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Abstract

This work investigates the notion of a conformal group and derives a representation

for symplectic quantum mechanics in the Galilean manifold, G, in a consistent manner

using the Wigner function method. We study two non-Lorentzian conformal symmetries:

the Conformal Carrollian group and the Schödinger group. A symplectic Hilbert space

is built and unitary operators representing translations and rotations are studied, whose

generators fulfill the Lie algebra in G. The Schrödinger (Klein-Gordon-like) equation for

the wave functions in phase space is derived from this representation, where the variables

have the contents of position and linear momentum. By means of the Moyal product,

wave functions are linked to the Wigner function, so symbolizing a quasi-amplitude of

probability. We establish the explicitly covariant form of the Levy-Leblond (Dirac-like)

equation in phase-space. In conclusion, we demonstrate how the five-dimensional phase-

space formalism and the standard formalism are equivalent. We next provide a solution

that restores the standard (non-covariant) form of the Pauli-Schrödinger problem in phase-

space. We investigate the non-relativistic part of the Stefan-Boltzmann law and the Casimir

effect for the spin 0 and spin 1/2 particles with thermofield dynamics, also within the

framework of Galilean covariance.

Key words: Conformal field theory, Galilean Covariance, Carrollian Covariance, Symplec-

tic quantum mechanics, Wigner Function.
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Resumo

Teoria de Campos Conformes em Variedades Simpléticas

Este trabalho investiga a noção de grupo conforme e deriva uma representação para a

mecânica quântica simplética na variedade G de maneira consistente usando o método da

função de Wigner. Estudamos duas simetrias conformes não Lorentzianas: o grupo Car-

rolliano Conforme e o grupo Schödinger. Um espaço de Hilbert simplético é constrúıdo e

são estudados operadores unitários representando translações e rotações, cujos geradores

cumprem a álgebra de Lie em G. A equação de Schrödinger (tipo Klein-Gordon) para

as funções de onda no espaço de fase é derivada desta representação, onde as variáveis

têm o conteúdo de posição e momento linear. Por meio do produto de Moyal, as funções

de onda estão vinculadas à função de Wigner, simbolizando assim uma quase amplitude

de probabilidade. Estabelecemos a forma explicitamente covariante da equação de Levy-

Leblond (semelhante a Dirac) no espaço de fase. Concluindo, demonstramos como o for-

malismo do espaço de fase pentadimensional e o formalismo padrão são equivalentes. A

seguir, fornecemos uma solução que restaura a forma padrão (não covariante) do problema

de Pauli-Schrödinger no espaço de fases. Investigamos a parte não relativ́ıstica da lei de

Stefan-Boltzmann e o efeito Casimir para as part́ıculas de spin 0 e spin 1/2 com dinâmica

de campo térmico, também no âmbito da covariância de Galileu.

Palavras-chave: Teoria de campos conformes, Covariância Galileana, Covariância Car-

rolliana, Mecânica Quântica Simplética, Função de Wigner.
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Chapter 1

Introduction

The idea of conformal symmetry in physics and mathematics is expressed as an exten-

sion of the Poincaré group. This extension includes special conformal transformations and

dilations. In 1908, Bateman and Cunningham addressed the idea of a conformal group of

spacetime [1–3]. They argued that kinematic groups are necessarily conformal, as they pre-

serve the quadratic form of spacetime and are akin to orthogonal transformations, albeit

with respect to an isotropic quadratic form. The freedoms of an electromagnetic field are

not limited to kinematic movements but rather should only be locally proportional to a

transformation that preserves the quadratic form. Bateman in 1910 studied the Jacobian

matrix of a transformation that preserves the light cone and showed that it had the confor-

mal property (proportional to a form preservation) [4]. Bateman and Cunningham showed

that this conformal group is ”the largest group of transformations leaving the Maxwell

equations structurally invariant” [5]. The conformal group of spacetime was denoted as

C(1,3) [6].

Dirac, in 1936 [7], showed the invariance of conformal symmetry for massless relativistic

spin 1/2 particles. In 1998, Maldacena [8] introduced the Anti-de Sitter/Conformal Field

Theory correspondence (AdS/CFT). Discovered in the context of string theory, where

it is common to treat field theories on hypersurfaces embedded in spaces of arbitrary

dimensions, this correspondence conjectures connections between quantum field theory and

gravity. In its original form, it related a Conformal Field Theory in 4-dimensional spacetime

to the geometry of anti-de Sitter space in 5 dimensions. As it was studied further, the

correspondence was extended to consider different situations, such as strong coupling in a

quark-gluon plasma in quantum chromodynamics [9], thermodynamics of black holes [10],

and in condensed matter physics, where systems are experimentally accessible, such as

unitary fermions [11, 12]. Non-relativistic conformal symmetry in theories with Galilean
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covariance is the maximum symmetry that leaves the equations of motion invariant when

written on the light cone of a de Sitter space (4,1) [13].

In 1988, Takahashi et al. [14] began a study of Galilean covariance, developing a non-

relativistic field theory. With this formalism, the Schrödinger equation for spin-zero parti-

cles assumes a form similar to the Klein-Gordon equation but is written on the light cone of

a de Sitter space (4,1) [15, 16], amenable to explicitly covariant tensorial formalism. With

the advent of Galilean covariance, which is a particular case of conformal theory, it was

possible to deduce the non-relativistic version of Dirac’s theory, known in its usual form as

the Pauli-Schrödinger equation. Subsequently, a version of this theory in phase space was

constructed associated with Wigner’s representation of quantum theories.

Wigner’s quasi-probability distribution was introduced by Wigner in 1932 [17] to study

quantum corrections to classical statistical mechanics. The goal was to relate the wave func-

tion appearing in the Schrödinger equation to a probability distribution in phase space. In

1927, Weyl presented a mapping of the density matrix into functions of real phase space

and also of operators [18], in a context related to representation theory (Weyl quantization

in physics). In fact, the Wigner function is the Wigner-Weyl transformation of the density

matrix; hence the realization of this operator in phase space. In 1949, Moyal [19], indepen-

dently, deduced the Wigner function as the generating functional of quantum momentum.

This forms a basis for an elegant encoding of all expected values and thus of quantum

mechanics in the phase space formulation (phase space representation).

In order to deduce a phase space representation for covariantly Galilean spin-1/2 par-

ticles, a symplectic representation for the Galilei group was used, which is associated with

the Wigner approach [20–23]. These results were applied, in particular, to the Landau

problem in phase space [24], where the statistics of Landau wave functions are analyzed

through the Wigner function. Given the importance of conformal theories in gravity and

field theory, it would be interesting to extend the previous analysis to (general) conformal

theories. This has not been fullly explored in the literature, in particular for equilibrium

real time finite temperature models as Thermofield dynamics.

Thermofield dynamics (TFD) is a real time, operator-based formalism of quantum field

theory at finite temperature, proposed by Takahashi and Umezawa [37]. It incorporates

thermal effects in the theory by enlarging the Hilbert (or Fock) space. The thermal average

is measured by the expected value of arbritary operator in a thermal vacuum, ⟨0(β)|A|0(β)⟩.
To create this thermal state, two elements are required: doubling of the Hilbert space,

which comprises of the original and dual Hilbert spaces, and Bogoliubov transformations.

2 ψ ⋆ ψ† Star Product



1 INTRODUCTION

Dual conjugation principles govern doubling. Temperature effects are introduced by the

Bogoliubov transformation, which is a rotation between the variables of the original and

dual Hilbert spaces.

The present work aims to extend the previous results (deduced in [24]) to general

conformal symmetries. The objective of this work is to explore the symplectic structure

in conformal symmetries, considering the systems: Landau Model and Cornell Potential of

quark-antiquark interaction.

1. the Landau model: describes electronic systems confined to a plane with a perpen-

dicular external magnetic field

2. non-relativistic sector of quantum chromodynamics describing the quark-antiquark

interaction (Cornell potential).

These systems have been considered in the literature due to their experimental importance.

However, the analysis of the quantum nature of the states, such as non-classicality and

quantum chaos, of these systems has only been partially explored. These characteristics can

be studied using the Wigner function, with its symplectic structure. This work is organized

as follows: In Chapter 2, a brief review of the Wigner formalism and the properties of the

star product is presented. In Chapter 3, a review of Thermofield dynamics is presented.

Conformal symmetries is analyzed, and the the Galilean and Carrollian covariant formalism

is provided in chapter 4. Chapters 5, 6, 7 and 8 discusses the new results of this work. The

Conclusion is given in chapter 9.

ψ ⋆ ψ† Star Product 3





Chapter 2

Wigner Function

The Wigner quasi-probability distribution was first introduced by Eugene Wigner in

1932 [17]. Its primary objective was to establish a connection between the wave function

appearing in the Schrödinger equation and a probability distribution in phase space. This

distribution serves as a generating function for all spatial autocorrelation functions of a

given quantum-mechanical wavefunction ψ(x). As a result, it provides a mapping between

the quantum density matrix and real phase space functions, along with Hermitian operators

introduced by Hermann Weyl in 1927 [18]. Weyl’s work has its roots in representation

theory within the realm of mathematics, corresponding to the concept of Weyl quantization

in physics. This essentially involves the transformation of the density matrix into phase

space, known as the Wigner-Weyl transformation.

In 1949, José Enrique Moyal [19] recognized it as a functional generator of quantum

moments and as the basis for an elegant formulation encompassing all expected values,

thus providing a comprehensive representation of quantum mechanics within phase space.

The Wigner distribution finds applications across various fields such as statistical me-

chanics, quantum chemistry, quantum optics, classical optics, and signal analysis, extending

to disciplines including electrical engineering and seismology [?, 26, 27]. This chapter of-

fers a concise overview of the representation of quantum mechanics in phase space, along

with the Wigner function. It emphasizes their properties, time evolution, the equivalence

of Wigner’s formalism for the product of two operators, and delves into the characteristics

of the Moyal product. This chapter is based on the works [29–35].
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2.1. The Density Matrix

2.1 The Density Matrix

In quantum mechanics we can do a statistical approach representing the macroscopic

states through the density operator

ρ(t) =
∑
i

ωi |ψi(t)⟩⟨ψi(t)| ,

where {ψi} are the microscopic states of the statistical ensemble and ωi =
Ni

N
, is the

statistical weight for the quantum state |ψi⟩. The density matrix is said to contain all the

physically relevant information we can possibly obtain about the ensemble in question. For

pure states we will have

ρ(t) = |ψ(t)⟩⟨ψ(t)| . (2.1)

The expected value of an operator A in the formulation of the usual statistical quantum

mechanics is given by

⟨A⟩ = ⟨ψ|A|ψ⟩ = Tr(ρA) = Tr(Aρ). (2.2)

The density matrix ρ has the following properties

• hermeticity: ρ = ρ†;

• trace: Trρ = 1.

The equation that governs temporal evolution matrix densitye ρ it’s called the Liouville-von

Neumann equation, given by

iℏ
∂ρ

∂t
= [H(t), ρ(t)] . (2.3)

where H represents the total system energy.

It is possible to enter a quantum mechanics formulation in phase space from ρ. This for-

mulation is known as the Wigner function method.

2.2 The Wigner’s Function

The density operator ρ can receive many matrix representations, being the position

representation, ⟨q|ρ|q′⟩, and momentum representation, ⟨p|ρ|p′⟩, the most common ones.

6 ψ ⋆ ψ† Star Product



2 WIGNER FUNCTION

TheWigner representation is, in a way, between both. For one single particle in a dimension,

it is defined as

fw(q, p) = Ω(ρ) = (2πℏ)−1

∫
dz exp

(
ipz

ℏ

) 〈
q − z

2

∣∣∣ρ∣∣∣q + z

2

〉
, (2.4)

or yet

fw(q, p) = Ω(ρ) = (2πℏ)−1

∫
dk exp

(
−iqk
ℏ

) 〈
p− k

2

∣∣∣∣ρ∣∣∣∣p+ k

2

〉
, (2.5)

matching the mapping Ω : ρ → fw(q, p). Considering a quantum system described by a

pure state so that ρ = |ψ⟩⟨ψ|, Wigner’s function can then be written as

fw(q, p) = (2πℏ)−1

∫
dz exp

(
ipz

ℏ

)
ψ†
(
q +

z

2

)
ψ
(
q − z

2

)
. (2.6)

Wigner’s function does not represent a probability distribution, since if fψ e fϕ are two

Wigner functions associated respectively with the states |ψ⟩ e |ϕ⟩, so

|⟨ψ|ϕ⟩|2 = (2πℏ)
∫
fψ(q, p; t)fϕ(q, p; t)dqdp, (2.7)

the left side of this equation is positive or null (in this case if the kets are orthogonal), in the

latter case we have the integral, fψ(q, p; t)fϕ(q, p; t), is null, however fψ(q, p; t) e fϕ(q, p; t)

they are not necessarily null, forcing them to conclude that they can assume negative values.

For this reason the Wigner function is called the quasi-probability distribution, since when

integrated it can be interpreted as a probability distribution of physical variables, as we

shall see below.

First, Wigner’s function is limited.

Demonstration:

Take for example a pure state, given by Eq. (2.4)

fw(q, p) = Ω(ρ) = (2πℏ)−1

∫
dz exp

(
ipz

ℏ

) 〈
q − z

2

∣∣∣ρ∣∣∣q + z

2

〉
.

If we define the normalized wave functions

φ1(z) =
1√
2
e

ipz
ℏ ψ†(q +

z

2
) e φ2(z) =

1√
2
ψ(q − z

2
),

ψ ⋆ ψ† Star Product 7



2.2. The Wigner’s Function

we see that the wigner function can be interpreted as the scalar product

fw(q, p) =
1

πℏ

∫
dz φ†

1(z)φ2(z) =
1

πℏ
⟨φ1|φ2⟩ ,

and therefore,

|fw(q, p)| =
1

πℏ
|⟨φ1|φ2⟩|.

Using Cauchy-Schwarz Inequality

|⟨ϕ1|φ2⟩|2 ≤ ⟨φ1|φ1⟩ ⟨φ2|φ2⟩ ,

so, as φ1 e φ2 are normalized

|⟨φ1|φ2⟩|2 ≤ 1.

Thus,

|fw(q, p)| ≤
1

πℏ
. (2.8)

Inequality |fw(q, p)| ≤ 1
πℏ implies that the Wigner function is nonzero in a region whose

phase space area is less than or equal to h/2 [28].Thus, Wigner’s function for a pure state

intrinsically carries information about the uncertainty scope ,q e p cannot be infinitely

located at a single point in phase space.

It follows directly from (2.4) and (2.5) that

|ψ(q)|2 =
∫
fwdp = ⟨q|ρ|q⟩ , (2.9)

|ψ(p)|2 =
∫
fwdq = ⟨p|ρ|p⟩ . (2.10)

Demonstration:

to demonstrate the Eq.(2.9) just enter a Eq.(2.4) in
∫
fwdp which leads us to∫

dpfw = (2πℏ)−1

∫
dpdz

〈
q − z

2

∣∣∣ρ∣∣∣q + z

2

〉
exp

(
ipz

ℏ

)
, (2.11)
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2 WIGNER FUNCTION

if you first integrate p, we have to∫
dz
〈
q − z

2

∣∣∣ρ∣∣∣q + z

2

〉(∫
dp (2πℏ)−1 exp

(
ipz

ℏ

))
, (2.12)

where the term in parentheses is the Dirac delta, δ(z). We have∫
dz
〈
q − z

2

∣∣∣ρ∣∣∣q + z

2

〉
δ(z) = ⟨q|ρ|q⟩ = |ψ(q)|2, (2.13)

analogously replacing Eq.(2.10) in Eq.(2.4)∫
dqfw = (2πℏ)−1

∫
dkdq exp

(
−iqk
ℏ

) 〈
p− k

2

∣∣∣∣ρ∣∣∣∣p+ k

2

〉
, (2.14)

if you first integrate q, we have to∫
dk

〈
p− k

2

∣∣∣∣ρ∣∣∣∣p+ k

2

〉(∫
dq (2πℏ)−1 exp

(
−iqk
ℏ

))
, (2.15)

where the term in parentheses is the Dirac delta, δ(k). With that we have∫
dz

〈
p− k

2

∣∣∣∣ρ∣∣∣∣p+ k

2

〉
δ(k) = ⟨p|ρ|p⟩ = |ψ(p)|2. (2.16)

We will now show the normalization of the Wigner function, that is∫
fw(q, p)dqdp = Trρ = 1. (2.17)

Demonstration:

Replacing Eq. (2.4) in (2.17), we obtain∫
fw(q, p)dqdp = (2πℏ)−1

∫
dzdpdq exp

(
ipz

ℏ

) 〈
q − z

2

∣∣∣ρ∣∣∣q + z

2

〉
. (2.18)

If we calculate first in p, we have∫
fw(q, p)dqdp =

∫
dzdq

〈
q − z

2

∣∣∣ρ∣∣∣q + z

2

〉(
(2πℏ)−1

∫
dp ei

p
ℏ z

)
. (2.19)
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2.2. The Wigner’s Function

The term in parentheses is the Dirac delta. With that we have∫
fw(q, p)dqdp =

∫
dzdq

〈
q − z

2

∣∣∣ρ∣∣∣q + z

2

〉
δ(z), (2.20)

=

∫
dq ⟨q|ρ|q⟩ = Trρ = 1, (2.21)

as we wanted to demonstrate.

Now if phase space integration is performed on a two-state Wigner two-function prod-

uct, characterized by ρ1 and ρ2, we will find a property that concerns the product trait of

two arrays of density. ∫
dqdpfw1(q, p)fw2(q, p) =

1

2πℏ
Tr(ρ1ρ2). (2.22)

Demonstration:

Using Eq. (2.4), follows that∫
dqdpfw1(q, p)fw2(q, p) =

(
1

2πℏ

)2 ∫
dqdpdz1dz2 e

ip
ℏ (z1+z2)

×
〈
q − z1

2

∣∣∣ρ1∣∣∣q + z1
2

〉 〈
q − z2

2

∣∣∣ρ2∣∣∣q + z2
2

〉
,

integrating in p give us a Dirac’s delta δ(z1 + z2), so that after integrating in z2 we have∫
dqdpfw1(q, p)fw2(q, p) =

(
1

2πℏ

)∫
dqdz1

〈
q − z1

2

∣∣∣ρ1∣∣∣q + z1
2

〉 〈
q − z1

2

∣∣∣ρ2∣∣∣q + z1
2

〉
.

Making the change of variables

q′ = q − z1
2
, q′′ = q +

z1
2
,

we get ∫
dqdpfw1(q, p)fw2(q, p) =

(
1

2πℏ

)∫
dq′dq′′ ⟨q′|ρ1|q′′⟩ ⟨q′′|ρ2|q′⟩ . (2.23)
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2 WIGNER FUNCTION

Using the completeness ratio, we have∫
dqdpfw1(q, p)fw2(q, p) =

(
1

2πℏ

)∫
dq′ ⟨q′|ρ1ρ2|q′⟩ ,

=

(
1

2πℏ

)
Tr(ρ1ρ2), (2.24)

q.e.d.

