasileiro de Geografia e Estatística

INSS Instituto Nacional do Seguro Social

IPCA Índice Nacional de Preços ao Consumidor Amplo

Ipea Instituto de Pesquisa Econômica Aplicada

LS Método de Mínimos Quadrados

MA Modelo com Média Móvel

ML Método de Máxima verossimilhança

PIB Produto Interno Bruto
Selic Taxa de Juros Selic

SPB Sistema de Pagamentos Brasileiro
VAR Modelo Vetorial Autoregressivo

VARCH Modelo Vetorial com Heteroscedasticidade Condicional Autoregressiva

VARMA Modelo Vetorial Autoregressivo com Média Móvel

VARMAX Modelo Vetorial Autoregressivo com Média Móvel e Variáveis

Exógenas

VGARCH Modelo Vetorial com Heteroscedasticidade Condicional Autoregressiva

Generalizada

X Variável Exógena

Lista de Figuras

Figura 1 - Finicipais Testes e Regressoes	. 20
Figura 2- Previsão com VARMAX(2,1)-VGARCH - Máxima Verossimilhança	.58
Figura 3- Previsão com VAR(4) sem GARCH – Mínimos Quadrados	.60
Figura 4- Choque nos Depósitos á Vista	. 63
Figura 5- Choque nos Depósitos de Governo	. 64
Figura 6- Choque nos Recursos em Trânsito de Terceiros	. 65
Figura 7- Choque nas Cobranças e Arrecadações de Tributos e Assemelhados	. 66
Figura 8- Choque nas Ordens de Pagamentos em Moedas Estrangeiras	.67
Figura 9- Cenários para as Variáveis Exógenas Macroeconômicas – Variações Absolutas	.70
Figura 10- Cenários para as Variáveis Exógenas Macroeconômicas – Variações Relativas	.71
Figuras 11- Previsão das Variáveis Macroeconômicas	.73

Lista de Tabelas

Tabela 1-Fontes das Variáveis Exógenas	34
Tabela 2- Estatística Descritiva	36
Tabela 3- Grupos de Bancos	36
Tabela 4- Testes de Raiz Unitária	38
Tabela 5- Testes de Causalidade de Granger	39
Tabela 6- Defasagem das Exógenas Macroeconômicas	40
Tabela 7- Critérios de Informação	41
Tabela 8- Correlações (<i>Cross</i> e Auto) nos Resíduos ε	42
Tabela 9- Testes de Causalidade de Granger	43
Tabela 10- Testes de Heteroscedasticidade	43
Tabela 11- Coeficientes, Erros Padrões e Significância	46
Tabela 12- Testes de Heteroscedasticidade	48
Tabela 13- Correlações (Cross e Auto) nos Resíduos η	49
Tabela 14- Testes de Normalidade nos Resíduos	49
Tabela 15- Teste de Estabilidade -Raízes do Polinômio Característico AR e	MA – Equação
Principal	50
Tabela 16- Teste de Estabilidade -Raízes do Polinômio Característico AR e	MA – Equação
GARCH	50
Tabela 17- Análise Descritiva dos Resíduos	51
Tabela 18- Erro Médio Absoluto e Quadrático	53
Tabela 19- Defasagem das Exógenas para 31/10/2002 a 7/7/2006	75
Tabela 20- Defasagem das Exógenas para 11/2/2003 a 17/10/2006	76
Tabela 21- Coeficientes, Erros Padrões e Significância – Ajuste para 31/10/200	02 a 7/7/200677
Tabela 22- Coeficientes, Erros Padrões e Significância – Ajuste para 11/2/200)3 a 17/10/2006
	79
Tabela 23- Robustez dos Parâmetros	81
Tabela 24- Testes de Raiz Unitária – Bancos Pequenos	84
Tabela 25- Defasagem das Exógenas – Bancos Pequenos	85
Tabela 26- Critérios de Informação – Bancos Pequenos	85
Tabela 27- Representações de Tiao e Box – Bancos Pequenos	86
Tabela 28- Testes de Heteroscedasticidade – Bancos Pequenos	87

Tabela 29- Coeficientes, Erros Padrões e Significância – Bancos Pequenos......90

1. Introdução

Os recolhimentos compulsórios são um dos instrumentos clássicos de política monetária. A sua utilização envolve a análise das informações que são usadas para o seu cálculo, assim como a sua previsão.

É sobre a finalidade de fornecer previsões e análises sobre compulsórios que se situa esta dissertação. Entre os recolhimentos compulsórios vigentes no Brasil hoje, um dos mais importantes, se não o mais, é o Recolhimento Compulsório e Encaixe Obrigatório sobre Recursos à Vista. Dos valores utilizados para calcular este recolhimento, os mais importantes são: os Depósitos à vista; Depósitos de Governo; Recursos em Trânsito de Terceiros; Cobrança e Arrecadação de Tributos e Assemelhados; e Ordens de Pagamentos em Moedas Estrangeiras. Neste trabalho, pretendemos analisar o comportamento destas cinco séries e também fornecer um modelo de previsão para elas.

Os recolhimentos compulsórios estão caindo em desuso. Alguns países chegam a não o utilizar mais, como a Grã-Bretanha. Na literatura da área, alguns autores não recomendam seu uso, como Barro (1993). Não é de se surpreender, portanto, que esse assunto não está no foco da pesquisa econômica no mundo atualmente. Porém, no Brasil, a situação é diferente. Os recolhimentos compulsórios ainda são um instrumento bastante utilizado e de forte influência na condução da política monetária. Segundo o Boletim do Banco Central, os recolhimentos/encaixes obrigatórios totalizaram R\$209bi em dezembro de 2007, o que equivale a quase 10% do PIB de 2007. É difícil de se vislumbrar no futuro próximo uma queda acentuada no valor recolhido. Visto o alto índice de endividamento público que possui, o país continuará precisando do uso desse instrumento junto com as operações de mercado aberto. Assim, é nessa necessidade que se insere a presente dissertação.

Utilizamos o modelo VARMAX-VGARCH na condução das regressões. A análise foi feita sobre as cinco séries temporais citadas no período de maio de 2002 a outubro de 2007, onde o intervalo de janeiro de 2006 a outubro de 2007 foi usado como período de comparação para as previsões geradas.

2. Revisão Bibliográfica

Os recolhimentos compulsórios são utilizados como instrumento de política monetária há um bom tempo. Entretanto, a forma e a intensidade com que são utilizados varia bastante. Pela sua importância, muitas pesquisas já foram realizadas envolvendo o tema recolhimentos compulsórios.

A presente seção deveria se propor primeiramente a revisar trabalhos sobre a base de incidência de recolhimentos compulsórios, ou pelo menos do comportamento de bases semelhantes. Entretanto, não há na literatura publicada análises sobre o assunto. Porém, quando se parte para a revisão de textos envolvendo recolhimentos compulsórios em geral, caímos no problema oposto. Há um vasto número de publicações a respeito. Esta seção se propõe a revisar entre os estudos envolvendo recolhimentos compulsórios em geral, os mais úteis para esta dissertação.

Gibson (1972) estudou as funções de demanda e oferta de moeda nos Estados Unidos. Ele tratou a estimativa das funções simultaneamente. O artigo dá atenção especial no lado da oferta relacionando a quantidade de dinheiro ao estoque de dinheiro maior possível, e no lado da demanda usando o produto da renda nacional com a taxa de juros. Ele acha evidências dos efeitos de mudança nas técnicas para tratar as séries temporais. Ele destaca que há diferença entre as estimativas usando médias trimestrais dos dados diários e usando dados do último dia do trimestre. As estimativas com médias geram resultados melhores. Os recolhimentos compulsórios a serem feitos pelos bancos entram na equação de oferta, onde ele afirma que "a equação de oferta de dinheiro não é uma função de oferta, mais precisamente é uma função de demanda por reservas livres".

Feige e McGee (1979) analisaram se o FED alterou a política monetária de metas de taxas de juros para metas de agregados monetários em torno de 1970. Eles desenvolveram um modelo simples e consistente tanto com um agregado monetário, quanto com taxas de juros como objetivos intermediários da política monetária. Depois, eles destacaram as restrições que devem ser usadas no modelo geral para situações onde somente uma dessas alternativas é usada. As restrições então são testadas empiricamente.

Feige e McGee (1979) também se defrontam com três problemas de especificação do modelo. No primeiro, há o problema da escolha entre um modelo contemporâneo e um dinâmico. Um modelo dinâmico é mais geral, porque permite defasagens no ajuste, o que não ocorre com especificações apenas contemporâneas. Um modelo contemporâneo é um caso particular do dinâmico. O segundo problema surge quando o modelo permite *lags* no ajuste das variáveis. Para restringir a estrutura dos *lags*, é necessário conhecer a natureza do processo. Para resolver este problema de identificação, Feige e McGee (1979) não fixam as defasagens teoricamente. Eles permitem a especificação de defasagens o mais geral possível. O terceiro problema envolve a hipótese de exogeneidade assumida nos modelos econométricos. Ao invés de simplesmente impor a priori as hipóteses, aqui elas são testadas.

Os dois maiores objetivos do artigo de Feige e McGee (1979) são: verificar se é possível detectar empiricamente mudança na política monetária de controle das taxas de juros para controle da quantidade de dinheiro; e ilustrar uma construção de modelo econométrico que começa com menos restrições que o normal.

Já Leeper (1997) aborda problemas de identificação em métodos VAR e narrativos para políticas monetárias. O método narrativo se baseia na técnica de Romer e Romer (1989). Estes criam uma variável *dummy* que indica períodos em que o Fed adotou políticas restritivas em relação às pressões inflacionárias. Seu artigo mostra que: a variável *dummy* é previsível a partir de variáveis macroeconômicas passadas; e que mudanças não previsíveis na *dummy* não geram respostas dinâmicas que afetem a política monetária.

Bental e Eden (2002) estudaram choques monetários endógenos provocados por sistemas bancários com reservas fracionais sob operações de comércio incertas e seqüenciais. Estes choques levam a flutuações no produto. Eles chegam à conclusão que quando flutuações na razão entre dinheiro e depósitos são fontes importantes de choques monetários, uma alíquota alta de recolhimentos compulsórios sobre depósitos à vista minimiza a variação do produto. Por outro lado, quando o importante são as flutuações nas transações com cartão de crédito, então alíquotas baixas desse compulsório minimizam a variação.

Eles comentam também sobre a tendência de se reduzir o uso de recolhimentos compulsórios sobre recursos à vista. O desenvolvimento de instrumentos financeiros aumentou o número de instituições não bancárias com serviços similares a bancos, porém sem estarem sujeitas a recolhimentos compulsórios. Também os próprios bancos passaram a achar meios de fugir a esses recolhimentos, transferindo fundos de contas sujeitas para outras não sujeitas. Eles citam que nos EUA, esses recolhimentos declinaram de US\$60bilhões de dólares em 1994 para US\$38bilhões em 2000 (No Brasil, um aspecto da história recente dos recolhimentos compulsórios é a transferência de recursos por bancos para contas não sujeitas, acompanhada da criação pelo BC de novos recolhimentos sobre estas contas. Aqui se enquadra a recente criação do Recolhimento Compulsório e Encaixe Obrigatório sobre Recursos de Depósitos Interfinanceiros de Sociedades de Arrendamento Mercantil em janeiro de 2008).

Essa tendência de redução do uso de recolhimentos compulsórios é motivo de preocupação para Bancos Centrais, porque esses recolhimentos estabilizam as taxas de juros de curto prazo. Dessa forma, foram criados artifícios para solucionar este problema. Nos EUA, para evitar a fuga de recursos foi introduzido o pagamento de juros pelo FED para os bancos sobre os valores recolhidos.

Barro (1993) argumenta que alíquotas altas de recolhimentos compulsórios estão associadas com um *spread* alto e menor intermediação entre emprestadores e tomadores de recursos. Assim, a alocação de recursos fica menos eficiente.

Contrariamente, Friedman (1960) comenta que recolhimentos compulsórios não afetam a intermediação. Sob uma alíquota de 100%, haveria duas instituições: uma especializada em captar depósitos e fornecer serviços de conta corrente ao custo de taxas; e outra especializada na intermediação financeira. Friedman recomenda uma alíquota de 100% de forma a melhorar o controle do fornecimento de dinheiro e reduzir flutuações no produto real.

3. Metodologia

O presente estudo se propõe a estudar o comportamento das cinco séries de depósitos mais importantes do recolhimento compulsório sobre recursos à vista. Ele também se dispõe a prever valores futuros destas séries. Para tanto, inicialmente são analisados os comportamentos dos agentes, os bancos no caso. Depois é feita uma projeção desses valores para se prever futuros valores a serem informados pelos bancos.

Os dados são séries temporais que a princípio têm relação entre si. Portanto, a modelagem não pode ser feita individualmente para cada série, pois estaríamos desprezando a influência que umas têm nas outras. O modelo sugerido então é um VARMAX (Vetores AutoRegressivos com Médias Móveis variáveis eXógenas). Os resultados obtidos neste trabalho, realizados antes e depois de regressões com VARMAX, validam o uso deste método.

Como será visto na seção sobre os dados, as séries vão de maio de 2002 a outubro de 2007. Separamos o período em duas partes. A primeira, de maio de 2002 a dezembro de 2005, será utilizada para os ajustes no modelo. Já a segunda parte, de janeiro de 2006 a outubro de 2007, será utilizada para previsão dos dados.

As séries de depósitos têm freqüência diária. Já as variáveis macroeconômicas são mensais ou trimestrais. Três abordagens são possíveis. Podemos trabalhar com: 1) freqüência diária e fazer *pro-ratas* para "diarizar" as exógenas; 2) freqüência mensal, fazendo *pro-ratas* das exógenas trimestrais e agrupando as séries endógenas; 3) freqüência trimestral, agrupando as endógenas e exógenas mensais. Preferimos utilizar a primeira opção. Com dados diários não há perda de informação por agrupamentos. Previsões de valores diários também facilitam o fornecimento de informações do Deban (Departamento de Operações Bancárias e Sistemas de Pagamento do Banco Central do Brasil).

Todas as séries de depósitos, tanto dos agregados, quanto de cada banco, foram deflacionadas pelo IPCA. Para tanto, fizemos *pro-ratas* deste índice para deixá-lo em freqüência diária e então desinflacionamos as séries. As exógenas renda, volume de vendas e consumo também foram deflacionadas.

Excluído: e

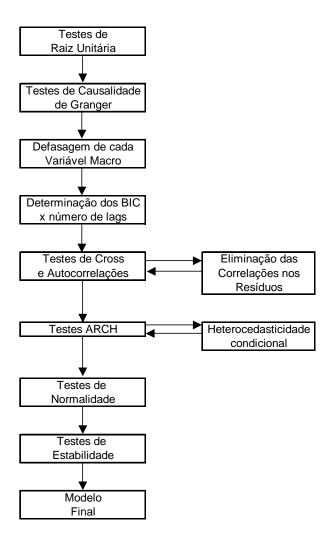
Dois tipos de variáveis exógenas são necessários: variáveis macroeconômicas; e *dummies* de tempo. As variáveis macro tal como renda nacional, taxa de juros e etc. são aquelas que podem ter influência no comportamento das séries. As dummies de tempo são utilizadas para testar o comportamento das séries em períodos específicos. Ambos os tipos serão detalhados na sessão de dados.

Inicialmente aplicamos testes de estacionariedade de Dickey-Fuller e de Phillips-Perron nas séries para determinarmos se as séries têm raiz unitária. Não realizamos testes de quebra estrutural, pois os resultados mostraram que todas séries são estacionárias em nível, o que descarta a existência de quebras. A Figura 1 mostra as principais regressões e testes realizados.

Testes de causalidade de Granger são aplicados a seguir para descobrir as relações de causa e efeito entre as variáveis do modelo, e a as diversas variáveis macro.

Uma vez determinado para cada variável se ela entra como exógena ou endógena no modelo, buscamos identificar o intervalo de tempo que cada variável macro demora em influenciar as variáveis do modelo. Apesar de não esperarmos muita variação, estes intervalos dependem da equação do VARMAX na qual estão atuando (no VARMAX há uma equação para cada endógena). Entretanto, uma determinação individualizada para cada equação faz com que o sistema se torne assimétrico. Além disso, valores de defasagem próximos para uma mesma variável macro em equações diferentes causam problemas de convergência no processamento dos modelos. Para fugir desses problemas, impomos que cada variável macro terá a mesma defasagem para todas equações e consideramos apenas um *lag* para cada variável macro. Por exemplo, se a Selic demora em torno de 70 dias para ter efeito sobre os depósitos à vista, pelo modelo ela demorará os mesmos 70 dias para afetar os depósitos de governo, os recursos em trânsito de terceiros, o recolhimento de tributos e as ordens de pagamento em moeda estrangeira. Além disso, o modelo captura seu efeito por um *lag* de (t-70) dias. *Lags* em torno disso, como (t-69) e (t-71), não entram no modelo.

Implementamos um programa para identificar as defasagens de cada variável macro. O programa efetua quatro níveis de *loops*:


- 1- para a defasagem;
- 2- entre cada variável macro;
- 3- outro entre cada equação do VAR;
- 4- e mais um para verificação de convergência. Em cada uma dessas etapas é calculado o valor do BIC, AIC e HQC. O menor BIC indica as defasagens ótimas de cada variável macro.

De posse das séries juntamente com todas as variáveis exógenas macro e as *dummies*, estimamos modelos VAR com vários *lags* e calculamos os critérios BIC, AIC e HQC para cada *lag*. O menor BIC indica o número de defasagens ideal, desde que não haja correlações nos erros. Em modelos univariados em economia já é difícil eliminar todas autocorrelações pelo ajuste do *lag*. Em modelos multivariados, onde o número de correlações aumenta bastante (quadraticamente em relação ao número de equações) é praticamente impossível eliminar todas as *cross* e autocorrelações. A escolha normalmente envolve um *trade-off* entre o aumento do BIC e o número de correlações significativamente diferentes de zero.

Para o VARMAX com o número de defasagens ideal é feita uma análise de significância das variáveis exógenas. Aquelas sem relação com as séries são descartadas do modelo. Neste ponto, podemos estimar o modelo quase em sua versão final.

Depois da estimativa com o VARMAX, realizamos os seguintes testes: de *cross* e autocorrelação nos resíduos; de estabilidade do VAR; de normalidade dos resíduos; e de heteroscedasticidade nos resíduos. Estes testes são necessários para garantir a validade dos resultados do VARMAX. Os resultados revelaram a presença de ARCH nos resíduos. Partimos então para um modelo com GARCH multivariado. Estes modelos acrescentam muitos coeficientes a serem estimados ao modelo. Como temos sistemas de cinco equações, tivemos que simplificá-lo para não sobrecarregar o processamento da solução do modelo.

Figura 1 - Principais Testes e Regressões

3.1 VAR com Média Móvel e Variáveis Exógenas - VARMAX

Normalmente, as regressões com séries de vetores utilizam apenas termos autoregressivos. Mesmo para modelos univariados, quando se utiliza termos com média móvel, estes não têm variáveis exógenas, e quando há exógenas, não há termos MA. O motivo é que ao se incluir termos de médias móveis, não podemos mais utilizar o método de mínimos quadrados. Por

exemplo, para modelos com uma defasagem para os termos de média móvel, os termos dos resíduos de t-1 dependem dos de t-2, que por sua vez dependem dos de t-3 e assim por diante. O Método de Máxima Verossimilhança á adotado. Entretanto, a convergência destes modelos é difícil. Para o nosso caso, falamos em horas (as vezes dias) de processamento em um computador com processador duplo de 1.7GHz.

Por que então incluir este recurso com um problema de convergência sério como esse? Porque modelos com GARCH exigem o uso do Método de Máxima Verossimilhança e precisaremos usar GARCH Multivariado como será visto adiante. Na próxima seção, poderemos constatar que regressões para VARMAX são na realidade um caso especial de regressões de GARCH Multivariado. Caso este, onde os parâmetros GARCH não constantes são iguais a zero.

Excluído: Máxima

3.2 Função de Verossimilhança

A função de distribuição de probabilidade normal para apenas uma variável aleatória é a seguinte:

$$PDF = \frac{(2\pi)^{-1/2}}{\sigma} \cdot \exp(-\frac{1}{2}\frac{\varepsilon^2}{\sigma^2}) \cdot \dots$$

onde

σ é o desvio padrão da variável aleatória x e

$$\varepsilon = x - E(x)$$
.

A respectiva função de verossimilhança dela é:

Excluído: máxima

$$ln(L) = -\frac{1}{2}ln(2\pi) - \frac{1}{2}ln(\sigma^2) - \frac{1}{2}\frac{\varepsilon^2}{\sigma^2},$$

Para um caso multivariado, a densidade conjunta é "o produto de todas as densidades condicionais. A função log ML da distribuição conjunta é, portanto a soma de todas as funções log ML das distribuições condicionais, isto é, a soma dos logaritmos das distribuições normais multivariadas" (Engle e Kroner, 1995). Assim, precisamos maximizar:

$$L = \sum_{t=1}^{T} L_t$$

$$L_{t} = -\frac{1}{2}\ln(2\pi) - \frac{1}{2}\ln|H_{t}| - \frac{1}{2}\varepsilon_{t}^{T}H_{t}^{-1}\varepsilon_{t},$$

onde H = matriz de variância-covariância condicional

e

$$\varepsilon_{t} = y_{t} - (\beta X + \sum_{p=1}^{P} \Phi_{p} y_{t-p} + \sum_{q=1}^{Q} \Theta_{q} \varepsilon_{t-q})$$

A solução deste problema de maximização envolve o cálculo de determinantes e inversas de matrizes, no nosso caso de ordem 5x5, o que veio a se mostrar uma etapa lenta e que exigiu cuidados adicionais para evitar perda de precisão nos cálculos.

Entre os *softwares* que tínhamos a disposição, um não tinha funções de regressão para GARCH Multivariado, outro tinha, mas em caráter experimental. Tentamos utilizar este último, mas tivemos problemas. Algumas regressões não convergiam, outras convergiam para valores que claramente não eram a solução. Outro problema também é que este *software* não permitia simplificar as equações da forma como fizemos neste trabalho, o que gerava um número grande de parâmetros GARCH a serem estimados, o que além de tirar graus de liberdade de nossas regressões, dificultava as convergências.

A solução foi construir nossas próprias funções de regressão. Isto aumentou bastante nosso trabalho, pois além de não termos funções prontas de regressão, perdemos todo o suporte do *software* para testes de hipótese envolvidos.

Utilizamos um procedimento de regressão não linear sem o uso de restrições. Como será visto adiante, a solução que adotamos não precisou de restrições. Usamos o algoritmo Quase-Newton de otimização. Aqui, havia várias opções. Elas se dividem basicamente em dois grupos: os que envolvem derivadas de primeira e segunda ordem; e os que envolvem apenas derivadas de primeira ordem. Os algoritmos com derivadas de segunda ordem requerem menor número de iterações, mas o tempo de processamento aumenta bastante com o aumento do número de parâmetros a estimar. Como este é o nosso casso, preferimos um algoritmo com apenas derivadas de primeira ordem.

O pacote permite o cálculo analítico ou numérico das derivadas. Como Engle e Kroner (1995) alertaram, a solução analítica é um tanto complicada, pois envolve derivadas de determinantes e matrizes inversas! Utilizamos a opção de cálculo numérico para as derivadas.

Um ponto crítico nas funções de convergência é o cálculo do termo $-0.5 \ \epsilon_t^T H_t^{-1} \epsilon_t$ da função de verossimilhança. O termo equivalente univariado é o $-0.5 \ \epsilon_t^2/\sigma_t^2$. Neste último, a praxe é restringir durante a convergência que os valores da variância sejam positivos, o que garante que o valor do termo seja negativo. Assim, valores pequenos dos resíduos aumentam o valor da função ML.

No caso multivariado, o termo envolve variâncias e covariâncias entre os resíduos. Os valores das variâncias devem ser positivos, mas não os das covariâncias. Isto traz um problema. Valores fortemente negativos das covariâncias tendem a aumentar o valor do termo como um todo e, portanto da função de verossimilhança. A maximização da função multivariada de verossimilhança, tal como mostrada acima leva a valores de resíduos tendendo ao infinito com sinais trocados, ou seja, não converge. A solução adotada pela literatura é a restrição das matrizes de variância-covariância H_t a serem positivas definidas, de forma que o resultado do termo –0,5 ε_t^TH_t-1</sup>ε_t sempre será negativo (o inverso de uma matriz positiva definida também é positiva definida!). Assim, a maximização da função de ML leva a valores pequenos dos resíduos e, portanto, à convergência. Há mais de uma forma de garantir que H seja positiva definida. Preferimos utilizar a solução mostrada por Engle e Kroner (1995). Na seção sobre GARCH Multivariado mostramos como isso é feito.

3.3 Estimativas Iniciais para as Regressões

Depois de várias regressões, algumas com problemas de convergência, outras não, identificamos que a melhor forma de estabelecer as estimativas iniciais é através do seguinte procedimento em quatro estágios:

- 1 Excluir os termos MA, e estimar o modelo por LS, guardar os parâmetros e resíduos estimados.
- 2 Com os resíduos LS, calcular a matriz de variância-covariância.

Excluído: ML

Excluído: ML

Excluído: ML

- 3 Fixar os parâmetros estimados por LS para os termos AR, X e da matriz de variânciacovariância, introduzir os parâmetros MA e utilizar o método ML para regredir apenas os termos MA.
- 4 Regredir todos os parâmetros X, AR, MA e da matriz de variância covariância a partir das estimativas acima utilizando ML.

Para os modelos com GARCH, acrescentamos:

- 5 Fixar os parâmetros X, MA, AR e da matriz de variância-covariância achados acima, introduzir os parâmetros GARCH não constantes e utilizar o método ML para regredir apenas os termos GARCH.
- 6 Regredir todos parâmetros X, AR, MA, GARCH constantes e não constantes a partir das estimativas de 5 utilizando ML.

3.4 Testes de Heteroscedasticidade

Os Testes de Heteroscedasticidade foram feitos da forma descrita a seguir. Com as cinco séries de resíduos, calculamos os quadrados e os produtos cruzados em cada período. Se chamarmos os resíduos de ε_{1t} , ε_{2t} , ε_{3t} , ε_{4t} e ε_{5t} , passamos a ter ε_{1t}^2 , ε_{2t}^2 , ε_{3t}^2 , ε_{4t}^2 , ε_{5t}^2 , $\varepsilon_{1t}\varepsilon_{2t}$, $\varepsilon_{1t}\varepsilon_{3t}$, $\varepsilon_{1t}\varepsilon_{4t}$, $\varepsilon_{1t}\varepsilon_{5t}$, $\varepsilon_{2t}\varepsilon_{3t}$, $\varepsilon_{2t}\varepsilon_{4t}$, $\varepsilon_{2t}\varepsilon_{5t}$, $\varepsilon_{3t}\varepsilon_{4t}$, $\varepsilon_{3t}\varepsilon_{5t}$ e $\varepsilon_{4t}\varepsilon_{5t}$. Regredimos, então, cada um desses termos em uma defasagem dele próprio e uma constante. Por exemplo, $\varepsilon_{1t}\varepsilon_{2t}$ é regredido em $\varepsilon_{1,t-1}\varepsilon_{2,t-1}$ e 1. Se o termo AR(1) for significativo, temos efeito ARCH, se não for, há homocedasticidade. Este procedimento é semelhante ao feito para o caso univariado. Só que aqui o teste é realizado para cada elemento da matriz de variância covariância, ao invés de um termo só.

Após a modelagem GARCH, os testes são repetidos para os resíduos finais. Se chamarmos os resíduos estruturais de ε_t e os finais de η_t , temos:

$$\eta_{i,t}\eta_{j,t} = (\varepsilon_{i,t}\varepsilon_{j,t})/h_{ij,t}, \ \forall i,j,t$$

onde h é o termo de heteroscedasticidade condicional, obtido junto com a regressão do modelo.

Aplicando-se o teste nos η , estes devem ser constantes.

3.5 Modelo GARCH Multivariado

As regressões com VAR tradicional usam o método de mínimos quadrados. Ao passar para modelos GARCH, as equações deixam de ser lineares. Temos que usar Máxima Verossimilhança. Os modelos com este último método utilizam soluções iterativas que exigem cuidados com a convergência.

As soluções de modelos GARCH univariados têm procedimentos bem difundidos e podem ser realizados por muitos softwares econométricos. Porém, para GARCH multivariados a situação é diferente. Poucos *softwares* apresentam funções para ele. Mesmo assim, quando o têm, há problemas com o número de parâmetros a serem estimados e por conseqüência, com sua convergência.

Partimos então para um procedimento mais simples. Modelos GARCH multivariados vetoriais utilizam a seguinte equação para a variância/covariância condicional (Engle e Kroner, 1995):

$$vec(\boldsymbol{H}_{t}) = vec(\boldsymbol{C}_{0}) + \sum_{i=1}^{p} A_{i} vec(\boldsymbol{\varepsilon}_{t-i} \boldsymbol{\varepsilon}_{t-i}^{T}) + \sum_{i=1}^{q} G_{i} vec(\boldsymbol{H}_{t-i}), \quad t = 1, ..., T$$

onde C_0 , A_i e G_i são matrizes de parâmetros n^2 x 1, H_t é a matriz de variâncias/covariâncias condicionais n x n, ϵ_t é o vetor n x 1 dos resíduos do modelo estrutural, n é o número de equações e vec é o operador que empilha as colunas de uma matriz em um vetor.

Excluído: e

Formatado

Para o caso GARCH(1,1), a equação acima se torna:

$$vec(H_t) = vec(C_0) + A_1 vec(\varepsilon_{t-1} \varepsilon_{t-1}^T) + G_1 vec(H_{t-1})$$

Para simplificá-la, impomos mais restrições. Supomos que as variâncias e covariâncias condicionais $h_{ij,t}$ dependem apenas dos seus respectivos resíduos $(\varepsilon_{i,t-k} . \varepsilon_{j,t-k})$ e das respectivas

defasagens do próprio h_{ij}, (Modelo Diagonal, Bollerslev, Engle e Wooldridge, 1988). Com isto, as matrizes A₁ e G₁ passam a ser diagonais.

Uma outra imposição ao modelo é a de que H_t seja definida positiva (ver seção 3.2). Para tal, utilizamos o modelo BEKK (Engle e Kroner, 1995). Com ele, a equação para H fica:

$$H_{t} = C_{0}^{*T} C_{0}^{*} + \sum_{k=1}^{K} A_{1k}^{*T} \varepsilon_{t-1} \varepsilon_{t-1}^{T} A_{1k}^{*} + \sum_{k=1}^{K} G_{1k}^{*T} H_{t-1} G_{1k}^{*},$$

onde

K "determina a generalidade do processo" (Engle e Kroner, 1995)

C₀* é uma matriz simétrica de constantes n x n,

 A_{1k}^{*} é uma matriz diagonal (e simétrica) n x n.

 G_{1k}^{*} é uma matriz diagonal (simétrica também) n x n.

Pela propriedade de que o produto de duas matrizes simétricas resulta numa matriz definida positiva, garantimos que H_t seja definida positiva.

Uma outra simplificação é a de só considerar os termos GARCH dos resíduos e desprezar as matrizes G_1 .

Para um modelo BEKK Diagonal com cinco equações, é necessário que K seja igual a cinco (Engle e Kroner, 1995). Assim temos:

Dessa forma, nosso modelo é uma mistura do BEKK com o Diagonal.

Mesmo com essas simplificações, é possível diminuir ainda mais o número de parâmetros GARCH. Através de testes ARCH para cada termo de variância e covariância, identificamos os termos das matrizes A₁ que são iguais a zero. Depois de todas essas alterações, para as equações que continuaram com ARCH nos resíduos, fomos inserindo outros termos na equação até solucionar o problema. A identificação dos termos de A₁ iguais a zero e a inserção de novos termos deixamos para detalhar na seção de resultados, pois dependem dos resultados específicos de cada caso.

