

UMA SISTEMATIZAÇÃO DA ESTIMAÇÃO POR PONTOS SIGMA

HENRIQUE MARRA MENEGAZ

DISSERTAÇÃO DE MESTRADO EM ENGENHARIA ELÉTRICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA

FACULDADE DE TECNOLOGIA

**UNIVERSIDADE DE BRASÍLIA** 

# UNIVERSIDADE DE BRASÍLIA FACULDADE DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA

# UMA SISTEMATIZAÇÃO DA ESTIMAÇÃO POR PONTOS SIGMA

# HENRIQUE MARRA MENEGAZ

DISSERTAÇÃO DE MESTRADO ACADÊMICO SUBMETIDA AO DEPARTAMENTO DE ENGENHARIA ELÉTRICA DA FACULDADE DE TECNOLOGIA DA UNIVERSI-DADE DE BRASÍLIA COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE MESTRE EM ENGENHARIA ELÉTRICA.

**APROVADA POR:** 

Prof. João Yoshiyuki Ishihara, ENE/UnB (Orientador)

Leonardo R. A. X. Menezes, ENE/UnB Membro interno

Alessandro do Nascimento Vargas, UTFPR Membro externo

BRASÍLIA, 05 DE AGOSTO DE 2011.

# FICHA CATALOGRÁFICA

| MENEGAZ, HENRIQUE MARRA                                                      |                               |  |
|------------------------------------------------------------------------------|-------------------------------|--|
| UMA SISTEMATIZAÇÃO DA ESTIMAÇÃOPOR PONTOS SIGMA [Distrito Federa             |                               |  |
| 2011.                                                                        |                               |  |
| xi, 259p., 210 x 297 mm (ENE/FT/UnB, Mestre, Engenharia Elétrica, 2011).     |                               |  |
| Dissertação de Mestrado – Universidade de Brasília, Faculdade de Tecnologia. |                               |  |
| Departamento de Engenharia Elétrica                                          |                               |  |
| 1. Pontos sigma                                                              | 2. estimação estocástica      |  |
| 3. filtragem não-linear                                                      | 4. FIltro de Kalman Unscented |  |
| I. ENE/FT/UnB                                                                | II. Título (série)            |  |

# **REFERÊNCIA BIBLIOGRÁFICA**

MENEGAZ, H. M. (2011). UMA SISTEMATIZAÇÃO DA ESTIMAÇÃOPOR PONTOS SIGMA, Dissertação de Mestrado em Engenharia Elétrica, Publicação PGEA.DM -453/2011, Departamento de Engenharia Elétrica, Universidade de Brasília, Brasília, DF, 259p.

# **CESSÃO DE DIREITOS**

AUTOR: Henrique Marra Menegaz TÍTULO: UMA SISTEMATIZAÇÃO DA ESTIMAÇÃOPOR PONTOS SIGMA. GRAU: Mestre ANO: 2011

É concedida à Universidade de Brasília permissão para reproduzir cópias desta dissertação de mestrado e para emprestar ou vender tais cópias somente para propósitos acadêmicos e científicos. O autor reserva outros direitos de publicação e nenhuma parte dessa dissertação de mestrado pode ser reproduzida sem autorização por escrito do autor.

Henrique Marra Menegaz Departamento de Eng. Elétrica (ENE) - FT Universidade de Brasília (UnB) Campus Darcy Ribeiro CEP 70919-970 - Brasília - DF - Brasil

Às minhas duas famílias.

### AGRADECIMENTOS

Em primeiro lugar agradeço a Deus e à sua Mãe. De fato, Ele não quis apenas que existíssemos, mas que também tivéssemos parte em sua criação e, no fim das contas, este trabalho, assim como todos os outros, são desenvolvimentos desse querer divino. A ela, aqui, agradeço singelamente aos auxílios particulares, que são incontáveis.

Registro aqui também os meus carinhosos agradecimentos à minha família natural - meu pai, Menandro, minha mãe, Mary, e meus irmão, Felipe e Gabriel - e aos meus amigos mais íntimos - a estes não nomearei, pois são muitos. Embora essas pessoas pertença a grupos de relações desvinculadas diretamente com esse trabalho, são, verdadeiramente, os principais contribuintes deste trabalho.

Com efeito, os acontecimentos um pouco mais extraordinários são conhecidos e compartilhados até mesmo com as pessoas mais desconhecidas. Mas esses acontecimentos são apenas o resultado visível de todo um conjunto de desenvolvimentos que se dá na vida corrente, que é, de certa forma, escondida. Essa, sim, é que contém os fatos mais importantes, pois são basilares e contêm a parte mais substancial da vida. É mais ou menos como o corpo de um iceberg, cuja maior parte fica submersa.

Também não posso deixar de lembrar de meus amigos do LARA (que não necessariamente estão fora dos "amigos mais íntimos"). Entre esses, faço questão de destacar aqueles da pós-graduação que compartilharam mais de perto os percalços que circundam a composição deste trabalho e são, de certa forma, colaboradores dele: o Eduardo, o Pedro Santana, o Luis Felipe, o Roberto, o Glauco, a Mariana, a Cláudia, o Renato. Também menciono aqui pela amizade e pela ajuda os graduandos Felipe, Bruno, Nelson, Rafael, Pedro Borges, Pedro Dória, Vinicius e Daniel.

Faço menção também de todos os meus amigos, mesmos de tempos mais antigos, que por questões de escolhas feitas durante a vida podem acabar se afastando do contato mais permanente, mas que ainda fazem parte, de alguma forma, de minha vida, pois a verdadeira amizade é perene. São eles os companheiros de minha juventude e da minha graduação.

Deixo os últimos agradecimentos aos meus orientadores: ao Prof. João Ishihara e ao Prof. Geovany Borges. Acho imperativo deixar exposto aqui o apoio não apenas técnico, mas também, e não menos importante, humano. Acho que me faço entender com isso. Pelo menos a eles.

## **RESUMO**

# UMA SISTEMATIZAÇÃO DA ESTIMAÇÃO POR PONTOS SIGMA

## Autor: Henrique Marra Menegaz

Orientador: Prof. João Yoshiyuki Ishihara, ENE/UnB

Coorientador: Prof. Geovany Araújo Borges, ENE/UnB

Programa de Pós-graduação em Engenharia Elétrica

## Brasília, 05 de agosto de 2011

Assim como no caso de outros sistemas reais, a filtragem linear não é capaz de prover boas estimativas de estados de foguetes e, portanto, filtros não-lineares se fazem necessários. Entre esses, uma classe que tem se mostrado promissora é a dos filtros de Kalman unscented. No entanto, observa-se na literatura que há diversas definições desses filtros. Em vista disso, este trabalho propõe uma sistematização teórica dos filtros de Kalman unscented.

Extensões tanto para as representações de pontos sigma quanto para a Transformada Unscented foram feitas. Além de conter todos os filtros de Kalman unscented já existentes na literatura, a sistematização proposta permite identificar que alguns destes filtros unscented contêm erros e inconsistências e permite, também, gerar novos filtros.

## ABSTRACT

# A SISTEMATIZATION OF THE SIGMA POINTS ESTIMATION

## **Author: Henrique Marra Menegaz**

Supervisor: Prof. João Yoshiyuki Ishihara, ENE/UnB

Co-advisor: Prof. Geovany Araújo Borges, ENE/UnB

Programa de Pós-graduação em Engenharia Elétrica

### Brasília, 05th August 2011

As for other real systems problems, the linear filtering is not able to provide good estimatives of rockets' states and, therefore, nonlinear filters are necessary. Among these, a class that has been showing promising is the unscented Kalman filters one. However, it can be seen in the literature that there are diverse definitions of these filters. For this reason, this work proposes a theoretical sistematization of the unscented Kalman filters.

Extensions for both the sigma point sets and the Unscented Transform have been done. Beyond the fact the proposed sistematization contains all the unscented Kalman filters of the literature, it allows us to identify that some of these unscented filters contain errors and inconsistencies and allows, also, to generate new filters.

# SUMÁRIO

| 1 | INTRODUÇÃO                                               | 1     |
|---|----------------------------------------------------------|-------|
|   | 1.1 Contribuições desta dissertação                      | 3     |
|   | 1.2 Organização do trabalho                              | 6     |
| 2 | PRELIMINARES                                             | 7     |
|   | 2.1 Cálculo Matricial                                    | 7     |
|   | 2.1.1 Derivada de função de matriz                       | 8     |
|   | 2.1.2 Série de Taylor                                    | 8     |
|   | 2.2 VARIÁVEIS ALEATÓRIAS                                 | 9     |
|   | 2.2.1 Momentos de uma variável aleatória                 | 9     |
|   | 2.2.2 Momentos de um conjunto de amostras                | 11    |
|   | 2.3 FILTRO DE KALMAN                                     | 13    |
|   | 2.3.1 FILTRO DE KALMAN PARA SISTEMAS LINEARES            | 13    |
|   | 2.3.2 FILTRO DE KALMAN ESTENDIDO                         | 14    |
|   | 2.4 FILTROS DE KALMAN Unscented                          | 15    |
|   | 2.4.1 FILTROS DE KALMAN Unscented: FORMA BÁSICA          | 16    |
|   | 2.4.2 FILTRO DE KALMAN UNSCENTED ESCALADO                | 38    |
|   | 2.4.3 FILTRO DE KALMAN UNSCENTED RAIZ QUADRADA           | 47    |
|   | 2.5 APLICAÇÕES DAS TÉCNICAS DE ESTIMAÇÃO UNSCENTED       | 50    |
| 3 | SIGMA-REPRESENTAÇÃO DE UMA VARIÁVEL ALEATÓRIA            | 53    |
|   | 3.1 Estimação e filtragem estocásticas                   | 53    |
|   | 3.1.1 Estimação da transformação de uma variável aleatór | IA 53 |
|   | 3.1.2 FILTRAGEM ESTOCÁSTICA                              | 54    |
|   | 3.1.3 Introdução à Transformação Unscented               | 57    |
|   | 3.2 SIGMA-REPRESENTAÇÃO                                  | 62    |
| 4 | SIGMA-REPRESENTAÇÕES PARTICULARES                        | 67    |
|   | 4.1 SIGMA-REPRESENTAÇÃO SIMÉTRICA                        | 67    |
|   | 4.2 SIGMA-REPRESENTAÇÕES MÍNIMAS                         | 73    |
|   | 4.2.1 SIGMA-REPRESENTAÇÃO MÍNIMA PARTICULAR              | 73    |
|   | 4.2.2 SIGMA-REPRESENTAÇÃO MÍNIMA                         | 83    |
| 5 | TRANSFORMAÇÕES POR PONTOS SIGMA                          | 95    |
|   | 5.1 TRANSFORMAÇÃO POR PONTOS SIGMA                       | 95    |
|   | 5.2 TRANSFORMAÇÃO POR PONTOS SIGMA ESCALADA              | 100   |

| 6  | FILTRAGEM POR PONTOS SIGMA RECURSIVA 107                     |
|----|--------------------------------------------------------------|
|    | 6.1 FILTRAGEM RECURSIVA COM A SIGMA-REPRESENTAÇÃO107         |
|    | 6.2 FILTRAGEM RECURSIVA RAIZ QUADRADA POR PONTOS SIGMA133    |
| 7  | SIMULAÇÕES149                                                |
|    | 7.1 EXEMPLO 1                                                |
|    | 7.2 EXEMPLO 2                                                |
| 8  | CONCLUSÕES                                                   |
|    | 8.1 Sugestão de Trabalhos futuros                            |
| RI | EFERÊNCIAS BIBLIOGRÁFICAS196                                 |
| Aľ | NEXOS                                                        |
| A  | RESULTADOS DE ESTATÍSTICA                                    |
|    | A.1 Resultados de variável aleatória                         |
|    | A.1.1 Momentos de uma transformada215                        |
|    | A.1.2 Momentos de uma transformada escalada                  |
|    | A.1.3 VARIÁVEL ALEATÓRIA SIMÉTRICA                           |
|    | A.2 RESULTADOS DE CONJUNTO DE AMOSTRAS                       |
|    | A.2.1 Momentos da transformada de um conjunto de amostras237 |
|    | A.2.2 Momentos amostrais de uma transformação escalada244    |
|    | A.2.3 Conjunto de pontos simétricos248                       |
| B  | ALGUNS RESULTADOS DE ALGEBRA LINEAR                          |

# LISTA DE FIGURAS

| 3.1 | Comparação entre o modelo linearizado e Transformada Unscented | 62  |
|-----|----------------------------------------------------------------|-----|
| 7.1 | Erros das posturas na simulação de SLAM                        | 193 |

# LISTA DE TABELAS

| 7.1  | Tabela com os erros de cada função para $norm([1], [10])$                           | . 156 |
|------|-------------------------------------------------------------------------------------|-------|
| 7.2  | Tabela com os erros de cada função para $chi2([10])$                                | . 157 |
| 7.3  | Tabela com os erros de cada função para $exp([10])$                                 | . 158 |
| 7.4  | Tabela com os erros de cada função para $ev([10], [10])$                            | . 159 |
| 7.5  | Tabela com os erros de cada função para $gev([0], [10], [10])$                      | . 160 |
| 7.6  | Tabela com os erros de cada função para $beta([10], [10])$                          | . 161 |
| 7.7  | Tabela com os erros de cada função para $gamma([10], [10])$                         | . 162 |
| 7.8  | Tabela com os erros de cada função para $logn([0.25], [0.5])$                       | . 163 |
| 7.9  | Tabela com os erros de cada função para $pois$ ([12])                               | . 164 |
| 7.10 | Tabela com os erros de cada função para $rayl([10])$                                | . 165 |
| 7.11 | Tabela com os erros de cada função para $T([10])$                                   | . 166 |
| 7.12 | Tabela com os erros de cada função para $unif([0], [10])$                           | . 167 |
| 7.13 | Tabela com os erros de cada função para $norm([1, 5], P_{norm}^2)$                  | . 168 |
| 7.14 | Tabela com os erros de cada função para $chi2([10, 5])$                             | . 169 |
| 7.15 | Tabela com os erros de cada função para $exp([10, 5])$                              | . 170 |
| 7.16 | Tabela com os erros de cada função para $ev([10, 5], [10, 5])$                      | . 171 |
| 7.17 | Tabela com os erros de cada função para $gev([0], [10, 5], [10, 5])$                | . 172 |
| 7.18 | Tabela com os erros de cada função para $beta([10, 5], [10, 5])$                    | . 173 |
| 7.19 | Tabela com os erros de cada função para $gamma([10, 5], [10, 5])$                   | . 174 |
| 7.20 | Tabela com os erros de cada função para $logn$ ([0.25, 0.35], [0.5, 0.6])           | . 175 |
| 7.21 | Tabela com os erros de cada função para $pois([2,3])$                               | . 176 |
| 7.22 | Tabela com os erros de cada função para $rayl([10, 5])$                             | . 177 |
| 7.23 | Tabela com os erros de cada função para $T([10, 5])$                                | . 178 |
| 7.24 | Tabela com os erros de cada função para $unif([0,0], [10,5])$                       | . 179 |
| 7.25 | Tabela com os erros de cada função para $norm([1, 5, 3], P_{norm}^3)$               | . 180 |
| 7.26 | Tabela com os erros de cada função para $chi2([10, 5, 2])$                          | . 181 |
| 7.27 | Tabela com os erros de cada função para $exp([10, 5, 2])$                           | . 182 |
| 7.28 | Tabela com os erros de cada função para $ev([10, 5, 2], [10, 5, 2])$                | . 183 |
| 7.29 | Tabela com os erros de cada função para $gev([0], [10, 5, 2], [10, 5, 2])$          | . 184 |
| 7.30 | Tabela com os erros de cada função para $beta([10, 5, 2], [10, 5, 2])$              | . 185 |
| 7.31 | Tabela com os erros de cada função para $gamma([10, 5, 2], [10, 5, 2])$             | . 186 |
| 7.32 | Tabela com os erros de cada função para $logn$ ([0.25, 0.35, 0.45], [0.5, 0.6, 0.7] | )187  |
| 7.33 | Tabela com os erros de cada função para $pois([2,3,4])$                             | . 188 |
| 7.34 | Tabela com os erros de cada função para $rayl([10, 5, 2])$                          | . 189 |
| 7.35 | Tabela com os erros de cada função para $T([10, 5, 2])$                             | . 190 |
| 7.36 | Tabela com os erros de cada função para $unif([0,0], [10,5,2])$                     | . 191 |
| 7.37 | Erros das posturas na simulação de SLAM                                             | . 193 |

# 1 INTRODUÇÃO

Dentro da linha de pesquisa do LARA (Laboratório de Robótica e Automação do Departamento de Engenharia Elétrica da Universidade de Brasília) na área aero-espacial, um problema importante é o rastreamento de foguetes. Ele geralmente é dividido em três fases: a impulsão (do inglês "boost"), a balística (do inglês "ballistic") e a reentrada (do inglês "reentry"). A impulsão dura do lançamento até o corte da aceleração e consiste na fase em que o foguete está na endo-atmosfera. A balística é a fase em que o foguete atinge a exoatmosfera e dura até que o foguete volte à atmosfera. A reentrada começa quando o arrasto da atmosfera se torna considerável e dura até o impacto. Em geral todas essas três fases são descritas com modelos não-lineares[1].

Portanto, para que possa ser feito o rastreamento de foguetes, é preciso que técnicas de filtragem não-linear sejam implementadas. São várias as técnicas de estimação não-linear que há: Filtro de Kalman Estendido ([2, 3]), filtros de segunda ordem [4, 5, 6], filtros soma de gaussianas [7, 8, 9], filtros unscented [10, 11, 12, 13], filtros de partículas [14, 15, 16, 17, 18], filtros robustos [19, 20, 21, 22, 23, 24, 25], filtros  $H_{\infty}$  [26, 27, 28, 29, 30], filtros de múltiplos modelos [31, 19, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43], entre outros.

Entre esses, destacamos em primeiro lugar o Filtro de Kalman Estendido (FKE), pois é utilizado em um grande número de aplicações tais como rastreamento de foguetes [44], ratreamento de satélites [45], estimação de atitude [46, 47], robótica aérea[48], *Simultaneous Localization and Mapping* (SLAM) [49, 50, 51, 52, 53], rastreamento de veículos terrestres [54], motores de indução [55], estimação de frequência de sinais harmônicos não-estacionários [56, 57], próteses biomédicas [58, 59], estimação da temperatura de fornalhas industriais [60], estimação de sistemas hidroestáticos [61], localização "indoor"via wireless [62], estimação da carga de baterias [63], estimação de insulina do plasma corporal [64], eletroencefalografia [65]. O FKE é obtido pelo truncamento de primeira ordem das séries de Taylor das funções do modelo dinâmico.

Vários filtros foram propostos procurando melhorar aspectos computacionais relativos ao FKE. Uma classe desses é a dos filtros de segunda ordem que são obtidos mediante o truncamento de segunda ordem das séries de Taylor das funções. Isso acarreta um incremento tanto no custo computacional, quanto na qualidade da estimativa quando comparados com o FKE.

Outra classe de estimação não-linear que procura melhorar as estimativas em relação ao FKE é a dos filtros de sistemas hibridos. Na aplicação desse tipo de filtro, o modelo do sistema dinâmico é dividido em modelos mais simples. Assim, os filtros híbridos têm a característica de fazer a junção das estimativas geradas por cada um desses modelos. No entanto, embora os filtros híbridos sirvam para modelar um sistema mais complexo em outros mais simples, muitas vezes esses modelos ainda serão não-lineares, de modo que, nesses casos, ainda será necessária a utilização de outros filtros não-lineares.

Uma outra alternativa com relação ao FKE é o Filtro de Kalman Unscented (FKU), que é obtido por meio da aproximação das distribuições de probabilidade - e não pela aproximação das funções, como nos casos dos filtros Estendido e de segunda ordem - por conjuntos de pontos ponderados [13].

Com efeito, os FKUs têm se mostrado bastante promissores. Em muitas aplicações, têm se percebido o melhor desempenho dos FKUs em relação aos FKEs, como em estimação de foguetes [44], estimação da carga de baterias [63], estimação de frequência de sinais harmônicos não-estacionários [57], estimação de insulina do plasma corporal [64], estimação da localização de satélites [66], processos de fermentação [67], eletroencefalografia [65], rastreamento de alvos em manobra [68, 69], treinamento de redes neurais [70], comportamento de mercado [71], localização de robô por visão [72], rastreamento "indoor"[73], SLAM visual [74], estimação de altitude [75, 76], SLAM [77, 78], robótica aérea [79], motores [80].

Esse melhor desempenho dos FKUs em relação aos FKEs pode ser explicado, em grande parte, pelos seguintes fatos [13, 81]:

- O esforço computacional FKU é da mesma ordem do FKE enquanto fornece estimativas comparáveis às dos filtros de segunda ordem.
- O FKE tem a necessidade de calcular a cada iteração as matrizes jacobianas das funções. No FKU as estimativas são calculadas diretamente sem a necessidades das jacobianas.

Entretanto, observamos também que os valores dos pontos sigma, de seus respectivos pesos e de sua quantidade são atribuídos de forma *ad hoc*.

Ademais, notamos que existem várias definições de filtros de Kalman unscented na literatura, como os simétricos de Julier ([82, 10, 12, 13]) - que são os mais usados -, o reduzido de [83], o esférico reduzido de [84], o escalado de [85] e o filtro raiz quadrada de [86]. Verificase, ainda, que algumas definições não são consistentes, como nos casos do filtro unscented mínimo de [83] e do esférico reduzido de [84] (conforme apresentamos na seção 2.4).

Buscando uma justificação formal das técnicas existentes, assim como uma unificação dos diversos filtros, temos como objetivo deste trabalho a sistematização da teoria de estimação por pontos sigma.

Como uma consequência dessa sistematização, obtivemos o primeiro filtro de Kalman unscented consistente constituído do menor número de pontos sigma possível - n+1-(vide seção 2.4). Esse filtro é particularmente vantajoso em dois casos: (1) quando se utiliza alguma técnica de estimação de múltiplos modelos em que mais de um filtro de Kalman está sendo utilizado, visto que isso implica em um aumento do custo computacional; (2) quando a

plataforma de implementação do filtro é embarcada e, em consequência, dispõe-se de poucos recursos computacionais.

Uma vez que na literatura existe uma confusão dos conceitos de conjunto de pontos sigma, transformada unscented (TUs) e o filtro unscented - por exemplo, [87] chama de Transforma Unscented a aproximação de uma variável aleatória, [88, 89] chamam de Transformação Unscented a aproximação de uma densidade de probabilidade conjunta por uma gaussiana conjunta e [90] chama de filtro unscented os conjuntos de pontos sigma - estabelecemos, nesta dissertação, definições claras para estes conceitos. Com efeito, um conjunto de pontos sigma é a aproximação da distribuição de uma variável aleatória por um conjunto de pontos ponderados (seção 3.2). Uma TU é uma aproximação da distribuição de probabilidade conjunta de duas variáveis aleatórias, sendo que uma é o resultado da transformação da outra (seção 5.1). Um FKU se utiliza de uma TU de forma recursiva tanto na função de processo quanto na função de medição de um sistema dinâmico (capítulo 6).

Assim, faremos primeiro o estudo dos conjuntos de pontos sigma para depois fazermos nossa definição de Transformação por Pontos Sigma e finalmente chegarmos aos Filtros de Kalman por Pontos Sigma.

# 1.1 CONTRIBUIÇÕES DESTA DISSERTAÇÃO

As contribuições desta dissertação são:

- 1. Sistematização de todos resultados envolvendo os filtros de kalman unscented. De modo mais concreto, propomos:
  - (a) o conceito de  $\sigma$ -representação, que é capaz de englobar todos os conjuntos de pontos sigma até então propostos e de proporcionar dois novos (Definição 3.2.1, seção 3.2);
  - (b) a definição da Transformação por Pontos Sigma, que é um caso geral das transformadas unscented presentes na literatura (Definição 3.2.1, seção 5.1);
  - (c) a definição da Transformação por Pontos Sigma Escalada, que é um caso geral da Transformada Unscented Escalada (Definição 5.2.1, seção 5.2);
  - (d) o Filtro de Kalman Unscented por Pontos Sigma Aumentado (Algoritmo 6.1.1, seção 6.1) e o Filtro de Kalman Unscented Aditivo (Algoritmo 6.1.3, seção 6.1), que são casos gerais, respectivamente, dos filtros de Kalman unscented aumentados e dos filtros de Kalman unscented aditivos;
  - (e) o Filtro de Kalman Unscented por Pontos Sigma Aumentado Escalado (Algoritmo 6.1.2, seção 6.1) e o Filtro de Kalman Unscented Aditivo Escalado (Algoritmo 6.1.4, seção 6.1), que são casos gerais, respectivamente, dos filtros de

Kalman unscented aumentados escalados e dos filtros de Kalman unscented aditivos escalados;

- (f) o Filtro de Kalman por Pontos Sigma Raiz Quadrada (FKPSRQ, Algoritmo 6.2.1, seção 6.2) do qual o Filtro de Kalman Unscented Raiz Quadrada proposto por Merwe deriva como um particular (seção 6.2).
- 2. Como corolários da  $\sigma$ -representação, obtivemos:
  - (a) a  $\sigma$ -representação Simétrica Mínima (Teorema 4.1.1, seção 4.1). Como corolário desta, obtivemos a  $\sigma$ -representação Simétrica Mínima Homogênea (Corolário 4.1.1, seção 4.1), com o qual o conjunto de pontos sigma simétrico, que é o mais utilizado na literatura, é equivalente. Para isso, mostramos que o menor número de pontos simétricos é 2n (Lemma 4.1.2, seção 4.1) ou 2n + 1 para o menor número de pontos ímpar .
  - (b) a  $\sigma$ -representação Mínima (Teorema 4.2.2, seção 4.2.2).
  - (c) a  $\sigma$ -representação Mínima Particular (Teorema 4.2.1, seção 4.2), que foi publicada na 50*th IEEE Conference on Control and Decision Conference* 2011 [91] (em anexo).
- 3. Mostramos inconsistências relativas ao conjunto de pontos sigma mínimo de [83] e ao conjunto de pontos sigma esférico reduzido de [84] (vide, respectivamente, seções 2.4.1.2 e 2.4.1.3).
- 4. Mostramos que uma das duas formas da transformada unscented escalada que é a mais utilizada propostas em [85] é, na verdade, mais restritiva do que é apresentada. De fato, ela só pode ser utilizada quando o conjunto de pontos sigma tem um dos pontos igual à média (vide seção 2.4.2).
- 5. Como corolários do Filtro de Kalman Unscented por Pontos Sigma Escalado Aumentado e do Filtro de Kalman Unscented Escalado Aditivo, obtivemos:
  - (a) o Filtro de Kalman por Pontos Sigma Aumentado Escalado Simétrico Mínimo (Corolário 6.1.2, seção 6.1) e o Filtro de Kalman por Pontos Sigma Aditivo Escalado Simétrico Mínimo (Corolário 6.1.4, seção 6.1). Como corolários destes, obtivemos o Filtro de Kalman por Pontos Sigma Aumentado Escalado Simétrico Mínimo Homogêneo (Corolário 6.1.3, seção 6.1) e o Filtro de Kalman por Pontos Sigma Aditivo Escalado Simétrico Mínimo Homogêneo (Corolário 6.1.5, seção 6.1) dos quais o Filtro de Kalman Unscented Aumentado (FKUAu) e o Filtro de Kalman Unscented Aditivo (FKUAd), respectivamente, são casos particulares.
  - (b) o Filtro de Kalman por Pontos Sigma Aumentado Escalado Mínimo (Corolário 6.1.6, seção 6.1) e o Filtro de Kalman por Pontos Sigma Aditivo Escalado Mínimo (Corolário 6.1.7, seção 6.1)

- (c) o Filtro de Kalman por Pontos Sigma Aumentado Escalado Mínimo Particular (Corolário 6.1.8, seção 6.1) e o Filtro de Kalman por Pontos Sigma Aditivo Escalado Mínimo Particular (Corolário 6.1.9, seção 6.1).
- 6. Como corolários do Filtro de Kalman por Pontos Sigma Raiz Quadrada (FKPSRQ), obtivemos:
  - (a) o Filtro de Kalman por Pontos Sigma Raiz Quadrada Simétrico Mínimo (Corolário 6.2.1, seção 6.2). Como corolário deste, obtivemos o o Filtro de Kalman por Pontos Sigma Raiz Quadrada Simétrico Mínimo Homogêneo (Corolário 6.2.2, seção 6.2), com o qual o Filtro de Kalman Unscented Raiz Quadrada proposto por Merwe é equivalente.
  - (b) o o Filtro de Kalman por Pontos Sigma Raiz Quadrada Mínimo (Corolário 6.2.3, seção 6.2).
  - (c) o Filtro de Kalman por Pontos Sigma Raiz Quadrada Mínimo Particular (Corolário 6.2.4, seção 6.2).

Ao longo do período de mestrado, foram abordados vários aspectos relativos a estimação não-linear, desde aspectos teóricos como de implementação. Inicialmente, tratamos do problema da estimação dos estados de um novo foguete a propulsão híbrida. Para isso, construímos uma plataforma de aquisição de dados utilizando um microcontrolador de arquitetura ARM7. Essa proposição do foguete a propulsão híbrida foi publicado em [92] no 13ºCongresso de Engenharia e Ciências Térmicas (em anexo).

Uma vez que o rastreamento de foguetes envolve várias fases distintas, procuramos aplicar técnicas de estimação não-linear de múltiplos modelos, o que resultou no artigo [31] publicado na 49*th IEEE Conference on Control and Decision Conference* 2010 (em anexo). Esse artigo propõe um novo filtro recursivo em estimação de múltiplos modelos em que se desenvolve de forma mais completa a árvore de hipóteses dos estados e, além disso, a matriz de saltos markovianos não é conhecida *a priori*. Ela é também estimada. O *Interacting Multiple Filter* (IMM), filtro de muito sucesso na literatura, é um caso particular do filtro proposto em [31].

Depois, percebemos a necessidade de uma técnica de filtragem que exigesse pouco esforço computacional, visto que poderíamos ter uma plataforma embarcada no foguete [83, 84]. Tal problema nos levou, posteriormente, à Transformada Unscented, sobretudo, ao caso do conjunto de pontos reduzidos. Como resultado disso, publicamos o artigo [91] na 50*th IEEE Conference on Control and Decision Conference* 2011 (em anexo), cujo objeto é a  $\sigma$ -representação Mínima Particular (Teorema 4.2.1, seção 4.2).

# 1.2 ORGANIZAÇÃO DO TRABALHO

Este trabalho está disposto da seguinte maneira:

- O Capítulo 2 apresenta definições básicas da teoria vetorização, das derivadas matriciais e de variáveis aleatórias de estimação. No final do capítulo, há, de maneira introdutória, uma apresentação da filtragem por filtros de Kalman e da filtragem de Kalman Unscented;
- O Capítulo 3 apresenta nossa forma geral dos conjuntos de pontos sigma: a σ representação. Como motivação, há, no início do capítulo, uma introdução de estimação e filtragem estocásticas;
- O Capítulo 4 apresenta as *σ*-representações particulares para os casos de menor conjunto de pontos sigma simétrico e menor conjunto de pontos sigma;
- O Capítulo 5 apresenta as definições para a Transformada Unscented e para a Transformada Unscented Escalada;
- O Capítulo 6 apresenta os resultados relativos aos filtros de Kalman por pontos sigma;
- O Capítulo 7 apresenta dois exemplos simulados;
- O Capítulo 8 apresenta as conclusões da dissertação e algumas sugestões de trabalhos futuros;
- O Apêndice A apresenta resultados com à relação variáveis aleatórias;
- O Apêndice 2.2 apresenta resultados relativos à Algebra Linear.

#### **2 PRELIMINARES**

# 2.1 CÁLCULO MATRICIAL

Neste capítulo pretendemos expor resultados importantes de Cálculo Matricial. No entanto, precisaremos, previamente, apresentar resultados preliminares da teoria do produto de Kronecker e da vetorização.

O produto de Kronecker é um operador que transforma duas matrizes de ordem  $m \times n$  e  $p \times q$  em uma de dimensão  $mp \times nq$ :

**Definição 2.1.1 (Produto de Kronecker [93, 94]).** Sejam as matrizes  $A = (a_{ij}) \in \Re^{m \times n} e$  $B \in \Re^{p \times q}$ , o produto de Kronecker de A e B é o operador matricial que produz a matriz  $C \in \Re^{mp \times nq}$  da seguinte forma:

$$C = \left[ \begin{array}{ccc} a_{11}B & \dots & a_{1n}B \\ \vdots & \ddots & \vdots \\ a_{m1}B & \cdots & a_{mn}B \end{array} \right].$$

*O* produto de Kronecker será representado por  $\otimes$  e será utilizado assim:

$$C = A \otimes B.$$

Note que enquanto o produto matricial AB exige um número igual de linhas de B e de colunas e A, o produto de Kronecker é definido para qualquer par de matrizes A e B [94].

**Definição 2.1.2 (Vetorização [94]).** Seja a matriz  $A \in \Re^{m \times n}$  e  $A_{*j}$  a sua j-ésima coluna, o **operador de vetorização** de A, cuja notação será vec(A), gera um vetor de dimensão mn da seguinte forma:

$$vec(A) = \begin{pmatrix} A_{*1} \\ A_{*2} \\ \vdots \\ A_{*n} \end{pmatrix}.$$

Note que a vetorização é definida para qualquer matriz A, de modo que não exige que ela seja quadrada. Além disso, note também a igualdade vec(A) = vec(B) não implica em A = B.

Agora que vimos o produto de Kronecker, a vetorização e algumas de suas propriedades, partamos para a exposição da teoria do cálculo matricial utilizada neste trabalho.

Ainda não há na literatura uma padronização da teoria de cálculo matricial. De fato, observa-se duas grandes vertentes, que se diferenciam substancialmente na definição da

derivada de um vetor por um escalar: uma parte da bibliografia define a derivada de um vetor coluna em relação a um escalar como um vetor linha composto pelas derivadas parciais, como pode ser visto em [95]; a outra parte, por outro lado, define a derivada de um vetor coluna em relação a um escalar como um vetor coluna composto pelas derivas parciais, como pode ser visto em [94, 96, 93, 97, 98]. Neste trabalho adotaremos a segunda definição.

#### 2.1.1 Derivada de função de matriz

Definição 2.1.3 (Derivada de uma função vetorial em relação a um vetor [93, 98]). Sejam o vetor  $x = [x^{(1)} \cdots x^{(n)}] \in \Re^n$  e a função vetorial  $f : \Re^n \mapsto \Re^m$ , a derivada de f em relação a x é a matriz  $\frac{\partial f(x)}{\partial x}$  de dimensão  $m \times n$  cujo termo da i-ésima linha e j-ésima coluna,  $\left(\frac{\partial f(x)}{\partial x}\right)_{ij}$ , coluna é

$$\left(\frac{\partial f(x)}{\partial x}\right)_{ij} \triangleq \frac{\partial f(x)_i}{\partial x_j}.$$

Por essa definição, resulta diretamente que no caso particular em que x for um escalar,  $\frac{\partial f(x)}{\partial x}$  será um vetor coluna e, no caso em que f(x) for escalar e x um vetor coluna,  $\frac{\partial f(x)}{\partial x}$  será um vetor linha.

Até agora, temos a definição da derivada de um vetor em relação a outro. Além disso, já definimos a ferramenta matemática que transforma uma matriz em um vetor: a vetorização. Nossa proposta para a definição da derivada de uma matriz em relação a outra será, portanto, uma conjugação desse operador com a idéia utilizada para a definição da derivada entre vetores.

**Definição 2.1.4 (Derivada de uma função matricial em relação a uma matriz [93]).** Sejam a matriz  $X \in \Re^{n \times q}$  e a função matricial  $F : \Re^{n \times q} \mapsto \Re^{m \times p}$ , a derivada de F em relação a X é a matriz  $\frac{\partial F(x)}{\partial X}$  de dimensão  $mp \times nq$  tal que

$$\frac{\partial F(x)}{\partial X} \triangleq \frac{\partial vec\left(F(X)\right)}{\partial vec\left(X\right)}.$$

### 2.1.2 Série de Taylor

O último resultado em relação ao cálculo matricial que nos é necessário é o da Série de Taylor para funções vetoriais. Entretanto, antes de irmos diretamente a esse resultado, vamos antes definir um operador que nos ajudará no manuseio da série.

**Definição 2.1.5 (O operador**  $\Psi_{X,c}^{\alpha} f$ ). <sup>1</sup> Sejam os vetores  $X = [x^{(1)} \cdots x^{(n)}]^T \in \Re^n e c = [c^{(1)} \cdots c^{(n)}]^T \in \Re^n e o$  mapeamento  $f : \Re^n \mapsto \Re^m$ , com  $m \in \mathbb{N}^* e n \in \mathbb{N}^*$ , o operador  $\Psi_{X,c}^{\alpha} f$ , com  $\alpha \in \mathbb{N}^*$ , é tal que

<sup>&</sup>lt;sup>1</sup>Modificado do operador  $D_x^k f$  de [13] e de [98].

$$\Psi_{X,c}^{\alpha}f \triangleq \sum_{i_1,\dots,i_{\alpha}=1}^n \left( x^{(i_1)} - c^{(i_1)} \right) \cdots \left( x^{(i_{\alpha})} - c^{(i_{\alpha})} \right) \left. \frac{\partial^{\alpha}f\left(x\right)}{\partial x^{(i_1)} \cdots \partial x^{(i_{\alpha})}} \right|_{x=c}.$$

Definido o operador, vamos apresentar a série de Taylor para funções vetoriais. Esse resultado encontra-se, fundamentalmente, em [98], Capítulo 1, Seção 1.3, página 23, equação (1.89); em [12], Apêndice II, página 482, equação (10); em [85], Seção 2, página 3, equação (2); e em [13], Seção II, página 403, equação (3). O lema que propomos reúne esses resultados e acrescenta uma condição de diferenciabilidade para a função f.

Lema 2.1.1 (Série de Taylor para funções vetoriais [13, 98]). Sejam o vetor  $X \in \Re^n$ , a função  $f : \Re^n \mapsto \Re^m$  diferenciável até ordem k e o ponto  $c \in \Re^n$ , f(X) pode ser escrito da seguinte forma:

$$f(X) = f(c) + \frac{\Psi_{X,c}^1 f}{1!} + \frac{\Psi_{X,c}^2 f}{2!} + \dots + \frac{\Psi_{X,c}^k f}{k!} + R_k f,$$

no qual

$$R_k f = \frac{\Psi_{X,\tau}^{k+1} f}{(k+1)!},$$

em que  $\tau = c + \delta(X - c)$ , com  $\delta \in (0, 1)$ .

# 2.2 VARIÁVEIS ALEATÓRIAS

Nesta seção expomos algumas definições com relação à variáveis aleatórias que serão importantes para o desenvolvimento deste trabalho.

#### 2.2.1 Momentos de uma variável aleatória

**Definição 2.2.1 (Valor Esperado).** Sejam  $X \in \Re^n$  um vetor aleatório de função densidade de probabilidade  $p_X(\bullet)$  e a função  $f : \Re^n \mapsto \Re^m$ , o valor esperado de  $f\{X\}$ ,  $E\{f(X)\}$ , é

$$E\{f(X)\} := \int_{-\infty}^{\infty} f\{x\} p_X(x) dx \qquad \Box$$

**Definição 2.2.2 (Média de uma variável aleatória).** Seja a variável aleatória  $X \in \Re^n$ , a média de X,  $\overline{X}$  é

$$\bar{X} := E\left\{X\right\}.$$

**Definição 2.2.3 (Matriz de covariância de uma variável aleatória).** Seja a variável aleatória  $X \in \Re^n$  de média  $\bar{X}$ , a matriz de covariância de X,  $P_{XX}$ , é

$$P_{XX} := E\left\{ \left( X - \bar{X} \right) \left( X - \bar{X} \right)^T \right\}.$$

**Definição 2.2.4 (Momentos centrais escalares).** <sup>2</sup> Seja a variável aleatória  $X \in \mathbb{R}^n$  de média  $\overline{X}$ , e  $x^{(i)}$  a sua i-ésima componente escalar, o k-ésimo momento escalar de X referente a  $x^{(i_1)}, \ldots, x^{(i_k)}, M^k_{x^{(i_1)}, \ldots, x^{(i_k)}}$ , é

$$M_{x^{(i_1)},\dots,x^{(i_k)}}^k := E\left\{ \left( x^{(i_1)} - \bar{x}^{(i_1)} \right) \cdots \left( x^{(i_k)} - \bar{x}^{(i_k)} \right) \right\}.$$

**Definição 2.2.5 (Skewness de uma variável aleatória ).** <sup>3</sup> Seja a variável aleatória  $X \in \Re$  de média  $\overline{X}$ , a skewnwess de X é o seu momento central de ordem 3.

**Definição 2.2.6 (Coskewness de uma variável aleatória ).** <sup>4</sup> Seja a variável aleatória  $X \in \Re^n$  de média  $\overline{X}$ , as **coskewnwess de** X são os terceiros momentos centrais escalares de X.

**Definição 2.2.7 (Matriz de coskewness de uma variável aleatória ).** <sup>5</sup> Seja a variável aleatória  $X \in \Re^n$  de média  $\overline{X}$ , a matriz de coskewnwess de X é matriz  $P_X^3$  de ordem  $n^2 \times n$  cujo termo da *i*-ésima linha e *j*-ésima coluna é dado por:

$$\left(P_X^3\right)_{ij} := M^3_{x^{(l_1)}x^{(l_2)}x^{(j)}},$$

*em que*  $i = l_1 l_2$ .

Lema 2.2.1 (Matriz de coskewness de uma variável aleatória). <sup>6</sup> Seja a variável aleatória  $X \in \Re^n$  de média  $\bar{X}$  a sua matriz de coskewness  $P_X^3$  pode ser escrita na seguinte forma:

$$P_X^3 := E\left\{ \left(X - \bar{X}\right) \left(X - \bar{X}\right)^T \otimes \left(X - \bar{X}\right) \right\}.$$

**Definição 2.2.8 (Kurtosis de uma variável aleatória ).** <sup>7</sup> Seja a variável aleatória  $X \in \Re$  de média  $\overline{X}$ , a **kurtosis de** X é o seu momento central de ordem 4.

**Definição 2.2.9 (Cokurtosis de uma variável aleatória ).** <sup>8</sup> Seja a variável aleatória  $X \in \Re^n$  de média  $\overline{X}$ , as **cokurtosis de** X são os quartos momentos centrais escalares de X.  $\Box$ 

<sup>6</sup>[97].

<sup>&</sup>lt;sup>2</sup>modificado de [97].

<sup>&</sup>lt;sup>3</sup>Modificado de [97].

<sup>&</sup>lt;sup>4</sup>Modificado de [97].

<sup>&</sup>lt;sup>5</sup>Modificado de [97].

<sup>&</sup>lt;sup>7</sup>Modificado de [97].

<sup>&</sup>lt;sup>8</sup>Modificado de [97].

**Definição 2.2.10 (Matriz de Cokurtosis de uma variável aleatória ).** <sup>9</sup> Seja a variável aleatória  $X \in \Re^n$  de média  $\overline{X}$ , a matriz de cokurtosis de X é matriz  $P_X^4$  de ordem  $n^2 \times n^2$  cujo termo da *i*-ésima linha e *j*-ésima coluna é dado por:

$$\left(P_X^4\right)_{ij} := M_{x^{(l_1)}x^{(l_2)}x^{(l_3)}x^{(l_4)}}^4,$$

*em que*  $i = l_1 l_2$  *e*  $j = l_3 l_4$ .

**Lema 2.2.2 (Matriz de Cokurtosis de uma variável aleatória).** <sup>10</sup> Seja a variável aleatória  $X \in \Re^n$  de média  $\bar{X}$  a sua matriz de cokurtosis  $P_X^4$  pode ser escrita na seguinte forma:

$$P_X^4 := E\left\{ \left(X - \bar{X}\right) \left(X - \bar{X}\right)^T \otimes \left(X - \bar{X}\right) \otimes \left(X - \bar{X}\right) \right\}.$$

## 2.2.2 Momentos de um conjunto de amostras

Do mesmo modo que temos as definições de momentos para variáveis aleatórias, também podemos fazer definições análogas para conjuntos de amostras.

**Definição 2.2.11 (Média amostral [13, 98]).** Seja  $\{X_i, w_i\}$ , i = 0, 1, 2, ..., N, com  $N \in \mathbb{N}$ , um conjunto de amostras  $(X_i)$  e pesos  $(w_i)$  da variável aleatória  $X \in \Re^n$ ,  $n \in \mathbb{N}^*$ , a média amostral de  $\{X_i, w_i\}$ ,  $\eta_{X_i}$ , é

$$\eta_{X_i} := \sum_{i=0}^N w_i X_i \qquad \Box$$

**Definição 2.2.12 (Matriz de covariância amostral).** <sup>11</sup> Seja  $\{X_i, w_i\}$ , i = 0, 1, 2, ..., N, com  $N \in \mathbb{N}$ , um conjunto de amostras  $(X_i)$  e pesos  $(w_i)$  de média amostral  $\eta_{X_i}$  da variável aleatória  $X \in \Re^n$ ,  $n \in \mathbb{N}^*$ , a matriz de covariância amostral de  $\{X_i, w_i\}$ ,  $\Sigma_{X_iX_i}$ , é

$$\Sigma_{X_i X_i} := \sum_{i=0}^{N} w_i \left( X_i - \eta_{X_i} \right) \left( X_i - \eta_{X_i} \right)^T \qquad \Box$$

**Definição 2.2.13 (Momentos centrais escalares amostrais).** Seja  $\{x_i, w_i\}$ , i = 0, 1, 2, ..., N, com  $N \in \mathbb{N}$ , um conjunto de amostras  $(x_i)$  e pesos  $(w_i)$  de média amostral  $\eta_{x_i}$  da variável aleatória  $x \in \Re$ , o k-ésimo momento central amostral de  $\{x_i, w_i\}$ ,  $\mu_{x_i}^k$ , é

$$\mu_{x_i}^k := \sum_{i=0}^N w_i \left( x_i - \eta_{x_i} \right)^k \qquad \Box$$

<sup>&</sup>lt;sup>9</sup>Modificado de [97].

<sup>&</sup>lt;sup>10</sup>[97].

<sup>&</sup>lt;sup>11</sup>[13, 98].

**Definição 2.2.14 (Momentos centrais cruzados amostrais).** Seja  $\{X_i, w_i\}$ , i = 0, 1, 2, ..., N, com  $N \in \mathbb{N}$ , um conjunto de amostras  $(X_i)$  e pesos  $(w_i)$  de média amostral  $\eta_{X_i}$  da variável aleatória  $X \in \Re^n$ ,  $n \in \mathbb{N}^*$  e sejam  $x_i^{(1)}, ..., x_i^{(n)}$  as componentes escalares da amostra  $X_i$ tal que

$$X_i = \begin{bmatrix} x_i^{(1)} \\ x_i^{(2)} \\ \vdots \\ x_i^{(n)} \end{bmatrix}$$

o k-ésimo momento central escalar cruzado  $x_i^{(j_1)}, \ldots, x_i^{(j_k)}$  amostral de  $\{x_i, w_i\}, \mu_{x_i^{(j_1)}, \ldots, x_i^{(j_k)}}^k, \hat{e}$ 

$$\mu_{x_i^{(j_1)},\dots,x_i^{(j_k)}}^k \triangleq \sum_{i=0}^N w_i \left( x_i^{(j_1)} - \eta_{x_i}^{(j_1)} \right) \cdots \left( x_i^{(j_k)} - \eta_{x_i}^{(j_k)} \right) \qquad \Box$$

Como definimos os momentos amostrais acima, podemos também, em analogia às variáveis aleatórias, definir o valor esperado amostral:

**Definição 2.2.15 (Esperança amostral).** Seja  $\{X_i, w_i\}$ , i = 0, 1, 2, ..., N, com  $N \in \mathbb{N}$ , um conjunto de amostras  $(X_i)$  e pesos  $(w_i)$ , e o mapeamento  $f : \Re^n \mapsto \Re^n$ , a esperança amostral de  $f(X_i)$ ,  $\Xi \{f(X_i)\}$ , é

$$\Xi\left\{f\left(X_{i}\right)\right\} := \sum_{i=0}^{N} w_{i} f\left(X_{i}\right).$$

**Corolário 2.2.1 (Momentos centrais amostrais).** Seja  $\{X_i, w_i\}$ , i = 0, 1, 2, ..., N, com  $N \in \mathbb{N}$ , um conjunto de amostras  $(X_i)$  e pesos  $(w_i)$ , de média amostral  $\eta_{X_i}$ , as seguintes igualdades são verdadeiras:

1.

$$\eta_{X_i} = \Xi \left\{ X_i \right\};$$

2.

$$\Sigma_{X_i X_i} = \Xi \left\{ \left( X_i - \eta_{X_i} \right) \left( X_i - \eta_{X_i} \right)^T \right\};$$

3.

$$\mu_{x_i}^k = \Xi\left\{\left(x_i - \eta_{x_i}\right)^m\right\};$$

4.

$$\mu_{x_i^{(j_1)},\dots,x_i^{(j_k)}}^k = \Xi\left\{\left(x_i^{(j_1)} - \eta_{X_i}^{(j_1)}\right) \cdots \left(x_i^{(j_k)} - \eta_{X_i}^{(j_k)}\right)\right\}.$$

#### 2.3 FILTRO DE KALMAN

Agora que colocamos as transfomadas que há na literatura, queremos expor os filtros de Kalman unscented que existem. Vamos aqui relembrar o Filtro de Kalman (para sistemas lineares) e o Filtro de Kalman Estendido - que é uma outra forma sub-ótima de filtragem não-linear - para depois apresentarmos os filtros de Kalman unscented.

A filtragem recursiva (de tempo discreto) se dá quando modelamos um vetor de estado  $x_k \in \Re^n$ que se desenvolve de acordo com uma função

$$x_k = f(x_{k-1}, q_k, k),$$
 (2.1)

juntamente quando medidas são feitas medidas  $y_k \in \Re^m$  que se relacionam com o vetor de estado a partir da função

$$y_k = h\left(x_k, r_k, k\right),\tag{2.2}$$

em que  $q_k \in \Re^q$  é um ruído de processo e  $r_k \in \Re^r$  é o ruído de medição. A função  $f(\bullet)$  é conhecida como função de processo e a função  $h(\bullet)$  como função de medição.

Essa filtragem consiste em obter estimativas do estado  $x_k$  à medida que novas medidas  $y_k$  ficam disponíveis. No caso da filtragem recursiva bayesiana, toda a filtragem parte do conhecimento de um certo estado a priori, ao qual geralmente se dá o índice de tempo k = 0.

De um modo geral, ela tem o objetivo de fornecer a cada instante de tempo k, um valor de  $\hat{x}_k$  (estimativa da média de  $x_k$ ) e de  $\hat{P}_{XX}^k$  (estimativa da matriz de covariância de  $x_k$ ).

De modo mais estrito, a filtragem bayesina se dá quando da formulação do problema de filtragem mediante a aplicação de modo recursivo da fórmula de Bayes que relaciona uma distribuição *a priori* com uma *a posteriori*. No entanto, por não ser o fim deste trabalho, colocamos nesse termos a filtragem recursiva bayesiana, visto que o que aqui foi descrito é uma consequência da aplicação da fórmula de Bayes.

## 2.3.1 Filtro de Kalman para sistemas lineares

Aqui pretendemos expor o esquema geral das equações do filtro de Kalman. Nossa intenção não é dar aqui uma prova rigorosa desse filtro, visto não ser esse o objetivo deste trabalho. Queremos apenas chegar às equações características e às idéias mais basilares da filtragem por filtro de Kalman, para que possamos, posteriormente, estendê-las à filtragem não-linear e, de modo especial, ao Filtro de Kalman Unscented.

O Filtro de Kalman é o estimador ótimo para o caso em que o sistema (2.1)-(2.2) é linear (vide [2], [99], [3] e [100]). De fato, considere que (2.1)-(2.2) possa ser escrito da seguinte forma

$$x_k = A_k x_{k-1} + B_k q_k, (2.3)$$

$$y_k = C_k x_k + r_k, \tag{2.4}$$

em que  $q_k \sim N(0, Q_{k-1})$ , e  $r_k \sim N(0, R_k)$  são ruídos brancos gaussianos descorrelacionados. O Filtro de Kalman é o estimador ótimo de sistemas lineares tanto no sentido de que minimiza o traço da matriz de covariância do vetor de estados como no sentido de que maximiza a verossimilhança da função densidade de probabilidade (pdf) *a posteriori* (vide [2], [99], [3] e [100]).

O algoritmo desse filtro pode ser escrito da seguinte maneira:

Algoritmo 2.3.1 (Filtro de Kalman). Considere o sistema (2.3)-(2.4) e suponha que no instante de tempo k = 0,

$$\hat{x}_0 = E\{x_0\} = \bar{x}_0, \ \hat{P}^0_{XX} = E\{(x_0 - \bar{x}_0)(x_0 - \bar{x}_0)^T\} = \bar{P}^0_{XX},$$

o Filtro de Kalman é composto das etapas de predição e de correção da seguinte forma:

1. Predição

$$\hat{x}_{k|k-1} = A_k \hat{x}_{k-1}, \tag{2.5}$$

$$\hat{P}_{XX}^{k|k-1} = A_k \hat{P}_{XX}^k A_k^T + Q_{k-1}.$$
(2.6)

2. Correção

$$G_{k} = \hat{P}_{XX}^{k|k-1} C_{k}^{T} \left( R_{k} + C_{k} \hat{P}_{XX}^{k|k-1} C_{k}^{T} \right)^{-1},$$
  
$$\hat{x}_{k} = \hat{x}_{k|k-1} + G_{k} \left( y_{k} - C_{k} \hat{x}_{k|k-1} \right),$$
 (2.7)

$$\hat{P}_{XX}^{k} = (I_n - G_k C_k) \, \hat{P}_{XX}^{k|k-1} \left(I_n - G_k C_k\right)^T + G_k R_k G_k^T.$$
(2.8)

As equações (2.7)-(2.8), fornecem as estimativas desejadas. O termo  $G_k$  é conhecido como *Ganho de Kalman*.

## 2.3.2 Filtro de Kalman Estendido

O Filtro de Kalman fornece estimativas para os casos em que o sistema em questão é linear. No entanto, a solução para o caso em que as funções  $f(\bullet) e g(\bullet) de (2.1)$ -(2.2) são nãolineares é intratável ou indisponível (seção 3.1.1) e alternativas subótimas são necessárias.

Uma alternativa bastante utilizada é o conhecido Filtro de Kalman Estendido (FKE). Como o próprio nome sugere, esse filtro se utiliza da base de equações do Filtro de Kalman para conseguir uma forma de estimativa aproximada. No caso particular do FKE, a técnica de aproximação utilizada é a linearização, que é a aproximação da Série de Taylor tanto da média quanto da matriz de covariância até à primeira ordem.

Também aqui a nossa intenção é apenas expor o algoritmo desse filtro - por causa da sua importância na literatura - para que possamos utilizar uma idéia análoga para o Filtro de Kalman Unscented.

Algoritmo 2.3.2 (Filtro de Kalman Estendido). Considere o sistema (2.1)-(2.2) e suponha que no instante de tempo k = 0,

$$\hat{x}_0 = E\{x_0\} = \bar{x}_0, \ \hat{P}^0_{XX} = E\{(x_0 - \bar{x}_0)(x_0 - \bar{x}_0)^T\} = \bar{P}^0_{XX},$$

o **Filtro de Kalman Estendido** é composto das etapas de predição e de correção da seguinte forma:

#### 1. Predição

$$J_{x_{k-1},f} := \left. \frac{\partial f(x_{k-1}, q_k, k)}{\partial x_{k-1}} \right|_{x_{k-1} = \hat{x}_{k-1}},$$

$$\hat{x}_{k|k-1} = f\left(\hat{x}_{k-1}, 0, k\right), \tag{2.9}$$

$$\hat{P}_{XX}^{k|k-1} = J_{x_{k-1},f} \hat{P}_{XX}^k J_{x_{k-1},f}^T + Q_{k-1}.$$
(2.10)

## 2. Correção

$$J_{x_k,h} := \left. \frac{\partial h\left( x_k, r_k, k \right)}{\partial x_k} \right|_{x_k = \hat{x}_{k|k-1}}, \qquad \Box$$

$$G_{k} = \hat{P}_{XX}^{k|k-1} J_{x_{k},h}^{T} \left( R_{k} + J_{x_{k},h} \hat{P}_{XX}^{k|k-1} J_{x_{k},h}^{T} \right)^{-1},$$

$$\hat{x}_{k} = \hat{x}_{k|k-1} + G_{k} \left( y_{k} - h \left( \hat{x}_{k|k-1}, 0, k \right) \right), \qquad (2.11)$$

$$\hat{P}_{XX}^{k} = (I_n - G_k J_{x_k,h}) \, \hat{P}_{XX}^{k|k-1} \, (I_n - G_k J_{x_k,h})^T + G_k R_k G_k^T.$$
(2.12)

Definições de derivadas podem ser encontradas na seção 2.1.

## 2.4 FILTROS DE KALMAN UNSCENTED

Para uma melhor compreensão do que será exposto aqui, é importante que se tenha a distinção entre os conjuntos de pontos sigma, as transformada unscented (TUs) e os filtros de Kalman unscented. Com efeito, um conjunto de pontos sigma é a aproximação da distribuição de uma variável aleatória por um conjunto de pontos ponderados (na seção 3.2 definiremos com maior precisão como se dá essa aproximação). Uma TU é, por sua vez, uma aproximação da distribuição de probabilidade conjunta de duas variáveis aleatórias, sendo que uma é o resultado da transformação da outra (na seção 5.1 faremos essa definção com mais rigor). Um FKU se utiliza de uma TU de forma recursiva tanto na função de processo quanto na função de medição de um sistema dinâmico (faremos a formulação dos FKUS de maneira mais precisa no capítulo 6).

Assim, no caso, por exemplo, do Filtro de Kalman Unscented Simétrico, o conjunto de pontos sigma é constituído pelo conjunto de pontos simétricos (que será apresentado logo a seguir) e a transformada é constituído por dois conjuntos de pontos: o conjunto de pontos sigma (no caso o simétrico) e outro em que cada pontos é a transformação do conjunto de pontos sigma simétrico.

Além disso, deve se ter em conta que cada FKU é apresentado em duas versões: uma conhecida como aumentada e outra conhecida como aditiva. Na primeira forma, a dimensão do vetor de estados é aumentada pela dimensão dos ruídos, de modo que se possa considerar estes de maneira não aditiva. Na segunda forma, esse aumento do vetor de estados não é feito e os ruídos são tratados de forma aditiva.

## 2.4.1 Filtros de Kalman Unscented: forma básica

## 2.4.1.1 Filtros de Kalman Unscented Simétricos

O grupo de autores que tem o mérito de apresentar e de dar os primeiros passos mais sólidos no tema da Transformada Unscented é composto por S.J. Julier, J.K. Uhlmann e H.F. Durrant-Whyte. Apesar de ser o primeiro filtro de kalman unscented proposto, o simétrico é ainda muito utilizado - sobretudo na forma escalada, a qual será apresentada mais à frente.

Esse filtro simétrico tem a particularidade de possuir os seus pontos - salvo o ponto situado na média - distribuídos simétricamente dois a dois em torno da média e os seus pesos todos iguais - salvo o peso do ponto central. Conforme veremos mais à frente, essa disposição de pontos e pesos permite que todos os momentos centrais amostrais ímpares sejam iguais a zero o que torna esse conjunto uma boa escolha para a estimação de variáveis aleatórias com densidade de probabilidade simétricas em torno da média, visto que estas também possuem todos os seus momentos ímpares iguais a zero [13].

O **Filtro de Kalman Unscented Simétrico** foi o primeiro a ser apresentado na literatura. Em particular, a forma simétrica foi sendo proposta de maneiras diferentes - mas equivalentes - até que tomou sua forma final em 2004. O primeiro trabalho dessa forma, que também é o primeiro trabalho dos filtros unscented, é o de [10] em 1995. Posteriormente, foram propostos [11, 12] até que em 2004 [13] esse filtro tomou a sua forma final.

Apresentamos a transformada unscented simétrica de [82] escrita no formato de lema<sup>12</sup>. Esse lema, além de reproduzir o resultado, contém um elemento que completa o resultado proposto: a inserção da condição de diferenciabilidade da função não-linear e a condição de que  $\kappa \neq n$ , omitidas em [82].

**Lema 2.4.1 (Transformada Unscented Simétrica de [82]).** Seja  $X \in \Re^n$  uma variável aleatória gaussiana de média  $\overline{X}$ , matriz de covariância  $P_{XX}$  e seja o mapeamento  $f : \Re^n \mapsto \Re^m$  diferenciável até ordem k que define a variável aleatória Y tal que Y := f(X) e seja, ainda, os

<sup>&</sup>lt;sup>12</sup>Esse lema não se apresenta de forma explícita em [10].
conjuntos de pontos e pesos  $\{\chi_i, w_i\}$  e  $\{\gamma_i, w_i | \gamma_i = f(\chi_i)\}$ , para i = 1, 2, ..., n, tal que

$$\chi_{0} = X,$$

$$w_{0} = \frac{\kappa}{n + \kappa}$$

$$\chi_{i} = \bar{X} + \left(\sqrt{\frac{n}{1 - w_{0}}}P_{XX}\right)_{*i},$$

$$w_{i} = \frac{1}{n + \kappa},$$

$$\chi_{i+n} = \bar{X} - \left(\sqrt{\frac{n}{1 - w_{0}}}P_{XX}\right)_{*i},$$

$$w_{i+n} = \frac{1}{n + \kappa},$$
(2.13)

em que  $\kappa \in \Re$  e  $\kappa \neq -n$ , as afirmações abaixo são verdadeiras [82]:

- 1.  $\{\chi_i, w_i\}$  tem a média amostral  $(\eta_{\chi})$ , a matriz covariância amostral  $(\Sigma_{\chi\chi})$  iguais à  $\overline{X}$  e a  $P_{XX}$  respectivamente [82].
- 2. Cada momento central amostral de ordem ímpar de  $\{\chi_i, w_i\}$  é igual ao momento central de X de mesma ordem que é igual a zero. O conjunto de pontos de  $\chi_1$  a  $\chi_{2n}$  é o menor conjunto de pontos que consegue esta aproximação [82].
- 3. A Série de Taylor da média amostral de  $\{\gamma_i, w_i\}$  não difere da Série de Taylor da média de Y até a quarta ordem [82].
- 4. A Série de Taylor da matriz de covariância amostral de  $\{\gamma_i, w_i\}$  não difere da Série de Taylor da matriz de covariância de Y até a quarta ordem[82].
- o valor de κ não altera o primeiro, nem o segundo e nem o terceiro momento amostral de (2.13) [82].
- 6. Para  $\kappa = 3 n$ , o quarto momento central de  $\{\chi_i, w_i\}$  é igual ao quarto momento central de X[82].
- 7. Os coeficientes das Séries de Taylor da média amostral e da matriz de covariância amostral de (2.13) progridem geometricamente com razão  $\frac{1}{n+\kappa}$ . Portanto, se X for qualquer distribuição simétrica, e  $\kappa$  for tal que  $0 < n + \kappa \leq k$ , em que k é o valor do quarto momento central de X, a aproximação por (2.13) será melhor que a aproximação por linearização [82].

Em [10], Julier e Uhlmann publicam um novo trabalho no tema de estimação por pontos sigma. Pouco inovativo em relação a [82], mas mais detalhado. Nesse trabalho, eles expõem o resultado mediante um método um pouco diferente do utilizado em [82], visto que apresentam antes a Transformada Unscented para depois mostrar o filtro recursivo - o qual deram o nome de filtro Unscented - que utiliza essa transformada.

O resultado pode ser condensado no lema a seguir<sup>13</sup>.

Lema 2.4.2 (Transformada Unscented Simétrica de [10]). Seja  $X \in \Re^n$  uma variável aleatória de média  $\overline{X}$ , matriz de covariância  $P_{XX}$  e simétrica<sup>14</sup> em relação a  $\overline{X}$  e seja o mapeamento  $f : \Re^n \mapsto \Re^m$  diferenciável até ordem k que define a variável aleatória Y tal que

$$Y = f(X),$$

e seja, ainda, os conjuntos de pontos e pesos  $\{\chi_i, w_i\}$  e  $\{\gamma_i, w_i | \gamma_i = f(\chi_i)\}$ , para i = 1, 2, ..., n, tal que

$$\chi_{0} = \bar{X},$$

$$w_{0} = \frac{\kappa}{n+\kappa}$$

$$\chi_{i} = \bar{X} + \left(\sqrt{\frac{n}{1-w_{0}}}P_{XX}\right)_{*i},$$

$$w_{i} = \frac{1}{n+\kappa},$$

$$\chi_{i+n} = \bar{X} - \left(\sqrt{\frac{n}{1-w_{0}}}P_{XX}\right)_{*i},$$

$$w_{i+n} = \frac{1}{n+\kappa},$$
(2.14)

em que  $\kappa \in \Re$  e  $\kappa \neq -n$ , as afirmações abaixo são verdadeiras [10]:

- 1.  $\{\chi_i, w_i\}$  tem a média amostral  $(\eta_{\chi})$ , a matriz covariância amostral  $(\Sigma_{\chi\chi})$  iguais à  $\overline{X}$ e a  $P_{XX}$  respectivamente [10].
- 2. A Série de Taylor da média amostral de  $\{\gamma_i, w_i\}$  não difere da Série de Taylor da média de Y até a segunda ordem [10].
- 3. A Série de Taylor da matriz de covariância amostral de  $\{\gamma_i, w_i\}$  não difere da Série de Taylor da matriz de covariância de Y até a segunda ordem [10].
- 4. Se X for gaussiana, o valor  $\kappa = 3 n$  será uma boa escolha heurística [10].
- 5. Se  $\kappa < 0$ , a matriz de covariância amostral dos amostras transformadas pela função f pode vir a ser não-positiva definida [10].

Temos uma crítica com relação a esse trabalho. Ele afirma que "*o algoritmo serve para qualquer escolha do modelo de processo*"[10]. (grifo do autor). O que não é verdade. Como veremos, a transformação só pode ser usada com funções diferenciáveis até, pelo menos, a segunda ordem (vide Lema 5.1.2).

<sup>&</sup>lt;sup>13</sup>Da mesma forma que na definição anterior, esse lema não se apresenta de forma explícita em [10].

<sup>&</sup>lt;sup>14</sup>A definição de variável aleatória simétrica em relação a um certo ponto pode ser encontrada na definição A.1.1.

Em 2004 Julier publica [13] que que reúne os resultados até então desenvolvidos nessa área - não apenas os conjuntos pontos simétricos, mas também a escalada, que veremos mais a frente, e outros - e mostra a própria Transformada de uma maneira um pouco mais intuitiva que nos trabalhos anteriores<sup>15</sup>.

**Lema 2.4.3 (Transformada Unscented Simétrica).** Seja  $X \in \mathbb{R}^n$  uma variável aleatória de média  $\overline{X}$ , matriz de covariância  $P_{XX}$  e simétrica<sup>16</sup> em relação a  $\overline{X}$  e seja o mapeamento  $f : \mathbb{R}^n \to \mathbb{R}^m$  diferenciável até ordem k que define a variável aleatória Y tal que Y :=f(X) e seja, ainda, os conjuntos de pontos e pesos { $\chi_i, w_i$ } e { $\gamma i, w_i | \gamma_i = f(\chi_i)$ }, para i = 1, 2, ..., n, tal que

$$\chi_{0} = X,$$

$$\chi_{i} = \bar{X} + \left(\sqrt{\frac{n}{1 - w_{0}}}P_{XX}\right)_{*i},$$

$$w_{i} = \frac{1 - w_{0}}{2n},$$

$$\chi_{i+n} = \bar{X} - \left(\sqrt{\frac{n}{1 - w_{0}}}P_{XX}\right)_{*i},$$

$$w_{i+n} = \frac{1 - w_{0}}{2n},$$
(2.15)

*em que*  $w_0 \in \Re$  *e*  $w_0 \neq 1$ *, as afirmações abaixo são verdadeiras [13]:* 

- 1.  $\{\chi_i, w_i\}$  tem a média amostral  $(\eta_{\chi})$ , a matriz covariância amostral  $(\Sigma_{\chi\chi})$  iguais à  $\bar{X}$ , a  $P_{XX}$  respectivamente.
- 2. Cada momento central amostral de ordem ímpar de  $\{\chi_i, w_i\}$  é igual ao momento central de X de mesma ordem.
- 3. A média amostral de  $\{\gamma i, w_i\}$  difere da média de Y a partir da quarta ordem da série de Taylor e apenas nos termos de ordem par.
- 4. A matriz de covariância amostral de  $\{\gamma i, w_i\}$  difere da matriz de covariância de Y a partir da segunda ordem da série de Taylor e apenas nos termos de ordem par.  $\Box$

Apresentadas as transformadas unscented simétricas, exibiremos os algoritmos do filtro de kalman unscented aumententado simétrico e do filtro de kalman unscented simétrico aditivo utilizando a última forma da transformada unscented simétrica (a de [13]).

Algoritmo 2.4.1 (Filtro de Kalman Unscented Simétrico Aumentado). Considere o sistema (2.1)-(2.2) e suponha que no instante de tempo k = 0,

$$\hat{x}_0 = E\{x_0\} = \bar{x}_0, \ \hat{P}^0_{XX} = E\{(x_0 - \bar{x}_0)(x_0 - \bar{x}_0)^T\} = \bar{P}^0_{XX}.$$

<sup>&</sup>lt;sup>15</sup>Mais uma vez, o lema abaixo não se encontra de modo explícito em [13].

<sup>&</sup>lt;sup>16</sup>A definição de variável aleatória simétrica em relação a um certo ponto pode ser encontrada na definição A.1.1.

Considere, ainda, o seguinte vetor de estado aumentado  $x_k^a$  e suas respectivas média  $\bar{x}_k^a$  e matriz de covariância aumentada  $P_{XX}^{k,a}$ 

$$\begin{aligned} x_k^a &:= \left[ x_k^T, q_k^T, r_k^T \right]^T, \\ \bar{x}_k^a &:= \left[ \bar{x}_k^T, 0, 0 \right]^T, \\ P_{XX}^{k,a} &:= \left[ \begin{array}{cc} P_{XX}^k & 0 & 0 \\ 0 & Q_k & 0 \\ 0 & 0 & R_k \end{array} \right]. \end{aligned}$$

*O Filtro de Kalman Unscented Simétrico Aumentado é composto das etapas de predição e de correção da seguinte forma:* 

# 1. Predição

- (a) Escolha um valor para  $w_0 < 1$ .
- (b) Para  $i = 1, ..., n_a$ ,  $n_a = n + q + r$ , compute os pontos sigma aumentados  $\chi_{k-1}^{i,a}$  e seus pesos  $w_i$  assim:

$$\begin{split} \chi_{k-1}^{0,a} &= \hat{x}_{k-1}^{a}, \\ \chi_{k-1}^{i,a} &= \chi_{k-1}^{0,a} + \left[ \sqrt{\frac{n_a}{1 - w_0}} \hat{P}_{XX}^{k-1,a} \right]_{*i}, \\ \chi_{k-1}^{i+n_a,a} &= \chi_{k-1}^{0,a} + \left[ \sqrt{\frac{n_a}{1 - w_0}} \hat{P}_{XX}^{k-1,a} \right]_{*i}, \\ w_i &= w_{i+n} = \frac{1 - w_0}{2n_a}, \end{split}$$

em que

$$\chi_{k-1}^{i,a} = \begin{bmatrix} \chi_{k-1}^{i,x} \\ \chi_{k-1}^{i,w} \\ \chi_{k-1}^{i,v} \\ \chi_{k-1}^{i,v} \end{bmatrix}.$$

(c) Faça a transformação dos pontos sigma:

$$\chi_{k|k-1}^{i,a} = \chi_{k-1}^{i,a}$$

$$\chi_{k|k-1}^{i,x} = f\left(\chi_{k-1}^{i,x}, \chi_{k-1}^{i,w}, k\right).$$

(d) Calcule as predições da estimativa e da matriz de covariância:

$$\hat{x}_{k|k-1} = \sum_{i=0}^{2n_a} w_i \chi_{k|k-1}^{i,x},$$
$$\hat{P}_{XX}^{k|k-1} = \sum_{i=0}^{2n_a} w_i \left( \chi_{k|k-1}^{i,x} - \hat{x}_{k|k-1} \right) \left( \chi_{k|k-1}^{i,x} - \hat{x}_{k|k-1} \right)^T$$

# 2. Correção

(a) Calcule os ponto sigma de predição da medição  $\gamma_{k|k-1}^i$ :

$$\gamma_{k|k-1}^{i} = h\left(\chi_{k-1}^{i,x}, \chi_{k-1}^{i,v}, k\right).$$

(b) Calcule a predição da medição  $\hat{y}_{k|k-1}$  e da matriz de covariância da medição  $\hat{P}_{YY}^{k|k-1}$  preditas :

$$\hat{y}_{k|k-1} = \sum_{i=0}^{2n_a} w_i \gamma^i_{k|k-1},$$
$$\hat{P}^{k|k-1}_{YY} = \sum_{i=0}^{2n_a} w_i \left(\gamma^i_{k|k-1} - \hat{y}_{k|k-1}\right) \left(\gamma^i_{k|k-1} - \hat{y}_{k|k-1}\right)^T.$$

(c) Calcule a matriz de correlação cruzada predita  $\hat{P}_{XY}^{k|k-1}$ :

$$\hat{P}_{XY}^{k|k-1} = \sum_{i=0}^{2n_a} w_i \left( \chi_{k|k-1}^{i,x} - \hat{x}_{k|k-1} \right) \left( \gamma_{k|k-1}^i - \hat{y}_{k|k-1} \right)^T.$$

(d) Faça a correção das estimativas preditas

$$G_{k} = \hat{P}_{XY}^{k|k-1} \left( \hat{P}_{YY}^{k|k-1} \right)^{-1},$$
  

$$\hat{x}_{k} = \hat{x}_{k|k-1} + G_{k} \left( y_{k} - \hat{y}_{k|k-1} \right),$$
  

$$\hat{P}_{XX}^{k} = \hat{P}_{XX}^{k|k-1} - G_{k} \hat{P}_{YY}^{k|k-1} G_{k}^{T}.$$

**Algoritmo 2.4.2 (Filtro de Kalman Unscented Simétrico Aditivo).** *Considere que o sistema* (2.1)-(2.2) *pode ser escrito da seguinte maneira* 

$$x_k = f(x_{k-1}, k) + q_k,$$
$$y_k = h(x_k, k) + r_k,$$

e suponha que no instante de tempo k = 0,

$$\hat{x}_0 = E\{x_0\} = \bar{x}_0, \ \hat{P}^0_{XX} = E\{(x_0 - \bar{x}_0)(x_0 - \bar{x}_0)^T\} = \bar{P}^0_{XX}.$$

*O Filtro de Kalman Unscented Simétrico Aditivo* é composto das etapas de predição e de correção da seguinte forma:

# 1. Predição

(a) Escolha um valor para  $w_0 < 1$ .

(b) Para i = 1, ..., n, compute os pontos sigma aumentados  $\chi_{k-1}^{i,a}$  e seus pesos  $w_i$  assim:

$$\chi_{k-1}^{0} = \hat{x}_{k-1},$$
  

$$\chi_{k-1}^{i} = \chi_{k-1}^{0} + \left[\sqrt{\frac{n}{1-w_{0}}}\hat{P}_{XX}^{k-1}\right]_{*i},$$
  

$$\chi_{k-1}^{i+n} = \chi_{k-1}^{0} + \left[\sqrt{\frac{n}{1-w_{0}}}\hat{P}_{XX}^{k-1}\right]_{*i},$$
  

$$w_{i} = w_{i+n} = \frac{1-w_{0}}{2n},$$

(c) Faça a transformação dos pontos sigma:

$$\chi_{k|k-1}^{i} = f\left(\chi_{k-1}^{i}, k\right).$$

(d) Calcule as predições da estimativa e da matriz de covariância:

$$\hat{x}_{k|k-1} = \sum_{i=0}^{2n} w_i \chi^i_{k|k-1},$$
$$\hat{P}^{k|k-1}_{XX} = \sum_{i=0}^{2n} w_i \left(\chi^i_{k|k-1} - \hat{x}_{k|k-1}\right) \left(\chi^i_{k|k-1} - \hat{x}_{k|k-1}\right)^T + Q_k$$

# 2. Correção

(a) Calcule os ponto sigma de predição da medição  $\gamma_{k|k-1}^i$ :

$$\gamma_{k|k-1}^{i} = h\left(\chi_{k-1}^{i}, k\right).$$

(b) Calcule a predição da medição  $\hat{y}_{k|k-1}$  e da matriz de covariância da medição  $\hat{P}_{YY}^{k|k-1}$  preditas :

$$\hat{y}_{k|k-1} = \sum_{i=0}^{2n} w_i \gamma_{k|k-1}^i,$$
$$\hat{P}_{YY}^{k|k-1} = \sum_{i=0}^{2n} w_i \left(\gamma_{k|k-1}^i - \hat{y}_{k|k-1}\right) \left(\gamma_{k|k-1}^i - \hat{y}_{k|k-1}\right)^T + R_k$$

(c) Calcule a matriz de correlação cruzada predita  $\hat{P}_{XY}^{k|k-1}$ :

$$\hat{P}_{XY}^{k|k-1} = \sum_{i=0}^{2n} w_i \left( \chi_{k|k-1}^{i,x} - \hat{x}_{k|k-1} \right) \left( \gamma_{k|k-1}^i - \hat{y}_{k|k-1} \right)^T.$$

(d) Faça a correção das estimativas preditas

$$G_{k} = \hat{P}_{XY}^{k|k-1} \left( \hat{P}_{YY}^{k|k-1} \right)^{-1},$$
  

$$\hat{x}_{k} = \hat{x}_{k|k-1} + G_{k} \left( y_{k} - \hat{y}_{k|k-1} \right),$$
  

$$\hat{P}_{XX}^{k} = \hat{P}_{XX}^{k|k-1} - G_{k} \hat{P}_{YY}^{k|k-1} G_{k}^{T}.$$

#### 2.4.1.2 Filtros de Kalman Unscented Mínimo

Sabendo que o custo computacional de uma aproximação por pontos sigma é proporcional ao número deles ([84]), Julier e Ulhmann buscaram encontrar um algoritmo que utilizasse a menor quantidade de pontos possível. Em resposta a isso, em [83] apresentaram um algoritmo que, para uma variável aleatória de ordem n, utiliza n + 1 pontos sigma, que é a menor quantidade de pontos sigma necessária (vide Nota 3.2.1 e [83, 84, 13]).

Esse novo algoritmo comporta a propriedade de, além de igualar a média e a covariância da variável aleatória, minimizar os momentos de ordem 3 ([83, 84, 13]). Podemos juntar os resultados desse algoritmo no lema abaixo<sup>17</sup>. Vale apenar atentar para o fato de que o algoritmo apresentado em [83] contém erro nos índices *j*s, pois o caso j = 2 não está contemplado.

Lema 2.4.4 (O Conjunto Reduzido de Pontos Sigma ([83])). Seja  $X \in \Re^n$  uma variável aleatória de média  $\overline{X} = 0$ , matriz de covariância  $P_{XX} = I_n$  e seja o mapeamento  $f : \Re^n \mapsto$  $\Re^m$  diferenciável até ordem k que define a variável aleatória Y, Y := f(X), e seja, ainda, o conjunto de pontos  $\chi_i^n$  e pesos  $w_i$ , para i = 0, 1, 2, ..., n+1, obtidos pelo seguinte algoritmo:

- *1. Escolha um valor para*  $w_0$ *, tal que*  $0 \le w_0 \le 1$ *.*
- 2. Calcule os pesos:

$$w_i = \begin{cases} \frac{1-w_0}{2^n} &, para \ i = 1.\\ w_1 &, para \ i = 2.\\ 2^{i-1}w_1 &, para \ i = 2, \dots, n+1. \end{cases}$$

3. Inicie a seqüência de vetores  $\chi_i^j$ :

$$\chi_0^1 = [0].$$
  

$$\chi_1^1 = \left[-\frac{1}{\sqrt{2w_1}}\right].$$
  

$$\chi_2^1 = \left[\frac{1}{\sqrt{2w_1}}\right].$$

4. Expanda a seqüência de vetores para j = 2, ..., n de acordo com

$$\chi_{i}^{j+1} = \begin{cases} \begin{bmatrix} \chi_{0}^{j} \\ 0 \end{bmatrix} , para \ i = 0; \\ \begin{bmatrix} \chi_{i}^{j} \\ -\frac{1}{\sqrt{2w_{j}}} \end{bmatrix} , para \ i = 1, \dots, j; \\ \begin{bmatrix} 0_{j} \\ \frac{1}{\sqrt{2w_{j}}} \end{bmatrix} , para \ i = j+1. \end{cases}$$

<sup>&</sup>lt;sup>17</sup>Este lema é uma composição nossa que busca reunir os resultados da transformada em questão

as afirmações abaixo são verdadeiras [83]:

- 1.  $\{\chi_i^n, w_i\}$  tem a média amostral  $(\eta_{\chi})$ , a matriz covariância amostral  $(\Sigma_{\chi\chi})$  iguais à  $\bar{X}$ , a  $P_{XX}$  respectivamente;
- 2. Cada momento central amostral de ordem ímpar de  $\{\chi_i^n, w_i\}$  é igual ao momento central de X de mesma ordem.
- 3. A média amostral da transformação de  $\{\chi_i^n, w_i\}$  difere da média de Y a partir da quarta ordem da série de Taylor e apenas nos termos de ordem par;
- 4. A matriz de covariância amostral da transformação de  $\{\chi_i^n, w_i\}$  difere da matriz de covariância de Y a partir da segunda ordem da série de Taylor e apenas nos termos de ordem par;
- 5.  $\{\chi_i^n, w_i\}$  minimiza os momentos de terceira ordem de X.

Para o caso de uma v.a.  $X^*$ de média  $\overline{X^*} \neq 0$  de matriz de covariância  $P_{X^*X^*} \neq I_n$ , os ponto sigma  $\chi_i^*$  v.a. são obtidos a partir da seguinte transformação [83]:

$$\chi_i^* = \bar{X}^* + P_{X^*X^*}\chi_i. \tag{2.16}$$

Este conjunto de pontos sigma contém dois problemas. Um é que ele pode se tornar numericamente instável para grandes valores de n (veja [84]). Com efeito, como  $w_1 = \frac{1-w_0}{2^n}$ e como os outros valores dos pesos e dos pontos dependem de  $w_1$ , grandes valores de n farão com que a exponencial  $2^n$  adquira valores muito altos e, em consequência,  $w_1$  terá valores muito pequenos, fato esse que poderá gerar problemas numéricos.

Outro problema é que nem a média, nem a matriz de covariância do conjunto de [83] são iguais à média e à matriz de covariância, respectivamente, da v.a. *a priori* quando n é maior que um. De fato para j = 1(n = 2), teremos

$$\chi_0^2 = \begin{bmatrix} \chi_0^1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\chi_1^2 = \begin{bmatrix} \chi_1^1 \\ -\frac{1}{\sqrt{2w_j}} \end{bmatrix} = \begin{bmatrix} -\frac{1}{\sqrt{2w_1}} \\ -\frac{1}{\sqrt{2w_1}} \end{bmatrix}$$
$$\chi_2^2 = \begin{bmatrix} 0 \\ \frac{1}{\sqrt{2w_1}} \end{bmatrix} = \begin{bmatrix} 0 \\ \frac{1}{\sqrt{2w_1}} \end{bmatrix}$$

Os pesos serão:

$$w_1 = \frac{1 - w_0}{2^2} = \frac{1 - w_0}{4},$$
  

$$w_2 = w_1,$$
  

$$w_3 = 2^2 w_1 = 4w_1.$$

Agora, vamos calcular a média  $\mu_{\chi^2}$  de  $\chi^2_i$ :

$$\begin{split} \mu_{\chi^2} &= w_0 \begin{bmatrix} 0\\0 \end{bmatrix} + w_1 \begin{bmatrix} -\frac{1}{\sqrt{2w_1}}\\ -\frac{1}{\sqrt{2w_1}} \end{bmatrix} + 4w_1 \begin{bmatrix} 0\\\frac{1}{\sqrt{2w_1}} \end{bmatrix} \\ &= w_1 \left( \begin{bmatrix} -\frac{1}{\sqrt{2w_1}}\\ -\frac{1}{\sqrt{2w_1}} \end{bmatrix} + 4\begin{bmatrix} 0\\\frac{1}{\sqrt{2w_1}} \end{bmatrix} \right) \\ &= w_1 \begin{bmatrix} -\frac{1}{\sqrt{2w_1}}\\ 3\frac{1}{\sqrt{2w_1}} \end{bmatrix} \\ &= \frac{1-w_0}{4} \begin{bmatrix} -\frac{1}{\sqrt{2w_1}}\\ 3\frac{1}{\sqrt{2w_1}} \end{bmatrix}. \end{split}$$

Vamos calcular a matriz de covariância  $\Sigma_{\chi^2\chi^2}$  de  $\chi^2_i$  :

$$\begin{split} \Sigma_{\chi^{2}\chi^{2}} &= w_{0} \left( \begin{bmatrix} 0\\0 \end{bmatrix} - \mu_{\chi^{2}} \right) \left( \begin{bmatrix} 0\\0 \end{bmatrix} - \mu_{\chi^{2}} \right)^{T} \\ &+ w_{1} \left( \begin{bmatrix} -\frac{1}{\sqrt{2w_{1}}} \\ -\frac{1}{\sqrt{2w_{1}}} \end{bmatrix} - \mu_{\chi^{2}} \right) \left( \begin{bmatrix} -\frac{1}{\sqrt{2w_{1}}} \\ -\frac{1}{\sqrt{2w_{1}}} \end{bmatrix} - \mu_{\chi^{2}} \right)^{T} \\ &+ 4w_{1} \left( \begin{bmatrix} 0\\ \frac{1}{\sqrt{2w_{1}}} \end{bmatrix} - \mu_{\chi^{2}} \right) \left( \begin{bmatrix} 0\\ \frac{1}{\sqrt{2w_{1}}} \end{bmatrix} - \mu_{\chi^{2}} \right)^{T} \\ &= w_{0}\mu_{\chi^{2}}\mu_{\chi^{2}}^{T} + w_{1} \begin{bmatrix} -\frac{1}{\sqrt{2w_{1}}} \\ -\frac{1}{\sqrt{2w_{1}}} \end{bmatrix} \begin{bmatrix} -\frac{1}{\sqrt{2w_{1}}} \\ -\frac{1}{\sqrt{2w_{1}}} \end{bmatrix}^{T} - w_{1} \begin{bmatrix} -\frac{1}{\sqrt{2w_{1}}} \\ -\frac{1}{\sqrt{2w_{1}}} \end{bmatrix} \mu_{\chi^{2}}^{T} \\ &- w_{1}\mu_{\chi^{2}} \begin{bmatrix} -\frac{1}{\sqrt{2w_{1}}} \\ -\frac{1}{\sqrt{2w_{1}}} \end{bmatrix}^{T} + w_{1}\mu_{\chi^{2}}\mu_{\chi^{2}}^{T} \\ &+ 4w_{1} \begin{bmatrix} 0\\ \frac{1}{\sqrt{2w_{1}}} \end{bmatrix} \begin{bmatrix} 0\\ \frac{1}{\sqrt{2w_{1}}} \end{bmatrix}^{T} - 4w_{1} \begin{bmatrix} 0\\ \frac{1}{\sqrt{2w_{1}}} \end{bmatrix} \mu_{\chi^{2}}^{T} \\ &- 4w_{1}\mu_{\chi^{2}} \begin{bmatrix} 0\\ \frac{1}{\sqrt{2w_{1}}} \end{bmatrix}^{T} + 4w_{1}\mu_{\chi^{2}}\mu_{\chi^{2}}^{T} \end{split}$$

$$= \mu_{\chi^{2}} \mu_{\chi^{2}}^{T} \left( w_{0} + 5w_{1} \right) + w_{1} \left( \begin{bmatrix} -\frac{1}{\sqrt{2w_{1}}} \\ -\frac{1}{\sqrt{2w_{1}}} \end{bmatrix} \begin{bmatrix} -\frac{1}{\sqrt{2w_{1}}} \\ -\frac{1}{\sqrt{2w_{1}}} \end{bmatrix}^{T} + 4 \begin{bmatrix} 0 \\ \frac{1}{\sqrt{2w_{1}}} \end{bmatrix} \begin{bmatrix} 0 \\ \frac{1}{\sqrt{2w_{1}}} \end{bmatrix}^{T} \right)$$

$$-w_1\left(\left[\begin{array}{c}-\frac{1}{\sqrt{2w_1}}\\-\frac{1}{\sqrt{2w_1}}\end{array}\right]+4\left[\begin{array}{c}0\\\frac{1}{\sqrt{2w_1}}\end{array}\right]\right)\mu_{\chi^2}^T$$
$$-w_1\mu_{\chi^2}\left(\left[\begin{array}{c}-\frac{1}{\sqrt{2w_1}}\\-\frac{1}{\sqrt{2w_1}}\end{array}\right]+4\left[\begin{array}{c}0\\\frac{1}{\sqrt{2w_1}}\end{array}\right]\right)^T$$

$$= \mu_{\chi^{2}} \mu_{\chi^{2}}^{T} (w_{0} + 5w_{1}) + w_{1} \left( \begin{bmatrix} \frac{1}{2w_{1}} & \frac{1}{2w_{1}} \\ \frac{1}{2w_{1}} & \frac{1}{2w_{1}} \end{bmatrix} + 4 \begin{bmatrix} 0 & 0 \\ 0 & \frac{1}{2w_{1}} \end{bmatrix} \right) - w_{1} \begin{bmatrix} -\frac{1}{\sqrt{2w_{1}}} \\ 3\frac{1}{\sqrt{2w_{1}}} \end{bmatrix} \mu_{\chi^{2}}^{T} - w_{1} \mu \begin{bmatrix} -\frac{1}{\sqrt{2w_{1}}} \\ 3\frac{1}{\sqrt{2w_{1}}} \end{bmatrix}^{T}$$

$$= \mu_{\chi^{2}} \mu_{\chi^{2}}^{T} (w_{0} + 5w_{1})$$

$$+ w_{1} \begin{bmatrix} \frac{1}{2w_{1}} & \frac{1}{2w_{1}} \\ \frac{1}{2w_{1}} & 5\frac{1}{2w_{1}} \end{bmatrix}$$

$$- w_{1} \begin{bmatrix} -\frac{1}{\sqrt{2w_{1}}} \\ 3\frac{1}{\sqrt{2w_{1}}} \end{bmatrix} \mu_{\chi^{2}}^{T}$$

$$- w_{1} \mu \begin{bmatrix} -\frac{1}{\sqrt{2w_{1}}} \\ 3\frac{1}{\sqrt{2w_{1}}} \end{bmatrix}^{T}.$$

Como era assumido que a v.a. *a priori* era de média  $\overline{X} = 0$  e matriz de covariância  $P_{XX} = I$ , vemos que nem a média, nem a matriz de covariância são estimadas.

Expostos a transformação mínima e seus problemas, vamos apresentar o filtro de Kalman unscented mínimo aumentado e o filtro de Kalman unscented mínimo aditivo.

Algoritmo 2.4.3 (Filtro de Kalman Unscented Mínimo Aumentado). Considere o sistema (2.1)-(2.2) e suponha que no instante de tempo k = 0,

$$\hat{x}_0 = E\{x_0\} = \bar{x}_0, \ \hat{P}^0_{XX} = E\{(x_0 - \bar{x}_0)(x_0 - \bar{x}_0)^T\} = \bar{P}^0_{XX}$$

Considere, ainda, o seguinte vetor de estado aumentado  $x_k^a$  e suas respectivas média  $\bar{x}_k^a$  e matriz de covariância aumentada  $P_{XX}^{k,a}$ 

$$x_k^a := \begin{bmatrix} x_k^T, q_k^T, r_k^T \end{bmatrix}^T,$$
  
$$\bar{x}_k^a := \begin{bmatrix} \bar{x}_k^T, 0, 0 \end{bmatrix}^T,$$

$$P_{XX}^{k,a} := \left[ \begin{array}{ccc} P_{XX}^k & 0 & 0\\ 0 & Q_k & 0\\ 0 & 0 & R_k \end{array} \right].$$

*O Filtro de Kalman Unscented Mínimo Aumentado é composto das etapas de predição e de correção da seguinte forma:* 

# 1. Predição

- (a) Escolha um valor para  $0 \le w_0 \le 1$ .
- (b) Para  $i = 1, ..., n_a$ ,  $n_a = n + q + r$ , compute os pesos:

$$w_{i} = \begin{cases} \frac{1-w_{0}}{2^{n_{a}}} , para \ i = 1. \\ w_{1} , para \ i = 2. \\ 2^{i-1}w_{1} , para \ i = 2, \dots, n_{a} + 1. \end{cases}$$

(c) Inicie a seqüência de vetores  $\chi_{k-1}^{j,a,i}$ :

$$\chi_{k-1}^{1,a,0} = [0].$$
  
$$\chi_{k-1}^{1,a,1} = \left[-\frac{1}{\sqrt{2w_1}}\right].$$
  
$$\chi_{k-1}^{1,a,2} = \left[\frac{1}{\sqrt{2w_1}}\right].$$

em que

$$\chi_{k-1}^{j,a,i} = \begin{bmatrix} \chi_{k-1}^{j,x,i} \\ \chi_{k-1}^{j,w,i} \\ \chi_{k-1}^{j,v,i} \\ \chi_{k-1}^{j,v,i} \end{bmatrix}.$$

(d) Expanda a seqüência de vetores para j = 2, ..., n:

$$\chi_{k-1}^{j+1,a,i} = \begin{cases} \begin{bmatrix} \chi_{k-1}^{j,a,0} \\ 0 \end{bmatrix} , para \ i = 0; \\ \begin{bmatrix} \chi_{k-1}^{j,a,i} \\ -\frac{1}{\sqrt{2w_j}} \end{bmatrix} , para \ i = 1, \dots, j; \\ \begin{bmatrix} 0_{(j+q+r)\times 1} \\ \frac{1}{\sqrt{2w_j}} \end{bmatrix} , para \ i = j+1; \end{cases}$$

(e) Obtenha os pontos sigma  $\chi_{k-1}^{i,a}$ :

$$\chi_{k-1}^{i,a} = \chi_{k-1}^{n+1,a,i}.$$

(f) Faça a transformação dos pontos sigma:

$$\chi_{k|k-1}^{i,a} = \chi_{k-1}^{i,a}$$
$$\chi_{k|k-1}^{i,x} = f\left(\chi_{k-1}^{i,x}, \chi_{k-1}^{i,w}, k\right).$$

(g) Calcule as predições da estimativa e da matriz de covariância:

$$\hat{x}_{k|k-1} = \sum_{i=0}^{n_a} w_i \chi_{k|k-1}^{i,x},$$
$$\hat{P}_{XX}^{k|k-1} = \sum_{i=0}^{n_a} w_i \left( \chi_{k|k-1}^{i,x} - \hat{x}_{k|k-1} \right) \left( \chi_{k|k-1}^{i,x} - \hat{x}_{k|k-1} \right)^T.$$

# 2. Correção

(a) Calcule os ponto sigma de predição da medição  $\gamma^i_{k|k-1}$ :

$$\gamma_{k|k-1}^{i} = h\left(\chi_{k-1}^{i,x}, \chi_{k-1}^{i,v}, k\right).$$

(b) Calcule a predição da medição  $\hat{y}_{k|k-1}$  e da matriz de covariância da medição  $\hat{P}_{YY}^{k|k-1}$  preditas :

$$\hat{y}_{k|k-1} = \sum_{i=0}^{n_a} w_i \gamma^i_{k|k-1},$$
$$\hat{P}^{k|k-1}_{YY} = \sum_{i=0}^{n_a} w_i \left(\gamma^i_{k|k-1} - \hat{y}_{k|k-1}\right) \left(\gamma^i_{k|k-1} - \hat{y}_{k|k-1}\right)^T.$$

(c) Calcule a matriz de correlação cruzada predita  $\hat{P}_{XY}^{k|k-1}$ :

$$\hat{P}_{XY}^{k|k-1} = \sum_{i=0}^{n_a} w_i \left( \chi_{k|k-1}^{i,x} - \hat{x}_{k|k-1} \right) \left( \gamma_{k|k-1}^i - \hat{y}_{k|k-1} \right)^T$$

(d) Faça a correção das estimativas preditas

$$G_{k} = \hat{P}_{XY}^{k|k-1} \left( \hat{P}_{YY}^{k|k-1} \right)^{-1},$$
  

$$\hat{x}_{k} = \hat{x}_{k|k-1} + G_{k} \left( y_{k} - \hat{y}_{k|k-1} \right),$$
  

$$\hat{P}_{XX}^{k} = \hat{P}_{XX}^{k|k-1} - G_{k} \hat{P}_{YY}^{k|k-1} G_{k}^{T}.$$

**Algoritmo 2.4.4 (Filtro de Kalman Unscented Mínimo Aditivo).** *Considere que o sistema* (2.1)-(2.2) *pode ser escrito da seguinte maneira* 

$$x_k = f\left(x_{k-1}, k\right) + q_k,$$

$$y_k = h\left(x_k, k\right) + r_k,$$

e suponha que no instante de tempo k = 0,

$$\hat{x}_0 = E\{x_0\} = \bar{x}_0, \ \hat{P}_{XX}^0 = E\{(x_0 - \bar{x}_0)(x_0 - \bar{x}_0)^T\} = \bar{P}_{XX}^0.$$

*O Filtro de Kalman Unscented Mínimo Aditivo é composto das etapas de predição e de correção da seguinte forma:* 

## 1. Predição

- (a) Escolha um valor para  $0 \le w_0 \le 1$ .
- (b) Para i = 1, ..., n compute os pesos:

$$w_i = \begin{cases} \frac{1-w_0}{2^n} &, para \ i = 1.\\ w_1 &, para \ i = 2.\\ 2^{i-1}w_1 &, para \ i = 2, \dots, n+1. \end{cases}$$

(c) Inicie a seqüência de vetores  $\chi_{k-1}^{j,i}$ :

$$\chi_{k-1}^{1,0} = [0].$$
  
$$\chi_{k-1}^{1,1} = \left[-\frac{1}{\sqrt{2w_1}}\right].$$
  
$$\chi_{k-1}^{1,2} = \left[\frac{1}{\sqrt{2w_1}}\right].$$

(d) Expanda a sequência de vetores para j = 2, ..., n:

$$\chi_{k-1}^{j+1,i} = \begin{cases} \begin{bmatrix} \chi_{k-1}^{j,0} \\ 0 \end{bmatrix} , para \ i = 0; \\ \begin{bmatrix} \chi_{k-1}^{j,i} \\ -\frac{1}{\sqrt{2w_j}} \end{bmatrix} , para \ i = 1, \dots, j; \\ \begin{bmatrix} 0_{j\times 1} \\ \frac{1}{\sqrt{2w_j}} \end{bmatrix} , para \ i = j+1. \end{cases}$$

(e) Obtenha os pontos sigma  $\chi_{k-1}^i$ :

$$\chi_{k-1}^{i} = \chi_{k-1}^{n,i}.$$

(f) Faça a transformação dos pontos sigma:

$$\chi^{i}_{k|k-1} = f\left(\chi^{i}_{k-1}, k\right).$$

(g) Calcule as predições da estimativa e da matriz de covariância:

$$\hat{x}_{k|k-1} = \sum_{i=0}^{n} w_i \chi^i_{k|k-1},$$
$$\hat{P}^{k|k-1}_{XX} = \sum_{i=0}^{n} w_i \left(\chi^i_{k|k-1} - \hat{x}_{k|k-1}\right) \left(\chi^i_{k|k-1} - \hat{x}_{k|k-1}\right)^T + Q_k.$$

## 2. Correção

(a) Calcule os ponto sigma de predição da medição  $\gamma_{k|k-1}^i$ :

$$\gamma_{k|k-1}^{i} = h\left(\chi_{k-1}^{i}, k\right).$$

(b) Calcule a predição da medição  $\hat{y}_{k|k-1}$  e da matriz de covariância da medição  $\hat{P}_{YY}^{k|k-1}$  preditas :

$$\hat{y}_{k|k-1} = \sum_{i=0}^{n} w_i \gamma_{k|k-1}^i,$$
$$\hat{P}_{YY}^{k|k-1} = \sum_{i=0}^{n} w_i \left(\gamma_{k|k-1}^i - \hat{y}_{k|k-1}\right) \left(\gamma_{k|k-1}^i - \hat{y}_{k|k-1}\right)^T + R_k$$

(c) Calcule a matriz de correlação cruzada predita  $\hat{P}_{XY}^{k|k-1}$ :

$$\hat{P}_{XY}^{k|k-1} = \sum_{i=0}^{n} w_i \left( \chi_{k|k-1}^{i,x} - \hat{x}_{k|k-1} \right) \left( \gamma_{k|k-1}^{i} - \hat{y}_{k|k-1} \right)^T.$$

(d) Faça a correção das estimativas preditas

$$G_{k} = \hat{P}_{XY}^{k|k-1} \left( \hat{P}_{YY}^{k|k-1} \right)^{-1},$$
  

$$\hat{x}_{k} = \hat{x}_{k|k-1} + G_{k} \left( y_{k} - \hat{y}_{k|k-1} \right),$$
  

$$\hat{P}_{XX}^{k} = \hat{P}_{XX}^{k|k-1} - G_{k} \hat{P}_{YY}^{k|k-1} G_{k}^{T}.$$

#### 2.4.1.3 Filtros de Kalman Unscented Reduzido Esférico

A aproximação de 2.4.1.2 tem o problema de comportar problemas de estabilidade numérica por causa da distância dos pontos em relação à origem, que é proporcional a  $2^{n/2}$  [84]. Em vista disso, Julier apresentou o Filtro de Kalman Unscented Reduzido Esférico que se utiliza n + 2 pontos. O nome fica justificado pelo fato de que os pontos situam-se ou na origem ou na hiperesfera de centro na origem e de raio proporcional a  $\sqrt{n}$ .

A Transformada desse filtro pode descrita no lema abaixo<sup>18</sup>:

<sup>&</sup>lt;sup>18</sup>Este lema é uma composição nossa que busca reunir os resultados da transformada em questão

**Lema 2.4.5 (A Transformada Unscented Reduzida Esférica).** Seja  $X \in \mathbb{R}^n$  uma variável aleatória de média  $\overline{X} = 0$ , matriz de covariância  $P_{XX} = I_n$  e seja o mapeamento  $f : \mathbb{R}^n \mapsto \mathbb{R}^m$  diferenciável até ordem k que define a variável aleatória Y, Y := f(X), e seja, ainda, o conjunto de pontos  $\chi_i^n$  e pesos  $w_i$ , para i = 0, 1, 2, ..., n+1, obtidos pelo seguinte algoritmo:

- *1. Escolha um valor para*  $w_0$ , *tal que*  $0 \le w_0 \le 1$ .
- 2. Calcule os pesos:

$$w_i = \frac{1 - w_0}{n+1}.$$

*3. Inicie a seqüência de vetores*  $\chi_i^j$ *:* 

$$\chi_0^1 = [0].$$
  

$$\chi_1^1 = \left[-\frac{1}{\sqrt{2w_1}}\right]$$
  

$$\chi_2^1 = \left[\frac{1}{\sqrt{2w_1}}\right].$$

*Expanda a seqüência do vetores para* j = 2, ..., n *de acordo com* 

$$\chi_{i}^{j} = \begin{cases} \begin{bmatrix} \chi_{0}^{j-1} \\ 0 \end{bmatrix} , para \ i = 0; \\ \begin{bmatrix} \chi_{i}^{j-1} \\ -\frac{1}{\sqrt{j(j+1)w_{1}}} \end{bmatrix} , para \ i = 1, \dots, j; \\ \begin{bmatrix} 0_{j-1} \\ \frac{1}{\sqrt{j(j+1)w_{1}}} \end{bmatrix} , para \ i = j+1. \end{cases}$$

as afirmações abaixo são verdadeiras [84]:

- 1.  $\{\chi_i^n, w_i\}$  tem a média amostral  $(\eta_{\chi})$ , a matriz covariância amostral  $(\Sigma_{\chi\chi})$  iguais à  $\bar{X}$ , a  $P_{XX}$  respectivamente.
- 2. Cada momento central amostral de ordem ímpar de  $\{\chi_i^n, w_i\}$  é igual ao momento central de X de mesma ordem.
- 3. A média amostral da transformação de  $\{\chi_i^n, w_i\}$  difere da média de Y a partir da quarta ordem da série de Taylor e apenas nos termos de ordem par.
- 4. A matriz de covariância amostral da transformação de  $\{\chi_i^n, w_i\}$  difere da matriz de covariância de Y a partir da segunda ordem da série de Taylor e apenas nos termos de ordem par.

Não apresentaremos a prova desse lema neste trabalho. O leitor que queria saber mais, encontrará mais informações em [84]. Assim como para o conjunto de pontos de [83], para o caso de uma v.a.  $X^*$ de média  $\bar{X^*} \neq 0$  de matriz de covariância  $P_{X^*X^*} \neq I_n$ , os ponto sigma  $\chi_i^*$  v.a. são obtidos da equação (2.16) [83].

O conjunto de pontos sigma esféricos de [84] não apresenta o problema de instabilidade numérica que o conjunto de [83] contém. No entanto, ele tem o mesmo problema de que nem a sua média nem a sua matriz de covariância são iguais à média e à matriz de covariância, respectivamente, da v.a. *a priori* quando n é maior que um. Com efeito, para j = 2(n = 2),

$$\begin{split} \chi_0^2 &= \left[ \begin{array}{c} \chi_0^{j-1} \\ 0 \end{array} \right] = \left[ \begin{array}{c} 0 \\ 0 \end{array} \right], \\ \chi_1^2 &= \left[ \begin{array}{c} \chi_1^1 \\ -\frac{1}{\sqrt{j(j+1)w}} \end{array} \right] = \left[ \begin{array}{c} -\frac{1}{\sqrt{2w}} \\ -\frac{1}{\sqrt{6w}} \end{array} \right], \\ \chi_2^2 &= \left[ \begin{array}{c} \chi_2^1 \\ -\frac{1}{\sqrt{j(j+1)w}} \end{array} \right] = \left[ \begin{array}{c} \frac{1}{\sqrt{2w}} \\ -\frac{1}{\sqrt{6w}} \end{array} \right] \\ \chi_3^2 &= \left[ \begin{array}{c} 0 \\ \frac{1}{\sqrt{j(j+1)w}} \end{array} \right] = \left[ \begin{array}{c} 0 \\ \frac{1}{\sqrt{6w}} \end{array} \right] \end{split}$$

Os pesos serão:

$$w = \frac{1 - w_0}{n+1} = \frac{1 - w_0}{3}$$

Portanto, a média  $\mu_{\chi^2}$  de  $\chi^2_i$  será

$$\begin{split} \mu_{\chi^2} &= w_0 \begin{bmatrix} 0\\0 \end{bmatrix} + w \begin{bmatrix} -\frac{1}{\sqrt{2w}}\\-\frac{1}{\sqrt{6w}} \end{bmatrix} + w \begin{bmatrix} \frac{1}{\sqrt{2w}}\\-\frac{1}{\sqrt{6w}} \end{bmatrix} + w \begin{bmatrix} 0\\\frac{1}{\sqrt{6w}} \end{bmatrix} \\ &= w \left( \begin{bmatrix} -\frac{1}{\sqrt{2w}}\\-\frac{1}{\sqrt{6w}} \end{bmatrix} + \begin{bmatrix} \frac{1}{\sqrt{2w}}\\-\frac{1}{\sqrt{6w}} \end{bmatrix} + \begin{bmatrix} 0\\\frac{1}{\sqrt{6w}} \end{bmatrix} \right) \\ &= w \begin{bmatrix} 0\\-\frac{1}{\sqrt{6w}} \end{bmatrix} = -\frac{1-w_0}{3} \sqrt{6\frac{1-w_0}{3}} \begin{bmatrix} 0\\1 \end{bmatrix} \\ &= -\frac{1-w_0}{3} \sqrt{21-w_0} \begin{bmatrix} 0\\1 \end{bmatrix}, \end{split}$$

que já mostra que  $\bar{X} \neq 0$ . Agora, vamos calcular a matriz de covariância  $\Sigma_{\chi^2 \chi^2}$  de  $\chi_i^2$ :

$$\Sigma_{\chi^{2}\chi^{2}} = w_{0} \left( \begin{bmatrix} 0\\0 \end{bmatrix} - \mu_{\chi^{2}} \right) \left( \begin{bmatrix} 0\\0 \end{bmatrix} - \mu_{\chi^{2}} \right)^{T} + w \left( \begin{bmatrix} -\frac{1}{\sqrt{2w}}\\-\frac{1}{\sqrt{6w}} \end{bmatrix} - \mu_{\chi^{2}} \right) \left( \begin{bmatrix} -\frac{1}{\sqrt{2w}}\\-\frac{1}{\sqrt{6w}} \end{bmatrix} - \mu_{\chi^{2}} \right)^{T}$$

$$+ w \left( \begin{bmatrix} \frac{1}{\sqrt{2w}} \\ -\frac{1}{\sqrt{6w}} \end{bmatrix} - \mu_{\chi^2} \right) \left( \begin{bmatrix} \frac{1}{\sqrt{2w}} \\ -\frac{1}{\sqrt{6w}} \end{bmatrix} - \mu_{\chi^2} \right)^T \\ + w \left( \begin{bmatrix} 0 \\ \frac{1}{\sqrt{6w}} \end{bmatrix} - \mu_{\chi^2} \right) \left( \begin{bmatrix} 0 \\ \frac{1}{\sqrt{6w}} \end{bmatrix} - \mu_{\chi^2} \right)^T$$

$$= w_0 \mu_{\chi^2} \mu_{\chi^2}^T$$

$$+ w \begin{bmatrix} -\frac{1}{\sqrt{2w}} \\ -\frac{1}{\sqrt{6w}} \end{bmatrix} \begin{bmatrix} -\frac{1}{\sqrt{2w}} \\ -\frac{1}{\sqrt{6w}} \end{bmatrix}^T + w \mu_{\chi^2} \mu_{\chi^2}^T$$

$$- w \begin{bmatrix} -\frac{1}{\sqrt{2w}} \\ -\frac{1}{\sqrt{6w}} \end{bmatrix} \mu_{\chi^2}^T - w \mu_{\chi^2} \begin{bmatrix} -\frac{1}{\sqrt{2w}} \\ -\frac{1}{\sqrt{6w}} \end{bmatrix}^T$$

$$+ w \begin{bmatrix} \frac{1}{\sqrt{2w}} \\ -\frac{1}{\sqrt{6w}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2w}} \\ -\frac{1}{\sqrt{6w}} \end{bmatrix}^T + w \mu_{\chi^2} \mu_{\chi^2}^T$$

$$- w \mu_{\chi^2} \begin{bmatrix} \frac{1}{\sqrt{2w}} \\ -\frac{1}{\sqrt{6w}} \end{bmatrix}^T - w \begin{bmatrix} \frac{1}{\sqrt{2w}} \\ -\frac{1}{\sqrt{6w}} \end{bmatrix} \mu_{\chi^2}^T$$

$$+ w \begin{bmatrix} 0 \\ \frac{1}{\sqrt{6w}} \end{bmatrix} \begin{bmatrix} 0 \\ \frac{1}{\sqrt{6w}} \end{bmatrix}^T + w \mu_{\chi^2} \mu_{\chi^2}^T$$

$$- w \begin{bmatrix} 0 \\ \frac{1}{\sqrt{6w}} \end{bmatrix} \mu_{\chi^2}^T - w \mu_{\chi^2} \begin{bmatrix} 0 \\ \frac{1}{\sqrt{6w}} \end{bmatrix}^T$$

$$= \mu_{\chi^{2}} \mu_{\chi^{2}}^{T} (w_{0} + 3w)$$

$$+ w \begin{bmatrix} -\frac{1}{\sqrt{2w}} \\ -\frac{1}{\sqrt{6w}} \end{bmatrix} \begin{bmatrix} -\frac{1}{\sqrt{2w}} \\ -\frac{1}{\sqrt{6w}} \end{bmatrix}^{T} + w \begin{bmatrix} \frac{1}{\sqrt{2w}} \\ -\frac{1}{\sqrt{6w}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2w}} \\ -\frac{1}{\sqrt{6w}} \end{bmatrix}^{T}$$

$$+ w \begin{bmatrix} 0 \\ \frac{1}{\sqrt{6w}} \end{bmatrix} \begin{bmatrix} 0 \\ \frac{1}{\sqrt{6w}} \end{bmatrix}^{T}$$

$$- w \begin{bmatrix} -\frac{1}{\sqrt{2w}} \\ -\frac{1}{\sqrt{6w}} \end{bmatrix} \mu_{\chi^{2}}^{T} - w \begin{bmatrix} \frac{1}{\sqrt{2w}} \\ -\frac{1}{\sqrt{6w}} \end{bmatrix} \mu_{\chi^{2}}^{T} - w \begin{bmatrix} 0 \\ \frac{1}{\sqrt{6w}} \end{bmatrix} \mu_{\chi^{2}}^{T}$$

$$- w \mu_{\chi^{2}} \begin{bmatrix} -\frac{1}{\sqrt{2w}} \\ -\frac{1}{\sqrt{6w}} \end{bmatrix}^{T} - w \mu_{\chi^{2}} \begin{bmatrix} \frac{1}{\sqrt{2w}} \\ -\frac{1}{\sqrt{6w}} \end{bmatrix}^{T} - w \mu_{\chi^{2}} \begin{bmatrix} 0 \\ \frac{1}{\sqrt{6w}} \end{bmatrix}^{T}$$

$$= \mu_{\chi^{2}} \mu_{\chi^{2}}^{T} (w_{0} + 3w) + w \begin{bmatrix} \frac{1}{2w} & \frac{1}{\sqrt{12w}} \\ \frac{1}{\sqrt{12w}} & \frac{1}{6w} \end{bmatrix} + w \begin{bmatrix} \frac{1}{2w} & -\frac{1}{\sqrt{12w}} \\ -\frac{1}{\sqrt{12w}} & \frac{1}{6w} \end{bmatrix} + w \begin{bmatrix} 0 & 0 \\ 0 & \frac{1}{6w} \end{bmatrix}$$

$$-w\left(\left[\begin{array}{c}-\frac{1}{\sqrt{2w}}\\-\frac{1}{\sqrt{6w}}\end{array}\right]+\left[\begin{array}{c}\frac{1}{\sqrt{2w}}\\-\frac{1}{\sqrt{6w}}\end{array}\right]+\left[\begin{array}{c}0\\\frac{1}{\sqrt{6w}}\end{array}\right]\right)\mu_{\chi^{2}}^{T}$$
$$-w\mu_{\chi^{2}}\left(\left[\begin{array}{c}-\frac{1}{\sqrt{2w}}\\-\frac{1}{\sqrt{6w}}\end{array}\right]^{T}+\left[\begin{array}{c}\frac{1}{\sqrt{2w}}\\-\frac{1}{\sqrt{6w}}\end{array}\right]^{T}+\left[\begin{array}{c}0\\\frac{1}{\sqrt{6w}}\end{array}\right]^{T}\right)$$
$$=\mu_{\chi^{2}}\mu_{\chi^{2}}^{T}\left(w_{0}+3w\right)$$
$$+w\left[\begin{array}{c}\frac{1}{w}&0\\0&\frac{1}{3w}\end{array}\right]+w\left[\begin{array}{c}0&0\\0&\frac{1}{6w}\end{array}\right]$$
$$-w\left[\begin{array}{c}0\\-\frac{1}{\sqrt{6w}}\end{array}\right]\mu_{\chi^{2}}^{T}$$
$$-w\mu_{\chi^{2}}\left[\begin{array}{c}0\\-\frac{1}{\sqrt{6w}}\end{array}\right]^{T}$$

que é diferente de I.