Now we wonder if it is possible to find for any quantum operator A(Q,P ), where Q

and P are the position and momentum operators, a corresponding function, Aw(q, p), in

Wigner’s representation. The answer is positive. Similarly to what was done in defining the

Wigner function, we define the Aw(q, p) functions associated with the A(Q,P ) operator

given by,

Aw(q, p) =

∫
dz exp

(
ipz

ℏ

) 〈
q − z

2

∣∣∣A(Q,P )∣∣∣q + z

2

〉
, (2.25)

or

Aw(q, p) =

∫
dz exp

(
−iqk
ℏ

) 〈
p− k

2

∣∣∣∣A(Q,P )∣∣∣∣p+ k

2

〉
. (2.26)

We will call these functions equivalent Wigner functions from the operators A(Q,P ). So

we can say that the Wigner function is the equivalent Wigner function for the operator ρ

fw = (2πℏ)−1ρw. (2.27)

With the definition of Wigner equivalents to any quantum operators in the Wigner

representation, we have the expected value of an observable state |ψ⟩ is represented as

⟨A⟩ = ⟨ψ|A|ψ⟩ =
∫
dpdqAw(q, p)fw(q, p) = Tr(Aρ). (2.28)

Demonstration:
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2.2. The Wigner’s Function

Replacing Eq. (2.4) and (2.26) in (2.28), we have

⟨A⟩ =
∫
dpdq Aw(q, p)fw(q, p) = Tr(ρA) =

(
1

2πℏ

)∫
dqdpdz′dz′′ exp

(
ipz′

ℏ

)

×
〈
q − z′

2

∣∣∣∣A(Q,P )∣∣∣∣q + z′

2

〉 〈
q − z′′

2

∣∣∣∣A(Q,P )∣∣∣∣q + z′′

2

〉
, (2.29)

integrating into p results in a Dirac delta δ(z′ + z′′). With that, integrating into z′′

⟨A⟩ =
∫
dqdz′

〈
q − z′

2

∣∣∣∣A(Q,P )∣∣∣∣q + z′

2

〉 〈
q − z′

2

∣∣∣∣A(Q,P )∣∣∣∣q + z′

2

〉
. (2.30)

Introducing changing variables,

q′ = q − z1
2
, q′′ = q +

z1
2
,

thus,

⟨A⟩ =
∫
dq′dq′′ ⟨q′|A(Q,P )|q′′⟩ ⟨q′′|ρ|q′⟩ = Tr(ρA), (2.31)

q.e.d.

The problem now is to show the univocal correspondence between a quantum operator

A(Q,P ) and the reciprocal representation of Wigner Aw(q, p). This can be done via the

Weyl quantization rule which is defined as follows. Given a function in phase space, α(τ, σ),

then there is a quantum operator in Hilbert space, A(Q,P ), associated with α(τ, σ), such

that

A(Q,P ) =
1

2πℏ

∫
dτdσ e

i(σQ+τP )
ℏ α(τ, σ), (2.32)

where τ is associated with the position coordinate and σ with the momentum coordinate

in phase space. If we write A(Q,P ) in terms of Aw(q, p) we get the following result

α(τ, σ) =

∫
dqdp e

i(σQ+τP )
ℏ Aw(q, p). (2.33)

To verify this equivalence, it must be shown that the operator defined by W (Q,P ) =

e
i(σQ+τP )

ℏ , satisfies a kind of orthogonality and completeness in the space of type operators

A(Q,P ). Using Glauber’s formula, given by eA+B = eAeBe−
1
2
[A,B] we rewrite then W (P,Q)

12 ψ ⋆ ψ† Star Product



2 WIGNER FUNCTION

as

W (Q,P ) = e
iσQ
ℏ e

iτP
ℏ e

iστ
2ℏ ,

where we use the fact that [Q,P ] = iℏ. We can then calculate the value of the expression

⟨q′|e±
i
ℏ (σQ+τP )|q⟩ = ⟨q′|e±

iσQ
ℏ e±

iτP
ℏ e±

iστ
2ℏ |q⟩ .

It is known that Q |q⟩ = q |q⟩, so e± i
ℏσQ |q⟩ = e±

i
ℏσq |q⟩ and using the translation operator

property, e
iτP
ℏ |q⟩ = |q − τ⟩. So, we get

⟨q′|e±
i
ℏ (σQ+τP )|q⟩ = e±σ(

i
ℏ q
′± τ

2
)δ(q′ − q ± τ),

which implies

Tre−
i
2
(σQ−τP ) = (2πℏ)δ(σ)δ(τ),

because, by definition TrA =
∫
dqdp ⟨q′|A|q⟩ = (2πℏ)−1

∫
dqdpAw(q, p). Thus,

Tre−
i
ℏ (σQ−τP ) = (2πℏ)−1

∫
dqdp

∫
dz exp(ipz)

〈
q − z

2

∣∣∣e− i
ℏ (σQ−τP )

∣∣∣q + z

2

〉
, (2.34)

= (2πℏ)−1

∫
dqdp

∫
dz exp(ipz) exp(iσ(q − z − τ))δ(z + τ).

Using the Dirac delta and integrating in z, we have

Tre−
i
ℏ (σQ−τP ) = (2πℏ)−1

∫
dqdp e

ipτ
ℏ e

iqσ
ℏ . (2.35)

Thus, we identified two deltas in the integral form, that is,

Tre−iℏ(σQ+τP ) = (2πℏ)δ(σ)δ(τ).

This leads us to orthogonality relations

Tre−
i
ℏ (σ′Q−τ ′P )e−

i
ℏ (σQ−τP ) = (2πℏ)3δ(σ′ − σ)δ(τ ′ − τ). (2.36)

To prove equivalence between equations (2.26) e (2.27) and the equations (2.32) and (2.33),

ψ ⋆ ψ† Star Product 13



2.3. Operator Equivalence in Wigner Representation

we assume that the expansion

A(Q,P ) =

∫
dσdτ α(σ, τ)e

i
ℏ (σQ′+τP ′), (2.37)

exists. So, using the orthogonality relationship shown earlier, we easily notice that

α(σ, τ) =
1

2πℏ
Tr
{
A(Q,P )e−

i
ℏ (σQ′+τP ′)

}
.

To prove the existence of the equation (2.37), we replace the equation

α(σ, τ) =

∫
dqdpe−

i
ℏ (σQ+τP )Aw(q, p), (2.38)

in the equation itself (2.37). Calculating the matrix elements in the position representation,

we arrive at

⟨q|A(Q,P )|q′⟩ = (2πℏ)−1

∫
dσdτdq′′dq′′′ ⟨q′′|A(Q,P )|q′′′⟩

× ⟨q′′′|e
i
ℏ (σQ′+τP ′)|q′′⟩ ⟨q|e

i
ℏ (σQ+τP )|q′⟩ .

And yet with the use of Eq. (2.36), we get the following identity

⟨q|A(Q,P )|q′⟩ = ⟨q|A(Q,P )|q′⟩ . (2.39)

What proves the existence of expansion (2.37). This also proves that it is possible to use the

equations (2.37) and (2.38) to work in both directions: given A(Q,P ), we can determine

Aw(q, p) unequivocally and vice versa. versa.

2.3 Operator Equivalence in Wigner Representation

The purpose of this session is to demonstrate some equivalence properties between the

operators written in the usual representation and their respective equivalents in the Wigner

representation, which can be deduced from results already obtained.

If A = A(P ), that is independent of Q, so Aw = A(p). That is, they will have the same

form, with the exception that the P operators will be replaced by the p variables..

Demonstration:
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2 WIGNER FUNCTION

An operator A(P ) can be expanded in series of P , as

A(P ) = A(0) + PA′(0) + ... (2.40)

Now, using Eq. (2.25), and replacing A(Q,P ) for the expansion (2.40), we have

Aw(q, p) =

∫
dk exp

(
−iqk

ℏ

) 〈
p− k

2

∣∣∣∣A(0) + PA′(0) +
P 2

2!
A′′(0) + ...

∣∣∣∣p+ k

2

〉
. (2.41)

Knowing that P |p⟩ = p |p⟩ we have,

Aw(q, p) = A(0)

∫
dk exp

(
−iqk

ℏ

)〈
p− k

2

∣∣∣∣p+ k

2

〉

+ A′(0)

∫
dk exp

(
−iqk

ℏ

)(
p+

k

2

)〈
p− k

2

∣∣∣∣p+ k

2

〉

+ A(0)′′
∫
dk exp

(
−iqk

ℏ

)
(p+ k

2
)2

2!

〈
p− k

2

∣∣∣∣p+ k

2

〉
+ ...

Noting also that
〈
p− k

2

∣∣p+ k
2

〉
= δk and using the delta property to calculate the integral

in k, one gets

Aw(p) = A(0) + pA′(0) +
p2

2!
A′′(0) + ... = A(p). (2.42)

q.e.d.

Analogously, using Eq. (2.26), we arrive at, if A = A(Q), so Aw(q, p) = A(q).

If A(Q,P ) = 1c, where c is a constant, that is A(q, p) is a multiple of the identity

operator, thus Aw = c.

Demonstration:

This property is demonstrated immediately. Just take the equation (2.25) and in place

of A(Q,P ) put a constant c. Since a constant does not act on kets, we have

Aw(q, p) =

∫
dz exp

(
ipz

ℏ

) 〈
q − z

2

∣∣∣c∣∣∣q + z

2

〉
,

Aw(q, p) = c

∫
dz exp

(
ipz

ℏ

)〈
q − z

2

∣∣∣q + z

2

〉
. (2.43)
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2.3. Operator Equivalence in Wigner Representation

Using the fact
〈
p− k

2

∣∣p+ k
2

〉
= δk and integrating in z,

Aw(q, p) = c (2.44)

q.e.d.

TrA = (2πℏ)−1
∫
dqdp Aw(q, p) .

Demonstration:

Using (2πℏ)−1
∫
dqdp Aw(q, p) and substituing in Eq. (2.25),

(2πℏ)−1

∫
dqdp Aw(q, p) =

∫
dqdp

∫
dz exp

(
ipz

ℏ

) 〈
q − z

2

∣∣∣A(Q,P )∣∣∣q + z

2

〉
.

Integrating in p, the Dirac delta function in its integral form is identified,

(2πℏ)−3

∫
dqdp Aw(q, p) =

∫
dqdp

〈
q − z

2

∣∣∣A(Q,P )∣∣∣q + z

2

〉∫
dz exp

(
ipz

ℏ

)
.

Using the delta to integrate in z, we have

(2πℏ)−1

∫
dqdp Aw(q, p) =

∫
dqdz

〈
q − z

2

∣∣∣A(Q,P )∣∣∣q + z

2

〉
δ(z). (2.45)

We get

(2πℏ)−1

∫
dqdp Aw(q, p) =

∫
dq ⟨q|A(Q,P )|q⟩ = TrA, (2.46)

q.e.d.

From the above demonstration you can see that
∫
dp Aw(q, p) = (2πℏ)−1 ⟨q|A|q⟩ e∫

dq Aw(q, p) = (2πℏ)−1 ⟨p|A|p⟩, we simply replace the equation (2.25) on the first property

and the equation (2.26) in the second, using the same process as in the demonstration

above.

Finally, we have ⟨q|A(Q,P )|q′⟩ = (2πℏ)−2
∫
dσ eiσ

q+q′
2ℏ α(σ, q − q′), where α(σ, τ) is the

Fourier transform of Aw(q, p).

Demonstration:

Using the expression A(Q,P ) = 1
2πℏ

∫
dσdτ , we have

⟨q|A(Q,P )|q′⟩ =
∫
dσdτ α(σ, τ) ⟨q|ei

σQ+τP
ℏ |q′⟩ . (2.47)
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2 WIGNER FUNCTION

And using the equation (2.36), it follow that

⟨q|A(Q,P )|q′⟩ = (2πℏ)−2N

∫
dσ eiσ

q+q′
2ℏ α(σ, q − q′), (2.48)

q.e.d.

Now that we know how operator equivalence occurs in the Wigner representation, our

goal is to find out how the operator product equivalence is represented in the Wigner

representation, as this is fundamental for the development of dynamics.

2.4 Weyl-Moyal Product

The product of two quantum operators AB in Wigner’s representation is written in the

form

(AB)w =

∫
dz ei

pz
ℏ

〈
q − z

2

∣∣∣AB∣∣∣q + z

2

〉
, (2.49)

introducing the closing relationship
∫
dq |q⟩⟨q| = 1, we have

(AB)w =

∫
dzdq ei

pz
ℏ

〈
q − z

2

∣∣∣A∣∣∣q〉 〈q∣∣∣B∣∣∣q + z

2

〉
. (2.50)

Using a eq. (2.48)

(AB)w = (2πℏ)−2

∫
dzdq′ ei

pz
ℏ

∫
dσdσ′ei

σ
2ℏ (q+q′(q+q′− z

2
))α(σ, q′ − q + z

2
)

× ei
σ
2ℏ (q+q′(q+q′− z

2
))β(σ′, q − q′ + z

2
).

Making variable changes; τ = q′ − q + z
2
and τ ′ = q − q′ + z

2
, we arrive to

(AB)w = (2πℏ)−2

∫
dσdσ′dτdτ ′ ei

σt+τq
ℏ α(σ, τ)ei

σ′τ+στ ′
2ℏ β(σ′, τ ′)ei

σ′q+τ ′p
ℏ . (2.51)

The factor ei
σ′τ+στ ′

2ℏ can be replaced in an equivalent way by eiℏ
Λ
2 , whereΛ is the bidiferential

operator

Λ =

←−
∂

∂q

−→
∂

∂p
−
←−
∂

∂p

−→
∂

∂q
.
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2.5. Temporal Evolution

The arrows indicate the direction in which the operators are to be applied. Therefore,

using, Aw =
∫
dq dp ei

σq+τp
ℏ α(σ, τ) e Bw =

∫
dqdpei

σ′q+τ ′p
ℏ β(σ′, τ ′), the product of operators

in the Wigner representation is written as

(AB)w = Aw(q, p)e
iℏΛ
2 Bw(q, p),

or

(AB)w = Bw(q, p)e
− iℏΛ

2 Aw(q, p).

Thus, the operation called star product is defined as

(AB)w = Aw(q, p)e
iℏΛ
2 Bw(q, p) = Aw(q, p) ⋆ Bw(q, p).

Note that the star product is not commutative, and relates the formalism proposed by

Wigner to the quantization formalism proposed by Weyl.

2.5 Temporal Evolution

We can determine the temporal evolution of the Wigner function or any operator in

the Wigner representation from the Liuoville Von-Neumann equation given by

iℏ∂tρ = Hρ− ρH, (2.52)

where ρ is the density matrix and H is the Hamiltonian. Using Wigner’s application, Ω in

this equation, we have

iℏΩ(∂tρ) = Ω(Hρ)− Ω(ρH). (2.53)

Como

iℏ
∂fw
∂t

= {Hw, fw}M , (2.54)
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2 WIGNER FUNCTION

where {Hw, fw}M = Hw ⋆fw− fw ⋆Hw is Moyal’s parenthesis. Moyal’s parenthesis can also

be written as follows,

{a, b}M = a ⋆ b− b ⋆ a = 2ia(q, p) sen

[
ℏ
2

(←−
∂

∂q

−→
∂

∂p
−
←−
∂

∂p

−→
∂

∂q

)]
b(q, p), (2.55)

where, we use the fact, eiℏΛ/2 − e−iℏΛ/2 = 2i sen
(
ℏΛ

2

)
.

Expanding in a series of powers the sine of the last expression that defines Moyal’s

parentheses, we obtain,

sen

(
ℏ
Λ

2

)
=

ℏΛ
2
− 1

3!

(
ℏ
Λ

2

)3

+
1

5!

(
ℏ
Λ

2

)5

+ ... (2.56)

At the limit where ℏ→ 0, we obtain as a result that the Wigner function obeys the classical

Liouville equation, with Hw in place of the Hamiltonian function, that is

∂fw
∂t

=
∂Hw

∂q

∂fw
∂p
− ∂Hw

∂p

∂fw
∂q

= {Hw, fw}, (2.57)

and

∂Hw

∂q
= −ṗ e

∂Hw

∂p
= q̇. (2.58)

So, Wigner’s formalism recovers the canonical equations of classical mechanics, when we

take the classical limit, which shows that this formalism is compatible with the principle

of correspondence, strengthening the importance of Wigner’s description in quantum me-

chanics in the study of the classical limit and in the development of semi-classical methods.

The study presented on the Wigner method, so far, was based on Schrödinger’s description

of quantum mechanics, that is, considering that only states (and not operators) evolve

over time. However, it is possible to develop an analogous treatment in terms of operators

expressed in Heisenberg’s description (where operators evolve over time, and states are

static), without further problems.
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2.6 Star Product Properties

The star product or Weyl product between two functions f(q, p) and g(q, p) is defined

by

f(q, p) ⋆ g(q, p) = f(q, p) exp

[
iℏ
2

(←−
∂

∂q

−→
∂

∂p
−
←−
∂

∂p

−→
∂

∂q

)]
g(q, p). (2.59)

Below we will present some properties of the star product.

Let c ∈ C. So

c ⋆ f(q, p) = f(q, p) ⋆ c = cf(q, p). (2.60)

Demonstration:

Expanding the star product in a series of powers, we have

c ⋆ f(q, p) = c

1 +
iℏ
2

(←−
∂

∂q

−→
∂

∂p
−
←−
∂

∂p

−→
∂

∂q

)
+

1

2!

(
iℏ
2

)2
(←−
∂

∂q

−→
∂

∂p
−
←−
∂

∂p

−→
∂

∂q

)2

+ ...

 f(q, p).

Operators that act on the left side will cancel each other out, as c is a constant. The same

happens if c is on the right hand side, leaving only the identity operator 1.

The star product is non-commutative, i.e.

f(q, p) ⋆ g(q, p) ̸= g(q, p) ⋆ f(q, p). (2.61)

That is, f(q, p)e
iℏΛ
2 g(q, p) ̸= g(q, p)e

iℏΛ
2 f(q, p). Because actually,

f(q, p)e
iℏΛ
2 g(q, p) = g(q, p)e−

iℏΛ
2 f(q, p).

Demonstration:

Case 1:

q ⋆ p =

(
q +

iℏ
2
∂p

)
p = qp+

iℏ
2
.
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Case 2:

p ⋆ q =

(
p− iℏ

2
∂q

)
q = pq − iℏ

2
,

q.e.d.

The star product carried out between two functions in the phase space promotes one

of them as an operator category,

f(q, p) ⋆ g(q, p) = f

(
q +

iℏ
2

−→
∂

∂p
, p− iℏ

2

−→
∂

∂q

)
g(q, p)

= f(q, p)g

(
q +

iℏ
2

←−
∂

∂p
, p− iℏ

2

←−
∂

∂q

)
.

Demonstration:

Letting a ≡
−→
∂
∂p

e b ≡
−→
∂
∂q
, we obtain

f(q, p) ⋆ g(q, p) = f(q, p)e
iℏ
2

(
a
←−
∂
∂q

−b
←−
∂
∂p

)
g(q, p).

Considering that ea∂xf(x) = f(x+ a), we have

f(q, p) ⋆ g(g, p) = f

(
q +

iℏ
2
a, p− iℏ

2
b

)
g(p, q).

Thus

f(q, p) ⋆ g(g, p) = f

(
q +

iℏ
2

−→
∂

∂p
, p− iℏ

2

−→
∂

∂q

)
g(p, q).

So we define the star operator,

f̂ = f(q, p) ⋆ .

The complex conjugation changes the order of the star product,

(f ⋆ g)† = g† ⋆ f †. (2.62)
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Demonstration:

The eq. (2.59) can be rewritten as

f(q, p) ⋆ g(q, p) = exp

[
iℏ
2

(
∂

∂q

∂

∂p′
− ∂

∂p

∂

∂q′

)]
f(q, p)g(q′, p′)

∣∣∣∣
q′,p′=q,p

(2.63)

Expanding the exponential in a series of powers, we have

exp

[
iℏ
2
(∂q∂p′ − ∂p∂q′)

]
=

∞∑
n=0

1

n!