3.6 Previsão

Para a previsão, precisamos dos valores futuros das variáveis exógenas. As *dummies* são facilmente obtidas, mas não as variáveis macroeconômicas. Assim, a solução é projetar o valor futuro destas últimas. O foco deste trabalho não é a projeção de valores para variáveis macro. Assim, consumo, renda e vendas no comércio serão estimadas individualmente com modelos ARIMA. Já para a Selic e o câmbio pegamos valores projetados pelo mercado e disponíveis nos Boletins Focus do BCB.

Além da previsão, faremos simulações com o modelo. Variaremos cada exógena isoladamente para analisar a resposta do modelo a estes impulsos. Isto será mostrado na seção de cenários.

3.7 Impulso

O procedimento para análise de impulso não é tão simples como pode parecer a princípio. A partir do modelo regredido, não podemos simular diretamente um choque numa das variáveis regredidas, porque os erros das equações são correlacionados.

As variáveis endógenas são regredidas sobre seus próprios *lags*, mas não sobre seus valores contemporâneos, o que gera correlação contemporânea nos resíduos (na verdade não necessariamente, mas só não haverá para os casos sem influência contemporânea das

variáveis endógenas nelas mesmas). Mas por que então não regredir o modelo com base em equações com endógenas contemporâneas:

$$y_{t} = \Phi_{0}^{*} y_{t} + \beta^{*} X_{t} + \Phi_{1}^{*} y_{t-1} + \Phi_{2}^{*} y_{t-2} + ... + \varepsilon_{t} + \Theta_{1}^{*} \varepsilon_{t-1} + \Theta_{2}^{*} \varepsilon_{t-2} + ...,$$

ao invés da que usamos:

$$y_{_{t}} = \beta X_{_{t}} + \Phi_{_{1}} y_{_{t-1}} + \Phi_{_{2}} y_{_{t-2}} + \ldots + e_{_{t}} + \Theta_{_{1}} e_{_{t-1}} + \Theta_{_{2}} e_{_{t-2}} + \ldots$$

Porque métodos tradicionais como de Mínimos Quadrados ou de Máxima Verossimilhança exigem exogeneidade das variáveis regredidas e na primeira opção não temos isso.

A solução mostrada por Enders (1995) é regredir usando a segunda opção e depois "transformá-la" na primeira usando uma decomposição. A transformação não é direta, porque a primeira opção tem mais parâmetros do que a segunda. Para tal, é necessário impor restrições ao sistema através da decomposição. Usamos a decomposição mais utilizada na literatura, a de Cholesky. Com ela os erros de cada uma das opções se relacionam da seguinte forma: ϵ_t = B_0 e_t , onde B_0 é uma matriz triangular superior com a diagonal composta por unidades. Com ela, há a imposição de que uma variável cuja equação esteja acima da equação de outra variável, não influencia contemporaneamente esta última.

Com o uso da decomposição, eliminamos as correlações contemporâneas entre os resíduos e podemos simular os choques. Mas como calcular os parâmetros da matriz B_0 ?

Como nosso modelo tem efeito GARCH, os resíduos estruturais \underline{e} não têm variância constante. Assim calculamos primeiramente (tal como na seção 3.4) os resíduos finais η que têm variância constante:

$$\eta_i \eta_j = (e_{i,t} e_{j,t}) / h_{ij,t}, \quad \forall i, j,t$$

Temos que H é (pela seção 3.5):

$$H_{t} = C_{0}^{*T} C_{0}^{*} + \sum_{k=1}^{K} A_{1k}^{*T} e_{t-1} e_{t-1}^{T} A_{1k}^{*} + \sum_{k=1}^{K} G_{1k}^{*T} H_{t-1} G_{1k}^{*}$$

Em estado estacionário, os termos referentes a e_{t-1} desaparecem. Os resultados da seção 5 mostrarão que só teremos uma matriz G_1 com um termo (para a primeira equação). Assim:

 $h_{ij,ee} = cte_{ij} \ \forall i,j, menos para i=1,j=1, onde$

 $h_{11,ee} = cte_{11}/(1-ga^2)$ (usando a mesma nomenclatura da seção 5)

De mãos dos h_{ee} 's , obtemos a matriz de variância covariância Σ_e dos resíduos \underline{e} em estado estacionário:

$$e_{i,ee}e_{j,ee}=\eta_i\eta_j *h_{ij,ee}, \forall i,j$$

Como pela decomposição de Cholesky $\varepsilon_t = B_0 e_t$ (suprimindo o subscrito t):

$$\begin{bmatrix} \mathcal{E}_1 \\ \mathcal{E}_2 \\ \mathcal{E}_3 \\ \mathcal{E}_4 \\ \mathcal{E}_5 \end{bmatrix} = \begin{bmatrix} 1 & b_{12}^0 & b_{13}^0 & b_{14}^0 & b_{15}^0 \\ 0 & 1 & b_{23}^0 & b_{24}^0 & b_{25}^0 \\ 0 & 0 & 1 & b_{34}^0 & b_{35}^0 \\ 0 & 0 & 0 & 1 & b_{45}^0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \\ e_3 \\ e_4 \\ e_5 \end{bmatrix}$$

Resolvendo de baixo para cima:

 $\varepsilon_5 = e_5$,

 $\varepsilon_4 = e_4 + b_{45}e_5$,

 $\varepsilon_3 = e_3 + b_{34}e_4 + b_{35}e_5$,

 $\varepsilon_2 = e_2 + b_{23}e_3 + b_{24}e_4 + b_{25}e_5$,

 $\epsilon_1 = e_1 {+} b_{12} e_2 {+} b_{13} e_3 {+} b_{14} e_4 {+} b_{15} e_5 \ . \label{epsilon}$

Multiplicando cada termo de $\varepsilon_t = B_0 \ e_t$ pela sua transposta temos que $\Sigma_{\varepsilon} = \varepsilon_t \ \varepsilon_t^T = B_0 \Sigma_{\varepsilon} B_0^T$.

Sabemos que as matrizes de variância-covariância são simétricas. Assim:

$$\exists U \mid \Sigma_e = U^T U e$$

$$\exists V \mid \Sigma_{\epsilon} = V^T V$$

Também sabemos que Σ_ϵ é diagonal (os resíduos contemporâneos ϵ não são correlacionados!). Assim $V=V^T$ e V é diagonal também. Temos a seguir:

$$\Sigma_{\epsilon} = VV$$

 ${\epsilon_i}^2 = v_i v_i$, onde ${\epsilon_i}^2$ e v_i são elementos das diagonais de Σ_ϵ e V respectivamente.

$$v_i = \epsilon_i\,$$

Juntando os últimos resultados:

$$\begin{split} & \Sigma_\epsilon & = B_0 \Sigma_e B_0^T \\ & V^T V & = B_0 U^T U B_0^T \\ & V^T V & = (U B_0^T)^T U B_0^T \\ & => V & = U B_0^T \\ & V V^{-1} & = U B_0^T V^{-1} \\ & I & = U B_0^T V \text{ (para uma matriz diagonal V, temos } V^{-1} = V) \end{split}$$

Se chamarmos B_0^TV de X, temos um sistema UX=I, que pode ser facilmente resolvido (U é obtido da decomposição de Σ_e , a qual temos os valores). Com o valor de X, resolvemos o sistema $B_0^TV=X$:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ b_{12}^0 & 1 & 0 & 0 & 0 \\ b_{13}^0 & b_{23}^0 & 1 & 0 & 0 \\ b_{14}^0 & b_{24}^0 & b_{34}^0 & 1 & 0 \\ b_{15}^0 & b_{25}^0 & b_{35}^0 & b_{45}^0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} e_1 + b_{12}^0 e_2 + b_{13}^0 e_3 + b_{14}^0 e_4 + b_{15}^0 e_5 & 0 & 0 & 0 & 0 \\ 0 & e_2 + b_{23}^0 e_3 + b_{24}^0 e_4 + b_{25}^0 e_5 & 0 & 0 & 0 \\ 0 & 0 & e_3 + b_{34}^0 e_4 + b_{35}^0 e_5 & 0 & 0 \\ 0 & 0 & 0 & e_4 + b_{45}^0 e_5 & 0 \\ 0 & 0 & 0 & 0 & e_5 \end{bmatrix} = X$$

O que é feito multiplicando-se a primeira matriz pela segunda e resolvendo-se da última linha para a primeira da seguinte forma:

$$b_{i5}^0 = \frac{x_{i5}}{x_{ii}}$$
, i=1, 2, 3, 4

$$b_{i4}^0 = \frac{x_{i4}}{x_{ii}}$$
, i=1, 2, 3

$$b_{i3}^0 = \frac{x_{i3}}{x_{ii}}$$
, i=1, 2

$$b_{12}^0 = \frac{x_{12}}{x_{11}}$$

Com os parâmetros ${b_{ij}}^0$ montamos a matriz B_0 e obtemos a equação estrutural de ϵ com:

$$\beta^* = B_0 \beta$$

$$\Phi_i^* = B_0 \Phi_i$$

$$\Theta_i^* = B_0 \Theta_i$$

Agora podemos simular um choque como é feito normalmente para um VAR. Entretanto, vale a pena lembrar que como temos termos de média móvel para uma defasagem dos resíduos, a simulação de um choque unitário em $t=t_0$ implica na influência de MA no próprio t_0 (como para um VAR) e em t_0+1 (diferentemente de um VAR).

4. Dados

4.1 Informativos dos Recolhimentos Compulsórios

Para estudar o comportamento dos bancos, obtivemos os valores informados pelos bancos ao Banco Central nos demonstrativos dos Recolhimentos Compulsórios/Encaixes Obrigatórios sobre Recursos À Vista. Nestes demonstrativos são informados 19 itens por dia, a maior parte referente a valores contábeis. Os demonstrativos são atualmente informados com valores diários de duas em duas semanas.

A Circular BCB 3.274/2005 é o normativo em vigor que rege os recolhimentos sobre depósitos à vista. Ela determina que os bancos múltiplos e de investimento, titulares de conta Reservas Bancárias, bancos comerciais e caixas econômicas estão sujeitos ao recolhimento.

A circular estabelece que os saldos inscritos nos seguintes subgrupos e títulos do Cosif fazem parte dos valores sujeitos a recolhimento:

I - 4.1.1.00.00-0 Depósitos à Vista;

II - 4.1.4.10.00-6 Depósitos de Aviso Prévio;

III - 4.5.1.00.00-6 Recursos em Trânsito de Terceiros;

IV - 4.9.1.00.00-2 Cobrança e Arrecadação de Tributos e Assemelhados;

V - 4.9.9.05.00-1 Cheques Administrativos;

VI - 4.9.9.12.10-4 Contratos de Assunção de Obrigações - Vinculados a Operações
 Realizadas no País;

VII - 4.9.9.27.00-3 Obrigações por Prestação de Serviços de Pagamento;

VIII - 4.9.9.60.00-8 Recursos de Garantias Realizadas; e

IX - 4.1.9.10.00-1 Depósitos para Investimentos.

Desses saldos acima, a circular menciona que estão isentas: a rubrica 4.5.1.85.00-7 Ordens de Pagamento em Moedas Estrangeiras; e os depósitos à vista, de aviso prévio e os para investimentos captados por instituições financeiras públicas federais e estaduais.

Os dados vão de maio de 2002 a outubro de 2007. O início ocorre logo após a implantação do SPB (Sistema de Pagamentos Brasileiro). Evitamos trabalhar com dados anteriores para não se ter influência de mudança do sistema de pagamentos no padrão dos depósitos e outros itens. Os primeiros dias do novo sistema também foram desprezados (final de abril de 2002). Trabalhamos com dias úteis, não com dias corridos. Entretanto, a influência destes se fez presente por uma das *dummies* de tempo (ver seção 4.2).

A base contem valores em 3 dimensões: a de tempo, de maio/2002 a outubro/2007; a de bancos, 154 instituições; e a de itens, 19 no total.

A base de dados com esses informativos é demasiado grande. Por isto, focamos o estudo nos cinco principais itens dos demonstrativos (os que apresentam maiores valores): 1001 Depósitos à vista; 1004 Depósitos de Governo; 1007 Recursos em Trânsito de Terceiros; 1008 Cobrança e Arrecadação de Tributos e Assemelhados; 1013 Ordens de Pagamentos em Moedas Estrangeiras; e 1014 Ordens de Pagamentos em Moedas Estrangeiras – Taxas Flutuantes. Os itens 1013 e 1014 eram informados separadamente no início do período em estudo. No final, suas rubricas passaram a ser informadas conjuntamente sob o item 1013. Neste trabalho, somamos os valores dos itens 1013 e 1014, e trabalhamos com uma única série para todo o período. A Figura 2 traz gráficos que mostram os valores desses cinco itens ao longo do tempo analisado.

No período analisado, 154 bancos informaram valores, o que também tornaria extenso demais este trabalho. Restringimo-nos a dois estudos separados, os agregado de todos bancos e os agregados dos bancos pequenos.

O período foi dividido em 2 partes: uma de ajuste dos dados que vai de maio de 2002 a dezembro de 2005; e outra para medir a exatidão da previsão dos dados com os seis meses seguintes.

4.2 Variáveis Exógenas

As variáveis exógenas macroeconômicas foram usadas para estudar o comportamento dos bancos. Elas foram obtidas de fontes diversas, que foram:

Tabela 1-Fontes das Variáveis Exógenas

Variável	Fonte Site	Freqüência
PIB	IBGE www.ibge.com.br	Trimestral
Renda Nacional Bruta	idem	
Renda Disponível Bruta	idem	
Poupança Bruta	idem	
Consumo do Governo	idem	
Consumo das Famílias	idem	
Consumo	idem	
Volume de Vendas no Comércio	IBGE www.ibge.com.br	Mensal
Exportações	idem	
Importações	idem	
IPCA	idem	
arrecadação com a CPMF	Ipea <u>www.ipeadata.gov.br</u>	Mensal
Selic	BCB www.bcb.gov.br	Diária
Taxa de Câmbio R\$/US\$ Ptax	Ipea www.ipeadata.gov.br	Diária Excluído: D
Projeção da Selic	BCB www.bcb.gov.br	Diária
Projeção do Câmbio	BCB www.bcb.gov.br	Diária

Para as variáveis macro que não estavam originalmente em freqüência diária, foram feitos *pro-ratas* para dias úteis, para podermos utilizá-las juntamente com os depósitos e as outras variáveis.

Para a previsão da taxa Selic, câmbio e inflação utilizamos as expectativas de mercado publicadas pelo BCB no *site* http://www.bcb.gov.br/ (Opção Sistema de Metas para a Inflação > Sala do Investidor > Expectativas de Mercado - Séries Históricas). Lá são fornecidos

valores mensais em final de mês. Novamente fizemos pro-*ratas* dos dados originais para dias úteis.

Também foram utilizados três tipos de dummies:

Dummy	Quantidade	Descrição
de mês	11	Uma para cada mês, menos para janeiro.
de dia	30	Uma para cada dia do mês, com exceção do
		dia 1°.
dias corridos	4	Número de dias corridos do dia útil precedente
		para a data em questão maiores que 1

Observação: O maior intervalo de dias corridos entre dois dias úteis consecutivos no período foi de 5 dias. Como o intervalo de referência é de 1 dia, foram utilizadas 4 *dummies* de dias corridos.

Nós chegamos a utilizar *dummies* para os dias da semana (terça a sexta-feira), mas em todas regressões elas se mostraram não significativas.

4.3 Estatística Descritiva dos Dados

Tabela 2- Estatística Descritiva

Valores Diários (1)

Excluído: 3

0	Período Ajuste				Tudo						
Tipo				Desvio	Assi-	Cur-			Desvio	Assi-	Cur-
_	Variável	Média	Mediana	Padrão	metria	tose (2)	Média	Mediana	Padrão	metria	tose (2)
(0	Selic	19,51	18,75	3,30	0,93	-0,28	17,63	17,29	3,96	0,59	-0,07
na	Câmbio	2,88	2,89	0,39	0,41	-0,04	2,62	2,64	0,50	0,40	-0,63
Exógenas	Renda /1000	505,7	503,0	26,1	0,1	-0,9	527,6	524,6	40,1	0,2	-1,0
Š.	Vendas	122,6	119,8	13,2	2,0	4,2	126,3	123,8	13,6	1,4	2,4
ш	Consumo /1000	420,1	414,7	19,9	0,9	0,3	435,9	430,5	29,4	0,4	-1,1
	Dep. à Vista /1000	46,9	47,4	4,4	-0,1	-0,4	51,1	50,0	51,1	0,6	-0,2
S	Dep. De Governo /1000	3,1	3,0	0,6	1,1	1,7	3,2	3,1	3,2	1,3	3,0
용	Recursos em Trânsito										
gg	de 3os /1000	4,7	4,6	0,7	0,3	-0,2	5,0	5,0	5,0	0,4	1,9
Agregados	Cobrança de Tributos /1000	2,0	1,4	1,5	1,4	1,1	2,1	1,4	2,1	1,6	2,4
< <	Ord. de Pagamentos										
	em Moedas Est. /1000	3,4	3,4	0,7	0,2	-0,2	3,7	3,8	3,7	0,4	2,6

⁽¹⁾ Os valores da renda, consumo, vendas e das endógenas estão deflacionados pelo IPCA

4.4 Agregados dos Bancos Pequenos

As cinco séries estudadas ajudam a entender o comportamento dos bancos como um todo. Porém, alterações na Política Monetária podem criar problemas de liquidez para alguns bancos, especialmente bancos de pequeno porte.

Na amostra de bancos que temos, selecionamos uma com apenas bancos pequenos e aplicamos a mesmas regressões feitas para os agregados de todos os bancos. A amostra foi selecionada com base no volume dos cinco depósitos estudados.

A tabela abaixo fornece maiores detalhes da amostra.

Tabela 3- Grupos de Bancos

	Número de	Participação
Grupo	Bancos	nos Depósitos
Pequenos	140	10%
Médios	10	25%
Grandes	4	64%
Total	154	100%

⁽²⁾ Curtose corrigida

5. Resultados dos Agregados de Todos os Bancos

Os resultados apresentados a seguir estão de acordo com a seqüência descrita na sessão de metodologia.

5.1 Testes de Raiz Unitária

A Tabela 4 mostra que se podem utilizar as séries das variáveis endógenas em nível. As exógenas câmbio e vendas são estacionárias em nível também. Porém, consumo, renda e selic não são. A literatura não tem um consenso a respeito de se utilizar séries não estacionárias em modelos VAR. Alguns autores argumentam contra, outras a favor, entre estes últimos está o criador desses modelos, Sims (1980). Este problema não é importante aqui, porque só vamos utilizar consumo, renda e selic como endógenas na primeira regressão (nesta regressão testamos suas exogeneidades, para isto é necessário tratá-las como endógenas). Todas variáveis macro serão utilizadas como endógenas na primeira regressão com VAR para se testar a causalidade de Granger. Entretanto, elas serão posteriormente exógenas no modelo.

Tabela 4- Testes de Raiz Unitária

Séries em Nível, Valores Diários Deflacionados

As séries não estacionárias (valor-p>5%) estão destacadas em vermelho

Teste			Dickey Fulle	er Aumentado	Phillips-Perron(3)
			valor-p	Lags	valor-p
Séries das	(1)	Dep. à Vista	0.0149	2	0.0009
Endógenas	ste	Dep. De Governo	0.0000	2	0.0000
	Ajuste(1)	Recursos em Trânsito de 3os	0.0000	5	0.0000
		Cobrança de Tributos	0.0000	3	0.0000
	Pei	Ord. de Pagamentos em Moedas Est.	0.0000	2	0.0000
		Dep. à Vista	0.0035	2	0.0000
		Dep. De Governo	0.0000	7	0.0000
	(2)	Recursos em Trânsito de 3os	0.0000	5	0.0000
	[udo(z)	Cobrança de Tributos	0.0000	0	0.0000
	n L	Ord. de Pagamentos em Moedas Est.	0.0000	3	0.0000
Séries das		Câmbio	0.0026	2	0.0015
Variáveis		Consumo	0.1223	3	0.7692
Exógenas		Renda NB	0.2209	3	0.7612
		Selic	0.7466	0	0.7547
		Vendas no Comércio	0.0000	7	0.0074

⁽¹⁾O período inicial vai de maio/2002 a dezembro/2005, este é o período de ajuste dos modelos

5.2 Testes de Causalidade de Granger para as Variáveis Macro

A Tabela 5 mostra que as vendas no comércio, o câmbio e a renda abatida do consumo não influenciam os depósitos, e que as outras variáveis macro são endógenas. Entretanto, como a ordem de grandeza das variáveis macro é bem maior que a dos depósitos, não esperamos que os depósitos influenciem o comportamento delas. Assim, todas as variáveis macro serão tratadas como exógenas.

⁽²⁾O período completo dos dados vai de maio/2002 a outubro/2007, inclui os períodos de ajuste e comparação dos modelos

⁽³⁾Utilizamos 6 (ajuste) e 7 (tudo) lags, número previsto por Newey-West (default do teste)

⁽⁴⁾H0: Há raiz unitária

Tabela 5- Testes de Causalidade de Granger

As séries não influenciadas (valor-p>5%) estão destacadas em vermelho

Varia	áveis	Qui	Graus de	Prob>
Causadoras	Influenciadas	Quadrado	Liberdade	Qui Qu.
Depósitos	Vendas	105.62	15	<.0001
Vendas	Depósitos	23.69	15	0.0705
Depósitos	Selic	25.35	15	0.0454
Selic	Depósitos	27.63	15	0.0240
Depósitos	Renda sem Consumo	33.52	15	0.0040
Renda sem Consumo	Depósitos	22.63	15	0.0923
Depósitos	Câmbio	61.65	15	<.0001
Câmbio	Depósitos	16.83	15	0.3293
Depósitos	Consumo	68.7	15	<.0001
Consumo	Depósitos	91.51	15	<.0001

⁽¹⁾ Resultados obtidos por um VARX com:

Vale lembrar que o teste de Granger verifica relação de causalidade nos *lags* definidos do modelo. Para os primeiros três *lags*, o volume de vendas no comércio não influencia os depósitos. Porém, pode haver influência em *lags* mais afastados (distantes). Por isso, a variável vendas e outras mais não foram retiradas do modelo. Resultados a serem mostrados a diante indicam que elas <u>têm</u> influência quando tratadas como exógenas e com uma defasagem maior que três *lags*.

Excluído: tem

5.3 Variáveis Macros como Exógenas — Determinação das Defasagens de seus Efeitos

A seguir foi executado um procedimento iterativo para determinar o intervalo de dias que demora a cada variável macro surtir efeito nesse modelo. Os resultados estão abaixo. Todas as variáveis macro foram significativas e serão mantidas no modelo.

Variáveis Endógenas: os 5 depósitos, vendas, selic, câmbio, consumo e (renda-consumo);

Variáveis Exógenas: dummies de mês, de dias corridos

⁽²⁾ Número de lags das endógenas = 3 (melhor modelo levando-se em consideração

o critério BIC e ausêncai de correlações

⁽³⁾ H0: Não há influência nos lags especificados

Tabela 6- Defasagem das Exógenas Macroeconômicas

			Variável				
							Renda-
			Selic	Câmbio	Vendas	Consumo	Consumo
Def	asagem, em dias		75	31	10	0	3
	Depósitos à Vista	Coeficiente	-8.42E-01	-3.18E-01	7.56E-01	3.10E-01	-1.29E+00
		Erro Padrão	2.88E-02	3.10E-02	6.50E-02	1.38E-01	1.27E-01
		Probabilidade> t	0.0001	0.0001	0.0001	0.0249	0.0001
	Depósitos de Governo	Coeficiente	2.08E-01	7.85E-01	8.51E-01	1.59E+00	2.93E+00
		Erro Padrão	1.22E-01	1.31E-01	2.75E-01	5.85E-01	5.40E-01
		Probabilidade> t	0.0885	0.0001	0.0021	0.0065	0.0001
Equação	Recursos em	Coeficiente	-1.22E-01	4.16E-01	1.38E+00	3.86E-01	-4.51E-01
nac	Trânsito de Terceiros	Erro Padrão	7.95E-02	8.56E-02	1.79E-01	3.81E-01	3.52E-01
ᇤ		Probabilidade> t	0.1255	0.0001	0.0001	0.3109	0.1999
	Cobrança e Arrecadação	Coeficiente	8.06E-04	6.69E-02	-1.91E-01	1.21E+00	3.16E-01
	de Tributos e Assemelhados	Erro Padrão	2.51E-01	2.70E-01	5.66E-01	1.20E+00	1.11E+00
		Probabilidade> t	0.9974	0.8045	0.7358	0.3127	0.7757
	Ordens de Pagamentos	Coeficiente	-1.72E-01	4.47E-01	8.02E-02	1.69E-01	-5.20E-01
	em Moedas Estrangeiras	Erro Padrão	7.67E-02	8.25E-02	1.73E-01	3.67E-01	3.39E-01
		Probabilidade> t	0.0248	0.0001	0.6427	0.6454	0.1259

(1)VAR sem lags para as endógenas

(2)H0: Valor igual a zero

Vale destacar que esses resultados foram obtidos de regressão multivariada sem *lags* autoregressivos. Também obtemos defasagens com *lags* AR, mas constatamos que o ajuste dos coeficientes destes influencia a determinação das defasagens das exógenas. Isto é agravado ainda mais com o aumento do número de coeficientes AR. Os resultados sem *lags* AR se mostraram mais consistentes. Já do lado teórico, pela metodologia de previsão de Box e Jenkins (1976), nos componentes autoregressivos (e de médias móveis em modelos mais amplos) estariam embutidas informações não disponíveis para se modelar séries. Assim, as mesmas influências exercidas sobre a série no passado se manifestariam da mesma forma no futuro. Ora, se podemos isolar a influência das defasagens das macros, faz sentido deixar para estimar os componentes autoregressivos depois (com as informações não disponíveis). Outro ponto a se destacar aqui é que as informações das exógenas a serem determinadas nesta etapa são as defasagens. Seus coeficientes serão determinados posteriormente e conjuntamente com outros coeficientes (entre eles os dos *lags* VARMA).

5.4 Número de *Lags* das Variáveis Endógenas e Eliminação de *Cross* e Autocorrelações

Tabela 7- Critérios de Informação

			Lag MA(2)	
Critério	Lag AR(1)	0	1	2
	0	-12.90	-14.74	
	1	-14.72	-16.08	-16.45
BIC	2	-14.89	-16.68	-16.57
ыс	3	-15.06	-16.74	-16.88
	4	-15.19	-16.82	-17.03
	5	-15.25		
	0	-12.9	-14.8	
	1	-14.8	-16.1	-16.5
AIC	2	-14.9	-16.7	-16.6
AIC	3	-15.1	-16.8	-16.9
	4	-15.2	-16.9	-17.1
	5	-15.3		
	0	-12.9	-14.8	
	1	-14.7	-16.1	-16.5
HQC	2	-14.9	-16.7	-16.6
IIQC	3	-15.1	-16.8	-16.9
	4	-15.2	-16.8	-17.0
	5	-15.3	,	

(1)Lag AR = autoregressivo

(2)Lag MA = média móvel

(3)BIC = Critério de Informação de Schwarz

(4)AIC = Critério de Informação de Akaike

(5)HQC = Critério de Informação de Hannan-Quinn

(6)Todos os valores foram obtidos por regressões ML (Máxima Verossimilhança)

A metodologia de escolha dos *lags* das endógenas e dos resíduos num modelo multivariado é semelhante ao caso univariado. Usamos o critério BIC como uma medida de ajustamento do modelo. Também funções de autocorrelação e autocorrelação parcial são utilizadas. Porém, ao invés de eliminar autocorrelações nos resíduos de uma única equação, temos que eliminar as *cross* e autocorrelações dos resíduos de todas equações. Assim, precisamos "zerar" a significância das matrizes de correlações além do p escolhido. Numa representação de Tiao e Box (1981), devemos ter apenas . (e não + ou -) após o *lag* escolhido.

O modelo com menor BIC é aquele com quatro *lags* para as endógenas e dois para os resíduos. Entretanto, é necessário eliminar as correlações nos resíduos. Os Testes de Portmanteau mostram ser impossível eliminar todas correlações. Escolhemos trabalhar com p=2 *lags* e q=1 *lags* no modelo. A partir desses *lags*, o BIC não sofre muita variação e o comportamento das correlações não se altera muito. A Tabela 8 traz a representação de Tiao e

Excluído: Pelos

Excluído: é impossível

Box, e o Teste de Portmanteau para os *lags* escolhidos. As informações para todos os dados estão no Apêndice B.

Formatado

Excluído: (ver Tabelas 8)

Excluído: ¶

Tabela 8- Correlações (Cross e Auto) nos Resíduos ε

```
AR p=2, MA q=1
Representação de Tiao e Box
        0
            1
                           3
                              .....
                        . . . . .
            + é > 2*erro padrão, - é < -2*erro padrão, . é entre
Teste de Portmanteau para Correlações (cross e auto) nos Resíduos
       Qui2 DF Probabilidade>Qui2
3
       87.69
              75 0.1499
4
      123.69 100 0.0543
     169.93 125 0.0047
      196.79 150 0.0062
      251.54 175 0.0001
      304.62 200 <.0001
      334.54 225 <.0001
10
      399.11 250 <.0001
HO: não há correlações (cross e autocorrelações)
```

5.5 Novo Teste de Granger e Heteroscedasticidade nos Resíduos

As Tabelas 9 e 10 apresentam outros resultados do mesmo modelo que gerou a Tabela 8.

Neste novo teste de Granger, testamos a causalidade entre os depósitos, diferentemente do primeiro teste de Granger (Tabela 5), onde testamos a causalidade das variáveis macro com os depósitos.

Tabela 9- Testes de Causalidade de Granger

Variá	veis	Qui	Graus de	Prob>
Influenciadoras	Influenciadas	Quadrado	Liberdade	Qui Qu.
Depósitos	Ord.Pag.ME	141.64	20	<.0001
Ord.Pag.ME	Depósitos	31.84	20	0.0451
Depósitos	Tributos	112.63	20	<.0001
Tributos	Depósitos	173.91	20	<.0001
Depósitos	Recursos3os	181.48	20	<.0001
Recursos3os	Depósitos	217	20	<.0001
Depósitos	Governo	83.24	20	<.0001
Governo	Depósitos	76.41	20	<.0001
Depósitos	D.à Vista	202.64	20	<.0001
D.à Vista	Depósitos	238.12	20	<.0001

(1)H0: Não há influência nos lags especificados

Tabela 10- Testes de Heteroscedasticidade

		ARCH de 1	la Ordem			
	Variável	DAV	Gov	3os	T	OPME
	DAV	4.11	3.56	0.98	0.78	-1.25
	Gov	3.56	2.73	1.42	1.56	1.56
ட	3os	0.98	1.42	7.09	1.51	8.97
Valor	T	0.78	1.56	1.51	0.70	1.47
>	OPME	-1.25	1.56	8.97	1.47	9.61
	DAV	0.0001	0.0004	0.3260	0.4364	0.2116
	Gov	0.0004	0.0065	0.1555	0.1202	0.1194
<u>۲</u>	3os	0.3260	0.1555	0.0001	0.1322	0.0001
rob.	Т	0.4364	0.1202	0.1322	0.4814	0.1416
Pre	OPME	0.2116	0.1194	0.0001	0.1416	0.0001

(1)H0: Não há ARCH

(2)DAV=Depósitos à Vista

(3)Gov=Depósitos de Governo

(4)3os=Rec. em Trânsito de 3os

(4)T=Tributos (5)OPME=Ord.Pag.Moedas Est.

Os resultados do teste de Granger indicam que todos depósitos são endógenos.

