Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio2.unb.br/jspui/handle/10482/38838
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2020_AndreyBarbosaGuimarães.pdf7,59 MBAdobe PDFVisualizar/Abrir
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorGontijo, Rafael Gabler-
dc.contributor.authorGuimarães, Andrey Barbosa-
dc.date.accessioned2020-07-02T22:00:00Z-
dc.date.available2020-07-02T22:00:00Z-
dc.date.issued2020-07-02-
dc.date.submitted2020-04-22-
dc.identifier.citationGUIMARÃES, Andrey Barbosa. Dinâmica de Langevin aplicada ao estudo de magnetohipertermia em suspensões magnéticas. 2020. 190 f., il. Tese (Doutorado em Ciências Mecânicas)—Universidade de Brasília, Brasília, 2020.pt_BR
dc.identifier.urihttps://repositorio.unb.br/handle/10482/38838-
dc.descriptionTese (doutorado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Mecânica, 2020.pt_BR
dc.description.abstractNeste trabalho é realizado um estudo computacional, por meio de simulações diretas de partículas usando Dinâmica de Langevin, para examinar propriedades macroscópicas relaci- onadas à microestrutura de uidos magnéticos, com o próposito de entender como as intera- ções hidrodinâmicas de longo alcance e dipolares entre partículas magnéticas inuenciam o comportamento da susceptibilidade complexa de uma suspensão magnética submetida a um campo magnético oscilatório. Foi considerado nas simulações um domínio com condições de contorno periódicas para calcular adequadamente as interações entre as partículas através da técnica de somas de Ewald, solucionando o problema de divergência devido ao lento decaimento das interações. A parte real χ 0 da susceptibilidade complexa está relacionada com o armazenamento de energia de campo magnético, enquanto a parte imaginária χ 00 com a dissipação de energia e geração de calor. A parte imaginária da suscetibilidade com- plexa, prevista pelas simulações, é apresentada em termos de frequência angular, interações campo-partículas, interações dipolares, fração volumétrica de partículas e do número de Péclet. Essa propriedade é usada para investigar o processo de magnetohipertermia que é um campo extremamente promissor de tratamento terapêutico de câncer, através da morte de células tumorais por elevação local da temperatura, induzida pelas partículas magnéti- cas submetidas a um campo magnético oscilatório. Dessa forma, foi estudado a inuência das interações hidrodinâmicas e dipolares na taxa média de aumento de temperatura. Os resultados mostram que as interações dipolares induzem as formações não homogêneas de iii cadeias e agregados de partículas aumentando a geração de calor por dissipação de energia magnética, enquanto as interações hidrodinâmicas atenuam esse efeito. As simulações da dinâmica de uidos magnéticos foram realizadas para o modelo de "dipolo xo", em que o momento magnético de partículas é xado em relação à própria partícula. Nossos estudos também sugerem que a maneira de combinar e controlar parâmetros físicos em frequên- cia moderada do campo oscilatório aplicado pode melhorar o desempenho de aquecimento da magnetohipertermia. Os resultados numéricos foram comparados com soluções analí- ticas assintóticas, nas mesmas condições de parâmetros físicos, para um número pequeno de Péclet na ausência de interações hidrodinâmicas mostrando uma excelente concordância.pt_BR
dc.language.isoPortuguêspt_BR
dc.rightsAcesso Abertopt_BR
dc.titleDinâmica de Langevin aplicada ao estudo de magnetohipertermia em suspensões magnéticaspt_BR
dc.title.alternativeLangevin dynamics applied to the study of magnetic hyperthermia in magnetic suspensionspt_BR
dc.typeTesept_BR
dc.subject.keywordSuspensões magnéticaspt_BR
dc.subject.keywordFluidos magnéticospt_BR
dc.subject.keywordMagnetohipertermiapt_BR
dc.rights.licenseA concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data.pt_BR
dc.contributor.advisorcoCunha, Francisco Ricardo-
dc.description.abstract1In this work, a computational study is performed through direct particle simulations using Langevin Dynamics, to examine macroscopic properties related to the microstructure of magnetic uids, to understand how long range hydrodynamic interactions and dipolar interactions between magnetic particles inuence the complex susceptibility of a magnetic suspension subjected to an oscillating magnetic eld. In the simulations a domain with periodic boundary conditions was considered to calculate the interactions between the par- ticles using the Ewald sums technique, solving the divergence problem because of the slow decay of interactions. The real part of complex susceptibility , denoted by χ 0 is related to the storage of magnetic eld energy, while the imaginary part χ 00 is associated with energy dissipation and heat generation. The imaginary part of the complex susceptibility predic- ted by the simulations is presented in terms of angular frequency, eld-particle interactions, dipolar interactions, volume fraction of particles and Péclet number. This property is used to investigate the process of magnetic hyperthermia, being an extremely promising eld of therapeutic cancer treatment through tumor cells death by local temperature rise induced by magnetic particles subjected to an oscillating magnetic eld. Thus, was studied the inu- ence of hydrodynamic and dipolar interactions on the average rate of temperature increase. The results show that dipolar interactions induce inhomogeneous formations of chains and particle aggregates increasing heat generation by magnetic energy dissipation, while hy- v drodynamic interactions attenuate this eect. The magnetic uid dynamics simulations were performed for the "xed dipole", in which the magnetic moment of particles is xed in relation to the particle. Our studies also suggest that the way to combine and control the moderate frequency physical parameters of the applied oscillatory eld may improve the heating performance of magnetic hyperthermia. Numerical results were compared with asymptotic analytical solutions under the same physical parameter conditions for a small number of Péclet in the absence of hydrodynamic interactions showing excellent agreement.pt_BR
dc.description.unidadeFaculdade de Tecnologia (FT)pt_BR
dc.description.unidadeDepartamento de Engenharia Mecânica (FT ENM)pt_BR
dc.description.ppgPrograma de Pós-Graduação em Ciências Mecânicaspt_BR
Aparece nas coleções:Teses, dissertações e produtos pós-doutorado

Mostrar registro simples do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.