(
iℏ
2

)n
(∂q∂p′ − ∂p∂q′)n.

And yet, writing and writing the expression (∂q∂p′ − ∂p∂q′)n using Newton’s binomial,

(∂q∂p′ − ∂p∂q′)n =
n∑

m=0

(−1)m
(
n

m

)
[∂q∂p′ ]

n−m [∂p∂q′ ]
m . (2.64)

Therefore, the star product can be written as

f(q, p) ⋆ g(q, p) =
∞∑
n=0

1

n!

(
iℏ
2

)n n∑
m=0

(−1)m
(
n

m

)[
∂n−mq ∂mp f(q, p)

] [
∂mq ∂

n−m
p g(q, p)

]
.(2.65)

Taking the complex conjugate of the above equation, we have

(f(q, p) ⋆ g(q, p))† =
∞∑
n=0

1

n!

(
iℏ
2

)n{
(−1)n

n∑
m=0

(−1)m
(
n

m

)[
∂n−mq ∂mp f

†(q, p)
]

×
[
∂mq ∂

n−m
p g†(q, p)

]}
, (2.66)

where the term (−1)n arises from the complex conjugation of the term (iℏ/2)n. This term
can be associated with the binomial, that is

(−1)n(∂q∂p′ − ∂p∂q′) = (−∂q∂p′ + ∂p∂q′) =
∞∑
m=0

(−1)m
(
n

m

)
[∂p∂q′ ]

n−m [∂q∂p′ ]
m .

Applying these operators in two functions in the phase space, we have

(∂q∂p′ − ∂p∂q′)f(q, p)g(q′, p′) =
n∑

m=0

(−1)m
(
n

m

)[
∂n−mq ∂mp f(q, p)

][
∂mq ∂

m−n
p g(q, p)

]
.
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and

(−1)n(∂q∂p′ − ∂p∂q′)f(q, p)g(q′, p′) =
n∑

m=0

(−1)m
(
n

m

)[
∂n−mq ∂mp g(q, p)

][
∂mq ∂

m−n
p f(q, p)

]
.

Comparing these last two equations, we obtain

(−1)n
∑n

m=0(−1)m
(
n
m

) [
∂n−mq ∂mp f(q, p)

] [
∂mq ∂

m−n
p g(q, p)

]
=

∑n
m=0(−1)m

(
n
m

) [
∂n−mq ∂mp g(q, p)

] [
∂mq ∂

m−n
p f(q, p)

]
. (2.67)

Replacing the eq. (2.67) in (2.66)

(
f(q, p) ⋆ g(q, p)

)†
=

∞∑
n=0

1

n!

(
iℏ
2

)n{
(−1)n

n∑
m=0

(−1)m
(
n

m

)[
∂n−mq ∂mp g

†(q, p)
]

×
[
∂mq ∂

n−m
p f †(q, p)

]}
,

= g†(q, p) ⋆ f †(g, p).

As we wanted to demonstrate.

The star product is associative.

Considering f , g and h as functions in the phase space, we have(
f(q.p) ⋆ g(q, p)

)
⋆ h(q, p) = f(q, p) ⋆

(
g(q, p) ⋆ h(q, p)

)
. (2.68)

Demonstration:

We have that

(
f(q.p) ⋆ g(q, p)

)
⋆ h(q, p) =

{
f

(
q +

iℏ
2

−→
∂

∂p
, p− iℏ

2

−→
∂

∂q

)
g(q, p)

}
h

(
q − iℏ

2

←−
∂

∂p
, p+

iℏ
2

←−
∂

∂q

)
,

on the other hand,

f(q, p) ⋆
(
g(q, p) ⋆ h(q, p)

)
= f

(
q +

iℏ
2

−→
∂

∂p
, p− iℏ

2

−→
∂

∂q

){
g(q, p)h

(
q − iℏ

2

←−
∂

∂p
, p+

iℏ
2

←−
∂

∂q

)}
.
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The differential operators included here are associative. In this case, we can conclude that

the star product is also associative.

Next chapter we will introduce the Termofield dynamics. Thermo field Dynamics is

a formalism in Quantum Field Theory that incorporates thermal effects by enlarging the

Hilbert (or Fock) space, allowing calculation of thermal averages using vacuum expectation

values of local operators.
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Chapter 3

Thermofield Dynamics

This chapter delves into thermofield dynamics (TFD), a particular operator-based for-

malism used in finite temperature quantum field theory. TFD incorporates thermal effects

into quantum field theories, enabling the calculation of thermal averages using familiar

quantum field theory techniques. This is achieved by enlarging the theory’s Hilbert space,

allowing thermal averages to be computed through local operator’s thermal vacuum ex-

pectation values. For constructing this chapter we used the references [36–42].

3.1 Thermal Equilibrium and Ensemble Averages

In quantum statistical mechanics, the concepts of thermal equilibrium and ensemble

averages hold immense importance. To understand the behavior of a system in thermal

equilibrium, a key quantity known as the ensemble average of an operator plays a

vital role.

For a system in thermal equilibrium, the ensemble average of an operator A is defined

as

⟨A⟩ = 1

Z(β)
Tr(e−βHA) (3.1)

where

• H represents the system’s Hamiltonian, which encodes its total energy.

• Z(β) is the partition function, a crucial quantity that encapsulates the system’s

statistical properties at a specific temperature.

• β denotes the inverse temperature, a parameter inversely proportional to the

system’s temperature.
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• Tr refers to the trace operation, which essentially sums the diagonal elements of a

matrix.

This equation provides a powerful tool for analyzing the average value of an observable

quantity (represented by the operator A) in a system at thermal equilibrium. The partition

function Z(β) acts as a normalizing factor, ensuring that the average value accurately

reflects the system’s statistical state.

3.2 The Thermal State

In standard quantum theories, the average value of an operator is defined as

⟨A⟩ = ⟨n|A|n⟩ (3.2)

where n represents the state of the system.

We can define a state |0(β)⟩, such that

⟨A⟩ = ⟨0(β)|A|0(β)⟩

=
1

Z(β)

∑
n

e−βEn⟨n|A|n⟩ (3.3)

One way to make this definition possible is to introduce a duplication of Hilbert space,

resulting in a tensor product of spaces. In this product space, a base vector is given by

|n, m̃⟩ = |n⟩ ⊗ |m̃⟩. (3.4)

With that, we write

|0(β)⟩ =
∑
n

fn(β)|n, ñ⟩, (3.5)

such that

⟨A⟩ =
∑
n,m

f ∗
n(β)fm(β)⟨n, ñ|A|m, m̃⟩

=
∑
n

|fn(β)|2⟨n|A|n⟩. (3.6)
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Where we have assumed that the operator A acts only on the vectors of the non-tilde

space, that is

⟨n, ñ|A|m, m̃⟩ = ⟨n| ⊗ ⟨ñ|A|m⟩ ⊗ |m̃⟩

= ⟨n|A|m⟩⟨ñ|m̃⟩

= Anmδnm. (3.7)

In search of producing the thermal average, we now have

|fn(β)|2 =
1

Z(β)
e−βEn . (3.8)

Which in turn allows us to write the solution

fn(β) =
1√
Z(β)

e−βEn/2. (3.9)

So the thermal state can be written as

|0(β)⟩ =
∑
n

1√
Z(β)

e−βEn/2|n, ñ⟩. (3.10)

The duplication of Hilbert space is a key feature of TFD and is present in all thermal

field theories. It allows for a convenient representation of thermal effects through the use

of Lie algebras.

The thermal state can be transformed from its non-thermal counterpart, |0, 0̃⟩, using a

Bogoliubov transformation

|0(β)⟩ = U(β)|0, 0̃⟩. (3.11)

This transformation introduces thermal effects and is defined through a Bogoliubov

operator U(β).

3.3 Generators and symmetries

To establish a formalism based on |0(β)⟩, we begin with the premise that the set of

kinematical variables, V , is a vector space of mappings in a Hilbert space designated by

HT . The set V is made up of two subspaces and is expressed as V = Vobs ⊗ Vgen, where
Vobs represents the set of kinematical observables and Vgen represents the set of kinematical
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generators of symmetries. In both quantum and classical theory, Vobs and Vgen are frequently
identical with each other and with V . Let us go over this subject in further detail. Often,

each symmetry generator has a matching observable, and both are characterized by the

same algebraic element. Here we consider the identical one-to-one correspondence between

generators and observables, but this time we look at the scenario when Vobs and Vgen
disagree [37]. In other words, Vobs and Vgen correspond to distinct mappings in HT . To

underscore these points, we designate an arbitrary element of Vobs by A and the equivalent

element in Vgen by Â.

3.4 Thermal Algebras

Within the enlarged Hilbert space HT , we can define Lie products for operators as

follows

[Âi, Âj] = iCk
ijÂk; (3.12)

[Âi, Aj] = iCk
ijAk; (3.13)

[Ai, Aj] = iCk
ijAk, (3.14)

where A ∈ Vobs and Â ∈ Vgen. From the above equations, we may find the same algebra

written now in terms of the operators A and Ã. Taking the genarators’ comutator

[Âi, Âj] = ÂiÂj − ÂjÂi = iCijkÂk,

and substituting Â = A− Ã, we have

(A− Ã)i(A− Ã)j − (A− Ã)j(A− Ã)i = iCk
ij(A− Ã)k

AiAj − AiÃj − ÃiAj + ÃiÃj − AjAi + AjÃi + ÃjAi − ÃjÃi = iCk
ijAk − iCijkÃk.

Rearranging the terms, we write

[Ai, Aj] + [Ãi, Ãj]− [Ai, Ãj]− [Ãi, Aj] = iCk
ijAk − iCk

ijÃk

as we have [Ai, Ãj] = −[Ãj, Ai], thus
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[Ai, Aj] + [Ãi, Ãj]− 2[Ai, Ãj] = iCk
ijAk − iCk

ijÃk.

From this we can identify that

[Ai, Aj] = iCk
ijAk (3.15)

[Ãi, Ãj] = −iCk
ijÃk (3.16)

[Ai, Ãj] = 0, (3.17)

where Ai and Ãi represent operators acting on the original and conjugate spaces, respec-

tively, and Ck
ij are structure constants. This properties are called tilde conjugation rules,

and can be onbtained from the algebra (3.15-3.17). Thus, as it is a conjugation, (A)̃ = Ã,

so, from (3.15)

(iCk
ijAk )̃ = −iCk

ijÃk,

where we have used (cA)̃ = c∗Ã, therefore

([Ai, Aj])̃ = [Ãi, Ãj]

(AiAj − AjAi)̃ = ÃiÃj − ÃjÃi.

For the last equality to be true we need that

(AiAj − AjAi)̃ = (AiAj )̃ − (AjAi)̃ , and (AiAj )̃ = ÃiÃj. (3.18)

These Lie products, along with Tilde conjugation rules, define the thermal algebra on

the enlarged Hilbert space.
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3.5 Thermal Propagator

The propagator at the thermal vacuum |0(α)⟩ = B(α)|0, 0̃⟩ is

G
(ab)
0 (q − q′, p− p′;α) = i⟨0(α)|τ [ψa(q, p)ψb(q′, p′)]|0(α)⟩,

= i

∫
d4p

(2π)4
e−ip(q−q

′)G
(ab)
0 (p;α), (3.19)

where

G
(ab)
0 (p;α) = B−1(α)G

(ab)
0 (k)B(α), (3.20)

with

G
(ab)
0 (p) =

(
G0(p) 0

0 G∗
0(p)

)
. (3.21)

Then G0(k) is given as

G0(p) =
1

pµpµ −m2 + iϵ
. (3.22)

Then the non-tilde variable is

G
(11)
0 (p;α) = G0(p) + ξv2(p;α)[G∗

0(k)−G0(p)], (3.23)

where v2(p;α) is the generalized Bogoliubov transformation given as

v2(p;α) =
d∑
s=1

∑
{σs}

2s−1

∞∑
lσ1 ,...,lσs=1

(−η)s+
∑s

r=1 lσr exp

[
−

s∑
j=1

ασj lσjp
σj

]
, (3.24)

with d being the number of compactified dimensions, η = 1(−1) for fermions (bosons) and

{σs} denotes the set of all combinations with s elements.

Next chapter we will give a brief introduction to conformal symmetries and in special

conformal Galilean symmetry via Galilean Covariance.
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Chapter 4

Conformal Symmetry

The studies of conformal symmetry in physics have gathered a lot of interest in the

last fifteen years because they are relevant to at least three different areas of modern

theoretical physics They serve as toy models for truly interacting quantum field theories,

represent two-dimensional critical phenomena, and are important to string theory. Also,

numerous aspects of contemporary mathematics, including as number theory, finite groups,

low-dimensional topology, the theory of vertex operator algebras and Borcherds algebras,

and finite groups, have been influenced by conformal field theories [44].

The first part of this chapter is devoted to a comprehensive review of conformal symme-

tries in physics, guided Fulton’s approach [45]. It also draws upon several other significant

works [13,44,46–48]. The second part focuses on a thorough review of Galilean covariance,

based on the references [14,16,49–53]. The Conformal Carrollian Covariance is introduced

in the third part and is based on the following works [54–56].

4.1 Conformal Transformations

Conformal transformations are a fascinating area of study in physics, particularly in

the field of quantum field theory. In these transformations, angles are preserved, but not

necessarily distances [57], which can lead to some intriguing results.

There are various forms of conformal transformations, each with its own set of character-

istics and implications. Each form of transformation can have different physical interpreta-

tion on the system being studied. The diverse implications of these distinct transformations

become particularly important when considering observers and observables.

Therefore, it’s important to clarify the nature of the conformal transformation being

used in any given context. Understanding the specific form of the transformation and its

implications can help ensure that the physical interpretations drawn from the system are

accurate and meaningful.
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4.1.1 Conformal Point Transformation

Following Fulton’s method [45], it is necessary to differentiate between spatial points

and the coordinate system that defines their positions. To differentiate between points in

space and their corresponding coordinate systems, we will use the notation x, x̄, ¯̄x, and so

on to represent distinct points. Meanwhile, we will employ indices to represent the coor-

dinate systems, indicating covariant and contravariant components of various quantities.

For instance, xµ, xν ′, and so forth represent the components of point x measured in coor-

dinate systems S, S ′, and so on. Occasionally, we may use x and x′ to refer to the point x

measured in the respective coordinate systems S and S ′.

Let’s consider the point transformation, often referred to as an“active transformation,”

x̄ = fµ(x), (4.1)

which determines the point component the x̄ in the S coordinate system. By definition,

this is a one-to-one and analytical transformation in a given domain D.

In the forthcoming discussion, our focus will primarily revolve around points in Riemann

space and the metric tensor gµν(x). It is essential to note that this discussion encompasses

a broader context; however, for the purposes of this work, our attention will be directed

toward these specific aspects. Notably, the metric tensor is characterized by the fundamen-

tal condition that, in a local geodesic coordinate system, it assumes the form of Minkowski

metric ηµν .

The expression that represents the line element of a curve with time-like characteristics

can be expressed as follows,

dτ 2(x) = −gµν(x)dxµdxν , (4.2)

where Einstein summation notation is used. The point transformation (4.1) give us

dx̄µ = ∂ax̄
µdxa, (4.3)

where ∂α = ∂
∂xα

. The mapping between two infinitesimally close points x and x + dx can

be used to express the connection that establishes the distinction between two components

x̄ and x̄+ dx̄, according to Eq. (4.1).

A key feature of a conformal point transformation is its ability to link the line element

dτ(x̄) at a given point x̄ and the line element dx at point x through the mediation of a
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scalar function σ(x),

dτ(x̄) =
√
σ(x)dτ(x). (4.4)

This implies

gµν(x̄)dx̄
µdx̄ν = σ(x)gµν(x)dx

µdxν (4.5)

with the restriction

σ(x) > 0.

Therefore, this relation can be expressed as

gµν(x̄)∂αx̄
µ∂βx̄

ν = σ(x)gαβ(x), (4.6)

It is evident that Eq. (4.4) is equivalent to eq. (4.6), and hence this equation can be used

to define conformal point transformations.

It is important to highlight that all the quantities presented in the aforementioned

equations relate to the same coordinate system. If we associate a coordinate system S with

an observer, we can interpret it as a mapping from a domain D of points in the observer’s

space to a domain D̄ of points.

Furthermore, it is crucial to distinguish the structure on the left-hand side of Equation

(4.6) from a coordinate transformation S → S ′, where the same point P is represented by

components xµ and xµ
′
in two different coordinate systems.

gµ′ν′(x
′)∂αx

µ′∂βx
ν′ = gαβ(x).

4.1.2 Conformal Coordinate Transformations

A coordinate transformation is defined by a one-to-one correspondence that establishes

a bijective mapping between points in distinct coordinate systems. This mapping guaran-

tees that each point in one coordinate system uniquely corresponds to a single point in

another coordinate system, leaving no room for ambiguity or overlap.

The coordinate transformation can be mathematically represented as

xµ
′
= hµ

′
(x) (4.7)

This equation captures the interrelation between the components of points x within

a domain D, as observed by different observers or coordinate systems. It’s important to
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note that we assume the transformation possesses the quality of analyticity, ensuring its

mathematical rigor. Points that are infinitesimally close to each other transform according

to

dxµ
′
= ∂αx

µ′dxα, (4.8)

while the metric tensor transforms as

gµ′ν′(x
′) = ∂µ′ x

α ∂ν′ x
βgαβ(x). (4.9)

These relationships imply that

dτ 2(x′) = dτ 2(x), (4.10)

in contradistiction to (4.4), unless σ = 1.

Equation (4.8) is a general feature of transformations for any tensor field T µν...αβ..., which

transforms according to

T µ
′ν′...

α′β′...(x
′) = ∂µx

µ′∂νx
ν′ ...∂α′x

α∂β′x
β...T µν...αβ...(x). (4.11)

To establish the definition of a conformal coordinate transformation correspodent of

the conformal point tranformation (4.6),, we need to first establish the general relationship

between coordinate transformations and point transformations.

A point transformation can be associated with each coordinate transformation by de-

manding the relationship

x̄µ′
.
= xµ, or x̄′

.
= x. (4.12)

This indicates that a point x̄ is linked with x in such a way that the components of x̄

with respect to S ′ are the same as the components of x with respect to S for a particular

relation of components of the point x in two coordinate systems. This equality only holds

in the selected coordinate system, as indicated by the equal dot notation in (4.8). This

establishes a clear association between the labels µ and µ′ [45].

By Eq. (4.8) the relationship between the coordinate transformation (4.7) and the point
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transformation (4.1) is as follows

x̄µ
′
= hµ

′
(x̄) = hµ

′
(f(x))

.
= xµ

This shows that the function hµ in (4.7) is the inverse transformation to (4.1). If (4.1)

implies

xµ = F µ(x̄), (4.13)

then (4.7) becomes

xµ
′
= F µ′ = hµ

′
(x). (4.14)

These relations can also be expressed as

x̄µ = fµ(x)
.
= fµ(x̄′)

which, by using (4.12), leads to

∂x̄µ

∂xα
.
=
∂x̄µ

∂x̄α′
(4.15)

This establishes the connection between point transformations and coordinate transforma-

tions.

The conformal coordinate transformation can be inferred from the corresponding point

translation (4.6). It takes the form

xµ = fµ(x′) (4.16)

where fµ is the same function as (4.1), implying (4.6).