Os algoritmos abaixo apresentam o Filtros de Kalman Unscented Reduzido Esférico aumentado e o Filtros de Kalman Unscented Reduzido aditivo

Algoritmo 2.4.5 (Filtro de Kalman Unscented Reduzido Esférico Aumentado). Considere o sistema (2.1)-(2.2) e suponha que no instante de tempo k = 0,

$$\hat{x}_0 = E\{x_0\} = \bar{x}_0, \ \hat{P}^0_{XX} = E\{(x_0 - \bar{x}_0)(x_0 - \bar{x}_0)^T\} = \bar{P}^0_{XX}.$$

Considere, ainda, o seguinte vetor de estado aumentado  $x_k^a$  e suas respectivas média  $\bar{x}_k^a$  e matriz de covariância aumentada  $P_{XX}^{k,a}$ 

$$\begin{aligned} x_k^a &:= \left[ x_k^T, q_k^T, r_k^T \right]^T, \\ \bar{x}_k^a &:= \left[ \bar{x}_k^T, 0, 0 \right]^T, \\ P_{XX}^{k,a} &:= \left[ \begin{array}{cc} P_{XX}^k & 0 & 0 \\ 0 & Q_k & 0 \\ 0 & 0 & R_k \end{array} \right]. \end{aligned}$$

O Filtro de Kalman Unscented Reduzido Esférico Aumentado é composto das etapas de predição e de correção da seguinte forma:

#### 1. Predição

- (a) Escolha um valor para  $0 \le w_0 \le 1$ .
- (b) Para  $i = 1, ..., n_a$ ,  $n_a = n + q + r$ , calcule os pesos:

$$w_i = \frac{1 - w_0}{n_a + 1}$$

(c) Inicie a seqüência de vetores  $\chi_{k-1}^{j,a,i}$ :

$$\chi_{k-1}^{1,a,0} = [0].$$
  
$$\chi_{k-1}^{1,a,1} = \left[-\frac{1}{\sqrt{2w_1}}\right].$$
  
$$\chi_{k-1}^{1,a,2} = \left[\frac{1}{\sqrt{2w_1}}\right].$$

em que

$$\chi_{k-1}^{j,a,i} = \begin{bmatrix} \chi_{k-1}^{j,x,i} \\ \chi_{k-1}^{j,w,i} \\ \chi_{k-1}^{j,v,i} \\ \chi_{k-1}^{j,v,i} \end{bmatrix}.$$

(d) Expanda a sequência de vetores para j = 2, ..., n:

$$\chi_{k-1}^{j,a,i} = \begin{cases} \begin{bmatrix} \chi_{k-1}^{j-1,a,0} \\ 0 \end{bmatrix} , para \ i = 0; \\ \begin{bmatrix} \chi_{k-1}^{j-1,a,i} \\ -\frac{1}{\sqrt{j(j+1)w_1}} \end{bmatrix} , para \ i = 1, \dots, j; \\ \begin{bmatrix} 0_{(j-1+q+r)\times 1} \\ \frac{1}{\sqrt{j(j+1)w_1}} \end{bmatrix} , para \ i = j+1. \end{cases}$$

(e) Obtenha os pontos sigma  $\chi_{k-1}^{i,a}$ :

$$\chi_{k-1}^{i,a} = \chi_{k-1}^{n,a,i}.$$

(f) Faça a transformação dos pontos sigma:

$$\chi_{k|k-1}^{i,a} = \chi_{k-1}^{i,a}$$
$$\chi_{k|k-1}^{i,x} = f\left(\chi_{k-1}^{i,x}, \chi_{k-1}^{i,w}, k\right)$$

•

(g) Calcule as predições da estimativa e da matriz de covariância:

$$\hat{x}_{k|k-1} = \sum_{i=0}^{n_a+1} w_i \chi_{k|k-1}^{i,x},$$
$$\hat{P}_{XX}^{k|k-1} = \sum_{i=0}^{n_a+1} w_i \left(\chi_{k|k-1}^{i,x} - \hat{x}_{k|k-1}\right) \left(\chi_{k|k-1}^{i,x} - \hat{x}_{k|k-1}\right)^T.$$

# 2. Correção

(a) Calcule os ponto sigma de predição da medição  $\gamma^i_{k|k-1}$ :

$$\gamma_{k|k-1}^{i} = h\left(\chi_{k-1}^{i,x}, \chi_{k-1}^{i,v}, k\right).$$

(b) Calcule a predição da medição  $\hat{y}_{k|k-1}$  e da matriz de covariância da medição  $\hat{P}_{YY}^{k|k-1}$  preditas :

$$\hat{y}_{k|k-1} = \sum_{i=0}^{n_a+1} w_i \gamma_{k|k-1}^i,$$
$$\hat{P}_{YY}^{k|k-1} = \sum_{i=0}^{n_a+1} w_i \left(\gamma_{k|k-1}^i - \hat{y}_{k|k-1}\right) \left(\gamma_{k|k-1}^i - \hat{y}_{k|k-1}\right)^T$$

(c) Calcule a matriz de correlação cruzada predita  $\hat{P}_{XY}^{k|k-1}$ :

$$\hat{P}_{XY}^{k|k-1} = \sum_{i=0}^{n_a+1} w_i \left( \chi_{k|k-1}^{i,x} - \hat{x}_{k|k-1} \right) \left( \gamma_{k|k-1}^i - \hat{y}_{k|k-1} \right)^T.$$

(d) Faça a correção das estimativas preditas

$$G_{k} = \hat{P}_{XY}^{k|k-1} \left( \hat{P}_{YY}^{k|k-1} \right)^{-1},$$
  

$$\hat{x}_{k} = \hat{x}_{k|k-1} + G_{k} \left( y_{k} - \hat{y}_{k|k-1} \right),$$
  

$$\hat{P}_{XX}^{k} = \hat{P}_{XX}^{k|k-1} - G_{k} \hat{P}_{YY}^{k|k-1} G_{k}^{T}.$$

**Algoritmo 2.4.6 (Filtro de Kalman Unscented Reduzido Esférico Aditivo).** *Considere que o sistema (*2.1)-(2.2) *pode ser escrito da seguinte maneira* 

$$x_k = f(x_{k-1}, k) + q_k,$$
  
$$y_k = h(x_k, k) + r_k,$$

e suponha que no instante de tempo k = 0,

$$\hat{x}_0 = E\{x_0\} = \bar{x}_0, \ \hat{P}^0_{XX} = E\{(x_0 - \bar{x}_0)(x_0 - \bar{x}_0)^T\} = \bar{P}^0_{XX}.$$

O Filtro de Kalman Unscented Reduzido Esférico Aditivo é composto das etapas de predição e de correção da seguinte forma:

#### 1. Predição

- (a) Escolha um valor para  $0 \le w_0 \le 1$ .
- (b) Para i = 1, ..., n compute os pesos:

$$w_i = \frac{1 - w_0}{n+1}$$

(c) Inicie a seqüência de vetores  $\chi_{k-1}^{j,i}$ :

$$\chi_{k-1}^{1,0} = [0].$$

$$\chi_{k-1}^{1,1} = \left[ -\frac{1}{\sqrt{2w_1}} \right].$$
$$\chi_{k-1}^{1,2} = \left[ \frac{1}{\sqrt{2w_1}} \right].$$

(d) Expanda a sequência de vetores para j = 2, ..., n:

$$\chi_{k-1}^{j,i} = \begin{cases} \begin{bmatrix} \chi_{k-1}^{j-1,0} \\ 0 \end{bmatrix} , para \ i = 0; \\ \begin{bmatrix} \chi_{k-1}^{j-1,i} \\ -\frac{1}{\sqrt{j(j+1)w_1}} \end{bmatrix} , para \ i = 1, \dots, j; \\ \begin{bmatrix} 0_{(j-1)\times 1} \\ \frac{1}{\sqrt{j(j+1)w_1}} \end{bmatrix} , para \ i = j+1. \end{cases}$$

(e) Obtenha os pontos sigma  $\chi^i_{k-1}$ :

$$\chi_{k-1}^i = \chi_{k-1}^{n,i}.$$

(f) Faça a transformação dos pontos sigma:

$$\chi_{k|k-1}^{i} = f\left(\chi_{k-1}^{i}, k\right).$$

(g) Calcule as predições da estimativa e da matriz de covariância:

$$\hat{x}_{k|k-1} = \sum_{i=0}^{n+1} w_i \chi^i_{k|k-1},$$
$$\hat{P}^{k|k-1}_{XX} = \sum_{i=0}^n w_i \left(\chi^i_{k|k-1} - \hat{x}_{k|k-1}\right) \left(\chi^i_{k|k-1} - \hat{x}_{k|k-1}\right)^T + Q_k.$$

- 2. Correção
  - (a) Calcule os ponto sigma de predição da medição  $\gamma^i_{k|k-1}$ :

$$\gamma_{k|k-1}^{i} = h\left(\chi_{k-1}^{i}, k\right).$$

(b) Calcule a predição da medição  $\hat{y}_{k|k-1}$  e da matriz de covariância da medição  $\hat{P}_{YY}^{k|k-1}$  preditas :

$$\hat{y}_{k|k-1} = \sum_{i=0}^{n+1} w_i \gamma_{k|k-1}^i,$$
$$\hat{P}_{YY}^{k|k-1} = \sum_{i=0}^{n+1} w_i \left(\gamma_{k|k-1}^i - \hat{y}_{k|k-1}\right) \left(\gamma_{k|k-1}^i - \hat{y}_{k|k-1}\right)^T + R_k.$$

(c) Calcule a matriz de correlação cruzada predita  $\hat{P}_{XY}^{k|k-1}$ :

$$\hat{P}_{XY}^{k|k-1} = \sum_{i=0}^{n+1} w_i \left( \chi_{k|k-1}^{i,x} - \hat{x}_{k|k-1} \right) \left( \gamma_{k|k-1}^i - \hat{y}_{k|k-1} \right)^T.$$

(d) Faça a correção das estimativas preditas

$$G_{k} = \hat{P}_{XY}^{k|k-1} \left( \hat{P}_{YY}^{k|k-1} \right)^{-1},$$
  

$$\hat{x}_{k} = \hat{x}_{k|k-1} + G_{k} \left( y_{k} - \hat{y}_{k|k-1} \right),$$
  

$$\hat{P}_{XX}^{k} = \hat{P}_{XX}^{k|k-1} - G_{k} \hat{P}_{YY}^{k|k-1} G_{k}^{T}.$$

# 2.4.2 Filtro de Kalman Unscented Escalado

Em 2003 Julier também apresentou o Filtro de Kalman Unscented Escalado. Esse filtro tem a propriedade de possuir o k-ésimo termo das Séries de Taylor tanto da média quanto da matriz de covariância do conjunto de pontos transformados escalado por um termo  $\alpha^{k-2}$  sem que isso implique em aumento do custo computacional [85]. Com isso, o implementador do filtro tem a possibilidade de diminuir a influência dos termos de ordem mais alta.

Como veremos na seção 2.4.2, Julier apresenta duas forma de fazer essa transformação. No entanto, uma dessas formas, não obstante seja a mais utilizada na literatura, é mais restritiva, pois exige que haja um pontos sigma situado na média da distribuição.

O Filtro de Kalman Unscented Escalado não se enquadrada na classificação de formas básicas porque é, como veremos abaixo, uma transformação diferente da Transformada Unscented ou como uma segunda transformação de um conjunto de pontos já existente.

Vejamos, no lema abaixo, uma primeira Thoforma de se mostrar Transformada Unscented Escalada. Este lema é uma formulação nossa que resume os resultado dessa nova transformada, os quais podem ser encontrados na terceira seção de [85].

**Lema 2.4.6 (Transformada Unscented Escalada).** Seja  $X \in \Re^n$  uma variável aleatória de média  $\overline{X}$ , matriz de covariância  $P_{XX}$  e simétrica<sup>19</sup> em relação a  $\overline{X}$  e seja o mapeamento  $f : \Re^n \mapsto \Re^m$  diferenciável até ordem k que define a variável aleatória Y tal que

$$Y = f(X),$$

e seja, ainda, o conjunto de pontos sigma  $\chi_i$  e seus pesos  $w_i$  com i = 0, 1, 2, ..., N,  $N \in \mathbb{N}$ , N = g(n), obtidos de X, os seguintes pontos  $\chi'_i$  e pesos  $w'_i$ ,

$$\chi_i' = \chi_0 + \alpha \left( \chi_i - \chi_0 \right),$$

<sup>&</sup>lt;sup>19</sup>A definição de variável aleatória simétrica em relação a um certo ponto pode ser encontrada na Definição A.1.1.

$$\left\{ \begin{array}{ll} w_i' = \frac{\chi_0'}{w_0} + 1 - \frac{1}{\alpha^2} &, i = 0 \\ w_i' = \frac{\chi_i'}{\alpha^2} &, i \neq 0 \end{array} \right. ,$$

em que  $\alpha \in \Re$ , têm as seguintes propriedades:

1. a média amostral  $\eta_{\lambda}$  do conjunto de pontos  $\lambda_i = f(\chi'_i)$  tem a seguinte expansão em Série de Taylor:

$$\eta_{\lambda} = f\left(\bar{X}\right) + E\left\{\Psi_{X,\bar{X}}f\right\} + E\left\{\frac{\Psi_{X,\bar{X}}^{2}f}{2!}\right\} + \alpha E\left\{\frac{\Psi_{X,\bar{X}}^{3}f}{3!}\right\} + \alpha^{2}E\left\{\frac{\Psi_{X,\bar{X}}^{3}f}{3!}\right\} + \dots + \alpha^{k-2}E\left\{\frac{\Psi_{X,\bar{X}}^{k}f}{k!}\right\}.$$

2. a seguinte matriz de covariância amostral modificada de  $\lambda_i = f(\chi'_i)$ ,

$$\Sigma_{\lambda\lambda}^{mod} = \sum_{i=0}^{N} w_i' \left(\lambda_i - \eta_\lambda\right) \left(\lambda_i - \eta_\lambda\right)^T + \left(1 - \alpha^2\right) \left(\lambda_0 - \eta_\lambda\right) \left(\lambda_0 - \eta_\lambda\right)^T,$$

tem a seguinte expansão em Série de Taylor:

$$\Sigma_{\lambda\lambda}^{mod} = E\left\{\left(\Psi_{X,\bar{X}}f\right)\left(\Psi_{X,\bar{X}}f\right)^{T}\right\} + \alpha E\left\{\left(\Psi_{X,\bar{X}}f\right)\left(\frac{\Psi_{X,\bar{X}}^{2}f}{2!}\right)^{T}\right\} + \alpha^{2}E\left\{\left(\frac{\Psi_{X,\bar{X}}^{2}f}{2!}\right)\left(\frac{\Psi_{X,\bar{X}}^{2}f}{2!}\right)^{T}\right\} - \alpha^{2}E\left\{\left(\frac{\Psi_{X,\bar{X}}^{2}f}{2!}\right)\right\}E\left\{\frac{\Psi_{X,\bar{X}}^{2}f}{2!}\right\}^{T} \qquad \Box + \alpha^{2}E\left\{\left(\frac{\Psi_{X,\bar{X}}^{3}f}{3!}\right)\left(\Psi_{X,\bar{X}}f\right)^{T}\right\} + \cdots$$

Note que a Série de Taylor da média amostral e da matriz de covariância amostral modificada de  $\lambda$  acima são iguais, respectivamente, à expansão da Série de Taylor da média amostral e da matriz de covariância amostral de conjunto de pontos sigma antes da transformação escalada. De modo particular, quando  $\alpha = 1$ , essas séries são iguais.

Essa forma de fazer a transformação escalada é restritiva pois, para que as propriedades desejadas de estimação da média e da covariância sejam válidas, é preciso que haja um ponto sigma localizado na média de X. De fato, observe o lema abaixo de nossa composição.

**Lema 2.4.7.** Sejam  $X \sim (\bar{X}, P_{XX})$  e o mapeamento  $f : \Re^n \mapsto \Re^m$  que define Y de acordo com Y = f(X) e seja os conjunto de pontos sigma  $\{\chi_i, w_i | w_i \in \Re, \chi_i \in \Re^n; i = 1, 2, ..., N\}$ e o conjunto de pontos sigma escalado  $\{\chi'_i, w'_i\}$  tal que

$$\chi'_{i} = \chi_{1} + \alpha \left(\chi_{i} - \chi_{1}\right);$$
(2.17)

$$w'_{i} = \begin{cases} \frac{w_{1}}{\alpha^{2}} + 1 - \frac{1}{\alpha^{2}} & , i = 1, \\ \frac{w_{i}}{\alpha^{2}} & , i = 2, ..., N. \end{cases}$$
(2.18)

as seguintes assertivas são verdadeiras:

1.  

$$\sum_{i=1}^{N} w_i = 1 \Rightarrow \sum_{i=1}^{N} w'_i = 1.$$
(2.19)

2.

$$\mu_{\chi'} = \frac{1}{\alpha} \mu_{\chi} + \chi_1 \left( 1 - \frac{1}{\alpha} \right).$$
(2.20)

3.

$$\chi_1 = \mu_{\chi} \Rightarrow \mu_{\chi'} = \mu_{\chi}. \tag{2.21}$$

е

$$\begin{array}{c} \mu_{\chi'} = \mu_{\chi}. \\ \alpha \neq 1. \end{array} \right\} \Rightarrow \chi_1 = \mu_{\chi}$$
 (2.22)

4.

$$\chi_1 = \mu_{\chi} \Rightarrow \Sigma_{\chi'\chi'} = \Sigma_{\chi\chi} \tag{2.23}$$

PROVA Quanto à primeira assertiva, temos que

$$\sum_{i=1}^{N} w'_{i} = w'_{1} + \sum_{i=2}^{N} w'_{i}$$

$$\stackrel{(2.18)}{=} \frac{w_{1}}{\alpha^{2}} + 1 - \frac{1}{\alpha^{2}} + \sum_{i=2}^{N} \frac{w_{i}}{\alpha^{2}}$$

$$= \frac{w_{1}}{\alpha^{2}} - \frac{1}{\alpha^{2}} + \frac{\alpha^{2}}{\alpha^{2}} + \sum_{i=2}^{N} \frac{w_{i}}{\alpha^{2}}$$

$$= \frac{1}{\alpha^{2}} \left( w_{1} - 1 + \alpha^{2} + \sum_{i=2}^{N} w_{i} \right)$$

$$= \frac{1}{\alpha^{2}} \left( -1 + \alpha^{2} + \sum_{i=1}^{N} w_{i} \right).$$

Como  $\sum_{i=1}^{N} w_i = 1$ ,

$$\sum_{i=1}^{N} w'_{i} = \frac{1}{\alpha^{2}} \left( -1 + \alpha^{2} + 1 \right)$$
  
= 1, (2.24)

que satisfaz a (2.19). Agora vamos verificar a segunda.

$$\mu_{\chi'} := \sum_{i=1}^N w'_i \chi'_i$$

$$= w_{1}'\chi_{1}' + \sum_{i=2}^{N} w_{i}'\chi_{i}'$$

$$^{(2.17)-(2.18)} \left(\frac{w_{1}}{\alpha^{2}} + 1 - \frac{1}{\alpha^{2}}\right)\chi_{1} + \sum_{i=2}^{N} \frac{w_{i}}{\alpha^{2}}(\chi_{1} + \alpha(\chi_{i} - \chi_{1}))$$

$$= \frac{w_{1}}{\alpha^{2}}\chi_{1} + \chi_{1} - \frac{1}{\alpha^{2}}\chi_{1} + \sum_{i=2}^{N} \frac{w_{i}}{\alpha^{2}}\chi_{1} + \sum_{i=2}^{N} \frac{w_{i}}{\alpha^{2}}\alpha\chi_{i} - \sum_{i=2}^{N} \frac{w_{i}}{\alpha^{2}}\alpha\chi_{1}$$

$$= \sum_{i=1}^{N} \frac{w_{i}}{\alpha^{2}}\chi_{1} + \chi_{1} - \frac{1}{\alpha^{2}}\chi_{1} + \frac{1}{\alpha}\sum_{i=2}^{N} w_{i}\chi_{i} - \frac{1}{\alpha}\chi_{1}\sum_{i=2}^{N} w_{i}$$

$$= \frac{\chi_{1}}{\alpha^{2}} + \chi_{1} - \frac{1}{\alpha^{2}}\chi_{1} + \frac{1}{\alpha}\sum_{i=2}^{N} w_{i}\chi_{i} - \frac{1}{\alpha}\chi_{1}(1 - w_{1})$$

$$= \chi_{1} + \frac{1}{\alpha}\sum_{i=2}^{N} w_{i}\chi_{i} - \frac{1}{\alpha}\chi_{1} + \frac{1}{\alpha}w_{1}\chi_{1}$$

$$= \frac{1}{\alpha}\sum_{i=1}^{N} w_{i}\chi_{i} + \chi_{1}\left(1 - \frac{1}{\alpha}\right),$$
(2.25)

que satisfaz a (2.19). Agora, se  $\chi_1=\!\mu_{\chi},$  de (2.25):

$$\mu_{\chi'} = \frac{1}{\alpha} \mu_{\chi} + \chi_1 \left( 1 - \frac{1}{\alpha} \right)$$
$$= \frac{1}{\alpha} \mu_{\chi} + \mu_{\chi} \left( 1 - \frac{1}{\alpha} \right)$$
$$= \mu_{\chi}.$$
(2.26)

o que satisfaz a (2.21)

De forma contrária, se  $\mu_{\chi'}=\mu_{\chi},$  de (2.25):

$$\left(1-\frac{1}{\alpha}\right)\mu_{\chi} = \chi_1\left(1-\frac{1}{\alpha}\right).$$

Se  $\alpha \neq 1$ , então  $\left(1 - \frac{1}{\alpha}\right) \neq 0$  e

$$\mu_{\chi} = \chi_{1,}$$

o que satisfaz a (2.22).

Vamos verificar agora a assertiva com relação a  $\Sigma_{\chi'\chi'} = \Sigma_{\chi\chi}$ .

$$\Sigma_{\chi'\chi'} := \sum_{i=1}^{N} w'_i \left(\chi'_i - \mu_{\chi'}\right) \left(\chi'_i - \mu_{\chi'}\right)^T$$

$$= w'_{1} \left( \chi'_{1} - \mu_{\chi'} \right) \left( \chi'_{1} - \mu_{\chi'} \right)^{T} + \sum_{i=2}^{N} w'_{i} \left( \chi'_{i} - \mu_{\chi'} \right) \left( \chi'_{i} - \mu_{\chi'} \right)^{T}$$

$$\stackrel{(2.17)-(2.18)}{=} \left( \frac{w_{1}}{\alpha^{2}} + 1 - \frac{1}{\alpha^{2}} \right) \left( \chi_{1} - \frac{1}{\alpha} \mu_{\chi} - \chi_{1} \left( 1 - \frac{1}{\alpha} \right) \right)$$

$$\left( \chi_{1} - \frac{1}{\alpha} \mu_{\chi} - \chi_{1} \left( 1 - \frac{1}{\alpha} \right) \right)^{T}$$

$$+ \sum_{i=2}^{N} \frac{w_{i}}{\alpha^{2}} \left( \chi_{1} + \alpha \left( \chi_{i} - \chi_{1} \right) - \frac{1}{\alpha} \mu_{\chi} - \chi_{1} \left( 1 - \frac{1}{\alpha} \right) \right)$$

$$\left( \chi_{1} + \alpha \left( \chi_{i} - \chi_{1} \right) - \frac{1}{\alpha} \mu_{\chi} - \chi_{1} \left( 1 - \frac{1}{\alpha} \right) \right)^{T}$$

$$= \left(\frac{w_1}{\alpha^2} + 1 - \frac{1}{\alpha^2}\right) \left(\chi_1 - \frac{1}{\alpha}\mu_{\chi} - \chi_1 + \chi_1\frac{1}{\alpha}\right) \left(\chi_1 - \frac{1}{\alpha}\mu_{\chi} - \chi_1 + \chi_1\frac{1}{\alpha}\right)^T$$
$$+ \sum_{i=2}^N \frac{w_i}{\alpha^2} \left(\chi_1 + \alpha\left(\chi_i - \chi_1\right) - \frac{1}{\alpha}\mu_{\chi} - \chi_1 + \chi_1\frac{1}{\alpha}\right)$$
$$\left(\chi_1 + \alpha\left(\chi_i - \chi_1\right) - \frac{1}{\alpha}\mu_{\chi} - \chi_1 + \chi_1\frac{1}{\alpha}\right)^T$$

$$= \left(\frac{w_1}{\alpha^2} + 1 - \frac{1}{\alpha^2}\right) \left(-\frac{1}{\alpha}\mu_{\chi} + \chi_1\frac{1}{\alpha}\right) \left(-\frac{1}{\alpha}\mu_{\chi} + \chi_1\frac{1}{\alpha}\right)^T \\ + \sum_{i=2}^N \frac{w_i}{\alpha^2} \left(\alpha\left(\chi_i - \chi_1\right) - \frac{1}{\alpha}\mu_{\chi} + \chi_1\frac{1}{\alpha}\right) \left(\alpha\left(\chi_i - \chi_1\right) - \frac{1}{\alpha}\mu_{\chi} + \chi_1\frac{1}{\alpha}\right)^T$$

Consider ando  $\chi_1=\!\!\mu_{\chi}$  e (2.26) :

$$\begin{split} \Sigma_{\chi'\chi'} &:= \sum_{i=1}^{N} w'_{i} \left(\chi'_{i} - \mu_{\chi'}\right) \left(\chi'_{i} - \mu_{\chi'}\right)^{T} \\ &= w'_{1} \left(\chi'_{1} - \mu_{\chi'}\right) \left(\chi'_{1} - \mu_{\chi'}\right)^{T} + \sum_{i=2}^{N} w'_{i} \left(\chi'_{i} - \mu_{\chi'}\right) \left(\chi'_{i} - \mu_{\chi'}\right)^{T} \\ \stackrel{\text{(2.18),(2.26)}}{=} w'_{1} \left(\chi'_{1} - \mu_{\chi}\right) \left(\chi'_{1} - \mu_{\chi}\right)^{T} \\ &+ \sum_{i=2}^{N} w'_{i} \left(\chi_{1} + \alpha \left(\chi_{i} - \chi_{1}\right) - \mu_{\chi}\right) \left(\chi_{1} + \alpha \left(\chi_{i} - \chi_{1}\right) - \mu_{\chi}\right)^{T}. \end{split}$$

Como  $\chi_1 = \mu_{\chi}$  e considerando (2.17),

$$\Sigma_{\chi'\chi'} = \sum_{i=1}^{N} \frac{w_i}{\alpha^2} \left( \alpha \left( \chi_i - \mu_{\chi} \right) \right) \left( \alpha \left( \chi_i - \mu_{\chi} \right) \right)^T$$

$$= \sum_{i=1}^{N} w_i \left( \chi_i - \mu_{\chi} \right) \left( \chi_i - \mu_{\chi} \right)^T$$
$$= \Sigma_{\chi\chi}$$
(2.27)

que satisfaz à (2.23).

Com isso mostramos que essa forma de se fazer a transformada escalada é restritiva. No entanto, há uma forma outra de se fazer o mesmo escalamento desejado sem que haja essa restrição. Essa outra forma é proposta por Julier no mesmo artigo, mas ela não é muito utilizada na literatura. Isso acontece pelo fato de a forma aqui apresentada ser mais simples juntamente com o fato de que todos os conjuntos de pontos sigma até então propostos sempre conterem um ponto na média. No entanto, essa condição não é necessária para que um conjunto de pontos ponderados seja um conjunto de pontos sigma (vide seção 5.1).

Essa outra forma de escalamento será apresentada de uma forma melhor na seção 5.2, pois tomaremos a sua idéia no desenvolvimento de nossa extensão da transformada escalada.

Com a transformada em mãos, podemos apresentar os filtros de Kalman unscented escalados.

Algoritmo 2.4.7 (Filtro de Kalman Unscented Simétrico Escalado Aumentado). Considere o sistema (2.1)-(2.2) e suponha que no instante de tempo k = 0,

$$\hat{x}_0 = E\{x_0\} = \bar{x}_0, \ \hat{P}^0_{XX} = E\{(x_0 - \bar{x}_0)(x_0 - \bar{x}_0)^T\} = \bar{P}^0_{XX}$$

Considere, ainda, o seguinte vetor de estado aumentado  $x_k^a$  e suas respectivas média  $\bar{x}_k^a$  e matriz de covariância aumentada  $P_{XX}^{k,a}$ 

$$\begin{aligned} x_k^a &:= \begin{bmatrix} x_k^T, q_k^T, r_k^T \end{bmatrix}^T, \\ \bar{x}_k^a &:= \begin{bmatrix} \bar{x}_k^T, 0, 0 \end{bmatrix}^T, \\ P_{XX}^{k,a} &:= \begin{bmatrix} P_{XX}^k & 0 & 0 \\ 0 & Q_k & 0 \\ 0 & 0 & R_k \end{bmatrix} \end{aligned}$$

*O Filtro de Kalman Unscented Simétrico Escalado Aumentado é composto das etapas de predição e de correção da seguinte forma:* 

#### 1. Predição

- (a) Escolha um valor para  $w_0 < 1$ .
- (b) Para  $i = 1, ..., n_a$ ,  $n_a = n + q + r$ , compute os pontos sigma aumentados  $\chi_{k-1}^{i,a}$  e seus pesos  $w_i$  assim:

$$\chi_{k-1}^{0,a} = \hat{x}_{k-1}^a,$$

$$\begin{split} \chi_{k-1}^{i,a} &= \chi_{k-1}^{0,a} + \left[ \sqrt{\frac{n_a}{1 - w_0}} \hat{P}_{XX}^{k-1,a} \right]_{*i}, \\ \chi_{k-1}^{i+n_a,a} &= \chi_{k-1}^{0,a} + \left[ \sqrt{\frac{n_a}{1 - w_0}} \hat{P}_{XX}^{k-1,a} \right]_{*i}, \\ w_i &= w_{i+n} = \frac{1 - w_0}{2n_a}, \end{split}$$

em que

$$\chi_{k-1}^{i,a} = \begin{bmatrix} \chi_{k-1}^{i,x} \\ \chi_{k-1}^{i,w} \\ \chi_{k-1}^{i,v} \\ \chi_{k-1}^{i,v} \end{bmatrix}$$

- (c) Escolha  $\alpha > 0$ .
- (d) Faça a transformação escalada dos pontos e dos pesos:

$$\chi_{k-1}^{i,a} = \chi_{k-1}^{0,a} + \alpha \left( \chi_{k-1}^{i,a} - \chi_{k-1}^{0,a} \right),$$

$$\begin{cases} w_i = \frac{\chi'_0}{w_0} + 1 - \frac{1}{\alpha^2} &, i = 0\\ w_i = \frac{\chi'_i}{\alpha^2} &, i \neq 0 \end{cases},$$

(e) Faça a transformação dos pontos sigma:

$$\chi_{k|k-1}^{i,a} = \chi_{k-1}^{i,a}$$
$$\chi_{k|k-1}^{i,x} = f\left(\chi_{k-1}^{i,x}, \chi_{k-1}^{i,w}, k\right).$$

(f) Calcule as predições da estimativa e da matriz de covariância:

$$\hat{x}_{k|k-1} = \sum_{i=0}^{2n_a} w_i \chi_{k|k-1}^{i,x},$$
$$\hat{P}_{XX}^{k|k-1} = \alpha^2 \sum_{i=0}^{2n_a} w_i \left( \chi_{k|k-1}^{i,x} - \hat{x}_{k|k-1} \right) \left( \chi_{k|k-1}^{i,x} - \hat{x}_{k|k-1} \right)^T$$

#### 2. Correção

(a) Calcule os ponto sigma de predição da medição  $\gamma^i_{k|k-1}$ :

$$\gamma_{k|k-1}^{i} = h\left(\chi_{k-1}^{i,x}, \chi_{k-1}^{i,v}, k\right).$$

(b) Calcule a predição da medição  $\hat{y}_{k|k-1}$  e da matriz de covariância da medição  $\hat{P}_{YY}^{k|k-1}$  preditas :

$$\hat{y}_{k|k-1} = \sum_{i=0}^{2n_a} w_i \gamma_{k|k-1}^i,$$
$$\hat{P}_{YY}^{k|k-1} = \alpha^2 \sum_{i=0}^{2n_a} w_i \left(\gamma_{k|k-1}^i - \hat{y}_{k|k-1}\right) \left(\gamma_{k|k-1}^i - \hat{y}_{k|k-1}\right)^T$$

(c) Calcule a matriz de correlação cruzada predita  $\hat{P}_{XY}^{k|k-1}$ :

$$\hat{P}_{XY}^{k|k-1} = \alpha \sum_{i=0}^{2n_a} w_i \left( \chi_{k|k-1}^{i,x} - \hat{x}_{k|k-1} \right) \left( \gamma_{k|k-1}^i - \hat{y}_{k|k-1} \right)^T.$$

(d) Faça a correção das estimativas preditas

$$G_{k} = \hat{P}_{XY}^{k|k-1} \left( \hat{P}_{YY}^{k|k-1} \right)^{-1},$$
  

$$\hat{x}_{k} = \hat{x}_{k|k-1} + G_{k} \left( y_{k} - \hat{y}_{k|k-1} \right),$$
  

$$\hat{P}_{XX}^{k} = \hat{P}_{XX}^{k|k-1} - G_{k} \hat{P}_{YY}^{k|k-1} G_{k}^{T}.$$

**Algoritmo 2.4.8 (Filtro de Kalman Unscented Simétrico Escalado Aditivo).** *Considere que o sistema (2.1)-(2.2) pode ser escrito da seguinte maneira* 

$$x_k = f(x_{k-1}, k) + q_k,$$
  
$$y_k = h(x_k, k) + r_k,$$

e suponha que no instante de tempo k = 0,

$$\hat{x}_0 = E\{x_0\} = \bar{x}_0, \ \hat{P}^0_{XX} = E\{(x_0 - \bar{x}_0)(x_0 - \bar{x}_0)^T\} = \bar{P}^0_{XX}$$

*O Filtro de Kalman Unscented Simétrico Escalado Aditivo é composto das etapas de predição e de correção da seguinte forma:* 

#### 1. Predição

- (a) Escolha um valor para  $w_0 < 1$ .
- (b) Para i = 1, ..., n, compute os pontos sigma aumentados  $\chi_{k-1}^{i,a}$  e seus pesos  $w_i$  assim:

$$\begin{split} \chi^{0}_{k-1} &= \hat{x}_{k-1}, \\ \chi^{i}_{k-1} &= \chi^{0}_{k-1} + \left[ \sqrt{\frac{n}{1 - w_{0}}} \hat{P}^{k-1}_{XX} \right]_{*i}, \\ \chi^{i+n}_{k-1} &= \chi^{0}_{k-1} + \left[ \sqrt{\frac{n}{1 - w_{0}}} \hat{P}^{k-1}_{XX} \right]_{*i}, \\ w_{i} &= w_{i+n} = \frac{1 - w_{0}}{2n}, \end{split}$$

- (c) Escolha  $\alpha > 0$ .
- (d) Faça a transformação escalada dos pontos e dos pesos:

$$\chi_{k-1}^{i} = \chi_{k-1}^{0} + \alpha \left( \chi_{k-1}^{i} - \chi_{k-1}^{0} \right),$$

$$\begin{cases} w_{i} = \frac{\chi_{0}'}{w_{0}} + 1 - \frac{1}{\alpha^{2}} &, i = 0\\ w_{i} = \frac{\chi_{i}'}{\alpha^{2}} &, i \neq 0 \end{cases},$$

(e) Faça a transformação dos pontos sigma:

$$\chi_{k|k-1}^{i} = f\left(\chi_{k-1}^{i}, k\right).$$

(f) Calcule as predições da estimativa e da matriz de covariância:

$$\hat{x}_{k|k-1} = \sum_{i=0}^{2n} w_i \chi^i_{k|k-1},$$
  
$$\hat{P}^{k|k-1}_{XX} = \alpha^2 \sum_{i=0}^{2n} w_i \left(\chi^i_{k|k-1} - \hat{x}_{k|k-1}\right) \left(\chi^i_{k|k-1} - \hat{x}_{k|k-1}\right)^T + Q_k.$$

# 2. Correção

(a) Calcule os ponto sigma de predição da medição  $\gamma_{k|k-1}^i$ :

$$\gamma_{k|k-1}^{i} = h\left(\chi_{k-1}^{i}, k\right).$$

(b) Calcule a predição da medição  $\hat{y}_{k|k-1}$  e da matriz de covariância da medição  $\hat{P}_{YY}^{k|k-1}$  preditas :

$$\hat{y}_{k|k-1} = \sum_{i=0}^{2n} w_i \gamma_{k|k-1}^i,$$
  
$$\hat{P}_{YY}^{k|k-1} = \alpha^2 \sum_{i=0}^{2n} w_i \left(\gamma_{k|k-1}^i - \hat{y}_{k|k-1}\right) \left(\gamma_{k|k-1}^i - \hat{y}_{k|k-1}\right)^T + R_k.$$

(c) Calcule a matriz de correlação cruzada predita  $\hat{P}_{XY}^{k|k-1}$ :

$$\hat{P}_{XY}^{k|k-1} = \alpha \sum_{i=0}^{2n} w_i \left( \chi_{k|k-1}^{i,x} - \hat{x}_{k|k-1} \right) \left( \gamma_{k|k-1}^i - \hat{y}_{k|k-1} \right)^T.$$

(d) Faça a correção das estimativas preditas

$$G_{k} = \hat{P}_{XY}^{k|k-1} \left( \hat{P}_{YY}^{k|k-1} \right)^{-1},$$
  

$$\hat{x}_{k} = \hat{x}_{k|k-1} + G_{k} \left( y_{k} - \hat{y}_{k|k-1} \right),$$
  

$$\hat{P}_{XX}^{k} = \hat{P}_{XX}^{k|k-1} - G_{k} \hat{P}_{YY}^{k|k-1} G_{k}^{T}.$$

É importante expor também que em muito lugares da literatura, a Transformada Unscented Simétrica Escalada é oferecida da apresentada da seguinte maneira (vide, por exemplo [81, 101, 89, 102]):

$$\lambda = \alpha^2 (n + \kappa) - n,$$

$$\chi_{0} = \bar{X},$$

$$w_{0}^{m} = \frac{\kappa}{n+\kappa},$$

$$w_{0}^{c} = \frac{\kappa}{n+\kappa} + (1-\alpha^{2}+\beta),$$

$$\chi_{i} = \bar{X} + \left(\sqrt{\frac{n}{1-w_{0}}}P_{XX}\right)_{*i},$$

$$w_{i}^{m} = w_{i}^{c} = \frac{1}{n+\kappa},$$

$$\chi_{i+n} = \bar{X} - \left(\sqrt{\frac{n}{1-w_{0}}}P_{XX}\right)_{*i},$$

$$w_{i+n}^{m} = w_{i+n}^{c} = \frac{1}{n+\kappa},$$

$$(2.28)$$

em que  $w_i^m$  são os pesos para o cálculo da média e  $w_i^c$  são os pesos para o cálculo da covariância. O parâmetro  $\beta$  é mais um parâmetro de ajusto. Com efeito, há lugares em que essa forma é apresentada como sendo a própria Transformada Unscented ([89, 102]), o que é um erro.

#### 2.4.3 Filtro de Kalman Unscented Raiz Quadrada

Em 2001, Rudolph Van ser Merwe e Eric A. Wan apresentaram um algoritmo nomeado de Filtro de Kalman *Unscented* Raiz Quadrada (FKURQ) - traduzimos do inglês "*Square-Root Unscented Kalman Filter*"[86]. No fundo, esse filtro é uma alteração do FKU para o caso de filtragem em que se propaga a Matriz Raiz Quadrada da matriz de covariância ao invés de se propagar a própria matriz de covariância do estado.

Esse filtro também não se enquadra na classificação de formas básicas dos filtros de Kalman unscented porque é apenas uma modificação de cálculo numérico das equações do filtro, de modo que não há diferença na representação dos pontos. A vantagem desse filtro a sua maior estabilidade numérica ([86]).

Para a exposição desse filtro, considere o seguinte lema e a seguinte definição.

**Lema 2.4.8.** Sejam as matrizes  $A \in \Re^{p \times q}$ ,  $Q \in \Re^{q \times q}$  ortogonal  $e R \in \Re^{q \times p}$ ,  $q \ge p$  tal que que a decomposição Q, R são as matrizes da decomposição QR de A,

$$A^T = QR$$

A matriz  $\overline{R} \in \Re^{p \times p}$ , que é a parte triangular superior de R,

$$R = \left[ \begin{array}{c} \bar{R} \\ R^* \end{array} \right],$$

é tal que

$$\bar{R}^T\bar{R} = AA^T.$$

*O* operador  $qr \{\bullet\}$  produz

$$\bar{R} = qr\{A\}.$$

PROVA Vide [103], pág. 154 ou [86].

**Definição 2.4.1.** Seja  $\sqrt{P} \in \Re^{n \times n}$  o Fator de Cholesky de  $P = \sqrt{P}\sqrt{P}^T$ , então o operador atuachol  $\{\bullet\}$ ,

$$\sqrt{Q} = atuachol\left\{\sqrt{P}, v, w\right\},$$

define o Fator de Cholesky  $\sqrt{Q}$  de  $Q = \sqrt{Q}\sqrt{Q}^T = P + wvv^T, w \in \Re, v \in \Re^n$ .

O algoritmo do FKURQ proposto em [86] pode ser descrito da seguinte forma:

Algoritmo 2.4.9 (Filtro de Kalman Unscented Raiz Quadrada). Considere o sistema (2.1)-(2.2) e suponha que no instante de tempo k = 0,

$$\hat{x}_0 = E\{x_0\} = \bar{x}_0, \ \hat{P}^0_{XX} = E\{(x_0 - \bar{x}_0)(x_0 - \bar{x}_0)^T\} = \bar{P}^0_{XX}.$$

O Filtro de Kalman Unscented Raiz Quadrada (FKURQ) é composto das etapas de predição e de correção da seguinte forma:

#### 1. Predição

- (a) Escolha um valor para  $w_0 < 1$ .
- (b) Para i = 1, ..., n, compute os pontos sigma aumentados  $\chi_{k-1}^{i,a}$  e seus pesos  $w_i$  assim:

$$\chi_{k-1}^{0} = \hat{x}_{k-1},$$
  

$$\chi_{k-1}^{i} = \chi_{k-1}^{0} + \left[\sqrt{\frac{n}{1 - w_{0}}} \hat{P}_{XX}^{k-1}\right]_{*i},$$
  

$$\chi_{k-1}^{i+n} = \chi_{k-1}^{0} + \left[\sqrt{\frac{n}{1 - w_{0}}} \hat{P}_{XX}^{k-1}\right]_{*i},$$
  

$$w_{i} = w_{i+n} = \frac{1 - w_{0}}{2n},$$

(c) Faça a transformação dos pontos sigma:

$$\chi_{k|k-1}^{i} = f\left(\chi_{k-1}^{i}, k\right)$$

(d) Calcule a predição da estimativa:

$$\hat{x}_{k|k-1} = \sum_{i=0}^{2n} w_i \chi^i_{k|k-1},$$

(e) Calcule a predição da raiz quadrada da matriz de covariância:

$$\sqrt{\hat{P}_{XX}^{k|k-1}} = qr \left\{ \left[ \sqrt{w_1} \left( \chi_{k-1}^1 - \hat{x}_{k|k-1} \right) \cdots \sqrt{w_{2n}} \left( \chi_{k-1}^{2n} - \hat{x}_{k|k-1} \right) \sqrt{Q_k} \right] \right\}$$
$$\sqrt{\hat{P}_{XX}^{k|k-1}} = atuachol \left\{ \sqrt{\hat{P}_{XX}^{k|k-1}}, \chi_{k-1}^0, w_0 \right\}$$

# 2. Correção

(a) Calcule os ponto sigma de predição da medição  $\gamma^i_{k|k-1}$ :

$$\gamma_{k|k-1}^{i} = h\left(\chi_{k-1}^{i}, k\right).$$

(b) Calcule a predição da medição  $\hat{y}_{k|k-1}$ :

$$\hat{y}_{k|k-1} = \sum_{i=0}^{2n} w_i \gamma^i_{k|k-1},$$

(c) Calcule a predição da matriz raiz quadrada da matriz de covariância da medição

$$\sqrt{\hat{P}_{YY}^{k|k-1}} = qr \left\{ \left[ \sqrt{w_1} \left( \gamma_{k|k-1}^1 - \hat{y}_{k|k-1} \right) \cdots \sqrt{w_{2n}} \left( \gamma_{k|k-1}^{2n} - \hat{y}_{k|k-1} \right) \sqrt{Q_k} \right] \right\} \\
\sqrt{\hat{P}_{YY}^{k|k-1}} = atuachol \left\{ \sqrt{\hat{P}_{YY}^{k|k-1}}, \gamma_{k|k-1}^0, w_0 \right\}$$

(d) Calcule a matriz de correlação cruzada predita  $\hat{P}_{XY}^{k|k-1}$ :

$$\hat{P}_{XY}^{k|k-1} = \sum_{i=0}^{2n} w_i \left( \chi_{k|k-1}^{i,x} - \hat{x}_{k|k-1} \right) \left( \gamma_{k|k-1}^i - \hat{y}_{k|k-1} \right)^T.$$

(e) Calcule os seguinte parâmetros:

$$\begin{split} G_k &= \hat{P}_{XY}^{k|k-1} \sqrt{\hat{P}_{YY}^{k|k-1}}^{-T} \sqrt{\hat{P}_{YY}^{k|k-1}}^{-1}, \\ U &= G_k \sqrt{\hat{P}_{YY}^{k|k-1}}, \\ \hat{P}_{XX}^k &= \hat{P}_{XX}^{k|k-1} - G_k \hat{P}_{YY}^{k|k-1} G_k^T. \end{split}$$

(f) Faça a correção da estimativa:

$$\hat{x}_k = \hat{x}_{k|k-1} + G_k \left( y_k - \hat{y}_{k|k-1} \right),$$

(g) Faça a seguinte igualdade

$$\sqrt{\hat{P}_{XX}^k} = \sqrt{\hat{P}_{XX}^{k|k-1}}$$

(h) Faça a correção da matriz raiz quadrada da matriz de covariância para i = 1, ..., n:

$$\sqrt{\hat{P}_{XX}^k} = atuachol\left\{\sqrt{\hat{P}_{YY}^{k|k-1}}, [U]_{*i}, -1\right\}.$$

Esse é o algoritmo apresentado em [86]. Na seção 6.2, faremos um caso mais geral desse filtro utilizando-se de nossa formulação que apresentaremos, também, mais a frente.

# 2.5 APLICAÇÕES DAS TÉCNICAS DE ESTIMAÇÃO UNSCENTED

Agora que vimos as diversas definições dos filtros de Kalman unscented, apresentamos algumas aplicações que se utilizam da filtragem unscented.

A área de rastreamento de objetos é um dos campos em que a Transformada Unscented foi mais aplicada. Algumas contribuições são: [68, 69, 73, 104, 105, 106, 107, 108, 109, 110, 111, 112]. Destacamos:

- [69], que faz uma comparação entre o Filtro Unscented de Kalman (FKU) e o Filtro de Kalman de Segunda Ordem em uma aplicação de rastreamento de objetos em manobra. Para esse caso, o FKU se comporta melhor;
- [107], que faz uma combinação da Transformada Unscented com uma técnica eficiente de integração numérica e as aplica em um problema de rastreamento de um veículo;
- [108], que faz também uma integração do FKU com uma outra técnica, resultando no que ele chama de IFKU (*Iterated Unscented Kalman Fitler*) e depois faz uma comparação deste filtro com o FKU clássico em um problema de rastreamento.

Há também algumas contribuições na área de rastreamento aéreo-espacial ([106, 113, 114, 115]) e em rastreamento de navios e embarcações ([79, 116, 117, 118, 119, 120, 121, 122, 123, 124]). Destacamos:

- [79], que usa o FKU para a navegação e localização de um veículo subaquático.
- [113], que utiliza o FKU para obter estimativas dos parâmetro de um ultra-leve;
- [114] faz simplificações no FKU para fazer o rastreamento de objetos em órbita.
- [115], que utiliza um FKURQ (Filtro de Kalman Unscented Raiz Quadrada) para estimação(*Square-Root Unscented Kalman Filter*) para a detecção de falhas de um VANT (Veículo Aéreo Não Tripulado).
- [117], que utiliza o FKU para auxiliar no controle de uma embarcação.

• [119] utiliza o FKU para tratar parâmetros de um novo modelo que ele propõe para veículos mineradores submarinos de grande profundidade;

A área de SLAM é também uma em que os algoritmos de pontos sigma foram muito utilizados. Algumas contribuições são: [74, 78, 79, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134]. Destacamos:

- [74], que utiliza um FKURQ (Filtro de Kalman Unscented Raiz Quadrada) também como
- [130], que implementa um UFastSLAM (Unscented FastSLAM);
- [131], que usa o FKU num contexto de SLAM por visão monocular; solução para um SLAM de visão utilizando uma câmera.

Listamos também algumas outras contribuições:

- [66] propõe um novo algoritmo baseado no FKU para receptores GPS;
- [135] utiliza o UKF para fazer a identificação de um guidaste de containers;
- [136] propõe uma nova técnica de estimação das velocides lateral e longitudinal de um veículo baseada no FKU;
- [137] faz o estudo de técnicas de filtros de múltiplos modelos para com o FKU para rastreamento de múltiplos alvos;
- [138] utiliza o FKU para a filtragem em sistema de potência;
- [139] utiliza um FKUI (do inglês *Itered Unscented Kalman Filter*) para identificar os parâmetros de modelo de um sistema circulatório arterial.
- [140] propõe uma nova técnica para compreensão de videos que se utiliza do FKU.

Além dessas já descritas, apenas citamos algumas outras aplicações que foram feitas com a Transformada Unscented. Elas são: satélites ([76, 141, 142, 143]), visão computacional ([111, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153]), redes neurais ([70, 154, 155, 156, 109]), eletromagnetismo ([157, 158, 159]), comportamento de mercado [71], entre outros.

No próximo capítulo começaremos a nossa formalização da estimação por pontos sigma. Para isso, precisaremos fazer primeiro o estudo das representações dos pontos sigma, para depois construirmos a formulação da Transformação por Pontos Sigma para que, finalmente, possamos fazer a formalização dos filtros de Kalman Unscented.
# 3 SIGMA-REPRESENTAÇÃO DE UMA VARIÁVEL ALEATÓRIA

Para chegarmos à sistematização dos filtros de Kalman unscented, precisaremos primeiro fazer uma formulação das representações de pontos sigma e das transformadas unscented. Neste capítulo queremos chegar, particularmente, à formalização da representação de pontos sigma.

Para isso, apresentamos, antes, uma introdução motivadora da Transformada Unscented.

# 3.1 ESTIMAÇÃO E FILTRAGEM ESTOCÁSTICAS

Nesta seção temos por meta chegar ao paradigma da estimação estocástica, de onde emergirá a utilidade da Transformada Unscented. Para isso abordaremos alguns temas preliminares para depois chegarmos aos objetivos pretendidos nesta seção. Depois, apresentaremos a Transformada Unscented dando ênfase na sua característica sub-ótima em relação à técnica de linearização.

#### 3.1.1 Estimação da transformação de uma variável aleatória

Para que se entenda bem a importância da Transformada Unscented, vamos primeiro ver o problema da transformação de uma variável aleatória (v.a). Em outras palavras, queremos saber qual será a forma da distribuição de uma variável aleatória que é o resultado da transformação de uma outra v.a. Podemos colocar essa noção em termos mais formais:

**Problema 3.1.1.** Seja X um vetor de variáveis aleatórias de função densidade de probabilidade (pdf, do inglês "probability density function")  $p_X(x)$  e seja o mapeamento  $f : \Re^n \mapsto \Re^m$  que define a variável aleatória Y de acordo com a seguinte equação:

$$Y = f(X), \tag{3.1}$$

 $\square$ 

queremos encontrar a pdf de Y,  $p_Y(y)$ .

O interessante é que há sim uma solução analítica para esse problema. No entanto, muitas vezes, como veremos mais a frente, ela se torna intratável e soluções subótimas são necessárias. Vejamos, agora, essa solução analítica. Nós reproduzimos aqui o Teorema 2.7 de [3] e o limitamos para o espaço  $\Re^n$ . **Teorema 3.1.1 (Pdf de uma transformação.).** Sejam  $X \in \mathbb{R}^n, Y \in \mathbb{R}^n$  vetores de variáveis aleatórias em que Y = f(X). Suponha que  $f^{-1}$  exista e que tanto f quanto  $f^{-1}$  são continuamente diferenciáveis. Então,

$$p_Y(y) = p_X\left(f^{-1}(y)\right) \left\| \frac{\partial f^{-1}(y)}{\partial y} \right\|,\tag{3.2}$$

*em que*  $\left\|\frac{\partial f^{-1}(y)}{\partial y}\right\| > 0$  *é o valor absoluto do determinante da matriz jacobiana.*  $\Box$ 

PROVA Vide [3], página 34

O Teorema (3.1.1) nos dá a solução que procurávamos para o problema (3.1.1). No entanto, essa solução nem sempre é possível ou viável.

O Teorema (3.1.1) exige que a pdf de X seja conhecida, coisa que nem sempre é verdadeira. Muitas vezes, dispõe-se apenas de algumas informações estatísticas. Outro problema referente à essa solução é a sua exigência de existir a função inversa  $f^{-1}$  ou pelo menos de a conhecê-la, situação que também pode não acontecer. Em vista disso, torna-se importante o desenvolvimento de técnicas de estimação subótimas.

É nesse contexto que a Transformada Unscented aparece como uma alternativa de solução. Ela consiste em uma aproximação da distribuição de X por um conjunto de pontos escolhidos de modo determinístico. Esses pontos individualmente transformados fornecerão uma aproximação da distribuição *a posteriori*. De modo particular, a Transformada Unscented busca escolher os pontos que fornecerão as melhores aproximações da média e da matriz de covariância da distribuição de Y.

Entraremos em mais detalhes dessa transformada nos capítulos seguintes. Por agora, basta-nos compreender esse papel de aproximação subótima de uma transformação de variáveis aleatórias.

Em seguida, vamos ver a importância que a solução do problema visto nesta seção tem no contexto de estimação estocástica. De modo especial, veremos que a obtenção da média e da matriz de covariância é uma característica bastante desejada.

## 3.1.2 Filtragem estocástica

Queremos agora tratar do paradigma da filtragem estocástica, que pode ser entendida como uma consideração recursiva da estimação estocástica. Para isso, considere o seguinte sistema dinâmico em tempo discreto<sup>1</sup>:

<sup>&</sup>lt;sup>1</sup>Omitimos o sinal de controle por não ser necessário neste desenvolvimento. É claro que isso não acarreta em perda de generalidade.

$$x_{k+1} = f(x_k, w_{k+1}), \qquad (3.3)$$

em que  $k = 0, 1, 2, ..., x_k \in \Re^n$  é o vetor de estado no instante de tempo  $k, w_{k+1}$  é um ruído gaussiano branco  $w_{k+1} \sim N(0, Q)$  no instante k + 1 e f é uma função  $f : \Re^n \mapsto \Re^n$ . Assumimos que o estado inicial  $x_0$  é conhecido e independente de  $q_k^2$ .

A cada instante de tempo k, medidas  $y_k$  são feitas. Estas se relacionam com as variáveis de estado a partir da seguinte equação:

$$y_k = h\left(x_k, r_k\right),\tag{3.4}$$

em que  $r_k$  é um ruído gaussiano branco  $r_k \sim N(0, R)$  no instante k e h é uma função  $h: \Re^n \mapsto \Re^m$ . Chamemos, ainda, o conjunto de medidas  $\{y_1, \ldots, y_k\}$  de  $Y_k$ , isto é,

$$Y_k \triangleq \{y_1, \ldots, y_k\}$$

Em um contexto probabilístico, a solução que buscamos para esse problema é a distribuição *a posteriori* 

$$p(x_k|Y_k).$$

Poderíamos utilizar o Teorema 3.1.1, mas, como já vimos, ele pode não ser aplicável. Além disso, mesmo conhecendo a pdf, ainda restaria o problema de saber qual seria a melhor estimativa para o estado. É claro que a intuição nos dá alguns indícios, como a média ou a mediana. No entanto, precisamos de algum critério para fazer essa escolha.

É bastante intuitivo que uma estimativa deva fornecer um erro pequeno. Nossa idéia será, então, definir uma boa medida dele. Mas antes vamos definir o erro.

Seja  $\hat{x}_k$  a estimativa de  $x_k$  (valor do estado no instante de tempo k) dado o conjunto de medidas  $Y_{\tau}, k \geq \tau$ . Então, o erro da estimativa ( $\tilde{x}_k$ ) será

$$\tilde{x}_k \triangleq x_k - \hat{x}_k.$$

Prossigamos para definir um critério para a medida de erro, ao qual daremos o nome de **função de custo**:

Seja  $\rho(\xi)$  uma função convexa do vetor  $\xi \in \Re^n$  não negativa, a **função de custo**  $L(\tilde{x}_k)$  é qualquer função de valor real tal que

L(0),

<sup>&</sup>lt;sup>2</sup>Esta seção é baseada na seção 2 do capítulo 5 de [3].

$$\rho(\xi_2) \ge \rho(\xi_1) \ge 0 \Rightarrow L(\xi_2) \ge L(\xi_1) \ge 0.$$

Agora que definimos uma classe de funções de custo, o que buscamos é uma estimativa  $\hat{x}_k$  de  $x_k$  que minimize o valor esperado

$$E\left\{L(\tilde{x}_k)\right\}.$$

Uma escolha particular de função de custo é a variância

$$L_1(\xi) = \xi^T S \xi$$

em que  $S \ge 0$ . Uma estimativa que minimize  $E \{L_1(\tilde{x}_k)\}$ , é chamado de mínima variância ou menor erro quadrático. O próximo teorema demonstra que a média condicional é essa estimativa pretendida.

**Teorema 3.1.2 (Teorema 5.3 de [3]).** Seja a estimativa um funcional de  $Y_{\tau}$ . Então a estimativa de mínima variância é a média condicional, ou seja,  $\hat{x}_k = E\{x_k | Y_k\}$ .

PROVA Vide [3].

Além disso, a média não é apenas o valor ótimo para o critério de mínima variância, mas também o é para várias outras funções da classe de funções de custo  $L(\tilde{x}_k)$  (vide os teoremas 5.1 e 5.2 de [3]). Há ainda uma outra propriedade que da média que reforça a sua escolha como a estimativa do estado a ser adotada: a de ser uma estimativa não-polarizada (ou não-viesada). Isto quer dizer que

$$E\{(x_k - \mu_k)\} = E\{x_k\} - E\{E\{x_k|Y_k\}\} = 0.$$

Essas propriedades justificam a adoção da média como estimativa do estado. Agora, seria interessante também que escolhêssemos um elemento que nos provesse o quão precisa é essa nossa estimativa. Para isso, escolhemos a matriz de covariância condicional

$$P_k \triangleq E\{(x_k - \mu_k)(x_k - \mu_k)|Y_k\}.$$

Chegamos, enfim, ao paradigma da estimação estocástica, que era um dos objetivos deste capítulo. Esse paradigma se baseia na procura de equações de evolução tanto para a média quanto para a matriz de covariância em sistemas dinâmicos descritos pelas equações (3.3) e (3.4).

Neste momento, podemos ver a utilidade que a Transformada Unscented tem no tratamento de problemas como esses. As equações (3.3) e (3.4) nos fornecem dois problemas

semelhantes aos do Problema 3.1.1. A Transformada Unscented é justamente um tipo de solução para esse problema. Mais ainda, ela nos fornece justamente as duas estimativas que procuramos: a média e a matriz de covariância.

Com efeito, sempre que uma solução por pontos sigma é desenvolvida para o problema de transformação não-linear, ele é facilmente convertido em um algoritmo de estimação recursiva para o tratamento de sistemas do tipo de (3.3) e (3.4).

#### 3.1.3 Introdução à Transformação Unscented

Nesta seção, temos como objetivo fornecer uma noção basilar da Transformada Unscented para que possamos desenvolver de uma melhor forma o restante deste trabalho.

Para uma familiarização da Transformada Unscented, utilizaremos de forma resumida a exposição feita em [2].

#### 3.1.3.1 Transformação em coordenadas cartesianas

A idéia dessa exposição será a de utilizar uma transformação de uma representação em coordenadas polares para representação em coordenadas cartesianas.

Considere a equação:

$$\begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix} = \begin{bmatrix} r\cos\theta \\ r\sin\theta \end{bmatrix},$$
(3.5)

que pode ser escrita de modo mais genérico como

$$Y = h(X),$$

em que,

$$X = \begin{bmatrix} r \\ \theta \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$
 (3.6)

Suponha que  $x_1$  (o módulo) seja uma variável aleatória de média 1 e desvio padrão de  $\sigma_r$ . Suponha que  $x_2$  (o ângulo  $\theta$ ) seja uma variável aleatória de média  $\pi/2$  e desvio padrão de  $\sigma_{\theta}$  e  $x_1$  e  $x_2$  sejam independentes.

Para solucionar o problema, poderíamos aplicar o Teorema 3.1.1. Todavia, não dispomos de toda a densidade de probabilidade de X, mas somente sua média e covariância. Por isso, precisamos de soluções aproximadas.

Numa tentativa de obter a média de Y,  $\overline{Y}$ , poderíamos aplicar a solução menos complicada e simplesmente substituirmos as médias de  $x_1$  e de  $x_2$  em (3.5). É fácil verificar que isso resultaria em:

$$\bar{Y} = \begin{bmatrix} 1\cos\pi/2\\ 1\sin\pi/2 \end{bmatrix} = \begin{bmatrix} 0\\ 1 \end{bmatrix}.$$
(3.7)

É claro que essa não é uma solução muito precisa. Por isso, vejamos uma outra técnica de aproximação: a linearização.

#### 3.1.3.2 Linearização da média da transformada

Vejamos primeiro qual o resultado que obtemos com a linearização da média.

$$\bar{Y} = E \left\{ h(\bar{X}) \right\}$$

$$\approx E \left\{ h(\bar{X}) + \frac{\partial h}{\partial \bar{X}} \Big|_{\overline{X}} (X - \bar{X}) \right\}$$

$$= h(\bar{X}) + \frac{\partial h}{\partial \bar{X}} \Big|_{\overline{X}} E \left\{ X - \bar{X} \right\}$$

$$= h(\bar{X})$$

$$= \left[ \begin{array}{c} 0\\ 1 \end{array} \right].$$
(3.8)

O que equivale ao resultado mais simples que obtivêmos em (3.7).

Mas vejamos com um pouco mais de rigor. Define  $\overline{r} \in \overline{\theta}$  como as média de  $r \in \theta$  respectivamente e defina  $\tilde{r}, \tilde{\theta}$  de acordo com as equações abaixo:

$$r = \overline{r} + \widetilde{r}, \tag{3.9}$$
$$\theta = \overline{\theta} + \widetilde{\theta}.$$

Assim, teremos

$$\bar{Y}_{1} = E \{ r \cos \theta \}$$

$$= E \{ (\bar{r} + \tilde{r} \cos(\bar{\theta} + \tilde{\theta}) \}$$

$$= E \{ (\bar{r} + \tilde{r}) \cos(\bar{\theta}) \cos(\tilde{\theta}) - \sin(\bar{\theta}) \sin(\tilde{\theta}) \}.$$
(3.10)

Considerando as variáveis aleatórias como simétricas e independentes:

$$E[(\overline{r} + \widetilde{r})\cos(\overline{\theta})\cos(\overline{\theta}) + \sin(\overline{\theta})\sin(\overline{\theta})]$$
(3.11)

$$= (\overline{r} + \widetilde{E\left\{\widetilde{r}\right\}}) \left( \overbrace{\cos(\overline{\theta})}^{0} E\left\{\cos(\widetilde{\theta})\right\} - \sin(\overline{\theta}) \widetilde{E\left\{\sin(\widetilde{\theta})\right\}} \right)$$
(3.12)

$$\bar{Y}_1 = \bar{r} \cos \bar{\theta} \tag{3.13}$$
$$= 0.$$

O que concorda com nossa intuição.

Ademais,

$$\bar{Y}_{2} = E \{ r \cos \theta \}$$

$$= E \{ (\bar{r} + \tilde{r}) \sin(\bar{\theta} + \tilde{\theta}) \}$$

$$= E \{ (\bar{r} + \tilde{r}) \sin(\bar{\theta}) \cos(\tilde{\theta}) + \cos(\bar{\theta}) \sin(\tilde{\theta}) \}.$$
(3.14)

Tomando as mesmas considerações anteriores:

$$\bar{Y}_2 = \overline{r} \sin \overline{\theta} E \left\{ \cos \widetilde{\theta} \right\}$$

$$= E \left\{ \cos \widetilde{\theta} \right\}.$$
(3.15)

Agora é preciso assumir hipóteses adicionais sobre as variáveis para que seja possível prosseguir. Façamos  $\tilde{\theta}$  uniforme em  $\pm \theta_m$ .

$$\bar{Y}_{2} = E\left\{\cos\widetilde{\theta}\right\} \\
= \int \cos(\widetilde{\theta})p(\widetilde{\theta})d\widetilde{\theta} = \frac{1}{2\theta_{m}}\int\cos(\widetilde{\theta})d\widetilde{\theta} = 2\frac{sen\theta_{m}}{2\theta_{m}} \\
= \frac{\sin\theta_{m}}{\theta_{m}},$$
(3.16)

o que diverge do nosso resultado anterior, pois esse resultado é claramente menor ou igual a 1.

## 3.1.3.3 Linearização da covariância da transformada

Façamos agora a linearização da matriz de covariância.

Primeiro, para o caso linear. Precisamos encontrar a matriz H e  $P_{XX}$ .

$$H = \frac{\partial h}{\partial \bar{X}} \bigg|_{X=\bar{X}}$$
(3.17)  
$$= \begin{bmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{bmatrix}_{X=\bar{X}}$$
$$= \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
$$P_{XX} = E \left\{ \begin{bmatrix} r - \tilde{r} \\ \theta - \bar{\theta} \end{bmatrix} \begin{bmatrix} r - \tilde{r} \\ \theta - \bar{\theta} \end{bmatrix}^T \right\}$$
$$= \begin{bmatrix} \sigma_r^2 & 0 \\ 0 & \sigma_{\theta}^2 \end{bmatrix}.$$

 $P_{YY}$ será

$$P_{YY} \approx HP_{XX}H^{T}$$

$$= \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \sigma_{r}^{2} & 0 \\ 0 & \sigma_{\theta}^{2} \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} \sigma_{\theta}^{2} & 0 \\ 0 & \sigma_{\theta}^{2} \end{bmatrix}.$$

$$(3.18)$$

Este é o valor aproximado de  $P_y$ . Em uma derivação mais rigorosa:

$$P_{YY} = E\left\{ \left(y - \bar{y}\right) \left(y - \bar{y}\right)^T \right\}$$

$$= E\left\{ \left(\begin{array}{c} r \cos \theta \\ r \sin \theta - (\sin \theta_m)/\theta_m \end{array}\right) (\cdots)^T \right\}$$

$$= E\left\{ \left[\begin{array}{c} r^2 \cos^2 \theta & r^2 \cos \theta \sin \theta - r \cos \theta (\sin \theta_m)/\theta_m \\ r^2 \cos \theta \sin \theta - r \cos \theta (\sin \theta_m)/\theta_m & r \sin \theta - ((\sin \theta_m)/\theta_m)^2 \end{array} \right] \right\}.$$
(3.19)

Assumindo que  $r \in \theta$  são independentes, r é uniforme de média 1 e desvio padrão  $\sigma_r \in \theta = pi/2 + \tilde{\theta} \operatorname{com} \tilde{\theta}$  uniformemente distribuída em torno de  $\theta_m$ , teremos

$$E\left\{r^{2}\right\} = 1 + \sigma_{r}^{2}$$

$$E\left\{\cos 2\tilde{\theta}\right\} = \frac{1 - E\left(\cos 2\tilde{\theta}\right)}{2}$$
(3.20)

$$E\left\{\cos 2\tilde{\theta}\right\} = \frac{(\sin 2\theta_m)}{2\theta_m}$$
$$E\left\{\sin \theta\right\} = E(\cos \tilde{\theta})$$
$$= \frac{\sin \theta_m}{\theta_m}.$$

Substituindo (3.20) em (3.19), temos que

$$P_{y} = \begin{bmatrix} \frac{1}{2} (1 + \sigma_{r}^{2}) (1 - \sin 2\theta_{m}/2\theta_{m}) & 0\\ 0 & \frac{1}{2} (1 + \sigma_{r}^{2}) (1 + \sin 2\theta_{m}/2\theta_{m}) - \sin^{2} \theta_{m}/\theta_{m}^{2} \end{bmatrix},$$
(3.21)

que também diverge significativamente de (3.18).

### 3.1.3.4 Transformada Unscented

A Transformada Unscented é baseada em dois princípios fundamentais. Primeiro, de que é mais fácil realizar uma transformação não-linear em um único ponto do que em toda a pdf. Segundo, não é tão difícil encontrar um conjunto de pontos cuja pdf amostral aproxime uma variável aleatória [2].

Em um sentido amplo, essa transformada é um conjunto de pontos ponderados cuja média e matriz de covariância serão iguais à média e à matriz de covariância da v.a. *a priori* e a média e a matriz de covariância dos pontos transformados serão uma aproximação da média e da matriz de covariância da v.a. *a posteriori* até a segunda ordem das respectivas expansões em Série de Taylor. Em sua primeira concepção, este é o conjunto de pontos  $\chi_i$  e pesos  $w_i$ que deram origem à Transformada Unscented: para i = 1, 2, ..., n,

$$\chi_0 = \bar{X},$$

$$w_0 = \frac{\kappa}{n+\kappa}$$

$$\chi_i = \bar{X} + \left(\sqrt{\frac{n}{1-w_0}}P_{XX}\right)_{*i},$$

$$w_i = \frac{1}{n+\kappa},$$

$$\chi_{i+n} = \bar{X} - \left(\sqrt{\frac{n}{1-w_0}}P_{XX}\right)_{*i},$$

$$w_{i+n} = \frac{1}{n+\kappa},$$

em que  $\kappa \in \Re$  e  $\kappa \neq -n$ . Veremos os detalhes de uma melhor forma mais para frente. Só adiantamos que essa escolha de pontos fornece uma aproximação de  $\overline{Y}$  e de  $P_{YY}$  mais precisas que a linearização direta.



Figura 3.1: Comparação entre o modelo linearizado e Transformada Unscented.

Para uma primeira comparação com a técnica de linearização, a Figura 3.1 apresenta os resultados da média e da elipse  $3\sigma$  da linearização, da Transformada Unscented e, como base para a comparação, da técnica de Monte Carlo.

Observe, da figura, que de fato a qualidade da estimativa da Transforma Unscented é superior à da linearização.

## 3.2 SIGMA-REPRESENTAÇÃO

Agora que tivemos uma idéia introdutória da Transformada Unscented, vamos começar de modo mais essencial a nossa sistematização. Como dissemos na introdução do capítulo 1, faremos o nosso estudo começando pela análise dos conjuntos de pontos sigma, que é uma aproximação de uma variável aleatória por um conjunto de pontos ponderados. Para isso, vamos propor a  $\sigma$ -representação que será apresentada na próxima definição

Antes, no entanto, considere as seguintes notações: para uma matriz  $A \in \Re^{n \times m}$ ,  $[A]_{p \times q}$ será uma matriz bloco com  $p \times q$  blocos constituídos por A,  $(A)_{i*}$  representa a *i*-ésima linha de A e  $(A)_{*j}$  representa a *j*-ésima coluna de A.  $X \sim (\bar{X}, P_{XX})$  representa uma variável aleatória de média  $\bar{X}$  e matriz de covariância  $P_{XX}$ . **Definição 3.2.1.** Seja  $X \sim (\bar{X}, P_{XX})$  uma  $\sigma$ -representação de N pontos  $\$ = \{\chi_i, w_i \mid i = 1, 2, ..., N\}$  de X é constituída por um conjunto de pontos  $\chi_i \in \Re^n$  ponderados por  $w_i \in \Re$  tal que média e a matriz de covariância da  $\sigma$ -representação são definidos, respectivamente, por

$$\mu_{\sigma}(\mathfrak{S}) := \sum_{i=1}^{N} w_i \chi_i, \tag{3.22}$$

$$\Sigma_{\sigma}(\mathfrak{S}) := \sum_{i=0}^{N} w_i \left( \chi_i - \mu_{\sigma}(\mathfrak{S}) \right) \left( \chi_i - \mu_{\sigma}(\mathfrak{S}) \right)^T, \tag{3.23}$$

e são tais que

$$\mu_{\sigma}(\mathfrak{S}) = \bar{X} \quad e \quad \Sigma_{\sigma}(\mathfrak{S}) = P_{XX}.$$

Dizemos que S é uma  $\sigma$ -representação **normalizada** de X se

$$\sum_{i=1}^{N} w_i = 1.$$

O próximo lema apresenta uma forma de encontrar esses pontos.

**Lema 3.2.1.** Um conjunto  $S = \{\chi_i, w_i | i = 1, 2, ..., N\}$  é uma  $\sigma$ -representação de X se e somente se  $A_{\chi} := [\chi_1, ..., \chi_N]$  e  $w := [w_1, ..., w_N]^T$  são soluções de

$$A_{\chi}w = \bar{X},\tag{3.24}$$

$$\left(A_{\chi} - [\bar{X}]_{1 \times N}\right) W \left(A_{\chi} - [\bar{X}]_{1 \times N}\right)^{T} = P_{XX}, \qquad (3.25)$$

em que  $W = diag(w)^3$ . Além disso, S será uma  $\sigma$ -representação normalizada se

$$[1]_{1 \times N} w = 1. \tag{3.26}$$

O próximo Teorema contém a solução geral para a  $\sigma$ -representação.

**Teorema 3.2.1.** Uma  $X \sim (\bar{X}, P_{XX})$  admite uma  $\sigma$ -representação normalizada de N pontos se e somente se existem  $E \in \Re^{n \times N}$  e  $w = [w_1 \dots w_N]^T \in \Re^N$  satisfazendo as igualdades

$$EWE^T = P_{XX} \tag{3.27}$$

<sup>&</sup>lt;sup>3</sup>O operador diag(v) é uma matriz diagonal formada pelo vetor v.

$$Ew = 0 \tag{3.28}$$

$$[1]_{1 \times N} w = 1, \tag{3.29}$$

em que W = diag(w). Se (3.27)-(3.29) admite uma solução (E, W), então a  $\sigma$ -representação normalizada de X é  $S = \{\chi_i, w_i | i = 1, 2, ..., N\}$  em que

$$[\chi_1 \dots \chi_N] := E + [\bar{X}]_{1 \times N}.$$

PROVA Segue diretamente do lema anterior. De fato, como  $(3.26) \equiv (3.29)$ , vamos mostrar apenas que (3.27)-(3.28) são equivalentes a (3.24)-(3.25).

Assuma que (3.29) é satisfeita. Para (E, W) que satisfaz (3.27)-(3.28), defina

$$A_{\chi} := E + [\bar{X}]_{1 \times N}. \tag{3.30}$$

Então,

$$A_{\chi}w = (E + [\bar{X}]_{1 \times N}) w = Ew + [\bar{X}]_{1 \times N}w$$
  
$$\stackrel{(3.28)}{=} 0 + [1]_{1 \times N}w\bar{X}$$
  
$$\stackrel{(3.29)}{=} \bar{X}.$$

O que significa que  $A_{\chi}$  satisfaz (3.24).

De (3.30) e (3.27),

$$\left(A_{\chi} - [\bar{X}]_{1 \times N}\right) W \left(A_{\chi} - [\bar{X}]_{1 \times N}\right)^{T} = P_{XX}$$

e, então, (3.25) é satisfeita.

Ao contrário, suponha que (3.24)-(3.26) sejam satisfeitas. De (3.25) e (3.30) é imediato que (3.27) é satisfeita. De (3.30) e (3.24),

$$Aw = \bar{X} \Leftrightarrow \left(E + [\bar{X}]_{1 \times N}\right) w = \bar{X} \Leftrightarrow Ew + [\bar{X}]_{1 \times N} w = \bar{X}$$
$$\Leftrightarrow Ew + [1]_{1 \times N} w \bar{X} = \bar{X} \Leftrightarrow Ew = 0.$$

**Nota 3.2.1.** Se  $P_{XX} > 0$ , então de (3.27) segue que  $rank\{E\} \ge n$ . De fato, se, por absurdo,  $rank\{E\} < n$ , então existe  $v \in \Re^n, v \ne 0$  tal que  $v^T E = 0$ . Multiplicando ambos os lados de (3.27) por v, obtemos

$$P_{XX}v = EWE^Tv = 0$$

com  $v \neq 0$ , que é um absurdo, pois  $P_{XX}$  é invertível. Ademais, se  $P_{XX} > 0$ , então, como  $min\{n, N\} \geq rank\{E\} \geq n$  (vide [103]), existe uma  $\sigma$ -representação de X apenas se

$$rank\{E\} = n \quad e \quad N \ge n.$$

Por fim, não podemos ter  $rank{E} = n e N = n$ , pois isso implicaria, de (3.28), que

$$Ew = 0 \Rightarrow w = 0$$

e, assim, jamais teríamos uma  $\sigma$ -representação normalizada, pois (3.29) nunca seria satisfeita, e, além disso, só teríamos a solução trivial. Consequentemente, se  $P_{XX} > 0$ , X admite uma  $\sigma$ -representação normalizada apenas se  $rank\{E\} = n \ e \ N \ge n + 1$ . Portanto, uma condição necessária para que  $X \sim (\bar{X}, P_{XX})$  com  $P_{XX} > 0$  admita uma  $\sigma$ -representação normalizada é que  $N \ge n + 1$ .

Enfim obtivemos uma forma mais geral para a representação de pontos sigma. No próximo capítulo iremos obter casos particulares da  $\sigma$ -representação.

#### 4 SIGMA-REPRESENTAÇÕES PARTICULARES

Neste capítulo queremos obter casos particulares da  $\sigma$ -representação. De modo particular, a  $\sigma$ -representação simétrica e a  $\sigma$ -representação mínima.

# 4.1 SIGMA-REPRESENTAÇÃO SIMÉTRICA

A escolha de uma solução simétrica é justificada pelo fato de todos os seus momentos centrais ímpares serem zero (vide Lema A.1.8). No Lema A.2.8, também vimos que um conjunto de pontos simétricos também terá seus momentos ímpares simétricos. Portanto, para os casos em que a distribuição *a priori* for simétrica, como no caso gaussiano, é bastante conveniente que utilizemos uma  $\sigma$ -representação também simétrica.

Para fins de exposição do desenvolvimento desta seção, colocaremos aqui a definição de uma  $\sigma$ -representação simétrica (vide também a Definição A.2.1).

**Definição 4.1.1.** Uma  $\sigma$ -representação  $S = \{\chi_i, w_i | i = 1, 2, ..., N\}$  de X é denominada  $\sigma$ -representação simétrica se, para N ímpar,

$$\chi_i - \chi_N = -\left(\chi_{i+\frac{N-1}{2}} - \chi_N\right),$$
(4.1)

$$w_i = w_{i+\frac{N-1}{2}}, \quad \forall i = 1, \dots, \frac{N}{2},$$
(4.2)

ou para N par,

$$\chi_i = -\left(\chi_{i+\frac{N}{2}}\right),\tag{4.3}$$

$$w_i = w_{i+\frac{N}{2}}$$
,  $\forall i = 1, \dots, \frac{N}{2}$ . (4.4)

Note que para o caso em que N for ímpar, não é difícil mostrar que

$$\chi_N = \mu_{\chi},\tag{4.5}$$

em que  $\mu_{\chi}$  é a média do conjunto de pontos, como definido na seção 2.2.2.

Para este desenvolvimento, consideraremos apenas o caso em que N é ímpar. Note que isso não causa perda de generalidade, visto que o caso de N par pode ser obtido fazendo-se o peso do termo central igual a zero e o rearranjo dos índices em um conjunto de N ímpar.

Agora, considere os vetores  $p_i \in \Re^n$  definidos da seguinte forma:

$$E = \left[ \begin{array}{ccc} p_1 & \cdots & p_N \end{array} \right], \tag{4.6}$$

no qual a matriz E é definida no Teorema 3.2.1. Note que, de (4.5),

$$p_N = 0. \tag{4.7}$$

Considere, ainda,  $A_{\chi}$  definido em (3.30). O próximo lema é de grande utilidade.

**Lema 4.1.1.** Seja  $X \sim (\bar{X}, P_{XX})$  com pdf simétrica em relação à sua média e seja a  $\sigma$ representação simétrica de X,  $S = \{\chi_i, w_i | i = 1, 2, ..., N\}$ , e N ímpar. Considere ainda  $p_i \in \Re^n$  definido em (4.6). A seguinte relação é verdadeira:

$$p_i = -p_{\left(i + \frac{N-1}{2}\right)}.$$
(4.8)

PROVA De (4.1) e (3.30), temos

$$(A_{\chi})_{*i} - \bar{X} = -\left((A_{\chi})_{*\left(i+\frac{N-1}{2}\right)} - \bar{X}\right).$$
  
$$\therefore p_{i} + \bar{X} - \bar{X} = -\left(p_{\left(i+\frac{N-1}{2}\right)} + \bar{X} - \bar{X}\right)$$
  
$$\therefore p_{i} = -p_{\left(i+\frac{N-1}{2}\right)}.$$

Se combinarmos o Lema 4.1.1 com o Teorema 3.2.1, já temos uma solução para o caso simétrico. No entanto, seria interessante que conseguíssemos encontrar, entre as soluções simétricas, aquela que utilizasse o menor número de pontos. Para isso, vamos primeiro encontrar qual é a menor quantidade de pontos possível para uma  $\sigma$ -representação simétrica. O próximo lema nos dará esse resultado.

Lema 4.1.2 (Menor quantidade de pontos simétricos). Seja  $X \sim (\overline{X}), P_{XX}$ ) com pdf simétrica em relação à sua média e seja a  $\sigma$ -representação simétrica de  $X, S = \{ \chi_i, w_i \mid i = 1, 2, \dots, N \}$ , a seguinte inequação é verdadeira,

$$N \ge 2n. \tag{4.9}$$

PROVA Primeiramente, da Nota 3.2.1

$$rank(A_{\chi}) \ge n. \tag{4.10}$$

Aplicando o Lema 4.1.1 na equação (3.30),

$$A_{\chi} = \begin{bmatrix} p_{1} & \cdots & p_{N} \end{bmatrix} + \begin{bmatrix} \bar{X} \end{bmatrix}_{1 \times N}$$
  

$$= \begin{bmatrix} p_{1} & \cdots & p_{\frac{N}{2}} & p_{\frac{N}{2}+1} & \cdots & p_{N-1} & p_{N} \end{bmatrix} + \begin{bmatrix} \bar{X} \end{bmatrix}_{1 \times N}$$
  

$$\stackrel{(4.7)}{=} \begin{bmatrix} p_{1} & \cdots & p_{\frac{N}{2}} & p_{\frac{N}{2}+1} & \cdots & p_{N-1} & 0 \end{bmatrix} + \begin{bmatrix} \bar{X} \end{bmatrix}_{1 \times N}$$
  

$$\stackrel{(4.8)}{=} \begin{bmatrix} p_{1} & \cdots & p_{\frac{N}{2}} & -p_{1} & \cdots & -p_{\frac{N}{2}} & 0 \end{bmatrix} + \begin{bmatrix} \bar{X} \end{bmatrix}_{1 \times N}.$$
(4.11)

Aplicando o operador rank nos dois lados de (4.11) e considerando a equação (4.10):

$$n \leq rank \left\{ \begin{bmatrix} p_1 & \cdots & p_{\frac{N}{2}} & -p_1 & -p_{\frac{N}{2}} \end{bmatrix} + \begin{bmatrix} \bar{X} \end{bmatrix}_{1 \times N} \right\}.$$
$$= rank \left\{ \begin{bmatrix} p_1 & \cdots & p_{\frac{N}{2}} \end{bmatrix} \right\}$$
$$\leq \frac{N}{2}.$$
$$\therefore N \geq 2n.$$

O Lemma 4.1.2 é também uma novidade que apresentamos, pois em nenhum lugar na literatura esse resultado havia sido apresentado.

O Teorema 3.2.1 combinado com os lemas 4.1.1 e 4.1.2, dará a menor solução para o caso simétrico. Vamos encontrar essa solução utilizando esses lemas. Considere  $E_1 \in \Re n \times n$  e  $Q \in \Re^{n \times n}$  definidos da seguinte maneira:

$$E_1 := \left[ \begin{array}{ccc} p_1 & \cdots & p_{\frac{N-1}{2}} \end{array} \right], \tag{4.12}$$

$$Q := \begin{bmatrix} w_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & w_{\frac{N-1}{2}} \end{bmatrix}.$$
 (4.13)

Agora, aplicando o Lema 4.1.2 em

(3.27),

$$EWE = P_{XX}$$

$$\therefore \begin{bmatrix} p_1 & \cdots & p_N \end{bmatrix} \begin{bmatrix} w_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & w_N \end{bmatrix} \begin{bmatrix} p_1 & \cdots & p_N \end{bmatrix}^T = P_{XX}$$

Considerando  $\sqrt{P_{XX}}$  como a matriz raiz-quadrada de  $P_{XX}$ , aplicando (4.7), (4.8) e (4.12)-(4.13) teremos

$$\begin{bmatrix} E_{1} & -E_{1} & [0]_{n \times 1} \end{bmatrix} \begin{bmatrix} Q & 0 & 0 \\ 0 & Q & 0 \\ 0 & 0 & w_{N} \end{bmatrix} \begin{bmatrix} E & -E & 0_{n \times 1} \end{bmatrix}^{T} = \sqrt{P_{XX}} \sqrt{P_{XX}}^{T}$$
$$\begin{bmatrix} E_{1} & -E_{1} \end{bmatrix} \begin{bmatrix} Q & 0 \\ 0 & Q \end{bmatrix} \begin{bmatrix} E & -E \end{bmatrix}^{T} = \sqrt{P_{XX}} \sqrt{P_{XX}}^{T}.$$
(4.14)

Supondo

$$w_i > 0, \quad \forall i = 1, \dots N - 1,$$
 (4.15)

de (4.14), (3.28) e (4.13) podemos escrever

$$\begin{pmatrix} \begin{bmatrix} E_1 & -E_1 \end{bmatrix} \sqrt{\begin{bmatrix} Q & 0 \\ 0 & Q \end{bmatrix}} \end{pmatrix} \begin{pmatrix} \begin{bmatrix} E_1 & -E_1 \end{bmatrix} \sqrt{\begin{bmatrix} Q & 0 \\ 0 & Q \end{bmatrix}}^T \\ = \begin{bmatrix} \frac{1}{\sqrt{2}}\sqrt{P_{XX}} & -\frac{1}{\sqrt{2}}\sqrt{P_{XX}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}}\sqrt{P_{XX}}^T \\ -\frac{1}{\sqrt{2}}\sqrt{P_{XX}}^T \end{bmatrix}$$

$$\therefore \left( \begin{bmatrix} E_1 \sqrt{Q} & -E_1 \sqrt{Q} \end{bmatrix} \right) \left( \begin{bmatrix} E_1 \sqrt{Q} & -E_1 \sqrt{Q} \end{bmatrix}^T \right)$$

$$= \begin{bmatrix} \frac{1}{\sqrt{2}} \sqrt{P_{XX}} & -\frac{1}{\sqrt{2}} \sqrt{P_{XX}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} \sqrt{P_{XX}}^T & -\frac{1}{\sqrt{2}} \sqrt{P_{XX}}^T \end{bmatrix}^T.$$

$$(4.16)$$

Fica claro que a escolha

$$\begin{bmatrix} E\sqrt{Q} & -E\sqrt{Q} & [0]_{n\times 1} \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}}\sqrt{P_{XX}} & -\frac{1}{\sqrt{2}}\sqrt{P_{XX}} & [0]_{n\times 1} \end{bmatrix},$$
(4.17)

satisfaz (4.16). Além disso, (4.17) será satisfeita se

$$E\sqrt{Q} = \frac{1}{\sqrt{2}}\sqrt{P_{XX}}$$
$$\therefore E = \left(\sqrt{2Q}\right)^{-1}\sqrt{P_{XX}}.$$

Em consequência, podemos escrever o seguinte teorema formalizando a  $\sigma$ -representação simétrica. O resultado abaixo é chave no desenvolvimentos dos filtros correspondentes.

**Teorema 4.1.1** ( $\sigma$ -representação Simétrica Mínima). Seja  $X \sim (\bar{X}), P_{XX}$ ) com pdf simétrica em relação à sua média e seja a  $\sigma$ -representação simétrica de X,  $S = \{ \chi_i, w_i \mid i = 1, 2, ..., N \}$ , N ímpar. Considere o seguinte par (E, W)

$$E = \begin{bmatrix} \left(\sqrt{2Q}\right)^{-1} \sqrt{P_{XX}} - \left(\sqrt{2Q}\right)^{-1} \sqrt{P_{XX}} \quad 0_{n \times 1} \end{bmatrix}$$
(4.18)

$$W = \begin{bmatrix} Q & 0 & 0 \\ 0 & Q & 0 \\ 0 & 0 & w_N \end{bmatrix},$$
(4.19)

em que  $w_N \neq 0$ , Q > 0 e  $\sqrt{P_{XX}}$  é a matriz raiz quadrada de  $P_{XX}$ . Então,  $\{\chi_i, w_i\}$  é uma  $\sigma$ -representação simétrica mínima. Além disso, se  $\sum_{i=1}^{N} w_i = 1$ , então  $\{\chi_i, w_i\}$  é uma  $\sigma$ -representação simétrica mínima normalizada.

PROVA Do Lema 4.1.3, (3.29) é evidentemente satisfeita. Então, vamos mostrar que (4.18)-(4.19) satisfaz a (3.27)-(3.28). Considerando (4.18)-(4.19) em (3.27), podemos escrever

$$\begin{bmatrix} (\sqrt{2Q})^{-1}\sqrt{P_{XX}} & -(\sqrt{2Q})^{-1}\sqrt{P_{XX}} & [0]_{n\times 1} \end{bmatrix} \begin{bmatrix} Q & 0 & 0 \\ 0 & Q & 0 \\ 0 & 0 & w_N \end{bmatrix} \begin{bmatrix} ((\sqrt{2Q})^{-1}\sqrt{P_{XX}})^T \\ (-(\sqrt{2Q})^{-1}\sqrt{P_{XX}})^T \\ [0]_{1\times n} \end{bmatrix}^T \\ = \begin{bmatrix} (\sqrt{2Q})^{-1}\sqrt{P_{XX}}Q & -(\sqrt{2Q})^{-1}\sqrt{P_{XX}}Q & [0]_{n\times 1} \end{bmatrix} \begin{bmatrix} \sqrt{P_{XX}}^T ((\sqrt{2Q})^{-1})^T \\ -\sqrt{P_{XX}}^T ((\sqrt{2Q})^{-1})^T \\ [0]_{1\times n} \end{bmatrix}^T \\ = (\sqrt{2Q})^{-1}\sqrt{P_{XX}}Q\sqrt{P_{XX}}^T ((\sqrt{2Q})^{-1})^T + (\sqrt{2Q})^{-1}\sqrt{P_{XX}}Q\sqrt{P_{XX}}^T ((\sqrt{2Q})^{-1})^T \\ (\sqrt{2Q})^{-1}\sqrt{P_{XX}}Q\sqrt{P_{XX}}^T ((\sqrt{2Q})^{-1})^T + (\sqrt{2Q})^{-1}\sqrt{P_{XX}}Q\sqrt{P_{XX}}^T ((\sqrt{2Q})^{-1})^T \\ = P_{XX}, \end{bmatrix}$$

que satisfaz (3.27). Agora, considerando (4.18)-(4.19) em (3.28)

$$\begin{bmatrix} \left(\sqrt{2Q}\right)^{-1} \sqrt{P_{XX}} & -\left(\sqrt{2Q}\right)^{-1} \sqrt{P_{XX}} & [0]_{n\times 1} \end{bmatrix} w$$
$$= 0.$$

A parte final da prova é trivial.

Vamos considerar também o lema a seguir.

**Lema 4.1.3.** Seja  $X \sim (\bar{X}), P_{XX}$  com pdf simétrica em relação à sua média e seja a  $\sigma$ -representação simétrica de  $X \$  = { $\chi_i, w_i | i = 1, 2, ..., N$ }, N ímpar. If  $w_i = w, \forall i = 1, ..., N - 1$ ,

$$w = \frac{1 - w_N}{N - 1}.$$

PROVA De (3.29):

$$1 = \sum_{i=0}^{N} w_i$$
  
= 
$$\sum_{i=0}^{N} w$$
  
= 
$$(N-1)w + w_N$$
  
$$w = \frac{1-w_N}{N-1}.$$

Note que, para o caso simétrico, de (4.15),

.'

 $w_N < 1.$ 

Podemos conjugar o Lema 4.1.3 com o Teorema 4.1.1, para obter o seguinte corolário:

**Corolário 4.1.1** ( $\sigma$ -representação Simétrica Mínima Homogênea). Seja  $X \sim (\bar{X}), P_{XX}$ ) com pdf simétrica em relação à sua média e seja a  $\sigma$ -representação simétrica de  $X, S = \{\chi_i, w_i | i = 1, 2, ..., N\}$ , e N ímpar. Considere o seguinte par (E, W)

$$E = \begin{bmatrix} (\sqrt{2Q})^{-1} \sqrt{P_{XX}} & -(\sqrt{2Q})^{-1} \sqrt{P_{XX}} & 0_{n \times 1} \end{bmatrix}$$
$$W = \begin{bmatrix} Q & 0 & 0 \\ 0 & Q & 0 \\ 0 & 0 & w_N \end{bmatrix},$$

em que  $w_N \neq 0$  e  $w_N < 1$ ,  $Q = \frac{1-w_N}{2n}I_n$  e  $\sqrt{P_{XX}}$  é a matriz raiz quadrada de  $P_{XX}$ . Então,  $\{\chi_i, w_i\}$  é a menor  $\sigma$ -representação Simétrica Homogênea (normalizada). A  $\sigma$ -representação Simétrica Homogênea é equivalente ao conjunto de pontos sigma simétrico de Julier. PROVA Segue direto do Teorema 4.1.1.

Por último, como  $\{\chi_i, w_i\}$  satisfaz, por definição, ao Lemma 4.1.2, Lemma 4.1.1 e a Definição 4.1.1 a prova está completa.

Como dissemos antes, pretendíamos, com esse desenvolvimento, mostrar, primeiramente, que a Transforma Unscented não é uma escolha arbitrária. De fato, ela é a menor  $\sigma$ -representação simétrica homogênea de uma variável aleatória.

Em segundo lugar, e como consequência, também mostramos uma utilidade de nossa formulação geral. Na próxima seção, vamos mostrar que a  $\sigma$ -representação é capaz de nos guiar à novas definições. Particularmente, queremos obter uma  $\sigma$ -representação (não simétrica) com a menor quantidade de pontos possível.

## 4.2 SIGMA-REPRESENTAÇÕES MÍNIMAS

Nesta seção queremos encontrar um novo conjunto de pontos sigma utilizando nossa solução geral. Particularmente, queremos encontrar uma  $\sigma$ -representação com a menor quantidade de pontos possível, que é n + 1(vide Nota 3.2.1). Isto é motivado por dois fatos: uma solução mínima é desejável porque ela exige menos esforço computacional (vide [83] e [84]) e também porque uma solução satisfatória ainda não foi apresentada na literatura.

As soluções mínimas existentes estão em [83] e [84], mas elas apresentam problemas (ver capítulo 2.4). O conjunto de [83] também usa a menor quantidade de pontos sigma. No entanto, ele apresenta dois problemas. Um é que [83] pode ser numericamente instável para grandes valores de n (veja [84]). Outro problema é que nem a média nem a matriz de covariância do conjunto de [83] são iguais à média e à matriz de covariância, respectivamente, da v.a. *a priori* quando n é maior que um (vide seção 2.4.1.2).

Quanto ao conjunto de [84], note que ele utiliza um ponto a mais, o que não é uma grande desvantagem. No entanto, esse conjunto de ponto sigma também possui a segunda desvantagem mencionada para o conjunto de [83] (vide seção 2.4.1.3).

Para as razões apresentadas, procedemos na direção de encontrar uma  $\sigma$ -representação mínima para o conjunto de pontos sigma de acordo com os nossos métodos.

Faremos a exposição da seguinte maneira: primeiro apresentaremos uma  $\sigma$ -representação mínima particular, segundo apresentaremos uma  $\sigma$ -representação mínima geral e, depois mostraremos que a primeira é de fato um caso particular da segunda.

## 4.2.1 Sigma-representação mínima particular

Considere  $E_1 \in \Re^{n \times n}$ ,  $p \in \Re^n$ ,  $w_p$  e  $Q \in \Re^{n \times n}$  tal que

$$E := \begin{bmatrix} E_1 & p \end{bmatrix}, \tag{4.20}$$
$$\begin{bmatrix} w_1 & 0 & 0 \end{bmatrix}$$

$$Q := \begin{bmatrix} w_1 & v & v \\ 0 & \ddots & 0 \\ 0 & 0 & w_n \end{bmatrix}.$$
 (4.21)  
$$w_p = w_{n+1}.$$

De (3.27),

$$\left[\begin{array}{cc} E_1 & p\end{array}\right] \left[\begin{array}{cc} Q & 0\\ 0 & p\end{array}\right] \left[\begin{array}{cc} E_1^T\\ p^T\end{array}\right] = P_{XX}$$

Suponha $Q>0, w_p>0$ e considere que a matriz raiz quadrada  $\sqrt{P_{XX}}$  de  $P_{XX}.$  Podemos escrever

$$\begin{pmatrix} \begin{bmatrix} E_1 & p \end{bmatrix} \sqrt{\begin{bmatrix} Q_1 & 0 \\ 0 & w_p \end{bmatrix}} \end{pmatrix} \begin{pmatrix} \begin{bmatrix} E_1 & p \end{bmatrix} \sqrt{\begin{bmatrix} Q_1 & 0 \\ 0 & w_p \end{bmatrix}} \end{pmatrix}^T$$
$$= \sqrt{P_{XX}} \sqrt{P_{XX}}^T.$$
(4.22)

Uma forma interessante de resolução dessa equação é fazendo com que termo do lado direito de (4.22) seja de dimensão n + 1. Para isso, considere  $C \in \Re^{n \times n}$  tal que

$$\begin{bmatrix} \sqrt{P_{XX}}C & c \end{bmatrix} \begin{bmatrix} \left(\sqrt{P_{XX}}C\right)^T \\ c^T \end{bmatrix} = \sqrt{P_{XX}}\sqrt{P_{XX}}^T.$$
(4.23)

$$\therefore \sqrt{P_{XX}} C C^T \sqrt{P_{XX}}^T + c c^T = \sqrt{P_{XX}} \sqrt{P_{XX}}^T.$$
(4.24)

Suponha que  $P_{XX} > 0$  e multiplique (4.23) pela esquerda por  $\sqrt{P_{XX}}^{-1}$  e pela direita por  $(\sqrt{P_{XX}}:T)^{-1}$ :

$$CC^{T} + \sqrt{P_{XX}}^{-1}cc^{T} \left(\sqrt{P_{XX}}^{T}\right)^{-1} = I_{n}.$$

$$\therefore CC^{T} = I_{n} - \sqrt{P_{XX}}^{-1}cc^{T} \left(\sqrt{P_{XX}}^{T}\right)^{-1}.$$
(4.25)

Suponha

$$I_{n+1} - \sqrt{P_{XX}}^{-1} p p^T \left(\sqrt{P_{XX}}^T\right)^{-1} > 0, \qquad (4.26)$$

teremos

$$C = \sqrt{I_n - \sqrt{P_{XX}}^{-1} cc^T \left(\sqrt{P_{XX}}^T\right)^{-1}}.$$

Com uma expressão para C, podemos tentar obter os demais termos, pois agora podemos escrever os dois lados da equação de modo análogo. De fato, considerando (4.23) em (4.22):

$$\therefore \left( \begin{bmatrix} E_1 & p \end{bmatrix} \sqrt{\begin{bmatrix} Q_1 & 0 \\ 0 & w_p \end{bmatrix}} \right) \left( \begin{bmatrix} E_1 & p \end{bmatrix} \sqrt{\begin{bmatrix} Q_1 & 0 \\ 0 & w_p \end{bmatrix}} \right)^T$$

$$= \begin{bmatrix} \sqrt{P_{XX}}C & c \end{bmatrix} \begin{bmatrix} (\sqrt{P_{XX}}C)^T \\ c \end{bmatrix}.$$

$$\therefore \begin{bmatrix} E_1\sqrt{Q_1} & p\sqrt{w_p} \end{bmatrix} \begin{bmatrix} E_1\sqrt{Q_1} & p\sqrt{w_p} \end{bmatrix}^T$$

$$= \begin{bmatrix} \sqrt{P_{XX}}C & c \end{bmatrix} \begin{bmatrix} (\sqrt{P_{XX}}C)^T \\ c^T \end{bmatrix}.$$

$$(4.27)$$

Como, agora, temos os dois lados da equação escritos em dimensões equivalentes, podemos fazer a seguinte escolha:

$$\begin{bmatrix} E_1 \sqrt{Q_1} & p \sqrt{w_p} \end{bmatrix} = \begin{bmatrix} \sqrt{P_{XX}}C & c \end{bmatrix}.$$
  

$$\therefore E_1 \sqrt{Q_1} = \sqrt{P_{XX}}C$$
  

$$\therefore E_1 = \sqrt{P_{XX}}C \left(\sqrt{Q_1}\right)^{-1}.$$
(4.28)

Temos também

$$p\sqrt{w_p} = c.$$
$$\therefore p = \frac{c}{\sqrt{w_p}}.$$

Obtivemos, com isso, as expressões para  $E_1$  e p que satisfazem a (3.27). Temos que obter, agora, as condições para que (3.28) seja satisfeita. Possivelmente, ela nos dará as condições dos pesos. Assim, de (3.28)

$$0 = \begin{bmatrix} E_1 & p \end{bmatrix} w.$$
  

$$\therefore 0 = \begin{bmatrix} E_1 & p \end{bmatrix} w$$
  

$$= \begin{bmatrix} \sqrt{P_{XX}} C \left(\sqrt{Q_1}\right)^{-1} & \frac{c}{\sqrt{w_p}} \end{bmatrix} [w].$$

Considerando  $w = \begin{bmatrix} w^* & w_p \end{bmatrix}^T$ ,

$$\sqrt{P_{XX}}C\left(\sqrt{Q_1}\right)^{-1}w^* + c\sqrt{w_p} = 0.$$
  
$$\therefore C\begin{bmatrix}\sqrt{w_1}\\\vdots\\\sqrt{w_n}\end{bmatrix} = -\sqrt{P_{XX}}^{-1}c\sqrt{w_p}.$$
 (4.29)

Podemos multiplicar cada lado de (4.29) por seus respectivos transpostos:

$$C\begin{bmatrix}\sqrt{w_1}\\\vdots\\\sqrt{w_n}\end{bmatrix}\left(C\begin{bmatrix}\sqrt{w_1}\\\vdots\\\sqrt{w_n}\end{bmatrix}\right)^T = \sqrt{P_{XX}}^{-1}c\sqrt{w_p}\left(\sqrt{P_{XX}}^{-1}c\sqrt{w_p}\right)^T$$

$$\therefore \begin{bmatrix} w_1 & \dots & \sqrt{w_1}\sqrt{w_n} \\ \vdots & \ddots & \vdots \\ \sqrt{w_1}\sqrt{w_n} & \dots & w_n \end{bmatrix} = C^{-1}w_p\sqrt{P_{XX}}^{-1}cc^T \left(\sqrt{P_{XX}}^{-1}\right)^T \left(C^T\right)^{-1}.$$
 (4.30)

Aqui já obtivemos a expressão para os pesos  $w_i$ , que são exatamente os elementos da diagonal da matriz do lado esquerdo da equação acima. No entao, precisamos verificar em qual restrição esses termos implicarão. Aplicando o operador traço  $(tr(\bullet))$  em cada lado, teremos

$$tr\left(\left[\begin{array}{ccc}w_{1}&\dots&\sqrt{w_{1}}\sqrt{w_{n}}\\\vdots&\ddots&\vdots\\\sqrt{w_{1}}\sqrt{w_{n}}&\dots&w_{n}\end{array}\right]\right)=w_{p}tr\left(C^{-1}\sqrt{P_{XX}}^{-1}cc^{T}\sqrt{P_{XX}}^{-T}\left(C^{T}\right)^{-1}\right).$$
$$\therefore1-w_{p}=w_{p}tr\left(C^{-1}\sqrt{P_{XX}}^{-1}cc^{T}\sqrt{P_{XX}}^{-T}\left(C^{T}\right)^{-1}\right)$$
$$\therefore\frac{1-w_{p}}{w_{p}}=tr\left(C^{-1}\sqrt{P_{XX}}^{-1}cc^{T}\sqrt{P_{XX}}^{-T}\left(C^{T}\right)^{-1}\right).$$
(4.31)

Utilizando o fato de que tr(ABCD) = tr(DABC) = tr(CDAB) = tr(BCDA)([103], pág 110):

$$\frac{1 - w_p}{w_p} = tr\left(C^{-1}\sqrt{P_{XX}}^{-1}cc^T\sqrt{P_{XX}}^{-T}\left(C^T\right)^{-1}\right)$$
$$= tr\left(\left(C^T\right)^{-1}C^{-1}\sqrt{P_{XX}}^{-1}cc^T\sqrt{P_{XX}}^{-T}\right)$$

$$= tr\left(\left(CC^{T}\right)^{-1}\sqrt{P_{XX}}^{-1}cc^{T}\sqrt{P_{XX}}^{-T}\right).$$
(4.32)

Aqui chegamos a um ponto que torna difícil a obtenção de uma expressão mais geral. Façamos, portanto, uma escolha particular que facilite a solução. Oberve que os termos que dificultam a resolução de (4.32) são os de forma  $\sqrt{P_{XX}}^{-1}$ . Façamos, então, a seguinte escolha, que cancelará esses termo:

$$c = \alpha \sqrt{P_{XX}} \left[1\right]_{n \times 1}, \quad \alpha \in \Re, \tag{4.33}$$

Assim,

$$tr\left(\left(CC^{T}\right)^{-1}\sqrt{P_{XX}}^{-1}cc^{T}\left(\sqrt{P_{XX}}^{-1}\right)^{T}\right)$$

$$=\alpha^{2}tr\left(\left(CC^{T}\right)^{-1}\begin{bmatrix}1\\\vdots\\1\end{bmatrix}\begin{bmatrix}1&\cdots&1\end{bmatrix}\right)$$

$$=\alpha^{2}tr\left(\left(I-\alpha^{2}\begin{bmatrix}1\\\vdots\\1\end{bmatrix}\begin{bmatrix}1&\cdots&1\end{bmatrix}\right)^{-1}\begin{bmatrix}1\\\vdots\\1\end{bmatrix}\begin{bmatrix}1&\cdots&1\end{bmatrix}\right)$$
(4.34)

Considerando o fato de que  $G (I - KG)^{-1} = (I - GK)^{-1} G$ :

$$\alpha^{2} tr \left( \left( I - \alpha^{2} \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \begin{bmatrix} 1 & \cdots & 1 \end{bmatrix} \right)^{-1} \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \begin{bmatrix} 1 & \cdots & 1 \end{bmatrix} \right)$$
$$= \frac{\alpha^{2}}{1 - \alpha^{2} n} tr \left( \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \begin{bmatrix} 1 & \cdots & 1 \end{bmatrix} \right)$$
$$= \frac{\alpha^{2}}{1 - \alpha^{2} n} n = \frac{1 - w_{p}}{w_{p}}.$$
$$\therefore \alpha^{2} = \frac{1 - w_{p}}{n}.$$
(4.35)

Como  $\alpha \in \Re$ ,

$$1 - w_p > 0$$
  
$$\therefore w_p < 1. \tag{4.36}$$

Temos que também observar qual será a restriçao que (4.26) impõe. De (4.26),

$$I_n - \sqrt{P_{XX}}^{-1} cc^T \left(\sqrt{P_{XX}}^{-1}\right)^T > 0$$
  
$$\therefore I_n - \alpha^2 \begin{bmatrix} 1\\ \vdots\\ 1 \end{bmatrix} \begin{bmatrix} 1 & \cdots & 1 \end{bmatrix} > 0$$
  
$$\therefore \det \left(I_n - \alpha^2 \begin{bmatrix} 1\\ \vdots\\ 1 \end{bmatrix} \begin{bmatrix} 1 & \cdots & 1 \end{bmatrix}\right) > 0.$$
  
$$= \det (1 - \alpha^2 n)$$
  
$$= 1 - \alpha^2 n > 0$$

$$\therefore \alpha^2 n < 1 \tag{4.37}$$

Considerando (4.35) em (4.37):

$$1 - w_p < 1$$
$$\therefore w_p > 0.$$

Por último, considerando (4.33) em (4.30), teremos

$$\begin{bmatrix} w_1 & \dots & \sqrt{w_1}\sqrt{w_n} \\ \vdots & \ddots & \vdots \\ \sqrt{w_1}\sqrt{w_n} & \dots & w_n \end{bmatrix} = C^{-1}w_p\sqrt{P_{XX}}^{-1}cc^T\left(\sqrt{P_{XX}}^{-1}\right)^T\left(C^T\right)^{-1}.$$
$$= \alpha^2 w_p C^{-1} [1]_{n \times n} \left(C^T\right)^{-1}$$

que representa a expressão para os pesos. O teorema a seguir formaliza o resultado obtido:

**Teorema 4.2.1** ( $\sigma$ -presentação Mínima Particular). Seja  $X \sim (\bar{X}, P_{XX})$ ,  $X \in \Re^n$ ,  $P_{XX} > 0$  e seja a sigma-representação de X,  $S = \{\chi_i, w_i | i = 1, 2, ..., n + 1\}$ . Considere um valor arbitrário de  $w_p = w_{n+1}$  tal que

$$0 < w_p < 1$$
 (4.38)

e as seguintes relações:

$$\alpha = \sqrt{\frac{1 - w_p}{n}},\tag{4.39}$$

$$C = \sqrt{I_n - \alpha^2 \left[1\right]_{n \times n}},\tag{4.40}$$

$$Q = \begin{bmatrix} w_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & w_n \end{bmatrix},$$
 (4.41)

em que

$$w_{i} = \left(C^{-1}w_{p}\alpha^{2}[1]_{n \times n}\left(C^{T}\right)^{-1}\right)_{ii}, \quad \forall i = 1, \dots, n.$$
(4.42)

Seja ainda o par (E, W)

$$E = \begin{bmatrix} \sqrt{P_{XX}} C \left(\sqrt{Q_1}\right)^{-1} & -\alpha \sqrt{P_{XX}} \frac{[1]_{n \times 1}}{\sqrt{w_p}} \end{bmatrix} + \begin{bmatrix} \bar{X} \end{bmatrix}_{1 \times n+1}, \quad (4.43)$$

$$W = \begin{bmatrix} Q & 0\\ 0 & w_p \end{bmatrix}, \tag{4.44}$$

uma solução para  $\{\chi_i, w_i\}$  de acordo com o Teorema 3.2.1 tal que

$$\left[\chi_1 \dots \chi_{n+1}\right] := E + [\bar{X}]_{1 \times n+1}$$

Então, o conjunto  $\{\chi_i, w_i\}$  é uma  $\sigma$ -representação com o menor número de pontos sigma normalizada de X e recebe o nome de  $\sigma$ -representação Mínima Particular.

PROVA Conderando (4.43)-(4.44) em (3.28),

$$0 = \left[ \sqrt{P_{XX}} C \left( \sqrt{Q_1} \right)^{-1} - \sqrt{P_{XX}} \frac{[\alpha]_{n \times 1}}{\sqrt{w_p}} \right] w$$
$$= -\sqrt{P_{XX}} \frac{[\alpha]_{n \times 1}}{\sqrt{w_p}} w_p + \sqrt{P_{XX}} C \left( \sqrt{Q_1} \right)^{-1} \left[ \begin{array}{c} w_1 \\ \vdots \\ w_n \end{array} \right]$$
$$\therefore - [\alpha]_{n \times 1} \sqrt{w_p} + C \left[ \begin{array}{c} \sqrt{w_1} \\ \vdots \\ \sqrt{w_n} \end{array} \right] = 0$$
(4.45)

Considerando (4.42)

$$\begin{bmatrix} \sqrt{w_1} \\ \vdots \\ \sqrt{w_n} \end{bmatrix} = \begin{bmatrix} \sqrt{\left(C^{-1}w_p\alpha^2[1]_{n\times n}\left(C^T\right)^{-1}\right)_{11}} \\ \vdots \\ \sqrt{\left(C^{-1}w_p\alpha^2[1]_{n\times n}\left(C^T\right)^{-1}\right)_{nn}} \end{bmatrix}$$

$$= \begin{bmatrix} \sqrt{(C^{-1})_{1*} w_p \alpha^2 [1]_{n \times n} ((C^T)^{-1})_{*1}} \\ \vdots \\ \sqrt{(C^{-1})_{n*} w_p \alpha^2 [1]_{n \times n} ((C^T)^{-1})_{*n}} \\ = w_p \alpha \begin{bmatrix} \sqrt{(C^{-1})_{1*} [1]_{n \times n} ((C^T)^{-1})_{*1}} \\ \vdots \\ \sqrt{(C^{-1})_{n*} [1]_{n \times n} ((C^T)^{-1})_{*n}} \end{bmatrix}$$

$$= -\left[\alpha\right]_{n\times 1}\sqrt{w_{p}} + \sqrt{w_{p}}\alpha C \begin{bmatrix} \left( \left(C^{-1}\right)_{1*} \begin{bmatrix} 1\\ \vdots\\ 1 \end{bmatrix}\right) \left( \left(\left(C^{-1}\right)_{1*}\right) \begin{bmatrix} 1\\ \vdots\\ 1 \end{bmatrix}\right)^{T} \\ \left(\left(C^{-1}\right)_{n*} \begin{bmatrix} 1\\ \vdots\\ 1 \end{bmatrix}\right) \left(\left(C^{-1}\right)_{n*} \begin{bmatrix} 1\\ \vdots\\ 1 \end{bmatrix}\right)^{T} \end{bmatrix} \right]. \quad (4.46)$$

 $\operatorname{Como}\left(C^{-1}\right)_{n*}\left[\begin{array}{c}1\\\vdots\\1\end{array}\right]$ é escalar,

$$\sqrt{w_{p}}\alpha \begin{bmatrix} \sqrt{\left(\left(C^{-1}\right)_{1*} \begin{bmatrix} 1\\ \vdots\\ 1 \end{bmatrix}\right)} \left(\left(\left(C^{-1}\right)_{1*}\right) \begin{bmatrix} 1\\ \vdots\\ 1 \end{bmatrix}\right)^{T} \\ \frac{\vdots}{\left(\left(C^{-1}\right)_{n*} \begin{bmatrix} 1\\ \vdots\\ 1 \end{bmatrix}\right)} \left(\left(C^{-1}\right)_{n*} \begin{bmatrix} 1\\ \vdots\\ 1 \end{bmatrix}\right)^{T} \end{bmatrix}$$
$$= \sqrt{w_{p}}\alpha C^{-1} \begin{bmatrix} 1\\ \vdots\\ 1 \end{bmatrix}. \qquad (4.47)$$

Substituindo (4.47) em (4.45)

$$- [\alpha]_{n \times 1} \sqrt{w_p} + C \begin{bmatrix} \sqrt{w_1} \\ \vdots \\ \sqrt{w_n} \end{bmatrix}$$
$$= - [\alpha]_{n \times 1} \sqrt{w_p} + C \sqrt{w_p} \alpha C^{-1} \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$$
$$= - [\alpha]_{n \times 1} \sqrt{w_p} + [\alpha]_{n \times 1} \sqrt{w_p}$$
$$= 0.$$

O que satisfaz (3.28).