Algumas variâncias e covariâncias dos resíduos apresentam ARCH. Para tratá-los, o procedimento normal seria separá-los do modelo e utilizar modelos GARCH, ou então desprezar a heteroscedasticidade deles. Preferimos utilizar uma terceira opção. Novas modelagens utilizam VAR com GARCH multivariado. Partimos então para um modelo VARMAX-VARCH.

5.6 Modelagem GARCH Multivariado

Tal como destacado na seção de metodologia, vamos aqui tentar simplificar a estrutura de parâmetros GARCH o máximo possível para evitar um número grande de parâmetros para o modelo.

Utilizando uma estrutura BEKK diagonal, modelamos inicialmente com apenas uma defasagem e apenas para os resíduos. Isto implica em cinco matrizes A:

O termo GARCH não constante é representado então pela seguinte matriz simétrica:

$$\sum_{k=1}^{5} A_{k}^{T} \varepsilon_{t-1} \varepsilon_{t-1}^{T} A_{k} =$$

$$\begin{bmatrix} o^2 \mathcal{E}_{1,-1}^2 & on \mathcal{E}_{1,-1} \mathcal{E}_{2,-1} & on \mathcal{E}_{1,-1} \mathcal{E}_{3,-1} & ol \mathcal{E}_{1,-1} \mathcal{E}_{4,-1} & ol \mathcal{E}_{1,-1} \mathcal{E}_{5,-1} \\ on \mathcal{E}_{1,-1} \mathcal{E}_{2,-1} & (n^2 + j^2) \mathcal{E}_{2,-1}^2 & (nn + ji) \mathcal{E}_{2,-1} \mathcal{E}_{3,-1} & (nl + jh) \mathcal{E}_{2,-1} \mathcal{E}_{4,-1} & (nk + jg) \mathcal{E}_{2,-1} \mathcal{E}_{5,-1} \\ on \mathcal{E}_{1,-1} \mathcal{E}_{3,-1} & (nn + ji) \mathcal{E}_{2,-1} \mathcal{E}_{3,-1} & (m^2 + i^2 + f^2) \mathcal{E}_{3,-1}^2 & (ml + ih + fe) \mathcal{E}_{3,-1} \mathcal{E}_{4,-1} & (mk + ig + fd) \mathcal{E}_{3,-1} \mathcal{E}_{5,-1} \\ ol \mathcal{E}_{1,-1} \mathcal{E}_{4,-1} & (nl + jh) \mathcal{E}_{2,-1} \mathcal{E}_{4,-1} & (ml + ih + fe) \mathcal{E}_{3,-1} \mathcal{E}_{4,-1} & (l^2 + h^2 + e^2 + c^2) \mathcal{E}_{4,-1}^2 & (lk + hg + ed + cb) \mathcal{E}_{4,-1} \mathcal{E}_{5,-1} \\ ol \mathcal{E}_{1,-1} \mathcal{E}_{5,-1} & (nk + jg) \mathcal{E}_{2,-1} \mathcal{E}_{5,-1} & (mk + ig + fd) \mathcal{E}_{3,-1} \mathcal{E}_{5,-1} & (lk + hg + ed + cb) \mathcal{E}_{4,-1} \mathcal{E}_{5,-1} & (k^2 + g^2 + d^2 + b^2 + a^2) \mathcal{E}_{5,-1}^2 \end{bmatrix}$$

Mas pela Tabela 10 o termo da linha 3 coluna 1 é constante, ou seja:

om=0 =>
$$m=0$$
,

pois a variável o não pode ser zero, se não o termo da linha 1 coluna 1 seria constante também.

Semelhantemente:

$$ol=0$$
 => $l=0$,
 $ok=0$ => $k=0$,
 $nm+ji=0$ => $i=0$,
 $nl+jh=0$ => $h=0$,
 $nk+jg=0$ => $g=0$,
 $ml+ih+fe=0$ => $e=0$.
 $lk+hg+ed+cb=0=>$ $b=0$.

Entretanto, este modelo não foi suficiente para eliminar os efeitos ARCH. O termo 1x1 (linha 1, coluna 1 – referente à variância do resíduo da primeira equação – Depósitos à Vista) da matriz de variância-covariância dos resíduos não ficou constante. Adicionamos então um termo para a primeira defasagem de H. Com esta adição, resolvemos o problema. Assim, além das cinco matrizes A₁, temos uma G₁:

Com estas simplificações, adicionamos apenas oito termos a serem estimados: a, c, d, f, j, n, o, ga. Nossas matrizes GARCH diagonais ficam:

A Tabela a seguir mostra os resultados da regressão para os agregados.

Excluído:

Tabela 11- Coeficientes, Erros Padrões e Significância

Os valores significativos (valor-p<=5%) estão destacados em vermelho

	Equação															
		ta /10.000		Dep.de	Govern		RecursosD			Tributos /			Ordens	de Pa		
Variável	(- /	EP	Prob.			Prob.		EP	Prob.	Coef.	EP	Prob.	Coêf.^	EP		rob.
constante *100	183,1	37,7	0,0000	142,1	14,1	0,0000	12,9	60,1	0,8304	-1929,4			188	,2	6,0	0,0000
trend *100000.000	-173,4		0,0000	-52,4	1,8	0,0000	-143,3	7,5	0,0000	-113,8		-,		,4	0,8	0,0789
fevereiro *1000.000	-35,3		0,0352	5,8	7,7	0,4548	96,5	32,0	0,0027	494,6	164,3	0,0027	-22	,4	3,0	0,0000
março *1000.000	-81,0	16,5	0,0000	13,6	7,5	0,0703	-6,7	31,9	0,8345	-131,7			24	,0	2,8	0,0000
abril *1000.000	-162,9	14,8	0,0000	-45,6	7,2	0,0000	-73,6	30,8	0,0172	-150,9	139,5	0,2797	-15	,6	2,5	0,0000
maio	-98,5	14,6	0,0000	-29,5	6,6	0,0000	-77,4	28,0	0,0059	-416,1	156,1	0,0078	-0	,1	2,5	0,9768
jันก์กิจิ *1000.000	-107,7	14,6	0,0000	-17,3	6,6	0,0095	-84,5	28,4	0,0030	-570,8	152,5	0,0002	23	,6	2,4	0,0000
julho *1000.000	-44,5	15,8	0,0050	33,5	7,3	0,0000	-51,6	30,9	0,0955	-689,2	162,8	0,0000	66	,7	2,6	0,0000
agosto *1000.000	-24,7	14,9	0,0967	41,2	7,1	0,0000	-61,8	30,0	0,0393	-683,8	159,3	0,0000	74	,7	2,4	0,0000
setembro *1000.000	-63,4	13,8	0,0000	51,0	6,8	0,0000	-26,4	29,0	0,3630	-432,1	143,0	0,0026	85	,5	2,4	0,0000
outubro *1000.000	-30,1	14,6	0,0398	84,9	6,8	0,0000	-19,4	29,4	0,5084	-482,7	151,0	0,0014	119	,3	2,3	0,0000
novembro *1000.000	-98,9	16,4	0,0000	21,2	7,1	0,0031	-46,2	31,2	0,1392	-225,2	176,7	0,2029	54.	5	2,6	0,0000
dezembro *1000.000	20,1	13,6	0,1396	111,4	6,3	0,0000	11,8	26,8	0,6608	-332,6	147,3	0,0242	149	4	2,3	0,0000
dia 2 *1000	-174,7	10,5	0,0000	120,9	6,5	0,0000	10,4	28,3	0,7124	2886,8	257,2	0,0000	117	,5	3,4	0,0000
dia 3 *1000	-171.0	10.4	0.0000	-2,6	6,2	0.6799	-116.0	26.6	0.0000	2396.2	222,8	0.0000	27	.5	3,1	0.0000
dia 4 *1000	-155,0	9,8	0,0000	81,6	6,5	0,0000	-48,5	27,9	0,0819	1362,5			114	.7	2,9	0,0000
dia 5 *1000	-166,7	10,9	0.0000	-57,8	6,6	0.0000	-61.9	27,0	0.0219	1833.0	234,9	0.0000	-39	.1	3,3	0.0000
dia 6 *1000	-176.6	,		-26,9	6,6	0.0001	-116.9	28,7	0.0000	1004.7	,				3.0	0.1678
dia 7 *1000	-164,5	10,0	0.0000	-66,8	5,6	0.0000	-119.1	22,5	0.0000	1442,8			-27		3,2	0.0000
dia 8 *1000	-176,4	,		60,9	6,3	0.0000	-74,7	26,0	0,0041	1355,1		0,0000	91.		3,3	0,0000
dia 9 *1000	-179.0	,		6,3	5,7	0.2671	-123.6	22,8	0.0000	1451.0	,	0,0000	65		3,3	0,0000
dia 10 *1000	-172,4	, -		46,7	6,4	0,0000	64,5	26,6	0,0156	2752,7			25		3,4	0,0000
dia 11 *1000	-150.4	,		114,3	5,9	0,0000	-19,6	24,7	0.4283	1825.5	,	0,0000			2,9	0,0000
dia 12 *1000	-151,3	,		31,3	6,0	0,0000	-97,1	24,0	0.0001	1204,5	- ,	0,0000	67		3,3	0,0000
dia 13 *1000	-178,1	12,4		73,7	6,0	0,0000	-130,6	24,7	0,0000	1369,6			122		3,1	0,0000
dia 14 *1000	-173.3	,		-9,6	7,4	0,1929	-194.0	31,1	0.0000	1268.9	,	0,0000	50		3,4	0,0000
dia 15 *1000	-350,7	, -		-74,4	7,3	0,0000	-124,8	31,3	0,0001	4322,1	259,5		-104		3,2	0,0000
dia 16 *1000	-184,6	,		-36,7	6,3	0,0000	-113,6	26,3	0,0000	1268,7		0,0000			3,1	0,0000
dia 17 *1000	-128,1	11,5		30,5	6,7	0,0000	-62,7	28,3	0,0000	243,4			63.		3,2	0,0000
dia 18 *1000	-157,9	,		-29,2	6,9	0,0000	-165,1	29,3	0,0000	109,5	,		15.		3,2	0,0000
dia 19 *1000 dia 19 *1000	-121,4	,		15,3	6,9	0,0000	-109,3	29,3	0,0002	-351,6	,				3,2	0,0000
dia 20 *1000	-123,9	,		12,5	5,4	0,0200	-60,8	21,7	0,0051	418,0					3,3	0,0000
dia 20 1000 dia 21 *1000	-75,7			12,5	6,8	0.0000	-19.8	28,9	0,0031	128.3		0,0714	158		3.4	0.0000
dia 21 1000 dia 22 *1000	-91.3	,	0,0000	77,1	7,4	0,0000	-104.7	31,6	0,0010	131,8	,				3,3	0,0000
dia 23 *1000	-130.1	11.8		97,7	6.1	0,0000	-104,7 -91.7	26,3	0,0016	-166,7		0,5910	156		3.0	0,0000
dia 23 1000 dia 24 *1000	-130,1	, -	0,0000	97,7 47,2	5,8	0,0000	-91,7 -162.1	26,3 23,2	0,0000		,				- , -	0,0000
		,	0,0000		,	0,0000	- ,		0,0000	-248,3	,				3,1	0,0000
dia 25 *1000	-134,0			23,5	5,6	0,0000	-110,1	23,6	0,0000	-49,7	257,2				2,9	0,0000
dia 26 *1000	-162,3	,	-,	26,3	7,0	-,	-161,9	29,0	-,	-255,9					3,2	0,0000
dia 27 *1000	-165,3			15,3	6,0	0,0107	-155,1	26,1	0,0000	-356,8			103		2,9	
dia 28 *1000	-205,7	,	0,0000	-94,7	5,9	0,0000	-244,8	24,6	0,0000	-64,6	,		l .		3,1	0,0003
dia 29 *1000	-215,6			-75,6	4,9	0,0000	-199,6	20,1	0,0000	163,6			-7		3,0	0,0179
dia 30 *1000	-224,1	9,7	0,0000	-121,1	5,2	0,0000	-147,0	21,4	0,0000	1630,0			-95	, -	3,3	0,0000
dia 31 *1000	-298,2	10,5	0,0000	-232,9	8,3	0,0000	-330,2	35,6	0,0000	2439,7	232,0	0,0000	-182	,1	3,5	0,0000

Tabela 11 - Continuação

		Equação														
l		Dep. à Vista	a /10.000		Dep.de Gov	erno /1.000	0	RecursosE	e3os /1.00	0	Tributos /1			Ordens de		.E. /1.000
l	Variável	Coef.(1)	EP I	Prob.	Coef. E	P F	Prob.	Coef.	EP	Prob.	Coef.	EP	Prob.	Coef.	EP I	Prob.
l	dp2 *1000	75,5	8,0	0,0000	152,0	4,6	0,0000	381,6	19,4	0,0000	393,6	151,6	0,0096	75,8	2,2	0,0000
l	dp3 *1000	188,9	2,6	0,0000	76,6	1,7	0,0000	434,8	6,8	0,0000	397,6	57,3	0,0000	2,5	0,9	0,0095
l																
	dp4 *1000	254,2	21,1	0,0000	214,1	8,3	0,0000	803,5	28,5	0,0000	1260,1	476,3	0,0083	67,1	5,4	0,0000
l	dp5 *1000	414,6	26,0	0,0000	424,7	10,7	0,0000	1036,8	31,6	0,0000	54,2	258,5	0,8339	282,5	8,3	0,0000
l	Selic *1000	-188,5	15,2	0,0000	-185,4	6,2	0,0000	12,7	25,9	0,6242	1365,8	152,6	0,0000	-240,7	2,4	0,0000
	Câmbio *1000	24,3	15,7	0,1221	67,0	6,9	0,0000	67,1	29,5	0,0230	1296,1	166,7	0,0000	37,3	2,5	0,0000
l	Vendas *1000	189,3	32,4	0,0000	141,2	16,4	0,0000	838,0	72,8	0,0000	-47,0	310,0	0,8796	-80,6	5,8	0,0000
	Consumo *1000	545,8	70,3	0,0000	302,1	25,3	0,0000	391,1	109,4	0,0004		722,0	0,0004	160,4	10,9	0,0000
	Renda-Consumo *1000	1263,9	73,6	0,0000	598,7	27,1	0,0000	1195,8	113,5	0,0000	4751,7	732,2	0,0000	155,0	11,1	0,0000
	Dep.àVista(t-1) *1000	93,3	38,3	0,0150	-644,7	54,7	0,0000	-694,2	48,9	0,0000	3893,3	560,8	0,0000	-445,2	38,0	0,0000
	De.Gov.(t-1) *1000	-3614,9	126,0	0,0000	-456,3	83,5	0,0000	-2903,2	104,1	0,0000	-4327,6	423,5	0,0000	-1175,9	61,5	0,0000
	Rec.3os(t-1) *1000	883,9	31,4	0,0000	425,7	76,9	0,0000	935,5	50,3	0,0000	-812,0	272,7	0,0030	323,7	43,8	0,0000
	Tributos(t-1) *1000	25,7	3,2	0,0000	43,7	12,1	0,0003	4,8	6,5	0,4593	-319,7	43,1	0,0000	18,7	6,0	0,0019
AR	OrdensPME(t-1) *1000	3275,9	113,8	0,0000	1126,8	95,2	0,0000	3772,5	105,3	0,0000	-461,7	507,1	0,3628	1954,3	65,8	0,0000
<	Dep.àVista(t-2) *1000	-153,7	183,2	0,4018	31,6	64,2	0,6231	58,0	159,1	0,7155	-2876,2	555,7	0,0000	-20,5	66,2	0,7571
	De.Gov.(t-2) *1000	2144,9	154,6	0,0000	640,9	65,2	0,0000	1745,0	129,9	0,0000	2908,8	322,0	0,0000	703,7	58,6	0,0000
	Rec.3os(t-2) *1000	287,7	302,5	0,3419	202,4	96,8	0,0368	338,7	256,7	0,1873	819,4	336,6	0,0151	202,3	103,0	0,0500
	Tributos(t-2) *1000	117,9	49,1	0,0167	33,8	15,7	0,0310	85,6	41,3	0,0386	12,4	56,3	0,8259	40,6	16,7	0,0151
	OrdensPME(t-2) *1000	-3344,7	335,6	0,0000	-1310,4	128,4	0,0000	-3230,5	286,4	0,0000	480,2	579,2	0,4073	-1308,6	124,8	0,0000
	Dep.àVista(t-1) *1000	486,0	56,4	0,0000	311,8	92,4	0,0008	737,4	121,7	0,0000	1615,3	925,0	0,0811	231,4	80,5	0,0042
	De.Gov.(t-1) *1000	3632,3	126,6	0,0000	1057,1	80,5	0,0000	2889,0	104,4	0,0000	3920,6	434,4	0,0000	1184,1	61,4	0,0000
MA	Rec.3os(t-1) *1000	-820,4	35,1	0,0000	-125,9	46,8	0,0073	-299,6	65,2	0,0000	-154,4	399,7	0,6994	-217,2	41,3	0,0000
	Tributos(t-1) *1000	-31,4	3,7	0,0000	-19,8	5,7	0,0006	-11,1	7,1	0,1177		56,3	0,0000	-26,7	5,3	0,0000
	OrdensPME(t-1) *1000	-3340,2	114,0	0,0000	-1427,0	84,8	0,0000	-3732,8	114,4	0,0000	1682,7	605,4	0,0056	-1317,6	69,6	0,0000
SS	Dep.àVista *1000	17,3	27,8	0,5335					·							
	De.Gov. *1000	43,1	3,5	0,0000	419,3	6,3	0,0000									
_ sta	Rec.3os *1000	1,3	2,3	0,5595	3,6	5,4	0,5025	124,3	4,9	0,0000						
5 등	Tributos *1000	-35,9	1,9	0,0000	-86,2	10,7	0,0000	-15,2	6,6	0,0212	856,2		0,0000			
7	OrdensPME *1000	-2,1	2,0	0,2866	-4,1	5,5	0,4573	170,4	3,3	0,0000	-26,8	6,3	0,0000	105,1	4,2	0,0000
	OrdensPME *1000										l			54,5	43,6	0,2122
Se A2	Rec.3os *1000							424,9	19,9	0,0000						
Ξ	OrdensPME *1000													480,7	30,5	0,0000
E A3	De.Gov. *1000				0,0	0,0	0,0000				l					
_ A4	Dep.àVista *1000	253,9	52,7	0,0000							l					
	De.Gov. *1000				229,1	55,5	0,0000									
G1	Dep.àVista *1000	485.1	148,9	0.0012	l			l			l			l		

⁽¹⁾Coe.=Coeficientes, EP=Erro Padrão, Pr.=Probabilidade>|t|

⁽²⁾ dp=dummies para o número

de dias não úteis imediatamente anteriores ao dia útil em questão

Pelos resultados obtidos, todas variáveis macroeconômicas são significativas. Um aumento da Selic provoca uma diminuição dos Depósitos à Vista, de Governo e das Ordens de Pagamentos em Moedas Estrangeiras, mas aumenta a arrecadação de tributos. Um aumento no câmbio, no consumo ou na renda abatida do consumo causa um aumento em todos os depósitos. Um crescimento das vendas no comércio induz a um aumento dos Depósitos à Vista, de Governo e dos Recursos em Trânsito de Terceiros, mas diminui os tributos. Entretanto, como veremos na seção de cenários, o aumento desses três depósitos provoca um posterior aumento dos tributos.

A Tabela 12 mostra os testes de heteroscedasticidade nos resíduos η (resíduos finais do modelo com GARCH). Não há mais heteroscedasticidade.

Tabela 12- Testes de Heteroscedasticidade

		ARCH de 1	a Ordem			
	Variável	DAV	Gov	3os	Т	OPME
	DAV	1,66	0,87	0,99	0,92	-1,08
	Gov	0,87	0,57	1,41	1,60	1,70
ட	3os	0,99	1,41	0,77	1,81	1,15
Valor	Т	0,92	1,60	1,81	0,76	0,76
/8	OPME	-1,08	1,70	1,15	0,76	1,21
	DAV	0,0970	0,3854	0,3211	0,3598	0,2804
	Gov	0,3854	0,5712	0,1579	0,1107	0,0889
ූ	3os	0,3211	0,1579	0,4421	0,0711	0,2514
rob.	Т	0,3598	0,1107	0,0711	0,4447	0,4447
P	OPME	0,2804	0,0889	0,2514	0,4447	0,2285

(1)H0: Não há ARCH

(2)DAV=Depósitos à Vista

(3)Gov=Depósitos de Governo

(4)3os=Rec. em Trânsito de 3os

(4)T=Tributos

(5)OPME=Ord.Pag.Moedas Est.

A Tabela abaixo traz os testes de *cross* e autocorrelações nos resíduos η.

Tabela 13- Correlações (Cross e Auto) nos Resíduos $\boldsymbol{\eta}$

Represe	ntação	de Tiac	е Вох								
Lag	0	1	2	3	4	5	6	7	8	9	10
DepÀV	++				+.+			.+	.+		++
DepGov	++			.+	+.+			++	.+		++
Rec3os	+-+						+.	+	+		.+
Trib.	+-				+	+				+.	+.
OPME	+-+						+.	+ . +	+.+		.+
		+ é >	2*erro	padrão,	- é <	-2*err	o padrã	o, . é	entre		

Teste de Portmanteau para Correlações (cross e auto) nos Resíduos

Lag	Qui2	DF	Probabilidade>Qui2	
3	89.57	75	0.1202	
4	126.72	100	0.0368	
5	176.47	125	0.0017	
6	206.37	150	0.0016	
7	261.67	175	<.0001	
8	315.91	200	<.0001	
9	342.96	225	<.0001	
10	400.82	250	<.0001	
пO.	não há gorro	122502	/grogg o sutogorrolagõog	١

HO: não há correlações (cross e autocorrelações)

O método de máxima verossimilhança exige que saibamos a distribuição dos resíduos. Supomos que esta fosse normal, mas a Tabela mostra que eles não são.

Tabela 14- Testes de Normalidade nos Resíduos

Teste	Equação	Depósitos à Vista	Depósitos de Governo	Rec. 30s	Tributos	Ord.Pag. Moedas Est.
Shapiro-Wilk	Valor	8.43E-01	7.75E-01	8.35E-01	7.39E-01	8.42E-01
	valor-p	0.0000	0.0000	0.0000	0.0000	0.0000
Kolmogorov-	Valor	1.35E-01	1.53E-01	1.40E-01	1.85E-01	1.38E-01
Smirnov	valor-p	<.0100	<.0100	<.0100	<.0100	<.0100
Cramer-	Valor	5.51E+00	5.83E+00	5.35E+00	1.03E+01	5.16E+00
von Mises	valor-p	<.0050	<.0050	<.0050	<.0050	<.0050
Anderson-	Valor	3.23E+01	3.49E+01	3.29E+01	5.95E+01	3.14E+01
Darling	valor-p	<.0050	<.0050	<.0050	<.0050	<.0050

(1)H0: Resíduos são normais

As Tabelas a seguir indicam que o modelo é estável, pois todas as raízes estão dentro do círculo unitário. Os resultados da Tabela 15 mostram aos autovalores da equação estrutural, enquanto os da 16 os da equação GARCH.

Tabela 15- Teste de Estabilidade –Raízes do Polinômio Característico AR e MA – Equação Principal

Índice	Módulo
1	0.9303706
2	0.7741107
3	0.6088948
4	0.5025801
5	0.1212525
6	0.4462352
7	0.4462352
8	0.1073093
9	0.3925628
10	0.3925628
11	0.3378735
12	0.3378735
13	0.4093847
14	0.4093847
15	0.3540808

Tabela 16- Teste de Estabilidade –Raízes do Polinômio Característico AR e MA – Equação GARCH

Índice	Módulo
1	0.2998863
2	0.2343354
3	0.2043605
4	0.2043605
5	0.1805090
6	0.0581422
7	0.0581422
8	0.0524632

5.7 Análise Descritiva dos Resíduos

A tabela a seguir traz as principais medidas estatísticas dos resíduos do nosso modelo VARMAX-VGARCH.

Tabela 17- Análise Descritiva dos Resíduos

	Tipo				
			Desvio	Assi-	Cur-
Resíduo da Equação de	Média	Mediana	Padrão	metria	tose (1)
Dep. à Vista, *1000	-1,53	-0,90	65,85	-124,58	1.766,39
Dep. De Governo, *1000	-11,64	-27,95	411,66	936,23	4.562,02
Recursos em Trânsito de 3os, *1000	7,42	-3,01	209,66	278,81	2.780,66
Cobrança de Tributos, *1000	-0,14	-95,13	857,77	1.452,84	5.068,44
Ord. de Pagamentos em Moedas Est., *1000	2,61	-4,44	198,92	114,84	2.939,92

(1) Curtose corrigida

5.8 Previsão

Com os parâmetros ajustados para o período maio/2002-dezembro/2005, fizemos a previsão para os seis meses seguintes (sem usar qualquer informação a partir de 1/1/2006). Os gráficos da Figura 2 mostram os resultados. Visualmente, os resultados são satisfatórios. Eles se aproximam dos valores reais.

Uma comparação interessante é feita com um modelo VAR sem MA e GARCH multivariado. Os gráficos da Figura 3 trazem este último.

Com essas duas formas de previsão citadas acima, montamos a Tabela 18. Esta apresenta os erros de previsão separados por períodos. Além dos métodos VARMAX-VGARCH e VAR, fizemos projeções para mais outros quatro: repetindo os valores médios do final do período de ajuste (das duas últimas semanas); interpolando uma reta; através de modelos ARMA com sazonalidade anual (SARMA); e pelo método de alisamento exponencial de Winters. A tabela destaca o método com menor erro de previsão com fundo cinza.

A metade <u>superior das</u> linhas de cada tabela se refere ao erro de cada período como um todo, ou seja, os erros com sinal positivo de um dia compensam erros negativos de outro dia. Nas segundas metades, temos os erros médios, ou seja, antes de agrupar os erros diários de cada período pegamos seu valor absoluto ou quadrático, de forma <u>que</u> os efeitos de um dado dia não anulam os de outros. Por que fizemos isso? Porque apesar de estarmos trabalhando com dados diários, o cálculo dos Recolhimentos Compulsórios sobre Recursos à Vista no Brasil se baseia em períodos de duas semanas. Assim, o importante nesse caso é a capacidade de previsão para esses períodos e não para dias. Isto é especialmente importante para a nossa

Excluído: primeira

Excluído: e

quarta série temporal, a de Tributos, onde há grande variação nos volumes diários. Em dias de vencimento de um dado tributo (por exemplo, o pagamento do INSS no dia 15), há valores grandes. Normalmente, esses vencimentos têm dia fixo num mês. Porém, quando o vencimento cai em feriado ou final de semana, ele é "deslocado" em alguns dias. Porém o modelo não é capaz de fazer este deslocamento e prevê o fluxo de recursos para o dia normal de vencimento. Este efeito gera um erro grande no dia do vencimento, acompanhado por outro erro de valor semelhante com sinal trocado no dia deslocado. Como o compulsório se baseia na média de duas semanas, esta falha não é importante. Ela é importante para previsões diárias.

Comparando os seis métodos de previsão, o VARMAX-VGARCH mostrou melhores resultados (em número de períodos com menor erro previsto) para os Depósitos de Governo e para os Recursos em Trânsito de Terceiros. O SARMA mostrou melhores resultados para os Depósitos à Vista, para as Cobranças de Tributos e Assemelhados e para as Ordens de Pagamento em Moedas Estrangeiras. De forma geral estes dois métodos apresentaram resultados próximos, sendo que o ARMA tem a vantagem de ser mais fácil de ser modelado. O método que repete os últimos valores apresenta erros grandes, que aumentam com o distanciamento do período de ajuste. A interpolação por reta e o método de Winters não geraram bons resultados para nosso caso, de acordo com os erros mostrados na Tabela 18.