Importantly, we observe that (4.7) and (4.10) are mutually consistent equations. By

replacing (4.15) into (4.6), we obtain

gµν(x̄)
∂x̄µ

∂x̄α′
∂x̄ν

∂x̄β′
= σ(x)gαβ, (4.17)

using (4.5) for x̄, this leads to

gα′β′(x̄
′)
.
= σ(x)gαβ(x). (4.18)
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Hence, with (4.6),

dτ 2(x̄′)
.
= σ(x)gαβ(x)dτ

2(x). (4.19)

This confirms the coherence of (4.7) and (4.10).

4.1.3 Conformal Transformations of Tensor Fields

Let’s consider a vector field Aµ(x). The covariant components of this field undergo a

coordinate transformation as given by (4.11)

Aα′(x̄
′) = ∂̄αx̄

µAµ(x̄), (4.20)

where ∂̄α = ∂
∂x̄α

. By employing Eq. (4.15), this can be simplified to

Aα′(x̄
′)
.
= ∂αx̄

µAµ(x̄). (4.21)

We can now introduce a new field Āα(x) such that

Aα′(x̄
′)
.
= Āα(x). (4.22)

However, it is now deduced from (4.6) and (4.22) that the equivalence between Āα(x) and

Aα(x), as well as Āα(x) and Aα(x), is precluded. Instead, only one of the following can be

established {
Āα(x) = Aα(x)

Āα(x) = σAα(x)
(4.23)

or {
Āα(x) = 1

σ
Aα(x)

Āα(x) = Aα(x).
(4.24)

The validity of identities (4.23), and similarly (4.24), can be verified by substituting the

Eq. (4.23) or Eq. (4.24) into (4.6).

The outcomes (4.23) and (4.24) can be concisely expressed If the components of a field

A(x) transform as a covariant vector under a conformal point transformation, then the

contravariant components transform analogously to an affine contravariant vector with a

factor of σ−1,

Aµ(x̄) =
1

σ
∂αx̄

µAα(x). (4.25)

Conversely, if a contravariant vector is subject to a conformal point transformation, then
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the corresponding covariant components transform as

Aµ(x̄) = σ∂̄µx
αAα(x). (4.26)

As a result, the magnitude of a vector A(x) transforms under a conformal point trans-

formation (4.1) and (4.6) as

Aµ(x̄)A
µ(x̄) =

1

σ(x)
Aν(x)Aν(x), (4.27)

while the magnitude of a contravariant vector transforms as

Aµ(x̄)A
µ(x̄) = σ(x)Aν(x)Aν(x). (4.28)

These considerations can, of course, be extended to tensors of arbitrary rank.

4.1.4 Conformal Transformations of the Metric Tensor

Let’s consider the conformal point transformations as defined by (4.6). When we utilize

the symbol

gcµν(x) = σ(x)gµν(x), (4.29)

thus, Eq. (4.6) becomes

gcµν(x) = ∂µx̄
α∂ν x̄

βgαβ. (4.30)

At first glance, this might seem reminiscent of a coordinate transformation. However, it’s

important to note that here, x and x̄ refer to two distinct points within the same coordinate

system, rather than belonging to different coordinate systems of the same point.

The conformal coordinate transformation characterized by Eq. (4.7), by means of

Eq. (4.29) can be expressed as

gcµν
.
= gµ′ν′(x̄

′) (4.31)

for the case of Eq. (4.12)

x
.
= x̄′. (4.32)

This insight points us towards a definition of conformal transformations that does not

explicitly reference either point or coordinate transformations. Nevertheless, it remains

consistent with both concepts
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Given a metric manifold described by the metric tensor gµν , we define

gcµν(x) = σ(x)gµν(x),

gµνc (x) =
1

σ(x)
gµν(x), (4.33)

where σ is an arbitrary positive differentiable function of x. We refer to Eq. (4.33) as

the conformal transformation of the metric tensor. These transformations form a group

denoted as Cg.

The collection of all manifolds differing from each other solely due to elements of Cg

constitutes a conformal space. It’s important to recognize that the magnitudes of lengths

ds2 = gµνdx
µdxν in such a space lack absolute meaning. This is because comparing lengths

at two different points involves the arbitrary function σ. However, the ratio of two infinites-

imal lengths is well-defined when both lengths refer to the same point. Furthermore, angles

maintain their well-defined nature at each point

cosα =
gµνdx

µδxν

(gαβdxαdxβ)1/2(gρσδxρδxσ)1/2
, (4.34)

and this remains invariant under Cg, justifying the term ”conformal.”

As we delve deeper into the subject, we come to realize that the conformal point and

coordinate transformations are combinations of the conformal transformation of the metric

(4.29). We’ll refer to the corresponding group transformation as C, which includes Cg and

the entire coordinate transformation group as subgroups. We term this expanded group C

as the extended conformal group.

From these insights, we draw the conclusion that when dealing with equations invariant

under coordinate transformations, it suffices to assess transformations under Cg to ensure

covariance under C.

In the ensuing discussion, our primary focus will be on Cg and coordinate transforma-

tions.

4.2 The Special Conformal Algebra

We narrow our attention to the subset Co of special or restricted conformal transforma-

tions. This subset includes transformations in C that map flat space into flat space. This

means that the functions σ(x) are no longer entirely arbitrary; they are now constrained
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by

Rµ
νσρ = 0 −→ Rcµ

νσρ = 0,

where Rµ
νσρ is the Riemann curvature tensor. Haantjes [46] classified the corresponding

transformations from Minkowski space gµν = ηµν to a flat space with metric gcµν = σηµν .

These transformations form the special conformal group Co. Moving forward, we’ll restrict

our focus to this significant case Co, while for additional information about the Cg group,

refer to [45].

The Co group consists of a 15-parameter Lie group commonly referred to as conformal

transformations. It aligns with the perspective of Bateman and Cunningham [2,3].

This group encompasses space-time translations

x′µ = xµ + bµ, (4 parameters)

proper homogeneous Lorentz transformations

x′µ = Λµνx
ν , (6 parameters)

dilatation (or scale) transformations

x′µ = sxµ, (1 parameters)

and acceleration transformations

x′′ = (1 + 2aαxα + x2a2)−1(x+ aµx2) (4 parameters)

In the latter equation, x2 = xαxα and a2 = aαaα refer to Minkowski space. The 15 pa-

rameters encompass bµ, Λ
µ
ν , s, and aµ. Through an extension to Riemann spaces with

non-definite metrics, Haantjes [46] established that every element of C0 can be expressed

using motions and inversions alone.

4.2.1 Invariance of Derivatives

In our exploration of the group C, particularly its subgroup C0, it proves valuable to

define quantities that lay bare their transformation properties under C0. Therefore, the

subsequent concepts will be useful.

A tensor in aWeyl manifold with weight n and k indices signifies a Riemannian manifold
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tensor with k indices, transforming as dictated by Eq. (4.33)

Tc = σnT. (4.35)

Illustrative instances encompass the metric tensor gµν , a tensor in a Weyl manifold of

weight +1; dxµ, a Weyl vector with weight zero; and dτ , a Weyl scalar with weight 1/2.

For the formulation of a conformally invariant covariant derivative, the presence of an

affine connection in a Riemann space, derived from the metric tensor gµν , is pivotal. The

covariant derivative of a vector V µ is then established as

∇νV
µ = ∂νV

µ + V α

{
µ

α ν

}
. (4.36)

This left-hand side assumes the form of a Riemannian manifold tensor due to the Christoffel

symbol being a solution to the transformation equation of linear connections

L′µ
αβ = ∂λx

′µ(∂′αx
ρ∂′βx

σLλρσ + ∂′α∂
′
βx

λ). (4.37)

The fulfillment of Eq. (4.37) by the Christoffel symbol under the coordinate transforma-

tion (4.7) is evident. It’s noteworthy that any other solution of (4.37), utilized in (4.36),

will similarly yield a ∇ν such that ∇νV
µ takes the form of a Riemannian manifold tensor.

The transformation under Cg can be expressed as

∇νV
µ = ∂νcV

µ + V α

{
µ

α ν

}
= ∇νV

µ = ∂ν +
1

2

(
V µsν + δµνV

αsα − sµVν
)
, (4.38)

assuming that V µ serves as a Weyl vector with weight zero.

Introducing the symmetric connection

Γµαβ =

{
µ

α ν

}
− 1

2
(δµακβ + δµβκα − κ

µgαβ), (4.39)

this yields
c

Γ
µ

αβ= Γµαβ (4.40)

given that kµ transforms as

kcµ = kµ + sµ (4.41)
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under Cg. Consequently, the expression

∇νV
µ ≡ ∂νV

µ + V αΓµαν (4.42)

will be a tensor in a Weyl manifold with weight zero when Γµαβ fulfills the conditions

stipulated by (4.37).

4.3 Conformal Invariance in Quantum theories

Let start with the massive Klein Gordon equation in flat space

P µPµψ = m2ψ (4.43)

or

ηµνPµPνψ = m2ψ, (4.44)

where m is a number and represents the mass of a particle. By Eq. (4.33) and (4.44)

transform as
1

σ
ηµνPµPνψ = m2ψ, (4.45)

Where we considered Pµ as a Weyl vector of weight zero, W0. Clearly this equation is not

form-invariant. A simple fix is to set m = 0, now Eq.(4.44) transforms as

1

σ
ηµνPµPνψ = 0,

ηµνPµPνψ = 0. (4.46)

The Eq. (4.46) is form-invariant under Cg.

Haantjes [58] proposed a character W−1/2 for m that makes the Eq. (4.46) invariant

even with m ̸= 0, but for this case m is not invariant under Cg, but takes on a continuum.

Only m = 0 remains invariant under Cg.

4.4 Galilean Covariance

Galilean Covariance refers to a method of treating Galilean and Newtonian physics

using the same tools used in Lorentzian physics. The theory is written in a Light cone of

a five dimensional space with Minkowski metric.
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4.4.1 Light cones coordinates

A five-dimensional Mikowski metric is given by

ηAB =


−1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 . (4.47)

Making the following changes

x4 =
x0 +

√
ϵ x4√

2
and x5 =

x0 −
√
ϵ x4√

2
. (4.48)

Therefore, we have

ds2 = dxidxi − 2dx4dx5. (4.49)

The coordinates x4 and x5 are null coordinates and together with the spatial coordinates

xi they are known as the light-cone coordinates.

We can express Eq. (4.49) as

ds2 = gµνdx
µdxν , (4.50)

with

gµν =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 −1
0 0 0 −1 0

 , (4.51)

with µ, ν = 1, 2, 3, 4, 5. So, this metric is know as the Minkowski metric in light-cone

coordinates.

The dispersion relation in the Minkowski light-cone coordinates are

pµpµ = gµνp
µpν = (pi)2 − 2p4p5 = k2, (4.52)

this dispersion relation resembles the nonrelativistic dispersion relation, and as we will see

can be interpreted as such in the appropriated embedding.
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4.4.2 Embedding

1. The first embedding considered is defined by

E1A→ A =

(
A, A4,

A2

2A4

)
; A ∈ E1, A ∈ G. (4.53)

Thus, the square of the norm A is

(A|A) = A2 − 2A4A5 = 0. (4.54)

Embedding E1 establishes a correspondence of E3 with null-norm vectors of G. One

example is the vectors associated with Galilean invariance in G.

2. The second possible embedding is

E2A→ A = (A, A4, 0). (4.55)

Hence the square of the norm of A is not null in (A|A) = A2. An example is

x=(x,vt,0).

3. A third embedding possibility is

E3A→ A = (A,
A4√
2
,
A4√
2
). (4.56)

Thus, we have (A|A) = A2− (A4)
2. This embedding thus leads to a Minkowski space

M3.1 in G.

4.4.3 Galilei-Lie Algebra

Consider a vector qµ ∈ G that obeys the set of linear transformations of the type

q̄µ = Gµ
νq
ν + aµ. (4.57)

Using the unitary representation under the function space in a point in G, the generators

are defined by

Mµν = (qµpν − qνpµ), (4.58)

Pµ = pµ. (4.59)
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whereMµν are the generators of homogeneous transformations and Pµ of non-homogeneous

transformations. We then get the following Lie algebra

[Mµν ,Mρσ] = −i(ηνρMµσ − ηµρMνσ + ηµσMνρ − ηνσMµρ), (4.60)

[Pµ,Mρσ] = −i(ηµρPσ − ηµσPρ), (4.61)

[Pµ, Pσ] = 0. (4.62)

A particular case of interest of these transformation, given by

qi
′

= Ri
jq
j + viq4 + ai (4.63)

q4
′

= q4 + a4 (4.64)

q5
′

= q5 − (Ri
jq
j)vi +

1

2
v2q4. (4.65)

In the matrix form, the homogeneous transformations are written as

Gµ
ν =


R1

1 R1
2 R1

3 vi 0

R2
1 R2

2 R2
3 v2 0

R3
1 R3

2 R3
3 v3 0

0 0 0 1 0

viR
i
j viR

i
2 viR

i
3

v2

2
1

 . (4.66)

4.4.4 The Schrödinger Group

Consider the massless dispersion relation on the five dimensional Minkowski space (4.47)

pApA = 0. (4.67)

This equation is conformally invariant, using the light-cone coordinates defined by the

metric (4.51), the dispersion relation becomes

pipi − p5p4 − p4p5 = 0. (4.68)

This is the non-relativistic dispersion relation.
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Since the original dispersion relation has conformal symmetry, this means that the

symmetry group of the Eq. (4.68) is a subgroup of the conformal group.

The conformal algebra is[
M̃µν , M̃ρσ

]
= −i(ηνρM̃µσ − ηµρM̃νσ + ηµσM̃νρ − ηµρM̃νσ),[

P̃µ, M̃ρσ

]
= −i(ηµρB̃σ − ηµσP̃ρ),[

B̃µ, M̃ρσ

]
= i(ηµρB̃σ − ηµσB̃ρ),[

P̃µ, D̃
]
= iP̃µ,

[D̃, B̃µ] = iB̃µ[
P̃µ, B̃ν

]
= −2i(ηµνD̃ − M̃µν),

(4.69)

where M̃µν are the generators of homogeneous transformations and P̃µ of non-homogeneous

transformations, D̃ generates scaling transformations (also known as dilatation) and B̃µ

generates the special conformal transformations.

Doing the following identification

Ji =
1

2
ϵijkM̃jk,

Pµ = P̃µ,

Ki = M̃5i,

B =
B̃5

2
,

D = D̃ + M̃54.

(4.70)

Hence, the non-vanishing commutation relations can be rewritten as

[Ji, Jj] = iϵijkJk,

[Ji, Cj] = iϵijkCk,

[D,Ki] = iKi,

[P4, D] = iP4,

[Pi, Kj] = iδijP5,

[P4, Ki] = iPi,

[P5, D] = −iP5,

[Ji, Kj] = iϵijkKk,

[Ki, Cj] = iδijD + iϵijkJk,

[Ci, D] = iCi,

[Ji, Pj] = iϵijkPk,

[Pi, Cj] = iδijP4,

[P5, Ci] = iPi.

[Pi, D] = iPi,

[Pi, B] = −iKi,

(4.71)
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A special subalgebra is given by

[Ji, Jj] = iϵijkJk,

[D,Ki] = iKi,

[P4, D] = 2iP4,

[Pi, Kj] = iδijP5,

[P4, Ki] = iPi,

[Ji, Kj] = iϵijkKk,

[Ji, Pj] = iϵijkPk,

[P4, B] = iD,

[B,D] = −2iB,

[Pi, D] = iPi,

[Pi, B] = −iKi,

(4.72)

all others commutations relation being zero. This algebra can be interpretes as the Schrödinger-

Lie algebra if we make the following associations, Pi are the generators of spacial transla-

tion, thus can be interpreted as linear momenta operators, P 5 = −P4 is the time translation

generator, terefore is intepreted as the Hamiltonian operator, Ji are related to rotations and

can be associated with angular momenta, Ki are the generators associated with Galilean

boosts, B and D are the generators of special conformal transformations and dilatations

respectively. In fact, we can observe that eqs. (4.63) and (4.64) are the Galilei transfor-

mations with x4 = t. The Eq. (4.65) is the compatibility condition which represents the

embedding

IA→ A =

(
A, A4,

A2

2A4

)
; A ∈ E3, A ∈ G.

The commutation ofKi and Pi is naturally non-zero in his context, so P5 can be interpreted

in association with mass.

The invariants of this algebra in this context are

I1 = PµP
µ (4.73)

I2 = P5 (4.74)

I3 = W5µW
µ
5 , (4.75)

where Wνµ is the Pauli-Lubanski matrix in five dimensions.
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The Schrödinger Equation

Using the Casimir invariants I1, (4.73) e I2, (4.74) and applying in Ψ, we have

pµpµΨ = 0, (4.76)

p5Ψ = −mΨ. (4.77)

Using the correspondence, pµ = −i∂µ, and applying Ψ, we have{
∂µ∂

µΨ = 0

∂5Ψ = −imΨ
, (4.78)

where m is a constant and using Ψ(xµ) = exp(−imx5)(ϕ(x, t), we obtain

− 1

2m
∇2ϕ(x, t) = i∂tϕ(x, t), (4.79)

which is the time dependent Schrödinger equation of a free particle of mass m.

The 5-current is

jµ(x) = − i

2m

(
ψ∗(x)∂µψ(x)− ∂µ(ψ∗(x))ψ(x)

)
, (4.80)

and is conserved because the 5-divergence is null, i.e.

∂µj
µ = 0. (4.81)

So the 5-current is equivalent to the usual 4-current,

j(q) = − i

2m

[
Ψ∗(q)∇

(
Ψ(q)

)
−∇(Ψ∗(q)Ψ(q))

]
,

j4 = ρ(q) = − i

2m

[
−Ψ∗(q)∂5(Ψ(q)) + ∂5Ψ

∗(q)Ψ(q))
]
= |Ψ|2,

where j(x) is the probability current and ρ(q) is the probability density.
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4.4.5 The Pauli-Schrödinger Equation

In this context, we present a construction of the spin wave equation 1/2, defining a new

pentavetor γµ such that,

(∂µ∂
µ) = (γµ∂µ)(γ

ν∂ν) (4.82)

so, for Eq. (4.82) to be valid γµ must obey Clifford’s algebra, that is,

{γµ, γν} = 2gµν (4.83)

where gµν is our 5-dimensional metric.

Taking one of the parts and acting on the wave function ψ(x)

(γµ∂µ)ψ(x) = 0. (4.84)

For convenience, we will use the following representations of γµ

γi =

(
σi 0

0 −σi

)
, γ4 =

(
0
√
2

0 0

)
, (4.85)

γ5 =

(
0 0

−
√
2 0

)
; (4.86)

where σi are the Pauli’s matrices and
√
2 is the 2x2 identity matrix multiplied by

√
2.

Adding a potential V , we have

(
σ · p −(E − V )

√
2√

2m −σ · p

)(
ψL

ψS

)
= 0, (4.87)
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which leads us to

σ · pψL − (E − V )
√
2ψS = 0, (4.88)

σ · pψS −
√
2mψL = 0, (4.89)

these are known as Levy-Leblond equation. In Eq. (4.89) we have

ψL =
σ · p
m
√
2
ψS. (4.90)

Substituting in Eq. (4.88) and using the fact (σ · p)(σ · p) = p2, we have

EψL =
p2

2m
ψL + V ψL. (4.91)

Similarly,

EψS =
p2

2m
ψS + V ψS. (4.92)

What is the Schrödinger equation for ψS and ψL respectively.