Agora, de (3.27)

$$= \begin{bmatrix} \sqrt{P_{XX}} C \left(\sqrt{Q_1}\right)^{-1} & -\sqrt{P_{XX}} \frac{[\alpha]_{n\times 1}}{\sqrt{w_p}} \end{bmatrix} \begin{bmatrix} Q_1 & 0\\ 0 & w_p \end{bmatrix}$$
$$\begin{bmatrix} \left(\sqrt{P_{XX}} C \left(\sqrt{Q_1}\right)^{-1}\right)^T\\ -\left(\sqrt{P_{XX}} \frac{[\alpha]_{n\times 1}}{\sqrt{w_p}}\right)^T \end{bmatrix}$$
$$= \sqrt{P_{XX}} C \left(\sqrt{Q_1}\right)^{-1} Q_1 \left(\left(\sqrt{Q_1}\right)^{-1}\right)^T C^T \sqrt{P_{XX}}^T + \sqrt{P_{XX}} \frac{[\alpha]_{n\times 1}}{\sqrt{w_p}} \frac{[\alpha]_{1\times n}}{\sqrt{w_p}} \sqrt{P_{XX}}^T$$
$$= P_{XX}.$$

o que satisfaz (3.27).

Agora, considere a equação

$$\begin{bmatrix} w_1 & \dots & 0 \\ 0 & \ddots & \vdots \\ 0 & \dots & w_n \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} C^{-1} w_p \alpha^2 [1]_{n \times n} (C^T)^{-1} \end{bmatrix}_{11} & \dots & 0 \\ 0 & \ddots & \vdots \\ 0 & \dots & \begin{bmatrix} C^{-1} w_p \alpha^2 [1]_{n \times n} (C^T)^{-1} \end{bmatrix}_{nn} \end{bmatrix}$$

e aplique o operador traço ( $tr(\bullet)$ ) em ambos os lados:

$$tr\left(\left[\begin{array}{ccc}w_{1}&\dots&\sqrt{w_{1}}\sqrt{w_{n}}\\\vdots&\ddots&\vdots\\\sqrt{w_{1}}\sqrt{w_{n}}&\dots&w_{n}\end{array}\right]\right)=\alpha^{2}w_{p}tr\left(C^{-1}\left[1\right]_{n\times n}\left(C^{T}\right)^{-1}\right).$$
$$\therefore\sum_{i=1}^{n}w_{i}=\alpha^{2}w_{p}tr\left(C^{-1}\left[1\right]_{n\times n}\left(C^{T}\right)^{-1}\right)$$

$$\therefore \sum_{i=1}^{n} w_i + w_p = \alpha^2 w_p tr\left(C^{-1} [1]_{n \times n} (C^T)^{-1}\right) + w_p.$$

Utilizando o fato de que tr(ABCD) = tr(DABC) = tr(CDAB) = tr(BCDA),

$$\sum_{i=1}^{n} w_{i} + w_{p} = \alpha^{2} w_{p} tr \left( C^{-1} \left[ 1 \right]_{n \times n} \left( C^{T} \right)^{-1} \right) + w_{p}$$
$$= \alpha^{2} w_{p} tr \left( \left( C^{T} \right)^{-1} C^{-1} \left[ 1 \right]_{n \times n} S^{-1} \right) + w_{p}$$
$$= \alpha^{2} w_{p} tr \left( \left( CC^{T} \right)^{-1} \left[ 1 \right]_{n \times n} \right) + w_{p}.$$

Logo,

$$\sum_{i=1}^{n} w_i + w_p$$

$$= \alpha^2 w_p tr \left( \left( CC^T \right)^{-1} \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \begin{bmatrix} 1 & \cdots & 1 \end{bmatrix} \right) + w_p$$

$$= \alpha^2 w_p tr \left( \left( \left( I - \alpha^2 \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \begin{bmatrix} 1 & \cdots & 1 \end{bmatrix} \right)^{-1} \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \begin{bmatrix} 1 & \cdots & 1 \end{bmatrix} \right) + w_p$$
(4.48)

Usando o fato de que  $K (I + GK)^{-1} = (I + KG)^{-1} K$ ,

$$\alpha^{2} w_{p} tr \left( \left( I - \alpha^{2} \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \begin{bmatrix} 1 & \cdots & 1 \end{bmatrix} \right)^{-1} \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \begin{bmatrix} 1 & \cdots & 1 \end{bmatrix} \right)$$

$$+ w_{p}$$

$$= \frac{1}{1 - \alpha^{2} n} \alpha^{2} w_{p} tr \left( \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \begin{bmatrix} 1 & \cdots & 1 \end{bmatrix} \right) + w_{p}$$

$$= \frac{1}{1 - \alpha^{2} n} \alpha^{2} w_{p} n + w_{p}$$

$$(4.50)$$

Considerando (4.39) em (4.50),

$$\sum_{i=1}^{n} w_i + w_p$$

$$= \frac{1}{1 - \frac{1 - w_p}{n}n} \left(\frac{1 - w_p}{n}\right) w_p n + w_p$$
$$= \frac{1}{w_p} (1 - w_p) w_p + w_p$$
$$= 1$$

o que satisfaz (3.29).

O Teorema 4.2.1 apresenta uma nova  $\sigma$ -representação mínima. Como queríamos, com isso mostramos que nossa formulação foi capaz de proporcionar uma solução para um problema ainda não resolvido.

O resultado do Teorema 4.2.1 apresenta uma solução particular para o caso da  $\sigma$ -representação mínima. Na próxima seção, apresentaremos uma solução mais geral para a  $\sigma$ -representação mínima.

## 4.2.2 Sigma-representação mínima

Nesta seção apresentaremos a  $\sigma$  representação mínima. Vimos que  $X \sim (\bar{X}, P_{XX})$ , com  $P_{XX} > 0$ , admite uma  $\sigma$ -representação. O caso N = n + 1 vale se e somente se existe

$$\bar{W} = \left[ \begin{array}{cc} W & 0\\ 0 & w_{n+1} \end{array} \right], \quad \bar{E} = \left[ \begin{array}{cc} E & p \end{array} \right]$$

com rank  $\begin{bmatrix} E & p \end{bmatrix} = n, W := diag(w), w := [w_1 \dots w_n] e p \in \Re^n.$ 

Do teorema 3.2.1 e considerando  $\bar{w} := [w_1 \dots w_{n+1}]$ , temos que  $\{\chi_i, w_i\}$  será uma  $\sigma$ -representação normalizada de X se e somente se

$$\bar{E}\bar{W}\bar{E}^{T} = P_{XX},$$
$$\bar{E}\bar{w} = 0,$$
$$[1]_{1\times(n+1)} \begin{bmatrix} w\\ w_{n+1} \end{bmatrix} = 1,$$

ou seja

$$\begin{bmatrix} E & p \end{bmatrix} \begin{bmatrix} W & 0 \\ 0 & w_{n+1} \end{bmatrix} \begin{bmatrix} E^T \\ p^T \end{bmatrix} = P_{XX},$$
(4.51)

$$\begin{bmatrix} E & p \end{bmatrix} \begin{bmatrix} w \\ w_{n+1} \end{bmatrix} = 0, \tag{4.52}$$

$$\begin{bmatrix} 1 \end{bmatrix}_{1 \times n} \quad 1 \end{bmatrix} \begin{bmatrix} w \\ w_{n+1} \end{bmatrix} = 1, \tag{4.53}$$

ou ainda

$$EWE^{T} + w_{n+1}pp^{T} = P_{XX}, (4.54)$$

$$Ew + w_{n+1}p = 0, (4.55)$$

$$[1]_{1 \times n} w + w_{n+1} = 1. \tag{4.56}$$

Observe que não podemos ter  $w_i = 0$ , pois isto implicaria uma  $\sigma$ -representação de N = n pontos. Assim,  $w_i \neq 0$ . Assim, por (4.55), p pode ser escrito como

$$p = -\frac{1}{w_{n+1}} Ew.$$
 (4.57)

Substituindo (4.57) em (4.54),

$$P_{XX} = EWE^T + \frac{1}{w_{n+1}}Eww^T E^T$$
$$= E\left(W + \frac{1}{w_{n+1}}ww^T\right)E^T = EVE^T,$$
(4.58)

em que

$$V := W + \frac{1}{w_{n+1}} w w^T \cdot \tag{4.59}$$

Como  $\overline{E} = \begin{bmatrix} E & p \end{bmatrix}$  tem posto linha pleno, podemos sem perda de generalidade considerar E invertível. De fato, se E não fosse invertível, pode-se mudar uma das colunas de E por p.

Sendo E invertível, de (4.58) temos

$$V = E^{-1} P_{XX} E^{-T} > 0. (4.60)$$

Assim, de (4.59) e (4.60), uma condição necessária é que

$$V = W + \frac{1}{w_{n+1}} w w^T > 0.$$
(4.61)

Segue que

$$0 < [1]_{1 \times n} V [1]_{n \times 1} = [1]_{1 \times n} \left( W + \frac{1}{w_{n+1}} w w^T \right) [1]_{1 \times n}^T$$

$$= [1]_{1 \times n} \widetilde{W [1]_{n \times 1}} [1]_{1 \times n}^T + \frac{1}{w_{n+1}} \left( [1]_{1 \times n} w \right) \left( [1]_{1 \times n} w \right)^T$$

$$= \sum_{i=1}^n w_i + \frac{1}{w_{n+1}} \left( \sum_{i=1}^n w_i \right)^2$$

$$\stackrel{(4.56)}{=} (1 - w_{n+1}) + \frac{1}{w_{n+1}} (1 - w_{n+1})^2$$

$$= \cdot \frac{1}{w_{n+1}} (1 - w_{n+1}) (w_{n+1} + 1 - w_{n+1})$$

$$= \frac{1}{w_{n+1}} (1 - w_{n+1}).$$

Portanto, uma condição necessária é que

$$0 < w_{n+1} < 1. (4.62)$$

Como  $w_i \neq 0$ , W é invertível. Como W é simétrica, e considerando  $w_i > 0$ , podemos escrevê-la da seguinte maneira:

$$W = \begin{bmatrix} \sqrt{w_1} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \sqrt{w_n} \end{bmatrix} \begin{bmatrix} \sqrt{w_1} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \sqrt{w_n} \end{bmatrix}$$
$$= W^{\frac{1}{2}} W^{\frac{1}{2}}, \qquad (4.63)$$

em que

$$W^{\frac{1}{2}} := \begin{bmatrix} \sqrt{w_1} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \sqrt{w_n} \end{bmatrix},$$
(4.64)

Assim, (4.58) lê-se como

$$P_{XX} = E\left(W + \frac{1}{w_{n+1}}ww^{T}\right)E^{T}$$
  
=  $EW^{\frac{1}{2}}\left(I_{n} + \frac{1}{w_{n+1}}W^{-\frac{1}{2}}ww^{T}W^{-\frac{1}{2}}\right)W^{\frac{1}{2}}E^{T}$   
=  $E|W|^{\frac{1}{2}}\left(I_{n} + \left(\frac{W^{-\frac{1}{2}}w}{\sqrt{w_{n+1}}}\right)\left(\frac{W^{-\frac{1}{2}}w}{\sqrt{w_{n+1}}}\right)^{T}\right)W^{\frac{1}{2}}E^{T}$   
=  $F\left(I_{n} + vv^{T}\right)F^{T},$  (4.65)

em que

$$F := EW^{\frac{1}{2}},\tag{4.66}$$

$$v := \frac{W^{-\frac{1}{2}}w}{\sqrt{w_{n+1}}}.$$
(4.67)

Note que F é invertível. De (4.65) e pelo fato de, por suposição,  $P_{XX}$  ser invertível, podemos fazer

$$\sqrt{P_{XX}}^{-1}F\left(S+vv^{T}\right)F^{T}\sqrt{P_{XX}}^{-T} = I$$

$$G\left(S+vv^{T}\right)G^{T} = I,$$
(4.68)

em que

$$G := \sqrt{P_{XX}}^{-1} F. \tag{4.69}$$

Como  $\sqrt{P_{XX}}^{-1}$  e *F* são invertíveis, *G* também é invertível. Assim,

$$S + vv^{T} = G^{-1}G^{-T} = (G^{T}G)^{-1}.$$

Supondo  $S + vv^T > 0$ , podemos escolher

$$G = \left(S + vv^T\right)^{-\frac{1}{2}}$$

$$\therefore G^T G = \left(S + vv^T\right)^{-1} > 0.$$
(4.70)

De (4.69),

$$\sqrt{P_{XX}}^{-1}F = G = (S + vv^T)^{-\frac{1}{2}}$$
  

$$\therefore F = \sqrt{P_{XX}} (S + vv^T)^{-\frac{1}{2}}.$$
(4.71)

De (4.66),

$$EW^{\frac{1}{2}} = F = \sqrt{P_{XX}} \left( S + vv^T \right)^{-\frac{1}{2}}$$
  
$$\therefore E = \sqrt{P_{XX}} \left( S + vv^T \right)^{-\frac{1}{2}} W^{-\frac{1}{2}}.$$
 (4.72)

De (4.67)

$$v := \frac{W^{-\frac{1}{2}}w}{\sqrt{w_{n+1}}}$$

$$= \frac{1}{\sqrt{w_{n+1}}} \begin{bmatrix} \frac{1}{\sqrt{w_1}} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \frac{1}{\sqrt{w_n}} \end{bmatrix} \begin{bmatrix} w_1 \\ \vdots \\ w_n \end{bmatrix}$$

$$= \frac{1}{\sqrt{w_{n+1}}} \begin{bmatrix} \sqrt{w_1} \\ \vdots \\ \sqrt{w_n} \end{bmatrix}.$$
(4.73)

Como  $w_i \neq 0$ , devemos ter

 $v_i \neq 0.$ 

Portanto, escolhido  $v = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} \in \Re^n \operatorname{com} v_i \neq 0$ , podemos escolher  $w_i$  tal que  $\frac{1}{\sqrt{w_{n+1}}}\sqrt{w_i} = v_i$  $\therefore \frac{1}{w_{n+1}}w_i = v_i^2$  $w_i = w_{n+1}v_i^2.$ 

Resumindo: Uma solução para representação mínima (com todos  $w_i > 0$ ) e obtida da seguinte forma:

1. Escolha

$$v = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} \in \Re^n, \quad v_i \neq 0.$$

2. Defina

$$w = \begin{bmatrix} w_1 \\ \vdots \\ w_n \end{bmatrix} := w_{n+1} \begin{bmatrix} v_1^2 \\ \vdots \\ v_n^2 \end{bmatrix}.$$

3. Defina

$$E = \sqrt{P_{XX}} \left( I + vv^T \right)^{-\frac{1}{2}} \frac{1}{\sqrt{w_{n+1}}} \begin{bmatrix} \frac{1}{v_1} & 0 & 0\\ 0 & \ddots & 0\\ 0 & 0 & \frac{1}{v_n} \end{bmatrix}.$$

4. Defina

$$p := -\frac{1}{w_{n+1}} Ew.$$

Então (4.54) e (4.55) são satisfeitas. Falta assim, garantir (4.56):

$$1 = [1]_{1 \times n} w + w_{n+1}$$
  
=  $[1]_{1 \times n} w_{n+1} \begin{bmatrix} v_1^2 \\ \vdots \\ v_n^2 \end{bmatrix} + w_{n+1}$   
=  $w_{n+1} \sum_{i=1}^n v_i^2 + w_{n+1}.$ 

$$w_{n+1} = \frac{1}{\left(1 + \sum_{i=1}^{n} v_i^2\right)}.$$
(4.74)

Note que (4.74) já satisfaz (4.62) para  $v_i \neq 0.$ 

Resumindo: Uma solução para representação mínima (com todos  $w_i > 0$ ) e obtida da seguinte forma:

1. Escolha

$$v = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} \in \Re^n, \quad v_i \neq 0.$$

2. Escolha

$$w_{n+1} = \frac{1}{(1 + \sum_{i=1}^{n} v_i^2)}.$$

3. Defina

$$w = \begin{bmatrix} w_1 \\ \vdots \\ w_n \end{bmatrix} := w_{n+1} \begin{bmatrix} v_1^2 \\ \vdots \\ v_n^2 \end{bmatrix}.$$

4. Defina

$$E = \sqrt{P_{XX}} \left( I + vv^T \right)^{-\frac{1}{2}} \frac{1}{\sqrt{w_{n+1}}} \begin{bmatrix} \frac{1}{v_1} & 0 & 0\\ 0 & \ddots & 0\\ 0 & 0 & \frac{1}{v_n} \end{bmatrix}.$$

## 5. Defina

$$p := -\frac{1}{w_{n+1}} Ew$$

$$= -\frac{1}{w_{n+1}} \left( \sqrt{P_{XX}}^T \left( I + vv^T \right)^{-\frac{1}{2}} \frac{1}{\sqrt{w_{n+1}}} \begin{bmatrix} \frac{1}{v_1} & 0 & 0\\ 0 & \ddots & 0\\ 0 & 0 & \frac{1}{v_n} \end{bmatrix} \right) \left( w_{n+1} \begin{bmatrix} v_1^2\\ \vdots\\ v_n^2 \end{bmatrix} \right)$$

$$= -\frac{1}{\sqrt{w_{n+1}}} \sqrt{P_{XX}} \left( I + vv^T \right)^{-\frac{1}{2}} v.$$

Então (4.54) e (4.55) são satisfeitas. Falta assim, garantir (4.56):

$$1 = [1]_{1 \times n} w + w_{n+1}$$
$$= [1]_{1 \times n} w_{n+1} \begin{bmatrix} v_1^2 \\ \vdots \\ v_n^2 \end{bmatrix} + w_{n+1}$$
$$= w_{n+1} \sum_{i=1}^n v_i^2 + w_{n+1}.$$
$$w_{n+1} = \frac{1}{(1 + \sum_{i=1}^n v_i^2)}.$$

Defina  $\chi_i \in \Re^n$ tal que

$$\begin{bmatrix} \chi_1 & \cdots & \chi_{n+1} \end{bmatrix} := \begin{bmatrix} E & p \end{bmatrix} + \begin{bmatrix} \bar{X} \end{bmatrix}_{1 \times (n+1)}.$$

Neste caso,  $S = \{\chi_i, w_i | i = 1, ..., n + 1\}$  é uma  $\sigma$ -representação mínima de X.

O Teorema a seguir coloca o resultado em uma forma ainda mais geral (sem a condição de que  $w_i > 0$ ). Para isso, considere as seguintes notação e definição: seja uma matriz
$A \in \Re^{n \times m}$ , os termos de |A| são definidos como

$$\left[\left|A\right|\right]_{ij} := \left|\left[A\right]_{ij}\right|. \tag{4.75}$$

**Definição 4.2.1.** Seja uma matriz  $A \in \mathbb{R}^{n \times m}$ , os termos de sign(A) são definidos como

$$[sign(A)]_{ij} := \begin{cases} 1 & , se \ [A]_{ij} \ge 0 \\ -1 & , c.c. \end{cases}$$
(4.76)

**Teorema 4.2.2** ( $\sigma$ -representação Mínima). Seja  $X \sim (\overline{X}, P_{XX})$ ,  $X \in \Re^n$ ,  $P_{XX} > 0$  e sejam as seguintes relações

$$v := \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} \in \Re^n, \quad v_i \neq 0, \tag{4.77}$$

$$w_{n+1} = \frac{1}{(1 + \sum_{i=1}^{n} v_i^2)},\tag{4.78}$$

$$|W|^{-\frac{1}{2}}w = \sqrt{w_{n+1}}v, \tag{4.79}$$

$$S := sign\left(W\right),\tag{4.80}$$

$$E := \sqrt{P_{XX}} \left( S + vv^T \right)^{-\frac{1}{2}} |W|^{-\frac{1}{2}}, \qquad (4.81)$$

$$p := -\frac{1}{w_{n+1}} Ew, (4.82)$$

$$\left[\begin{array}{ccc}\chi_1 & \cdots & \chi_{n+1}\end{array}\right] := \left[\begin{array}{ccc}E & p\end{array}\right] + \left[\bar{X}\right]_{1 \times (n+1)}.$$
(4.83)

*O* conjunto  $\$ = \{\chi_i, w_i | i = 1, 2, ..., n + 1\}$  é uma a  $\sigma$ -representação com o menor número de pontos sigma normalizada de X. e recebe o nome de  $\sigma$ -representação Mínima.

PROVA Do Teorema 3.2.1, se mostrarmos que (4.77)-(4.83) satisfazem (3.27)-(3.29), o teorema estará provado.

De (3.27), temos que

$$\begin{bmatrix} E & p \end{bmatrix} \begin{bmatrix} W & 0 \\ 0 & w_{n+1} \end{bmatrix} \begin{bmatrix} E & p \end{bmatrix}^{T}$$
<sup>(4.81),(4.82)</sup>

$$\begin{bmatrix} \sqrt{P_{XX}} (S + vv^{T})^{-\frac{1}{2}} |W|^{-\frac{1}{2}} & -\frac{1}{w_{n+1}} \sqrt{P_{XX}} (S + vv^{T})^{-\frac{1}{2}} |W|^{-\frac{1}{2}} w \end{bmatrix} W$$

$$\sqrt{P_{XX}} (S + vv^{T})^{-\frac{1}{2}} |W|^{-\frac{1}{2}} & -\frac{1}{w_{n+1}} \sqrt{P_{XX}} (S + vv^{T})^{-\frac{1}{2}} |W|^{-\frac{1}{2}} w \end{bmatrix}^{T}$$

$$= \sqrt{P_{XX}} (S + vv^{T})^{-\frac{1}{2}} |W|^{-\frac{1}{2}} W \left( \sqrt{P_{XX}} (S + vv^{T})^{-\frac{1}{2}} |W|^{-\frac{1}{2}} \right)^{T}$$

$$+ \frac{1}{w_{n+1}} \sqrt{P_{XX}} (S + vv^{T})^{-\frac{1}{2}} |W|^{-\frac{1}{2}} ww_{n+1} \left( \frac{1}{w_{n+1}} \sqrt{P_{XX}} (S + vv^{T})^{-\frac{1}{2}} |W|^{-\frac{1}{2}} w \right)^{T}$$

$$= \sqrt{P_{XX}} \left(S + vv^T\right)^{-\frac{1}{2}} |W|^{-\frac{1}{2}} W |W|^{-\frac{T}{2}} \left(S + vv^T\right)^{-\frac{T}{2}} \sqrt{P_{XX}}^T + \frac{1}{w_{n+1}} \sqrt{P_{XX}} \left(S + vv^T\right)^{-\frac{1}{2}} |W|^{-\frac{1}{2}} ww^T |W|^{-\frac{T}{2}} \left(S + vv^T\right)^{-\frac{T}{2}} \sqrt{P_{XX}}^T$$

Considerando (4.79) e(4.80),

$$\begin{bmatrix} E & p \end{bmatrix} \begin{bmatrix} W & 0 \\ 0 & w_{n+1} \end{bmatrix} \begin{bmatrix} E & p \end{bmatrix}^{T}$$

$$\stackrel{(4.79),(4.80)}{=} \sqrt{P_{XX}} \left(S + vv^{T}\right)^{-\frac{1}{2}} S \left(S + vv^{T}\right)^{-\frac{T}{2}} \sqrt{P_{XX}}^{T}$$

$$+ \frac{1}{w_{n+1}} \sqrt{P_{XX}} \left(S + vv^{T}\right)^{-\frac{1}{2}} \left(\sqrt{w_{n+1}}v\right) \left(\sqrt{w_{n+1}}v\right)^{T} \left(S + vv^{T}\right)^{-\frac{T}{2}} \sqrt{P_{XX}}^{T}$$

$$= \sqrt{P_{XX}} \left(S + vv^T\right)^{-\frac{1}{2}} S \left(S + vv^T\right)^{-\frac{T}{2}} \sqrt{P_{XX}}^T$$
$$+ \sqrt{P_{XX}} \left(S + vv^T\right)^{-\frac{1}{2}} vv^T \left(S + vv^T\right)^{-\frac{T}{2}} \sqrt{P_{XX}}^T$$

Colocando os termos extremos em evidência:

$$\begin{bmatrix} E & p \end{bmatrix} \begin{bmatrix} W & 0 \\ 0 & w_{n+1} \end{bmatrix} \begin{bmatrix} E & p \end{bmatrix}^T$$
$$= \sqrt{P_{XX}} \left( S + vv^T \right)^{-\frac{1}{2}} \left( S + vv^T \right) \left( S + vv^T \right)^{-\frac{T}{2}} \sqrt{P_{XX}}^T$$
$$= \sqrt{P_{XX}} \sqrt{P_{XX}}^T$$
$$= P_{XX}.$$

O que satisfaz a (3.27). Agora, de (3.28)

=

$$\begin{bmatrix} E & p \end{bmatrix} \begin{bmatrix} w_1 \\ \vdots \\ w_n \\ w_{n+1} \end{bmatrix}$$
$$= Ew + pw_{n+1}$$
$$\stackrel{(4.81),(4.82)}{=} \sqrt{P_{XX}} \left(S + vv^T\right)^{-\frac{1}{2}} |W|^{-\frac{1}{2}} w$$
$$-\frac{1}{w_{n+1}} \sqrt{P_{XX}} \left(S + vv^T\right)^{-\frac{1}{2}} |W|^{-\frac{1}{2}} ww_{n+1}$$
$$0.$$

Que satisfaz a (3.28). Agora, de (3.29) e considerando (4.84):

$$[1]_{1 \times n+1} \begin{bmatrix} w_{1} \\ \vdots \\ w_{n} \\ w_{n+1} \end{bmatrix}$$
$$= [1]_{1 \times n+1} \begin{bmatrix} w_{n+1}v_{1}^{2} \\ \vdots \\ w_{n+1}v_{n}^{2} \\ w_{n+1} \end{bmatrix}$$
$$= w_{n+1} \sum_{i=1}^{n} v_{i}^{2} + w_{n+1}$$
$$\stackrel{(4.84)}{=} \frac{1}{(1 + \sum_{i=1}^{n} v_{i}^{2})} \left(\sum_{i=1}^{n} v_{i}^{2} + 1\right)$$
$$= 1,$$

que satisfaz a (3.29).

**Nota 4.2.1.** Se  $w_i > 0$ , as equações (4.77)-(4.83) terão a seguinte forma:

$$v = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} \in \Re^n, \quad v_i \neq 0,$$
(4.84)

$$w_{n+1} = \frac{1}{(1 + \sum_{i=1}^{n} v_i^2)},$$
(4.85)

$$w = \begin{bmatrix} w_1 \\ \vdots \\ w_n \end{bmatrix} := w_{n+1} \begin{bmatrix} v_1^2 \\ \vdots \\ v_n^2 \end{bmatrix}, \qquad (4.86)$$

$$E = \sqrt{P_{XX}} \left( I + vv^T \right)^{-\frac{1}{2}} \frac{1}{\sqrt{w_{n+1}}} \begin{bmatrix} \frac{1}{v_1} & 0 & 0\\ 0 & \ddots & 0\\ 0 & 0 & \frac{1}{v_n} \end{bmatrix}, \quad (4.87)$$

$$p := -\frac{1}{w_{n+1}} Ew = -\frac{1}{\sqrt{w_{n+1}}} \sqrt{P_{XX}} \left( I + vv^T \right)^{-\frac{1}{2}} v, \qquad (4.88)$$

$$\left[\begin{array}{ccc} \chi_1 & \cdots & \chi_{n+1} \end{array}\right] := \left[\begin{array}{ccc} E & p \end{array}\right] + \left[\bar{X}\right]_{1 \times (n+1)}.$$
(4.89)

Na seção 4.2 obtivemos uma  $\sigma$ -representação mínima particular que está escrita no Lema 4.2.1. Como o Teorema 4.2.2 é uma caso geral da representação mínima, qual será a particularização que leva do Teorema 4.2.2 ao Lema 4.2.1? Vamos tentar primeiro uma rápida heurística. Como na solução do Lema 4.2.1 supõe-se  $w_i > 0$ , tomaremos as equações (4.84)-(4.89).

Considerando (4.88) com (4.43)

$$-\frac{1}{\sqrt{w_{n+1}}}\sqrt{P_{XX}}\left(I+vv^{T}\right)^{-\frac{1}{2}}v = -\alpha\sqrt{P_{XX}}\frac{[1]_{n\times 1}}{\sqrt{w_{p}}}.$$
$$\therefore v = \alpha\frac{\sqrt{w_{n+1}}}{\sqrt{w_{p}}}\left(I+vv^{T}\right)^{\frac{1}{2}}[1]_{n\times 1}.$$

Considere  $w_{n+1} = w_p$ , assim, queremos v tal que

$$v = \alpha \left( I + vv^T \right)^{\frac{1}{2}} [1]_{n \times 1}.$$
(4.90)

Agora, considerando (4.86) com (4.42)

$$\begin{pmatrix} C^{-1}w_{n+1}\alpha^{2}[1]_{n\times n} (C^{T})^{-1} \end{pmatrix}_{ii} = w_{n+1}v_{i}^{2} \stackrel{(4.90)}{=} w_{n+1} \left( \left( \alpha \left( I + vv^{T} \right)^{\frac{1}{2}}[1]_{n\times 1} \right) \left( \alpha \left( I + vv^{T} \right)^{\frac{1}{2}}[1]_{n\times 1} \right)^{T} \right)_{ii} = w_{n+1}\alpha^{2} \left( \left( I + vv^{T} \right)^{\frac{1}{2}}[1]_{n\times n} \left( I + vv^{T} \right)^{\frac{T}{2}} \right)_{ii}.$$
(4.91)

Claramente, (4.91) será satisfeita se

$$(I + vv^T)^{\frac{1}{2}} = C^{-1}.$$
(4.92)

Agora, substituindo (4.92) em (4.90),

$$v = \alpha C^{-1} [1]_{n \times 1}. \tag{4.93}$$

O lema abaixo fornece o resultado desejado:

Lema 4.2.1. Considere as equações (4.77)-(4.83) do Teorema 4.2.2. A escolha particular

$$w_i > 0, \tag{4.94}$$

$$v = \alpha C^{-1}[1]_{n \times 1} \tag{4.95}$$

recai nas equações (4.39)-(4.44) do Lema 4.2.1. 

PROVA Como a solução do Lema 4.2.1 é para  $w_i > 0$ , tomaremos as equações (4.84)-(4.89). Agora, será conveniente obtermos o seguinte resultado

$$(I + vv^{T})^{\frac{1}{2}} = (I + \alpha C^{-1}[1]_{n \times 1} (\alpha C^{-1}[1]_{n \times 1})^{T})^{\frac{1}{2}}$$
$$= (I + \alpha^{2} C^{-1}[1]_{n \times n} C^{-T})^{\frac{1}{2}}.$$
(4.96)

Agora de (4.40)

$$CC^T = I_n - \alpha^2 \left[1\right]_{n \times n}$$

$$\therefore [1]_{n \times n} = \frac{1}{\alpha^2} \left( I_n - CC^T \right). \tag{4.97}$$

Substituindo (4.97) em (4.96),

$$(I + vv^{T})^{-\frac{1}{2}} = \left(I + \alpha^{2}C^{-1}\frac{1}{\alpha^{2}}\left(I_{n} - CC^{T}\right)C^{-T}\right)^{-\frac{1}{2}}$$
$$= \left(I + C^{-1}C^{-T} - C^{-1}CC^{T}C^{-T}\right)^{-\frac{1}{2}}$$
$$= \left(I + C^{-1}C^{-T} - I\right)^{-\frac{1}{2}}$$
$$= \left(C^{-1}C^{-T}\right)^{-\frac{1}{2}}$$
$$= C.$$
(4.98)

Agora, considere (4.94)-(4.95) e (4.98) em (4.88):

$$-\frac{1}{\sqrt{w_{n+1}}}\sqrt{P_{XX}}\left(I+vv^{T}\right)^{-\frac{1}{2}}v$$

$$\stackrel{(4.98)}{=}-\frac{1}{\sqrt{w_{p}}}\sqrt{P_{XX}}Cv$$

$$\stackrel{(4.95)}{=}-\frac{1}{\sqrt{w_{p}}}\sqrt{P_{XX}}C\alpha C^{-1}[1]_{n\times 1}$$

$$\stackrel{(4.95)}{=}-\frac{1}{\sqrt{w_{p}}}\sqrt{P_{XX}}\alpha[1]_{n\times 1}.$$

$$(4.99)$$

Considere agora, (4.94)-(4.95) e (4.98) em (4.87)

$$\sqrt{P_{XX}} \left( I + vv^T \right)^{-\frac{1}{2}} \frac{1}{\sqrt{w_{n+1}}} \begin{bmatrix} \frac{1}{v_1} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \frac{1}{\sqrt{w_{n+1}}} \frac{1}{v_n} \end{bmatrix}$$

$$\stackrel{(4.98)}{=} \sqrt{P_{XX}} C \begin{bmatrix} \frac{1}{\sqrt{w_{n+1}}} \frac{1}{v_1} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \frac{1}{\sqrt{w_{n+1}}} \frac{1}{v_n} \end{bmatrix}$$

$$\overset{(4.86)}{=} \sqrt{P_{XX}} C \begin{bmatrix} \frac{1}{\sqrt{w_{n+1}}} \frac{\sqrt{w_{n+1}}}{\sqrt{w_1}} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \frac{1}{\sqrt{w_{n+1}}} \frac{\sqrt{w_{n+1}}}{\sqrt{w_n}} \end{bmatrix}$$

$$\overset{(4.86)}{=} \sqrt{P_{XX}} C \begin{bmatrix} \frac{1}{\sqrt{w_1}} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \frac{1}{\sqrt{w_n}} \end{bmatrix}$$

$$= \sqrt{P_{XX}} C \left( \sqrt{Q_1} \right)^{-1} .$$

$$(4.100)$$

Note que (4.99)-(4.100) satisfazem a (4.43). Agora, basta mostrar que os pesos são equivalentes. De (4.86),

$$w_{i} = w_{n+1}v_{i}^{2}$$
  
=  $w_{n+1} (vv^{T})_{ii}$   
 $\stackrel{(4.95)}{=} w_{n+1} (\alpha C^{-1}[1]_{n \times 1} (\alpha C^{-1}[1]_{n \times 1})^{T})_{ii}$   
=  $w_{n+1}\alpha^{2} (C^{-1}[1]_{n \times n}C^{-T})_{ii}$ .

Que satisfaz a (4.42).

| г |  | 1 |
|---|--|---|
|   |  | L |
|   |  | L |
| L |  | I |

# **5 TRANSFORMAÇÕES POR PONTOS SIGMA**

# 5.1 TRANSFORMAÇÃO POR PONTOS SIGMA

Agora que vimos a formalização dos conjuntos de pontos sigma - que é a  $\sigma$ -representação - vamos partir para a formalização da Transformada Unscented. Nossa proposta é a Transformação por Pontos Sigma.

**Definição 5.1.1 (Transformação por pontos sigma).** Seja  $X \in \mathbb{R}^n$  um vetor aleatório e seja o mapeamento  $f : \mathbb{R}^n \mapsto \mathbb{R}^m$  que define Y, Y := f(X), e sejam os conjuntos  $\{\chi_i, w_i | \chi_i \in \mathbb{R}^n; w_i \in \mathbb{R}; i = 1, 2, ..., N\}$  e  $\{\gamma_i, w_i | \gamma_i = f(\chi_i)\}$  de pesos  $w_i$  e pontos  $\chi_i$  e  $\gamma_i$  uma aproximação gaussiana da distribuição de probabilidade conjunta de X e Y

$$N\left(\left(\begin{array}{c}\mu_{\chi}\\\mu_{\gamma}\end{array}\right), \left(\begin{array}{c}\Sigma_{\chi\chi} & \Sigma_{\chi\gamma}\\\Sigma_{\chi\gamma}^{T} & \Sigma_{\gamma\gamma}\end{array}\right)\right),\qquad \Box$$

em que

$$\mu_{\chi} := \sum_{i=1}^{N} w_i \chi_i, \tag{5.1}$$

$$\Sigma_{\chi\chi} := \sum_{i=0}^{N} w_i \left( \chi_i - \mu_{\chi} \right) \left( \chi_i - \mu_{\chi} \right)^T,$$
(5.2)

$$\mu_{\gamma} := \sum_{i=0}^{N} w_i \gamma_i, \tag{5.3}$$

$$\Sigma_{\gamma\gamma} := \sum_{i=0}^{N} w_i \left(\gamma_i - \mu_\gamma\right) \left(\gamma_i - \mu_\gamma\right)^T, \tag{5.4}$$

$$\Sigma_{\chi\gamma} := \sum_{i=0}^{N} w_i \left( \chi_i - \mu_{\chi} \right) \left( \gamma_i - \mu_{\gamma} \right)^T$$
(5.5)

 $e \ \mu_{\chi} \ e \ \Sigma_{\chi\chi} \ são \ a \ média \ e \ a \ matriz \ de \ covariância \ de \ \{\chi_i, w_i\}, \ \mu_{\gamma} \ e \ \Sigma_{\gamma\gamma} \ são \ a \ média \ e \ a \ matriz \ de \ covariância \ de \ \{\chi_i, w_i\} \ e \ \Sigma_{\chi\gamma} \ é \ a \ matriz \ de \ correlação \ cruzada \ de \ \{\chi_i, w_i\} \ e \ \{\gamma_i, w_i\}.$  Uma transformação por pontos sigma é uma função TPS

$$\left[\mu_{\gamma}, \Sigma_{\gamma\gamma}, \Sigma_{\chi\gamma}\right] = TPS\left(f, \bar{X}, P_{XX}\right),\tag{5.6}$$

se

$$\mu_{\chi} = \bar{X},\tag{5.7}$$

$$\Sigma_{\chi\chi} = P_{XX}.\tag{5.8}$$

Note que essa definição foca na aproximação da pdf conjunta, enquanto a  $\sigma$ -representação foca na aproximação de apenas uma pdf. Qual seria, então, a relação formal entre a Transformação por Pontos Sigma e a  $\sigma$ -representação? O Corolário a seguir nos dá essa resposta.

**Lema 5.1.1.** Seja  $S = \{\chi_i, w_i | i = 1, 2, ..., N\}$  uma  $\sigma$ -representação de  $X \sim (\bar{X}), P_{XX}$ ), e a função  $f : \Re^n \mapsto \Re^m$  que define Y, Y = f(X), os conjuntos  $\{\chi_i, w_i\}$  e  $\{\gamma_i, w_i | \gamma_i = f(\chi_i)\}$  constituiem uma Transformação por Pontos Sigma, TPS,

$$\left[\mu_{\gamma}, \Sigma_{\gamma\gamma}, \Sigma_{\chi\gamma}\right] = TPS\left(f, \bar{X}, P_{XX}\right).$$

PROVA Como  $\{\chi_i, w_i\}$  é uma  $\sigma$ -representação, por definição,

$$\mu_{\sigma}(S) := \sum_{i=1}^{N} w_i \chi_i = \bar{X}, \Sigma_{\sigma}(S) \qquad := \sum_{i=0}^{N} w_i \left( \chi_i - \mu_{\sigma}(S) \right) \left( \chi_i - \mu_{\sigma}(S) \right)^T = P_{XX}. \quad \Box$$

Estabelecidas a  $\sigma$ -representação e a Transformação por Pontos Sigma, qual será a qualidade da aproximação de uma transformação  $TPS(f, \bar{X}, P_{XX})$ ? O lema a seguir nos ajudará a dar essa resposta.

**Lema 5.1.2.** Seja  $X \in \mathbb{R}^n$  um vetor aleatório de média  $\overline{X} := E\{X\}$  e matriz de covariância  $P_{XX} := E\{(X - \overline{X})(X - \overline{X})^T\}$  e seja o mapeamento  $f : \mathbb{R}^n \mapsto \mathbb{R}^m$  que define Y de acordo com (3.1) e uma transformação por pontos sigma com os conjuntos  $\{\chi_i, w_i | i = 1, 2, ..., N\}$  $e\{\gamma_i, w_i | \gamma_i = f(\chi_i)\}$  de pesos  $w_i$  and pontos  $\chi_i e \gamma_i$ . Se

- 1.  $\mu_{\gamma} = \bar{X}$ ,
- 2.  $\Sigma_{\chi\chi} = P_{XX}$ ,
- 3. os momentos centrais de  $\{\chi_i, w_i\}$  são iguais aos momentos centrais de X até a ordem k,
- 4. f é diferenciável até a ordem k,

então, as seguintes afirmações são verdadeiras:

- 1.  $\mu_{\gamma}$  aproxima a Série de Taylor da média de Y,  $\overline{Y} := E\{Y\}$ , até a ordem k;
- 2.  $\Sigma_{\gamma\gamma}$  aproxima a Série de Taylor da matriz de covariância de Y,  $P_{YY} := E\{(Y \bar{Y})(Y \bar{Y})^T\}$ , até a ordem k.

PROVA Dos corolários A.1.1 e A.2.1 temos que as expansões em Série de Taylor de  $\bar{Y}$  e de  $\mu_{\gamma}$  até a ordem 2k são:

$$\bar{Y} \sim f\left(\bar{X}\right) + \frac{1}{2!} \sum_{i_1, i_2=1}^n M_{x^{(i_1)}, x^{(i_2)}}^2 \left. \frac{\partial^2 f\left(x\right)}{\partial x^{(i_1)} \partial x^{(i_2)}} \right|_{x=\bar{X}} + \dots + \frac{1}{(k)!} \sum_{i_1, \dots, i_k=1}^n M_{x^{(i_1)}, \dots, x^{(i_k)}}^k \left. \frac{\partial^k f\left(x\right)}{\partial x^{(i_1)} \cdots \partial x^{(i_k)}} \right|_{x=\bar{X}}.$$
(5.9)

e

$$\mu_{\gamma} \sim f\left(\mu_{\chi}\right) + \frac{1}{2!} \sum_{i_{1},i_{2}=1}^{n} m_{\chi_{i}^{(i_{1})},\dots,\chi_{i}^{(i_{k})}}^{2} \frac{\partial^{2} f\left(x\right)}{\partial x^{(i_{1})} \partial x^{(i_{2})}} \bigg|_{x=\mu_{\chi}} + \dots + \frac{1}{(k)!} \sum_{i_{1},\dots,i_{k}=1}^{n} m_{\chi_{i}^{(i_{1})},\dots,\chi_{i}^{i_{j_{k}})}}^{k} \frac{\partial^{k} f\left(x\right)}{\partial x^{(i_{1})} \dots \partial x^{(i_{k})}} \bigg|_{x=\mu_{\chi}}.$$
(5.10)

Como os momentos centrais de X são iguais aos momentos centrais de  $\{\chi_i, w_i\}$  e  $\mu_{\chi} = \bar{X}$ , as equações (5.9) são (5.10) iguais, o que prova a primeira assertiva.

Agora, dos corolários A.1.2 e A.2.2 , as Séries de Taylor de  $P_{YY}$  e de  $\Sigma_{\gamma\gamma}$  até a ordem ksão:

$$P_{YY} = \Theta_{P_{YY}}^2 + \Theta_{P_{YY}}^3 + \Theta_{P_{YY}}^4 + \dots + \Theta_{P_{YY}}^k + \dots$$
 (5.11)

em que

$$\Theta_{P_{YY}}^{2} = \sum_{i,j=1}^{n} M_{x^{(i)},x^{(j)}}^{2} \left. \frac{\partial f(x)}{\partial x^{(i)}} \right|_{x=\bar{X}} \left. \frac{\partial f(x)}{\partial x^{(j)}} \right|_{x=\bar{X}}^{T}$$
$$= \sum_{i,j=1}^{n} (P_{XX})_{ij} \left. \frac{\partial f(x)}{\partial x^{(i)}} \right|_{x=\bar{X}} \left. \frac{\partial f(x)}{\partial x^{(j)}} \right|_{x=\bar{X}}^{T}.$$

÷

 $\Theta^k_{P_{YY}}$ 

$$\begin{split} &+ \frac{1}{(\frac{k}{2})!(\frac{k}{2})!} \sum_{i_{1},\cdots,i_{k}=1}^{n} \left( M_{x^{(i_{1})}\cdots x^{(i_{k})}}^{k} - M_{x^{(i_{1})}\cdots x^{(i_{k}/2)}}^{k/2} M_{x^{(k/2+1)}\cdots x^{(i_{k})}}^{k/2} \right) \\ &- \left( \frac{\partial^{k/2} f(x)}{\partial x^{(i_{k}/2)} \cdots \partial x^{(i_{k})}} \right|_{x=\bar{X}} \frac{\partial^{k/2} f(x)}{\partial x^{(k/2+1)} \cdots \partial x^{(i_{k})}} \right|_{x=\bar{X}}^{T} + \frac{\partial^{k/2} f(x)}{\partial x^{(i_{k}/2+1)} \cdots \partial x^{(i_{k})}} \right|_{x=\bar{X}}^{T} \frac{\partial^{k/2} f(x)}{\partial x^{(i_{k}/2)} \cdots \partial x^{(i_{k})}} \right|_{x=\bar{X}}^{T} \\ &- \frac{1}{(k-1)!} \sum_{i_{1},\cdots,i_{k}=1}^{n} M_{x^{(i_{1})}\cdots x^{(i_{k})}}^{k} \left( \frac{\partial f(x)}{\partial x^{(i_{k})}} \right|_{x=\bar{X}} \frac{\partial^{k-1} f(x)}{\partial x^{(i_{1})} \cdots \partial x^{(i_{k-1})}} \right|_{x=\bar{X}}^{T} + \frac{\partial^{k-1} f(x)}{\partial x^{(i_{1})} \cdots \partial x^{(i_{k-1})}} \right|_{x=\bar{X}}^{T} \frac{\partial f(x)}{\partial x^{(i_{k-1})}} \right|_{x=\bar{X}}^{T} \\ &+ \frac{1}{2!(k-2)!} \sum_{i_{1},\cdots,i_{k}=1}^{n} \left( M_{x^{(i_{1})}\cdots x^{(i_{k})}}^{k} - M_{x^{(i_{1})}\cdots x^{(i_{k-1})}}^{2} \right) \\ &- \left( \frac{\partial^{2} f(x)}{\partial x^{(i_{k-1})} \partial x^{(i_{k})}} \right|_{x=\bar{X}} \frac{\partial^{k-2} f(x)}{\partial x^{(i_{1})} \cdots \partial x^{(i_{k-2})}} \right|_{x=\bar{X}}^{T} + \frac{\partial^{k-2} f(x)}{\partial x^{(i_{1})} \partial x^{(i_{k-2})}} \right) \\ &+ \frac{1}{3!(k-3)!} \sum_{i_{1},\cdots,i_{k}=1}^{n} \left( M_{x^{(i_{1})}\cdots x^{(i_{k})}}^{k} - M_{x^{(i_{1})}\cdots x^{(i_{k-2})}}^{2} \right) \\ &- \left( \frac{\partial^{3} f(x)}{\partial x^{(i_{k-2})} \partial x^{(i_{k})}} \right)_{x=\bar{X}} \frac{\partial^{k-2} f(x)}{\partial x^{(i_{1})} \partial x^{(i_{k-3})}} \right) \right|_{x=\bar{X}}^{T} + \frac{\partial^{k-2} f(x)}{\partial x^{(i_{1})} \partial x^{(i_{k-3})}} \right|_{x=\bar{X}} \frac{\partial^{3} f(x)}{\partial x^{(i_{k-2})/2}} \right|_{x=\bar{X}}^{T} \\ &+ \cdots + \\ &+ \frac{1}{(\frac{(k-2)!}{(k-2)!}!} \sum_{i_{1},\cdots,i_{k}=1}^{n} \left( M_{x^{(i_{1})}\cdots x^{(i_{k})}}^{k} - M_{x^{(i_{1})}\cdots x^{(i_{k-2})/2}}^{k-2} \right) M_{x^{(i_{1}(k-2)/2}}^{k+2/2} \\ &+ \cdots + \\ &+ \frac{1}{(\frac{(k-2)!}{2}!}!} \sum_{i_{1},\cdots,i_{k}=1}^{n} \left( M_{x^{(i_{1})}\cdots x^{(i_{k})}}^{k} - M_{x^{(i_{1})}\cdots x^{(i_{k-2})/2}}^{k-2} \right) M_{x^{(i_{1}(k-2)/2}}^{k+2/2} \\ &+ \cdots + \\ &+ \frac{1}{(\frac{(k-2)!}{2}!}!} \sum_{i_{1},\cdots,i_{k}=1}^{n} \left( M_{x^{(i_{1})}\cdots x^{(i_{k})}}^{k} - M_{x^{(i_{1})}\cdots x^{(i_{k}(k-2)/2}}}^{k-2} \right) M_{x^{(i_{k}(k-2)/2+1}}^{k+2/2} \\ &+ \cdots + \\ &+ \frac{1}{(\frac{(k-2)!}{2}!}!} \sum_{i_{1},\cdots,i_{k}=1}^{n} \left( M_{x^{(i_{1})}\cdots x^{(i_{k})}}^{k} - M_{x^{(i_{1})}\cdots x^{(i_{k}(k-2)/2}}}^$$

e

$$\Sigma_{\gamma\gamma} = \Theta_{\Sigma_{\gamma\gamma}}^2 + \Theta_{\Sigma_{\gamma\gamma}}^3 + \Theta_{\Sigma_{\gamma\gamma}}^4 + \dots + \Theta_{\Sigma_{\gamma\gamma}}^k + \dots$$
 (5.12)

em que

$$\Theta_{\Sigma_{\gamma\gamma}}^{2} = \sum_{i,j=1}^{n} \mu_{\chi_{i}^{(i)},\chi_{i}^{(j)}}^{2} \left. \frac{\partial f(x)}{\partial x^{(i)}} \right|_{\chi_{i}=\eta_{\chi_{i}}} \left. \frac{\partial f(x)}{\partial x^{(i)}} \right|_{\chi_{i}=\eta_{\chi_{i}}}^{T}$$
$$= \sum_{i,j=1}^{n} \left( \Sigma_{\chi_{i}\chi_{i}} \right)_{ij} \left. \frac{\partial f(x)}{\partial x^{(i)}} \right|_{\chi_{i}=\eta_{\chi_{i}}} \left. \frac{\partial f(x)}{\partial x^{(i)}} \right|_{\chi_{i}=\eta_{\chi_{i}}}^{T}$$

÷

 $\Theta^k_{\Sigma_{\gamma\gamma}}$ 

$$\begin{split} &+ \frac{1}{\left(\frac{k}{2}\right)!\left(\frac{k}{2}\right)!} \sum_{i_{1}, \cdots, i_{k} = 1}^{n} \left( \mu_{\chi_{i}^{(i_{1})} \cdots \chi_{i}^{(i_{k})}}^{k_{i}^{(i_{1})} \cdots \chi_{i}^{(i_{k}/2)}} \mu_{\chi_{i}^{(i_{1}/2)}}^{k_{i}^{(i_{2}/2)}} \mu_{\chi_{i}^{(i_{2}/2)}}^{k_{i}^{(i_{2}/2)}} \right) \\ &- \left( \frac{\partial^{k/2} f(x)}{\partial x^{(i_{1}/2)} \partial x^{(i_{k}/2)}} \right) \bigg|_{x = \eta_{\chi_{i}}} \frac{\partial^{k/2} f(x)}{\partial x^{(k/2+1)} \cdots \partial x^{(i_{k})}} \bigg|_{x = \eta_{\chi_{i}}}^{T} \frac{\partial^{k/2} f(x)}{\partial x^{(k/2+1)} \cdots \partial x^{(i_{k})}} \bigg|_{x = \eta_{\chi_{i}}} \frac{\partial^{k/2} f(x)}{\partial x^{(i_{1}/2)} \cdots \partial x^{(i_{k})}} \bigg|_{x = \eta_{\chi_{i}}} \frac{\partial^{k/2} f(x)}{\partial x^{(i_{1}/2)} \cdots \partial x^{(i_{k})}} \bigg|_{x = \eta_{\chi_{i}}} \frac{\partial^{k/2} f(x)}{\partial x^{(i_{1}/2)} \cdots \partial x^{(i_{k}/2)}} \bigg|_{x = \eta_{\chi_{i}}} \frac{\partial^{k/2} f(x)}{\partial x^{(i_{1}/2)} \cdots \partial x^{(i_{k}-1)}} \bigg|_{x = \eta_{\chi_{i}}} \frac{\partial^{k/2} f(x)}{\partial x^{(i_{1}/2)} \cdots \partial x^{(i_{k}-1)}} \bigg|_{x = \eta_{\chi_{i}}} \frac{\partial^{k/2} f(x)}{\partial x^{(i_{1}/2)} \cdots \partial x^{(i_{k}/2)}} \bigg|_{x = \eta_{\chi_{i}}} \frac{\partial^{k/2} f(x)}{\partial x^{(i_{1}/2)} \cdots \partial x^{(i_{k}-1)}} \bigg|_{x = \eta_{\chi_{i}}} \frac{\partial^{k/2} f(x)}{\partial x^{(i_{1}/2)} \cdots \partial x^{(i_{k}-1)}} \bigg|_{x = \eta_{\chi_{i}}} \frac{\partial^{k/2} f(x)}{\partial x^{(i_{1}/2)} \cdots \partial x^{(i_{k}/2)}} \bigg|_{x = \eta_{\chi_{i}}} \frac{\partial^{k/2} f(x)}{\partial x^{(i_{1}/2)} \cdots \partial x^{(i_{k}-2)}} \bigg|_{x = \eta_{\chi_{i}}} \frac{\partial^{f(x)}}{\partial x^{(i_{1}/2)} \cdots \partial x^{(i_{k}-2)}} \bigg|_{x = \eta_{\chi_{i}}} \frac{\partial^{f(x)}}{\partial x^{(i_{1}/2)} \cdots \partial x^{(i_{k}-2)}} \bigg|_{x = \eta_{\chi_{i}}} \frac{\partial^{f(x)}}{\partial x^{(i_{1}/2)} \cdots \partial x^{(i_{k}-2)}} \bigg|_{x = \eta_{\chi_{i}}} \frac{\partial^{2} f(x)}{\partial x^{(i_{k}-1)} \partial x^{(i_{k}/2)}} \bigg|_{x = \eta_{\chi_{i}}} \frac{\partial^{f(x)}}{\partial x^{(i_{k}/2)} \cdots \partial x^{(i_{k}/2)}} \bigg|_{x = \eta_{\chi_{i}}} \frac{\partial^{k-2} f(x)}{\partial x^{(i_{k}/2)} \cdots \partial x^{(i_{k}/2)}} \bigg|_{x = \eta_{\chi_{i}}} \frac{\partial^{k-2} f(x)}{\partial x^{(i_{k}/2)} \cdots \partial x^{(i_{k}/2)}} \bigg|_{x = \eta_{\chi_{i}}} \frac{\partial^{k-2} f(x)}{\partial x^{(i_{k}/2)} \cdots \partial x^{(i_{k}/2)}} \bigg|_{x = \eta_{\chi_{i}}} \frac{\partial^{k-2} f(x)}{\partial x^{(i_{k}/2)} \cdots \partial x^{(i_{k}/2)}} \bigg|_{x = \eta_{\chi_{i}}} \frac{\partial^{k} f(x)}{\partial x^{(i_{k}/2)} \cdots \partial x^{(i_{k}/2)}} \bigg|_{x = \eta_{\chi_{i}}} \frac{\partial^{k-2} f(x)}{\partial x^{(i_{k}/2)} \cdots \partial x^{(i_{k}/2)}} \bigg|_{x = \eta_{\chi_{i}}} \frac{\partial^{k-2} f(x)}{\partial x^{(i_{k}/2)} \cdots \partial x^{(i_{k}/2)}} \bigg|_{x = \eta_{\chi_{i}}} \frac{\partial^{k-2} f(x)}{\partial x^{(i_{k}/2)} \cdots \partial x^{(i_{k}/2)}} \bigg|_{x = \eta_{\chi_{i}}} \frac{\partial^{k-2} f(x)}$$

Como os momentos centrais de X são iguais aos momentos centrais de  $\{\chi_i, w_i\}$  e  $\mu_{\chi} = \bar{X}$ , as equações (5.11) e (5.12) são iguais.

Com isso, podemos determinar a qualidade da estimativa da transformação por pontos sigma:

**Corolário 5.1.1.** Seja uma Transformação por Pontos Sigma  $TPS = (f, \overline{X}, P_{XX})$  das variáveis aleatórias  $X \in \mathbb{R}^n$  e  $Y \in \mathbb{R}^m$  tal que Y := f(X),  $f : \mathbb{R}^n \mapsto \mathbb{R}^m$  constiuída pelos conjuntos  $\{\chi_i, w_i | \chi_i \in \mathbb{R}^n; w_i \in \mathbb{R}; i = 1, 2, ..., N\}$  e  $\{\gamma_i, w_i | \gamma_i = f(\chi_i)\}$ . As seguintes assertivas são verdadeiras:

- 1.  $\mu_{\gamma}$  aproxima a média de  $Y, \overline{Y} := E\{Y\}$  pelo menos até a segunda ordem da sua Série de Taylor.
- 2.  $\Sigma_{\gamma\gamma}$  aproxima a matriz de covariância de Y,  $P_{YY} := E\{(Y \bar{Y})(Y \bar{Y})^T\}$  pelo menos até a segunda ordem da sua Série de Taylor.

PROVA Da definição de Transformação por Pontos Sigma,

$$\mu_{\chi} = X,$$
  
$$\Sigma_{\chi\chi} = P_{XX}.$$

Aplicando o Lema 5.1.2 para k = 2, as duas assertivas ficam provadas.

Agora que fizemos a formalização para os conjuntos e para a Transformada Unscented da forma básica, passaremos para a formalização da Transformada Escalada.

# 5.2 TRANSFORMAÇÃO POR PONTOS SIGMA ESCALADA

Na seção 2.4 vimos que há uma transformada em particular que não se adéqua à nossa definição de Transformada por pontos sigma: a Transformada Unscented Escalada (TUEs). No entanto, vimos que a forma com que ela é mais utilizada apresenta a restrição de que haja um conjunto de pontos sigma com um ponto igual à média. Mas há uma outra forma de obter os mesmo resultados de escalamento da média e da matriz de covariância dos pontos transformados.

De fato, considere uma variável aleatória  $X \sim (\overline{X}, P_{XX})$ , uma função  $f : \Re^n \mapsto \Re^m$  e Y tal que Y := f(X) e a variável aleatória Z tal que

$$Z := g\left(X, c, \alpha, \kappa\right),$$

em que

$$g(X, c, \alpha, \kappa) = \frac{f(c + \alpha (X - c)) - f(c)}{\kappa} + f(c) .,$$

em que  $\alpha \in \Re, \kappa \in \Re^*$  e  $c \in \Re^n$ . Dos lemas A.1.6, A.1.7, A.2.6 e A.2.7 podemos perceber que a média e a covariância modificadas (definição abaixo) de  $Z \operatorname{com} \kappa = \alpha^2$  e c igual à respectiva média possuem o escalamento que desejamos. Assim, podemos fazer a seguinte definição:

**Definição 5.2.1 (Transformação por Pontos Sigma Escalada).** Sejam  $X \sim (\bar{X}, P_{XX})$  e o mapeamento  $f : \Re^n \mapsto \Re^m$  que define Y, Y := f(X). Considere a variável aleatória  $Z := g(X, c, \alpha, \kappa)$  tal que  $g : \Re^n \times \Re \times \Re \times \Re^* \mapsto \Re^m$  tal que

$$g(X, c, \alpha, \kappa) = \frac{f(c + \alpha (X - c)) - f(c)}{\kappa} + f(c),$$

em que  $\alpha \in \Re$ ,  $\kappa \in \Re^*$  e  $c \in \Re^n$ . Considere ainda os conjuntos {  $\chi_i$ ,  $w_i \mid i = 1, 2, ..., N$  } e { $\xi_i, w_i \mid \xi_i = g(X, \mu_{\chi}, \alpha, \alpha^2)$ } de pesos  $w_i$  e pontos  $\chi_i$  e  $\xi_i$  que são uma aproximação gaussiana da distribuição de probabilidade conjunta de X e Y

$$N\left(\left(\begin{array}{c}\mu_{\chi}\\\mu_{\xi}\end{array}\right), \left(\begin{array}{cc}\Sigma_{\chi\chi} & \Sigma_{\chi\xi}^{*}\\\Sigma_{\chi\xi}^{T*} & \Sigma_{\xi\xi}^{*}\end{array}\right)\right),$$

em que

$$\mu_{\chi} := \sum_{i=1}^{N} w_i \chi_i, \tag{5.13}$$

$$\Sigma_{\chi\chi} := \sum_{i=0}^{N} w_i \left( \chi_i - \mu_{\chi} \right) \left( \chi_i - \mu_{\chi} \right)^T,$$
(5.14)

$$\mu_{\xi} := \sum_{i=0}^{N} w_i \gamma_i, \tag{5.15}$$

$$\Sigma_{\xi\xi}^* := \alpha^2 \sum_{\substack{i=0\\N}}^N w_i \left(\gamma_i - \mu_\gamma\right) \left(\gamma_i - \mu_\gamma\right)^T, \tag{5.16}$$

$$\Sigma_{\chi\xi}^* := \alpha \sum_{i=0}^N w_i \left( \chi_i - \mu_{\chi} \right) \left( \gamma_i - \mu_{\gamma} \right)^T$$
(5.17)

 $e \ \mu_{\chi} \ e \ \Sigma_{\chi\chi} \ são \ a \ média \ e \ a \ matriz \ de \ covariância \ de \ \{\chi_i, w_i\}, \ \mu_{\xi} \ e \ \Sigma_{\xi\xi}^* \ são \ a \ média \ e \ a \ matriz \ de \ covariância \ modificada \ de \ \{\xi_i, w_i\} \ e \ \Sigma_{\chi\xi}^* \ é \ a \ matriz \ de \ correlação \ cruzada \ modificada \ de \ \{\chi_i, w_i\} \ e \ \{\gamma_i, w_i\}.$  Uma transformação por pontos sigma escalada é um função TPSEs

$$\left[\mu_{\xi}, \Sigma_{\xi\xi}^*, \Sigma_{\chi\xi}^*\right] = TPSEs\left(f, \bar{X}, P_{XX}, \alpha\right),$$
(5.18)

se

$$\mu_{\chi} = \bar{X} \ e \ \Sigma_{\chi\chi} = P_{XX}.$$

**Corolário 5.2.1.** Uma Transformação por Pontos Sigma Escalada  $TPSEs(f, \bar{X}, P_{XX}, 1)$ é uma Transformação por pontos sigma  $TPS(f, \bar{X}, P_{XX})$  (seção 5.1).

PROVA Se  $\alpha = 1$ , as equações (5.13)-5.17 se tornam

$$\mu_{\chi} := \sum_{i=1}^{N} w_i \chi_i,$$
  

$$\Sigma_{\chi\chi} := \sum_{i=0}^{N} w_i \left(\chi_i - \mu_{\chi}\right) \left(\chi_i - \mu_{\chi}\right)^T,$$
  

$$\mu_{\xi} := \sum_{i=0}^{N} w_i \gamma_i,$$
  

$$\Sigma_{\xi\xi}^* := \alpha^2 \sum_{i=0}^{N} w_i \left(\gamma_i - \mu_{\gamma}\right) \left(\gamma_i - \mu_{\gamma}\right)^T,$$
  

$$\Sigma_{\chi\xi}^* := \alpha \sum_{i=0}^{N} w_i \left(\chi_i - \mu_{\chi}\right) \left(\gamma_i - \mu_{\gamma}\right)^T,$$

que são equivalentes às equações (5.1)-(5.5).

Com isso percebe-se que a TPS é um caso particular da TPSEs. O lema a seguir é um análogo do Lema 5.1.2 para a TPS.

**Lema 5.2.1.** Seja  $X \in \mathbb{R}^n$  um vetor aleatório de média  $\overline{X} := E\{X\}$  e matriz de covariância  $P_{XX} := E\{(X - \overline{X})(X - \overline{X})^T\}$  e seja o mapeamento  $f : \mathbb{R}^n \mapsto \mathbb{R}^m$  que define Y, Y := f(X). Considere ainda, que a variável aleatória Z tal que

$$Z := g(X, c, \alpha, \kappa) = \frac{f(c + \alpha (X - c)) - f(c)}{\kappa} + f(c)$$

e seja uma transformação por pontos sigma escalada com os conjuntos  $\{\chi_i, w_i | i = 1, 2, ..., N\}$ e  $\{\xi_i, w_i | \xi_i = g(X, \mu_{\chi}, \alpha, \alpha^2)\}$  de pesos  $w_i$  and pontos  $\chi_i$  e  $\gamma_i$ . Se  $\mu_{\chi} = \overline{X}$ ,  $\Sigma_{\chi\chi} = P_{XX}$ , os momentos centrais de  $\{\chi_i, w_i\}$  são iguais aos momentos centrais de X até a ordem k e f é diferenciável até a ordem k, as seguintes afirmações são verdadeiras:

- 1.  $\mu_{\xi}$  aproxima a Série de Taylor da média de Z,  $\overline{Z} := E\{Z\}$ , até a ordem k;
- 2.  $\Sigma_{\xi\xi}^*$  aproxima a Série de Taylor da matriz de covariância de Z,  $P_{ZZ} := E\{(Z \overline{Z})(Z \overline{Z})^T\}$ , até a ordem k.

PROVA Dos lemas A.1.6 e A.2.6 temos que as expansões em Série de Taylor de  $\bar{Y}$  e de  $\mu_{\gamma}$  até a ordem k são:

$$\begin{split} \bar{Z} &= f\left(\bar{X}\right) + \frac{1}{2!} \sum_{i_1, i_2=1}^n M_{x^{(i_1)}, x^{(i_2)}}^2 \left. \frac{\partial^2 f\left(x\right)}{\partial x^{(i_1)} \partial x^{(i_2)}} \right|_{x=\bar{X}} \\ &+ \alpha \frac{1}{3!} \sum_{i_1, \dots, i_3=1}^n M_{x^{(i_1)}, \dots, x^{(i_3)}}^3 \left. \frac{\partial^3 f\left(x\right)}{\partial x^{(i_1)} \cdots \partial x^{(i_3)}} \right|_{x=\bar{X}} \\ &+ \dots + \alpha^{k-2} \frac{1}{k!} \sum_{i_1, \dots, i_k=1}^n M_{x^{(i_1)}, \dots, x^{(i_k)}}^k \left. \frac{\partial^k f\left(x\right)}{\partial x^{(i_1)} \cdots \partial x^{(i_k)}} \right|_{x=\bar{X}} + \dots . \end{split}$$
(5.19)

|   |   | • |   |
|---|---|---|---|
| 1 | ŀ |   |   |
| л | L |   | 1 |
|   | 1 |   |   |

$$\eta_{\xi_{i}} = f\left(\eta_{\chi_{i}}\right) + \sum_{i_{1},i_{2}=1}^{n} \mu_{\chi_{i}^{(i_{1})}\chi_{i}^{(i_{2})}}^{2} \left. \frac{\partial^{2} f\left(x\right)}{\partial x^{(i_{1})} \partial x^{(i_{2})}} \right|_{x=\bar{X}} \\ + \alpha \sum_{i_{1},i_{2},i_{3}=1}^{n} \mu_{\chi_{i}^{(i_{1})}\chi_{i}^{(i_{2})}\chi_{i}^{(i_{3})}}^{3} \left. \frac{\partial^{3} f\left(x\right)}{\partial x^{(i_{1})} \cdots \partial x^{(i_{3})}} \right|_{x=\bar{X}} \\ + \cdots + \frac{\alpha^{k}}{\kappa} \sum_{i_{1},\cdots,i_{k}=1}^{n} \mu_{\chi_{i}^{(i_{1})}\cdots\chi_{i}^{(i_{k})}}^{k} \left. \frac{\partial^{k} f\left(x\right)}{\partial x^{(i_{1})} \cdots \partial x^{(i_{k})}} \right|_{x=\bar{X}} + \cdots .$$
(5.20)

Como os momentos centrais de X são iguais aos momentos centrais de  $\{\chi_i, w_i\}$  e  $\mu_{\chi} = \bar{X}$ , as equações (5.19) são (5.20) iguais, o que prova a primeira assertiva.

Agora, dos lemas A.1.7 e A.2.7 , as Séries de Taylor de  $P^*_{ZZ}$  e de  $\Sigma^*_{\xi\xi}$  até a ordem k são:

$$P_{ZZ}^* = \mu P_{ZZ} = \Theta_{P_{ZZ}^*}^2 + \Theta_{P_{ZZ}^*}^3 + \Theta_{P_{ZZ}^*}^4 + \dots + \Theta_{P_{ZZ}^*}^k,$$
(5.21)

em que:

$$\Theta_{P_{ZZ}^*}^2 = \sum_{i,j=1}^n M_{x^{(i)},x^{(j)}}^2 \left. \frac{\partial f(x)}{\partial x^{(i)}} \right|_{x=\bar{X}} \left. \frac{\partial f(x)}{\partial x^{(j)}} \right|_{x=\bar{X}}^T$$

$$\begin{split} &= \sum_{i,j=1}^{n} \left( P_{XX} \right)_{ij} \frac{\partial f\left(x\right)}{\partial x^{(i)}} \bigg|_{x=\bar{X}} \frac{\partial f\left(x\right)}{\partial x^{(j)}} \bigg|_{x=\bar{X}}^{T} \cdot \\ \Theta_{P_{ZZ}}^{3} &= \alpha^{1} \frac{1}{2} \sum_{i_{1},i_{2},i_{3}=1}^{n} M_{x^{(i_{1})}\cdots x^{(i_{3})}}^{3} \left( \frac{\partial f\left(x\right)}{\partial x^{(i_{3})}} \bigg|_{x=\bar{X}} \frac{\partial^{2} f\left(x\right)}{\partial x^{(i_{1})} \partial x^{(i_{2})}} \bigg|_{x=\bar{X}}^{T} + \frac{\partial^{2} f\left(x\right)}{\partial x^{(i_{1})} \partial x^{(i_{2})}} \bigg|_{x=\bar{X}} \frac{\partial f\left(x\right)}{\partial x^{(i_{3})}} \bigg|_{x=\bar{X}} \frac{\partial f\left(x\right)}{\partial x^{(i_{1})} \partial x^{(i_{2})}} \bigg|_{x=\bar{X}} + \frac{\partial^{2} f\left(x\right)}{\partial x^{(i_{1})} \partial x^{(i_{2})}} \bigg|_{x=\bar{X}} \frac{\partial f\left(x\right)}{\partial x^{(i_{3})}} \bigg|_{x=\bar{X}} \frac{\partial f\left(x\right)}{\partial x^{(i_{3})}} \bigg|_{x=\bar{X}} \frac{\partial f\left(x\right)}{\partial x^{(i_{1})} \partial x^{(i_{2})}} \bigg|_{x=\bar{X}} \frac{\partial f\left(x\right)}{\partial x^{(i_{1})} \partial x^{(i_{2})}} \bigg|_{x=\bar{X}} \frac{\partial f\left(x\right)}{\partial x^{(i_{3})} \partial x^{(i_{3})}} \bigg|_{x=\bar{X}} \frac{\partial f\left(x\right)}{\partial x^{(i_{3})} \partial x^{(i_{4})}} \bigg|_{x=\bar{X}} \frac{\partial f\left(x\right)}{\partial x^{(i_{1})} \partial x^{(i_{2})}} \bigg|_{x=\bar{X}} \frac{\partial f\left(x\right)}{\partial x^{(i_{1})} \partial x^{(i_{2})}} \bigg|_{x=\bar{X}} \frac{\partial f\left(x\right)}{\partial x^{(i_{3})}} \bigg|_{x=\bar{$$

$$\begin{array}{c} \alpha^{3} \frac{1}{4!} \sum_{i_{1}, \cdots, i_{5}=1} M_{x^{(i_{1})} \cdots x^{(i_{5})}}^{3} \left( \frac{\partial f_{x^{(i_{5})}}}{\partial x^{(i_{5})}} \right|_{x=\bar{X}} \frac{1}{\partial x^{(i_{1})} \cdots \partial x^{(i_{4})}} \right|_{x=\bar{X}} + \frac{\partial f_{x^{(i_{1})} \cdots \partial x^{(i_{4})}}}{\partial x^{(i_{1})} \cdots \partial x^{(i_{4})}} \Big|_{x=\bar{X}} \frac{1}{\partial x^{(i_{5})}} \Big|_{x=\bar{X}} \frac{1}{\partial x^{(i_{5})}} \Big|_{x=\bar{X}} + \alpha^{3} \frac{1}{2!3!} \sum_{i_{1}, \cdots, i_{5}=1}^{n} \left( M_{x^{\cdots} x^{(i_{5})}}^{5} - M_{x^{(i_{4})} x^{(i_{5})}}^{2} M_{x^{(i_{1})} \cdots \partial x^{(i_{4})}}^{3} \right) \\ \left( \frac{\partial^{2} f(x)}{\partial x^{(i_{4})} \partial x^{(i_{5})}} \Big|_{x=\bar{X}} \frac{1}{\partial x^{(i_{1})} \cdots \partial x^{(i_{3})}} \Big|_{x=\bar{X}}^{T} + \frac{\partial^{3} f(x)}{\partial x^{(i_{1})} \cdots \partial x^{(i_{3})}} \Big|_{x=\bar{X}} \frac{1}{\partial x^{(i_{4})} \partial x^{(i_{5})}} \Big|_{x=\bar{X}} \right) \end{array} \right)$$

÷

•

 $\Theta^k_{P^*_{ZZ}}$ 

$$\begin{split} &= \alpha^{k-2} \frac{1}{\left(\frac{k}{2}\right)!\left(\frac{k}{2}\right)!} \sum_{i_{1},\cdots,i_{k}=1}^{n} \left( M_{x^{(i_{1})}\dots x^{(i_{k})}}^{k} - M_{x^{(i_{1})}\dots x^{(i_{k}/2)}}^{k/2} M_{x^{(k/2+1)}\dots x^{(i_{k})}}^{k/2} \right) \\ &= \left( \frac{\partial^{k/2} f(x)}{\partial x^{(i_{k}/2)}\dots \partial x^{(i_{k})}} \right|_{x=\bar{X}} \frac{\partial^{k/2} f(x)}{\partial x^{(k/2+1)}\dots \partial x^{(i_{k})}} \right|_{x=\bar{X}}^{T} + \frac{\partial^{k/2} f(x)}{\partial x^{(i_{k}/2)}\dots \partial x^{(i_{k})}} \right|_{x=\bar{X}} \frac{\partial^{k/2} f(x)}{\partial x^{(i_{k}/2)}\dots \partial x^{(i_{k})}} \right|_{x=\bar{X}} \frac{\partial^{k/2} f(x)}{\partial x^{(i_{k}/2+1)}\dots \partial x^{(i_{k})}} \right|_{x=\bar{X}} \frac{\partial^{k/2} f(x)}{\partial x^{(i_{k}/2)}\dots \partial x^{(i_{k})}} \right|_{x=\bar{X}} \frac{\partial^{f(x)}}{\partial x^{(i_{k}/2)}\dots \partial x^{(i_{k})}} \right|_{x=\bar{X}} \frac{\partial^{f(x)}}{\partial x^{(i_{k}/2)}} \frac{\partial^{f(x)}}{\partial x^{(i_{k}/2)}} \Big|_{x=\bar{X}} \frac{\partial^{k-2} f(x)}{\partial x^{(i_{k}/2)}\dots \partial x^{(i_{k}-2)}} \Big|_{x=\bar{X}} \frac{\partial^{k-2} f(x)}{\partial x^{(i_{k}/2)}\dots \partial x^{(i_{k})}} \Big|_{x=\bar{X}} \frac{\partial^{k-2} f(x)}{\partial x^{(i_{k}/2)}\dots \partial x^{(i_{k}-2)}} \Big|_{x=\bar{X}} \frac{\partial^{k-2} f(x)}{\partial x^{(i_{k}/2)}\dots \partial x^{(i_{k}-2)}} \Big|_{x=\bar{X}} \frac{\partial^{k-2} f(x)}{\partial x^{(i_{k}/2)}\dots \partial x^{(i_{k}/2)}} \Big|_{x=\bar{X}} \frac{\partial^{k-2} f(x)}$$

e

$$\Sigma_{\xi\xi}^* = \alpha^2 \Sigma_{\xi\xi} = \Theta_{\Sigma_{\xi\xi}^*}^2 + \Theta_{\Sigma_{\xi\xi}^*}^3 + \Theta_{\Sigma_{\xi\xi}^*}^4 + \dots + \Theta_{\Sigma_{\xi\xi}^*}^k, \tag{5.22}$$

em que:

$$\Theta_{\Sigma_{\xi\xi}^*}^2 = \sum_{i,j=1}^n \mu_{\chi_i^{(i)},\chi_i^{(j)}}^2 \left. \frac{\partial f\left(x\right)}{\partial x^{(i)}} \right|_{\chi_i = \eta_{\chi_i}} \left. \frac{\partial f\left(x\right)}{\partial x^{(i)}} \right|_{\chi_i = \eta_{\chi_i}}^T$$

$$= \sum_{i,j=1}^{n} \left( \Sigma_{\chi_{i}\chi_{i}} \right)_{ij} \left. \frac{\partial f\left(x\right)}{\partial x^{(i)}} \right|_{\chi_{i}=\eta_{\chi_{i}}} \left. \frac{\partial f\left(x\right)}{\partial x^{(i)}} \right|_{\chi_{i}=\eta_{\chi_{i}}}^{T} \\ \Theta_{\Sigma_{\xi\xi}}^{3} = \alpha \frac{1}{2} \sum_{i_{1},i_{2},i_{3}=1}^{n} \mu_{\chi_{i}^{(i_{1})}\cdots\chi_{i}^{(i_{3})}}^{3} \left( \frac{\partial f\left(x\right)}{\partial x^{(i_{3})}} \right|_{x=\eta_{\chi_{i}}} \left. \frac{\partial^{2} f\left(x\right)}{\partial x^{(i_{1})} \partial x^{(i_{2})}} \right|_{x=\eta_{\chi_{i}}}^{T} + \left. \frac{\partial^{2} f\left(x\right)}{\partial x^{(i_{1})} \partial x^{(i_{2})}} \right|_{x=\eta_{\chi_{i}}} \left. \frac{\partial f\left(x\right)}{\partial x^{(i_{3})}} \right|_{x=\eta_{\chi_{i}}} \left. \frac{\partial^{2} f\left(x\right)}{\partial x^{(i_{1})} \partial x^{(i_{2})}} \right|_{x=\eta_{\chi_{i}}} \left. \frac{\partial f\left(x\right)}{\partial x^{(i_{3})}} \right|_{x=\eta_{\chi_{i}}} \right|_{x=\eta_{\chi_{i}}} \left. \frac{\partial f\left(x\right)}{\partial x^{(i_{1})} \partial x^{(i_{2})}} \right|_{x=\eta_{\chi_{i}}} \left. \frac{\partial f\left(x\right)}{\partial x^{(i_{3})}} \right|_{x=\eta_{\chi_{i}}} \left. \frac{\partial f\left(x\right)}{\partial x^{(i_{$$

$$\begin{split} \Theta_{\Sigma_{\xi\xi}^{*}}^{4} \\ &= \alpha^{2} \frac{1}{4} \sum_{i_{1}, \cdots, i_{4}=1}^{n} \left( \mu_{\chi_{i}^{(i_{1})} \cdots \chi_{i}^{(i_{4})}}^{4} - \mu_{\chi_{i}^{(i_{1})} \chi_{i}^{(i_{2})}}^{2} \mu_{\chi_{i}^{(i_{4})} \chi_{i}^{(i_{4})}}^{2} \right) \frac{\partial^{2} f(x)}{\partial x^{(i_{1})} \partial x^{(i_{2})}} \Big|_{x=\eta_{\chi_{i}}} \frac{\partial^{2} f(x)}{\partial x^{(i_{3})} \partial x^{(i_{4})}} \Big|_{x=\eta_{\chi_{i}}}^{T} \\ & \frac{\alpha^{3}}{\kappa} \frac{1}{3!} \sum_{i_{1}, \cdots, i_{4}=1}^{n} \mu_{\chi_{i}^{(i_{1})} \cdots \chi_{i}^{(i_{4})}}^{4} \left( \frac{\partial f(x)}{\partial x^{(i_{4})}} \right|_{x=\eta_{\chi_{i}}} \frac{\partial^{3} f(x)}{\partial x^{(i_{1})} \cdots \partial x^{(i_{3})}} \Big|_{x=\eta_{\chi_{i}}}^{T} + \frac{\partial^{3} f(x)}{\partial x^{(i_{1})} \cdots \partial x^{(i_{3})}} \Big|_{x=\bar{\chi}} \frac{\partial f(x)}{\partial x^{(i_{4})}} \Big|_{x=\eta_{\chi_{i}}} \end{split}$$

•

$$\begin{split} \Theta_{\Sigma_{\xi\xi}}^{5} &= \\ \alpha^{3} \frac{1}{4!} \sum_{i_{1}, \cdots, i_{5}=1}^{n} M_{x^{(i_{1})} \cdots x^{(i_{5})}}^{5} \left( \frac{\partial f(x)}{\partial x^{(i_{5})}} \Big|_{x=\bar{X}} \frac{\partial^{4} f(x)}{\partial x^{(i_{1})} \cdots \partial x^{(i_{4})}} \Big|_{x=\bar{X}}^{T} + \frac{\partial^{4} f(x)}{\partial x^{(i_{1})} \cdots \partial x^{(i_{4})}} \Big|_{x=\bar{X}} \frac{\partial f(x)}{\partial x^{(i_{5})}} \Big|_{x=\bar{X}}^{T} \right) \\ &+ \frac{\alpha^{5}}{\kappa} \frac{1}{2!3!} \sum_{i_{1}, \cdots, i_{5}=1}^{n} \left( \mu_{\chi_{i} \cdots \chi_{i}^{(i_{5})}}^{5} - \mu_{\chi_{i}^{(i_{4})} \chi_{i}^{(i_{5})}}^{2} \mu_{\chi_{i}^{(i_{1})} \cdots \chi_{i}^{(i_{3})}}^{3} \right) \\ &\left( \frac{\partial^{2} f(x)}{\partial x^{(i_{4})} \partial x^{(i_{5})}} \Big|_{\chi_{i}=\eta_{\chi_{i}}} \frac{\partial^{3} f(x)}{\partial x^{(i_{1})} \cdots \partial x^{(i_{3})}} \Big|_{\chi_{i}=\bar{\chi_{i}}}^{T} + \frac{\partial^{3} f(x)}{\partial x^{(i_{1})} \cdots \partial x^{(i_{3})}} \Big|_{\chi_{i}=\bar{\chi_{i}}} \frac{\partial^{2} f(x)}{\partial x^{(i_{4})} \partial x^{(i_{5})}} \Big|_{\chi_{i}=\eta_{\chi_{i}}}^{T} \right) \end{split}$$

 $\Theta^k_{\Sigma^*_{\xi\xi}}$ 

$$\begin{split} &= \alpha^{k-2} \frac{1}{(\frac{k}{2})!(\frac{k}{2})!} \sum_{i_{1},\cdots,i_{k}=1}^{n} \left( \mu_{\chi_{i}^{(i_{1})}\cdots\chi_{i}^{(i_{k})}}^{k} - \mu_{\chi_{i}^{(i_{1})}\cdots\chi_{i}^{(i_{k}/2)}}^{k/2} \mu_{\chi_{i}^{(i_{k}/2+1)}\cdots\chi_{i}^{(i_{k}/2)}}^{k/2} \right) \\ & \left( \frac{\partial^{k/2} f(x)}{\partial x^{(i_{1})}\cdots\partial x^{(i_{k}/2)}} \right|_{x=\eta_{\chi_{i}}} \frac{\partial^{k/2} f(x)}{\partial x^{(k_{2}+1)}\cdots\partial x^{(i_{k})}} \right|_{x=\eta_{\chi_{i}}}^{T} + \frac{\partial^{k/2} f(x)}{\partial x^{(k_{2}+1)}\cdots\partial x^{(i_{k})}} \right|_{x=\eta_{\chi_{i}}} \frac{\partial^{k/2} f(x)}{\partial x^{(i_{1})}\cdots\partial x^{(i_{k}/2)}} \Big|_{x=\eta_{\chi_{i}}} \frac{\partial^{k/2} f(x)}{\partial x^{(k_{2}+1)}\cdots\partial x^{(i_{k})}} \Big|_{x=\eta_{\chi_{i}}} \frac{\partial^{k/2} f(x)}{\partial x^{(k_{2}+1)}\cdots\partial x^{(i_{k})}} \Big|_{x=\eta_{\chi_{i}}} \frac{\partial^{k/2} f(x)}{\partial x^{(k_{2}+1)}\cdots\partial x^{(i_{k}/2)}} \Big|_{x=\eta_{\chi_{i}}} \frac{\partial^{k/2} f(x)}{\partial x^{(k_{2}+1)}\cdots\partial x^{(i_{k}/2)}} \Big|_{x=\eta_{\chi_{i}}} \frac{\partial^{k/2} f(x)}{\partial x^{(k_{2}+1)}\cdots\partial x^{(i_{k}/2)}} \Big|_{x=\eta_{\chi_{i}}} \frac{\partial^{k/2} f(x)}{\partial x^{(i_{1})}\cdots\partial x^{(i_{k}-1)}} \Big|_{x=\eta_{\chi_{i}}} \frac{\partial^{k/2} f(x)}{\partial x^{(i_{1})}\cdots\partial x^{(i_{k}-1)}} \Big|_{x=\eta_{\chi_{i}}} \frac{\partial^{k/2} f(x)}{\partial x^{(i_{1})}\cdots\partial x^{(i_{k}-1)}} \Big|_{x=\eta_{\chi_{i}}} \frac{\partial^{f(x)}}{\partial x^{(i_{1})}\cdots\partial x^{(i_{k}-1)}} \Big|_{x=\eta_{\chi_{i}}} \frac{\partial^{f(x)}}{\partial x^{(i_{1})}\cdots\partial x^{(i_{k}-1)}} \Big|_{x=\eta_{\chi_{i}}} \frac{\partial^{f(x)}}{\partial x^{(i_{1})}\cdots\partial x^{(i_{k}-2)}} \Big|_{x=\eta_{\chi_{i}}} \frac{\partial^{f(x)}}{\partial x^{(i_{1})}\cdots\partial x^{(i_{k}-2)}} \Big|_{x=\eta_{\chi_{i}}} \frac{\partial^{f(x)}}{\partial x^{(i_{k}-1)}\partial x^{(i_{k})}} \Big|_{x=\eta_{\chi_{i}}} \frac{\partial^{k-2} f(x)}{\partial x^{(i_{k}-1)}\partial x^{(i_{k})}} \Big|_{x=\eta_{\chi_{i}}} \frac{\partial^{k-2} f(x)}{\partial x^{(i_{k}-2)}\partial x^{(i_{k}-1)}\partial x^{(i_{k})}} \Big|_{x=\eta_{\chi_{i}}} \frac{\partial^{k-2} f(x)}{\partial x^{(i_{1})}\cdots\partial x^{(i_{k}-2)}} \Big|_{x=\eta_{\chi_{i}}} \frac{\partial^{2} f(x)}{\partial x^{(i_{k}-2)}\partial x^{(i_{k})}} \Big|_{x=\eta_{\chi_{i}}} \frac{\partial^{k-2} f(x)}{\partial x^{(i_{k}-2)}\partial x^{(i_{k})}} \Big|_{x=\eta_{\chi_{i}}} \frac{\partial^{k-2} f(x)}{\partial x^{(i_{1})}\cdots\partial x^{(i_{k}-2)}} \Big|_{x=\eta_{\chi_{i}}} \frac{\partial^{2} f(x)}{\partial x^{(i_{k}-2)}\partial x^{(i_{k})}} \Big|_{x=\eta_{\chi_{i}}} \frac{\partial^{2} f(x)}{\partial x^{(i_{k}-2)}\partial x^{(i_{k})}} \Big|_{x=\eta_{\chi_{i}}} \frac{\partial^{k-2} f(x)}{\partial x^{(i_{k}-2)}\partial x^{(i_{k}-2)}\partial x^{(i_{k})}} \Big|_{x=\eta_{\chi_{i}}} \frac{\partial^{k-2} f(x)}{\partial x^{(i_{k}-2)}\partial x^{(i_{k}-2)}\partial x^{(i_{k})}} \Big|_{x=\eta_{\chi_{i}}} \frac{\partial^{k-2} f(x)}{\partial x^{(i_{k}-2)}\partial x^{(i_{k}-2)}\partial x^{(i_{k})}} \Big|_{x=\eta_{\chi_{i}}} \frac{\partial^{$$

Como os momentos centrais de X são iguais aos momentos centrais de  $\{\chi_i, w_i\}$  e  $\mu_{\chi} = \bar{X}$ , as equações (5.21) e (5.22) são iguais.

O Lema 5.2.1 nos dá a possibilidade de trabalharmos apenas com os conjunto  $\{\chi_i, w_i\}$ . Observe, as expressões das expansões em Séries de Taylor de  $\overline{Z}$  e de  $P_{ZZ}^*$  ambas diferem das de  $\overline{Y}$  e de  $P_{YY}$  apenas no fato de que cada k-ésimo termo aparece escalonado por um fator  $\alpha^{k-2}$ . Isso permite que tenhamos um grau de liberdade a mais. Com isso podemos, por exemplo, escolher  $\alpha$  pequeno de tal modo que a influência dos termos de mais alta ordem seja diminuída e, consequentemente, tenhamos uma aproximação melhor. A TPSEs apresenta um vantagem adicional particularmente para o caso em que procuramos uma aproximação para k = 2, visto que o termo  $\alpha$  só influenciará a partir dos termos de ordem 3 nas séries de Taylor de  $\overline{Z}$  e de  $P_{ZZ}^*$ .

Por fim, temos a seguinte nota:

**Nota 5.2.1.** *Qualquer*  $\sigma$ *-representação*  $\{\chi_i, w_i\}$  *é também um conjunto para uma Transfor*mação por Pontos Sigma Escalada.

#### 6 FILTRAGEM POR PONTOS SIGMA RECURSIVA

#### 6.1 FILTRAGEM RECURSIVA COM A SIGMA-REPRESENTAÇÃO

Nesta seção, queremos formalizar de modo mais geral a filtragem recursiva que se utiliza das transformações por pontos sigma. Como vimos na seção 2.3, o Filtro de Kalman *Uncented* (FKU) foi proposto sob os moldes do Filtro de Kalman. Nossa idéia é utilizar também esse quadro de equações para propor um formalismo mais geral.

Achamos conveniente repetir aqui, para facilidade, as equações da filtragem recursiva. Considere o seguinte sistema de equações

$$x_k = f(x_{k-1}, q_k, k),$$
 (6.1)

$$y_k = h\left(x_k, r_k, k\right),\tag{6.2}$$

em que  $x_k \in \Re^n$  é o estado,  $y_k \in \Re^m$  reprenta a k-ésima medida,  $q_k \in \Re^q$  é um ruído de processo e  $r_k \in \Re^r$  é o ruído de medição. Os ruídos são variáveis aleatórias normais de média zero:  $q_k \sim (0, Q_k)$  e  $r_k \sim (0, R_k)$ .

Faremos agora a exposição dos algoritmos de quatro Filtros: do Filtro de Kalman por Pontos Sigma aumentado, do Filtro de Kalman por Pontos Sigma aditivo, do Filtro de Kalman por Pontos Sigma aumentado escalado, do Filtro de Kalman por Pontos Sigma aditivo escalado. Depois comentaremos algumas relações entre eles.

Na seção 2.4 mostramos que existem duas abordagens para Filtros de Kalman que se utilizam da Transformada Unscented. Também aqui, queremos formalizar um Filtro aditivo e um aumentando.

Os Filtros aumentados têm a particularidade de tratar os ruídos de forma não-aditiva. Ele trata tanto o ruído de processo como o ruído de medição inclusos nas funções não lineares. Então, para que esse efeito seja produzido, se faz necessário que o vetor de estados tenha a sua dimensão aumentada para que as covariâncias dos ruídos influenciem na determinação dos pontos sigma. É por causa desse aumento da dimensão do estado que se dá o nome ao Filtro.

Já os Filtros aditivos simplificam as funções de processo e de medição tratando seus ruídos de forma aditiva em respeito às essas funções. Com efeito, as equações (6.1) e (6.2) são reescritas da seguinte maneira:

$$x_k = f(x_{k-1}, k) + q_k, (6.3)$$

$$y_k = h\left(x_k, k\right) + r_k. \tag{6.4}$$

Essa consideração permite que se crie um algoritmo de filtragem em que não é necessário o aumento do vetor de estados para a consideração dos ruídos. Abaixo, colocamos as nossas proposições de Filtros.

**Algoritmo 6.1.1 (FKPSAu).** Considere o sistema (6.1)-(6.2) e suponha que no instante de tempo k = 0,

$$\hat{x}_0 = E\{x_0\} = \bar{x}_0, \ \hat{P}^0_{XX} = E\{(x_0 - \bar{x}_0)(x_0 - \bar{x}_0)^T\} = \bar{P}^0_{XX}.$$

Considere, ainda, o seguinte vetor de estado aumentado  $x_k^a$  e suas respectivas média  $\bar{x}_k^a$  e matriz de covariância aumentada  $P_{XX}^{k,a}$ 

$$\begin{aligned} x_k^a &:= \begin{bmatrix} x_k^T, q_k^T, r_k^T \end{bmatrix}^T, \\ \bar{x}_k^a &:= \begin{bmatrix} \bar{x}_k^T, 0, 0 \end{bmatrix}^T, \\ P_{XX}^{k,a} &:= \begin{bmatrix} P_{XX}^k & 0 & 0 \\ 0 & Q_k & 0 \\ 0 & 0 & R_k \end{bmatrix}. \end{aligned}$$

Considere, ainda, o operador de a Transformação por Pontos Sigma (TPS) definida em 5.6. O Filtro de Kalman por Pontos Sigma aumentado(FKPSau) é constituído pela etapas de predição e correção da seguinte maneira:

#### 1. Predição

(a) Calcule a média e matriz de covariância preditas do estado:

$$\left[\hat{x}^{a}_{k|k-1}, \tilde{P}^{k|k-1,a}_{XX}\right] = TPS\left(f, \hat{x}^{a}_{k-1}, \hat{P}^{k-1,a}_{XX}\right),$$

em que

$$\hat{x}_{k|k-1}^{a} = \begin{bmatrix} \hat{x}_{k|k-1}^{x} \\ \hat{x}_{k|k-1}^{w} \\ \hat{x}_{k|k-1}^{v} \end{bmatrix},$$

$$P_{XX}^{k|k-1,a} = \begin{bmatrix} P_{XX}^{k|k-1,x} & 0 & 0 \\ 0 & P_{XX}^{k|k-1,w} & 0 \\ 0 & 0 & P_{XX}^{k|k-1,v} \end{bmatrix}.$$

## 2. Correção

(a) Calcule a média, a matriz de correlação cruzada e a matriz de covariância preditas das medidas:

$$\left[\hat{y}_{k|k-1}, \hat{P}_{YY}^{k|k-1}, \hat{P}_{XY}^{k|k-1}\right] = TPS\left(h, \hat{x}_{k|k-1}^{x}, \hat{P}_{YY}^{k|k-1,x}\right).$$

(b) Faça a correção das estimativas preditas

$$G_{k} = \hat{P}_{XY}^{k|k-1} \left( \hat{P}_{YY}^{k|k-1} \right)^{-1},$$
  

$$\hat{x}_{k} = \hat{x}_{k|k-1}^{x} + G_{k} \left( y_{k} - \hat{y}_{k|k-1} \right),$$
  

$$\hat{P}_{XX}^{k} = \hat{P}_{XX}^{k|k-1,x} - G_{k} \hat{P}_{YY}^{k|k-1} G_{k}^{T}.$$

**Algoritmo 6.1.2 (FKPSAuEs).** Considere o sistema (6.1)-(6.2) e suponha que no instante de tempo k = 0,

$$\hat{x}_0 = E\{x_0\} = \bar{x}_0, \ \hat{P}^0_{XX} = E\{(x_0 - \bar{x}_0)(x_0 - \bar{x}_0)^T\} = \bar{P}^0_{XX}.$$

Considere, ainda, o seguinte vetor de estado aumentado  $x_k^a$  e suas respectivas média  $\bar{x}_k^a$  e matriz de covariância aumentada  $P_{XX}^{k,a}$ 

$$\begin{aligned} x_k^a &:= \left[ x_k^T, q_k^T, r_k^T \right]^T, \\ \bar{x}_k^a &:= \left[ \bar{x}_k^T, 0, 0 \right]^T, \\ P_{XX}^{k,a} &:= \left[ \begin{array}{cc} P_{XX}^k & 0 & 0 \\ 0 & Q_k & 0 \\ 0 & 0 & R_k \end{array} \right]. \end{aligned}$$

Considere, ainda, o operador de a Transformação por Pontos Sigma Escalada (TPSEs) definida em (5.18). O Filtro de Kalman por Pontos Sigma aumentado Escalado(FKPSAuEs) é constituído pela etapas de predição e correção da seguinte maneira:

### 1. Predição

(a) Calcule a média e matriz de covariância preditas do estado:

$$\left[\hat{x}_{k|k-1}^{a}, \tilde{P}_{XX}^{k|k-1,a}\right] = TPSEs\left(f, \hat{x}_{k-1}^{a}, \hat{P}_{XX}^{k-1,a}\right),$$

em que

$$\hat{x}_{k|k-1}^{a} = \begin{bmatrix} \hat{x}_{k|k-1}^{x} \\ \hat{x}_{k|k-1}^{w} \\ \hat{x}_{k|k-1}^{v} \end{bmatrix},$$

$$P_{XX}^{k|k-1,a} = \begin{bmatrix} P_{XX}^{k|k-1,x} & 0 & 0 \\ 0 & P_{XX}^{k|k-1,w} & 0 \\ 0 & 0 & P_{XX}^{k|k-1,v} \end{bmatrix}.$$

# 2. Correção

(a) Calcule a média, a matriz de correlação cruzada e a matriz de covariância preditas das medidas:

$$\left[\hat{y}_{k|k-1}, \hat{P}_{YY}^{k|k-1}, \hat{P}_{XY}^{k|k-1}\right] = TPSEs\left(h, \hat{x}_{k|k-1}^{x}, \hat{P}_{YY}^{k|k-1,x}\right).$$

(b) Faça a correção das estimativas preditas

$$G_{k} = \hat{P}_{XY}^{k|k-1} \left( \hat{P}_{YY}^{k|k-1} \right)^{-1},$$
  

$$\hat{x}_{k} = \hat{x}_{k|k-1}^{x} + G_{k} \left( y_{k} - \hat{y}_{k|k-1} \right),$$
  

$$\hat{P}_{XX}^{k} = \hat{P}_{XX}^{k|k-1,x} - G_{k} \hat{P}_{YY}^{k|k-1} G_{k}^{T}.$$

**Algoritmo 6.1.3 (FKPSAd).** *Considere que o sistema* (6.1)-(6.2) *pode ser escrito da seguinte maneira* 

$$x_k = f(x_{k-1}, k) + q_k,$$
$$y_k = h(x_k, k) + r_k,$$

e suponha que no instante de tempo k = 0,

$$\hat{x}_0 = E\{x_0\} = \bar{x}_0, \ \hat{P}^0_{XX} = E\{(x_0 - \bar{x}_0)(x_0 - \bar{x}_0)^T\} = \bar{P}^0_{XX}.$$

Considere, ainda, o operador de Transformação por Pontos Sigma Escalada (TPS) definida em (5.6). O **Filtro de Kalman por Pontos Sigma aditivo** (FKPSad) é constituído pela etapas de predição e correção da seguinte maneira:

# 1. Predição

(a) Calcule a média e matriz de covariância preditas do estado:

$$\begin{bmatrix} \hat{x}_{k|k-1}, \tilde{P}_{XX}^{k|k-1} \end{bmatrix} = TPS\left(f, \hat{x}_{k-1}, \hat{P}_{XX}^{k-1}\right)$$
$$\hat{P}_{XX}^{k|k-1} = \tilde{P}_{XX}^{k|k-1} + Q_k.$$

## 2. Correção

(a) Calcule a média, a matriz de correlação cruzada e a matriz de covariância preditas das medidas:

$$\begin{bmatrix} \hat{y}_{k|k-1}, \tilde{P}_{YY}^{k|k-1}, \hat{P}_{XY}^{k|k-1} \end{bmatrix} = TPS\left(h, \hat{x}_{k|k-1}, \hat{P}_{XX}^{k|k-1}\right)$$
$$\hat{P}_{YY}^{k|k-1} = \tilde{P}_{YY}^{k|k-1} + R_k.$$

(b) Faça a correção das estimativas preditas

$$G_{k} = \hat{P}_{XY}^{k|k-1} \left( \hat{P}_{YY}^{k|k-1} \right)^{-1},$$
  

$$\hat{x}_{k} = \hat{x}_{k|k-1} + G_{k} \left( y_{k} - \hat{y}_{k|k-1} \right),$$
  

$$\hat{P}_{XX}^{k} = \hat{P}_{XX}^{k|k-1} - G_{k} \hat{P}_{YY}^{k|k-1} G_{k}^{T}.$$

**Algoritmo 6.1.4 (FKPSAdEs).** *Considere que o sistema* (6.1)-(6.2) *pode ser escrito da seguinte maneira* 

$$x_k = f(x_{k-1}, k) + q_k,$$
$$y_k = h(x_k, k) + r_k,$$

e suponha que no instante de tempo k = 0,

$$\hat{x}_0 = E\{x_0\} = \bar{x}_0, \ \hat{P}^0_{XX} = E\{(x_0 - \bar{x}_0)(x_0 - \bar{x}_0)^T\} = \bar{P}^0_{XX}.$$

Considere, ainda, o operador de Transformação por Pontos Sigma Escalada (TPSEs) definida em (5.18). O **Filtro de Kalman por Pontos Sigma aditivo Escalado** (FKPSAdEs) é constituído pela etapas de predição e correção da seguinte maneira:

## 1. Predição

(a) Calcule a média e matriz de covariância preditas do estado:

$$\begin{bmatrix} \hat{x}_{k|k-1}, \tilde{P}_{XX}^{k|k-1} \end{bmatrix} = TPSEs\left(f, \hat{x}_{k-1}, \hat{P}_{XX}^{k-1}\right)$$
$$\hat{P}_{XX}^{k|k-1} = \tilde{P}_{XX}^{k|k-1} + Q_k.$$

#### 2. Correção

(a) Calcule a média, a matriz de correlação cruzada e a matriz de covariância preditas das medidas:

$$\begin{bmatrix} \hat{y}_{k|k-1}, \tilde{P}_{YY}^{k|k-1}, \hat{P}_{XY}^{k|k-1} \end{bmatrix} = TPSEs\left(h, \hat{x}_{k|k-1}, \hat{P}_{XX}^{k|k-1}\right)$$
$$\hat{P}_{YY}^{k|k-1} = \tilde{P}_{YY}^{k|k-1} + R_k.$$

(b) Faça a correção das estimativas preditas

$$G_{k} = \hat{P}_{XY}^{k|k-1} \left( \hat{P}_{YY}^{k|k-1} \right)^{-1},$$
  

$$\hat{x}_{k} = \hat{x}_{k|k-1} + G_{k} \left( y_{k} - \hat{y}_{k|k-1} \right),$$
  

$$\hat{P}_{XX}^{k} = \hat{P}_{XX}^{k|k-1} - G_{k} \hat{P}_{YY}^{k|k-1} G_{k}^{T}.$$

**Corolário 6.1.1.** *Para o caso em que*  $\alpha = 1$ , *o FKSPauEs recai no FKSPau e o FKSPadEs recai no FKSPad.* 

O Corolário acima evidencia que os Filtros de Kalman por pontos sigma são casos particulares dos respectivos Filtros de Kalman por pontos sigma escalados.

Os corolários abaixo explícitam a versatilidade dessas representações. Mostraremos que elas produzem Filtros para qualquer  $\sigma$ -representação e que, além disso, o Filtro de Kalman Unscented aumentado (FKUau) e o Filtro de Kalman Unscened aditivo(FKUad) são casos particulares desses Filtros.

**Corolário 6.1.2 (FKPSAuEsSimMin).** A utilização da  $\sigma$ -representação Simétrica Mínima (Teorema 4.1.1) no FKPSAuEs resulta no Filtro de Kalman por Pontos Sigma Escalado Aumentado Simétrico Mínimo (FKPSAuEsSimMin) que tem o algoritmo abaixo.

Algoritmo 6.1.5 (FKPSAuEsSimMin). Considere o sistema (2.1)-(2.2) e suponha que no instante de tempo k = 0,

$$\hat{x}_0 = E\{x_0\} = \bar{x}_0, \ \hat{P}^0_{XX} = E\{(x_0 - \bar{x}_0)(x_0 - \bar{x}_0)^T\} = \bar{P}^0_{XX}.$$

Considere, ainda, o seguinte vetor de estado aumentado  $x_k^a$  e suas respectivas média  $\bar{x}_k^a$  e matriz de covariância aumentada  $P_{XX}^{k,a}$ 

$$\begin{aligned} x_k^a &:= \left[ x_k^T, q_k^T, r_k^T \right]^T, \\ \bar{x}_k^a &:= \left[ \bar{x}_k^T, 0, 0 \right]^T, \\ P_{XX}^{k,a} &:= \left[ \begin{array}{cc} P_{XX}^k & 0 & 0 \\ 0 & Q_k & 0 \\ 0 & 0 & R_k \end{array} \right], \\ n_a &= n + r + q. \end{aligned}$$

*O Filtro de Kalman por Pontos Sigma Aumentado Simétrico Mínimo*(*FKPSauSimMínimo*) *é constituído pela etapas de predição e correção da seguinte maneira:* 

#### 1. Predição

- (a) Calcule os pesos e os pontos sigma a partir da  $\sigma$ -representação Simétrica Mínima (Teorema 4.1.1):
  - *i.* Calcule valores para  $w_i$ ,  $i = 1, ..., 2n_a + 1$  tal que

$$w_i > 0, i = 1, \dots, 2n_a,$$
  
 $w_{i+n_a} = w_i, i = 1, \dots, n_a + 1,$   
 $\sum_{i=1}^{2n_a+1} w_i = 1.$ 

*ii. Calcule os pontos sigma:* 

$$Q = \begin{bmatrix} w_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & w_{n_a} \end{bmatrix},$$
$$E = \begin{bmatrix} (\sqrt{2Q})^{-1} \sqrt{P_{XX}} & -(\sqrt{2Q})^{-1} \sqrt{P_{XX}} & 0_{n \times 1} \end{bmatrix},$$
$$W := \begin{bmatrix} w_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & w_{2n_a+1} \end{bmatrix} = \begin{bmatrix} Q & 0 & 0 \\ 0 & Q & 0 \\ 0 & 0 & w_{2n_a+1} \end{bmatrix},$$
$$\begin{bmatrix} \chi_1^{k-1} & \cdots & \chi_{2n_a+1}^{k-1} \end{bmatrix} = E + [\bar{X}]_{1:2n_a+1}.$$

- (b) escolha  $\alpha \neq 0$ .
- (c) Faça a predição escalada dos pontos sigma:

$$\chi_i^{k|k-1,a} = \chi_i^{k-1,a},$$

$$\chi_i^{k|k-1,x} = \frac{f\left(\bar{X} + \alpha\left(\chi_i^{k-1,x} - \bar{X}\right)\right) - f\left(\bar{X}\right)}{\alpha^2} + f\left(\bar{X}\right).$$

em que

$$\chi_{2n+1}^{k,a} = \begin{bmatrix} \chi_{2n_a+1}^{k,x} \\ \chi_{2n_a+1}^{k,w} \\ \chi_{2n_a+1}^{k,v} \\ \chi_{2n_a+1}^{k,v} \end{bmatrix}.$$

(d) Calcule a média e a matriz de covariância modificadas preditas:

$$\hat{x}_{k|k-1}^{a} = \sum_{i=1}^{2n_{a}+1} w_{i} \chi_{i}^{k|k-1,x},$$
$$\tilde{P}_{XX}^{k|k-1,a} = \alpha^{2} \sum_{i=1}^{2n_{a}+1} w_{i} \left(\chi_{i}^{k|k-1,x} - \hat{x}_{k|k-1}^{a}\right) \left(\chi_{i}^{k|k-1,x} - \hat{x}_{k|k-1}^{a}\right)^{T}.$$

# 2. Correção

(a) Faça a predição escalada dos pontos sigma da medida:

$$\gamma_i^{k|k-1} = \frac{h\left(\hat{x}_{k|k-1}^x + \alpha\left(\chi_i^{k-1,x} - \hat{x}_{k|k-1}^x\right)\right) - h\left(\hat{x}_{k|k-1}^x\right)}{\alpha^2} + h\left(\hat{x}_{k|k-1}^x\right)$$

(b) Calcule a média e a matriz de covariância da predição modificadas das medidas:

$$\hat{y}_{k|k-1} = \sum_{i=1}^{2n_a+1} w_i \gamma_i^{k|k-1},$$
$$\hat{P}_{YY}^{k|k-1} = \alpha^2 \sum_{i=1}^{2n_a+1} w_i \left(\gamma_i^{k|k-1} - \hat{y}_{k|k-1}\right) \left(\gamma_i^{k|k-1} - \hat{y}_{k|k-1}\right)^T$$

(c) Calcule a covariância cruzada modificada:

$$\hat{P}_{XY}^{k|k-1} = \alpha \sum_{i=1}^{2n_a+1} w_i \left( \chi_i^{k|k-1,x} - \hat{x}_{k|k-1}^x \right) \left( \gamma_i^{k|k-1} - \hat{y}_{k|k-1} \right)^T$$

em que

$$\hat{x}^{a}_{k|k-1} = \begin{bmatrix} \hat{x}^{x}_{k|k-1} \\ \hat{x}^{w}_{k|k-1} \\ \hat{x}^{v}_{k|k-1} \end{bmatrix}$$

(d) Faça a correção das estimativas preditas

$$G_{k} = \hat{P}_{XY}^{k|k-1} \left( \hat{P}_{YY}^{k|k-1} \right)^{-1},$$
$$\hat{x}_{k} = \hat{x}_{k|k-1}^{x} + G_{k} \left( y_{k} - \hat{y}_{k|k-1} \right),$$
$$\hat{P}_{XX}^{k} = \hat{P}_{XX}^{k|k-1,x} - G_{k} \hat{P}_{YY}^{k|k-1} G_{k}^{T},$$

em que

$$P_{XX}^{k|k-1,a} = \begin{bmatrix} P_{XX}^{k|k-1,x} & 0 & 0\\ 0 & P_{XX}^{k|k-1,w} & 0\\ 0 & 0 & P_{XX}^{k|k-1,v} \end{bmatrix}.$$

**Corolário 6.1.3 (FKPSAuEsSimMinHom).** A utilização da  $\sigma$ -representação Simétrica Mínima Homogênea (Corolário 4.1.1) no FKPSAuEs resulta no Filtro de Kalman por Pontos Sigma Escalado Aumentado Simétrico Mínimo Homogêneo (FKPSAuEsSimMinHom) que tem o algoritmo abaixo. O FKPSAuEsSimMinHom com  $\alpha = 1$  é equivalente ao FKUau (algoritmo 2.4.2).