Tabela 18- Erro Médio Absoluto e Quadrático

A - Depósitos à Vista

						Erro Quadrático								
			Método						Método					
			VARMAX-	Último					VARMAX-	Último				
Tipo	Perío	odo	VGARCH	Período	Reta	ARMA	Winters	VAR(4)	VGARCH	Período	Reta	ARMA	Winters	VAR(4)
	de Aj	uste	2%						0%					
		1	20%	13%	54%	8%	20%	22%	4%	2%	29%	1%	4%	5%
		2	15%	47%	19%	9%	16%	18%	2%	22%	4%	1%	2%	3%
	as	3	12%	50%	15%	10%	6%	12%	1%	25%	2%	1%	0%	
	Semanas	4	18%	61%	3%	16%	9%	15%	3%	38%	0%	3%	1%	2%
ЬŘ	Шe	5	36%	31%	32%	6%	11%	29%	13%	10%	10%	0%	1%	8%
Período		6	20%	63%	0%	9%	5%	19%	4%	39%	0%	1%	0%	4%
1 d	de 2	7	28%	47%	14%	4%	12%	29%	8%	22%	2%	0%	1%	8%
ď	ρs	8	7%	56%	4%	2%	3%	10%	0%	31%	0%	0%	0%	1%
Erro do	eríodos	9	3%	51%	9%	7%	6%	11%	0%	26%	1%	0%	0%	1%
۱ ш	ř.	10	12%	51%	7%	2%	25%	18%	1%	26%	1%	0%	6%	3%
	Pe	11	13%	49%	8%	13%	45%	17%	2%	24%	1%	2%	20%	3%
		12	9%	44%	13%	3%	36%	10%	1%	19%	2%	0%	13%	1%
		13	4%	50%	5%	16%	34%	3%	0%	25%	0%	3%	12%	0%
	de Pr	revisão	17%	47%	14%	0%	9%	16%	4%	22%	2%	0%	1%	3%
	de Aj	uste	5%						0%					
SO		1	20%	21%	54%	20%	23%	23%	5%	7%	34%	5%	8%	7%
ári		2	15%	47%	19%	13%	17%	18%	3%	23%	4%	3%	5%	4%
ou Qu. Diários	as	3	12%	50%	16%	15%	14%	12%	3%	27%	4%	3%	3%	3%
ng	Semanas	4	18%	61%	15%	17%	14%	15%	5%	41%	3%	4%	3%	
Ž	em	5	36%	32%	32%	17%	16%	29%	14%	12%	13%	3%	4%	9%
] ;	2 S	6	20%	63%	14%	17%	13%	19%	5%	42%	3%	4%	3%	
Ab.	de 7	7	28%	47%	14%	8%	12%	29%	9%	23%	3%	1%	2%	9%
l So	တ္	8	14%	56%	15%	15%	17%	13%	3%	34%	3%	4%	4%	3%
山	Períodos	9	9%	51%	12%	13%	10%	12%	1%	27%	2%	2%	2%	2%
SO	ř	10	12%	51%	16%	18%	25%	18%	2%	30%	4%	4%	8%	5%
a	ď	11	13%	49%	11%	16%	45%	17%	2%	26%	2%	4%	22%	3%
Média dos Erros		12	15%	44%	16%	15%	36%	12%	3%	21%	4%	3%	17%	2%
Ž		13	7%	50%	8%	16%	34%	6%	1%	26%	1%	3%	12%	1%
	de Pr	revisão	17%	48%	19%	15%	21%	17%	4%	26%	6%	3%	7%	4%

Tabela 18 - Continuação

B - Depósitos de Governo

						Erro Quadrático									
			Método						Método						
			VARMAX-	Último					VARMAX-	Último					
Tipo	Perío	do	VGARCH	Período	Reta	ARMA	Winters	VAR(4)	VGARCH	Período	Reta	ARMA	Winters	VAR(4)	
	de Aju	uste	12%						2%						
		1	31%	124%	29%	78%	105%	11%	10%	153%	8%		110%		
		2	6%	119%	24%	95%	133%	65%	0%	141%	6%	91%	177%		
	as	3	6%	132%	38%	77%	166%	50%	0%	173%	14%	60%	275%		
	Semanas	4	2%	114%	20%	98%	231%	26%	0%		4%		536%		
Ö	eu	5	23%	76%	17%	28%	235%	60%	5%	58%	3%		552%		
Período	2 S	6	26%	75%	18%	43%	291%	57%	7%	56%	3%		846%	33%	
G	de 5	7	43%		17%	36%	329%	62%	18%	56%					
Erro do	S	8	0%		6%	65%	410%	5%	0%		0%		1684%		
🖺	<u>8</u>	9	4%		14%	87%	459%	19%	0%		2%				
1 "	Períodos	10	56%	51%	40%	7%	420%	79%	31%		16%				
	a B	11	22%	141%	50%	133%	538%	14%	5%		25%				
		12	8%	102%	12%	63%	561%	19%	1%		1%				
		13	6%		19%	98%	585%	15%	0%		4%				
	de Pre	evisão	52%	102%	10%	71%	341%	35%	49%		1%	50%	1165%	12%	
	de Aju	uste	31%						19%						
SO		1	83%		84%	96%	131%	75%	93%		92%				
Diários		2	37%		41%	105%	133%	65%	24%	159%					
	Semanas	3	63%		87%	109%	179%	58%	73%		93%				
ou Qu.	าลเ	4	51%		52%	100%	231%	51%	33%			208%			
nc	Je L	5	62%		59%	51%	235%	66%	74%		64%				
<u>ه</u>	2 8	6	43%		41%		291%	61%	31%	79%	26%				
۷ ک	de	7	52%	88%	45%	47%	329%	68%	57%	94%	41%				
ĕ) S(8	52%		53%	70%	410%	44%	32%	126%	31%				
ш	Períodos	9	34%		37%	92%	459%	29%	16%		19%	108%			
los	eríc	10	64%		60%	78%	420%	80%	95%	88%					
a	۵	11	47%		66%	133%	538%	32%	28%	225%	53%				
Média dos Erros Ab.		12	53%		60%	104%	561%	39%	61%		63%				
Σ		13	33%	109%	44%	119%	585%	32%	21%		25%		3463%		
	de Pre	evisão	52%	112%	56%	91%	344%	54%	49%	153%	50%	127%	1482%	60%	

Tabela 18 - Continuação

C - Recursos em Trânsito de Terceiros

		I	Erro Absolu	uto					Erro Quadrático						
			Método						Método						
			VARMAX-	Último					VARMAX- Último						
Tipo	Perío	do	VGARCH	Período	Reta	ARMA	Winters	VAR(4)	VGARCH	Período	Reta	ARMA	Winters	VAR(4)	
	de Aju		5%						0%	•				/	
		1	42%	108%	46%	33%	109%	36%	18%	117%	21%	11%	118%	13%	
		2	9%	104%	44%	20%	50%	22%	1%	108%	19%	4%	25%	5%	
	as	3	17%	87%	29%	20%	7%	4%	3%	76%	8%	4%	0%		
	Semanas	4	4%	84%	28%	14%	47%	15%	0%	70%	8%	2%	22%	2%	
Período	e.	5	43%	92%	38%	32%	15%	53%	19%	85%	14%	10%	2%	28%	
erí	2 S	6	76%	141%	89%	52%	19%	80%	58%	198%	79%	27%	4%	64%	
Р С	de 2	7	89%	159%	109%	69%	2%	82%	79%	254%	119%	48%	0%	67%	
Erro do		8	93%	141%	93%	63%	42%	77%	87%		86%	39%	17%	59%	
1 🖺	မွ	9	64%	101%	55%	67%	72%	71%	41%	102%	30%		52%	50%	
"	Períodos	10	28%	95%	50%	16%	165%	27%	8%	89%	25%	2%	273%		
		11	62%	136%	94%	70%	180%	62%	38%	186%	89%	49%	324%		
		12	49%	113%	73%	53%	212%	43%	24%	127%	53%	28%	450%		
		13	18%	71%	33%	20%	247%	35%	3%	51%	11%	4%	610%	13%	
	de Pre	evisão	52%	110%	60%	40%	62%	45%	36%	121%	36%	16%	38%	21%	
	de Aju	uste	16%						5%						
os		1	42%		52%		109%		22%				137%		
Diários		2	40%	104%	46%		51%	33%	18%		35%	13%			
	Semanas	3	23%	87%	36%	41%	25%	14%	7%		17%		10%		
ou Qu.	Jan	4	19%		33%	27%	57%	25%	6%		16%		34%		
E	eπ	5	43%		51%	37%	38%	53%	22%		33%				
	2 8	6	76%	141%	89%	52%	23%	80%	60%		83%		8%		
Erros Ab.	de ;	7	89%	159%	109%	69%	23%	82%	81%		124%		8%		
õ		8	93%		93%	63%	45%	77%	91%		95%		27%		
	Períodos	9	64%	101%	55%		73%	71%	46%				76%		
os	er(10	39%	96%	68%	43%	165%	39%	22%				293%		
a	۵	11	62%	136%	94%	70%	180%	62%	47%	191%	94%	58%	334%		
Média dos		12	49%	113%	73%	58%	212%	43%	27%		62%		458%		
Ž		13	49%	82%	51%	38%	247%	55%	33%		32%				
	de Pre	evisão	52%	111%	65%	49%	97%	51%	36%	140%	55%	34%	162%	35%	

Tabela 18 - Continuação

D - Cobrança de Tributos e Assemelhados


		ı	Erro Absolu	uto					Erro Quadrático						
			Método						Método						
			VARMAX-	Último					VARMAX- Último						
Tipo	Perío	do	VGARCH	Período	Reta	ARMA	Winters	VAR(4)	VGARCH	Período	Reta	ARMA	Winters	VAR(4)	
	de Aju	ıste	20%					• •	7%					• • •	
		1	13%	112%	95%	1%	31%	24%	2%	126%	90%	0%	10%	6%	
		2	55%	81%	99%	63%	75%	50%	30%	65%	98%	40%	56%	25%	
	as	3	46%	100%	82%	27%	34%	36%	21%	100%	67%	8%	11%	13%	
0	Semanas	4	35%	52%	33%	57%	48%	37%	12%	27%	11%	33%	23%	14%	
Erro do Período		5	5%	49%	30%	59%	12%	57%	0%	24%	9%	34%	1%		
erí	2 S	6	16%	16%	35%	42%	11%	5%	2%			18%	1%		
Р.	de 2	7	21%	28%	9%	36%	41%	14%	4%	8%	1%	13%	17%		
ğ		8	38%	57%	37%	11%	18%	28%	15%	32%	14%	1%	3%		
E	eríodos	9	45%	86%	66%	80%	93%	64%	20%				86%	41%	
")i	10	30%	26%	6%	60%	32%	24%	9%	7%	0%	37%	11%		
	Δ.	11	21%	10%	10%	22%	85%	5%	5%	1%			72%		
		12	45%	94%	74%	3%	51%	50%	20%		55%	0%			
		13	8%	28%	49%	19%	41%	7%	1%	8%	24%	4%	16%	1%	
	de Pre	evisão	84%	36%	17%	8%	24%	1%	179%	13%	3%	1%	6%	0%	
	de Aju	ıste	58%						75%						
SO		1	103%	163%	156%	175%	176%	95%	235%				406%		
Diários		2	55%	82%	99%	101%	88%	54%	34%				246%		
	Semanas	3	119%	141%	137%	147%	167%	110%	247%				652%		
ou Qu.	Jan	4	94%	144%	148%	189%	178%	86%	275%				650%		
n	eπ	5	53%	96%	91%	226%	91%	61%	46%				111%		
	2 S	6	32%	107%	121%	135%	125%	42%			268%		367%		
Erros Ab.	de	7	90%	142%	146%	202%	139%	96%			312%		372%		
õ		8	106%	132%	142%	164%	195%	121%	233%				555%		
ш	Períodos	9	130%	161%	164%	226%	204%	128%	599%				1016%		
os	eríc	10	53%	126%	134%	141%	139%		38%				330%		
a	٩	11	55%	120%	132%	166%	98%	70%	77%	256%	255%	537%	269%		
Média dos		12	133%	123%	121%	181%	116%	111%	314%				264%		
Ž		13	78%	112%	127%	124%	92%	58%	113%				324%		
	de Pre	evisão	84%	127%	132%	166%	139%	82%	179%	343%	332%	520%	428%	167%	

Tabela 18 - Continuação

E - Ordens de Pagamentos em Moedas Estrangeiras

		Ī	Erro Absolu	uto					Erro Quadrático						
		ı	Método						Método						
			VARMAX-	Último					VARMAX-	Último					
Tipo	Perío	do	VGARCH	Período	Reta	ARMA	Winters	VAR(4)	VGARCH	Período	Reta	ARMA	Winters	VAR(4)	
	de Aju	ıste	5%						1%						
		1	31%	95%	86%	4%	40%	23%	10%	90%	73%	0%	16%		
		2	27%	74%	67%	38%	6%	44%	7%	54%	45%		0%		
	as	3	7%	51%	46%	41%	56%	11%	0%				31%		
0	Semanas	4	7%	38%	36%	28%	117%	25%	0%				138%		
90	em	5	65%	65%	65%	63%		81%	42%	43%	42%				
Período	2 S	6	97%	99%	100%	74%	71%	104%	93%	98%	101%		51%		
l o	de ;	7	100%	117%	120%	89%		95%	100%						
þ	S C	8	103%	108%	114%	87%		93%	106%	116%					
Erro do I	Períodos	9	70%	65%		89%	200%	78%	49%				400%		
1 "	eríc	10	39%	51%	61%			39%	15%	26%			1020%		
	ď	11	72%	87%	99%	83%	342%	75%	52%				1168%		
		12	69%	80%	94%	74%	379%	67%	47%				1438%		
		13	24%	19%		32%	440%	42%	6%				1933%		
	de Pre	evisão	58%	73%	76%	55%	170%	59%	46%	53%	58%	30%	288%	34%	
	de Aju	ıste	15%						4%						
ios		1	31%	95%	86%			23%	12%	92%	75%				
Diários		2	28%	74%	67%	38%	17%		11%	61%					
Δ.	as	3	15%	51%	46%	43%	57%	18%	4%	30%			40%		
Qu.	Semanas	4	23%	39%	37%	33%	117%	32%	10%				147%		
no	em	5	65%	65%	65%	63%		81%	45%	46%	46%				
b. 0	2 S	6	97%	99%	100%	74%	71%		95%		101%		55%		
Erros Ab.	de ;	7	100%	117%	120%	89%		95%	101%	139%	147%				
ros	SC	8	103%	108%	114%	87%	151%	93%	109%	119%					
	Períodos	9	70%	65%		89%	200%	78%	53%				415%		
los	eríc	10	46%	54%	62%	41%		46%	28%	41%					
а	4	11	72%	87%	99%	83%	342%	75%	58%				1177%		
Média dos		12	69%	80%	94%	74%	379%	67%	52%	67%	91%		1440%		
		13	50%	46%		50%	440%	61%	34%				1961%		
	de Pre	evisão	58%	75%	78%	59%	178%	62%	46%	66%	71%	46%	520%	50%	

Figura 2- Previsão com VARMAX(2,1)-VGARCH - Máxima Verossimilhança

600

700

800

900

1000 1100

200

300

400

500

Gráfico 3 - Recursos em Trânsito de Terceiros

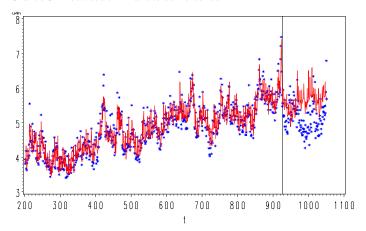


Gráfico 4 - Cobrança e Arrecadação de Tributos e Assemelhados

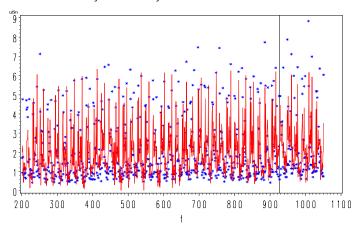


Gráfico 5 - Ordens de Pagamentos em Moedas Estrangeiras

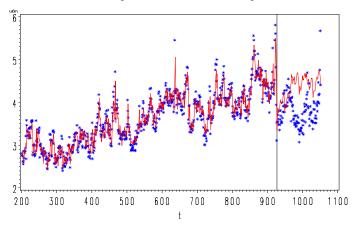


Figura 3- Previsão com VAR(4) sem GARCH – Mínimos Quadrados

928-1386 Previsão

1-927 Período de Ajuste

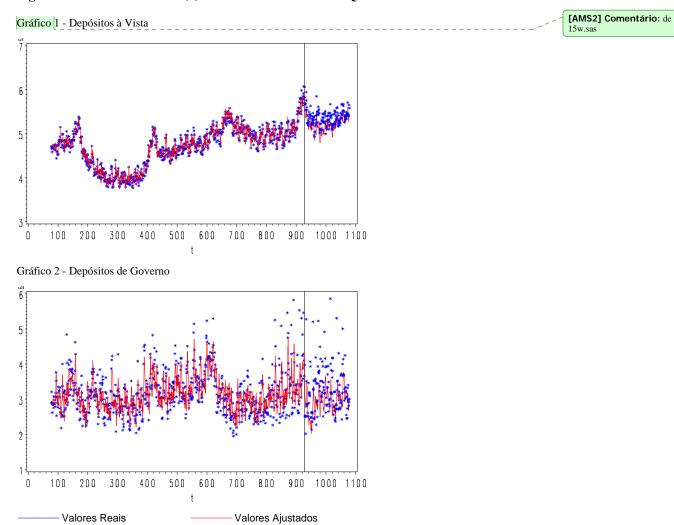


Gráfico 3 - Recursos em Trânsito de Terceiros

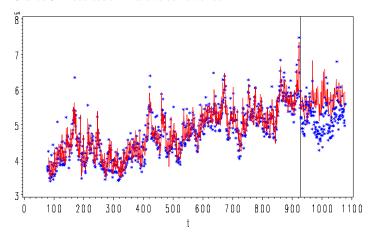


Gráfico 4 - Cobrança e Arrecadação de Tributos e Assemelhados

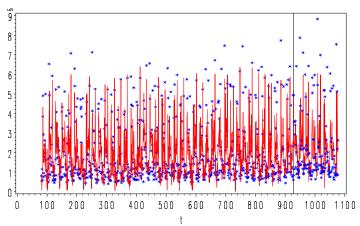
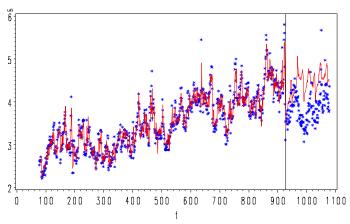



Gráfico 5 - Ordens de Pagamentos em Moedas Estrangeiras

5.9 Função de Resposta a Impulso

A partir do modelo definido nas seções anteriores, simulamos nesta seção choques em cada um dos cinco depósitos para avaliar os efeitos nos próprios depósitos e nas outras quatro séries. Os choques foram feitos em t=1000, sempre com valor unitário e desaparecem no dia seguinte.

Os gráficos a seguir detalham as respostas obtidas. Os primeiros cinco gráficos de cada figura trazem as respostas absolutas de cada choque. Mas eles são de difícil visualização por causa dos efeitos sazonais das séries. Construímos então o sexto gráfico com a diferença de cada série com impulso e sem impulso, ou seja, traz as respostas relativas "dessazonalisadas".

Um choque positivo nos depósitos à vista é seguido de um decaimento suave dele próprio. Ele provoca também um grande aumento imediato no recolhimento de tributos. Os outros depósitos sofrem leve queda.

Um choque nos Depósitos de Governo é acompanhado por um aumento contemporâneo dos Depósitos à Vista. Eles são seguidos com defasagem por um aumento no recolhimento de tributos.

Um choque nos Recursos em Trânsito de Terceiros age defasadamente nos outros depósitos. Todos eles aumentam, com exceção dos tributos.

Já um choque no recolhimento de tributos vem acompanhado de uma queda nos valores dele próprio e nos de recursos à vista. Os depósitos de governo sobem. O efeito é o de um encolhimento nos meios de pagamento, deslocando estes para o governo.

Por fim, um choque nas Ordens de Pagamento em Moedas Estrangeiras faz as outras séries subirem, especialmente a de tributos.

Todos esses choques demoram em torno de trinta dias úteis para desaparecer.

Figura 4- Choque nos Depósitos á Vista

Gráfico 1 - Resposta nos Depósitos à Vista

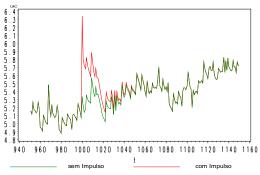


Gráfico 2 – Resposta nos Depósitos de Governo

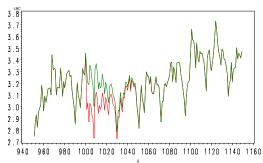


Gráfico 3 – Resposta nos Recursos em Trânsito

de Terceiros

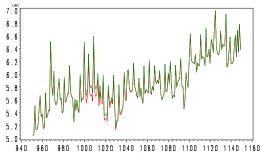


Gráfico 4 – Resposta nas Cobranças e Arrecadações de Tributos e Assemelhados

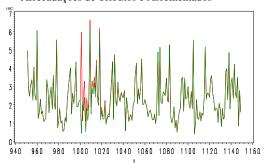


Gráfico 5 - Resposta nas Ordens de

Pagamentos em Moedas Estrangeiras

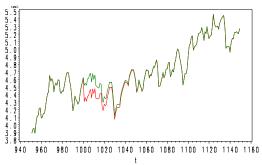


Gráfico 6 – Respostas Relativas nas Cinco Séries

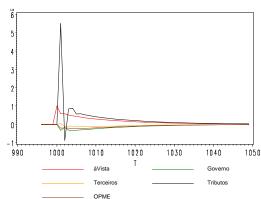


Figura 5- Choque nos Depósitos de Governo

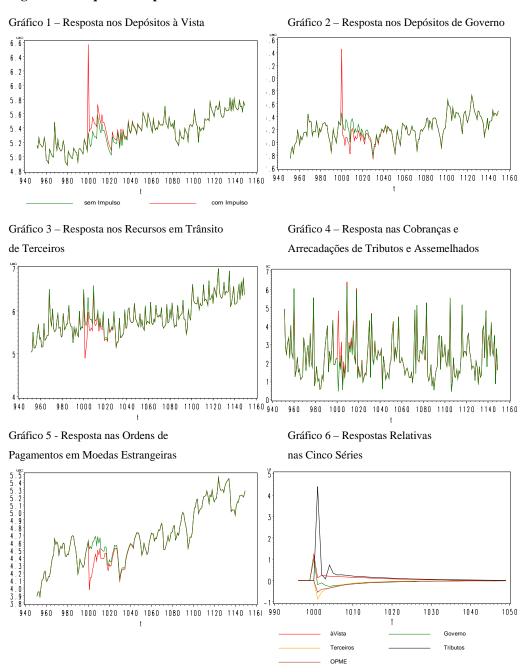


Figura 6- Choque nos Recursos em Trânsito de Terceiros

Gráfico 1 – Resposta nos Depósitos à Vista

Gráfico 2 – Resposta nos Depósitos de Governo

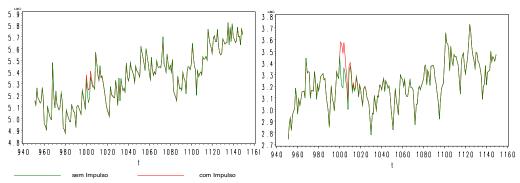


Gráfico 3 – Resposta nos Recursos em Trânsito de Terceiros

940 960 980 1000 1020 1040 1060 1080 1100 1120 1140 1160

Gráfico 4 – Resposta nas Cobranças e Arrecadações de Tributos e Assemelhados

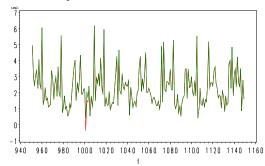


Gráfico 5 - Resposta nas Ordens de Pagamentos em Moedas Estrangeiras

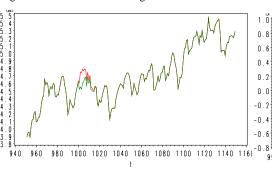


Gráfico 6 – Respostas Relativas nas Cinco Séries

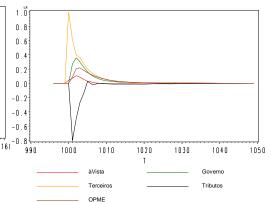


Figura 7- Choque nas Cobranças e Arrecadações de Tributos e Assemelhados

Gráfico 1 – Resposta nos Depósitos à Vista

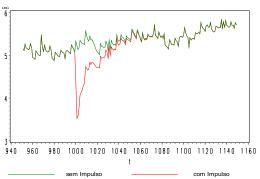


Gráfico 2 – Resposta nos Depósitos de Governo

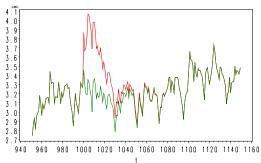


Gráfico 3 – Resposta nos Recursos em Trânsito de Terceiros

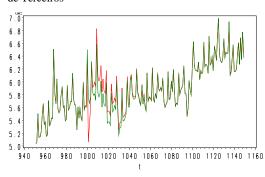


Gráfico 4 – Resposta nas Cobranças e Arrecadações de Tributos e Assemelhados

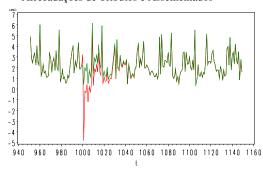


Gráfico 5 - Resposta nas Ordens de Pagamentos em Moedas Estrangeiras

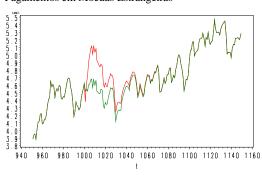


Gráfico 6 – Respostas Relativas nas Cinco Séries

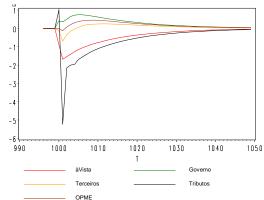


Figura 8- Choque nas Ordens de Pagamentos em Moedas Estrangeiras

Gráfico 1 – Resposta nos Depósitos à Vista

Gráfico 2 – Resposta nos Depósitos de Governo

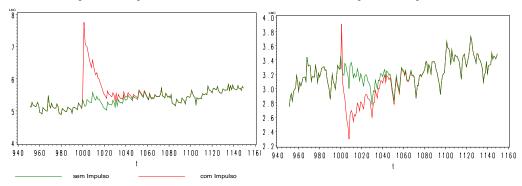
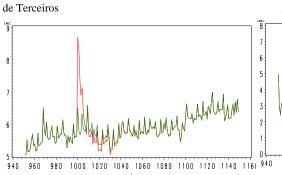



Gráfico 3 – Resposta nos Recursos em Trânsito

Gráfico 4 – Resposta nas Cobranças e Arrecadações de Tributos e Assemelhados

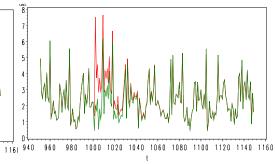
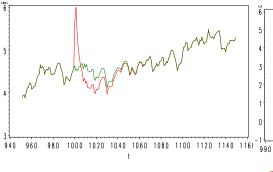
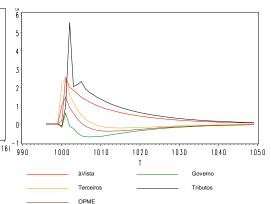




Gráfico 5 - Resposta nas Ordens de Pagamentos em Moedas Estrangeiras

Gráfico 6 – Respostas Relativas nas Cinco Séries

5.10 Cenários para as Variáveis Exógenas

Para esta análise, fixamos os valores de cada uma das cinco variáveis macro nos valores de 30/12/2005. Depois, variamos isoladamente cada uma delas de forma a obter a dinâmica de ajuste do modelo para a nova condição. As mudanças ocorrem em t=1000 (17/10/2006) e se mantêm pelo resto do período em análise.

Os cenários foram: aumento de 2 pontos percentuais na Selic; aumento de 20% na taxa de câmbio; aumento de 50% no volume de vendas no comércio; aumento de 12% no consumo; e acréscimo de 12% na variável renda-consumo. Escolhemos os valores acima de forma que tivessem efeitos (estacionários) semelhantes nos Depósitos à Vista (queda em torno de 4%).

A Figura 9 mostra os resultados. Como temos efeito sazonal, estes gráficos dificultam a observação dos efeitos das mudanças de cenários. Criamos então a Figura 10. Calculando a diferença entre os valores de dada variação e os valores base (sem variação). Assim tiramos o efeito sazonal.

Como nosso modelo é linear, os cenários para quedas nos valores das exógenas têm simplesmente os gráficos invertidos em relação aos que traçamos.

Um aumento de dois pontos percentuais na Selic diminui os Depósitos à Vista, como era de se esperar. Um aumento na taxa de juros aumenta o custo de oportunidade de se manter dinheiro parado em conta corrente, incentivando os indivíduos a manter maior parte de seus recursos aplicados. Ela aumenta também as Ordens de Pagamento em Moedas Estrangeiras. Ela afeta pouco os outros depósitos.

Um aumento no câmbio provoca aumento em todos depósitos, menos nos Depósitos à Vista. Provoca aumento em especial nas Ordens de Pagamento em Moedas Estrangeiras. Resultado contrário ao esperado, pois uma taxa de câmbio depreciada torna as importações mais caras, o que deveria influenciar negativamente essas Ordens.

Um acréscimo no Volume de Vendas no Comércio faz os Depósitos à Vista subirem inicialmente, mas depois caírem. Provavelmente por causa do efeito paralelo nos Depósitos de

Excluído: ã

Excluído: ã

Governo. Como estes últimos aumentam, retiram meios de pagamento da economia, diminuindo os Depósitos à Vista. Talvez por isso, a arrecadação de tributos caia também.

Os efeitos de aumento no consumo e na renda abatida do consumo são semelhantes, sendo o primeiro mais pronunciado para todos depósitos. Eles provocam um aumento inicial nos depósitos seguidos de um "repique". No equilíbrio, os Depósitos à Vista diminuem, ao contrário do que esperávamos. Um aumento do consumo aquece a economia e a faz crescer como um todo, o que deveria provocar um aumento nos recursos à vista também.

Figura 9- Cenários para as Variáveis Exógenas Macroeconômicas – Variações Absolutas

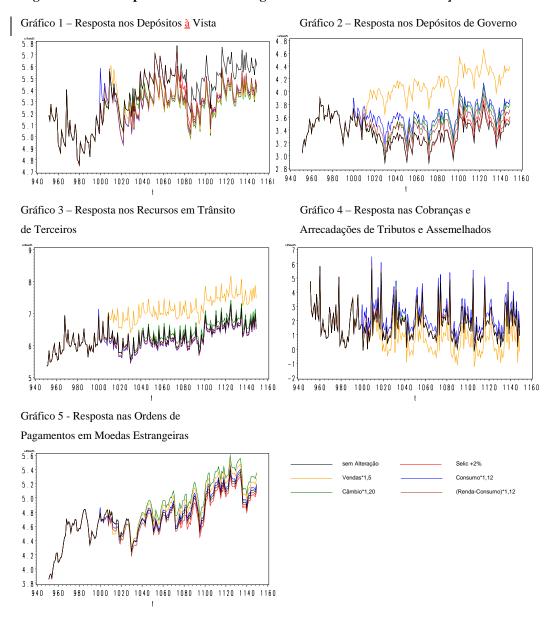
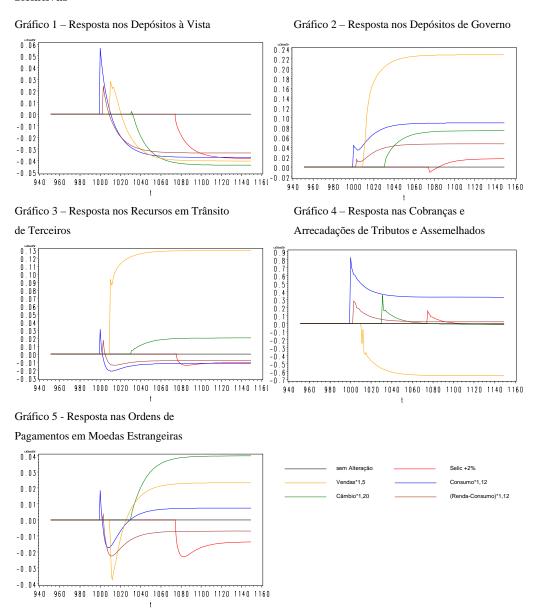



Figura 10- Cenários para as Variáveis Exógenas Macroeconômicas – Variações Relativas

5.11 Previsão das Variáveis Macroeconômicas

As variáveis macro consumo, renda e vendas no comércio foram projetadas utilizando modelos ARIMA. Os resultados são mostrados na Figura 11. Para algumas delas foi necessário utilizar uma diferença, por causa da presença de raiz unitária. Para a Selic e a taxa de câmbio usamos as projeções feitas pelo mercado, disponíveis nos Boletins Focus do BCB.

Figuras 11- Previsão das Variáveis Macroeconômicas

Gráfico 1 – Previsão do Câmbio

[AMS3] Comentário: vem de 15g.sas

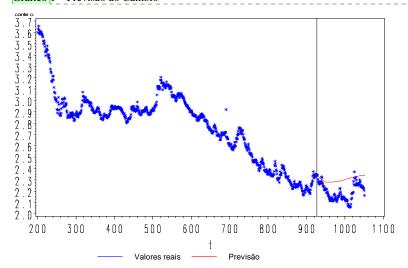


Gráfico 2 – Previsão da Selic

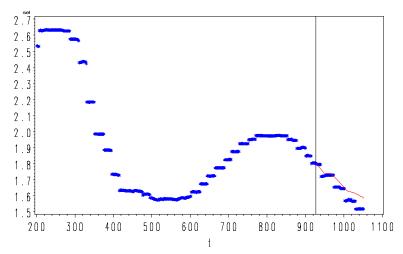


Gráfico 3 - Previsão do Volume de Vendas no Comércio

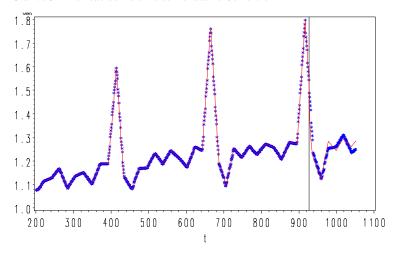


Gráfico 4 – Previsão da Renda

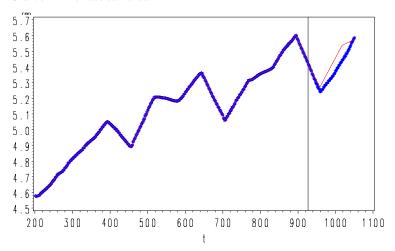
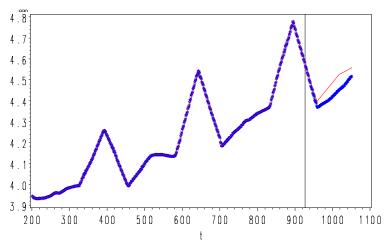



Gráfico 5 – Previsão do Consumo

5.12 Robustez dos Parâmetros Regredidos

Com o objetivo de avaliar a metodologia e os resultados obtidos, ajustamos as mesmas regressões para dois períodos diferentes: um de 31/10/2002 a 7/7/2006; e outro de 11/2/2003 a 17/10/2006. Os dois períodos foram escolhidos aleatoriamente. Depois comparamos os valores dos coeficientes.

As duas tabelas abaixo mostram que as defasagens das variáveis exógenas macroeconômicas não sofreram grandes mudanças, com exceção da renda abatida do consumo, que passou de três dias (ver Tabela 6, ajuste para 2/5/2002 a 31/12/2005) para em torno de três meses (65 e 84 dias respectivamente). Todas as exógenas são significativas.