4.5 Conformal Carrollian Covariance

Another subalgebra that can be achieved from Eq. (4.71) is given by

[Ji, Jj] = iϵijkJk,

[D,Ci] = iCi,

[P5, D] = 2iP5,

[P5, Ci] = iPi,

[Pi, Cj] = iδijP4,

[Ji, Cj] = iϵijkCk,

[Ji, Pj] = iϵijkPk,

[P5, B] = iD,

[B,D] = −2iB,

[Pi, D] = iPi,

[Pi, B] = −iCi,

(4.93)

This is a conformal Carrollian algebra isomorphic to the Schrödinger algebra (4.72).
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Chapter 5

The Landau Problem and non-Classicality

In this chapter, we delve into the exploration of the extended Galilei group denoted as

G and its representations within the context of field theories on a symplectic manifold. We

establish a connection between these representations and the Wigner function. Specifically,

we focus on the representation written on the light-cone coordinates of a de Sitter spacetime

in five dimensions, constructing a Hilbert space equipped with a symplectic structure as

the representation space for the Lie algebra of G.
We derive the spin-zero Schrödinger equation, which describes wave functions in phase

space. Additionally, we obtain the Pauli-Schrödinger equation in phase space, accounting

for gauge symmetry and addressing spin 1
2
particles. To demonstrate the practical applica-

tion of this theory, we examine the behavior of an electron in the presence of an external

field, leading to the recovery of the non-relativistic Landau Levels.

Furthermore, we embark on a study of the parameter of negativity associated with

the system’s non-classicality. By analyzing this parameter, we gain insight into the extent

to which the system deviates from classical behavior. Overall, this chapter presents a

comprehensive investigation of the extended Galilei group, its representations, and their

relevance to field theories on a symplectic manifold, offering valuable insights into the

quantum dynamics of physical systems.

The presentation of this chapter is organized as follows. In Section 5.1, we construct

a symplectic structure within the Galilean manifold. Utilizing the commutation relations,

we establish the Schrödinger equation in the phase space of a five-dimensional light-cone.

By proposing a solution, we restore the Schrödinger equation in phase space to its non-

covariant form in (3+1) dimensions.

In Section 5.2, we delve into the analysis of gauge symmetry for non-relativistic spin
1
2
particles in phase space. We investigate the behavior of Galilean spin 1

2
particles in the
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presence of an external field, proposing and discussing potential solutions. Furthermore,

we calculate the negativity parameter and explore its physical implications.

Moving on to Section 5.3, we explicitly construct the covariant Pauli-Schrödinger equa-

tion. We focus on the representation of spin 1
2
particles within the symplectic framework.

The results of this section are taken from work by Petronilo et al.(2020) [24].

5.1 The Galilei Group and Quantum Mechanics in Phase Space

To establish a connection between the Hilbert space H and the phase space Γ, we

consider a set of complex-valued square-integrable functions, denoted as ϕ(q, p), defined on

Γ. These functions satisfy the condition∫
dpdq;ϕ∗(q, p)ϕ(q, p) <∞. (5.1)

We can express ϕ(q, p) as ⟨q, p|ϕ⟩ using the following relationship∫
dpdq; |q, p⟩⟨q, p| = 1, (5.2)

where ⟨ϕ| represents the dual vector of |ϕ⟩. This space is called symplectic Hilbert space and

is denoted as H(Γ). Now, let us examine the Galilei group within the representation space

H(Γ). To accomplish this, we introduce unit transformations denoted as U : H(Γ)→ H(Γ)
that preserves the inner product ⟨ψ1|ψ2⟩.

Using the operator Λ, we define a mapping ei
Λ
2 = ⋆ : Γ×Γ→ Γ, which can be expressed

as

f ⋆ g = f(q, p) exp

[
i

2

( ←−
∂

∂qµ

−→
∂

∂pµ
−
←−
∂

∂pµ

−→
∂

∂qµ

)]
g(q, p),

where we have set ℏ = 1.

In order to establish a representation of the Galilei algebra within H, we introduce the
following operators

P̂ µ = pµ⋆ = pµ − i

2
∂qµ , (5.3a)

Q̂µ = qµ⋆ = qµ +
i

2
∂pµ , (5.3b)
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and

M̂νσ = Mνσ⋆ = Q̂νP̂σ − Q̂σP̂ν , (5.3c)

whew µ = 1, 2, 3, 4, 5. Here, M̂νσ represents the generators of homogeneous transformations,

while P̂µ corresponds to the generators of non-homogeneous transformations. Through

straightforward calculations, we derive the following commutation relations from this set

of unitary operators:[
M̂µν , M̂ρσ

]
= −i(gνρM̂µσ − gµρM̂νσ + gµσM̂νρ − gµσM̂νρ),[

P̂µ, M̂ρσ

]
= −i(gµρP̂σ − gµσP̂ρ),[

P̂µ, P̂σ

]
= 0.

These relations give rise to a closed algebra, which is the Lie algebra of the extended Galilei

group (Bargmann group). Within this context, we define Ĵi =
1
2
ϵijkM̂jk as the generators

of rotations and K̂i = M̂5i as the generators of pure Galilei transformations. Moreover,

Pµ represents spatial and temporal translations. Notably, in this setting, the commutation

between Ki and Pi is naturally non-zero, with P5 being associated with mass.

The invariants of this algebra can be expressed as follows

I1 = P̂µP̂
µ, (5.4)

I2 = P̂5. (5.5)

By utilizing the Casimir invariants I1 and I2 and applying them to Ψ, we obtain the

following equations

P̂µP̂
µΨ = k2Ψ,

P̂5Ψ = −mΨ.

From these equations, we derive the expression(
p2 − ip ·∇− 1

4
∇2 − k2

)
Ψ =

(
p4 −

i

2
∂t

)(
p5 −

i

2
∂5

)
Ψ,
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where a solution to this equation is given by

Ψ = e−2i[(p5+m)q5+(p4+E)t]Φ(q, p). (5.6)

Consequently, we arrive at the following form

1

2m

(
p2 − ip ·∇− 1

4
∇2

)
Φ =

(
E +

k2

2m

)
Φ,

which is the Schrödinger equation in phase space for a free particle with mass m [20],

including an additional kinetic energy term of k2

2m
. We can always choose this term to be

the zero energy reference.

This equation, along with its complex conjugate, can be obtained from the Lagrangian

density in phase space (where ∂µ = ∂/∂qµ)

L =
1

4
∂µΨ(q, p)∂µΨ

∗(q, p) +
i

2
pµ[Ψ(q, p)∂µΨ∗(q, p)−Ψ∗(q, p)∂µΨ(q, p)] +

[
pµpµ − k2

]
Ψ.

The connection between this representation and theWigner formalism is established through

the expression

fw(q, p) = Ψ(q, p) ⋆Ψ†(q, p),

where fw(q, p) denotes the Wigner function.

The Wigner function, fw(q, p), satisfies the 5-dimensional Galilean covariant Liouville-

von Neumann equation in phase space, which can be expressed as follows

pµ∂qµfw(q, p) = 0. (5.7)

Moreover, in the Galilean covariant formalism, the Pauli-Schrödinger equation exhibits a

structure reminiscent of the Dirac equation,(
γµP̂µ − k

)
Ψ(p, q) = 0 (5.8)

or

γµ
(
pµ −

i

2
∂µ

)
Ψ(p, q) = kΨ(p, q). (5.9)

Equation (5.8) can be derived from the Lagrangian density governing the dynamics of the
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spin 1/2 particles in phase space, can be expressed as

L = − i
4

(
(∂µΨ̄)γµΨ− Ψ̄(γµ∂µΨ)

)
− Ψ̄(k − γµpµ)Ψ,

Here, Ψ̄ = ζΨ† where ζ is given by

ζ = − i√
2
{γ4 + γ5} =

(
0 −i
i 0

)
.

In the context of the Pauli-Schrödinger equation, the association with the Wigner func-

tion can be expressed as follows

fw = Ψ ⋆ Ψ̄,

where each component of the equation satisfies Eq. (5.7).

5.2 U(1) Gauge Theory in Phase Space

The Lagrangian density governing the dynamics of Galilean covariant spin 1/2 particles

in phase space is given by

L = Ψγµ(̃pµ⋆)Ψ− kΨΨ, (5.10)

here A(̃pµ⋆)B = 1
2
[A(pµ ⋆ B)− (pµ ⋆ A)B].

The aim of this section is to examine the invariance of Eq. (5.10) under local gauge

transformations

Ψ = e−iΩ ⋆Ψ, Ψ = Ψ ⋆ eiΩ, (5.11)

where Ω ≡ Ω(q, p). In the context of infinitesimal transformations, we can express the

variations as δΨ = −iΩ ⋆Ψ and δΨ = iΨ ⋆ Ω, such that

δ(pµ ⋆Ψ) = −ipµ ⋆ Ω ⋆Ψ, (5.12)

and

δ(pµ ⋆Ψ) = ipµ ⋆Ψ ⋆ Ω. (5.13)

It is important to acknowledge that the transformations of δ(pµ ⋆Ψ) and δ(pµ ⋆Ψ) do not

exhibit covariance. To address this issue, we introduce the operator

Dµ⋆ = pµ ⋆−iAµ⋆, (5.14)
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which allows us to modify the Lagrangian density as follows

L = Ψγµ(̃Dµ⋆)Ψ− kΨΨ. (5.15)

By utilizing the identity p(f ⋆ g) = f ⋆ (pg)− i
2
(∂µf) ⋆ g, we can express the infinitesimal

variation of Dµ ⋆Ψ as

δ(Dµ ⋆Ψ) = −iΩ ⋆ (pµ ⋆Ψ)− ∂µΩ ⋆Ψ− Aµ ⋆ (Ω ⋆Ψ)− i(δ(Aµ) ⋆Ψ. (5.16)

Considering the transformation of Aµ as

A′
µ → Aµ + i{Aµ,Ω}M + i∂µΩ, (5.17)

where {a, b}M = a ⋆ b− b ⋆ a denotes the Moyal Brackets, we find

δ(Dµ ⋆Ψ) = −iΩ ⋆ (Dµ ⋆Ψ). (5.18)

Likewise,

δ(Dµ ⋆Ψ) = −i(Dµ ⋆Ψ) ⋆ Ω. (5.19)

Therefore, the Lagrangian density presented in Eq. (5.15) is invariant under the transfor-

mation described in Eq.(5.11). Consequently, the rule for minimal coupling is to substitute

pµ⋆ with Dµ⋆ = pµ ⋆−iAµ⋆. In the subsequent section, we apply this formalism to analyze

the Pauli-Schrödinger equation with electromagnetic interactions.

5.3 Electromagnetic Interactions in Pauli-Schrödinger fields

The equation describing the dynamics of spin 1/2 particle in the Galilean covariant

phase space with electromagnetic interaction can be written as[
γµ
(
P̂µ − eÂµ

)
− k

]
Ψ = 0. (5.20)

By introducing the following definition

Ψ =
[
γν
(
P̂ν − eÂν

)
+ k
]
ψ, (5.21)
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where P̂ν = (pν − i
2
∂ν), we can express the Eq. (5.20) as[

γµγν
(
P̂µ − eÂµ

)(
P̂ν − eÂν

)
− k2

]
ψ = 0. (5.22)

Where, γµγν = gµν + σµν , and

σµν =
1

2

(
γµγν − γνγµ

)
=

1

2
[γµ, γν ].

Using these results, Eq. (5.22) can be rewritten as(
P̂ µP̂µ − e

(
P̂ µÂµ + ÂµP̂µ

)
− eσµν

[
P̂ν , Âµ

]
+ e2ÂµÂµ

)
ψ = k2ψ.

Letting Âi = 1
2
eijkBjQ̂k, where Q̂µ = (qµ +

i
2
∂pµ) and A4 = A5 = 0, with B = (0, 0, B)

chosen as the magnetic field. Restricting the particle’s motion to the plane (q1, q2), i.e.,

P̂3 = 0, we obtain the following equation

− 2

(
p4 −

i

2
∂t

)(
p5 −

i

2
∂5

)
ψ

+

(
p21 + p22 −

1

4

( ∂2

∂q12
+

∂2

∂q22

)
− eB

[
i

2

(
p2∂p1 − p1∂p2

)
+

1

4

( ∂2

∂q2∂p1
− ∂2

∂q1∂p2

)]
− i
(
p2∂q2 + p1∂q2

)
− eB

[
(q1p2 − q2p1)−

i

2

(
q1∂q2 − q2∂q1

)]

+
e2B2

4

[(
q1 +

i

2
∂p1

)2
+
(
q2 +

i

2
∂p2

)2]
− ieσ12B

)
ψ = k2ψ, (5.23)

where σ12 = i

(
σ3 0

0 σ3

)
.

Letting

ψ =

(
Φ(qµ, pµ)

Θ(qµ, pµ)

)
,

We have obtained a pair of uncoupled equations, one for Φ(qµ, pµ) and the other for

Θ(qµ, pµ), given by
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−2

(
p4 − i

2
∂t

)(
p5 − i

2
∂5

)
Φ(qµ, pµ)

+

(
p21 + p22 − 1

4

(
∂2

∂q12
+ ∂2

∂q22

)
− eB

[
i
2

(
p2∂p1 − p1∂p2

)
+1

4

(
∂2

∂q2∂p1
− ∂2

∂q1∂p2

)]
− i
(
p2∂q2 + p1∂q2

)
−eB

[
(q1p2 − q2p1)− i

2

(
q1∂q2 − q2∂q1

)]
+ e2B2

4

[(
q1 +

i
2
∂p1

)2
+
(
q2 +

i
2
∂p2

)2]

+eσ3B

)
Φ(qµ, pµ) = k2Φ(qµ, pµ),

and the equation for Θ follows a similar structure.

Taking Φ(qµ, pµ) = φ(qi, pi)ϕ(q4, q5, p4, p5). Which result in(
p4 −

i

2
∂t

)(
p5 −

i

2
∂5

)
ϕ = mEϕ+ k2ϕ, (5.24a)

and (
p21 + p22 −

1

4

( ∂2

∂q12
+

∂2

∂q22

)
− eB

[
i

2

(
p2∂p1 − p1∂p2

)
+

1

4

( ∂2

∂q2∂p1
− ∂2

∂q1∂p2

)]
− i
(
p2∂q2 + p1∂q2

)
− eB

[
(q1p2 − q2p1)−

i

2

(
q1∂q2 − q2∂q1

)]

+
e2B2

4

[(
q1 +

i

2
∂p1

)2
+
(
q2 +

i

2
∂p2

)2]
+ eσ3B

)
φ

= 2mEφ+ k2φ (5.24b)

A solution of Eq. (5.24a) is of the form

ϕ = C1e
−2i[(p5+m)q5+(p4+E)t],
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C1 is a normalization constant. In order to address the solution of Eq. (5.24b), a transfor-

mation of variables will be introduced, denoted by

w(q1, q2, p1, p2) = p21 + p22 + eB(q2p1 − q1p2) +
e2B2

4
(q21 + q22).

Following an extensive calculation, it becomes evident that the imaginary part of this

equation is identically zero, yielding us

wφ− e2B2∂φ(w)

∂ω
− e2B2w

∂2φ(w)

∂w2
= (2mE − esB + k2)φ(w), (5.25)

with sφ = σ3φ, with s = ±1. Consider ω = w/(eB), α = (2mE−seB+k2)/eB and letting

f(w) ≡ ewϕ(ω), we have

ωf ′′(ω) + (1− 2ω)f ′(ω)− af(ω) = 0, (5.26)

where f ′(x) = ∂f
∂ω

and a = (1 − α). The Eq. (5.26) corresponds to the Kummer equa-

tion, a type of confluent hypergeometric equation. The physical solutions are expressed as

follows,

fn(ω) = AnU

(
1

2
− α

2
, 1, 2ω

)
,

where U(a, b, x) are the Kummer’s function and An are constants. Nonetheless, it becomes

evident that when a = −n with n = 0, 1, 2, . . ., the series U(a, b, x) transforms into a

polynomial series in x of degree no more than n. Therefore, expressing it as

α− 1 = 2n,

We have the following eigenvalue relation.

E = ωc

(
n+

1

2
+
s

2

)
− k2

2m
,

with ωc =
eB
m

and the corresponding eigenfunctions

fn(w) = AnU

(
−n, 1, 2w

eB

)
, (5.27)
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where An are normalization constants. As a result, the quasi-amplitudes is given by

Φn = C1e
−2i[(p5+m)q5+(p4+E)t]

(
AnU

(
−n, 1, 2w

eB

)
exp

(
− w

eB

))
. (5.28)

The analog is valid for Θ. These calculations provide the correct value of the eigenstates

of energy for fermions in an external magnetic field, the well-known problem of Landau.

Therefore, formalism is consistent with the standard calculation. To find the corresponding

Wigner function just do ψn ⋆ ψ̄n.

To determine the expression for fw, we will apply a similar procedure to that used for

the harmonic oscillator. Note that in this case, we have w = 2mh, where

h =
1

2m

(
p21 + p22 + eB(q2p1 − q1p2) +

e2B2

4
(q21 + q22)

)
.

This step allows us to establish the appropriate relation for w in terms of the given

parameters.

Therefore,

ψ0 = C0e
−2h/ωc

Thus,

f 0
w = C0e

−2h/ωc ⋆ ψ0 = C0e
−2ĥ/ωcψ0 = C0e

−2E0/ωcψ0

Hence, the Wigner function describing the ground state of a spin-1
2
particle with spin-up

and spin-down configurations can be expressed as follows

f 0+

w = (C0+)
2 1

e2
e−(p21+p

2
2+eB(q2p1−q1p2)+ e2B2

4
(q21+q

2
2))/eB,

and

f 0−

w = (C0−)
2e−(p21+p

2
2+eB(q2p1−q1p2)+ e2B2

4
(q21+q

2
2))/eB.
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As for the general case,

fn
±

w = (A±
n )
( 1

n!π

)
e−(p21+p

2
2+eB(q2p1−q1p2))U

(
−n, 1, 2(p

2
1 + p22 + eB(q2p1 − q1p2))

eB

)
(5.29)

The characteristics of the Wigner function in this system are depicted in Figures 1

through 4. From these plots, it becomes evident that the Wigner function corresponding to

the ground level (n = 0), as depicted in Figure 1, lacks a negative component. Conversely,

for higher energy levels, illustrated in Figures 2 through 4, the Wigner function exhibits a

negative region. The graphical representations underscore a notable trend: the magnitude

of the negative portion in the Wigner function becomes more prominent with increasing

energy levels of the system under consideration.

Non-classicality Indicator

The Wigner function satisfies the normalization condition
∫∞
−∞ fw(q, p), dq, dp = 1.

Hence

η(ψ) =

∫ ∞

−∞

(
|fw(q, p)| − fw(q, p)

)
dqdp

=

∫ ∞

−∞
|fw(q, p)|dqdp− 1,

serves as an indicator of negativity for the vector |ψ⟩ [59].
In the following, we conducted numerical calculations of this indicator for the Landau

levels. The results of these calculations are shown in Table (5.1).

Table 5.1: Parameter of negativity of the Landau Levels for n = 1, 2, 3.

n η(ψ)

0 0
1 0.42612
2 0.72899
3 0.97667
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Figure 5.1: Wigner Function (cut in q1,p1),Ground State.
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Figure 5.2: Wigner Function (cut in q1,p1),
First Excited State.
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Figure 5.3: Wigner Function (cut in q1,p1),
Second Excited State.
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Figure 5.4: Wigner Function (cut in q1,p1),
Third Excited State.
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The data presented in Table (5.1) demonstrate a consistent pattern where the negativity

indicator aligns with the system’s energy level n, corroborating the trends depicted in

FIG. 5.1 through FIG. 5.4. This observation suggests a potential connection between the

growth of the indicator parameter and an increase in the quantum entanglement of the

analyzed system. Such insights are of significance in fields like quantum computing, as

evident in [60].
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Chapter 6

Symplectic Galilean fields at finite tempera-

ture

In this chapter, the Galilean covariance in phase space is considered. The non-relativistic

symplectic version of Klein-Gordon and Dirac equations are constructed in this frame-

work. The propagator associated with both fields are determined. Then the non-relativistic

Stefan-Boltzmann law and Casimir effect at finite temperature are calculated. The Ther-

mofield Dynamics formalism is introduced, thus using thermal effects.