**Algoritmo 6.1.6 (FKPSAuEsSimMinHom).** Considere o sistema (2.1)-(2.2) e suponha que no instante de tempo k = 0,

$$\hat{x}_0 = E\{x_0\} = \bar{x}_0, \ \hat{P}^0_{XX} = E\{(x_0 - \bar{x}_0)(x_0 - \bar{x}_0)^T\} = \bar{P}^0_{XX}.$$

Considere, ainda, o seguinte vetor de estado aumentado  $x_k^a$  e suas respectivas média  $\bar{x}_k^a$  e matriz de covariância aumentada  $P_{XX}^{k,a}$ 

$$x_k^a := \left[ x_k^T, q_k^T, r_k^T \right]^T,$$

$$\bar{x}_{k}^{a} := \begin{bmatrix} \bar{x}_{k}^{T}, 0, 0 \end{bmatrix}^{T},$$

$$P_{XX}^{k,a} := \begin{bmatrix} P_{XX}^{k} & 0 & 0 \\ 0 & Q_{k} & 0 \\ 0 & 0 & R_{k} \end{bmatrix},$$

$$n_{a} = n + r + q.$$

*O Filtro de Kalman por Pontos Sigma Aumentado Simétrico Mínimo Homogêneo*(FKPSAuEsSimMinHo é constituído pela etapas de predição e correção da seguinte maneira:

## 1. Predição

- (a) Calcule os pesos e os pontos sigma a partir da σ-representação Simétrica Mínima Homogênea (Corolário 4.1.1):
  - *i. escolha um valor para*  $w_{2n_a+1} < 1$ .
  - ii. Calcule os pesos e pontos sigma

$$Q = \frac{1 - w_{2n_a+1}}{2n} I_{n_a},$$

$$E = \left[ \left( \sqrt{2Q} \right)^{-1} \sqrt{P_{XX}} - \left( \sqrt{2Q} \right)^{-1} \sqrt{P_{XX}} \quad 0_{n \times 1} \right],$$

$$W := \begin{bmatrix} w_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & w_{2n_a+1} \end{bmatrix} = \begin{bmatrix} Q & 0 & 0 \\ 0 & Q & 0 \\ 0 & 0 & w_{2n_a+1} \end{bmatrix},$$
$$\begin{bmatrix} \chi_1^{k-1} & \cdots & \chi_{2n_a+1}^{k-1} \end{bmatrix} = E + \begin{bmatrix} \bar{X} \end{bmatrix}_{1:2n_a+1}.$$

- (b) escolha  $\alpha \neq 0$ .
- (c) Faça a predição escalada dos pontos sigma:

$$\chi_i^{k|k-1,a} = \chi_i^{k-1,a},$$

$$\chi_i^{k|k-1,x} = \frac{f\left(\bar{X} + \alpha\left(\chi_i^{k-1,x} - \bar{X}\right)\right) - f\left(\bar{X}\right)}{\alpha^2} + f\left(\bar{X}\right).$$

em que

$$\chi_{2n+1}^{k} = \begin{bmatrix} \chi_{2n_{a+1}}^{k,x} \\ \chi_{2n_{a+1}}^{k,w} \\ \chi_{2n_{a+1}}^{k,v} \\ \chi_{2n_{a+1}}^{k,v} \end{bmatrix}.$$

(d) Calcule a média e a matriz de covariância modificadas preditas:

$$\hat{x}_{k|k-1}^{a} = \sum_{i=1}^{2n_{a}+1} w_{i} \chi_{i}^{k|k-1,x},$$

$$\tilde{P}_{XX}^{k|k-1,a} = \alpha^{2} \sum_{i=1}^{2n_{a}+1} w_{i} \left(\chi_{i}^{k|k-1,x} - \hat{x}_{k|k-1}^{a}\right) \left(\chi_{i}^{k|k-1,x} - \hat{x}_{k|k-1}^{a}\right)^{T}.$$

# 2. Correção

(a) Faça a predição escalada dos pontos sigma da medida:

$$\gamma_i^{k|k-1} = \frac{h\left(\hat{x}_{k|k-1}^x + \alpha\left(\chi_i^{k-1,x} - \hat{x}_{k|k-1}^x\right)\right) - h\left(\hat{x}_{k|k-1}^x\right)}{\alpha^2} + h\left(\hat{x}_{k|k-1}^x\right)$$

(b) Calcule a média e a matriz de covariância da predição modificadas das medidas:

$$\hat{y}_{k|k-1} = \sum_{i=1}^{2n_a+1} w_i \gamma_i^{k|k-1},$$
$$\hat{P}_{YY}^{k|k-1} = \alpha^2 \sum_{i=1}^{2n_a+1} w_i \left(\gamma_i^{k|k-1} - \hat{y}_{k|k-1}\right) \left(\gamma_i^{k|k-1} - \hat{y}_{k|k-1}\right)^T.$$

(c) Calcule a covariância cruzada modificada:

$$\hat{P}_{XY}^{k|k-1} = \alpha \sum_{i=1}^{2n_a+1} w_i \left( \chi_i^{k|k-1,x} - \hat{x}_{k|k-1}^x \right) \left( \gamma_i^{k|k-1} - \hat{y}_{k|k-1} \right)^T$$

em que

$$\hat{x}^{a}_{k|k-1} = \begin{bmatrix} \hat{x}^{x}_{k|k-1} \\ \hat{x}^{w}_{k|k-1} \\ \hat{x}^{v}_{k|k-1} \end{bmatrix}.$$

(d) Faça a correção das estimativas preditas

$$G_{k} = \hat{P}_{XY}^{k|k-1} \left( \hat{P}_{YY}^{k|k-1} \right)^{-1},$$
$$\hat{x}_{k} = \hat{x}_{k|k-1}^{x} + G_{k} \left( y_{k} - \hat{y}_{k|k-1} \right),$$
$$\hat{P}_{XX}^{k} = \hat{P}_{XX}^{k|k-1,x} - G_{k} \hat{P}_{YY}^{k|k-1} G_{k}^{T},$$

em que

$$P_{XX}^{k|k-1,a} = \begin{bmatrix} P_{XX}^{k|k-1,x} & 0 & 0\\ 0 & P_{XX}^{k|k-1,w} & 0\\ 0 & 0 & P_{XX}^{k|k-1,v} \end{bmatrix}.$$

PROVA Colocamos aqui o algoritmo do FKUau para a comparação com o algoritmo FKSPauSim.

**Algoritmo 6.1.7 (FKUau).** Considere o sistema (2.1)-(2.2) e suponha que no instante de tempo k = 0,

$$\hat{x}_0 = E\{x_0\} = \bar{x}_0, \ \hat{P}^0_{XX} = E\{(x_0 - \bar{x}_0)(x_0 - \bar{x}_0)^T\} = \bar{P}^0_{XX}.$$

Considere, ainda, o seguinte vetor de estado aumentado  $x_k^a$  e suas respectivas média  $\bar{x}_k^a$  e matriz de covariância aumentada  $P_{XX}^{k,a}$ 

$$x_k^a := \begin{bmatrix} x_k^T, q_k^T, r_k^T \end{bmatrix}^T, \tag{6.5}$$

$$\bar{x}_k^a := \begin{bmatrix} \bar{x}_k^T, 0, 0 \end{bmatrix}^T, \tag{6.6}$$

$$P_{XX}^{k,a} := \begin{bmatrix} P_{XX}^{h} & 0 & 0\\ 0 & Q_{k} & 0\\ 0 & 0 & R_{k} \end{bmatrix}.$$
 (6.7)

*O Filtro de Kalman Unscented Aumentado (FKUau) é composto das etapas de predição e de correção da seguinte forma:* 

# 1. Predição

- (a) Escolha um valor para  $w_0 < 1$ .
- (b) Para  $i = 1, ..., n_a, n_a = n + q + r$ , compute os pontos sigma aumentados  $\chi_{k-1}^{i,a}$ e seus pesos  $w_i$  assim:

$$\begin{split} \chi_{k-1}^{0,a} &= \hat{x}_{k-1}^{a}, \\ \chi_{k-1}^{i,a} &= \chi_{k-1}^{0,a} + \left[ \sqrt{\frac{n_a}{1 - w_0}} \hat{P}_{XX}^{k-1,a} \right]_{*i}, \\ \chi_{k-1}^{i+n_a,a} &= \chi_{k-1}^{0,a} + \left[ \sqrt{\frac{n_a}{1 - w_0}} \hat{P}_{XX}^{k-1,a} \right]_{*i}, \\ w_i &= w_{i+n} = \frac{1 - w_0}{2n_a}, \end{split}$$

em que

$$\chi_{k-1}^{i,a} = \begin{bmatrix} \chi_{k-1}^{i,x} \\ \chi_{k-1}^{i,w} \\ \chi_{k-1}^{i,v} \\ \chi_{k-1}^{i,v} \end{bmatrix}.$$

(c) Faça a transformação dos pontos sigma:

$$\chi_{k|k-1}^{i,x} = f\left(\chi_{k-1}^{i,x}, \chi_{k-1}^{i,w}, k\right).$$

(d) Calcule as predições da estimativa e da matriz de covariância:

$$\hat{x}_{k|k-1} = \sum_{i=0}^{2n_a} w_i \chi_{k|k-1}^{i,x},$$
$$\hat{P}_{XX}^{k|k-1} = \sum_{i=0}^{2n_a} w_i \left( \chi_{k|k-1}^{i,x} - \hat{x}_{k|k-1} \right) \left( \chi_{k|k-1}^{i,x} - \hat{x}_{k|k-1} \right)^T.$$

# 2. Correção

(a) Calcule os ponto sigma de predição da medição  $\gamma_{k|k-1}^i$ :

$$\gamma_{k|k-1}^{i} = h\left(\chi_{k-1}^{i,x}, \chi_{k-1}^{i,v}, k\right).$$

(b) Calcule a predição da medição  $\hat{y}_{k|k-1}$  e da matriz de covariância da medição  $\hat{P}_{YY}^{k|k-1}$  preditas :

$$\hat{y}_{k|k-1} = \sum_{i=0}^{2n_a} w_i \gamma_{k|k-1}^i,$$
$$\hat{P}_{YY}^{k|k-1} = \sum_{i=0}^{2n_a} w_i \left(\gamma_{k|k-1}^i - \hat{y}_{k|k-1}\right) \left(\gamma_{k|k-1}^i - \hat{y}_{k|k-1}\right)^T.$$

(c) Calcule a matriz de correlação cruzada predita  $\hat{P}_{XY}^{k|k-1}$ :

$$\hat{P}_{XY}^{k|k-1} = \sum_{i=0}^{2n_a} w_i \left( \chi_{k|k-1}^{i,x} - \hat{x}_{k|k-1} \right) \left( \gamma_{k|k-1}^i - \hat{y}_{k|k-1} \right)^T.$$

(d) Faça a correção das estimativas preditas

$$G_{k} = \hat{P}_{XY}^{k|k-1} \left( \hat{P}_{YY}^{k|k-1} \right)^{-1},$$
  

$$\hat{x}_{k} = \hat{x}_{k|k-1} + G_{k} \left( y_{k} - \hat{y}_{k|k-1} \right),$$
  

$$\hat{P}_{XX}^{k} = \hat{P}_{XX}^{k|k-1} - G_{k} \hat{P}_{YY}^{k|k-1} G_{k}^{T}.$$

**Corolário 6.1.4 (FKPSAdEsSimMin).** A utilização da  $\sigma$ -representação Simétrica Mínima (Teorema 4.1.1) no FKPSAdEs resulta no Filtro de Kalman por Pontos Sigma Aditivo Escalado Simétrico Mínimo (FKPSAdEsSimMin) que tem o algoritmo abaixo.

**Algoritmo 6.1.8 (FKPSAdEsSimMin).** Considere que o sistema (6.1)-(6.2) pode ser escrito da seguinte maneira

$$x_k = f(x_{k-1}, k) + q_k,$$
  
$$y_k = h(x_k, k) + r_k,$$

e suponha que no instante de tempo k = 0,

$$\hat{x}_0 = E\{x_0\} = \bar{x}_0, \ \hat{P}^0_{XX} = E\{(x_0 - \bar{x}_0)(x_0 - \bar{x}_0)^T\} = \bar{P}^0_{XX}.$$

*O Filtro de Kalman por Pontos Sigma Aditivo Escalado Simétrico Mínimo* (*FKPSAdEsSim-Min*) é constituído pela etapas de predição e correção da seguinte maneira:

### 1. Predição

- (a) Calcule os pesos e os pontos sigma a partir da σ-representação Simétrica Mínima (Teorema 4.1.1):
  - *i.* Calcule valores para  $w_i$ , i = 1, ..., 2n + 1 tal que

$$w_i > 0, i = 1, \dots, 2n,$$
  
 $w_{i+n} = w_i, i = 1, \dots, n+1,$   
 $\sum_{i=1}^{2n+1} w_i = 1.$ 

*ii. Calcule os pontos sigma:* 

$$Q = \begin{bmatrix} w_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & w_n \end{bmatrix},$$

$$E = \left[ \left( \sqrt{2Q} \right)^{-1} \sqrt{P_{XX}} - \left( \sqrt{2Q} \right)^{-1} \sqrt{P_{XX}} \quad 0_{n \times 1} \right],$$

$$W := \begin{bmatrix} w_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & w_{2n+1} \end{bmatrix} = \begin{bmatrix} Q & 0 & 0 \\ 0 & Q & 0 \\ 0 & 0 & w_{2n+1} \end{bmatrix},$$

$$\left[\begin{array}{ccc} \chi_1^{k-1} & \cdots & \chi_{2n+1}^{k-1} \end{array}\right] = E + \left[\bar{X}\right]_{1:2n+1}.$$

- (b) escolha  $\alpha \neq 0$ .
- (c) Faça a predição escalada dos pontos sigma escalada:

$$\chi_i^{k|k-1} = \frac{f\left(\bar{X} + \alpha\left(\chi_i^{k-1} - \bar{X}\right)\right) - f\left(\bar{X}\right)}{\alpha^2} + f\left(\bar{X}\right)$$

(d) Calcule a média e a matriz de covariância modificadas preditas:

$$\hat{x}_{k|k-1} = \sum_{i=1}^{2n+1} w_i \chi_i^{k|k-1},$$
$$\tilde{P}_{XX}^{k|k-1} = \alpha^2 \sum_{i=1}^{2n+1} w_i \left(\chi_i^{k|k-1} - \hat{x}_{k|k-1}\right) \left(\chi_i^{k|k-1} - \hat{x}_{k|k-1}\right)^T + Q_k$$

# 2. Correção

(a) Faça a predição escalada dos pontos sigma da medida:

$$\gamma_i^{k|k-1} = \frac{h\left(\hat{x}_{k|k-1} + \alpha\left(\chi_i^{k-1} - \hat{x}_{k|k-1}\right)\right) - h\left(\hat{x}_{k|k-1}\right)}{\alpha^2} + h\left(\hat{x}_{k|k-1}\right)$$

(b) Calcule a média e a matriz de covariância modificadas da predição das medidas:

$$\hat{y}_{k|k-1} = \sum_{i=1}^{2n+1} w_i \gamma_i^{k|k-1},$$
$$\hat{P}_{YY}^{k|k-1} = \alpha^2 \sum_{i=1}^{2n+1} w_i \left(\gamma_i^{k|k-1} - \hat{y}_{k|k-1}\right) \left(\gamma_i^{k|k-1} - \hat{y}_{k|k-1}\right)^T + R_k$$

(c) Calcule a covariância cruzada modificada:

$$\hat{P}_{XY}^{k|k-1} = \alpha \sum_{i=1}^{2n+1} w_i \left( \chi_i^{k|k-1} - \hat{x}_{k|k-1} \right) \left( \gamma_i^{k|k-1} - \hat{y}_{k|k-1} \right)^T$$

(d) Faça a correção das estimativas preditas

$$G_{k} = \hat{P}_{XY}^{k|k-1} \left( \hat{P}_{YY}^{k|k-1} \right)^{-1},$$
  

$$\hat{x}_{k} = \hat{x}_{k|k-1}^{x} + G_{k} \left( y_{k} - \hat{y}_{k|k-1} \right),$$
  

$$\hat{P}_{XX}^{k} = \hat{P}_{XX}^{k|k-1} - G_{k} \hat{P}_{YY}^{k|k-1} G_{k}^{T},$$

**Corolário 6.1.5 (FKPSAdEsSimMinHom).** A utilização da  $\sigma$ -representação Simétrica Mínima Homogêna (Corolário 4.1.1) no FKPSAdEs resulta no Filtro de Kalman por Pontos Sigma Aditivo Escalado Simétrico Mínimo Homogêneo (FKPSAdEsSimMinHom) que tem o algoritmo abaixo. O FKPSAdEsSimMinHom com  $\alpha = 1$ , é equivalente ao FKUad (algoritmo 2.4.2).

**Algoritmo 6.1.9 (FKPSAdEsSimMinHom).** *Considere que o sistema* (6.1)-(6.2) *pode ser escrito da seguinte maneira* 

$$x_k = f\left(x_{k-1}, k\right) + q_k,$$

$$y_k = h\left(x_k, k\right) + r_k,$$

e suponha que no instante de tempo k = 0,

$$\hat{x}_0 = E\{x_0\} = \bar{x}_0, \ \hat{P}^0_{XX} = E\{(x_0 - \bar{x}_0)(x_0 - \bar{x}_0)^T\} = \bar{P}^0_{XX}$$

*O Filtro de Kalman por Pontos Sigma Aditivo Escalado Simétrico Mínimo Homogêneo* (*FKPSAdEsSimMinHom*) é constituído pela etapas de predição e correção da seguinte maneira:

## 1. Predição

- (a) Calcule os pesos e os pontos sigma a partir da σ-representação Simétrica Mínima Homogênea (Corolário 4.1.1):
  - *i. escolha um valor*  $w_{2n_a+1}$ .
  - ii. Calcule os pesos e pontos sigma

$$Q = \frac{1 - w_{2n+1}}{2n} I_n$$

$$E = \left[ \left( \sqrt{2Q} \right)^{-1} \sqrt{P_{XX}} - \left( \sqrt{2Q} \right)^{-1} \sqrt{P_{XX}} \quad 0_{n \times 1} \right],$$

$$W := \begin{bmatrix} w_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & w_{2n+1} \end{bmatrix} = \begin{bmatrix} Q & 0 & 0 \\ 0 & Q & 0 \\ 0 & 0 & w_{2n+1} \end{bmatrix},$$

$$\left[\begin{array}{ccc} \chi_1^{k-1} & \cdots & \chi_{2n+1}^{k-1} \end{array}\right] = E + \left[\bar{X}\right]_{1:2n+1}.$$

- (b) escolha  $\alpha \neq 0$ .
- (c) Faça a predição escalada dos pontos sigma escalada:

$$\chi_i^{k|k-1} = \frac{f\left(\bar{X} + \alpha\left(\chi_i^{k-1} - \bar{X}\right)\right) - f\left(\bar{X}\right)}{\alpha^2} + f\left(\bar{X}\right)$$

(d) Calcule a média e a matriz de covariância modificadas preditas:

$$\hat{x}_{k|k-1} = \sum_{i=1}^{2n+1} w_i \chi_i^{k|k-1},$$
$$\tilde{P}_{XX}^{k|k-1} = \alpha^2 \sum_{i=1}^{2n+1} w_i \left(\chi_i^{k|k-1} - \hat{x}_{k|k-1}\right) \left(\chi_i^{k|k-1} - \hat{x}_{k|k-1}\right)^T + Q_k.$$

### 2. Correção

(a) Faça a predição escalada dos pontos sigma da medida:

$$\gamma_i^{k|k-1} = \frac{h\left(\hat{x}_{k|k-1} + \alpha\left(\chi_i^{k-1} - \hat{x}_{k|k-1}\right)\right) - h\left(\hat{x}_{k|k-1}\right)}{\alpha^2} + h\left(\hat{x}_{k|k-1}\right)$$

(b) Calcule a média e a matriz de covariância modificadas da predição das medidas:

$$\hat{y}_{k|k-1} = \sum_{i=1}^{2n+1} w_i \gamma_i^{k|k-1},$$
$$\hat{P}_{YY}^{k|k-1} = \alpha^2 \sum_{i=1}^{2n+1} w_i \left(\gamma_i^{k|k-1} - \hat{y}_{k|k-1}\right) \left(\gamma_i^{k|k-1} - \hat{y}_{k|k-1}\right)^T + R_k.$$

(c) Calcule a covariância cruzada modificada:

$$\hat{P}_{XY}^{k|k-1} = \alpha \sum_{i=1}^{2n+1} w_i \left( \chi_i^{k|k-1} - \hat{x}_{k|k-1} \right) \left( \gamma_i^{k|k-1} - \hat{y}_{k|k-1} \right)^T$$

(d) Faça a correção das estimativas preditas

$$G_{k} = \hat{P}_{XY}^{k|k-1} \left( \hat{P}_{YY}^{k|k-1} \right)^{-1},$$
  

$$\hat{x}_{k} = \hat{x}_{k|k-1}^{x} + G_{k} \left( y_{k} - \hat{y}_{k|k-1} \right),$$
  

$$\hat{P}_{XX}^{k} = \hat{P}_{XX}^{k|k-1} - G_{k} \hat{P}_{YY}^{k|k-1} G_{k}^{T},$$

PROVA Colocamos aqui o algoritmo do FKUad para a comparação com o algoritmo FKSPadSim.

**Algoritmo 6.1.10 (FKUad).** *Considere que o sistema* (2.1)-(2.2) *pode ser escrito da seguinte maneira* 

$$x_k = f(x_{k-1}, k) + q_k, (6.8)$$

$$y_k = h\left(x_k, k\right) + r_k,\tag{6.9}$$

e suponha que no instante de tempo k = 0,

$$\hat{x}_0 = E\{x_0\} = \bar{x}_0, \ \hat{P}^0_{XX} = E\{(x_0 - \bar{x}_0)(x_0 - \bar{x}_0)^T\} = \bar{P}^0_{XX}.$$

*O Filtro de Kalman Unscented Aditivo (FKUad) é composto das etapas de predição e de correção da seguinte forma:* 

#### 1. Predição

- (a) Escolha um valor para  $w_0 < 1$ .
- (b) Para i = 1, ..., n, compute os pontos sigma aumentados  $\chi_{k-1}^{i,a}$  e seus pesos  $w_i$  assim:

$$\begin{split} \chi^{0}_{k-1} &= \hat{x}_{k-1}, \\ \chi^{i}_{k-1} &= \chi^{0}_{k-1} + \left[ \sqrt{\frac{n}{1 - w_{0}}} \hat{P}^{k-1}_{XX} \right]_{*i}, \\ \chi^{i+n}_{k-1} &= \chi^{0}_{k-1} + \left[ \sqrt{\frac{n}{1 - w_{0}}} \hat{P}^{k-1}_{XX} \right]_{*i}, \\ w_{i} &= w_{i+n} = \frac{1 - w_{0}}{2n}, \end{split}$$

(c) Faça a transformação dos pontos sigma:

$$\chi_{k|k-1}^{i} = f\left(\chi_{k-1}^{i}, k\right).$$

(d) Calcule as predições da estimativa e da matriz de covariância:

$$\hat{x}_{k|k-1} = \sum_{i=0}^{2n} w_i \chi^i_{k|k-1},$$
$$\hat{P}^{k|k-1}_{XX} = \sum_{i=0}^{2n} w_i \left(\chi^i_{k|k-1} - \hat{x}_{k|k-1}\right) \left(\chi^i_{k|k-1} - \hat{x}_{k|k-1}\right)^T + Q_k.$$

# 2. Correção

(a) Calcule os ponto sigma de predição da medição  $\gamma^i_{k|k-1}$ :

$$\gamma_{k|k-1}^{i} = h\left(\chi_{k-1}^{i}, k\right).$$

(b) Calcule a predição da medição  $\hat{y}_{k|k-1}$  e da matriz de covariância da medição  $\hat{P}_{YY}^{k|k-1}$  preditas :

$$\hat{y}_{k|k-1} = \sum_{i=0}^{2n} w_i \gamma_{k|k-1}^i,$$
$$\hat{P}_{YY}^{k|k-1} = \sum_{i=0}^{2n} w_i \left(\gamma_{k|k-1}^i - \hat{y}_{k|k-1}\right) \left(\gamma_{k|k-1}^i - \hat{y}_{k|k-1}\right)^T + R_k.$$

(c) Calcule a matriz de correlação cruzada predita  $\hat{P}_{XY}^{k|k-1}$ :

$$\hat{P}_{XY}^{k|k-1} = \sum_{i=0}^{2n} w_i \left( \chi_{k|k-1}^{i,x} - \hat{x}_{k|k-1} \right) \left( \gamma_{k|k-1}^i - \hat{y}_{k|k-1} \right)^T.$$

(d) Faça a correção das estimativas preditas

$$G_{k} = \hat{P}_{XY}^{k|k-1} \left( \hat{P}_{YY}^{k|k-1} \right)^{-1},$$
  

$$\hat{x}_{k} = \hat{x}_{k|k-1} + G_{k} \left( y_{k} - \hat{y}_{k|k-1} \right),$$
  

$$\hat{P}_{XX}^{k} = \hat{P}_{XX}^{k|k-1} - G_{k} \hat{P}_{YY}^{k|k-1} G_{k}^{T}.$$

Os dois corolários acima mostram que os Filtros de Kalman unscented são casos particulares dos Filtros de Kalman por pontos sigma. Colocamos agora, os Filtros para a sigma representação mínima geral. Faremos os casos escalados, pois vimos que os não escalados são casos a particulares desses. Não evidenciaremos nenhum outro Filtro fruto uma outras  $\sigma$ -representações por se tornar tarefa trivial.

**Corolário 6.1.6 (FKPSAuEsMin).** A utilização da  $\sigma$ -representação Mínima (Teorema 4.2.2) no FKPSAuEs resulta no Filtro de Kalman por Pontos Sigma Aumentado Escalado Mínimo (FKPSAuEsMin) que tem o algoritmo abaixo. O FKPSAuEsMin com  $\alpha = 1$  tem o nome de Filtro de Kalman por Pontos Sigma Aumentado Mínimo (FKPSauMin).

**Algoritmo 6.1.11 (FKPSAuEsMin).** Considere o sistema (2.1)-(2.2) e suponha que no instante de tempo k = 0,

$$\hat{x}_0 = E\{x_0\} = \bar{x}_0, \ \hat{P}^0_{XX} = E\{(x_0 - \bar{x}_0)(x_0 - \bar{x}_0)^T\} = \bar{P}^0_{XX}.$$

Considere, ainda, o seguinte vetor de estado aumentado  $x_k^a$  e suas respectivas média  $\bar{x}_k^a$  e matriz de covariância aumentada  $P_{XX}^{k,a}$ 

$$\begin{aligned} x_k^a &:= \left[ x_k^T, q_k^T, r_k^T \right]^T, \\ \bar{x}_k^a &:= \left[ \bar{x}_k^T, 0, 0 \right]^T, \\ P_{XX}^{k,a} &:= \left[ \begin{array}{cc} P_{XX}^k & 0 & 0 \\ 0 & Q_k & 0 \\ 0 & 0 & R_k \end{array} \right], \\ n_a &= n + r + q. \end{aligned}$$

*O Filtro de Kalman por Pontos Sigma Aumentado Escalado Mínimo* (*FKPSAuEsMin*) *é* constituído pela etapas de predição e correção da seguinte maneira:

#### 1. Predição

(a) Calcule os pesos e os pontos sigma a partir da  $\sigma$ -representação Mínima (Teorema 4.2.2):
*i.* escolha  $v \in \Re^{n_a}$  tal que

$$v = \left[ \begin{array}{c} v_1 \\ \vdots \\ v_{n_a} \end{array} \right], \quad v_i \neq 0$$

# ii. Calcule os pesos e pontos sigma

$$w_{n_{a}+1} = \frac{1}{(1 + \sum_{i=1}^{n} v_{i}^{2})},$$
  

$$|W|^{-\frac{1}{2}} w = \sqrt{w_{n_{a}+1}}v,$$
  

$$S := sign(W),$$
  

$$E := \sqrt{P_{XX}} \left(S + vv^{T}\right)^{-\frac{1}{2}} |W|^{-\frac{1}{2}},$$
  

$$p := -\frac{1}{w_{n_{a}+1}} Ew,$$
  

$$\left[\chi_{1}^{k-1,x} \cdots \chi_{n_{a}+1}^{k-1,x}\right] := \left[E \ p\right] + \left[\bar{X}\right]_{1 \times (n_{a}+1)},$$

em que

.

$$w = \left[ \begin{array}{c} w_1 \\ \vdots \\ w_{n_a} \end{array} \right],$$

е

$$|W|^{-\frac{1}{2}} = \begin{bmatrix} \sqrt{|w_1|} & 0 & 0\\ 0 & \ddots & 0\\ 0 & 0 & \sqrt{|w_{n_a}|} \end{bmatrix}.$$

- (b) Escolha  $\alpha \neq 0$ .
- (c) Faça a predição escalada dos pontos sigma:

$$\chi_i^{k|k-1,a} = \chi_i^{k-1,a},$$

$$\chi_i^{k|k-1,x} = \frac{f\left(\bar{X} + \alpha\left(\chi_i^{k-1,x} - \bar{X}\right)\right) - f\left(\bar{X}\right)}{\alpha^2} + f\left(\bar{X}\right).$$

em que

$$\chi_{2n+1}^{k} = \begin{bmatrix} \chi_{2n_{a}+1}^{k,x} \\ \chi_{2n_{a}+1}^{k,w} \\ \chi_{2n_{a}+1}^{k,v} \\ \chi_{2n_{a}+1}^{k,v} \end{bmatrix}.$$

(d) Calcule a média e a matriz de covariância modificadas preditas:

$$\hat{x}_{k|k-1}^{a} = \sum_{i=1}^{n_{a}+1} w_{i} \chi_{i}^{k|k-1,x},$$
$$\tilde{P}_{XX}^{k|k-1,a} = \alpha^{2} \sum_{i=1}^{n_{a}+1} w_{i} \left( \chi_{i}^{k|k-1,x} - \hat{x}_{k|k-1}^{a} \right) \left( \chi_{i}^{k|k-1,x} - \hat{x}_{k|k-1}^{a} \right)^{T}.$$

# 2. Correção

(a) Faça a predição escalada dos pontos sigma da medida:

$$\gamma_i^{k|k-1} = \frac{h\left(\hat{x}_{k|k-1}^x + \alpha\left(\chi_i^{k-1,x} - \hat{x}_{k|k-1}^x\right)\right) - h\left(\hat{x}_{k|k-1}^x\right)}{\alpha^2} + h\left(\hat{x}_{k|k-1}^x\right).$$

(b) Calcule a média e a matriz de covariância modificadas da predição das medidas:

$$\hat{y}_{k|k-1} = \sum_{i=1}^{n_a+1} w_i \gamma_i^{k|k-1},$$
$$\hat{P}_{YY}^{k|k-1} = \alpha^2 \sum_{i=1}^{n_a+1} w_i \left(\gamma_i^{k|k-1} - \hat{y}_{k|k-1}\right) \left(\gamma_i^{k|k-1} - \hat{y}_{k|k-1}\right)^T.$$

(c) Calcule a covariância cruzada modificada:

$$\hat{P}_{XY}^{k|k-1} = \alpha \sum_{i=1}^{n_a+1} w_i \left( \chi_i^{k|k-1,x} - \hat{x}_{k|k-1}^x \right) \left( \gamma_i^{k|k-1} - \hat{y}_{k|k-1} \right)^T$$

em que

$$\hat{x}_{k|k-1}^{a} = \begin{bmatrix} \hat{x}_{k|k-1}^{x} \\ \hat{x}_{k|k-1}^{w} \\ \hat{x}_{k|k-1}^{v} \end{bmatrix}$$

(d) Faça a correção das estimativas preditas

$$G_{k} = \hat{P}_{XY}^{k|k-1} \left( \hat{P}_{YY}^{k|k-1} \right)^{-1},$$
$$\hat{x}_{k} = \hat{x}_{k|k-1}^{x} + G_{k} \left( y_{k} - \hat{y}_{k|k-1} \right),$$
$$\hat{P}_{XX}^{k} = \hat{P}_{XX}^{k|k-1,x} - G_{k} \hat{P}_{YY}^{k|k-1} G_{k}^{T},$$

em que

$$P_{XX}^{k|k-1,a} = \begin{bmatrix} P_{XX}^{k|k-1,x} & 0 & 0\\ 0 & P_{XX}^{k|k-1,w} & 0\\ 0 & 0 & P_{XX}^{k|k-1,v} \end{bmatrix}.$$

.

**Corolário 6.1.7 (FKPSAdEsMin).** A utilização da  $\sigma$ -representação Mínima (Teorema 4.2.2) no FKPSAdEs resulta no Filtro de Kalman por Pontos Sigma Aditivo Escalado Mínimo (FKPSAdEsMin) que tem o algoritmo abaixo. O FKPSAdEsMin com  $\alpha = 1$  recebe o nome de Filtro de Kalman por Pontos Sigma Aditivo Mínimo (FKPSadMin).

**Algoritmo 6.1.12 (FKPSAdEsMin).** *Considere que o sistema* (6.1)-(6.2) *pode ser escrito da seguinte maneira* 

$$x_k = f(x_{k-1}, k) + q_k,$$
$$y_k = h(x_k, k) + r_k,$$

e suponha que no instante de tempo k = 0,

$$\hat{x}_0 = E\{x_0\} = \bar{x}_0, \ \hat{P}^0_{XX} = E\{(x_0 - \bar{x}_0)(x_0 - \bar{x}_0)^T\} = \bar{P}^0_{XX}.$$

*O Filtro de Kalman por Pontos Sigma Aditivo Escalado Mínimo* (*FKPSAdEsMin*) é constituído pela etapas de predição e correção da seguinte maneira:

#### 1. Predição

- (a) Calcule os pesos e os pontos sigma a partir da  $\sigma$ -representação Mínima (Teorema 4.2.2):
  - *i. escolha*  $v \in \Re^n$  *tal que*

$$v = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}, \quad v_i \neq 0$$

(b) Calcule os pesos e pontos sigma

$$w_{n+1} = \frac{1}{(1 + \sum_{i=1}^{n} v_i^2)},$$
  

$$|W|^{-\frac{1}{2}} w = \sqrt{w_{n+1}}v,$$
  

$$S := sign(W),$$
  

$$E := \sqrt{P_{XX}} (S + vv^T)^{-\frac{1}{2}} |W|^{-\frac{1}{2}},$$
  

$$p := -\frac{1}{w_{n+1}} Ew,$$
  

$$\left[\chi_1^{k-1} \cdots \chi_{n+1}^{k-1}\right] := \left[E \ p\right] + \left[\bar{X}\right]_{1 \times (n+1)},$$

em que

$$w = \left[ \begin{array}{c} w_1 \\ \vdots \\ w_n \end{array} \right],$$

$$|W|^{-\frac{1}{2}} = \begin{bmatrix} \sqrt{|w_1|} & 0 & 0\\ 0 & \ddots & 0\\ 0 & 0 & \sqrt{|w_n|} \end{bmatrix}.$$

- (c) escolha  $\alpha \neq 0$ .
- (d) Faça a predição escalada dos pontos sigma escalada:

$$\chi_i^{k|k-1} = \frac{f\left(\bar{X} + \alpha\left(\chi_i^{k-1} - \bar{X}\right)\right) - f\left(\bar{X}\right)}{\alpha^2} + f\left(\bar{X}\right)$$

(e) Calcule a média e a matriz de covariância modificada preditas:

$$\hat{x}_{k|k-1} = \sum_{i=1}^{n+1} w_i \chi_i^{k|k-1,x},$$
$$\tilde{P}_{XX}^{k|k-1} = \alpha^2 \sum_{i=1}^{n+1} w_i \left( \chi_i^{k|k-1,x} - \hat{x}_{k|k-1} \right) \left( \chi_i^{k|k-1} - \hat{x}_{k|k-1} \right)^T + Q_k.$$

### 2. Correção

(a) Faça a predição escalada dos pontos sigma da medida:

$$\gamma_i^{k|k-1} = \frac{h\left(\hat{x}_{k|k-1} + \alpha\left(\chi_i^{k-1} - \hat{x}_{k|k-1}\right)\right) - h\left(\hat{x}_{k|k-1}\right)}{\alpha^2} + h\left(\hat{x}_{k|k-1}\right)$$

(b) Calcule a média e a matriz de covariância modificada da predição das medidas:

$$\hat{y}_{k|k-1} = \sum_{i=1}^{n+1} w_i \gamma_i^{k|k-1},$$
$$\hat{P}_{YY}^{k|k-1} = \alpha^2 \sum_{i=1}^{n+1} w_i \left(\gamma_i^{k|k-1} - \hat{y}_{k|k-1}\right) \left(\gamma_i^{k|k-1} - \hat{y}_{k|k-1}\right)^T + R_k.$$

(c) Calcule a covariância cruzada modificada:

$$\hat{P}_{XY}^{k|k-1} = \alpha \sum_{i=1}^{n+1} w_i \left( \chi_i^{k|k-1} - \hat{x}_{k|k-1} \right) \left( \gamma_i^{k|k-1} - \hat{y}_{k|k-1} \right)^T$$

(d) Faça a correção das estimativas preditas

$$G_{k} = \hat{P}_{XY}^{k|k-1} \left( \hat{P}_{YY}^{k|k-1} \right)^{-1},$$
  

$$\hat{x}_{k} = \hat{x}_{k|k-1}^{x} + G_{k} \left( y_{k} - \hat{y}_{k|k-1} \right),$$
  

$$\hat{P}_{XX}^{k} = \hat{P}_{XX}^{k|k-1} - G_{k} \hat{P}_{YY}^{k|k-1} G_{k}^{T},$$

**Corolário 6.1.8 (FKPSAuEsMinPar).** A utilização da  $\sigma$ -representação Mínima Particular (Teorema 4.2.1) no FKPSAuEs resulta no Filtro de Kalman por Pontos Sigma Aumentado Escalado Mínimo Particular (FKPSAuEsMinPar) que tem o algoritmo abaixo. O FKP-SAuEsMinPar com  $\alpha = 1$  recebe o nome de Filtro de Kalman por Pontos Sigma Aumentado Mínimo Particular (FKPSauMinPar).

**Algoritmo 6.1.13 (FKPSAuEsMinPar).** Considere o sistema (2.1)-(2.2) e suponha que no instante de tempo k = 0,

$$\hat{x}_0 = E\{x_0\} = \bar{x}_0, \ \hat{P}^0_{XX} = E\{(x_0 - \bar{x}_0)(x_0 - \bar{x}_0)^T\} = \bar{P}^0_{XX}.$$

Considere, ainda, o seguinte vetor de estado aumentado  $x_k^a$  e suas respectivas média  $\bar{x}_k^a$  e matriz de covariância aumentada  $P_{XX}^{k,a}$ 

$$\begin{aligned} x_k^a &:= \begin{bmatrix} x_k^T, q_k^T, r_k^T \end{bmatrix}^T, \\ \bar{x}_k^a &:= \begin{bmatrix} \bar{x}_k^T, 0, 0 \end{bmatrix}^T, \\ P_{XX}^{k,a} &:= \begin{bmatrix} P_{XX}^k & 0 & 0 \\ 0 & Q_k & 0 \\ 0 & 0 & R_k \end{bmatrix}, \\ n_a &= n + r + q. \end{aligned}$$

*O Filtro de Kalman por Pontos Sigma Aumentado Escalado Mínimo Particular* (*FKP-SAuEsMinPar*) é constituído pela etapas de predição e correção da seguinte maneira:

#### 1. Predição

- (a) Calcule os pesos e os pontos sigma a partir da  $\sigma$ -representação Mínima Particular (Teorema 4.2.1):
  - *i.* escolha  $0 < w_{n_a+1} < 1$ .
  - ii. Determine os seguintes elementos:

$$\alpha = \sqrt{\frac{1 - w_{n_a+1}}{n}},$$
$$C = \sqrt{I_{n_a} - \alpha^2 [1]_{n_a \times n_a}},$$

Determine os pesos e a matriz Q:

$$w_{i} = \left(C^{-1}w_{n_{a}+1}\alpha^{2}[1]_{n_{a}\times n_{a}}\left(C^{T}\right)^{-1}\right)_{ii}$$
$$Q = \left[\begin{array}{cc}w_{1} & 0 & 0\\ 0 & \ddots & 0\\ 0 & 0 & w_{n_{a}}\end{array}\right].$$

iii. Determine os pontos sigma:

$$\left[\begin{array}{ccc}\chi_1^{k-1,x} & \cdots & \chi_{n_a+1}^{k-1,x}\end{array}\right] = \left[\begin{array}{ccc}\sqrt{P_{XX}}C\left(\sqrt{Q_1}\right)^{-1} & -\alpha\sqrt{P_{XX}}\frac{[1]_{n\times 1}}{\sqrt{w_{n_a+1}}}\end{array}\right] + \left[\bar{X}\right]_{1\times n_a+1}$$

- (b) Escolha  $\alpha \neq 0$ .
- (c) Faça a predição escalada dos pontos sigma:

$$\chi_i^{k|k-1,a} = \chi_i^{k-1,a},$$

$$\chi_i^{k|k-1,x} = \frac{f\left(\bar{X} + \alpha\left(\chi_i^{k-1,x} - \bar{X}\right)\right) - f\left(\bar{X}\right)}{\alpha^2} + f\left(\bar{X}\right).$$

em que

$$\chi_{2n+1}^{k} = \begin{bmatrix} \chi_{2n_{a}+1}^{k,x} \\ \chi_{2n_{a}+1}^{k,w} \\ \chi_{2n_{a}+1}^{k,v} \end{bmatrix}.$$

(d) Calcule a média e a matriz de covariância modificada preditas:

$$\hat{x}_{k|k-1}^{a} = \sum_{i=1}^{n_{a}+1} w_{i} \chi_{i}^{k|k-1,x},$$
$$\tilde{P}_{XX}^{k|k-1,a} = \alpha^{2} \sum_{i=1}^{n_{a}+1} w_{i} \left( \chi_{i}^{k|k-1,x} - \hat{x}_{k|k-1}^{a} \right) \left( \chi_{i}^{k|k-1,x} - \hat{x}_{k|k-1}^{a} \right)^{T}.$$

## 2. Correção

(a) Faça a predição escalada dos pontos sigma da medida:

$$\gamma_i^{k|k-1} = \frac{h\left(\hat{x}_{k|k-1}^x + \alpha\left(\chi_i^{k-1,x} - \hat{x}_{k|k-1}^x\right)\right) - h\left(\hat{x}_{k|k-1}^x\right)}{\alpha^2} + h\left(\hat{x}_{k|k-1}^x\right).$$

(b) Calcule a média e a matriz de covariância modificada da predição das medidas:

$$\hat{y}_{k|k-1} = \sum_{i=1}^{n_a+1} w_i \gamma_i^{k|k-1},$$
$$\hat{P}_{YY}^{k|k-1} = \alpha^2 \sum_{i=1}^{n_a+1} w_i \left(\gamma_i^{k|k-1} - \hat{y}_{k|k-1}\right) \left(\gamma_i^{k|k-1} - \hat{y}_{k|k-1}\right)^T.$$

(c) Calcule a covariância cruzada modificada:

$$\hat{P}_{XY}^{k|k-1} = \alpha \sum_{i=1}^{n_a+1} w_i \left( \chi_i^{k|k-1,x} - \hat{x}_{k|k-1}^x \right) \left( \gamma_i^{k|k-1} - \hat{y}_{k|k-1} \right)^T$$

em que

$$\hat{x}^{a}_{k|k-1} = \begin{bmatrix} \hat{x}^{x}_{k|k-1} \\ \hat{x}^{w}_{k|k-1} \\ \hat{x}^{v}_{k|k-1} \end{bmatrix}.$$

(d) Faça a correção das estimativas preditas

$$G_{k} = \hat{P}_{XY}^{k|k-1} \left( \hat{P}_{YY}^{k|k-1} \right)^{-1},$$
$$\hat{x}_{k} = \hat{x}_{k|k-1}^{x} + G_{k} \left( y_{k} - \hat{y}_{k|k-1} \right),$$
$$\hat{P}_{XX}^{k} = \hat{P}_{XX}^{k|k-1,x} - G_{k} \hat{P}_{YY}^{k|k-1} G_{k}^{T},$$

em que

$$P_{XX}^{k|k-1,a} = \begin{bmatrix} P_{XX}^{k|k-1,x} & 0 & 0\\ 0 & P_{XX}^{k|k-1,w} & 0\\ 0 & 0 & P_{XX}^{k|k-1,v} \end{bmatrix}.$$

**Corolário 6.1.9 (FKPSAdEsMinPar).** A utilização da  $\sigma$ -representação Mínima Particular (Teorema 4.2.1) no FKPSAdEs resulta no Filtro de Kalman por Pontos Sigma Aditivo Escalado Mínimo Particular (FKPSAdEsMinPar) que tem o algoritmo abaixo. O FKPSAdEsMin-Par com  $\alpha = 1$  recebe o nome de Filtro de Kalman por Pontos Sigma Aditivo Mínimo Particular (FKPSadMinPar).

**Algoritmo 6.1.14 (FKPSAdEsMinPar).** *Considere que o sistema* (6.1)-(6.2) *pode ser escrito da seguinte maneira* 

$$x_{k} = f(x_{k-1}, k) + q_{k},$$
$$y_{k} = h(x_{k}, k) + r_{k},$$

e suponha que no instante de tempo k = 0,

$$\hat{x}_0 = E\{x_0\} = \bar{x}_0, \ \hat{P}^0_{XX} = E\{(x_0 - \bar{x}_0)(x_0 - \bar{x}_0)^T\} = \bar{P}^0_{XX}.$$

*O Filtro de Kalman por Pontos Sigma Aditivo Escalado Mínimo Particular* (*FKPSAdEsMin-Par*) é constituído pela etapas de predição e correção da seguinte maneira:

#### 1. Predição

- (a) Calcule os pesos e os pontos sigma a partir da  $\sigma$ -representação Mínima Particular (Teorema 4.2.1):
  - *i.* escolha  $0 < w_{n+1} < 1$ .

ii. Determine os seguintes elementos:

$$\alpha = \sqrt{\frac{1 - w_{n+1}}{n}},$$
$$C = \sqrt{I_n - \alpha^2 [1]_{n \times n}},$$

Determine os pesos e a matriz Q:

$$w_{i} = \left(C^{-1}w_{n+1}\alpha^{2}[1]_{n \times n}\left(C^{T}\right)^{-1}\right)_{ii}$$
$$Q = \begin{bmatrix}w_{1} & 0 & 0\\ 0 & \ddots & 0\\ 0 & 0 & w_{n}\end{bmatrix}.$$

iii. Determine os pontos sigma:

$$\left[\begin{array}{ccc}\chi_1^{k-1} & \cdots & \chi_{n+1}^{k-1}\end{array}\right] = \left[\begin{array}{ccc}\sqrt{P_{XX}}C\left(\sqrt{Q_1}\right)^{-1} & -\alpha\sqrt{P_{XX}}\frac{[1]_{n\times 1}}{\sqrt{w_{n+1}}}\end{array}\right] + \left[\bar{X}\right]_{1\times n+1}.$$

- (b) escolha  $\alpha \neq 0$ .
- (c) Faça a predição escalada dos pontos sigma escalada:

$$\chi_i^{k|k-1} = \frac{f\left(\bar{X} + \alpha\left(\chi_i^{k-1} - \bar{X}\right)\right) - f\left(\bar{X}\right)}{\alpha^2} + f\left(\bar{X}\right)$$

(d) Calcule a média e a matriz de covariância modificada preditas:

$$\hat{x}_{k|k-1} = \sum_{i=1}^{n+1} w_i \chi_i^{k|k-1,x},$$
$$\tilde{P}_{XX}^{k|k-1} = \alpha^2 \sum_{i=1}^{n+1} w_i \left( \chi_i^{k|k-1,x} - \hat{x}_{k|k-1} \right) \left( \chi_i^{k|k-1} - \hat{x}_{k|k-1} \right)^T + Q_k.$$

# 2. Correção

(a) Faça a predição escalada dos pontos sigma da medida:

$$\gamma_i^{k|k-1} = \frac{h\left(\hat{x}_{k|k-1} + \alpha\left(\chi_i^{k-1} - \hat{x}_{k|k-1}\right)\right) - h\left(\hat{x}_{k|k-1}\right)}{\alpha^2} + h\left(\hat{x}_{k|k-1}\right)$$

(b) Calcule a média e a matriz de covariância modificada da predição das medidas:

$$\hat{y}_{k|k-1} = \sum_{i=1}^{n+1} w_i \gamma_i^{k|k-1},$$
$$\hat{P}_{YY}^{k|k-1} = \alpha^2 \sum_{i=1}^{n+1} w_i \left(\gamma_i^{k|k-1} - \hat{y}_{k|k-1}\right) \left(\gamma_i^{k|k-1} - \hat{y}_{k|k-1}\right)^T + R_k.$$

(c) Calcule a covariância cruzada modificada:

$$\hat{P}_{XY}^{k|k-1} = \alpha \sum_{i=1}^{n+1} w_i \left( \chi_i^{k|k-1} - \hat{x}_{k|k-1} \right) \left( \gamma_i^{k|k-1} - \hat{y}_{k|k-1} \right)^T$$

(d) Faça a correção das estimativas preditas

$$G_{k} = \hat{P}_{XY}^{k|k-1} \left( \hat{P}_{YY}^{k|k-1} \right)^{-1},$$
  

$$\hat{x}_{k} = \hat{x}_{k|k-1}^{x} + G_{k} \left( y_{k} - \hat{y}_{k|k-1} \right),$$
  

$$\hat{P}_{XX}^{k} = \hat{P}_{XX}^{k|k-1} - G_{k} \hat{P}_{YY}^{k|k-1} G_{k}^{T},$$

#### 6.2 FILTRAGEM RECURSIVA RAIZ QUADRADA POR PONTOS SIGMA

Na seção 2.4.3 mostramos o Filtro de Kalman Unscented Raiz Quadrada que foi proposto por Merwe em [86]. No entanto, esse filtro foi proposto apenas para a transformada Unscented Simétrica de Julier. Queremos, aqui, fazer uma extensão desse filtro de modo que seja capaz de se utilizar de qualquer sigma-representação.

Para isso, introduzimos dois operadores  $qr \{\bullet\}$  (Lema 2.4.8) e *atuachol*  $\{\bullet\}$ (Definição 2.4.1). Além disso, também precisaremos da seguinte definição:

**Definição 6.2.1.** Seja a  $\sigma$ -representação  $\{\chi_i, w_i | \chi_i \in \Re^n, w_i \in \Re, i = 1, ..., N\}$ ,

$$\begin{bmatrix} \beta \left( \chi_i, w_i \right) \end{bmatrix}_{1 \times N}, \\ c(w_i) \end{bmatrix}$$

tal que

$$\beta : (\Re^n \times \Re) \longmapsto \Re^n,$$
$$\chi_i, w_i \longmapsto \beta \left(\chi_i, w_i\right),$$

representa uma matriz cujas colunas são formadas, na ordem crescente de índices, pelos vetores  $\beta_i$  cujos pesos respectivos satisfazem à  $c(w_i)$ .

Portanto,  $[\chi_i]_{1\times N}$  é uma matriz formada pelos pontos sigma, na crescente de índices,  $w_i \ge 0$ cujos pesos atendem à condição  $w_i \ge 0$ .

Por último, precisaremos definir, também, a  $\sigma$ -representação-raiz-quadrada. Faremos essa definição como uma extensão da  $\sigma$ -representação.

**Definição 6.2.2** ( $\sigma$ -raiz-representação). Seja { $\chi_i, w_i | \chi_i \in \Re^n, w_i \in \Re, i = 1, ..., N$ } uma  $\sigma$ -representação de  $X \sim (\bar{X}, P_{XX})$ , se { $\chi_i, w_i$ } puder ser obtida a partir de  $\bar{X}$  e de  $\sqrt{P_{XX}}$ ,

 $\{\chi_i, w_i\}$  é uma  $\sigma$ -raiz-representação. O operador SRQ tal que

$$\{\chi_i, w_i\} = SRQ\left(\bar{X}, \sqrt{P_{XX}}\right),\$$

representa que  $\{\chi_i, w_i\}$  é uma  $\sigma$ -raiz-representação de uma variável aleatória (qualquer) de média  $\bar{X}$  e matriz raiz quadra da matriz de covariância  $\sqrt{P_{XX}}$ .

Com essas definições, já podemos propor o nosso Filtro de Kalman por Pontos Sigma Raiz Quadrada.

**Algoritmo 6.2.1 (FKPSRQ).** Considere o sistema (2.1)-(2.2) e suponha que no instante de tempo k = 0,

$$\hat{x}_0 = E\{x_0\} = \bar{x}_0, \ \sqrt{\hat{P}_{XX}^0} = \sqrt{E\{(x_0 - \bar{x}_0)(x_0 - \bar{x}_0)^T\}} = \sqrt{\bar{P}_{XX}^0}$$

*O Filtro de Kalman por Pontos Sigma Raiz Quadrada* (*FKPSRQ*) é constituído pela etapas de predição e correção da seguinte maneira:

#### 1. Predição

(a) Obtenha os pontos sigma e seus pesos e a partir de umaoraiz-representação:

$$\left\{\chi_i^{k-1}, w_i\right\} = SRQ\left(\hat{x}_{k-1}, \sqrt{\hat{P}_{XX}^{k-1}}\right),$$

(b) Faça a predição dos pontos sigma:

$$\left[\begin{array}{ccc}\chi_1^{k|k-1} & \cdots & \chi_N^{k|k-1}\end{array}\right] = \left[\begin{array}{ccc}f\left(\chi_1^{k|k-1}\right) & \cdots & f\left(\chi_N^{k|k-1}\right)\end{array}\right]$$

(c) Calcule a média predita:

i.

$$\hat{x}_{k|k-1} = \sum_{i=1}^{N} w_i \chi_i^{k|k-1}$$

(d) Calcule a matriz raiz quadrada da matriz de covariância predita:

$$\sqrt{\hat{P}_{XX}^{k|k-1}} = qr \left\{ \left[ \left[ \sqrt{w_i} \left( \chi_i^{k|k-1} - \hat{x}_{k|k-1} \right) \right]_{1 \times N} \sqrt{Q_k} \right] \right\}.$$

$$w_i \ge 0$$

*ii.* para cada i = 1, ..., N :

$$\chi_i^{k|k-1,*} = \left[\chi_i^{k|k-1}\right]_{i\times i}$$
$$w_i^* = \left[w_i\right]_{i\times i}$$
$$w_i < 0$$

$$\sqrt{\hat{P}_{XX}^{k|k-1}} = atuachol\left\{\sqrt{\hat{P}_{XX}^{k|k-1}}, \chi_i^{k|k-1,*}, w_i^*\right\}.$$

# 2. Correção

i.

(a) Faça a predição da medição dos pontos sigma:

$$\left[ \gamma_1^{k|k-1} \quad \cdots \quad \gamma_N^{k|k-1} \right] = \left[ h\left(\chi_1^{k|k-1}\right) \quad \cdots \quad h\left(\chi_N^{k|k-1}\right) \right].$$

(b) Calcule a média da predição da mediação:

$$\hat{y}_{k|k-1} = \sum_{i=1}^{N} w_i \gamma_i^{k|k-1}.$$

(c) Calcule a matriz raiz quadrada da matriz de covariância predita da medição:

$$\sqrt{\hat{P}_{YY}^{k|k-1}} = qr \left\{ \left[ \left[ \sqrt{w_i} \left( \gamma_i^{k|k-1} - \hat{y}_{k|k-1} \right) \right]_{1 \times N} \quad \sqrt{R_k} \right] \right\}.$$

ii. para cada i = 1, ..., N :

$$\begin{split} \gamma_i^{k|k-1,*} &= \left[\gamma_i^{k|k-1}\right]_{i \times i}, \\ w_i^* &= \left[w_i\right]_{i \times i}, \\ w_i^* &= \left[w_i\right]_{i \times i}, \\ w_i &< 0 \end{split}$$
$$\sqrt{\hat{P}_{YY}^{k|k-1}} &= atuachol\left\{\sqrt{\hat{P}_{YY}^{k|k-1}}, \gamma_i^{k|k-1,*}, w_i^*\right\}. \end{split}$$

(d) Calcule a matriz de correlações cruzadas:

$$\hat{P}_{XY}^{k|k-1} = \sum_{i=1}^{N} w_i \left( \chi_i^{k|k-1} - \hat{x}_{k|k-1} \right) \left( \gamma_i^{k|k-1} - \hat{y}_{k|k-1} \right)^T.$$

- (e) Faça a correção das estimativas preditas
  - *i.* Calcule os seguintes termo:

$$G_{k} = \hat{P}_{XY}^{k|k-1} \left( \sqrt{\hat{P}_{YY}^{k|k-1}} \right)^{-T} \left( \sqrt{\hat{P}_{YY}^{k|k-1}} \right)^{-1},$$
$$U = G_{k} \sqrt{\hat{P}_{YY}^{k|k-1}}.$$

ii. Faça a correção da média

$$\hat{x}_k = \hat{x}_{k|k-1} + G_k \left( y_k - \hat{y}_{k|k-1} \right).$$

iii. Faça a seguinte igualdade:

$$\sqrt{\hat{P}_{XX}^k} = \sqrt{\hat{P}_{XX}^{k|k-1}}.$$

*iv. Para cada* i = 1, ..., n :

$$\sqrt{\hat{P}_{XX}^k} = atuachol\left\{\sqrt{\hat{P}_{XX}^k}, [U]_{*i}, -1\right\}.$$

Essa é a forma mais geral do filtro raiz quadrada que quiséramos expor. Agora, vamos obter sua forma para as  $\sigma$ -representações deste trabalho.

**Corolário 6.2.1 (FKPSRQSimMin).** Seja  $X \in \Re^n$  uma variável aleatória de média  $\overline{X}$  e matriz raiz quadrada da matriz de covariância  $\sqrt{P_{XX}} = \sqrt{E\left\{\left(X - \overline{X}\right)\left(X - \overline{X}\right)^T\right\}}$ . A utilização do da  $\sigma$ -representação Simétrica Mínima (Corolário 4.1.1) no FKPSRQ resulta no Filtro de Kalman por Pontos Sigma Raiz Quadrada Simétrico Mínimo (FKPSRQSimMin), que tem o algoritmo abaixo.

**Algoritmo 6.2.2 (FKPSRQSimMin).** Considere o sistema (2.1)-(2.2) e suponha que no instante de tempo k = 0,

$$\hat{x}_0 = E\{x_0\} = \bar{x}_0, \ \sqrt{\hat{P}_{XX}^0} = \sqrt{E\{(x_0 - \bar{x}_0)(x_0 - \bar{x}_0)^T\}} = \sqrt{\bar{P}_{XX}^0}$$

*O Filtro de Kalman por Pontos Sigma Raiz Quadrada Simétrico Mínimo* (*FKPSRQSim-Min*) *é constituído pela etapas de predição e correção da seguinte maneira:* 

### 1. Predição

- (a) Calcule os pesos e os pontos sigma a partir da  $\sigma$ -representação Simétrica Mínima (Teorema 4.1.1):
  - *i.* Calcule valores para  $w_i$ , i = 1, ..., 2n + 1 tal que

$$w_i > 0, i = 1, \dots, 2n,$$
  
 $w_{i+n} = w_i, i = 1, \dots, n+1,$   
 $\sum_{i=1}^{n+1} w_i = 1.$ 

ii. Calcule os pontos sigma:

$$Q = \left[ \begin{array}{rrrr} w_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & w_n \end{array} \right],$$

$$E = \begin{bmatrix} (\sqrt{2Q})^{-1} \sqrt{P_{XX}} & -(\sqrt{2Q})^{-1} \sqrt{P_{XX}} & 0_{n \times 1} \end{bmatrix},$$
$$W := \begin{bmatrix} w_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & w_{2n+1} \end{bmatrix} = \begin{bmatrix} Q & 0 & 0 \\ 0 & Q & 0 \\ 0 & 0 & w_{2n+1} \end{bmatrix},$$

$$\left[\begin{array}{ccc} \chi_1^{k-1} & \cdots & \chi_{2n+1}^{k-1} \end{array}\right] = E + \left[\bar{X}\right]_{1:2n+1}.$$

(b) Faça a predição dos pontos sigma:

$$\left[\begin{array}{ccc}\chi_1^{k|k-1} & \cdots & \chi_{2n+1}^{k|k-1}\end{array}\right] = \left[\begin{array}{ccc}f\left(\chi_1^{k|k-1}\right) & \cdots & f\left(\chi_{2n+1}^{k|k-1}\right)\end{array}\right].$$

(c) Calcule a média predita:

$$\hat{x}_{k|k-1} = \sum_{i=1}^{2n+1} w_i \chi_i^{k|k-1}.$$

(d) Calcule a matriz raiz quadrada da matriz de covariância predita:

*i.*  

$$\sqrt{\hat{P}_{XX}^{k|k-1}} = qr\left\{ \left[ \left[ \sqrt{w_i} \left( \chi_i^{k|k-1} - \hat{x}_{k|k-1} \right) \right]_{1 \times 2n} \sqrt{Q_k} \right] \right\}.$$
*ii.*  

$$\sqrt{\hat{P}_{XX}^{k|k-1}} = atuachol\left\{ \sqrt{\hat{P}_{XX}^{k|k-1}}, \chi_{2n+1}^{k|k-1}, w_{2n+1} \right\}.$$

### 2. Correção

i.

(a) Faça a predição da medição dos pontos sigma:

$$\left[\begin{array}{ccc} \gamma_1^{k|k-1} & \cdots & \gamma_{2n+1}^{k|k-1} \end{array}\right] = \left[\begin{array}{ccc} h\left(\chi_1^{k|k-1}\right) & \cdots & h\left(\chi_{2n+1}^{k|k-1}\right) \end{array}\right].$$

(b) Calcule a média da predição da mediação:

$$\hat{y}_{k|k-1} = \sum_{i=1}^{2n+1} w_i \gamma_i^{k|k-1}.$$

(c) Calcule a matriz raiz quadrada da matriz de covariância predita da medição:

$$\sqrt{\hat{P}_{YY}^{k|k-1}} = qr\left\{ \left[ \left[ \sqrt{w_i} \left( \gamma_i^{k|k-1} - \hat{y}_{k|k-1} \right) \right]_{1 \times 2n} \quad \sqrt{R_k} \right] \right\}.$$

ii.

$$\sqrt{\hat{P}_{YY}^{k|k-1}} = atuachol\left\{\sqrt{\hat{P}_{YY}^{k|k-1}}, \gamma_{2n+1}^{k|k-1}, w_{2n+1}\right\}.$$

(d) Calcule a matriz de correlações cruzadas:

$$\hat{P}_{XY}^{k|k-1} = \sum_{i=1}^{2n+1} w_i \left( \chi_i^{k|k-1} - \hat{x}_{k|k-1} \right) \left( \gamma_i^{k|k-1} - \hat{y}_{k|k-1} \right)^T.$$

- (e) Faça a correção das estimativas preditas:
  - i. Calcule os seguintes termo:

$$\begin{split} G_k &= \hat{P}_{XY}^{k|k-1} \left( \sqrt{\hat{P}_{YY}^{k|k-1}} \right)^{-T} \left( \sqrt{\hat{P}_{YY}^{k|k-1}} \right)^{-1}, \\ U &= G_k \sqrt{\hat{P}_{YY}^{k|k-1}}. \end{split}$$

ii. Faça a correção da média:

$$\hat{x}_k = \hat{x}_{k|k-1} + G_k \left( y_k - \hat{y}_{k|k-1} \right)$$

iii. Faça a seguinte igualdade:

$$\sqrt{\hat{P}_{XX}^k} = \sqrt{\hat{P}_{XX}^{k|k-1}}.$$

*iv. Para cada* 
$$i = 1, ..., n$$
 :

$$\sqrt{\hat{P}_{XX}^k} = atuachol\left\{\sqrt{\hat{P}_{XX}^k}, [U]_{*i}, -1\right\}.$$

**Corolário 6.2.2 (FKPSRQSimMinHom).** Seja  $X \in \Re^n$  uma variável aleatória de média  $\overline{X}$  e matriz raiz quadrada da matriz de covariância  $\sqrt{P_{XX}} = \sqrt{E\left\{\left(X - \overline{X}\right)\left(X - \overline{X}\right)^T\right\}}$ . A utilização do da  $\sigma$ -representação Simétrica Mínima Homogênea (Corolário 4.1.1) no FKPSRQ resulta no Filtro de Kalman por Pontos Sigma Raiz Quadrada Simétrico Mínimo Homogêneo (FKPSRQSimMinHom) que tem o algoritmo abaixo. O FKPSRQSimMinHom é equivalente ao FKURQ (algoritmo 2.4.9).

**Algoritmo 6.2.3 (FKPSRQSimMinHom).** Considere o sistema (2.1)-(2.2) e suponha que no instante de tempo k = 0,

$$\hat{x}_0 = E\{x_0\} = \bar{x}_0, \ \sqrt{\hat{P}_{XX}^0} = \sqrt{E\{(x_0 - \bar{x}_0)(x_0 - \bar{x}_0)^T\}} = \sqrt{\bar{P}_{XX}^0}$$

*O Filtro de Kalman por Pontos Sigma Raiz Quadrada Simétrico Mínimo Homogêneo* (*FKPSRQSimMinHom*) é constituído pela etapas de predição e correção da seguinte maneira:

### 1. Predição

- (a) Calcule os pesos e os pontos sigma a partir da σ-representação Simétrica Mínima Homogênea (Corolário 4.1.1):
  - *i.* Escolha um valor  $w_{2n_a+1} < 1$ .
  - ii. Calcule os pesos e pontos sigma:

$$Q = \frac{1 - w_{2n+1}}{2n} I_n,$$

$$E = \begin{bmatrix} (\sqrt{2Q})^{-1} \sqrt{P_{XX}} & -(\sqrt{2Q})^{-1} \sqrt{P_{XX}} & 0_{n \times 1} \end{bmatrix},$$

$$W := \begin{bmatrix} w_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & w_{2n+1} \end{bmatrix} = \begin{bmatrix} Q & 0 & 0 \\ 0 & Q & 0 \\ 0 & 0 & w_{2n+1} \end{bmatrix},$$

$$\begin{bmatrix} \chi_1^{k-1} & \cdots & \chi_{2n+1}^{k-1} \end{bmatrix} = E + \begin{bmatrix} \bar{X} \end{bmatrix}_{1:2n+1}.$$

(b) Faça a predição dos pontos sigma:

$$\left[\begin{array}{ccc}\chi_1^{k|k-1} & \cdots & \chi_{2n+1}^{k|k-1}\end{array}\right] = \left[\begin{array}{ccc}f\left(\chi_1^{k|k-1}\right) & \cdots & f\left(\chi_{2n+1}^{k|k-1}\right)\end{array}\right].$$

(c) Calcule a média predita:

$$\hat{x}_{k|k-1} = \sum_{i=1}^{2n+1} w_i \chi_i^{k|k-1}.$$

(d) Calcule a matriz raiz quadrada da matriz de covariância predita:

$$i. \qquad \sqrt{\hat{P}_{XX}^{k|k-1}} = qr\left\{ \left[ \left[ \sqrt{w_i} \left( \chi_i^{k|k-1} - \hat{x}_{k|k-1} \right) \right]_{1 \times 2n} \sqrt{Q_k} \right] \right\}.$$
$$ii. \qquad \sqrt{\hat{P}_{XX}^{k|k-1}} = atuachol\left\{ \sqrt{\hat{P}_{XX}^{k|k-1}}, \chi_{2n+1}^{k|k-1}, w_{2n+1} \right\}.$$

### 2. Correção

(a) Faça a predição da medição dos pontos sigma:

$$\left[\begin{array}{ccc}\gamma_1^{k|k-1} & \cdots & \gamma_{2n+1}^{k|k-1}\end{array}\right] = \left[\begin{array}{ccc}h\left(\chi_1^{k|k-1}\right) & \cdots & h\left(\chi_{2n+1}^{k|k-1}\right)\end{array}\right].$$

(b) Calcule a média da predição da mediação:

$$\hat{y}_{k|k-1} = \sum_{i=1}^{2n+1} w_i \gamma_i^{k|k-1}$$

(c) Calcule a matriz raiz quadrada da matriz de covariância predita da medição:

$$\sqrt{\hat{P}_{YY}^{k|k-1}} = qr\left\{ \left[ \left[ \sqrt{w_i} \left( \gamma_i^{k|k-1} - \hat{y}_{k|k-1} \right) \right]_{1 \times 2n} \quad \sqrt{R_k} \right] \right\}$$

•

ii.

i.

$$\sqrt{\hat{P}_{YY}^{k|k-1}} = atuachol\left\{\sqrt{\hat{P}_{YY}^{k|k-1}}, \gamma_{2n+1}^{k|k-1}, w_{2n+1}\right\}.$$

(d) Calcule a matriz de correlações cruzadas:

$$\hat{P}_{XY}^{k|k-1} = \sum_{i=1}^{2n+1} w_i \left( \chi_i^{k|k-1} - \hat{x}_{k|k-1} \right) \left( \gamma_i^{k|k-1} - \hat{y}_{k|k-1} \right)^T.$$

- (e) Faça a correção das estimativas preditas:
  - *i.* Calcule os seguintes termo:

$$\begin{split} G_k &= \hat{P}_{XY}^{k|k-1} \left( \sqrt{\hat{P}_{YY}^{k|k-1}} \right)^{-T} \left( \sqrt{\hat{P}_{YY}^{k|k-1}} \right)^{-1}, \\ U &= G_k \sqrt{\hat{P}_{YY}^{k|k-1}}. \end{split}$$

ii. Faça a correção da média:

$$\hat{x}_k = \hat{x}_{k|k-1} + G_k \left( y_k - \hat{y}_{k|k-1} \right).$$

iii. Faça a seguinte igualdade:

$$\sqrt{\hat{P}_{XX}^k} = \sqrt{\hat{P}_{XX}^{k|k-1}}.$$

iv. Para cada i = 1, ..., n:

$$\sqrt{\hat{P}_{XX}^k} = atuachol\left\{\sqrt{\hat{P}_{XX}^k}, [U]_{*i}, -1\right\}.$$

PROVA Para mostrar que o FKPSRQSim é equivalente ao FKURQ, repetimos, aqui, o algoritmo deste:

**Algoritmo 6.2.4.** Considere o sistema (2.1)-(2.2) e suponha que no instante de tempo k = 0,

$$\hat{x}_0 = E\{x_0\} = \bar{x}_0, \ \hat{P}^0_{XX} = E\{(x_0 - \bar{x}_0)(x_0 - \bar{x}_0)^T\} = \bar{P}^0_{XX}.$$

*O Filtro de Kalman Unscented Raiz Quadrada (FKURQ) é composto das etapas de predição e de correção da seguinte forma:* 

### 1. Predição

- (a) Escolha um valor para  $w_0 < 1$ .
- (b) Para i = 1, ..., n, compute os pontos sigma aumentados  $\chi_{k-1}^{i,a}$  e seus pesos  $w_i$  assim:

$$\begin{split} \chi^{0}_{k-1} &= \hat{x}_{k-1}, \\ \chi^{i}_{k-1} &= \chi^{0}_{k-1} + \left[ \sqrt{\frac{n}{1 - w_{0}}} \hat{P}^{k-1}_{XX} \right]_{*i}, \\ \chi^{i+n}_{k-1} &= \chi^{0}_{k-1} + \left[ \sqrt{\frac{n}{1 - w_{0}}} \hat{P}^{k-1}_{XX} \right]_{*i}, \\ w_{i} &= w_{i+n} = \frac{1 - w_{0}}{2n}, \end{split}$$

(c) Faça a transformação dos pontos sigma:

$$\chi_{k|k-1}^{i} = f\left(\chi_{k-1}^{i}, k\right).$$

1. (a) Calcule a predição da estimativa:

$$\hat{x}_{k|k-1} = \sum_{i=0}^{2n} w_i \chi^i_{k|k-1},$$

(b) Calcule a predição da raiz quadrada da matriz de covariância:

$$\sqrt{\hat{P}_{XX}^{k|k-1}} = qr \left\{ \left[ \sqrt{w_1} \left( \chi_{k-1}^1 - \hat{x}_{k|k-1} \right) \cdots \sqrt{w_{2n}} \left( \chi_{k-1}^{2n} - \hat{x}_{k|k-1} \right) \sqrt{Q_k} \right] \right\}$$
$$\sqrt{\hat{P}_{XX}^{k|k-1}} = atuachol \left\{ \sqrt{\hat{P}_{XX}^{k|k-1}}, \chi_{k-1}^0, w_0 \right\}$$

### 2. Correção

(a) Calcule os ponto sigma de predição da medição  $\gamma_{k|k-1}^i$ :

$$\gamma_{k|k-1}^{i} = h\left(\chi_{k-1}^{i}, k\right).$$

(b) Calcule a predição da medição  $\hat{y}_{k|k-1}$ :

$$\hat{y}_{k|k-1} = \sum_{i=0}^{2n} w_i \gamma^i_{k|k-1},$$

*(c) Calcule a predição da matriz raiz quadrada da matriz de covariância da medição* 

$$\sqrt{\hat{P}_{YY}^{k|k-1}} = qr \left\{ \left[ \sqrt{w_1} \left( \gamma_{k|k-1}^1 - \hat{y}_{k|k-1} \right) \cdots \sqrt{w_{2n}} \left( \gamma_{k|k-1}^{2n} - \hat{y}_{k|k-1} \right) \sqrt{Q_k} \right] \right\}$$

$$\sqrt{\hat{P}_{YY}^{k|k-1}} = atuachol\left\{\sqrt{\hat{P}_{YY}^{k|k-1}}, \gamma_{k|k-1}^{0}, w_0\right\}$$

(d) Calcule a matriz de correlação cruzada predita  $\hat{P}_{XY}^{k|k-1}$ :

$$\hat{P}_{XY}^{k|k-1} = \sum_{i=0}^{2n} w_i \left( \chi_{k|k-1}^{i,x} - \hat{x}_{k|k-1} \right) \left( \gamma_{k|k-1}^i - \hat{y}_{k|k-1} \right)^T.$$

(e) Calcule os seguinte parâmetros:

$$G_{k} = \hat{P}_{XY}^{k|k-1} \sqrt{\hat{P}_{YY}^{k|k-1}}^{-T} \sqrt{\hat{P}_{YY}^{k|k-1}}^{-1}$$
$$U = G_{k} \sqrt{\hat{P}_{YY}^{k|k-1}},$$
$$\hat{P}_{XX}^{k} = \hat{P}_{XX}^{k|k-1} - G_{k} \hat{P}_{YY}^{k|k-1} G_{k}^{T}.$$

(f) Faça a correção da estimativa:

j

$$\hat{x}_k = \hat{x}_{k|k-1} + G_k \left( y_k - \hat{y}_{k|k-1} \right),$$

(g) Faça a seguinte igualdade

$$\sqrt{\hat{P}_{XX}^k} = \sqrt{\hat{P}_{XX}^{k|k-1}}$$

1. (a) Faça a correção da matriz raiz quadrada da matriz de covariância para i = 1, ..., n:

$$\sqrt{\hat{P}_{XX}^k} = atuachol\left\{\sqrt{\hat{P}_{YY}^{k|k-1}}, [U]_{*i}, -1\right\}.$$

Com isso mostramos que nosso Filtro Unscented Raiz Quadrada é um caso particular de nosso filtro. Queremos agora colocar os demais filtros raiz quadrada.

**Corolário 6.2.3 (FKPSRQMin).** Seja  $X \in \Re^n$  uma variável aleatória de média  $\overline{X}$  e matriz raiz quadrada da matriz de covariância  $\sqrt{P_{XX}} = \sqrt{E\left\{\left(X - \overline{X}\right)\left(X - \overline{X}\right)^T\right\}}$ . A utilização da  $\sigma$ -representação Mínima (Teorema 4.2.2) no FKPSRQ resulta no Filtro de Kalman por Pontos Sigma Raiz Quadrada Mínímo (FKPSRQMin) que tem o algoritmo abaixo:

**Algoritmo 6.2.5 (FKPSRQMin).** Considere o sistema (2.1)-(2.2) e suponha que no instante de tempo k = 0,

$$\hat{x}_0 = E\{x_0\} = \bar{x}_0, \ \sqrt{\hat{P}^0_{XX}} = \sqrt{E\{(x_0 - \bar{x}_0)(x_0 - \bar{x}_0)^T\}} = \sqrt{\bar{P}^0_{XX}}$$

*O Filtro de Kalman por Pontos Sigma Raiz Quadrada Mínimo* (*FKPSRQMin*) é constituído pela etapas de predição e correção da seguinte maneira:

# 1. Predição

- (a) Calcule os pesos e os pontos sigma a partir da  $\sigma$ -representação Mínima (Teorema 4.2.2):
  - *i.* escolha  $v \in \Re^{n_a}$  tal que

$$v = \begin{bmatrix} v_1 \\ \vdots \\ v_{n_a} \end{bmatrix}, \quad v_i \neq 0$$

ii. Calcule os pesos e pontos sigma:

$$w_{n+1} = \frac{1}{(1 + \sum_{i=1}^{n} v_i^2)},$$
  

$$|W|^{-\frac{1}{2}} w = \sqrt{w_{n+1}}v,$$
  

$$S := sign(W),$$
  

$$E := \sqrt{P_{XX}} (S + vv^T)^{-\frac{1}{2}} |W|^{-\frac{1}{2}},$$
  

$$p := -\frac{1}{w_{n+1}} Ew,$$
  

$$\left[\chi_1^{k-1} \cdots \chi_{n+1}^{k-1}\right] := \left[E \ p\right] + \left[\bar{X}\right]_{1 \times (n+1)},$$

em que

$$w = \left[ \begin{array}{c} w_1 \\ \vdots \\ w_n \end{array} \right],$$

е

$$|W|^{-\frac{1}{2}} = \left[ \begin{array}{ccc} \sqrt{|w_1|} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \sqrt{|w_n|} \end{array} \right].$$

(b) Faça a predição dos pontos sigma:

$$\left[\begin{array}{ccc}\chi_1^{k|k-1} & \cdots & \chi_{n+1}^{k|k-1}\end{array}\right] = \left[\begin{array}{ccc}f\left(\chi_1^{k|k-1}\right) & \cdots & f\left(\chi_{n+1}^{k|k-1}\right)\end{array}\right].$$

(c) Calcule a média predita:

i.

$$\hat{x}_{k|k-1} = \sum_{i=1}^{n+1} w_i \chi_i^{k|k-1}.$$

(d) Calcule a matriz raiz quadrada da matriz de covariância predita:

$$\sqrt{\hat{P}_{XX}^{k|k-1}} = qr \left\{ \left[ \begin{array}{cc} \left[ \sqrt{w_i} \left( \chi_i^{k|k-1} - \hat{x}_{k|k-1} \right) \right]_{1 \times n+1} & \sqrt{Q_k} \\ & w_i \ge 0 \end{array} \right] \right\}.$$

*ii.* para cada i = 1, ..., n + 1:

$$\begin{split} \chi_{i}^{k|k-1,*} &= \left[\chi_{i}^{k|k-1}\right]_{i \times i} \\ w_{i}^{*} &= \left[w_{i}\right]_{i \times i} \\ w_{i} < 0 \\ \sqrt{\hat{P}_{XX}^{k|k-1}} &= atuachol \left\{\sqrt{\hat{P}_{XX}^{k|k-1}}, \chi_{i}^{k|k-1,*}, w_{i}^{*}\right\}. \end{split}$$

# 2. Correção

i.

(a) Faça a predição da medição dos pontos sigma:

$$\left[\begin{array}{ccc} \gamma_1^{k|k-1} & \cdots & \gamma_{n+1}^{k|k-1} \end{array}\right] = \left[\begin{array}{ccc} h\left(\chi_1^{k|k-1}\right) & \cdots & h\left(\chi_{n+1}^{k|k-1}\right) \end{array}\right].$$

(b) Calcule a média da predição da mediação:

$$\hat{y}_{k|k-1} = \sum_{i=1}^{n+1} w_i \gamma_i^{k|k-1}.$$

(c) Calcule a matriz raiz quadrada da matriz de covariância predita da medição:

$$\sqrt{\hat{P}_{YY}^{k|k-1}} = qr \left\{ \left[ \left[ \sqrt{w_i} \left( \gamma_i^{k|k-1} - \hat{y}_{k|k-1} \right) \right]_{1 \times n+1} \quad \sqrt{R_k} \\ w_i \ge 0 \end{array} \right] \right\}.$$

*ii.* para cada 
$$i = 1, ..., n + 1$$
:

$$\begin{split} \gamma_{i}^{k|k-1,*} &= \left[\gamma_{i}^{k|k-1}\right]_{i\times i},\\ & w_{i}^{*} = [w_{i}]_{i\times i},\\ & w_{i}<0 \end{split}$$

$$\sqrt{\hat{P}_{YY}^{k|k-1}} = atuachol\left\{\sqrt{\hat{P}_{YY}^{k|k-1}}, \gamma_{i}^{k|k-1,*}, w_{i}^{*}\right\}. \end{split}$$

(d) Calcule a matriz de correlações cruzadas:

$$\hat{P}_{XY}^{k|k-1} = \sum_{i=1}^{n+1} w_i \left( \chi_i^{k|k-1} - \hat{x}_{k|k-1} \right) \left( \gamma_i^{k|k-1} - \hat{y}_{k|k-1} \right)^T.$$

- (e) Faça a correção das estimativas preditas:
  - *i. Calcule os seguintes termo:*

$$\begin{split} G_k &= \hat{P}_{XY}^{k|k-1} \left( \sqrt{\hat{P}_{YY}^{k|k-1}} \right)^{-T} \left( \sqrt{\hat{P}_{YY}^{k|k-1}} \right)^{-1}, \\ U &= G_k \sqrt{\hat{P}_{YY}^{k|k-1}}. \end{split}$$

ii. Faça a correção da média:

$$\hat{x}_k = \hat{x}_{k|k-1} + G_k \left( y_k - \hat{y}_{k|k-1} \right).$$

iii. Faça a seguinte igualdade:

$$\sqrt{\hat{P}_{XX}^k} = \sqrt{\hat{P}_{XX}^{k|k-1}}.$$

*iv.* Para cada i = 1, ..., n:

$$\sqrt{\hat{P}_{XX}^k} = atuachol\left\{\sqrt{\hat{P}_{XX}^k}, [U]_{*i}, -1\right\}.$$

**Corolário 6.2.4 (FKPSRQMinPar).** Seja  $X \in \Re^n$  uma variável aleatória de média  $\overline{X}$  e matriz raiz quadrada da matriz de covariância  $\sqrt{P_{XX}} = \sqrt{E\left\{\left(X - \overline{X}\right)\left(X - \overline{X}\right)^T\right\}}$ . A utilização da  $\sigma$ -representação Mnima Particular (Teorema 4.2.1) no FKPSRQ resulta no Filtro de Kalman por Pontos Sigma Raiz Quadrada Mínímo Particular (FKPSRQMinPar) que tem o algoritmo abaixo:

**Algoritmo 6.2.6 (FKPSRQMinPar).** Considere o sistema (2.1)-(2.2) e suponha que no instante de tempo k = 0,

$$\hat{x}_0 = E\{x_0\} = \bar{x}_0, \ \sqrt{\hat{P}_{XX}^0} = \sqrt{E\{(x_0 - \bar{x}_0)(x_0 - \bar{x}_0)^T\}} = \sqrt{\bar{P}_{XX}^0}$$

*O Filtro de Kalman por Pontos Sigma Raiz Quadrada Mínimo Particular* (*FKPSRQMin-Par*) é constituído pela etapas de predição e correção da seguinte maneira:

- 1. Predição
  - (a) Calcule os pesos e os pontos sigma a partir da  $\sigma$ -representação Mínima Particular (Teorema 4.2.1):
    - *i.* escolha  $0 < w_{n+1} < 1$ .
    - ii. Determine os seguintes elementos

$$\alpha = \sqrt{\frac{1 - w_{n+1}}{n}},$$
$$C = \sqrt{I_n - \alpha^2 [1]_{n \times n}}$$

*iii. Determine os pesos e a matriz Q:* 

$$w_{i} = \left(C^{-1}w_{n+1}\alpha^{2}[1]_{n \times n} \left(C^{T}\right)^{-1}\right)_{ii}$$
$$Q = \left[\begin{array}{cc}w_{1} & 0 & 0\\ 0 & \ddots & 0\\ 0 & 0 & w_{n}\end{array}\right].$$

iv. Determine os pontos sigma

$$\left[\begin{array}{ccc}\chi_1^{k-1} & \cdots & \chi_{n+1}^{k-1}\end{array}\right] = \left[\begin{array}{ccc}\sqrt{P_{XX}}C\left(\sqrt{Q_1}\right)^{-1} & -\alpha\sqrt{P_{XX}}\frac{[1]_{n\times 1}}{\sqrt{w_{n+1}}}\end{array}\right] + \left[\bar{X}\right]_{1\times n+1}.$$

(b) Faça a predição dos pontos sigma:

$$\left[\begin{array}{ccc}\chi_1^{k|k-1} & \cdots & \chi_{n+1}^{k|k-1}\end{array}\right] = \left[\begin{array}{ccc}f\left(\chi_1^{k|k-1}\right) & \cdots & f\left(\chi_{n+1}^{k|k-1}\right)\end{array}\right].$$

(c) Calcule a média predita:

$$\hat{x}_{k|k-1} = \sum_{i=1}^{n+1} w_i \chi_i^{k|k-1}$$

(d) Calcule a matriz raiz quadrada da matriz de covariância predita:

$$\sqrt{\hat{P}_{XX}^{k|k-1}} = qr\left\{ \left[ \left[ \sqrt{w_i} \left( \chi_i^{k|k-1} - \hat{x}_{k|k-1} \right) \right]_{1 \times n+1} \quad \sqrt{Q_k} \right] \right\}.$$

### 2. Correção

i.

i.

(a) Faça a predição da medição dos pontos sigma:

$$\left[\begin{array}{ccc} \gamma_1^{k|k-1} & \cdots & \gamma_{n+1}^{k|k-1} \end{array}\right] = \left[\begin{array}{ccc} h\left(\chi_1^{k|k-1}\right) & \cdots & h\left(\chi_{n+1}^{k|k-1}\right) \end{array}\right].$$

(b) Calcule a média da predição da mediação:

$$\hat{y}_{k|k-1} = \sum_{i=1}^{n+1} w_i \gamma_i^{k|k-1}$$

(c) Calcule a matriz raiz quadrada da matriz de covariância predita da medição:

$$\sqrt{\hat{P}_{YY}^{k|k-1}} = qr\left\{ \left[ \left[ \sqrt{w_i} \left( \gamma_i^{k|k-1} - \hat{y}_{k|k-1} \right) \right]_{1 \times n+1} \quad \sqrt{R_k} \right] \right\}.$$

(d) Calcule a matriz de correlações cruzadas:

$$\hat{P}_{XY}^{k|k-1} = \sum_{i=1}^{n+1} w_i \left( \chi_i^{k|k-1} - \hat{x}_{k|k-1} \right) \left( \gamma_i^{k|k-1} - \hat{y}_{k|k-1} \right)^T.$$

- (e) Faça a correção das estimativas preditas:
  - i. Calcule os seguintes termo:

$$G_{k} = \hat{P}_{XY}^{k|k-1} \left( \sqrt{\hat{P}_{YY}^{k|k-1}} \right)^{-T} \left( \sqrt{\hat{P}_{YY}^{k|k-1}} \right)^{-1},$$
$$U = G_{k} \sqrt{\hat{P}_{YY}^{k|k-1}}.$$

ii. Faça a correção da média:

$$\hat{x}_k = \hat{x}_{k|k-1} + G_k \left( y_k - \hat{y}_{k|k-1} \right).$$

iii. Faça a seguinte igualdade:

$$\sqrt{\hat{P}_{XX}^k} = \sqrt{\hat{P}_{XX}^{k|k-1}}.$$

*iv.* Para cada i = 1, ..., n:

$$\sqrt{\hat{P}_{XX}^k} = atuachol\left\{\sqrt{\hat{P}_{XX}^k}, [U]_{*i}, -1\right\}.$$

Com apresentamos filtros de Kalman raiz quadrada também para outras  $\sigma$ -representações que não a simétrica. Observe que na literatura, somente havia o filtro raiz quadrada para o caso simétrico. Além dos filtros raiz quadrada com conjuntos mínimos, note também que o FKURQ não está restrito apenas a pesos positivos.

### 7 SIMULAÇÕES

#### **7.1 EXEMPLO 1**

Neste exemplo, faremos algumas simulações com as densidades de probabilidade apresentadas, aplicando alguns tipos diferentes de algoritmos de pontos sigma. Desejamos, com isso, verificar as propriedades de cada conjunto tanto com relação à distribuição *a priori* quanto com a distribuição *a posteriori*. No primeiro caso queremos, de modo especial, checar se os conjuntos de pontos sigma possuem as suas respectivas médias e a matrizes de covariância amostral iguais às médias e à matrizes de covariância da distribuição em questão. Aqui utilizaremos apenas os seguintes conjuntos de pontos sigma: o simétrico de [13] (SyUT), o reduzido de [83] (RUT), o esférico reduzido de [84] (SpUT) e a  $\sigma$ representação mínima do Teorema 4.2.1 (MiUT), página 78.

Os valores numéricos das tabelas correspondem aos erros relativos de cada simulação utilizando a respectiva transformada Unscented em relação à simulação de Monte Carlo. Pode-se distingir, nas tabelas, uma parte que dá os resultados das médias e das matrizes de covariância de cada conjunto de pontos sigma que se referem à v.a. *a priori* - encabeçada por "Antes da Transformação- e uma parte que se refere à v.a. *a posteriori* - encabeçada por "Depois da Transformação".

Observe, em todas as tabelas, a linha 4, na parte "Antes da Transformação". Note que para todas as distribuições e para as três dimensões, apenas o conjunto de pontos simétricos e o novo conjunto mínimo capturam a média e a matriz de covariância das distribuições *a priori*. Perceba, ainda, que tanto os pontos reduzidos de Julier (RUT) quanto os esféricos de Julier (SpUT) só possuem essa propriedade para o caso em que a dimensão é 1.

Esses resultados numéricos corroboram nossas expectativas teóricas. Nossa nova solução particular possui tanto a média quanto a matriz de covariância iguais à média e à matriz de covariância da distribuição *a priori*. Em contrapartida, vemos que as soluções presentes na literatura que utilizam um número reduzido de pontos não possuem essas propriedades.

Nas linhas mais abaixo - da sétima linha em diante - as tabelas fornecem resultados da estimativa transformada. Em cada linha, os termos destacados são aqueles que tiveram a menor soma dos erros da média e da matriz de covariância. Desses termos em destaque, podemos observar que os conjuntos simétrico e o mínimo particular são aqueles que tiveram as melhores estimativas.

Além disso, note que em vários casos, a estimativa do conjunto mínimo acaba sendo equivalente ou até melhor que a estimativa proporcionada pelo conjunto de pontos simétricos, embora este se utilize de 2n + 1 pontos sigma, enquanto aquele apenas de n + 1. Isso acontece sobretudo nos casos em que a v.a. *a priori* não possui pdf simétrica. Portanto, os

benefícios que seriam gerados pela simetria do conjunto de 2n + 1 pontos sigma não acontecem. Ademais, observe que mesmo no caso gaussiano - que obviamente é simétrico-, para algumas funções, esse fato também acontece. O que indica que o conjunto de mínimo pode ser vantajoso mesmo em alguns casos particulares de v.a. com pdfs simétricas.

Nas tabelas cada os termos têm os seguintes significados:

•

.

$$\begin{split} &f_{1}^{1}\left(X\right) \triangleq X^{2}, \\ &f_{2}^{1}\left(X\right) \triangleq X^{4}, \\ &f_{3}^{1}\left(X\right) \triangleq \sin\left(X\right), \\ &f_{4}^{1}\left(X\right) \triangleq \sin^{-1}\left(X\right), \\ &f_{5}^{1}\left(X\right) \triangleq \cos\left(X\right), \\ &f_{5}^{1}\left(X\right) \triangleq \cos^{-1}\left(X\right), \\ &f_{6}^{1}\left(X\right) \triangleq \cos^{-1}\left(X\right), \\ &f_{7}^{1}\left(X\right) \triangleq \tan\left(X\right), \\ &f_{7}^{1}\left(X\right) \triangleq \tan\left(X\right), \\ &f_{9}^{1}\left(X\right) \triangleq \sqrt{X}, \\ &f_{10}^{1}\left(X\right) \triangleq \sqrt{X}, \\ &f_{11}^{1}\left(X\right) \triangleq e^{X}, \\ &f_{12}^{1}\left(X\right) \triangleq \ln\left(X\right), \\ &f_{13}^{1}\left(X\right) \triangleq \ln\left(X\right), \\ &f_{15}^{1}\left(X\right) \triangleq 5X^{3}. \end{split}$$

$$\begin{split} f_1^2 \left( X, Y \right) &\triangleq X^2 + Y^2, \\ f_2^2 \left( X \right) &\triangleq X^4 + Y^4, \\ f_3^2 \left( X \right) &\triangleq \sin \left( X \right) + \sin \left( Y \right), \\ f_4^2 \left( X \right) &\triangleq \sin^{-1} \left( X \right) + \sin^{-1} \left( Y \right), \\ f_5^2 \left( X \right) &\triangleq \cos \left( X \right) + \cos \left( Y \right), \\ f_6^2 \left( X \right) &\triangleq \cos^{-1} \left( X \right) + \cos^{-1} \left( Y \right), \\ f_7^2 \left( X \right) &\triangleq \tan \left( X \right) + \tan \left( Y \right), \\ f_8^2 \left( X \right) &\triangleq \tan^{-1} \left( X \right) + \tan^{-1} \left( Y \right), \\ f_{9}^2 \left( X \right) &\triangleq \sqrt{X} + \sqrt{Y}, \\ f_{10}^2 \left( X \right) &\triangleq \sqrt{X} + e^Y, \end{split}$$

$$\begin{split} f_{12}^2\left(X\right) &\triangleq e^{-X} + e^{-Y}, \\ f_{13}^2\left(X\right) &\triangleq \ln\left(X\right) + \ln\left(Y\right), \\ f_{14}^2\left(X\right) &\triangleq \frac{1}{X} + \frac{1}{Y}, \\ f_{15}^2\left(X\right) &\triangleq \sqrt{X^2 + Y^2}, \\ f_{16}^2\left(X\right) &\triangleq \tan\left(\frac{Y}{X}\right), \\ f_{17}^2\left(X\right) &\triangleq X\sin(Y), \\ f_{18}^2\left(X\right) &\triangleq X\cos\left(Y\right), \\ f_{19}^2\left(X\right) &\triangleq \left[\begin{array}{c} \sqrt{X^2 + Y^2} \\ \arctan\left(\frac{Y}{X}\right) \\ \arctan\left(\frac{Y}{X}\right) \\ \operatorname{arctan}\left(\frac{Y}{X}\right) \\ f_{20}^2\left(X\right) &\triangleq \left[\begin{array}{c} X\cos\left(Y\right) \\ X\sin\left(Y\right) \\ x\sin\left(Y\right) \\ \end{array}\right], \\ f_{21}^2\left(X\right) &\triangleq 5X^3 + 10Y^3. \end{split}$$

•

$$\begin{split} f_1^3 \left( X, Y \right) &\triangleq X^2 + Y^2 + Z^2, \\ f_2^3 \left( X \right) &\triangleq X^4 + Y^4 + Z^4, \\ f_3^3 \left( X \right) &\triangleq \sin \left( X \right) + \sin \left( Y \right) + \sin \left( Z \right), \\ f_4^3 \left( X \right) &\triangleq \sin^{-1} \left( X \right) + \sin^{-1} \left( Y \right) + \sin^{-1} \left( Z \right), \\ f_5^3 \left( X \right) &\triangleq \cos \left( X \right) + \cos \left( Y \right) + \cos \left( Z \right), \\ f_6^3 \left( X \right) &\triangleq \cos^{-1} \left( X \right) + \cos^{-1} \left( Y \right) + \cos^{-1} \left( Z \right), \\ f_7^3 \left( X \right) &\triangleq \tan \left( X \right) + \tan \left( Y \right) + \tan \left( Z \right), \\ f_8^3 \left( X \right) &\triangleq \tan^{-1} \left( X \right) + \tan^{-1} \left( Y \right) + \tan^{-1} \left( Z \right), \\ f_{10}^3 \left( X \right) &\triangleq \sqrt{X} + \sqrt{Y} + \sqrt{Z}, \\ f_{10}^3 \left( X \right) &\triangleq \sqrt{X} + \sqrt{Y} + \sqrt{Z}, \\ f_{10}^3 \left( X \right) &\triangleq \sqrt{X} + e^Y + e^Z, \\ f_{12}^3 \left( X \right) &\triangleq e^X + e^Y + e^Z, \\ f_{12}^3 \left( X \right) &\triangleq \ln \left( X \right) + \ln \left( Y \right) + \ln \left( Z \right), \\ f_{13}^3 \left( X \right) &\triangleq \ln \left( X \right) + \ln \left( Y \right) + \ln \left( Z \right), \\ f_{14}^3 \left( X \right) &\triangleq \frac{1}{X} + \frac{1}{Y} + \frac{1}{Z}, \\ f_{15}^3 \left( X \right) &\triangleq \tan \left( \frac{Y}{X} \right), \\ f_{16}^3 \left( X \right) &\triangleq \tan \left( \frac{Z}{X} \right), \\ f_{18}^3 \left( X \right) &\triangleq X \cos \left( Y \right) \sin(Z), \end{split}$$

$$\begin{split} f_{19}^{3}\left(X\right) &\triangleq X\cos\left(Y\right)\cos\left(Z\right),\\ f_{20}^{3}\left(X\right) &\triangleq X\sin\left(Y\right),\\ f_{21}^{3}\left(X\right) &\triangleq \begin{bmatrix} \sqrt{X^{2}+Y^{2}+Z^{2}} \\ \arctan\left(\frac{Y}{X}\right) \\ \arctan\left(\frac{Z}{X}\right) \\ f_{22}^{3}\left(X\right) &\triangleq \begin{bmatrix} X\cos\left(Z\right)\cos\left(Y\right) \\ X\cos\left(Z\right)\sin\left(Y\right) \\ X\sin\left(Z\right) \\ \end{bmatrix},\\ f_{23}^{3}\left(X\right) &\triangleq .X^{3}+Y^{3}+Z^{3}. \end{split}$$

• Normal

$$p_{normal}^{1} \sim N(1, 10),$$

$$p_{normal}^{2} \sim N\left(\left[\begin{array}{c}1\\5\end{array}\right], \left[\begin{array}{c}10&2\\2&5\end{array}\right]\right) = P_{norm}^{2},$$

$$p_{normal}^{3} \sim N\left(\left[\begin{array}{c}1\\5\\3\end{array}\right], \left[\begin{array}{c}10&2&7\\2&5&9\\7&9&50\end{array}\right]\right) = P_{norm}^{3}.$$

• Beta

$$p_{beta}^{1} \sim beta (10, 10),$$

$$p_{beta}^{2} \sim beta \left( \begin{bmatrix} 10\\5 \end{bmatrix}, \begin{bmatrix} 10\\5 \end{bmatrix} \right),$$

$$p_{beta}^{3} \sim beta \left( \begin{bmatrix} 10\\5\\2 \end{bmatrix}, \begin{bmatrix} 10\\5\\2 \end{bmatrix} \right).$$

• Chi quadrado

$$p_{chi2}^{1} \sim chi2 (10) ,$$

$$p_{chi2}^{2} \sim chi2 \left( \begin{bmatrix} 10\\5 \end{bmatrix} \right) ,$$

$$p_{chi2}^{3} \sim chi2 \left( \begin{bmatrix} 10\\5\\cline{2} \end{bmatrix} \right) .$$

• Exponencial

$$p_{exp}^{1} \sim exp\left(10\right),$$

$$p_{exp}^{2} \sim exp\left(\left[\begin{array}{c} 10\\5\end{array}\right]\right),$$
$$p_{exp}^{3} \sim exp\left(\left[\begin{array}{c} 10\\5\\2\end{array}\right]\right).$$

• Valor extremo (*extreme value*)

$$p_{ev}^{1} \sim ev (10, 10),$$

$$p_{ev}^{2} \sim ev \left( \begin{bmatrix} 10\\5 \end{bmatrix}, \begin{bmatrix} 10\\5 \end{bmatrix} \right),$$

$$p_{ev}^{3} \sim ev \left( \begin{bmatrix} 10\\5\\2 \end{bmatrix}, \begin{bmatrix} 10\\5\\2 \end{bmatrix} \right).$$

• Valor extremo generalizado (generalized extreme value)

$$p_{gev}^{1} \sim gev \left(0, 10, 10\right),$$

$$p_{gev}^{2} \sim gev \left(0, \begin{bmatrix} 10\\5 \end{bmatrix}, \begin{bmatrix} 10\\5 \end{bmatrix}\right),$$

$$p_{gev}^{3} \sim gev \left(0, \begin{bmatrix} 10\\5\\2 \end{bmatrix}, \begin{bmatrix} 10\\5\\2 \end{bmatrix}\right).$$

• Gamma

$$p_{gamma}^{1} \sim gamma\left(10, 10\right),$$

$$p_{gamma}^2 \sim gamma\left( \begin{bmatrix} 10\\5 \end{bmatrix}, \begin{bmatrix} 10\\5 \end{bmatrix} \right),$$
$$p_{gamma}^3 \sim gamma\left( \begin{bmatrix} 10\\5\\2 \end{bmatrix}, \begin{bmatrix} 10\\5\\2 \end{bmatrix}, \begin{bmatrix} 10\\5\\2 \end{bmatrix} \right).$$

• Lognormal

$$\begin{aligned} p_{logn}^1 &\sim logn\left(0.25, 0.5\right), \\ p_{logn}^2 &\sim logn\left( \left[ \begin{array}{c} 0.25\\ 0.35 \end{array} \right], \left[ \begin{array}{c} 0.5\\ 0.6 \end{array} \right] \right), \end{aligned}$$

$$p_{logn}^3 \sim logn\left( \begin{bmatrix} 0.25\\ 0.35\\ 0.45 \end{bmatrix}, \begin{bmatrix} 0.5\\ 0.6\\ 0.7 \end{bmatrix} \right).$$

• Poisson

$$p_{poisson}^{1} \sim poisson (2) ,$$

$$p_{poisson}^{2} \sim poisson \left( \begin{bmatrix} 2\\3 \end{bmatrix} \right) ,$$

$$p_{poisson}^{3} \sim poisson \left( \begin{bmatrix} 2\\3\\4 \end{bmatrix} \right) .$$

• Rayleigh

$$p_{rayleigh}^{1} \sim rayleigh(10),$$

$$p_{rayleigh}^{2} \sim rayleigh\left( \begin{bmatrix} 10\\5 \end{bmatrix} \right),$$
$$p_{rayleigh}^{3} \sim rayleigh\left( \begin{bmatrix} 10\\5\\2 \end{bmatrix} \right).$$

• T

$$p_T^1 \sim T (10) ,$$

$$p_T^2 \sim T \left( \begin{bmatrix} 10 \\ 5 \end{bmatrix} \right) ,$$

$$p_T^3 \sim T \left( \begin{bmatrix} 10 \\ 5 \\ 2 \end{bmatrix} \right) .$$

• Uniforme

$$p_{uniforme}^{1} \sim U(0, 10),$$

$$p_{uniforme}^{2} \sim U\left(\begin{bmatrix} 0\\0\\\end{bmatrix}, \begin{bmatrix} 10\\5\\\end{bmatrix}\right),$$

$$p_{uniforme}^{3} \sim U\left(\begin{bmatrix} 0\\0\\0\\\end{bmatrix}, \begin{bmatrix} 10\\5\\2\\\end{bmatrix}\right).$$

Para informações sobre as distribuições aqui utilizados, indicamos ao leitor os livros [160] e [161].

| Simétrico               |             |             |             | Mínimo Parti | icular          | I           | Mínimo de Jul | ier     | F           | sféricos de Ju | lier    |
|-------------------------|-------------|-------------|-------------|--------------|-----------------|-------------|---------------|---------|-------------|----------------|---------|
|                         |             |             |             | Aı           | ntes da Transfo | ormação     | )             |         |             |                |         |
| Dist                    | Média       | Cov         | Dist        | Média        | Cov             | Dist        | Média         | Cov     | Dist        | Média          | Cov     |
| norm                    | 1.5016e-008 | 1.3362e-008 | norm        | 2.6008e-008  | 1.8896e-008     | norm        | 1.5016e-008   | 0.94281 | norm        | 1.5016e-008    | 0.94281 |
| Depois da Transformação |             |             |             |              |                 |             |               |         |             |                |         |
| Func                    | Média       | Cov         | Média       | Cov          | Func            | Média       | Cov           | Func    | Média       | Cov            |         |
| $f_{1}^{1}$             | 3.1762      | 2.8025      | $f_{1}^{1}$ | 3.1762       | 0.96537         | $f_{1}^{1}$ | 1.0523        | 0.71243 | $f_{1}^{1}$ | 1.0523         | 0.71243 |
| $f_1^1$                 | 14.4755     | 77.8449     | $f_1^1$     | 10.9895      | 5.7633          | $f_1^1$     | 2.8895        | 3.7871  | $f_1^1$     | 2.8895         | 3.7871  |
| $f_3^1$                 | 1.0684      | 0.97136     | $f_3^1$     | 0.96885      | 0.99819         | $f_3^1$     | 0.74865       | 0.98643 | $f_{3}^{1}$ | 0.74865        | 0.98643 |
| $f_3^1$                 | 0.74729     | 0.72402     | $f_3^1$     | 0.86961      | 0.68183         | $f_3^1$     | 0.71046       | 0.93814 | $f_{3}^{1}$ | 0.71046        | 0.93814 |
| $f_{5}^{1}$             | 1.0459      | 0.97917     | $f_{5}^{1}$ | 1.4124       | 0.99997         | $f_{5}^{1}$ | 0.84157       | 0.97651 | $f_{5}^{1}$ | 0.84157        | 0.97651 |
| $f_{5}^{1}$             | 0.46972     | 0.72402     | $f_{5}^{1}$ | 0.77274      | 0.68183         | $f_{5}^{1}$ | 0.76237       | 0.93814 | $f_{5}^{1}$ | 0.76237        | 0.93814 |
| $f_{7}^{1}$             | 1.6967      | 0.72977     | $f_{7}^{1}$ | 1.0333       | 0.99802         | $f_{7}^{1}$ | 0.99816       | 0.93478 | $f_{7}^{1}$ | 0.99816        | 0.93478 |
| $f_{7}^{1}$             | 0.83212     | 0.93547     | $f_{7}^{1}$ | 0.76002      | 0.92392         | $f_{7}^{1}$ | 0.66705       | 0.98085 | $f_{7}^{1}$ | 0.66705        | 0.98085 |
| $f_9^1$                 | 0.76157     | 0.92425     | $f_{9}^{1}$ | 0.8163       | 0.92225         | $f_9^1$     | 0.49154       | 0.97668 | $f_{9}^{1}$ | 0.49154        | 0.97668 |
| $f_9^1$                 | 0.58863     | 0.98732     | $f_{9}^{1}$ | 0.63368      | 0.98796         | $f_9^1$     | 0.43674       | 0.9926  | $f_{9}^{1}$ | 0.43674        | 0.9926  |
| $f_{11}^1$              | 6.5635      | 18.8253     | $f_{11}^1$  | 3.9841       | 3.581           | $f_{11}^1$  | 1.855         | 0.70067 | $f_{11}^1$  | 1.855          | 0.70067 |
| $f_{11}^1$              | 2.2693      | 2.4326      | $f_{11}^1$  | 3.1578       | 4.7215          | $f_{11}^1$  | 0.61679       | 0.98538 | $f_{11}^1$  | 0.61679        | 0.98538 |
| $f_{13}^1$              | 1.0341      | 0.85751     | $f_{13}^1$  | 1.0413       | 0.88286         | $f_{13}^1$  | 1.2461        | 0.84315 | $f_{13}^1$  | 1.2461         | 0.84315 |
| $f_{13}^{1}$            | 0.83908     | 0.98414     | $f_{13}^1$  | 0.94171      | 0.99599         | $f_{13}^1$  | 1.2746        | 0.79499 | $f_{13}^1$  | 1.2746         | 0.79499 |
| $f_{15}^1$              | 12.3732     | 95.058      | $f_{15}^1$  | 6.3576       | 56.2144         | $f_{15}^1$  | 4.5202        | 8.3879  | $f_{15}^1$  | 4.5202         | 8.3879  |

Tabela 7.1: Tabela com os erros de cada função para  $norm\left([1],[10]\right)$ 

|                         | Simétrico                   |         |             | Mínimo Part | icular         | Μ           | ínimo de J | mo de JulierEsféricos de JulierMédiaCovDistMédiaCo0 $0.94281$ $chi2$ 0 $0.94281$ MédiaCovFuncMédiaCo.38403 $0.96307$ $f_1^1$ $0.38403$ $0.96307$ $0.7576$ $0.99506$ $f_1^1$ $0.7576$ $0.99506$ $2.4486$ $0.2716$ $f_3^1$ $2.4486$ $0.27$ $0.1697$ $0.94853$ $f_5^1$ $3.604$ $0.35507$ $1.8104$ $0.94853$ $f_5^1$ $0.18104$ $0.94853$ $.3914$ $0.99997$ $f_7^1$ $1.3914$ $0.9997$ $.12191$ $0.97399$ $f_7^1$ $0.14957$ $0.94091$ $13061$ $0.94314$ $f_1^1$ $0.13061$ $0.947$ |             |         |         |
|-------------------------|-----------------------------|---------|-------------|-------------|----------------|-------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------|---------|
|                         |                             |         |             | Ante        | es da Transfor | mação       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |         |         |
| Dist                    | Média                       | Cov     | Dist        | Média       | Cov            | Dist        | Média      | Cov                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Dist        | Média   | Cov     |
| chi2                    | 1.3305e-008                 | 0       | chi2        | 1.8816e-008 | 1.3318e-008    | chi2        | 0          | 0.94281                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | chi2        | 0       | 0.94281 |
| Depois da Transformação |                             |         |             |             |                |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |         |         |
| Func                    | nc Média Cov Func Média Cov |         |             |             | Func           | Média       | Cov        | Func                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Média       | Cov     |         |
| $f_{1}^{1}$             | 1.8792e-008                 | 0.57719 | $f_{1}^{1}$ | 2.426e-008  | ie-008 0.73372 |             | 0.38403    | 0.96307                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $f_{1}^{1}$ | 0.38403 | 0.96307 |
| $f_1^1$                 | 0.39133                     | 0.91829 | $f_1^1$     | 0.49746     | .49746 0.97461 |             | 0.7576     | 0.99506                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $f_{1}^{1}$ | 0.7576  | 0.99506 |
| $f_3^1$                 | 5.7377                      | 0.7217  | $f_{3}^{1}$ | 4.1309      | 0.65819        | $f_3^1$     | 2.4486     | 0.2716                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $f_3^1$     | 2.4486  | 0.2716  |
| $f_3^1$                 | 0.066949                    | 0.386   | $f_{3}^{1}$ | 0.12066     | 0.78305        | $f_3^1$     | 0.1697     | 0.94853                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $f_3^1$     | 0.1697  | 0.94853 |
| $f_{5}^{1}$             | 7.6896                      | 0.86467 | $f_{5}^{1}$ | 4.6654      | 0.45371        | $f_5^1$     | 3.604      | 0.35507                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $f_5^1$     | 3.604   | 0.35507 |
| $f_5^1$                 | 0.071423                    | 0.386   | $f_{5}^{1}$ | 0.12872     | 0.78305        | $f_5^1$     | 0.18104    | 0.94853                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $f_{5}^{1}$ | 0.18104 | 0.94853 |
| $f_{7}^{1}$             | 1.0981                      | 0.99989 | $f_{7}^{1}$ | 0.55958     | 1              | $f_{7}^{1}$ | 1.3914     | 0.99997                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $f_{7}^{1}$ | 1.3914  | 0.99997 |
| $f_{7}^{1}$             | 0.049507                    | 0.26186 | $f_{7}^{1}$ | 0.10247     | 0.8576         | $f_{7}^{1}$ | 0.12191    | 0.97399                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $f_{7}^{1}$ | 0.12191 | 0.97399 |
| $f_9^1$                 | 0.055653                    | 0.34789 | $f_9^1$     | 0.091875    | 0.57355        | $f_9^1$     | 0.14957    | 0.94091                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $f_9^1$     | 0.14957 | 0.94091 |
| $f_{9}^{1}$             | 0.050909                    | 0.39299 | $f_{9}^{1}$ | 0.086629    | 0.69632        | $f_9^1$     | 0.13061    | 0.94314                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $f_{9}^{1}$ | 0.13061 | 0.94314 |
| $f_{11}^1$              | 1                           | 1       | $f_{11}^1$  | 1           | 1              | $f_{11}^1$  | 1          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $f_{11}^1$  | 1       | 1       |
| $f_{11}^1$              | 0.37061                     | 0.95873 | $f_{11}^1$  | 1.003       | 0.74669        | $f_{11}^1$  | 0.98672    | 0.99998                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $f_{11}^1$  | 0.98672 | 0.99998 |
| $f_{13}^1$              | 0.082126                    | 0.40272 | $f_{13}^1$  | 0.14463     | 0.78656        | $f_{13}^1$  | 0.20439    | 0.94747                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $f_{13}^1$  | 0.20439 | 0.94747 |
| $f_{13}^1$              | 0.1631                      | 0.38462 | $f_{13}^1$  | 0.35693     | 0.78556        | $f_{13}^1$  | 0.42646    | 0.97681                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $f_{13}^1$  | 0.42646 | 0.97681 |
| $f_{15}^1$              | 0.21396                     | 0.80029 | $f_{15}^1$  | 0.28856     | 0.91162        | $f_{15}^1$  | 0.6023     | 0.9841                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $f_{15}^1$  | 0.6023  | 0.9841  |

Tabela 7.2: Tabela com os erros de cada função para chi2 ([10])

|                         | Simétric    | 0           |              | Mínimo Part | icular              | Μ           | ínimo de J | lulier  | Est         | féricos de . | Julier  |  |
|-------------------------|-------------|-------------|--------------|-------------|---------------------|-------------|------------|---------|-------------|--------------|---------|--|
| Antes da Transformação  |             |             |              |             |                     |             |            |         |             |              |         |  |
| Dist                    | Média       | Cov         | Dist         | Média       | Cov                 | Dist        | Média      | Cov     | Dist        | Média        | Cov     |  |
| exp                     | 0           | 1.6838e-008 | exp          | 1.8837e-008 | 1.1906e-008         | exp         | 0          | 0.94281 | exp         | 0            | 0.94281 |  |
| Depois da Transformação |             |             |              |             |                     |             |            |         |             |              |         |  |
| Func Média Cov          |             |             | Func         | Média       | Cov                 | Func        | Média      | Cov     | Func        | Média        | Cov     |  |
| $f_1^1$                 | 2.3813e-008 | 0.87614     | $f_{1}^{1}$  | 2.3813e-008 | 2.3813e-008 0.95587 |             | 0.66668    | 0.9883  | $f_1^1$     | 0.66668      | 0.9883  |  |
| $f_{1}^{1}$             | 0.79763     | 0.99755     | $f_1^1$      | 0.87021     | 0.9997              | $f_1^1$     | 0.96327    | 0.99995 | $f_{1}^{1}$ | 0.96327      | 0.99995 |  |
| $f_{3}^{1}$             | 2.5616      | 0.95665     | $f_3^1$      | 2.2062      | 0.71957             | $f_3^1$     | 0.82162    | 0.16698 | $f_3^1$     | 0.82162      | 0.16698 |  |
| $f_{3}^{1}$             | 0.63655     | 1.9733      | $f_3^1$      | 0.65713     | 2.2394              | $f_3^1$     | 0.42447    | 0.95712 | $f_3^1$     | 0.42447      | 0.95712 |  |
| $f_{5}^{1}$             | 9.9342      | 0.98127     | $f_5^1$      | 6.1309      | 0.97262             | $f_{5}^{1}$ | 2.1697     | 0.19875 | $f_5^1$     | 2.1697       | 0.19875 |  |
| $f_{5}^{1}$             | 0.68818     | 1.9733      | $f_5^1$      | 0.71043     | 2.2394              | $f_{5}^{1}$ | 0.4589     | 0.95712 | $f_5^1$     | 0.4589       | 0.95712 |  |
| $f_{7}^{1}$             | 1.5178      | 1           | $f_{7}^{1}$  | 2.5188      | 0.99997             | $f_{7}^{1}$ | 4.1151     | 0.99958 | $f_{7}^{1}$ | 4.1151       | 0.99958 |  |
| $f_{7}^{1}$             | 0.7238      | 3.6496      | $f_{7}^{1}$  | 0.75075     | 3.9372              | $f_{7}^{1}$ | 0.35954    | 0.99249 | $f_{7}^{1}$ | 0.35954      | 0.99249 |  |
| $f_{9}^{1}$             | 0.43483     | 1.0131      | $f_{9}^{1}$  | 0.49266     | 1.0934              | $f_{9}^{1}$ | 0.33452    | 0.92964 | $f_9^1$     | 0.33452      | 0.92964 |  |
| $f_{9}^{1}$             | 0.42322     | 1.1294      | $f_{9}^{1}$  | 0.46306     | 1.1148              | $f_{9}^{1}$ | 0.30168    | 0.93968 | $f_9^1$     | 0.30168      | 0.93968 |  |
| $f_{11}^1$              | 1           | 1           | $f_{11}^1$   | 1           | 1                   | $f_{11}^1$  | 1          | 1       | $f_{11}^1$  | 1            | 1       |  |
| $f_{11}^1$              | 5.822       | 22.497      | $f_{11}^1$   | 15.219      | 150.1134            | $f_{11}^1$  | 0.99499    | 0.99998 | $f_{11}^1$  | 0.99499      | 0.99998 |  |
| $f_{13}^1$              | 0.79965     | 0.93196     | $f_{13}^1$   | 0.84359     | 0.76995             | $f_{13}^1$  | 0.54769    | 0.96086 | $f_{13}^1$  | 0.54769      | 0.96086 |  |
| $f_{13}^1$              | 1.0312      | 1           | $f_{13}^1$   | 1.0131      | 1                   | $f_{13}^1$  | 0.96337    | 1       | $f_{13}^1$  | 0.96337      | 1       |  |
| $f_{15}^1$              | 0.57411     | 0.97858     | $f_{15}^{1}$ | 0.66942     | 0.99514             | $f_{15}^1$  | 0.88122    | 0.999   | $f_{15}^1$  | 0.88122      | 0.999   |  |