Tabela 19- Defasagem das Exógenas para 31/10/2002 a 7/7/2006

			Variável				
							Renda-
			Selic	Câmbio	Vendas	Consumo	Consumo
De	fasagem, em dias		62	25	10	24	65
	Depósitos à Vista	Coeficiente	-6.47E-01	9.88E-02	5.76E-01	9.13E-01	-9.78E-01
		Erro Padrão	4.01E-02	3.60E-02	6.35E-02	1.16E-01	1.34E-01
		Probabilidade> t	0.0001	0.0062	0.0001	0.0001	0.0001
	Depósitos de Governo	Coeficiente	-8.61E-01	-1.26E-02	6.21E-01	-4.66E-01	-1.77E+00
		Erro Padrão	2.08E-01	1.87E-01	3.30E-01	6.03E-01	6.97E-01
		Probabilidade> t	0.0001	0.9463	0.0607	0.4398	0.0112
žão	Recursos em	Coeficiente	1.04E-01	8.02E-01	5.35E-01	1.53E+00	1.16E+00
ğ	Trânsito de Terceiros	Erro Padrão	1.31E-01	1.18E-01	2.08E-01	3.80E-01	4.39E-01
Equac		Probabilidade> t	0.4276	0.0001	0.0104	0.0001	0.0087
	Cobrança e Arrecadação	Coeficiente	-8.94E-01	-1.78E-01	-5.24E-01	1.23E+00	-2.76E+00
	de Tributos e Assemelhados	Erro Padrão	3.99E-01	3.59E-01	6.33E-01	1.16E+00	1.34E+00
		Probabilidade> t	0.0253	0.6194	0.4082	0.2876	0.0394
	Ordens de Pagamentos	Coeficiente	2.44E-01	8.29E-01	-4.29E-01	1.58E+00	2.07E+00
	em Moedas Estrangeiras	Erro Padrão	1.30E-01	1.16E-01	2.06E-01	3.75E-01	4.34E-01
		Probabilidade> t	0.0000	0.0000	0.0000	0.0000	0.0000

(1)VAR sem lags para as endógenas

(2)H0: Valor igual a zero

Tabela 20- Defasagem das Exógenas para 11/2/2003 a 17/10/2006

			Variável				
							Renda-
			Selic	Câmbio	Vendas	Consumo	Consumo
Def	asagem, em dias		82	0	12	24	84
	Depósitos à Vista	Coeficiente	-6.09E-01	1.52E-02	5.83E-01	8.50E-01	-6.29E-01
		Erro Padrão	3.68E-02	5.20E-02	6.52E-02	1.28E-01	1.28E-01
		Probabilidade> t	0.0001	0.7694	0.0001	0.0001	0.0001
	Depósitos de Governo	Coeficiente	-2.42E-01	-6.20E-01	7.68E-01	-2.58E+00	1.85E+00
		Erro Padrão	1.93E-01	2.72E-01	3.42E-01	6.72E-01	6.71E-01
		Probabilidade> t	0.2096	0.0231	0.0248	0.0001	0.0059
ção	Recursos em	Coeficiente	1.88E-01	6.00E-01	5.82E-01	1.01E+00	1.76E+00
nac	Trânsito de Terceiros	Erro Padrão	1.18E-01	1.66E-01	2.09E-01	4.10E-01	4.09E-01
Equa		Probabilidade> t	0.1113	0.0003	0.0053	0.0143	0.0001
	Cobrança e Arrecadação	Coeficiente	-4.73E-01	-6.46E-01	-4.73E-01	2.37E-01	-1.89E-01
	de Tributos e Assemelhados	Erro Padrão	3.59E-01	5.07E-01	6.36E-01	1.25E+00	1.25E+00
		Probabilidade> t	0.1890	0.2029	0.4568	0.8500	0.8797
	Ordens de Pagamentos	Coeficiente	3.66E-01	6.72E-01	-3.79E-01	9.64E-01	2.76E+00
	em Moedas Estrangeiras	Erro Padrão	1.17E-01	1.65E-01	2.07E-01	4.08E-01	4.07E-01
		Probabilidade> t	0.0019	0.0001	0.0678	0.0183	0.0001

(1)VAR sem lags para as endógenas (2)H0: Valor igual a zero

A partir das defasagens acima, obtivemos os resultados a seguir dos coeficientes para esses dois períodos.

Tabela 21- Coeficientes, Erros Padrões e Significância – Ajuste para 31/10/2002 a 7/7/2006

Os coeficientes fora do intervalo de confiança do período base estão destacados em vermelho

	Equação														
	Dep. à Vis	ta /10.000		Dep.de Gove	rno /1.00	00	RecursosD		00	Tributos /1			Ordens de Pa		.E. /1.000
Variável	Coef.(1)		Prob.	Coef. EF		Prob.		EP	Prob.		EP	Prob.	Coef. El		Prob.
constante *100	182,7	65,2	0,0052	143,5	18,1	0,0000	12,9	55,8	0,8169	-1928,9	211,1	0,0000	185,6	4,0	0,0000
trend *100000.000	-78,8	11,2	0,0000	-9,3	1,3	0,0000	-58,4	7,3	0,0000	-114,3	69,8	0,1019	21,6	1,2	0,0000
fevereiro *1000.000	-45,2	33,1	0,1726	11,5	10,9	0,2935	105,6	38,6	0,0064	490,2	134,1	0,0003	-15,7	3,0	0,0000
março *1000.000	-60,6	40,3	0,1330	-0,2	12,1	0,9899	31,8	41,5	0,4429	-129,7	164,6	0,4310	-7,6	3,2	0,0172
abril *1000.000	-149,7	43,2	0,0006	-72,4	12,9	0,0000	-61,8	43,9	0,1591	-140,9	168,6	0,4035	-59,1	3,2	0,0000
maio *1000.000	-93,5	40,4	0,0210	-50,1	11,8	0,0000	-56,8	39,4	0,1496	-406,2	161,7	0,0122	-36,7	3,0	0,0000
junho *1000.000	-114,0	40,0	0,0045	-38,2	11,5	0,0010	-72,4	38,1	0,0573	-559,5	150,9	0,0002	-11,5	2,8	0,0001
julho *1000.000	-35,1	38,6	0,3634	26,4	11,6	0,0225	-38,5	40,7	0,3442	-685,0	166,0	0,0000	47,7	3,1	0,0000
agosto *1000.000	-31,9	40,1	0,4263	40,4	13,3	0,0025	-75,1	47,8	0,1167	-683,8	198,6	0,0006	73,6	3,6	0,0000
setembro *1000.000	-56,9	43,9	0,1946	67,8	13,7	0,0000	-47,5	48,9	0,3308	-433,4	204,0	0,0339	105,3	3,9	0,0000
outubro *1000.000	-40,1	36,7	0,2740	87,3	12,2	0,0000	-26,3	44,8	0,5573	-482,9	168,6	0,0043	119,9	3,4	0,0000
novembro *1000.000	-107,7	31,4	0,0006	39,9	10,5	0,0001	-58,6	38,1	0,1242	-232,1	143,9	0,1070	77,9	2,9	0,0000
dezembro *1000.000	-2,0	25,9	0,9389	132,7	8,3	0,0000	-13,8	30,2	0,6474	-343,8	115,0	0,0029	185,0	2,3	0,0000
dia 2 *1000	-167,4	27,3	0,0000	120,9	10,0	0,0000	7,0	25,3	0,7813	2888,6	246,3	0,0000	123,0	4,7	0,0000
dia 3 *1000	-175,2	21,3	0,0000	8,0	8,1	0,3223	-111,7	25,7	0,0000	2394,5	210,1	0,0000	29,7	3,8	0,0000
dia 4 *1000	-141,6	28,1	0,0000	72,8	10,8	0,0000	-45,5	31,3	0,1467	1362,4	224,7	0,0000	106,1	3,9	0,0000
dia 5 *1000	-173,3	24,5	0,0000	-57,9	8,9	0,0000	-52,4	29,7	0,0786	1834,0	207,9	0,0000	-45,1	4,2	0,0000
dia 6 *1000	-179,5	27,6	0,0000	-35,7	9,8	0,0003	-109,9	33,0	0,0009	1004,3	231,6	0,0000	-0,4	4,0	0,9247
dia 7 *1000	-167,7	25,1	0,0000	-53,9	9,4	0,0000	-124,1	30,6	0,0001	1443,4	216,9	0,0000	-14,7	4,1	0,0003
dia 8 *1000	-178.2	27.4	0,0000	60,9	10,8	0,0000	-62,1	32,6	0,0573	1353.3	219,5	0,0000	90.2	4,2	0,0000
dia 9 *1000	-188.5	27.5	0,0000	19,3	9,5	0,0421	-125.4	30,2		1452.1	226,1	0,0000	74,3	4,2	0,0000
dia 10 *1000	-166,3	28,4	0,0000	55,0	10,9	0,0000	57,5	34,0		2753,8	226,4	0,0000	32,7	4,7	0,0000
dia 11 *1000	-142,3	31.6	0,0000	112,4	9,9	0,0000	-37.1	31,1	0,2339	1825.1	232,6	0,0000	133.7	3,9	0,0000
dia 12 *1000	-149,3	30.5	0.0000	28,0	10,7	0,0093	-91.0	30,1	0,0025	1204,1	220,6	0,0000	58,2	4,5	0,0000
dia 13 *1000	-177,4	34,1	0,0000	77,3	11,0	0,0000	-116,5	34,2		1370,4	214,3	0,0000	120,8	4,2	0,0000
dia 14 *1000	-172,5		0.0000	-5,5	13,7	0,6864	-193.2	35,4		1268.5	217,4	0.0000	47.8	4,3	0.0000
dia 15 *1000	-345,9		0,0000	-78,5	11,2	0,0000	-119,6	35,5		4321,8	245,4	0,0000	-117,9	5,1	0,0000
dia 16 *1000	-188.6	33.8	0.0000	-31.0	11,9	0.0096	-125.0	35.8		1269.5	226.8	0.0000	-21.4	3,9	0.0000
dia 17 *1000	-129,3	37,5	0.0006	34,0	10,9	0,0018	-61.0	33,5	0.0687	243,7	239,4	0,3089	60.4	4,3	0.0000
dia 18 *1000	-151,6		0,0000	-26,3	12,1	0,0295	-155,5	34,4	-,	110,7	225,1	0,6232	15,6	4,7	0,0010
dia 19 *1000	-132,6	,	0.0002	25,6	10,8	0.0177	-115.1	33,7	0.0007	-353,1	233,3	0,1305	81.1	4.4	0.0000
dia 20 *1000	-119,2	,-	0.0002	10,6	10,5	0,3101	-58,1	30,6	-,	418,2	219,4	0,0569	25.6	4,6	0,0000
dia 21 *1000	-77,0	31,8	0,0158		10,0	0,0000	-13,6	33,1	0,6802	128,0	224,7	0,5692	145,0	4,2	0,0000
dia 22 *1000	-86,9	,	0.0034	70,1	11,7	0.0000	-95,2	36,3		133,3	226,3	0,5559	122,5	4.1	0.0000
dia 23 *1000	-131,7	29,4	0,0000	96,3	9,7	0,0000	-90,6	33,4		-167,0	227,1	0,4622	152,3	4,3	0,0000
dia 24 *1000	-122,5	27.4	0.0000	49,1	9,3	0.0000	-167,9	25,9		-249,9	218.0	0,2520	125,5	4,3	0.0000
dia 25 *1000	-145,6	,	0,0000	21,1	9,0	0,0192	-95,6	28,0		-49,5	240,0	0,8367	80,3	4,4	0,0000
dia 26 *1000	-170,3	,	0,0000	21,7	9,8	0.0262	-162,1	29,4		-255,7	224,4	0,2547	93,6	4,5	0,0000
dia 20 1000 dia 27 *1000	-170,3	24,9	0,0000	14,2	8,9	0,1136		30,2		-354,8	217,1	0,1025	96.6	4,3	0.0000
dia 28 *1000	-193,4	24,3	0,0000	-86,7	9,0	0,0000	-233,8	27,0	-,	-60,3	203,1	0,7666	-4,7	4,2	0,3069
dia 29 *1000 dia 29 *1000	-206,8		0.0000	-73,7	8,8	0.0000	-218.7	25,3		163,7	209,8	0,4354	1.3	4,0	0,7604
dia 30 *1000	-222,0	24.0	0,0000	-126,5	8,5	0.0000	-179,2	25,6		1627,9	205,8	0,0000	-91,3	4,2	0,0000
dia 30 1000 dia 31 *1000	-308.8	18.6	0.0000	-120,5	10,3	0.0000	-348,7	31.8		2440,5	205,8	0.0000	-166,7	4,2	0.0000

Tabela 21 - Continuação

Varia dp2 dp3	iável	Dep. à Vist	2 /10 000													
dp2			a / 10.000		Dep.de Gov	/erno /1.00	0	RecursosD	e3os /1.000	0	Tributos /1	.000		Ordens de	Pag. em M.	E. /1.000
		Coef.(1)	EP F	Prob.	Coef. E	EP F	Prob.	Coef.	EP	Prob.	Coef.		Prob.	Coef.	EP F	Prob.
dp3	2 *1000	84,0	13,6	0,0000	151,4	5,1	0,0000	363,5	18,6	0,0000	395,0	182,1	0,0303	82,7	3,0	0,0000
	3 *1000	192,2	4,4	0,0000	86,3	1,8	0,0000	424,4	6,4	0,0000	399,5	51,0	0,0000	14,6	2,1	0,0000
	*1000	243,8	48,6	0,0000	214,5	7,7	0,0000	799,2	41,4	0,0000	1259,1	323,3	0,0001	67,0	5,5	0,0000
	5 *1000	429,4	28,0	0,0000	415,5	12,8	0,0000	1048,7	37,5	0,0000	54,6	272,1	0,8412	278,9	8,9	0,0000
	ic *1000.000	-192,7	60,7	0,0016	-198,1	18,3	0,0000	31,8	58,8	0,5886	1377,7	227,2	0,0000	-262,4	4,7	0,0000
	mbio *1000.000	3,4	44,5	0,9387	62,0	12,6	0,0000	79,0	43,3	0,0685	1310,0	209,8	0,0000	40,1	3,7	0,0000
	ndas *100000.000	20393,0	14772,1	0,1678	,	4232,3	0,0004	79853,1	12230,4	0,0000	-4673,2	29821,9	0,8755	-5016,7	743,9	0,0000
	nsumo *1000.000	539,0	160,2	0,0008	304,5	40,5	0,0000	389,5	130,6	0,0029	2583,7	641,6	0,0001	176,6	11,4	0,0000
	nda-Consumo *1000.000	1267,4	207,3	0,0000	611,0	68,2	0,0000	1176,9	224,2	0,0000	4751,9	743,5	0,0000	163,5	14,5	0,0000
	o.àVista(t-1) *1000.000	66,9	31,9	0,0362	-649,6	63,2	0,0000	-719,0	58,5	0,0000	3900,3	371,7	0,0000	-464,1	46,8	0,0000
	Gov.(t-1) *1000.000	-3627,8	6,1	0,0000	-473,3	27,7	0,0000	-2901,5	15,8	0,0000	-4314,3	81,3	0,0000	-1168,5	14,5	0,0000
	c.3os(t-1) *1000.000	884,1	20,0	0,0000	435,6	91,4	0,0000	912,0	42,6	0,0000	-815,7	214,6	0,0002	339,3	37,9	0,0000
	outos(t-1) *1000.000	27,5	2,8	0,0000	41,2	14,3	0,0040	8,4	5,7	0,1433	-315,7	35,0	0,0000	17,7	5,4	0,0010
	lensPME(t-1) *1000.000	3263,3	20,1	0,0000	1126,4	93,0	0,0000	3794,0	44,0	0,0000	-465,0	237,5	0,0505	1950,4	38,4	0,0000
< Dep	o.àVista(t-2) *1000.000	-167,6	173,4	0,3343	12,0	69,1	0,8620	42,8	152,1	0,7782	-2865,3	398,9	0,0000	-28,9	69,1	0,6759
De.C	Gov.(t-2) *1000.000	2132,8	114,2	0,0000	638,8	37,2	0,0000	1743,8	97,2	0,0000	2914,5	128,9	0,0000	685,7	38,9	0,0000
Rec.	c.3os(t-2) *1000.000	282,5	356,6	0,4284	196,2	110,8	0,0769	305,1	293,9	0,2996	821,9	398,6	0,0395	199,3	118,6	0,0932
Trib	outos(t-2) *1000.000	110,6	57,0	0,0528	31,8	17,9	0,0754	86,0	47,2	0,0686	10,4	61,0	0,8649	35,8	19,1	0,0618
	lensPME(t-2) *1000.000	-3354,8	368,4	0,0000	-1323,4	116,1	0,0000	-3242,7	305,0	0,0000	481,3	408,1	0,2386	-1314,6	124,0	0,0000
	o.àVista(t-1) *1000.000	482,9	43,8	0,0000	312,3	85,1	0,0003	728,8	109,1	0,0000	1615,1	798,1	0,0433	233,3	76,2	0,0023
	Gov.(t-1) *1000.000	3640,4	5,9	0,0000	1065,5	11,2	0,0000	2895,0	14,2	0,0000	3931,3	105,2	0,0000	1172,8	9,9	0,0000
≸ Rec.	c.3os(t-1) *1000.000	-827,3	23,5	0,0000	-120,2	39,8	0,0026	-267,7	59,1	0,0000	-158,9	334,4	0,6347	-213,5	34,7	0,0000
	outos(t-1) *1000.000	-37,5	2,3	0,0000	-29,5	4,3	0,0000	-23,3	5,6	0,0000	292,6	43,6	0,0000	-36,9	4,0	0,0000
	lensPME(t-1) *1000.000	-3323,6	23,9	0,0000	-1417,9	40,9	0,0000	-3704,9	59,0	0,0000	1677,7	347,4	0,0000	-1313,8	36,2	0,0000
υ Dep	o.àVista *1000	21,7	16,8	0,1967												
	Gov. *1000	49,0	2,3	0,0000	480,9	6,9	0,0000									
_ st Rec.	c.3os *1000	-0,3	1,9	0,8571	0,7	4,4	0,8816	119,7	4,3	0,0000						
풍 등 Tribi	outos *1000	-39,8	1,9	0,0000	-80,8	12,5	0,0000	-11,9	6,9	0,0855	963,8	13,0	0,0000			
Orde O A1 Orde	lensPME *1000	-2,5	1,8	0,1654	-11,3	4,5	0,0127	161,1	3,0	0,0000	-28,6	6,7	0,0000	103,9	3,6	0,0000
	lensPME *1000													51,7	34,5	0,1342
% A2 Rec.	c.3os *1000							445,2	26,0	0,0000						
A2 Rec. Orde	lensPME *1000													472,8	25,8	0,0000
A3 De.C	Gov. *1000				-70,6	52,9	0,1822									
Dep.	o.àVista *1000	267,6	40,6	0,0000												
De.C	Gov. *1000				184,9	46,4	0,0001									
G1 Dep.	o.àVista *1000	372,0	133,8	0,0056												

⁽¹⁾Coe.=Coeficientes, EP=Erro Padrão, Pr.=Probabilidade>|t|

⁽²⁾ dp=dummies para o número de dias não úteis imediatamente anteriores ao dia útil em questão

Tabela 22- Coeficientes, Erros Padrões e Significância – Ajuste para 11/2/2003 a 17/10/2006

Os coeficientes fora do intervalo de confiança do período base estão destacados em vermelho

	Equação														
	Dep. à Vis	sta /10.000		Dep.de Gove			RecursosD			Tributos /1			Ordens de Pa		E. /1.000
Variável	Coef.(1)		Prob.	Coef. EF		Prob.		ΞP	Prob.			Prob.	Coef. EF		Prob.
constante *100	182,5	56,5	0,0013	143,4	16,0	0,0000	12,8	47,1	0,7858	-1929,0	229,7	0,0000	185,9	8,0	0,0000
trend *100000.000	-120,1	7,1	0,0000	-34,4	1,8	0,0000	-89,5	6,1	0,0000	-108,3	38,6	0,0051	6,8	2,9	0,0177
fevereiro *1000.000	-50,9	22,5	0,0240	8,2	8,1	0,3162	102,1	28,6	0,0004	490,9	137,8	0,0004	-16,3	4,5	0,0003
março *1000.000	-61,8	32,5	0,0572	2,8	9,8	0,7752	22,7	32,8	0,4887	-131,5	179,0	0,4626	-3,1	4,9	0,5270
abril *1000.000	-152,5	35,6	0,0000	-70,3	11,2	0,0000	-72,8	36,2	0,0449	-142,3	173,8	0,4129	-54,5	5,4	0,0000
maio *1000.000	-97,7	33,7	0,0039	-37,6	10,5	0,0003	-62,6	33,4	0,0609	-410,6	166,3	0,0137	-22,1	4,7	0,0000
junho *1000.000	-110,8	32,4	0,0007	-29,7	9,8	0,0025	-72,1	31,0	0,0200	-563,0	150,4	0,0002	-4,8	4,8	0,3200
julho *1000.000	-39,6	30,3	0,1906	24,9	9,3	0,0078	-35,6	29,8	0,2314	-683,9	146,1	0,0000	42,5	4,4	0,0000
agosto *1000.000	-39,9	28,3	0,1591	41,5	9,2	0,0000	-62,5	28,8	0,0300	-683,9	127,9	0,0000	68,3	4,4	0,0000
setembro *1000.000	-48,3	29,0	0,0962	57,7	9,3	0,0000	-38,9	30,0	0,1939	-431,8	114,2	0,0002	88,4	4,4	0,0000
outubro *1000.000	-42,5	32,1	0,1858	90,6	9,7	0,0000	-16,1	30,3	0,5962	-483,6	120,2	0,0001	119,8	5,1	0,0000
novembro *1000.000	-101,7	26,8	0,0002	39,9	8,4	0,0000	-64,0	28,1	0,0227	-230,5	133,3	0,0839	78,9	4,9	0,0000
dezembro *1000.000	3,2	20,3	0,8742	134,6	7,3	0,0000	-21,2	24,0	0,3755	-341,2	114,5	0,0029	188,2	6,7	0,0000
dia 2 *1000	-160,1	20,8	0,0000	122,2	8,9	0,0000	9,6	25,3	0,7042	2889,7	212,3	0,0000	129,4	12,3	0,0000
dia 3 *1000	-179,4	19,8	0.0000	9,2	7,3	0,2101	-110,9	24,2	0.0000	2394,8	184,9	0,0000	32.8	9,6	0.0007
dia 4 *1000	-139.6	,	0.0000	68,8	8,8	0.0000	-40,4	25,7	0,1162	1362.0	194,9	0,0000	105.8	8.4	0.0000
dia 5 *1000	-184,1	23,7	0,0000	-59,3	7,5	0,0000	-60,4	25,4	0,0175	1831,6	182,4	0,0000	-43,5	7,1	0,0000
dia 6 *1000	-178,3		0.0000	-37,1	8,0	0.0000	-113,4	26,0	0.0000	1004.6	199,5	0,0000	0,3	6.0	0.9604
dia 7 *1000	-150,1	23,2	0,0000	-53,4	7,5	0,0000	-136,2	24,4	0.0000	1443,7	191,9	0,0000	-5,8	7,8	0,4590
dia 8 *1000	-176.6		0,0000	61,2	9,0	0,0000	-64,3	27,5	0,0195	1353.6	193,2	0,0000	94.7	8.4	0,0000
dia 9 *1000	-196.4	25,1	0,0000	20,2	8,2	0.0141	-127,4	26,1	0.0000	1450.7	193,5	0,0000	75,7	8.6	0,0000
dia 10 *1000	-169,1	25,2	0,0000	51,3	8,8	0,0000	61,1	27,5	0,0267	2754,0	206,7	0,0000	29,8	10,0	0,0030
dia 11 *1000	-138,3	,	0.0000		8,7	0.0000	-38,0	26,8	0.1571	1824,7	198,5	0,0000	131.7	9,6	0.0000
dia 12 *1000	-140,1	26,7	0,0000	26,7	8,8	0,0025	-90.0	26,6	0.0008	1204,4	197,5	0,0000	61.6	7,4	0,0000
dia 13 *1000	-180,1	28,8	0,0000	73,7	8,7	0,0000	-120,9	26,2	-,	1370,4	191,1	0,0000	118,4	8,9	0,0000
dia 14 *1000	-169.6	,	0.0000	-8,3	10,4	0,4244	-193.2	28,3	0.0000	1268.2	192,3	0.0000	46.6	7,9	0.0000
dia 15 *1000	-353,4	, -	0,0000	-78,6	9,3	0,0000	-112,4	29,8	0,0002	4322,3	213,0	0,0000	-118.1	13,4	0,0000
dia 16 *1000	-187.9		0.0000	-35,9	9.7	0.0002	-122.7	28,8	0.0000	1269.7	197.8	0.0000	-21.9	5,9	0.0002
dia 17 *1000	-132,6	- ,	0.0000	32,8	9,1	0,0003	-62.0	27,8	0.0261	244.6	202,6	0,2276	60.2	5.6	0.0000
dia 18 *1000	-153,9		0,0000	-25,9	10,2	0,0108	-156,7	29,3	0,0000	111,1	206,1	0,5901	16,2	5,2	0,0019
dia 19 *1000	-130,6	,	0.0000	27,7	9,1	0.0025	-119.0	27,7	0.0000	-352,4	225,1	0.1179	86.5	6,0	0.0000
dia 20 *1000	-123,7	,	0,0000	8,6	8,9	0,3317	-58,2	25,2	-,	417,6	201,6	0,0385	22.4	5.4	0,0000
dia 20 1000 dia 21 *1000	-71,2		0,0081	119,8	8,8	0,0000	-12,8	29,4	0,6647	128,0	207,1	0,5367	145,9	6,9	0,0000
dia 21 1000 dia 22 *1000	-84,4	,	0.0009	71,1	9,8	0.0000	-100,2	29,4		133,7	214,9	0,5340	126.6	6,8	0.0000
dia 23 *1000	-125,9	,	0,0000	99,7	8,5	0,0000	-98,3	28,2	0,0007	-166,6	207,2	0,3340	- , -	7,7	0,0000
dia 24 *1000	-124.8	,	0.0000	50,8	8,3	0.0000	-170.3	24,4	0.0000	-249,6	194,9	0,4213	128.6	7,1	0.0000
dia 25 *1000	-124,6	,	0,0000	13,4	7,4	0,0690	-170,3 -87,1	22,8	0.0001	-249,6 -49,7	205,5	0,2000	71,7	6,3	0,0000
dia 25 1000 dia 26 *1000	-140,0	20,9	0,0000	22,8	7,4 8,7	0,0090	-67,1 -156,6	22,0 26,1	0,0001	-49,7 -256,9	205,5	0,8089	93,1	6,3 6,8	0,0000
dia 26 *1000 dia 27 *1000	,	,	0,0000		,	0,0067		26,1 25,2		-256,9 -354,6	,	0,2169	93,1	6,8 6.6	0.0000
	-162,4			15,4	7,4	0,0000	-147,0		0,0000	,	191,7	0,0646	- ,-	-,-	0,0000
dia 28 *1000 dia 29 *1000	-182,3		0,0000	- /	8,0		-240,7 -213.8	22,3	0.0000	-62,0	180,5		-9,7	6,5	0,1337
	-211,8	, -	0,0000	-67,9	7,2	0,0000	- , -	22,0	-,	165,1	184,0	0,3699	8,4	6,1	
dia 30 *1000	-223,3	,	0,0000	-127,9	6,8	0,0000	-169,1	21,0	0,0000	1625,4	179,0	0,0000	-87,7	7,4	0,0000
dia 31 *1000	-318,4	16,3	0,0000	-227,8	8,5	0,0000	-339,3	26,4	0,0000	2441,2	195,7	0,0000	-170,1	10,3	0,0000

Tabela 22 - Continuação

			Equação														
			Dep. à Vist			Dep.de Go				De3os /1.00		Tributos /1			Ordens de		
			()					Prob.			Prob.						Prob.
		dp2 *1000	96,5	11,5	0,0000	151,2	4,5	0,0000	363,0	17,6	0,0000	395,9	143,8	0,0060	85,5	5,0	0,0000
		dp3 *1000	193,3	3,6	0,0000	91,7	1,6	0,0000	435,3	5,4	0,0000	404,0	43,8	0,0000	17,9	4,6	0,0001
		dp4 *1000	242,9	28,6	0,0000	215,7	6,7	0,0000	796,6	27,1	0,0000	1259,5	297,3	0,0000	69,2	9,1	0,0000
		dp5 *1000	430,3	34,6	0,0000	419,8	13,0	0,0000	1040,2	34,2	0,0000	55,1	301,6	0,8551	278,9	12,9	0,0000
		Selic *1000.000	-194,3	40,6	0,0000	-202,9	12,7	0,0000	18,5	37,6	0,6223	1375,8	140,5	0,0000	-257,4	8,9	0,0000
		Câmbio *1000.000	5,4	34,2	0,8751	48,9	10,4	0,0000	74,6	33,1	0,0241	1308,6	147,9	0,0000	27,2	5,9	0,0000
		Vendas *100000.000	19899,9	12771,5	0,1195	14630,5	3515,3	0,0000	80519,7	9720,2	0,0000	-4649,7	29101,6	0,8731	-5487,8	1733,4	0,0016
		Consumo *1000.000	531,5	149,6	0,0004	307,3	40,4	0,0000	381,8	113,2	0,0008	2583,0	447,0	0,0000	164,7	17,2	0,0000
		Renda-Consumo *1000.000	1265,5	230,0	0,0000	608,8	65,3	0,0000	1180,8	183,0	0,0000	4752,7	554,0	0,0000	163,4	30,5	0,0000
		Dep.àVista(t-1) *1000.000	87,2	122,6	0,4773	-646,0	77,3	0,0000	-706,6	123,4	0,0000	3901,7	519,1	0,0000	-456,3	73,0	0,0000
		De.Gov.(t-1) *1000.000	-3619,6	421,9	0,0000	-481,0	217,6	0,0273	-2901,5	335,7	0,0000	-4316,5	489,6	0,0000	-1162,9	151,7	0,0000
		Rec.3os(t-1) *1000.000	886,2	81,3	0,0000	454,8	95,3	0,0000	915,1	80,1	0,0000	-814,0	269,5	0,0026	352,5	57,0	0,0000
		Tributos(t-1) *1000.000	24,7	14,0	0,0774	44,1	15,9	0,0056	9,5	13,6	0,4865	- ,-	38,9	0,0000	17,1	7,7	0,0264
	AR	OrdensPME(t-1) *1000.000	3275,7	370,3	0,0000	1135,6	207,4	0,0000	3799,0	302,3	0,0000	-463,5	537,4	0,3886	1939,4	145,9	0,0000
	٩	Dep.àVista(t-2) *1000.000	-151,2	236,7	0,5231	20,3	95,1	0,8310	57,9	206,6	0,7793		513,0	0,0000	-24,0	88,6	0,7866
		De.Gov.(t-2) *1000.000	2145,5	318,5	0,0000	649,4	151,3	0,0000	1748,8	256,3	0,0000	2912,8	352,0	0,0000	688,8	108,9	0,0000
		Rec.3os(t-2) *1000.000	292,6	353,6	0,4082	201,9	114,5	0,0781	328,9	295,4	0,2658	820,6	371,3	0,0273	201,6	118,1	0,0882
		Tributos(t-2) *1000.000	117,8	61,5	0,0556	32,9	20,3	0,1062	91,0	51,0	0,0749		66,8	0,8366	36,6	20,4	0,0000
		OrdensPME(t-2) *1000.000	-3342,8	508,3	0,0000	-1319,7	221,8	0,0000	-3236,1	416,3	0,0000	482,4	618,3	0,4355	-1295,9	182,0	0,0000
		Dep.àVista(t-1) *1000.000	484,3	127,3	0,0002	296,7	94,9	0,0018	735,5	148,6	0,0000	1614,5	819,0	0,0490	241,2	90,5	0,0078
	_	De.Gov.(t-1) *1000.000	3628,1	422,3	0,0000	1074,6	223,0	0,0000	2885,7	332,5	0,0000	3927,2	499,9	0,0000	1161,3	149,4	0,0000
	Σ×	Rec.3os(t-1) *1000.000	-828,5	82,7	0,0000	-123,2	62,2	0,0478	-269,9	93,0	0,0038	-158,5	359,3	0,6592	-216,8	55,0	0,0001
		Tributos(t-1) *1000.000	-33,5	14,0	0,0169	-29,8	6,9	0,0000	-22,0	13,2	0,0965	293,9	48,2	0,0000	-34,9	7,0	0,0000
		OrdensPME(t-1) *1000.000	-3329,0	369,6	0,0000	-1435,1	191,0	0,0000	-3700,4	301,6	0,0000	1677,5	590,6	0,0046	-1311,8	145,7	0,0000
	Se	Dep.àVista *1000	7,2	386,1	0,9850												
	Constantes	De.Gov. *1000	54,4	38,0	0,1518	521,2	9,2	0,0000									
l _	ste	Rec.3os *1000	-1,7	2,5	0,5018	-2,7	4,9	0,5860	121,7	4,7	0,0000						
5	Ιğ	Tributos *1000	-39,5	13,7	0,0039	-57,7	11,2	0,0000	-7,5	5,6	0,1772		10,2	0,0000			
GARCH		OrdensPME *1000	-2,3	2,5	0,3436	-15,3	5,2	0,0033	175,6	2,8	0,0000	-23,3	5,7	0,0000	109,3	4,1	0,0000
	A1	OrdensPME *1000													49,5	37,2	0,1830
Ses	A2	Rec.3os *1000							436,5	20,0	0,0000	1					
matrizes		OrdensPME *1000													457,6	22,1	0,0000
Ë	А3	De.Gov. *1000				0,0	99651,0	1,0000									l
	A4	Dep.àVista *1000	242,7	28,5	0,0000												l
		De.Gov. *1000				234,9	44,6	0,0000									
	G1	Dep.àVista *1000	461,8	56,1	0,0000												