The main goal of this chapter is to explore the Galilean covariance in phase space and

to investigate the size effect of non-relativistic quantum systems compactified in a torus.

For quantum mechanics, the TFD formalism is used to deal with the spatial torus with

temperature effects in the context of Wigner functions.

The formulation of classical mechanics in phase space is well-known. It leads to distinct

physical meaning with a Hamiltonian function. In the case of quantum mechanics, this

function is of paramount importance for the dynamical processes but the structure of

the phase space is due to the non-commutativity between position and momentum. The

formalism of quantum mechanics in phase space was introduced by Wigner. This allows the

mapping of classical functions into quantum operators in phase space through the Moyal

product. Wigner was interested in solving problems opposite to the one proposed by Weyl

who established a quantization process based on classical functions. The formulation of

the phase space has a well-defined classical limit. In contrast to the wave function, the

Wigner function does not represent a true probability density. The formulation of a field

in phase space has an interest in generalizing representations. It is important to note that

observables are preserved in phase space. Another step in quantum phase space is given

when the formalism could accommodate consistently the notion of gauge field with the

Wigner function. This was accomplished with the notion of quasi-amplitude of probabilities,
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i.e. a wave function associated with the Wigner function. In order to consider the phase

space structure of a quantum system in a torus, this formalism in phase space is considered

with TFD.

This chapter is organized as follows. In Section 6.1, the spin 1/2 symplectic repre-

sentation is introduced. The Dirac-like Lagrangian is obtained. In Section 6.2, a brief

introduction to the TFD formalism is presented. In Section 6.3, some applications at finite

temperature are calculated for the non-relativistic Stefan-Boltzmann law and the Casimir

effect.

The results of this section are taken from work by Petronilo et al.(2021A) [61].

6.1 Spin 1/2 Symplectic Representation

This section provides a brief overview of the spin 1/2 symplectic representation. The

Lagrangian density for a spin-1/2 field is given by:

L = − i
4

(
(∂µψ̄(q, p))γ

µψ(q, p)− ψ̄(q, p)(γµ∂µψ(q, p))
)
+ ψ̄(q, p)γµpµψ(q, p), (6.1)

where ψ̄ = ζψ†, with ζ = − i√
2
{γ4 + γ5}.

The Galilean covariant Pauli-Schrödinger equation is given by:

γµ
(
pµ −

i

2
∂µ

)
ψ(p, q) = 0. (6.2)

The connection to the Wigner function is given by

fw(q, p) = ψ(q, p) ⋆ ψ̄(q, p).

The energy-momentum tensor for the Dirac-like field in phase-space is obtained by using

the Noether theorem as:

T µνD (q, p) = − i
4

(
− ψ̄(q, p)γµ∂ψ(q, p)

∂qν
+
∂ψ̄(q, p)

∂qν
γµψ(q, p)

)
− ηµνL(q, p). (6.3)

The Green function, GD(q − q′, p− p′), in phase space is obtained from the equation

γµ
(
i

2
∂µ − pµ

)
GD(q − q′, p− p′) = δ(q − q′)δ(p− p′). (6.4)
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For q − q′ it leads to

γµ
(
1

2
kµ − pµ

)
G(k, p− p′) = δ(p− p′), (6.5)

with G(k, p− p′) = 1
(2π)4

∫
d4qeik

µ(qµ−q′µ)GD(q − q′, p− p′). Then the field propagator is

G(k, p− p′) = δ(p− p′)

γµ
[
1
2
kµ −

(
pµ − p′µ

)] . (6.6)

This leads to

GD(q − q′, p− p′) =

∫
d5k

(2π)5
e−ik

µ(qµ−q′µ)G(k, p− p′)

=

∫
d5k

(2π)5
e−ik

µ(qµ−q′µ) δ(p− p′)

γµ
[
1
2
kµ −

(
pµ − p′µ

)] , (6.7)

which is the Green function for use at finite temperature.

6.2 Thermofield Dynamics

The Thermofield Dynamics (TFD) formalism is introduced here for study at finite

temperatures [38–42]. The thermal average of an observable is considered as the vacuum

expectation value in an extended Fock space, i.e., ST = S⊗S̃, where S and S̃ are the original

and tilde space respectively. This defines the Bogoliubov transformation. The relation

between the tilde X̃i and non-tilde Xi operators is defined as

(XiXj)∼ = X̃iX̃j, (cXi + Xj)∼ = c∗X̃i + X̃j, (X †
i )

∼ = X̃i
†
, (X̃i)∼ = −ξXi , (6.8)

with ξ = −1 for bosons and ξ = +1 for fermions. The Bogoliubov transformation describes

the finite temperature effect among variables. This leads to(
X (k, α)
X̃ †(k, α)

)
= B(α)

(
X (k)
X̃ †(k)

)
, (6.9)
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and the Bogoliubov transformation, B(α), is

B(α) =

(
u(α) −v(α)
ξv(α) u(α)

)
, (6.10)

where u2(α) + ξv2(α) = 1. The α parameter is defined as the compactification parameter

given by α = (α0, α1, · · ·αD−1), where D is the dimension of spacetime. The temperature

effect is described by the choice α0 ≡ β and α1, · · ·αD−1 = 0, where β ∝ 1
T
with T being

the temperature.

The propagator for the scalar field is

G
(ab)
0 (q − q′, p− p′;α) = i⟨0, 0̃|τ [ψa(q, p;α)ψb(q′, p′;α)]|0, 0̃⟩, (6.11)

where,

ψ(q, p;α) = B(α)ψ(q, p)B−1(α). (6.12)

Here a, b = 1, 2 and τ is the time ordering operator. Then the propagator at the thermal

vacuum |0(α)⟩ = B(α)|0, 0̃⟩ is

G
(ab)
0 (q − q′, p− p′;α) = i⟨0(α)|τ [ψa(q, p)ψb(q′, p′)]|0(α)⟩,

= i

∫
d5k

(2π)5
e−ik(q−q

′)(p−p′)G
(ab)
0 (k;α), (6.13)

where

G
(ab)
0 (k;α) = B−1(α)G

(ab)
0 (k)B(α), (6.14)

with

G
(ab)
0 (k) =

(
G0(k) 0

0 G∗
0(k)

)
. (6.15)

Then G0(k) is given as

G0(k) =
δ5(p− p′)

1
4
k2 − pµkµ + pµpµ + iϵ

, (6.16)
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where delta function is the Dirac delta [43]. Then the non-tilde variable is

G
(11)
0 (k;α) = G0(k) + ξv2(k;α)[G∗

0(k)−G0(k)], (6.17)

where v2(k;α) is the generalized Bogoliubov transformation given as

v2(k;α) =
d∑
s=1

∑
{σs}

2s−1

∞∑
lσ1 ,...,lσs=1

(−η)s+
∑s

r=1 lσr exp

[
−

s∑
j=1

ασj lσjk
σj

]
, (6.18)

with d being the number of compactified dimensions, η = 1(−1) for fermions (bosons) and

{σs} denotes the set of all combinations with s elements.

6.3 Non-relativistic Stefan-Boltzmann law and Casimir effect in

phase space

In this section the Stefan-Boltzmann law and Casimir effect at finite temperature are

obtained for Schrödinger (Klein-Gordon-like) and Pauli-Schrödinger (Dirac-like) equations

in phase space.

6.3.1 Schrödinger equation

The Galilean Lagrangian density for covariant scalar field in phase space is given as

Lψ(q, p) =
1

4
∂µψ(q, p)∂µψ

†(q, p) +
i

2
pµ[ψ(q, p)∂µψ

†(q, p)

− ψ†(q, p)∂µψ(q, p)] + [pµpµ]ψ(q, p)ψ
†(q, p). (6.19)

The energy-momentum tensor, is given as

T µν(q, p) =
∂Lψ(q, p)
∂(∂µψ(q, p))

∂νψ(q, p)− ηµνLψ(q, p). (6.20)

This leads to

T µν(q, p) =
1

4
∂µψ(q, p)∂νψ†(q, p) +

i

2
pµ[ψ(q, p)∂νψ†(q, p)− ψ†(q, p)∂νψ(q, p)] (6.21)

− ηµν
[
1

4
∂λψ(q, p)∂λψ

†(q, p) +
i

2
pλ[ψ(q, p)∂λψ

†(q, p)− ψ†(q, p)∂λψ(q, p)]

+
[
pλpλ

]
ψ(q, p)ψ†(q, p)

]
. (6.22)

ψ ⋆ ψ† Star Product 69



6.3. Non-relativistic Stefan-Boltzmann law and Casimir effect in phase space

It is necessary to re-write the energy-momentum tensor, at different space-time points as

T µν(q, p) = lim
(q′µ,p′µ)→(qµ,pµ)

τ

{
1

4

(
∂ψ′†(q, p)

∂q′µ

∂ψ(q, p)

∂qν
+
∂ψ′†(q, p)

∂q′ν

∂ψ(q, p)

∂qµ

)
+

i

2
pµ
[
ψ(q, p)

∂ψ′†(q, p)

∂q′ν
− ψ′†(q, p)

∂ψ(q, p)

∂qν

]
− ηµν

[
1

4
∂λψ(q, p)∂λψ

†(q, p)

+
i

2
pλ
[
ψ(q, p)∂λψ

′†(q, p)− ψ†(q, p)∂λψ(q, p)

]
+ pλpλψ(q, p)ψ

′†(q, p)

]}
= lim

(q′µ,p′µ)→(qµ,pµ)
Γµν1 τ{ψ(q, p)ψ†(q, p)} (6.23)

where τ is the time ordering operator and

Γµν1 =
1

4

(
∂

∂q′µ

∂

∂qν
+

∂

∂q′ν

∂

∂qµ

)
+
i

2
pµ
[
∂

∂q′ν
− ∂

∂qν

]
− ηµν

[
1

4
∂λ

′
∂λ +

i

2
pλ
[
∂

∂q′λ
− ∂

∂qλ

]
+
[
pλpλ

] ]
. (6.24)

The vacuum expectation value of the energy-momentum tensor is given as

⟨T µν(q, p)⟩ = lim
(q′µ,p′µ)→(qµ,pµ)

{Γµν1 G0(q
µ − q′µ, pµ − p′µ)} . (6.25)

The Green function propagator in phase space is

G0(q
µ − q′µ, pµ − p′µ) =

〈
0
∣∣τ[ψ(q, p)ψ′†(q′, p′)

]∣∣ 0〉 ,
=

∫
d5k

(2π)5
δ5(p− p′)eikµ(qµ−q′µ)

1
4
k2 − kµ(pµ − p′µ) + (pµ − p′µ)(pµ − p′µ)

=
δ3(p− p′)δ(p4 − p′4)

(2π)3
θ(t− t′)e−2im(s−s′)

∫
d3k ei[k·(x−x’)−4(K0+p4)(t−t′)],

with K0 = 1
2m

(k
2
− p)2. After integration the propagator is

G0(q
µ − q′µ, pµ − p′µ) = δ3(p− p′)δ(p4 − p′4)

(
m

2π

)3/2 √
i

(t− t′)3/2
θ(t− t′) exp

{
(p4 − p′4)(t− t′)

m

}

× exp

{
− im(s− s′) + im(x− x′)2 + 2i(p− p′) · (x− x′)(t− t′)

2(t− t′)

}
(6.26)
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The finite energy-momentum tensor with the α-parameter is

Tµν(ab)(q, p;α) = lim
(q′µ,p′µ)→(qµ,pµ)

{
Γµν1 G

ab

0 (qµ − q′µ, pµ − p′µ;α)
}
, (6.27)

where Tµν(ab)(q, p;α) = ⟨T µν(ab)(q, p;α)⟩ − ⟨T µν(ab)(q, p)⟩ and

G
(ab)

0 (qµ − q′µ, pµ − p′µ;α) = G
(ab)
0 (qµ − q′µ, pµ − p′µ;α)−G(ab)

0 (qµ − q′µ, pµ − p′µ). (6.28)

Some applications for the Klein-Gordon-like equation with different α-parameters are

investigated. It is important to note that an average of components of the energy-momentum

tensor diverges in the limit q′µ → qµ at zero temperature.

Non-relativistic Stefan-Boltzmann Law

To calculate the Stefan-Boltzmann law at finite temperature, β, the α-parameter has

a value of α = (0, 0, 0, β, 0). Then the generalized Bogoliubov transformation is

v2(β) =
∞∑
j=1

e−βkj (6.29)

and the Green function becomes

G
(ab)

0 (qµ − q′µ, pµ − p′µ; β) = 2
∞∑
j=1

G0(q
µ − q′µ − iβjn4, p

µ − p′µ), (6.30)

where n4 = (0, 0, 0, 1, 0). Thus the component of energy-momentum tensor for µ = ν = 4

is

T44(11)(β) = 2 lim
(q′µ,p′µ)→(qµ,pµ)

∞∑
j=1

Γ44
1 G

(11)
0 (qµ − q′µ − iβjn4, p

µ − p′µ) , (6.31)

where

Γ44
1 =

1

2
∂′5∂5 +

i

2
p5(∂

′
5 − ∂5). (6.32)

Which leads to the form

T44(11)(β) = δ3(p− p′)δ(p4 − p′4)
m7/2ζ(3

2
)

(8πβ)3/2
, (6.33)
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where p5 = m and ζ(x) is the Riemann Zeta function. This is the non-relativistic Stefan-

Boltzmann law in phase space.

Non-relativistic Casimir effect at finite temperature

Taking α = (0, 0, i2d, β, 0) the Bogoliubov transformation is

v2(β, d) =
∞∑
j=1

e−βkj +
∞∑
l=1

e−i2dkl + 2
∞∑
j,l=1

e−βkj−i2dkl. (6.34)

The first two terms are associated with the Stefan-Boltzmann law and the Casimir effect

at zero temperature. The Green function of the third term is

G0(q
µ − q′µ, pµ − p′µ; β, d) = 4

∞∑
j,l=1

G0 (q
µ − q′µ − iβjn4 − 2dln3, p

µ − p′µ) (6.35)

with n3 = (0, 0, 1, 0, 0). Then the energy-momentum tensor for µ = ν = 3 is

T33(11)(β, d) = 4 lim
(q′µ,p′µ)→(qµ,pµ)

∞∑
j,l=1

Γ33
1 G

(11)
0 (qµ − q′µ − iβjn4 − 2dln3, p

µ − p′µ) ,(6.36)

where

Γ33
1 =

1

4
(∂′3∂3 − ∂′1∂1 − ∂′2∂2 + 2∂′4∂5) (6.37)

− i

2

[
p1(∂′1 − ∂1) + p2(∂′2 − ∂2) + p4(∂′4 − ∂4) + p5(∂′5 − ∂5)

]
− pλpλ.

Then the non-relativistic Casimir effect in phase space at finite temperature is given as

〈
0(β)

∣∣T 33(11)
∣∣ 0(β)〉 = δ3(p− p′)δ(p4 − p′4)

∞∑
j,l=1

{ m3/2

64
√
2π3(βj)7/2

e
−dl(dlm+4iβjp3)

2βj

×
[
m
(
5d2l2m− 11βj

)
+ 4(2md2l2p4 + iβjdlmp3 − 4β2j2mp5

+ 5(βjp1)
2 + 5(βjp2)

2 − (βjp3)
2 − 6βjp4)

]
−pλpλ

}
. (6.38)
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6.3.2 Pauli-Schrödinger equation

The Pauli-Schrödinger equation in phase space is described by the Dirac-like Lagrangian

density in the Galilean manifold as

L = − i
4

(
∂µψ̄γ

µψ − ψ̄γµ∂µψ
)
− ψ̄γµpµψ (6.39)

The Galilean Dirac-like propagator is

GD(q − q′, p− p′) =

∫
d5k

(2π)5
e−ik

µ(qµ−q′µ)G(k, p− p′)

=

∫
d5k

(2π)5
e−ik

µ(qµ−q′µ) δ(p− p′)

γµ
[
1
2
kµ −

(
pµ − p′µ

)] , (6.40)

with some algebra we obtain

GD(q − q′, p− p′) = 2e−i(p
µ−p′µ)(qµ−q′µ)δ(p− p′)

∫
d5k

(2π)5
e−ik

µ(qµ−q′µ)

γµkµ
. (6.41)

This leads to the Green function for the Galilean covariant Pauli-Schrödinger equation in

phase space,

GD(q − q′, p− p′) = 2e−i(p
µ−p′µ)(qµ−q′µ)iγµ∂µG0(q

µ − q′µ, pµ − p′µ), (6.42)

where

G0(q
µ − q′µ, pµ − p′µ) = δ3(p− p′)δ(p4 − p′4)

(
m

2π

)3/2 √
i

(t− t′)3/2
θ(t− t′) exp

{
(p4 − p′4)(t− t′)

m

}

× exp

{
− im(s− s′) + im(x− x′)2 + 2i(p− p′) · (x− x′)(t− t′)

2(t− t′)

}
(6.43)

is the scalar field propagator in phase space.

The vacuum average of the energy-momentum tensor associated with the Dirac-like

Lagrangian is given by

〈
0(β)

∣∣T µν(ab)∣∣ 0(β)〉 = lim
(q′µ,p′µ)→(qµ,pµ)

Γµν2 2e−i(p
µ−p′µ)(qµ−q′µ)iγα∂αG0(q

µ − q′µ, pµ − p′µ;α),
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where

Γµν2 = − i
4

[
− γµ ∂

∂qν
+ γµ

∂

∂q′ν
− ηµν

(
γλ

∂

∂qλ
− γλ ∂

∂qλ
− γλpλ

)]
.

Then the physical energy-momentum tensor is defined as

T µν(ab)(α) ≡
〈
0(β)

∣∣T µν(ab)∣∣ 0(β)〉 = lim
(q′µ,p′µ)→(qµ,pµ)

Γµν2 ḠD(q
µ − q′µ, pµ − p′µ;α), (6.44)

with ḠD(q
µ − q′µ, pµ − p′µ;α) = GD(q

µ − q′µ, pµ − p′µ;α)−GD(q
µ − q′µ, pµ − p′µ). Here a

renormalization procedure has been used. Now results at finite temperature are considered.

Non-relativistic Stefan-Boltzmann law

For the study of the Stefan-Boltzmann law in phase space the parameter α is chosen

as α = (0, 0, 0, β, 0). The Bogoliubov transformation is

v2(k, β) =
∞∑
j=1

(−1)j+1 e−βkj . (6.45)

The Green function for the Dirac-like field in phase space is

G
(ab)

D (q − q′, p− p′; β) =
∞∑
j=1

(−1)j+1
[
G∗
D(q − q′ + iβjn4, p− p′)

− GD(q − q′ − iβjn4, p− p′)
]
. (6.46)

By taking µ = ν = 4, the energy-momentum tensor is

T 44(11)(β) = lim
(q′,p′)→(q,p)

∞∑
j=1

(−1)j+1 Γ44
2

[
G∗
D(q − q′ + iβjn4, p− p′)

− GD(q − q′ − iβjn4, p− p′)
]
, (6.47)

where

Γ44
2 = −iγ

4

4
(∂5 − ∂′5) . (6.48)
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The energy-momentum tensor is

T 44(11)(β) =
δ3(p− p′)δ(p4 − p′4)γ4

128

m

β

(
m

2πβ

)3/2
[
4(
√
2− 2)β ζ

(
3

2

)
(−γ5m+ γ1p1

+ γ2p2 + γ3p3) + 3(
√
2− 4)γ4 ζ

(
5

3

)]
, (6.49)

where we used the Clifford algebra {γmu, γnu} = 2ηµν . The non-relativistic Stefan-Boltzmann

law associated with the Pauli-Schrödinger equation is in phase space.