Tabela 7.3: Tabela com os erros de cada função para exp([10])

| Simétrico              |                           |             |                                   | Mínimo Part | icular      | Μ           | ínimo de J | lulier  | Est         | Esféricos de Julier<br>ist Média Cov<br>v 0 0.94281 |         |  |  |  |
|------------------------|---------------------------|-------------|-----------------------------------|-------------|-------------|-------------|------------|---------|-------------|-----------------------------------------------------|---------|--|--|--|
| Antes da Transformação |                           |             |                                   |             |             |             |            |         |             |                                                     |         |  |  |  |
| Dist                   | Média                     | Cov         | Dist                              | Média       | Cov         | Dist        | Média      | Cov     | Dist        | Média                                               | Cov     |  |  |  |
| ev                     | 1.4652e-008               | 1.3055e-008 | ev                                | 2.0721e-008 | 1.3055e-008 | ev          | 0          | 0.94281 | ev          | 0                                                   | 0.94281 |  |  |  |
|                        | Depois da Transformação   |             |                                   |             |             |             |            |         |             |                                                     |         |  |  |  |
| Func                   | Func Média Cov Func Média |             |                                   |             | Cov         | Func        | Média      | Cov     | Func        | Média                                               | Cov     |  |  |  |
| $f_1^1$                | 1.0909e-007               | 0.85165     | $f_{1}^{1}$                       | 1.0838e-007 | 0.99934     | $f_{1}^{1}$ | 0.89785    | 0.99216 | $f_{1}^{1}$ | 0.89785                                             | 0.99216 |  |  |  |
| $f_{1}^{1}$            | 0.72847                   | 0.99811     | $f_1^1$                           | 0.8548      | 0.99999     | $f_1^1$     | 0.98918    | 1       | $f_1^1$     | 0.98918                                             | 1       |  |  |  |
| $f_{3}^{1}$            | 14.9202                   | 0.49958     | $f_3^1$                           | 8.8952      | 0.45229     | $f_3^1$     | 21.479     | 0.8049  | $f_3^1$     | 21.479                                              | 0.8049  |  |  |  |
| $f_{3}^{1}$            | 0.46013                   | 0.41396     | $f_3^1$                           | 0.2793      | 0.54992     | $f_3^1$     | 0.53723    | 0.72466 | $f_3^1$     | 0.53723                                             | 0.72466 |  |  |  |
| $f_{5}^{1}$            | 7.6668                    | 0.68296     | $f_5^1$                           | 12.897      | 0.86541     | $f_5^1$     | 10.9336    | 0.54492 | $f_5^1$     | 10.9336                                             | 0.54492 |  |  |  |
| $f_{5}^{1}$            | 0.42615                   | 0.41396     | $f_{5}^{1}$                       | 0.25867     | 0.54992     | $f_{5}^{1}$ | 0.49755    | 0.72466 | $f_{5}^{1}$ | 0.49755                                             | 0.72466 |  |  |  |
| $f_{7}^{1}$            | 1.478                     | 1           | $f_{7}^{1}$                       | 4.4938      | 0.94946     | $f_{7}^{1}$ | 0.91983    | 0.99993 | $f_{7}^{1}$ | 0.91983                                             | 0.99993 |  |  |  |
| $f_{7}^{1}$            | 0.41868                   | 0.38983     | $f_{7}^{1}$                       | 0.31902     | 0.46358     | $f_{7}^{1}$ | 0.4181     | 0.56063 | $f_{7}^{1}$ | 0.4181                                              | 0.56063 |  |  |  |
| $f_{9}^{1}$            | 0.30542                   | 0.28646     | $f_9^1$                           | 0.42659     | 0.33298     | $f_9^1$     | 0.557      | 0.81096 | $f_9^1$     | 0.557                                               | 0.81096 |  |  |  |
| $f_{9}^{1}$            | 0.23545                   | 0.031648    | $f_{9}^{1}$                       | 0.34469     | 0.21632     | $f_{9}^{1}$ | 0.42292    | 0.63766 | $f_9^1$     | 0.42292                                             | 0.63766 |  |  |  |
| $f_{11}^1$             | 0.99919                   | 1           | $f_{11}^1$                        | 1           | 1           | $f_{11}^1$  | 1          | 1       | $f_{11}^1$  | 1                                                   | 1       |  |  |  |
| $f_{11}^1$             | 1                         | 1           | $f_{11}^1$                        | 1           | 1           | $f_{11}^1$  | 1          | 1       | $f_{11}^1$  | 1                                                   | 1       |  |  |  |
| $f_{13}^1$             | 0.34469                   | 0.42946     | <b>0.42946</b> $f_{13}^1$ 0.50629 |             | 0.56299     | $f_{13}^1$  | 0.58624    | 0.28497 | $f_{13}^1$  | 0.58624                                             | 0.28497 |  |  |  |
| $f_{13}^1$             | 0.62431                   | 1           | $f_{13}^1$                        | 0.87374     | 1           | $f_{13}^1$  | 1.6057     | 0.99996 | $f_{13}^1$  | 1.6057                                              | 0.99996 |  |  |  |
| $f_{15}^1$             | 2.746                     | 0.96861     | $f_{15}^1$                        | 1.6994      | 0.9894      | $f_{15}^1$  | 1.3853     | 0.99975 | $f_{15}^1$  | 1.3853                                              | 0.99975 |  |  |  |

Tabela 7.4: Tabela com os erros de cada função para ev([10], [10])

|              | Simétrico                   |         |              | Mínimo Parti | cular        |              | Mínimo de Ju | lier     | ]            | Esféricos de Ju | ılier    |  |  |
|--------------|-----------------------------|---------|--------------|--------------|--------------|--------------|--------------|----------|--------------|-----------------|----------|--|--|
|              |                             |         |              |              | Antes da Tra | nsform       | ação         |          |              |                 |          |  |  |
| Dist         | Média                       | Cov     | Dist         | Média        | Cov          | Dist         | Média        | Cov      | Dist         | Média           | Cov      |  |  |
| gev          | 1.0634e-008                 | 0       | gev          | 1.8419e-008  | 1.316e-008   | gev          | 1.0634e-008  | 0.94281  | gev          | 1.0634e-008     | 0.94281  |  |  |
|              | Depois da Transformação     |         |              |              |              |              |              |          |              |                 |          |  |  |
| Func         | nc Média Cov Func Média Cov |         |              |              | Cov          | Func         | Média        | Cov      | Func         | Média           | Cov      |  |  |
| $f_{1}^{1}$  | 3.7198e-008                 | 0.77853 | $f_1^1$      | 3.3271e-008  | 0.90323      | $f_1^1$      | 0.59587      | 0.9794   | $f_{1}^{1}$  | 0.59587         | 0.9794   |  |  |
| $f_1^1$      | 0.66297                     | 0.99296 | $f_1^1$      | 0.76916      | 0.99888      | $f_1^1$      | 0.92526      | 0.99979  | $f_1^1$      | 0.92526         | 0.99979  |  |  |
| $f_3^1$      | 0.97121                     | 0.99976 | $f_3^1$      | 10.4563      | 0.97843      | $f_3^1$      | 1.055        | 0.093966 | $f_3^1$      | 1.055           | 0.093966 |  |  |
| $f_3^1$      | 0.39107                     | 0.65886 | $f_3^1$      | 0.60379      | 1.5126       | $f_3^1$      | 0.40918      | 0.98464  | $f_3^1$      | 0.40918         | 0.98464  |  |  |
| $f_5^1$      | 8.939                       | 0.88021 | $f_5^1$      | 9.4684       | 0.49759      | $f_5^1$      | 12.4903      | 0.94161  | $f_5^1$      | 12.4903         | 0.94161  |  |  |
| $f_{5}^{1}$  | 0.4104                      | 0.65886 | $f_{5}^{1}$  | 0.63363      | 1.5126       | $f_5^1$      | 0.4294       | 0.98464  | $f_{5}^{1}$  | 0.4294          | 0.98464  |  |  |
| $f_{7}^{1}$  | 1.0005                      | 1       | $f_{7}^{1}$  | 0.96957      | 0.99999      | $f_{7}^{1}$  | 1.0015       | 0.99996  | $f_{7}^{1}$  | 1.0015          | 0.99996  |  |  |
| $f_{7}^{1}$  | 0.45171                     | 0.45729 | $f_{7}^{1}$  | 0.71466      | 1.7067       | $f_{7}^{1}$  | 0.41283      | 0.99953  | $f_{7}^{1}$  | 0.41283         | 0.99953  |  |  |
| $f_9^1$      | 0.32572                     | 0.83292 | $f_{9}^{1}$  | 0.37387      | 0.97369      | $f_9^1$      | 0.30657      | 0.95047  | $f_9^1$      | 0.30657         | 0.95047  |  |  |
| $f_9^1$      | 0.39134                     | 1.3529  | $f_9^1$      | 0.36591      | 1.0814       | $f_9^1$      | 0.27011      | 0.96293  | $f_9^1$      | 0.27011         | 0.96293  |  |  |
| $f_{11}^1$   | 1                           | 1       | $f_{11}^1$   | 1            | 1            | $f_{11}^1$   | 1            | 1        | $f_{11}^1$   | 1               | 1        |  |  |
| $f_{11}^1$   | 0.9986                      | 1       | $f_{11}^1$   | 0.98404      | 1            | $f_{11}^1$   | 1            | 1        | $f_{11}^1$   | 1               | 1        |  |  |
| $f_{13}^1$   | 0.8352                      | 2.3417  | $f_{13}^1$   | 0.59161      | 0.97371      | $f_{13}^1$   | 0.39968      | 0.97662  | $f_{13}^1$   | 0.39968         | 0.97662  |  |  |
| $f_{13}^1$   | 17.1447                     | 4.0449  | $f_{13}^1$   | 1.6688       | 0.99941      | $f_{13}^1$   | 0.32291      | 0.99999  | $f_{13}^1$   | 0.32291         | 0.99999  |  |  |
| $f_{15}^{1}$ | 0.41993                     | 0.94956 | $f_{15}^{1}$ | 0.53086      | 0.98658      | $f_{15}^{1}$ | 0.8149       | 0.99711  | $f_{15}^{1}$ | 0.8149          | 0.99711  |  |  |

Tabela 7.5: Tabela com os erros de cada função para gev([0], [10], [10])
|              | Simétrico   |             |              | Mínimo Part | icular          |             | Mínimo de Jul | lier    | Esféricos de Julier |             |         |  |
|--------------|-------------|-------------|--------------|-------------|-----------------|-------------|---------------|---------|---------------------|-------------|---------|--|
|              |             |             |              | Aı          | ntes da Transfo | ormação     | 0             |         |                     |             |         |  |
| Dist         | Média       | Cov         | Dist         | Média       | Cov             | Dist        | Média         | Cov     | Dist                | Média       | Cov     |  |
| beta         | 0           | 2.4166e-008 | beta         | 1.8259e-008 | 2.0928e-008     | beta        | 1.0542e-008   | 0.94281 | beta                | 1.0542e-008 | 0.94281 |  |
|              |             |             |              | De          | pois da Transf  | ormaçã      | 0             |         |                     |             |         |  |
| Func         | Média       | Cov         | Func         | Média       | Cov             | Func        | Média         | Cov     | Func                | Média       | Cov     |  |
| $f_1^1$      | 2.9146e-008 | 0.11599     | $f_{1}^{1}$  | 3.2587e-008 | 0.40594         | $f_{1}^{1}$ | 0.20102       | 0.94391 | $f_{1}^{1}$         | 0.20102     | 0.94391 |  |
| $f_1^1$      | 0.044979    | 0.43455     | $f_1^1$      | 0.15742     | 0.72759         | $f_1^1$     | 0.44861       | 0.96095 | $f_1^1$             | 0.44861     | 0.96095 |  |
| $f_3^1$      | 0.0029704   | 0.059349    | $f_3^1$      | 0.016497    | 0.21385         | $f_3^1$     | 0.072765      | 0.94231 | $f_{3}^{1}$         | 0.072765    | 0.94231 |  |
| $f_3^1$      | 0.015428    | 0.13007     | $f_3^1$      | 0.034225    | 0.26307         | $f_3^1$     | 0.090389      | 0.94467 | $f_{3}^{1}$         | 0.090389    | 0.94467 |  |
| $f_{5}^{1}$  | 0.0025996   | 0.080285    | $f_5^1$      | 0.0095089   | 0.38233         | $f_{5}^{1}$ | 0.07278       | 0.94314 | $f_{5}^{1}$         | 0.07278     | 0.94314 |  |
| $f_{5}^{1}$  | 0.010976    | 0.13007     | $f_{5}^{1}$  | 0.024348    | 0.26307         | $f_{5}^{1}$ | 0.064303      | 0.94467 | $f_5^1$             | 0.064303    | 0.94467 |  |
| $f_{7}^{1}$  | 0.014953    | 0.15428     | $f_{7}^{1}$  | 0.040119    | 0.32727         | $f_{7}^{1}$ | 0.11823       | 0.94545 | $f_{7}^{1}$         | 0.11823     | 0.94545 |  |
| $f_{7}^{1}$  | 0.0075738   | 0.026544    | $f_{7}^{1}$  | 0.0057223   | 0.24491         | $f_{7}^{1}$ | 0.08501       | 0.9428  | $f_{7}^{1}$         | 0.08501     | 0.9428  |  |
| $f_9^1$      | 0.011746    | 0.14815     | $f_9^1$      | 0.018737    | 0.23629         | $f_9^1$     | 0.074833      | 0.94511 | $f_{9}^{1}$         | 0.074833    | 0.94511 |  |
| $f_{9}^{1}$  | 0.011674    | 0.20322     | $f_{9}^{1}$  | 0.017189    | 0.27103         | $f_{9}^{1}$ | 0.065242      | 0.947   | $f_{9}^{1}$         | 0.065242    | 0.947   |  |
| $f_{11}^1$   | 0.0025154   | 0.089639    | $f_{11}^1$   | 0.012581    | 0.29041         | $f_{11}^1$  | 0.072558      | 0.94367 | $f_{11}^1$          | 0.072558    | 0.94367 |  |
| $f_{11}^1$   | 0.0028375   | 0.094316    | $f_{11}^1$   | 0.011996    | 0.25952         | $f_{11}^1$  | 0.07257       | 0.94372 | $f_{11}^1$          | 0.07257     | 0.94372 |  |
| $f_{13}^1$   | 0.035928    | 0.25805     | $f_{13}^1$   | 0.048876    | 0.28777         | $f_{13}^1$  | 0.17867       | 0.94935 | $f_{13}^1$          | 0.17867     | 0.94935 |  |
| $f_{13}^1$   | 0.063762    | 0.47848     | $f_{13}^1$   | 0.062285    | 0.13986         | $f_{13}^1$  | 0.21817       | 0.96255 | $f_{13}^1$          | 0.21817     | 0.96255 |  |
| $f_{15}^{1}$ | 0.0060377   | 0.28913     | $f_{15}^{1}$ | 0.079963    | 0.59473         | $f_{15}^1$  | 0.3333        | 0.95093 | $f_{15}^1$          | 0.3333      | 0.95093 |  |

Tabela 7.6: Tabela com os erros de cada função para  $beta\left([10],[10]\right)$ 

|             | Simétrico   |         | Μ                                                                                                                                | ínimo Particul | ar          | Ν                 | línimo de Julio | er      | Es           | féricos de Juli | ier     |
|-------------|-------------|---------|----------------------------------------------------------------------------------------------------------------------------------|----------------|-------------|-------------------|-----------------|---------|--------------|-----------------|---------|
|             |             |         |                                                                                                                                  | Ar             | ntes da Tra | ansformaç         | ão              |         |              |                 |         |
| Dist        | Média       | Cov     | CovDistMédiaCovDistMédia0gamma1.6855e-0080gamma1.1919e-0080.9 <t< th=""><th>Cov</th><th>Dist</th><th>Média</th><th>Cov</th></t<> |                |             | Cov               | Dist            | Média   | Cov          |                 |         |
| gamma       | 0           | 0       | gamma                                                                                                                            | 1.6855e-008    | 0           | gamma             | 1.1919e-008     | 0.94281 | gamma        | 1.1919e-008     | 0.94281 |
|             |             |         |                                                                                                                                  | De             | pois da Tr  | ansformaç         | ção             |         |              |                 |         |
| Func        | Média       | Cov     | Func                                                                                                                             | Média          | Cov         | Func              | Média           | Cov     | Func         | Média           | Cov     |
| $f_1^1$     | 4.9775e-008 | 0.44741 | $f_{1}^{1}$                                                                                                                      | 5.1407e-008    | 0.61413     | $f_{1}^{1}$       | 0.28477         | 0.95504 | $f_{1}^{1}$  | 0.28477         | 0.95504 |
| $f_1^1$     | 0.24329     | 0.81784 | $f_{1}^{1}$                                                                                                                      | 0.33395        | 0.92353     | $f_{1}^{1}$       | 0.61588         | 0.98657 | $f_{1}^{1}$  | 0.61588         | 0.98657 |
| $f_3^1$     | 7.5294      | 0.36241 | $f_{3}^{1}$                                                                                                                      | 7.3407         | 0.7221      | $f_{3}^{1}$       | 9.2914          | 0.92837 | $f_{3}^{1}$  | 9.2914          | 0.92837 |
| $f_{3}^{1}$ | 0.02451     | 0.26433 | $f_{3}^{1}$                                                                                                                      | 0.04727        | 0.57588     | $f_{3}^{1}$       | 0.091137        | 0.94515 | $f_{3}^{1}$  | 0.091137        | 0.94515 |
| $f_{5}^{1}$ | 13.0131     | 0.80425 | $f_{5}^{1}$                                                                                                                      | 13.3803        | 0.56776     | $f_{5}^{1}$       | 16.0914         | 0.97908 | $f_{5}^{1}$  | 16.0914         | 0.97908 |
| $f_{5}^{1}$ | 0.025042    | 0.26433 | $f_{5}^{1}$                                                                                                                      | 0.048295       | 0.57588     | $f_{5}^{1}$       | 0.093113        | 0.94515 | $f_{5}^{1}$  | 0.093113        | 0.94515 |
| $f_{7}^{1}$ | 1.6718      | 0.99993 | $f_{7}^{1}$                                                                                                                      | 0.82425        | 1           | $f_{7}^{1}$       | 0.92954         | 1       | $f_{7}^{1}$  | 0.92954         | 1       |
| $f_{7}^{1}$ | 0.0063296   | 0.26074 | $f_{7}^{1}$                                                                                                                      | 0.015326       | 0.63475     | $f_{7}^{1}$       | 0.025387        | 0.96229 | $f_{7}^{1}$  | 0.025387        | 0.96229 |
| $f_{9}^{1}$ | 0.026878    | 0.23832 | $f_{9}^{1}$                                                                                                                      | 0.04836        | 0.42862     | $f_{9}^{1}$       | 0.10591         | 0.94183 | $f_{9}^{1}$  | 0.10591         | 0.94183 |
| $f_{9}^{1}$ | 0.024253    | 0.26356 | $f_{9}^{1}$                                                                                                                      | 0.045077       | 0.51378     | $f_{9}^{1}$       | 0.092095        | 0.94295 | $f_{9}^{1}$  | 0.092095        | 0.94295 |
| $f_{11}^1$  | 1           | 1       | $f_{11}^1$                                                                                                                       | 1              | 1           | $f_{11}^1$        | 1               | 1       | $f_{11}^1$   | 1               | 1       |
| $f_{11}^1$  | 1           | 1       | $f_{11}^1$                                                                                                                       | 1              | 1           | $f_{11}^1$        | 1               | 1       | $f_{11}^1$   | 1               | 1       |
| $f_{13}^1$  | 0.026879    | 0.26438 | $f_{13}^1$                                                                                                                       | 0.051833       | 0.57587     | $f_{13}^1$        | 0.099938        | 0.94515 | $f_{13}^1$   | 0.099938        | 0.94515 |
| $f_{13}^1$  | 0.074961    | 0.26108 | $f_{13}^1$                                                                                                                       | 0.18158        | 0.63461     | $f_{13}^1$ 0.3007 |                 | 0.9623  | $f_{13}^1$   | 0.30078         | 0.9623  |
| $f_{15}^1$  | 0.12328     | 0.66755 | $f_{15}^{1}$                                                                                                                     | 0.1795         | 0.81967     | $f_{15}^{1}$      | 0.46671         | 0.97246 | $f_{15}^{1}$ | 0.46671         | 0.97246 |

Tabela 7.7: Tabela com os erros de cada função para  $gamma\left([10],[10]\right)$ 

|             | Simétrico   |             |              | Mínimo Part | icular        | Μ            | ínimo de J | lulier  | Esféricos de Julier |         |         |
|-------------|-------------|-------------|--------------|-------------|---------------|--------------|------------|---------|---------------------|---------|---------|
|             |             |             |              | Antes       | da Transforma | ação         |            |         |                     |         |         |
| Dist        | Média       | Cov         | Dist         | Média       | Cov           | Dist         | Média      | Cov     | Dist                | Média   | Cov     |
| logn        | 0           | 1.3434e-008 | logn         | 1.7434e-008 | 1.8998e-008   | logn         | 0          | 0.94281 | logn                | 0       | 0.94281 |
|             |             |             |              | Depois      | da Transform  | ação         |            |         |                     |         |         |
| Func        | Média       | Cov         | Func         | Média       | Cov           | Func         | Média      | Cov     | Func                | Média   | Cov     |
| $f_{1}^{1}$ | 7.4097e-008 | 0.76781     | $f_{1}^{1}$  | 7.4097e-008 | 0.86019       | $f_{1}^{1}$  | 0.44592    | 0.97765 | $f_{1}^{1}$         | 0.44592 | 0.97765 |
| $f_1^1$     | 0.61271     | 0.99315     | $f_1^1$      | 0.68642     | 0.99822       | $f_1^1$      | 0.8595     | 0.99964 | $f_1^1$             | 0.8595  | 0.99964 |
| $f_3^1$     | 0.25945     | 0.73985     | $f_3^1$      | 0.24487     | 0.55694       | $f_3^1$      | 0.50956    | 0.9932  | $f_3^1$             | 0.50956 | 0.9932  |
| $f_3^1$     | 0.33303     | 0.52684     | $f_3^1$      | 0.40579     | 0.65573       | $f_3^1$      | 0.41168    | 0.92449 | $f_3^1$             | 0.41168 | 0.92449 |
| $f_5^1$     | 0.71878     | 0.71786     | $f_5^1$      | 0.91634     | 0.65209       | $f_5^1$      | 0.58924    | 0.8813  | $f_5^1$             | 0.58924 | 0.8813  |
| $f_5^1$     | 0.47706     | 0.52684     | $f_5^1$      | 0.58128     | 0.65573       | $f_5^1$      | 0.58972    | 0.92449 | $f_5^1$             | 0.58972 | 0.92449 |
| $f_7^1$     | 1.1621      | 0.99999     | $f_{7}^{1}$  | 0.92017     | 1             | $f_{7}^{1}$  | 1.1241     | 0.99999 | $f_7^1$             | 1.1241  | 0.99999 |
| $f_{7}^{1}$ | 0.17387     | 0.90706     | $f_{7}^{1}$  | 0.22498     | 1.2948        | $f_{7}^{1}$  | 0.26245    | 0.92357 | $f_{7}^{1}$         | 0.26245 | 0.92357 |
| $f_9^1$     | 0.10806     | 0.59643     | $f_9^1$      | 0.15157     | 0.83418       | $f_{9}^{1}$  | 0.16711    | 0.93146 | $f_9^1$             | 0.16711 | 0.93146 |
| $f_9^1$     | 0.10125     | 0.73191     | $f_9^1$      | 0.14505     | 1.0717        | $f_{9}^{1}$  | 0.14442    | 0.93011 | $f_9^1$             | 0.14442 | 0.93011 |
| $f_{11}^1$  | 0.63807     | 0.9999      | $f_{11}^1$   | 0.65907     | 0.99995       | $f_{11}^1$   | 0.73454    | 0.99999 | $f_{11}^1$          | 0.73454 | 0.99999 |
| $f_{11}^1$  | 0.26516     | 0.94651     | $f_{11}^1$   | 0.34607     | 1.3702        | $f_{11}^1$   | 0.41081    | 0.92039 | $f_{11}^1$          | 0.41081 | 0.92039 |
| $f_{13}^1$  | 0.49626     | 0.84193     | $f_{13}^1$   | 0.72698     | 1.2951        | $f_{13}^1$   | 0.6598     | 0.93201 | $f_{13}^1$          | 0.6598  | 0.93201 |
| $f_{13}^1$  | 0.41299     | 1.0607      | $f_{13}^1$   | 0.67075     | 2.1032        | $f_{13}^1$   | 0.44432    | 0.96199 | $f_{13}^1$          | 0.44432 | 0.96199 |
| $f_{15}^1$  | 0.35803     | 0.94891     | $f_{15}^{1}$ | 0.42347     | 0.97977       | $f_{15}^{1}$ | 0.69821    | 0.996   | $f_{15}^1$          | 0.69821 | 0.996   |

Tabela 7.8: Tabela com os erros de cada função para  $logn\left([0.25],[0.5]\right)$ 

|             | Simétrico   |             | Mínimo Particular |             |                | Μ            | línimo de J | ulier   | Esféricos de Julier |          |         |
|-------------|-------------|-------------|-------------------|-------------|----------------|--------------|-------------|---------|---------------------|----------|---------|
|             |             |             |                   | Antes       | s da Transforn | nação        |             |         |                     |          |         |
| Dist        | Média       | Cov         | Dist              | Média       | Cov            | Dist         | Média       | Cov     | Dist                | Média    | Cov     |
| pois        | 0           | 1.7127e-008 | pois              | 1.7203e-008 | 1.7127e-008    | pois         | 0           | 0.94281 | pois                | 0        | 0.94281 |
|             |             |             |                   | Depoi       | s da Transforr | nação        |             |         |                     |          |         |
| Func        | Média       | Cov         | Func              | Média       | Cov            | Func         | Média       | Cov     | Func                | Média    | Cov     |
| $f_1^1$     | 1.8445e-007 | 0.31397     | $f_{1}^{1}$       | 1.8494e-007 | 0.53051        | $f_{1}^{1}$  | 0.26252     | 0.94909 | $f_{1}^{1}$         | 0.26252  | 0.94909 |
| $f_1^1$     | 0.15471     | 0.68318     | $f_{1}^{1}$       | 0.26142     | 0.86334        | $f_1^1$      | 0.56524     | 0.97722 | $f_1^1$             | 0.56524  | 0.97722 |
| $f_3^1$     | 3.4151      | 0.19445     | $f_3^1$           | 20.0165     | 0.98819        | $f_3^1$      | 10.3658     | 0.16958 | $f_3^1$             | 10.3658  | 0.16958 |
| $f_{3}^{1}$ | 0.016938    | 0.24896     | $f_3^1$           | 0.040729    | 0.38268        | $f_3^1$      | 0.10915     | 0.95124 | $f_3^1$             | 0.10915  | 0.95124 |
| $f_5^1$     | 7.7553      | 0.20316     | $f_{5}^{1}$       | 5.3682      | 0.73468        | $f_{5}^{1}$  | 24.3199     | 0.63409 | $f_5^1$             | 24.3199  | 0.63409 |
| $f_5^1$     | 0.017916    | 0.24896     | $f_{5}^{1}$       | 0.043082    | 0.38268        | $f_{5}^{1}$  | 0.11545     | 0.95124 | $f_5^1$             | 0.11545  | 0.95124 |
| $f_7^1$     | 1.0583      | 0.99822     | $f_{7}^{1}$       | 0.96687     | 0.99965        | $f_{7}^{1}$  | 1.0188      | 0.99986 | $f_7^1$             | 1.0188   | 0.99986 |
| $f_{7}^{1}$ | 0.020349    | 0.56958     | $f_{7}^{1}$       | 0.028105    | 0.15391        | $f_{7}^{1}$  | 0.0722      | 0.97101 | $f_{7}^{1}$         | 0.0722   | 0.97101 |
| $f_9^1$     | 0.0050917   | 0.048202    | $f_{9}^{1}$       | 0.034387    | 0.32543        | $f_{9}^{1}$  | 0.099556    | 0.9448  | $f_{9}^{1}$         | 0.099556 | 0.9448  |
| $f_9^1$     | 0.0086704   | 0.14611     | $f_{9}^{1}$       | 0.031623    | 0.37294        | $f_{9}^{1}$  | 0.086994    | 0.94728 | $f_{9}^{1}$         | 0.086994 | 0.94728 |
| $f_{11}^1$  | 0.99422     | 1           | $f_{11}^1$        | 0.99812     | 1              | $f_{11}^1$   | 0.99957     | 1       | $f_{11}^1$          | 0.99957  | 1       |
| $f_{11}^1$  | 0.85001     | 0.99932     | $f_{11}^1$        | 0.68583     | 0.99742        | $f_{11}^1$   | 0.98957     | 1       | $f_{11}^1$          | 0.98957  | 1       |
| $f_{13}^1$  | 0.018196    | 0.23323     | $f_{13}^1$        | 0.048882    | 0.39201        | $f_{13}^1$   | 0.12968     | 0.95075 | $f_{13}^1$          | 0.12968  | 0.95075 |
| $f_{13}^1$  | 0.087279    | 0.59988     | $f_{13}^1$        | 0.11109     | 0.26785        | $f_{13}^1$   | 0.29344     | 0.97269 | $f_{13}^1$          | 0.29344  | 0.97269 |
| $f_{15}^1$  | 0.072238    | 0.52211     | $f_{15}^1$        | 0.1375      | 0.74036        | $f_{15}^{1}$ | 0.42811     | 0.96298 | $f_{15}^{1}$        | 0.42811  | 0.96298 |

Tabela 7.9: Tabela com os erros de cada função para pois ([12])

|             | Simétrico   |             |             | Mínimo Parti | N              | Aínimo de Ju | lier       | Esféricos de Julier |             |            |         |
|-------------|-------------|-------------|-------------|--------------|----------------|--------------|------------|---------------------|-------------|------------|---------|
|             |             |             |             | Ant          | es da Transfoi | rmação       |            |                     |             |            |         |
| Dist        | Média       | Cov         | Dist        | Média        | Cov            | Dist         | Média      | Cov                 | Dist        | Média      | Cov     |
| rayl        | 0           | 1.0733e-008 | rayl        | 1.8792e-008  | 1.0733e-008    | rayl         | 1.085e-008 | 0.94281             | rayl        | 1.085e-008 | 0.94281 |
|             |             |             |             | Dep          | ois da Transfo | rmação       |            |                     |             |            |         |
| Func        | Média       | Cov         | Func        | Média        | Cov            | Func         | Média      | Cov                 | Func        | Média      | Cov     |
| $f_1^1$     | 4.2045e-008 | 0.5461      | $f_1^1$     | 4.6482e-008  | 0.74029        | $f_1^1$      | 0.43527    | 0.9614              | $f_1^1$     | 0.43527    | 0.9614  |
| $f_1^1$     | 0.38501     | 0.89469     | $f_1^1$     | 0.52193      | 0.97272        | $f_{1}^{1}$  | 0.79496    | 0.99461             | $f_{1}^{1}$ | 0.79496    | 0.99461 |
| $f_3^1$     | 7.1059      | 0.61836     | $f_3^1$     | 10.2939      | 0.5609         | $f_3^1$      | 7.2259     | 0.63384             | $f_3^1$     | 7.2259     | 0.63384 |
| $f_3^1$     | 0.037677    | 0.2696      | $f_3^1$     | 0.13773      | 0.65336        | $f_3^1$      | 0.20841    | 0.96288             | $f_3^1$     | 0.20841    | 0.96288 |
| $f_{5}^{1}$ | 8.5304      | 0.42097     | $f_5^1$     | 10.0251      | 0.95497        | $f_5^1$      | 8.6754     | 0.4267              | $f_5^1$     | 8.6754     | 0.4267  |
| $f_{5}^{1}$ | 0.039719    | 0.2696      | $f_{5}^{1}$ | 0.1452       | 0.65336        | $f_5^1$      | 0.21971    | 0.96288             | $f_5^1$     | 0.21971    | 0.96288 |
| $f_{7}^{1}$ | 0.39244     | 1           | $f_{7}^{1}$ | 1.3904       | 0.99996        | $f_{7}^{1}$  | 0.42756    | 1                   | $f_{7}^{1}$ | 0.42756    | 1       |
| $f_7^1$     | 0.045159    | 0.78276     | $f_{7}^{1}$ | 0.10248      | 0.31168        | $f_{7}^{1}$  | 0.14409    | 0.99239             | $f_{7}^{1}$ | 0.14409    | 0.99239 |
| $f_9^1$     | 0.050657    | 0.25603     | $f_9^1$     | 0.11187      | 0.564          | $f_9^1$      | 0.18547    | 0.94602             | $f_9^1$     | 0.18547    | 0.94602 |
| $f_9^1$     | 0.042155    | 0.20594     | $f_{9}^{1}$ | 0.10579      | 0.65766        | $f_{9}^{1}$  | 0.16473    | 0.95225             | $f_{9}^{1}$ | 0.16473    | 0.95225 |
| $f_{11}^1$  | 1           | 1           | $f_{11}^1$  | 1            | 1              | $f_{11}^1$   | 1          | 1                   | $f_{11}^1$  | 1          | 1       |
| $f_{11}^1$  | 0.89071     | 0.99879     | $f_{11}^1$  | 0.29148      | 0.976          | $f_{11}^1$   | 0.99982    | 1                   | $f_{11}^1$  | 0.99982    | 1       |
| $f_{13}^1$  | 0.052143    | 0.19292     | $f_{13}^1$  | 0.16363      | 0.68573        | $f_{13}^1$   | 0.24387    | 0.96118             | $f_{13}^1$  | 0.24387    | 0.96118 |
| $f_{13}^1$  | 0.25753     | 0.91822     | $f_{13}^1$  | 0.34944      | 0.79155        | $f_{13}^1$   | 0.58194    | 0.99698             | $f_{13}^1$  | 0.58194    | 0.99698 |
| $f_{15}^1$  | 0.21446     | 0.76951     | $f_{15}^1$  | 0.31378      | 0.91181        | $f_{15}^{1}$ | 0.65282    | 0.98323             | $f_{15}^1$  | 0.65282    | 0.98323 |

Tabela 7.10: Tabela com os erros de cada função para rayl([10])

|             | Simétrico   |            |             | Mínimo Parti | cular         |             | Mínimo de Ju | lier    | Esféricos de Julier |             |         |
|-------------|-------------|------------|-------------|--------------|---------------|-------------|--------------|---------|---------------------|-------------|---------|
|             |             |            |             | Aı           | ntes da Trans | formaç      | ão           |         |                     |             |         |
| Dist        | Média       | Cov        | Dist        | Média        | Cov           | Dist        | Média        | Cov     | Dist                | Média       | Cov     |
| Т           | 1.3742e-007 | 1.332e-008 | Т           | 1.6977e-007  | 1.332e-008    | Т           | 7.0495e-008  | 0.94281 | Т                   | 7.0495e-008 | 0.94281 |
|             |             |            |             | De           | pois da Trans | sformaç     | ão           |         |                     |             |         |
| Func        | Média       | Cov        | Func        | Média        | Cov           | Func        | Média        | Cov     | Func                | Média       | Cov     |
| $f_{1}^{1}$ | 6.1038e-008 | 0.91037    | $f_{1}^{1}$ | 6.1038e-008  | 0.91203       | $f_{1}^{1}$ | 0.9428       | 0.99894 | $f_{1}^{1}$         | 0.9428      | 0.99894 |
| $f_1^1$     | 0.78572     | 0.99905    | $f_1^1$     | 0.78715      | 0.99741       | $f_{1}^{1}$ | 0.99763      | 1       | $f_1^1$             | 0.99763     | 1       |
| $f_{3}^{1}$ | 1.3156      | 0.69859    | $f_3^1$     | 8.0584       | 0.71875       | $f_3^1$     | 1.5686       | 0.83584 | $f_3^1$             | 1.5686      | 0.83584 |
| $f_{3}^{1}$ | 1.0726      | 0.65091    | $f_3^1$     | 12.8681      | 0.29589       | $f_3^1$     | 1.5688       | 0.94807 | $f_3^1$             | 1.5688      | 0.94807 |
| $f_{5}^{1}$ | 0.4107      | 0.66476    | $f_{5}^{1}$ | 0.41445      | 0.75042       | $f_{5}^{1}$ | 0.81325      | 0.99541 | $f_{5}^{1}$         | 0.81325     | 0.99541 |
| $f_{5}^{1}$ | 0.039694    | 0.65091    | $f_{5}^{1}$ | 0.47621      | 0.29589       | $f_{5}^{1}$ | 0.058056     | 0.94807 | $f_{5}^{1}$         | 0.058056    | 0.94807 |
| $f_{7}^{1}$ | 1.0633      | 0.99975    | $f_{7}^{1}$ | 9.7655       | 0.94386       | $f_{7}^{1}$ | 1.0044       | 1       | $f_{7}^{1}$         | 1.0044      | 1       |
| $f_{7}^{1}$ | 1.8835      | 0.46722    | $f_{7}^{1}$ | 16.0549      | 0.54083       | $f_{7}^{1}$ | 2.4743       | 0.86435 | $f_{7}^{1}$         | 2.4743      | 0.86435 |
| $f_{9}^{1}$ | 0.24911     | 0.42285    | $f_{9}^{1}$ | 0.53039      | 0.2144        | $f_{9}^{1}$ | 0.66848      | 0.78328 | $f_{9}^{1}$         | 0.66848     | 0.78328 |
| $f_{9}^{1}$ | 0.3319      | 0.71535    | $f_{9}^{1}$ | 0.4103       | 0.35184       | $f_{9}^{1}$ | 0.54736      | 0.45161 | $f_{9}^{1}$         | 0.54736     | 0.45161 |
| $f_{11}^1$  | 0.40589     | 0.98497    | $f_{11}^1$  | 0.50692      | 0.99473       | $f_{11}^1$  | 0.69501      | 0.9991  | $f_{11}^1$          | 0.69501     | 0.9991  |
| $f_{11}^1$  | 0.36493     | 0.98972    | $f_{11}^1$  | 0.18966      | 0.98233       | $f_{11}^1$  | 0.68081      | 0.99939 | $f_{11}^1$          | 0.68081     | 0.99939 |
| $f_{13}^1$  | 0.84953     | 1.3002     | $f_{13}^1$  | 0.68392      | 0.62378       | $f_{13}^1$  | 1.0643       | 0.9932  | $f_{13}^1$          | 1.0643      | 0.9932  |
| $f_{13}^1$  | 14.9733     | 0.81304    | $f_{13}^1$  | 1.5709       | 0.99999       | $f_{13}^1$  | 14.9725      | 0.81299 | $f_{13}^1$          | 14.9725     | 0.81299 |
| $f_{15}^1$  | 0.9249      | 0.96757    | $f_{15}^1$  | 3.4315       | 0.96786       | $f_{15}^1$  | 0.99194      | 0.99996 | $f_{15}^1$          | 0.99194     | 0.99996 |

Tabela 7.11: Tabela com os erros de cada função para  $T\left( \left[ 10 \right] \right)$ 

|             | Simétrico |         |              | Mínimo Parti | cular          | Μ           | ínimo de J | lulier  | Esféricos de Julier |         |         |  |
|-------------|-----------|---------|--------------|--------------|----------------|-------------|------------|---------|---------------------|---------|---------|--|
|             |           |         |              | Ant          | es da Transfo  | rmação      | )          |         |                     |         |         |  |
| Dist        | Média     | Cov     | Dist         | Média        | Cov            | Dist        | Média      | Cov     | Dist                | Média   | Cov     |  |
| unif        | 0         | 0       | unif         | 1.8851e-008  | 1.458e-008     | unif        | 0          | 0.94281 | unif                | 0       | 0.94281 |  |
|             |           |         |              | Depe         | ois da Transfo | ormaçã      | D          |         |                     |         |         |  |
| Func        | Média     | Cov     | Func         | Média        | Cov            | Func        | Média      | Cov     | Func                | Média   | Cov     |  |
| $f_{1}^{1}$ | 0         | 0.15246 | $f_{1}^{1}$  | 2.5284e-008  | 0.63766        | $f_{1}^{1}$ | 0.47196    | 0.94623 | $f_{1}^{1}$         | 0.47196 | 0.94623 |  |
| $f_1^1$     | 0.10168   | 0.46041 | $f_1^1$      | 0.42529      | 0.90092        | $f_1^1$     | 0.78616    | 0.98103 | $f_1^1$             | 0.78616 | 0.98103 |  |
| $f_3^1$     | 0.68682   | 0.85759 | $f_3^1$      | 1.7159       | 0.9974         | $f_3^1$     | 2.0187     | 0.84744 | $f_3^1$             | 2.0187  | 0.84744 |  |
| $f_3^1$     | 0.20437   | 0.54598 | $f_3^1$      | 0.31126      | 0.85263        | $f_3^1$     | 0.34384    | 0.9777  | $f_3^1$             | 0.34384 | 0.9777  |  |
| $f_5^1$     | 0.68549   | 0.83569 | $f_5^1$      | 3.7052       | 0.99734        | $f_5^1$     | 2.0178     | 0.11886 | $f_5^1$             | 2.0178  | 0.11886 |  |
| $f_5^1$     | 0.22756   | 0.54598 | $f_{5}^{1}$  | 0.3466       | 0.85263        | $f_{5}^{1}$ | 0.38287    | 0.9777  | $f_5^1$             | 0.38287 | 0.9777  |  |
| $f_{7}^{1}$ | 1.5323    | 0.99993 | $f_{7}^{1}$  | 1.4179       | 1              | $f_{7}^{1}$ | 0.38193    | 0.99999 | $f_{7}^{1}$         | 0.38193 | 0.99999 |  |
| $f_{7}^{1}$ | 0.14597   | 0.74182 | $f_{7}^{1}$  | 0.17955      | 0.25042        | $f_{7}^{1}$ | 0.31979    | 0.9922  | $f_{7}^{1}$         | 0.31979 | 0.9922  |  |
| $f_9^1$     | 0.083539  | 0.33367 | $f_9^1$      | 0.097034     | 0.38599        | $f_{9}^{1}$ | 0.23669    | 0.95686 | $f_9^1$             | 0.23669 | 0.95686 |  |
| $f_9^1$     | 0.093963  | 0.49858 | $f_9^1$      | 0.085172     | 0.33215        | $f_{9}^{1}$ | 0.21858    | 0.96814 | $f_9^1$             | 0.21858 | 0.96814 |  |
| $f_{11}^1$  | 0.45445   | 0.84389 | $f_{11}^1$   | 0.80903      | 0.99257        | $f_{11}^1$  | 0.94766    | 0.99911 | $f_{11}^1$          | 0.94766 | 0.99911 |  |
| $f_{11}^1$  | 0.45559   | 0.84421 | $f_{11}^1$   | 0.58         | 0.34494        | $f_{11}^1$  | 0.94773    | 0.99911 | $f_{11}^1$          | 0.94773 | 0.99911 |  |
| $f_{13}^1$  | 0.24492   | 0.68027 | $f_{13}^1$   | 0.14929      | 0.29606        | $f_{13}^1$  | 0.47321    | 0.98079 | $f_{13}^1$          | 0.47321 | 0.98079 |  |
| $f_{13}^1$  | 0.86802   | 0.99998 | $f_{13}^1$   | 0.81257      | 0.99993        | $f_{13}^1$  | 0.92013    | 1       | $f_{13}^1$          | 0.92013 | 1       |  |
| $f_{15}^1$  | 0.0075515 | 0.32976 | $f_{15}^{1}$ | 0.26116      | 0.81544        | $f_{15}^1$  | 0.66717    | 0.96521 | $f_{15}^{1}$        | 0.66717 | 0.96521 |  |

Tabela 7.12: Tabela com os erros de cada função para unif([0], [10])

|             | Simétric    | 0           |             | Mínimo Part | icular          | Μ            | línimo de J | Julier   | Es           | féricos de | Julier   |
|-------------|-------------|-------------|-------------|-------------|-----------------|--------------|-------------|----------|--------------|------------|----------|
|             |             |             |             | Ante        | s da Transforn  | nação        |             |          |              |            |          |
| Dist        | Média       | Cov         | Dist        | Média       | Cov             | Dist         | Média       | Cov      | Dist         | Média      | Cov      |
| norm        | 6.5986e-009 | 1.2862e-008 | norm        | 2.3329e-008 | 1.3236e-008     | norm         | 0.58834     | 0.97696  | norm         | 0.46486    | 0.99372  |
|             |             |             |             | Depoi       | is da Transforr | nação        |             |          |              |            |          |
| Func        | Média       | Cov         | Func        | Média       | Cov             | Func         | Média       | Cov      | Func         | Média      | Cov      |
| $f_{1}^{2}$ | 3.251       | 12.0522     | $f_{1}^{2}$ | 3.251       | 9.9482          | $f_{1}^{2}$  | 1.9833      | 3.4095   | $f_{1}^{2}$  | 2.0295     | 3.8881   |
| $f_{1}^{2}$ | 22.3534     | 881.0878    | $f_{1}^{2}$ | 22.6459     | 557.843         | $f_{1}^{2}$  | 10.8465     | 114.1937 | $f_{1}^{2}$  | 10.0398    | 125.4708 |
| $f_{3}^{2}$ | 0.93583     | 0.95439     | $f_{3}^{2}$ | 0.90838     | 0.95218         | $f_{3}^{2}$  | 1.0153      | 0.99299  | $f_{3}^{2}$  | 0.93475    | 0.95661  |
| $f_{3}^{2}$ | 0.91056     | 0.79213     | $f_{3}^{2}$ | 0.92278     | 0.77641         | $f_{3}^{2}$  | 0.87761     | 0.91417  | $f_{3}^{2}$  | 0.88314    | 0.99047  |
| $f_{5}^{2}$ | 0.9369      | 0.93868     | $f_{5}^{2}$ | 0.97786     | 0.91838         | $f_{5}^{2}$  | 0.93298     | 0.99139  | $f_{5}^{2}$  | 0.96094    | 0.9777   |
| $f_{5}^{2}$ | 1.0309      | 0.79213     | $f_{5}^{2}$ | 0.98507     | 0.77641         | $f_{5}^{2}$  | 1.0134      | 0.95132  | $f_{5}^{2}$  | 1.0619     | 0.99047  |
| $f_{7}^{2}$ | 1.0287      | 0.75463     | $f_{7}^{2}$ | 0.79163     | 0.88609         | $f_{7}^{2}$  | 1.0192      | 0.88024  | $f_{7}^{2}$  | 1.0729     | 0.88026  |
| $f_{7}^{2}$ | 1.0309      | 0.79213     | $f_{7}^{2}$ | 0.98507     | 0.77641         | $f_{7}^{2}$  | 1.0134      | 0.95132  | $f_{7}^{2}$  | 1.0619     | 0.99047  |
| $f_{9}^{2}$ | 0.75376     | 0.8823      | $f_{9}^{2}$ | 0.75666     | 0.86809         | $f_{9}^{2}$  | 0.78535     | 0.94128  | $f_{9}^{2}$  | 0.74514    | 0.99219  |
| $f_{9}^{2}$ | 0.75506     | 0.98068     | $f_{9}^{2}$ | 0.75901     | 0.97864         | $f_{9}^{2}$  | 0.82462     | 0.96615  | $f_{9}^{2}$  | 0.7617     | 0.99897  |
| $f_{11}^2$  | 18.7035     | 952.5798    | $f_{11}^2$  | 15.8313     | 278.2417        | $f_{11}^2$   | 5.4017      | 32.6999  | $f_{11}^2$   | 4.9346     | 29.176   |
| $f_{11}^2$  | 1.85        | 14.2751     | $f_{11}^2$  | 0.74602     | 1.4821          | $f_{11}^2$   | 0.96041     | 0.99556  | $f_{11}^2$   | 0.95292    | 0.9999   |
| $f_{13}^2$  | 0.79613     | 0.8397      | $f_{13}^2$  | 0.8227      | 0.8377          | $f_{13}^2$   | 0.9254      | 0.92855  | $f_{13}^2$   | 0.85297    | 0.99129  |
| $f_{13}^2$  | 0.89217     | 0.974       | $f_{13}^2$  | 0.92739     | 0.97914         | $f_{13}^2$   | 0.75087     | 1.4857   | $f_{13}^2$   | 0.85445    | 0.99928  |
| $f_{15}^2$  | 0.98964     | 0.76231     | $f_{15}^2$  | 1.0055      | 0.78302         | $f_{15}^2$   | 0.7507      | 0.86217  | $f_{15}^2$   | 0.79079    | 0.90037  |
| $f_{15}^2$  | 0.84477     | 0.97863     | $f_{15}^2$  | 0.82467     | 0.97044         | $f_{15}^2$   | 0.89143     | 0.98844  | $f_{15}^2$   | 0.85397    | 0.9994   |
| $f_{17}^2$  | 0.96978     | 0.84788     | $f_{17}^2$  | 1.1361      | 0.76426         | $f_{17}^2$   | 1.0497      | 0.99109  | $f_{17}^2$   | 1.0315     | 0.95678  |
| $f_{17}^2$  | 0.82168     | 0.7634      | $f_{17}^2$  | 0.99172     | 0.80083         | $f_{17}^2$   | 0.97471     | 0.995    | $f_{17}^2$   | 1.0234     | 0.97778  |
| $f_{19}^2$  | 1.0937      | 0.76459     | $f_{19}^2$  | 1.0935      | 0.88251         | $f_{19}^{2}$ | 0.95858     | 0.8935   | $f_{19}^{2}$ | 0.96962    | 0.93755  |
| $f_{19}^2$  | 0.96806     | 0.72421     | $f_{19}^2$  | 1.109       | 0.79509         | $f_{19}^{2}$ | 1.0376      | 0.99792  | $f_{19}^{2}$ | 1.03       | 0.99712  |
| $f_{21}^2$  | 24.4418     | 1003.2833   | $f_{21}^2$  | 25.2029     | 698.363         | $f_{21}^2$   | 15.2249     | 196.561  | $f_{21}^2$   | 14.5948    | 233.8487 |

Tabela 7.13: Tabela com os erros de cada função para  $norm\left([1,5],P_{norm}^2\right)$ 

|             | Simétric                                                | 20          |             | Mínimo Part | icular       | Μ           | ínimo de J | lulier  | Est         | Esféricos de Julio |         |  |  |
|-------------|---------------------------------------------------------|-------------|-------------|-------------|--------------|-------------|------------|---------|-------------|--------------------|---------|--|--|
|             | Antes da TransformaçãotMédiaCovDistMédiaCovDistMédiaCov |             |             |             |              |             |            |         |             |                    |         |  |  |
| Dist        | Média                                                   | Cov         | Dist        | Média       | Cov          | Dist        | Média      | Cov     | Dist        | Média              | Cov     |  |  |
| chi2        | 0                                                       | 9.8877e-009 | chi2        | 2.3093e-008 | 1.4339e-008  | chi2        | 0.59213    | 0.86354 | chi2        | 0.38093            | 1       |  |  |
|             |                                                         |             |             | Depois      | da Transform | ação        |            |         |             |                    |         |  |  |
| Func        | Média                                                   | Cov         | Func        | Média       | Cov          | Func        | Média      | Cov     | Func        | Média              | Cov     |  |  |
| $f_{1}^{2}$ | 7.0429e-008                                             | 0.58572     | $f_{1}^{2}$ | 7.4239e-008 | 0.41347      | $f_{1}^{2}$ | 0.69733    | 0.95693 | $f_{1}^{2}$ | 0.50969            | 0.99542 |  |  |
| $f_{1}^{2}$ | 0.39107                                                 | 0.86161     | $f_{1}^{2}$ | 0.20393     | 0.73562      | $f_{1}^{2}$ | 0.88742    | 0.99889 | $f_{1}^{2}$ | 0.81083            | 0.99999 |  |  |
| $f_{3}^{2}$ | 5.8549                                                  | 0.84682     | $f_{3}^{2}$ | 3.422       | 0.96668      | $f_{3}^{2}$ | 4.369      | 0.85171 | $f_{3}^{2}$ | 4.2492             | 0.2993  |  |  |
| $f_{3}^{2}$ | 0.2349                                                  | 1.1066      | $f_{3}^{2}$ | 0.083718    | 0.36939      | $f_{3}^{2}$ | 0.54978    | 1.5454  | $f_{3}^{2}$ | 0.22892            | 0.589   |  |  |
| $f_{5}^{2}$ | 1.4959                                                  | 0.77392     | $f_{5}^{2}$ | 1.3413      | 0.50055      | $f_{5}^{2}$ | 1.6485     | 0.89411 | $f_{5}^{2}$ | 2.1366             | 0.99942 |  |  |
| $f_{5}^{2}$ | 0.25543                                                 | 1.1066      | $f_{5}^{2}$ | 0.091035    | 0.36939      | $f_{5}^{2}$ | 0.54017    | 1.2249  | $f_{5}^{2}$ | 0.24892            | 0.589   |  |  |
| $f_{7}^{2}$ | 1.4268                                                  | 0.99991     | $f_{7}^{2}$ | 1.6136      | 0.99999      | $f_{7}^{2}$ | 1.1722     | 0.99998 | $f_{7}^{2}$ | 0.79813            | 0.99982 |  |  |
| $f_{7}^{2}$ | 0.25543                                                 | 1.1066      | $f_{7}^{2}$ | 0.091035    | 0.36939      | $f_{7}^{2}$ | 0.54017    | 1.2249  | $f_{7}^{2}$ | 0.24892            | 0.589   |  |  |
| $f_{9}^{2}$ | 0.1788                                                  | 0.82489     | $f_{9}^{2}$ | 0.053478    | 0.40554      | $f_{9}^{2}$ | 0.56287    | 1.1138  | $f_{9}^{2}$ | 0.23616            | 0.83854 |  |  |
| $f_{9}^{2}$ | 0.18853                                                 | 1.2168      | $f_{9}^{2}$ | 0.050106    | 0.47074      | $f_{9}^{2}$ | 0.56401    | 2.6606  | $f_{9}^{2}$ | 0.17293            | 0.74856 |  |  |
| $f_{11}^2$  | 1                                                       | 1           | $f_{11}^2$  | 1           | 1            | $f_{11}^2$  | 1          | 1       | $f_{11}^2$  | 1                  | 1       |  |  |
| $f_{11}^2$  | 1.7926                                                  | 4.8497      | $f_{11}^2$  | 0.42242     | 0.73594      | $f_{11}^2$  | 0.95878    | 0.99917 | $f_{11}^2$  | 0.85516            | 0.32946 |  |  |
| $f_{13}^2$  | 0.38551                                                 | 1.6438      | $f_{13}^2$  | 0.089492    | 0.46118      | $f_{13}^2$  | 0.53154    | 0.76778 | $f_{13}^2$  | 0.27118            | 0.63785 |  |  |
| $f_{13}^2$  | 1.058                                                   | 1.8192      | $f_{13}^2$  | 0.11645     | 0.84009      | $f_{13}^2$  | 0.74366    | 0.97889 | $f_{13}^2$  | 0.42195            | 0.78138 |  |  |
| $f_{15}^2$  | 0.11056                                                 | 0.41794     | $f_{15}^2$  | 0.085688    | 0.32235      | $f_{15}^2$  | 0.61355    | 0.7209  | $f_{15}^2$  | 0.28678            | 0.99228 |  |  |
| $f_{15}^2$  | 0.26063                                                 | 0.87369     | $f_{15}^2$  | 0.20068     | 0.58684      | $f_{15}^2$  | 0.58923    | 0.8859  | $f_{15}^2$  | 0.5881             | 0.81975 |  |  |
| $f_{17}^2$  | 4.335                                                   | 0.8028      | $f_{17}^2$  | 4.3416      | 0.83427      | $f_{17}^2$  | 3.362      | 0.9318  | $f_{17}^2$  | 1.7446             | 0.70749 |  |  |
| $f_{17}^2$  | 1.7737                                                  | 0.8289      | $f_{17}^2$  | 1.1819      | 0.98881      | $f_{17}^2$  | 1.5523     | 0.82821 | $f_{17}^2$  | 1.7789             | 0.99901 |  |  |
| $f_{19}^2$  | 0.11197                                                 | 0.42086     | $f_{19}^2$  | 0.086749    | 0.32358      | $f_{19}^2$  | 0.61351    | 0.72223 | $f_{19}^2$  | 0.28883            | 0.99235 |  |  |
| $f_{19}^2$  | 2.7797                                                  | 0.8137      | $f_{19}^2$  | 2.701       | 0.96441      | $f_{19}^2$  | 2.2018     | 0.9334  | $f_{19}^2$  | 1.774              | 0.95944 |  |  |
| $f_{21}^2$  | 0.26151                                                 | 0.77742     | $f_{21}^2$  | 0.17254     | 0.67591      | $f_{21}^2$  | 0.81208    | 0.9923  | $f_{21}^2$  | 0.71081            | 0.99917 |  |  |

Tabela 7.14: Tabela com os erros de cada função para chi2 ([10, 5])

|             | Simétric                                                 | 0           |             | Mínimo Part | icular         | M            | ínimo de J | lulier  | Es          | Esféricos de Ju |          |  |
|-------------|----------------------------------------------------------|-------------|-------------|-------------|----------------|--------------|------------|---------|-------------|-----------------|----------|--|
|             | Antes da TransformaçãostMédiaCovDistMédiaCovDistMédiaCov |             |             |             |                |              |            |         |             |                 |          |  |
| Dist        | Média                                                    | Cov         | Dist        | Média       | Cov            | Dist         | Média      | Cov     | Dist        | Média           | Cov      |  |
| exp         | 8.9105e-009                                              | 1.6878e-008 | exp         | 2.3078e-008 | 1.1927e-008    | exp          | 0.61016    | 0.9634  | exp         | 0.4769          | 1        |  |
|             |                                                          |             |             | Depois      | s da Transforn | nação        |            |         |             |                 |          |  |
| Func        | Média                                                    | Cov         | Func        | Média       | Cov            | Func         | Média      | Cov     | Func        | Média           | Cov      |  |
| $f_{1}^{2}$ | 1.1689e-007                                              | 0.8478      | $f_{1}^{2}$ | 1.1542e-007 | 0.74559        | $f_{1}^{2}$  | 0.8343     | 0.99628 | $f_{1}^{2}$ | 0.73592         | 0.99966  |  |
| $f_{1}^{2}$ | 0.76025                                                  | 0.99478     | $f_{1}^{2}$ | 0.65105     | 0.9887         | $f_{1}^{2}$  | 0.98804    | 1       | $f_{1}^{2}$ | 0.97907         | 1        |  |
| $f_{3}^{2}$ | 1.9323                                                   | 0.5232      | $f_{3}^{2}$ | 1.8067      | 0.8431         | $f_{3}^{2}$  | 1.664      | 0.70714 | $f_{3}^{2}$ | 2.3962          | 0.98958  |  |
| $f_{3}^{2}$ | 0.39601                                                  | 1.4415      | $f_{3}^{2}$ | 0.47264     | 1.4371         | $f_{3}^{2}$  | 0.45675    | 0.242   | $f_{3}^{2}$ | 0.39819         | 0.27374  |  |
| $f_{5}^{2}$ | 3.1027                                                   | 0.6735      | $f_{5}^{2}$ | 0.91188     | 1.4066         | $f_{5}^{2}$  | 2.2347     | 0.96542 | $f_{5}^{2}$ | 2.8267          | 0.9721   |  |
| $f_{5}^{2}$ | 0.43546                                                  | 1.4415      | $f_{5}^{2}$ | 0.51972     | 1.4371         | $f_{5}^{2}$  | 0.43181    | 0.55202 | $f_{5}^{2}$ | 0.43786         | 0.27374  |  |
| $f_{7}^{2}$ | 1.7596                                                   | 0.99998     | $f_{7}^{2}$ | 1.1416      | 0.99998        | $f_{7}^{2}$  | 1.2472     | 0.99999 | $f_{7}^{2}$ | 1.6075          | 0.99999  |  |
| $f_{7}^{2}$ | 0.43546                                                  | 1.4415      | $f_{7}^{2}$ | 0.51972     | 1.4371         | $f_{7}^{2}$  | 0.43181    | 0.55202 | $f_{7}^{2}$ | 0.43786         | 0.27374  |  |
| $f_{9}^{2}$ | 0.41496                                                  | 0.67826     | $f_{9}^{2}$ | 0.35158     | 1.1495         | $f_{9}^{2}$  | 0.51644    | 0.56734 | $f_{9}^{2}$ | 0.33622         | 0.74719  |  |
| $f_{9}^{2}$ | 0.38877                                                  | 0.5026      | $f_{9}^{2}$ | 0.39578     | 1.8064         | $f_{9}^{2}$  | 0.52347    | 1.1217  | $f_{9}^{2}$ | 0.31809         | 0.44475  |  |
| $f_{11}^2$  | 1                                                        | 1           | $f_{11}^2$  | 1           | 1              | $f_{11}^2$   | 1          | 1       | $f_{11}^2$  | 1               | 1        |  |
| $f_{11}^2$  | 31.0943                                                  | 1693.3368   | $f_{11}^2$  | 1.4738      | 2.529          | $f_{11}^2$   | 0.98525    | 0.99957 | $f_{11}^2$  | 1.6379          | 3.1399   |  |
| $f_{13}^2$  | 0.79356                                                  | 0.48735     | $f_{13}^2$  | 0.99716     | 2.7191         | $f_{13}^2$   | 0.28226    | 0.80624 | $f_{13}^2$  | 0.72108         | 0.085744 |  |
| $f_{13}^2$  | 0.98117                                                  | 1           | $f_{13}^2$  | 1.7953      | 0.98495        | $f_{13}^2$   | 0.97314    | 1       | $f_{13}^2$  | 1.0456          | 0.99999  |  |
| $f_{15}^2$  | 0.39805                                                  | 0.7479      | $f_{15}^2$  | 0.17368     | 0.31174        | $f_{15}^{2}$ | 0.65912    | 0.94683 | $f_{15}^2$  | 0.37645         | 0.99832  |  |
| $f_{15}^2$  | 0.44075                                                  | 1.6115      | $f_{15}^2$  | 0.42478     | 0.74602        | $f_{15}^2$   | 0.67006    | 0.95731 | $f_{15}^2$  | 0.78947         | 0.83027  |  |
| $f_{17}^2$  | 1.7859                                                   | 0.802       | $f_{17}^2$  | 1.522       | 0.97332        | $f_{17}^2$   | 1.6605     | 0.90828 | $f_{17}^2$  | 2.2877          | 0.98955  |  |
| $f_{17}^2$  | 1.2361                                                   | 0.86461     | $f_{17}^2$  | 0.89211     | 0.9182         | $f_{17}^2$   | 1.7749     | 0.87905 | $f_{17}^2$  | 3.5618          | 0.97225  |  |
| $f_{19}^2$  | 0.39816                                                  | 0.74784     | $f_{19}^2$  | 0.17697     | 0.31555        | $f_{19}^2$   | 0.65914    | 0.94695 | $f_{19}^2$  | 0.38026         | 0.99835  |  |
| $f_{19}^2$  | 1.7761                                                   | 0.89993     | $f_{19}^2$  | 1.5125      | 0.91377        | $f_{19}^2$   | 1.6641     | 0.88063 | $f_{19}^2$  | 2.3623          | 0.96425  |  |
| $f_{21}^2$  | 0.57454                                                  | 0.962       | $f_{21}^2$  | 0.44274     | 0.93417        | $f_{21}^2$   | 0.94845    | 0.99986 | $f_{21}^2$  | 0.92007         | 0.99999  |  |

Tabela 7.15: Tabela com os erros de cada função para  $exp\left([10,5]\right)$ 

|             | Simétric                                                         | 0           |             | Mínimo Part | icular       | Μ           | ínimo de J | lulier  | Est         | Esféricos de Julio |         |  |  |
|-------------|------------------------------------------------------------------|-------------|-------------|-------------|--------------|-------------|------------|---------|-------------|--------------------|---------|--|--|
|             | Antes da Transformação   Média Cov Dist Média Cov Dist Média Cov |             |             |             |              |             |            |         |             |                    |         |  |  |
| Dist        | Média                                                            | Cov         | Dist        | Média       | Cov          | Dist        | Média      | Cov     | Dist        | Média              | Cov     |  |  |
| ev          | 1.3737e-008                                                      | 1.3227e-008 | ev          | 2.3102e-008 | 1.3714e-008  | ev          | 0.67373    | 0.99237 | ev          | 0.83586            | 1       |  |  |
|             |                                                                  |             |             | Depois      | da Transform | ação        |            |         |             |                    |         |  |  |
| Func        | Média                                                            | Cov         | Func        | Média       | Cov          | Func        | Média      | Cov     | Func        | Média              | Cov     |  |  |
| $f_{1}^{2}$ | 3.8821e-008                                                      | 0.62703     | $f_{1}^{2}$ | 3.7168e-008 | 0.065805     | $f_{1}^{2}$ | 0.97085    | 0.99932 | $f_{1}^{2}$ | 0.92499            | 0.99924 |  |  |
| $f_{1}^{2}$ | 0.42398                                                          | 0.98251     | $f_{1}^{2}$ | 0.26704     | 0.94961      | $f_{1}^{2}$ | 0.99919    | 1       | $f_{1}^{2}$ | 0.99732            | 1       |  |  |
| $f_{3}^{2}$ | 5.4151                                                           | 0.44552     | $f_{3}^{2}$ | 1.1105      | 0.99363      | $f_{3}^{2}$ | 3.9162     | 0.7126  | $f_{3}^{2}$ | 1.9335             | 0.99989 |  |  |
| $f_{3}^{2}$ | 0.64692                                                          | 0.54555     | $f_{3}^{2}$ | 0.68904     | 0.9055       | $f_{3}^{2}$ | 0.47459    | 0.87722 | $f_{3}^{2}$ | 0.49452            | 0.7848  |  |  |
| $f_{5}^{2}$ | 10.8835                                                          | 0.77315     | $f_{5}^{2}$ | 14.9782     | 0.97573      | $f_{5}^{2}$ | 7.0311     | 0.22181 | $f_{5}^{2}$ | 10.8694            | 0.85034 |  |  |
| $f_{5}^{2}$ | 0.5931                                                           | 0.54555     | $f_{5}^{2}$ | 0.63172     | 0.9055       | $f_{5}^{2}$ | 0.74528    | 0.89421 | $f_{5}^{2}$ | 0.45338            | 0.7848  |  |  |
| $f_{7}^{2}$ | 1.2175                                                           | 0.99999     | $f_{7}^{2}$ | 1.2936      | 0.99995      | $f_{7}^{2}$ | 1.1576     | 1       | $f_{7}^{2}$ | 1.3412             | 0.99999 |  |  |
| $f_{7}^{2}$ | 0.5931                                                           | 0.54555     | $f_{7}^{2}$ | 0.63172     | 0.9055       | $f_{7}^{2}$ | 0.74528    | 0.89421 | $f_{7}^{2}$ | 0.45338            | 0.7848  |  |  |
| $f_{9}^{2}$ | 0.30012                                                          | 0.46514     | $f_{9}^{2}$ | 0.37058     | 0.57187      | $f_{9}^{2}$ | 0.75163    | 0.90425 | $f_{9}^{2}$ | 0.4965             | 0.88052 |  |  |
| $f_{9}^{2}$ | 0.2724                                                           | 0.61621     | $f_{9}^{2}$ | 0.29017     | 0.63939      | $f_{9}^{2}$ | 0.6953     | 0.54569 | $f_{9}^{2}$ | 0.34475            | 0.81466 |  |  |
| $f_{11}^2$  | 0.61586                                                          | 0.99828     | $f_{11}^2$  | 6.4221      | 1.4928       | $f_{11}^2$  | 1          | 1       | $f_{11}^2$  | 1                  | 1       |  |  |
| $f_{11}^2$  | 1                                                                | 1           | $f_{11}^2$  | 1           | 1            | $f_{11}^2$  | 1          | 1       | $f_{11}^2$  | 1                  | 1       |  |  |
| $f_{13}^2$  | 0.4787                                                           | 0.74963     | $f_{13}^2$  | 0.45884     | 0.52         | $f_{13}^2$  | 0.90315    | 0.7712  | $f_{13}^2$  | 0.4916             | 0.767   |  |  |
| $f_{13}^2$  | 0.9137                                                           | 0.99999     | $f_{13}^2$  | 0.94327     | 0.99997      | $f_{13}^2$  | 2.0294     | 0.99881 | $f_{13}^2$  | 0.80195            | 0.99997 |  |  |
| $f_{15}^2$  | 0.11683                                                          | 0.29359     | $f_{15}^2$  | 0.11366     | 0.28568      | $f_{15}^2$  | 0.89424    | 0.9644  | $f_{15}^2$  | 0.7559             | 0.99025 |  |  |
| $f_{15}^2$  | 0.73783                                                          | 0.49414     | $f_{15}^2$  | 1.3426      | 0.6017       | $f_{15}^2$  | 0.46016    | 0.99242 | $f_{15}^2$  | 1.148              | 0.88501 |  |  |
| $f_{17}^2$  | 9.3713                                                           | 0.6217      | $f_{17}^2$  | 11.1658     | 0.72481      | $f_{17}^2$  | 4.9277     | 0.97052 | $f_{17}^2$  | 11.1186            | 0.99998 |  |  |
| $f_{17}^2$  | 8.7386                                                           | 0.69507     | $f_{17}^2$  | 10.3789     | 0.8478       | $f_{17}^2$  | 7.561      | 0.99266 | $f_{17}^2$  | 2.8877             | 0.97246 |  |  |
| $f_{19}^2$  | 0.1519                                                           | 0.32233     | $f_{19}^2$  | 0.25091     | 0.29192      | $f_{19}^2$  | 0.894      | 0.96443 | $f_{19}^2$  | 0.75686            | 0.99029 |  |  |
| $f_{19}^2$  | 9.1822                                                           | 0.96434     | $f_{19}^2$  | 10.9314     | 0.99592      | $f_{19}^2$  | 6.1701     | 0.99121 | $f_{19}^2$  | 10.0986            | 0.99864 |  |  |
| $f_{21}^2$  | 3.3253                                                           | 0.87602     | $f_{21}^2$  | 4.3471      | 0.79246      | $f_{21}^2$  | 1.1142     | 0.99999 | $f_{21}^2$  | 0.90675            | 0.99995 |  |  |

Tabela 7.16: Tabela com os erros de cada função para ev([10, 5], [10, 5])

| Simétrico   |             | 0           | Mínimo Particular |             |               |              | Mínimo de Julier |         |              | Esféricos de Julier |         |  |
|-------------|-------------|-------------|-------------------|-------------|---------------|--------------|------------------|---------|--------------|---------------------|---------|--|
|             |             |             |                   | Antes       | da Transforma | ação         |                  |         |              |                     |         |  |
| Dist        | Média       | Cov         | Dist              | Média       | Cov           | Dist         | Média            | Cov     | Dist         | Média               | Cov     |  |
| gev         | 7.0951e-009 | 6.8629e-009 | gev               | 2.1793e-008 | 6.6975e-009   | gev          | 0.60421          | 0.94669 | gev          | 0.43192             | 1       |  |
|             |             |             |                   | Depois      | da Transform  | ação         |                  |         |              |                     |         |  |
| Func        | Média       | Cov         | Func              | Média       | Cov           | Func         | Média            | Cov     | Func         | Média               | Cov     |  |
| $f_{1}^{2}$ | 1.037e-007  | 0.72962     | $f_{1}^{2}$       | 1.0475e-007 | 0.54203       | $f_{1}^{2}$  | 0.79406          | 0.99073 | $f_{1}^{2}$  | 0.67205             | 0.99902 |  |
| $f_{1}^{2}$ | 0.60199     | 0.97181     | $f_{1}^{2}$       | 0.40187     | 0.94119       | $f_{1}^{2}$  | 0.97074          | 0.99998 | $f_{1}^{2}$  | 0.94939             | 1       |  |
| $f_{3}^{2}$ | 15.4892     | 0.86589     | $f_{3}^{2}$       | 17.9585     | 0.95666       | $f_{3}^{2}$  | 6.5376           | 0.79684 | $f_{3}^{2}$  | 15.1646             | 0.95703 |  |
| $f_{3}^{2}$ | 0.36525     | 1.0643      | $f_{3}^{2}$       | 0.2709      | 0.5066        | $f_{3}^{2}$  | 0.46798          | 0.47623 | $f_{3}^{2}$  | 0.20153             | 0.72563 |  |
| $f_{5}^{2}$ | 15.4703     | 0.41323     | $f_{5}^{2}$       | 25.8264     | 0.9784        | $f_{5}^{2}$  | 15.7122          | 0.60219 | $f_{5}^{2}$  | 20.3918             | 0.89734 |  |
| $f_{5}^{2}$ | 0.38721     | 1.0643      | $f_{5}^{2}$       | 0.28718     | 0.5066        | $f_{5}^{2}$  | 0.48043          | 0.62109 | $f_{5}^{2}$  | 0.21364             | 0.72563 |  |
| $f_{7}^{2}$ | 2.3706      | 0.99975     | $f_{7}^{2}$       | 0.91859     | 0.99998       | $f_{7}^{2}$  | 2.4445           | 0.99983 | $f_{7}^{2}$  | 3.065               | 0.99978 |  |
| $f_{7}^{2}$ | 0.38721     | 1.0643      | $f_{7}^{2}$       | 0.28718     | 0.5066        | $f_{7}^{2}$  | 0.48043          | 0.62109 | $f_{7}^{2}$  | 0.21364             | 0.72563 |  |
| $f_{9}^{2}$ | 0.30293     | 0.52926     | $f_{9}^{2}$       | 0.16965     | 0.30842       | $f_{9}^{2}$  | 0.53082          | 0.52192 | $f_{9}^{2}$  | 0.24634             | 0.86981 |  |
| $f_{9}^{2}$ | 0.28706     | 0.33902     | $f_{9}^{2}$       | 0.17972     | 0.22296       | $f_{9}^{2}$  | 0.54033          | 1.0781  | $f_{9}^{2}$  | 0.2197              | 0.77227 |  |
| $f_{11}^2$  | 1           | 1           | $f_{11}^2$        | 1           | 1             | $f_{11}^2$   | 1                | 1       | $f_{11}^2$   | 1                   | 1       |  |
| $f_{11}^2$  | 0.83498     | 0.99773     | $f_{11}^2$        | 0.99896     | 1             | $f_{11}^2$   | 1                | 1       | $f_{11}^2$   | 0.99783             | 1       |  |
| $f_{13}^2$  | 0.48489     | 0.47846     | $f_{13}^2$        | 0.33902     | 0.32376       | $f_{13}^2$   | 0.49767          | 0.7153  | $f_{13}^2$   | 0.41178             | 0.63798 |  |
| $f_{13}^2$  | 1.0931      | 1           | $f_{13}^2$        | 1.6245      | 1             | $f_{13}^2$   | 1.1859           | 1       | $f_{13}^2$   | 2.1378              | 0.99997 |  |
| $f_{15}^2$  | 0.26236     | 0.62979     | $f_{15}^{2}$      | 0.21004     | 0.49023       | $f_{15}^{2}$ | 0.65215          | 0.90994 | $f_{15}^{2}$ | 0.37148             | 0.99698 |  |
| $f_{15}^2$  | 0.40092     | 0.86225     | $f_{15}^2$        | 0.30909     | 0.90396       | $f_{15}^2$   | 0.66845          | 0.97338 | $f_{15}^2$   | 0.73462             | 0.93102 |  |
| $f_{17}^2$  | 14.4739     | 0.042087    | $f_{17}^2$        | 17.148      | 0.49781       | $f_{17}^2$   | 8.6622           | 0.82501 | $f_{17}^2$   | 14.8595             | 0.94831 |  |
| $f_{17}^2$  | 4.9898      | 0.77242     | $f_{17}^2$        | 5.2359      | 0.96157       | $f_{17}^2$   | 4.0433           | 0.84014 | $f_{17}^2$   | 14.8844             | 0.87388 |  |
| $f_{19}^2$  | 0.26262     | 0.62987     | $f_{19}^2$        | 0.21021     | 0.4903        | $f_{19}^2$   | 0.65217          | 0.91009 | $f_{19}^2$   | 0.37265             | 0.997   |  |
| $f_{19}^2$  | 13.5276     | 0.77409     | $f_{19}^2$        | 16.02       | 0.98198       | $f_{19}^2$   | 8.117            | 0.85565 | $f_{19}^2$   | 14.8655             | 0.99853 |  |
| $f_{21}^2$  | 0.41616     | 0.89483     | $f_{21}^2$        | 0.23086     | 0.81729       | $f_{21}^2$   | 0.91282          | 0.99929 | $f_{21}^2$   | 0.86474             | 0.99994 |  |

Tabela 7.17: Tabela com os erros de cada função para  $gev\left([0],[10,5],[10,5]\right)$ 

| Simétrico   |             | 0           | Mínimo Particular |             |                | Mínimo de Julier |         |          | Esféricos de Julier |         |         |
|-------------|-------------|-------------|-------------------|-------------|----------------|------------------|---------|----------|---------------------|---------|---------|
|             |             |             |                   | Antes       | da Transform   | ação             |         |          |                     |         |         |
| Dist        | Média       | Cov         | Dist              | Média       | Cov            | Dist             | Média   | Cov      | Dist                | Média   | Cov     |
| beta        | 8.8609e-009 | 1.2535e-008 | beta              | 2.2422e-008 | 2.1462e-008    | beta             | 0.58196 | 0.94121  | beta                | 0.33112 | 0.81922 |
|             |             |             |                   | Depois      | s da Transforn | nação            |         |          |                     |         |         |
| Func        | Média       | Cov         | Func              | Média       | Cov            | Func             | Média   | Cov      | Func                | Média   | Cov     |
| $f_{1}^{2}$ | 7.7613e-008 | 0.096508    | $f_{1}^{2}$       | 8.0245e-008 | 0.23082        | $f_{1}^{2}$      | 0.62044 | 0.68417  | $f_{1}^{2}$         | 0.42968 | 0.92626 |
| $f_{1}^{2}$ | 0.034091    | 0.12536     | $f_{1}^{2}$       | 0.098414    | 0.57378        | $f_{1}^{2}$      | 0.73616 | 0.95328  | $f_{1}^{2}$         | 0.65466 | 0.97858 |
| $f_{3}^{2}$ | 0.003451    | 0.050722    | $f_{3}^{2}$       | 0.014381    | 0.12863        | $f_{3}^{2}$      | 0.57674 | 1.2498   | $f_{3}^{2}$         | 0.2567  | 0.87364 |
| $f_{3}^{2}$ | 0.010077    | 0.054744    | $f_{3}^{2}$       | 0.0079484   | 0.20798        | $f_{3}^{2}$      | 0.5899  | 0.80734  | $f_{3}^{2}$         | 0.30681 | 0.90304 |
| $f_{5}^{2}$ | 0.0020554   | 0.10299     | $f_{5}^{2}$       | 0.0064117   | 0.19798        | $f_{5}^{2}$      | 0.57121 | 5.2179   | $f_{5}^{2}$         | 0.16296 | 0.9227  |
| $f_{5}^{2}$ | 0.0071993   | 0.054744    | $f_{5}^{2}$       | 0.0056786   | 0.20798        | $f_{5}^{2}$      | 0.57084 | 2.3825   | $f_{5}^{2}$         | 0.21919 | 0.90304 |
| $f_{7}^{2}$ | 0.011743    | 0.068697    | $f_{7}^{2}$       | 0.020813    | 0.24487        | $f_{7}^{2}$      | 0.59531 | 0.6294   | $f_{7}^{2}$         | 0.32571 | 0.9116  |
| $f_{7}^{2}$ | 0.0071993   | 0.054744    | $f_{7}^{2}$       | 0.0056786   | 0.20798        | $f_{7}^{2}$      | 0.57084 | 2.3825   | $f_{7}^{2}$         | 0.21919 | 0.90304 |
| $f_{9}^{2}$ | 0.0090205   | 0.06708     | $f_{9}^{2}$       | 0.026143    | 0.16025        | $f_{9}^{2}$      | 0.57443 | 2.6276   | $f_{9}^{2}$         | 0.18414 | 0.86812 |
| $f_{9}^{2}$ | 0.008497    | 0.058831    | $f_{9}^{2}$       | 0.025458    | 0.23673        | $f_{9}^{2}$      | 0.57449 | 5.3744   | $f_{9}^{2}$         | 0.1248  | 0.86134 |
| $f_{11}^2$  | 0.0016353   | 0.020562    | $f_{11}^2$        | 0.0093471   | 0.17428        | $f_{11}^2$       | 0.58439 | 2.6896   | $f_{11}^2$          | 0.20952 | 0.90748 |
| $f_{11}^2$  | 0.0030141   | 0.045231    | $f_{11}^2$        | 0.0109      | 0.041286       | $f_{11}^2$       | 0.57987 | 2.7188   | $f_{11}^2$          | 0.18261 | 0.86574 |
| $f_{13}^2$  | 0.024221    | 0.048917    | $f_{13}^2$        | 0.076373    | 0.31546        | $f_{13}^2$       | 0.60036 | 0.33784  | $f_{13}^2$          | 0.27726 | 0.85695 |
| $f_{13}^2$  | 0.018941    | 0.39553     | $f_{13}^2$        | 0.13092     | 0.64819        | $f_{13}^2$       | 0.61801 | 0.096532 | $f_{13}^2$          | 0.16291 | 0.87908 |
| $f_{15}^2$  | 0.023458    | 0.18203     | $f_{15}^2$        | 0.042354    | 0.32846        | $f_{15}^2$       | 0.59137 | 1.0757   | $f_{15}^2$          | 0.2921  | 0.90796 |
| $f_{15}^2$  | 0.013253    | 0.29739     | $f_{15}^2$        | 0.045404    | 0.46996        | $f_{15}^2$       | 0.56377 | 0.56728  | $f_{15}^2$          | 0.32421 | 0.83585 |
| $f_{17}^2$  | 0.0048358   | 0.14499     | $f_{17}^2$        | 0.0050244   | 0.44947        | $f_{17}^2$       | 0.5799  | 0.6307   | $f_{17}^2$          | 0.37223 | 0.88517 |
| $f_{17}^2$  | 0.0035722   | 0.11913     | $f_{17}^2$        | 0.0048524   | 0.37713        | $f_{17}^2$       | 0.58023 | 0.59357  | $f_{17}^2$          | 0.21799 | 0.98513 |
| $f_{19}^2$  | 0.019895    | 0.28661     | $f_{19}^2$        | 0.044071    | 0.45962        | $f_{19}^2$       | 0.57703 | 1.1407   | $f_{19}^2$          | 0.31059 | 0.81061 |
| $f_{19}^2$  | 0.0039816   | 0.15741     | $f_{19}^2$        | 0.0048937   | 0.38804        | $f_{19}^2$       | 0.58015 | 0.74378  | $f_{19}^2$          | 0.28017 | 0.99937 |
| $f_{21}^2$  | 0.010976    | 0.12581     | $f_{21}^2$        | 0.051551    | 0.49396        | $f_{21}^2$       | 0.67971 | 0.91511  | $f_{21}^2$          | 0.60129 | 0.94463 |

Tabela 7.18: Tabela com os erros de cada função para beta([10, 5], [10, 5])

| Simétrico   |             |             | Mínimo Particular |             |              | Mínimo de Julier |         |         | Esféricos de Julier |         |         |
|-------------|-------------|-------------|-------------------|-------------|--------------|------------------|---------|---------|---------------------|---------|---------|
|             |             |             |                   | Antes d     | a Transforn  | nação            |         |         |                     |         |         |
| Dist        | Média       | Cov         | Dist              | Média       | Cov          | Dist             | Média   | Cov     | Dist                | Média   | Cov     |
| gamma       | 0           | 6.1513e-009 | gamma             | 2.0902e-008 | 1.21e-008    | gamma            | 0.58966 | 0.62796 | gamma               | 0.23653 | 1       |
|             |             |             |                   | Depois d    | la Transforr | nação            |         |         |                     |         |         |
| Func        | Média       | Cov         | Func              | Média       | Cov          | Func             | Média   | Cov     | Func                | Média   | Cov     |
| $f_{1}^{2}$ | 3.5258e-008 | 0.42579     | $f_{1}^{2}$       | 2.4932e-008 | 0.21799      | $f_{1}^{2}$      | 0.64953 | 0.91735 | $f_{1}^{2}$         | 0.33834 | 0.99944 |
| $f_{1}^{2}$ | 0.22929     | 0.71403     | $f_{1}^{2}$       | 0.14403     | 0.42658      | $f_{1}^{2}$      | 0.8028  | 0.99468 | $f_{1}^{2}$         | 0.64951 | 1       |
| $f_{3}^{2}$ | 24.5853     | 0.7662      | $f_{3}^{2}$       | 30.3184     | 0.035414     | $f_{3}^{2}$      | 19.0072 | 0.87191 | $f_{3}^{2}$         | 34.5655 | 0.98306 |
| $f_{3}^{2}$ | 0.078463    | 0.76859     | $f_{3}^{2}$       | 0.01662     | 0.32959      | $f_{3}^{2}$      | 0.57014 | 4.5165  | $f_{3}^{2}$         | 0.13269 | 0.77485 |
| $f_{5}^{2}$ | 19.5804     | 0.83969     | $f_{5}^{2}$       | 15.9486     | 0.9922       | $f_{5}^{2}$      | 7.5971  | 0.71331 | $f_{5}^{2}$         | 21.6227 | 0.99907 |
| $f_{5}^{2}$ | 0.080724    | 0.76859     | $f_{5}^{2}$       | 0.017099    | 0.32959      | $f_{5}^{2}$      | 0.56925 | 4.2614  | $f_{5}^{2}$         | 0.13651 | 0.77485 |
| $f_{7}^{2}$ | 1.0133      | 1           | $f_{7}^{2}$       | 1.0748      | 1            | $f_{7}^{2}$      | 1.0239  | 1       | $f_{7}^{2}$         | 1.0469  | 1       |
| $f_{7}^{2}$ | 0.080724    | 0.76859     | $f_{7}^{2}$       | 0.017099    | 0.32959      | $f_{7}^{2}$      | 0.56925 | 4.2614  | $f_{7}^{2}$         | 0.13651 | 0.77485 |
| $f_{9}^{2}$ | 0.059918    | 0.41058     | $f_{9}^{2}$       | 0.0075683   | 0.21725      | $f_{9}^{2}$      | 0.57242 | 1.8635  | $f_{9}^{2}$         | 0.17074 | 0.91897 |
| $f_{9}^{2}$ | 0.062293    | 0.57419     | $f_{9}^{2}$       | 0.012406    | 0.30271      | $f_{9}^{2}$      | 0.57175 | 3.9946  | $f_{9}^{2}$         | 0.13225 | 0.855   |
| $f_{11}^2$  | 1           | 1           | $f_{11}^2$        | 1           | 1            | $f_{11}^2$       | 1       | 1       | $f_{11}^2$          | 1       | 1       |
| $f_{11}^2$  | 1.8768      | 0.85073     | $f_{11}^2$        | 0.99815     | 1            | $f_{11}^2$       | 1       | 1       | $f_{11}^2$          | 0.99065 | 1       |
| $f_{13}^2$  | 0.087135    | 0.76519     | $f_{13}^2$        | 0.018881    | 0.3319       | $f_{13}^2$       | 0.56781 | 3.5867  | $f_{13}^2$          | 0.14826 | 0.77499 |
| $f_{13}^2$  | 0.41075     | 1.5077      | $f_{13}^2$        | 0.05338     | 0.5892       | $f_{13}^2$       | 0.66897 | 0.87199 | $f_{13}^2$          | 0.35934 | 0.68225 |
| $f_{15}^2$  | 0.02628     | 0.12564     | $f_{15}^2$        | 0.047136    | 0.22519      | $f_{15}^2$       | 0.59429 | 0.4362  | $f_{15}^2$          | 0.13682 | 0.99926 |
| $f_{15}^2$  | 0.17017     | 0.43103     | $f_{15}^2$        | 0.1925      | 0.68742      | $f_{15}^2$       | 0.60692 | 0.86612 | $f_{15}^2$          | 0.5306  | 0.89436 |
| $f_{17}^2$  | 9.6432      | 0.90644     | $f_{17}^2$        | 4.6835      | 0.95394      | $f_{17}^2$       | 2.4148  | 0.9967  | $f_{17}^2$          | 22.6199 | 0.96879 |
| $f_{17}^2$  | 17.7184     | 0.89866     | $f_{17}^2$        | 8.4844      | 0.99353      | $f_{17}^2$       | 2.5512  | 0.3839  | $f_{17}^2$          | 17.8525 | 0.99831 |
| $f_{19}^2$  | 0.026356    | 0.12583     | $f_{19}^2$        | 0.047158    | 0.22523      | $f_{19}^2$       | 0.59429 | 0.4363  | $f_{19}^2$          | 0.13687 | 0.99926 |
| $f_{19}^2$  | 17.6482     | 0.90353     | $f_{19}^2$        | 8.451       | 0.9967       | $f_{19}^2$       | 2.549   | 0.99394 | $f_{19}^2$          | 17.9728 | 0.99985 |
| $f_{21}^2$  | 0.12996     | 0.58127     | $f_{21}^2$        | 0.079179    | 0.092614     | $f_{21}^2$       | 0.72792 | 0.97929 | $f_{21}^2$          | 0.50895 | 0.99995 |

|             | Simétric    | 0           |              | Mínimo Part | icular        | Μ           | línimo de Julier Esféricos de Ju |         | e Julier    |         |         |
|-------------|-------------|-------------|--------------|-------------|---------------|-------------|----------------------------------|---------|-------------|---------|---------|
|             |             |             |              | Antes       | da Transforma | ação        |                                  |         |             |         |         |
| Dist        | Média       | Cov         | Dist         | Média       | Cov           | Dist        | Média                            | Cov     | Dist        | Média   | Cov     |
| logn        | 0           | 3.7311e-009 | logn         | 2.2296e-008 | 1.8944e-008   | logn        | 0.58678                          | 0.92106 | logn        | 0.50647 | 0.81902 |
|             |             |             |              | Depois      | da Transform  | ação        |                                  |         |             |         |         |
| Func        | Média       | Cov         | Func         | Média       | Cov           | Func        | Média                            | Cov     | Func        | Média   | Cov     |
| $f_{1}^{2}$ | 1.0139e-007 | 0.81796     | $f_{1}^{2}$  | 1.0329e-007 | 0.84951       | $f_{1}^{2}$ | 0.72271                          | 0.98129 | $f_{1}^{2}$ | 0.66753 | 0.98604 |
| $f_{1}^{2}$ | 0.68614     | 0.99673     | $f_{1}^{2}$  | 0.68984     | 0.99906       | $f_{1}^{2}$ | 0.95008                          | 0.99997 | $f_{1}^{2}$ | 0.94804 | 0.99999 |
| $f_{3}^{2}$ | 0.3237      | 0.27992     | $f_{3}^{2}$  | 0.43138     | 0.91059       | $f_{3}^{2}$ | 0.30832                          | 0.15568 | $f_{3}^{2}$ | 0.44588 | 0.83367 |
| $f_{3}^{2}$ | 0.36409     | 0.21164     | $f_{3}^{2}$  | 0.32815     | 0.8975        | $f_{3}^{2}$ | 0.46782                          | 0.20179 | $f_{3}^{2}$ | 0.18305 | 0.65253 |
| $f_{5}^{2}$ | 0.96115     | 0.23684     | $f_{5}^{2}$  | 0.77747     | 0.93503       | $f_{5}^{2}$ | 0.93051                          | 0.95074 | $f_{5}^{2}$ | 0.92589 | 0.76278 |
| $f_{5}^{2}$ | 0.50704     | 0.21164     | $f_{5}^{2}$  | 0.457       | 0.8975        | $f_{5}^{2}$ | 0.54886                          | 0.83613 | $f_{5}^{2}$ | 0.25492 | 0.65253 |
| $f_{7}^{2}$ | 1.1199      | 0.99996     | $f_{7}^{2}$  | 2.0797      | 0.99999       | $f_{7}^{2}$ | 1.6794                           | 0.99999 | $f_{7}^{2}$ | 2.0119  | 0.99999 |
| $f_{7}^{2}$ | 0.50704     | 0.21164     | $f_{7}^{2}$  | 0.457       | 0.8975        | $f_{7}^{2}$ | 0.54886                          | 0.83613 | $f_{7}^{2}$ | 0.25492 | 0.65253 |
| $f_{9}^{2}$ | 0.22288     | 1.0731      | $f_{9}^{2}$  | 0.10755     | 0.66722       | $f_{9}^{2}$ | 0.56104                          | 1.0023  | $f_{9}^{2}$ | 0.28884 | 0.72866 |
| $f_{9}^{2}$ | 0.21463     | 1.4982      | $f_{9}^{2}$  | 0.098301    | 0.79928       | $f_{9}^{2}$ | 0.56392                          | 2.6659  | $f_{9}^{2}$ | 0.20255 | 0.60232 |
| $f_{11}^2$  | 0.99414     | 1           | $f_{11}^2$   | 0.99431     | 1             | $f_{11}^2$  | 0.99762                          | 1       | $f_{11}^2$  | 0.99705 | 1       |
| $f_{11}^2$  | 0.41815     | 1.7189      | $f_{11}^2$   | 0.2961      | 1.0583        | $f_{11}^2$  | 0.68969                          | 0.83408 | $f_{11}^2$  | 0.372   | 0.1723  |
| $f_{13}^2$  | 0.96826     | 1.9648      | $f_{13}^{2}$ | 0.43112     | 0.88904       | $f_{13}^2$  | 0.2257                           | 0.93111 | $f_{13}^2$  | 0.74416 | 0.40987 |
| $f_{13}^2$  | 0.23787     | 4.8919      | $f_{13}^2$   | 0.34158     | 0.85827       | $f_{13}^2$  | 0.70039                          | 0.85657 | $f_{13}^2$  | 0.47133 | 0.80017 |
| $f_{15}^2$  | 0.20363     | 0.6279      | $f_{15}^{2}$ | 0.090488    | 0.27674       | $f_{15}^2$  | 0.61757                          | 0.8209  | $f_{15}^2$  | 0.43989 | 0.94494 |
| $f_{15}^2$  | 0.17513     | 1.3018      | $f_{15}^{2}$ | 0.11857     | 0.25701       | $f_{15}^2$  | 0.53909                          | 0.65358 | $f_{15}^2$  | 0.52215 | 0.39277 |
| $f_{17}^2$  | 0.43043     | 0.91097     | $f_{17}^2$   | 0.59147     | 0.8652        | $f_{17}^2$  | 0.26966                          | 0.90563 | $f_{17}^2$  | 0.29614 | 0.87383 |
| $f_{17}^2$  | 1.3455      | 0.58807     | $f_{17}^2$   | 1.2858      | 1.0914        | $f_{17}^2$  | 1.4295                           | 0.96524 | $f_{17}^2$  | 1.7733  | 0.6394  |
| $f_{19}^2$  | 0.20109     | 0.62786     | $f_{19}^2$   | 0.094909    | 0.27731       | $f_{19}^2$  | 0.61046                          | 0.82127 | $f_{19}^2$  | 0.45114 | 0.94256 |
| $f_{19}^2$  | 0.53573     | 0.82114     | $f_{19}^2$   | 0.6335      | 1.0338        | $f_{19}^2$  | 0.5089                           | 0.97045 | $f_{19}^2$  | 0.62651 | 0.97338 |
| $f_{21}^2$  | 0.44604     | 0.96674     | $f_{21}^2$   | 0.43122     | 0.98649       | $f_{21}^2$  | 0.86709                          | 0.99922 | $f_{21}^2$  | 0.86955 | 0.9993  |

Tabela 7.20: Tabela com os erros de cada função para logn ([0.25, 0.35], [0.5, 0.6])

|             | Simétric    | 20          |              | Mínimo Part | icular         | N            | Mínimo de Julier Esféricos de |          | féricos de   | le Julier |         |
|-------------|-------------|-------------|--------------|-------------|----------------|--------------|-------------------------------|----------|--------------|-----------|---------|
|             |             |             |              | Antes       | da Transform   | ação         |                               |          |              |           |         |
| Dist        | Média       | Cov         | Dist         | Média       | Cov            | Dist         | Média                         | Cov      | Dist         | Média     | Cov     |
| pois        | 7.845e-009  | 6.4167e-009 | pois         | 2.4096e-008 | 1.3899e-008    | pois         | 0.58653                       | 0.91525  | pois         | 0.49773   | 0.81953 |
|             |             |             |              | Depois      | s da Transforn | ıação        |                               |          |              |           |         |
| Func        | Média       | Cov         | Func         | Média       | Cov            | Func         | Média                         | Cov      | Func         | Média     | Cov     |
| $f_{1}^{2}$ | 3.8716e-007 | 0.55239     | $f_{1}^{2}$  | 3.8665e-007 | 0.64696        | $f_{1}^{2}$  | 0.72637                       | 0.96155  | $f_{1}^{2}$  | 0.69016   | 0.96358 |
| $f_{1}^{2}$ | 0.37459     | 0.82316     | $f_{1}^{2}$  | 0.3612      | 0.95273        | $f_{1}^{2}$  | 0.91243                       | 0.99848  | $f_{1}^{2}$  | 0.92091   | 0.9988  |
| $f_{3}^{2}$ | 0.47679     | 0.61659     | $f_{3}^{2}$  | 0.41466     | 0.57213        | $f_{3}^{2}$  | 0.54656                       | 0.88976  | $f_{3}^{2}$  | 1.2223    | 0.9249  |
| $f_{3}^{2}$ | 0.35623     | 0.27856     | $f_{3}^{2}$  | 0.11213     | 0.07783        | $f_{3}^{2}$  | 0.4855                        | 0.46449  | $f_{3}^{2}$  | 0.27716   | 0.76063 |
| $f_{5}^{2}$ | 1.0285      | 0.41908     | $f_{5}^{2}$  | 1.4294      | 0.71399        | $f_{5}^{2}$  | 1.5475                        | 0.91407  | $f_{5}^{2}$  | 1.3972    | 0.61721 |
| $f_{5}^{2}$ | 0.43893     | 0.27856     | $f_{5}^{2}$  | 0.13816     | 0.07783        | $f_{5}^{2}$  | 0.46947                       | 0.78411  | $f_{5}^{2}$  | 0.34151   | 0.76063 |
| $f_{7}^{2}$ | 0.69393     | 0.78345     | $f_{7}^{2}$  | 4.6073      | 4.8894         | $f_{7}^{2}$  | 3.3582                        | 4.6936   | $f_{7}^{2}$  | 1.0843    | 0.96988 |
| $f_{7}^{2}$ | 0.43893     | 0.27856     | $f_{7}^{2}$  | 0.13816     | 0.07783        | $f_{7}^{2}$  | 0.46947                       | 0.78411  | $f_{7}^{2}$  | 0.34151   | 0.76063 |
| $f_{9}^{2}$ | 0.21714     | 0.57655     | $f_{9}^{2}$  | 0.16498     | 0.42529        | $f_{9}^{2}$  | 0.53489                       | 0.048363 | $f_{9}^{2}$  | 0.16725   | 0.90357 |
| $f_{9}^{2}$ | 0.24924     | 0.23619     | $f_{9}^{2}$  | 0.23874     | 0.79846        | $f_{9}^{2}$  | 0.51972                       | 0.72569  | $f_{9}^{2}$  | 0.20133   | 0.95768 |
| $f_{11}^2$  | 0.70217     | 0.99843     | $f_{11}^2$   | 0.76087     | 0.99977        | $f_{11}^2$   | 0.95178                       | 0.99999  | $f_{11}^2$   | 0.94925   | 0.99999 |
| $f_{11}^2$  | 0.53004     | 1.1751      | $f_{11}^2$   | 0.27475     | 0.59117        | $f_{11}^2$   | 0.82684                       | 0.98461  | $f_{11}^2$   | 0.49209   | 0.91134 |
| $f_{13}^2$  | NaN         | NaN         | $f_{13}^2$   | NaN         | NaN            | $f_{13}^2$   | NaN                           | NaN      | $f_{13}^2$   | NaN       | NaN     |
| $f_{13}^2$  | 3.8171      | 63.5475     | $f_{13}^2$   | 0.69507     | 1.5274         | $f_{13}^2$   | 0.60312                       | 0.82692  | $f_{13}^2$   | 0.49316   | 0.65191 |
| $f_{15}^2$  | 0.15419     | 0.50942     | $f_{15}^{2}$ | 0.087898    | 0.28813        | $f_{15}^{2}$ | 0.6265                        | 0.79611  | $f_{15}^{2}$ | 0.48151   | 0.9134  |
| $f_{15}^2$  | 0.17765     | 0.77153     | $f_{15}^2$   | 0.245       | 0.60401        | $f_{15}^2$   | 0.5422                        | 0.76106  | $f_{15}^2$   | 0.45739   | 0.78985 |
| $f_{17}^2$  | 0.80781     | 0.97678     | $f_{17}^2$   | 1.081       | 0.93902        | $f_{17}^2$   | 0.74928                       | 0.95913  | $f_{17}^2$   | 1.4135    | 0.91486 |
| $f_{17}^2$  | 0.80621     | 0.97354     | $f_{17}^2$   | 1.3654      | 0.94679        | $f_{17}^2$   | 1.3947                        | 0.94615  | $f_{17}^2$   | 0.72625   | 0.39792 |
| $f_{19}^2$  | 0.15581     | 0.51447     | $f_{19}^2$   | 0.12674     | 0.36596        | $f_{19}^2$   | 0.62261                       | 0.79858  | $f_{19}^2$   | 0.48026   | 0.91298 |
| $f_{19}^2$  | 0.80678     | 0.99056     | $f_{19}^2$   | 1.2847      | 0.96154        | $f_{19}^2$   | 1.2634                        | 0.95301  | $f_{19}^2$   | 1.1249    | 0.96597 |
| $f_{21}^2$  | 0.24285     | 0.66729     | $f_{21}^2$   | 0.19624     | 0.86846        | $f_{21}^2$   | 0.83107                       | 0.99237  | $f_{21}^2$   | 0.84572   | 0.99125 |

|             | Simétric    | 0           |             | Mínimo Part | icular        | Μ           | ínimo de J | lulier  | Est         | féricos de | Julier  |
|-------------|-------------|-------------|-------------|-------------|---------------|-------------|------------|---------|-------------|------------|---------|
|             |             |             |             | Antes       | da Transforma | ação        |            |         |             |            |         |
| Dist        | Média       | Cov         | Dist        | Média       | Cov           | Dist        | Média      | Cov     | Dist        | Média      | Cov     |
| rayl        | 1.1789e-008 | 1.3318e-008 | rayl        | 2.0964e-008 | 1.0898e-008   | rayl        | 0.58417    | 0.88239 | rayl        | 0.47163    | 0.81903 |
|             |             |             |             | Depois      | da Transform  | ação        |            |         |             |            |         |
| Func        | Média       | Cov         | Func        | Média       | Cov           | Func        | Média      | Cov     | Func        | Média      | Cov     |
| $f_{1}^{2}$ | 1.026e-007  | 0.52013     | $f_{1}^{2}$ | 1.0392e-007 | 0.61993       | $f_{1}^{2}$ | 0.69522    | 0.94836 | $f_{1}^{2}$ | 0.6461     | 0.95383 |
| $f_{1}^{2}$ | 0.3457      | 0.78791     | $f_{1}^{2}$ | 0.35764     | 0.94294       | $f_{1}^{2}$ | 0.88706    | 0.99759 | $f_{1}^{2}$ | 0.89615    | 0.99784 |
| $f_{3}^{2}$ | 0.90714     | 0.26896     | $f_{3}^{2}$ | 0.88658     | 0.4468        | $f_{3}^{2}$ | 0.88607    | 0.93702 | $f_{3}^{2}$ | 0.94535    | 0.5945  |
| $f_{3}^{2}$ | 0.25826     | 0.59459     | $f_{3}^{2}$ | 0.17741     | 0.2861        | $f_{3}^{2}$ | 0.52948    | 0.75283 | $f_{3}^{2}$ | 0.18156    | 0.86564 |
| $f_{5}^{2}$ | 0.62467     | 0.5535      | $f_{5}^{2}$ | 1.1001      | 0.9973        | $f_{5}^{2}$ | 1.0713     | 0.87916 | $f_{5}^{2}$ | 1.2852     | 0.87205 |
| $f_{5}^{2}$ | 0.30332     | 0.59459     | $f_{5}^{2}$ | 0.20836     | 0.2861        | $f_{5}^{2}$ | 0.51064    | 0.34493 | $f_{5}^{2}$ | 0.21324    | 0.86564 |
| $f_{7}^{2}$ | 0.469       | 0.99991     | $f_{7}^{2}$ | 0.13085     | 0.99998       | $f_{7}^{2}$ | 1.004      | 1       | $f_{7}^{2}$ | 1.838      | 0.99983 |
| $f_{7}^{2}$ | 0.30332     | 0.59459     | $f_{7}^{2}$ | 0.20836     | 0.2861        | $f_{7}^{2}$ | 0.51064    | 0.34493 | $f_{7}^{2}$ | 0.21324    | 0.86564 |
| $f_{9}^{2}$ | 0.12463     | 0.59382     | $f_{9}^{2}$ | 0.048846    | 0.24136       | $f_{9}^{2}$ | 0.56065    | 1.0071  | $f_{9}^{2}$ | 0.23507    | 0.84992 |
| $f_{9}^{2}$ | 0.12769     | 0.80363     | $f_{9}^{2}$ | 0.054254    | 0.09061       | $f_{9}^{2}$ | 0.56291    | 2.4708  | $f_{9}^{2}$ | 0.13892    | 0.84957 |
| $f_{11}^2$  | 0.76772     | 0.99764     | $f_{11}^2$  | 0.84235     | 0.99979       | $f_{11}^2$  | 0.97026    | 0.99999 | $f_{11}^2$  | 0.97055    | 1       |
| $f_{11}^2$  | 0.5622      | 1.2074      | $f_{11}^2$  | 0.25407     | 0.5994        | $f_{11}^2$  | 0.8257     | 0.9845  | $f_{11}^2$  | 0.44865    | 0.88677 |
| $f_{13}^2$  | 0.35266     | 1.0135      | $f_{13}^2$  | 0.15801     | 0.33074       | $f_{13}^2$  | 0.48255    | 0.73536 | $f_{13}^2$  | 0.19818    | 0.86311 |
| $f_{13}^2$  | 0.77736     | 0.3504      | $f_{13}^2$  | 0.40513     | 0.96986       | $f_{13}^2$  | 0.75113    | 0.99193 | $f_{13}^2$  | 0.44206    | 0.99127 |
| $f_{15}^2$  | 0.12321     | 0.45815     | $f_{15}^2$  | 0.050628    | 0.18743       | $f_{15}^2$  | 0.61193    | 0.71981 | $f_{15}^2$  | 0.44741    | 0.89983 |
| $f_{15}^2$  | 0.15796     | 0.83848     | $f_{15}^2$  | 0.14727     | 0.47492       | $f_{15}^2$  | 0.54254    | 0.56904 | $f_{15}^2$  | 0.40994    | 0.74523 |
| $f_{17}^2$  | 2.5342      | 0.64393     | $f_{17}^2$  | 2.2554      | 0.5178        | $f_{17}^2$  | 3.2911     | 0.93176 | $f_{17}^2$  | 1.5506     | 0.26859 |
| $f_{17}^2$  | 0.7101      | 0.57597     | $f_{17}^2$  | 1.6316      | 0.70285       | $f_{17}^2$  | 1.2389     | 0.94407 | $f_{17}^2$  | 1.1106     | 0.81269 |
| $f_{19}^2$  | 0.12514     | 0.46209     | $f_{19}^2$  | 0.070026    | 0.23625       | $f_{19}^2$  | 0.60972    | 0.72213 | $f_{19}^2$  | 0.44616    | 0.89858 |
| $f_{19}^2$  | 1.1422      | 0.96073     | $f_{19}^2$  | 1.6685      | 0.93011       | $f_{19}^2$  | 1.5915     | 0.93247 | $f_{19}^2$  | 1.1371     | 0.94984 |
| $f_{21}^2$  | 0.21918     | 0.64751     | $f_{21}^2$  | 0.19552     | 0.84151       | $f_{21}^2$  | 0.80289    | 0.98994 | $f_{21}^2$  | 0.81599    | 0.98783 |