(1)Coe.=Coeficientes, EP=Erro Padrão, Pr.=Probabilidade>|t|

⁽²⁾ dp=dummies para o número de dias não úteis imediatamente anteriores ao dia útil em questão

Tabela 23- Robustez dos Parâmetros

Os coeficientes fora do intervalo de confiança do período base estão destacados em vermelho

Equação	Dep. à Vis	ta /10.000			Dep.de Go	verno /1.00	00		Recursos	De3os /1.00	00		Tributos /1	.000			Ordens de	Pag. em	M.E. /1.000)
Ajuste para	31out02 a	7jul06	11fev03 a	17out06	31out02 a	7jul06	11fev03 a	17out06	31out02 a	7jul06	11fev03 a	17out06	31out02 a	7jul06	11fev03 a	17out06	31out02 a	7jul06	11fev03 a	17out06
Variável	Coef.(1)	Vari.(2)	Coef.(1)	Vari.(2)	Coef.(1)	Vari.(2)	Coef.(1)	Vari.(2)	Coef.(1)	Vari.(2)	Coef.(1)	Vari.(2)	Coef.(1)	Vari.(2)	Coef.(1)	Vari.(2)	Coef.(1)	Vari.(2)	Coef.(1)	Vari.(2)
constante *100	182,7	-0,2%	182,5	-0,3%	143,5	1,0%	143,4	0,9%	12,9	0,4%	12,8	-0,4%	-1928.9	0.0%	-1929.0	0.0%	185.6	-1.4%	185.9	
trend *100000.000	-78,8	-54,6%	-120,0	-30,8%	-9,3	-82,3%	-34,3	-34,5%	-58,4	-59,2%	-89,5	-37,5%	-113.8	-1.1%	-109.0	-5.3%	21.6	1394.8%	6.9	
fevereiro *1000.000	-45,2	28,2%	-50,9	44,3%	11,5	98,2%	8,2	41,2%		9,4%	102,1	5,8%	490.2	-0.9%	490.9	-0.8%	-15.7	-29.8%	-16.3	-27.2%
março *1000.000	-60,6	-25,2%	-61,8	-23,7%	-0,2	-101,1%	2,8	-79,4%	31,8	-577,4%	22,7	-440,7%	-129.7	-1.6%	-131.5	-0.2%	-7.6	-131.6%	-3.1	-112.9%
abril *1000.000	-149,7	-8,1%	-152,5	-6,4%	-72,4	58,8%	-70,3	54,2%	-61,8	-16,0%	-72,8	-1,1%	-140.9	-6.6%	-142.3	-5.7%	-59.1	277.8%	-54.5	248.2%
maio *1000.000	-93,5	-5,0%	-97,7	-0,8%	-50,1	69,8%	-37,6	27,6%	-56,8	-26,6%	-62,6	-19,1%	-406.2	-2.4%	-410.6	-1.3%	-36.7	50484.3%	-22.1	30286.7%
junho *1000.000	-114,0	5,8%	-110,8	2,8%	-38,2	121,5%	-29,7	71,9%	-72,4	-14,3%	-72,1	-14,6%	-559.5	-2.0%	-563.0	-1.4%	-11.5	-148.7%	-4.8	-120.2%
julho *1000.000	-35,1	-21,1%	-39,6	-11,0%	26,4	-21,0%	24,9	-25,7%	-38,5	-25,4%	-35,6	-30,9%	-685.0	-0.6%	-683.9	-0.8%	47.7	-28.4%	42.5	-36.3%
agosto *1000.000	-31,9	28,9%	-39,9	61,4%	40,4	-2,0%	41,5	0,8%	-75,1	21,4%	-62,5	1,1%	-683.8	0.0%	-683.9	0.0%	73.6	-1.5%	68.3	-8.6%
setembro *1000.000	-56,9	-10,1%	-48,3	-23,8%	67,8	33,0%	57,7	13,1%	-47,5	79,9%	-38,9	47,4%	-433.4	0.3%	-431.8	-0.1%	105.3	23.1%	88.4	3.4%
outubro *1000.000	-40,1	33,5%	-42,5	41,3%	87,3	2,8%	90,6	6,7%	-26,3	35,4%	-16,1	-17,3%	-482.9	0.0%	-483.6	0.2%	119.9	0.5%	119.8	0.5%
novembro *1000.000	-107,7	8,9%	-101,7	2,8%	39,9	87,7%	39,9	87,8%	-58,6	27,0%	-64,0	38,7%	-232.1	3.1%	-230.5	2.4%	77.9	42.9%	78.9	44.7%
dezembro *1000.000	-2,0	-109,9%	3,2	-84,0%	132,7	19,2%	134,6	20,9%	-13,8	-217,5%	-21,2	-280,4%	-343.8	3.4%	-341.2	2.6%	185.0	23.8%	188.2	26.0%
dia 2 *1000	-167,4	-4,2%	-160,1	-8,4%	120,9	-0,1%	122,2	1,0%	7,0	-32,7%	9,6	-7,9%	2888.6	0.1%	2889.7	0.1%	123.0	4.7%	129.4	10.2%
dia 3 *1000	-175,2	2,5%	-179,4	4,9%	8,0	-411,3%	9,2	-455,9%	-111,7	-3,7%	-110,9	-4,5%	2394.5	-0.1%	2394.8	-0.1%	29.7	8.3%	32.8	19.3%
dia 4 *1000	-141,6	-8,7%	-139,6	-10,0%	72,8	-10,8%	68,8	-15,7%	-45,5	-6,3%	-40,4	-16,7%	1362.4	0.0%	1362.0	0.0%	106.1	-7.5%	105.8	
dia 5 *1000	-173,3	3,9%	-184,1	10,4%	-57,9	0,2%	-59,3	2,5%	-52,4	-15,4%	-60,4	-2,4%	1834.0	0.1%	1831.6		-45.1	15.3%		
dia 6 *1000	-179,5	1,7%	-178,3	1,0%	-35,7	32,8%	-37,1	37,8%	-109,9	-6,0%	-113,4	-3,0%	1004.3	0.0%	1004.6	0.0%	-0.4	-109.1%		
dia 7 *1000	-167,7	2,0%	-150,1	-8,7%	-53,9	-19,3%	-53,4	-20,2%	-124,1	4,2%	-136,2	14,4%	1443.4	0.0%	1443.7	0.1%	-14.7	-45.9%		
dia 8 *1000	-178,2	1,0%	-176,6	0,1%	60,9	0,0%	61,2	0,5%	-62,1	-16,8%	-64,3	-13,9%	1353.3	-0.1%	1353.6		90.2	-1.3%		
dia 9 *1000	-188,5	5,3%	-196,4	9,8%	19,3	203,6%	20,2	217,5%	-125,4	1,5%	-127,4	3,1%	1452.1	0.1%	1450.7	0.0%	74.3	13.6%		15.6%
dia 10 *1000	-166,3	-3,5%	-169,1	-1,9%	55,0	17,9%	51,3	10,0%	57,5	-10,9%	61,1	-5,4%	2753.8	0.0%	2754.0		32.7	30.1%		
dia 11 *1000	-142,3	-5,4%	-138,3	-8,1%	112,4	-1,6%	111,8	-2,2%	-37,1	89,7%	-38,0	94,4%	1825.1	0.0%	1824.7	0.0%	133.7	1.9%		
dia 12 *1000	-149,3	-1,4%	-140,1	-7,4%	28,0	-10,8%	26,7	-14,7%	-91,0	-6,2%	-90,0	-7,3%	1204.1	0.0%	1204.4	0.0%	58.2	-13.4%		
dia 13 *1000	-177.4	-0,4%	-180,1	1,2%	77,3	4,9%	73,7	0,0%	-116,5	-10,8%	-120,9		1370.4	0.1%	1370.4	0.0%	120.8	-1.5%		
dia 14 *1000	-172,5	-0,5%	-169,6	-2,1%	-5,5	-42,6%	-8,3	-13,8%	-193.2	-0,4%	-193,2	,	1268.5	0.0%	1268.2	-0.1%	47.8	-4.5%		
dia 15 *1000	-345,9	-1,4%	-353,4	0,8%	-78,5	5,4%	-78,6	5,6%	-119.6	-4,1%	-112,4	,	4321.8	0.0%	4322.3	0.0%	-117.9	12.4%		12.6%
dia 16 *1000	-188,6	2,2%	-187,9	1,8%	-31,0	-15,7%	-35,9	-2,2%	-125,0	10,0%	-122,7	7,9%	1269.5	0.1%	1269.7	0.0%	-21.4	-5.9%		
dia 17 *1000	-129,3	0,9%	-132,6	3,5%	34,0	11,5%	32,8	7,6%	-61,0	-2,7%	-62,0		243.7	0.1%	244.6		60.4	-5.6%		
dia 18 *1000	-151,6	-4,0%	-153,9	-2,5%	-26,3	-9,9%	-25,9	-11,1%	-155,5	-5,8%	-156,7	-5,1%	110.7	1.1%	111.1	1.4%	15.6			
dia 19 *1000	-132,6	9,3%	-130,6	7,6%	25,6	66,9%	27,7	80,8%	-115,1	5,3%	-119,0		-353.1	0.4%	-352.4	0.2%	81.1	7.4%		
dia 20 *1000	-119,2	-3,8%	-123,7	-0,1%	10,6	-15,2%	8,6	-30,9%	-58,1	-4,5%	-58,2	-4,3%	418.2	0.4%	417.6		25.6			-29.1%
dia 21 *1000	-77,0	1,8%	-71,2	-6,0%	119,6	-7,0%	119,8	-6,8%	-13,6	-31,1%	-12,8		128.0	-0.3%	128.0		145.0	-8.5%		
dia 22 *1000	-86.9	-4,8%	-84,4	-7,5%	70,1	-9,0%	71,1	-7,7%	-95,2	-9,1%	-100.2		133.3	1.1%	133.7	1.4%	122.5	-8.3%		
dia 23 *1000	-131,7	1,3%	-125,9	-3,2%	96,3	-1,4%	99,7	2,0%	-90.6	-1,2%	-98,3		-167.0	0.2%	-166.6		152.3			
dia 24 *1000	-122,5	-1,4%	-124,8	0,5%	49,1	4,0%	50,8	7,6%	-167,9	3,6%	-170,3									
dia 25 *1000	-145,6	8,7%	-146,6	9,4%	21,1	-10,2%	13,4	-42,9%	-95,6	-13,2%	-87,1	-20,9%	-249.9	0.7%	-249.6		125.5	2.2%		
dia 26 *1000 dia 26 *1000	-170,3	5,0%	-181,1	11,6%	21,7	-17,3%	22,8	-13,3%		0,1%	-156,6		-49.5	-0.5%	-49.7	0.0%	80.3	-13.1%		-22.3%
dia 27 *1000	-158.7	-4,0%	-162,4	-1,8%	14,2	-7,1%	15,4	0,8%	-149.1	-3,9%	-147.0	,	-255.7	0.0%	-256.9		93.6	-11.2%		-11.6%
dia 28 *1000	-193,4	-6,0%	-182,3	-11,4%	-86,7	-8,4%	-97,2	2,7%	-233,8	-4,5%	-240,7	-1,7%	-354.8	-0.6%	-354.6		96.6	-6.4%		
dia 29 *1000	-206,8	-4,1%	-211,8	-1,8%	-73,7	-2,5%	-67,9	-10,2%	-218,7	9,6%	-213,8	,	-60.3	-6.6%	-62.0	-4.0%	-4.7	-58.8%		
dia 30 *1000	-222,0	-0,9%	-223,3	-0,4%	-126,5	4,5%	-127,9	5,7%	-179,2	21,9%	-169,1	15,0%	163.7	0.1%	165.1	0.9%	1.3			
dia 30 1000 dia 31 *1000	-308.8	3.5%	-318.4	6.8%	-223.2	-4.2%	-227.8	-2.2%		5.6%	-339.3		1627.9	-0.1%	1625.4	-0.3%	-91.3	-4.4%		-8.2%
dia 31 1000	-300,0	3,376	-510,4	0,070	-223,2	- 4 ,∠ /0	-221,0	-2,270	-540,7	3,0 %	-558,5	2,070	2440.5	0.0%	2441.2	0.1%	-166.7	-8.5%	-170.1	-6.6%

Tabela 23 - Continuação

		Equação	Dep. à Vist	ta /10.000			Dep.de Go	verno /1.0	00		RecursosD	e3os /1.00	0		Tributos /1	.000		Ordens de	Pag. em N	И.Е. /1.000	
		Ajuste para	31out02 a	7jul06	11fev03 a	17out06	31out02 a	7jul06	11fev03 a	17out06	31out02 a	7jul06	11fev03 a	17out06	31out02 a	7jul06	11fev03 a	31out02 a	7jul06	11fev03 a	17out06
		Variável	Coef.(1)	Vari.(2)	Coef.(1)	Vari.(2)	Coef.(1)	Vari.(2)	Coef.(1)	Vari.(2)	Coef.(1)	Vari.(2)	Coef.(1)	Vari.(2)	Coef.(1)	Vari.(2)	Coef.(1)	Coef.(1)	Vari.(3)	Coef.(1)	Vari.(3)
		dp2 *1000	84.0	11.3%	96.5	27.9%	151.4	-0.4%	151.2	-0.5%	363.5	-4.7%	363.0	-4.9%	395.0	0.4%	395.9	82.7	9.1%	85.5	12.7%
		dp3 *1000	192.2	1.8%	193.3	2.4%	86.3	12.7%	91.7	19.8%	424.4	-2.4%	435.3	0.1%	399.5	0.5%		14.6	494.0%	17.9	626.9%
		dp4 *1000	243.8	-4.1%	242.9	-4.5%	214.5	0.2%	215.7	0.8%	799.2	-0.5%	796.6	-0.9%	1259.1	-0.1%	1259.5	67.0	-0.1%	69.2	3.2%
		dp5 *1000	429.4	3.6%	430.3	3.8%	415.5	-2.2%	419.8	-1.1%	1048.7	1.1%	1040.2	0.3%	54.6	0.6%	55.1	278.9	-1.3%	278.9	-1.3%
		Selic *1000	-192.7	2.3%	-194.3	3.1%	-198.1	6.9%	-202.9	9.5%	31.8	150.4%	18.5	45.9%	1377.7	0.9%	1375.8	-262.4	9.0%	-257.4	7.0%
		Câmbio *1000	3.4	-85.9%	5.4	-77.9%	62.0	-7.4%	48.9	-27.0%	79.0	17.6%	74.6	11.2%	1310.0	1.1%	1308.6	40.1	7.3%	27.2	-27.1%
		Vendas *1000	203.9	7.7%	199.0	5.1%	149.1	5.6%	146.3	3.6%	798.5	-4.7%	805.2	-3.9%	-46.7	-0.5%	-46.5	-50.2	-37.7%	-54.9	-31.9%
		Consumo *1000	539.0	-1.2%	531.5	-2.6%	304.5	0.8%	307.3	1.7%	389.5	-0.4%	381.8	-2.4%	2583.7	0.4%		176.6	10.1%	164.7	2.7%
		Renda-Consumo *1000	1267.4	0.3%	1265.5	0.1%	611.0	2.0%	608.8	1.7%	1176.9	-1.6%	1180.8	-1.3%	4751.9	0.0%	4752.7	163.5	5.5%	163.4	5.4%
		Dep.àVista(t-1) *1000	66.9	-28.3%	87.2	-6.5%	-649.6	0.8%	-646.0	0.2%	-719.0	3.6%	-706.6	1.8%	3900.3			-464.1	4.2%	-456.3	2.5%
		De.Gov.(t-1) *1000	-3627.8	0.4%	-3619.6	0.1%	-473.3	3.7%	-481.0	5.4%	-2901.5	-0.1%	-2901.5	-0.1%	-4314.3	-0.3%		-1168.5	-0.6%	-1162.9	-1.1%
		Rec.3os(t-1) *1000	884.1	0.0%	886.2	0.3%	435.6	2.3%	454.8	6.8%	912.0	-2.5%	915.1	-2.2%	-815.7	0.5%		339.3	4.8%	352.5	8.9%
		Tributos(t-1) *1000	27.5	7.1%	24.7	-3.9%	41.2	-5.9%	44.1	0.9%	8.4	74.5%	9.5	96.9%	-315.7	-1.2%		17.7	-4.9%	17.1	-8.1%
	삼	OrdensPME(t-1) *1000	3263.3	-0.4%	3275.7	0.0%	1126.4	0.0%	1135.6	0.8%	3794.0	0.6%	3799.0	0.7%	-465.0	0.7%		1950.4	-0.2%	1939.4	-0.8%
	4	Dep.àVista(t-2) *1000	-167.6	9.0%	-151.2	-1.6%	12.0	-61.9%	20.3	-35.7%	42.8	-26.1%	57.9	-0.1%	-2865.3	-0.4%		-28.9	40.9%	-24.0	17.1%
		De.Gov.(t-2) *1000	2132.8	-0.6%	2145.5	0.0%	638.8	-0.3%	649.4	1.3%	1743.8	-0.1%	1748.8	0.2%	2914.5	0.2%		685.7	-2.6%	688.8	-2.1%
		Rec.3os(t-2) *1000	282.5	-1.8%	292.6	1.7%	196.2	-3.1%	201.9	-0.3%	305.1	-9.9%	328.9	-2.9%	821.9	0.3%		199.3	-1.5%	201.6	-0.3%
		Tributos(t-2) *1000	110.6	-6.2%	117.8	-0.1%	31.8	-6.0%	32.9	-2.8%	86.0	0.5%	91.0	6.3%	10.4	-16.2%		35.8		36.6	-9.9%
		OrdensPME(t-2) *1000	-3354.8	0.3%	-3342.8	-0.1%	-1323.4	1.0%	-1319.7	0.7%	-3242.7	0.4%	-3236.1	0.2%	481.3	0.2%		-1314.6		-1295.9	-1.0%
		Dep.àVista(t-1) *1000	482.9	-0.7%	484.3	-0.4%	312.3	0.2%	296.7	-4.9%	728.8	-1.2%	735.5	-0.3%	1615.1	0.0%		233.3	0.8%	241.2	4.2%
	4	De.Gov.(t-1) *1000	3640.4	0.2%	3628.1	-0.1%	1065.5	0.8%	1074.6	1.7%	2895.0	0.2%	2885.7	-0.1%	3931.3			1172.8	-0.9%	1161.3	-1.9%
	È	Rec.3os(t-1) *1000	-827.3	0.8%	-828.5	1.0%	-120.2	-4.5%	-123.2	-2.1%	-267.7	-10.6%	-269.9	-9.9%	-158.9	2.9%		-213.5		-216.8	-0.2%
		Tributos(t-1) *1000	-37.5	19.3%	-33.5	6.6%	-29.4	48.6%	-29.8	51.0%	-23.3	110.7%	-22.0	98.8%	292.6			-37.0		-34.9	30.7%
	_	OrdensPME(t-1) *1000	-3323.6	-0.5%	-3329.0	-0.3%	-1417.8	-0.6%	-1435.1	0.6%	-3705.0	-0.7%	-3700.4	-0.9%	1677.7	-0.3%	1677.5	-1313.9	-0.3%	-1311.8	-0.4%
	es	Dep.àVista *1000	18.0	2.8%	-37.7	7.4%	440.0	0.00/	407.0	40.00/											
	aut	De.Gov. *1000	184.9	-19.3%	235.0	2.6%	419.9	0.6%	407.3	43.2%	4040	0.50/		40.50/							
	ıst	Rec.3os *1000	372.0	-23.3%	461.2	-4.9%	119.7	-4.1%	124.0	-0.7%	124.9	0.5%	115.0	13.5%	050.0	4.40/	000.0				
	lö	Tributos *1000	21.7	20.4%	6.9	-61.5%	963.8	12.6%	935.5	9.2%	49.0	24.4%	52.6	33.5%	856.3	1.1%		400.7	0.40/	00.0	44.50/
	Ě	OrdensPME *1000	480.9	14.5%	521.7	24.2%	103.9	-2.6%	113.6	6.5%	-0.3	-130.1%	-2.7	-332.5%	-39.8	24.5%	-37.8	106.7	0.4%	98.3	11.5%
		Dep.àVista *1000 De.Gov. *1000																			
	₽	Rec.3os *1000																			
	⋖	Tributos *1000																			
		OrdensPME *1000																51.7	-5.1%	49.4	-9.2%
	\vdash	Dep.àVista *1000																31.7	-3.176	49.4	-9.276
		De.Gov. *1000																			
표	42	Rec.3os *1000									445.2	4.8%	436.6	2.8%							
8	4	Tributos *1000									440.2	4.070	430.0	2.070							
GARCH		OrdensPME *1000																472.8	-1.7%	457.5	-4.8%
		Dep.àVista *1000																472.0	-1.7 70	407.0	4.070
matrizes		De.Gov. *001.000					-70.6	>100%	0.0	>100%											
nat	A3	Rec.3os *1000																			
_	`	Tributos *1000																			
		OrdensPME *1000																			
		Dep.àVista *1000	267.6	5.4%	242.5	-4.5%															
		De.Gov. *1000					184.9	-19.3%	235.0	2.6%											
	1 4	Rec.3os *1000																			
	`	Tributos *1000																			
		OrdensPME *1000																			
		Dep.àVista *1000	372.0	-23.3%	461.2	-4.9%															J
		De.Gov. *1000																			J
	6	Rec.3os *1000	1																		
		Tributos *1000																			J
		OrdensPME *1000																			
82		(1)Coe.=Coefici	ientes, EP=Er	ro Padrão, Pr.	=Probabilidade	e> t		·	·	·										

⁽²⁾ dp=dummies para o número de dias não úteis imediatamente anteriores ao dia útil em questão

⁽²⁾ Variação do coefiente do período em questão em relação ao período base (maio/2002 a dezembro/2005)

A Tabela 23 compara os coeficientes dos períodos 31/10/2002-7/7/2006 e 11/2/2003-17/10/2006 com o período base 2/5/2002-30/12/2005. Quando os valores dos coeficientes estão fora do intervalo de confiança a 95% do período base, destacamo-los em vermelho. Pouca variação é observada, com exceção das Ordens de Pagamento em Moeda Estrangeira e dos coeficientes GARCH constantes. Essas Ordens se mostram assim com padrão de comportamento variável no tempo e difíceis de serem projetadas. A variação dos parâmetros GARCH também revela dificuldade na modelagem da estrutura de variâncias covariâncias dos resíduos.

6. Resultados dos Agregados dos Bancos Pequenos

De forma semelhante ao que foi feito para os agregados de todos os bancos, repetimos aqui as principais regressões e testes.

Os Testes de Dickey e Fuller apontam a presença de raiz unitária para algumas séries. Já os Testes de Phillips e Perron mostram estacionariedade para todos casos. Comparando os dois testes, temos que o de Dickey e Fuller exige homocedasticidade nos resíduos, enquanto o segundo não. Estas séries, tal como as primeiras analisadas têm presença de efeitos ARCH. Assim, os resultados dos Testes de Phillips e Perron são mais adequados ao nosso caso.

Tabela 24- Testes de Raiz Unitária – Bancos Pequenos

Séries em Nível, Valores Diários Deflacionados

As séries não estacionárias (valor-p>5%) estão destacadas em vermelho

Teste			Dickey Fulle	r Aumentado	Phillips-Perron(3)
			valor-p	Lags	valor-p
Séries das	(1)	Dep. à Vista	0.4590	23	0.0000
Endógenas	ste	Dep. De Governo	0.1032	23	0.0000
	Ajuste(1)	Recursos em Trânsito de 3os	0.0118	13	0.0000
	- 3	Cobrança de Tributos	0.1269	29	0.0000
	Ord. de Pagamentos em Moeda		0.0000	2	0.0000
		Dep. à Vista	0.2464	23	0.0000
		Dep. De Governo	0.0176	23	0.0000
	5	Recursos em Trânsito de 3os	0.0000	3	0.0000
	udo(z)	Cobrança de Tributos	0.0848	29	0.0000
	η	Ord. de Pagamentos em Moedas Est.	0.0000	0	0.0000

⁽¹⁾O período inicial vai de maio/2002 a dezembro/2005, este é o período de ajuste dos modelos

(4)H0: Há raiz unitária

As defasagens obtidas para as variáveis macro for<u>am</u> bem semelhantes às dos agregados de todos os bancos. Todas elas são significativas também.

Excluído: ma

⁽²⁾O período completo dos dados vai de maio/2002 a outubro/2007, inclui os períodos de ajuste e comparação dos modelos

⁽³⁾Utilizamos 6 (ajuste) e 7 (tudo) lags, número previsto por Newey-West (default do teste)

Tabela 25- Defasagem das Exógenas – Bancos Pequenos

			Variável				
							Renda-
			Selic	Câmbio	Vendas	Consumo	Consumo
Def	asagem, em dias		75	9	10	0	0
	Depósitos à Vista	Coeficiente	-1.73E+01	1.11E+02	4.48E+02	1.73E+03	2.76E+02
		Erro Padrão	4.43E+01	5.42E+01	1.13E+02	1.99E+02	1.80E+02
		Probabilidade> t	0.6967	0.0411	0.0001	0.0001	0.1264
	Depósitos de Governo	Coeficiente	1.32E+02	-1.29E+01	-3.36E+02	3.21E+02	2.31E+02
		Erro Padrão	1.14E+01	1.39E+01	2.90E+01	5.12E+01	4.63E+01
		Probabilidade> t	0.0001	0.3539	0.0001	0.0001	0.0001
ção	Recursos em	Coeficiente	-8.39E+01	2.98E+02	1.67E+02	3.98E+02	-5.58E+02
nac	Trânsito de Terceiros	Erro Padrão	2.23E+01	2.72E+01	5.67E+01	1.00E+02	9.06E+01
Equa		Probabilidade> t	0.0002	0.0001	0.0032	0.0001	0.0001
	Cobrança e Arrecadação	Coeficiente	1.87E+01	5.02E+01	-5.08E+01	-3.11E+01	1.40E+02
	de Tributos e Assemelhados	Erro Padrão	1.47E+01	1.80E+01	3.74E+01	6.62E+01	5.98E+01
		Probabilidade> t	0.2051	0.0054	0.1753	0.6384	0.0196
	Ordens de Pagamentos	Coeficiente	-8.83E+01	2.94E+02	7.13E+01	3.54E+02	-5.63E+02
	em Moedas Estrangeiras	Erro Padrão	2.23E+01	2.72E+01	5.66E+01	1.00E+02	9.05E+01
		Probabilidade> t	0.0001	0.0001	0.2084	0.0004	0.0001

(1)VAR sem lags para as endógenas

(2)H0: Valor igual a zero

Para a escolha do número de *lags* das variáveis endógenas, levamos em consideração apenas componentes autoregressivos, não usamos médias móveis. Estas últimas demandam grande tempo de processamento por usar o método ML. Simplificamos usando apenas *lags* AR e o método LS.

Tabela 26- Critérios de Informação - Bancos Pequenos

	Lag MA=0 (2)		Critério	
Critério	Lag AR(1)	BIC	AIC	HQC
	0	-22.28	-23.73	-23.18
	1	-25.60	-27.20	-26.59
	2	-25.67	-27.40	-26.74
	3	-25.59	-27.47	-26.75
BIC	4	-25.51	-27.53	-26.76
	5	-25.36	-27.52	-26.69
	6	-25.18	-27.49	-26.60
	7	-25.01	-27.45	-26.51
	8	-24.87	-27.45	-26.46

(1)Lag AR = autoregressivo

(2)Sem lags MA (média móvel)

(3)BIC = Critério de Informação de Schwarz

(4)AIC = Critério de Informação de Akaike

(5)HQC = Critério de Informação de Hannan-Quinn

(6) Valores Obtidos por Regressões LS (Mínimos Quadrados)

Os três critérios indicam diferentes *lags* ótimos, mas com pequena variação no valor para *lags* próximos. Além disso, a representação de Tiao e Box mostra padrões de correlações semelhantes para os *lags* 2 e 4. Usando o critério da parcimônia, preferimos utilizar dois *lags* AR.

Tabela 27- Representações de Tiao e Box - Bancos Pequenos

AR p=2											
Represent	cação	de Tiac	ев	ox							
Lag	0	1	2	3	4	5	6	7	8	9	10
DepÀV ++									+		
DepGov++								+			
Rec3os	+-+		·								
Trib	-+			+		+.				-+	+-
OPME	+-+		·								
		+ é >	2*er	ro pad	lrão,	- é <	-2*ei	ro pac	drão,	. é er	itre
AR p=4											
Represent	ação	de Tiad	ев	ox							
Lag	0	1	2	3	4	5	6	7	8	9	10
DepÀV ++											
DepGov++											
Rec3os	+-+					+.					
Trib	-+									-+	+-
OPME	+-+										
		+ é >	2*er	ro pad	lrão.	- é <	-2*ei	ro pac	drão.	. é en	itre

6.1 Modelagem GARCH

Tal como para os agregados de todos os bancos, vamos aqui tentar simplificar a estrutura de parâmetros GARCH o máximo possível para evitar um número grande de parâmetros para o modelo.

Inicialmente, precisamos testar a heteroscedasticidade dos resíduos. A tabela abaixo mostra os resultados para regressão por Máxima Verossimilhança sem parâmetros GARCH.

Tabela 28- Testes de Heteroscedasticidade – Bancos Pequenos

		ARCH de 1	la Ordem			
	Variável	DAV	Gov	3os	T	OPME
	DAV	4,98	4,23	1,13	-15,41	1,89
	Gov	4,23	7,06	-0,41	-11,34	0,06
14	3os	1,13	-0,41	4,82	-0,09	4,99
Valor	Т	-15,41	-11,34	-0,09	3,82	3,82
/a	OPME	1,89	0,06	4,99	3,82	5,18
	DAV	0,0001	0,0001	0,2569	0,0001	0,0586
	Gov	0,0001	0,0001	0,6783	0,0001	0,9558
뜻	3os	0,2569	0,6783	0,0001	0,9246	0,0001
rob.	Т	0,0001	0,0001	0,9246	0,0001	0,0001
P	OPME	0,0586	0,9558	0,0001	0,0001	0,0001

(1)H0: Não há ARCH

(2)DAV=Depósitos à Vista

(3)Gov=Depósitos de Governo (4)3os=Rec. em Trânsito de 3os

(4)T=Tributos

(5)OPME=Ord.Pag.Moedas Est.