Casimir effect at finite temperature

For α = (0, 0, i2d, β, 0), the generalized Bogoliubov transformation becomes

v2(β, d) =
∞∑
j=1

(−1)j+1e−βk
0j +

∞∑
l=1

(−1)l+1e−i2dk
3l + 2

∞∑
j,l=1

(−1)j+le−βk0j−i2dk3l.(6.50)

The first two terms of this expression corresponds to the Stefan-Boltzmann term and the

Casimir effect at T = 0, respectively. The third term is associated with the Casimir effect

analyzed for T not equal to 0. It leads to

T 33(11)(β, d) = lim
q′→q

∞∑
j,l=1

(−1)j+lΓ33
2 [G∗

D(q − q′ + iβjn4 + 2dln3, p− p′)

− GD(q − q′ − iβjn4 − 2dln3, p− p′)
]
, (6.51)

with

Γ33
2 = − i

4

[
−γ3 (∂3 − ∂′3)− γλ (∂λ − ∂′λ) + /p

]
, (6.52)

where /p = γµpµ. Then the non-relativistic Casimir effect at finite temperature is

T 33(11)(β, d) = δ3(p− p′)δ(p4 − p′4)
∑∞

j,l=1

{
(−1)j+l m3/2

128
√
2π3/2(βj)11/2

×
[
−e−

m(dl)2

2βj − cosh(2idlp3)

]
Θ1(β, d)− i(βj)2 sinh(2idlp3)Θ2(β, d)

}
,

(6.53)
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where

Θ1(β, d) = (βj)2
[
(dl)2(−2m2γ3 + 4m/pγ

4) + 15miγ3γ4dl + 15(γ4)2 − 2m(βj(4/pβj

− 3idlmγ3) + 2((dl)2m− 3(βj))γ4)γ5
]
+(βj)3

[
m(γ1)2 +m(γ2)2 − 8im/pdlγ

3

+ 2m(γ3)2 − 12/pγ
4
]
+(βj)4

[
4(p1γ

1)2 − 2i/pp2γ
2 + 4(p2γ

2)2 − 2i/pp3γ
3 + 12p2p3γ

2γ3

+ 8(p3γ
3)2 − 2ip1γ

1(/p+ 4ip2γ
2 + 6ip3γ

3) + 4m2(γ5)2)
]
−10mβj(γ4dl)2 − 3imγ3γ4(dl)3

+ (mγ4)2(dl)4 (6.54)

and

Θ2(β, d) = (βj)
[
−imdl/pγ3 + 8mp3γ

3dl − 3/pγ
4 − 18ip3γ

3γ4
]
+2i(p1γ

1 + p2γ
2)
(
−3imγ3dlβj

+ 2(m(dl)2 − 3βj)γ4 + 4(βj)2(/p−mγ5)
)
+(βj)2

[
4/p

2 + 16i/pp3γ
3 − 2m(/p+ 6ip3γ

3)
]

+ (dl)2
[
m/pγ

4 + 6imp3γ
3γ4
]
. (6.55)

The results in Eq. (6.53) imply an effect of finite temperature and space compactification.

6.4 Results

By applying the Galilean Covariance formalism along with the thermodynamic formal-

ism of Thermofields Dynamics (TFD), we were able to calculate the thermal Casimir effect

for both scalar and spinorial fields. For bosons and fermions, we will plot the pressure vs

temperature (T 33(11)(β, d)B × T ) graphs as follows:
Bosons

20 40 60 80 100
T(MeV)

2×109

4×109

6×109

8×109


33 11(T,d)B

Figure 6.1: Pressure, T 33(11)(β, d)B, versus temperature for d = 1fm = 0.005MeV −1m =
350MeV .
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Fermions

200 400 600 800 1000 1200 1400
T(MeV)

5×109

1×1010


33 11(T,d)F

Figure 6.2: Pressure (T 33(11)(β, d)F ) versus temperature for d = 1fm = 0.005MeV −1m =
350MeV

10 20 30 40 50
T(MeV)

-1×108

1×108

2×108


33 11(T,d)F

Figure 6.3: This only shows a small part of Fig.(6.2). This shows the first time for which
temperature T 33(11)(β, d)F → 0 is T ∼ 40MeV

The Galilean symmetry is assured along the calculations by writing the theory in the

light-cone of a (4 + 1)-de Sitter space. The energy-momentum tensor associated with each

field, Bosons and Fermions, is calculated. Considering the case of bosons, the size-effect

term remains and goes to zero at zero-temperature, as it would be expected. However,

the size-effect for high temperature for a fixed compactification lenght remains growing.

This is an unexpected result and has motivated an analysis of a more realist model, by

considering the spin of a quark. In this case, by increasing the temperature, from T = 0,

the size-effect contribution to the energy momentum tensor is negative, diminishing the

Stefan-Boltzmann effect. There is a minimum, and at T ≈ 40 Mev the size-effect term

of the energy momentum tensor is zero. In this case, the toroidal size-effect, d, as the

hadron diameter, d ≈ 1fm, and the quark mass as 350 MeV has been considered. In
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other words, the size-effect under this condition is no longer important, and the energy-

momentum tensor is described only by the Stefan-Boltzmann law, for the (free) fermions.

It is important to observe that such a temperature is in order of the estimated temperature

for the chiral symmetry breaking, that gives rise to quark-gluon plasma. The connection

of these two different results are not simple, but it demands more investigations. Finally,

at high temperature, the size-effect term goes to zero, differently from the case of bosons.

These results indicate that the spin is a crucial element for the quark-anti-quark effective

model.

78 ψ ⋆ ψ† Star Product



Chapter 7

Representations of Extended Carroll Group

Carroll’s group is presented as a group of transformations in a 5-dimensional space

(C) obtained by embedding the Euclidean space into a (4,1) de Sitter space. Three of the

five dimensions of C are related to R3, and the other two to mass and time. A covariant

formulation of Caroll’s group, analogous as introduced by Takahashi to Galilei’s group, is

deduced. Unit representations are studied.

This chapter is organized as follows, in section 7.1 the Carroll space embedded in the

(4,1) de Sitter space is constructed. It is also shown that this space has an associated

group that is an extended Carroll group. In section 7.2 the quantum representations of the

extended Carroll group, namely the scalar and spinorial representations of Carroll fields

are presented. In section 7.3 the Carrollian electric and magnetic limits using two different

embedding of de Sitter space are shown.

The results of this section are taken from work by Petronilo et al.(2021B) [62].

7.1 The Carroll Group

The five-dimensional manifold with the metric

gµν =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 −1
0 0 0 −1 0

 (7.1)
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is a (4 + 1) de Sitter space under the transformation gµν = U α
µ ηαβU

β
ν , where (ηαβ) =

(1, 1, 1,−1, 1). This is easily seen by choosing the representation of Uµ
ν as

Uµ
ν =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1√
2

1√
2

0 0 0 1√
2
− 1√

2

 . (7.2)

The associated group of this manifold has a Lie algebra defined by the following commu-

tation rule,

[Mµν ,Mρσ] = −i(gνρMµσ − gµρMνσ + gµσMνρ − gµσMνρ),

[Pµ,Mρσ] = −i(gµρPσ − gµσPρ),

[Pµ, Pσ] = 0.

(7.3)

We can rewrite the generators, in a decomposition of (3+1+1) dimensions, as

Ji =
1

2
ϵijkMjk,

Ki = M5i,

Ci = M4i,

D = M54. (7.4)

Thus, the commutation relation becomes,

[Ji, Jj] = iϵijkJk,

[Ji, Cj] = iϵijkCk,

[D,Ki] = iKi,

[P4, D] = iP4,

[Pi, Kj] = iδijP5,

[P4, Ki] = iPi,

[D,P5] = iP5,

[Ji, Kj] = iϵijkKk,

[Ki, Cj] = iδijD + iϵijkJk,

[Ci, D] = iCi,

[Ji, Pj] = iϵijkPk,

[Pi, Cj] = iδijP4,

[P5, Ci] = iPi.

(7.5)
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7 REPRESENTATIONS OF EXTENDED CARROLL GROUP

It is known that the Lie algebra of the extended Galilei group in R3 ×R is a sub-agebra

of this algebra, with Ji, as generators of rotations, Ki of the pure Galilei boosts, and Pi

spacial translations and P4 is the temporal translations, associated with the energy, being

P5, in this context, a Casimir invariant associate with the mass, P5 = −mI, where I is

the identity matrix [14, 15, 51]. Another sub-algebra follows by setting the only non-zero

commutation relations as

[Ji, Jj] = iϵijkJk,

[Ji, Cj] = iϵijkCk,

[Ji, Pj] = iϵijkPk,

[Pi, Cj] = iδijP4,

[P5, Ci] = iPi.
(7.6)

This is the algebra of Carroll group C with the addition of [P5, Ci] = iPi, that comes

naturally of the structure of the five-dimensional manifold. In this context P5 is not a

Casimir invariant as is in the case of Galilei group G. Indeed the Casimir invariants of this

algebra are

I1 = P µPµ, (7.7a)

I2 = P4, (7.7b)

I3 = W4µW
4
µ , (7.7c)

whereW µν is the 5-dimensional Pauli-Lubanski matrix. As P4 is associated with the energy,

E, in the Carroll symmetry, E is a Casimir invariant.

The coordinates transformations associated with this algebra are

qi
′

= Ri
jq
j − viq5 + ai, (7.8a)

q4
′

= q4 − (Ri
jq
j)vi +

1

2
v2q5 + a4, (7.8b)

q5
′

= q5 + a5, (7.8c)

and

pi
′

= Ri
jp
j − vip5, (7.8d)

p4
′

= p4 − vi
c′
(Ri

jp
j) +

1

2
v2p5, (7.8e)

p5
′

= p5, (7.8f)
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Choosing qµ = (q, t, s) and pµ = (p,mα,E), where s ≡ q2

2t
and α is related to the

tranformations of p4. These are the Carroll transformations in five dimensions. It is worthy

noting that even though p5 can not be interpreted as the invariant mass, it, nevertheless,

carries mass information.

7.2 Representation of Quantum Mechanics

In this section we will construct the representations of quantum mechanics of the ex-

tended Carroll group.

Scalar Representation

For the scalar representation we take the invariants I1 (7.7a) and I2 (7.7b) and apply

to a function ψ, and using the correspondence relation pµ = −i∂µ we have{
∂µ∂

µΨ = k2Ψ

∂4Ψ = −iEΨ
, (7.9)

where k and E are constants. This is a non-relativistic Klein-Gordon-like equation with

Carrollian symmetry.

Using Ψ(xµ) = exp
(
(−i(Et+mα s))ψ(x)

)
, we have

−∇2ψ(x) = 2mαEψ(x). (7.10)

In this context the 5-current is

jµ(x) = − i

2mα

(
ψ∗(x)∂µψ(x)− ∂µ(ψ∗(x))ψ(x)

)
, (7.11)

and is conserved because the 5-divergence is null, i.e.

∂µj
µ = 0. (7.12)

So the 5-current is equivalent to the usual 4-current,

j(q) = − i

2mα

[
Ψ∗(q)∇

(
Ψ(q)

)
−∇

(
Ψ∗(q)

)
Ψ(q)

]
, (7.13)

j4 = ρ(q) = − i

2mα

[
−Ψ∗(q)∂s

(
Ψ(q)

)
+ ∂s

(
Ψ∗(q)

)
Ψ(q)

]
= |Ψ|2, (7.14)
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7 REPRESENTATIONS OF EXTENDED CARROLL GROUP

where j(x) is the probability current and ρ(q) is the probability density.

Spinor Representation

In this context, we present a construction of the spin 1/2 wave equation, defining a new

quadrivector γµ such that,

(∂µ∂
µ − k2) = (γµ∂µ + k)(γν∂ν − k), (7.15)

for (7.15) to be valid γµ must obey the Clifford algebra, that is

{γµ, γν} = 2gµν , (7.16)

where gµν is our penta-dimensional metric. Taking the plus-sign bracket and operating in

the Ψ(x) wave function, we get

(γµ∂µ + k)Ψ(x) = 0. (7.17)

For convenience, we will use the following representations of γµ

γi =

(
σi 0

0 −σi

)
, γ4 =

(
0 0

−
√
2 0

)
, γ5 =

(
0
√
2

0 0

)
.

where σi are Pauli’s arrays and
√
2 is the 2x2 identity matrix multiplied by

√
2. We can

write the Ψ object, as

Ψ =

(
φ(x, x4, x5)

χ(x, x4, x5)

)
,

where φ and χ are 2-spinors dependent on xµ;µ = 1, ..., 5. Therefore, in the representation

where k = 0, Eq. (7.17) is reduced to

σ · ∇φ+
√
2∂sχ = 0, (7.18a)

√
2∂tφ+ σ · ∇χ = 0. (7.18b)
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7.3. The Electric and Magnetic Limits

Eqs. (7.18) are the Carroll-Lévy-Leblond equations. The 5-current is

jµ(x) =
1√
2i

[
ψ(x)γµψ(x)

]
, (7.19)

where ψ = ψ†ζ, with

ζ = − i√
2
(γ4 + γ5) =

(
0 −i
i 0

)
,

and jµ is conserved, the 5-divergence is null

∂µJ
µ = 0.

In terms of φ e χ

ji =
1√
2

[
χ†σφ+ φ†σχ

]
, (7.20)

j4 = φ†φ, j5 = χ†χ, (7.21)

using Eq.(7.9), (7.18a) e (7.18b) we have

ji = − i

2mα
∂i
[
φ†(x)∂iφ(x)− ∂i(φ†(x))φ(x)

]
+

1

2mα
∂j
[
φ†σkφ

]
ϵijk,

and

∂5j
5 = ∂s(χ

†χ) = 0.

The first term in ji represents the probability current, given by Eq. (7.12), and the second

is associated with the spin current, which results in the correct intrinsic magnetic moment

value of the particle.

7.3 The Electric and Magnetic Limits

In this section we show the electric and magnetic Carrollian limits of Maxwell equations

[54], using specific immersions.

In terms of the Faraday tensor, FAB, the Maxwell equations are

∂AFAB = jB, (7.22)
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7 REPRESENTATIONS OF EXTENDED CARROLL GROUP

∂MFAB + ∂AFBM + ∂BFMA = 0. (7.23)

To obtain the differential equation in terms of the Electric and Magnetic fields we use

the explicit form of the five-dimensional Faraday tensor

FAB =


0 B2 −B2 c1 d1

−B3 0 B1 c2 d2

B2 −B1 0 −c3 d2

−c1 −c2 −c3 0 R

−d1 −d2 −d3 −R 0

 . (7.24)

which applied to equations Eq. (7.22) and (7.23) results in

∇ ·B = 0,

∇× c+ ∂4B = 0,

∇× d+ ∂5B = 0,

∇ · c = j4 + ∂4R,

∇ · d = j5 + ∂5R,

∇×B− ∂4d− ∂5c = j.

(7.25)

The fields are given by

c = ∇A4 − ∂4A,

d = ∇A5 − ∂5A,
B = ∇×A (7.26)

where A is the vector potential. Letting c = 0, R = 0 and d = E, is the electric field.

We can obtain the Carrollian magnetic limit if we choose the following immersions

xA = (x, t, 0), AA = (A, 0,−ϕ).

Thus, under Carrollian boost, we have

x̄ = x, t̄ = t− v · x, x̄5 = 0,

So, ∂4 = ∂t and, as A
A is a massless particle it is independent of α, then ∂5A = 0. The

resulting Maxwell equations are

∇ · E = ρ,

∇× E = 0,

∇ ·B = 0,

∇×B− ∂tE = j.
(7.27)
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E = −∇ϕ, B = ∇×A.

The choice of gauge ∂µA
µ = 0 reduces to ∇ ·A = −∂tϕ, the Lorenz gauge. The movement

of electric charges is capable of creating a magnetic field, but a time-varying magnetic field

would not create an electric field.

In the case of the Carrollian electric limit we made choose the following immersions

xA = (x, 0, t), AA = (A, 0,−ϕ).

Thus, under Carrollian boost, we have

x̄ = x+ vt, x̄4 = 0, t̄ = t,

and the obtained Maxwell equations are

∇ · E = ρ,

∇× E+ ∂tB = 0,

∇ ·B = 0,

∇×B = j.
(7.28)

E = −∇ϕ− ∂tA, B = ∇×A.

The choice of gauge ∂µA
µ = 0 reduces to ∇ · A = 0, the Coulomb gauge. The temporal

variation of the magnetic field creates an electric field but not the other way around. This

results shown here are in accordance with the literature [54]. We note that the Carrollian

electric limit has Galilean symmetry in its coordinates, as the Galilean magnetic limit has

Carrollian symmetry.

The transformation of the fields are

Ē = E.

B̄ = B− v× E.

}
→ electric limit,

Ē = E+ v×B.

B̄ = B.

}
→ magnetic limit.

7.4 The interpretation of α

Choosing a reference frame where α = 1, from Eq. (7.10) we have

p2 − 2mE = 0, (7.29)
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7 REPRESENTATIONS OF EXTENDED CARROLL GROUP

this has the same form of Galilean mass shell condition. The difference over these two

symmetries are that in the case of Carroll as the energy is invariant α varies with the

relative velocity. In this way, Carroll particles can indeed move. Thus even though the

momentum, p, transforms like (7.8d), the energy, p2

2m
, is invariant. If, in a inertial frame,

the momentum is zero, we have the special case [54,56]

E2 −m2 = 0,

where we have reintroduced the rest energy. Setting the speed of light c = 1, thus instead of

the limit c→ 0, we will have v ≫ 1, thus a Carrollian particle in this context will describe

a tachyon. Here, the α parameter can be interpreted as a drag and the tachyon will acquire

Carrollian symmetry in this limit. A experiment in the context of dual gravity/fluid can

be proposed to study this drag, in this context a soliton should acquire Carrolian-like

symmetry when v ≫ c′, where c′ is the sound speed in the fluid.
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Chapter 8

The Landau Problem in Symplectic Carroll

Symmetry

Carroll’s group is shown as a group of transformations in a five-dimensional space (C)
obtained from the embedding of the Euclidean space into a (4,1)-de Sitter space. Three

of the five dimensions of C are related to R3, and the other two to mass and time. A

covariant formulation of Caroll’s group is established in phase space. The Landau problem

was studied. Finally, the negative parameter of the Wigner function is calculated.

The order in which this chapter will be presented is as follows. In Sec. 8.1 the construc-

tion of the Carrollian covariance is presented. Sec. 8.2, a symplectic structure is constructed

in the Carrollian covariance formalism, and using the commutation relations the scalar

equation in the light cone of five dimensions in phase space is constructed. In sec. 8.3 we

analyze the gauge symmetry for spin 1/2 particle in phase space with Carrollian symmetry.

In Sec. 8.4 we study the Carrollian spin 1/2 particle with an external field and solutions

are proposed and discussed, after we calculated the negativity parameter and discuss the

physical meaning.