Tabela 7.22: Tabela com os erros de cada função para rayl ([10, 5])

| Simétrico   |             | 0           |              | Mínimo Part | Μ             | Mínimo de Julier |         | Esféricos de J |              | Julier  |         |
|-------------|-------------|-------------|--------------|-------------|---------------|------------------|---------|----------------|--------------|---------|---------|
|             |             |             |              | Antes       | da Transforma | ação             |         |                |              |         |         |
| Dist        | Média       | Cov         | Dist         | Média       | Cov           | Dist             | Média   | Cov            | Dist         | Média   | Cov     |
| Т           | 1.2281e-007 | 1.1594e-008 | Т            | 1.2748e-007 | 1.6688e-008   | Т                | 3.8488  | 0.98652        | Т            | 13.4913 | 0.87063 |
|             |             |             |              | Depois      | da Transform  | ação             |         |                |              |         |         |
| Func        | Média       | Cov         | Func         | Média       | Cov           | Func             | Média   | Cov            | Func         | Média   | Cov     |
| $f_{1}^{2}$ | 9.8935e-008 | 0.87534     | $f_{1}^{2}$  | 9.7377e-008 | 0.91413       | $f_{1}^{2}$      | 0.98906 | 0.9998         | $f_{1}^{2}$  | 0.81519 | 0.96839 |
| $f_{1}^{2}$ | 0.66758     | 0.99927     | $f_{1}^{2}$  | 0.82492     | 0.9994        | $f_{1}^{2}$      | 0.99983 | 1              | $f_{1}^{2}$  | 0.95298 | 0.99996 |
| $f_{3}^{2}$ | 2.8169      | 0.6505      | $f_{3}^{2}$  | 28.9035     | 0.91993       | $f_{3}^{2}$      | 15.8553 | 0.94313        | $f_{3}^{2}$  | 46.8285 | 0.84445 |
| $f_{3}^{2}$ | 0.56865     | 0.27474     | $f_{3}^{2}$  | 12.6873     | 0.83854       | $f_{3}^{2}$      | 5.6141  | 0.98321        | $f_{3}^{2}$  | 21.7706 | 0.85574 |
| $f_{5}^{2}$ | 0.25753     | 0.31365     | $f_{5}^{2}$  | 0.48845     | 0.63296       | $f_{5}^{2}$      | 0.45059 | 0.69815        | $f_{5}^{2}$  | 0.68869 | 0.79464 |
| $f_{5}^{2}$ | 0.013307    | 0.27474     | $f_{5}^{2}$  | 0.29689     | 0.83854       | $f_{5}^{2}$      | 0.56237 | 0.8484         | $f_{5}^{2}$  | 0.50944 | 0.85574 |
| $f_{7}^{2}$ | 1.0022      | 0.99999     | $f_{7}^{2}$  | 0.27328     | 0.99992       | $f_{7}^{2}$      | 0.97071 | 1              | $f_{7}^{2}$  | 2.0752  | 0.99988 |
| $f_{7}^{2}$ | 0.013307    | 0.27474     | $f_{7}^{2}$  | 0.29689     | 0.83854       | $f_{7}^{2}$      | 0.56237 | 0.8484         | $f_{7}^{2}$  | 0.50944 | 0.85574 |
| $f_{9}^{2}$ | 0.64056     | 0.4149      | $f_{9}^{2}$  | 0.25871     | 0.46807       | $f_{9}^{2}$      | 0.901   | 0.89233        | $f_{9}^{2}$  | 0.85096 | 0.80967 |
| $f_{9}^{2}$ | 0.63741     | 0.28028     | $f_{9}^{2}$  | 0.28797     | 0.60241       | $f_{9}^{2}$      | 0.83702 | 0.562          | $f_{9}^{2}$  | 0.76321 | 0.59067 |
| $f_{11}^2$  | 0.9487      | 1           | $f_{11}^2$   | 0.94819     | 1             | $f_{11}^2$       | 0.9838  | 1              | $f_{11}^2$   | 0.97949 | 1       |
| $f_{11}^2$  | 0.5919      | 0.99949     | $f_{11}^2$   | 0.66691     | 0.99977       | $f_{11}^2$       | 0.87959 | 0.99998        | $f_{11}^2$   | 0.6634  | 0.99989 |
| $f_{13}^2$  | 1.4627      | 0.99069     | $f_{13}^2$   | 0.86784     | 1.1766        | $f_{13}^2$       | 1.2404  | 1.4094         | $f_{13}^2$   | 1.6949  | 0.70984 |
| $f_{13}^2$  | 36.4818     | 2.6353      | $f_{13}^2$   | 32.2096     | 3.2131        | $f_{13}^2$       | 30.7066 | 2.3029         | $f_{13}^2$   | 43.7681 | 0.88749 |
| $f_{15}^2$  | 0.19317     | 0.43094     | $f_{15}^{2}$ | 0.37037     | 0.8622        | $f_{15}^{2}$     | 0.9484  | 0.97838        | $f_{15}^{2}$ | 0.73665 | 0.58676 |
| $f_{15}^2$  | 14.7597     | 0.56046     | $f_{15}^2$   | 3.7437      | 0.2739        | $f_{15}^2$       | 9.4323  | 0.62499        | $f_{15}^2$   | 7.0116  | 0.43386 |
| $f_{17}^2$  | 0.90527     | 0.99995     | $f_{17}^2$   | 0.69587     | 1.0521        | $f_{17}^2$       | 3.0753  | 0.99841        | $f_{17}^2$   | 1.0466  | 1       |
| $f_{17}^2$  | 0.8032      | 0.88092     | $f_{17}^2$   | 2.4162      | 0.92689       | $f_{17}^2$       | 9.1113  | 0.9916         | $f_{17}^2$   | 0.71568 | 1       |
| $f_{19}^2$  | 0.86827     | 0.60942     | $f_{19}^2$   | 0.38141     | 0.5176        | $f_{19}^2$       | 0.97497 | 0.6392         | $f_{19}^2$   | 0.75408 | 0.71305 |
| $f_{19}^2$  | 0.89961     | 0.88088     | $f_{19}^2$   | 1.2499      | 0.99325       | $f_{19}^2$       | 4.8044  | 0.99187        | $f_{19}^2$   | 1.033   | 1       |
| $f_{21}^2$  | 0.93459     | 0.96665     | $f_{21}^2$   | 2.0934      | 0.99535       | $f_{21}^2$       | 1.0084  | 1              | $f_{21}^2$   | 3.4383  | 0.9981  |

|             | Simétric    | 0           |             | Mínimo Part | icular         | Μ           | ínimo de J | lulier  | Es           | féricos de J | Iulier  |
|-------------|-------------|-------------|-------------|-------------|----------------|-------------|------------|---------|--------------|--------------|---------|
|             |             |             |             | Antes       | da Transform   | ação        |            |         |              |              |         |
| Dist        | Média       | Cov         | Dist        | Média       | Cov            | Dist        | Média      | Cov     | Dist         | Média        | Cov     |
| unif        | 8.9135e-009 | 1.4717e-008 | unif        | 2.3086e-008 | 1.4657e-008    | unif        | 0.59636    | 0.89738 | unif         | 0.36375      | 1       |
|             |             |             |             | Depois      | s da Transforn | nação       |            |         |              |              |         |
| Func        | Média       | Cov         | Func        | Média       | Cov            | Func        | Média      | Cov     | Func         | Média        | Cov     |
| $f_{1}^{2}$ | 6.5352e-008 | 0.23812     | $f_{1}^{2}$ | 6.6647e-008 | 0.68181        | $f_{1}^{2}$ | 0.72687    | 0.95752 | $f_{1}^{2}$  | 0.55516      | 0.99592 |
| $f_{1}^{2}$ | 0.20398     | 0.85618     | $f_{1}^{2}$ | 0.51263     | 1.5093         | $f_{1}^{2}$ | 0.90277    | 0.99706 | $f_{1}^{2}$  | 0.83307      | 0.99997 |
| $f_{3}^{2}$ | 1.5659      | 0.56805     | $f_{3}^{2}$ | 1.3558      | 1.2115         | $f_{3}^{2}$ | 1.3118     | 0.96935 | $f_{3}^{2}$  | 1.3745       | 0.99722 |
| $f_{3}^{2}$ | 0.24625     | 0.24649     | $f_{3}^{2}$ | 0.25989     | 0.45803        | $f_{3}^{2}$ | 0.49767    | 0.24776 | $f_{3}^{2}$  | 0.18859      | 0.77483 |
| $f_{5}^{2}$ | 0.75065     | 0.30581     | $f_{5}^{2}$ | 0.53034     | 0.96551        | $f_{5}^{2}$ | 0.92184    | 0.96727 | $f_{5}^{2}$  | 1.2425       | 0.66364 |
| $f_{5}^{2}$ | 0.28218     | 0.24649     | $f_{5}^{2}$ | 0.29781     | 0.45803        | $f_{5}^{2}$ | 0.50004    | 0.60209 | $f_{5}^{2}$  | 0.21611      | 0.77483 |
| $f_{7}^{2}$ | 0.66513     | 1           | $f_{7}^{2}$ | 0.98565     | 1              | $f_{7}^{2}$ | 0.80825    | 1       | $f_{7}^{2}$  | 0.65264      | 1       |
| $f_{7}^{2}$ | 0.28218     | 0.24649     | $f_{7}^{2}$ | 0.29781     | 0.45803        | $f_{7}^{2}$ | 0.50004    | 0.60209 | $f_{7}^{2}$  | 0.21611      | 0.77483 |
| $f_{9}^{2}$ | 0.18499     | 0.68888     | $f_{9}^{2}$ | 0.12558     | 0.41026        | $f_{9}^{2}$ | 0.55022    | 0.54446 | $f_{9}^{2}$  | 0.14879      | 0.93116 |
| $f_{9}^{2}$ | 0.22685     | 1.1465      | $f_{9}^{2}$ | 0.12883     | 0.55498        | $f_{9}^{2}$ | 0.55156    | 1.7074  | $f_{9}^{2}$  | 0.020705     | 0.91793 |
| $f_{11}^2$  | 0.83666     | 1.5499      | $f_{11}^2$  | 1.6099      | 3.8755         | $f_{11}^2$  | 0.9785     | 0.99993 | $f_{11}^2$   | 0.96381      | 1       |
| $f_{11}^2$  | 0.56103     | 1.0509      | $f_{11}^2$  | 0.48726     | 0.76107        | $f_{11}^2$  | 0.88747    | 0.9939  | $f_{11}^2$   | 0.41839      | 0.83209 |
| $f_{13}^2$  | 0.77137     | 1.8722      | $f_{13}^2$  | 0.35951     | 0.71767        | $f_{13}^2$  | 0.37472    | 0.87046 | $f_{13}^2$   | 0.25127      | 0.92188 |
| $f_{13}^2$  | 3.1387      | 0.83463     | $f_{13}^2$  | 0.88205     | 0.99999        | $f_{13}^2$  | 0.94627    | 1       | $f_{13}^2$   | 0.87013      | 1       |
| $f_{15}^2$  | 0.11335     | 0.37616     | $f_{15}^2$  | 0.16192     | 0.53209        | $f_{15}^2$  | 0.62621    | 0.80197 | $f_{15}^{2}$ | 0.31063      | 0.99477 |
| $f_{15}^2$  | 0.25159     | 0.76411     | $f_{15}^2$  | 0.29346     | 0.85724        | $f_{15}^2$  | 0.64854    | 0.94202 | $f_{15}^{2}$ | 0.6323       | 0.92715 |
| $f_{17}^2$  | 0.81269     | 0.58029     | $f_{17}^2$  | 0.6824      | 0.54192        | $f_{17}^2$  | 1.215      | 0.96655 | $f_{17}^{2}$ | 1.8946       | 0.99617 |
| $f_{17}^2$  | 0.8162      | 0.46486     | $f_{17}^2$  | 0.6806      | 0.51951        | $f_{17}^2$  | 1.2598     | 0.93891 | $f_{17}^2$   | 0.48146      | 0.30703 |
| $f_{19}^2$  | 0.11864     | 0.38184     | $f_{19}^2$  | 0.16522     | 0.53462        | $f_{19}^2$  | 0.62642    | 0.81039 | $f_{19}^2$   | 0.3209       | 0.99529 |
| $f_{19}^2$  | 0.81494     | 0.92098     | $f_{19}^2$  | 0.68125     | 0.80572        | $f_{19}^2$  | 1.2443     | 0.97087 | $f_{19}^2$   | 1.4697       | 0.93374 |
| $f_{21}^2$  | 0.0086301   | 0.57777     | $f_{21}^2$  | 0.27656     | 1.0459         | $f_{21}^2$  | 0.83121    | 0.98673 | $f_{21}^2$   | 0.7358       | 0.99867 |

Tabela 7.24: Tabela com os erros de cada função para unif([0,0],[10,5])

|              | Simétric                                                                                                                                          | 0           |              | Mínimo Parti | icular         | M            | ínimo de J | ulier   | Es           | Esféricos de Julie |          |  |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|--------------|----------------|--------------|------------|---------|--------------|--------------------|----------|--|
|              | Antes da Transformação   Pist Média Cov Dist Média Cov Dist Média Cov   1 2007-000 1 0027-000 0 7000-000 1 1007-000 0 20010 0 20010 0 7000 0 7000 |             |              |              |                |              |            |         |              |                    |          |  |
| Dist         | Média                                                                                                                                             | Cov         | Dist         | Média        | Cov            | Dist         | Média      | Cov     | Dist         | Média              | Cov      |  |
| norm         | 1.2997e-008                                                                                                                                       | 1.6827e-008 | norm         | 8.7969e-009  | 1.1687e-008    | norm         | 0.39813    | 0.98742 | norm         | 0.76351            | 0.87995  |  |
|              |                                                                                                                                                   |             |              | Depois       | s da Transform | nação        |            |         |              |                    |          |  |
| Func         | Média                                                                                                                                             | Cov         | Func         | Média        | Cov            | Func         | Média      | Cov     | Func         | Média              | Cov      |  |
| $f_{1}^{3}$  | 5.323                                                                                                                                             | 19.2495     | $f_{1}^{3}$  | 5.323        | 8.3257         | $f_{1}^{3}$  | 2.8597     | 1.8372  | $f_{1}^{3}$  | 3.4541             | 1.9451   |  |
| $f_{1}^{3}$  | 54.7863                                                                                                                                           | 3821.5177   | $f_{1}^{3}$  | 46.1194      | 957.075        | $f_{1}^{3}$  | 13.8132    | 46.1942 | $f_{1}^{3}$  | 18.8446            | 160.8494 |  |
| $f_{3}^{3}$  | 0.9541                                                                                                                                            | 0.98265     | $f_{3}^{3}$  | 1.0618       | 0.99816        | $f_{3}^{3}$  | 1.0338     | 0.99557 | $f_{3}^{3}$  | 0.95038            | 0.99774  |  |
| $f_{3}^{3}$  | 1.0077                                                                                                                                            | 0.82311     | $f_{3}^{3}$  | 1.0061       | 0.83306        | $f_{3}^{3}$  | 1.0497     | 0.97726 | $f_{3}^{3}$  | 0.91048            | 0.91508  |  |
| $f_{5}^{3}$  | 0.98442                                                                                                                                           | 0.99249     | $f_{5}^{3}$  | 1.0005       | 0.99901        | $f_{5}^{3}$  | 0.97276    | 0.99702 | $f_{5}^{3}$  | 0.93119            | 0.99247  |  |
| $f_{5}^{3}$  | 1.043                                                                                                                                             | 0.82311     | $f_{5}^{3}$  | 1.0143       | 0.83306        | $f_{5}^{3}$  | 1.158      | 0.98411 | $f_{5}^{3}$  | 0.95118            | 0.91508  |  |
| $f_{7}^{3}$  | 0.80266                                                                                                                                           | 1.1479      | $f_{7}^{3}$  | 1.1573       | 2.9512         | $f_{7}^{3}$  | 1.0442     | 0.95286 | $f_{7}^{3}$  | 1.3187             | 0.85427  |  |
| $f_{7}^{3}$  | 0.71758                                                                                                                                           | 0.9457      | $f_{7}^{3}$  | 0.74575      | 0.92212        | $f_{7}^{3}$  | 0.69691    | 0.99405 | $f_{7}^{3}$  | 0.73429            | 0.97496  |  |
| $f_{9}^{3}$  | 0.89045                                                                                                                                           | 0.90349     | $f_{9}^{3}$  | 0.90221      | 0.88755        | $f_{9}^{3}$  | 0.76256    | 0.98735 | $f_{9}^{3}$  | 0.80839            | 0.97308  |  |
| $f_{9}^{3}$  | 0.75321                                                                                                                                           | 0.98625     | $f_{9}^{3}$  | 0.76458      | 0.98236        | $f_{9}^{3}$  | 0.69506    | 0.99381 | $f_{9}^{3}$  | 0.73316            | 0.99557  |  |
| $f_{11}^3$   | 337.7389                                                                                                                                          | 258276.8086 | $f_{11}^3$   | 61.2114      | 2313.9855      | $f_{11}^3$   | 6.7184     | 11.3663 | $f_{11}^3$   | 10.0556            | 98.3976  |  |
| $f_{11}^3$   | 3.0857                                                                                                                                            | 23.5995     | $f_{11}^3$   | 0.75697      | 0.92404        | $f_{11}^3$   | 0.95447    | 0.99978 | $f_{11}^3$   | 0.95007            | 1        |  |
| $f_{13}^{3}$ | 0.80301                                                                                                                                           | 0.90648     | $f_{13}^{3}$ | 0.90103      | 0.88135        | $f_{13}^3$   | 0.73822    | 0.98724 | $f_{13}^3$   | 0.81712            | 0.95959  |  |
| $f_{13}^3$   | 0.83966                                                                                                                                           | 0.98754     | $f_{13}^3$   | 0.90965      | 0.98961        | $f_{13}^3$   | 0.80275    | 0.98604 | $f_{13}^3$   | 0.84429            | 0.99741  |  |
| $f_{15}^{3}$ | 1.368                                                                                                                                             | 0.82921     | $f_{15}^{3}$ | 1.4319       | 0.94348        | $f_{15}^{3}$ | 0.87749    | 0.98133 | $f_{15}^{3}$ | 1.0743             | 0.9927   |  |
| $f_{15}^{3}$ | 0.82622                                                                                                                                           | 0.99491     | $f_{15}^{3}$ | 0.80068      | 0.99625        | $f_{15}^{3}$ | 0.84927    | 0.99924 | $f_{15}^{3}$ | 0.82037            | 0.99999  |  |
| $f_{17}^3$   | 0.97351                                                                                                                                           | 0.9621      | $f_{17}^3$   | 0.96924      | 0.96425        | $f_{17}^3$   | 0.86249    | 0.99931 | $f_{17}^3$   | 0.99975            | 0.97449  |  |
| $f_{17}^3$   | 0.94028                                                                                                                                           | 0.99607     | $f_{17}^3$   | 0.96253      | 0.9904         | $f_{17}^3$   | 0.93436    | 0.99819 | $f_{17}^3$   | 0.95203            | 0.99458  |  |
| $f_{19}^3$   | 1.0016                                                                                                                                            | 0.99451     | $f_{19}^{3}$ | 0.9726       | 0.98618        | $f_{19}^3$   | 1.025      | 0.99976 | $f_{19}^{3}$ | 1.0131             | 0.99946  |  |
| $f_{19}^3$   | 1.0149                                                                                                                                            | 0.97598     | $f_{19}^3$   | 1.181        | 0.90257        | $f_{19}^3$   | 1.0899     | 0.99922 | $f_{19}^3$   | 1.0831             | 0.99348  |  |
| $f_{21}^3$   | 1.2602                                                                                                                                            | 0.97167     | $f_{21}^{3}$ | 1.2914       | 0.97393        | $f_{21}^{3}$ | 1.0007     | 0.99845 | $f_{21}^{3}$ | 1.1112             | 0.98851  |  |
| $f_{21}^3$   | 0.90713                                                                                                                                           | 0.92922     | $f_{21}^{3}$ | 0.94807      | 0.91415        | $f_{21}^{3}$ | 0.97509    | 0.9979  | $f_{21}^{3}$ | 0.96521            | 0.99662  |  |
| $f_{23}^{3}$ | 14.3264                                                                                                                                           | 297.8113    | $f_{23}^{3}$ | 13.7295      | 149.6845       | $f_{23}^{3}$ | 6.3191     | 9.4079  | $f_{23}^{3}$ | 6.2477             | 29.2549  |  |

Tabela 7.25: Tabela com os erros de cada função para norm  $([1, 5, 3], P_{norm}^3)$ 

|              | Simétric                                                                                                                                    | 0           |              | Mínimo Part | icular         | Μ            | l <b>ínimo de</b> J | lulier  | Es           | sféricos de | Julier   |  |  |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|-------------|----------------|--------------|---------------------|---------|--------------|-------------|----------|--|--|
|              | Antes da TransformaçãoVistMédiaCovDistMédiaCovDistMédiaCovhi28.8491e-0091.8868e-008chi26.2572e-0091.0205e-008chi20.414350.94511chi20.364441 |             |              |             |                |              |                     |         |              |             |          |  |  |
| Dist         | Média                                                                                                                                       | Cov         | Dist         | Média       | Cov            | Dist         | Média               | Cov     | Dist         | Média       | Cov      |  |  |
| chi2         | 8.8491e-009                                                                                                                                 | 1.8868e-008 | chi2         | 6.2572e-009 | 1.0205e-008    | chi2         | 0.41435             | 0.94511 | chi2         | 0.36444     | 1        |  |  |
|              |                                                                                                                                             |             |              | Depoi       | s da Transforn | nação        |                     |         |              |             |          |  |  |
| Func         | Média                                                                                                                                       | Cov         | Func         | Média       | Cov            | Func         | Média               | Cov     | Func         | Média       | Cov      |  |  |
| $f_{1}^{3}$  | 1.0239e-007                                                                                                                                 | 0.56285     | $f_{1}^{3}$  | 1.0154e-007 | 0.44846        | $f_{1}^{3}$  | 0.58921             | 0.98553 | $f_{1}^{3}$  | 0.42055     | 0.99268  |  |  |
| $f_{1}^{3}$  | 0.36626                                                                                                                                     | 0.76744     | $f_{1}^{3}$  | 0.38927     | 0.58233        | $f_{1}^{3}$  | 0.84857             | 0.99961 | $f_{1}^{3}$  | 0.7962      | 0.99977  |  |  |
| $f_{3}^{3}$  | 1.5708                                                                                                                                      | 0.70189     | $f_{3}^{3}$  | 1.6807      | 0.89972        | $f_{3}^{3}$  | 1.4312              | 0.95228 | $f_{3}^{3}$  | 1.8814      | 0.71123  |  |  |
| $f_{3}^{3}$  | 0.22724                                                                                                                                     | 1.1537      | $f_{3}^{3}$  | 0.19312     | 0.51273        | $f_{3}^{3}$  | 0.25837             | 0.44584 | $f_{3}^{3}$  | 0.33993     | 0.047856 |  |  |
| $f_{5}^{3}$  | 2.6122                                                                                                                                      | 0.75099     | $f_{5}^{3}$  | 0.43335     | 0.67679        | $f_{5}^{3}$  | 3.4147              | 0.95251 | $f_{5}^{3}$  | 2.7238      | 0.91249  |  |  |
| $f_{5}^{3}$  | 0.25241                                                                                                                                     | 1.1537      | $f_{5}^{3}$  | 0.21451     | 0.51273        | $f_{5}^{3}$  | 0.30878             | 0.67951 | $f_{5}^{3}$  | 0.37758     | 0.047856 |  |  |
| $f_{7}^{3}$  | 0.12406                                                                                                                                     | 0.99999     | $f_{7}^{3}$  | 1.0107      | 1              | $f_{7}^{3}$  | 1.436               | 0.99987 | $f_{7}^{3}$  | 0.74963     | 1        |  |  |
| $f_{7}^{3}$  | 0.24687                                                                                                                                     | 1.872       | $f_{7}^{3}$  | 0.13865     | 0.64677        | $f_{7}^{3}$  | 0.28474             | 0.80473 | $f_{7}^{3}$  | 0.38148     | 1.5872   |  |  |
| $f_{9}^{3}$  | 0.22118                                                                                                                                     | 0.75044     | $f_{9}^{3}$  | 0.045494    | 0.37816        | $f_{9}^{3}$  | 0.34753             | 0.45329 | $f_{9}^{3}$  | 0.28377     | 0.74636  |  |  |
| $f_{9}^{3}$  | 0.22306                                                                                                                                     | 0.82332     | $f_{9}^{3}$  | 0.049694    | 0.44906        | $f_{9}^{3}$  | 0.35552             | 1.2123  | $f_{9}^{3}$  | 0.28129     | 0.32438  |  |  |
| $f_{11}^3$   | 0.99999                                                                                                                                     | 1           | $f_{11}^3$   | 0.99983     | 1              | $f_{11}^3$   | 1                   | 1       | $f_{11}^3$   | 1           | 1        |  |  |
| $f_{11}^3$   | 2.9666                                                                                                                                      | 14.4859     | $f_{11}^3$   | 0.61255     | 0.93342        | $f_{11}^3$   | 0.9541              | 0.99981 | $f_{11}^3$   | 0.95564     | 0.99979  |  |  |
| $f_{13}^{3}$ | 0.52379                                                                                                                                     | 0.57044     | $f_{13}^{3}$ | 0.099839    | 0.21986        | $f_{13}^3$   | 0.19325             | 0.88072 | $f_{13}^3$   | 0.66784     | 0.35328  |  |  |
| $f_{13}^3$   | 0.91783                                                                                                                                     | 0.99994     | $f_{13}^3$   | 0.75827     | 0.99985        | $f_{13}^{3}$ | 0.92991             | 1       | $f_{13}^{3}$ | 1.0076      | 0.99993  |  |  |
| $f_{15}^{3}$ | 0.12512                                                                                                                                     | 0.49209     | $f_{15}^{3}$ | 0.10864     | 0.42434        | $f_{15}^{3}$ | 0.46503             | 0.91474 | $f_{15}^{3}$ | 0.19176     | 0.98999  |  |  |
| $f_{15}^{3}$ | 0.28862                                                                                                                                     | 1.0754      | $f_{15}^{3}$ | 0.21562     | 0.7034         | $f_{15}^{3}$ | 0.44633             | 0.96731 | $f_{15}^{3}$ | 0.17235     | 0.95785  |  |  |
| $f_{17}^{3}$ | 0.62156                                                                                                                                     | 1.543       | $f_{17}^{3}$ | 0.34292     | 0.5673         | $f_{17}^3$   | 0.46985             | 0.98359 | $f_{17}^{3}$ | 0.85878     | 0.77654  |  |  |
| $f_{17}^{3}$ | 4.8129                                                                                                                                      | 0.56877     | $f_{17}^{3}$ | 4.3885      | 0.21392        | $f_{17}^3$   | 5.8035              | 0.90402 | $f_{17}^{3}$ | 2.733       | 0.34578  |  |  |
| $f_{19}^{3}$ | 1.3698                                                                                                                                      | 0.96032     | $f_{19}^{3}$ | 2.9952      | 0.35664        | $f_{19}^3$   | 1.7793              | 0.99182 | $f_{19}^{3}$ | 0.27412     | 0.95939  |  |  |
| $f_{19}^{3}$ | 4.925                                                                                                                                       | 0.83151     | $f_{19}^{3}$ | 2.6997      | 0.4192         | $f_{19}^{3}$ | 4.4463              | 0.97597 | $f_{19}^{3}$ | 4.0992      | 0.41247  |  |  |
| $f_{21}^{3}$ | 0.13236                                                                                                                                     | 0.49951     | $f_{21}^{3}$ | 0.11016     | 0.42569        | $f_{21}^{3}$ | 0.46501             | 0.91496 | $f_{21}^{3}$ | 0.19799     | 0.99002  |  |  |
| $f_{21}^{3}$ | 0.90853                                                                                                                                     | 0.86484     | $f_{21}^{3}$ | 1.272       | 0.88459        | $f_{21}^{3}$ | 1.0784              | 0.96743 | $f_{21}^{3}$ | 0.89637     | 1.0235   |  |  |
| $f_{23}^{3}$ | 0.25732                                                                                                                                     | 0.64214     | $f_{23}^{3}$ | 0.21051     | 0.65601        | $f_{23}^{3}$ | 0.73996             | 0.99759 | $f_{23}^{3}$ | 0.64363     | 0.9984   |  |  |

Tabela 7.26: Tabela com os erros de cada função para chi2 ([10, 5, 2])

|              | Simétrie   | co          |              | Mínimo Part | icular          | Ν            | línimo de J | ulier   | Es           | féricos de | Julier  |
|--------------|------------|-------------|--------------|-------------|-----------------|--------------|-------------|---------|--------------|------------|---------|
|              |            |             |              | Ante        | s da Transforn  | nação        |             |         |              |            |         |
| Dist         | Média      | Cov         | Dist         | Média       | Cov             | Dist         | Média       | Cov     | Dist         | Média      | Cov     |
| exp          | 0          | 8.4859e-009 | exp          | 6.2565e-009 | 1.2083e-008     | exp          | 0.42313     | 0.98735 | exp          | 0.38084    | 1       |
|              |            |             |              | Depo        | is da Transforr | nação        |             |         |              |            |         |
| Func         | Média      | Cov         | Func         | Média       | Cov             | Func         | Média       | Cov     | Func         | Média      | Cov     |
| $f_{1}^{3}$  | 5.952e-008 | 0.80623     | $f_{1}^{3}$  | 5.763e-008  | 0.42996         | $f_{1}^{3}$  | 0.76939     | 0.99867 | $f_{1}^{3}$  | 0.67562    | 0.99821 |
| $f_{1}^{3}$  | 0.71883    | 0.98892     | $f_{1}^{3}$  | 0.32797     | 0.94514         | $f_{1}^{3}$  | 0.98313     | 1       | $f_{1}^{3}$  | 0.9754     | 1       |
| $f_{3}^{3}$  | 1.2479     | 0.38663     | $f_{3}^{3}$  | 1.0369      | 1.5559          | $f_{3}^{3}$  | 1.226       | 0.85627 | $f_{3}^{3}$  | 1.7142     | 0.72498 |
| $f_{3}^{3}$  | 0.28161    | 1.0715      | $f_{3}^{3}$  | 0.20408     | 0.98137         | $f_{3}^{3}$  | 0.25077     | 0.78367 | $f_{3}^{3}$  | 0.41526    | 0.7179  |
| $f_{5}^{3}$  | 1.8959     | 0.71195     | $f_{5}^{3}$  | 0.52958     | 0.31802         | $f_{5}^{3}$  | 2.0972      | 0.94624 | $f_{5}^{3}$  | 1.8944     | 0.90632 |
| $f_{5}^{3}$  | 0.31615    | 1.0715      | $f_{5}^{3}$  | 0.22911     | 0.98137         | $f_{5}^{3}$  | 0.39537     | 0.85986 | $f_{5}^{3}$  | 0.46619    | 0.7179  |
| $f_{7}^{3}$  | 1.3706     | 1           | $f_{7}^{3}$  | 0.96951     | 1               | $f_{7}^{3}$  | 2.1533      | 0.99982 | $f_{7}^{3}$  | 1.4647     | 1       |
| $f_{7}^{3}$  | 0.22422    | 1.7071      | $f_{7}^{3}$  | 0.13879     | 0.87419         | $f_{7}^{3}$  | 0.055715    | 0.40082 | $f_{7}^{3}$  | 0.25906    | 0.89318 |
| $f_{9}^{3}$  | 0.40684    | 0.46653     | $f_{9}^{3}$  | 0.025323    | 0.56607         | $f_{9}^{3}$  | 0.24742     | 0.83142 | $f_{9}^{3}$  | 0.29025    | 0.91211 |
| $f_{9}^{3}$  | 0.37661    | 0.27212     | $f_{9}^{3}$  | 0.021968    | 0.67964         | $f_{9}^{3}$  | 0.28424     | 0.24877 | $f_{9}^{3}$  | 0.31348    | 0.78702 |
| $f_{11}^3$   | 1          | 1           | $f_{11}^3$   | 1           | 1               | $f_{11}^{3}$ | 1           | 1       | $f_{11}^3$   | 1          | 1       |
| $f_{11}^3$   | 133.5983   | 39330.2516  | $f_{11}^3$   | 0.25385     | 0.55825         | $f_{11}^3$   | 0.98517     | 0.9999  | $f_{11}^3$   | 0.98667    | 0.99996 |
| $f_{13}^3$   | 0.91337    | 0.70896     | $f_{13}^3$   | 0.15312     | 0.55378         | $f_{13}^3$   | 0.58132     | 0.9435  | $f_{13}^{3}$ | 0.85839    | 0.68383 |
| $f_{13}^3$   | 0.9703     | 1           | $f_{13}^3$   | 0.86025     | 0.99999         | $f_{13}^{3}$ | 0.96543     | 1       | $f_{13}^{3}$ | 1.0033     | 1       |
| $f_{15}^3$   | 0.37652    | 0.74553     | $f_{15}^{3}$ | 0.21432     | 0.40535         | $f_{15}^{3}$ | 0.52574     | 0.98143 | $f_{15}^{3}$ | 0.29496    | 0.99366 |
| $f_{15}^3$   | 0.25941    | 1.4082      | $f_{15}^{3}$ | 0.36223     | 0.85017         | $f_{15}^3$   | 0.57891     | 0.98765 | $f_{15}^{3}$ | 0.35333    | 0.9681  |
| $f_{17}^3$   | 0.55647    | 1.9609      | $f_{17}^3$   | 0.59558     | 0.91863         | $f_{17}^3$   | 0.72674     | 0.99535 | $f_{17}^3$   | 0.91951    | 0.93859 |
| $f_{17}^3$   | 1.7539     | 0.45768     | $f_{17}^3$   | 3.2212      | 0.25005         | $f_{17}^3$   | 2.8336      | 0.93905 | $f_{17}^3$   | 1.6743     | 0.73843 |
| $f_{19}^3$   | 2.8705     | 0.94365     | $f_{19}^3$   | 3.6568      | 0.41472         | $f_{19}^3$   | 4.4224      | 0.99502 | $f_{19}^{3}$ | 3.982      | 0.9394  |
| $f_{19}^3$   | 2.1344     | 0.56405     | $f_{19}^3$   | 0.93623     | 0.51011         | $f_{19}^{3}$ | 2.1832      | 0.96839 | $f_{19}^{3}$ | 2.3901     | 0.98709 |
| $f_{21}^{3}$ | 0.37666    | 0.74548     | $f_{21}^{3}$ | 0.21764     | 0.40644         | $f_{21}^{3}$ | 0.52616     | 0.98148 | $f_{21}^{3}$ | 0.30062    | 0.99368 |
| $f_{21}^{3}$ | 0.79975    | 0.86957     | $f_{21}^{3}$ | 1.3288      | 0.97787         | $f_{21}^{3}$ | 1.0662      | 0.98339 | $f_{21}^{3}$ | 0.93317    | 0.86961 |
| $f_{23}^{3}$ | 0.57452    | 0.93478     | $f_{23}^{3}$ | 0.082981    | 0.77677         | $f_{23}^{3}$ | 0.93023     | 0.99996 | $f_{23}^{3}$ | 0.90039    | 0.99992 |

Tabela 7.27: Tabela com os erros de cada função para exp([10, 5, 2])

|              | Simétrio   | 20          |              | Mínimo Part | icular         | Μ            | l <mark>ínimo de</mark> J | lulier  | Es           | féricos de | Julier  |
|--------------|------------|-------------|--------------|-------------|----------------|--------------|---------------------------|---------|--------------|------------|---------|
|              |            |             |              | Antes       | s da Transform | ação         |                           |         |              |            |         |
| Dist         | Média      | Cov         | Dist         | Média       | Cov            | Dist         | Média                     | Cov     | Dist         | Média      | Cov     |
| ev           | 1.391e-008 | 1.3088e-008 | ev           | 9.8362e-009 | 1.3259e-008    | ev           | 0.4546                    | 0.99739 | ev           | 0.66707    | 1       |
|              |            |             |              | Depoi       | s da Transforn | nação        |                           |         |              |            |         |
| Func         | Média      | Cov         | Func         | Média       | Cov            | Func         | Média                     | Cov     | Func         | Média      | Cov     |
| $f_{1}^{3}$  | 2.904e-008 | 0.14563     | $f_{1}^{3}$  | 2.6886e-008 | 1.1288         | $f_{1}^{3}$  | 0.96114                   | 0.99977 | $f_{1}^{3}$  | 0.91768    | 0.99633 |
| $f_{1}^{3}$  | 0.32128    | 0.96351     | $f_{1}^{3}$  | 1.0208      | 0.69583        | $f_{1}^{3}$  | 0.99909                   | 1       | $f_{1}^{3}$  | 0.99552    | 1       |
| $f_{3}^{3}$  | 2.4105     | 0.78381     | $f_{3}^{3}$  | 2.8708      | 0.98492        | $f_{3}^{3}$  | 2.0341                    | 0.86661 | $f_{3}^{3}$  | 0.70765    | 0.88812 |
| $f_{3}^{3}$  | 0.69252    | 0.67939     | $f_{3}^{3}$  | 0.73327     | 1.0598         | $f_{3}^{3}$  | 0.7576                    | 0.95141 | $f_{3}^{3}$  | 0.60801    | 0.93712 |
| $f_{5}^{3}$  | 1.1202     | 0.84004     | $f_{5}^{3}$  | 3.1842      | 0.66578        | $f_{5}^{3}$  | 1.6579                    | 0.84317 | $f_{5}^{3}$  | 3.6633     | 0.74453 |
| $f_{5}^{3}$  | 0.61788    | 0.67939     | $f_{5}^{3}$  | 0.65424     | 1.0598         | $f_{5}^{3}$  | 0.80872                   | 0.96262 | $f_{5}^{3}$  | 0.54248    | 0.93712 |
| $f_{7}^{3}$  | 0.9501     | 0.99999     | $f_{7}^{3}$  | 0.58377     | 1              | $f_{7}^{3}$  | 1.7616                    | 0.99999 | $f_{7}^{3}$  | 1.1775     | 1       |
| $f_{7}^{3}$  | 0.80696    | 0.74821     | $f_{7}^{3}$  | 0.77415     | 1.2818         | $f_{7}^{3}$  | 0.85793                   | 0.95219 | $f_{7}^{3}$  | 0.71175    | 0.88576 |
| $f_{9}^{3}$  | 0.40356    | 0.58443     | $f_{9}^{3}$  | 0.42029     | 0.63842        | $f_{9}^{3}$  | 0.66334                   | 0.9614  | $f_{9}^{3}$  | 0.4921     | 0.94519 |
| $f_{9}^{3}$  | 0.34438    | 0.72406     | $f_{9}^{3}$  | 0.31807     | 0.85655        | $f_{9}^{3}$  | 0.57268                   | 0.82296 | $f_{9}^{3}$  | 0.36152    | 0.88125 |
| $f_{11}^3$   | 7.4786     | 2.2805      | $f_{11}^3$   | 801.795     | 30642.41       | $f_{11}^3$   | 1                         | 1       | $f_{11}^3$   | 1          | 1       |
| $f_{11}^3$   | 1          | 1           | $f_{11}^{3}$ | 1           | 1              | $f_{11}^3$   | 1                         | 1       | $f_{11}^3$   | 1          | 1       |
| $f_{13}^{3}$ | 0.63651    | 0.82991     | $f_{13}^3$   | 0.5374      | 0.89008        | $f_{13}^3$   | 0.87686                   | 0.95334 | $f_{13}^3$   | 0.58675    | 0.80421 |
| $f_{13}^3$   | 1.1524     | 0.99999     | $f_{13}^{3}$ | 1.1673      | 0.99996        | $f_{13}^3$   | 1.3827                    | 0.99995 | $f_{13}^{3}$ | 0.83361    | 0.99997 |
| $f_{15}^{3}$ | 0.28364    | 0.72896     | $f_{15}^{3}$ | 0.38933     | 0.98188        | $f_{15}^{3}$ | 0.84838                   | 0.98834 | $f_{15}^{3}$ | 0.75473    | 0.96762 |
| $f_{15}^{3}$ | 0.60654    | 0.68368     | $f_{15}^{3}$ | 1.4453      | 0.44125        | $f_{15}^{3}$ | 0.2989                    | 0.99784 | $f_{15}^{3}$ | 0.52942    | 0.98624 |
| $f_{17}^3$   | 0.35711    | 0.74388     | $f_{17}^3$   | 1.6533      | 0.33272        | $f_{17}^3$   | 0.73044                   | 0.9987  | $f_{17}^3$   | 1.2092     | 0.96619 |
| $f_{17}^3$   | 16.6193    | 0.45779     | $f_{17}^3$   | 10.5223     | 0.98242        | $f_{17}^3$   | 11.7542                   | 0.98924 | $f_{17}^3$   | 7.6131     | 0.911   |
| $f_{19}^3$   | 7.1171     | 0.74859     | $f_{19}^3$   | 1.5181      | 0.81182        | $f_{19}^3$   | 5.9951                    | 0.98733 | $f_{19}^{3}$ | 3.6978     | 0.96588 |
| $f_{19}^3$   | 10.3273    | 0.59744     | $f_{19}^{3}$ | 7.7667      | 0.98575        | $f_{19}^3$   | 8.8909                    | 0.98843 | $f_{19}^{3}$ | 10.7991    | 0.99994 |
| $f_{21}^{3}$ | 0.28529    | 0.73744     | $f_{21}^{3}$ | 0.43267     | 0.98558        | $f_{21}^{3}$ | 0.84806                   | 0.98835 | $f_{21}^{3}$ | 0.75559    | 0.96773 |
| $f_{21}^3$   | 2.4023     | 1.0503      | $f_{21}^{3}$ | 2.761       | 0.95449        | $f_{21}^3$   | 2.0601                    | 0.99238 | $f_{21}^{3}$ | 1.0367     | 0.97758 |
| $f_{23}^{3}$ | 2.6848     | 0.76581     | $f_{23}^{3}$ | 4.3845      | 0.60509        | $f_{23}^{3}$ | 1.0796                    | 1       | $f_{23}^{3}$ | 1.1998     | 0.99992 |

Tabela 7.28: Tabela com os erros de cada função para ev([10, 5, 2], [10, 5, 2])

|              | Simétric    | 20          |              | Mínimo Part | icular          | Ν            | <mark>Aínimo de</mark> J | Iulier   | Est          | Esféricos de Ju |         |
|--------------|-------------|-------------|--------------|-------------|-----------------|--------------|--------------------------|----------|--------------|-----------------|---------|
|              |             |             |              | Ante        | s da Transforn  | nação        |                          |          |              |                 |         |
| Dist         | Média       | Cov         | Dist         | Média       | Cov             | Dist         | Média                    | Cov      | Dist         | Média           | Cov     |
| gev          | 9.944e-009  | 6.7958e-009 | gev          | 1.0643e-008 | 1.8612e-008     | gev          | 0.42042                  | 0.98148  | gev          | 0.34203         | 1       |
|              |             |             |              | Depo        | is da Transforr | nação        |                          |          |              |                 |         |
| Func         | Média       | Cov         | Func         | Média       | Cov             | Func         | Média                    | Cov      | Func         | Média           | Cov     |
| $f_{1}^{3}$  | 1.0099e-007 | 0.66819     | $f_{1}^{3}$  | 1.0099e-007 | 0.46922         | $f_{1}^{3}$  | 0.71237                  | 0.99669  | $f_{1}^{3}$  | 0.60169         | 0.99728 |
| $f_{1}^{3}$  | 0.54468     | 0.94272     | $f_{1}^{3}$  | 0.46481     | 0.71616         | $f_{1}^{3}$  | 0.95853                  | 0.99999  | $f_{1}^{3}$  | 0.94255         | 0.99999 |
| $f_{3}^{3}$  | 2.1722      | 0.873       | $f_{3}^{3}$  | 2.53        | 0.90575         | $f_{3}^{3}$  | 1.7493                   | 0.96719  | $f_{3}^{3}$  | 1.8775          | 0.98385 |
| $f_{3}^{3}$  | 0.2134      | 0.80885     | $f_{3}^{3}$  | 0.30174     | 0.59315         | $f_{3}^{3}$  | 0.10948                  | 0.80942  | $f_{3}^{3}$  | 0.28278         | 0.83916 |
| $f_{5}^{3}$  | 6.0267      | 0.81037     | $f_{5}^{3}$  | 1.7961      | 0.90672         | $f_{5}^{3}$  | 5.7453                   | 0.70325  | $f_{5}^{3}$  | 4.8908          | 0.65523 |
| $f_{5}^{3}$  | 0.22991     | 0.80885     | $f_{5}^{3}$  | 0.32508     | 0.59315         | $f_{5}^{3}$  | 0.32083                  | 0.86143  | $f_{5}^{3}$  | 0.30465         | 0.83916 |
| $f_{7}^{3}$  | 5.6642      | 0.9965      | $f_{7}^{3}$  | 4.0091      | 0.99676         | $f_{7}^{3}$  | 5.1197                   | 0.99798  | $f_{7}^{3}$  | 5.622           | 0.99767 |
| $f_{7}^{3}$  | 0.23287     | 0.85384     | $f_{7}^{3}$  | 0.31835     | 0.90719         | $f_{7}^{3}$  | 0.048179                 | 0.77271  | $f_{7}^{3}$  | 0.20556         | 0.55761 |
| $f_{9}^{3}$  | 0.30849     | 0.25391     | $f_{9}^{3}$  | 0.19024     | 0.37887         | $f_{9}^{3}$  | 0.29804                  | 0.81981  | $f_{9}^{3}$  | 0.13123         | 0.92694 |
| $f_{9}^{3}$  | 0.28644     | 0.44178     | $f_{9}^{3}$  | 0.18428     | 0.49959         | $f_{9}^{3}$  | 0.3302                   | 0.090669 | $f_{9}^{3}$  | 0.18084         | 0.8075  |
| $f_{11}^3$   | 1           | 1           | $f_{11}^3$   | 1           | 1               | $f_{11}^3$   | 1                        | 1        | $f_{11}^{3}$ | 1               | 1       |
| $f_{11}^3$   | 10.1051     | 5.4052      | $f_{11}^3$   | 0.99966     | 1               | $f_{11}^3$   | 1                        | 1        | $f_{11}^3$   | 1               | 1       |
| $f_{13}^3$   | 0.53053     | 0.72331     | $f_{13}^{3}$ | 0.36147     | 0.64992         | $f_{13}^{3}$ | 0.35766                  | 0.91504  | $f_{13}^{3}$ | 0.44576         | 0.62255 |
| $f_{13}^3$   | 0.77898     | 0.99999     | $f_{13}^3$   | 0.33056     | 0.99994         | $f_{13}^3$   | 0.71477                  | 1        | $f_{13}^{3}$ | 1.3619          | 0.99968 |
| $f_{15}^{3}$ | 0.26347     | 0.66528     | $f_{15}^{3}$ | 0.22939     | 0.56187         | $f_{15}^{3}$ | 0.51351                  | 0.9689   | $f_{15}^{3}$ | 0.28809         | 0.9936  |
| $f_{15}^{3}$ | 0.27366     | 0.78581     | $f_{15}^{3}$ | 0.37411     | 0.92307         | $f_{15}^{3}$ | 0.57422                  | 0.99226  | $f_{15}^{3}$ | 0.3581          | 0.98499 |
| $f_{17}^3$   | 0.47847     | 0.99263     | $f_{17}^3$   | 0.6408      | 0.97577         | $f_{17}^3$   | 0.74633                  | 0.99823  | $f_{17}^{3}$ | 0.88558         | 0.9828  |
| $f_{17}^3$   | 143.3364    | 0.81825     | $f_{17}^3$   | 119.2609    | 0.784           | $f_{17}^3$   | 127.8015                 | 0.89003  | $f_{17}^3$   | 36.7306         | 1.0716  |
| $f_{19}^3$   | 2.3235      | 0.79085     | $f_{19}^3$   | 8.9836      | 0.82073         | $f_{19}^3$   | 0.86762                  | 0.87254  | $f_{19}^{3}$ | 2.7811          | 0.99861 |
| $f_{19}^{3}$ | 14.0821     | 0.40618     | $f_{19}^{3}$ | 13.0244     | 0.85634         | $f_{19}^{3}$ | 12.5053                  | 0.94197  | $f_{19}^{3}$ | 14.853          | 1       |
| $f_{21}^{3}$ | 0.26372     | 0.6651      | $f_{21}^{3}$ | 0.23094     | 0.56243         | $f_{21}^{3}$ | 0.51373                  | 0.96897  | $f_{21}^{3}$ | 0.2905          | 0.99361 |
| $f_{21}^{3}$ | 2.4431      | 0.9192      | $f_{21}^{3}$ | 2.2688      | 0.79417         | $f_{21}^{3}$ | 2.226                    | 0.93681  | $f_{21}^{3}$ | 1.6366          | 0.99009 |
| $f_{23}^{3}$ | 0.41475     | 0.8229      | $f_{23}^{3}$ | 0.34071     | 0.19374         | $f_{23}^{3}$ | 0.88078                  | 0.9998   | $f_{23}^{3}$ | 0.83519         | 0.99978 |

Tabela 7.29: Tabela com os erros de cada função para  $gev\left([0],[10,5,2],[10,5,2]\right)$ 

| Simétrico    |             |             | Mínimo Particular |             |                | Mínimo de Julier |         |         | Esféricos de Julier |         |         |
|--------------|-------------|-------------|-------------------|-------------|----------------|------------------|---------|---------|---------------------|---------|---------|
|              |             |             |                   | Antes       | da Transforma  | ação             |         |         |                     |         |         |
| Dist         | Média       | Cov         | Dist              | Média       | Cov            | Dist             | Média   | Cov     | Dist                | Média   | Cov     |
| beta         | 8.0096e-009 | 1.2086e-008 | beta              | 1.1977e-008 | 1.3139e-008    | beta             | 0.40377 | 0.94878 | beta                | 0.43014 | 0.73406 |
|              |             |             |                   | Depois      | s da Transform | ação             |         |         |                     |         |         |
| Func         | Média       | Cov         | Func              | Média       | Cov            | Func             | Média   | Cov     | Func                | Média   | Cov     |
| $f_{1}^{3}$  | 1.1368e-007 | 0.19662     | $f_{1}^{3}$       | 1.1485e-007 | 0.23429        | $f_{1}^{3}$      | 0.49279 | 0.91168 | $f_{1}^{3}$         | 0.44281 | 0.94372 |
| $f_{1}^{3}$  | 0.15072     | 0.8195      | $f_{1}^{3}$       | 0.2583      | 0.41332        | $f_{1}^{3}$      | 0.70632 | 0.98731 | $f_{1}^{3}$         | 0.67127 | 0.98296 |
| $f_{3}^{3}$  | 0.0095276   | 0.16187     | $f_{3}^{3}$       | 0.034662    | 0.12078        | $f_{3}^{3}$      | 0.38921 | 0.46703 | $f_{3}^{3}$         | 0.27512 | 0.84577 |
| $f_{3}^{3}$  | 0.08681     | 0.4415      | $f_{3}^{3}$       | 0.055639    | 0.14848        | $f_{3}^{3}$      | 0.42691 | 0.72163 | $f_{3}^{3}$         | 0.3319  | 0.90309 |
| $f_{5}^{3}$  | 0.010088    | 0.069841    | $f_{5}^{3}$       | 0.01814     | 0.25527        | $f_{5}^{3}$      | 0.3951  | 2.6987  | $f_{5}^{3}$         | 0.17088 | 0.93986 |
| $f_{5}^{3}$  | 0.062476    | 0.4415      | $f_{5}^{3}$       | 0.040042    | 0.14848        | $f_{5}^{3}$      | 0.39824 | 0.91923 | $f_{5}^{3}$         | 0.23886 | 0.90309 |
| $f_{7}^{3}$  | 0.061287    | 0.39186     | $f_{7}^{3}$       | 0.072364    | 0.10668        | $f_{7}^{3}$      | 0.44005 | 0.77057 | $f_{7}^{3}$         | 0.3507  | 0.91595 |
| $f_{7}^{3}$  | 0.02738     | 0.097678    | $f_{7}^{3}$       | 0.024406    | 0.1806         | $f_{7}^{3}$      | 0.3843  | 0.37508 | $f_{7}^{3}$         | 0.26557 | 0.83366 |
| $f_{9}^{3}$  | 0.065775    | 0.48678     | $f_{9}^{3}$       | 0.057198    | 0.35884        | $f_{9}^{3}$      | 0.38865 | 1.0906  | $f_{9}^{3}$         | 0.20564 | 0.81455 |
| $f_{9}^{3}$  | 0.071048    | 0.73799     | $f_{9}^{3}$       | 0.056066    | 0.47775        | $f_{9}^{3}$      | 0.39363 | 2.5728  | $f_{9}^{3}$         | 0.1435  | 0.78717 |
| $f_{11}^3$   | 0.010135    | 0.19819     | $f_{11}^3$        | 0.024711    | 0.1558         | $f_{11}^3$       | 0.41979 | 1.1936  | $f_{11}^3$          | 0.22268 | 0.91192 |
| $f_{11}^3$   | 0.0052918   | 0.14187     | $f_{11}^3$        | 0.024465    | 0.392          | $f_{11}^3$       | 0.41704 | 0.98876 | $f_{11}^3$          | 0.15785 | 0.94729 |
| $f_{13}^3$   | 0.23212     | 1.0538      | $f_{13}^3$        | 0.16598     | 0.59463        | $f_{13}^3$       | 0.50022 | 0.8959  | $f_{13}^3$          | 0.32211 | 0.76938 |
| $f_{13}^3$   | 0.65491     | 2.1165      | $f_{13}^3$        | 0.31846     | 0.96889        | $f_{13}^3$       | 0.56935 | 0.98336 | $f_{13}^{3}$        | 0.19476 | 0.94493 |
| $f_{15}^{3}$ | 0.030336    | 0.23587     | $f_{15}^{3}$      | 0.061227    | 0.47549        | $f_{15}^{3}$     | 0.43926 | 0.57049 | $f_{15}^{3}$        | 0.30204 | 0.92692 |
| $f_{15}^{3}$ | 0.019621    | 0.37425     | $f_{15}^{3}$      | 0.05814     | 0.63648        | $f_{15}^{3}$     | 0.39093 | 0.77358 | $f_{15}^{3}$        | 0.20489 | 0.96659 |
| $f_{17}^3$   | 0.061096    | 0.46446     | $f_{17}^3$        | 0.067068    | 0.5586         | $f_{17}^3$       | 0.33614 | 0.88061 | $f_{17}^{3}$        | 0.49008 | 0.55931 |
| $f_{17}^3$   | 0.0052355   | 0.098606    | $f_{17}^3$        | 0.050591    | 0.27322        | $f_{17}^3$       | 0.38088 | 0.90879 | $f_{17}^{3}$        | 0.38652 | 0.91784 |
| $f_{19}^3$   | 0.0068479   | 0.22618     | $f_{19}^3$        | 0.022803    | 0.56589        | $f_{19}^3$       | 0.38057 | 0.81201 | $f_{19}^{3}$        | 0.28457 | 0.97725 |
| $f_{19}^{3}$ | 0.0061064   | 0.15885     | $f_{19}^{3}$      | 0.035578    | 0.48678        | $f_{19}^3$       | 0.40121 | 0.89923 | $f_{19}^{3}$        | 0.23589 | 0.96074 |
| $f_{21}^{3}$ | 0.045657    | 0.43858     | $f_{21}^{3}$      | 0.062237    | 0.54392        | $f_{21}^3$       | 0.40176 | 0.81932 | $f_{21}^{3}$        | 0.37756 | 0.77652 |
| $f_{21}^{3}$ | 0.010634    | 0.29091     | $f_{21}^{3}$      | 0.037297    | 0.51666        | $f_{21}^3$       | 0.3775  | 0.99061 | $f_{21}^{3}$        | 0.40774 | 0.95379 |
| $f_{22}^{3}$ | 0.012786    | 0.54687     | $f_{22}^{3}$      | 0.15147     | 0.18311        | $f_{22}^{3}$     | 0.60418 | 0.96811 | $f_{22}^{3}$        | 0.56621 | 0.97211 |

Tabela 7.30: Tabela com os erros de cada função para beta([10, 5, 2], [10, 5, 2])

| Simétrico    |             |            | Mínimo Particular |             |                 | Mínimo de Julier |         |         | Esféricos de Julier |          |         |
|--------------|-------------|------------|-------------------|-------------|-----------------|------------------|---------|---------|---------------------|----------|---------|
|              |             |            |                   | Ante        | s da Transforn  | ıação            |         |         |                     |          |         |
| Dist         | Média       | Cov        | Dist              | Média       | Cov             | Dist             | Média   | Cov     | Dist                | Média    | Cov     |
| gamma        | 1.1721e-008 | 1.059e-008 | gamma             | 2.0714e-009 | 1.0611e-008     | gamma            | 0.41439 | 0.88055 | gamma               | 0.16228  | 1       |
|              |             |            |                   | Depo        | is da Transforr | nação            |         |         |                     |          |         |
| Func         | Média       | Cov        | Func              | Média       | Cov             | Func             | Média   | Cov     | Func                | Média    | Cov     |
| $f_{1}^{3}$  | 1.3845e-007 | 0.38141    | $f_{1}^{3}$       | 1.3901e-007 | 0.62405         | $f_{1}^{3}$      | 0.50612 | 0.97342 | $f_{1}^{3}$         | 0.29654  | 0.99939 |
| $f_{1}^{3}$  | 0.20436     | 0.53107    | $f_{1}^{3}$       | 0.34907     | 0.99495         | $f_{1}^{3}$      | 0.72698 | 0.99806 | $f_{1}^{3}$         | 0.6476   | 1       |
| $f_{3}^{3}$  | 2.6495      | 0.84579    | $f_{3}^{3}$       | 1.0738      | 0.96115         | $f_3^3$          | 2.5041  | 0.92472 | $f_{3}^{3}$         | 2.4468   | 0.95248 |
| $f_{3}^{3}$  | 0.16441     | 1.4082     | $f_{3}^{3}$       | 0.082014    | 0.29569         | $f_3^3$          | 0.36559 | 1.4552  | $f_{3}^{3}$         | 0.27134  | 0.62881 |
| $f_{5}^{3}$  | 2.9544      | 0.92808    | $f_{5}^{3}$       | 2.3911      | 0.84479         | $f_{5}^{3}$      | 2.9411  | 0.70448 | $f_{5}^{3}$         | 4.1665   | 0.78855 |
| $f_{5}^{3}$  | 0.17151     | 1.4082     | $f_{5}^{3}$       | 0.085553    | 0.29569         | $f_{5}^{3}$      | 0.36034 | 1.2872  | $f_{5}^{3}$         | 0.28305  | 0.62881 |
| $f_{7}^{3}$  | 0.77869     | 0.99998    | $f_{7}^{3}$       | 1.4811      | 0.99997         | $f_{7}^{3}$      | 0.68018 | 0.99999 | $f_{7}^{3}$         | 1.1523   | 0.99999 |
| $f_{7}^{3}$  | 0.20788     | 2.7119     | $f_{7}^{3}$       | 0.030257    | 0.65079         | $f_{7}^{3}$      | 0.37248 | 2.3097  | $f_{7}^{3}$         | 0.34654  | 2.2284  |
| $f_{9}^{3}$  | 0.10366     | 0.60313    | $f_{9}^{3}$       | 0.044284    | 0.19821         | $f_{9}^{3}$      | 0.38559 | 0.77484 | $f_{9}^{3}$         | 0.15507  | 0.91159 |
| $f_{9}^{3}$  | 0.11836     | 0.93365    | $f_{9}^{3}$       | 0.041011    | 0.10205         | $f_{9}^{3}$      | 0.38601 | 2.1389  | $f_{9}^{3}$         | 0.23174  | 0.56219 |
| $f_{11}^3$   | 1           | 1          | $f_{11}^3$        | 1           | 1               | $f_{11}^{3}$     | 1       | 1       | $f_{11}^{3}$        | 1        | 1       |
| $f_{11}^3$   | 15.8549     | 36.8567    | $f_{11}^3$        | 0.99978     | 1               | $f_{11}^{3}$     | 1       | 1       | $f_{11}^3$          | 1        | 1       |
| $f_{13}^3$   | 0.20495     | 1.1459     | $f_{13}^3$        | 0.063699    | 0.21219         | $f_{13}^{3}$     | 0.35367 | 1.0145  | $f_{13}^{3}$        | 0.51502  | 2.6151  |
| $f_{13}^3$   | 0.70282     | 0.95102    | $f_{13}^3$        | 0.4154      | 0.98051         | $f_{13}^{3}$     | 0.74884 | 0.99903 | $f_{13}^{3}$        | 7.9413   | 31.7607 |
| $f_{15}^{3}$ | 0.037152    | 0.1775     | $f_{15}^{3}$      | 0.049415    | 0.23586         | $f_{15}^{3}$     | 0.42315 | 0.86022 | $f_{15}^{3}$        | 0.063678 | 0.99925 |
| $f_{15}^{3}$ | 0.22213     | 0.72393    | $f_{15}^{3}$      | 0.20681     | 0.70135         | $f_{15}^{3}$     | 0.47109 | 0.96174 | $f_{15}^{3}$        | 0.084793 | 0.96146 |
| $f_{17}^3$   | 0.25789     | 0.4072     | $f_{17}^3$        | 0.26484     | 0.63974         | $f_{17}^{3}$     | 0.46922 | 0.9791  | $f_{17}^{3}$        | 0.73895  | 0.83004 |
| $f_{17}^3$   | 3.5723      | 0.80038    | $f_{17}^3$        | 1.0905      | 0.99399         | $f_{17}^{3}$     | 1.7474  | 0.82144 | $f_{17}^{3}$        | 6.6714   | 0.66629 |
| $f_{19}^{3}$ | 13.3011     | 0.79863    | $f_{19}^3$        | 8.794       | 0.94801         | $f_{19}^{3}$     | 7.5601  | 0.54929 | $f_{19}^3$          | 2.1466   | 1.0497  |
| $f_{19}^3$   | 4.1796      | 0.78646    | $f_{19}^3$        | 6.9693      | 0.94901         | $f_{19}^{3}$     | 3.5618  | 0.91112 | $f_{19}^3$          | 7.2193   | 0.89704 |
| $f_{21}^{3}$ | 0.037231    | 0.17768    | $f_{21}^{3}$      | 0.049441    | 0.23592         | $f_{21}^{3}$     | 0.42315 | 0.86022 | $f_{21}^{3}$        | 0.063729 | 0.99925 |
| $f_{21}^3$   | 2.5663      | 0.93442    | $f_{21}^{3}$      | 2.2842      | 0.90915         | $f_{21}^{3}$     | 2.2383  | 0.94237 | $f_{21}^{3}$        | 1.8605   | 0.95481 |
| $f_{23}^{3}$ | 0.12649     | 0.43152    | $f_{23}^3$        | 0.18372     | 0.88506         | $f_{23}^{3}$     | 0.61964 | 0.99311 | $f_{23}^{3}$        | 0.49339  | 0.99996 |

| Simétrico    |             |             | Mínimo Particular |             |                | Mínimo de Julier |         |         | Esféricos de Julier |         |         |
|--------------|-------------|-------------|-------------------|-------------|----------------|------------------|---------|---------|---------------------|---------|---------|
|              |             |             |                   | Antes       | da Transforma  | ação             |         |         |                     |         |         |
| Dist         | Média       | Cov         | Dist              | Média       | Cov            | Dist             | Média   | Cov     | Dist                | Média   | Cov     |
| logn         | 8.5858e-009 | 1.9012e-008 | logn              | 1.021e-008  | 1.3251e-008    | logn             | 0.39702 | 0.97187 | logn                | 0.61604 | 0.74505 |
|              |             |             |                   | Depois      | s da Transform | ação             |         |         |                     |         |         |
| Func         | Média       | Cov         | Func              | Média       | Cov            | Func             | Média   | Cov     | Func                | Média   | Cov     |
| $f_{1}^{3}$  | 1.1529e-007 | 0.86448     | $f_{1}^{3}$       | 1.1529e-007 | 0.87929        | $f_{1}^{3}$      | 0.64957 | 0.99506 | $f_{1}^{3}$         | 0.64192 | 0.99331 |
| $f_{1}^{3}$  | 0.76527     | 0.99864     | $f_{1}^{3}$       | 0.75145     | 0.99972        | $f_{1}^{3}$      | 0.96347 | 1       | $f_{1}^{3}$         | 0.95949 | 0.99999 |
| $f_{3}^{3}$  | 0.24972     | 0.16777     | $f_{3}^{3}$       | 0.53365     | 0.76908        | $f_{3}^{3}$      | 0.42397 | 0.81531 | $f_{3}^{3}$         | 0.32091 | 0.29332 |
| $f_{3}^{3}$  | 0.37626     | 0.55092     | $f_{3}^{3}$       | 0.29436     | 1.0522         | $f_{3}^{3}$      | 0.25021 | 0.75283 | $f_{3}^{3}$         | 0.28179 | 0.60932 |
| $f_{5}^{3}$  | 1.3651      | 0.74584     | $f_{5}^{3}$       | 0.97154     | 0.6535         | $f_{5}^{3}$      | 1.5637  | 0.96634 | $f_{5}^{3}$         | 0.76366 | 0.79442 |
| $f_{5}^{3}$  | 0.50952     | 0.55092     | $f_{5}^{3}$       | 0.39861     | 1.0522         | $f_{5}^{3}$      | 0.49802 | 0.91648 | $f_{5}^{3}$         | 0.38159 | 0.60932 |
| $f_{7}^{3}$  | 0.69673     | 0.99999     | $f_{7}^{3}$       | 1.6801      | 1              | $f_{7}^{3}$      | 1.0298  | 1       | $f_{7}^{3}$         | 1.2908  | 1       |
| $f_{7}^{3}$  | 0.21592     | 1.6964      | $f_{7}^{3}$       | 0.15871     | 0.8987         | $f_{7}^{3}$      | 0.2705  | 0.43278 | $f_{7}^{3}$         | 0.34252 | 1.075   |
| $f_{9}^{3}$  | 0.26933     | 0.95478     | $f_{9}^{3}$       | 0.090263    | 0.63818        | $f_{9}^{3}$      | 0.35209 | 0.46242 | $f_{9}^{3}$         | 0.37512 | 0.2201  |
| $f_{9}^{3}$  | 0.25316     | 1.1664      | $f_{9}^{3}$       | 0.078051    | 0.73422        | $f_{9}^{3}$      | 0.3689  | 1.4713  | $f_{9}^{3}$         | 0.31135 | 0.96171 |
| $f_{11}^3$   | 1           | 1           | $f_{11}^3$        | 1           | 1              | $f_{11}^3$       | 1       | 1       | $f_{11}^3$          | 1       | 1       |
| $f_{11}^3$   | 0.5344      | 2.8651      | $f_{11}^3$        | 0.096841    | 0.36667        | $f_{11}^3$       | 0.62169 | 0.96496 | $f_{11}^3$          | 0.56691 | 0.97155 |
| $f_{13}^{3}$ | 1.0435      | 1.3082      | $f_{13}^3$        | 0.29561     | 0.77522        | $f_{13}^3$       | 0.52668 | 0.96123 | $f_{13}^3$          | 1.2398  | 1.4461  |
| $f_{13}^{3}$ | 0.86247     | 1.5315      | $f_{13}^3$        | 0.15546     | 0.37005        | $f_{13}^3$       | 0.64629 | 0.95615 | $f_{13}^3$          | 1.1049  | 2.187   |
| $f_{15}^{3}$ | 0.23655     | 0.72074     | $f_{15}^3$        | 0.12067     | 0.36395        | $f_{15}^{3}$     | 0.48421 | 0.94822 | $f_{15}^3$          | 0.40057 | 0.9695  |
| $f_{15}^{3}$ | 0.1364      | 1.3694      | $f_{15}^3$        | 0.038471    | 0.60142        | $f_{15}^{3}$     | 0.35292 | 0.90839 | $f_{15}^3$          | 0.30322 | 0.96209 |
| $f_{17}^{3}$ | 0.18348     | 1.5664      | $f_{17}^3$        | 0.22817     | 0.34196        | $f_{17}^3$       | 0.27355 | 0.89242 | $f_{17}^3$          | 0.74196 | 1.2955  |
| $f_{17}^{3}$ | 2.1455      | 0.57947     | $f_{17}^3$        | 2.7411      | 0.53881        | $f_{17}^3$       | 4.3377  | 0.93108 | $f_{17}^3$          | 2.5165  | 0.41807 |
| $f_{19}^{3}$ | 1.0016      | 0.93756     | $f_{19}^{3}$      | 5.4641      | 0.32047        | $f_{19}^{3}$     | 2.8199  | 0.99771 | $f_{19}^3$          | 5.5035  | 0.59506 |
| $f_{19}^3$   | 0.2906      | 1.0439      | $f_{19}^3$        | 0.37638     | 0.64076        | $f_{19}^{3}$     | 0.47182 | 0.9692  | $f_{19}^3$          | 0.56495 | 0.90945 |
| $f_{21}^{3}$ | 0.23125     | 0.71854     | $f_{21}^{3}$      | 0.13677     | 0.36497        | $f_{21}^{3}$     | 0.47256 | 0.94632 | $f_{21}^3$          | 0.45101 | 0.96699 |
| $f_{21}^3$   | 0.45267     | 1.0635      | $f_{21}^{3}$      | 0.95969     | 1.0584         | $f_{21}^{3}$     | 0.87372 | 0.96656 | $f_{21}^3$          | 0.755   | 0.95861 |
| $f_{23}^{3}$ | 0.52465     | 0.98014     | $f_{23}^{3}$      | 0.44393     | 0.99194        | $f_{23}^{3}$     | 0.86196 | 0.99987 | $f_{23}^{3}$        | 0.8553  | 0.9997  |

Tabela 7.32: Tabela com os erros de cada função para logn ([0.25, 0.35, 0.45], [0.5, 0.6, 0.7])

| Simétrico    |             |             | Mínimo Particular |             |                | Mínimo de Julier |         |         | Esféricos de Julier |         |         |
|--------------|-------------|-------------|-------------------|-------------|----------------|------------------|---------|---------|---------------------|---------|---------|
|              |             |             |                   | Antes       | da Transforma  | ação             |         |         |                     |         |         |
| Dist         | Média       | Cov         | Dist              | Média       | Cov            | Dist             | Média   | Cov     | Dist                | Média   | Cov     |
| pois         | 9.0803e-009 | 1.5061e-008 | pois              | 9.0803e-009 | 1.5437e-008    | pois             | 0.39916 | 0.95376 | pois                | 0.51693 | 0.83737 |
|              |             |             |                   | Depois      | s da Transform | ação             |         |         |                     |         |         |
| Func         | Média       | Cov         | Func              | Média       | Cov            | Func             | Média   | Cov     | Func                | Média   | Cov     |
| $f_{1}^{3}$  | 8.6499e-008 | 0.4743      | $f_{1}^{3}$       | 8.6499e-008 | 0.49638        | $f_{1}^{3}$      | 0.59069 | 0.97601 | $f_{1}^{3}$         | 0.6082  | 0.95931 |
| $f_{1}^{3}$  | 0.26328     | 0.62684     | $f_{1}^{3}$       | 0.18044     | 0.89147        | $f_{1}^{3}$      | 0.85013 | 0.99864 | $f_{1}^{3}$         | 0.86244 | 0.99657 |
| $f_{3}^{3}$  | 0.91896     | 0.42619     | $f_{3}^{3}$       | 1.5743      | 0.88625        | $f_{3}^{3}$      | 0.72821 | 0.97731 | $f_{3}^{3}$         | 0.9316  | 0.75895 |
| $f_{3}^{3}$  | 0.3394      | 0.22517     | $f_{3}^{3}$       | 0.18849     | 0.40325        | $f_{3}^{3}$      | 0.27574 | 0.72405 | $f_{3}^{3}$         | 0.23994 | 0.89975 |
| $f_{5}^{3}$  | 1.4408      | 0.77459     | $f_{5}^{3}$       | 0.71528     | 0.98363        | $f_{5}^{3}$      | 1.7159  | 0.95685 | $f_{5}^{3}$         | 1.5419  | 0.76815 |
| $f_{5}^{3}$  | 0.40455     | 0.22517     | $f_{5}^{3}$       | 0.22467     | 0.40325        | $f_{5}^{3}$      | 0.27211 | 0.85896 | $f_{5}^{3}$         | 0.286   | 0.89975 |
| $f_{7}^{3}$  | 0.15392     | 0.99206     | $f_{7}^{3}$       | 4.05        | 3.649          | $f_{7}^{3}$      | 0.75385 | 0.9797  | $f_{7}^{3}$         | 2.218   | 2.0106  |
| $f_{7}^{3}$  | 0.20781     | 1.1438      | $f_{7}^{3}$       | 0.21041     | 0.72402        | $f_{7}^{3}$      | 0.26659 | 0.25962 | $f_{7}^{3}$         | 0.22838 | 0.92988 |
| $f_{9}^{3}$  | 0.23123     | 0.50413     | $f_{9}^{3}$       | 0.16814     | 0.49591        | $f_{9}^{3}$      | 0.33078 | 0.62895 | $f_{9}^{3}$         | 0.111   | 0.91498 |
| $f_{9}^{3}$  | 0.26449     | 0.52331     | $f_{9}^{3}$       | 0.22119     | 0.8183         | $f_{9}^{3}$      | 0.31762 | 0.17406 | $f_{9}^{3}$         | 0.18603 | 0.96086 |
| $f_{11}^3$   | 0.77189     | 0.99981     | $f_{11}^{3}$      | 0.83831     | 0.99999        | $f_{11}^3$       | 0.97395 | 1       | $f_{11}^3$          | 0.97488 | 1       |
| $f_{11}^3$   | 0.76004     | 2.261       | $f_{11}^3$        | 0.50248     | 0.85127        | $f_{11}^3$       | 0.81031 | 0.99673 | $f_{11}^3$          | 0.78821 | 0.99848 |
| $f_{13}^3$   | 0.61174     | 1.6113      | $f_{13}^{3}$      | 0.15878     | 0.53349        | $f_{13}^3$       | 0.23628 | 0.86343 | $f_{13}^{3}$        | 0.24007 | 0.82753 |
| $f_{13}^3$   | 0.94106     | 2.7006      | $f_{13}^{3}$      | 0.40794     | 0.53925        | $f_{13}^3$       | 0.51444 | 0.93771 | $f_{13}^{3}$        | 0.3222  | 0.82226 |
| $f_{15}^3$   | 0.11288     | 0.49894     | $f_{15}^{3}$      | 0.088194    | 0.38782        | $f_{15}^{3}$     | 0.47679 | 0.88873 | $f_{15}^{3}$        | 0.41935 | 0.92014 |
| $f_{15}^{3}$ | 0.17634     | 0.85095     | $f_{15}^{3}$      | 0.21495     | 0.78843        | $f_{15}^{3}$     | 0.36664 | 0.93428 | $f_{15}^{3}$        | 0.25482 | 0.98616 |
| $f_{17}^3$   | 0.20687     | 0.91722     | $f_{17}^{3}$      | 0.16571     | 0.64519        | $f_{17}^3$       | 0.36077 | 0.88055 | $f_{17}^3$          | 0.48575 | 0.60973 |
| $f_{17}^3$   | 0.25653     | 0.94979     | $f_{17}^{3}$      | 3.2671      | 0.17269        | $f_{17}^3$       | 1.2433  | 0.98213 | $f_{17}^3$          | 1.6938  | 0.97205 |
| $f_{19}^3$   | 2.1025      | 0.80506     | $f_{19}^{3}$      | 4.1082      | 0.66062        | $f_{19}^3$       | 3.5934  | 0.94279 | $f_{19}^3$          | 2.2805  | 0.64071 |
| $f_{19}^3$   | 0.63427     | 0.94529     | $f_{19}^{3}$      | 1.6437      | 0.30398        | $f_{19}^3$       | 0.46708 | 0.98874 | $f_{19}^3$          | 1.1565  | 0.86801 |
| $f_{21}^{3}$ | 0.12379     | 0.50645     | $f_{21}^{3}$      | 0.10754     | 0.42644        | $f_{21}^{3}$     | 0.47229 | 0.88824 | $f_{21}^{3}$        | 0.41975 | 0.91969 |
| $f_{21}^{3}$ | 3.0417      | 0.7189      | $f_{21}^{3}$      | 3.8577      | 0.90191        | $f_{21}^{3}$     | 3.7068  | 0.96873 | $f_{21}^{3}$        | 2.0132  | 0.80125 |
| $f_{23}^{3}$ | 0.21365     | 0.49756     | $f_{23}^{3}$      | 0.18257     | 0.75326        | $f_{23}^{3}$     | 0.74465 | 0.99417 | $f_{23}^{3}$        | 0.7642  | 0.98708 |

Tabela 7.33: Tabela com os erros de cada função para pois([2,3,4])

| Simétrico    |             |             |              | Mínimo Particular Mínimo de Julier |                 |              | ſulier  | er Esféricos de Julier |              |          |          |
|--------------|-------------|-------------|--------------|------------------------------------|-----------------|--------------|---------|------------------------|--------------|----------|----------|
|              |             |             |              | Ante                               | s da Transforn  | nação        |         |                        |              |          |          |
| Dist         | Média       | Cov         | Dist         | Média                              | Cov             | Dist         | Média   | Cov                    | Dist         | Média    | Cov      |
| rayl         | 1.2127e-008 | 8.2049e-009 | rayl         | 1.2127e-008                        | 1.6471e-008     | rayl         | 0.39805 | 0.95178                | rayl         | 0.52766  | 0.76279  |
|              |             |             |              | Depo                               | is da Transforr | nação        |         |                        |              |          |          |
| Func         | Média       | Cov         | Func         | Média                              | Cov             | Func         | Média   | Cov                    | Func         | Média    | Cov      |
| $f_{1}^{3}$  | 1.0897e-007 | 0.4817      | $f_{1}^{3}$  | 1.0953e-007                        | 0.52202         | $f_{1}^{3}$  | 0.57345 | 0.97587                | $f_{1}^{3}$  | 0.60164  | 0.95942  |
| $f_{1}^{3}$  | 0.29097     | 0.63536     | $f_{1}^{3}$  | 0.16416                            | 0.90479         | $f_{1}^{3}$  | 0.84823 | 0.99878                | $f_{1}^{3}$  | 0.8665   | 0.9976   |
| $f_{3}^{3}$  | 1.8818      | 0.76243     | $f_{3}^{3}$  | 1.7208                             | 0.90003         | $f_{3}^{3}$  | 1.6756  | 0.98019                | $f_{3}^{3}$  | 0.97595  | 0.59044  |
| $f_{3}^{3}$  | 0.2795      | 0.65801     | $f_{3}^{3}$  | 0.19067                            | 0.5618          | $f_{3}^{3}$  | 0.32335 | 0.38096                | $f_{3}^{3}$  | 0.16284  | 0.82289  |
| $f_{5}^{3}$  | 0.57832     | 0.69844     | $f_{5}^{3}$  | 1.3916                             | 0.92678         | $f_{5}^{3}$  | 0.93538 | 0.95425                | $f_{5}^{3}$  | 0.9791   | 0.84394  |
| $f_{5}^{3}$  | 0.32127     | 0.65801     | $f_{5}^{3}$  | 0.21916                            | 0.5618          | $f_{5}^{3}$  | 0.27741 | 0.69023                | $f_{5}^{3}$  | 0.18718  | 0.82289  |
| $f_{7}^{3}$  | 0.45239     | 0.99999     | $f_{7}^{3}$  | 1.3099                             | 0.99997         | $f_{7}^{3}$  | 0.9213  | 1                      | $f_{7}^{3}$  | 0.99774  | 0.99999  |
| $f_{7}^{3}$  | 0.26824     | 1.935       | $f_{7}^{3}$  | 0.15766                            | 0.70103         | $f_{7}^{3}$  | 0.3313  | 1.1811                 | $f_{7}^{3}$  | 0.099142 | 0.82495  |
| $f_{9}^{3}$  | 0.21267     | 0.89467     | $f_{9}^{3}$  | 0.086901                           | 0.17739         | $f_{9}^{3}$  | 0.36419 | 0.20069                | $f_{9}^{3}$  | 0.2156   | 0.83673  |
| $f_{9}^{3}$  | 0.22035     | 1.2036      | $f_{9}^{3}$  | 0.086705                           | 0.34712         | $f_{9}^{3}$  | 0.37525 | 1.5407                 | $f_{9}^{3}$  | 0.12812  | 0.8253   |
| $f_{11}^3$   | 0.91097     | 0.99996     | $f_{11}^3$   | 0.9641                             | 1               | $f_{11}^3$   | 0.9965  | 1                      | $f_{11}^3$   | 0.99685  | 1        |
| $f_{11}^3$   | 0.87495     | 2.8863      | $f_{11}^3$   | 0.51091                            | 0.86054         | $f_{11}^3$   | 0.81788 | 0.99707                | $f_{11}^3$   | 0.79542  | 0.99892  |
| $f_{13}^{3}$ | 0.55855     | 1.4461      | $f_{13}^3$   | 0.21452                            | 0.51078         | $f_{13}^3$   | 0.20142 | 0.84096                | $f_{13}^{3}$ | 0.17236  | 0.82968  |
| $f_{13}^{3}$ | 1.0646      | 0.47122     | $f_{13}^{3}$ | 0.46737                            | 0.9815          | $f_{13}^3$   | 0.68345 | 0.99669                | $f_{13}^3$   | 0.40545  | 0.98681  |
| $f_{15}^{3}$ | 0.11665     | 0.51252     | $f_{15}^{3}$ | 0.065996                           | 0.28867         | $f_{15}^{3}$ | 0.46374 | 0.8865                 | $f_{15}^{3}$ | 0.41281  | 0.91815  |
| $f_{15}^{3}$ | 0.15551     | 0.9657      | $f_{15}^{3}$ | 0.16563                            | 0.7181          | $f_{15}^{3}$ | 0.35568 | 0.8912                 | $f_{15}^{3}$ | 0.27269  | 0.98047  |
| $f_{17}^3$   | 0.20113     | 1.167       | $f_{17}^3$   | 0.13422                            | 0.586           | $f_{17}^{3}$ | 0.33196 | 0.83659                | $f_{17}^3$   | 0.4922   | 0.031998 |
| $f_{17}^3$   | 5.6336      | 0.90782     | $f_{17}^3$   | 11.622                             | 0.62242         | $f_{17}^{3}$ | 7.5183  | 0.93975                | $f_{17}^{3}$ | 7.0528   | 0.99974  |
| $f_{19}^{3}$ | 3.6992      | 0.8197      | $f_{19}^{3}$ | 5.3625                             | 0.79202         | $f_{19}^{3}$ | 4.8627  | 0.87891                | $f_{19}^{3}$ | 3.8197   | 0.95163  |
| $f_{19}^{3}$ | 3.0783      | 0.70326     | $f_{19}^{3}$ | 2.3366                             | 0.30427         | $f_{19}^{3}$ | 3.3905  | 0.97994                | $f_{19}^{3}$ | 3.6869   | 0.99948  |
| $f_{21}^{3}$ | 0.12189     | 0.51454     | $f_{21}^{3}$ | 0.078011                           | 0.30923         | $f_{21}^{3}$ | 0.46076 | 0.88535                | $f_{21}^{3}$ | 0.41357  | 0.91709  |
| $f_{21}^{3}$ | 8.5925      | 0.77227     | $f_{21}^{3}$ | 7.8172                             | 0.91511         | $f_{21}^{3}$ | 7.8312  | 0.97638                | $f_{21}^{3}$ | 4.2561   | 0.70947  |
| $f_{23}^3$   | 0.21837     | 0.51177     | $f_{23}^3$   | 0.096939                           | 0.77512         | $f_{23}^3$   | 0.7349  | 0.99452                | $f_{23}^3$   | 0.76252  | 0.98929  |

Tabela 7.34: Tabela com os erros de cada função para rayl([10, 5, 2])

| Simétrico    |             |             | Mínimo Particular |             |                | Mínimo de Julier |         |         | Esféricos de Julier |         |         |
|--------------|-------------|-------------|-------------------|-------------|----------------|------------------|---------|---------|---------------------|---------|---------|
|              |             |             |                   | Antes       | da Transforma  | ação             |         |         |                     |         |         |
| Dist         | Média       | Cov         | Dist              | Média       | Cov            | Dist             | Média   | Cov     | Dist                | Média   | Cov     |
| Т            | 1.3591e-007 | 1.3586e-008 | Т                 | 1.0548e-007 | 7.6199e-009    | Т                | 4.5455  | 0.99018 | Т                   | 20.6416 | 0.71134 |
|              |             |             |                   | Depois      | s da Transform | ação             |         |         |                     |         |         |
| Func         | Média       | Cov         | Func              | Média       | Cov            | Func             | Média   | Cov     | Func                | Média   | Cov     |
| $f_{1}^{3}$  | 5.5917e-008 | 0.99688     | $f_{1}^{3}$       | 5.5917e-008 | 0.9999         | $f_{1}^{3}$      | 0.9913  | 1       | $f_{1}^{3}$         | 0.45535 | 0.9989  |
| $f_{1}^{3}$  | 0.99514     | 1           | $f_{1}^{3}$       | 0.99859     | 1              | $f_{1}^{3}$      | 1       | 1       | $f_{1}^{3}$         | 0.99793 | 1       |
| $f_{3}^{3}$  | 0.19792     | 0.9255      | $f_{3}^{3}$       | 16.1228     | 0.67376        | $f_{3}^{3}$      | 4.3006  | 0.91348 | $f_{3}^{3}$         | 12.0533 | 0.78382 |
| $f_{3}^{3}$  | 0.47571     | 0.44982     | $f_{3}^{3}$       | 13.9808     | 0.84945        | $f_{3}^{3}$      | 4.4065  | 0.97363 | $f_{3}^{3}$         | 14.8697 | 0.84566 |
| $f_{5}^{3}$  | 0.65339     | 0.36767     | $f_{5}^{3}$       | 0.88139     | 0.46075        | $f_{5}^{3}$      | 0.75077 | 0.88489 | $f_{5}^{3}$         | 0.67113 | 0.53167 |
| $f_{5}^{3}$  | 0.015401    | 0.44982     | $f_{5}^{3}$       | 0.45262     | 0.84945        | $f_{5}^{3}$      | 0.43265 | 0.92559 | $f_{5}^{3}$         | 0.4814  | 0.84566 |
| $f_{7}^{3}$  | 1.0004      | 1           | $f_{7}^{3}$       | 0.97359     | 1              | $f_{7}^{3}$      | 1.0054  | 1       | $f_{7}^{3}$         | 0.95281 | 1       |
| $f_{7}^{3}$  | 0.45598     | 0.57391     | $f_{7}^{3}$       | 9.7757      | 0.91639        | $f_{7}^{3}$      | 3.997   | 0.93793 | $f_{7}^{3}$         | 10.442  | 0.88327 |
| $f_{9}^{3}$  | 0.68366     | 0.22461     | $f_{9}^{3}$       | 0.42827     | 0.79681        | $f_{9}^{3}$      | 0.88295 | 0.89548 | $f_{9}^{3}$         | 0.76065 | 0.60964 |
| $f_{9}^{3}$  | 0.67072     | 0.38284     | $f_{9}^{3}$       | 0.26626     | 0.97493        | $f_{9}^{3}$      | 0.80096 | 0.5393  | $f_{9}^{3}$         | 0.7047  | 0.45734 |
| $f_{11}^3$   | 1           | 1           | $f_{11}^3$        | 1           | 1              | $f_{11}^3$       | 1       | 1       | $f_{11}^3$          | 1       | 1       |
| $f_{11}^3$   | 0.9196      | 1           | $f_{11}^3$        | 0.94633     | 1              | $f_{11}^3$       | 0.97122 | 1       | $f_{11}^3$          | 0.96861 | 1       |
| $f_{13}^3$   | 1.5038      | 1.6074      | $f_{13}^{3}$      | 0.74601     | 1.6179         | $f_{13}^3$       | 1.4685  | 1.5728  | $f_{13}^{3}$        | 1.6232  | 1.679   |
| $f_{13}^3$   | 17.2867     | 2.7574      | $f_{13}^{3}$      | 4.8716      | 0.99099        | $f_{13}^{3}$     | 17.2365 | 2.6536  | $f_{13}^{3}$        | 21.2748 | 2.9974  |
| $f_{15}^3$   | 0.36213     | 0.44991     | $f_{15}^{3}$      | 0.72839     | 0.98612        | $f_{15}^{3}$     | 0.92511 | 0.99382 | $f_{15}^{3}$        | 0.16649 | 0.56385 |
| $f_{15}^{3}$ | 5.2356      | 0.59329     | $f_{15}^{3}$      | 4.7989      | 0.47858        | $f_{15}^{3}$     | 9.4313  | 0.85847 | $f_{15}^{3}$        | 12.8136 | 0.99188 |
| $f_{17}^3$   | 8.9394      | 0.63697     | $f_{17}^3$        | 8.7831      | 0.44951        | $f_{17}^3$       | 6.9923  | 0.77695 | $f_{17}^3$          | 13.3883 | 0.90212 |
| $f_{17}^3$   | 2.5579      | 0.99963     | $f_{17}^{3}$      | 4.128       | 0.90962        | $f_{17}^3$       | 1.6884  | 0.99974 | $f_{17}^3$          | 1.0695  | 1       |
| $f_{19}^3$   | 0.52982     | 1.439       | $f_{19}^{3}$      | 0.6361      | 0.69931        | $f_{19}^3$       | 3.2579  | 0.99707 | $f_{19}^{3}$        | 0.35588 | 1       |
| $f_{19}^3$   | 0.61259     | 0.99979     | $f_{19}^{3}$      | 0.67064     | 0.83315        | $f_{19}^3$       | 0.35777 | 0.99977 | $f_{19}^{3}$        | 0.95488 | 1       |
| $f_{21}^{3}$ | 0.46671     | 0.51267     | $f_{21}^{3}$      | 0.74518     | 0.9913         | $f_{21}^{3}$     | 0.94664 | 0.99393 | $f_{21}^{3}$        | 0.75969 | 0.75955 |
| $f_{21}^{3}$ | 2.8572      | 1.2556      | $f_{21}^{3}$      | 3.1792      | 1.2581         | $f_{21}^{3}$     | 2.3255  | 0.99885 | $f_{21}^{3}$        | 0.73485 | 1       |
| $f_{23}^3$   | 0.99986     | 0.99999     | $f_{23}^{3}$      | 0.91113     | 1              | $f_{23}^{3}$     | 0.9998  | 1       | $f_{23}^{3}$        | 1.1853  | 1       |

Tabela 7.35: Tabela com os erros de cada função para  $T\left([10,5,2]\right)$ 

| Simétrico    |             | Mínimo Particular |              |             | Mínimo de Julier |              |         | Esféricos de Julier |              |          |         |
|--------------|-------------|-------------------|--------------|-------------|------------------|--------------|---------|---------------------|--------------|----------|---------|
|              |             |                   |              | Ante        | s da Transforn   | ıação        |         |                     |              |          |         |
| Dist         | Média       | Cov               | Dist         | Média       | Cov              | Dist         | Média   | Cov                 | Dist         | Média    | Cov     |
| unif         | 1.3396e-008 | 8.283e-009        | unif         | 4.4248e-009 | 1.5054e-008      | unif         | 0.41687 | 0.96505             | unif         | 0.28905  | 1       |
|              |             |                   |              | Depoi       | is da Transforr  | nação        |         |                     |              |          |         |
| Func         | Média       | Cov               | Func         | Média       | Cov              | Func         | Média   | Cov                 | Func         | Média    | Cov     |
| $f_{1}^{3}$  | 2.5744e-008 | 0.39763           | $f_{1}^{3}$  | 3.1529e-008 | 1.128            | $f_{1}^{3}$  | 0.62008 | 0.98541             | $f_{1}^{3}$  | 0.47449  | 0.99428 |
| $f_{1}^{3}$  | 0.30127     | 1.388             | $f_{1}^{3}$  | 0.79451     | 3.1358           | $f_{1}^{3}$  | 0.86606 | 0.99899             | $f_{1}^{3}$  | 0.82043  | 0.9996  |
| $f_{3}^{3}$  | 0.95705     | 0.84816           | $f_{3}^{3}$  | 0.35535     | 0.49978          | $f_{3}^{3}$  | 0.78368 | 0.99168             | $f_{3}^{3}$  | 1.0389   | 0.72349 |
| $f_{3}^{3}$  | 0.11284     | 0.46162           | $f_{3}^{3}$  | 0.23404     | 0.56661          | $f_{3}^{3}$  | 0.27491 | 0.76617             | $f_{3}^{3}$  | 0.18721  | 0.89675 |
| $f_{5}^{3}$  | 0.61314     | 0.6489            | $f_{5}^{3}$  | 0.67023     | 0.36072          | $f_{5}^{3}$  | 1.117   | 0.99751             | $f_{5}^{3}$  | 0.44121  | 0.97437 |
| $f_{5}^{3}$  | 0.13405     | 0.46162           | $f_{5}^{3}$  | 0.27802     | 0.56661          | $f_{5}^{3}$  | 0.45405 | 0.89347             | $f_{5}^{3}$  | 0.22238  | 0.89675 |
| $f_{7}^{3}$  | 1.6257      | 1                 | $f_{7}^{3}$  | 1.6091      | 0.99996          | $f_{7}^{3}$  | 1.3133  | 1                   | $f_{7}^{3}$  | 1.5422   | 1       |
| $f_{7}^{3}$  | 0.19741     | 1.1977            | $f_{7}^{3}$  | 0.22757     | 0.65187          | $f_{7}^{3}$  | 0.25662 | 0.41832             | $f_{7}^{3}$  | 0.15773  | 0.86387 |
| $f_{9}^{3}$  | 0.23648     | 0.56964           | $f_{9}^{3}$  | 0.1544      | 0.5358           | $f_{9}^{3}$  | 0.34174 | 0.6484              | $f_{9}^{3}$  | 0.11012  | 0.96412 |
| $f_{9}^{3}$  | 0.24368     | 0.56353           | $f_{9}^{3}$  | 0.1532      | 0.65445          | $f_{9}^{3}$  | 0.35224 | 0.90324             | $f_{9}^{3}$  | 0.096424 | 0.92908 |
| $f_{11}^3$   | 1.5372      | 4.5646            | $f_{11}^3$   | 4.7602      | 36.5516          | $f_{11}^{3}$ | 0.97073 | 0.99998             | $f_{11}^3$   | 0.96194  | 0.99999 |
| $f_{11}^3$   | 0.86212     | 2.3302            | $f_{11}^3$   | 0.59254     | 0.89563          | $f_{11}^{3}$ | 0.84327 | 0.99797             | $f_{11}^3$   | 0.83617  | 0.99616 |
| $f_{13}^3$   | 0.88453     | 0.20586           | $f_{13}^3$   | 0.55315     | 0.78117          | $f_{13}^{3}$ | 0.56056 | 0.97199             | $f_{13}^3$   | 0.29137  | 0.88664 |
| $f_{13}^3$   | 0.96781     | 0.99992           | $f_{13}^3$   | 0.8656      | 0.99998          | $f_{13}^{3}$ | 0.91901 | 1                   | $f_{13}^3$   | 0.7389   | 0.99985 |
| $f_{15}^{3}$ | 0.13677     | 0.47775           | $f_{15}^{3}$ | 0.17962     | 0.61944          | $f_{15}^{3}$ | 0.47684 | 0.93472             | $f_{15}^{3}$ | 0.22535  | 0.9938  |
| $f_{15}^{3}$ | 0.23807     | 0.96281           | $f_{15}^{3}$ | 0.33107     | 0.88335          | $f_{15}^{3}$ | 0.54149 | 0.98312             | $f_{15}^3$   | 0.31443  | 0.9815  |
| $f_{17}^{3}$ | 0.62046     | 1.935             | $f_{17}^{3}$ | 0.5424      | 0.95059          | $f_{17}^{3}$ | 0.67288 | 0.99468             | $f_{17}^3$   | 0.79046  | 0.96922 |
| $f_{17}^3$   | 1.0443      | 0.68705           | $f_{17}^{3}$ | 1.5714      | 0.99297          | $f_{17}^{3}$ | 1.7208  | 0.99066             | $f_{17}^3$   | 1.6577   | 0.56195 |
| $f_{19}^{3}$ | 0.99162     | 0.33906           | $f_{19}^{3}$ | 1.8813      | 0.91034          | $f_{19}^{3}$ | 1.6671  | 0.98227             | $f_{19}^{3}$ | 2.3593   | 0.94528 |
| $f_{19}^{3}$ | 1.158       | 0.68917           | $f_{19}^{3}$ | 1.6573      | 0.11304          | $f_{19}^{3}$ | 1.5571  | 0.98954             | $f_{19}^{3}$ | 1.2855   | 0.80523 |
| $f_{21}^{3}$ | 0.1658      | 0.4887            | $f_{21}^{3}$ | 0.19178     | 0.62577          | $f_{21}^{3}$ | 0.4784  | 0.93788             | $f_{21}^{3}$ | 0.24564  | 0.99413 |
| $f_{21}^{3}$ | 0.39793     | 0.99935           | $f_{21}^{3}$ | 0.70721     | 0.96582          | $f_{21}^{3}$ | 0.66308 | 0.99214             | $f_{21}^{3}$ | 0.89317  | 0.921   |
| $f_{23}^3$   | 0.031056    | 0.95607           | $f_{23}^3$   | 0.43104     | 2.0364           | $f_{23}^{3}$ | 0.77132 | 0.9964              | $f_{23}^3$   | 0.68959  | 0.99826 |

Tabela 7.36: Tabela com os erros de cada função para unif([0, 0], [10, 5, 2])

## **7.2 EXEMPLO 2**

Nesta seção faremos a simulação do algoritmo UKF-SLAM de Tim Baley<sup>1</sup>. Nós utilizamos esse algoritmo com modificações para os mesmos quatro conjuntos de pontos sigma dos exemplos anteriores. A simulação foi feita utilizando o Matlab R2009a.

A função de processo f e a função de medição h são as seguintes:

$$f(x_{R}[k], u_{k}) = \begin{bmatrix} x_{R}^{1}[k] + u_{k}^{1}\cos(u_{k}^{2} + x_{R}^{3}[k]) \Delta t \\ x_{R}^{2}[k] + u_{k}^{1}\sin(u_{k}^{2} + x_{R}^{3}[k]) \Delta t \\ x_{R}^{3}[k] + u_{k}^{1}\sin(u_{k}^{2}) \frac{\Delta t}{d} \end{bmatrix},$$

$$h(x[k]) = \begin{bmatrix} \sqrt{\left(x_{fi}^{1}[k] - x_{R}^{1}[k]\right)^{2} + \left(x_{fi}^{2}[k] - x_{R}^{2}[k]\right)^{2}} \\ \arctan\left(\frac{x_{fi}^{2}[k] - x_{R}^{2}[k]}{x_{fi}^{1}[k] - x_{R}^{2}[k]}\right) - x_{R}^{3}[k] \end{bmatrix}$$

em que  $x_R[k|k-1]$  é a predição do estado no tempo k,  $u_k = \begin{bmatrix} u_k^1 & u_k^2 \end{bmatrix}^T$  é a entrada de controle,  $\Delta t$  é o intervalo de tempo, d é a distância entre as rodas do robô,  $x_R^i[k]$  *i*-ésima componente escalar de  $x_R[k]$ , e  $x_{fi}$  é a coordenada da *i*-ésima baliza (ou *landmark*).

A Tabela 7.37 contém os erros médios quadráticos (RMSE) das poses do robô em metros para cada conjunto de pontos sigma. Podemos notar que o conjunto reduzido de [83] e o conjunto esférico de [84] apresentaram instabilidade numérica. Isso aconteceu porque a matriz de covariância perdeu a positividade.

A Fig. 7.1 apresenta os erros das poses dos robôs em cada iteração para o conjunto de pontos simétrico (SyUT, em vermelho) e para o conjunto mínimo (MiUT, em azul) do Teorema 4.2.1, página 78. Observe que a curva do MiUT está quase sempre abaixo da curva do SyUT, o que indica que o conjunto mínimo particular apresentou uma estimativa melhor que a do conjunto simétrico, mesmos se utilizando de menos pontos sigma.

Observe que há três em cada curva. Esses picos acontecem por causa das quinas que existem no trajeto. Nesses lugares, o robô ideal faz a muda de trajetória bruscamente o que provoca uma diferença grande na medida e, em consequência, na correção do filtro.

<sup>&</sup>lt;sup>1</sup>Disponível em www-personal.acfr.usyd.edu.au/tbailey/softwares/slam\_simulations.htm.

|          | SyUT   | MiUT   | RUT      | SpUT     |
|----------|--------|--------|----------|----------|
| RMSE (m) | 1.9772 | 1.8345 | instável | instável |

Tabela 7.37: Erros das posturas na simulação de SLAM



Figura 7.1: Erros das posturas na simulação de SLAM

## **8 CONCLUSÕES**

Pelo estudo do estado da arte pudemos constatar três problemas principais:

- A Transformada Unscented original e mais usada, a simétrica de Julier [10], foi apresentada sem justificação formal;
- Há diversas definições da transformada unscented na literatura, nem todas elas equivalentes entre si (seção 2.4);
- Algumas definições são inconsistentes: em particular, vimos que os conjuntos apresentados em [83] e em [84] - únicos conjuntos mínimos de pontos sigma apresentados até então na literatura - apresentam problemas na sua proposição (seção 2.4).

Propusemo-nos a resolver esses problemas de inconsistências mediante a sistematização da estimação por pontos sigma. Introduzimos o conceito da  $\sigma$ -representação (seção 3.2) e a utilizamos para definir a Transformação por Pontos Sigma (seção 5.1) e os filtros de Kalman unscented que resultam dessa transformação (capítulo 6).

Essa sistematização foi capaz de (1) englobar todos os filtros de Kalman unscented até então presentes na literatura, (2) justificar formalmente os filtros de Kalman unscented simétricos, (3) oferecer novos filtros de Kalman unscented (capítulo 6).

## 8.1 SUGESTÃO DE TRABALHOS FUTUROS

Para trabalho futuros, podemos considerar, em primeiro lugar, a obtenção de uma  $\sigma$ -representação para uma variável aleatória cuja distribuição é uma soma de gaussianas.

Também, podemos considerar a obtenção de um conjunto de pontos sigma que providencie uma melhor estimativa para o caso de uma variável aleatória que tenha uma densidade de probabilidade mista - composta pela soma de uma parte contínua e uma discreta.

E por último, podemos considerar a obtenção de conjuntos de pontos sigma que sejam capazes de estimar momentos de ordem mais alta de uma variável aleatória.
# **REFERÊNCIAS BIBLIOGRÁFICAS**

- X. Li and V. Jilkov, "Survey of Maneuvering Target Tracking. Part II: Motion Models of Ballistic and Space Targets," *Aerospace and Electronic Systems, IEEE Transactions on*, vol. 46, no. 1, pp. 96–119, jan. 2010.
- [2] D. Simon, *Optimal State Estimation Kalman, Hoo and Nonlinear Approches*. Wiley, 2006.
- [3] A. H. Jazwinski, *Stochastic Processes and Filtering Theory*. 31 East 2nd Street, Mineola, N.Y.: Dover Publications Inc., 1998.
- [4] F. Daowang, L. Teng, and H. Tao, "Square-root second-order extended Kalman filter and its application in target motion analysis," *Radar, Sonar Navigation, IET*, vol. 4, no. 3, pp. 329–335, june 2010.
- [5] K. Nam and M.-J. Tahik, "A second-order stochastic filter involving coordinate transformation," *Automatic Control, IEEE Transactions on*, vol. 44, no. 3, pp. 603–608, mar 1999.
- [6] F. C. Ma and S. H. Tong, "Real time parameters identification of ship dynamic using the extended Kalman filter and the second order filter," in *Control Applications, 2003. CCA 2003. Proceedings of 2003 IEEE Conference on*, vol. 2, june 2003, pp. 1245 – 1250 vol.2.
- [7] J. Wang and J. Chen, "An adaptive split and merge unscented Gaussian sum filter for initial alignment of SINS," in *Mechatronics and Automation (ICMA)*, 2010 International Conference on, aug. 2010, pp. 1892–1897.
- [8] S. Yang, D. Wen, J. Sun, and J. Ma, "Gaussian sum particle filter for spacecraft attitude estimation," in *Signal Processing Systems (ICSPS), 2010 2nd International Conference on*, vol. 3, july 2010, pp. V3–566–V3–570.
- [9] H. Sorenson and D. Alspach, "Gaussian sum approximations for nonlinear filtering," in Adaptive Processes (9th) Decision and Control, 1970. 1970 IEEE Symposium on, vol. 9, dec. 1970, p. 193.
- [10] S. Julier and J. Uhlmann, "A new extension of the Kalman filter to nonlinear systems," in *Int. Symp. Aerospace/Defense Sensing, Simul. and Controls*, vol. 3. Citeseer, 1997, p. 26. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.81.3908\&rep=rep1\&type=pdf

- [11] S. J. Julier, "Consistent debiased method for converting between polar and Cartesian coordinate systems," *Proceedings of SPIE*, no. i, pp. 110–121, 1997. [Online]. Available: http://link.aip.org/link/PSISDG/v3086/i1/p110/s1\&Agg=doi
- [12] S. Julier, J. Uhlmann, and H. F. Durrant-whyte, "A New Method for the Nonlinear Transformation of Means and Covariances in Filters and Estimators," *IEEE Transactions on Automatic Control*, vol. 45, no. 3, pp. 477–482, 2000.
- [13] S. Julier and J. Uhlmann, "Unscented filtering and nonlinear estimation," *Proceedings of the IEEE*, vol. 92, no. 3, pp. 401–422, 2004.
- [14] A. Doucet, S. Godsill, and C. Andrieu, "On sequential monte carlo sampling methods for bayesian filtering," *Statistics and Computing*, vol. 10, pp. 197–208, 2000, 10.1023/A:1008935410038. [Online]. Available: http://dx.doi.org/10.1023/A: 1008935410038
- [15] S. Maskell and N. Gordon, "A tutorial on particle filters for on-line nonlinear/non-Gaussian Bayesian tracking," in *Target Tracking: Algorithms and Applications (Ref. No. 2001/174), IEE*, vol. Workshop, oct. 2001, pp. 2/1 2/15 vol.2.
- [16] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, "A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking," *Signal Processing, IEEE Transactions on*, vol. 50, no. 2, pp. 174–188, feb 2002.
- [17] F. Gustafsson, "Particle filter theory and practice with positioning applications," *Aerospace and Electronic Systems Magazine, IEEE*, vol. 25, no. 7, pp. 53–82, july 2010.
- [18] F. Daum, "Nonlinear filters: beyond the Kalman filter," Aerospace and Electronic Systems Magazine, IEEE, vol. 20, no. 8, pp. 57–69, aug. 2005.
- [19] M. Terra, J. Ishihara, and G. Jesus, "Robust estimate for discrete-time Markovian jump linear systems," in *Decision and Control*, 2009 held jointly with the 2009 28th Chinese Control Conference. CDC/CCC 2009. Proceedings of the 48th IEEE Conference on, dec. 2009, pp. 1305 –1309.
- [20] R. Souto and J. Ishihara, "Robust Kalman filter for discrete-time systems with correlated noises," in *Control and Automation*, 2008 16th Mediterranean Conference on, june 2008, pp. 1658–1662.
- [21] J. Ishihara, M. Terra, and J. Campos, "Robust Kalman filter for descriptor systems," *Automatic Control, IEEE Transactions on*, vol. 51, no. 8, p. 1354, aug. 2006.
- [22] R. Souto, J. Ishihara, and G. Borges, "A robust extended Kalman filter for discretetime systems with uncertain dynamics, measurements and correlated noise," in *American Control Conference*, 2009. ACC '09., june 2009, pp. 1888–1893.

- [23] M. Gandhi and L. Mili, "Robust Kalman Filter Based on a Generalized Maximum-Likelihood-Type Estimator," *Signal Processing, IEEE Transactions on*, vol. 58, no. 5, pp. 2509 –2520, may 2010.
- [24] X. Lu, W. Wang, H. Zhang, and L. Xie, "Robust Kalman Filtering for Discretetime Systems with Measurement Delay," in *Intelligent Control and Automation*, 2006. WCICA 2006. The Sixth World Congress on, vol. 1, 0-0 2006, pp. 2249 –2253.
- [25] F. Yang, Z. Wang, and X. Liu, "Robust filtering for systems with stochastic nonlinearities and deterministic uncertainties," in *Control, Automation, Robotics and Vision Conference, 2004. ICARCV 2004 8th*, vol. 1, dec. 2004, pp. 62 – 67 Vol. 1.
- [26] J. Ishihara, M. Terra, and J. Silva, "H∞ Estimation for Rectangular Discrete-time Descriptor Systems," in American Control Conference, 2006, june 2006, pp. 5650 -5654.
- [27] G. Jesus, M. Terra, and J. Ishihara, "H∞; estimates for discrete-time Markovian jump linear systems," in *American Control Conference (ACC)*, 2010, 30 2010-july 2 2010, pp. 4164 –4169.
- [28] V. Grade Tavares, J. Principe, and J. Harris, "F& H filter: a novel ultra-low power discrete time filter," *Electronics Letters*, vol. 35, no. 15, pp. 1226–1227, jul 1999.
- [29] O.-K. Kwon, C. de Souza, and H.-S. Ryu, "Robust H∞; FIR filter for discrete-time uncertain systems," in *Decision and Control, 1996.*, *Proceedings of the 35th IEEE*, vol. 4, dec 1996, pp. 4819 –4824 vol.4.
- [30] D.-W. Kim, J.-G. Lee, and J.-H. Lee, "Design of partial H-plane filter: a new type of H-plane filter," in *Antennas and Propagation Society International Symposium*, 2004. *IEEE*, vol. 2, june 2004, pp. 2159 – 2162 Vol.2.
- [31] P. Santana, H. Menegaz, G. Borges, and J. Ishihara, "Multiple Hypotheses Mixing Filter for hybrid Markovian switching systems," in *Decision and Control (CDC)*, 2010 49th IEEE Conference on, dec. 2010, pp. 5080 – 5085.
- [32] G. Jesus, J. Ishihara, and M. Terra, "Information filtering and array algorithms for discrete-time Markovian jump linear systems subject to parameter uncertainties," in *American Control Conference (ACC)*, 2010, 30 2010-july 2 2010, pp. 605 –610.
- [33] A. Manfrim, M. Terra, E. Costa, and J. Ishihara, "Stochastic stability for discrete-time singular systems with Markov jump parameters," in *American Control Conference*, 2008, june 2008, pp. 1650–1655.
- [34] M. Terra, J. Ishihara, and G. Jesus, "Information filtering and array algorithms for discrete-time Markovian jump linear systems," in *American Control Conference*, 2007. ACC '07, july 2007, pp. 1062 –1066.

- [35] D. Svensson and L. Svensson, "A New Multiple Model Filter With Switch Time Conditions," *Signal Processing, IEEE Transactions on*, vol. 58, no. 1, pp. 11 –25, jan. 2010.
- [36] A. Vargas, J. do Val, and E. Costa, "Optimality Condition for the Receding Horizon Control of Markov Jump Linear Systems with Non-observed Chain and Linear Feedback Controls," in *Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC '05. 44th IEEE Conference on*, dec. 2005, pp. 7308 – 7313.
- [37] —, "Receding horizon control of Markov jump linear systems subject to noise and unobserved state chain," in *Decision and Control*, 2004. CDC. 43rd IEEE Conference on, vol. 4, dec. 2004, pp. 4381 – 4386 Vol.4.
- [38] A. Vargas, E. Costa, and J. do Val, "Bounds for the Finite Horizon Cost of Markov Jump Linear Systems with Additive Noise and Convergence for the Long Run Average Cost," in *Decision and Control*, 2006 45th IEEE Conference on, dec. 2006, pp. 5543 –5548.
- [39] A. Vargas, J. Ishihara, and J. do Val, "Linear quadratic regulator for a class of Markovian jump systems with control in jumps," in *Decision and Control (CDC)*, 2010 49th IEEE Conference on, dec. 2010, pp. 2282 –2285.
- [40] A. Vargas, W. Furloni, and J. do Val, "Constrained model predictive control of jump linear systems with noise and non-observed Markov state," in *American Control Conference*, 2006, june 2006, p. 6 pp.
- [41] R. Schubert and G. Wanielik, "Unifying Bayesian networks and IMM filtering for improved multiple model estimation," in *Information Fusion*, 2009. FUSION '09. 12th International Conference on, july 2009, pp. 810–817.
- [42] Y. Boers and J. Driessen, "Interacting multiple model particle filter," *Radar, Sonar* and *Navigation, IEE Proceedings* -, vol. 150, no. 5, pp. 344 349, oct. 2003.
- [43] Y.-A. Zhang, D. Zhou, and G.-R. Duan, "Simplified multiple model filtering of target glint," in *Intelligent Control and Automation*, 2004. WCICA 2004. Fifth World Congress on, vol. 2, june 2004, pp. 1606 – 1609 Vol.2.
- [44] A. Anderson, D. Bittle, R. Dean, G. Flowers, J. Hester, and A. Hodel, "EKF and UKF state estimation comparison for rotating rockets," in *Southeastcon*, 2009. SOUTH-EASTCON '09. IEEE, march 2009, pp. 373 –378.
- [45] M. Ilyas, M. Iqbal, J. G. Lee, and C. G. Park, "Extended Kalman filter design for multiple satellites formation flying," in *Emerging Technologies*, 2008. ICET 2008. 4th International Conference on, oct. 2008, pp. 56–61.

- [46] J. Cordova Alarcon, H. Rodriguez Cortes, and E. Vivas, "Extended Kalman Filter tuning in attitude estimation from inertial and magnetic field measurements," in *Electrical Engineering, Computing Science and Automatic Control, CCE, 2009 6th International Conference on*, jan. 2009, pp. 1–6.
- [47] Q. Lam and A. Wu, "Enhanced precision attitude determination algorithms," in *Aerospace Conference, 1998. Proceedings., IEEE*, vol. 1, mar 1998, pp. 61–68 vol.1.
- [48] E. Beckmann and G. Borges, "Nonlinear Modeling, Identification and Control for a Simulated Miniature Helicopter," in *Robotic Symposium*, 2008. LARS '08. IEEE Latin American, oct. 2008, pp. 53 –58.
- [49] J.-G. Kang, W.-S. Choi, S.-Y. An, and S.-Y. Oh, "Augmented EKF based SLAM method for improving the accuracy of the feature map," in *Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on*, oct. 2010, pp. 3725 –3731.
- [50] T. Bailey and H. Durrant-Whyte, "Simultaneous localization and mapping (SLAM): part II," *Robotics & Automation Magazine, IEEE*, vol. 13, no. 3, pp. 108–117, 2006.
- [51] —, "Simultaneous localization and mapping (SLAM): part II," *Robotics & Automation Magazine, IEEE*, vol. 13, no. 3, pp. 108–117, 2006.
- [52] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, "FastSLAM: A Factored Solution to the Simultaneous Localization and Mapping Problem," in *Proceedings of the AAAI National Conference on Artificial Intelligence*. Edmonton, Canada: AAAI, 2002.
- [53] —, "FastSLAM 2 . 0 : An Improved Particle Filtering Algorithm for Simultaneous Localization and Mapping that Provably Converges," in *IJCAI*, 2003.
- [54] H. Zhang, J. Rong, X. Zhong, H. Yang, L. Xiao, and L. Zhang, "The Application and Design of EKF Smoother Based on GPS/DR Integration for Land Vehicle Navigation," in *Computational Intelligence and Industrial Application*, 2008. PACIIA '08. Pacific-Asia Workshop on, vol. 1, dec. 2008, pp. 704–707.
- [55] K. Gherram, K. Yazid, and M. Menaa, "Sensorless indirect vector control of an induction motor by ANNs observer and EKF," in *Control Automation (MED)*, 2010 18th Mediterranean Conference on, june 2010, pp. 521–526.
- [56] H. Hajimolahoseini, M. Taban, and H. Abutalebi, "Improvement of Extended Kalman Filter frequency tracker for nonstationary harmonic signals," in *Telecommunications*, 2008. IST 2008. International Symposium on, aug. 2008, pp. 592–597.

- [57] P. Dash, S. Hasan, and B. Panigrahi, "A hybrid unscented filtering and particle swarm optimization technique for harmonic analysis of nonstationary signals," *Measurement*, vol. 43, no. 10, pp. 1447–1457, Dec. 2010. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/S0263224110001879
- [58] G. Scandaroli, G. Borges, J. Ishihara, M. Terra, A. da Rocha, and F. de Oliveira Nascimento, "Estimation of foot orientation with respect to ground for an above knee robotic prosthesis," in *Intelligent Robots and Systems*, 2009. IROS 2009. IEEE/RSJ International Conference on, oct. 2009, pp. 1112 –1117.
- [59] N. Andrade, G. Borges, F. de O. Nascimento, A. Romariz, and A. da Rocha, "A new biomechanical hand prosthesis controlled by surface electromyographic signals," in *Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE*, aug. 2007, pp. 6141–6144.
- [60] D. I. Wilson, M. Agarwal, and D. W. T. Rippin, "Experiences implementing the extended Kalman filter on an industrial batch reactor," *Computers and Chemical Engineering*, vol. 22, no. 11, pp. 1653 – 1672, 1998. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0098135498002269
- [61] Y. Chinniah, R. Burton, and S. Habibi, "Failure monitoring in a high performance hydrostatic actuation system using the extended Kalman filter," *Mechatronics*, vol. 16, no. 10, pp. 643 – 653, 2006. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0957415806000663
- [62] J. Yim, C. Park, J. Joo, and S. Jeong, "Extended Kalman Filter for wireless LAN based indoor positioning," *Decision Support Systems*, vol. 45, no. 4, pp. 960 – 971, 2008, information Technology and Systems in the Internet-Era. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0167923608000572
- [63] J. Zhang and C. Xia, "State-of-charge estimation of valve regulated lead acid battery based on multi-state Unscented Kalman Filter," *International Journal* of Electrical Power & Energy Systems, vol. In Press,, pp. –, 2010. [Online]. Available: http://www.sciencedirect.com/science/article/B6V2T-51BG416-2/2/ 1399f036f0c4966d77188360a36e4c4f
- [64] C. Eberle and C. Ament, "The Unscented Kalman Filter estimates the plasma insulin from glucose measurement," *Bio Systems*, Oct. 2010. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/20934485
- [65] J. Walters-Williams and Y. Li, "Comparison of Extended and Unscented Kalman Filters applied to EEG signals," in *Complex Medical Engineering (CME)*, 2010 IEEE/ICME International Conference on, vol. 00, no. i. IEEE, 2010, pp. 45–51.
  [Online]. Available: http://ieeexplore.ieee.org/xpls/abs\\_all.jsp?arnumber=5558873

- [66] E.-J. Choi, J.-C. Yoon, B.-S. Lee, S.-Y. Park, and K.-H. Choi, "Onboard orbit determination using GPS observations based on the unscented Kalman filter," *Advances in Space Research*, vol. 46, no. 11, pp. 1440–1450, 2010. [Online]. Available: http://www.sciencedirect.com/science/article/B6V3S-50N38PX-1/ 2/827c3f20ae415704e5c3187fa06a07dd
- [67] J. WANG, X. FENG, L. ZHAO, and T. YU, "Unscented Transformation Based Robust Kalman Filter and Its Applications in Fermentation Process," *Chinese Journal of Chemical Engineering*, vol. 18, no. 3, pp. 412–418, 2010. [Online]. Available: http://www.sciencedirect.com/science/article/B82XJ-50F63SX-9/2/ 943f6bc0c164ab75fa33e93894c49800
- [68] S. Rao and V. Babu, "Unscented kalman filter with application to bearings-only passive manoeuvring target tracking," *Signal Processing, Communications and Networking, 2008. ICSCN '08. International Conference on*, pp. 219–224, Jan. 2008.
- [69] B. Sadeghi and B. Moshiri, "Second-order ekf and unscented kalman filter fusion for tracking maneuvering targets," *Information Reuse and Integration*, 2007. IRI 2007. IEEE International Conference on, pp. 514–519, Aug. 2007.
- [70] L. Yingxin, W. Min, S. Jinhua, and H. Kaoru, "Sequential growing-and-pruning learning for recurrent neural networks using unscented or extended kalman filter," *Control Conference*, 2008. CCC 2008. 27th Chinese, pp. 242–247, July 2008.
- [71] A. Karsaz and H. Khaloozadeh, "Medium term horizon market clearing price and load forecasting with an improved dual unscented kalman filter," *Control and Automation*, 2007. ICCA 2007. IEEE International Conference on, pp. 507–513, 30 2007-June 1 2007.
- [72] W. Bao, C. Zhang, B. Xiao, and R. Chen, "Self-localization of mobile robot based on binocular camera and unscented kalman filter," *Automation and Logistics, 2007 IEEE International Conference on*, pp. 277–281, Aug. 2007.
- [73] H. Qasem and L. Reindl, "Unscented and extended kalman estimators for non linear indoor tracking using distance measurements," *Positioning, Navigation and Communication, 2007. WPNC '07. 4th Workshop on*, pp. 177–181, March 2007.
- [74] S. Holmes, G. Klein, and D. Murray, "A square root unscented kalman filter for visual monoslam," *Robotics and Automation*, 2008. ICRA 2008. IEEE International Conference on, pp. 3710–3716, May 2008.
- [75] L. Zhao, Q. Nie, and Q. Guo, "Unscented kalman filtering for sins attitude estimation," *Control and Automation, 2007. ICCA 2007. IEEE International Conference on*, pp. 228–232, 30 2007-June 1 2007.