Novamente utilizando uma estrutura BEKK diagonal, modelamos inicialmente com apenas uma defasagem para os resíduos. Isto gera cinco matrizes A:

O termo GARCH não constante fica então a seguinte matriz simétrica:

$$\begin{split} \sum_{k=1}^{3} A_{k}^{T} \mathcal{E}_{i-1} \mathcal{E}_{i-1}^{T} A_{k} &= \\ \begin{bmatrix} o^{2} \mathcal{E}_{1,i-1}^{T} & on \mathcal{E}_{1,i-1} \mathcal{E}_{2,i-1} & on \mathcal{E}_{1,i-1} \mathcal{E}_{3,i-1} & ol \mathcal{E}_{1,i-1} \mathcal{E}_{4,i-1} & ol \mathcal{E}_{1,i-1} \mathcal{E}_{5,i-1} \\ on \mathcal{E}_{1,i-1} \mathcal{E}_{2,i-1} & (n^{2} + j^{2}) \mathcal{E}_{2,i-1}^{2} & (nn + ji) \mathcal{E}_{2,i-1} \mathcal{E}_{3,i-1} & (nl + jh) \mathcal{E}_{2,i-1} \mathcal{E}_{4,i-1} & (nk + jg) \mathcal{E}_{2,i-1} \mathcal{E}_{5,i-1} \\ on \mathcal{E}_{1,i-1} \mathcal{E}_{3,i-1} & (nn + ji) \mathcal{E}_{2,i-1} \mathcal{E}_{3,i-1} & (m^{2} + i^{2} + f^{2}) \mathcal{E}_{3,i-1}^{2} & (ml + ih + fe) \mathcal{E}_{3,i-1} \mathcal{E}_{4,i-1} & (mk + ig + fd) \mathcal{E}_{3,i-1} \mathcal{E}_{5,i-1} \\ ol \mathcal{E}_{1,i-1} \mathcal{E}_{4,i-1} & (nl + jh) \mathcal{E}_{2,i-1} \mathcal{E}_{4,i-1} & (ml + ih + fe) \mathcal{E}_{3,i-1} \mathcal{E}_{4,i-1} & (l^{2} + h^{2} + e^{2} + c^{2}) \mathcal{E}_{4,i-1}^{2} & (lk + hg + ed + cb) \mathcal{E}_{4,i-1} \mathcal{E}_{5,i-1} \\ ol \mathcal{E}_{1,i-1} \mathcal{E}_{5,i-1} & (nk + jg) \mathcal{E}_{2,i-1} \mathcal{E}_{5,i-1} & (mk + ig + fd) \mathcal{E}_{3,i-1} \mathcal{E}_{5,i-1} & (lk + hg + ed + cb) \mathcal{E}_{4,i-1} \mathcal{E}_{5,i-1} & (k^{2} + g^{2} + d^{2} + b^{2} + a^{2}) \mathcal{E}_{5,i-1}^{2} \end{bmatrix} \end{split}$$

Pela Tabela 28 o termo da linha 3 coluna 1 é constante, ou seja:

$$om=0 \Rightarrow m=0$$
,

pois o não pode ser zero, se não o termo da linha 1 coluna 1 seria constante também.

De forma semelhante:

Essa estrutura se mostrou suficiente para resolver o problema. Com estas simplificações, adicionamos apenas dez termos a serem estimados: a, b, c, d, f, h, j, l, n, o. Nossas matrizes GARCH A diagonais ficam:

A tabela a seguir mostra os resultados obtidos com o uso da modelagem acima.

Alguns coeficientes se mostraram não significativos, mas todos os grupos de coeficientes (*dummies* de mês, *dummies* de dia, *lags* AR 1, ...) são significativos.

Comparamos agora os resultados obtidos para os bancos pequenos com os dos agregados de todos os bancos. Para os dois casos as séries são estacionárias. Também as defasagens obtidas para variáveis exógenas foram semelhantes. Já para modelagem GARCH, os bancos pequenos exigiram apenas termos da primeira defasagem dos erros, enquanto no caso geral, precisamos além destes, também dos termos de defasagem da heteroscedasticidade condicional.

Para os valores obtidos dos coeficientes (ver Tabelas 11 e 29), as *dummies* de dias do mês se mostraram mais importantes na modelagem do caso geral. Para os depósitos à vista todos os dias do mês foram significativos. Enquanto para os depósitos de governo, recursos em trânsito de terceiros e ordens de pagamentos em moedas estrangeiras, quase todos os dias o foram. Já para os bancos pequenos, a situação é diferente. Muitos dias não foram significativos.

Considerando agora a influência das variáveis exógenas macroeconômicas, o consumo se mostrou significativo para todos os depósitos nos bancos pequenos. Além da significância, podemos dizer também que ele foi mais importante comparativamente neste caso do que para o caso geral (Não podemos comparar diretamente os valores dos coeficientes, pois há diferenças nas escalas de medidas dos depósitos nos dois casos). Para os agregados de todos os bancos, todas as cinco exógenas se mostraram importantes de uma forma geral

Tabela 29- Coeficientes, Erros Padrões e Significância – Bancos Pequenos

Os coeficientes fora do intervalo de confiança do período base estão destacados em vermelho

	Equação														
	Dep. à Vist			Dep.de Govern			RecursosDe3os			Tributos /1			Ordens de Pa		
	()		Prob.	Coef. EP		Prob.	Coef. EP	F	Prob.			Prob.	Coef. EP		Prob.
constante *100	-37,7	25,2	0,1352	-56,1	39,2	0,1519		4,4	0,0000	381,9	240,5	0,1126		3,3	0,0000
trend *100000.000	-41,2	3,6	0,0000	-29,9	5,4	0,0000	21,8	0,7	0,0000	44,5	34,4	0,1966	24,4	0,4	0,0000
fevereiro *1000.000	39,9	11,8	0,0008	22,4	16,5	0,1750	-6,0	2,3	0,0080	-183,0	94,8	0,0539	-11,0	1,8	0,0000
março *1000.000	31,9	12,1	0,0087	25,6	16,8	0,1287	1,1	2,3	0,6201	-326,8	100,1	0,0011		1,9	0,1072
abril *1000.000	24,5	11,4	0,0316	31,5	14,4	0,0288	11,6	2,4	0,0000	-253,7	84,0	0,0026	- /	1,9	0,0000
maio *1000.000	21,9	11,8	0,0653	38,3	15,6	0,0143	31,7	2,3	0,0000	-263,4	103,8	0,0114	- , -	1,9	0,0000
junho *1000.000	51,3	10,9	0,0000	47,8	16,1	0,0030	50,3	2,6	0,0000	-318,3	111,5	0,0044		2,0	0,0000
julho *1000.000	27,8	12,9	0,0318	30,7	16,3	0,0604	61,1	2,5	0,0000	-283,0	106,0	0,0078	55,6	2,0	0,0000
agosto *1000.000	25,0	12,1	0,0394	26,0	17,1	0,1284	24,8	2,6	0,0000	-186,7	99,9	0,0618	24,7	2,0	0,0000
setembro *1000.000	-8,5	13,3	0,5224	-15,3	18,7	0,4112	4,1	2,6	0,1097	-89,8	118,1	0,4471	8,4	2,0	0,0000
outubro *1000.000	-36,9	15,3	0,0159	-53,6	22,3	0,0167	-23,1	2,8	0,0000	48,0	140,0	0,7320	-12,2	2,1	0,0000
novembro *1000.000	-48,4	14,8	0,0011	-59,3	23,2	0,0107	-62,3	2,7	0,0000	313,1	136,4	0,0220	-46,0	2,1	0,0000
dezembro *1000.000	16,9	10,2	0,0988	-11,9	15,9	0,4534	-6,0	2,2	0,0065	39,3	95,7	0,6811	-0,5	1,7	0,7878
dia 2 *1000	-33,7	15,1	0,0257	-33,5	30,3	0,2698	-43,4	3,3	0,0000	1227,7	187,3	0,0000	-38,2	2,6	0,0000
dia 3 *1000	-31,7	13,2	0,0163	-19,8	21,6	0,3581	-20,7	3,0	0,0000	162,2	153,4	0,2906	-13,0	2,3	0,0000
dia 4 *1000	-35,0	15,7	0,0255	-14,9	19,6	0,4467	-16,6	2,8	0,0000	81,9	159,2	0,6071	-10,8	2,2	0,0000
dia 5 *1000	-21,7	13,9	0,1190	-7,2	26,9	0,7901	-12,7	2,7	0,0000	179,9	172,6	0,2976	-21,4	2,1	0,0000
dia 6 *1000	-3,7	12,5	0,7698	5,5	31,2	0,8612	-24,7	2,8	0,0000	566,8	154,4	0,0003	-22,5	2,2	0,0000
dia 7 *1000	-30,2	14,9	0,0437	-11,8	23,9	0,6225	-10,9	2,8	0,0001	888,7	158,4	0,0000	-17,7	2,2	0,0000
dia 8 *1000	-14,2	15,6	0,3636	37,5	21,1	0,0760	-34,1	3,5	0,0000	772,7	162,3	0,0000	-32,5	2,6	0,0000
dia 9 *1000	-8,3	15,0	0,5774	47,3	20,7	0,0226	-41,4	2,9	0,0000	526,2	164,9	0,0015	-35,1	2,2	0,0000
dia 10 *1000	44,2	11,6	0,0002	171,4	20,9	0,0000	-47,4	2,8	0,0000	626,8	208,1	0,0027	-46,7	2,1	0,0000
dia 11 *1000	33,4	13,8	0,0159	106,0	22,0	0,0000	-38,4	3,2	0,0000	661,0	154,2	0,0000	-30,4	2,4	0,0000
dia 12 *1000	40,9	13,7	0,0028	160,0	21,4	0,0000	-47,6	3,1	0,0000	532,8	162,2	0,0011	-42,6	2,4	0,0000
dia 13 *1000	20,9	14,2	0,1409	103,2	20,6	0,0000	-41,6	3,1	0,0000	679,3	152,1	0,0000	-36,1	2,3	0,0000
dia 14 *1000	25,9	13,0	0,0470	117,4	19,4	0,0000	2,5	3,0	0,4062	678,7	157,3	0,0000	2,5	2,4	0,2875
dia 15 *1000	-4,9	14,7	0,7382	82,7	23,5	0,0004	-34,1	3,1	0,0000	1615,5	181,4	0,0000	-36,3	2,3	0,0000
dia 16 *1000	2,4	13,7	0,8615	54,3	26,8	0.0432	-31,4	2,9	0.0000	-224,2	231,2	0,3325		2,2	0.0000
dia 17 *1000	5,1	13,6	0,7102	32,9	23,2	0,1577	-10,1	2,9	0,0005	-367,2	222,5	0,0992		2,3	0,0000
dia 18 *1000	6,3	15,1	0,6783	61,5	21,7	0.0047	-24,7	3,3	0.0000	-182,7	204.6	0,3720		2,5	0.0000
dia 19 *1000	3,9	15,0	0,7922	42,7	22,1	0,0540	-32,1	3,0	0.0000	-103,4	177,8	0,5611		2,3	0,0000
dia 20 *1000	67,0	12,5	0,0000	159,4	19,7	0,0000	0,2	3,0	0,9571	302,6	152,4	0,0474		2,3	0,0010
dia 21 *1000	25,9	14,2	0,0684	100,8	22,3	0.0000	-27,1	3,4	0.0000	331,3	178.8	0,0642	-25.9	2,6	0.0000
dia 22 *1000	26,5	15,2	0,0822	121,0	21,2	0,0000	-26,3	3,1	0,0000	70,5	214,9	0,7431	-23,4	2,4	0,0000
dia 23 *1000	21,7	14.9	0,1463	71.6	20,9	0.0007	2,7	3,2	0,3860	123,8	178,5	0,4881	-0.1	2,5	0,9641
dia 24 *1000	32,5	13,9	0,0194	83,1	19,8	0,0000	-5,8	2,9	0,0429	-87,8	179,4	0,6246	- /	2,2	0,0058
dia 25 *1000	37,0	14,2	0.0092	50.7	17,7	0.0042	-12,0	3,5	0.0007	-21,2	182,9	0,9079	- ,	2,7	0.0000
dia 26 *1000	33,4	14,2	0.0190	64,5	18,6	0.0005	-5,8	3,0	0.0505	-170,9	188,4	0,3645		2,7	0.0007
dia 27 *1000 dia 27 *1000	29,1	13,3	0,0190	54,0	19,1	0,0048	-32,1	2,7	0,0000	-31,1	162,8	0,8485		2,3	0,0007
dia 28 *1000	27,4	12,1	0,0236	34,3	19,1	0,0040	2,5	2,8	0,0000	124,7	164,1	0,4477		2,1	0.0001
dia 29 *1000 dia 29 *1000	31,1	12,7	0,0230	39,2	21,0	0,0727	-4,4	2,6	0,0938	318,8	148,8	0,0325	-10,8	2,1	0,0001
dia 30 *1000	29,2	14.8	0,0140	18,0	25,7	0,4832	-63,6	2,0	0,0000	926,8	150,8	0,0000	-64,3	2,0	0,0000
	29,2 5.5	, -	0,0491	,	23.9	0,4632		3.4	0.0000	,	,	0,0000	1 '	2,3 2.7	0,0000
dia 31 *1000	5,5	15,6	0,7229	14,3	23,9	0,5486	-123,1	3,4	0,0000	1435,5	171,0	0,0000	-106,9	2,7	0,0000

Tabela 29 - Continuação

			Equação														
			Dep. à Vista			Dep.de Gover				De3os /1.00	-	Tributos /1			Ordens de l		
		Variável	Coef.(1) EF	P F	rob.	Coef. EP	'	Prob.	Coef.	EP	Prob.	Coef.	EP	Prob.	Coef. E	Р	Prob.
		dp2 *1000	31,2	13,9	0,0250	4,2	16,8	0,8043	72,0	1,7	0,0000	185,7	117,8			1,4	0,0000
		dp3 *1000	42,9	4,3	0,0000	0,4	6,8	0,9498	10,6	0,7	0,0000	23,5	45,2	0,6025	-7,4	0,6	0,0000
		dp4 *1000	47,1	49,7	0,3428	- , -	35,5	0,6067	125,9	3,8	0,0000	-82,9				2,8	0,0000
		dp5 *1000	59,6	41,2	0,1479	,	69,4	0,6942	145,1	8,3	0,0000	159,8	- , -	-,,,,,,,		2,8	0,0000
		Selic *1000.000	-2,1	11,3	0,8494	27,9	15,9	0,0786	7,7	2,2	0,0004	, -		0,6105		1,7	0,0106
		Câmbio *1000.000	-2,6	12,2	0,8285	- ,	18,4	0,0918	178,8	2,6	0,0000	120,1	113,4			2,0	0,0000
		Vendas *1000.000	-13,0	25,6	0,6121	-124,2	33,0	0,0002	-22,2	4,6	0,0000	-659,3			-52,6	3,6	0,0000
		Consumo *1000.000	287,9	47,2	0,0000	310,5	73,5	0,0000	196,0	7,8	0,0000	-1227,8			137,9	5,6	0,0000
		Renda-Consumo *1000.000		45,7	0,8711	49,7	67,2	0,4598	-126,2	8,6	0,0000	699,1	422,0		- , -	6,3	0,0000
		Dep.àVista(t-1) *1000.000	566,8	45,9	0,0000		59,9	0,3532	63,5	95,2	0,5050			0,0389	- , -	80,6	0,2548
		De.Gov.(t-1) *1000.000	-78,1	18,6	0,0000	,	23,7	0,0000	-0,6	39,1	0,9873				, -	34,0	0,8940
		Rec.3os(t-1) *1000.000	-103,1	98,6	0,2959	, -	158,0	0,6861	894,5	198,3	0,0000	-6720,9			- ,-	167,9	0,0385
		Tributos(t-1) *1000.000	5,5	2,4	0,0248	9,8	3,8	0,0090	-1,9	4,2	0,6570	- /	28,9		-3,2	3,6	0,3740
	AR	OrdensPME(t-1) *1000.000	109,4	112,9	0,3330		175,2	0,6898	-288,9	224,6	0,1986				241,0	190,5	0,2062
	A	Dep.àVista(t-2) *1000.000	-48,7	47,3	0,3033	-165,3	63,8	0,0098	-62,1	95,5	0,5158				-79,8	80,8	0,3237
		De.Gov.(t-2) *1000.000	-33,9	19,9	0,0887	160,5	27,8	0,0000	-62,3	41,0	0,1287	810,4	201,9		-40,1	35,8	0,2631
		Rec.3os(t-2) *1000.000	182,4	94,1	0,0528	203,9	150,9	0,1771	-213,8	180,0	0,2353		997,9		-316,0	153,3	0,0396
		Tributos(t-2) *1000.000	-1,1	2,2	0,6182	3,1	2,3	0,1868	4,1	4,1	0,3123	- ,	22,4		3,2	3,4	0,3465
		OrdensPME(t-2) *1000.000	-230,1	107,7	0,0329	-271,5	169,4	0,1093	335,6	202,6	0,0980	-7797,8	1133,2	0,0000	443,8	173,0	0,0105
	SS	Dep.àVista *1000	30,4	1,2	0,0000												
	Constantes	De.Gov. *1000	10,8	1,2	0,0000	52,1	1,6	0,0000									
_	sta	Rec.3os *1000	-9,2	1,7	0,0000	-9,3	3,5	0,0074	-64,5	1,4	0,0000						
ㅎ	υo	Tributos *1000	-0,5	1,5	0,7593		2,2	0,7720	-0,1	4,9	0,9807						
GARCH	-	OrdensPME *1000	-9,6	1,4	0,0000	-7,6	3,0	0,0105	-51,2	1,2	0,0000	-1,2	4,3	0,7833		1,0	0,0000
	A1	OrdensPME *1000													-21,0	8,9	0,0191
Sez	A2	Rec.3os *1000							0,0	0,0	0,0000						
natrizes		OrdensPME *1000													8,6	7,5	0,2558
ш	A3	De.Gov. *1000				0,0	0,0	0,0000									
	A4	Dep.àVista *1000	0,0	0,0	0,0000												
		De.Gov. *1000				378,8	37,1	0,0000									
	G1	Dep.àVista *1000	588,2	24,3	0,0000												

⁽¹⁾Coe.=Coeficientes, EP=Erro Padrão, Pr.=Probabilidade>|t|

⁽²⁾ dp=dummies para o número de dias não úteis imediatamente anteriores ao dia útil em questão

7. Conclusões

Esta dissertação utliza um modelo de regressão de séries temporais mais incrementado do que é usual na literatura. Além de *lags* autoregressivos, utilizamos médias móveis no nosso vetor de séries temporais. No tratamento da heteroscedasticidade dos resíduos, utilizamos um modelo GARCH Multivariado BEKK Diagonal. Uma novidade aparece na seção de impulso das variáveis endógenas. Montamos uma metodologia para aplicar impulsos a VAR com médias móveis e tratamento GARCH Multivariado.

Os parâmetros regredidos para as cinco séries de informação dos Recolhimentos Compulsórios sobre Recursos à Vista revelam comportamentos de antemão já esperados. A novidade está em quantifica-los. Quanto à previsão, tivemos resultados próximos aos valores reais, mas não mais próximos do que um modelo ARMA sazonal, de mais fácil modelagem e que ignora a influência que as séries têm umas sobre as outras.

Do ponto de vista econômico, este trabalho ajuda a compreender o comportamento dos bancos no que diz respeito às principais informações usadas para calcular o Recolhimento Compulsório sobre Recursos à Vista. Com isto, pode-se mensurar o efeito da taxa de juros, taxa de câmbio, consumo, renda, volume de vendas no comércio, choques nos depósitos à vista, depósitos de governo, recursos em trânsito de terceiros, arrecadação de tributos e assemelhados e ordens de pagamentos em moedas estrangeiras. Mais especificamente, esta dissertação fornece um modelo capaz de prever as informações para o cálculo da exigibilidade desse recolhimento compulsório, o que facilita o planejamento da Política Monetária do Banco Central.

Excluído: que ocorrerá quando de alterações seja na

Excluído: na

Excluído: no

Excluído: no

Excluído: no

Excluído: em

Excluído: nos

Excluído: nos

Excluído: nos

Excluído: na

Excluído: na

8. Referências

Barro, R.J., 1993. Macroeconomics, 4th Edition. Wiley, New York.

Bental, B., Eden, B., 2002. Reserve Requirements and Output Fluctuations. *Journal of Monetary Economics* 48, 1957-1620.

Bollerslev, T., 1990. Modeling the Coherence in Short-Run Nominal Exchange Rates: A Multivariate Generalized ARCH Model. *Review of Econometrics and Stochastics*, 72, 498–505.

Bollerslev, T., Engle, R.F., Wooldridge, J.M., 1988. A Capital Asset Pricing Model with Time Varying Covariances. *Journal of Political Economy* 96, 116-131.

Box, G., Jenkins, G., 1976. *Time Series Analysis, Forecasting, and Control*. Holden Day, San Francisco.

Clements, M.P., Hendry, D.F., 1999. *Forecasting Non_stationary Economic Time Series*. The MIT Press, Cambridge.

Enders, W., 1995. Applied Econometric Time Series, 1st Edition. John Wiley & Sons, Inc.

Engle, R. F., e Kroner, K. F., 1995. *Multivariate Simultaneous Generalized ARCH. Econometric Theory*, 11, 122–150.

Feige, E.L., McGee, R., 1979. Has the Federal Reserve Shifted from a Policy of Interest Rates Targets to a Policy of Monetary Aggregate Targets? *Journal of Money, Credit, and Banking* 11(4), 381-404.

Friedman, M., 1960. A Program for Monetary Stability. Fordham University Press, New York City.

Gibson, W.E., 1972. Demand and Supply Functions for Money in the United States: Theory and Measurement. *Econometrica*, 40 (2), 361-370.

Hamilton, J.D., 1994. Time Series Analysis. Princeton University Press, New Jersey.

Leeper, E.M., 1997. Narrative and VAR Approaches to Monetary Policy: Common Identification Problems. *Journal of Monetary Economics* 40, 641-657.

Melo, B.S.V. de, 2001. Modelo de Previsão para Arrecadação Tributária. Dissertação de Mestrado. Universidade de Brasília.

Romer, C.D., Romer, D.H., 1989. Does Monetary Policy Matter? A New Test in the Spirit of Friedman and Schwartz. Em: Blanchard, O.J., Fischer, S. (Eds.). NBER Macroeconomics Annual 1989. MIT Press, Cambridge. MA, 121-170.

Sims, C., 1980. Macroeconomics and Reality. Econometrica, 48 (1) 1-49.

Tiao, G.C., Box, G.E.P., 1981. Modeling Multiple Time Series with Applications. *J. Amer. Statist. Assoc.*, 76, 802-816.

Wei, W.W.S., 2005. *Time Series Analysis : Univariate and Multivariate Methods*, 2nd Edition. Addison Wesley, New York.

APÊNDICE A – Principais Códigos

A.1 Modelo VARMAX-VGARCH

```
%macro inicio;
ods listing close;
%let at=2:/*4 no de autoregressões, acertar a lista de parametros tb*/
%let am=1;/*1 no de médias móveis*/
%let ar=5;/*13 no de variáveis endógenas*/
%let au=1;/* Garch, 0=> no, 1=> com GARCH*/
%let ao=%eval(927-77);/*no. de observacoes por variavel*/
%let bb=78: /*10 registro*/
%let az=a;
ods listing file='C:\Users\hp\Documents\My SAS Files\Out.txt';
goptions reset=global;
options pagesize=max linesize=110;
proc sql;
         create table b14 as
         select *
         from b11
         where _type_ = 'PARMS';
```

%base;

%let

mo1=ctev1+av1*t+m2v1*m2+m3v1*m3+m4v1*m4+m5v1*m5+m6v1*m6+m7v1*m7+m8v1*m8+m9v1*m9+m10v1*m10+m11v1*
m11+m12v1*m12+d2v1*d2+d3v1*d3+d4v1*d4+d5v1*d5+d6v1*d6+d7v1*d7+d8v1*d8+d9v1*d9+d10v1*d10+d11v1*d11+d12v1*
d12+d13v1*d13+d14v1*d14+d15v1*d15+d16v1*d16+d17v1*d17+d18v1*d18+d19v1*d19+d20v1*d20+d21v1*d21+d22v1*d22+d
23v1*d23+d24v1*d24+d25v1*d25+d26v1*d26+d27v1*d27+d28v1*d28+d29v1*d29+d30v1*d30+d31v1*d31+dp2v1*dp2+dp3v1*
dp3+dp4v1*dp4+dp5v1*dp5+ex1v1*ex1+ex2v1*ex2+ex3v1*ex3+ex4v1*ex4+ex5v1*ex5;

%let

%let

%let

 $\label{eq:mo2} mo2 = ctev2 + av2*t + m2v2*m2 + m3v2*m3 + m4v2*m4 + m5v2*m5 + m6v2*m6 + m7v2*m7 + m8v2*m8 + m9v2*m9 + m10v2*m10 + m11v2*m11 + m12v2*m12 + d2v2*d2 + d3v2*d3 + d4v2*d4 + d5v2*d5 + d6v2*d6 + d7v2*d7 + d8v2*d8 + d9v2*d9 + d10v2*d10 + d11v2*d11 + d12v2*d12 + d12v2*d13v2*d13 + d14v2*d14 + d15v2*d15 + d16v2*d16 + d17v2*d17 + d18v2*d18 + d19v2*d19 + d20v2*d20 + d21v2*d21 + d22v2*d22 + d23v2*d23 + d24v2*d24 + d25v2*d25 + d26v2*d26 + d27v2*d27 + d28v2*d28 + d29v2*d29 + d30v2*d30 + d31v2*d31 + dp2v2*dp2 + dp3v2*dp3 + dp4v2*dp4 + dp5v2*dp5 + ex1v2*ex2 + ex2v2*ex2 + ex3v2*ex3 + ex4v2*ex4 + ex5v2*ex5;$

mo3=ctev3+av3*t+m2v3*m2+m3v3*m3+m4v3*m4+m5v3*m5+m6v3*m6+m7v3*m7+m8v3*m8+m9v3*m9+m10v3*m10+m11v3* m11+m12v3*m12+d2v3*d2+d3v3*d3+d4v3*d4+d5v3*d5+d6v3*d6+d7v3*d7+d8v3*d8+d9v3*d9+d10v3*d10+d11v3*d11+d12v3* d12+d13v3*d13+d14v3*d14+d15v3*d15+d16v3*d16+d17v3*d17+d18v3*d18+d19v3*d19+d20v3*d20+d21v3*d21+d22v3*d22+d23v3*d23+d24v3*d24+d25v3*d25+d26v3*d26+d27v3*d27+d28v3*d28+d29v3*d29+d30v3*d30+d31v3*d31+dp2v3*dp2+dp3v3* dp3+dp4v3*dp4+dp5v3*dp5+ex1v3*ex2+ex2v3*ex2+ex3v3*ex4+ex5v3*ex5;

 $mo4=ctev4+av4^*t+m2v4^*m2+m3v4^*m3+m4v4^*m4+m5v4^*m5+m6v4^*m6+m7v4^*m7+m8v4^*m8+m9v4^*m9+m10v4^*m10+m11v4^*\\m11+m12v4^*m12+d2v4^*d2+d3v4^*d3+d4v4^*d4+d5v4^*d5+d6v4^*d6+d7v4^*d7+d8v4^*d8+d9v4^*d9+d10v4^*d10+d11v4^*d11+d12v4^*\\d12+d13v4^*d13+d14v4^*d14+d15v4^*d15+d16v4^*d16+d17v4^*d17+d18v4^*d18+d19v4^*d19+d20v4^*d20+d21v4^*d21+d22v4^*d22+d21v4^*d21+d22v4^*d22+d21v4^*d21+d22v4^*d21+$

23v4*d23+d24v4*d25+d25v4*d25+d26v4*d26+d27v4*d27+d28v4*d28+d29v4*d29+d30v4*d30+d31v4*d31+dp2v4*dp2+dp3v4*dp3+dp4v4*dp4+dp5v4*dp5+ex1v4*ex1+ex2v4*ex2+ex3v4*ex3+ex4v4*ex4+ex5v4*ex5; %let