8.1 The Carrollian Covariance

The Carroll transformations are given by

xi = Ri
jx
j + ai

t = t− (Ri
jx
j)vi + b ,

where R represents three-dimensional Euclidean rotations, v represents the relative ve-

locity defining Carrollian boosts, a represents spatial translations, and b represents time

translations.
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8.2. representation of Quantum Mechanics in Phase Space

The following commutation rules describe the algebra associated with the formalism

defined in the light cone of a five-dimensional de Sitter spacetime:

[Mµν ,Mρσ] = −i(gνρMµσ − gµρMνσ + gµσMνρ − gµσMνρ),

[Pµ,Mρσ] = −i(gµρPσ − gµσPρ),

[Pµ, Pσ] = 0.

(8.1)

It is known that the Lie algebra of the extended Carroll group in R3×R is a subalgebra

of this algebra, with Ji, as generators of rotations, Ci of the pure Carroll boosts, and Pµ

spacial and temporal translations, being P4, in this context, a Casimir invariant associate

with the energy, P4 = −EI, where I is the identity matrix [62].

The Casimir invariants of this algebra are

I1 = pµpµ, (8.2a)

I2 = p4, (8.2b)

I3 = W4µW
4
µ , (8.2c)

where W µν is the 5-dimensional Pauli-Lubanski matrix.

It is worth noting that even though p5 can not be interpreted as the invariant mass, it,

nevertheless, carries mass information [62].

8.2 representation of Quantum Mechanics in Phase Space

To associate the Hilbert space, H, with the phase space Γ, the set of square-integrable

functions of complex value, ϕ(q, p), is considered in Γ, such that∫
dpdq ϕ∗(q, p)ϕ(q, p) <∞. (8.3)

Then we can write ϕ(q, p) = ⟨q, p|ϕ⟩, with the aid of∫
dpdq|q, p⟩⟨q, p| = 1, (8.4)

where ⟨ϕ| is the dual vector of |ϕ⟩. This is the symplectic Hilbert space denoted by H(Γ).

Now, let’s consider the Carroll group with H(Γ) as a representation space. To do so
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consider the unitary transformations, U :H(Γ) → H(Γ), such that ⟨ψ1|ψ2⟩ is invariant.

Using the operator Λ, we define a mapping ei
Λ
2 = ⋆:Γ× Γ→ Γ called star product as

f ⋆ g = f(q, p) exp

[
i

2

( ←−
∂

∂qµ

−→
∂

∂pµ
−
←−
∂

∂pµ

−→
∂

∂qµ

)]
g(q, p),

where ℏ = 1. The following operators are defined to construct a representation of Galilei

algebra in H:

P̂ µ = pµ⋆ = pµ − i

2
∂qµ , (8.5a)

Q̂µ = qµ⋆ = qµ +
i

2
∂pµ . (8.5b)

and

M̂νσ = Mνσ⋆ = Q̂νP̂σ − Q̂σP̂ν . (8.5c)

Where M̂νσ are the generators of homogeneous transformations and P̂µ of the non-homogeneous.

After some simple calculations, we get the following set of commutations relations from

this set of unitary operators[
M̂µν , M̂ρσ

]
= −i(gνρM̂µσ − gµρM̂νσ + gµσM̂νρ − gµσM̂νρ),

[
P̂µ, M̂ρσ

]
= −i(gµρP̂σ − gµσP̂ρ),

[
P̂µ, P̂σ

]
= 0.

These relations form a closed algebra with the Carroll-Lie algebra as its subalgebra. Con-

sidering Ĵi = 1
2
ϵijkM̂jk the generators of rotations and Ĉi = M̂4i of the pure Carroll

transformations, Pµ the spatial and temporal translations. The commutation of Ci and Pi

is naturally non-zero in this context, being P4 related to energy.
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8.2. representation of Quantum Mechanics in Phase Space

The invariants of this algebra are

I1 = P̂µP̂
µ (8.6a)

I2 = P̂4 (8.6b)

I3 = Ŵ4µŴ
4
µ , (8.6c)

this is the phase space representation of the Casimir invariants of the group.

8.2.1 Scalar representation

Using the Casimir invariants I1 and I2 and applying to Ψ, we have

P̂µP̂
µΨ = k2Ψ,

P̂4Ψ = −EΨ,

or explicitly (
p2 − ip ·∇− 1

4
∇2 − k2

)
Ψ =

(
p4 −

i

2
∂t

)(
p5 −

i

2
∂5

)
Ψ,

a solution for this equation is

Ψ = e−2i[(p5+mα)q5+(p4+E)t]Φ(q, p). (8.7)

Thus, we have
1

2mα

(
p2 − ip ·∇− 1

4
∇2

)
Φ =

(
E +

k2

2mα

)
Φ,

with α a coefficient that depends on the reference frame [62], this is the Carrollian spin 0

equation in phase space, with the kinetic energy term of k2

2mα
added, that we may always

use as the energy zero point.

This equation, and its complex conjugate, can be obtained by the Lagrangian density

in phase space (we use ∂µ = ∂/∂qµ)

L =
1

4
∂µΨ(q, p)∂µΨ

∗(q, p) +
i

2
pµ[Ψ(q, p)∂µΨ∗(q, p)−Ψ∗(q, p)∂µΨ(q, p)] +

[
pµpµ − k2

]
Ψ.

The association between this representation and Wigner formalism is established by

fw(q, p) = Ψ(q, p) ⋆Ψ†(q, p)
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where fw(q, p) is the Wigner function.

Which satisfies the five-dimensional Carrollian covariant Liouville-von Neumann equa-

tion in phase space given by

pµ∂qµfw(q, p) = 0. (8.8)

8.2.2 spinorial representation

The Lévy-Leblond equation in Carrollian covariant formalism has the form of the Dirac

equation, (
γµP̂µ − k

)
Ψ(p, q) = 0 (8.9)

or

γµ
(
pµ −

i

2
∂µ

)
Ψ(p, q) = kΨ(p, q). (8.10)

Eq. (8.9) can be derived from the Lagrangian density for spin 1/2 particles in phase space,

which is given by

L = − i
4

(
(∂µΨ̄)γµΨ− Ψ̄(γµ∂µΨ)

)
− Ψ̄(k − γµpµ)Ψ.

where Ψ̄ = ζΨ†, with

ζ = − i√
2
{γ4 + γ5} =

(
0 −i
i 0

)
.

In the case of the Lévy-Leblond equation, the association with the Wigner function is

given by

fw = Ψ ⋆Ψ,

with each component satisfying Eq. (8.8).

8.3 Gauge Theory for Carrollian Spin 1/2 particles in Phase

Space

The Carrollian spin 1/2 Lagrangian in phase space can be expressed as

L = Ψγµ(̃pµ⋆)Ψ− kΨΨ, (8.11)
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where A(̃pµ⋆)B = 1
2
[A(pµ ⋆ B)− (pµ ⋆ A)B]. The purpose of this section is to examine the

invariance of Eq.(8.11) under local gauge symmetry given by

Ψ = e−iΩ ⋆Ψ Ψ = Ψ ⋆ eiΩ, (8.12)

where Ω ≡ Ω(q, p). For infinitesimal transformation, we have δΨ = −iΩ⋆Ψ and δΨ = iΨ⋆Ω,

such that,

δ(pµ ⋆Ψ) = −ipµ ⋆ Ω ⋆Ψ, (8.13)

and

δ(Ψ ⋆ pµ) = iΨ ⋆ Ω ⋆ pµ. (8.14)

It should be noted that δ(pµ ⋆ Ψ) and δ(Ψ ⋆ pµ) do not transform covariantly. Thus, we

define the operator to address this aspect as

Dµ⋆ = pµ ⋆−iAµ⋆, (8.15)

resulting in the modified Lagrangian density

L = Ψγµ(̃Dµ⋆)Ψ− kΨΨ. (8.16)

Using the identity p(f ⋆ g) = f ⋆ (pg)− i
2
(∂µf) ⋆ g, the infinitesimal variation of Dµ ⋆Ψ is

given by

δ(Dµ ⋆Ψ) = −iΩ ⋆ (pµ ⋆Ψ)− ∂µΩ ⋆Ψ− Aµ ⋆ (Ω ⋆Ψ)− i(δ(Aµ) ⋆Ψ. (8.17)

Considering that Aµ transforms by

A′
µ → Aµ + i{Aµ,Ω}M + i∂µΩ, (8.18)

where {a, b}M = a ⋆ b− b ⋆ a is the Moyal Brackets, we obtain

δ(Dµ ⋆Ψ) = −iΩ ⋆ (Dµ ⋆Ψ). (8.19)

Similarly, we have

δ(Ψ ⋆ Dµ) = −i(Ψ ⋆ Dµ) ⋆ Ω. (8.20)
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In this sense, the Lagrangian density given in Eq.(8.16) is invariant under transformation

in Eq.(8.12). Then, we have that the rule for minimal coupling is to replace pµ⋆ by Dµ⋆ =

pµ ⋆−iAµ⋆. The Pauli-Schrödinger equation with electromagnetic interactions is analyzed

using the approach developed above in the following section.

8.4 Solution of the LL Equation with Electromagnetic Interac-

tions

The equation describing a spin 1/2 particle in the Carrollian covariant phase space is

given by [
γµ
(
P̂µ − eÂµ

)
− k

]
Ψ,

where Aµ is the 4-potential of the Carrollian electromagnetism [54].

Making the following definition

Ψ =
[
γν
(
P̂ν − eÂν

)
+ k
]
ψ, (8.21)

where P̂ν = (pν − i
2
∂ν). Thus, we have[

γµγν
(
P̂µ − eÂµ

)(
P̂ν − eÂν

)
− k2

]
ψ = 0. (8.22)

Considering γµγν = gµν + σµν , where

σµν =
1

2

(
γµγν − γνγµ

)
=

1

2
[γµ, γν ].

Using these results Eq. (8.22) becomes(
P̂ µP̂µ − e

(
P̂ µÂµ + ÂµP̂µ

)
− eσµν

[
P̂ν , Âµ

]
+ e2ÂµÂµ

)
ψ = k2ψ.

Letting Âi = 1
2
eijkBjQ̂k, with Q̂µ = (qµ + i

2
∂pµ) and A4 = A5 = 0. Also, choosing the

magnetic field as B = (0, 0, B). Keeping a particle’s motion contained in a plane (q1, q2),
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8.4. Solution of the LL Equation with Electromagnetic Interactions

i.e. P̂3 = 0, the equation is as follows:

− 2

(
p4 −

i

2
∂t

)(
p5 −

i

2
∂s

)
ψ

+

(
p21 + p22 −

1

4

( ∂2

∂q12
+

∂2

∂q22

)
− eB

[
i

2

(
p2∂p1 − p1∂p2

)
+

1

4

( ∂2

∂q2∂p1
− ∂2

∂q1∂p2

)]
− i
(
p2∂q2 + p1∂q2

)
− eB

[
(q1p2 − q2p1)−

i

2

(
q1∂q2 − q2∂q1

)]

+
e2B2

4

[(
q1 +

i

2
∂p1

)2
+
(
q2 +

i

2
∂p2

)2]
− ieσ12B

)
ψ = k2ψ, (8.23)

where σ12 = i

(
σ3 0

0 σ3

)
.

Letting

ψ =

(
Φ(qµ, pµ)

Θ(qµ, pµ)

)
,

we have two decoupled equations, one for Φ(qµ, pµ) and the other for Θ(qµ, pµ),

−2

(
p4 − i

2
∂t

)(
p5 − i

2
∂s

)
Φ(qµ, pµ) +

(
p21 + p22 − 1

4

(
∂2

∂q12
+ ∂2

∂q22

)
− eB

[
i
2

(
p2∂p1 − p1∂p2

)
+1

4

(
∂2

∂q2∂p1
− ∂2

∂q1∂p2

)]
− i
(
p2∂q2 + p1∂q2

)
− eB

[
(q1p2 − q2p1)− i

2

(
q1∂q2 − q2∂q1

)]

+ e2B2

4

[(
q1 +

i
2
∂p1

)2
+
(
q2 +

i
2
∂p2

)2]
+ eσ3B

)
Φ(qµ, pµ) = k2Φ(qµ, pµ),

and equation for Θ is analogous.

Taking Φ(qµ, pµ) = φ(qi, pi)ϕ(q4, q5, p4, p5). This gives us the following equations(
p4 −

i

2
∂t

)(
p5 −

i

2
∂s

)
ϕ = αmEϕ+ k2ϕ, (8.24a)
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and (
p21 + p22 −

1

4

( ∂2

∂q12
+

∂2

∂q22

)
− eB

[
i

2

(
p2∂p1 − p1∂p2

)
+

1

4

( ∂2

∂q2∂p1
− ∂2

∂q1∂p2

)]
− i
(
p2∂q2 + p1∂q2

)
− eB

[
(q1p2 − q2p1)−

i

2

(
q1∂q2 − q2∂q1

)]

+
e2B2

4

[(
q1 +

i

2
∂p1

)2
+
(
q2 +

i

2
∂p2

)2]
+ eσ3B

)
φ

= 2αmEφ+ k2φ. (8.24b)

The solution of eq. (8.24a) is

ϕ = C1e
−2i[(p5+αm)q5+(p4+E)t],

where C1 is a normalization constant.

To solve Eq. (8.24b) we will make a change of variables, defined by

w(q1, q2, p1, p2) = p21 + p22 + eB(q2p1 − q1p2)

+
e2B2

4
(q21 + q22).

After a long calculation, it is shown that the imaginary part of this equation is identically

null, which gives us

wφ(w)− e2B2∂φ(w)

∂ω
− e2B2w

∂2φ(w)

∂w2
= (2αmE − esB + k2)φ(w), (8.25)

where sφ = σ3φ, with s = ±1. Letting ω = w/(eB), ξ = (2mαE − seB + k2)/eB and

defining f(ω) ≡ eωφ(ω), we have

ωf ′′(ω) + (1− 2ω)f ′(ω)− 2af(ω) = 0, (8.26)

with f ′(ω) = ∂f
∂ω

and a = 1
2
(1 − ξ). The equation (8.26) is a confluent hypergeometric
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equation, more specifically the Kummer equation, and the physical solutions are given by

fn(ω) = AnU

(
1

2
− ξ

2
, 1, 2ω

)
,

where U(a, b, x) are the Kummer’s function and An are constants. However, it is realized

that if a = −n with n = 0, 1, 2, ..., the series U(a, b, x) becomes a polynomial series in x

not exceeding n. Thus, writing,

ξ − 1 = 2n,

we have the following relation of eigenvalue

E = ωc

(
n+

1

2
+
s

2

)
− k2

2αm
,

with ωc =
eB
αm

and corresponding the following auto-functions

fn(w) = AnU

(
−n, 1, 2w

eB

)
, (8.27)

such that An are normalization constants. Therefore, the quasi-amplitudes become,

Φn = C1e
−2i[(p5+αm)q5+(p4+E)t]

(
AnU

(
−n, 1, 2w

eB

)
exp

(
− w

eB

))
. (8.28)

The analog is valid for Θ. To find the corresponding Wigner function just do ψn ⋆ ψ̄n.

To find fw, we will do the same procedure for the harmonic oscillator. Just realize that

w = 2αmh, with

h =
1

2αm

(
p21 + p22 + eB(q2p1 − q1p2) +

e2B2

4
(q21 + q22)

)
.

Thus,

ψ0 = C0e
−2h/ωc .
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Therefore

f 0
w = C0e

−2h/ωc ⋆ ψ0 = C0e
−2ĥ/ωcψ0 = C0e

−2E0/ωcψ0.

Thus the ground state Wigner function for the spin particle 1/2 and −1/2 are given re-

spectively

f 0+

w = (C0+)
2 1

e2
e−(p21+p

2
2+eB(q2p1−q1p2)+ e2B2

4
(q21+q

2
2))/eB,

and

f 0−

w = (C0−)
2e−(p21+p

2
2+eB(q2p1−q1p2)+ e2B2

4
(q21+q

2
2))/eB.

For the general case, we have

fn
±

w = (A±
n )
( 1

n!π

)
e−(p21+p

2
2+eB(q2p1−q1p2))U

(
−n, 1, 2(p

2
1 + p22 + eB(q2p1 − q1p2))

eB

)
. (8.29)

It is worthwhile comparing with the case of Galilean covariance [24].
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Chapter 9

Conclusions and Future Perspectives

In this work presents a new method for representing the phase space for particles

satisfying the Galileo and Carroll conformal symmetries in a covariant symplectic repre-

sentation. Based on the Wigner approach, this methodology allows analyzing the nature

of the non-classicality of the states of compactified systems, such as the Landau model

in the plane and fluctuations in vacuum at finite temperature and the confinement of the

quark-antiquark system. In the latter case, the TFD formalism proved to be adequate in

the study of vacuum fluctuations, allowing the analysis of confinement and the effect of

temperature on confinement.

Our investigation delved into the spin 1/2 particle equation, particularly the Pauli

equation within the framework of Galilean covariance. Leveraging this covariance, we con-

structed a phase space formalism, commencing with a comprehensive exposition on the

Galilean manifold. This formalism allowed us to revisit the construction of Galilean covari-

ance and the representations of quantum mechanics within this context.

By formulating the theory within the light-cone of a (4+1)-dimensional de Sitter space,

we ensured the preservation of Galilean symmetry throughout our calculations. We com-

puted the energy-momentum tensor associated with both Bosons and Fermions in each

field. Notably, for Bosons, the size-effect term remains constant and diminishes to zero as

temperature approaches zero. However, for a certain compactification length, the size-effect

continues to increase at higher temperatures, prompting a reevaluation necessitating the

consideration of a quark’s spin. Remarkably, in this scenario, raising the temperature from

T = 0 leads to a reduction in the Stefan-Boltzmann effect due to the negative contribution

of the size-effect to the energy momentum tensor. The minimum of the energy-momentum

tensor occurs when the size-effect term approaches zero at T ≈ 40 MeV, a temperature

comparable to the estimated threshold for quark-gluon plasma formation resulting from
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chiral symmetry violation. Further research is imperative to elucidate the intricate rela-

tionship between these disparate findings. Unlike Bosons, the size-effect term for Fermions

diminishes at high temperatures, suggesting the critical role of spin in the quark-anti-quark

effective model.

In the realm of Carrollian physics, we have developed a five-dimensional approach to

Carrollian symmetry akin to that of Galilean Symmetry. The symmetry group formed by

the subalgebra of the manifold G is isomorphic to the Lie-algebra of the Schrödinger group,

albeit with the substitution of t → s and p4 → p5. This subalgebra yields the Conformal

Carroll algebra upon dimensional reduction, thus termed the extended Carroll algebra. We

proceeded to investigate spin 0 and spin 1/2 within the framework of Carrollian covariance,

analyzing the Landau problem and comparing it with the case of Galilean covariance.

In conclusion, this work presents a novel method for a phase space representation for

covariantly Conformal Galilean and Carroll particles employing a symplectic representation

for the Galilei and Carroll group. Grounded in the Wigner approach, this methodology

offers insights into the existence of mass and spin in nonrelativistic quantum mechanics.

Through applications such as the Landau problem and the examination of the Size effect

of quark-antiquark mesons via Thermofield Dynamics in symplectic field theory, we have

demonstrated the versatility and efficacy of this approach.

Future Perspectives:

1. Continue studying the quark-antiquark system with the modified Cornell potential

2. Study the Cornell potential in Carroll symmetry

3. Incorporation of self-interaction in the studied systems

4. Deepen the study of chaoticity considering the self-interaction in the non-linear equa-

tion with the Cornell potential, via the negativity parameter.

By pursuing these future perspectives, we aim to advance our understanding of size effects

in quantum systems, uncover new physics phenomena, and pave the way for transformative

applications in various fields of science and technology.
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