- [76] H. Soken and C. Hajiyev, "Adaptive unscented kalman filter with multiple fading factors for pico satellite attitude estimation," in *Recent Advances in Space Technologies*, 2009. RAST '09. 4th International Conference on, June 2009, pp. 541–546.
- [77] S. Holmes, G. Klein, and D. Murray, "An o(nš) square root unscented kalman filter for visual simultaneous localization and mapping," *Pattern Analysis and Machine Intelligence, IEEE Transactions on*, vol. 31, no. 7, pp. 1251–1263, July 2009.
- [78] W. Yu-wei and Z. Zong-yi, "Improvement of the simultaneous localization and map building algorithm applying scaled unscented transformation," in *Industrial Mechatronics and Automation*, 2009. ICIMA 2009. International Conference on, May 2009, pp. 371–374.
- [79] B. He, L. Yang, K. Yang, Y. Wang, N. Yu, and C. Lu, "Localization and map building based on particle filter and unscented Kalman filter for an auv," in *Industrial Electronics and Applications*, 2009. *ICIEA 2009. 4th IEEE Conference on*, May 2009, pp. 3926–3930.
- [80] T.-F. Chan, P. Borsje, and W. Wang, "Application of unscented kalman filter to sensorless permanent-magnet synchronous motor drive," in *Electric Machines and Drives Conference*, 2009. *IEMDC* '09. *IEEE International*, May 2009, pp. 631–638.
- [81] R. van der Menve, "Sigma-point kalman filters for," Ph.D. dissertation, University of Stellenbosch, Abril 2004.
- [82] S. Julier, J. Uhlmann, and H. Durrant-Whyte, "A new approach for filtering nonlinear systems," in *American Control Conference*, vol. 3. IEEE, 1995, pp. 1628–1632.
   [Online]. Available: http://ieeexplore.ieee.org/xpls/abs\\_all.jsp?arnumber=529783
- [83] S. Julier and J. Uhlmann, "Reduced sigma point filters for the propagation of means and covariances through nonlinear transformations," in *American Control Conference*, 2002. Proceedings of the 2002, vol. 2. IEEE, 2002, pp. 887–892.
   [Online]. Available: http://ieeexplore.ieee.org/xpls/abs\\_all.jsp?arnumber=1023128
- [84] S. Julier, "The spherical simplex unscented transformation," in American Control Conference, 2003. Proceedings of the 2003, vol. 3, 2003, pp. 2430–2434.
- [85] —, "The scaled unscented transformation," *Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301)*, no. 2, pp. 4555–4559, 2002. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1025369
- [86] R. Van der Merwe and E. Wan, "The square-root unscented Kalman filter for state and parameter-estimation," in *International Conference on Acoustics, Speech, and Signal Processing.*, 2001, pp. 3461–3464.

- [87] X. Luo, I. Moroz, and I. Hoteit, "Scaled unscented transform Gaussian sum filter: Theory and application," *Physica D: Nonlinear Phenomena*, vol. 239, no. 10, pp. 684–701, 2010. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/ S0167278910000424
- [88] F. Faubel and D. Klakow, "A Transformation-based derivation of the Kalman filter and an extensive unscented transform," *IEEE Workshop on Statistical Signal*, pp. 161–164, 2009.
- [89] S. Sarkka, "On Unscented Kalman Filtering for State Estimation of Continuous-Time Nonlinear Systems," *IEEE Transactions on Automatic Control*, vol. 52, no. 9, pp. 1631–1641, Sep. 2007. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/ wrapper.htm?arnumber=4303242
- [90] D. Tenne and T. Singh, "The higher order unscented filter," in *in Proceedings of the American Control Conference, Denver, USA*, 2003, pp. 2441–2446.
- [91] H. Menegaz, J. Ishihara, and G. Borges, "A new smallest sigma set for the Unscented Transform and its applications on SLAM," in *Decision and Control (CDC)*, 2011 50th IEEE Conference on, 2011, sob análise.
- [92] C. A. G. Veras, P. L. K. da Cás, C. Q. Vilanova, G. Borges, H. M. Menegas, and J. Y. Ishihara, "Thrust Modulation of a Paraffin Based Hybrid Rocket Motor," in 13th Brazilian Congress of Thermal Sciences and Engineering, dec. 2010.
- [93] P. L. Fackler, "Notes on Matrix Calculus," pp. 1–14, 2005.
- [94] J. R. Magnus and H. Neudecker, *Matrix Differential Calculus with Applications in Statistics and Econometrics*, 3rd ed. Chichester, Baffins Lane: John Wiley & Sons, Nov. 2001, vol. 31, no. 4.
- [95] C. A. Felippa, "Matrix Calculus." Boulder, Colorado. [Online]. Available: http://www.colorado.edu/engineering/cas/courses.d/IFEM.d/IFEM.AppD.d/ IFEM.AppD.pdf
- [96] J. R. Magnus, "Matrix calculus and econometrics," pp. 1-42, 2006.
- [97] K. B. Petersen and M. S. Pedersen, "The Matrix Cookbook," pp. 1–66, 2007.[Online]. Available: http://matrixcookbook.com
- [98] D. Simon, *Optimal State Estimation*. Hoboken, New Jersey: John Wiley & Sons, 2006.
- [99] R. Kalman, "A new approach to linear filtering and prediction problems," *Transactions of the ASME Journal of Basic Engineering*, no. 82, pp. 35–45, March 1960. [Online]. Available: http://www.jstor.org/stable/1270024?origin=crossref

- [100] P. H. R. Q. A. Santana, "Filtragem estocástica para sistemas híbridos e suas aplicações em robótica aérea," Master's thesis, Universidade de Brasília, 2011.
- [101] E. Wan and R. Van Der Merwe, "The unscented Kalman filter for nonlinear estimation," in *The IEEE 2000 Adaptive Systems for Signal Processing, Communications,* and Control Symposium 2000. AS-SPCC, 2000, pp. 153–158.
- [102] B. Teixeira, J. Chandrasekar, L. Torres, L. Aguirre, and D. Bernstein, "Unscented filtering for equality-constrained nonlinear systems," *American Control Conference*, 2008, pp. 39–44, June 2008.
- [103] C. D. Meyer, Matrix analysis and Applied Linear Algebra. SIAM, 2000.
- [104] X. Hu, X. Hu, and Y. Huang, "A nonlinear variable dimension estimator for maneuvering spacecraft tracking via the unscented kalman filter," *Information and Automation*, 2008. ICIA 2008. International Conference on, pp. 226–231, June 2008.
- [105] L. Duan, X. han Huang, B. Luo, and Q. yuan Li, "Target tracking with interactive multiple model in geodetic coordinate system for naval ships cooperative engagement," *Information Fusion, 2008 11th International Conference on*, pp. 1–8, 30 2008-July 3 2008.
- [106] D. Deneault, D. Schinstock, and C. Lewis, "Tracking ground targets with measurements obtained from a single monocular camera mounted on an unmanned aerial vehicle," *Robotics and Automation*, 2008. ICRA 2008. IEEE International Conference on, pp. 65–72, May 2008.
- [107] D. Caveney, "Stochastic path prediction using the unscented transform with numerical integration," in *Intelligent Transportation Systems Conference*, 2007. ITSC 2007. IEEE, 30 2007-Oct. 3 2007, pp. 848–853.
- [108] R. Zhan and J. Wan, "Iterated unscented kalman filter for passive target tracking," *Aerospace and Electronic Systems, IEEE Transactions on*, vol. 43, no. 3, pp. 1155– 1163, July 2007.
- [109] Z.-J. Yu, S.-L. Dong, J.-M. Wei, T. Xing, and H.-T. Liu, "Neural network aided unscented kalman filter for maneuvering target tracking in distributed acoustic sensor networks," *Computing: Theory and Applications, 2007. ICCTA '07. International Conference on*, pp. 245–249, March 2007.
- [110] W. F. Leven and A. D. Lanterman, "Unscented kalman filters for multiple target tracking with symmetric measurement equations," *Automatic Control, IEEE Transactions on*, vol. 54, no. 2, pp. 370–375, Feb. 2009.

- [111] Wang-lingqun, Pan-shizhu, and Zheng-yingping, "Moving vehicle tracking based on unscented kalman filter algorithm," in *Computer Science and Information Engineering*, 2009 WRI World Congress on, vol. 2, 31 2009-April 2 2009, pp. 33–38.
- [112] Y. Zhou, J. Li, and D. Wang, "Unscented kalman filtering based quantized innovation fusion for target tracking in wsn with feedback," in *Machine Learning and Cybernetics*, 2009 International Conference on, vol. 3, July 2009, pp. 1457–1463.
- [113] B. Sipos, "Application of the manifold-constrained unscented kalman filter," *Position, Location and Navigation Symposium, 2008 IEEE/ION*, pp. 30–43, May 2008.
- [114] R. Cai, Q. Wu, J. Cai, J. Liu, and M. Chen, "Simplification of Unscented Kalman Filter for Orbit Object Tracking," in *Information Technology and Computer Science (ITCS)*, 2010 Second International Conference on. Ieee, Jul. 2010, pp. 82–85. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5557326
- [115] J. Qi and J. Han, "Fault adaptive control for ruav actuator failure with unscented kalman filter," *Innovative Computing Information and Control*, 2008. ICICIC '08. *3rd International Conference on*, pp. 169–169, June 2008.
- [116] S. Shulin, Y. Wenlong, S. Lihong, and Y. Jian, "A novel unscented kalman filter in autonomous optical navigation," *Control Conference*, 2007. CCC 2007. Chinese, pp. 462–466, 26 2007-June 31 2007.
- [117] Y. Peng, J. Han, and Z. Wu, "Nonlinear backstepping design of ship steering controller: Using unscented kalman filter to estimate the uncertain parameters," *Automation and Logistics, 2007 IEEE International Conference on*, pp. 126–131, Aug. 2007.
- [118] Y. Peng and J. Han, "Tracking control of unmanned trimaran surface vehicle: Using adaptive unscented kalman filter to estimate the uncertain parameters," *Robotics, Automation and Mechatronics, 2008 IEEE Conference on*, pp. 901–906, Sept. 2008.
- [119] H. Zhu, H. Hu, and W. Gui, "Adaptive unscented kalman filter for deep-sea tracked vehicle localization," in *Information and Automation*, 2009. ICIA '09. International Conference on, June 2009, pp. 1056–1061.
- [120] C. Karlgaard and H. Schaub, "Comment: Huber-based unscented filtering and its application to vision-based relative navigation," *Radar, Sonar Navigation, IET*, vol. 4, no. 5, p. 744, 2010. [Online]. Available: http://link.aip.org/link/IRSNBX/v4/i5/p744/ s1\&Agg=doi
- [121] C.-j. Sun, H.-y. Kuo, and C. E. Lin, "A sensor based indoor mobile localization and navigation using Unscented Kalman Filter," in *Position Location and Navigation Symposium (PLANS)*, 2010 IEEE/ION, 2010, pp. 327–331.

- [122] L. Wu, J. Ma, and J. Tian, "A self-adaptive unscented Kalman filtering for underwater gravity aided navigation," in *Position Location and Navigation Symposium (PLANS), 2010 IEEE/ION*, no. 1. IEEE, 2010, pp. 142–145. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs\\_all.jsp?arnumber=5507294
- [123] X. Wang, N. Cui, and J. Guo, "Huber-based unscented filtering and its application to vision-based relative navigation," *Radar, Sonar Navigation, IET*, vol. 4, no. 1, p. 134, 2010. [Online]. Available: http://link.aip.org/link/IRSNBX/v4/i1/p134/s1\&Agg=doi
- [124] G. Yuan, Y. Xie, Y. Song, and H. Liang, "Multipath parameters estimation of weak GPS signal based on new colored noise unscented Kalman filter," in *Information and Automation (ICIA), 2010 IEEE International Conference* on, vol. 1, no. 1. IEEE, 2010, pp. 1852–1856. [Online]. Available: http: //ieeexplore.ieee.org/xpls/abs\\_all.jsp?arnumber=5512240
- [125] J. Klippenstein, H. Zhang, and X. Wang, "Feature initialization for bearing-only visual slam using triangulation and the unscented transform," *Mechatronics and Automation*, 2007. ICMA 2007. International Conference on, pp. 1599–1604, Aug. 2007.
- [126] H. Wang, S. Wei, and Y. Chen, "An improved rao-blackwellized particle filter for slam," *Intelligent Information Technology Application Workshops, 2008. IITAW '08. International Symposium on*, pp. 515–518, Dec. 2008.
- [127] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, "Fastslam: A factored solution to the simultaneous localization problem," in *Proc. of the National Conference on Artificial Intelligence (AAAI)*, Edmonton, Ed., Canada, 2002, p. 593Ű598.
- [128] R. Martinez-Cantin and J. Castellanos, "Unscented slam for large scale outdoor environments," *Intelligent Robots and Systems*, 2005. (IROS 2005). 2005 IEEE/RSJ International Conference on, pp. 3427–3432, Aug 2005.
- [129] T. Bailey, J. Nieto, and E. Nebot, "Consistency of the fastslam algorithm," *Robotics and Automation*, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on, pp. 424–429, May 2006.
- [130] C. Kim, R. Sakthivel, and W. Chung, "Unscented fastslam: A robust and efficient solution to the slam problem," *Robotics, IEEE Transactions on*, vol. 24, no. 4, pp. 808–820, Aug. 2008.
- [131] N. Sunderhauf, S. Lange, and P. Protzel, "Using the unscented kalman filter in monoslam with inverse depth parametrization for autonomous airship control," *Safety, Security and Rescue Robotics, 2007. SSRR 2007. IEEE International Workshop on*, pp. 1–6, Sept. 2007.

- [132] L. Zhang, X. Meng, and Y. Chen, "Unscented transform for slam using gaussian mixture model with particle filter," *Electronic Computer Technology*, 2009 International Conference on, pp. 12–17, Feb. 2009.
- [133] J. Zhu, N. Zheng, Z. Yuan, Q. Zhang, and X. Zhang, "Unscented slam with conditional iterations," in *Intelligent Vehicles Symposium*, 2009 IEEE, June 2009, pp. 134–139.
- [134] S. Li and P. Ni, "Square-root unscented Kalman filter based simultaneous localization and mapping," in *Information and Automation (ICIA), 2010 IEEE International Conference on.* IEEE, 2010, pp. 2384–2388. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs\\_all.jsp?arnumber=5512187
- [135] N. Araki, T. Sato, Y. Konishi, and H. Ishigaki, "Unknown parameter identification method using Unscented Kalman Filter for container crane system," in *Modelling, Identification and Control (ICMIC), The 2010 International Conference on*, vol. 2, no. x. IEEE, 2010, pp. 254–258. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs\\_all.jsp?arnumber=5553556
- [136] L. Chu, Y. Shi, and M. Liu, "Vehicle Lateral and Longitudinal Velocity Estimation Based on Unscented Kalman Filter," in *Education Technology and Computer, 2nd International Conference on*, 2010, pp. 2–7.
- [137] M. Melzi, A. Ouldali, and Z. Messaoudi, "Multiple target tracking and classification using the unscented probability hypothesis density filter," in *Systems, Signal Processing and their Applications (WOSSPA), 2011 7th International Workshop on*, may 2011, pp. 21 –24.
- [138] G. Valverde and V. Terzija, "Unscented kalman filter for power system dynamic state estimation," *Generation, Transmission Distribution, IET*, vol. 5, no. 1, pp. 29–37, jan. 2011.
- [139] H. Huang, M. Yang, W. Zang, S. Wu, and Y. Pang, "In vitro identification of fourelement windkessel models based on iterated unscented kalman filter," *Biomedical Engineering, IEEE Transactions on*, vol. PP, no. 99, p. 1, 2011.
- [140] H. Xiong, Z. Yuan, and Y. F. Zheng, "A learning-based video compression on low-quality data by unscented kalman filters with gaussian process regression," in *Circuits and Systems (ISCAS), 2011 IEEE International Symposium on*, may 2011, pp. 1227 –1230.
- [141] M. Ilyas, J. Lim, J. G. Lee, and C. G. Park, "Federated unscented kalman filter design for multiple satellites formation flying in leo," *Control, Automation and Systems*, 2008. ICCAS 2008. International Conference on, pp. 453–458, Oct. 2008.

- [142] P. Sekhavat, Q. Gong, and I. Ross, "Npsat1 parameter estimation using unscented kalman filtering," *American Control Conference*, 2007. ACC '07, pp. 4445–4451, July 2007.
- [143] K. Xiong, L. Liu, and H. Zhang, "Modified unscented kalman filtering and its application in autonomous satellite navigation," *Aerospace Science and Technology*, vol. 13, no. 4-5, pp. 238 – 246, 2009.
- [144] S. Movaghati, A. Moghaddamjoo, and A. Tavakoli, "Using unscented kalman filter for road tracing from satellite images," *Modeling Simulation*, 2008. AICMS 08. Second Asia International Conference on, pp. 379–384, May 2008.
- [145] W. Guo, C. Han, and M. Lei, "The square root unscented kalman filter formulation of risk-sensitive filter," *Information Fusion*, 2008 11th International Conference on, pp. 1–4, 30 2008-July 3 2008.
- [146] N. Bellotto and H. Hu, "Multisensor-based human detection and tracking for mobile service robots," *Systems, Man, and Cybernetics, Part B, IEEE Transactions on*, vol. 39, no. 1, pp. 167–181, Feb. 2009.
- [147] P. Viola and M. Jones, "Robust real-time face detection," *International Journal of Computer Vision*, vol. 57, pp. 137–154, 2004.
- [148] M. Montemerlo, S. Thrun, and W. Whittaker, "Conditional particle filters for simultaneous mobile robot localization and people-tracking," in *in IEEE International Conference on Robotics and Automation (ICRA*, 2002, pp. 695–701.
- [149] D. Schulz, W. Burgard, D. Fox, and A. B. Cremers, "People tracking with a mobile robot using sample-based joint probabilistic data association filters," *International Journal of Robotics Research*, vol. 22, p. 2003, 2003.
- [150] M. Meuter, U. Iurgel, S.-B. Park, and A. Kummert, "The unscented kalman filter for pedestrian tracking from a moving host," *Intelligent Vehicles Symposium*, 2008 IEEE, pp. 37–42, June 2008.
- [151] W. Lu-jia, W. Jin-kuan, W. Yun, and L. Xiao, "Location estimation of mobile user in wireless sensor network based on unscented kalman filter," *Microwave and Millimeter Wave Technology, 2008. ICMMT 2008. International Conference on*, vol. 1, pp. 96– 99, April 2008.
- [152] A. Causo, E. Ueda, Y. Kurita, Y. Matsumoto, and T. Ogasawara, "Model-based hand pose estimation using multiple viewpoint silhouette images and unscented kalman filter," *Robot and Human Interactive Communication*, 2008. RO-MAN 2008. The 17th IEEE International Symposium on, pp. 291–296, Aug. 2008.

- [153] L. B. Dorini and S. K. Goldenstein, "Unscented feature tracking," *Computer Vision and Image Understanding*, vol. 115, no. 1, pp. 8–15, Jan. 2011. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/S1077314210001669
- [154] L. I. Hongli, W. Jiang, C. H. E. Yanqiu, W. Haiyang, and C. Yingyuan, "On Neural Network Training Algorithm Based on the Unscented Kalman Filter," in *Control Conference (CCC)*, 2010 29th Chinese, 2010, pp. 1447–1450.
- [155] X. Wang, Y. Huang, and N. Nguyen, "Robustness quantification of recurrent neural network using unscented transform," *Neurocomputing*, vol. 74, no. 1-3, pp. 354–361, 2010. [Online]. Available: http://www.sciencedirect.com/science/article/B6V10-4YPPPYS-2/2/f27e9e785d9e16b098dd0eaab0f61e28
- [156] N. Y. Nikolaev, D. Mirikitani, and E. Smirnov, "Unscented grid filtering and elman recurrent networks," in *Neural Networks (IJCNN), The 2010 International Joint Conference on*, 2010.
- [157] L. R. A. X. deMenezes, A. J. M. Soares, F. C. Silva, M. A. B. Terada, and D. Correia, "A new procedure for assessing the sensitivity of antennas using the unscented transform," *Antennas and Propagation, IEEE Transactions on*, vol. 58, no. 3, pp. 988 –993, march 2010.
- [158] L. de Menezes, A. Ajayi, C. Christopoulos, P. Sewell, and G. Borges, "Efficient computation of stochastic electromagnetic problems using unscented transforms," *Science, Measurement Technology, IET*, vol. 2, no. 2, pp. 88–95, 2008.
- [159] —, "Efficient extraction of statistical moments in electromagnetic problems solved with the method of moments," in *Microwave and Optoelectronics Conference*, 2007. *IMOC 2007. SBMO/IEEE MTT-S International*, 2007, pp. 757–760.
- [160] A. Papoulis and S. U. Pillai, *Probability, Random Variables and Stochastic Processes*, 4th ed. New Delhi: Tata McGraw-Hill, 2002.
- [161] J. A. Gubner, Probability and Random Precesses for Electrical and Computer Engineers. Cambridge, UK: Cambridge University Press, 2006.
- [162] C.-T. Chen, *Chen\_Linear Systems Theory and Design*, 3rd ed. Oxford: Oxford University Press, 1999.

# APÊNDICES

# A. RESULTADOS DE ESTATÍSTICA

Neste capítulo, oferecemos resultados relativos à variáveis aleatórias e a conjunto de amostras que foram utilizados ao londo da dissertação.

## A.1 RESULTADOS DE VARIÁVEL ALEATÓRIA

## A.1.1 Momentos de uma transformada

Neste item estaremos interessados em obter alguns resultados relacionados aos momentos de uma transformação não-linear. A idéia principal será realizar a expansão em série de Taylor dos momentos considerados, pois esses resultados serão bastante utilizados ao longo deste trabalho.

Comecemos por obter os resultados da média e da matriz de covariância de uma transformação não-linear de uma variável aleatória vetorial.

**Lema A.1.1 (Média de uma transformada).** <sup>1</sup> Sejam a variável aleatória  $X \in \Re^n$  de média  $\overline{X}$  e o mapeamento  $f : \Re^n \mapsto \Re^m$  diferenciável que define a variável aleatória Y tal que

$$Y \triangleq f(X),$$

a média de Y pode ser escrita da seguinte forma

$$\bar{Y} = f\left(\bar{X}\right) + E\left\{\frac{\Psi_{X,\bar{X}}^2 f}{2!}\right\} + \dots + E\left\{\frac{\Psi_{X,\bar{X}}^k f}{k!}\right\} + E\left\{R_k f\right\}.$$

PROVA Pela definição, a média de Y escreve-se

$$\bar{Y} \triangleq E\left\{f\left(X\right)\right\}.$$

Utilizando a expansão de Taylor de  $f \{X\}$  em torno de  $\overline{X}$ , teremos

$$E \{f(X)\} = E \left\{ f(\bar{X}) + \Psi_{X,\bar{X}}f + \frac{\Psi_{X,\bar{X}}^{2}f}{2!} + \dots + \frac{\Psi_{X,\bar{X}}^{k}f}{k!} + R_{k}f \right\}$$
$$= E \left\{ f(\bar{X}) \right\} + E \left\{ \Psi_{X,\bar{X}}f \right\} + E \left\{ \frac{\Psi_{X,\bar{X}}^{2}f}{2!} \right\} + \dots + E \left\{ \frac{\Psi_{X,\bar{X}}^{k}f}{k!} \right\} + E \left\{ R_{k}f \right\}$$

<sup>&</sup>lt;sup>1</sup>[13], página 418, equação (28);[98], página 436, equação (14.12).

$$= f\left(\bar{X}\right) + E\left\{\Psi_{X,\bar{X}}f\right\} + E\left\{\frac{\Psi_{X,\bar{X}}^{2}f}{2!}\right\} + \dots + E\left\{\frac{\Psi_{X,\bar{X}}^{k}f}{k!}\right\} + E\left\{R_{k}f\right\}.$$

Do Lema A.1.4:

$$\bar{Y} = f\left(\bar{X}\right) + E\left\{\frac{\Psi_{X,\bar{X}}^2 f}{2!}\right\} + \dots + E\left\{\frac{\Psi_{X,\bar{X}}^k f}{k!}\right\} + E\left\{R_k f\right\}.$$

**Lema A.1.2 (Matriz de covariância de uma transformada).** <sup>2</sup> Sejam a variável aleatória  $X \in \Re^n$  de média  $\overline{X}$  e o mapeamento  $f : \Re^n \mapsto \Re^m$  diferenciável que define a variável aleatória Y tal que

$$Y \triangleq f(X),$$

a matriz de covariância de Y pode ser escrita da seguinte forma

$$P_{YY} = \Theta_{P_{YY}}^2 + \Theta_{P_{YY}}^3 + \Theta_{P_{YY}}^4 + \dots + \Theta_{P_{YY}}^k + \dots$$
(A.1)

em que  $\Theta_{P_{YY}}^{j}$  é o termo de ordem j da série de Taylor de  $P_{YY}^{(j)3}$ :

$$\Theta_{P_{YY}}^{2} \triangleq E\left\{\left(\Psi_{X,\bar{X}}f\right)\left(\Psi_{X,\bar{X}}f\right)^{T}\right\}.$$
(A.2)

$$\Theta_{P_{YY}}^{3} \triangleq E\left\{ \left(\Psi_{X,\bar{X}}f\right) \left(\frac{\Psi_{X,\bar{X}}^{2}f}{2!}\right)^{T} \right\} + E\left\{ \left(\frac{\Psi_{X,\bar{X}}^{2}f}{2!}\right) \left(\Psi_{X,\bar{X}}f\right)^{T} \right\}$$
(A.3)

$$\Theta_{P_{YY}}^{4} \triangleq \begin{cases} \left(\frac{\Psi_{X,\bar{X}}^{2}f}{2!}\right) \left(\frac{\Psi_{X,\bar{X}}^{2}f}{2!}\right)^{T} \right\} - E\left\{\frac{\Psi_{X,\bar{X}}^{2}f}{2!}\right\} E\left\{\frac{\Psi_{X,\bar{X}}^{2}f}{2!}\right\}^{T} \\ + E\left\{\left(\Psi_{X,\bar{X}}f\right) \left(\frac{\Psi_{X,\bar{X}}^{3}f}{3!}\right)^{T}\right\} + E\left\{\left(\frac{\Psi_{X,\bar{X}}^{3}f}{3!}\right) \left(\Psi_{X,\bar{X}}f\right)^{T}\right\} \\ + E\left\{\left(\Psi_{X,\bar{X}}f\right) \left(\frac{\Psi_{X,\bar{X}}^{4}f}{4!}\right)^{T}\right\} + E\left\{\left(\frac{\Psi_{X,\bar{X}}^{4}f}{4!}\right) \left(\Psi_{X,\bar{X}}f\right)^{T}\right\} \\ \Theta_{P_{YY}}^{5} \triangleq + E\left\{\left(\frac{\Psi_{X,\bar{X}}^{2}f}{2!}\right) \left(\frac{\Psi_{X,\bar{X}}^{3}f}{3!}\right)^{T}\right\} + E\left\{\left(\frac{\Psi_{X,\bar{X}}^{3}f}{3!}\right) \left(\frac{\Psi_{X,\bar{X}}^{2}f}{2!}\right)^{T}\right\} \\ - E\left\{\left(\frac{\Psi_{X,\bar{X}}^{2}f}{2!}\right)\right\} E\left\{\frac{\Psi_{X,\bar{X}}^{3}f}{3!}\right\} - E\left\{\frac{\Psi_{X,\bar{X}}^{3}f}{3!}\right\} E\left\{\left(\frac{\Psi_{X,\bar{X}}^{2}f}{2!}\right)\right\}^{T} \\ \vdots \end{cases}$$

$$(A.4)$$

<sup>&</sup>lt;sup>2</sup>Modidicada de [13], página 418, equação (30);modificada de [98], página 438, equação (14.20).

<sup>&</sup>lt;sup>3</sup>Por ordem j da Série de Taylor entendemos por todos os termos cuja maior derivada da função envolvida for de ordem j.

$$\begin{split} \Theta_{P_{YY}}^{k} &= E\left\{\left(\Psi_{X,\bar{X}}f\right)\left(\frac{\Psi_{X,\bar{X}}^{k-1}f}{(k-1)!}\right)^{T}\right\} + E\left\{\left(\frac{\Psi_{X,\bar{X}}^{k-1}f}{(k-1)!}\right)\left(\Psi_{X,\bar{X}}f\right)^{T}\right\} \\ &+ E\left\{\left(\frac{\Psi_{X,\bar{X}}^{2}f}{2!}\right)\left(\frac{\Psi_{X,\bar{X}}^{k-2}f}{(k-2)!}\right)^{T}\right\} + E\left\{\left(\frac{\Psi_{X,\bar{X}}^{k-2}f}{(k-2)!}\right)\left(\frac{\Psi_{X,\bar{X}}^{2}f}{(k-2)!}\right)^{T}\right\} \\ &- E\left\{\frac{\Psi_{X,\bar{X}}^{2}f}{2!}\right\}E\left\{\frac{\Psi_{X,\bar{X}}^{k-2}f}{(k-2)!}\right\} - E\left\{\frac{\Psi_{X,\bar{X}}^{k-2}f}{(k-2)!}\right\}E\left\{\frac{\Psi_{X,\bar{X}}^{2}f}{2!}\right\}^{T} \\ &+ E\left\{\left(\frac{\Psi_{X,\bar{X}}^{3}f}{3!}\right)\left(\frac{\Psi_{X,\bar{X}}^{k-3}f}{(k-3)!}\right)^{T}\right\} + E\left\{\left(\frac{\Psi_{X,\bar{X}}^{k-3}f}{(k-3)!}\right)\left(\frac{\Psi_{X,\bar{X}}^{3}f}{3!}\right)^{T}\right\} \\ &- E\left\{\frac{\Psi_{X,\bar{X}}^{3}f}{3!}\right\}E\left\{\frac{\Psi_{X,\bar{X}}^{k-3}f}{(k-3)!}\right\} - E\left\{\frac{\Psi_{X,\bar{X}}^{k-3}f}{(k-3)!}\right\}E\left\{\frac{\Psi_{X,\bar{X}}^{3}f}{3!}\right\}^{T} \\ &+ \cdots + \\ + E\left\{\left(\left(\frac{\Psi_{X,\bar{X}}^{k-1}f}{(\frac{k-1)}{(k-1)}!}\right)\left(\frac{\Psi_{X,\bar{X}}^{k-2}f}{(\frac{k+1)}{(k-1)}!}\right)^{T}\right\} + E\left\{\left(\frac{\Psi_{X,\bar{X}}^{k-2}f}{(\frac{k+1)}{(k-1)}!}\right)\left(\frac{\Psi_{X,\bar{X}}^{k-2}f}{(\frac{k-1)}{(k-1)}!}\right)^{T}\right\} \\ &- E\left\{\frac{\Psi_{X,\bar{X}}^{(k-1)}f}{(\frac{k-1)}{(k-1)}!}\right\}E\left\{\frac{\Psi_{X,\bar{X}}^{(k-1)}f}{(\frac{k+1)}{(k-1)}!}\right\} - E\left\{\frac{\Psi_{X,\bar{X}}^{(k-1)}f}{(\frac{k+1)}{(k-1)}!}\right\}E\left\{\frac{\Psi_{X,\bar{X}}^{(k-1)}f}{(\frac{k-1)}{(k-1)}!}\right\}^{T}. \end{split}$$

Para k par:

$$\begin{split} &= E\left\{ \left( \frac{\Psi_{X,\bar{X}}^{\frac{k}{2}} f}{(\frac{k}{2})!} \right) \left( \frac{\Psi_{X,\bar{X}}^{\frac{k}{2}} f}{(\frac{k}{2})!} \right)^{T} \right\} - E\left\{ \frac{\Psi_{X,\bar{X}}^{\frac{k}{2}} f}{(\frac{k}{2})!} \right\} E\left\{ \frac{\Psi_{X,\bar{X}}^{\frac{k}{2}} f}{(\frac{k}{2})!} \right\}^{T} \\ &+ E\left\{ \left( \Psi_{X,\bar{X}} f \right) \left( \frac{\Psi_{X,\bar{X}}^{k-1} f}{(k-1)!} \right)^{T} \right\} + E\left\{ \left( \frac{\Psi_{k-1}^{k-1} f}{(k-1)!} \right) \left( \Psi_{X,\bar{X}} f \right)^{T} \right\} \\ &+ E\left\{ \left( \frac{\Psi_{X,\bar{X}}^{2} f}{2!} \right) \left( \frac{\Psi_{k-2}^{k-2} f}{(k-2)!} \right)^{T} \right\} + E\left\{ \left( \frac{\Psi_{k-2}^{k-2} f}{(k-2)!} \right) \left( \frac{\Psi_{X,\bar{X}}^{2} f}{(k-2)!} \right)^{T} \right\} \\ &- E\left\{ \frac{\Psi_{X,\bar{X}}^{3} f}{2!} \right\} E\left\{ \frac{\Psi_{X,\bar{X}}^{k-3} f}{(k-3)!} \right\} - E\left\{ \frac{\Psi_{X,\bar{X}}^{k-3} f}{(k-3)!} \right) \left( \frac{\Psi_{X,\bar{X}}^{k-3} f}{3!} \right)^{T} \right\} \\ &- E\left\{ \frac{\Psi_{X,\bar{X}}^{3} f}{3!} \right) \left( \frac{\Psi_{X,\bar{X}}^{k-3} f}{(k-3)!} \right)^{T} \right\} + E\left\{ \left( \frac{\Psi_{X,\bar{X}}^{k-3} f}{(k-3)!} \right) E\left\{ \frac{\Psi_{X,\bar{X}}^{k-3} f}{3!} \right)^{T} \right\} \\ &- E\left\{ \frac{\Psi_{X,\bar{X}}^{k-2} f}{(\frac{\Psi_{X,\bar{X}}^{k-2} f}{(k-3)!}} \right) - E\left\{ \frac{\Psi_{X,\bar{X}}^{k-3} f}{(k-3)!} \right\} E\left\{ \frac{\Psi_{X,\bar{X}}^{k-3} f}{3!} \right\}^{T} \\ &+ \cdots + \\ &+ E\left\{ \left( \frac{\Psi_{X,\bar{X}}^{k-2} f}{(\frac{\Psi_{X,\bar{X}}^{k-2} f}{(\frac{\Psi_{X,\bar{X}}^{k-$$

PROVA Da definição 2.2.3 :

$$P_{YY} = E\left\{ \left(Y - \bar{Y}\right) \left(Y - \bar{Y}\right)^T \right\} \\ = E\left\{ \left(f\left(X\right) - \bar{Y}\right) \left(\bullet\right)^T \right\} \square$$

PROVA Aplicando a expansão de Taylor de  $f\left(X\right)$  em torno de  $\bar{X}$  e utilizando o lema A.1.1, teremos

$$E\left\{\left(f\left(X\right)-\bar{Y}\right)\left(\bullet\right)^{T}\right\}$$

$$= E \left\{ \begin{array}{c} \left( f\left(\bar{X}\right) + \Psi_{X,\bar{X}}f + \frac{\Psi_{X,\bar{X}}^{2}f}{2!} + \frac{\Psi_{X,\bar{X}}^{3}f}{3!} \\ + \frac{\Psi_{X,\bar{X}}^{4}f}{4!} \cdots + \frac{\Psi_{X,\bar{X}}^{k}f}{k!} \\ -f\left(\bar{X}\right) - E \left\{ \frac{\Psi_{X,\bar{X}}^{2}f}{2!} \right\} - E \left\{ \frac{\Psi_{X,\bar{X}}^{3}f}{3!} \right\} \\ -E \left\{ \frac{\Psi_{X,\bar{X}}^{4}f}{4!} \right\} - \cdots - E \left\{ \frac{\Psi_{X,\bar{X}}^{k}f}{k!} \right\} \end{array} \right)_{T} \left\{ \begin{array}{c} f\left(\bar{X}\right) + \Psi_{X,\bar{X}}f + \frac{\Psi_{X,\bar{X}}^{2}f}{2!} + \frac{\Psi_{X,\bar{X}}^{3}f}{3!} \\ + \frac{\Psi_{X,\bar{X}}^{4}f}{4!} \cdots + \frac{\Psi_{X,\bar{X}}^{k}f}{k!} \\ -f\left(\bar{X}\right) - E \left\{ \frac{\Psi_{X,\bar{X}}^{2}f}{2!} \right\} - E \left\{ \frac{\Psi_{X,\bar{X}}^{3}f}{3!} \\ -E \left\{ \frac{\Psi_{X,\bar{X}}^{4}f}{4!} \right\} - \cdots - E \left\{ \frac{\Psi_{X,\bar{X}}^{k}f}{k!} \right\} \end{array} \right) \right\} \right\}$$

$$= E \left\{ \begin{array}{l} \left( \begin{array}{c} \Psi_{X,\bar{X}}f + \frac{\Psi_{X,\bar{X}}^{2}f}{2!} + \frac{\Psi_{X,\bar{X}}^{3}f}{3!} \\ + \frac{\Psi_{X,\bar{X}}^{4}f}{2!} \cdots + \frac{\Psi_{X,\bar{X}}^{k}f}{k!} \\ -E \left\{ \frac{\Psi_{X,\bar{X}}^{2}f}{2!} \right\} - E \left\{ \frac{\Psi_{X,\bar{X}}^{3}f}{3!} \right\} \\ -E \left\{ \frac{\Psi_{X,\bar{X}}^{4}f}{4!} \right\} - \cdots - E \left\{ \frac{\Psi_{X,\bar{X}}^{k}f}{k!} \right\} \end{array} \right)_{T} \\ \left( \begin{array}{c} \Psi_{X,\bar{X}}f + \frac{\Psi_{X,\bar{X}}^{2}f}{2!} + \frac{\Psi_{X,\bar{X}}^{3}f}{3!} \\ + \frac{\Psi_{X,\bar{X}}^{4}f}{4!} \cdots + \frac{\Psi_{X,\bar{X}}^{k}f}{k!} \\ -E \left\{ \frac{\Psi_{X,\bar{X}}^{2}f}{2!} \right\} - E \left\{ \frac{\Psi_{X,\bar{X}}^{3}f}{3!} \\ -E \left\{ \frac{\Psi_{X,\bar{X}}^{2}f}{2!} \right\} - E \left\{ \frac{\Psi_{X,\bar{X}}^{3}f}{3!} \\ -E \left\{ \frac{\Psi_{X,\bar{X}}^{4}f}{2!} \right\} - \cdots - E \left\{ \frac{\Psi_{X,\bar{X}}^{k}f}{3!} \\ \end{array} \right)_{T} \right\} \\ = E \left\{ \left( \Psi_{X,\bar{X}}f \right) \left( \Psi_{X,\bar{X}}f \right)^{T} \right\}$$

$$+ E\left\{ \left(\Psi_{X,\bar{X}}f\right) \left(\frac{\Psi_{X,\bar{X}}^{2}f}{2!}\right)^{T} \right\} + E\left\{ \left(\frac{\Psi_{X,\bar{X}}^{2}f}{2!}\right) \left(\Psi_{X,\bar{X}}f\right)^{T} \right\} \\ - E\left\{ \left(\Psi_{X,\bar{X}}f\right) \right\} E\left\{\frac{\Psi_{X,\bar{X}}^{2}f}{2!}\right\} - E\left\{\frac{\Psi_{X,\bar{X}}^{2}f}{2!}\right\} E\left\{\Psi_{X,\bar{X}}f\right\}^{T} \\ + E\left\{ \left(\Psi_{X,\bar{X}}f\right) \left(\frac{\Psi_{X,\bar{X}}^{3}f}{3!}\right)^{T} \right\} + E\left\{ \left(\frac{\Psi_{X,\bar{X}}^{3}f}{3!}\right) \left(\Psi_{X,\bar{X}}f\right)^{T} \right\} \\ - E\left\{ \left(\Psi_{X,\bar{X}}f\right) \right\} E\left\{\frac{\Psi_{X,\bar{X}}^{3}f}{3!}\right\} - E\left\{\frac{\Psi_{X,\bar{X}}^{3}f}{3!}\right\} E\left\{\Psi_{X,\bar{X}}f\right\}^{T} \\ + E\left\{ \left(\frac{\Psi_{X,\bar{X}}^{2}f}{2!}\right) \left(\frac{\Psi_{X,\bar{X}}^{2}f}{2!}\right)^{T} \right\} + E\left\{\frac{\Psi_{X,\bar{X}}^{2}f}{2!}\right\} E\left\{\frac{\Psi_{X,\bar{X}}^{2}f}{2!}\right\}^{T} \\ - E\left\{\frac{\Psi_{X,\bar{X}}^{2}f}{2!}\right\} E\left\{\frac{\Psi_{X,\bar{X}}^{2}f}{2!}\right\}^{T} - E\left\{\frac{\Psi_{X,\bar{X}}^{2}f}{2!}\right\} E\left\{\frac{\Psi_{X,\bar{X}}^{2}f}{2!}\right\}^{T} \\ - E\left\{\frac{\Psi_{X,\bar{X}}^{2}f}{2!}\right\} E\left\{\frac{\Psi_{X,\bar{X}}^{2}f}{2!}\right\} E\left\{\frac{\Psi_{X,\bar{X}}^{2}f}{2!}\right\} \\ - E\left\{\frac{\Psi_{X,\bar{X}}^{2}f}{2!}\right\} E\left\{\frac{\Psi_{X,\bar{X}}^{2}f}{2!}\right\} \\ - E\left\{\frac{\Psi_{X,\bar{X}}^{2}f}{2!}\right\}$$

$$+E\left\{\left(\Psi_{X,\bar{X}}f\right)\left(\frac{\Psi_{X,\bar{X}}^{4}f}{4!}\right)^{T}\right\}+E\left\{\left(\frac{\Psi_{X,\bar{X}}^{4}f}{4!}\right)\left(\Psi_{X,\bar{X}}f\right)^{T}\right\}$$
$$-E\left\{\left(\Psi_{X,\bar{X}}f\right)\right\}E\left\{\frac{\Psi_{X,\bar{X}}^{4}f}{4!}\right\}-E\left\{\frac{\Psi_{X,\bar{X}}^{4}f}{4!}\right\}E\left\{\Psi_{X,\bar{X}}f\right\}^{T}$$
$$+E\left\{\left(\frac{\Psi_{X,\bar{X}}^{2}f}{2!}\right)\left(\frac{\Psi_{X,\bar{X}}^{3}f}{3!}\right)^{T}\right\}+E\left\{\left(\frac{\Psi_{X,\bar{X}}^{3}f}{3!}\right)\left(\frac{\Psi_{X,\bar{X}}^{2}f}{2!}\right)^{T}\right\}$$
$$-E\left\{\left(\frac{\Psi_{X,\bar{X}}^{2}f}{2!}\right)\right\}E\left\{\frac{\Psi_{X,\bar{X}}^{3}f}{3!}\right\}-E\left\{\frac{\Psi_{X,\bar{X}}^{3}f}{3!}\right\}E\left\{\left(\frac{\Psi_{X,\bar{X}}^{2}f}{2!}\right)\right\}^{T}$$

 $+\cdots\Theta^k_{P_{YY}}+\cdots.$ 

$$= E\left\{ \left( \Psi_{X,\bar{X}}f \right) \left( \Psi_{X,\bar{X}}f \right)^T \right\}$$

$$+E\left\{\left(\Psi_{X,\bar{X}}f\right)\left(\frac{\Psi_{X,\bar{X}}^{2}f}{2!}\right)^{T}\right\}+E\left\{\left(\frac{\Psi_{X,\bar{X}}^{2}f}{2!}\right)\left(\Psi_{X,\bar{X}}f\right)^{T}\right\}$$

$$+E\left\{\left(\frac{\Psi_{X,\bar{X}}^{2}f}{2!}\right)\left(\frac{\Psi_{X,\bar{X}}^{2}f}{2!}\right)^{T}\right\}-E\left\{\frac{\Psi_{X,\bar{X}}^{2}f}{2!}\right\}E\left\{\frac{\Psi_{X,\bar{X}}^{2}f}{2!}\right\}^{T}\\+E\left\{\left(\Psi_{X,\bar{X}}f\right)\left(\frac{\Psi_{X,\bar{X}}^{3}f}{3!}\right)^{T}\right\}+E\left\{\left(\frac{\Psi_{X,\bar{X}}^{3}f}{3!}\right)\left(\Psi_{X,\bar{X}}f\right)^{T}\right\}$$

$$+E\left\{\left(\Psi_{X,\bar{X}}f\right)\left(\frac{\Psi_{X,\bar{X}}^{4}f}{4!}\right)^{T}\right\}+E\left\{\left(\frac{\Psi_{X,\bar{X}}^{4}f}{4!}\right)\left(\Psi_{X,\bar{X}}f\right)^{T}\right\}$$
$$+E\left\{\left(\frac{\Psi_{X,\bar{X}}^{2}f}{2!}\right)\left(\frac{\Psi_{X,\bar{X}}^{3}f}{3!}\right)^{T}\right\}+E\left\{\left(\frac{\Psi_{X,\bar{X}}^{3}f}{3!}\right)\left(\frac{\Psi_{X,\bar{X}}^{2}f}{2!}\right)^{T}\right\}$$
$$-E\left\{\left(\frac{\Psi_{X,\bar{X}}^{2}f}{2!}\right)\right\}E\left\{\frac{\Psi_{X,\bar{X}}^{3}f}{3!}\right\}-E\left\{\frac{\Psi_{X,\bar{X}}^{3}f}{3!}\right\}E\left\{\left(\frac{\Psi_{X,\bar{X}}^{2}f}{2!}\right)\right\}^{T}$$

$$+\cdots\Theta^k_{P_{YY}}+\cdots$$

Para k ímpar:

$$\Theta^k_{P_{YY}}$$

$$\begin{split} &= E\left\{ \left(\Psi_{X,\bar{X}}f\right) \left(\frac{\Psi_{X,\bar{X}}^{k-1}f}{(k-1)!}\right)^{T} \right\} + E\left\{ \left(\frac{\Psi_{X,\bar{X}}^{k-1}f}{(k-1)!}\right) \left(\Psi_{X,\bar{X}}f\right)^{T} \right\} \\ &+ E\left\{ \left(\frac{\Psi_{X,\bar{X}}^{2}f}{2!}\right) \left(\frac{\Psi_{X,\bar{X}}^{k-2}f}{(k-2)!}\right)^{T} \right\} + E\left\{ \left(\frac{\Psi_{X,\bar{X}}^{k-2}f}{(k-2)!}\right) \left(\frac{\Psi_{X,\bar{X}}^{2}f}{(k-2)!}\right)^{T} \right\} \\ &- E\left\{\frac{\Psi_{X,\bar{X}}^{2}f}{2!}\right\} E\left\{\frac{\Psi_{X,\bar{X}}^{k-2}f}{(k-2)!}\right\} - E\left\{\frac{\Psi_{X,\bar{X}}^{k-2}f}{(k-2)!}\right\} E\left\{\frac{\Psi_{X,\bar{X}}^{2}f}{2!}\right\}^{T} \\ &+ E\left\{ \left(\frac{\Psi_{X,\bar{X}}^{3}f}{3!}\right) \left(\frac{\Psi_{X,\bar{X}}^{k-3}f}{(k-3)!}\right)^{T} \right\} + E\left\{ \left(\frac{\Psi_{X,\bar{X}}^{k-3}f}{(k-3)!}\right) \left(\frac{\Psi_{X,\bar{X}}^{3}f}{3!}\right)^{T} \right\} \\ &- E\left\{\frac{\Psi_{X,\bar{X}}^{3}f}{3!}\right\} E\left\{\frac{\Psi_{X,\bar{X}}^{k-3}f}{(k-3)!}\right\} - E\left\{\frac{\Psi_{X,\bar{X}}^{k-3}f}{(k-3)!}\right\} E\left\{\frac{\Psi_{X,\bar{X}}^{3}f}{3!}\right\}^{T} \\ &+ \cdots + \\ &+ E\left\{ \left(\frac{\Psi_{X,\bar{X}}^{k-2}f}{(\frac{(k+1)}{(k-1)})!}\right) \left(\frac{\Psi_{X,\bar{X}}^{k-2}f}{(\frac{(k+1)}{(k-1)})!}\right)^{T} \right\} \\ &+ E\left\{ \left(\frac{\Psi_{X,\bar{X}}^{k-2}f}{(\frac{(k+1)}{(k-1)})!}\right) \left(\frac{\Psi_{X,\bar{X}}^{k-2}f}{(\frac{(k+1)}{2})!}\right)^{T} \right\} \\ &- E\left\{\frac{\Psi_{X,\bar{X}}^{k-1}f}{(\frac{(k+1)}{2})!}\right\} E\left\{\frac{\Psi_{X,\bar{X}}^{(k-1)}f}{(\frac{(k+1)}{2})!}\right\} \\ &- E\left\{\frac{\Psi_{X,\bar{X}}^{k-1}f}{(\frac{(k+1)}{2})!}\right\} E\left\{\frac{\Psi_{X,\bar{X}}^{(k-1)}f}{(\frac{(k-1)}{2})!}\right\} \\ \end{array} \right\}$$

Para k par:

$$\begin{split} &= E\left\{ \left( \frac{\Psi_{X,\bar{X}}^{k}f}{(\frac{k}{2})!} \right) \left( \frac{\Psi_{X,\bar{X}}^{k}f}{(\frac{k}{2})!} \right)^{T} \right\} - E\left\{ \frac{\Psi_{X,\bar{X}}^{k}f}{(\frac{k}{2})!} \right\} E\left\{ \frac{\Psi_{X,\bar{X}}^{k}f}{(\frac{k}{2})!} \right\}^{T} \\ &+ E\left\{ \left( \Psi_{X,\bar{X}}f \right) \left( \frac{\Psi_{X,\bar{X}}^{k-1}f}{(k-1)!} \right)^{T} \right\} + E\left\{ \left( \frac{\Psi_{X,\bar{X}}^{k-1}f}{(k-1)!} \right) \left( \Psi_{X,\bar{X}}f \right)^{T} \right\} \\ &+ E\left\{ \left( \frac{\Psi_{X,\bar{X}}^{k}f}{2!} \right) \left( \frac{\Psi_{X,\bar{X}}^{k-2}f}{(k-2)!} \right)^{T} \right\} + E\left\{ \left( \frac{\Psi_{X,\bar{X}}^{k-2}f}{(k-2)!} \right) \left( \frac{\Psi_{X,\bar{X}}^{k-2}f}{(k-2)!} \right)^{T} \right\} \\ &- E\left\{ \frac{\Psi_{X,\bar{X}}^{k}f}{2!} \right\} E\left\{ \frac{\Psi_{X,\bar{X}}^{k-2}f}{(k-2)!} \right\} - E\left\{ \frac{\Psi_{X,\bar{X}}^{k-2}f}{(k-2)!} \right\} E\left\{ \frac{\Psi_{X,\bar{X}}^{k-2}f}{2!} \right\}^{T} \\ &+ E\left\{ \left( \frac{\Psi_{X,\bar{X}}^{k}f}{3!} \right) \left( \frac{\Psi_{X,\bar{X}}^{k-3}f}{(k-3)!} \right)^{T} \right\} + E\left\{ \left( \frac{\Psi_{X,\bar{X}}^{k-2}f}{(k-2)!} \right) \left( \frac{\Psi_{X,\bar{X}}^{k-2}f}{3!} \right)^{T} \right\} \\ &- E\left\{ \frac{\Psi_{X,\bar{X}}^{k-2}f}{3!} \right\} E\left\{ \frac{\Psi_{X,\bar{X}}^{k-2}f}{(k-3)!} \right\} - E\left\{ \frac{\Psi_{X,\bar{X}}^{k-2}f}{(k-3)!} \right\} E\left\{ \frac{\Psi_{X,\bar{X}}^{3}f}{3!} \right\}^{T} \\ &- E\left\{ \frac{\Psi_{X,\bar{X}}^{k-2}f}{(k-3)!} \right\} - E\left\{ \frac{\Psi_{X,\bar{X}}^{k-2}f}{(k-3)!} \right\} E\left\{ \frac{\Psi_{X,\bar{X}}^{k-2}f}{(k-3)!} \right\} \\ &+ \cdots + \\ &+ E\left\{ \left( \frac{\Psi_{X,\bar{X}}^{k-2}f}{((\frac{\Psi_{X,\bar{X}}^{k-2}f}{(k-2)!})!} \right) \left( \frac{\Psi_{X,\bar{X}}^{k-2}f}{(\frac{(\Psi_{X,\bar{X}}^{k-2}f}{(k-2)!})!} \right)^{T} \right\} \\ &- E\left\{ \frac{\Psi_{X,\bar{X}}^{k-2}f}{(\frac{(\Psi_{X,\bar{X}}^{k-2}f}{(\frac{(\Psi_{X,\bar{X}}^{k-2}f}{(\frac{(\Psi_{X,\bar{X}}^{k-2}f}{(\frac{(\Psi_{X,\bar{X}}^{k-2}f}{(\frac{(\Psi_{X,\bar{X}}^{k-2}f}{(\frac{(\Psi_{X,\bar{X}}^{k-2}f}{(\frac{(\Psi_{X,\bar{X}}^{k-2}f}{(\frac{(\Psi_{X,\bar{X}}^{k-2}f}{(\frac{(\Psi_{X,\bar{X}}^{k-2}f}{(\frac{(\Psi_{X,\bar{X}}^{k-2}f}{(\frac{(\Psi_{X,\bar{X}}^{k-2}f}{(\frac{(\Psi_{X,\bar{X}}^{k-2}f}{(\frac{(\Psi_{X,\bar{X}}^{k-2}f}{(\frac{(\Psi_{X,\bar{X}}^{k-2}f}{(\frac{(\Psi_{X,\bar{X}}^{k-2}f}{(\frac{(\Psi_{X,\bar{X}}^{k-2}f}{(\frac{(\Psi_{X,\bar{X}}^{k-2}f}{(\frac{(\Psi_{X,\bar{X}}^{k-2}f}{(\frac{(\Psi_{X,\bar{X}}^{k-2}f}{(\frac{(\Psi_{X,\bar{X}}^{k-2}f}{(\frac{(\Psi_{X,\bar{X}}^{k-2}f}{(\frac{(\Psi_{X,\bar{X}}^{k-2}f}{(\frac{(\Psi_{X,\bar{X}}^{k-2}f}{(\frac{(\Psi_{X,\bar{X}}^{k-2}f}{(\frac{(\Psi_{X,\bar{X}}^{k-2}f}{(\frac{(\Psi_{X,\bar{X}}^{k-2}f}{(\frac{(\Psi_{X,\bar{X}}^{k-2}f}{(\frac{(\Psi_{X,\bar{X}}^{k-2}f}{(\frac{(\Psi_{X,\bar{X}}^{k-2}f}{(\frac{(\Psi_{X,\bar{X}}^{k-2}f}{(\frac{(\Psi_{X,\bar{X}}^{k-2}f}{(\frac{(\Psi_{X,\bar{X}}^{k-2}f}{(\frac{(\Psi_{X,\bar{X}}^{k-2}f}{(\frac{(\Psi_{X,\bar{X}}^{k-2}f}{(\frac{(\Psi_{X,\bar{X}}^{k-2}f}{(\frac{(\Psi_{X,\bar{X}}^{k-2}f}{(\frac{(\Psi$$

**Lema A.1.3 (Esperança do operador**  $\Psi^{\alpha}_{X,\bar{X}}f$ ). Sejam a variável aleatória  $X \in \Re^n$  de média  $\bar{X}$ , o mapeamento  $f : \Re^n \mapsto \Re^m$  diferenciável até ordem  $\alpha e$  o operador  $\Psi^{\alpha}_{X,\bar{X}}f$  definido em 2.1.5, a seguinte equação é verdadeira:

$$E\left\{\Psi_{X,\bar{X}}^{\alpha}f\right\} = \sum_{i_1,\dots,i_{\alpha}=1}^n M_{x^{(i_1)},\dots,x^{(i_{\alpha})}}^{\alpha} \left.\frac{\partial^{\alpha}f\left(x\right)}{\partial x^{(i_1)}\cdots\partial x^{(i_{\alpha})}}\right|_{x=\bar{X}}.$$

PROVA Da definição 2.1.5:

$$E\left\{\Psi_{X,\bar{X}}^{\alpha}f\right\}$$

$$\triangleq E\left\{\sum_{i_1,\dots,i_{\alpha}=1}^n \left(x^{(i_1)} - \bar{X}^{(i_1)}\right) \cdots \left(x^{(i_{\alpha})} - \bar{X}^{(i_{\alpha})}\right) \frac{\partial^{\alpha}f(x)}{\partial x^{(i_1)} \cdots \partial x^{(i_{\alpha})}}\right|_{x=\bar{X}}\right\}$$

$$= \sum_{i_1,\dots,i_{\alpha}=1}^n E\left\{\left(x^{(i_1)} - \bar{X}^{(i_1)}\right) \cdots \left(x^{(i_{\alpha})} - \bar{X}^{(i_{\alpha})}\right)\right\} \frac{\partial^{\alpha}f(x)}{\partial x^{(i_1)} \cdots \partial x^{(i_{\alpha})}}\right|_{x=\bar{X}}$$

$$=\sum_{i_1,\dots,i_{\alpha}=1}^n M^{\alpha}_{x^{(i_1)},\dots,x^{(i_{\alpha})}} \left. \frac{\partial f(x)}{\partial x^{(i_1)}\cdots \partial x^{(i_{\alpha})}} \right|_{x=\bar{X}}.$$

**Lema A.1.4.** Sejam a variável aleatória  $X \in \mathbb{R}^n$  de média  $\overline{X}$  e o mapeamento  $f : \mathbb{R}^n \mapsto \mathbb{R}^m$  diferenciável, a seguinte igualdade é verdadeira:

$$E\left\{\Psi_{X,\bar{X}}f\right\} = 0.$$

Prova

$$E\left\{\Psi_{X,\bar{X}}f\right\}$$

$$= E\left\{\sum_{i=1}^{n} \left(x^{(i)} - \bar{x}^{(i)}\right) \frac{\partial f(x)}{\partial x^{(i)}}\Big|_{x=\bar{X}}\right\}$$

$$= \sum_{i=1}^{n} E\left\{\left(x^{(i)} - \bar{x}^{(i)}\right)\right\} \frac{\partial f(x)}{\partial x^{(i)}}\Big|_{x=\bar{X}}$$

$$= \sum_{i=1}^{n} \left(E\left\{x^{(i)}\right\} - \bar{x}^{(i)}\right) \frac{\partial f(x)}{\partial x^{(i)}}\Big|_{x=\bar{X}}$$

$$= \sum_{i=1}^{n} \left(\bar{x}^{(i)} - \bar{x}^{(i)}\right) \frac{\partial f(x)}{\partial x^{(i)}}\Big|_{x=\bar{X}}$$

$$= 0.$$

**Corolário A.1.1 (Média da transformada de uma variável aleatória).** Sejam a variável aleatória  $X \in \Re^n$  de  $\overline{X}$  e o mapeamento  $f : \Re^n \mapsto \Re^m$  diferenciável até ordem k que define a variável aleatória Y tal que

$$Y \triangleq f(X),$$

a média de Y pode ser escrita da seguinte forma:

se k for par,

$$\begin{split} \bar{Y} &= f\left(\bar{X}\right) + \frac{1}{2!} \sum_{i_1, i_2 = 1}^n M_{x^{(i_1)}, x^{(i_2)}}^2 \left. \frac{\partial^2 f\left(x\right)}{\partial x^{(i_1)} \partial x^{(i_2)}} \right|_{x = \bar{X}} \\ &+ \frac{1}{3!} \sum_{i_1, \dots, i_3 = 1}^n M_{x^{(i_1)}, \dots, x^{(i_3)}}^3 \left. \frac{\partial^3 f\left(x\right)}{\partial x^{(i_1)} \cdots \partial x^{(i_3)}} \right|_{x = \bar{X}} \\ &+ \dots + \frac{1}{k!} \sum_{i_1, \dots, i_k = 1}^n M_{x^{(i_1)}, \dots, x^{(i_k)}}^k \left. \frac{\partial^k f\left(x\right)}{\partial x^{(i_1)} \cdots \partial x^{(i_k)}} \right|_{x = \bar{X}} \\ &+ \dots \end{split}$$

**Corolário A.1.2 (Elementos da Série da Matriz de Covariância).** Sejam a variável aleatória  $X \in \Re^n$  de média  $\overline{X}$  e matriz de covariância  $P_{XX}$  e o mapeamento  $f : \Re^n \mapsto \Re^m$  diferenciável que define a variável aleatória Y tal que

$$Y \triangleq f(X),$$

e seja, ainda,  $P_{YY}$  a matriz de covariância de Y, os termos  $\Theta_{P_{YY}}^2, \ldots, \Theta_{P_{YY}}^k$  tal que

$$P_{YY} = \Theta_{P_{YY}}^2 + \Theta_{P_{YY}}^3 + \Theta_{P_{YY}}^4 + \dots + \Theta_{P_{YY}}^k + \dots$$

têm as seguintes forma:

$$\Theta_{P_{YY}}^2 = \sum_{i,j=1}^n M_{x^{(i)},x^{(j)}}^2 \left. \frac{\partial f(x)}{\partial x^{(i)}} \right|_{x=\bar{X}} \left. \frac{\partial f(x)}{\partial x^{(j)}} \right|_{x=\bar{X}}^T$$
(A.5)

$$=\sum_{i,j=1}^{n} \left(P_{XX}\right)_{ij} \left.\frac{\partial f\left(x\right)}{\partial x^{(i)}}\right|_{x=\bar{X}} \left.\frac{\partial f\left(x\right)}{\partial x^{(j)}}\right|_{x=\bar{X}}^{T}.$$
(A.6)

$$\Theta_{P_{YY}}^{3} = \frac{1}{2} \sum_{i_{1},i_{2},i_{3}=1}^{n} M_{x^{(i_{1})}\dots x^{(i_{3})}}^{3} \left( \frac{\partial f\left(x\right)}{\partial x^{(i_{3})}} \right|_{x=\bar{X}} \frac{\partial^{2} f\left(x\right)}{\partial x^{(i_{1})} \partial x^{(i_{2})}} \right|_{x=\bar{X}}^{T} + \frac{\partial^{2} f\left(x\right)}{\partial x^{(i_{1})} \partial x^{(i_{2})}} \left|_{x=\bar{X}} \frac{\partial f\left(x\right)}{\partial x^{(i_{3})}} \right|_{x=\bar{X}}^{T} \right). \tag{A.7}$$

$$\Theta_{P_{YY}}^{4} = \frac{\frac{1}{4} \sum_{i_{1}, \cdots, i_{4}=1}^{n} \left( M_{x^{(i_{1})} \cdots x^{(i_{4})}}^{4} - M_{x^{(i_{1})}x^{(i_{2})}}^{2} M_{x^{(i_{4})}x^{(i_{4})}}^{2} \right) \frac{\partial^{2}f(x)}{\partial x^{(i_{1})} \partial x^{(i_{2})}} \Big|_{x=\bar{X}} \frac{\partial^{2}f(x)}{\partial x^{(i_{3})} \partial x^{(i_{4})}} \Big|_{x=\bar{X}}}{\frac{1}{3!} \sum_{i_{1}, \cdots, i_{4}=1}^{n} \left( M_{x^{(i_{1})} \cdots x^{(i_{4})}}^{4} \frac{\partial f(x)}{\partial x^{(i_{4})}} \Big|_{x=\bar{X}} \frac{\partial^{3}f(x)}{\partial x^{(i_{1})} \cdots \partial x^{(i_{3})}} \Big|_{x=\bar{X}}^{T} + \frac{\partial^{3}f(x)}{\partial x^{(i_{1})} \cdots \partial x^{(i_{3})}} \Big|_{x=\bar{X}} \frac{\partial f(x)}{\partial x^{(i_{4})}} \Big|_{x=\bar{X}}^{T} \right) } .$$
 (A.8)

$$\begin{aligned} \Theta_{P_{YY}}^{5} &= \\ \frac{1}{4!} \sum_{i_{1},\cdots,i_{5}=1}^{n} M_{x^{(i_{1})}\cdots x^{(i_{5})}}^{5} \left( \frac{\partial f(x)}{\partial x^{(i_{5})}} \right|_{x=\bar{X}} \frac{\partial^{4} f(x)}{\partial x^{(i_{1})}\cdots \partial x^{(i_{4})}} \right|_{x=\bar{X}}^{T} + \frac{\partial^{4} f(x)}{\partial x^{(i_{1})}\cdots \partial x^{(i_{4})}} \left|_{x=\bar{X}} \frac{\partial f(x)}{\partial x^{(i_{5})}} \right|_{x=\bar{X}}^{T} \right) \\ &+ \frac{1}{2!3!} \sum_{i_{1},\cdots,i_{5}=1}^{n} \left( M_{x\cdots x^{(i_{5})}}^{5} - M_{x^{(i_{4})}x^{(i_{5})}}^{2} M_{x^{(i_{1})}\cdots x^{(i_{3})}}^{3} \right) \\ &\left( \frac{\partial^{2} f(x)}{\partial x^{(i_{4})} \partial x^{(i_{5})}} \right|_{x=\bar{X}} \frac{\partial^{3} f(x)}{\partial x^{(i_{1})}\cdots \partial x^{(i_{3})}} \right|_{x=\bar{X}}^{T} + \frac{\partial^{3} f(x)}{\partial x^{(i_{1})}\cdots \partial x^{(i_{3})}} \left|_{x=\bar{X}} \frac{\partial^{2} f(x)}{\partial x^{(i_{4})} \partial x^{(i_{5})}} \right|_{x=\bar{X}}^{T} \right) \end{aligned}$$

$$(A.9)$$

÷

Para k ímpar:

 $\Theta_{P_{YY}}^k$ 

$$\begin{split} &= \frac{1}{(k-1)!} \sum_{i_1, \cdots, i_k=1}^n M_{x^{(i_1)\dots x^{(i_k)}}}^k \\ & \left( \frac{\partial f(x)}{\partial x^{(i_k)}} \Big|_{x=\bar{X}} \frac{\partial^{k-1} f(x)}{\partial x^{(i_1)\dots \partial x^{(i_{k-1})}}} \Big|_{x=\bar{X}}^T + \frac{\partial^{k-1} f(x)}{\partial x^{(i_1)\dots x^{(i_{k-1})}}} \Big|_{x=\bar{X}} \frac{\partial f(x)}{\partial x^{(i_k)}} \Big|_{x=\bar{X}}^T \right) \\ & + \frac{1}{2!(k-2)!} \sum_{i_1, \cdots, i_k=1}^n \left( M_{x^{(i_1)\dots x^{(i_k)}}}^k - M_{x^{(i_1)\dots x^{(i_{k-2})}}}^2 \right) M_{x^{(i_1)\dots x^{(i_{k-2})}}}^{k-2} \right) \\ & \left( \frac{\partial^2 f(x)}{\partial x^{(i_{k-1})} \partial x^{(i_k)}} \Big|_{x=\bar{X}} \frac{\partial^{k-2} f(x)}{\partial x^{(i_{1})\dots \partial x^{(i_{k-2})}}} \Big|_{x=\bar{X}}^T + \frac{\partial^{k-2} f(x)}{\partial x^{(i_{1})\dots x^{(i_{k-2})}}} \Big|_{x=\bar{X}} \frac{\partial^2 f(x)}{\partial x^{(i_{k-1})} \partial x^{(i_k)}} \Big|_{x=\bar{X}}^T \right) \\ & + \frac{1}{3!(k-3)!} \sum_{i_1, \cdots, i_k=1}^n \left( M_{x^{(i_1)\dots x^{(i_k)}}}^k - M_{x^{(i_1)\dots x^{(i_k)}}}^3 M_{x^{(i_1)\dots x^{(i_{k-3})}}}^{k-3} \right) \\ & \left( \frac{\partial^3 f(x)}{\partial x^{(i_{k-3})\dots \partial x^{(i_k)}}} \Big|_{x=\bar{X}} \frac{\partial^{k-2} f(x)}{\partial x^{(i_{1})\dots \partial x^{(i_{k-3})}}} \Big|_{x=\bar{X}}^T + \frac{\partial^{k-2} f(x)}{\partial x^{(i_{1})\dots x^{(i_{k-3})}}} \Big|_{x=\bar{X}} \frac{\partial^3 f(x)}{\partial x^{(i_{k-1})/2}} \Big|_{x=\bar{X}}^T \right) \\ & + \cdots + \\ & + \frac{1}{\left(\frac{(k-1)!}{2}\right)! \left(\frac{(k+1)!}{2}\right)!} \sum_{i_1, \cdots, i_k=1}^n \left( M_{x^{(i_1)\dots x^{(i_k)}}}^k - M_{x^{(i_1)\dots x^{(i_{k-1})/2}}}^{(k-1)/2} M_{x^{(i_{k-1})/2}}^{(k+1)/2} \right) \right|_{x=\bar{X}} \frac{\partial^{(k-1)/2} f(x)}{\partial x^{(i_{k+1})/2} \dots x^{(i_k)}} \right|_{x=\bar{X}} \\ & \left( \frac{\partial^{(k-1)/2} f(x)}{\partial x^{(i_{k+1})/2} \dots \partial x^{(i_{k-1})/2}} \right) \Big|_{x=\bar{X}} \frac{\partial^{(k-1)/2} f(x)}{\partial x^{(i_{k+1})/2} \dots \partial x^{(i_k)}} \Big|_{x=\bar{X}} \frac{\partial^{(k-1)/2} f(x)}{\partial x^{(i_{k+1})/2} \dots \partial x^{(i_{k-1})/2}} \Big|_{x=\bar{X}} \frac{\partial^{(k-1)/2} f(x)}{\partial x^{(i_{k+1})/2} \dots \partial x^{(i_k)}} \Big|_{x=\bar{X}} \frac{\partial^{(k-1)/2} f(x)}{\partial x^{(i_{$$

Para k par:

 $\Theta^k_{P_{YY}}$ 

$$\begin{split} & \left(\frac{1}{\left(\frac{k}{2}\right)!\left(\frac{k}{2}\right)!}\sum_{i_{1},\dots,i_{k}=1}^{n}\left(M_{x^{(i_{1})}\dots x^{(i_{k})}}^{k}-M_{x^{(i_{1})}\dots x^{(i_{k}/2}}^{k/2}\right)M_{x^{(k/2+1)}\dots x^{(i_{k})}}^{k/2}\right)\right) \\ & \left(\frac{\partial^{k/2}f(x)}{\partial x^{(i_{k}/2})\dots\partial x^{(i_{k})}}\right|_{x=\bar{X}}\frac{\partial^{k/2}f(x)}{\partial x^{(k/2+1)}\dots\partial x^{(i_{k})}}\Big|_{x=\bar{X}}^{T}+\frac{\partial^{k/2}f(x)}{\partial x^{(k/2+1)}\dots\partial x^{(i_{k})}}\Big|_{x=\bar{X}}^{T}\frac{\partial^{k/2}f(x)}{\partial x^{(i_{k}/2})\dots\partial x^{(i_{k})}}\Big|_{x=\bar{X}}^{T}\right). \\ & \left(\frac{1}{(k-1)!}\sum_{i_{1},\dots,i_{k}=1}^{n}M_{x^{(i_{1})}\dots x^{(i_{k})}}^{k}\right) \\ & \left(\frac{\partial f(x)}{\partial x^{(i_{k})}}\right|_{x=\bar{X}}\frac{\partial^{k-1}f(x)}{\partial x^{(i_{k})}\dots\partial x^{(i_{k-1})}}\Big|_{x=\bar{X}}^{T}+\frac{\partial^{k-1}f(x)}{\partial x^{(i_{k-1})}}\Big|_{x=\bar{X}}\frac{\partial f(x)}{\partial x^{(i_{k})}}\Big|_{x=\bar{X}}^{T}\right) \\ & +\frac{1}{2!(k-2)!}\sum_{i_{1},\dots,i_{k}=1}^{n}\left(M_{x^{(i_{1})}\dots x^{(i_{k})}}^{k}-M_{x^{(i_{1})}\dots x^{(i_{k-2})}}^{k-2}\Big|_{x=\bar{X}}\frac{\partial f(x)}{\partial x^{(i_{k-1})}}\Big|_{x=\bar{X}}^{T}\right) \\ & \left(\frac{\partial^{2}f(x)}{\partial x^{(i_{k-1})}\partial x^{(i_{k})}}\Big|_{x=\bar{X}}\frac{\partial^{k-2}f(x)}{\partial x^{(i_{k-1})}\partial x^{(i_{k-2})}}\Big|_{x=\bar{X}}^{T}+\frac{\partial^{k-2}f(x)}{\partial x^{(i_{1})}\dots x^{(i_{k-2})}}\Big|_{x=\bar{X}}\frac{\partial^{2}f(x)}{\partial x^{(i_{k-1})}\partial x^{(i_{k})}}\Big|_{x=\bar{X}}\right) \\ & \left(\frac{\partial^{3}f(x)}{\partial x^{(i_{k-1})}\partial x^{(i_{k})}}\Big|_{x=\bar{X}}\frac{\partial^{k-2}f(x)}{\partial x^{(i_{1})}\dots x^{(i_{k-2})}}\Big|_{x=\bar{X}}^{T}+\frac{\partial^{k-2}f(x)}{\partial x^{(i_{k-2})/2}}\Big|_{x=\bar{X}}\frac{\partial^{3}f(x)}{\partial x^{(i_{k-1})}\partial x^{(i_{k})}}\Big|_{x=\bar{X}}\right) \\ & \left(\frac{\partial^{3}f(x)}{\partial x^{(i_{k-2})}\partial x^{(i_{k})}}\Big|_{x=\bar{X}}\frac{\partial^{k-2}f(x)}{\partial x^{(i_{k-2})}\partial x^{(i_{k-2})/2}}\Big|_{x=\bar{X}}\frac{\partial^{k-2}f(x)}{\partial x^{(i_{k-2})/2}}\Big|_{x=\bar{X}}\frac{\partial^{3}f(x)}{\partial x^{(i_{k-2})/2}}\Big|_{x=\bar{X}}\right) \\ & +\cdots+ \\ & \left(\frac{(k-2)^{2}f(x)}{(\frac{k-2}{2})!}\Big|_{x_{1},\dots,x_{k=1}}\left(M_{x^{(i_{1})}\dots x^{(i_{k})}}-M_{x^{(i_{1})}\dots x^{(i_{k-2})/2}}\Big)M_{x^{(i_{k-2})/2}(1-1)\dots x^{(i_{k})}}\Big)\right) \\ & \left(\frac{\partial^{(k-2)/2}f(x)}{\partial x^{((k-2)/2+1}\dots \partial x^{(i_{k})}}\Big|_{x=\bar{X}}\frac{\partial^{(k+2)/2}f(x)}{\partial x^{(i_{1})}\partial x^{(i_{k-2})/2}}\Big|_{x=\bar{X}}\frac{\partial^{(k-2)/2}f(x)}{\partial x^{((i_{k-2})/2+1}\dots \partial x^{(i_{k})}}\Big|_{x=\bar{X}}\right)\right). \end{split}$$

### A.1.2 Momentos de uma transformada escalada

Considere uma variável aleatória  $X \sim (\overline{X}, P_{XX})$ , uma função  $f : \Re^n \mapsto \Re^m$  e Y tal que Y := f(X). Considere também a variável aleatória Z tal que

$$Z := g\left(X, \bar{X}, \alpha, \kappa\right),$$

em que

$$g\left(X,\bar{X},\alpha,\kappa\right) = \frac{f\left(\bar{X}+\alpha\left(X-\bar{X}\right)\right) - f\left(\bar{X}\right)}{\kappa} + f\left(\bar{X}\right).$$

em que  $\alpha \in \Re, \kappa \in \Re^*$ . Com relação a essa transformada, temos os seguintes resultados.

**Lema A.1.5.** Sejam o vetor  $X \in \Re^n$ , a função  $f : \Re^n \mapsto \Re^m$ ,  $c \in \Re^n$ , e seja  $g : \Re^n \times \Re \times \Re \times \Re \times \Re^* \mapsto \Re^m$  tal que

$$g(X, c, \alpha, \kappa) = \frac{f(c + \alpha (X - c)) - f(c)}{\kappa} + f(c),$$

em que  $\alpha \in \Re$  e  $\kappa \in \Re^*$ ,  $g(X, \overline{X}, \alpha, \kappa)$  pode ser escrita da seguinte forma:

$$g(X) = f(c) + \frac{\alpha}{\kappa} \frac{\Psi_{X,c}^{1} f}{1!} + \frac{\alpha^{2}}{\kappa} \frac{\Psi_{X,c}^{2} f}{2!} + \frac{\alpha^{3}}{\kappa} \frac{\Psi_{X,c}^{3} f}{3!} \dots + \frac{\alpha^{k}}{\kappa} \frac{\Psi_{X,c}^{k} f}{k!} \dots \qquad \Box$$

PROVA Do Lema 2.1.1 podemos escrever

$$\begin{split} g\left(X, c, \alpha, \kappa\right) \\ &= \frac{f\left(c + \alpha\left(X - c\right)\right)}{\kappa} + f\left(c\right)\left(1 - \frac{1}{\kappa}\right) \\ &= \frac{1}{\kappa}\left(f(c) + \frac{\alpha\Psi_{X,c}^{1}f}{1!} + \frac{\alpha^{2}\Psi_{X,c}^{2}f}{2!} + \frac{\alpha^{3}\Psi_{X,c}^{3}f}{2!} \cdots\right) + f\left(c\right)\left(\frac{\kappa - 1}{\kappa}\right) \\ &= f(c) + \frac{\alpha}{\kappa}\frac{\Psi_{X,c}^{1}f}{1!} + \frac{\alpha^{2}}{\kappa}\frac{\Psi_{X,c}^{2}f}{2!} + \frac{\alpha^{3}}{\kappa}\frac{\Psi_{X,c}^{3}f}{3!} \cdots + \frac{\alpha^{k}}{\kappa}\frac{\Psi_{X,c}^{k}f}{k!} \cdots . \quad \Box \end{split}$$

**Lema A.1.6 (Média da transformação escalada).** Sejam o vetor  $X \in \mathbb{R}^n$ , a função  $f : \mathbb{R}^n \mapsto \mathbb{R}^m$  diferenciável até ordem k e o ponto  $c \in \mathbb{R}^n$ , e sejam  $Z \in \mathbb{R}^m$  e  $g : \mathbb{R}^n \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}^*$  tal que

$$Z = g(X, c, \alpha, \kappa) = \frac{f(c + \alpha (X - c)) - f(c)}{\kappa} + f(c),$$

em que  $\alpha \in \Re$  e  $\kappa \in \Re^*$ , as assertivas abaixo são verdadeiras:

1. a Série de Taylor de  $\overline{Z} := E \{Z\}$  em torno de  $\overline{X}$  é

$$\bar{Z} = f(\bar{X}) + \frac{\alpha^2}{\kappa} E\left\{\frac{\Psi_{X,\bar{X}}^2 f}{2!}\right\} + \frac{\alpha^3}{\kappa} E\left\{\frac{\Psi_{X,\bar{X}}^3 f}{3!}\right\} \cdots$$

2. a Série de Taylor de  $\overline{Z} := E \{Z\}$  em torno de  $\overline{X}$  é

$$\begin{split} \bar{Z} &= f\left(\bar{X}\right) + \frac{\alpha^2}{\kappa} \frac{1}{2!} \sum_{i_1, i_2=1}^n M_{x^{(i_1)}, x^{(i_2)}}^2 \left. \frac{\partial^2 f\left(x\right)}{\partial x^{(i_1)} \partial x^{(i_2)}} \right|_{x=\bar{X}} \\ &+ \frac{\alpha^3}{\kappa} \frac{1}{3!} \sum_{i_1, \dots, i_3=1}^n M_{x^{(i_1)}, \dots, x^{(i_3)}}^3 \left. \frac{\partial^3 f\left(x\right)}{\partial x^{(i_1)} \cdots \partial x^{(i_3)}} \right|_{x=\bar{X}} \\ &+ \dots + \frac{\alpha^k}{\kappa} \frac{1}{k!} \sum_{i_1, \dots, i_k=1}^n M_{x^{(i_1)}, \dots, x^{(i_k)}}^k \left. \frac{\partial^k f\left(x\right)}{\partial x^{(i_1)} \cdots \partial x^{(i_k)}} \right|_{x=\bar{X}} + \dots . \end{split}$$

PROVA Do Lema A.1.5 :podemos escrever

$$\bar{Z} := E \{Z\}$$

$$= E \left\{ f(\bar{X}) + \frac{\alpha}{\kappa} \frac{\Psi_{X,\bar{X}}^{1} f}{1!} + \frac{\alpha^{2}}{\kappa} \frac{\Psi_{X,\bar{X}}^{2} f}{2!} + \frac{\alpha^{3}}{\kappa} \frac{\Psi_{X,\bar{X}}^{3} f}{3!} \cdots \right\}$$

$$f(\bar{X}) + \frac{\alpha}{\kappa} E \left\{ \frac{\Psi_{X,\bar{X}}^{1} f}{1!} \right\} + \frac{\alpha^{2}}{\kappa} E \left\{ \frac{\Psi_{X,\bar{X}}^{2} f}{2!} \right\} + \frac{\alpha^{3}}{\kappa} E \left\{ \frac{\Psi_{X,\bar{X}}^{3} f}{3!} \right\} \cdots$$

Agora, considerando o Lema A.1.4, temos que

$$\bar{Z} = f(\bar{X}) + \frac{\alpha^2}{\kappa} E\left\{\frac{\Psi_{X,\bar{X}}^2 f}{2!}\right\} + \frac{\alpha^3}{\kappa} E\left\{\frac{\Psi_{X,\bar{X}}^3 f}{3!}\right\} + \frac{\alpha^4}{\kappa} E\left\{\frac{\Psi_{X,\bar{X}}^4 f}{4!}\right\} \cdots$$

que satisfaz à primeira assertva. Agora, utilizando o Lema A.1.3,

$$\begin{split} \bar{Z} &= f\left(\bar{X}\right) + \frac{\alpha^2}{\kappa} \frac{1}{2!} \sum_{i_1, i_2=1}^n M_{x^{(i_1)}, x^{(i_2)}}^2 \left. \frac{\partial^2 f\left(x\right)}{\partial x^{(i_1)} \partial x^{(i_2)}} \right|_{x=\bar{X}} \\ &+ \frac{\alpha^3}{\kappa} \frac{1}{3!} \sum_{i_1, \dots, i_3=1}^n M_{x^{(i_1)}, \dots, x^{(i_3)}}^3 \left. \frac{\partial^3 f\left(x\right)}{\partial x^{(i_1)} \cdots \partial x^{(i_3)}} \right|_{x=\bar{X}} \\ &+ \dots + \frac{\alpha^k}{\kappa} \frac{1}{k!} \sum_{i_1, \dots, i_k=1}^n M_{x^{(i_1)}, \dots, x^{(i_k)}}^k \left. \frac{\partial^k f\left(x\right)}{\partial x^{(i_1)} \cdots \partial x^{(i_k)}} \right|_{x=\bar{X}} + \dots \end{split}$$

**Lema A.1.7.** Sejam o vetor  $X \in \Re^n$ , a função  $f : \Re^n \mapsto \Re^m$  diferenciável até ordem  $k \in o$  ponto  $c \in \Re^n$ , e sejam  $Z \in \Re^m e g : \Re^n \times \Re \times \Re \times \Re^*$  tal que

$$Z = g\left(X, c, \alpha, \kappa\right) = \frac{f\left(c + \alpha\left(X - c\right)\right) - f\left(c\right)}{\kappa} + f\left(c\right),$$

em que  $\alpha \in \Re$  e  $\kappa \in \Re^*$ , a Série de Taylor de  $P_{ZZ}^* = \mu P_{ZZ} := \mu E \left\{ \left( Z - \overline{Z} \right) \left( Z - \overline{Z} \right)^T \right\}$  em torno de  $\overline{X}$  é

$$P_{ZZ}^* = \mu P_{ZZ} = \Theta_{P_{ZZ}^*}^2 + \Theta_{P_{ZZ}^*}^3 + \Theta_{P_{ZZ}^*}^4 + \dots + \Theta_{P_{ZZ}^*}^k,$$

em que:

$$\Theta_{P_{ZZ}^*}^2 = \frac{\alpha^2}{\kappa} \sum_{i,j=1}^n M_{x^{(i)},x^{(j)}}^2 \left. \frac{\partial f(x)}{\partial x^{(i)}} \right|_{x=\bar{X}} \left. \frac{\partial f(x)}{\partial x^{(j)}} \right|_{x=\bar{X}}^T$$
$$= \frac{\alpha^2}{\kappa} \sum_{i,j=1}^n (P_{XX})_{ij} \left. \frac{\partial f(x)}{\partial x^{(i)}} \right|_{x=\bar{X}} \left. \frac{\partial f(x)}{\partial x^{(j)}} \right|_{x=\bar{X}}^T.$$

$$\Theta_{P_{ZZ}^*}^3 = \frac{\alpha^3}{\kappa} \frac{1}{2} \sum_{i_1, i_2, i_3=1}^n M_{x^{(i_1)} \dots x^{(i_3)}}^3 \left( \frac{\partial f(x)}{\partial x^{(i_3)}} \right|_{x=\bar{X}} \frac{\partial^2 f(x)}{\partial x^{(i_1)} \partial x^{(i_2)}} \Big|_{x=\bar{X}}^T + \frac{\partial^2 f(x)}{\partial x^{(i_1)} \partial x^{(i_2)}} \Big|_{x=\bar{X}} \frac{\partial f(x)}{\partial x^{(i_3)}} \Big|_{x=\bar{X}}^T + \frac{\partial^2 f(x)}{\partial x^{(i_1)} \partial x^{(i_2)}} \Big|_{x=\bar{X}} \frac{\partial f(x)}{\partial x^{(i_3)}} \Big|_{x=\bar{X}}^T + \frac{\partial^2 f(x)}{\partial x^{(i_1)} \partial x^{(i_2)}} \Big|_{x=\bar{X}} \frac{\partial f(x)}{\partial x^{(i_3)}} \Big|_{x=\bar{X}}^T + \frac{\partial^2 f(x)}{\partial x^{(i_1)} \partial x^{(i_2)}} \Big|_{x=\bar{X}} \frac{\partial f(x)}{\partial x^{(i_3)}} \Big|_{x=\bar{X}}^T + \frac{\partial^2 f(x)}{\partial x^{(i_1)} \partial x^{(i_2)}} \Big|_{x=\bar{X}} \frac{\partial f(x)}{\partial x^{(i_3)}} \Big|_{x=\bar{X}}^T + \frac{\partial^2 f(x)}{\partial x^{(i_1)} \partial x^{(i_2)}} \Big|_{x=\bar{X}} \frac{\partial f(x)}{\partial x^{(i_3)}} \Big|_{x=\bar{X}}^T + \frac{\partial^2 f(x)}{\partial x^{(i_1)} \partial x^{(i_2)}} \Big|_{x=\bar{X}} \frac{\partial f(x)}{\partial x^{(i_3)}} \Big|_{x=\bar{X}}^T + \frac{\partial^2 f(x)}{\partial x^{(i_1)} \partial x^{(i_2)}} \Big|_{x=\bar{X}} \frac{\partial f(x)}{\partial x^{(i_3)}} \Big|_{x=\bar{X}}^T + \frac{\partial^2 f(x)}{\partial x^{(i_1)} \partial x^{(i_2)}} \Big|_{x=\bar{X}} \frac{\partial f(x)}{\partial x^{(i_3)}} \Big|_{x=\bar{X}}^T + \frac{\partial^2 f(x)}{\partial x^{(i_1)} \partial x^{(i_2)}} \Big|_{x=\bar{X}} \frac{\partial f(x)}{\partial x^{(i_1)} \partial x^{(i_2)}} \Big|_{x=\bar{X}}^T + \frac{\partial^2 f(x)}{\partial x^{(i_1)} \partial x^{(i_2)}} \Big|_{x=\bar{X}} \frac{\partial f(x)}{\partial x^{(i_1)} \partial x^{(i_2)}} \Big|_{x=\bar{X}}^T + \frac{\partial^2 f(x)}{\partial x^{(i_1)} \partial x^{(i_2)}} \Big|_{x=\bar{X}} \frac{\partial f(x)}{\partial x^{(i_1)} \partial x^{($$

$$\begin{split} \Theta^4_{P^*_{ZZ}} &= \\ & \frac{\alpha^4}{\kappa} \frac{1}{4} \sum_{i_1, \cdots, i_4 = 1}^n \left( M^4_{x^{(i_1)} \cdots x^{(i_4)}} - M^2_{x^{(i_1)} x^{(i_2)}} M^2_{x^{(i_4)} x^{(i_4)}} \right) \left. \frac{\partial^2 f(x)}{\partial x^{(i_1)} \partial x^{(i_2)}} \right|_{x = \bar{X}} \left. \frac{\partial^2 f(x)}{\partial x^{(i_3)} \partial x^{(i_4)}} \right|_{x = \bar{X}} \\ & \frac{\alpha^4}{\kappa} \frac{1}{3!} \sum_{i_1, \cdots, i_4 = 1}^n \left( M^4_{x^{(i_1)} \cdots x^{(i_4)}} \left. \frac{\partial f(x)}{\partial x^{(i_4)}} \right|_{x = \bar{X}} \left. \frac{\partial^3 f(x)}{\partial x^{(i_1)} \cdots \partial x^{(i_3)}} \right|_{x = \bar{X}}^T + \left. \frac{\partial^3 f(x)}{\partial x^{(i_1)} \cdots \partial x^{(i_3)}} \right|_{x = \bar{X}} \left. \frac{\partial f(x)}{\partial x^{(i_4)}} \right|_{x = \bar{X}} \right) \right. \end{split}$$

$$\begin{split} \Theta_{P_{ZZ}}^{5} &= \\ \frac{\alpha^{5}}{\kappa} \frac{1}{4!} \sum_{i_{1}, \cdots, i_{5}=1}^{n} M_{x^{(i_{1})} \cdots x^{(i_{5})}}^{5} \left( \frac{\partial f(x)}{\partial x^{(i_{5})}} \right|_{x=\bar{X}} \frac{\partial^{4} f(x)}{\partial x^{(i_{1})} \cdots \partial x^{(i_{4})}} \Big|_{x=\bar{X}}^{T} + \frac{\partial^{4} f(x)}{\partial x^{(i_{1})} \cdots \partial x^{(i_{4})}} \Big|_{x=\bar{X}} \frac{\partial f(x)}{\partial x^{(i_{5})}} \Big|_{x=\bar{X}}^{T} \right) \\ &+ \frac{\alpha^{5}}{\kappa} \frac{1}{2!3!} \sum_{i_{1}, \cdots, i_{5}=1}^{n} \left( M_{x \cdots x^{(i_{5})}}^{5} - M_{x^{(i_{4})} x^{(i_{5})}}^{2} M_{x^{(i_{1})} \cdots x^{(i_{3})}}^{3} \right) \\ &\left( \frac{\partial^{2} f(x)}{\partial x^{(i_{4})} \partial x^{(i_{5})}} \right|_{x=\bar{X}} \frac{\partial^{3} f(x)}{\partial x^{(i_{1})} \cdots \partial x^{(i_{3})}} \Big|_{x=\bar{X}}^{T} + \frac{\partial^{3} f(x)}{\partial x^{(i_{1})} \cdots \partial x^{(i_{3})}} \Big|_{x=\bar{X}} \frac{\partial^{2} f(x)}{\partial x^{(i_{4})} \partial x^{(i_{5})}} \Big|_{x=\bar{X}}^{T} \right) \end{split}$$

•

÷

Para k ímpar:

 $\Theta^k_{P^*_{ZZ}}$ 

$$\begin{split} &= \frac{\alpha^{k}}{\kappa} \frac{1}{(k-1)!} \sum_{i_{1}, \cdots, i_{k}=1}^{n} M_{x^{(i_{1})...x^{(i_{k})}}}^{k} \\ & \left( \frac{\partial f(x)}{\partial x^{(i_{k})}} \Big|_{x=\bar{X}} \frac{\partial^{k-1}f(x)}{\partial x^{(i_{1})...\partial x^{(i_{k-1})}}} \Big|_{x=\bar{X}}^{T} + \frac{\partial^{k-1}f(x)}{\partial x^{(i_{1})...\partial x^{(i_{k-1})}}} \Big|_{x=\bar{X}} \frac{\partial f(x)}{\partial x^{(i_{k})}} \Big|_{x=\bar{X}}^{T} \right) \\ & + \frac{\alpha^{k}}{\kappa} \frac{1}{2!(k-2)!} \sum_{i_{1},\cdots, i_{k}=1}^{n} \left( M_{x^{(i_{1})...x^{(i_{k})}} - M_{x^{(i_{1})x^{(i_{2})}}}^{2} M_{x^{(i_{1})...x^{(i_{k-2})}}} \right) \\ & \left( \frac{\partial^{2}f(x)}{\partial x^{(i_{k-1})\partial x^{(i_{k})}} \Big|_{x=\bar{X}} \frac{\partial^{k-2}f(x)}{\partial x^{(i_{1})...\partial x^{(i_{k-2})}}} \Big|_{x=\bar{X}}^{T} + \frac{\partial^{k-2}f(x)}{\partial x^{(i_{1})...x^{(i_{k-2})}}} \Big|_{x=\bar{X}} \frac{\partial^{2}f(x)}{\partial x^{(i_{k-1})\partial x^{(i_{k})}}} \Big|_{x=\bar{X}}^{T} \right) \\ & + \frac{\alpha^{k}}{\kappa} \frac{1}{3!(k-3)!} \sum_{i_{1},\cdots,i_{k}=1}^{n} \left( M_{x^{(i_{1})...x^{(i_{k})}} - M_{x^{(i_{1})...x^{(i_{3})}}}^{3} M_{x^{(i_{1})...x^{(i_{k-3})}}} \right) \\ & \left( \frac{\partial^{3}f(x)}{\partial x^{(i_{k-3})...\partial x^{(i_{k})}}} \Big|_{x=\bar{X}} \frac{\partial^{k-2}f(x)}{\partial x^{(i_{1})...\partial x^{(i_{k-3})}}} \Big|_{x=\bar{X}} + \frac{\partial^{k-2}f(x)}{\partial x^{(i_{1})...x^{(i_{k-3})}}} \Big|_{x=\bar{X}} \frac{\partial^{3}f(x)}{\partial x^{(i_{k-3})...x^{(i_{k-3})}}} \Big|_{x=\bar{X}} \right) \\ & + \cdots + \\ & + \frac{\alpha^{k}}{\kappa} \frac{1}{(\frac{(k-1)!}{2}!} \sum_{i_{1},\cdots,i_{k}=1}^{n} \left( M_{x^{(i_{1})...x^{(i_{k})}} - M_{x^{(i_{1})...x^{(i_{k-3})}}} \Big|_{x=\bar{X}} \frac{\partial^{3}f(x)}{\partial x^{(i_{k-3})...\partial x^{(i_{k})}}} \Big|_{x=\bar{X}} \right) \\ & \left( \frac{\partial^{(k-1)/2}f(x)}{\partial x^{(i_{k+1})/2}} \Big|_{x=\bar{X}} \frac{\partial^{(k+1)/2}f(x)}{\partial x^{(i_{1})...\partial x^{(i_{k-3})}}} \Big|_{x=\bar{X}} \frac{\partial^{(k-1)/2}f(x)}}{\partial x^{(i_{k+1})/2}} \Big|_{x=\bar{X}} \right) \right) \\ \end{array}$$

Para k par:

 $\Theta^k_{P^*_{ZZ}}$ 

$$\begin{split} &= \frac{\alpha^{k}}{\kappa} \frac{1}{\left(\frac{k}{2}\right)!\left(\frac{k}{2}\right)!} \sum_{i_{1},\cdots,i_{k}=1}^{n} \left( M_{x^{(i_{1})}\cdots x^{(i_{k})}}^{k} - M_{x^{(i_{1})}\cdots x^{(i_{k}/2}}^{k/2} M_{x^{(k/2+1)}\cdots x^{(i_{k})}}^{k/2} \right) \\ &\left( \frac{\partial^{k/2}f(x)}{\partial x^{(i_{k}/2})\cdots \partial x^{(i_{k})}} \right|_{x=\bar{X}} \frac{\partial^{k/2}f(x)}{\partial x^{(k/2+1)}\cdots \partial x^{(i_{k})}} \right|_{x=\bar{X}}^{T} + \frac{\partial^{k/2}f(x)}{\partial x^{(i_{k}/2+1)}\cdots \partial x^{(i_{k})}} \right|_{x=\bar{X}} \frac{\partial^{k/2}f(x)}{\partial x^{(i_{k}/2})\cdots \partial x^{(i_{k})}} \right|_{x=\bar{X}}^{T} \\ &+ \frac{\alpha^{k}}{\kappa} \frac{1}{(k-1)!} \sum_{i_{1},\cdots,i_{k}=1}^{n} M_{x^{(i_{1})}\cdots x^{(i_{k})}}^{k} \\ &\left( \frac{\partial f(x)}{\partial x^{(i_{k})}} \right|_{x=\bar{X}} \frac{\partial^{k-1}f(x)}{\partial x^{(i_{k})}\cdots \partial x^{(i_{k-1})}} \right)_{x=\bar{X}}^{T} + \frac{\partial^{k-1}f(x)}{\partial x^{(i_{1})}\cdots \partial x^{(i_{k-1})}} \right|_{x=\bar{X}} \frac{\partial f(x)}{\partial x^{(i_{1})}} \right|_{x=\bar{X}}^{T} \\ &+ \frac{\alpha^{k}}{\kappa} \frac{1}{2!(k-2)!} \sum_{i_{1},\cdots,i_{k}=1}^{n} \left( M_{x^{(i_{1})}\cdots x^{(i_{k})}} - M_{x^{(i_{1})}x^{(i_{2})}} M_{x^{(i_{1})}\cdots x^{(i_{k-2})}} \right) \\ &\left( \frac{\partial^{2}f(x)}{\partial x^{(i_{k-1})}\partial x^{(i_{k})}} \right|_{x=\bar{X}} \frac{\partial^{k-2}f(x)}{\partial x^{(i_{k-2})/2}} \right)_{x=\bar{X}}^{T} + \frac{\partial^{k-2}f(x)}{\partial x^{(i_{1})}\cdots \partial x^{(i_{k-2})}} \right|_{x=\bar{X}} \frac{\partial^{2}f(x)}{\partial x^{(i_{k-1})}\partial x^{(i_{k})}} \right|_{x=\bar{X}}^{T} \\ &+ \frac{\alpha^{k}}{\pi} \frac{1}{3!(k-3)!} \sum_{i_{1},\cdots,i_{k}=1}^{n} \left( M_{x^{(i_{1})}\cdots x^{(i_{k})}} - M_{x^{(i_{1})}\cdots x^{(i_{k-2})}} \right) \right|_{x=\bar{X}} \frac{\partial^{3}f(x)}{\partial x^{(i_{k-3})}} \right|_{x=\bar{X}} \frac{\partial^{3}f(x)}{\partial x^{(i_{k-3})}} \right|_{x=\bar{X}}^{T} \\ &+ \cdots + \\ &+ \frac{\alpha^{k}}{\pi} \frac{1}{\pi!(k-3)!} \sum_{i_{1},\cdots,i_{k}=1}^{n} \left( M_{x^{(i_{1})}\cdots x^{(i_{k})}} - M_{x^{(i_{1})}\cdots x^{(i_{k-2})/2}} \right) \\ &+ \cdots + \\ &+ \frac{\alpha^{k}}{\pi} \frac{1}{\pi!(k-3)!} \sum_{i_{1},\cdots,i_{k}=1}^{n} \left( M_{x^{(i_{1})}\cdots x^{(i_{k})}} - M_{x^{(i_{1})}\cdots x^{(i_{k-2})/2}} \right) \right|_{x=\bar{X}} \frac{\partial^{(k-2)/2}f(x)}{\partial x^{(i_{k-2})/2+1} \cdots \partial x^{(i_{k-2})/2}} \right|_{x=\bar{X}} \\ &+ \frac{\partial^{(k-2)/2}f(x)}{\partial x^{(i_{k-2})/2+1} \cdots$$

.

PROVA Da definição 2.2.3 :

 $\mu P_{ZZ}$ 

$$= \mu E \left\{ \left( Z - \bar{Z} \right) \left( Z - \bar{Z} \right)^T \right\}$$
$$= E \left\{ \left( \frac{f \left( \bar{X} + \alpha \left( X - \bar{X} \right) \right) - f \left( \bar{X} \right)}{\kappa} + f \left( \bar{X} \right) - \bar{Z} \right) \left( \bullet \right)^T \right\}$$
$$= E \left\{ \left( \frac{f \left( \bar{X} + \alpha \left( X - \bar{X} \right) \right) - f \left( \bar{X} \right)}{\kappa} + f \left( \bar{X} \right) - \bar{Z} \right) \left( \bullet \right)^T \right\} \qquad \Box$$

PROVA Aplicando a expansão de Taylor de  $f\left(X\right)$  em torno de  $\bar{X}$  e utilizando o lema A.1.1, teremos 

Prova

+

$$\begin{split} \kappa E\left\{\left(f\left(X\right)-\bar{Y}\right)\left(\bullet\right)^{T}\right\} \\ &= \mu E\left\{\left( \left(X\right)-\bar{Y}\right)\left(\bullet\right)^{T}\right\} \\ &= \mu E\left\{\left( \left(X\right)-\bar{Y}\right)\left(\bullet\right)^{T}\right\} \\ = \mu E\left\{\left( \left(X\right)-\frac{\alpha}{Y}\right)\left(\bar{x}\right)+\frac{\alpha}{\kappa}\frac{\Psi_{X,\bar{X}}^{4}f}{1!}+\frac{\alpha^{2}}{\kappa}\frac{\Psi_{X,\bar{X}}^{2}f}{2!} \\ &+\frac{\alpha^{3}}{\kappa}\frac{\Psi_{X,\bar{X}}^{3}f}{3!}+\cdots+\frac{\alpha^{k}}{\kappa}\frac{\Psi_{X,\bar{X}}^{4}f}{k!} \\ &+\left(\bar{X}\right)+\frac{\alpha^{2}}{\kappa}\frac{1}{2!}\sum_{i_{1},i_{2}=1}^{n}M_{x^{(i_{1}),x^{(i_{2})}}^{2}}\frac{\partial^{2}f(x)}{\partial x^{(i_{2})}\partial x^{(i_{2})}}\right|_{x=\bar{X}} \\ &+\frac{\alpha^{3}}{\kappa}\frac{1}{3!}\sum_{i_{1},\dots,i_{3}=1}^{n}M_{x^{(i_{1}),\dots,x^{(i_{3})}}^{3}}\frac{\partial^{3}f(x)}{\partial x^{(i_{1}),\dots,x^{(i_{3})}}\left|_{x=\bar{X}}^{2}+\cdots\right.\right) \\ &+\left(\left(\left(+\frac{\alpha^{2}}{\kappa}\frac{\Psi_{X,\bar{X}}^{2}f}{2!}-\frac{\alpha^{2}}{\kappa}\frac{1}{2!}\sum_{i_{1},i_{2}=1}^{n}M_{x^{(i_{1}),\dots,x^{(i_{3})}}^{3}}\frac{\partial^{3}f(x)}{\partial x^{(i_{1})}\partial x^{(i_{2})}}\right|_{x=\bar{X}} \\ &+\frac{\alpha^{3}}{\kappa}\frac{\Psi_{X,\bar{X}}^{3}f}{2!}-\frac{\alpha^{3}}{\kappa}\frac{1}{3!}\sum_{i_{1},\dots,i_{3}=1}^{n}M_{x^{(i_{1}),\dots,x^{(i_{3})}}^{3}}\frac{\partial^{3}f(x)}{\partial x^{(i_{1})}\partial x^{(i_{2})}}\right|_{x=\bar{X}} \\ &+\frac{\alpha^{3}}{\kappa}\frac{1}{2}\sum_{i_{1},i_{2},i_{3}=1}^{n}M_{x^{(i_{1}),\dots,x^{(i_{3})}}^{2}}\frac{\partial f\left(x\right)}{\partial x^{(i_{3})}}\right|_{x=\bar{X}} \frac{\partial f\left(x\right)}{\partial x^{(i_{3})}}\right|_{x=\bar{X}} \\ &+\frac{\alpha^{3}}{\kappa}\frac{1}{2}\sum_{i_{1},\dots,i_{4}=1}^{n}M_{x^{(i_{1}),\dots,x^{(i_{4})}}^{2}\left(\frac{\partial f\left(x\right)}{\partial x^{(i_{2})}}\right|_{x=\bar{X}}\frac{\partial^{3}f(x)}{\partial x^{(i_{1})}\partial x^{(i_{2})}}\right|_{x=\bar{X}}\frac{\partial^{3}f(x)}{\partial x^{(i_{1})}\partial x^{(i_{2})}}\right|_{x=\bar{X}} \frac{\partial^{2}f\left(x\right)}{\partial x^{(i_{3})}}\right|_{x=\bar{X}} \\ &+\frac{\alpha^{4}}{\kappa}\frac{1}{4}\sum_{i_{1},\dots,i_{4}=1}^{n}\left(M_{x^{(i_{1}),\dots,x^{(i_{4})}}\frac{\partial f\left(x\right)}{\partial x^{(i_{2})}}\right|_{x=\bar{X}}\frac{\partial^{3}f(x)}{\partial x^{(i_{2})}}\right|_{x=\bar{X}}\frac{\partial^{3}f(x)}{\partial x^{(i_{2})}\partial x^{(i_{2})}}\right|_{x=\bar{X}}\frac{\partial^{3}f\left(x\right)}{\partial x^{(i_{2})}\partial x^{(i_{2})}}\right|_{x=\bar{X}}\frac{\partial^{4}f\left(x\right)}{\partial x^{(i_{2})}\partial x^{(i_{2})}}\right|_{x=\bar{X}} \\ &+\frac{\alpha^{4}}{\kappa}\frac{1}{4!}\sum_{i_{1},\dots,i_{4}=1}^{n}\left(M_{x^{(i_{1}),\dots,x^{(i_{4})}}\frac{\partial f\left(x\right)}{\partial x^{(i_{2})}}\right|_{x=\bar{X}}\frac{\partial^{3}f\left(x\right)}{\partial x^{(i_{2})}}\right)_{x=\bar{X}}\frac{\partial^{3}f\left(x\right)}{\partial x^{(i_{2})}}\right|_{x=\bar{X}}\frac{\partial^{3}f\left(x\right)}{\partial x^{(i_{2})}\partial x^{(i_{2})}}\right|_{x=\bar{X}}\frac{\partial^{4}f\left(x\right)}{\partial x^{(i_{2})}\partial x^{(i_{2})}}\right|_{x=\bar{X}}\frac{\partial^{3}f\left(x\right)}{\partial x^{(i_{2})}\partial x^{(i_{2})}}\right|_{x=\bar{X}}\frac{\partial^{2}f\left(x\right)}{\partial x^{(i_{2})}\partial x^{(i_{2})}}\right|_{x=\bar{X}}\frac{\partial^{3}f\left(x\right)}{\partial x^$$

$$\left( \frac{\partial^2 f(x)}{\partial x^{(i_4)} \partial x^{(i_5)}} \Big|_{x=\bar{X}} \frac{\partial^3 f(x)}{\partial x^{(i_1)} \cdots \partial x^{(i_3)}} \Big|_{x=\bar{X}}^T + \frac{\partial^3 f(x)}{\partial x^{(i_1)} \cdots \partial x^{(i_3)}} \Big|_{x=\bar{X}} \frac{\partial^2 f(x)}{\partial x^{(i_4)} \partial x^{(i_5)}} \Big|_{x=\bar{X}}^T \right)$$

$$\vdots$$

$$\Theta_{P_{ZZ}^*}^k,$$

em que, para k ímpar:

 $\Theta^k_{P^*_{ZZ}}$ 

$$\begin{split} &= \frac{\alpha^{k}}{\kappa} \frac{1}{(k-1)!} \sum_{i_{1},\cdots,i_{k}=1}^{n} M_{x^{(i_{1})\ldots,x^{(i_{k})}}}^{k} \\ & \left( \frac{\partial f(x)}{\partial x^{(i_{k})}} \right|_{x=\bar{X}} \frac{\partial^{k-1}f(x)}{\partial x^{(i_{1})\ldots,\partial x^{(i_{k-1})}}} \right|_{x=\bar{X}}^{T} + \frac{\partial^{k-1}f(x)}{\partial x^{(i_{1})\ldots,\partial x^{(i_{k-1})}}} \right|_{x=\bar{X}}^{T} \right) \\ & + \frac{\alpha^{k}}{\kappa} \frac{1}{2!(k-2)!} \sum_{i_{1},\cdots,i_{k}=1}^{n} \left( M_{x^{(i_{1})\ldots,x^{(i_{k})}}}^{k} - M_{x^{(i_{1})x^{(i_{2})}}}^{2} M_{x^{(i_{2})}}^{k-2} \right) \\ & \left( \frac{\partial^{2}f(x)}{\partial x^{(i_{k-1})}\partial x^{(i_{k})}} \right|_{x=\bar{X}} \frac{\partial^{k-2}f(x)}{\partial x^{(i_{1})\ldots,\partial x^{(i_{k-2})}}} \right)_{x=\bar{X}}^{T} + \frac{\partial^{k-2}f(x)}{\partial x^{(i_{1})\ldots,x^{(i_{k-2})}}} \right|_{x=\bar{X}} \frac{\partial^{2}f(x)}{\partial x^{(i_{1})\ldots,x^{(i_{k-2})}}} \right) \\ & \left( \frac{\partial^{3}f(x)}{\partial x^{(i_{k-3})\ldots,\partial x^{(i_{k})}}} \right|_{x=\bar{X}} \frac{\partial^{k-2}f(x)}{\partial x^{(i_{1})\ldots,\partial x^{(i_{k-2})}}} \right)_{x=\bar{X}}^{T} + \frac{\partial^{k-2}f(x)}{\partial x^{(i_{1})\ldots,x^{(i_{3})}}} \right) \\ & \left( \frac{\partial^{3}f(x)}{\partial x^{(i_{k-3})\ldots,\partial x^{(i_{k})}}} \right)_{x=\bar{X}} \frac{\partial^{k-2}f(x)}{\partial x^{(i_{1})\ldots,\partial x^{(i_{k-3})}}} \right)_{x=\bar{X}}^{T} + \frac{\partial^{k-2}f(x)}{\partial x^{(i_{1})\ldots,x^{(i_{3})}}} \right)_{x=\bar{X}} \frac{\partial^{3}f(x)}{\partial x^{(i_{k-3})\ldots,\partial x^{(i_{k})}}} \right)_{x=\bar{X}}^{T} \\ & \left( \frac{\partial^{3}f(x)}{\partial x^{(i_{k-1})/2}} \right)_{x=\bar{X}} \frac{\partial^{k-2}f(x)}{\partial x^{(i_{1})\ldots,\partial x^{(i_{k-3})}}} \right)_{x=\bar{X}} \frac{\partial^{k-2}f(x)}{\partial x^{(i_{k-1})/2}}} \right) \right) \\ & \left( \frac{\partial^{(k-1)/2}f(x)}}{\partial x^{(i_{k+1})/2}} \right)_{x=\bar{X}} \frac{\partial^{(k-1)/2}f(x)}{\partial x^{(i_{k-1})/2}}} \right)_{x=\bar{X}}^{T} \frac{\partial^{(k-1)/2}f(x)}{\partial x^{(i_{k+1})/2}} \right)_{x=\bar{X}} \frac{\partial^{(k-1)/2}f(x)}{\partial x^{(i_{k+1})/2}} \dots \partial x^{(i_{k})}} \right)_{x=\bar{X}} \frac{\partial^{(k-1)/2}f(x)}{\partial x^{(i_{k+1})/2}} \dots \partial x^{(i_{k})}} \right)_{x=\bar{X}} \frac{\partial^{(k-1)/2}f(x)}{\partial x^{(i_{k+1})/2}} \dots \partial x^{(i_{k})}} \right)_{x=\bar{X}} \frac{\partial^{(k-1)/2}f(x)}{\partial x^{(i_{k+1})/2}} \dots \partial x^{(i_{k})} \right)_{x=\bar{X}} \frac{\partial^{(k+1)/2}f(x)}{\partial x^{(i_{k+1})/2}} \right)_{x=\bar{X}} \frac{\partial^{(k-1)/2}f(x)}{\partial x^{(i_{k+1})/2}} \dots \partial x^{(i_{k})} \right)_{x=\bar{X}} \frac{\partial^{(k-1)/2}f(x)}{\partial x^{(i_{k+1})/2}} \right)_{x=\bar{X}} \frac{\partial^{(k-1)/2}f(x)}{\partial x^{(i_{k+1})/2}} \dots \partial x^{(i_{k})} \right)_{x=\bar{X}} \frac{\partial^{(k-1)/2}f(x)}{\partial x^{(i_{k+1})/2}} \right)_{x=\bar{X}} \frac{\partial^{(k-1)/2}f(x)}{\partial x^{(i_{k+1})/2}} \dots \partial x^{(i_{k})} \right)_{x=\bar{X}} \frac{\partial^{(k-1)/2}f(x)}{\partial x^{(i_{k+1})/2}} \dots \partial x^{(i_{k})$$

e para k par:

 $\Theta^k_{P^*_{ZZ}}$ 

$$\begin{split} &= \frac{\alpha^{k}}{\kappa} \frac{1}{\left(\frac{k}{2}\right)!\left(\frac{k}{2}\right)!} \sum_{i_{1},\cdots,i_{k}=1}^{n} \left( M_{x^{(i_{1})}...x^{(i_{k})}}^{k} - M_{x^{(i_{1})}...x^{(i_{k}/2)}}^{k/2} M_{x^{(k/2+1)}...x^{(i_{k})}}^{k/2} \right) \\ &\left( \frac{\partial^{k/2}f(x)}{\partial x^{(i_{k}/2)}...\partial x^{(i_{k})}} \right|_{x=\bar{X}}^{x} \frac{\partial^{k/2}f(x)}{\partial x^{(k/2+1)}...\partial x^{(i_{k})}} \right|_{x=\bar{X}}^{T} + \frac{\partial^{k/2}f(x)}{\partial x^{(k/2+1)}...\partial x^{(i_{k})}} \right|_{x=\bar{X}}^{x} \frac{\partial^{k/2}f(x)}{\partial x^{(i_{k}/2)}...\partial x^{(i_{k})}} \right|_{x=\bar{X}}^{T} \\ &\left( \frac{\partial f(x)}{\partial x^{(i_{k})}} \right|_{x=\bar{X}}^{x} \frac{\partial f^{k/2}(1)}{\partial x^{(i_{k})-1}} \right|_{x=\bar{X}}^{T} + \frac{\partial^{k-1}f(x)}{\partial x^{(i_{k})-1}} \right|_{x=\bar{X}}^{x} \frac{\partial f(x)}{\partial x^{(i_{k})}} \right|_{x=\bar{X}}^{T} \\ &\left( \frac{\partial f(x)}{\partial x^{(i_{k})}} \right|_{x=\bar{X}}^{x} \frac{\partial f^{k-1}f(x)}{\partial x^{(i_{k}-1)}} \right|_{x=\bar{X}}^{T} + \frac{\partial^{k-1}f(x)}{\partial x^{(i_{k})-1}} \right|_{x=\bar{X}}^{x} \frac{\partial f(x)}{\partial x^{(i_{k})}} \right|_{x=\bar{X}}^{T} \\ &\left( \frac{\partial f(x)}{\partial x^{(i_{k})}} \right|_{x=\bar{X}}^{x} \frac{\partial f^{k-1}f(x)}{\partial x^{(i_{k})-1}} \right|_{x=\bar{X}}^{T} + \frac{\partial^{k-1}f(x)}{\partial x^{(i_{k})-1}} \right|_{x=\bar{X}}^{x} \frac{\partial f(x)}{\partial x^{(i_{k})}} \right|_{x=\bar{X}}^{T} \\ &\left( \frac{\partial f(x)}{\partial x^{(i_{k})}} \right|_{x=\bar{X}} \frac{\partial f^{k-1}f(x)}{\partial x^{(i_{k})-1}} \right|_{x=\bar{X}}^{x} \frac{\partial f^{k-1}f(x)}{\partial x^{(i_{k})-1}} \right|_{x=\bar{X}}^{x} \frac{\partial f^{k-1}f(x)}{\partial x^{(i_{k}-1)}} \right|_{x=\bar{X}}^{x} \frac{\partial f^{k-1}f(x)}{\partial x^{(i_{k})}} \right|_{x=\bar{X}} \\ &\left( \frac{\partial^{2}f(x)}{\partial x^{(i_{k})}} \right|_{x=\bar{X}} \frac{\partial f^{k-2}f(x)}{\partial x^{(i_{k})-1}} \right|_{x=\bar{X}}^{x} \frac{\partial f^{k-2}f(x)}{\partial x^{(i_{k}-1)}\partial x^{(i_{k})}} \right|_{x=\bar{X}} \frac{\partial f^{k-2}f(x)}{\partial x^{(i_{k}-2)/2}} \right|_{x=\bar{X}} \frac{\partial f^{k-2}f(x)}{\partial x^{(i_{k}-2)/2}} \right|_{x=\bar{X}} \frac{\partial f^{k-2}f(x)}{\partial x^{(i_{k}-2)/2}} \frac{\partial f^{k-2}f(x)}{\partial x^{(i_{k}-2)/2}} \frac{\partial f^{k-2}f(x)}{\partial x^{(i_{k}-2)/2}} \frac{\partial f^{k-2}f(x)}{\partial x^{(i$$

#### A.1.3 Variável aleatória simétrica

Das propriedades que uma variável aleatória pode ter, uma bastante interessante de ser estudada é a simetria, visto que ela é uma propriedade das variáveis aleatórias gaussianas, entre outras. Façamos primeiro a definição de uma variável aleatória simétrica e depois vamos obter algumas conseqüências desta propriedade para alguns de seus momentos e de alguns dos momentos de uma transformação não-linear de uma variável aleatória simétrica.