 $\label{eq:mo5} mo5 = \text{ctev5} + \text{av5}^*\text{t} + \text{m2v5}^*\text{m2} + \text{m3v5}^*\text{m3} + \text{m4v5}^*\text{m4} + \text{m5v5}^*\text{m5} + \text{m6v5}^*\text{m6} + \text{m7v5}^*\text{m7} + \text{m8v5}^*\text{m8} + \text{m9v5}^*\text{m9} + \text{m10v5}^*\text{m10} + \text{m11v5}^*\text{m11} + \text{m12v5}^*\text{m12} + \text{d2v5}^*\text{d2} + \text{d3v5}^*\text{d3} + \text{d4v5}^*\text{d4} + \text{d5v5}^*\text{d5} + \text{d6v5}^*\text{d6} + \text{d7v5}^*\text{d7} + \text{d8v5}^*\text{d8} + \text{d9v5}^*\text{d9} + \text{d10v5}^*\text{d10} + \text{d11v5}^*\text{d11} + \text{d12v5}^*\text{d12} + \text{d13v5}^*\text{d13} + \text{d14v5}^*\text{d14} + \text{d15v5}^*\text{d15} + \text{d16v5}^*\text{d16} + \text{d17v5}^*\text{d17} + \text{d18v5}^*\text{d18} + \text{d19v5}^*\text{d19} + \text{d20v5}^*\text{d20} + \text{d21v5}^*\text{d21} + \text{d22v5}^*\text{d22} + \text{d23v5}^*\text{d23} + \text{d24v5}^*\text{d24} + \text{d25v5}^*\text{d25} + \text{d26v5}^*\text{d26} + \text{d27v5}^*\text{d27} + \text{d28v5}^*\text{d28} + \text{d29v5}^*\text{d29} + \text{d30v5}^*\text{d30} + \text{d31v5}^*\text{d31} + \text{dp2v5}^*\text{dp2} + \text{dp3v5}^*\text{dp3} + \text{dp4v5}^*\text{dp4} + \text{dp5v5}^*\text{dp5} + \text{ex1v5}^*\text{ex1} + \text{ex2v5}^*\text{ex2} + \text{ex3v5}^*\text{ex3} + \text{ex4v5}^*\text{ex4} + \text{ex5v5}^*\text{ex5};}$ %let mop = 1 + 1 + 1 + 1 + 30 + 4 + 5;

```
proc nlp data=b3 inest=b14 out=b10 outest=b11 vardef=n maxiter=100 maxfunc=500 tech=quanew update=bfgs FD=CENTRAL FCONV=0 gconv=0;
```

```
max

Iliket;
parms
%parametrosb;
retain resb11 resb12 resb13 resb14 resb15 det5
    resb21 resb22 resb23 resb24 resb25
    y1_1 y1_2 y1_3 y1_4 y1_5
    y2_1 y2_2 y2_3 y2_4 y2_5
    y3_1 y3_2 y3_3 y3_4 y3_5
    y4_1 y4_2 y4_3 y4_4 y4_5
    y5_1 y5_2 y5_3 y5_4 y5_5
    y6_1 y6_2 y6_3 y6_4 y6_5
```

hb11;

inl1c1 inl1c2 inl1c3 inl1c4 inl1c5 inl2c1 inl2c2 inl2c3 inl2c4 inl2c5 inl3c1 inl3c2 inl3c3 inl3c4 inl3c5 inl4c1 inl4c2 inl4c3 inl4c4 inl4c5 inl5c1 inl5c2 inl5c3 inl5c4 inl5c5

```
/*matriz varcov*/
c21=c12;
c31=c13;
c41=c14
c51=c15;
c32=c23;
c42=c24;
c52=c25;
c43=c34;
c53=c35;
c54=c45:
c11=dd1;
c22=dd2;
c33=dd3;
c44=dd4;
c55=dd5;
%do i=1 %to 5:
         %do j=1 %to 5;
                  %let bk=:
                  %do bi=1 %to 5;
                           %let bl=+c&bi&i;
                           %let bm=*c&j&bi;
                           %let bk=&bk &bl&bm;
                  %end:
```

```
%let bj=v&j;
                  hv&i&bj=&bk;
         %end;
%end;
if t=78 then hc11=0.004666;
         else hc11=hb11;
%do i=1 %to &ar;
         if t=78 then do;
                           resc1&i =0;
                           yu1&i=0;
                           end;
                  else do;
                           resc1&i =resb1&i;
                           yu1&i=y1_&i;
         if t<=79 then do;
                  resc2&i=0;
                  yu2&i=0;
                  end;
                  else do;
                  resc2&i=resb2&i;
                  yu2&i=y2_&i;
                  end;
         if t<=80 then yu3&i=0;
                  else yu3&i=y3_&i;
         if t<=81 then yu4&i=0;
                  else yu4&i=y4_&i;
         if t<=82 then yu5&i=0;
                  else yu5&i=y5_&i;
         if t<=83 then yu6&i=0;
                  else yu6&i=y6_&i;
%end;
/*VARCH*/
hv1v1=hv1v1+(ag**2)*(resc11**2)+(ba**2)*hc11;
hv1v2=hv1v2+(ag*ah)*(resc11*resc12);
hv2v1=hv1v2;
hv2v2=hv2v2+(ah**2+ad**2)*(resc12**2);
hv3v3=hv3v3+(ab**2)*(resc13**2);
hv3v5=hv3v5+(ab*ac)*(resc13*resc15);
hv5v3=hv3v5;
hv5v5=hv5v5+(ac**2+aa**2)*(resc15**2);
/*determinante*/
         restt=0;
         llikett=0:
         /*determinante total 5 dim*/
         %let bf=;
         %do ia=1 %to 5;
                  %let ba= +hv1v&ia;
                  %do ib=1 %to 5;
                           %if not(&ib=&ia) %then %do;
                                     %let bb= *hv2v&ib;
```

```
%let kf=0;
                                             %if &ib>&ia %then %let kf=%eval(&kf+1);
                                             %let kb=&ib-&kf;
                                             %do ic=1 %to 5;
                                                      %if not(&ic=&ia) and not(&ic=&ib) %then %do;
                                                               %let bc= *hv3v⁣
                                                               %let kf=0;
                                                               %if &ic>&ia %then %let kf=%eval(&kf+1);
                                                                %if &ic>&ib %then %let kf=%eval(&kf+1);
                                                                %let kc=&ic-&kf;
                                                                %do id=1 %to 5;
                                                                         %if not(&id=&ia) and not(&id=&ib) and
not(&id=&ic) %then %do;
                                                                                  %let bd= *hv4v&id;
                                                                                  %let kf=0;
                                                                                  %if
                                                                                          &id>&ia
                                                                                                      %then
                                                                                                                 %let
kf=%eval(&kf+1);
                                                                                  %if
                                                                                          &id>&ib
                                                                                                      %then
                                                                                                                 %let
kf=%eval(&kf+1);
                                                                                          &id>&ic
                                                                                  %if
                                                                                                      %then
                                                                                                                 %let
kf=%eval(&kf+1);
                                                                                  %let kd=&id-&kf;
                                                                                  %do ie=1 %to 5;
                                                                                           %if
                                                                                                  not(&ie=&ia)
                                                                                                                 and
not(&ie=&ib) and not(&ie=&ic) and not(&ie=&id) %then %do;
                                                                                                     %let
                                                                                                                 be=
*hv5v&ie;
                                                                                                     %let
                                                                                                               bf=&bf
&ba&bb&bc&bd&be *((-1)**(1+&ia+1+&kb+1+&kc+1+&kd));
                                                                                                     %end;
                                                                                  %end
                                                                                  %end;
                                                                %end;
                                                                %end;
                                             %end;
                                             %end;
                           %end;
                  %end;
                  det5=&bf;
                  /*determinante total 5 dim*/
                  %do jl=1 %to 5;
                           %do jc=1 %to 5;
                                    /*determinante dos cofatores 4 dim*/
                                    %let bf=:
                                    %let ca=1;
                                    %if &ca=&jl %then %let ca=%eval(&ca +1);
                                    %do ia=1 %to 5;
                                             %if not(&ia=&jc) %then %do;
                                                      %let kf=0;
                                                      %if &ia>&jc %then %let kf=%eval(&kf+1);
                                                      %let ka=&ia-&kf;
```

```
%let bh=v&ca;
                                                      %let ba= +hv&ia&bh;
                                                      %do ib=1 %to 5;
                                                               %if not(&ib=&jc) and not(&ib=&ia) %then %do;
                                                                        %let kf=0;
                                                                        %if &ib>&jc %then %let kf=%eval(&kf+1);
                                                                        %if &ib>&ia %then %let kf=%eval(kf+1);
                                                                        %let kb=&ib-&kf;
                                                                        %let cb=%eval(&ca +1);
                                                                        %if &cb=&jl %then %let cb=%eval(&cb +1);
                                                                        %let bh=v&cb;
                                                                        %let bb= *hv&ib&bh;
                                                                        %do ic=1 %to 5;
                                                                                 %if not(&ic=&jc) and not(&ic=&ia) and
not(&ic=&ib) %then %do;
                                                                                           %let kf=0;
                                                                                          %if &ic>&jc %then %let
kf=%eval(&kf+1);
                                                                                           %if &ic>&ia %then %let
kf=%eval(&kf+1);
                                                                                           %if &ic>&ib %then %let
kf=%eval(&kf+1);
                                                                                           %let kc=&ic-&kf;
                                                                                           %let cc=%eval(&cb +1);
                                                                                           %if &cc=&jl %then %let
cc=%eval(&cc +1);
                                                                                           %let bh=v&cc;
                                                                                           %let bc= *hv&ic&bh;
                                                                                           %do id=1 %to 5;
                                                                                                   %if not(&id=&jc)
and not(&id=&ia) and not(&id=&ib) and not(&id=&ic) %then %do;
                                                                                                             %let
cd=%eval(&cc +1);
                                                                                                             %if
&cd=&jl %then %let cd=%eval(&cd +1);
                                                                                                             %let
bh=v&cd;
                                                                                                             %let
bd= *hv&id&bh;
                                                                                                             %let
bf=&bf \&ba\&bb\&bc\&bd *((-1)**(1+1+1+\&ka+\&kb+\&kc));
                                                                                                             %end;
                                                                                           %end;
                                                                                           %end;
                                                                         %end:
                                                                         %end;
                                                      %end;
                                                      %end;
                                    %end;
                                    det4=&bf;
                                    /*determinante do cofator 4 dim*/
```

```
/*matriz inversa*/
                                      %let bg=c&jc;
                                      inl\&jl\&bg=(1/det5)*((-1)**(\&jl +\&jc))*det4;
                                      /*matriz inversa*/
                            %end:
                   %end;
         det5b=det5;
         %do i=1 %to 5;
                  hat&i=&&mo&i %ara(&i) %maa(&i);
                  res&i =%nome(&i)-hat&i;
                   resb2&i=resb1&i;
                  resb1&i =res&i;
                   y6_&i=y5_&i;
                  y5_&i=y4_&i;
                  y4_&i=y3_&i;
                  y3_&i=y2_&i;
                   y2_&i=y1_&i;
                   y1_&i=%nome(&i);
         %end;
         hb11=hv1v1;
         /*vetorresiduosTxH-1xvetorresiduosT*/
         %let bf=0;
         %do i=1 %to 5;
                   %do j=1 %to 5;
                            %let bg=c&j*res&i*res&j;
                            %let bf=&bf +inl&i&bg;
                   %end;
         %end;
         /*vetorresiduosTxH-1xvetorresiduosT*/
         detH=det5b;
         rest=&bf;
         lliket=(-0.5*log(detH))-(0.5*(rest));
run;
ods listing close;
ods listing;
%mend inicio;
%macro base;
/*table final em b3*/
/*padroniza séries para evitar problemas de overflow*/
proc sql;
 create table b3 as
   select *,
u1/1e4 as u1n,
 u3/1e3 as u3n,
 u4/1e3 as u4n,
 u5/1e3 as u5n,
 u6/1e3 as u6n
   from sasuser.Agregdia2
```

```
where t<928;
proc sql;
           alter table b3
                       drop u1, u3, u4, u5, u6;
proc sql;
  create table b4 as
    select t,
   u1n as u1,
   u3n as u3,
   u4n as u4,
   u5n as u5,
   u6n as u6
    from b3;
proc sql;
  create table b3 as
    select *
    from b4;
/*pega exógenas e padrozina macros*/
proc sql;
  create table b4 as
    select t, m2, m3, m4, m5, m6, m7, m8, m9, m10, m11, m12, d2, d3, d4, d5, d6, d7, d8, d9, d10, d11, d12, d13, d14, d15,
                       \mathtt{d16},\,\mathtt{d17},\,\mathtt{d18},\,\mathtt{d19},\,\mathtt{d20},\,\mathtt{d21},\,\mathtt{d22},\,\mathtt{d23},\,\mathtt{d24},\,\mathtt{d25},\,\mathtt{d26},\,\mathtt{d27},\,\mathtt{d28},\,\mathtt{d29},\,\mathtt{d30},\,\mathtt{d31},\,\mathtt{dp2},\,\mathtt{dp3},\,\mathtt{dp4},\,\mathtt{dp5}
    from sasuser.Agregdia2;
proc sql;
  create table b5 as
    select t,
                       selic/1e1 as sen,
                       cambio/1e0 as can,
                       defven/1e2 as ven,
                       defcon/1e5 as con,
                       defren/1e5 as ren,
                       (defren-defcon)/1e5 as inv
    from sasuser. Exogenas
                       where t<928;
data b4;
           merge b4 b5;
           by t;
run;
data b4;
           set b4;
           ex1=lag75(sen);
           ex2=lag31(can);
           ex3=lag10(ven);
           ex4=lag10(con);
           ex5=lag3(inv);
run;
data b4;
           drop sen can ven con ren inv;
run;
data b5;
```

```
merge b3 b4;
                                                 by t;
run;
proc sql;
        create table b3 as
                 select *
                 from b5
                                                                                                   where t>77 and t<928;
%mend base;
%macro nome(na);
%if &na=1 %then %let nb=u1;
%if &na=2 %then %let nb=u3;
%if &na=3 %then %let nb=u4;
%if &na=4 %then %let nb=u5;
%if &na=5 %then %let nb=u6;
&nb
%mend nome;
%macro ara(na);
%let nd=;
%do ib=1 %to &at;
                                                 %do ia=1 %to &ar;
                                                                                                   %let nc=_&ia*yu&ib&ia;
                                                                                                   %let ne=_&na&nc;
                                                                                                   %let nd=&nd+ar&ib≠
                                                 %end;
%end;
&nd
%mend ara;
%macro maa(na);
%let nd=;
%do ib=1 %to &am;
                                                 %do ia=1 %to &ar;
                                                                                                   %let nc=_&ia*resc&ib&ia;
                                                                                                   %let ne=_&na&nc;
                                                                                                   %let nd=&nd+ma&ib≠
                                                 %end;
%end;
&nd
%mend maa;
%macro parametrosb;
%let pa=
ctev1,\ av1,\ m2v1,\ m3v1,\ m4v1,\ m5v1,\ m6v1,\ m7v1,\ m8v1,\ m9v1,\ m10v1,\ m11v1,\ m12v1,\ d2v1,\ d3v1,\ d4v1,\ d5v1,\ d6v1,\ d7v1,\ d7v1
d8v1,\ d9v1,\ d10v1,\ d11v1,\ d12v1,\ d13v1,\ d14v1,\ d15v1,\ d16v1,\ d17v1,\ d18v1,\ d19v1,\ d20v1,\ d22v1,\ d22v1,\ d23v1,\ d24v1,\ d22v1,\ d24v1,\ d24v1,
```

d25v1, d26v1, d27v1, d28v1, d29v1, d30v1, d31v1, dp2v1, dp3v1, dp4v1, dp5v1, ex1v1, ex2v1, ex3v1, ex4v1, ex5v1, ctev2, av2, m2v2, m3v2, m4v2, m5v2, m6v2, m7v2, m8v2, m9v2, m1v2, m1v2, m12v2, d2v2, d3v2, d4v2, d5v2, d6v2, d7v2, d8v2, d9v2, d10v2, d11v2, d12v2, d13v2, d14v2, d15v2, d16v2, d17v2, d18v2, d19v2, d20v2, d21v2, d22v2, d23v2, d24v2, d25v2, d26v2, d27v2, d28v2, d29v2, d30v2, d31v2, dp2v2, dp3v2, dp4v2, dp5v2, ex1v2, ex2v2, ex3v2, ex4v2, ex5v2, ctev3, av3, m2v3, m3v3, m4v3, m5v3, m6v3, m7v3, m8v3, m9v3, m1v3, m1v3, m12v3, d2v3, d3v3, d4v3, d5v3, d6v3, d7v3, d8v3, d9v3, d10v3, d11v3, d12v3, d13v3, d14v3, d15v3, d16v3, d17v3, d18v3, d19v3, d20v3, d21v3, d22v3, d23v3, d24v3, d25v3, d26v3, $d27v3,\ d28v3,\ d29v3,\ d30v3,\ d31v3,\ dp2v3,\ dp3v3,\ dp4v3,\ dp5v3,\ ex1v3,\ ex2v3,\ ex3v3,\ ex4v3,\ ex5v3,\ ctev4,\ av4,\ m2v4,\ m3v4,\ m3v4,\$ m4v4, m5v4, m6v4, m7v4, m8v4, m9v4, m10v4, m11v4, m12v4, d2v4, d3v4, d4v4, d5v4, d6v4, d7v4, d8v4, d9v4, d10v4, d11v4, d12v4, d13v4, d14v4, d15v4, d16v4, d17v4, d18v4, d19v4, d20v4, d21v4, d22v4, d23v4, d24v4, d25v4, d26v4, d27v4, d28v4, d29v4, d30v4, d31v4, dp2v4, dp3v4, dp4v4, dp5v4, ex1v4, ex2v4, ex3v4, ex4v4, ex5v4, ctev5, av5, m2v5, m3v5, m4v5, m5v5, m6v5, m7v5, m8v5, m9v5, m10v5, m11v5, m12v5, d2v5, d3v5, d4v5, d5v5, d6v5, d7v5, d8v5, d9v5, d10v5, d11v5, d11v5d12v5, d13v5, d14v5, d15v5, d16v5, d17v5, d18v5, d19v5, d20v5, d21v5, d22v5, d23v5, d24v5, d25v5, d26v5, d27v5, d28v5, d29v5, d30v5, d31v5, dp2v5, dp3v5, dp4v5, dp5v5, ex1v5, ex2v5, ex3v5, ex4v5, ex5v5, ar1_1_1, ar1_1_2, ar1_1_3, ar1_1_4, ar1_1_5, ar1_2_1, ar1_2_2, ar1_2_3, ar1_2_4, ar1_2_5, ar1_3_1, ar1_3_2, ar1_3_3, ar1_3_4, ar1_3_5, ar1_4_1, ar1_4_2, ar1_4_3, ar1_4_4, ar1_4_5, ar1_5_1, ar1_5_2, ar1_5_3, ar1_5_4, ar1_5_5, ar2_1_1, ar2_1_2, ar2_1_3, ar2_1_4, ar2_1_5, ar2_2_1, ar2_2_2, ar2_2_3, ar2_2_4, ar2_2_5, ar2_3_1, ar2_3_2, ar2_3_3, ar2_3_4, ar2_3_5, ar2_4_1, ar2_4_2, ar2_4_3, $ar2_4_4, \ ar2_4_5, \ ar2_5_1, \ ar2_5_2, \ ar2_5_3, \ ar2_5_4, \ ar2_5_5, \ \ ma1_1_1, \ ma1_1_2, \ ma1_1_3, \ ma1_1_4, \ ma1_1_5, \ ma1_1_5, \ ma1_1_6, \ ma1_1_6$ $\mathsf{ma1}_2_1, \mathsf{ma1}_2_2, \mathsf{ma1}_2_3, \mathsf{ma1}_2_4, \mathsf{ma1}_2_5, \mathsf{ma1}_3_1, \mathsf{ma1}_3_2, \mathsf{ma1}_3_3, \mathsf{ma1}_3_4, \mathsf{ma1}_3_5, \mathsf{ma1}_4_1, \mathsf{ma1}_4_2, \mathsf{ma1}_4_1, \mathsf{ma1}_4_2, \mathsf{ma1}_4_1, \mathsf{ma1}_4_2, \mathsf{ma1}_4_2, \mathsf{ma1}_4_3_2, \mathsf{ma1}_4_3_3, \mathsf{ma1}_3_4, \mathsf{ma1}_3_4, \mathsf{ma1}_3_4, \mathsf{ma1}_4_2, \mathsf{ma1}_4_3_3, \mathsf{ma1}_4_3_4, \mathsf{ma1}_4_3_4, \mathsf{ma1}_4_3_4, \mathsf{ma1}_4_3_4, \mathsf{ma1}_4_3_4, \mathsf{ma1}_4_3_4, \mathsf{ma1}_4_3_4, \mathsf{ma1}_4_3_4, \mathsf{ma1}_4_3_4, \mathsf{ma1}_4_4, \mathsf{ma$ ma1_4_3, ma1_4_4, ma1_4_5, ma1_5_1, ma1_5_2, ma1_5_3, ma1_5_4, ma1_5_5, aa, ab, ac, ad, ag, ah, ba, dd1, dd2, dd3, dd4, dd5, c12, c13, c14, c15, c23, c24, c25, c34, c35, c45; &pa

%mend parametrosb:

%inicio:

```
data _null_;
window start

#9 @26 'Acabou'
color=black
#18 @27 'Press ENTER to continue';
display start bell;
stop;
run;
```

APÊNDICE B – Correlações (Cross e Auto) nos Resíduos ε

```
AR p=0, MA q=0
Representação de Tiao e Box
     0 1 2
                         3
                              4
                                    5
                                           6
                                               7 8
DepÀV +++-. ++.+. ++.+. +++.. +.-. ++... ++... ++... ++... ++...
DepGov +++-+ ++.+. ++.+. ++++. +++++ ++... +++... ++... ++...
                 .++.+
                       .++.+
                            .++.+
                                  ..+.+
                                       .++.+
                                             .++-+ .++.+
Trib. ---+- +..-.
                       ..+.+
                            . . . - .
                                  ..++.
                       .++.+
                            ..+.+ ..+.+ ..+.+ .++.+
            + é > 2*erro padrão, - é < -2*erro padrão, . é entre
Teste de Portmanteau para Correlações (cross e auto) nos Resíduos
       Qui2
                  Probabilidade>Qui2
Lag
     1407.14
              25
                   <.0001
1
             50
     2208.18
2
                   <.0001
     2793.73
              75
3
                   <.0001
4
   3283.15 100
                   <.0001
5
   3710.58 125
                    <.0001
6
   3988.36 150
                    <.0001
    4254.61 175
                    <.0001
     4487.66 200
                    <.0001
9
     4649.95 225 <.0001
     4833.19 250 <.0001
HO: não há correlações (cross e autocorrelações)
AR p=1, MA q=0
Representação de Tiao e Box
     0 1
                              4
                                    5
                         3
.-... +..+. ++... +++.+
                                  . . . . -
Rec3os +++.+ +.... +.+.. +.+..
                                             . . + . .
Trib.
                                       ..... ..+.+ ..+..
                            + \acute{e} > 2*erro padrão, - \acute{e} < -2*erro padrão, . \acute{e} entre
Teste de Portmanteau para Correlações (cross e auto) nos Resíduos
      Qui2 DF Probabilidade>Qui2
Laq
             50
     628.90
                   <.0001
              75
3
     829.61
                   <.0001
     986.54 100
                   <.0001
    1120.53 125
                    <.0001
   1208.84 150
                    <.0001
   1313.68 175
                    <.0001
   1388.08 200
                    <.0001
9
   1427.27 225
                    <.0001
   1494.26 250
                   <.0001
HO: não há correlações (cross e autocorrelações)
```

AR p=2, MA q=0

Representação de Tiao e Box

Lag	0	1	2	3	4	5	6	7	8	9	10
DepÀV	+++-+	+.++.	+.+	+.+	+.+.+	+	+.+	+	+.+	+	+
DepGov	+++	+	+	++	+.+.+			++	++		
Rec3os	+++-+	+	+	+	+			+.+	+		.+
Trib.	+-			+.+		+					+.
OPME	+.+-+	+	+	+	+			+.+	+.+		.+
		+ é >	2*erro	padrão,	- é <	-2*err	o padrã	.o, .é	entre		

Teste de Portmanteau para Correlações (cross e auto) nos Resíduos

Lag	Qui2	DF	Probabilidade>Qui2
3	794.80	75	<.0001
4	951.09	100	<.0001
5	1083.85	125	<.0001
6	1165.43	150	<.0001
7	1258.78	175	<.0001
8	1325.78	200	<.0001
9	1364.58	225	<.0001
10	1432.57	250	<.0001

HO: não há correlações (cross e autocorrelações)

AR p=3, MA q=0

Representação de Tiao e Box

Lag	0	1	2	3	4	5	6	7	8	9	10
DepÀV	+++-+	+.++.	+.+	+.+	+.+.+	+	+.+	+	+.+	+	+
DepGov	+++	+	+	+	+.+.+			++	++		
Rec3os	+++-+	+	+	+	+			+	+		.+
Trib.	+-	+		+		+					+.
OPME	+.+-+	+	+	+	+			+	+		.+
		+ é >	2*erro	padrão.	- é <	-2*err	o padrã	o é	entre		

Teste de Portmanteau para Correlações (cross e auto) nos Resíduos

Lag	Qui2	DF	Probabilidade>Qui2
4	871.35	100	<.0001
5	1004.80	125	<.0001
6	1081.47	150	<.0001
7	1163.76	175	<.0001
8	1222.43	200	<.0001
9	1262.34	225	<.0001
10	1326.08	250	<.0001

AR p=4, MA q=0

Representação de Tiao e Box

Lag	0	1	2	3	4	5	6	7	8	9	10
DepÀV	+++-+	+.++.	+.+	+.+	+.+.+	+	+.+	+	+.+	+	+
DepGov	+++		+	+	+.+.+			++	++		
Rec3os	+++-+	+	+	+	+			+	+		.+
Trib.	+-	+									
OPME	+.+-+	+	+	+	+			+.+	+		.+
		+ é >	2*erro	padrão,	- é <	-2*err	o padrã	.o, .é	entre		

Teste de Portmanteau para Correlações (cross e auto) nos Resíduos

Lag	Qui2	DF	Probabilidade>Qui2	
5	987.28	125	<.0001	
6	1061.96	150	<.0001	
7	1145.30	175	<.0001	
8	1206.59	200	<.0001	
9	1244.30	225	<.0001	
10	1303.92	250	<.0001	

HO: não há correlações (cross e autocorrelações)

AR p=5, MA q=0

Representação de Tiao e Box

Lag	0	1	2	3	4	5	6	7	8	9	10
DepÀV	+++-+	+.++.	+.+	+.+	+.+	+.+	+.+	+	+.+	+	+
DepGov	+++		+	+	+	+		++	.+		
Rec3os	+++-+	+	+	+	+	+		+	+		.+
Trib.	+-	+	+.								
OPME	+.+-+	+	+	+		+		+.+	+		.+
		+ á >	2*0220	nadrão	- 6 -	-2*022	o podra	o 6	ontro		

+ é > 2*erro padrão, - é < -2*erro padrão, . é entre

Teste de Portmanteau para Correlações (cross e auto) nos Resíduos

Lag	Qui2	DF	Probabilidade>Qui2
6	1036.52	150	<.0001
7	1118.90	175	<.0001
8	1177.35	200	<.0001
9	1215.26	225	<.0001
10	1271.79	250	<.0001

AR p=0, MA q=1

Representação de Tiao e Box

```
      Lag
      0
      1
      2
      3
      4
      5
      6
      7
      8
      9
      10

      DepÂV
      ++++
      ++--
      +++-
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--
      ++--</td
```

Teste de Portmanteau para Correlações (cross e auto) nos Resíduos

Lag	Qui2	DF	Probabilidade>Qui2
2	660.52	50	<.0001
3	854.08	75	<.0001
4	1094.03	100	<.0001
5	1328.70	125	<.0001
6	1448.65	150	<.0001
7	1566.93	175	<.0001
8	1708.29	200	<.0001
9	1774.48	225	<.0001
10	1899.75	250	<.0001
пΟ.	não bá gommol	20000	(awaga a autogawwalagaaa)

HO: não há correlações (cross e autocorrelações)

AR p=1, MA q=1

Representação de Tiao e Box

Lag	0	1	2	3	4	5	6	7	8	9	10
DepÀV	++	++	++	++	++	++	++	++	++	++	++
DepGov	++	++	++	++	++	++	++	++	++	++	++
Rec3os	+.+	+++						+ . +	+.+		
Trib.	+.		+.	+++		+.+					+.
OPME	+.+	+++	+.					+ . +	+.+		
		+ é >	2*erro	padrão,	- é <	-2*err	o padrã	o, . é	entre		

Teste de Portmanteau para Correlações (cross e auto) nos Resíduos

Lag	Qui2	DF	Probabilidade>Qui2
2	365.37	50	<.0001
3	475.97	75	<.0001
4	533.97	100	<.0001
5	601.66	125	<.0001
6	649.38	150	<.0001
7	737.27	175	<.0001
8	819.66	200	<.0001
9	874.02	225	<.0001
10	945.57	250	<.0001

HO: não há correlações (cross e autocorrelações)

107

AR p=2, MA q=1

Representação de Tiao e Box

Lag	0	1	2	3	4	5	6	7	8	9	10
DepÀV	++				+.+			.+	.+	+	++
DepGov	++			.+	+.+			++	++		++
Rec3os	+-+						+.		+		.+
Trib.	+-				+	+				+.	+.
OPME	+-+						+.		+.+		.+
		+ é >	2*erro	padrão,	- é <	-2*err	o padrã	.o, . é	entre		

Teste de Portmanteau para Correlações (cross e auto) nos Resíduos

		_	·
Lag	Qui2	DF	Probabilidade>Qui2
3	87.69	75	0.1499
4	123.69	100	0.0543
5	169.93	125	0.0047
6	196.79	150	0.0062
7	251.54	175	0.0001
8	304.62	200	<.0001
9	334.54	225	<.0001
10	399.11	250	<.0001

HO: não há correlações (cross e autocorrelações)

AR p=3, MA q=1

Representação de Tiao e Box

Lag	0	1	2	3	4	5	6	7	8	9	10
DepÀV	+++			++	+.+					++	++
DepGov	++			++	+.+			++	.+		++
Rec3os	+-+						+.				++
Trib.	+-		+ .		+					+.	+.
OPME	+.+-+										++
		+ é >	2*erro	padrão,	- é <	-2*err	o padrã	o, . é	entre		

Teste de Portmanteau para Correlações (cross e auto) nos Resíduos

Lag	Qui2	DF	Probabilidade>Qui2
4	109.79	100	0.2366
5	154.28	125	0.0387
6	179.66	150	0.0496
7	232.72	175	0.0023
8	277.90	200	0.0002
9	312.27	225	0.0001
10	372.17	250	<.0001

AR p=4, MA q=1

Representação de Tiao e Box

Lag	0	1	2	3	4	5	6	7	8	9	10
DepÀV	++				+.+			.+			++
DepGov	++			++				++	.+		++
Rec3os	+-+			++			+.				.+
Trib.	+-									+.	+.
OPME	+-+								+		.+
		+ é >	2*erro	padrão,	- é <	-2*err	o padrã	.o, .é	entre		

Teste de Portmanteau para Correlações (cross e auto) nos Resíduos

Lag	Qui2	DF	Probabilidade>Qui2
5	122.30	125	0.5516
6	140.83	150	0.6922
7	190.08	175	0.2062
8	230.10	200	0.0710
9	258.64	225	0.0613
10	307.93	250	0.0073

HO: não há correlações (cross e autocorrelações)

AR p=1, MA q=2

Representação de Tiao e Box

Lag	0	1	2	3	4	5	6	7	8	9	10
DepÀV	++	++	++	++	+	.+		++	.+	++	++
DepGov	++	++	++	++	.+	.+		++	++	++	++
Rec3os	+-+								+.+		
Trib.	+-			+		+.+					+.
OPME	+-+				+.			+ . +	+		
		+ é >	2*erro	padrão,	- é <	-2*err	o padrã	o, . é	entre		

Teste de Portmanteau para Correlações (cross e auto) nos Resíduos

Lag	Qui2	DF	Probabilidade>Qui2	
3	201.46	75	<.0001	
4	245.31	100	<.0001	
5	299.74	125	<.0001	
6	325.09	150	<.0001	
7	386.72	175	<.0001	
8	452.16	200	<.0001	
9	495.69	225	<.0001	
10	574.81	250	<.0001	

AR p=2, MA q=2

Representação de Tiao e Box

Lag	0	1	2	3	4	5	6	7	8	9	10
DepÀV	++				+.+				.+		++
DepGov	++			.+	+.+			++	.+		++
Rec3os	+-+						+.		+		.+
Trib.	+-				+					+.	+.
OPME	+-+						+.	+	+.+		.+
		+ é >	2*erro	padrão,	- é <	-2*err	o padrã	.o, .é	entre		

Teste de Portmanteau para Correlações (cross e auto) nos Resíduos

		_	·
Lag	Qui2	DF	Probabilidade>Qui2
3	88.95	75	0.1295
4	124.26	100	0.0505
5	171.13	125	0.0039
6	201.49	150	0.0032
7	259.54	175	<.0001
8	313.12	200	<.0001
9	341.45	225	<.0001
10	397.09	250	<.0001

HO: não há correlações (cross e autocorrelações)

AR p=3, MA q=2

Representação de Tiao e Box

Lag	0	1	2	3	4	5	6	7	8	9	10
DepÀV	+++	++	++	++	+.+			.+	.+	++	++
DepGov	++	++	++	++	+.+			++	++	++	++
Rec3os	+-+		.+								.+
Trib.	+-									+.	+.
OPME	+.+-+		.+								.+
		+ é >	2*erro]	padrão,	- é <	-2*err	o padrã	o, . é	entre		

Teste de Portmanteau para Correlações (cross e auto) nos Resíduos

Lag	Qui2	DF	Probabilidade>Qui2
4	107.58	100	0.2844
5	148.45	125	0.0748
6	170.45	150	0.1212
7	223.20	175	0.0081
8	272.42	200	0.0005
9	315.54	225	<.0001
10	382.05	250	<.0001

AR p=4, MA q=2

Representação de Tiao e Box

Lag	0	1	2	3	4	5	6	7	8	9	10
DepÀV	++		.+	++				.+	.+	++	++
DepGov	++		.+	++				++	++		++
Rec3os	+-+								+		.+
Trib.	+-			+						+.	+.
OPME	+-+								+		.+
		+ é >	2*erro	padrão,	- é <	-2*err	o padrã	.o, .é	entre		

Teste de Portmanteau para Correlações (cross e auto) nos Resíduos

Lag	Qui2	DF	Probabilidade>Qui2	
5	103.36	125	0.9214	
6	125.04	150	0.9320	
7	177.71	175	0.4288	
8	220.42	200	0.1535	
9	260.57	225	0.0519	
10	303.57	250	0.0115	

HO: não há correlações (cross e autocorrelações)

111