**Definição A.1.1 (Variável aleatória simétrica).** <sup>4</sup> Seja a variável aleatória  $X \in \Re^n$  de função de densidade de probabilidade  $p_X(x)$  e o ponto  $c \in \Re^n$ , X será uma variável aleatória simétrica em torno de  $c \in \Re^n$  se

$$p_X(c-x) = p_X(c+x) , \forall x \in \Re^n.$$

Lema A.1.8 (Momentos ímpares de uma variável aleatória simétrica). <sup>5</sup> Seja  $X \in \Re^n$ uma variável aleatória simétrica em torno de sua média  $\overline{X}$ , todos os seus momentos centrais de ordem ímpar são iguais a zero.

PROVA Considere os escalares  $x^{(i)} \bar{x}^{(i)}$  e ,  $i = 1, 2, \cdots, n$ , tal que

$$X = \begin{bmatrix} x^{(1)} \\ x^{(2)} \\ \vdots \\ x^{(n)} \end{bmatrix}$$
$$\bar{X} = \begin{bmatrix} \bar{x}^{(1)} \\ \bar{x}^{(2)} \\ \vdots \\ \bar{x}^{(n)} \end{bmatrix} e$$

e

$$\begin{bmatrix} \bar{x}^{(n)} \end{bmatrix}$$
  
Da Definição 2.2.4 o *k*-ésimo momento central entre  $x^{(j_1)}, \ldots, x^{(j_k)}$  é

$$E\left\{\left(x^{(j_{1})} - \bar{x}^{(j_{1})}\right) \cdots \left(x^{(j_{k})} - \bar{x}^{(j_{k})}\right)\right\}$$
  
=  $\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \left(x^{(j_{1})} - \bar{x}^{(j_{1})}\right) \cdots \left(x^{(j_{k})} - \bar{x}^{(j_{k})}\right) p_{X}\left(x^{(1)}, \cdots, x^{(n)}\right) dx^{(1)} \cdots dx^{(n)}$   
=  $\int_{-\infty}^{\bar{x}^{(j_{1})}} \cdots \int_{-\infty}^{\bar{x}^{(j_{n})}} \left(x^{(j_{1})} - \bar{x}^{(j_{1})}\right) \cdots \left(x^{(j_{k})} - \bar{x}^{(j_{k})}\right) p_{X}\left(x^{(1)}, \cdots, x^{(n)}\right) dx^{(1)} \cdots dx^{(n)}$ 

<sup>4</sup>Henrique.

<sup>&</sup>lt;sup>5</sup>Henrique.
$$+ \int_{\bar{x}^{(j_1)}}^{\infty} \cdots \int_{\bar{x}^{(j_n)}}^{\infty} \left( x^{(j_1)} - \bar{x}^{(j_1)} \right) \cdots \left( x^{(j_k)} - \bar{x}^{(j_k)} \right) p_X \left( x^{(1)}, \cdots, x^{(n)} \right) dx^{(1)} \cdots dx^{(n)}$$

$$= \int_{-\infty}^{\bar{x}^{(j_1)}} \cdots \int_{-\infty}^{\bar{x}^{(j_n)}} \left( x^{(j_1)} - \bar{x}^{(j_1)} \right) \cdots \left( x^{(j_k)} - \bar{x}^{(j_k)} \right) p_X \left( x^{(1)}, \cdots, x^{(n)} \right) dx^{(1)} \cdots dx^{(n)}$$

$$+ (-1)^n \int_{-\infty}^{\bar{x}^{(j_1)}} \cdots \int_{-\infty}^{\bar{x}^{(j_n)}} \left( x^{(j_1)} - \bar{x}^{(j_1)} \right) \cdots \left( x^{(j_k)} - \bar{x}^{(j_k)} \right) p_X \left( x^{(1)}, \cdots, x^{(n)} \right) dx^{(1)} \cdots dx^{(n)}$$

Se fizermos duas mudanças de variável, uma na primeira equação e outra na segunda:

$$u^{(i)} = x^{(i)} - \bar{x}^{(i)}$$

$$\therefore du^{(i)} = dx^{(i)}$$

e

$$w^{(i)} = \bar{x}^{(i)} - x^{(i)}$$

Prova

$$\therefore dw^{(i)} = -dx^{(i)}$$

teremos

$$= \int_{-\infty}^{0} \cdots \int_{-\infty}^{0} u^{(j_1)} \cdots u^{(j_k)}$$

$$p_X \left( u^{(1)} + \bar{x}^{(1)}, \cdots, u^{(n)} + \bar{x}^{(n)} \right) du^{(1)} \cdots du^{(n)}$$

$$+ \left( -1 \right)^n \int_{-\infty}^{0} \cdots \int_{-\infty}^{0} \left( -w^{(j_1)} \right) \cdots \left( -w^{(j_k)} \right)$$

$$p_X \left( \bar{x}^{(1)} - w^{(1)}, \cdots, x^{(n)} - w^{(n)} \right) \left( -dw^{(1)} \right) \cdots \left( -dw^{(n)} \right)$$

$$= \int_{-\infty}^{0} \cdots \int_{-\infty}^{0} u^{(j_1)} \cdots u^{(j_k)}$$

$$p_X \left( u^{(1)} + \bar{x}^{(1)}, \cdots, u^{(n)} + \bar{x}^{(n)} \right) du^{(1)} \cdots du^{(n)}$$

$$+ \left( -1 \right)^{2n} \int_{-\infty}^{0} \cdots \int_{-\infty}^{0} \left( -w^{(j_1)} \right) \cdots \left( -w^{(j_k)} \right)$$

$$p_X \left( \bar{x}^{(1)} - w^{(1)}, \cdots, x^{(n)} - w^{(n)} \right) dw^{(1)} \cdots dw^{(n)}$$

$$= \int_{-\infty}^{0} \cdots \int_{-\infty}^{0} u^{(j_1)} \cdots u^{(j_k)}$$

$$p_X \left( \bar{x}^{(1)} - w^{(1)}, \cdots, x^{(n)} - w^{(n)} \right) dw^{(1)} \cdots dw^{(n)}$$

$$= \int_{-\infty}^{0} \cdots \int_{-\infty}^{0} u^{(j_1)} \cdots u^{(j_k)}$$

$$p_X \left( u^{(1)} + \bar{x}^{(1)}, \cdots, u^{(n)} + \bar{x}^{(n)} \right) du^{(1)} \cdots du^{(n)}$$

$$= \int_{-\infty}^{0} \cdots \int_{-\infty}^{0} w^{(j_1)} \cdots w^{(j_k)}$$

$$p_X \left( u^{(1)} + \bar{x}^{(1)}, \cdots, u^{(n)} + \bar{x}^{(n)} \right) du^{(1)} \cdots du^{(n)}$$

Da definição A.1.1, temos que

$$= \int_{-\infty}^{0} \cdots \int_{-\infty}^{0} u^{(j_1)} \cdots u^{(j_k)}$$
  

$$p_X \left( u^{(1)} + \bar{x}^{(1)}, \cdots, u^{(1)} + \bar{x}^{(1)} \right) du^{(1)} \cdots du^{(n)}$$
  

$$+ (-1)^k \int_{-\infty}^{0} \cdots \int_{-\infty}^{0} w^{(j_1)} \cdots w^{(j_k)}$$
  

$$p_X \left( \bar{x}^{(1)} - w^{(1)}, \cdots, x^{(n)} - w^{(n)} \right) dw^{(1)} \cdots dw^{(n)}$$
  

$$= \left( 1 + (-1)^k \right) \int_{-\infty}^{0} \cdots \int_{-\infty}^{0} u^{(j_1)} \cdots u^{(j_k)}$$
  

$$p_X \left( u^{(1)} + \bar{x}^{(1)}, \cdots, u^{(1)} + \bar{x}^{(1)} \right) du^{(1)} \cdots du^{(n)}.$$

Para k ímpar,

$$\begin{pmatrix} 1+(-1)^k \end{pmatrix} \int_{-\infty}^0 \cdots \int_{-\infty}^0 u^{(j_1)} \cdots u^{(j_k)} \\ p_X \left( u^{(1)} + \bar{x}^{(1)}, \cdots, u^{(1)} + \bar{x}^{(1)} \right) du^{(1)} \cdots du^{(n)} \\ = (1-1) \int_{-\infty}^0 \cdots \int_{-\infty}^0 u^{(j_1)} \cdots u^{(j_k)} \\ p_X \left( u^{(1)} + \bar{x}^{(1)}, \cdots, u^{(1)} + \bar{x}^{(1)} \right) du^{(1)} \cdots du^{(n)} \\ = 0.$$

Agora queremos apresentar um resultado com relação à média da transformação e outro com relação à matriz de covariância da transformação. Mas para isso, vamos, primeiro, ver o seguinte alguns lemas com relação ao operador  $\Psi^{\alpha}_{X,c}f$ :

**Lema A.1.9.** Sejam  $X \in \Re^n$  uma variável aleatória simétrica em torno de sua média  $\overline{X}$  e  $\Psi^{\alpha}_{X,\overline{X}}f$  o operador definido em 2.1.5, se  $\alpha$  for ímpar,

$$E\left\{\Psi_{X,\bar{X}}^{\alpha}f\right\} = 0.$$

PROVA Da definição 2.1.5,

$$\Psi_{X,\bar{X}}^{\alpha}f \triangleq \sum_{i_1,\dots,i_{\alpha}=1}^n \left( x^{(i_1)} - \bar{x}^{(i_1)} \right) \cdots \left( x^{(i_{\alpha})} - \bar{x}^{(i_{\alpha})} \right) \left. \frac{\partial^{\alpha}f\left(x\right)}{\partial x^{(i_1)} \cdots \partial x^{(i_{\alpha})}} \right|_{x=\bar{X}}$$

Portanto,

$$E\left\{\Psi_{X,\bar{X}}^{\alpha}f\right\}$$
  
=  $E\left\{\sum_{i_1,\dots,i_{\alpha}=1}^{n} \left(x^{(i_1)} - \bar{x}^{(i_1)}\right) \cdots \left(x^{(i_{\alpha})} - \bar{x}^{(i_{\alpha})}\right) \frac{\partial^{\alpha}f(x)}{\partial x^{(i_1)} \cdots \partial x^{(i_{\alpha})}}\right|_{x=\bar{X}}\right\}$ 

$$= \sum_{i_1,\dots,i_{\alpha}=1}^{n} E\left\{ \left( x^{(i_1)} - \bar{x}^{(i_1)} \right) \cdots \left( x^{(i_{\alpha})} - \bar{x}^{(i_{\alpha})} \right) \right\} \left. \frac{\partial^{\alpha} f\left( x \right)}{\partial x^{(i_1)} \cdots \partial x^{(i_{\alpha})}} \right|_{x=\bar{x}}$$

Do Lema A.1.8, resulta que

$$\sum_{i_1,\dots,i_{\alpha}=1}^n E\left\{\left(x^{(i_1)} - \bar{x}^{(i_1)}\right) \cdots \left(x^{(i_{\alpha})} - \bar{x}^{(i_{\alpha})}\right)\right\} \left.\frac{\partial^{\alpha} f\left(x\right)}{\partial x^{(i_1)} \cdots \partial x^{(i_{\alpha})}}\right|_{x=\bar{X}} = 0. \qquad \Box$$

Os resultados seguintes são corolários do lema acima.

**Corolário A.1.3 (Média da transformação de uma variável aleatória simétrica).** Sejam a variável aleatória  $X \in \mathbb{R}^n$  simétrica em torno de sua média  $\overline{X}$  e o mapeamento  $f : \mathbb{R}^n \mapsto \mathbb{R}^m$  diferenciável que define a variável aleatória Y tal que

$$Y \triangleq f(X),$$

a média de Y pode ser escrita da seguinte forma:

se k for par,

$$\bar{Y} = f\left(\bar{X}\right) + E\left\{\frac{\Psi_{X,\bar{X}}^2 f}{2!}\right\} + E\left\{\frac{\Psi_{X,\bar{X}}^4 f}{4!}\right\} + \cdots$$
(A.10)

$$= f\left(\bar{X}\right) + \frac{1}{2!} \sum_{i_1, i_2=1}^n M_{x^{(i_1)}, x^{(i_2)}}^2 \left. \frac{\partial^2 f\left(x\right)}{\partial x^{(i_1)} \partial x^{(i_2)}} \right|_{x=\bar{X}}$$
(A.11)

$$+\frac{1}{4!}\sum_{i_{1},\ldots,i_{4}=1}^{n}M^{4}_{x^{(i_{1})},\ldots,x^{(i_{4})}}\left.\frac{\partial^{4}f(x)}{\partial x^{(i_{1})}\cdots\partial x^{(i_{4})}}\right|_{x=\bar{X}}$$
(A.12)

$$+\cdots+\frac{1}{k!}\sum_{i_1,\ldots,i_k=1}^n M^k_{x^{(i_1)},\ldots,x^{(i_k)}} \left.\frac{\partial^k f\left(x\right)}{\partial x^{(i_1)}\cdots\partial x^{(i_k)}}\right|_{x=\bar{X}}+\cdots,$$

se k for ímpar,

$$\bar{Y} = f\left(\bar{X}\right) + E\left\{\frac{\Psi_{X,\bar{X}}^2 f}{2!}\right\} + E\left\{\frac{\Psi_{X,\bar{X}}^4 f}{4!}\right\}$$
(A.13)

$$+\dots+E\left\{\frac{\Psi_{X,\bar{X}}^{*}f}{(k-1)!}\right\}$$
(A.14)

$$= f\left(\bar{X}\right) + \frac{1}{2!} \sum_{i_1, i_2=1}^n M_{x^{(i_1)}, x^{(i_2)}}^2 \left. \frac{\partial^2 f\left(x\right)}{\partial x^{(i_1)} \partial x^{(i_2)}} \right|_{x=\bar{X}}$$
(A.15)

$$+\frac{1}{4!}\sum_{i_1,\dots,i_4=1}^n M^4_{x^{(i_1)},\dots,x^{(i_4)}} \left.\frac{\partial^4 f(x)}{\partial x^{(i_1)}\cdots\partial x^{(i_4)}}\right|_{x=\bar{X}}$$
(A.16)

$$+\dots + \frac{1}{k!} \sum_{i_1,\dots,i_{k-1}=1}^n M^{k-1}_{x^{(i_1)},\dots,x^{(i_{k-1})}} \left. \frac{\partial^{k-1} f(x)}{\partial x^{(i_1)} \dots \partial x^{(i_{k-1})}} \right|_{x=\bar{X}} + \dots, \qquad \Box$$

**Corolário A.1.4 (Matriz de covariância da transformação de uma variável aleatória simétrica).** Sejam a variável aleatória  $X \in \mathbb{R}^n$  simétrica em torno de sua média  $\overline{X}$  e o mapeamento  $f : \mathbb{R}^n \mapsto \mathbb{R}^m$  diferenciável que define a variável aleatória Y tal que

$$Y \triangleq f(X),$$

a matriz de covariância de Y pode ser escrita da seguinte forma

$$P_{YY} = \hat{\Theta}_{P_{YY}}^2 + \hat{\Theta}_{P_{YY}}^4 + \hat{\Theta}_{P_{YY}}^6 \dots + \Theta_{P_{YY}}^k + \dots$$

 $\begin{array}{l} em \; que \; \hat{\Theta}^{1}_{P_{YY}} + \hat{\Theta}^{2}_{P_{YY}} + \hat{\Theta}^{3}_{P_{YY}} + \hat{\Theta}^{4}_{P_{YY}} + \cdots \; s \tilde{a} o \; s \; termos, \; respectivamente, \; \Theta^{1}_{P_{YY}} + \\ \Theta^{2}_{P_{YY}} + \Theta^{3}_{P_{YY}} + \Theta^{4}_{P_{YY}} + \cdots \; para \; X \; sim \acute{e} trica. \end{array} \qquad \qquad \Box$ 

# Corolário A.1.5.

$$\hat{\Theta}_{P_{YY}}^2 = \sum_{i,j=1}^n M_{x^{(i)},x^{(j)}}^2 \left. \frac{\partial f(x)}{\partial x^{(i)}} \right|_{x=\bar{X}} \left. \frac{\partial f(x)}{\partial x^{(j)}} \right|_{x=\bar{X}}^T$$
(A.17)

$$= \sum_{i,j=1}^{n} (P_{XX})_{ij} \left. \frac{\partial f(x)}{\partial x^{(i)}} \right|_{x=\bar{X}} \left. \frac{\partial f(x)}{\partial x^{(j)}} \right|_{x=\bar{X}}^{T}$$
(A.18)  
$$= \Theta_{P_{YY}}^{1}.$$

$$\hat{\Theta}_{P_{YY}}^{4} = \frac{1}{4} \sum_{i_{1},\cdots,i_{4}=1}^{n} \left( M_{x^{(i_{1})}\cdots x^{(i_{4})}}^{4} - M_{x^{(i_{1})}x^{(i_{2})}}^{2} M_{x^{(i_{4})}x^{(i_{4})}}^{2} \right)$$

$$\frac{\partial^{2}f(x)}{\partial x^{(i_{1})}\partial x^{(i_{2})}} \Big|_{x=\bar{X}} \frac{\partial^{2}f(x)}{\partial x^{(i_{3})}\partial x^{(i_{4})}} \Big|_{x=\bar{X}}^{T}$$

$$+ \sum_{i_{1},\cdots,i_{4}=1}^{n} M_{x^{(i_{1})}\cdots x^{(i_{4})}}^{4}$$

$$\left( \frac{\partial f(x)}{\partial x^{(i_{4})}} \Big|_{x=\bar{X}} \frac{\partial^{3}f(x)}{\partial x^{(i_{1})}\cdots \partial x^{(i_{3})}} \Big|_{x=\bar{X}}^{T} + \frac{\partial^{3}f(x)}{\partial x^{(i_{1})}\cdots \partial x^{(i_{3})}} \Big|_{x=\bar{X}} \frac{\partial f(x)}{\partial x^{(i_{4})}} \Big|_{x=\bar{X}}^{T} \right)$$

$$(A.19)$$

 $\hat{\Theta}^6_{P_{YY}}$ 

$$=\sum_{i_{1},\cdots,i_{6}=1}^{n} M_{x\cdots x^{(i_{6})}}^{6} \frac{\partial^{3}f(x)}{\partial x^{(i_{1})}\cdots\partial x^{(i_{3})}} \Big|_{x=\bar{X}} \frac{\partial^{3}f(x)}{\partial x^{(i_{4})}\cdots\partial x^{(i_{6})}} \Big|_{x=\bar{X}}^{T} + \sum_{i_{1},\cdots,i_{6}=1}^{n} \left( M_{x\cdots x^{(i_{6})}}^{6} - M_{x^{(i_{5})}x^{(i_{6})}}^{2} M_{x^{(i_{1})}\cdots x^{(i_{4})}}^{4} \right) \right) \\ \left( \frac{\partial^{4}f(x)}{\partial x^{(i_{1})}\cdots\partial x^{(i_{4})}} \Big|_{x=\bar{X}} \frac{\partial^{2}f(x)}{\partial x^{(i_{5})}\partial x^{(i_{6})}} \Big|_{x=\bar{X}}^{T} + \frac{\partial^{2}f(x)}{\partial x^{(i_{5})}\partial x^{(i_{6})}} \Big|_{x=\bar{X}} \frac{\partial^{4}f(x)}{\partial x^{(i_{1})}\cdots\partial x^{(i_{4})}} \Big|_{x=\bar{X}}^{T} \right) \quad .$$
(A.20)  
$$+\sum_{i_{1},\cdots,i_{8}=1}^{n} \left( M_{x^{(1_{1})}\cdots x^{(i_{8})}}^{8} - M_{x^{(i_{1})}\cdots x^{(i_{4})}}^{4} M_{x^{(i_{5})}\cdots x^{(i_{8})}}^{4} \right) \right) \\ \quad \frac{\partial^{4}f(x)}{\partial x^{(i_{1})}\cdots\partial x^{(i_{4})}} \Big|_{x=\bar{X}} \frac{\partial^{4}f(x)}{\partial x^{(i_{5})}\cdots\partial x^{(i_{8})}} \Big|_{x=\bar{X}}^{T}$$

# A.2 RESULTADOS DE CONJUNTO DE AMOSTRAS

### A.2.1 Momentos da transformada de um conjunto de amostras

Neste item queremos deduzir, de modo análogo ao feito para variáveis aleatórias, as formas das séries de Taylor da média e da matriz de covariância da transformação de um conjunto de amostras.

Lema A.2.1 (Média amostral de uma transformada). <sup>6</sup> Sejam { $\chi_i, w_i$ }, i = 0, 1, 2, ..., N, com  $N \in \mathbb{N}$ , um conjunto de amostras ( $\chi_i$ ) e pesos ( $w_i$ ), de média amostral  $\eta_{\chi_i}$  e o mapeamento  $f : \Re^n \mapsto \Re^m$  diferenciável que define os pontos  $\gamma_i$  tal que

$$\gamma_i \triangleq f\left(\chi_i\right),$$

a média amostral de  $\gamma_i$  pode ser escrita da seguinte forma

$$\eta_{\gamma_i} = f\left(\eta_{\chi_i}\right) + \Xi \left\{\frac{\Psi_{\chi,\eta_{\chi_i}}^2 f}{2!}\right\} + \Xi \left\{\frac{\Psi_{\chi,\eta_{\chi_i}}^3 f}{3!}\right\} + \dots + \Xi \left\{\frac{\Psi_{\chi,\eta_{\chi_i}}^k f}{k!}\right\} + \dots \qquad \square$$

PROVA Pelo Corolário 2.2.1, sabemos que

$$\eta_{\gamma_{i}} \triangleq \Xi \left\{ f\left(\chi_{i}\right) \right\}.$$

PROVA Utilizando a expansão de Taylor de  $f(\chi_i)$  em torno de  $\eta_{\chi_i}$ , teremos

$$\begin{split} &\Xi\left\{f\left(\chi_{i}\right)\right\}\\ &=\Xi\left\{f\left(\eta_{\chi_{i}}\right)+\Psi_{\chi,\eta_{\chi_{i}}}f+\frac{\Psi_{\chi,\eta_{\chi_{i}}}^{2}f}{2!}+\cdots+\frac{\Psi_{\chi,\eta_{\chi_{i}}}^{k}f}{k!}\right\}+\cdots\\ &=\Xi\left\{f\left(\eta_{\chi_{i}}\right)\right\}+\Xi\left\{\Psi_{\chi,\eta_{\chi_{i}}}f\right\}+\Xi\left\{\frac{\Psi_{\chi,\eta_{\chi_{i}}}^{2}f}{2!}\right\}\\ &+\cdots+\Xi\left\{\frac{\Psi_{\chi,\eta_{\chi_{i}}}^{k}f}{k!}\right\}+\cdots\\ &=f\left(\eta_{\chi_{i}}\right)+\Xi\left\{\Psi_{\chi,\eta_{\chi_{i}}}f\right\}+\Xi\left\{\frac{\Psi_{\chi,\eta_{\chi_{i}}}^{2}f}{2!}\right\}\\ &+\cdots+\Xi\left\{\frac{\Psi_{\chi,\eta_{\chi_{i}}}^{k}f}{k!}\right\}+\cdots. \end{split}$$

<sup>6</sup>[98], página 442, equação (14.36).

# Lema A.2.2 (Matriz de covariância amostral de uma transformada).<sup>7</sup>

**Lema A.2.3.** Sejam  $\{\chi_i, w_i\}$ , i = 0, 1, 2, ..., N, com  $N \in \mathbb{N}$ , um conjunto de amostras  $(\chi_i)$ e pesos  $(w_i)$ , de média amostral  $\eta_{\chi_i}$  e o mapeamento  $f : \Re^n \mapsto \Re^m$  diferenciável até ordem k que define os pontos  $\gamma_i$  tal que

$$\gamma_i \triangleq f\left(\chi_i\right),$$

a matriz de covariância amostral amostral de  $\gamma_i$  pode ser escrita da seguinte forma

$$\Sigma_{\gamma\gamma} = \Theta_{\Sigma_{\gamma\gamma}}^2 + \Theta_{\Sigma_{\gamma\gamma}}^3 + \Theta_{\Sigma_{\gamma\gamma}}^4 + \dots + \Theta_{\Sigma_{\gamma\gamma}}^k + \dots$$
 (A.21)

em que  $\Theta_{\Sigma_{\gamma\gamma}}^{j}$  é o termo de ordem j da série de Taylor de  $\Sigma_{\gamma\gamma}^{8}$ :

$$\Theta_{\Sigma_{\gamma\gamma}}^{5} \triangleq E\left\{\left(\Psi_{\chi_{i},\eta_{\chi_{i}}}f\right)\left(\Psi_{\chi_{i},\eta_{\chi_{i}}}f\right)^{T}\right\}.$$
(A.22)
$$\Theta_{\Sigma_{\gamma\gamma}}^{3} \triangleq \Xi\left\{\left(\Psi_{\chi_{i},\eta_{\chi_{i}}}f\right)\left(\frac{\Psi_{\chi_{i},\eta_{\chi_{i}}}^{2}f}{2!}\right)^{T}\right\} + \Xi\left\{\left(\frac{\Psi_{\chi_{i},\chi_{i}}^{2}f}{2!}\right)\left(\Psi_{\chi_{i},\eta_{\chi_{i}}}f\right)^{T}\right\}$$

$$= \left\{\left(\frac{\Psi_{\chi_{i},\chi_{i}}^{2}f}{2!}\right)\left(\frac{\Psi_{\chi_{i},\chi_{i}}f}{2!}\right)^{T}\right\}$$

$$\Theta_{\Sigma_{\gamma\gamma}}^{4} \triangleq +\Xi\left\{\left(\Psi_{\chi_{i},\eta_{\chi_{i}}}f\right)\left(\frac{\Psi_{\chi_{i},\chi_{i}}f}{3!}\right)^{T}\right\}$$

$$+\Xi\left\{\left(\frac{\Psi_{\chi_{i},\eta_{\chi_{i}}}f}{3!}\right)\left(\Psi_{\chi_{i},\eta_{\chi_{i}}}f\right)^{T}\right\}$$

$$+\Xi\left\{\left(\frac{\Psi_{\chi_{i},\eta_{\chi_{i}}}f}{4!}\right)\left(\Psi_{\chi_{i},\eta_{\chi_{i}}}f\right)^{T}\right\}$$

$$\Theta_{\Sigma_{\gamma\gamma}}^{5} \triangleq +\Xi\left\{\left(\frac{\Psi_{\chi_{i},\chi_{\chi_{i}}}f}{3!}\right)\left(\frac{\Psi_{\chi_{i},\chi_{\chi_{i}}}f}{4!}\right)^{T}\right\}$$

$$\Theta_{\Sigma_{\gamma\gamma}}^{5} \triangleq -\Xi\left\{\left(\frac{\Psi_{\chi_{i},\chi_{\chi_{i}}}f}{4!}\right)\left(\frac{\Psi_{\chi_{i},\eta_{\chi_{i}}}f}{4!}\right)^{T}\right\}$$

$$-\Xi\left\{\left(\frac{\Psi_{\chi_{i},\chi_{\chi_{i}}}f}{3!}\right)\left(\frac{\Psi_{\chi_{i},\eta_{\chi_{i}}}f}{3!}\right)^{T}\right\}$$

$$-\Xi\left\{\left(\frac{\Psi_{\chi_{i},\chi_{\chi_{i}}}f}{3!}\right)\left(\frac{\Psi_{\chi_{i},\chi_{\chi_{i}}}f}{3!}\right)^{T}\right\}$$

$$-\Xi\left\{\left(\frac{\Psi_{\chi_{i},\chi_{\chi_{i}}}f}{3!}\right)\Xi\left\{\left(\frac{\Psi_{\chi_{i},\chi_{\chi_{i}}}f}{3!}\right)\right\}^{T}$$

÷

<sup>&</sup>lt;sup>7</sup>Modificado de [98], página 445, equação (14.476).

<sup>&</sup>lt;sup>8</sup>Por ordem j da Série de Taylor entendemos por todos os termos cuja maior derivada da função envolvida for de ordem j.

Para k par:

$$\begin{split} &= \Xi \left\{ \left( \frac{\Psi_{\chi_{i},\eta_{\chi_{i}}}^{k}f}{(\frac{k}{2})!} \right) \left( \frac{\Psi_{\chi_{i},\eta_{\chi_{i}}}^{k}f}{(\frac{k}{2})!} \right)^{T} \right\} - \Xi \left\{ \frac{\Psi_{\chi_{i},\eta_{\chi_{i}}}^{k}f}{(\frac{k}{2})!} \right\} E \left\{ \frac{\Psi_{\chi_{i},\eta_{\chi_{i}}}^{k}f}{(\frac{k}{2})!} \right\}^{T} \\ &+ E \left\{ \left( \Psi_{\chi_{i},\eta_{\chi_{i}}}f \right) \left( \frac{\Psi_{\chi_{i},\eta_{\chi_{i}}}^{k-1}f}{(k-1)!} \right)^{T} \right\} + E \left\{ \left( \frac{\Psi_{\chi_{i},\eta_{\chi_{i}}}^{k-1}f}{(k-2)!} \right) \left( \frac{\Psi_{\chi_{i},\eta_{\chi_{i}}}f}{(k-2)!} \right)^{T} \right\} \\ &+ E \left\{ \left( \frac{\Psi_{\chi_{i},\eta_{\chi_{i}}}f}{2!} \right) \left( \frac{\Psi_{\chi_{i},\eta_{\chi_{i}}}^{k-2}f}{(k-2)!} \right)^{T} \right\} + E \left\{ \left( \frac{\Psi_{\chi_{i},\eta_{\chi_{i}}}f}{(k-2)!} \right) \left( \frac{\Psi_{\chi_{i},\eta_{\chi_{i}}}f}{2!} \right)^{T} \right\} \\ &- E \left\{ \frac{\Psi_{\chi_{i},\eta_{\chi_{i}}}f}{2!} \right\} E \left\{ \frac{\Psi_{\chi_{i},\eta_{\chi_{i}}}f}{(k-3)!} \right\}^{T} \right\} + E \left\{ \left( \frac{\Psi_{\chi_{i},\eta_{\chi_{i}}}f}{(k-2)!} \right) \left( \frac{\Psi_{\chi_{i},\eta_{\chi_{i}}}f}{2!} \right)^{T} \right\} \\ &- E \left\{ \frac{\Psi_{\chi_{i},\eta_{\chi_{i}}}f}{3!} \right\} E \left\{ \frac{\Psi_{\chi_{i},\eta_{\chi_{i}}}f}{(k-3)!} \right\}^{T} \right\} + E \left\{ \left( \frac{\Psi_{\chi_{i},\eta_{\chi_{i}}}f}{(k-3)!} \right) \left( \frac{\Psi_{\chi_{i},\eta_{\chi_{i}}}f}{3!} \right)^{T} \right\} \\ &- E \left\{ \frac{\Psi_{\chi_{i},\eta_{\chi_{i}}}f}{(\frac{(\Psi_{\chi_{i},\eta_{\chi_{i}}}f)}{(\frac{(\Psi_{\chi_{i},\eta_{\chi_{i}}}f)}{(\frac{(\Psi_{\chi_{i},\eta_{\chi_{i}}}f)}{(\frac{(\Psi_{\chi_{i},\eta_{\chi_{i}}}f)}{(\frac{(\Psi_{\chi_{i},\eta_{\chi_{i}}}f)}{(\frac{(\Psi_{\chi_{i},\eta_{\chi_{i}}}f)}{(\frac{(\Psi_{\chi_{i},\eta_{\chi_{i}}f)}{(\frac{(\Psi_{\chi_{i},\eta_{\chi_{i}}}f)}{(\frac{(\Psi_{\chi_{i},\eta_{\chi_{i}}}f)}{(\frac{(\Psi_{\chi_{i},\eta_{\chi_{i}}}f)}{(\frac{(\Psi_{\chi_{i},\eta_{\chi_{i}}f)}{(\frac{(\Psi_{\chi_{i},\eta_{\chi_{i}}}f)}{(\frac{(\Psi_{\chi_{i},\eta_{\chi_{i}}}f)}{(\frac{(\Psi_{\chi_{i},\eta_{\chi_{i}}}f)}{(\frac{(\Psi_{\chi_{i},\eta_{\chi_{i}}}f)}{(\frac{(\Psi_{\chi_{i},\eta_{\chi_{i}}f)}{(\frac{(\Psi_{\chi_{i},\eta_{\chi_{i}}}f)}{(\frac{(\Psi_{\chi_{i},\eta_{\chi_{i}}}f)}{(\frac{(\Psi_{\chi_{i},\eta_{\chi_{i}}}f)}{(\frac{(\Psi_{\chi_{i},\eta_{\chi_{i}}}f)}{(\frac{(\Psi_{\chi_{i},\eta_{\chi_{i}}}f)}{(\frac{(\Psi_{\chi_{i},\eta_{\chi_{i}}}f)}{(\frac{(\Psi_{\chi_{i},\eta_{\chi_{i}}}f)}{(\frac{(\Psi_{\chi_{i},\eta_{\chi_{i}}}f)}{(\frac{(\Psi_{\chi_{i},\eta_{\chi_{i}}f)}{(\frac{(\Psi_{\chi_{i},\eta_{\chi_{i}}}f)}{(\frac{(\Psi_{\chi_{i},\eta_{\chi_{i}}f)}{(\frac{(\Psi_{\chi_{i},\eta_{\chi_{i}}}f)}{(\frac{(\Psi_{\chi_{i},\eta_{\chi_{i}}}f)}{(\frac{(\Psi_{\chi_{i},\eta_{\chi_{i}}}f)}{(\frac{(\Psi_{\chi_{i},\eta_{\chi_{i}}f)}{(\frac{(\Psi_{\chi_{i},\eta_{\chi_{i}}f)}{(\frac{(\Psi_{\chi_{i},\eta_{\chi_{i}}f)}{(\frac{(\Psi_{\chi_{i},\eta_{\chi_{i}}f)}{(\frac{(\Psi_{\chi_{i},\eta_{\chi_{i}}f)}{(\frac{(\Psi_{\chi_{i},\eta_{\chi_{i}}f)}{(\frac{(\Psi_{\chi_{i},\eta_{\chi_{i}}f)}{(\frac{(\Psi_{\chi_{i},\eta_{\chi_{i}}f)}{(\frac{(\Psi_{\chi_{i},\eta_{\chi_{i}}}f)}{(\frac{(\Psi_{\chi_{i},\Psi_{\chi_{i}}f)}{(\frac{(\Psi_{\chi_{i},\Psi_{\chi_{i$$

PROVA Análoga à prova do Lema A.1.2.

**Lema A.2.4 (Esperança Amostral de**  $\Psi^{\alpha}_{\chi_i, \bar{\chi}_i} f$ ). Sejam  $\{\chi_i, w_i\}, i = 0, 1, 2, ..., N$ , com  $N \in \mathbb{N}$ , um conjunto de amostras  $(\chi_i)$  e pesos  $(w_i)$ , de média amostral  $\eta_{\chi_i}$  e o mapeamento  $f : \Re^n \mapsto \Re^m$  diferenciável até ordem  $\alpha$  e o operador  $\Psi^{\alpha}_{\chi_i, \bar{\chi}_i} f$  definido em 2.1.5, a seguinte equação é verdadeira:

$$\Xi\left\{\Psi^{\alpha}_{\chi_{i},\bar{\chi}_{i}}f\right\} = \sum_{i_{1},\dots,i_{\alpha}=1}^{n} \mu^{\alpha}_{\chi^{(i_{1})}_{i},\dots,x^{(i_{\alpha})}} \left. \frac{\partial^{\alpha}f\left(x\right)}{\partial x^{(i_{1})}\cdots\partial x^{(i_{\alpha})}} \right|_{x=\eta_{\chi_{i}}}.$$

PROVA Da definição 2.1.5:

$$\Xi \left\{ \Psi_{\chi_i,\bar{\chi}_i}^{\alpha} f \right\}$$

$$\triangleq \sum_{i=1}^{N} \left\{ \sum_{i_1,\dots,i_{\alpha}=1}^{n} \left( \chi_i^{(i_1)} - \bar{\chi}_i^{(i_1)} \right) \cdots \left( \chi_i^{(i_{\alpha})} - \bar{\chi}_i^{(i_{\alpha})} \right) \left. \frac{\partial^{\alpha} f\left(x\right)}{\partial x^{(i_1)} \cdots \partial x^{(i_{\alpha})}} \right|_{x=\eta_{\chi_i}} \right\}$$

$$=\sum_{i_1,\dots,i_{\alpha}=1}^n \sum_{i=1}^N \left(\chi_i^{(i_1)} - \bar{\chi_i}^{(i_1)}\right) \cdots \left(\chi_i^{(i_{\alpha})} - \bar{\chi_i}^{(i_{\alpha})}\right) \frac{\partial^{\alpha} f\left(x\right)}{\partial x^{(i_1)} \cdots \partial x^{(i_{\alpha})}} \bigg|_{\chi_i = \eta_{\chi_i}}$$

$$=\sum_{i_1,\dots,i_{\alpha}=1}^n \Xi\left\{\left(\chi_i^{(i_1)} - \bar{\chi_i}^{(i_1)}\right) \cdots \left(\chi_i^{(i_{\alpha})} - \bar{\chi_i}^{(i_{\alpha})}\right)\right\} \frac{\partial^{\alpha} f\left(x\right)}{\partial x^{(i_1)} \cdots \partial x^{(i_{\alpha})}} \bigg|_{\chi_i = \eta_{\chi_i}}$$

$$=\sum_{i_1,\dots,i_{\alpha}=1}^n \mu_{\chi_i^{(i_1)},\dots,x^{(i_{\alpha})}}^\alpha \frac{\partial^{\alpha} f\left(x\right)}{\partial x^{(i_1)} \cdots \partial x^{(i_{\alpha})}} \bigg|_{x = \eta_{\chi_i}}.$$

**Corolário A.2.1 (Média amostral de uma transformada).** Sejam  $\{\chi_i, w_i\}, i = 0, 1, 2, ..., N$ , com  $N \in \mathbb{N}$ , um conjunto de amostras  $(\chi_i)$  e pesos  $(w_i)$ , de média amostral  $\eta_{\chi_i}$  e o mapeamento  $f : \Re^n \mapsto \Re^m$  diferenciável que define os pontos  $\gamma_i$  tal que

$$\gamma_i \triangleq f\left(\chi_i\right),$$

a média amostral de  $\gamma_i$  pode ser escrita da seguinte forma

$$\eta_{\gamma_{i}} = f\left(\eta_{\chi_{i}}\right) + \sum_{i_{1},i_{2}=1}^{n} \mu_{\chi_{i}^{(i_{1})}\chi_{i}^{(i_{2})}}^{2} \left.\frac{\partial^{2}f\left(x\right)}{\partial x^{(i_{1})}\partial x^{(i_{2})}}\right|_{x=\bar{X}} \\ + \sum_{i_{1},i_{2},i_{3}=1}^{n} \mu_{\chi_{i}^{(i_{1})}\chi_{i}^{(i_{2})}\chi_{i}^{(i_{3})}}^{3} \left.\frac{\partial^{3}f\left(x\right)}{\partial x^{(i_{1})}\cdots\partial x^{(i_{3})}}\right|_{x=\bar{X}} \\ + \dots + \sum_{i_{1},\cdots,i_{k}=1}^{n} \mu_{\chi_{i}^{(i_{1})}\cdots\chi_{i}^{(i_{k})}}^{k} \left.\frac{\partial^{k}f\left(x\right)}{\partial x^{(i_{1})}\cdots\partial x^{(i_{k})}}\right|_{x=\bar{X}} + \dots \qquad \Box$$

Corolário A.2.2 (Elementos da Série da Matriz de Covariância Amostral). Sejam  $\{\chi_i, w_i\}$ , i = 0, 1, 2, ..., N, com  $N \in \mathbb{N}$ , um conjunto de amostras  $(\chi_i)$  e pesos  $(w_i)$ , de média amostral  $\eta_{\chi_i}$  e o mapeamento  $f : \Re^n \mapsto \Re^m$  diferenciável que define os pontos  $\gamma_i$  tal que

$$\gamma_i \triangleq f\left(\chi_i\right),$$

e seja, ainda,  $\Sigma_{\gamma\gamma}$  tal que

$$\Sigma_{\gamma\gamma} = \Theta_{\Sigma_{\gamma\gamma}}^2 + \Theta_{\Sigma_{\gamma\gamma}}^3 + \Theta_{\Sigma_{\gamma\gamma}}^4 + \dots + \Theta_{\Sigma_{\gamma\gamma}}^k + \dots$$

Os termos  $\Theta_{\Sigma_{\gamma\gamma}}^1, \ldots, \Theta_{\Sigma_{\gamma\gamma}}^k$  de  $\Sigma_{\gamma\gamma}$  definidos em A.2.2 têm as seguintes formas:

$$\Theta_{\Sigma_{\gamma\gamma}}^{2} = \sum_{i,j=1}^{n} \mu_{\chi_{i}^{(i)},\chi_{i}^{(j)}}^{2} \left. \frac{\partial f\left(x\right)}{\partial x^{(i)}} \right|_{\chi_{i}=\eta_{\chi_{i}}} \left. \frac{\partial f\left(x\right)}{\partial x^{(i)}} \right|_{\chi_{i}=\eta_{\chi_{i}}}^{T}$$
$$= \sum_{i,j=1}^{n} \left( \Sigma_{\chi_{i}\chi_{i}} \right)_{ij} \left. \frac{\partial f\left(x\right)}{\partial x^{(i)}} \right|_{\chi_{i}=\eta_{\chi_{i}}} \left. \frac{\partial f\left(x\right)}{\partial x^{(i)}} \right|_{\chi_{i}=\eta_{\chi_{i}}}^{T}$$

$$\begin{split} \Theta^3_{\Sigma_{\gamma\gamma}} &= \frac{1}{2} \sum_{i_1,i_2,i_3=1}^n \mu^3_{\chi_i^{(i_1)}\cdots\chi_i^{(i_3)}} \\ & \left( \left. \frac{\partial f(x)}{\partial x^{(i_3)}} \right|_{x=\eta_{\chi_i}} \left. \frac{\partial^2 f(x)}{\partial x^{(i_1)}\partial x^{(i_2)}} \right|_{x=\eta_{\chi_i}}^T + \left. \frac{\partial^2 f(x)}{\partial x^{(i_1)}\partial x^{(i_2)}} \right|_{x=\eta_{\chi_i}} \left. \frac{\partial f(x)}{\partial x^{(i_3)}} \right|_{x=\eta_{\chi_i}}^T \right) \, . \end{split}$$

$$\begin{split} \Theta_{\Sigma_{\gamma\gamma}}^{4} = & \frac{1}{4} \sum_{i_{1},\cdots,i_{4}=1}^{n} \left( \mu_{\chi_{i}^{(i_{1})}\cdots\chi_{i}^{(i_{4})}}^{4} - \mu_{\chi_{i}^{(i_{1})}\chi_{i}^{(i_{2})}}^{2} \mu_{\chi_{i}^{(i_{4})}\chi_{i}^{(i_{4})}}^{2} \right) \\ & \frac{\partial^{2}f(x)}{\partial x^{(i_{1})}\partial x^{(i_{2})}} \Big|_{x=\eta_{\chi_{i}}} \frac{\partial^{2}f(x)}{\partial x^{(i_{3})}\partial x^{(i_{4})}} \Big|_{x=\eta_{\chi_{i}}}^{T} \\ & \frac{1}{3!} \sum_{i_{1},\cdots,i_{4}=1}^{n} \mu_{\chi_{i}^{(i_{1})}\cdots\chi_{i}^{(i_{4})}}^{4} \\ & \left( \frac{\partial f(x)}{\partial x^{(i_{4})}} \Big|_{x=\eta_{\chi_{i}}} \frac{\partial^{3}f(x)}{\partial x^{(i_{1})}\cdots\partial x^{(i_{3})}} \Big|_{x=\eta_{\chi_{i}}}^{T} + \frac{\partial^{3}f(x)}{\partial x^{(i_{1})}\cdots\partial x^{(i_{3})}} \Big|_{x=\bar{\chi}} \frac{\partial f(x)}{\partial x^{(i_{4})}} \Big|_{x=\eta_{\chi_{i}}}^{T} \end{split}$$

 $\Theta^5_{\Sigma_{\gamma\gamma}}$ 

$$\begin{split} &= \frac{1}{4!} \sum_{i_1, \cdots, i_5 = 1}^n M^5_{x^{(i_1)} \cdots x^{(i_5)}} \\ & \left( \frac{\partial f(x)}{\partial x^{(i_5)}} \Big|_{x = \bar{X}} \frac{\partial^4 f(x)}{\partial x^{(i_1)} \cdots \partial x^{(i_4)}} \Big|_{x = \bar{X}}^T + \frac{\partial^4 f(x)}{\partial x^{(i_1)} \cdots \partial x^{(i_4)}} \Big|_{x = \bar{X}} \frac{\partial f(x)}{\partial x^{(i_5)}} \Big|_{x = \bar{X}}^T \right) \\ & \quad + \frac{1}{2! 3!} \sum_{i_1, \cdots, i_5 = 1}^n \left( \mu^5_{\chi_i \cdots \chi_i^{(i_5)}} - \mu^2_{\chi_i^{(i_4)} \chi_i^{(i_5)}} \mu^3_{\chi_i^{(i_1)} \cdots \chi_i^{(i_3)}} \right) \\ & \left( \frac{\partial^2 f(x)}{\partial x^{(i_4)} \partial x^{(i_5)}} \Big|_{\chi_i = \eta_{\chi_i}} \frac{\partial^3 f(x)}{\partial x^{(i_1)} \cdots \partial x^{(i_3)}} \Big|_{\chi_i = \bar{\chi_i}}^T + \frac{\partial^3 f(x)}{\partial x^{(i_1)} \cdots \partial x^{(i_3)}} \Big|_{\chi_i = \bar{\chi_i}} \frac{\partial^2 f(x)}{\partial x^{(i_4)} \partial x^{(i_5)}} \Big|_{\chi_i = \eta_{\chi_i}}^T \end{split}$$

•

÷

Para k ímpar:

$$\begin{split} & \left. \frac{1}{(k-1)!} \sum_{i_{1},\cdots,i_{k}=1}^{n} \mu_{\chi_{i}^{(i_{1})}\cdots\chi_{i}^{(i_{k})}}^{k} \right|_{x=\eta_{\chi_{i}}} \frac{\partial^{k-1}f(x)}{\partial x^{(i_{k})}} \Big|_{x=\eta_{\chi_{i}}} \frac{\partial^{k-1}f(x)}{\partial x^{(i_{k})-1}} \Big|_{x=\eta_{\chi_{i}}}^{T} + \frac{\partial^{k-1}f(x)}{\partial x^{(i_{k})-1}} \Big|_{x=\bar{\chi}} \frac{\partial f(x)}{\partial x^{(i_{k})}} \Big|_{x=\eta_{\chi_{i}}}^{T} \right) \\ & + \frac{1}{2!(k-2)!} \sum_{i_{1},\cdots,i_{k}=1}^{n} \left( \mu_{\chi_{i}^{(i_{1})}\cdots\chi_{i}^{(i_{k})}}^{K} - \mu_{\chi_{i}^{(i_{1})}\chi_{i}^{(i_{2})}}^{K} \mu_{\chi_{i}^{(i_{1})}\cdots\chi_{i}^{(i_{k-2})}}^{K-2} \right) \right) \\ & \left( \frac{\partial^{2}f(x)}{\partial x^{(i_{k-1})}\partial x^{(i_{k})}} \Big|_{x=\bar{\chi}} \frac{\partial^{k-2}f(x)}{\partial x^{(i_{1})\cdots\partial x^{(i_{k-2})}} \Big|_{x=\eta_{\chi_{i}}}^{T} + \frac{\partial^{k-2}f(x)}{\partial x^{(i_{1})\cdots\partial x^{(i_{k-2})}} \Big|_{x=\eta_{\chi_{i}}}^{T} \frac{\partial^{2}f(x)}{\partial x^{(i_{1})\cdots\partial x^{(i_{k-2})}} \Big|_{x=\eta_{\chi_{i}}}^{T} \right) \\ & + \frac{1}{3!(k-3)!} \sum_{i_{1},\cdots,i_{k}=1}^{n} \left( \mu_{\chi_{i}^{(i_{1})}\cdots\chi_{i}^{(i_{k})}}^{K} - \mu_{\chi_{i}^{(i_{1})}\cdots\chi_{i}^{(i_{2})}}^{K-3} \mu_{\chi_{i}^{(i_{1})}\cdots\chi_{i}^{(i_{k-3})}}^{K-3} \right) \\ & \left( \frac{\partial^{3}f(x)}{\partial x^{(i_{k-2})\cdots\partial x^{(i_{k})}} \Big|_{x=\eta_{\chi_{i}}} \frac{\partial^{k-2}f(x)}{\partial x^{(i_{1})\cdots\partial x^{(i_{k-3})}} \Big|_{x=\eta_{\chi_{i}}}^{T} + \frac{\partial^{k-2}f(x)}{\partial x^{(i_{1})\cdots\partial x^{(i_{k-3})}} \Big|_{x=\eta_{\chi_{i}}} \frac{\partial^{3}f(x)}{\partial x^{(i_{1})\cdots\chi_{i}^{(i_{k-3})}} \Big|_{x=\eta_{\chi_{i}}} \frac{\partial^{3}f(x)}{\partial x^{(i_{1})\cdots\chi_{i}^{(i_{k-3})}} \Big|_{x=\eta_{\chi_{i}}} \frac{\partial^{3}f(x)}{\partial x^{(i_{1})\cdots\partial x^{(i_{k-3})}} \Big|_{x=\eta_{\chi_{i}}} \frac{\partial^{3}f(x)}{\partial x^{(i_{k-2})\cdots\partial x^{(i_{k})}} \Big|_{x=\eta_{\chi_{i}}} \frac{\partial^{k-2}f(x)}{\partial x^{(i_{1})\cdots\partial x^{(i_{k-3})}} \Big|_{x=\eta_{\chi_{i}}} \frac{\partial^{3}f(x)}{\partial x^{(i_{1})\cdots\chi_{i}^{(i_{k-3})}} \Big|_{x=\eta_{\chi_{i}}} \frac{\partial^{3}f(x)}{\partial x^{(i_{1})\cdots\chi_{i}^{(i_{k-3})}} \Big|_{x=\eta_{\chi_{i}}} \frac{\partial^{3}f(x)}{\partial x^{(i_{k-1})/2}} \Big|_{x=\eta_{\chi_{i}}} \frac{\partial^{3}f(x)}{\partial x^{(i_{k-1})/2}} \Big|_{x=\eta_{\chi_{i}}} \frac{\partial^{(k-1)/2}f(x)}{\partial x^{(i_{k-1})/2}} \Big|_{x=\eta_{\chi_{i}}} \frac{\partial^{(k-1)/2}f(x)$$

Para k par:

 $\Theta^k_{\Sigma_{\gamma\gamma}}$ 

$$\begin{split} & \left( \frac{1}{(\frac{k}{2})!(\frac{k}{2})!} \sum_{i_{1},\cdots,i_{k}=1}^{n} \left( \mu_{\chi_{i}^{(i_{1})}\cdots\chi_{i}^{(i_{k})}}^{k} - \mu_{\chi_{i}^{(i_{1})}\cdots\chi_{i}^{(i_{k}/2)}}^{k/2} \mu_{\chi_{i}^{(i_{k}/2+1)}\cdots\chi_{i}^{(i_{k})}}^{k/2} \right) \right) \\ & \left( \frac{\partial^{k/2}f(x)}{\partial x^{(i_{1})}\cdots\partial x^{(i_{k}/2)}} \right|_{x=\bar{X}} \frac{\partial^{k/2}f(x)}{\partial x^{(k/2+1)}\cdots\partial x^{(i_{k})}} \right|_{x=\eta_{\chi_{i}}}^{T} + \frac{\partial^{k/2}f(x)}{\partial x^{(i_{1})}\cdots\partial x^{(i_{k}/2)}} \right|_{x=\eta_{\chi_{i}}}^{T} \frac{\partial^{k/2}f(x)}{\partial x^{(i_{1})}\cdots\partial x^{(i_{k}/2)}} \right|_{x=\eta_{\chi_{i}}}^{T} \\ & \left( \frac{\partial f(x)}{\partial x^{(i_{k})}} \right|_{x=\eta_{\chi_{i}}} \frac{\partial^{k-1}f(x)}{\partial x^{(i_{1})}\cdots\partial x^{(i_{k}-1)}} \right|_{x=\eta_{\chi_{i}}}^{T} + \frac{\partial^{k-1}f(x)}{\partial x^{(i_{1})}\cdots\partial x^{(i_{k}-1)}} \right|_{x=\eta_{\chi_{i}}}^{T} \frac{\partial f(x)}{\partial x^{(i_{1})}\cdots\partial x^{(i_{k}/2)}} \right|_{x=\eta_{\chi_{i}}}^{T} \\ & \left( \frac{\partial f(x)}{\partial x^{(i_{k})}} \right|_{x=\eta_{\chi_{i}}} \frac{\partial^{k-1}f(x)}{\partial x^{(i_{1})}\cdots\partial x^{(i_{k}-1)}} \right|_{x=\eta_{\chi_{i}}}^{T} + \frac{\partial^{k-1}f(x)}{\partial x^{(i_{1})}\cdots\partial x^{(i_{k}-2)}} \right|_{x=\eta_{\chi_{i}}}^{T} \frac{\partial f(x)}{\partial x^{(i_{k})}} \right|_{x=\eta_{\chi_{i}}}^{T} \\ & \left( \frac{\partial f(x)}{\partial x^{(i_{k})}} \right|_{x=\eta_{\chi_{i}}} \frac{\partial^{k-1}f(x)}{\partial x^{(i_{1})}\cdots\partial x^{(i_{k}-1)}} \right|_{x=\eta_{\chi_{i}}}^{T} + \frac{\partial^{k-1}f(x)}{\partial x^{(i_{1})}\cdots\partial x^{(i_{k}-2)}} \right|_{x=\eta_{\chi_{i}}}^{T} \frac{\partial f(x)}{\partial x^{(i_{k})}} \right|_{x=\eta_{\chi_{i}}}^{T} \\ & \left( \frac{\partial^{2}f(x)}{\partial x^{(i_{k}-1)}\partial x^{(i_{k})}} \right|_{x=\eta_{\chi_{i}}} \frac{\partial^{k-2}f(x)}{\partial x^{(i_{1})\cdots\partial x^{(i_{k}-2)}}} \right|_{x=\eta_{\chi_{i}}}^{T} + \frac{\partial^{k-2}f(x)}{\partial x^{(i_{1})}\cdots\partial x^{(i_{k}-2)}} \right|_{x=\eta_{\chi_{i}}} \frac{\partial^{2}f(x)}{\partial x^{(i_{k}-1)}\partial x^{(i_{k})}} \right|_{x=\eta_{\chi_{i}}}^{T} \\ & \left( \frac{\partial^{3}f(x)}{\partial x^{(i_{k}-2)}\cdots\partial x^{(i_{k})}} \right|_{x=\eta_{\chi_{i}}} \frac{\partial^{k-2}f(x)}{\partial x^{(i_{1})\cdots\partial x^{(i_{k}-3)}}} \right|_{x=\eta_{\chi_{i}}} \frac{\partial^{3}f(x)}{\partial x^{(i_{k}-2)/2}\dots\partial x^{(i_{k})}} \right|_{x=\eta_{\chi_{i}}} \frac{\partial^{k-2}f(x)}{\partial x^{(i_{k}-2)/2}\dots\partial$$

#### A.2.2 Momentos amostrais de uma transformação escalada

Considere um conjunto  $\{\chi_i, w_i | \chi_i \in \Re^n, w_i \in \Re, i = 0, 1, 2, ..., N\}$  de média  $\eta_{\chi_i}$  e matriz de covariância  $\Sigma_{\chi\chi}$  e a uma função  $f : \Re^n \mapsto \Re^m$ . Considere também o conjunto  $\{\xi_i, w_i | \xi_i = g(\chi_i, \eta_{\chi_i}, \alpha, \kappa)\}$  tal que

$$g(X, c, \alpha, \kappa) := \frac{f(c + \alpha (X - c)) - f(c)}{\kappa} + f(c),$$

em que  $\alpha \in \Re, \kappa \in \Re^*$ .

Com relação a essa transformada, temos os seguintes resultados.

**Lema A.2.5.** Sejam o conjunto  $\{\chi_i, w_i | \chi_i \in \Re^n, w_i \in \Re, i = 0, 1, 2, ..., N\}$ , a função  $f : \Re^n \mapsto \Re^m$ ,  $c \in \Re^n$ ,  $e g : \Re^n \times \Re \times \Re \times \Re^* \mapsto \Re^m$  tal que

$$g(X, c, \alpha, \kappa) := \frac{f(c + \alpha (X - c)) - f(c)}{\kappa} + f(c),$$

em que  $\alpha \in \Re$  e  $\kappa \in \Re^*$ ,  $g(\chi_i, \mu_{\chi}, \alpha, \kappa)$  pode ser escrita da seguinte forma:

$$g\left(\chi_{i}, c, \alpha, \kappa\right) = f(c) + \frac{\alpha}{\kappa} \frac{\Psi_{\chi_{i},c}^{1} f}{1!} + \frac{\alpha^{2}}{\kappa} \frac{\Psi_{\chi_{i},c}^{2} f}{2!} + \frac{\alpha^{3}}{\kappa} \frac{\Psi_{\chi_{i},c}^{3} f}{3!} \dots + \frac{\alpha^{k}}{\kappa} \frac{\Psi_{\chi_{i},c}^{k} f}{k!} \dots \qquad \Box$$

PROVA Do Lema 2.1.1 podemos escrever

$$\begin{split} g\left(\chi_{i},c,\alpha,\kappa\right) \\ &= \frac{f\left(c+\alpha\left(\chi_{i}-c\right)\right)}{\kappa} + f\left(c\right)\left(1-\frac{1}{\kappa}\right) \\ &= \frac{1}{\kappa}\left(f(c) + \frac{\alpha\Psi_{\chi_{i},c}^{1}f}{1!} + \frac{\alpha^{2}\Psi_{\chi_{i},c}^{2}f}{2!} + \frac{\alpha^{3}\Psi_{\chi_{i},c}^{3}f}{2!} \cdots\right) \\ &+ f\left(c\right)\left(\frac{\kappa-1}{\kappa}\right) \\ &= f(c) + \frac{\alpha}{\kappa}\frac{\Psi_{\chi_{i},c}^{1}f}{1!} + \frac{\alpha^{2}}{\kappa}\frac{\Psi_{\chi_{i},c}^{2}f}{2!} \\ &+ \frac{\alpha^{3}}{\kappa}\frac{\Psi_{\chi_{i},c}^{3}f}{3!} \cdots + \frac{\alpha^{k}}{\kappa}\frac{\Psi_{\chi_{i},c}^{k}f}{k!} \cdots . \end{split}$$

**Lema A.2.6.** Sejam o conjunto  $\{\chi_i, w_i | \chi_i \in \Re^n, w_i \in \Re, i = 0, 1, 2, ..., N\}$  de média  $\eta_{\chi_i}$ , a função  $f : \Re^n \mapsto \Re^m$ ,  $c \in \Re^n$ ,  $e g : \Re^n \times \Re \times \Re \times \Re^* \mapsto \Re^m$  tal que

$$g(X, c, \alpha, \kappa) := \frac{f(c + \alpha (X - c)) - f(c)}{\kappa} + f(c),$$

*em que*  $\alpha \in \Re$  *e*  $\kappa \in \Re^*$ . *Seja, ainda, o conjunto*  $\{\xi_i, w_i | \xi_i = g(\chi_i, \eta_{\chi_i}, \alpha, \kappa)\}$ , *as assertivas abaixo são verdadeiras:* 

1. a Série de Taylor de  $\eta_{\xi_i} := \Xi \{Z\}$  em torno de  $\bar{X}$  é

$$\eta_{\xi_i} = f\left(\eta_{\chi_i}\right) + \frac{\alpha^2}{\kappa} \Xi \left\{ \frac{\Psi_{\chi,\eta_{\chi_i}}^2 f}{2!} \right\} + \frac{\alpha^3}{\kappa} \Xi \left\{ \frac{\Psi_{\chi,\eta_{\chi_i}}^3 f}{3!} \right\} + \dots + \frac{\alpha^k}{\kappa} \Xi \left\{ \frac{\Psi_{\chi,\eta_{\chi_i}}^k f}{k!} \right\} + \dots$$

2. a Série de Taylor de  $\eta_{\xi_i} := \Xi \{Z\}$  em torno de  $\bar{X}$  é

$$\begin{split} \eta_{\xi_i} &= f\left(\eta_{\chi_i}\right) + \frac{\alpha^2}{\kappa} \sum_{i_1,i_2=1}^n \mu_{\chi_i^{(i_1)}\chi_i^{(i_2)}}^2 \frac{\partial^2 f\left(x\right)}{\partial x^{(i_1)}\partial x^{(i_2)}} \bigg|_{x=\bar{X}} \\ &+ \frac{\alpha^3}{\kappa} \sum_{i_1,i_2,i_3=1}^n \mu_{\chi_i^{(i_1)}\chi_i^{(i_2)}\chi_i^{(i_3)}}^3 \frac{\partial^3 f\left(x\right)}{\partial x^{(i_1)}\cdots \partial x^{(i_3)}} \bigg|_{x=\bar{X}} \\ &+ \dots + \frac{\alpha^k}{\kappa} \sum_{i_1,\cdots,i_k=1}^n \mu_{\chi_i^{(i_1)}\cdots\chi_i^{(i_k)}}^k \frac{\partial^k f\left(x\right)}{\partial x^{(i_1)}\cdots \partial x^{(i_k)}} \bigg|_{x=\bar{X}} + \dots \quad \Box \end{split}$$

PROVA Análoga à prova do Lema A.1.6.

**Lema A.2.7.** Sejam o conjunto  $\{\chi_i, w_i | \chi_i \in \Re^n, w_i \in \Re, i = 0, 1, 2, ..., N\}$  de média  $\eta_{\chi_i}$ , a função  $f : \Re^n \mapsto \Re^m$ ,  $c \in \Re^n$ ,  $e g : \Re^n \times \Re \times \Re \times \Re^* \mapsto \Re^m$  tal que

$$g(X, c, \alpha, \kappa) := \frac{f(c + \alpha (X - c)) - f(c)}{\kappa} + f(c)$$

em que  $\alpha \in \Re$  e  $\kappa \in \Re^*$ . Seja, ainda, o conjunto  $\{\xi_i, w_i | \xi_i = g(\chi_i, \eta_{\chi_i}, \alpha, \kappa)\}$ , a Série de Taylor de  $\Sigma_{\xi\xi}^* = \mu \Sigma_{\xi\xi} := \mu \Xi \left\{ \left(\xi_i - \eta_{\xi_i}\right) \left(\xi_i - \eta_{\xi_i}\right)^T \right\}$  em torno de  $\eta_{\chi_i}$  é

$$\Sigma_{\xi\xi}^* = \mu \Sigma_{\xi\xi} = \Theta_{\Sigma_{\xi\xi}^*}^2 + \Theta_{\Sigma_{\xi\xi}^*}^3 + \Theta_{\Sigma_{\xi\xi}^*}^4 + \dots + \Theta_{\Sigma_{\xi\xi}^*}^k.$$

em que:

$$\Theta_{\Sigma_{\xi\xi}^*}^2 = \frac{\alpha^2}{\kappa} \sum_{i,j=1}^n \mu_{\chi_i^{(i)},\chi_i^{(j)}}^2 \left. \frac{\partial f\left(x\right)}{\partial x^{(i)}} \right|_{\chi_i = \eta_{\chi_i}} \left. \frac{\partial f\left(x\right)}{\partial x^{(i)}} \right|_{\chi_i = \eta_{\chi_i}}^T$$

$$= \frac{\alpha^2}{\kappa} \sum_{i,j=1}^n \left( \Sigma_{\chi_i \chi_i} \right)_{ij} \left. \frac{\partial f(x)}{\partial x^{(i)}} \right|_{\chi_i = \eta_{\chi_i}} \left. \frac{\partial f(x)}{\partial x^{(i)}} \right|_{\chi_i = \eta_{\chi_i}}^T$$

$$\begin{split} \Theta_{\Sigma_{\xi\xi}^{*}}^{4} &= \frac{\alpha^{4}}{\kappa} \frac{1}{4} \sum_{i_{1},\cdots,i_{4}=1}^{n} \left( \mu_{\chi_{i}^{(i_{1})} \cdots \chi_{i}^{(i_{4})}}^{4} - \mu_{\chi_{i}^{(i_{1})} \chi_{i}^{(i_{2})}}^{2} \mu_{\chi_{i}^{(i_{4})} \chi_{i}^{(i_{4})}}^{2} \right) \\ &= \frac{\partial^{2} f(x)}{\partial x^{(i_{1})} \partial x^{(i_{2})}} \Big|_{x=\eta_{\chi_{i}}} \frac{\partial^{2} f(x)}{\partial x^{(i_{3})} \partial x^{(i_{4})}} \Big|_{x=\eta_{\chi_{i}}}^{T} \\ &\quad + \frac{\alpha^{3}}{\kappa} \frac{1}{3!} \sum_{i_{1},\cdots,i_{4}=1}^{n} \mu_{\chi_{i}^{(i_{1})} \cdots \chi_{i}^{(i_{4})}}^{4} \\ &\left( \frac{\partial f(x)}{\partial x^{(i_{4})}} \Big|_{x=\eta_{\chi_{i}}} \frac{\partial^{3} f(x)}{\partial x^{(i_{1})} \cdots \partial x^{(i_{3})}} \Big|_{x=\eta_{\chi_{i}}}^{T} + \frac{\partial^{3} f(x)}{\partial x^{(i_{1})} \cdots \partial x^{(i_{3})}} \Big|_{x=\eta_{\chi_{i}}}^{T} \frac{\partial f(x)}{\partial x^{(i_{4})}} \Big|_{x=\eta_{\chi_{i}}}^{T} \end{split}$$

.

.

$$\begin{split} \Theta_{\Sigma_{\xi\xi}^{*}}^{5} = & \frac{\frac{\alpha^{5}}{\kappa} \frac{1}{4!} \sum_{i_{1}, \cdots, i_{5}=1}^{n} M_{x^{(i_{1})} \dots x^{(i_{5})}}^{5}}{\left( \frac{\partial f(x)}{\partial x^{(i_{5})}} \Big|_{x=\bar{X}} \frac{\partial^{4} f(x)}{\partial x^{(i_{1})} \dots \partial x^{(i_{4})}} \Big|_{x=\bar{X}}^{T} + \frac{\partial^{4} f(x)}{\partial x^{(i_{1})} \dots \partial x^{(i_{4})}} \Big|_{x=\bar{X}} \frac{\partial f(x)}{\partial x^{(i_{5})}} \Big|_{x=\bar{X}}^{T} \right)} \\ & + \frac{\alpha^{5}}{\kappa} \frac{1}{2!3!} \sum_{i_{1}, \cdots, i_{5}=1}^{n} \left( \mu_{\chi_{i} \dots \chi_{i}^{(i_{5})}}^{5} - \mu_{\chi_{i}^{(i_{4})} \chi_{i}^{(i_{5})}}^{2} \mu_{\chi_{i}^{(i_{1})} \dots \chi_{i}^{(i_{3})}}^{3} \right) \right)}{\left( \frac{\partial^{2} f(x)}{\partial x^{(i_{5})}} \Big|_{\chi_{i}=\eta_{\chi_{i}}} \frac{\partial^{3} f(x)}{\partial x^{(i_{1})} \dots \partial x^{(i_{3})}} \Big|_{\chi_{i}=\bar{\chi_{i}}}^{T} + \frac{\partial^{3} f(x)}{\partial x^{(i_{1})} \dots \partial x^{(i_{3})}} \Big|_{\chi_{i}=\bar{\chi_{i}}} \frac{\partial^{2} f(x)}{\partial x^{(i_{4})} \partial x^{(i_{5})}} \Big|_{\chi_{i}=\eta_{\chi_{i}}}^{T} \right)} \end{split}$$

÷

Para k ímpar:

 $\Theta^k_{\Sigma^*_{\xi\xi}}$ 

$$\begin{split} & \left. \frac{\alpha^{k}}{\kappa} \frac{1}{(k-1)!} \sum_{i_{1}, \cdots, i_{k}=1}^{n} \mu_{\chi_{i}^{(i_{1})} \dots \chi_{i}^{(i_{k})}}}{\sum_{i_{1}, \cdots, i_{k}=1}^{n} \frac{\partial^{k-1}f(x)}{\partial x^{(i_{1})} \dots \partial x^{(i_{k}-1)}}} \right|_{x=\eta_{\chi_{i}}^{x}} + \frac{\partial^{k-1}f(x)}{\partial x^{(i_{1})} \dots \partial x^{(i_{k}-1)}} \right|_{x=\eta_{\chi_{i}}^{x}}^{x} \\ & \left. + \frac{\alpha^{k}}{2!(k-2)!} \sum_{i_{1}, \cdots, i_{k}=1}^{n} \left( \mu_{\chi_{i}^{(i_{1})} \dots \chi_{i}^{(i_{k})}}^{k} - \mu_{\chi_{i}^{(i_{1})} \dots \partial x^{(i_{k}-1)}}^{(i_{k})} \right|_{x=\eta_{\chi_{i}}^{x}}^{x} \\ & \left. + \frac{\partial^{k-2}f(x)}{\partial x^{(i_{k}-1)} \partial x^{(i_{k})}} \right|_{x=\bar{\chi}}^{x} \frac{\partial^{k-2}f(x)}{\partial x^{(i_{1})} \dots \partial x^{(i_{k}-2)}} \right|_{x=\eta_{\chi_{i}}^{x}}^{x} + \frac{\partial^{k-2}f(x)}{\partial x^{(i_{1})} \dots \partial x^{(i_{k}-2)}} \right|_{x=\eta_{\chi_{i}}^{x}}^{x} \\ & \left. + \frac{\partial^{k}}{\partial x^{(i_{k}-1)} \partial x^{(i_{k})}} \right|_{x=\bar{\chi}}^{x} \frac{\partial^{k-2}f(x)}{\partial x^{(i_{1})} \dots \partial x^{(i_{k})}} \right|_{x=\eta_{\chi_{i}}^{x}}^{x} + \frac{\partial^{k-2}f(x)}{\partial x^{(i_{1})} \dots \partial x^{(i_{k}-2)}} \right|_{x=\eta_{\chi_{i}}^{x}}^{x=\eta_{\chi_{i}}^{x}} \\ & \left. + \frac{\partial^{k}}{\partial x^{(i_{1})} \dots \partial x^{(i_{k}-2)}} \right|_{x=\eta_{\chi_{i}}^{x}} \frac{\partial^{k-2}f(x)}{\partial x^{(i_{1})} \dots \partial x^{(i_{k}-2)}} \right|_{x=\eta_{\chi_{i}}^{x}}^{x} + \frac{\partial^{k-2}f(x)}{\partial x^{(i_{1})} \dots \partial x^{(i_{k}-3)}} \right|_{x=\eta_{\chi_{i}}^{x}} \\ & \left. + \frac{\partial^{k}}{\partial x^{(i_{1})} \dots \partial x^{(i_{k}-3)}} \right|_{x=\eta_{\chi_{i}}^{x}} \frac{\partial^{k-2}f(x)}{\partial x^{(i_{1})} \dots \partial x^{(i_{k}-3)}} \right|_{x=\eta_{\chi_{i}}^{x}} \\ & \left. + \frac{\partial^{k-2}f(x)}{\partial x^{(i_{k}-2)} \dots \partial x^{(i_{k})}} \right|_{x=\eta_{\chi_{i}}^{x}} \frac{\partial^{k-2}f(x)}{\partial x^{(i_{1})} \dots \partial x^{(i_{k}-3)}} \right|_{x=\eta_{\chi_{i}}^{x}} \frac{\partial^{3}f(x)}{\partial x^{(i_{k}-1)} \partial x^{(i_{k}-3)}} \right|_{x=\eta_{\chi_{i}}^{x}} \\ & \left. + \cdots + \right. \\ & \left. + \frac{\alpha^{k}}{\kappa} \frac{1}{(\frac{(k-1)^{2}}{2}(\frac{1}{2})!} \sum_{i_{1}, \cdots, i_{k}=1}^{n} \left( \mu_{\chi_{i}^{(i_{1})} \dots \chi_{i}^{(i_{k})}} - \mu_{\chi_{i}^{(i_{1})} \dots \chi_{i}^{(i_{k}-1)/2}} \right) \right|_{x=\eta_{\chi_{i}}^{x}} \frac{\partial^{(k-1)/2}f(x)}{\partial x^{(i_{k}+1)/2} \dots \partial x^{(i_{k})}} \right|_{x=\eta_{\chi_{i}}^{x}} \\ & \left. + \cdots + \right. \\ & \left. \left( \frac{\partial^{(k-1)^{2}f(x)}}{\partial x^{(i_{k}+1)^{2}}} \right|_{x=\eta_{\chi_{i}}^{x}} \frac{\partial^{(k-1)^{2}f(x)}}{\partial x^{(i_{k}-1)^{2}}} \right|_{x=\eta_{\chi_{i}}^{x}} \frac{\partial^{(k-1)^{2}f(x)}}{\partial x^{(i_{k}+1)^{2}}} \right|_{x=\eta_{\chi_{i}}^{x}} \frac{\partial^{(k-1)^{2}f(x)}}{\partial x^{(i_{k}+1)^{2}}} \right|_{x=\eta_{\chi_{i}}^{x}} \frac{\partial^{(k-1)^{2}f(x)}}{\partial x^{(i$$

Para k par:

 $\Theta^k_{\Sigma^*_{\xi\xi}}$ 

$$\begin{split} & = \frac{\alpha^{k}}{\kappa} \frac{1}{\left(\frac{k}{2}\right)!\left(\frac{k}{2}\right)!} \sum_{i_{1},\cdots,i_{k}=1}^{n} \left( \mu^{k}_{\chi_{i}^{(i_{1})}\cdots\chi_{i}^{(i_{k})}} - \mu^{k/2}_{\chi_{i}^{(i_{1})}\cdots\chi_{i}^{(i_{k}/2)}} \mu^{k/2}_{\chi_{i}^{(i_{k}/2+1)}\cdots\chi_{i}^{(i_{k})}} \right) \\ & \left( \frac{\partial^{k/2}f(x)}{\partial x^{(i_{1})}\cdots\partial x^{(i_{k}/2)}} \right|_{x=\bar{\chi}}^{k} \frac{\partial^{k/2}f(x)}{\partial x^{(k/2+1)}\cdots\partial x^{(i_{k})}} \right|_{x=\eta_{\chi_{i}}}^{T} + \frac{\partial^{k/2}f(x)}{\partial x^{(i_{2}/2+1)}\cdots\partial x^{(i_{k})}} \right|_{x=\eta_{\chi_{i}}}^{T} \frac{\partial^{k/2}f(x)}{\partial x^{(i_{1})}\cdots\partial x^{(i_{k}/2)}} \right|_{x=\eta_{\chi_{i}}}^{T} \\ & \quad + \frac{\alpha^{k}}{\kappa} \frac{1}{(k-1)!} \sum_{i_{1},\cdots,i_{k}=1}^{n} \mu^{k}_{\chi_{i}^{(1)}\cdots\chi_{i}^{(i_{k})}} \\ & \left( \frac{\partial f(x)}{\partial x^{(i_{k})}} \right|_{x=\eta_{\chi_{i}}} \frac{\partial^{k-1}f(x)}{\partial x^{(i_{k})}\cdots\partial x^{(i_{k-1})}} \right|_{x=\eta_{\chi_{i}}}^{T} + \frac{\partial^{k-1}f(x)}{\partial x^{(i_{1})}\cdots\partial x^{(i_{k-1})}} \right|_{x=\eta_{\chi_{i}}}^{T} \frac{\partial f(x)}{\partial x^{(i_{1})}} \right|_{x=\eta_{\chi_{i}}}^{T} \\ & \quad + \frac{\alpha^{k}}{\kappa} \frac{1}{2!(k-2)!} \sum_{i_{1},\cdots,i_{k}=1}^{n} \left( \mu^{k}_{\chi_{i}^{(1)}\cdots\chi_{i}^{(i_{k})}} - \mu^{2}_{\chi_{i}^{(1)}^{(1)}\cdots\chi_{i}^{(i_{k-2})}} \right|_{x=\eta_{\chi_{i}}} \frac{\partial f(x)}{\partial x^{(i_{k-1})}\partial x^{(i_{k})}} \right|_{x=\eta_{\chi_{i}}}^{T} \\ & \quad + \frac{\alpha^{k}}{\kappa} \frac{1}{2!(k-2)!} \sum_{i_{1},\cdots,i_{k}=1}^{n} \left( \mu^{k}_{\chi_{i}^{(1)}\cdots\chi_{i}^{(i_{k})}} - \mu^{2}_{\chi_{i}^{(1)}^{(1)}\cdots\chi_{i}^{(i_{k-2})}} \right|_{x=\eta_{\chi_{i}}} \frac{\partial f(x)}{\partial x^{(i_{k-1})}\partial x^{(i_{k})}} \right|_{x=\eta_{\chi_{i}}}^{T} \\ & \quad + \frac{\alpha^{k}}{\kappa} \frac{1}{3!(k-3)!} \sum_{i_{1},\cdots,i_{k}=1}^{n} \left( \mu^{k}_{\chi_{i}^{(1)}\cdots\chi_{i}^{(i_{k})}} - \mu^{2}_{\chi_{i}^{(1)}^{(1)}\cdots\chi_{i}^{(i_{k-2})}} \right|_{x=\eta_{\chi_{i}}} \frac{\partial^{2}f(x)}{\partial x^{(i_{k-2})}\partial x^{(i_{k})}} \right|_{x=\eta_{\chi_{i}}}^{T} \\ & \quad + \frac{\alpha^{k}}{\kappa} \frac{1}{3!(k-3)!} \sum_{i_{1},\cdots,i_{k}=1}^{n} \left( \mu^{k}_{\chi_{i}^{(1)}^{(1)}\cdots\chi_{i}^{(i_{k})}} - \mu^{3}_{\chi_{i}^{(1)}^{(1)}\cdots\chi_{i}^{(i_{k-2})}} \right|_{x=\eta_{\chi_{i}}} \frac{\partial^{3}f(x)}{\partial x^{(i_{k-2})}\partial x^{(i_{k})}} \right|_{x=\eta_{\chi_{i}}}^{T} \\ & \quad + \cdots + \\ & \quad + \frac{\alpha^{k}}{\kappa} \frac{1}{(\frac{1-k-2)!}{2}!!(\frac{k+2!}{2}!)!} \sum_{i_{1},\cdots,i_{k}=1}} \left( \mu^{k}_{\chi_{i}^{(1)}^{(1)}\cdots\chi_{i}^{(i_{k})}} - \mu^{k-2/2}_{\chi_{i}^{(i_{1})}\cdots\chi_{i}^{(i_{k-2})/2}} \right|_{x=\eta_{\chi_{i}}} \frac{\partial^{(k-2)/2}}{\partial x^{(i_{k-2})/2}} \right|_{x=\eta_{\chi_{i}}} \frac{\partial^{(k-2)/2}}{\partial x^{(i_{k-2})/2}} \dots^{(i_{k})}} \right|_{x=\eta_{\chi_{i}}} \\ & \frac{\partial^{(k-2)/2}f(x$$

PROVA Análoga à do Lema A.1.7.

#### A.2.3 Conjunto de pontos simétricos

Da mesma forma que estudamos a simetria de uma variável aleatória, vamos estudar a simetria de um conjunto de pontos. Comecemos pela definição:

**Definição A.2.1 (Conjunto de pontos simétrico).** Seja  $\{X_i, w_i\}$ , i = 0, 1, 2, ..., N, com  $N \in \mathbb{N}$ , um conjunto de amostras  $(X_i)$  e pesos  $(w_i)$  da variável aleatória  $X \in \Re^n$ ,  $n \in \mathbb{N}^*$ , o conjunto de pontos  $\{X_i, w_i\}$  será simétrico em torno do ponto  $c \in \Re^n$  se existir uma seqüência de  $\{X_j\}$ , i = 0, 1, 2, ..., N, em que  $\{X_j\}$  é uma seqüência formada pelos mesmo pontos  $\{X_i\}$ , mas com índices permutados tal que,

se a quantidade de pontos for par,

$$X_i - c = -\left(X_{i+\frac{N-1}{2}} - c\right),$$
  
 $w_i = w_{i+\frac{N-1}{2}}, \forall i = 0, \dots, \frac{N-1}{2},$ 

e se a quantidade de pontos for ímpar,

$$X_{i} - X_{0} = -\left(X_{i+\frac{N}{2}} - X_{0}\right),$$
  

$$w_{i} = w_{i+\frac{N}{2}} , \forall i = 1, \dots, \frac{N}{2}, e c = X_{0}.$$

Lema A.2.8 (Momentos ímpares de conjunto simétrico). Seja  $\{X_i, w_i\}, i = 0, 1, 2, ..., N$ , com  $N \in \mathbb{N}$ , um conjunto de amostras  $(X_i)$  e pesos  $(w_i)$  da variável aleatória  $X \in \Re^n, n \in$  $\mathbb{N}^*$ , se  $\{X_i, w_i\}$  for simétrico em torno de sua média  $\eta_{X_i}$ , todos os seus momentos centrais amostrais de ordem ímpar são iguais a zero.

PROVA Suponha que  $x_i^{(j)}$  seja o *j*-ésimo componente escalar de  $X_i$ . Da definição 2.2.14:

$$\mu_{x_i^{(j_1)},\dots,x_i^{(j_k)}}^k \triangleq \sum_{i=0}^N w_i \left( x_i^{(j_1)} - \eta_{X_i}^{(j_1)} \right) \cdots \left( x_i^{(j_k)} - \eta_{X_i}^{(j_k)} \right)$$

Para um número par de pontos, podemos seguir o seguinte prosseguimento: Como  $\{\chi_i\}$  é simétrica,  $\exists \{\chi_j\}$  tal que

Prova

$$X_{l} - \eta_{X_{i}} = -\left(X_{l+\frac{N+1}{2}} - \eta_{X_{i}}\right) \quad , \forall l = 0, \dots, \frac{N-1}{2}.$$
 (A.23)

Podemos, então, rearranjar os índices de (A.23) tal que 9

<sup>&</sup>lt;sup>9</sup>Claro que também teremos que rearranjar os índices  $j_*$ , mas, se mantivermos a notação, não perderemos em generalidade.

$$\mu_{x_i^{(j_1)},\dots,x_i^{(j_k)}}^k = \sum_{l=0}^N w_l \left( x_l^{(j_1)} - \eta_{X_l}^{(j_1)} \right) \cdots \left( x_l^{(j_k)} - \eta_{X_l}^{(j_k)} \right).$$

PROVA Prosseguindo:

$$\begin{split} &\sum_{l=0}^{N} w_l \left( x_l^{(j_1)} - \eta_{X_l}^{(j_1)} \right) \cdots \left( x_l^{(j_k)} - \eta_{X_l}^{(j_k)} \right) \\ &= \sum_{l=0}^{\frac{N-1}{2}} w_l \left( x_l^{(j_1)} - \eta_{X_l}^{(j_1)} \right) \cdots \left( x_l^{(j_k)} - \eta_{X_l}^{(j_k)} \right) \\ &+ \sum_{l=\frac{N+1}{2}}^{N} w_l \left( x_l^{(j_1)} - \eta_{X_l}^{(j_1)} \right) \cdots \left( x_l^{(j_k)} - \eta_{X_l}^{(j_k)} \right) \\ &= \sum_{l=0}^{\frac{N-1}{2}} w_l \left( x_l^{(j_1)} - \eta_{X_l}^{(j_1)} \right) \cdots \left( x_l^{(j_k)} - \eta_{X_l}^{(j_k)} \right) \\ &+ (-1)^k \sum_{l=\frac{N+1}{2}}^{N} w_l \left[ - \left( x_l^{(j_1)} - \eta_{X_l}^{(j_1)} \right) \right] \cdots \left[ - \left( x_l^{(j_k)} - \eta_{X_l}^{(j_k)} \right) \right] \\ &= \sum_{l=0}^{\frac{N-1}{2}} w_l \left( x_l^{(j_1)} - \eta_{X_l}^{(j_1)} \right) \cdots \left( x_l^{(j_k)} - \eta_{X_l}^{(j_k)} \right) \\ &+ (-1)^k \sum_{l=\frac{N+1}{2}}^{N} w_l \left( x_l^{(j_1)} - \eta_{X_l}^{(j_1)} \right) \cdots \left( x_l^{(j_k)} - \eta_{X_l}^{(j_k)} \right) \\ &= \left( 1 + (-1)^k \right) \sum_{l=0}^{\frac{N-1}{2}} w_l \left( x_l^{(j_1)} - \eta_{X_l}^{(j_1)} \right) \cdots \left( x_l^{(j_k)} - \eta_{X_l}^{(j_k)} \right) . \end{split}$$

Para k ímpar,

$$\left(1+(-1)^k\right)\sum_{l=0}^{\frac{N-1}{2}}w_l\left(x_l^{(j_1)}-\eta_{X_l}^{(j_1)}\right)\cdots\left(x_l^{(j_k)}-\eta_{X_l}^{(j_k)}\right)=0.$$

Para um número ímpar de pontos, podemos seguir o seguinte prosseguimento: Como  $\{\chi_i\}$  é simétrica,  $\exists \{\chi_j\}$  tal que

$$X_l - X_0 = -\left(X_{l+\frac{N}{2}} - X_0\right)$$
,  $\forall l = 1, \dots, \frac{N}{2}$ ,  $\mathbf{e} \ c = X_0$ . (A.24)

Podemos, então, rearranjar os índices de (A.24) tal que <sup>10</sup>

<sup>&</sup>lt;sup>10</sup>Claro que também teremos que rearranjar os índices  $j_*$ , mas, se mantivermos a notação, não perderemos em generalidade.

$$\mu_{x_i^{(j_1)},\dots,x_i^{(j_k)}}^k = \sum_{l=0}^N w_l \left( x_l^{(j_1)} - X_0 \right) \cdots \left( x_l^{(j_k)} - X_0 \right).$$

Prosseguindo:

$$\begin{split} &\sum_{l=0}^{N} w_l \left( x_l^{(j_1)} - \eta_{X_l}^{(j_1)} \right) \cdots \left( x_l^{(j_k)} - \eta_{X_l}^{(j_k)} \right) \\ &= w_0 \left( X_0 - X_0 \right) \cdots \left( X_0 - X_0 \right) \\ &+ \sum_{l=1}^{\frac{N}{2}} w_l \left( x_l^{(j_1)} - \eta_{X_l}^{(j_1)} \right) \cdots \left( x_l^{(j_k)} - \eta_{X_l}^{(j_k)} \right) \\ &+ \sum_{l=\frac{N}{2}+1}^{N} w_l \left( x_l^{(j_1)} - \eta_{X_l}^{(j_1)} \right) \cdots \left( x_l^{(j_k)} - \eta_{X_l}^{(j_k)} \right) \\ &= \sum_{l=1}^{\frac{N}{2}} w_l \left( x_l^{(j_1)} - \eta_{X_l}^{(j_1)} \right) \cdots \left( x_l^{(j_k)} - \eta_{X_l}^{(j_k)} \right) \\ &+ \left( -1 \right)^k \sum_{l=\frac{N}{2}+1}^{N} w_l \left[ - \left( x_l^{(j_1)} - \eta_{X_l}^{(j_1)} \right) \right] \cdots \left[ - \left( x_l^{(j_k)} - \eta_{X_l}^{(j_k)} \right) \right] \\ &= \sum_{l=1}^{\frac{N}{2}} w_l \left( x_l^{(j_1)} - \eta_{X_l}^{(j_1)} \right) \cdots \left( x_l^{(j_k)} - \eta_{X_l}^{(j_k)} \right) \\ &+ \left( -1 \right)^k \sum_{l=\frac{N}{2}+1}^{N} w_l \left( x_l^{(j_1)} - \eta_{X_l}^{(j_1)} \right) \cdots \left( x_l^{(j_k)} - \eta_{X_l}^{(j_k)} \right) \\ &= \left( 1 + \left( -1 \right)^k \right) \sum_{l=1}^{\frac{N}{2}} w_l \left( x_l^{(j_1)} - \eta_{X_l}^{(j_1)} \right) \cdots \left( x_l^{(j_k)} - \eta_{X_l}^{(j_k)} \right) . \end{split}$$

Para k ímpar,

$$\left(1 + (-1)^k\right) \sum_{l=1}^{\frac{N}{2}} w_l \left(x_l^{(j_1)} - \eta_{X_l}^{(j_1)}\right) \cdots \left(x_l^{(j_k)} - \eta_{X_l}^{(j_k)}\right) = 0.$$

Os dois próximos resultados são corolários da dos lemas A.2.1, A.2.2, A.2.4 e A.2.8.

**Corolário A.2.3 (Média da transformação de pontos simétricos).** Sejam  $\{\chi_i, w_i\}$ , i = 0, 1, 2, ..., N, com  $N \in \mathbb{N}$ , um conjunto de amostras  $(\chi_i)$  e pesos  $(w_i)$ , simétricos em torno de sua média amostral  $\eta_{\chi_i}$  e o mapeamento  $f : \Re^n \mapsto \Re^m$  diferenciável que define os pontos  $\gamma_i$  tal que

$$\gamma_i \triangleq f\left(\chi_i\right),$$

a média amostral de  $\gamma_i$  pode ser escrita da seguinte forma:

se k for par,

$$\eta_{\gamma_{i}} = f\left(\eta_{\chi_{i}}\right) + \Xi\left\{\frac{\Psi_{\chi,\eta_{\chi_{i}}}^{2}f}{2!}\right\} + \Xi\left\{\frac{\Psi_{\chi,\eta_{\chi_{i}}}^{4}f}{4!}\right\}$$
(A.25)

$$+\dots+\Xi\left\{\frac{\Psi^{k}_{\chi,\eta_{\chi_{i}}}f}{k!}\right\}$$
(A.26)

$$= .f\left(\eta_{\chi_{i}}\right) + \sum_{i_{1},i_{2}=1}^{n} \mu_{\chi_{i}^{(i_{1})}\chi_{i}^{(i_{2})}}^{2} \left.\frac{\partial^{2}f\left(x\right)}{\partial x^{(i_{1})}\partial x^{(i_{2})}}\right|_{x=\bar{X}}$$
(A.27)

$$+\sum_{i_1,\cdots,i_4=1}^{n} \mu^4_{\chi_i^{(i_1)}\cdots\chi_i^{(i_4)}} \left. \frac{\partial^4 f\left(x\right)}{\partial x^{(i_1)}\cdots\partial x^{(i_4)}} \right|_{x=\bar{X}}$$
(A.28)

$$+\cdots+\sum_{i_{1},\cdots,i_{k}=1}^{n}\mu_{\chi_{i}^{(i_{1})}\cdots\chi_{i}^{(i_{k})}}^{k}\left.\frac{\partial^{k}f\left(x\right)}{\partial x^{(i_{1})}\cdots\partial x^{(i_{k})}}\right|_{x=\bar{X}},$$

,se k for ímpar

 $\eta_{\gamma_{i}} = f\left(\eta_{\chi_{i}}\right) + \Xi \left\{\frac{\Psi_{\chi,\eta_{\chi_{i}}}^{2}f}{2!}\right\} + \Xi \left\{\frac{\Psi_{\chi,\eta_{\chi_{i}}}^{4}f}{4!}\right\}$ (A.29)

$$+\dots+\Xi\left\{\frac{\Psi_{\chi,\eta_{\chi_{i}}}^{n,\eta_{\chi_{i}}}f}{(k-1)!}\right\}+\dots$$
(A.30)

$$f(\eta_{\chi_i}) + \sum_{i_1, i_2=1}^n \mu_{\chi_i^{(i_1)} \chi_i^{(i_2)}}^2 \left. \frac{\partial^2 f(x)}{\partial x^{(i_1)} \partial x^{(i_2)}} \right|_{x=\bar{X}}$$
(A.31)

$$+\sum_{i_{1},\cdots,i_{4}=1}^{n}\mu_{\chi_{i}^{(i_{1})}\cdots\chi_{i}^{(i_{4})}}^{4}\left.\frac{\partial^{4}f\left(x\right)}{\partial x^{(i_{1})}\cdots\partial x^{(i_{4})}}\right|_{x=\bar{X}}$$
(A.32)

$$+\dots + \sum_{i_1,\dots,i_{k-1}=1}^n \mu_{\chi_i^{(i_1)}\dots\chi_i^{(i_{k-1})}}^{k-1} \left. \frac{\partial^{k-1}f(x)}{\partial x^{(i_1)}\dots\partial x^{(i_{k-1})}} \right|_{x=\bar{X}} + \dots \qquad \square$$

**Corolário A.2.4 (Covariância da transformação de pontos simétricos).** Sejam  $\{\chi_i, w_i\}$ , i = 0, 1, 2, ..., N, com  $N \in \mathbb{N}$ , um conjunto de amostras  $(\chi_i)$  e pesos  $(w_i)$ , de média amostral  $\eta_{\chi_i}$  e o mapeamento  $f : \Re^n \mapsto \Re^m$  diferenciável que define os pontos  $\gamma_i$  tal que

$$\gamma_i \triangleq f\left(\chi_i\right),$$

a matriz de covariância de  $\{\gamma_i\}$  pode ser escrita da seguinte forma

 $\Sigma_{\gamma\gamma} = \hat{\Theta}_{\Sigma_{\gamma\gamma}}^2 + \hat{\Theta}_{\Sigma_{\gamma\gamma}}^4 + \hat{\Theta}_{\Sigma_{\gamma\gamma}}^6 + \dots + \Theta_{\Sigma_{\gamma\gamma}}^k + \dotsb .$ 

*em que*  $\hat{\Theta}_{\Sigma_{\gamma\gamma}}^2 + \hat{\Theta}_{\Sigma_{\gamma\gamma}}^4 + \cdots$  *são os termos, respectivamente,*  $\Theta_{\Sigma_{\gamma\gamma}}^1 + \Theta_{\Sigma_{\gamma\gamma}}^2 + \Theta_{\Sigma_{\gamma\gamma}}^3 + \Theta_{\Sigma_{\gamma\gamma}}^4 + \cdots$  *para*  $\{\chi_i\}$  *simétrica.* 

$$\hat{\Theta}_{\Sigma_{\gamma\gamma}}^2 = \sum_{i,j=1}^n \mu_{\chi_i^{(i)},\chi_i^{(j)}}^2 \left. \frac{\partial f(x)}{\partial x^{(i)}} \right|_{x=\bar{X}} \left. \frac{\partial f(x)}{\partial x^{(j)}} \right|_{x=\bar{X}}^T$$
(A.33)

$$= \sum_{i,j=1}^{n} (\Sigma_{\chi\chi})_{ij} \left. \frac{\partial f(x)}{\partial x^{(i)}} \right|_{x=\bar{X}} \left. \frac{\partial f(x)}{\partial x^{(j)}} \right|_{x=\bar{X}}^{T}$$
(A.34)
$$= \Theta_{\Sigma_{\gamma\gamma}}^{1}.$$

$$\hat{\Theta}_{\Sigma_{\gamma\gamma}}^{4} \tag{A.35}$$

$$= \frac{1}{4} \sum_{i_{1},\cdots,i_{4}=1}^{n} \left( \mu_{\chi_{i}^{(i_{1})}\cdots\chi_{i}^{(i_{4})}}^{4} - \mu_{\chi_{i}^{(i_{1})}\chi_{i}^{(i_{2})}}^{2} \mu_{\chi_{i}^{(i_{4})}\chi_{i}^{(i_{4})}}^{2} \right)$$

$$= \frac{1}{4} \sum_{i_{1},\cdots,i_{4}=1}^{n} \left( \mu_{\chi_{i}^{(i_{1})}\cdots\chi_{i}^{(i_{4})}}^{4} - \mu_{\chi_{i}^{(i_{1})}\chi_{i}^{(i_{2})}}^{2} \mu_{\chi_{i}^{(i_{4})}\chi_{i}^{(i_{4})}}^{2} \right)$$

$$= \frac{1}{4} \sum_{i_{1},\cdots,i_{4}=1}^{n} \left( \frac{\partial^{2}f(x)}{\partial x^{(i_{4})}} \right)_{x=\bar{X}} - \frac{\partial^{2}f(x)}{\partial x^{(i_{4})}} + \frac{\partial^{2}f(x)}{\partial x^{(i_{4})}} + \frac{\partial^{3}f(x)}{\partial x^{(i_{4$$

 $\hat{\Theta}^6_{\Sigma_{\gamma\gamma}}$ 

$$=\sum_{i_{1},\cdots,i_{6}=1}^{n} \mu_{\chi_{i}\cdots\chi_{i}^{(i_{6})}}^{6} \frac{\partial^{3}f(x)}{\partial x^{(i_{1})}\cdots\partial x^{(i_{3})}} \Big|_{x=\bar{X}} \frac{\partial^{3}f(x)}{\partial x^{(i_{4})}\cdots\partial x^{(i_{6})}} \Big|_{x=\bar{X}}^{T} + \sum_{i_{1},\cdots,i_{6}=1}^{n} \left( \mu_{\chi_{i}\cdots\chi_{i}^{(i_{6})}}^{6} - \mu_{\chi_{i}^{(i_{5})}\chi_{i}^{(i_{6})}}^{2} \mu_{\chi_{i}^{(i_{1})}\cdots\chi_{i}^{(i_{4})}}^{4} \right)$$

$$\left( \frac{\partial^{4}f(x)}{\partial x^{(i_{1})}\cdots\partial x^{(i_{4})}} \Big|_{x=\bar{X}} \frac{\partial^{2}f(x)}{\partial x^{(i_{5})}\partial x^{(i_{6})}} \Big|_{x=\bar{X}}^{T} + \frac{\partial^{2}f(x)}{\partial x^{(i_{5})}\partial x^{(i_{6})}} \Big|_{x=\bar{X}} \frac{\partial^{4}f(x)}{\partial x^{(i_{1})}\cdots\partial x^{(i_{4})}} \Big|_{x=\bar{X}}^{T} \right).$$
(A.36)

## **B. ALGUNS RESULTADOS DE ALGEBRA LINEAR**

Este capítulo tem a função apenas de oferecer alguns resultados que se utilizam da Álgebra Linear que foram usados ao longo desta dissertação.

**Lema B.0.9.** Sejam as matrizes  $A \in \Re^{m \times k}$  e  $C \in \Re^{m \times 2k}$  e o vetor  $x \in \Re^n$ , tal que

$$C = \begin{bmatrix} x + A_{*1} & \cdots & x + A_{*k} & x - A_{*1} & \cdots & x - A_{*k} \end{bmatrix},$$

a seguinte equação é verdadeira:

$$rank\left\{C\right\} = rank\left\{A\right\}.$$

PROVA Temos que

$$rank(C) = rank\left\{ \left[ x + A_{*1} \cdots x + A_{*k} \quad x - A_{*1} \cdots x - A_{*k} \right] \right\}.$$

Agora, observe que, para  $i = 1, \ldots k$  e  $j = 1, \ldots k$ ,

$$- (C)_{*i} + (C)_{*j} + (C)_{*k+j}$$
  
=  $-x - A_{*i} + x + A_{*j} + x - A_{*j}$   
=  $x - A_{*i}$   
=  $(C)_{*k+i}$ .

Em outras palavras, qualquer coluna da segunda metade de C pode ser escrita como uma combinação linear de outras colunas de C. Portanto,

$$\operatorname{rank}\left\{ \left[ \begin{array}{ccc} x + A_{*1} & \cdots & x + A_{*k} & x - A_{*1} & \cdots & x - A_{*k} \end{array} \right] \right\}$$
$$= \operatorname{rank}\left\{ \left[ \begin{array}{ccc} x + A_{*1} & \cdots & x + A_{*k} \end{array} \right] \right\}$$
$$= \operatorname{rank}\left\{ A \right\}.$$

**Lema B.0.10.** Sejam as matrizes  $A \in \Re^{m \times k}$   $e \in \Re^{m \times 2k+1}$   $e \text{ o vetor } x \in \Re^n$ , tal que

a seguinte equação é verdadeira:

$$rank\left\{C\right\} = rank\left\{A\right\}.$$

PROVA Temos que

$$rank(C) = rank\left\{ \left[ x + A_{*1} \cdots x + A_{*k} \cdots x - A_{*1} \cdots x - A_{*k} x \right] \right\}.$$

Agora, observe que, para  $i = 1, \ldots k$  e  $j = 1, \ldots k$ ,

$$- (C)_{*i} + (C)_{*j} + (C)_{*k+j}$$
  
=  $-x - A_{*i} + x + A_{*j} + x - A_{*j}$   
=  $x - A_{*i}$   
=  $(C)_{*k+i}$ .

e

$$0.5 (C)_{*j} + 0.5 (C)_{*j+k}$$
  
= 0.5x + 0.5A\_{\*j} + 0.5x - 0.5A\_{\*j}  
= x  
= (C)\_{2k+1}.

Em outras palavras, qualquer coluna da segunda metade de C pode ser escrita como uma combinaão linear de outras colunas de C. Portanto,

$$\operatorname{rank}\left\{\left[\begin{array}{cccc} x+A_{*1} & \cdots & x+A_{*k} & \cdots & x-A_{*1} & \cdots & x-A_{*k} & x\end{array}\right]\right\}$$
$$=\operatorname{rank}\left\{\left[\begin{array}{cccc} x+A_{*1} & \cdots & x+A_{*k}\end{array}\right]\right\}$$
$$=\operatorname{rank}\left\{A\right\}.$$

## Lema B.0.11 (Decomposição em valores singulares).<sup>1</sup>.

Seja a matriz  $A \in \Re^{n \times n}$  positiva definida, existe uma matriz ortogonal U tal que

$$A = USS^T U^T,$$

*em que* 
$$S = (s_{ii} = \lambda_i)$$
 *é diagonal e*  $\lambda_1^2, \ldots, \lambda_n^2$  são os autovalores de A.

**Definição B.0.2 (Matriz raiz quadrada).** Seja a matriz  $A \in \Re^{n \times n}$  positiva definida e a decomposição em valores singulares  $A = USS^TU^T$  de acordo com o Lema B.0.11, a matriz  $\sqrt{A}$  será uma matriz raiz quadrada de A se

$$\sqrt{A} = USV^T, \qquad \Box$$

em que V é uma matriz ortogonal.

**Lema B.0.12.** Seja a matriz  $A \in \Re^{n \times n}$  positiva definida e seja ainda  $\sqrt{A}$  uma matriz raiz quadrada de A a seguinte relação é verdadeira:

$$\sqrt{A}\sqrt{A}^{T} = P_{XX}.$$

PROVA Como A é positiva definida, podemos utilizar a decomposição em valores singulares  $A = USS^TU^T$  de acordo do Lema B.0.11. Agora, utilizando a definição de matriz raiz quadrada B.0.2 no lema em questão, teremos:

$$\sqrt{A}\sqrt{A}^{T} = \left(USV^{T}\right)\left(USV^{T}\right)^{T} = USV^{T}VS^{T}U^{T} = USS^{T}U^{T} = P_{XX}. \quad \Box$$

**Lema B.0.13.** Sejam  $(A)_{*i}$  a *i*-ésima coluna da matriz  $A \in \sqrt{A} \in \Re^{n \times n}$ uma matriz raiz quadrada da matriz quadrada  $A \in \Re^{n \times n}$ , a seguinte equação é verdadeira:

$$\sum_{i=1}^{n} \left(\sqrt{A}\right)_{*i} \left(\left(\sqrt{A}\right)_{*i}\right)^{T} = A \qquad \Box$$

<sup>&</sup>lt;sup>1</sup>Modificada de [162], página 77, equação (3.71)

PROVA Defina  $P = \sqrt{A}$  e  $p_{ij}$  o elemento da *i*-ésima linha e *j*-ésima coluna de P. Então, temos que

$$\begin{split} &\sum_{i} \left(\sqrt{A}\right)_{i} \left(\sqrt{A}\right)_{i}^{T} \\ &= \sum_{i} \left(P\right)_{*i} \left(\left(P\right)_{*i}\right)^{T} \\ &= \left( \begin{array}{c} p_{11} \\ \vdots \\ p_{n1} \end{array} \right) \left( \begin{array}{c} p_{11} \cdots p_{n1} \end{array} \right) + \cdots + \left( \begin{array}{c} p_{1n} \\ \vdots \\ p_{nn} \end{array} \right) \left( \begin{array}{c} p_{1n} \cdots p_{nn} \end{array} \right) \\ &= \left( \begin{array}{c} p_{11}^{2} & p_{11}p_{21} \cdots p_{11}p_{n1} \\ p_{11}a_{21} & p_{21}^{2} & \cdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ p_{11}a_{n1} & \cdots & \cdots & p_{n1}^{2} \end{array} \right) + \cdots + \left( \begin{array}{c} p_{1n}^{2} & p_{1n}p_{2n} \cdots p_{1n}p_{nn} \\ p_{1n}p_{2n} & p_{2n}^{2} & \cdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ p_{1n}p_{nn} & \cdots & \cdots & p_{nn}^{2} \end{array} \right) \\ &= \left( \begin{array}{c} \sum_{i} p_{1i}^{2} & \sum_{i} p_{1i}p_{2i} & \cdots & \sum_{i} p_{1i}p_{ni} \\ \sum_{i} & p_{1i}p_{2i} & \sum_{i} p_{2i}^{2} & \cdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{i} p_{1i}p_{ni} & \cdots & \cdots & \sum_{i} p_{ni}^{2} \end{array} \right) \\ &= \left( \begin{array}{c} p_{11} & p_{12} \cdots & p_{1n} \\ p_{21} & p_{22} & \cdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ p_{n1} & \cdots & \cdots & p_{nn} \end{array} \right) \left( \begin{array}{c} p_{11} & p_{21} & \cdots & p_{n1} \\ p_{12} & p_{22} & \cdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ p_{1n} & \cdots & \cdots & p_{nn} \end{array} \right) \\ &= PP^{T} = \sqrt{A}\sqrt{A}^{T} = A. \end{split}$$

**Lema B.0.14.** Sejam as matrizes  $A \in \Re^{n \times p}$ ,  $B \in \Re^{p \times m}$ ,  $C \in \Re^{m \times q}$ , as seguintes afirmações são verdadeiras:

$$(AB)_{*j} = AB_{*j}.$$

2.

$$(AB)_{i*} = A_{i*}B.$$

3.

$$(ABC)_{ij} = (A)_{i*} B(C)_{*j} \qquad \Box$$

Prova

$$(AB)_{*j} = \left( \begin{bmatrix} AB_{*1} & AB_{*2} & \cdots & AB_{*j} & AB_{*m} \end{bmatrix} \right)_{*j}$$
$$= AB_{*j}.$$

$$(AB)_{i*} = \left( \begin{bmatrix} A_{1*}B \\ \vdots \\ A_{i*}B \\ \vdots \\ A_{n*}B \end{bmatrix} \right)_{i*}$$
$$= A_{i*}B \cdot$$

$$(ABC)_{ij} = \left( (ABC)_{*j} \right)_{i*}$$
$$= \left( AB(C)_{*j} \right)_{i*}$$
$$= (A)_{i*} B(C)_{*j}.$$

**Lema B.0.15.** Sejam as matrizes  $A \in \mathbb{R}^{n \times n}$ ,  $B \in \mathbb{R}^{n \times p}$ ,  $C \in \mathbb{R}^{q \times p}$ ,  $D \in \mathbb{R}^{q \times p}$  as seguintes igualdades são verdadeiras:

1. Seja A invertível,

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} A & 0 \\ C & I \end{bmatrix} \begin{bmatrix} I & A^{-1}B \\ 0 & D - CA^{-1}B \end{bmatrix};$$

2. Seja D invertível,

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} I & B \\ 0 & D \end{bmatrix} \begin{bmatrix} A - BD^{-1}C & 0 \\ D^{-1}C & I \end{bmatrix}.$$

PROVA Trivial.

**Lema B.0.16.** Sejam as matrizes  $T \in n \times m e Q \in m \times n$ , a seguinte equação é verdadeira:

$$\det (I_m - QT) = \det (I_n - TQ). \qquad \Box$$

PROVA Tome a seguinte matriz:

$$\begin{bmatrix} I_n & T \\ Q & I_m. \end{bmatrix}$$
(B.1)

Aplicando a primeira afirmativa do Lema B.0.15 em (B.1), temos que

$$\det \left( \begin{bmatrix} I_n & T \\ Q & I_m \end{bmatrix} \right) = \det \left( \begin{bmatrix} I_n & 0 \\ Q & I \end{bmatrix} \begin{bmatrix} I & T \\ 0 & I_m - QT \end{bmatrix} \right)$$
$$= \det \left( \begin{bmatrix} I_n & 0 \\ Q & I \end{bmatrix} \right) \det \left( \begin{bmatrix} I & T \\ 0 & I_m - QT \end{bmatrix} \right)$$
$$= \det (I) \det (I_m - QT)$$
$$= \det (I_m - QT).$$

Agora, aplicando a segunda afirmação do Lema B.0.15 em (B.1), temos que

$$\det \left( \begin{bmatrix} I_n & T \\ Q & I_m \end{bmatrix} \right) = \det \left( \begin{bmatrix} I & T \\ 0 & D \end{bmatrix} \begin{bmatrix} I_n - TD^{-1}Q & 0 \\ D^{-1}Q & I \end{bmatrix} \right)$$
$$= \det \left( \begin{bmatrix} I & T \\ 0 & I_m \end{bmatrix} \right) \det \left( \begin{bmatrix} I_n - TQ & 0 \\ Q & I \end{bmatrix} \right)$$
$$= \det (I_m) \det (I_n - TQ)$$
$$= \det (I_n - TQ) . \square$$

**Lema B.0.17 ([103], pág. 123).** Seja a matriz  $P = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$ , invertível com A e D invertíveis, as seguintes identidades são verdadeiras:

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix}^{-1} = \begin{bmatrix} A^{-1} + A^{-1}B \left( D - CA^{-1}B \right)^{-1} CA^{-1} & -A^{-1}B \left( D - CA^{-1}B \right)^{-1} \\ - \left( D - CA^{-1}B \right)^{-1} CA^{-1} & \left( D - CA^{-1}B \right)^{-1} \end{bmatrix};$$

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix}^{-1} = \begin{bmatrix} \left( A - BD^{-1}C \right)^{-1} & - \left( A - BD^{-1}C \right)^{-1} BD^{-1} \\ -D^{-1}C \left( A - BD^{-1}C \right)^{-1} & D^{-1} + D^{-1}C \left( A - BD^{-1}C \right)^{-1} BD^{-1} \end{bmatrix}.$$

**Lema B.0.18.** Sejam as matrizes  $G \in \Re^{n \times m}$  e  $K \in \Re^{m \times n}$ , a seguinte identidade é verdadeira:

: 
$$G(I - KG)^{-1} = (I - GK)^{-1}G.$$

PROVA Das matrizes bloco da primeira linha e da segunda coluna das duas equações do Lema B.0.17, podemos fazer

$$\begin{bmatrix} I & G \\ K & I \end{bmatrix}^{-1} = \begin{bmatrix} (I - GK)^{-1} & -G(I - KG)^{-1} \\ -K(I - GK)^{-1} & (I - KG)^{-1} \end{bmatrix}$$
$$= \begin{bmatrix} (I - GK)^{-1} & -(I - GK)^{-1}G \\ -C(I - GK)^{-1} & (I - KG)^{-1} \end{bmatrix}.$$

: 
$$G(I - KG)^{-1} = (I - GK)^{-1}G.$$